

April 28, 2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile / L700 Crown Site BU: 841288

T-Mobile Site ID: CTFF334A

Located at: 205 Kaechele Place, Bridgeport, CT 06610 Latitude: 41° 13' 24.04" / Longitude: -73°

13' .38"

Dear Ms. Bachman,

T-Mobile/Metro PCS currently maintains three (3) antennas at the 120-foot level of the existing 150-foot monopole at 2 Kaechele Place, Bridgeport, CT. The tower is owned by Crown Castle. The property is owned by Southern New England Telephone Company. T-Mobile now intends to remove the existing equipment and replace it with nine (9) new antennas, three (3) TMAs, three (3) RRUs, twelve (12) coaxial cables, and two (2) hybrid cables at the same 120-foot level. They also propose to add one equipment cabinet to the ground.

This facility was approved by the Connecticut Siting Council, Docket Number 45 on September 14, 1984. This approval included the condition(s) that:

- 1. The tower shall be no taller than necessary to provide the proposed service, and in no event shall exceed 167';
- 2. A fence not lower than eight feet shall surround each tower and its associated equipment
- 3. The applicant or its successor shall notify the Council if and when directional antennas or any other equipment is added to any of these facilities;
- 4. The applicant or its successor shall permit, in accordance with representations made by it during the proceeding, public or private entities to share space on the facilities, for due consideration

- received, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing;
- 5. Unless necessary to comply with condition number six, below, no lights shall be installed on any of these towers:
- 6. The facilities shall be constructed in accordance with all applicable federal, state, and municipal laws and regulations;
- 7. The applicant shall submit a development and management plan (D&M) for the Bridgeport site pursuant to sections 16-50j-85 through 16-50j-87 of the regulations of state agencies, except that irrelevant items in section 16-50j-86 need only be identified as such. The D&M plans shall include appropriate evergreen screening of the sites, erosion control measures, reseeding plans, and tree removal plans. The applicant shall comply with the reporting requirements of section 16-50j-87 for all sites;
- 8. Construction activities shall take place during daylight working hours;
- 9. This decision and order shall be void and the towers and associated equipment approved herein shall be dismantled and removed, or reapplication for any new use shall be made to the Connecticut Siting Council before any such new use it made, if the towers do not provide or permanently cease to provide cellular service following completion of construction.
- 10. This decision and order shall be void if all construction authorized is not completed within three years of the issuance of this decision.

This modification complies with the aforementioned condition(s).

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to the Honorable Joseph P. Ganim, Mayor for the Town of Bridgeport, the Planning & Economic Department for the Town of Bridgeport, the property owner and the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modification will not require the extension of the site boundary.

- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Amanda Cornwall.

Sincerely,

Amanda Cornwall Real Estate Specialist 12 Gill Street, Suite 5800, Woburn, MA 01801 339-205-7017

Amanda.Cornwall@crowncastle.com

Attachments:

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report

Tab 3: Exhibit-3: General Power Density Table report (RF Emissions Analysis Report)

cc: Joseph P. Ganim, Mayor Town of Bridgeport 999 Broad Street Bridgeport, CT 06604

Thomas F. Gill, Director of OPED
Office of Planning and Economic Development
999 Broad Street
Bridgeport, CT 06604

Crown Castle (Tower Owner) 12 Gill Street, Suite 5800 Woburn, Ma 01801

Southern New England Telephone (Property Owner) One SBC Center 36-M-01 St. Louis, ME 63101

1	1	1	7	1
Т	T	_	. 1	1

32-61/1110

CROWN CASTLE - ETA PROPERTY

3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277

DATE 4/28/17

PAY TO THE OF Connecticut Siting Council
Six Hundred Twenty five 0%10 CHASE 🗘

JPMorgan Chase Bank, N.A. www.Chase.com

FOR 841288-CTFF334A-416902

"Olli71" #111000614#

VALID FOR 180 DAYS

464638118#

AN APPLICATION SUBMITTED BY THE SOUTHERN NEW : ENGLAND TELEPHONE COMPANY FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC : NEED FOR THE CONSTRUCTION, MAINTENANCE, AND OPERATION OF FACILITIES TO PROVIDE CELLULAR SERVICE IN FAIRFIELD COUNTY.

CONNECTICUT SITING

COUNCIL

September 14, 1984

DECISION AND ORDER

Pursuant to the foregoing opinion, the Council hereby directs that a certificate of environmental compatibility and public need as required by section 16-50k of the General Statutes of Connecticut, revisions of 1958, revised to 1983, as amended, be issued to the Southern New England Telephone Company for the construction, operation, and maintenance of a telecommunications tower and associated equipment to provide cellular service at each of the following sites:

Kaechele Place, Bridgeport, Connecticut; Connecticut Avenue, Norwalk, Connecticut; Nells Rock Road, Shelton, Connecticut; Newfield Avenue, Stamford, Connecticut; and Bayberry Lane, (former Nike site), Westport, Connecticut.

The facilities shall be constructed, operated, and maintained as specified in the Council's record on this matter, and subject to the following conditions:

- The towers shall be no taller than necessary to provide the proposed service, and in no event shall exceed
 - a) 167' at the Bridgeport site.
 - b) 167' at the Norwalk site.
 - c) 189.5' at the Shelton site,
 - d) 167' at the Stamford site,
 - e) 117' at the Westport site;
- A fence not lower than eight feet shall surround each tower and its associated equipment;
- 3. The applicant or its successor shall notify the Council if and when directional antennas or any other equipment is added to any of these facilities;

- 4. The applicant or its successor shall permit, in accordance with representations made by it during the proceeding, public or private entities to share space on the facilities, for due consideration received, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing;
- Unless necessary to comply with condition number six, below, no lights shall be installed on any of these towers;
- 6. The facilities shall be constructed in accordance with all applicable federal, state, and municipal laws and regulations;
- 7. The applicant shall submit a development and management plan (D&M) for the Bridgeport, Stamford, and Westport sites pursuant to sections 16-50j-85 through 16-50j-87 of the regulations of state agencies, except that irrelevant items in section 16-50j-86 need only be identified as such. The D&M plans shall include appropriate evergreen screening of the sites, erosion control measures, reseeding plans, and tree removal plans. The applicant shall consult with the Stamford Environmental Protection Board in the preparation of a drainage and erosion control plan for the Stamford tower. The applicant shall comply with the reporting requirements of section 16-50j-87 for all sites;
- 8. Construction activities shall take place during daylight working hours;
- 9. This decision and order shall be void and the towers and associated equipment approved herein shall be dismantled and

removed, or reapplication for any new use shall be made to the Connecticut Siting Council before any such new use is made, if the towers do not provide or permanently cease to provide cellular service following completion of construction;

10. This decision and order shall be void if all construction authorized is not completed within three years of the issuance of this decision.

Pursuant to section 16-50p of the General Statutes, we hereby direct that a copy of the opinion and decision and order be served on each person listed below. A notice of the issuance shall be published in the Bridgeport Post, the Norwalk Hour, the Stamford Advocate, and the Shelton Suburban News, and the Westport News.

The parties to this proceeding are

The Southern New England
Telephone Company
Room 314

(Applicant)

227 Church Street

New Haven, Connecticut 06506

Attention: Mr. Peter J. Tyrrell

Senior Attorney

(its attorney)

Rolnick Observatory 52 Sawyer Road

Fairfield, Connecticut

represented by:

Frederick H. Bump Director

Mr. Adam Norton 40 Highland Road

Westport, Connecticut 06880

Representative John Wayne Fox 13 Apple Tree Drive Stamford, Connecticut 06906

(service waived)

Mr. George C. Lenfest 4 Highland Road Westport, Connecticut Mr. William Seiden First Selectman Town of Westport 110 Myrtle Avenue P.O. Box 549 Westport, Connecticut 06881

Mr. Arthur L. Schimel 174 Bayberry Lane Westport, Connecticut

Mr. Seymour Bendremer 11 Apache Trail Westport, Connecticut

Ms. Gladys Floch 32 Woody Lane Westport, Connecticut

Ms. Helen S. Cohen 15 Highland Road Westport, Connecticut

Mr. Jack Braverman 226 Bayberry Lane Westport, Connecticut

Mr. Kevin Gavin 191 Bayberry Lane Westport, Connecticut

Mr. A.B. Beiser 12 Highland Road Westport, Connecticut

Mr. Edward V. Polusky 4 Hooper Road Westport, Connecticut

Ms. Lois Schine

(service waived)

(service waived)

(service waived)

represented by:

Mary D. Mix, Esquire 830 Post Road - East Suite 100 Westport, Connecticut 06880

Mr. Allen Witt 3 Apache Trail Westport, Connecticut

Ms. Gayle Shiller 5 Apache Trail Westport, Connecticut

(service waived)

Mrs. Ronnie Hammer 3 Hooper Road Westport, Connecticut

Mr. Paul Rosenblatt 7 Apache Trail Westport, Connecticut

(service waived)

Mr. Henry J. Wolfson 179 Bayberry Lane Westport, Connecticut

(service waived)

Mr. Melvin H. Barr Planning Director Town of Westport 110 Myrtle Avenue P.O. Box 549 Westport, Connecticut 06881

(service waived)

Mr. Mark Infeld 6 Apache Trail Westport, Connecticut

(service waived)

Ms. Barbara Saipe
Representative Town
Meeting Member
District #8
Town Hall
P.O. Box 549
Westport, Connecticut 06881

(service waived)

Ms. Peggy Goldenberg 201 Bayberry Lane Westport, Connecticut (service waived)

Ms. Martha Hauhuth Board of Selectman Town Hall P.O. Box 549 Westport, Connecticut 06881

(service waived)

Ms. Meg Coffee 32 Otter Trail Westport, Connecticut

(service waived)

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut, this 14th day of September, 1984.

Council Members	<u>Vote Cast</u>
Gloria Dibble Pond, Chairperson	Yes
Commissioner John Downey Designee: Commissioner Peter G. Boucher	Absent
Commissioner Stanley Pac	Absent
Owen L. Clark	Yes
Fred J. Doocy	Yes
Mortimer A. Gelston	Yes
James G. Horsfall	Yes
Janet Sitty	Yes
Colin C. Toit	Absent

STATE OF CONNECTICUT)

COUNTY OF HARTFORD ; ss. New Britain, September 14, 1984

I hereby certify that the foregoing is a true and correct copy of the decision and order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

Christopher S. Wood, Executive Director Connecticut Siting Council

205 KAECHELE PL

Location 205 KAECHELE PL **Mblu** 81/ 2602/ 9//

Acct# R--0148640 Owner SOUTHERN NEW ENGLAND

TEL

Assessment \$104,120 **Appraisal** \$148,730

> **PID** 29859 **Building Count** 1

Current Value

Appraisal				
Valuation Year Improvements Land Total				
2016	\$51,340	\$97,390	\$148,730	
	Assessment			
Valuation Year	Improvements	Land	Total	
2016	\$35,950	\$68,170	\$104,120	

Owner of Record

Owner SOUTHERN NEW ENGLAND TEL Sale Price \$0 Co-Owner % SBC COMMUNICATIONS INC Certificate

Address ONE SBC CENTER 36-M-01 **Book & Page** 0/0

> ST LOUIS, MO 63101 Sale Date

Ownership History

Ownership History				
Owner	Sale Price	Certificate	Book & Page	Sale Date
SOUTHERN NEW ENGLAND TEL	\$0		0/ 0	

Building Information

Building 1: Section 1

Year Built:

Living Area: 0 **Replacement Cost:**

\$0

Building Percent

Good:

Replacement Cost

Less Depreciation: \$0

Building Attributes		
Field	Description	

Style	Vacant Land
Model	
Grade:	
Stories:	
Occupancy:	
Exterior Wall 1:	
Exterior Wall 2:	
Roof Structure:	
Roof Cover:	
Interior Wall 1:	
Interior Wall 2:	
Interior Flr 1:	
Interior Flr 2	
Heat Fuel:	
Heat Type:	
AC Type:	
Total Bedrooms	
Total Full Baths	
Total Half Baths	
Total Xtra Fixtrs:	
Total Rooms	
Bath Style:	
Kitchen Style:	
Fireplaces	
Fin Bsmt Area	
Fin Bsmt Quality	
Bsmt Garages	

Building Photo

(http://images.vgsi.com/photos/BridgeportCTPhotos/\\00\03\0!

Building Layout

Building Sub-Areas (sq ft)	<u>Legend</u>
No Data for Building Sub-Are	225

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use Land Line Val		Land Line Valua	ation
Use Code	499	Size (Acres)	0.15
Description	Utility Vac Ln	Frontage	0
Zone	RA	Depth	0
Neighborhood	2080	Assessed Value	\$68,170

Outbuildings

Outbuildings					Legend	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
SHD3	Shed w/ Lt	СМ	Comm	384 SF	\$6,910	1
SHD3	Shed w/ Lt	СМ	Comm	384 SF	\$6,910	1
SHD3	Shed w/ Lt	СМ	Comm	576 SF	\$10,370	1
FN1	Fence, Chain	8	8 ft	350 LF	\$3,150	1
TWR	Tower			120 LF	\$24,000	1

Valuation History

Appraisal				
Valuation Year Improvements Land Total				
2015	\$51,340	\$97,390	\$148,730	
2014	\$51,340	\$106,880	\$158,220	
2013	\$51,340	\$106,880	\$158,220	

Assessment				
Valuation Year	Improvements	Land	Total	
2015	\$35,950	\$68,170	\$104,120	
2014	\$35,950	\$74,820	\$110,770	
2013	\$35,950	\$74,820	\$110,770	

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Google Maps 205 Kaechele Pl

Imagery ©2017 Google, Map data ©2017 Google

- - Mobile -

T-MOBILE SITE NUMBER: CTFF334A

T-MOBILE SITE NAME:

SITE TYPE:

TOWER HEIGHT:

CROWN CASTLE BU #: 841288

SITE ADDRESS:

COUNTY:

JURISDICTION:

LOCATION MAP

41.223344

→ -73.216772

205 KAECHELE PLACE **BRIDGEPORT, CT 06606**

FAIRFIELD

CITY OF BRIDGEPORT

T-MOBILE 2017 NSD

SITE INFORMATION

FAIRFIELD

CROWN CASTLE SITE NAME: SITE ADDRESS:

BRIDGEPORT NORTH 205 KAECHELE PLACE BRIDGEPORT, CT 06606

COUNTY:

BRID-002602-000009 MAP/PARCEL#: AREA OF CONSTRUCTION: EXISTING

41° 13' 24.10' LATITUDE -73° 13' 0.35" LONGITUDE NAD83 LAT/LONG TYPE: 241.3 FT. GROUND ELEVATION:

CURRENT ZONING: HIRISDICTION:

CITY OF BRIDGEPORT

OCCUPANCY CLASSIFICATION: U TYPE OF CONSTRUCTION:

A.D.A. COMPLIANCE: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION

PROPERTY OWNER:

2000 CORPORATE DRIVE CANONSBURG, PA 15317

TOWER OWNER:

2000 CORPORATE DRIVE CANONSBURG, PA 15317

CARRIER/APPLICANT:

35 GRIFFIN ROAD, BLOOMFIELD, CT 06002

CROWN CASTLE APPLICATION ID:

ELECTRIC PROVIDER:

TELCO PROVIDER: AT&T (866) 620-6900

PROJECT TEAM

CROWN CASTLE A&E FIRM

CROWN CASTLE 2000 CORPORATE DRIVE CANONSBURG, PA 15317

CROWNAE.APPROVAL@CROWNCASTLE.COM

CROWN CASTLE CONTACTS:

1200 MACARTHUR BLVD, SUITE 200

MAHWAH, NJ 07430

TRICIA PELON - PROJECT MANAGER

JASON D'AMICO - CONSTRUCTION MANAGER

WILLIAM STONE - A&E PROJECT MANAGER WILLIAM.STONE@CROWNCASTLE.COM

DRAWING INDEX

MONOPOLE

151'-4"

SHEET#	SHEET DESCRIPTION
T-1	TITLE SHEET
T-2	GENERAL NOTES
C-1	SITE PLAN
C-2	EXISTING & FINAL EQUIPMENT PLAN
C-3	FINAL ELEVATION AND ANTENNA PLANS
C-4	ANTENNA AND CABLE SCHEDULE
C-5	EQUIPMENT SPECIFICATIONS
C-6	EQUIPMENT SPECIFICATIONS
E-1	PANEL SCHEDULE & ONE-LINE DIAGRAM
G-1	EQUIPMENT & ANTENNA GROUNDING PLAN
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS

ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR 11X17. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS ND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME

APPLICABLE CODES/REFERENCE **DOCUMENTS**

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

ELECTRICAL

2016 CT STATE BUILDING CODE/2012 IBC W/ CT AMENDMENTS

MECHANICAL

2016 CT STATE BUILDING CODE/2012 IMC W/ CT AMENDMENTS

2016 CT STATE BUILDING CODE/2014 NEC W/ CT AMENDMENTS

INSTALLER NOTE:

TOWER DOES NOT HAVE CLIMBING FACILITIES - MANLIFT REQUIRED FOR ELEVATED WORK

REFERENCE DOCUMENTS:

STRUCTURAL ANALYSIS: BY OTHERS

STRUCTURAL ANALYSIS: BY OTHERS

MOUNT ANALYSIS: BY OTHERS

PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE CROWN NOC AT (800) 788-7011 & CROWN CONSTRUCTION MANAGER

APPROVALS

SIGNATURE DATE PROPERTY OWNER OR REP LAND USE PLANNER T-MOBILE. OPERATIONS RE NETWORK BACKHAUI

THE PARTIES ABOVE HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL CONSTRUCTION DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND ANY CHANGES AND MODIFICATIONS THEY MAY

CONSTRUCTION MANAGER

PROJECT DESCRIPTION

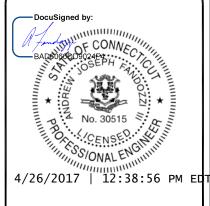
THE PURPOSE OF THIS PROJECT IS TO ENHANCE BROADBAND. CONNECTIVITY AND CAPACITY TO THE EXISTING ELIGIBLE WIRELESS

TOWER SCOPE OF WORK:

- REMOVE ALL EQUIPMENT & FEEDLINES @ LEVEL 120'-0" • INSTALL (9) ANTENNAS
- INSTALL (3) RRUs
- INSTALL (3) TMSs
- INSTALL (12) 1-5/8"COAX CABLES INSTALL (1) 1-5/8" HYBRID CABLE
- INSTALL (1) 1-1/2" HYBRID CABLE
- GROUND SCOPE OF WORK
- REMOVE ALL EQUIPMENT ON CONCRETE PAD • INSTALL (1) AAV CABINET
- INSTALL (1) 6102 CABINET
- INSTALL (1) RAC24 CABINET
- POWER & TELCO TO BE RECOMMISSIONED

DESIGN PACKAGE BASED ON THE APPLICATION ID: 374828 REVISION: 2

CALL CONNECTICUT ONE CALL (800) 922-4455 CALL 3 WORKING DAYS BEFORE YOU DIG!


T-MOBILE SITE NUMBER: CTFF334A

BU #: 841288 **BRIDGEPORT NORTH**

205 KAECHELE PLACE BRIDGEPORT, CT 06606

EXISTING 151'-4" MONOPOLE

ISSUED FOR: DESCRIPTION DATE 2/27/17 ZTK PRELIMINARY LR CONSTRUCTION ZTK CONSTRUCTION LR ZTK CONSTRUCTION LR

Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration #PEC.0001101

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER.

SHEET NUMBER

SITE WORK GENERAL NOTES:

- 1. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF
- 2. ALL EXISTING ACTIVE SEWER, WATER, GAS, FLECTRIC AND OTHER LITHLITIES WHERE ALL EXISING ACTIVE SEWER, WAIER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES, SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING
- 3. ALL SITE WORK TO COMPLY WITH QAS-STD-10068 "INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON CROWN CASTLE TOWER SITE" AND LATEST VERSION OF TIA 1019 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS.
- 4. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND
- 5. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 6. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, OWNER AND/OR
- 7. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 8. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 9. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 10. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE
- 11. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE PROJECT SPECIFICATIONS.
- 12. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 13. NOTICE TO PROCEED- NO WORK TO COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF A PURCHASE ORDER.
- 14. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HERFIN AND SHALL MEET ANSI/TIA 1019 (LATEST EDITION), OSHA, AND GENERAL INDUSTRY STANDARDS. ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-1019 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.

STRUCTURAL STEEL NOTES:

- 1. ALL STEEL WORK SHALL BE PAINTED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS AND IN ACCORDANCE WITH ASTM A36 UNLESS OTHERWISE NOTED.
- BOLTED CONNECTIONS SHALL BE ASTM A325 BEARING TYPE (3/4"

 Ø) CONNECTIONS AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE.
- 3. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" ASTM A307 BOLTS UNLESS NOTED OTHERWISE
- INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS.

CONCRETE AND REINFORCING STEEL NOTES:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 3000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE. SLAB FOUNDATION DESIGN ASSUMING ALLOWABLE SOIL BEARING PRESSURE OF 2000 PSF.
- 3. REINFORCING STEEL SHALL CONFORM TO ASTM A615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS AND ALL HOOKS SHALL BE STANDARD, UNO.
- 4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS

CONCRETE CAST AGAINST FARTH CONCRETE EXPOSED TO EARTH OR WEATHER2 IN #6 AND LARGER... #5 AND SMALLER & WWF CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE

BEAMS AND COLUMNS....

MASONRY NOTES:

- HOLLOW CONCRETE MASONRY UNITS SHALL MEET A.S.T.M. SPECIFICATION C90, GRADE N. TYPE 1. THE SPECIFIED DESIGN COMPRESSIVE STRENGTH OF CONCRETE MASONRY (F'm) SHALL BE 1500 PSL
- MORTAR SHALL MEET THE PROPERTY SPECIFICATION OF A.S.T.M. C270 TYP. "S" MORTAR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 2000 PSI.
- 3. GROUT SHALL MEET A.S.T.M. SPECIFICATION C475 AND HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 2000 PSI
- 4. CONCRETE MASONRY SHALL BE LAID IN RUNNING (COMMON) BOND.
- WALL SHALL RECEIVE TEMPORARY BRACING. TEMPORARY BRACING SHALL NOT BE REMOVED UNTIL GROUT IS FULLY CURED.

GENERAL NOTES:

FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR-

SUBCONTRACTOR- GENERAL CONTRACTOR (CONSTRUCTION) T-MOBILE
CROWN CASTLE
ORIGINAL EQUIPMENT MANUFACTURER OWER OWNER-

- 2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR AND CROWN CASTLE.
- ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND
- DRAWINGS PROVIDED HERE ARE NOT TO SCALE AND ARE INTENDED TO SHOW OUTLINE
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED
- "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY CONTRACTOR, ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR.
- THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 8. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CONTRACTOR AND CROWN CASTLE PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF
- SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWINGS.
- 10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS. PAVEMENTS, CURBS. LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

ABBREVIATIONS AND SYMBOLS:

ABBREVIATIONS:

ABOVE GRADE LEVEL BASE TRANSCEIVER STATION BTS FXISTING MINIMUM REFERENCE RADIO FREQUENCY TO BE DETERMINED TO BE RESOLVED REQUIRED FOLIPMENT GROUND RING AMERICAN WIRE GAUGE MASTER GROUND BAR EQUIPMENT GROUND SMART INTEGRATED ACCESS DEVICE GENERATOR INTERIOR GROUND RING (HALO)
RADIO BASE STATION

SYMBOLS:

-S/G- SOLID GROUND BUS BAR SOLID NEUTRAL BUS BAR -S/No-SUPPLEMENTAL GROUND CONDUCTOR 2-POLE THERMAL-MAGNETIC CIRCUIT BREAKER SINGLE-POLE THERMAL-MAGNETIC CIRCUIT BREAKER CHEMICAL GROUND ROD \otimes TEST WELL \Box DISCONNECT SWITCH W METER

EXOTHERMIC WELD (CADWELD) (UNLESS OTHERWISE NOTED)

MECHANICAL CONNECTION

GROUNDING WIRE

ELECTRICAL INSTALLATION NOTES:

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. SUBCONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. HILTI EPOXY ANCHORS ARE REQUIRED BY CROWN CASTLE.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS
- 5. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS.
- 6. EACH END OF EVERY POWER, POWER PHASE CONDUCTOR (I.E., HOTS), GROUNDING AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHAL
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH PLASTIC TAPE PER COLOR SCHEDULE. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (I.E. PANEL BOARD AND CIRCUIT ID'S).
- 8. PANEL BOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.
- 10, POWER, CONTROL AND FOUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE FOWER, CONDUCTOR #14 AWG OR LARGER), 600 V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90' C (WET & DRY) OPERATION LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED UNLESS OTHERWISE SPECIFIED.
- 11. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (#6 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION CLASS B STRANDED COPPER CABLE RATED FOR 90° C (WET AND DRY) OPERATION LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED
- MULTI-CONDUCTOR, TYPE TC CABLE (#14 AWG OR LARGER), 600 V. OIL RESISTANT THIN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90° C (WET AND DRY) OPERATION WITH OUTER JACKET LISTED OR LABELED FOR THE LOCATION USED
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75° C (90° C IF
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL. ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E. RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.
- 16. ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT) OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 21. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED
- 22. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRET FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHIN ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE
- 23. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL; SHALL MEET OR EXCEED UL 50 AND RATED NEMA 1 (OR BETTER) INDOORS OR NEMA 3R (OR BETTER) OUTDOORS.
- 24. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 25. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 26. THE SUBCONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTOR BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 27. THE SUBCONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 28. INSTALL PLASTIC LABEL ON THE METER CENTER TO SHOW "T-MOBILE".
- 29. ALL CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

GREENFIELD GROUNDING NOTES:

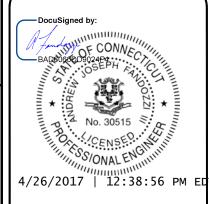
- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION. RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUNE ELECTRODE SYSTEMS, THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMP
- METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHEEF FRINISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS
- 6 FACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTEL GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT
 GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS: #2 AWG SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 FT. OF MAIN GROUND WIRES WITH 1-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR
- 19. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUTTS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS, WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G., NONMETALLIC CONDUI PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20 ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADI MUST BE #2 TINNED SOLID IN 3/4" LIQUID TIGHT CONDUIT FROM 24 BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT THE EXPOSED END OF THE LIQUID TIGHT CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

NEC II	NSULATOR COLOR	CODE
DESCRIPTION	PHASE/CODE LETTER	WIRE COLOR
240/120 10	LEG 1	BLACK
240/120 10	LEG 2	RED
AC NEUTRAL	N	WHITE
GROUND (EGC)	G	GREEN
VDC POS	+	*RED-POLARITY MARK AT TERMINATION
VDC NEG	-	*BLACK-POLARITY MARK AT TERMINATION
	PHASE A	BLACK
240V OR 208V, 3Ø	PHASE B	RED(ORG. IF HI LEG)
	PHASE C	BLUE
	PHASE A	BROWN
480V, 3Ø	PHASE B	ORANGE

YELLOW

* SEE NEC 210.5(C)(1) AND (2)

BLOOMFIELD, CT 06002

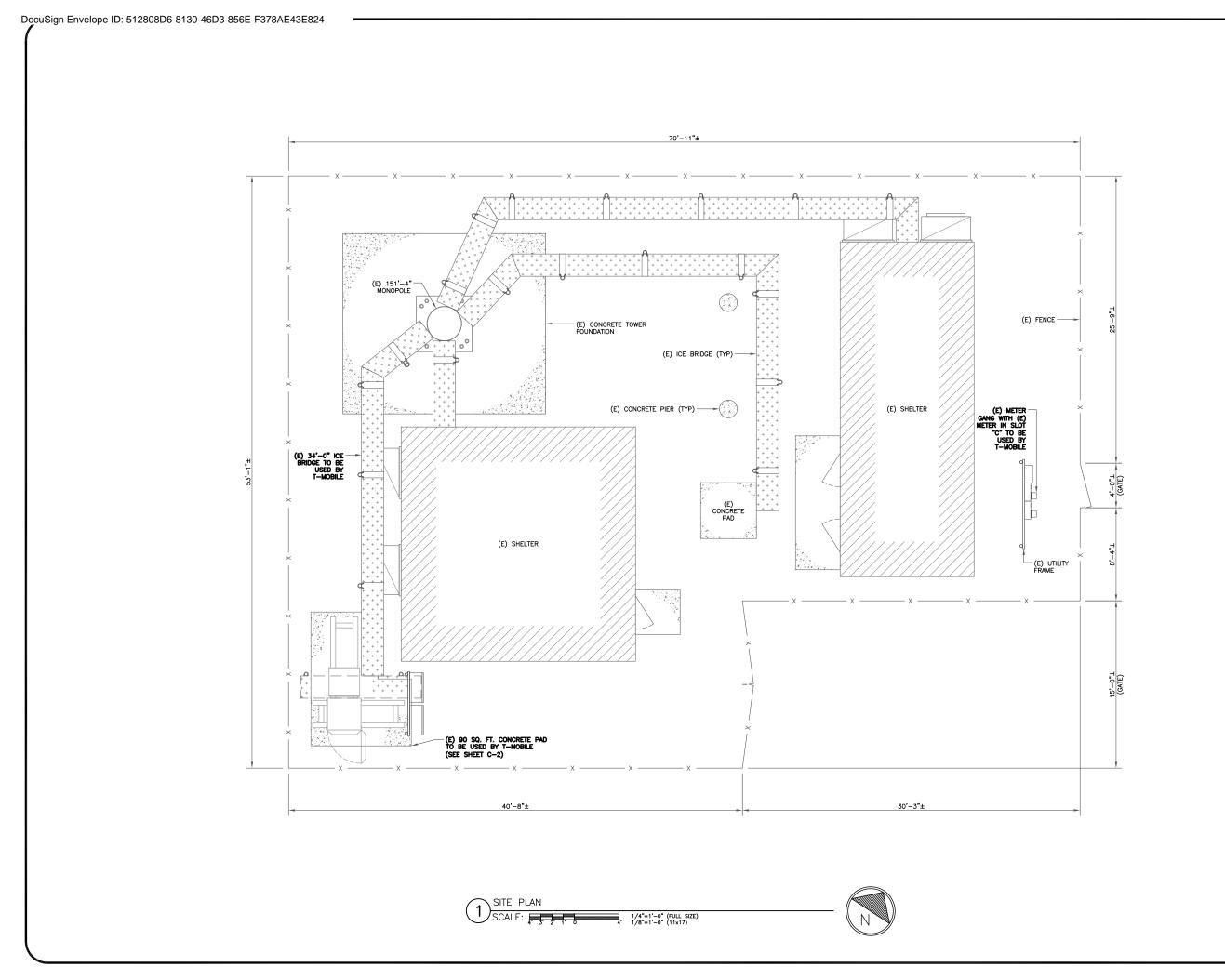

T-MOBILE SITE NUMBER: CTFF334A

BU #: **841288 BRIDGEPORT NORTH**

205 KAECHELE PLACE BRIDGEPORT, CT 06606

EXISTING 151'-4" MONOPOLE

	ISSUED FOR:									
REV	DATE	DRWN	DESCRIPTION	DES./QA						
A	2/27/17	ZTK	PRELIMINARY	LR						
0	3/7/17	ZTK	CONSTRUCTION	LR						
1	4/4/17	ZTK	CONSTRUCTION	LR						
2	4/7/17	ZTK	CONSTRUCTION	LR						
3	4/19/17	ZTK	CONSTRUCTION	LR						
4	4/21/17	ZTK	CONSTRUCTION	LR						

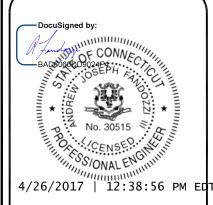


Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration #PEC.0001101

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT

SHEET NUMBER:

REVISION


T-MOBILE SITE NUMBER: **CTFF334A**

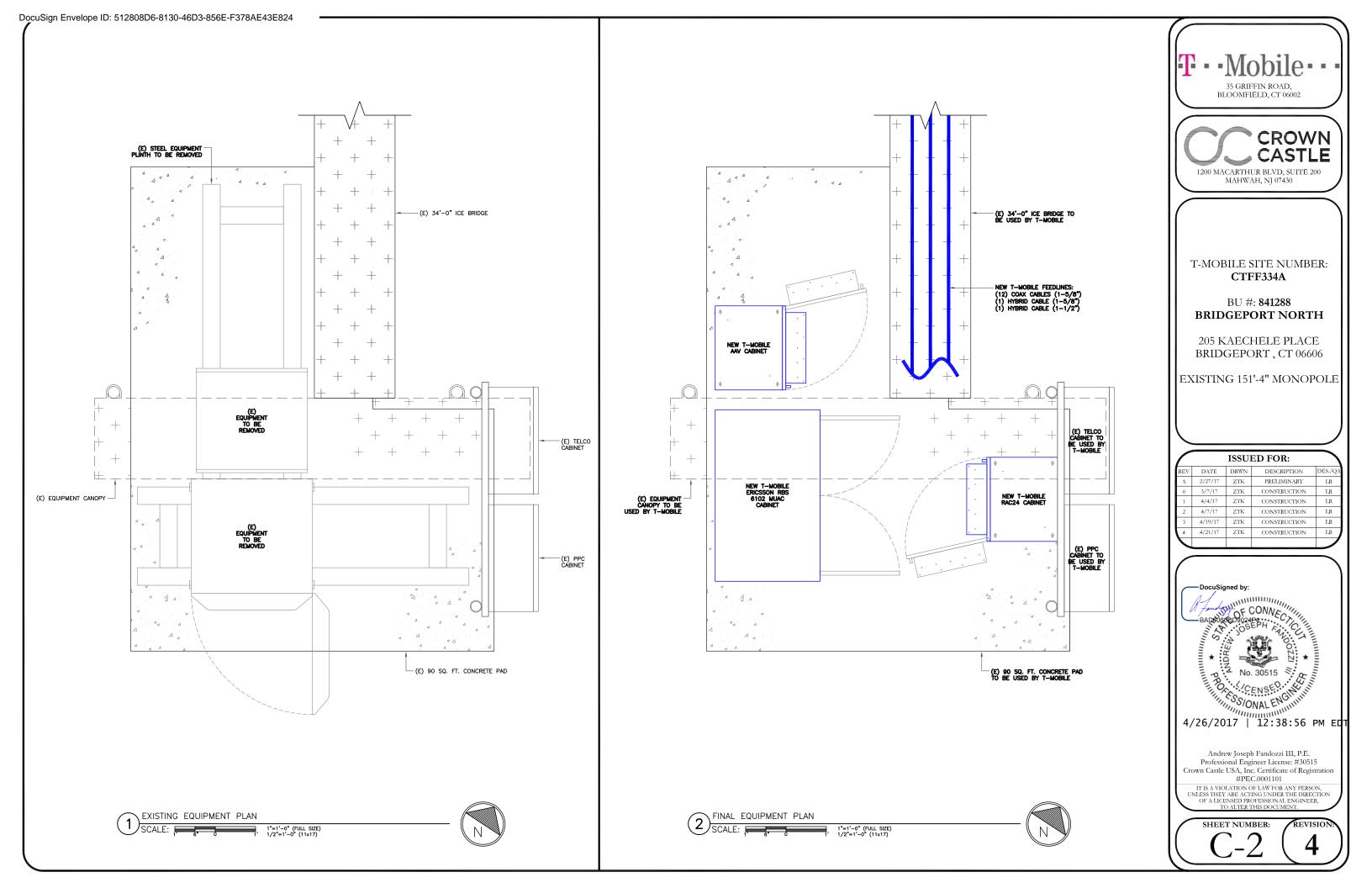
BU #: **841288 BRIDGEPORT NORTH**

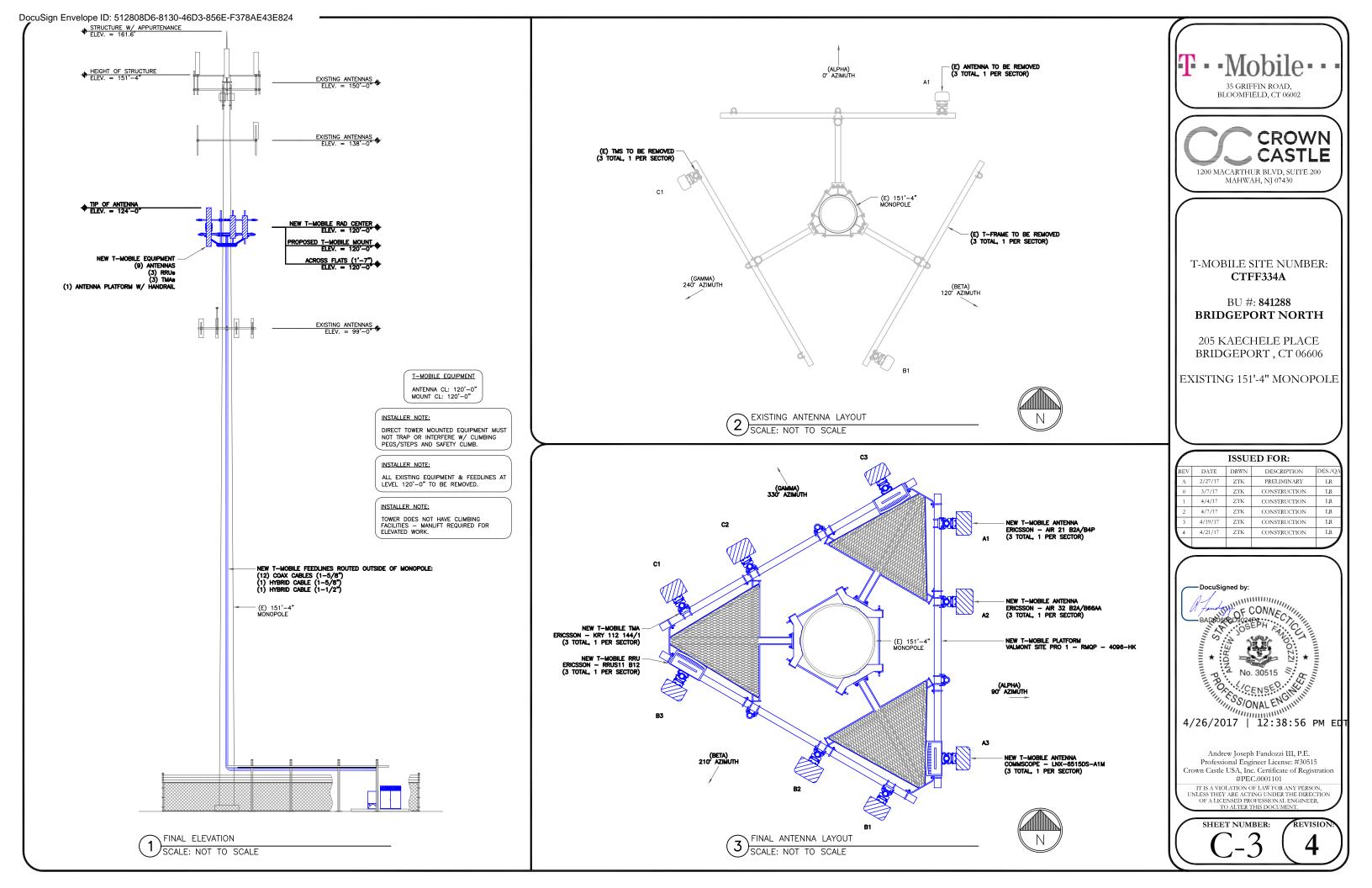
205 KAECHELE PLACE BRIDGEPORT, CT 06606

EXISTING 151'-4" MONOPOLE

/		18801	ED FOR:	1
REV	DATE	DRWN	DESCRIPTION	DES./QA
Α	2/27/17	ZTK	PRELIMINARY	LR
0	3/7/17	ZTK	CONSTRUCTION	LR
1	4/4/17	ZTK	CONSTRUCTION	LR
2	4/7/17	ZTK	CONSTRUCTION	LR
3	4/19/17	ZTK	CONSTRUCTION	LR
4	4/21/17	ZTK	CONSTRUCTION	LR
San San				

Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration

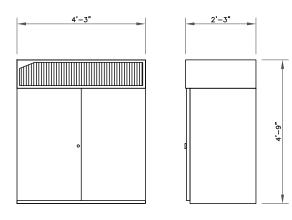

#PEC.0001101

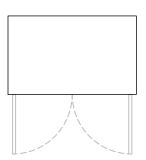

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

SHEET NUMBER:

C-1

4

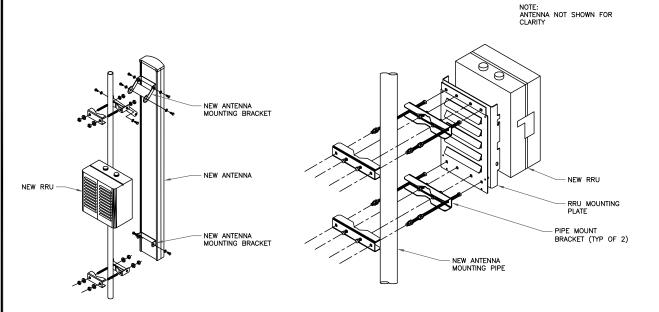




	ANTENNA SCHEDULE									
SECTOR	POS.	TECHNOLOGY	RAD CENTER	AZIMUTH	ANTENNA MANUFACTURER	ANTENNA MODEL	MECH. TILT	ELECT. TILT	TOWER MOUNTED EQUIPMENT	FEEDLINE TYPE
ALPHA	A1	LTE	120'-0"	90*	ERICSSON	AIR 21 B2A/B4P	-	-	(1) ERICSSON - KRY 112 144/1	COAX
ALPHA	A2	LTE	120'-0"	90*	ERICSSON	AIR 32 B2A/B66AA	-	-	-	(2) HYBRID
ALPHA	A3	LTE 700	120'-0"	90*	COMMSCOPE	LNX-6515DS-A1M	-	-	(1) ERICSSON - RRUS11 B12	COAX
BETA	B1	LTE	120'-0"	210°	ERICSSON	AIR 21 B2A/B4P	-	-	(1) ERICSSON - KRY 112 144/1	COAX
BETA	B2	LTE	120'-0"	210°	ERICSSON	AIR 32 B2A/B66AA	-	-	-	(2) HYBRID
BETA	В3	LTE 700	120'-0"	210°	COMMSCOPE	LNX-6515DS-A1M	-	-	(1) ERICSSON - RRUS11 B12	COAX
GAMMA	C1	LTE	120'-0"	330°	ERICSSON	AIR 21 B2A/B4P	-	-	(1) ERICSSON - KRY 112 144/1	COAX
GAMMA	C2	LTE	120'-0"	330°	ERICSSON	AIR 32 B2A/B66AA	-	-	-	(2) HYBRID
GAMMA	С3	LTE 700	120'-0"	330°	COMMSCOPE	LNX-6515DS-A1M	-	-	(1) ERICSSON - RRUS11 B12	COAX

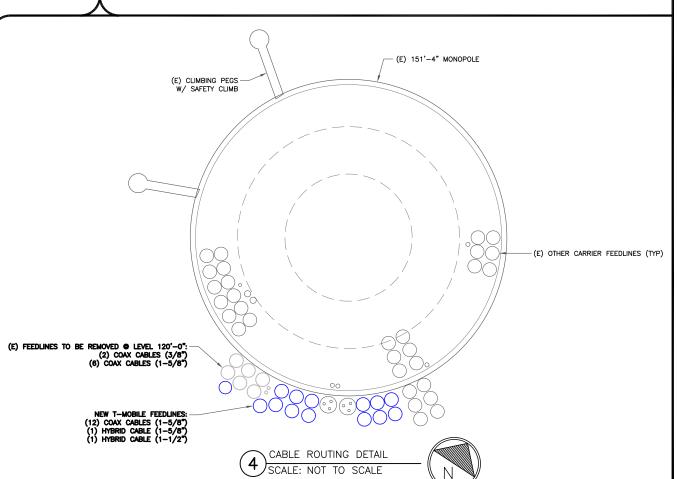
CABLE SCHEDULE							
STATUS	CABLE TYPE	SIZE	QUANTITY				
NEW	COAX	1-5/8"	12				
NEW	HYBRID	1-5/8"	1				
NEW	HYBRID	1-1/2"	1				
-							
FINAL	CABLE QUANTITY		14				

ANTENNA AND CABLE SCHEDULE
SCALE: NOT TO SCALE


EQUIPMENT NOTES:

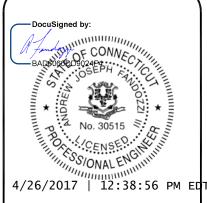
HEIGHTxWIDTHxDEPTH: 57.08" x 51.00" x 27.55" (1450.0mm x 1300.0mm x 700.0mm)

APPROX. MAX. WEIGHT: 859 LBS (390 kg)


ERICSSON - RBS 6102 SCALE: NOT TO SCALE

NOTE: ALL PIPES BRACKETS AND MISCELLANEOUS HARDWARE TO BE GALVANIZED UNLESS NOTED OTHERWISE

ANTENNA & RRU MOUNTING DETAIL SCALE: NOT TO SCALE


T-MOBILE SITE NUMBER: **CTFF334A**

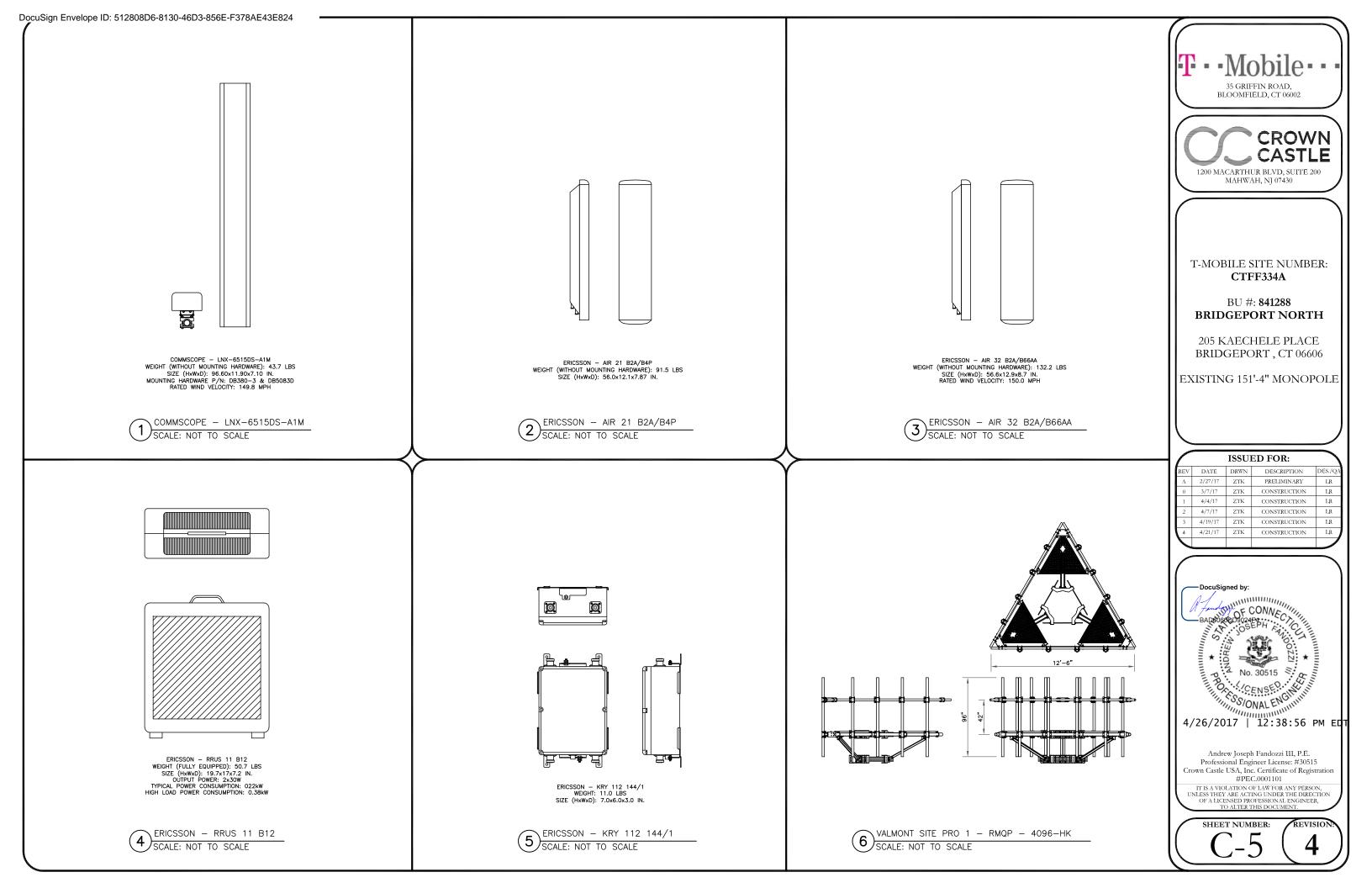
BU #: **841288 BRIDGEPORT NORTH**

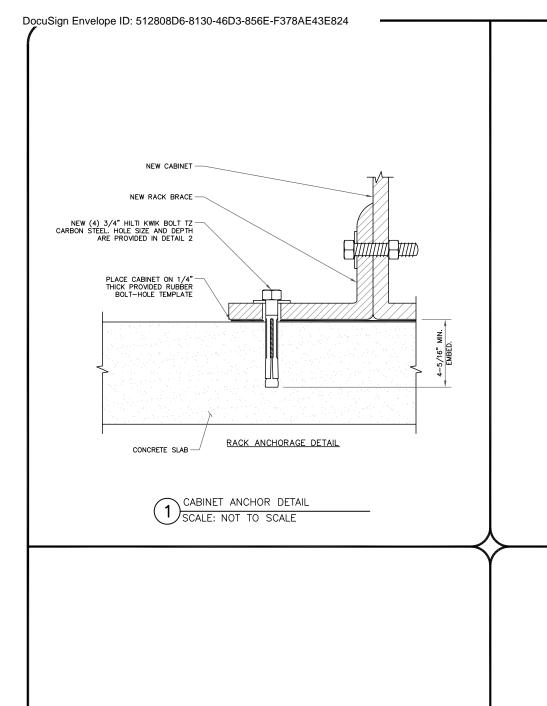
205 KAECHELE PLACE BRIDGEPORT, CT 06606

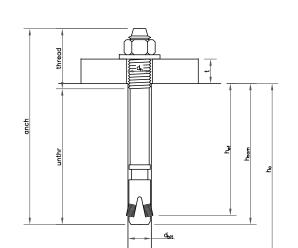
EXISTING 151'-4" MONOPOLE

ISSUED FOR:										
REV	DATE	DRWN	DESCRIPTION	DES./QA						
А	2/27/17	ZTK	PRELIMINARY	LR						
0	3/7/17	ZTK	CONSTRUCTION	L.R						
1	4/4/17	ZTK	CONSTRUCTION	LR						
2	4/7/17	ZTK	CONSTRUCTION	LR						
3	4/19/17	ZTK	CONSTRUCTION	LR						
4	4/21/17	ZTK	CONSTRUCTION	LR						

Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration


#PEC.0001101


IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.


SHEET NUMBER:

2-4

4

India.

Mechanical Anchoring Syste

KWIK Bolt TZ Expansion Anchor 3.3.5

Table 1 - KWIK Bolt TZ specifications

Setting								Nomi	nal anch	or diame	eter d _o										
information	Symbol	Units	s 3/8		3/8 1/2				5/8				3/4								
Nominal bit diameter	d _{bit}	in.		3/8			1	/2		5/8				3/4							
Minimum nominal embedment	h _{nom}	in. (mm)		2-5/16 (59)			3/8 (0)		5/8 (1)	10000	/16 (1)	4-7	/16 13)	4-5	/16 10)	5-9/10					
Effective minimum embedment	h _{at}	in. (mm)		2 (51)			11/20/21		11/2/2011		2 (51)		3-1/4 (83)			3-1/8 (79)		4 02)	3-3/4 (95)		4-3/4
Min. hole depth	h _o	in. (mm)		2-5/8 (67)					2-5	5/8	1.2	4 (02)		3/4 (5)		3/4		5/8 17)	5-3/4		
Min. thickness of fixture	t _{min}	in. (mm)		1/8		1/8		n/a		1/8 (3)		n	n/a		1/8						
Max. thickness of fixture	t _{max}	in. (mm)		2-1/4 (57)		7500111		4 (101)		1900	3/4	5-5/8 (143)		4-3/4 (121)		4-5/8 (117)		3-5/8			
Installation torque	T _{inst}	ft-lb (Nm)		25 (34)			4 (5	200			10.7	0			110 (149)						
Minimum fixture hole diameter	d _h	in. (mm)		7/16 (11.1)			9/16 (14.3)		5.315(1)			/16 7.5)		13/16 (20.6)							
Available anchor lengths	l anch	in. (mm)	3 (76)	3-3/4 (95)	5 (127)	3-3/4 (95)	4-1/2 (114)	5-1/2 (140)	7 (178)	4-3/4 (121)	6 (152)	8-1/2 (216)	10 (254)	5-1/2 (140)	8 (203)	10 (254)					
Threaded length including dog point	l stread	in. (mm)	7/8 (22)	1-5/8	2-7/8	1-5/8	2-3/8 (60)	3-3/8 (86)	4-7/8 (178)	1-1/2	2-3/4 (70)	5-1/4 (133)	6-3/4 (171)	1-1/2	4 (102)	6 (152)					
Unthreaded length	luner	in. (mm)		2-1/8		2-1/8 (54)			3-1/4 (83)			4 (102)									

^{1.} Mirimum trickness of lixture is a concern only when the anchor is installed at the minimum nominal embedment. When KWIK Bolt TZ anchors are installed at this embedment, the anchor threading ends near the surface of the concrete. If the fixture is sufficiently thin, it could be possible to run the nut to the bottom of the threading during application of the installation torque. If fixtures are thin, it is recommended that embedment be increased accordingly.

NOT USED
SCALE: NOT TO SCALE

HILTI KWIK BOLT SPECIFICATIONS
SCALE: NOT TO SCALE

T - Mobile -
35 GRIFFIN ROAD,
BLOOMFIELD, CT 06002

T-MOBILE SITE NUMBER: **CTFF334A**

BU #: **841288 BRIDGEPORT NORTH**

205 KAECHELE PLACE BRIDGEPORT, CT 06606

EXISTING 151'-4" MONOPOLE

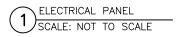
ISSUED FOR:									
REV	DATE	DRWN	DESCRIPTION	DES./QA					
Α	2/27/17	ZTK	PRELIMINARY	LR					
0	3/7/17	ZTK	CONSTRUCTION	LR					
1	4/4/17	ZTK	CONSTRUCTION	LR					
2	4/7/17	ZTK	CONSTRUCTION	LR					
3	4/19/17	ZTK	CONSTRUCTION	LR					
4	4/21/17	ZTK	CONSTRUCTION	LR					
V.									

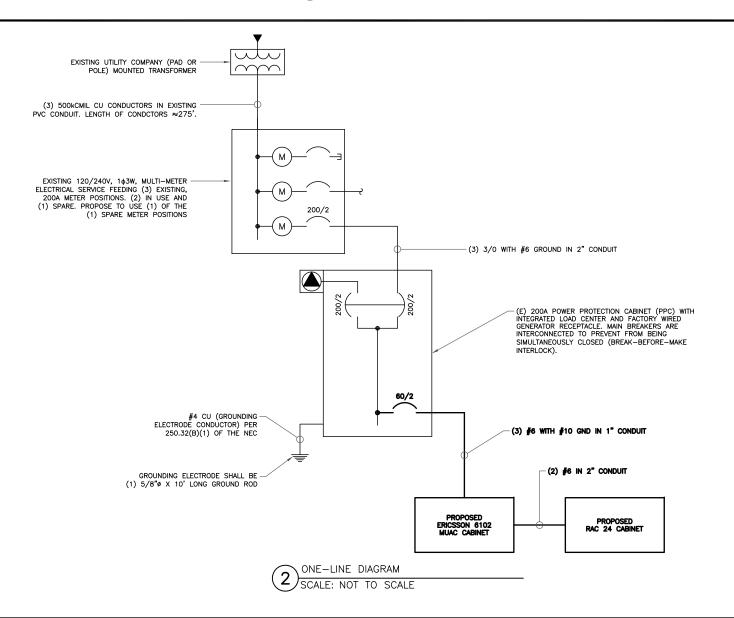
Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration #PEC.0001101

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION 4


4



NOT USED
SCALE: NOT TO SCALE

NOT USED
SCALE: NOT TO SCALE

					PANI	EL A					
			VOLTAG	E/PHASE	: 120/240V, 1-PI	HASE, 3-WIRE					
			MAIN: 2	00 AMP M	AIN BREAKER						
DESCRIPTION	LOAD	C or	C/B CIR LOAD (VA) CIR C/B			C/B	C or	LOAD	DESCRIPTION		
DESCRIPTION	(VA)	NC	0/6	No.	A-PHASE	B-PHASE	No.		NC	(VA)	DESCRIPTION
SURGE ARRESTOR	0	NC	60/2	1	435		2	20	NC	435	GFI RECEPTACLE/FLOOD LIGHT
SONGE ANNESTON	0	NC	00/2	3		0	4				SPACE
T-MOBILE EQUIPMENT CABINET (RBS 6102)	9600	С	100/2	5	9600		6				SPACE
	9600	С	100/2	7		9600	8				SPACE
SPACE				9	0		10				SPACE
SPACE				11		0	12				SPACE
SPACE				13	0		14				SPACE
SPACE				15		0	16				SPACE
SPACE				17	0		18				SPACE
SPACE				19		0	20				SPACE
SPACE				21	0		22	20/2	С		AAV
SPACE				23		0	24	30/2	С		AAV
	•	E	BASE LOA	D (VA) =	10035	9600		•			
	D (VA) =	2400	2400	1	"C" DESIGNATION IDENTIFIES CONTINUOUS LOADS AND MOTOR LOADS AS REQUIRED BY SECTIONS 230 42 AND 430 24 OF THE NEC						
	D (VA) =	12435	12000	1							
		7	TOTAL LO	AD (A) =	104	100	1	`			

T-MOBILE SITE NUMBER: CTFF334A

BU #: **841288 BRIDGEPORT NORTH**

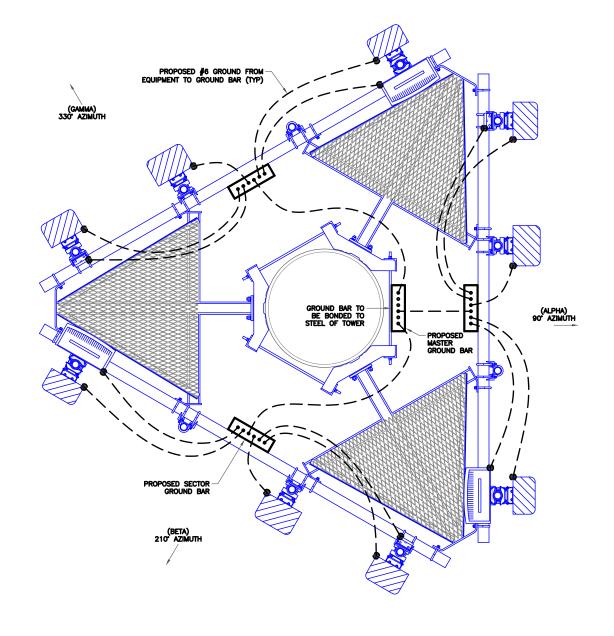
205 KAECHELE PLACE BRIDGEPORT, CT 06606

EXISTING 151'-4" MONOPOLE

	ISSUED FOR:									
REV	DATE	DRWN	DESCRIPTION	DES./QA						
Α	2/27/17	ZTK	PRELIMINARY	LR						
0	3/7/17	ZTK	CONSTRUCTION	LR						
1	4/4/17	ZTK	CONSTRUCTION	LR						
2	4/7/17	ZTK	CONSTRUCTION	LR						
3	4/19/17	ZTK	CONSTRUCTION	LR						
4	4/21/17	ZTK	CONSTRUCTION	LR						
1										




Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration #PEC.0001101


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

revision 4

T-MOBILE SITE NUMBER: CTFF334A

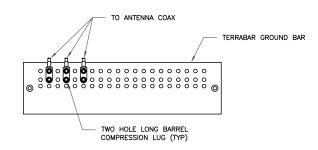
BU #: **841288 BRIDGEPORT NORTH**

205 KAECHELE PLACE BRIDGEPORT, CT 06606

EXISTING 151'-4" MONOPOLE

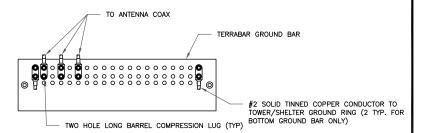
ISSUED FOR:									
REV	DATE	DRWN	DESCRIPTION	DES./QA					
Α	2/27/17	ZTK	PRELIMINARY	LR					
0	3/7/17	ZTK	CONSTRUCTION	LR					
1	4/4/17	ZTK	CONSTRUCTION	LR					
2	4/7/17	ZTK	CONSTRUCTION	LR					
3	4/19/17	ZTK	CONSTRUCTION	LR					
4	4/21/17	ZTK	CONSTRUCTION	LR					
1									

Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration #PEC.0001101


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

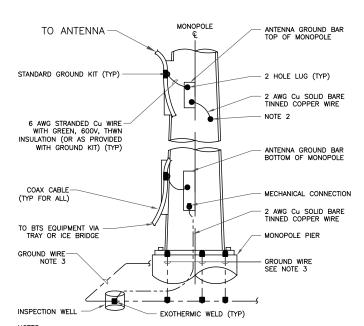
-1 (


ANTENNA GROUNDING PLAN
SCALE: NOT TO SCALE

DocuSign Envelope ID: 512808D6-8130-46D3-856E-F378AE43E824

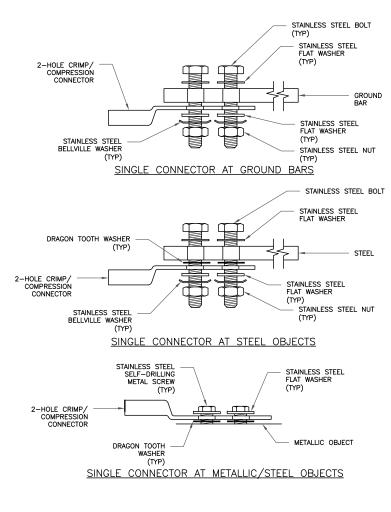
- 1. DOUBLING UP "OR STACKING" OF CONNECTIONS IS NOT PERMITTED.
- 2. EXTERIOR ANTIOXIDANT JOINT COMPOUND TO BE USED ON ALL EXTERIOR CONNECTIONS.
- 3. GROUND BAR SHALL NOT BE ISOLATED FROM TOWER. MOUNT DIRECTLY TO TOWER STEEL.

ANTENNA GROUND BAR DETAIL SCALE: NOT TO SCALE

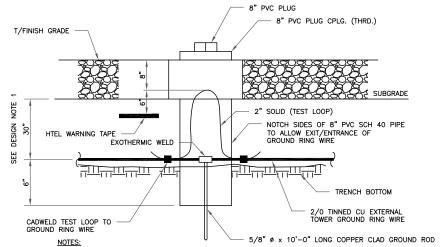


NOTES:

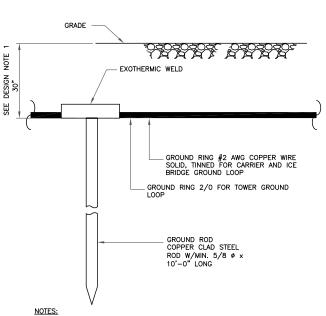
- 1. EXTERIOR ANTIOXIDANT JOINT COMPOUND TO BE USED ON ALL EXTERIOR CONNECTIONS.
- 2. GROUND BAR SHALL NOT BE ISOLATED FROM TOWER. MOUNT DIRECTLY TO TOWER STEEL (TOWER ONLY).
- 3. INSTALL GROUND BARS AT 75 FT. INTERVAL MAXIMUM
- 4. GROUND BAR SHALL BE ISOLATED FROM BUILDING OR SHELTER.


TOWER/SHELTER GROUND BAR DETAIL

SCALE: NOT TO SCALE



- NOTES:
- 1. NUMBER OF GROUND BARS MAY VARY DEPENDING ON THE TYPE OF MONOPOLE, ANTENNA LOCATION AND CONNECTION ORIENTATION. COAXIAL CABLES EXCEEDING 200 FEET IN/ON THE POLE SHALL HAVE GROUND KITS AT THE MIDPOINT. PROVIDE AS REQUIRED.
- ONLY MECHANICAL CONNECTIONS ARE ALLOWED TO BE MADE TO CROWN CASTLE TOWERS. ALL MECHANICAL CONNECTIONS SHALL BE TREATED WITH AN ANTI-OXIDANT COATING.
- 3. ALL TOWER GROUNDING SYSTEMS SHALL COMPLY WITH THE REQUIREMENTS OF ANSI/TIA 222. FOR TOWERS BEING BUILT TO REV G OF THE STANDARD, THE WIRE SIZE OF THE BURIED GROUND RING AND CONNECTIONS BETWEEN THE TOWER AND THE BURIED GROUND RING SHALL BE 2/O AWG. STRANDED IN ADDITION, THE MINIMUM LENGTH OF THE GROUND RODS SHALL BE INCREASED FROM 8 FEET TO 10 FEET.

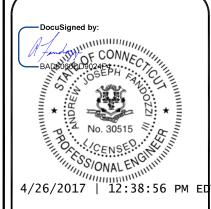

TYPICAL ANTENNA CABLE GROUNDING (4) SCALE: NOT TO SCALE

HARDWARE DETAIL FOR EXTERIOR CONNECTIONS SCALE: NOT TO SCALE

- GROUND ROD SHALL BE DRIVEN VERTICALLY, NOT TO EXCEED 45 DEGREES FROM THE VERTICAL
- GROUND WIRE SHALL BE MIN. 30" BELOW GRADE OR 6" BELOW FROST LINE. (WHICH EVER IS GREATER) AS PER N.E.C. ARTICLE 250-50(D)
- INSPECTION PORT DETAIL SCALE: NOT TO SCALE

- GROUND ROD SHALL BE DRIVEN VERTICALLY, NOT TO EXCEED 45 DEGREES FROM THE VERTICAL
 GROUND WIRE SHALL BE MIN. 30" BELOW GRADE OR 6" BELOW FROST LINE.
- (WHICH EVER IS GREATER) AS PER N.E.C. ARTICLE 250-50(D)

GROUND ROD DETAIL (6) SCALE: NOT TO SCALE

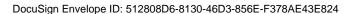

T-MOBILE SITE NUMBER: CTFF334A

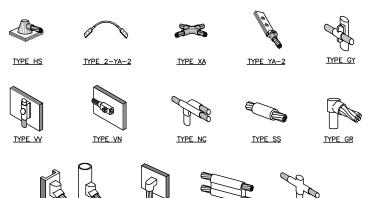
BU #: **841288 BRIDGEPORT NORTH**

205 KAECHELE PLACE BRIDGEPORT, CT 06606

EXISTING 151'-4" MONOPOLE

ISSUED FOR:							
REV	DATE	DRWN	DESCRIPTION	DES./QA			
Α	2/27/17	ZTK	PRELIMINARY	LR			
0	3/7/17	ZTK	CONSTRUCTION	LR			
1	4/4/17	ZTK	CONSTRUCTION	LR			
2	4/7/17	ZTK	CONSTRUCTION	LR			
3	4/19/17	ZTK	CONSTRUCTION	LR			
4	4/21/17	ZTK	CONSTRUCTION	LR			
W.							

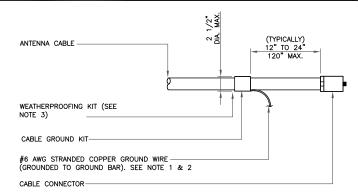



Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration #PEC.0001101

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,

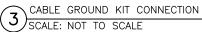
SHEET NUMBER

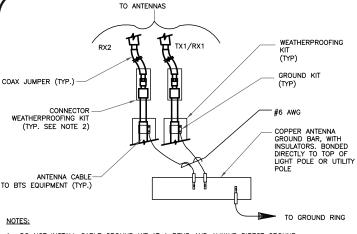
REVISION


NOTE:

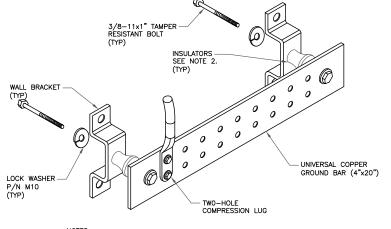
ERICO EXOTHERMIC "MOLD TYPES" SHOWN HERE ARE EXAMPLES. CONSULT WITH CONSTRUCTION MANAGER FOR SPECIFIC MOLDS TO BE USED FOR THIS PROJECT.
 MOLD TYPE ONLY TO BE USED BELOW GRADE WHEN CONNECTING GROUND RING TO GROUND ROD.

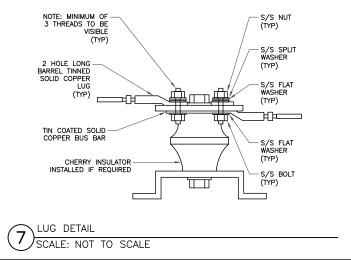
TYPE PT

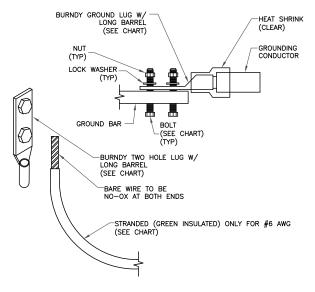

TYPE GT2


CADWELD GROUNDING CONNECTIONS SCALE: NOT TO SCALE

NOTES:

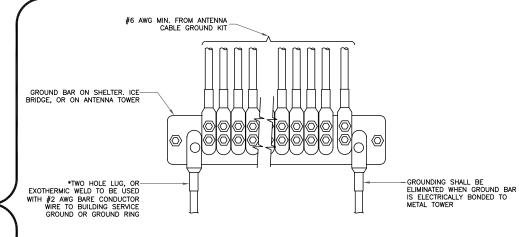

- DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.
- WEATHER PROOFING SHALL BE TWO-PART TAPE KIT, COLD SHRINK SHALL NOT

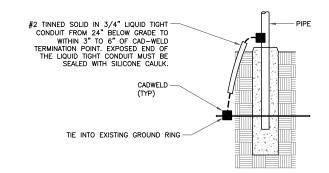

- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO ANTENNA GROUND BAR.
- 2. WEATHER PROOFING SHALL BE TWO-PART TAPE KIT. COLD SHRINK SHALL NOT BE USED.



- 1. DOWN LEAD (HOME RUN) CONDUCTORS ARE \underline{NOT} TO BE INSTALLED ON CROWN CASTLE TOWER, PER THE GROUNDING DOWN CONDUCTOR POLICY QAS—STD—10091. NO MODIFICATION OR DRILLING TO TOWER STEEL IS ALLOWED IN ANY FORM OR
- 2. OMIT INSULATOR WHEN MOUNTING TO TOWER STEEL OR PLATFORM STEEL USE INSULATORS WHEN ATTACHING TO BUILDING OR SHELTERS.

GROUND BAR DETAIL SCALE: NOT TO SCALE


WIRE SIZE	BURNDY LUG	BOLT SIZE
#6 AWG GREEN INSULATED	YA6C-2TC38	3/8" - 16 NC S 2 BOLT
#2 AWG SOLID TINNED	YA3C-2TC38	3/8" - 16 NC S 2 BOLT
#2 AWG STRANDED	YA2C-2TC38	3/8" - 16 NC S 2 BOLT
#2/0 AWG STRANDED	YA26-2TC38	3/8" - 16 NC S 2 BOLT
#4/0 AWG STRANDED	YA28-2N	1/2" - 16 NC S 2 BOLT


NOTES:

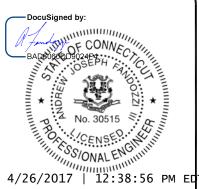
ALL GROUNDING LUGS ARE TO BE INSTALLED PER MANUFACTURER'S SPECIFICATIONS.
 ALL HARDWARE BOLTS, NUTS, LOCK WASHERS SHALL BE STAINLESS STEEL. ALL
 HARDWARE ARE TO BE AS FOLLOWS: BOLT, FLAT WASHER, GROUND BAR, GROUND LUG,
 FLAT WASHER AND NUT.

MECHANICAL LUG CONNECTION SCALE: NOT TO SCALE

GROUNDWIRE INSTALLATION SCALE: NOT TO SCALE

TRANSITIONING GROUND DETAIL SCALE: NOT TO SCALE

BLOOMFIELD, CT 06002


T-MOBILE SITE NUMBER: CTFF334A

BU #: **841288 BRIDGEPORT NORTH**

205 KAECHELE PLACE BRIDGEPORT, CT 06606

EXISTING 151'-4" MONOPOLE

ISSUED FOR:							
REV	DATE	DRWN	DESCRIPTION	DES./QA			
Α	2/27/17	ZTK	PRELIMINARY	LR			
0	3/7/17	ZTK	CONSTRUCTION	LR			
1	4/4/17	ZTK	CONSTRUCTION	LR			
2	4/7/17	ZTK	CONSTRUCTION	LR			
3	4/19/17	ZTK	CONSTRUCTION	LR			
4	4/21/17	ZTK	CONSTRUCTION	LR			

Andrew Joseph Fandozzi III, P.E. Professional Engineer License: #30515 Crown Castle USA, Inc. Certificate of Registration #PEC.0001101

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER

REVISION

Date: March 31, 2017

Steve Tuttle Crown Castle 8 Parkmeadow Drive Pittsford, NY 14534 585,899,3445 Paul J Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215 614.221.6679

stschanen@pjfweb.com

Subject:

Structural Modification Report

Carrier Designation:

Crown Castle Designation:

T-Mobile Co-Locate

Carrier Site Number:

Carrier Site Name:

Crown Castle BU Number:

Crown Castle Site Name:

841288 BRIDGEPORT

CTFF334A

N/A

NORTH

Crown Castle JDE Job Number: Crown Castle Work Order Number: 416902 1368682

Crown Castle Application Number:

374828 Rev. 2

Engineering Firm Designation:

Paul J Ford and Company Project Number:

37517-0750.003.7700

Site Data:

205 Kaechele Place, BRIDGEPORT, Fairfield County, CT

Latitude 41° 13' 24.04", Longitude -73° 13' 0.38"

150 Foot - Monopole Tower

Dear Steve Tuttle,

Paul J Ford and Company is pleased to submit this "Structural Modification Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1006119, in accordance with application 374828, revision 2.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4.7: Modified Structure w/ Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

Sufficient Capacity

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 125 mph converted to a nominal 3-second gust wind speed of 97 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with the referenced and attached drawings for the determined available structural capacity to be effective.

We at Paul J Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Seth Tschanen, E.I. Structural Designer

tnxTower Report - version 7.0.5.1

Date: March 31, 2017

Steve Tuttle Crown Castle 8 Parkmeadow Drive Pittsford, NY 14534 585.899.3445 Paul J Ford and Company 250 E. Broad Street, Suite 600

Columbus, OH 43215 614.221.6679

stschanen@pjfweb.com

Subject: Structural Modification Report

Carrier Designation: T-Mobile Co-Locate

Carrier Site Number: CTFF334A

Carrier Site Name: N/A

Crown Castle Designation:Crown Castle BU Number:841288Crown Castle Site Name:BRIDGEPORT

NORTH

Crown Castle JDE Job Number:416902Crown Castle Work Order Number:1368682Crown Castle Application Number:374828 Rev. 2

Engineering Firm Designation: Paul J Ford and Company Project Number: 37517-0750.003.7700

Site Data: 205 Kaechele Place, BRIDGEPORT, Fairfield County, CT

Latitude 41° 13' 24.04", Longitude -73° 13' 0.38"

150 Foot - Monopole Tower

Dear Steve Tuttle.

Paul J Ford and Company is pleased to submit this "Structural Modification Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1006119, in accordance with application 374828, revision 2.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4.7: Modified Structure w/ Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

Sufficient Capacity

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 125 mph converted to a nominal 3-second gust wind speed of 97 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with the referenced and attached drawings for the determined available structural capacity to be effective.

We at *Paul J Ford and Company* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Seth Tschanen, E.I. Structural Designer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Components vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150 ft Monopole tower. All information on the monopole was obtained from the mapping referenced in Table 4 of this report.

2) ANALYSIS CRITERIA

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 125 mph converted to a nominal 3-second gust wind speed of 97 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 were used in this analysis.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	commscope	LNX-6515DS-A1M w/ Mount Pipe			
120.0 120.0		3	ericsson	AIR -32 B2A/B66AA w/ Mount Pipe	1 13	1 1/2 1 5/8	
	120.0	3	ericsson	AIR 21 B2A/B4P w/ Mount Pipe			
		3	ericsson	KRY 112 144/1			
		3	ericsson	RRUS 11 B12			
		1	tower mounts	Platform Mount [LP 301-1]			

Notes:

1) Proposed Equipment

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		6	cci antennas	TPX-070821			
		3	ericsson	RRUS 32		3/8 3/4	
		3	ericsson	RRUS 32 B2	1		2
	154.0	3	kathrein	782 10253	2		2
		3	quintel technology	QS66512-2 w/ Mount Pipe			
		1	raycap	DC6-48-60-18-8F			
150.0		3	powerwave technologies	7770.00 w/ Mount Pipe	2	3/4 3/8 1 5/8	
		3	powerwave technologies	P65-16-XLH-RR w/ Mount Pipe			
		3	powerwave technologies	TT19-08BP111-001	1 12		1
	150.0	1	tower mounts	Platform Mount (LP 101-1)			
	150.0	1	tower mounts	Side Arm Mount [SO 201-3]			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	ericsson	RRUS 11			
147.0	147.0	1	raycap	TME-DC6-48-60-18-8F			1
		1	tower mounts	Pipe Mount [PM 601-3]			
		1	andrew	VHLP2-18			
	143.0	1	andrew	VHLP2-23			
	143.0	1	clearwire	CW JUNCTION BOX			
138.0		2	dragonwave	Horizon Compact	6	5/16	1
130.0	140.0	3	argus technologies	LLPX310R-V1 w/ Mount Pipe	2	1/2	1
		3	samsung	RAS SPI-2213 RRH			
	138.0	1	tower mounts	Platform Mount [LP 713-1]			
	121.0	3	kathrein	800 10504 w/ Mount Pipe	2 6	3/8 1 5/8	
120.0		3	kathrein	860 10025			3
	120.0	1	tower mounts	T-Arm Mount [TA 601-3]	0		
	103.0	1	gps	GPS_A			
		3	antel	BXA-171063/8CF w/ Mount Pipe	12 1	4.5/0	
		3	antel	BXA-70063/4CF w/ Mount Pipe		1 5/8 1/2	1
		6	rfs celwave	FD9R6004/2C-3L			
99.0		1	tower mounts	T-Arm Mount [TA 602-3]			
	99.0	3	alcatel lucent	B13 RRH 4X30			
		3	alcatel lucent	B25 RRH2x60 PCS			
		3	alcatel lucent	B66A RRH4X45	2	1 1/4	2
		2	commscope	RC2DC-3315-PF-48	_	1 1/4	
		6	css	X7CQAP-465-VR0 w/ Mount Pipe			

Notes:

- Existing Equipment Reserved Equipment 1) 2) 3)
- Equipment To Be Removed

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH, 08-09065E G1, 9/23/08	5110784	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	FDH, 08-09065E NA, 09/23/08	5110783	CCISITES
4-TOWER MAPPING	GPD, 2014777.841288.02, 04/11/08	4710143	CCISITES
4-POST-MODIFICATION INSPECTION	TEP, 25567.42283, 10/22/14	5401472	CCISITES
4-POST-MODIFICATION INSPECTION	TEP, 25567_26102, 06/05/15	5739992	CCISITES
PROPOSED REINFORCEMENT DESIGN/DRAWINGS/DATA	GPD, 2017777.841288.07, 10/09/16	6650617	CCISITES

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) At the time of the analysis, proof test information for the rock anchors was not available. We have assumed that the rock anchors were properly installed and are fully effective.
- The monopole manufacturer drawings are not available at the time of this analysis. Therefore, we have assumed pole shaft and base plate steel yield strength(s) (Fy) as shown in the attached calculations. Anchor rods are assumed to be ASTM A615 #18J, 2.25" diam, (Fu = 100 ksi, Fy = 75 ksi).
- 6) Monopole was modified in conformance with the referenced modification drawings.
- 7) Monopole will be modified in conformance with the referenced and attached proposed modification drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	150 - 128.5	Pole	TP18.1463x15x0.2188	1	-6.28	716.15	98.4	Pass
L2	128.5 - 109	Pole	TP21x18.1463x0.5837	2	-12.33	1529.92	99.5	Pass
L3	109 - 104.167	Pole	TP21.7298x21x0.661	3	-13.38	1959.85	89.0	Pass
L4	104.167 - 100.92	Pole	TP22.2201x21.7298x1.5958	4	-14.85	4632.85	44.4	Pass
L5	100.92 - 95.25	Pole	TP23.0763x22.2201x1.4985	5	-19.36	4350.86	53.6	Pass
L6	95.25 - 80.5	Pole	TP25.3035x23.0763x0.8972	6	-24.35	3126.48	94.5	Pass
L7	80.5 - 73.5833	Pole	TP26.3479x25.3035x1.1822	7	-27.43	3860.85	87.1	Pass
L8	73.5833 - 72	Pole	TP26.587x26.3479x1.1696	8	-28.14	3860.07	89.0	Pass
L9	72 - 66.75	Pole	TP26.992x26.587x1.266	9	-30.72	4228.89	89.1	Pass
L10	66.75 - 48.25	Pole	TP29.9611x26.992x1.2042	10	-40.06	4944.24	92.5	Pass
L11	48.25 - 44.25	Pole	TP30.603x29.9611x1.5876	11	-42.73	5855.07	83.1	Pass
L12	44.25 - 43.0833	Pole	TP30.7903x30.603x1.6684	12	-43.55	6182.99	80.0	Pass
L13	43.0833 - 30	Pole	TP32.89x30.7903x1.5728	13	-49.82	6195.76	85.5	Pass
L14	30 - 23.75	Pole	TP33.3525x29.1025x1.6275	14	-55.07	6130.65	96.2	Pass
L15	23.75 - 11	Pole	TP35.5039x33.3525x1.5179	15	-68.96	6743.53	93.1	Pass
L16	11 - 6	Pole	TP36.3476x35.5039x1.3615	16	-72.48	7430.47	86.2	Pass
L17	6 - 3.25	Pole	TP36.8116x36.3476x1.493	17	-74.59	8096.73	80.9	Pass
L18	3.25 - 0	Pole	TP37.36x36.8116x1.1317	18	-76.63	6573.67	99.4	Pass
							Summary	
						Pole (L2)	99.5	Pass
						Rating =	99.5	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC4.7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	95.2	Pass
1	Base Plate	0	71.5	Pass
1	Base Foundation Steel	0	87.2	Pass
1	Base Foundation Soil Interaction	0	84.9	Pass
1	Flange Connection	109	99.6	Pass

Structure Rating (max from all components) =	99.6%
--	-------

Notes:

4.1) Recommendations

The monopole and its foundation will have sufficient capacity to carry the proposed loading configuration once the proposed modifications are installed.

- Install the proposed modifications per the attached drawings.
- Install the modifications as per the proposed modification drawings referenced in Table 4.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- 1) Tower is located in Fairfield County, Connecticut.
- 2) ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).
- 3) Basic wind speed of 97.00 mph.
- 4) Structure Class II.
- 5) Exposure Category C.
- 6) Topographic Category 1.
- 7) Crest Height 0.0000 ft.
- 8) Nominal ice thickness of 0.7500 in.
- 9) Ice thickness is considered to increase with height.
- 10) Ice density of 56.00 pcf.
- 11) A wind speed of 50.00 mph is used in combination with ice.
- 12) Temperature drop of 50.00 °F.
- 13) Deflections calculated using a wind speed of 60.00 mph.
- 14) A non-linear (P-delta) analysis was used.
- 15) Pressures are calculated at each section.
- 16) Stress ratio used in pole design is 1.
- 17) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Špans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption

Poles

 Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	150.0000-	21.5000	0.00	12	15.0000	18.1463	0.2188	0.8752	A572-50
	128.5000								(50 ksi)
L2	128.5000-	19.5000	0.00	12	18.1463	21.0000	0.5837	2.3347	Reinf 35.16 ksi
	109.0000								(35 ksi)
L3	109.0000-	4.8333	0.00	12	21.0000	21.7298	0.6610	2.6440	Reinf 38.54 ksi
	104.1667								(39 ksi)
L4	104.1667-	3.2467	0.00	12	21.7298	22.2201	1.5958	6.3832	Reinf 38.55 ksi
	100.9200								(39 ksi)
L5	100.9200-	5.6700	0.00	12	22.2201	23.0763	1.4985	5.9941	Reinf 36.85 ksi
	95.2500								(37 ksi)
L6	95.2500-	14.7500	0.00	12	23.0763	25.3035	0.8972	3.5890	Reinf 39.10 ksi
	80.5000								(39 ksi)
L7	80.5000-	6.9167	0.00	12	25.3035	26.3479	1.1822	4.7288	Reinf 35.54 ksi

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
	73.5833								(36 ksi)
L8	73.5833- 72.0000	1.5833	0.00	12	26.3479	26.5870	1.1696	4.6784	Reinf 35.56 ksi (36 ksi)
L9	72.0000- 66.7500	5.2500	0.00	12	26.5870	26.9920	1.2660	5.0639	Reinf 35.56 ksi (36 ksi)
L10	66.7500- 48.2500	18.5000	0.00	12	26.9920	29.9611	1.2042	4.8170	Reinf 39.10 ksi (39 ksi)
L11	48.2500- 44.2500	4.0000	0.00	12	29.9611	30.6030	1.5876	6.3502	Reinf 34.81 ksi (35 ksi)
L12	44.2500- 43.0833	1.1667	0.00	12	30.6030	30.7903	1.6684	6.6737	Reinf 34.85 ksi (35 ksi)
L13	43.0833- 30.0000	13.0833	4.00	12	30.7903	32.8900	1.5728	6.2911	Reinf 35.17 ksi (35 ksi)
L14	30.0000- 23.7500	10.2500	0.00	12	29.1025	33.3525	1.6275	6.5100	Reinf 35.41 ksi (35 ksi)
L15	23.7500- 11.0000	12.7500	0.00	12	33.3525	35.5039	1.5179	6.0715	Reinf 35.80 ksi (36 ksi)
L16	11.0000- 6.0000	5.0000	0.00	12	35.5039	36.3476	1.3615	5.4460	Reinf 42.72 ksi (43 ksi)
L17	6.0000-3.2500	2.7500	0.00	12	36.3476	36.8116	1.4930	5.9722	Reinf 42.05 ksi (42 ksi)
L18	3.2500-0.0000	3.2500		12	36.8116	37.3600	1.1317	4.5268	Reinf 43.91 ksi (44 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	<u>in²</u>	in ⁴	in	in	in ³	in ⁴	in ²	in	
L1	15.5291	10.4139	290.4144	5.2917	7.7700	37.3764	588.4584	5.1254	3.4336	15.693
	18.7865	12.6306	518.1449	6.4181	9.3998	55.1229	1049.9021	6.2164	4.2768	19.547
L2	18.7865	33.0081	1299.5336	6.2874	9.3998	138.2511	2633.2074	16.2456	3.2990	5.652
	21.7408	38.3714	2041.4983	7.3090	10.8780	187.6722	4136.6291	18.8853	4.0637	6.962
L3	21.7408	43.2899	2285.7676	7.2814	10.8780	210.1276	4631.5848	21.3060	3.8565	5.834
1.4	22.4964	44.8433	2540.7652	7.5426	11.2561	225.7244	5148.2792	22.0705	4.0521	6.13
L4	22.4964	103.4576	5353.1615	7.2080	11.2561	475.5807	10846.956 4	50.9187	1.5469	0.969
	23.0039	105.9768	5753.7976	7.3835	11.5100	499.8955	11658.753 9	52.1585	1.6783	1.052
L5	23.0039	99.9864	5479.8883	7.4183	11.5100	476.0980	11103.739 4	49.2103	1.9389	1.294
	23.8903	104.1176	6187.5914	7.7248	11.9535	517.6386	12537.737 8	51.2435	2.1684	1.447
L6	23.8903	64.0777	4023.2491	7.9401	11.9535	336.5751	8152.1934	31.5371	3.7798	4.213
	26.1961	70.5124	5361.1030	8.7374	13.1072	409.0193	10863.048	34.7041	4.3767	4.878
L7	26.1961	91.8214	6819.1740	8.6354	13.1072	520.2612	13817.495 3	45.1917	3.6131	3.056
	27.2774	95.7972	7743.8637	9.0093	13.6482	567.3899	15691.167 4	47.1485	3.8930	3.293
L8	27.2774	94.8236	7672.8416	9.0138	13.6482	562.1861	15547.257 3	46.6693	3.9267	3.357
	27.5249	95.7240	7893.4952	9.0994	13.7721	573.1526	15994.361 4	47.1124	3.9908	3.412
L9	27.5249	103.2192	8447.1331	9.0649	13.7721	613.3526	17116.181 9	50.8014	3.7325	2.948
	27.9442	104.8701	8858.9559	9.2099	13.9818	633.6042	17950.646 4	51.6139	3.8411	3.034
L10	27.9442	99.9959	8487.7918	9.2320	13.9818	607.0580	17198.567 4	49.2149	4.0065	3.327
	31.0180	111.5089	11770.014 4	10.2949	15.5198	758.3858	23849.240	54.8813	4.8022	3.988
L11	31.0180	145.0437	14904.254 0	10.1577	15.5198	960.3365	30200.059 4	71.3861	3.7749	2.378
	31.6826	148.3253	15938.957 1	10.3875	15.8524	1005.4628		73.0012	3.9469	2.486
L12	31.6826	155.4465	16611.213 5	10.3586	15.8524	1047.8701	33658.822 1	76.5061	3.7302	2.236

Section	Tip Dia.	Area	. ₄	ŗ	C	I/C	J	It/Q	W	w/t
	in	in ²	in ⁴	in	in	in ³	in⁴	in²	in	
	31.8764	156.4525	16935.785 8	10.4256	15.9493	1061.8481	34316.493 5	77.0011	3.7804	2.266
L13	31.8764	147.9667	16122.608 4	10.4599	15.9493	1010.8631	32668.775 6	72.8247	4.0368	2.567
	34.0502	158.6005	19854.413 6	11.2116	17.0370	1165.3689	40230.424 7	78.0583	4.5995	2.924
L14	31.8462	143.9833	13873.102 2	9.8361	15.0751	920.2664	28110.666 3	70.8642	3.4378	2.112
	34.5291	166.2557	21358.320	11.3576	17.2766	1236.2560	43277.747	81.8260	4.5768	2.812
L15	34.5291	155.5933	20126.926	11.3968	17.2766	1164.9808	40782.609	76.5783	4.8706	3.209
	36.7564	166.1082	24489.397	12.1670	18.3910	1331.5950	49622.157 8	81.7534	5.4472	3.589
L16	36.7564	149.6824	22271.260	12.2230	18.3910	1210.9852	45127.611 6	73.6691	5.8662	4.309
	37.6298	153.3812	23963.404	12.5250	18.8281	1272.7501	48556.353	75.4895	6.0923	4.475
L17	37.6298	167.5663	25983.144	12.4779	18.8281	1380.0230	52648.894 7	82.4711	5.7398	3.844
	38.1102	169.7972	27034.765	12.6440	19.0684	1417.7773	54779.763 4	83.5690	5.8642	3.928
L18	38.1102	130.0191	21127.150	12.7734	19.0684	1107.9658	42809.333	63.9915	6.8326	6.038
	38.6779	132.0175	22116.353 7	12.9697	19.3525	1142.8175	44813.728 6	64.9750	6.9796	6.167

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A_f	Factor	Worgin man.	Stitch Bolt	Stitch Bolt	Stitch Bolt
Liovation	(per face)	771101111000	, ,	A_r		Spacing	Spacing	Spacing
	(601 1000)			7.17		Diagonals	Horizontals	Redundants
ft	ft²	in				in	in	in
L1 150.0000-			1	1	1			
128.5000								
L2 128.5000-			1	1	1			
109.0000								
L3 109.0000-			1	1	1			
104.1667								
L4 104.1667-			1	1	1			
100.9200								
L5 100.9200-			1	1	1			
95.2500								
L6 95.2500-			1	1	1			
80.5000								
L7 80.5000-			1	1	1			
73.5833								
L8 73.5833-			1	1	1			
72.0000								
L9 72.0000-			1	1	1			
66.7500								
L10 66.7500-			1	1	1			
48.2500								
L11 48.2500-			1	1	1			
44.2500								
L12 44.2500-			1	1	1			
43.0833								
L13 43.0833-			1	1	1			
30.0000				_				
L14 30.0000-			1	1	1			
23.7500								
L15 23.7500-			1	1	1			
11.0000								
L16 11.0000-			1	1	1			
6.0000								
L17 6.0000-			1	1	1			
3.2500			•					
L18 3.2500-			1	1	1			
0.0000								

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Component	Placement	Total		C_AA_A	Weight
2000	or	Shield	Туре		Number		Ο _A , . _A	g.n
	Leg	Ornora	, , , ,	ft	1 (0111001		ft²/ft	plf
FXL-1873(1-5/8")		No	Inside Pole	150.0000 - 0.0000	12	No Ice	0.0000	0.67
FAL-1073(1-5/6)	С	INO	Iliside Pole	130.0000 - 0.0000	12			
						1/2" Ice	0.0000	0.67
						1" Ice	0.0000	0.67
FB-L98B-034-	С	No	Inside Pole	150.0000 - 0.0000	1	No Ice	0.0000	0.05
XXXXXX(3/8")						1/2" Ice	0.0000	0.05
, ,						1" Ice	0.0000	0.05
WR-VG86ST-	С	No	Inside Pole	150.0000 - 0.0000	2	No Ice	0.0000	0.58
BRD(3/4")	O	110	moide i die	100.0000 0.0000	_	1/2" Ice	0.0000	0.58
BRD(3/4)								
FD 00D 00 /	_			.=		1" Ice	0.0000	0.58
FB-L98B-034-	С	No	Inside Pole	150.0000 - 0.0000	1	No Ice	0.0000	0.05
XXXXXX(3/8")						1/2" Ice	0.0000	0.05
						1" Ice	0.0000	0.05
WR-VG86ST-	С	No	Inside Pole	150.0000 - 0.0000	2	No Ice	0.0000	0.58
BRD(3/4")	_					1/2" Ice	0.0000	0.58
B.(8/1)						1" Ice	0.0000	0.58
O" (Nominal) Canduit	0	No	Incido Dolo	150,0000, 0,0000	4			
2" (Nominal) Conduit	С	No	Inside Pole	150.0000 - 0.0000	1	No Ice	0.0000	0.72
						1/2" Ice	0.0000	0.72
						1" Ice	0.0000	0.72

9207(5/16")	С	No	Inside Pole	138.0000 - 0.0000	6	No Ice	0.0000	0.06
0=01 (0/10)	·				Ü	1/2" Ice	0.0000	0.06
						1" Ice	0.0000	0.06
EQ4 50(4/0II)	_	NI.	Leader Bala	400 0000 0 0000	0			
EC4-50(1/2")	С	No	Inside Pole	138.0000 - 0.0000	2	No Ice	0.0000	0.16
						1/2" Ice	0.0000	0.16
						1" Ice	0.0000	0.16
2" (Nominal) Conduit	С	No	CaAa (Out Of	138.0000 -	1	No Ice	0.2375	0.72
(1 1, 1 1 1 1 1	_		Face)	120.0000		1/2" Ice	0.3375	2.48
			. 400)	0.0000		1" Ice	0.4375	4.84
2" (Naminal) Conduit	C	No	CoAo (Out Of	120 0000 0 0000	4			
2" (Nominal) Conduit	С	No	CaAa (Out Of	120.0000 - 0.0000	1	No Ice	0.0000	0.72
			Face)			1/2" Ice	0.0000	2.48
						1" Ice	0.0000	4.84
2" (Nominal) Conduit	С	No	CaAa (Out Of	138.0000 - 0.0000	1	No Ice	0.0000	0.72
			Face)			1/2" Ice	0.0000	2.48
			,			1" Ice	0.0000	4.84

AL7-50(1-5/8)	С	No	CaAa (Out Of	120.0000 - 0.0000	2	No Ice	0.1960	0.52
AL7-30(1-3/6)	C	INO		120.0000 - 0.0000	2			
			Face)			1/2" Ice	0.2960	2.02
						1" Ice	0.3960	4.14
AL7-50(1-5/8)	С	No	CaAa (Out Of	120.0000 - 0.0000	10	No Ice	0.0000	0.52
			Face)			1/2" Ice	0.0000	2.02
						1" Ice	0.0000	4.14
MLC HYBRID 6x12	С	No	CaAa (Out Of	120.0000 - 0.0000	1	No Ice	0.0000	0.59
6AWGx6(1-1/2)	-		Face)		•	1/2" Ice	0.0000	1.83
0/11/2/0/10(1 1/2)			1 400)			1" Ice	0.0000	3.68
NAL C. Lindowiel	_	NI-	0-1-10-404	100 0000 0 0000	4			
MLE Hybrid	С	No		120.0000 - 0.0000	1	No Ice	0.0000	1.07
9Power/18Fiber RL			Face)			1/2" Ice	0.0000	2.37
2(1-5/8)						1" Ice	0.0000	4.28

HB114-U6S12-xxx-	С	No	Inside Pole	99.0000 - 0.0000	2	No Ice	0.0000	1.70
LI(1-1/4)						1/2" Ice	0.0000	1.70
=-(: :, :,						1" Ice	0.0000	1.70
LDF7-50A(1-5/8")	C	No	CaAa (Out Of	99.0000 - 0.0000	1	No Ice		0.82
LDF7-50A(1-5/6)	С	No		99.0000 - 0.0000	'		0.1980	
			Face)			1/2" Ice	0.2980	2.33
						1" Ice	0.3980	4.46
LDF7-50A(1-5/8")	С	No	CaAa (Out Of	99.0000 - 0.0000	5	No Ice	0.0000	0.82
,			Face)			1/2" Ice	0.0000	2.33
			,			1" Ice	0.0000	4.46
LDF7-50A(1-5/8")	С	No	Inside Pole	99.0000 - 0.0000	6	No Ice	0.0000	0.82
22.7 00/1(1-0/0)	J	110	morao i dio	30.0000 0.0000	J	1/2" Ice	0.0000	0.82
LDE4 504/4/00	^		Leader B. J.	00 0000 0 0000	,	1" Ice	0.0000	0.82
LDF4-50A(1/2")	С	No	Inside Pole	99.0000 - 0.0000	1	No Ice	0.0000	0.15
						1/2" Ice	0.0000	0.15
						1" Ice	0.0000	0.15

2.5" Solid Rod	С	No	CaAa (Out Of	51.0000 - 0.0000	1	No Ice	0.2500	0.00
Reinforcing	O	. 10	Face)	31.0000 0.0000	'	1/2" Ice	0.3500	0.00
Rollinorollig			. acc)			1/2 100	0.0000	0.00

Description	Face or	Allow Shield	Component Type	Placement	Total Number		C_AA_A	Weight
	Leg		,,	ft			ft²/ft	plf
						1" Ice	0.4500	0.00
1 1/4" Flat	С	No	CaAa (Out Of	130.0000 -	2	No Ice	0.2083	0.00
Reinforcement			Face)	106.7500		1/2" Ice	0.3194	0.00
						1" Ice	0.4306	0.00
2" Flat Reinforcement	С	No	CaAa (Out Of	108.6700 - 0.0000	2	No Ice	0.3333	0.00
			Face)			1/2" Ice	0.4444	0.00
						1" Ice	0.5556	0.00
2" flat Climb Ladder	С	No	CaAa (Out Of	150.0000 - 0.0000	1	No Ice	0.3333	1.65
Rail			Face)			1/2" Ice	0.4333	3.43
						1" Ice	0.5556	4.05

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	C_AA_A	Weight
Sectio	Elevation ft		ft²	ft²	In Face ft²	Out Face ft²	K
<u>n</u>	150.0000-	Α	0.000	0.000	0.000	0.000	0.00
LI	128.5000	В	0.000	0.000	0.000	0.000	0.00
	120.3000	C	0.000	0.000	0.000	10.048	0.30
L2	128.5000-	A	0.000	0.000	0.000	0.000	0.00
LZ	109.0000	В	0.000	0.000	0.000	0.000	0.00
	109.0000	C	0.000	0.000	0.000	20.956	0.38
L3	109.0000-	A	0.000	0.000	0.000	0.000	0.00
LJ	104.1667	В	0.000	0.000	0.000	0.000	0.00
	104.1007	C	0.000	0.000	0.000	7.445	0.11
L4	104.1667-	A	0.000	0.000	0.000	0.000	0.00
LT	100.9200	В	0.000	0.000	0.000	0.000	0.00
	100.5200	C	0.000	0.000	0.000	4.519	0.07
L5	100.9200-	A	0.000	0.000	0.000	0.000	0.00
20	95.2500	В	0.000	0.000	0.000	0.000	0.00
	00.2000	Č	0.000	0.000	0.000	8.635	0.18
L6	95.2500-80.5000	Ä	0.000	0.000	0.000	0.000	0.00
20	00.2000 00.0000	В	0.000	0.000	0.000	0.000	0.00
		Č	0.000	0.000	0.000	23.453	0.54
L7	80.5000-73.5833	Ä	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	10.998	0.25
L8	73.5833-72.0000	Ā	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	2.517	0.06
L9	72.0000-66.7500	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	8.348	0.19
L10	66.7500-48.2500	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	30.103	0.67
L11	48.2500-44.2500	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	7.360	0.15
L12	44.2500-43.0833	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	2.147	0.04
L13	43.0833-30.0000	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	24.073	0.47
L14	30.0000-23.7500	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
1.45	00.7500.44.0000	C	0.000	0.000	0.000	11.500	0.23
L15	23.7500-11.0000	A B	0.000	0.000	0.000	0.000	0.00
		С	0.000 0.000	0.000	0.000	0.000 23.460	0.00 0.46
1.16	11 0000 6 0000	A	0.000	0.000 0.000	0.000		
L16	11.0000-6.0000	A B		0.000	0.000 0.000	0.000 0.000	0.00 0.00
		С	0.000 0.000	0.000	0.000	9.200	0.00
L17	6.0000-3.2500	A	0.000	0.000	0.000	0.000	0.10
LII	0.0000-3.2300	В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	5.060	0.10
		C	0.000	0.000	0.000	5.000	0.10

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft²	K
L18	3.2500-0.0000	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	5.980	0.12

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness	-2	-2	In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	150.0000-	Α	1.732	0.000	0.000	0.000	0.000	0.00
	128.5000	В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	22.767	0.57
L2	128.5000-	Α	1.705	0.000	0.000	0.000	0.000	0.00
	109.0000	В		0.000	0.000	0.000	0.000	0.00
	100 0000	C	4 007	0.000	0.000	0.000	53.513	2.01
L3	109.0000-	A	1.687	0.000	0.000	0.000	0.000	0.00
	104.1667	В		0.000	0.000	0.000	0.000	0.00
1.4	404 4007	C	4.000	0.000	0.000	0.000	17.580	0.74
L4	104.1667-	A B	1.680	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.00 0.00
	100.9200	C		0.000				0.00
L5	100.9200-	A	1.673	0.000	0.000 0.000	0.000 0.000	10.338 0.000	0.49
LJ	95.2500	В	1.073	0.000	0.000	0.000	0.000	0.00
	93.2300	C		0.000	0.000	0.000	20.005	1.08
L6	95.2500-80.5000	A	1.654	0.000	0.000	0.000	0.000	0.00
LO	00.2000 00.0000	В	1.004	0.000	0.000	0.000	0.000	0.00
		Č		0.000	0.000	0.000	54.357	3.07
L7	80.5000-73.5833	Ä	1.633	0.000	0.000	0.000	0.000	0.00
	00.0000 10.0000	В		0.000	0.000	0.000	0.000	0.00
		Ċ		0.000	0.000	0.000	25.302	1.42
L8	73.5833-72.0000	Ä	1.623	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	5.773	0.32
L9	72.0000-66.7500	Α	1.616	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	19.092	1.07
L10	66.7500-48.2500	Α	1.585	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	68.121	3.68
L11	48.2500-44.2500	A	1.551	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
1.40	44.0500.40.0000	C	4.540	0.000	0.000	0.000	16.462	0.78
L12	44.2500-43.0833	A	1.543	0.000	0.000	0.000	0.000	0.00
		B C		0.000	0.000	0.000	0.000	0.00
L13	43.0833-30.0000	A	1.515	0.000 0.000	0.000 0.000	0.000 0.000	4.786 0.000	0.23 0.00
LIJ	43.0033-30.0000	В	1.515	0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	53.146	2.47
L14	30.0000-23.7500	A	1.469	0.000	0.000	0.000	0.000	0.00
L17	30.0000 23.7300	В	1.405	0.000	0.000	0.000	0.000	0.00
		Č		0.000	0.000	0.000	25.388	1.18
L15	23.7500-11.0000	Ä	1.406	0.000	0.000	0.000	0.000	0.00
	20.7000 1.10000	В		0.000	0.000	0.000	0.000	0.00
		Ċ		0.000	0.000	0.000	49.757	2.22
L16	11.0000-6.0000	A	1.310	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	18.804	0.80
L17	6.0000-3.2500	Α	1.232	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	10.030	0.41
L18	3.2500-0.0000	Α	1.110	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	11.270	0.43

Feed I	ine	Center c	of Pressure	
I GGU L		Ochice C	JI I IGOOUIG	

Section	Elevation	CP _x	CP _Z	CP _x	CP ₇
		^	_	lce	Ice
	ft	in	in	in	in
L1	150.0000-	-0.4496	0.2596	-0.6976	0.4028
L2	128.5000 128.5000-	-0.8262	0.4770	-1.2367	0.7140
	109.0000				
L3	109.0000-	-1.0522	0.6075	-1.4587	0.8422
	104.1667				
L4	104.1667-	-1.0072	0.5815	-1.4132	0.8159
	100.9200				
L5	100.9200-95.2500	-1.0745	0.6204	-1.5025	0.8675
L6	95.2500-80.5000	-1.1324	0.6538	-1.5957	0.9212
L7	80.5000-73.5833	-1.1643	0.6722	-1.6607	0.9588
L8	73.5833-72.0000	-1.1761	0.6790	-1.6850	0.9728
L9	72.0000-66.7500	-1.1820	0.6824	-1.6963	0.9794
L10	66.7500-48.2500	-1.2295	0.7098	-1.7745	1.0245
L11	48.2500-44.2500	-1.3547	0.7821	-1.9310	1.1149
L12	44.2500-43.0833	-1.3623	0.7865	-1.9453	1.1231
L13	43.0833-30.0000	-1.3826	0.7983	-1.9827	1.1447
L14	30.0000-23.7500	-1.3864	0.8004	-1.9910	1.1495
L15	23.7500-11.0000	-1.4256	0.8231	-2.0465	1.1815
L16	11.0000-6.0000	-1.4487	0.8364	-2.0662	1.1929
L17	6.0000-3.2500	-1.4584	0.8420	-2.0608	1.1898
L18	3.2500-0.0000	-1.4658	0.8463	-2.0317	1.1730

Shielding Factor Ka

Tower Feed Line Section Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
---------------------------------------	-------------	-------------------------------	--------------------------	-----------------------

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
	9		Vert ft	0	ft		ft ²	ft²	K
			ft ft	Ŭ					
QS66512-2 w/ Mount Pipe	Α	From Leg	4.0000	0.00	150.0000	No Ice	8.3708	8.4625	0.14
			0.00			1/2"	8.9314	9.6573	0.21
			4.00			lce 1" lce	9.4571	10.5478	0.30
QS66512-2 w/ Mount Pipe	В	From Leg	4.0000	0.00	150.0000	No Ice	8.3708	8.4625	0.14
			0.00			1/2"	8.9314	9.6573	0.21
			4.00			lce 1" lce	9.4571	10.5478	0.30
QS66512-2 w/ Mount Pipe	С	From Leg	4.0000	0.00	150.0000	No Ice	8.3708	8.4625	0.14
			0.00			1/2"	8.9314	9.6573	0.21
			4.00			lce 1" lce	9.4571	10.5478	0.30
(2) TPX-070821	Α	From Leg	4.0000	0.00	150.0000	No Ice	0.4688	0.1009	0.01
			0.00			1/2"	0.5585	0.1471	0.01
			4.00			lce 1" lce	0.6556	0.2020	0.02
(2) TPX-070821	В	From Leg	4.0000	0.00	150.0000	No Ice	0.4688	0.1009	0.01
, ,		•	0.00			1/2"	0.5585	0.1471	0.01
			4.00			Ice 1" Ice	0.6556	0.2020	0.02
(2) TPX-070821	С	From Leg	4.0000	0.00	150.0000	No Ice	0.4688	0.1009	0.01
			0.00			1/2"	0.5585	0.1471	0.01
			4.00			Ice 1" Ice	0.6556	0.2020	0.02

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	К
RRUS 32	A	From Leg	4.0000 0.00 4.00	0.00	150.0000	No Ice 1/2" Ice	2.8571 3.0830 3.3163	1.7766 1.9677 2.1658	0.06 0.08 0.10
RRUS 32	В	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	2.8571 3.0830 3.3163	1.7766 1.9677 2.1658	0.06 0.08 0.10
RRUS 32	С	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	2.8571 3.0830 3.3163	1.7766 1.9677 2.1658	0.06 0.08 0.10
RRUS 32 B2	Α	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	2.7313 2.9531 3.1823	1.6681 1.8552 2.0493	0.05 0.07 0.10
RRUS 32 B2	В	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	2.7313 2.9531 3.1823	1.6681 1.8552 2.0493	0.05 0.07 0.10
RRUS 32 B2	С	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	2.7313 2.9531 3.1823	1.6681 1.8552 2.0493	0.05 0.07 0.10
782 10253	Α	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice 1" Ice	0.1075 0.1518 0.2034	0.0610 0.0980 0.1424	0.00 0.00 0.01
782 10253	В	From Leg	4.0000 0.00 4.00	0.00	150.0000	No Ice 1/2" Ice 1" Ice	0.1075 0.1518 0.2034	0.0610 0.0980 0.1424	0.00 0.00 0.01
782 10253	С	From Leg	4.0000 0.00 4.00	0.00	150.0000	No Ice 1/2" Ice 1" Ice	0.1075 0.1518 0.2034	0.0610 0.0980 0.1424	0.00 0.00 0.01
DC6-48-60-18-8F	Α	From Leg	4.0000 0.00 4.00	0.00	150.0000	No Ice 1/2" Ice 1" Ice	0.9167 1.4583 1.6431	0.9167 1.4583 1.6431	0.02 0.04 0.06
P65-16-XLH-RR w/ Mount Pipe	Α	From Leg	4.0000 0.00 4.00	0.00	150.0000	No Ice 1/2" Ice 1" Ice	8.3708 8.9314 9.4571	6.3625 7.5378 8.4270	0.08 0.14 0.22
P65-16-XLH-RR w/ Mount Pipe	В	From Leg	4.0000 0.00 4.00	0.00	150.0000	No Ice 1/2" Ice	8.3708 8.9314 9.4571	6.3625 7.5378 8.4270	0.08 0.14 0.22
P65-16-XLH-RR w/ Mount Pipe	С	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	8.3708 8.9314 9.4571	6.3625 7.5378 8.4270	0.08 0.14 0.22
7770.00 w/ Mount Pipe	Α	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	5.8054 6.2677 6.6966	4.5859 5.5082 6.2127	0.09 0.14 0.21
7770.00 w/ Mount Pipe	В	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	5.8054 6.2677 6.6966	4.5859 5.5082 6.2127	0.09 0.14 0.21
7770.00 w/ Mount Pipe	С	From Leg	4.0000 0.00 4.00	0.00	150.0000	1" Ice No Ice 1/2" Ice	5.8054 6.2677 6.6966	4.5859 5.5082 6.2127	0.09 0.14 0.21
TT19-08BP111-001	Α	From Leg	4.0000	0.00	150.0000	1" Ice No Ice	0.5527	0.4455	0.02

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft ²	κ
			0.00 4.00			1/2" Ice 1" Ice	0.6487 0.7520	0.5342 0.6303	0.02 0.03
TT19-08BP111-001	В	From Leg	4.0000 0.00 4.00	0.00	150.0000	No Ice 1/2" Ice 1" Ice	0.5527 0.6487 0.7520	0.4455 0.5342 0.6303	0.02 0.02 0.03
TT19-08BP111-001	С	From Leg	4.0000 0.00 4.00	0.00	150.0000	No Ice 1/2" Ice 1" Ice	0.5527 0.6487 0.7520	0.4455 0.5342 0.6303	0.02 0.02 0.03
Platform Mount (LP 101-1)	С	None		0.00	150.0000	No Ice 1/2" Ice 1" Ice	36.2100 42.8200 49.4300	36.2100 42.8200 49.4300	1.50 2.30 3.10
Side Arm Mount [SO 201- 3]	С	None		0.00	150.0000	No Ice 1/2" Ice	5.7100 7.9100 10.1100	5.7100 7.9100 10.1100	0.29 0.35 0.41
Top Hat 20" Diameter x 3'- 6" Tall	С	None		0.00	150.0000	1" Ice No Ice 1/2" Ice 1" Ice	2.9167 4.3896 4.7056	2.9167 4.3896 4.7056	0.20 0.26 0.31
RRUS 11	Α	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice	2.7908 2.9984 3.2134	1.1923 1.3395 1.4957	0.05 0.07 0.10
RRUS 11	В	From Leg	4.0000 0.00 0.00	0.00	147.0000	1" Ice No Ice 1/2" Ice 1" Ice	2.7908 2.9984 3.2134	1.1923 1.3395 1.4957	0.05 0.07 0.10
RRUS 11	С	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice	2.7908 2.9984 3.2134	1.1923 1.3395 1.4957	0.05 0.07 0.10
TME-DC6-48-60-18-8F	В	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice	0.9167 1.4583 1.6431	0.9167 1.4583 1.6431	0.02 0.04 0.06
Pipe Mount [PM 601-3]	С	None		0.00	147.0000	No Ice 1/2" Ice 1" Ice	4.3900 5.4800 6.5700	4.3900 5.4800 6.5700	0.20 0.24 0.28
LLPX310R-V1 w/ Mount Pipe	Α	From Leg	4.0000 0.00 2.00	0.00	138.0000	No Ice 1/2" Ice 1" Ice	4.5378 4.8914 5.2539	2.9834 3.5263 4.0859	0.05 0.08 0.13
LLPX310R-V1 w/ Mount Pipe	В	From Leg	4.0000 0.00 2.00	0.00	138.0000	No Ice 1/2" Ice 1" Ice	4.5378 4.8914 5.2539	2.9834 3.5263 4.0859	0.05 0.08 0.13
LLPX310R-V1 w/ Mount Pipe	С	From Leg	4.0000 0.00 2.00	0.00	138.0000	No Ice 1/2" Ice	4.5378 4.8914 5.2539	2.9834 3.5263 4.0859	0.05 0.08 0.13
RAS SPI-2213 RRH	Α	From Leg	4.0000 0.00 2.00	0.00	138.0000	1" Ice No Ice 1/2" Ice	1.5617 1.7196 1.8849	0.7292 0.8475 0.9728	0.03 0.05 0.06
RAS SPI-2213 RRH	В	From Leg	4.0000 0.00 2.00	0.00	138.0000	1" Ice No Ice 1/2" Ice 1" Ice	1.5617 1.7196 1.8849	0.7292 0.8475 0.9728	0.03 0.05 0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	- 09		Vert ft ft	0	ft		ft ²	fť	К
RAS SPI-2213 RRH	С	From Leg	4.0000 0.00 2.00	0.00	138.0000	No Ice 1/2" Ice	1.5617 1.7196 1.8849	0.7292 0.8475 0.9728	0.03 0.05 0.06
Horizon Compact	В	From Leg	4.0000 0.00 5.00	0.00	138.0000	1" Ice No Ice 1/2" Ice	0.7208 0.8278 0.9422	0.3681 0.4499 0.5391	0.01 0.02 0.03
Horizon Compact	С	From Leg	4.0000 0.00 5.00	0.00	138.0000	1" Ice No Ice 1/2" Ice	0.7208 0.8278 0.9422	0.3681 0.4499 0.5391	0.01 0.02 0.03
CW JUNCTION BOX	Α	From Leg	4.0000 0.00 5.00	0.00	138.0000	1" Ice No Ice 1/2" Ice	1.2000 1.3370 1.4815	0.6000 0.7037 0.8148	0.00 0.01 0.02
Platform Mount [LP 713-1]	С	None		0.00	138.0000	1" Ice No Ice 1/2" Ice 1" Ice	31.2700 39.6800 48.0900	31.2700 39.6800 48.0900	1.51 1.93 2.35
LNX-6515DS-A1M w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	11.6828 12.4043 13.1351	9.8418 11.3657 12.9138	0.08 0.17 0.27
LNX-6515DS-A1M w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	11.6828 12.4043 13.1351	9.8418 11.3657 12.9138	0.08 0.17 0.27
LNX-6515DS-A1M w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	11.6828 12.4043 13.1351	9.8418 11.3657 12.9138	0.08 0.17 0.27
RRUS 11 B12	Α	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	2.8333 3.0426 3.2593	1.1821 1.3299 1.4848	0.05 0.07 0.10
RRUS 11 B12	В	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	2.8333 3.0426 3.2593	1.1821 1.3299 1.4848	0.05 0.07 0.10
RRUS 11 B12	С	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	2.8333 3.0426 3.2593	1.1821 1.3299 1.4848	0.05 0.07 0.10
AIR -32 B2A/B66AA w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	6.7474 7.2017 7.6475	6.0700 6.8671 7.5828	0.15 0.21 0.28
AIR -32 B2A/B66AA w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	6.7474 7.2017 7.6475	6.0700 6.8671 7.5828	0.15 0.21 0.28
AIR -32 B2A/B66AA w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	6.7474 7.2017 7.6475	6.0700 6.8671 7.5828	0.15 0.21 0.28
AIR 21 B2A/B4P w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	6.1619 6.6000 7.0327	5.5453 6.3031 6.9984	0.10 0.16 0.22
AIR 21 B2A/B4P w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice 1" Ice	6.1619 6.6000 7.0327	5.5453 6.3031 6.9984	0.10 0.16 0.22

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft²	K
AIR 21 B2A/B4P w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	120.0000	No Ice 1/2" Ice	6.1619 6.6000 7.0327	5.5453 6.3031 6.9984	0.10 0.16 0.22
KRY 112 144/1	Α	From Leg	4.0000 0.00 0.00	0.00	120.0000	1" Ice No Ice 1/2" Ice	0.3500 0.4259 0.5093	0.1750 0.2343 0.3009	0.01 0.01 0.02
KRY 112 144/1	В	From Leg	4.0000 0.00 0.00	0.00	120.0000	1" Ice No Ice 1/2" Ice	0.3500 0.4259 0.5093	0.1750 0.2343 0.3009	0.01 0.01 0.02
KRY 112 144/1	С	From Leg	4.0000 0.00 0.00	0.00	120.0000	1" Ice No Ice 1/2" Ice	0.3500 0.4259 0.5093	0.1750 0.2343 0.3009	0.01 0.01 0.02
Platform Mount [LP 301-1]	С	None		0.00	120.0000	1" Ice No Ice 1/2" Ice 1" Ice	30.1000 40.8000 51.5000	30.1000 40.8000 51.5000	1.59 2.03 2.47
*** (2) X7CQAP-465-VR0 w/	Α	From Leg	4.0000	0.00	99.0000	No Ice	6.5999	4.7322	0.06
Mount Pipe			0.00 0.00			1/2" Ice 1" Ice	7.0185 7.4400	5.3944 6.0396	0.11 0.17
(2) X7CQAP-465-VR0 w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	99.0000	No Ice 1/2" Ice 1" Ice	6.5999 7.0185 7.4400	4.7322 5.3944 6.0396	0.06 0.11 0.17
(2) X7CQAP-465-VR0 w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	99.0000	No Ice 1/2" Ice	6.5999 7.0185 7.4400	4.7322 5.3944 6.0396	0.06 0.11 0.17
B13 RRH 4X30	Α	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	2.0552 2.2405 2.4333	1.3201 1.4754 1.6376	0.06 0.07 0.09
B13 RRH 4X30	В	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	2.0552 2.2405 2.4333	1.3201 1.4754 1.6376	0.06 0.07 0.09
B13 RRH 4X30	С	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	2.0552 2.2405 2.4333	1.3201 1.4754 1.6376	0.06 0.07 0.09
B25 RRH2x60 PCS	Α	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	2.1400 2.3293 2.5259	1.3065 1.4629 1.6264	0.05 0.07 0.09
B25 RRH2x60 PCS	В	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	2.1400 2.3293 2.5259	1.3065 1.4629 1.6264	0.05 0.07 0.09
B25 RRH2x60 PCS	С	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	2.1400 2.3293 2.5259	1.3065 1.4629 1.6264	0.05 0.07 0.09
B66A RRH4X45	Α	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	2.5800 2.7937 3.0148	1.6296 1.8106 1.9986	0.07 0.09 0.11
B66A RRH4X45	В	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice 1" Ice	2.5800 2.7937 3.0148	1.6296 1.8106 1.9986	0.07 0.09 0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft ²	ft²	K
B66A RRH4X45	С	From Leg	4.0000 0.00 0.00	0.00	99.0000	No Ice 1/2" Ice	2.5800 2.7937 3.0148	1.6296 1.8106 1.9986	0.07 0.09 0.11
RC2DC-3315-PF-48	Α	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	3.7922 4.0441 4.3033	2.5116 2.7247 2.9449	0.03 0.06 0.10
RC2DC-3315-PF-48	С	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice 1" Ice	3.7922 4.0441 4.3033	2.5116 2.7247 2.9449	0.03 0.06 0.10
BXA-171063/8CF w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.00	99.0000	No Ice 1/2" Ice 1" Ice	3.1574 3.5312 3.9033	3.3303 3.9423 4.5633	0.03 0.06 0.10
BXA-171063/8CF w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	99.0000	No Ice 1/2" Ice 1" Ice	3.1574 3.5312 3.9033	3.3303 3.9423 4.5633	0.03 0.06 0.10
BXA-171063/8CF w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	99.0000	No Ice 1/2" Ice	3.1574 3.5312 3.9033	3.3303 3.9423 4.5633	0.03 0.06 0.10
BXA-70063/4CF w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	4.9453 5.3243 5.7120	3.6158 4.2169 4.8343	0.03 0.07 0.12
BXA-70063/4CF w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	4.9453 5.3243 5.7120	3.6158 4.2169 4.8343	0.03 0.07 0.12
BXA-70063/4CF w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	4.9453 5.3243 5.7120	3.6158 4.2169 4.8343	0.03 0.07 0.12
GPS_A	Α	From Leg	4.0000 0.00 4.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	0.2550 0.3205 0.3934	0.2550 0.3205 0.3934	0.00 0.00 0.01
(2) FD9R6004/2C-3L	Α	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	0.3142 0.3862 0.4656	0.0762 0.1189 0.1685	0.00 0.01 0.01
(2) FD9R6004/2C-3L	В	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	0.3142 0.3862 0.4656	0.0762 0.1189 0.1685	0.00 0.01 0.01
(2) FD9R6004/2C-3L	С	From Leg	4.0000 0.00 0.00	0.00	99.0000	1" Ice No Ice 1/2" Ice	0.3142 0.3862 0.4656	0.0762 0.1189 0.1685	0.00 0.01 0.01
T-Arm Mount [TA 602-3]	С	None		0.00	99.0000	1" Ice No Ice 1/2" Ice 1" Ice	11.5900 15.4400 19.2900	11.5900 15.4400 19.2900	0.77 0.99 1.21

					Dishe	es					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weigh
				ft	0	0	ft	ft		ft²	K
VHLP2-23	В	Paraboloid w/o	From	4.0000	0.00		138.0000	2.1750	No Ice	3.7200	0.03
		Radome	Leg	0.00					1/2" Ice	4.0100	0.05
			_	5.00					1" Ice	4.3000	0.07
VHLP2-18	С	Paraboloid w/o	From	4.0000	0.00		138.0000	2.1750	No Ice	3.7200	0.03
		Radome	Leg	0.00					1/2" Ice	4.0100	0.05
			•	5.00					1" Ice	4.3000	0.07

Tower Pressures - No Ice

 $G_H = 1.100$

Section	Z	Kz	q_z	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation					а				%	In	Out
				2	С	2	2			Face	Face
ft	ft		psf	ft ²	е	ft ²	ft²	ft ²		ft ²	ft ²
L1 150.0000-	138.9099	1.356	31.03	30.741	Α	0.000	30.741	30.741	100.00	0.000	0.000
128.5000			6		В	0.000	30.741		100.00	0.000	0.000
					С	0.000	30.741		100.00	0.000	10.048
L2 128.5000-	118.5131	1.312	30.01	32.928	Α	0.000	32.928	32.928	100.00	0.000	0.000
109.0000			5		В	0.000	32.928		100.00	0.000	0.000
					С	0.000	32.928		100.00	0.000	20.956
L3 109.0000-	106.5696	1.283	29.35	8.909	Α	0.000	8.909	8.909	100.00	0.000	0.000
104.1667			1		В	0.000	8.909		100.00	0.000	0.000
					С	0.000	8.909		100.00	0.000	7.445
L4 104.1667-	102.5373	1.272	29.11	6.155	Α	0.000	6.155	6.155	100.00	0.000	0.000
100.9200			4		В	0.000	6.155		100.00	0.000	0.000
					C	0.000	6.155		100.00	0.000	4.519
L5 100.9200-	98.0671	1.26	28.84	11.079	Α	0.000	11.079	11.079	100.00	0.000	0.000
95.2500			2		В	0.000	11.079		100.00	0.000	0.000
					C	0.000	11.079		100.00	0.000	8.635
L6 95.2500-	87.7618	1.231	28.17	30.782	Α	0.000	30.782	30.782	100.00	0.000	0.000
80.5000			6		В	0.000	30.782		100.00	0.000	0.000
17005000	77.0400	4 400	07.44	45 444	Ç	0.000	30.782	45 444	100.00	0.000	23.453
L7 80.5000-	77.0183	1.198	27.41	15.411	Α	0.000	15.411	15.411	100.00	0.000	0.000
73.5833			2		В	0.000	15.411		100.00	0.000	0.000
1.0.70.5000	70 7005	4 404	07.00	2 045	C	0.000	15.411	2.045	100.00	0.000	10.998
L8 73.5833-	72.7905	1.184	27.08	3.615	A	0.000	3.615	3.615	100.00	0.000	0.000
72.0000			8		ВС	0.000 0.000	3.615 3.615		100.00 100.00	0.000 0.000	0.000 2.517
L9 72.0000-	69.3684	1.172	26.81	12.134	A	0.000	12.134	12.134	100.00	0.000	0.000
66.7500	09.3004	1.172	5	12.134	В	0.000	12.134	12.134	100.00	0.000	0.000
00.7300			3		C	0.000	12.134		100.00	0.000	8.348
L10 66.7500-	57.3393	1.126	25.76	45.450	A	0.000	45.450	45.450	100.00	0.000	0.000
48.2500	07.0000	1.120	1	40.400	В	0.000	45.450	40.400	100.00	0.000	0.000
40.2000			'		C	0.000	45.450		100.00	0.000	30.103
L11 48.2500-	46.2429	1.076	24.62	10.450	A	0.000	10.450	10.450	100.00	0.000	0.000
44.2500	10.2 120	1.070	0	10.100	В	0.000	10.450	10.100	100.00	0.000	0.000
2000			ŭ		Č	0.000	10.450		100.00	0.000	7.360
L12 44.2500-	43.6661	1.063	24.32	3.090	Ā	0.000	3.090	3.090	100.00	0.000	0.000
43.0833			5		В	0.000	3.090		100.00	0.000	0.000
					C	0.000	3.090		100.00	0.000	2.147
L13 43.0833-	36.4698	1.023	23.42	35.939	Ā	0.000	35.939	35.939	100.00	0.000	0.000
30.0000			0		В	0.000	35.939		100.00	0.000	0.000
					С	0.000	35.939		100.00	0.000	24.073
L14 30.0000-	26.8329	0.959	21.95	17.285	Α	0.000	17.285	17.285	100.00	0.000	0.000
23.7500			5		В	0.000	17.285		100.00	0.000	0.000
					С	0.000	17.285		100.00	0.000	11.500
L15 23.7500-	17.3086	0.875	20.01	37.870	Α	0.000	37.870	37.870	100.00	0.000	0.000
11.0000			9		В	0.000	37.870		100.00	0.000	0.000
					С	0.000	37.870		100.00	0.000	23.460
L16 11.0000-	8.4902	0.85	19.45	15.497	Α	0.000	15.497	15.497	100.00	0.000	0.000

Section	Z	Kz	qz	A_{G}	F	A_F	A_R	A_{leg}	Leg	C_AA_A	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	f t²	е	ft ²	ft ²	ft ²		ft ²	ft ²
6.0000			0		В	0.000	15.497		100.00	0.000	0.000
					С	0.000	15.497		100.00	0.000	9.200
L17 6.0000-	4.6221	0.85	19.45	8.679	Α	0.000	8.679	8.679	100.00	0.000	0.000
3.2500			0		В	0.000	8.679		100.00	0.000	0.000
					С	0.000	8.679		100.00	0.000	5.060
L18 3.2500-	1.6210	0.85	19.45	10.398	Α	0.000	10.398	10.398	100.00	0.000	0.000
0.0000			0		В	0.000	10.398		100.00	0.000	0.000
					С	0.000	10.398		100.00	0.000	5.980

Tower Pressure - With Ice

 $G_H = 1.100$

Section	Z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A _{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	_In	Out
				*	ft ²	С	ft ²	ft ²	ft ²		Face	Face
ft	ft	4.050	psf	in		e				400.00	ft ²	ft ²
L1 150.0000-	138.9099	1.356	8.246	1.7319	36.947	Α	0.000	36.947	36.947	100.00	0.000	0.000
128.5000						В	0.000	36.947		100.00	0.000	0.000
10 400 5000	440 5404	4 040	7.075	4 70 40	00.400	C	0.000	36.947	00.400	100.00	0.000	22.767
L2 128.5000-	118.5131	1.312	7.975	1.7046	38.468	A B	0.000	38.468	38.468	100.00	0.000	0.000
109.0000							0.000	38.468		100.00	0.000	0.000
L3 109.0000-	106 F606	1 202	7 700	1 6066	10.267	C A	0.000	38.468	40.067	100.00	0.000 0.000	53.513
104.1667	106.5696	1.283	7.799	1.6866	10.207	В	0.000 0.000	10.267 10.267	10.267	100.00 100.00	0.000	0.000 0.000
104.1667						C	0.000	10.267		100.00	0.000	17.580
L4 104.1667-	102.5373	1.272	7.736	1.6801	7.064	A	0.000	7.064	7.064	100.00	0.000	0.000
100.9200	102.5575	1.212	1.130	1.0001	7.004	В	0.000	7.064	7.004	100.00	0.000	0.000
100.9200						С	0.000	7.064		100.00	0.000	10.338
L5 100.9200-	98.0671	1.26	7.663	1.6726	12.659	A	0.000	12.659	12.659	100.00	0.000	0.000
95.2500	90.0071	1.20	7.003	1.0720	12.039	В	0.000	12.659	12.059	100.00	0.000	0.000
93.2300						C	0.000	12.659		100.00	0.000	20.005
L6 95.2500-	87.7618	1.231	7.486	1.6541	34.849	A	0.000	34.849	34.849	100.00	0.000	0.000
80.5000	07.7010	1.201	7.400	1.00-11	04.040	В	0.000	34.849	34.043	100.00	0.000	0.000
00.3000						Č	0.000	34.849		100.00	0.000	54.357
L7 80.5000-	77.0183	1.198	7.283	1.6327	17.293	Ä	0.000	17.293	17.293	100.00	0.000	0.000
73.5833	77.0100	1.150	7.200	1.0027	17.200	В	0.000	17.293	17.200	100.00	0.000	0.000
70.0000						Č	0.000	17.293		100.00	0.000	25.302
L8 73.5833-	72.7905	1.184	7.197	1.6235	4.044	Ä	0.000	4.044	4.044	100.00	0.000	0.000
72.0000	72.7000		7.107	1.0200		В	0.000	4.044	1.011	100.00	0.000	0.000
. 2.0000						Ċ	0.000	4.044		100.00	0.000	5.773
L9 72.0000-	69.3684	1.172	7.125	1.6157	13.548	Ã	0.000	13.548	13.548	100.00	0.000	0.000
66.7500			_			В	0.000	13.548		100.00	0.000	0.000
						С	0.000	13.548		100.00	0.000	19.092
L10 66.7500-	57.3393	1.126	6.845	1.5852	50.338	Α	0.000	50.338	50.338	100.00	0.000	0.000
48.2500						В	0.000	50.338		100.00	0.000	0.000
						С	0.000	50.338		100.00	0.000	68.121
L11 48.2500-	46.2429	1.076	6.542	1.5515	11.484	Α	0.000	11.484	11.484	100.00	0.000	0.000
44.2500						В	0.000	11.484		100.00	0.000	0.000
						С	0.000	11.484		100.00	0.000	16.462
L12 44.2500-	43.6661	1.063	6.463	1.5426	3.390	Α	0.000	3.390	3.390	100.00	0.000	0.000
43.0833						В	0.000	3.390		100.00	0.000	0.000
						С	0.000	3.390		100.00	0.000	4.786
L13 43.0833-	36.4698	1.023	6.223	1.5151	39.243	Α	0.000	39.243	39.243	100.00	0.000	0.000
30.0000						В	0.000	39.243		100.00	0.000	0.000
						C	0.000	39.243		100.00	0.000	53.146
L14 30.0000-	26.8329	0.959	5.833	1.4693	18.863	Α	0.000	18.863	18.863	100.00	0.000	0.000
23.7500						В	0.000	18.863		100.00	0.000	0.000
						Ċ	0.000	18.863		100.00	0.000	25.388
L15 23.7500-	17.3086	0.875	5.319	1.4063	40.859	Α	0.000	40.859	40.859	100.00	0.000	0.000
11.0000						В	0.000	40.859		100.00	0.000	0.000
14044 0000	0.4000	0.05	E 400	4 0000	40.500	Č	0.000	40.859	40.500	100.00	0.000	49.757
L16 11.0000-	8.4902	0.85	5.168	1.3096	16.588	Α	0.000	16.588	16.588	100.00	0.000	0.000
6.0000						В	0.000	16.588		100.00	0.000	0.000
147.00000	4.0004	0.05	E 400	4 0000	0.040	C	0.000	16.588	0.040	100.00	0.000	18.804
L17 6.0000-	4.6221	0.85	5.168	1.2323	9.243	Α	0.000	9.243	9.243	100.00	0.000	0.000

Section Elevation	Z	Kz	qz	tz	A_{G}	F a	A_F	A_R	A_{leg}	Leg %	$C_A A_A$ In	C_AA_A Out
ft	ft		psf	in	ft ²	c e	f t²	ft ²	f t²	70	Face ft²	Face ft²
3.2500						В	0.000	9.243		100.00	0.000	0.000
						С	0.000	9.243		100.00	0.000	10.030
L18 3.2500-	1.6210	0.85	5.168	1.1097	10.999	Α	0.000	10.999	10.999	100.00	0.000	0.000
0.0000						В	0.000	10.999		100.00	0.000	0.000
						С	0.000	10.999		100.00	0.000	11.270

Tower Pressure - Service

 $G_H = 1.100$

Continu	-	V	~	Λ	F	Λ	Λ	Λ	100	C 4	C 1
Section	Z	K_Z	q_z	A_{G}		A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In Food	Out
				r2	С	6.2	62	c2		Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
L1 150.0000-	138.9099	1.356	10.62	30.741	Α	0.000	30.741	30.741	100.00	0.000	0.000
128.5000			5		В	0.000	30.741		100.00	0.000	0.000
					С	0.000	30.741		100.00	0.000	10.048
L2 128.5000-	118.5131	1.312	10.27	32.928	Α	0.000	32.928	32.928	100.00	0.000	0.000
109.0000			5		В	0.000	32.928		100.00	0.000	0.000
					С	0.000	32.928		100.00	0.000	20.956
L3 109.0000-	106.5696	1.283	10.04	8.909	Α	0.000	8.909	8.909	100.00	0.000	0.000
104.1667			8		В	0.000	8.909		100.00	0.000	0.000
					С	0.000	8.909		100.00	0.000	7.445
L4 104.1667-	102.5373	1.272	9.967	6.155	Α	0.000	6.155	6.155	100.00	0.000	0.000
100.9200					В	0.000	6.155		100.00	0.000	0.000
					С	0.000	6.155		100.00	0.000	4.519
L5 100.9200-	98.0671	1.26	9.874	11.079	Α	0.000	11.079	11.079	100.00	0.000	0.000
95.2500					В	0.000	11.079		100.00	0.000	0.000
					С	0.000	11.079		100.00	0.000	8.635
L6 95.2500-	87.7618	1.231	9.646	30.782	Α	0.000	30.782	30.782	100.00	0.000	0.000
80.5000					В	0.000	30.782		100.00	0.000	0.000
					С	0.000	30.782		100.00	0.000	23.453
L7 80.5000-	77.0183	1.198	9.384	15.411	Α	0.000	15.411	15.411	100.00	0.000	0.000
73.5833					В	0.000	15.411		100.00	0.000	0.000
					С	0.000	15.411		100.00	0.000	10.998
L8 73.5833-	72.7905	1.184	9.273	3.615	Α	0.000	3.615	3.615	100.00	0.000	0.000
72.0000					В	0.000	3.615		100.00	0.000	0.000
					С	0.000	3.615		100.00	0.000	2.517
L9 72.0000-	69.3684	1.172	9.180	12.134	Α	0.000	12.134	12.134	100.00	0.000	0.000
66.7500					В	0.000	12.134		100.00	0.000	0.000
					С	0.000	12.134		100.00	0.000	8.348
L10 66.7500-	57.3393	1.126	8.819	45.450	Α	0.000	45.450	45.450	100.00	0.000	0.000
48.2500					В	0.000	45.450		100.00	0.000	0.000
					С	0.000	45.450		100.00	0.000	30.103
L11 48.2500-	46.2429	1.076	8.428	10.450	Α	0.000	10.450	10.450	100.00	0.000	0.000
44.2500					В	0.000	10.450		100.00	0.000	0.000
					С	0.000	10.450		100.00	0.000	7.360
L12 44.2500-	43.6661	1.063	8.327	3.090	Α	0.000	3.090	3.090	100.00	0.000	0.000
43.0833					В	0.000	3.090		100.00	0.000	0.000
					С	0.000	3.090		100.00	0.000	2.147
L13 43.0833-	36.4698	1.023	8.018	35.939	Α	0.000	35.939	35.939	100.00	0.000	0.000
30.0000					В	0.000	35.939		100.00	0.000	0.000
					С	0.000	35.939		100.00	0.000	24.073
L14 30.0000-	26.8329	0.959	7.516	17.285	Α	0.000	17.285	17.285	100.00	0.000	0.000
23.7500					В	0.000	17.285		100.00	0.000	0.000
					С	0.000	17.285		100.00	0.000	11.500
L15 23.7500-	17.3086	0.875	6.853	37.870	Α	0.000	37.870	37.870	100.00	0.000	0.000
11.0000					В	0.000	37.870		100.00	0.000	0.000
					С	0.000	37.870		100.00	0.000	23.460
L16 11.0000-	8.4902	0.85	6.659	15.497	Α	0.000	15.497	15.497	100.00	0.000	0.000
6.0000					В	0.000	15.497		100.00	0.000	0.000
					С	0.000	15.497		100.00	0.000	9.200
L17 6.0000-	4.6221	0.85	6.659	8.679	Α	0.000	8.679	8.679	100.00	0.000	0.000
3.2500					В	0.000	8.679		100.00	0.000	0.000
					С	0.000	8.679		100.00	0.000	5.060
L18 3.2500-	1.6210	0.85	6.659	10.398	Α	0.000	10.398	10.398	100.00	0.000	0.000

Section Elevation	Z	Kz	q _z	A_{G}	F a	A_F	A_R	A_{leg}	Leg %	C _A A _A In	C_AA_A Out
ft	ft		psf	ft ²	c e	ft ²	ft ²	ft ²		Face ft²	Face ft²
0.0000					В	0.000	10.398		100.00	0.000	0.000
					С	0.000	10.398		100.00	0.000	5.980

Load Combinations

Comb	Doporintian
Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23 24	0.9 Dead+1.6 Wind 300 deg - No Ice
24 25	1.2 Dead+1.6 Wind 330 deg - No Ice 0.9 Dead+1.6 Wind 330 deg - No Ice
25 26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0 lce+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deq+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 lce+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45 46	Dead+Wind 180 deg - Service
46 47	Dead+Wind 210 deg - Service
47 49	Dead+Wind 240 deg - Service
48 49	Dead+Wind 270 deg - Service Dead+Wind 300 deg - Service
49 50	Dead+Wind 300 deg - Service Dead+Wind 330 deg - Service
- 50	Doda 1 1711110 000 dog - Oct 1100

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load	.,	Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	150 - 128.5	Pole	Max Tension	26	0.00	-0.00	0.00
			Max. Compression	26	-18.45	-0.01	-0.50
			Max. Mx	8	-6.28	-253.70	2.17
			Max. My	2	-6.28	-0.01	253.23
			Max. Vy	20	-13.94	253.58	2.16
			Max. Vx	2	-13.93	-0.01	253.23
	400 5 400	D.I.	Max. Torque	23	0.00	0.00	0.55
L2	128.5 - 109	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-31.88	1.56	-1.40
			Max. Mx	20	-12.33	614.60	5.25
			Max. My	2	-12.33	0.13	613.74
			Max. Vy	20	-22.45	614.60	5.25
			Max. Vx	2	-22.44	0.13	613.74
L3	109 -	Pole	Max. Torque	25 1	0.00	0.00	1.44
L3		Pole	Max Tension	ı	0.00	0.00	0.00
	104.167		May Camprossion	26	-33.74	2.17	-1.75
			Max. Compression Max. Mx	20	-33.74 -13.38	725.41	6.01
			Max. My	20	-13.38	0.18	724.40
			•	20	-23.41	725.41	6.01
			Max. Vy Max. Vx	20	-23.41	0.18	724.40
			Max. Torque	25	-23.39	0.10	1.77
L4	104.167 -	Pole	Max Tension	1	0.00	0.00	0.00
	100.92	i dic	Wax TCHSION	'	0.00	0.00	0.00
	.00.02		Max. Compression	26	-35.80	2.59	-2.00
			Max. Mx	20	-14.85	802.56	6.52
			Max. My	2	-14.85	0.21	801.45
			Max. Vy	20	-24.12	802.56	6.52
			Max. Vx	2	-24.11	0.21	801.45
			Max. Torque	25			1.98
L5	100.92 -	Pole	Max Tension	1	0.00	0.00	0.00
	95.25						
			Max. Compression	26	-45.76	4.20	-2.03
			Max. Mx	20	-19.36	958.47	7.39
			Max. My	2	-19.36	0.32	957.18
			Max. Vy	20	-29.48	958.47	7.39
			Max. Vx	2	-29.49	0.32	957.18
			Max. Torque	25			2.62
L6	95.25 - 80.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-53.78	6.97	-3.62
			Max. Mx	20	-24.35	1415.21	9.36
			Max. My	2	-24.35	0.23	1413.69
			Max. Vy	20	-32.46	1415.21	9.36
			Max. Vx	2	-32.47	0.23	1413.69
1.7	00.5	D.I.	Max. Torque	25	0.00	0.00	3.77
L7	80.5 -	Pole	Max Tension	1	0.00	0.00	0.00
	73.5833		Max. Compression	26	-58.28	8.32	-4.39
			Max. Mx	20			10.27
			Max. My	20	-27.43 -27.43	1644.72 0.20	1643.09
			Max. Vy	20	-33.91	1644.72	10.27
			Max. Vx	2	-33.92	0.20	1643.09
			Max. Torque	25	33.32	0.20	4.34
L8	73.5833 - 72	Pole	Max Tension	1	0.00	0.00	0.00
LO	70.0000 72	1 010	Max. Compression	26	-59.33	8.64	-4.57
			Max. Mx	20	-28.14	1698.66	10.48
			Max. My	2	-28.14	0.19	1697.00
			Max. Vy	20	-34.24	1698.66	10.48
			Max. Vx	2	-34.25	0.19	1697.00
			Max. Torque	25	50	55	4.47
L9	72 - 66.75	Pole	Max Tension	1	0.00	0.00	0.00
		. *:*	Max. Compression	26	-62.96	9.68	-5.18
			Max. Mx	20	-30.72	1881.22	11.17
			Max. My	2	-30.72	0.17	1879.46
			Max. Vy	20	-35.31	1881.22	11.17
			•				

Sectio	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Vx	2 25	-35.32	0.17	1879.46
L10	66.75 -	Pole	Max. Torque Max Tension	1	0.00	0.00	4.91 0.00
	48.25		Max. Compression	26	-75.86	13.46	-7.35
			Max. Mx	20	-40.06	2567.28	13.57
			Max. My	2	-40.06	0.11	2565.15
			Max. Vy	20	-38.88	2567.28	13.57
			Max. Vx	2	-38.89	0.11	2565.15
			Max. Torque	25	00.00	0	6.51
L11	48.25 - 44.25	Pole	Max Tension	1	0.00	0.00	0.00
	44.20		Max. Compression	26	-79.31	14.29	-7.83
			Max. Mx	20	-42.73	2724.42	14.08
			Max. My	2	-42.73	0.10	2722.20
			Max. Vy	20	-39.69	2724.42	14.08
			Max. Vx	2	-39.71	0.10	2722.20
			Max. Torque	25			6.91
L12	44.25 - 43.0833	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-80.36	14.54	-7.97
			Max. Mx	20	-43.55	2770.87	14.23
			Max. My	2	-43.55	0.10	2768.63
			Max. Vy	20	-39.94	2770.87	14.23
			Max. Vx	2	-39.95	0.10	2768.63
			Max. Torque	25			7.03
L13	43.0833 - 30	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-88.35	16.45	-9.07
			Max. Mx	20	-49.82	3141.52	15.39
			Max. My	2	-49.82	0.08	3139.07
			Max. Vy	20	-41.68	3141.52	15.39
			Max. Vx	2	-41.69	0.08	3139.07
L14	20 22 75	Pole	Max. Torque	25 1	0.00	0.00	7.93
L14	30 - 23.75	Pole	Max Tension	26	0.00	0.00 18.60	0.00 -10.31
			Max. Compression Max. Mx	20	-100.30		16.68
				20	-59.59	3579.39	
			Max. My Max. Vy	20	-59.59 -43.62	0.07 3579.39	3576.69 16.68
			Max. Vx	2	-43.63	0.07	3576.69
			Max. Torque	25	-43.03	0.07	8.93
L15	23.75 - 11	Pole	Max Tension	1	0.00	0.00	0.00
LIO	20.70	1 010	Max. Compression	26	-111.79	21.13	-11.77
			Max. Mx	20	-68.96	4147.37	18.26
			Max. My	2	-68.96	0.06	4144.34
			Max. Vy	20	-45.49	4147.37	18.26
			Max. Vx	2	-45.50	0.06	4144.34
			Max. Torque	25			10.11
L16	11 - 6	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-116.03	22.05	-12.30
			Max. Mx	20	-72.48	4376.40	18.86
			Max. My	2	-72.48	0.06	4373.24
			Max. Vy	20	-46.14	4376.40	18.86
			Max. Vx	2	-46.15	0.06	4373.24
			Max. Torque	25			10.58
L17	6 - 3.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-118.52	22.53	-12.58
			Max. Mx	20	-74.59	4503.77	19.19
			Max. My	2	-74.59	0.07	4500.54
			Max. Vy	20	-46.52	4503.77	19.19
			Max. Vx	2	-46.53	0.07	4500.54
140	2.25 0	Pole	Max. Torque	25 1	0.00	0.00	10.84
L18	3.25 - 0	FUIE	Max Tension	1	0.00	0.00	0.00
			Max. Compression Max. Mx	26 20	-120.89 -76.63	23.04 4655.52	-12.87 19.58
			Max. My	20	-76.63	0.07	4652.20
			Max. Vy	20	-76.63 -46.90	4655.52	19.58
			Max. Vx	20	-46.91	0.07	4652.20
			Max. Torque	25	10.01	0.07	11.16

	D 41
Maximum	Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	120.89	-0.00	0.00
	Max. H _x	21	57.49	46.86	0.13
	Max. H _z	3	57.49	-0.02	46.87
	Max. M _x	2	4652.20	-0.02	46.87
	$Max. M_z$	8	4650.64	-46.86	0.18
	Max. Torsion	25	11.16	23.50	40.43
	Min. Vert	21	57.49	46.86	0.13
	Min. H _x	9	57.49	-46.86	0.18
	Min. H _z	15	57.49	0.02	-46.70
	Min. M _x	14	-4629.98	0.02	-46.70
	Min. M _z	20	-4655.52	46.86	0.13
	Min. Torsion	13	-10.72	-23.32	-40.42

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	63.88	-0.00	0.00	1.17	1.96	0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	76.65	0.02	-46.87	-4652.20	0.07	-9.60
0.9 Dead+1.6 Wind 0 deg - No Ice	57.49	0.02	-46.87	-4596.22	-0.53	-9.60
1.2 Dead+1.6 Wind 30 deg - No Ice	76.65	23.54	-40.45	-4006.97	-2340.13	-5.47
0.9 Dead+1.6 Wind 30 deg - No Ice	57.49	23.54	-40.45	-3958.81	-2312.31	-5.47
1.2 Dead+1.6 Wind 60 deg - No Ice	76.65	40.60	-23.44	-2324.64	-4030.74	-0.09
0.9 Dead+1.6 Wind 60 deg - No Ice	57.49	40.60	-23.44	-2296.83	-3982.46	-0.09
1.2 Dead+1.6 Wind 90 deg - No Ice	76.65	46.86	-0.18	-24.23	-4650.64	5.25
0.9 Dead+1.6 Wind 90 deg - No Ice	57.49	46.86	-0.18	-24.23	-4594.98	5.26
1.2 Dead+1.6 Wind 120 deg · No Ice	76.65	40.68	23.19	2291.71	-4043.74	9.24
0.9 Dead+1.6 Wind 120 deg - No Ice	57.49	40.68	23.19	2263.66	-3995.25	9.25
1.2 Dead+1.6 Wind 150 deg - No Ice	76.65	23.32	40.42	4007.22	-2308.15	10.71
0.9 Dead+1.6 Wind 150 deg - No Ice	57.49	23.32	40.42	3958.33	-2280.78	10.72
1.2 Dead+1.6 Wind 180 deg - No Ice	76.65	-0.02	46.70	4629.98	4.71	9.60
0.9 Dead+1.6 Wind 180 deg - No Ice	57.49	-0.02	46.70	4573.61	4.07	9.60
1.2 Dead+1.6 Wind 210 deg - No Ice	76.65	-23.35	40.45	4009.58	2316.98	5.91
0.9 Dead+1.6 Wind 210 deg - No Ice	57.49	-23.35	40.44	3960.65	2288.32	5.91
1.2 Dead+1.6 Wind 240 deg No Ice	76.65	-40.71	23.22	2295.78	4050.91	0.36
0.9 Dead+1.6 Wind 240 deg - No Ice	57.49	-40.71	23.22	2267.67	4001.14	0.35
1.2 Dead+1.6 Wind 270 deg - No Ice	76.65	-46.86	-0.13	-19.58	4655.52	-5.25
0.9 Dead+1.6 Wind 270 deg · No Ice	57.49	-46.86	-0.13	-19.63	4598.60	-5.26
1.2 Dead+1.6 Wind 300 deg No Ice	76.65	-40.58	-23.40	-2320.67	4033.28	-9.50
0.9 Dead+1.6 Wind 300 deg	57.49	-40.58	-23.40	-2292.89	3983.77	-9.51

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
- No Ice						•
1.2 Dead+1.6 Wind 330 deg	76.65	-23.50	-40.43	-4004.71	2340.91	-11.15
- No Ice						
0.9 Dead+1.6 Wind 330 deg	57.49	-23.50	-40.43	-3956.56	2311.90	-11.16
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	120.89	0.00	-0.00	12.87	23.04	0.00
1.2 Dead+1.0 Wind 0	120.89	0.00	-11.99	-1258.93	22.76	-3.54
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	120.89	6.02	-10.36	-1083.54	-616.26	-2.04
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	120.89	10.39	-6.00	-622.73	-1079.01	-0.05
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	120.89	11.99	-0.04	7.25	-1248.74	1.95
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	120.89	10.41	5.94	640.72	-1082.02	3.43
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	120.89	5.97	10.35	1108.93	-609.18	3.99
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	120.89	-0.00	11.96	1279.16	23.64	3.54
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	120.89	-5.98	10.36	1109.38	656.35	2.14
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	120.89	-10.41	5.95	641.49	1128.87	0.11
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	120.89	-11.99	-0.03	8.14	1295.16	-1.94
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	120.89	-10.39	-5.99	-621.97	1124.98	-3.49
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	120.89	-6.01	-10.35	-1083.10	661.90	-4.09
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	63.88	0.00	-10.03	-988.41	1.54	-0.06
Dead+Wind 30 deg - Service	63.88	5.04	-8.65	-851.16	-496.09	-0.01
Dead+Wind 60 deg - Service	63.88	8.69	-5.01	-493.43	-855.61	-0.02
Dead+Wind 90 deg - Service	63.88	10.02	-0.04	-4.24	-987.51	-0.03
Dead+Wind 120 deg -	63.88	8.70	4.96	488.24	-858.36	-0.02
Service						
Dead+Wind 150 deg -	63.88	4.99	8.65	853.01	-489.28	-0.01
Service						
Dead+Wind 180 deg -	63.88	-0.00	9.99	985.46	2.53	0.06
Service						
Dead+Wind 210 deg -	63.88	-5.00	8.65	853.50	494.20	0.11
Service						• • • • • • • • • • • • • • • • • • • •
Dead+Wind 240 deg -	63.88	-8.71	4.97	489.10	862.92	80.0
Service	00.00	U			002.02	3.00
Dead+Wind 270 deg -	63.88	-10.02	-0.03	-3.25	991.57	0.03
Service	00.00	10.02	0.00	3.20	001.07	0.00
Dead+Wind 300 deg -	63.88	-8.68	-5.00	-492.57	859.18	-0.04
Service	00.00	3.30	0.00	102.01	000.10	3.04
Dead+Wind 330 deg -	63.88	-5.03	-8.65	-850.66	499.30	-0.09
Service	00.00	0.00	0.00	000.00	-100.00	0.00

Solution Summary

	Sur	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-63.88	0.00	0.00	63.88	-0.00	0.000%
2	0.02	-76.65	-46.87	-0.02	76.65	46.87	0.002%
3	0.02	-57.49	-46.87	-0.02	57.49	46.87	0.001%
4	23.54	-76.65	-40.45	-23.54	76.65	40.45	0.000%
5	23.54	-57.49	-40.45	-23.54	57.49	40.45	0.000%
6	40.61	-76.65	-23.44	-40.60	76.65	23.44	0.000%
7	40.61	-57.49	-23.44	-40.60	57.49	23.44	0.000%
8	46.86	-76.65	-0.18	-46.86	76.65	0.18	0.003%
9	46.86	-57.49	-0.18	-46.86	57.49	0.18	0.003%
10	40.68	-76.65	23.19	-40.68	76.65	-23.19	0.000%
11	40.68	-57.49	23.19	-40.68	57.49	-23.19	0.000%

	Sur	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
12	23.32	-76.65	40.42	-23.32	76.65	-40.42	0.000%
13	23.32	-57.49	40.42	-23.32	57.49	-40.42	0.000%
14	-0.02	-76.65	46.70	0.02	76.65	-46.70	0.002%
15	-0.02	-57.49	46.70	0.02	57.49	-46.70	0.001%
16	-23.35	-76.65	40.45	23.35	76.65	-40.45	0.000%
17	-23.35	-57.49	40.45	23.35	57.49	-40.44	0.000%
18	-40.71	-76.65	23.22	40.71	76.65	-23.22	0.000%
19	-40.71	-57.49	23.22	40.71	57.49	-23.22	0.000%
20	-46.86	-76.65	-0.13	46.86	76.65	0.13	0.003%
21	-46.86	-57.49	-0.13	46.86	57.49	0.13	0.003%
22	-40.58	-76.65	-23.40	40.58	76.65	23.40	0.000%
23	-40.58	-57.49	-23.40	40.58	57.49	23.40	0.000%
24	-23.50	-76.65	-40.43	23.50	76.65	40.43	0.000%
25	-23.50	-57.49	-40.43	23.50	57.49	40.43	0.000%
26	0.00	-120.89	0.00	-0.00	120.89	0.00	0.000%
27	0.00	-120.89	-11.99	-0.00	120.89	11.99	0.001%
28	6.02	-120.89	-10.36	-6.02	120.89	10.36	0.000%
29	10.39	-120.89	-6.00	-10.39	120.89	6.00	0.000%
30	11.99	-120.89	-0.04	-11.99	120.89	0.04	0.000%
31	10.41	-120.89	5.94	-10.41	120.89	-5.94	0.001%
32	5.97	-120.89	10.35	-5.97	120.89	-10.35	0.001%
33	-0.00	-120.89	11.96	0.00	120.89	-11.96	0.001%
34	-5.98	-120.89	10.36	5.98	120.89	-10.36	0.001%
35	-10.41	-120.89	5.95	10.41	120.89	-5.95	0.001%
36	-11.99	-120.89	-0.03	11.99	120.89	0.03	0.001%
37	-10.39	-120.89	-5.99	10.39	120.89	5.99	0.001%
38	-6.01	-120.89	-10.35	6.01	120.89	10.35	0.001%
39	0.00	-63.88	-10.03	-0.00	63.88	10.03	0.003%
40	5.04	-63.88	-8.65	-5.04	63.88	8.65	0.003%
41	8.69	-63.88	-5.01	-8.69	63.88	5.01	0.003%
42	10.03	-63.88	-0.04	-10.02	63.88	0.04	0.003%
43	8.70	-63.88	4.96	-8.70	63.88	-4.96	0.003%
44	4.99	-63.88	8.65	-4.99	63.88	-8.65	0.003%
45	-0.00	-63.88	9.99	0.00	63.88	-9.99	0.003%
46	-5.00	-63.88	8.65	5.00	63.88	-8.65	0.003%
47	-8.71	-63.88	4.97	8.71	63.88	-4.97	0.003%
48	-10.03	-63.88	-0.03	10.02	63.88	0.03	0.003%
49	-8.68	-63.88	-5.01	8.68	63.88	5.00	0.003%
50	-5.03	-63.88	-8.65	5.03	63.88	8.65	0.003%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.0000001	0.0000001
2	Yes	18	0.00002104	0.00013005
3	Yes	18	0.0000001	0.00010077
4	Yes	22	0.0000001	0.00009441
5	Yes	21	0.0000001	0.00013875
6	Yes	22	0.0000001	0.00009653
7	Yes	21	0.0000001	0.00014191
8	Yes	17	0.00004300	0.00009881
9	Yes	17	0.00002815	0.00007967
10	Yes	22	0.0000001	0.00009934
11	Yes	21	0.0000001	0.00014632
12	Yes	22	0.0000001	0.00009106
13	Yes	21	0.0000001	0.00013377
14	Yes	18	0.00002107	0.00013312
15	Yes	18	0.0000001	0.00010315
16	Yes	22	0.0000001	0.00009777
17	Yes	21	0.0000001	0.00014392
18	Yes	22	0.0000001	0.00009554
19	Yes	21	0.0000001	0.00014038
20	Yes	17	0.00004299	0.00010486
21	Yes	17	0.00002814	0.00008426
22	Yes	22	0.0000001	0.00009297
23	Yes	21	0.0000001	0.00013645

24	Yes	22	0.00000001	0.00010109
25	Yes	21	0.00000001	0.00014896
26	Yes	13	0.00000001	0.00004236
27	Yes	19	0.00000001	0.00008766
28	Yes	19	0.00000001	0.00011963
29	Yes	19	0.00000001	0.00012164
30	Yes	19	0.00000001	0.00008526
31	Yes	19	0.00000001	0.00012841
32	Yes	19	0.00000001	0.00012028
33	Yes	19	0.00000001	0.00008889
34	Yes	19	0.00000001	0.00013163
35	Yes	19	0.00000001	0.00012897
36	Yes	19	0.00000001	0.00008816
37	Yes	19	0.00000001	0.00012387
38	Yes	19	0.00000001	0.00013246
39	Yes	15	0.00014729	0.00004493
40	Yes	15	0.00014703	0.00012721
41	Yes	15	0.00014705	0.00012755
42	Yes	15	0.00014731	0.00004490
43	Yes	15	0.00014706	0.00012595
44	Yes	15	0.00014704	0.00012572
45	Yes	15	0.00014728	0.00004477
46	Yes	15	0.00014702	0.00012952
47	Yes	15	0.00014703	0.00012601
48	Yes	15	0.00014728	0.00004504
49	Yes	15	0.00014703	0.00012695
50	Yes	15	0.00014702	0.00013027

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
NO.	ft	in	Comb.	0	0
1.4				4.07	0.00
L1	150 - 128.5	28.30	47	1.97	0.00
L2	128.5 - 109	20.05	47	1.60	0.00
L3	109 - 104.167	14.09	47	1.30	0.00
L4	104.167 - 100.92	12.81	47	1.22	0.00
L5	100.92 - 95.25	11.98	47	1.20	0.00
L6	95.25 - 80.5	10.59	47	1.14	0.00
L7	80.5 - 73.5833	7.40	47	0.92	0.00
L8	73.5833 - 72	6.13	47	0.83	0.00
L9	72 - 66.75	5.86	47	0.81	0.00
L10	66.75 - 48.25	5.00	47	0.74	0.00
L11	48.25 - 44.25	2.60	47	0.50	0.00
L12	44.25 - 43.0833	2.20	47	0.46	0.00
L13	43.0833 - 30	2.09	47	0.45	0.00
L14	34 - 23.75	1.33	47	0.35	0.00
L15	23.75 - 11	0.66	47	0.26	0.00
L16	11 - 6	0.15	47	0.13	0.00
L17	6 - 3.25	0.05	47	0.07	0.00
L18	3.25 - 0	0.01	47	0.04	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
150.0000	QS66512-2 w/ Mount Pipe	47	28.30	1.97	0.00	10310
147.0000	RRUS 11	47	27.09	1.92	0.00	10310
143.0000	VHLP2-23	47	25.50	1.84	0.00	7364
138.0000	LLPX310R-V1 w/ Mount Pipe	47	23.55	1.75	0.00	4295
120.0000	LNX-6515DS-A1M w/ Mount Pipe	47	17.27	1.48	0.00	2977
99.0000	(2) X7CQAP-465-VR0 w/ Mount Pipe	47	11.51	1.18	0.00	6068

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	150 - 128.5	132.69	20	9.26	0.02
L2	128.5 - 109	94.10	20	7.51	0.02
L3	109 - 104.167	66.12	20	6.13	0.02
L4	104.167 - 100.92	60.12	20	5.75	0.02
L5	100.92 - 95.25	56.26	20	5.62	0.02
L6	95.25 - 80.5	49.74	20	5.38	0.02
L7	80.5 - 73.5833	34.75	20	4.32	0.01
L8	73.5833 - 72	28.80	20	3.90	0.01
L9	72 - 66.75	27.52	20	3.81	0.01
L10	66.75 - 48.25	23.50	20	3.50	0.01
L11	48.25 - 44.25	12.20	20	2.34	0.01
L12	44.25 - 43.0833	10.32	20	2.14	0.01
L13	43.0833 - 30	9.80	20	2.09	0.01
L14	34 - 23.75	6.25	18	1.65	0.00
L15	23.75 - 11	3.10	18	1.22	0.00
L16	11 - 6	0.70	18	0.59	0.00
L17	6 - 3.25	0.22	18	0.33	0.00
L18	3.25 - 0	0.07	18	0.20	0.00

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
150.0000	QS66512-2 w/ Mount Pipe	20	132.69	9.26	0.03	2299
147.0000	RRUS 11	20	127.06	9.00	0.03	2299
143.0000	VHLP2-23	20	119.61	8.65	0.03	1642
138.0000	LLPX310R-V1 w/ Mount Pipe	20	110.47	8.23	0.02	956
120.0000	LNX-6515DS-A1M w/ Mount	20	81.05	6.94	0.02	653
	Pipe					
99.0000	(2) X7CQAP-465-VR0 w/ Mount	20	54.02	5.55	0.02	1315
	Pipe					

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	K	$\overline{\phi P_n}$
L1	150 - 128.5 (1)	TP18.1463x15x0.2188	21.500 0	0.0000	0.0	12.630 6	-6.28	716.15	0.009
L2	128.5 - 109 (2)	TP21x18.1463x0.5837	19.500 0	0.0000	0.0	38.371 4	-12.33	1529.92	800.0
L3	109 - 104.167	TP21.7298x21x0.661	4.8333	0.0000	0.0	44.843 3	-13.38	1959.85	0.007
L4	104.167 - 100.92 (4)	TP22.2201x21.7298x1.59 58	3.2467	0.0000	0.0	105.97 70	-14.85	4632.85	0.003
L5	100.92 - 95.25 (5)	TP23.0763x22.2201x1.49 85	5.6700	0.0000	0.0	104.11 80	-19.36	4350.86	0.004
L6	95.25 - 80.5 (6)	TP25.3035x23.0763x0.89	14.750 0	0.0000	0.0	70.512 4	-24.35	3126.48	800.0
L7	80.5 - 73.5833 (7)	TP26.3479x25.3035x1.18	6.9167	0.0000	0.0	95.797 2	-27.43	3860.85	0.007
L8	73.5833 - 72 (8)	TP26.587x26.3479x1.169	1.5833	0.0000	0.0	95.724 0	-28.14	3860.07	0.007
L9	72 - 66.75 (9)	TP26.992x26.587x1.266	5.2500	0.0000	0.0	104.87 00	-30.72	4228.89	0.007
L10	66.75 - 48.25	TP29.9611x26.992x1.204	18.500	0.0000	0.0	111.50	-40.06	4944.24	0.008

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	K	ΦP_n
	(10)	2	0			90			
L11	48.25 - 44.25	TP30.603x29.9611x1.587	4.0000	0.0000	0.0	148.32	-42.73	5855.07	0.007
	(11)	6				50			
L12	44.25 -	TP30.7903x30.603x1.668	1.1667	0.0000	0.0	156.45	-43.55	6182.99	0.007
	43.0833 (12)	4				20			
L13	43.0833 - 30	TP32.89x30.7903x1.5728	13.083	0.0000	0.0	155.34	-49.82	6195.76	0.008
	(13)		3			90			
L14	30 - 23.75	TP33.3525x29.1025x1.62	10.250	0.0000	0.0	152.67	-55.07	6130.65	0.009
	(14)	75	0			50			
L15	23.75 - 11	TP35.5039x33.3525x1.51	12.750	0.0000	0.0	166.10	-68.96	6743.53	0.010
	(15)	79	0			80			
L16	11 - 6 (16)	TP36.3476x35.5039x1.36	5.0000	0.0000	0.0	153.38	-72.48	7430.47	0.010
		15				10			
L17	6 - 3.25 (17)	TP36.8116x36.3476x1.49	2.7500	0.0000	0.0	169.79	-74.59	8096.73	0.009
		3				70			
L18	3.25 - 0 (18)	TP37.36x36.8116x1.1317	3.2500	0.0000	0.0	132.01	-76.63	6573.67	0.012
						70			

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	ф <i>M</i> _{nx}	Ratio M _{ux}	M _{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	150 - 128.5 (1)	TP18.1463x15x0.2188	253.71	260.46	0.974	0.00	260.46	0.000
L2	128.5 - 109 (2)	TP21x18.1463x0.5837	614.62	623.56	0.986	0.00	623.56	0.000
L3	109 - 104.167 (3)	TP21.7298x21x0.661	725.43	822.10	0.882	0.00	822.10	0.000
L4	104.167 - 100.92 (4)	TP22.2201x21.7298x1.59 58	802.59	1821.11	0.441	0.00	1821.11	0.000
L5	100.92 - 95.25 (5)	TP23.0763x22.2201x1.49 85	958.49	1802.58	0.532	0.00	1802.58	0.000
L6	95.25 - 80.5 (6)	TP25.3035x23.0763x0.89 72	1415.24	1511.31	0.936	0.00	1511.31	0.000
L7	80.5 - 73.5833 (7)	TP26.3479x25.3035x1.18 22	1644.75	1905.60	0.863	0.00	1905.60	0.000
L8	73.5833 - 72 (8)	TP26.587x26.3479x1.169 6	1698.69	1926.03	0.882	0.00	1926.03	0.000
L9	72 - 66.75 (9)	TP26.992x26.587x1.266	1881.25	2129.18	0.884	0.00	2129.18	0.000
L10	66.75 - 48.25 (10)	TP29.9611x26.992x1.204 2	2567.31	2802.20	0.916	0.00	2802.20	0.000
L11	48.25 - 44.25 (11)	TP30.603x29.9611x1.587 6	2724.50	3307.52	0.824	0.00	3307.52	0.000
L12	44.25 - 43.0833 (12)	TP30.7903x30.603x1.668	2770.97	3497.01	0.792	0.00	3497.01	0.000
L13	43.0833 - 30 (13)	TP32.89x30.7903x1.5728	3141.75	3712.30	0.846	0.00	3712.30	0.000
L14	30 - 23.75 (14)	TP33.3525x29.1025x1.62 75	3310.34	3473.50	0.953	0.00	3473.50	0.000
L15	23.75 - 11 (15)	TP35.5039x33.3525x1.51 79	4147.92	4504.92	0.921	0.00	4504.92	0.000
L16	11 - 6 (16)	TP36.3476x35.5039x1.36 15	4377.02	5138.14	0.852	0.00	5138.14	0.000
L17	6 - 3.25 (17)	TP36.8116x36.3476x1.49	4504.43	5633.86	0.800	0.00	5633.86	0.000
L18	3.25 - 0 (18)	TP37.36x36.8116x1.1317	4656.23	4742.12	0.982	0.00	4742.12	0.000

Pole	Shear	Design	Data
	• • • • • • • • • • • • • • • • • • • •		

Section	Elevation	Size	Actual	φVn	Ratio	Actual	φ <i>T</i> _n	Ratio
No.	ft		V _u K	V.	V_u	T _u	lein fi	
				K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	150 - 128.5	TP18.1463x15x0.2188	13.94	358.08	0.039	0.36	528.12	0.001
	(1)							
L2	128.5 - 109	TP21x18.1463x0.5837	22.45	764.96	0.029	0.80	1264.39	0.001
	(2)	TD04 7000 04 0 004	00.44	070.00	0.004	0.07	4000.05	0.004
L3	109 - 104.167	TP21.7298x21x0.661	23.41	979.92	0.024	0.97	1666.95	0.001
1.4	(3)	TD00 0004 004 7000 4 50	04.40	0040 40	0.040	4.00	2002.02	0.000
L4	104.167 -	TP22.2201x21.7298x1.59	24.12	2316.42	0.010	1.08	3692.63	0.000
L5	100.92 (4) 100.92 -	58 TP23.0763x22.2201x1.49	29.48	2175.43	0.014	0.98	3655.08	0.000
LO	95.25 (5)	85	29.40	2175.45	0.014	0.96	3033.06	0.000
L6	95.25 - 80.5	TP25.3035x23.0763x0.89	32.46	1563.24	0.021	1.56	3064.46	0.001
LU	(6)	72	32.40	1000.24	0.021	1.50	3004.40	0.001
L7	80.5 -	TP26.3479x25.3035x1.18	33.91	1930.43	0.018	1.84	3863.95	0.000
	73.5833 (7)	22	00.01	1000.10	0.010	1.01	0000.00	0.000
L8	73.5833 - 72	TP26.587x26.3479x1.169	34.24	1930.04	0.018	1.91	3905.39	0.000
	(8)	6						
L9	72 - 66.75 (9)	TP26.992x26.587x1.266	35.31	2114.45	0.017	2.13	4317.31	0.000
L10	66.75 - 48.25	TP29.9611x26.992x1.204	38.88	2472.12	0.016	2.93	5681.98	0.001
	(10)	2						
L11	48.25 - 44.25	TP30.603x29.9611x1.587	39.71	2927.54	0.014	0.36	6706.61	0.000
	(11)							
L12	44.25 -	TP30.7903x30.603x1.668	39.95	3091.49	0.013	0.36	7090.85	0.000
	43.0833 (12)	4						
L13	43.0833 - 30	TP32.89x30.7903x1.5728	41.69	3097.88	0.013	0.36	7527.39	0.000
144	(13)	TD22 2525,20 4025,4 62	40.77	2440.77	0.044	0.00	7040 40	0.000
L14	30 - 23.75	TP33.3525x29.1025x1.62 75	42.77	3110.77	0.014	0.36	7043.18	0.000
L15	(14) 23.75 - 11	TP35.5039x33.3525x1.51	45.50	3371.76	0.013	0.36	9134.58	0.000
LIS	(15)	79	45.50	33/1./0	0.013	0.36	9134.30	0.000
L16	11 - 6 (16)	TP36.3476x35.5039x1.36	46.15	3715.24	0.012	0.36	10418.58	0.000
LIU	11 - 0 (10)	15	40.10	37 13.24	0.012	0.50	10410.50	0.000
L17	6 - 3.25 (17)	TP36.8116x36.3476x1.49	46.53	4048.36	0.011	0.36	11423.67	0.000
	0.20(11)	3	10.00	10 10.00	0.011	0.00	11120.07	0.000
L18	3.25 - 0 (18)	TP37.36x36.8116x1.1317	46.91	3286.84	0.014	0.36	9615.50	0.000
	(- /							

Pole Interaction Design Data


Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.	ft	P_u	M _{ux}	Muy	V_u	T_u	Stress Ratio	Stress Ratio	
		ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n			
L1	150 - 128.5 (1)	0.009	0.974	0.000	0.039	0.001	0.984	1.000	4.8.2
L2	128.5 - 109 (2)	0.008	0.986	0.000	0.029	0.001	0.995	1.000	4.8.2
L3	109 - 104.167 (3)	0.007	0.882	0.000	0.024	0.001	0.890	1.000	4.8.2
L4	104.167 - 100.92 (4)	0.003	0.441	0.000	0.010	0.000	0.444	1.000	4.8.2
L5	100.92 - 95.25 (5)	0.004	0.532	0.000	0.014	0.000	0.536	1.000	4.8.2
L6	95.25 - 80.5 (6)	0.008	0.936	0.000	0.021	0.001	0.945	1.000	4.8.2
L7	80.5 - 73.5833 (7)	0.007	0.863	0.000	0.018	0.000	0.871	1.000	4.8.2
L8	73.5833 - 72 (8)	0.007	0.882	0.000	0.018	0.000	0.890	1.000	4.8.2 🖊
L9	72 - 66.75 (9)	0.007	0.884	0.000	0.017	0.000	0.891	1.000	4.8.2

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{nv}	$\frac{1}{\phi V_n}$	ϕT_n	Ratio	Ratio	
L10	66.75 - 48.25 (10)	0.008	0.916	0.000	0.016	0.001	0.925	1.000	4.8.2
L11	48.25 - 44.25 (11)	0.007	0.824	0.000	0.014	0.000	0.831	1.000	4.8.2 🖊
L12	44.25 - 43.0833 (12)	0.007	0.792	0.000	0.013	0.000	0.800	1.000	4.8.2 🖊
L13	43.0833 - 30 (13)	0.008	0.846	0.000	0.013	0.000	0.855	1.000	4.8.2 🗸
L14	30 - 23.75 (14)	0.009	0.953	0.000	0.014	0.000	0.962	1.000	4.8.2 🖊
L15	23.75 - 11 (15)	0.010	0.921	0.000	0.013	0.000	0.931	1.000	4.8.2 🗸
L16	11 - 6 (16)	0.010	0.852	0.000	0.012	0.000	0.862	1.000	4.8.2 🗸
L17	6 - 3.25 (17)	0.009	0.800	0.000	0.011	0.000	0.809	1.000	4.8.2
L18	3.25 - 0 (18)	0.012	0.982	0.000	0.014	0.000	0.994	1.000	4.8.2 🖊

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L1	150 - 128.5	Pole	TP18.1463x15x0.2188	1	-6.28	716.15	98.4	Pass
L2	128.5 - 109	Pole	TP21x18.1463x0.5837	2	-12.33	1529.92	99.5	Pass
L3	109 - 104.167	Pole	TP21.7298x21x0.661	3	-13.38	1959.85	89.0	Pass
L4	104.167 -	Pole	TP22.2201x21.7298x1.5958	4	-14.85	4632.85	44.4	Pass
	100.92							
L5	100.92 - 95.25	Pole	TP23.0763x22.2201x1.4985	5	-19.36	4350.86	53.6	Pass
L6	95.25 - 80.5	Pole	TP25.3035x23.0763x0.8972	6	-24.35	3126.48	94.5	Pass
L7	80.5 - 73.5833	Pole	TP26.3479x25.3035x1.1822	7	-27.43	3860.85	87.1	Pass
L8	73.5833 - 72	Pole	TP26.587x26.3479x1.1696	8	-28.14	3860.07	89.0	Pass
L9	72 - 66.75	Pole	TP26.992x26.587x1.266	9	-30.72	4228.89	89.1	Pass
L10	66.75 - 48.25	Pole	TP29.9611x26.992x1.2042	10	-40.06	4944.24	92.5	Pass
L11	48.25 - 44.25	Pole	TP30.603x29.9611x1.5876	11	-42.73	5855.07	83.1	Pass
L12	44.25 - 43.0833	Pole	TP30.7903x30.603x1.6684	12	-43.55	6182.99	80.0	Pass
L13	43.0833 - 30	Pole	TP32.89x30.7903x1.5728	13	-49.82	6195.76	85.5	Pass
L14	30 - 23.75	Pole	TP33.3525x29.1025x1.6275	14	-55.07	6130.65	96.2	Pass
L15	23.75 - 11	Pole	TP35.5039x33.3525x1.5179	15	-68.96	6743.53	93.1	Pass
L16	11 - 6	Pole	TP36.3476x35.5039x1.3615	16	-72.48	7430.47	86.2	Pass
L17	6 - 3.25	Pole	TP36.8116x36.3476x1.493	17	-74.59	8096.73	80.9	Pass
L18	3.25 - 0	Pole	TP37.36x36.8116x1.1317	18	-76.63	6573.67	99.4	Pass
							Summary	
						Pole (L2)	99.5	Pass
						RATING =	99.5	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
QS66512-2 w/ Mount Pipe	150	VHLP2-23	138
QS66512-2 w/ Mount Pipe	150	VHLP2-18	138
QS66512-2 w/ Mount Pipe	150	LNX-6515DS-A1M w/ Mount Pipe	120
(2) TPX-070821	150	RRUS 11 B12	120
(2) TPX-070821	150	RRUS 11 B12	120
(2) TPX-070821	150	RRUS 11 B12	120
RRUS 32	150	AIR -32 B2A/B66AA w/ Mount Pipe	120
RRUS 32	150	AIR -32 B2A/B66AA w/ Mount Pipe	120
RRUS 32	150	AIR -32 B2A/B66AA w/ Mount Pipe	120
RRUS 32 B2	150	AIR 21 B2A/B4P w/ Mount Pipe	120
RRUS 32 B2	150	AIR 21 B2A/B4P w/ Mount Pipe	120
RRUS 32 B2	150	AIR 21 B2A/B4P w/ Mount Pipe	120
782 10253	150	KRY 112 144/1	120
782 10253	150	KRY 112 144/1	120
782 10253	150	KRY 112 144/1	120
DC6-48-60-18-8F	150	Platform Mount [LP 301-1]	120
P65-16-XLH-RR w/ Mount Pipe	150	LNX-6515DS-A1M w/ Mount Pipe	120
P65-16-XLH-RR w/ Mount Pipe	150	LNX-6515DS-A1M w/ Mount Pipe	120
P65-16-XLH-RR w/ Mount Pipe	150	(2) X7CQAP-465-VR0 w/ Mount Pipe	99
7770.00 w/ Mount Pipe	150	B13 RRH 4X30	99
7770.00 w/ Mount Pipe	150	B13 RRH 4X30	99
7770.00 w/ Mount Pipe	150	B13 RRH 4X30	99
TT19-08BP111-001	150	B25 RRH2x60 PCS	99
TT19-08BP111-001	150	B25 RRH2x60 PCS	99
TT19-08BP111-001	150	B25 RRH2x60 PCS	99
Platform Mount (LP 101-1)	150	B66A RRH4X45	99
Side Arm Mount [SO 201-3]	150	B66A RRH4X45	99
Top Hat 20" Diameter x 3'-6" Tall	150	B66A RRH4X45	99
RRUS 11	147	RC2DC-3315-PF-48	99
RRUS 11	147	RC2DC-3315-PF-48	99
RRUS 11	147	BXA-171063/8CF w/ Mount Pipe	99
TME-DC6-48-60-18-8F	147	BXA-171063/8CF w/ Mount Pipe	99
Pipe Mount [PM 601-3]	147	BXA-171063/8CF w/ Mount Pipe	99
LLPX310R-V1 w/ Mount Pipe	138	BXA-70063/4CF w/ Mount Pipe	99
LLPX310R-V1 w/ Mount Pipe	138	BXA-70063/4CF w/ Mount Pipe	99
LLPX310R-V1 w/ Mount Pipe	138	BXA-70063/4CF w/ Mount Pipe	99
RAS SPI-2213 RRH	138	GPS_A	99
RAS SPI-2213 RRH	138	(2) FD9R6004/2C-3L	99
RAS SPI-2213 RRH	138	(2) FD9R6004/2C-3L	99
Horizon Compact	138	(2) FD9R6004/2C-3L	99
Horizon Compact	138	T-Arm Mount [TA 602-3]	99
CW JUNCTION BOX	138	(2) X7CQAP-465-VR0 w/ Mount Pipe	99
Platform Mount [LP 713-1]	138	(2) X7CQAP-465-VR0 w/ Mount Pipe	99

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	Reinf 34.81 ksi	35 ksi	44 ksi
Reinf 35.16 ksi	35 ksi	44 ksi	Reinf 34.85 ksi	35 ksi	44 ksi
Reinf 38.54 ksi	39 ksi	49 ksi	Reinf 35.17 ksi	35 ksi	44 ksi
Reinf 38.55 ksi	39 ksi	49 ksi	Reinf 35.41 ksi	35 ksi	45 ksi
Reinf 36.85 ksi	37 ksi	47 ksi	Reinf 35.80 ksi	36 ksi	45 ksi
Reinf 39.10 ksi	39 ksi	49 ksi	Reinf 42.72 ksi	43 ksi	54 ksi
Reinf 35.54 ksi	36 ksi	45 ksi	Reinf 42.05 ksi	42 ksi	53 ksi
Reinf 35.56 ksi	36 ksi	45 ksi	Reinf 43.91 ksi	44 ksi	55 ksi

ALL REACTIONS ARE FACTORED

AXIAL

121 K SHEAR 12 K /

AXIAL

77 K

SHEAR

47 K

TOWER DESIGN NOTES

- Tower is located in Fairfield County, Connecticut.
 Tower designed for Exposure C to the TIA-222-G Standard.
- MOME3. Tower designed for a 97.00 mph basic wind in accordance with the TIA-222-G Standard.
- 1298 k4. Tower is also designed for a 50.00 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 - 5. Deflections are based upon a 60.00 mph wind.
- TORQUE 4 kip-ft
- TORQUE 4 kip-ft 6. Tower Structure Class II.
 50.00 mph WIND 0.7500 in ICE7. Topographic Category 1 with Crest Height of 0.0000 ft
 - 8. TOWER RATING: 99.5%

MOMENT 4656 kip-ft

TORQUE 11 kip-ft REACTIONS - 97.00 mph WIND

Paul J Ford and Company

^{lob:} 150' Monopole / Bridgeport, CT					
Project: BU 841288 /	PJF# 37517-0750				
	Drawn by: Seth Tschanen				
Code: TIA-222-G	Date: 04/04/17	Scale: NTS			
Path:		Dwg No. F-			

250 E. Broad Street, Suite 600 Columbus, OH 43215 Phone: 614.221.6679 FAX: 614.448.4105

Date: 4/4/2017 PJF Project: 37517-0750.003.7700

Client Ref. # BU 841288 Site Name: Birdgeport North Description: 150' Monopole Owner: Crown Castle Engineer: SJT

v4.4 - Effective 7-12-13

Asymmetric Anchor Rod Analysis

Moment = 4656 TIA Ref. G Location = **Base Plate** Axial = 77.0 kips ASIF = N/A 0.50 for BP, Rev. G Sect. 4.9.9 η= Shear = 47.0 kips Max Ratio = 100.0% Threads = N/A for FP, Rev. G 20 Anchor Qty =

** For Post Installed Anchors: Check anchors for embedment, epoxy/grout bond, and capacity based on proof load. **

	Nominal Anchor Dia,				Location,	Anchor	Area Override,		Max Net Compressi	Max Net Tension,	Load for Capacity	Capacity Override,	Capacity,	Capacity
Item	in	Spec	Fy, ksi	Fu, ksi	degrees	Circle, in	in ²	Area, in ²	on, kips	kips	Calc, kips	kips	kips	Ratio
1	2.250	#18J A615 Gr 75	75	100	37.0	43.00	0.00	3.98	242.85	235.07	247.60	0.00	260.00	95.2%
2	2.250	#18J A615 Gr 75	75	100	53.0	43.00	0.00	3.98	242.85	235.07	247.60	0.00	260.00	95.2%
3	2.250	#18J A615 Gr 75	75	100	127.0	43.00	0.00	3.98	242.85	235.07	247.60	0.00	260.00	95.2%
4	2.250	#18J A615 Gr 75	75	100	143.0	43.00	0.00	3.98	242.85	235.07	247.60	0.00	260.00	95.2%
5	2.250	#18J A615 Gr 75	75	100	217.0	43.00	0.00	3.98	242.85	235.07	247.60	0.00	260.00	95.2%
6	2.250	#18J A615 Gr 75	75	100	233.0	43.00	0.00	3.98	242.85	235.07	247.60	0.00	260.00	95.2%
7	2.250	#18J A615 Gr 75	75	100	307.0	43.00	0.00	3.98	242.85	235.07	247.60	0.00	260.00	95.2%
8	2.250	#18J A615 Gr 75	75	100	323.0	43.00	0.00	3.98	242.85	235.07	247.60	0.00	260.00	95.2%
9	2.500	Dywidag (150 ksi)	127.7	150	75.0	42.74	0.00	5.35	324.44	313.98	330.82	392.46	392.46	84.3%
10	2.500	Dywidag (150 ksi)	127.7	150	165.0	42.74	0.00	5.35	324.44	313.98	330.82	392.46	392.46	84.3%
11	2.500	Dywidag (150 ksi)	127.7	150	255.0	42.74	0.00	5.35	324.44	313.98	330.82	392.46	392.46	84.3%
12	2.500	Dywidag (150 ksi)	127.7	150	345.0	42.74	0.00	5.35	324.44	313.98	330.82	392.46	392.46	84.3%
13	2.250	A193 Gr B7	105	125	0.0	49.00	0.00	3.98	275.92	268.14	280.66	0.00	325.00	86.4%
14	2.250	A193 Gr B7	105	125	90.0	49.00	0.00	3.98	275.92	268.14	280.66	0.00	325.00	86.4%
15	2.250	A193 Gr B7	105	125	180.0	49.00	0.00	3.98	275.92	268.14	280.66	0.00	325.00	86.4%
16	2.250	A193 Gr B7	105	125	270.0	49.00	0.00	3.98	275.92	268.14	280.66	0.00	325.00	86.4%
17	1.750	A193 Gr B7	105	125	45.0	49.86	0.00	2.41	169.80	165.10	172.67	0.00	190.00	90.9%
18	1.750	A193 Gr B7	105	125	135.0	49.86	0.00	2.41	169.80	165.10	172.67	0.00	190.00	90.9%
19	1.750	A193 Gr B7	105	125	225.0	49.86	0.00	2.41	169.80	165.10	172.67	0.00	190.00	90.9%
20	1.750	A193 Gr B7	105	125	315.0	49.86	0.00	2.41	169.80	165.10	172.67	0.00	190.00	90.9%
								78.76						

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /G

Assumptions: 1) Rod groups at corners. Total # rods divisible by 4. Maximum total # of rods = 48 (12 per Corner).

2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner)

3) Clear space between bottom of leveling nut and top of concrete **not** exceeding (1)*(Rod Diameter)

Site Data

BU#: 841288

Site Name: Bridgeport North

App #:

Anchor Rod Data							
Eta Factor, η	0.5	TIA G (Fig. 4-4)					
Qty:	8						
Diam:	2.25	in					
Rod Material:	A615-J						
Yield, Fy:	75	ksi					
Strength, Fu:	100	ksi					
Bolt Circle:	43	in					
Anchor Spacing:	6	in					

Base	,		
TIA Revision:	G		Reactions adjusted to
Factored Moment, Mu:	1712.5	ft-kips	account for additional
Factored Axial, Pu:	31.1	kips	anchor rods.
Factored Shear, Vu:	19	kips	

Anchor Rod Results

TIA G --> Max Rod (Cu+ Vu/η): 247.6 Kips Axial Design Strength, Φ^*Fu^*Anet : 260.0 Kips Anchor Rod Stress Ratio: 95.2% Pass

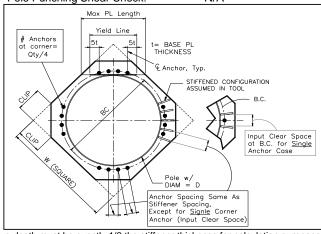
Plate Data				
W=Side:	41	in		
Thick:	2.75	in		
Grade:	50	ksi		
Clip Distance:		in		

Base Plate Results	Flexural Check
Base Plate Stress:	32.2 ksi
PL Design Bending Strength, Φ*Fy:	45.0 ksi
Base Plate Stress Ratio:	71.5% Pass

PL Ref. Data
Yield Line (in):
20.62
Max PL Length:
20.62

N/A - Unstiffened

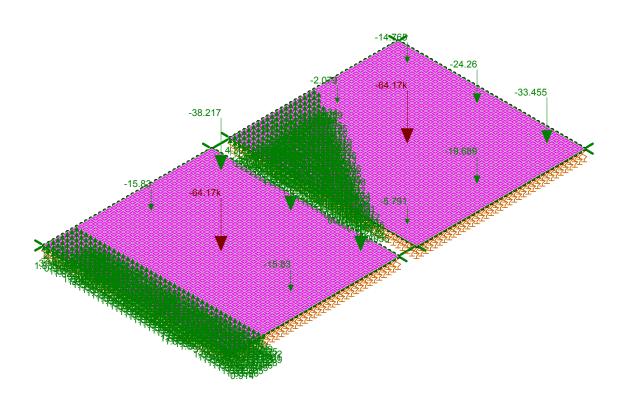
Stiffener Results


Horizontal Weld: N/A
Vertical Weld: N/A
Plate Flex+Shear, fb/Fb+(fv/Fv)^2: N/A
Plate Tension+Shear, ft/Ft+(fv/Fv)^2: N/A
Plate Comp. (AISC Bracket): N/A

Pole Results

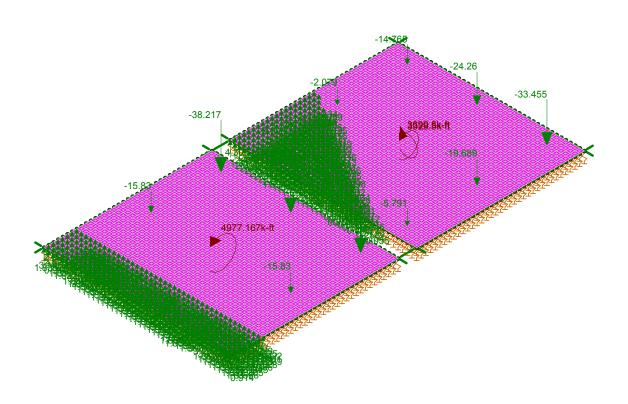
Pole Punching Shear Check: N/A

Stiffener Data (Welding at both sides)				
Configuration:	Unstiffened			
Weld Type:		**		
Groove Depth:		in **		
Groove Angle:		degrees		
Fillet H. Weld:		< Disregard		
Fillet V. Weld:		in		
Width:		in		
Height:		in		
Thick:		in		
Notch:		in		
Grade:		ksi		
Weld str.:		ksi		


Pole Data		
Diam:	37.36	in
Thick:	0.4036	in
Grade:	50	ksi
# of Sides:	12	"0" IF Round

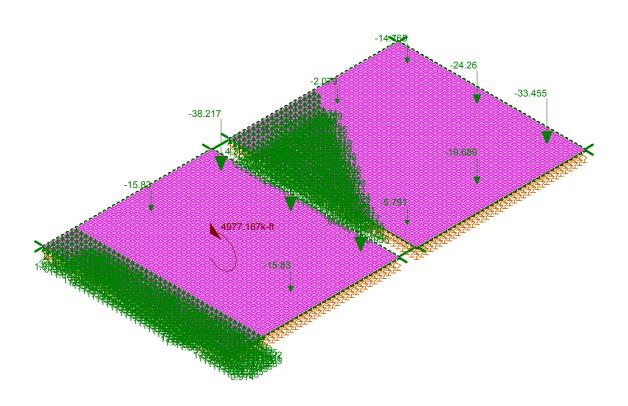
^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

(W) RISA-3D I	Plate Forces:	(L) RISA-3D	Plate Forces:							
Comp (1.2) To			Tension (0.9)		Anchor Sprin	ng Constant	<u> </u>	Soil	Weight	
46.987	25.532	59.395	31.948		Ag =	2.66		Height Above Grade =		ft
47.533	25.499	60.694	31.135		E =	29000		Soil Unit Weight=		pcf
48.085	25.314	61.868	30.346		Lu =	21.83333	ft	Apply Soil Weight =	Center Point	
48.77	24.951	63.142	29.449		k = An*E/Lu =	294.43	k/in	Volume =	0.00	ft ³
49.69	24.398	64.695	28.308		Soil Spring	Constant		Weight =	0.00	kips
50.944	23.633	66.692	26.752		Subgrade Modulus =	3000	lb/in ³	Weight per Sq. Ft =	0	psf
52.634	22.583	69.333	24.56		k =	5184	k/ft ³			
54.894	21.111	72.913	21.431					•		
57.923	19.011	<i>77</i> .891	16.905		Foundation Wei	ght_		Pad/N	Aat Analysis	
62.035	15.988	85.021	10.229		Number Sides =	Round			Width	Length
67.724	11.583	95.566	0.132		Pier Width/Diameter =		ft	Thickness	4.83333	4.83333 ft
75.773	5.041	111.692	-15.574		Pier Height =		ft	Width	20	18 ft
87.409	-4.916	137.019	-40.553		Pad Thickness =		ft	f'c	3	3 ks
104.503	-20.483	177.614	-80.926		Pad Width =	20	ft	Top Bar Quantity	11	11
129.755	-45.328	240.493	-143.782		Pad Length =	18	ft	Top Bar Size #	10	10
166.279	-85.581	326.503	-230.001		Concrete Density =	150	pcf	Top Clear Spacing	3	3 in
215.697	-148.335	418.528	-322.388		Volume =		ft ³	Bot Bar Quantity	11	11
274.301	-234.475	480.639	-384.785		Weight =		kips	Bot Bar Size #	10	10
329.961	-326.807	480.639	-384.785		Applied Reactions for		1. 4.	Bot Clear Spacing	3	3 in
364.733	-389.177	418.528	-322.388		TNX Moment =	4656	k-ft	As,min	25.0559827	
364.733	-389.177	326.503	-230.001		TNX Axial =	77	kips	As, compression	13.97	13.97 in
329.961 274.301	-326.807 -234.475	240.493	-143.782	т.	TNX Shear = otal Unfactored Axial =	47 64.17	kips	d,compression	53.09496	
		177.614	-80.926			64.17	•	a	16.4	18.3 in 22.0 in
215.697 166.279	-148.335 -85.581	137.019 111.692	-40.553 -15.574		ide Bending Moment = ending Moment (Mx) =	4977.167 3699.5		c c/d	0.423	0.414
129.755	-45.328	95.566	0.132		Sending Moment (Mz) =	3329.5		Ø	0.423	0.837
104.503	-20.483	85.021	10.229		nsion from Anchors (Ten			ØMn,compression	3020	
87.409	-4.916	77.891	16.905	101	Load (kips) Distance to		1147	Mu	1010.5	
75.773	5.041	72.913	21.431	1	38.217 7.2	()	Ī	Ratio =	33.5%	
67.724	11.583	69.333	24.56	2				As, Tension	13.97	
62.035	15.988	66.692	26.752	3				d,tension	53.09496	
57.923	19.011	64.695	28.308	4				a	16.4	18.3 in
54.894	21.111	63.142	29.449	5				С	22.4	22.0 in
52.634	22.583	61.868	30.346	6	,			c/d	0.423	0.414
50.944	23.633	60.694	31.135		Pole/Pier Diameter =	60	inches	Ø	0.825	0.837
49.69	24.398	59.395	31.948	U	$Moment = \sum P^*(D-d) =$	7243.173	k-in	ØMn,tension	3020	
48.77	24.951			Bendi	ng Moment (Tension) =	603.6	k-ft	Mu	2335.6	
48.085	25.314							Ratio =	77.3%	87.2%
47.533	25.499			1.4-	Anchor Capaci		11.1	D in	- Chl	
46.987	25.532			Ma	ax Tension from RISA = Anchor Type =	38.537 Rock A		Max Bearing Load =	g Check 4.773	leio
					Fu =	150		Plate Width =	0.5	
					An =		in ²	Plate Length =	0.5	
				Capacity	v (Kips) = 0.8*Fu*An =	312		Ult. Bearing Capacity =		ksf
					tio = 38.537 / 312 =	12.4%	1	Bearing Pressure =	19.092	<u>.</u>
				Ka	1110 = 30.337 / 312 =	12.7/0	l	Ratio =	84.9%	KSI
								nano	011370	
4671.26	-2020.916	5339.396	-1933.628		(per linear ft of plate)					
2335.63	-1010.458	2669.698	-966.814	k-ft	(Divide by 2 for a 0.5 ft	plate)				



Loads: BLC 1, Dead Y-direction Reaction Units are k and k-ft

Paul J. Ford and Company		SK - 1
SJT/KAT	BU 841288 / Bridgeport North	Apr 4, 2017 at 9:07 AM
37517-0750.003.7700		37517-0750.003.7700_Composite



Loads: BLC 2, Moment Y-direction Reaction Units are k and k-ft

Paul J. Ford and Company		SK - 2
SJT/KAT	BU 841288 / Bridgeport North	Apr 4, 2017 at 9:07 AM
37517-0750.003.7700		37517-0750.003.7700_Composite

Loads: BLC 3, Moment side 2 Y-direction Reaction Units are k and k-ft

Paul J. Ford and Company		SK - 3	
SJT/KAT	BU 841288 / Bridgeport North	Apr 4, 2017 at 9:07 AM	
37517-0750.003.7700		37517-0750.003.7700_Composite	

Company : Paul J. Ford and Company
Designer : SJT/KAT
Job Number : 37517-0750.003.7700
Model Name : BU 841288 / Bridgeport North

Apr 4, 2017 9:07 AM Checked By:_

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	None
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	None
Aluminum Code	None - Building

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

: Paul J. Ford and Company : SJT/KAT

: 37517-0750.003.7700

Model Name : BU 841288 / Bridgeport North

Apr 4, 2017 9:07 AM Checked By:_

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1

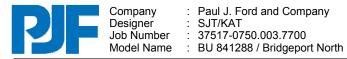
Basic Load Cases

_		BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
	1	Dead	None		-1		2			,	, i
	2	Moment	None				3				
	3	Moment side 2	None				1				

Load Combinations

	Description	So.	P	S	BLC	Fac	.BLC	Fac	.BLC	Fac	.BLC	Fac	BLC	Fac	.BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1	1.2 Dead + moment	Yes	Y		1	1.2	2	1																
2	0.9 Dead+moment	Yes	Y		1	.9	2	1																
3	1.2 Dead + moment	Yes	Y		1	1.2	3	1																
4	0.9 Dead+moment	Yes	Y		1	9	3	1																

Joint Loads and Enforced Displacements (BLC 1 : Dead)


	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft
1	SIDE	L	Y	-64.17
2	CORNER	L	Υ	-64.17

Joint Loads and Enforced Displacements (BLC 2 : Moment)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft
1	SIDE	L	Mx	4977.167
2	CORNER	L	Mx	3699.5
3	CORNER		Mz	3329.5

Joint Loads and Enforced Displacements (BLC 3 : Moment side 2)

	Joint Label	L.D.M	Direction	Magnitude[(k.k-ft), (in.rad), (k*s^2/ft
1	SIDE	L	Mz	4977.167

Apr 4, 2017 9:07 AM Checked By:__

Concrete Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[k/ft	f'c[ksi]	Lambda	Flex Steel[Shear Stee
1	Conc3000NW	3156	1372	.15	.6	.145	3	1	60	60
2	Conc3500NW	3409	1482	.15	.6	.145	3.5	1	60	60
3	Conc4000NW	3644	1584	.15	.6	.145	4	1	60	60
4	Conc3000LW	2085	907	.15	.6	.11	3	.75	60	60
5	Conc3500LW	2252	979	.15	.6	.11	3.5	.75	60	60
6	Conc4000LW	2408	1047	.15	.6	.11	4	.75	60	60

v2.0, Effective Date: 1-12-12

Date: 4/4/2017 Project No: 37517-0750.003.7700 Site Name: Bridgeport North Site Number/BUN: 841288

Description: Owner: Engineer:

Welded Bridge Stiffener Analysis per TIA-222-G & AISC 13th Ed. (Black)

	Weided Bridge Stifferier Analysis per TIA-222-0 & Alse 15tif Ed. (Black)										
General Parameters a	nd Loading:			Pole Parameters:							
Flange Elevation:		109.00	ft		Upper Pole	Lower Pole					
TIA Reference Standard:		TIA-222-G		Pole Diameter, Dp:	21.00	21.00					
AISC Manual:		13th Ed. (Black)		Pole Thickness, tp:	0.2188	0.2500					
Method:		LRFD		Pole Fy:	50	50					
ASD Stress Increase, ASIF:		N/A		Pole Fu:	65	65					
Moment, Muf:		614.6	k-ft	Flange Diameter, Df:	28.50	28.50					
Axial, Puf:		12.3	kips								
Shear, Vf:		22.5	kips								
Bridge Stiffener Paran	neters:			Flange Bolt Paramete	rs:						
	Stiffener Type 1	Stiffener Type 2		Number of Bolt Circles:	(1) Bolt Circle						
Qty. Stiffeners:	4	0			•						
Upper Weld Length, L1:	30.00	0.00	in		Bolt Circle 1	Bolt Circle 2					
Lower Weld Length 12:	30.00	0.00	in	Oty Bolts:	0	0					

Lower Weld Length, L2:	30.00	0.00	in
Weld Size, w:	0.3750	0.0000	in
Electrode:	E70	E70	
Effective Stiffener Width, Ws:	4.00	0.00	in
Stiffener Thickness, ts:	1.25	0.00	in
Notch, n:	2.25	0.00	in
Stiffener Fy:	65	0	ksi
Stiffener Fu:	80	0	ksi
Unbraced Length, L:	15.00	0.00	in
K:	0.80	0.00	
Stiffener Spacing:	Symmetric	Symmetric	
Start Angle, for Symmetric:	0	0	degrees
Stiffener Circle:	37.00	28.50	in = Df + 2 n + Ws
Upper Eccentricity, e1:	8.00	3.75	in = (Df - Dp) / 2 + n + Ws / 2
Lower Eccentricity, e2:	8.00	3.75	in = (Df - Dp) / 2 + n + Ws / 2
 114 1 . 4166	T 11 040		

	Bolt Circle 1	Bolt Circle 2	
Qty. Bolts:	0	0	1
Bolt Diameter:	1.00	0.00	in
Bolt Circle:	26.00	0.00	in
Bolt Spacing:	Symmetric	Symmetric	
Start Angle, for Symmetric:	0	0	degrees
Bolt Area, Ag:	0.0000	0.0000	in
Max. Tension:	0.00	0.00	kips
Max. Net Tension:	0.00	0.00	kips
Max. Net Compression:	0.00	0.00	kips
Moment to Bolt Circle:	0.00	0.00	k-ft
Axial to Bolt Circle:	0.00	0.00	kips
Shear to Bolt Circle:	0.00	0.00	kips
Equivalent Bolt Circle:	0.00	0.00	in

ksi ksi

Lower Eccentricity, e2:	8.00	3.75	in = (Df - Dp) / 2 + n + Ws / 2
Weld Analysis per AISC	Tables 8-4 & 8	3-3:	
<u>Upper Pole</u>	Stiffener Type 1	Stiffener Type 2	
D:	6	0	Num. of Sixteenths in Weld
a:	0.2667	0.0000	= e1 / L1
k:	0	0	
C:	3.2367	3.7100	Tabulated Cofficient
C1:	1.0000	1.0000	Coefficient for Electrode
Φ:	0.7500	0.7500	
Stiffener Axial, Pu:	202.7	0.0	kips
Axial Capacity, ΦPn:	437.0	0.0	kips = Φ C C1 D L
Ratio:	46.4%	0.0%	
Lower Pole			•
D:	6	0	Num. of Sixteenths in Weld
a:	0.2667	0.0000	= e2 / L2
k:	0	0	
C:	3.2367	3.7100	Tabulated Cofficient
C1·	1.0000	1.0000	Coefficient for Electrode

0.7500

202.7

437.0

46.4%

0.7500

0.0 kips

0.0

kips = Φ C C1 D L

Pole Analysis per AISC T	able J2.5 & Se	ect. J4.2:	
<u>Upper Pole</u>	Stiffener Type 1	Stiffener Type 2	
Stiffener Axial, Pu:	202.7	0.0	kips
Effective Throat, te:	0.2651	0.0000	in = 0.707 w
Shear Stress, fuv:	3.4		kips/in= Pu / (2 L1)
Section Modulus, S:	300.0	0.0	$in^2 = L1^2 / 3$
Bending Stress, fub:	5.4		kips/in = Pu e1 / S
Combined Stress, fu:	6.4	0.0	$kips/in = (fuv^2 + fub^2)^{1/2}$
Φ:	0.7500	0.0000	Í
Stress Capacity, ΦFn	6.4	0.0	kips/in = Φ 0.6 Fu tp
Ratio:	99.6%	0.0%	İ
Lower Pole			
Stiffener Axial, Pu:	202.7	0.0	kips
Effective Throat, te:	0.2651	0.0000	in = 0.707 w
Shear Stress, fuv:	3.4		ksi = Pu / (2 L2)
Section Modulus, S:	300.0	0.0	$in^2 = L2^2 / 3$
Bending Stress, fub:	5.4		ksi = Pu e2 / S
Combined Stress, fu:	6.4	0.0	$kips/in = (fuv^2 + fub^2)^{1/2}$
Φ:	0.7500	0.0000	Í
Stress Capacity, ΦFn	7.3	0.0	kips/in = Φ 0.6 Fu tp
Ratio:	87.1%	0.0%	
Stiffener 2 Analysis per	AISC Sect. D2	, E3 & E7	_

Stiffener 1 Analysis per	AISC Sect. D2	<u>, E3 & E7</u>
	Stiffener Type 1	
Gross Area, Ag:	5.0000	in ²
Effective Net Area, Aen:	4.2917	in ² = Ag U, where U = 0.858
Stiffener Axial, Pu:	202.7	kips
Stiffener Stress, fu:	40.5	ksi = Pu / Ag
b:	10.0000	in = (Df - Dp) / 2 + n + Ws, Upper Pole
b/ts:	8.0000	in
Q, Where Qa = 1.0:	1.0000	
r:	0.3608	in ³
KL/r:	33.2554	
Φ:	0.9000	
Axial Capacity, ΦFcr:	52.66	ksi = Φ [0.658 ^{Fy / Fe}] Fy
Φ:	0.9000	
Ten. Yielding Cap., ФFnt:	58.50	ksi = Φ Fy

0.7500

51.50 ksi = Φ Fu (Aen / Ag)

	Stiffener Type 2	
Gross Area, Ag:	0.0000	
Effective Net Area, Aen:	0.0000	in ²
Stiffener Axial, Pu:	0.0	kips
Stiffener Stress, fu:	0.0	ksi = Pu / Ag
b:	0.0000	in = (Df - Dp) / 2 + n + Ws, Upper Pole
b/ts:	0.0000	in
Q, Where Qa = 1.0:	0.0000	
r:	0.0000	in ³
KL/r:	0.0000	
Φ:	0.0000	
Axial Capacity, ΦFcr:	0.00	ksi = Φ Fy
Φ:	0.0000	
Ten. Yielding Cap., ΦFnt:	0.00	ksi = Φ Fy
Φ:	0.0000	
Ten. Rupture Cap., ΦFnr:	0.00	ksi = Φ Fu (Aen / Ag)
Ratio:	0.0%	

Analysis Summary:

Ten. Rupture Cap., ΦFnr: Ratio:

Stiffener Axial, Pu:

Ratio:

Axial Capacity, ΦPn:

Bridge Stiffener Type 1 Weld Analysis Ratio: 46.4% PASS Pole Analysis Ratio: 99.6% PASS Stiffener Analysis Ratio: 78.7% PASS

Bridge Stiffener Type 2 Weld Analysis Ratio: 0.0% PASS Pole Analysis Ratio: 0.0% PASS Stiffener Analysis Ratio: 0.0% PASS

MODIFICATION OF AN EXISTING 150' MONOPOLE TOWER MAPPING CCI DOC ID #4710143 BU #841288; BRIDGEPORT NORTH

205 KAECHELE PLACE BRIDGEPORT, CONNECTICUT 06606 FAIRFIELD COUNTY

LAT: 41° 13' 24.04"; LONG: -73° 13' 0.38" APP: 374828 REV. 2; WO: 1368682

PROJECT CONTACTS

STRUCTURE OWNER:

CROWN CASTLE

MOD PM: DAN VADNEY AT DAN. VADNEY@CROWNCASTLE.COM

PH: (518) 373-3510

MOD CM: JASON D'AMICO AT JASON.D'AMICO@CROWNCASTLE.COM

PH: (860) 209-0104

ENGINEER OF RECORD:

PJFMOD@PJFWEB.COM

WIND DESIGN DAT	ΓΑ	
REFERENCE STANDARD	ANSI/TIA-222-G-2-2009	
LOCAL CODE	2016 CONNECTICUT STATE	
	BUILDING CODE	
ULTIMATE WIND SPEED (3-SECOND GUST)	125 MPH	
CONVERTED NOMINAL WIND SPEED (3-SECOND	97 MPH	
GUST)		
ICE THICKNESS	0.75 IN	
ICE WIND SPEED	50 MPH	
SERVICE WIND SPEED	60 MPH	
RISK CATEGORY	II	
EXPOSURE CATEGORY	C	
Kzt	1.0	

THIS PROJECT INCLUDES THE FOLLOWING ITEMS
REMOVE EXISTING DYWIDAG SHAFT REINFORCING
REMOVE TERMINATION BOLTS FOR EXISTING REINFORCING
SHAFT REINFORCING
INSTALL NEW CLIMBING RAIL SYSTEM
REMOVE EXISTING STIFFENERS
FIELD WELDED STIFFENERS
FIELD WELDED ANCHOR BRACKETS
POST INSTALLED ANCHOR RODS
HIGH STRENGTH GROUT
PAINT MODIFICATIONS TO MATCH EXISTING POLE

SHEET INDEX		
SHEET NUMBER	DESCRIPTION	
T-1	TITLE SHEET	
T-2	MI CHECKLIST	
S-1	GENERAL NOTES	
S-2A	FORGBOLT™ DETAILS	
S-2B	NEXGEN2™ BOLT DETAIL	
S-2C	AJAX ONESIDE™ BOLT DETAIL	
S-3	MONOPOLE PROFILE	
S-4	SHAFT REINFORCING SECTIONS	
S-5	BASE PLATE DETAILS	
S-6	MISC DETAILS	

QUALIFIED ENGINEERING SERVICES ARE AVAILABLE FROM PAUL J. FORD & COMPANY TO ASSIST CONTRACTORS IN CLASS IV RIGGING PLAN REVIEWS. FOR REQUESTED QUALIFIED ENGINEERING SERVICES, PLEASE CONTACT RIGGING@PJFWEB.COM.

THE ASSOCIATED FAILING SA WO NUMBER FOR THIS PROJECT IS 1358541

ATTENTION ALL CONTRACTORS, ANYTIME YOU ACCESS A CROWN SITE FOR ANY REASON YOU ARE TO CALL THE CROWN NOC UPON ARRIVAL AND DEPARTURE, DAILY AT (800) 788-7011.

© Copyright 2017, by Paul J. Ford and Company, All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

AUL J. FORD
COMPANY
Ste 600: Columbus, OH 43215
679 www.pauliford.com

& COMPA OE Broad St, Ste 600: Columb one 614.221.6679 www

150' **250 E Broad St. SI**

MODIFICATION OF AN EXISTING 1 MONOPOLE BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

PROJECT No:	37517-0750.003.7700
DRAWN BY:	B.M.S.
DESIGNED BY:	S.J.T.
CHECKED BY:	
DATE:	3-31-2017

TITLE SHEET

T-1

MODIFICATION INSPECTION NOTES:

- THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. NAMELY THE MODIFICATION DRAWINGS. AS DESIGNED BY THE EOR.
- THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR
- ALL MI'S SHALL BE CONDUCTED BY A CROWN CASTLE ENGINEERING VENDOR (AEV) OR ENGINEERING SERVICE VENDOR (AESV) THAT IS APPROVED TO PERFORM FLEVATED WORK FOR CROWN CASTLE
- TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT YOUR CROWN CASTLE POINT OF CONTACT (POC)
- REFER TO ENG-SOW-10007: MODIFICATION INSPECTION SOW FOR FURTHER DETAILS AND REQUIREMENTS.

- THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI TO, AT A MINIMUM:
- 2.1.1. REVIEW THE REQUIREMENTS OF THE MI CHECKLIST.
- WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.
- THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GC INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS, AND SUBMITTING THE MI REPORT TO CROWN CASTLE.

- GENERAL CONTRACTOR

 1. THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:
- 3.1.1. REVIEW THE REQUIREMENTS OF THE MI CHECKLIST.
- WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS.
- THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST AND ENG-SOW-10007.

- RECOMMENDATIONS

 1. THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:
- 4.1.1. IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLE 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED. THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS.
- 4.1.4. IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION AND MI INSPECTION(S) TO COMMENCE WITH ONE SITE VISIT.
- WHEN POSSIBLE. IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING THE INITIAL MI. THEREFORE. THE GC MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS

CANCELLATION OR DELAYS IN SCHEDULED MI

1. IF THE GC AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY CANCELS OR DELAYS, CROWN CASTLE SHALL NOT BE RESPONSIBLE FOR ANY COSTS, FEES, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELLATION OR DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON-SITE, ETC.). IF CROWN CASTLE CONTRACTS DIRECTLY FOR A THIRD PARTY MI, EXCEPTIONS MAY BE MADE IN THE EVENT THAT THE DELAY/CANCELLATION IS CAUSED BY WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES INVOLVED.

- CORRECTION OF FAILING MI'S

 1. IF THE MODIFICATION INSTALLATION WOULD FAIL THE MI ("FAILED MI"), THE GC SHALL WORK WITH CROWN CASTLE TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:
 - 6.1.1. CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT MI.
 - OR, WITH CROWN CASTLE'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT CONDITION.

- MI VERIFICATION INSPECTIONS

 1. CROWN CASTLE RESERVES THE RIGHT TO CONDUCT A MI VERIFICATION INSPECTION TO VERIFY THE ACCURACY AND COMPLETENESS OF PREVIOUSLY COMPLETED MI INSPECTION(S) ON TOWER MODIFICATION PROJECTS.
- ALL VERIFICATION INSPECTIONS SHALL BE HELD TO THE SAME SPECIFICATIONS AND REQUIREMENTS IN THE CONTRACT DOCUMENTS AND IN ACCORDANCE WITH ENG-SOW-10007.
- VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT AEV/AESV FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED "PASSING MI" OR "PASS AS NOTED MI" REPORT FOR THE ORIGINAL PROJECT

- BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:
- 8.1.1. PRECONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS
- WELD PREPARATION
- **BOLT INSTALLATION AND TORQUE**
- FINAL INSTALLED CONDITION SURFACE COATING REPAIR
- 8.1.10. POST CONSTRUCTION PHOTOGRAPHS
- 8.1.11. FINAL INFIELD CONDITION
- 8.1.12. PHOTOS OF ELEVATED MODIFICATIONS TAKEN FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.
- 8.1.13. THIS IS NOT A COMPLETE LIST OF REQUIRED PHOTOS, PLEASE REFER TO ENG-SOW-10007

INSPECTION AND TESTING

- ALL WORK SHALL BE SUBJECT TO REVIEW AND OBSERVATION BY CROWN CASTLE'S REPRESENTATIVE AND CROWN CASTLE'S AUTHORIZED INDEPENDENT INSPECTION AND TESTING AGENCY.
- INSPECTION SERVICES WHICH ARE FURNISHED BY OTHERS ARE STILL REQUIRED WHEN THE EOR PERFORMS SUPPORT SERVICES DURING CONSTRUCTION.
- OBSERVED DISCREPANCIES BETWEEN THE WORK AND THE CONTRACT DOCUMENTS SHALL BE CORRECTED BY THE CONTRACTOR AT NO ADDITIONAL COST.
- AN INDEPENDENT QUALIFIED INSPECTION/TESTING AGENCY SHALL BE SELECTED AND RETAINED FOR THE SOLE PURPOSE OF INSPECTING, TESTING, DOCUMENTING, AND APPROVING ALL WELDING AND FIELD WORK PERFORMED
- ACCESS TO ANY PLACE WHERE WORK IS BEING DONE SHALL BE PERMITTED AT ALL TIMES.
- THE INSPECTION AGENCY SHALL SO SCHEDULE THIS WORK AS TO CAUSE A MINIMUM OF INTERRUPTION TO AND COORDINATE WITH, THE WORK IN PROGRESS. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE THE WORK SCHEDULE WITH THE TESTING AGENCY. THE CONTRACTOR SHALL ALLOW FOR ADEQUATE TIME AND ACCESS FOR THE TESTING AGENCY TO PERFORM THEIR DUTIES.
- 9.5. THE INSPECTION AND TESTING AGENCY SHALL BE RESPONSIBLE TO PERFORM THE FOLLOWING SERVICES AND INSPECT THE FOLLOWING ITEMS IN ACCORDANCE WITH THE CONSTRUCTION DRAWINGS. THE TESTING AGENCY SHALL INSPECT ITEMS ON THIS LIST AND OTHER ITEMS AS NECESSARY TO FULFILL THEIR RESPONSIBILITY. THE TESTING AGENCY SHALL UTILIZE EXPERIENCED, TRAINED INSPECTORS INCLUDING AWS CERTIFIED WELDING INSPECTORS (CWI). INSPECTORS SHALL HAVE THE TRAINING, CREDENTIALS, AND EXPERIENCE APPROPRIATE FOR AND COMMENSURATE WITH THE SCOPE AND TYPE OF INSPECTION WORK TO BE PERFORMED.
- GENERAL PERFORM PERIODIC ON-SITE OBSERVATION, INSPECTION, VERIFICATION, AND TESTING DURING THE TIME THE CONTRACTOR IS WORKING ON-SITE. AGENCY SHALL NOTIFY CROWN CASTLE AND THE EOR IMMEDIATELY WHEN FIELD PROBLEMS OR DISCREPANCIES OCCUR
- FOUNDATIONS AND SOIL PREPARATION (NOT REQUIRED)
- CONCRETE TESTING PER ACI (NOT REQUIRED)
- CHECK STEEL ON THE JOB WITH THE PLANS.
- CHECK MILL CERTIFICATIONS. CALL FOR LABORATORY TEST REPORTS WHEN MILL CERTIFICATION IS IN
- CHECK GRADE OF STEEL MEMBERS, AND BOLTS FOR CONFORMANCE WITH DRAWINGS.
 INSPECT ALL STRUCTURAL BOLTS SHALL BE FIELD INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- INSPECT STEEL MEMBERS FOR DISTORTION, EXCESSIVE RUST, FLAWS AND BURNED HOLES.
- CHECK STEEL MEMBERS FOR SIZES, SWEEP AND DIMENSIONAL TOLERANCES.
- 9.9.7. CHECK FOR SURFACE FINISH SPECIFIED, GALVANIZED.
- CHECK THAT BOLTS HAVE BEEN TIGHTENED PROPERLY
- PRIOR TO ANY FIELD CUTTING THE CONTRACTOR SHALL MARK THE CUTOUT LINES ON THE STEEL AND THE INSPECTION/TESTING AGENCY SHALL VERIFY PROPOSED LAYOUT, LOCATION, AND DIMENSIONS. THE INSPECTION/TESTING AGENCY SHALL CLOSELY AND CONTINUOUSLY MONITOR THIS ACTIVITY.

- 9.10.1. VERIFY FIELD WELDING PROCEDURES, WELDERS, AND WELDING OPERATORS, NOT DEEMED PREQUALIFIED, IN ACCORDANCE WITH AWS D1.1
- 9.10.2. INSPECT FIELD WELDED CONNECTIONS IN ACCORDANCE WITH THE REQUIREMENTS SPECIFIED AND WITH AWS
- 9.10.3. APPROVE FIELD WELDING SEQUENCE.
- 9.10.4. A PROGRAM OF THE APPROVED SEQUENCES SHALL BE SUBMITTED TO CROWN CASTLE BEFORE WELDING BEGINS. NO CHANGE IN APPROVED SEQUENCES MAY BE MADE WITHOUT PERMISSION FROM CROWN CASTLE. 9.10.5. INSPECT WELDED CONNECTIONS AS FOLLOWS AND IN ACCORDANCE WITH AWS D1.1:
- 9.10.5.1. INSPECT WELDING EQUIPMENT FOR CAPACITY, MAINTENANCE, AND WORKING CONDITIONS.
- 9.10.5.2. VERIFY SPECIFIED ELECTRODES AND HANDLING AND STORAGE OF ELECTRODES FOR CONFORMANCE TO
- 9.10.5.3. INSPECT PREHEATING AND INTERPASS TEMPERATURES FOR CONFORMANCE WITH AWS D1.1.
 9.10.5.4. VISUALLY INSPECT ALL WELDS AND VERIFY THAT QUALITY OF WELDS MEETS THE REQUIREMENTS OF AWS
- D1.1. OTHER TESTS MAY ALSO BE PERFORMED ON THE WELDS BY THE TESTING AGENCY IN ORDER FOR THEM TO PERFORM THEIR DUTIES FOR THIS PROJECT.
- 9.10.5.5. SPOT TEST AT LEAST ONE FILLET WELD OF EACH MEMBER USING MAGNETIC PARTICLE.
- 9.10.5.6. INSPECT FOR SIZE, SPACING, TYPE AND LOCATION AS PER APPROVED DRAWINGS. 9.10.5.7. VERIFY THAT THE BASE METAL CONFORMS TO THE DRAWINGS.
- 9.10.5.8. REVIEW THE REPORTS BY TESTING LABS. 9.10.5.9. CHECK TO SEE THAT WELDS ARE CLEAN AND FREE FROM SLAG.
- 9.10.5.10. INSPECT RUST PROTECTION OF WELDS AS PER SPECIFICATIONS.
- 9.10.5.11. CHECK THAT DEFECTIVE WELDS ARE CLEARLY MARKED AND HAVE BEEN ADEQUATELY REPAIRED.
- 9.11.1. COMPILE AND PERIODICALLY SUBMIT DAILY INSPECTION REPORTS TO CROWN CASTLE.
- 9.11.2. THE INSPECTION PLAN OUTLINED HEREIN IS INTENDED AS A DESCRIPTION OF GENERAL AND SPECIFIC ITEMS OF CONCERN. IT IS NOT INTENDED TO BE ALL-INCLUSIVE. IT DOES NOT LIMIT THE TESTING AND INSPECTION AGENCY TO THE ITEMS LISTED. ADDITIONAL TESTING, INSPECTION, AND CHECKING MAY BE REQUIRED AND SHOULD BE ANTICIPATED. THE TESTING AGENCY SHALL USE THEIR PROFESSIONAL JUDGMENT AND KNOWLEDGE OF THE JOB SITE CONDITIONS AND THE CONTRACTOR'S PERFORMANCE TO DECIDE WHAT OTHER ITEMS REQUIRE ADDITIONAL ATTENTION. THE TESTING AGENCY'S JUDGMENT MUST PREVAIL ON ITEMS NOT SPECIFICALLY COVERED. ANY DISCREPANCIES OR PROBLEMS SHALL BE BROUGHT IMMEDIATELY TO CROWN CASTLE'S ATTENTION. RESOLUTIONS ARE NOT TO BE MADE WITHOUT CROWN CASTLE'S REVIEW AND SPECIFIC WRITTEN CONSENT. CROWN CASTLE RESERVES THE RIGHT TO DETERMINE WHETHER OR NOT A RESOLUTION IS
- 9.11.3. AFTER EACH INSPECTION, THE TESTING AGENCY WILL PREPARE A WRITTEN ACCEPTANCE OR REJECTION WHICH WILL BE GIVEN TO THE CONTRACTOR AND FILED AS DAILY REPORTS TO CROWN CASTLE. THIS WRITTEN ACTION WILL GIVE THE CONTRACTOR A LIST OF ITEMS TO BE CORRECTED, PRIOR TO CONTINUING CONSTRUCTION, AND/OR LOADING OF STRUCTURAL ITEMS.
- 9.11.4 THE TESTING AGENCY DOES NOT RELIEVE THE CONTRACTOR'S CONTRACTUAL OR STATUTORY OBLIGATIONS THE CONTRACTOR HAS THE SOLE RESPONSIBILITY FOR ANY DEVIATIONS FROM THE OFFICIAL CONTRACT DOCUMENTS. THE TESTING AGENCY WILL NOT REPLACE THE CONTRACTOR'S QUALITY CONTROL PERSONNEL

CONSTRUCTION/INSTALLATION INSPECTIONS ND TESTING REQUIRED (COMPLETED BY EOR)	REPORT ITEM	
<u> </u>		
	PRE-CONSTRUCTION	
X	MI CHECKLIST DRAWINGS	
X	EOR REVIEW	
X	FABRICATION INSPECTION	
X	FABRICATOR CERTIFIED WELD INSPECTION	
X	MATERIAL TEST REPORT (MTR)	
NA	FABRICATOR NDE INSPECTION	
NA	NDE REPORT OF MONOPOLE BASE PLATE (AS REQUIRED)	
X	PACKING SLIPS	
	CONSTRUCTION	
X	CONSTRUCTION INSPECTIONS	
NA	FOUNDATION INSPECTIONS	
NA	CONCRETE COMP. STRENGTH AND SLUMP TESTS	
Х	POST INSTALLED ANCHOR ROD VERIFICATION	
Х	BASE PLATE GROUT VERIFICATION	
Х	CONTRACTOR'S CERTIFIED WELD INSPECTION	
NA	EARTHWORK: PROVIDE PHOTO DOCUMENTATION OF EXCAVATION QUALITY AND COMPACTION	
X	ON SITE COLD GALVANIZING VERIFICATION	
NA	GUY WIRE TENSION REPORT	
X	GC AS-BUILT DOCUMENTS	
NA	MICROPILE/ROCK ANCHOR INSTALLER'S DRILLING AND INSTALLATION LOGS AND QA/QC DOCUMENTS	
DDITIONAL TESTING AND INSPECTIONS:		
ſ	POST-CONSTRUCTION	
X	MI INSPECTOR REDLINE OR RECORD DRAWING(S)	
	POST INSTALLED ANCHOR ROD TARGET TENSION LOAD TESTING	
Х		
X NA	REFER TO MICROPILE/ROCK ANCHOR NOTES FOR SPECIAL INSPECTION AND TESTING REQUIREMENTS.	

NA DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE PMI REPORT

Copyright 2017, by Paul J. Ford and Compa All Rights Reserved. This document and he data contained herein, is proprietary Paul J. Ford and Company, issued in strict confidence and shall not, without th prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the

43215 rd.com PAUL J. FORL & COMPANY St, Ste 600 Columbus, OH 43218 11.6679 www.pauliford.cor ഗ \triangleleft

150

EXISTING #841288; BRIDGEPORT NORTH RIDGEPORT, CONNECTICUT MONOPOL A V 9 MODIFICATION B

PROJECT No: 37517-0750.003.77 DRAWN BY DESIGNED BY S.J.T CHECKED BY 3-31-201

MI CHECKLIST

MONOPOLE RETROFIT PROJECT MASTER NOTES DOCUMENT (REV. 3, 02/05/2015)

- THE MONOPOLE STRUCTURE IN ITS EXISTING CONDITION DOES NOT HAVE THE STRUCTURAL CAPACITY TO CARRY ALL OF THE PROPOSED AND EXISTING LOADS FROM THE ATTACHED STRUCTURAL MODIFICATION REPORT AT THE REQUIRED MINIMUM WIND SPEEDS. DO NOT INSTALL ANY NEW LOADS UNTIL THE MONOPOLE REINFORCING
- THESE DRAWINGS WERE PREPARED FROM INFORMATION PROVIDED BY CROWN CASTLE. THE INFORMATION PROVIDED HAS NOT BEEN FIELD VERIFIED BY THE ENGINEER OF RECORD (EOR) FOR ACCURACY AND THEREFORE DISCREPANCIES BETWEEN THESE DRAWINGS AND ACTUAL SITE CONDITIONS SHOULD BE ANTICIPATED. PRIOR TO FABRICATION AND INSTALLATION CONTRACTOR SHALL VERIFY ALL LENGTHS AND QUANTITIES GIVEN. LENGTH AND QUANTITIES PROVIDED ARE FOR QUOTING PURPOSES ONLY AND SHALL NOT BE USED FOR FABRICATION. THE CONTRACTOR SHALL COORDINATE WITH THE PROJECT DRAWINGS AND THEIR FIELD VERIFIED CONDITIONS AND DIMENSIONS BEFORE PROCEEDING WITH THE WORK. THE CONTRACTOR SHALL IMMEDIATELY REPORT ANY AND ALL DISCREPANCIES TO THE EOR AND CROWN CASTLE BEFORE PROCEEDING WITH THE WORK. ANY WORK PERFORMED WITHOUT A PREFABRICATION MAPPING IS DONE AT THE RISK OF THE GENERAL CONTRACTOR AND/OR
- IF MATERIALS, QUANTITIES, STRENGTHS OR SIZES INDICATED BY THE DRAWINGS OR SPECIFICATIONS ARE NOT IN AGREEMENT WITH THESE NOTES, THE BETTER QUALITY AND/OR GREATER QUANTITY, STRENGTH OR SIZE INDICATED, SPECIFIED OR NOTED SHALL BE PROVIDED.
- THIS STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER THE INSTALLATION OF THE REINFORCING REPAIR SYSTEM HAS BEEN SUCCESSFULLY COMPLETED. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO ENSURE THE SAFETY AND STABILITY OF THE MONOPOLE AND ITS COMPONENT PARTS DURING FIELD MODIFICATIONS. THIS INCLUDES, BUT IS NOT LIMITED TO, THE ADDITION OF WHATEVER TEMPORARY BRACING, GUYS OR TIE DOWNS THAT MAY BE NECESSARY. SUCH MATERIAL SHALL BE REMOVED AND SHALL REMAIN THE PROPERTY OF THE CONTRACTOR AFTER THE COMPLETION OF THE PROJECT.
- ALL CONSTRUCTION MEANS AND METHODS: INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/TIA-1019 (LATEST EDITION), OSHA AND GENERAL INDUSTRY STANDARDS. ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-1019 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.
- OBSERVATION VISITS TO THE SITE BY CROWN CASTLE AND/OR THE EOR SHALL NOT INCLUDE INSPECTIONS OF THE PROTECTIVE MEASURES OR THE CONSTRUCTION PROCEDURES. ANY SUPPORT SERVICES PERFORMED BY THE EOR DURING CONSTRUCTION ARE SOLELY FOR THE PURPOSE OF ACHIEVING GENERAL CONFORMANCE WITH THE CONTRACT DOCUMENTS. THEY DO NOT GUARANTEE THE CONTRACTOR'S PERFORMANCE AND SHALL NOT BE CONSTRUED AS SUPERVISION OF CONSTRUCTION.
- ALL MATERIALS AND EQUIPMENT FURNISHED SHALL BE NEW AND OF GOOD QUALITY, FREE FROM FAULTS AND DEFECTS AND IN CONFORMANCE WITH THE CONTRACT DOCUMENTS. ANY AND ALL SUBSTITUTIONS MUST BE PROPERLY APPROVED AND AUTHORIZED IN WRITING BY CROWN CASTLE AND EOR PRIOR TO INSTALLATION. THE CONTRACTOR SHALL FURNISH SATISFACTORY EVIDENCE AS TO THE KIND AND QUALITY OF MATERIALS AND EQUIPMENT BEING SUBSTITUTED.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK. THE CONTRACTOR IS RESPONSIBLE TO ENSURE THAT THIS PROJECT AND RELATED WORK COMPLIES WITH ALL APPLICABLE LOCAL, STATE, AND FEDERAL SAFETY CODES AND REGULATIONS GOVERNING THIS WORK AS WELL AS CROWN CASTLE SAFETY GUIDELINES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING AND NEW COAXIAL CABLES AND OTHER EQUIPMENT DURING CONSTRUCTION
- ANY EXISTING ATTACHMENTS AND/OR PROJECTIONS ON THE POLE THAT MAY INTERFERE WITH THE INSTALLATION OF THE REINFORCING SYSTEM WILL HAVE TO BE REMOVED AND RELOCATED, REPLACED, OR RE-INSTALLED AS REQUIRED AFTER THE REINFORCING IS SUCCESSFULLY COMPLETED. THE CONTRACTOR SHALL IDENTIFY
- AND COORDINATE THESE ITEMS PRIOR TO CONSTRUCTION WITH CROWN CASTLE, TESTING AGENCY, AND EOR.
 ANY AND ALL EXISTING PLATFORMS THAT ARE LOCATED IN AREAS OF THE POLE SHAFT WHERE SHAFT REINFORCING MUST BE APPLIED SHALL BE TEMPORARILY REMOVED. OR OTHERWISE SUPPORTED TO PERMIT NEW CONTINUOUS REINFORCEMENT TO BE ATTACHED. AFTER THE CONTRACTOR HAS SUCCESSFULLY INSTALLED THE MONOPOLE REINFORCEMENT SYSTEM, THE CONTRACTOR SHALL RE-INSTALL THE PLATFORMS.
- THE CLIMBING FACILITIES, SAFETY CLIMB AND ALL PARTS THEREOF SHALL NOT BE IMPEDED, MODIFIED OR ALTERED WITHOUT THE EXPRESS APPROVAL OF THE EOR.
- FOR STANDARD CROWN PARTS SEE THE MOST RECENT VERSION OF THE "CCI APPROVED REINFORCEMENT COMPONENTS" CATALOG.
- ALL SOLUTIONS FOR THE REPLACEMENT, RELOCATION OR MODIFICATION OF THE SAFETY CLIMB AND/OR ANY OF THE MONOPOLE CLIMBING FACILITIES SHALL BE COORDINATED WITH TUF-TUG PRODUCTS. CONTACT DETAILS: 3434 ENCRETE LANE, MORAINE, OHIO 45439

PHONE: 937-299-1213 EMAIL: TUFTUG@AOL.COM

- STRUCTURAL STEEL MATERIALS, FABRICATION, DETAILING, AND WORKMANSHIP SHALL CONFORM TO THE LATEST EDITION OF THE FOLLOWING REFERENCE STANDARDS:
 1.1. BY THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC):
 2.1.1.1. "SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS."
- "SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM HIGH STRENGTH BOLTS," AS APPROVED BY THE RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS.
- "CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES"
- 2.1.2. BY THE AMERICAN WELDING SOCIETY (AWS):
- 2.1.2.1. "STRUCTURAL WELDING CODE STEEL D1.1."
- "STANDARD SYMBOLS FOR WELDING, BRAZING, AND NONDESTRUCTIVE EXAMINATION"
- ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM HIGH STRENGTH BOLTS', DEC. 31, 2009.
- ANY MATERIAL OR WORKMANSHIP WHICH IS OBSERVED TO BE DEFECTIVE OR INCONSISTENT WITH THE CONTRACT DOCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACTOR'S EXPENSE.
- WELDED CONNECTIONS SHALL CONFORM TO THE LATEST REVISED CODE OF THE AMERICAN WELDING SOCIETY, AWS D1.1. ALL WELD ELECTRODES SHALL BE E80XX UNLESS NOTED OTHERWISE ON THE DRAWINGS.
- ALL WELDED CONNECTIONS SHALL BE MADE BY WELDERS CERTIFIED BY AWS. CONTRACTOR SHALL SUBMIT WELDERS' CERTIFICATION AND QUALIFICATION DOCUMENTATION TO CROWN CASTLE'S TESTING AGENCY FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION.
- STRUCTURAL STEEL PLATES SHALL CONFORM TO ASTM A572 GRADE 65(FY = 65 KSI MIN) UNLESS NOTED OTHERWISE ON THE DRAWINGS
- SURFACES OF EXISTING STEEL SHALL BE PREPARED AS REQUIRED FOR FIELD WELDING PER AWS. SEE SECTION I NOTES REGARDING TOUCH UP OF GALVANIZED
- SURFACES DAMAGED DURING TRANSPORTATION OR ERECTION AND ASSEMBLY AS WELL AS FIELD WELDING.
- NO WELDING SHALL BE DONE TO THE EXISTING STRUCTURE WITHOUT THE PRIOR APPROVAL AND SUPERVISION OF THE TESTING AGENCY. FIELD CUTTING OF STEEL:
- IMPORTANT CUTTING AND WELDING SAFETY GUIDELINES: THE CONTRACTOR SHALL FOLLOW ALL CROWN CASTLE CUTTING, WELDING, FIRE PREVENTION AND SAFETY GUIDELINES. PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL OBTAIN A COPY OF THE CURRENT CROWN CASTLE GUIDELINES. PER THE 12-01-2005 CROWN CASTLE DIRECTIVE: "ALL CUTTING AND WELDING ACTIVITIES SHALL BE CONDUCTED IN ACCORDANCE WITH CROWN CASTLE POLICY 'CUTTING AND WELDING SAFETY PLAN' (DOC # ENG-PLN-10015) ON AN ONGOING BASIS THROUGHOUT THE ENTIRE LIFE OF THE PROJECT". ANY DAMAGE TO THE COAX CABLES, AND/OR OTHER EQUIPMENT AND/OR THE STRUCTURE, RESULTING FROM THE CONTRACTOR'S ACTIVITIES SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE. THE
- INSPECTION/TESTING AGENCY SHALL CLOSELY AND CONTINUOUSLY MONITOR THIS ACTIVITY ALL REQUIRED CUTS SHALL BE CUT WITHIN THE DIMENSIONS SHOWN ON THE DRAWINGS. NO CUTS SHALL EXTEND BEYOND THE OUTLINE OF THE DIMENSIONS SHOWN ON THE DRAWINGS. ALL CUT EDGES SHALL BE GROUND SMOOTH AND DE-BURRED. CUT EDGES THAT ARE TO BE FIELD WELDED SHALL BE PREPARED FOR FIELD WELDING PER AWS D1.1 AND AS SHOWN ON THE DRAWINGS. CONTRACTOR TO AVOID 90 DEGREE CORNERS. IT MAY BE NECESSARY TO DRILL STARTER HOLES AS REQUIRED TO MAKE THE CUTS.

BASE PLATE GROUT

- 3.1. NEW GROUT FOR THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE STRENGTH. CONTRACTOR SHALL SUBMIT PROPOSED GROUT SPECIFICATION INFORMATION TO CROWN CASTLE FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION. CONTRACTOR SHALL FOLLOW GROUT MANUFACTURER'S SPECIFICATIONS FOR COLD WEATHER GROUTING PROCEDURES (IF NECESSARY) AND THE TESTING AGENCY SHALL PREPARE GROUT SAMPLE SPECIMENS FOR COMPRESSIVE STRENGTH TESTING AND VERIFICATION.
- GROUT SHALL BE INSTALLED TIGHT UNDER THE BASE PLATE AND BEARING PLATE REGION WITH NO VOIDS REMAINING BETWEEN THE TOP OF THE EXISTING CONCRETE AND THE UNDERSIDE OF THE EXISTING BASE PLATE AND BEARING PLATE.
- CAULK AROUND ANCHOR RODS WHEN GROUTING.

FOUNDATION WORK - (NOT REQUIRED)

5. CAST-IN-PLACE CONCRETE - (NOT REQUIRED)

- EPOXY GROUTED REINFORCING ANCHOR RODS

 1. UNLESS OTHERWISE NOTED, REINFORCING ANCHOR RODS SHALL BE 150 KSI ALL-THREAD BARS CONFORMING TO ASTM A722. RECOMMENDED MANUFACTURERS/SUPPLIERS OF 150 KSI ALL-THREAD BARS ARE WILLIAMS FORM ENGINEERING CORPORATION AND DYWIDAG SYSTEMS INTERNATIONAL.
- ALL REINFORCING ANCHOR RODS SHALL BE HOT DIP GALVANIZED PER ASTM A123.
- THE CORE-DRILLED HOLES IN THE CONCRETE FOR THE ANCHOR RODS SHALL BE CLEAN AND DRY, AND OTHERWISE PROPERLY PREPARED ACCORDING TO THE ANCHOR ROD AND EPOXY MANUFACTURERS' INSTRUCTIONS, PRIOR TO PLACEMENT OF ANCHOR RODS AND EPOXY. CONTRACTOR SHALL FOLLOW ALL ANCHOR ROD AND EPOXY MANUFACTURER RECOMMENDATIONS REGARDING HANDLING OF RODS, EPOXY, ACCEPTABLE AMBIENT TEMPERATURE RANGE DURING INSTALLATION AND POST-INSTALLATION CURING, THE EFFECT OF TEMPERATURE ON EPOXY CURING TIME, PREPARATION OF HOLE, ETC.
- HILTI HIT RE-500 SD OR ITW RED HEAD EPCON G5 EPOXY SHALL BE USED TO ANCHOR THE BAR IN THE DRILL HOLES. IF THE DESIGNED EMBEDMENT IS GREATER THAN 12 FT, CONTRACTOR HAS THE OPTION TO USE PILE ANCHOR GROUT BY E-CHEM AS AN ALTERNATE. IF CONTRACTOR WISHES TO USE A DIFFERENT EPOXY, A REQUEST INCLUDING THE EPOXY TECHNICAL DATA SHEET(S) SHALL BE SUBMITTED TO THE EOR FOR REVIEW PRIOR TO CONSTRUCTION.
- ONCE THE REINFORCING ANCHOR RODS HAVE BEEN INSTALLED AND ALL EPOXY AND GROUT HAVE CURED (IF BASE PLATE AND/OR BEARING PLATES HAVE BEEN GROUTED PRIOR TO TESTING), ALL REINFORCING ANCHORS SHALL BE LOAD TESTED PER CROWN CASTLE ENGINEERING DOCUMENT #ENG-PRC-10119. REFER TO THE NEW ANCHOR & BRACKET DETAIL ON FOLLOWING SHEETS FOR SPECIFIED ANCHOR ROD TARGET TENSION LOAD.
- ONCE THE REINFORCING ANCHOR RODS HAVE BEEN SUCCESSFULLY LOAD TESTED AND APPROVED THE CONTRACTOR SHALL TIGHTEN ALL HEAVY HEX ANCHOR NUTS TO
- TAKE ALL MEASUREMENTS NECESSARY TO AVOID DAMAGING EXISTING REINFORCING BARS DURING CORING OPERATIONS. NOTIFY ENGINEER OF RECORD IMMEDIATELY IF EXISTING REINFORCING BARS ARE ENCOUNTERED AND INTERFERE WITH PLACEMENT OF NEW ANCHORS. MINOR ADJUSTMENT TO PROPOSED LOCATION OF NEW ANCHORS MAY BE REQUIRED.
- IF BASE PLATE GROUT REMOVAL IS REQUIRED FOR ANCHOR ROD INSTALLATION SEE ENG-PRC-10012; "BASE PLATE GROUT REPAIR' FOR PROCEDURES AND RECOMMENDED

- TOUCH UP OF GALVANIZING

 THE CONTRACTOR SHALL TOUCH UP ANY AND ALL AREAS OF GALVANIZING ON THE EXISTING STRUCTURE OR NEW COMPONENTS THAT ARE DAMAGED OR ABRADED DURING CONSTRUCTION. GALVANIZED SURFACES DAMAGED DURING TRANSPORTATION OR ERECTION AND ASSEMBLY AS WELL AS ANY AND ALL ABRASIONS, CUTS, FIELD DRILLING, AND ALL FIELD WELDING SHALL BE TOUCHED UP WITH TWO (2) COATS OF ZRC COLD GALVANIZING COMPOUND. FILM THICKNESS PER COAT SHALL BE: WET 3.0 MILS; DRY 1.5 MILS. APPLY PER ZRC (MANUFACTURER) RECOMMENDED PROCEDURES. CONTACT ZRC AT 1-800-831-3275 FOR PRODUCT INFORMATION.
- CONTRACTOR SHALL CLEAN AND PREPARE ALL FIELD WELDS ON GALVANIZED AND PRIME PAINTED SURFACES FOR TOUCH-UP COATING IN ACCORDANCE WITH AWS D1.1. CROWN CASTLE'S TESTING AGENCY SHALL VERIFY THE PREPARED SURFACE PRIOR TO APPLICATION OF THE TOUCH-UP COATING.
- CROWN CASTLE'S TESTING AGENCY SHALL TEST AND VERIEY THE COATING THICKNESS AFTER THE CONTRACTOR HAS APPLIED THE ZRC COLD GALVANIZING COMPOUND. AND IT HAS SUFFICIENTLY DRIED. AREAS FOUND TO BE ADEQUATELY COATED, SHALL BE RE-COATED BY THE CONTRACTOR AND RE-TESTED BY THE TESTING AGENCY

- HOT-DIP GALVANIZE ALL STRUCTURAL STEEL MEMBERS AND ALL STEEL ACCESSORIES, BOLTS, WASHERS, ETC. PER ASTM A123 OR PER ASTM A153, AS APPROPRIATE. PROPERLY PREPARE STEEL ITEMS FOR GALVANIZING. DRILL OR PUNCH WEEP AND/OR DRAINAGE HOLES WITH EOR APPROVAL OF LOCATIONS.
- ALL GALVANIZING SHALL BE DONE AFTER FABRICATION IS COMPLETED AND PRIOR TO FIELD INSTALLATION.

- AFTER THE CONTRACTOR HAS SUCCESSFULLY COMPLETED THE INSTALLATION OF THE MONOPOLE REINFORCING SYSTEM AND THE WORK HAS BEEN ACCEPTED BY CROWN CASTLE, CROWN CASTLE WILL BE RESPONSIBLE FOR THE LONG TERM AND PERPETUAL INSPECTION AND MAINTENANCE OF THE POLE AND REINFORCING SYSTEM.
- ANY FIELD WELDED CONNECTIONS ARE SUBJECT TO CORROSION DAMAGE AND DETERIORATION IF THEY ARE NOT PROPERLY MAINTAINED AND COVERED WITH CORROSION PREVENTIVE COATING SUCH AS THE ZRC GALVANIZING COMPOUND SPECIFIED PREVIOUSLY. THE STRUCTURAL LOAD CARRYING CAPACITY OF THE REINFORCED POLE SYSTEM IS DEPENDENT UPON THE INSTALLED SIZE AND QUALITY, MAINTAINED SOUND CONDITION AND STRENGTH OF THESE FIELD WELDED REINFORCED POLE SYSTEM IS DEPENDENT OP THE INSTALLED SIZE AND QUALITY, MAINTAINED SOUND CONDITION AND STRENGTH OF THESE FIELD WELDED CONNECTIONS. ANY CORROSION OF, DAMAGE TO, FATIGUE, FRACTURE, AND/OR DETERIORATION OF THESE WELDS AND/OR THE EXISTING GALVANIZED STEEL POLE STRUCTURE AND THE WELDED COMPONENTS WILL RESULT IN THE LOSS OF STRUCTURAL LOAD CARRYING CAPACITY AND MAY LEAD TO FAILURE OF THE STRUCTURAL SYSTEM. THEREFORE, IT IS IMPERATIVE THAT CROWN CASTLE REGULARLY INSPECTS, MAINTAINS, AND REPAIRS AS NECESSARY, ALL OF THESE WELDS, CONNECTIONS, AND COMPONENTS FOR THE LIFE OF THE STRUCTURE.

 CROWN CASTLE SHALL REFER TO ANSI/TIA-222-G-2-2009, SECTION 14 AND ANNEX J FOR RECOMMENDATIONS FOR MAINTENANCE AND INSPECTION. THE FREQUENCY OF
- THE INSPECTION AND MAINTENANCE INTERVALS IS TO BE DETERMINED BY CROWN CASTLE BASED UPON ACTUAL SITE AND ENVIRONMENTAL CONDITIONS. THE EOR RECOMMENDS THAT A COMPLETE AND THOROUGH INSPECTION OF THE ENTIRE REINFORCED MONOPOLE STRUCTURAL SYSTEM BE PERFORMED YEARLY AND/OR A FREQUENTLY AS CONDITIONS WARRANT. ACCORDING TO ANSI/TIA-222-G-2-2009 SECTION 14.2: "IT IS RECOMMENDED THAT THE STRUCTURE BE INSPECTED AFTER SEVERE WIND AND/OR ICE STORMS OR OTHER EXTREME LOADING CONDITIONS".

- 10.1 FIELD NDE MINIMUM REQUIREMENTS
 10.1. ALL NDE SHALL BE IN ACCORDANCE WITH AWS D1.1
- FOR NEW BASE STIFFENERS (INCLUSIVE OF TRANSITION STIFFENERS) AND ANCHOR ROD BRACKETS, COMPLETE JOINT PENETRATION WELDS SHALL BE 100% INSPECTED BY UT. ALL PARTIAL JOINT PENETRATION AND FILLET WELDS SHALL BE 100% INSPECTED BY MT.

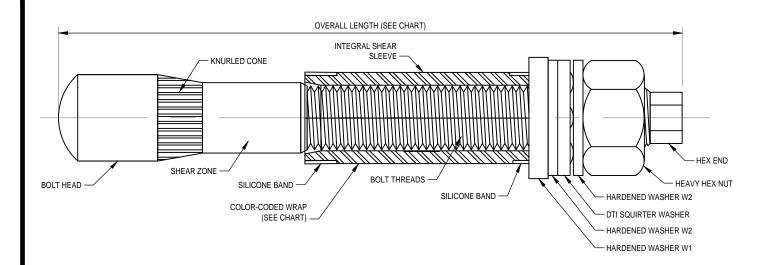
 10.3. FOR NEW FLAT PLATE REINFORCEMENT AT THE BASE OF THE TOWER, COMPLETE JOINT PENETRATION WELDS SHALL BE 100% INSPECTED BY UT. ALL PARTIAL JOINT
- PENETRATION AND FILLET WELDS SHALL BE 100% INSPECTED BY MT, BUT MAY BE LIMITED TO A HEIGHT OF 10'-0".
- FOR NDE OF THE EXISTING BASE PLATE CIRCUMFERENTIAL WELD, GC SHALL REFERENCE THE MI CHECKLIST FOR APPLICABILITY. PLEASE SEE ENG-SOW-10033: 'TOWER BASE PLATE NDE, AND ENG-BUL-10051: 'NDE REQUIREMENTS FOR MONOPOLE BASE PLATE TO PREVENT CONNECTION FAILURE'. NOTIFY THE EOR AND CROWN ENGINEERING IMMEDIATELY IF ANY CRACKS ARE SUSPECTED OR HAVE BEEN IDENTIFIED. THE NDE SHALL INCLUDE ALL EXISTING MODIFICATIONS THAT HAVE BEEN WELDED TO THE BASE PLATE.
- 10.5. ALL TESTING LIMITATIONS SHALL BE DETAILED IN THE NDE REPORT

Copyright 2017, by Paul J. Ford and Compa All Rights Reserved. This document and he data contained herein, is proprietary Paul J. Ford and Company, issued in strict confidence and shall not, without th prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the tended use for this specific project

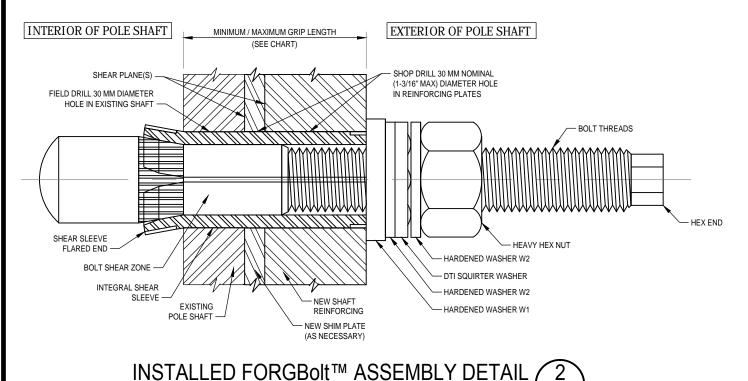
ഗ

extstyle ext

FORD NY vus, OH 43215 ..pauljford.com MPA | PAUI & COI it, Ste 600 0


150 **EXISTING** J#841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT MONOPOL X QF MODIFICATION B

PROJECT No: DRAWN BY S.J.T CHECKED BY


3-31-20

GENERAL NOTES

FORGBolt™ NOTE SHEET: A325/PC8.8 PORTRAIT VERSION DATE 04/24/2015

PRE-INSTALLED FORGBolt™ ASSEMBLY DETAIL

AISC Group A Material: ASTM A325 and PC8.8 **FORGBolt®** (Tensile Stress, Fu = 120 ksi minimum) **FORGBolt®** Overall Estimated Grip Color **GROUP A** Length Weight Range Size Comment Code (mm) (inches) Each (lbs) (inch) 135 3/8" to 1" **RED** PC8.8 5.31 1.3 **FORGBolt®** 2 **GREEN** 160 6.30 1.6 3/4" to 1-1/2" 3 195 7.68 1.9 1-1/4" to 2-1/4" **BLUE** 4 260 10.24 2.6 2" to 3-1/2" Splice Bolt **YELLOW** A325 5 365 14.37 3.6 3-1/2" to 5-1/2" Flange Jump Bolt | ORANGE 6 4.3 17.32 5-1/2" to 8-1/2" Flange Jump Bolt 440 BLACK DTI Each Group A (A325/PC8.8) FORGBolt® assembly shall have a 'Squirter' DTI that is compatible with a M20-PC8.8 bolt. Note

FOLLOW ALL MANUFACTURER / DISTRIBUTOR RECOMMENDATIONS FOR INSTALLATION, TIGHTENING, AND INSPECTION

INSTALLATION NOTES:

- 1. FIELD DRILL HOLES TO 30 MM DIAMETER.
- 2. SELECT CORRECT BOLT SIZE FOR INSTALLATION GRIP (REFER TO PLANS).
- 3. INSERT BOLT ASSEMBLY THROUGH HOLES IN SHAFT REINFORCING PLATES AND SEAT THE HARDENED WASHER W1 FLUSH AGAINST OUTSIDE OF PLATE.
- 4. HAND TIGHTEN NUT TO FINGER TIGHT.
- 5. TIGHTEN NUT TO PRETENSIONED CONDITION AND UNTIL DTI SHOWS PROPER INDICATION.
- 6. PROPERLY DOCUMENT AND INSPECT BOLT TIGHTENING PER PLAN REQUIREMENTS.

BOLT HOLE NOTES:

- 1. ALL SHOP-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM SHOP-DRILLED HOLE DIAMETER PERMITTED IS 1-3/16".
- 2. ALL FIELD-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM FIELD-DRILLED HOLE DIAMETER PERMITTED IS 30 MM.

BOLT TIGHTENING AND INSPECTION NOTES:

- 1. ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- 2. ALL STRUCTURAL BOLTS SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.

AISC GROUP A MATERIAL: ASTM A325 AND PC8.8 (Fu = 120 KSI MIN TENSILE STRESS)

CONTAINS PROPRIETARY INFORMATION PATENT PENDING

© Copyright 2013 to 2015 by PTP, all rights reserved.

DISTRIBUTOR CONTACT:

PRECISION TOWER PRODUCTS

PHONE: 888-926-4857

EMAIL: info@precisiontowerproducts.com WEB: www.precisiontowerproducts.com

© Copyright 2017, by Paul J. Ford and Compan All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

ULJ.FORD OMPANY 600: Columbus, OH 43215 www.pauljford.com

PAUL R CON250 E Broad St, Ste 600· C

Phone 614.221.6679

CROWN CAST

BARKARADOW DRIVE BITTEEDED

250 E Broad St, Ste 600 · Columbus, O

Www.pauli

CROWN CAST

BEACKMEAND FOR BITTEEDED

MODIFICATION OF AN EXISTING 150' MONOPOLE BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

PROJECT No: 37517-0750.003.7700

DRAWN BY: B.M.S.

DESIGNED BY: S.J.T.

CHECKED BY:

DATE: 3-31-2017

FORGBOLT™ DETAILS

S-2A

17-0750 003 DWG

INTERIOR OF POLE SHAFT

NOTE: SHEAR SLEEVE LENGTH: THE SHEAR SLEEVE SHALL PROJECT A MINIMUM OF 3/8" BEYOND THE OUTERMOST SHEAR PLANE. THE CONTRACTOR SHALL SUBMIT FABRICATION DRAWINGS SHOWING NEXGEN2® BOLT LENGTHS AND SHEAR SLEEVE LENGTHS TO THE EOR FOR REVIEW AND APPROVAL.

$\langle 1 \rangle$ SHAFT REINFORCING ELEMENT POLE SHAFT WALL SHOP DRILLED HOLE IN SHAFT REINFORCING ELEMENT, HOT-DIP GALVANIZED PER ASTM A123; FIELD DRILLED HOLE IN SHAFT WALL FIELD COAT WITH COLD-GALVANIZING COMPOUND AFTER FIELD DRILLING; COAT WITH CROWN APPROVED HOLE DIAMETER: NOMINAL 30mm (1-3/16" MAXIMUM) COLD-GALVANIZING COMPOUNDS; HOLE DIAMETER: NOMINAL 30mm HIGH TENSILE - DOUBLE HEX SPLINED END OF NEXGEN2® BOLT FOR (1-3/16" MAXIMUM) STEEL COIL SPRING NEXGEN2® INSTALLATION TOOL: AFTER BOLT IS FULLY TENSIONED THE BOLT END SHALL BE COATED WITH CROWN APPROVED COLD-GALVANIZING COMPOUNDS NEXGEN2® M20 BOLT ASTM A490M (Fy = 150 KSI MIN) NEXGEN2® M20 BOLT FIELD DETERMINE LENGTH REQUIRED HEAD: 29mm OD NEXGEN2® NUT (PRE-LUBRICATED) NEXGEN2® SPLIT WASHER NEXGEN2® WASHER POLE SHAF OUTERMOST SHEAR - SHAFT REINFORCING PLANE SHIM PLATE SHEAR SLEEVE, ASTM A519 (AS NECESSARY) GRADE 4140 (Fu = 120 KSI MIN):

EXTERIOR OF POLE SHAFT

TYPICAL NEXGEN2™ BOLT DETAIL 1 S-2B

FOLLOW ALL MANUFACTURER / DISTRIBUTOR RECOMMENDATIONS FOR INSTALLATION, TIGHTENING, AND INSPECTION

BOLT HOLE NOTES:

- 1. ALL SHOP-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM SHOP-DRILLED HOLE DIAMETER PERMITTED IS 1-3/16".
- 2. ALL FIELD-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM FIELD-DRILLED HOLE DIAMETER PERMITTED IS 30 MM.

BOLT TIGHTENING AND INSPECTION NOTES:

- 1. ALL NEXGEN2® BOLT ASSEMBLIES SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF SECTION 8.2.3 OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. PER SECTION 8.2.3: ALL FASTENER ASSEMBLIES SHALL BE INSTALLED IN ACCORDANCE WITH THE REQUIREMENTS IN AISC SECTION 8.1 WITHOUT SEVERING THE SPLINED END AND WITH WASHERS POSITIONED AS REQUIRED IN AISC SECTION 6.2. PER REQUIREMENTS IN SECTION 8.1: PRIOR TO BOLT PRETENSIONING, THE JOINT SHALL FIRST BE COMPACTED TO THE SNUG-TIGHT CONDITION. SNUG TIGHT IS THE CONDITION THAT EXISTS WHEN ALL OF THE PLIES IN THE CONNECTION HAVE BEEN PULLED INTO FIRM CONTACT BY THE BOLTS AND THE BOLTS HAVE BEEN TIGHTENED SUFFICIENTLY TO PREVENT THE REMOVAL OF THE NUTS WITHOUT THE USE OF A WRENCH. ONCE THE SNUG TIGHT CONDITION IS ACHIEVED, THEN THE BOLT ASSEMBLY CAN BE TIGHTENED TO THE PRETENSIONED CONDITION.
- 2. ALL NEXGEN2® BOLT ASSEMBLIES SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF SECTION 9.2.3 OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. NOTE THAT COMPLETE INSPECTION OF ALL NEXGEN2® BOLT ASSEMBLIES IS REQUIRED IN ADDITION TO ROUTINE OBSERVATION.
- 3. ALL NEXGEN2® BOLTS SHALL BE INSPECTED BY A QUALIFIED BOLT INSPECTOR PER NOTES 1 AND 2, ABOVE. DURING INSTALLATION, THE BOLT INSPECTOR SHALL VERIFY AND DOCUMENT: THE SHOP-DRILLED AND FIELD-DRILLED HOLE SIZES; THE INSTALLATION OF THE NEXGEN2® BOLT ASSEMBLY, INCLUDING THE SHEAR SLEEVE PLACEMENT AND NUT LUBRICATION; AND THE CONTRACTOR'S TENSIONING PROCEDURE. THE BOLT INSPECTOR SHALL PROVIDE COMPLETE DOCUMENTATION OF ALL BOLTS AFTER TIGHTENING CLEARLY SHOWING THAT THE DOUBLE HEX SPLINED END OF THE BOLTS HAVE BEEN TWISTED OFF AND COATED WITH CROWN APPROVED COLD-GALVANIZING COMPOUND.

PART	BOLT	SLEEVE	MIN GRIP	MAX GRIP
NUMBER	LENGTH	LENGTH	RANGE	RANGE
M20x36	M20x95	11/16"	15/16"	1 7/16"
M20x48	M20x95	1 3/16"	1 7/16"	1 7/8"
M20x57	M20x95	1 5/8"	1 7/8"	2 1/4"
M20x68	M20x135	2"	2 1/4"	2 11/16"
M20x96	M20x135	2 7/16"	2 11/16"	3 3/4"
M20x127	M20x165	3"	3 3/4"	5"
M20x212	M20x250	4"	5"	8 5/16"

NOTE: NEXGEN2® BOLT ASSEMBLY SHALL BE MAGNI 565 COATED PER ASTM F2833 AND MANUFACTURER SPECIFICATIONS.

NOTE: INSTALL NEXGEN2® BOLT ASSEMBLY PER MANUFACTURER'S INSTRUCTIONS.

© Copyright 2017, by Paul J. Ford and Compan All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

RAUL J. FORD & COMPANY 1, Ste 600 Columbus, OH 43215 1,6679 www.pauljford.com

250 E Broad St, Ste 600·C

CROWN CAST

BARKMFADOW DRIVE PITTSFORD TO

MODIFICATION OF AN EXISTING 150' MONOPOLE BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

 PROJECT No:
 37517-0750.003.7700

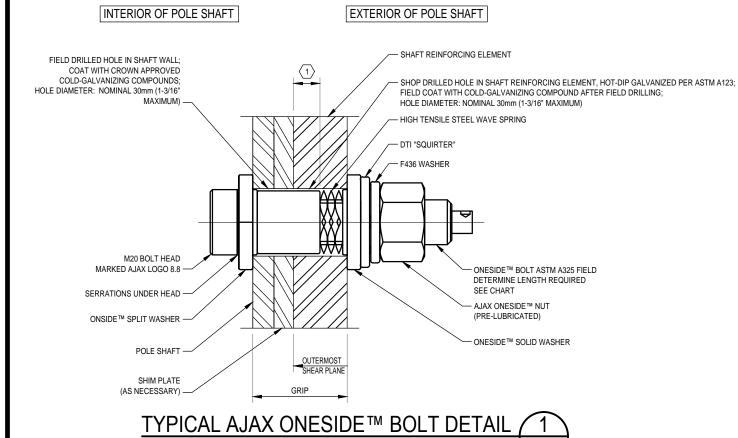
 DRAWN BY:
 B.M.S.

 DESIGNED BY:
 S.J.T.

 CHECKED BY:

3-31-201

NEXGEN2™ BOLT DETAIL


S-2B

DISTRIBUTOR CONTACT DETAILS:

ALLFASTENERS
15401 COMMERCE PARK DR.
BROOKPARK, OHIO 44142

PHONE: 440-232-6060 E-MAIL: SALES@ALLFASTENERS.COM

1 NOTE: SHEAR SLEEVE LENGTH: THE SHEAR SLEEVE SHALL PROJECT A MINIMUM OF 3/8" BEYOND THE OUTERMOST SHEAR PLANE. THE CONTRACTOR SHALL SUBMIT FABRICATION DRAWINGS SHOWING AJAX ONESIDE™ BOLT LENGTHS AND SHEAR SLEEVE LENGTHS TO THE EOR FOR REVIEW AND APPROVAL.

FOLLOW ALL MANUFACTURER / DISTRIBUTOR RECOMMENDATIONS FOR INSTALLATION, TIGHTENING, AND INSPECTION

BOLT HOLE NOTES

- 1. ALL SHOP-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM SHOP-DRILLED HOLE DIAMETER PERMITTED IS 1-3/16".
- 2. ALL FIELD-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE <u>MAXIMUM</u> FIELD-DRILLED HOLE DIAMETER PERMITTED IS 30 MM.

BOLT TIGHTENING AND INSPECTION NOTES:

- 1. ALL AJAX ONESIDE™ BOLT ASSEMBLIES SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF SECTION 8.2.4 OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. PER SECTION 8.2.4: ALL FASTENER ASSEMBLIES SHALL BE INSTALLED IN ACCORDANCE WITH THE REQUIREMENTS IN AISC SECTION 8.1 WITH WASHERS POSITIONED AS REQUIRED IN AISC SECTION 6.2. PER REQUIREMENTS IN SECTION 8.1: PRIOR TO BOLT PRETENSIONING, THE JOINT SHALL FIRST BE COMPACTED TO THE SNUG-TIGHT CONDITION. SNUG TIGHT IS THE CONDITION THAT EXISTS WHEN ALL OF THE PLIES IN THE CONNECTION HAVE BEEN PULLED INTO FIRM CONTACT BY THE BOLTS AND THE BOLTS HAVE BEEN TIGHTENED SUFFICIENTLY TO PREVENT THE REMOVAL OF THE NUTS WITHOUT THE USE OF A WRENCH. ONCE THE SNUG TIGHT CONDITION IS ACHIEVED, THEN THE BOLT ASSEMBLY CAN BE TIGHTENED TO THE PRETENSIONED CONDITION.
- 2. ALL AJAX ONESIDE™ BOLT ASSEMBLIES SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF SECTION 9.2.4 OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. NOTE THAT COMPLETE INSPECTION OF ALL AJAX ONESIDE™ BOLT ASSEMBLIES IS REQUIRED IN ADDITION TO ROUTINE OBSERVATION.
- 3. ALL AJAX ONESIDE™ BOLTS SHALL BE INSPECTED BY A QUALIFIED BOLT INSPECTOR PER NOTES 1 AND 2, ABOVE. DURING INSTALLATION, THE BOLT INSPECTOR SHALL VERIFY AND DOCUMENT: THE SHOP-DRILLED AND FIELD-DRILLED HOLE SIZES; THE INSTALLATION OF THE AJAX ONESIDE™ BOLT ASSEMBLY, INCLUDING THE SHEAR SLEEVE PLACEMENT AND NUT LUBRICATION; AND THE CONTRACTOR'S TENSIONING PROCEDURE. THE BOLT INSPECTOR SHALL PROVIDE COMPLETE DOCUMENTATION OF ALL BOLTS AFTER TIGHTENING CLEARLY SHOWING THAT THE DIRECT TENSION INDICATOR WASHERS SHOW THAT THE PROPER BOLT TENSION HAS BEEN REACHED.
- 4. A MINIMUM OF 4 OUT OF 5 SQUIRTER® DTI PROTRUSIONS SHALL BE ENGAGED IN ANY AJAX ONESIDE™/DTI BOLT ASSEMBLY IN THE REINFORCING MEMBERS. A FEELER GAGE MAY BE USED TO VERIFY PROTRUSION COMPRESSION.
- 5. INSPECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURERS REQUIREMENTS AND CROWN DOCUMENT ENG-SOW-10007: MODIFICATION INSPECTION SOW.

BOLT ASSEMBLY AND INSTALLATION:

- 1. BOLT MUST BE PURCHASED PRE-ASSEMBLED.
- 2. FOLLOW BOLT AND DTI MANUFACTURERS INSTRUCTIONS FOR INSTALLATION.

AJAX ONESIDE™ BOLT DETAIL

CODE	SIZE	COLOR	SLEEVE LENGTH	GRIP	GRIP IMP
OSBA20.65-6	M20 x 65	ORANGE	6.0 (0.236")	12.5 / 20.0	0.500" / 0.787"
OSBA20.95-14	M20 x 95	BLACK	14.0 (0.551")	20.0 / 32.0	0.787" / 1.259"
OSBA20.95-22	M20 x 95	GREEN	22.0 (0.866")	30.0 / 50.0	1.181" / 1.968"
OSBA20.95-30	M20 x 95	YELLOW	30.0 (1.181")	40.5 / 50.0	1.595" / 1.968"
OSBA20.135-39	M20 x 135	BLUE	39.0 (1.535")	49.0 / 77.0	1.929" / 3.031"
OSBA20.135-48	M20 x 135	BROWN	48.0 (1.889")	60.5 / 77.0	2.375" / 3.031"
OSBA20.135-57	M20 x 135	PURPLE	57.0 (2.244")	67.0 / 90.0	2.637" / 3.543"
OSBA20.165-76	M20 x 165	RED	76.0 (3.000")	87.0 / 120.0	3.425" / 4.724"
OSBA20.250	M20 x 250	SILVER	MTO	121.0 / 211.0	4.724" / 8.310"

DISTRIBUTOR

IRA SVENSGAARD AND ASSOCIATES
PETER SVENDSGAARD - PETERS@IRASVENS.COM
JOHN KILLAM - JOHN@IRASVENS.COM

PHONE: (530) 647-8225 FAX: (530) 647-8229

MANUFACTURER

AJAX FASTENERS

SALES + TECH: ONESIDE@AJAXFAST.COM.AU

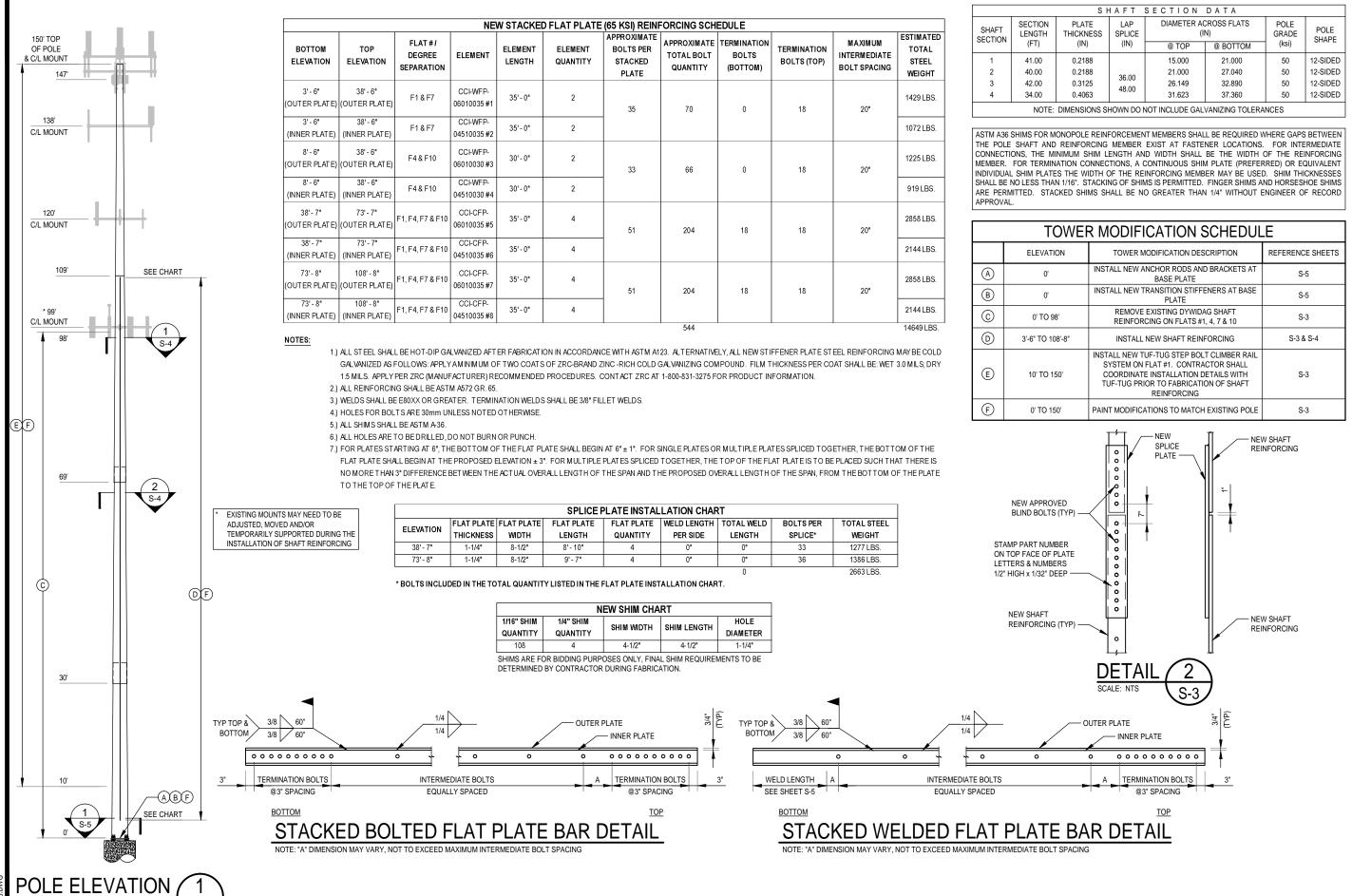
© Copyright 2017, by Paul J. Ford and Company All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

COMPANY
600. Columbus, OH 43215
www.pauliford.com

PAUL & COM0 E Broad St, Ste 600: Columnone 614.221.6679

Phone 614.221.6679 www.pauliford

ROWN CAST


REMARADOW DRIVE PITTSFORD NY

MODIFICATION OF AN EXISTING 150' MONOPOLE BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

PROJECT No: 37517-0750.003.7700
DRAWN BY: B.M.S.
DESIGNED BY: S.J.T.
CHECKED BY:
DATE: 3-31-2017

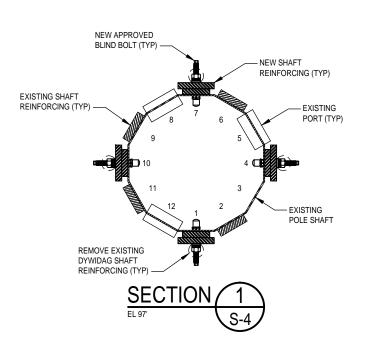
AJAX ONESIDE™ BOLT DETAIL

S-2C

Copyright 2017, by Paul J. Ford and Compa All Rights Reserved. This document and Paul J. Ford and Company, issued in strict confidence and shall not, without th prior written permission of Paul J. Ford and Company, be reproduced, copied of used for any purpose other than the

tended use for this specific project 43215 rd.com ď 0> S

μZ PA Wandamal

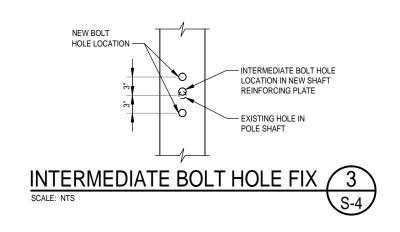

PAU & CO. Ste 600: 6679 که ک

 \triangleleft OWN ď

150 AN EXISTING J#841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT MONOPOLE **MODIFICATION OF**

PROJECT No: 37517-0750.003.77 DRAWN BY B.M. S.J.T DESIGNED BY CHECKED BY DATE: 3-31-201

> **MONOPOLE PROFILE**



* CONTRACTOR SHALL COORDINATE INSTALLATION OF NEW STEP RAIL SYSTEM WITH TUF-TUG

NEW APPROVED BLIND BOLT (TYP) - NEW SHAFT REINFORCING (TYP) EXISTING SHAFT REINFORCING (TYP) POLE SHAFT REMOVE EXISTING DYWIDAG SHAFT REINFORCING (TYP) SECTION EL 67'

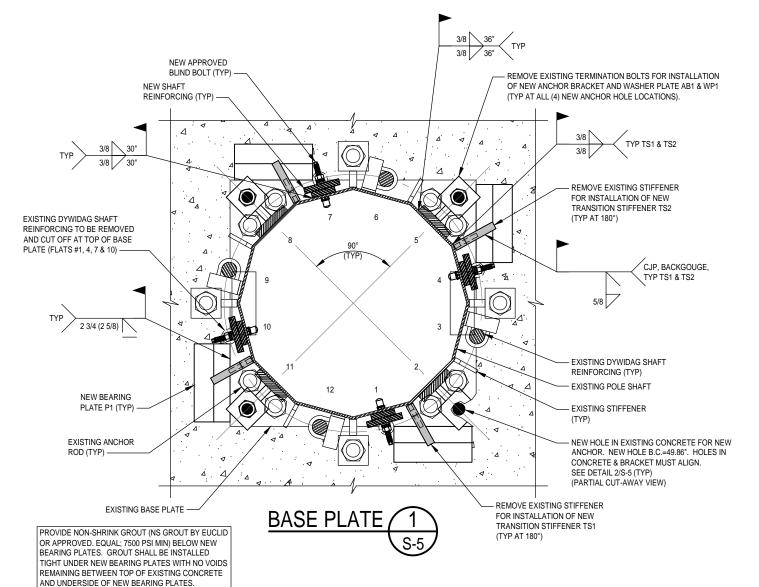
CLIMBING PEGS W/ SAFETY CLIMB (PROPOSED) (PROPOSED)
(1) 3/8" TO 150 FT LEVEL
(2) 3/4" TO 150 FT LEVEL
(INSTALLED—IN 2" CONDUIT)
(2) 3/4" TO 150 FT LEVEL
(INSTALLED)
(INSTALLED) (INSTALLED) (1) 1/2" TO 99 FT LEVEL –(6) 1–5/8" TO 99 FT LEVEL (1) 3/8" TO 150 FT LEVEL (12) 1–5/8" TO 150 FT LEVEL -(PROPOSED)
(2) 1-1/4" TO 99 FT LEVEL
(INSTALLED)
(1) 1/2" TO 99 FT LEVEL
(6) 1-5/8" TO 99 FT LEVEL (PROPOSED) (1) 1-1/2" TO 120 FT LEVEL (13) 1-5/8" TO 120 FT LEVEL (INSTALLED-TO BE REMOVED) (2) 3/8" TO 120 FT LEVEL (6) 1-5/8" TO 120 FT LEVEL -(6) 1–5/8" TO 99 FT LEVEL (INSTALLED-IN CONDUIT) (6) 5/16" TO 138 FT LEVEL (INSTALLED) (2) 1/2" TO 138 FT LEVEL -

BASE LEVEL DRAWING

Copyright 2017, by Paul J. Ford and Compar All Rights Reserved. This document and he data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the orior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

PAUL J. FORD & COMPANY St, Ste 600 Columbus, OH 43215 21.6679 www.pauljford.com

150 MODIFICATION OF AN EXISTING MONOPOLE


BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

PROJECT No: DRAWN BY: B.M.S DESIGNED BY: S.J.T CHECKED BY:

> SHAFT REINFORCING **SECTIONS**

3-31-201

BAS	E SPECIFICATIONS
BASE PLATE:	41" SQUARE; 2 3/4" THK.; Fy=50 KSI
ANCHOR RODS:	(8) 2 1/4"ø; A615 GRADE 75; 43" B.C.

NEW ANCHOR ROD REINFORCING SHALL BE INSTALLED **NEW ANCHOR RODS** PER MANUFACTURER'S RECOMMENDATIONS AND HOLE TO BE MECHANICALLY ROUGHENED. ONCE ALL RESIN DIAMETER LENGTH (IN) EMBEDMENT | TARGET TENSION | HOLE DIAMETER MATERIAL HAS CURED, ALL NEW ANCHOR ROD REINFORCING SHALL DEPTH (IN) LOAD (KIPS) BE TESTED TO THE TARGET TENSION LOAD. ONCE THE TENSION LOAD HAS BEEN RELEASED, TIGHTEN HEAVY CCI-AR-0175 1 3/4 120 A193 GR B7 60 HEX NUT TO SNUG TIGHT PLUS 1/8 TURN OF NUT. REFER NEW DOUBLE HVY NUTS (TYP ABOVE AND TO SHEET S-1, SECTION 6 FOR ADDITIONAL INFORMATION BELOW AB1 BRACKET) TIGHTEN TO SNUG TIGHT PLUS 1/8 TURN OF NUT AFTER TARGET TENSION LOADING BRACKET AB1 CONTRACTOR TO VERIFY THAT A PULL TEST IS ABLE TO BE PERFORMED USING THE ANCHOR ROD PROJECTION SHOW! POLE SHAFT 1'-0" ± 2" MIN PROJECTION NEW WASHER PLATE WP1 MUST FULLY BEAR ON THE TUBE NEW ALL-THREAD GALVANIZED ANCHOR EXISTING SHAFT REINFORCING -NEW WASHER PLATE WP1 MUST FULLY BEAR ON THE TUBE CONTRACTOR TO FIELD TRIM EDGE OF BASE PLATE FOR ANCHOR INSTALLATION AS REQUIRED. REPAIR EXISTING GROUT AS REQUIRED. - EXISTING CONCRETE FOUNDATION EXISTING BASE PLATE AMAN B EXISTING GRADE WRAP TOP 6" OF THE ANCHOR ROD WITHIN THE CONCRETE IN ELECTROTAPE 706B BOND BREAKER TAPE OR EQUIVALENT

NEW ANCHOR & BRACKET DETAIL

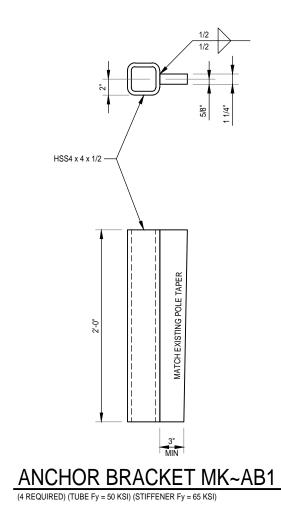
ALLFASTENERS AF35LVE EPOXY

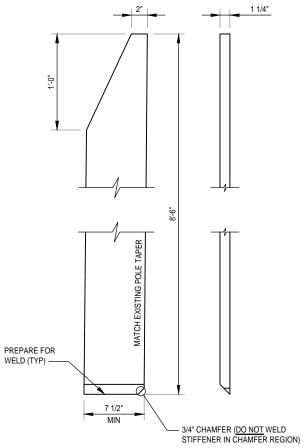
Copyright 2017, by Paul J. Ford and Compar All Rights Reserved. This document and he data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the ntended use for this specific project.

PAUL J. FORD & COMPANY St, Ste 600· Columbus, OH 43215 21.6679 www.pauljford.com

S CR.

 \triangleleft

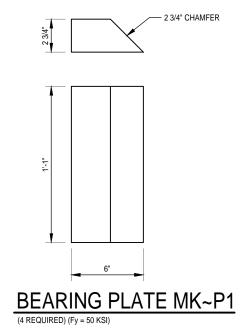

150 MODIFICATION OF AN EXISTING J#841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT MONOPOLE

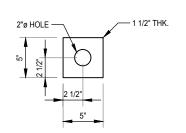

PROJECT No: 37517-0750.003.770 DRAWN BY: S.J.T DESIGNED BY: CHECKED BY:

B

BASE PLATE DETAILS

3-31-201





TRANSITION STIFFENER MK~TS1

PREPARE FOR WELD (TYP) -7 1/2" MIN – 3/4" CHAMFER (<u>DO NOT</u> WELD STIFFENER IN CHAMFER REGION)

TRANSITION STIFFENER MK~TS2

WASHER PLATE MK~WP1
(8 REQUIRED) (Fy = 50 KSI)

Copyright 2017, by Paul J. Ford and Compa All Rights Reserved. This document and he data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the orior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the

PAUL J. FORD
& COMPANY
250 E Broad St, Ste 600· Columbus, OH 43215
Phone 614.221.6679 www.pauljford.com

MODIFICATION OF AN EXISTING 150' MONOPOLE BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

PROJECT No: 37517-0750.003.770 DRAWN BY: B.M.S DESIGNED BY: S.J.T CHECKED BY: 3-31-2017

MISC DETAILS

MODIFICATION OF AN EXISTING 150' MONOPOLE TOWER MAPPING CCI DOC ID #4710143 BU #841288; BRIDGEPORT NORTH

205 KAECHELE PLACE BRIDGEPORT, CONNECTICUT 06606 FAIRFIELD COUNTY LAT: 41° 13' 24.04"; LONG: -73° 13' 0.38"

APP: 374828 REV. 2; WO: 1368682

PROJECT CONTACTS

STRUCTURE OWNER: CROWN CASTLE

MOD PM: DAN VADNEY AT DAN.VADNEY@CROWNCASTLE.COM PH: (518) 373-3510

MOD CM: JASON D'AMICO AT JASON.D'AMICO@CROWNCASTLE.COM PH: (860) 209-0104

ENGINEER OF RECORD: PJFMOD@PJFWEB.COM

WIND DESIGN DAT	ΓΑ
REFERENCE STANDARD	ANSI/TIA-222-G-2-2009
LOCAL CODE	2016 CONNECTICUT STATE BUILDING CODE
ULTIMATE WIND SPEED (3-SECOND GUST)	125 MPH
CONVERTED NOMINAL WIND SPEED (3-SECOND GUST)	97 MPH
ICE THICKNESS	0.75 IN
ICE WIND SPEED	50 MPH
SERVICE WIND SPEED	60 MPH
RISK CATEGORY	II
EXPOSURE CATEGORY	С
Kzt	1.0

THIS PROJECT INCLUDES THE FOLLOWING ITEMS
REMOVE EXISTING DYWIDAG SHAFT REINFORCING
REMOVE TERMINATION BOLTS FOR EXISTING REINFORCING
SHAFT REINFORCING
INSTALL NEW CLIMBING RAIL SYSTEM
REMOVE EXISTING STIFFENERS
FIELD WELDED STIFFENERS
FIELD WELDED ANCHOR BRACKETS
POST INSTALLED ANCHOR RODS
HIGH STRENGTH GROUT
PAINT MODIFICATIONS TO MATCH EXISTING POLE

SHEET INDEX			
SHEET NUMBER	DESCRIPTION		
T-1	TITLE SHEET		
T-2	MI CHECKLIST		
S-1	GENERAL NOTES		
S-2A	FORGBOLT™ DETAILS		
S-2B	NEXGEN2™ BOLT DETAIL		
S-2C	AJAX ONESIDE™ BOLT DETAIL		
S-3	MONOPOLE PROFILE		
S-4	SHAFT REINFORCING SECTIONS		
S-5	BASE PLATE DETAILS		
S-6	MISC DETAILS		

© Copyright 2017, by Paul J. Ford and Company, All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

COMPANY
600 Columbus, OH 43215
9 www.pauliford.com

CASTLE
INE, PITTSFORD, NY 14534

PACL J & COMF 250 E Broad St, Ste 600· Colu Phone 614.221.6679 w

CROWN (

MODIFICATION OF AN EXISTING 150' MONOPOLE

PROJECT No: 37517-0750.003.7700
DRAWN BY: B.M.S.
DESIGNED BY: S.J.T.
CHECKED BY: 3-31-2017

TITLE SHEET

T-1

QUALIFIED ENGINEERING SERVICES ARE AVAILABLE FROM PAUL J. FORD & COMPANY TO ASSIST CONTRACTORS IN CLASS IV RIGGING PLAN REVIEWS. FOR REQUESTED QUALIFIED ENGINEERING SERVICES, PLEASE CONTACT RIGGING@PJFWEB.COM.

THE ASSOCIATED FAILING SA WO NUMBER FOR THIS PROJECT IS 1358541

ATTENTION ALL CONTRACTORS, ANYTIME YOU ACCESS A CROWN SITE FOR ANY REASON YOU ARE TO CALL THE CROWN NOC UPON ARRIVAL AND DEPARTURE, DAILY AT (800) 788-7011.

MODIFICATION INSPECTION NOTES:

- GENERAL

 1. THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED BY ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE EOR.
- THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF. NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR
- ALL MI'S SHALL BE CONDUCTED BY A CROWN CASTLE ENGINEERING VENDOR (AEV) OR ENGINEERING SERVICE VENDOR (AESV) THAT IS APPROVED TO PERFORM ELEVATED WORK FOR CROWN CASTLE.
- TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT YOUR CROWN CASTLE POINT OF CONTACT (POC).
- REFER TO ENG-SOW-10007: MODIFICATION INSPECTION SOW FOR FURTHER DETAILS AND REQUIREMENTS

- MI INSPECTOR

 1. THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI TO, AT A MINIMUM: 2.1.1. REVIEW THE REQUIREMENTS OF THE MI CHECKLIST.
- WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS
- THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GC INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS, AND SUBMITTING THE MI REPORT TO CROWN CASTLE.

- THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:
- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS.
- THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST AND ENG-SOW-10007.

- THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:
- 4.1.1. IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLE 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.
 THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS.
 IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION
- INSPECTIONS TO ALLOW FOUNDATION AND MI INSPECTION(S) TO COMMENCE WITH ONE SITE VISIT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING THE INITIAL MI. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS

CANCELLATION OR DELAYS IN SCHEDULED MI

5.1. IF THE GC AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE GO AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE GO AND THE MI WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE GO AND THE MI WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE GO AND THE MI WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE MI WILL BE CONDUCTED. THE MI WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE MI WILL BE CONDUCTED. THE MI WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE WILL BE CONDUCTED. THE WILL BE CONDUCTED. AND EITHER PARTY

ONLY THE WILL BE CONDUCTED. THE WILL BE CON CANCELS OR DELAYS, CROWN CASTLE SHALL NOT BE RESPONSIBLE FOR ANY COSTS, FEES, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELLATION OR DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON-SITE, ETC.). IF CROWN CASTLE CONTRACTS DIRECTLY FOR A THIRD PARTY MI, EXCEPTIONS MAY BE MADE IN THE EVENT THAT THE DELAY/CANCELLATION IS CAUSED BY WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES INVOLVED.

- CORRECTION OF FAILING MI'S

 IF THE MODIFICATION INSTALLATION WOULD FAIL THE MI ("FAILED MI"), THE GC SHALL WORK WITH CROWN CASTLE TO
- COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:
 6.1.1. CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT MI.
- OR, WITH CROWN CASTLE'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT CONDITION.

- MI VERIFICATION INSPECTIONS
 7.1. CROWN CASTLE RESERVES THE RIGHT TO CONDUCT A MI VERIFICATION INSPECTION TO VERIFY THE ACCURACY AND COMPLETENESS OF PREVIOUSLY COMPLETED MI INSPECTION(S) ON TOWER MODIFICATION PROJECTS.
- ALL VERIFICATION INSPECTIONS SHALL BE HELD TO THE SAME SPECIFICATIONS AND REQUIREMENTS IN THE CONTRACT DOCUMENTS AND IN ACCORDANCE WITH ENG-SOW-10007.
- VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT AEV/AESV FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED "PASSING MI" OR "PASS AS NOTED MI" REPORT

- PHOTOGRAPHS

 1. BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND
- 8.1.1. PRECONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- 8.1.4.
- PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS
 WELD PREPARATION
- 817 BOLT INSTALLATION AND TORQUE
- FINAL INSTALLED CONDITION 8.1.8.
- SURFACE COATING REPAIR
- 8.1.10. POST CONSTRUCTION PHOTOGRAPHS 8.1.11. FINAL INFIELD CONDITION
- PHOTOS OF ELEVATED MODIFICATIONS TAKEN FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.
- 8.1.13. THIS IS NOT A COMPLETE LIST OF REQUIRED PHOTOS, PLEASE REFER TO ENG-SOW-10007

- INSPECTION AND TESTING
 9.1. ALL WORK SHALL BE SUBJECT TO REVIEW AND OBSERVATION BY CROWN CASTLE'S REPRESENTATIVE AND CROWN CASTLE'S AUTHORIZED INDEPENDENT INSPECTION AND TESTING AGENCY.
- INSPECTION SERVICES WHICH ARE FURNISHED BY OTHERS ARE STILL REQUIRED WHEN THE EOR PERFORMS SUPPORT SERVICES DURING CONSTRUCTION.
- OBSERVED DISCREPANCIES BETWEEN THE WORK AND THE CONTRACT DOCUMENTS SHALL BE CORRECTED BY THE CONTRACTOR AT NO ADDITIONAL COST.
- AN INDEPENDENT QUALIFIED INSPECTION/TESTING AGENCY SHALL BE SELECTED AND RETAINED FOR THE SOLE PURPOSE OF INSPECTING, TESTING, DOCUMENTING, AND APPROVING ALL WELDING AND FIELD WORK PERFORMED
- 9.4.1. ACCESS TO ANY PLACE WHERE WORK IS BEING DONE SHALL BE PERMITTED AT ALL TIMES.
 9.4.2. THE INSPECTION AGENCY SHALL SO SCHEDULE THIS WORK AS TO CAUSE A MINIMUM OF INTERRUPTION TO, AND COORDINATE WITH, THE WORK IN PROGRESS. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE THE WORK SCHEDULE WITH THE TESTING AGENCY. THE CONTRACTOR SHALL ALLOW FOR ADEQUATE TIME AND ACCESS FOR THE TESTING AGENCY TO PERFORM THEIR DUTIES.
- 9.5. THE INSPECTION AND TESTING AGENCY SHALL BE RESPONSIBLE TO PERFORM THE FOLLOWING SERVICES AND INSPECT THE FOLLOWING ITEMS IN ACCORDANCE WITH THE CONSTRUCTION DRAWINGS. THE TESTING AGENCY SHALL INSPECT ITEMS ON THIS LIST AND OTHER ITEMS AS NECESSARY TO FULFILL THEIR RESPONSIBILITY. THE TESTING AGENCY SHALL UTILIZE EXPERIENCED, TRAINED INSPECTORS INCLUDING AWS CERTIFIED WELDING INSPECTORS (CWI). INSPECTORS SHALL HAVE THE TRAINING, CREDENTIALS, AND EXPERIENCE APPROPRIATE FOR AND COMMENSURATE WITH THE SCOPE AND TYPE OF INSPECTION WORK TO BE PERFORMED.
- 9.6. GENERAL
 9.6.1. PERFORM PERIODIC ON-SITE OBSERVATION, INSPECTION, VERIFICATION, AND TESTING DURING THE TIME THE CONTRACTOR IS WORKING ON-SITE. AGENCY SHALL NOTIFY CROWN CASTLE AND THE EOR IMMEDIATELY WHEN FIELD PROBLEMS OR DISCREPANCIES OCCUR.
- FOUNDATIONS AND SOIL PREPARATION (NOT REQUIRED)
- CONCRETE TESTING PER ACI (NOT REQUIRED)
 STRUCTURAL STEEL
- 9.9.
- CHECK STEEL ON THE JOB WITH THE PLANS.
- 9.9.2. CHECK MILL CERTIFICATIONS. CALL FOR LABORATORY TEST REPORTS WHEN MILL CERTIFICATION IS IN QUESTION.
- CHECK GRADE OF STEEL MEMBERS, AND BOLTS FOR CONFORMANCE WITH DRAWINGS.
- INSPECT ALL STRUCTURAL BOLTS SHALL BE FIELD INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS, DEC. 31, 2009.
- INSPECT STEEL MEMBERS FOR DISTORTION, EXCESSIVE RUST, FLAWS AND BURNED HOLES.
- CHECK STEEL MEMBERS FOR SIZES, SWEEP AND DIMENSIONAL TOLERANCES.
- CHECK FOR SURFACE FINISH SPECIFIED, GALVANIZED.
- CHECK THAT BOLTS HAVE BEEN TIGHTENED PROPERLY
- PRIOR TO ANY FIELD CUTTING THE CONTRACTOR SHALL MARK THE CUTOUT LINES ON THE STEEL AND THE INSPECTION/TESTING AGENCY SHALL VERIFY PROPOSED LAYOUT, LOCATION, AND DIMENSIONS. THE INSPECTION/TESTING AGENCY SHALL CLOSELY AND CONTINUOUSLY MONITOR THIS ACTIVITY.

- 9.10. <u>WELDING:</u>
 9.10.1. VERIFY FIELD WELDING PROCEDURES, WELDERS, AND WELDING OPERATORS, NOT DEEMED PREQUALIFIED, IN
- ACCORDANCE WITH AWS D1.1. INSPECT FIELD WELDED CONNECTIONS IN ACCORDANCE WITH THE REQUIREMENTS SPECIFIED AND WITH AWS
- 9.10.3. APPROVE FIELD WELDING SEQUENCE.
- 9.10.4. A PROGRAM OF THE APPROVED SEQUENCES SHALL BE SUBMITTED TO CROWN CASTLE BEFORE WELDING BEGINS. NO CHANGE IN APPROVED SEQUENCES MAY BE MADE WITHOUT PERMISSION FROM CROWN CASTLE. 9.10.5. INSPECT WELDED CONNECTIONS AS FOLLOWS AND IN ACCORDANCE WITH AWS D1.1:
- 9.10.5.1. INSPECT WELDING EQUIPMENT FOR CAPACITY, MAINTENANCE, AND WORKING CONDITIONS. 9.10.5.2. VERIFY SPECIFIED ELECTRODES AND HANDLING AND STORAGE OF ELECTRODES FOR CONFORMANCE TO
- SPECIFICATIONS. INSPECT PREHEATING AND INTERPASS TEMPERATURES FOR CONFORMANCE WITH AWS D1.1
- VISUALLY INSPECT ALL WELDS AND VERIFY THAT QUALITY OF WELDS MEETS THE REQUIREMENTS OF AWS D1.1. OTHER TESTS MAY ALSO BE PERFORMED ON THE WELDS BY THE TESTING AGENCY IN ORDER FOR THEM TO PERFORM THEIR DUTIES FOR THIS PROJECT.
- 9.10.5.5. SPOT TEST AT LEAST ONE FILLET WELD OF EACH MEMBER USING MAGNETIC PARTICLE. 9.10.5.6. INSPECT FOR SIZE, SPACING, TYPE AND LOCATION AS PER APPROVED DRAWINGS.
- VERIFY THAT THE BASE METAL CONFORMS TO THE DRAWINGS.
- 9.10.5.8. REVIEW THE REPORTS BY TESTING LABS.
 9.10.5.9. CHECK TO SEE THAT WELDS ARE CLEAN AND FREE FROM SLAG.
- 9.10.5.10. INSPECT RUST PROTECTION OF WELDS AS PER SPECIFICATIONS
- 9.10.5.11. CHECK THAT DEFECTIVE WELDS ARE CLEARLY MARKED AND HAVE BEEN ADEQUATELY REPAIRED.

9.11. REPORTS: 9.11.1. COMPILE AND PERIODICALLY SUBMIT DAILY INSPECTION REPORTS TO CROWN CASTLE.

- 9.11.2. THE INSPECTION PLAN OUTLINED HEREIN IS INTENDED AS A DESCRIPTION OF GENERAL AND SPECIFIC ITEMS OF CONCERN. IT IS NOT INTENDED TO BE ALL-INCLUSIVE. IT DOES NOT LIMIT THE TESTING AND INSPECTION AGENCY TO THE ITEMS LISTED. ADDITIONAL TESTING, INSPECTION, AND CHECKING MAY BE REQUIRED AND SHOULD BE ANTICIPATED. THE TESTING AGENCY SHALL USE THEIR PROFESSIONAL JUDGMENT AND KNOWLEDGE OF THE JOB SITE CONDITIONS AND THE CONTRACTOR'S PERFORMANCE TO DECIDE WHAT OTHER ITEMS REQUIRE ADDITIONAL ATTENTION. THE TESTING AGENCY'S JUDGMENT MUST PREVAIL ON ITEMS NOT SPECIFICALLY COVERED. ANY DISCREPANCIES OR PROBLEMS SHALL BE BROUGHT IMMEDIATELY TO CROWN CASTLE'S ATTENTION. RESOLUTIONS ARE NOT TO BE MADE WITHOUT CROWN CASTLE'S REVIEW AND SPECIFIC WRITTEN CONSENT. CROWN CASTLE RESERVES THE RIGHT TO DETERMINE WHETHER OR NOT A RESOLUTION IS
- 9.11.3. AFTER EACH INSPECTION, THE TESTING AGENCY WILL PREPARE A WRITTEN ACCEPTANCE OR REJECTION WHICH WILL BE GIVEN TO THE CONTRACTOR AND FILED AS DAILY REPORTS TO CROWN CASTLE. THIS WRITTEN ACTION WILL GIVE THE CONTRACTOR A LIST OF ITEMS TO BE CORRECTED, PRIOR TO CONTINUING CONSTRUCTION, AND/OR LOADING OF STRUCTURAL ITEMS.
- THE TESTING AGENCY DOES NOT RELIEVE THE CONTRACTOR'S CONTRACTUAL OR STATUTORY OBLIGATIONS. THE CONTRACTOR HAS THE SOLE RESPONSIBILITY FOR ANY DEVIATIONS FROM THE OFFICIAL CONTRACT DOCUMENTS. THE TESTING AGENCY WILL NOT REPLACE THE CONTRACTOR'S QUALITY CONTROL PERSONNEL.

CONSTRUCTION/INSTALLATION INSPECTIONS ND TESTING REQUIRED (COMPLETED BY EOR)	REPORT ITEM		
	PRE-CONSTRUCTION		
X	MI CHECKLIST DRAWINGS		
Х	EOR REVIEW		
X	FABRICATION INSPECTION		
X	FABRICATOR CERTIFIED WELD INSPECTION		
X	MATERIAL TEST REPORT (MTR)		
NA	FABRICATOR NDE INSPECTION		
NA	NDE REPORT OF MONOPOLE BASE PLATE (AS REQUIRED)		
Х	PACKING SLIPS		
DDITIONAL TESTING AND INSPECTIONS:	CONSTRUCTION		
X	CONSTRUCTION INSPECTIONS		
NA	FOUNDATION INSPECTIONS		
NA NA	CONCRETE COMP. STRENGTH AND SLUMP TESTS		
X	POST INSTALLED ANCHOR ROD VERIFICATION		
X	BASE PLATE GROUT VERIFICATION		
X	CONTRACTOR'S CERTIFIED WELD INSPECTION		
NA	EARTHWORK: PROVIDE PHOTO DOCUMENTATION OF EXCAVATION QUALITY AND COMPACTION		
X	ON SITE COLD GALVANIZING VERIFICATION		
NA 🔾	GUY WIRE TENSION REPORT		
X	GC AS-BUILT DOCUMENTS		
NA	MICROPILE/ROCK ANCHOR INSTALLER'S DRILLING AND INSTALLATION LOGS AND QA'QC DOCUMENTS		
DDITIONAL TESTING AND INSPECTIONS:			
	POST-CONSTRUCTION		
X	MI INSPECTOR REDLINE OR RECORD DRAWING(S)		
X	POST INSTALLED ANCHOR ROD TARGET TENSION LOAD TESTING		
NA	REFER TO MICROPILE/ROCK ANCHOR NOTES FOR SPECIAL INSPECTION AND TESTING REQUIREMENTS.		
X	PHOTOGRAPHS		

OF CONNEC,

NOTE: X DENOTES A DOCUMENT NEEDED FOR THE PMI REPORT NA DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE PMI REPORT

50' **EXISTING** MONOPOL A OF. MODIFICATION

J #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

BC

Copyright 2017, by Paul J. Ford and Compa

All Rights Reserved. This document and

the data contained herein, is proprietary

to Paul J. Ford and Company, issued in strict confidence and shall not, without the

prior written permission of Paul J. Ford

and Company, be reproduced, copied or

used for any purpose other than the

ntended use for this specific project.

S

PAUL J. FOR I. & COMPANY
St, Ste 600: Columbus, OH 43214

PROJECT No 37517-0750.003.77 S.J.T DESIGNED BY CHECKED BY DATE: 3-31-20

MI CHECKLIST

T-2

MONOPOLE RETROFIT PROJECT MASTER NOTES DOCUMENT (REV. 3, 02/05/2015)

- THE MONOPOLE STRUCTURE IN ITS EXISTING CONDITION DOES NOT HAVE THE STRUCTURAL CAPACITY TO CARRY ALL OF THE PROPOSED AND EXISTING LOADS FROM THE ATTACHED STRUCTURAL MODIFICATION REPORT AT THE REQUIRED MINIMUM WIND SPEEDS. DO NOT INSTALL ANY NEW LOADS UNTIL THE MONOPOLE REINFORCING SYSTEM IS COMPLETELY AND SUCCESSFULLY INSTALLED.
- THESE DRAWINGS WERE PREPARED FROM INFORMATION PROVIDED BY CROWN CASTLE. THE INFORMATION PROVIDED HAS NOT BEEN FIELD VERIFIED BY THE ENGINEER OF RECORD (EOR) FOR ACCURACY AND THEREFORE DISCREPANCIES BETWEEN THESE DRAWINGS AND ACTUAL SITE CONDITIONS SHOULD BE ANTICIPATED. PRIOR TO FABRICATION AND INSTALLATION CONTRACTOR SHALL VERIFY ALL LENGTHS AND QUANTITIES GIVEN. LENGTH AND QUANTITIES PROVIDED ARE FOR QUOTING PURPOSES ONLY AND SHALL NOT BE USED FOR FABRICATION. THE CONTRACTOR SHALL COORDINATE WITH THE PROJECT DRAWINGS AND THEIR FIELD VERIFIED CONDITIONS AND DIMENSIONS BEFORE PROCEEDING WITH THE WORK. THE CONTRACTOR SHALL IMMEDIATELY REPORT ANY AND ALL DISCREPANCIES TO THE EOR AND CROWN CASTLE BEFORE PROCEEDING WITH THE WORK. ANY WORK PERFORMED WITHOUT A PREFABRICATION MAPPING IS DONE AT THE RISK OF THE GENERAL CONTRACTOR AND/OR THE FABRICATOR
- IF MATERIALS, QUANTITIES, STRENGTHS OR SIZES INDICATED BY THE DRAWINGS OR SPECIFICATIONS ARE NOT IN AGREEMENT WITH THESE NOTES, THE BETTER QUALITY AND/OR GREATER QUANTITY, STRENGTH OR SIZE INDICATED, SPECIFIED OR NOTED SHALL BE PROVIDED.
- THIS STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER THE INSTALLATION OF THE REINFORCING REPAIR SYSTEM HAS BEEN SUCCESSFULLY COMPLETED. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO ENSURE THE SAFETY AND STABILITY OF THE MONOPOLE AND ITS COMPONENT PARTS DURING FIELD MODIFICATIONS. THIS INCLUDES, BUT IS NOT LIMITED TO, THE ADDITION OF WHATEVER TEMPORARY BRACING, GUYS OR TIE DOWNS THAT MAY BE NECESSARY. SUCH MATERIAL SHALL BE REMOVED AND SHALL REMAIN THE PROPERTY OF THE CONTRACTOR AFTER THE COMPLETION OF THE PROJECT.
- ALL CONSTRUCTION MEANS AND METHODS: INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/TIA-1019 (LATEST EDITION), OSHA AND GENERAL INDUSTRY STANDARDS. ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-1019 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.
- OBSERVATION VISITS TO THE SITE BY CROWN CASTLE AND/OR THE EOR SHALL NOT INCLUDE INSPECTIONS OF THE PROTECTIVE MEASURES OR THE CONSTRUCTIO PROCEDURES. ANY SUPPORT SERVICES PERFORMED BY THE EOR DURING CONSTRUCTION ARE SOLELY FOR THE PURPOSE OF ACHIEVING GENERAL CONFORMANCE WITH THE CONTRACT DOCUMENTS. THEY DO NOT GUARANTEE THE CONTRACTOR'S PERFORMANCE AND SHALL NOT BE CONSTRUED AS SUPERVISION OF CONSTRUCTION.
- ALL MATERIALS AND EQUIPMENT FURNISHED SHALL BE NEW AND OF GOOD QUALITY, FREE FROM FAULTS AND DEFECTS AND IN CONFORMANCE WITH THE CONTRACT DOCUMENTS. ANY AND ALL SUBSTITUTIONS MUST BE PROPERLY APPROVED AND AUTHORIZED IN WRITING BY CROWN CASTLE AND EOR PRIOR TO INSTALLATION. THE CONTRACTOR SHALL FURNISH SATISFACTORY EVIDENCE AS TO THE KIND AND QUALITY OF MATERIALS AND EQUIPMENT BEING SUBSTITUTED. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK.
- THE CONTRACTOR IS RESPONSIBLE TO ENSURE THAT THIS PROJECT AND RELATED WORK COMPLIES WITH ALL APPLICABLE LOCAL, STATE, AND FEDERAL SAFETY CODES
- AND REGULATIONS GOVERNING THIS WORK AS WELL AS CROWN CASTLE SAFETY GUIDELINES.
 THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING AND NEW COAXIAL CABLES AND OTHER EQUIPMENT DURING CONSTRUCTION
- ANY EXISTING ATTACHMENTS AND/OR PROJECTIONS ON THE POLE THAT MAY INTERFERE WITH THE INSTALLATION OF THE REINFORCING SYSTEM WILL HAVE TO BE REMOVED AND RELOCATED, REPLACED, OR RE-INSTALLED AS REQUIRED AFTER THE REINFORCING IS SUCCESSFULLY COMPLETED. THE CONTRACTOR SHALL IDENTIFY AND COORDINATE THESE ITEMS PRIOR TO CONSTRUCTION WITH CROWN CASTLE, TESTING AGENCY, AND EOR.
- ANY AND ALL EXISTING PLATFORMS THAT ARE LOCATED IN AREAS OF THE POLE SHAFT WHERE SHAFT REINFORCING MUST BE APPLIED SHALL BE TEMPORARILY REMOVED OR OTHERWISE SUPPORTED TO PERMIT NEW CONTINUOUS REINFORCEMENT TO BE ATTACHED. AFTER THE CONTRACTOR HAS SUCCESSFULLY INSTALLED THE MONOPOLE REINFORCEMENT SYSTEM, THE CONTRACTOR SHALL RE-INSTALL THE PLATFORMS.
- THE CLIMBING FACILITIES, SAFETY CLIMB AND ALL PARTS THEREOF SHALL NOT BE IMPEDED, MODIFIED OR ALTERED WITHOUT THE EXPRESS APPROVAL OF THE EOR.
- 1.13. FOR STANDARD CROWN PARTS SEE THE MOST RECENT VERSION OF THE "CCI APPROVED REINFORCEMENT COMPONENTS" CATALOG.
- 1.14. ALL SOLUTIONS FOR THE REPLACEMENT, RELOCATION OR MODIFICATION OF THE SAFETY CLIMB AND/OR ANY OF THE MONOPOLE CLIMBING FACILITIES SHALL BE COORDINATED WITH TUF-TUG PRODUCTS. CONTACT DETAILS:

3434 ENCRETE LANE, MORAINE, OHIO 45439 PHONE: 937-299-1213 EMAIL: TUFTUG@AOL.COM

- STRUCTURAL STEEL

 1.1. STRUCTURAL STEEL MATERIALS, FABRICATION, DETAILING, AND WORKMANSHIP SHALL CONFORM TO THE LATEST EDITION OF THE FOLLOWING REFERENCE STANDARDS:

 2.1.1. BY THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC):

 2.1.1.1. "SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS."
- 2.1.1.2. "SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM HIGH STRENGTH BOLTS," AS APPROVED BY THE RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS.
- 2.1.1.3. "CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES"
- 2.1.2. BY THE AMERICAN WELDING SOCIETY (AWS):
 2.1.2.1. "STRUCTURAL WELDING CODE STEEL D1.1."
- 2.1.2.2. "STANDARD SYMBOLS FOR WELDING, BRAZING, AND NONDESTRUCTIVE EXAMINATION"
- ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM HIGH STRENGTH BOLTS', DEC. 31, 2009.
- ANY MATERIAL OR WORKMANSHIP WHICH IS OBSERVED TO BE DEFECTIVE OR INCONSISTENT WITH THE CONTRACT DOCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACTOR'S EXPENSE. WELDED CONNECTIONS SHALL CONFORM TO THE LATEST REVISED CODE OF THE AMERICAN WELDING SOCIETY, AWS D1.1. ALL WELD ELECTRODES SHALL BE E80XX
- UNLESS NOTED OTHERWISE ON THE DRAWINGS ALL WELDED CONNECTIONS SHALL BE MADE BY WELDERS CERTIFIED BY AWS. CONTRACTOR SHALL SUBMIT WELDERS' CERTIFICATION AND QUALIFICATION
- DOCUMENTATION TO CROWN CASTLE'S TESTING AGENCY FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION.
- STRUCTURAL STEEL PLATES SHALL CONFORM TO ASTM A572 GRADE 65(FY = 65 KSI MIN) UNLESS NOTED OTHERWISE ON THE DRAWINGS. SURFACES OF EXISTING STEEL SHALL BE PREPARED AS REQUIRED FOR FIELD WELDING PER AWS. SEE SECTION I NOTES REGARDING TOUCH UP OF GALVANIZED
- SURFACES DAMAGED DURING TRANSPORTATION OR ERECTION AND ASSEMBLY AS WELL AS FIELD WELDING. NO WELDING SHALL BE DONE TO THE EXISTING STRUCTURE WITHOUT THE PRIOR APPROVAL AND SUPERVISION OF THE TESTING AGENCY
- FIELD CUTTING OF STEEL:
- MPORTANT CUTTING AND WELDING SAFETY GUIDELINES: THE CONTRACTOR SHALL FOLLOW ALL CROWN CASTLE CUTTING, WELDING, FIRE PREVENTION AND SAFETY GUIDELINES. PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL OBTAIN A COPY OF THE CURRENT CROWN CASTLE GUIDELINES. PER THE 12-01-2005 CROWN CASTLE DIRECTIVE: "ALL CUTTING AND WELDING ACTIVITIES SHALL BE CONDUCTED IN ACCORDANCE WITH CROWN CASTLE POLICY "CUTTING AND WELDING SAFETY PLAN" (DOC # ENG-PLN-10015) ON AN ONGOING BASIS THROUGHOUT THE ENTIRE LIFE OF THE PROJECT". ANY DAMAGE TO THE COAX CABLES, AND/OR OTHER EQUIPMENT AND/OR THE STRUCTURE, RESULTING FROM THE CONTRACTOR'S ACTIVITIES SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE. THE NSPECTION/TESTING AGENCY SHALL CLOSELY AND CONTINUOUSLY MONITOR THIS ACTIVITY.
- ALL REQUIRED CUTS SHALL BE CUT WITHIN THE DIMENSIONS SHOWN ON THE DRAWINGS. NO CUTS SHALL EXTEND BEYOND THE OUTLINE OF THE DIMENSIONS SHOWN ON THE DRAWINGS. ALL CUT EDGES SHALL BE GROUND SMOOTH AND DE-BURRED. CUT EDGES THAT ARE TO BE FIELD WELDED SHALL BE PREPARED FOR FIELD WELDING PER AWS D1.1 AND AS SHOWN ON THE DRAWINGS. CONTRACTOR TO AVOID 90 DEGREE CORNERS. IT MAY BE NECESSARY TO DRILL STARTER HOLES AS REQUIRED TO MAKE THE CUTS.

- BASE PLATE GROUT

 3.1. NEW GROUT FOR THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE

 OF THE POLE BASE SHALL BE NON-SHRINK AND APPROVED EQUAL BY EUCLID, OR APPROVED EQUAL BY EUCLID STRENGTH. CONTRACTOR SHALL SUBMIT PROPOSED GROUT SPECIFICATION INFORMATION TO CROWN CASTLE FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION. CONTRACTOR SHALL FOLLOW GROUT MANUFACTURER'S SPECIFICATIONS FOR COLD WEATHER GROUTING PROCEDURES (IF NECESSARY) AND THE TESTING AGENCY SHALL PREPARE GROUT SAMPLE SPECIMENS FOR COMPRESSIVE STRENGTH TESTING AND VERIFICATION.
- GROUT SHALL BE INSTALLED TIGHT UNDER THE BASE PLATE AND BEARING PLATE REGION WITH NO VOIDS REMAINING BETWEEN THE TOP OF THE EXISTING CONCRETE AND THE UNDERSIDE OF THE EXISTING BASE PLATE AND BEARING PLATE.
- CAULK AROUND ANCHOR RODS WHEN GROUTING.

FOUNDATION WORK - (NOT REQUIRED)

CAST-IN-PLACE CONCRETE - (NOT REQUIRED)

- EPOXY GROUTED REINFORCING ANCHOR RODS

 1. UNLESS OTHERWISE NOTED, REINFORCING ANCHOR RODS SHALL BE 150 KSI ALL-THREAD BARS CONFORMING TO ASTM A722. RECOMMENDED

 1. UNLESS OTHERWISE NOTED, REINFORCING ANCHOR RODS SHALL BE 150 KSI ALL-THREAD BARS CONFORMING TO ASTM A722. RECOMMENDED

 1. UNLESS OTHERWISE NOTED, REINFORCING ANCHOR RODS SHALL BE 150 KSI ALL-THREAD BARS CONFORMING TO ASTM A722. RECOMMENDED MANUFACTURERS/SUPPLIERS OF 150 KSI ALL-THREAD BARS ARE WILLIAMS FORM ENGINEERING CORPORATION AND DYWIDAG SYSTEMS INTERNATIONAL
- ALL REINFORCING ANCHOR RODS SHALL BE HOT DIP GALVANIZED PER ASTM A123
- THE CORE-DRILLED HOLES IN THE CONCRETE FOR THE ANCHOR RODS SHALL BE CLEAN AND DRY, AND OTHERWISE PROPERLY PREPARED ACCORDING TO THE ANCHOR ROD AND EPOXY MANUFACTURERS' INSTRUCTIONS, PRIOR TO PLACEMENT OF ANCHOR RODS AND EPOXY. CONTRACTOR SHALL FOLLOW ALL ANCHOR ROD AND EPOXY MANUFACTURER RECOMMENDATIONS REGARDING HANDLING OF RODS, EPOXY, ACCEPTABLE AMBIENT TEMPERATURE RANGE DURING INSTALLATION AND POST-INSTALLATION CURING, THE EFFECT OF TEMPERATURE ON EPOXY CURING TIME, PREPARATION OF HOLE, ETC.
- HILTI HIT RE-500 SD OR ITW RED HEAD EPCON GS EPOXY SHALL BE USED TO ANCHOR THE BAR IN THE DRILL HOLES. IF THE DESIGNED EMBEDMENT IS GREATER THAN 12 FT, CONTRACTOR HAS THE OPTION TO USE PILE ANCHOR GROUT BY E-CHEM AS AN ALTERNATE. IF CONTRACTOR WISHES TO USE A DIFFERENT EPOXY, A REQUEST INCLUDING THE EPOXY TECHNICAL DATA SHEET(S) SHALL BE SUBMITTED TO THE EOR FOR REVIEW PRIOR TO CONSTRUCTION.
- ONCE THE REINFORCING ANCHOR RODS HAVE BEEN INSTALLED AND ALL EPOXY AND GROUT HAVE CURED (IF BASE PLATE AND/OR BEARING PLATES HAVE BEEN GROUTED PRIOR TO TESTING), ALL REINFORCING ANCHORS SHALL BE LOAD TESTED PER CROWN CASTLE ENGINEERING DOCUMENT #ENG-PRC-10119. REFER TO THE NEW ANCHOR & BRACKET DETAIL ON FOLLOWING SHEETS FOR SPECIFIED ANCHOR ROD TARGET TENSION LOAD.
- ONCE THE REINFORCING ANCHOR RODS HAVE BEEN SUCCESSFULLY LOAD TESTED AND APPROVED THE CONTRACTOR SHALL TIGHTEN ALL HEAVY HEX ANCHOR NUTS TO SNUG TIGHT PLUS 1/8 TURN OF NUT.
- TAKE ALL MEASUREMENTS NECESSARY TO AVOID DAMAGING EXISTING REINFORCING BARS DURING CORING OPERATIONS. NOTIFY ENGINEER OF RECORD IMMEDIATELY IF EXISTING REINFORCING BARS ARE ENCOUNTERED AND INTERFERE WITH PLACEMENT OF NEW ANCHORS. MINOR ADJUSTMENT TO PROPOSED LOCATION OF NEW
- 6.8. IF BASE PLATE GROUT REMOVAL IS REQUIRED FOR ANCHOR ROD INSTALLATION SEE ENG-PRC-10012; "BASE PLATE GROUT REPAIR" FOR PROCEDURES AND RECOMMENDED MANUFACTURERS. CONTRACTOR TO DETERMINE THE QUANTITY REQUIRED.

- TOUCH UP OF GALVANIZING

 THE CONTRACTOR SHALL TOUCH UP ANY AND ALL AREAS OF GALVANIZING ON THE EXISTING STRUCTURE OR NEW COMPONENTS THAT ARE DAMAGED OR ABRADED. THE CONTRACTOR SHALL TOUCH UP ANY AND ALL AREAS OF GALVANIZING ON THE EXISTING STRUCTURE OR NEW COMPONENTS THAT ARE DAMAGED OR ABRADED DURING CONSTRUCTION. GALVANIZED SURFACES DAMAGED DURING TRANSPORTATION OR ERECTION AND ASSEMBLY AS WELL AS ANY AND ALL ABRASIONS, CUTS, FIELD DRILLING, AND ALL FIELD WELDING SHALL BE TOUCHED UP WITH TWO (2) COATS OF ZRC COLD GALVANIZING COMPOUND. FILM THICKNESS PER COAT SHALL BE: WET 3.0 MILS; DRY 1.5 MILS. APPLY PER ZRC (MANUFACTURER) RECOMMENDED PROCEDURES. CONTACT ZRC AT 1-800-831-3275 FOR PRODUCT INFORMATION.

 CONTRACTOR SHALL CLEAN AND PREPARE ALL FIELD WELDS ON GALVANIZED AND PRIME PAINTED SURFACES FOR TOUCH-UP COATING IN ACCORDANCE WITH AWS D1.1.
- CROWN CASTLE'S TESTING AGENCY SHALL VERIFY THE PREPARED SURFACE PRIOR TO APPLICATION OF THE TOUCH-UP COATING.
- CROWN CASTLE'S TESTING AGENCY SHALL TEST AND VERIFY THE COATING THICKNESS AFTER THE CONTRACTOR HAS APPLIED THE ZRC COLD GALVANIZING COMPOUND AND IT HAS SUFFICIENTLY DRIED. AREAS FOUND TO BE ADEQUATELY COATED, SHALL BE RE-COATED BY THE CONTRACTOR AND RE-TESTED BY THE TESTING AGENCY.

- HOT-DIP GALVANIZING
 8.1. HOT-DIP GALVANIZE ALL STRUCTURAL STEEL MEMBERS AND ALL STEEL ACCESSORIES, BOLTS, WASHERS, ETC. PER ASTM A123 OR PER ASTM A153, AS APPROPRIATE.
- PROPERLY PREPARE STEEL ITEMS FOR GALVANIZING. DRILL OR PUNCH WEEP AND/OR DRAINAGE HOLES WITH EOR APPROVAL OF LOCATIONS.
- ALL GALVANIZING SHALL BE DONE AFTER FABRICATION IS COMPLETED AND PRIOR TO FIELD INSTALLATION.

- PERPETUAL INSPECTION AND MAINTENANCE BY THE OWNER

 1. AFTER THE CONTRACTOR HAS SUCCESSFULLY COMPLETED THE INSTALLATION OF THE MONOPOLE REINFORCING SYSTEM AND THE WORK HAS BEEN ACCEPTED BY CROWN CASTLE, CROWN CASTLE WILL BE RESPONSIBLE FOR THE LONG TERM AND PERPETUAL INSPECTION AND MAINTENANCE OF THE POLE AND REINFORCING SYSTEM.

 ANY FIELD WELDED CONNECTIONS ARE SUBJECT TO CORROSION DAMAGE AND DETERIORATION IF THEY ARE NOT PROPERTY MAINTAINED AND COVERED WITH CORROSION PREVENTIVE COATING SUCH AS THE ZRC GALVANIZING COMPOUND SPECIFIED PREVIOUSLY. THE STRUCTURAL LOAD CARRYING CAPACITY OF THE REINFORCED POLE SYSTEM IS DEPENDENT UPON THE INSTALLED SIZE AND QUALITY, MAINTAINED SOUND CONDITION AND STRENGTH OF THESE FIELD WELDED CONNECTIONS. ANY CORROSION OF, DAMAGE TO, FATIGUE, FRACTURE, AND/OR DETERIORATION OF THESE WELDS AND/OR THE EXISTING GALVANIZED STEEL POLE STRUCTURE AND THE WELDED COMPONENTS WILL RESULT IN THE LOSS OF STRUCTURAL LOAD CARRYING CAPACITY AND MAY LEAD TO FAILURE OF THE STRUCTURA SYSTEM. THEREFORE, IT IS IMPERATIVE THAT CROWN CASTLE REGULARLY INSPECTS, MAINTAINS, AND REPAIRS AS NECESSARY, ALL OF THESE WELDS, CONNECTION AND CANDONICATE OF THE STRUCTURAL PROPERTY.
- AND COMPONENTS FOR THE LIFE OF THE STRUCTURE.
 CROWN CASTLE SHALL REFER TO ANSI/TIA-222-G-2-2009, SECTION 14 AND ANNEX J FOR RECOMMENDATIONS FOR MAINTENANCE AND INSPECTION. THE FREQUENCY OF THE INSPECTION AND MAINTENANCE INTERVALS IS TO BE DETERMINED BY CROWN CASTLE BASED UPON ACTUAL SITE AND ENVIRONMENTAL CONDITIONS. THE EOR RECOMMENDS THAT A COMPLETE AND THOROUGH INSPECTION OF THE ENTIRE REINFORCED MONOPOLE STRUCTURAL SYSTEM BE PERFORMED YEARLY AND/OR AS FREQUENTLY AS CONDITIONS WARRANT. ACCORDING TO ANSI/TIA-222-G-2-2009 SECTION 14.2: "IT IS RECOMMENDED THAT THE STRUCTURE BE INSPECTED AFTER SEVERE WIND AND/OR ICE STORMS OR OTHER EXTREME LOADING CONDITIONS".

- 10. FIELD NDE MINIMUM REQUIREMENTS
 10.1. ALL NDE SHALL BE IN ACCORDANCE WITH AWS D1.1.
- 10.2. FOR NEW BASE STIFFENERS (INCLUSIVE OF TRANSITION STIFFENERS) AND ANCHOR ROD BRACKETS, COMPLETE JOINT PENETRATION WELDS SHALL BE 100% INSPECTED BY UT. ALL PARTIAL JOINT PENETRATION AND FILLET WELDS SHALL BE 100% INSPECTED BY MT.
- FOR NEW FLAT PLATE REINFORCEMENT AT THE BASE OF THE TOWER, COMPLETE JOINT PENETRATION WELDS SHALL BE 100% INSPECTED BY UT. ALL PARTIAL JOINT
- PENETRATION AND FILLET WELDS SHALL BE 100% INSPECTED BY MT, BUT MAY BE LIMITED TO A HEIGHT OF 10-0".

 10.4. FOR NDE OF THE EXISTING BASE PLATE CIRCUMFERENTIAL WELD, GC SHALL REFERENCE THE MI CHECKLIST FOR APPLICABILITY. PLEASE SEE ENG-SOW-10033: TOWER BASE PLATE NDE, AND ENG-BUL-10051: 'NDE REQUIREMENTS FOR MONOPOLE BASE PLATE TO PREVENT CONNECTION FAILURE'. NOTIFY THE EOR AND CROWN ENGINEERING IMMEDIATELY IF ANY CRACKS ARE SUSPECTED OR HAVE BEEN IDENTIFIED. THE NDE SHALL INCLUDE ALL EXISTING MODIFICATIONS THAT HAVE BEEN WELDED TO THE BASE PLATE
- 10.5. ALL TESTING LIMITATIONS SHALL BE DETAILED IN THE NDE REPORT.

Copyright 2017, by Paul J. Ford and Compar

All Rights Reserved. This document an he data contained herein, is proprietary

o Paul J. Ford and Company, issued in

strict confidence and shall not, without th

prior written permission of Paul J. Ford

and Company, be reproduced, copied or

(V) 8

الآ

N N O

U #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

used for any purpose other than the

ntended use for this specific project.

43215

MPANY Columbus, OH 4

PAU & COI

t; Ste 600:0

37517-0750.003.77 PROJECT No: BM: RAWN BY S.J. CHECKED BY: ATL. 3-31-201

GENERAL NOTES

OF CONNE OF CONNEC,

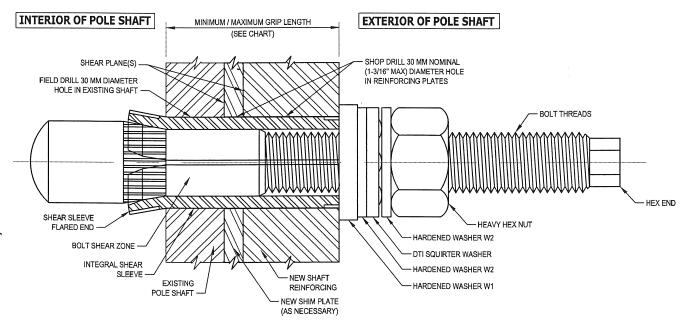
FORGBolt™ NOTE SHEET: A325/PC8.8 PORTRAIT VERSION DATE 04/24/2015 OVERALL LENGTH (SEE CHART) INTEGRAL SHEAR SHEAR ZONE

BOLT THREADS

SILICONE BAND -

HARDENED WASHER W2

DTI SQUIRTER WASHER


HARDENED WASHER W2 HARDENED WASHER W1

PRE-INSTALLED FORGBolt™ ASSEMBLY DETAIL

SILICONE BAND :

COLOR-CODED WRAP

(SEE CHART)

INSTALLED FORGBolt™ ASSEMBLY DETAIL

FOR	RG	Bolt®	AISC Group A Material: ASTM A325 and PC8.8 (Tensile Stress, Fu = 120 ksi minimum)			3.8	
GROUP	Α	FORGBolt® Size (mm)	Overall Length (inches)	Estimated Weight Each (lbs)	Grip Range (inch)	Comment	Color Code
@ œ	1	135	5.31	1.3	3/8" to 1"		RED
FORGBolt® A325 - PC8.8	2	160	6.30	1.6	3/4" to 1-1/2"		GREEN
P G	3	195	7.68	1.9	1-1/4" to 2-1/4"		BLUE
3. 5.	4	260	10.24	2.6	2" to 3-1/2"	Splice Bolt	YELLOW
FOR A325	5	365	14.37	3.6	3-1/2" to 5-1/2"	Flange Jump Bolt	ORANGE
ш ∢	6	440	17.32	4.3	5-1/2" to 8-1/2"	Flange Jump Bolt	BLACK
DTI Each Group A (A325/PC8.8) FORGBolt® assembly shall have a 'Squirter' DTI that is compatible with a M20-PC8.8 bolt.							

FOLLOW ALL MANUFACTURER / DISTRIBUTOR RECOMMENDATIONS FOR INSTALLATION, TIGHTENING, AND INSPECTION

INSTALLATION NOTES:

- 1. FIELD DRILL HOLES TO 30 MM DIAMETER.
- 2. SELECT CORRECT BOLT SIZE FOR INSTALLATION GRIP (REFER TO PLANS).
- 3. INSERT BOLT ASSEMBLY THROUGH HOLES IN SHAFT REINFORCING PLATES AND SEAT THE HARDENED WASHER W1 FLUSH AGAINST OUTSIDE OF PLATE.
- 4. HAND TIGHTEN NUT TO FINGER TIGHT.
- 5. TIGHTEN NUT TO PRETENSIONED CONDITION AND UNTIL DTI SHOWS PROPER INDICATION.
- 6. PROPERLY DOCUMENT AND INSPECT BOLT TIGHTENING PER PLAN REQUIREMENTS.

- 1. ALL SHOP-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM SHOP-DRILLED HOLE DIAMETER PERMITTED IS 1-3/16".
- 2. ALL FIELD-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM FIELD-DRILLED HOLE DIAMETER PERMITTED IS 30 MM.

BOLT TIGHTENING AND INSPECTION NOTES:

- 1. ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- 2. ALL STRUCTURAL BOLTS SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.

AISC GROUP A MATERIAL: ASTM A325 AND PC8.8 (Fu = 120 KSI MIN TENSILE STRESS)

CONTAINS PROPRIETARY INFORMATION PATENT PENDING

© Copyright 2013 to 2015 by PTP, all rights reserved.

DISTRIBUTOR CONTACT: PRECISION TOWER PRODUCTS

PHONE: 888-926-4857

info@precisiontowerproducts.com www.precisiontowerproducts.com

Copyright 2017, by Paul J. Ford and Compa All Rights Reserved. This document ar he data contained herein, is proprietary Paul J. Ford and Company, issued in trict confidence and shall not, without th rior written permission of Paul J. Ford and Company, be reproduced, copied of used for any purpose other than the tended use for this specific project.

S

PAUI & COI st, Ste 600.

CROWN 150

EXISTING BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT MONOPOLE A 9 MODIFICATION

37517-0750.003.770 ROJECT No: B.M.S RAWN BY HECKED BY 3-31-20°

> FORGBOLT™ **DETAILS**

> > S-2A

BOLT HEAD -

NOTE: SHEAR SLEEVE LENGTH: THE SHEAR SLEEVE SHALL PROJECT A MINIMUM OF 3/8" BEYOND THE OUTERMOST SHEAR PLANE. THE CONTRACTOR SHALL SUBMIT FABRICATION DRAWINGS SHOWING NEXGEN2® BOLT LENGTHS AND SHEAR SLEEVE LENGTHS TO THE EOR FOR REVIEW AND APPROVAL.

EXTERIOR OF POLE SHAFT INTERIOR OF POLE SHAFT 1 - SHAFT REINFORCING ELEMENT SHOP DRILLED HOLE IN SHAFT REINFORCING ELEMENT, HOT-DIP GALVANIZED PER ASTM A123; FIELD DRILLED HOLE IN SHAFT WALL; FIELD COAT WITH COLD-GALVANIZING COMPOUND AFTER FIELD DRILLING; COAT WITH CROWN APPROVED HOLE DIAMETER: NOMINAL 30mm (1-3/16" MAXIMUM) COLD-GALVANIZING COMPOUNDS; HOLE DIAMETER: NOMINAL 30mm HIGH TENSILE (1-3/16" MAXIMUM) DOUBLE HEX SPLINED END OF NEXGEN2® BOLT FOR STEEL COIL SPRING NEXGEN2® INSTALLATION TOOL: AFTER BOLT IS FULLY TENSIONED THE BOLT END SHALL BE COATED WITH CROWN APPROVED COLD-GALVANIZING COMPOUNDS - NEXGEN2® M20 BOLT ASTM A490M (Fy = 150 KSI MIN): FIELD DETERMINE LENGTH REQUIRED NEXGEN2® M20 BOLT HEAD: 29mm OD NEXGEN2® NUT (PRE-LUBRICATED) NEXGEN2® SPLIT WASHER NEXGEN2® WASHER POLE SHAFT OUTERMOST SHEAR SHAFT REINFORCING SHIM PLATE PLANE SHEAR SLEEVE, ASTM A519 (AS NECESSARY) GRADE 4140 (Fu = 120 KSI MIN): SIZE 1.143" OD x 0.800" ID

TYPICAL NEXGEN2™ BOLT DETAIL

FOLLOW ALL MANUFACTURER / DISTRIBUTOR RECOMMENDATIONS FOR INSTALLATION, TIGHTENING, AND INSPECTION

BOLT HOLE NOTES:

- 1. ALL SHOP-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM SHOP-DRILLED HOLE DIAMETER PERMITTED IS 1-3/16".
- 2. ALL FIELD-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM FIELD-DRILLED HOLE DIAMETER PERMITTED IS 30 MM.

BOLT TIGHTENING AND INSPECTION NOTES:

- 1. ALL NEXGEN2® BOLT ASSEMBLIES SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF SECTION 8.2.3 OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. PER SECTION 8.2.3: ALL FASTENER ASSEMBLIES SHALL BE INSTALLED IN ACCORDANCE WITH THE REQUIREMENTS IN AISC SECTION 8.1 WITHOUT SEVERING THE SPLINED END AND WITH WASHERS POSITIONED AS REQUIRED IN AISC SECTION 6.2. PER REQUIREMENTS IN SECTION 8.1: PRIOR TO BOLT PRETENSIONING, THE JOINT SHALL FIRST BE COMPACTED TO THE SNUG-TIGHT CONDITION. SNUG TIGHT IS THE CONDITION THAT EXISTS WHEN ALL OF THE PLIES IN THE CONNECTION HAVE BEEN PULLED INTO FIRM CONTACT BY THE BOLTS AND THE BOLTS HAVE BEEN TIGHTENED SUFFICIENTLY TO PREVENT THE REMOVAL OF THE NUTS WITHOUT THE USE OF A WRENCH. ONCE THE SNUG TIGHT CONDITION IS ACHIEVED, THEN THE BOLT ASSEMBLY CAN BE TIGHTENED TO THE PRETENSIONED CONDITION.
- ALL NEXGEN2® BOLT ASSEMBLIES SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF SECTION 9.2.3 OF THE
 AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. NOTE THAT COMPLETE
 INSPECTION OF ALL NEXGEN2® BOLT ASSEMBLIES IS REQUIRED IN ADDITION TO ROUTINE OBSERVATION.
- 3. ALL NEXGEN2® BOLTS SHALL BE INSPECTED BY A QUALIFIED BOLT INSPECTOR PER NOTES 1 AND 2, ABOVE. DURING INSTALLATION, THE BOLT INSPECTOR SHALL VERIFY AND DOCUMENT: THE SHOP-DRILLED AND FIELD-DRILLED HOLE SIZES; THE INSTALLATION OF THE NEXGEN2® BOLT ASSEMBLY, INCLUDING THE SHEAR SLEEVE PLACEMENT AND NUT LUBRICATION; AND THE CONTRACTOR'S TENSIONING PROCEDURE. THE BOLT INSPECTOR SHALL PROVIDE COMPLETE DOCUMENTATION OF ALL BOLTS AFTER TIGHTENING CLEARLY SHOWING THAT THE DOUBLE HEX SPLINED END OF THE BOLTS HAVE BEEN TWISTED OFF AND COATED WITH CROWN APPROVED COLD-GALVANIZING COMPOUND..

PART	BOLT	SLEEVE	MIN GRIP	MAX GRIP
NUMBER	LENGTH	LENGTH	RANGE	RANGE
M20x36	M20x95	11/16"	15/16"	1 7/16"
M20x48	M20x95	1 3/16"	1 7/16"	1 7/8"
M20x57	M20x95	1 5/8"	1 7/8"	2 1/4"
M20x68	M20x135	2"	2 1/4"	2 11/16"
M20x96	M20x135	2 7/16"	2 11/16"	3 3/4"
M20x127	M20x165	3"	3 3/4"	5"
M20x212	M20x250	4"	5"	8 5/16"

NOTE: NEXGEN2® BOLT ASSEMBLY SHALL BE MAGNI 565 COATED PER ASTM F2833 AND MANUFACTURER SPECIFICATIONS.

NOTE: INSTALL NEXGEN2® BOLT ASSEMBLY PER MANUFACTURER'S INSTRUCTIONS.

No. 30301

No. 30301

KENSE

© Copyright 2017, by Paul J. Ford and Company All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

AUL J. FORD COMPANY e 600. Columbus, OH 43215 www.pauljford.com

250 E Broad St, Ste 600 · Phone 614,221.6679

CROWN CAST

MODIFICATION OF AN EXISTING 150'
MONOPOLE
BU #841288; BRIDGEPORT NORTH
BRIDGEPORT, CONNECTICUT

 PROJECT No:
 37517-0750.003.7700

 DRAWN BY:
 B.M.S.

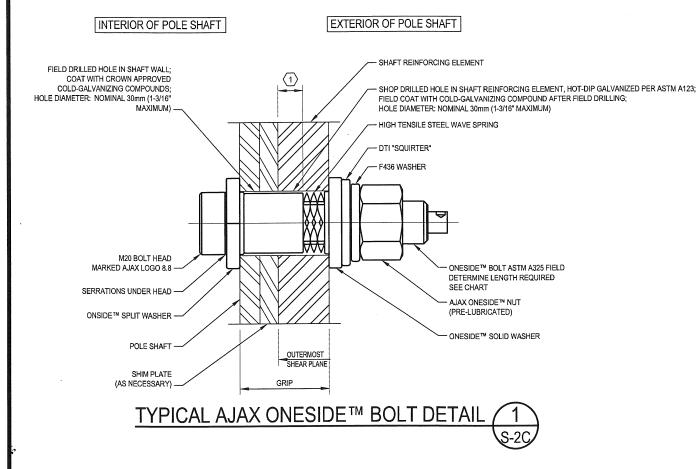
 DESIGNED BY:
 S.J.T.

 CHECKED BY:
 JTK

 DATE:
 3-31-2017

NEXGEN2™ BOLT DETAIL

S-2B


<u>DISTRIBUTOR CONTACT DETAILS:</u> ALLFASTENERS

15401 COMMERCE PARK DR. BROOKPARK, OHIO 44142

PHONE: 440-232-6060

E-MAIL: SALES@ALLFASTENERS.COM

NOTE: SHEAR SLEEVE LENGTH: THE SHEAR SLEEVE SHALL PROJECT A MINIMUM OF 3/8" BEYOND THE OUTERMOST SHEAR PLANE. THE CONTRACTOR SHALL SUBMIT FABRICATION DRAWINGS SHOWING AJAX ONESIDE™ BOLT LENGTHS AND SHEAR SLEEVE LENGTHS TO THE EOR FOR REVIEW AND APPROVAL.

FOLLOW ALL MANUFACTURER / DISTRIBUTOR RECOMMENDATIONS FOR INSTALLATION, TIGHTENING, AND INSPECTION

BOLT HOLE NOTES

- 1. ALL SHOP-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE MAXIMUM SHOP-DRILLED HOLE DIAMETER PERMITTED IS 1-3/16".
- 2. ALL FIELD-DRILLED HOLES SHALL BE NOMINAL 30 MM DIAMETER. THE <u>MAXIMUM</u> FIELD-DRILLED HOLE DIAMETER PERMITTED IS 30 MM.

BOLT TIGHTENING AND INSPECTION NOTES:

- 1. ALL AJAX ONESIDE™ BOLT ASSEMBLIES SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF SECTION 8.2.4 OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. PER SECTION 8.2.4: ALL FASTENER ASSEMBLIES SHALL BE INSTALLED IN ACCORDANCE WITH THE REQUIREMENTS IN AISC SECTION 8.1 WITH WASHERS POSITIONED AS REQUIRED IN AISC SECTION 6.2. PER REQUIREMENTS IN SECTION 8.1: PRIOR TO BOLT PRETENSIONING, THE JOINT SHALL FIRST BE COMPACTED TO THE SNUG-TIGHT CONDITION. SNUG TIGHT IS THE CONDITION THAT EXISTS WHEN ALL OF THE PLIES IN THE CONNECTION HAVE BEEN PULLED INTO FIRM CONTACT BY THE BOLTS AND THE BOLTS HAVE BEEN TIGHTENED SUFFICIENTLY TO PREVENT THE REMOVAL OF THE NUTS WITHOUT THE USE OF A WRENCH. ONCE THE SNUG TIGHT CONDITION IS ACHIEVED, THEN THE BOLT ASSEMBLY CAN BE TIGHTENED TO THE PRETENSIONED CONDITION.
- 2. ALL AJAX ONESIDE™ BOLT ASSEMBLIES SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF SECTION 9.2.4 OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009. NOTE THAT COMPLETE INSPECTION OF ALL AJAX ONESIDE™ BOLT ASSEMBLIES IS REQUIRED IN ADDITION TO ROUTINE OBSERVATION.
- 3. ALL AJAX ONESIDE™ BOLTS SHALL BE INSPECTED BY A QUALIFIED BOLT INSPECTOR PER NOTES 1 AND 2, ABOVE. DURING INSTALLATION, THE BOLT INSPECTOR SHALL VERIFY AND DOCUMENT: THE SHOP-DRILLED AND FIELD-DRILLED HOLE SIZES; THE INSTALLATION OF THE AJAX ONESIDE™ BOLT ASSEMBLY, INCLUDING THE SHEAR SLEEVE PLACEMENT AND NUT LUBRICATION; AND THE CONTRACTOR'S TENSIONING PROCEDURE. THE BOLT INSPECTOR SHALL PROVIDE COMPLETE DOCUMENTATION OF ALL BOLTS AFTER TIGHTENING CLEARLY SHOWING THAT THE DIRECT TENSION INDICATOR WASHERS SHOW THAT THE PROPER BOLT TENSION HAS BEEN REACHED.
- 4. A MINIMUM OF 4 OUT OF 5 SQUIRTER® DTI PROTRUSIONS SHALL BE ENGAGED IN ANY AJAX ONESIDE™/DTI BOLT ASSEMBLY IN THE REINFORCING MEMBERS. A FEELER GAGE MAY BE USED TO VERIFY PROTRUSION COMPRESSION.
- 5. INSPECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURERS REQUIREMENTS AND CROWN DOCUMENT ENG-SOW-10007: MODIFICATION INSPECTION SOW.

BOLT ASSEMBLY AND INSTALLATION:

- 1. BOLT MUST BE PURCHASED PRE-ASSEMBLED.
- 2. FOLLOW BOLT AND DTI MANUFACTURERS INSTRUCTIONS FOR INSTALLATION.

AJAX ONESIDE™ BOLT DETAIL

CODE	SIZE	COLOR	SLEEVE LENGTH	GRIP	GRIP IMP
OSBA20.65-6	M20 x 65	ORANGE	6.0 (0.236")	12.5 / 20.0	0.500" / 0.787"
OSBA20.95-14	M20 x 95	BLACK	14.0 (0.551")	20.0 / 32.0	0.787" / 1.259"
OSBA20.95-22	M20 x 95	GREEN	22.0 (0.866")	30.0 / 50.0	1.181" / 1.968"
OSBA20.95-30	M20 x 95	YELLOW	30.0 (1.181")	40.5 / 50.0	1.595" / 1.968"
OSBA20.135-39	M20 x 135	BLUE	39.0 (1.535")	49.0 / 77.0	1.929" / 3.031"
OSBA20.135-48	M20 x 135	BROWN	48.0 (1.889")	60.5 / 77.0	2.375" / 3.031"
OSBA20.135-57	M20 x 135	PURPLE	57.0 (2.244")	67.0 / 90.0	2.637" / 3.543"
OSBA20.165-76	M20 x 165	RED	76.0 (3.000")	87.0 / 120.0	3.425" / 4.724"
OSBA20.250	M20 x 250	SILVER	MTO	121.0 / 211.0	4.724" / 8.310"

DISTRIBUTOR

IRA SVENSGAARD AND ASSOCIATES
PETER SVENDSGAARD - PETERS@IRASVENS.COM
JOHN KILLAM - JOHN@IRASVENS.COM
PHONE: (530) 647-8225
FAX: (530) 647-8229

MANUFACTURER

AJAX FASTENERS SALES + TECH: ONESIDE@AJAXFAST.COM.AU

© Copyright 2017, by Paul J. Ford and Company All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

ULJ.FORD OMPANY 500. Columbus, OH 43215 www.pauljford.com

PAU R COI550 E Broad St, Ste 600 (

150'

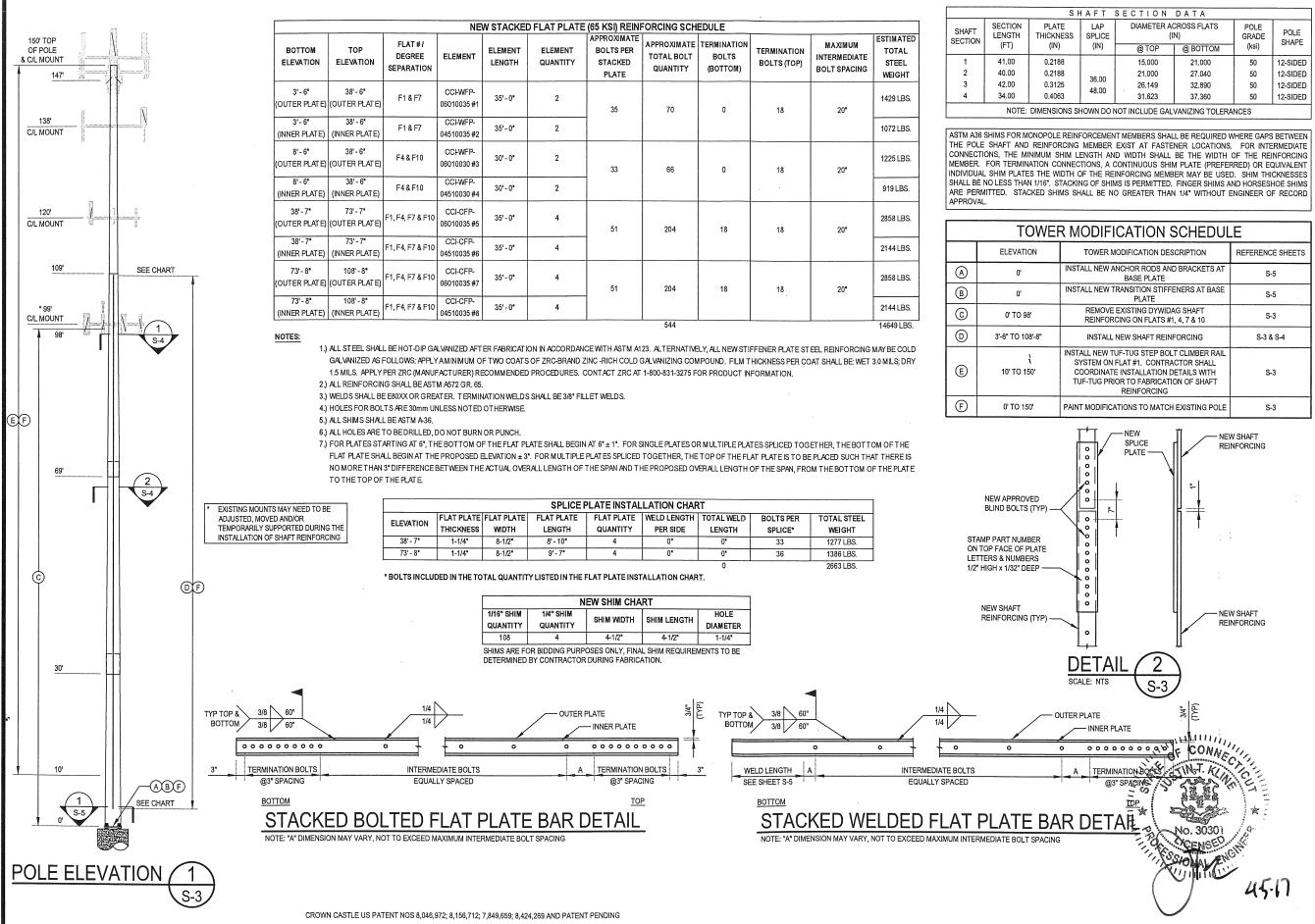
Phone 614.221.6679
CROWN C

S

 \triangleleft

MODIFICATION OF AN EXISTING
MONOPOLE
BU #841288; BRIDGEPORT NORTH
BRIDGEPORT, CONNECTICUT

PROJECT No: 37517-0750.003.7700


DRAWN BY: B.M.S.

DESIGNED BY: S.J.T.

CHECKED BY: 3-31-2017

AJAX ONESIDE™ BOLT DETAIL

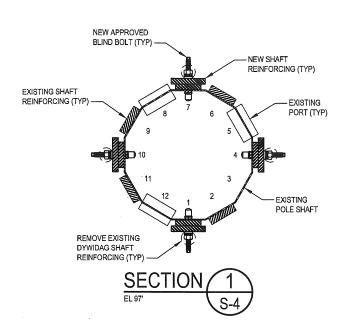
S-2C

© Copyright 2017, by Paul J. Ford and Company, All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

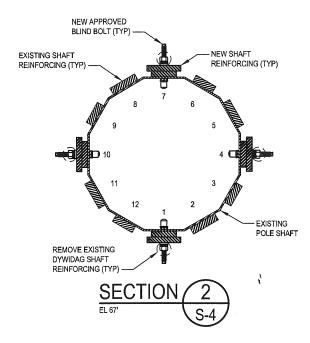
UL J. FORD OMPANY 000. Columbus, OH 43215 www.pauliford.com

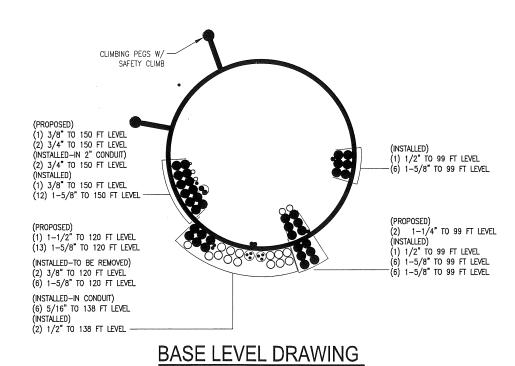
PAUL J. F. & COMPAN SE Broad St, Ste 600 · Columbus, One 614.221.6679 www.pauli

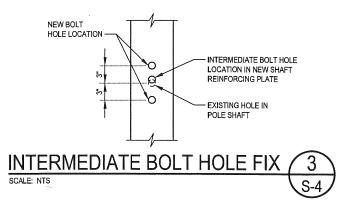
150


CROWN CAS

MODIFICATION OF AN EXISTING MONOPOLE
BU #841288; BRIDGEPORT NORTH
BRIDGEPORT, CONNECTICUT


PROJECT No: 37517-0750.003.7700
DRAWN BY: B.M.S.
DESIGNED BY: S.J.T.
CHECKED BY: 3-31-2017

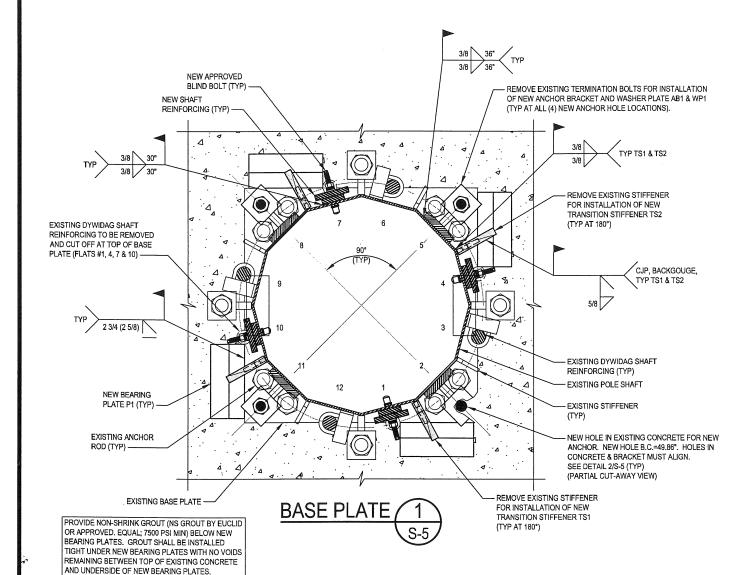

MONOPOLE PROFILE


S-:

* CONTRACTOR SHALL COORDINATE INSTALLATION OF NEW STEP RAIL SYSTEM WITH TUF-TUG

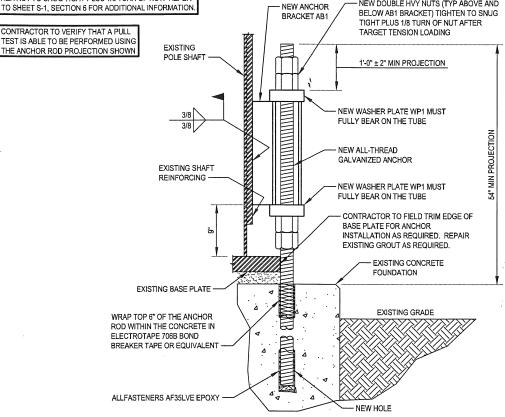
© Copyright 2017, by Paul J. Ford and Compan All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without the prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

PAUL J. FORD & COMPANY t, Ste 600: Columbus, OH 43215


STL CA CROWN

150 MODIFICATION OF AN EXISTING BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT MONOPOL

37517-0750.003.770 B.M.S DESIGNED BY: S.J.T 3-31-201


> SHAFT REINFORCING **SECTIONS**

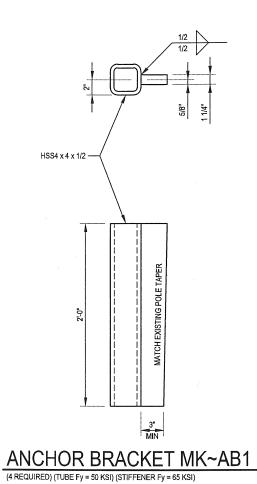
BASE SPECIFICATIONS BASE PLATE: 41" SQUARE; 2 3/4" THK.; Fy=50 KSI ANCHOR RODS: (8) 2 1/4"ø; A615 GRADE 75; 43" B.C.

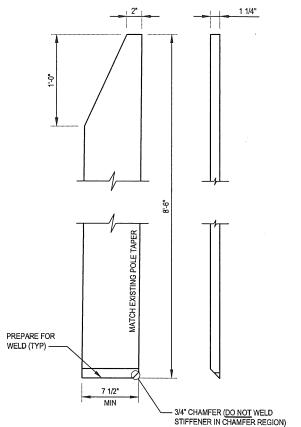
NEW ANCHOR ROD REINFORCING SHALL BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS AND HOLE TO BE MECHANICALLY ROUGHENED. ONCE ALL RESIN HAS CURED, ALL NEW ANCHOR ROD REINFORCING SHAL BE TESTED TO THE TARGET TENSION LOAD. ONCE THE TENSION LOAD HAS BEEN RELEASED, TIGHTEN HEAVY HEX NUT TO SNUG TIGHT PLUS 1/8 TURN OF NUT. REFER O SHEET S-1, SECTION 6 FOR ADDITIONAL INFORMATION

NEW ANCHOR RODS EMBEDMENT TARGET TENSION HOLE DIAMETER MATERIAL PART# (IN) (IN) DEPTH (IN) LOAD (KIPS) CCI-AR-0175 1 3/4 120 A193 GR B7 NEW DOUBLE HVY NUTS (TYP ABOVE AND

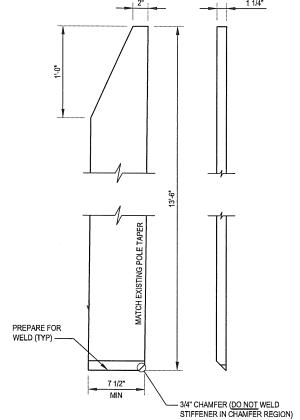
NEW ANCHOR & BRACKET DETAIL

Copyright 2017, by Paul J. Ford and Compa All Rights Reserved. This document and he data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without th prior written permission of Paul J. Ford and Company, be reproduced, copied or used for any purpose other than the intended use for this specific project.

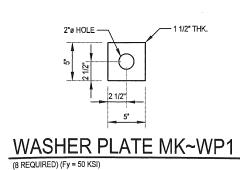

PAUL J. FORD & COMPANY t, Ste 600: Columbus, OH 43215


STL ORD, NY 14 CROWN

150' MODIFICATION OF AN EXISTING BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT MONOPOL


PROJECT No: 37517-0750.003.770 B.M.S S.J.T DESIGNED BY: CHECKED BY: DATE: 3-31-201

> **BASE PLATE DETAILS**



TRANSITION STIFFENER MK~TS1

TRANSITION STIFFENER MK~TS2 (2 REQUIRED) (Fy = 65 KSI)

- 2 3/4" CHAMFER **BEARING PLATE MK~P1** (4 REQUIRED) (Fy = 50 KSI)

© Copyright 2017, by Paul J. Ford and Compar All Rights Reserved. This document and the data contained herein, is proprietary to Paul J. Ford and Company, issued in strict confidence and shall not, without th prior written permission of Paul J. Ford and Company, be reproduced, copied of used for any purpose other than the intended use for this specific project.

PAUL J. FORD

& COMPANY
250 E Broad St, Ste 600 Columbus, OH 43215
Phone 614.221.6679 www.pauljford.com

STI FORD, NY

MODIFICATION OF AN EXISTING 150' MONOPOLE BU #841288; BRIDGEPORT NORTH BRIDGEPORT, CONNECTICUT

PROJECT No:	37517-0750.003.7700
DRAWN BY:	B.M.S.
DESIGNED BY:	S.J.T.
CHECKED BY:	AL.
DATE:	3-31-2017

MISC DETAILS