

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

Theresa Ranciato-Viele
Tectonic Engineering
Consultant
63-3 North Branford Road
Branford, CT 06405
tranciato@tectonicengineering.com

RE: TS-DISH-015-220121 – Dish Wireless LLC request for an order to approve tower sharing at an existing telecommunications facility located at 220 Evergreen Street, Bridgeport,

Connecticut.

Dear Ms. Ranciato-Viele:

The Connecticut Siting Council (Council) is in receipt of your correspondence of February 7, 2022 submitted in response to the Council's January 31, 2022 notification of an incomplete request for tower sharing with regard to the above-referenced matter.

The submission renders the request for tower sharing complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

Melanie A. Bachman Executive Director

Mulin Beal

MAB/IN/emr

From: Ray Lemley <rlemley@csofb.com> **Sent:** Monday, February 7, 2022 10:37 AM

To: CSC-DL Siting Council <Siting.Council@ct.gov>

Cc: Ranciato, Theresa < TRanciato@tectonicengineering.com>; Bartley, Danielle

<DBartley@tectonicengineering.com>

Subject: TS-Dish-015-220121- Mount Analysis: 220 Evergreen St., Bridgeport

EXTERNAL EMAIL: This email originated from outside of the organization. Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Good morning:

Per your letter of January 31, 2022, attached please find a passing Mount Analysis stamped by a Connecticut Engineer for the above referenced location. A hard copy is being mailed to you today. Please let us know if there is anything else you may need.

Regards, Ray Lemley

RAY LEMLEY

Construction Services of Branford

63-3 N. Branford Road, Branford CT 06405

Main: (203) 488-0712 **Direct:** (203) 433-7533 **Fax:** (203) 481-1135 **Mobile:** (203) 499-8631

Date: February 4, 2022

Mount Analysis Report

Project Information:

Carrier: Dish Wireless Site Number: NJJER01163A

220 Evergreen Street, Bridgeport, Fairfield County, CT 06606 Site Address:

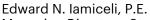
Site Type: Platform w/ Railing Mount on Monopole

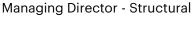
Tectonic Project Number: 10710.NJJER01163A

Tectonic Engineering Consultants, Geologists & Land Surveyors, D.P.C. is pleased to submit this "Mount Analysis Report" to determine the structural integrity of the above-mentioned proposed mount.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

> Mount: Sufficient - 29%


This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 120 mph converted to a nominal 3-second gust wind speed of 93 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II was used in this analysis.


We at Tectonic appreciate the opportunity of providing our continuing professional services to you and Dish Wireless. If you have any questions or need further assistance on this or any other projects, please give us a call.

Structural analysis prepared by: Connor Golden-Weathers / Ian Marinaccio

Respectfully submitted by:

Tectonic Engineering Consultants, Geologists & Land Surveyors D.P.C.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Loading Information

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Result / Conclusions

5) APPENDIX A

Software Input Calculations

6) APPENDIX B

Wire Frame and Rendered Models

7) APPENDIX C

Software Analysis Output

8) APPENDIX D - All Sectors

Additional Calculations

1) INTRODUCTION

Analysis of the proposed antenna mounts due to the loading of the proposed antennas, equipment, and related appurtenances. The proposed mount is a platform mount manufactured by CommScope, P/N: MC-PK8-DSH.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-G

Risk Category:

Wind Speed: 93 mph
Exposure Category: B
Topographic Factor: 1.0
Ice Thickness: 1.0 in
Wind Speed with Ice: 50 mph
Service Load: 60 mph

Table 1 - Proposed Equipment Loading Information

Mounting Level (ft)	Carrier Designation	Number of Antennas	Antenna Manufacturer	Antenna Model	Proposed Mount Type	Note	
		3	JMA	MX08FRO665-21			
99.0	Dish	3	Fujitsu	TA08025-B604 RRH	CommScope	1	
99.0	Wireless	Wireless	3	Fujitsu			l
		1	Raycap	RDIDC-9181-PF-48			

Note:

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Dated
Mount Assembly Drawings	CommScope, P/N: MC-PK8- DSH	03/17/2021
Field Notes & Photos	Tectonic	05/17/2021
RFDS	Dish Wireless	06/09/2021
Preliminary Construction Drawings	Tectonic	11/16/2021

3.1) Analysis Method

A tool internally developed, using Microsoft Excel, was used to calculate wind loading on all appurtenances and mount members. This information was then used in conjunction with another program, RISA-3D, which is a commercially available analysis software package, used to check the antenna mounting system and calculate member stresses for various loading cases. The selected output from the analysis is included in Appendices B and C.

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed, and maintained in good condition in accordance with its original design, TIA Standards, and/or manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Tables 1 and 2.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) Member length and sizes are based solely on the assembly drawing by CommScope, referenced above.

¹⁾ Proposed equipment to be installed on the proposed mounts.

5) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate
HSS (Rectangular)
Pipe
ASTM A36 (GR 36)
ASTM 500 (GR B-46)
ASTM A53 (GR 35)
ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Tectonic should be notified to determine the effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform Mount)

Notes	Component	Mount Centerline (ft)	% Capacity	Pass / Fail	
	Standoff End Plate		29	Pass	
	Grating Support Angle		10	Pass	
	Face Horizontal		18	Pass	
1	Mount Pipe		29 Pas 10 Pas 18 Pas 21 Pas 29 Pas 21 Pas 29 Pas 15 Pas 15 Pas	Pass	
	Standoff Channel	andoff End Plate ng Support Angle ace Horizontal Mount Pipe andoff Channel Standoff Railing 29 99.0 29 29 29 20 20 21 20 21 20 21 20 21 20 21 20 21 21 21 22 22 23 24 25 26 27 26 27 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	29	Pass	
	Standoff		.0 29 P 10 P 18 P 21 P 21 P 24 P 15 P 15 P 29 P	Pass	
	Rail Connector			Pass	
	Mount Pipe Standoff Channel Standoff Rail Connector Railing		15	Pass	
2	Collar Connection		29	Pass	
	Structure Rating (max fi	rom all components) =		29 %	

Notes:

- 1) See additional documentation in "Appendix C Analysis Output" for calculations supporting the % capacity consumed.
- 2) See additional documentation in "Appendix D Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Result / Conclusions

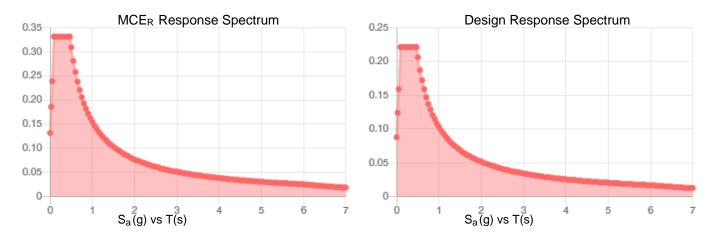
The proposed platform mount has adequate capacity to support the proposed antenna and equipment installation as detailed in the following report.

This structural analysis only includes evaluation of the antenna mounts and not the monopole. The monopole is to be analyzed under a separate structural analysis by others.

Contractor shall field verify existing conditions and recommendations as noted on the construction drawings and notify the design engineer of any discrepancies prior to construction. Any further changes to the antenna and/or appurtenance configuration should be reviewed with respect to their effect on structural loads prior to implementation.

APPENDIX A SOFTWARE INPUT CALCULATIONS

CT is NOT a Home Rule State; Tab added only for Design Criteria


		-	- SPECIFIC STRUCTURAL DESIGN PARAMETERS										
				Wind Design Parameters Ultimate Design Wind Nominal Design Win									
	>	M	CE	Ulti	mate Desi	ign Wind	Nomir	nal Desigr	Wind				
<u> </u>	٥		ctral	S	peeds, Vu	ıt (mph)	Spec	eds,Vasa (mph)				
p d	ν Σ	Accelerat	ions (%g)				, , ,						
Municipality	Ground Snow Load	Ss	S ₁	Risk	Risk	Risk Cat III-	Dick Cat	Risk Cat.	Risk Cat.				
<u> </u>	no.	Js .	31	Cat.I	Cat.II	IV	i Nisk Cat.	II II	III-IV				
≥	ō			Cat.i	Cat.ii	l v		"					
Andover	30	0.176	0.063	120	130	140	93	101	108				
Ansonia	30	0.195	0.064	115	125	135	89	97	105				
Ashford	35	0.173	0.063	120	130	140	93	101	108				
Avon	35	0.181	0.064	110	120	130	85	93	101				
Barkhamsted	40	0.177	0.065	110	120	125	85	93	97				
Beacon Falls	30	0.192	0.064	115	125	135	89	97	105				
Berlin	30	0.183	0.063	115	125	135	89	97	105				
Bethany	30	0.189	0.063	115	125	135	89	97	105				
Bethel	30	0.215	0.066	110	120	125	85	93	97				
Bethlehem	35	0.190	0.065	110	120	125	85	93	97				
Bloomfield	35	0.180	0.064	115	125	130	89	97	101				
Bolton	30	0.177	0.063	115	125	135	89	97	105				
Bozrah	30	0.170	0.061	120	135	145	93	105	112				
Branford	30	0.180	0.061	120	130	140	93	101	108				
Bridgeport	30	0.209	0.064	115	125	135	89	97	105				
Bridgewater	35	0.201	0.066	110	120	125	85	93	97				
Bristol	35	0.185	0.064	110	120	130	85	93	101				
Brookfield	35	0.208	0.066	110	120	125	85	93	97				
Brooklyn	35	0.171	0.062	120	130	140	93	101	108				
Burlington	35	0.182	0.064	110	120	130	85	93	101				
Canaan	40	0.173	0.065	105	115	120	81	89	93				
Canterbury	35	0.171	0.061	120	130	140	93	101	108				
Canton	35	0.180	0.064	110	120	130	85	93	101				
Chaplin	35	0.173	0.062	120	130	140	93	101	108				
Cheshire	30	0.186	0.063	115	125	135	89	97	105				
Chester	30	0.172	0.060	120	130	140	93	101	108				
Clinton	30	0.169	0.059	120	135	140	93	105	108				
Colchester	30	0.174	0.061	120	130	140	93	101	108				
Colebrook	40	0.174	0.065	105	115	125	81	89	97				
Columbia	30	0.175	0.062	120	130	140	93	101	108				
Cornwall	40	0.180	0.065	105	115	120	81	89	93				
Coventry	30	0.176	0.063	120	130	140	93	101	108				
Cromwell	30	0.181	0.063	115	125	135	89	97	105				
Danbury	30	0.217	0.067	110	120	125	85	93	97				
Darien	30	0.242	0.068	110	120	130	85	93	101				
Deep River	30	0.170	0.060	120	130	140	93	101	108				
Derby	30	0.195	0.064	115	125	135	89	97	105				
Durham	30	0.179	0.062	115	130	140	89	101	108				
Eastford	40	0.172	0.063	120	130	140	93	101	108				
East Granby	35	0.177	0.065	110	120	130	85	93	101				
East Haddam	30	0.172	0.061	120	130	140	93	101	108				
East Hampton	30	0.177	0.062	120	130	140	93	101	108				

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.207	S _{DS} :	0.221	
S_1 :	0.064	S_{D1} :	0.103	
F _a :	1.6	T_L :	6	
F _v :	2.4	PGA:	0.112	
S _{MS} :	0.331	PGA _M :	0.177	
S _{M1} :	0.155	F _{PGA} :	1.576	
		la :	1	

Seismic Design Category B

Data Accessed: Wed Feb 02 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Feb 02 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Wed Feb 02 2022

 Sheet No.
 1
 of
 3

 Calculated By CGW Checked By
 CGW Date : 02/03/22
 02/03/22

 Date : 02/03/22
 02/03/22

WIND AND ICE LOADS PER TIA-222-G

W.O.	10710.NJJER01163A
Project Name	NJJER01163A
Location	220 Evergreen Street, Bridgeport, CT 06606
County	Fairfield

Tower Type	MP	Monopole
Structure Class	2	Substantial hazard
Exposure Category	В	Suburban/wooded/obstructed
Topo Category	1	Flat or rolling terrain
Height of crest	0	ft

Basic Wind Speed (3-sec gust):								
Without ice	93	mph*						
With ice	50	mph						
Service	60	mph						
Ice thickness	1.00	in						

Importance Fa	ctor
Wind only	1.00
Wind with ice	1.00
Ice thickness	1.00
Supporting Da	ıta:
K _e	0.90
K_{t}	N/A
f	N/A
z_g	1200
α	7
$K_{z,min}$	0.7
K_{d} G_{h}	0.95
G_{h}	1.00

Height	z (ft)	99
	Kh	N/A
	Kzt	1.00
	Kz	0.99
	Kiz	1.12
Wind Drossure	No Ice	20.73
Wind Pressure, qz (psf)	With Ice	5.99
q2 (β3i)	Service	8.63
(tiz)	Ice Thk	2.23
A	No Ice	20.73
Appurtenances (qzGh)	With Ice	5.99
(42011)	Service	8.63

^{*}Ultimate 3-second gust wind speed of 120 mph converted to a nominal 3-second wind gust speed of 93 mph per Section 1609.3 and Appendix N, as required for use in the TIA-222-G Standard.

Sheet No. 2 of 3 02/03/22 Calculated By CGW Date: 02/03/22

Checked By IM Date:

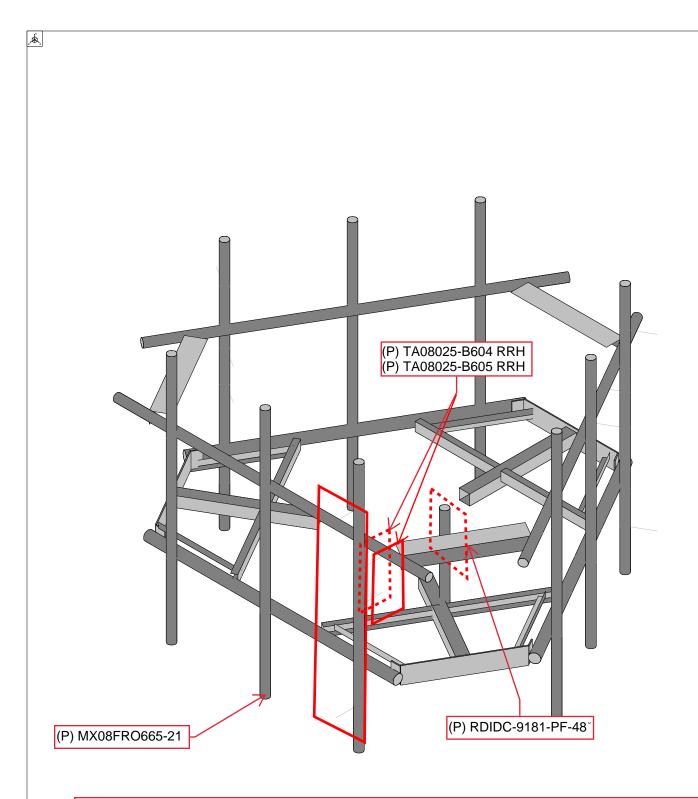
Appurtenance Information

Effective Projected Area for Appurtenance (EPA) _A =Max((EPA) _N ,(EPA) _T)																	
(EPA)т=∑(C a A A)т			(EPA)n=∑(Ca A a)n										Reduction Factor =		0.9		
Wind Only Load Combinations																	
Antenna Configuration	(E) or (P)	Qty	z (ft)	Length or Diameter (ft)	Width (in)	Depth (in)	Flat or Cylindrical?	Antenna (Ca)τ	Antenna (Ca)N	Side Face (Aa)T (ft^2)	Wind ward Side Face (CaAa)T (ft^2)	Face Normal (A _a) _N (ft^2)	Windward face Normal (CaAa)N (ft^2)	Normal Antenna Wind Load Each (lb)	Transverse Antenna Wind Load Each (lb)	Antenna Weight (lb)	Total Weight (lb)
MX08FRO665-21	P	3	99	6.00	20.00	8.00	Flat	1.47	1.25	4.00	15.84	10.00	33.72	233	109	83	248
TA08025-B604 RRH	Р	3	99	1.24	15.70	7.80	Flat	1.20	1.20	0.81	2.61	1.62	5.26	36	18	64	192
TA08025-B605 RRH	Р	3	99	1.24	15.70	9.00	Flat	1.20	1.20	0.93	3.02	1.62	5.26	36	21	75	225
RDIDC-9181-PF-48	Р	1	99	1.58	14.39	8.15	Flat	1.20	1.20	1.07	1.16	1.90	2.05	42	24	22	22
										Z(CaAA)T	22.62	Z(CaAA)N	46.30				606

Wind with Ice Load Combinations		Ice Thk=	2.23	in													
Antenna Configuration	(E) or (P)	Qty	z (ft)	Length or Diameter (ft)	Width (in)	Depth (in)	Flat or Cylindrical?	Antenna (Ca)τ	Antenna (Ca) _N	Side Face (A _a) _T (ft^2)	Windward Side Face (CaAa)T (ft^2)	Face Normal (A _a) _N (ft^2)	Windward Face Normal (C _a A _a) _N (ft^2)	Normal Antenna Wind Load Each (lb)	Transverse Antenna Wind Load Each (lb)	Ice Area for Weight (ft^2)	Ice Weight Alone (lbs)
MX08FRO665-21	Р	3	99.00	6.37	20.37	8.37	Flat	1.47	1.26	4.45	17.66	10.82	36.68	73	35	28	292
TA08025-B604 RRH	Р	3	99.00	1.61	16.07	8.17	Flat	1.20	1.20	1.10	3.56	2.16	7.00	14	7	5	51
TA08025-B605 RRH	P	3	99.00	1.61	16.07	9.37	Flat	1.20	1.20	1.26	4.08	2.16	7.00	14	8	5	53
RDIDC-9181-PF-48	P	1	99.00	1.95	14.76	8.52	Flat	1.21	1.20	1.39	1.51	2.40	2.60	16	9	6	62
		·					<u> </u>	·		∑(CaAA)T	26.81	∑(CaAa)N	53.28				457

10710 Rev G Mount Loading.xlsx Appurtenance Info

Sheet No. 3 of 3 Calculated By CGW Date: 02/03/22 Date:

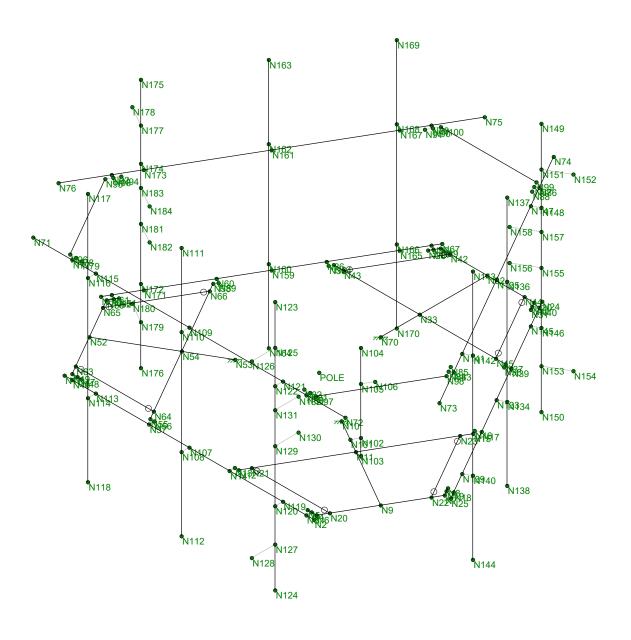

Checked By IM 02/03/22

Mounting System Information

						Reduction F	actor =	0.9		
Mount Part	Projected Width (in)	Depth (in)	Flat or Cylindrical ?	Drag Factor	•	Wind Force (lbs/ft)	Ice Weight Area (ft^2)	Ice Weight (Ibs/ft)	Projected Area with Ice (ft^2)	Wind Force Ice (Ibs/ft)
Standoff End Plate 6.5"	6.50	0.38	Flat	2	1.08	20	1.15	11.9	1.83	9.9
Standoff End Plate 6"	6.00	0.38	Flat	2	1.00	19	1.06	11.1	1.74	9.4
Grating Support Angle	2.00	2.00	Flat	2	0.33	6	0.67	6.9	1.08	5.8
Face Horizontal	3.50	3.50	Cylindrical	1.2	0.35	7	0.92	9.5	0.80	4.3
Mount Pipe	2.88	2.88	Cylindrical	1.2	0.29	5	0.75	7.8	0.73	4.0
Standoff Channel	3.38	2.06	Flat	2	0.56	11	0.91	9.4	1.31	7.0
Standoff	4.00	4.00	Flat	2	0.67	12	1.33	13.9	1.41	7.6
Rail Connector	6.60	4.45	Flat	2	1.10	21	1.84	19.2	1.84	9.9
Railing	2.88	2.88	Cylindrical	1.2	0.29	5	0.75	7.8	0.73	4.0

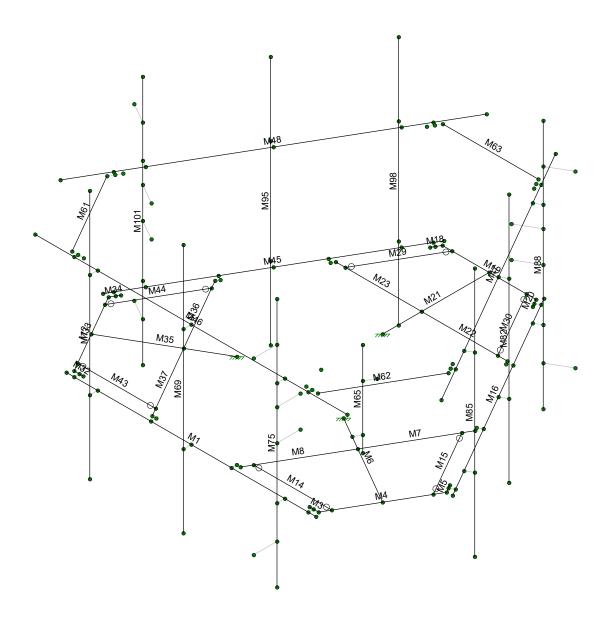
Note: The member sizes are based on the assembly drawings by Commscope, dated 03/17/21

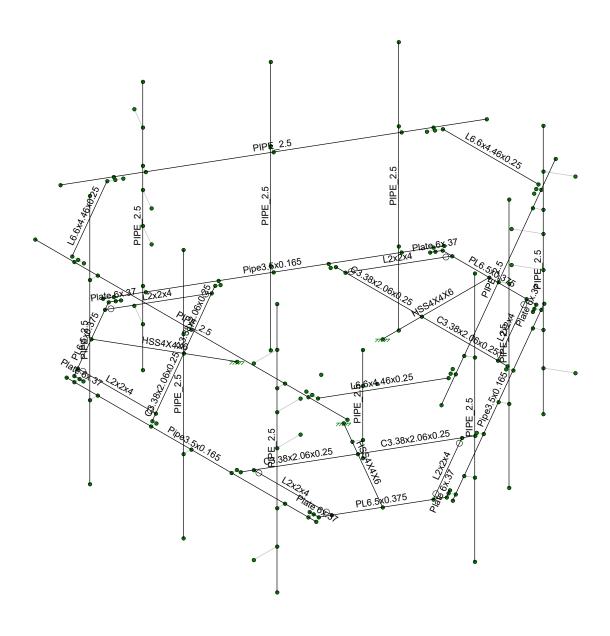
APPENDIX B WIRE FRAME AND RENDERED MODELS

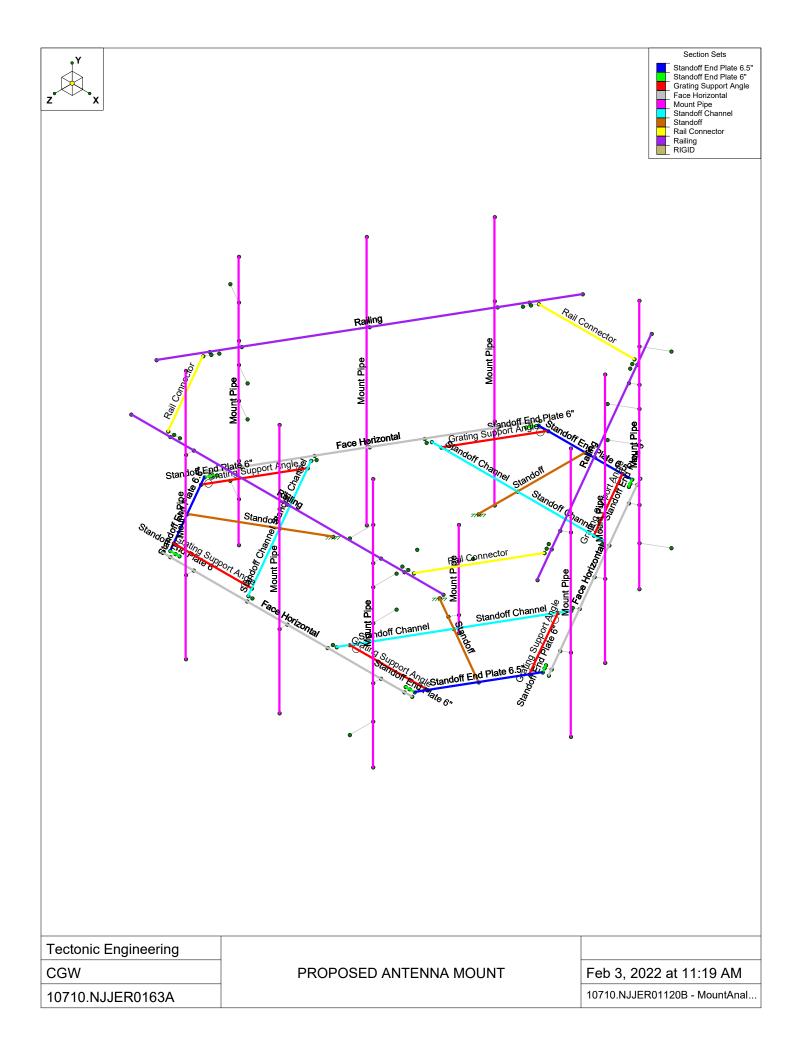


NOTES:

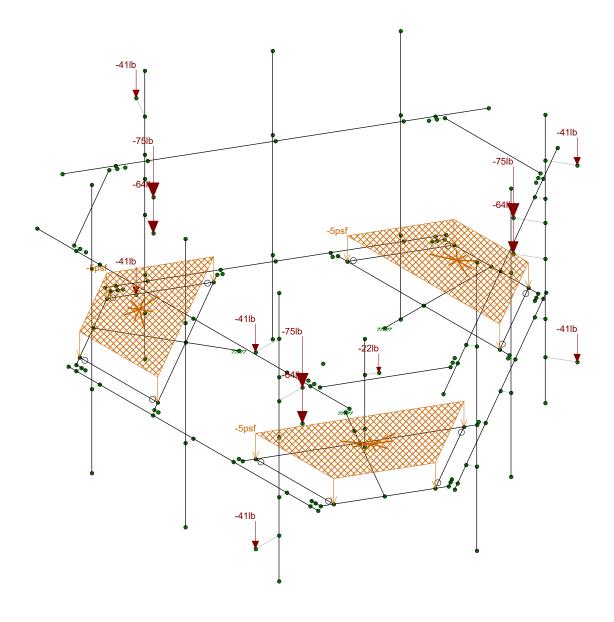
- 1) PROPOSED ANTENNAS AND MOUNTING PIPES HAVE BEEN VERTICALLY CENTERED ALONG THE PROPOSED MOUNT (NO OFFSET)
- 2) LISTED PROPOSED APPURTENANCES ABOVE ARE TYPICAL FOR ALL SECTORS


Tectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:08 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal

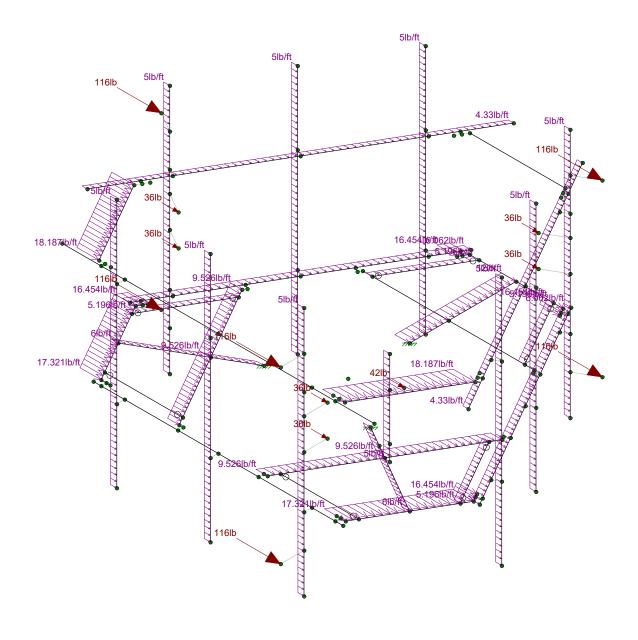

Tectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:17 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal



Tectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:18 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal

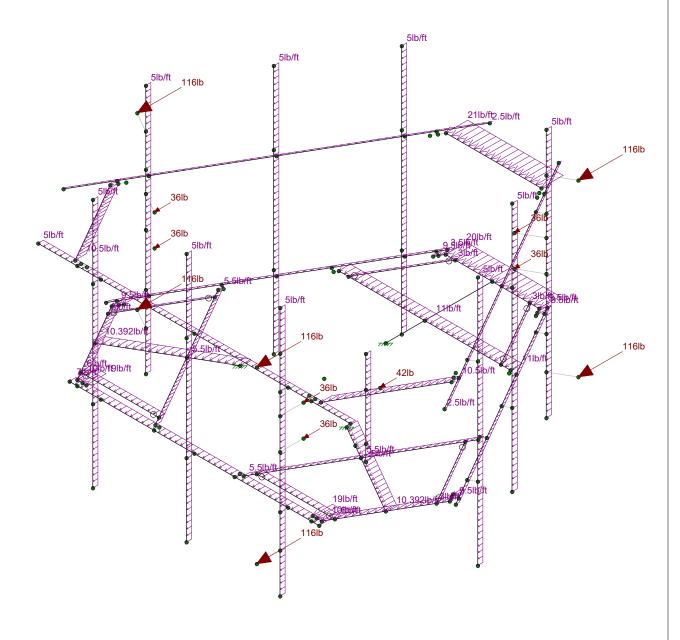


Tectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:18 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal



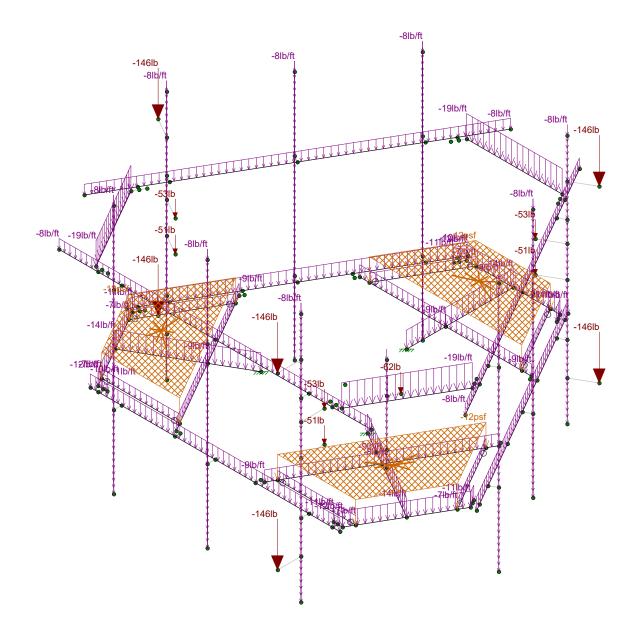
Loads: BLC 1, DL

Tectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:19 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal



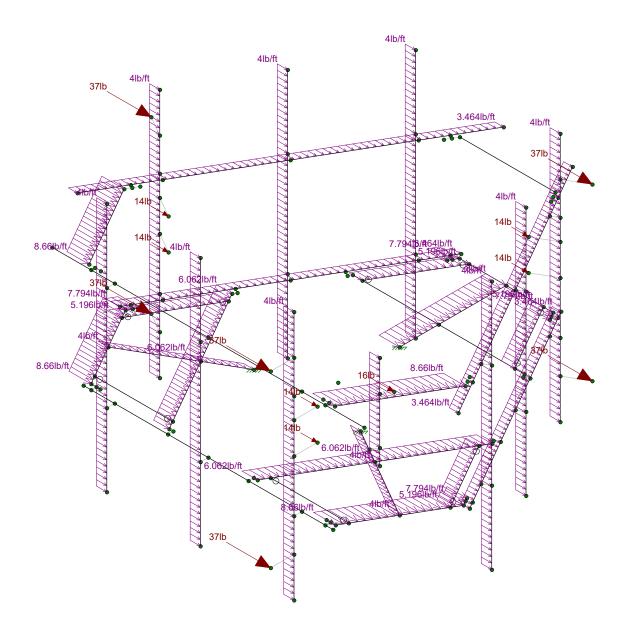
Loads: BLC 2, WLX

Tectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:19 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal



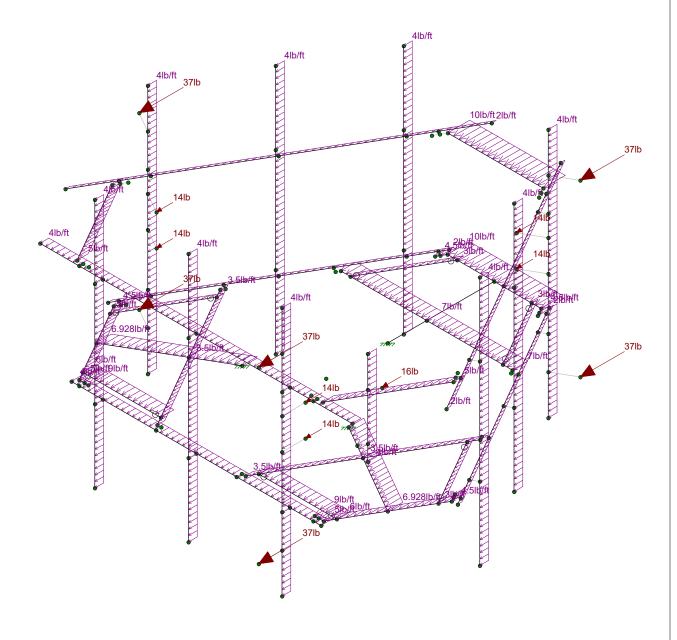
Loads: BLC 3, WLZ

l ectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:19 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal



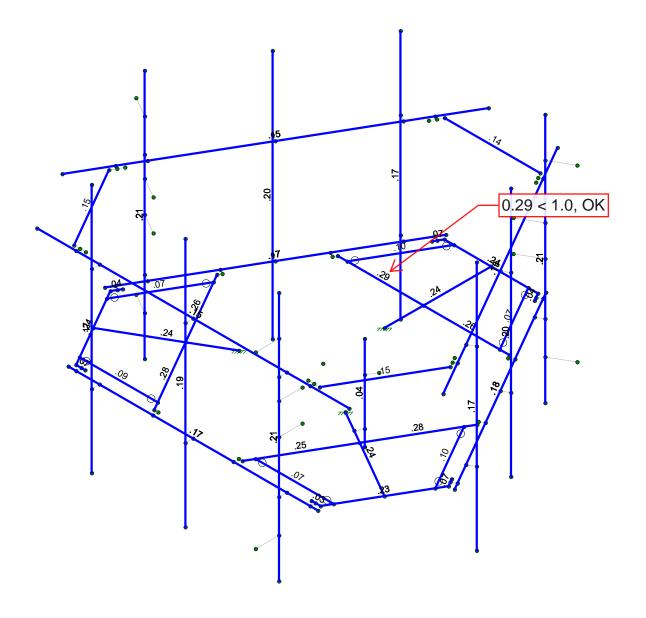
Loads: BLC 4, DL (ICE)

l ectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:19 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal



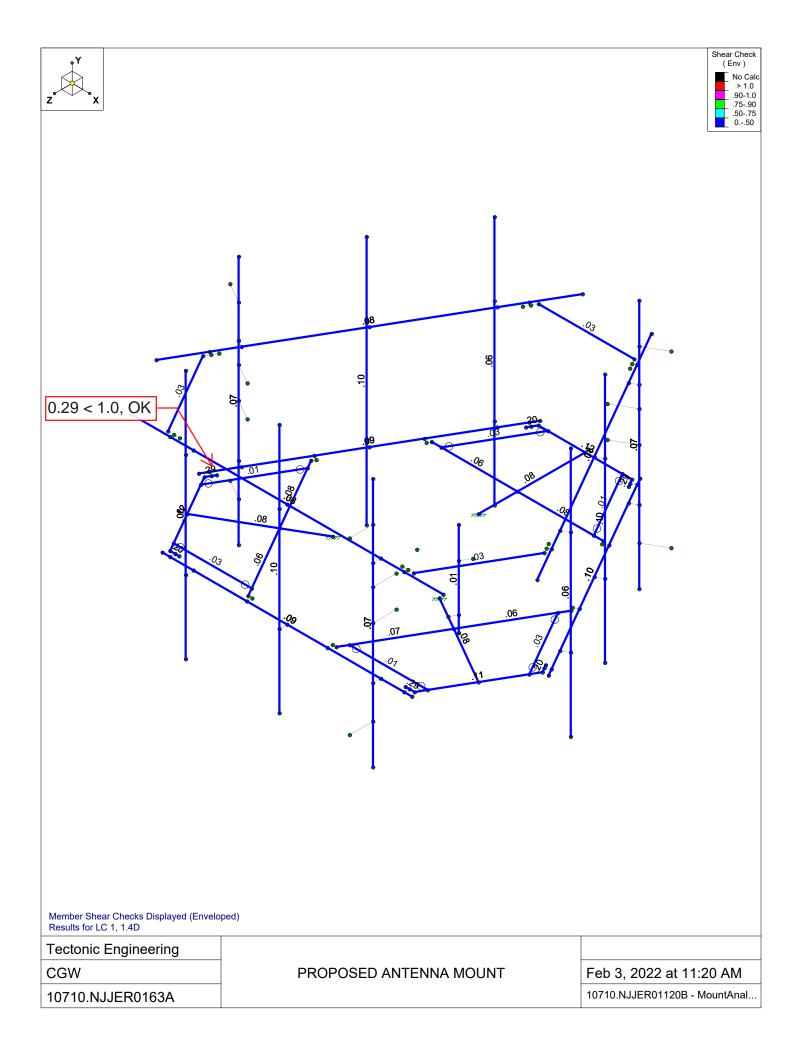
Loads: BLC 5, WLX (ICE)

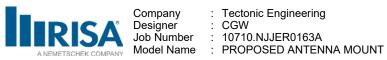
l ectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:19 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal


Loads: BLC 6, WLZ (ICE)

Tectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:19 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal

APPENDIX C SOFTWARE ANALYSIS OUTPUT





Member Code Checks Displayed (Enveloped) Results for LC 1, 1.4D

Tectonic Engineering		
CGW	PROPOSED ANTENNA MOUNT	Feb 3, 2022 at 11:20 AM
10710.NJJER0163A		10710.NJJER01120B - MountAnal

Feb 3, 2022 11:25 AM Checked By: IM

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rul	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Standoff End Plate 6.5"	PL6.5x0.375	Beam	RECT	A36 Gr.36	Typical	2.438	.029	8.582	.11
2	Standoff End Plate 6"	Plate 6x.37	Beam	RECT	A36 Gr.36	Typical	2.22	.025	6.66	.097
3	Grating Support Angle	L2x2x4	Beam	Single Angle	A36 Gr.36	Typical	.944	.346	.346	.021
4	Face Horizontal	Pipe3.5x0.165	Beam	Pipe	A53 Gr.B	Typical	1.729	2.409	2.409	4.819
5	Mount Pipe	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
6	Standoff Channel	C3.38x2.06x0	Beam	Channel	A36 Gr.36	Typical	1.75	.715	3.026	.034
7	Standoff	HSS4X4X6	Beam	SquareTube	A500 Gr.B	Typical	4.78	10.3	10.3	17.5
8	Rail Connector	L6.6x4.46x0.25	Beam	Single Angle	A36 Gr.36	Typical	2.703	4.759	12.473	.055
9	Railing	PIPE_2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	DL	DĽ	_	-1.05	•	13			3	,
2	WLX	WLX				13		43		
3	WLZ	WLZ				13		43		
4	DL (ICE)	None				13		43	3	
5	WLX (ICÉ)	None				13		43		
6	WLZ (ICE)	None				13		43		
7	BLC 1 Transient Area	None						18		
8	BLC 4 Transient Area	None						18		

Load Combinations

	Description	So	P	S	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1	1.4D	Yes	Υ		1	1.4																		
2	1.2D+1.6WLX	Yes	Υ		1	1.2	2	1.6																
3	1.2D+1.6WLZ	Yes	Υ		1	1.2	3	1.6																
4	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2	1.6																
5	1.2D+1.6(WLX+WL		_		1	1.2	2	1.3	3	.8														
6	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2	.8	3	1.3														
7	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2		3	1.6														
8	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2	8		1.3														
9	1.2D+1.6(WLX+WL	_	_		1	1.2	2	-1.3	. 3	.8														
10	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2	-1.6	3															
11	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2	-1.3	. 3	8														
12	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2	8	3	-1.3														
13	1.2D+1.6(WLX+WL				1	1.2	2		3	-1.6														
14	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2	.8	3	-1.3														
15	1.2D+1.6(WLX+WL	Yes	Υ		1	1.2	2	1.3	3	8														
16	**Wind Load with Ic																							
17	1.2D+1.0Di+1.0WLXi	Yes	Υ		1	1.2	4	1	5	1														
18	1.2D+1.0Di+1.0WLZi	Yes	Υ		1	1.2	4	1			6	1												

Company Designer Job Number Model Name : Tectonic Engineering : CGW

: 10710.NJJER0163A : PROPOSED ANTENNA MOUNT Feb 3, 2022 11:25 AM Checked By: IM

Load Combinations (Continued)

	Description	So	P	S	BLC	Fac																		
19	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	1	6													
20	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	.87	6	.5												
21	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	.5	6	.87												
22	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5		6	1												
23	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	5	6	.87												
24	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	87	6	.5												
25	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	-1	6													
26	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	87	6	5												
27	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	5	6	87												
28	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5		6	-1												
29	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	.5	6	87												
30	1.2D+1.0Di+1.0(WL	Yes	Υ		1	1.2	4	1	5	.87	6	5												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N10	max	958.547	9	2261.171	20	1504.757	14	.181	10	1.955	8	4.059	20
2		min	-947.859	15	108.506	11	-1515.55	8	-3.092	17	-1.977	14	675	11
3	N53	max	959.415	11	2126.271	24	1394.466	12	.677	4	1.893	12	.331	15
4		min	-955.919	5	58.909	15	-1381.59	6	-1.971	10	-1.916	6	-4.592	24
5	N70	max	1532.155	10	2136.439	28	498.011	13	4.938	28	1.751	4	.962	10
6		min	-1545.945	2	40.041	3	-505.436	3	611	3	-1.773	10	394	2
7	Totals:	max	3177.247	10	5806.272	21	3302.219	13						
8		min	-3177.239	2	2494.023	12	-3302.215	3						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear C	Loc[in] Di	r_LC	phi*phi*phi*Mphi* Cb Eqn
1	M23	C3.38x2.06x0.25	.286	0	29	.063	29.563 z	14	477 567 2.203 5.752 1.6 H1-1b
2	M7	C3.38x2.06x0.25	.284	0	20	.062	29.563 z	6	477 567 2.203 5.752 1.6 H1-1b
3	M37	C3.38x2.06x0.25	.280	0	24	.057	29.563 z	10	477 567 2.203 5.752 1.6 H1-1b
4	M22	C3.38x2.06x0.25	.261	33	13	.078	3.438 z	7	4775672.203 5.752 1.6 H1-1b
5	M36	C3.38x2.06x0.25	.258	33	9	.079	3.438 z	15	4775672.203 5.752 1.5 H1-1b
6	M8	C3.38x2.06x0.25	.249	33	5	.074	3.438 z	11	477 567 2.203 5.752 1.6 H1-1b
7	M6	HSS4X4X6	.240	41	19	.085	31.604 z	14	18719722.046 22.046 2.0 H1-1b
8	M19	PL6.5x0.375	.239	18	13	.116	36 y	6	497789617 8.83 1.3 H1-1b
9	M33	PL6.5x0.375	.237	18	9	.116	36 y	14	
10	M35	HSS4X4X6	.236	41	23	.085	41 y	22	187 197 22.046 22.046 1.9 H1-1b
11	M21	HSS4X4X6	.235	41	27	.085	41 y	26	187 197 22.046 22.046 1.97 H1-1b
12	M4	PL6.5x0.375	.226	18	5	.106	0 y	10	497789617 8.843 1.3 H1-1b
13	M101	PIPE 2.5	.213	68	8	.067	68	14	3005073.596 3.596 1.5 H1-1b
14	M88	PIPE 2.5	.211	68	12	.067	68	6	3005073.596 3.596 2.8 H1-1b
15	M75	PIPE 2.5	.210	68	4	.067	68	10	300 507 3.596 3.596 2.7 H1-1b
16	M82	PIPE 2.5	.195	68	6	.104	68	12	3005073.596 3.596 4.1 H1-1b
17	M95	PIPE 2.5	.195	68	14	.104	68	8	3005073.596 3.596 4.3 H1-1b
18	M69	PIPE 2.5	.194	68	10	.103	68	4	3005073.596 3.596 4.7 H1-1b
19	M16	Pipe3.5x0.165	.177	64	13	.096	48	7	3885444.822 4.822 2.4 H1-1b
20	M45	Pipe3.5x0.165	.174	32	9	.094	48	15	3885444.822 4.822 2.4 H1-1b
21	M1	Pipe3.5x0.165	.168	32	5	.093	48	11	3885444.822 4.822 2.3 H1-1b
22	M72	PIPE 2.5	.167	68	4	.060	68	12	3005073.596 3.596 3.9 H1-1b
23	M98	PIPE 2.5	.166	68	8	.058	68	4	300 507 3.596 3.596 3.87 H1-1b
24	M85	PIPE 2.5	.166	68	12	.060	68	8	3005073.596 3.596 4.2 H1-1b
25	M61	L6.6x4.46x0.25	.152	0	4	.034	0 y	6	5168752.465 7.125 1.6 H2-1
26	M46	PIPE 2.5	.151	15	10	.082	95	4	2235073.596 3.596 1.2 H1-1b
27	M48	PIPE 2.5	.149	95	14	.082	95	8	223 507 3.596 3.596 1.2 H1-1b
28	M47	PIPE_2.5	.148	95	6	.082	95	12	223 507 3.596 3.596 1.2 H1-1b

Company Designer Job Number Model Name

: Tectonic Engineering: CGW: 10710.NJJER0163A

: PROPOSED ANTENNA MOUNT

Feb 3, 2022 11:25 AM Checked By: IM

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	Shear C	Loc[in]	Dir	LC I	phi*phi*.	phi*M	.phi*	Cb	Eqn
29	M62	L6.6x4.46x0.25	.148	0	12	.034	36.724	У	14	516875.	2.465	7.125	1.5	H2-1
30	M63	L6.6x4.46x0.25	.143	0	8	.032	.765	У	10	516875.	2.465	7.125	1.5	H2-1
31	M29	L2x2x4	.101	0	14	.026	30.022	Z	27	222305.	.691	1.577	1.1	H2-1
32	M15	L2x2x4	.099	0	6	.026	30.022	Z	19	222305.	.691	1.577	1.1	H2-1
33	M43	L2x2x4	.090	0	10	.026	30.022	Z	23	222305.	.691	1.577	1.1	H2-1
34	M44	L2x2x4	.072	0	15	.015	30.022	У	28	222305.	.691	1.577	2.1	H2-1
35	M30	L2x2x4	.072	0	7	.015	30.022	У	20	222305.	.691	1.577	2.1	H2-1
36	M5	Plate 6x.37	.070	1.969	7	.197	0	У	6	679719.	.554	8.991	2.5	H1-1b
37	M18	Plate 6x.37	.069	1.531	15	.197	3.5	У	14	679719.	.554	8.991	2.4	H1-1b
38	M14	L2x2x4	.067	0	11	.015	30.022	У	24	222305.	.691	1.577	2.11	H2-1
39	M32	Plate 6x.37	.065	1.531	11	.197	3.5	У	10	679719.	.554	8.991	2.6	H1-1b
40	M34	Plate 6x.37	.039	1.969	15	.292	0	У	23	679719.	.554	8.991	1.3	H1-1b
41	M65	PIPE 2.5	.038	6	14	.013	6		5	471507.	3.596	3.596	1.8	H1-1b
42	M20	Plate 6x.37	.037	1.969	7	.292	0	У	27	679719.	.554	8.991	1.3	H1-1b
43	M3	Plate 6x.37	.034	1.531	11	.290	3.5	y	19	679719.	.554	8.991	1.3	H1-1b

MAXIMUM MEMBER STRESSES DO NOT EXCEED 29% OF THEIR DESIGN STRENGTH. THEREFORE, THE PROPOSED MOUNT IS ADEQUATE TO SUPPORT THE PROPOSED INSTALLATION.

APPENDIX D ADDITIONAL CALCULATIONS

Calculated By: CGW Date: 2/3/22

Checked By: IM Date: 2/3/22

Connection De	tails	
Bolt Details		
Bolt Quantity =	4	
Bolt Diameter =	0.625	in
Vertical Spacing =	7	in
Horizontal Spacing =	7	in
Bolt Grade =	A325	
Bolt F_{u} , if "Other" =	N/A	ksi

Loading I	Details	
Node N10), LC19	
Shear, X =	0.231	k
Shear, Y =	2.227	k
Tension, Z =	0.163	k
Mx =	4.935	k-ft
My =	0.34	k-ft
Torsion, Mz =	0.721	k-ft

1 - Tensile Capacity

$$R_{nt} = F_{nt}A_b$$

$$\Phi = \begin{array}{c|c} 0.75 & \text{ksi} \\ F_{nt} = \begin{array}{c|c} 90 & \text{ksi} \\ A_b = \begin{array}{c|c} 0.307 & \text{in}^2 \\ \end{array}$$

$$\Phi R_{nt} = \begin{array}{c|c} 20.72 & \text{k} \\ T_{max} = \begin{array}{c|c} 4.56 & \text{k} \end{array}$$

AISC [Eqn. J3-1]

2 - Shear Capacity

$$R_{nv} = F_{nv}A_b$$

$$\Phi = \begin{array}{c|c} 0.75 & \\ F_{nv} = 54 & ksi \\ A_b = 0.307 & in^2 \\ \Phi R_{nv} = 12.43 & k \\ V_{max} = 1.00 & k \end{array}$$

ΦRnt > Tmax 22.0%

AISC [Eqn. J3-1]

AISC [Table J3.2]

ΦRnv > Vmax 8.0%

<u>OK</u>

<u>OK</u>

3 - Combined Tension and Shear Capacity

$$R'_{nt} = F'_{nt}A_b \hspace{1cm} \text{AISC [Eqn. J3-2]}$$

$$F'_{nt} = 1.3F_{nt} - \frac{F_{nt}}{\phi F_{nv}}f_{rv} \leq F_{nt} \hspace{1cm} \text{AISC [Eqn. J3-3a]}$$

$$\Phi = \begin{array}{c} 0.75 \\ F'_{nt} = 90 \\ A_b = 0.307 \\ \Phi R'_{nt} = 20.72 \\ T_{max} = 4.56 \end{array} \text{k}$$

$$\Phi R'_{nt} > T_{max}$$

Calculated By: CGW Date: 2/3/22 Checked By: IM Date: 2/3/22

Connection De	tails	
Weld Details	5	
Weld Type	Fillet	
# of Sides	2	
Electrodes	70	XX
Size of Weld =	0.25	in
HSS Height =	4.00	in
HSS Width =	4.00	in
HSS Thickness =	0.38	in
Plate Details	5	
Height/Width =	9.00	in
Thickness =	0.625	in
$F_y =$	50	ksi

4 - Weld Capacity

 $\begin{array}{c|c} F_{nw} = 0.6 F_{EXX} \\ & \Phi = \begin{array}{c|c} 0.75 \\ & \Phi F_{\text{nw}} = \begin{array}{c|c} 63.00 \\ & \text{ksi} \\ f_{\text{V,max}} = \end{array} & \text{ksi} \\ f_{\text{b,max}} = \begin{array}{c|c} 16.58 \\ & \text{ksi} \end{array} \end{array}$

AISC [Table J2.5]

Min(ΦFnw,ΦFnbm) > √(fv,max+fm,max)

26.5% OK

5 - Plate Capacity

 $\Phi = 0.9$ $\Phi F_{byy} = 45.00 \text{ ksi}$ $f_b = 13.25 \text{ ksi}$

ΦFbyy > Fb

29.4% OK