

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

March 9, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 10 Sylva Street, Branford, CT 06405 Latitude: 41.293944 Longitude: -72.785694 Site #: 822765_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 10 Sylva Street, Branford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 81-foot level of the existing 125foot monopole, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by Kimley Horn, dated March 1, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated September 22, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Branford Planning & Zoning Commission on November 5, 1998. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to James Cosgrove, First Selectman and Harry Smith, Town Planner for the Town of Branford as well as the tower owner (Crown Castle) and property owner (322 East Main Street LLC).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 125-feet and the Dish Wireless LLC antennas will be located at a centerline height of 81-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 56.86% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in Branford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 81-foot level of the existing 125-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Branford.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: James Cosgrove, First Selectman Town of Branford 1019 Main St. Branford, CT 06405

Harry Smith, Town Planner Town of Branford 1019 Main St. Branford, CT 06405

322 East Main Street LLC, Property Owner375 Fairfield AveStamford, CT 06902

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

6740

VOL. 662 PAGE 502 PLANNING AND ZONING COMMISSION TOWN OF BRANFORD TOWN HALL DRIVE P.O. BOX 150 Branford, Connecticut 06405 488-1255

NOTICE OF DECISION

November 10, 1998

J. Brendan Sharkey, Esq. For Omnipoint Communications, Inc. 25 VanZant Street #18E East Norwalk, Connecticut 06855

SUBJECT: Special Exception

APPLICATION # 98-9.3

LOCATION: 10 Sylvia Street

OWNERS OF RECORD: TKJ SYLVIA ASSOCIATES, LLC

Dear Sir:

At a meeting of the Branford Planning & Zoning Commission held on <u>Thursday</u>, <u>November 5, 1998</u>, the Commission voted to:

 \underline{X} Approve your above subject application with the conditions noted below.

Very truly yours. Shirley Rasmussen Town Planner

NOTE: This Special Exception shall become effective only after it is filed on the Land Records in the office of the Town Clerk.

 Omnipoint must construct tower so that it can easily be extended to provide spaces for two (2) other carriers for co-location purposes.

NOTE: Special Exception shall become null and void in the event the applicant fails to obtain a building permit within one (1) year of date of approval. (Per Section 31.7 of the Branford Zoning Regulations)

HECEIVED FOR RECORD M. AND RECORDED BY

GEORGETTE A. LASKE BRANFORD TOWN CLERK

Exhibit B

Property Card

10 SYLVIA ST

Location	10 SYLVIA ST	Mblu	G05/F05 004/ 00017/ /
Acct#	000614	Owner	322 EAST MAIN STREET LLC
Assessment	\$498,600	Appraisal	\$712,200
PID	1103	Building Count	1

Current Value

Appraisal					
Valuation Year Improvements Land Total					
2019	\$230,700	\$481,500	\$712,200		
	Assessment				
Valuation Year Improvements Land Total					
2019	\$161,500	\$337,100	\$498,600		

Owner of Record

Owner	322 EAST MAIN STREET LLC	Sale Price	\$468,000
Co-Owner		Certificate	
Address	375 FAIRFIELD AVE	Book & Page	1132/0054
	BUILDING 1	Sale Date	05/02/2013
	STAMFORD, CT 06902	Instrument	25

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
322 EAST MAIN STREET LLC	\$468,000		1132/0054	25	05/02/2013
T K J SYLVIA ASSOCIATES LLC	\$0		0571/0583		06/07/1994

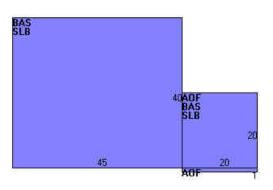
Building Information

Building 1 : Section 1

Year Built:	1960
Living Area:	2,620
Replacement Cost:	\$351,007
Building Percent Good:	60

Replacement Cost

\$210


	Building Attributes
Field	Description
STYLE	Health Club
MODEL	Ind/Comm
Grade	С
Stories:	1
Occupancy	1
Exterior Wall 1	Concr/Cinder
Exterior Wall 2	Wood on Sheath
Roof Structure	Gable/Hip
Roof Cover	Asphalt
Interior Wall 1	Minim/Masonry
Interior Wall 2	Drywall
Interior Floor 1	Concr-Finished
Interior Floor 2	Ceram Clay Til
Heating Fuel	Gas
Heating Type	Hot Air-no Duc
АС Туре	None
Bldg Use	COMM WHS MDL96
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	3160
Heat/AC	HEAT/AC SPLIT
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEIL & MIN WL
Rooms/Prtns	AVERAGE
Wall Height	16
% Comn Wall	0

Building Photo

(http://images.vgsi.com/photos/BranfordCTPhotos/\00\03\25/08.jpg)

Building Layout

(http://images.vgsi.com/photos/BranfordCTPhotos//Sketches/1103_1103.jp

	<u>Legend</u>		
Code	Description	Gross Area	Living Area
BAS	First Floor	2,200	2,200
AOF	Office	420	420
SLB	Slab	2,200	0
		4,820	2,620

•

.

Extra Features

	Extra Features				
Code	Description	Size	Value	Bldg #	
GEN2	GEN 15-30KW PRMT BKP	1 UNITS	\$3,000	1	
A/C	AIR CONDITION	800 S.F.	\$1,100	1	

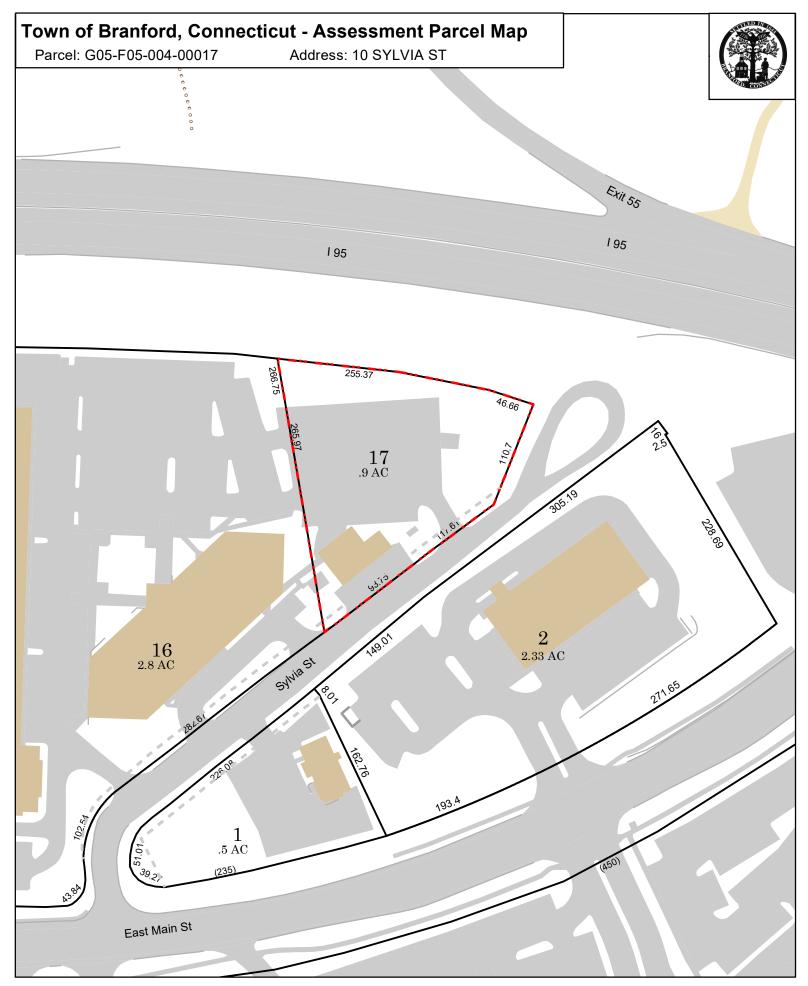
Land

Land Use

Land Line Valuation

Use Code	3160	Size (Acres) 0.95
Description	COMM WHS MDL96	Frontage
Zone	BL	Depth
Neighborhood	400	Assessed Value \$337,100
Alt Land Appr	No	Appraised Value \$481,500
Category		

Outbuildings

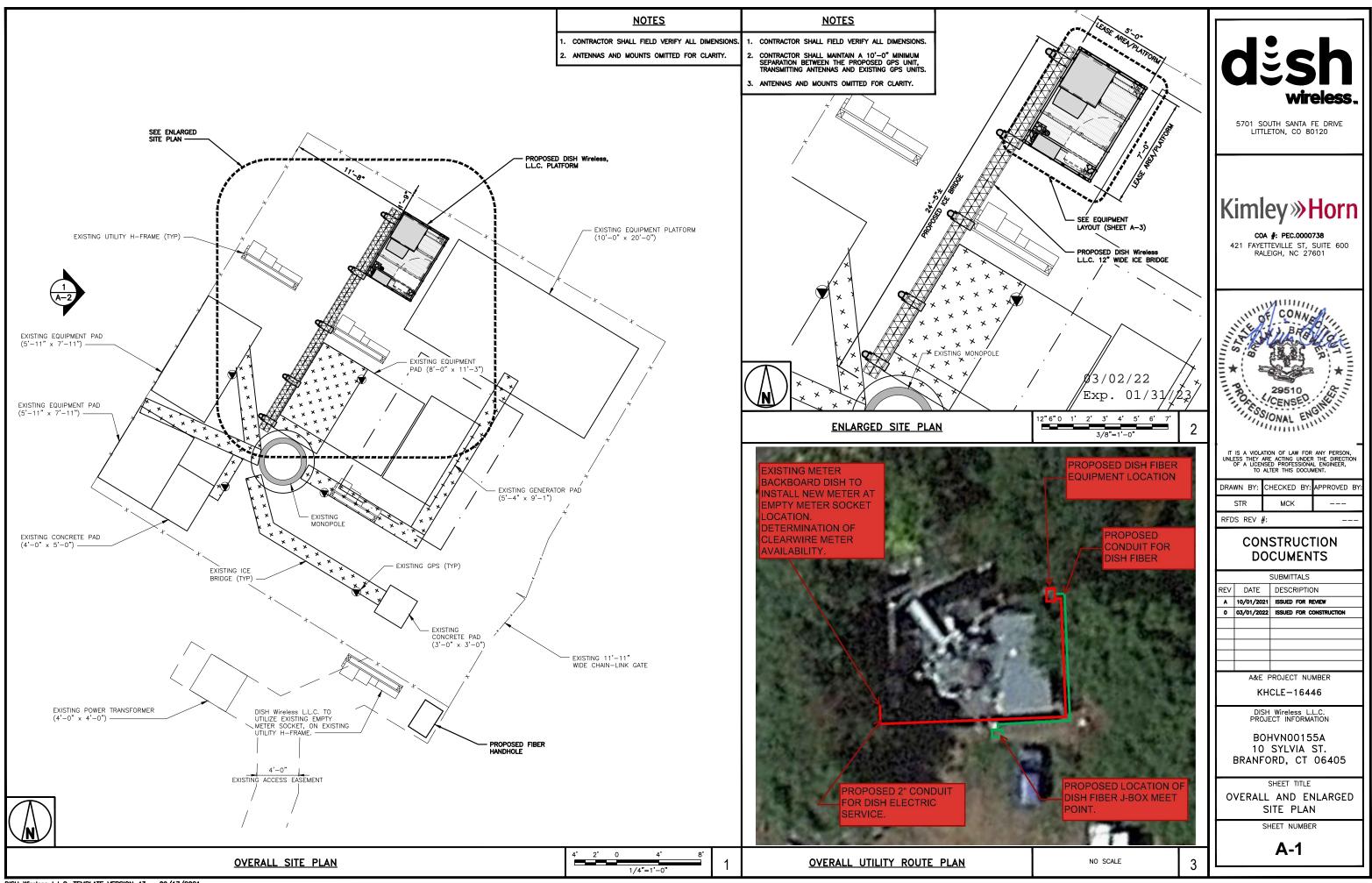

	Outbuildings					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV1	PAVING-ASPHALT			18000 S.F.	\$8,900	1
FN3	FENCE-6' CHAIN			200 L.F.	\$1,000	1
PAV2	PAVING-CONC			72 S.F.	\$200	1
SHD8	COMMUN UTLTY			36 S.F.	\$1,800	1
LT9	HGH PRE-SOD PL			3 UNITS	\$4,100	1

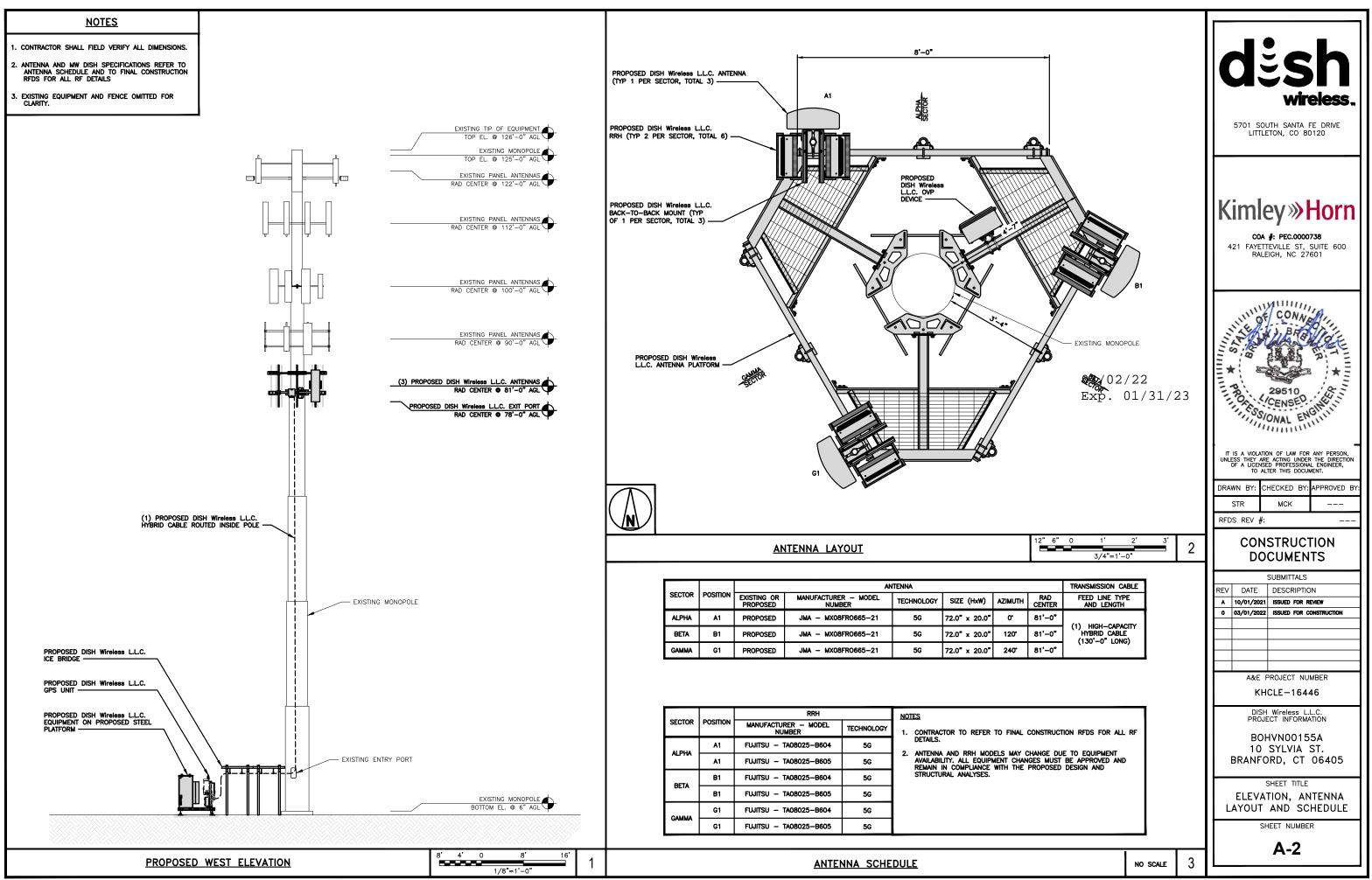
Valuation History

Appraisal						
Valuation Year	Improvements	Land	Total			
2020	\$230,700	\$481,500	\$712,200			
2019	\$230,700	\$481,500	\$712,200			
2018	\$108,000	\$467,500	\$575,500			

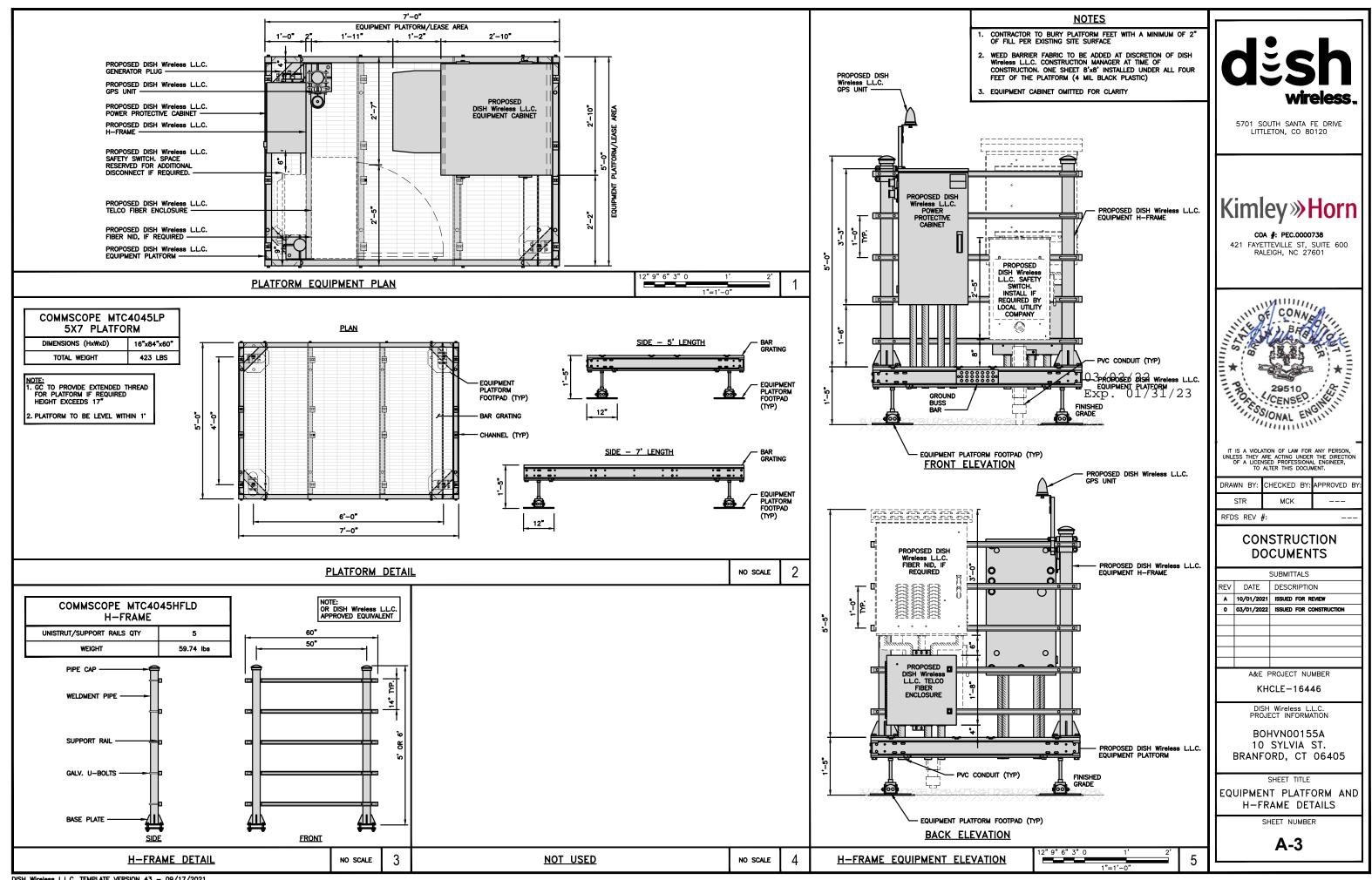
Assessment							
Valuation Year	Improvements	Land	Total				
2020	\$161,500	\$337,100	\$498,600				
2019	\$161,500	\$337,100	\$498,600				
2018	\$75,500	\$327,300	\$402,800				

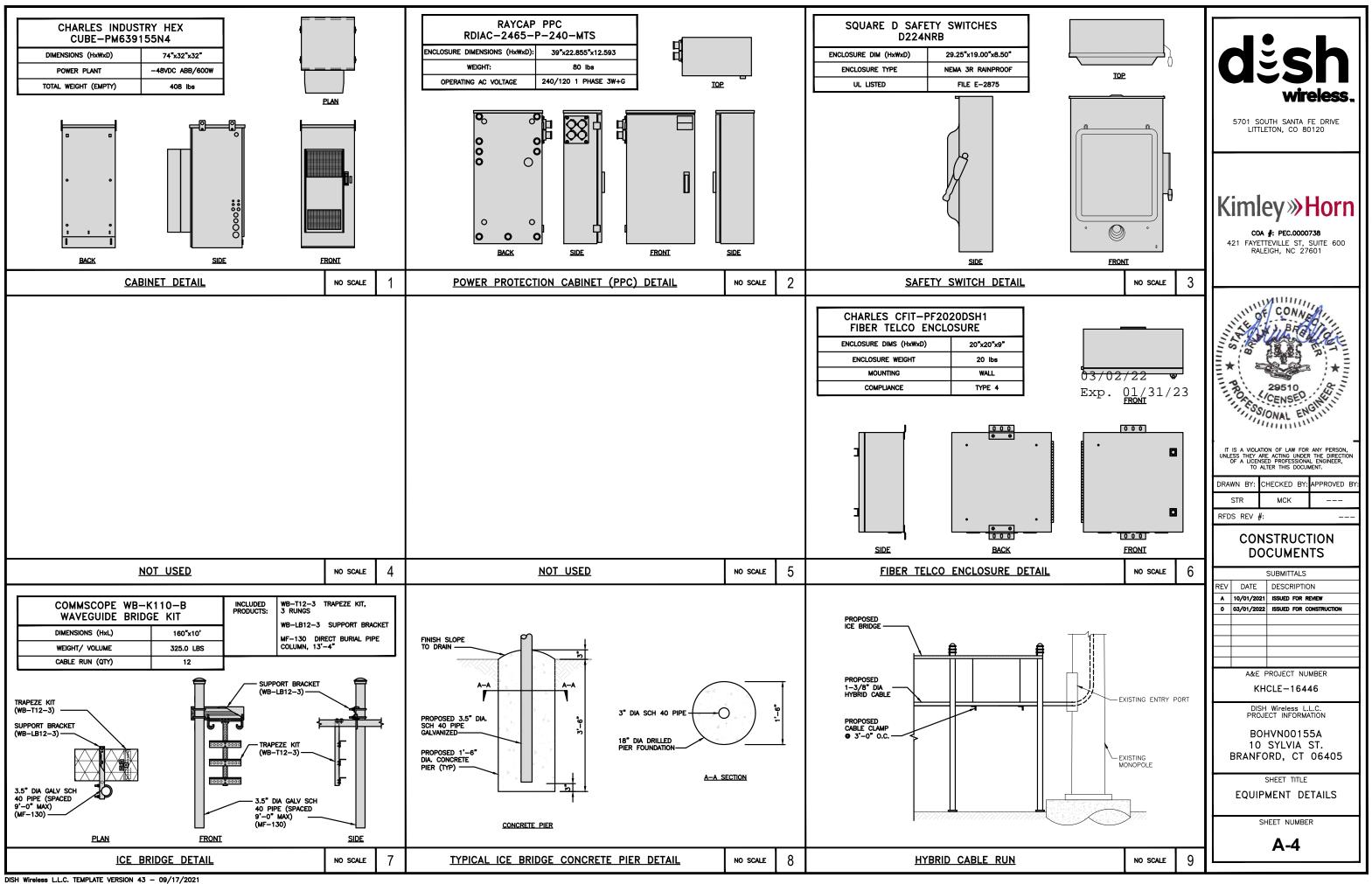
(c) 2022 Vision Government Solutions, Inc. All rights reserved.

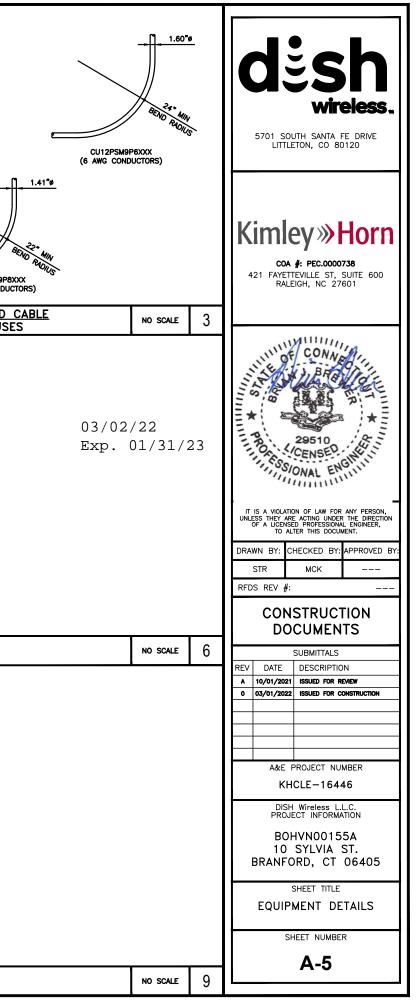

Approximate Scale: 1 inch : 100 feet Grand List Date June 2021 Disclaimer: This map is for informational purposes only. All information is subject to verification by any user. The Town of Branford and its mapping contractors assume no legal responsibility for the information contained herein.

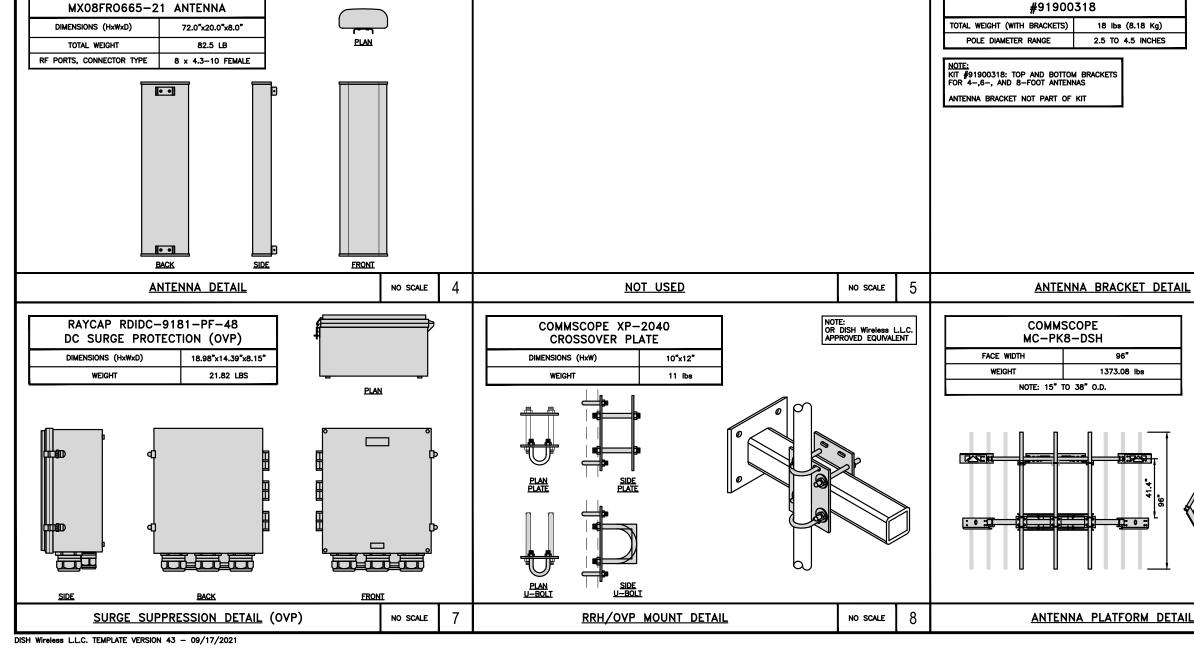

Exhibit C

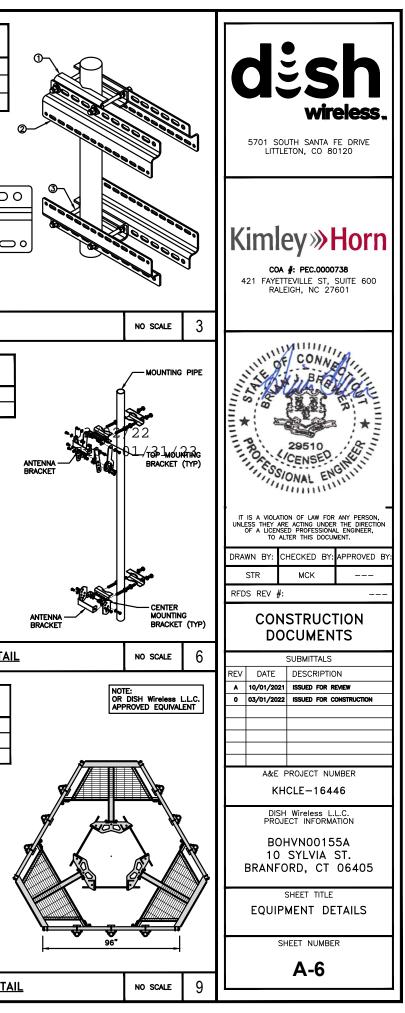
Construction Drawings

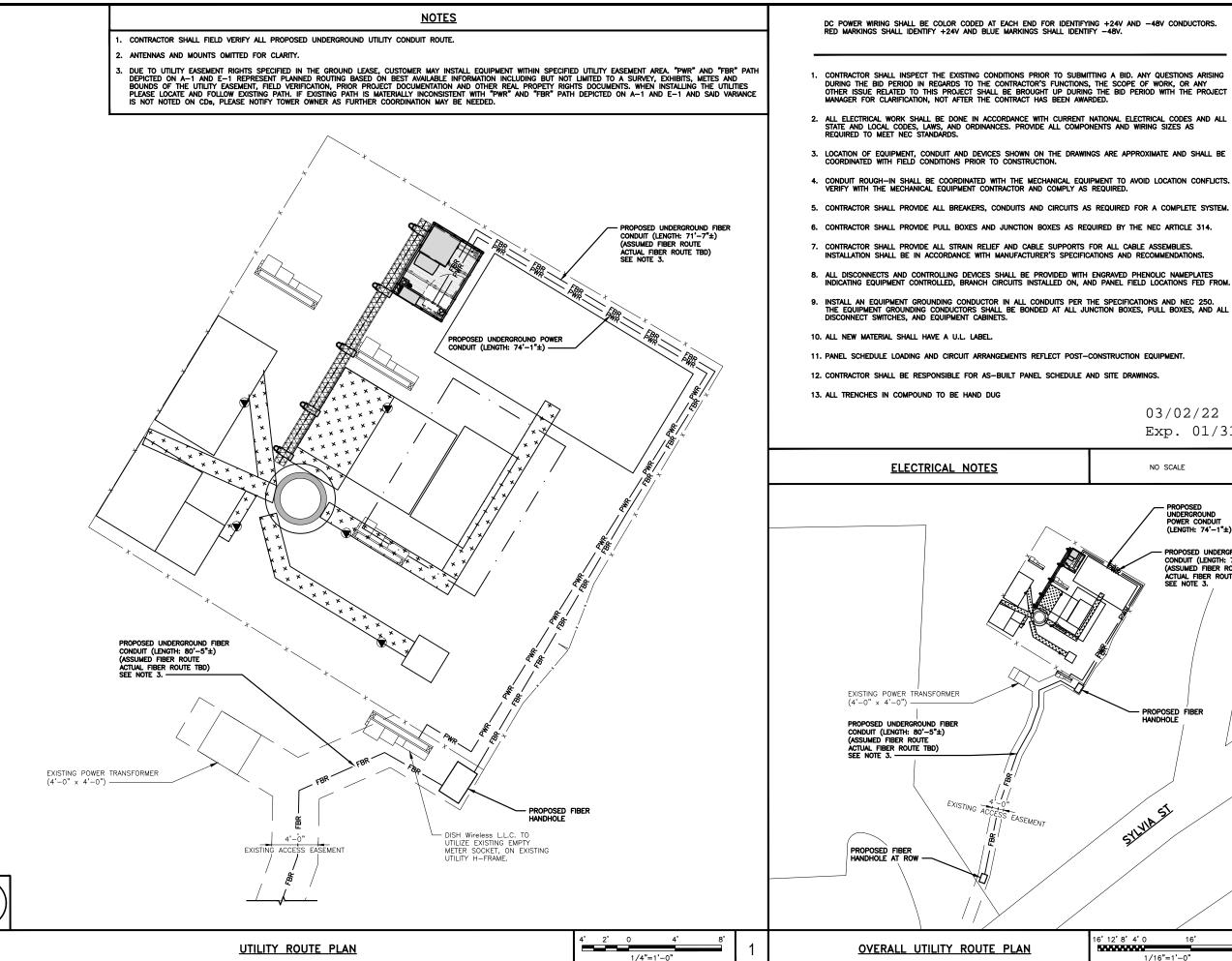

		SITE INFORMATION	Γ
dish		PROPERTY OWNER: GLOBAL SIGNAL ACQUISITIONS IV LLC ADDRESS: PO BOX 277455 ATLANTA, GA 30384-7455	Γ
		TOWER TYPE: MONOPOLE	
		CROWN CASTLE SITE ID: 822765	
	SCOPE OF WORK	CROWN CASTLE 553373 APP NUMBER: COUNTY: NEW HAVEN	
wireless	THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:	LATITUDE (NAD 83): 41° 17' 38.16" N 41.293933' N	
	TOWER SCOPE OF WORK: • INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) • INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT • INSTALL PROPOSED JUMPERS	LONGITUDE (NAD 83): 72° 47' 8.54" W 72.785706" W	
DISH Wireless L.L.C. SITE ID:	INSTALL (6) PROPOSED RRUS (2 PER SECTOR) INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)	ZONING JURISDICTION: CONNECTICUT SITING COUNCIL	
BOHVN00155A	• INSTALL (1) PROPOSED HYBRID CABLE GROUND SCOPE OF WORK:	ZONING DISTRICT: BL PARCEL NUMBER: G05/F05/004/00017	
DISH Wireless L.L.C. SITE ADDRESS:	INSTALL (1) PROPOSED METAL PLATFORM INSTALL (1) PROPOSED ICE BRIDGE INSTALL (1) PROPOSED PPC CABINET	PARCEL NUMBER: G05/F05/004/00017 OCCUPANCY GROUP: U	
	INSTALL (1) PROPOSED EQUIPMENT CABINET INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT	CONSTRUCTION TYPE: II-B	
10 SYLVIA ST.	INSTALL (1) PROPOSED TELCO-FIBER BOX INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)	POWER COMPANY: CONNECTICUT LIGHT &	
BRANFORD, CT 06405	INSTALL (1) PROPOSED FIBER NID (IF REQUIRED) DISH Wireless LL.C. TO UTILIZE EXISTING METER SOCKET	POWER TELEPHONE COMPANY: COMCAST	
CONNECTICUT CODE OF COMPLIANCE	SITE PHOTO	DIREC	;TI
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES		DIRECTIONS FROM RHODE ISLAND T.F. GREEN INTERNATI	
CODE TYPE CODE		× GET ON I-95 S FROM WARWICK INDUSTRIAL DR AND × FOLLOW I-95 S TO US-1 S IN BRANFORD. TAKE EX	(T S
BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS		x Follow US-1 s and sylvia st to your destination	UN
			_
SHEET INDEX		VICINI	ΓY
SHEET NO. SHEET TITLE			810
		Total Hill Rev	Clas
A-1 OVERALL AND ENLARGED SITE PLAN A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE			oh cards
A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS			
A-4 EQUIPMENT DETAILS			
A-5 EQUIPMENT DETAILS A-6 EQUIPMENT DETAILS			R. man
E-1 ELECTRICAL/FIBER ROUTE PLAN AND NOTES		Saturstall Recreation	
E-2 ELECTRICAL DETAILS E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE		and the second	
G-1 GROUNDING PLANS AND NOTES	UNDERGROUND SERVICE ALERT CBYD 811		
G-2 GROUNDING DETAILS	UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455	SITE LOCATION	Carlinson P
G-3 GROUNDING DETAILS	WWW.CBYD.COM CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION	Man ⁴	URd
RF-1 RF CABLE COLOR CODE			
GN-1 LEGEND AND ABBREVIATIONS GN-2 GENERAL NOTES	GENERAL NOTES		P
GN-3 GENERAL NOTES GN-4 GENERAL NOTES	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON	142	
	DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.	aven A	
	11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED	\square	
	CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE		
	PROCEEDING WITH THE WORK.	NO SCALE	


PROJECT DIRECTORY	
APPLICANT: DISH WIRELESS, LLC. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120	dish
TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE CANONSBURG, PA 15317 (877) 486–9377	5701 SOUTH SANTA FE DRIVE
SITE DESIGNER: KIMLEY-HORN & ASSOCIATES 3875 EMBASSY PKWY, SUITE 280 AKRON, OH 44333 (216) 505-7771 COA #: PEC.0000738 SITE ACQUISITION: VICTOR NUNEZ (917) 563-3682 CONSTRUCTION MANAGER: JAVIER SOTO JAVIER.SOTO@DISH.COM RF ENGINEER: SYED ZAIDI	Kimley » Horn COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601
SYED.ZAIDI@DISH.COM	DE CONNE
IONS 03/02/22 AL AIRPORT: Exp. 01/31/23 AIN AVE (3.5 MI) 55 FROM 1-99 S (84.9 MI) (0.4 MI)	29510 29510 CENSED SONAL ENGINE
/ MAP	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY:
	STR MCK
g y World is Market Branford	RFDS REV #: CONSTRUCTION DOCUMENTS
Guilford High School	REV DATE DESCRIPTION A 10/01/2021 ISSUED FOR REVIEW 0 03/01/2022 ISSUED FOR CONSTRUCTION
Bishops	A&E PROJECT NUMBER
	KHCLE-16446
AN SALAN	DISH Wireless L.L.C. PROJECT INFORMATION
	BOHVN00155A 10 SYLVIA ST. BRANFORD, CT 06405
A de la companya de	SHEET TITLE TITLE SHEET
	SHEET NUMBER

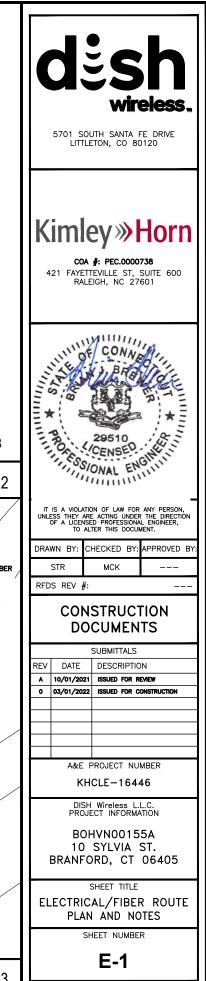


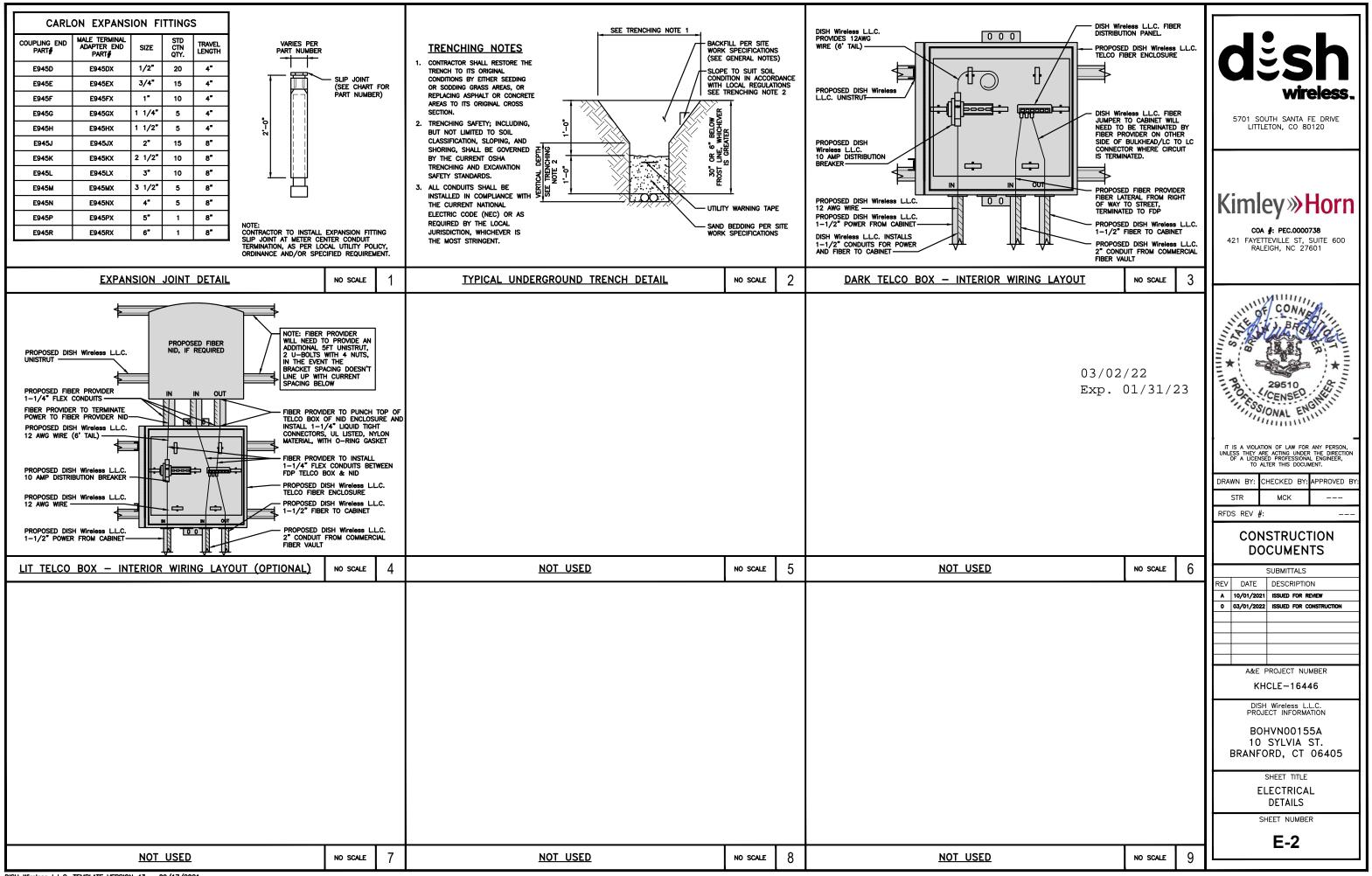

DISH Wireless L.L.C. TEMPLATE VERSION 43 - 09/17/2021

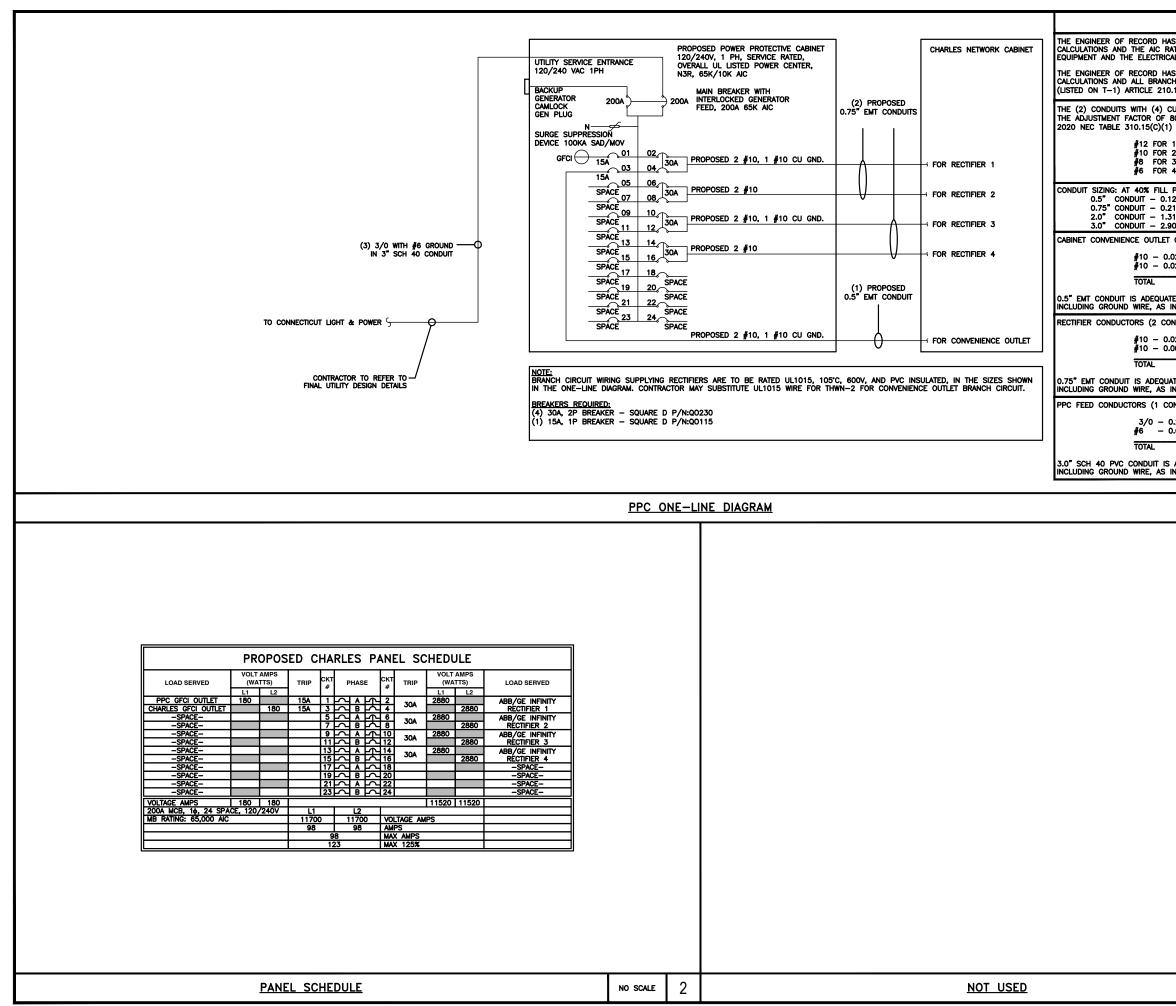

			MINIMUM OF 75% OR 270° IN ANY DIRECTION GPS GPS UNIT GPS			CU12PSM6P4XXX (4 AWG CONDUCTORS)
<u>GPS_DETAIL</u>	NO SCALE	1	<u>GPS MINIMUM SKY VIEW REQUIREMENTS</u>	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
NOT USED	NO SCALE	4	NOT_USED	NO SCALE	5	NOT USED
NOT USED	NO SCALE	7	<u>NOT_USED</u>	NO SCALE	8	<u>NOT_USED</u>
DISH Wireless L.L.C. TEMPLATE VERSION 43 - 09/17/2021						•

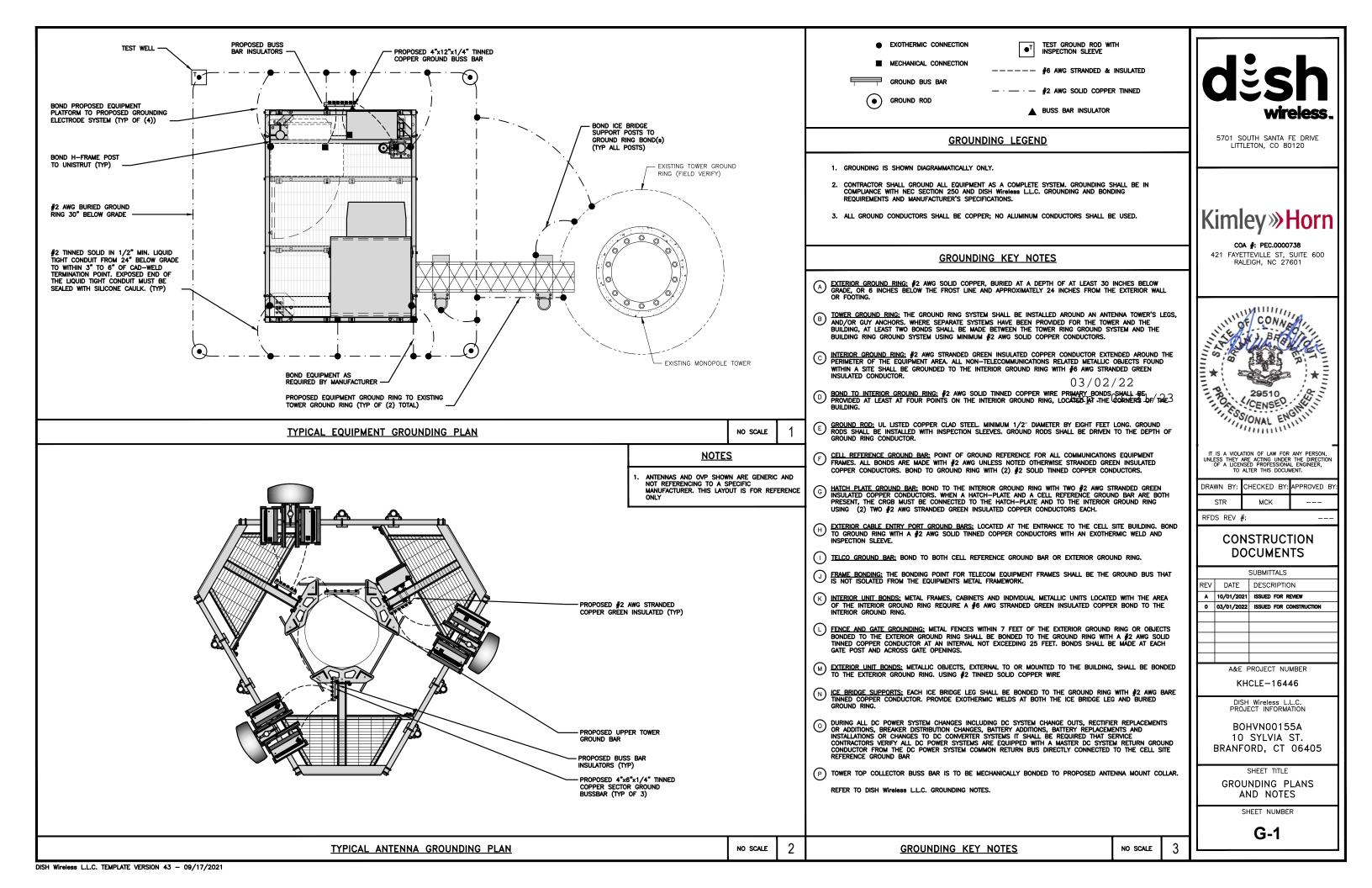


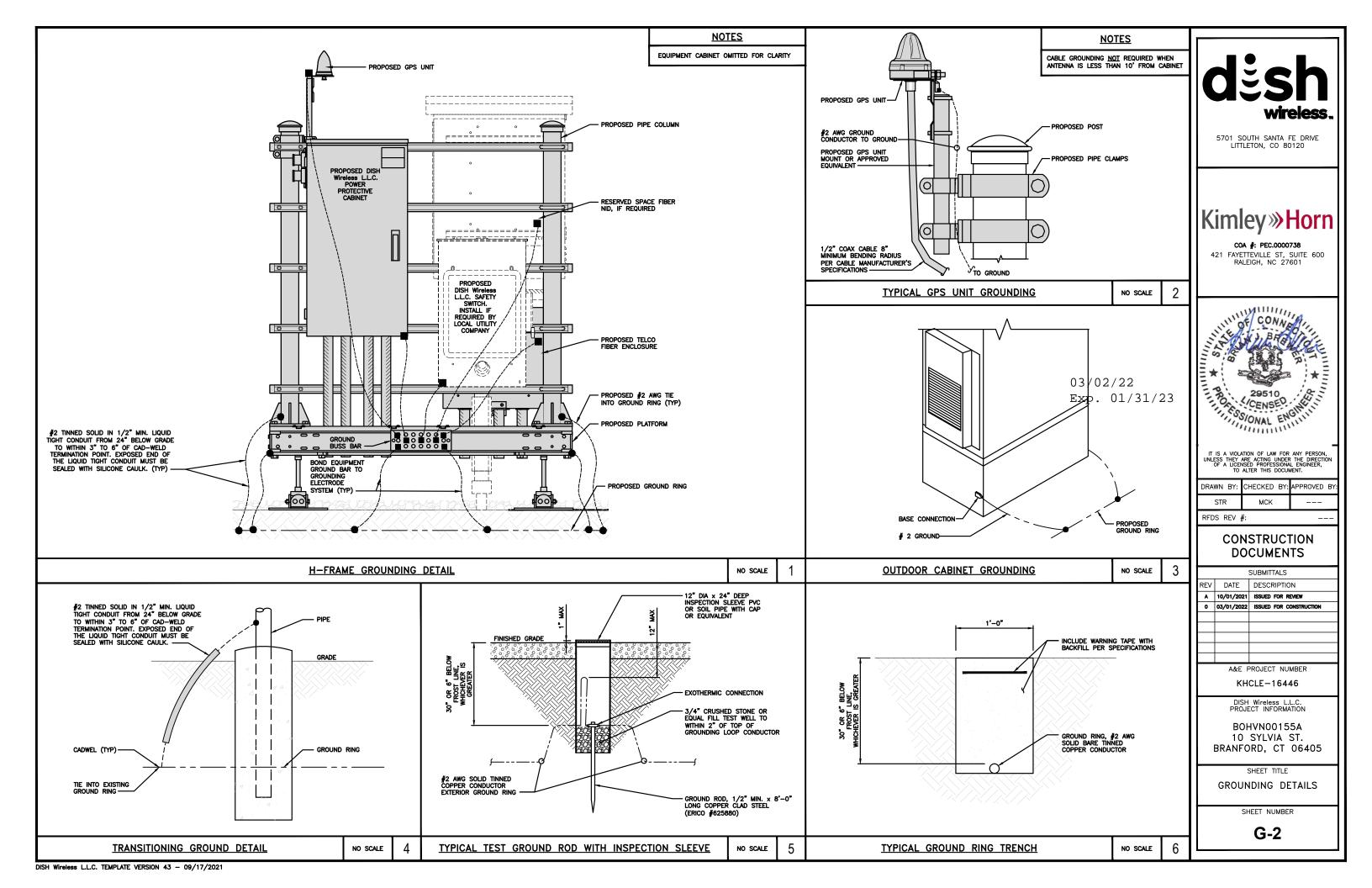
FUJITSU TRIPLE BAND FUJITSU DUAL BAND SABRE DOUBLE Z-BRACKET TA08025-B605 TA08025-B604 C10123155 DIMENSIONS (HxWxD) 14.9"x15.7"x9" DIMENSIONS (HxWxD) 14.9"x15.7"x7.8" DIMENSIONS (HxWxD) (1 BRACKET) 5"x20"x1-13/16" WEIGHT 74.95 lbs WEIGHT 63.9 lbs WEIGHT (FULL ASSEMBLY) 35.79 lbs 4.3-10 RF CONNECTOR 4.3-10 RF CONNECTOR CONNECTOR TYPE CONNECTOR TYPE PACKAGE QUANTITY 4 POWER SUPPLY DC -58~-36V POWER SUPPLY DC -58~-36V <u>PLAN</u> <u>PLAN</u> DESCRIPTION PLATE, CHANNEL BRACKE RRH Z BRACKET, 3/16" THREADED ROD ASSEMBLY 1/2"x12" SIDE BACK NOTE: OR DISH Wireless L.L.C. APPROVED EQUIVALENT <u>SIDE</u> FRONT BACK FRONT 2 **RRH DETAIL RRH DETAIL** NO SCALE **RRH MOUNT DETAIL** NO SCALE


JMA WIRELESS




JMA ANTENNA MOUNTING BRACKET


03/02/22 Exp. 01/31/23 2 NO SCALE PROPOSED UNDERGROUND POWER CONDUIT (LENGTH: 74'-1"±) PROPOSED UNDERGROUND FIBER CONDUIT (LENGTH: 71'-7"±) (ASSUMED FIBER ROUTE ACTUAL FIBER ROUTE TBD) SEE NOTE 3. - PROPOSED FIBER HANDHOLE 5 SYLVIA 6' 12' 8' 4' 0 16' 32 3 1/16"=1'-0"



NOTES HAS PERFORMED ALL REQUIRED SHORT CIRCUIT RATINGS FOR EACH DEVICE IS ADEQUATE TO PROTECT THE ICAL SYSTEM. HAS PERFORMED ALL REQUIRED VOLTAGE DROP NCH CIRCUIT AND FEEDERS COMPLY WITH THE NEC 10.19(A)(1) FPN NO. 4.	
CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY 50% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 1) FOR UL1015 WIRE.	/ireless
R 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A 5701 SOUTH SAN R 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A LITTLETON, C R 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A LITTLETON, C R 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A DITTLETON, C	
L PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.122 SQ. IN AREA 0.213 SQ. IN AREA 0.316 SQ. IN AREA 0.907 SQ. IN AREA	
ET CONDUCTORS (1 CONDUIT): USING THWN-2, CU. Kinley»	Horn
0.0211 SQ. IN X 2 = 0.0422 SQ. IN 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <ground = 0.0633 SQ. IN 421 FAYETTEVILLE</ground 	0000738 ST, SUITE 600
ATE TO HANDLE THE TOTAL OF (3) WIRES, S INDICATED ABOVE.	, 27601
CONDUITS): USING UL1015, CU. 0.0266 SQ. IN X 4 = 0.1064 SQ. IN	
0.0082 SQ. IN X 1 = 0.0082 SQ. IN <bare ground<br="">= 0.1146 SQ. IN</bare>	NN STILL
UATE TO HANDLE THE TOTAL OF (5) WIRES, 5 INDICATED ABOVE.	Alger-
CONDUIT): USING THWN, CU.	S RITE
0.2679 SQ. IN X 3 = 0.8037 SQ. IN 0.0507 SQ. IN X 1 0 3.0507 29 10 2GROUND = 0.8544 SQ. IN (0.1 (0.0))	
EXP. UI/31/23 IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INDICATED ABOVE.	ENGINE
	11111
NO SCALE 1 IT IS A VIOLATION OF LAW UNLESS THEY ARE ACTION OF A LICENSED PROFES	UNDER THE DIRECTION SIONAL ENGINEER,
TO ALTER THIS	DOCUMENT.
DRAWN BY: CHECKED	
STR MCK RFDS REV #:	
CONSTRU DOCUM	
SUBMITT	
REV DATE DESCR	IPTION
A 10/01/2021 ISSUED I 0 03/01/2022 ISSUED I	FOR REVIEW
A&E PROJECT	
KHCLE-1	6446
DISH Wireles PROJECT INFO	ORMATION
BOHVNOC 10 SYLVI BRANFORD, 0	A ST.
SHEET T ELECTRICAL ONE	-LINE, FAULT
CALCS & PANE	MBER
CALCS & PANE	
CALCS & PANE	

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO G BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACI AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BU THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT 7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. EINSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	LARGER. ES WITH IPOUND IDUCTOR IDUCTOR IDITED ON ISTOR.		TOOTHED EXTERIOR TWO-HOLE SHRINK UV / BUTT	JCTOR INSULATIC UP AGAINST THE ECTOR BARREL		EXTERNAL INSPECTION WINDOW IN BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTORS S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING
TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HO
	WASHER (TYP) MASHER (TYP) MASHER (TYP)					
LUG DETAIL	NO SCALE	4	NOT USED	NO SCALE	5	NOT USED
NOT USED	NO SCALE	7	NOT USED	NO SCALE	8	NOT_USED

RF JUMPER COLOR CODING		3/4" TAPE WIDTHS WITH 3/4" SPA				
LOW–BAND RRH – (600MHz N71 BASEBAND) + (850MHz N26 BAND) + (700MHz N29 BAND) – OPTIONAL PER MARKET		ED BLUE BLUE BLUE	- SLANT + SLANT -	CAMMA RRH ORT 2 PORT 3 PORT 4 SLANT + SLANT - SLANT REEN GREEN GREEN		LOW BANDS (N71+N26) OPTIONAL - (N29) ORANGE
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	ORANGE ORANGE RED RU WHITE (-) PORT ORANGE ORA WHITE (-) PORT			RANGE GREEN GREEN WHITE) PORT ORANGE ORANGE WHITE (-) PORT		CBRS TECH (3 GHz) YELLOW
MID-BAND RRH - (AWS BANDS N66+N70)		ED BLUE BLUE BLUE		GREEN GREEN GREEN		ALPHA SECTOR E
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	WHITE PURPLE PUR (-) PORT PURPLE PUR (-)		PURPLE (- WHITE (-) PORT	WHITE) PORT PURPLE PURPLE WHITE (-) PORT		COLOR IDENTIFIER
HYBRID/DISCREET CABLES	EXAMPLE 1 EXAMPLE 2	EXAMPLE 3			-	
INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS	RED RED BLUE BLUE	RED				
EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS	GREEN GREEN	ORANGE PURPLE				
EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS	PURPLE					
FIBER JUMPERS TO RRHs	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH	HIGH BAND RRH	-	
LOW-BAND RRH FIBER CABLES HAVE SECTOR STRIPE ONLY	RED RED PURPLE	BLUE BLUE PURPLE	GREEN	GREEN PURPLE		
POWER CABLES TO RRHs	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH	HIGH BAND RRH		
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED RED	BLUE BLUE	GREEN	GREEN		
	PURPLE	PURPLE		PURPLE		NOT USED
RET MOTORS AT ANTENNAS	ANTENNA 1 ANTENNA 1 LOW BAND/ HIGH BAND/ "IN" "IN" RED RED PURPLE	ANTENNA 1 ANTENNA 1 LOW BAND/ "IN" BLUE BLUE PURPLE	ANTENNA 1 LOW BAND/ "IN" GREEN	ANTENNA 1 HIGH BAND/ "IN" GREEN PURPLE		
MICROWAVE RADIO LINKS	ORWARD AZIMUTH OF 0-120 DEGREES	ORWARD AZIMUTH OF 120-240 DEGREES PRIMARY SECONDARY	Forward Azimuth of Primary	240-360 DEGREES SECONDARY	1	
THE AZIMUTH COLOR OVERLAPPING IN THE MIDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO.	WHITE WHITE	WHITE WHITE	WHITE	WHITE		
MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S	RED WHITE WHITE RED WHITE WHITE	BLUE WHITE BLUE WHITE WHITE	GREEN WHITE	GREEN WHITE GREEN WHITE		
					J	
	CABLE COLOR CODES				1	NOT USED

MWS (N66+N70+H-BLOCK) PURPLE	
NEGATIVE SLANT PORT ON ANT/RRH WHITE	5
A SECTOR GAMMA SECTOR BLUE GREEN GREEN COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601	
NO SCALE 2 03/02/22 Exp. 01/31/23 IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECT OF A LICENSED PROFESSIONAL ENGINEER. TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED STR MCK RFDS REV #: CONSTRUCTION DOCUMEENTS	ION
NO SCALE 3 DOCUMENTS	
REV DATE DESCRIPTION A 10/01/2021 ISSUED FOR REVIEW 0 03/01/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER A&E PROJECT NUMBER KHCLE-16446 DISH Wireless LL.C. PROJECT INFORMATION BOHVN00155A 10 SYLVIA ST. BRANFORD, CT 06405	
SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1	

EXOTHERMIC CONNECTION

MECHANICAL CONNECTION

ADDL ADDITIONAL BUSS BAR INSULATOR LF LINEAR FEET ABOVE FINISHED FLOOR AFF LTE LONG TERM EVOLUTION CHEMICAL ELECTROLYTIC GROUNDING SYSTEM • AFG ABOVE FINISHED GRADE MAS MASONRY TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM €T AGL ABOVE GROUND LEVEL MAX MAXIMUM AMPERAGE INTERRUPTION CAPACITY EXOTHERMIC WITH INSPECTION SLEEVE AIC MB MACHINE BOLT ALUM ALUMINUM MECH MECHANICAL GROUNDING BAR **____** ALT ALTERNATE MFR MANUFACTURER GROUND ROD ANT ANTENNA MGB MASTER GROUND BAR APPROX APPROXIMATE TEST GROUND ROD WITH INSPECTION SLEEVE IL BIT MIN MINIMUM ARCH ARCHITECTURAL MISC MISCELLANEOUS SINGLE POLE SWITCH \$ ATS AUTOMATIC TRANSFER SWITCH MTL METAL AMERICAN WIRE GAUGE AWG MTS MANUAL TRANSFER SWITCH DUPLEX RECEPTACLE BATT BATTERY MICROWAVE MW BLDG BUILDING NEC NATIONAL ELECTRIC CODE **•** DUPLEX GFCI RECEPTACLE BLK BLOCK NM NEWTON METERS BLKG BLOCKING NUMBER NO. BM FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48-T8 BEAM NUMBER # BTC BARE TINNED COPPER CONDUCTOR NTS NOT TO SCALE SD BOF BOTTOM OF FOOTING ON-CENTER SMOKE DETECTION (DC) ос CAB CABINET OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION OSHA a a CANT CANTILEVERED EMERGENCY LIGHTING (DC) OPNG OPENING CHG CHARGING P/C PRECAST CONCRETE CLG CEILING SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW PCS PERSONAL COMMUNICATION SERVICES CLR CLEAR LED-1-25A400/51K-SR4-120-PE-DDBTXD PRIMARY CONTROL UNIT PCU COL COLUMN PRC PRIMARY RADIO CABINET CHAIN LINK FENCE — x —— x —— x — COMM COMMON PP POLARIZING PRESERVING WOOD/WROUGHT IRON FENCE CONC -0----0----0----0----0--CONCRETE -0-PSF POUNDS PER SQUARE FOOT CONSTR CONSTRUCTION WALL STRUCTURE POUNDS PER SQUARE INCH PSI DOUBLE DBL PT PRESSURE TREATED LEASE AREA _____ DC DIRECT CURRENT PWR POWER CABINET PROPERTY LINE (PL) _____ DEPT DEPARTMENT QTY QUANTITY DF DOUGLAS FIR ------SETBACKS RAD RADIUS DIAMETER DIA RECT RECTIFIER ICE BRIDGE DIAG DIAGONAL REF REFERENCE CABLE TRAY DIM DIMENSION REINF REINFORCEMENT DWG DRAWING WATER LINE — w — REQ'D REQUIRED DWL DOWEL RET REMOTE ELECTRIC TILT UNDERGROUND POWER — UGP — UGP — UGP — UGP — UGP — EA EACH RF RADIO FREQUENCY UNDERGROUND TELCO – UGT —– UGT —– UGT —– UGT —– UGT —– EC ELECTRICAL CONDUCTOR RIGID METALLIC CONDUIT RMC EL. ELEVATION OVERHEAD POWER RRH REMOTE RADIO HEAD ELEC ELECTRICAL RRU REMOTE RADIO UNIT OVERHEAD TELCO — онт — — онт — - OHT -— онт — ELECTRICAL METALLIC TUBING EMT RWY RACEWAY ENG ENGINEER UNDERGROUND TELCO/POWER UGT/P ---- UGT/P ----- UGT/P -----SCH SCHEDULE EQ EQUAL ABOVE GROUND POWER AGP - AGP - AGP - AGP - AGP - AGP -SHT SHEET EXP EXPANSION SIAD SMART INTEGRATED ACCESS DEVICE ABOVE GROUND TELCO ---- AGT ---- AGT ----- AGT ------ AGT EXT EXTERIOR SIM SIMILAR EW EACH WAY ABOVE GROUND TELCO/POWER - AGT/P ---- AGT/P ----- AGT/P -----SPEC SPECIFICATION FAB FABRICATION WORKPOINT W.P. SQ SQUARE FF FINISH FLOOR STAINLESS STEEL SS $\begin{pmatrix} xx \\ x-x \end{pmatrix}$ FG FINISH GRADE SECTION REFERENCE STD STANDARD FIF FACILITY INTERFACE FRAME STL STEEL FIN FINISH(ED) TEMP TEMPORARY FLR FLOOR THICKNESS THK FOUNDATION <u>xx</u> x–x FDN DETAIL REFERENCE TMA TOWER MOUNTED AMPLIFIER FOC FACE OF CONCRETE TN TOE NAIL FOM FACE OF MASONRY TOP OF ANTENNA TOA FOS FACE OF STUD TOC TOP OF CURB FOW FACE OF WALL TOF TOP OF FOUNDATION FS FINISH SURFACE TOP TOP OF PLATE (PARAPET) FT FOOT TOS TOP OF STEEL FTG FOOTING TOW TOP OF WALL GA GAUGE TVSS TRANSIENT VOLTAGE SURGE SUPPRESSION GEN GENERATOR TYP TYPICAL GFCI GROUND FAULT CIRCUIT INTERRUPTER UG UNDERGROUND GLB GLUE LAMINATED BEAM UNDERWRITERS LABORATORY UL GLV GALVANIZED UNO UNLESS NOTED OTHERWISE GPS GLOBAL POSITIONING SYSTEM UMTS UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM GND GROUND UPS UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) GSM GLOBAL SYSTEM FOR MOBILE VIF VERIFIED IN FIELD HDG HOT DIPPED GALVANIZED WIDE w HDR HEADER HGR W/ WITH HANGER WD WOOD HVAC HEAT/VENTILATION/AIR CONDITIONING WP WEATHERPROOF HT HEIGHT WT WEIGHT INTERIOR GROUND RING IGR **LEGEND ABBREVIATIONS**

AB

ABV

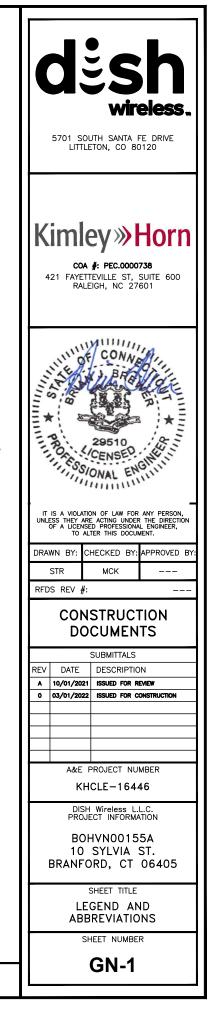
AC

ANCHOR BOLT

ALTERNATING CURRENT

ABOVE

IN


INT

LB(S)

INCH

INTERIOR

POUND(S)

03/02/22 Exp. 01/31/23

SITE ACTIVITY REQUIREMENTS:

NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2 "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE 10. PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR, EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS. 11. LATEST APPROVED REVISION.

CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF 12. THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS. 15.

THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE 16 APPLICATION.

THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER. EQUIPMENT OR 17 DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION. SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS 20. REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT 22 BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS. THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3 THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS. METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD

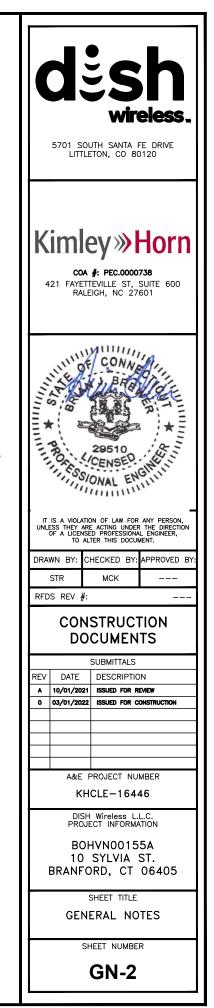
SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST 5. IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6

PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER. 03/02/227. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, 12/23 REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS 9. UNLESS SPECIFICALLY STATED OTHERWISE.


10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL 11. CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY 12. DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS 13 REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (I'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- 3. WIRING. RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

TIE WRAPS ARE NOT ALLOWED.

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19. SCREW FITTINGS ARE NOT ACCEPTABLE. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. 5701 SOUTH SANTA FE DRIVE NEC. LITTLETON, CO 80120 21 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY). 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF Kimley »Horn THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT COA #: PEC.0000738 FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR CONNED OF! EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED A A NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 03/02/2227 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. SSIONAL ENGLIS 28 THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCES WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY STE MCK ___ RFDS REV # ___ CONSTRUCTION DOCUMENTS SUBMITTALS RFV DATE DESCRIPTION A 10/01/2021 ISSUED FOR REVIEW 0 03/01/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER KHCLE-16446 DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00155A 10 SYLVIA ST. BRANFORD, CT 06405 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-3

GROUNDING NOTES:

BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS 5. WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL

9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

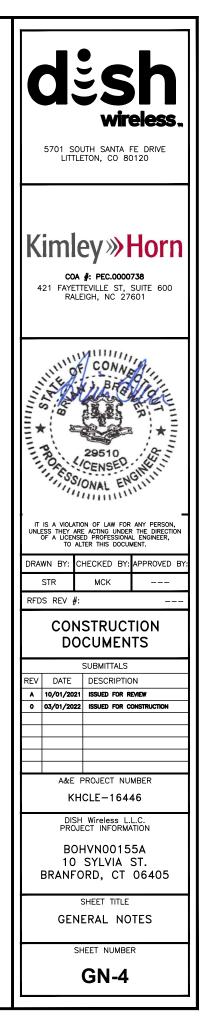
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.


17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

03/02/22 Exp. 01/31/23

Exhibit D

Structural Analysis Report

Date: September 22, 2021

Crown Castle 2000 Corporate Dr. Canonsburg, PA (724) 416-2000

Subject:	Structural Analysis Report	
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number: Site Name:	BOHVN00155A CT-CCI-T-822765
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	822765 Branford/ I-95/ X55/ Dtn1 645122 1962851 553373 Rev. 1
Engineering Firm Designation:	Crown Castle Project Number:	1962851
Site Data:	10 Sylvia St., Branford, New Hav Latitude <i>41° 17' 38.16''</i> , Longituc 125 Foot - Monopole Tower	

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity-85.7%

This analysis utilizes an ultimate 3-second gust wind speed of 122 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Alexander Greguric, E.I.T.

Respectfully submitted by:

Maribel Dentinger

Maribel Dentinger, P.E. Senior Project Engineer

Maribel Dentinger Digitally signed by Maribel Dentinger Date: 2021.09.23 13:18:28 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 125 ft Monopole tower designed by PIROD MANUFACTURES INC. The tower has been modified in the past to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	122 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
81.0	81.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-3/8
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)					
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe							
		3	ericsson	ERICSSON AIR 21 B4A B2P w/ Mount Pipe							
122.0	122.0	3	ericsson	KRY 112 144/1	10	1-5/8					
		3	ericsson	RADIO 4449 B71/B85A		l ì					
	3rfs celwave1tower mountsF	APXVAALL24_43-U-NA20 w/ Mount Pipe									
			1	tower mounts	Platform Mount [LP 405-1_HR-1]						
							3	andrew	HBXX-6517DS-A2M w/ Mount Pipe		
		6	jma wireless	MX06FRO660-03 w/ Mount Pipe							
		2 raycap RXXDC-3	RXXDC-3315-PF-48		4.5/0						
112.0	113.0	3	3 samsung telecom MT6407-77A w/ Mount Pipe	2							
112.0		3 samsung telecom RFV01U-D1A	2	1-5/8							
		3	samsung telecom	RFV01U-D2A							
	112.0	1	tower mounts	Platform Mount [LP 303-1]							
	112.0	3	tower mounts	Side Arm Mount [SO 102-1]							

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	100.0	3	andrew	SBNHH-1D65A w/ Mount Pipe		
		1	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe		
		3	ericsson	RRUS 32		
		3 ericsson RRUS 4449 B5/B12				
		3	3 ericsson RRUS 8843 B2/B66A 4 kathrein 80010964 w/ Mount Pipe		2	3/8
		4				
100.0		2	kathrein	80010965 w/ Mount Pipe	6	3/4 1-1/4
		2	powerwave technologies	7770.00 w/ Mount Pipe	12	
		6	powerwave technologies	LGP21401		
		3 raycap DC6-48-60-18-8F				
		1	tower mounts	T-Arm Mount [TA 602-3]		
	90.0	3	alcatel lucent	PCS 1900MHZ 4X45W-65MHZ		1/2 1-1/4
90.0		6	alcatel lucent	RRH2X50-800		
		3	commscope	NNVV-65B-R4 w/ Mount Pipe		
		3	nokia	FZHN		
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe	3 4	
		1 tc		Platform Mount [LP 303-1_KCKR- HR-1]		
	88.0	2		Dragonwave A-ANT-18G-2-C]	
	00.0	3	dragonwave	AIRPAIR ODU	<u> </u>	

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	3552247	CCISITES
4-POST-MODIFICATION INSPECTION	6215120	CCISITES
4-POST-MODIFICATION INSPECTION	5937826	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	3910040	CCISITES
4-TOWER MANUFACTURER DRAWINGS	3552248	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	5952282	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
125 - 120	Pole	TP24x24x0.375	Pole	1.5%	Pass
120 - 115	Pole	TP24x24x0.375	Pole	4.1%	Pass
115 - 110	Pole	TP24x24x0.375	Pole	9.2%	Pass
110 - 105	Pole	TP24x24x0.375	Pole	15.6%	Pass
105 - 100	Pole	TP24x24x0.375	Pole	22.3%	Pass
100 - 95	Pole	TP30x30x0.375	Pole	21.4%	Pass
95 - 90	Pole	TP30x30x0.375	Pole	27.9%	Pass
90 - 85	Pole	TP30x30x0.375	Pole	36.3%	Pass
85 - 80	Pole	TP30x30x0.375	Pole	45.1%	Pass
80 - 75.7	Pole	TP36x36x0.375	Pole	38.2%	Pass
75.7 - 75.45	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	30.3%	Pass
75.45 - 70.45	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	35.9%	Pass
70.45 - 65.45	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	41.7%	Pass
65.45 - 60.45	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	47.7%	Pass
60.45 - 60	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	48.2%	Pass
60 - 59.75	Pole + Reinf.	TP42x42x0.525	Pole	33.0%	Pass
59.75 - 54.75	Pole + Reinf.	TP42x42x0.525	Pole	37.1%	Pass
54.75 - 49.75	Pole + Reinf.	TP42x42x0.525	Pole	41.3%	Pass
49.75 - 44.75	Pole + Reinf.	TP42x42x0.525	Pole	45.6%	Pass
44.75 - 40	Pole + Reinf.	TP42x42x0.525	Pole	49.8%	Pass
40 - 39.75	Pole + Reinf.	TP48x48x0.5563	Pole	36.9%	Pass
39.75 - 34.75	Pole + Reinf.	TP48x48x0.5563	Pole	40.2%	Pass
34.75 - 29.75	Pole + Reinf.	TP48x48x0.5563	Pole	43.6%	Pass
29.75 - 24.75	Pole + Reinf.	TP48x48x0.5563	Pole	47.0%	Pass
24.75 - 20	Pole + Reinf.	TP48x48x0.5563	Pole	50.3%	Pass
20 - 19.75	Pole + Reinf.	TP54x54x0.5875	Pole	38.5%	Pass
19.75 - 14.75	Pole + Reinf.	TP54x54x0.5875	Pole	41.2%	Pass
14.75 - 9.75	Pole + Reinf.	TP54x54x0.5875	Pole	44.0%	Pass
9.75 - 4.75	Pole + Reinf.	TP54x54x0.5875	Pole	46.8%	Pass
4.75 - 4.38	Pole + Reinf.	TP54x54x0.5875	Pole	47.0%	Pass
4.38 - 4.13	Pole + Reinf.	TP54x54x0.4875	Pole	58.9%	Pass
4.13 - 0	Pole + Reinf.	TP54x54x0.4875	Pole	61.8%	Pass
				Summary	1
			Pole	61.8%	Pass
			Reinforcement	48.2%	Pass
			Overall	61.8%	Pass

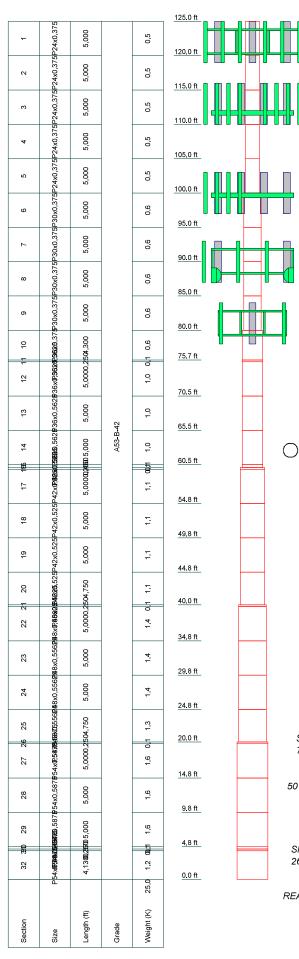
Table 4 - Section Capacity (Summary)

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Flange Connection	100	22.3	Pass
1	Flange Connection	80	48.8	Pass
1	Flange Connection	60	63.3	Pass
1	Flange Connection	40	75.8	Pass
1	Flange Connection	20	59.1	Pass
1	Anchor Rods	0	45.0	Pass
1	Base Plate	0	85.7	Pass
1	Base Foundation (Structure)	0	71.3	Pass
1	Base Foundation (Soil Interaction)	0	54.9	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

	Structure Rating (max from all components) =	85.7%
Notos:		

Notes:

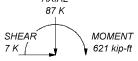

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

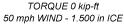
4.1) Recommendations

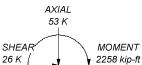
The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

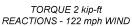
APPENDIX A

TNXTOWER OUTPUT




		MATERIAL	STRENGT	Н	
GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-42	42 ksi	63 ksi			


TOWER DESIGN NOTES


- 1. Tower designed for Exposure B to the TIA-222-H Standard.
- 2. Tower designed for a 122 mph basic wind in accordance with the TIA-222-H Standard.
- 3. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to
- increase in thickness with height. 4. Deflections are based upon a 60 mph wind.
- 5. Tower Risk Category II.
- 6. Topographic Category 1 with Crest Height of 0.000 ft
 7. TIA-222-H Annex S
 8. TOWER RATING: 61.8%

ALL REACTIONS ARE FACTORED AXIAL

Cr	rown Castle	^{Job:} B	U# 822765		
CROWN 2000		Project:			
	nonsburg, PA	Client:	Crown Castle	Drawn by: AGreguric	App'd:
The Pathway to Possible Phon		Code:	TIA-222-H	Date: 09/22/21	Scale: NTS
	FAX:	Path:	Jserslagreguric/OneDrive - Crown Castle USA Inc\De	sktop/Work Area/822765/WO 1962851 - SAIProd/822765_reinf.er	Dwg No. E-

Tower Input Data

The tower is a monopole. This tower is designed using the TIA-222-H standard. The following design criteria apply:

- Tower base elevation above sea level: 56.000 ft.
- Basic wind speed of 122 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.000 ft.
- Nominal ice thickness of 1.500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.000 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50.000 °F.
- Deflections calculated using a wind speed of 60 mph.
- TIA-222-H Annex S.
- TOWER RATING: 61.8%.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

 ✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- $\sqrt{}$ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients
- $\sqrt{1}$ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

- Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs
- Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation $\sqrt{}$ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles $\sqrt{}$ **Include Shear-Torsion Interaction**
- Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Pole Section Geometry

Section	Elevation	Section Length	Pole Size	Pole Grade	Socket Lengt ft
	ft	ft			
L1	125.000-120.000	5.000	P24x0.375	A53-B-42	
L2	120.000-115.000	5.000	P24x0.375	(42 ksi) A53-B-42	
LZ	120.000-110.000	0.000	1 24/0.070	(42 ksi)	
L3	115.000-110.000	5.000	P24x0.375	A53-B-42	
				(42 ksi)	
L4	110.000-105.000	5.000	P24x0.375	A53-B-42	
L5	105.000-100.000	5.000	P24x0.375	(42 ksi) A53-B-42	
LU	100.000 100.000	0.000	1 2470.070	(42 ksi)	
L6	100.000-95.000	5.000	P30x0.375	А́53-В-4́2	
				(42 ksi)	
L7	95.000-90.000	5.000	P30x0.375	A53-B-42	
L8	90.000-85.000	5.000	P30x0.375	(42 ksi) A53-B-42	
Eo	00.000 00.000	0.000	1 0000.010	(42 ksi)	
L9	85.000-80.000	5.000	P30x0.375	A53-B-42	
1.40	00 000 75 700	4.000	D00 0 075	(42 ksi)	
L10	80.000-75.700	4.300	P36x0.375	A53-B-42 (42 ksi)	
L11	75.700-75.450	0.250	P36x0.5625	A53-B-42	
				(42 ksi)	
L12	75.450-70.450	5.000	P36x0.5625	A53-B-42	
L13	70.450-65.450	5.000	P36x0.5625	(42 ksi) A53-B-42	
LIJ	10.430-03.430	5.000	1 30/0.3023	(42 ksi)	
L14	65.450-60.450	5.000	P36x0.5625	A53-B-42	
	00.450.00.000	0.450		(42 ksi)	
L15	60.450-60.000	0.450	P36x0.5625	A53-B-42 (42 ksi)	
L16	60.000-59.750	0.250	P42x0.525	A53-B-42	
				(42 ksi)	
L17	59.750-54.750	5.000	P42x0.525	A53-B-42	
L18	54.750-49.750	5.000	P42x0.525	(42 ksi) A53-B-42	
LIU	04.700 40.700	0.000	1 42/0.020	(42 ksi)	
L19	49.750-44.750	5.000	P42x0.525	A53-B-42	
1.00	44 750 40 000	4 750	D40-0 505	(42 ksi)	
L20	44.750-40.000	4.750	P42x0.525	A53-B-42 (42 ksi)	
L21	40.000-39.750	0.250	P48x0.55625	A53-B-42	
				(42 ksi)	
L22	39.750-34.750	5.000	P48x0.55625	A53-B-42	
L23	34,750-29,750	5.000	P48x0.55625	(42 ksi) A53-B-42	
LLO	01.100 20.100	0.000	1 10/0100020	(42 ksi)	
L24	29.750-24.750	5.000	P48x0.55625	A53-B-42	
L25	24,750-20,000	4.750		(42 ksi)	
LZO	24.750-20.000	4.750	P48x0.55625	A53-B-42 (42 ksi)	
L26	20.000-19.750	0.250	P54x0.5875	A53-B-42	
				(42 ksi)	
L27	19.750-14.750	5.000	P54x0.5875	A53-B-42 (42 ksi)	
L28	14.750-9.750	5.000	P54x0.5875	A53-B-42	
				(42 ksi)	
L29	9.750-4.750	5.000	P54x0.5875	A53-B-42	
L30	4.750-4.380	0.370	P54x0.5875	(42 ksi) A53-B-42	
L30	4.700-4.000	0.570	F 04A0.0070	А53-Б-42 (42 ksi)	
L31	4.380-4.130	0.250	P54x0.4875	A53-B-42	
				(42 ksi)	
L32	4.130-0.000	4.130	P54x0.4875	A53-B-42 (42 ksi)	

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor Ar	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	e Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
L1 125.000- 120.000			1	1	1			
L2 120.000			1	1	1			
115.000								
L3 115.000-			1	1	1			
110.000 L4 110.000-			1	1	1			
105.000			· ·	1				
L5 105.000-			1	1	1			
100.000 L6 100.000-			1	1	1			
95.000			1	I	I			
L7 95.000-			1	1	1			
90.000			4	4	4			
L8 90.000- 85.000			1	1	1			
L9 85.000-			1	1	1			
80.000								
L10 80.000- 75.700			1	1	1			
L11 75 700			1	1	0.957627			
75.450								
L12 75.450-			1	1	0.957627			
70.450 L13 70.450-			1	1	0.957627			
65.450			·	·	01001021			
L14 65.450-			1	1	0.957627			
60.450 L15 60.450-			1	1	0.957627			
60.000			I	I	0.937027			
L16 60.000-			1	1	0.980003			
59.750			4	4	0.00000			
L17 59 750- 54 750			1	1	0.980003			
L18 54 750-			1	1	0.980003			
49.750								
L19 49.750- 44.750			1	1	0.980003			
L20 44 750-			1	1	0.980003			
40.000								
L21 40.000- 39.750			1	1	0.970732			
L22 39 750			1	1	0.970732			
34.750								
L23 34.750-			1	1	0.970732			
29.750 L24 29.750-			1	1	0.970732			
24.750								
L25 24.750-			1	1	0.970732			
20.000 L26 20.000-			1	1	0.96417			
19.750			1	'	0.00-117			
L27 19.750-			1	1	0.96417			
14.750 L28 14.750-			1	1	0.96417			
9.750			I	I	0.30417			
L29 9.750-			1	1	0.96417			
4.750			<i>x</i>	4	0.00447			
L30 4 750- 4 380			1	1	0.96417			
L31 4.380-			1	1	1.06826			
4.130			4	4	4 00000			
L32 4.130- 0.000			1	1	1.06826			
0.000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude		Placement	Total	Number	Start/En		Perimete	Weight
		From	-t	~	Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		klf
¥		Calculation						in	in	
	0	NL	0 ()	00.000	4	0	0.050	4 5 4 0		0.004
HB114-1-0813U4-	С	No	Surface Ar	90.000 -	4	2	0.250	1.540		0.001
M5J(1-1/4)	~	NI-	(CaAa)	0.000	~	<u> </u>	0.310	0.000		0.000
LDF4-50A(1/2)	С	No	Surface Ar	90.000 -	3	2	0.320	0.630		0.000
*			(CaAa)	0.000			0.340			
CU12PSM9P8XXX(1-	в	No	Surface Ar	81.000 -	1	1	0.000	1.411		0.002
3/8)	D	NO	(CaAa)	0.000	I	1	0.050	1.411		0.002
*			(Cana)	0.000			0.000			
CCI 8.5" x 1.25" Plate	А	No	Surface Af	28,500 -	1	1	0.000	8.500	19.500	0.000
			(CaAa)	0.000	•	•	0.000	0.000	10.000	0.000
CCI 8.5" x 1.25" Plate	в	No	Surface Af	28.500	1	1	0.000	8.500	19.500	0.000
	-		(CaAa)	0.000	•	·	0.000	0.000		0.000
CCI 8.5" x 1.25" Plate	С	No	Surface Af	28.500 -	1	1	0.000	8,500	19,500	0.000
	-		(CaAa)	0.000	-	-	0.000			
*			()							
CCI 6.5" x 1.25" Plate	А	No	Surface Af	46.500 -	1	1	0.000	6.500	15.500	0.000
			(CaAa)	20.500			0.000			
CCI 6.5" x 1.25" Plate	В	No	Surface Af	46.500 -	1	1	0.000	6.500	15.500	0.000
			(CaAa)	20.500			0.000			
CCI 6.5" x 1.25" Plate	С	No	Surface Af	46.500 -	1	1	0.000	6.500	15,500	0.000
			(CaAa)	20.500			0.000			
*										
CCI 6" x 1" Plate	Α	No	Surface Af	65.500 -	1	1	0.000	6.000	14.000	0.000
			(CaAa)	40.500			0.000			
CCI 6" x 1" Plate	В	No	Surface Af	65.500 -	1	1	0.000	6.000	14.000	0.000
			(CaAa)	40.500			0.000			
CCI 6" x 1" Plate	С	No	Surface Af	65.500 -	1	1	0.000	6.000	14.000	0.000
			(CaAa)	40.500			0.000			
*				75 500						
CCI 6" x 1" Plate	Α	No	Surface Af	75.500 -	1	1	0.000	6.000	14.000	0.000
	-	NL.	(CaAa)	60.500			0.000	0.000	44.000	0.000
CCI 6" x 1" Plate	В	No	Surface Af	75.500 -	1	1	0.000	6.000	14.000	0.000
CCI 6" v 1" Plata	С	No	(CaAa)	60.500	4	1	0.000	6 000	14 000	0.000
CCI 6" x 1" Plate	C	No	Surface Af (CaAa)	75.500 - 60.500	1	I	0.000 0.000	6.000	14.000	0.000
*			(CaAa)	60.500			0.000			
Climbing Rungs	С	No	Surface Ar	125.000 -	1	1	0.000	0.000		0.001
Olimbing (kings	0	NO	(CaAa)	0.000		•	0.100	0.000		0.001
Safety Line 3/8	С	No	Surface Ar		1	1	0.010	0.375		0.000
	U		(CaAa)	0.000	•	•	0.030	0.010		0.000
*			(Curiu)	0.000			0.000			
Bridge Stiffener	А	No	Surface Af	86.479 -	1	1	0.000	4.500	11.000	0.000
(78"x4.5"x1.0")-80'			(CaAa)	77,479	•	•	0.000			
Bridge Stiffener	В	No	Surface Af	86.479	1	1	0.000	4.500	11.000	0.000
(78"x4.5"x1.0")-80'	-		(CaAa)	77.479			0.000			
Bridge Stiffener	С	No	Surface Af	86.479	1	1	0.000	4.500	11.000	0.000
(78"x4.5"x1.0")-80'			(CaAa)	77.479			0.000			
* *			. ,							
*										
*										

*

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		C _A A _A	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	klf
LDF7-50A(1-5/8)	В	No	No	Inside Pole	122.000 -	10	No Ice	0.000	0.001
(,					0.000		1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg	emera	Torque Calculation	Туре	ft			ft²/ft	klf
*							2" Ice	0.000	0.001
HB158-1-08U8-	В	No	No	Inside Pole	112.000 -	2	No Ice	0.000	0.001
S8J18(1-5/8)					0.000		1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
*							2" Ice	0.000	0.001
LDF6-50A(1-1/4)	А	No	No	Inside Pole	100.000 -	12	No Ice	0.000	0.001
· · · ·					0.000		1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
100266(3/8)	А	No	No	Inside Pole	100.000 -	1	No Ice	0.000	0.000
					0.000		1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
WR-VG86ST-	А	No	No	Inside Pole	100.000 -	6	No Ice	0.000	0.001
BRD(3/4)					0.000		1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
FB-L98B-034-	А	No	No	Inside Pole	100.000 -	1	No Ice	0.000	0.000
XXX(3/8)					0.000		1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" ce	0.000	0.000
2" Rigid Conduit	А	No	No	Inside Pole	100.000 -	1	No Ice	0.000	0.003
-					0.000		1/2" Ice	0.000	0.003
							1" Ice	0.000	0.003
							2" Ice	0.000	0.003
*							2" Ice	0.000	0.003

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft ²	ft²	ĸ
L1	125.000-120.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.016
		С	0.000	0.000	0.188	0.000	0.004
L2	120.000-115.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.041
		С	0.000	0.000	0.188	0.000	0.004
L3	115.000-110.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.046
		С	0.000	0.000	0.188	0.000	0.004
L4	110.000-105.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.054
		С	0.000	0.000	0.188	0.000	0.004
L5	105.000-100.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.054
		С	0.000	0.000	0.188	0.000	0.004
L6	100.000-95.000	А	0.000	0.000	0.000	0.000	0.068
		В	0.000	0.000	0.000	0.000	0.054
		С	0.000	0.000	0.188	0.000	0.004
L7	95.000-90.000	А	0.000	0.000	0.000	0.000	0.068
		В	0.000	0.000	0.000	0.000	0.054
		С	0.000	0.000	0.188	0.000	0.004
L8	90.000-85.000	А	0.000	0.000	1.080	0.000	0.068
		В	0.000	0.000	1.080	0.000	0.054
		С	0.000	0.000	3.438	0.000	0.030
L9	85.000-80.000	А	0.000	0.000	3.652	0.000	0.068
		В	0.000	0.000	3.793	0.000	0.056
		С	0.000	0.000	6.009	0.000	0.030
L10	80.000-75.700	А	0.000	0.000	1.841	0.000	0.059

Tower	Tower	Face	A_R	AF	C _A A _A	$C_A A_A$	Weight
Sectio	Elevation		ft²	ft²	In Face	Out Face	V
n	ft				ft ²	<u>ft²</u>	<u> </u>
		В	0.000	0.000	2.448	0.000	0.054
	75 700 75 450	C	0.000	0.000	3.869	0.000	0.026
L11	75.700-75.450	A	0.000	0.000	0.050	0.000	0.003
		В	0.000	0.000	0.085	0.000	0.003
		С	0.000	0.000	0.168	0.000	0.002
L12	75.450-70.450	А	0.000	0.000	5.000	0.000	0.068
		в	0.000	0.000	5.705	0.000	0.062
		С	0.000	0.000	7.357	0.000	0.030
L13	70.450-65.450	А	0.000	0.000	5.050	0.000	0.068
		В	0.000	0.000	5.755	0.000	0.062
		c	0.000	0.000	7.407	0.000	0.030
L14	65.450-60.450	Ă	0.000	0.000	9.950	0.000	0.068
	00,400 00,400	В	0.000	0.000	10.656	0.000	0.062
				0.000		0.000	0.030
145	CO 450 CO 000	C	0.000		12.307		
L15	60.450-60.000	A	0.000	0.000	0.450	0.000	0.006
		В	0.000	0.000	0.513	0.000	0.006
		С	0.000	0.000	0.662	0.000	0.003
L16	60.000-59.750	А	0.000	0.000	0.250	0.000	0.003
		В	0.000	0.000	0.285	0.000	0.003
		С	0.000	0.000	0.368	0.000	0.002
L17	59.750-54.750	А	0.000	0.000	5.000	0.000	0.068
		В	0.000	0.000	5.705	0.000	0.062
		Ċ	0.000	0.000	7.357	0.000	0.030
L18	54.750-49.750	Ă	0.000	0.000	5.000	0.000	0.068
	511.00 101100	В	0.000	0.000	5.705	0.000	0.062
		C	0.000	0.000	7.357	0.000	0.002
L19	49.750-44.750	A	0.000	0.000	6.896	0.000	0.068
L19	49.750-44.750						
		В	0.000	0.000	7.601	0.000	0.062
		С	0.000	0.000	9.253	0.000	0.030
L20	44.750-40.000	A	0.000	0.000	9.396	0.000	0.065
		В	0.000	0.000	10.066	0.000	0.059
		С	0.000	0.000	11.635	0.000	0.029
L21	40.000-39.750	A	0.000	0.000	0.271	0.000	0.003
		В	0.000	0.000	0.306	0.000	0.003
		С	0.000	0.000	0.389	0.000	0.002
L22	39.750-34.750	Ā	0.000	0.000	5.417	0.000	0.068
	00,100 0 1,100	В	0.000	0.000	6.122	0.000	0.062
		č	0.000	0.000	7.774	0.000	0.030
L23	34.750-29.750	Ă	0.000	0.000	5.417	0.000	0.068
LZJ	34.750-29.750					0.000	
		В	0.000	0.000	6.122		0.062
		С	0.000	0.000	7.774	0.000	0.030
L24	29.750-24.750	A	0.000	0.000	10.729	0.000	0.068
		В	0.000	0.000	11.435	0.000	0.062
		С	0.000	0.000	13.087	0.000	0.030
L25	24.750-20.000	A	0.000	0.000	11.333	0.000	0.065
		В	0.000	0.000	12.004	0.000	0.059
		С	0.000	0.000	13.573	0.000	0.029
L26	20.000-19.750	Ă	0.000	0.000	0.354	0.000	0.003
		В	0.000	0.000	0.389	0.000	0.003
		c	0.000	0.000	0.472	0.000	0.002
L27	19.750-14.750	Ă	0.000	0.000	7.083	0.000	0.068
L21	13.700-14.700	B	0.000	0.000	7.789	0.000	0.068
1.00	44 750 0 750	C	0.000	0.000	9.441	0.000	0.030
L28	14.750-9.750	A	0.000	0.000	7.083	0.000	0.068
		В	0.000	0.000	7.789	0.000	0.062
		С	0.000	0.000	9.441	0.000	0.030
L29	9.750-4.750	А	0.000	0.000	7.083	0.000	0.068
		В	0.000	0.000	7.789	0.000	0.062
		Ċ	0.000	0.000	9.441	0.000	0.030
L30	4.750-4.380	Ă	0.000	0.000	0.524	0.000	0.005
200	1100 1000	В	0.000	0.000	0.576	0.000	0.005
		Б С					
1.24	4 000 4 100		0.000	0.000	0.699	0.000	0.002
L31	4.380-4.130	A	0.000	0.000	0.354	0.000	0.003
		В	0.000	0.000	0.389	0.000	0.003
		С	0.000	0.000	0.472	0.000	0.002
L32	4.130-0.000	A	0.000	0.000	5.851	0.000	0.056
		В	0.000	0.000	6.434	0.000	0.051
		С	0.000	0.000	7.798	0.000	0.025

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce Thiskness	A_R	A_F	C _A A _A	$C_A A_A$	Weight
Sectio n	Elevation ft	or Leg	Thickness in	ft²	ft²	In Face ft²	Out Face ft²	К
L1	125.000-120.000	A	1.454	0.000	0.000	0.000	0.000	0.000
	120.000 120.000	В	1.101	0.000	0.000	0.000	0.000	0.016
		Ĉ		0.000	0.000	3.095	0.000	0.033
L2	120.000-115.000	A	1.448	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.041
		С		0.000	0.000	3.083	0.000	0.033
L3	115.000-110.000	А	1.441	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.046
		С		0.000	0.000	3.070	0.000	0.032
L4	110.000-105.000	А	1.435	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.054
		С		0.000	0.000	3.057	0.000	0.032
L5	105.000-100.000	A	1.428	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.054
	400 000 05 000	C	4 404	0.000	0.000	3.044	0.000	0.032
L6	100.000-95.000	A B	1.421	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.068
		Б С		0.000	0.000	3.029	0.000 0.000	0.054 0.032
L7	95.000-90.000	A	1.413	0.000	0.000	0.000	0.000	0.068
	33.000-30.000	В	1.415	0.000	0.000	0.000	0.000	0.054
		C		0.000	0.000	3.014	0.000	0.031
L8	90.000-85.000	Ă	1.406	0.000	0.000	1.299	0.000	0.081
20		В	11100	0.000	0.000	1.299	0.000	0.067
		č		0.000	0.000	10.524	0.000	0.139
L9	85.000-80.000	Ă	1.397	0.000	0.000	4,386	0.000	0.113
		В		0.000	0.000	4.806	0.000	0.105
		С		0.000	0.000	13.574	0.000	0.170
L10	80.000-75.700	А	1.389	0.000	0.000	2.209	0.000	0.081
		В		0.000	0.000	4.011	0.000	0.096
		С		0.000	0.000	10.080	0.000	0.129
L11	75.700-75.450	А	1.385	0.000	0.000	0.061	0.000	0.004
		В		0.000	0.000	0.166	0.000	0.005
		С		0.000	0.000	0.518	0.000	0.007
L12	75.450-70.450	A	1.380	0.000	0.000	6.099	0.000	0.120
		В		0.000	0.000	8.184	0.000	0.137
L13	70 460 66 460	C	1.370	0.000 0.000	0.000 0.000	15.210 6.158	0.000 0.000	0.175 0.120
LIS	70.450-65.450	A B	1.370	0.000	0.000	8.234	0.000	0.120
		C		0.000	0.000	15.225	0.000	0.174
L14	65.450-60.450	Ă	1.360	0.000	0.000	12.388	0.000	0.169
	00.400 00.400	В	1.000	0.000	0.000	14.453	0.000	0.186
		č		0.000	0.000	21.408	0.000	0.222
L15	60.450-60.000	Ă	1.354	0.000	0.000	0.572	0.000	0.011
		В		0.000	0.000	0.757	0.000	0.012
		С		0.000	0.000	1.381	0.000	0.015
L16	60.000-59.750	A	1.353	0.000	0.000	0.318	0.000	0.006
		В		0.000	0.000	0.421	0.000	0.007
		С		0.000	0.000	0.767	0.000	0.009
L17	59.750-54.750	А	1.347	0.000	0.000	6.347	0.000	0.118
		В		0.000	0.000	8.400	0.000	0.135
		С		0.000	0.000	15.310	0.000	0.170
L18	54.750-49.750	A	1.335	0.000	0.000	6.335	0.000	0.118
		В		0.000	0.000	8.375	0.000	0.134
1.40	40 750 44 750	C	4 000	0.000	0.000	15.242	0.000	0.169
L19	49.750-44.750	A B	1.322	0.000 0.000	0.000 0.000	8.680 10.707	0.000 0.000	0.136 0.152
		В С		0.000	0.000	10.707	0.000	0.152
L20	44.750-40.000	A	1.307	0.000	0.000	11.749	0.000	0.155
LZU		B	1.007	0.000	0.000	13.661	0.000	0.155
		C		0.000	0.000	20.093	0.000	0.201
L21	40.000-39.750	Ă	1.299	0.000	0.000	0,336	0.000	0.006
•		В		0.000	0.000	0.436	0.000	0.007
		С		0.000	0.000	0.773	0.000	0.008
L22	39.750-34.750	А	1.291	0.000	0.000	6.707	0.000	0.119
		В		0.000	0.000	8.703	0.000	0.135

Tower	Tower	Face	Ice	A _R	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft²	ft²	ft²	ĸ
		С		0.000	0.000	15.415	0.000	0.166
L23	34.750-29.750	А	1.272	0.000	0.000	6.689	0.000	0.118
		В		0.000	0.000	8.666	0.000	0.133
		С		0.000	0.000	15.313	0.000	0.164
L24	29.750-24.750	А	1.251	0.000	0.000	12.918	0.000	0.162
		В		0.000	0.000	14.874	0.000	0.176
		С		0.000	0.000	21.447	0.000	0.205
L25	24.750-20.000	А	1.226	0.000	0.000	13.541	0.000	0.160
		В		0.000	0.000	15.376	0.000	0.173
		С		0.000	0.000	21.539	0.000	0.199
L26	20.000-19.750	А	1.212	0.000	0.000	0.415	0.000	0.006
		В		0.000	0.000	0.511	0.000	0.007
		С		0.000	0.000	0.832	0.000	0.008
L27	19.750-14.750	А	1.195	0.000	0.000	8.278	0.000	0.124
		В		0.000	0.000	10.179	0.000	0.137
		С		0.000	0.000	16.555	0.000	0.162
L28	14 750 9 750	А	1.155	0.000	0.000	8.238	0.000	0.122
		В		0.000	0.000	10.098	0.000	0.134
		С		0.000	0.000	16.334	0.000	0.156
L29	9.750-4.750	А	1.096	0.000	0.000	8.179	0.000	0.119
		В		0.000	0.000	9.980	0.000	0.129
		С		0.000	0.000	16.010	0.000	0.148
L30	4.750-4.380	А	1.046	0.000	0.000	0.602	0.000	0.009
		В		0.000	0.000	0.731	0.000	0.009
		С		0.000	0.000	1.165	0.000	0.010
L31	4.380-4.130	A	1.039	0.000	0.000	0.406	0.000	0.006
		В		0.000	0.000	0.493	0.000	0.006
		С		0.000	0.000	0.785	0.000	0.007
L32	4.130-0.000	А	0.966	0.000	0.000	6.649	0.000	0.092
		В		0.000	0.000	8.030	0.000	0.099
		С		0.000	0.000	12.637	0.000	0.108

Feed Line Center of Pressure

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Section	Elevation	CP _X	CPz	CPx	CPz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
L2120.000-115.000-0.0150.369-0.1602.250L3115.000-110.000-0.0150.369-0.1602.243L4110.000-105.000-0.0150.369-0.1592.236L5105.000-100.000-0.0160.370-0.1672.345L795.000-90.000-0.0160.370-0.1662.336L890.000-85.000-1.5642.416-1.8103.678L985.000-80.000-0.8841.462-1.2762.795L1080.000-75.700-0.6771.705-0.8913.047L1175.700-75.450-0.8312.093-0.9833.359L1275.450-70.450-0.4631.165-0.7142.440L1370.450-65.450-0.4601.158-0.7102.424L1465.450-60.000-0.4631.165-0.7002.384L1660.000-59.750-0.5051.275-0.7662.619L1759.750-54.750-0.5051.275-0.7642.604L1854.750-49.750-0.5051.275-0.7642.604L1949.750-44.750-0.5211.320-0.7992.718L2239.750-34.750-0.5211.320-0.7962.701L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L27		ft	in	in	in	in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L1	125.000-120.000	-0.015	0.369	-0.161	2.256
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L2	120.000-115.000	-0.015	0.369	-0.160	2.250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L3	115.000-110.000	-0.015	0.369	-0.160	2.243
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L4	110.000-105.000	-0.015	0.369	-0.159	2.236
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L5	105.000-100.000	-0.015	0.369	-0.159	2.229
L890.000-85.000-1.5642.416-1.8103.678L9 $85.000-80.000$ -0.8841.462-1.2762.795L10 $80.000-75.700$ -0.6771.705-0.8913.047L11 $75.700-75.450$ -0.8312.093-0.9833.359L12 $75.450-70.450$ -0.4631.165-0.7142.440L13 $70.450-65.450$ -0.4631.165-0.7102.424L14 $65.450-60.450$ -0.2420.610-0.5201.772L15 $60.450-60.000$ -0.4631.165-0.7002.384L16 $60.000-59.750$ -0.5051.275-0.7662.619L17 $59.750-54.750$ -0.5051.275-0.7642.604L18 $54.750-49.750$ -0.5051.275-0.7642.604L19 $49.750-44.750$ -0.4211.064-0.6772.307L20 $44.750-40.000$ -0.2660.671-0.5711.940L21 $40.000-39.750$ -0.5211.320-0.7992.718L23 $34.750-29.750$ -0.5211.320-0.7962.701L24 $29.750-24.750$ -0.2730.692-0.6002.031L25 $24.750-20.000$ -0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7732.599	L6	100.000-95.000	-0.016	0.370	-0.167	2.345
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L7	95.000-90.000	-0.016	0.370	-0.166	2.336
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L8	90.000-85.000	-1.564	2.416	-1.810	3.678
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L9	85.000-80.000	-0.884	1.462	-1.276	2.795
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L10	80.000-75.700	-0.677	1.705	-0.891	3.047
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L11	75.700-75.450	-0.831	2.093	-0.983	3.359
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L12	75.450-70.450	-0.463	1.165	-0.714	2.440
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L13	70.450-65.450	-0.460	1.158	-0.710	2.424
L1660.000-59.750-0.5051.275-0.7662.619L1759.750-54.750-0.5051.275-0.7652.614L1854.750-49.750-0.5051.275-0.7642.604L1949.750-44.750-0.4211.064-0.6772.307L2044.750-40.000-0.2660.671-0.5711.940L2140.000-39.750-0.5211.320-0.8002.726L2239.750-34.750-0.5211.320-0.7992.718L2334.750-29.750-0.5211.320-0.7962.701L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L2719.750-14.750-0.4821.223-0.7732.599	L14	65.450-60.450	-0.242	0.610	-0.520	1.772
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L15	60.450-60.000	-0.463	1.165	-0.700	2.384
L1854.750-49.750-0.5051.275-0.7642.604L1949.750-44.750-0.4211.064-0.6772.307L2044.750-40.000-0.2660.671-0.5711.940L2140.000-39.750-0.5211.320-0.8002.726L2239.750-34.750-0.5211.320-0.7992.718L2334.750-29.750-0.5211.320-0.7962.701L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L2719.750-14.750-0.4821.223-0.7732.599	L16	60.000-59.750	-0.505	1.275	-0.766	2.619
L1949.750-44.750-0.4211.064-0.6772.307L2044.750-40.000-0.2660.671-0.5711.940L2140.000-39.750-0.5211.320-0.8002.726L2239.750-34.750-0.5211.320-0.7992.718L2334.750-29.750-0.5211.320-0.7962.701L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L2719.750-14.750-0.4821.223-0.7732.599	L17	59.750-54.750	-0.505	1.275	-0.765	2.614
L2044.750-40.000-0.2660.671-0.5711.940L2140.000-39.750-0.5211.320-0.8002.726L2239.750-34.750-0.5211.320-0.7992.718L2334.750-29.750-0.5211.320-0.7962.701L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L2719.750-14.750-0.4821.223-0.7732.599	L18	54.750-49.750	-0.505	1.275	-0.764	2.604
L2140.000-39.750-0.5211.320-0.8002.726L2239.750-34.750-0.5211.320-0.7992.718L2334.750-29.750-0.5211.320-0.7962.701L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L2719.750-14.750-0.4821.223-0.7732.599	L19	49.750-44.750	-0.421	1.064	-0.677	2.307
L2239.750-34.750-0.5211.320-0.7992.718L2334.750-29.750-0.5211.320-0.7962.701L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L2719.750-14.750-0.4821.223-0.7732.599	L20	44.750-40.000	-0.266	0.671	-0.571	1.940
L2334.750-29.750-0.5211.320-0.7962.701L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L2719.750-14.750-0.4821.223-0.7732.599	L21	40.000-39.750	-0.521	1.320	-0.800	2.726
L2429.750-24.750-0.2730.692-0.6002.031L2524.750-20.000-0.2570.650-0.5661.908L2620.000-19.750-0.4821.223-0.7762.616L2719.750-14.750-0.4821.223-0.7732.599	L22	39.750-34.750	-0.521	1.320	-0.799	2.718
L25 24.750-20.000 -0.257 0.650 -0.566 1.908 L26 20.000-19.750 -0.482 1.223 -0.776 2.616 L27 19.750-14.750 -0.482 1.223 -0.773 2.599	L23	34.750-29.750	-0.521	1.320	-0.796	2.701
L26 20.000-19.750 -0.482 1.223 -0.776 2.616 L27 19.750-14.750 -0.482 1.223 -0.773 2.599	L24	29.750-24.750	-0.273	0.692	-0.600	2.031
L27 19.750-14.750 -0.482 1.223 -0.773 2.599	L25	24.750-20.000	-0.257	0.650	-0.566	1.908
		20.000-19.750	-0.482		-0.776	2.616
L28 14.750-9.750 -0.482 1.223 -0.766 2.559	L27	19.750-14.750	-0.482	1.223	-0.773	2.599
	L28	14.750-9.750	-0.482	1.223	-0.766	2.559

Section	Elevation	CP _X	CPz	CP _x Ice	CPz Ice
	ft	in	in	in	in
L29	9.750-4.750	-0.482	1.223	-0.755	2.499
L30	4.750-4.380	-0.482	1.223	-0.746	2.448
L31	4.380-4.130	-0.482	1.223	-0.745	2.441
L32	4.130-0.000	-0.482	1.223	-0.731	2.364

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	Description	Segment	No Ice	lce
			Ĕlev.		
L1	33	Climbing Rungs	120.00 -	1.0000	1.0000
L1	34	Safety Line 3/8	125.00 120.00 -	1.0000	1.0000
	04	Guicty Line 0/0	125.00	1.0000	1.0000
L2	33	Climbing Rungs	115.00 -	1.0000	1.0000
L2	34	Safety Line 3/8	120.00 115.00 -	1.0000	1.0000
LZ	54	Galety Line 3/0	120.00	1.0000	1.0000
L3	33	Climbing Rungs	110.00 -	1.0000	1.0000
L3	34	Safety Line 3/8	115.00 110.00 -	1.0000	1.0000
LJ	54	Salety Line 5/6	115.00	1.0000	1.0000
L4	33	Climbing Rungs	105.00 -	1.0000	1.0000
L4	34	Safety Line 3/8	110.00 105.00 -	1.0000	1.0000
L4	54	Salety Line 5/6	110.00	1.0000	1.0000
L5	33	Climbing Rungs	100.00 -	1.0000	1.0000
L5	34	Safety Line 3/8	105.00 100.00 -	1.0000	1.0000
LJ	54	Salety Line 3/6	105.00	1.0000	1.0000
L6	33	Climbing Rungs	95.00 -	1.0000	1.0000
L6	34	Safety Line 3/8	100.00 95.00 -	1.0000	1.0000
LU	54	Salety Line 3/6	100.00	1.0000	1.0000
L7	33	Climbing Rungs	90.00 -	1.0000	1.0000
L7	34	Safety Line 3/8	95.00 90.00 -	1.0000	1.0000
L/	54	Salety Line 3/6	95.00	1.0000	1.0000
L8	11	HB114-1-0813U4-M5J(1-	85.00 -	1.0000	1.0000
L8	12	1/4) LDF4-50A(1/2)	90.00 85.00 -	1.0000	1.0000
LO	12	LDF4-30A(1/2)	90.00	1.0000	1.0000
L8	33	Climbing Rungs	85.00 -	1.0000	1.0000
L8	34	Sefety Line 2/9	90.00 85.00 -	1.0000	1.0000
LO	54	Safety Line 3/8	90.00	1.0000	1.0000
L8	36	Bridge Stiffener	85.00 -	1.0000	1.0000
L8	37	(78"x4.5"x1.0")-80' Bridge Stiffener	86.48	1.0000	1.0000
LO	57	Bridge Stiffener (78"x4.5"x1.0")-80'	85.00 86.48	1.0000	1.0000
L8	38	Bridge Stiffener	85.00 -	1.0000	1.0000
L9	11	(78"x4.5"x1.0")-80' HB114-1-0813U4-M5J(1-	86.48 80.00 -	1.0000	1.0000
L9		1/4)	85.00	1.0000	1.0000
L9	12	LDF4-50A(1/2)	80.00 -	1.0000	1.0000
	14		85.00	1 0000	1 0000
L9	14	CU12PSM9P8XXX(1-3/8)	80.00 - 81.00	1.0000	1.0000
L9	33	Climbing Rungs	80.00 -	1.0000	1.0000
l			85.00		

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L9	34	Safety Line 3/8	- 00.08	1.0000	1.0000
L9	36	Bridge Stiffener	85.00 80.00 -	1.0000	1.0000
L9	37	(78"x4.5"x1.0")-80' Bridge Stiffener	85.00 80.00 -	1.0000	1.0000
L9	38	(78"x4.5ّ"x1.0")-80' Bridge Stiffener	85.00 80.00 -	1.0000	1.0000
		(78"x4.5"x1.0")-80'	85.00		
L10	11	-HB114-1-0813U4-M5J(1 1/4)	75.70 - 80.00	1.0000	1.0000
L10	12	LDF4-50A(1/2)	75.70 - 80.00	1.0000	1.0000
L10	14	CU12PSM9P8XXX(1-3/8)	75.70 - 80.00	1.0000	1.0000
L10	33	Climbing Rungs	75.70 - 80.00	1.0000	1.0000
L10	34	Safety Line 3/8	75.70 -	1.0000	1.0000
L10	36	Bridge Stiffener	80.00 77.48 -	1.0000	1.0000
L10	37	(78"x4.5"x1.0")-80' Bridge Stiffener	80.00 77.48 -	1.0000	1.0000
L10	38	(78"x4.5"x1.0")-80' Bridge Stiffener	80.00 77.48 -	1.0000	1.0000
		(78"x4.5"x1.0")-80'	80.00		
L11	11	HB114-1-0813U4-M5J(1- 1/4)	75.45 - 75.70	1.0000	1.0000
L11	12	LDF4-50A(1/2)	75.45 - 75.70	1.0000	1.0000
L11	14	CU12PSM9P8XXX(1-3/8)	75.45 - 75.70	1.0000	1.0000
L11	28	CCI 6" x 1" Plate	75.45 - 75.50	1.0000	1.0000
L11	29	CCI 6" x 1" Plate	75.45 -	1.0000	1.0000
L11	30	CCI 6" x 1" Plate	75.50 75.45 - 75.50	1.0000	1.0000
L11	33	Climbing Rungs	75.45 - 75.70	1.0000	1.0000
L11	34	Safety Line 3/8	75.45 - 75.70	1.0000	1.0000
L12	11	HB114-1-0813U4-M5J(1-	70.45 - 75.45	1.0000	1.0000
L12	12	1/4) LDF4-50A(1/2)	70.45 -	1.0000	1.0000
L12	14	CU12PSM9P8XXX(1-3/8)	75.45 70.45 -	1.0000	1.0000
L12	28	CCI 6" x 1" Plate	75.45 70.45 -	1.0000	1.0000
L12	29	CCI 6" x 1" Plate	75.45 70.45 -	1.0000	1.0000
L12	30	CCI 6" x 1" Plate	75.45 70.45 -	1.0000	1.0000
L12	33	Climbing Rungs	75.45 70.45 -	1.0000	1.0000
L12	34	Safety Line 3/8	75.45 70.45 75.45	1.0000	1.0000
L13	11	HB114-1-0813U4-M5J(1-	75.45 65.45 70.45	1.0000	1.0000
L13	12	1/4) LDF4-50A(1/2)	65.45 -	1.0000	1.0000
L13	14	CU12PSM9P8XXX(1-3/8)	70.45 65.45 - 70.45	1.0000	1.0000
L13	24	CCI 6" x 1" Plate	65.45 65.50	1.0000	1.0000
L13	25	CCI 6" x 1" Plate	65.45 - 65.50	1.0000	1.0000
L13	26	CCI 6" x 1" Plate	65.45 - 65.50	1.0000	1.0000
L13	28	CCI 6" x 1" Plate		1.0000	1.0000

-

Tower Section	Feed Line Record No.	Description	Feed Line	K _a No Ice	K _a
Section	Record No.		Segment Elev.	NO ICe	lce
L13	29	CCI 6" x 1" Plate	70.45 - 65.45 70.45	1.0000	1.0000
L13	30	CCI 6" x 1" Plate	65.45 70.45	1.0000	1.0000
L13	33	Climbing Rungs	65.45 - 70.45	1.0000	1.0000
L13	34	Safety Line 3/8	65.45 70.45	1.0000	1.0000
L14	11	HB114-1-0813U4-M5J(1- 1/4)	60.45 65.45	1.0000	1.0000
L14	12	LDF4-50A(1/2)	60.45 65.45	1.0000	1.0000
L14	14	CU12PSM9P8XXX(1-3/8)	60.45 65.45	1.0000	1.0000
L14	24	CCI 6" x 1" Plate	60.45 65.45	1.0000	1.0000
L14	25	CCI 6" x 1" Plate	60.45 65.45	1.0000	1.0000
L14	26	CCI 6" x 1" Plate	60.45 65.45	1.0000	1.0000
L14	28	CCI 6" x 1" Plate	60.50 65.45	1.0000	1.0000
L14	29	CCI 6" x 1" Plate	60.50 - 65.45	1.0000	1.0000
L14	30	CCI 6" x 1" Plate	60.50 - 65.45	1.0000	1.0000
L14	33	Climbing Rungs	60.45 - 65.45	1.0000	1.0000
L14	34	Safety Line 3/8	60.45 65.45	1.0000	1.0000
L15	11	HB114-1-0813U4-M5J(1- 1/4)	60.00 60.45	1.0000	1.0000
L15	12	LDF4-50A(1/2)	60.00 60.45	1.0000	1.0000
L15		CU12PSM9P8XXX(1-3/8)	60.00 60.45	1.0000	1.0000
L15	24	CCI 6" x 1" Plate	60.00 60.45	1.0000	1.0000
L15		CCI 6" x 1" Plate	60.00 60.45	1.0000	1.0000
L15		CCI 6" x 1" Plate	60.00 60.45	1.0000	1.0000
L15	33	Climbing Rungs	60.00 60.45	1.0000	1.0000
L15	34	Safety Line 3/8	60.00 - 60.45	1.0000	1.0000
L16	11	HB114-1-0813U4-M5J(1- 1/4)	59.75 - 60.00	1.0000	1.0000
L16	12	LDF4-50A(1/2)	59.75 - 60.00	1.0000	1.0000
L16	14	CU12PSM9P8XXX(1-3/8)	59.75 60.00	1.0000	1.0000
L16	24	CCI 6" x 1" Plate	59.75 - 60.00 50.75	1.0000	1.0000
L16	25	CCI 6" x 1" Plate CCI 6" x 1" Plate	59.75 - 60.00 50.75	1.0000	1.0000
L16 L16	26 33		59.75 - 60.00	1.0000	1.0000
L16	33	Climbing Rungs Safety Line 3/8	59.75 - 60.00 59.75 -	1.0000 1.0000	1.0000 1.0000
L16	34 11	Safety Line 3/8 HB114-1-0813U4-M5J(1-	60.00	1.0000	1.0000
L17	12	LDF4-50A(1/2)	54.75 - 59.75 54.75 -	1.0000	1.0000
L17	12	CU12PSM9P8XXX(1-3/8)	54.75 59.75 54.75 -	1.0000	1.0000
	14	0012F 010F 0AA(1-0/0)	59.75		1.0000

.

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L17	24	CCI 6" x 1" Plate	54.75 -	1.0000	1.0000
L17	25	CCI 6" x 1" Plate	59.75 54.75 59.75	1.0000	1.0000
L17	26	CCI 6" x 1" Plate	54.75 - 59.75	1.0000	1.0000
L17	33	Climbing Rungs	54.75 - 59.75	1.0000	1.0000
L17	34	Safety Line 3/8	54.75 - 59.75	1.0000	1.0000
L18	11	HB114-1-0813U4-M5J(1- 1/4)	49.75 - 54.75	1.0000	1.0000
L18	12	LDF4-50A(1/2)	49.75 - 54.75	1.0000	1.0000
L18	14	CU12PSM9P8XXX(1-3/8)	49.75 - 54.75	1.0000	1.0000
L18	24	CCI 6" x 1" Plate	49.75 - 54.75	1.0000	1.0000
L18	25	CCI 6" x 1" Plate	49.75 - 54.75	1.0000	1.0000
L18	26	CCI 6" x 1" Plate	49.75 - 54.75	1.0000	1.0000
L18	33	Climbing Rungs	49.75 - 54.75	1.0000	1.0000
L18	34	Safety Line 3/8	49.75 - 54.75	1.0000	1.0000
L19	11	HB114-1-0813U4-M5J(1- 1/4)	44.75 - 49.75	1.0000	1.0000
L19	12	LDF4-50A(1/2)	44.75 - 49.75	1.0000	1.0000
L19	14	CU12PSM9P8XXX(1-3/8)	44.75 49.75	1.0000	1.0000
L19	20	CCI 6.5" x 1.25" Plate	44.75 - 46.50	1.0000	1.0000
L19	21	CCI 6.5" x 1.25" Plate	44.75 - 46.50	1.0000	1.0000
L19	22	CCI 6.5" x 1.25" Plate	40.50 44.75 - 46.50	1.0000	1.0000
L19	24	CCI 6" x 1" Plate	44.75 - 49.75	1.0000	1.0000
L19	25	CCI 6" x 1" Plate	44.75 - 49.75	1.0000	1.0000
L19	26	CCI 6" x 1" Plate	44.75 - 49.75	1.0000	1.0000
L19	33	Climbing Rungs	44.75 - 49.75	1.0000	1.0000
L19	34	Safety Line 3/8	44.75 49.75	1.0000	1.0000
L20	11	HB114-1-0813U4-M5J(1- 1/4)	40.00 - 44.75	1.0000	1.0000
L20	12	LDF4-50A(1/2)	40.00 - 44.75	1.0000	1.0000
L20	14	CU12PSM9P8XXX(1-3/8)	40.00 - 44.75	1.0000	1.0000
L20	20	CCI 6.5" x 1.25" Plate	44.75 40.00 - 44.75	1.0000	1.0000
L20	21	CCI 6.5" x 1.25" Plate	44.75 40.00 - 44.75	1.0000	1.0000
L20	22	CCI 6.5" x 1.25" Plate	44.75 40.00 - 44.75	1.0000	1.0000
L20	24	CCI 6" x 1" Plate	44.73 40.50 - 44.75	1.0000	1.0000
L20	25	CCI 6" x 1" Plate	44.73 40.50 - 44.75	1.0000	1.0000
L20	26	CCI 6" x 1" Plate	40.50 - 44.75	1.0000	1.0000
L20	33	Climbing Rungs	40.00 - 44.75	1.0000	1.0000
L20	34	Safety Line 3/8		1.0000	1.0000

-

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	lce
L21	11	HB114-1-0813U4-M5J(1-	44.75 39.75 -	1.0000	1.0000
		1/4)	40.00		
L21	12	LDF4-50A(1/2)	39.75 - 40.00	1.0000	1.0000
L21	14	CU12PSM9P8XXX(1-3/8)	39.75 - 40.00	1.0000	1.0000
L21	20	CCI 6.5" x 1.25" Plate	39.75 - 40.00	1.0000	1.0000
L21	21	CCI 6.5" x 1.25" Plate	39.75 -	1.0000	1.0000
L21	22	CCI 6.5" x 1.25" Plate	40.00 39.75 -	1.0000	1.0000
L21	33	Climbing Rungs	40.00 39.75 -	1.0000	1.0000
L21	34	Safety Line 3/8	40.00 39.75 -	1.0000	1.0000
L22	11	HB114-1-0813U4-M5J(1-	40.00 34.75 -	1.0000	1.0000
		1/4)	39.75		
L22	12	LDF4-50A(1/2)	34.75 39.75	1.0000	1.0000
L22	14	CU12PSM9P8XXX(1-3/8)	34.75 39.75	1.0000	1.0000
L22	20	CCI 6.5" x 1.25" Plate	34.75 -	1.0000	1.0000
L22	21	CCI 6.5" x 1.25" Plate	39.75 34.75 - 39.75	1.0000	1.0000
L22	22	CCI 6.5" x 1.25" Plate	34.75 - 39.75	1.0000	1.0000
L22	33	Climbing Rungs	34.75 -	1.0000	1.0000
L22	34	Safety Line 3/8	39.75 34.75 20.75	1.0000	1.0000
L23	11	HB114-1-0813U4-M5J(1-	39.75 29.75 -	1.0000	1.0000
L23	12	1/4) LDF4-50A(1/2)	34.75 29.75	1.0000	1.0000
L23	14	CU12PSM9P8XXX(1-3/8)	34.75 29.75 -	1.0000	1.0000
L23	20	CCI 6.5" x 1.25" Plate	34.75 29.75 -	1.0000	1.0000
L23	21	CCI 6.5" x 1.25" Plate	34.75 29.75 -	1.0000	1.0000
L23	22	CCI 6.5" x 1.25" Plate	34.75 29.75 -	1.0000	1.0000
L23	33	Climbing Rungs	34.75 29.75 -	1.0000	1.0000
L23	34	Safety Line 3/8	34.75 29.75 -	1.0000	1.0000
L24	11	HB114-1-0813U4-M5J(1-	34.75 24.75	1.0000	1.0000
L24	12	1/4) LDF4-50A(1/2)	29.75 24.75 -	1.0000	1.0000
L24	14	CU12PSM9P8XXX(1-3/8)	29.75 24.75 -	1.0000	1.0000
L24	16	CCI 8.5" x 1.25" Plate	29.75 24.75 -	1.0000	1.0000
L24	17	CCI 8.5" x 1.25" Plate	28.50 24.75 -	1.0000	1.0000
L24	18	CCI 8.5" x 1.25" Plate	28.50 24.75 -	1.0000	1.0000
L24	20	CCI 6.5" x 1.25" Plate	28.50 24.75 -	1.0000	1.0000
L24	21	CCI 6.5" x 1.25" Plate	29.75 24.75 20.75	1.0000	1.0000
L24	22	CCI 6.5" x 1.25" Plate	29.75 24.75 29.75	1.0000	1.0000
L24	33	Climbing Rungs	29.75 24.75 - 29.75	1.0000	1.0000

-

Section Record N	lo.		<u> </u>		
			Segment Elev.	No Ice	lce
L24	34	Safety Line 3/8	24.75 - 29.75	1.0000	1.0000
L25	11	HB114-1-0813U4-M5J(1- 1/4)	20.00 - 24.75	1.0000	1.0000
L25	12	LDF4-50A(1/2)	20.00 - 24.75	1.0000	1.0000
L25	14	CU12PSM9P8XXX(1-3/8)	20.00 24.75	1.0000	1.0000
L25	16	CCI 8.5" x 1.25" Plate	20.00 - 24.75	1.0000	1.0000
L25	17	CCI 8.5" x 1.25" Plate	20.00 - 24.75	1.0000	1.0000
L25	18	CCI 8.5" x 1.25" Plate	20.00 - 24.75	1.0000	1.0000
L25	20	CCI 6.5" x 1.25" Plate	20.50 - 24.75	1.0000	1.0000
L25	21	CCI 6.5" x 1.25" Plate	20.50 - 24.75	1.0000	1.0000
L25	22	CCI 6.5" x 1.25" Plate	20.50 - 24.75	1.0000	1.0000
L25	33	Climbing Rungs	20.00 - 24.75	1.0000	1.0000
L25	34	Safety Line 3/8	20.00 - 24.75	1.0000	1.0000
L26	11	HB114-1-0813U4-M5J(1- 1/4)	19.75 - 20.00	1.0000	1.0000
L26	12	LDF4-50A(1/2)	19.75 - 20.00	1.0000	1.0000
L26	14	CU12PSM9P8XXX(1-3/8)	19.75 - 20.00	1.0000	1.0000
L26	16	CCI 8.5" x 1.25" Plate	19.75 - 20.00	1.0000	1.0000
L26	17	CCI 8.5" x 1.25" Plate	19.75 - 20.00	1.0000	1.0000
L26	18	CCI 8.5" x 1.25" Plate	19.75 - 20.00	1.0000	1.0000
L26	33	Climbing Rungs	19.75 - 20.00	1.0000	1.0000
L26	34	Safety Line 3/8	19.75 - 20.00	1.0000	1.0000
L27	11	HB114-1-0813U4-M5J(1- 1/4)	14.75 - 19.75	1.0000	1.0000
L27	12	LDF4-50A(1/2)	14.75 - 19.75	1.0000	1.0000
L27	14	CU12PSM9P8XXX(1-3/8)	14.75 - 19.75	1.0000	1.0000
L27	16	CCI 8.5" x 1.25" Plate	14.75 - 19.75	1.0000	1.0000
L27	17	CCI 8.5" x 1.25" Plate	14.75 19.75	1.0000	1.0000
L27	18	CCI 8.5" x 1.25" Plate	14.75 19.75	1.0000	1.0000
L27	33	Climbing Rungs	14.75 - 19.75	1.0000	1.0000
L27	34	Safety Line 3/8	14.75 19.75	1.0000	1.0000
L28	11	HB114-1-0813U4-M5J(1- 1/4)	9.75 - 14.75	1.0000	1.0000
L28	12	LDF4-50A(1/2)	9.75 - 14.75	1.0000	1.0000
L28 L28	14 16	CU12PSM9P8XXX(1-3/8) CCI 8.5" x 1.25" Plate	9.75 - 14.75 9.75 - 14.75	1.0000 1.0000	1.0000 1.0000
L28	17	CCI 8.5" x 1.25" Plate	9.75 - 14.75	1.0000	1.0000
L28	18	CCI 8.5" x 1.25" Plate	9.75 - 14.75	1.0000	1.0000
L28	33	Climbing Rungs	9.75 - 14.75	1.0000	1.0000
L28	34	Safety Line 3/8	9.75 - 14.75	1.0000	1.0000
L29	11	HB114-1-0813U4-M5J(1- 1/4)	4.75 - 9.75	1.0000	1.0000
L29 L29	12 14	LDF4-50A(1/2) CU12PSM9P8XXX(1-3/8)	4.75 - 9.75 4.75 - 9.75	1.0000 1.0000	1.0000 1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	lce
			Elev.		
L29	16	CCI 8.5" x 1.25" Plate	4.75 - 9.75	1.0000	1.0000
L29	17	CCI 8.5" x 1.25" Plate	4.75 - 9.75	1.0000	1.0000
L29	18	CCI 8.5" x 1.25" Plate	4.75 - 9.75	1.0000	1.0000
L29	33	Climbing Rungs	4.75 - 9.75	1.0000	1.0000
L29	34	Safety Line 3/8	4.75 - 9.75	1.0000	1.0000
L30	11	HB114-1-0813U4-M5J(1-	4.38 - 4.75	1.0000	1.0000
		1/4)			
L30	12	LDF4-50A(1/2)	4.38 - 4.75	1.0000	1.0000
L30	14	CU12PSM9P8XXX(1-3/8)	4.38 - 4.75	1.0000	1.0000
L30	16	CCI 8.5" x 1.25" Plate	4.38 - 4.75	1.0000	1.0000
L30	17	CCI 8.5" x 1.25" Plate	4.38 - 4.75	1.0000	1.0000
L30	18	CCI 8.5" x 1.25" Plate	4.38 - 4.75	1.0000	1.0000
L30	33	Climbing Rungs	4.38 - 4.75	1.0000	1.0000
L30	34	Safety Line 3/8	4.38 - 4.75	1.0000	1.0000
L31	11	HB114-1-0813U4-M5J(1-	4.13 - 4.38	1.0000	1.0000
		1/4)			
L31	12	LDF4-50A(1/2)	4.13 - 4.38	1.0000	1.0000
L31	14	CU12PSM9P8XXX(1-3/8)	4.13 - 4.38	1.0000	1.0000
L31	16	CCI 8.5" x 1.25" Plate	4.13 - 4.38	1.0000	1.0000
L31	17	CCI 8.5" x 1.25" Plate	4.13 - 4.38	1.0000	1.0000
L31	18	CCI 8.5" x 1.25" Plate	4.13 - 4.38	1.0000	1.0000
L31	33	Climbing Rungs	4.13 - 4.38	1.0000	1.0000
L31	34	Safety Line 3/8	4.13 - 4.38	1.0000	1.0000
L32	11	HB114-1-0813U4-M5J(1-	0.00 - 4.13	1.0000	1.0000
		1/4)			
L32	12	LDF4-50A(1/2)	0.00 - 4.13	1.0000	1.0000
L32	14	CU12PSM9P8XXX(1-3/8)	0.00 - 4.13	1.0000	1.0000
L32	16	CCI 8.5" x 1.25" Plate	0.00 - 4.13	1.0000	1.0000
L32	17	CCI 8.5" x 1.25" Plate	0.00 - 4.13	1.0000	1.0000
L32	18	CCI 8.5" x 1.25" Plate	0.00 - 4.13	1.0000	1.0000
L32	33	Climbing Rungs	0.00 - 4.13	1.0000	1.0000
L32	34	Safety Line 3/8	0.00 - 4.13	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	
L8	36	Bridge Stiffener	85.00 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	86.48		
L8	37	Bridge Stiffener	85.00 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	86.48		
L8	38	Bridge Stiffener	85.00 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	86.48		
L9	36	Bridge Stiffener	80.00 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	85.00		
L9	37	Bridge Stiffener	80.00 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	85.00		
L9	38	Bridge Stiffener	80.00 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	85.00		
L10	36	Bridge Stiffener	77.48 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	80.00		
L10	37	Bridge Stiffener	77.48 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	80.00		
L10	38	Bridge Stiffener	77.48 -	Auto	1.0000
		(78"x4.5"x1.0")-80'	80.00		
L11	28	CCI 6" x 1" Plate	75.45 -	Auto	1.0000
			75.50		
L11	29	CCI 6" x 1" Plate	75.45 -	Auto	1.0000
			75.50		

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio	Effective Width Ratio
			Elev.	n Method	Ralio
L11	30	CCI 6" x 1" Plate	75.45 - 75.50	Auto	1.0000
L12	28	CCI 6" x 1" Plate	75.50 70.45 - 75.45	Auto	1.0000
L12	29	CCI 6" x 1" Plate	70.45 75.45	Auto	1.0000
L12	30	CCI 6" x 1" Plate	70.45 75.45	Auto	1.0000
L13	24	CCI 6" x 1" Plate	65.45 65.50	Auto	1.0000
L13	25	CCI 6" x 1" Plate	65.45 - 65.50	Auto	1.0000
L13	26	CCI 6" x 1" Plate	65.45 - 65.50	Auto	1.0000
L13	28	CCI 6" x 1" Plate	65.45 70.45	Auto	1.0000
L13	29	CCI 6" x 1" Plate	65.45 70.45	Auto	1.0000
L13	30	CCI 6" x 1" Plate	65.45 70.45	Auto	1.0000
L14	24	CCI 6" x 1" Plate	60.45 65.45	Auto	1.0000
L14	25	CCI 6" x 1" Plate	60.45 65.45	Auto	1.0000
L14	26	CCI 6" x 1" Plate	60.45 65.45	Auto	1.0000
L14	28	CCI 6" x 1" Plate	60.50 - 65.45	Auto	1.0000
L14	29	CCI 6" x 1" Plate	60.50 - 65.45	Auto	1.0000
L14	30 24	CCI 6" x 1" Plate CCI 6" x 1" Plate	60.50 - 65.45	Auto	1.0000
L15 L15	24 25	CCI 6" x 1" Plate	60.00 - 60.45 60.00 -	Auto Auto	1.0000 1.0000
L15	25	CCI 6" x 1" Plate	60.00 - 60.45 60.00 -	Auto	1.0000
L16	20	CCI 6" x 1" Plate	60.45 59.75	Auto	1.0000
L16	25	CCI 6" x 1" Plate	60.00 59.75	Auto	1.0000
L16	26	CCI 6" x 1" Plate	60.00 59.75 -	Auto	1.0000
L17	24	CCI 6" x 1" Plate	60.00 54.75 -	Auto	1.0000
L17	25	CCI 6" x 1" Plate	59.75 54.75 -	Auto	1.0000
L17	26	CCI 6" x 1" Plate	59.75 54.75	Auto	1.0000
L18	24	CCI 6" x 1" Plate	59.75 49.75 -	Auto	1.0000
L18	25	CCI 6" x 1" Plate	54.75 49.75	Auto	1.0000
L18	26	CCI 6" x 1" Plate	54.75 49.75 -	Auto	1.0000
L19	20	CCI 6.5" x 1.25" Plate	54.75 44.75	Auto	1.0000
L19	21	CCI 6.5" x 1.25" Plate	46.50 44.75 -	Auto	1.0000
L19	22	CCI 6.5" x 1.25" Plate	46.50 44.75 -	Auto	1.0000
L19	24	CCI 6" x 1" Plate	46.50 44.75 - 49.75	Auto	1.0000
L19	25	CCI 6" x 1" Plate	49.75 44.75 49.75	Auto	1.0000
L19	26	CCI 6" x 1" Plate	49.75 44.75 49.75	Auto	1.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n Method	Ratio
L20	20	CCI 6.5" x 1.25" Plate	40.00 -	Auto	1.0000
L20	21	CCI 6.5" x 1.25" Plate	44.75 40.00 44.75	Auto	1.0000
L20	22	CCI 6.5" x 1.25" Plate	40.00 -	Auto	1.0000
L20	24	CCI 6" x 1" Plate	44.75 40.50 - 44.75	Auto	1.0000
L20	25	CCI 6" x 1" Plate	40.50 44.75	Auto	1.0000
L20	26	CCI 6" x 1" Plate	40.50 - 44.75	Auto	1.0000
L21	20	CCI 6.5" x 1.25" Plate	39.75 40.00	Auto	1.0000
L21	21	CCI 6.5" x 1.25" Plate	39.75 40.00	Auto	1.0000
L21	22	CCI 6.5" x 1.25" Plate	39.75 - 40.00	Auto	1.0000
L22	20	CCI 6.5" x 1.25" Plate	34.75 39.75	Auto	1.0000
L22	21	CCI 6.5" x 1.25" Plate	34.75 39.75	Auto	1.0000
L22	22	CCI 6.5" x 1.25" Plate	34.75 39.75	Auto	1.0000
L23	20	CCI 6.5" x 1.25" Plate	29.75 34.75	Auto	1.0000
L23	21	CCI 6.5" x 1.25" Plate	29.75 - 34.75	Auto	1.0000
L23	22	CCI 6.5" x 1.25" Plate	29.75 34.75	Auto	1.0000
L24	16	CCI 8.5" x 1.25" Plate	24.75 28.50	Auto	1.0000
L24	17	CCI 8.5" x 1.25" Plate	24.75 28.50	Auto	1.0000
L24	18	CCI 8.5" x 1.25" Plate	24.75 28.50	Auto	1.0000
L24	20	CCI 6.5" x 1.25" Plate	24.75 29.75	Auto	1.0000
L24	21	CCI 6.5" x 1.25" Plate	24.75 - 29.75	Auto	1.0000
L24	22	CCI 6.5" x 1.25" Plate	24.75 29.75	Auto	1.0000
L25	16	CCI 8.5" x 1.25" Plate	20.00 - 24.75	Auto	1.0000
L25	17	CCI 8.5" x 1.25" Plate	20.00 - 24.75	Auto	1.0000
L25	18	CCI 8.5" x 1.25" Plate	20.00 24.75	Auto	1.0000
L25	20	CCI 6.5" x 1.25" Plate	20.50 24.75	Auto	1.0000
L25	21	CCI 6.5" x 1.25" Plate	20.50 24.75	Auto	1.0000
L25	22	CCI 6.5" x 1.25" Plate	20.50 24.75	Auto	1.0000
L26	16	CCI 8.5" x 1.25" Plate	19.75 - 20.00	Auto	1.0000
L26	17	CCI 8.5" x 1.25" Plate	19.75 20.00	Auto	1.0000
L26	18	CCI 8.5" x 1.25" Plate	19.75 20.00	Auto	1.0000
L27	16	CCI 8.5" x 1.25" Plate	14.75 19.75	Auto	1.0000
L27	17	CCI 8.5" x 1.25" Plate	14.75 19.75	Auto	1.0000
L27	18	CCI 8.5" x 1.25" Plate	14.75 19.75	Auto	1.0000
L28 L28	16 17	CCI 8.5" x 1.25" Plate CCI 8.5" x 1.25" Plate	9.75 - 14.75 9.75 - 14.75	Auto Auto	1.0000 1.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	
L28	18	CCI 8.5" x 1.25" Plate	9.75 - 14.75	Auto	1.0000
L29	16	CCI 8.5" x 1.25" Plate	4.75 - 9.75	Auto	1.0000
L29	17	CCI 8.5" x 1.25" Plate	4.75 - 9.75	Auto	1.0000
L29	18	CCI 8.5" x 1.25" Plate	4.75 - 9.75	Auto	1.0000
L30	16	CCI 8.5" x 1.25" Plate	4.38 - 4.75	Auto	1.0000
L30	17	CCI 8.5" x 1.25" Plate	4.38 - 4.75	Auto	1.0000
L30	18	CCI 8.5" x 1.25" Plate	4.38 - 4.75	Auto	1.0000
L31	16	CCI 8.5" x 1.25" Plate	4.13 - 4.38	Auto	1.0000
L31	17	CCI 8.5" x 1.25" Plate	4.13 - 4.38	Auto	1.0000
L31	18	CCI 8.5" x 1.25" Plate	4.13 - 4.38	Auto	1.0000
L32	16	CCI 8.5" x 1.25" Plate	0.00 - 4.13	Auto	1.0000
L32	17	CCI 8.5" x 1.25" Plate	0.00 - 4.13	Auto	1.0000
L32	18	CCI 8.5" x 1.25" Plate	0.00 - 4.13	Auto	1.0000

	Discr	ete Tower Lo	bads		
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placemen
			ft ft ft	o	ft
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	122.000
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	122.000
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	122.000
APXVAALL24_43-U-NA20 w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	122.000
APXVAALL24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	122.000
APXVAALL24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	122.000
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	122.000
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	122.000
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	122.000
RADIO 4449 B71/B85A	A	From Leg	4.000 0.000 0.000	0.000	122.000
RADIO 4449 B71/B85A	В	From Leg	4.000 0.000 0.000	0.000	122.000
RADIO 4449 B71/B85A	С	From Leg	4.000 0.000 0.000	0.000	122.000
KRY 112 144/1	А	From Leg	4.000 0.000	0.000	122.000

Description	Face	Offset	Offsets:	Azimuth	Placemen
	or Leg	Туре	Horz Lateral	Adjustment	
	Leg		Vert		
			ft	0	ft
			ft ft		
			0.000	0.000	100.000
KRY 112 144/1	В	From Leg	4.000 0.000	0.000	122.000
			0.000		
KRY 112 144/1	С	From Leg	4.000	0.000	122.000
		-	0.000		
	•		0.000	0.000	100.000
L 2 1/2x2 1/2x1/4x15.62"	A	From Leg	4.000 0.000	0.000	122.000
			0.000		
L 2 1/2x2 1/2x1/4x15.62"	В	From Leg	4.000	0.000	122.000
		0	0.000		
	_		0.000		
L 2 1/2x2 1/2x1/4x15.62"	С	From Leg	4.000	0.000	122.000
			0.000		
Platform Mount [LP 405-1_HR-1]	С	None	0.000	0.000	122.000
*	<u> </u>	None		0.000	122.000
MT6407-77A w/ Mount Pipe	А	From Leg	4.000	0.000	112.000
		-	0.000		
	5	En. 1	1.000	0.000	440.000
MT6407-77A w/ Mount Pipe	В	From Leg	4.000	0.000	112.000
			0.000 1.000		
MT6407-77A w/ Mount Pipe	С	From Leg	4.000	0.000	112.000
	-		0.000		
			1.000		
(2) MX06FRO660-03 w/ Mount Pipe	А	From Leg	4.000	0.000	112.000
			0.000		
(2) MX06FRO660-03 w/ Mount Pipe	В	From Leg	1.000 4.000	0.000	112.000
	D	r totti Ley	0.000	0.000	112.000
			1.000		
(2) MX06FRO660-03 w/ Mount Pipe	С	From Leg	4.000	0.000	112.000
-		-	0.000		
	•	Ensure La su	1.000	0.000	440.000
HBXX-6517DS-A2M w/ Mount Pipe	A	From Leg	4.000 0.000	0.000	112.000
			1.000		
HBXX-6517DS-A2M w/ Mount Pipe	В	From Leg	4.000	0.000	112.000
······································	-	3	0.000		
		_	1.000		
HBXX-6517DS-A2M w/ Mount Pipe	С	From Leg	4.000	0.000	112.000
			0.000 1.000		
RXXDC-3315-PF-48	А	From Leg	4.000	0.000	112.000
		Lion Log	0.000	0.000	1.2.000
			1.000		
RXXDC-3315-PF-48	В	From Leg	4.000	0.000	112.000
			0.000		
RFV01U-D1A	А	From Leg	1.000 4.000	0.000	112.000
	~	r totti Ley	0.000	0.000	112.000
			1.000		
RFV01U-D1A	В	From Leg	4.000	0.000	112.000
		-	0.000		
	0	English I	1.000	0.000	440.000
RFV01U-D1A	С	From Leg	4.000 0.000	0.000	112.000
			1.000		
RFV01U-D2A	А	From Leg	4.000	0.000	112.000
	-	3	0.000		
		_	1.000		
RFV01U-D2A	В	From Leg	4.000	0.000	112.000
			0.000		

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemer
	Leg	i ypc	Lateral	, ajustinent	
	-		Vert	_	_
			ft ft	٥	ft
			ft		
RFV01U-D2A	С	Erom Log	1.000 4.000	0.000	112.000
RFV010-DZA	C	From Leg	4.000 0.000	0.000	112.000
			1.000		
Mount Reinforcement Specifications	С	None	1000	0.000	112.000
Side Arm Mount [SO 102-1]	А	From Leg	4.000	0.000	112.000
			0.000		
Side Arm Mount ISO 102 11	В	From Log	0.000 4.000	0.000	112.000
Side Arm Mount [SO 102-1]	Б	From Leg	0.000	0.000	112.000
			0.000		
Side Arm Mount [SO 102-1]	С	From Leg	4.000	0.000	112.000
		5	0.000		
	-		0.000		
Platform Mount [LP 303-1]	С	None		0.000	112.000
7770.00 w/ Mount Pipe	А	From Leg	4.000	0.000	100.000
			0.000		
			0.000		
7770.00 w/ Mount Pipe	С	From Leg	4.000	0.000	100.000
			0.000		
(2) 80010005 Marrish D's		Exemples 1	0.000	0.000	400.000
(2) 80010965 w/ Mount Pipe	А	From Leg	4.000 0.000	0.000	100.000
			0.000		
(2) 80010964 w/ Mount Pipe	В	From Leg	4.000	0.000	100.000
(<u>_)</u>	-		0.000		
			0.000		
(2) 80010964 w/ Mount Pipe	С	From Leg	4.000	0.000	100.000
			0.000		
		Energy La	0.000	0.000	400.000
HPA-65R-BUU-H6 w/ Mount Pipe	A	From Leg	4.000	0.000	100.000
			0.000 0.000		
(2) SBNHH-1D65A w/ Mount Pipe	В	From Leg	4.000	0.000	100.000
(_,, po	-		0.000	2.000	
			0.000		
SBNHH-1D65A w/ Mount Pipe	С	From Leg	4.000	0.000	100.000
			0.000		
	٨	From	0.000	0.000	100 000
(2) DC6-48-60-18-8F	A	From Leg	4.000 0.000	0.000	100.000
			0.000		
DC6-48-60-18-8F	В	From Leg	4.000	0.000	100.000
			0.000		
		_	0.000		
(2) LGP21401	A	From Leg	4.000	0.000	100.000
			0.000		
(2) LGP21401	В	From Leg	0.000 4.000	0.000	100.000
(2) LOF 21401	U	T TOILLEY	0.000	0.000	100.000
			0.000		
(2) LGP21401	С	From Leg	4.000	0.000	100.000
		-	0.000		
			0.000		
	A	From Leg	4.000	0.000	100.000
RRUS 8843 B2/B66A			0.000 0.000		
RRUS 8843 B2/B66A			0.000		
	R	FromLeg		0 000	100 000
RRUS 8843 B2/B66A RRUS 8843 B2/B66A	В	From Leg	4.000	0.000	100.000
	В	From Leg	4.000 0.000	0.000	100.000
		-	4.000	0.000	
RRUS 8843 B2/B66A	B C	From Leg From Leg	4.000 0.000 0.000 4.000 0.000		
RRUS 8843 B2/B66A		-	4.000 0.000 0.000 4.000		100.000 100.000 100.000

Description	Face	Offset	Offsets:	Azimuth	Placemen
	or Leg	Туре	Horz Lateral	Adjustment	
	LUG		Vert		
			ft	0	ft
			ft ft		
			0.000		
	_	- ·	0.000	0.000	400.000
RRUS 4449 B5/B12	В	From Leg	4.000	0.000	100.000
			0.000 0.000		
RRUS 4449 B5/B12	С	From Leg	4.000	0.000	100.000
	-		0.000		
			0.000		
RRUS 32	A	From Leg	4.000	0.000	100.000
			0.000 0.000		
RRUS 32	В	From Leg	4.000	0.000	100.000
	-		0.000		
			0.000		
RRUS 32	С	From Leg	4.000	0.000	100.000
			0.000 0.000		
T-Arm Mount [TA 602-3]	С	None	0.000	0.000	100.000
* * * * * * * * * * * * * * * * * * *	۸	FromLoc	4 000	0.000	90.000
APXVTM14-ALU-I20 w/ Mount Pipe	A	From Leg	4.000 0.000	0.000	90.000
			0.000		
APXVTM14-ALU-I20 w/ Mount Pipe	В	From Leg	4.000	0.000	90.000
		-	0.000		
ADVI/TN444 ALLE 100/ NATION D'	0	Frank Law	0.000	0.000	00.000
APXVTM14-ALU-I20 w/ Mount Pipe	С	From Leg	4.000 0.000	0.000	90.000
			0.000		
NNVV-65B-R4 w/ Mount Pipe	А	From Leg	4.000	0.000	90.000
		-	0.000		
	P	From Let	0.000	0.000	00.000
NNVV-65B-R4 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	90.000
			0.000		
NNVV-65B-R4 w/ Mount Pipe	С	From Leg	4.000	0.000	90.000
•		5	0.000		
	•	Energy 1	0.000	0.000	00 000
PCS 1900MHZ 4X45W-65MHZ	А	From Leg	4.000 0.000	0.000	90.000
			0.000		
(2) PCS 1900MHZ 4X45W-65MHZ	В	From Leg	4.000	0.000	90.000
		2	0.000		
	•	Frank Law	0.000	0.000	00.000
(2) RRH2X50-800	А	From Leg	4.000 0.000	0.000	90.000
			0.000		
(2) RRH2X50-800	В	From Leg	4.000	0.000	90.000
		C C	0.000		
	0	From Law	0.000	0.000	00.000
	С	From Leg	4.000 0.000	0.000	90.000
(2) RRH2X50-800					
(2) RRH2X50-800			0.000		
(2) RRH2X50-800 FZHN	A	From Leg	4.000	0.000	90.000
	A	From Leg	4.000 0.000	0.000	90.000
FZHN		-	4.000 0.000 0.000		
	A B	From Leg From Leg	4.000 0.000 0.000 4.000	0.000 0.000	90.000 90.000
FZHN		-	4.000 0.000 0.000 4.000 0.000		
FZHN		-	4.000 0.000 0.000 4.000		
FZHN	В	From Leg	4.000 0.000 4.000 0.000 0.000 4.000 0.000	0.000	90.000
FZHN FZHN FZHN	B C	From Leg From Leg	$\begin{array}{c} 4.000\\ 0.000\\ 0.000\\ 4.000\\ 0.000\\ 0.000\\ 4.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000	90.000 90.000
FZHN	В	From Leg	$\begin{array}{c} 4.000\\ 0.000\\ 4.000\\ 0.000\\ 4.000\\ 0.000\\ 4.000\\ 0.000\\ 0.000\\ 0.000\\ 4.000\\ 0.000\\ 4.000\\ \end{array}$	0.000	90.000
FZHN FZHN FZHN	B C	From Leg From Leg	$\begin{array}{c} 4.000\\ 0.000\\ 0.000\\ 4.000\\ 0.000\\ 0.000\\ 4.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000	90.000 90.000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemen
	Leg	Typo	Lateral	ngusinon	
	3		Vert		
			ft	٥	ft
			ft ft		
			0.000		
			-2.000		
(2) 8' x 2.375" Mount Pipe	А	From Leg	4.000	0.000	90.000
			0.000		
(2) 8' x 2 275" Mount Ding	Р	From Log	0.000	0.000	00.000
(2) 8' x 2.375" Mount Pipe	В	From Leg	4.000 0.000	0.000	90.000
			0.000		
(2) 8' x 2.375" Mount Pipe	С	From Leg	4.000	0.000	90.000
		0	0.000		
	-		0.000		
Platform Mount [LP 303-1_KCKR-HR-1]	С	None		0.000	90.000
MX08FRO665-21 w/ Mount Pipe	А	From Leg	4.000	0.000	81.000
			0.000		
	-	<u> </u>	0.000		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.000	0.000	81.000
			0.000 0.000		
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.000	0.000	81.000
·		5	0.000		
			0.000		
TA08025-B604	A	From Leg	4.000	0.000	81.000
			0.000 0.000		
TA08025-B604	В	From Leg	4.000	0.000	81.000
	-		0.000		
			0.000		
TA08025-B604	С	From Leg	4.000	0.000	81.000
			0.000 0.000		
TA08025-B605	А	From Leg	4.000	0.000	81.000
1/100020 2000		1 tom 20g	0.000	0.000	01.000
			0.000		
TA08025-B605	В	From Leg	4.000	0.000	81.000
			0.000 0.000		
TA08025-B605	С	From Leg	4.000	0.000	81.000
1/100020 0000	0	1 Iom Log	0.000	0.000	01.000
			0.000		
RDIDC-9181-PF-48	А	From Leg	4.000	0.000	81.000
			0.000		
(2) 8' x 2" Mount Pipe	А	From Leg	0.000 4.000	0.000	81.000
	~	Troin Log	0.000	0.000	01.000
			0.000		
(2) 8' x 2" Mount Pipe	В	From Leg	4.000	0.000	81.000
			0.000		
(2) 8' x 2" Mount Pipe	С	From Leg	0.000 4.000	0.000	81.000
	C	r tom Leg	0.000	0.000	01.000
			0.000		
Commscope MC-PK8-DSH	С	None		0.000	81.000

Dishes

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter
				ft	0	٥	ft	ft
Dragonwave A-ANT-18G-2-C	В	Paraboloid w/Shroud (HP)	From Leg	4.000 0.000 -2.000	90.000		90.000	2.175
bragonwave A-ANT-18G-2-C	С	Paraboloid w/Shroud (HP)	From Leg	4.000 0.000 -2.000	30.000		90.000	2.175

Load Combinations

O a mult	Description
Comb. No.	Description
	Dead Oak
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 dea - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
20	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
	6 1
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Component Condition Gov. Axial Major Axis Minor Axis Sectio Elevation ft Type Load Moment Moment п No. Comb κ kip-ft kip-ft L1 125 - 120 Pole Max Tension 8 0.000 0.000 -0.000 Max. Compression -9.914 -0.003 -0.033 26 -6.694 Max. Mx 8 -4.789 -0.003 Max. My -4.786 -0.001 14 -6.707 Max. Vy 8 3.283 -6.694 -0.003 14 3.287 -0.001 -6.707 Max. Vx Max. Torque 20 -0.000 L2 120 - 115 Pole 0.000 0.000 0.000 Max Tension 1 Max. Compression 26 -10.789 -0.010 -0.064 Max. Mx 8 -5.403 -23.746 -0.005 -0.002 Max. My 14 -5.400 -23.786 Max. Vy 8 3.538 -23.746 -0.005 Max. Vx 14 3.543 -0.002 23.786 Max. Torque 24 0.000 L3 0.000 0.000 115 - 110 Pole Max Tension 1 0.000 -0.506 Max. Compression 26 -20.916 0.188 -9.764 -53.689 Max. Mx 8 0.011 Max. My 2 -9.761 -0.066 53.698 8 -53.689 Max. Vy 8.275 0.011 -0.146 Max. Vx 14 8.299 -53.641 12 0.308 Max. Torque L4 0.000 0.000 110 - 105 Pole Max Tension 0.000 1 Max. Compression 26 -21.805 -0.520 0.160 8 -10.401 -95.664 -0.058 Max. Mx Max. My 2 -10.398 -0.001 95.764 Max. Vy 8 8.516 -95.664 -0.058 Max. Vx 14 8.541 -0.219 -95.746 Max. Torque 12 0.308 L5 105 - 100 Pole 0.000 0.000 0.000 Max Tension 1 26 -22.692 -0.533 Max. Compression 0.133 -138.818 8 -11.043 Max. Mx -0.127 Max. My 14 -11.035 -0.292 -139.032 8 Max. Vy 8.747 -138.818 -0.127 Max. Vx 14 8.773 -0.292 -139.032 Max. Torque 12 0.308 L6 100 - 95 Pole Max Tension 0.000 0.000 0.000 1 26 -1.014 Max. Compression -31.331 2.127 Max. Mx 8 -14.921 -199.817 0.353 2 201.549 Max. My -14.911 -0.035 Max. Vy 8 12.326 -199.817 0.353 Max. Vx 14 12.556 -0.409 -200.550 Max. Torque 20 -1.648 0.000 L7 95 - 90 Pole 0.000 0.000 Max Tension 1 Max. Compression 26 -32.494 -1.032 2.092 8 -15.794 -262.133 0.342 Max. Mx Max. My 2 -15.784 -0.031 264.967 8 12.604 Max. Vy -262.133 0.342 Max. Vx 14 12.835 -0.425 -264.025 20 Max. Torque -1.648 L8 90 - 85 Pole Max Tension 0.000 0.000 0.000 1 -2.566 26 Max. Compression -42.337 1,122 Max. Mx 8 -20.718 -341.850 0.265 Max. My 2 -20.710 344.570 -0.803 Max. Vy 8 16.071 -341.850 0.265 2 -16.235 -0.803 344.570 Max. Vx Max. Torque 22 -1.767 L9 85 - 80 Pole 0.000 0.000 0.000 Max Tension 1 Max. Compression 26 -49.501 -2.574 1.418 8 -24.810 -425.194 0.727 Max. Mx Max. My 14 -24.784 -0.757 -428.916 8 18,720 -425,194 0,727 Max. Vy Max. Vx 14 19.161 -0.757 -428.916 Max. Torque 24 -1.733 0.000 0.000 L10 80 - 75.7 Pole Max Tension 1 0.000 26 -50.845 -2.613 1.263 Max. Compression

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		- 51		Comb.	к	kip-ft	kip-ft
			Max. Mx	8	-25.735	-506.221	1.008
			Max. My	14	-25.710	-0.568	-511.871
			Max. Vy	8	18.972	-506.221	1.008
			Max. Vx	14	19.413	-0.568	-511.871
			Max. Torque	24			-1.733
_11	75.7 - 75.45	Pole	Max Tension	1	0.000	0.000	0.000
			Max, Compression	26	-50.939	-2.615	1.254
			Max. Mx	8	-25,810	-510,966	1,025
					-25.785		
			Max. My	14		-0.557	-516.727
			Max. Vy	8	18.987	-510.966	1.025
			Max. Vx	14	19.424	-0.557	-516.727
			Max. Torque	24			-1.733
L12	75.45 - 70.45	Pole	Max Tension	1	0.000	0.000	0.000
	10.10		Max. Compression	26	-52.943	-2,660	1.074
			Max. Max. Mx	8	-27.245	-606.651	1.351
			Max. My	14	-27.212	-0.336	-615.430
			Max. Vy	8	19.289	-606.651	1.351
			Max. Vx	14	20.040	-0.336	-615.430
			Max. Torque	24			-1.733
_13	70.45 - 65.45	Pole	Max Tension	1	0.000	0.000	0.000
	00.40		Max. Compression	26	-54,944	-2.705	0.896
			Max. Oompression Max. Mx	8	-28.686	-703.804	1.678
			Max. My	14	-28.649	-0.115	717 137
			Max. Vy	8	19.575	-703.804	1.678
			Max. Vx	14	20.630	-0.115	-717.137
			Max. Torque	24			-1.733
_14	65.45 - 60.45	Pole	Max Tension	1	0.000	0.000	0.000
	00.40		Max. Compression	26	-57,089	-2,750	0.719
			Max. Mx	8	-30.128	-803.123	2.004
			Max. My	14	-30.093	0.107	-821.823
			,				
			Max. Vy	8	20.157	-803.123	2.004
			Max. Vx	14	21.233	0.107	-821.823
			Max. Torque	24			-1.733
L15	60.45 - 60	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-57,268	-2,754	0.704
			Max. Mx	8	-30.261	-812 198	2.033
				14	-30.226	0.127	-831.391
			Max. My				
			Max. Vy	8	20.178	-812.198	2.033
			Max. Vx	14	21.279	0.127	-831.391
			Max. Torque	24			-1.733
L16	60 - 59.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-57.377	2 756	0.693
			Max. Compression Max. Mx	8	-30.342	-817.245	2.049
					-00.042		
			Max. My	14	-30.306	0.138	-836.715
			Max. Vy	8	20.196	-817.245	2.049
			Max. Vx	14	21.294	0.138	-836.715
			Max. Torque	24			-1.733
L17	59.75 - 54.75	Pole	Max Tension	1	0.000	0.000	0.000
	54.75		Max. Compression	26	-59.558	-2.808	0.491
			Max. Mx	8	-31.924	-919.006	2.367
			Max. My	14	-31.891	0.357	-944.031
			Max. Vy	8	20.512	-919.006	2.367
			Max. Vy Max. Vx				
				14	21.614	0.357	-944.031
		_	Max. Torque	24			-1.733
_18	54.75 - 49.75	Pole	Max Tension	1	0.000	0.000	0.000
	-0.10		Max. Compression	26	-61.733	-2.858	0.290
			Max. Mx	8	-33.513	-1022.302	2.684
			Max. My	14	-33.483	0.577	-1052.88
			,				
			Max. Vy	8	20.810	-1022.302	2.684
			Max. Vx	14	21.912	0.577	-1052.88
			Max. Torque	24			-1.732
L19	49.75 - 44.75	Pole	Max Tension	1	0.000	0.000	0.000

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
			Max. Mx	8	-35.108	-1127.033	3.001
			Max. My	14	-35.075	0.798	-1163.980
			Max. Vy	8	21.087	-1127.033	3.001
			,				
			Max. Vx	14	22.516	0.798	-1163.980
			Max. Torque	24			-1.732
L20	44.75 - 40	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-66.142	-2.956	-0.095
			Max, Mx	8	-36.622	-1228,483	3.301
			Max. My	14	-36.593	1.007	-1272 295
			Max. Vy	8	21.636	-1228.483	3.301
			Max. Vx	14	23.081	1.007	-1272.295
			Max. Torque	24			-1.732
L21	40 - 39.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-66.266	-2.958	-0.106
			Max, Mx	8		-1233 893	3.316
					-36.720		
			Max. My	14	-36.691	1.018	-1278.068
			Max. Vy	8	21.648	-1233.893	3.316
			Max. Vx	14	23.089	1.018	-1278.068
			Max. Torque	24			-1.732
L22	39.75 -	Pole	Max Tension	1	0.000	0.000	0.000
	34.75		MAA TEHSIUH	1	0.000	0.000	0.000
	07.10		Max. Compression	26	-68.751	-3.014	-0.326
			Max. Mx	8	-38.579	-1342 894	3.624
			Max. My	14	-38.554	1.236	-1394.341
			Max. Vy	8	21.955	-1342.894	3.624
			Max. Vx	14	23.399	1.236	-1394.341
			Max. Torque	24			-1.732
L23	34.75 - 29.75	Pole	Max Tension	1	0.000	0.000	0.000
	20110		Max. Compression	26	-71.224	-3.069	-0.544
			Max. Mx	8	-40.445	1453 369	3.931
			Max. My	14	-40.422	1.455	-1512.081
			Max. Vy	8	22.238	-1453.369	3.931
			Max. Vx	14	23.681	1.455	-1512.081
			Max. Torque	24			-1.732
L24	29.75 - 24.75	Pole	Max Tension	1	0.000	0.000	0.000
	24.10		Max. Compression	26	-73,818	-3,123	-0.757
			Max. Mx	8	42.311	-1566.035	4.238
			Max. My	14	-42.292	1.673	-1632.049
			Max. Vy	8	22.833	-1566.035	4.238
			Max. Vx	14	24.292	1.673	-1632.049
			Max. Torque	24			-1.732
L25	24.75 - 20	Pole	Max Tension	1	0.000	0.000	0.000
220	27.10-20						
			Max. Compression	26	-76.293	-3.173	-0.956
			Max. Mx	8	-44.088	-1675.804	4.528
			Max. My	14	-44.073	1.880	-1748.832
			Max Vy	8	23.394	-1675.804	4.528
			Max. Vx	14	24.869	1.880	-1748.832
			Max Torque	24			1 732
L26	20 - 19.75	Pole	Max. Tension	1	0.000	0.000	0.000
L2U	20-13.10						
			Max. Compression	26	-76.433	-3.176	-0.968
			Max. Mx	8	-44.200	-1681.654	4.543
			Max. My	14	-44.185	1.891	-1755.053
			Max. Vy	8	23.404	-1681.654	4.543
			Max. Vx	14	24.877	1.891	-1755.053
			Max. Torque	24			1 732
1.07	19.75 -	Dala	•		0.000	0.000	
L27	19.75 - 14.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-79.232	-3.234	-1.197
			Max. Mx	8	-46.358	1799 456	4.840
			Max. My	14	-46.346	2.107	-1880.281
			Max. Vy	8	23.718	-1799.456	4.840
			Max. Vx	14	25.191	2.107	-1880.281
			Max. Torque	24			-1.732
L28	14.75 - 9.75	Pole	Max Tension	1	0.000	0.000	0.000
0	1110 010		Max. Compression	26	-82.006	-3.290	-1.418
			•				
			Max. Mx	8	-48.521	-1918.795	5.136
			Max. My	14	-48.513	2.322	-2007.033

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load	K	Moment	Moment
No.				Comb.	<u> </u>	kip-ft	kip-ft
			Max. Vy	8	24.021	-1918.795	5.136
			Max. Vx	14	25.492	2.322	-2007.033
			Max. Torque	24			-1.732
L29	9.75 - 4.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-84.744	-3.344	-1.629
			Max. Mx	8	-50.687	-2039.621	5.431
			Max. My	14	-50.682	2.538	-2135.259
			Max. Vy	8	24.314	-2039.621	5.431
			Max. Vx	14	25.782	2.538	-2135.259
			Max. Torque	24			-1.732
L30	4.75 - 4.38	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-84.944	-3.348	-1.644
			Max. Mx	8	-50.850	-2048.620	5.453
			Max. My	14	-50.846	2.554	-2144.805
			Max Vy	8	24.331	-2048.620	5.453
			Max. Vx	14	25.798	2.554	-2144.805
			Max. Torque	24			-1.732
L31	4.38 - 4.13	Pole	Max Tension	1	0.000	0.000	0.000
			Max, Compression	26	-85.071	-3,350	-1.654
			Max. Mx	8	-50.951	-2054 704	5.468
			Max. My	14	-50.947	2,564	-2151.259
			Max, Vy	8	24,344	-2054.704	5,468
			Max. Vx	14	25,811	2,564	-2151 259
			Max, Torque	24			-1.732
L32	4.13 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-87,142	-3.390	1.811
			Max. Mx	8	-52.619	-2155 707	5.711
			Max. My	14	-52,619	2.742	-2258.360
			Max. Vy	8	24.571	-2155.707	5.711
			Max. Vx	14	26.035	2.742	-2258.360
			Max. Torque	24	20.000		-1.732

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	ĸ	K
		Comb.			
Pole	Max. Vert	26	87.142	-0.000	0.000
	Max. H _x	20	52.624	24.521	-0.042
	Max. H _z	3	39.468	-0.028	24.759
	Max. M _x	2	2173.819	-0.028	24.759
	Max. M _z	8	2155.707	-24.561	0.073
	Max. Torsion	12	1.527	-12.284	-21.394
	Min. Vert	19	39.468	21.249	-12.373
	Min. H _x	8	52.624	-24.561	0.073
	Min. H _z	15	39.468	0.047	-26.025
	Min. M _x	14	-2258.360	0.047	-26.025
	Min. M _z	20	-2149.590	24.521	-0.042
	Min. Torsion	24	-1.732	12.229	21.425

Tower Mast Reaction Summary									
Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque			
	K	ĸ	К	kip-ft	kip-ft	kip-ft			
Dead Only	43.853	0.000	0.000	0.554	-0.998	0.000			
1.2 Dead+1.0 Wind 0 deg - No Ice	52.624	0.028	-24.759	-2173.819	-3.515	1.280			
0.9 Dead+1.0 Wind 0 deg - No Ice	39.468	0.028	-24.759	-2161.178	-3.185	1.273			
1.2 Dead+1.0 Wind 30 deg -	52.624	12.344	-21.415	-1880.406	-1083.997	0.877			

tnxTower Report - version 8.1.1.0

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
No Ice	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 30 deg - No Ice	39.468	12.344	-21.415	-1869.492	-1077.306	0.872
1.2 Dead+1.0 Wind 60 deg - No Ice	52.624	22.431	-13.055	-1131.845	-1944.368	0.064
0.9 Dead+1.0 Wind 60 deg - No Ice	39.468	22.431	-13.055	-1125.419	-1932.739	0.064
1.2 Dead+1.0 Wind 90 deg - No Ice	52.624	24.561	-0.073	-5.711	-2155.707	-0.627
0.9 Dead+1.0 Wind 90 deg - No Ice	39.468	24.561	-0.073	-5.846	-2142.702	-0.623
1.2 Dead+1.0 Wind 120 deg - No Ice	52.624	21.359	12.404	1089.909	-1873.963	-1.425
0.9 Dead+1.0 Wind 120 deg - No Ice	39.468	21.359	12.404	1083.327	-1862.624	-1.418
1.2 Dead+1.0 Wind 150 deg - No Ice	52.624	12.284	21.394	1880.003	-1078.929	-1.527
0.9 Dead+1.0 Wind 150 deg - No Ice	39.468	12.284	21.394	1868.763	-1072.263	-1.519
1.2 Dead+1.0 Wind 180 deg - No Ice	52.624	-0.047	26.025	2258.360	2.742	-1.147
0.9 Dead+1.0 Wind 180 deg - No Ice	39.468	-0.047	26.025	2245.042	3.042	-1.139
1.2 Dead+1.0 Wind 210 deg - No Ice	52.624	-12.296	21.396	1880.024	1077.219	-0.548
0.9 Dead+1.0 Wind 210 deg - No Ice	39.468	-12.296	21.396	1868.786	1071.191	-0.544
1.2 Dead+1.0 Wind 240 deg - No Ice	52.624	-21.249	12.373	1087.089	1862.048	0.166
0.9 Dead+1.0 Wind 240 deg - No Ice	39.468	-21.249	12.373	1080.523	1851.397	0.167
1.2 Dead+1.0 Wind 270 deg - No Ice	52.624	-24.521	0.042	4.188	2149.590	0.845
0.9 Dead+1.0 Wind 270 deg - No Ice	39.468	-24.521	0.042	4.003	2137.244	0.841
1.2 Dead+1.0 Wind 300 deg - No Ice	52.624	-22.416	-12.993	-1126.525	1940.638	1.365
0.9 Dead+1.0 Wind 300 deg - No Ice	39.468	-22.416	-12.993	-1120.125	1929.654	1.358
1.2 Dead+1.0 Wind 330 deg - No Ice	52.624	-12.229	-21.425	-1881.527	1071.494	1.732
0.9 Dead+1.0 Wind 330 deg - No Ice	39.468	-12.229	-21.425	-1870.606	1065.493	1.724
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	87.142 87.142	0.000 0.004	-0.000 -7.008	1.811 -617.450	-3.390 -3.842	-0.000 0.291
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	87.142	3.500	-6.063	-533.961	-312.594	0.169
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	87.142	6.062	-3.515	-308.434	-538.138	-0.035
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	87.142	6.978	-0.013	0.683	-619.651	-0.201
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	87.142	6.044	3.501	311.217	-537.202	-0.369
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	87.142	3.491	6.060	537.415	-311.851	-0.375
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	87.142	-0.008	7 <u>.</u> 017	621.143	-2.916	-0.264
1.2 Dead+1.0 Wind 210	87.142	-3.490	6.059	537.254	304.581	-0.101
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	87.142	-6.037	3.501	311.126	529.360	0.082
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	87.142	-6.969	0.007	2.370	611.777	0.245
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	87.142	-6.053	-3.502	-307.278	530.303	0.356
1.2 Dead+1.0 Vind 330 deg+1.0 Ice+1.0 Temp	87.142	-3.480	-6.067	-534.362	303.701	0.416
Dead+Wind 0 deg - Service	43.853	0.006	-5.645	-493.394	-1.546	0.298

Load Combination	Vertical	Shearx	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	ĸ	ĸ	ĸ	kip-ft	kip-ft	kip-ft
Dead+Wind 30 deg - Service	43.853	2.814	-4.882	-426.743	-246.987	0.199
Dead+Wind 60 deg - Service	43.853	5.114	-2.976	-256.706	-442.433	0.008
Dead+Wind 90 deg - Service	43.853	5.600	-0.017	-0.893	-490.435	-0.154
Dead+Wind 120 deg -	43.853	4.870	2.828	247.983	-426.435	-0.337
Service						
Dead+Wind 150 deg -	43.853	2.801	4.877	427.459	-245.836	-0.359
Service						
Dead+Wind 180 deg -	43.853	-0.011	5.933	513.413	-0.126	-0.267
Service						
Dead+Wind 210 deg -	43.853	-2.803	4.878	427.464	243.952	-0.124
Service						
Dead+Wind 240 deg -	43.853	-4.844	2.821	247.343	422.233	0.045
Service						
Dead+Wind 270 deg -	43.853	-5.590	0.009	1.354	487.550	0.204
Service						
Dead+Wind 300 deg -	43.853	-5.110	-2.962	-255.498	440.090	0.323
Service						
Dead+Wind 330 deg -	43.853	-2.788	-4.885	-426.998	242.652	0.405
Service						

Solution	Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	К	К	K	К	
1	0.000	-43.853	0.000	0.000	43.853	0.000	0.000%
2	0.028	-52.624	-24.759	-0.028	52.624	24.759	0.000%
3	0.028	-39.468	-24.759	-0.028	39.468	24.759	0.000%
4	12.344	-52.624	-21.415	-12.344	52.624	21.415	0.000%
5	12.344	-39.468	-21.415	-12.344	39.468	21.415	0.000%
6	22.431	-52.624	-13.055	-22.431	52.624	13.055	0.000%
7	22.431	-39.468	-13.055	-22.431	39.468	13.055	0.000%
8	24.561	-52.624	-0.073	-24.561	52.624	0.073	0.000%
9	24.561	-39.468	-0.073	-24.561	39.468	0.073	0.000%
10	21.359	-52.624	12.404	-21.359	52.624	-12.404	0.000%
11	21.359	-39.468	12.404	-21.359	39.468	-12.404	0.000%
12	12.284	-52.624	21.394	-12.284	52.624	-21.394	0.000%
13	12.284	-39.468	21.394	-12.284	39.468	-21.394	0.000%
14	-0.047	-52.624	26.025	0.047	52.624	-26.025	0.000%
15	-0.047	-39.468	26.025	0.047	39.468	-26.025	0.000%
16	-12.296	-52.624	21.396	12.296	52.624	-21.396	0.000%
17	-12.296	-39.468	21.396	12.296	39.468	-21.396	0.000%
18	-21.249	-52.624	12.373	21.249	52.624	-12.373	0.000%
19	-21.249	-39.468	12.373	21.249	39.468	-12.373	0.000%
20	-24.521	-52.624	0.042	24.521	52.624	-0.042	0.000%
21	-24.521	-39.468	0.042	24.521	39.468	-0.042	0.000%
22	-22.416	-52.624	-12.993	22.416	52.624	12.993	0.000%
23	-22.416	-39.468	-12.993	22.416	39.468	12.993	0.000%
24	-12.229	-52.624	-21.425	12.229	52.624	21.425	0.000%
25	-12.229	-39.468	-21.425	12.229	39.468	21.425	0.000%
26	0.000	-87.142	0.000	-0.000	87.142	0.000	0.000%
27	0.004	-87.142	-7.008	-0.004	87.142	7.008	0.000%
28	3.500	-87.142	-6.063	-3.500	87.142	6.063	0.000%
29	6.062	-87.142	-3.515	-6.062	87.142	3.515	0.000%
30	6.978	-87.142	-0.013	-6.978	87.142	0.013	0.000%
31	6.044	-87.142	3.501	-6.044	87.142	-3.501	0.000%
32	3.491	-87.142	6.060	-3.491	87.142	-6.060	0.000%
33	-0.008	-87.142	7.017	0.008	87.142	-7.017	0.000%
34	-3.490	-87.142	6.059	3.490	87.142	-6.059	0.000%
35	-6.037	-87.142	3.501	6.037	87.142	-3.501	0.000%
36	-6.969	-87.142	0.007	6.969	87.142	-0.007	0.000%
37	-6.053	-87.142	-3.502	6.053	87.142	3.502	0.000%
38	-3.480	-87.142	-6.067	3.480	87.142	6.067	0.000%
39	0.006	-43.853	-5.645	-0.006	43.853	5.645	0.000%
40	2.814	-43.853	-4.882	-2.814	43.853	4.882	0.000%
41	5.114	-43.853	-2.976	-5.114	43.853	2.976	0.000%

	Sun	n of Applied Force	s		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	ĸ	K	K	K	K	K	
42	5.600	-43.853	-0.017	-5.600	43.853	0.017	0.000%
43	4.870	-43.853	2.828	-4.870	43.853	-2.828	0.000%
44	2.801	-43.853	4.877	-2.801	43.853	4.877	0.000%
45	-0.011	-43.853	5.933	0.011	43.853	-5.933	0.000%
46	-2.803	-43.853	4.878	2.803	43.853	-4.878	0.000%
47	-4.844	-43.853	2.821	4.844	43.853	2.821	0.000%
48	-5.590	-43.853	0.009	5.590	43.853	-0.009	0.000%
49	-5.110	-43.853	-2.962	5.110	43.853	2.962	0.000%
50	-2.788	-43.853	-4.885	2.788	43.853	4.885	0.000%

Non-Linear Convergence Results

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
1 Yes 4 0.0000001 0.0000001 2 Yes 5 0.0000001 0.0007334 3 Yes 4 0.0000001 0.00072322 5 Yes 5 0.0000001 0.00022822 5 Yes 5 0.0000001 0.0002300 6 Yes 5 0.0000001 0.0002300 7 Yes 5 0.0000001 0.0002300 7 Yes 5 0.0000001 0.0002354 9 Yes 4 0.0000001 0.0002354 10 Yes 5 0.0000001 0.0002364 11 Yes 5 0.0000001 0.0002364 13 Yes 5 0.0000001 0.0002364 14 Yes 5 0.0000001 0.0002364 15 Yes 5 0.0000001 0.0002354 16 Yes 5 0.0000001 0.00021263 19 Yes		Converged?			
2 Yes 5 0.0000001 0.0003686 3 Yes 4 0.0000001 0.00075334 4 Yes 5 0.0000001 0.0002822 5 Yes 5 0.0000001 0.00023000 6 Yes 5 0.0000001 0.00023000 7 Yes 5 0.00000001 0.00023000 7 Yes 4 0.00000001 0.0002364 9 Yes 4 0.0000001 0.0002354 10 Yes 5 0.00000001 0.00023634 11 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.00023634 14 Yes 5 0.0000001 0.00023634 15 Yes 5 0.0000001 0.00023634 15 Yes 5 0.0000001 0.0002355 17 Yes 5 0.00000001 0.00021263 19 Ye		Ň			
3 Yes 4 0.0000001 0.00075334 4 Yes 5 0.0000001 0.00022822 5 Yes 5 0.0000001 0.00023000 6 Yes 5 0.0000001 0.00023000 7 Yes 5 0.0000001 0.0002300 8 Yes 4 0.0000001 0.00020364 9 Yes 4 0.0000001 0.0002354 10 Yes 5 0.0000001 0.00023634 11 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.00023634 14 Yes 5 0.0000001 0.00023634 15 Yes 5 0.0000001 0.00023634 16 Yes 5 0.0000001 0.00023634 17 Yes 5 0.00000001 0.00021263 18 Yes 5 0.00000001 0.00021263 19					
4 Yes 5 0.0000001 0.0002822 5 Yes 5 0.0000001 0.0001300 6 Yes 5 0.0000001 0.0002300 7 Yes 5 0.0000001 0.0001300 8 Yes 4 0.0000001 0.00047871 10 Yes 5 0.0000001 0.0002364 11 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.0001023634 14 Yes 5 0.0000001 0.0001344 15 Yes 4 0.0000001 0.00023634 15 Yes 5 0.0000001 0.00023634 15 Yes 4 0.0000001 0.00023634 15 Yes 5 0.0000001 0.00023634 16 Yes 5 0.0000001 0.00021263 17 Yes 5 0.0000001 0.00021263 19 Ye	2				
5 Yes 5 0.0000001 0.00011305 6 Yes 5 0.0000001 0.00023000 7 Yes 5 0.0000001 0.0008264 9 Yes 4 0.0000001 0.0008264 9 Yes 4 0.0000001 0.0008264 10 Yes 5 0.0000001 0.0002354 11 Yes 5 0.0000001 0.0002364 13 Yes 5 0.0000001 0.00011023 14 Yes 5 0.0000001 0.0001344 15 Yes 5 0.0000001 0.00023634 16 Yes 5 0.0000001 0.00023634 17 Yes 5 0.0000001 0.00024632 18 Yes 5 0.0000001 0.00024633 19 Yes 4 0.0000001 0.00024634 21 Yes 5 0.00000001 0.00024634 22 Yes					
6 Yes 5 0.0000001 0.00023000 7 Yes 5 0.0000001 0.00011308 8 Yes 4 0.00000001 0.00080264 9 Yes 4 0.00000001 0.0008264 9 Yes 4 0.00000001 0.0002354 10 Yes 5 0.00000001 0.0002354 11 Yes 5 0.00000001 0.0002354 12 Yes 5 0.00000001 0.0002364 13 Yes 5 0.00000001 0.0002354 14 Yes 5 0.00000001 0.0002055 17 Yes 5 0.00000001 0.0002055 17 Yes 5 0.00000001 0.0002121263 19 Yes 4 0.00000001 0.00024668 21 Yes 5 0.00000001 0.00024668 23 Yes 5 0.00000001 0.000057850 26					
7 Yes 5 0.0000001 0.00011308 8 Yes 4 0.0000001 0.00080264 9 Yes 4 0.0000001 0.00047871 10 Yes 5 0.0000001 0.00020354 11 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.00010023 14 Yes 5 0.0000001 0.00013634 15 Yes 5 0.0000001 0.00013634 15 Yes 5 0.0000001 0.00023634 16 Yes 5 0.0000001 0.0001322 16 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 4 0.0000001 0.00021263 21 Yes 5 0.0000001 0.00021263 22 Yes 5 0.0000001 0.00024608 23 <					
8 Yes 4 0.0000001 0.0080264 9 Yes 4 0.0000001 0.00047871 10 Yes 5 0.0000001 0.0002354 11 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.00023634 14 Yes 5 0.0000001 0.00013344 15 Yes 4 0.0000001 0.0002355 16 Yes 5 0.0000001 0.0002955 17 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 4 0.0000001 0.00023206 21 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 25 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
9 Yes 4 0.0000001 0.0047871 10 Yes 5 0.0000001 0.00020354 11 Yes 5 0.0000001 0.00010023 12 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.0001344 15 Yes 4 0.0000001 0.00023634 15 Yes 5 0.0000001 0.0001344 15 Yes 5 0.0000001 0.0002055 17 Yes 5 0.0000001 0.00021263 18 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.0001517 20 Yes 4 0.0000001 0.00018232 21 Yes 5 0.0000001 0.0001823 22 Yes 5 0.0000001 0.0001823 23 Yes 5 0.0000001 0.0005326 24 Ye		Yes		0.0000001	0.00011308
10 Yes 5 0.0000001 0.00020354 11 Yes 5 0.0000001 0.0001023 12 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.00023634 14 Yes 5 0.0000001 0.0001736 14 Yes 5 0.0000001 0.00003344 15 Yes 4 0.0000001 0.0002955 16 Yes 5 0.0000001 0.0002955 17 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 20 Yes 4 0.0000001 0.00023206 21 Yes 5 0.0000001 0.00023206 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00057650 26 <					
11 Yes 5 0.0000001 0.0001023 12 Yes 5 0.0000001 0.00023634 13 Yes 5 0.0000001 0.00011736 14 Yes 5 0.0000001 0.00013344 15 Yes 4 0.0000001 0.0002955 16 Yes 5 0.0000001 0.0002955 17 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00024608 21 Yes 4 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 24 Yes 5 0.0000001 0.00024608 25 Yes 5 0.0000001 0.00057650 28 Yes 5 0.00000001 0.00059523 29		Yes	4	0.00000001	0.00047871
12 Yes 5 0.0000001 0.0023634 13 Yes 5 0.0000001 0.00011736 14 Yes 5 0.0000001 0.0003344 15 Yes 4 0.0000001 0.00020955 16 Yes 5 0.0000001 0.00020955 17 Yes 5 0.0000001 0.00021263 18 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 20 Yes 4 0.0000001 0.00024608 21 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00012162 24 Yes 5 0.0000001 0.00012162 24 Yes 5 0.0000001 0.00057650 28 Yes 5 0.00000001 0.00057855 31	10	Yes		0.0000001	0.00020354
13 Yes 5 0.0000001 0.0011736 14 Yes 5 0.0000001 0.0003344 15 Yes 4 0.0000001 0.0006932 16 Yes 5 0.0000001 0.0002955 17 Yes 5 0.0000001 0.0002955 18 Yes 5 0.0000001 0.0002955 19 Yes 5 0.0000001 0.0002163 20 Yes 4 0.0000001 0.00016517 20 Yes 4 0.0000001 0.00024608 21 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00012162 24 Yes 5 0.0000001 0.00009766 26 Yes 4 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059376 32	11	Yes	5	0.0000001	0.00010023
14 Yes 5 0.0000001 0.0003344 15 Yes 4 0.0000001 0.00066932 16 Yes 5 0.0000001 0.00020955 17 Yes 5 0.0000001 0.0002163 18 Yes 5 0.0000001 0.0002163 19 Yes 5 0.0000001 0.0002163 20 Yes 4 0.0000001 0.00053206 21 Yes 4 0.0000001 0.00024608 23 Yes 5 0.0000001 0.0001823 24 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.0001823 26 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00057853 29 Yes 5 0.0000001 0.00057855 31 Yes 5 0.0000001 0.00057385 32	12	Yes		0.0000001	0.00023634
15 Yes 4 0.0000001 0.00066932 16 Yes 5 0.0000001 0.00020955 17 Yes 5 0.0000001 0.00021263 18 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 4 0.0000001 0.00086916 21 Yes 4 0.0000001 0.00053206 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.0001823 24 Yes 5 0.0000001 0.00019823 25 Yes 5 0.0000001 0.00057650 26 Yes 5 0.0000001 0.00057853 29 Yes 5 0.0000001 0.00057855 31 Yes 5 0.0000001 0.00059305 33	13	Yes	5	0.00000001	0.00011736
16 Yes 5 0.0000001 0.00020955 17 Yes 5 0.0000001 0.00010352 18 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.00021263 19 Yes 4 0.0000001 0.00086916 21 Yes 4 0.0000001 0.0003206 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 24 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.00019766 26 Yes 5 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00057835 31 Yes 5 0.0000001 0.00059377 30 Yes 5 0.00000001 0.00059305 33	14	Yes	5	0.00000001	0.00003344
17 Yes 5 0.0000001 0.00010352 18 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.0001517 20 Yes 4 0.0000001 0.00086916 21 Yes 4 0.0000001 0.00024608 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 24 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.00019766 26 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00057853 29 Yes 5 0.00000001 0.00059377 30 Yes 5 0.00000001 0.00057835 31 Yes 5 0.00000001 0.00059376 32	15	Yes	4	0.00000001	0.00066932
17 Yes 5 0.0000001 0.00010352 18 Yes 5 0.0000001 0.00021263 19 Yes 5 0.0000001 0.0001517 20 Yes 4 0.0000001 0.00086916 21 Yes 4 0.0000001 0.00024608 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 24 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.00019766 26 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00057853 29 Yes 5 0.00000001 0.00059377 30 Yes 5 0.00000001 0.00057835 31 Yes 5 0.00000001 0.00059376 32	16	Yes	5	0.00000001	0.00020955
18 Yes 5 0.0000001 0.0021263 19 Yes 5 0.0000001 0.00010517 20 Yes 4 0.0000001 0.00086916 21 Yes 4 0.0000001 0.00053206 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 24 Yes 5 0.0000001 0.00024608 25 Yes 5 0.0000001 0.00024608 26 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.00009766 26 Yes 5 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00057835 31 Yes 5 0.00000001 0.00059376 32					
19 Yes 5 0.0000001 0.00010517 20 Yes 4 0.0000001 0.00086916 21 Yes 4 0.0000001 0.00053206 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00024608 24 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.0009766 26 Yes 4 0.00000001 0.0005494 27 Yes 5 0.00000001 0.00059523 28 Yes 5 0.00000001 0.00059523 29 Yes 5 0.00000001 0.00059577 30 Yes 5 0.00000001 0.00059376 31 Yes 5 0.00000001 0.00059375 32 Yes 5 0.00000001 0.00059305 33 Yes 5 0.00000001 0.00057385 34	18	Yes			
20 Yes 4 0.0000001 0.0086916 21 Yes 4 0.0000001 0.00053206 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00012162 24 Yes 5 0.0000001 0.0009766 26 Yes 4 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059376 31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00058301 35 Yes 5 0.00000001 0.00058501 36					
21 Yes 4 0.0000001 0.00053206 22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00012162 24 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.0009766 26 Yes 4 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059573 31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059376 33 Yes 5 0.0000001 0.00059375 33 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00058501 35 Yes 5 0.00000001 0.00058501 36					
22 Yes 5 0.0000001 0.00024608 23 Yes 5 0.0000001 0.00012162 24 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.0009766 26 Yes 4 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.00000001 0.00059573 31 Yes 5 0.00000001 0.00059376 32 Yes 5 0.00000001 0.00059375 33 Yes 5 0.00000001 0.00059375 33 Yes 5 0.00000001 0.00059375 33 Yes 5 0.00000001 0.00059305 34 Yes 5 0.00000001 0.00058501 35 Yes 5 0.00000001 0.00058501 36					
23 Yes 5 0.0000001 0.0012162 24 Yes 5 0.0000001 0.0001823 25 Yes 5 0.0000001 0.0009766 26 Yes 4 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059573 31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00057355 34 Yes 5 0.00000001 0.00058501 35 Yes 5 0.00000001 0.00058186 36 Yes 5 0.00000001 0.00056532					
24 Yes 5 0.0000001 0.0019823 25 Yes 5 0.0000001 0.0009766 26 Yes 4 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059577 30 Yes 5 0.00000001 0.00059577 31 Yes 5 0.00000001 0.00059376 32 Yes 5 0.00000001 0.00059305 33 Yes 5 0.00000001 0.00057385 34 Yes 5 0.00000001 0.00058186 35 Yes 5 0.00000001 0.00058186 36 Yes 5 0.00000001 0.00056532					
25 Yes 5 0.0000001 0.0009766 26 Yes 4 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059573 31 Yes 5 0.00000001 0.00059376 32 Yes 5 0.00000001 0.00059305 33 Yes 5 0.00000001 0.00057385 34 Yes 5 0.00000001 0.0005801 35 Yes 5 0.00000001 0.00058186 36 Yes 5 0.00000001 0.00056532					
26 Yes 4 0.0000001 0.0005494 27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059577 31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00057385 34 Yes 5 0.0000001 0.0005801 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
27 Yes 5 0.0000001 0.00057650 28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00057835 31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00059305 34 Yes 5 0.0000001 0.00058501 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
28 Yes 5 0.0000001 0.00059523 29 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059376 31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00057385 34 Yes 5 0.0000001 0.00058186 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
29 Yes 5 0.0000001 0.00059577 30 Yes 5 0.0000001 0.00059577 31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059376 33 Yes 5 0.0000001 0.00059305 34 Yes 5 0.0000001 0.00058501 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
30 Yes 5 0.0000001 0.00057835 31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00057885 34 Yes 5 0.0000001 0.00058501 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
31 Yes 5 0.0000001 0.00059376 32 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00057385 34 Yes 5 0.0000001 0.00058501 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
32 Yes 5 0.0000001 0.00059305 33 Yes 5 0.0000001 0.00057385 34 Yes 5 0.0000001 0.00058501 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
33 Yes 5 0.0000001 0.00057385 34 Yes 5 0.0000001 0.00058501 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
34 Yes 5 0.0000001 0.00058501 35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
35 Yes 5 0.0000001 0.00058186 36 Yes 5 0.0000001 0.00056532					
36 Yes 5 0.0000001 0.00056532					
37 Yes 5 0.0000001 0.00058396					
38 Yes 5 0.0000001 0.00058738					
39 Yes 4 0.0000001 0.00012339					
40 Yes 4 0.0000001 0.00018467					
41 Yes 4 0.0000001 0.00018184					
42 Yes 4 0.0000001 0.00011492			•		
43 Yes 4 0.0000001 0.00017146					0.00017146
44 Yes 4 0.0000001 0.00019636					
45 Yes 4 0.0000001 0.00012386					0.00012386
46 Yes 4 0.0000001 0.00016886		Yes		0.0000001	0.00016886
47 Yes 4 0.0000001 0.00017021	47	Yes	4	0.0000001	0.00017021
48 Yes 4 0.0000001 0.00011588	48	Yes	4	0.0000001	0.00011588
49 Yes 4 0.0000001 0.00019966	49	Yes	4	0.0000001	0.00019966
50 Yes 4 0.0000001 0.00017053	50	Yes	4	0.0000001	0.00017053

	IVI		ower De	nections -	Service wind
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	_	Deflection	Load		
	ft	in	Comb.	0	o
L1	125 - 120	6.887	45	0.473	0.002
L2	120 - 115	6.392	45	0.473	0.002
L3	115 - 110	5.898	45	0.470	0.002
L4	110 - 105	5.408	45	0.465	0.001
L5	105 - 100	4.928	45	0.452	0.001
L6	100 - 95	4.465	45	0.433	0.001
L7	95 - 90	4.019	45	0.418	0.001
L8	90 - 85	3.591	45	0.399	0.001
L9	85 - 80	3.186	45	0.373	0.001
L10	80 - 75.7	2.811	45	0.341	0.001
L11	75.7 - 75.45	2.513	45	0.321	0.001
L12	75.45 - 70.45	2.496	45	0.321	0.001
L13	70.45 - 65.45	2.170	45	0.302	0.001
L14	65.45 - 60.45	1.864	45	0.280	0.001
L15	60.45 - 60	1.584	45	0.255	0.000
L16	60 - 59.75	1.560	45	0.253	0.000
L17	59.75 - 54.75	1.547	45	0.252	0.000
L18	54.75 - 49.75	1.293	45	0.232	0.000
L19	49.75 - 44.75	1.061	45	0.210	0.000
L20	44.75 - 40	0.854	45	0.186	0.000
L21	40 - 39.75	0.681	45	0.161	0.000
L22	39.75 - 34.75	0.673	45	0.160	0.000
L23	34.75 - 29.75	0.515	45	0.141	0.000
L24	29.75 - 24.75	0.377	45	0.121	0.000
L25	24.75 - 20	0.262	45	0.099	0.000
L26	20 - 19.75	0.174	45	0.077	0.000
L27	19.75 - 14.75	0.170	45	0.076	0.000
L28	14.75 - 9.75	0.099	45	0.060	0.000
L29	9.75 - 4.75	0.045	45	0.042	0.000
L30	4.75 - 4.38	0.012	45	0.023	0.000
L31	4.38 - 4.13	0.010	45	0.021	0.000
L32	4.13 - 0	0.009	45	0.020	0.000

Maximum Tower Deflections - Service Wind

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
122.000	ERICSSON AIR 21 B2A B4P w/	45	6.590	0.473	0.002	234711
	Mount Pipe					
112.000	MT6407-77A w/ Mount Pipe	45	5.604	0.467	0.001	43283
100.000	7770.00 w/ Mount Pipe	45	4.465	0.433	0.001	16742
90.000	APXVTM14-ALU-I20 w/ Mount	45	3.591	0.399	0.001	12674
	Pipe					
88.000	Dragonwave A-ANT-18G-2-C	45	3.425	0.390	0.001	11179
81.000	MX08FRO665-21 w/ Mount Pipe	45	2.884	0.347	0.001	9886

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	o	٥
L1	125 - 120	30.366	14	2.087	0.006
L2	120 - 115	28.181	14	2.086	0.006

tnxTower Report - version 8.1.1.0

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	٥
L3	115 - 110	26.001	14	2.075	0.006
L4	110 - 105	23.840	14	2.049	0.006
L5	105 - 100	21.721	14	1.994	0.006
L6	100 - 95	19.675	14	1.908	0.006
L7	95 - 90	17.708	14	1.845	0.005
L8	90 - 85	15.819	14	1.759	0.005
L9	85 - 80	14.034	14	1.646	0.004
L10	80 - 75.7	12.382	14	1.503	0.003
L11	75.7 - 75.45	11.066	14	1.417	0.003
L12	75.45 - 70.45	10.992	14	1.413	0.003
L13	70.45 - 65.45	9.554	14	1.331	0.002
L14	65.45 - 60.45	8.209	14	1.235	0.002
L15	60.45 - 60	6.973	14	1.124	0.002
L16	60 - 59.75	6.868	14	1.113	0.002
L17	59.75 - 54.75	6.810	14	1.109	0.002
L18	54.75 - 49.75	5.693	14	1.023	0.002
L19	49.75 - 44.75	4.672	14	0.926	0.001
L20	44.75 - 40	3.757	14	0.819	0.001
L21	40 - 39.75	2.997	14	0.707	0.001
L22	39.75 - 34.75	2.960	14	0.703	0.001
L23	34.75 - 29.75	2.266	14	0.622	0.001
L24	29.75 - 24.75	1.661	14	0.533	0.001
L25	24.75 - 20	1.152	14	0.437	0.001
L26	20 - 19.75	0.765	14	0.339	0.000
L27	19.75 - 14.75	0.747	14	0.336	0.000
L28	14.75 - 9.75	0.434	14	0.262	0.000
L29	9.75 - 4.75	0.200	14	0.184	0.000
L30	4.75 - 4.38	0.051	14	0.100	0.000
L31	4.38 - 4.13	0.043	14	0.094	0.000
L32	4.13 - 0	0.038	14	0.088	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
122.000	ERICSSON AIR 21 B2A B4P w/	14	29.054	2.087	0.006	53206
	Mount Pipe					
112.000	MT6407-77A w/ Mount Pipe	14	24.701	2.062	0.006	9849
100.000	7770.00 w/ Mount Pipe	14	19.675	1.908	0.006	3811
90.000	APXVTM14-ALU-I20 w/ Mount	14	15.819	1.759	0.005	2889
	Pipe					
88.000	Dragonwave A-ANT-18G-2-C	14	15.090	1.718	0.004	2547
81.000	MX08FRO665-21 w/ Mount Pipe	14	12,701	1.530	0.003	2250

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	φPn	Ratio Pu
	ft		ft	ft		in²	К	К	ϕP_n
L1	125 - 124	P24x0.375	5.000	0.000	0.0	27.833	-0.169	1052.070	0.000 1
	124 - 123					27.833	-0.339	1052.070	0.000 ¹
	123 - 122					27.833	-0.350	1052.070	0.000
	122 - 121					27.833	-9.736	1052.070	0.009
	121 - 120					27.833	-4.786	1052.070	0.005
L2	120 - 119	P24x0.375	5.000	0.000	0.0	27.833	-4.909	1052.070	0.005

Section	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio
No.	ft		ft	ft		in²	к	к	$\frac{P_u}{\phi P_n}$
	119 - 118					27.833	-5.032	1052.070	0.005
	118 - 117					27.833	-5.155	1052.070	0.005
	117 - 116					27.833	-5.277	1052.070	0.005
	116 - 115					27.833	-5.400	1052.070	0.005
L3	115 - 114	P24x0.375	5.000	0.000	0.0	27.833	-5.524	1052.070	0.005
	114 - 113					27.833	-5.648	1052.070	0.005
	113 - 112					27.833	-5.773	1052.070	0.005
	112 - 111					27.833	-9.633	1052.070	0.009
	111 - 110					27.833	-9.758	1052.070	0.009
L4	110 - 109	P24x0.375	5.000	0.000	0.0	27.833	-9.889	1052.070	0.009
	109 - 108					27.833	-10.016	1052.070	0.010
	108 - 107					27.833	-10.143	1052.070	0.010
	107 - 106					27.833	-10.270	1052.070	0.010
	106 - 105	504 0 075				27.833	-10.398	1052.070	0.010
L5	105 - 104	P24x0.375	5.000	0.000	0.0	27.833	-10.526	1052.070	0.010
	104 - 103					27.833	-10.654	1052.070	0.010
	103 - 102					27.833	-10.783	1052.070	0.010
	102 - 101					27.833	-10.912	1052.070	0.010
	101 - 100	D 200 275	5 000	0.000	0.0	27.833	-11.040	1052.070	0.010
L6	100 - 99	P30x0.375	5.000	0.000	0.0	34.901	-14.216	1311.060	0.011
	99 - 98					34.901 34.901	-14.390	1311.060	0.011
	98 - 97 97 - 96					34.901 34.901	-14.563	1311.060	0.011
	97 - 96 96 - 95					34.901 34.901	-14.737 -14.911	1311.060 1311.060	0.011 0.011
L7	96 - 95 95 - 94	P30x0.375	5.000	0.000	0.0	34.901	-14.911	1311.060	0.011
L/	95 - 94 94 - 93	P30X0.375	5.000	0.000	0.0	34.901 34.901	-15.085	1311.060	0.012
	94 - 93 93 - 92					34.901	-15.239	1311.060	0.012
	93 - 92 92 - 91					34.901	-15.609	1311.060	0.012
	92 - 91 91 - 90					34.901	-15.784	1311.060	0.012
L8	90 - 89	P30x0.375	5.000	0.000	0.0	34.901	-19.917	1311.060	0.012
LU	89 - 88	1 3020.373	0.000	0.000	0.0	34.901	-20.100	1311.060	0.015
	88 - 87					34,901	-20.342	1311.060	0.016
	87 - 86					34.901	-20.526	1311.060	0.016
	86 - 85					34.901	-20,710	1311.060	0.016
L9	85 - 84	P30x0.375	5.000	0.000	0.0	34.901	-20.895	1311.060	0.016
20	84 - 83		01000	01000	010	34.901	-21.081	1311.060	0.016
	83 - 82					34.901	-21.267	1311.060	0.016
	82 - 81					34.901	-21.438	1311.060	0.016
	81 - 80					34,901	-24 784	1311.060	0.019
L10	80 - 78.925	P36x0.375	4.300	0.000	0.0	41.970	-25.016	1490.100	0.017
	78.925 -					41.970	-25.247	1490.100	0.017
	77.85								
	77.85 -					41.970	-25.478	1490.100	0.017
	76.775								
	76 775 - 75 7					41.970	-25.710	1490.100	0.017
L11	75.7 - 75.45	P36x0.5625	0.250	0.000	0.0	62.623	-25.785	2367.160	0.011
	(11)								
L12	75.45 - 74.45	P36x0.5625	5.000	0.000	0.0	62.623	-26.068	2367.160	0.011
	74.45 - 73.45					62.623	-26.354	2367.160	0.011
	73.45 - 72.45					62.623	-26.640	2367.160	0.011
	72.45 - 71.45					62.623	-26.926	2367.160	0.011
	71.45 - 70.45					62.623	-27.212	2367.160	0.011
L13	70.45 - 69.45	P36x0.5625	5.000	0.000	0.0	62.623	-27.499	2367.160	0.012
	69.45 - 68.45					62.623	-27.786	2367.160	0.012
	68.45 - 67.45					62.623	-28.073	2367.160	0.012
	67.45 - 66.45					62.623	-28.361	2367.160	0.012
L14	66.45 - 65.45					62.623	-28.649	2367.160	0.012
	65.45 - 64.45	P36x0.5625	5.000	0.000	0.0	62.623	-28.937	2367.160	0.012
	64.45 - 63.45					62.623	-29.226	2367.160	0.012
	63.45 - 62.45					62.623	-29.514	2367.160	0.012
	62.45 - 61.45					62.623	-29.803	2367.160	0.013
	61.45 - 60.45	D00-0 5005	0.450	0.000	0.0	62.623	-30.093	2367.160	0.013
L15	60.45 - 60	P36x0.5625	0.450	0.000	0.0	62.623	-30.226	2367.160	0.013
1.40	(15)	D40-0 505	0.050	0.000	0.0	60 400	20.200	0560.070	0.040
L16	60 - 59.75	P42x0.525	0.250	0.000	0.0	68.406	-30.306	2569.670	0.012
=	(16)								0.040
1 4 7			E 000		<u> </u>	60 100			
L17	59.75 - 58.75	P42x0.525	5.000	0.000	0.0	68.406	-30.621	2569.670	0.012
L17	59.75 - 58.75 58.75 - 57.75 57.75 - 56.75	P42x0.525	5.000	0.000	0.0	68.406 68.406 68.406	-30.621 -30.938 -31.255	2569.670 2569.670 2569.670	0.012 0.012 0.012

Section	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio
No.	ft		ft	ft		in²	к	ĸ	$\frac{P_u}{\phi P_n}$
	<i>n</i> 56.75 - 55.75		<i></i>	16		68.406	-31.573	2569.670	φ <i>Ρ_n</i> 0.012
	55.75 - 54.75					68.406 68.406	-31.891	2569.670	0.012
1 1 0	54.75 - 53.75	P42x0.525	5.000	0.000	0.0	68.406 68.406		2569.670	
L18		P42X0.525	5.000	0.000	0.0		-32.209		0.013
	53.75 - 52.75					68.406	-32.527	2569.670	0.013
	52.75 - 51.75					68.406	-32.845	2569.670	0.013
	51.75 - 50.75					68.406	-33.164	2569.670	0.013
	50.75 - 49.75					68.406	-33.483	2569.670	0.013
L19	49.75 - 48.75	P42x0.525	5.000	0.000	0.0	68.406	-33.801	2569.670	0.013
	48.75 - 47.75					68.406	-34.119	2569.670	0.013
	47.75 - 46.75					68.406	-34.437	2569.670	0.013
	46.75 - 45.75					68.406	-34 756	2569.670	0.014
	45.75 - 44.75					68.406	-35.075	2569.670	0.014
L20	44.75 - 43.5625	P42x0.525	4.750	0.000	0.0	68.406	-35.453	2569.670	0.014
	43.5625 - 42.375					68.406	-35.833	2569.670	0.014
	42.375 - 41.1875					68.406	-36.213	2569.670	0.014
	41.1875 - 40					68.406	-36.593	2569.670	0.014
L21	40 - 39 75	P48x0.55625	0.250	0.000	0.0	82.909	-36.691	3039.700	0.012
'	(21)	1 10/0100020	0.200	0.000	0.0	02.000	30.001	0000100	5.012
L22	39.75 - 38.75	P48x0.55625	5.000	0.000	0.0	82.909	-37.062	3039.700	0.012
LZZ	38.75 - 37.75	1 4020.00020	5.000	0.000	0.0	82,909	-37.434	3039,700	0.012
	37.75 - 36.75					82.909	-37.434	3039.700	0.012
	36,75 - 35,75					82.909	-38.180	3039.700	0.012
1.00	35.75 - 34.75	D40 0 55005	5 000	0.000		82.909	-38.554	3039.700	0.013
L23	34.75 - 33.75	P48x0.55625	5.000	0.000	0.0	82.909	-38.927	3039.700	0.013
	33.75 - 32.75					82.909	-39.301	3039.700	0.013
	32.75 - 31.75					82.909	-39.674	3039.700	0.013
	31.75 - 30.75					82.909	-40.048	3039.700	0.013
	30.75 - 29.75					82.909	-40.422	3039.700	0.013
L24	29.75 - 28.75	P48x0.55625	5.000	0.000	0.0	82.909	-40.796	3039.700	0.013
	28.75 - 27.75					82.909	-41.169	3039.700	0.014
	27.75 - 26.75					82.909	-41.544	3039.700	0.014
	26.75 - 25.75					82.909	-41.918	3039.700	0.014
	25.75 - 24.75					82.909	-42.292	3039.700	0.014
L25	24.75 - 23.5625	P48x0.55625	4.750	0.000	0.0	82.909	-42.736	3039.700	0.014
	23.5625 - 22.375					82.909	-43.181	3039.700	0.014
	22.375 - 21.1875					82.909	-43.627	3039.700	0.014
	21.1875 - 20					82,909	-44.072	3039,700	0.014
L26	20 - 19.75 (26)	P54x0.5875	0.250	0.000	0.0	98.583	-44.185	3545.230	0.012
L27	19.75 - 18.75	P54x0.5875	5.000	0.000	0.0	98.583	-44.615	3545.230	0.013
	18 75 - 17 75		01000	0.000	0.0	98.583	-45.048	3545.230	0.013
	17.75 - 16.75					98.583	-45.481	3545.230	0.013
	16.75 - 15.75					98.583	-45.913	3545.230	0.013
	15.75 - 14.75					98.583	-46.346	3545.230	0.013
1.00		DEANO EQZE	5.000	0.000	0.0			3545.230	
L28	14.75 - 13.75	P54x0.5875	5.000	0.000	0.0	98.583	-46.779		0.013
	13.75 - 12.75					98.583	-47.212	3545.230	0.013
	12.75 - 11.75					98.583	-47.646	3545.230	0.013
	11.75 - 10.75					98.583	-48.079	3545.230	0.014
	10.75 - 9.75					98.583	-48.513	3545.230	0.014
L29	9.75 - 8.75	P54x0.5875	5.000	0.000	0.0	98.583	-48.946	3545.230	0.014
	8 75 - 7 75					98.583	-49.380	3545.230	0.014
	7.75 - 6.75					98.583	-49.814	3545.230	0.014
	6.75 - 5.75					98.583	-50.248	3545.230	0.014
	5.75 - 4.75					98.583	-50.682	3545.230	0.014
L30	4.75 - 4.38 (30)	P54x0.5875	0.370	0.000	0.0	98.583	-50.846	3545.230	0.014
L31	4.38 - 4.13 (31)	P54x0.4875	0.250	0.000	0.0	81.956	-50.947	2797.170	0.018
L32	4.13 - 3.0975 3.0975 -	P54x0.4875	4.130	0.000	0.0	81.956 81.956	-51.362 -51.781	2797.170 2797.170	0.018 0.019
	2.065								
	2.065 - 1.0325					81.956	-52.200	2797.170	0.019

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	к	ϕP_n
	1.0325 - 0					81.956	-52.619	2797.170	0.019

¹ P_u / ϕP_n controls

Pole Bending Design Data										
Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio M _{ux}	Muy	φM _{ny}	Ratio M _{uy}		
	ft		kip-ft	kip-ft	φM _{nx}	kip-ft	kip-ft	φ <i>M_{ny}</i>		
L1	125 - 124	P24x0.375	0.017	623.717	0.000	0.000	623.717	0.000		
	124 - 123		0.053	623.717	0.000	0.000	623.717	0.000		
	123 - 122		0.236	623.717	0.000	0.000	623.717	0.000		
	122 - 121		1.000	623.717	0.002	0.000	623.717	0.000		
	121 - 120		6.707	623.717	0.002	0.000	623.717	0.000		
L2	120 - 119	P24x0.375	10.021	623.717	0.016	0.000	623.717	0.000		
	119 - 118	1 2420.070	13.385	623.717	0.021	0.000	623.717	0.000		
	118 - 117		16.801	623.717	0.021	0.000	623.717	0.000		
	117 - 116		20.268	623.717	0.027	0.000	623.717	0.000		
	116 - 115	D04 0.075	23.786	623.717	0.038	0.000	623.717	0.000		
L3	115 - 114	P24x0.375	27.355	623.717	0.044	0.000	623.717	0.000		
	114 - 113		30.974	623.717	0.050	0.000	623.717	0.000		
	113 - 112		34.643	623.717	0.056	0.000	623.717	0.000		
	112 - 111		45.480	623.717	0.073	0.000	623.717	0.000		
	111 - 110		53.728	623.717	0.086	0.000	623.717	0.000		
L4	110 - 109	P24x0.375	62.025	623.717	0.099	0.000	623.717	0.000		
	109 - 108		70.390	623.717	0.113	0.000	623.717	0.000		
	108 - 107		78.804	623.717	0.126	0.000	623.717	0.000		
	107 - 106		87.270	623.717	0.140	0.000	623.717	0.000		
	106 - 105		95.787	623.717	0.154	0.000	623.717	0.000		
L5	105 - 104	P24x0.375	104.353	623.717	0.167	0.000	623.717	0.000		
	104 - 103		112.965	623.717	0.181	0.000	623.717	0.000		
	103 - 102		121.623	623.717	0.195	0.000	623.717	0.000		
	102 - 101		130.327	623,717	0.209	0.000	623,717	0.000		
	101 - 100		139.077	623.717	0.223	0.000	623.717	0.000		
L6	100 - 99	P30x0.375	151.832	947.858	0.160	0.000	947.858	0.000		
LU	99 - 98	1 0000.070	164.174	947.858	0.173	0.000	947.858	0.000		
	98 - 97		176.575	947.858	0.186	0.000	947.858	0.000		
	97 - 96		189.033	947.858	0.199	0.000	947,858	0.000		
	97 - 90 96 - 95		201.549	947.858	0.213	0.000	947.858	0.000		
17		D20-0 275								
L7	95 - 94	P30x0.375	214.122	947.858	0.226	0.000	947.858	0.000		
	94 - 93		226.750	947.858	0.239	0.000	947.858	0.000		
	93 - 92		239.434	947.858	0.253	0.000	947.858	0.000		
	92 - 91		252.173	947.858	0.266	0.000	947.858	0.000		
	91 - 90	Baa c c c c c c c c c c	264.967	947.858	0.280	0.000	947.858	0.000		
L8	90 - 89	P30x0.375	280.503	947.858	0.296	0.000	947.858	0.000		
	89 - 88		296.305	947.858	0.313	0.000	947.858	0.000		
	88 - 87		312.229	947.858	0.329	0.000	947.858	0.000		
	87 - 86		328.375	947.858	0.346	0.000	947.858	0.000		
	86 - 85		344.571	947.858	0.364	0.000	947.858	0.000		
L9	85 - 84	P30x0.375	360.816	947.858	0.381	0.000	947.858	0.000		
	84 - 83		377.109	947.858	0.398	0.000	947.858	0.000		
	83 - 82		393.450	947.858	0.415	0.000	947.858	0.000		
	82 - 81		409.940	947.858	0.432	0.000	947.858	0.000		
	81 - 80		428.917	947.858	0.453	0.000	947.858	0.000		
L10	80 - 78.925	P36x0.375	449.553	1338.808	0.336	0.000	1338.808	0.000		
	78.925 - 77.85		470.257	1338.808	0.351	0.000	1338.808	0.000		
	77.85 - 76.775		491.031	1338.808	0.367	0.000	1338.808	0.000		
	76.775 - 75.7		511.871	1338.808	0.382	0.000	1338.808	0.000		
L11	75.7 - 75.45 (11)	P36x0.5625	516.727	2105.042	0.245	0.000	2105.042	0.000		
L12	75.45 - 74.45	P36x0.5625	536.222	2105.042	0.255	0.000	2105.042	0.000		
	74 45 - 73 45		555.841	2105.042	0.264	0.000	2105.042	0.000		

- <i></i>								
Section No.	Elevation	Size	M _{ux}	φ M nx	Ratio M _{ux}	M _{uy}	φ Μ _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	φM _{nx}	kip-ft	kip-ft	φM _{ny}
	73.45 - 72.45		575.582	2105.042	0.273	0.000	2105.042	0.000
	72.45 - 71.45		595.445	2105.042	0.283	0.000	2105.042	0.000
	71.45 - 70.45		615.430	2105.042	0.292	0.000	2105.042	0.000
L13	70.45 - 69.45	P36x0.5625	635.536	2105.042	0.302	0.000	2105.042	0.000
	69.45 - 68.45		655.759	2105.042	0.312	0.000	2105.042	0.000
	68.45 - 67.45		676.102	2105.042	0.321	0.000	2105.042	0.000
	67.45 - 66.45		696.561	2105.042	0.331	0.000	2105.042	0.000
	66.45 - 65.45		717.138	2105.042	0.341	0.000	2105.042	0.000
L14	65.45 - 64.45	P36x0.5625	737.833	2105.042	0.351	0.000	2105.042	0.000
	64.45 - 63.45		758.650	2105.042	0.360	0.000	2105.042	0.000
	63,45 - 62,45		779,587	2105.042	0.370	0.000	2105,042	0.000
	62.45 - 61.45		800.646	2105.042	0.380	0.000	2105.042	0.000
	61.45 - 60.45		821,823	2105.042	0.390	0.000	2105.042	0.000
L15	60.45 - 60	P36x0.5625	831.391	2105.042	0.395	0.000	2105.042	0.000
	(15)							
L16	60 - 59.75	P42x0.525	836.717	2600.925	0.322	0.000	2600.925	0.000
	(16)							
L17	59.75 - 58.75	P42x0.525	858.050	2600.925	0.330	0.000	2600.925	0.000
	58.75 - 57.75		879.450	2600.925	0.338	0.000	2600.925	0.000
	57.75 - 56.75		900,917	2600,925	0.346	0.000	2600.925	0.000
	56.75 - 55.75		922.442	2600.925	0.355	0.000	2600.925	0.000
	55.75 - 54.75		944.033	2600.925	0.363	0.000	2600.925	0.000
L18	54 75 - 53 75	P42x0.525	965.683	2600.925	0.371	0.000	2600.925	0.000
LIU	53.75 52.75	1 42.0.020	987.392	2600.925	0.380	0.000	2600.925	0.000
	52 75 - 51 75		1009,167	2600.925	0.388	0.000	2600.925	0.000
	51.75 - 50.75		1030.992	2600.925	0.396	0.000	2600.925	0.000
	50.75 - 49.75		1052.883	2600.925	0.390	0.000	2600.925	0.000
L19	49.75 48.75	P42x0.525	1052.885	2600.925	0.405	0.000	2600.925	0.000
L19		P42X0.525						
	48.75 - 47.75		1096.958	2600.925	0.422	0.000	2600.925	0.000
	47.75 - 46.75		1119.183	2600.925	0.430	0.000	2600.925	0.000
	46.75 - 45.75		1141.517	2600.925	0.439	0.000	2600.925	0.000
	45.75 44.75		1163.983	2600.925	0.448	0.000	2600.925	0.000
L20	44.75 -	P42x0.525	1190.808	2600.925	0.458	0.000	2600.925	0.000
	43.5625							
	43.5625 -		1217.800	2600.925	0.468	0.000	2600.925	0.000
	42.375							
	42.375 -		1244.967	2600.925	0.479	0.000	2600.925	0.000
	41.1875							
	41.1875 - 40		1272.292	2600.925	0.489	0.000	2600.925	0.000
L21	40 - 39.75	P48x0.55625	1278.067	3569.342	0.358	0.000	3569.342	0.000
	(21)							
L22	39.75 - 38.75	P48x0.55625	1301.200	3569.342	0.365	0.000	3569.342	0.000
	38.75 - 37.75		1324.392	3569.342	0.371	0.000	3569.342	0.000
	37.75 - 36.75		1347.650	3569.342	0.378	0.000	3569.342	0.000
	36.75 - 35.75		1370.967	3569.342	0.384	0.000	3569.342	0.000
	35.75 - 34.75		1394.342	3569.342	0.391	0.000	3569.342	0.000
L23	34.75 - 33.75	P48x0.55625	1417.775	3569.342	0.397	0.000	3569.342	0.000
	33.75 - 32.75		1441.267	3569.342	0.404	0.000	3569.342	0.000
	32.75 - 31.75		1464.817	3569.342	0.410	0.000	3569.342	0.000
	31.75 - 30.75		1488.425	3569.342	0.417	0.000	3569.342	0.000
	30.75 - 29.75		1512.083	3569.342	0.424	0.000	3569.342	0.000
L24	29.75 - 28.75	P48x0.55625	1535.833	3569.342	0.430	0.000	3569.342	0.000
	28.75 - 27.75		1559.700	3569.342	0.437	0.000	3569.342	0.000
	27.75 - 26.75		1583.700	3569.342	0.444	0.000	3569.342	0.000
	26.75 - 25.75		1607.817	3569.342	0.450	0.000	3569.342	0.000
	25.75 - 24.75		1632.050	3569.342	0.457	0.000	3569.342	0.000
L25	24.75 -	P48x0.55625	1660.992	3569.342	0.465	0.000	3569.342	0.000
	23.5625							
	23.5625 -		1690.100	3569.342	0.474	0.000	3569.342	0.000
	22.375					-		
	22.375 -		1719.383	3569.342	0.482	0.000	3569.342	0.000
	21.1875							
	21.1875 - 20		1748.833	3569.342	0.490	0.000	3569.342	0.000
L26	20 - 19.75	P54x0.5875	1755.050	4739.867	0.370	0.000	4739.867	0.000
-20	(26)	1 047010070	1100.000	1,00.007	0.070	0.000	1100.001	0.000
L27	(20) 19.75 - 18.75	P54x0.5875	1779.975	4739.867	0.376	0.000	4739.867	0.000
	18.75 17.75	1 0470.0070	1804,958	4739.867	0.376	0.000	4739.867	0.000
	17 75 16 75		1830.008	4739.867	0.386	0.000	4739.867	0.000
	16.75 15.75		1855.117	4739.867	0.300	0.000	4739.867	0.000
	10.75 - 15.75		1000.117	4139.001	0.591	0.000	4139.001	0.000

tnxTower Report - version 8.1.1.0

125 Ft Monopole Tower Structural Analysis Project Number 1962851, Order 553373, Revision 1

Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio M _{ux}	M _{uy}	φ M ny	Ratio M _{uy}
	ft		kip-ft	kip-ft	φM _{nx}	kip-ft	kip-ft	φ <i>M</i> _{ny}
	15.75 - 14.75		1880.283	4739.867	0.397	0.000	4739.867	0.000
L28	14.75 - 13.75	P54x0.5875	1905.508	4739.867	0.402	0.000	4739.867	0.000
	13.75 - 12.75		1930.800	4739.867	0.407	0.000	4739.867	0.000
	12.75 - 11.75		1956.150	4739.867	0.413	0.000	4739.867	0.000
	11.75 - 10.75		1981.567	4739.867	0.418	0.000	4739.867	0.000
	10.75 - 9.75		2007.033	4739.867	0.423	0.000	4739.867	0.000
L29	9.75 - 8.75	P54x0.5875	2032.567	4739.867	0.429	0.000	4739.867	0.000
	8.75 - 7.75		2058.150	4739.867	0.434	0.000	4739.867	0.000
	7.75 - 6.75		2083.800	4739.867	0.440	0.000	4739.867	0.000
	6.75 - 5.75		2109.500	4739.867	0.445	0.000	4739.867	0.000
	5 75 - 4 75		2135.258	4739.867	0.450	0.000	4739.867	0.000
L30	4.75 - 4.38 (30)	P54x0.5875	2144.808	4739.867	0.453	0.000	4739.867	0.000
L31	4.38 - 4.13 (31)	P54x0.4875	2151.258	3864.467	0.557	0.000	3864.467	0.000
L32	4.13 - 3.0975	P54x0.4875	2177.950	3864.467	0.564	0.000	3864.467	0.000
	3.0975 - 2.065		2204.700	3864.467	0.571	0.000	3864.467	0.000
	2.065 - 1.0325		2231.500	3864.467	0.577	0.000	3864.467	0.000
	1.0325 - 0		2258.358	3864.467	0.584	0.000	3864.467	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		Vu	Tu		Tu
	ft		K	К	φVn	kip-ft	kip-ft	ϕT_n
L1	125 - 124	P24x0.375	0.020	315.621	0.000	0.000	655.568	0.000
	124 - 123		0.039	315.621	0.000	0.000	655.568	0.000
	123 - 122		0.155	315.621	0.000	0.000	655.568	0.000
	122 - 121		0.895	315.621	0.003	0.000	655.568	0.000
	121 - 120		3.287	315.621	0.010	0.000	655.568	0.000
L2	120 - 119	P24x0.375	3.338	315.621	0.011	0.000	655.568	0.000
	119 - 118		3.389	315.621	0.011	0.000	655.568	0.000
	118 - 117		3.441	315.621	0.011	0.000	655.568	0.000
	117 - 116		3.492	315.621	0.011	0.000	655.568	0.000
	116 - 115		3.543	315.621	0.011	0.000	655.568	0.000
L3	115 - 114	P24x0.375	3.593	315.621	0.011	0.000	655.568	0.000
	114 - 113		3.644	315.621	0.012	0.000	655.568	0.000
	113 - 112		3.694	315.621	0.012	0.000	655.568	0.000
	112 - 111		8.224	315.621	0.026	0.000	655.568	0.000
	111 - 110		8.274	315.621	0.026	0.000	655.568	0.000
L4	110 - 109	P24x0.375	8.341	315.621	0.026	0.266	655.568	0.000
	109 - 108		8.390	315.621	0.027	0.266	655.568	0.000
	108 - 107		8.438	315.621	0.027	0.266	655.568	0.000
	107 - 106		8.495	315.621	0.027	0.308	655.568	0.000
	106 - 105		8.542	315.621	0.027	0.308	655.568	0.000
L5	105 - 104	P24x0.375	8.589	315.621	0.027	0.308	655.568	0.000
	104 - 103		8.636	315.621	0.027	0.308	655.568	0.000
	103 - 102		8.682	315.621	0.028	0.308	655.568	0.000
	102 - 101		8.728	315.621	0.028	0.308	655.568	0.000
	101 - 100		8.774	315.621	0.028	0.308	655.568	0.000
L6	100 - 99	P30x0.375	12.316	395.779	0.031	0.266	994.725	0.000
	99 - 98		12.374	395.779	0.031	0.192	994.725	0.000
	98 - 97		12.432	395.779	0.031	0.192	994.725	0.000
	97 - 96		12.490	395.779	0.032	0.192	994.725	0.000
	96 - 95		12.547	395.779	0.032	0.192	994.725	0.000
L7	95 - 94	P30x0.375	12.604	395.779	0.032	0.192	994.725	0.000
	94 - 93		12.660	395.779	0.032	0.192	994.725	0.000
	93 - 92		12.715	395.779	0.032	0.192	994.725	0.000
	92 - 91		12.770	395.779	0.032	0.192	994.725	0.000
	91 - 90		12.825	395.779	0.032	0.192	994.725	0.000
L8	90 - 89	P30x0.375	15.790	395.779	0.040	0.863	994.725	0.001
	89 - 88		15.842	395.779	0.040	0.863	994.725	0.001
	88 - 87		16.134	395.779	0.041	1.281	994.725	0.001

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
	ft		ĸ	к	$\frac{1}{\phi V_n}$	kip-ft	kip-ft	$\frac{1}{\phi T_n}$
	87 - 86		16.185	395.779	0.041	1.281	994.725	0.001
	86 - 85		16.235	395.779	0.041	1.281	994.725	0.001
10		D20v0 275		395.779	0.041			0.001
L9	85 - 84	P30x0.375	16.284			1.281	994.725	
	84 - 83		16.332	395.779	0.041	1.281	994.725	0.001
	83 - 82		16.379	395.779	0.041	1.281	994.725	0.001
	82 - 81		16.619	395.779	0.042	1.147	994.725	0.001
	81 - 80		19.161	395.779	0.048	1.147	994.725	0.001
L10	80 - 78.925	P36x0.375	19.223	454.187	0.042	1.147	1094.275	0.001
2.0	78.925 -		19.287	454.187	0.042	1.147	1094.275	0.001
	77.85		10.207	404.107	0.042	1.147	1004.210	0.001
			40.050	454 407	0.040	4 4 4 7	4004.075	0.004
	77.85 -		19.350	454.187	0.043	1.147	1094.275	0.001
	76.775							
	76 775 - 75 7		19.413	454.187	0.043	1.147	1094.275	0.001
L11	75.7 - 75.45	P36x0.5625	19.424	710.147	0.027	1.147	2212.542	0.001
	(11)							
L12	75.45 - 74.45	P36x0.5625	19.550	710.147	0.028	1.147	2212.542	0.001
		1 30/0.3023						
	74.45 - 73.45		19.673	710.147	0.028	1.147	2212.542	0.001
	73.45 - 72.45		19.796	710.147	0.028	1.147	2212.542	0.001
	72.45 - 71.45		19.918	710.147	0.028	1.147	2212.542	0.001
	71.45 - 70.45		20.040	710.147	0.028	1.147	2212.542	0.001
L13	70.45 - 69.45	P36x0.5625	20.159	710.147	0.028	1.147	2212.542	0.001
	69.45 - 68.45		20.278	710.147	0.029	1.147	2212.542	0.001
	68.45 - 67.45		20.395	710.147	0.029	1.147	2212.542	0.001
	67.45 - 66.45		20.513	710.147	0.029	1.147	2212.542	0.001
	66.45 - 65.45		20.630	710.147	0.029	1.147	2212.542	0.001
L14	65.45 - 64.45	P36x0.5625	20.752	710.147	0.029	1.147	2212.542	0.001
	64.45 - 63.45		20.873	710.147	0.029	1.147	2212,542	0.001
	63.45 - 62.45		20.994	710.147	0.030	1.147	2212.542	0.001
	62.45 - 61.45		21.114	710.147	0.030	1.147	2212.542	0.001
	61.45 - 60.45		21.233	710.147	0.030	1.147	2212.542	0.001
L15	60.45 - 60	P36x0.5625	21.279	710.147	0.030	1.147	2212.542	0.001
	(15)							
L16	60 - 59.75	P42x0.525	21.294	775.727	0.027	1.147	2800.233	0.000
210	(16)	1 12/01020	211201		01021		20001200	01000
L17	· · ·	D40x0 505	01 261	775 707	0 0 0 0	1 1 1 7	2000 222	0.000
LI/	59.75 - 58.75	P42x0.525	21.361	775.727	0.028	1.147	2800.233	0.000
	58.75 - 57.75		21.425	775.727	0.028	1.147	2800.233	0.000
	57.75 - 56.75		21.488	775.727	0.028	1.147	2800.233	0.000
	56.75 - 55.75		21.552	775.727	0.028	1.147	2800.233	0.000
	55.75 - 54.75		21.614	775.727	0.028	1.147	2800.233	0.000
L18	54.75 - 53.75	P42x0.525	21.674	775.727	0.028	1.147	2800.233	0.000
210	53.75 - 52.75	1 12/01020	21.735	775.727	0.028	1.147	2800.233	0.000
				775.727				
	52.75 - 51.75		21.794		0.028	1.147	2800.233	0.000
	51.75 - 50.75		21.853	775.727	0.028	1.147	2800.233	0.000
	50.75 - 49.75		21.912	775.727	0.028	1.147	2800.233	0.000
L19	49.75 - 48.75	P42x0.525	22.034	775.727	0.028	1.147	2800.233	0.000
	48.75 - 47.75		22.155	775.727	0.029	1.147	2800.233	0.000
	47.75 - 46.75		22.276	775.727	0.029	1.147	2800.233	0.000
	46.75 - 45.75		22.396	775.727	0.029	1.147	2800.233	0.000
1.00	45.75 - 44.75	B40.0555	22.516	775.727	0.029	1.147	2800.233	0.000
L20	44.75 -	P42x0.525	22.659	775.727	0.029	1.147	2800.233	0.000
	43.5625							
	43.5625 -		22.801	775.727	0.029	1.147	2800.233	0.000
	42.375					-		
	42.375 -		22.941	775.727	0.030	1.147	2800.233	0.000
			22.341	113.121	0.000	1.147	2000.200	0.000
	41.1875		CO O C		0.005		0000 000	0.005
	41.1875 - 40		23.081	775.727	0.030	1.147	2800.233	0.000
L21	40 - 39.75	P48x0.55625	23.089	940.182	0.025	1.147	3775.583	0.000
	(21)							
L22	39.75 - 38.75	P48x0.55625	23.155	940.182	0.025	1.147	3775.583	0.000
	38.75 - 37.75		23.217	940.182	0.025	1.147	3775.583	0.000
	37.75 - 36.75		23.278	940.182	0.025	1.147	3775.583	0.000
	36.75 - 35.75		23.339	940.182	0.025	1.147	3775.583	0.000
	35.75 - 34.75		23.399	940.182	0.025	1.147	3775.583	0.000
L23	34.75 - 33.75	P48x0.55625	23.456	940.182	0.025	1.147	3775.583	0.000
	33.75 - 32.75		23,513	940,182	0.025	1,147	3775,583	0.000
				940.182				0.000
	32.75 - 31.75		23.570		0.025	1.147	3775.583	
	31.75 - 30.75		23.626	940.182	0.025	1.147	3775.583	0.000
	30.75 - 29.75		23.681	940.182	0.025	1.147	3775.583	0.000
L24	29 75 - 28 75	P48x0.55625	23.804	940.182	0.025	1.147	3775.583	0.000

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	φTn	Ratio T _u
NO.	ft		ĸ	К	$\frac{\nabla u}{\Phi V_n}$	kip-ft	kip-ft	$\frac{T_u}{\phi T_n}$
	28.75 - 27.75		23,927	940,182	0.025	1.147	3775.583	0.000
	27.75 - 26.75		24.049	940.182	0.026	1.147	3775.583	0.000
	26.75 - 25.75		24.171	940.182	0.026	1.147	3775.583	0.000
	25.75 - 24.75		24.292	940.182	0.026	1.147	3775.583	0.000
L25	24.75 -	P48x0.55625	24.292	940.182	0.026	1.147	3775.583	0.000
LZD	23,5625	F40X0.55025	24.430	940.102	0.020	1.147	3775.565	0.000
	23.5625		24.583	940.182	0.026	1.147	3775.583	0.000
	23.3625 -		24.303	940.162	0.026	1.147	3115.505	0.000
			04 700	040 400	0.000	4 4 4 7	0775 500	0.000
	22.375 - 21.1875		24.726	940.182	0.026	1.147	3775.583	0.000
			04.000	040 400	0.000	4 4 4 7	0775 500	0.000
1.00	21.1875 - 20		24.869	940.182	0.026	1.147	3775.583	0.000
L26	20 - 19.75	P54x0.5875	24.877	1117.930	0.022	1.147	4954.017	0.000
1.07	(26)	B54 0 5075	04.044	4447.000		4 4 4 7	4054.047	0.000
L27	19.75 - 18.75	P54x0.5875	24.944	1117.930	0.022	1.147	4954.017	0.000
	18.75 - 17.75		25.006	1117.930	0.022	1.147	4954.017	0.000
	17.75 - 16.75		25.068	1117.930	0.022	1.147	4954.017	0.000
	16.75 - 15.75		25.130	1117.930	0.022	1.147	4954.017	0.000
	15.75 - 14.75		25.191	1117.930	0.023	1.147	4954.017	0.000
L28	14.75 - 13.75	P54x0.5875	25.252	1117.930	0.023	1.147	4954.017	0.000
	13.75 - 12.75		25.313	1117.930	0.023	1.147	4954.017	0.000
	12.75 - 11.75		25.373	1117.930	0.023	1.147	4954.017	0.000
	11.75 - 10.75		25.433	1117.930	0.023	1.147	4954.017	0.000
	10.75 - 9.75		25.492	1117.930	0.023	1.147	4954.017	0.000
L29	9.75 - 8.75	P54x0.5875	25.551	1117.930	0.023	1.147	4954.017	0.000
	8.75 - 7.75		25.609	1117.930	0.023	1.147	4954.017	0.000
	7.75 - 6.75		25.667	1117.930	0.023	1.147	4954.017	0.000
	6.75 - 5.75		25.725	1117.930	0.023	1.147	4954.017	0.000
	5.75 - 4.75		25.782	1117.930	0.023	1.147	4954.017	0.000
L30	4.75 - 4.38	P54x0.5875	25.798	1117.930	0.023	1.147	4954.017	0.000
	(30)							
L31	4.38 - 4.13	P54x0.4875	25.811	903.520	0.029	1.147	3267.817	0.000
	(31)							
L32	4.13 - 3.0975	P54x0.4875	25.873	903.520	0.029	1.147	3267.817	0.000
	3.0975		25,928	903,520	0.029	1.147	3267,817	0.000
	2.065		201020	000.020	0.020		02011011	0.000
	2.065 -		25,982	903,520	0.029	1.147	3267.817	0.000
	1.0325		20.002	000.020	0.020	1.177	0201.011	0.000
	1.0325 - 0		26.035	903.520	0.029	1.147	3267.817	0.000
	1.0020 - 0		20.000	300.020	0.023	1.177	0201.017	0.000

Pole Interaction Design Data

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	Mux	Muy	Vu	Tu	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	125 - 124	0.000	0.000	0.000	0.000	0.000	0.000 1	1.050	4.8.2 🗸
	124 - 123	0.000	0.000	0.000	0.000	0.000	0.000 1	1.050	4.8.2 🖌
	123 - 122	0.000	0.000	0.000	0.000	0.000	0.001	1.050	4.8.2 🗸
	122 - 121	0.009	0.002	0.000	0.003	0.000	0.011	1.050	4.8.2 🖌
	121 - 120	0.005	0.011	0.000	0.010	0.000	0.015	1.050	4.8.2 🗸
L2	120 - 119	0.005	0.016	0.000	0.011	0.000	0.021	1.050	4.8.2 🗸
	119 - 118	0.005	0.021	0.000	0.011	0.000	0.026	1.050	4.8.2 🗸
	118 - 117	0.005	0.027	0.000	0.011	0.000	0.032	1.050	4.8.2 🗸

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	φ <i>P</i> _n	φ <i>M</i> _{nx}	φ <i>M_{ny}</i>	φVn	<u>φ</u> <i>T</i> _n	Ratio	Ratio	
	117 - 116	0.005	0.032	0.000	0.011	0.000	0.038	1.050	4.8.2 🖌
	116 - 115	0.005	0.038	0.000	0.011	0.000	0.043	1.050	4.8.2 🗸
L3	115 - 114	0.005	0.044	0.000	0.011	0.000	0.049	1.050	4.8.2 🗸
	114 - 113	0.005	0.050	0.000	0.012	0.000	0.055	1.050	4.8.2 🗸
	113 - 112	0.005	0.056	0.000	0.012	0.000	0.061	1.050	4.8.2 🗸
	112 - 111	0.009	0.073	0.000	0.026	0.000	0.083	1.050	4.8.2 🗸
	111 - 110	0.009	0.086	0.000	0.026	0.000	0.096	1.050	4.8.2 🗸
L4	110 - 109	0.009	0.099	0.000	0.026	0.000	0.110	1.050	4.8.2 🗸
	109 - 108	0.010	0.113	0.000	0.027	0.000	0.123	1.050	4.8.2 🗸
	108 - 107	0.010	0.126	0.000	0.027	0.000	0.137	1.050	4.8.2 🗸
	107 - 106	0.010	0.140	0.000	0.027	0.000	0.150	1.050	4.8.2 🗸
	106 - 105	0.010	0.154	0.000	0.027	0.000	0.164	1.050	4.8.2 🗸
L5	105 - 104	0.010	0.167	0.000	0.027	0.000	0.178	1.050	4.8.2 🗸
	104 - 103	0.010	0.181	0.000	0.027	0.000	0.192	1.050	4.8.2 🗸
	103 - 102	0.010	0.195	0.000	0.028	0.000	0.206	1.050	4.8.2 🗸
	102 - 101	0.010	0.209	0.000	0.028	0.000	0.220	1.050	4.8.2 🗸
	101 - 100	0.010	0.223	0.000	0.028	0.000	0.234	1.050	4.8.2 🗸
L6	100 - 99	0.011	0.160	0.000	0.031	0.000	0.172	1.050	4.8.2 🗸
	99 - 98	0.011	0.173	0.000	0.031	0.000	0.185	1.050	4.8.2 🖌
	98 - 97	0.011	0.186	0.000	0.031	0.000	0.198	1.050	4.8.2 🖌
	97 - 96	0.011	0.199	0.000	0.032	0.000	0.212	1.050	4.8.2 🖌
	96 - 95	0.011	0.213	0.000	0.032	0.000	0.225	1.050	4.8.2 🖌
L7	95 - 94	0.012	0.226	0.000	0.032	0.000	0.238	1.050	4.8.2 🖌
	94 - 93	0.012	0.239	0.000	0.032	0.000	0.252	1.050	4.8.2 🗸
	93 - 92	0.012	0.253	0.000	0.032	0.000	0.265	1.050	4.8.2 🖌
	92 - 91	0.012	0.266	0.000	0.032	0.000	0.279	1.050	4.8.2 🖌
	91 - 90	0.012	0.280	0.000	0.032	0.000	0.293	1.050	4.8.2 🖌
L8	90 - 89	0.015	0.296	0.000	0.040	0.001	0.313	1.050	4.8.2 🖌
	89 - 88	0.015	0.313	0.000	0.040	0.001	0.330	1.050	4.8.2 🖌
	88 - 87	0.016	0.329	0.000	0.041	0.001	0.347	1.050	4.8.2 🗸

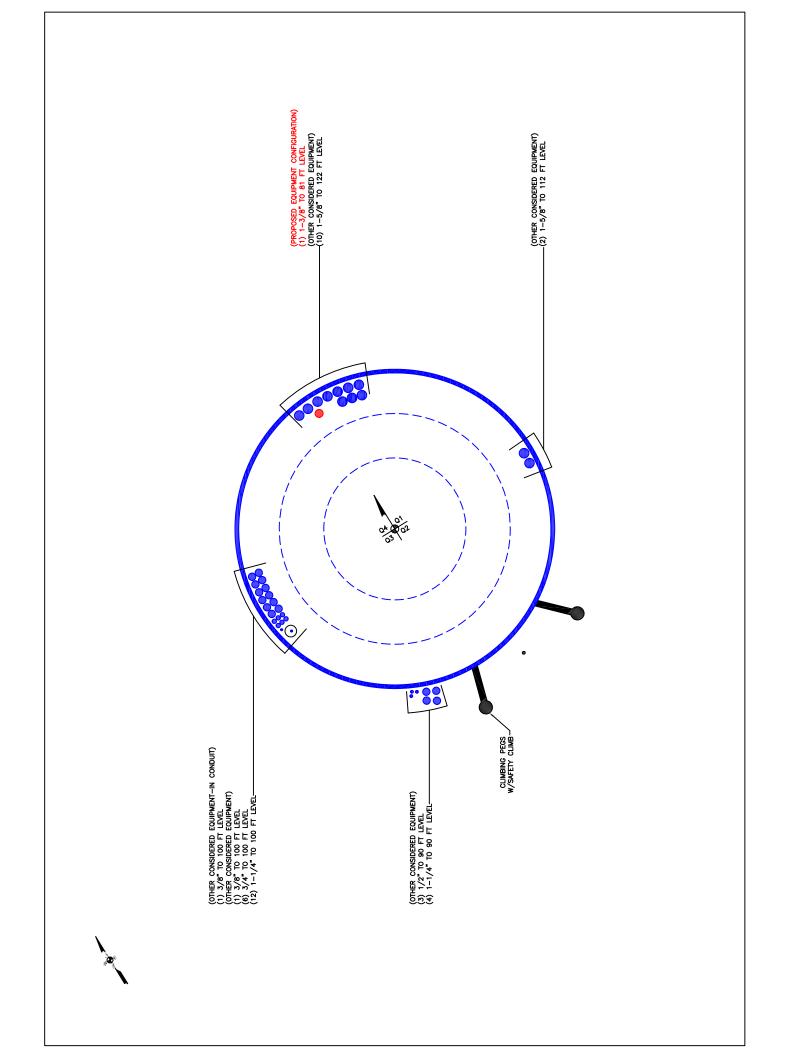
Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	<u>φ</u> <i>P</i> _n	<u>φ</u> <i>M_{nx}</i>	φ <i>M</i> _{ny}	φ <i>V</i>	<u>φ</u> <i>T</i> _n	Ratio	Ratio	
	87 - 86	0.016	0.346	0.000	0.041	0.001	0.364	1.050	4.8.2 🖌
	86 - 85	0.016	0.364	0.000	0.041	0.001	0.381	1.050	4.8.2 🖌
L9	85 - 84	0.016	0.381	0.000	0.041	0.001	0.398	1.050	4.8.2 🖌
	84 - 83	0.016	0.398	0.000	0.041	0.001	0.416	1.050	4.8.2 🗸
	83 - 82	0.016	0.415	0.000	0.041	0.001	0.433	1.050	4.8.2 🗸
	82 - 81	0.016	0.432	0.000	0.042	0.001	0.451	1.050	4.8.2 🗸
	81 - 80	0.019	0.453	0.000	0.048	0.001	0.474	1.050	4.8.2 🗸
L10	80 - 78.925	0.017	0.336	0.000	0.042	0.001	0.354	1.050	4.8.2 🗸
	78.925 - 77.85	0.017	0.351	0.000	0.042	0.001	0.370	1.050	4.8.2 🗸
	77.85 - 76.775	0.017	0.367	0.000	0.043	0.001	0.386	1.050	4.8.2 🗸
	76.775 - 75.7	0.017	0.382	0.000	0.043	0.001	0.402	1.050	4.8.2 🗸
L11	75.7 - 75.45 (11)	0.011	0.245	0.000	0.027	0.001	0.257	1.050	4.8.2 🗸
L12	75.45 - 74.45	0.011	0.255	0.000	0.028	0.001	0.267	1.050	4.8.2 🖌
	74.45 - 73.45	0.011	0.264	0.000	0.028	0.001	0.276	1.050	4.8.2 🖌
	73.45 - 72.45	0.011	0.273	0.000	0.028	0.001	0.285	1.050	4.8.2 🖌
	72.45 - 71.45	0.011	0.283	0.000	0.028	0.001	0.295	1.050	4.8.2 🖌
	71.45 - 70.45	0.011	0.292	0.000	0.028	0.001	0.305	1.050	4.8.2 🖌
L13	70.45 - 69.45	0.012	0.302	0.000	0.028	0.001	0.314	1.050	4.8.2 🖌
	69.45 - 68.45	0.012	0.312	0.000	0.029	0.001	0.324	1.050	4.8.2 🖌
	68.45 - 67.45	0.012	0.321	0.000	0.029	0.001	0.334	1.050	4.8.2 🖌
	67.45 - 66.45	0.012	0.331	0.000	0.029	0.001	0.344	1.050	4.8.2 🖌
	66.45 - 65.45	0.012	0.341	0.000	0.029	0.001	0.354	1.050	4.8.2 🖌
L14	65.45 - 64.45	0.012	0.351	0.000	0.029	0.001	0.364	1.050	4.8.2 🖌
	64.45 - 63.45	0.012	0.360	0.000	0.029	0.001	0.374	1.050	4.8.2 🖌
	63.45 - 62.45	0.012	0.370	0.000	0.030	0.001	0.384	1.050	4.8.2 🗸
	62.45 - 61.45	0.013	0.380	0.000	0.030	0.001	0.394	1.050	4.8.2 🗸
	61.45 - 60.45	0.013	0.390	0.000	0.030	0.001	0.404	1.050	4.8.2 🖌
L15	60.45 - 60 (15)	0.013	0.395	0.000	0.030	0.001	0.409	1.050	4.8.2 🗸
L16	60 - 59.75 (16)	0.012	0.322	0.000	0.027	0.000	0.334	1.050	4.8.2 🖌
L17	59.75 - 58.75	0.012	0.330	0.000	0.028	0.000	0.343	1.050	4.8.2 🗸

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	φ <i>P</i> _n	<u>φ</u> <i>M_{nx}</i>	<u>φ</u> <i>M</i> _{ny}	<u>φV</u> n	<u>φ</u> <i>T</i> _n	Ratio	Ratio	
	58.75 - 57.75	0.012	0.338	0.000	0.028	0.000	0.351	1.050	4.8.2 🚩
	57.75 - 56.75	0.012	0.346	0.000	0.028	0.000	0.359	1.050	4.8.2 🖌
	56.75 - 55.75	0.012	0.355	0.000	0.028	0.000	0.368	1.050	4.8.2 🖌
	55.75 - 54.75	0.012	0.363	0.000	0.028	0.000	0.376	1.050	4.8.2 🖌
L18	54.75 - 53.75	0.013	0.371	0.000	0.028	0.000	0.385	1.050	4.8.2 🖌
	53.75 - 52.75	0.013	0.380	0.000	0.028	0.000	0.393	1.050	4.8.2 🗸
	52.75 - 51.75	0.013	0.388	0.000	0.028	0.000	0.402	1.050	4.8.2 🖌
	51.75 - 50.75	0.013	0.396	0.000	0.028	0.000	0.410	1.050	4.8.2 🖌
	50.75 - 49.75	0.013	0.405	0.000	0.028	0.000	0.419	1.050	4.8.2 🖌
L19	49.75 - 48.75	0.013	0.413	0.000	0.028	0.000	0.427	1.050	4.8.2 🖌
	48.75 - 47.75	0.013	0.422	0.000	0.029	0.000	0.436	1.050	4.8.2 🖌
	47.75 - 46.75	0.013	0.430	0.000	0.029	0.000	0.445	1.050	4.8.2 🖌
	46.75 - 45.75	0.014	0.439	0.000	0.029	0.000	0.453	1.050	4.8.2 🖌
	45.75 - 44.75	0.014	0.448	0.000	0.029	0.000	0.462	1.050	4.8.2 🗸
L20	44.75 - 43.5625	0.014	0.458	0.000	0.029	0.000	0.473	1.050	4.8.2 🗸
	43.5625 - 42.375	0.014	0.468	0.000	0.029	0.000	0.483	1.050	4.8.2 🖌
	42.375 - 41.1875	0.014	0.479	0.000	0.030	0.000	0.494	1.050	4.8.2 🖌
	41.1875 - 40	0.014	0.489	0.000	0.030	0.000	0.504	1.050	4.8.2 🖌
L21	40 - 39.75 (21)	0.012	0.358	0.000	0.025	0.000	0.371	1.050	4.8.2 🖌
L22	39.75 - 38.75	0.012	0.365	0.000	0.025	0.000	0.377	1.050	4.8.2 🗸
	38.75 - 37.75	0.012	0.371	0.000	0.025	0.000	0.384	1.050	4.8.2 🖌
	37.75 - 36.75	0.012	0.378	0.000	0.025	0.000	0.391	1.050	4.8.2 🗸
	36.75 - 35.75	0.013	0.384	0.000	0.025	0.000	0.397	1.050	4.8.2 🗸
	35.75 - 34.75	0.013	0.391	0.000	0.025	0.000	0.404	1.050	4.8.2 🗸
L23	34.75 - 33.75	0.013	0.397	0.000	0.025	0.000	0.411	1.050	4.8.2 🗸
	33.75 - 32.75	0.013	0.404	0.000	0.025	0.000	0.417	1.050	4.8.2 🗸
	32.75 - 31.75	0.013	0.410	0.000	0.025	0.000	0.424	1.050	4.8.2 🖌
	31.75 - 30.75	0.013	0.417	0.000	0.025	0.000	0.431	1.050	4.8.2 🗸
	30.75 - 29.75	0.013	0.424	0.000	0.025	0.000	0.438	1.050	4.8.2 🖌
L24	29.75 - 28.75	0.013	0.430	0.000	0.025	0.000	0.444	1.050	4.8.2 🖌

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
-	ft	φPn	φ <i>M</i> _{nx}	φ <i>M_{ny}</i>	φ <i>V</i> _n	φ <i>T</i> _n	Ratio	Ratio	
	28.75 - 27.75	0.014	0.437	0.000	0.025	0.000	0.451	1.050	4.8.2 🖌
	27.75 - 26.75	0.014	0.444	0.000	0.026	0.000	0.458	1.050	4.8.2 🖌
	26.75 - 25.75	0.014	0.450	0.000	0.026	0.000	0.465	1.050	4.8.2 🖌
	25.75 - 24.75	0.014	0.457	0.000	0.026	0.000	0.472	1.050	4.8.2 🖌
L25	24.75 - 23.5625	0.014	0.465	0.000	0.026	0.000	0.480	1.050	4.8.2 🖌
	23.5625 - 22.375	0.014	0.474	0.000	0.026	0.000	0.488	1.050	4.8.2 🗸
	22.375 - 21.1875	0.014	0.482	0.000	0.026	0.000	0.497	1.050	4.8.2 🗸
	21.1875 - 20	0.014	0.490	0.000	0.026	0.000	0.505	1.050	4.8.2 🖌
L26	20 - 19.75 (26)	0.012	0.370	0.000	0.022	0.000	0.383	1.050	4.8.2 🖌
L27	19.75 - 18.75	0.013	0.376	0.000	0.022	0.000	0.389	1.050	4.8.2 🖌
	18.75 - 17.75	0.013	0.381	0.000	0.022	0.000	0.394	1.050	4.8.2 🖌
	17.75 - 16.75	0.013	0.386	0.000	0.022	0.000	0.399	1.050	4.8.2 🖌
	16.75 - 15.75	0.013	0.391	0.000	0.022	0.000	0.405	1.050	4.8.2 🖌
	15.75 - 14.75	0.013	0.397	0.000	0.023	0.000	0.410	1.050	4.8.2 🖌
L28	14.75 - 13.75	0.013	0.402	0.000	0.023	0.000	0.416	1.050	4.8.2 🖌
	13.75 - 12.75	0.013	0.407	0.000	0.023	0.000	0.421	1.050	4.8.2 🖌
	12.75 - 11.75	0.013	0.413	0.000	0.023	0.000	0.427	1.050	4.8.2 🗸
	11.75 - 10.75	0.014	0.418	0.000	0.023	0.000	0.432	1.050	4.8.2 🗸
	10.75 - 9.75	0.014	0.423	0.000	0.023	0.000	0.438	1.050	4.8.2 🗸
L29	9.75 - 8.75	0.014	0.429	0.000	0.023	0.000	0.443	1.050	4.8.2 🗸
	8.75 - 7.75	0.014	0.434	0.000	0.023	0.000	0.449	1.050	4.8.2 🗸
	7.75 - 6.75	0.014	0.440	0.000	0.023	0.000	0.454	1.050	4.8.2 🗸
	6.75 - 5.75	0.014	0.445	0.000	0.023	0.000	0.460	1.050	4.8.2 🖌
	5.75 - 4.75	0.014	0.450	0.000	0.023	0.000	0.465	1.050	4.8.2 🖌
L30	4.75 - 4.38 (30)	0.014	0.453	0.000	0.023	0.000	0.467	1.050	4.8.2 🗸
L31	4.38 - 4.13 (31)	0.018	0.557	0.000	0.029	0.000	0.576	1.050	4.8.2 🗸
L32	4.13 - 3.0975	0.018	0.564	0.000	0.029	0.000	0.583	1.050	4.8.2 🗸
	3.0975 - 2.065	0.019	0.571	0.000	0.029	0.000	0.590	1.050	4.8.2 🗸
	2.065 - 1.0325	0.019	0.577	0.000	0.029	0.000	0.597	1.050	4.8.2 🖌
	1.0325 - 0	0.019	0.584	0.000	0.029	0.000	0.604	1.050	4.8.2 🖌

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	φPn	φM _{nx}	φ M _{ny}	φVn	ϕT_n	Ratio	Ratio	

¹ P_u / ϕP_n controls


Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	K	ĸ	Capacity	Fail
L1	125 - 120	Pole	P24x0.375	1	-4.786	1104.673	1.5	Pass
L2	120 - 115	Pole	P24x0.375	2	-5.400	1104.673	4.1	Pass
L3	115 - 110	Pole	P24x0.375	3	-9.758	1104.673	9.2	Pass
L4	110 - 105	Pole	P24x0.375	4	-10.398	1104.673	15.6	Pass
L5	105 - 100	Pole	P24x0.375	5	-11.040	1104.673	22.3	Pass
L6	100 - 95	Pole	P30x0.375	6	-14.911	1376.613	21.4	Pass
L7	95 - 90	Pole	P30x0.375	7	-15.784	1376 <u>.</u> 613	27.9	Pass
L8	90 - 85	Pole	P30x0.375	8	-20.710	1376.613	36.3	Pass
L9	85 - 80	Pole	P30x0.375	9	-24.784	1376 <u>.</u> 613	45.1	Pass
L10	80 - 75.7	Pole	P36x0.375	10	-25.710	1564.605	38.2	Pass
L11	75.7 - 75.45	Pole	P36x0.5625	11	-25.785	2485.518	24.5	Pass
L12	75.45 - 70.45	Pole	P36x0.5625	12	-27.212	2485 <u>.</u> 518	29.0	Pass
L13	70.45 - 65.45	Pole	P36x0.5625	13	-28.649	2485.518	33.7	Pass
L14	65.45 - 60.45	Pole	P36x0.5625	14	-30.093	2485.518	38.5	Pass
L15	60.45 - 60	Pole	P36x0.5625	15	-30.226	2485.518	38.9	Pass
L16	60 - 59.75	Pole	P42x0.525	16	-30.306	2698.153	31.8	Pass
L17	59.75 - 54.75	Pole	P42x0.525	17	-31.891	2698.153	35.8	Pass
L18	54.75 - 49.75	Pole	P42x0.525	18	-33.483	2698.153	39.9	Pass
L19	49.75 - 44.75	Pole	P42x0.525	19	-35.075	2698.153	44.0	Pass
L20	44.75 - 40	Pole	P42x0.525	20	-36.593	2698.153	48.0	Pass
L21	40 - 39.75	Pole	P48x0.55625	21	-36.691	3191.685	35.3	Pass
L22	39.75 - 34.75	Pole	P48x0.55625	22	-38.554	3191.685	38.5	Pass
L23	34.75 - 29.75	Pole	P48x0.55625	23	-40.422	3191.685	41.7	Pass
L24	29.75 - 24.75	Pole	P48x0.55625	24	-42.292	3191.685	44.9	Pass
L25	24.75 - 20	Pole	P48x0.55625	25	-44.072	3191.685	48.1	Pass
L26	20 - 19.75	Pole	P54x0.5875	26	-44.185	3722 <u>.</u> 491	36.5	Pass
L27	19.75 - 14.75	Pole	P54x0.5875	27	-46.346	3722.491	39.1	Pass
L28	14.75 - 9.75	Pole	P54x0.5875	28	-48.513	3722.491	41.7	Pass
L29	9.75 - 4.75	Pole	P54x0.5875	29	-50.682	3722.491	44.3	Pass
L30	4.75 - 4.38	Pole	P54x0.5875	30	-50.846	3722.491	44.5	Pass
L31	4.38 - 4.13	Pole	P54x0.4875	31	-50.947	2937.028	54.8	Pass
L32	4.13 - 0	Pole	P54x0.4875	32	-52.619	2937.028	57.5	Pass
							Summary	
						Pole (L32)	57.5	Pass
						RATING =	57.5	Pass

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Site BU: 822765

				Work Order: 1	962851				CASILE
Po	le Geometry							Copyright @	0 2019 Crown Castle
	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	125	25		0	24	24	0.375		A53-B-42
2	100	20		0	30.00	30	0.375		A53-B-42
3	80	20		0	36.00	36	0.375		A53-B-42
4	60	20		0	42.00	42	0.375		A53-B-42
5	40	20		0	48.00	48	0.375		A53-B-42
6	20	20		0	54.00	54	0.375		A53-B-42

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	4.38	20	plate	CCI-CFP-085125	3	0					120						240						
2	20	40	plate	CCI-SFP-065125	3	0					120						240						
3	40	60	plate	CCI-SFP-060100	3	0					120						240						
4	60	75.7	plate	CI-CFP-060100 24in L	3	0					120						240						
5	0	4.38	plate	TS 6.5x1.25	3							139				221							349
6																							
7																							
8																							
9																							
10																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in ²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	8.5	1.25	10.625	0.625	PC 8.8 - M20 (100)	45	PC 8.8 - M20 (100)	45.000	24.000	9.063	1.1875	A572-65
2	6.5	1.25	8.125	0.625	PC 8.8 - M20 (100)	33	PC 8.8 - M20 (100)	33.000	19.000	6.563	1.1875	A572-65
3	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.000	4.750	1.1875	A572-65
4	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	24.000	4.750	1.1875	A572-65
5	1.25	6.5	8.125	3.25	Welded	n/a	Welded	n/a	0.000	8.125	0.0000	A572-65

Connection Details for Custom Reinforcements

Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
TS 6.5x1.25	Тор	-	-	-	-	80	None	-	-	-	-	48	0.375	-
13 0.3X1.25	Bottom	-	-	-	-	80	CJP Groove	6	0.5	45	0.5	12	0.375	-
CCI-CFP-060100	Тор	8	N	3	3	-	-	-	-	-	-	-	-	-
24in Lu	Bottom	8	Ν	3	3	-	-	-	-	-	-	-	-	-
CCI-CFP-085125	Тор	15	Ν	3	3	-	-	-	-	-	-	-	-	-
CCI-CFF-065125	Bottom	15	N	3	3	-	-	-	-	-	-	-	-	-

TNX Geometry Input

Inc	rement (ft): 5 Ex	port to TNX							
			Lap Splice Length			Bottom Diameter		Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier
1	125 - 120	5		0	24.000	24.000	0.375	A53-B-42	1.000
2	120 - 115	5		0	24.000	24.000	0.375	A53-B-42	1.000
3	115 - 110	5		0	24.000	24.000	0.375	A53-B-42	1.000
4	110 - 105	5		0	24.000	24.000	0.375	A53-B-42	1.000
5	105 - 100	5	0	0	24.000	24.000	0.375	A53-B-42	1.000
6	100 - 95	5		0	30.000	30.000	0.375	A53-B-42	1.000
7	95 - 90	5		0	30.000	30.000	0.375	A53-B-42	1.000
8	90 - 85	5		0	30.000	30.000	0.375	A53-B-42	1.000
9	85 - 80	5	0	0	30.000	30.000	0.375	A53-B-42	1.000
10	80 - 75.7	4.3		0	36.000	36.000	0.375	A53-B-42	1.000
11	75.7 - 75.45	0.25		0	36.000	36.000	0.5625	A53-B-42	0.958
12	75.45 - 70.45	5		0	36.000	36.000	0.5625	A53-B-42	0.958
13	70.45 - 65.45	5		0	36.000	36.000	0.5625	A53-B-42	0.958
14	65.45 - 60.45	5		0	36.000	36.000	0.5625	A53-B-42	0.958
15	60.45 - 60	0.45	0	0	36.000	36.000	0.5625	A53-B-42	0.958
16	60 - 59.75	0.25		0	42.000	42.000	0.525	A53-B-42	0.980
17	59.75 - 54.75	5		0	42.000	42.000	0.525	A53-B-42	0.980
18	54.75 - 49.75	5		0	42.000	42.000	0.525	A53-B-42	0.980
19	49.75 - 44.75	5		0	42.000	42.000	0.525	A53-B-42	0.980
20	44.75 - 40	4.75	0	0	42.000	42.000	0.525	A53-B-42	0.980
21	40 - 39.75	0.25		0	48.000	48.000	0.55625	A53-B-42	0.971
22	39.75 - 34.75	5		0	48.000	48.000	0.55625	A53-B-42	0.971
23	34.75 - 29.75	5		0	48.000	48.000	0.55625	A53-B-42	0.971
24	29.75 - 24.75	5		0	48.000	48.000	0.55625	A53-B-42	0.971
25	24.75 - 20	4.75	0	0	48.000	48.000	0.55625	A53-B-42	0.971
26	20 - 19.75	0.25		0	54.000	54.000	0.5875	A53-B-42	0.964
27	19.75 - 14.75	5		0	54.000	54.000	0.5875	A53-B-42	0.964
28	14.75 - 9.75	5		0	54.000	54.000	0.5875	A53-B-42	0.964
29	9.75 - 4.75	5		0	54.000	54.000	0.5875	A53-B-42	0.964
30	4.75 - 4.38	0.37		0	54.000	54.000	0.5875	A53-B-42	0.964
31	4.38 - 4.13	0.25		0	54.000	54.000	0.4875	A53-B-42	1.068
32	4.13 - 0	4.13		0	54.000	54.000	0.4875	A53-B-42	1.068

TNX Section Forces

In	crement (ft)):	5		Т	NX Outpu	ıt	
						M _{ux} (kip-		
	Section	Hei	ight (ft)	Pu	(K)	ft)	V_{u}	(К)
1	125	-	120		4.79	6.71		3.29
2	120	-	115		5.40	23.79		3.54
3	115	-	110		9.76	53.73		8.27
4	110	-	105		10.40	95.79		8.54
5	105	-	100		11.04	139.08		8.77
6	100	-	95		14.91	201.55		12.55
7	95	-	90		15.78	264.97		12.83
8	90	-	85		20.71	344.57		16.23
9	85	-	80		24.78	428.92		19.16
10	80	-	75.7		25.71	511.87		19.41
11	75.7	-	75.45		25.78	516.73		19.42
12	75.45	-	70.45		27.21	615.43		20.04
13	70.45	-	65.45		28.65	717.14		20.63
14	65.45	-	60.45		30.09	821.82		21.23
15	60.45	-	60		30.23	831.39		21.28
16	60	-	59.75		30.31	836.71		21.29
17	59.75	-	54.75		31.89	944.03		21.61
18	54.75	-	49.75		33.48	1052.88		21.91
19	49.75	-	44.75		35.07	1163.98		22.52
20	44.75	-	40		36.59	1272.30		23.08
21	40	-	39.75		36.69	1278.07		23.09
22	39.75	-	34.75		38.55	1394.34		23.40
23	34.75	-	29.75		40.42	1512.08		23.68
24	29.75	-	24.75		42.29	1632.05		24.29
25	24.75	-	20		44.07	1748.83		24.87
26	20	-	19.75		44.19	1755.05		24.88
27	19.75	-	14.75		46.35	1880.28		25.19
28	14.75	-	9.75		48.51	2007.03		25.49
29	9.75	-	4.75		50.68	2135.26		25.78
30	4.75	-	4.38		50.85	2144.81		25.80
31	4.38	-	4.13		50.95	2151.26		25.81
32	4.13	-	0		52.62	2258.36		26.04

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fai
125 - 120	Pole	TP24x24x0.375	Pole	1.5%	Pass
120 - 115	Pole	TP24x24x0.375	Pole	4.1%	Pass
115 - 110	Pole	TP24x24x0.375	Pole	9.2%	Pass
110 - 105	Pole	TP24x24x0.375	Pole	15.6%	Pass
105 - 100	Pole	TP24x24x0.375	Pole	22.3%	Pass
100 - 95	Pole	TP30x30x0.375	Pole	21.4%	Pass
95 - 90	Pole	TP30x30x0.375	Pole	27.9%	Pass
90 - 85	Pole	TP30x30x0.375	Pole	36.3%	Pass
85 - 80	Pole	TP30x30x0.375	Pole	45.1%	Pass
80 - 75.7	Pole	TP36x36x0.375	Pole	38.2%	Pass
75.7 - 75.45	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	30.3%	Pass
75.45 - 70.45	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	35.9%	Pass
70.45 - 65.45	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	41.7%	Pass
65.45 - 60.45	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	47.7%	Pass
60.45 - 60	Pole + Reinf.	TP36x36x0.5625	Reinf. 4 Compression	48.2%	Pass
60 - 59.75	Pole + Reinf.	TP42x42x0.525	Pole	33.0%	Pass
59.75 - 54.75	Pole + Reinf.	TP42x42x0.525	Pole	37.1%	Pass
54.75 - 49.75	Pole + Reinf.	TP42x42x0.525	Pole	41.3%	Pass
49.75 - 44.75	Pole + Reinf.	TP42x42x0.525	Pole	45.6%	Pass
44.75 - 40	Pole + Reinf.	TP42x42x0.525	Pole	49.8%	Pass
40 - 39.75	Pole + Reinf.	TP48x48x0.5563	Pole	36.9%	Pass
39.75 - 34.75	Pole + Reinf.	TP48x48x0.5563	Pole	40.2%	Pass
34.75 - 29.75	Pole + Reinf.	TP48x48x0.5563	Pole	43.6%	Pass
29.75 - 24.75	Pole + Reinf.	TP48x48x0.5563	Pole	47.0%	Pass
24.75 - 20	Pole + Reinf.	TP48x48x0.5563	Pole	50.3%	Pass
20 - 19.75	Pole + Reinf.	TP54x54x0.5875	Pole	38.5%	Pass
19.75 - 14.75	Pole + Reinf.	TP54x54x0.5875	Pole	41.2%	Pass
14.75 - 9.75	Pole + Reinf.	TP54x54x0.5875	Pole	44.0%	Pass
9.75 - 4.75	Pole + Reinf.	TP54x54x0.5875	Pole	46.8%	Pass
4.75 - 4.38	Pole + Reinf.	TP54x54x0.5875	Pole	47.0%	Pass
4.38 - 4.13	Pole + Reinf.	TP54x54x0.4875	Pole	58.9%	Pass
4.13 - 0	Pole + Reinf.	TP54x54x0.4875	Pole	61.8%	Pass
				Summary	
			Pole	61.8%	Pass
	<u> </u>		Reinforcement	48.2%	Pass
			Overall	61.8%	Pass

Additional Calculations

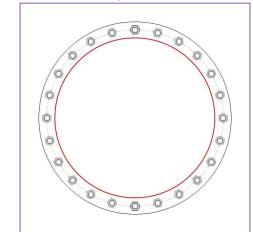
Section	Mom	ent of Inerti	a (in ⁴)		Area (in ²)			9	6 Capaci	ty*		
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5
125 - 120	1942	n/a	1942	27.83	n/a	27.83	1.5%					
120 - 115	1942	n/a	1942	27.83	n/a	27.83	4.1%					
115 - 110	1942	n/a	1942	27.83	n/a	27.83	9.2%					
110 - 105	1942	n/a	1942	27.83	n/a	27.83	15.6%					
105 - 100	1942	n/a	1942	27.83	n/a	27.83	22.3%					
100 - 95	3829	n/a	3829	34.90	n/a	34.90	21.4%					
95 - 90	3829	n/a	3829	34.90	n/a	34.90	27.9%					
90 - 85	3829	n/a	3829	34.90	n/a	34.90	36.3%					
85 - 80	3829	n/a	3829	34.90	n/a	34.90	45.1%					
80 - 75.7	6659	n/a	6659	41.97	n/a	41.97	38.2%					
75.7 - 75.45	6659	3108	9767	41.97	18.00	59.97	26.2%				30.3%	
75.45 - 70.45	6659	3108	9767	41.97	18.00	59.97	31.1%				35.9%	
70.45 - 65.45	6659	3108	9767	41.97	18.00	59.97	36.1%				41.7%	
65.45 - 60.45	6659	3108	9767	41.97	18.00	59.97	41.2%				47.7%	
60.45 - 60	6659	3108	9767	41.97	18.00	59.97	41.7%				48.2%	
60 - 59.75	10622	4188	14810	49.04	18.00	67.04	33.0%			30.4%		
59.75 - 54.75	10622	4188	14810	49.04	18.00	67.04	37.1%			34.2%		
54.75 - 49.75	10622	4188	14810	49.04	18.00	67.04	41.3%			38.1%		
49.75 - 44.75	10622	4188	14810	49.04	18.00	67.04	45.6%			42.0%		
44.75 - 40	10622	4188	14810	49.04	18.00	67.04	49.8%			45.9%		
40 - 39.75	15908	7435	23343	56.11	24.38	80.48	36.9%		33.0%			
39.75 - 34.75	15908	7435	23343	56.11	24.38	80.48	40.2%		35.9%			
34.75 - 29.75	15908	7435	23343	56.11	24.38	80.48	43.6%		38.9%			
29.75 - 24.75	15908	7435	23343	56.11	24.38	80.48	47.0%		42.0%			
24.75 - 20	15908	7435	23343	56.11	24.38	80.48	50.3%		44.9%			
20 - 19.75	22710	12261	34970	63.18	31.88	95.05	38.5%	36.7%				
19.75 - 14.75	22710	12261	34970	63.18	31.88	95.05	41.2%	39.3%				
14.75 - 9.75	22710	12261	34970	63.18	31.88	95.05	44.0%	41.9%				
9.75 - 4.75	22710	12261	34970	63.18	31.88	95.05	46.8%	44.6%				
4.75 - 4.38	22710	12261	34970	63.18	31.88	95.05	47.0%	44.8%				
4.38 - 4.13	22761	6480	29241	63.18	24.38	87.55	58.9%					40.6
4.13 - 0	22761	6480	29241	63.18	24.38	87.55	61.8%					47.7

Note: Section capacity checked using 5 degree increments. Rating per TIA-222-H Section 15.5.

BU # 822765 Site Name Branford (I-95/X55) Order # 553373 rev. 1	Mc Axia Shea	App oment (kip-ft, I Force (kips) I Force (kips) H Section 15.	11.04 8.77	CCCCASTLE
Top Plate - External			Bot	tom Plate - Internal
		on Propertie	25	
	Bo) 1" ø bolts (A325 N; F	olt Data	120 ksi) on 27" BC	
(, 1 9 00100 (, 1020 11) 1	<i>y</i> 52 koi) ru		
Top Plate Data			Bottom Plate Data	
30" OD x 1" Plate (A36; Fy=36 ksi, Fu=58 ksi)			24" ID x 1" Plate (A36; Fy=36	ksi, Fu=58 ksi)
Top Stiffener Data			Bottom Stiffener Data	
N/A			N/A	
Top Pole Data			Bottom Pole Data	
24" x 0.375" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)			30" x 0.375" round pole (A53	-d-42; ry=42 ksi, ru=63 ksi)
	Analy	sis Results		
		Capacity		
	Max Load (kips) Allowable (kips) Stress Rating:	11.80 54.54 20.6%	Pass	
Top Plate Capacity			Bottom Plate Capacity	
Max Stress (ksi):			Max Stress (ksi):	_
Allowable Stress (ksi): -			Allowable Stress (ksi):	-
Stress Rating: Pirod OK			Stress Rating:	Pirod OK
Tanaian Cida Chuan Dating Dinad OK			T CLC DI	D' LOK

Tension Side Stress Rating:

Pirod OK

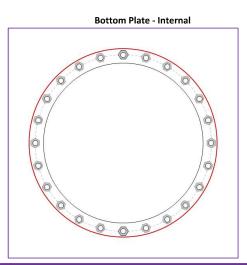

Tension Side Stress Rating:

Pirod OK

Monopole Flange Plate Connection

BU #	822765
Site Name	Branford (I-95/X55)
Order #	553373 rev. 1
TIA-222 Revision	Н

Top Plate - External


Elevation = 80 ft.

ge Stiffeners 230.97 0.00 0.00

Applied Loads to	Applied Loads to	Bridg	
Moment (kip-ft)	197.94	Moment (kip-ft)	
Axial Force (kips)	24.78	Axial Force (kips)	
Shear Force (kips)	19.16	Shear Force (kips)	

*TIA-222-H Section 15.5 Applied

Connection Properties Bolt Data

(24) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 33" BC

Top Plate Data

36" OD x 1" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

30" x 0.375" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bridge Stiffener Group 1 Data

(3) Bolted, 4.5"x1", A572-65, Lu=16", Neglect Flange in MOI: No

Bottom Plate Data

30" ID x 1" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

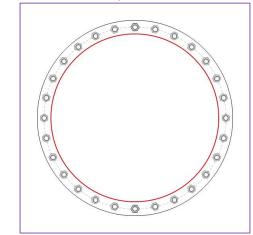
N/A

Bottom Pole Data

36" x 0.375" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results							
Bolt Capacity							
			Max Load (kips)	10.96			
			Allowable (kips)	54.53			
			Stress Rating:	19.1%	Pass		
Top Plate Capacity					Bottom Plate Capacity		
Max Stress (ksi):	12.57	(Flexural)			Max Stress (ksi):	12.70	(Flexural)
Allowable Stress (ksi):	32.40				Allowable Stress (ksi):	32.40	
Stress Rating:	36.9%	Pass			Stress Rating:	37.3%	Pass
Tension Side Stress Rating:	11.8%	Pass			Tension Side Stress Rating:	N/A	

Bridge Stiffener Group 1 Analysis Capacity

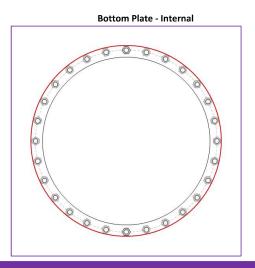

CCIplate - Version 4.1.2

Max Compression (kip):	99.88	
Max Tension (kip):	99.88	
Comp. Capacity (kip):	196.59	
Tens. Capacity (kip):	195.00	(Rupture)
Comp. Stress Rating:	48.4%	Pass
Tens. Stress Rating:	48.8%	Pass

Monopole Flange Plate Connection

BU #	822765
Site Name	Branford (I-95/X55)
Order #	553373 rev. 1
TIA-222 Revision	Н

Top Plate - External


Elevation = 60 ft.

e Stiffeners 468.27 0.00 0.00

Applied Loads to	Applied Loads to	Bridg	
Moment (kip-ft)	363.12	Moment (kip-ft)	
Axial Force (kips)	30.23	Axial Force (kips)	
Shear Force (kips)	21.28	Shear Force (kips)	

*TIA-222-H Section 15.5 Applied

Connection Properties Bolt Data

(28) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 39" BC

Top Plate Data

42" OD x 1" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

36" x 0.5625" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bridge Stiffener Group 1 Data

(3) Bolted, 6"x1", A572-65, Lu=16", Neglect Flange in MOI: No

Analysis ResultsBolt CapacityMax Load (kips)14.88Allowable (kips)54.53Stress Rating:26.0%Pass

Top Plate Capacity			
Max Stress (ksi):	15.93	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	46.8%	Pass	
Tension Side Stress Rating:	15.5%	Pass	

Bridge Stiffener Group 1 Analysis Capacity

Max Compression (kip):	174.24	
Max Tension (kip):	174.24	
Comp. Capacity (kip):	262.12	
Tens. Capacity (kip):	285.00	(Rupture)
Comp. Stress Rating:	63.3%	Pass
Tens. Stress Rating:	58.2%	Pass

Bottom Plate Capacity

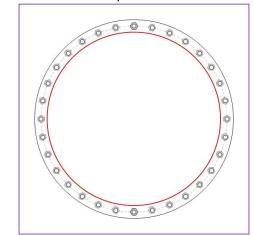
Max Stress (ksi):	9.26	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	27.2%	Pass	
Tension Side Stress Rating:	N/A		

Bottom Plate Data

36" ID x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

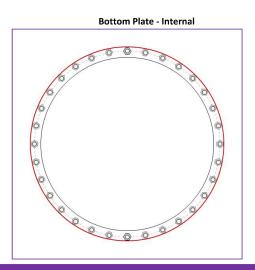

Bottom Pole Data

42" x 0.525" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Monopole Flange Plate Connection

BU #	822765
Site Name	Branford (I-95/X55)
Order #	553373 rev. 1
TIA-222 Revision	Н

Top Plate - External


Elevation = 40 ft.

idge Stiffeners 691.94 0.00 0.00

Applied Loads to	Applied Loads to	Bri	
Moment (kip-ft)	580.35	Moment (kip-ft)	
Axial Force (kips)	36.59	Axial Force (kips)	
Shear Force (kips)	23.08	Shear Force (kips)	

*TIA-222-H Section 15.5 Applied

Connection Properties Bolt Data

(32) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 45" BC

Top Plate Data

48" OD x 1" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

Stress Rating:

Tension Side Stress Rating:

42" x 0.525" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bridge Stiffener Group 1 Data

(3) Bolted, 6.5"x1", A572-65, Lu=16", Neglect Flange in MOI: No

Bottom Plate Data

42" ID x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

48" x 0.55625" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results							
			Bolt	Capacity			
			Max Load (kips)	18.20			
			Allowable (kips)	54.53			
			Stress Rating:	31.8%	Pass		
Top Plate Capacity					Bottom Plate Capacity		
Max Stress (ksi):	19.22	(Flexural)			Max Stress (ksi):	10.75	(Flexural)
Allowable Stress (ksi):	32.40				Allowable Stress (ksi):	32.40	

Bridge Stiffener Group 1 Analysis Capacity

Max Compression (kip):	225.94	
Max Tension (kip):	225.94	
Comp. Capacity (kip):	283.96	
Tens. Capacity (kip):	315.00	(Rupture)
Comp. Stress Rating:	75.8%	Pass
Tens. Stress Rating:	68.3%	Pass

56.5%

18.5%

Pass

Pass

Max Stress (ksi):	10.75	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	31.6%	Pass	
Tension Side Stress Rating:	N/A		

CROWN **Monopole Flange Plate Connection** Elevation = 20 ft. CASTLE BU # 822765 **Applied Loads to Flange Connections Applied Loads to Bridge Stiffeners** Branford (I-95/X55) 644.20 1104.64 Site Name Moment (kip-ft) Moment (kip-ft) 553373 rev. 1 Order # Axial Force (kips) 44.07 0.00 Axial Force (kips) Shear Force (kips) 24.87 Shear Force (kips) 0.00 TIA-222 Revision н *TIA-222-H Section 15.5 Applied Top Plate - External **Bottom Plate - Internal** 0 0

Connection Properties Bolt Data (36) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 51" BC

Top Stiffener Data

Top Plate Data

N/A

Top Pole Data

48" x 0.55625" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

54" OD x 1" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bridge Stiffener Group 1 Data

(3) Bolted, 8.5"x1.25", A572-65, Lu=16", Neglect Flange in MOI: No

0

Bottom Plate Data

48" ID x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

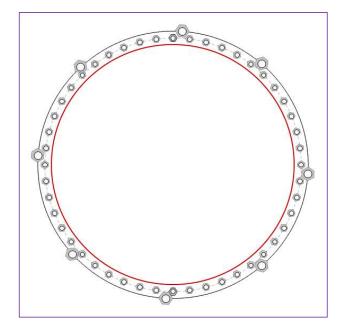
54" x 0.5875" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

			Analy	sis Results			
			Bolt	Capacity			
			Max Load (kips)	15.62			
			Allowable (kips)	54.53			
			Stress Rating:	27.3%	Pass		
Top Plate Capacity					Bottom Plate Capacity		
Max Stress (ksi):	16.85	(Flexural)			Max Stress (ksi):	9.15	(Flexural)
Allowable Stress (ksi):	32.40				Allowable Stress (ksi):	32.40	
Stress Rating:	49.5%	Pass			Stress Rating:	26.9%	Pass
Tension Side Stress Rating:	15.6%	Pass			Tension Side Stress Rating:	N/A	

Bridge Stiffener Group 1 Analysis Capacity

Max Compression (kip):	319.89	
Max Tension (kip):	319.89	
Comp. Capacity (kip):	515.61	
Tens. Capacity (kip):	543.75	(Rupture)
Comp. Stress Rating:	59.1%	Pass
Tens. Stress Rating:	56.0%	Pass

Monopole Base Plate Connection



Site Info	
BU #	822765
Site Name	Branford (I-95/X55)
Order #	553373 rev. 1

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	See Custom Sheet
l _{ar} (in)	See Custom Sheet

Applied Loads	
Moment (kip-ft)	2258.36
Axial Force (kips)	52.62
Shear Force (kips)	26.04
*TIA 222 // Canting 15 5 Am	lin d

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

GROUP 1: (48) 1" ø bolts (A687 N; Fy=105 ksi, Fu=125 ksi) on 57" BC GROUP 2: (8) 1-3/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 60.25" BC *pos. (deg): 49, 86, 133, 176, 222, 267, 311, 356*

Base Plate Data

60.125" OD x 1" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Stiffener Data

N/A

Pole Data

54" x 0.4875" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
GROUP 1:		
Pu_t = 24.31	φPn_t = 56.81	Stress Rating
Vu = 0.54	φVn = 36.82	40.8%
Mu = n/a	φMn = n/a	Pass
GROUP 2:		
Pu_t = 84.16	φPn_t = 178.13	Stress Rating
Vu = 0	φVn = 112.75	45.0%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	29.14	(Flexural)
Allowable Stress (ksi):	32.4	
Stress Rating:	85.7%	Pass

CCIplate

Elevation (ft) 0 (Base)

note: Bending interaction not considered when Grout Considered = "Yes"

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	Grout Considered	Apply at BARB Elevation	BARB CL Elevation (ft)
1	Yes	Yes	Yes	Yes	No	
2	No	No	No	Yes	No	

Custom	ı Bolt Con	nection								
Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	Material	Bolt Circle (in)	<u>Eta Factor, η:</u>	l _{ar} (in):	Thread Type	Area Override, in^2	Tension Only
1	1	0	1	A687	57	0.5	2.5	N-Included		No
2	1	7.5	1	A687	57	0.5	2.5	N-Included		No
3	1	15	1	A687	57	0.5	2.5	N-Included		No
4	1	22.5	1	A687	57	0.5	2.5	N-Included		No
5	1	30	1	A687	57	0.5	2.5	N-Included		No
6	1	37.5	1	A687	57	0.5	2.5	N-Included		No
7	1	45	1	A687	57	0.5	2.5	N-Included		No
8	1	52.5	1	A687	57	0.5	2.5	N-Included		No
9	1	60	1	A687	57	0.5	2.5	N-Included		No
10	1	67.5	1	A687	57	0.5	2.5	N-Included		No
11	1	75	1	A687	57	0.5	2.5	N-Included		No
12	1	82.5	1	A687	57	0.5	2.5	N-Included		No
13	1	90	1	A687	57	0.5	2.5	N-Included		No
14	1	97.5	1	A687	57	0.5	2.5	N-Included		No
15	1	105	1	A687	57	0.5	2.5	N-Included		No
16	1	112.5	1	A687	57	0.5	2.5	N-Included		No
17	1	120	1	A687	57	0.5	2.5	N-Included		No
18	1	127.5	1	A687	57	0.5	2.5	N-Included		No
19	1	135	1	A687	57	0.5	2.5	N-Included		No
20	1	142.5	1	A687	57	0.5	2.5	N-Included		No
21	1	150	1	A687	57	0.5	2.5	N-Included		No
22	1	157.5	1	A687	57	0.5	2.5	N-Included		No
23	1	165	1	A687	57	0.5	2.5	N-Included		No
24	1	172.5	1	A687	57	0.5	2.5	N-Included		No
25	1	180	1	A687	57	0.5	2.5	N-Included		No
26	1	187.5	1	A687	57	0.5	2.5	N-Included		No
27	1	195	1	A687	57	0.5	2.5	N-Included		No
28	1	202.5	1	A687	57	0.5	2.5	N-Included		No
29	1	210	1	A687	57	0.5	2.5	N-Included		No
30	1	217.5	1	A687	57	0.5	2.5	N-Included		No
31	1	225	1	A687	57	0.5	2.5	N-Included		No
32	1	232.5	1	A687	57	0.5	2.5	N-Included		No
33	1	240	1	A687	57	0.5	2.5	N-Included		No
34	1	247.5	1	A687	57	0.5	2.5	N-Included		No
35	1	255	1	A687	57	0.5	2.5	N-Included		No
36	1	262.5	1	A687	57	0.5	2.5	N-Included		No
37	1	270	1	A687	57	0.5	2.5	N-Included		No
38	1	277.5	1	A687	57	0.5	2.5	N-Included		No
39	1	285	1	A687	57	0.5	2.5	N-Included		No
40	1	292.5	1	A687	57	0.5	2.5	N-Included		No
41	1	300	1	A687	57	0.5	2.5	N-Included		No
42	1	307.5	1	A687	57	0.5	2.5	N-Included		No
43	1	315	1	A687	57	0.5	2.5	N-Included		No
44	1	322.5	1	A687	57	0.5	2.5	N-Included		No
45	1	330	1	A687	57	0.5	2.5	N-Included		No
46	1	337.5	1	A687	57	0.5	2.5	N-Included		No
47	1	345	1	A687	57	0.5	2.5	N-Included		No
48	1	352.5	1	A687	57	0.5	2.5	N-Included		No
49	2	49	1.75	A193 Gr. B7	60.25	0.5	1.75	N-Included		No
50	2	86	1.75	A193 Gr. B7	60.25	0.5	1.75	N-Included		No
51	2	133	1.75	A193 Gr. B7	60.25	0.5	1.75	N-Included		No
52	2	176	1.75	A193 Gr. B7	60.25	0.5	1.75	N-Included		No
53	2	222	1.75	A193 Gr. B7	60.25	0.5	1.75	N-Included		No
54	2	267	1.75	A193 Gr. B7	60.25	0.5	1.75	N-Included		No
55	2	311	1.75	A193 Gr. B7	60.25	0.5	1.75	N-Included		No
56	2	356	1.75	A193 Gr. B7	60.25	0.5	1.75	N-Included		No

Plot Graphic

Drilled Pier Foundation

:# NB	BU # : 822765
Site Name:	Site Name: Branford / I-95 / X55
Order Number: 553373 rev 1	553373 rev. 1
TIA-222 Revison: H	H
Tower Type: Monopole	Monopole

	Uplift				
Applied Loads	Comp.	2258	53	26	
Applié		Moment (kip-ft)	Axial Force (kips)	Shear Force (kips)	

Material	Material Properties		Rebar 2, Fy
Concrete Strength, fc:	3	3 ksi	(ksi)
Rebar Strength, Fy:	60	60 ksi	
Tie Yield Strength, Fyt:	60	60 ksi	

	Pier De	Pier Design Data	ŧ
Ext. Above Grade	e l	0.5	u u
Pie	le le	Pier Section 1	
From 0.5' above	e gra	From 0.5' above grade to 12.1' below grade	grade
Pier Diameter	fer	9	ft
Rebar Quantity	ity	24	
Rebar Size	ze	6	
Clear Cover to Ties	es	3	in
Tie Size	ze	9	
Tie Spacing	βĽ	18	in
Rebar Quantity	ity	2	
Rebar Size	ge	14	
Rebar Cage Diameter	er	60.25	in
Pie	ŝrŝ	Pier Section 2	
From 12.1' belo	w gi	From 12.1' below grade to 21' below grade	grade
Pier Diameter	er	9	ft
Rebar Quantity	ty	24	
Rebar Size	ze	6	
Clear Cover to Ties	es	3	in
Tie Size	ze	5	
Tie Spacing	pu	18 in	.u

	Soil Lateral Check	Compression	
	D _{v=0} (ft from TOC)	5.68	
	Soil Safety Factor	2.31	
	Max Moment (kip-ft)	2422.79	
	Rating*	54.9%	I 1
	Soil Vertical Check	Compression	
bar 2, Fy	Skin Friction (kips)	366.71	
(ksi)	End Bearing (kips)	254.47	
	Weight of Concrete (kips)	109.42	
	Total Capacity (kips)	621.18	
	Axial (kips)	162.42	
<u>ebar & Pier Options</u>	Rating*	24.9%	
	Reinforced Concrete Flexure	Compression	
<u>nbedded Pole Inputs</u>	Critical Depth (ft from TOC)	7.97	
Belled Pier Inputs	Critical Moment (kip-ft)	2371.07	
	Critical Moment Capacity	3314.68	
	Rating*	68.1%	
	Reinforced Concrete Shear	Compression	
	Critical Depth (ft from TOC)	15.73	

Uplift

ı, ï Uplift

1 ī

		-	'	71.3%	54.9%	
2	332 <u>.</u> 31	443.90	71.3%	71	54	15 <u>.5</u>
	Critical Shear (kip)	Critical Shear Capacity	Rating*	Structural Foundation Rating*	Soil Interaction Rating*	*Rating per TIA-222-H Section 15.5

NN	Щ	
RO	AST	otion
()	Chaole Limitation
(5	٩

	5.5:	N/A	Rebar	al):	IS	ier: 🗸	gy:	oth:	Go to Soil Calculations
Check Limitation	Apply TIA-222-H Section 15.5:		Additional Longitudinal Rebar	Input Effective Depths (else Actual):	Shear Design Options	Check Shear along Depth of Pier:	Utilize Shear-Friction Methodology:	Override Critical Depth:	Go to Soil

Uplift

Analysis Results

Uplift

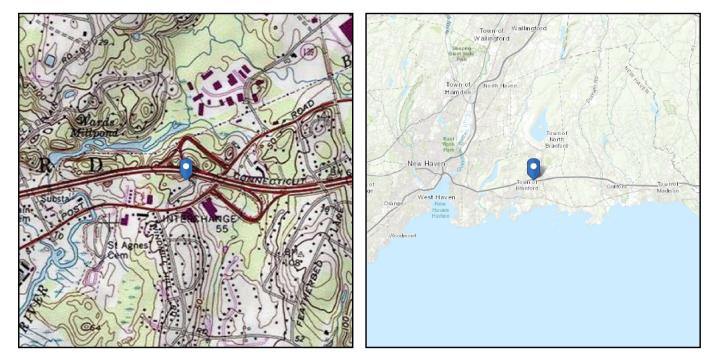
ī ı ı,

1

		Soil Type	Cohesionless	65 Cohesionless	100 Cohesionless
		SPT Blow Count		65	
		Ult. Gross Bearing SPT Blow Capacity Count (ksf)			12
		Ultimate Skin Friction Uplift Override (ksf)	00'0		
		Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp Friction Comp (ksf) (ksf) (ksf) (ksf)	00'0		
	allic	Calculated Calculated Ultimate Skin Ultimate Skin Friction Comp Friction Uplift (ksf) (ksf)	000'0	0.979	1.843
ofile		Calculated Ultimate Skin Friction Comp (ksf)	000'0	0.979	1.843
Soil Profile	ε	Angle of Friction (degrees)	0	34	33
	# of Layers	Cohesion (ksf)	0	0	0
		Y _{concrete} (pcf)	150	150	150
		Y _{soil} (pcf)	120	120	120
		Thickness (ft)	3.333	7.667	10
	N/A	Bottom (ft)	3.333	11	21
	Groundwater Depth	Top (ft)	0	3.333	11
	Groundwat	Layer	1	2	3

No Address at This

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

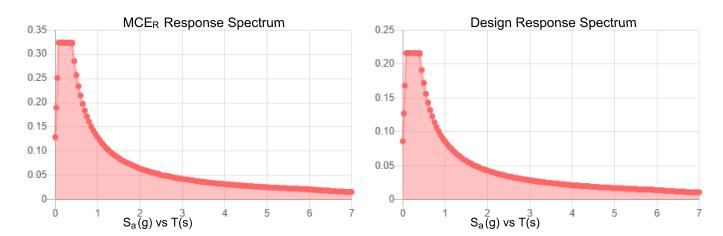
 Elevation:
 0 ft (NAVD 88)

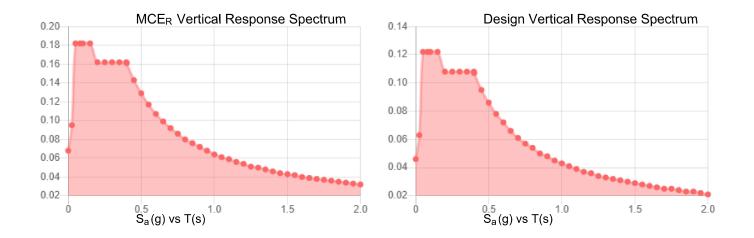
 Latitude:
 41.293933

 Longitude:
 -72.785706

Wind

Results:


Wind Speed:	122 Vmph
10-year MRI	75 Vmph
25-year MRI	85 Vmph
50-year MRI	93 Vmph
100-year MRI	99 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Tue Sep 21 2021


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.202	S _{D1} :	0.086	
S ₁ :	0.054	Τ _L :	6	
F _a :	1.6	PGA :	0.113	
F _v :	2.4	PGA M:	0.178	
S _{MS} :	0.324	F _{PGA} :	1.574	
S _{M1} :	0.129	l _e :	1	
S _{DS} :	0.216	C _v :	0.704	
Seismic Design Category	/ В			

Data Accessed: Date Source: Tue Sep 21 2021 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Tue Sep 21 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

INFINIG FROM ZERO TO INFINIGY

the solutions are endless Jacob Montoya Infinigy Engineering, PLLC Crown Castle 1033 Watervliet Shaker Road 2055 S. Stearman Dr, Albany, NY 12205 Chandler, AZ 85286 518-690-0790 480-298-9641 structural@infinigy.com Subject: Mount Replacement Analysis Report Carrier Designation: **Dish Network 5G** Carrier Site Number: BOHVN00155A Carrier Site Name: CT-CCI-T-822765 Crown Castle BU Number: Crown Castle Designation: 822765 Crown Castle Site Name: Branford/ I-95/ X55/ Dtn1 Crown Castle JDE Job Number: 645122 Crown Castle Order Number: 553373 Rev. 1 Engineering Firm Designation: Infinigy Engineering, PLLC Report Designation: 1039-Z0001-B Site Data: 10 Sylvia St., Branford, New Haven County, CT, 06405 Latitude 41°17'38.16" Longitude -72°47'8.54" Structure Information: Tower Height & Type: 125.0 ft Monopole Mount Elevation: 81.0 ft Mount Type: 8.0 ft Platform

Dear Jacob Montoya,

Infinity Engineering, PLLC is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis has been performed in accordance with the 2015 International Building Code based upon an ultimate 3second gust wind speed of 122 mph. Applicable Standard references and design criteria are listed in Section 2 -Analysis Criteria.

Mount analysis prepared by: Farhad Ahmadyar

Respectfully Submitted by: Emmanuel Poulin, P.E. 518-690-0790 structural@infinigy.com CT PE License No. 22947

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This is a proposed 3-sector 8.0 ft Platform, designed by Commscope, Inc.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	11
Ultimate Wind Speed:	122 mph
Exposure Category:	В
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic S₅:	0.179
Seismic S₁:	0.061
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	terline Centerline c		Antenna Manufacturer	Antenna Model	Mount / Modification Details		
				3	JMA WIRELESS	MX08FRO665-21	9.0 ft Diatform
81.0	81.0	3	FUJITSU	TA08025-B604	8.0 ft Platform (Commscope MC-		
01.0	01.0	31.0 3 FUJ	FUJITSU	TA08025-B605	PK8-DSH)		
		1	RAYCAP	RDIDC-9181-PF-48	FN0 - D3H)		

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553373 Rev. 1	CCI Sites
Mount Manufacturer Drawings	Commscope, Inc.	Part No. MC-PK8- DSH	Infinigy

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Mount Analysis Tool V2.1.7, a tool internally developed by Infinigy, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

ASTM A36 (GR 36)
ASTM A500 (GR B-46)
ASTM A53 (GR 35)
ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy Engineering, PLLC should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1,2	Mount Pipe(s)	MP4		19.3	Pass
	Horizontal(s)	HOR1		12.0	Pass
	Standoff(s)	S3	81.0	28.8	Pass
	Bracing(s)	M1		33.2	Pass
	Mount Connection(s)			21.3	Pass

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Structure Rating (max from all components) =	33.2%
--	-------

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) See additional documentation in "Appendix D – Additional Calculations" for detailed mount connection calculations.

4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope MC-PK8-DSH.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Infinigy Engineering FA 1039-Z0001-B	822765	RENDERED Sept 13, 2021 at 4:58 PM MC-PK8-B_loaded.r3d

APPENDIX B

SOFTWARE INPUT CALCULATIONS

Program Inputs

PROJECT INFORMATION	Crown Castle	Dish Network	Farhad Ahmadyar
PROJECT INF	Client:	Carrier:	Engineer:

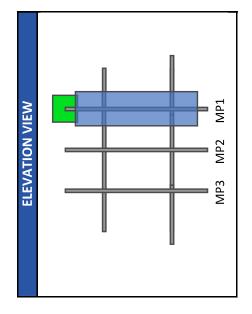
			Method 1, Category 1	D - Stiff Soil (Assumed)	ft *Rev H
RMATION	=	В			56.16
SITE INFORMATION	Risk Category:	Exposure Category:	Topo Factor Procedure:	Site Class:	Ground Elevation:

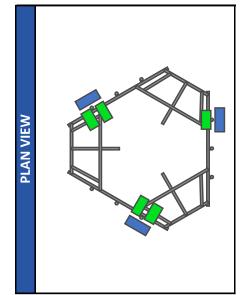
NO	Platform		ft	ft
ORMATI	Р	3	81.00	125.00
MOUNT INFORMATION	Mount Type:	Num Sectors:	Centerline AGL:	Tower Height AGL:

HIC DATA	N/A	N/A ft	N/A ft	N/A ft
TOPOGRAPHIC DATA	Topo Feature:	Slope Distance:	Crest Distance:	Crest Height:

FACTORS	ORS	
Directionality Fact. (K _a):	0.950	
Ground Ele. Factor (K _e):	0.998	*Rev H Only
Rooftop Speed-Up (K _s):	1.000	*Rev H Only
Topographic Factor (K _{zt}):	1.000	
Gust Effect Factor (G _h):	1.000	

NDARDS	2015 IBC	TIA-222-H	ASCE 7-10
CODE STANDARDS	Building Code:	TIA Standard:	ASCE Standard:


WIND AND ICE DATA	ICE DATA	
Ultimate Wind (V _{ult}):	122	mph
Design Wind (V):	N/A	mph
Ice Wind (V _{ice}):	50	hdm
Base Ice Thickness (t _i):	1.5	in
Flat Pressure:	67.227	psf
Round Pressure:	40.336	psf
Ice Wind Pressure:	6.775	psf


SEISMIC DATA	C DATA	
Short-Period Accel. (S _s):	0.179	8
1-Second Accel. (S ₁):	0.061	8
Short-Period Design (S _{DS}):	0.191	
1-Second Design (S _{D1}):	0.098	
Short-Period Coeff. (F _a):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	

822765_Branford/ I-95/ X55/ Dtn1

Program Inputs

	Member (a sector)	MP1	MP1	MP1	MP1							
	Seismic F (Ibs)	23.63	18.30	21.48	6.26							
	Weight (Ibs)	82.50	63.90	75.00	21.85							
	Wind F _x Weight (Ibs) (Ibs)	97.11	29.68	34.17	35.34							
	Wind F _z (Ibs)	242.32	59.40	59.40	60.86							
7	$EPA_{T}(ft^2)$	3.21	0.98	1.13	1.17							
APPURTENANCE INFORMATION	EPA_{N} (ft ²)	8.01	1.96	1.96	2.01							
ENANCE INI	d ^z (bsť)	33.61	33.61	33.61	33.61							
APPURT	K _a	06.0	06.0	06.0	0.90							
	Qty.	m	ς	m	-1							
	Elevation	81.0	81.0	81.0	81.0							
	Appurtenance Name	JMA WIRELESS MX08FRO665-21	FUJITSU TA08025-B604	FUJITSU TA08025-B605	RAYCAP RDIDC-9181-PF-48							

Location

ASCE 7 Hazards Report

Standard: No Address at This Risk Category: Soil Class:

ASCE/SEI 7-10 Latitude: D - Stiff Soil

Elevation: 56.16 ft (NAVD 88) 41.293933 Longitude: -72.785706

Wind

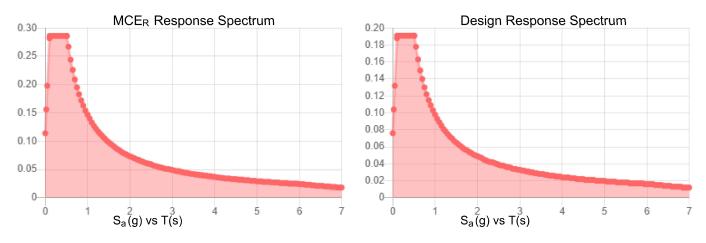
Results:

Wind Speed:
10-year MRI
25-year MRI
50-year MRI
100-year MRI

122 Vmph per the State of Connecticut allowing ASCE 7-16 wind speed values 78 Vmph 88 Vmph 95 Vmph 104 Vmph

Date Socessed:

MGG E/GE13-202 Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.179	S _{DS} :	0.191	
S ₁ :	0.061	S _{D1} :	0.098	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.092	
S _{MS} :	0.286	PGA M:	0.147	
S _{M1} :	0.147	F _{PGA} :	1.6	
		e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Mon Sep 13 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Mon Sep 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Member Primary Data

· · · · · ·	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N5	N6			Channel 3" x 1	Beam	Channel	A36 Gr.36	Typical
2	S3	N3	N1			Standoff	Beam	Tube	A500 Gr.B	
3	<u>M3</u>	N9	N12			L 2"x2"x3/16"	Beam	Single Angle	A36 Gr.36	Typical
4	M4	N10	N11			L 2"x2"x3/16"		Single Angle	A36 Gr.36	Typical
5	M5	N8	N7			6.5"x0.37" Plate		RECT	A36 Gr.36	Typical
6	M6	N17	N18			Channel 3" x 1	Beam	Channel	A36 Gr.36	Typical
7	<u>S2</u>	N15	N13			Standoff	Beam	Tube	A500 Gr.B	Typical
8	M8	N21	N24			L 2"x2"x3/16"	Beam	Single Angle		Typical
9	<u>M9</u>	N22	N23			L 2"x2"x3/16"		Single Angle		Typical
10	M10	N20	N19			6.5"x0.37" Plate		RECT	A36 Gr.36	Typical
11	M11	N29	N30			Channel 3" x 1	Beam	Channel	A36 Gr.36	Typical
12	S1	N27	N25			Standoff	Beam	Tube	A500 Gr.B	Typical
13	M13	N33	N36			L 2"x2"x3/16"	Beam	Single Angle	A36 Gr.36	Typical
14	M14	N34	N35			L 2"x2"x3/16"		Single Angle		Typical
15	M15	N32	N31			6.5"x0.37" Plate	Beam	RECT	A36 Gr.36	Typical
16	HOR1	N44	N45			Horizontal	Beam	Pipe	A53 Gr.B	
17	HOR3	N47	N48			Horizontal	Beam	Pipe	A53 Gr.B	
18	HOR2	N50	N51			Horizontal	Beam	Pipe	A53 Gr.B	
19	HR1	N48A	N49			Horizontal	Beam	Pipe	A53 Gr.B	
20	HR3	N50A	N51A			Horizontal	Beam	Pipe	A53 Gr.B	
21	HR2	N52	N53			Horizontal	Beam	Pipe	A53 Gr.B	Typical
22	M22	N57	N63			RIGID	None	None	RIGID	Typical
23	M23	N55	N61			RIGID	None	None	RIGID	Typical
24	M24	N56	N62			RIGID	None	None	RIGID	Typical
25	M25	N59	N65			RIGID	None	None	RIGID	Typical
26	M26	N54	N60			RIGID	None	None	RIGID	Typical
27	M27	N58	N64			RIGID	None	None	RIGID	Typical
28	MP3	N67	N70			Mount Pipes	Column	Pipe	A53 Gr.B	
29	MP2	N66	N69			Mount Pipes	Column	Pipe	A53 Gr.B	
30	MP1	N68	N71			Mount Pipes	Column	Pipe	A53 Gr.B	
31	M31	N74	N79			RIGID	None	None	RIGID	Typical
32	M32	N73	N77			RIGID	None	None	RIGID	Typical
33	M33	N75	N81			RIGID	None	None	RIGID	Typical
34	MP9	N83	N86			Mount Pipes	Column	Pipe	A53 Gr.B	Typical
35	MP8	N82	N85			Mount Pipes	Column	Pipe	A53 Gr.B	Typical
36	MP7	N84	N87			Mount Pipes	Column	Pipe	A53 Gr.B	Typical
37	M37	N89	N94			RIGID	None	None	RIGID	Typical
38	M38	N88	N92			RIGID	None	None	RIGID	Typical
39	M39	N90	N96			RIGID	None	None	RIGID	Typical
40	MP6	N98	N101			Mount Pipes		Pipe	A53 Gr.B	Typical
41	MP5	N97	N100			Mount Pipes	Column	Pipe	A53 Gr.B	
42	MP4	N99	N102			Mount Pipes	Column		A53 Gr.B	
43	M43	N104	N78			RIGID	None	None	RIGID	Typical
44	M44	N103	N76			RIGID	None	None	RIGID	Typical
45	M45	N105	N80			RIGID	None	None	RIGID	Typical
46	M46	N110	N93			RIGID	None	None	RIGID	Typical
47	M47	N109	N91			RIGID	None	None	RIGID	Typical
48	M48	N111	N95			RIGID	None	None	RIGID	Typical
49	M49	N46	N47A		90	Handrail Plate	Beam	Single Angle	A36 Gr.36	Typical
50	M50	N44A	N45A		90	Handrail Plate	Beam	Single Angle		Typical
51	M51	N42A	N43		90	Handrail Plate	Beam	Single Angle		Typical

Hot Rolled Steel Properties

	Label	E [psi]	G [psi]	Nu	Therm (/1	Density[lb/	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	2.9e+7	1.115e+7	.3	.65	490	50	1.1	65	1.1
2	A36 Gr.36	2.9e+7	1.115e+7	.3	.65	490	36	1.5	58	1.2
3	A572 Gr.50	2.9e+7	1.115e+7	.3	.65	490	50	1.1	65	1.1
4	A500 Gr.B RND	2.9e+7	1.115e+7	.3	.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	2.9e+7	1.115e+7	.3	.65	527	46	1.4	58	1.3
6	A53 Gr.B	2.9e+7	1.115e+7	.3	.65	490	35	1.6	60	1.2
7	A1085	2.9e+7	1.115e+7	.3	.65	490	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	6.5"x0.37" Pl	6.5"x0.37	Beam	RECT	A36 Gr.36	Typical	2.405	.027	8.468	.106
2	L 2"x2"x3/16"	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Handrail Plate	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36	Typical	.901	.535	.535	.011
4	Horizontal	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
5	Handrail	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Mount Pipes	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
7	Standoff	HSS4X4X4	Beam	Tube	A500 Gr.B Rect	Typical	3.37	7.8	7.8	12.8
8	Channel 3" x	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	20.78461	0	-12	0	
2	CP	0	0	-24	0	
3	N3	55.425626	0	8	0	
4	N4	34.641016	0	-4	0	
5	N5	17.212813	0	26.186533	0	
6	N6	52.069219	0	-34.186533	0	
7	N7	65.925626	0	-10.186533	0	
8	N8	44.925626	0	26.186533	0	
9	N9	20.641016	0	20.248711	0	
10	N10	48.641016	0	-28.248711	0	
11	N11	62.925626	0	-4.990381	0	
12	N12	47.925626	0	20.990381	0	
13	N13	-0.	0	-48	0	
14	N15	-0.	0	-88	0	
15	N16	-0.	0	-64	0	
16	N17	34.856406	0	-64	0	
17	N18	-34.856406	0	-64	0	
18	N19	-21	0	-88	0	
19	N20	21	0	-88	0	
20	N21	28	0	-64	0	
21	N22	-28	0	-64	0	
22	N23	-15	0	-88	0	
23	N24	15	0	-88	0	
24	N25	-20.78461	0	-12	0	
25	N27	-55.425626	0	8	0	
26	N28	-34.641016	0	-4	0	
27	N29	-52.069219	0	-34.186533	0	
28	N30	-17.212813	0	26.186533	0	
29	N31	-44.925626	0	26.186533	0	
30	N32	-65.925626	0	-10.186533	0	
31	N33	-48.641016	0	-28.248711	0	
32	N34	-20.641016	0	20.248711	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
33	N35	-47.925626	0	20.990381	0	
34	N36	-62.925626	0	-4.990381	0	
35	<u>N44</u>	-48.000126	0	26.186533	0	
36	N45	48.000126	0	26.186533	0	
37	N47	67.462876	0	-7.523938	0	
38	N48	19.46275	0	-90.662595	0	
39	<u>N50</u>	-19.46275	0	-90.662595	0	
40	N51	-67.462876	0	-7.523938	0	
41	N42A	65.925626	40	-10.186533	0	
42	N43	44.925626	40	26.186533	0	
43	N44A	-21	40	-88	0	
44	N45A	21	40	-88	0	
45	N46	-44.925626	40	26.186533	0	
46	N47A	-65.925626	40	-10.186533	0	
47	N48A	-48.000126	40	26.186533	0	
48	N49	48.000126	40	26.186533	0	
49	N50A	67.462876	40	-7.523938	0	
50	N51A	19.46275	40	-90.662595	0	
51	N52	-19.46275	40	-90.662595	0	
52	N53	-67.462876	40	-7.523938	0	
53	N54	-0.000126	0	26.186533	0	
54	N55	-0.000126	40	26.186533	0	
55	<u>N56</u>	-24.000126	0	26.186533	0	
56	N57	-24.000126	40	26.186533	0	
57	N58	23.999874	0	26.186533	0	
58	N59	23.999874	40	26.186533	0	
59	<u>N60</u>	-0.000126	0	29.186533	0	
60	<u>N61</u>	-0.000126	40	29.186533	0	
61	N62	-24.000126	0	29.186533	0	
62	N63	-24.000126	40	29.186533	0	
63	<u>N64</u>	23.999874	0	29.186533	0	
64	N65	23.999874	40	29.186533	0	
65	<u>N66</u>	-0.000126	62	29.186533	0	
66	<u>N67</u>	-24.000126	62	29.186533	0	
67	<u>N68</u>	23.999874	62	29.186533	0	
68	N69	-0.000126	-22	29.186533	0	
69	<u>N70</u>	-24.000126	-22	29.186533	0	
70	<u>N71</u>	23.999874	-22	29.186533	0	
71	N73	43.462876	40	-49.093158	0	
72	N74	55.462876	40	-28.308548	0	
73	<u>N75</u>	31.462876	40	-69.877767	0	
74	<u>N76</u>	46.060952	0	-50.593158	0	
75	<u>N77</u>	46.060952	40	-50.593158	0	
76	N78	58.060952	0	-29.808548	0	
77	N79	58.060952	40	-29.808548	0	
78	<u>N80</u>	34.060952	0	-71.377767	0	
79	<u>N81</u>	34.060952	40	-71.377767	0	
80	N82	46.060952	62	-50.593158	0	
81	<u>N83</u>	58.060952	62	-29.808548	0	
82	N84	34.060952	62	-71.377767	0	
83	<u>N85</u>	46.060952	-22	-50.593158	0	
84	N86	58.060952	-22	-29.808548	0	
85	N87	34.060952	-22	-71.377767	0	
86	N88	-43.46275	40	-49.093376	0	
87	N89	-31.46275	40	-69.877985	0	
88	N90	-55.46275	40	-28.308766	0	
89	N91	-46.060826	0	-50.593376	0	

RISA-3D Version 17.0.4 [L:\...\...\Structural\2021.09.06 - MA\Report\Model\MC-PK8-B_loaded.r3d] Page 3

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
90	N92	-46.060826	40	-50.593376	0	
91	N93	-34.060826	0	-71.377985	0	
92	N94	-34.060826	40	-71.377985	0	
93	N95	-58.060826	0	-29.808766	0	
94	N96	-58.060826	40	-29.808766	0	
95	N97	-46.060826	62	-50.593376	0	
96	N98	-34.060826	62	-71.377985	0	
97	N99	-58.060826	62	-29.808766	0	
98	N100	-46.060826	-22	-50.593376	0	
99	N101	-34.060826	-22	-71.377985	0	
100	N102	-58.060826	-22	-29.808766	0	
101	N103	43.462876	0	-49.093158	0	
102	N104	55.462876	0	-28.308548	0	
103	N105	31.462876	0	-69.877767	0	
104	N109	-43.46275	0	-49.093376	0	
105	N110	-31.46275	0	-69.877985	0	
106	N111	-55.46275	0	-28.308766	0	

Hot Rolled Steel Design Parameters

	Labe	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torgu	. Kyy	Kzz	Cb	Function
1	M1	Channel 3"	69.713	28	28	28	28	28				Lateral
2	S 3	Standoff	40	24	24	24	24	24				Lateral
3	M3	L 2"x2"x3/16"	27.295			Lbyy						Lateral
4	M4	L 2"x2"x3/16"				Lbyy						Lateral
5	M5	6 5"x0 37" P.				Lbyy						Lateral
6	M6	Channel 3"	69.713	28	28	28	28	28				Lateral
7	S2	Standoff	40	24	24	24	24	24				Lateral
8	M8	L 2"x2"x3/16"				Lbyy						Lateral
9	M9	L 2"x2"x3/16"	27.295			Lbyy						Lateral
10	M10	6.5"x0.37" P.	42			Lbyy						Lateral
11	M11	Channel 3"	69.713	28	28	28	28	28				Lateral
12	S1	Standoff	40	24	24	24	24	24				Lateral
13	M13	L 2"x2"x3/16"				Lbyy						Lateral
14	M14	L 2"x2"x3/16"				Lbyy						Lateral
15	M15	6.5"x0.37" P.	42			Lbyy						Lateral
16	HOR1	Horizontal	96	34.5	34.5	34.5	34.5	34.5				Lateral
17	HOR3	Horizontal	96	34.5	34.5	34.5	34.5	34.5				Lateral
18	HOR2	Horizontal	96	34.5	34.5	34.5	34.5	34.5				Lateral
19	HR1	Horizontal	96	34.5	34.5	34.5	34.5	34.5				Lateral
20	HR3	Horizontal	96	34.5	34.5	34.5	34.5	34.5				Lateral
21	HR2	Horizontal	96	34.5	34.5	34.5	34.5	34.5				Lateral
22	MP3	Mount Pipes										Lateral
23	MP2	Mount Pipes										Lateral
24	MP1	Mount Pipes	84									Lateral
25	MP9	Mount Pipes	84									Lateral
26	MP8	Mount Pipes	84									Lateral
27	MP7	Mount Pipes	84									Lateral
28	MP6	Mount Pipes	84									Lateral
29	MP5	Mount Pipes										Lateral
30	MP4	Mount Pipes	84									Lateral
31	M49	Handrail Pla.	42			Lbyy						Lateral
32	M50	Handrail Pla.	42			Lbyy						Lateral
33	M51	Handrail Pla.	42			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DL		-1			13		3	
2	Wind Load AZI 0	WLZ					26			
3	Wind Load AZI 30	None					26			
4	Wind Load AZI 60	None					26			
5	Wind Load AZI 90	WLX					26			
6	Wind Load AZI 120	None					26			
7	Wind Load AZI 150	None					26			
8	Wind Load AZI 180	None					26			
9	Wind Load AZI 210	None					26			
10	Wind Load AZI 240	None					26			
11	Wind Load AZI 270	None					26			
12	Wind Load AZI 300	None					26			
13	Wind Load AZI 330	None					26			
14	Distr. Wind Load Z	WLZ						51		
15	Distr. Wind Load X	WLX						51		
16	Ice Weight	OL1					13	51	3	
17	Ice Wind Load AZI 0	OL2					26			
18	Ice Wind Load AZI 30	None					26			
19	Ice Wind Load AZI 60	None					26			
20	Ice Wind Load AZI 90	OL3					26			
	Ice Wind Load AZI 120	None					26			
	Ice Wind Load AZI 150	None					26			
	Ice Wind Load AZI 180	None					26			
	Ice Wind Load AZI 210	None					26			
	Ice Wind Load AZI 240	None					26			
	Ice Wind Load AZI 270	None					26			
	Ice Wind Load AZI 300	None					26			
	Ice Wind Load AZI 330	None					26			
	Distr. Ice Wind Load Z	OL2						51		
	Distr. Ice Wind Load X	OL3						51		
31	Seismic Load Z	ELZ			286		13	01		
32	Seismic Load X	ELX	286		.200		13			
	Service Live Loads		.200			1	10			
34	Maintenance Load 1					1				
35	Maintenance Load 2					1				
36	Maintenance Load 3					1				
37	Maintenance Load 4					1				
38	Maintenance Load 5					1				
39	Maintenance Load 6					1				
40	Maintenance Load 7					1				
40	Maintenance Load 8					1				
41	Maintenance Load 9					1				
	BLC 1 Transient Area	None						9		
	BLC 16 Transient Are							9		
44	DEC TO TRAISIENT ATE	None						9		

Joint Loads and Enforced Displacements (BLC 33 : Service Live Loads)

1	Joint Label N45	L,D,M	Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -250
Joint Loads	and Enforced Displa	cements (BLC 34 : N	laintenance Load	1)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2
1	N58	L	Y	-500

		<u>cements (BLC 35 : I</u>		iu z)
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2.
1	N54	L	Y	-500
Joint Load	ls and Enforced Displa	cements (BLC 36 : I	Maintenance Loa	nd 3)
·	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2.
1	N56	L	Y	-500
Joint Load	ls and Enforced Displa	cements (BLC 37 : I	Maintenance Loa	ad 4)
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2
1	N111	L	Y	-500
Joint Load	s and Enforced Displa	cements (BLC 38 : I	Maintenance Loa	nd 5)
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2.
1	N109	L	Y	-500
Joint Load	ls and Enforced Displa	cements (BLC 39 : I	Maintenance Loa	nd 6)
<u>Joint Load</u>	ls and Enforced Displa Joint Label	<u>cements (BLC 39 : I</u> L,D.M	Maintenance Loa Direction	
Joint Load				
1	Joint Label	L,D,M L	Direction Y	<u>Magnitude[(lb,lb-ft), (in,rad), (lb*s^2</u> _500
1	Joint Label N110	L,D,M L	Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500
1	Joint Label N110 Is and Enforced Displa	L,D,M L cements (BLC 40 : I	Direction Y Maintenance Loa	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500
1 <i>Joint Load</i>	Joint Label N110 Is and Enforced Displa Joint Label	L,D,M L cements (BLC 40 : I L,D,M L	Direction Y Maintenance Loa Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500 ad 7) Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500
1 Joint Load	Joint Label N110 Is and Enforced Displa Joint Label N105	L,D,M L cements (BLC 40 : I L,D,M L	Direction Y Maintenance Loa Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2. -500 ad 7) Magnitude[(lb,lb-ft), (in,rad), (lb*s^2. -500
1 <i>Joint Load</i>	Joint Label N110 Is and Enforced Displa Joint Label N105 Is and Enforced Displa	L,D,M L cements (BLC 40 : M L,D,M L cements (BLC 41 : M	Direction Y Maintenance Loa Direction Y Maintenance Loa	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2. -500 ad 7) Magnitude[(lb,lb-ft), (in,rad), (lb*s^2. -500 ad 8)
1 Joint Load 1 Joint Load 1	Joint Label N110 Is and Enforced Displa Joint Label N105 Is and Enforced Displa Joint Label	L,D,M L Cements (BLC 40 : N L,D,M L Cements (BLC 41 : N L,D,M L	Direction Y Maintenance Loa Direction Y Maintenance Loa Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500 ad 7) Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500 ad 8) Magnitude[(lb,lb-ft), (in,rad), (lb*s^2 -500
1 Joint Load 1 Joint Load 1	Joint Label N110 Is and Enforced Displa Joint Label N105 Is and Enforced Displa Joint Label N103	L,D,M L Cements (BLC 40 : N L,D,M L Cements (BLC 41 : N L,D,M L	Direction Y Maintenance Loa Direction Y Maintenance Loa Direction Y	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2. -500 ad 7) Magnitude[(lb,lb-ft), (in,rad), (lb*s^2. -500 ad 8) Magnitude[(lb,lb-ft), (in,rad), (lb*s^2. -500

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Y	-41.25	6
2	MP1	Y	-41.25	66
3	MP1	Y	-63.9	20
4	MP1	Y	-75	40
5	MP1	Y	-21.85	60
6	MP4	Y	-41.25	6
7	MP4	Y	-41.25	66
8	MP4	Y	-63.9	20
9	MP4	Y	-75	40
10	MP7	Y	-41.25	6
11	MP7	Y	-41.25	66
12	MP7	Y	-63.9	20
13	MP7	Y	-75	40

Member Point Loads (BLC 2 : Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	6
2	MP1	Z	-121.16	6
3	MP1	Х	0	66

Member Point Loads (BLC 2 : Wind Load AZI 0) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
4	MP1	Z	-121.16	66
5	MP1	Х	0	20
6	MP1	Z	-59.4	20
7	MP1	Х	0	40
8	MP1	Z	-59.4	40
9	MP1	Х	0	60
10	MP1	Z	-60.86	60
11	MP4	Х	0	6
12	MP4	Z	-66.71	6
13	MP4	Х	0	66
14	MP4	Z	-66.71	66
15	MP4	Х	0	20
16	MP4	Z	-37.11	20
17	MP4	Х	0	40
18	MP4	Z	-40.48	40
19	MP7	Х	0	6
20	MP7	Z	-66.71	6
21	MP7	Х	0	66
22	MP7	Z	-66.71	66
23	MP7	Х	0	20
24	MP7	Z	-37.11	20
25	MP7	Х	0	40
26	MP7	Z	-40.48	40

Member Point Loads (BLC 3 : Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-51.5	6
2	MP1	Z	-89.21	6
3	MP1	Х	-51.5	66
4	MP1	Z	-89.21	66
5	MP1	Х	-25.99	20
6	MP1	Z	-45.01	20
7	MP1	Х	-26.55	40
8	MP1	Z	-45.98	40
9	MP1	Х	-27.24	60
10	MP1	Z	-47.18	60
11	MP4	Х	-51.5	6
12	MP4	Z	-89.21	6
13	MP4	Х	-51.5	66
14	MP4	Z	-89.21	66
15	MP4	Х	-25.99	20
16	MP4	Z	-45.01	20
17	MP4	Х	-26.55	40
18	MP4	Z	-45.98	40
19	MP7	Х	-24.28	6
20	MP7	Z	-42.05	6
21	MP7	Х	-24.28	66
22	MP7	Z	-42.05	66
23	MP7	Х	-14.84	20
24	MP7	Z	-25.7	20
25	MP7	Х	-17.08	40
26	MP7	Z	-29.59	40

Member Point Loads (BLC 4 : Wind Load AZI 60)

		Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	1	MP1	Х	-57.77	6

Member Point Loads (BLC 4 : Wind Load AZI 60) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
2	MP1	Z	-33.35	6
3	MP1	Х	-57.77	66
4	MP1	Z	-33.35	66
5	MP1	Х	-32.14	20
6	MP1	Z	-18.56	20
7	MP1	Х	-35.05	40
8	MP1	Z	-20.24	40
9	MP1	Х	-36.13	60
10	MP1	Z	-20.86	60
11	MP4	Х	-104.93	6
12	MP4	Z	-60.58	6
13	MP4	Х	-104.93	66
14	MP4	Z	-60.58	66
15	MP4	Х	-51.44	20
16	MP4	Z	-29.7	20
17	MP4	Х	-51.44	40
18	MP4	Z	-29.7	40
19	MP7	Х	-57.77	6
20	MP7	Z	-33.35	6
21	MP7	Х	-57.77	66
22	MP7	Z	-33.35	66
23	MP7	Х	-32.14	20
24	MP7	Z	-18.56	20
25	MP7	Х	-35.05	40
26	MP7	Z	-20.24	40

Member Point Loads (BLC 5 : Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-48.55	6
2	MP1	Z	0	6
3	MP1	Х	-48.55	66
4	MP1	Z	0	66
5	MP1	Х	-29.68	20
6	MP1	Z	0	20
7	MP1	Х	-34.17	40
8	MP1	Z	0	40
9	MP1	Х	-35.34	60
10	MP1	Z	0	60
11	MP4	Х	-103.01	6
12	MP4	Z	0	6
13	MP4	Х	-103.01	66
14	MP4	Z	0	66
15	MP4	Х	-51.97	20
16	MP4	Z	0	20
17	MP4	Х	-53.09	40
18	MP4	Z	0	40
19	MP7	Х	-103.01	6
20	MP7	Z	0	6
21	MP7	Х	-103.01	66
22	MP7	Z	0	66
23	MP7	Х	-51.97	20
24	MP7	Z	0	20
25	MP7	Х	-53.09	40
26	MP7	Z	0	40

Member Point Loads (BLC 6 : Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-57.77	6
2	MP1	Z	33.35	6
3	MP1	Х	-57.77	66
4	MP1	Z	33.35	66
5	MP1	Х	-32.14	20
6	MP1	Z	18.56	20
7	MP1	Х	-35.05	40
8	MP1	Z	20.24	40
9	MP1	Х	-36.13	60
10	MP1	Z	20.86	60
11	MP4	Х	-57.77	6
12	MP4	Z	33.35	6
13	MP4	Х	-57.77	66
14	MP4	Z	33.35	66
15	MP4	Х	-32.14	20
16	MP4	Z	18.56	20
17	MP4	Х	-35.05	40
18	MP4	Z	20.24	40
19	MP7	Х	-104.93	6
20	MP7	Z	60.58	6
21	MP7	Х	-104.93	66
22	MP7	Z	60.58	66
23	MP7	Х	-51.44	20
24	MP7	Z	29.7	20
25	MP7	Х	-51.44	40
26	MP7	Z	29.7	40

Member Point Loads (BLC 7 : Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-51.5	6
2	MP1	Z	89.21	6
3	MP1	Х	-51.5	66
4	MP1	Z	89.21	66
5	MP1	Х	-25.99	20
6	MP1	Z	45.01	20
7	MP1	Х	-26.55	40
8	MP1	Z	45.98	40
9	MP1	Х	-27.24	60
10	MP1	Z	47.18	60
11	MP4	Х	-24.28	6
12	MP4	Z	42.05	6
13	MP4	Х	-24.28	66
14	MP4	Z	42.05	66
15	MP4	Х	-14.84	20
16	MP4	Z	25.7	20
17	MP4	Х	-17.08	40
18	MP4	Z	29.59	40
19	MP7	Х	-51.5	6
20	MP7	Z	89.21	6
21	MP7	Х	-51.5	66
22	MP7	Z	89.21	66
23	MP7	Х	-25.99	20
24	MP7	Z	45.01	20
25	MP7	Х	-26.55	40
26	MP7	Z	45.98	40

Member Point Loads (BLC 8 : Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	0	6
2	MP1	Z	121.16	6
3	MP1	Х	0	66
4	MP1	Z	121.16	66
5	MP1	Х	0	20
6	MP1	Z	59.4	20
7	MP1	Х	0	40
8	MP1	Z	59.4	40
9	MP1	Х	0	60
10	MP1	Z	60.86	60
11	MP4	Х	0	6
12	MP4	Z	66.71	6
13	MP4	Х	0	66
14	MP4	Z	66.71	66
15	MP4	Х	0	20
16	MP4	Z	37.11	20
17	MP4	Х	0	40
18	MP4	Z	40.48	40
19	MP7	Х	0	6
20	MP7	Z	66.71	6
21	MP7	Х	0	66
22	MP7	Z	66.71	66
23	MP7	Х	0	20
24	MP7	Z	37.11	20
25	MP7	Х	0	40
26	MP7	Z	40.48	40

Member Point Loads (BLC 9 : Wind Load AZI 210)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	51.5	6
2	MP1	Z	89.21	6
3	MP1	Х	51.5	66
4	MP1	Z	89.21	66
5	MP1	Х	25.99	20
6	MP1	Z	45.01	20
7	MP1	Х	26.55	40
8	MP1	Z	45.98	40
9	MP1	Х	27.24	60
10	MP1	Z	47.18	60
11	MP4	Х	51.5	6
12	MP4	Z	89.21	6
13	MP4	Х	51.5	66
14	MP4	Z	89.21	66
15	MP4	Х	25.99	20
16	MP4	Z	45.01	20
17	MP4	Х	26.55	40
18	MP4	Z	45.98	40
19	MP7	Х	24.28	6
20	MP7	Z	42.05	6
21	MP7	Х	24.28	66
22	MP7	Z	42.05	66
23	MP7	Х	14.84	20
24	MP7	Z	25.7	20
25	MP7	Х	17.08	40
26	MP7	Z	29.59	40

Member Point Loads (BLC 10 : Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	57.77	6
2	MP1	Z	33.35	6
3	MP1	Х	57.77	66
4	MP1	Z	33.35	66
5	MP1	Х	32.14	20
6	MP1	Z	18.56	20
7	MP1	Х	35.05	40
8	MP1	Z	20.24	40
9	MP1	Х	36.13	60
10	MP1	Z	20.86	60
11	MP4	Х	104.93	6
12	MP4	Z	60.58	6
13	MP4	Х	104.93	66
14	MP4	Z	60.58	66
15	MP4	Х	51.44	20
16	MP4	Z	29.7	20
17	MP4	Х	51.44	40
18	MP4	Z	29.7	40
19	MP7	Х	57.77	6
20	MP7	Z	33.35	6
21	MP7	Х	57.77	66
22	MP7	Z	33.35	66
23	MP7	Х	32.14	20
24	MP7	Z	18.56	20
25	MP7	Х	35.05	40
26	MP7	Z	20.24	40

Member Point Loads (BLC 11 : Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	48.55	6
2	MP1	Z	0	6
3	MP1	Х	48.55	66
4	MP1	Z	0	66
5	MP1	Х	29.68	20
6	MP1	Z	0	20
7	MP1	Х	34.17	40
8	MP1	Z	0	40
9	MP1	Х	35.34	60
10	MP1	Z	0	60
11	MP4	Х	103.01	6
12	MP4	Z	0	6
13	MP4	Х	103.01	66
14	MP4	Z	0	66
15	MP4	Х	51.97	20
16	MP4	Z	0	20
17	MP4	Х	53.09	40
18	MP4	Z	0	40
19	MP7	Х	103.01	6
20	MP7	Z	0	6
21	MP7	Х	103.01	66
22	MP7	Z	0	66
23	MP7	Х	51.97	20
24	MP7	Z	0	20
25	MP7	Х	53.09	40
26	MP7	Z	0	40

Member Point Loads (BLC 12 : Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	57.77	6
2	MP1	Z	-33.35	6
3	MP1	Х	57.77	66
4	MP1	Z	-33.35	66
5	MP1	Х	32.14	20
6	MP1	Z	-18.56	20
7	MP1	Х	35.05	40
8	MP1	Z	-20.24	40
9	MP1	Х	36.13	60
10	MP1	Z	-20.86	60
11	MP4	Х	57.77	6
12	MP4	Z	-33.35	6
13	MP4	Х	57.77	66
14	MP4	Z	-33.35	66
15	MP4	Х	32.14	20
16	MP4	Z	-18.56	20
17	MP4	Х	35.05	40
18	MP4	Z	-20.24	40
19	MP7	Х	104.93	6
20	MP7	Z	-60.58	6
21	MP7	Х	104.93	66
22	MP7	Z	-60.58	66
23	MP7	Х	51.44	20
24	MP7	Z	-29.7	20
25	MP7	Х	51.44	40
26	MP7	Z	-29.7	40

Member Point Loads (BLC 13 : Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	51.5	6
2	MP1	Z	-89.21	6
3	MP1	Х	51.5	66
4	MP1	Z	-89.21	66
5	MP1	Х	25.99	20
6	MP1	Z	-45.01	20
7	MP1	Х	26.55	40
8	MP1	Z	-45.98	40
9	MP1	Х	27.24	60
10	MP1	Z	-47.18	60
11	MP4	Х	24.28	6
12	MP4	Z	-42.05	6
13	MP4	Х	24.28	66
14	MP4	Z	-42.05	66
15	MP4	Х	14.84	20
16	MP4	Z	-25.7	20
17	MP4	Х	17.08	40
18	MP4	Z	-29.59	40
19	MP7	Х	51.5	6
20	MP7	Z	-89.21	6
21	MP7	Х	51.5	66
22	MP7	Z	-89.21	66
23	MP7	Х	25.99	20
24	MP7	Z	-45.01	20
25	MP7	Х	26.55	40
26	MP7	Z	-45.98	40

Member Point Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Y	-133.74	6
2	MP1	Y	-133.74	66
3	MP1	Y	-65.376	20
4	MP1	Y	-69.678	40
5	MP1	Y	-68.664	60
6	MP4	Y	-133.74	6
7	MP4	Y	-133.74	66
8	MP4	Y	-65.376	20
9	MP4	Y	-69.678	40
10	MP7	Y	-133.74	6
11	MP7	Y	-133.74	66
12	MP7	Y	-65.376	20
13	MP7	Y	-69.678	40

Member Point Loads (BLC 17 : Ice Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	0	6
2	MP1	Z	-15.97	6
3	MP1	Х	0	66
4	MP1	Z	-15.97	66
5	MP1	Х	0	20
6	MP1	Z	-6.19	20
7	MP1	Х	0	40
8	MP1	Z	-6.19	40
9	MP1	Х	0	60
10	MP1	Z	-6.52	60
11	MP4	Х	0	6
12	MP4	Z	-12.36	6
13	MP4	Х	0	66
14	MP4	Z	-12.36	66
15	MP4	Х	0	20
16	MP4	Z	-5.07	20
17	MP4	Х	0	40
18	MP4	Z	-5.26	40
19	MP7	Х	0	6
20	MP7	Z	-12.36	6
21	MP7	Х	0	66
22	MP7	Z	-12.36	66
23	MP7	Х	0	20
24	MP7	Z	-5.07	20
25	MP7	Х	0	40
26	MP7	Z	-5.26	40

Member Point Loads (BLC 18 : Ice Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-7.38	6
2	MP1	Z	-12.79	6
3	MP1	X	-7.38	66
4	MP1	Z	-12.79	66
5	MP1	Х	-2.91	20
6	MP1	Z	-5.04	20
7	MP1	Х	-2.94	40
8	MP1	Z	-5.09	40
9	MP1	Х	-3.1	60
10	MP1	Z	-5.37	60
11	MP4	Х	-7.38	6

Member Point Loads (BLC 18 : Ice Wind Load AZI 30) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
12	MP4	Z	-12.79	6
13	MP4	Х	-7.38	66
14	MP4	Z	-12.79	66
15	MP4	Х	-2.91	20
16	MP4	Z	-5.04	20
17	MP4	Х	-2.94	40
18	MP4	Z	-5.09	40
19	MP7	Х	-5.58	6
20	MP7	Z	-9.66	6
21	MP7	Х	-5.58	66
22	MP7	Z	-9.66	66
23	MP7	Х	-2.35	20
24	MP7	Z	-4.07	20
25	MP7	Х	-2.48	40
26	MP7	Z	-4.29	40

Member Point Loads (BLC 19 : Ice Wind Load AZI 60)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-10.7	6
2	MP1	Z	-6.18	6
3	MP1	Х	-10.7	66
4	MP1	Z	-6.18	66
5	MP1	Х	-4.39	20
6	MP1	Z	-2.54	20
7	MP1	Х	-4.56	40
8	MP1	Z	-2.63	40
9	MP1	Х	-4.82	60
10	MP1	Z	-2.79	60
11	MP4	Х	-13.83	6
12	MP4	Z	-7.98	6
13	MP4	Х	-13.83	66
14	MP4	Z	-7.98	66
15	MP4	Х	-5.36	20
16	MP4	Z	-3.1	20
17	MP4	Х	-5.36	40
18	MP4	Z	-3.1	40
19	MP7	Х	-10.7	6
20	MP7	Z	-6.18	6
21	MP7	Х	-10.7	66
22	MP7	Z	-6.18	66
23	MP7	Х	-4.39	20
24	MP7	Z	-2.54	20
25	MP7	Х	-4.56	40
26	MP7	Z	-2.63	40

Member Point Loads (BLC 20 : Ice Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-11.16	6
2	MP1	Z	0	6
3	MP1	Х	-11.16	66
4	MP1	Z	0	66
5	MP1	Х	-4.7	20
6	MP1	Z	0	20
7	MP1	Х	-4.95	40
8	MP1	Z	0	40
9	MP1	X	-5.25	60

Member Point Loads (BLC 20 : Ice Wind Load AZI 90) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
10	MP1	Z	0	60
11	MP4	Х	-14.76	6
12	MP4	Z	0	6
13	MP4	Х	-14.76	66
14	MP4	Z	0	66
15	MP4	Х	-5.82	20
16	MP4	Z	0	20
17	MP4	X	-5.88	40
18	MP4	Z	0	40
19	MP7	Х	-14.76	6
20	MP7	Z	0	6
21	MP7	Х	-14.76	66
22	MP7	Z	0	66
23	MP7	Х	-5.82	20
24	MP7	Z	0	20
25	MP7	Х	-5.88	40
26	MP7	Z	0	40

Member Point Loads (BLC 21 : Ice Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-10.7	6
2	MP1	Z	6.18	6
3	MP1	Х	-10.7	66
4	MP1	Z	6.18	66
5	MP1	Х	-4.39	20
6	MP1	Z	2.54	20
7	MP1	Х	-4.56	40
8	MP1	Z	2.63	40
9	MP1	Х	-4.82	60
10	MP1	Z	2.79	60
11	MP4	Х	-10.7	6
12	MP4	Z	6.18	6
13	MP4	Х	-10.7	66
14	MP4	Z	6.18	66
15	MP4	Х	-4.39	20
16	MP4	Z	2.54	20
17	MP4	Х	-4.56	40
18	MP4	Z	2.63	40
19	MP7	Х	-13.83	6
20	MP7	Z	7.98	6
21	MP7	Х	-13.83	66
22	MP7	Z	7.98	66
23	MP7	Х	-5.36	20
24	MP7	Z	3.1	20
25	MP7	Х	-5.36	40
26	MP7	Z	3.1	40

Member Point Loads (BLC 22 : Ice Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-7.38	6
2	MP1	Z	12.79	6
3	MP1	Х	-7.38	66
4	MP1	Z	12.79	66
5	MP1	Х	-2.91	20
6	MP1	Z	5.04	20
7	MP1	X	-2.94	40

Member Point Loads (BLC 22 : Ice Wind Load AZI 150) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
8	MP1	Z	5.09	40
9	MP1	Х	-3.1	60
10	MP1	Z	5.37	60
11	MP4	Х	-5.58	6
12	MP4	Z	9.66	6
13	MP4	Х	-5.58	66
14	MP4	Z	9.66	66
15	MP4	Х	-2.35	20
16	MP4	Z	4.07	20
17	MP4	Х	-2.48	40
18	MP4	Z	4.29	40
19	MP7	Х	-7.38	6
20	MP7	Z	12.79	6
21	MP7	Х	-7.38	66
22	MP7	Z	12.79	66
23	MP7	Х	-2.91	20
24	MP7	Z	5.04	20
25	MP7	Х	-2.94	40
26	MP7	Z	5.09	40

Member Point Loads (BLC 23 : Ice Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	0	6
2	MP1	Z	15.97	6
3	MP1	Х	0	66
4	MP1	Z	15.97	66
5	MP1	Х	0	20
6	MP1	Z	6.19	20
7	MP1	Х	0	40
8	MP1	Z	6.19	40
9	MP1	Х	0	60
10	MP1	Z	6.52	60
11	MP4	Х	0	6
12	MP4	Z	12.36	6
13	MP4	Х	0	66
14	MP4	Z	12.36	66
15	MP4	Х	0	20
16	MP4	Z	5.07	20
17	MP4	Х	0	40
18	MP4	Z	5.26	40
19	MP7	Х	0	6
20	MP7	Z	12.36	6
21	MP7	Х	0	66
22	MP7	Z	12.36	66
23	MP7	Х	0	20
24	MP7	Z	5.07	20
25	MP7	Х	0	40
26	MP7	Z	5.26	40

Member Point Loads (BLC 24 : Ice Wind Load AZI 210)

	Member Label	Direction	Magnitude[Ib,Ib-ft]	Location[in,%]
1	MP1	Х	7.38	6
2	MP1	Z	12.79	6
3	MP1	Х	7.38	66
4	MP1	Z	12.79	66
5	MP1	Х	2.91	20

Member Point Loads (BLC 24 : Ice Wind Load AZI 210) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
6	MP1	Z	5.04	20
7	MP1	Х	2.94	40
8	MP1	Z	5.09	40
9	MP1	Х	3.1	60
10	MP1	Z	5.37	60
11	MP4	Х	7.38	6
12	MP4	Z	12.79	6
13	MP4	Х	7.38	66
14	MP4	Z	12.79	66
15	MP4	Х	2.91	20
16	MP4	Z	5.04	20
17	MP4	Х	2.94	40
18	MP4	Z	5.09	40
19	MP7	Х	5.58	6
20	MP7	Z	9.66	6
21	MP7	Х	5.58	66
22	MP7	Z	9.66	66
23	MP7	Х	2.35	20
24	MP7	Z	4.07	20
25	MP7	Х	2.48	40
26	MP7	Z	4.29	40

Member Point Loads (BLC 25 : Ice Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	10.7	6
2	MP1	Z	6.18	6
3	MP1	Х	10.7	66
4	MP1	Z	6.18	66
5	MP1	Х	4.39	20
6	MP1	Z	2.54	20
7	MP1	Х	4.56	40
8	MP1	Z	2.63	40
9	MP1	Х	4.82	60
10	MP1	Z	2.79	60
11	MP4	Х	13.83	6
12	MP4	Z	7.98	6
13	MP4	Х	13.83	66
14	MP4	Z	7.98	66
15	MP4	Х	5.36	20
16	MP4	Z	3.1	20
17	MP4	Х	5.36	40
18	MP4	Z	3.1	40
19	MP7	Х	10.7	6
20	MP7	Z	6.18	6
21	MP7	Х	10.7	66
22	MP7	Z	6.18	66
23	MP7	Х	4.39	20
24	MP7	Z	2.54	20
25	MP7	Х	4.56	40
26	MP7	Z	2.63	40

Member Point Loads (BLC 26 : Ice Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	11.16	6
2	MP1	Z	0	6
3	MP1	Х	11.16	66

Member Point Loads (BLC 26 : Ice Wind Load AZI 270) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
4	MP1	Z	0	66
5	MP1	X	4.7	20
6	MP1	Z	0	20
7	MP1	X	4.95	40
8	MP1	Z	0	40
9	MP1	X	5.25	60
10	MP1	Z	0	60
11	MP4	X	14.76	6
12	MP4	Z	0	6
13	MP4	X	14.76	66
14	MP4	Z	0	66
15	MP4	X	5.82	20
16	MP4	Z	0	20
17	MP4	X	5.88	40
18	MP4	Z	0	40
19	MP7	X	14.76	6
20	MP7	Z	0	6
21	MP7	X	14.76	66
22	MP7	Z	0	66
23	MP7	X	5.82	20
24	MP7	Z	0	20
25	MP7	X	5.88	40
26	MP7	Z	0	40

Member Point Loads (BLC 27 : Ice Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	10.7	6
2	MP1	Z	-6.18	6
3	MP1	X	10.7	66
4	MP1	Z	-6.18	66
5	MP1	X	4.39	20
6	MP1	Z	-2.54	20
7	MP1	X	4.56	40
8	MP1	Z	-2.63	40
9	MP1	X	4.82	60
10	MP1	Z	-2.79	60
11	MP4	X	10.7	6
12	MP4	Z	-6.18	6
13	MP4	X	10.7	66
14	MP4	Z	-6.18	66
15	MP4	X	4.39	20
16	MP4	Z	-2.54	20
17	MP4	X	4.56	40
18	MP4	Z	-2.63	40
19	MP7	X	13.83	6
20	MP7	Z	-7.98	6
21	MP7	X	13.83	66
22	MP7	Z	-7.98	66
23	MP7	X	5.36	20
24	MP7	Z	-3.1	20
25	MP7	Х	5.36	40
26	MP7	Z	-3.1	40

Member Point Loads (BLC 28 : Ice Wind Load AZI 330)

_	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	7.38	6
_				

Member Point Loads (BLC 28 : Ice Wind Load AZI 330) (Continued)

	Member Label	Direction	Magnitude[Ib,Ib-ft]	Location[in,%]
2	MP1	Z	-12.79	6
3	MP1	X	7.38	66
4	MP1	Z	-12.79	66
5	MP1	Х	2.91	20
6	MP1	Z	-5.04	20
7	MP1	X	2.94	40
8	MP1	Z	-5.09	40
9	MP1	X	3.1	60
10	MP1	Z	-5.37	60
11	MP4	Х	5.58	6
12	MP4	Z	-9.66	6
13	MP4	X	5.58	66
14	MP4	Z	-9.66	66
15	MP4	X	2.35	20
16	MP4	Z	-4.07	20
17	MP4	X	2.48	40
18	MP4	Z	-4.29	40
19	MP7	X	7.38	6
20	MP7	Z	-12.79	6
21	MP7	Х	7.38	66
22	MP7	Z	-12.79	66
23	MP7	X	2.91	20
24	MP7	Z	-5.04	20
25	MP7	X	2.94	40
26	MP7	Z	-5.09	40

Member Point Loads (BLC 31 : Seismic Load Z)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	-11.814	6
2	MP1	Z	-11.814	66
3	MP1	Z	-18.301	20
4	MP1	Z	-21.48	40
5	MP1	Z	-6.258	60
6	MP4	Z	-11.814	6
7	MP4	Z	-11.814	66
8	MP4	Z	-18.301	20
9	MP4	Z	-21.48	40
10	MP7	Z	-11.814	6
11	MP7	Z	-11.814	66
12	MP7	Z	-18.301	20
13	MP7	Z	-21.48	40

Member Point Loads (BLC 32 : Seismic Load X)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Х	-11.814	6
2	MP1	Х	-11.814	66
3	MP1	Х	-18.301	20
4	MP1	Х	-21.48	40
5	MP1	Х	-6.258	60
6	MP4	Х	-11.814	6
7	MP4	Х	-11.814	66
8	MP4	Х	-18.301	20
9	MP4	Х	-21.48	40
10	MP7	Х	-11.814	6
11	MP7	Х	-11.814	66
12	MP7	Х	-18.301	20

Member Point Loads (BLC 32 : Seismic Load X) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
13	MP7	X	-21.48	40

Member Distributed Loads (BLC 14 : Distr. Wind Load Z)

	Member Label	Direction	Start Magnitude[Ib/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	SZ	-67.227	-67.227	0	%100
2	S3	SZ	-67.227	-67.227	0	%100
3	M3	SZ	-67.227	-67.227	0	%100
4	M4	SZ	-67.227	-67.227	0	%100
5	M5	SZ	-67.227	-67.227	0	%100
6	M6	SZ	-67.227	-67.227	0	%100
7	S2	SZ	-67.227	-67.227	0	%100
8	M8	SZ	-67.227	-67.227	0	%100
9	M9	SZ	-67.227	-67.227	0	%100
10	M10	SZ	-67.227	-67.227	0	%100
11	M11	SZ	-67.227	-67.227	0	%100
12	S1	SZ	-67.227	-67.227	0	%100
13	M13	SZ	-67.227	-67.227	0	%100
14	M14	SZ	-67.227	-67.227	Ő	%100
15	M15	SZ	-67.227	-67.227	0	%100
16	HOR1	SZ	-40.336	-40.336	0	%100
17	HOR3	SZ	-40.336	-40.336	0	%100
18	HOR2	SZ	-40.336	-40.336	0	%100
19	HR1	SZ	-40.336	-40.336	0	%100
20	HR3	SZ	-40.336	-40.336	0	%100
21	HR2	SZ	-40.336	-40.336	0	%100
22	M22	SZ	0	0	0	%100
23	M23	SZ	0	0	0	%100
24	M24	SZ	0	0	0	%100
25	M25	SZ	0	0	0	%100
26	M26	SZ	0	0	0	%100
27	M27	SZ	0	0	0	%100
28	MP3	SZ	-40.336	-40.336	0	%100
29	MP2	SZ	-40.336	-40.336	0	%100
30	MP1	SZ	-40.336	-40.336	0	%100
31	M31	SZ	0	0	0	%100
32	M32	SZ	0	0	0	%100
33	M33	SZ	0	0	0	%100
34	MP9	SZ	-40.336	-40.336	0	%100
35	MP8	SZ	-40.336	-40.336	0	%100
36	MP7	SZ	-40.336	-40.336	0	%100
37	M37	SZ	0	0	0	%100
38	M38	SZ	0	0	0	%100
39	M39	SZ	0	0	0	%100
40	MP6	SZ	-40.336	-40.336	0	%100
41	MP5	SZ	-40.336	-40.336	0	%100
42	MP4	SZ	-40.336	-40.336	0	%100
43	M43	SZ	0	0	0	%100
44	M44	SZ	0	0	0	%100
45	M45	SZ	0	0	0	%100
46	M46	SZ	0	0	0	%100
47	M47	SZ	0	0	0	%100
48	M48	SZ	0	0	0	%100
49	M49	<u>SZ</u>	-67.227	-67.227	0	%100
50	M50	SZ	-67.227	-67.227	0	%100
51	M51	SZ	-67.227	-67.227	0	%100

Member Distributed Loads (BLC 15 : Distr. Wind Load X)

1	Member Label					End Location[in,%]
	M1	Direction SX	-67.227	End Magnitude[lb/ft,F -67.227	0	%100
2	S3	SX	-67.227	-67.227	0	%100
3	M3	SX	-67.227	-67.227	0	%100
4	M4	SX	-67.227	-67.227	0	%100
5	M5	SX	-67.227	-67.227	0	%100
6	M6	SX	-67.227	-67.227	0	%100
7	S2	SX	-67.227	-67.227	0	%100
8	M8	SX	-67.227	-67.227	0	%100
9	M9	SX	-67.227	-67.227	0	%100
10	M10	SX	-67.227	-67.227	0	%100
11	M11	SX	-67.227	-67.227	0	%100
12	<u>S1</u>	SX	-67.227	-67.227	0	%100
13	M13	SX	-67.227	-67.227	0	%100
14	M14	SX	-67.227	-67.227	0	%100
15	M15	SX	-67.227	-67.227	0	%100
16	HOR1	SX	-40.336	-40.336	0	%100
17	HOR3	SX	-40.336	-40.336	0	%100
18	HOR2	SX	-40.336	-40.336	0	%100
19	HR1	SX	-40.336	-40.336	0	%100
20	HR3	SX	-40.336	-40.336	0	%100
21	HR2	SX	-40.336	-40.336	0	%100
22	M22	SX	0	0	0	%100
23	M23	SX	0	0	0	%100
24	M24	SX	0	0	0	%100
25	M25	SX	0	0	0	%100
26	M26	SX	0	0	0	%100
27	M27	SX	0	0	0	%100
28	MP3	SX	-40.336	-40.336	0	%100
29	MP2	SX	-40.336	-40.336	0	<u>%100</u>
<u>30</u> 31	MP1	SX	-40.336	-40.336	0	<u>%100</u>
31	<u>M31</u> M32	SX SX	0	0	0	<u>%100</u> %100
33	M33	SX	0	0	0	%100
34	MP9	SX	-40.336	-40.336	0	%100
35	MP8	SX SX	-40.336	-40.336	0	%100
36	MP7	SX	-40.336	-40.336	0	%100
37	M37	SX	0	0	0	%100
38	M38	SX	0	0	0	%100
39	M39	SX	0	0	0	%100
40	MP6	SX	-40.336	-40.336	0	%100
41	MP5	SX	-40.336	-40.336	0	%100
42	MP4	SX	-40.336	-40.336	0	%100
43	M43	SX	0	0	0	%100
44	M44	SX	0	0	0	%100
45	M45	SX	0	0	0	%100
46	M46	SX	0	0	0	%100
47	M47	SX	0	0	0	%100
48	M48	SX	0	0	0	%100
49	M49	SX	-67.227	-67.227	0	%100
50	M50	SX	-67.227	-67.227	0	%100
51	M51	SX	-67.227	-67.227	0	%100

Member Distributed Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Y	-10.014	-10.014	0	%100
2	S3	Y	-14.63	-14.63	0	%100

Member Distributed Loads (BLC 16 : Ice Weight) (Continued)

					Otant La satism fin 0/1	Engl Lagation fin 0/1
2	Member Label	Direction Y		.End Magnitude[lb/ft,F		End Location[in,%]
3	M3 M4	Y	-8.96	<u>-8.96</u> -8.96	0	<u>%100</u> %100
	M5	Y				<u>%100</u> %100
5	M6	Y	-16.342	-16.342	0	<u>%100</u> %100
6			-10.014	-10.014	0	
8	<u>S2</u>	Y Y	-14.63	-14.63	0	<u>%100</u>
	M8	Y	-8.96	-8.96		<u>%100</u>
9	M9	Y	-8.96	-8.96	0	<u>%100</u>
10	M10		-16.342	-16.342	0	<u>%100</u>
11	M11	Y	-10.014	-10.014	0	%100
12	<u>S1</u>	Y	-14.63	-14.63	0	%100
13	M13	Y	-8.96	-8.96	0	%100
14	M14	Y	-8.96	-8.96	0	%100
15	M15	Y	-16.342	-16.342	0	%100
16	HOR1	Y	-11.309	-11.309	0	%100
17	HOR3	Y	-11.309	-11.309	0	%100
18	HOR2	Y	-11.309	-11.309	0	%100
19	HR1	Y	-11.309	-11.309	0	%100
20	HR3	Y	-11.309	-11.309	0	%100
21	HR2	Y	-11.309	-11.309	0	%100
22	M22	Y	-3.29	-3.29	0	%100
23	M23	Y	-3.29	-3.29	0	%100
24	M24	Y	-3.29	-3.29	0	%100
25	M25	Y	-3.29	-3.29	0	%100
26	M26	Y	-3.29	-3.29	0	%100
27	M27	Y	-3.29	-3.29	0	%100
28	MP3	Y	-8.051	-8.051	0	%100
29	MP2	Y	-8.051	-8.051	0	%100
30	MP1	Y	-8.051	-8.051	0	%100
31	M31	Y	-3.29	-3.29	0	%100
32	M32	Y	-3.29	-3.29	0	%100
33	M33	Y	-3.29	-3.29	0	%100
34	MP9	Y	-8.051	-8.051	0	%100
35	MP8	Y	-8.051	-8.051	0	%100
36	MP7	Y	-8.051	-8.051	0	%100
37	M37	Y	-3.29	-3.29	0	%100
38	M38	Y	-3.29	-3.29	0	%100
39	M39	Y	-3.29	-3.29	0	%100
40	MP6	Y	-8.051	-8.051	0	%100
41	MP5	Y	-8.051	-8.051	0	%100
42	MP4	Y	-8.051	-8.051	0	%100
43	M43	Y	-3.29	-3.29	0	%100
44	M44	Y	-3.29	-3.29	0	%100
45	M45	Y	-3.29	-3.29	0	%100
46	M46	Y	-3.29	-3.29	0	%100
47	M47	Y	-3.29	-3.29	0	%100
48	M48	Y	-3.29	-3.29	0	%100
49	M49	Y	-10.378	-10.378	0	%100
50	M50	Y	-10.378	-10.378	0	%100
51	M51	Y	-10.378	-10.378	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	SZ	-13.404	-13.404	0	%100
2	S3	SZ	-10.706	-10.706	0	%100
3	M3	SZ	-14.636	-14.636	0	%100
4	M4	SZ	-14.636	-14.636	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[in.%]	End Location[in,%]
5	M5	SZ	-10.19	-10.19	0	%100
6	M6	SZ	-13.404	-13.404	0	%100
7	S2	SZ	-10.706	-10.706	0	%100
8	M8	SZ	-14.636	-14.636	0	%100
9	M9	SZ	-14.636	-14.636	0	%100
10	M10	SZ	-10.19	-10.19	0	%100
11	M11	SZ	-13.404	-13.404	0	%100
12	S1	SZ	-10.706	-10.706	0	%100
13	M13	SZ	-14.636	-14.636	0	%100
14	M14	SZ	-14.636	-14.636	0	%100
15	M15	SZ	-10.19	-10.19	0	%100
16	HOR1	SZ	-12.334	-12.334	0	%100
17	HOR3	SZ	-12.334	-12.334	0	%100
18	HOR2	SZ	-12.334	-12.334	0	%100
19	HR1	SZ	-12.334	-12.334	0	%100
20	HR3	SZ	-12.334	-12.334	0	%100
21	HR2	SZ	-12.334	-12.334	0	%100
22	M22	SZ	0	0	0	%100
23	M23	SZ	0	0	0	%100
24	M24	SZ	0	0	0	%100
25	M25	SZ	0	0	0	%100
26	M26	SZ	0	0	0	%100
27	M27	SZ	0	0	0	%100
28	MP3	SZ	-16.137	-16.137	0	%100
29	MP2	SZ	-16.137	-16.137	0	%100
30	MP1	SZ	-16.137	-16.137	0	%100
31	M31	SZ	0	0	0	%100
32	M32	SZ	0	0	0	%100
33	M33	SZ	0	0	0	%100
34	MP9	SZ	-16.137	-16.137	0	%100
35	MP8	SZ	-16.137	-16.137	0	%100
36	MP7	SZ	-16.137	-16.137	0	%100
37	M37	SZ	0	0	0	%100
38	M38	SZ	0	0	0	%100
39	M39	SZ	0	0	0	%100
40	MP6	SZ	-16.137	-16.137	0	%100
41	MP5	SZ	-16.137	-16.137	0	%100
42	MP4	SZ	-16.137	-16.137	0	%100
43	M43	SZ	0	0	0	%100
44	M44	SZ	0	0	0	%100
45	M45	SZ	0	0	0	%100
46	M46	SZ	0	0	0	%100
47	M47	SZ	0	0	0	%100
48	M48	SZ	0	0	0	%100
49	M49	SZ	-13.064	-13.064	0	%100
50	M50	SZ	-13.064	-13.064	0	%100
51	M51	SZ	-13.064	-13.064	0	%100

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	SX	-13.404	-13.404	0	%100
2	S3	SX	-10.706	-10.706	0	%100
3	M3	SX	-14.636	-14.636	0	%100
4	M4	SX	-14.636	-14.636	0	%100
5	M5	SX	-10.19	-10.19	0	%100
6	M6	SX	-13.404	-13.404	0	%100

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
7	S2	SX	-10.706	-10.706	0	%100
8	M8	SX	-14.636	-14.636	0	%100
9	M9	SX	-14.636	-14.636	0	%100
10	M10	SX	-10.19	-10.19	0	%100
11	M11	SX	-13.404	-13.404	0	%100
12	S1	SX	-10.706	-10.706	0	%100
13	M13	SX	-14.636	-14.636	0	%100
14	M14	SX	-14.636	-14.636	0	%100
15	M15	SX	-10.19	-10.19	0	%100
16	HOR1	SX	-12.334	-12.334	0	%100
17	HOR3	SX	-12.334	-12.334	0	%100
18	HOR2	SX	-12.334	-12.334	0	%100
19	HR1	SX	-12.334	-12.334	0	%100
20	HR3	SX	-12.334	-12.334	0	%100
21	HR2	SX	-12.334	-12.334	0	%100
22	M22	SX	0	0	0	%100
23	M23	SX	0	0	0	%100
24	M24	SX	0	0	0	%100
25	M25	SX	0	0	0	%100
26	M26	SX	0	0	0	%100
27	M27	SX	0	0	0	%100
28	MP3	SX	-16.137	-16.137	0	%100
29	MP2	SX	-16.137	-16.137	0	%100
30	MP1	SX	-16.137	-16.137	0	%100
31	M31	SX	0	0	0	%100
32	M32	SX	0	0	0	%100
33	M33	SX	0	0	0	%100
34	MP9	SX	-16.137	-16.137	0	%100
35	MP8	SX	-16.137	-16.137	0	%100
36	MP7	SX	-16.137	-16.137	0	%100
37	M37	SX	0	0	0	%100
38	M38	SX	0	0	0	%100
39	M39	SX	0	0	0	%100
40	MP6	SX	-16.137	-16.137	0	%100
41	MP5	SX	-16.137	-16.137	0	%100
42	MP4	SX	-16.137	-16.137	0	%100
43	M43	SX	0	0	0	%100
44	M44	SX	0	0	0	%100
45	M45	SX	0	0	0	%100
46	M46	SX	0	0	0	%100
47	<u>M47</u>	SX	0	0	0	%100
48	M48	SX	0	0	0	%100
49	M49	SX	-13.064	-13.064	0	%100
50	M50	SX	-13.064	-13.064	0	%100
51	M51	SX	-13.064	-13.064	0	%100

Member Distributed Loads (BLC 43 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	S3	Y	-3.185	-3.185	0	23.596
2	M3	Y	-1.406	-1.406	.498	27.295
3	M4	Y	-1.406	-1.406	.498	27.295
4	S2	Y	-3.185	-3.185	0	23.596
5	M8	Y	-1.406	-1.406	.498	27.295
6	M9	Y	-1.406	-1.406	.498	27.295
7	S1	Y	-3.185	-3.185	0	23.596
8	M13	Y	-1.406	-1.406	.498	27.295

Member Distributed Loads (BLC 43 : BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
9	M14	Y	-1.406	-1.406	.498	27.295

Member Distributed Loads (BLC 44 : BLC 16 Transient Area Loads)

	Member Label	Direction	_Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	S3	Y	-27.849	-27.849	0	23.596
2	M3	Y	-12.29	-12.29	.498	27.295
3	M4	Y	-12.29	-12.29	.498	27.295
4	S2	Y	-27.849	-27.849	0	23.596
5	M8	Y	-12.29	-12.29	.498	27.295
6	M9	Y	-12.29	-12.29	.498	27.295
7	S1	Y	-27.849	-27,849	0	23,596
8	M13	Y	-12.29	-12.29	.498	27.295
9	M14	Y	-12.29	-12.29	.498	27.295

Load Combinations

	Description	S P	SRSS	В	Fa	В	Fa	. В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	в	Fa
1	1.4DL	Yes Y		1	1.4																		
2	1.2DL + 1WL AZI 0	Yes Y		1	1.2	2	1	14	1	15													
3	1.2DL + 1WL AZI 30	Yes Y		1	1.2	3	1		.866														
4	1.2DL + 1WL AZI 60			1	1.2	4	1	14	.5	15	.866												
5	1.2DL + 1WL AZI 90	Yes Y		1	1.2	5	1	14		15	1												
6	1.2DL + 1WL AZI 120)Yes Y		1	1.2	6	1	14	5	15	.866												
7	1.2DL + 1WL AZI 150)Yes Y		1	1.2	7	1	14	8	15	.5												
8	1.2DL + 1WL AZI 180)Yes Y		1	1.2	8	1	14	-1	15													
	1.2DL + 1WL AZI 210			1	1.2	9	1		8		5												
10	1.2DL + 1WL AZI 240)Yes Y		1	1.2	10	1	14	5	15	8												
11	1.2DL + 1WL AZI 270)Yes Y		1	1.2	11		14			-1												
12	1.2DL + 1WL AZI 300)Yes Y		1	1.2	12			.5														
13	1.2DL + 1WL AZI 330)Yes Y		1	1.2				.866	15	5												
	0.9DL + 1WL AZI 0			1	.9	2	1	14		15													
	0.9DL + 1WL AZI 30			1	.9	3	1		.866														
	0.9DL + 1WL AZI 60			1		4	1	14			.866												
	0.9DL + 1WL AZI 90			1	.9	5		14		15	1												
	0.9DL + 1WL AZI 120			1	.9	6	1	14	5		.866												
	0.9DL + 1WL AZI 150			1	.9	7	1	14	8	15	.5												
	0.9DL + 1WL AZI 180			1	.9	8	1	14	-1	15													
21	0.9DL + 1WL AZI 210)Yes Y		1	.9	9	1		8														
22	0.9DL + 1WL AZI 240)Yes Y		1	.9	10	1	14	5	15	8												
23	0.9DL + 1WL AZI 270)Yes Y		1		11		14		15													
	0.9DL + 1WL AZI 300			1		12			.5		8												
25	0.9DL + 1WL AZI 330			1		13		14	.866	15	5												
26	1.2D + 1.0Di	Yes Y		1		16																	
	1.2D + 1.0Di +1.0Wi AZI			1		16		17		29	1	30											
	1.2D + 1.0Di +1.0Wi AZI			1		16		18			.866												
	1.2D + 1.0Di +1.0Wi AZI			1		16		19		29	.5		.866										
	1.2D + 1.0Di +1.0Wi AZI			1		16		20	1	29		30											
	1.2D + 1.0Di +1.0Wi AZI			1	1.2	16		21	1				.866										
	1.2D + 1.0Di +1.0Wi AZI			1		16		22	1		8												
	1.2D + 1.0Di +1.0Wi AZI			1		16		23		29		30											
	1.2D + 1.0Di +1.0Wi AZI			1	1.2	16		24			8												
	1.2D + 1.0Di +1.0Wi AZI			1	1.2	16		25	1	29	5												
	1.2D + 1.0Di +1.0Wi AZI			1	1.2	16		26	1	29		30											
	1.2D + 1.0Di +1.0Wi AZI			1	1.2	16	1	27	1	29	.5	30	8										
38	1.2D + 1.0Di +1.0Wi AZI	Yes Y		1	1.2	16	1	28		29	.866	30	5										
39	(1.2 + 0.2Sds)DL + 1.0E	Yes Y		1	1.2	31	1	32															

Load Combinations (Continued)

	Description	<u>S P</u>	SRSS E	<u> 3</u>	Fa	B	Fa	B	Fa	В	Fa	В	Fa	B	Fa	B	<u>Fa</u>	B	Fa	B	Fa	B	<u>Fa</u>
40	(1.2 + 0.2Sds)DL + 1.0E			1	1.2	31	.866	32	.5														
41	(1.2 + 0.2Sds)DL + 1.0E	Yes Y		1	1.2	31	.5	32	.866														
	(1.2 + 0.2Sds)DL + 1.0E				1.2			32															
	(1.2 + 0.2Sds)DL + 1.0E																						
							5																_
	(1.2 + 0.2Sds)DL + 1.0E						8		.5														
	(1.2 + 0.2Sds)DL + 1.0E				1.2			32															
46	(1.2 + 0.2Sds)DL + 1.0E	Yes Y		1	1.2	31	8	32	5														
47	(1.2 + 0.2Sds)DL + 1.0E	Yes Y					5																
	(1.2 + 0.2Sds)DL + 1.0E				1.2			32															
	(1.2 + 0.2Sds)DL + 1.0E			1	12	21	.5	22	- 8														
	(1.2 + 0.2Sds)DL + 1.0E																						
							.866																
	(0.9 - 0.2Sds)DL + 1.0E				.862			32															
	(0.9 - 0.2Sds)DL + 1.0E			1			.866																
53	(0.9 - 0.2Sds)DL + 1.0E	Yes Y		1	.862			32	.866														
54	(0.9 - 0.2Sds)DL + 1.0E	Yes Y		1	.862	31		32	1														
55	(0.9 - 0.2Sds)DL + 1.0E	Yes Y		1	.862	31	5																
	(0.9 - 0.2Sds)DL + 1.0E			1			8																
57	(0.9 - 0.2Sds)DL + 1.0E				.862			32				_											
	(0.9 - 0.2Sds)DL + 1.0E			1			8		E														
	(0.9 - 0.2Sds)DL + 1.0E			1			5																
	(0.9 - 0.2Sds)DL + 1.0E			1	.862			32															
	(0.9 - 0.2Sds)DL + 1.0E			1	.862				8														
				1	.862	31	.866	32	5														
63	1.0DL + 1.5LL + 1.0SWL	Yes Y		1	1	2	.242	14	.242	15		33	1.5										
	1.0DL + 1.5LL + 1.0SWL			1	1				.209														
	1.0DL + 1.5LL + 1.0SWL			1	1				.121											1			
	1.0DL + 1.5LL + 1.0SWL			1	1		.242				.242												
	1.0DL + 1.5LL + 1.0SWL			· ·																			_
				1	1				1														_
	1.0DL + 1.5LL + 1.0SWL			1	1				2														
	1.0DL + 1.5LL + 1.0SWL			1	1				2			33	1.5										
	1.0DL + 1.5LL + 1.0SWL			1	1	9	.242	14	2	15	1	33	1.5										
71	1.0DL + 1.5LL + 1.0SWL	Yes Y		1	1	10	.242	14	1	15	2	33	1.5										
	1.0DL + 1.5LL + 1.0SWL			1			.242				2												
	1.0DL + 1.5LL + 1.0SWL			1					.121														
	1.0DL + 1.5LL + 1.0SWL			1					.209														
									.209	10	I	33	1.5										
75		Yes Y					1.5																_
	1.2DL + 1.5LM-MP1 + 1								.06														
	1.2DL + 1.5LM-MP1 + 1								.06														
78	1.2DL + 1.5LM-MP1 + 1	Yes Y		1	1.2	34	1.5	4	.06	14	.03	15	.052										
79	1.2DL + 1.5LM-MP1 + 1	Yes Y		1	1.2	34	1.5	5	.06	14		15	.06										
	1.2DL + 1.5LM-MP1 + 1								.06														
	1.2DL + 1.5LM-MP1 + 1								.06							1							
									.06														
	1.2DL + 1.5LM-MP1 + 1																						
				1					.06														
	1.2DL + 1.5LM-MP1 + 1			1					.06		03	15	0										
	1.2DL + 1.5LM-MP1 + 1			1					.06				06										
	1.2DL + 1.5LM-MP1 + 1			1					.06														
	1.2DL + 1.5LM-MP1 + 1			1					.06														
88	1.2DL + 1.5LM-MP2 + 1	Yes Y		1					.06														
	1.2DL + 1.5LM-MP2 + 1			1					.06						1	1							
	1.2DL + 1.5LM-MP2 + 1			1			1.5				.03												
	1.2DL + 1.5LM-MP2 + 1			1	1.2	35	1.5	5	.00				.06										
				1																			
	1.2DL + 1.5LM-MP2 + 1								.06														
	1.2DL + 1.5LM-MP2 + 1			1			1.5				0												
	1.2DL + 1.5LM-MP2 + 1			1	1.2	35	1.5	8	.06	14	06	15											
	1.2DL + 1.5LM-MP2 + 1			1	<u>1.2</u>	35	1.5	9	.06	14	0	15	03										
96	1.2DL + 1.5LM-MP2 + 1	Yes Y		1	1.2	35	1.5	10	.06	14	03	15	0										
										_													

Load Combinations (Continued)

Description S P	SRSS_B Fa B Fa B	Fa B Fa B	Fa B Fa	3 Fa I	B Fa	B Fa	B Fa
97 1.2DL + 1.5LM-MP2 + 1 Yes Y	1 1.2 35 1.5 11		06				
98 1.2DL + 1.5LM-MP2 + 1 Yes Y	1 1.2 35 1.5 12						
99 1.2DL + 1.5LM-MP2 + 1 Yes Y							
					_		
100 1.2DL + 1.5LM-MP3 + 1 Yes Y	1 1.2 36 1.5 2						
101 1.2DL + 1.5LM-MP3 + 1 Yes Y	1 1.2 36 1.5 3	06 14 052 15	.03				
102 1.2DL + 1.5LM-MP3 + 1 Yes Y	1 1.2 36 1.5 4	.06 14 .03 15	.052				
103 1.2DL + 1.5LM-MP3 + 1 Yes Y	1 1.2 36 1.5 5		.06				
104 1.2DL + 1.5LM-MP3 + 1 Yes Y		.06 1403 15					
105 1.2DL + 1.5LM-MP3 + 1 Yes Y		.06 140 15					
			.05				
106 1.2DL + 1.5LM-MP3 + 1 Yes Y	1 1.2 36 1.5 8						
107 1.2DL + 1.5LM-MP3 + 1 Yes Υ	1 1.2 36 1.5 9	.06 140 15	03		_		
108 1.2DL + 1.5LM-MP3 + 1 Yes Y		.06 1403 15					
109 1.2DL + 1.5LM-MP3 + 1 Yes Y	1 1.2 36 1.5 11	.06 14 15	06				
110 1.2DL + 1.5LM-MP3 + 1 Yes Y	1 1.2 36 1.5 12	.06 14 .03 15	0				
111 1.2DL + 1.5LM-MP3 + 1 Yes Y	1 1.2 36 1.5 13						
112 1.2DL + 1.5LM-MP4 + 1 Yes Y		.06 14 .06 15					
113 1.2DL + 1.5LM-MP4 + 1 Yes Y		.06 14 .052 15	03				
114 1.2DL + 1.5LM-MP4 + 1 Yes Y							
		.06 14 .03 15					
115 1.2DL + 1.5LM-MP4 + 1 Yes Y	1 1.2 37 1.5 5		.06				
116 1.2DL + 1.5LM-MP4 + 1 Yes Y	1 1.2 37 1.5 6						
117 1.2DL + 1.5LM-MP4 + 1 Yes Y		.06 140 15					
118 1.2DL + 1.5LM-MP4 + 1 Yes Y		.06 1406 15					
119 1.2DL + 1.5LM-MP4 + 1 Yes Y		.06 140 15					
120 1.2DL + 1.5LM-MP4 + 1 Yes Y		.06 1403 15					
121 1.2DL + 1.5LM-MP4 + 1 Yes Y	1 1.2 37 1.5 11		06				
122 1.2DL + 1.5LM-MP4 + 1 Yes Y	1 1.2 37 1.5 12					<u> </u>	
123 1.2DL + 1.5LM-MP4 + 1 Yes Y		.06 14 .052 15					
124 1.2DL + 1.5LM-MP5 + 1 Yes Y		.06 14 .06 15					
125 1.2DL + 1.5LM-MP5 + 1 Yes Y	1 1.2 38 1.5 3	.06 14 052 15	.03				
126 1.2DL + 1.5LM-MP5 + 1 Yes Y	1 1.2 38 1.5 4						
127 1.2DL + 1.5LM-MP5 + 1 Yes Y	1 1.2 38 1.5 5		.06				
128 1.2DL + 1.5LM-MP5 + 1 Yes Y		.06 1403 15					
129 1.2DL + 1.5LM-MP5 + 1 Yes Y							
		.06 140 15			_		
130 1.2DL + 1.5LM-MP5 + 1 Yes Y		.06 1406 15					
131 1.2DL + 1.5LM-MP5 + 1 Yes Y	1 1.2 38 1.5 9						
132 1.2DL + 1.5LM-MP5 + 1 Yes Y	1 1.2 38 1.5 10	.06 1403 15	0				
133 1.2DL + 1.5LM-MP5 + 1 Yes Y	1 1.2 38 1.5 11		06				
134 1.2DL + 1.5LM-MP5 + 1 Yes Y		.06 14 .03 15					
135 1.2DL + 1.5LM-MP5 + 1 Yes Y		.06 14 .052 15					
136 1.2DL + 1.5LM-MP6 + 1 Yes Y							
137 1.2DL + 1.5LM-MP6 + 1 Yes Y							
138 1.2DL + 1.5LM-MP6 + 1 Yes Y	1 1.2 39 1.5 4						
139 1.2DL + 1.5LM-MP6 + 1 Yes Y	1 1.2 39 1.5 5		.06				
140 1.2DL + 1.5LM-MP6 + 1 Yes Y	1 1.2 39 1.5 6	.06 1403 15	.052				
141 1.2DL + 1.5LM-MP6 + 1 Yes Y		.06 140 15					
142 1.2DL + 1.5LM-MP6 + 1 Yes Y	1 1.2 39 1.5 8						
143 1.2DL + 1.5LM-MP6 + 1 Yes Y		.06 140 15					
144 1.2DL + 1.5LM-MP6 + 1 Yes Y							
		.06 1403 15					
145 1.2DL + 1.5LM-MP6 + 1 Yes Y	1 1.2 39 1.5 11		06				
146 1.2DL + 1.5LM-MP6 + 1 Yes Y	1 1.2 39 1.5 12						
147 1.2DL + 1.5LM-MP6 + 1 Yes Y	1 1.2 39 1.5 13	.06 14 052 15	03				
148 1.2DL + 1.5LM-MP7 + 1 Yes Y	1 1.2 40 1.5 2	.06 14 .06 15					
149 1.2DL + 1.5LM-MP7 + 1 Yes Y	1 1.2 40 1.5 3						
150 1.2DL + 1.5LM-MP7 + 1 Yes Y							
151 1.2DL + 1.5LM-MP7 + 1 Yes Y	1 1.2 40 1.5 5		.06				
152 1.2DL + 1.5LM-MP7 + 1 Yes Y	1 1.2 40 1.5 6						
			02				
153 1.2DL + 1.5LM-MP7 + 1 Yes Y	1 1.2 40 1.5 7	.00 14 0 15	1.03				

RISA-3D Version 17.0.4 [L:\...\...\...\2021.09.06 - MA\Report\Model\MC-PK8-B_loaded.r3d]

Load Combinations (Continued)

Description	S P	SRSS	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
154 1.2DL + 1.5LM-MP7 + 1	Yes Y		1	1.2	40	1.5	8	.06	14	06	15											
155 1.2DL + 1.5LM-MP7 + 1	Yes Y		1	1.2						0												
156 1.2DL + 1.5LM-MP7 + 1	Yes Y		1	1.2			10			03												
157 1.2DL + 1.5LM-MP7 +	Yes Y		1	1.2	40		11	.06	14		15	06										
158 1.2DL + 1.5LM-MP7 +	Yes Y		1	1.2	40	1.5	12	.06	14	.03												
159 1.2DL + 1.5LM-MP7 +	Yes Y		1	1.2	40	1.5	13	.06	14	.052												
160 1.2DL + 1.5LM-MP8 +	Yes Y		1	1.2	41	1.5	2	.06			15											
161 1.2DL + 1.5LM-MP8 +	Yes Y		1	1.2	41	1.5				.052		.03										
162 1.2DL + 1.5LM-MP8 +			1	1.2	41	1.5		.06				.052										
163 1.2DL + 1.5LM-MP8 + 1	Yes Y		1	1.2	41			.06			15											
164 1.2DL + 1.5LM-MP8 +	Yes Y		1	1.2	41	1.5				03												
165 1.2DL + 1.5LM-MP8 +	Yes Y		1	1.2	41	1.5		.06		0												
166 1.2DL + 1.5LM-MP8 +	Yes Y		1	1.2	41	1.5		.06		06												
167 1.2DL + 1.5LM-MP8 +	Yes Y		1	1.2	41	1.5						03										
168 1.2DL + 1.5LM-MP8 +	Yes Y		1	1.2	41	1.5				03												
169 1.2DL + 1.5LM-MP8 + 1	Yes Y		1	1.2	41	1.5	11	.06	14		15	06										
170 1.2DL + 1.5LM-MP8 +	Yes Y		1	1.2	41	1.5	12	.06	14	.03	15	0										
171 1.2DL + 1.5LM-MP8 + 7	Yes Y		1	1.2	41		13			.052												
172 1.2DL + 1.5LM-MP9 + 7	Yes Y		1	1.2	42	1.5	2	.06			15											
173 1.2DL + 1.5LM-MP9 + 7	Yes Y		1	1.2	42	1.5		.06	14	.052	15	.03										
174 1.2DL + 1.5LM-MP9 + 7	Yes Y		1	1.2	42			.06	14	.03	15	.052										
175 1.2DL + 1.5LM-MP9 + 7	Yes Y		1	1.2	42	1.5	5	.06			15	.06										
176 1.2DL + 1.5LM-MP9 +	Yes Y		1	1.2	42	1.5		.06	14	03	15	.052										
177 1.2DL + 1.5LM-MP9 +	Yes Y		1	1.2	42	1.5	7	.06	14	0	15	.03										
178 1.2DL + 1.5LM-MP9 +	Yes Y		1	1.2	42	1.5	8	.06	14	06	15											
179 1.2DL + 1.5LM-MP9 +	Yes Y		1	1.2	42	1.5	9			0		03										
180 1.2DL + 1.5LM-MP9 +	Yes Y		1	1.2	42	1.5				03												
181 1.2DL + 1.5LM-MP9 +			1	1.2	42	1.5		.06				06										
182 1.2DL + 1.5LM-MP9 +	Yes Y		1	1.2	42	1.5	12	.06	14	.03	15	0										

Envelope Joint Reactions

	Joint	-	X [lb]	LC	Y [l b]	LC	Z [l b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	766.01	4	1914.078	31	1208.23	3	128.395	25	1514.172	15	-17.63	24
2		min	-762.506	22	100.244	24	-1203.179	21	-2119.542	32	-1523.69	9	-3839.176	31
3	N1	max	693.401	7	1960.909	35	1254.815	25	83.2	15	1548.504	19	3782.142	35
4		min	-690.902	25	110.034	16	-1258.822	7	-2485.18	34	-1560.644	13	25.279	16
5	N13	max	1319.002	17	1871.745	27	331.08	14	4273.917	27	1375.915	23	618.219	157
6		min	-1325.199	11	77.359	20	-332.895	8	-43.099	20	-1385.319	5	-489.746	139
7	Totals:	max	2407.805	17	5449.118	36	2556.699	14						
8		min	-2407.806	11	1476.141	54	-2556.7	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	< Loc	LC	phi*Pnphi*Pn	.phi*M	phi*M	Egn
1	M1	C3X5	.332	34.856	35	.101	63 y	31	3702747628	981 263	4020.21	H1-1b
2	M11	C3X5	.321	34.856	31	.101	63 y	28	3702747628			
3	M6	C3X5	.315	34.856	27	.097	63 y	35	3702747628	981.263	4020.21	H1-1b
4	S3	HSS4X4X4	.288	40	33	.081	40 y	82	13720 139518			
5	S1	HSS4X4X4	.281	40	33	.078	40 y	114			16180.5	
6	M51	L2.5x2.5x3	.276	42	2	.022	0 z	13	19573 <mark>29192.</mark> 4			
7	S2	HSS4X4X4	.273	40	29	.079	40 y	158	13720 139518	16180.5	16180.5	H1-1b
8	M49	L2.5x2.5x3	.266	42	10	.022	0 z	9	19573 <mark>29192.</mark> 4	872.574	1868.21	H2-1
9	M50	L2.5x2.5x3	.265	42	6	.022	0 z	5	19573 <mark>29192.</mark> 4			
10	M15	6.5"x0.37	.198	21	6	.077	21 y	30	3513.8 77922			
11	M5	6.5"x0.37	.197	21	10	.080	21 y	34	3513.877922	600.647	6644.51 1	H1-1b

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Loc	LC	phi*Pnphi*Pnphi*M phi*M Eqn
12	M10	6.5"x0.37	.197	21	2	.076	21 y	38	3513.8 <mark>77922</mark> 600.6476629.481H1-1b
13	MP4	PIPE_2.0	.193	61.25	8	.039	61.25	7	1785532130 1871.61871.62H1-1b
14	MP7	PIPE_2.0	.191	61.25	4	.037	61.25	3	1785532130 1871.61871.63H1-1b
15	MP1	PIPE_2.0	.190	61.25	13	.040	61.25	11	17855 <mark>32130</mark> 1871.61871.63H1-1b
16	MP9	PIPE_2.0	.188	61.25	8	.032	61.25	3	17855 <mark>32130</mark> 1871.61871.62H1-1b
17	MP6	PIPE_2.0	.187	61.25	12	.031	61.25	7	1785532130 1871.61871.63H1-1b
18	MP3	PIPE_2.0	.182	61.25	4	.030	61.25	6	1785532130 1871.61871.64H1-1b
19	MP8	PIPE_2.0	.145	61.25	8	.047	61.25	9	1785532130 1871.61871.63H1-1b
20	MP5	PIPE_2.0	.143	61.25	12	.047	61.25	13	1785532130 1871.61871.63H1-1b
21	MP2	PIPE_2.0	.139	61.25	4	.045	61.25	5	1785532130 1871.61871.64H1-1b
22	HOR1	PIPE_3.5	.120	72	86	.064	24	9	7614078750 7953.75 7953.75 1 H1-1b
23	M3	L2x2x3	.118	0	3	.022	0 y	37	1805123392.8557.7171239.292 H2-1
24	HOR2	PIPE_3.5	.118	72	118	.062	24	5	7614078750 7953.75 7953.75 1 H1-1b
25	HOR3	PIPE_3.5	.118	72	150	.063	24	13	76140 78750 7953.757953.751 H1-1b
26	M13	L2x2x3	.117	0	11	.022	0 y	33	1805123392.8557.7171239.292H2-1
27	M8	L2x2x3	.106	0	8	.022	0 y	29	1805123392.8557.7171239.292H2-1
28	M4	L2x2x3	.098	0	10	.023	0 y	33	1805123392.8 557.717 1239.29 2H2-1
29	M9	L2x2x3	.088	0	2	.023	0 y	37	1805123392.8557.7171239.292H2-1
30	M14	L2x2x3	.083	0	6	.023	0 y	29	1805123392.8 557.717 1239.29 2H2-1
31	HR1	PIPE_3.5	.061	48	98	.037	24	7	76140 78750 7953.75 7953.75 1 H1-1b
32	HR2	PIPE_3.5	.060	48	130	.036	24	3	7614078750 7953.75 7953.75 1 H1-1b
33	HR3	PIPE_3.5	.060	48	162	.036	24	10	7614078750 7953.75 7953.75 1 H1-1b

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[LB]
1	General			• • •	•
2	RIGID		18	54	0
3	Total General		18	54	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	6.5"x0.37" Plate	3	126	85.929
7	A36 Gr.36	C3X5	3	209.1	87.177
8	A36 Gr.36	L2x2x3	6	163.8	33.529
9	A36 Gr.36	L2.5x2.5x3	3	126	32.192
10	A500 Gr.B Rect	HSS4X4X4	3	120	123.333
11	A53 Gr.B	PIPE 2.0	9	756	218.663
12	A53 Gr.B	PIPE 3.5	6	576	408.334
13	Total HR Steel		33	2076.9	989.156

APPENDIX D

ADDITIONAL CALCUATIONS

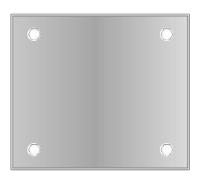
INFINIGY8

FROM ZERO TO INFINIGY the solutions are endless

Bolt Calculation Tool, V1.5.1

PROJEC	PROJECT DATA
Site Name:	Branford/ I-95/ X55/ Dtn1
Site Number:	822765
Connection Description:	Mount to Tower

MAXIMUM BOLT LOADS	30LT LOADS	
Bolt Tension:	4338.39	lbs
Bolt Shear:	1019.75	lbs


WORST CASE BOLT LOADS ¹	BOLT LOADS ¹	
Bolt Tension:	4338.39	lbs
Bolt Shear:	631.23	lbs

BOLT PROPERTIES	DPERTIES	
Bolt Type:	Bolt	-
Bolt Diameter:	0.625	in
Bolt Grade:	A325	-
# of Bolts:	4	1
Threads Excluded?	No	1

¹ Worst case bolt loads correspond to Load combination #33 on member S3 in RISA-3D, which causes the maximum demand on the bolts.

|--|

BOLT CHECK		
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	21.3%	
Max Shear Usage	7.4%	
Interaction Check (Worst Case)	0.05	≤1.05
Result	Pass	

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00155A

822765 10 Sylvia Street Branford, Connecticut 06405

November 18, 2021

EBI Project Number: 6221007192

Site Comp	liance Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	56.86%

environmental | engineering | due diligence

November 18, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00155A - 822765

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **10 Sylvia Street** in **Branford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 10 Sylvia Street in Branford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 81 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

-		-	-	-	-
Sector:	A	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-
	20	Make / Model:	20		20
Frequency Bands:	600 MHz / 1900	Frequency Bands:	600 MHz / 1900	Frequency Bands:	600 MHz / 1900
	MHz / 2190 MHz		MHz / 2190 MHz		MHz / 2190 MHz
Gain:	17.45 dBd / 22.65	Gain:	17.45 dBd / 22.65	Gain:	17.45 dBd / 22.65
	dBd / 22.65 dBd		dBd / 22.65 dBd		dBd / 22.65 dBd
Height (AGL):	81 feet	Height (AGL):	81 feet	Height (AGL):	81 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (VV):	5,236.31	ERP (W):	5,236.31	ERP (VV):	5,236.31
Antenna AI MPE %:	4.20%	Antenna BI MPE %:	4.20%	Antenna CI MPE %:	4.20%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	4.20%			
AT&T	29.73%			
Verizon	4.24%			
T-Mobile	6.37%			
Clearwire	12.32%			
Site Total MPE % :	56.86%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	4.20%			
Dish Wireless Sector B Total:	4.20%			
Dish Wireless Sector C Total:	4.20%			
Site Total MPE % :	56.86%			

Dish Wireless Maximum MPE Power Values (Sector A)

Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	81.0	5.72	600 MHz n71	400	1.43%
Dish Wireless 1900 MHz n70	4	542.70	81.0	13.87	1900 MHz n70	1000	1.39%
Dish Wireless 2190 MHz n66	4	542.70	81.0	13.87	2190 MHz n66	1000	1.39%
NOTE T				010/		Total:	4.20%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	4.20%
Sector B:	4.20%
Sector C:	4.20%
Dish Wireless Maximum MPE % (Sector A):	4.20%
Site Total:	56.86%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **56.86%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

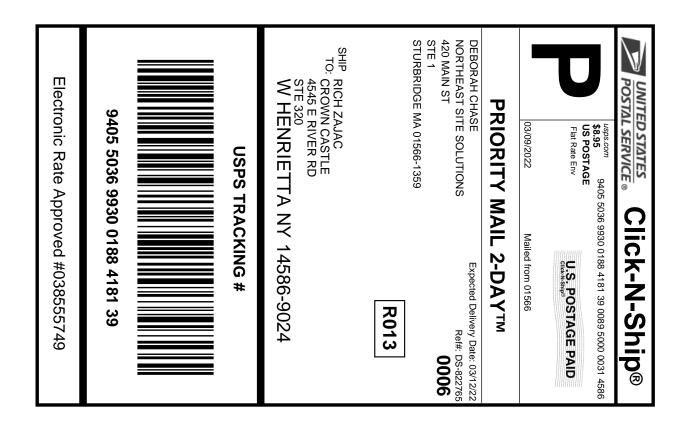
Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application Crown Castle telecommunications site at: 10 SYLVIA ST., BRANFORD, CT 06405

T-MOBILE USA TOWER LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name:	822765/Branford/ I-95/ X55/ Dtn1
Customer Site ID:	BOHVN00155A/CT-CCI-T-822765
Site Address:	10 Sylvia St., Branford, CT 06405

Crown Castle

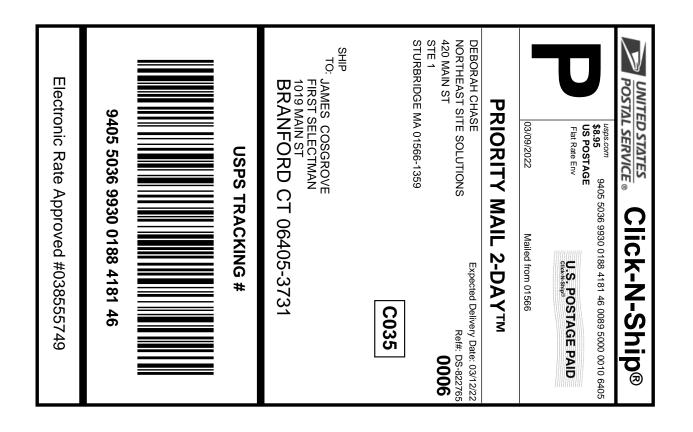

D	
HU	٠
DV	

Date: _____

Richard Zajac Site Acquisition Specialist

Exhibit H

Recipient Mailings

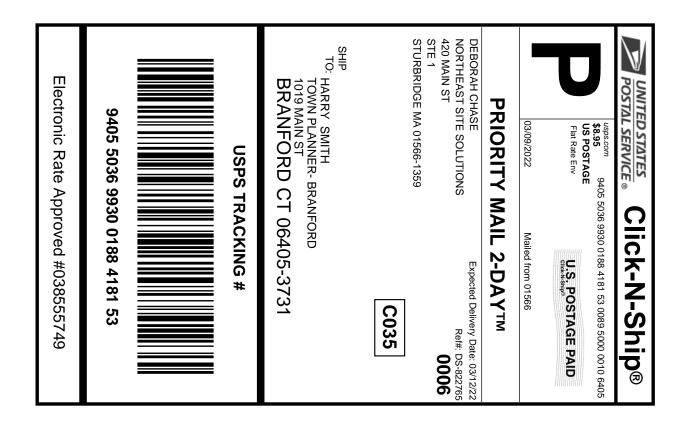


Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record





Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

