JULIE D. KOHLER

please reply to: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com
September 11, 2014
Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 Florida Tower Partners/T-Mobile co-location Site ID CTNH801B
 123 Pine Orchard Road, Branford

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Florida Tower Partners owns the existing telecommunications tower and related facility at 123 Pine Orchard Road, Branford Connecticut (latitude 41.274558. Iongitude -72.793197). T-Mobile intends to replace six existing antennas, add three antennas and related equipment at this existing telecommunications facility in Branford ("Branford Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. $\S 16-50 j-73$, a copy of this letter is being sent to the First Selectman James B. Cosgrove and the property owner, Malavasi Investments, LLC.

The existing Branford Facility consists of a 124 foot tall monopole tower. ${ }^{1}$ T-Mobile plans to replace three existing antennas and TMAs (tower mounted amplifiers) with three antennas and three RRUs at a centerline of 120 feet. It also proposes to replace three antennas and add 3 antennas at a centerline of 122 feet. (See the plans revised to September 5, 2014 attached hereto as Exhibit A). T-Mobile will also install fiber cable, and reuse existing coax cables. The existing Branford Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated September 8, 2014 and attached hereto as Exhibit B.

The planned modifications to the Branford Facility fall squarely within those activities

[^0]September 11, 2014
Site ID CTNH801B
Page 2
explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's replacement and proposed antennas will be installed at centerlines of 120 and 122 feet. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The proposed modifications will not require an extension of the site boundaries. T-Mobile's equipment will be located entirely within the existing compound area.
3. The proposed modification to the Branford Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement and additional antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated September 8, 2014, T-Mobile's operations would add 8.97\% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 63.16% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and additional antennas at the Branford Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

cc: Town of Branford, First Selectman James B. Cosgrove
Florida Tower Partners
Malavasi Investments, LLC
Sheldon Freincle, NSS

EXHIBIT A

ALL EQUIPMENT LOCATIONS ARE APPROXIMATE AND ARE SUBJECT TO APPROVAL BY LESSEE/LICENSEE'S STRUCTURAL \& RF ENGINEERS. LOCATIONS OF POWER \& TELEPHONE FACILITIES ARE SUBJECT TO APPROVAL BY UTILITY COMPANIES.

KEY MAP
SCALE: N.T.S

PROJECT : L700 CONFIGURATION
702CU

SUBMITTALS	
LE REV	08.22 .14
LE REV O	09.05 .14

G R O U P 1340 Centre Street Suite 203
Newton, MA 02459 Office: 617-965-0789 Fax: 617-213-5056

LEASE EXHIBIT
SITE NUMBER: CTNH801B

SITE NAME: AMTRAK / BRANFORD

SITE ADDRESS:
123 PINE ORCHARD ROAD
BRANFORD, CT, 06405

NORTHEAST SITE SOLUTIONS 54 MAIN STREET, UNIT 3 STURBRIDGE, MA 01566 (508) 434-5237 FOR

T-MOBILE NORTHEAST, LLC
35 GRIFFIN ROAD SOUTH
BLOOMFIELD, CT 06002 OFFICE: (860) 692-7100 FAX: (860) 692-7159
DRAWN BY: FG \quad CHECKED BY: SM

ALL EQUIPMENT LOCATIONS ARE APPROXIMATE AND ARE SUBJECT TO APPROVAL BY LESSEE/LICENSEE'S STRUCTURAL \& RF ENGINEERS. LOCATIONS OF POWER \& TELEPHONE FACLLITIES ARE SU日JECT TO APPROVAL By

SUBMITTALS			LEASE EXHIBIT SITE NUMBER: CTNH801B SITE NAME: AMTRAK / BRANFORD SITE ADDRESS: 123 PINE ORCHARD ROAD BRANFORD, GT, 06405		NORTHEAST SITE SOLUTIONS 54 MAIN STREET, UNIT 3 STURBRIDGE, MA 01566 (508) 434-5237
LEREVA	08.22.14				
LE REVO	09.05.14				
					T-MOBILE NORTHEAST, LLC
					35 GRIFFIN ROAD SOUTH
					BLOOMFIELD, CT 06002 OFFICE: 860 ($692-7100$
			DRAWN BY: FG	CHECKED BY: SM	PAGE 2OF 3

(P) COMMSCOPE DUAL POLE ANTENNA AND
(P) RRU TO REPLACE
(E) GSM DUAL POLE ANTENNA AND dd B2 TMA ON (E) PIPE MAST
(TYP 1/SECTOR, TOTAL OF 3)
(P) LTE QUAD POLE ANTENNA
ON (E) PIPE MAST
(TYP 1 /SECTOR, TOTAL OF 3)
(P) GSM/UMTS QUAD POLE ANTENNA

TO REPLACE (E) UMTS QUAD POLE ANTENNA AND (E) dd B4 TMA TO REMAIN ON (E) PIPE MAST (TYP 1 /SECTOR, TOTAL OF 3)

ALL EQUIPMENT LOCATIONS ARE APPROXIMATE AND ARE SUBJECT TO APPROVAL BY LESSEE/LICENSEE'S STRUCTURAL \& RF ENGINEERS. LOCATIONS OF POWER \& TELEPHONE FACILITIES ARE SUBJECT TO APPROVAL BY UTILITY COMPANIES.

SUBMITTALS			LEASE EXHIBIT SITE NUMBER: CTNH801B SITE NAME: AMTRAK / BRANFORD SITE ADDRESS: 123 PINE ORCHARD ROAD BRANFORD, CT, 06405		NORTHEAST SITE SOLUTIONS 54 MAIN STREET, UNTT 3 STURBRIDGE, MA 01566 (508) 434-5237
LE REVA	08.22.14				
LE REVO	09.05.14				
					T-MOBILE NORTHEAST, LLC
					35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002
					OFFICE: (860) 692-7100
					FAX: (860) 692-7159
			DRAWN BY: FG	CHECKED BY: SM	PAGE 3OF 3

Structural Analysis 124-ft Monopole

Prepared For:
Florida Tower Partners, LLC $10013^{\text {rd }}$ Ave West, Suite 420

Bradenton, FL 34205
MFP Project \#40914-095

Site Location:
CT-1012 Branford II
New Haven Co., Connecticut Lat/Long: 41¹6'29.1", -72 ${ }^{\circ} 47^{\prime \prime} 35.4^{\prime \prime}$

Analysis Type:
ANSI/TIA-222-G-2
Structure Rating - 71.7\% Passing

September 8, 2014

Michael F, Plahovinsak, P.E.
183 OI State Route I6I W, Plain Citu, OH 43064
614-398-6250 - mike@mfpenaicom

Project Summary:

I have completed a structural analysis of the existing monopole for the following new configuration:

- 122' - T-Mobile:
- (6) Ericsson AIR-21 (122') + (3) Commscope LNX-6515DS Panel (CL 120')
- (3) Ericsson RRUS-11-B12 + (3) Ericsson KRY-112-71 TMA
- (18) $15 / 8^{\prime \prime}$ / T-Arm Mounts

The pole has been analyzed in accordance with the requirements of the International Building Code per IBC section 3108.4, and the recommendations of the Telecommunications Industry Association "Structural Standard for Steel Antenna Supporting Structures" ANSI/TIA-222-G.

This analysis may be considered a "Rigorous Structural Analysis" as defined in ANSI/TIA-222-G 15.5.2.

As indicated in the conclusions of this analysis, I have determined that the existing pole and foundation have sufficient capacity to support the existing, reserved and proposed antenna loads as detailed herein. Based on the results of my analysis, structural modifications are not required at this time.

Source of Data:

Resource	Source	Job Number	Date
Pole and Foundation Drawings	Sabre Towers	$11-05276$	$06 / 02 / 10$
Geotechnical Report	Terracon	J2105131	$04 / 02 / 10$

Analysis Criteria:

International Building Code 2006-2012 Section 3108.4
Structural Standards for Steel Antenna Supporting Structures ANSI/TIA-222-G 2

- TIA-222-G Wind Speed $115 \mathrm{mph}\left(\mathrm{V}_{\text {asd }} / 3-\right.$ Second Gust $)$
- TIA-222-G Wind w/3/4"" Ice
- Operational Wind Speed

50 mph (3-Sec Gust)
60 mph (3-Sec Gust)

Michael F, Plahovinsak, P.E, - 2014
mike@mfneng.com

Structure Class	Exposure Category	Topographic Category
$\mathrm{U}(\mathrm{I}=1.0)$	C	I

Appurtenance Listing:

Status	Elev.	Antenna / Mounting	Coax	Owner
Proposed	122^{\prime}	(6) Ericsson AIR-21 Panel (3) Andrew LNX-6515DS Panel (CL Elev. 120') (3) RRUS-11-B12 + (3) KRY-112-71 TMA T-Arm Mounts	(18) $15 / 8^{\prime \prime}$	T-Mobile
Existing	112^{\prime}	(9) P65-16-XLH-RR Panel + (6) TT08-19DB111-01 TMA (6) RRUS-11 + (1) DC6-48-60-18-8F Raycap T-Arm Mounts	(12) $15 / 8^{\prime \prime}+$ (3) $1 / 2^{\prime \prime}$	AT\&T
Existing	102	(6) BXA-70063/6CF + (3) DB846F65 + (3) MG-D3-800T T-Arm Mounts	(18) $15 / 8{ }^{\prime \prime}$	Verizon

All antenna lines assumed internally mounted, not exposed to the wind.

Foundation Analysis:

The existing monopole foundation design was analyzed in conjunction with site specific geotechnical report. The existing foundation has sufficient capacity to support the pole with the proposed antenna configuration.

Conclusion:

I have completed a structural analysis of the existing monopole and foundation in accordance with the project specifics outlined above. My analysis indicates that the existing monopole and foundation are structurally adequate when considering the existing plus proposed loading. Please refer to the attached calculations for an itemized listing of all member stress ratios. The existing pole is safe and adequate to support the proposed loads, and no structural reinforcing is required to support the above loading.

If you have any questions about the contents of this structural report or require any additional information, please feel free to contact my office.

Sincerely,

Michael F. Plahovinsak, P.E.

mike@mfpeng.com - 614.398-6250

Michael F, Plahovinsak, P.E, - 2014

Standard Conditions for Providing Structural Consulting Services on Existing Structures

1. The following standard conditions are a general overview of key issues regarding the work product supplied.
2. If the existing conditions are not as represented in this structural report or attached sketches, I should be contacted to evaluate the significance of the deviation and revise the structural assessment accordingly.
3. The structural analysis has been performed assuming that the structure is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, etc. If there are any known deficiencies in the structure that potentially compromise structural integrity, I should be made aware of the deficiencies. If I am aware of a deficiency that exists in a structure at the time of my analysis, a general explanation of the structural concern due to the deficiency will be included in the structural report, but the deficiency will not be reflected in capacity calculations.
4. The structural analysis provided is an assessment of the primary load carrying capacity of the structure. I provide a limited scope of service in that I have not verified the capacity of every weld, plate, connection detail, etc. In most cases, structural fabrication details are unknown at the time of my analysis, and the detailed field measurement of this information is beyond the scope of my services. In instances where I have not performed connection capacity calculations, it is assumed that existing manufactured connections develop the full capacity of the primary members being connected.
5. The structural integrity of the existing foundation system can only be verified if exact foundation sizes and soils conditions are known. I will not accept any responsibility for the adequacy of the existing foundations unless this site-specific data is supplied.
6. Miscellaneous items such as antenna mounts, coax supports, etc. have not been designed, detailed, or specified as part of my work. It is assumed that material of adequate size and strength will be purchased from a reputable component manufacturer. The attached report and sketches are schematic in nature and should not be used to fabricate or purchase hardware and accessories to be attached to the structure. I recommend field measurement of the structure before fabricating or purchasing new hardware and accessories. I am not responsible for proper fit and clearance of hardware and accessory items in the field.
7. The structural analysis has been performed considering minimum code requirements or recommendations. If alternate wind, ice, or deflection criteria are to be considered, then I shall be made aware of the alternate criteria.

Michael F. Plahovinsak, P.E. - 2014
mike@mfpeng.com

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
(2) Ericsson AlR 21 w/ mount pipe (T-Mobile)	122	(2) Ericsson RRUS-11 (ATT)	112
		(3) Powenwave P65-16-XLH-RR w/ mount pipe (ATI)	112
Ericsson RRUS11 B12 (T-Mobile)	122		
Ericsson KRY 112 71-2 TMA (T-Mobile)	122	$\begin{aligned} & \text { (2) Powerwave TT08-19DB111 TMA } \\ & \text { (ATI) } \end{aligned}$	112
(2) Ericsson AIR 21 w/ mount pipe	122		
(T-Mobile)		(2) Ericsson RRUS-11 (ATT)	112
Ericsson RRUS11 B12 (T-Mobile)	122	$\begin{aligned} & \text { Raycap DC6-48-60-18-8F Supressor } \\ & \text { (ATT) } \\ & \hline \end{aligned}$	112
Ericsson KRY 112 71-2 TMA (T-Mobile)	122		
(2) Ericsson AIR $21 \mathrm{w} /$ mount pipe	122	12' T-Arm Mounts (AT)	112
(T-Mobile)		(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)	102
Ericsson RRUS11 B12 (T-Mobile)	122		
Ericsson KRY 112 71-2 TMA (T-Mobile)	122	Decibel DB846F65ZAXY w/ mount pipe (Verizon)	102
12 'T-Arm Mounts (T-Moblle)	122		
Andrew LNX-6515DS-VTM w/ mount pipe (T-Mobile)	120	Rymsa MG-D3-800T w/ mount pipe (Venizon)	102
Andrew LNX-6515DS-VTM w/ mount pipe (T-Mobile)	120	(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)	102
Andrew LNX-6515DS-VTM w/ mount pipe (T-Mobile)	120	Decibel DB846F65ZAXY w/ mount pipe (Verizon)	102
(3) Powerwave P65-16-XLH-RR w/ mount pipe (ATI)	112	Rymsa MG-D3-800T w/ mount pipe (Verizon)	102
(2) Powerwave TTO8-19DB111 TMA (ATT)	112	(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)	102
(2) Ericsson RRUS-11 (ATT)	112	Decibel DB846F65ZAXY w/ mount pipe (Verizon)	102
(3) Powerwave P65-16-XLLH-RR wf mount pipe (ATI)	112	Rymsa MG-D3-800T w/ mount pipe (verizon)	102
(2) Powerwave TT08-19DB111 TMA (ATI)	112	12' T-Arm Mounis (Verizon)	102

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower is located in New Haven County, Connecticut.
2. Tower designed for Exposure C to the TIA-222-G Standard
3. Tower designed for a 115 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 71.7%

ALL REACTIONS ARE FACTORED

TORQUE O Kip-ft 50 mph WIND - 0.7500 in ICE

AXIAL
$33 K$

TORQUE 0 kip-ft REACTIONS - 115 mph WIND

Michael F. Plahovinsak, P.E. 18301 State Route 161 W	${ }^{\text {Lob: }}$ 124-ft Monopole - MFP \#40914-095		
	Project: CT-1012 Branford /II		
Plain City, OH 43064	Client: Florida Tower Partners	Drawn by: Mike	Appd:
one: 614-398-6	Code: TIA-222-G	Date: 09/08/14	ale: NTS
FAX: mike@mfpeng.com			Dwg No. E-1

Tower Input Data

This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in New Haven County, Connecticut.
Basic wind speed of 115 mph .
Structure Class II.
Exposure Category C.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in .
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation	Section Length $f t h$	Splice Length $f t$	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	$124.00-82.75$	41.25	4.00	18	21.0000	31.3100	0.1875	0.7500	A572-65 $(65 \mathrm{ksi})$
L2	$82.75-49.25$	37.50	5.00	18	29.9352	39.3100	0.3125	1.2500	A572-65 $(65 \mathrm{ksi})$
L3	$49.25-1.00$	53.25		18	37.4350	50.7500	0.3750	1.5000	A572-65 $(65 \mathrm{ksi})$

Tapered Pole Properties

Section	Tip Dia.	Area in	I in 4	r in	C in	I/C in 3	J in 4	It/Q in	w in	w/t
	L1	21.3240	12.3860	677.8263	7.3884	10.6680	63.5383	1356.5444	6.1942	3.3660
	31.7930	18.5218	2266.5697	11.0485	15.9055	142.5024	4536.1217	9.2626	5.1806	17.952
L2	31.4124	29.3821	3257.3930	10.5161	15.2071	214.2021	6519.0722	14.6938	4.7186	15.1
	39.9164	38.6806	7431.9828	13.8441	19.9695	372.1671	14873.7447	19.3440	6.3686	20.379
L3	39.2820	44.1107	7654.0802	13.1563	19.0170	402.4863	15318.2319	22.0595	5.9286	15.81
	51.5329	59.9588	19222.9846	17.8831	25.7810	745.6260	38471.2633	29.9851	8.2720	22.059

InxTower	124-ft Monopole - MFP \#40914-095		$\begin{aligned} & \text { Page } \quad 2 \text { of } 7 \end{aligned}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Project	CT-1012 Branford II	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:02:45 09/08/14 } \end{array}$
	Client	Florida Tower Partners	Designed by Mike

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \\ \hline \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number.		$C_{4} A_{A}$ $f^{2} / f t$	Weight plf
$15 / 8^{\prime \prime}$	C	No	Inside Pole	120.00-1.00	18	No Ice	0.00	0.92
(T-Mobile)						$1 / 2^{\text {I' }}$ Ice	0.00	0.92
						$1^{1 \prime}$ Ice	0.00	0.92
$15 / 8^{\prime \prime}$	C	No	Inside Pole	113.00-1.00	12	No Ice	0.00	0.92
(ATT)						$1 / 2^{\text {n }}$ Ice	0.00	0.92
						$1^{\prime \prime}$ Ice	0.00	0.92
1/2"	C	No	Inside Pole	124.00-1.00	3	No Ice	0.00	0.15
(ATT)						$1 / 2^{\prime \prime}$ Ice	0.00	0.15
						1" Ice	0.00	0.15
$15 / 8^{\prime \prime}$	C	No	Inside Pole	102.00-1.00	18	No Ice	0.00	0.92
(Verizon)						$1 / 2^{\prime \prime}$ Ice	0.00	0.92
						1" Ice	0.00	0.92

Discrete Tower Loads

Description	Face or Leg	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
(2) Ericsson AIR $21 \mathrm{w} /$ mount pipe (T-Mobile)	A	From Face	3.00	0.0000	122.00	No Ice	6.61	5.50	0.11
			0.00			$1 / 2^{\prime \prime}$ Ice	7.08	6.22	0.16
			0.00			$1^{\prime \prime}$ Ice	7.55	6.95	0.22
Andrew LNX-6515DS-VTM w/ mount pipe (T-Mobile)	A	From Face	3.00	0.0000	120.00	No Ice	11.45	9.60	0.08
			0.00			$1 / 2^{\prime \prime}$ Ice	12.06	11.02	0.16
			0.00			$1^{\prime \prime}$ Ice	12.69	12.29	0.26
Ericsson RRUS11 B12 (T-Mobile)	A	From Face	3.00	0.0000	122.00	No Ice	3.31	1.36	0.06
			0.00			$1 / 2^{\prime \prime}$ Ice	3.55	1.54	0.08
			0.00			$1^{\prime \prime}$ Ice	3.80	1.73	0.10
Ericsson KRY 112 71-2 TMA (T-Mobile)	A	From Face	3.00	0.0000	122.00	No Ice	0.68	0.45	0.01
			0.00			$1 / 2^{\text {1 }}$ Ice	0.80	0.56	0.02
			0.00			$1^{1 \prime}$ Ice	0.93	0.68	0.03
(2) Ericsson AIR 21 w/ mount pipe (T-Mobile)	B	From Face	3.00	0.0000	122.00	No Ice	6.61	5.50	0.11
			0.00			$1 / 2^{\text {1 }}$ Ice	7.08	6.22	0.16
			0.00			$1^{\prime \prime}$ Ice	7.55	6.95	0.22
Andrew LNX-6515DS-VTM w/ mount pipe (T-Mobile)	B	From Face	3.00	0.0000	120.00	No Ice	11.45	9.60	0.08
			0.00			$1 / 2^{\prime \prime}$ Ice	12.06	11.02	0.16
			0.00			$1^{\prime \prime}$ Ice	12.69	12.29	0.26
Ericsson RRUS11 B12 (T-Mobile)	B	From Face	3.00	0.0000	122.00	No Ice	3.31	1.36	0.06
			0.00			$1 / 2^{\prime \prime}$ Ice	3.55	1.54	0.08
			0.00			$1{ }^{\prime \prime}$ Ice	3.80	1.73	0.10
Ericsson KRY 112 71-2 TMA (T-Mobile)	B	From Face	3.00	0.0000	122.00	No Ice	0.68	0.45	0.01
			0.00			$1 / 2^{\prime \prime}$ Ice	0.80	0.56	0.02
			0.00			$1{ }^{1 \prime}$ Ice	0.93	0.68	0.03
(2) Ericsson AIR $21 \mathrm{w} /$ mount pipe (T-Mobile)	C	From Face	3.00	0.0000	122.00	No Ice	6.61	5.50	0.11
			0.00			1/2" Ice	7.08	6.22	0.16
			0.00			1" Ice	7.55	6.95	0.22
Andrew LNX-6515DS-VTM w/ mount pipe (T-Mobile)	C	From Face	3.00	0.0000	120.00	No Ice	11.45	9.60	0.08
			0.00			1/2" Ice	12.06	11.02	0.16
			0.00			1 " Ice	12.69	12.29	0.26
Ericsson RRUS11 B12 (T-Mobile)	C	From Face	3.00	0.0000	122.00	No Ice	3.31	1.36	0.06
			0.00			1/2" Ice	3.55	1.54	0.08
			0.00			1" Ice	3.80	1.73	0.10
Ericsson KRY 112 71-2 TMA	C	From Face	3.00	0.0000	122.00	No Ice	0.68	0.45	0.01

tnxTower	124-ft Monopole - MFP \#40914-095		$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Project	CT-1012 Branford II	Date 10:02:45 09/08/14
	Client	Florida Tower Partners	Designed by Mike

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azinuth Adjustment \\
。
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \(C_{A} A_{A}\)
Side \& Weight

K

\hline \multirow[t]{2}{*}{(T-Mobile)} \& \multirow{5}{*}{C} \& \multirow{5}{*}{None} \& 0.00 \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{122.00} \& 1/2 $2^{\text {1 }}$ Ice \& 0.80 \& 0.56 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.93 \& 0.68 \& 0.03

\hline \multirow[t]{3}{*}{12' T-Arm Mounts (T-Mobile)} \& \& \& \& \& \& No Ice \& 12.00 \& 12.00 \& 1.14

\hline \& \& \& \& \& \& 1/2" Ice \& 18.00 \& 18.00 \& 1.27

\hline \& \& \& \& \& \& 1" Ice \& 24.00 \& 24.00 \& 0.47

\hline ** \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Face} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{112.00} \& \& \& \&

\hline (3) Powerwave \& \& \& 3.00 \& \& \& No Ice \& 8.40 \& 6.13 \& 0.09

\hline P65-16-XLH-RR w/ mount \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.95 \& 7.07 \& 0.15

\hline pipe \& \& \& 0.00 \& \& \& 1" Ice \& 9.51 \& 7.90 \& 0.22

\hline (ATT) \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Face} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{112.00} \& \& \& \&

\hline (2) Powerwave \& \& \& 3.00 \& \& \& No Ice \& 0.92 \& 0.75 \& 0.02

\hline TT08-19DB111 TMA \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.06 \& 0.88 \& 0.03

\hline (ATT) \& \& \& 0.00 \& \& \& $1{ }^{\text {" Ice }}$ \& 1.21 \& 1.02 \& 0.04

\hline (2) Ericsson RRUS-11 \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& No Ice \& 2.55 \& 0.92 \& 0.05

\hline \multirow[t]{2}{*}{(ATT)} \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.77 \& 1.07 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.99 \& 1.23 \& 0.08

\hline (3) Powerwave \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& No Ice \& 8.40 \& 6.13 \& 0.09

\hline P65-16-XLH-RR w/ mount \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.95 \& 7.07 \& 0.15

\hline pipe \& \& \& 0.00 \& \& \& 1 " Ice \& 9.51 \& 7.90 \& 0.22

\hline \multicolumn{10}{|l|}{}

\hline (2) Powerwave \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& No Ice \& 0.92 \& 0.75 \& 0.02

\hline TT08-19DB111 TMA \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.06 \& 0.88 \& 0.03

\hline (ATT) \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.21 \& 1.02 \& 0.04

\hline (2) Ericsson RRUS-11 \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& No Ice \& 2.55 \& 0.92 \& 0.05

\hline \multirow[t]{2}{*}{(ATT)} \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.77 \& 1.07 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.99 \& 1.23 \& 0.08

\hline (3) Powerwave \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& No Ice \& 8.40 \& 6.13 \& 0.09

\hline P65-16-XLH-RR w/ mount \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.95 \& 7.07 \& 0.15

\hline pipe \& \& \& 0.00 \& \& \& $1{ }^{11}$ Ice \& 9.51 \& 7.90 \& 0.22

\hline (ATT) \& \& \& \& \& \& \& \& \&

\hline (2) Powerwave \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& No Ice \& 0.92 \& 0.75 \& 0.02

\hline TT08-19DB111 TMA \& \& \& 0.00 \& \& \& $1 / 2^{\text {1' }}$ Ice \& 1.06 \& 0.88 \& 0.03

\hline (ATT) \& \& \& 0.00 \& \& \& 1" Ice \& 1.21 \& 1.02 \& 0.04

\hline \multirow[t]{3}{*}{| (2) Ericsson RRUS-1 I |
| :--- |
| (ATT) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& No Ice \& 2.55 \& 0.92 \& 0.05

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.77 \& 1.07 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.99 \& 1.23 \& 0.08

\hline Raycap DC6-48-60-18-8F \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& No Ice \& 1.47 \& 1.47 \& 0.03

\hline Supressor \& \& \& 0.00 \& \& \& $1 / 2^{\text {18 }}$ Ice \& 1.67 \& 1.67 \& 0.05

\hline (ATT) \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.88 \& 1.88 \& 0.07

\hline 12^{\prime} T-Amm Mounts \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{112.00} \& \& 12.00 \& 12.00 \& 1.14

\hline (ATT) \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 18.00 \& 18.00 \& 1.27

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 24.00 \& 24.00 \& 0.47

\hline ** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{102.00} \& No Ice \& 7.75 \& 5.18 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 8.29 \& 6.11 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.85 \& 6.92 \& 0.16

\hline \multirow[t]{3}{*}{Decibel DB846F65ZAXY w/ mount pipe (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{102.00} \& No Ice \& 7.03 \& 7.58 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.54 \& 8.54 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 8.08 \& 9.38 \& 0.18

\hline \multirow[t]{2}{*}{Rymsa MG-D3-800T w/ mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{102.00} \& No Ice \& 3.48 \& 3.32 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.85 \& 3.96 \& 0.06

\hline (Verizon) \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.24 \& 4.60 \& 0.10

\hline \multirow[t]{3}{*}{(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{102.00} \& No Ice \& 7.75 \& 5.18 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.29 \& 6.11 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 8.85 \& 6.92 \& 0.16

\hline \multirow[t]{2}{*}{Decibel DB846F65ZAXY w/ mount pipe} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Face} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{102.00} \& No Ice \& 7.03 \& 7.58 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.54 \& 8.54 \& 0.11

\hline
\end{tabular}

tnxTower	124-ft Monopole - MFP \#40914-095		$\begin{aligned} & \text { Page } \\ & \\ & 4 \text { of } 7 \end{aligned}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Project	CT-1012 Branford II	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:02:45 09/08/14 } \end{array}$
	Client	Florida Tower Partners	Designed by Mike

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{4} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& CA A_{A}

Side

f^{2} \& Weight

K

\hline (Verizon) \& \& \& 0.00 \& \& \& 1" Ice \& 8.08 \& 9.38 \& 0.18

\hline Rymsa MG-D3-800T w/ \& B \& From Face \& 3.00 \& 0.0000 \& 102.00 \& No Ice \& 3.48 \& 3.32 \& 0.03

\hline mount pipe \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.85 \& 3.96 \& 0.06

\hline (Verizon) \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.24 \& 4.60 \& 0.10

\hline (2) Antel BXA-70063/6CF w/ \& C \& From Face \& 3.00 \& 0.0000 \& 102.00 \& No Ice \& 7.75 \& 5.18 \& 0.04

\hline mount pipe \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.29 \& 6.11 \& 0.09

\hline (Verizon) \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 8.85 \& 6.92 \& 0.16

\hline Decibel DB846F65ZAXY w/ \& C \& From Face \& 3.00 \& 0.0000 \& 102.00 \& No Ice \& 7.03 \& 7.58 \& 0.04

\hline mount pipe \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.54 \& 8.54 \& 0.11

\hline (Verizon) \& \& \& 0.00 \& \& \& 1 " Ice \& 8.08 \& 9.38 \& 0.18

\hline Rymsa MG-D3-800 ${ }^{\text {w/ }}$ \& C \& From Face \& 3.00 \& 0.0000 \& 102.00 \& No Ice \& 3.48 \& 3.32 \& 0.03

\hline mount pipe \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.85 \& 3.96 \& 0.06

\hline (Verizon) \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.24 \& 4.60 \& 0.10

\hline 12^{\prime} T-Arm Mounts \& C \& None \& \& 0.0000 \& 102.00 \& No Ice \& 12.00 \& 12.00 \& 1.14

\hline (Verizon) \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 18.00 \& 18.00 \& 1.27

\hline \& \& \& \& \& \& 1" Ice \& 24.00 \& 24.00 \& 0.47

\hline
\end{tabular}

Load Combinations

Comb. No.	
1	Dead Only
2	1.2 Dead +1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 90 deg - No Ice
5	0.9 Dead +1.6 Wind 90 deg - No Ice
6	1.2 Dead+1.6 Wind 180 deg - No Ice
7	0.9 Dead +1.6 Wind 180 deg - No Ice
8	1.2 Dead+1.0 Ice +1.0 Temp
9	1.2 Dead +1.0 Wind 0 deg+1.0 Ice +1.0 Temp
10	1.2 Dead +1.0 Wind 90 deg+1.0 Ice +1.0 Temp
11	1.2 Dead+1.0 Wind 180 deg+1.0 Ice +1.0 Temp
12	Dead+Wind 0 deg - Service
13	Dead+Wind 90 deg - Service
14	Dead+Wind 180 deg - Service

Maximum Member Forces

Section No.	Elevation $f t$	Component Type	Condition	Gov. Load Comb.	Axial K	$\begin{gathered} \text { Major Axis } \\ \text { Moment } \\ \text { kip-ft } \\ \hline \end{gathered}$	Minor Axis Monent kip-ft
L1	124-82.75	Pole	Max Tension	6	0.00	0.00	0.00
			Max. Compression	8	-19.59	0.00	-0.44
			Max. Mx	4	-9.84	-494.98	-0.13
			Max. My	6	-9.83	0.00	-495.13
			Max. Vy	4	20.63	-494.98	-0.13
			Max. Vx	6	20.63	0.00	-495.13
			Max. Torque	4			-0.43
L2	82.75-49.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-28.59	0.00	-0.44
			Max. Mx	4	-16.63	-1230.08	-0.15
			Max. My	6	-16.63	0.00	-1230.23

tnxTower	124-ft Monopole - MFP \#40914-095		$\begin{aligned} & \text { Page } 5 \text { of } 7 \end{aligned}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Project	CT-1012 Branford II	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:02:45 09/08/14 } \end{array}$
	Client	Florida Tower Partners	Designed by Mike

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& $$
\begin{gathered}
\text { Elevation } \\
f t
\end{gathered}
$$ \& Component Type \& Condition \& Gov. Load Comb, \& Axial

K \& Major Axis Moment kip-ft \& Minor Axis Moment kip-ft

\hline \multirow{10}{*}{L3} \& \multirow{10}{*}{49.25-1} \& \multirow{10}{*}{Pole} \& Max. Vy \& 4 \& 24.64 \& -1230.08 \& -0.15

\hline \& \& \& Max. Vx \& 6 \& 24.64 \& 0.00 \& -1230.23

\hline \& \& \& Max. Torque \& 4 \& \& \& -0.43

\hline \& \& \& Max Tension \& 1 \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& Max. Compression \& 8 \& -48.32 \& 0.00 \& -0.44

\hline \& \& \& Max. Mx \& 4 \& -32.49 \& -2715.24 \& -0.15

\hline \& \& \& Max. My \& 6 \& -32.49 \& 0.00 \& -2715.39

\hline \& \& \& Max. Vy \& 4 \& 30.93 \& -2715.24 \& -0.15

\hline \& \& \& Max. Vx \& 6 \& 30.93 \& 0.00 \& -2715.39

\hline \& \& \& Max. Torque \& 4 \& \& \& -0.43

\hline
\end{tabular}

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz, Deflection in	Gov. Load Comb.	Tilt	Tist
L1	$124-82.75$	10.487	14	0.7572	0
L2	$86.75-49.25$	5.035	14	0.5681	0.0007
L3	$54.25-1$	1.907	14	0.3350	0.0003
					0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load Comb.	Deflection	in	Tilt	0

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
L1	124-82.75	69.073	6	4.9893	0.0045
L2	86.75-49.25	33.182	6	3.7455	0.0017
L3	54.25-1	12.571	6	2.2087	0.0007

tnxTower	124-ft Monopole - MFP \#40914-095		$\begin{array}{ll} \hline \text { Page } & \\ & 6 \text { of } 7 \end{array}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Project	CT-1012 Branford II	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:02:45 09/08/14 } \end{array}$
	Client	Florida Tower Partners	Designed by Mike

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load Comb.	Deflection	in	Tilt	0

Pole Design Data

Section No.	Elevation	Size	L	L_{n}	K $7 / r$	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
L1	124-82.75 (1)	TP31.31×21×0.1875	41.25	0.00	0.0	17.9268	-9.83	1129.50	0.009
L2	$82.75-49.25$ (2)	TP39.31×29.9352x0.3125	37.50	0.00	0.0	37.4408	-16.63	2637.07	0.006
L3	49.25-1 (3)	TP50.75×37.435x0.375	53.25	0.00	0.0	59.9588	-32.49	4071.82	0.008

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{l y}$	$\phi M_{n y}$	Ratio $M_{u y}$
No. ft			kip-ft	kip-ft	$\phi M_{n \mathrm{r}}$	kip-ft	$k i p-f t$	¢ $M_{m,}$
L1	124-82.75 (1)	TP31.31×21×0.1875	495.13	700.78	0.707	0.00	700.78	0.000
L2	$82.75-49.25$ (2)	TP39.31×29.9352×0.3125	1230.23	2046.08	0.601	0.00	2046.08	0.000
L3	49.25-1 (3)	TP50.75×37.435x0.375	2715.39	4219.63	0.644	0.00	4219.63	0.000

Pole Shear Design Data

Section No.	Elevation ft	Size	Actual V_{u} K	$\begin{gathered} \phi V_{n} \\ K \end{gathered}$	Ratio V_{u}	$\begin{gathered} \text { Actual } \\ T_{u} \\ \text { kip-ft } \end{gathered}$	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \phi T_{n} \end{gathered}$
L1	124-82.75 (1)	TP31.31×21x0.1875	20.63	559.86	0.037	0.00	1403.27	0.000
L2	$82.75-49.25$ (2)	TP39.31×29.9352×0.3125	24.64	1309.08	0.019	0.00	4097.16	0.000
L3	49.25-1 (3)	TP50.75×37.435x0.375	30.93	2019.58	0.015	0.00	8449.58	0.000

tnxTower	124-ft Monopole - MFP \#40914-095		Page 7 of 7
Michael F. Plahovinsak, P.E. 18301 State Route 161 W	Project	CT-1012 Branford II	$\begin{aligned} & \text { Date } \\ & \text { 10:02:45 09/08/14 } \end{aligned}$
Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Client	Florida Tower Partners	Designed by Mike

Pole Interaction Design Data

Section No.	Elevation $f t$	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \phi M_{n x} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{t y y} \\ \hline \phi M_{n v} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \phi V_{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \phi T_{n} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	124-82.75 (1)	0.009	0.707	0.000	0.037	0.000	0.717	1.000	4.8.2
L2	$82.75-49.25$ (2)	0.006	0.601	0.000	0.019	0.000	0.608	1.000	4.8 .2
L3	49.25-1 (3)	0.008	0.644	0.000	0.015	0.000	0.652	1.000	4.8.2

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \text { ØP allow } \\ K \end{gathered}$	\% Capacity	Pass Fail
L1	124-82.75	Pole	TP31.31×21×0.1875	1	-9.83	1129.50	71.7	Pass
L2	82.75-49.25	Pole	TP39.31 $\times 29.9352 \times 0.3125$	2	-16.63	2637.07	60.8	Pass
L3	49.25-1	Pole	TP50.75×37.435 0.375	3	-32.49	4071.82	65.2	Pass
						Pole (L1) RATING =	$\begin{gathered} \text { Summary } \\ 71.7 \\ 71.7 \\ \hline \end{gathered}$	Pass Pass

Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 email: mike@mfpeng.com	Job 124-ft monopole - MFP \#40914-095		Page BP-G	
	Project		Date 9/1	014
	Client		Designed by	

Anchor Rod and Base Plate Calculation

ANSI/TIA-222-G-2

Factored Base Reactions:	Pole Shape:	Anchor Rods:	Base Plate:	
Moment:	2715 ft -kips	18-Sided	$(16) 2.25 \mathrm{in}$. A615 GR. 75	$2.75 \mathrm{in} \times 57 \mathrm{in}$. Round
Shear:	31 kips	Pole Dia. $\left(\boldsymbol{D}_{f}\right):$	Anchor Rods Evenly Spaced	fy $=50 \mathrm{ksi}$
Axial:	33 kips	50.75 in	On a 57.75 in Bolt Circle	

Anchor Rod Calculation According to TIA-222-G section 4.9.9

$\phi=$	0.80 tia 4.99	The following Interation Equation Shall Be Satisfied:		
$\mathbf{I}_{\text {boits }}=$	$6670.13 \mathrm{in}^{2}$ Momet of Ineria	$\left[P_{u}+\frac{V_{u}}{}\right)$		
$\mathrm{P}_{\mathrm{u}}=$	141 kips Tension Force	\cdotsu	\leq	
$\mathbf{V}_{\mathbf{u}}=$	2 kips Shear Force	$\left(\phi \mathbf{R}_{\mathrm{nt}}\right)$		
$\mathbf{R}_{\mathrm{nt}}=$	325.00 kips Nominal Tensile Strength			
$\eta=$	0.50 for detail type (d)	$0.557 \leq$		

Base Plate Calculation According to TlA-222-G

$\phi=$	0.90 tia 4.7		
$\mathbf{M}_{\text {PL }}=$	339.9 in-kip Plate Moment	Calculated Moment vs Factored Resistance	
$\mathbf{L}=$	10.0 in Section Length		
$\mathbf{Z}=$	18.8 Plastic Section Modulus	339.87 in-kip \leq	848 in-kip
$\mathbf{M}_{\mathbf{P}}=$	942.0 in-kip Plastic Moment		
$\phi \mathbf{M}_{\mathbf{n}}=$	847.8 in-kip Factored Resistance		

Anchor Rods Are Adequate	$\mathbf{5 5 . 7} \%$	$\boxed{\nabla}$
Base Plate is Adequate	$\mathbf{4 0 . 1 \%}$	\square

Monopole Spread Footing Calculation

ANSI/TIA-222-G-2

Foundation Weight

Weight of Pole	33.0 kips
Weight of Concrete	209.475 kips
Weight of Soil	192.9375 kips
Bouyancy of Water	37.5 kips
Total	472.9 kips

Overturning Resistance:

Overturning Moment $\left(\mathrm{M}_{\mathrm{u}}\right)$
Resisting Moment $\left(\mathrm{R}_{\mathrm{s}}\right)$

$$
\phi \times \mathrm{R}_{\mathrm{s}}>\mathrm{M}_{\mathrm{u}}
$$

$$
\begin{array}{r}
2901 \mathrm{ft}-\mathrm{kips} \\
5792.6342 \mathrm{ft}-\mathrm{kips} \\
\mathrm{M}_{\text {overturning }} / \mathrm{fM}_{\text {resist }}
\end{array}
$$

$$
\begin{aligned}
& 2715 \mathrm{ft}-\text { kips }+(31 \text { kips x } 6 \mathrm{ft}) \\
& 472.8681 \mathrm{kips} \times 24.5 \mathrm{ft} / 2 \\
& \mathbf{6 6 . 8 \%} \quad \text { OK }
\end{aligned}
$$

Soil Bearing Pressure:

Eccentricity (e)	6.13 ft	$2901 \mathrm{ft}-\mathrm{kips} / 472.8681 \mathrm{kips}$
$6(\mathrm{e})$	$36.8 \mathrm{ft}>$	$24.5 \mathrm{ft} \quad 6 \mathrm{e}>24.5$
Maximum Soil Bearing	2464.7938 psf	Calculated across corners
Soil Overburden	-612.4 psf	Overburden - Bouyancy
Net Soil Bearing	1852.3938 psf	
Resisting Soil Bearing $\left(\mathrm{R}_{\mathrm{s}}\right)$	6000 psf	
Net Soil Bearing $<\phi \times \mathrm{R}_{\mathrm{s}}$	Net Bearing $/ \mathrm{fR}_{\mathrm{s}}$	$41.2 \% \quad$ OK

Bending Moment in Pier:

Bending Moment	2839 ft -kips	2715 ft -kips $+(31$ kips $\times 4 \mathrm{ft})$
Min. Pier Steel	$27.7 \mathrm{in}^{2}$	$1 / 2 \%$ (Based on Round Pier)

Bending Moment in Footing:

Max Bending Moment $\quad 1659.7173 \mathrm{ft}$-kips Σ Moments about pier face

Min. Footing Steel
$0.52 \mathrm{in}^{2} / \mathrm{ft}$
0.18%
EXHIBIT C

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTNH801B
Amtrak Branford
123 Pine Orchard Road
Branford, CT 06405
September 8, 2014
EBI Project Number: 62144621

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{6 3 . 1 6} \%$

September 8, 2014

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTNH801B - Amtrak Branford

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{1 2 3}$ Pine Orchard Road, Branford, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)$ - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{1 2 3}$ Pine Orchard Road, Branford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) $\mathbf{2}$ UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition $97-01$ recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of 15.9 dBd at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 2 2}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	2.99%
Sector $2:$	2.99%
Sector 3:	2.99%
T-Mobile Total:	8.97%
Site Total:	63.16%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{6 3 . 1 6 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: ${ }^{1}$ The proposed modifications are consistent with the Decision and Order in Docket 386 (dated February 25, 2010).

