

PROJECT NARRATIVE

TOTALLY COMMITTED.

April 28, 2022

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 123 Pine Orchard Road, Branford, CT 06405 Latitude: 41'16'29.11" / Longitude: -72'47'35.45"

Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 123 Pine Orchard Road in Branford (the "Property"). The existing 123-foot monopole tower is owned by American Tower Corporation ("ATC"). The underlying property is owned by Malavasi Investments LLC. DISH requests that the Council find that the proposed shared use of the ATC tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. A copy of this filing is being sent to James Cosgrove, First Selectman for the Town of Branford, Anthony Cinicola, Town of Branford Building Official and Malavasi Investments LLC as the property owner.

Background

This facility was approved by the Council under Docket No. 386 on February 25, 2010 and with a provision that panel antennas shall be installed in a flush-mount configuration or utilizing t-arm mounts. A copy of the Decision and Order is included in the filing attachments. The existing ATC facility consists of a 123-foot monopole tower located within an existing leased area. T-Mobile currently maintains antennas at the 122-foot level and 120-foot level. AT&T currently maintains antennas at the 112-foot level. Verizon Wireless currently maintains antennas at the 102-foot level. Equipment associated with these antennas are located at various positions within the tower and compound.

DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH and ATC have agreed to the proposed shared use of the 123 Pine Orchard Road tower pursuant to mutually acceptable terms and conditions. Likewise, DISH and ATC have agreed to the proposed installation of equipment cabinets on the ground within the existing compound. ATC has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower. (See attached Letter of Authorization)

TOTALLY COMMITTED.

DISH proposes to install three (3) antennas, (1) T-Arm mount, (6) Remote radio units at the 80-foot level along with (1) over voltage protection device (OVP) and (1) Hybrid cable. DISH will install an equipment cabinet on a 5'x7' equipment platform. DISH's Construction Drawings provide project specifications for all proposed site improvement locations. The construction drawings also include specifications for DISH's proposed antenna and groundwork.

- C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria.
- A. Technical Feasibility. The existing ATC tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application.
- **B.** Legal Feasibility. Under C.G.S. § 16-50aa, the Council has been authorized to issue order approving the shared use of an existing tower such as the ATC tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.
- **C. Environmental Feasibility**. The proposed shared use of the ATC tower would have a minimal environmental effect for the following reasons:
 - 1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site.
 - 2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards.
 - 3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the ATC facility other than periodic maintenance. The proposed shared use of the ATC tower, would, therefore, have a minimal environmental effect, and is environmentally feasible.

TOTALLY COMMITTED.

- D. **Economic Feasibility**. As previously mentioned, DISH has entered into an agreement with ATC for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.
- E. **Public Safety Concerns**. As discussed above, the tower is structurally capable of supporting DISH's full array of three (3) antennas, (1) Tower platform mount, (6) Remote radio units, (1) over voltage protection device (OVP) and (1) Hybrid cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing ATC tower

Conclusion

For the reasons discussed above, the proposed shared use of the existing ATC tower at 123 Pine Orchard Road in satisfies the criteria stated in C.G.S. §16-50aa and advances the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the prosed shared use.

Sincerely,

David Hoogasian

David Hoogasian

Project Manager

LETTER OF AUTHORIZATION

LETTER OF AUTHORIZATION LICENSEE: DISH WIRELESS L.L.C.

I, Margaret Robinson, Senior Counsel for American Tower*, owner/operator of the tower facility located at the address identified above (the "Tower Facility"), do hereby authorize DISH WIRELESS L.L.C., its successors and assigns, and/or its agent, (collectively, the "Licensee") to act as American Tower's non-exclusive agent for the sole purpose of filing and consummating any land-use or building permit application(s) as may be required by the applicable permitting authorities for Licensee's telecommunications' installation.

We understand that this application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by Licensee only of conditions related to Licensee's installation and any such conditions of approval or modifications will be Licensee's sole responsibility.

*American Tower includes all affiliates and subsidiaries of American Tower Corporation.

Project #	ATC Site #	ATC Site Name	ATC Site Address	
13688133	208450	Enfield	1A Ecology Drive, Enfield CT	
13700322	209115	Ridgefield 2	320 Old Stagecoach Road, Ridgefield, CT	
13688136	209185	Burlington 2	87 Monce Road, Burlington CT	
13700320	209271	Brookfield 2	100 Pocono Road, Brookfield CT	
13693702	243036	WEST HAVEN & RT 162 CT	668 Jones Hill Road, West Haven CT	
13693677	280501	ROXBURY CT	377 Southbury Road, Roxbury CT	
13685406	281416	WILLINGTON CT	196 Tolland Turnpike, Willington CT	
13709418	281862	BRIDGEWATER CT	111 SECOND HILL RD, Bridgewater CT	
13693659	283418	NORTH HAVEN CT	50 Devine Street, North Haven CT	
13694329	283419	PINE ORCHARD BRANFORD CT	123 Pine Orchard Road, Branford CT	
13694332 283422		SHORT BEACH BRANFORD CT	171 Short Beach Road, Branford CT	
13698427	283423	NAUGATUCK CT	880 Andrew Mountain Road, Naugatuck CT	
13685464	283563	MANSFIELD CT	343 Daleville Road, Willington CT	
13692735	284983	OLD LYME CT	61-1 Buttonball Road, Old Lyme CT	
13693120	284984	PAWCATUCK CT	166 Pawcatuck Ave, Pawcatuck CT	
13693144	284988	GUILFORD CT	Moose Hill Road, Guilford CT	
13694582	302465	Colchester CT 6	355 Route 85, Colchester CT	
13683501	302468	Petro Lock	99 Meadow St, Hartford CT	
13685427	302469	Bridgeport CT 2	1069 Connecticut Avenue, Bridgeport CT	
13683503	302472	Andover-bunker Hill Road	104 Bunker Hill Road, Andover CT	
13683507	302473	E H F R - Prestige Park	310 Prestige Park Road, East Hartford CT	

Project#	ATC Site #	ATC Site Name	ATC Site Address
13683510	302474	South Windsor	391 Niederwerfer Road, South Windsor CT
13683513	302483	Brln - Berlin	286 Beckley Road, Berlin CT
13692185	302488	Cntn - Canton	4 Hoffmann Road, Canton CT
13692173	302495	Tolland CT	56 Ruops Road, Tolland CT
13694579	302496	Clch - Colchester	Chestnut Hill Road, Colchester CT
13701212	302501	Plymouth CT 3	297 North Street, Plymouth CT
13685414	302515	SMFR - North	5 High Ridge Park Road, Stamford CT
13702496	302516	Mlfd - Milford	438 Bridgeport Ave, Milford CT
13688395	302518	Newtown CT 3	25 Meridian Ridge Drive, Newton CT
13692174	302529	Vernon CT 6	777 Talcotville Road, Vernon Rockville CT
13693124	311014	NORWICH CT	202 N Wawecus Hill Rd, Norwich CT
13702522	311305	GLFD-GUILFORD REBUILD CT	10 Tanner Marsh Road, Guilford CT
13693127	370623	MONTVILLE CT	139 Sharp Hill Road, Uncasville CT
13681964	370625	Old Saybrook	77 Springbrook Road, Old Saybrook CT
13702535	383660	North Madison Volunteer FD	864 Opening Hill Road, Madison CT
13702538	411180	Good Hill CT	481 GOOD HILL ROAD, Woodbury CT
13693709	411182	Nepaug CT	20 Antolini Road, New Hartford CT
13693131	411183	WATERFORD CT	53 Dayton Rd., Waterford CT
13693135	411184	SALEM CT SQA	399 West Road, Salem CT
13692177	411186	West Granby, CT CT	207 West Granby Road, Granby CT
13692178	411187	Hartford North 2 CT	811 Blue Hills Avenue, Bloomfield CT
13693705	411188	Southbury CT	111 Upper Fishrock Road, Southbury CT
13692179	411256	CANTON CT	14 CANTON SPRINGS ROAD, Canton CT
13681988	411257	Middle Haddam Road-CROWN CT	191 Middle Haddam Rd, Portland CT
13692180	411258	Farmington North 2 CT	199 Town Farm Road, Farmington CT
13692182	411259	CT Collinsville CAC 802816 CT	650 Albany Turnpike, Collinsville CT
13692184	416862	SUFFIELD SW CT CT	106 South Grand St., West Suffield CT
13694578	6260	NORTH STONINGTON CT	118C Wintechog Hill Rd., off of Rt. 2, North Stonington CT
13681397	88013	Killingworth	131 Little City Road, Killingworth CT

Signature:

Print Name: Margaret Robinson

Senior Counsel American Tower*

LETTER OF AUTHORIZATION LICENSEE: DISH WIRELESS L.L.C.

NOTARY BLOCK

Commonwealth of MASSACHUSETTS County of Middlesex

This instrument was acknowledged before me by Margaret Robinson, Senior Counsel for American Tower*, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same.

WITNESS my hand and official seal, this 10th day of September 2021.

MELISSA ANN METZLER

Notary Public
Commonwealth of Massachusetts
My Commission Expires March 14, 2025

NOTARY SEAL

Notary Public

My Commission Expires: March 14, 2025

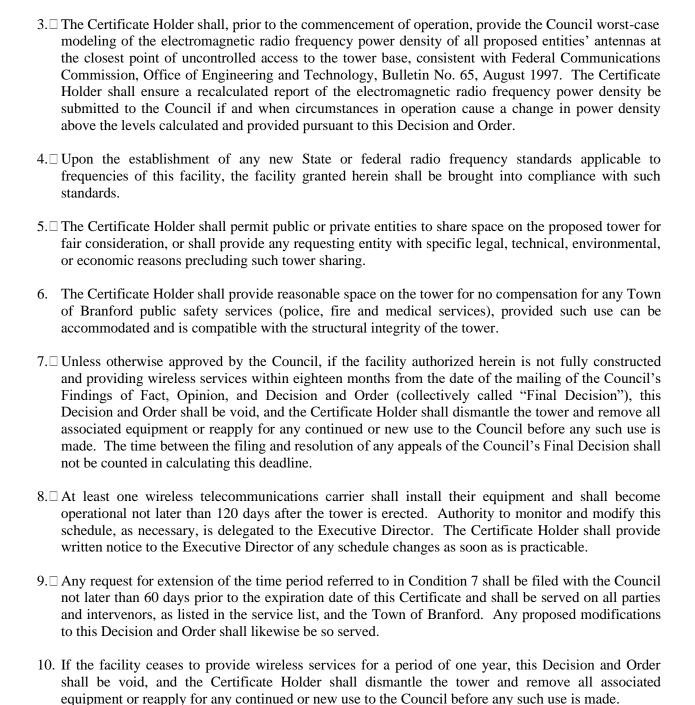
ORIGINAL FACILITY APPROVAL

DOCKET NO. 386 – T-Mobile Northeast LLC application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and management of a telecommunications facility located at 123 Pine Orchard Road, Branford, Connecticut.

Siting

Council

February 25, 2010


Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and management of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to T-Mobile Northeast LLC, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 123 Pine Orchard Road, Branford, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1.□ The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of T-Mobile Northeast LLC and New Cingular Wireless PCS LLC and other entities, both public and private, but such tower shall not exceed a height of 125 feet above ground level. Panel antennas shall be installed in a flush-mount configuration or utilizing t-arm mounts and such panel antennas shall not exceed a height of 125 feet above ground level.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Branford for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) □ a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
 - c) Correspondence indicating results of discussions with the property owner at 119 Pine Orchard Road regarding continued use of the existing driveway entrance. If an agreement cannot be reached and the driveway is expanded as proposed, a 12-foot spruce tree shall be planted in the front yard of 121 Pine Orchard Road.

Docket No. 386 Decision and Order Page 2

11. The Certificate Holder shall remove any nonfunctioning antenna, and associated antenna mounting

equipment, within 60 days of the date the antenna ceased to function.

Docket No. 386 Decision and Order Page 3

12. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the New Haven Register.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

T-Mobile Northeast LLC

Its Representative

Julie D. Kohler, Esq. Monte E. Frank, Esq. Jesse A. Langer, Esq. Cohen and Wolf, P.C. 1115 Broad Street Bridgeport, CT 06604

Intervenor

New Cingular Wireless PCS, LLC

Its Representative

Christopher B. Fisher, Esq. Daniel M. Laub, Esq. Cuddy & Feder LLP 445 Hamilton Avenue, 14th Floor White Plains, NY 10601

ENGINEERING DRAWINGS

GESN wireless.

DISH Wireless L.L.C. SITE ID:

BOHVN00136A

DISH Wireless L.L.C. SITE ADDRESS:

123 PINE ORCHARD ROAD BRANFORD, CT 06405

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
LS1	SITE SURVEY
A-1	OVERALL AND ENLARGED SITE PLAN
A-1 A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-2 A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
DE 1	DE CARLE COLOR CORE
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

PROJECT NOTES

THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN ELGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED REVIEW UNDER 47 U.S.C. 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT INVOLVES THE COLLOCATION REMOVAL AND/OR REPLACEMENT OF TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR 1.61000 (B)(7)

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
 INSTALL (1) PROPOSED T-ARM MOUNT
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUs (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE

- GROUND SCOPE OF WORK:

 INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL PROPOSED ICE BRIDGE
- INSTALL 1) PROPOSED PPC CABINET
- PROPOSED EQUIPMENT CABINET INSTALL
- PROPOSED POWER CONDUIT PROPOSED TELCO CONDUIT INSTALL
- INSTALL
- PROPOSED TELCO-FIBER BOX INSTALL PROPOSED GPS UNIT
- PROPOSED FIBER NID (IF REQUIRED)
- INSTALL PROPOSED METER CANISTER IN EXISTING METER SOCKET
- INSTALL (1) PROPOSED FIBER HAND HOLE

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

DIRECTIONS

PROJECT DIRECTORY

DISH Wireless L.L.C.

LITTLETON, CO 80120

10 PRESIDENTIAL WAY

WOBURN, MA 01801

(781) 926-4500

TULSA, OK 74119

(918) 587-4630

CONSTRUCTION MANAGER: JAVIER SOTO

SITE DESIGNER: B+T GROUP

SITE ACQUISITION:

RF ENGINEER:

(303) 706-5008

TOWER OWNER: AMERICAN TOWER CORPORATION

5701 SOUTH SANTA FE DRIVE

1717 S. BOULDER AVE, SUITE 300

APRIL PARROTT

april.parrott@dish.com

iavier.soto@dish.com

syed.zaidi@dish.com

SYED ZAIDI

DIRECTIONS FROM BRADLEY INTERNATIONAL AIRPORT:

TELEPHONE COMPANY: CROWN CASTLE

SITE INFORMATION

283419

NFW HAVEN

-72.793181

41° 16' 29.11" N 41.274753

NEW HAVEN COUNTY

F08/000/006/00049

MALAVASI INVESTMENTS LLC

35 STONY CREEK RD

BRANFORD, CT 06405

PROPERTY OWNER:

TOWER CO SITE ID:

LATITUDE (NAD 83):

ZONING JURISDICTION:

ZONING DISTRICT:

PARCEL NUMBER:

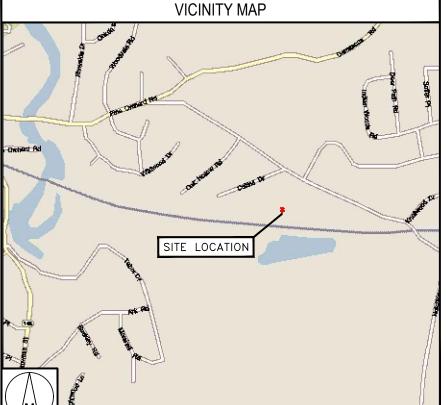
OCCUPANCY GROUP:

CONSTRUCTION TYPE:

POWER COMPANY:

NO SCALE

TOWER APP NUMBER: 13694329


LONGITUDE (NAD 83): 72° 47' 35.45" W

ADDRESS:

COUNTY:

DIRECTIONS FROM BRADLEY INTERNATIONAL AIRPORT:

CONTINUE TO BRADLEY INTERNATIONAL AIRPORT CON HEAD NORTH TOWARD BRADLEY INTERNATIONAL AIRPORT
SLIGHT LEFT ONTO BRADLEY INTERNATIONAL AIRPORT SLIGHT LEFT TAKE I—91 S TO CEDAR ST IN BRANFORD.
TAKE EXIT 54 FROM I—95 N CONTINUE ONTO BRADLEY INTERNATIONAL AIRPORT CON CONTINUE ONTO CT—20
E/BRADLEY INTERNATIONAL AIRPORT CON USE THE RIGHT 2 LANES TO MERGE WITH I—91 S TOWARD HARTFORD
KEEP RIGHT TO STAY ON I—91 S KEEP RIGHT TO STAY ON I—91 S USE THE LEFT LANE TO MERGE WITH I—95
N TOWARD NEW LONDON TAKE EXIT 54 FOR CEDAR ST TOWARD BRANFORD CONTINUE ON CEDAR ST. TAKE MAIN
ST AND PINE ORCHARD RD TO COLLINS DR TURN RIGHT ONTO CEDAR ST TURN LEFT ONTO MAIN ST TURN
RIGHT ONTO S MAIN ST TURN RIGHT ONTO MONTOWESE ST TURN LEFT ONTO PINE ORCHARD RD TOURN RIGHT
TO STAY ON PINE ORCHARD RD STREET VIEW TURN RIGHT ONTO COLLINS DR. ARRIVE AT BOHVN00136A.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

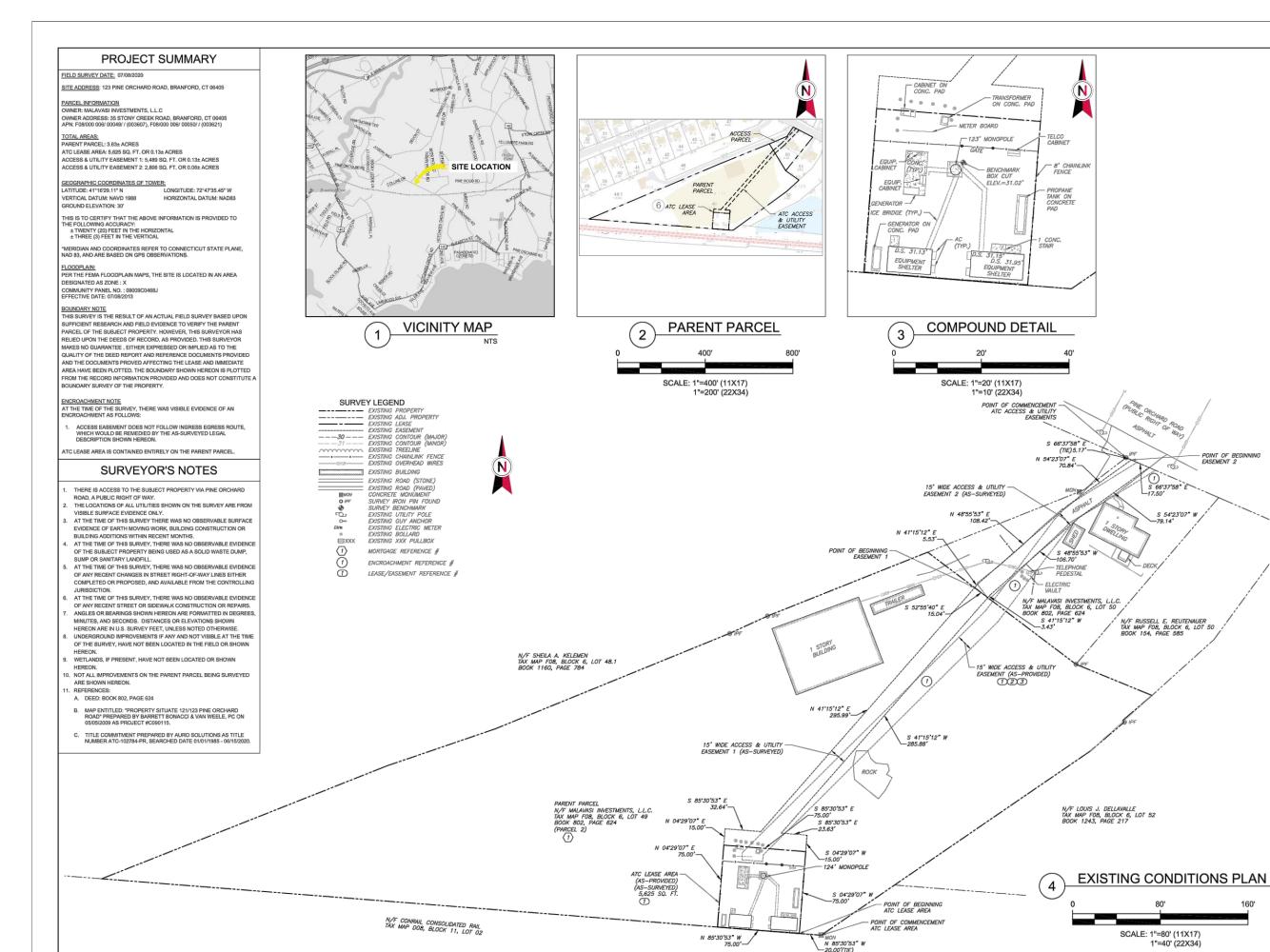
B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
SM		CDW		DAS	
DEDC DEV		и.			

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS				
	REV	DATE	DESCRIPTION		
	Α	7/28/21	ISSUED FOR REVIEW		
	0	10/17/21	ISSUED FOR CONSTRUCTION		
	1	10/27/21	ISSUED FOR CONSTRUCTION		
	2	1/17/22	ISSUED FOR CONSTRUCTION		


A&E PROJECT NUMBER 153568.001.01

BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

3533 REGENCY PARKWAY SUITE 133 CARY, NC 27551 PHONE: (919) 468-0145 COA: D-0204

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT, CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV.	DESCRIPTION	BY	DATE
0	ISSUED FOR COMMENT	SW	07/20/20
Δ			
$\overline{\Delta}$			

ATC SITE NUMBER:

283419

ATC SITE NAME:

PINE ORCHARD **BRANFORD CT**

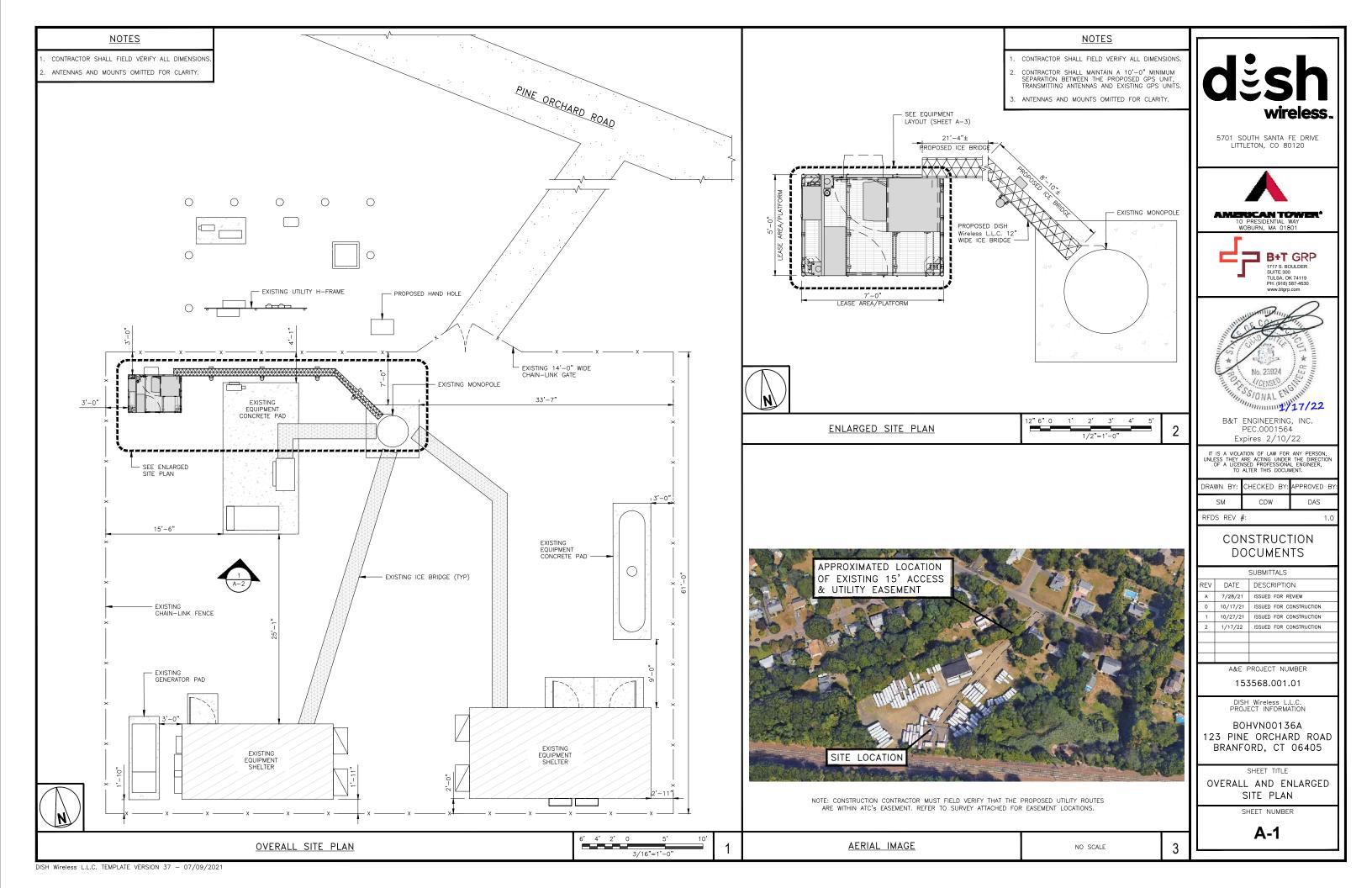
SITE ADDRESS: 123 PINE ORCHARD ROAD BRANFORD, CT 06405

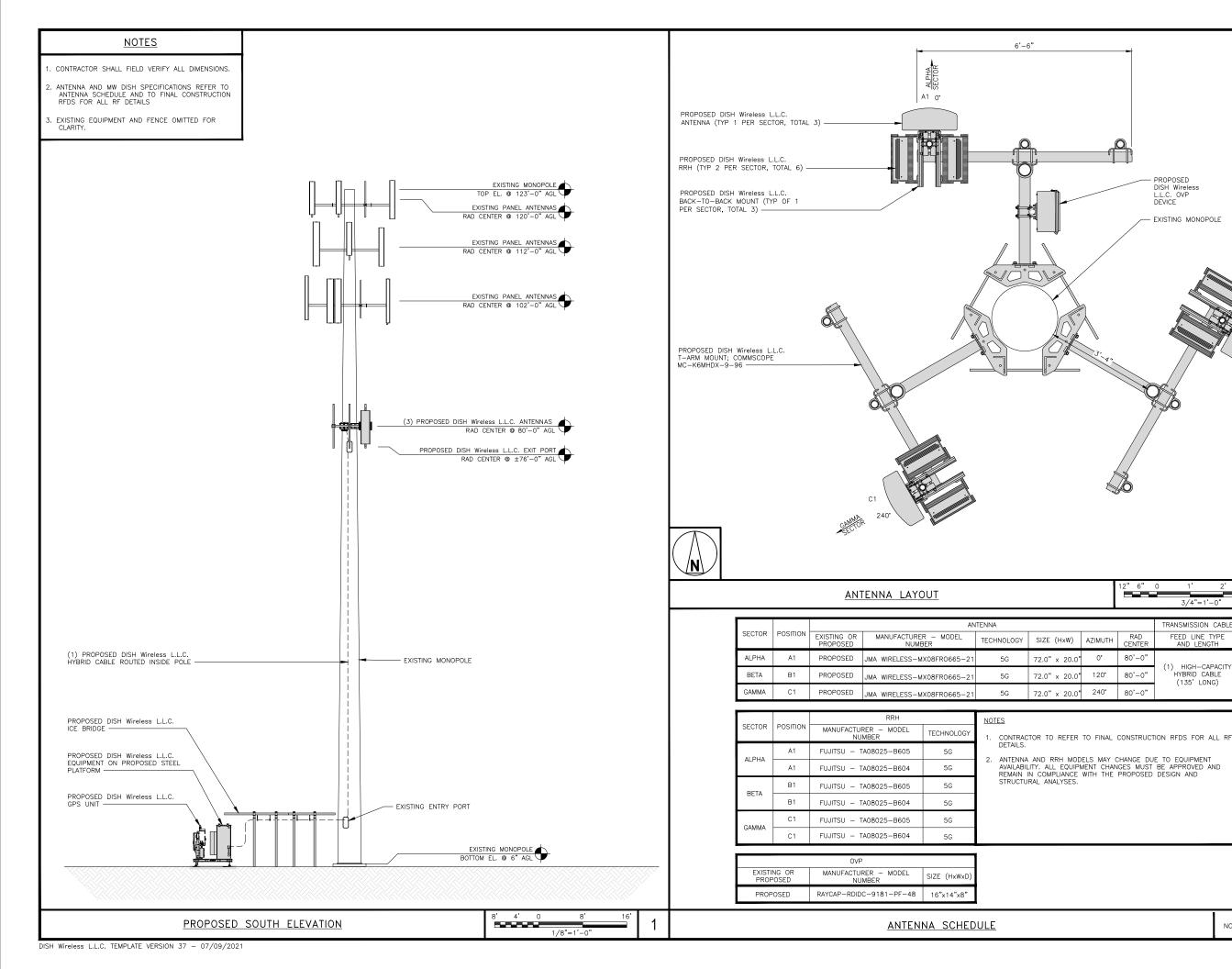
SURVEY CERTIFICATE:

I HEREBY DECLARE TO, AND ONLY, TO, THE INDIVIDUALS LISTED BELOW THAT TO THE BEST OF MY KNOWLEDGE, INFORMATION, AND BELIEF THIS MAP SIS SUBSTANTIALLY CORRECT. THIS MAP AND SURVEY WERE PREPARED IN ACCORDANCE WITH THE STANDARDS OF A CLASS A-1 SURVEY AS DEFINED IN THE "RECOMMENDED STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS PREPARED. AND ADOPTED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS, INC., ON SEPT. 13 1984, EXCEPT AS

AMERICAN TOWER CORPORATION

SURVEY LOGO:


l	DRAW	VN BY:	SW
l	APPR	OVED BY:	DS
Ш	DATE	DRAWN:	07/20/20
l	ATC J	OB NO:	283419


TITLE AND BOUNDARY **PLAN**

SHEET NUMBER: V-101

0

REVISION:

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

PROPOSED

DEVICE

DISH Wireless L.L.C. OVP

EXISTING MONOPOLE

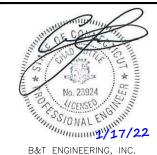
3/4"=1

TRANSMISSION CABLE

FEED LINE TYPE AND LENGTH

(1) HIGH-CAPACITY HYBRID CABLE (135' LONG)

80'-0


80'-0"

80'-0"

AMERICAN TOWERS

PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY

CDW DAS RFDS REV #:

CONSTRUCTION DOCUMENTS

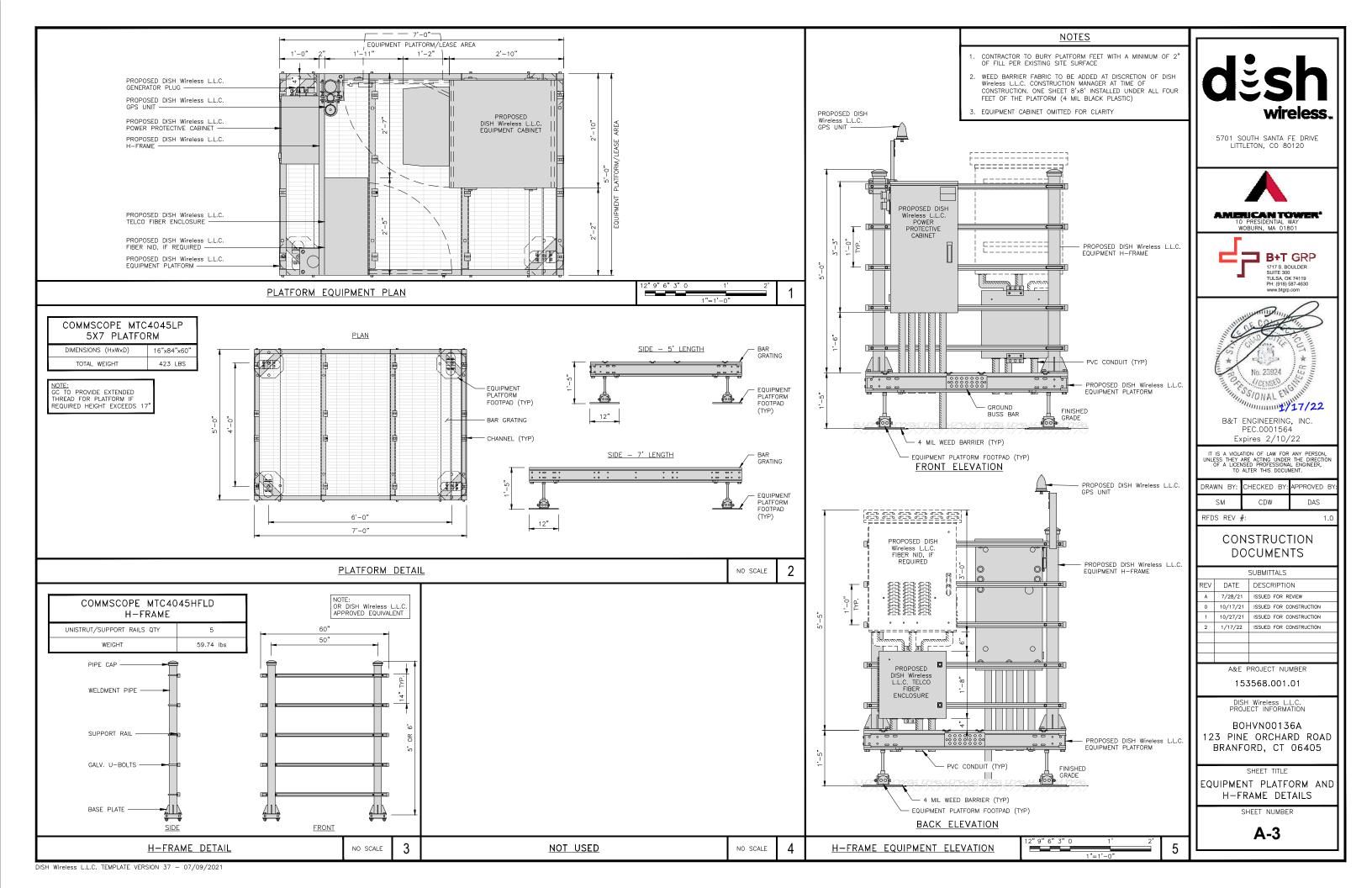
		SUBMITTALS
REV	DATE	DESCRIPTION
Α	7/28/21	ISSUED FOR REVIEW
0	10/17/21	ISSUED FOR CONSTRUCTION
1	10/27/21	ISSUED FOR CONSTRUCTION
2	1/17/22	ISSUED FOR CONSTRUCTION

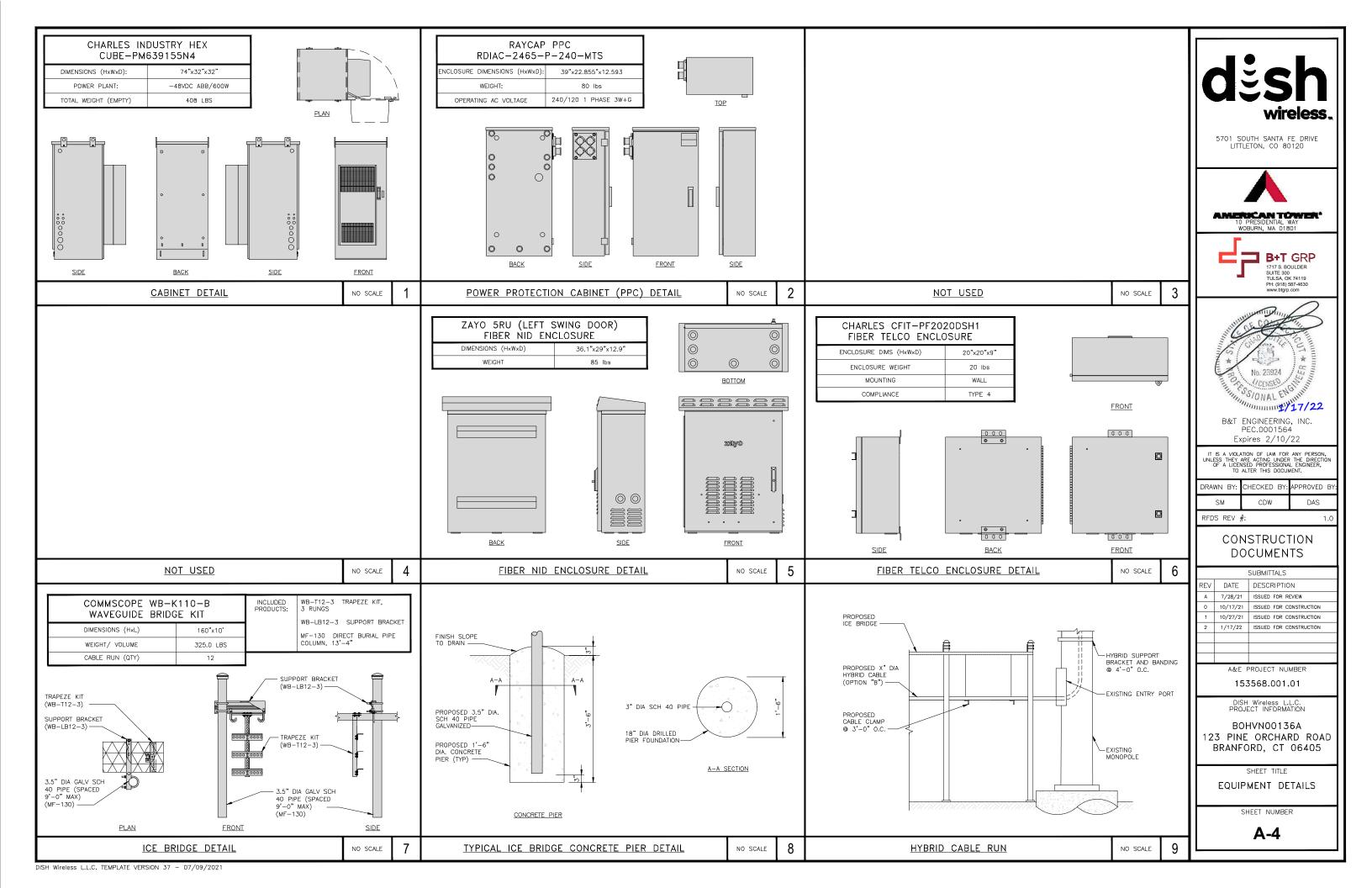
A&E PROJECT NUMBER

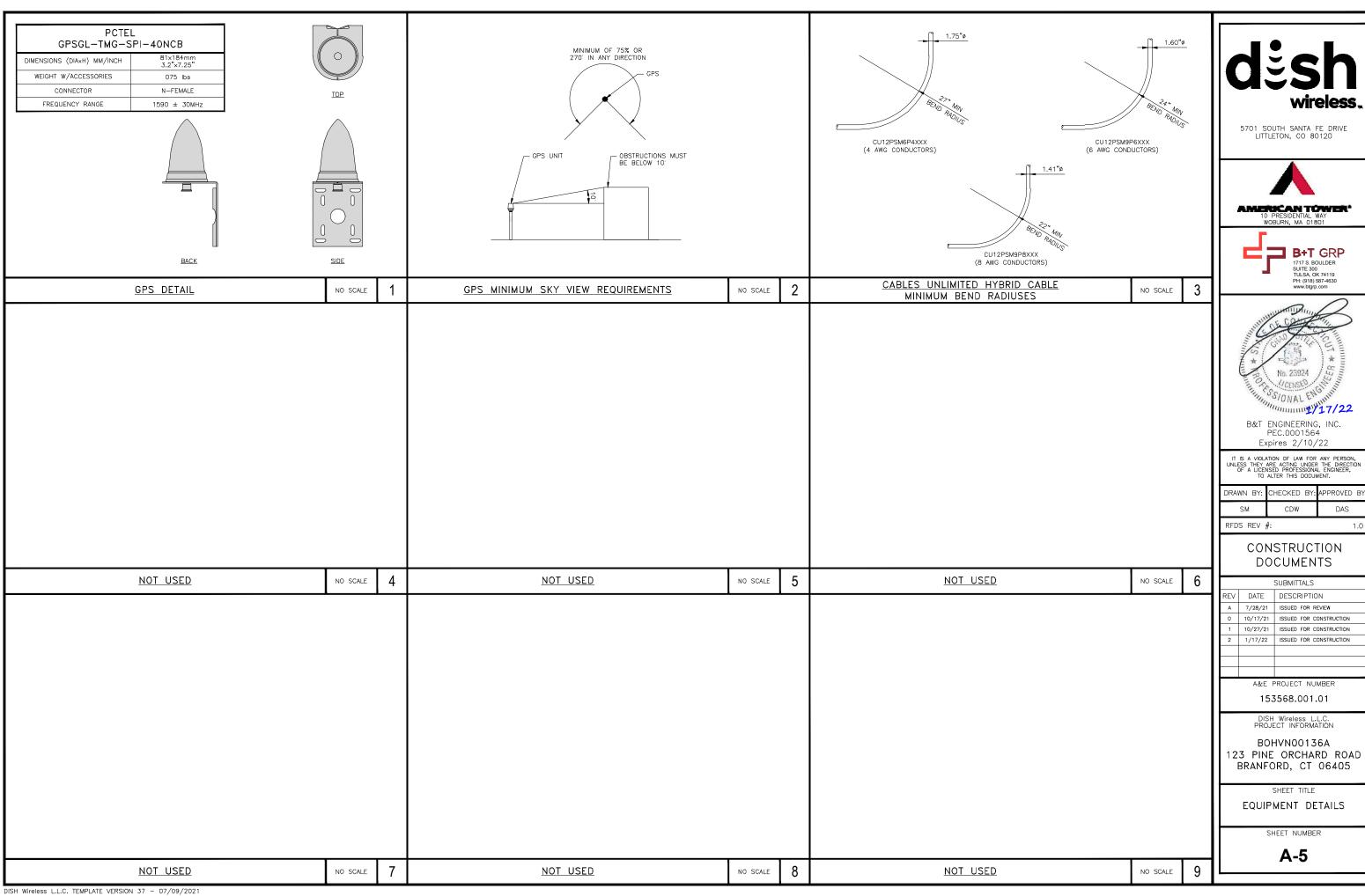
153568.001.01

DISH Wireless L.L.C. PROJECT INFORMATION

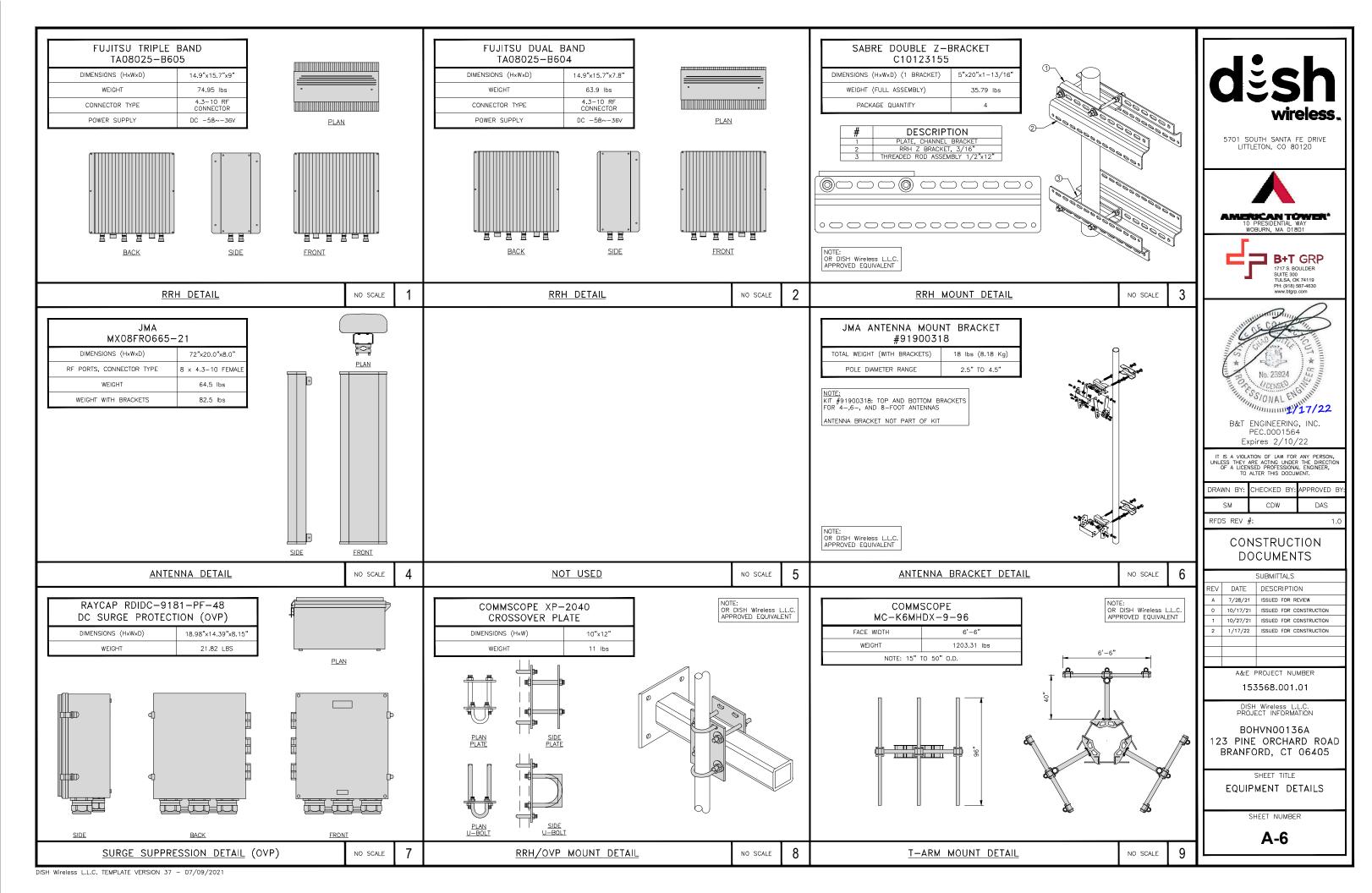
BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

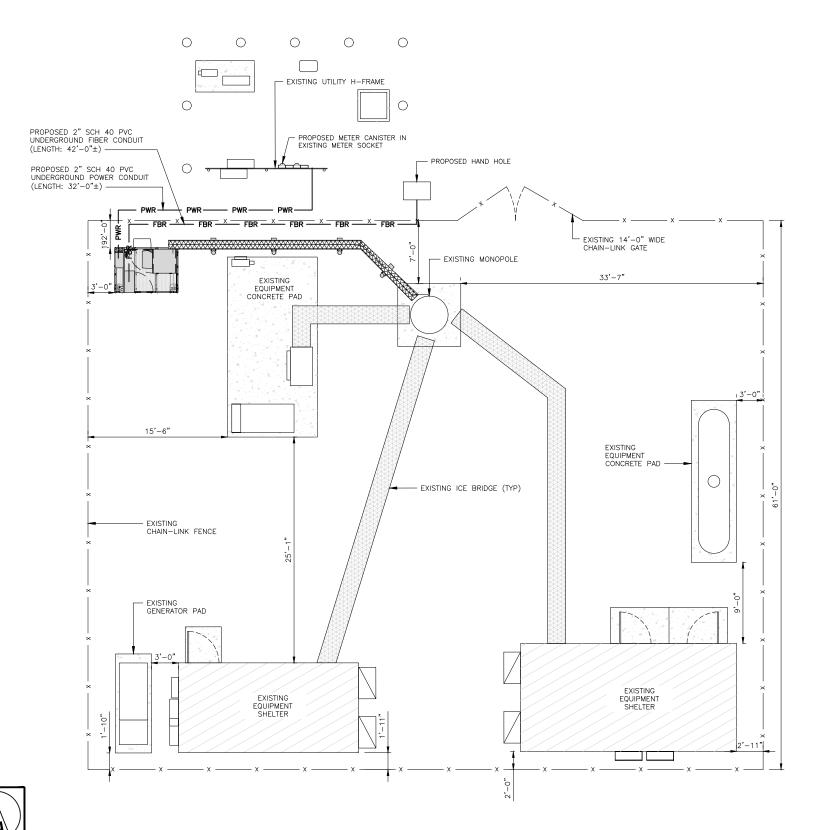

SHEET TITLE


ELEVATION, ANTENNA LAYOUT AND SCHEDULE


SHEET NUMBER

A-2


NO SCALE



DAS

NOTES

- 1. CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- 2. ANTENNAS AND MOUNTS OMITTED FOR CLARITY.
- . DUE TO UTILITY EASEMENT RIGHTS SPECIFIED IN THE GROUND LEASE, CUSTOMER MAY INSTALL EQUIPMENT WITHIN SPECIFIED UTILITY EASEMENT AREA. "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 REPRESENT PLANNED ROUTING BASED ON BEST AVAILABLE INFORMATION INCLUDING BUT NOT LIMITED TO A SURVEY, EXHIBITS, METES AND BOUNDS OF THE UTILITY EASEMENT, FIELD VERIFICATION, PRIOR PROJECT DOCUMENTATION AND OTHER REAL PROPETY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES PLEASE LOCATE AND FOLLOW EXISTING PATH. IF EXISTING PATH IS MATERIALLY INCONSISTENT WITH "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 AND SAID VARIANCE IS NOT NOTED ON CDs, PLEASE NOTIFY TOWER OWNER AS FURTHER COORDINATION MAY BE NEEDED.

UTILITY ROUTE PLAN

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ AND $\pm 48V$ CONDUCTORS. RED MARKINGS SHALL IDENTIFY $\pm 24V$ AND BLUE MARKINGS SHALL IDENTIFY $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES.
 INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG.
- 14. CONSTRUCTION CONTRACTOR MUST FIELD VERIFY THAT THE PROPOSED UTILITY ROUTES ARE WITHIN ATC'S EASEMENT. REFER TO SURVEY ATTACHED FOR EASEMENT LOCATIONS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

10 PRESIDENTIAL WAY

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SM CDW DAS	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	SM		CDW		DAS	

RFDS REV #:

CONSTRUCTION DOCUMENTS

SUBMITTALS				
REV	DATE	DESCRIPTION		
Α	7/28/21	ISSUED FOR REVIEW		
0	10/17/21	ISSUED FOR CONSTRUCTION		
1	10/27/21	ISSUED FOR CONSTRUCTION		
2	1/17/22	ISSUED FOR CONSTRUCTION		

A&E PROJECT NUMBER

153568.001.01

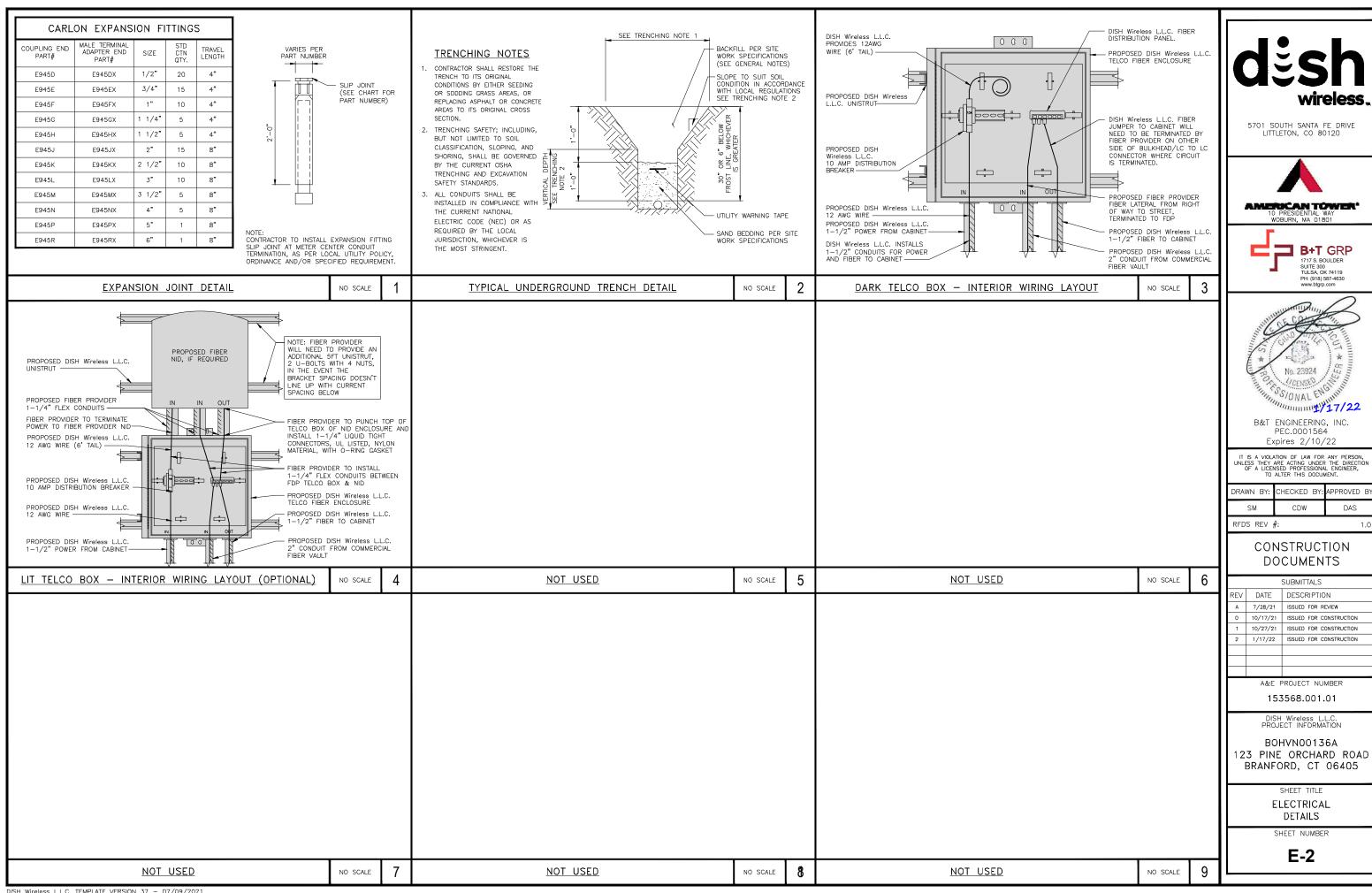
DISH Wireless L.L.C. PROJECT INFORMATION

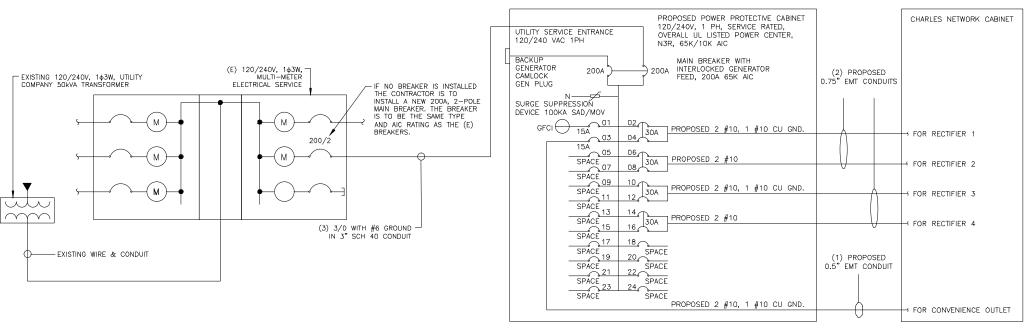
BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER


E-1


6' 4' 2' 0 5' 10' 3/16"=1'-0"

ELECTRICAL NOTES

NO SCALE

DAS

NOTES

HE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

> #12 FOR 15A-20A/1P BREAKER: $0.8 \times 30A = 24.0A$ #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA

2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND TOTAL = 0.0633 SQ. IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF $\langle 3 \rangle$ WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ, IN X 4 = 0.1064 SQ, IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND

TOTAL = 0.1146 SQ. IN

.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, ICLUDING GROUND WIRE, AS INDICATED ABOVE.

PC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND TOTAL = 0.8544 SQ. IN

.O" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, NCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

BREAKERS REQUIRED: (4) 30A, 2P BREAKER - SQUARE D P/N:Q0230

(1) 15A, 1P BREAKER - SQUARE D P/N:Q0115

NOTE:
BRANCH CIRCUIT WIRING SUPPLYING RECTIFIERS ARE TO BE RATED UL1015, 105°C, 600V, AND PVC INSULATED, IN THE SIZES SHOWN IN THE ONE-LINE DIAGRAM. CONTRACTOR MAY SUBSTITUTE UL1015 WIRE FOR THWN-2 FOR CONVENIENCE OUTLET BRANCH CIRCUIT.

11700 VOLTAGE AMP 98

PROPOSED CHARLES PANEL SCHEDULE (WATTS) ABB/GE INFINITY RECTIFIER 1 30A CHARLES GFCI OUTLE 15A ABB/GE INFINITY RECTIFIER 2 30A ABB/GE INFINITY 30A ABB/GE INFINITY RECTIFIER 4 -SPACE-30A 19 - B - 2 VOLTAGE AMPS 180 180 200A MCB, 1φ, 24 SPACE, 120/240V MB RATING: 65,000 AIC 98

PANEL SCHEDULE

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

AMERICAN TOWER'

1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT,

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
SM		CDW		DAS	

RFDS REV #:

CONSTRUCTION DOCUMENTS

1.0

		SUBMITTALS
REV	DATE	DESCRIPTION
Α	7/28/21	ISSUED FOR REVIEW
0	10/17/21	ISSUED FOR CONSTRUCTION
1	10/27/21	ISSUED FOR CONSTRUCTION
2	1/17/22	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

153568.001.01

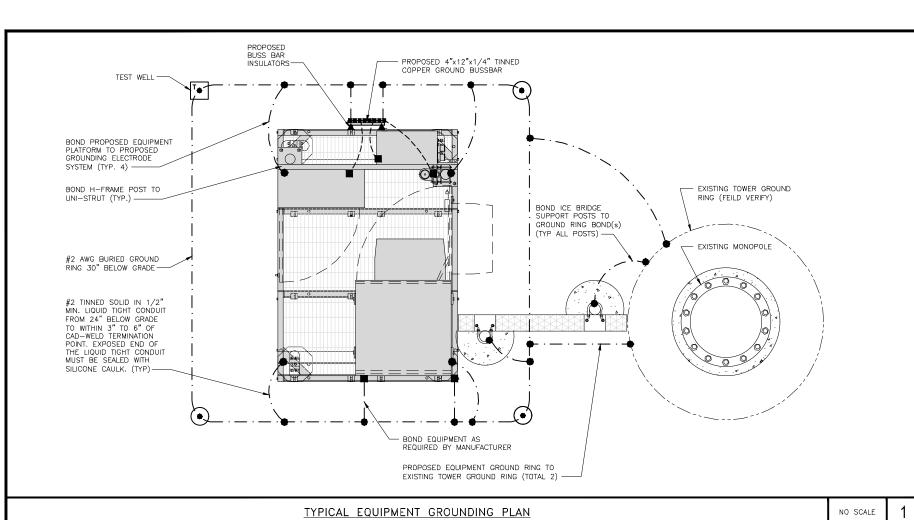
DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

SHEET TITLE

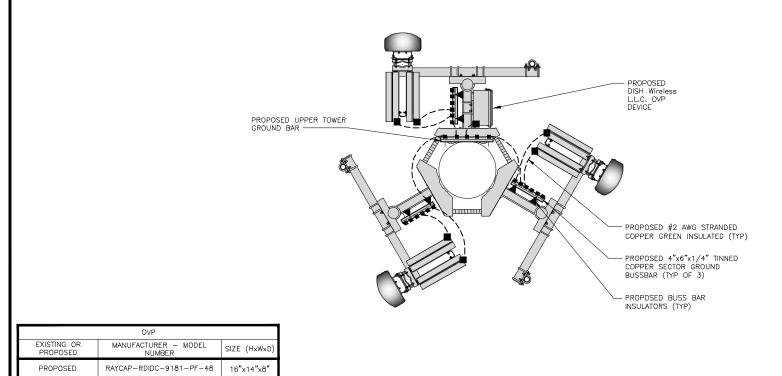
ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER


E-3

NO SCALE

2


NOT USED

NO SCALE

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

 EXOTHERMIC CONNECTION TEST GROUND ROD WITH INSPECTION SLEEVE MECHANICAL CONNECTION ---- #6 AWG STRANDED & INSULATED GROUND BUS BAR

(•) GROUND ROD - · - - #2 AWG SOLID COPPER TINNED

A BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL
- B TOWER GROUND RING: THE GROUND RING SYSIEM SHALL BE INSTALLED ANDOND AN ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS. BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- C INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG, GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES, GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND (H)
- (I) TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- K INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE
- (L) FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- M EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING, USING #2 TINNED SOLID COPPER WIRE
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUIS, MEUTIMER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, JNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RAWN	BY:	CHECKED	BY:	APPROVED	BY:
SM		CDW		DAS	

CONSTRUCTION **DOCUMENTS**

l	SUBMITTALS				
ı	REV	DATE	DESCRIPTION		
	Α	7/28/21	ISSUED FOR REVIEW		
ı	0	10/17/21	ISSUED FOR CONSTRUCTION		
	1	10/27/21	ISSUED FOR CONSTRUCTION		
	2	1/17/22	ISSUED FOR CONSTRUCTION		
ı					

A&E PROJECT NUMBER

153568.001.01

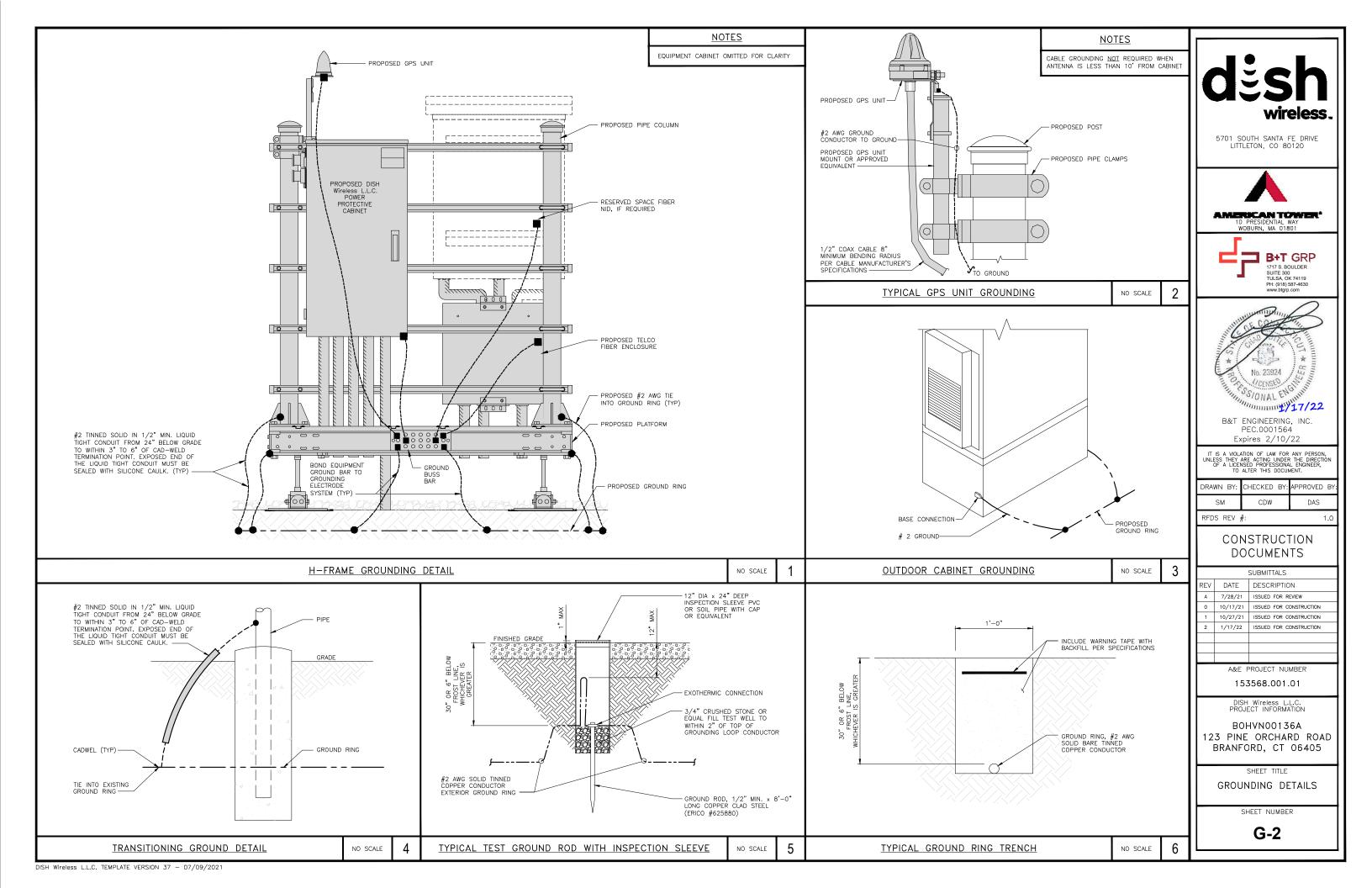
DISH Wireless L.L.C. PROJECT INFORMATION

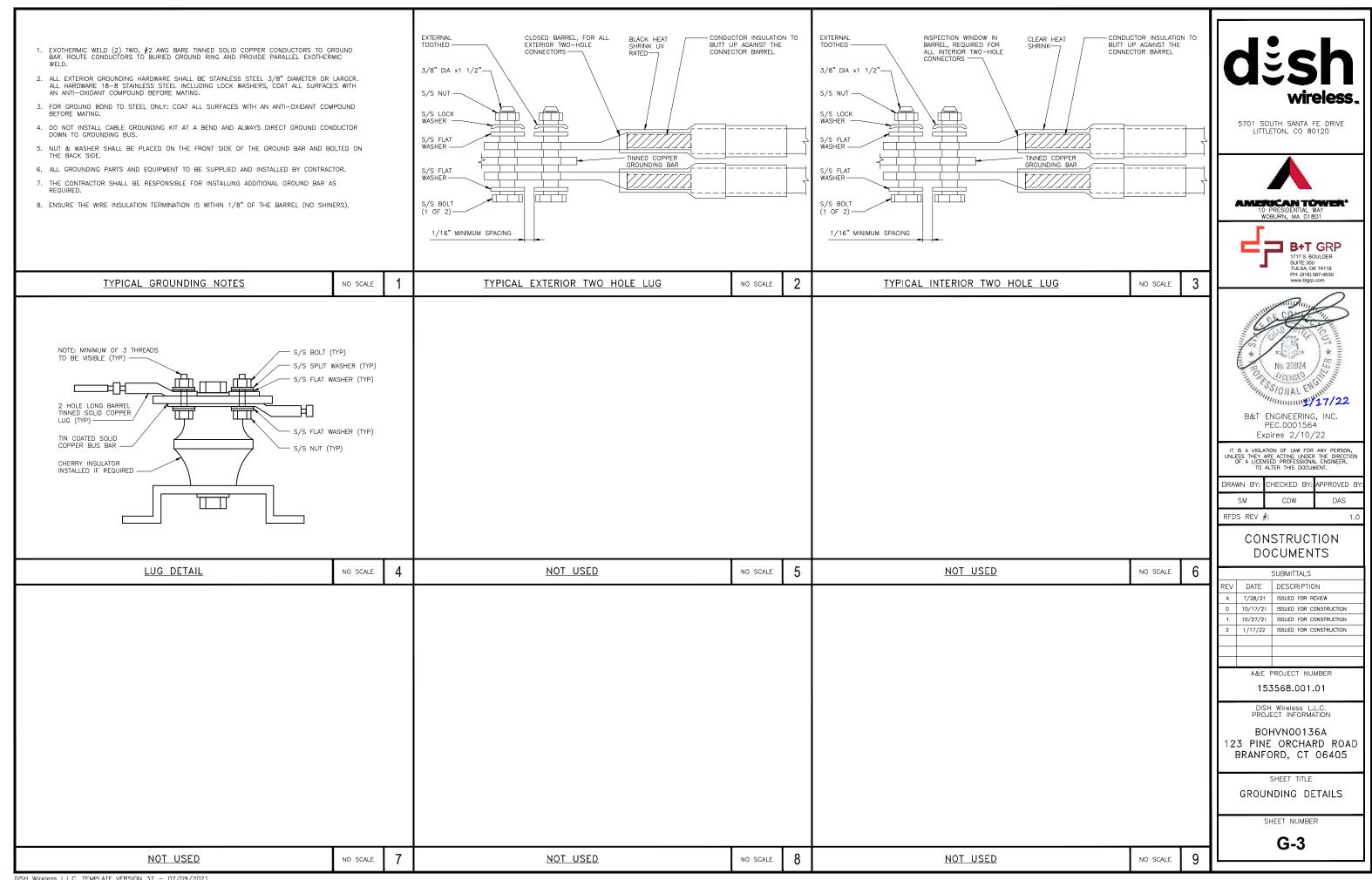
BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

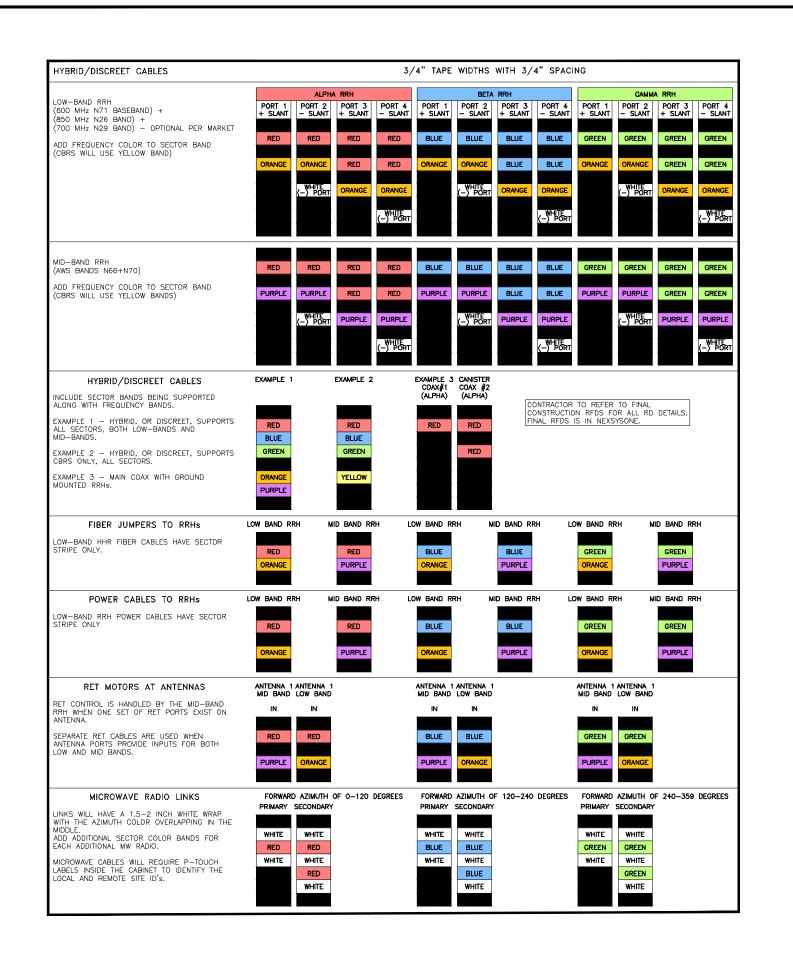
SHEET TITLE

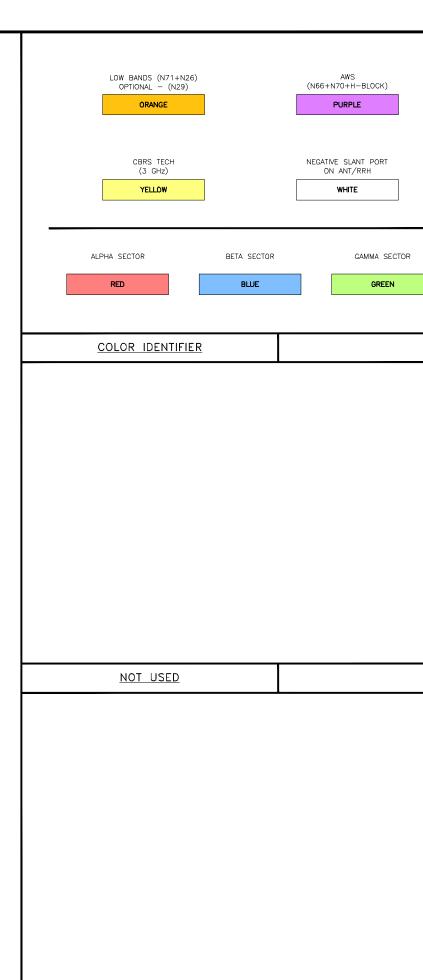
GROUNDING PLANS AND NOTES

SHEET NUMBER


G-1


TYPICAL ANTENNA GROUNDING PLAN


NO SCALE


GROUNDING KEY NOTES

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

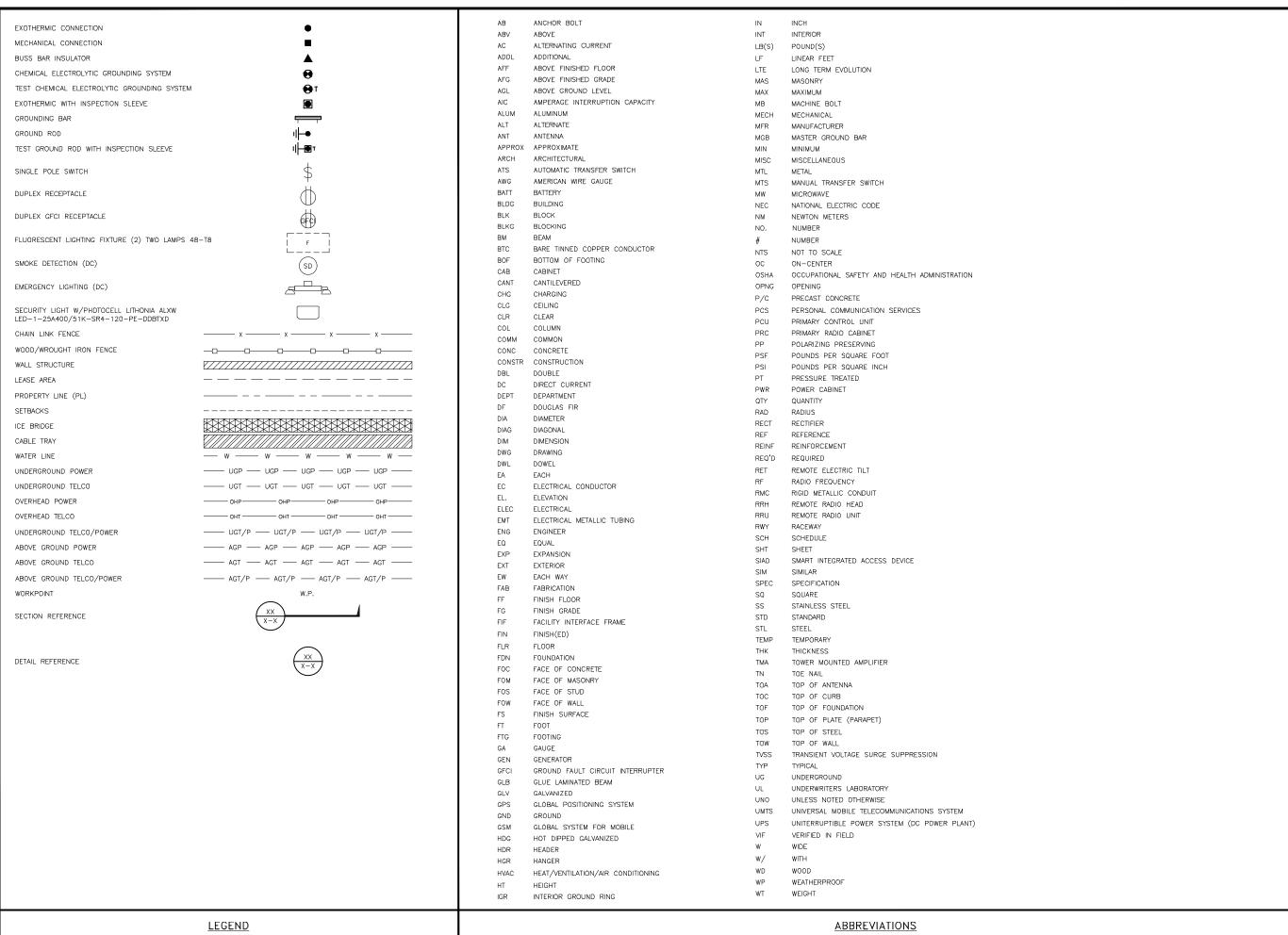
DRAWN BY:	CHECKED BY:	APPROVED BY:
SM	CDW	DAS
RFDS REV	#:	1.0

CONSTRUCTION DOCUMENTS

		SUBMITTALS					
1		REV	DATE	DESCRIPTION			
ı		Α	7/28/21	ISSUED FOR REVIEW			
ı		0	10/17/21	ISSUED FOR CONSTRUCTION			
ı		1	10/27/21	ISSUED FOR CONSTRUCTION			
ı		2	1/17/22	ISSUED FOR CONSTRUCTION			
ı							
ı							
ı	ı,						

A&E PROJECT NUMBER

153568.001.01


DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

SHEET TITLE CABLE COLOR CODES

SHEET NUMBER

RF-1

dish wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

PEC.0001564

Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
SM		CDW		DAS	

RFDS REV #;

CONSTRUCTION DOCUMENTS

l	SUBMITTALS				
ı	REV	DATE	DESCRIPTION		
	Α	7/28/21	ISSUED FOR REVIEW		
ı	0	10/17/21	ISSUED FOR CONSTRUCTION		
	1	10/27/21	ISSUED FOR CONSTRUCTION		
	2	1/17/22	ISSUED FOR CONSTRUCTION		
ı					

A&E PROJECT NUMBER

153568.001.01

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIReless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION, TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	SM		CDW		DAS	

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
Α	7/28/21	ISSUED FOR REVIEW
0	10/17/21	ISSUED FOR CONSTRUCTION
1	10/27/21	ISSUED FOR CONSTRUCTION
2	1/17/22	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

153568.001.01

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- . CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.

 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22, SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 0. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

10 PRESIDENTIAL WAY WOBURN, MA 01801

B&I ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT

Ľ	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	SM		CDW		DAS	

RFDS REV #:

CONSTRUCTION DOCUMENTS

1.0

	SUBMITTALS					
REV	DATE	DESCRIPTION				
Α	7/28/21	ISSUED FOR REVIEW				
0	10/17/21	ISSUED FOR CONSTRUCTION				
1	10/27/21	ISSUED FOR CONSTRUCTION				
2	1/17/22	ISSUED FOR CONSTRUCTION				
	A&E PROJECT NUMBER					

153568.001.01

DISH Wireless L.L.C.
PROJECT INFORMATION

BOHVN00136A

123 PINE ORCHARD ROAD

BRANFORD, CT 06405

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS FOUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNITESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON—METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD—WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

10 PRESIDENTIAL WAY

PEC.0001564
Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED	BY:	APPROVED	BY:
SM	CDW		DAS	
	,,			

RFDS REV #:

CONSTRUCTION DOCUMENTS

ľ	SUBMITTALS				
ı	REV	DATE	DESCRIPTION		
П	Α	7/28/21	ISSUED FOR REVIEW		
П	0	10/17/21	ISSUED FOR CONSTRUCTION		
ı	1	10/27/21	ISSUED FOR CONSTRUCTION		
ı	2	1/17/22	ISSUED FOR CONSTRUCTION		
ı					
ı					
L					

A&E PROJECT NUMBER

153568.001.01

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00136A 123 PINE ORCHARD ROAD BRANFORD, CT 06405

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

ENGINEERING:

STRUCTURAL ANALYSIS

MOUNT ANALYSIS

Structural Analysis Report

Structure : 123 ft Monopole

ATC Site Name : PINE ORCHARD BRANFORD CT,CT

ATC Site Number : 283419

Engineering Number : 13694329_C3_05

Proposed Carrier : DISH WIRELESS L.L.C.

Carrier Site Name : BOHVN00136A

Carrier Site Number : BOHVN00136A

Site Location : 123 Pine Orchard Road

Branford, CT 06405-3939

41.2749, -72.7931

County : New Haven

Date : January 12, 2022

Max Usage : 56%

Result : Pass

Prepared By: Reviewed By:

Kyle MacPetrie Structural Engineer I

COA: PEC.0001553

Table of Contents

Introduction	3
Supporting Documents	
Analysis	
Conclusion	
Existing and Reserved Equipment	
Equipment to be Removed	
Proposed Equipment	
Structure Usages	
Foundations	
Deflection and Sway*	
Standard Conditions	
Calculations	

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 123 ft Monopole to reflect the change in loading by DISH WIRELESS L.L.C..

Supporting Documents

Tower Drawings	Sabre Job #11-05276, dated June 2, 2010	
Foundation Drawing	Sabre Job #11-05276, dated June 2, 2010	
Geotechnical Report Terracon Project #J2105131, dated April 2, 2010		
Modifications	ATC Project #12927144_C9_06, dated September 2, 2020	

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	122 mph (3-second gust)	
Basic Wind Speed w/ Ice:	50 mph (3-second gust) w/ 1.00" radial ice concurrent	
Code:	ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code	
Exposure Category:	С	
Risk Category:	II	
Topographic Factor Procedure:	Method 1	
Topographic Category:	1	
Crest Height (H):	0 ft	
Crest Length (L):	0 ft	
Spectral Response:	$Ss = 0.20, S_1 = 0.05$	
Site Class:	D - Stiff Soil - Default	

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier	
122.0	3	Ericsson AIR 21, 1.3M, B4A B2P				
122.0	3	Ericsson AIR 21, 1.3 M, B2A B4P		(4) 1 5/8" (1.63"-		
	3	Ericsson KRY 112 144/1	T-Arm	41.3mm) Fiber	T-MOBILE	
120.0	3	RFS APXVAARR24_43-U-NA20		(8) 1 5/8" Coax		
	3	Ericsson Radio 4449 B12,B71				
	3	Ericsson RRUS 11 (Band 12)				
	3	Commscope SBNHH-1D65A				
	3	Powerwave Allgon P90-15-XLH-RR		(2) 0.40" (10.3mm)		
	3	Ericsson RRUS 32 B2		Fiber		
112.0	1	Raycap DC6-48-60-18-8C	T-Arm	(4) 0.78" (19.7mm)	AT&T MOBILITY	
112.0	3	Ericsson RRUS 4478 B14	I-AIIII	8 AWG 6	ATATIVIODILITY	
	3	Ericsson RRUS 4449 B5, B12		(6) 1 5/8" Coax		
	1	Raycap DC6-48-60-18-8F		(1) 2" conduit		
	3	Powerwave Allgon TT19-08BP111-001				
	3	CCI DMP65R-BU6DA				
	3	Samsung B2/B66A RRH-BR049				
	3	Samsung B5/B13 RRH-BR04C				
	1	Raycap RCMDC-6627-PF-48		(2) 1 5 (0) (1 (2)		
102.0	3	Samsung MT6407-77A	T-Arm	(2) 1 5/8" (1.63"-	VERIZON WIRELESS	
102.0	2	Swedcom SC-E 6016 REV2		41.3mm) Fiber (6) 1 5/8" Coax	VERIZON WIRELESS	
	3	Commscope CBC78T-DS-43-2X		(0) 1 3/6 COax		
	4	Antel LPA-80063/6CF				
	6	Commscope JAHH-65B-R3B				

Equipment to be Removed

Elev.1 (ft) Qty	Equipment	Mount Type	Mount Type Lines						
	No loading was consider	ed as removed as part of this	analysis.						

Proposed Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	3	Fujitsu TA08025-B605			
80.0	3	Fujitsu TA08025-B604	Triangular Platform with	(1) 1.60" (40.6mm)	DISH WIRELESS L.L.C.
80.0	3	JMA Wireless MX08FRO665-21	Handrails	Hybrid	DISH WIKELESS L.L.C.
	1	Commscope RDIDC-9181-PF-48			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed lines inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	47%	Pass
Shaft	56%	Pass
Base Plate	21%	Pass

Foundations

Reaction Component	Original Design Reactions	Factored Design Reactions*	Analysis Reactions	% of Design					
Moment (Kips-Ft)	3210.8	3210.8 4334.6 234		54%					
Shear (Kips)	36.1	48.7	26.8	55%					
* The design reactions are factored by 1.35 per ANSI/TIA-222-H, Sec. 15.6.2									

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)	
	Fujitsu TA08025-B605				
80.0	Fujitsu TA08025-B604	DISH WIRELESS L.L.C.	0.432	0.630	
80.0	JMA Wireless MX08FRO665-21	DISH WIRELESS L.L.C.	0.432	0.030	
	Commscope RDIDC-9181-PF-48				

^{*}Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H

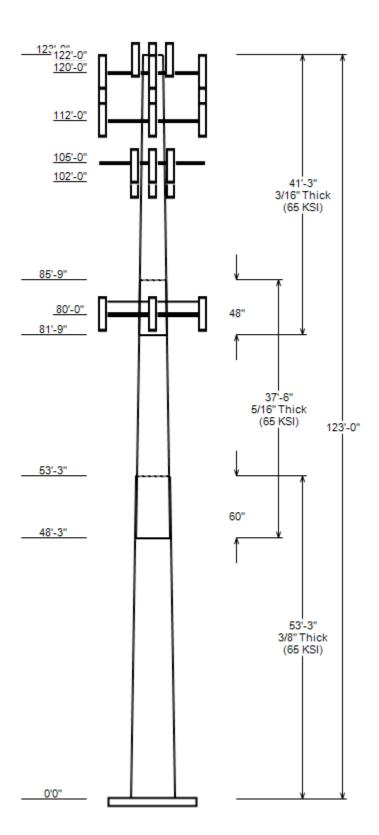
Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates, and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.


Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

JOB INFORMATION

Asset: 283419, PINE ORCHARD BRANFORD CT

Height: 123 ft Base Width: Client: DISH WIRELESS L.L.C. 50.75 ANSI/TIA-222-H Code: Shape: 18 Sides

SITE PARAMETERS

Base Elev (ft): 0.00 Structure Class: Ш Taper: 0.25000 (In/ft) Exposure: С Topographic Category: Topographic Feature:

Topo Method: Method 1

SECTION PROPERTIES														
Lenath-		Diameter (in) Across Flats				Steel Grade								
(ft)	Тор	Bottom		Joint Type	(in)	Shape	(ksi)							
50.050	07.44	F0.7F	0.075		0.000	40.014	0.5							
53.250	37.44	50.75	0.375		0.000	18 Sides	65							
37.500	29.94	39.31	0.312	Slip Joint	60.000	18 Sides	65							
41.250	21.00	31.31	0.188	Slip Joint	48.000	18 Sides	65							
	53.250 37.500	Length Acro (ft) Top 53.250 37.44 37.500 29.94	Length Diameter (in) Across Flats (ft) Top Bottom 53.250 37.44 50.75 37.500 29.94 39.31	Diameter (in) Length Across Flats Thick (in) 53.250 37.44 50.75 0.375 37.500 29.94 39.31 0.312	Diameter (in)	Length (ft) Across Flats (in) Across Flats (ft) Thick (in) Joint Type Overlap Length Length (in) 53.250 37.44 50.75 0.375 0.000 37.500 29.94 39.31 0.312 Slip Joint 60.000	Diameter (in) Across Flats Thick (ft) Overlap Length Volume Coverlap Length Volume Shape 53.250 37.44 50.75 0.375 0.000 18 Sides 37.500 29.94 39.31 0.312 Slip Joint 60.000 18 Sides							

	DISCRETE APPURTENANCE								
Attac	h Force								
Elev (ft) Elev (ft)	Qty	Description						
122	0 122.0	3	Ericsson AIR 21, 1.3 M, B2A B4						
122			Ericsson AIR 21, 1.3 M, B2A B4 Ericsson AIR 21, 1.3M, B4A B2P						
122			Ericsson KRY 112 144/1						
120			Ericsson Radio 4449 B12.B71						
120			Generic Round T-Arm						
120			RFS APXVAARR24 43-U-NA20						
112			_						
			Powerwave Allgon TT19-08BP111-						
112			Raycap DC6-48-60-18-8F						
112 112	-	_	Ericsson RRUS 4449 B5, B12						
		_	Ericsson RRUS 4478 B14						
112			Raycap DC6-48-60-18-8C						
112		_	Ericsson RRUS 32 B2						
112		_	Ericsson RRUS 11 (Band 12)						
112	-	_	Commscope SBNHH-1D65A						
112		_	Powerwave Allgon P90-15-XLH-RR						
112			Round T-Arm						
112			CCI DMP65R-BU6DA						
105			Round T-Arm						
102			Commscope CBC78T-DS-43-2X						
102		_	Samsung B5/B13 RRH-BR04C						
102			Samsung B2/B66A RRH-BR049						
102			Raycap RCMDC-6627-PF-48						
102			Samsung MT6407-77A						
102			Swedcom SC-E 6016 REV2						
102		_	Commscope JAHH-65B-R3B						
102			Antel LPA-80063/6CF						
80			Commscope RDIDC-9181-PF-48						
80			Fujitsu TA08025-B605						
80			Fujitsu TA08025-B604						
80			JMA Wireless MX08FRO665-21						
80	.0 80.0	1	Generic Flat Platform with Han						
			ADDUDTENANCE						
		LINEAR	R APPURTENANCE						

		LINEAR APPURTENANCE	
Elev From (ft)	Elev To (ft)	Description	Exp To Wind
0.0	122.0	1 5/8" Coax	No
0.0	122.0	1 5/8" (1.63"-41.3mm) Fiber	No
0.0	120.0	1 5/8" (1.63"-41.3mm) Fiber	No
0.0	112.0	2" conduit	No
0.0	112.0	1 5/8" Coax	No
0.0	112.0	0.78" (19.7mm) 8 AWG 6	No
0.0	112.0	0.40" (10.3mm) Fiber	No
0.0	102.0	1 5/8" Coax	No
0.0	102.0	1 5/8" (1.63"-41.3mm) Fiber	No

JOB INFORMATION

Asset: 283419, PINE ORCHARD BRANFORD CT

Client : DISH WIRELESS L.L.C. Code : ANSI/TIA-222-H

Height: 123 ft
Base Width: 50.75
Shape: 18 Sides

| LINEAR APPURTENANCE | Exp To | From (ft) | To (ft) | Description | Wind | No | O.0 | 80.0 | 1.60" (40.6mm) Hybrid | No |

LOAD CASES

 1.2D + 1.0W Normal
 122 mph wind with no ice

 0.9D + 1.0W Normal
 122 mph wind with no ice

 1.2D + 1.0Di + 1.0Wi Nor
 50 mph wind with 1" radial ice

 1.2D + 1.0Ev + 1.0Eh Nor
 Seismic

0.9D - 1.0Ev + 1.0Eh Nor Seismic (Reduced DL)
1.0D + 1.0W Service Norm 60 mph Wind with No Ice

	REACTIONS		
Load Case	Moment (kip-ft)	Shear (Kip)	Axial (Kip)
1.2D + 1.0W Normal	2342.50	26.78	34.86
0.9D + 1.0W Normal	2326.37	26.77	26.14
1.2D + 1.0Di + 1.0Wi Normal	560.99	6.59	47.54
1.2D + 1.0Ev + 1.0Eh Normal	94.47	1.01	34.68
0.9D - 1.0Ev + 1.0Eh Normal	93.67	1.01	23.92
1.0D + 1.0W Service Normal	504.83	5.79	29.08

DISH DEFLECTIONS									
	Attach	Deflection	Rotation						
Load Case	Elev (ft)	(in)	(deg)						

Model ID: 5093

1/12/2022 11:09:01

ASSET: 283419, PINE ORCHARD BRANFORD CT CODE: ANSI/TIA-222-H CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

ANALYSIS PARAMETERS

123 ft Location: New Haven County, CT Height: Type and Shape: Taper, 18 Sides **Base Diameter:** 50.75 in Manufacturer: Sabre Top Diameter: 21.00 in 0.95 0.2500 in/ft K_d (non-service): Taper:

K_e: 1.00 **Rotation**: 0.000°

ICE & WIND PARAMETERS

Exposure Category: С Design Wind Speed w/o Ice: 122 mph Risk Category: Ш Design Wind Speed w/Ice: 50 mph **Topo Factor Procedure:** Method 1 **Operational Wind Speed:** 60 mph **Topographic Category:** 1 **Design Ice Thickness:** 1.00 in 0 ft HMSL: **Crest Height:** 30.00 ft

SEISMIC PARAMETERS

Analysis Method: Equivalent Lateral Force Method

Site Class: D - Stiff Soil Period Based on Rayleigh Method (sec): 1.64

T_L (sec): 6 P: 1 0.035 Cs: S_{s:} 0.201 S_{1:} 0.053 C_s Max: 0.035 1.600 $F_{v:}$ 2.400 C_s Min: 0.030 Fa:

S_{ds:} 0.214 **S**_{d1:} 0.085

LOAD CASES

 1.2D + 1.0W Normal
 122 mph wind with no ice

 0.9D + 1.0W Normal
 122 mph wind with no ice

 1.2D + 1.0Di + 1.0Wi Normal
 50 mph wind with 1" radial ice

1.2D + 1.0Ev + 1.0Eh Normal Seismic

0.9D - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)
1.0D + 1.0W Service Normal 60 mph Wind with No Ice

ASSET: 283419, PINE ORCHARD BRANFORD CT

CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

	SHAFT SECTION PROPERTIES																		
						_			Е	ottom						Тор			
Sect Info	Length (ft)	Thick (in)		Joint Type	Slip Joint Ien (in)	Weight (lb)	Dia (in)	Elev (ft)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (in)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-18 2-18 3-18	37.50	0.3750 0.3125 0.1875	65 65 65	Slip Slip	0.00 60.00 48.00	4,343	39.31	48.250	38.68	19,223.0 7,433.4 2,267.1	20.42	125.80	29.94	85.75	29.38	7,655.6 3,258.1 677.8	15.13	95.80	0.2500 0.2500 0.2500

CODE:

ANSI/TIA-222-H

Shaft Weight 15,941

DISCRETE APPURTENANCE PROPERTIES

Attach				Vert		No Io	:e		lce	
Elev				Ecc	Weight	EPAa	Orientation	Weight	EPAa	Orientation
(ft)	Description	Qty	Ka	(ft)	(lb)	(sf)	Factor	(lb)	(sf)	Factor
122.00	Friends AID 24 4 2 M D2A D4	2	0.80	0.000	02.00	6.049	0.71	178.42	7.462	0.71
122.00 122.00	Ericsson AIR 21, 1.3 M, B2A B4	3	0.80	0.000	83.00 81.50	6.049	0.71	176.42	7.462	0.71
	Ericsson AIR 21, 1.3M, B4A B2P	3								
120.00	Ericsson Radio 4449 B12,B71	3	0.80	0.000	74.00	1.639	0.50	110.50	2.189	0.50
120.00	Generic Round T-Arm	3	0.75	0.000	312.50	9.700	0.67	482.81	15.075	0.67
120.00	RFS APXVAARR24_43-U-NA20	3	0.80	0.000	127.90	20.243	0.63	383.83	22.661	0.63
120.00	Ericsson KRY 112 144/1	3	0.80	0.000	11.00	0.351	0.50	18.01	0.616	0.50
112.00	CCI DMP65R-BU6DA	3	0.80	0.000	79.40	12.709	0.63	246.38	14.517	0.63
112.00	Round T-Arm	3	0.75	0.000	250.00	9.700	0.67	385.48	15.044	0.67
112.00	Powerwave Allgon P90-15-XLH-RR	3	0.80	0.000	53.00	8.133	0.67	159.77	9.940	0.67
112.00	Commscope SBNHH-1D65A	3	0.80	2.000	33.50	5.883	0.69	121.24	7.262	0.69
112.00	Ericsson RRUS 11 (Band 12)	3	0.80	2.000	50.00	2.990	0.67	94.19	3.781	0.67
112.00	Ericsson RRUS 32 B2	3	0.80	2.000	53.00	2.743	0.67	100.68	3.501	0.67
112.00	Raycap DC6-48-60-18-8C	1	0.80	0.000	16.00	2.030	1.00	53.74	2.522	1.00
112.00	Ericsson RRUS 4478 B14	3	0.80	0.000	59.40	2.021	0.67	99.18	2.632	0.67
112.00	Ericsson RRUS 4449 B5, B12	3	0.80	0.000	71.00	1.969	0.50	112.78	2.574	0.50
112.00	Raycap DC6-48-60-18-8F	1	0.80	2.000	20.00	1.260	1.00	54.13	1.687	1.00
112.00	Powerwave Allgon TT19-08BP111-	3	0.80	2.000	16.00	0.553	0.50	29.09	0.884	0.50
105.00	Round T-Arm	3	0.75	0.000	250.00	9.700	0.67	384.53	15.007	0.67
102.00	Antel LPA-80063/6CF	4	0.80	1.000	27.00	9.593	0.76	202.07	10.446	0.76
102.00	Raycap RCMDC-6627-PF-48	1	0.80	0.000	32.00	4.056	1.00	113.61	4.932	1.00
102.00	Commscope CBC78T-DS-43-2X	3	0.80	0.000	20.70	0.552	0.50	34.89	0.878	0.50
102.00	Samsung B2/B66A RRH-BR049	3	0.80	0.000	84.40	1.875	0.50	125.36	2.455	0.50
102.00	Samsung B5/B13 RRH-BR04C	3	0.80	0.000	70.30	1.875	0.50	107.03	2.455	0.50
102.00	Samsung MT6407-77A	3	0.80	0.000	81.60	4.709	0.61	147.05	5.684	0.61
102.00	Commscope JAHH-65B-R3B	6	0.80	0.000	60.60	9.113	0.69	190.51	10.894	0.69
102.00	Swedcom SC-E 6016 REV2	2	0.80	1.000	25.00	7.630	0.83	149.77	8.556	0.83
80.00	Fujitsu TA08025-B605	3	0.75	0.000	75.00	1.962	0.50	114.18	2.537	0.50
80.00	Fuiitsu TA08025-B604	3	0.75	0.000	63.90	1.962	0.50	100.37	2.537	0.50
80.00	JMA Wireless MX08FRO665-21	3	0.75	0.000	64.50	12.489	0.64	225.23	14.246	0.64
80.00	Generic Flat Platform with Han	1	1.00	0.000	2500.00	42.400	1.00	3610.91	55.515	1.00
80.00	Commscope RDIDC-9181-PF-48	1	0.75	0.000	21.90	1.867	1.00	57.49	2.430	1.00

Totals Num Loadings: 31 86 9,308.30 17,953.47

LINEAR APPURTENANCE PROPERTIES

Load Case Azimuth (deg): _

Elev From (ft)	Elev To (ft)	Qty Description	Coax Dia (in)	Coax Wt (lb/ft)	Flat	Max Coax/ Row	Dist Between Rows(in)	Dist Between Cols(in)	Azimuth (deg)		Exposed To Wind	Carrier
0.00	122.00	8 1 5/8" Coax	1.98	0.82	N	0	0	0	0	0	N	T-MOBILE
0.00	122.00	1 1 5/8" (1.63"-41.3mm)	1.63	1.61	N	0	0	0	0	0	N	T-MOBILE
0.00	120.00	3 1 5/8" (1.63"-41.3mm)	1.63	1.61	Ν	0	0	0	0	0	N	T-MOBILE
0.00	112.00	6 1 5/8" Coax	1.98	0.82	Ν	0	0	0	0	0	N	AT&T MOBILITY
0.00	112.00	4 0.78" (19.7mm) 8 AWG	0.78	0.59	Ν	0	0	0	0	0	N	AT&T MOBILITY
0.00	112.00	2 0.40" (10.3mm) Fiber	0.4	0.09	Ν	0	0	0	0	0	N	AT&T MOBILITY
0.00	112.00	1 2" conduit	2.38	3.65	N	0	0	0	0	0	Ν	AT&T MOBILITY
0.00	102.00	6 1 5/8" Coax	1.98	0.82	N	0	0	0	0	0	Ν	VERIZON WIREL
0.00	102.00	2 1 5/8" (1.63"-41.3mm)	1.63	1.61	N	0	0	0	0	0	Ν	VERIZON WIREL
0.00	80.00	1 1.60" (40.6mm) Hybrid	1.6	2.34	Ν	0	0	0	0	0	N	DISH WIRELESS

ASSET: 283419, PINE ORCHARD BRANFORD CT

CODE: ANSI/TIA-222-H CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

Seg Top Description Thick Flat Dia Area Ix Wt Ratio Ratio Ratio Ks Vin Matio Ratio Ks Vin Matio Ks Vin Matio Ks Vin Vin					SEG	MENT PR	OPER1	ΓIES					
Elev (th)			(Max	Len: 5.	ft)								
0.00 0.3750 50.750 59.957 19,223.00 22.10 135.33 75.4 746.0 0.0 0.0 5.00 0.3750 49.500 58.469 17,827.20 21.51 132.00 76.1 709.3 0.0 1,007.4 10.00 0.3750 48.520 56.881 16,500.70 20.92 128.67 76.8 638.7 0.0 956.8 20.00 0.3750 47.000 55.493 15,241.70 20.34 125.33 77.5 638.7 0.0 956.8 20.00 0.3750 445.00 52.518 12,919.00 19.16 118.67.99 571.8 0.0 906.2 30.00 0.3750 43.250 51.030 11,851.90 18.57 115.33 79.6 539.7 0.0 880.9 35.00 0.3750 43.250 51.030 11,851.90 18.57 112.00 80.6 0.0 80.50 40.04 0.0 40.0 0.3750 38.68 45.600 9.887.20 1		Description		Flat Dia									
5.00 0.3750 49.500 58.469 17,827.20 21.51 13.2.00 76.1 709.3 0.0 1,007.4 10.00 0.3750 48.250 56.981 16,500.70 20.92 128.67 76.8 673.6 0.0 952.1 15.00 0.3750 45.700 55.493 15,241.70 20.34 125.33 77.5 638.7 0.0 956.8 20.00 0.3750 45.750 54.006 14,048.40 19.75 122.00 78.2 604.8 0.0 931.5 35.00 0.3750 42.000 49.542 10,484.20 17.99 112.00 80.2 508.6 0.0 885.6 40.00 0.3750 40.750 48.657 9,006.10 16.81 105.33 81.6 449.1 0.0 803.6 45.00 0.3750 38.688 45.600 8,466.60 16.21 103.1 82.1 400.0 9.0 91.7 55.00 0.3125 36.375 35.768 5,877.1<	Elev (ft)		(in)	(in)	(in²)	(in ⁴)	Ratio	Ratio	(ksi)	(in³)	(in³)	(lb)	
10.00	0.00		0.3750	50.750	59.957	19,223.00	22.10	135.33	75.4	746.0	0.0	0.0	
15.00	5.00		0.3750	49.500	58.469	17,827.20	21.51	132.00	76.1	709.3	0.0	1,007.4	
20.00	10.00		0.3750	48.250	56.981	16,500.70	20.92	128.67	76.8	673.6	0.0	982.1	
25.00	15.00		0.3750	47.000	55.493	15,241.70	20.34	125.33	77.5	638.7	0.0	956.8	
30.00	20.00		0.3750	45.750	54.006	14,048.40	19.75	122.00	78.2	604.8	0.0	931.5	
35.00	25.00		0.3750	44.500	52.518	12,919.00	19.16	118.67	78.9	571.8	0.0	906.2	
40.00 0.3750 40.750 48.055 9,897.20 17.40 108.67 80.9 478.4 0.0 830.3 45.00 0.3750 39.500 46.567 9,006.10 16.81 105.33 81.6 449.1 0.0 804.9 48.25 Bot - Section 2 0.3750 38.688 45.600 8.456.60 16.43 103.17 82.1 430.5 0.0 509.6 50.00 0.3750 38.250 45.079 8,170.20 16.22 102.00 82.3 420.7 0.0 499.0 53.25 Top - Section 1 0.3125 38.063 37.442 6,741.30 19.71 121.80 78.2 348.8 0.0 911.7 55.00 0.3125 36.375 35.768 5,877.10 18.76 116.40 79.3 318.2 0.0 619.1 60.00 0.3125 36.375 33.879 33.289 4,737.60 17.35 108.40 81 275.5 0.0 598.0 70.	30.00		0.3750	43.250	51.030	11,851.90	18.57	115.33	79.6	539.7	0.0	880.9	
45.00 0.3750 39.500 46.567 9,006.10 16.81 105.33 81.6 449.1 0.0 804.9 48.25 Bot - Section 2 0.3750 38.688 45.600 8,456.60 16.43 103.17 82.1 430.5 0.0 509.6 50.00 0.3750 38.250 45.079 8,170.20 16.22 102.00 82.3 420.7 0.0 499.0 53.25 Top - Section 1 0.3125 38.063 37.424 6,741.30 19.71 121.80 78.2 348.8 0.0 911.7 55.00 0.3125 37.625 37.008 6,509.60 19.47 120.40 78.5 340.8 0.0 911.7 60.00 0.3125 36.375 35.768 5,877.10 18.76 116.40 79.3 318.2 0.0 619.1 60.00 0.3125 33.875 33.289 4,737.60 17.35 108.40 81 275.5 0.0 596.9 75.00 0.31	35.00		0.3750	42.000	49.542	10,845.20	17.99	112.00	80.2	508.6	0.0	855.6	
48.25 Bot - Section 2 0.3750 38.688 45.600 8,456.60 16.43 103.17 82.1 430.5 0.0 509.6 50.00 0.3750 38.250 45.079 8,170.20 16.22 102.00 82.3 420.7 0.0 499.0 53.25 Top - Section 1 0.3125 38.063 37.442 6,741.30 19.71 121.80 78.2 348.8 0.0 911.7 55.00 0.3125 36.375 35.768 5,877.10 18.76 116.40 79.3 318.2 0.0 619.1 65.00 0.3125 35.125 34.528 5,286.90 18.06 112.40 80.2 296.5 0.0 698.0 70.00 0.3125 33.675 33.289 4,737.60 17.35 108.40 81 275.5 0.0 596.9 75.00 0.3125 31.375 30.809 3,755.80 15.94 104.40 81.8 255.2 0.0 534.7 81.75 Bot	40.00		0.3750	40.750	48.055	9,897.20	17.40	108.67	80.9	478.4	0.0	830.3	
50.00 0.3750 38.250 45.079 8,170.20 16.22 102.00 82.3 420.7 0.0 499.0 53.25 Top - Section 1 0.3125 38.063 37.442 6,741.30 19.71 121.80 78.2 348.8 0.0 911.7 55.00 0.3125 37.628 5.708 6,509.60 19.47 120.40 78.5 340.8 0.0 921.7 60.00 0.3125 36.375 38.768 5,877.10 18.76 116.40 79.3 318.2 0.0 619.1 65.00 0.3125 35.125 34.528 5,286.90 18.06 112.40 80.2 296.5 0.0 598.0 70.00 0.3125 33.875 33.289 4,737.60 17.35 108.40 81 275.5 0.0 576.9 75.00 0.3125 31.375 30.809 3,755.80 15.94 100.40 82.6 235.8 0.0 534.7 81.75 Bot - Section 3 0.312				39.500	46.567	9,006.10	16.81			449.1	0.0		
53.25 Top - Section 1 0.3125 38.063 37.442 6,741.30 19.71 121.80 78.2 348.8 0.0 911.7 55.00 0.3125 37.625 37.008 6,509.60 19.47 120.40 78.5 340.8 0.0 221.7 60.00 0.3125 36.375 35.768 5,877.10 18.76 116.40 79.3 318.2 0.0 619.1 65.00 0.3125 35.125 34.528 5,286.90 18.06 112.40 80.2 296.5 0.0 598.0 70.00 0.3125 33.875 33.289 4,737.60 17.35 108.40 81 275.5 0.0 576.9 75.00 0.3125 33.375 30.809 3,755.80 15.94 100.40 81.8 255.2 0.0 555.8 80.00 0.3125 30.938 30.375 3,599.30 15.69 99.00 82.6 229.1 0.0 182.2 85.00 0.3125 30.313	48.25	Bot - Section 2	0.3750	38.688	45.600	8,456.60	16.43	103.17	82.1	430.5	0.0	509.6	
55.00 0.3125 37.625 37.008 6,509.60 19.47 120.40 78.5 340.8 0.0 221.7 60.00 0.3125 36.375 35.768 5,877.10 18.76 116.40 79.3 318.2 0.0 619.1 65.00 0.3125 35.125 34.528 5,286.90 18.06 112.40 80.2 296.5 0.0 598.0 70.00 0.3125 33.875 33.289 4,737.60 17.35 108.40 81 275.5 0.0 576.9 75.00 0.3125 32.625 32.049 4,227.70 16.65 104.40 81.8 255.2 0.0 554.7 81.75 Bot - Section 3 0.3125 30.938 30.375 3,599.30 15.69 99.00 82.6 229.1 0.0 182.2 85.00 0.3125 30.313 17.927 2,055.50 26.74 161.67 69.9 133.6 0.0 121.1 90.00 0.1875 28.000	50.00		0.3750	38.250	45.079	8,170.20	16.22	102.00	82.3	420.7	0.0	499.0	
60.00 0.3125 36.375 35.768 5,877.10 18.76 116.40 79.3 318.2 0.0 619.1 65.00 0.3125 35.125 34.528 5,286.90 18.06 112.40 80.2 296.5 0.0 598.0 70.00 0.3125 33.875 33.289 4,737.60 17.35 108.40 81 275.5 0.0 576.9 75.00 0.3125 32.625 32.049 4,227.70 16.65 104.40 81.8 255.2 0.0 555.8 80.00 0.3125 31.375 30.809 3,755.80 15.94 100.40 82.6 235.8 0.0 534.7 81.75 Bot - Section 3 0.3125 30.938 30.375 3,599.30 15.69 99.00 82.6 229.1 0.0 182.2 85.00 0.3125 30.313 17.927 2,055.50 26.74 161.67 69.9 133.6 0.0 121.1 90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3 0.0	53.25	Top - Section 1	0.3125	38.063	37.442	6,741.30	19.71	121.80	78.2	348.8	0.0	911.7	
65.00 0.3125 35.125 34.528 5,286.90 18.06 112.40 80.2 296.5 0.0 598.0 70.00 0.3125 33.875 33.289 4,737.60 17.35 108.40 81 275.5 0.0 576.9 75.00 0.3125 32.625 32.049 4,227.70 16.65 104.40 81.8 255.2 0.0 555.8 80.00 0.3125 31.375 30.809 3,755.80 15.94 100.40 82.6 235.8 0.0 534.7 81.75 Bot - Section 3 0.3125 30.938 30.375 3,599.30 15.69 99.00 82.6 229.1 0.0 182.2 85.00 0.3125 30.125 29.569 3,320.40 15.23 96.40 82.6 229.1 0.0 182.2 85.75 Top - Section 2 0.1875 30.313 17.927 2,055.50 26.74 166.07 69.9 133.6 0.0 121.1 90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3	55.00		0.3125	37.625	37.008	6,509.60	19.47	120.40	78.5	340.8	0.0	221.7	
70.00 0.3125 33.875 33.289 4,737.60 17.35 108.40 81 275.5 0.0 576.9 75.00 0.3125 32.625 32.049 4,227.70 16.65 104.40 81.8 255.2 0.0 555.8 80.00 0.3125 31.375 30.809 3,755.80 15.94 100.40 82.6 235.8 0.0 534.7 81.75 Bot - Section 3 0.3125 30.938 30.375 3,599.30 15.69 99.00 82.6 229.1 0.0 182.2 85.00 0.3125 30.135 17.927 2,055.50 26.74 161.67 69.9 133.6 0.0 121.1 90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3 0.0 254.7 95.00 0.1875 26.00 16.551 1,617.60 24.57 149.33 72.5 113.8 0.0 287.9 100.00 0.1875 26.250	60.00		0.3125	36.375	35.768	5,877.10	18.76	116.40	79.3	318.2	0.0	619.1	
75.00 0.3125 32.625 32.049 4,227.70 16.65 104.40 81.8 255.2 0.0 555.8 80.00 0.3125 31.375 30.809 3,755.80 15.94 100.40 82.6 235.8 0.0 534.7 81.75 Bot - Section 3 0.3125 30.938 30.375 3,599.30 15.69 99.00 82.6 229.1 0.0 182.2 85.00 0.3125 30.125 29.569 3,320.40 15.23 96.40 82.6 229.1 0.0 182.2 85.75 Top - Section 2 0.1875 30.313 17.927 2,055.50 26.74 161.67 69.9 133.6 0.0 121.1 90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3 0.0 254.7 95.00 0.1875 28.000 16.551 1,617.60 24.57 149.33 72.5 113.8 0.0 287.9 100.00 0.1875 26.750 15.807 1,409.10 23.39 142.67 73.9 10	65.00		0.3125	35.125	34.528	5,286.90	18.06	112.40	80.2	296.5	0.0	598.0	
80.00 0.3125 31.375 30.809 3,755.80 15.94 100.40 82.6 235.8 0.0 534.7 81.75 Bot - Section 3 0.3125 30.938 30.375 3,599.30 15.69 99.00 82.6 229.1 0.0 182.2 85.00 0.3125 30.125 29.569 3,320.40 15.23 96.40 82.6 217.1 0.0 533.6 85.75 Top - Section 2 0.1875 30.313 17.927 2,055.50 26.74 161.67 69.9 133.6 0.0 121.1 90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3 0.0 254.7 95.00 0.1875 28.000 16.551 1,617.60 24.57 149.33 72.5 113.8 0.0 287.9 100.00 0.1875 26.750 15.807 1,409.10 23.39 142.67 73.9 103.8 0.0 275.3 102.00 0.1875 25.500 15.064 1,219.40 22.22 136.00 75.3 9	70.00		0.3125	33.875	33.289	4,737.60	17.35	108.40	81	275.5	0.0	576.9	
81.75 Bot - Section 3 0.3125 30.938 30.375 3,599.30 15.69 99.00 82.6 229.1 0.0 182.2 85.00 0.3125 30.125 29.569 3,320.40 15.23 96.40 82.6 217.1 0.0 533.6 85.75 Top - Section 2 0.1875 30.313 17.927 2,055.50 26.74 161.67 69.9 133.6 0.0 121.1 90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3 0.0 254.7 95.00 0.1875 28.000 16.551 1,617.60 24.57 149.33 72.5 113.8 0.0 287.9 100.00 0.1875 26.750 15.807 1,409.10 23.39 142.67 73.9 103.8 0.0 275.3 102.00 0.1875 26.250 15.510 1,331.00 22.92 140.00 74.4 99.9 0.0 106.6 105.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 8	75.00		0.3125	32.625	32.049	4,227.70	16.65	104.40	81.8	255.2	0.0	555.8	
85.00 0.3125 30.125 29.569 3,320.40 15.23 96.40 82.6 217.1 0.0 533.6 85.75 Top - Section 2 0.1875 30.313 17.927 2,055.50 26.74 161.67 69.9 133.6 0.0 121.1 90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3 0.0 254.7 95.00 0.1875 28.000 16.551 1,617.60 24.57 149.33 72.5 113.8 0.0 287.9 100.00 0.1875 26.750 15.807 1,409.10 23.39 142.67 73.9 103.8 0.0 275.3 102.00 0.1875 26.250 15.510 1,331.00 22.92 140.00 74.4 99.9 0.0 106.6 105.00 0.1875 25.500 15.064 1,219.40 22.22 136.00 75.3 94.2 0.0 156.1 110.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 85.1 0.0	80.00		0.3125	31.375	30.809	3,755.80	15.94	100.40	82.6	235.8	0.0	534.7	
85.75 Top - Section 2 0.1875 30.313 17.927 2,055.50 26.74 161.67 69.9 133.6 0.0 121.1 90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3 0.0 254.7 95.00 0.1875 28.000 16.551 1,617.60 24.57 149.33 72.5 113.8 0.0 287.9 100.00 0.1875 26.750 15.807 1,409.10 23.39 142.67 73.9 103.8 0.0 275.3 102.00 0.1875 26.250 15.510 1,331.00 22.92 140.00 74.4 99.9 0.0 106.6 105.00 0.1875 25.500 15.064 1,219.40 22.22 136.00 75.3 94.2 0.0 156.1 110.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 85.1 0.0 250.0 112.00 0.1875 23.750 14.022 983.60 20.57 126.67 77.2 81.6 0.0	81.75	Bot - Section 3	0.3125	30.938	30.375	3,599.30	15.69	99.00	82.6	229.1	0.0		
90.00 0.1875 29.250 17.295 1,845.60 25.74 156.00 71.1 124.3 0.0 254.7 95.00 0.1875 28.000 16.551 1,617.60 24.57 149.33 72.5 113.8 0.0 287.9 100.00 0.1875 26.750 15.807 1,409.10 23.39 142.67 73.9 103.8 0.0 275.3 102.00 0.1875 26.250 15.510 1,331.00 22.92 140.00 74.4 99.9 0.0 106.6 105.00 0.1875 25.500 15.064 1,219.40 22.22 136.00 75.3 94.2 0.0 156.1 110.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 85.1 0.0 250.0 112.00 0.1875 23.750 14.022 983.60 20.57 126.67 77.2 81.6 0.0 96.4 115.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6 <t< td=""><td>85.00</td><td></td><td>0.3125</td><td>30.125</td><td>29.569</td><td>3,320.40</td><td>15.23</td><td>96.40</td><td>82.6</td><td>217.1</td><td>0.0</td><td>533.6</td><td></td></t<>	85.00		0.3125	30.125	29.569	3,320.40	15.23	96.40	82.6	217.1	0.0	533.6	
95.00 0.1875 28.000 16.551 1,617.60 24.57 149.33 72.5 113.8 0.0 287.9 100.00 0.1875 26.750 15.807 1,409.10 23.39 142.67 73.9 103.8 0.0 275.3 102.00 0.1875 26.250 15.510 1,331.00 22.92 140.00 74.4 99.9 0.0 106.6 105.00 0.1875 25.500 15.064 1,219.40 22.22 136.00 75.3 94.2 0.0 156.1 110.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 85.1 0.0 250.0 112.00 0.1875 23.750 14.022 983.60 20.57 126.67 77.2 81.6 0.0 96.4 115.00 0.1875 23.000 13.576 892.60 19.87 122.67 78 76.4 0.0 140.9 120.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6	85.75	Top - Section 2	0.1875	30.313	17.927	2,055.50	26.74	161.67	69.9	133.6	0.0		
100.00 0.1875 26.750 15.807 1,409.10 23.39 142.67 73.9 103.8 0.0 275.3 102.00 0.1875 26.250 15.510 1,331.00 22.92 140.00 74.4 99.9 0.0 106.6 105.00 0.1875 25.500 15.064 1,219.40 22.22 136.00 75.3 94.2 0.0 156.1 110.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 85.1 0.0 250.0 112.00 0.1875 23.750 14.022 983.60 20.57 126.67 77.2 81.6 0.0 96.4 115.00 0.1875 23.000 13.576 892.60 19.87 122.67 78 76.4 0.0 140.9 120.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6 122.00 0.1875 21.250 12.534 702.50 18.22 113.33 80 65.1 0.0 86.3 <td>90.00</td> <td></td> <td>0.1875</td> <td>29.250</td> <td>17.295</td> <td>1,845.60</td> <td>25.74</td> <td>156.00</td> <td>71.1</td> <td>124.3</td> <td>0.0</td> <td>254.7</td> <td></td>	90.00		0.1875	29.250	17.295	1,845.60	25.74	156.00	71.1	124.3	0.0	254.7	
102.00 0.1875 26.250 15.510 1,331.00 22.92 140.00 74.4 99.9 0.0 106.6 105.00 0.1875 25.500 15.064 1,219.40 22.22 136.00 75.3 94.2 0.0 156.1 110.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 85.1 0.0 250.0 112.00 0.1875 23.750 14.022 983.60 20.57 126.67 77.2 81.6 0.0 96.4 115.00 0.1875 23.000 13.576 892.60 19.87 122.67 78 76.4 0.0 140.9 120.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6 122.00 0.1875 21.250 12.534 702.50 18.22 113.33 80 65.1 0.0 86.3	95.00		0.1875	28.000	16.551	1,617.60	24.57			113.8	0.0	287.9	
105.00 0.1875 25.500 15.064 1,219.40 22.22 136.00 75.3 94.2 0.0 156.1 110.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 85.1 0.0 250.0 112.00 0.1875 23.750 14.022 983.60 20.57 126.67 77.2 81.6 0.0 96.4 115.00 0.1875 23.000 13.576 892.60 19.87 122.67 78 76.4 0.0 140.9 120.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6 122.00 0.1875 21.250 12.534 702.50 18.22 113.33 80 65.1 0.0 86.3				26.750	15.807	1,409.10	23.39			103.8	0.0		
110.00 0.1875 24.250 14.320 1,047.50 21.04 129.33 76.7 85.1 0.0 250.0 112.00 0.1875 23.750 14.022 983.60 20.57 126.67 77.2 81.6 0.0 96.4 115.00 0.1875 23.000 13.576 892.60 19.87 122.67 78 76.4 0.0 140.9 120.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6 122.00 0.1875 21.250 12.534 702.50 18.22 113.33 80 65.1 0.0 86.3	102.00		0.1875	26.250	15.510	1,331.00	22.92	140.00	74.4	99.9	0.0		
112.00 0.1875 23.750 14.022 983.60 20.57 126.67 77.2 81.6 0.0 96.4 115.00 0.1875 23.000 13.576 892.60 19.87 122.67 78 76.4 0.0 140.9 120.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6 122.00 0.1875 21.250 12.534 702.50 18.22 113.33 80 65.1 0.0 86.3	105.00		0.1875	25.500	15.064	1,219.40	22.22	136.00	75.3	94.2	0.0	156.1	
115.00 0.1875 23.000 13.576 892.60 19.87 122.67 78 76.4 0.0 140.9 120.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6 122.00 0.1875 21.250 12.534 702.50 18.22 113.33 80 65.1 0.0 86.3	110.00			24.250		1,047.50	21.04			85.1	0.0		
120.00 0.1875 21.750 12.832 753.80 18.69 116.00 79.4 68.3 0.0 224.6 122.00 0.1875 21.250 12.534 702.50 18.22 113.33 80 65.1 0.0 86.3	112.00		0.1875	23.750	14.022	983.60	20.57	126.67	77.2	81.6	0.0	96.4	
122.00 0.1875 21.250 12.534 702.50 18.22 113.33 80 65.1 0.0 86.3	115.00		0.1875	23.000	13.576	892.60	19.87	122.67	78	76.4	0.0	140.9	
	120.00		0.1875	21.750	12.832	753.80	18.69	116.00	79.4	68.3	0.0		
123.00 0.1875 21.000 12.386 677.80 17.99 112.00 80.2 63.6 0.0 42.4	122.00		0.1875	21.250	12.534	702.50	18.22	113.33	80	65.1	0.0	86.3	
	123.00		0.1875	21.000	12.386	677.80	17.99	112.00	80.2	63.6	0.0	42.4	

15,940.3 Totals:

Model Id: 5093 Scenario Id: 190399

1/12/2022 11:09:04

ASSET: 283419, PINE ORCHARD BRANFORD CT

CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

Load Case: 1.2D + 1.0W Normal 122 mph wind with no ice 22 Iterations

CODE:

ANSI/TIA-222-H

Gust Response Factor: 1.10
Dead load Factor: 1.20
Wind Load Factor: 1.00

Soa	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Seg Elev	Fu FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
(11)	(kih2)	(kips)	(II-KIPS)	(II-KIPS)	(II-KIPS)	(II-KIPS)	(kips)	(kips)	(II-Kips)	(II-KIPS)	(111)	(ueg)	Natio
0.00	-34.86	-26.78	0.00	-2,342.5	0.00	2,342.50	4,069.07	1,052.24	4,787.63	4,219.32	0	0	0.564
5.00	-33.37	-26.36	0.00	-2,208.6	0.00	2,208.60	4,004.48	1,026.13	4,553.01	4,048.54	0.09	-0.17	0.555
10.00	-31.91	-25.95	0.00	-2,076.8	0.00	2,076.79	3,938.03	1,000.02	4,324.28	3,879.30	0.36	-0.34	0.544
15.00	-30.48	-25.53	0.00	-1,947.1	0.00	1,947.06	3,869.74	973.91	4,101.44	3,711.72	0.81	-0.51	0.533
20.00	-29.08	-25.10	0.00	-1,819.4	0.00	1,819.40	3,799.59	947.80	3,884.50	3,545.95	1.44	-0.69	0.521
25.00	-27.72	-24.65	0.00	-1,693.9	0.00	1,693.90	3,727.59	921.69	3,673.45	3,382.14	2.26	-0.87	0.509
30.00	-26.38	-24.20	0.00	-1,570.6	0.00	1,570.63	3,653.75	895.58	3,468.30	3,220.43	3.26	-1.05	0.496
35.00	-25.09	-23.73	0.00	-1,449.6	0.00	1,449.65	3,578.05	869.47	3,269.04	3,060.96	4.46	-1.23	0.481
40.00	-23.82	-23.25	0.00	-1,331.0	0.00	1,331.02	3,500.49	843.36	3,075.67	2,903.89	5.84	-1.41	0.466
45.00	-22.60	-22.85	0.00	-1,214.8	0.00	1,214.75	3,421.09	817.25	2,888.20	2,749.35	7.42	-1.59	0.449
48.25	-21.82	-22.61	0.00	-1,140.5	0.00	1,140.48	3,368.49	800.28	2,769.51	2,650.32	8.54	-1.71	0.438
50.00	-21.12	-22.36	0.00	-1,100.9	0.00	1,100.91	3,339.84	791.14	2,706.63	2,597.48	9.18	-1.78	0.431
53.25	-19.87	-22.09	0.00	-1,028.2	0.00	1,028.24	2,635.64	657.11	2,240.55	2,046.33	10.44	-1.9	0.511
55.00	-19.49	-21.78	0.00	-989.6	0.00	989.58	2,614.77	649.49	2,188.92	2,006.40	11.15	-1.97	0.502
60.00	-18.48	-21.31	0.00	-880.7	0.00	880.66	2,553.87	627.73	2,044.74	1,893.48	13.32	-2.17	0.473
65.00	-17.51	-20.83	0.00	-774.1	0.00	774.12	2,491.13	605.97	1,905.46	1,782.39	15.7	-2.37	0.443
70.00	-16.56	-20.36	0.00	-670.0	0.00	669.96	2,426.53	584.22	1,771.10	1,673.28	18.28	-2.56	0.408
75.00	-15.65	-19.89	0.00	-568.2	0.00	568.15	2,360.09	562.46	1,641.65	1,566.29	21.07	-2.75	0.371
80.00	-11.19	-16.20	0.00	-468.7	0.00	468.69	2,288.96	540.70	1,517.11	1,459.75	24.05	-2.92	0.327
81.75	-10.89	-15.97	0.00	-440.4	0.00	440.35	2,256.72	533.08	1,474.68	1,418.72	25.13	-2.99	0.316
85.00	-10.12	-15.75	0.00	-388.5	0.00	388.46	2,196.84	518.94	1,397.48	1,344.07	27.2	-3.09	0.295
85.75	-9.93	-15.53	0.00	-376.6	0.00	376.65	1,128.57	314.63	856.05	700.67	27.69	-3.12	0.549
90.00	-9.44	-15.12	0.00	-310.6	0.00	310.64	1,107.06	303.53	796.73	662.92	30.52	-3.24	0.480
95.00	-8.88	-14.69	0.00	-235.0	0.00	235.03	1,080.04	290.48	729.68	618.75	34.03	-3.45	0.391
100.00	-8.34	-14.38	0.00	-161.6	0.00	161.57	1,051.16	277.42	665.57	574.96	37.75	-3.63	0.292
102.00	-6.81	-10.09	0.00	-131.1	0.00	131.11	1,039.10	272.20	640.75	557.59	39.28	-3.69	0.243
105.00	-5.69	-8.96	0.00	-100.9	0.00	100.86	1,020.44	264.37	604.41	531.71	41.62	-3.76	0.196
110.00	-5.26	-8.66	0.00	-56.1	0.00	56.07	987.87	251.31	546.19	489.13	45.62	-3.85	0.121
112.00	-2.93	-4.45	0.00	-36.6	0.00	36.61	974.32	246.09	523.73	472.32	47.24	-3.88	0.081
115.00	-2.73	-4.14	0.00	-23.3	0.00	23.26	953.44	238.26	490.93	447.37	49.68	-3.91	0.055
120.00	-0.68	-1.26	0.00	-2.6	0.00	2.55	917.17	225.20	438.61	406.57	53.78	-3.93	0.007
122.00	-0.05	-0.03	0.00	-0.0	0.00	0.03	902.14	219.98	418.50	390.56	55.43	-3.93	0.000
123.00	0.00	-0.03	0.00	0.0	0.00	0.00	894.51	217.37	408.63	382.62	56.25	-3.93	0.000

ASSET: 283419, PINE ORCHARD BRANFORD CT CODE: ANSI/TIA-222-H CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

Load Case: 0.9D + 1.0W Normal 122 mph wind with no ice 22 Iterations

Gust Response Factor: 1.10
Dead load Factor: 0.90
Wind Load Factor: 1.00

0,12002													
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
	` ' '	` ' '	` ' '	, , ,		` '	` ' '	` ' '	` '	` ' '	, ,		
0.00	-26.14	-26.77	0.00	-2,326.4	0.00	2,326.37	4,069.07	1,052.24	4,787.63	4,219.32	0	0	0.558
5.00	-25.00	-26.32	0.00	-2,192.5	0.00	2,192.54	4,004.48	1,026.13	4,553.01	4,048.54	0.09	-0.17	0.548
10.00	-23.88	-25.89	0.00	-2,060.9	0.00	2,060.92	3,938.03	1,000.02	4,324.28	3,879.30	0.36	-0.34	0.538
15.00	-22.79	-25.45	0.00	-1,931.5	0.00	1,931.50	3,869.74	973.91	4,101.44	3,711.72	0.8	-0.51	0.527
20.00	-21.73	-25.00	0.00	-1,804.2	0.00	1,804.25	3,799.59	947.80	3,884.50	3,545.95	1.43	-0.68	0.515
25.00	-20.69	-24.53	0.00	-1,679.3	0.00	1,679.26	3,727.59	921.69	3,673.45	3,382.14	2.24	-0.86	0.503
30.00	-19.67	-24.06	0.00	-1,556.6	0.00	1,556.59	3,653.75	895.58	3,468.30	3,220.43	3.24	-1.04	0.489
35.00	-18.69	-23.58	0.00	-1,436.3	0.00	1,436.30	3,578.05	869.47	3,269.04	3,060.96	4.42	-1.22	0.475
40.00	-17.72	-23.09	0.00	-1,318.4	0.00	1,318.42	3,500.49	843.36	3,075.67	2,903.89	5.79	-1.4	0.460
45.00	-16.79	-22.68	0.00	-1,203.0	0.00	1,202.98	3,421.09	817.25	2,888.20	2,749.35	7.36	-1.58	0.443
48.25	-16.21	-22.43	0.00	-1,129.3	0.00	1,129.26	3,368.49	800.28	2,769.51	2,650.32	8.47	-1.7	0.432
50.00	-15.67	-22.18	0.00	-1,090.0	0.00	1,090.00	3,339.84	791.14	2,706.63	2,597.48	9.11	-1.76	0.425
53.25	-14.73	-21.92	0.00	-1,017.9	0.00	1,017.91	2,635.64	657.11	2,240.55	2,046.33	10.35	-1.88	0.504
55.00	-14.43	-21.60	0.00	-979.6	0.00	979.56	2,614.77	649.49	2,188.92	2,006.40	11.06	-1.95	0.495
60.00	-13.67	-21.11	0.00	-871.6	0.00	871.58	2,553.87	627.73	2,044.74	1,893.48	13.21	-2.15	0.467
65.00	-12.92	-20.63	0.00	-766.0	0.00	766.03	2,491.13	605.97	1,905.46	1,782.39	15.57	-2.35	0.436
70.00	-12.20	-20.15	0.00	-662.9	0.00	662.88	2,426.53	584.22	1,771.10	1,673.28	18.13	-2.54	0.402
75.00	-11.51	-19.68	0.00	-562.1	0.00	562.12	2,360.09	562.46	1,641.65	1,566.29	20.89	-2.73	0.365
80.00	-8.20	-16.04	0.00	-463.7	0.00	463.71	2,288.96	540.70	1,517.11	1,459.75	23.84	-2.9	0.322
81.75	-7.97	-15.81	0.00	-435.6	0.00	435.64	2,256.72	533.08	1,474.68	1,418.72	24.91	-2.96	0.311
85.00	-7.39	-15.60	0.00	-384.3	0.00	384.28	2,196.84	518.94	1,397.48	1,344.07	26.96	-3.06	0.290
85.75	-7.25	-15.38	0.00	-372.6	0.00	372.58	1,128.57	314.63	856.05	700.67	27.45	-3.09	0.541
90.00	-6.88	-14.97	0.00	-307.2	0.00	307.22	1,107.06	303.53	796.73	662.92	30.25	-3.21	0.472
95.00	-6.45	-14.54	0.00	-232.4	0.00	232.38	1,080.04	290.48	729.68	618.75	33.73	-3.42	0.384
100.00	-6.05	-14.23	0.00	-159.7	0.00	159.70	1,051.16	277.42	665.57	574.96	37.41	-3.59	0.286
102.00	-4.96	-9.96	0.00	-129.6	0.00	129.55	1,039.10	272.20	640.75	557.59	38.93	-3.65	0.238
105.00	-4.13	-8.85	0.00	-99.7	0.00	99.66	1,020.44	264.37	604.41	531.71	41.25	-3.73	0.193
110.00	-3.81	-8.56	0.00	-55.4	0.00	55.41	987.87	251.31	546.19	489.13	45.2	-3.82	0.118
112.00	-2.13	-4.39	0.00	-36.2	0.00	36.15	974.32	246.09	523.73	472.32	46.81	-3.84	0.079
115.00	-1.98	-4.09	0.00	-23.0	0.00	22.97	953.44	238.26	490.93	447.37	49.23	-3.87	0.054
120.00	-0.49	-1.24	0.00	-2.5	0.00	2.52	917.17	225.20	438.61	406.57	53.29	-3.89	0.007
122.00	-0.04	-0.03	0.00	-0.0	0.00	0.03	902.14	219.98	418.50	390.56	54.92	-3.89	0.000
123.00	0.00	-0.03	0.00	0.0	0.00	0.00	894.51	217.37	408.63	382.62	55.73	-3.89	0.000

ASSET: 283419, PINE ORCHARD BRANFORD CT CODE: ANSI/TIA-222-H

CUSTOMER: DISH WIRELESS L.L.C. 13694329_C3_05 ENG NO:

Load Case: 1.2D + 1.0Di +	1.0Wi Normal	50 mph wind with	1" radial ice		21 Iterations
Gust Response Factor:	1.10	Ice Dead Load Factor	1.00		
Dead load Factor:	1.20			Ice Importance Factor	1.00
Wind Load Factor:	1.00				

	0, (2002)		0_0												
	Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total			
	Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation		
	(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio	
_		` ' '	` ' '	` '	` ' '	` '	, , ,	` ' '	` ' '	` '	` ' '	` '			
	0.00	-47.54	-6.59	0.00	-561.0	0.00	560.99	4,069.07	1,052.24	4,787.63	4,219.32	0	0	0.145	
	5.00	-45.87	-6.47	0.00	-528.1	0.00	528.06	4,004.48	1,026.13	4,553.01	4,048.54	0.02	-0.04	0.142	
	10.00	-44.22	-6.36	0.00	-495.7	0.00	495.71	3,938.03	1,000.02	4,324.28	3,879.30	0.09	-0.08	0.139	
	15.00	-42.58	-6.24	0.00	-463.9	0.00	463.93	3,869.74	973.91	4,101.44	3,711.72	0.19	-0.12	0.136	
	20.00	-40.98	-6.12	0.00	-432.7	0.00	432.72	3,799.59	947.80	3,884.50	3,545.95	0.34	-0.16	0.133	
	25.00	-39.41	-6.00	0.00	-402.1	0.00	402.11	3,727.59	921.69	3,673.45	3,382.14	0.54	-0.21	0.130	
	30.00	-37.87	-5.87	0.00	-372.1	0.00	372.12	3,653.75	895.58	3,468.30	3,220.43	0.78	-0.25	0.126	
	35.00	-36.36	-5.74	0.00	-342.8	0.00	342.77	3,578.05	869.47	3,269.04	3,060.96	1.06	-0.29	0.122	
	40.00	-34.89	-5.61	0.00	-314.1	0.00	314.08	3,500.49	843.36	3,075.67	2,903.89	1.39	-0.34	0.118	
	45.00	-33.45	-5.49	0.00	-286.1	0.00	286.06	3,421.09	817.25	2,888.20	2,749.35	1.77	-0.38	0.114	
	48.25	-32.54	-5.42	0.00	-268.2	0.00	268.21	3,368.49	800.28	2,769.51	2,650.32	2.03	-0.41	0.111	
	50.00	-31.77	-5.35	0.00	-258.7	0.00	258.72	3,339.84	791.14	2,706.63	2,597.48	2.19	-0.42	0.109	
	53.25	-30.37	-5.28	0.00	-241.3	0.00	241.32	2,635.64	657.11	2,240.55	2,046.33	2.48	-0.45	0.130	
	55.00	-29.94	-5.19	0.00	-232.1	0.00	232.08	2,614.77	649.49	2,188.92	2,006.40	2.65	-0.47	0.127	
	60.00	-28.74	-5.06	0.00	-206.1	0.00	206.12	2,553.87	627.73	2,044.74	1,893.48	3.17	-0.51	0.120	
	65.00	-27.57	-4.92	0.00	-180.8	0.00	180.83	2,491.13	605.97	1,905.46	1,782.39	3.73	-0.56	0.113	
	70.00	-26.44	-4.79	0.00	-156.2	0.00	156.22	2,426.53	584.22	1,771.10	1,673.28	4.34	-0.61	0.104	
	75.00	-25.33	-4.65	0.00	-132.3	0.00	132.28	2,360.09	562.46	1,641.65	1,566.29	5	-0.65	0.095	
	80.00	-19.08	-3.82	0.00	-109.0	0.00	109.01	2,288.96	540.70	1,517.11	1,459.75	5.7	-0.69	0.083	
	81.75	-18.72	-3.76	0.00	-102.3	0.00	102.32	2,256.72	533.08	1,474.68	1,418.72	5.96	-0.7	0.080	
	85.00	-17.81	-3.69	0.00	-90.1	0.00	90.11	2,196.84	518.94	1,397.48	1,344.07	6.45	-0.73	0.075	
	85.75	-17.60	-3.63	0.00	-87.3	0.00	87.34	1,128.57	314.63	856.05	700.67	6.56	-0.73	0.140	
	90.00	-16.95	-3.51	0.00	-71.9	0.00	71.91	1,107.06	303.53	796.73	662.92	7.23	-0.76	0.124	
	95.00	-16.21	-3.39	0.00	-54.4	0.00	54.35	1,080.04	290.48	729.68	618.75	8.06	-0.81	0.103	
	100.00	-15.49	-3.30	0.00	-37.4	0.00	37.42	1,051.16	277.42	665.57	574.96	8.93	-0.85	0.080	
	102.00	-11.65	-2.40	0.00	-30.5	0.00	30.51	1,039.10	272.20	640.75	557.59	9.29	-0.87	0.066	
	105.00	-10.05	-2.09	0.00	-23.3	0.00	23.32	1,020.44	264.37	604.41	531.71	9.84	-0.88	0.054	
	110.00	-9.43	-2.00	0.00	-12.9	0.00	12.89	987.87	251.31	546.19	489.13	10.78	-0.91	0.036	
	112.00	-5.11	-1.04	0.00	-8.4	0.00	8.43	974.32	246.09	523.73	472.32	11.16	-0.91	0.023	
	115.00	-4.79	-0.95	0.00	-5.3	0.00	5.31	953.44	238.26	490.93	447.37	11.74	-0.92	0.017	
	120.00	-1.30	-0.28	0.00	-0.6	0.00	0.58	917.17	225.20	438.61	406.57	12.7	-0.92	0.003	
	122.00	-0.08	-0.01	0.00	-0.0	0.00	0.01	902.14	219.98	418.50	390.56	13.09	-0.92	0.000	
	123.00	0.00	-0.01	0.00	0.0	0.00	0.00	894.51	217.37	408.63	382.62	13.28	-0.92	0.000	

ASSET: 283419, PINE ORCHARD BRANFORD CT CODE: ANSI/TIA-222-H CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

Load Case: 1.0D + 1.0W Service Normal 60 mph Wind with No Ice 20 Iterations

Gust Response Factor: 1.10
Dead load Factor: 1.00
Wind Load Factor: 1.00

Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-29.08	-5.79	0.00	-504.8	0.00	504.83	4,069.07	1,052.24	4,787.63	4,219.32	0	0	0.127
5.00	-27.90	-5.70	0.00	-475.9	0.00	475.86	4,004.48	1,026.13	4,553.01	4,048.54	0.02	-0.04	0.125
10.00	-26.74	-5.61	0.00	-447.4	0.00	447.37	3,938.03	1,000.02	4,324.28	3,879.30	0.08	-0.07	0.122
15.00	-25.61	-5.51	0.00	-419.4	0.00	419.35	3,869.74	973.91	4,101.44	3,711.72	0.17	-0.11	0.120
20.00	-24.50	-5.42	0.00	-391.8	0.00	391.78	3,799.59	947.80	3,884.50	3,545.95	0.31	-0.15	0.117
25.00	-23.42	-5.32	0.00	-364.7	0.00	364.70	3,727.59	921.69	3,673.45	3,382.14	0.49	-0.19	0.114
30.00	-22.36	-5.22	0.00	-338.1	0.00	338.11	3,653.75	895.58	3,468.30	3,220.43	0.7	-0.23	0.111
35.00	-21.33	-5.11	0.00	-312.0	0.00	312.03	3,578.05	869.47	3,269.04	3,060.96	0.96	-0.26	0.108
40.00	-20.32	-5.01	0.00	-286.5	0.00	286.46	3,500.49	843.36	3,075.67	2,903.89	1.26	-0.3	0.104
45.00	-19.34	-4.92	0.00	-261.4	0.00	261.42	3,421.09	817.25	2,888.20	2,749.35	1.6	-0.34	0.101
48.25	-18.72	-4.87	0.00	-245.4	0.00	245.42	3,368.49	800.28	2,769.51	2,650.32	1.84	-0.37	0.098
50.00	-18.16	-4.81	0.00	-236.9	0.00	236.90	3,339.84	791.14	2,706.63	2,597.48	1.98	-0.38	0.097
53.25	-17.13	-4.76	0.00	-221.2	0.00	221.25	2,635.64	657.11	2,240.55	2,046.33	2.25	-0.41	0.115
55.00	-16.85	-4.69	0.00	-212.9	0.00	212.93	2,614.77	649.49	2,188.92	2,006.40	2.4	-0.42	0.113
60.00	-16.06	-4.59	0.00	-189.5	0.00	189.48	2,553.87	627.73	2,044.74	1,893.48	2.87	-0.47	0.106
65.00	-15.28	-4.48	0.00	-166.6	0.00	166.56	2,491.13	605.97	1,905.46	1,782.39	3.38	-0.51	0.100
70.00	-14.53	-4.38	0.00	-144.2	0.00	144.15	2,426.53	584.22	1,771.10	1,673.28	3.94	-0.55	0.092
75.00	-13.80	-4.28	0.00	-122.2	0.00	122.25	2,360.09	562.46	1,641.65	1,566.29	4.54	-0.59	0.084
80.00	-9.97	-3.49	0.00	-100.9	0.00	100.86	2,288.96	540.70	1,517.11	1,459.75	5.18	-0.63	0.073
81.75	-9.73	-3.44	0.00	-94.8	0.00	94.76	2,256.72	533.08	1,474.68	1,418.72	5.41	-0.64	0.071
85.00	-9.09	-3.39	0.00	-83.6	0.00	83.59	2,196.84	518.94	1,397.48	1,344.07	5.86	-0.67	0.066
85.75	-8.94	-3.34	0.00	-81.0	0.00	81.05	1,128.57	314.63	856.05	700.67	5.96	-0.67	0.124
90.00	-8.55	-3.25	0.00	-66.8	0.00	66.84	1,107.06	303.53	796.73	662.92	6.57	-0.7	0.109
95.00	-8.10	-3.16	0.00	-50.6	0.00	50.57	1,080.04	290.48	729.68	618.75	7.33	-0.74	0.089
100.00	-7.66	-3.10	0.00	-34.8	0.00	34.76	1,051.16	277.42	665.57	574.96	8.13	-0.78	0.068
102.00	-6.18	-2.17	0.00	-28.2	0.00	28.20	1,039.10	272.20	640.75	557.59	8.46	-0.79	0.057
105.00	-5.20	-1.93	0.00	-21.7	0.00	21.69	1,020.44	264.37	604.41	531.71	8.96	-0.81	0.046
110.00	-4.83	-1.86	0.00	-12.1	0.00	12.06	987.87	251.31	546.19	489.13	9.82	-0.83	0.030
112.00	-2.67	-0.96	0.00	-7.9	0.00	7.87	974.32	246.09	523.73	472.32	10.17	-0.83	0.019
115.00	-2.49	-0.89	0.00	-5.0	0.00	5.00	953.44	238.26	490.93	447.37	10.7	-0.84	0.014
120.00	-0.63	-0.27	0.00	-0.6	0.00	0.55	917.17	225.20	438.61	406.57	11.58	-0.84	0.002
122.00	-0.04	-0.01	0.00	-0.0	0.00	0.01	902.14	219.98	418.50	390.56	11.94	-0.85	0.002
123.00	0.00	-0.01	0.00	0.0	0.00	0.00	894.51	217.37	408.63	382.62	12.11	-0.85	0.000

ASSET: 283419, PINE ORCHARD BRANFORD CT CODE: ANSI/TIA-222-H CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

EQUIVALENT LATERAL FORCES METHOD ANALYSIS

(Based on ASCE7-16 Chapters 11, 12 and 15)

Spectral Response Acceleration for Short Period (S _S):	0.201
Spectral Response Acceleration at 1.0 Second Period (S ₁):	0.053
Long-Period Transition Period (T _L – Seconds):	6
Importance Factor (I _e):	1.000
Site Coefficient F _{a:}	1.600
Site Coefficient F _v :	2.400
Response Modification Coefficient (R):	1.500
Design Spectral Response Acceleration at Short Period (S _{ds}):	0.214
Design Spectral Response Acceleration at 1.0 Second Period (S _{d1}):	0.085
Seismic Response Coefficient (C _s):	0.035
Upper Limit C _s :	0.035
Lower Limit C _s :	0.030
Period based on Rayleigh Method (sec):	1.640
Redundancy Factor (p):	1.000
Seismic Force Distribution Exponent (k):	1.570
Total Unfactored Dead Load:	29.090 k
Seismic Base Shear (E):	1.000 k

1.2D + 1.0Ev + 1.0Eh Normal

Seismic

	Height					
	Above				Horizontal	Vertical
	Base	Weight	W_z		Force	Force
Segment	(ft)	(lb)	(lb-ft)	C_{vx}	(lb)	(lb)
					_	
32	122.5	42	80	0.003	3	53
31	121	103	190	0.008	8	128
30	117.5	290	511	0.022	22	360
29	113.5	180	301	0.013	13	224
28	111	145	234	0.010	10	180
27	107.5	371	569	0.024	24	461
26	103.5	228	330	0.014	14	284
25	101	171	238	0.010	10	213
24	97.5	437	575	0.024	25	543
23	92.5	449	545	0.023	23	558
22	87.875	392	439	0.019	19	487
21	85.375	145	155	0.007	7	181
20	83.375	638	658	0.028	28	794
19	80.875	239	234	0.010	10	297
18	77.5	708	650	0.028	28	880
17	72.5	729	603	0.026	26	906
16	67.5	750	555	0.024	24	932
15	62.5	771	506	0.022	22	958
14	57.5	792	456	0.019	19	984
13	54.125	282	148	0.006	6	351
12	51.625	1,024	498	0.021	21	1,273
11	49.125	560	252	0.021	11	695
10	46.625	622	258	0.011	11	773
9	40.023	978	350	0.011	15	1,215
8	42.5 37.5	1,003	295	0.013	13	1,247
7	32.5	1,029	242	0.010	10	1,278
6	27.5	1,054	191	0.008	8	1,310
5	22.5	1,079	143	0.006	6	1,341
4	17.5	1,104	98	0.004	4	1,373
3	12.5	1,130	59	0.002	3	1,404
2	7.5	1,155	27	0.001	1	1,436
1	2.5	1,180	5	0.000	0	1,467
Ericsson AIR 21, 1.3 M, B2A B4P	122	249	466	0.020	20	309
Ericsson AIR 21, 1.3M, B4A B2P	122	244	458	0.020	20	304
@0007_0000 by ATO LLO_All viable re-		D	0 -f 40	Madallal	5000 C	0000 44.00.05

ASSET: 283419, PINE ORCHARD BRANFORD CT

CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

CODE:

ANSI/TIA-222-H

Segment	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C_vx	Horizontal Force (lb)	Vertical Force (lb)
Ericsson KRY 112 144/1	120	33	60	0.003	3	41
Ericsson Radio 4449 B12,B71	120	222	405	0.017	17	276
Generic Round T-Arm	120	938	1,711	0.073	73	1,165
RFS APXVAARR24_43-U-NA20	120	384	700	0.030	30	477
Powerwave Allgon TT19-08BP111-001	112	48	79	0.003	3	60
Raycap DC6-48-60-18-8F	112	20	33	0.001	1	25
Ericsson RRUS 4449 B5, B12	112	213	349	0.015	15	265
Ericsson RRUS 4478 B14	112	178	292	0.012	12	221
Raycap DC6-48-60-18-8C	112	16	26	0.001	1	20
Ericsson RRUS 32 B2	112	159	260	0.011	11	198
Ericsson RRUS 11 (Band 12)	112	150	246	0.010	10	186
Commscope SBNHH-1D65A	112	100	165	0.007	7	125
Powerwave Allgon P90-15-XLH-RR	112	159	260	0.011	11	198
Round T-Arm	112	750	1,228	0.052	52	932
Round T-Arm	105	750	1,110	0.047	47	932
CCI DMP65R-BU6DA	112	238	390	0.017	17	296
Commscope CBC78T-DS-43-2X	102	62	88	0.004	4	77
Samsung B2/B66A RRH-BR049	102	253	358	0.015	15	315
Samsung B5/B13 RRH-BR04C	102	211	298	0.013	13	262
Raycap RCMDC-6627-PF-48	102	32	45	0.002	2	40
Samsung MT6407-77A	102	245	346	0.015	15	304
Swedcom SC-E 6016 REV2	102	50	71	0.003	3	62
Commscope JAHH-65B-R3B	102	364	514	0.022	22	452
Antel LPA-80063/6CF	102	108	153	0.006	7	134
Commscope RDIDC-9181-PF-48	80	22	21	0.001	1	27
Fujitsu TA08025-B605	80	225	217	0.009	9	280
Fujitsu TA08025-B604	80	192	185	0.008	8	238
JMA Wireless MX08FRO665-21	80	194	187	0.008	8	240
Generic Flat Platform with Handrails	80	2,500	2,415	0.103	103	3,107
		29,087	23,533	1.000	1,004	36,151

0.9D - 1.0Ev + 1.0Eh Normal	Seismic (Reduced DL)

	Height Above				Horizontal	Vertical
	Base	Weight	W_z		Force	Force
Segment	(ft)	(lb)	(lb-ft)	C_{vx}	(lb)	(lb)
32	122.5	42	80	0.003	3	36
31	121	103	190	0.008	8	88
30	117.5	290	511	0.022	22	248
29	113.5	180	301	0.013	13	154
28	111	145	234	0.010	10	124
27	107.5	371	569	0.024	24	318
26	103.5	228	330	0.014	14	196
25	101	171	238	0.010	10	147
24	97.5	437	575	0.024	25	374
23	92.5	449	545	0.023	23	385
22	87.875	392	439	0.019	19	336
21	85.375	145	155	0.007	7	125
20	83.375	638	658	0.028	28	547
19	80.875	239	234	0.010	10	205
18	77.5	708	650	0.028	28	607
17	72.5	729	603	0.026	26	625
16	67.5	750	555	0.024	24	643
15	62.5	771	506	0.022	22	661
14	57.5	792	456	0.019	19	679
13	54.125	282	148	0.006	6	242
12	51.625	1,024	498	0.021	21	878
11	49.125	560	252	0.011	11	480
10	46.625	622	258	0.011	11	533
9	42.5	978	350	0.015	15	838
8	37.5	1,003	295	0.012	13	860
7	32.5	1,029	242	0.010	10	882
6	27.5	1,054	191	0.008	8	903
5	22.5	1,079	143	0.006	6	925

ASSET: 283419, PINE ORCHARD BRANFORD CT

CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

CODE:

ANSI/TIA-222-H

Segment	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C_{vx}	Horizontal Force (lb)	Vertical Force (lb)
	47.5	4.404		0.004		0.17
4	17.5	1,104	98	0.004	4	947
3	12.5	1,130	59	0.002	3 1	968
2	7.5	1,155	27	0.001	•	990
1	2.5	1,180	5	0.000	0 20	1,012
Ericsson AIR 21, 1.3 M, B2A B4P	122	249	466	0.020	_	213
Ericsson AIR 21, 1.3M, B4A B2P	122	244	458	0.020	20	210
Ericsson KRY 112 144/1	120	33	60	0.003	3	28
Ericsson Radio 4449 B12,B71	120	222	405	0.017	17	190
Generic Round T-Arm	120	938	1,711	0.073	73	804
RFS APXVAARR24_43-U-NA20	120	384	700	0.030	30	329
Powerwave Allgon TT19-08BP111-001	112	48	79	0.003	3	41
Raycap DC6-48-60-18-8F	112	20	33	0.001	1	17
Ericsson RRUS 4449 B5, B12	112	213	349	0.015	15	183
Ericsson RRUS 4478 B14	112	178	292	0.012	12	153
Raycap DC6-48-60-18-8C	112	16	26	0.001	1	14
Ericsson RRUS 32 B2	112	159	260	0.011	11	136
Ericsson RRUS 11 (Band 12)	112	150	246	0.010	10	129
Commscope SBNHH-1D65A	112	100	165	0.007	7	86
Powerwave Allgon P90-15-XLH-RR	112	159	260	0.011	11	136
Round T-Arm	112	750	1,228	0.052	52	643
Round T-Arm	105	750	1,110	0.047	47	643
CCI DMP65R-BU6DA	112	238	390	0.017	17	204
Commscope CBC78T-DS-43-2X	102	62	88	0.004	4	53
Samsung B2/B66A RRH-BR049	102	253	358	0.015	15	217
Samsung B5/B13 RRH-BR04C	102	211	298	0.013	13	181
Raycap RCMDC-6627-PF-48	102	32	45	0.002	2	27
Samsung MT6407-77A	102	245	346	0.015	15	210
Swedcom SC-E 6016 REV2	102	50	71	0.003	3	43
Commscope JAHH-65B-R3B	102	364	514	0.022	22	312
Antel LPA-80063/6CF	102	108	153	0.006	7	93
Commscope RDIDC-9181-PF-48	80	22	21	0.001	1	19
Fujitsu TA08025-B605	80	225	217	0.009	9	193
Fujitsu TA08025-B604	80	192	185	0.008	8	164
JMA Wireless MX08FRO665-21	80	194	187	0.008	8	166
Generic Flat Platform with Handrails	80	2,500	2,415	0.103	103	2,143
		29,087	23,533	1.000	1,004	24,931

1.2D + 1.0Fv	+ 1.0Fh Normal	Seismic

					(CALCULA	TED FOR	CES					
Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY	Mu MZ	Mu Mx	Resultant Moment	Phi Pn	Phi Vn	Phi Tn	Phi Mn	Total Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(fr-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(kips)	(kips)	(in)	(deg)	Ratio
0.00 5.00	-34.68 -33.25	-1.01 -1.01	0.00 0.00	-94.47 -89.44	0.00 0.00	94.47 89.44	4,069.07 4,004.48	1,052.24 1,026.13	4,788 4,553	4,219.32 4.048.54	0.00 0.00	0.00 -0.01	0.03 0.03
10.00	-31.84	-1.01	0.00	-84.40	0.00	84.40	3.938.03	1.000.02	4.324	3.879.30	0.01	-0.01	0.03
15.00	-30.47	-1.01	0.00	-79.35	0.00	79.35	3,869.74	973.91	4,101	3,711.72	0.03	-0.02	0.03
20.00	-29.13	-1.01	0.00	-74.31	0.00	74.31	3,799.59	947.80	3,884	3,545.95	0.06	-0.03	0.03
25.00	-27.82	-1.00	0.00	-69.28	0.00	69.28	3,727.59	921.69	3,673	3,382.14	0.09	-0.04	0.03
30.00	-26.54	-0.99	0.00	-64.28	0.00	64.28	3,653.75	895.58	3,468	3,220.43	0.13	-0.04	0.03
35.00	-25.29	-0.98	0.00	-59.32	0.00	59.32	3,578.05	869.47	3,269	3,060.96	0.18	-0.05	0.03
40.00	-24.08	-0.97	0.00	-54.40	0.00	54.40	3,500.49	843.36	3,076	2,903.89	0.24	-0.06	0.03
45.00	-23.31	-0.96	0.00	-49.56	0.00	49.56	3,421.09	817.25	2,888	2,749.35	0.30	-0.06	0.03
48.25	-22.61	-0.95	0.00	-46.44	0.00	46.44	3,368.49	800.28	2,770	2,650.32	0.35	-0.07	0.02
50.00	-21.34	-0.93	0.00	-44.78	0.00	44.78	3,339.84	791.14	2,707	2,597.48	0.37	-0.07	0.02
53.25	-20.99	-0.92	0.00	-41.76	0.00	41.76	2,635.64	657.11	2,241	2,046.33	0.42	-0.08	0.03
55.00	-20.00	-0.90	0.00	-40.14	0.00	40.14	2,614.77	649.49	2,189	2,006.40	0.45	-0.08	0.03
60.00	-19.04	-0.88	0.00	-35.62	0.00	35.62	2,553.87	627.73	2,045	1,893.48	0.54	-0.09	0.03
65.00	-18.11	-0.86	0.00	-31.20	0.00	31.20	2,491.13	605.97	1,905	1,782.39	0.64	-0.10	0.03
70.00	-17.21	-0.84	0.00	-26.89	0.00	26.89	2,426.53	584.22	1,771	1,673.28	0.74	-0.10	0.02
75.00	-16.33	-0.81	0.00	-22.71	0.00	22.71	2,360.09	562.46	1,642	1,566.29	0.86	-0.11	0.02
80.00	-12.14	-0.66	0.00	-18.67	0.00	18.67	2,288.96	540.70	1,517	1,459.75	0.98	-0.12	0.02
81.75	-11.34	-0.63	0.00	-17.51	0.00	17.51	2,256.72	533.08	1,475	1,418.72	1.02	-0.12	0.02
85.00	-11.16	-0.63	0.00	-15.45	0.00	15.45	2,196.84	518.94	1,397	1,344.07	1.11	-0.13	0.02
85.75	-10.68	-0.61	0.00	-14.98	0.00	14.98	1,128.57	314.63	856	700.67	1.13	-0.13	0.03

ASSET: 283419, PINE ORCHARD BRANFORD CT CODE: ANSI/TIA-222-H

CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05

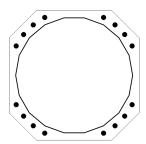
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	Mx	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(fr-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(kips)	(kips)	(in)	(deg)	Ratio
90.00	-10.12	-0.58	0.00	-12.40	0.00	12.40	1,107.06	303.53	797	662.92	1.24	-0.13	0.03
95.00	-9.58	-0.56	0.00	-9.47	0.00	9.47	1,080.04	290.48	730	618.75	1.38	-0.14	0.02
100.00	-9.36	-0.55	0.00	-6.68	0.00	6.68	1,051.16	277.42	666	574.96	1.53	-0.15	0.02
102.00	-7.43	-0.45	0.00	-5.58	0.00	5.58	1,039.10	272.20	641	557.59	1.60	-0.15	0.02
105.00	-6.04	-0.38	0.00	-4.22	0.00	4.22	1,020.44	264.37	604	531.71	1.69	-0.15	0.01
110.00	-5.86	-0.37	0.00	-2.34	0.00	2.34	987.87	251.31	546	489.13	1.85	-0.16	0.01
112.00	-3.11	-0.20	0.00	-1.61	0.00	1.61	974.32	246.09	524	472.32	1.92	-0.16	0.01
115.00	-2.75	-0.18	0.00	-1.00	0.00	1.00	953.44	238.26	491	447.37	2.02	-0.16	0.01
120.00	-0.67	-0.04	0.00	-0.09	0.00	0.09	917.17	225.20	439	406.57	2.19	-0.16	0.00
122.00	0.00	0.00	0.00	0.00	0.00	0.00	902.14	219.98	418	390.56	2.25	-0.16	0.00
123.00	0.00	0.00	0.00	0.00	0.00	0.00	894.51	217.37	409	382.62	2.29	-0.16	0.00

0.9D - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)

	CALCULATED FORCES												
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (fr-kips)	Mu Mx (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (kips)	Phi Mn (kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 48.25 50.00 53.25	-23.92 -22.93 -21.96 -21.01 -20.09 -19.19 -18.30 -17.44 -16.61 -16.07 -15.59 -14.71 -14.47	-1.01 -1.01 -1.01 -1.00 -1.00 -0.99 -0.99 -0.97 -0.96 -0.95 -0.94 -0.92 -0.91	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-93.67 -88.65 -83.61 -78.58 -73.56 -68.56 -63.58 -58.65 -53.78 -48.97 -45.88 -44.24 -41.25	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	93.67 88.65 83.61 78.58 73.56 68.56 63.58 58.65 53.78 48.97 45.88 44.24 41.25	4,069.07 4,004.48 3,938.03 3,869.74 3,799.59 3,727.59 3,653.75 3,578.05 3,500.49 3,421.09 3,368.49 3,339.84 2,635.64	1,052.24 1,026.13 1,000.02 973.91 947.80 921.69 895.58 869.47 843.36 817.25 800.28 791.14 657.11	4,788 4,553 4,324 4,101 3,884 3,673 3,468 3,269 3,076 2,888 2,770 2,707 2,241	4,219.32 4,048.54 3,879.30 3,711.72 3,545.95 3,382.14 3,206.96 2,903.89 2,749.35 2,650.32 2,597.48 2,046.33	0.00 0.00 0.01 0.03 0.06 0.09 0.13 0.18 0.24 0.30 0.34 0.37	0.00 -0.01 -0.01 -0.02 -0.03 -0.03 -0.04 -0.05 -0.06 -0.06 -0.07 -0.07	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
55.00 60.00 65.00 70.00 75.00 80.00 81.75 85.00 85.75 90.00 95.00	-13.79 -13.13 -12.49 -11.87 -11.26 -8.37 -7.82 -7.70 -7.36 -6.98 -6.60 -6.46	-0.90 -0.87 -0.85 -0.83 -0.65 -0.65 -0.63 -0.62 -0.60 -0.58 -0.55 -0.54	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-39.65 -35.17 -30.80 -26.54 -22.41 -18.42 -17.28 -15.24 -14.78 -12.23 -9.34	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	39.65 35.17 30.80 26.54 22.41 18.42 17.28 15.24 14.78 12.23 9.34 6.58	2,614.77 2,553.87 2,491.13 2,426.53 2,360.09 2,288.96 2,256.72 2,196.84 1,128.57 1,107.06 1,080.04 1,051.16	649.49 627.73 605.97 584.22 562.46 540.70 533.08 518.94 314.63 303.53 290.48 277.42	2,189 2,045 1,905 1,771 1,642 1,517 1,475 1,397 856 797 730 666	2,006.40 1,893.48 1,782.39 1,673.28 1,566.29 1,459.75 1,418.72 1,344.07 700.67 662.92 618.75 574.96	0.45 0.54 0.63 0.74 0.85 0.97 1.01 1.09 1.11 1.23 1.37 1.52	-0.08 -0.09 -0.10 -0.10 -0.11 -0.12 -0.12 -0.12 -0.12 -0.13 -0.14 -0.15	0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03
100.00 102.00 105.00 110.00 112.00 115.00 120.00 122.00 123.00	-6.46 -5.13 -4.17 -4.04 -2.15 -1.90 -0.46 0.00 0.00	-0.54 -0.45 -0.37 -0.36 -0.20 -0.18 -0.04 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	-6.58 -5.50 -4.16 -2.31 -1.59 -0.98 -0.09 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	6.58 5.50 4.16 2.31 1.59 0.98 0.09 0.00	1,051.16 1,039.10 1,020.44 987.87 974.32 953.44 917.17 902.14 894.51	277.42 272.20 264.37 251.31 246.09 238.26 225.20 219.98 217.37	666 641 604 546 524 491 439 418 409	574.96 557.59 531.71 489.13 472.32 447.37 406.57 390.56 382.62	1.52 1.58 1.67 1.83 1.90 2.00 2.16 2.23 2.26	-0.15 -0.15 -0.15 -0.16 -0.16 -0.16 -0.16 -0.16	0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00

ASSET: 283419, PINE ORCHARD BRANFORD CT CODE:

ANSI/TIA-222-H CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329_C3_05


		A	NALYSIS	SUMMAR	Υ			
			Reaction	ons			Ma	x Usage
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev (ft)	Interaction Ratio
1.2D + 1.0W Normal 0.9D + 1.0W Normal	26.78 26.77	0.00 0.00	34.86 26.14	0.00 0.00	0.00 0.00	2342.50 2326.37	0.00 0.00	0.56 0.56
1.2D + 1.0Di + 1.0Wi Normal 1.2D + 1.0Ev + 1.0Eh Normal 0.9D - 1.0Ev + 1.0Eh Normal	6.59 1.01 1.01	0.00 0.00 0.00	47.54 34.68 23.92	0.00 0.00 0.00	0.00 0.00 0.00	560.99 94.47 93.67	0.00 0.00 0.00	0.14 0.03 0.03
1.0D + 1.0W Service Normal	5.79	0.00	29.08	0.00	0.00	504.83	0.00	0.13

CUSTOMER: DISH WIRELESS L.L.C. ENG NO:

BASE PLATE ANALYSIS @ 0 FT

PLATE PARAMETERS (ID# 8663)

Width:	57	in
Shape:	Square	
Thickness:	2.75	in
Grade:	A572-50	
Yield Strength:	50	ksi
Tensile Strength:	65	ksi
Clip Length:	12	in
Rod Detail Type:	d	
Clear Distance	3	in
Base Weld Size:	0.125	in
Orientation Offset:	-	0
Analysis Type:	Plastic	
Neutral Axis:	40	0

CODE:

ANSI/TIA-222-H

13694329

			ı	ANCHOR ROD F	PARAMETERS				
Class	Arrangement	Quantity	Diameter (in)	Circle (in)	Grade	Fy (ksi)	Fu (ksi)	Spacing (in)	Offset (°)
Original	Cluster	16	2.25	57	A615-75	75	100	6	-

ANCHOR ROD GEOMETRY AND APPLIED LOADS --- Original (16) 2.25"ø [ID 2233]

GEOMETRY AND APPLIED LOADS (UNFACTORED)

Position	Radians	X (in)	Y (in)	Moment Arm (in)	Inertia (in ⁴)	Axial Load (k)	Shear Load (k)
1	0.470	25.42	12.90	-6.159	124.036	-105.56	2.77
2	0.680	22.16	17.92	-0.489	1.617	-105.56	2.85
3	0.891	17.92	22.16	5.202	88.728	114.27	2.79
4	1.101	12.90	25.42	10.664	370.155	114.27	2.62
5	2.040	-12.90	25.42	26.481	2278.205	114.27	0.64
6	2.251	-17.92	22.16	27.183	2400.625	114.27	0.05
7	2.461	-22.16	17.92	26.685	2313.513	114.27	0.54
8	2.672	-25.42	12.90	25.009	2032.087	114.27	1.12
9	3.611	-25.42	-12.90	6.159	124.037	114.27	2.77
10	3.822	-22.16	-17.92	0.489	1.617	114.27	2.85
11	4.032	-17.92	-22.16	-5.202	88.729	-105.56	2.79
12	4.243	-12.90	-25.42	-10.664	370.154	-105.56	2.62
13	5.182	12.90	-25.42	-26.481	2278.206	-105.56	0.64
14	5.393	17.92	-22.16	-27.183	2400.625	-105.56	0.05
15	5.603	22.16	-17.92	-26.685	2313.513	-105.56	0.54
16	5.814	25.42	-12.90	-25.009	2032.086	-105.56	1.12

ASSET: 283419, PINE ORCHARD BRANFORD CT

CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13694329

		REACTION DISTRIBUTION	N		
Component	ID	Moment Mu (k-ft)	Axial Load Pu (k)	Shear Vu (k)	Factor
Pole	50.75"ø x 0.375" (18 Sides)	2342.5	34.86	26.78	1.000
Bolt Group	Original (16) 2.25"ø	2342.5	-	26.78	1.000
	TOTALS	2342.5	34.86	26.78	

CODE:

ANSI/TIA-222-H

		COMPONENT PI	ROPERTIES			
Component	ID	Gross Area (in²)	Net Area (in²)	Individual Inertia (in ⁴)	Moment of Inertia (in ⁴)	Threads/in
Pole	50.75"ø x 0.375" (18 Sides)	59.0458	-	-	18732.41	-
Bolt Group	Original (16) 2.25"ø	3.9761	3.2477	0.8393	19217.93	4.5

EXTERNAL BASE PLATE BEND LINE ANALYSIS @ 0 FT

POLE PROPERTIES				PL	ATE PROPE	RTIES			
Flat-to-Flat Diameter:	50.88	in			utral Axis:		40	o	
Point-to-Point Diameter:	51.66	in			nd Line Lowe	er Limit:	.0	rad	
Flat Width:	8.971	in		Bei	nd Line Uppe	er Limit:	-0.124	rad	
Flat Radians:	0.349	rad							
Bend Line	Chord Length (in)	Addition	nal Length (in)	Section Mo	odulus (in³)	Applied Momer Mu (k-ir		ent Capacity фМn (k-in)	Ratio
Flat	29.735		0.00	56	5.218	523.6	;	2529.8	0.207
Corner	28.950		0.00	54	1.734	371.2	!	2463.0	0.151
			PLASTIC /	ANCHOR RO	D ANALYSI	S			
Class	Group Quanti	ty	Rod Diamet	ter in)	Applied Axial	l Load Pu (k)	Compressive	e Capacity φPn (k)	Ratio
Original	16	3	2.2	5	1	14.2		243.6	0.469

INFINIGY8

MOUNT ANALYSIS REPORT

February 28, 2022

Dish Wireless Site Name	BOHVN00136A
Dish Wireless Site Number	BOHVN00136A
Infinigy Job Number	1197-F0001-C
Client	NSS
Carrier	Dish Wireless
	123 Pine Orchard Road
	Branford, CT 06405
Site Location	New Haven County
	41.2748610 N NAD83
	72.7930780 W NAD83
Mount Type	7.0 ft T-Arms
Mount Elevation	80.0 ft AGL
Structural Usage Ratio	42.8
Overall Result	Pass

The enclosed mount structural analysis has been performed in accordance with the 2018 Connecticut State Building Code (2015 IBC) based on an ultimate 3-second gust wind speed of 122 mph. The evaluation criteria and applicable codes are presented in the next section of this report.

CONTENTS

- 1. Introduction
- 2. Design/Analysis Parameters
- 3. Proposed Loading Configuration
- 4. Supporting Documentation
- 5. Results
- 6. Recommendations
- 7. Assumptions
- 8. Liability Waiver and Limitations
- 9. Calculations

1. INTRODUCTION

Infinigy performed a structural analysis on the Dish Wireless proposed telecommunication equipment supporting T-Arms mounted to the existing structure located at the aforementioned address. All referenced supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using Risa-3D version 17.0.4 analysis software.

2. DESIGN/ANALYSIS PARAMETERS

Wind Speed	122 mph (3-Second Gust)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 1.0" ice
Code / Standard	TIA-222-H
Adopted Code	2018 Connecticut State Building Code (2015 IBC)
Risk Category	II .
Exposure Category	С
Topographic Category	1
Calculated Crest Height	0 ft.
Seismic Spectral Response	$S_s = 0.201 \text{ g} / S_1 = 0.053 \text{ g}$
Live Load Wind Speed	60 mph
Man Live Load at Mid/End Points	250 lbs
Man Live Load at Mount Pipes	500 lbs

3. PROPOSED LOADING CONFIGURATION - 80.0 ft. AGL T-Arms

Antenna Centerline (ft)	Qty.	Appurtenance Manufacturers	Appurtenance Models
80.0	3	JMA WIRELESS	MX08FRO665-21
	3	FUJITSU	TA08025-B605
	3	FUJITSU	TA08025-B604
	1	RAYCAP	RDIDC-9181-PF-48

4. SUPPORTING DOCUMENTATION

Proposed Loading	Dish Wireless Asset ID CT-ATC-T-283419 Rev 1, Site #BOHVN00136A, dated July 09, 2021
Mount Manufacturer Drawings	Commscope Document # MC-K6MHDX-9-96, dated March 16, 2021
Structural Analysis Report	ATC, Asset #283419, dated June 24, 2021

5. RESULTS

Components	Capacity	Pass/Fail
Mount Pipes	33.3%	Pass
Horizontals	42.8%	Pass
Standoffs	35.7%	Pass
Connections	29.1%	Pass
MOUNT RATING =	42.8 %	Pass

Notes:

6. RECOMMENDATIONS

Infinigy recommends installing Dish Wireless's proposed equipment loading configuration on the mount at 80.0 ft. The installation shall be performed in accordance with the construction documents issued for this site.

Pradin Suinyal Magar Project Engineer II | INFINIGY

^{1.} See additional documentation in Appendix for calculations supporting the capacity consumed and detailed mount connection calculations.

7. ASSUMPTIONS

The antenna mounting system was properly fabricated, installed and maintained in accordance with its original design and manufacturer's specifications.

The configuration of antennas, mounts, and other appurtenances are as specified in the proposed loading configuration table.

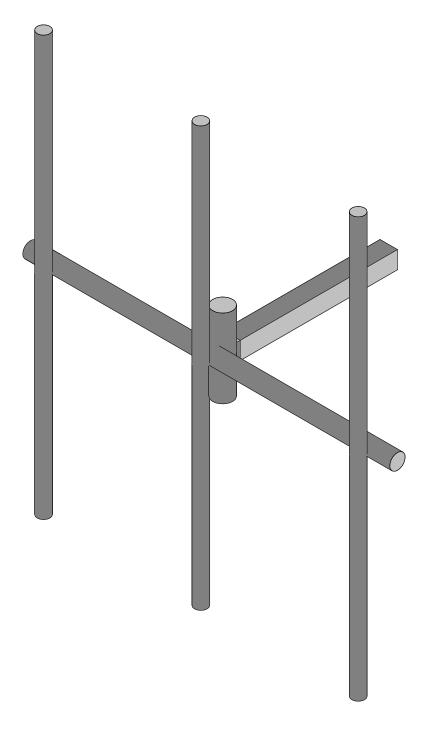
All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

The analysis will require revisions if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.

Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Plate, Built-up Angle
Structural Angle
HSS (Rectangular)
ASTM A529 Gr. 50
ASTM A500-B GR 46
ASTM A500-B GR 42
Pipe
ASTM A500 Gr C
Connection Bolts
U-Bolts
ASTM A307

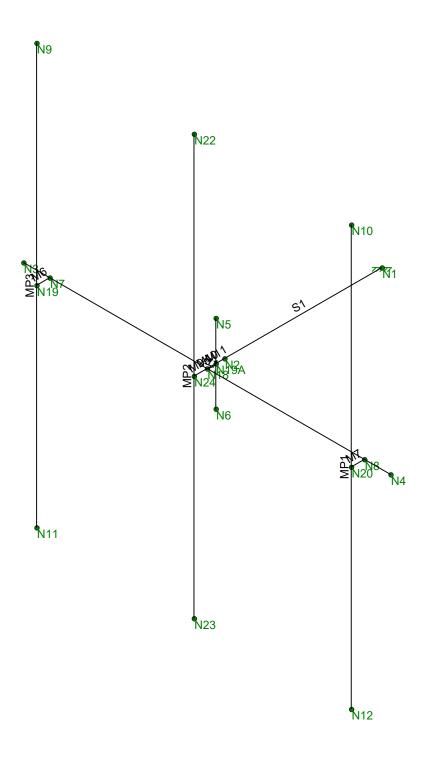
All bolted connections are pretensioned in accordance with Table 8.2 of the RCSC 2014 Standard


8. LIABILITY WAIVER AND LIMITATIONS

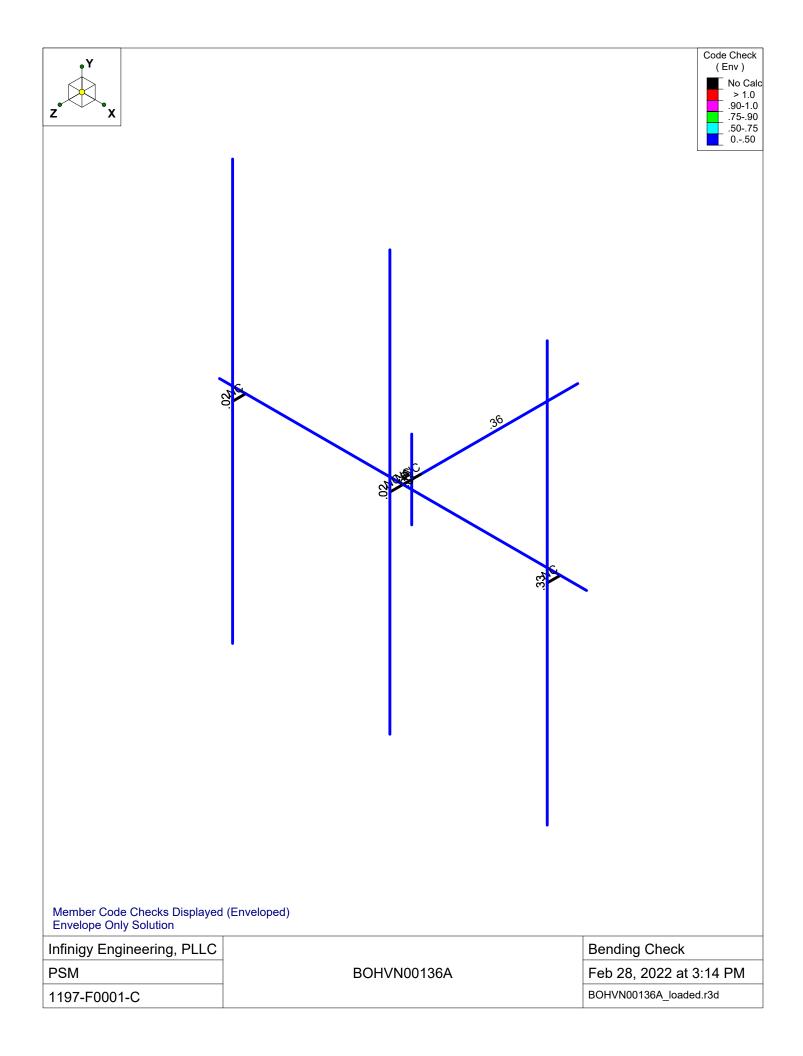
Our structural calculations are completed assuming all information provided to Infinigy is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition as erected and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report, Infinigy should be notified immediately to assess the impact on the results of this report.

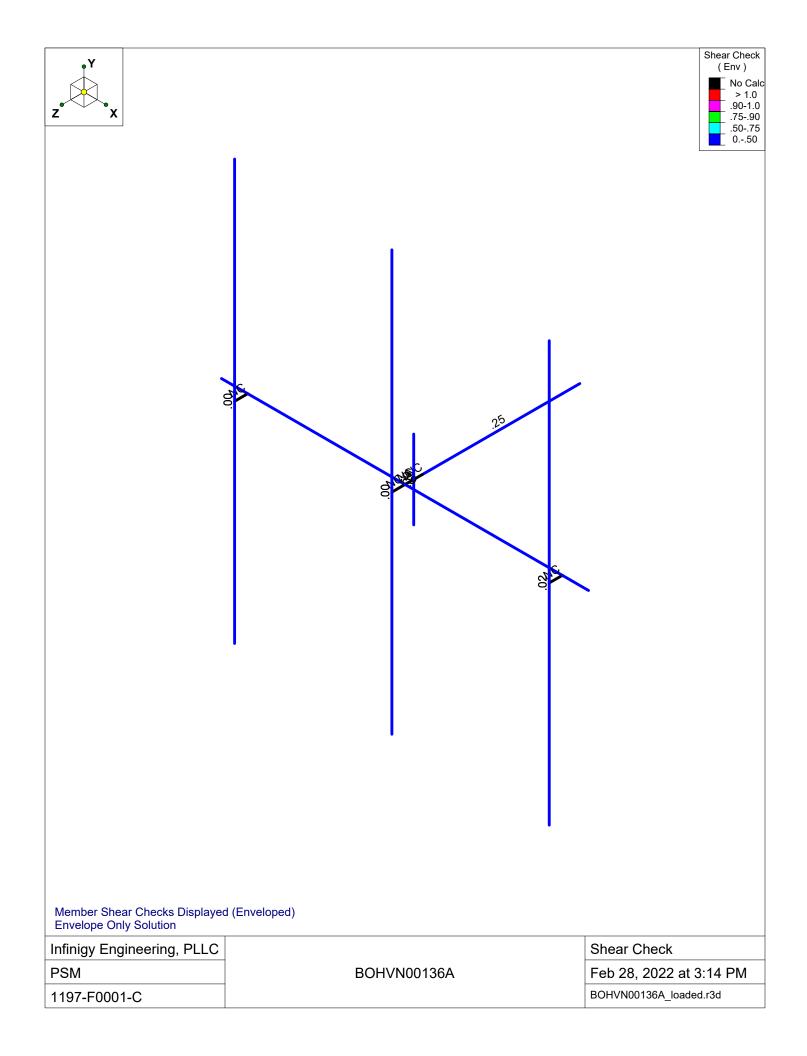
Our evaluation is completed using industry standard methods and procedures. The structural results, conclusions and recommendations contained in this report are proprietary and should not be used by others as their own. Infinigy is not responsible for decisions made by others that are or are not based on the stated assumptions and conclusions in this report.

This report is an evaluation of the mount structure only and does not determine the adequacy of the supporting structure, other carrier mounts or cable mounting attachments. The analysis of these elements is outside the scope of this analysis, are assumed to be adequate for the purpose of this report and to have been installed per their manufacturer requirements. This document is not for construction purposes.



Envelope Only Solution


Infinigy Engineering, PLLC	
PSM	BOHVN00136A
1197-F0001-C	



Envelope Only Solution

Infinigy Engineering, PLLC		WireFrame
PSM	BOHVN00136A	Feb 28, 2022 at 3:14 PM
1197-F0001-C		BOHVN00136A_loaded.r3d

Program Inputs

PROJECT INFORMATION				
Client:	NSS			
Carrier:	Dish Wireless			
Engineer:	Pradin Suinyal Magar, M.S			

SITE INFORMATION				
Risk Category:	II			
Exposure Category:	С			
Topo Factor Procedure:	Method 1, Category 1			
Site Class:	D - Stiff Soil (Assumed)			
Ground Elevation:	35.19	ft *Rev H		

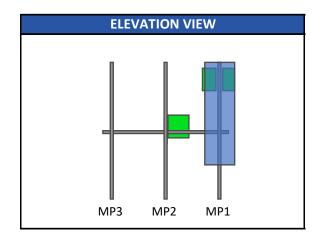
MOUNT INFORMATION					
Mount Type: T-Arm					
Num Sectors:	3				
Centerline AGL:	80.00	ft			
Tower Height AGL:	123.00	ft			

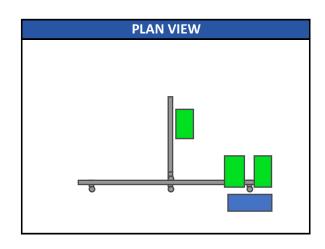
TOPOGRAPHIC DATA					
Topo Feature: N/A					
Slope Distance:	N/A	ft			
Crest Distance:	N/A	ft			
Crest Height:	N/A	ft			

FACT	TORS	
Directionality Fact. (K _d):	0.950	
Ground Ele. Factor (K _e):	0.999	*Rev H Only
Rooftop Speed-Up (K _s):	1.000	*Rev H Only
Topographic Factor (K _{zt}):	1.000	
Gust Effect Factor (G _h):	1.000	

CODE STA	ANDARDS	
Building Code:	2015 IBC	
TIA Standard:	TIA-222-H	
ASCE Standard:	ASCE 7-16	

WIND AND	ICE DATA	
Ultimate Wind (V _{ult}):	122	mph
Design Wind (V):	N/A	mph
Ice Wind (V _{ice}):	50	mph
Base Ice Thickness (t _i):	1	in
Flat Pressure:	87.309	psf
Round Pressure:	52.386	psf
Ice Wind Pressure:	8.799	psf


SEISMIC	CDATA	
Short-Period Accel. (S _s):	0.201	g
1-Second Accel. (S ₁):	0.053	g
Short-Period Design (S _{DS}):	0.214	
1-Second Design (S _{D1}):	0.085	
Short-Period Coeff. (F _a):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	



Infinigy Load Calculator V2.1.7

BOHVN00136A_BOHVN00136A 2/28/2022

Program Inputs

Infinigy Load Calculator V2.1.7

		APPURT	ENANCE IN	FORMATION 1						
Flevation	Otv	К	a (psf)	FDΔ (ft ²)	FDA (ft ²)	Wind F _z	Wind F _x	Weight	Seismic	Member
Licvation	αιy.	``a	9 ₂ (p31)	LI AN (IL)	Li AŢ (it)	(lbs)	(lbs)	(lbs)	F (lbs)	(α sector)
80.0	3	0.90	43.65	12.49	5.87	490.68	230.50	64.50	20.74	MP1
80.0	3	0.90	43.65	1.96	1.19	77.14	46.72	74.95	24.10	MP1
80.0	3	0.90	43.65	1.96	1.03	77.14	40.58	63.93	20.56	MP1
80.0	1	0.90	43.65	1.87	1.07	41.91	73.34	21.85	7.03	S1
	80.0 80.0	80.0 3 80.0 3 80.0 3	Elevation Qty. K _a 80.0 3 0.90 80.0 3 0.90 80.0 3 0.90	Elevation Qty. K _a q _z (psf) 80.0 3 0.90 43.65 80.0 3 0.90 43.65 80.0 3 0.90 43.65	Elevation Qty. K _a q _z (psf) EPA _N (ft²) 80.0 3 0.90 43.65 12.49 80.0 3 0.90 43.65 1.96 80.0 3 0.90 43.65 1.96	80.0 3 0.90 43.65 12.49 5.87 80.0 3 0.90 43.65 1.96 1.19 80.0 3 0.90 43.65 1.96 1.03	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Elevation Qty. K _a q _z (psf) EPA _N (ft²) EPA _T (ft²) Wind F _z (lbs) Wind F _x (lbs) 80.0 3 0.90 43.65 12.49 5.87 490.68 230.50 80.0 3 0.90 43.65 1.96 1.19 77.14 46.72 80.0 3 0.90 43.65 1.96 1.03 77.14 40.58	Elevation Qty. K _a q _z (psf) EPA _N (ft²) EPA _T (ft²) Wind F _z (lbs) Wind F _x (lbs) Weight (lbs) 80.0 3 0.90 43.65 12.49 5.87 490.68 230.50 64.50 80.0 3 0.90 43.65 1.96 1.19 77.14 46.72 74.95 80.0 3 0.90 43.65 1.96 1.03 77.14 40.58 63.93	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

BOHVN00136A_BOHVN00136A 2/28/2022

: Infinigy Engineering, PLLC: PSM

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOHVN00136A

Feb 28, 2022 3:15 PM Checked By:___

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(. Section/Shape	Туре	Design List	Material	Design Rules
1	S1	N1	N2		,	Standoff Tube	Beam	Pipe	A500 Gr.B Rect	Typical
2	H1	N3	N4			Horizontal Pipe	Beam	Pipe	a500 gr.c	Typical
3	V1	N6	N5			Vertical Pipe	Colu	Pipe	a500 gr.c	Typical
4	MP1	N10	N12			Mount Pipes	Colu	Pipe	a500 gr.c	Typical
5	MP3	N9	N11			Mount Pipes	Colu	Pipe	a500 gr.c	Typical
6	M6	N19	N7			RIGID	None	None	RIGID	Typical
7	M7	N20	N8			RIGID	None	None	RIGID	Typical
8	MP2	N22	N23			Mount Pipes	Colu	Pipe	a500 gr.c	Typical
9	M9	N24	N18			RIGID	None	None	RIGID	Typical
10	M10	N18	N19A			RIGID	None	None	RIGID	Typical
11	M11	N19A	N2			RIGID	None	None	RIGID	Typical

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[LB]
1	General				ŭ
2	RIGID		5	13	0
3	Total General		5	13	0
4					
5	Hot Rolled Steel				
6	A500 Gr.B Rect	HSS4X4X4	1	36	37
7	a500 gr.c	PIPE 2.5	3	288	131.483
8	a500 gr.c	PIPE_3.0	1	84	49.306
9	a500 gr.c	PIPE 4.0	1	18	15.108
10	Total HR Steel		6	426	232.898

Basic Load Cases

	BLC Description	Category	X Gr	Y Gr	.Z Gr	Joint	Point	Distributed	Area(Memb	Surface(Plate/Wall)
1	Self Weight	DĽ		-1			5			
2	Wind Load AZI 0	WLZ					10			
3	Wind Load AZI 30	None					10			
4	Wind Load AZI 60	None					10			
5	Wind Load AZI 90	V V L / \					10			
	Wind Load AZI 1						10			
	Wind Load AZI 1						10			
	Wind Load AZI 1						10			
	Wind Load AZI 2						10			
	Wind Load AZI 2						10			
11	Wind Load AZI 2	None					10			

: Infinigy Engineering, PLLC: PSM

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOHVN00136A

Feb 28, 2022 3:15 PM Checked By:_

Basic Load Cases (Continued)

	BLC Description	Category	X Gr	Y Gr	Z Gr	Joint	Point	Distributed	Area(Memb	Surface(Plate/Wall)
12	Wind Load AZI 3	140110					10			
13	Wind Load AZI 3	None					10			
14	Distr. Wind Load Z	WLZ						11		
15	Distr. Wind Load X	WLX						11		
16	Ice Weight	OL1					5	11		
17	Ice Wind Load A	OL2					10			
18	Ice Wind Load A	None					10			
19	Ice Wind Load A	None					10			
20	Ice Wind Load A	OL3					10			
21	Ice Wind Load A	None					10			
22	Ice Wind Load A	None					10			
23	Ice Wind Load A	None					10			
24	Ice Wind Load A	None					10			
25	Ice Wind Load A	None					10			
26	Ice Wind Load A	None					10			
27	Ice Wind Load A	None					10			
28	Ice Wind Load A	None					10			
29	Distr. Ice Wind L	OL2						11		
30	Distr. Ice Wind L	OL3						11		
31	Seismic Load Z	ELZ			322		5			
32	Seismic Load X	ELX	322				5			
33	Service Live Loa	LL				1				
34	Maintenance Loa	· LL				1				
35	Maintenance Loa	LL				1				
36	Maintenance Loa	LL				1				

Load Combinations

	Description	S	P	S	В	.Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.4DL	Y	Υ		1	1.4																		
2	1.2DL + 1WL AZI 0	Y	Υ		1	1.2	2	1	14	1	15													
3	1.2DL + 1WL AZI 30	Y	Υ		1	1.2	3	1	14	.866	15	.5												
4	1.2DL + 1WL AZI 60	Y	Υ		1	1.2	4	1	14	.5	15	.866												
5	1.2DL + 1WL AZI 90	Y	Υ		1	1.2	5	1	14		15	1												
6	1.2DL + 1WL AZI 120	Y	Υ		1	1.2	6	1	14	5	15	.866												
7	1.2DL + 1WL AZI 150	Y	Υ		1	1.2	7	1	14	8	15	.5												
8	1.2DL + 1WL AZI 180	Y	Υ		1	1.2	8	1	14		15													
9	1.2DL + 1WL AZI 210	Y	Υ		1	1.2	9	1	14	8	15	5												
10	1.2DL + 1WL AZI 240	Y	Υ		1	1.2	10	1	14	5														
11	1.2DL + 1WL AZI 270	Y	Υ		1	1.2	11	1	14			-1												
12	1.2DL + 1WL AZI 300	Υ	Υ		1	1.2	12	1				8												
13	1.2DL + 1WL AZI 330	Υ	Υ		1	1.2	13	1	14	.866	15	5												

Company : Infinigy Engineering, PLLC
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOHVN00136A

Feb 28, 2022 3:15 PM Checked By:_

Load Combinations (Continued)

	Description	S	.P	SB	F	al	В	Fa	.B	Fa	.B	Fa	.B	Fa	.B	Fa	.B	.Fa	.B	.Fa	.B	.Fa	.B	.Fa
14	0.9DL + 1WL AZI 0	Y		•			2	1	14	1	15													
15	0.9DL + 1WL AZI 30	Y	Υ	•	Π.	9	3	1	14	.866	15	.5												
16	0.9DL + 1WL AZI 60	Y	Υ	•	Ι.	9	4	1	14	.5	15	.866												
17	0.9DL + 1WL AZI 90	Y	Υ	-	١.	9	5	1	14		15	1												
18	0.9DL + 1WL AZI 120	Y	Υ	-	Ι.	9	6	1	14	5	15	.866												
19	0.9DL + 1WL AZI 150	Y	Υ	-	١.	9	7	1	14	8	15	.5												
20	0.9DL + 1WL AZI 180	Y	Υ	•	Ι.	9	8	1	14															
21	0.9DL + 1WL AZI 210	Υ	Υ	•	Π.	9	9	1	14	8	15	5												
22	0.9DL + 1WL AZI 240	Y	Υ	-	١.	9	10	1	14	5	15	8	-											
23				•	Π.	9	11	1	14		15	-1												
24	0.9DL + 1WL AZI 300			•	١.	9	12	1	14	.5	15	8	-											
25	0.9DL + 1WL AZI 330	Y	Υ	•	١.	9	13	1	14	.866	15	5												
26	1.2D + 1.0Di	Y	Υ	•	1	.2	16	1																
27	1.2D + 1.0Di +1.0Wi AZI 0	Υ	Υ	•	1	.2	16	1	17		29		30											
28	1.2D + 1.0Di +1.0Wi AZI 30	Y	Υ	-	1	.2	16	1	18	1	29	.866	30	.5										
29	1.2D + 1.0Di +1.0Wi AZI 60	Υ	Υ	•	1	.2	16	1	19	1	29	.5	30	.866										
30	1.2D + 1.0Di +1.0Wi AZI 90	Y		•	1	.2	16		20	1	29		30	1										
31	1.2D + 1.0Di +1.0Wi AZI 120	Y	Υ	-	1	.2	16	1	21	1	29			.866										
32	1.2D + 1.0Di +1.0Wi AZI 150	Y	Υ	•	1	.2	16	1	22	1	29	8	.30	.5										
33	1.2D + 1.0Di +1.0Wi AZI 180	Y	Υ	-	1	.2	16	1	23	1	29		30											
34	1.2D + 1.0Di +1.0Wi AZI 210	Y	Υ	•	1	.2	16	1	24	1	29	8	.30	5										
35	1.2D + 1.0Di +1.0Wi AZI 240			•	1	.2	16	1	25	1	29	5	30	8										
36	1.2D + 1.0Di +1.0Wi AZI 270			•	1	.2	16	1	26		29			-1										
37	1.2D + 1.0Di +1.0Wi AZI 300			-	1	.2	16	1	27	1	29			8										
38	1.2D + 1.0Di +1.0Wi AZI 330			•	1	.2	16	1	28	1	29	.866	30	5										
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0			•		.2			32															
	(1.2 + 0.2Sds)DL + 1.0E AZI 30			-	1.	.2	31	.866	32	.5														
	(1.2 + 0.2Sds)DL + 1.0E AZI 60								32	.866														
	(1.2 + 0.2Sds)DL + 1.0E AZI 90			•	1.				32															
	(1.2 + 0.2Sds)DL + 1.0E AZI 1.			•						.866														
44	(1.2 + 0.2Sds)DL + 1.0E AZI 1.	.Y	Υ							.5														
	(1.2 + 0.2Sds)DL + 1.0E AZI 1.					- 1		-1	l	l														
	(1.2 + 0.2Sds)DL + 1.0E AZI 2.			1	1.	.2	31	8	32	5														
	(1.2 + 0.2Sds)DL + 1.0E AZI 2.									8														
	(1.2 + 0.2Sds)DL + 1.0E AZI 2.				1.	_				-1														
	(1.2 + 0.2Sds)DL + 1.0E AZI 3.									8	L													
50	(1.2 + 0.2Sds)DL + 1.0E AZI 3.									5														
51	(0.9 - 0.2Sds)DL + 1.0E AZI 0							1																
52	(0.9 - 0.2Sds)DL + 1.0E AZI 30							.866																
53	(0.9 - 0.2Sds)DL + 1.0E AZI 60			•	8.	57	31	.5	32	.866														
•	(0.9 - 0.2Sds)DL + 1.0E AZI 90			•	8.	57	31		32	1														
55	(0.9 - 0.2Sds)DL + 1.0E AZI 1	.Y	Υ	•	8.	57	31	5	32	.866														

Company : Infinigy Engineering, PLLC
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOHVN00136A

Feb 28, 2022 3:15 PM Checked By:_

Load Combinations (Continued)

	Description S	Р	.SB	.Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa.	В	Fa	В	Fa
56	(0.9 - 0.2Sds)DL + 1.0E AZI 1Y		1	.857	31	8	32	.5														
57	(0.9 - 0.2Sds)DL + 1.0E AZI 1Y	Y	1	.857	31	-1	32															
58	(0.9 - 0.2Sds)DL + 1.0E AZI 2Y	Y	1	.857	31	8	32	5														
	(0.9 - 0.2Sds)DL + 1.0E AZI 2Y	Y	1	.857	31	5	32	8														
	(0.9 - 0.2Sds)DL + 1.0E AZI 2Y	Y	1	.857	31		32	-1														
61	(0.9 - 0.2Sds)DL + 1.0E AZI 3Y	Y	1	.857	31	.5	32	8														
62	(0.9 - 0.2Sds)DL + 1.0E AZI 3Y	Y	1	.857	31	.866	32	5														
63	1.0DL + 1.5LL + 1.0SWL (60 Y	Y	1	1	2	.242	14	.242	15		33	1.5										
64	1.0DL + 1.5LL + 1.0SWL (60 Y	Υ	1	1	3	.242	14	.209	15	.121	33	1.5										
65	1.0DL + 1.5LL + 1.0SWL (60 Y	Υ	1	1	4	.242	14	.121	15	.209	33	1.5										
66	1.0DL + 1.5LL + 1.0SWL (60 Y	Υ	1	1	5	.242	14		15	.242	33	1.5										
67	1.0DL + 1.5LL + 1.0SWL (60 Y	Y	1	1	6	.242	14	1	15	.209	33	1.5										
68	1.0DL + 1.5LL + 1.0SWL (60 Y		1	1				2			33	1.5										
69	1.0DL + 1.5LL + 1.0SWL (60 Y	Y	1	1	8	.242	14	2	15		33	1.5										
70	1.0DL + 1.5LL + 1.0SWL (60 Y	Y	1	1	9	.242	14	2	15	1	33	1.5										
	1.0DL + 1.5LL + 1.0SWL (60 Y		1	1	10	.242	14	1	15	2	33	1.5										
	1.0DL + 1.5LL + 1.0SWL (60 Y		1	1	11	.242	14		15	2	33	1.5										
73	1.0DL + 1.5LL + 1.0SWL (60 Y		1	1	12	.242	14	.121	15	2	33	1.5										
74	1.0DL + 1.5LL + 1.0SWL (60 Y	Υ	1	1	13	.242	14	.209	15	1	33	1.5										
75		Y	1	1.2	33	1.5																
76	1.2DL + 1.5LM-MP1 + 1SWL (Y	Υ	1	1.2	34	1.5	2	.06	14	.06	15											
77	1.2DL + 1.5LM-MP1 + 1SWL (Y	Υ	1	1.2	34	1.5	3	.06	14	.052	15	.03										
78			1					.06	14	.03	15	.052										
79	1.2DL + 1.5LM-MP1 + 1SWL (Y		1	1.2	34	1.5	5	.06	14		15	.06										
80	1.2DL + 1.5LM-MP1 + 1SWL (Y	Υ	1	1.2	34	1.5	6	.06	14	03	15	.052										
81	1.2DL + 1.5LM-MP1 + 1SWL (Y		1	1.2	34	1.5	7	.06	14	0	15	.03										
_	1.2DL + 1.5LM-MP1 + 1SWL (Y		1					.06														
	1.2DL + 1.5LM-MP1 + 1SWL (Y		1			1.5																
84	1.2DL + 1.5LM-MP1 + 1SWL (Y		1					.06														
85	1.2DL + 1.5LM-MP1 + 1SWL (Y		1					.06				06										
	1.2DL + 1.5LM-MP1 + 1SWL (Y		1					.06														
	1.2DL + 1.5LM-MP1 + 1SWL (Y		1		_			.06														
	1.2DL + 1.5LM-MP2 + 1SWL (Y						1	.06														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1	1.2	35	1.5	3	.06	14	.052	15	.03										
90		•	1	1.2	35	1.5	4	.06	14	.03												
91	1.2DL + 1.5LM-MP2 + 1SWL (Y		1				_	.06		l .		.06										
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1					.06														
93	1.2DL + 1.5LM-MP2 + 1SWL (Y		1		_	1.5				0												
94	1.2DL + 1.5LM-MP2 + 1SWL (Y		1					.06														
95			1			1.5)															
96	1.2DL + 1.5LM-MP2 + 1SWL (Y	_	1					.06														
97	1.2DL + 1.5LM-MP2 + 1SWL (Y	·Y	1	1.2	35	1.5	11	.06	14		15	06										

: Infinigy Engineering, PLLC: PSM

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOHVN00136A

Feb 28, 2022 3:15 PM Checked By:

Load Combinations (Continued)

		SP	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	.B	.Fa	.B	Fa	3	Fa
98	1.2DL + 1.5LM-MP2 + 1SWL (Y Y	1	1.2	35	1.5	12	.06	14	.03	15	0										
99	1.2DL + 1.5LM-MP2 + 1SWL (Υ Υ	1	1.2	35	1.5	13	.06	14	.052	15	03										
100	1.2DL + 1.5LM-MP3 + 1SWL (Υ Υ	1	1.2	36	1.5	2	.06	14	.06	15											
	1.2DL + 1.5LM-MP3 + 1SWL (1	1.2	36	1.5	3	.06	14	.052	15	.03										
102	1.2DL + 1.5LM-MP3 + 1SWL (Υ Υ	1	1.2	36	1.5	4	.06	14	.03	15	.052										
103	1.2DL + 1.5LM-MP3 + 1SWL (Y Y	1	1.2	36	1.5	5	.06	14		15	.06										
	1.2DL + 1.5LM-MP3 + 1SWL (1	1.2	36	1.5	6	.06	14	03	15	.052										
105	1.2DL + 1.5LM-MP3 + 1SWL (Υ Υ	1	1.2	36	1.5	7	.06	14	0	15	.03										
106	1.2DL + 1.5LM-MP3 + 1SWL (Y Y	1	1.2	36	1.5	8	.06	14	06	15											
	1.2DL + 1.5LM-MP3 + 1SWL (1	1.2	36	1.5	9	.06	14	0	15	03										
	1.2DL + 1.5LM-MP3 + 1SWL (_	1	1.2	36	1.5	10	.06	14	03	15	0										
109	1.2DL + 1.5LM-MP3 + 1SWL (Y Y	1	1.2	36	1.5	11	.06	14		15	06										
110	1.2DL + 1.5LM-MP3 + 1SWL (Y Y	1	1.2	36	1.5	12	.06	14	.03	15	0										

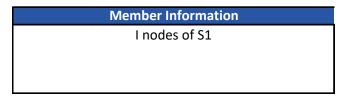
Envelope Joint Reactions

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N1 -	809.126	17	1299.77	82	1124.5				3158.259	19	3021.223	84
2		-809.126	11	392.674	52	-1124.5	8	-4548.4	82	-3164.199	13	-1550.672	90
3	Totals: .	809.126	17	1299.77	82	1124.5	14						
4		-809.126	11	392.674	52	-1124.5	8						

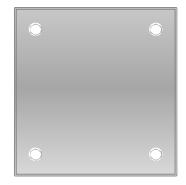
Envelope AISC 15th(360-16): LRFD Steel Code Checks

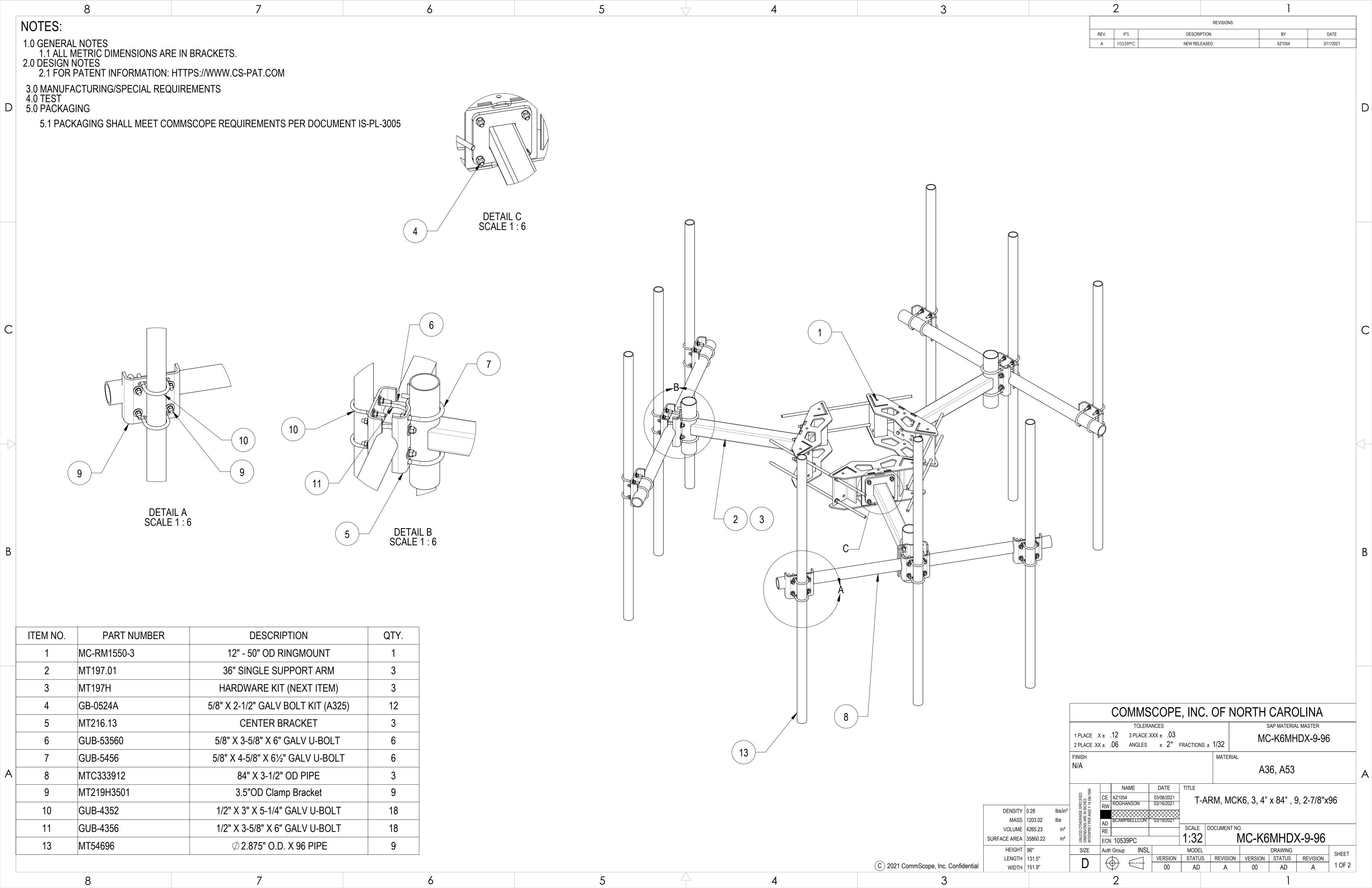
	Member	Shape	Code Check	Loc[in]	LC	She	.Loc[in]	Dir	LC	phi*P	phi*P	phi*M	.phi*Mn z-z [lb	.Cb Eqn
1	H1	PIPE 3.0	.428	42	86	.187	42		_	6070			1000.0	1H1-1b
2	2 S1	HSS4X4X4	.357	0	81	.255	0	у	86	1343	1395	1618	16180.5	1 H3-6
3	MP1	PIPE_2.5	.333	48	8	.023	48		8	3348	66654	4726.5	4726.5	1H1-1b
4	MP2	PIPE 2.5	.022	48	9	.003	48		9	3348	66654	4726.5	4726.5	1H1-1b
5	MP3	PIPE 2.5	.022	48	9	.003	48		9	3348	66654	4726.5	4726.5	1H1-1b
6	V1	PIPE 4.0	.000	9	9	.000	9		9	1213	1225	1397	13972.5	1 H1-1b

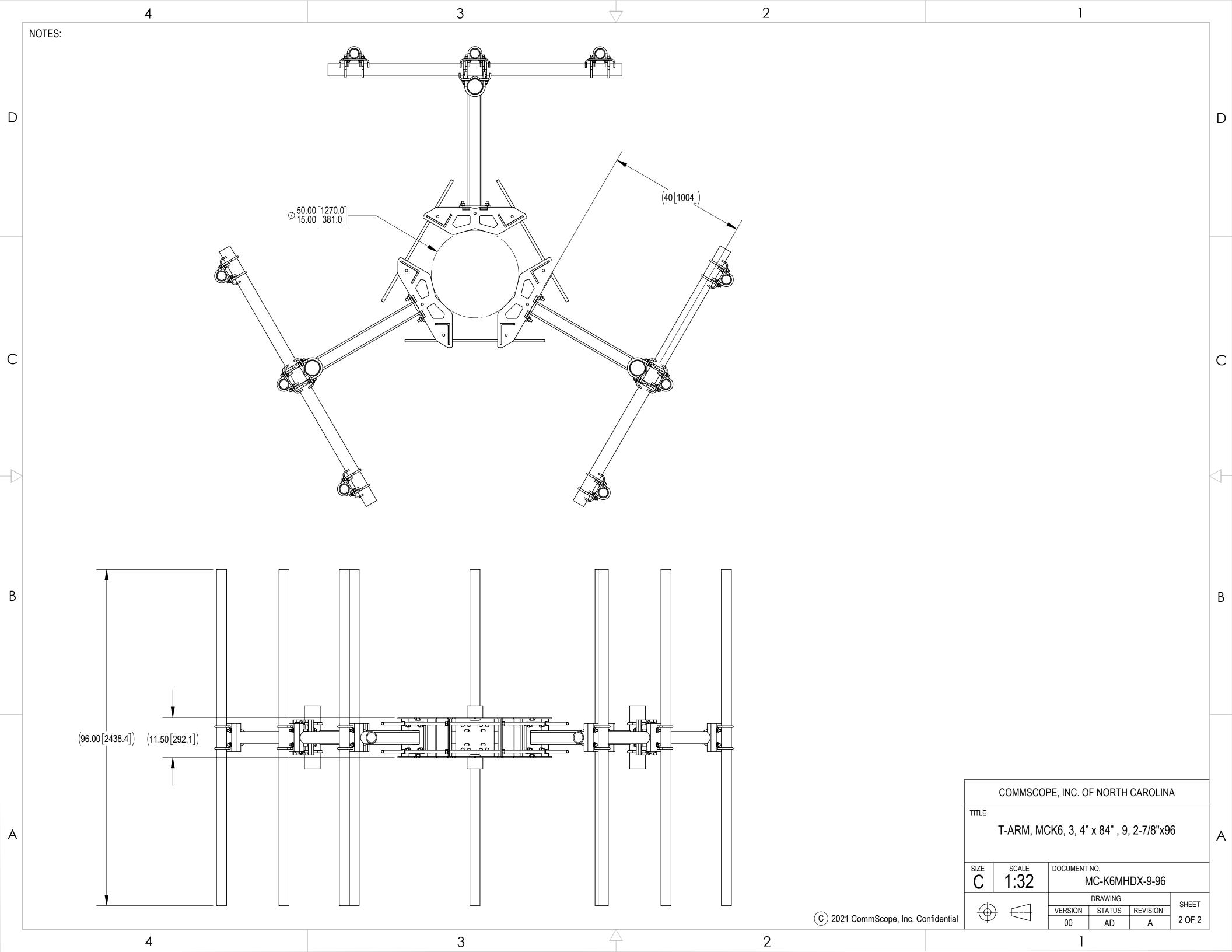
Bolt Calculation Tool, V1.5.1


PROJEC	T DATA
Site Name:	BOHVN00136A
Site Number:	BOHVN00136A
Connection Description:	T-Arm to Pole

MAXIMUM	MAXIMUM BOLT LOADS						
Bolt Tension:	5910.70	lbs					
Bolt Shear:	2384.61	lbs					


WORST CASE BOLT LOADS ¹						
Bolt Tension:	5910.70	lbs				
Bolt Shear:	294.74	lbs				


BOLT PRO	OPERTIES	
Bolt Type:	Bolt	-
Bolt Diameter:	0.625	in
Bolt Grade:	A325	-
# of Bolts:	4	-
Threads Excluded?	No	-


¹ Worst case bolt loads correspond to Load combination #7 on member S1 in RISA-3D, which causes the maximum demand on the bolts.

BOLT CHECK]
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	29.1%	
Max Shear Usage	17.3%	
Interaction Check (Worst Case)	0.08	≤1.05
Result	Pass	

POWER DENSITY STUDY

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00136A

BOHVN00136A 123 Pine Orchard Road Branford, Connecticut 06405

October 4, 2021

EBI Project Number: 6221004022

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of FCC general population allowable limit:	19.43%		

October 4, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00136A - BOHVN00136A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **I23 Pine Orchard**Road in Branford, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless antenna facility located at 123 Pine Orchard Road in Branford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n7l channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 80 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	ı	Antenna #:	ı	Antenna #:	ı
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	80 feet	Height (AGL):	80 feet	Height (AGL):	80 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	4.32%	Antenna B1 MPE %:	4.32%	Antenna CI MPE %:	4.32%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:		Make / Model:		Make / Model:	
Frequency Bands:		Frequency Bands:		Frequency Bands:	
Gain:		Gain:		Gain:	
Height (AGL):	feet	Height (AGL):	feet	Height (AGL):	feet
Channel Count:	0	Channel Count:	0	Channel Count:	0
Total TX Power (W):	0 Watts	Total TX Power (W):	0 Watts	Total TX Power (W):	0 Watts
ERP (W):	0.00	ERP (W):	0.00	ERP (W):	0.00
Antenna A2 MPE %:	0.00%	Antenna B2 MPE %:	0.00%	Antenna C2 MPE %:	0.00%
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:		Make / Model:		Make / Model:	
Frequency Bands:		Frequency Bands:		Frequency Bands:	
Gain:		Gain:		Gain:	
Height (AGL):	feet	Height (AGL):	feet	Height (AGL):	feet
Channel Count:	0	Channel Count:	0	Channel Count:	0
Total TX Power (W):	0 Watts	Total TX Power (W):	0 Watts	Total TX Power (W):	0 Watts
ERP (W):	0.00	ERP (W):	0.00	ERP (W):	0.00
Antenna A3 MPE %:	0.00%	Antenna B3 MPE %	0.00%	Antenna C3 MPE %:	0.00%
Antenna #:	4	Antenna #:	4	Antenna #:	4
Make / Model:		Make / Model:		Make / Model:	
Frequency Bands:		Frequency Bands:		Frequency Bands:	
Gain:		Gain		Gain:	
Height (AGL):	feet	Height (AGL):	feet	Height (AGL):	feet
Channel Count:	0	Channel Count	0	Channel Count:	0
Total TX Power (W):	0 Watts	Total TX Power (W):	0 Watts	Total TX Power (W):	0 Watts
ERP (W):	0.00	ERP (W):	0.00	ERP (W):	0.00
Antenna A4 MPE %:	0.00%	Antenna B4 MPE %:	0.00%	Antenna C4 MPE %:	0.00%

Site Composite MPE %			
Carrier	MPE %		
Dish Wireless (Max at Sector A):	4.32%		
T-Mobile	4.83%		
AT&T	3.59%		
Verizon	6.69%		
Site Total MPE % :	19.43%		

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	4.32%			
Dish Wireless Sector B Total:	4.32%			
Dish Wireless Sector C Total:	4.32%			
Site Total MPE % :	19.43%			

Dish Wireless Maximum MPE Power Values (Sector A)								
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE	
Dish Wireless 600 MHz n71	4	223.68	80.0	5.87	600 MHz n71	400	1.47%	
Dish Wireless 1900 MHz n70	4	542.70	80.0	14.25	1900 MHz n70	1000	1.43%	
Dish Wireless 2190 MHz n66	4	542.70	80.0	14.25	2190 MHz n66	1000	1.43%	
						Total:	4.32%	

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	4.32%
Sector B:	4.32%
Sector C:	4.32%
Dish Wireless Maximum MPE % (Sector A):	4.32%
Site Total:	19.43%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **19.43**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

UNDERLYING PROPERTY INFORMATION

Map Block Lot

F08/000/006/ Bldg #

1 Sec #

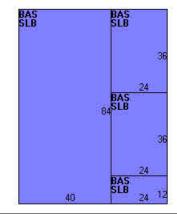
1 PID

1046

Account

003607

Property Information


Property Location	123 PINE OR	CHARD RD				
Owner	MALAVASII	MALAVASI INVESTMENTS LLC				
Co-Owner	na	na				
Mailing Adduse	35 STONY C	REEK RD				
Mailing Address	BRANFORD	СТ	06405			
Land Use	3160	COMM WHS M	IDL96			
Land Class	С					
Zoning Code	R3					
Census Tract						

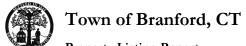
Neighborhood	0070
Acreage	3.76
Utilities	Public Water,Public Sewer
Lot Setting/Desc	Suburban Level
Book / Page	0802/0624

Photo

Sketch

Primary Construction Details

Year Built	1941
Building Desc.	COMM WHS MDL96
Building Style	Service Shop
Building Grade	С
Stories	1
Occupancy	1.00
Exterior Walls	Concr/Cinder
Exterior Walls 2	NA
Roof Style	Flat
Roof Cover	T&G/Rubber
Interior Walls	Minim/Masonry
Interior Walls 2	NA
Interior Floors 1	Concr-Finished
Interior Floors 2	NA


Heating Fuel	Oil
Heating Type	Hot Air-no Duc
AC Type	None
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	NA
Fin Bsmt Area	
Fin Bsmt Quality	
Bsmt Gar	
Fireplaces	

(*Industrial / Commercial Details)

Building Use	Ind/Comm
Building Condition	G
Sprinkler %	NA
Heat / AC	NONE
Frame Type	MASONRY
Baths / Plumbing	AVERAGE
Ceiling / Wall	CEILING ONLY
Rooms / Prtns	AVERAGE
Wall Height	15.00
First Floor Use	NA
Foundation	NA

Report Created On

4/27/2022

Property Listing Report

Map Block Lot

F08/000/006/ Bldg # 1 Sec #

1 PID

1046

Account

003607

	nary (As		% of Appraised Value)				
Item	Appr	aised	Assessed	Subarea Ty	ype Gro	ss Area (sq ft)	Living Area (sq ft
Buildings	163700		114600	First Floor	53	76	5376
Extras	65800		46090	Slab	53	76	0
Improvements							
Outbuildings	19600		13710				
Land	347800		243500				
Total	596900		417900				
Outbuilding an	d Extra F	eatures					
Type		Description	on				
FENCE-8' CHAIN		272 L.F.					
SHED COM MAS		240 S.F.					
SHED COM MAS		288 S.F.					
PAVING-CONC		959 S.F.					
GEN 100+ KW PRM	Т ВКР	1 UNITS					
PAVING-ASPHALT		1000 S.F.					
MEZZANINE-UNF		379 S.F.					
GEN 15-30KW PRM	Т ВКР	1 UNITS					
				Total Area	10	752	5376
Sales History				1			1
Owner of Record				Book/ Page	Sale Date	Sale Prio	ce
MALAVASI INVESTN	IENTS LLC			0802/0624	2003-02-13	537500	
PRIFITERA BARBAF	A A			0802/0622	2003-02-13	0	
GIORDANO ANTHOI	NY EST OF			0802/0621	2003-02-13	0	
GIORDANO ANTHOI	NY			0695/0932	2000-03-23	0	

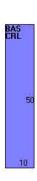
Town of Branford, CT

Property Listing Report

Map Block Lot

F08/000/006/00B49g# 2 Sec# 1

PID 1046


Account

003607

Sketch

Primary Construction Details

Year Built	1974
Building Desc.	Residential
Building Style	Mobile Home
Building Grade	C -
Stories	1
Occupancy	1.00
Exterior Walls	Pre-finsh Metl
Exterior Walls 2	NA
Roof Style	Gable/Hip
Roof Cover	Metal/Tin
Interior Walls	Plywood Panel
Interior Walls 2	NA
Interior Floors 1	Carpet
Interior Floors 2	NA

Heating Fuel	Electric
Heating Type	Forced Air-Duc
AC Type	None
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	NA
Fin Bsmt Area	
Fin Bsmt Quality	
Bsmt Gar	
Fireplaces	

(*Industrial / Commercial Details)

,	,
Building Use	COMM WHS MDL01
Building Condition	Α
Sprinkler %	NA
Heat / AC	NA
Frame Type	NA
Baths / Plumbing	NA
Ceiling / Wall	NA
Rooms / Prtns	NA
Wall Height	NA
First Floor Use	NA
Foundation	NA

Sub Areas

Subarea Type	iving Area
(sq ft)	
\ 1 / (⁶	q ft)
First Floor 500	500
Crawl Space 500	0

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Total Area	1000	500

NOTIFICATIONS

Shipping/Receiving

35 STONY CREEK RD

Dear Customer,

The following is the proof-of-delivery for tracking number: 776706806777

Delivery Information:

Status: Delivered

Signed for by: S.IGNATURE NOT REQ

Service type: FedEx 2Day

Special Handling: Deliver Weekday

BRANFORD, CT, 06405

Delivery date: Apr 29, 2022 12:19

Shipping Information:

Tracking number: 776706806777 **Ship Date:** Apr 27, 2022

Weight: 1.0 LB/0.45 KG

Recipient:

Malavasi Investments LLC, 35 Stony Creek Road BRANFORD, CT, US, 06405 Shipper:

Delivered To:

Delivery Location:

Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824

Reference 100814

Shipping/Receiving

1019 Main Street

P.O. Box 150

Dear Customer,

The following is the proof-of-delivery for tracking number: 776705719220

Delivery Information:

Status: Delivered

Signed for by: T.MILLICCI

Service type: FedEx 2Day

Special Handling: Deliver Weekday

BRANFORD, CT, 06405

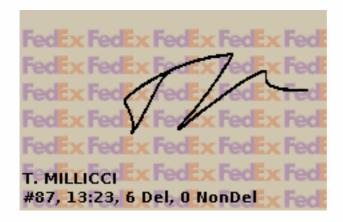
Delivery date: Apr 29, 2022 13:23

Shipping Information:

Tracking number: 776705719220 **Ship Date:** Apr 27, 2022

Weight: 1.0 LB/0.45 KG

Recipient:


James Cosgrove - First Selectman, 1019 Main Street P.O. Box 150 BRANFORD, CT, US, 06405 Shipper:

Delivered To:

Delivery Location:

Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824

Reference 100814

Dear Customer,

The following is the proof-of-delivery for tracking number: 776705670096

Delivery Information:

Status: Delivered

Signed for by: T.MILLICCI

Service type: FedEx 2Day

Special Handling: Deliver Weekday

BRANFORD, CT, 06405

Shipping/Receiving

1019 Main Street

Delivery date: Apr 29, 2022 13:23

Shipping Information:

Tracking number: 776705670096 **Ship Date:** Apr 27, 2022

Weight: 1.0 LB/0.45 KG

Recipient:

Anthony Cinicola - Bldg Official, 1019 Main Street BRANFORD, CT, US, 06405 Shipper:

Delivered To:

Delivery Location:

Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824

Reference 100814

