CC CROWN CASTLE

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

June 23, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for AT&T - 876321 150 North Main Street, Branford, CT 06450 Latitude: 41° 17' 19.00" / Longitude: -72° 48' 49.90"

Dear Ms. Bachman:

AT&T currently maintains twelve (12) antennas at the 110-foot mount on the existing 147-foot Monopole Tower, located at 150 North Main Street, Branford, CT. The tower is owned by Crown Castle and the property is owned by Premier Realty Holdings LLC. AT&T now intends to replace six (6) existing antennas with three (3) new 850 MHz antennas and three (3) new 1900 MHz antennas. The new antennas will be installed at the 110-ft level of the tower.

The facility was approved by the Town of Branford Planning and Zoning Commission on September 18, 1997. The approval was given with conditions which this exempt modification complies with.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to James B. Cosgrove, First Selectman, Harry Smith, Town Planner, Crown Castle as the tower owner, and the property owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

The Foundation for a Wireless World. CrownCastle.com

Melanie A. Bachman

Page 2

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba Network Real Estate Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments

cc:

James Cosgrove, First Selectman (via email only to jcosgrove@branford-ct.gov) Branford Town Hall 1019 Main Street Branford, CT 06405

Harry Smith, Town Planner (*via email only to p-z@branford-ct.gov*) Branford Town Hall 1019 Main Street Branford, CT 06405

Premier Realty Holdings, LLC 155 North Main Street (via email only to nancyanderson3@comcast.net) Branford, CT 06405

Crown Castle, Tower Owner

From:	Zsamba, Anne Marie
To:	nancyanderson3@comcast.net
Subject:	Notice of Exempt Modification - 150 North Main Street - 876321 AT&T
Date:	Tuesday, June 23, 2020 2:11:00 PM
Attachments:	EM-AT&T-876321 150 NORTH MAIN STREET BRANFORD notice.pdf

Dear Premier Realty Holdings LLC:

Attached please AT&T's exempt modification application that is being submitted to the Connecticut Siting Council, today June 23, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com Dear Planner Smith:

Attached please AT&T's exempt modification application that is being submitted to the Connecticut Siting Council, today June 23, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com Dear First Selectman Cosgrove:

Attached please AT&T's exempt modification application that is being submitted to the Connecticut Siting Council, today June 23, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

Exhibit A

Original Facility Approval

4704

VOL. 634 PAGE 591

PLANNING AND ZONING COMMISSION TOWN OF BRANFORD TOWN HALL DRIVE P.O. BOX 150 Branford, Connecticut 06405 488-1255

NOTICE OF DECISION

722 conded 9/29/97

September 22, 1997

Sprint PCS % Attorney John Knuff Harris Beach & Wilcox, L.L.P 147 North Broad Street Milford, Connecticut 06460

SUBJECT: Special Exception

LOCATION: 150 North Main Street

APPLICATION # 97-6.5

OWNER OF RECORD: Irene Maculaitis

Dear Sir:

At a meeting of the Branford Planning & Zoning Commission held on <u>Thursday</u>, <u>September 18, 1997</u>, the Commission voted to:

 \underline{X} Approve your above subject application with the conditions noted below.

Very truly yours irlev Rasmussen Town Planner

NOTE: This Special Exception shall become effective only after it is filed on the Land Records in the office of the Town Clerk.

1. Prior to issuance of a building permit, revise plan to show the following:

a. Revise width of eastern-most curb cut to 30 feet (Sect. 25.10a) by creating new landscaped island extending 15 feet back from streetline (Sect. 25.8.2) with new sidewalk (Sect. 31.5.3(b)).

b. Relocate proposed utility pole so that it is not in the access drive.

2. Provide for co-location of communications equipment to be operated by the Town of Branford Sewage Treatment Plant.

3. Change plantings around tower yard to 6' to 7' dark American Arborvitae and rearrange to screen parking area from street.

(OVER)

YOL. 634 PAGE 592

4. All users of the telecommunications facility must demonstrate compliance with current FCC regulations for electromagnetic frequency emissions and any future changes in these standards.

5. The owner of the telecommunication facility shall provide for and encourage co-location of other antennae on the facility.

NOTE: Special Exception shall become null and void in the event the applicant fails to obtain a building permit within one (1) year of date of approval. (Per Section 31.7 of the Branford Zoning Regulations)

RECEIVED FOR RECORD SECT-25 1927

GEORGETTE A. LASKE BRANFORD TOWN CLERK

CC: Scott M. Thomae Sprint PCS Irene Maculaitis

SITE PLAN AND SPECIAL EXCEPTION

APPLICATION FOR CERTIFICATE OF ZONING COMPLIANCE TOWN OF BRANFORD

ADDRESS OF SUBJECT PROPERTY 150 N. MAIN Street Branford, CT 06405

ASSESSOR'S MAP D-6 BLOCK 13 LOT 13 ZONE: IG-1

APPLICANT'S NAME Sprint PCS

TELEPHONE (203) 237-1737 ext.17

ADDRESS 300 RESEARCH Parkway 3rd fl. Meriden, CT 06450

Briefly describe the building, structure or use for which Zoning Compliance Application is made:

The erection of a monopole telecommunications facility and

placement of the associated equipment cabinets on property located

at 150 N. MAIN Street within the IG-1/ Industrial District.

PLEASE SUBMIT THE FOLLOWING WITH YOUR COMPLETED APPLICATION:

\$125.00 (which includes \$100.00 application fee, \$15.00 Zoning 1. Compliance fee, and \$10.00 State surcharge)

Application materials described in Sect. 31.4 of the Branford 2. ZONING 6 Zoning Regulations including: (6) Building Plans (1) Statement of Use Traffic Report (7)(2) Site Plan Map (8) Drainage Report (3) Erosion Control Plan Flood Requirements Agency Reports PLANING (9)(4) Tabulation of Standards (10) Agency Reports (5) Staging Plan

- Sufficient information to determine compliance with special 3. standards listed on attached sheet.
- 4. Copy of any variance or Wetlands Commission approval pertinent to this application.
- Additional information which may be necessary to determine 5. compliance, as specified by the Branford Planning & Zoning Commission.

The undersigned states that information submitted with this application is correct and acknowledges that any approval based on erroneous or incomplete information shall be null and void.

SIGNATURE	OF	APPLICANT Storm. Thomas	_DATE	6/10/97
SIGNATURE		In Million of	_DATE_	6/1/57
		Prin C		

Petition No. 887 Pocket Communications 150 North Main Street, Branford Staff Report March 12, 2009

On February 3, 2009, the Connecticut Siting Council received a Petition (Petition) from Youghiogheny Communications-Northeast, LLC (Pocket) for a Declaratory Ruling that no Certificate of Environmental Compatibility and Public Need is Required for the proposed modifications to an existing Town of Branford-approved 147-foot Crown Castle-owned monopole located at 150 North Main Street, Branford. Specifically, Pocket seeks to extend the tower by ten feet from 147 feet to 157 feet and flush-mount three panel antennas at the 157-foot level of the tower. The total height with appurtenances would be approximately 160 feet. Pocket also seeks to install a Nortel CDMA Micro BTS cabinet on an H-frame inside the existing fenced compound.

A Professional Engineer duly licensed in the State of Connecticut has certified that the tower will require reinforcements to support the proposed loading. Given that Pagenet, a paging service, is no longer on the tower, the maximum worst case power density at the base of the tower would be approximately 27.5 percent of the applicable limit.

While AT&T has been decommissioned at the 120-foot level of the tower, this location would not work for Pocket because 157 feet is the minimum height for Pocket's coverage objectives. There is also a 110-foot tower approximately 0.13 miles to the northeast. While the ground elevation is about three feet higher, over 40 feet of extension would be necessary to reach an equivalent height, which is not practical.

The tower is located at an automobile dealership, Premier Subaru. Surrounding land use is commercial to the south, east, and west of the site. To the north of the tower site is a residential trailer park.

By letter dated March 3, 2009, the President and General Manager of the Subaru dealer expressed concerns relative to health effects due to radio frequency emissions, visibility, and addition of more carriers on the tower since its original approval.

The trailer park is approximately 10 feet higher in ground elevation than the tower site. It is also about 145 feet to the northwest of the tower. This results in a maximum worst case power density of about 12.3 percent of the applicable limit at the trailer park. Assuming the trailer park elevation is 10 feet higher than the tower base, the potential maximum worst case power density would be approximately 32.7 percent of the limit at the trailer park. In any case, the power density would be well within applicable standards.

According to the visibility analysis, the tower is currently visible from North Main Street and North Ivy Street and would remain so with the tower extension. There is some limited vegetation between the trailer park and the tower, but views of the tower and the extension from the trailer park through the trees are expected.

This Petition was field reviewed on March 4, 2009 by Council member Dr. Barbara Bell and Michael Perrone of the Council staff. Attorney Carrie Larson from Pullman and Comley, LLC and Thomas Flynn III, Maxton Technology, Inc., both representing Pocket, also attended the field review. Attorney David Gibson from Gibson & Donegan, P.C., representing the underlying property owner of the lease parcel, also attended the field review.

Pocket provided notice the Town of Branford and the property owner by sending copies of the Petition at or about the time of filing. Notice to all abutting property owners was sent on February 20, 2009. Other than the letter from the Subaru dealership, there were no replies.

Exhibit B

Property Card

Parcel ID D06/E06/001/001.1

Account 005520

Property Information

Owner	PREMIER REALTY HOLDINGS LLC					
Address	148-160 NO MAIN ST					
Mailing Address	150 NORTH MAIN ST BRANFORD , CT 06405					
Land Use	- AUTO S S&S MDL96					
Land Class	С					

Census Tract	
Neighborhood	500
Zoning	IG-1
Acreage	2.05
Utilities	Public Water, Public Sewer
Lot Setting/ Desc	/ Level

Photo

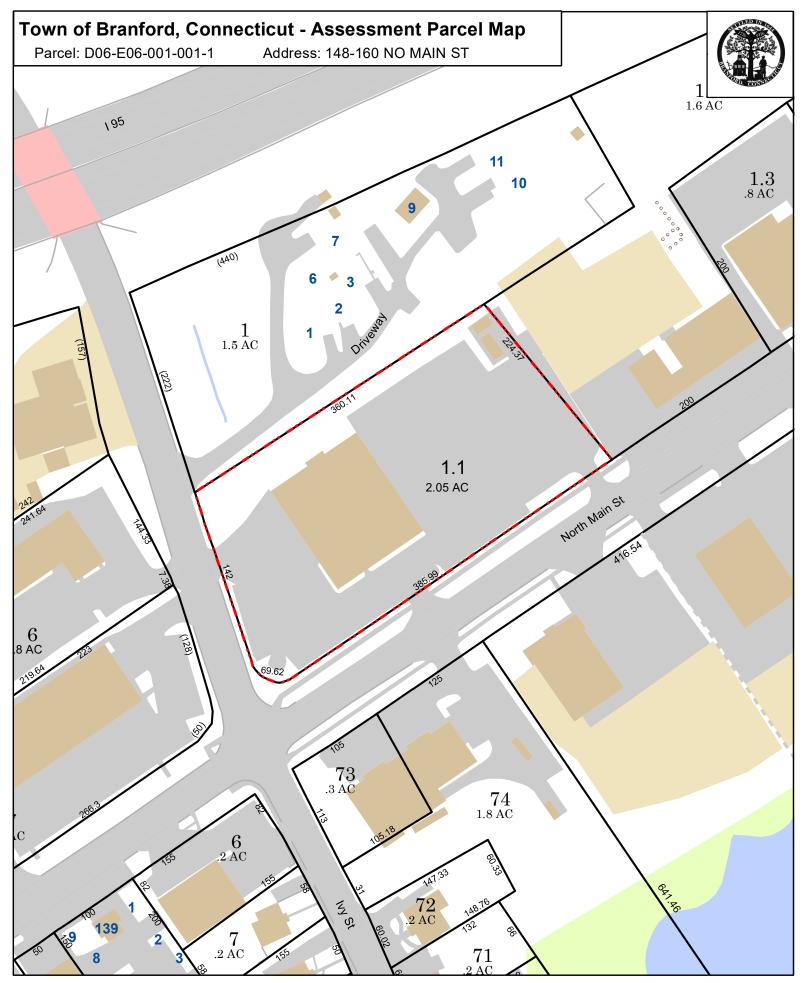
PARCEL VALUATIONS (Assessed value = 70% of Appraised Value)

	Appraised	Assessed
Buildings	61400	43000
Outbuildings	77800	54400
Improvements	142500	99700
Extras	3300	2300
Land	1007000	704900
Total	1149500	804600
Previous		

Construction Details

Year Built	1965
Stories	1
Building Style	Car Dealrshp
Building Use	Ind/Comm
Building Condition	03
Total Rooms	
Bedrooms	
Full Bathrooms	
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	Flat
Roof Cover	Metal/Tin

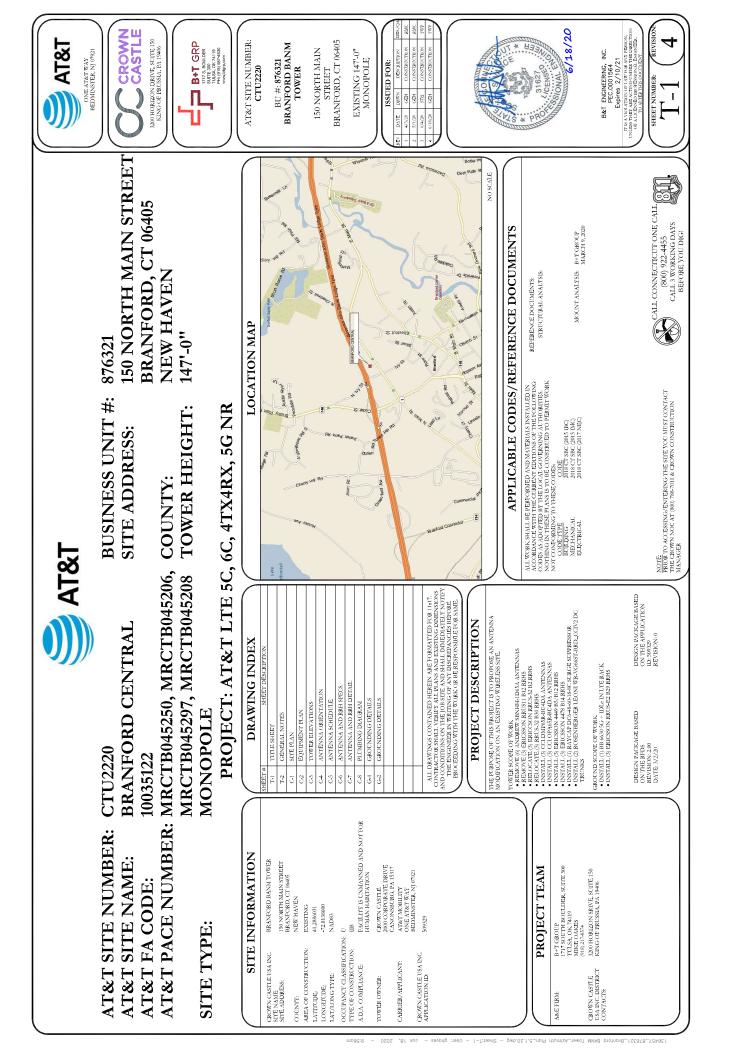
EXTERIOR WALLS:

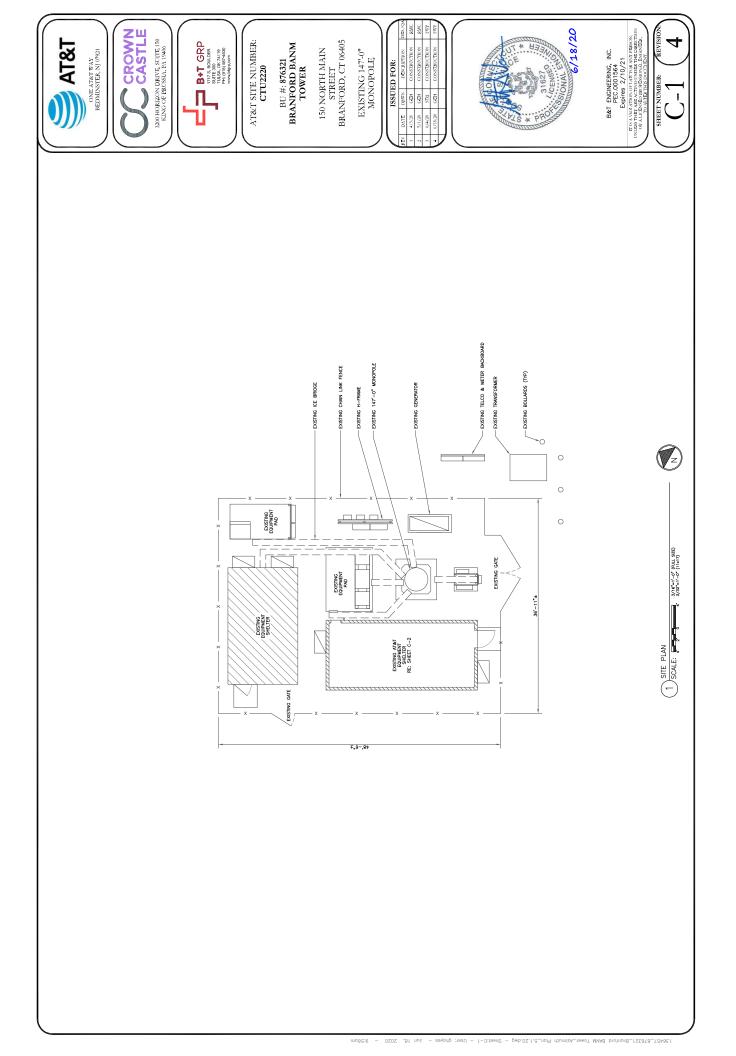

Primary	MASONRY
Secondary	Pre-finsh Metl
INTERIOR WAL	LS:
Primary	Minim/Masonry
Secondary	Drywall
FLOORS:	
Primary	Concr-Finished
Secondary	Carpet
HEATING/AC:	
Heating Type	Forced Air-Duc
Heating Fuel	Oil
АС Туре	None

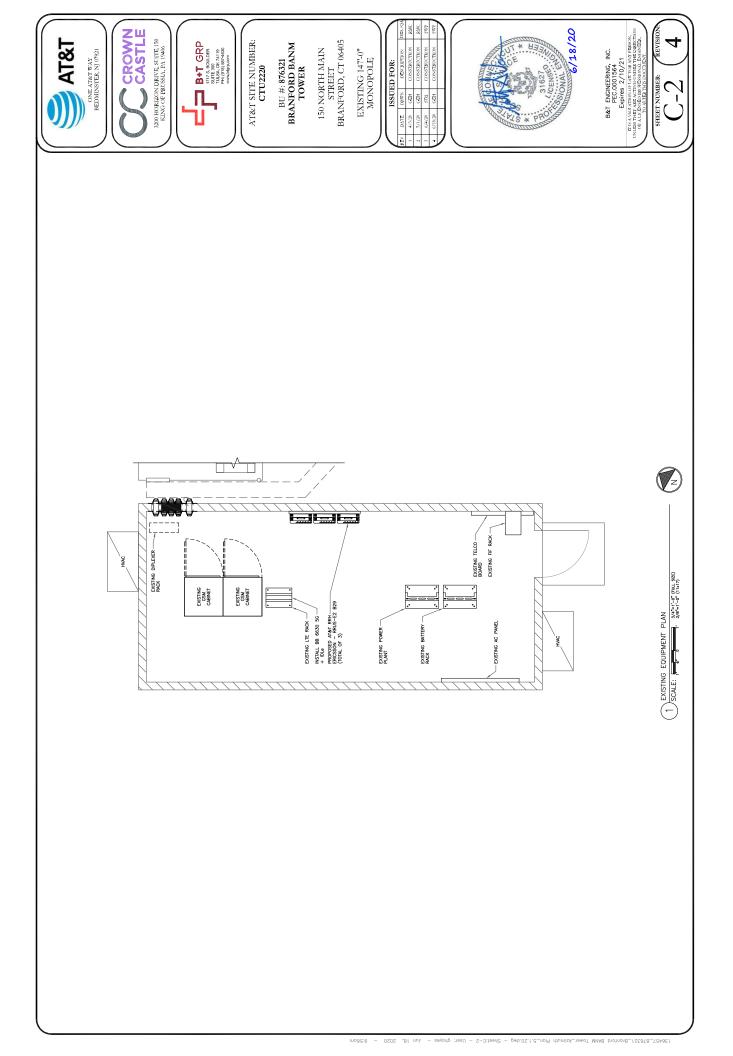
BUILDING AREA:

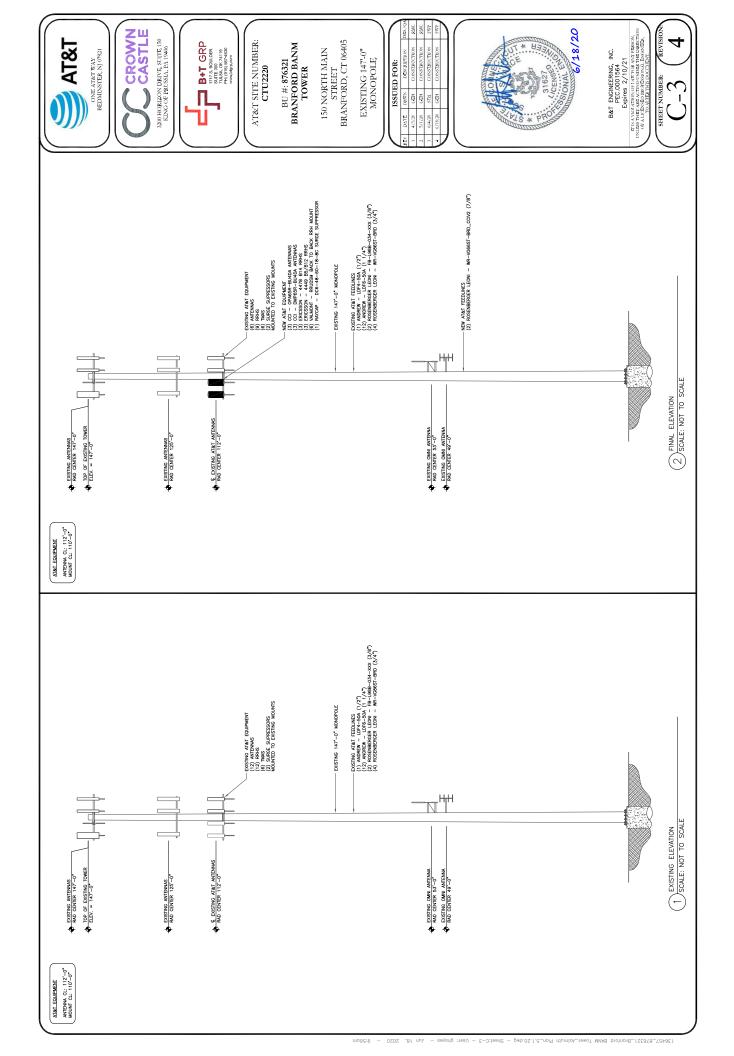
Effective Building Area	
Gross Building Area	23192
Total Living Area	13144

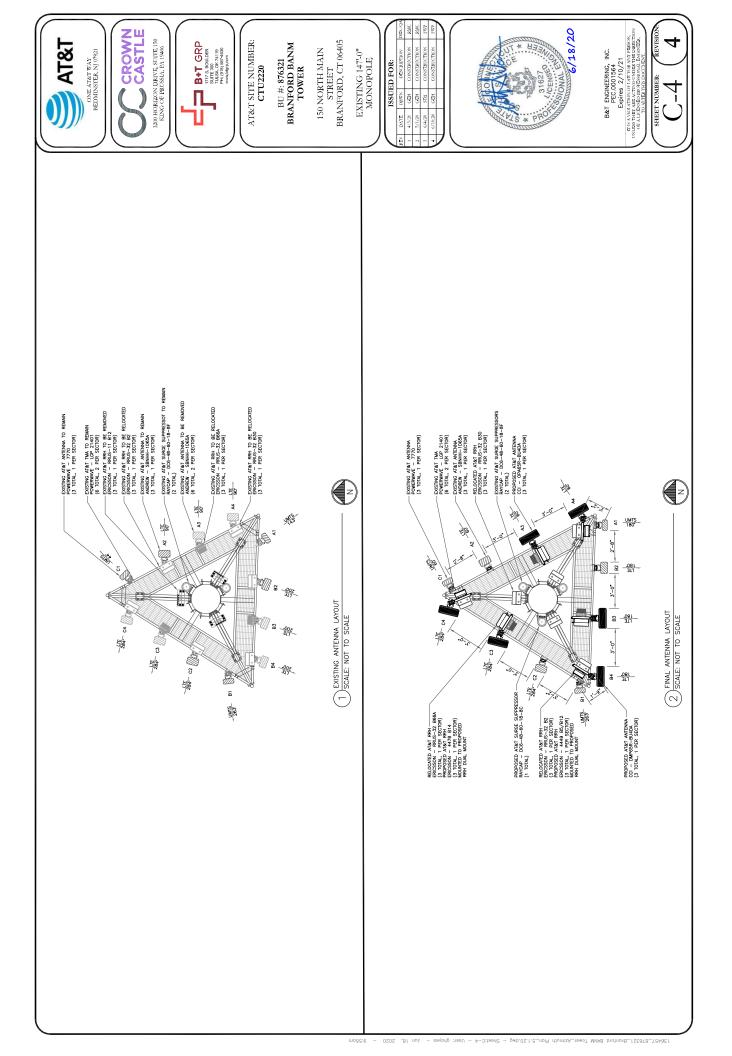
SALES HISTORY:

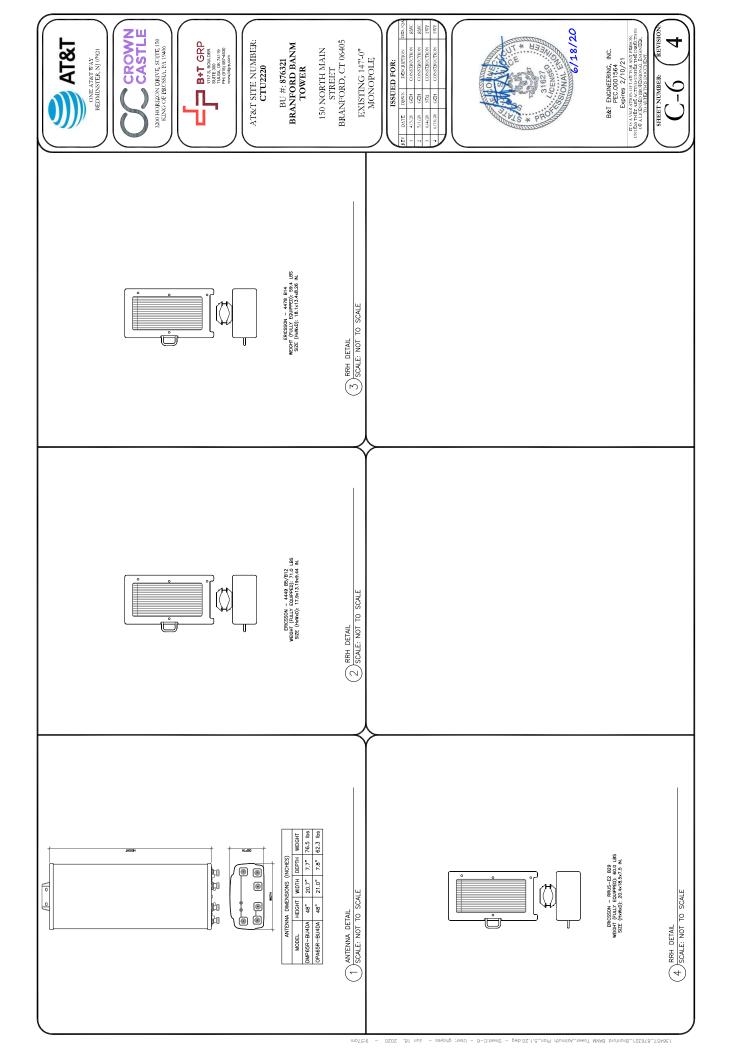

Sale Date	7/6/2004
Sale Price	
Book/ Page	0877/0469

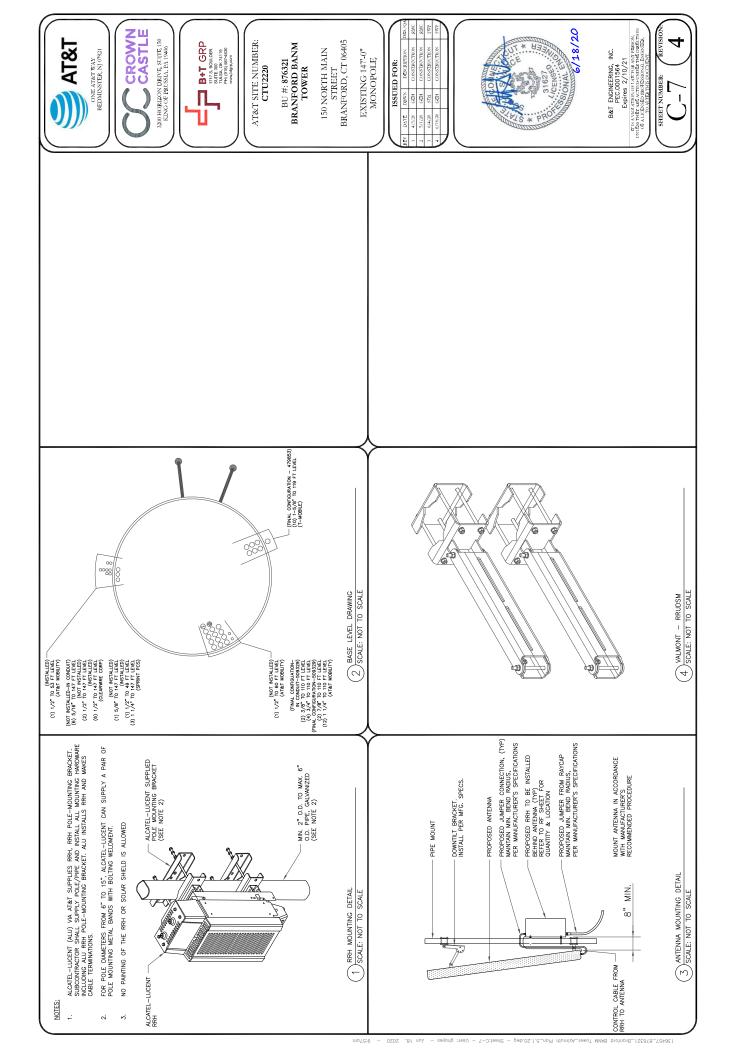

Approximate Scale: 1 inch : 100 feet Grand List Date October 2019 Disclaimer: This map is for informational purposes only. All information is subject to verification by any user. The Town of Branford and its mapping contractors assume no legal responsibility for the information contained herein.

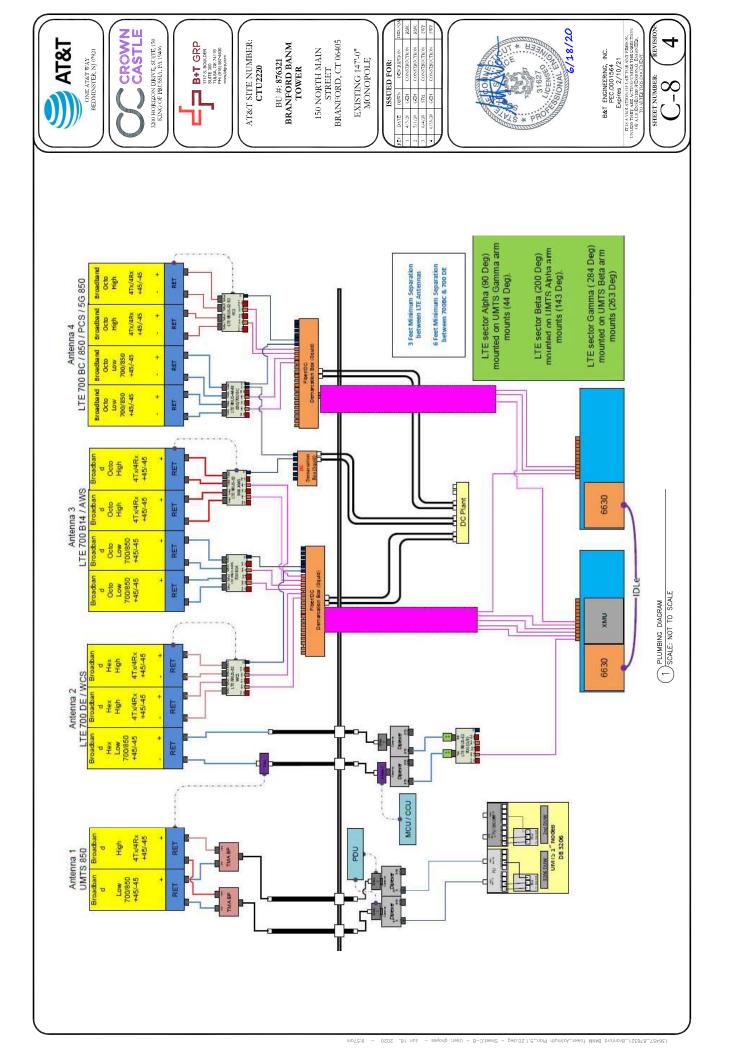

Exhibit C

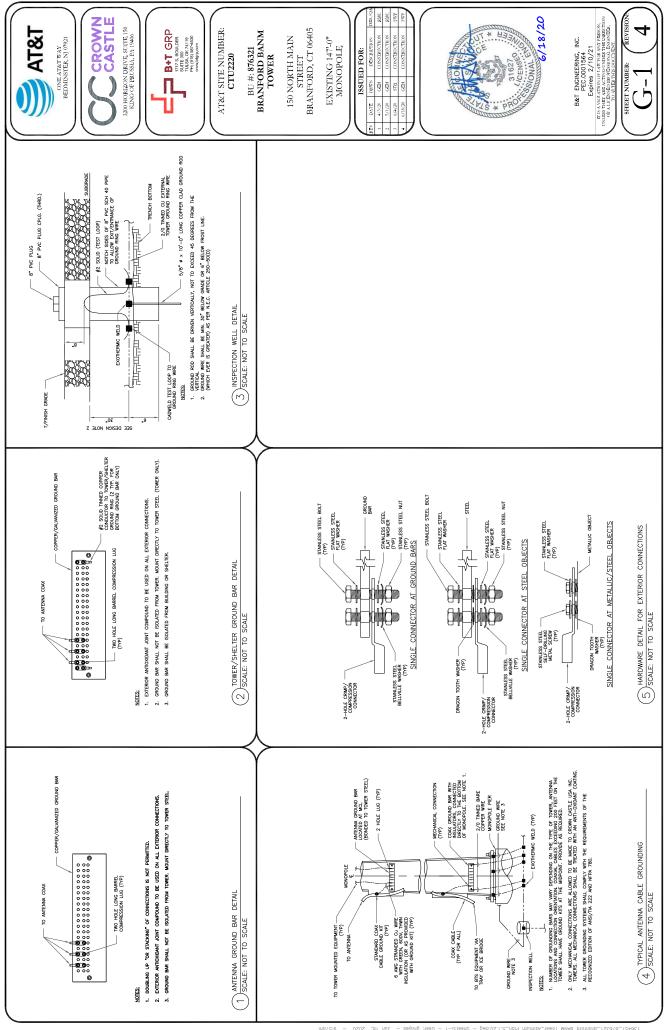

Construction Drawings










AT&T AT&T AT&T AT&T AT&T AT&T AT&T AT&T	1717.5, 800.05 8016 00 1045.07 00 1045.07 00 1049.507	AT&T SITE NUMBER:	CTU2220	BU #: 876321 BRANFORD BANM	TOWER	150 NORTH MAIN STREET	BRANFORD, CT 06405	EXISTING 147".0"	MONOPOLE	ISSUED FOR:	REV DATE DRWN DES/211PTION DES/Q3 1 4/3/20 GEB CONSTRUCTION RMC	GEM CONSTRUCTION STEI CONSTRUCTION	4 6/18/20 GEA CONSTRUCTION FWP			C COUNE D	618/20 618/20 818/20 6/18/20	B&T ENGINEERING, INC. PEC.0001564 Express 2/10/21 Express 2/10/21 UNLET ACTION OF ANY PERSON, UNLET ACTION OF ANY PERSON, UNLET ANY PERSON OF ANY UNLET ANY PERSON OF ANY SHEET NUMBER.	C-5 (4)
	TEARD) ALEA XXXXX XXXXX RAH4 QTT ON TOWER RRIG ON DUTATION ON CARLE		(2) LGP 21901 Y			(1) 4449 B5/B12 Y (1) RRUS-32 B2 - Y		– – – (2) LGP 21901 Y		NES (1) 4478 B14 - Y (1) RRUS-32 B66A - Y	(1) 4449 B5/B12 - Y (1) RRUS-32 B2 - Y		(2) LGP 21901 Y			(1) 4449 B5/B12 Y (1) RRUS-32 B2 Y			
OAXIAL CABLE SCHEDULE	DC (WR-VG&GST-1RR) RAYCAP THER CABLES 1 (TB-198E-034-XXXXX)			DC6-48-60-18-8F			-		DOCE 40 ED 10 OF					DC6 48 60-18 80 (2) DC 11NFS				1 	
OAXIAL CABI	COAX QTY AND MODEL	-	2 (2) LGP 21401	2	1	1		2 (2) LGP 21401	2	1	1		2 (2) LGP 21401	2 -	1	1		O COAVIAL CARLE SCH	1) Scale: NOT TO Scale
FINAL ANTENNA AND C	MAIN COAX LENGTH		140'-0"	140'-0"	T	T		140'-0"	140'-0"	I	I		140'-0"	140'-0"	I	-	-	ANTFNNA ANT	E: NOT TO SCA
NTEN N	MAIN COAX SIZIE	-	1 1/4"	1 1/4"	I	ı		1 1/4"	1 1/4"	1	•		1 1/4"	1 1/4"	I	1	-		1) scal
FINALA	ELECTRICAL DOWNTILT		'n	3./1.	2./6.	2./2./6./6./2.		2.	3./1	2"/3"	2'/2'/3'/3'/2'		6	3"/3"	2"/4"	2./2./4./4./2	-		
	DOWNTH	-			o.	°		2.			ò		6	.0	6	.0	_		
	ANTENNA RAD CENTER	-	112'-0"	112'-0"	112'-0"	112'-0"		112'-0"	112'-0"	112'-0"	112'-0"		112'-0"	112'-0"	112'-0"	112'-0"	-		
	ANTENNA TYPE		POWERWAVE 7770	ANDREW SBNHH-1D65A	CCI OPA65R-BU4DA	CCI DMP65R-BU4DA		POWERWAVE 7770	ANDREW SBNHH-1D65A	CCI OPA65R-BU4DA	CCI DMP65R-BU4DA		POWERWAVE 7770	ANDREW SBNHH-1D65A	CCI OPA65R-BU4DA	CCI DMP65R-BU4DA			
	AZIMUTH		180	.09	.09	.09		263	180	180*	180*		60	284	284	284	EQUIPMENT		
	STATUS	-	EXISTING	EXISTING	NEW	NEW		EXISTING	EXISTING	NEW	NEW		EXISTING	EXISTING	NEW	NEW	ADTES NEW		
	8. TECH	HA SECTOR	1 UMTS	2 LTE	3 LTE	4 LTE	A SECTOR	1 UMTS	2 LTE	3 LTE	4 LTE	MA SECTOR	1 UMTS	2 LTE	3 LTE	4 LTE	NOTE: BOLD DENOTES NEW EQUIPMENT		
	POS.	ALPHA	A1	A2	A3	A4	BETA	B1	- ^{9:}	B3	B4	GAMMA	C1	C2	C3	C4	NOTE		

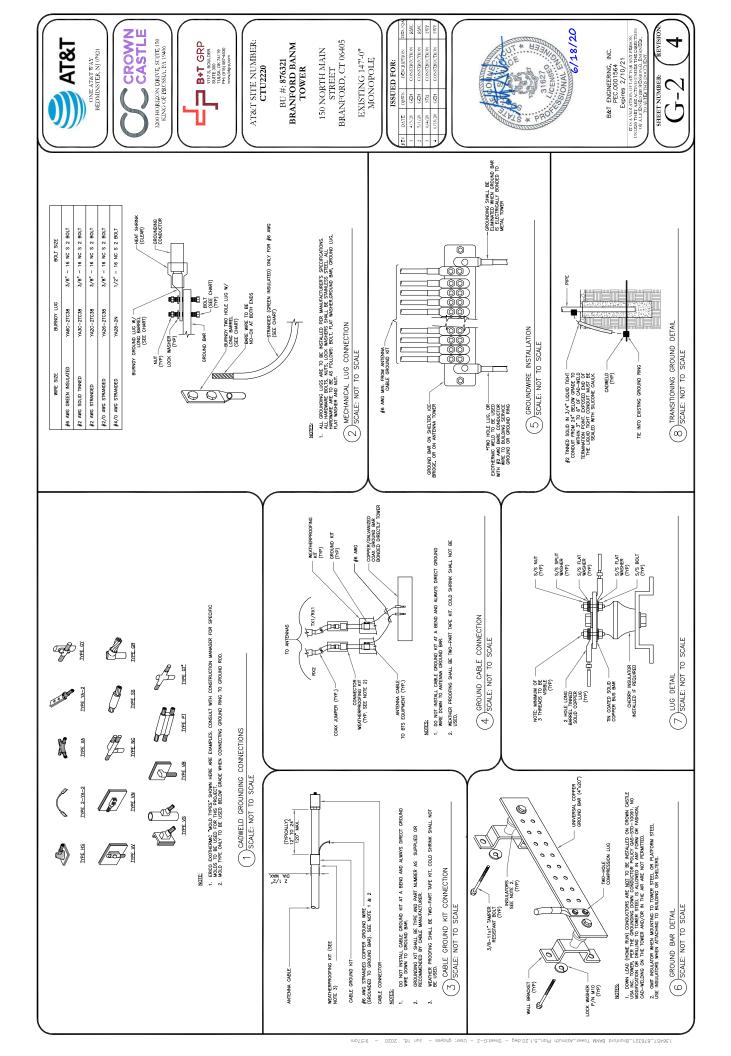

mp78;e - 0101, 181 mul - vset: ghada - Sheet: 2.1.20.4%g - Sheet: ghadae - 0101, 2000 - 2.1.20.4%g - 2.1.20.4%g

Exhibit D

Structural Analysis Report

Date: March 13, 2020

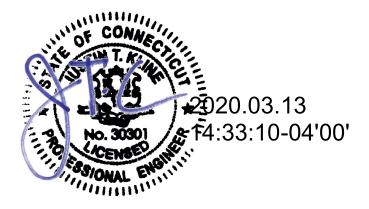
Cheryl Schultz Crown Castle 6325 Ardrey Kell Rd, Suite 600 Charlotte, NC 28277	nd Company St., Ste 600 I 43215		
Subject:	Structural Analysis Report		
Carrier Designation:	<i>AT&T Mobility</i> Co-Locate Carrier Site Number: Carrier Site Name:	24492 BRANFORD CENTRAL	
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:	876321 BRANFORD BANM TOWER 596334 1835072 509329 Rev. 0	
Engineering Firm Designation:	Paul J. Ford and Company Project Number:	37520-0477.001.7805	
Site Data:	150 North Main Street, BRANFORD, New Hav Latitude <i>41° 17' 19''</i> , Longitude -72° 48' 49.9' 147 Foot - Monopole Tower		

Dear Cheryl Schultz,

Paul J. Ford and Company is pleased to submit this **"Structural Analysis Report"** to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration


Sufficient Capacity 92.0%

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Angela Sage, E.I.

Angela Sage, E.I. Structural Designer *MCM* asage@pauliford.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 147 ft Monopole tower designed by SUMMIT Manufacturing in March of 1999.

The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	130 mph
Exposure Category:	С
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	andrew	SBNHH-1D65A w/ Mount Pipe		
		3	cci antennas	DMP65R-BU4D w/ Mount Pipe		
		3	cci antennas	OPA65R-BU4D w/ Mount Pipe		
		3	ericsson	RRUS 32 B2		1-1/4 3/8
		3	ericsson	RRUS 32 B66		
	112.0	3	ericsson	RRUS 4449 B5/B12	12	
		3	ericsson	RRUS 4478 B14_CCIV2		
110.0		3	ericsson	RRUS-32 B30	2	7/8
		3	powerwave technologies	7770.00 w/ Mount Pipe	4 2	3/4 2" Cond
		6	powerwave technologies	LGP2140X		
		1	raycap	DC6-48-60-18-8C-EV		
		2	raycap	DC6-48-60-18-8F		
	110.0	1	tower mounts	Platform Mount [LP 1201- 1_KCKR-HR-1]		
53.0	54.0	1	gps	GPS_A	1	1/2
55.0	53.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/2

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	149.0	1	andrew	VHLP2-18			
	149.0	2	dragonwave	A-ANT-23G-2-C			
		3	alcatel lucent	TD-RRH8x20-25			
		1	powerwave technologies	P40-16-XLPP-RR-A w/ Mount Pipe	6	1/2	
147.0		9	rfs celwave	ACU-A20-N	6	1-1/4	
	147.0	2	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		1-1/4	
			3	rfs celwave APXVTM14-C-12 Pipe	APXVTM14-C-120 w/ Mount Pipe		
		1	tower mounts	Platform Mount [LP 1201-1]			
	146.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER			
145.0		3	alcatel lucent	TME-800MHZ RRH	-	-	
	145.0	1	tower mounts	Side Arm Mount [SO 102-3]	-		
	143.0	3	alcatel lucent	TME-1900MHz RRH (65 MHz)			
		3	ericsson	RADIO 4449 B12/B71			
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe			
119.0	121.0	3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	10	1-5/8	
		3	ericsson	ERICSSON AIR 21 B4A B2P w/ Mount Pipe			
		3	ericsson	KRY 112 144/1			
	119.0	1	sitepro1	RMQP-4096-HK			
49.0	50.0	1	lucent	KS24019-L112A	1	1/2	
49.0	49.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/2	

 Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E., P.C., 10/08/96	2135657	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Summit/PJF, 29299-111, 03/15/99	1613620	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Summit/PJF, 29299-111, 03/15/99	1614568	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	PJF, A41709-0058, 05/08/2009	2431042	CCISITES
4-POST-MODIFICATION INSPECTION	PJF, 41709-0058, 06/15/09	2448190	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	PJF, A37512-1607, 09/04/2012	3316256	CCISITES
4-POST-MODIFICATION INSPECTION	TEP, 128359, 03/06/13	3890848	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Aero Solutions, 7/23/2013	4988798	CCISITES
4-POST-MODIFICATION INSPECTION	SGS, 130357, 12/9/13	4699667	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) Monopole was modified in conformance with the referenced modification drawings.
- 4) The shaft reinforcement and transition stiffeners from reference document #2431042 & document #3316256 has been found to be ineffective and therefore, have not been considered in this analysis.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No <u>.</u>	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	147 - 99.5	Pole	TP30.313x22x0.25	1	-15.82	1342.23	61.6	Pass
L2	99.5 - 59	Pole	TP36.9x29.1567x0.3125	2	-23.39	2210.06	90.8	Pass
L3	59 - 29,25	Pole	TP41.481x35.4438x0.375	3	-31.50	2980.72	92.0	Pass
L4	29.25 - 0	Pole	TP45.85x39.8123x0.4375	4	-43.41	3929.66	91.5	Pass
							Summary	
						Pole (L3)	92.0	Pass
						RATING =	92.0	Pass

Table 5 - Tower Component Stresses vs. Capacity – LC7

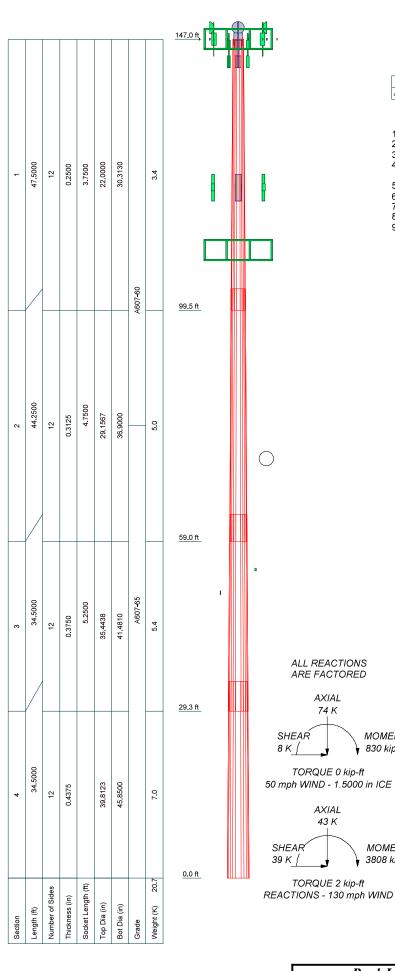
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	71.4	Pass
1	Base Plate	0	56.4	Pass
1	Base Foundation Structural Steel	0	77.6	Pass
1	Base Foundation Soil Interaction	0	86.9	Pass

 Structure Rating (max from all components) =	92.0%

Notes:

• All structural ratings are per TIA-222-H Section 15.5

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.


4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

tnxTower Report - version 8.0.5.0

MATERIAL STRENGTH					
GRADE	Fy	Fu	GRADE	Fy	Fu
A607-60	60 ksi	75 ksi	A607-65	65 ksi	80 ksi

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
- - 3. Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to

increase in thickness with height.

5. Deflections are based upon a 60 mph wind. 6.

- Tower Risk Category II.
- Topographic Category 1 with Crest Height of 0.0000 ft
 TIA-222H Annex S
 TOWER RATING: 92%

PF	
PJFLogo	

AXIAL

74 K

ŧ.

AXIAL 43 K

MOMENT 830 kip-ft

MOMENT

3808 kip-ft

Paul J. Ford and Compo 250 E. Broad St., Ste 600 Columbus, OH 43215 Phone: 614-221-6679 FAX:

any	¹⁰⁰ 147' MP; Branford Banm Tower; Branford, CT					
0	Project: PJF# 37520-0477.00	1.7805 (BU# 876321)				
	^{Client:} CCI	^{Drawn by:} Angela Sage	App'd:			
	^{Code:} TIA-222-H	^{Date:} 03/12/20	Scale: NTS			
	Path:	11/2010 01/1/ TOMPSITED 0/17 00: Teol. 01. (D10/2017/07/200 0/17 00) Teol	Dwg No. E-1			

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in New Haven County, Connecticut.
- 2) Tower base elevation above sea level: 57.7000 ft.
- 3) Basic wind speed of 130 mph.
- 4) Risk Category II.
- 5) Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.0000 ft.
- 9) Nominal ice thickness of 1.5000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56.00 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) TIA-222H Annex S.
- 16) A non-linear (P-delta) analysis was used.
- 17) Pressures are calculated at each section.
- 18) Stress ratio used in pole design is 1.05.
- 19) Tower analysis based on target reliabilities in accordance with Annex S.
- 20) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity	Distribute Leg Loads As Uniform Assume Legs Pinned ✓ Assume Rigid Index Plate ✓ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension ✓ Bypass Mast Stability Checks ✓ Use Azimuth Dish Coefficients ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas	Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption
Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric	Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs	Poles ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No

Appurtenances

Known

Outside and Inside Corner Radii Are

Tapered Pole Section Geometry

147 Ft Monopole Tower Structural Analysis Project Number 37520-0477.001.7805, Order 509329, Revision 0

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	147.0000- 99.5000	47.5000	3.75	12	22.0000	30.3130	0.2500	1.0000	A607-60 (60 ksi)
L2	99.5000- 59.0000	44.2500	4.75	12	29.1567	36.9000	0.3125	1.2500	A607-65 (65 ksi)
L3	59.0000- 29.2500	34.5000	5.25	12	35.4438	41.4810	0.3750	1.5000	A607-65 (65 ksi)
L4	29.2500- 0.0000	34.5000		12	39.8123	45.8500	0.4375	1.7500	À607-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	. /	r	C	I/C	J	lt/Q	w	w/t
	ın	in²	in⁴	in	in	in ³	in⁴	in²	in	
L1	22.6879	17.5087	1057.2060	7.7865	11.3960	92.7699	2142.1860	8.6173	5.2260	20.904
	31.2941	24.2007	2791.7645	10.7626	15.7021	177.7952	5656.8718	11.9109	7.4539	29.816
L2	30.7544	29.0245	3082.2497	10.3262	15.1032	204.0796	6245.4735	14.2850	6.9765	22.325
	38.0915	36.8162	6290.5707	13.0983	19.1142	329.1046	12746.4018	18.1198	9.0517	28.965
L3	37.4224	42.3456	6647.1547	12.5546	18.3599	362.0477	13468.9375	20.8412	8.4939	22.651
	42.8120	49.6355	10705.0511	14.7159	21.4872	498.2069	21691.3357	24.4291	10.1119	26.965
L4	42.0136	55.4692	10976.7763	14.0962	20.6228	532.2649	22241.9248	27.3003	9.4972	21.708
	47.3131	63.9749	16840.1561	16.2577	23.7503	709.0502	34122.7218	31.4865	11.1153	25.406

Tower	Gusset	Gusset	Gusset	Adjust.	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	Grade	Factor	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_f	A _r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft²	in					in	in	in
L1 147.0000-99.5000				1	1	1			
L2 99.5000-59.0000				1	1	1			
L3 59.0000-29.2500				1	1	1			
L4 29.2500-0.0000				1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En		Perimete	Weight
		From	-t	~	Number	Per Row	d	Diamete	r	
		Torque Calculation	Туре	ft			Position	r in	in	plf
9011(1/2)	А	No	Surface Ar (CaAa)	147.0000 - 0.0000	5	2	0.167 0.192	0.4000		0.06
9011(1/2)	А	No	Surface Ar (CaAa)	147.0000 - 0.0000	1	1	0.183	0.4000		0.06
MLE Hybrid 9Power/18Fiber RL 2(1-5/8) ****	В	No	(CaAa) (CaAa)	119.0000 - 0.0000	1	1	0.342 0.342	1.6250		1.07
LDF4-50A(1/2)	А	No	Surface Ar (CaAa)	53.0000 - 0.0000	1	1	0.225 0.225	0.6250		0.15
LDF4-50A(1/2)	A	No	Surface Ar (CaAa)	49.0000 - 0.0000	1	1	0.225 0.225	0.6250		0.15
MP3-04 (L)	В	No	Surface Af (CaAa)	25.5000 - 0.0000	1	1	-0.267 -0.267	4.7800	12.7800	0.00
MP3-04 (L)	А	No	Surface Af (CaAa)	25.5000 - 0.0000	1	1	-0.267 -0.267	4.7800	12.7800	0.00
MP3-04 (L)	С	No	Surface Af (CaAa)	25.5000 - 0.0000	1	1	-0.267 -0.267	4.7800	12.7800	0.00
MP3-04 (L)	А	No	Surface Af (CaAa)	52.0000 - 32.0000	1	1	0.483 0.483	4.7800	12.7800	0.00

Description	Sector	Exclude	Componen	Placement		Number	Start/En		Perimete	Weight
		From	_ t		Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		plf
		Calculation						in	in	
MP3-04 (L)	С	No	Surface Af	52.0000 -	1	1	0.483	4.7800	12.7800	0.00
			(CaAa)	32.0000			0.483			
MP3-04 (L)	В	No	Surface Af	52.0000 -	1	1	0.483	4.7800	12.7800	0.00
			(CaAa)	32.0000			0.483			
MP3 - 04 (L)	А	No	Surface Af	71.0000 -	1	1	0.483	4.7800	12.7800	0.00
			(CaAa)	61.0000			0.483			
MP3-04 (L)	С	No	Surface Af	71.0000 -	1	1	0.483	4.7800	12.7800	0.00
			(CaAa)	61.0000			0.483			
MP3-04 (L)	В	No	Surface Af	71.0000 -	1	1	0.483	4.7800	12.7800	0.00
			(CaAa)	61.0000			0.483			
MP3-04 (L)	А	No	Surface Af	35.5000 -	1	1	-0.017	4.7800	12.7800	0.00
			(CaAa)	0.0000			-0.017			
MP3-04 (L)	С	No	Surface Af	35,5000 -	1	1	0.233	4,7800	12,7800	0.00
			(CaAa)	0.0000			0.233			
MP3-04 (L)	В	No	Surface Af	35.5000 -	1	1	0.233	4.7800	12.7800	0.00
			(CaAa)	0.0000			0.233			
MP3-03 (L)	А	No	Surface Af	59.0000 -	1	1	0.233	4.0600	11.2600	0.00
			(CaAa)	49.0000			0.233			
MP3-03 (L)	С	No	Surface Af	59.0000 -	1	1	0.233	4.0600	11.2600	0.00
	-		(CaAa)	49,0000	•	-	0.233			
MP3-03 (L)	В	No	Surface Af	59.0000 -	1	1	0.233	4.0600	11,2600	0.00
0 00 (L)	D		(CaAa)	49.0000		•	0.233			0.00

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen	Placement	Total Number		$C_A A_A$	Weight
	Leg	Sillelu	Torque	Type	ft	Number		ft²/ft	plf
	Log		Calculation		'n			10,110	pii
HB114-1-0813U4-	С	No	No	Inside Pole	147.0000 -	3	No Ice	0.0000	1.20
M5J(1-1/4)					0.0000		1/2" Ice	0.0000	1.20
							1" Ice	0.0000	1.20
							2" Ice	0.0000	1.20
***	_					•			0.40
HCS 6X12	В	No	No	Inside Pole	119.0000 -	3	No Ice	0.0000	2.40
4AWG(1-5/8)					0.0000		1/2" Ice	0.0000	2.40
							1" Ice	0.0000	2.40
	_					-	2" Ice	0.0000	2.40
LDF7-50A(1-5/8)	в	No	No	Inside Pole	119.0000 -	6	No Ice	0.0000	0.82
					0.0000		1/2" Ice	0.0000	0.82
							1" Ice	0.0000	0.82
***							2" Ice	0.0000	0.82
WR-VG66ST-	С	No	No	Inside Pole	110.0000 -	1	No Ice	0.0000	0.88
BRD CCIV2(7/8)	Ŭ	110	110		0.0000	•	1/2" Ice	0.0000	0.88
					0.0000		1" Ice	0.0000	0.88
							2" Ice	0.0000	0.88
LDF6-50A(1-1/4)	С	No	No	Inside Pole	110.0000 -	12	No Ice	0.0000	0.60
					0.0000		1/2" Ice	0.0000	0.60
					0.0000		1" Ice	0.0000	0.60
							2" Ice	0.0000	0.60
FB-L98B-034-	С	No	No	Inside Pole	110.0000 -	2	No Ice	0.0000	0.06
XXX(3/8)	Ŭ				0.0000	-	1/2" Ice	0.0000	0.06
700((0/0)					0.0000		1" Ice	0.0000	0.06
							2" Ice	0.0000	0.06
WR-VG86ST-	С	No	No	Inside Pole	110.0000 -	4	No Ice	0.0000	0.58
BRD(3/4)	U	110	110		0.0000	-	1/2" Ice	0.0000	0.58
BI(B(0/4)					0.0000		1" Ice	0.0000	0.58
							2" Ice	0.0000	0.58
2'' (Nominal)	С	No	No	Inside Pole	110.0000 -	2	No Ice	0.0000	0.72
Conduit	0	NO	110		0.0000	2	1/2" Ice	0.0000	0.72
Conduit					0.0000		172 ICe	0.0000	0.72
							2" Ice	0.0000	0.72
							2 100	0.0000	0.12

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	AF	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft²	ft²	ĸ
L1	147.0000-	А	0.000	0.000	5.700	0.000	0.02
	99.5000	В	0.000	0.000	3.169	0.000	0.26
		С	0.000	0.000	0.000	0.000	0.30
L2	99.5000-59.0000	А	0.000	0.000	12.666	0.000	0.01
		В	0.000	0.000	14.387	0.000	0.53
		С	0.000	0.000	7.806	0.000	0.63
L3	59.0000-29.2500	А	0.000	0.000	33.968	0.000	0.02
		В	0.000	0.000	32.514	0.000	0.39
		С	0.000	0.000	27.679	0.000	0.46
L4	29.2500-0.0000	Α	0.000	0.000	50.784	0.000	0.02
		В	0.000	0.000	48.371	0.000	0.39
		С	0.000	0.000	43.618	0.000	0.46

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft²	ft²	ft²	ĸ
L1	147.0000-	Α	1.453	0.000	0.000	37.716	0.000	0.39
	99.5000	В		0.000	0.000	8.837	0.000	0.36
		С		0.000	0.000	0.000	0.000	0.30
L2	99.5000-59.0000	А	1.391	0.000	0.000	41.556	0.000	0.44
		В		0.000	0.000	27.752	0.000	0.86
		С		0.000	0.000	9.398	0.000	0.73
L3	59.0000-29.2500	А	1.312	0.000	0.000	74.419	0.000	0.73
		В		0.000	0.000	49.923	0.000	0.89
		С		0.000	0.000	36.812	0.000	0.81
L4	29.2500-0.0000	Α	1.173	0.000	0.000	98.340	0.000	0.89
		В		0.000	0.000	70.405	0.000	1.02
		С		0.000	0.000	57.979	0.000	0.95

Feed Line Center of Pressure

Section	Elevation	CPx	CP ₇	CPx	CP ₇
0001011	Liovalion	0. 1	0, 2	lce	lce
	ft	in	in	in	in
L1	147.0000-99.5000	-0.0079	-0.4659	-0.8870	-1.7985
L2	99.5000-59.0000	0.4222	-0.2988	-0.1049	-1.5026
L3	59.0000-29.2500	-0.2662	-0.0680	-0.9595	-1.5340
L4	29.2500-0.0000	-1.3679	0.8290	-2.0173	-0.5733

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L1	1	9011(1/2)	U	1.0000	1.0000
L1	2	9011(1/2)	99.50 - 147.00	1.0000	1.0000
L1	7	MLE Hybrid 9Power/18Fiber RL 2(1-5/8)	99.50 - 119.00	1.0000	1.0000
L1	26	MP3-04 (L)	99.50 - 71.00	1.0000	1.0000
L1	27	MP3-04 (L)	99.50 - 71.00	1.0000	1.0000
L1	28	MP3-04 (L)	99.50 - 71.00	1.0000	1.0000
L2	1	9011(1/2)	59.00 - 99.50	1.0000	1.0000
L2	2	9011(1/2)	59.00 - 99.50	1.0000	1.0000
L2	7	MLE Hybrid 9Power/18Fiber RL 2(1-5/8)	59.00 - 99.50	1.0000	1.0000
L2	17	LDF4-50A(1/2)	59.00 - 53.00	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	lce
L2	18	LDF4-50A(1/2)	59.00 - 49.00	1.0000	1.0000
L2	23	MP3-04 (L)	59.00 - 52.00	1.0000	1.0000
L2	24	MP3-04 (L)	59.00 - 52.00	1.0000	1.0000
L2	25	MP3-04 (L)	59.00 - 52.00	1.0000	1.0000
L2	29	MP3-04 (L)	59.00 - 35.50	1.0000	1.0000
L2	30	MP3-04 (L)	59.00 - 35.50	1.0000	1.0000
L2	31	MP3-04 (L)	59.00 - 35.50	1.0000	1.0000
L2	32	MP3-03 (L)	59.00 - 59.00	1.0000	1.0000
L2	33	MP3-03 (L)	59.00 - 59.00	1.0000	1.0000
L2	34	MP3-03 (L)	59.00 - 59.00	1.0000	1.0000
L3	1	9011(1/2)	29.25 - 59.00	1.0000	1.0000
L3	2	9011(1/2)	29.25 - 59.00	1.0000	1.0000
L3	7	MLE Hybrid 9Power/18Fiber RL 2(1-5/8)	29.25 - 59.00	1.0000	1.0000
L3	17	LDF4-50A(1/2)	29.25 - 53.00	1.0000	1.0000
L3	18	LDF4-50A(1/2)	29.25 - 49.00	1.0000	1.0000
L3	20	MP3-04 (L)	29.25 - 25.50	1.0000	1.0000
L3	21	MP3-04 (L)	29.25 - 25.50	1.0000	1.0000
L3	22	MP3-04 (L)	29.25 - 25.50	1.0000	1.0000
L3	29	MP3-04 (L)	29.25 - 35.50	1.0000	1.0000
L3	30	MP3-04 (L)	29.25 - 35.50	1.0000	1.0000
L3	31	MP3-04 (L)	29.25 - 35.50	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
Top Hat 10" Diameter x 4' 6" Tall	С	None		0.00	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	2.1167 3.1744 3.4914 4.1531	2.1167 3.1744 3.4914 4.1531	0.20 0.23 0.27 0.35
8' x 2" Lightning Rod	С	From Leg	0.5000 0.00 4.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.6000 2.4250 3.2364 4.2284	1.6000 2.4250 3.2364 4.2284	0.02 0.03 0.05 0.10
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.6000 5.0500 5.5000 6.4400	4.0100 4.4500 4.8900 5.8200	0.10 0.16 0.23 0.42
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.6000 5.0500 5.5000 6.4400	4.0100 4.4500 4.8900 5.8200	0.10 0.16 0.23 0.42
APXVTM14-C-120 w/ Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.0900 4.4800 4.8800 5.7100	2.8600 3.2300 3.6100 4.4000	0.08 0.13 0.19 0.33
APXVTM14-C-120 w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.0900 4.4800 4.8800 5.7100	2.8600 3.2300 3.6100 4.4000	0.08 0.13 0.19 0.33
APXVTM14-C-120 w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice	4.0900 4.4800 4.8800 5.7100	2.8600 3.2300 3.6100 4.4000	0.08 0.13 0.19 0.33

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
TD-RRH8x20-25	A	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.0455 4.2975 4.5570 5.0981	1.5345 1.7142 1.9008 2.2951	0.07 0.10 0.13 0.20
TD-RRH8x20-25	В	From Leg	4.0000 0.00 0.00	0.00	147.0000	No Ice 1/2" Ice 1" Ice	4.0455 4.2975 4.5570 5.0981	1.5345 1.7142 1.9008 2.2951	0.07 0.10 0.13 0.20
TD-RRH8x20-25	С	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.0455 4.2975 4.5570 5.0981	1.5345 1.7142 1.9008 2.2951	0.07 0.10 0.13 0.20
(3) ACU-A20-N	A	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.0667 0.1037 0.1481 0.2593	0.1167 0.1620 0.2148 0.3426	0.00 0.00 0.00 0.01
(3) ACU-A20-N	В	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.0667 0.1037 0.1481 0.2593	0.1167 0.1620 0.2148 0.3426	0.00 0.00 0.00 0.01
(3) ACU-A20-N	С	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.0667 0.1037 0.1481 0.2593	0.1167 0.1620 0.2148 0.3426	0.00 0.00 0.00 0.01
P40-16-XLPP-RR-A w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	7.2400 7.7300 8.2400 9.2800	3.3100 3.7300 4.1600 5.0600	0.08 0.15 0.22 0.39
(3) 6' x 2" Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.02 0.03 0.05 0.09
(3) 6' x 2" Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.02 0.03 0.05 0.09
(3) 6' x 2" Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.02 0.03 0.05 0.09
Platform Mount [LP 1201- 1]	В	None		0.00	147.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	18.3800 22.1100 25.8700 33.4700	18.3800 22.1100 25.8700 33.4700	2.10 2.65 3.26 4.66
**** TME-1900MHz RRH (65 MHz)	A	From Leg	1.0000 0.00 -2.00	0.00	145.0000	No Ice 1/2" Ice 1" Ice	2.3125 2.5168 2.7284 3.1740	2.3750 2.5809 2.7943 3.2431	0.06 0.08 0.11 0.18
TME-1900MHz RRH (65 MHz)	В	From Leg	1.0000 0.00 -2.00	0.00	145.0000	2" Ice No Ice 1/2" Ice	2.3125 2.5168 2.7284	2.3750 2.5809 2.7943	0.06 0.08 0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	К
						1" Ice 2" Ice	3.1740	3.2431	0.18
TME-1900MHz RRH (65	С	From Leg	1.0000	0.00	145.0000	No Ice	2.3125	2,3750	0.06
MHz)	0	T IOIII LOG	0.00	0.00	140.0000	1/2"	2.5168	2.5809	0.08
			-2.00			lce	2,7284	2,7943	0.11
						1" Ice 2" Ice	3.1740	3.2431	0.18
800 EXTERNAL NOTCH	Α	From Leg	1.0000	0.00	145.0000	No Ice	0.6601	0.3211	0.01
FILTER			0.00			1/2"	0.7627	0.3983	0.02
			1.00			ce	0.8727	0.4830	0.02
						1" Ice 2" Ice	1.1149	0.6744	0.04
TME-800MHZ RRH	А	From Leg	1.0000	0.00	145.0000	No Ice	2.1342	1.7730	0.05
			0.00			1/2"	2.3195	1.9461	0.07
			1.00			Ice 1" Ice	2.5123 2.9201	2.1267 2.5100	0.10 0.16
						2" Ice	2.9201	2.5100	0.10
800 EXTERNAL NOTCH	в	From Leg	1.0000	0.00	145.0000	No Ice	0.6601	0.3211	0.01
FILTER	_		0.00			1/2"	0.7627	0.3983	0.02
			1.00			ce	0.8727	0.4830	0.02
						1" Ice	1.1149	0.6744	0.04
	_					2" Ice			
TME-800MHZ RRH	В	From Leg	1.0000	0.00	145.0000	No Ice	2.1342	1.7730	0.05
			0.00			1/2"	2.3195	1.9461	0.07
			1.00			Ice	2.5123	2.1267	0.10
						1" Ice 2" Ice	2.9201	2.5100	0.16
800 EXTERNAL NOTCH	С	From Leg	1.0000	0.00	145.0000	No Ice	0.6601	0.3211	0.01
FILTER	0	1 ioni Log	0.00	0.00	110.0000	1/2"	0.7627	0.3983	0.02
			1.00			Ice	0.8727	0.4830	0.02
						1" Ice 2" Ice	1.1149	0.6744	0.04
TME-800MHZ RRH	С	From Leg	1.0000	0.00	145.0000	No Ice	2.1342	1.7730	0.05
			0.00			1/2"	2.3195	1.9461	0.07
			1.00			Ice	2.5123	2.1267	0.10
						1" Ice	2.9201	2.5100	0.16
Side Arm Mount [SO 102-	в	None		0.00	145.0000	2" Ice No Ice	3.6000	3.6000	0.07
3]	D	None		0.00	145.0000	1/2"	4.1800	4.1800	0.11
0]						lce	4,7500	4.7500	0.14
						1" Ice	5.9000	5.9000	0.20
						2" Ice			
6' x 2" Mount Pipe	А	From Leg	1.0000	0.00	145.0000	No Ice	1.4250	1.4250	0.02
			0.00			1/2"	1.9250	1.9250	0.03
			0.00			Ice 1" Ice	2.2939 3.0596	2.2939 3.0596	0.05 0.09
						2" Ice	5.0550	3.0390	0.09
6' x 2" Mount Pipe	В	From Leg	1.0000	0.00	145,0000	No Ice	1.4250	1.4250	0.02
	-		0.00			1/2"	1.9250	1.9250	0.03
			0.00			ce	2.2939	2.2939	0.05
						1" Ice 2" Ice	3.0596	3.0596	0.09
6' x 2" Mount Pipe	С	From Leg	1.0000	0.00	145.0000	No Ice	1.4250	1.4250	0.02
			0.00			1/2"	1.9250	1.9250	0.03
			0.00			Ice	2.2939	2.2939	0.05
						1" Ice 2" Ice	3.0596	3.0596	0.09
****						∠ ICe			
ERICSSON AIR 21 B2A	А	From Leg	4.0000	0.00	119.0000	No Ice	6.3292	5.6424	0.11
B4P w/ Mount Pipe			0.00			1/2"	6.7751	6.4259	0.17
•			2.00			Ice	7.2137	7.1313	0.23
						1" Ice	0 1100	9 5007	0.00
							8.1168	8.5907	0.38
ERICSSON AIR 21 B2A	в	From Leg	4.0000	0.00	119.0000	2" Ice No Ice	6.3292	5.6424	0.38

tnxTower Report - version 8.0.5.0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
			2.00			1/2"	7.2137	7.1313	0.23
						Ice 1" Ice 2" Ice	8.1168	8.5907	0.38
ERICSSON AIR 21 B2A	С	From Leg	4,0000	0.00	119.0000	No Ice	6.3292	5.6424	0.11
B4P w/ Mount Pipe			0.00			1/2"	6.7751	6.4259	0.17
			2.00			ce	7.2137	7.1313	0.23
						1" Ice 2" Ice	8.1168	8.5907	0.38
ERICSSON AIR 21 B4A	А	From Leg	4.0000	0.00	119.0000	No Ice	6.3186	5.6334	0.11
B2P w/ Mount Pipe			0.00			1/2"	6.7646	6.4160	0.17
			2.00			Ice	7.2032	7.1208	0.23
						1" Ice	8.1062	8.5791	0.38
	Б	Erom Log	4 0000	0.00	110 0000	2" Ice	6 2496	E 6224	0.11
ERICSSON AIR 21 B4A	В	From Leg	4.0000 0.00	0.00	119.0000	No Ice 1/2"	6.3186 6.7646	5.6334 6.4160	0.11 0.17
B2P w/ Mount Pipe			2.00			lce	7,2032	7.1208	0.17
			2.00			1" Ice	8.1062	8.5791	0.23
						2" Ice	0.1002	0.0701	0.00
ERICSSON AIR 21 B4A	С	From Leg	4,0000	0.00	119,0000	No Ice	6.3186	5.6334	0.11
B2P w/ Mount Pipe	•		0.00	0100		1/2"	6.7646	6.4160	0.17
			2.00			Ice	7.2032	7.1208	0.23
						1" Ice	8.1062	8.5791	0.38
						2" Ice			
APXVAARR24_43-U-NA20	Α	From Leg	4.0000	0.00	119.0000	No Ice	14.6900	6.8700	0.19
w/ Mount Pipe		Ū.	0.00			1/2"	15.4600	7.5500	0.31
			2.00			ce	16.2300	8.2500	0.46
						1" Ice 2" Ice	17.8200	9.6700	0.79
APXVAARR24_43-U-NA20	В	From Leg	4.0000	0.00	119.0000	No Ice	14.6900	6.8700	0.19
w/ Mount Pipe			0.00			1/2"	15.4600	7.5500	0.31
			2.00			ce	16.2300	8.2500	0.46
						1" Ice	17.8200	9.6700	0.79
	-					2" Ice			
APXVAARR24_43-U-NA20	С	From Leg	4.0000	0.00	119.0000	No Ice	14.6900	6.8700	0.19
w/ Mount Pipe			0.00			1/2"	15.4600	7.5500	0.31
			2.00			Ice	16.2300	8.2500	0.46
						1" Ice	17.8200	9.6700	0.79
KRY 112 144/1	А	From Leg	4.0000	0.00	119.0000	2" Ice No Ice	0.3500	0.1750	0.01
NNT 112 144/1	A	FIOIDLeg	0.00	0.00	119.0000	1/2"	0.4259	0.2343	0.01
			2.00			lce	0.5093	0.2040	0.02
			2.00			1" Ice	0.6981	0.4565	0.02
						2" Ice	0.0001	0.1000	0.00
KRY 112 144/1	в	From Leg	4.0000	0.00	119.0000	No Ice	0.3500	0.1750	0.01
	-	· · • · · = • 9	0.00			1/2"	0.4259	0.2343	0.01
			2.00			Ice	0.5093	0.3009	0.02
						1" Ice	0.6981	0.4565	0.03
						2" Ice			
KRY 112 144/1	С	From Leg	4.0000	0.00	119.0000	No Ice	0.3500	0.1750	0.01
			0.00			1/2"	0.4259	0.2343	0.01
			2.00			ce	0.5093	0.3009	0.02
						1" Ice	0.6981	0.4565	0.03
		- ·	4 0000	0.00	440 0000	2" Ice	4 0500	4 4 6 6 5	0.07
RADIO 4449 B12/B71	А	From Leg	4.0000	0.00	119.0000	No Ice	1.6500	1.1625	0.07
			0.00			1/2"	1.8104	1.3012 1.4473	0.09 0.11
			2.00			Ice 1" Ice	1.9781 2.3359	1.4473	
						2" Ice	2.0009	1./010	0.16
RADIO 4449 B12/B71	в	From Leg	4.0000	0.00	119.0000	No Ice	1.6500	1.1625	0.07
	D	1 Join Ley	0.00	0.00	113.0000	1/2"	1.8104	1.3012	0.07
			2.00			Ice	1.9781	1.4473	0.03
			2.00			1" Ice	2,3359	1.7618	0.16
						2" Ice			
RADIO 4449 B12/B71	С	From Leg	4.0000	0.00	119.0000	No Ice	1.6500	1.1625	0.07
	2			2.00					0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
			0.00			1/2"	1.8104	1.3012	0.09
			2.00			Ice 1" Ice	1.9781 2.3359	1.4473 1.7618	0.11 0.16
						2" Ice	2.0000	111010	0.10
RMQP-4096-HK	С	None		0.00	119.0000	No Ice	23.1400	23,1400	1.95
						1/2"	28.1700	28.1700	2.34
						ce	33.2300	33.2300	2.85
						1" Ice	43.3500	43.3500	3.87
	•	News		0.00	110 0000	2" Ice	4 4050	4 4050	0.00
2.375" OD x 6' Mount Pipe	А	None		0.00	119.0000	No Ice 1/2"	1.4250 1.9250	1.4250 1.9250	0.03 0.04
						I/2	2.2939	2.2939	0.04
						1" Ice	3.0596	3.0596	0.05
						2" Ice	5.0000	3.0000	0.03
2.375" OD x 6' Mount Pipe	в	None		0.00	119.0000	No Ice	1.4250	1.4250	0.03
	-					1/2"	1.9250	1,9250	0.04
						Ice	2,2939	2.2939	0.05
						1" Ice	3.0596	3.0596	0.09
						2" Ice			
2.375" OD x 6' Mount Pipe	С	None		0.00	119.0000	No Ice	1.4250	1.4250	0.03
						1/2"	1.9250	1.9250	0.04
						ce	2.2939	2.2939	0.05
						1" Ice 2" Ice	3.0596	3.0596	0.09
***** DMP65R-BU4D w/ Mount	А	From Leg	4.0000	0.00	110,0000	No Ice	7.5300	3.7900	0.09
Pipe			0.00			1/2"	8.0400	4.2300	0.16
1			2.00			Ice	8.5700	4.6800	0.22
						1" Ice	9.6800	5.6300	0.39
						2" Ice			
DMP65R-BU4D w/ Mount	В	From Leg	4.0000	0.00	110.0000	No Ice	7.5300	3.7900	0.09
Pipe			0.00			1/2"	8.0400	4.2300	0.16
			2.00			Ice	8.5700	4.6800	0.22
						1" Ice 2" Ice	9.6800	5.6300	0.39
DMP65R-BU4D w/ Mount	С	From Leg	4.0000	0.00	110.0000	No Ice	7.5300	3.7900	0.09
Pipe			0.00			1/2"	8.0400	4.2300	0.16
			2.00			Ice	8.5700	4.6800	0.22
						1" Ice	9.6800	5.6300	0.39
ODA65B BLIAD w/ Mount	^	From Log	4 0000	0.00	110 0000	2" Ice	o 1000	4 0200	0.00
OPA65R-BU4D w/ Mount Pipe	A	From Leg	4.0000 0.00	0.00	110.0000	No Ice 1/2"	8.1000 8.6500	4.0300 4.5000	0.08 0.14
Tipe			2.00			Ice	9.2100	4.9800	0.21
			2.00			1" Ice	10.3900	5.9800	0.38
						2" Ice			
OPA65R-BU4D w/ Mount	В	From Leg	4.0000	0.00	110.0000	No Ice	8.1000	4.0300	0.08
Pipe			0.00			1/2"	8.6500	4.5000	0.14
			2.00			Ice	9.2100	4.9800	0.21
						1" Ice	10.3900	5.9800	0.38
	<u> </u>	From Lor	4.0000	0.00	110 0000	2" Ice	0 1000	4 0200	0.00
OPA65R-BU4D w/ Mount Pipe	С	From Leg	4.0000	0.00	110.0000	No Ice 1/2"	8.1000 8.6500	4.0300 4.5000	0.08 0.14
Lihe			2.00			I/2	9.2100	4.9800	0.14
			2.00			1" Ice	10.3900	4.9800 5.9800	0.21
						2" Ice	10.0000	0.0000	0.00
RRUS 4478 B14_CCIV2	А	From Leg	4.0000	0.00	110.0000	No Ice	2.0212	1.2459	0.06
		Ŭ	0.00			1/2"	2.1999	1.3960	0.08
			2.00			Ice	2.3860	1.5536	0.10
						1" Ice	2.7804	1.8909	0.15
	_					2" Ice			
RRUS 4478 B14_CCIV2	В	From Leg	4.0000	0.00	110.0000	No Ice	2.0212	1.2459	0.06
			0.00			1/2"	2.1999	1.3960	0.08
			2.00			Ice 1" Ice	2.3860 2.7804	1.5536 1.8909	0.10 0.15

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft	٥	ft		ft²	ft²	К
RRUS 4478 B14_CCIV2	С	From Leg	ft 4.0000	0.00	110.0000	No Ice	2.0212	1,2459	0.06
			0.00			1/2"	2 1999	1.3960	0.08
			2.00			Ice	2,3860	1.5536	0.10
						1" Ice	2.7804	1.8909	0.15
			4 0 0 0 0		440.0000	2" Ice	1 0075	4 4004	0.07
RRUS 4449 B5/B12	А	From Leg	4.0000	0.00	110.0000	No Ice	1.9675	1.4081	0.07
			0.00 2.00			1/2"	2.1439 2.3278	1.5637 1.7267	0.09
			2.00			Ice 1" Ice	2.3278	2.0749	0.11 0.16
						2" Ice	2.1111	2.0743	0.10
RRUS 4449 B5/B12	В	From Leg	4.0000	0.00	110.0000	No Ice	1.9675	1.4081	0.07
		-	0.00			1/2"	2.1439	1.5637	0.09
			2.00			ce	2.3278	1.7267	0.11
						1" Ice 2" Ice	2.7177	2.0749	0.16
RRUS 4449 B5/B12	С	From Leg	4.0000	0.00	110.0000	No Ice	1.9675	1,4081	0.07
	-		0.00			1/2"	2 1439	1.5637	0.09
			2.00			Ice	2,3278	1,7267	0.11
						1" Ice	2.7177	2.0749	0.16
						2" Ice			
DC6-48-60-18-8C-EV	Α	From Leg	4.0000	0.00	110.0000	No Ice	2.7357	2.7357	0.03
			0.00			1/2"	2.9620	2.9620	0.05
			2.00			Ice	3.1953	3.1953	0.08
						1" Ice	3.6830	3.6830	0.15
			4 0000			2" Ice		4 95 49	
7770.00 w/ Mount Pipe	А	From Leg	4.0000	0.00	110.0000	No Ice	5.7460	4.2543	0.06
			0.00			1/2"	6.1791	5.0137	0.10
			2.00			Ice 1" Ice	6.6067 7.4880	5.7109 7.1553	0.16 0.29
						2" Ice	1.4000	7.1555	0.29
7770.00 w/ Mount Pipe	в	From Leg	4.0000	0.00	110.0000	No Ice	5.7460	4,2543	0.06
	2	1 ioni Log	0.00	0.00	11010000	1/2"	6 1791	5.0137	0.10
			2.00			lce	6.6067	5,7109	0.16
						1" Ice	7.4880	7.1553	0.29
	~	F	4 0000	0.00	440.0000	2" Ice	5 7400	4 05 40	0.00
7770.00 w/ Mount Pipe	С	From Leg	4.0000	0.00	110.0000	No Ice	5.7460	4.2543	0.06
			0.00 2.00			1/2"	6.1791	5.0137 5.7109	0.10
			2.00			Ice 1" Ice	6.6067 7.4880	7.1553	0.16 0.29
						2" Ice	7.4000	7.1000	0.23
SBNHH-1D65A w/ Mount	А	From Leg	4.0000	0.00	110.0000	No Ice	3.0400	2,4500	0.05
Pipe			0.00			1/2"	3.3400	2.7500	0.10
·			2.00			Ice	3.6500	3.0500	0.16
						1" Ice	4.3100	3.6800	0.31
	_					2" Ice			
SBNHH-1D65A w/ Mount	В	From Leg	4.0000	0.00	110.0000	No Ice	3.0400	2.4500	0.05
Pipe			0.00			1/2"	3.3400	2.7500	0.10
			2.00			lce	3.6500	3.0500	0.16
						1" Ice	4.3100	3.6800	0.31
SBNHH-1D65A w/ Mount	С	From Leg	4.0000	0.00	110.0000	2" Ice No Ice	3.0400	2.4500	0.05
Pipe	0	Tom Leg	0.00	0.00	110.0000	1/2"	3.3400	2.4500	0.05
			2.00			lce	3.6500	3.0500	0.16
						1" Ice	4.3100	3.6800	0.31
						2" Ice			
(2) LGP2140X	А	From Leg	4.0000	0.00	110.0000	No Ice	1.0800	0.3580	0.01
		-	0.00			1/2"	1.2137	0.4536	0.02
			2.00			Ice	1.3548	0.5563	0.03
						1" Ice	1.6593	0.7825	0.05
(2) LGP2140X	в	From Leg	4.0000	0.00	110.0000	2" Ice No Ice	1.0800	0.3580	0.01
(2) LOF2140A	D	FION Leg	4.0000	0.00	110.0000	1/2"	1.2137	0.3580	0.01
			2.00			lce	1.3548	0.4536	0.02
			2.00				1.00+0		
						1" Ice	1.6593	0.7825	0.05

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
(2) LGP2140X	С	From Leg	4.0000	0.00	110.0000	No Ice	1.0800	0.3580	0.01
(-)		5	0.00			1/2"	1.2137	0.4536	0.02
			2.00			Ice	1.3548	0.5563	0.03
						1" Ice	1.6593	0.7825	0.05
						2" Ice			
RRUS 32 B2	А	From Leg	4.0000	0.00	110.0000	No Ice	2.7427	1.6681	0.05
		-	0.00			1/2"	2.9647	1.8552	0.07
			2.00			ce	3.1941	2.0493	0.10
						1" Ice	3.6753	2.4585	0.16
						2" Ice			
RRUS 32 B2	В	From Leg	4.0000	0.00	110.0000	No Ice	2.7427	1.6681	0.05
			0.00			1/2"	2.9647	1.8552	0.07
			2.00			ce	3.1941	2.0493	0.10
						1" Ice	3.6753	2.4585	0.16
						2" Ice			
RRUS 32 B2	С	From Leg	4.0000	0.00	110.0000	No Ice	2.7427	1.6681	0.05
			0.00			1/2"	2.9647	1.8552	0.07
			2.00			ce	3.1941	2.0493	0.10
						1" Ice	3.6753	2.4585	0.16
						2" Ice			
RRUS 32 B66	А	From Leg	4.0000	0.00	110.0000	No Ice	2.7427	1.6681	0.05
			0.00			1/2"	2.9647	1.8552	0.07
			2.00			Ice	3.1941	2.0493	0.10
						1" Ice	3.6753	2.4585	0.16
	_	_ .				2" Ice			
RRUS 32 B66	В	From Leg	4.0000	0.00	110.0000	No Ice	2.7427	1.6681	0.05
			0.00			1/2"	2.9647	1.8552	0.07
			2.00			Ice	3.1941	2.0493	0.10
						1" Ice	3.6753	2.4585	0.16
	~	F	4 0000	0.00	440.0000	2" Ice	0 7 4 0 7	4 0004	0.05
RRUS 32 B66	С	From Leg	4.0000	0.00	110.0000	No Ice	2.7427	1.6681	0.05
			0.00			1/2"	2.9647	1.8552	0.07
			2.00				3.1941	2.0493	0.10
						1" Ice	3.6753	2.4585	0.16
RRUS-32 B30	А	From Log	4 0000	0.00	110 0000	2" Ice No Ice	3.3139	2 4220	0.08
RR03-32 B30	A	From Leg	4.0000 0.00	0.00	110.0000	1/2"	3.5576	2.4238 2.6383	0.08
			2.00			lce	3.8087	2.8597	0.10
			2.00			1" Ice	4.3332	3.3235	0.14
						2" Ice	4.5552	5.5255	0.21
RRUS-32 B30	в	From Leg	4.0000	0.00	110.0000	No Ice	3.3139	2,4238	0.08
NN03-32 B30	D	I TOILLEG	0.00	0.00	110.0000	1/2"	3.5576	2.6383	0.10
			2.00			Ice	3.8087	2.8597	0.14
			2.00			1" Ice	4.3332	3.3235	0.21
						2" Ice	4.0002	0.0200	0.21
RRUS-32 B30	С	From Leg	4.0000	0.00	110.0000	No Ice	3.3139	2.4238	0.08
11100-02 000	0	Tioni Leg	0.00	0.00	110.0000	1/2"	3.5576	2.6383	0.10
			2.00			lce	3.8087	2.8597	0.14
			2.00			1" Ice	4.3332	3.3235	0.21
						2" Ice	1.0002	0.0200	0.21
DC6-48-60-18-8F	А	From Leg	4.0000	0.00	110.0000	No Ice	1.2117	1.2117	0.03
			0.00	2.00		1/2"	1.8924	1.8924	0.05
			2.00			lce	2.1051	2.1051	0.08
						1" Ice	2.5703	2.5703	0.14
						2" Ice			
DC6-48-60-18-8F	в	From Leg	4.0000	0.00	110.0000	No Ice	1.2117	1.2117	0.03
· · · · · · ·	_		0.00			1/2"	1.8924	1.8924	0.05
			2.00			lce	2,1051	2,1051	0.08
						1" Ice	2.5703	2.5703	0.14
						2" Ice			
Platform Mount [LP 1201-	в	None		0.00	110.0000	No Ice	37.6100	37.6100	2.63
1 KCKR-HR-1]	_					1/2"	45.6200	45.6200	3.48
· <u> </u>						lce	53,5900	53.5900	4.46
						1" Ice	69.6500	69.6500	6.85

147 Ft Monopole Tower Structural Analysis Project Number 37520-0477.001.7805, Order 509329, Revision 0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К

GPS_A	В	From Leg	2.0000 0.00 1.00	0.00	53.0000	No Ice 1/2" Ice 1" Ice 2" Ice	0.2550 0.3205 0.3934 0.5614	0.2550 0.3205 0.3934 0.5614	0.00 0.00 0.01 0.02
Side Arm Mount [SO 701- 1]	В	None		0.00	53.0000	No Ice 1/2" Ice 1" Ice 2" Ice	0.8500 1.1400 1.4300 2.0100	1.6700 2.3400 3.0100 4.3500	0.07 0.08 0.09 0.12

KS24019 - L112A	С	From Leg	2.0000 0.00 1.00	0.00	49.0000	No Ice 1/2" Ice 1" Ice 2" Ice	0.1407 0.1979 0.2621 0.4148	0.1407 0.1979 0.2621 0.4148	0.01 0.01 0.01 0.02
Side Arm Mount [SO 701- 1]	С	None		0.00	49.0000	No Ice 1/2" Ice 1" Ice 2" Ice	0.8500 1.1400 1.4300 2.0100	1.6700 2.3400 3.0100 4.3500	0.07 0.08 0.09 0.12

Dis	hes

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	٥	۰	ft	ft		ft²	ĸ
A-ANT-23G-2-C	Α	Paraboloid w/o	From	4.0000	0.00		147.0000	2.1750	No Ice	3.7200	0.01
		Radome	Leg	0.00					1/2" Ice	4.0100	0.02
			-	2.00					1" Ice	4.3000	0.03
									2" Ice	4.8800	0.04
A-ANT-23G-2-C	в	Paraboloid w/o	From	4.0000	0.00		147.0000	2.1750	No Ice	3.7200	0.01
		Radome	Leg	0.00					1/2" Ice	4.0100	0.02
			-	2.00					1" Ice	4.3000	0.03
									2" Ice	4.8800	0.04
VHLP2-18	С	Paraboloid w/o	From	4.0000	-60.00		147.0000	2.1750	No Ice	3.7200	0.03
		Radome	Leg	0.00					1/2" Ice	4.0100	0.05
			•	2.00					1" Ice	4.3000	0.07
									2" Ice	4.8800	0.11

Tower Pressures - No Ice

 $G_{H} = 1.100$

Section Elevation	Z	Kz	qz	A _G	F a	A _F	A_R	A_{leg}	Leg %	C _A A _A In	$C_A A_A$ Out
ft	ft		psf	ft²	с е	ft²	ft²	ft²		Face ft²	Face ft²
L1 147.0000-	122.2279	1.32	51.38	106.83	A	0.000	106.839	106.839	100.00	5.700	0.000
99.5000				9	B C	0.000 0.000	106.839 106.839		100.00 100.00	3.169 0.000	0.000 0.000

Section	Z	Kz	qz	A _G	F	A _F	A _R	A _{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft²	е	ft²	ft²	ft²		ft ²	ft²
L2 99.5000-	78.8041	1.204	46.80	116.17	Α	0.000	116.177	116.177	100.00	12.666	0.000
59.0000				7	В	0.000	116.177		100.00	14.387	0.000
					С	0.000	116.177		100.00	7.806	0.000
L3 59.0000-	43.7930	1.064	41.45	99.457	Α	0.000	99.457	99.457	100.00	33.968	0.000
29.2500					В	0.000	99.457		100.00	32.514	0.000
					С	0.000	99.457		100.00	27.679	0.000
L4 29.2500-	14.3368	0.85	33.12	108.86	Α	0.000	108.867	108.867	100.00	50.784	0.000
0.0000				7	В	0.000	108.867		100.00	48.371	0.000
					С	0.000	108.867		100.00	43.618	0.000

Tower Pressure - With Ice

 $G_{H} = 1.100$

Section Elevation	Z	Kz	qz	tz	A _G	F a	A _F	A _R	A _{leg}	Leg %	$C_A A_A$ In	$C_A A_A$ Out
ft	ft		psf	in	ft²	с e	ft²	ft²	ft²		Face ft²	Face ft²
L1 147.0000-	122.2279	1.32	7.60	1.4534	118.345	Α	0.000	118.345	118.345	100.00	37.716	0.000
99.5000						в	0.000	118.345		100.00	8.837	0.000
						С	0.000	118.345		100.00	0.000	0.000
L2 99.5000-	78.8041	1.204	6.92	1.3910	125.988	А	0.000	125.988	125.988	100.00	41.556	0.000
59.0000						В	0.000	125.988		100.00	27.752	0.000
						С	0.000	125.988		100.00	9.398	0.000
L3 59.0000-	43.7930	1.064	6.13	1.3116	106.354	Α	0.000	106.354	106.354	100.00	74.419	0.000
29.2500						в	0.000	106.354		100.00	49.923	0.000
						С	0.000	106.354		100.00	36.812	0.000
L4 29.2500-	14.3368	0.85	4.90	1.1730	115.261	Α	0.000	115.261	115.261	100.00	98.340	0.000
0.0000						В	0.000	115.261		100.00	70.405	0.000
						С	0.000	115.261		100.00	57.979	0.000

Tower Pressure - Service

$G_H = 1.100$

Section	Z	Kz	qz	A _G	F	A _F	A _R	A _{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft²	е	ft²	ft²	ft²		ft²	ft²
L1 147.0000-	122.2279	1.32	10.31	106.83	Α	0.000	106.839	106.839	100.00	5.700	0.000
99.5000				9	В	0.000	106.839		100.00	3.169	0.000
					С	0.000	106.839		100.00	0.000	0.000
L2 99.5000-	78.8041	1.204	9.39	116 <u>.</u> 17	Α	0.000	116.177	116.177	100.00	12.666	0.000
59.0000				7	В	0.000	116.177		100.00	14.387	0.000
					С	0.000	116.177		100.00	7.806	0.000
L3 59.0000-	43.7930	1.064	8.32	99.457	Α	0.000	99.457	99.457	100.00	33.968	0.000
29.2500					в	0.000	99.457		100.00	32.514	0.000
					С	0.000	99.457		100.00	27.679	0.000
L4 29 2500-	14.3368	0.85	6.64	108.86	Α	0.000	108.867	108.867	100.00	50.784	0.000
0.0000				7	В	0.000	108.867		100.00	48.371	0.000
					С	0.000	108.867		100.00	43.618	0.000

Load Combinations

Comb. No.

Description

- 1
- Dead Only 1.2 Dead+1.0 Wind 0 deg No Ice 0.9 Dead+1.0 Wind 0 deg No Ice
- 2 3

tnxTower Report - version 8.0.5.0

Comb.	Description
No.	4.0 Decelut 0.0 Mind 20 dec. Na los
4 5	1.2 Dead+1.0 Wind 30 deg - No Ice 0.9 Dead+1.0 Wind 30 deg - No Ice
	1.2 Dead+1.0 Wind 50 deg - No Ice
6 7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	v
o 9	1.2 Dead+1.0 Wind 90 deg - No Ice
	0.9 Dead+1.0 Wind 90 deg - No Ice
10 11	1.2 Dead+1.0 Wind 120 deg - No Ice
	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31 32	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34 35	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35 36	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
30 37	o 1
38	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
30 39	Dead+1.0 Wind 550 deg+1.0 ce+1.0 remp
39 40	Dead+Wind 30 deg - Service
40	Dead+Wind 60 deg - Service
41	Dead+Wind 90 deg - Service
42 43	Dead+Wind 30 deg - Service
43 44	8
44 45	Dead+Wind 150 deg - Service Dead+Wind 180 deg - Service
	0
46 47	Dead+Wind 210 deg - Service Dead+Wind 240 deg - Service
47 48	Dead+Wind 240 deg - Service Dead+Wind 270 deg - Service
48 49	
49 50	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.	n	Type		Comb.	к	kip-ft	kip-ft
L1	147 - 99.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-36.72	-0.02	1.12
			Max Mx	20	-15.90	527.04	5.20
			Max. My	2	-15.82	10.18	540.53
			Max Vy	20	-24.00	527.04	5.20
			Max. Vx	2	-24.30	10.18	540.53
			Max. Torque	6			2.05
L2	99.5 - 59	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-47.00	0.06	1.52
			Max. Mx	20	-23.45	1579.37	9.66
			Max. My	2	-23.39	19.32	1604.81
			Max. Vy	20	-29.24	1579.37	9.66
			Max. Vx	2	-29.54	19.32	1604.81
			Max. Torque	6			2.05

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load		Moment	Moment
No.				Comb.	ĸ	kip-ft	kip-ft
L3	59 - 29.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-58.02	0.31	1.85
			Max. Mx	8	-31.53	-2493.34	8.33
			Max. My	2	-31.50	25.91	2538.05
			Max. Vy	8	34.02	-2493.34	8.33
			Max. Vx	2	-34.33	25.91	2538.05
			Max. Torque	6			2.04
L4	29.25 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-73.58	0.82	2.21
			Max. Mx	8	-43.41	-3753.85	10.74
			Max. My	2	-43.41	33.35	3808.09
			Max. Vy	8	38.83	-3753.85	10.74
			Max. Vx	2	-39.08	33.35	3808.09
			Max, Torque	6			2.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	73.58	-0.00	-0.00
	Max. H _x	20	43.44	37.61	0.10
	Max. H _z	3	32.58	0.21	39.05
	Max. M _x	2	3808.09	0.21	39.05
	Max. M _z	8	3753.85	-38.80	0.07
	Max. Torsion	6	1.99	-32.54	19.12
	Min. Vert	15	32.58	0.04	-37.81
	Min. H _x	9	32.58	-38.80	0.07
	Min. H _z	15	32.58	0.04	-37.81
	Min. M _x	14	-3740.88	0.04	-37.81
	Min. Mz	20	-3712.98	37.61	0.10
	Min. Torsion	20	-1.05	37.61	0.10

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	ĸ	kip-ft	kip-ft	kip-ft
Dead Only	36.20	0.00	-0.00	-0.34	-0.14	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	43.44	-0.21	-39.05	-3808.09	33.35	-0.97
).9 Dead+1.0 Wind 0 deg - No Ice	32.58	-0.21	-39.05	-3755.49	32.83	-0.97
1.2 Dead+1.0 Wind 30 deg - No Ice	43.44	18.85	-32.87	-3242.58	-1852.06	-1.66
) 9 Dead+1 0 Wind 30 deg - No Ice	32.58	18.85	-32.87	-3197.41	-1826.33	-1.66
1.2 Dead+1.0 Wind 60 deg - No Ice	43.44	32.54	-19.12	-1904.70	-3207.43	-1.99
) 9 Dead+1.0 Wind 60 deg - No Ice	32.58	32.54	-19.12	-1878.00	-3162.89	-1.99
1.2 Dead+1.0 Wind 90 deg - No Ice	43.44	38.80	-0.07	-10.74	-3753.85	-0.46
).9 Dead+1.0 Wind 90 deg - No Ice	32.58	38.80	-0.07	-10.45	-3702.39	-0.46
1.2 Dead+1.0 Wind 120 deg - No Ice	43.44	33.52	19.64	1921.58	-3250.43	-0.22
9 Dead+1.0 Wind 120 deg - No Ice	32.58	33.52	19.64	1895.09	-3205.67	-0.22
1.2 Dead+1.0 Wind 150 deg - No Ice	43.44	18.70	32.75	3242.85	-1840.31	-0.04
).9 Dead+1.0 Wind 150 deg - No Ice	32.58	18.70	32.75	3197.86	-1814.78	-0.04
1.2 Dead+1.0 Wind 180 deg - No Ice	43.44	-0.04	37.81	3740.88	5.97	0.11
).9 Dead+1.0 Wind 180 deg - No Ice	32.58	-0.04	37.81	3689.17	5.92	0.11
1.2 Dead+1.0 Wind 210 deg - No Ice	43.44	-19.31	33.67	3285.80	1876.17	0.05
).9 Dead+1.0 Wind 210 deg - No Ice	32.58	-19.31	33.67	3240.58	1850.40	0.05
1.2 Dead+1.0 Wind 240 deg - No Ice	43.44	-33.73	19.52	1902.48	3284.08	0.61
).9 Dead+1.0 Wind 240 deg - No Ice	32.58	-33.73	19.52	1876.32	3238.83	0.61
1.2 Dead+1.0 Wind 270 deg - No Ice	43.44	-37.61	-0.10	-16.48	3712.98	1.05
).9 Dead+1.0 Wind 270 deg - No Ice	32.58	-37.61	-0.10	-16.08	3661.36	1.04
1.2 Dead+1.0 Wind 300 deg - No Ice	43.44	-32.62	-19.12	-1905.12	3220.02	-0.16
) 9 Dead+1 0 Wind 300 deg - No Ice	32.58	-32.62	-19.12	-1878.41	3175 <u>.</u> 37	-0.17

147 Ft Monopole Tower Structural Analysis Project Number 37520-0477.001.7805, Order 509329, Revision 0

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, M₂	Torque
Combination	к	к	К	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 330 deg - No Ice	43.44	-19.54	-33.87	-3293.81	1899.28	-0.33
0.9 Dead+1.0 Wind 330 deg - No Ice	32.58	-19.54	-33.87	-3248,28	1873.15	-0.34
1.2 Dead+1.0 Ice+1.0 Temp	73.58	0.00	0.00	-2.21	0.82	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	73.58	-0.04	-7.63	-830.46	7.77	-0.17
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	73.58	3.79	-6.61	-717.04	-407.33	-0.30
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	73.58	6.55	-3.84	-421.24	-706.51	-0.37
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	73.58	7.58	-0.01	-4.24	-815.91	-0.09
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	73.58	6.55	3.84	415.19	-706.63	-0.06
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	73.58	3.77	6.60	712.54	-405.66	-0.02
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	73.58	-0.01	7.61	822.37	1.76	0.02
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	73.58	-3.78	6.58	711.98	408.95	0.02
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	73.58	-6.59	3.81	410.90	714.73	0.12
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	73.58	-7.58	-0.02	-6.02	819.84	0.20
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	73.58	-6.57	-3.85	-421.90	711.15	-0.03
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	73.58	-3.82	-6.62	-718.71	413.97	-0.06
Dead+Wind 0 deg - Service	36.20	-0.04	-7.83	-759.20	6.53	-0.19
Dead+Wind 30 deg - Service	36.20	3.78	-6.59	-646.40	-369.16	-0.33
Dead+Wind 60 deg - Service	36.20	6.53	-3.84	-379.80	-639.23	-0.40
Dead+Wind 90 deg - Service	36.20	7.78	-0.01	-2.41	-748.23	-0.09
Dead+Wind 120 deg - Service	36.20	6.72	3.94	382.63	-647.84	-0.06
Dead+Wind 150 deg - Service	36.20	3.75	6.57	645.89	-366.82	-0.01
Dead+Wind 180 deg - Service	36.20	-0.01	7.59	745.25	1.07	0.02
Dead+Wind 210 deg - Service	36.20	-3.87	6.75	654.50	373.76	0.02
Dead+Wind 240 deg - Service	36.20	-6.77	3.92	378.85	654.33	0.13
Dead+Wind 270 deg - Service	36.20	-7.55	-0.02	-3.56	739.76	0.21
Dead+Wind 300 deg - Service	36.20	-6.54	-3.84	-379.89	641.53	-0.05
Dead+Wind 330 deg - Service	36.20	-3.92	-6.79	-656.67	378.38	-0.07

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	ĸ	K	K	
1	0.00	-36.20	0.00	-0.00	36.20	0.00	0.000%
2	-0.21	-43.44	-39.05	0.21	43.44	39.05	0.003%
3	-0.21	-32.58	-39.05	0.21	32.58	39.05	0.002%
4	18.85	-43.44	-32.87	-18.85	43.44	32.87	0.000%
5	18.85	-32.58	-32.87	-18.85	32.58	32.87	0.000%
6	32.54	-43.44	-19.12	-32.54	43.44	19.12	0.000%
7	32.54	-32.58	-19.12	-32.54	32.58	19.12	0.000%
8	38.80	-43.44	-0.07	-38.80	43.44	0.07	0.007%
9	38.80	-32.58	-0.07	-38.80	32.58	0.07	0.005%
10	33.52	-43.44	19.64	-33.52	43.44	-19.64	0.000%
11	33.52	-32.58	19.64	-33.52	32.58	-19.64	0.000%
12	18.70	-43.44	32.75	-18.70	43.44	-32.75	0.000%
13	18.70	-32.58	32.75	-18.70	32.58	-32.75	0.000%
14	-0.04	-43.44	37.81	0.04	43.44	-37.81	0.007%
15	-0.04	-32.58	37.81	0.04	32.58	-37.81	0.006%
16	-19.31	-43.44	33.67	19.31	43.44	-33.67	0.000%
17	-19.31	-32.58	33.67	19.31	32.58	-33.67	0.000%
18	-33.73	-43.44	19.52	33.73	43.44	-19.52	0.000%
19	-33.73	-32.58	19.52	33.73	32.58	-19.52	0.000%
20	-37.62	-43.44	-0.10	37.61	43.44	0.10	0.003%
21	-37.62	-32.58	-0.10	37.61	32.58	0.10	0.006%
22	-32.62	-43.44	-19.12	32.62	43.44	19.12	0.000%
23	-32.62	-32.58	-19.12	32.62	32.58	19.12	0.000%
24	-19.54	-43.44	-33.87	19.54	43.44	33.87	0.000%
25	-19.54	-32.58	-33.87	19.54	32.58	33.87	0.000%
26	0.00	-73.58	0.00	-0.00	73.58	-0.00	0.001%
27	-0.04	-73.58	-7.63	0.04	73.58	7.63	0.001%
28	3.79	-73.58	-6.61	-3.79	73.58	6.61	0.001%
29	6.55	-73.58	-3.84	-6.55	73.58	3.84	0.001%
30	7.58	-73.58	-0.01	-7.58	73.58	0.01	0.001%
31	6.56	-73.58	3.84	-6.55	73.58	-3.84	0.001%
32	3.77	-73.58	6.60	-3.77	73.58	-6.60	0.001%
33	-0.01	-73.58	7.62	0.01	73.58	-7.61	0.001%

	Sur	n of Applied Force	s		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	ĸ	K	K	
34	-3.78	-73.58	6.59	3.78	73.58	-6.58	0.001%
35	-6.59	-73.58	3.81	6.59	73.58	-3.81	0.001%
36	-7.58	-73.58	-0.02	7.58	73.58	0.02	0.001%
37	-6.57	-73.58	-3.85	6.57	73.58	3.85	0.001%
38	-3.82	-73.58	-6.62	3.82	73.58	6.62	0.001%
39	-0.04	-36.20	-7.83	0.04	36.20	7.83	0.002%
40	3.78	-36.20	-6.59	-3.78	36.20	6.59	0.002%
41	6.53	-36.20	-3.84	-6.53	36.20	3.84	0.002%
42	7.78	-36.20	-0.01	-7.78	36.20	0.01	0.002%
43	6.72	-36.20	3.94	-6.72	36.20	-3.94	0.002%
44	3.75	-36.20	6.57	-3.75	36.20	-6.57	0.002%
45	-0.01	-36.20	7.59	0.01	36.20	-7.59	0.002%
46	-3.87	-36.20	6.76	3.87	36.20	-6.75	0.002%
47	6.77	-36.20	3.92	6.77	36.20	-3.92	0.002%
48	-7.55	-36.20	-0.02	7.55	36.20	0.02	0.002%
49	-6.54	-36.20	-3.84	6.54	36.20	3.84	0.002%
50	-3.92	-36.20	-6.79	3.92	36.20	6.79	0.002%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	<u> </u>	0.00000001	0.00000001
2 3	Yes	15	0.00003646	0.00010066
	Yes	15	0.00002275	0.00007460
4	Yes	18	0.0000001	0.00014277
5	Yes	18	0.0000001	0.00009385
6	Yes	19	0.0000001	0.00005988
7	Yes	18	0.0000001	0.00009933
8	Yes	14	0.00008922	0.00012567
9	Yes	14	0.00005726	0.00009931
10	Yes	18	0.0000001	0.00014738
11	Yes	18	0.0000001	0.00009673
12	Yes	18	0.0000001	0.00014448
13	Yes	18	0.0000001	0.00009511
14	Yes	14	0.00008904	0.00011008
15	Yes	14	0.00005712	0.00008883
16	Yes	18	0.00000001	0.00014602
17	Yes	18	0.00000001	0.00009586
18	Yes	18	0.00000001	0.00014747
19	Yes	18	0.00000001	0.00009672
20	Yes	15	0.00003664	0.00009872
20				
	Yes	14	0.00005725	0.00013650
22	Yes	18	0.0000001	0.00014864
23	Yes	18	0.0000001	0.00009773
24	Yes	18	0.0000001	0.00014896
25	Yes	18	0.0000001	0.00009771
26	Yes	6	0.0000001	0.00001835
27	Yes	16	0.0000001	0.00007817
28	Yes	16	0.0000001	0.00009628
29	Yes	16	0.0000001	0.00009783
30	Yes	16	0.0000001	0.00007638
31	Yes	16	0.0000001	0.00009623
32	Yes	16	0.0000001	0.00009575
33	Yes	16	0.0000001	0.00007713
34	Yes	16	0.00000001	0.00009601
35	Yes	16	0.00000001	0.00009655
36	Yes	16	0.00000001	0.00007686
37	Yes	16	0.00000001	0.00009792
38	Yes	16	0.00000001	0.00009785
39	Yes	14	0.00000001	0.00003064
39 40	Yes	14		
			0.00000001	0.00003585
41	Yes	14	0.0000001	0.00004708
42	Yes	14	0.0000001	0.00002956
43	Yes	14	0.0000001	0.00004027
44	Yes	14	0.0000001	0.00004029
45	Yes	14	0.0000001	0.00002976
46	Yes	14	0.00000001	0.00004119
47	Yes	14	0.0000001	0.00003977
48	Yes	14	0.0000001	0.00002995
49	Yes	14	0.0000001	0.00004031
50	Yes	14	0.00000001	0.00004307

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	0
L1	147 - 99.5	27.81	39	1.55	0.00
L2	103.25 - 59	14.34	39	1.31	0.00
L3	63.75 - 29.25	5.41	39	0.80	0.00
L4	34.5 - 0	1.60	39	0.42	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	۰	ft
149.0000	A-ANT-23G-2-C	39	27.81	1.55	0.00	46088
147.0000	Top Hat 10" Diameter x 4' 6" Tall	39	27.81	1.55	0.00	46088
145.0000	TME-1900MHz RRH (65 MHz)	39	27.16	1.55	0.00	46088
119.0000	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	39	18.91	1.43	0.00	8229
110.0000	DMP65R-BU4D w/ Mount Pipe	39	16.24	1.37	0.00	6227
53.0000	GPS_A	39	3.71	0.65	0.00	4003
49.0000	KS24019 <mark>-</mark> L112A	39	3.16	0.60	0.00	3917

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	•	٥
L1	147 - 99.5	139.43	2	7.80	0.01
L2	103.25 - 59	71.93	2	6.57	0.01
L3	63.75 - 29.25	27.15	2	4.01	0.00
L4	34.5 - 0	8.02	2	2.09	0.00

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	٥	ft
149.0000	A-ANT-23G-2-C	2	139.43	7.80	0.02	9480
147.0000	Top Hat 10" Diameter x 4' 6" Tall	2	139.43	7.80	0.02	9480
145.0000	TME-1900MHz RRH (65 MHz)	2	136.18	7.77	0.02	9480
119.0000	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	2	94.86	7.19	0.01	1688
110.0000	DMP65R-BU4D w/ Mount Pipe	2	81.47	6.87	0.01	1274
53.0000	GPS_A	2	18.60	3.28	0.00	802
49.0000	KS24019 <mark>-</mark> L112A	2	15.86	3.02	0.00	784

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	φ P _n	Ratio P _u
	ft		ft	ft		in²	K	К	$\frac{P_u}{\phi P_n}$
L1	147 - 99.5 (1)	TP30.313x22x0.25	47.5000	0.0000	0.0	23.6724	-15.82	1278.31	0.012
L2	99.5 - 59 (2)	TP36.9x29.1567x0.3125	44.2500	0.0000	0.0	35.9798	-23.39	2104.82	0.011
L3	59 - 29.25 (3)	TP41 481x35 4438x0 375	34.5000	0.0000	0.0	48.5262	-31.50	2838.78	0.011
L4	29.25 - 0 (4)	TP45.85x39.8123x0.4375	34.5000	0.0000	0.0	63.9749	-43.41	3742.53	0.012

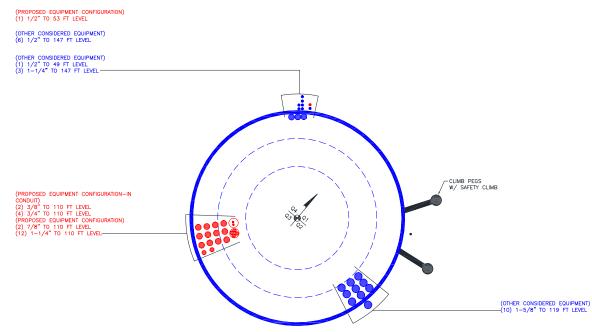
Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	ф <i>М_{пх}</i>	Ratio M _{ux}	M _{uy}	ф <i>М_{пу}</i>	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	147 - 99.5 (1)	TP30.313x22x0.25	540.63	857.29	0.631	0.00	857.29	0.000
L2	99.5 - 59 (2)	TP36.9x29.1567x0.3125	1604.93	1707.36	0.940	0.00	1707.36	0.000
L3	59 - 29 25 (3)	TP41.481x35.4438x0.375	2538.18	2662.28	0.953	0.00	2662.28	0.000
L4	29.25 - 0 (4)	TP45.85x39.8123x0.4375	3808.24	4017.32	0.948	0.00	4017.32	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	к	φVn	kip-ft	kip-ft	ϕT_n
L1	147 - 99.5 (1)	TP30.313x22x0.25	24.30	383.49	0.063	1.00	991.98	0.001
L2	99.5 - 59 (2)	TP36.9x29.1567x0.3125	29.54	631.45	0.047	0.99	1986.04	0.001
L3	59 - 29.25 (3)	TP41.481x35.4438x0.375	34.33	851.63	0.040	0.97	3010.53	0.000
L4	29.25 - 0 (4)	TP45.85x39.8123x0.4375	39.09	1122.76	0.035	0.97	4484.99	0.000

Pole Interaction Design Data


Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ <i>M_{nx}</i>	ϕM_{ny}	φVn	ϕT_n	Ratio	Ratio	
L1	147 - 99.5 (1)	0.012	0.631	0.000	0.063	0.001	0.647	1.050	4.8.2
L2	99.5 - 59 (2)	0.011	0.940	0.000	0.047	0.001	0.953	1.050	4.8.2
L3	59 - 29.25 (3)	0.011	0.953	0.000	0.040	0.000	0.966	1.050	4.8.2
L4	29.25 - 0 (4)	0.012	0.948	0.000	0.035	0.000	0.961	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	147 - 99.5	Pole	TP30.313x22x0.25	1	-15.82	1342.23	61.6	Pass
L2	99.5 - 59	Pole	TP36.9x29.1567x0.3125	2	-23.39	2210.06	90.8	Pass
L3	59 - 29.25	Pole	TP41.481x35.4438x0.375	3	-31.50	2980.72	92.0	Pass
L4	29.25 - 0	Pole	TP45.85x39.8123x0.4375	4	-43.41	3929.66	91.5	Pass
							Summary	
						Pole (L3)	92.0	Pass
						RATING =	92.0	Pass

APPENDIX B

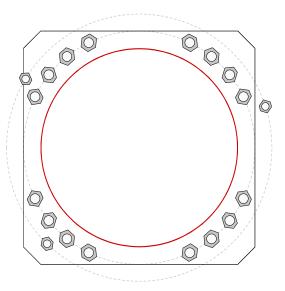
BASE LEVEL DRAWING

BUSINESS UNIT: 876321 TOWER ID:C_BASELEVEL

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU	# 876321
Site Nam	e Branford Banm Tower
Order	# 509329 Rev 0

Analysis Considerations					
TIA-222 Revision	Н				
Grout Considered:	No				
l _{ar} (in)	0				

Applied Loads				
Moment (kip-ft)	3808.24			
Axial Force (kips)	43.41			
Shear Force (kips)	39.09			
*TIA 222 Il Contion 15 5 Applied				

*TIA-222-H Section 15.5 Applied

Connection Properties Anal Anchor Rod Data Anchor Rod Summary GROUP 1: (16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 54" BC GROUP 1: Anchor Spacing: 6 in Pu_c = 201.17 GROUP 2: (3) 1-3/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 61.85" BC Vu = 2.44 pos. (deg): 18, 149, 226 Mu = n/a

Base Plate Data

54" OD x 3.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

Pole Data

45.85" x 0.4375" 12-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary	(ur	nits of kips, kip-in)
GROUP 1:		
Pu_c = 201.17	φPn_c = 268.39	Stress Rating
Vu = 2.44	φVn = 120.77	71.4%
Mu = n/a	φMn = n/a	Pass
GROUP 2:		
Pu_c = 122.65	φPn_c = 227.3	Stress Rating
Vu = 0	φVn = 102.28	51.4%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	26.67	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	56.4%	Pass

Pier and Pad Foundation

	876321
	Branford Banm Tov
App. Number:	509329 Rev 0

TIA-222 Revision: Tower Type:

Н Monopole Block Foundation?

Superstructure Analysis Reactions		
Compression, P _{comp} :	43.41	kips
Base Shear, Vu_comp:	39.09	kips
Moment, M _u :	3808.24	ft-kips
Tower Height, H :	147	ft
BP Dist. Above Fdn, bp_{dist}:	2.5	in
Moment, M _u : Tower Height, H :	3808.24 147	ft-kips ft

	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	346.53	39.09	10.7%	Pass
Bearing Pressure (ksf)	6.00	4.35	72.5%	Pass
Overturning (kip*ft)	4909.95	4265.92	86.9%	Pass
Pier Flexure (Comp.) (kip*ft)	4077.59	4140.51	96.7%	Pass
Pier Compression (kip)	23390.64	105.54	0.4%	Pass
Pad Flexure (kip*ft)	4322.10	2287.98	50.4%	Pass
Pad Shear - 1-way (kips)	624.22	359.23	54.8%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	0.0%	Pass
Flexural 2-way (Comp) (kip*ft)	6631.37	2484.30	35.7%	Pass

Foundation Analysis Checks

*Rating per TIA-222-H Section 15.5

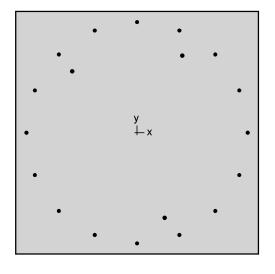
Soil Rating*:	86.9%
Structural Rating*:	

*See SP Column for steel calculations

Pier Properties	S	
Pier Shape:	Square	
Pier Diameter, dpier :	7	ft
Ext. Above Grade, E :	0.5	ft
Pier Rebar Size, Sc :	11	
Pier Rebar Quantity, mc :	16	
Pier Tie/Spiral Size, St :	5	
Pier Tie/Spiral Quantity, mt :	12	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties		
Depth, D:	11	ft
Pad Width, W :	20.5	ft
Pad Thickness, T :	3	ft
Pad Rebar Size (Bottom), Sp :	11	
Pad Rebar Quantity (Bottom), mp:	21	
Pad Clear Cover, cc_{pad}:	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δc :	150	pcf


Soile Properties			
Total Soil Unit Weight, $oldsymbol{\gamma}_{\mathbb{C}}$	125	pcf	
Ultimate Gross Bearing, Qult:	8.000	ksf	
Cohesion, Cu :	0.000	ksf	
Friction Angle, $oldsymbol{arphi}$:	35	degrees	
SPT Blow Count, N _{blows} :	34		
Base Friction, μ :			
Neglected Depth, N:	3.50	ft	
Foundation Bearing on Rock?	No		
Groundwater Depth, gw :	4.5	ft	

<--Toggle between Gross and Net

Top & Bot. Pad Rein. Different?:	

spColumn v6.00 Computer program for the Strength Design of Reinforced Concrete Sections Copyright - 1988-2020, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: Paul J. Ford and Company. License ID: 68668-1061816-4-1E6CD-268C8

STRUCTUREPOINT - spColumn v6.00
Licensed to: Paul J. Ford and Company. License ID: 68668-1061816-4-1E6CD-268C8
g:\tower\375_crown_castle\2020\37520-0477_876321_branford banm tower\\foundation steel check.col

Page 2
3/13/2020
8:55 AM

Contents

1.	General Information	3
2.	Material Properties	3
	2.1. Concrete	3
	2.2. Steel	
	Section	
	3.1. Shape and Properties	3
	3.2. Section Figure	
	Reinforcement	
	4.1. Bar Set: ASTM A615	4
	4.2. Confinement and Factors	4
	4.3. Arrangement	4
	4.4. Bars Provided	5
	Factored Loads and Moments with Corresponding Capacities	

List of Figures

— :	4.		
Figure	11	Column section	4
0.0			

1. General Information

File Name	g:\tower\375_crown\foundati on steel check.col
Project	37520-0477.001.7805
Column	BU 876321
Engineer	AMS
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Investigation
Run Axis	Biaxial
Slenderness	Not Considered
Column Type	Structural

2. Material Properties

2.1. Concrete

Туре	Standard
f _c E _c f _c	3 ksi
Ec	3122.02 ksi
	2.55 ksi
ε _u β ₁	0.003 in/in
β1	0.85

2.2. Steel

Туре	Standard
f _y	60 ksi
Es	29000 ksi
ε _{yt}	0.00206897 in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	84	in
Depth	84	in
A _g	7056	in²
l _x	4.14893e+006	in⁴
l _y	4.14893e+006	in⁴
r _x	24.2487	in
r _y	24.2487	in
X _o	0	in
Y _o	0	in

STRUCTUREPOINT - spColumn v6.00 Licensed to: Paul J. Ford and Company. License ID: 68668-1061816-4-1E6CD-268C8 g:\tower\375_crown_castle\2020\37520-0477_876321_branford banm tower\...\foundation steel check.col Page | **4** 3/13/2020 8:55 AM

3.2. Section Figure

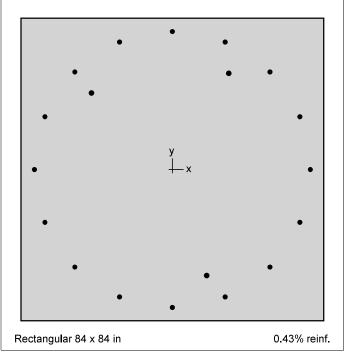


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled ϕ , (b)	0.9
Compression controlled ϕ , (c)	0.65

4.3. Arrangement

Pattern	Irregular
Bar layout	
Cover to	
Clear cover	
Bars	

Total steel area, A _s	30.66 in ²
Rho	0.43 %
Minimum clear spacing	5.95 in
(Note: Rho < 0.50%)	

4.4. Bars Provided

Area	Х	Y	Area	Х	Y	Area	Х	Y
in ²	in	in	in ²	in	in	in ²	in	in
1.56	0.0	38.3	1.56	14.7	35.4	1.56	27.1	27.1
1.56	35.4	14.7	1.56	38.3	0.0	1.56	35.4	-14.7
1.56	27.1	-27.1	1.56	14.7	-35.4	1.56	0.0	-38.3
1.56	-14.7	-35.4	1.56	-27.1	-27.1	1.56	-35.4	-14.7
1.56	-38.3	0.0	1.56	-35.4	14.7	1.56	-27.1	27.1
1.56	-14.7	35.4	1.90	9.5	-29.4	1.90	15.7	26.7
1.90	-22.5	21.3						

5. Factored Loads and Moments with Corresponding Capacities

No	Pu	M _{ux}	Muy	φM _{nx}	φM _{ny}	φM _n /M _u	NA	dt Depth	ε _t	ф
NO	Fu	IVIUX	Teruy	ψMnx	ψινι _{ny}	φινι _n /ινι _u	Depth	ut Deptil	۲	Ψ
	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	43.41	4265.92	0.00	5543.19	0.00	1.299	8.12	80.32	0.02672	0.900
2	43.41	0.00	-4265.92	0.00	-5398.61	1.266	8.85	80.79	0.02530	0.900
3	43.41	0.00	4265.92	0.00	5354.80	1.255	8.89	80.81	0.02524	0.900
4	43.41	-4265.92	0.00	-5234.68	0.00	1.227	8.29	80.37	0.02623	0.900
5	43.41	3016.50	3016.50	4134.21	4134.21	1.371	26.68	97.32	0.00794	0.900
6	43.41	3016.50	-3016.50	4178.11	-4178.11	1.385	27.21	97.32	0.00773	0.900
7	43.41	-3016.50	-3016.50	-4008.48	-4008.48	1.329	26.46	97.32	0.00803	0.900
8	43.41	-3016.50	3016.50	-3981.13	3981.13	1.320	26.50	97.32	0.00802	0.900

Rating per TIA-222-H Section 15.5 = 1/1.227/1.05 = 77.6%

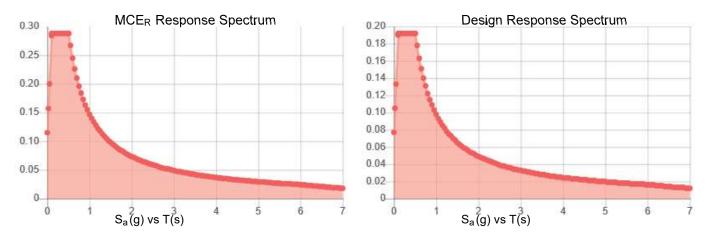
Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 57.7 ft (NAVD 88)

 Latitude:
 41.288611


 Longitude:
 -72.813861

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.18	S _{DS} :	0.192	
S ₁ :	0.061	S _{D1} :	0.098	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.093	
S _{MS} :	0.288	PGA _M :	0.149	
S _{M1} :	0.147	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Thu Mar 12 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

....

Desultar

Results.	
Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through
Date Accessed:	Thu Mar 12 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

10-8

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: March 9. 2020

Charlotte, NC 28277

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:

3530 Toringdon Way, Suite 300

Kevin Morrow

(704) 405-6619

Subject:

Site Data:

Crown Castle

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 btwo@btgrp.com Mount Analysis Report **AT&T Mobility Equipment Change-Out** Carrier Site Number: 24492 **Carrier Site Name: Branford Central** Crown Castle BU Number: 876321 Crown Castle Site Name:

Branford Banm Tower 596334 509329, Rev.0

136457.003.01 R1

150 North Main Street, Branford, CT, New Haven, 06405 Latitude 41° 17' 19.00" Longitude -72° 48' 49.90"

Structure Information:	Tower Height & Type:	147 ft. Monopole
	Mount Elevation:	110 ft.
	Mount Type:	14 ft. Platform Mount

Dear Mr. Morrow,

B+T Group is pleased to submit this "Mount Analysis Report" to determine the structural integrity of AT&T Mobility's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

Crown Castle JDE Job Number:

B+T Group Report Designation:

Crown Castle Order Number:

The purpose of the analysis is to determine acceptability of the mount's stress level. Based on our analysis we have determined the stress level to be:

Platform Mount

This analysis has been performed in accordance with the 2018 International Building Code based upon an ultimate 3second gust wind speed of 121 mph. Applicable Standard references and design criteria are listed in Section 2 -Analysis Criteria.

Mount structural analysis prepared by: Ramya Pasnoor, E.I.T.

Sufficient

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

1) INTRODUCTION

This is a 14' Platform Mount, mapped by B+T Group.

2) ANALYSIS CRITERIA

2018 IBC TIA-222-H
II
121 mph
С
1
1
1 in
50 mph
0.201
0.054
30 mph
250 lb
500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft.)	Antenna Centerline (ft.)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
110 112		3	Andrew	SBNHH-1D65A	
		3	CCI	DMP65R-BU4D	
		3	CCI	OPA65R-BU4D	
		3	Powerwave	7770.00	
	3	Ericsson	RRUS 32 B2		
	110	3	Ericsson	RRUS 32 B66	14 ft. Platform Mount
	112	3	Ericsson	RRUS 4449 B5/B12	
		3	Ericsson	RRUS 4478 B14_CCIV2	
		3	Ericsson	RRUS-32 B30	
		6	Powerwave	LGP2140X	
		1	Raycap	DC6-48-60-18-8C-EV	
		2	Raycap	DC6-48-60-18-8F	
53	54	1	GPS	GPS_A	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
CCI Order	Existing Loading	Date: 04/03/2020	Crown Castle
RFDS	Proposed Loading	Date: 03/02/2020	
Mount Mapping	B+T group	Date: 12/19/2019	On file

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed by B+T Group, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision C). In addition, this analysis is in accordance with AT&T's *Mount Technical Directive* -R14.1.

Manufacturer's drawings were used to create model.

3.2) Assumptions

- 1. The mount was properly fabricated and installed in accordance with its original design and manufacturer's specifications.
- 2. The mount has been maintained in accordance with the manufacturer's specifications and is free of damage.
- 3. The configuration of antennas, mounts, and other appurtenances are as specified in Table-1.
- 4. All mount components have been assumed to be in sufficient condition to carry their full design capacity for the analysis.
- 5. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.
- 6. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
- 7. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
- 8. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 9. The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 10. The following material grades were assumed (Unless Noted Otherwise):

	5 5	`
(a)	Connection Bolts	: ASTM A325
(b)	Steel Pipe	: ASTM A53 (GR. 35)
(c)	HSS (Round)	: ASTM 500 (GR. B-42)
	HSS (Rectangular)	: ASTM 500 (GR. B-46)
(e)	Channel	: ASTM A36 (GR. 36)
(f)	Steel Solid Rod	: ASTM A36 (GR. 36)
(g)	Steel Plate	: ASTM A36 (GR. 36)
(h)	Steel Angle	: ASTM A36 (GR. 36)
	UNISTRŬT	: ASTM A570 (GR. 33)
• •		(<i>, ,</i>

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft.)	% Capacity	Pass / Fail
	Support Tubes	7	110	38.7	Pass
	Main Horizontals	2	110	65.3	Pass
	Support Rails	22	110	67.0	Pass
10	Mount Pipes	74	110	86.1	Pass
1,2	Connection Angles	25	110	65.3	Pass
	Kickers	29	110	10.1	Pass
	Support Angles	15	110	30.8	Pass
	Connection Plates	28	110	4.5	Pass

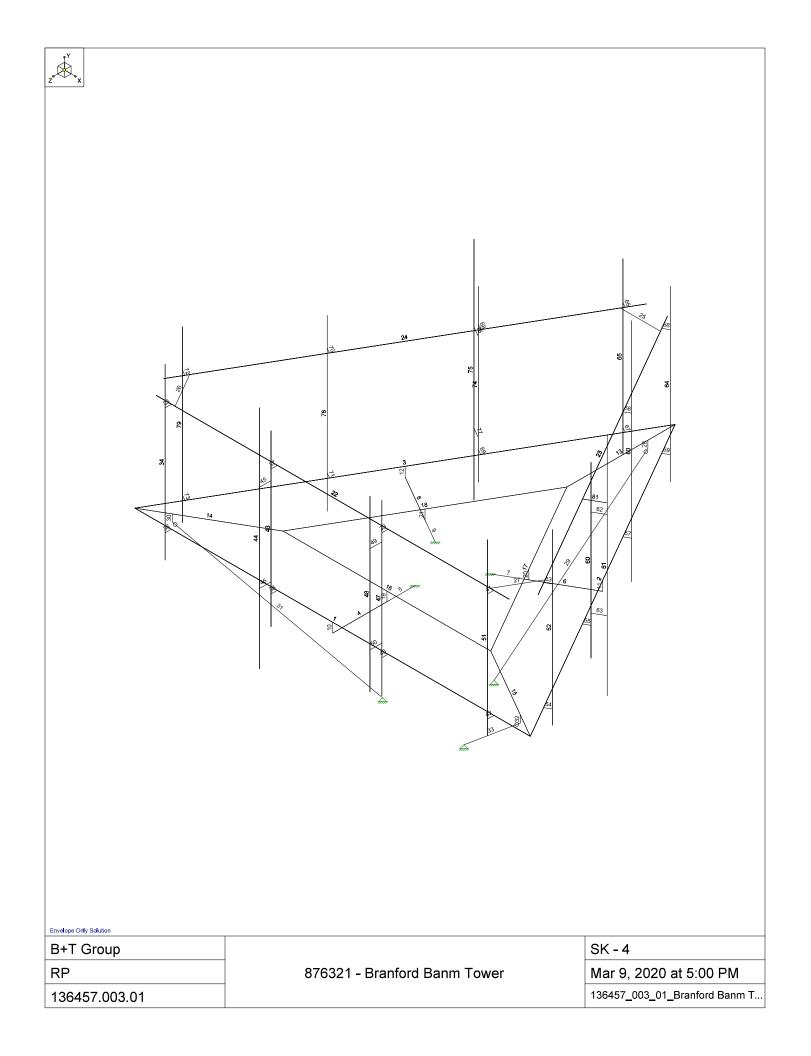
Table 3 - Mount Component Stresses vs. Capacity (Platform Mount)

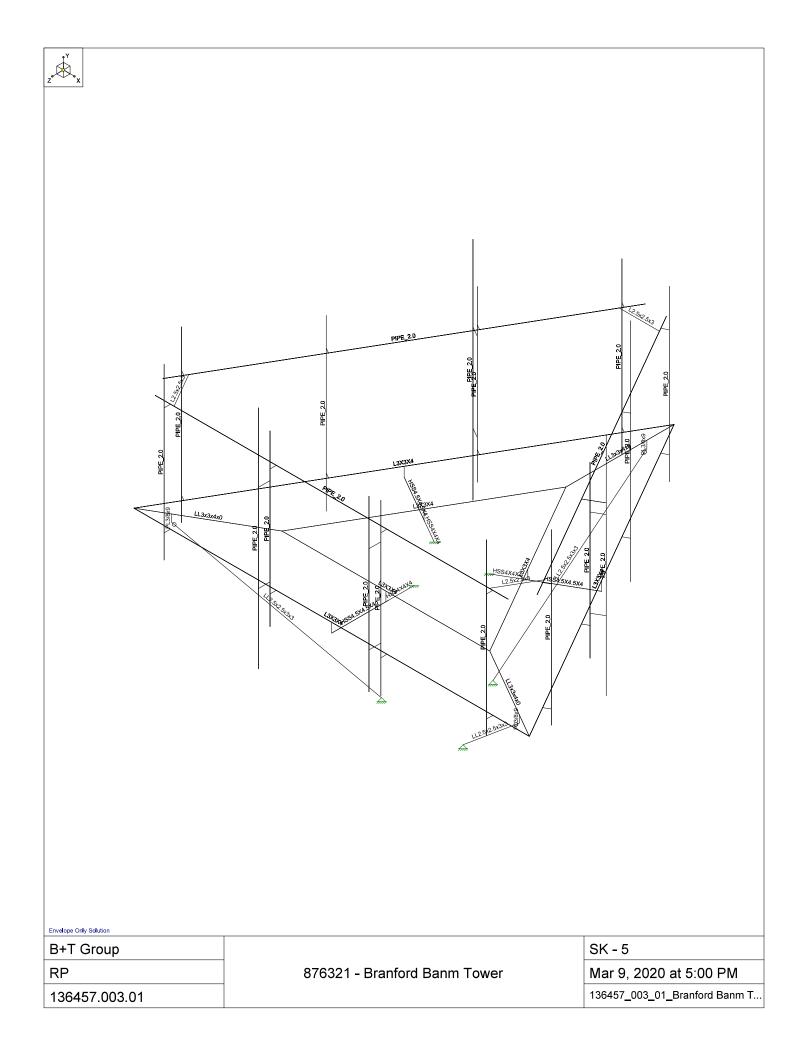
Structure Rating (max from all components) =	86.1%
--	-------

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) All sectors are typical


4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Envelope Only Solution B+T Group		SK - 3
	976221 Dranford Donm Towar	
RP	876321 - Branford Banm Tower	Mar 9, 2020 at 4:59 PM
136457.003.01		136457_003_01_Branford Banm T

APPENDIX B

SOFTWARE INPUT CALCULATIONS

PROJECT	136457.003	.01 - Branford	Banm	Tower	KSC
SUBJECT	Platform Mo	ount Mount Ana	alysis		
DATE	03/09/20	PAGE	1	OF	1

<u>INPUT</u>

INPUT									[RE	F: ANSI/TIA-222-H]
Tower Type Ground Elevation	z _s	:	Monopo l e 57	ft	[ASCE7 Hazard Tool]					
Tower Height		:	147	ft						
Mount Elevation			110	ft						
Antenna Elevation		:	112	ft						
Crest Height		:	0	ft						
Risk Category		:	II		[Table 2-1]	Gust Factor	G _h	:	1.00	[Sec. 16.6]
Exposure Category		:	С		[Sec. 2.6.5.1.2]	Pressure Coefficient	Kz	:	1.30	[Sec. 2.6.5.2]
Topography Category	у	:	1		[Sec. 2.6.6.2]	Topography Factor	K_{zt}	:	1.00	[Sec. 2.6.6]
Wind Velocity	V	:	121	mph	[ASCE7 Hazard Tool]	Elevation Factor	K _e	:	1.00	[Sec. 2.6.8]
Ice wind Velocity	Vi	:	50	mph	[ASCE7 Hazard Tool]	Directionality Factor	K_{d}	:	0.95	[Sec. 16.6]
Service Velocity	Vs	:	30	mph	[ASCE7 Hazard Tool]	Shielding Factor	Ka	:	0.90	[Sec. 16.6]
Base Ice thickness	t _i	:	1	in	[ASCE7 Hazard Tool]	Design Ice Thickness	t _{iz}	:	1.13	in [Sec. 2.6.10]
Seismic Design Cat.		:	В		[ASCE7 Hazard Tool]					
	S_S	:	0.201			Importance Factor	I_{e}	:	1	[Table 2-3]
	S_1	:	0.054			Response Coefficient	Cs	:	0.11	[Sec. 2.7.7.1]
	S _{DS}	:	0.215			Amplification	As	:	1.99	[Sec. 16.7]
	S_{D1}	:	0.086							

ANTENNAS

Manufacturer	Model	Height (in)	Front Width (in)	Side Width (in)	Weight (l bs)	Shape	Quantity	Location (%)
Mount Pipe 51	•			•				
Powerwave	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	10
Powerwave	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	80
Powerwave	TME-LGP21401	14.40	9.20	2.60	14.10	Flat	2	60
Mount Pipe 34								
Andrew	SBNHH-1D65A	55.60	11.90	7.10	33.50	Flat	0.5	10
Andrew	SBNHH-1D65A	55.60	11.90	7.10	33.50	Flat	0.5	70
Mount Pipe 44								
CCI	OPA65R-BU4D	48.00	21.00	7.80	62.30	Flat	0.5	25
CCI	OPA65R-BU4D	48.00	21.00	7.80	62.30	Flat	0.5	75
Mount Pipe 48								
CCI	DMP65R-BU4D	48.00	20.70	7.70	76.50	Flat	0.5	20
CCI	DMP65R-BU4D	48.00	20.70	7.70	76.50	Flat	0.5	80
47	-			• • •			•	
Ericsson	TME-RRUS 32 B30	27.20	12.10	7.00	53.00	Flat	1	40
Ericsson	TME-RRUS 32 B2	27.20	12.05	7.00	52.90	Flat	1	40
Ericsson	TME-RRUS 4478 B14	16.50	7.70	13.40	59.90	Flat	1	50
43								
Ericsson	RRUS 32 B66A	27.60	7.41	12.45	55.12	Flat	1	50
Ericsson	RRUS 4449 B5/B12	17.90	13.19	9.44	71.00	Flat	1	60

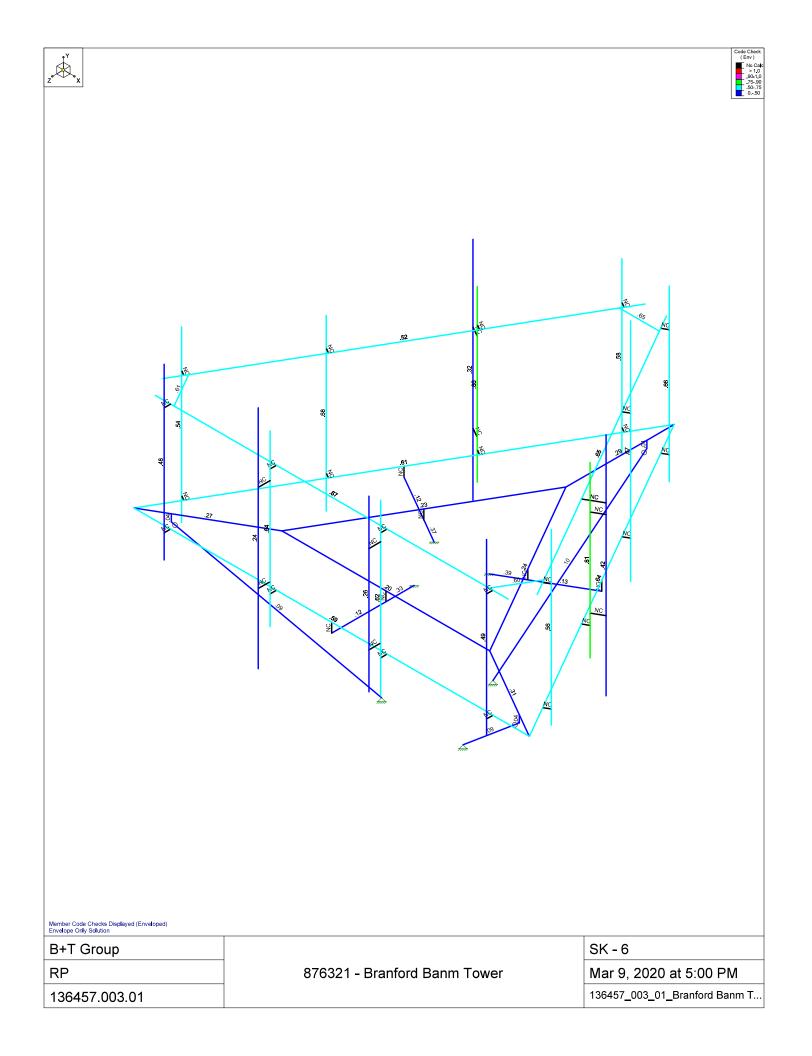
PROJECT	136457.003	.01 - Branford	Banm	Tower	KSC
SUBJECT	Platform Mo	ount Mount Ana	lysis		
DATE	03/09/20	PAGE	2	OF	5

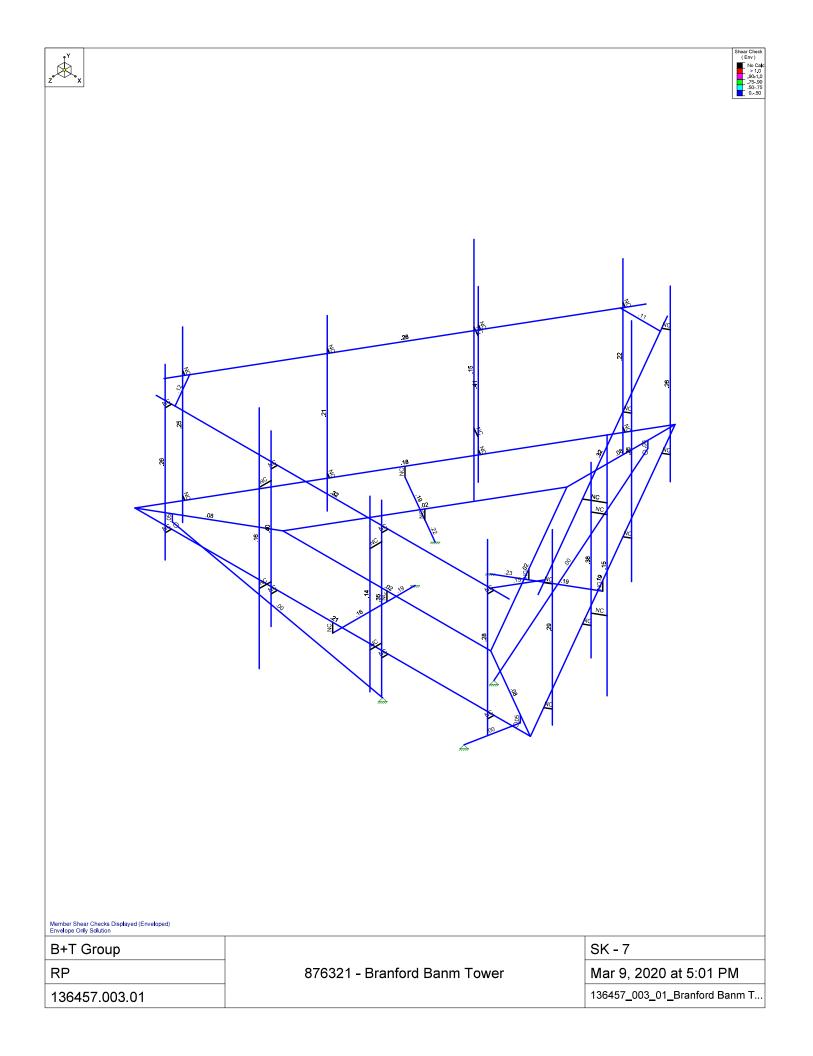
ount Pipe 79 Powerwave	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	10
Powerwave	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	80
Powerwave	TME-LGP21401	14.40	9.20	2.60	14.10	Flat	2	60
Fowerwave	TML-LGP21401	14.40	9.20	2.00	14.10	Flat	2	00
ount Pipe 65								
Andrew	SBNHH-1D65A	55.60	11.90	7.10	33.50	Flat	0.5	10
Andrew	SBNHH-1D65A	55.60	11.90	7.10	33.50	Flat	0.5	70
ount Pipe 75								
CCI	OPA65R-BU4D	48.00	21.00	7.80	62.30	Flat	0.5	25
CCI	OPA65R-BU4D	48.00	21.00	7.80	62.30	Flat	0.5	75
ount Pipe 78								
CCI	DMP65R-BU4D	48.00	20.70	7.70	76.50	Flat	0.5	20
CCI	DMP65R-BU4D	48.00	20.70	7.70	76.50	Flat	0.5	80
Ericsson	TME-RRUS 4478 B14	16.50	7.70	13.40	59.90	Flat	1	50
Ericsson	TME-RRUS 32 B2	27.20	7.00	12.05	52.90	Flat	1	40
Ericsson	TME-RRUS 32 B30	27.20	7.00	12.05	53.00	Flat	1	40
Ericsson	RRUS 32 B66A	27.60	7.41	12.45	55.12	Flat	1	50
Ericsson	RRUS 4449 B5/B12	17.90	9.44	13.19	71.00	Flat	1	10
Iount Pipe 64								
Powerwave	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	10
Powerwave	7770.00	55.00	11.00	5.00	35.00	Flat	0.5	80
Powerwave	TME-LGP21401	14.40	9.20	2.60	14.10	Flat	2	60
Iount Pipe 52								
Iount Pipe 52 Andrew	SBNHH-1D65A	55.60	11.90	7.10	33.50	Flat	0.5	15
Andrew	SBNHH-1D65A	55.60	11.90	7.10	33.50	Flat	0.5	70
lount Pipe 61								
CCI	OPA65R-BU4D	48.00	21.00	7.80	62.30	Flat	0.5	25
CCI	OPA65R-BU4D	48.00	21.00	7.80	62.30	Flat	0.5	75
lount Pipe 80								
CCI	DMP65R-BU4D	48.00	20.70	7.70	76.50	Flat	0.5	20
CCI	DMP65R-BU4D	48.00	20.70	7.70	76.50	Flat	0.5	80
Ericsson	TME-RRUS 32 B30	27.20	12.10	7.00	53.00	Flat	1	40
	TME-RRUS 32 B30	27.20	12.10	7.00	52.90	Flat	1	40
Ericsson	INF-RRUS 37 B7							

PROJECT	136457.003	.01 - Branford	Banm	Tower	KSC
SUBJECT	Platform Mo	ount Mount An	alysis		
DATE	03/09/20	PAGE	3	OF	5

ount Pipe 60	RRUS 32 B66A	27.60	7.41	12.45	55.12	Flat	4	10
Ericsson							1	10
Ericsson	RRUS 4449 B5/B12	17.90	9.44	13.19	71.00	Flat	1	10
ount Pipe 5								
Raycap	TME-DC6-48-60-18-8C	31.41	10.24	10.24	26.20	Round	1	50
ount Pipe 5								
Raycap	TME-DC6-48-60-18-8C	31.41	10.24	10.24	26.20	Round	1	50
		01.11				littering		
-								
Provent Dire a								
ount Pipe							1	
ount Pipe								
oune ripe								-
ount Pipe								
ount Pipe								
lount Pipe								
lount Pipe								
ount Pipe								
ount Pipe								
ount Pipe								
iount Pipe								
iount Pipe								
iount Pipe								
iount Pipe								
iount Pipe								
iount Pipe								
Iount Pipe								
iount Pipe								
Iount Pipe								
Iount Pipe								
Iount Pipe								
Iount Pipe								

PROJECT	136457.003	3.01 - Branford	Banm	Tower	KSC
SUBJECT	Platform Mo	ount Mount Ana	lysis		
DATE	03/09/20	PAGE	1	OF	1


[REF: ANSI/TIA-222-H]


<u>INPUT</u>

Member Number	Section Set	Wind Projection (in)	Length (in)	Perimeter (in)	Shape	D _c (in)
1	MF-H1	3.00	168.00	12.00	Flat	4.24
2	MF-H1	3.00	168.00	12.00	Flat	4.24
3	MF-H1	3.00	168.00	12.00	Flat	4.24
4	F1-ST2	4.50	24.00	18.00	Flat	6,36
5	F1-ST1	4.00	11.00	16.00	Flat	5.66
6	F1-ST2	4.50	24.00	18.00	Flat	6.36
7	F1-ST1	4 <u>.</u> 00	11.00	16.00	Flat	5.66
8	F1-ST2	4 <u>.</u> 50	24.00	18.00	Flat	6.36
9	F1-ST1	4.00	11.00	16.00	Flat	5.66
13	MF-H2	3.00	46.00	18.00	Flat	6.00
14	MF-H2	3.00	46.00	18.00	Flat	6.00
15	MF-H2	3.00	46.00	18.00	Flat	6.00
16	MF-H1	3.00	88.32	12.00	Flat	4,24
17	MF-H1	3.00	88.32	12.00	Flat	4,24
18	MF-H1	3.00	88.32	12.00	Flat	4.24
22	Handrail	2.38	150.00	7.46	Round	2.38
23	Handrail	2.38	150.00	7.46	Round	2,38
24	Handrail	2.38	150.00	7.46	Round	2.38
25	F1-CA1	2.50	17.00	10.00	Flat	3.54
26	F1-CA1	2.50	17.00	10.00	Flat	3.54
27	F1-CA1	2,50	17.00	10.00	Flat	3.54
28	CP	4.00	3.00	18.75	Flat	9.01
29	Kicker	2.50	84.00	15.00	Flat	5.38
30	CP	4.00	3.00	18.75	Flat	9.01
31	Kicker	2.50	84.00	15.00	Flat	5.38
32	CP	4.00	3.00	18.75	Flat	9.01
33	Kicker	2.50	84.00	15.00	Flat	5.38
34	MF-P1	2.38	72.00	7.46	Round	2.38
43	MF-P1	2.38	72.00	7.46	Round	2.38
44	MF-P1	2.38	96.00	7.46		2.38
					Round	
47	MF-P1	2.38	72.00	7.46	Round	2.38
48	MF-P1	2.38	72.00	7.46	Round	2.38
51	MF-P1	2.38	72.00	7.46	Round	2.38
52	MF-P1	2.38	72.00	7.46	Round	2.38
60	MF-P1	2.38	72.00	7.46	Round	2.38
61	MF-P1	2.38	96.00	7.46	Round	2.38
64	MF-P1	2.38	72.00	7.46	Round	2.38
65	MF-P1	2.38	72.00	7.46	Round	2.38
74	MF-P1	2.38	72.00	7,46	Round	2.38
75	MF-P1	2.38	96.00	7.46	Round	2.38
78	MF-P1	2.38	72.00	7.46	Round	2.38
79	MF-P1	2.38	72.00	7.46	Round	2.38
80	MF-P1	2.38	96.00	7.46	Round	2.38

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

L	Dev B+T GRP 1717 S. Boulder, Suite 300	Tulsa, OK 74159 (918) 587-4630																										
KSC		OF		[ASCE7 Hazard Tool]				[Table 2-1]	[Sec. 2.6.5.1.2]	[Sec. 2.6.6.2]	1 [ASCE7 Hazard Tool]	[ASCE7 Hazard Tool]	1 [ASCE7 Hazard Tool]	[ASCE7 Hazard Tool]	[ASCE7 Hazard Tool]					[Soc 16 6]		[Sec. 2.6.6]	[Sec. 2.6.8]	- [Sec. 16.6]	[Sec. 16.6]	[Sec. 2.6.10]	[1able 2-3] [500 3771]	[Sec. 2///1] [Sec. 16.7]
136457,003.01 - Branford Bar	Platform Mount Mount Analysis	03/09/20 PAGE	Tower Type : Monopole	ation z _s :	: 147.00	110.00	Antenna Elevation : 112.00 ft Crest Height : 0 ft	п :	: station :	:	••	: 50	: 30	ess t _i : 1.00	Seismic Design Cat. : B	S _s : 0.20	S ₁ : 0.05	S _{DS} : 0.22	S _{D1} : 0.09	G · 1 00	officiant K .	κ. Υ	 ,	ctor K _d :	Shielding Factor K _a : 0.90	Design Ice Thickness $t_{i_{Z}}$: 1.13 in		Kesponse coerricient C _s : 0.108 Amplification A _s : 1.993197
PROJECT	SUBJECT	DATE	۲ 	ڻ 	F	2 4	₹ 0	~	Ш	۲́	\$	I	Ŵ	Ē	Ń						<u>م</u> ر		ш 		Ū		 ⊒ ⊂	ĽÆ

B+T GRP 1717 S. Boulder, Suite 300 Tulsa, OK 74159 (918) 587-4630

$\mathbf{F}_{A \ Ice} (T)$	0.01	0.01		0.01 0.01	0.02 0.02	0.01	0.01	0.01	0.01	0.02 0.01
F _{A Ice (N)}	0,02	0.02	70.0	0.01 0.01	0.04	0.03	0.03	0.02 0.02	0.01	0.01
F A No Ice (T)	0.05	0.05	0	0.04 0.04	0.07 0.07	0.06	0.06	0.07	0.08	0.12 0.06
F _{A No Ice (N)}	0.11	0.11	0.0	0.07 0.07	0.19 0.19	0.17	0.17	0.11	0.04	0.07 0.08
EPA _{T-Ice} (ft ²)	1.44	1.44 1.12	71.1	1.88 1.88	1.75 1.75	1.74	1.74	1.89 1.80	2.04	3.05 1.64
EPA _{N-Ice} (ft ²)	2.64	2.64 2.65	CO-7	2.84 2.84	4.06 4.06	4.01	4.01	2.94 2.02	1.30	2.00 2.16
$\textbf{EPA}_{T}(\text{ft}^{2})$	0.95	0.95	70.0	1.37 1.37	1.30 1.30	1.28	1.28	1.32 1.22	1.54	2.39 1.17
$\textbf{EPA}_{N} ~ (\text{ft}^2)$	2.10	2.10 1 84	L0.1	2.30 2.30	3.50 3.50	3.45	<u>3.45</u>	2.29 7.78	0.88	1.42 1.64
C _a flat/round	1.31	1.31 1.20	07.1	1.30 1.30	1.20 1.20	1.20	1.20	1.20 1.20	1.20	1.25 1.20
Aspect Ratio	5,00	5.00 1.57	10.1	4.67 4.67	2.29 2.29	2.32	2.32	2.25 7.76	2.14	3.72 1.36
Qty	0.5	0.5 2	V	0.5 0.5	0.5 0.5	0.5	0.5			
Model	7770.00	7770.00 TME-1 GD21401		SBNHH-1D65A SBNHH-1D65A	OPA65R-BU4D OPA65R-BU4D	DMP65R-BU4D	DMP65R-BU4D	TME-RRUS 32 B30 TME-DDLIS 32 B2	TME-RRUS 4478 B14	RRUS 32 B66A RRUS 4449 B5/B12
Manufacturer	Powerwave	Powerwave		Andrew Andrew	CCI	CC	CO	Ericsson	Ericsson	Ericsson

136457.003.01 - Branford BarKSCPlatform Mount Mount Analysis

PР

PAGE

03/09/20

DATE

PROJECT SUBJECT B+T GRP 1717 S. Boulder, Suite 300 Tulsa, OK 74159 (918) 587-4630

F _{A Ice (T)}	0.01	0.01	00.0	0.01	0.02 0.02	0.01	0.01	0.01	0.02	0.02	0.02	0,01	0.01 0.01	00'0
F _{A Ice (N)}	0.02	0.02	0.02	0.01 0.01	0.04 0.04	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.02 0.02	0.02
F _{A No Ice (T)}	0.05	0.05	0.03	0.04 0.04	0.07 0.07	0.06	0.06	0.08	0.12	0.12	0.12	0.08	0.05 0.05	0.03
F _{A No} Ice (N)	00.0	00.00	0.00	0.00	0.00	00.0	00.00	00.00	00.00	0 <u>.</u> 00	00.00	00'0	00 [.] 0	00'0
EPA _{T-Ice} (ft ²)	1.44	1.44	1.12	1.88 1.88	1.75 1.75	1.74	1.74	2.04	2.93	2.93	3.05	2.16	1.44 1.44	1.12
EPA _{N-Ice} (ft ²)	2.64	2.64	2.65	2.84 2.84	4.06 4.06	4.01	4.01	1.30	1.89	1.89	2.00	1.64	2.64 2.64	2.65
$\textbf{EPA}_{T}(\text{ft}^{2})$	0.95	0.95	0.52	1.37 1.37	1.30 1.30	1.28	1.28	1.54	2.28	2.28	2.39	1.64	0.95 0.95	0.52
$\textbf{EPA}_{N} ~ (\text{ft}^2)$	2.10	2.10	1.84	2.30 2.30	3.50 3.50	3.45	3.45	0.88	1.32	1.32	1.42	1.17	2.10 2.10	1.84
C _a flat/round	1.31	1.31	1.20	1.30 1.30	1.20 1.20	1.20	1.20	1.20	1.26	1.26	1.25	1.20	1.31 1.31	1.20
Aspect Ratio	5.00	5.00	1.57	4.67 4.67	2.29 2.29	2.32	2.32	2.14	3.89	3.89	3.72	1,90	5.00 5.00	1.57
Qty	0.5	0.5	2	0.5 0.5	0.5 0.5	0.5	0.5	1	μ	1	-	1	0.5 0.5	2
Model	7770.00	7770.00	TME-LGP21401	SBNHH-1D65A SBNHH-1D65A	OPA65R-BU4D OPA65R-BU4D	DMP65R-BU4D	DMP65R-BU4D	TME-RRUS 4478 B14	TME-RRUS 32 B2	TME-RRUS 32 B30	RRUS 32 B66A	RRUS 4449 B5/B12	7770.00 7770.00	TME-LGP21401
Manufacturer	Powerwave	Powerwave	Powerwave	Andrew Andrew	33	CCI	CCI	Ericsson	Ericsson	Ericsson	Ericsson	Ericsson	Powerwave Powerwave	Powerwave

 PROJECT
 136457.003.01 - Branford Bar

 SUBJECT
 Platform Mount Mount Analysis

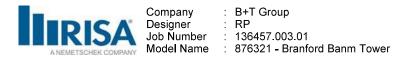
KSC

ОF

m

PAGE

03/09/20


DATE

KSC 136457.003.01 - Branford Bar

PР **Platform Mount Mount Analysis** 4 PAGE 03/09/20 PROJECT SUBJECT DATE

F _{A Ice (T)}	0.01 0.01	0.02 0.02	0.01 0.01 0.01 0.01 0.01 0.02 0.01	0.01	
$\mathbf{F}_{A \ Ice \ (N)}$	0.01 0.01	0.04	0.03 0.03 0.02 0.01 0.01 0.01	0.01	
F _{A No Ice (T)}	0.04	0.07 0.07	0.06 0.07 0.07 0.08 0.08 0.12 0.12	0.05	
F _{A No Ice (N)}	0.07	0.19 0.19	0.17 0.17 0.11 0.11 0.04 0.06 0.06	0.05	
EPA _{T-Ice} (ft ²)	1.88 1.88	1.75 1.75	1.74 1.74 1.89 1.89 2.04 2.05 2.16	2.92	
EPA _{N-Ice} (ft ²)	2.84 2.84	4.06	4.01 4.01 2.94 2.93 1.30 2.00 1.64	2.92	
$\text{EPA}_{T}\left(\text{ft}^{2}\right)$	1.37 1.37	1.30	1.28 1.28 1.32 1.32 1.54 2.39 1.64	2.23	
$\textbf{EPA}_{N} \; (\text{ft}^{2})$	2.30	3.50	3.45 3.45 2.29 2.28 0.88 1.42 1.17	2.23	
C _a flat/round	1.30	1.20	1.20 1.20 1.20 1.20 1.20 1.20	0.51	
Aspect Ratio	4.67 4.67	2.29 2.29	2.32 2.32 2.25 2.26 2.14 2.14 1.90	3.07	
Qty	0.5	0.5	0.5 0.5 1 1 1 1 1 1		
Model	SBNHH-1D65A SBNHH-1D65A	OPA65R-BU4D OPA65R-BU4D	DMP65R-BU4D DMP65R-BU4D TME-RRUS 32 B30 TME-RRUS 32 B2 TME-RUS 4478 B14 RRUS 32 B66A RRUS 32 B66A RRUS 4449 B5/B12	TME-DC6-48-60-18-8C TME-DC6-48-60-18-8C	
Manufacturer	Andrew Andrew	00	CCI CCI Ericsson Ericsson Ericsson Ericsson	Raycap Raycap	

Mar 9, 2020 4:59 PM Checked By:___

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	3	max	4 502	5	1.649	20	1.401	2	-1.214	2	3.35	5	.998	11
2		min	-4.507	11	.752	2	-1.406	8	-3.928	20	-3.358	11	946	5
3	5	max	2.654	3	1.479	14	4.797	3	2.107	2	4.165	9	3.262	23
4		min	-2.67	9	.639	8	-4.82	9	28	8	-4.153	3	1.05	5
5	7	max	2.611	7	1.463	18	4.722	13	2.011	14	3.979	13	826	12
6		min	-2.606	13	.678	12	-4.727	7	099	8	-3.992	7	-3.298	18
7	36	max	.482	12	1.682	6	.998	6	0	109	0	109	0	109
8		min	-1.729	6	472	12	278	12	0	1	0	1	0	1
9	39	max	1.804	10	1.752	10	1.042	10	0	109	0	109	0	109
10		min	541	4	527	4	312	4	0	1	0	1	0	1
11	33	max	.06	5	1.984	2	.944	8	0	109	0	109	0	109
12		min	06	11	785	8	-2.371	2	0	1	0	1	0	1
13	Totals:	max	6.368	5	8.518	20	8.275	2						
14		min	-6.368	11	4.123	2	-8.275	8						

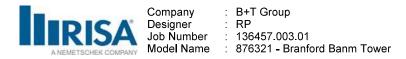
Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code C	. Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y	.phi*Mn z	. Cb	Eqn
1	1	L3X3X4	.588	7	66	.210	7	y	2	15.778	46.656	1.688	2.161	1	H2-1
2	2	L3X3X4	.643	1.312	8	.189	7	z	7	15.778	46.656	1.688	2.161	1	H2-1
3	3	L3X3X4	.614	12.687	7	.184	7	V	10	15.778	46.656	1.688	2.161	1	H2-1
4	4	HSS4.5X4.5X4	.123	2	22	.157	2	z	11	156.915	158.976	20.907	20.907	1	H1-1b
5	5	HSS4X4X4	.326	.917	5	.191	.917	z	11	139.028	139.518	16.181	16.181	1	H1-1b
6	6	HSS4.5X4.5X4	.130	1.917	2	.192	2	z	3	156.915	158.976	20.907	20.907	1	H1-1b
7	7	HSS4X4X4	.387	.917	3	.231	.917	z	3	139.028	139.518	16.181	16.181	1	H1-1b
8	8	HSS4.5X4.5X4	.123	1.917	2	.188	2	z	7	156.915	158.976	20.907	20.907	1	H1-1b
9	9	HSS4X4X4	.365	.917	7	.225	.917	z	7	139.028	139.518	16.181	16.181	1	H1-1b
10	13	LL3x3x4x0	.293	0	13	.077	.958	V	13	76.456	93.312	6.48	4.364	1	H1-1b
11	14	LL3x3x4x0	.272	0	8	.075	.958	ý	8	76.456	93.312	6.48	4.364	1	H1-1b
12	15	LL3x3x4x0	.308	0	9	.079	.958	V	8	76.456	93.312	6.48	4.364	1	H1-1b
13	16	L3X3X4	.201	3.68	12	.016	3.68	v	22	34.564	46.656	1.688	3.756	1	H2-1
14	17	L3X3X4	.245	3.68	8	.016	3.68	V	14	34,564	46.656	1,688	3,756	1	H2-1
15	18	L3X3X4	.234	3.68	8	.015	3.68	Ŷ	18	34.564	46.656	1.688	3.756	1	H2-1
16	22	PIPE 2.0	.670	8.333	8	.317	11.719		8	6.295	32.13	1.872	1.872	4	H3-6
17	23	PIPE 2.0	.652	4.167	13	.322	.781		12	6.295	32.13	1.872	1.872	2	H3-6
18	24	PIPE 2.0	.521	.781	2	.260	.781		4	6.295	32.13	1.872	1.872	3	H1-1b
19	25	L2.5x2.5x3	.653	0	13	.113	0	٧	5	27.174	29.192	.873	1.972	1	H2-1
20	26	L2.5x2.5x3	.609	1.417	7	.124	0	z	9	27.174	29.192	.873	1.972	1	H2-1
21	27	L2.5x2.5x3	.602	0	9	.152	1.417	z	7	27.174	29.192	.873	1.972	2	H2-1
22	28	PL3/8x9	.045	0	13	.057	0	٧	2	105.017	109.35	.854	20.503	1	H1-1b
23	29	LL2.5x2.5x3x3	.101	7	2	.003	7	z	11	31.22	58.32	3.954	2.511	1	H1-1b*
24	30	PL3/8x9	.040	0	7	.049	0	V	6	105.017	109.35	.854	20.503	1	H1-1b
25	31	LL2.5x2.5x3x3	.091	3.5	7	.003	7	z	9	31.22	58.32	3.954	2.511	1	H1-1b
26	32	PL3/8x9	.042	0	9	.050	0	V	10	105.017	109.35	.854	20.503	1	H1-1b
27	33	LL2.5x2.5x3x3	.093	3.5	9	.003	7	z	13	31.22	58.32	3.954	2.511	1	H1-1b
28	34	PIPE 2.0	.482	5.125	6	.263	1.375		8	20.867	32.13	1.872	1.872	1	H1-1b
29	43	PIPE 2.0	.642	5	12	.399	5		7	20.867	32,13	1,872	1.872	2	H3-6
30	44	PIPE 2.0	.242	2.5	6	.161	5.5		7	14.916	32.13	1.872	1.872	4	H1-1b
31	47	PIPE 2.0	.623	4.813	5	.349	4.813		9	20.867	32.13	1.872	1.872	2	H1-1b
32	48	PIPE 2.0	.258	1.625		141	4.688		9	20.867	32.13	1.872	1.872	2	H1-1b
33	51	PIPE 2.0	.488	5.5	10	.279	1.688		8	20,867	32,13	1,872	1.872	2	H1-1b
34	52	PIPE 2.0	.561	5.5	9	.294	5.5		7	20.867	32,13	1,872	1.872		H1-1b
35	60	PIPE 2.0	.814	5	3	.376	5		10		32.13	1.872	1.872		H1-1b
36	61	PIPE 2.0	.420	2.083		.153	5.5		11	14.916	32.13	1.872	1.872		H1-1b
37	64	PIPE 2.0	.658	5.125		.259	5.125		12		32.13	1.872	1.872		H1-1b

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

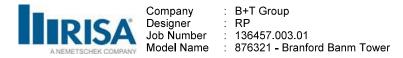
	Member	Shape	Code C	. Loc[ft]	LC	Shear	Loc[ft]	Dir L	С	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y	.phi*Mn z	.Cb E	<u>iqn</u>
38	65	PIPE 2.0	.582	5.125	2	.222	5.125	1	1	20.867	32.13	1.872	1.872	1 H1	-1b
39	74	PIPE 2.0	.861	5	8	.413	5		2	20.867	32.13	1.872	1.872	2 H;	3-6
40	75	PIPE 2.0	.315	5.75	7	.146	5.75		3	14.916	32.13	1.872	1.872	4 H1	-1b
41	78	PIPE 2.0	.683	4.813	13	.212	4.813	ł	5	20.867	32.13	1.872	1.872	1 H1	-1b
42	79	PIPE 2.0	.543	5.125	7	.251	5.125	9	9	20.867	32.13	1.872	1.872	1 H1	-1b
43	80	PIPE 2.0	.673	6.667	9	.263	6.667	1	3	14.916	32.13	1.872	1.872	1 H1	-1b

Hot Rolled Steel Properties

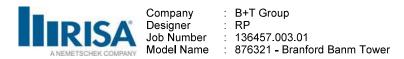

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Materia	Design Rules	A [in2]	yy [in4]	zz [in4]	J [in4]
1	F1-ST1	HSS4X4X4	Beam	None	A500 Gr.B R	Typical	3.37	7.8	7.8	12.8
2	F1-ST2	HSS4.5X4.5	Beam	None	A500 Gr.B R	Typical	3.84	11.4	11.4	18.5
3	MF-H1	L3X3X4	Beam	None	A36 Gr.36	Typical	1.44	1.23	1.23	.031
4	Handrail	PIPE 2.0	Beam	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
5	MF-P1	PIPE 2.0	Column	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	F1-CA1	L2.5x2.5x3	Beam	None	A36 Gr.36	Typical	.901	.535	.535	.011
7	Kicker	LL2.5x2.5x3	VBrace	None	A36 Gr.36	Typical	1.8	2.46	1.07	.023
8	MF-H2	LL3x3x4x0	Beam	None	A36 Gr.36	Typical	2.88	4.5	2.46	.063
9	CP	PL3/8x9	Column	None	A36 Gr.36	Typical	3.375	.04	22.781	.154


Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	1	Ō	0	0	Ó Í	
2	2	0.	-0.333333	2.041452	0	
3	3	0.	-0.333333	1.124785	0	
4	4	1.767949	-0.333333	-1.020726	0	
5	5	0.974093	-0.333333	-0.562393	0	
6	6	-1.767949	-0.333333	-1.020726	0	
7	7	-0.974093	-0.333333	-0.562393	0	
8	8	0.	-0.333333	4.041452	0	
9	9	0.	0	4.041452	0	
10	10	3.5	-0.333333	-2.020726	0	
11	11	3.5	0	-2.020726	0	
12	12	-3.5	-0.333333	-2.020726	0	
13	13	-3.5	0	-2.020726	0	
14	14	-0.	0	-8.082904	0	
15	15	-7	0	4.041452	0	
16	16	7	0	4.041452	0	
17	17	3.680236	0	2.124785	0	
18	18	-0.	0	-4.24957	0	
19	19	-3.680236	0	2.124785	0	
20	20	0.	0	2.124785	0	
21	21	0.	-0.333333	2.124785	0	

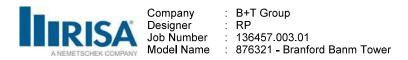

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
22	22	1.840118	0	-1.062393	0	
23	23	1.840118	-0.333333	-1.062393	0	
24	24	-1.840118	0	-1.062393	0	
25	25	-1.840118	-0.333333	-1.062393	0	
26 27	<u>26</u> 27	<u>-6.25</u> 6.25	3.833333	4.041452 4.041452	0	
28	28	6.625	3.833333 3.833333	3.391933	0	
29	20	.375	3.833333	-7.433385	0	
30	30				0	
31	30 31	<u>375</u> -6.625	3.833333	-7.433385	0	
32	32	-0.025	<u>3.833333</u> 0	<u>3.391933</u> -7.116667	0	
33	33	0	-4.642942	-1.666667	0	
34	34	-0.	-4.042942	-7.116667	0	
35	35	-0.	-4e-16	3.558333	0	
36	36	-1.443376	-4.642942	0.833333	0	
37	37	-6.163214	-4.042942	3.558333	0	
38	38	6.163214	25	3.558333	0	
39	39	1.443376	-4.642942	0.833333	0	
40	40	6.163214	-4.042942	3.558333	0	
40 41	40 41	-5.708334	5.166667	4.265618	0	
12	41	-5.708334	-0.833333	4.265618	0	
+ <u>-</u> 13	42 43	-5.708334	3.833333	4.041452	0	
14	43	-5.708334	3.833333	4.265618	0	
14 15	44 45	-5.708334	0	4.041452	0	
46	40	-5.708334	0	4.265618	0	
47	40 47	-1.958334	3.833333	4.041452	0	
18	48	-1.958334	3.833333	4.265618	0	
49	40 49	-1.958334	0	4.041452	0	
50	50	-1.958334	0	4.265618	0	
51	51	1.958333	3.833333	4.041452	0	
52	52	1.958333	3.833333	4.265618	0	
53	53	1.958333	0	4.041452	0	
54	54	1.958333	0	4.265618	0	
55	55	5.708333	3.833333	4.041452	0	
56	56	5.708333	3.833333	4.265618	0	
57	57	5.708333	0	4.041452	0	
58	58	5.708333	0	4.265618	0	
59	59	-1.958334	5	4.265618	0	
59 50	60	-1.958334	-1	4.265618	0	
50 51	61	-1.958334	5.916667	4.682285	0	
52	62	-1.958334	-2.083333	4.682285	0	
52 53	63	-1.958334	3.475362	4.265618	0	
64	64	-1.958334	3.475362	4.682285	0	
55 55	65	-1.958334	0.373254	4.265618	0	
6	66	-1.958334	0.373254	4.682285	0	
67	67	1.958333	4.833333	4.265618	0	
58	68	1.958333	-1.166667	4.265618	0	
59	69	1.958333	5.166667	4.682285	0	
70	70	1.958333	-0.833333	4.682285	0	
71	70	1.958333	3.556374	4.062265	0	
72	72	1.958333	3.556374	4.682285	0	
73	73		0.449898		0	
		1.958333		4.265618		
74	74	1.958333	0.449898	4.682285	0	
75 76	<u>75</u> 76	5.708333	5.5	4.265618	0	
(1)		<u>5.708333</u> 6.5483	5 5.5	4.265618 2.810753	0	
77	77	C L 103				

Joint Coordinates and Temperatures (Continued)

70		X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
79	79	6.354167	3.833333	2.922836	0	
80	80	6.5483	3.833333	2.810753	0	
81	81	6.354167	0	2.922836	0	
82	82	6.5483	0	2.810753	0	
83	83	4.6733	3.833333	-0.436842	0	
84	84	4.479167	0	-0.324759	0	
85	85	4.6733	0	-0.436842	0	
86	86	2.520834	3.833333	-3.716692	0	
87	87	2.714967	3.833333	-3.828775	0	
88	88	2.520834	0	-3.716692	0	
89	89	2.714967	3,833333	-3.828775	0	
90	90	0.645833		-6.964288	0	
91	91	0.839967	3.833333	-7.07637	0	
92	92	0.645834	0	-6.964287	0	
93	93	0.839967	0	-7.07637	0	
94	94	4.6733	5	-0.436842	0	
95	95	4.6733	-1	-0.436842	0	
96	96	5.034144	5.916667	-0.645175	0	
97	97	5.034144	-2.083333	-0.645175	0	
98	98	4.6733	3.475362	-0.436842	0	
99	99	5.034144	3.475362	-0.645175	0	
100	100	4.6733	0.373254	-0.436842	0	
101	101	5.034144	0.373254	-0.645175	0	
102	102	0.839967	5.166667	-7.07637	0	
03	103	0.839967	-0.833333	-7.07637	0	
104	104	-0.839966	5.166667	-7.076371	0	
105	105	-0.839966	-0.833333	-7.076371	0	
106	106	-0.645833	3.833333	-6.964288	0	
107	107	-0.839966	3.833333	-7.076371	0	
108	108	-0.645833	0	-6.964288	0	
09	109	-0.839966	0	-7.076371	0	
10	110	-2.520833	3.833333	-3.716693	0	
111	111	-2.714966	3.833333	-3.828776	0	
12	112	-2.520833	0	-3.716693	0	
13	113	-2.714966	0	-3.828776	0	
14	114	-4.479166	3.833333	-0.32476	0	
15	115	-4.6733	3.833333	-0.436843	0	
16	116	-4.479166	0	-0.32476	0	
117	117	-4.6733	0	-0.436843	0	
18	118	-6.354166	3.833333	2.922835	0	
19	119	-6.5483	3.833333	2.810752	0	
20	120	-6.354166	0	2.922835	0	
21	121	-6.5483	0	2.810752	0	
22	122	-2.714966	5	-3.828776	0	
23	123	-2.714966	-1	-3.828776	0	
24	124	-3.07581	6.166667	-4.037109	0	
25	125	-3.07581	-1.833333	-4.037109	0	
26	126	-2.714966	3.475362	-3.828776	0	
27	127	-3.07581	3.475362	-4.037109	0	
28	128	-2.714966	0.373254	-3.828776	0	
29	129	-3.07581	0.373254	-4.037109	0	
30	130	-4.6733	4.833333	-0.436843	0	
31	131	-4.6733	-1.166667	-0.436843	0	
32	132	-6.5483	5.166667	2.810752	0	
33	133	-6.5483	-0.833333	2.810752	0	
34	134	2.714967	6.666667	-3.828775	0	
35	135	2.714967	-1.333333	-3.828775	0	

Joint Coordinates and Temperatures (Continued)


	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
136	136	4.479167	3.833333	-0.324759	0	
137	137	5.034144	3.833333	-0.645175	0	
138	138	5.583333	3.833333	4.041452	0	
139	139	-5.583334	3.833333	4.041452	0	
140	140	0.708333	3.833333	-6.856035	0	
141	141	6.291667	3.833333	2.814583	0	
142	142	-6.291666	3.833333	2.814582	0	
143	143	-0.708333	3.833333	-6.856035	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	3	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	5	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	7	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	36	Reaction	Reaction	Reaction			
5	39	Reaction	Reaction	Reaction			
6	33	Reaction	Reaction	Reaction			

Member Primary Data

2 2 16 14 270 MF-H1 Beam None A36 Gr.36 Ty 3 3 14 15 270 MF-H1 Beam None A36 Gr.36 Ty 4 4 8 2 F1-ST2 Beam None A500 Gr.B Ty 5 5 2 3 F1-ST1 Beam None A500 Gr.B Ty 6 6 10 4 F1-ST2 Beam None A500 Gr.B Ty 7 7 4 5 F1-ST2 Beam None A500 Gr.B Ty 9 9 6 7 F1-ST1 Beam None A500 Gr.B Ty 10 10 8 9 RIGID None None A500 Gr.B Ty 11 11 10 11 RIGID None None RIGID Ty 12 12 13 14		Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Materia	Design Rules
3 3 14 15 270 MF-H1 Beam None A36 Gr.36 Ty 4 4 8 2 F1-ST1 Beam None A500 Gr.B Ty 5 5 2 3 F1-ST1 Beam None A500 Gr.B Ty 6 6 10 4 F1-ST2 Beam None A500 Gr.B Ty 7 7 4 5 F1-ST1 Beam None A500 Gr.B Ty 8 12 6 F1-ST1 Beam None A500 Gr.B Ty 10 10 8 9 RIGID None None A500 Gr.B Ty 11 11 10 11 RIGID None None RIGID Ty 13 13 14 18 180 MF-H2 Beam None A36 Gr.36 Ty 14 14 15 19 180 <td>1</td> <td>1</td> <td></td> <td>16</td> <td></td> <td></td> <td>MF-H1</td> <td>Beam</td> <td>None</td> <td></td> <td>Typical</td>	1	1		16			MF-H1	Beam	None		Typical
4 4 8 2 F1-ST2 Beam None A500 Gr.B Ty 5 5 2 3 F1-ST1 Beam None A500 Gr.B Ty 6 6 10 4 F1-ST1 Beam None A500 Gr.B Ty 7 7 4 5 F1-ST1 Beam None A500 Gr.B Ty 8 8 12 6 F1-ST2 Beam None A500 Gr.B Ty 9 9 6 7 F1-ST1 Beam None A500 Gr.B Ty 10 10 8 9 RIGID None None RIGID Ty 11 11 10 11 RIGID None None RIGID Ty 12 12 13 RIGID None None A36 Gr.36 Ty 13 13 14 18 18 None A36 Gr.36 <td>2</td> <td>2</td> <td>16</td> <td>14</td> <td></td> <td>270</td> <td>MF-H1</td> <td>Beam</td> <td>None</td> <td>A36 Gr.36</td> <td>Typical</td>	2	2	16	14		270	MF-H1	Beam	None	A36 Gr.36	Typical
5 5 2 3 F1-ST1 Beam None A600 Gr.B Tv 6 6 10 4 F1-ST1 Beam None A500 Gr.B Tv 7 7 4 5 F1-ST1 Beam None A500 Gr.B Tv 9 9 6 7 F1-ST1 Beam None A500 Gr.B Tv 10 10 8 9 RIGID None None A500 Gr.B Tv 11 11 10 11 RIGID None None RIGID Tv 12 12 12 13 RIGID None None A36 Gr.36 Tv 14 14 15 19 180 MF-H2 Beam None A36 Gr.36 Tv 15 16 17 180 MF-H1 Beam None A36 Gr.36 Tv 16 16 19 17 RIGID </td <td>3</td> <td>3</td> <td>14</td> <td>15</td> <td></td> <td>270</td> <td>MF-H1</td> <td>Beam</td> <td>None</td> <td>A36 Gr.36</td> <td>Typical</td>	3	3	14	15		270	MF-H1	Beam	None	A36 Gr.36	Typical
6 6 10 4 F1-ST2 Beam None A500 Gr.B Ty 7 7 4 5 F1-ST2 Beam None A500 Gr.B Ty 8 8 12 6 F1-ST2 Beam None A500 Gr.B Ty 9 9 6 7 F1-ST1 Beam None A500 Gr.B Ty 10 10 8 9 RIGID None None A500 Gr.B Ty 11 11 10 11 RIGID None None RIGID Ty 12 12 13 RIGID None None A36 Gr.36 Ty 14 14 15 19 180 MF-H2 Beam None A36 Gr.36 Ty 15 15 16 17 180 MF-H1 Beam None A36 Gr.36 Ty 16 19 17 7 8	4	4	8	2			F1-ST2	Beam	None	A500 Gr.B	Typical
7 7 4 5 F1-ST1 Beam None A500 Gr.B TV 8 8 12 6 F1-ST1 Beam None A500 Gr.B TV 9 9 6 7 F1-ST1 Beam None A500 Gr.B TV 10 10 8 9 RIGID None None RIGID TV 11 11 10 11 RIGID None None RIGID TV 12 12 12 13 RIGID None None A36 Gr.36 TV 13 13 14 18 180 MF-H2 Beam None A36 Gr.36 TV 15 16 17 180 MF-H1 Beam None A36 Gr.36 TV 16 16 19 17 17 18 MF-H1 Beam None A36 Gr.36 TV 17 17 18	5	5	2	3			F1-ST1	Beam	None		Typical
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	6	10	4			F1-ST2	Beam	None		Typical
9 9 6 7 F1-ST1 Beam None A500 Gr.B Ty 10 10 8 9 RIGID None None RIGID Ty 11 11 10 11 RIGID None None RIGID Ty 12 12 13 RIGID None None RIGID Ty 13 13 14 18 180 MF-H2 Beam None A36 Gr.36 Ty 15 15 16 17 180 MF-H2 Beam None A36 Gr.36 Ty 16 19 17 180 MF-H1 Beam None A36 Gr.36 Ty 17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 21 21 24 25 RIGID <td< td=""><td>7</td><td>7</td><td></td><td>5</td><td></td><td></td><td>F1-ST1</td><td>Beam</td><td>None</td><td></td><td>Typical</td></td<>	7	7		5			F1-ST1	Beam	None		Typical
10 10 8 9 RIGID None None RIGID Ty 11 11 10 11 RIGID None None RIGID Ty 12 12 12 13 RIGID None None RIGID Ty 13 13 14 18 180 MF-H2 Beam None A36 Gr.36 Ty 15 15 16 17 180 MF-H2 Beam None A36 Gr.36 Ty 16 16 19 17 180 MF-H1 Beam None A36 Gr.36 Ty 17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 18 18 19 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 21 21 24 25 R	8	8	12	6			F1-ST2	Beam	None		Typical
11 11 11 RIGID None None RIGID Ty 12 12 12 13 RIGID None None RIGID Ty 13 13 14 18 180 MF-H2 Beam None A36 Gr.36 Ty 14 14 15 19 180 MF-H2 Beam None A36 Gr.36 Ty 15 16 17 180 MF-H1 Beam None A36 Gr.36 Ty 17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 18 18 18 19 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 21 21 24 25 RIGID None None RIGID Ty 22 22 26 27 Handrail	9	9	6	7			F1-ST1	Beam	None	A500 Gr.B	Typical
12 12 12 13 RIGID None None RIGID Ty 13 13 14 18 180 MF-H2 Beam None A36 Gr.36 Ty 14 14 15 19 180 MF-H2 Beam None A36 Gr.36 Ty 15 15 16 17 180 MF-H1 Beam None A36 Gr.36 Ty 16 16 19 17 180 MF-H1 Beam None A36 Gr.36 Ty 17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 20 20 22 23 RIGID None None A53 Gr.B Ty 23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24	10	10	8	9			RIGID	None	None	RIGID	Typical
13 13 14 18 180 MF-H2 Beam None A36 Gr.36 Ty 14 14 15 19 180 MF-H2 Beam None A36 Gr.36 Ty 15 15 16 17 180 MF-H2 Beam None A36 Gr.36 Ty 16 16 19 17 180 MF-H1 Beam None A36 Gr.36 Ty 17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 18 18 18 19 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 20 20 22 23 RIGID None None A53 Gr.36 Ty 23 23 28 29 Handrail Beam None A53 Gr.36 Ty 24 24<								None	None		Typical
14 14 15 19 180 MF-H2 Beam None A36 Gr.36 Ty 15 15 16 17 180 MF-H2 Beam None A36 Gr.36 Ty 16 16 19 17 18 MF-H1 Beam None A36 Gr.36 Ty 17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 18 18 18 19 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 21 21 24 25 RIGID None None A53 Gr.8 Ty 23 23 28 29 Handrail Beam None A53 Gr.8 Ty 24 24 30 31 Handrail Beam None A36 Gr.36 Ty 26 26 139<			12				RIGID	None	None		Typical
14 14 15 19 180 MF-H2 Beam None A36 Gr.36 Ty 15 15 16 17 180 MF-H2 Beam None A36 Gr.36 Ty 16 16 19 17 MF-H1 Beam None A36 Gr.36 Ty 17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 18 18 18 19 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 21 21 24 25 RIGID None None A53 Gr.8 Ty 23 23 28 29 Handrail Beam None A53 Gr.8 Ty 24 24 30 31 Handrail Beam None A53 Gr.8 Ty 26 26 139 142<								Beam	None		Typical
16 16 19 17 MF-H1 Beam None A36 Gr.36 Ty 17 17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 18 18 18 19 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 20 20 22 23 RIGID None None RIGID Ty 21 21 24 25 RIGID None None RIGID Ty 23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24 30 31 Handrail Beam None A36 Gr.36 Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142	14	14	15	19		180	MF-H2	Beam	None		Typical
17 17 17 18 MF-H1 Beam None A36 Gr.36 Ty 18 18 18 19 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 20 20 22 23 RIGID None None RIGID Ty 21 21 24 25 RIGID None None RIGID Ty 22 22 26 27 Handrail Beam None A53 Gr.B Ty 23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24 30 31 Handrail Beam None A53 Gr.B Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28	15	15	16	17		180		Beam	None	A36 Gr.36	Typical
18 18 18 19 MF-H1 Beam None A36 Gr.36 Ty 19 19 20 21 RIGID None None RIGID Ty 20 20 22 23 RIGID None None RIGID Ty 21 21 24 25 RIGID None None RIGID Ty 22 22 26 27 Handrail Beam None A53 Gr.B Ty 23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24 30 31 Handrail Beam None A53 Gr.B Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>MF-H1</td> <td>Beam</td> <td>None</td> <td></td> <td>Typical</td>							MF-H1	Beam	None		Typical
19 19 20 21 RIGID None None RIGID Ty 20 20 22 23 RIGID None None None RIGID Ty 21 21 24 25 RIGID None None None RIGID Ty 22 22 26 27 Handrail Beam None A53 Gr.B Ty 23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24 30 31 Handrail Beam None A53 Gr.B Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36	17						MF-H1	Beam	None		Typical
20 22 23 RIGID None None RIGID Ty 21 21 24 25 RIGID None None RIGID Ty 22 22 26 27 Handrail Beam None A53 Gr.B Ty 23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24 30 31 Handrail Beam None A53 Gr.B Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 27 27 141 138 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 30 30 <	18							Beam	None		Typical
21 21 24 25 RIGID None None RIGID Ty 22 22 26 27 Handrail Beam None A53 Gr.B Ty 23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24 30 31 Handrail Beam None A53 Gr.B Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 27 27 141 138 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36								None	None		Typical
22 22 26 27 Handrail Beam None A53 Gr.B Ty 23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24 30 31 Handrail Beam None A53 Gr.B Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 27 27 141 138 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty <tr< td=""><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td>None</td><td>None</td><td></td><td>Typical</td></tr<>	20							None	None		Typical
23 23 28 29 Handrail Beam None A53 Gr.B Ty 24 24 30 31 Handrail Beam None A53 Gr.B Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 27 27 141 138 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 29 29 33 34 Kicker VBrace None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>None</td><td></td><td></td><td>Typical</td></td<>								None			Typical
24 24 30 31 Handrail Beam None A53 Gr.B Ty 25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 27 27 141 138 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 29 29 33 34 Kicker VBrace None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None A36 Gr.36 Ty								Beam			
25 25 143 140 180 F1-CA1 Beam None A36 Gr.36 Ty 26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 27 27 141 138 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 29 29 33 34 Kicker VBrace None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 Model Kicker VBrace None A36 Gr.36 Ty								Beam			
26 26 139 142 180 F1-CA1 Beam None A36 Gr.36 Ty 27 27 141 138 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 29 29 33 34 Kicker VBrace None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 30 CP Column None A36 Gr.36 Ty				31				Beam			
27 27 141 138 180 F1-CA1 Beam None A36 Gr.36 Ty 28 28 32 34 90 CP Column None A36 Gr.36 Ty 29 29 33 34 Kicker VBrace None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 Model Kicker VBrace None A36 Gr.36 Ty			143	140		180	F1-CA1		None		Typical
28 28 32 34 90 CP Column None A36 Gr.36 Ty 29 29 33 34 Kicker VBrace None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 Kicker VBrace None A36 Gr.36 Ty			139			180	F1-CA1	Beam	None		Typical
29 29 33 34 Kicker VBrace None A36 Gr.36 Ty 30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 Kicker VBrace None A36 Gr.36 Ty		27	141	138		180	F1-CA1				Typical
30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 Kicker VBrace None A36 Gr.36 Ty	28	28	32	34		90	CP		None		Typical
30 30 35 37 330 CP Column None A36 Gr.36 Ty 31 31 36 37 Kicker VBrace None A36 Gr.36 Ty 32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 Kicker VBrace None A36 Gr.36 Ty								VBrace	None		Typical
32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 Kicker VBrace None A36 Gr.36 Ty						330	CP	Column	None		Typical
32 32 38 40 30 CP Column None A36 Gr.36 Ty 33 33 39 40 Kicker VBrace None A36 Gr.36 Ty				37			Kicker		None		Typical
33 39 40 Kicker VBrace None A36 Gr.36 Ty	32	32	38	40		30	CP		None		Typical
	33	33	39				Kicker		None	A36 Gr 36	Typical
<u>34 34 41 42 MIF-P1 Column None A53 Gr.B Ty</u>	34	34	41	42			MF-P1	Column	None	A53 Gr.B	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(dea)	Section/Shape	Туре	Design List	Material	Design Rules
35	35	43	44			RIGID	None	None	RIGID	Typical
36	36	45	46			RIGID	None	None	RIGID	Typical
37	37	47	48			RIGID	None	None	RIGID	Typical
38	38	49	50			RIGID	None	None	RIGID	Typical
39	39	51	52			RIGID	None	None	RIGID	Typical
40	40	53	54			RIGID	None	None	RIGID	Typical
41	41	55	56			RIGID	None	None	RIGID	Typical
42	42	57	58			RIGID	None	None	RIGID	Typical
43	43	59	60			MF-P1	Column	None	A53 Gr.B	Typical
44	44	61	62			MF-P1	Column	None	A53 Gr.B	Typical
45	45	63	64			RIGID	None	None	RIGID	Typical
46	46	65	66			RIGID	None	None	RIGID	Typical
47	47	67	68			MF-P1	Column	None	A53 Gr.B	Typical
48	48	69	70			MF-P1	Column	None	A53 Gr.B	Typical
49	49	71	72			RIGID	None	None	RIGID	Typical
50	50	73	74			RIGID	None	None	RIGID	Typical
51	51	75	76			MF-P1	Column	None	A53 Gr.B	Typical
52	52	77	78			MF-P1	Column	None	A53 Gr.B	
53	53	79	80			RIGID	None	None	RIGID	Typical
54	54	81	82			RIGID	None	None	RIGID	Typical
55	55	84	85			RIGID	None	None	RIGID	Typical
56	56	86	87			RIGID	None	None	RIGID	Typical
57	57	88	89			RIGID	None	None	RIGID	Typical
58	58	90	91			RIGID	None	None	RIGID	Typical
59	59	92	93			RIGID	None	None	RIGID	Typical
60	60	94	95			MF-P1	Column	None	A53 Gr.B	
61	61	96	97			MF-P1	Column	None	A53 Gr.B	
62	62	98	99			RIGID	None	None	RIGID	Typical
63	63	100	101			RIGID	None	None	RIGID	Typical
64	64	102	103			MF-P1	Column	None	A53 Gr.B	Typical
65	65	104	105			MF-P1	Column	None	A53 Gr.B	
66	66	106	107			RIGID	None	None	RIGID	Typical
67	67	108	109			RIGID	None	None	RIGID	Typical
68	68	110	111			RIGID	None	None	RIGID	Typical
69	69	112	113			RIGID	None	None	RIGID	Typical
70	70	114	115			RIGID	None	None	RIGID	Typical
71	71	116	117			RIGID	None	None	RIGID	Typical
72	72	118	119			RIGID	None	None	RIGID	Typical
73	73	120	121			RIGID	None	None	RIGID	Typical
74	74	122	123			MF-P1	Column	None	A53 Gr.B	Typical
75	75	124	125			MF-P1	Column	None	A53 Gr.B	Typical
76	76	126	127			RIGID	None	None	RIGID	Typical
77	77	128	129			RIGID	None	None	RIGID	Typical
78	78	130	131			MF-P1	Column	None	A53 Gr.B	Typical
79	79	132	133			MF-P1	Column	None	A53 Gr.B	
80	80	134	135			MF-P1	Column	None	A53 Gr.B	
81	81	136	137			RIGID	None	None	RIGID	Typical

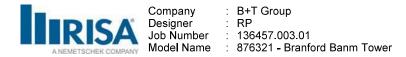
Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft] L-	-torg	Куу	Kzz	Cb	Function
1	1	MF-H1	14	7	7	Lbyy						Lateral
2	2	MF-H1	14	7	7	Lbyy						Lateral
3	3	MF-H1	14	7	7	Lbyy						Lateral
4	4	F1-ST2	2			Lbyy						Lateral
5	5	F1-ST1	.917			Lbyy						Lateral

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]		Lcomp bot[ft]	L-torg	Kyy	Kzz	Cb	Function
6	6	F1-ST2	2			Lbyy						Lateral
7	7	F1-ST1	.917			Lbyy						Lateral
8	8	F1-ST2	2			Lbyy						Lateral
9	9	F1-ST1	.917			Lbyy						Lateral
10	13	MF-H2	3.833			Lbyy						Lateral
11	14	MF-H2	3.833			Lbyy						Lateral
12	15	MF-H2	3.833			Lbyy						Lateral
13	16	MF-H1	7.36	3.68	3.68	Lbyy						Lateral
14	17	MF-H1	7.36	3.68	3.68	Lbyy						Lateral
15	18	MF-H1	7.36	3.68	3.68	Lbyy						Lateral
16	22	Handrail	12.5			Lbyy						Lateral
17	23	Handrail	12.5			Lbyy						Lateral
18	24	Handrail	12.5			Lbyy						Lateral
19	25	F1-CA1	1.417			Lbyy						Lateral
20	26	F1-CA1	1.417			Lbyy						Lateral
21	27	F1-CA1	1.417			Lbyy						Lateral
22	28	CP	.25			Lbyy						Lateral
23	29	Kicker	7			Lbyy						Lateral
24	30	CP	.25			Lbyy						Lateral
25	31	Kicker	7			Lbyy						Lateral
26	32	CP	.25			Lbyy						Lateral
27	33	Kicker	7			Lbyy						Lateral
28	34	MF-P1	6			Lbyy						Lateral
29	43	MF-P1	6			Lbyy						Lateral
30	44	MF-P1	8			Lbyy						Lateral
31	47	MF-P1	6			Lbyy						Lateral
32	48	MF-P1	6			Lbyy						Lateral
33	51	MF-P1	6			Lbyy						Lateral
34	52	MF-P1	6			Lbyy						Lateral
35	60	MF-P1	6			Lbyy						Lateral
36	61	MF-P1	8			Lbyy						Lateral
37	64	MF-P1	6			Lbyy						Lateral
38	65	MF-P1	6			Lbyy						Lateral
39	74	MF-P1	6			Lbyy						Lateral
40	75	MF-P1	8			Lbyy						Lateral
41	78	MF-P1	6			Lbyy						Lateral
42	79	MF-P1	6			Lbyy						Lateral
43	80	MF-P1	8			Lbyy						Lateral

Joint Loads and Enforced Displacements (BLC 11 : Live Load a)


	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
1	45	L	Y	5
2	81	L	Y	5
3	108	L	Y	5

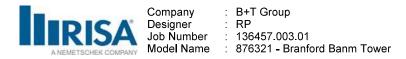
Joint Loads and Enforced Displacements (BLC 12 : Live Load b)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
1	49	L	Y	5
2	84	L	Y	5
3	112		Y	- 5

Joint Loads and Enforced Displacements (BLC 13 : Live Load c)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
1	53	L	Y	5

Joint Loads and Enforced Displacements (BLC 13 : Live Load c) (Continued)

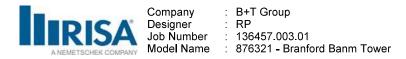

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
2	88	L	Y	5
3	116	L	Y	5

Joint Loads and Enforced Displacements (BLC 14 : Live Load d)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
1	57	L	Y	5
2	92	L	Y	5
3	120	L	Y	5

Member Point Loads (BLC 1 : Dead)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Y	018	%10
2	51	Y	018	%80
3	51	Y	028	%60
4	51	Y	0	0
5	51	Y	0	0
6	34	Y	017	%10
7	34	Y	017	%70
8	34	Y	0	0
9	34	Y	0	0
10	34	Y	0	0
11	44	Y	031	%25
12	44	Y	031	%75
13	44	Y	0	0
14	44	Y	0	0
15	44	Y	0	0
16	48	Ý	038	%20
17	48	Ý	038	%80
18	48	Ý	0	0
19	48	Ý	0	0
20	48	Ý	0	0
21	47	Ý	053	%40
22	47	Ý	053	%40
23	47	Ý	06	%50
24	47	Ý	0	0
25	47	Y	0	0
26	43	Y	055	%50
27	43	Y	071	%60
28	43	Y	0	0
29	43	Y	0	0
30	43	Y	0	0
31	79	Y	018	<u> </u>
32	79	Y	018	%10
32 33	79	Y	018	<u> </u>
34	79	Y	0	0
34 35	79	Y	0	0
36	65	Y	017	<u> </u>
37	65	Y	017	<u>%10</u> %70
38	65	Y I	017	0
30 39	65	Y	0	0
	65	Y	0	0
40	00	Y		
41	75		031	%25 %75
42	75	Y	031	%75
43	75	Y	0	0
44	75	Y	0	0



Member Point Loads (BLC 1 : Dead) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
45	75	Y Y	0	0
46	78	Y	038	<u> </u>
47	78	Y	038	%80
48	78	Y	06	%50
49	78	Y	053	%40
50	78	Y	053	%40
51	74	Ý	055	%50
52	74	Ý	071	%10
53	74	Ý	0	0
54	74	Ý	0	Ő
55	74	Ý	0	0
56	64	Ý	018	%10
57	64	Ý	018	%80
58	64	Y	028	%60
59	64	Ý	0	0
60	64	Y	0	0
61	52	Ý	017	%15
62	52	Y	017	%70
63	52	Ý	0	0
64	52	Y	0	0
65	52	Y	0	0
66	61	Y	031	%25
67	61	Y	031	%75
68	61	Y	0	0
69	61	Y	0	0
70	61	Y	0	0
70	80	Y	038	%20
72	80	Y	038	%80
73	80	Y	053	%40
74	80	Y	053	%40
75	80	Y	06	<u>%40</u> %50
76	60	Y	055	%10
77	60	Y	055	<u>%10</u> %10
78	60	Y	071	0
78	60	Y	0	0
80	60	Y	0	0
81	5	Y	026	<u> </u>
82	5	Y	020	0
83	5	Y	0	0
84	5	Y	0	0
85	5	Y	0	0
	5	Y	026	%50
86		Y		
87	5	Y	0	0
88	5	Y		
89	5		0	0
90	5	Y	0	0


Member Point Loads (BLC 2 : 0 Wind - No Ice)

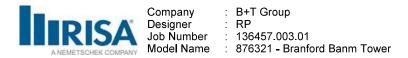
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Z	114	Location[ft,%] %10
2	51	Z	114	%80
3	51	Z	091	%60
4	51	Z	0	0
5	51	Z	0	0
6	34	Z	071	%10
7	34	Z	071	%70

Member Point Loads (BLC 2 : 0 Wind - No Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
8	34	<u>Z</u>	0	0
9	34	Z	0	0
10	34	Z 7	0	0
11	<u> </u>	Z	186	<u>%25</u>
12 13	44 44	Z	<u>186</u> 0	<u> </u>
14	44 44	Z	0	0
15	44 44	Z	0	0
16	48	Z	172	%20
17	48	Z	172	<u>%20</u> %80
18	48	Z	0	0
19	48	Z	0	0
20	48	Z	0	0
21	47	Z	114	%40
22	47	Z	113	%40
23	47	Z	044	%50
24	47	Z	0	0
25	47	Z	0	0
26	43	Z	074	%50
27	43	Z	082	%60
28	43	Z	0	0
29	43	Z	0	0
30	43	Z	0	0
31	79	Z	114	%10
32	79	Z	114	%80
33	79	Z	091	%60
34	79	Z	0	0
35	79	Z	0	0
36	65	Z	071	%10
37	65	Z	071	%70
38	65	Z	0	0
39	65	Z	0	0
40	65	Z	0	0
41	75	Z	186	%25
42	75	Z	186	%75
43	75	Z	0	0
44	75	Z	0	0
45	75	Z	0	0
46	78	<u>Z</u>	172	%20
47	78	<u>Z</u>	172	%80
48	78	<u>Z</u>	044	<u>%50</u>
49	78	Z 7	069	<u>%40</u>
50	78	Z 7	069	<u>%40</u>
51	<u> </u>	Z	074	<u>%50</u> %10
<u>52</u> 53	74 74	Z	058	<u>%10</u> 0
53	74 74	Z	0	0
54 55	74 74	Z	0	0
56	64	Z	114	%10
57	64	Z	114	<u> </u>
58	64	Z	091	%60
59	64	Z	0	0
60	64	Z	0	0
61	52	Z	071	<u> </u>
62	52	Z	071	%70
63	52	Z	0	0
64	52	Z	0	0
	~-	<u>_</u>	v	<u> </u>

Member Point Loads (BLC 2 : 0 Wind - No Ice) (Continued)

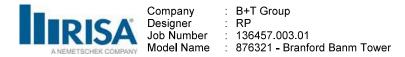
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
65	52	Z	0	0
66	61	Z	186	%25
67	61	Z	186	%75
68	61	Z	0	0
69	61	Z	0	0
70	61	Z	0	0
71	80	Z	172	%20
72	80	Z	172	%80
73	80	Z	114	%40
74	80	Z	113	%40
75	80	Z	044	%50
76	60	Z	074	%10
77	60	Z	058	%10
78	60	Z	0	0
79	60	Z	0	0
80	60	Z	0	0
81	5	Z	048	%50
82	5	Z	0	0
83	5	Z	0	0
84	5	Z	0	0
85	5	Z	0	0
86	5	Z	048	%50
87	5	Z	0	0
88	5	Z	0	0
89	5	Z	0	0
90	5	Z	0	0


Member Point Loads (BLC 3 : 90 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Х	052	%10
2	51	Х	052	%80
3	51	Х	026	%60
4	51	Х	0	0
5	51	Х	0	0
6	34	Х	043	%10
7	34	Х	043	%70
8	34	Х	0	0
9	34	Х	0	0
10	34	Х	0	0
11	44	Х	069	%25
12	44	Х	069	%75
13	44	Х	0	0
14	44	Х	0	0
15	44	Х	0	0
16	48	Х	065	%20
17	48	Х	065	%80
18	48	Х	0	0
19	48	Х	0	0
20	48	Х	0	0
21	47	Х	066	%40
22	47	Х	066	%40
23	47	Х	076	%50
24	47	Х	0	0
25	47	Х	0	0
26	43	Х	124	%50
27	43	Х	058	%60

Member Point Loads (BLC 3 : 90 Wind - No Ice) (Continued)

	Member Label	Direction	Magnitude[k.k-ft]	Location[ft,%]
28	43	<u> </u>	0	0
29	43	<u>X</u>	0	0
30	43	<u> </u>	0	0
31	79	<u> </u>	052	%10
32	79	X	052	%80
33	79	X	026	%60
34	79	<u> </u>	0	0
35	79	X	0	0
36	65	X	043	%10
37	65	X	043	%70
38	65	X	0	0
39	65	X	0	0
40	65	<u> </u>	0	0
41	75	X	069	%25
42	75	X	069	%75
43	75	<u>X</u>	0	0
44	75	<u> </u>	0	0
45	75	X	0	0
46	78	X	065	%20
47	78	X	065	%80
48	78	X	076	%50
49	78	X	119	%40
50	78	<u>X</u>	119	%40
51	74	X	124	%50
52	74	X	082	%10
53	74	X	0	0
54	74	X	0	0
55	74	X	0	0
56	64	<u>X</u>	052	%10
57	64	<u> </u>	052	%80
58	64	X	026	%60
59	64	X	0	0
60	64	<u> </u>	0	0
61	52	<u> </u>	043	%15
62	52	X	043	%70
63	52	<u>X</u>	0	0
64	52	X	0	0
65	52	<u>X</u>	0	0
66	61	<u>X</u>	069	<u>%25</u>
67	61	X	069	%75
68	61	X	0	0
69	61	X	0	0
70	61	X X	0	0
71	80	X	065	%20
72	80	X	065	%80
73	80	X	066	%40
74	80	<u> </u>	066	%40
75	80	X	076	%50
76	60	<u> </u>	124	%10
77	60	<u> </u>	082	%10
78	60	<u> </u>	0	0
79	60	X	0	0
80	60	X	0	0
81	5	X	048	%50
82	5	Х	0	0
83	5	X	0	0
84	5	X	0	0
			57 003 01 Branford Banm]	Course CT r2dl Barra 12

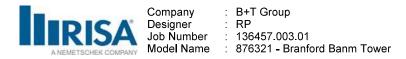


Member Point Loads (BLC 3 : 90 Wind - No Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
85	5	X	0	0
85 86	5	Х	048	%50
87	5	X	0	0
88	5	Х	0	0
89 90	5	Х	0	0
90	5	Х	0	0

Member Point Loads (BLC 4 : 0 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Z	019	%10
2	51	Z	019	%80
3	51	Z	016	%60
4	51	Z	0	0
5	51	Z	0	0
6	34	Z	015	%10
7	34	Z	015	%70
8	34	Z	0	0
9	34	Z	0	0
10	34	Z	0	0
11	44	Z	036	%25
12	44	Z	036	%75
13	44	Z	0	0
14	44	Z	0	0
15	44	Z	0	0
16	48	Z	034	%20
17	48	Z	034	%80
18	48	Z	0	0
19	48	Z	0	0
20	48	Z	0	0
21	47	Z	019	%40
22	47	Z	019	%40
23	47	Z	007	%50
24	47	Z	0	0
25	47	Z	0	0
26	43	Z	013	%50
27	43	Z	014	%60
28	43	Z	0	0
29	43	Z	0	0
30	43	Z	0	0
31	79	Z	019	%10
32	79	Z	019	%80
33	79	Z	016	%60
34	79	Z	0	0
35	79	Z	0	0
36	65	Z	015	%10
37	65	Z	015	%70
38	65	Z	0	0
39	65	Z	0	0
40	65	Z	0	0
41	75		036	%25
42	75	Z Z	036	%75
43	75		0	0
44	75	7	0	0
45	75	Z Z Z Z	0	0
46	78	7	034	%20
47	78	Z	034	%80
	, 0	L L		/000



Member Point Loads (BLC 4 : 0 Wind - Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
48	78	Z	007	%50
49	78	Z	012	%40
50	78	Z	012	%40
51	74	Z Z	013	%50
52	74	Z	01	%10
53	74	Z	0	0
54	74	Z	0	0
55	74	Z	0	0
56	64	Z	019	%10
57	64	Z	019	%80
58	64	Z	016	%60
59	64	Z	0	0
60	64	Z	0	0
61	52	Z Z	015	%15
62	52		015	%70
63	52	Z	0	0
64	52	Z	0	0
65	52	Z	0	0
66	61	Z	036	%25
67	61	Z	036	%75
68	61	Z	0	0
69	61	Z	0	0
70	61	Z	0	0
71	80	Z	034	%20
72	80	Z	034	%80
73	80	Z	019	%40
74	80	Z	019	%40
75	80	Z	007	%50
76	60	Z	013	%10
77	60	Z	01	%10
78	60	Z	0	0
79	60	Z Z	0	0
80	60		0	0
81	5	Z	008	%50
82	5	Z	0	0
83	5	Z	0	0
84	5	Z	0	0
85	5	Z Z	0	0
86	5	Z	008	%50
87	5	Z	0	0
88	5	Z	0	0
89	5	Z	0	0
90	5	Z	0	0


Member Point Loads (BLC 5 : 90 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Х	009	%10
2	51	Х	009	%80
3	51	X	004	%60
4	51	Х	0	0
5	51	Х	0	0
6	34	Х	01	%10
7	34	Х	01	%70
8	34	Х	0	0
9	34	Х	0	0
10	34	Х	0	0

Member Point Loads (BLC 5 : 90 Wind - Ice) (Continued)

11 44 X 015 $\%25$ 13 44 X 0 0 14 44 X 0 0 15 44 X 0 0 16 48 X -015 $\%20$ 17 48 X -015 $\%20$ 18 48 X 0 0 19 48 X 0 0 20 48 X 0 0 21 47 X -011 $\%40$ 22 47 X 0 0 21 47 X 0 0 22 47 X 0 0 23 47 X 0 0 24 47 X 0 0 23 43 X 0 0 24 47 X 0 0 33 <td< th=""><th>1[ft,%]</th><th>Location[ft,9</th><th>Magnitude[k,k-ft]</th><th>Direction</th><th>Member Label</th><th></th></td<>	1[ft,%]	Location[ft,9	Magnitude[k,k-ft]	Direction	Member Label	
13 44 X 0 0 14 44 X 0 0 15 44 X 0 0 17 46 X -015 %20 18 48 X -015 %20 18 48 X 0 0 20 48 X 0 0 21 47 X -011 %40 22 47 X -011 %40 23 47 X -011 %40 24 47 X 0 0 26 43 X 0 0 27 43 X -021 %50 28 43 X 0 0 29 43 X 0 0 31 79 X -009 %10 32 79 X 0 0 33 79 X 0 0 36 65 X -01 <td< td=""><td>5</td><td>%25</td><td>015</td><td>X</td><td></td><td></td></td<>	5	%25	015	X		
13 44 X 0 0 14 44 X 0 0 15 44 X 0 0 16 48 X -015 %20 17 48 X -015 %20 18 48 X 0 0 19 48 X 0 0 20 48 X 0 0 21 47 X -011 %40 23 47 X -011 %40 24 47 X 0 0 25 47 X 0 0 26 43 X 0 0 27 43 X 0 0 28 43 X 0 0 30 43 X 0 0 31 79 X -009 %80 33 79 X 0 0 34 79 X 0 0	5	%75	015	Х	44	12
14 44 X 0 0 15 44 X 0 0 16 48 X -015 %20 17 48 X 0 0 18 48 X 0 0 19 48 X 0 0 20 48 X 0 0 21 47 X -011 %40 23 47 X -011 %40 24 47 X 0 0 25 47 X 0 0 26 43 X -01 %60 28 43 X 0 0 30 43 X 0 0 31 79 X -009 %10 32 79 X -009 %60 33 79 X -004 %60 34 79 X 0 0 0 36 65 X 0<					44	13
15 44 X 0 0 16 48 X -015 %20 17 48 X 0 0 19 48 X 0 0 20 48 X 0 0 21 47 X -011 %40 22 47 X -013 %60 24 47 X 0 0 0 25 47 X 0 0 0 26 43 X -021 %50 27 43 X 0 0 0 28 43 X 0 0 0 30 43 X 0 0 0 31 79 X -009 %60 34 79 X 0 0 0 36 65 X -01 %70 38 65<				X		
16 48 X -015 $\%20$ 17 48 X 0 0 18 48 X 0 0 20 48 X 0 0 21 47 X -011 $\%40$ 22 47 X -011 $\%40$ 23 47 X -011 $\%40$ 23 47 X -013 $\%60$ 24 47 X 0 0 25 47 X 0 0 26 43 X -01 $\%60$ 28 43 X 0 0 30 43 X 0 0 31 79 X -009 $\%80$ 32 79 X 0 0 33 79 X 0 0 34 75 X 0 0 <						
17 48 X -015 980 18 48 X 0 0 20 48 X 0 0 21 47 X -011 $%40$ 22 47 X -011 $%40$ 23 47 X -011 $%40$ 24 47 X -011 $%40$ 25 47 X 0 0 26 43 X -021 $\%50$ 27 43 X -001 $\%60$ 28 43 X 0 0 30 43 X 0 0 31 79 X -009 $\%80$ 33 79 X 0 0 34 79 X 0 0 38 65 X 0 0 39 65 X 0	0			X		
18 48 X 0 0 20 48 X 0 0 21 47 X -011 %40 22 47 X -011 %40 23 47 X -011 %40 23 47 X -011 %40 24 47 X -011 %50 24 47 X 0 0 26 43 X -021 %50 27 43 X 0 0 0 29 43 X 0 0 0 30 43 X 0 0 0 31 79 X -009 %80 33 79 X 0 0 0 36 65 X -01 %10 37 37 65 X 0 0 0 38						
19 48 X 0 0 20 48 X 0 0 21 47 X -011 %40 22 47 X -011 %40 23 47 X -013 %50 24 47 X 0 0 25 47 X 0 0 26 43 X -021 %50 27 43 X 0 0 0 28 43 X 0 0 0 30 43 X 0 0 0 31 79 X -009 %60 33 79 X 0 0 0 36 65 X -01 %70 0 38 65 X 0 0 0 39 65 X 0 0 0 44 </td <td>0</td> <td></td> <td></td> <td>×</td> <td></td> <td></td>	0			×		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
21 47 X -011 %40 22 47 X -013 %60 23 47 X 0 0 24 47 X 0 0 25 47 X 0 0 26 43 X -021 %50 27 43 X 0 0 0 28 43 X 0 0 0 30 43 X 0 0 0 31 79 X -009 %60 32 79 X -004 %60 33 79 X 0 0 0 34 79 X 0 0 0 36 65 X -01 %10 3 37 65 X 0 0 0 44 75 X 0 0 0 <t< td=""><td></td><td></td><td></td><td><u>^</u></td><td>48</td><td></td></t<>				<u>^</u>	48	
22 47 X -011 %40 23 47 X -013 %50 24 47 X 0 0 25 47 X 0 0 26 43 X -021 %50 27 43 X -01 %60 28 43 X 0 0 29 43 X 0 0 30 43 X 0 0 31 79 X -009 %80 33 79 X -004 %60 34 79 X 0 0 0 36 65 X -01 %10 3 37 65 X -01 %70 38 65 X 0 0 0 40 65 X 0 0 0 43 75 X		v				
23 47 X 013 %50 24 47 X 0 0 25 47 X 0 0 26 43 X 021 %60 27 43 X 01 %60 28 43 X 0 0 29 43 X 0 0 30 43 X 0 0 31 79 X 009 %80 33 79 X 004 %60 34 79 X 0 0 36 65 X 01 %10 37 65 X 01 %70 38 66 X 0 0 40 65 X 0 0 41 75 X 0.015 %25 42 75 X 0 0 44 <td></td> <td></td> <td>011</td> <td>X</td> <td></td> <td></td>			011	X		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			011			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0			Х		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0	X	47	25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	%50	021	Х	43	26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				X		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				X	43	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				× v		
34 79 X00 35 79 X00 36 65 X -01 $%10$ 37 65 X -01 $%70$ 38 65 X00 39 65 X00 40 65 X00 41 75 X -015 $%25$ 42 75 X -015 $%25$ 43 75 X00 44 75 X00 45 75 X00 46 78 X -015 $%20$ 47 78 X -015 $%60$ 48 78 X -02 $%40$ 50 78 X -02 $%40$ 51 74 X -02 $%40$ 51 74 X 0 0 52 74 X 0 0 54 74 X 0 0 55 74 X 0 0 56 64 X -009 $%60$ 59 64 X -004 $%60$ 59 64 X 0 0 61 52 X -01 $%15$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0			<u> </u>		33
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				X		35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0			X		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
4175X 015 %254275X 015 %754375X004475X004575X004678X 015 %204778X 015 %804878X 013 %504978X 013 %505078X 02 %405174X 021 %505274X 0 05374X 0 05574X 009 %805864X 009 %805964X 0 06152X 011 %15				Х	65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Х		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Х	75	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	%75	015	X	75	42
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	0	X	75	43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Х		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0			X		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				× ×	70	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
53 74 X 0 0 54 74 X 0 0 55 74 X 0 0 56 64 X 009 %10 57 64 X 009 %80 58 64 X 0 0 59 64 X 0 0 60 64 X 0 0 61 52 X 01 %15						
54 74 X 0 0 55 74 X 0 0 56 64 X 009 %10 57 64 X 009 %80 58 64 X 0 0 59 64 X 0 0 60 64 X 0 0 61 52 X 01 %15						
55 74 X 0 0 56 64 X 009 %10 57 64 X 009 %80 58 64 X 004 %60 59 64 X 0 0 60 64 X 0 0 61 52 X 01 %15				A V		
56 64 X 009 %10 57 64 X 009 %80 58 64 X 004 %60 59 64 X 0 0 60 64 X 0 0 61 52 X 01 %15						
57 64 X 009 %80 58 64 X 004 %60 59 64 X 0 0 60 64 X 0 0 61 52 X 01 %15				X		
58 64 X 004 %60 59 64 X 0 0 60 64 X 0 0 61 52 X 01 %15						
59 64 X 0 0 60 64 X 0 0 61 52 X 01 %15						
60 64 X 0 0 61 52 X 01 %15	0					
61 52 X01 %15				Х		
61 52 X01 %15						
	5	%15	01			61
		%70	01	Х	52	62
63 52 X 0 0						
64 52 X 0 0				Х		
65 52 X 0 0						
66 61 X015 %25	5			X		
67 61 X015 %75						
$RISA-3D Version 17.0.4 [S: \ \ \ \ \ 0.03.01 MA \ 136457.003.01 Branford Banm Tower, CT r3d] P$						

Member Point Loads (BLC 5 : 90 Wind - Ice) (Continued)

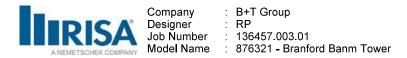
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
68	61	X	0	0
69	61	X	0	0
70	61	X	0	0
71	80	X	015	%20
72	80	X	015	%80
73	80	X	011	%40
74	80	X	011	%40
75	80	X	013	%50
76	60	X	021	%10
77	60	X	014	%10
78	60	X	0	0
79	60	X	0	0
80	60	Х	0	0
81	5	Х	008	%50
82	5	X	0	0
83	5	X	0	0
84	5	X	0	0
85	5	X	0	0
86	5	Х	008	%50
87	5	X	0	0
88	5	Х	0	0
89	5	Х	0	0
90	5	X	0	0

Member Point Loads (BLC 6 : 0 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Z	007	%10
2	51	Z	007	%80
3	51	Z	006	%60
4	51	Z	0	0
5	51	Z	0	0
6	34	Z	004	%10
7	34	Z	004	%70
8	34	Z	0	0
9	34	Z	0	0
10	34	Z	0	0
11	44	Z	011	%25
12	44	Z	011	%75
13	44	Z	0	0
14	44	Z	0	0
15	44	Z	0	0
16	48	Z	011	%20
17	48	Z	011	%80
18	48	Z	0	0
19	48	Z	0	0
20	48	Z	0	0
21	47	Z	007	%40
22	47	Z	007	%40
23	47	Z	003	%50
24	47	Z	0	0
25	47	Z	0	0
26	43	Z	004	%50
27	43	Z	005	%60
28	43	Z	0	0
29	43	Z	0	0
30	43	Z	0	0

Member Point Loads (BLC 6 : 0 Wind - Service) (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Z	007	%10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	79	Z	007	%80
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Z	006	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		65			
42 75 Z .011 $\Re 75$ 43 75 Z 0 0 44 75 Z 0 0 45 75 Z 0 0 46 78 Z .011 $\Re 20$ 47 78 Z .003 $\Re 50$ 48 78 Z .004 $\Re 40$ 50 78 Z .004 $\Re 40$ 51 74 Z .004 $\Re 50$ 52 74 Z 0 0 53 74 Z 0 0 54 74 Z 0 0 56 64 Z .007 $\Re 40$ 57 64 Z .006 $\Re 60$ 58 64 Z .007 $\Re 40$ 59 64 Z 0 0 61 52 Z 0 0					
43 75 Z 0 0 44 75 Z 0 0 46 78 Z -011 $\%20$ 47 78 Z -011 $\%80$ 48 78 Z -003 $\%50$ 48 78 Z -004 $\%40$ 50 78 Z -004 $\%40$ 51 74 Z -004 $\%40$ 52 74 Z -004 $\%40$ 53 74 Z 0 0 54 74 Z 0 0 0 56 64 Z -007 $\%60$ 59 59 64 Z 0 0 0 60 64 Z 0 0 0 61 52 Z -004 $\%60$ 59 64 Z 0 0 0 0		75			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
45 75 Z 0 0 46 78 Z 011 %20 47 78 Z 011 %20 48 78 Z 011 %20 48 78 Z 003 %50 49 78 Z 004 %40 51 74 Z 004 %40 52 74 Z 004 %10 53 74 Z 0 0 54 74 Z 0 0 0 55 74 Z 0 0 0 56 64 Z 007 %80 58 58 64 Z 0 0 0 61 52 Z 007 %80 58 62 52 Z 0 0 0 63 52 Z 0 0 0 <td></td> <td></td> <td></td> <td></td> <td></td>					
46 78 Z -011 $\%20$ 47 78 Z -011 $\%80$ 48 78 Z -003 $\%40$ 50 78 Z -004 $\%40$ 51 74 Z -004 $\%60$ 52 74 Z -004 $\%60$ 53 74 Z 0 0 53 74 Z 0 0 0 55 74 Z 0 0 0 56 64 Z -007 $\%10$ 5 57 64 Z -007 $\%40$ 5 58 64 Z 00 0 0 60 64 Z 0 0 0 61 52 Z 0 0 0 63 52 Z 0 0 0 64 52 Z 0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
48 78 Z -003 %50 49 78 Z -004 %40 50 78 Z -004 %40 51 74 Z -004 %40 52 74 Z -004 %10 53 74 Z 0 0 55 74 Z 0 0 55 74 Z 0 0 56 64 Z -007 %80 58 64 Z -007 %80 58 64 Z 0 0 60 64 Z 0 0 61 52 Z 0 0 63 52 Z 0 0 64 52 Z 0 0 63 52 Z 0 0 64 52 Z 0 0 6					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
		78	Z		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
	52	74	Z	004	%10
		74	Z		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Z		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			7		
		<u> </u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>Z</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Z		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77	60		004	%10
79 60 Z 0 0 80 60 Z 0 0 81 5 Z 003 %50 82 5 Z 0 0 83 5 Z 0 0 84 5 Z 0 0 85 5 Z 0 0 86 5 Z 003 %50					
80 60 Z 0 0 81 5 Z 003 %50 82 5 Z 0 0 83 5 Z 0 0 84 5 Z 0 0 85 5 Z 0 0 86 5 Z 003 %50			Z		
81 5 Z 003 %50 82 5 Z 0 0 83 5 Z 0 0 84 5 Z 0 0 85 5 Z 0 0 86 5 Z 003 %50			Z		
82 5 Z 0 0 83 5 Z 0 0 84 5 Z 0 0 85 5 Z 0 0 86 5 Z 003 %50					
83 5 Z 0 0 84 5 Z 0 0 85 5 Z 0 0 86 5 Z 003 %50					
84 5 Z 0 0 85 5 Z 0 0 86 5 Z 003 %50					
85 5 Z 0 0 86 5 Z 003 %50		5	7		
86 5 Z003 %50					
		5			
	0/	0		U	<u>U</u>

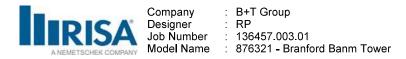


Member Point Loads (BLC 6 : 0 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
88	5	Z	0	0
89	5	Z	0	0
90	5	Z	0	0

Member Point Loads (BLC 7 : 90 Wind - Service)

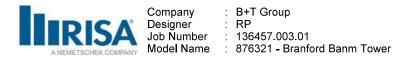
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Х	003	%10
2	51	Х	003	%80
3	51	Х	002	%60
4	51	Х	0	0
5	51	Х	0	0
6	34	X	003	%10
7	34	Х	003	%70
8	34	Х	0	0
9	34	Х	0	0
10	34	Х	0	0
11	44	Х	004	%25
12	44	Х	004	%75
13	44	Х	0	0
14	44	Х	0	0
15	44	X	0	0
16	48	X	004	%20
17	48	Х	004	%80
18	48	Х	0	0
19	48	Х	0	0
20	48	Х	0	0
21	47	Х	004	%40
22	47	Х	004	%40
23	47	Х	005	%50
24	47	Х	0	0
25	47	X	0	0
26	43	Х	008	%50
27	43	Х	004	%60
28	43	Х	0	0
29	43	Х	0	0
30	43	Х	0	0
31	79	Х	003	%10
32	79	Х	003	%80
33	79	Х	002	%60
34	79	X	0	0
35	79	Х	0	0
36	65	X	003	%10
37	65	Х	003	%70
38	65	Х	0	0
39	65	Х	0	0
40	65	Х	0	0
41	75	X X	004	%25
42	75	Х	004	%75
43	75	X X	0	0
44	75	Х	0	0
45	75	X	0	0
46	78	Х	004	%20
47	78	Х	004	%80
48	78	X	005	%50
49	78	X	007	%40
50	78	X	007	%40



Member Point Loads (BLC 7 : 90 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
51	74	Х	008	%50
52	74	Х	005	%10
53	74	Х	0	0
54	74	Х	0	0
55	74	Х	0	0
56	64	Х	003	%10
57	64	Х	003	%80
58	64	Х	002	%60
59	64	Х	0	0
60	64	Х	0	0
61	52	Х	003	%15
62	52	Х	003	%70
63	52	Х	0	0
64	52	X	0	0
65	52	Х	0	0
66	61	Х	004	%25
67	61	Х	004	%75
68	61	X	0	0
69	61	X	0	0
70	61	Х	0	0
71	80	Х	004	%20
72	80	Х	004	%80
73	80	Х	004	%40
74	80	X	004	%40
75	80	Х	005	%50
76	60	Х	008	%10
77	60	Х	005	%10
78	60	X	0	0
79	60	X	0	0
80	60	Х	0	0
81	5	Х	003	%50
82	5	Х	0	0
83	5	Х	0	0
84	5	X	0	0
85	5	Х	0	0
86	5	Х	003	%50
87	5	Х	0	0
88	5	Х	0	0
89	5	Х	0	0
90	5	Х	0	0

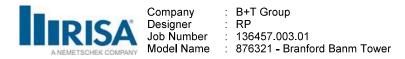
Member Point Loads (BLC 8 : Ice)


	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Y	042	%10
2	51	Y	042	%80
3	51	Y	035	%60
4	51	Y	0	0
5	51	Y	0	0
6	34	Y	059	%10
7	34	Y	059	%70
8	34	Y	0	0
9	34	Y	0	0
10	34	Y	0	0
11	44	Ý	086	%25
12	44	Ý	086	%75
13	44	Y	0	0

Member Point Loads (BLC 8 : Ice) (Continued)

14 44 Y 15 44 Y 16 48 Y 17 48 Y 18 48 Y 20 48 Y 21 47 Y 22 47 Y 23 47 Y 24 47 Y 25 47 Y 26 43 Y 27 43 Y 28 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 36 65 Y 40 65 Y 41 75 Y 42 75 Y 43 75 Y 44 75 Y	0 0 093 093 0 0 0 0 047 047 047 032 0 0 0 05 05 036 0 0 0 0 0 042 042 042 035 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 %20 %80 0 0 0 %40 %40 %50 0 0 0 %50 %60 0 0 %50 %60 0 0 %50 %60 0 0 %10 %80
1648Y1748Y1848Y1948Y2048Y2147Y2247Y2347Y2447Y2547Y2643Y2843Y2943Y3043Y3179Y3279Y3579Y3665Y3765Y3865Y4175Y4275Y4475Y4575Y4678Y4978Y	093 0 0 0 047 047 047 032 0 0 0 05 036 0 0 0 0 0 05 036 0 0 0 0 0 0 0 0 0 0 0 0 0	%20 %80 0 0 0 0 %40 %40 %50 0 %50 %60 0 0 0 %50 %60 0 %60 0 0 0 0 0 0 0 0 0 0 0
17 48 Y 18 48 Y 19 48 Y 20 48 Y 21 47 Y 22 47 Y 23 47 Y 24 47 Y 25 47 Y 26 43 Y 27 43 Y 28 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 35 79 Y 36 65 Y 39 65 Y 40 65 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y	093 0 0 047 047 032 0 0 0 05 036 0 0 0 0 0 0 0 0 0 0 0 0 0	%80 0 0 0 0 %40 %50 0 0 %50 0
18 48 Y 19 48 Y 20 48 Y 21 47 Y 22 47 Y 23 47 Y 24 47 Y 25 47 Y 26 43 Y 27 43 Y 28 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 35 79 Y 36 65 Y 39 65 Y 40 65 Y 41 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 48 78 Y	0 0 0 047 047 032 0 0 0 05 036 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 %40 %50 0 0 0 %50 %60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 48 Y 20 48 Y 21 47 Y 22 47 Y 23 47 Y 24 47 Y 25 47 Y 26 43 Y 27 43 Y 28 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 35 79 Y 38 65 Y 39 65 Y 41 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 48 78 Y	0 0 047 047 032 0 0 05 036 0 0 0 0 0 042 042 042 035 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 %40 %50 0 0 0 %50 %60 0 0 0 0 0 %10
20 48 Y 21 47 Y 22 47 Y 23 47 Y 24 47 Y 25 47 Y 26 43 Y 26 43 Y 29 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 34 79 Y 35 79 Y 36 65 Y 37 65 Y 39 65 Y 40 65 Y 41 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 49 78 Y	0 047 047 032 0 0 05 036 0 0 0 0 0 042 042 042 035 0 0	0 %40 %50 0 0 0 %50 %60 0 0 0 0 0 %10
21 47 Y 22 47 Y 23 47 Y 24 47 Y 25 47 Y 26 43 Y 27 43 Y 28 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 35 79 Y 36 65 Y 38 65 Y 39 65 Y 41 75 Y 42 75 Y 44 75 Y 45 75 Y 44 78 Y 48 78 Y 49 78 Y	047 032 0 0 05 036 0 0 0 0 042 042 042 035 0 0 0	%40 %50 0 0 0 %50 0
22 47 Y 23 47 Y 24 47 Y 25 47 Y 26 43 Y 27 43 Y 28 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 34 79 Y 35 79 Y 36 65 Y 38 65 Y 39 65 Y 41 75 Y 42 75 Y 44 75 Y 45 75 Y 46 78 Y 48 78 Y 49 78 Y	047 032 0 0 05 036 0 0 0 0 042 042 042 035 0 0 0	%40 %50 0 0 0 %50 %60 0
2347Y2447Y2547Y2643Y2743Y2843Y2943Y3043Y3179Y3279Y3379Y3665Y3765Y3865Y3965Y4175Y4275Y4475Y4575Y4678Y4978Y	032 0 0 05 036 0 0 0 042 042 042 035 0 0 0	%50 0 0 %50 %60 0 0 0 0 %10
24 47 Y 25 47 Y 26 43 Y 27 43 Y 28 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 35 79 Y 36 65 Y 38 65 Y 39 65 Y 41 75 Y 42 75 Y 44 75 Y 45 75 Y 46 78 Y 48 78 Y	0 0 05 036 0 0 0 0 042 042 035 0 0	0 0 %50 %60 0 0 0 0 %10
26 43 Y 27 43 Y 28 43 Y 29 43 Y 30 43 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 35 79 Y 36 655 Y 38 655 Y 39 655 Y 40 655 Y 41 75 Y 43 75 Y 44 75 Y 44 75 Y 45 75 Y 46 78 Y 48 78 Y 49 78 Y	05 036 0 0 0 042 042 035 0 0	%50 %60 0 0 0 %10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	036 0 0 042 042 035 0 0	%60 0 0 0 %10
28 43 Y 29 43 Y 30 43 Y 31 79 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 35 79 Y 36 65 Y 37 65 Y 38 65 Y 40 65 Y 41 75 Y 42 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 49 78 Y	0 0 042 042 035 0 0	0 0 0 %10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0 042 042 035 0 0	0 0 %10
30 43 Y 31 79 Y 32 79 Y 33 79 Y 34 79 Y 35 79 Y 36 65 Y 37 65 Y 38 65 Y 39 65 Y 40 65 Y 41 75 Y 42 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 49 78 Y	0 042 042 035 0 0	0 %10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	042 042 035 0 0	%10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	042 035 0 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	035 0 0	7000
34 79 Y 35 79 Y 36 65 Y 37 65 Y 38 65 Y 39 65 Y 40 65 Y 41 75 Y 42 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 48 78 Y	0	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	059	%10
38 65 Y 39 65 Y 40 65 Y 41 75 Y 42 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 48 78 Y 49 78 Y	059	%70
40 65 Y 41 75 Y 42 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 48 78 Y 49 78 Y	0	0
41 75 Y 42 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 48 78 Y 49 78 Y	0	0
42 75 Y 43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 48 78 Y 49 78 Y	0	0
43 75 Y 44 75 Y 45 75 Y 46 78 Y 47 78 Y 48 78 Y 49 78 Y	086	%25
44 75 Y 45 75 Y 46 78 Y 47 78 Y 48 78 Y 49 78 Y	086	%75
45 75 Y 46 78 Y 47 78 Y 48 78 Y 49 78 Y	0	0
46 78 Y 47 78 Y 48 78 Y 49 78 Y	0	0
47 78 Y 48 78 Y 49 78 Y	0 093	%20
48 78 Y 49 78 Y	093	<u>%20</u> %80
49 78 Y	032	%50
	047	<u> </u>
	047	%40
51 74 Y	05	%50
52 74 Y	036	%10
53 74 Y	0	0
54 74 Y	0	0
55 74 Y	0	0
56 64 Y	042	<u>%10</u>
57 64 Y 58 64 Y	042	<u>%80</u>
58 64 Y 59 64 Y	035 0	<u> </u>
60 64 Y	0	0
61 52 Y	059	<u> </u>
62 52 Y	059	%70
63 52 Y	0	0
64 52 Y	0	0
65 52 Y	0	0
66 61 Y		%25
67 61 Y	086	%75
68 61 Y	086 086	0
69 61 Y	086 0	0
70 61 Y	086	0

RISA-3D Version 17.0.4 [S:\...\...\...\003.01 MA\136457_003_01_Branford Banm Tower_CT.r3d] Page 20



Member Point Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
71	80	Y	093	%20
72	80	Y	093	%80
73	80	Y	047	%40
74	80	Y	047	%40
75	80	Y	032	%50
76	60	Y	05	%10
77	60	Y	036	%10
78	60	Y	0	0
79	60	Y	0	0
80	60	Y	0	0
81	5	Y	041	%50
82	5	Y	0	0
83	5	Y	0	0
84	5	Y	0	0
85	5	Y	0	0
86	5	Y	041	%50
87	5	Y	0	0
88	5	Y	0	0
89	5	Y	0	0
90	5	Y	0	0

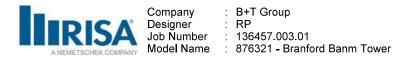
Member Point Loads (BLC 9 : 0 Seismic)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	Z	007	%10
2	51	Z	007	%80
3	51	Z	003	%60
4	51	Z	0	0
5	51	Z	0	0
6	34	Z	007	%10
7	34	Z	007	%70
8	34	Z	0	0
9	34	Z	0	0
10	34	Z	0	0
11	44	Z	013	%25
12	44	Z	013	%75
13	44	Z	0	0
14	44	Z	0	0
15	44	Z	0	0
16	48	Z	016	%20
17	48	Z	016	%80
18	48	Z	0	0
19	48	Z	0	0
20	48	Z	0	0
21	47	Z	011	%40
22	47	Z	011	%40
23	47	Z	013	%50
24	47	Z	0	0
25	47	Z	0	0
26	43	Z	012	%50
27	43	Z	015	%60
28	43	Z	0	0
29	43	Z	0	0
30	43	Z	0	0
31	79	Z	007	%10
32	79	Z	007	%80
33	79	Z	003	%60

Member Point Loads (BLC 9 : 0 Seismic) (Continued)

o / 1	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
34	79	Z	0	0
35	79	Z	0	0
36	65	<u>Z</u>	007	%10
37	65	<u>Z</u>	007	<u>%70</u>
38	65	<u>Z</u>	0	0
39	65	<u>Z</u>	0	0
40	65	Z	0	0
41	75	<u>Z</u>	013	%25
42	75	Z	013	%75
43	75	<u>Z</u>	0	0
44	75	Z	0	0
45	75	<u>Z</u>	0	0
46	78	<u>Z</u>	016	%20
47	78	<u>Z</u>	016	<u>%80</u>
48	78	<u>Z</u>	013	<u>%50</u>
49	<u>78</u> 78	Z	<u>011</u> 011	<u>%40</u> %40
50				
51	74	<u>Z</u>	012	<u>%50</u>
52 53	<u> </u>	Z	015	<u>%10</u>
53 54	74 74	Z	0	0
55	74 74	Z	0	0
56	64	Z	007	%10
	64	Z	007 007	
57 58	64	Z	007	<u>%80</u> %60
58 59	64	Z	003	0
60	64	Z	0	0
61	52	Z	007	<u> </u>
62	52	Z	007	%15
63	52	Z	007	0
64	52	Z	0	0
65	52	Z	0	0
66	61	Z	013	%25
67	61	Z	013	%75
68	61	Z	0	0
69	61	Z	0	0
70	61	Z	0	0
70	80	Z	016	%20
72	80	Z	016	%80
73	80	Z	010	<u> </u>
74	80	Z	011	<u>%40</u>
75	80	Z	013	<u>%40</u> %50
76	60	Z	012	<u>%88</u> %10
77	60	Z	015	%10
78	60	Z	0	0
79	60	Z	0	0
80	60	Z	0	Ő
81	5	Z	006	0
82	5	Z	0	0
83	5	Z	0	0
84	5	Z	0	0
85	5	Z	0	%50
86	5	Z	006	%50
87	5	Z	0	0
88	5	Z	0	0
	5	Z	0	0
89	5			

RISA-3D Version 17.0.4 [S:\...\...\...\003.01 MA\136457_003_01_Branford Banm Tower_CT.r3d] Page 22

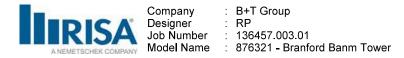


Member Point Loads (BLC 10 : 90 Seismic)

=

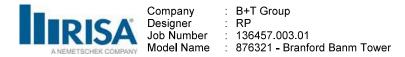
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	51	X	007	%10
2	51	Х	007	%80
3	51	Х	003	%60
4	51	Х	0	0
5	51	Х	0	0
6	34	X	007	%10
7	34	X	007	%70
8	34	X	0	0
9	34	Х	0	0
10	34	Х	0	0
11	44	Х	013	%25
12	44	Х	013	%75
13	44	Х	0	0
14	44	Х	0	0
15	44	Х	0	0
16	48	Х	016	%20
17	48	X	016	%80
18	48	X	0	0
19	48	X	0	0
20	48	X	0	0
21	47	X	011	%40
22	47	X	011	%40
23	47	X	013	%50
24	47	X	0	0
25	47	X	0	0
26	43	X	012	%50
27	43	X	015	%60
28	43	X	0	0
29	43	X	0	0
30	43	X	0	0
31	79	X	007	%10
32	79	X	007	%80
33	79	X	003	%60
34	79	X	0	0
35	79	X	0	0
36	65	X	007	%10
37	65	X	007	%70
38	65	X	0	0
39	65	X	0	0
40	65	X	0	0
41	75	X	013	%25
42	75	X	013	%75
43	75	X	0	0
44	75	X	0	0
45	75	X	0	0
46	78	X	016	%20
47	78	X	016	%80
48	78	X	013	%50
49	78	X	011	%40
50	78	X	011	%40
51	74	X	012	%50
52	74	X	015	%10
53	74	X	0	0
54	74	X	0	0
55	74	X	0	0
56	64	X	007	%10
57	64	X	007	%80
		·	AEZ 002 01 Dronford Donro	

RISA-3D Version 17.0.4 [S:\...\...\...\003.01 MA\136457_003_01_Branford Banm Tower_CT.r3d] Page 23



Member Point Loads (BLC 10 : 90 Seismic) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
58	64	X	003	%60
59	64	Х	0	0
60	64	Х	0	0
61	52	Х	007	%15
62	52	Х	007	%70
63	52	Х	0	0
64	52	Х	0	0
65	52	Х	0	0
66	61	Х	013	%25
67	61	Х	013	%75
68	61	X	0	0
69	61	Х	0	0
70	61	Х	0	0
71	80	Х	016	%20
72	80	Х	016	%80
73	80	Х	011	%40
74	80	Х	011	%40
75	80	Х	013	%50
76	60	Х	012	%10
77	60	Х	015	%10
78	60	Х	0	0
79	60	Х	0	0
80	60	Х	0	0
81	5	Х	006	0
82	5	Х	0	0
83	5	Х	0	0
84	5	Х	0	0
85	5	Х	0	%50
86	5	Х	006	%50
87	5	Х	0	0
88	5	Х	0	0
89	5	Х	0	0
90	5	Х	0	0
	r Point Loads (RL C 15 · M			


Member Point Loads (BLC 15 : Maint LL 1)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]				
1	22	Y	5	%5				
Member Point Loads (BLC 16 : Maint LL 2)								
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]				
1	1	Y	5	%5				
<u> </u>								
Member I	Point Loads (BLC 17 :	: Maint LL 3)						
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]				
1	24	Y	5	%5				
Member	Member Point Loads (BLC 18 : Maint LL 4)							
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]				
1	3	Y	5	%5				
Member Point Loads (BLC 19 : Maint LL 5)								
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]				
1	23	Y	5	%5				

Weinber	<u> Point Loads (BLC 20 :</u>	Maint LL 6)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	2	Y	5	%5
Member	Point Loads (BLC 21 :	Maint LL 7)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	22	Y	5	%95
Member	Point Loads (BLC 22 :	Maint LL 8)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	1	Y	5	%95
Member	Point Loads (BLC 23 :	Maint LL 9)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	24	Y	5	%95
Member	Point Loads (BLC 24 :	Maint LL 10)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	3	Y	5	%95
Member	Point Loads (BLC 25 :	Maint LL 11)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	23	Y	5	%95
Member	Point Loads (BLC 26 :	Maint LL 12)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	2	Y	5	%95
Member	Point Loads (BLC 27 :	Maint LL 13)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	4	Y	5	%10
Member	Point Loads (BLC 28 :	Maint LL 14)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	8	Y	5	%10
Member	Point Loads (BLC 29 :	Maint LL 15)		
	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
		V	5	%10

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Z	021	021	0	0
2	2	Z	021	021	0	0
3	3	Z	021	021	0	0
4	4	Z	02	02	0	0
5	5	Z	017	017	0	0
6	6	Z	02	02	0	0
7	7	Z	017	017	0	0
8	8	Z	02	02	0	0
9	9	Z	017	017	0	0
10	13	Z	017	017	0	0
11	14	Z	017	017	0	0

Member Distributed Loads (BLC 2 : 0 Wind - No Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
12	15	Z	017	017	0	0
13	16	Z	021	021	0	0
14	17	Z	021	021	0	0
15	18	Z	021	021	0	0
16	22	Z	01	01	0	0
17	23	Z	01	01	0	0
18	24	Z	01	01	0	0
19	25	Z	012	012	0	0
20	26	Z	012	012	0	0
21	27	Z	012	012	0	0
22	28	Z	017	017	0	0
23	29	Z	017	017	0	0
24	30	Z	017	017	0	0
25	31	Z	017	017	0	0
26	32	Z	017	017	0	0
27	33	Z	017	017	0	0
28	34	Z	01	01	0	0
29	43	Z	01	01	0	0
30	44	Z	01	01	0	0
31	47	Z	01	01	0	0
32	48	Z	01	01	0	0
33	51	Z	01	01	0	0
34	52	Z	01	01	0	0
35	60	Z	01	01	0	0
36	61	Z	01	01	0	0
37	64	Z	01	01	0	0
38	65	Z	01	01	0	0
39	74	Z	01	01	0	0
40	75	Z	01	01	0	0
41	78	Z	01	01	0	0
42	79	Z	01	01	0	0
43	80	Z	01	01	0	0

Member Distributed Loads (BLC 3 : 90 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Х	021	021	0	0
2	2	Х	021	021	0	0
3	3	Х	021	021	0	0
4	4	Х	02	02	0	0
5	5	Х	017	017	0	0
6	6	Х	02	02	0	0
7	7	Х	017	017	0	0
8	8	Х	02	02	0	0
9	9	Х	017	017	0	0
10	13	Х	017	017	0	0
11	14	Х	017	017	0	0
12	15	Х	017	017	0	0
13	16	Х	021	021	0	0
14	17	Х	021	021	0	0
15	18	Х	021	021	0	0
16	22	Х	01	01	0	0
17	23	Х	01	01	0	0
18	24	Х	01	01	0	0
19	25	Х	012	012	0	0
20	26	Х	012	012	0	0
21	27	Х	012	012	0	0

Member Distributed Loads (BLC 3 : 90 Wind - No Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
22	28	Х	017	017	0	0
23	29	Х	017	017	0	0
24	30	Х	017	017	0	0
25	31	Х	017	017	0	0
26	32	Х	017	017	0	0
27	33	Х	017	017	0	0
28	34	Х	01	01	0	0
29	43	Х	01	01	0	0
30	44	Х	01	01	0	0
31	47	Х	01	01	0	0
32	48	Х	01	01	0	0
33	51	Х	01	01	0	0
34	52	Х	01	01	0	0
35	60	Х	01	01	0	0
36	61	Х	01	01	0	0
37	64	Х	01	01	0	0
38	65	Х	01	01	0	0
39	74	Х	01	01	0	0
40	75	X	01	01	0	0
41	78	Х	01	01	0	0
42	79	Х	01	01	0	0
43	80	Х	01	01	0	0

Member Distributed Loads (BLC 4 : 0 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Z	006	006	0	0
2	2	Z	006	006	0	0
3	3	Z	006	006	0	0
4	4	Z	006	006	0	0
5	5	Z	005	005	0	0
6	6	Z	006	006	0	0
7	7	Z	005	005	0	0
8	8	Z	006	006	0	0
9	9	Z	005	005	0	0
10	13	Z	005	005	0	0
11	14	Z	005	005	0	0
12	15	Z	005	005	0	0
13	16	Z	006	006	0	0
14	17	Z	006	006	0	0
15	18	Z	006	006	0	0
16	22	Z	002	002	0	0
17	23	Z	002	002	0	0
18	24	Z	002	002	0	0
19	25	Z	004	004	0	0
20	26	Z	004	004	0	0
21	27	Z	004	004	0	0
22	28	Z	008	008	0	0
23	29	Z	006	006	0	0
24	30	Z	008	008	0	0
25	31	Z	006	006	0	0
26	32	Z	008	008	0	0
27	33	Z	006	006	0	0
28	34	Z	002	002	0	0
29	43	Z	002	002	0	0
30	44	Z	002	002	0	0
31	47	Z	002	002	0	0



Member Distributed Loads (BLC 4 : 0 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
32	48	Z	002	002	0	0
33	51	Z	002	002	0	0
34	52	Z	002	002	0	0
35	60	Z	002	002	0	0
36	61	Z	002	002	0	0
37	64	Z	002	002	0	0
38	65	Z	002	002	0	0
39	74	Z	002	002	0	0
40	75	Z	002	002	0	0
41	78	Z	002	002	0	0
42	79	Z	002	002	0	0
43	80	Z	002	002	0	0

Member Distributed Loads (BLC 5 : 90 Wind - Ice)

	Member Label	Direction		End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Х	006	006	0	0
2	2	Х	006	006	0	0
3	3	Х	006	006	0	0
4	4	Х	006	006	0	0
5	5	Х	005	005	0	0
6	6	Х	006	006	0	0
7	7	Х	005	005	0	0
8	8	Х	006	006	0	0
9	9	Х	005	005	0	0
10	13	Х	005	005	0	0
11	14	Х	005	005	0	0
12	15	Х	005	005	0	0
13	16	Х	006	006	0	0
14	17	Х	006	006	0	0
15	18	Х	006	006	0	0
16	22	Х	002	002	0	0
17	23	Χ	002	002	0	0
18	24	Х	002	002	0	0
19	25	Х	004	004	0	0
20	26	Х	004	004	0	0
21	27	Х	004	004	0	0
22	28	Х	008	008	0	0
23	29	Х	006	006	0	0
24	30	Х	008	008	0	0
25	31	Х	006	006	0	0
26	32	Х	008	008	0	0
27	33	Х	006	006	0	0
28	34	Х	002	002	0	0
29	43	Х	002	002	0	0
30	44	Х	002	002	0	0
31	47	Х	002	002	0	0
32	48	Х	002	002	0	0
33	51	Х	002	002	0	0
34	52	Х	002	002	0	0
35	60	Х	002	002	0	0
36	61	Х	002	002	0	0
37	64	Х	002	002	0	0
38	65	Х	002	002	0	0
39	74	Х	002	002	0	0
40	75	Х	002	002	0	0
41	78	Х	002	002	0	0
		•		·		

Member Distributed Loads (BLC 5 : 90 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
42	79	Х	002	002	0	0
43	80	Х	002	002	0	0


Member Distributed Loads (BLC 6 : 0 Wind - Service)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Z	001	001	0	0
2	2	Z	001	001	0	0
3	3	Z	001	001	0	0
4	4	Z	001	001	0	0
5	5	Z	001	001	0	0
6	6	Z	001	001	0	0
7	7	Z	001	001	0	0
8	8	Z	001	001	0	0
9	9	Z	001	001	0	0
10	13	Z	001	001	0	0
11	14	Ζ	001	001	0	0
12	15	Z	001	001	0	0
13	16	Z	001	001	0	0
14	17	Z	001	001	0	0
15	18	Z	001	001	0	0
16	22	Z	0003	0003	0	0
17	23	Z	0003	0003	0	0
18	24	Z	0003	0003	0	0
19	25	Z	0007	0007	0	0
20	26	Z	0007	0007	0	0
21	27	Z	0007	0007	0	0
22	28	Z	001	001	0	0
23	29	<u>Z</u>	001	001	0	0
24	30	Z	001	001	0	0
25	31	Z	001	001	0	0
26	32	<u>Z</u>	001	001	0	0
27	33	Z	001	001	0	0
28	34	Z	0003	0003	0	0
29	43	<u>Z</u>	0003	0003	0	0
30	44	Z	0003	0003	0	0
31	47	Z	0003	0003	0	0
32	48	Z	0003	0003	0	0
33	51	<u>Z</u>	0003	0003	0	0
34	52	Z 7	0003	0003	0	0
35	60	<u>Z</u>	0003	0003	0	0
36	61	Z	0003	0003	0	0
37	64	<u>Z</u>	0003	0003	0	0
38	65	<u>Z</u>	0003	0003	0	0
<u>39</u> 40	<u>74</u> 75	Z Z	0003 0003	0003	0	0
				0003		
41	78	<u>Z</u>	0003	0003	0	0
42	79	<u>Z</u>	0003	0003	0	0
43	80	Z	0003	0003	0	0

Member Distributed Loads (BLC 7 : 90 Wind - Service)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Х	001	001	0	0
2	2	Х	001	001	0	0
3	3	Х	001	001	0	0
4	4	Х	001	001	0	0
5	5	Х	001	001	0	0

RISA-3D Version 17.0.4 [S:\...\...\...\003.01 MA\136457_003_01_Branford Banm Tower_CT.r3d] Page 29



Member Distributed Loads (BLC 7 : 90 Wind - Service) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
6	6	Х	001	001	0	0
7	7	Х	001	001	0	0
8	8	Х	001	001	0	0
9	9	Х	001	001	0	0
10	13	Х	001	001	0	0
11	14	Х	001	001	0	0
12	15	Х	001	001	0	0
13	16	Х	001	001	0	0
14	17	Х	001	001	0	0
15	18	Х	001	001	0	0
16	22	Х	0003	0003	0	0
17	23	Х	0003	0003	0	0
18	24	Х	0003	0003	0	0
19	25	Х	0007	0007	0	0
20	26	Х	0007	0007	0	0
21	27	Х	0007	0007	0	0
22	28	Х	001	001	0	0
23	29	Х	001	001	0	0
24	30	Х	001	001	0	0
25	31	Х	001	001	0	0
26	32	Х	001	001	0	0
27	33	Х	001	001	0	0
28	34	Х	0003	0003	0	0
29	43	Х	0003	0003	0	0
30	44	Х	0003	0003	0	0
31	47	Х	0003	0003	0	0
32	48	Х	0003	0003	0	0
33	51	Х	0003	0003	0	0
34	52	Х	0003	0003	0	0
35	60	Х	0003	0003	0	0
36	61	Х	0003	0003	0	0
37	64	Х	0003	0003	0	0
38	65	Х	0003	0003	0	0
39	74	Х	0003	0003	0	0
40	75	Х	0003	0003	0	0
41	78	Х	0003	0003	0	0
42	79	Х	0003	0003	0	0
43	80	Х	0003	0003	0	0

Member Distributed Loads (BLC 8 : Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Y	007	007	0	0
2	2	Y	007	007	0	0
3	3	Y	007	007	0	0
4	4	Y	01	01	0	0
5	5	Y	009	009	0	0
6	6	Y	01	01	0	0
7	7	Y	009	009	0	0
8	8	Y	01	01	0	0
9	9	Y	009	009	0	0
10	13	Y	01	01	0	0
11	14	Y	01	01	0	0
12	15	Y	01	01	0	0
13	16	Ý	007	007	0	0
14	17	Ý	007	007	0	0
15	18	Y	007	007	0	0

Member Distributed Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
16	22	Y	005	005	0	0
17	23	Y	005	005	0	0
18	24	Y	005	005	0	0
19	25	Y	006	006	0	0
20	26	Y	006	006	0	0
21	27	Y	006	006	0	0
22	28	Y	014	014	0	0
23	29	Y	009	009	0	0
24	30	Y	014	014	0	0
25	31	Y	009	009	0	0
26	32	Y	014	014	0	0
27	33	Y	009	009	0	0
28	34	Y	005	005	0	0
29	43	Y	005	005	0	0
30	44	Y	005	005	0	0
31	47	Y	005	005	0	0
32	48	Y	005	005	0	0
33	51	Y	005	005	0	0
34	52	Y	005	005	0	0
35	60	Y	005	005	0	0
36	61	Y	005	005	0	0
37	64	Y	005	005	0	0
38	65	Y	005	005	0	0
39	74	Y	005	005	0	0
40	75	Y	005	005	0	0
41	78	Y	005	005	0	0
42	79	Y	005	005	0	0
43	80	Y	005	005	0	0

Member Distributed Loads (BLC 9 : 0 Seismic)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Z	001	001	0	0
2	2	Z	001	001	0	0
3	3	Z	001	001	0	0
4	4	Z	003	003	0	0
5	5	Z	003	003	0	0
6	6	Z	003	003	0	0
7	7	Z	003	003	0	0
8	8	Z	003	003	0	0
9	9	Z	003	003	0	0
10	13	Z	002	002	0	0
11	14	Z	002	002	0	0
12	15	Z	002	002	0	0
13	16	Z	001	001	0	0
14	17	Z	001	001	0	0
15	18	Z	001	001	0	0
16	22	Z	0007	0007	0	0
17	23	Z	0007	0007	0	0
18	24	Z	0007	0007	0	0
19	25	Z	0006	0006	0	0
20	26	Z	0006	0006	0	0
21	27	Z	0006	0006	0	0
22	28	Z	002	002	0	0
23	29	Z	001	001	0	0
24	30	Z	002	002	0	0
25	31	Z	001	001	0	0

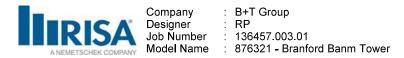
Member Distributed Loads (BLC 9 : 0 Seismic) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
26	32	Z	002	002	0	0
27	33	Z	001	001	0	0
28	34	Z	0007	0007	0	0
29	43	Z	0007	0007	0	0
30	44	Z	0007	0007	0	0
31	47	Z	0007	0007	0	0
32	48	Z	0007	0007	0	0
33	51	Z	0007	0007	0	0
34	52	Z	0007	0007	0	0
35	60	Z	0007	0007	0	0
36	61	Z	0007	0007	0	0
37	64	Z	0007	0007	0	0
38	65	Z	0007	0007	0	0
39	74	Z	0007	0007	0	0
40	75	Z	0007	0007	0	0
41	78	Z	0007	0007	0	0
42	79	Z	0007	0007	0	0
43	80	Z	0007	0007	0	0

Member Distributed Loads (BLC 10 : 90 Seismic)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Х	001	001	0	0
2	2	Х	001	001	0	0
3	3	Х	001	001	0	0
4	4	Х	003	003	0	0
5	5	Х	003	003	0	0
6	6	Х	003	003	0	0
7	7	Х	003	003	0	0
8	8	Х	003	003	0	0
9	9	Х	003	003	0	0
10	13	Х	002	002	0	0
11	14	Х	002	002	0	0
12	15	Х	002	002	0	0
13	16	Х	001	001	0	0
14	17	Х	001	001	0	0
15	18	Х	001	001	0	0
16	22	Х	0007	0007	0	0
17	23	Х	0007	0007	0	0
18	24	Х	0007	0007	0	0
19	25	Х	0006	0006	0	0
20	26	Х	0006	0006	0	0
21	27	Х	0006	0006	0	0
22	28	Х	002	002	0	0
23	29	Х	001	001	0	0
24	30	Х	002	002	0	0
25	31	Х	001	001	0	0
26	32	Х	002	002	0	0
27	33	Х	001	001	0	0
28	34	Х	0007	0007	0	0
29	43	Х	0007	0007	0	0
30	44	Х	0007	0007	0	0
31	47	Х	0007	0007	0	0
32	48	Х	0007	0007	0	0
33	51	Х	0007	0007	0	0
34	52	Х	0007	0007	0	0
35	60	Х	0007	0007	0	0
	-				-	·]

Member Distributed Loads (BLC 10 : 90 Seismic) (Continued)

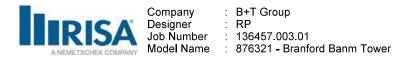

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
36	61	Х	0007	0007	0	0
37	64	Х	0007	0007	0	0
38	65	Х	0007	0007	0	0
39	74	Х	0007	0007	0	0
40	75	Х	0007	0007	0	0
41	78	Х	0007	0007	0	0
42	79	Х	0007	0007	0	0
43	80	Х	0007	0007	0	0

Member Distributed Loads (BLC 39 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Y	0001947	006	0	2
2	1	Y	006	01	2	4
3	1	Y	01	009	4	6
4	1	Y	009	009	6	8
5	1	Y	009	01	8	10
6	1	Y	01	006	10	12
7	1	Y	006	0001947	12	14
8	14	Y	002	009	0	1.917
9	14	Y	009	017	1.917	3.833
10	15	Y	002	009	0	1.917
11	15	Y	009	017	1.917	3.833
12	16	Y	01	01	.014	7.346
13	2	Y	002	005	0	2.333
14	2	Y	005	009	2.333	4.667
15	2	Y	009	012	4.667	7
16	2	Y	012	009	7	9.333
17	2	Y	009	005	9.333	11.667
18	2	Y	005	002	11.667	14
19	13	Y	002	009	0	1.917
20	13	Y	009	017	1.917	3.833
21	17	Y	01	01	.014	7.346
22	3	Y	002	005	0	2.333
23	3	Y	005	009	2.333	4.667
24	3	Y	009	012	4.667	7
25	3	Y	012	009	7	9.333
26	3	Y	009	005	9.333	11.667
27	3	Y	005	002	11.667	14
28	18	Y	01	01	.014	7.346

Member Distributed Loads (BLC 40 : BLC 8 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	Y	0001049	003	0	2
2	1	Y	003	005	2	4
3	1	Y	005	005	4	6
4	1	Y	005	005	6	8
5	1	Y	005	005	8	10
6	1	Y	005	003	10	12
7	1	Y	003	0001049	12	14
8	14	Y	0009922	005	0	1.917
9	14	Y	005	009	1.917	3.833
10	15	Y	0009922	005	0	1.917
11	15	Y	005	009	1.917	3.833
12	16	Y	005	005	.014	7.346
13	2	Y	0009798	003	0	2.333
14	2	Ý	003	005	2.333	4.667



Member Distributed Loads (BLC 40 : BLC 8 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
15	2	Y	005	006	4.667	7
16	2	Y	006	005	7	9.333
17	2	Y	005	003	9.333	11.667
18	2	Y	003	0009798	11.667	14
19	13	Y	0009553	005	0	1.917
20	13	Y	005	008	1.917	3.833
21	17	Y	005	005	.014	7.346
22	3	Y	0009798	003	0	2.333
23	3	Y	003	005	2.333	4.667
24	3	Y	005	006	4.667	7
25	3	Y	006	005	7	9.333
26	3	Y	005	003	9.333	11.667
27	3	Y	003	0009798	11.667	14
28	18	Y	005	005	.014	7.346

Basic Load Cases

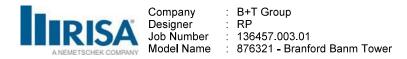
	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Dead	DL		-1			90		3	
2	0 Wind - No Ice	WLZ					90	43		
3	90 Wind - No Ice	WLX					90	43		
4	0 Wind - Ice	WLZ					90	43		
5	90 Wind - Ice	WLX					90	43		
6	0 Wind - Service	WLZ					90	43		
7	90 Wind - Service	WLX					90	43		
8	Ice	OL1					90	43	3	
9	0 Seismic	ELZ					90	43		
10	90 Seismic	ELX					90	43		
11	Live Load a	LL				3				
12	Live Load b	LL				3				
13	Live Load c	LL				3				
14	Live Load d	LL				3				
15	Maint LL 1	LL					1			
16	Maint LL 2	LL					1			
17	Maint LL 3	LL					1			
18	Maint LL 4	LL					1			
19	Maint LL 5	LL					1			
20	Maint LL 6	LL					1			
21	Maint LL 7	LL					1			
22	Maint LL 8	LL					1			
23	Maint LL 9	LL					1			
24	Maint LL 10	LL					1			
25	Maint LL 11	LL					1			
26	Maint LL 12	LL					1			
27	Maint LL 13	LL					1			
28	Maint LL 14	LL					1			
29	Maint LL 15	LL					1			
30	Maint LL 16	LL								
31	Maint LL 17	LL								
32	Maint LL 18	LL								
33	Maint LL 19	LL								
34	Maint LL 20	LL								
35	Maint LL 21	LL								
36	Maint LL 22	LL								
37	Maint LL 23	LL								
38	Maint LL 24	LL								

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
39	BLC 1 Transient Area	None						28		
40	BLC 8 Transient Area	None						28		

Load Combinations

1	Description	Sol.	.PD	.BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact
2	1.2 D + 1			1	1.2	2	1																
3	1.2 D + 1	_	_	1	1.2		.866	3	.5														
4	1.2 D + 1			1	1.2	3	.866		.5														
5	1.2 D + 1			1	1.2	3	1																
6	1.2 D + 1	. Yes		1	1.2	3	.866	2	5														
7	1.2 D + 1	. Yes		1	1.2	2	866		.5														
8	1.2 D + 1	. Yes	Y	1	1.2	2	-1																
9	1.2 D + 1	. Yes	Y	1	1.2	2	866	3	5														
10	1.2 D + 1	. Yes	Y	1	1.2	3	866	2	5														
11	1.2 D + 1	. Yes	Y	1	1.2	3	-1																
12	1.2 D + 1			1	1.2		866		.5														
13	1.2 D + 1			1	1.2	2	.866	3	5														
	1.2 D + 1			1	1.2	4	1			8	1												
	1.2 D + 1			1	1.2	4	.866		.5	8	1												
	1.2 D + 1			1	1.2	5		4	.5	8	1												
17	1.2 D + 1			1	1.2	5	1		_	8	1												
18	1.2 D + 1			1	1.2	5	.866		5	8	1												
19	1.2 D + 1			1	1.2	4	866	5	.5	8	1												
	1.2 D + 1 1.2 D + 1	_		1	1.2	4	-1 866	5	5	8	1												
	1.2 D + 1	_		1	1.2	4	866		5	8 8	1												
23	1.2 D + 1			1	1.2	5	000	4	0	0 8	1												
	1.2 D + 1			1	1.2		866	Λ	.5	8	1												
	1.2 D + 1			1	1.2	4	.866		5	8	1												
	1.2 D + 1			1	1.2	9	1	<u> </u>	5	0	-												
27	1.2 D + 1			1	1.2	9	.866	10	.5														
28	1.2 D + 1			1	1.2	10			.5														
29	1.2 D + 1			1	1.2	10	1																
	1.2 D + 1			1	1.2	10	.866	9	5														
31	1.2 D + 1	. Yes	Ý	1	1.2				.5														
	1.2 D + 1	. Yes	Y	1	1.2	9	-1																
33	1.2 D + 1			1	1.2	9	866	10	5														
34	1.2 D + 1	_		1	1.2	10	866	9	5														
	1.2 D + 1			1	1.2	10																	
	1.2 D + 1			1	1.2		866		.5														
37	1.2 D + 1	_	-	1	1.2	9	.866	10	5														
38	1.2 D + 1	_		1	1.2	6	1	_	_	11	1.5												
39	1.2 D + 1			1	1.2	6	.866		.5	11	1.5												
	1.2 D + 1			1	1.2	7	.866	6	.5	11	1.5												
	1.2 D + 1			1	1.2	7	1	0	-		1.5												
	1.2 D + 1 1.2 D + 1			1	1.2	7	.866		5		1.5												
	1.2 D + 1			1	1.2		866 -1	7	.5	11													
	1.2 D + 1			1	1.2	6	866	7	5	11	<u>1.5</u> 1.5												
	1.2 D + 1			1	1.2	7	866		5		1.5												
	1.2 D + 1			1	1.2	7	000	0	0		1.5												
	1.2 D + 1			1	1.2		866	6	.5	11	1.5												
	1.2 D + 1			1	1.2	6	.866		5		1.5												
	1.2 D + 1			1	1.2		1				1.5												
00					1.4					14	1.0												


Mar 9, 2020 4:59 PM Checked By:___

Load Combinations (Continued)

=

	scription Sol.		<u>SR</u>									BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact
	2 D + 1 Yes		_	1	1.2				.5		1.5								<u> </u>				
	2 D + 1 Yes			1	1.2		.866	6	.5		1.5						<u> </u>		<u> </u>			+	
	2 D + 1 Yes			1	1.2		1		<u> </u>	12							<u> </u>		L			\vdash	
	2 D + 1 Yes			1	1.2		.866										<u> </u>		 			\vdash	
	2 D + 1 Yes			1	1.2		866	7	.5	12							L						
	2 D + 1 Yes			1	1.2		-1			12													
	2 D + 1 Yes			1	1.2	6	866	7	5	12	1.5												
	2 D + 1 Yes			1	1.2	7	866	6	5	12	1.5												
	2 D + 1 Yes			1	1.2	7	-1			12	1.5												
60 1.2	2 D + 1 Yes	Y		1	1.2	7	866	6	.5	12	1.5												
61 1.2	2 D + 1 Yes	5 Y		1	1.2	6	.866	7	5	12	1.5												
62 1.2	2 D + 1 Yes	Y		1	1.2		1				1.5												
	2 D + 1 Yes			1	1.2		.866	7	.5		1.5												
	2 D + 1 Yes			1	1.2		.866		.5		1.5												
	2 D + 1 Yes			1	1.2		1	–			1.5												
	2 D + 1 Yes			1	1.2		.866	6	5														
	2 D + 1 Yes			1	1.2		866		.5		1.5												
	2 D + 1 Yes			1	1.2		-1	-			1.5												
	2 D + 1 Yes			1	1.2		866	7	5		1.5												
	2 D + 1 Yes			1	1.2		866		5														
	2 D + 1 Yes		_				-	0	0		1.5												
	2 D + 1 Yes			<u>1</u> 1	1.2		-1 866	E	.5														
											1.5						<u> </u>						
	2 D + 1 Yes		_	1	1.2		.866	7	5		1.5												
	2 D + 1 Yes			1	1.2		1	-			1.5						<u> </u>						
	2 D + 1 Yes			1	1.2		.866		.5		1.5						<u> </u>		<u> </u>				
	2 D + 1 Yes			1	1.2		.866	6	.5		1.5						<u> </u>						
	2 D + 1 Yes		\rightarrow	1	1.2		1				1.5						<u> </u>		<u> </u>			$ \rightarrow $	
	2 D + 1 Yes			1	1.2		.866				1.5								<u> </u>				
	2 D + 1 Yes			1	1.2		866	7	.5		1.5						L		L			\vdash	
	2 D + 1 Yes			1	1.2		-1			14									<u> </u>				
	2 D + 1 Yes			1	1.2		866		5	14													
	2 D + 1 Yes			1	1.2	7	866	6	5	14	1.5												
	2 D + 1 Yes			1	1.2	7	-1			14	1.5												
84 1.2	2 D + 1 Yes	5 Y		1	1.2	7	866	6	.5	14	1.5												
85 1.2	2 D + 1 Yes	S Y		1	1.2	6	.866	7	5	14	1.5												
86 1.2	2 D + 1 Yes	5 Y		1	1.2					15	1.5												
87 1.2	2 D + 1 Yes	Y		1	1.2					16	1.5												
	2 D + 1 Yes	Y		1	1.2					17													
	2 D + 1 Yes			1	1.2						1.5												
	2 D + 1 Yes			1	1.2						1.5												
	2 D + 1 Yes			1	1.2						1.5												
	2 D + 1 Yes				1.2						1.5												
	2 D + 1 Yes			1	1.2						1.5												
	2 D + 1 Yes			1	1.2						1.5												
	2 D + 1 Yes			1	1.2		1				1.5						<u> </u>						
	2 D + 1 Yes			1	1.2						1.5												
	2 D + 1 Yes		-	1			-	-			1.5								<u> </u>				
	2 D + 1 Yes		-+	1	1.2		-																
					1.2		-	-			1.5								<u> </u>		_	$ \rightarrow$	
	2 D + 1 Yes			1	1.2		-				1.5												
	2 D + 1 Yes			1	1.2						1.5								<u> </u>			+	
	2 D + 1 Yes			1	1.2						1.5												
	2 D + 1 Yes			1	1.2						1.5								<u> </u>				
	2 D + 1 Yes			1	1.2		<u> </u>	<u> </u>	<u> </u>		1.5					\square						\vdash	
	2 D + 1 Yes			1	1.2						1.5											+	
	2 D + 1 Yes			1	1.2		<u> </u>	L	L		1.5								L			\square	
106 1.2	D + 1 Vec	Y		1	1.2					35	1.5												
				_																			
107 1.2	2 D + 1 Yes			1	1.2					36	1.5												

RISA-3D Version 17.0.4 [S:\...\...\...\003.01 MA\136457_003_01_Branford Banm Tower_CT.r3d] Page 36

Load Combinations (Continued)

	Description	Sol	PD	.SRE	BLC	Fact	.BLC	Fact	.BLC	Fact	BLC	Fact.	.BLC	Fact	.BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact
108	1.2 D + 1	Yes	Υ		1	1.2					37	1.5												
109	1.2 D + 1	Yes	Υ		1	1.2					38	1.5												

Exhibit F

Power Density/RF Emissions Report

RF EMISSIONS COMPLIANCE REPORT

Crown Castle on behalf of AT&T Mobility LLC

Crown Castle Site Name: BRANFORD BANM TOWER Crown Castle Site BU: 876321 AT&T Mobility, LLC Site FA #: 10035122 150 N. Main Street Branford, CT 3/24/2020

Report Status:

AT&T Mobility LLC is Compliant

Michael Fischer, P.E. Registered Professional Engineer (Electrical) Connecticut License Number 33928 Expires January 31, 2021

Signed 25 March 2020

Prepared By:

Site Safe, LLC

Vienna, VA 22182

Engineering Statement in Re: Electromagnetic Energy Analysis Crown Castle Branford, CT

My signature on the cover of this document indicates:

That I am registered as a Professional Engineer in the jurisdiction indicated; and

That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Site Safe, LLC in Vienna, Virginia; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle on behalf of AT&T Mobility, LLC (see attached Site Summary and Carrier documents) and that AT&T Mobility, LLC's installation involves communications equipment, antennas and associated technical equipment at a location referred to as "BRANFORD BANM TOWER" ("the site"); and

That AT&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT&T Mobility, LLC and shown on the worksheet and that worst-case 100% duty cycle has been assumed; and

That in addition to the emitters specified in the worksheet, there are additional collocated pointto-point microwave facilities on this structure, and the antennas used are highly directional and oriented at angles at or just below the horizontal, and that the energy present at ground level is typically so low as to be considered insignificant and has not been included in this analysis (a list of microwave antennas is included); and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio frequency energy must utilize the standards set by the FCC, which is the federal agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," which defines situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and 2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT&T Mobility, LLC's operating frequencies as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT&T Mobility, LLC operation is no more than 3.910% of the maximum permissible exposure limits in any accessible area on the ground; and

That it is understood per FCC Guidelines and OET 65 Appendix A, that regardless of the existent radio frequency environment, only those licensees whose contributions exceed 5% of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any non-compliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 6.477% of the maximum in any accessible area up to two meters above the ground per OET 65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET 65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier(s) and frequency range(s) indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding radio frequency safety; and

In summary, it is stated here that the proposed operation at the site will not result in exposure of the public to excessive levels of radio frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307(b), and that AT&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals and approved contractor personnel trained in radio frequency safety and that this instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower or in the immediate proximity of the antennas.

Crown Castle BRANFORD BANM TOWER Site Summary

Carrier	Area Maximum Percentage MPE
AT&T Mobility LLC	0.436 %
AT&T Mobility LLC	0.205 %
AT&T Mobility LLC (Proposed)	0.887 %
AT&T Mobility LLC (Proposed)	0.562 %
AT&T Mobility LLC (Proposed)	0.548 %
AT&T Mobility LLC (Proposed)	0.809 %
AT&T Mobility LLC (Proposed)	0.463 %
Sprint	0.254 %
Sprint	0.180 %
Sprint	0.180 %
Sprint	0.258 %
T-Mobile	0.280 %
T-Mobile	0.664 %
T-Mobile	0.471 %
T-Mobile	0.280 %

Composite Site MPE:

6.477 %

Frequency:	2300	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	4.35633	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.43563	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	SBNHH-1D65A	112	90	2685	2.567802	0.256780	4.073417	0.407342
ANDREW	SBNHH-1D65A	112	200	2685	2.567802	0.256780	4.073417	0.407342
ANDREW	SBNHH-1D65A	112	284	2685	2.567802	0.256780	4.073417	0.407342

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm²
Maximum power density at ground level:	1.16019	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.20474	%

					On /	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (µW/cm²)	Percent of MPE
Powerwave	7770	112	44	547	0.431499	0.076147	0.667754	0.117839
Powerwave	7770	112	143	547	0.431499	0.076147	0.667754	0.117839
Powerwave	7770	112	263	547	0.431499	0.076147	0.667754	0.117839

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	8.86661	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.88666	%

					On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (µW/cm²)	Percent of MPE
CCI	OPA65R-BU4D	112	90	3708	5.981133	0.598113	7.535108	0.753511
CCI	OPA65R-BU4D	112	200	3708	5.981133	0.598113	7.535108	0.753511
CCI	OPA65R-BU4D	112	284	3708	5.981133	0.598113	7.535108	0.753511

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm ²
Maximum power density at ground level:	3.18602	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.56224	%

					On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
CCI	OPA65R-BU4D	112	90	2038	1.943172	0.342913	2.068927	0.365105
CCI	OPA65R-BU4D	112	200	2038	1.943172	0.342913	2.068927	0.365105
CCI	OPA65R-BU4D	112	284	2038	1.943172	0.342913	2.068927	0.365105

Frequency:	737	MHz
Maximum Permissible Exposure (MPE):	491.33	µW/cm²
Maximum power density at ground level:	2.69409	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.54832	%

					On A	Axis	Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
CCI	OPA65R-BU4D	112	90	1775	2.077601	0.422850	2.217626	0.451349
CCI	OPA65R-BU4D	112	200	1775	2.077601	0.422850	2.217626	0.451349
CCI	OPA65R-BU4D	112	284	1775	2.077601	0.422850	2.217626	0.451349

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	8.08611	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.80861	%

					On A	Axis	Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
CCI Antennas	DMP65R-BU4D	112	90	4066	5.116333	0.511633	6.847550	0.684755
CCI Antennas	DMP65R-BU4D	112	200	4066	5.116333	0.511633	6.847550	0.684755
CCI Antennas	DMP65R-BU4D	112	284	4066	5.116333	0.511633	6.847550	0.684755

Frequency:	763	MHz
Maximum Permissible Exposure (MPE):	508.67	µW/cm²
Maximum power density at ground level:	2.35430	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.46284	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
CCI Antennas	DMP65R-BU4D	112	90	1582	1.663846	0.327099	1.741274	0.342321
CCI Antennas	DMP65R-BU4D	112	200	1582	1.663846	0.327099	1.741274	0.342321
CCI Antennas	DMP65R-BU4D	112	284	1582	1.663846	0.327099	1.741274	0.342321

Frequency:	2500	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	2.53962	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.25396	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVTM14-C-I20	147	0	6168	1.046962	0.104696	1.958436	0.195844
RFS	APXVTM14-C-I20	147	120	6168	1.046962	0.104696	1.958436	0.195844
RFS	APXVTM14-C-I20	147	240	6168	1.046962	0.104696	1.958436	0.195844

Frequency:	1990	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	1.79846	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.17985	%

					On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVSPP18-C-A20	147	0	3804	0.833768	0.083377	1.577051	0.157705
RFS	APXVSPP18-C-A20	147	150	3804	0.833768	0.083377	1.577051	0.157705
Powerwave	P40-16-XLPP-RR	147	240	3583	0.927407	0.092741	1.427875	0.142787

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	1.79846	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.17985	%

					On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVSPP18-C-A20	147	0	3804	0.833768	0.083377	1.577051	0.157705
RFS	APXVSPP18-C-A20	147	150	3804	0.833768	0.083377	1.577051	0.157705
Powerwave	P40-16-XLPP-RR	147	240	3583	0.927407	0.092741	1.427875	0.142787

Frequency:	862	MHz
Maximum Permissible Exposure (MPE):	574.67	µW/cm²
Maximum power density at ground level:	1.48273	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.25802	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVSPP18-C-A20	147	0	2168	0.719467	0.125197	0.735164	0.127929
RFS	APXVSPP18-C-A20	147	150	2168	0.719467	0.125197	0.735164	0.127929
Powerwave	P40-16-XLPP-RR	147	240	2630	1.403404	0.244212	1.447395	0.251867

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	2.79829	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.27983	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (µW/cm²)	Percent of MPE
Ericsson	AIR 21 B4A B2P	121	60	4123	1.382321	0.138232	1.588662	0.158866
Ericsson	AIR 21 B4A B2P	121	200	4123	1.382321	0.138232	1.588662	0.158866
Ericsson	AIR 21 B4A B2P	121	290	4123	1.382321	0.138232	1.588662	0.158866

Frequency:	700	MHz
Maximum Permissible Exposure (MPE):	466.67	µW/cm²
Maximum power density at ground level:	3.09855	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.66398	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVAARR24_43-U-NA20	121	60	3484	1.517465	0.325171	1.635641	0.350495
RFS	APXVAARR24_43-U-NA20	121	200	3484	1.517465	0.325171	1.635641	0.350495
RFS	APXVAARR24_43-U-NA20	121	290	3484	1.517465	0.325171	1.635641	0.350495

Frequency:	600	MHz
Maximum Permissible Exposure (MPE):	400	µW/cm²
Maximum power density at ground level:	1.88237	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.47059	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVAARR24_43-U-NA20	121	60	2501	1.208510	0.302127	1.246502	0.311626
RFS	APXVAARR24_43-U-NA20	121	200	2501	1.208510	0.302127	1.246502	0.311626
RFS	APXVAARR24_43-U-NA20	121	290	2501	1.208510	0.302127	1.246502	0.311626

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	2.79829	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.27983	%

					On /	Axis	Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
Ericsson	AIR 21 B2A B4P	121	60	4123	1.382321	0.138232	1.588662	0.158866	
Ericsson	AIR 21 B2A B4P	121	200	4123	1.382321	0.138232	1.588662	0.158866	
Ericsson	AIR 21 B2A B4P	121	290	4123	1.382321	0.138232	1.588662	0.158866	

BRANFORD BANM TOWER Composite Microwave Antenna Summary

Carrier	Antenna Make/Model	Height (feet)
Clearwire	Dragonwave A-ANT-23G-2-C	149
Clearwire	Dragonwave A-ANT-23G-2-C	149
Clearwire	Andrew VHLP2-18	149