10 Industrial Avenue, Suite 3
MAHWAH, NJ 07430
Phone: 201.684.0055
FAX: 201.684.0066

July 16, 2019

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re:
Notice of Exempt Modification
50 Maple Street, Branford CT
Latitude 41.274244
Longitude - 72.813566
T-Mobile site: CT11328F / L600

Dear Ms. Bachman:

T-Mobile currently maintains (6) antennas at the 96-foot level of the existing 100-foot smokestack. The smokestack and the property are owned by Marine Systems LLC. T-Mobile now intends to replace 3 of its existing antennas with (3) $600 / 700 \mathrm{MHz}$ antennas. The new antennas would be installed at the 96 foot level of the tower.

Planned Modifications:

Tower:
Remove:
(6) coax

Remove and Replace:
(3) LNX 6515-A1M Antenna (REMOVE) - (3) RFS-APXVAARR24_43U-NA20 Antenna 600/700 MHz (REPLACE) (3) Ericsson RRUS-11 B12 remote radio units (REMOVE) - Ericsson RADIO 4449 B71+B12 (REPLACE)

Install New:
(3) 6×12 hybrid lines

Existing to Remain:

(3) Ericsson AIR 21, 1.3M, B2P/B4A
(3) TMAs

Ground:

Remove and Replace:
(1) DUS41 and (1) XMU with (1) BB6630

Install New:
(1) BB6630

T-Mobile Previously received approvals from the Town of Branford on January 11, 2010 to install antennas and associated equipment on the existing brick chimney. A copy o the approval is attached, however the Siting Council indicated that brick chimney meets the regulatory definition of a "tower" as the chimney is no longer in use and here are cellular antennas affixed thereto. Accordingly, please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50ss, of TMobile's intent to share a telecommunications facility pursuant to R.C.SA. § 16-SOj-88.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16-SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to James B. Cosgrove, First Selectman of the Town of Branford, as well as Harry Smith, Town Planner for the Town of Branford and Marine Systems, Inc., property owner

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Elizabeth Jamiesan

Elizabeth Jamieson
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, New Jersey 07430
860-605-7808
EJamieson@TranscendWireless.com
Cc:
James B. Cosgrove, First Selectman, Town of Branford
Harry Smith, Town Planner, Town of Branford
Maine Systems Inc, property and structure owner

Exhibit A

Original Facility Approval

PLANNING AND ZONING COMMISSION TOWN OF BRANFORD TOWN HALL DRIVE P.O. BOX 150
 Branford, Connecticut 06405
 Telephone: (203) 488-1255
 Fax: (203) 315-2188

NOTICE OF DECISION

January 11, 2010

Clearwire by Maxton Technology
Attention: Thomas F. Flynn III
1296 Blue Hills Avenue
Bloomfield, Connecticut 06002
SUBJECT: Site Plan
APPLICATION: \#09-12.4 ADDRESS: 50 Maple Street
APPLICANT: Clearwire Wireless LLC $\mathrm{d} / \mathrm{b} / \mathrm{a}$ Clearwire
OWNER OF RECORD: Marine Systems, Inc.
Dear. Sir:
At a meeting of the Branford Planning \& Zoning Commission held on Thursday, January 7, 2010 the Commission voted to:

X Approve your above subject application.

NOTE: Site Plan shall become null and void in the event the applicant fails to obtain a building permit within one (1) year of date of approval.
(Per Section 31.7 of the Branford Zoning Regulations)

PLANNING AND ZONING COMMISSION TOWN OF BRANFORD TOWN HALL DRIVE P.O. BOX 150
 Branford, Connecticut 06405
 Telephone: (203) 488-1255
 Fax: (203) 315-2188

NOTICE OF DECISION

January 11, 2010

Clearwire by Maxton Technology
Attention: Thomas F. Flynn III
1296 Blue Hills Avenue
Bloomfield, Connecticut 06002
SUBJECT: Site Plan
APPLICATION: \#09-12.4 ADDRESS: 50 Maple Street
APPLICANT: Clearwire Wireless LLC $\mathrm{d} / \mathrm{b} / \mathrm{a}$ Clearwire
OWNER OF RECORD: Marine Systems, Inc.
Dear. Sir:
At a meeting of the Branford Planning \& Zoning Commission held on Thursday, January 7, 2010 the Commission voted to:

X Approve your above subject application.

NOTE: Site Plan shall become null and void in the event the applicant fails to obtain a building permit within one (1) year of date of approval.
(Per Section 31.7 of the Branford Zoning Regulations)

Exhibit B Property card

Property Location: 50 MAPLE ST

Vision ID: 801
CURRENT OWNER
MARINE SYSTEMS INCORPORAT

BRANFORD, CT 06405 Additional Owners:

MAP ID: D08/000 012/ 00003/ /

Bldg Name:
State Use: 3150

Account \#000592			
	TOPO.	UTILITIES	
ED 1 Level		1 All Public	1
		3 Public Sewer	
		SUPPLEMEN	

Additional Owners:	CO
	CO
	CO
	PA
	GIS

Other ID: D08/000/012/00003/
CONDO BLDG
CONDO UNIT
CONDO FLOO

| Bldg \#: 1 of 2 |
| :---: | :---: |
| LOCATION |

Sec \#: 1 of
1 Card 1
1 Card 1 of 3
Print Date: 04/18/2019 13:41
1 STRT./ROAD

GIS ID: D08/000/012/00003	
RECORD OF OWNERSHIP	BK-VOL/PAGE
MARINE SYSTEMS INCORPORATED	$0555 / 1008$
EXEMPTIONS	

ASSOC PID\#

VISION

Total $1,339,300$
PREVIOUS ASSESSMENTS (HISTORY)
Code \quad A
Assessed V

This signature acknowledges a visit by a Data Collector or Assessor

APPRAISED VALUE SUMMARY

Total:				
ASSESSING NEIGHBORHOOD				
NBHD/SUB	NBHD Name	Street Index Name	Tracing	Batch
350/A				

Appraised Bldg. Value (Card)
Appraised XF (B) Value (Bldg)
Appraised OB (L) Value (Bldg)
Appraised Land Value (Bldg)
Special Land Value

IS FOR 12 SLIPS - LINEAR FOOTAGE OF	Total Appraised Parcel Value
BOTH DOCKS 1166FT/12 SLIPS HAVE WATER +	Val

Valuation Method:

Adjustment:
NOTES
BRANFORD LANDING(MARINA) EXT-MKT
RKS BOATWORKS/B+E YATCH SVC
ELECTRICITY/3 ANTENNAS ON STACK
1700SFUNUSABLE AREA WITHIN BLDG=FUNC
ESMTS V1155/P583/LEASEV1155/P606

Net Total Appraised Parcel Value
1,339,300
F FOR MARINAS USE, 2804SF DCKS

OB-OUTBUILDING \& YARD ITEMS(L) / XF-BUILDING EXTRA FEATURES(B)

Code	Description	Sub	Sub Descript	L / B	Units	Unit Price	Yr	Gde	$D p R t$	Cnd	\%Cnd	Apr Value
STK1	CHIMNEY ST			L	100	500.00	1900		0		40	20,000
SHD5	SHED COM W			L	160	17.00	2009		0		50	1,400
MEZ1	MEZZANINE-			B	784	10.00	1964		1		100	200
GIR3	GIRDERS 19".			B	80	64.00	1964		1		100	200
HT2	ELECTRIC			B	1,248	3.50	1964		1		100	100
HT3	FORCED AIR			B	840	5.00	1964		1		100	100
A/C	AIR CONDITI			B		2.20	1964		1		100	0

Code	Description	Living Area	Gross Area	Eff. Area	Unit Cost	Undeprec. Value

Property Location: 50 MAPLE ST

OB-OUTBUILDING \& YARD ITEMS(L) / XF-BUILDING EXTRA FEATURES(B)

Code	Description	Sub	Sub Descript	L / B	Units	nit Price	Yr	Gde	Dp Rt	Cn	Cnd	Apr V
HD5	CO											

BUILDING SUB-AREA SUMMARY SECTION

Code	Description	Living Area	Gross Area	Eff. Area	
BAS	First Floor	$\mathbf{2 , 2 2 0}$	$\mathbf{2 , 2 2 0}$	$\mathbf{2 , 2 2 0}$	
FSP	Porch, Screen	$\mathbf{0}$	$\mathbf{8 4}$	$\mathbf{2 1}$	
FST	Utility, Finished	$\mathbf{0}$	$\mathbf{1 7 1}$	$\mathbf{6 0}$	
PTO	Patio	$\mathbf{0}$	$\mathbf{1 , 6 1 2}$	$\mathbf{1 6 1}$	
WDK	Deck, Wood	$\mathbf{0}$	$\mathbf{3 1 8}$	$\mathbf{3 2}$	
			$\mathbf{2 , 2 2 0}$	$\mathbf{4 . 4 0 5}$	$\mathbf{2 , 4 9 4}$

Approximate Scale: 1 inch : 100 feet

Exhibit C
 Construction Drawings

ESICN BASIS

. desing criterb:
WND LOAN: PER TA 2226 (ANTENMA MOUNTS): 90 -105 MPH (3 SECOND GUST)
RISK CAIEOORY: | ((Based on IBC TABE 1804.5)

GENERAL NOTES

ALL Constructon Shall 日e in compance wit the governicg buloung

- dmensions and detalls shall be checked aganst exxting felo conotions.

5. THE Contractor shal verf and coronane the siz Ano locanon of all

Con

STRUCTURAL STEE

allowable stress desin (asin

6. NsTALL FARERCOTONS PLUMM ANO LNELL ACCURATEY FITED, AND RREE FROM

11. Connecton ances shall have A Mnmou Thicness of $1 / 4$ nches

13. Lock washer are not pexumteo for azz5 Stel assemules.
.

6. Fabrcate beems wit mul camer ur.

Exhibit D

Structural Analysis Report

Structural Analysis Report

土99．7－ft Existing Masonry Smokestack T－Mobile Site Ref：CT11328F

50 Maple Street Branford，CTO6405

Centek Project No． 19027.41

Date：June 18，2019
Rev 1：July 16， 2019

Prepared for：
T－Mobile USA 35 Griffin Road
Bloomfield，CT 06002

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- EQUIPMENT INSTALLATION SUMMARY
- DESIGN LOADING
- RESULTS
- CONCLUSION AND RECOMMENDATIONS

SECTION 2 - CONDITIONS \& SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- WIND LOADING
- ANTENNA FRAME - RISA 3D OUTPUT REPORT
- SMOKESTACK ANALYSIS

SECTION 4 - REFERENCES (NOT ATTACHED)

- RF DATA SHEET, DATED 4/17/2019
- STRUCTURAL ANLAYSIS REPORT AS PREPARED BY INTERNATIONAL CHMINEY CORP., DATED 08/08/2016.

Introduction

The purpose of this report is to summarize the results of the structural analysis of the equipment installation proposed by T-Mobile on the existing host masonry smokestack located in Branford, CT.

The host structure is a ± 99.7-ft tall masonry smokestack. The smokestack geometry and structural information was obtained from a field investigation and inspection report prepared by International Chimney Corporation dated August 8, 2016.

Equipment Installation Summary

- T-Mobile (Existing to Remove):

Antennas: Three (3) Andrew LNX-6515DS-A1M panel antennas and three (3) Ericsson RRUS-11 B12 remote radio units mounted on custom sector mounts with RAD center elevations of ± 96 - ft AGL.
Cables: Six (6) 1-5/8" \varnothing coax cables inside cable tray on exterior of smokestack.

- T-Mobile (Final):

Antennas: Three (3) RFS APXVAARR24_43-U-NA20 panel antennas mounted, three (3) Ericsson AIR21 KRC118023-1_B2A_B4P panel antennas, three (3) Ericsson AIR21 KRC118046-1_B2P_B4A panel antennas, three (3) Ericsson 4449 B71+B12 remote radio units and three (3) Ericsson KRY112 71 (TMAs) mounted on custom sector mounts with RAD center elevations of ± 96-ft AGL.
Cables: Three (3) 6×12 fiber cables inside cable tray on exterior of smokestack.

Design Loading

Loading was determined per the requirements of the 2015 International Building Code as amended by the 2018 CT Building Code and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed:	Vult $=140 \mathrm{mph}$	[Appendix N of the 2018 CT Building Code]
Exposure Category:	C	
Risk Category	III	[ASCE 7-10, Table 1.5-1]

Results

Smokestack:

Component	Stress Ratio (percentage of capacity)	Result
Compression	25.0%	PASS
Tension of Mortar	47.0%	PASS

Conclusion and Recommendations

This analysis shows that the subject smokestack is adequate to support the proposed T-Mobile equipment installation.

The analysis is based, in part on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Standard Conditions for Furnishingof Professional Engineering Serviceson Existing structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 \& ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM~RISA-3D

- RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems \& conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation - draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges - web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases \& rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements

REPORT

T-Mobile Site Ref ~ CT11328F (L600)
Branford, CT
Rev 1 ~ July 16, 2019

- 1-Way members, for tension only bracing, slipping, etc.
- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot \& print virtually everything with color coding \& labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000,EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd \& 3rd, HSS Specification, CAN/CSA-S16.11994 \& 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, MarinolWARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member \& joint deflections, beam \& plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

二NT 二人 engineering	Subject：	Wind Load on Equipment per ASCE 7－10
	Location：	Branford，CT
Branford， CT O6405 F：（203）4888－8587	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

Design Wind Load on Other Structures：

Wind Speed $=$
Risk Category＝
Exposure Category＝
Structure Type $=$
Structure Height $=$
Horizontal Dimension of Structure $=$

Terrain Exposure Constants：
Nominal Height of theAtmospheric Boundary Layer＝

3－Sec Gust Speed Power Law Exponent＝

Integral Length Scale Factor＝

Integral Length Scale Power Law Exponent＝

Exposure Constant $=$

Topographic Factor $=$

Wind Directionality Factor＝
Peak Factor for Background Response $=$
Peak Factor for Wind Response $=$
（Based on IBC 2012，CSBC 2016 and ASCE 7－10）

$\mathrm{V}:=140$	mph	（User Input）
BC $:=$ III	（UsBCAppendix－N）	
Exp $:=\mathrm{C}$	（User Input）	（IBC Table 1604．5）

Structuretype ：＝Round＿Chimney（User Input）
Height ：＝99．7 ft（User Input）
Width ：＝ 12.99 ft （User Input）

$$
z g:=\left\lvert\, \begin{aligned}
& 1200 \text { if } \operatorname{Exp}=\mathrm{B}=900 \\
& 900 \text { if Exp = C } \\
& 700 \text { if Exp = D }
\end{aligned}\right.
$$

（Table 26．9－1）
（Table 26．9－1）
（Table 26．9－1）
（Table 26．9－1）
（Table 26．9－1）
（Table 26．9－1）
$\mathrm{K}_{\mathrm{zt}}:=1$
（Eq．26．8－2）
$K_{d}=0.95$
（Table 26．6－1）
$g_{Q}:=3.4$
（Sec 26．9．4）
$g_{\mathrm{V}}:=3.4$

	Subject:	Wind Load on Equipment per ASCE 7-10
Centered on Solutions ${ }^{*}$ neowcentekengecom 63-2 North Branford Road P: (203) $488-0580$	Location:	Branford, CT
Branford, CT O6405 Fi(203) 488-8587	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

Equivalent Height of Structure $=$	$z:=\left\lvert\, \begin{aligned} & z_{\min } \text { if } z_{\min }>0.6 \cdot \text { Height }=59.82 \\ & 0.6 \cdot \text { Height otherwise } \end{aligned}\right.$	(Sec 26.9.4)
Intensity of Turbulence $=$	$\mathrm{I}_{\mathrm{z}}:=\mathrm{c} \cdot\left(\frac{33}{\mathrm{z}}\right)^{\left(\frac{1}{6}\right)}=0.181$	(Eq. 26.9-7)
Integral Length Scale of Turbulence $=$	$L_{Z}:=1 \cdot\left(\frac{z}{33}\right)^{E}=563.166$	(Eq. 26.9-9)
Background Response Factor $=$	$Q:=\sqrt{\frac{1}{1+0.63\left(\frac{\text { Width }+ \text { Height }}{L_{Z}}\right)^{0.63}}}=0.902$	(Eq. 26.9-8)
GustResponse Factor =	$\mathrm{G}:=0.925 \cdot\left[\frac{\left(1+1.7 \cdot g_{\mathrm{Q}} \cdot \mathrm{I}_{\mathrm{z}} \cdot \mathrm{Q}\right)}{1+1.7 \cdot \mathrm{~g}_{\mathrm{V}} \cdot \mathrm{I}_{\mathrm{z}}}\right]=0.879$	(Eq. 26.9-6)
Velocity Pressure $=$	$\mathrm{q}_{\mathrm{z}}:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{v}^{2}=47.67$	(Eq. 29.3-1)
Force Coefficient $=$	$\mathrm{C}_{\mathrm{f}}=0.804$	(Fig 29.5-1-29.5-3)
Ultimate Wind Pressure =	$F:=q_{z} \cdot \mathbf{G} \cdot C_{f}=33.7 \quad$ psf	
HeightAbove Grade $=$	$\mathrm{Z}:=115 \quad \mathrm{ft}$ (User Input)	
Exposure Coefficient $=$	$\mathrm{K}_{\mathrm{z}}:=\left\lvert\, \begin{aligned} & 2.01\left(\frac{\mathrm{z}}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg}=1.3\right. \\ & 2.01\left(\frac{15}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}}\right. \\ & \text { if } \mathrm{Z}<15 \end{aligned}\right.$	(Table 29.3-1)
	$\mathrm{K}_{\mathrm{z}}=1.303$	
HeightAbove Grade $=$	$\mathrm{Z}:=90 \quad \mathrm{ft}$ (User Input)	
Exposure Coefficient $=$	$\mathrm{K}_{\mathrm{z}}:=\left\lvert\, \begin{aligned} & 2.01\left(\frac{\mathrm{z}}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg}=1.24\right. \\ & 2.01\left(\frac{15}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}} \quad \text { if } \mathrm{Z}<15\right. \end{aligned}\right.$	(Table 29.3-1)
	$\mathrm{K}_{\mathrm{z}}=1.238$	

- N +K engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Branford, CT
Branford, CTO640s F:(203) 483-8587	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

Exposure Coefficient $=$

$$
\begin{aligned}
& \mathrm{Z}:=65 \quad \begin{array}{l}
\mathrm{ft} \\
\mathrm{~K}_{\mathrm{z}}:=\underbrace{\left(\frac{2}{\alpha}\right)} \\
2.01\left(\frac{\mathrm{Z}}{\mathrm{zg}}\right)^{\left(\frac{2}{\alpha}\right)} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg} \quad=1.16 \\
\left.2.01\left(\frac{15}{\mathrm{zg}}\right)^{(\text {if } \mathrm{Z}}\right)^{(\text {User Input) }} \\
\mathrm{K}_{\mathrm{z}}=1.156
\end{array}
\end{aligned}
$$

HeightAbove Grade $=\quad$ Z := $40 \quad$ ft (User Input)

Exposure Coefficient $=$

$$
\begin{aligned}
& \mathrm{Z}:=40 \quad \mathrm{~K}_{\mathrm{z}}:=\mathrm{ft}_{2.01\left(\frac{\mathrm{Z}}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg}=1.04\right.} \begin{array}{l}
\text { (User Input) } \\
2.01\left(\frac{15}{\mathrm{zg}}\right)^{\left(\frac{2}{\alpha}\right)} \text { if } \mathrm{Z}<15 \\
\mathrm{~K}_{\mathrm{Z}}=1.044
\end{array}
\end{aligned}
$$

二NJ二人 N engineering	Subject：	Wind Load on Equipment per ASCE 7－10
	Location：	Branford，CT
	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

T－Mobile Loading：

Development of Wind \＆Ice Load on Antennas

Antenna Data：

Antenna Model $=$	RFSAPXVAA24＿43－U－A20		
Antenna Shape $=$	Flat	（User Input）	
Antenna Height $=$	$\mathrm{L}_{\mathrm{ant}}:=95.9$	in	（User Input）
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=24$	in	（User Input）
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=8.7$	in	（User Input）
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=128$	lbs	（User Input）
mber ofAntennas $=$	$\mathrm{N}_{\mathrm{ant}}:=3$		（User Input）

Wind Load（Front）

Surface Area for One Antenna＝

Antenna Projected SurfaceArea＝

Total Antenna Wind Force＝

Wind Load（Side）

SurfaceArea for One Antenna＝

Antenna Projected SurfaceArea＝

Total Antenna Wind Force＝

Gravity Load（without ice）
Weight ofAll Antennas＝
$S A_{\text {ant }}:=\frac{L_{\text {ant }} \cdot W_{\text {ant }}}{144}=16$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=48$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=1614$
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}}{144}=5.8$
$\mathrm{A}_{\mathrm{ant}}:=\mathrm{SA}_{\text {ant }} \mathrm{N}_{\mathrm{ant}}=17.4$
$\mathrm{F}_{\text {ant }}:=\mathrm{F} \cdot \mathrm{A}_{\text {ant }}=585$
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=384$
lbs

二NT二人 engineering	Subject：	Wind Load on Equipment per ASCE 7－10
Centered on Solutions＂ 63.2 North Branford Roasd $\frac{\text { moncentekengicom }}{\text { P：（203）488－0580 }}$	Location：	Branford，CT
Branford， CTO6405 Fi（203）488－8587	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

Development of Wind \＆Ice Load on Antennas

Antenna Model $=$
Antenna Shape $=$
Antenna Height $=$
Antenna Width $=$
Antenna Thickness $=$
Antenna Weight $=$

EricssonAIR21（KRC118023－1）
Flat
$\mathrm{L}_{\text {ant }}:=56.3 \quad$ in \quad（User Input）
$W_{\text {ant }}:=12.1 \quad$ in \quad（User Input）
$\mathrm{T}_{\text {ant }}:=7.9 \quad$ in \quad（User Input）
$\mathrm{WT}_{\text {ant }}:=91.5 \quad$ lbs \quad（User Input）
$N_{\text {ant }}:=3$
（User Input）

Wind Load（Front）

SurfaceArea for One Antenna＝

Antenna Projected SurfaceArea $=$

Total Antenna Wind Force＝

Wind Load（Side）

SurfaceArea for One Antenna＝

Antenna Projected SurfaceArea＝

Total Antenna Wind Force＝

Gravity Load（without ice）

Weight ofAll Antennas＝
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\text {ant }}}{144}=4.7$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=14.2$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=478$
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }^{-} \mathrm{T}_{\text {ant }}}}{144}=3.1$
$\mathrm{A}_{\mathrm{ant}}:=\mathrm{SA}_{\mathrm{ant}} \cdot \mathrm{N}_{\mathrm{ant}}=9.3$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=312$
lbs
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=275$

二NT二人 engineering	Subject：	Wind Load on Equipment per ASCE 7－10
	Location：	Branford，CT
Branford， CT O6405 F：（203）4888－8587	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

Development of Wind \＆Ice Load on RRHs

RRH Data：

RRH Model $=$	Ericsson 4449 B12／B71		
RRH Shape $=$	Flat		（User Input）
RRH Height $=$	$\mathrm{L}_{\mathrm{RRH}}:=15.0$	in	（User Input）
RRH Width $=$	$\mathrm{W}_{\mathrm{RRH}}:=13.2$	in	（User Input）
RRH Thickness $=$	$\mathrm{T}_{\mathrm{RRH}}:=10.4$	in	（User Input）
RRH Weight $=$	$\mathrm{WT}_{\text {RRH }}:=75$	lbs	（User Input）
umber of RRHs $=$	$\mathrm{N}_{\text {RRH }}:=3$		（User Input）

Wind Load（Front）

SurfaceArea for One RRH＝

RRH Projected SurfaceArea＝

Total RRH Wind Force $=$

Wind Load（Side）

SurfaceArea for One RRH＝

RRH Projected SurfaceArea＝

Total RRH Wind Force＝

Gravity Load（without ice）

Weight ofAll RRHs＝
$\mathrm{WT}_{\mathrm{RRH}} \cdot \mathrm{N}_{\mathrm{RRH}}=225$
$S_{\text {RRH }}:=\frac{\mathrm{L}_{R R H^{-}} \cdot \mathrm{T}_{\mathrm{RRH}}}{144}=1.1$
sf
sf
lbs
lbs

二NT $=\mathrm{K}$ engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Branford, CT
	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

SprintLoading:

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$	Generic 6'Antenna		
Antenna Shape $=$	Flat	in	(User Input)
Antenna Height $=$	$\mathrm{L}_{\mathrm{ant}}:=72$	in Input)	
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=12$	in	(User Input)
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=9.0$	in	(User Input)
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=80$	lbs	(User Input)
umber ofAntennas $=$	$\mathrm{N}_{\mathrm{ant}}:=3$		(User Input)

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Gravity Load (without ice)

$S A_{\text {ant }}:=\frac{L_{\text {ant }} \cdot W_{\text {ant }}}{144}=6$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=18$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=606$
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }{ }^{\top} \text { ant }}}{144}=4.5$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=13.5$
$F_{\text {ant }}:=F \cdot A_{a n t}=454$
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=240$
lbs
sf
sf
lbs
sf
sf
lbs

二NT $=\mathrm{K}$ engineering	Subject:	Wind Load on Equipment per ASCE 7-10
Centered on Solutions ${ }^{-}$momycentekengcom	Location:	Branford, CT
Branford, C O6405 F:(203) 488.8587	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

Development of Wind \& Ice Load on Antennas

Antenna Model =

Antenna Shape $=$
Antenna Height =

Antenna Width =

Antenna Thickness =

Antenna Weight =
Number ofAntennas $=$

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Gravity Load (without ice)

Weight ofAll Antennas =

Generic 4'Antenna

Flat	(User Input)	
$\mathrm{L}_{\text {ant }}:=56$	in	(User Input)
$\mathrm{W}_{\text {ant }}:=12$	in	(User Input)
$\mathrm{T}_{\text {ant }}:=8.0$	in	(User Input)
$\mathrm{WT}_{\text {ant }}:=60.0$	lbs	(User Input)
$\mathrm{N}_{\text {ant }}:=3$		(User Input)

sf
sf
lbs
$\mathrm{F}_{\mathrm{ant}}:=\mathrm{F} \cdot \mathrm{A}_{\mathrm{ant}}=471$
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}}{144}=3.1$
sf
sf
lbs
$\mathrm{WT}_{\mathrm{ant}} \cdot \mathrm{N}_{\mathrm{ant}}=180$
lbs

二NT $=\mathrm{K}$ engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Branford, CT
	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

Development of Wind \& Ice Load on Antennas

Antenna Model $=$
Antenna Shape $=$
Antenna Height $=$
Antenna Width $=$
Antenna Thickness =
Antenna Weight $=$
Number ofAntennas $=$

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea $=$

Total Antenna Wind Force =

Gravity Load (without ice)

Weight ofAll Antennas =

Generic 3' MWAntenna
Flat

$\mathrm{L}_{\mathrm{ant}}:=36$	in	(User Input)
$\mathrm{W}_{\mathrm{ant}}:=32$	in	(User Input)
$\mathrm{T}_{\mathrm{ant}}:=12.0$	in	(User Input)
$\mathrm{WT}_{\mathrm{ant}}:=60.0$	lbs	(User Input)
$\mathrm{N}_{\mathrm{ant}}:=1$		(User Input)

sf
sf
lbs
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}}{144}=3$
sf
sf
lbs
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=60$

二NT二人 engineering	Subject：	Wind Load on Equipment per ASCE 7－10
Centered on Solutions＂ 63.2 North Branford Roasd $\frac{\text { moncentekengicom }}{\text { P：（203）488－0580 }}$	Location：	Branford，CT
Branford， CTO6405 Fi（203）488－8587	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

Development of Wind \＆Ice Load on RRHs

RRH Data：

RRH Model $=$
RRH Shape $=$
RRH Height＝
RRH Width $=$

RRH Thickness＝

RRH Weight＝

Number of RRHs＝

Wind Load（Front）

SurfaceArea for One RRH＝

RRH Projected SurfaceArea＝

Total RRH Wind Force＝

Wind Load（Side）

SurfaceArea for One RRH＝

RRH Projected SurfaceArea＝

Total RRH Wind Force＝

Gravity Load（without ice）

Weight ofAll RRHs＝

Generic RRH 1

Flat		（User Input）
$L_{R R H}:=20.9$	in	（User Input）
$W_{R R H}:=12.2$	in	（User Input）
$T_{R R H}:=10.8$	in	（User Input）
$W_{R R H}:=50.7$	lbs	（User Input）
$N_{R R H}:=9$		（User Input）

sf
sf
lbs
$\mathrm{SA}_{R R H}:=\frac{\mathrm{L}_{\mathrm{RRH}} \cdot \mathrm{T}_{\mathrm{RRH}}}{144}=1.6 \quad \mathrm{sf}$
$A_{R R H}:=\operatorname{SA}_{R R H} \cdot N_{R R H}=14.1 \quad \mathrm{sf}$
$\mathrm{F}_{\mathrm{RRH}}:=\mathrm{F} \cdot \mathrm{A}_{\mathrm{RRH}}=475$
$\mathrm{WT}_{\mathrm{RRH}} \cdot \mathrm{N}_{\mathrm{RRH}}=456$
lbs
\subset 三NT 三 $K_{\text {Kngineering }}$
Centered on Solutions"

Job:	CT11328F
Address:	50 Maple Street Branford, CT 06405

$\begin{array}{rcrr}\text { Project No. } 19027.41 & \text { Sheet } & 1 \text { of } 2\end{array}$
$\begin{array}{ll}\text { Address: } & 50 \text { Maple Street Branfor } \\ \text { Description: } & \text { Smokestack Evaluation }\end{array}$ Computed by LAA Date 6/10/19

	Wind Force (lb)	Weight (lb)	Height Above Base (ft)	Height (in)
T-Mobile	2231	1200	96	1152
Sprint	1883	936	88	1056

Section	Top Dia (in)	Bot Dia (in)	Wall Thk (in)	Sect Height (in)	Area At Base (in^2)	Tot. Vol (ft^3)	Unit Weight (pcf)	Weight of Section (lb)	Total Weight (lb)	Axial Stress fa (psi)
1	114	135.67	8	356.4	3207.0704	604.97204	127	76831.4485	78967.4485	24.6
2	135.67	161.4	8.5	360	4080.901	778.2026	125	97275.3249	176242.7734	43.2
3	161.4	169.92	9.5	120	4785.3286	323.30268	125	40412.83516	216655.6086	45.3
4	169.92	175.68	10.5	80	5445.9846	247.58964	125	30948.70445	247604.313	45.5
5	175.68	177.96	13	76	6733.6672	293.93989	125	36742.48571	284346.7987	42.2

C三NT二K engineering
Centered on Solutions- wowcentekengcom
63.2 North EBanford Rooud

Centered on Solutio 63.2 North Branford Roasd Branford, СTO6405					
Job	CT11328F	Project No.	19027.41	Sheet	2 of 2
Address:	50 Maple Street Branford, CT 06405	Computed by	LAA	Date	6/10/19
Description:	Smokestack Evaluation	Checked by	CAG	Date	

Ultimate Wind Pressure (psf)	$\begin{gathered} \text { ASD Wind } \\ \text { Pressure (psf) } \end{gathered}$	KZ	Wind Area (sf)	Wind Force (lb)	Moment @ Base	Section Modulus @ Base	Bending Stress fb (psi)	Allowable Fa (psi)	Allowable Fb (psi)	$\mathrm{fa} / \mathrm{Fa}+\mathrm{fb} / \mathrm{Fb}$		ft	Ft	$\mathrm{ft} / \mathrm{Ft}$	
33.7	20.22	1.23	309.0	7684.2	3311377.828	96703.96897	34.2	375	500	0.13	OK	9.6	40	0.24	OK
33.7	20.22	1.11	371.3	8334.4	9058911.713	148233.9248	61.1	375	500	0.24	OK	17.9	40	0.45	OK
33.7	20.22	1.01	138.1	2819.3	11643975.81	181821.2694	64.0	375	500	0.25	OK	18.8	40	0.47	OK
33.7	20.22	0.95	96.0	1844.1	13553885.82	212305.0695	63.8	375	500	0.25	OK	18.4	40	0.46	OK
33.7	20.22	0	93.3	0.0	15438374.77	259009.3359	59.6	375	500	0.23	OK	17.4	40	0.43	OK

Exhibit E
 Mount Analysis

Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site \#: CT11328F

50 Maple Street Branford, CT

Centek Project No. 19027.41

Date: June 19, 2019

Max Stress Ratio = 49.1\%

Prepared for:
T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

- RF DATA SHEET, DATED 04/17/2019

C三NT三K ${ }^{\text {Cngineering }}$

Centered on Solutions ${ }^{\text {s" }}$

June 19, 2019

Mr. Dan Reid
Transcend Wireless
10 Industrial Ave
Mahwah, NJ 07430
Re: Structural Letter ~Antenna Mount
T-Mobile - Site Ref: CT11328F
50 Maple Street
Branford, CT 06405

Centek Project No. 19027.41

Dear Mr. Reid,
Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting three (3) Tframe sector to support the proposed/existing equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

- T-Mobile:

T-Frames: Three (3) RFS APXVAARR24_43-U-NA20 panel antennas, three (3) Ericsson AIR21 KRC118023-1_B2A_B4P panel antennas, three (3) Ericsson AIR21 KRC118046-1_B2P_B4A panel antennas, three (3) Ericsson 4449 B71+B12 remote radio units and three (3) Twin style AWS (TMAs) mounted on custom sector mounts with RAD center elevations of ± 96-ft AGL

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering an ultimate design wind speed of 140 mph for Branford as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.
Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Prepared by:

Fernando J. Palacios
Engineer

Section2-Calculations

二NT 二人 engineering	Subject：	Wind Load on Equipment per ASCE 7－10
	Location：	Branford，CT
Branford， CT O6405 F：（203）4888－8587	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

Design Wind Load on Other Structures：

Wind Speed $=$
Risk Category＝
Exposure Category＝
Structure Type $=$
Structure Height $=$
Horizontal Dimension of Structure $=$

Terrain Exposure Constants：
Nominal Height of theAtmospheric Boundary Layer＝

3－Sec Gust Speed Power Law Exponent＝

Integral Length Scale Factor＝

Integral Length Scale Power Law Exponent＝

Exposure Constant $=$

Topographic Factor $=$

Wind Directionality Factor＝
Peak Factor for Background Response $=$
Peak Factor for Wind Response $=$
（Based on IBC 2012，CSBC 2016 and ASCE 7－10）

$\mathrm{V}:=140$	mph	（User Input）
BC $:=$ III	（UsBCAppendix－N）	
Exp $:=\mathrm{C}$	（User Input）	（IBC Table 1604．5）

Structuretype ：＝Round＿Chimney（User Input）
Height ：＝99．7 ft（User Input）
Width ：＝ 12.99 ft （User Input）

$$
z g:=\left\lvert\, \begin{aligned}
& 1200 \text { if } \operatorname{Exp}=\mathrm{B}=900 \\
& 900 \text { if Exp = C } \\
& 700 \text { if Exp = D }
\end{aligned}\right.
$$

（Table 26．9－1）
（Table 26．9－1）
（Table 26．9－1）
（Table 26．9－1）
（Table 26．9－1）
（Table 26．9－1）
$\mathrm{K}_{\mathrm{zt}}:=1$
（Eq．26．8－2）
$K_{d}=0.95$
（Table 26．6－1）
$g_{Q}:=3.4$
（Sec 26．9．4）
$g_{\mathrm{V}}:=3.4$

	Subject:	Wind Load on Equipment per ASCE 7-10
Centered on Solutions ${ }^{*}$ neowcentekengecom 63-2 North Branford Road P: (203) $488-0580$	Location:	Branford, CT
Branford, CT O6405 Fi(203) 488-8587	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

Equivalent Height of Structure $=$	$z:=\left\lvert\, \begin{aligned} & z_{\min } \text { if } z_{\min }>0.6 \cdot \text { Height }=59.82 \\ & 0.6 \cdot \text { Height otherwise } \end{aligned}\right.$	(Sec 26.9.4)
Intensity of Turbulence $=$	$\mathrm{I}_{\mathrm{z}}:=\mathrm{c} \cdot\left(\frac{33}{\mathrm{z}}\right)^{\left(\frac{1}{6}\right)}=0.181$	(Eq. 26.9-7)
Integral Length Scale of Turbulence $=$	$L_{Z}:=1 \cdot\left(\frac{z}{33}\right)^{E}=563.166$	(Eq. 26.9-9)
Background Response Factor $=$	$Q:=\sqrt{\frac{1}{1+0.63\left(\frac{\text { Width }+ \text { Height }}{L_{Z}}\right)^{0.63}}}=0.902$	(Eq. 26.9-8)
GustResponse Factor =	$\mathrm{G}:=0.925 \cdot\left[\frac{\left(1+1.7 \cdot g_{\mathrm{Q}} \cdot \mathrm{I}_{\mathrm{z}} \cdot \mathrm{Q}\right)}{1+1.7 \cdot \mathrm{~g}_{\mathrm{V}} \cdot \mathrm{I}_{\mathrm{z}}}\right]=0.879$	(Eq. 26.9-6)
Velocity Pressure $=$	$\mathrm{q}_{\mathrm{z}}:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{v}^{2}=47.67$	(Eq. 29.3-1)
Force Coefficient $=$	$\mathrm{C}_{\mathrm{f}}=0.804$	(Fig 29.5-1-29.5-3)
Ultimate Wind Pressure =	$F:=q_{z} \cdot \mathbf{G} \cdot C_{f}=33.7 \quad$ psf	
HeightAbove Grade $=$	$\mathrm{Z}:=115 \quad \mathrm{ft}$ (User Input)	
Exposure Coefficient $=$	$\mathrm{K}_{\mathrm{z}}:=\left\lvert\, \begin{aligned} & 2.01\left(\frac{\mathrm{z}}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg}=1.3\right. \\ & 2.01\left(\frac{15}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}}\right. \\ & \text { if } \mathrm{Z}<15 \end{aligned}\right.$	(Table 29.3-1)
	$\mathrm{K}_{\mathrm{z}}=1.303$	
HeightAbove Grade $=$	$\mathrm{Z}:=90 \quad \mathrm{ft}$ (User Input)	
Exposure Coefficient $=$	$\mathrm{K}_{\mathrm{z}}:=\left\lvert\, \begin{aligned} & 2.01\left(\frac{\mathrm{z}}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg}=1.24\right. \\ & 2.01\left(\frac{15}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}} \quad \text { if } \mathrm{Z}<15\right. \end{aligned}\right.$	(Table 29.3-1)
	$\mathrm{K}_{\mathrm{z}}=1.238$	

- N +K engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Branford, CT
Branford, CTO640s F:(203) 483-8587	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

Exposure Coefficient $=$

$$
\begin{aligned}
& \mathrm{Z}:=65 \quad \begin{array}{l}
\mathrm{ft} \\
\mathrm{~K}_{\mathrm{z}}:=\underbrace{\left(\frac{2}{\alpha}\right)} \\
2.01\left(\frac{\mathrm{Z}}{\mathrm{zg}}\right)^{\left(\frac{2}{\alpha}\right)} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg} \quad=1.16 \\
\left.2.01\left(\frac{15}{\mathrm{zg}}\right)^{(\text {if } \mathrm{Z}}\right)^{(\text {User Input) }} \\
\mathrm{K}_{\mathrm{z}}=1.156
\end{array}
\end{aligned}
$$

HeightAbove Grade $=\quad$ Z := $40 \quad$ ft (User Input)

Exposure Coefficient $=$

$$
\begin{aligned}
& \mathrm{Z}:=40 \quad \mathrm{~K}_{\mathrm{z}}:=\mathrm{ft}_{2.01\left(\frac{\mathrm{Z}}{\mathrm{zg})^{\left(\frac{2}{\alpha}\right)}} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg}=1.04\right.} \begin{array}{l}
\text { (User Input) } \\
2.01\left(\frac{15}{\mathrm{zg}}\right)^{\left(\frac{2}{\alpha}\right)} \text { if } \mathrm{Z}<15 \\
\mathrm{~K}_{\mathrm{Z}}=1.044
\end{array}
\end{aligned}
$$

二NJ二人 N engineering	Subject：	Wind Load on Equipment per ASCE 7－10
	Location：	Branford，CT
	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

T－Mobile Loading：

Development of Wind \＆Ice Load on Antennas

Antenna Data：

Antenna Model $=$	RFSAPXVAA24＿43－U－A20		
Antenna Shape $=$	Flat	（User Input）	
Antenna Height $=$	$\mathrm{L}_{\mathrm{ant}}:=95.9$	in	（User Input）
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=24$	in	（User Input）
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=8.7$	in	（User Input）
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=128$	lbs	（User Input）
mber ofAntennas $=$	$\mathrm{N}_{\mathrm{ant}}:=3$		（User Input）

Wind Load（Front）

Surface Area for One Antenna＝

Antenna Projected SurfaceArea＝

Total Antenna Wind Force＝

Wind Load（Side）

SurfaceArea for One Antenna＝

Antenna Projected SurfaceArea＝

Total Antenna Wind Force＝

Gravity Load（without ice）
Weight ofAll Antennas＝
$S A_{\text {ant }}:=\frac{L_{\text {ant }} \cdot W_{\text {ant }}}{144}=16$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=48$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=1614$
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}}{144}=5.8$
$\mathrm{A}_{\mathrm{ant}}:=\mathrm{SA}_{\text {ant }} \mathrm{N}_{\mathrm{ant}}=17.4$
$\mathrm{F}_{\text {ant }}:=\mathrm{F} \cdot \mathrm{A}_{\text {ant }}=585$
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=384$
lbs

二NT二人 engineering	Subject：	Wind Load on Equipment per ASCE 7－10
Centered on Solutions＂ 63.2 North Branford Roasd $\frac{\text { moncentekengicom }}{\text { P：（203）488－0580 }}$	Location：	Branford，CT
Branford， CTO6405 Fi（203）488－8587	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

Development of Wind \＆Ice Load on Antennas

Antenna Model $=$
Antenna Shape $=$
Antenna Height $=$
Antenna Width $=$
Antenna Thickness $=$
Antenna Weight $=$

EricssonAIR21（KRC118023－1）
Flat
$\mathrm{L}_{\text {ant }}:=56.3 \quad$ in \quad（User Input）
$W_{\text {ant }}:=12.1 \quad$ in \quad（User Input）
$\mathrm{T}_{\text {ant }}:=7.9 \quad$ in \quad（User Input）
$\mathrm{WT}_{\text {ant }}:=91.5 \quad$ lbs \quad（User Input）
$N_{\text {ant }}:=3$
（User Input）

Wind Load（Front）

SurfaceArea for One Antenna＝

Antenna Projected SurfaceArea $=$

Total Antenna Wind Force＝

Wind Load（Side）

SurfaceArea for One Antenna＝

Antenna Projected SurfaceArea＝

Total Antenna Wind Force＝

Gravity Load（without ice）

Weight ofAll Antennas＝
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\text {ant }}}{144}=4.7$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=14.2$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=478$
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }^{-} \mathrm{T}_{\text {ant }}}}{144}=3.1$
$\mathrm{A}_{\mathrm{ant}}:=\mathrm{SA}_{\mathrm{ant}} \cdot \mathrm{N}_{\mathrm{ant}}=9.3$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=312$
lbs
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=275$

二NT二人 engineering	Subject：	Wind Load on Equipment per ASCE 7－10
	Location：	Branford，CT
Branford， CT O6405 F：（203）4888－8587	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

Development of Wind \＆Ice Load on RRHs

RRH Data：

RRH Model $=$	Ericsson 4449 B12／B71		
RRH Shape $=$	Flat		（User Input）
RRH Height $=$	$\mathrm{L}_{\mathrm{RRH}}:=15.0$	in	（User Input）
RRH Width $=$	$\mathrm{W}_{\mathrm{RRH}}:=13.2$	in	（User Input）
RRH Thickness $=$	$\mathrm{T}_{\mathrm{RRH}}:=10.4$	in	（User Input）
RRH Weight $=$	$\mathrm{WT}_{\text {RRH }}:=75$	lbs	（User Input）
umber of RRHs $=$	$\mathrm{N}_{\text {RRH }}:=3$		（User Input）

Wind Load（Front）

SurfaceArea for One RRH＝

RRH Projected SurfaceArea＝

Total RRH Wind Force $=$

Wind Load（Side）

SurfaceArea for One RRH＝

RRH Projected SurfaceArea＝

Total RRH Wind Force＝

Gravity Load（without ice）

Weight ofAll RRHs＝
$\mathrm{WT}_{\mathrm{RRH}} \cdot \mathrm{N}_{\mathrm{RRH}}=225$
$S_{\text {RRH }}:=\frac{\mathrm{L}_{R R H^{-}} \cdot \mathrm{T}_{\mathrm{RRH}}}{144}=1.1$
sf
sf
lbs
lbs

二NT $=\mathrm{K}$ engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Branford, CT
	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

SprintLoading:

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$	Generic 6'Antenna		
Antenna Shape $=$	Flat	in	(User Input)
Antenna Height $=$	$\mathrm{L}_{\mathrm{ant}}:=72$	in Input)	
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=12$	in	(User Input)
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=9.0$	in	(User Input)
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=80$	lbs	(User Input)
umber ofAntennas $=$	$\mathrm{N}_{\mathrm{ant}}:=3$		(User Input)

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Gravity Load (without ice)

$S A_{\text {ant }}:=\frac{L_{\text {ant }} \cdot W_{\text {ant }}}{144}=6$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=18$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=606$
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }{ }^{\top} \text { ant }}}{144}=4.5$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=13.5$
$F_{\text {ant }}:=F \cdot A_{a n t}=454$
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=240$
lbs
sf
sf
lbs
sf
sf
lbs

二NT $=\mathrm{K}$ engineering	Subject:	Wind Load on Equipment per ASCE 7-10
Centered on Solutions ${ }^{-}$momycentekengcom	Location:	Branford, CT
Branford, C O6405 F:(203) 488.8587	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

Development of Wind \& Ice Load on Antennas

Antenna Model =

Antenna Shape $=$
Antenna Height =

Antenna Width =

Antenna Thickness =

Antenna Weight =
Number ofAntennas $=$

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Gravity Load (without ice)

Weight ofAll Antennas =

Generic 4'Antenna

Flat	(User Input)	
$\mathrm{L}_{\text {ant }}:=56$	in	(User Input)
$\mathrm{W}_{\text {ant }}:=12$	in	(User Input)
$\mathrm{T}_{\text {ant }}:=8.0$	in	(User Input)
$\mathrm{WT}_{\text {ant }}:=60.0$	lbs	(User Input)
$\mathrm{N}_{\text {ant }}:=3$		(User Input)

sf
sf
lbs
$\mathrm{F}_{\mathrm{ant}}:=\mathrm{F} \cdot \mathrm{A}_{\mathrm{ant}}=471$
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}}{144}=3.1$
sf
sf
lbs
$\mathrm{WT}_{\mathrm{ant}} \cdot \mathrm{N}_{\mathrm{ant}}=180$
lbs

二NT $=\mathrm{K}$ engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Branford, CT
	Rev. 0: 6/10/2019	Prepared by: CAG Checked by: TJL Job No. 19027.41

Development of Wind \& Ice Load on Antennas

Antenna Model $=$
Antenna Shape $=$
Antenna Height $=$
Antenna Width $=$
Antenna Thickness =
Antenna Weight $=$
Number ofAntennas $=$

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea =

Total Antenna Wind Force =

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected SurfaceArea $=$

Total Antenna Wind Force =

Gravity Load (without ice)

Weight ofAll Antennas =

Generic 3' MWAntenna
Flat

$\mathrm{L}_{\mathrm{ant}}:=36$	in	(User Input)
$\mathrm{W}_{\mathrm{ant}}:=32$	in	(User Input)
$\mathrm{T}_{\mathrm{ant}}:=12.0$	in	(User Input)
$\mathrm{WT}_{\mathrm{ant}}:=60.0$	lbs	(User Input)
$\mathrm{N}_{\mathrm{ant}}:=1$		(User Input)

sf
sf
lbs
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}}{144}=3$
sf
sf
lbs
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=60$

二NT二人 engineering	Subject：	Wind Load on Equipment per ASCE 7－10
Centered on Solutions＂ 63.2 North Branford Roasd $\frac{\text { moncentekengicom }}{\text { P：（203）488－0580 }}$	Location：	Branford，CT
Branford， CTO6405 Fi（203）488－8587	Rev．0：6／10／2019	Prepared by：CAG Checked by：TJL Job No． 19027.41

Development of Wind \＆Ice Load on RRHs

RRH Data：

RRH Model $=$
RRH Shape $=$
RRH Height＝
RRH Width $=$

RRH Thickness＝

RRH Weight＝

Number of RRHs＝

Wind Load（Front）

SurfaceArea for One RRH＝

RRH Projected SurfaceArea＝

Total RRH Wind Force＝

Wind Load（Side）

SurfaceArea for One RRH＝

RRH Projected SurfaceArea＝

Total RRH Wind Force＝

Gravity Load（without ice）

Weight ofAll RRHs＝

Generic RRH 1

Flat		（User Input）
$L_{R R H}:=20.9$	in	（User Input）
$W_{R R H}:=12.2$	in	（User Input）
$T_{R R H}:=10.8$	in	（User Input）
$W_{R R H}:=50.7$	lbs	（User Input）
$N_{R R H}:=9$		（User Input）

sf
sf
lbs
$\mathrm{SA}_{R R H}:=\frac{\mathrm{L}_{\mathrm{RRH}} \cdot \mathrm{T}_{\mathrm{RRH}}}{144}=1.6 \quad \mathrm{sf}$
$A_{R R H}:=\operatorname{SA}_{R R H} \cdot N_{R R H}=14.1 \quad \mathrm{sf}$
$\mathrm{F}_{\mathrm{RRH}}:=\mathrm{F} \cdot \mathrm{A}_{\mathrm{RRH}}=475$
$\mathrm{WT}_{\mathrm{RRH}} \cdot \mathrm{N}_{\mathrm{RRH}}=456$
lbs

Centek		
THC		
19027.41	CT11328F - Mount	
Member Framing		

（Global）Model Settings

F kur re\｛＂Ugevapu＂rat＂Ogo dgt＂Ecreu	7＂
Ocz＂｜¢ugtpeř＇Ugevqpu＂tqt＂Ogo dgt＂Ecreu	；9＂
1perwf g＂Uj gct＂F ghqto ckapA	［ gu
1petgcug＂Pckłpi＂Ecr cek\｛＂rqt＂Y lpf A	［ gu
1perwf g＂Y ctr ki A	［ gu
Vtcpu＂Nqcf＂Dwp＂｜زovgtugekpi＂Y qqf＂Y cmA	［ gu
Ctgc＂Nqcf＂Oguj＂＊p＇4＋	366
Ogti g＂Vqratcpeg＂＊｜p＋	C34
R／F gruc＂Cpcra uku＇Vargtcpeg	202＇
1perwi g＂R／Fgnc＂lut＂Y cmuA	［ gu
Cmqo ckec nf＂Kgtcug＂UVłthpguu＂hqt＇Y cmuA	［ gu
Ocz＂Kgtc＊＊pu＂1qt＂Y cm＂Ukłpguu	5
I tcxk\｛＂Ceegrgtckqp＂＊h\uge‘ 4＋	5404
Y cn＇Oguj＂Uk g＂＊p＋	34
Gki gpuqrw＊qp＂Eqpxgti gpeg＂Vqi0＊30G／＋	6
XgtıecrnCzku	［
I radcri＇Ogo dgt＂Qtlgpvevkp＂Rrepg	Z
Uvcle＂Uqixgt	Ur ctug＂Ceegrgtcvgf
F \｛ pco le＂Uqixgt	Ceegrgtcvgf＂Uqrxgt
J qVT qumf＂Uvggnt＂Eqf g	CKE＂36i＊＊28／32＋ゼCUF
Cf Inuv＂UvkhpguuA	［ gu＊Kgtckkx ${ }^{\text {＋}}$
T UCEqppgekqp＂Eqf g	CKE＂36i＊582／32＋ゼCUF
Eqrif＂Hqto gf＂UlggriEqf g	CKUKU322／342゙CUF
Y qqf＂Eqf g	CY E＂PF U／37＜゙CUF
Y qqf＂Vgo r gtcutg	＞＂322H
Eqpetgrg＂Eqf g	CEK53：／36
Ocuqpt\｛＂Eqf g	CEK752／35＜CUF
Crwo kpwo＂Eqf g	CC＂CFO3／37＜゙CUF＂／＂Dwki lpi
Uvckprguu＂Uvggn＇Eqf g	CKUE＂36i＊582／32＋2CUF
Cf Iwuv＇UVkhpguuA	［ gu＊Kgtckkx ${ }^{\text {＋}}$
Pwo dgt＂qh＇Uj gct＂T gi lqpu	6
T gi kqp＂Ur celpi＂｜petgo gpv＊｜p＋	6
Dlczlenteqrwo p＂Ogy qf	Gzcev＇lovgi tcvop
Rcto g＂Dgsc＂Hcelqt＂REC＋	©7
Eqpetgvg＂Uvtguu＂Drqem	T gevcpi wret
Wug＂Etcengf＂UgevqpuA	［ gu
Wug＂Etcengf＂Ugekqpu＂Ura	Pq
Dcf＂Htco hpi＂Y ctplpi uA	Pq
Wpwugf＂Hqteg＂Y ctplpi uA	［ gu
Ołp＂3＂Dct＂F lco OUr celpi A	Pq
Eqpetgug＇Tgdct＂Ugv	TGDCT aUGVaCUVOC837
Olp＂＂Uvggrihqt＂Eqruo p	3
Ocz＂＇＂Urgg＇゙hqt＂Eqrwo p	．

三NT三	ngineering	Eqo rcp\｛ Fguk pgt	＜Egpıgm ＜VJE	$\begin{aligned} & \text { Lupg"3; ."423; } \\ & ;<48 \text { CO } \end{aligned}$
Centered on Solutions ${ }^{*}$ 63－2 North Brantord R Road Branford，CO 06405	$\frac{\text { www．centekeng．com }}{\text { P：（203）488－0580 }}$ F：（203）488－8587	Lqd＂Puo dgt Oqf gitPco g	$\begin{aligned} & \text { < 3; } 249663 \\ & \text { < EV3354: H"/"Oqupv } \end{aligned}$	Ej gengf＂D\｛2ECI

（Global）Model Settings，Continued

Ugko le＂Eqf g	CUEG＇9／32
Ugko le＂Dcug＂Grgxc＊qp＂＊h／	PqV＇Gpıgtgf
Cf f＂Dcug＇Y gk j vA	［ gu
Ev゙Z	C24
Evil	C24
V＇Z＂＊uge＋	PqV＇Gpıgtgf
V＂I＂＊uge＋	PqV＇Gpıgtgf
T＂Z	5
T＂	5
Ev＂Gzr OZ	（97
EviGzr O	（97
UF3	3
UFU	3
U3	3
VN＊＊uge＋	7
TkumiEcv	Kqt＂KK
FtkV＇Ecv	Qẏ gt
Qo＂	3
Qo＂Z	3
Ef＂ 1	6
Ef＂Z	6
Tjq＂	3
Tjq＂Z	3

Hot Rolled Steel Properties

	N ${ }^{\text {dgn }}$	G＂］muk	｜＂］mak	Pw	Vj gto＂＊ 3 G77＂ $\mathrm{H}+$	Fgpuki［］ml｜5	［ lgri］］mak	T\｛	Hwjmuk	Tv
3	C58＂I t058	4； 222	33376	（5）	C87	Cb；	58	38	7：	304
4	C794＂1 t072	4； 222	33376	（5）	C87	C\％；	72	3®	7：	304
5	C；； 4	4； 222	33376	（5）	C87	C\％；	72	3®	7：	304
6	C722＂I t064	4； 222	33376	（5）	C87	Cb；	64	35	7：	3CB
7	C722＇l t068	4； 222	33376	（5）	C87	Cb；	68	304	7：	3CB
8	C75＂I tcf g＂D	4； 222	33376	（5）	C87	Cb；	57	37	7：	304

Hot Rolled Steel Design Parameters

	N \quad dgn	Uj crg	Ngpi ij h ／	Na\｛ $\{$ ］ l －	$\mathrm{Nd} \\| \mathrm{l}$ ］ l	Neqo r＂var ］h＿	Neqo r＂dqult	Nugtsumom	M \｛	M｜	Ed	Hupevap
3	O3	Cpugppc＂Ocuv	330889			Nd\｛ \｛		Ugi o gmb				Nugtcn
4	O4	J qtk qpicn	；∇			Nd\｛ \｛		8				Nevgten
5	O5	Cpvgppc＂Ocuv				Nd\｛ \｛						Nugtcn
6	06	Cpugppc＂Ocuv				Nd\｛ \｛						Nugtcn
7	O7	J qtk qpicn	；\square°			Nd\｛ \｛		8				Nevgtcn
8	O8	Rk g＂402	： 0 ；：			Nd\｛ \｛						Nevgtcn
9	O9	Rk g＂4®2	： 0 ；：			Nd\｛ \｛						Nevgtcn
：	O：	Cpugppc＂Ocuv	；			Nd\｛ \｛						Nugtcn

Hot Rolled Steel Section Sets

	Ncdgn	Uj cr g	V 2 rg	Fguki p＂Nuv	Ocigticn	Fgukp＂TO0 C＂Ip4		$\begin{gathered} K\{"] \downharpoonright 6 \\ \text { C849 } \end{gathered}$	K\|"Ip6B49	L＂］p6 3097
3	Rk g＂402	RKRGa4C2	Dgco	Rkg	C75＂l tcf g＂D	V r recn	3C24			
4	Cpıgppc＂Ocuv	RKRGa4C2	Eqrwo p	Rkg	C75＂l tcf g＂D	V \｛rlecn	3¢24	C849	©49	3047

	engineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < VJ E } \end{aligned}$	$\begin{aligned} & \text { Lwpg"3; ."423; } \\ & \text {; \&8"CO } \end{aligned}$
Centered on Solutions ${ }^{\text {c }}$	www.centekeng.com	Lqd"Pwo dgt	< 3; 249063	Ej gengf "D $\{<\mathrm{ECCI}$
63-2 North Branford Road Branford, CTO6405	P: (203) 488-0580 $\mathrm{F}:(203) 488-8587$	Oqf griPco g	< EV3354: H"/"Oqupv	

Hot Rolled Steel Section Sets (Continued)

	N ${ }^{\text {dgn }}$	Uj cr g	V rg	Fgukip"Nuv	Ocigticn	Fgukp"Tm C"]p4	K\{"]p6	K\|"1p6	L"]\|p6
5	J qtł qpicn	RIRGa4C2	Dgco	Rkg	C75"l tcf g"D	V\{rlecn 3024	©49	©849	3047

Member Primary Data

	N $\mathrm{d}^{\text {dgn }}$	K-qıpv	L"Lqkov	M'Lqłpv	Tquevg* 00	Ugevap 10 cr g	V rg	Fgukip"Nuv	Ocigticn	Fguk p"Twow
3	O3	P3	P4			Cpugppc"Ocuv	Eqiwo p	Rkg	C75"I tcoll	V $\{$ rlecn
4	O4	P6	P5			J qtł qpicn	Dgco	Rkg	C75"I tc00	V 亿rlecn
5	O5	P:	P32			Cpıgppc"Ocuv	Equwo p	Rkg	C75"I tcom	V $\{$ rlecn
6	O6	P9	P ;			Cpıgppc"Ocuv	Equwo p	Rkg	C75"I tc00	V $\{$ rlecn
7	O7	P35	P34			J qtł qpicn	Dgco	Rkg	C75"I tcom	V $\{$ rlecn
8	O8	P8	P3:			Rk g"402	Dgco	Rkg	C75"I tcom	V $\{$ rlecn
9	O9	P7	P39			Rk g"402	Dgco	Rkg	C75"I tcom	V $\{$ rlecn
:	O:	P3;	P42			Cpıgppc"Ocuv	Equwo p	Rkg	C75"I tcom	V $\{$ rlecn
;	O;	P43	P45			TK $1 \times$	Pqpg	Pqpg	TKK $1 \times$	V r recn
32	O32	P44	P46			TK KK	Pqpg	Pqpg	TK KK	V r lecn

Joint Coordinates and Temperatures

	N N dgn	Z"JV_	["]h/	\ "]h/	Vgo r"] ${ }_{\text {H }}$	Fgucej "Htqo "Ficrj tcio
3	P3	2	7055555	5638889	2	
4	P4	2	17055500	56388889	2	
5	P5	6@7	$3{ }^{8}$	5	2	
6	P6	1607	3%	5	2	
7	P7	6®388889	$3{ }^{6}$	5	2	
8	P8	/60388889	38	5	2	
9	P9	6CB88889	/6	5	2	
:	P :	/60388889	16	5	2	
,	P;	6®388889	6	5	2	
32	P32	/60388889	6	5	2	
33	P33	2	38	5	2	
34	P34	6@7	130	5	2	
35	P35	/697	/30	5	2	
36	P36	6C388889	/307	5	2	
37	P37	/60388889	/307	5	2	
38	P38	2	/30	5	2	
39	P39	: 888889	$3{ }^{7}$	/6Ф9;3889	2	
3:	P3:	1: 0888889	30	160; 3889	2	
3;	P3;	20	/60	5	2	
42	P42	20	$6{ }^{6}$	5	2	
43	P43	2	40	5	2	
44	P44	2	140	5	2	
45	P45	2	40	5638889	2	
46	P46	2	14%	5638889	2	

Joint Boundary Conditions

	Lqlov"Nedgn	Z"]mill	["]milp	\ "]nulp	Z"Tqugmhntcf_	["Tqugmhultcf	\ "Tqugnhatcf _
3	P33	Tgcevap	Tgcevap	Tgcevap			
4	P38	T gcekqp	T gcevap	Tgcevap			
5	P3:	Tgcevap	Tgcekqp	Tgcekqp			

-	ngineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < VJE } \end{aligned}$	$\begin{aligned} & \text { Lwpg"3; ."423; } \\ & ; \text { \& } 8 \text { "CO } \end{aligned}$
Centered on Solutions" 63-2 North Branford Road Branford CT06405	$\frac{\text { www.centekeng.com }}{\text { P: (203) 488-0580 }}$ $\mathrm{F}:(203) 488-858$	Lqd"Pwo dgt Oqf gitPcog	$\begin{aligned} & \text { < 3; 249663 } \\ & \text { < EV3354: H'/"Oqupv } \end{aligned}$	Ej gengf "D\{2ECI

Joint Boundary Conditions (Continued)

	Lqłpv"Nedgn	Z"]milp_	["]milp	\ "]mip	Z"Tqugndishtcf_	["Tqugnmintcf_	\ "Tqugmhtt cf _
6	P39	Tgcekqp	T gcekqp	Tgcekpp			
7	P43						
8	P44						
9	P45						
:	P46						

Member Point Loads (BLC 2 : Weight of Equipment)

	Ogo dgt"Nedgn	Fitgevap	Oci pkwf g]mmin_	Naecvap]lv.'
3	O6	[/@68	322
4	O6	[/@68	5Б็2:
5	O5	[/@68	322
6	O5	[/0268	5Б็2:
7	O5	[/@97	30264
8	O3	[/086	2
9	O3	[/@86	:
:	O3	[/0297	3047

Member Point Loads (BLC 3 : Wind Load X)

	Ogo dgt"NLdgn	Fifgevap	Oci pkent g]mmin	Nqeckap] ${ }^{\text {c }}$.
3	O6	Z	CP74	5¢็2:
4	06	Z	(274	322
5	O5	Z	C274	5¢52:
6	O5	Z	C274	322
7	O5	Z	Q33	31264
8	O3	Z	© ${ }^{\text {P }}$:	2
9	O3	Z	Q2;	:
:	O3	Z	(258	3047

Member Point Loads (BLC 4 : Wind Load Z)

	Ogo dgt" N dgn	Fitgevap	Oci plowf g]mmin	Ngecvap]lv.'
3	O6	1	Q:	322
4	O6	1	Q2:	5ธ็2:
5	O5	1	Q2:	322
6	O5	1	Q:	5Бூ2:
7	O5	1	C239	30264
8	O3	1	98;	2
9	O3	1	98;	:
:	O3	1	Q68	3047

Joint Loads and Enforced Displacements
Lqłv'Nedgn

> NF .O
> Pq"Fcvc"vq"Rtlpv"CO

Member Distributed Loads (BLC 3 : Wind Load X)

3 O8
Z
C229
Q229
2
2

C三NT＝	ngineering	Eqo rcp\｛ Fgukipgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < VJE } \end{aligned}$	$\begin{aligned} & \text { Lwpg"3; ."423; } \\ & .48 " \mathrm{C} \end{aligned}$
Centered on Solutions＂	uwwrentekeng com	Lqd＂Pwo dgt	＜3； 249063	Ej gengf＂ $\mathrm{D}\{2 \mathrm{E} \mathrm{ECI}$
		Oqf gnt ${ }^{\text {Prog }}$	＜EV3354：H／＂Oqupv	

Member Distributed Loads（BLC 3 ：Wind Load X）（Continued）

	Ogo dgt＂Ncdgn	Fitgevap	Uvctv＇Oci plowi g］milv．H．muh	Gpf＂Oci pkwf g］ndrw．H．muh	Uuctv＇Naecuap Jı．＇	Gpf＂Ngec ${ }^{\text {kap］}}$ k．＇
4	O9	Z	C229	C229	2	2
5	O3	Z	（229	（229	2	2
6	O5	Z	［229	（229	2	2
7	O6	Z	C229	C229	2	2
8	O：	Z	Q29	［229	2	2

Member Distributed Loads（BLC 4 ：Wind Load Z）

	Ogo dgt＂Ncdgn	Fligevap	Uvctv＇Oci plowi g］milv．H．muh	Gpf＂Oci pkwf g］mllw．H．muh	Uuctv＇Nqecvap］lv．＇	Gpf＇Naec kqp］h．＇
3	O4	1	©29	Q29	2	2
4	07	1	［229	（229	2	2
5	O5	1	Q29	C229	2	5ら็2：
6	O6	1	（229	（229	2	5Б52：
7	O3	1	（229	C229	：	330889

Basic Load Cases

	DNE＂Fguetkvap	Ecrgi qt \｛	Z＂I tcxku	［＂1 tcxky	\＂I tcx 00 Lqłpv	Rqłpv	Fkutk	Uutreg＊Ricug ${ }^{\text {c }}$ cmm
3	Ugrin＇Y gk j v	FN		／3				
4	Y gkj VqHGswlko gpv	FN				．		
5	Y lpf＂Nacf＂Z	Y N				：	8	
6	Y hpf＂Nacf＂	Y M				．	7	

Load Combinations

Envelope Joint Reactions

Lqłp			Z＂］m	NE	［＂］m	NE	\＂］m	NE	OZ＂］nih＿	NE	O［＂］min	NE	O\＂］mhiv	NE
3	P33	Ocz	『33	7	3546	8	Б586	36	2	36	2	36	2	36
4		0 lp	／0566	33	／0987	34	／0639	6	2	3	2	3	2	3
5	P38	O cz	／＠3：	35	35536	6	C298	8	2	36	2	36	2	36
6		0 lp	／036；	5	10994	36	／0245	34	2	3	2	3	2	3
7	P3：	O cz	C296	36	［238	6	C34；	36	2	36	2	36	2	36
8		O p	／0297	6	C22；	36	／035	6	2	3	2	3	2	3
9	P39	O cz	［28；	6	¢38	6	CB3；	36	2	36	2	36	2	36

Centered on Solutions＂sh www．centekeng．com 63－2 North Branford Road P：（203）488－0580 Branford，CT 06405

Envelope Joint Reactions（Continued）

Lqlov			Z＂］m	NE	［＂］m	NE	\＂］m	NE	OZ＂］nin＿	NE	O［＂］min	NE	O	NE
：		0 ¢	／088；	36	C22；	36	／034	6	2	3	2	3	2	3
；	Vqucru＜	O cz	\square	35	Q39	32	897	36						
32		0 lp	107	5	65	34	／0897	6						

Envelope Joint Displacements

Lqłov			$\begin{aligned} & \text { Z"llp- } \\ & \text { O466 } \end{aligned}$	$\begin{aligned} & \mathrm{NE} \\ & 33 \end{aligned}$	$\begin{aligned} & \text { ["]po } \\ & \text { C233 } \end{aligned}$	$\begin{aligned} & \mathrm{NE} \\ & 36 \end{aligned}$	$\begin{aligned} & \backslash \text { "lp } \\ & \text { C634 } \end{aligned}$	NE Z＂Tquavap＂jomne			［＂Tquckap＂］00NE		\＂Tquckap＂］cone	
3	P3	O cz						6	3018g／24	6	：C8：3g／26	33	9¢268g／25	7
4		0 p	10487	7	／0237	6	／05： 3	36	／3＠；6g／24	36	I： $0: 8 \mathrm{~g} / 26$	7	／8086；g／25	33
5	P4	O cz	C279	5	Q2；	36	C29	36	4С287g／25	6	8Q2；5g／26	5	3CB： $4 \mathrm{~g} / 25$	5
6		0 lp	／0259	35	／0234	6	／ロR；；	6	／36：3g／25	36	17c8；6g／26	35	／：0443g／26	35
7	P5	O cz	2	5	／＠45	35	Q23	6	；CP：；g／26	6	3649g／26	7	／； $6694 \mathrm{~g} / 27$	35
8		0 lp	2	35	102： 9	5	／0223	36	／90，39g／26	36	／30459g／26	33	1； $073 \mathrm{~g} / 26$	5
9	P6	O cz	2	33	／＠7：	33	C22	6	5CB45g／26	6	30793g／26	34	3643g／25	7
：		0 lp	2	7	／0366	7	／®24	36	／40399g／26	36	／3685；g／26	8	567；g／26	33
；	P7	O Cz	2	5	／®244	35	2	6	；C2：；g／26	6	36649g／26	7	／；626g／27	35
32		0 p	2	35	／®：	5	2	36	／90 39g／26	36	／30459g／26	33	1； $05 ; \mathrm{g} / 26$	5
33	P8	o cz	2	33	／＠77	33	Q23	6	5CB45g／26	6	3077：g／26	34	3664g／25	7
34		0 lp	2	7	／0356	7	2	36	／40399g／26	36	／36848g／26	8	5675g／26	33
35	P9	O cz	／022；	35	／®244	35	（255	34	：©：5g／26	8	$5049 \mathrm{~g} / 26$	8	／5673g／26	35
36		O lp	10245	5	／Q：	5	／026	8	／90898g／26	34	／502；g／26	34	／96634g／26	5
37	P：	O cz	¢25	5	／＠78	33	Q： 6	34	3033g／25	8	9็็66g／26	34	3CB74g／25	5
38		0 lo	［24	35	／0356	7	／Q2：；	8	／30844g／25	34	／90： $9 \mathrm{~g} / 26$	8	8C2： $4 \mathrm{~g} / 26$	35
39	P；	O Cz	C274	5	／0244	35	Q7：	6	4ら5；4g／25	6	36649g／26	7	； $026 \mathrm{~g} / 26$	35
3：		O kp	／023；	35	／Q：	5	／Q276	36	／40495g／25	36	／30459g／26	33	／4＠884g／25	5
3；	P32	O Cz	［234	33	／＠278	33	C26	6	3＠；6g／25	6	3077：g／26	34	4C6；：g／25	7
42		O kp	／0287	7	／0356	7	／0559	36	／308；：g／25	36	／3c848g／26	8	1904：：g／26	33
43	P33	O cz	2	36	2	36	2	36	38889g／25	6	5Б็3；g／26	33	3566g／25	7
44		0 lp	2	3	2	3	2	3	／3667g／25	36	15币；；g／26	7	／：0385g／26	33
45	P34	o cz	2	33	／＠46	35	Q35	34	9＠24g／26	8	$5063 \mathrm{~g} / 26$	8	／40498g／26	35
46		0 lp	2	7	102： 8	5	／0239	8	1807；6g／26	34	／5＠26g／26	34	1：0729g／26	5
47	P35	O cz	2	5	／＠7；	33	C264	34	$30 \mathrm{~g} / 25$	8	9็็7：g／26	34	3014：g／25	7
48		0 lp	2	35	／0365	7	／0267	8	／3662；g／25	34	I：＠R23g／26	8	7¢593g／26	33
49	P36	O cz	2	33	／＠244	35	C233	34	9＠24g／26	8	$5049 \mathrm{~g} / 26$	8	14048；g／26	35
4：		O lp	2	7	102	5	／0236	8	1807；6g／26	34	／502；g／26	34	／：06；8g／26	5
4；	P37	o cz	2	5	／＠278	33	C259	34	3\％g／25	8	9566g／26	34	30148g／25	7
52		0 lo	2	35	／0356	7	／025；	8	13062；g／25	34	／90： $9 \mathrm{~g} / 26$	8	7¢586g／26	33
53	P38	o cz	2	36	2	36	2	36	3ธ576g／26	：	5 $545 \mathrm{~g} / 26$	5	7ら535g／26	5
54		0 lo	2	3	2	3	2	3	9＠；8g／27	36	／5035；g／26	35	170734g／28	35
55	P39	o cz	2	36	2	36	2	36	4025g／25	5	30；9g／25	5	8689g／26	8
56		0 lp	2	3	2	3	2	3	9ந585g／26	35	／3＠；6g／25	35	／30 48g／26	34
57	P3：	o cz	2	36	2	36	2	36	48868g／25	7	3С2；5g／25	33	； 0 69g／27	35
58		0 p	2	3	2	3	2	3	3CB2；g／25	33	／3＠；；g／25	7	／60668g／26	5
59	P3；	O Cz	（255	5	2	36	Q27	36	4ら544g／25	6	8С2；5g／26	5	； $037 \mathrm{~g} / 26$	5
5：		0 lp	／023；	35	2	6	／088；	6	／3095：g／25	36	／7c8；6g／26	35	／80433g／26	35
5；	P42	o cz	Q2：	33	2	34	C326	6	5¢256g／25	6	：©8：3g／26	33	5CB26g／25	7
62		0 lo	／0324	7	2	8	／CR： 6	36	／4063；g／25	36	1： $0: 8 \mathrm{~g} / 26$	7	$140954 \mathrm{~g} / 25$	33
63	P43	O cz	¢245	33	2	34	Q25	6	5С256g／25	6	：©8：3g／26	33	5С26：g／25	7
64		0 lp	／024：	7	2	8	／0248	36	1463；g／25	36	I： $0: 8 \mathrm{~g} / 26$	7	／40898g／25	33
65	P44	o cz	Q2；	5	2	36	C2；	36	4ら̧45g／25	6	8С2；5g／26	5	；0484g／26	5
66		0 lp	／026	35	2	6	／0236	6	／3095：g／25	36	1708；6g／26	35	170879g／26	35

二 $二 小 \mathrm{NT}=$	engineering	Eqo rcp\｛ Fguki pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < VJE } \end{aligned}$	$\begin{aligned} & \text { Lupg"3; ."423; } \\ & \text {; \&8"CO } \end{aligned}$
Centered on Solutions ${ }^{\text {m＇}}$	www．centekeng．com	Lqd＂Pwo dgt	＜3； 24963	Ej gengf＂D\｛2ECI
63－2 North Branford Road Branford CT 06405	P：（203）488－0580 F：（203）488－8587	Oqf ghPco g	＜EV3354：H＂／＂Oqupv	

Envelope Joint Displacements（Continued）

	Lqłpv		$\begin{aligned} & \text { Z"Ip- } \\ & \text { C249 } \end{aligned}$	$\begin{aligned} & \mathrm{NE} \\ & 33 \end{aligned}$	$\begin{aligned} & \text { ["]po } \\ & \text { C234 } \end{aligned}$	$\begin{aligned} & \mathrm{NE} \\ & 36 \end{aligned}$	$\begin{aligned} & \backslash \mathrm{llp} \\ & \text { C254 } \end{aligned}$	NE Z＂Tqucvqp＂jomne			［＂Tqucvap＂］00NE		\＂Tquckap＂］ONE	
67	P45	O cz						6	5¢256g／25	6	：© 8 ：3g／26	33	5С26：g／25	7
68		－p	1025	7	／0237	6	／＠48	36	／463；g／25	36	1： $0: 8 \mathrm{~g} / 26$	7	／40898g／25	33
69	P46	O cz	Q35	5	Q2；	36	Q2；	36	4ந545g／25	6	8®2；5g／26	5	；9184g／26	5
6：		0 ¢	／®29	35	／0334	6	／0236	6	／3095： $\mathrm{g} / 25$	36	17CB；6g／26	35	／70879g／26	35

Envelope AISC 14th（360－10）：ASD Steel Code Checks

	Og＠	Uj cr g	Eqf g＂ECongemone		Uj gct＂EConnaejh＿		Fit	NE	Rpelqa	Rpviamomp \｛ 10	Op｜	Ed	Gsp
3	O3	RKRGa4C2	©； 3	504006	Q22	3ら559		6	602 ：	43699 30467	30467	603 ；	J 3／3d
4	O4	RKRGa4®2	0492	6097	©69	6 697		6	90974	43659930467	30467	3098	J 3／3d
5	O5	RKRGa4C2	0443	$7 \square^{7}$	C265	5ら555		8	；Q 46	43699 30467	30467	58223	J 3／3d
6	06	RKRGa4®2	C378	$7 \square^{5}$	［247	5ら555		8	； 046	43С599 30467	30467	5ら็47	J 3／3d
7	O7	RKRGa4®2	0188	60977	Q273	697		6	90974	43699 30467	30467	3094	J 3／3d
8	08	RKRGa4®2	C263	606007	Q26	： 0 ；：		7	：© 2	4369930467	30467	3C358	J 3／3d
9	O9	RKRGa4®2	C263	606005	［26	： 0 ；：		7	：© 2 ： 6	436593 30467	30467	3CB58	J 3／3d
：	O：	RKRGa4®2	9675	836	［296	8		7	：©	43659930467	30467	5らு： 6	J 3／3d

Centek	CT11328F - Mount Member Unity Check	
THC		June 19, 2019 at 9:25 AM
19027.41		CT11328F_AMA.r3d

Exhibit F
 Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTII328F

Marine Sys. Smoke Stack
50 Maple Street
Branford, Connecticut 06405
May 29, 2019
EBI Project Number: 621900186I

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 2 . 8 1 \%}$

environmental | engineering | due diligence

May 29, 2019
T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTI I328F - Marine Sys. Smoke Stack

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{5 0}$ Maple Street in Branford, Connecticut for the purpose of determining whether the emissions from the Proposed TMobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-Oland ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS}), 2100 \mathrm{MHz}$ (AWS) and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 50 Maple Street in Branford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 GSM/UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 W atts per Channel.
4) 2 UMTS channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
5) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
environmental | engineering | due diligence
6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antennas used in this modeling are the Ericsson AIR2I B2A_B4P for the $1900 \mathrm{MHz} / 2100$ MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 700 \mathrm{MHz}$ channel(s), the Ericsson AIR2I B2P_B4A for the 2100 MHz channel(s) in Sector A, the Ericsson AIR2I B2A_B4P for the $1900 \mathrm{MHz} / 2100 \mathrm{MHz}$ channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 700 \mathrm{MHz}$ channel(s), the Ericsson AIR2I B2P_B4A for the 2100 MHz channel(s) in Sector B, the Ericsson AIR2I B2A_B4P for the $1900 \mathrm{MHz} / 2100 \mathrm{MHz}$ channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 700 \mathrm{MHz}$ channel(s), the Ericsson AIR2I B2P_B4A for the 2100 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antenna mounting height centerline of the proposed antennas is 96 feet above ground level (AGL).
10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
11) All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting
environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	I	Antenna \#:	I	Antenna \#:	I
Make / Model:	Ericsson AIR2I B2A_B4P	Make / Model:	Ericsson AIR2I B2A_B4P	Make / Model:	Ericsson AIR2I B2A_B4P
Frequency Bands:	$1900 \mathrm{MHz} / 2100 \mathrm{MHz}$	Frequency Bands:	$1900 \mathrm{MHz} / 2100 \mathrm{MHz}$	Frequency Bands:	$1900 \mathrm{MHz} / 2100 \mathrm{MHz}$
Gain:	15.35 dBd / 15.35 dBd	Gain:	15.35 dBd / 15.35 dBd	Gain:	15.35 dBd / 15.35 dBd
Height (AGL):	96 feet	Height (AGL):	96 feet	Height (AGL):	96 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts
ERP (W):	4,113.2I	ERP (W):	4,113.2I	ERP (W):	4,113.2I
Antenna AI MPE \%:	1.60\%	Antenna BI MPE \%:	1.60\%	Antenna CI MPE \%:	1.60\%
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	RFS APXVAARR24_43-U- NA2O	Make / Model:	RFS APXVAARR24_43-U- NA2O	Make / Model:	RFS APXVAARR24_43-U- NA20
Frequency Bands:	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	Frequency Bands:	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	Frequency Bands:	$600 \mathrm{MHz} / 700 \mathrm{MHz}$
Gain:	12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 13.35 dBd
Height (AGL):	96 feet	Height (AGL):	96 feet	Height (AGL):	96 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts
ERP (W):	2,481.08	ERP (W):	2,481.08	ERP (W):	2,481.08
Antenna A2 MPE \%:	2.24\%	Antenna B2 MPE \%:	2.24\%	Antenna C2 MPE \%:	2.24\%
Antenna \#:	3	Antenna \#:	3	Antenna \#:	3
Make / Model:	Ericsson AIR2I B2P_B4A	Make / Model:	Ericsson AIR2I B2P_B4A	Make / Model:	Ericsson AIR2I B2P_B4A
Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz
Gain:	15.35 dBd	Gain:	15.35 dBd	Gain:	15.35 dBd
Height (AGL):	96 feet	Height (AGL):	96 feet	Height (AGL):	96 feet
Channel Count:	2	Channel Count:	2	Channel Count:	2
Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts
ERP (W):	4,113.2I	ERP (W):	4,113.2 I	ERP (W):	4,113.2I
Antenna A3 MPE \%:	1.60\%	Antenna B3 MPE \%:	1.60\%	Antenna C3 MPE \%:	1.60\%

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile (Max at Sector A):	5.45%
Sprint	7.36%
Site Total MPE \% :	12.81%

T-Mobile Sector A Total:	5.45%
T-Mobile Sector B Total:	5.45%
T-Mobile Sector C Total:	5.45%
Site Total:	

T-Mobile Maximum MPE Power Values (Sector A)

T-Mobile Frequency Band / Technology (Sector A)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
T-Mobile 1900 MHz GSM/UMTS	2	1028.30	96.0	8.02	$1900 \mathrm{MHz} \mathrm{GSM} / \mathrm{UMTS}$	1000	0.80\%
T-Mobile 2100 MHz UMTS	2	1028.30	96.0	8.02	2100 MHz UMTS	1000	0.80\%
T-Mobile 600 MHz LTE	2	591.73	96.0	4.62	600 MHz LTE	400	I.15\%
T-Mobile 700 MHz LTE	2	648.82	96.0	5.06	700 MHz LTE	467	1.08\%
T-Mobile 2100 MHz LTE AWS	2	2056.61	96.0	16.05	2100 MHz LTE AWS	1000	1.60\%
						Total:	5.45\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	5.45%
Sector B:	5.45%
Sector C:	5.45%
T-Mobile Maximum MPE \% (Sector A):	5.45%
Site Total:	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 2 . 8 1 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Mailing Receipts/Proof of Notice

UPS Internet Shipping: View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup
Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples ${ }^{\circledR}$ or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the 'Find Locations' Quick link at ups.com.
Schedule a same day or future day Pickup to have a UPS driver pickup all of your Internet Shipping packages. Hand the package to any UPS driver in your area.

UPS Access Point ${ }^{\text {TM }}{ }^{\text {M }}$
THE UPS STORE
115 FRANKLIN TPKE
MAHWAH ,NJ 07430

UPS Access Point ${ }^{\text {TM }}$ THE UPS STORE 120 E MAIN ST RAMSEY ,NJ 07446

UPS Access Point ${ }^{\text {TM }}$
POSTNET NY137
74 LAFAYETTE AVE
SUFFERN ,NY 10901

FOLD HERE

UPS Internet Shipping: View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup
Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the 'Find Locations' Quick link at ups.com.
Schedule a same day or future day Pickup to have a UPS driver pickup all of your Internet Shipping packages. Hand the package to any UPS driver in your area.

UPS Access Point ${ }^{\text {TM }}{ }^{\text {M }}$
THE UPS STORE
115 FRANKLIN TPKE
MAHWAH ,NJ 07430

UPS Access Point ${ }^{\text {TM }}$ THE UPS STORE 120 E MAIN ST RAMSEY ,NJ 07446

UPS Access Point ${ }^{T M}$
POSTNET NY137
74 LAFAYETTE AVE
SUFFERN ,NY 10901

FOLD HERE

UPS Internet Shipping: View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup
Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the 'Find Locations' Quick link at ups.com.
Schedule a same day or future day Pickup to have a UPS driver pickup all of your Internet Shipping packages. Hand the package to any UPS driver in your area.

UPS Access Point ${ }^{\text {TM }}{ }^{\text {M }}$
THE UPS STORE
115 FRANKLIN TPKE
MAHWAH ,NJ 07430

UPS Access Point ${ }^{\text {TM }}$ THE UPS STORE 120 E MAIN ST RAMSEY ,NJ 07446

UPS Access Point ${ }^{T M}$
POSTNET NY137
74 LAFAYETTE AVE
SUFFERN ,NY 10901

FOLD HERE

