

10 INDUSTRIAL AVE, SUITE 3 MAHWAH NJ 07430

PHONE:201.684.0055FAX:201.684.0066

April 16, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification 50 Maple Street, Branford, CT 06405 Latitude: 41.2742440000 Longitude: -72.8136560000 T-Mobile Site#: CT11328F – L600

Dear Ms. Bachman:

T-Mobile currently maintains nine (9) antennas at the 96-foot level of the existing 100-foot smokestack at 50 Maple Street, CT. The 100-foot smokestack and property are owned by Marine Systems Incorporated. T-Mobile now intends to replace three (3) existing antennas with (3) new 600/700 MHz antennas. The new antennas will support 5G services and will be installed at the same 96-foot level of the tower.

Planned Modifications:

Tower: <u>Remove</u> (6) 1-5/8" coax

<u>Remove and Replace</u>: (3) Andrew LNX-6515DS for (3) RFS APXVAALL24_43-U-NA20 600/700 MHz antennas (3) RRUS11B12 for (3) Radio 4449

Install New: (3) 1-5/8" Hybrid

Existing to Remain: (6) AIR 21 (3) TMA (3) 1-5/8" Hybrid (6) 1-5/8" coax

The original approval of this facility was by the Town of Branford Planning and Zoning Commission. The Commission approved the facility on January 7, 2010. A copy of this approval is enclosed. T-Mobile was subsequently approved for tower-sharing by the Connecticut Siting Council on March 3, 2017.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman -James Cosgrove, Elected Official, and Harry Smith, Town Planner, as well as the owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kyle Richers Transcend Wireless Cell: 908-447-4716 Email: <u>krichers@transcendwireless.com</u>

Attachments cc: James Cosgrove – First Selectman – Town of Branford Harry Smith– Town Planner – Town of Branford Marine Systems Inc – Owner

View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

• Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access Point™ MICHAELS STORE # 7773 75 INTERSTATE SHOP CTR RAMSEY NJ 07446-1130 UPS Access Point™ THE UPS STORE 115 FRANKLIN TPKE MAHWAH NJ 07430-1325 UPS Access Point[™] THE UPS STORE 120 E MAIN ST RAMSEY NJ 07446-1925

FOLD HERE

View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup


• Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access Point™ MICHAELS STORE # 7773 75 INTERSTATE SHOP CTR RAMSEY NJ 07446-1130 UPS Access Point™ THE UPS STORE 115 FRANKLIN TPKE MAHWAH NJ 07430-1325 UPS Access Point[™] THE UPS STORE 120 E MAIN ST RAMSEY NJ 07446-1925

FOLD HERE

View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

• Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access Point™ MICHAELS STORE # 7773 75 INTERSTATE SHOP CTR RAMSEY NJ 07446-1130 UPS Access Point™ THE UPS STORE 115 FRANKLIN TPKE MAHWAH NJ 07430-1325 UPS Access Point[™] THE UPS STORE 120 E MAIN ST RAMSEY NJ 07446-1925

FOLD HERE

50 MAPLE ST

Location	50 MAPLE ST	Mblu	D08/000 012/ 00003/ /
Acct#	000592	Owner	MARINE SYSTEMS INCORPORATED
Assessment	\$964,500	Appraisal	\$1,378,100
PID	801	Building Count	2

Current Value

Appraisal						
Valuation Year Improvements Land Total						
2019	\$412,300	\$965,800	\$1,378,100			
	Assessment					
Valuation Year	Improvements	Land	Total			
2019	\$288,400	\$676,1	\$964,500			

Owner of Record

Owner	MARINE SYSTEMS INCORPORATED	Sale Price	\$0
Co-Owner		Certificate	
Address	PO BOX 447	Book & Page	0555/1008
	BRANFORD, CT 06405	Sale Date	09/07/1993

Ownership History

Ownership History					
Owner Sale Price Certificate Book & Page Sale Date					
MARINE SYSTEMS INCORPORATED	\$0		0555/1008	09/07/1993	

Building Information

Building 1 : Section 1

	Building Attributes	
Less Depreciation:	\$94,200	
Replacement Cost		
Building Percent Good:	3	
Replacement Cost:	\$3,139,276	
Living Area:	82,765	
Year Built:	1900	

Field	Description
STYLE	Warehouse
MODEL	Ind/Comm
Grade	С
Stories:	1
Occupancy	3
Exterior Wall 1	Brick
Exterior Wall 2	Concr/Cinder
Roof Structure	Flat
Roof Cover	T&G/Rubber
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	None/Coal/Wd
Heating Type	None
АС Туре	None
Bldg Use	BOATYARD MDL96
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	3841
Heat/AC	NONE
Frame Type	MASONRY
Baths/Plumbing	LIGHT
Ceiling/Wall	NONE
Rooms/Prtns	AVERAGE
Wall Height	22
% Comn Wall	

Building 2 : Section 1

Year Built: 1920			
Living Area: 2,304			
Replacement Cost:	\$277,502		
Building Percent Good:	30		
Replacement Cost			
Less Depreciation: \$83,300			
Building Attributes : Bldg 2 of 2			
Building	Attributes : Bldg 2 of 2		
Field	Attributes : BIdg 2 of 2 Description		
Field	Description		

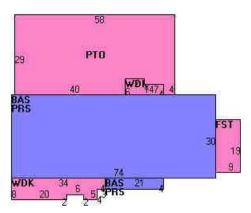
Building Photo

(http://images.vgsi.com/photos/BranfordCTPhotos//\00\01\54/82.jpg)

Building Layout

(http://images.vgsi.com/photos/BranfordCTPhotos//Sketches/801_801.jpg)

	<u>Legend</u>		
Code Description		Gross Area	Living Area
BAS	First Floor	82,765	82,765
SLB	Slab	82,765	0
		165,530	82,765


Stories:	1
Occupancy	1
Exterior Wall 1	Wood Shingle
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Asphalt
Interior Wall 1	Drywall
Interior Wall 2	
Interior Floor 1	Hardwood
Interior Floor 2	Ceram Clay Til
Heating Fuel	Gas
Heating Type	Forced Air-Duc
АС Туре	Central
Bldg Use	REST/CLUBS MDL94
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	3840
Heat/AC	HEAT/AC SPLIT
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEIL & WALLS
Rooms/Prtns	AVERAGE
Wall Height	8
% Comn Wall	

Building Photo

(http://images.vgsi.com/photos/BranfordCTPhotos//\00\02\16/71.jpg)

Building Layout

(http://images.vgsi.com/photos/BranfordCTPhotos//Sketches/801_14082.jp

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Code Description		Living Area
BAS	First Floor	2,304	2,304
FST	Utility, Finished	171	0
PRS	Pier Fndtn	2,304	0
PTO	Patio	1,612	0
WDK	Deck, Wood	318	0
		6,709	2,304

Extra Features

Extra Features Lege				<u>Legend</u>
Code Description Size Value Bldg #				
MEZ1	MEZZANINE-UNF	784 S.F.	\$200	1
GIR3	GIRDERS 19"-24	80 L.F.	\$200	1
HT2	ELECTRIC	1248 S.F.	\$200	1

НТ3	FORCED AIR	840 S.F.	\$200	1
A/C	AIR CONDITION	0 S.F.	\$0	1

Land

Land Use		Land Line Valua	Land Line Valuation	
Use Code	3150	Size (Acres)	4.59	
Description	BOATYARD MDL96	Frontage		
Zone	IG-1	Depth		
Neighborhood	350	Assessed Value	\$676,100	
Alt Land Appr	No	Appraised Value	\$965,800	
Category				

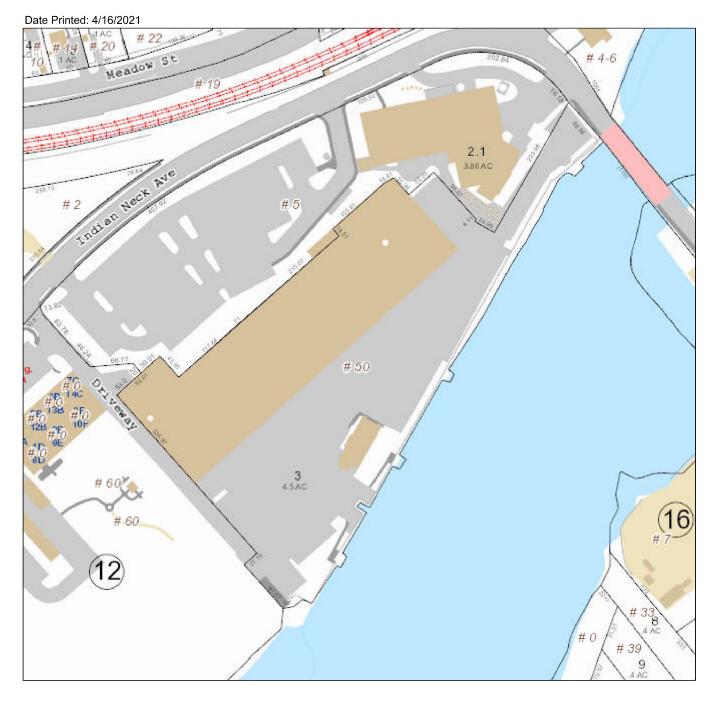
Outbuildings

		Out	buildings			<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV1	PAVING-ASPHALT			36978 S.F.	\$18,300	1
SHD5	SHED COM WOOD			168 S.F.	\$1,400	2
PAV2	PAVING-CONC			3204 S.F.	\$3,200	1
LT1	LIGHTS-IN W/PL			1 UNITS	\$200	1
LT1	LIGHTS-IN W/PL			1 UNITS	\$200	1
LT2	W/DOUBLE LIGHT			2 UNITS	\$700	1
FN3	FENCE-6' CHAIN			510 L.F.	\$1,500	1
WDK	WOOD DECK			230 S.F.	\$700	1
DCK3	FLOATING			4507 S.F.	\$114,900	1
DCK3	FLOATING			2804 S.F.	\$71,500	1
STK1	CHIMNEY STK BR			100 UNITS	\$20,000	1
SHD5	SHED COM WOOD			160 S.F.	\$1,400	1

Valuation History

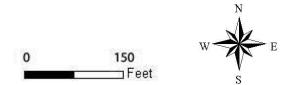
Appraisal					
Valuation Year	Improvements	Land	Total		
2020	\$412,300	\$965,800	\$1,378,100		
2019	\$412,300	\$965,800	\$1,378,100		
2018	\$401,900	\$937,400	\$1,339,300		

Assessment					
Valuation Year	Improvements	Land	Total		
2020	\$288,400	\$676,100	\$964,500		
2019	\$288,400	\$676,100	\$964,500		
2018	\$281,300	\$656,200	\$937,500		


(c) 2021 Vision Government Solutions, Inc. All rights reserved.

Print Map

Town of Branford


Geographic Information System (GIS)

MAP DISCLAIMER - NOTICE OF LIABILITY

This map is for assessment purposes only. It is not for legal description or conveyances. All information is subject to verification by any user. The Town of Branford and its mapping contractors assume no legal responsibility for the information contained herein.

PLANNING AND ZONING COMMISSION TOWN OF BRANFORD TOWN HALL DRIVE P.O. BOX 150 Branford, Connecticut 06405 Telephone: (203) 488-1255 Fax: (203) 315-2188

NOTICE OF DECISION

January 11, 2010

Clearwire by Maxton Technology Attention: Thomas F. Flynn III 1296 Blue Hills Avenue Bloomfield, Connecticut 06002

SUBJECT: <u>Site Plan</u>

APPLICATION: <u>#09-12.4</u> ADDRESS: <u>50 Maple Street</u>

APPLICANT: Clearwire Wireless LLC d/b/a Clearwire

OWNER OF RECORD: Marine Systems, Inc.

Dear. Sir:

At a meeting of the Branford Planning & Zoning Commission held on <u>Thursday</u>, <u>January 7, 2010</u> the Commission voted to:

X Approve your above subject application.

Very truly yours,

Shirley Rasmussen Town Planner

NOTE: Site Plan shall become null and void in the event the applicant fails to obtain a building permit within one (1) year of date of approval. (Per Section 31.7 of the Branford Zoning Regulations)

PLANNING AND ZONING COMMISSION TOWN OF BRANFORD TOWN HALL DRIVE P.O. BOX 150 Branford, Connecticut 06405 Telephone: (203) 488-1255 Fax: (203) 315-2188

NOTICE OF DECISION

January 11, 2010

Clearwire by Maxton Technology Attention: Thomas F. Flynn III 1296 Blue Hills Avenue Bloomfield, Connecticut 06002

SUBJECT: <u>Site Plan</u>

APPLICATION: <u>#09-12.4</u> ADDRESS: <u>50 Maple Street</u>

APPLICANT: Clearwire Wireless LLC d/b/a Clearwire

OWNER OF RECORD: Marine Systems, Inc.

Dear. Sir:

At a meeting of the Branford Planning & Zoning Commission held on <u>Thursday</u>, <u>January 7, 2010</u> the Commission voted to:

X Approve your above subject application.

Very truly yours,

Shirley Rasmussen Town Planner

NOTE: Site Plan shall become null and void in the event the applicant fails to obtain a building permit within one (1) year of date of approval. (Per Section 31.7 of the Branford Zoning Regulations)

T-MOBILE A+L TEMPLATE (PROVIDED BY RFDS)

67D92C_2xAIR+10P

T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS)

67D92C HYBRID

GENERAL NOTES

1.	ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
2.	CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
3.	CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
4.	CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
5.	CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTON, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
6.	CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
7.	LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
8.	THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
9.	DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS,

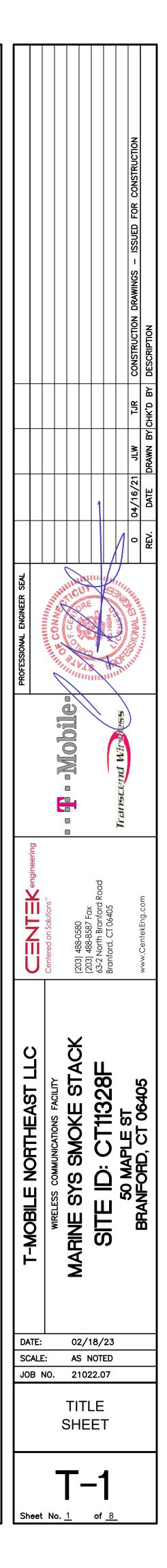
CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.

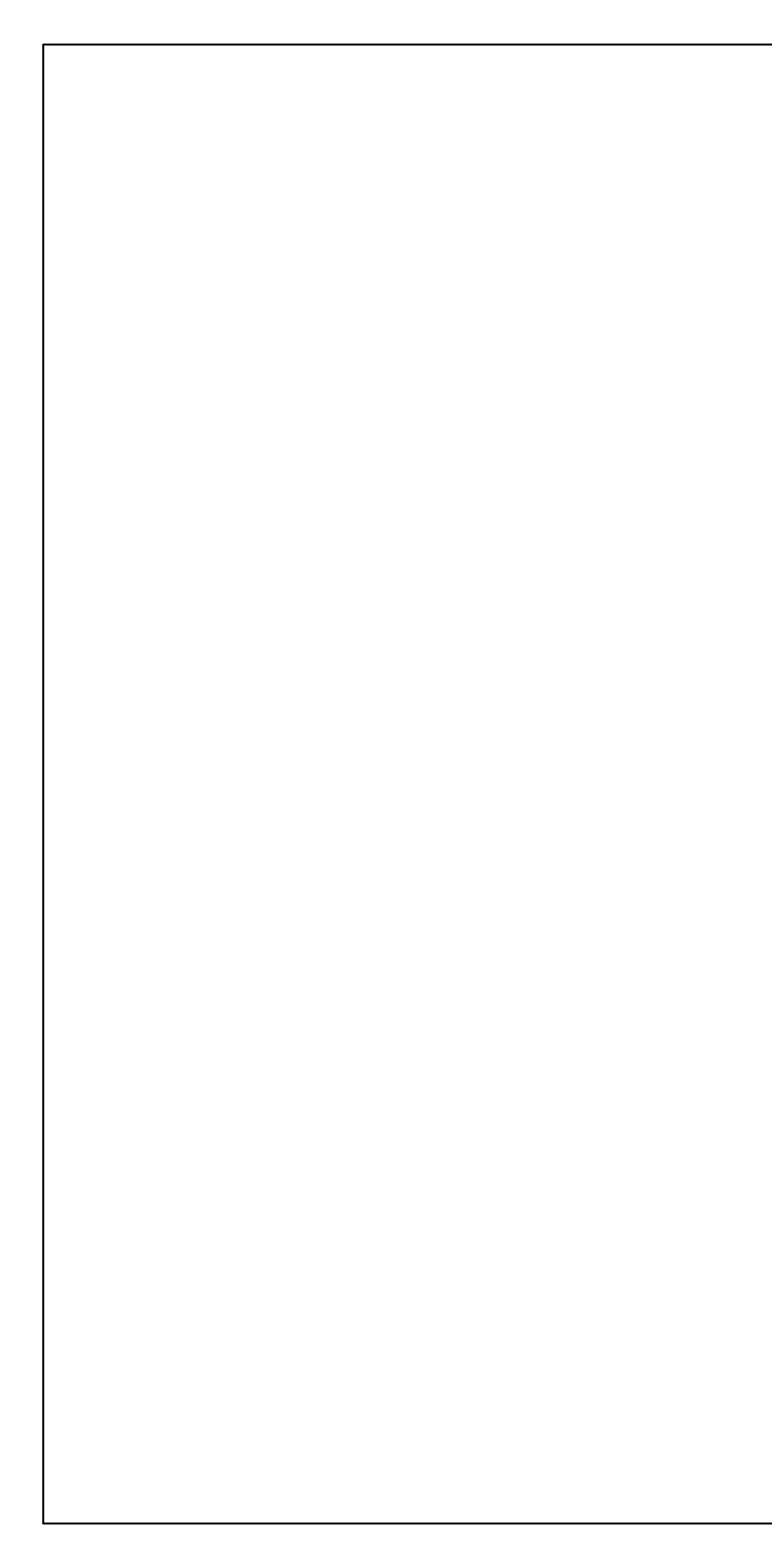
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

MARINE SYS. SMOKE STACK SITE ID: CT11328F 50 MAPLE ST BRANFORD, CT 06405

SITE DI	RECTIONS	
FROM	35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002	TO: 50 MAPLE STREET BRANFORD, CT 06405
 TAKE THE MERGE ON TAKE CT- TURN LEF MERGE ON MERGE ON TAKE THE MERGE ON TAKE THE TAKE THE TAKE THE TURN LEF TURN LEF TURN RIGI 	RTH ON GRIFFIN ROAD S. TOWARD HARTMAN RD. 2ND RIGHT ONTO DAY HILL RD. NTO I-91 S TOWARD HARTFORD 99 EXIT, EXIT 24 TOWARD WETHERSFIELD/ROCKY HILL T ONTO SILAS DEANE HWY/CT-99 NTO I-91 S via THE RAMP ON THE LEFT TOWARD NEW HAN NTO I-95 N via THE RAMP ON THE LEFT TOWARD NEW LONI US-1 EXIT, EXIT 53, TOWARD SHORT BEACH/CT-142/CT- NTO BRANFORD CONN. 1ST RIGHT ONTO W MAIN ST/US-1 S 1ST LEFT ONTO SHORT BEACH RD/CT-142 T ONTO MAPLE ST HT ONTO INDIAN NECK AVE. 5 ST BRANFORD, CT 06405-3511, 50 MAPLE ST	DON 4.55 M
SITE COORDINA	ATES: LATITUDE: 41°–10'–5.42" N LONGITUDE: 73°–8'–11.18" W GROUND ELEVATION: 0'± AMSL	COORDINATES AND GROUND ELEVATION ARE REFERENCED FROM GOOGLE EART
Shopping Center	Sty Marrie Berninger Braniford Library Braniford Library Braniford Canoe Brook Sch Dritigh Sch Sch Dritigh Sch Sch Dritigh Sch Dritigh Sch Dritigh Sch Dritigh Sch Dritigh Dri	Armory- Ch ON ON ON ON ON ON ON ON ON ON ON ON ON

PROJECT SUMMARY


THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:


- 1. REMOVE (1) ANDREW-LNX 6515DS-A1M ANTENNA PER SECTOR TOTAL (3)
- 2. INSTALL (1) RFS APXVAALLR24_43-U-NA20 PER SECTOR TOTAL (3)
- 3. REMOVE (1) RRUS11 B12 PER SECTOR. TOTAL (3)
- 4. INSTALL (1) RADIO 4449 B71+B85 PER SECTOR. TOTAL (3)

PROJECT INFORMATION

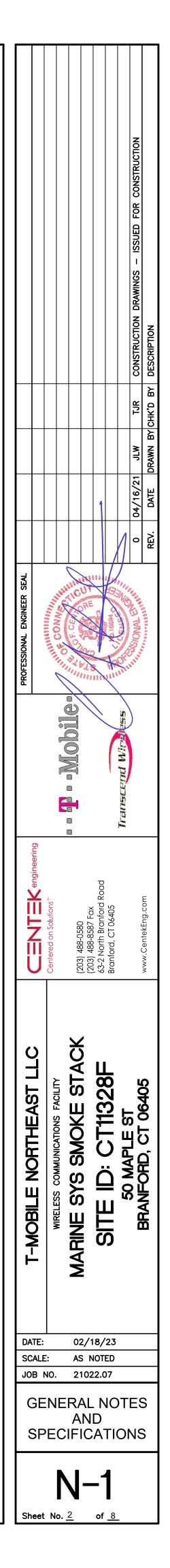
SITE NAME:	MARINE SYS. SMOKE STACK
SITE ID:	CT11328F
SITE ADDRESS:	50 MAPLE STREET BRANFORD, CT 06405
APPLICANT:	T–MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002
CONTACT PERSON:	DAN REID (PROJECT MANAGER) TRANSCEND WIRELESS, LLC (203) 592–8291
ENGINEER OF RECORD:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD RD. BRANFORD, CT 06405
	CARLO F. CENTORE, PE (203) 488–0580 EXT. 122
PROJECT COORDINATES:	LATITUDE: 41°–16'–27.57"N LONGITUDE: 72°–48'–49.06"W GROUND ELEVATION: 13'± AMSL
	SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

SHEET INDEX					
SHT. NO.	DESCRIPTION	REV.			
T—1	TITLE SHEET	0			
N-1	GENERAL NOTES AND SPECIFICATIONS	0			
C-1	SITE LOCATION PLAN	0			
C-2	COMPOUND PLAN AND ELEVATION	0			
C-3	EQUIPMENT PLAN	0			
C-4	ANTENNA PLANS AND ELEVATIONS	0			
C-5	TYPICAL EQUIPMENT DETAILS	0			
E-1	TYPICAL ELECTRICAL DETAILS	0			

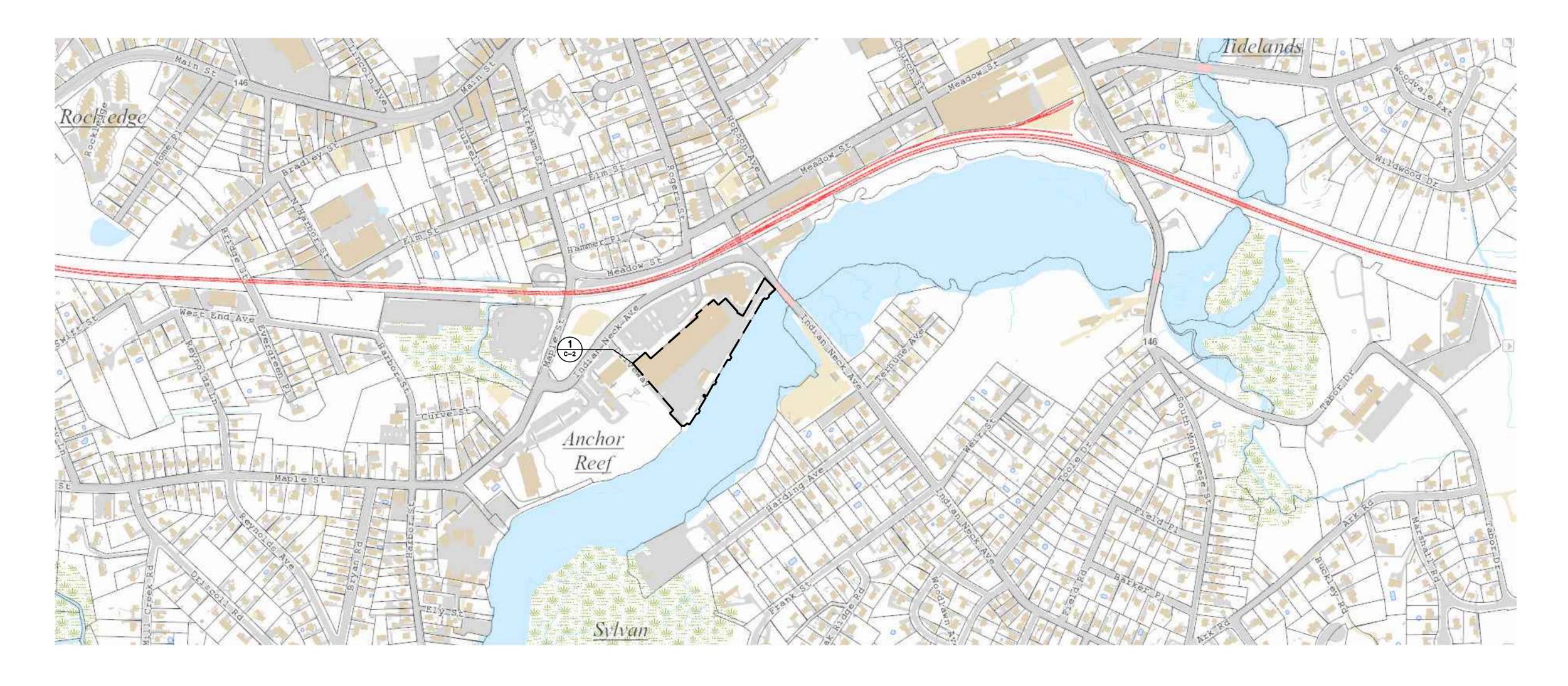
NOTES AND SPECIFICATIONS

<u>DESIGN BASIS:</u>

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

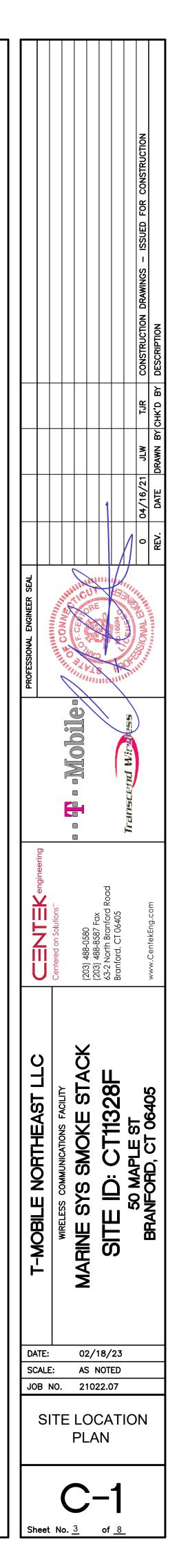

- 1. DESIGN CRITERIA:
- RISK CATEGORY II (BASED ON IBC TABLE 1604.5)
- ULTIMATE DESIGN SPEED (OTHER STRUCTURE): 130 MPH (Vasd) (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

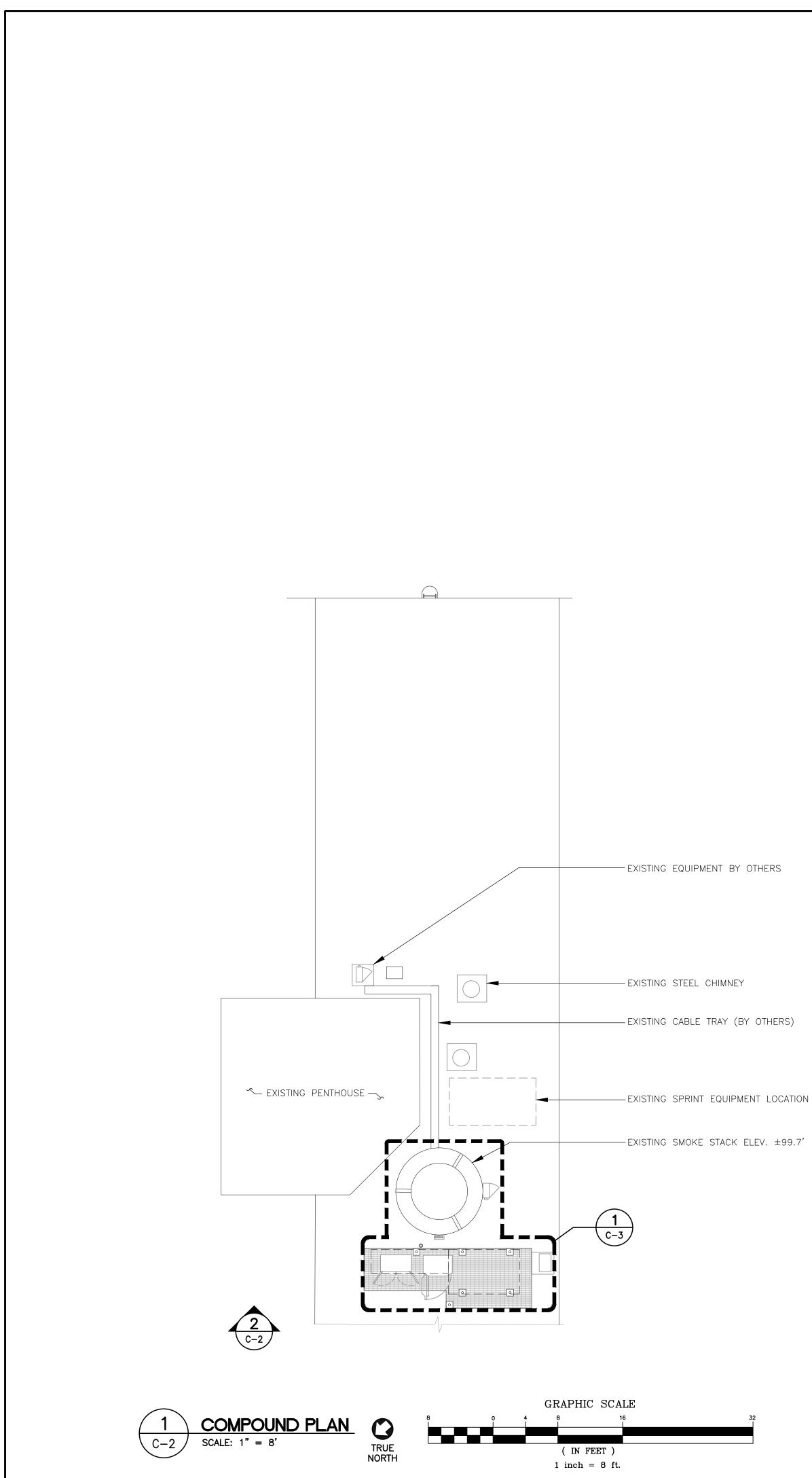
<u>SITE NOTES</u>

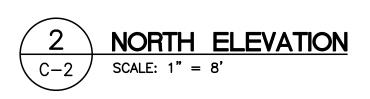

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

GENERAL NOTES

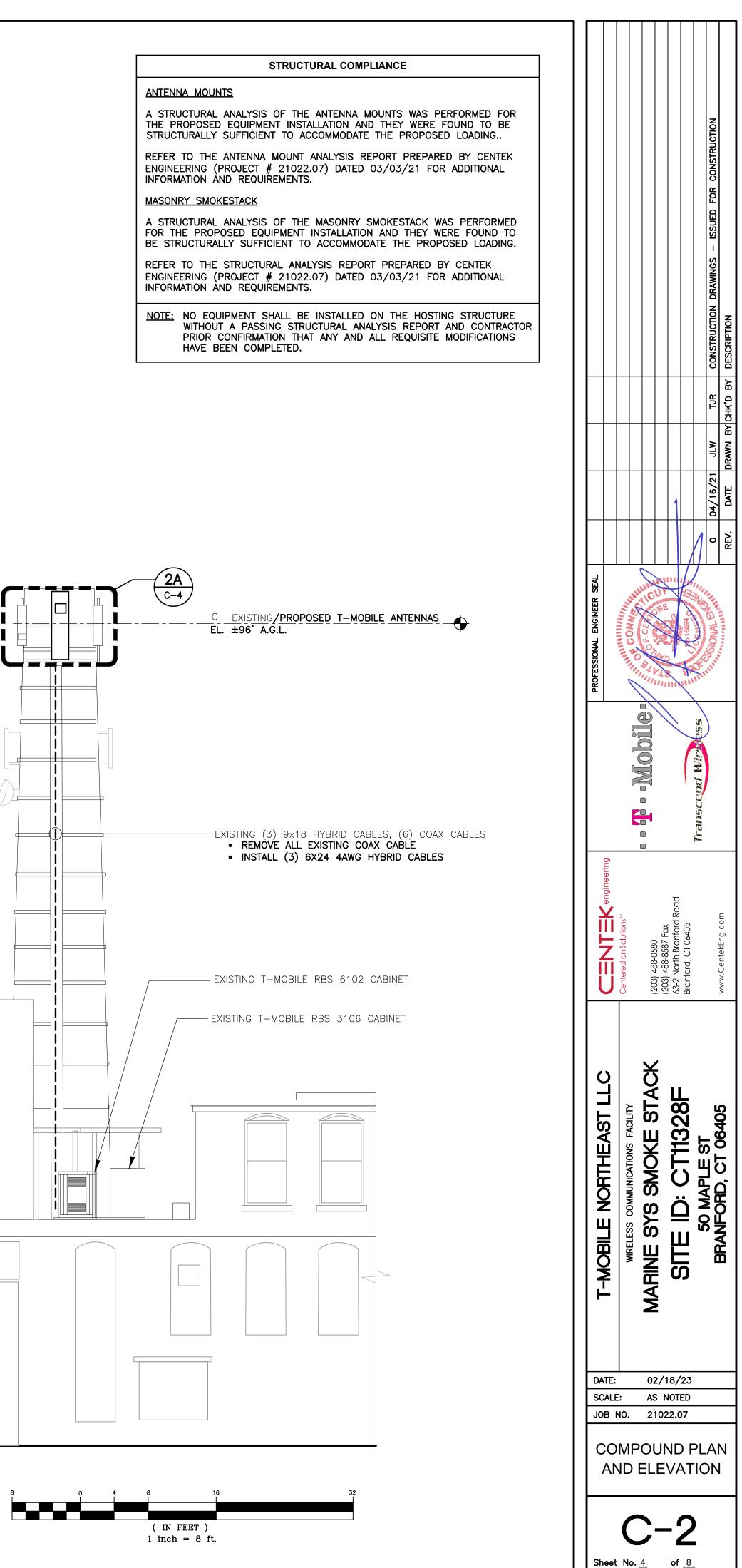
- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND IT'S COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 18. CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 19. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS.
- 20. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.

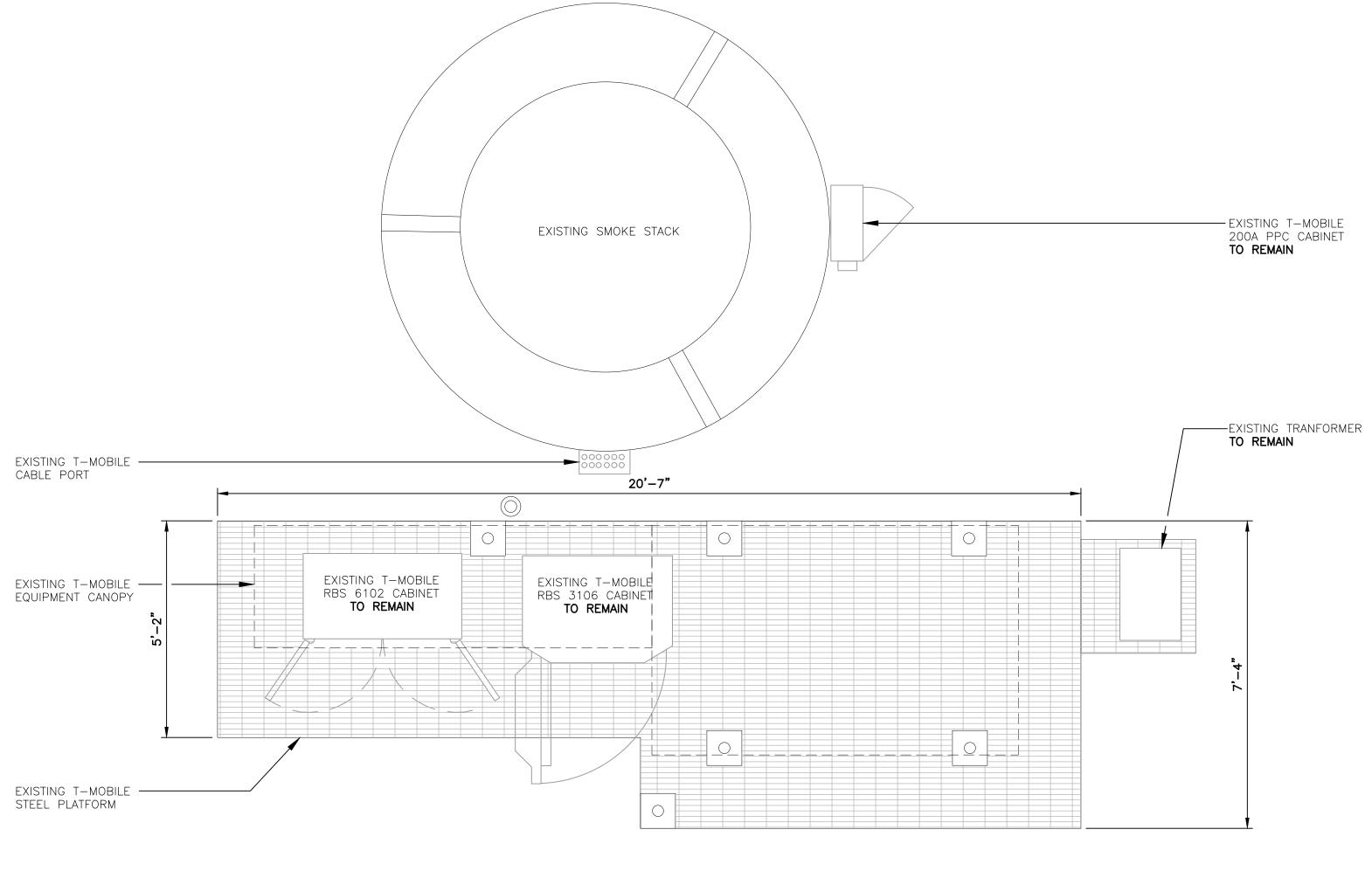

	ANTENNA SCHEDULE							
SECTOR	R EXISTING/PROPOSED	ANTENNA	SIZE (INCHES) (L × W × D)	ANTENNA & HEIGHT	AZIMUTH	(E/P) RRU (QTY)	(E/P) TMA (QTY)	(QTY) PROPOSED COAX
A1	EXISTING	ERICSSON (AIR21 KRC118023-1_B2P_B4A)	56.3 x 12.1 x 7.9	96'	60*			(1) 6x24 HYBRID CABLE
A2	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	96'	60*	(P) RADIO 4449 B71+B85 (1)		
A3	EXISTING	ERICSSON (AIR21 KRC118023-1_B2A_B4P)	56.3 x 12.1 x 7.9	96'	60 °		(E) GENERIC TWIN STYLE 1B (1)	
			•					
B1	EXISTING	ERICSSON (AIR21 KRC118023-1_B2P_B4A)	56.3 x 12.1 x 7.9	96'	180°			(1) 6x24 HYBRID CABLE
B2	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	96'	180°	(P) RADIO 4449 B71+B85 (1)		
B3	EXISTING	ERICSSON (AIR21 KRC118023-1_B2A_B4P)	56.3 x 12.1 x 7.9	96'	180*		(E) GENERIC TWIN STYLE 1B (1)	
			•					
C1	EXISTING	ERICSSON (AIR21 KRC118023-1_B2P_B4A)	56.3 x 12.1 x 7.9	96'	300*			(1) 6x24 HYBRID CABLE
C2	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	96'	300*	(P) RADIO 4449 B71+B85 (1)		
C3	EXISTING	ERICSSON (AIR21 KRC118023-1_B2A_B4P)	56.3 x 12.1 x 7.9	96'	300*		(E) GENERIC TWIN STYLE 1B (1)	



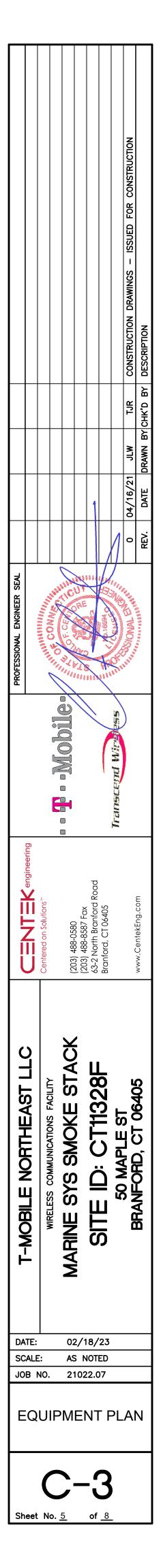


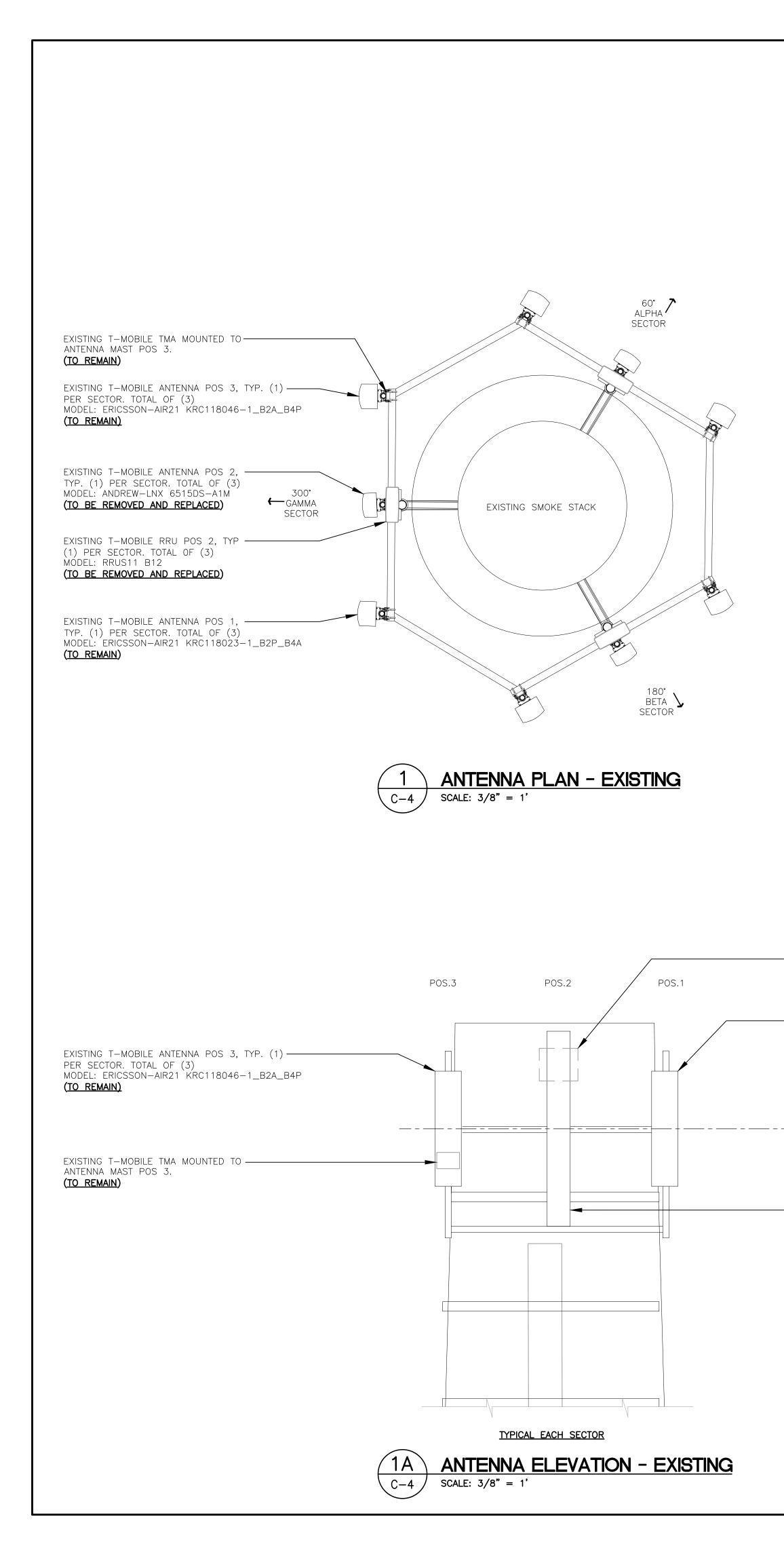
NOTE: ALL HCS LENGTHS TO BE MEASURED AND VERIFIED IN FIELD BEFORE ORDERING

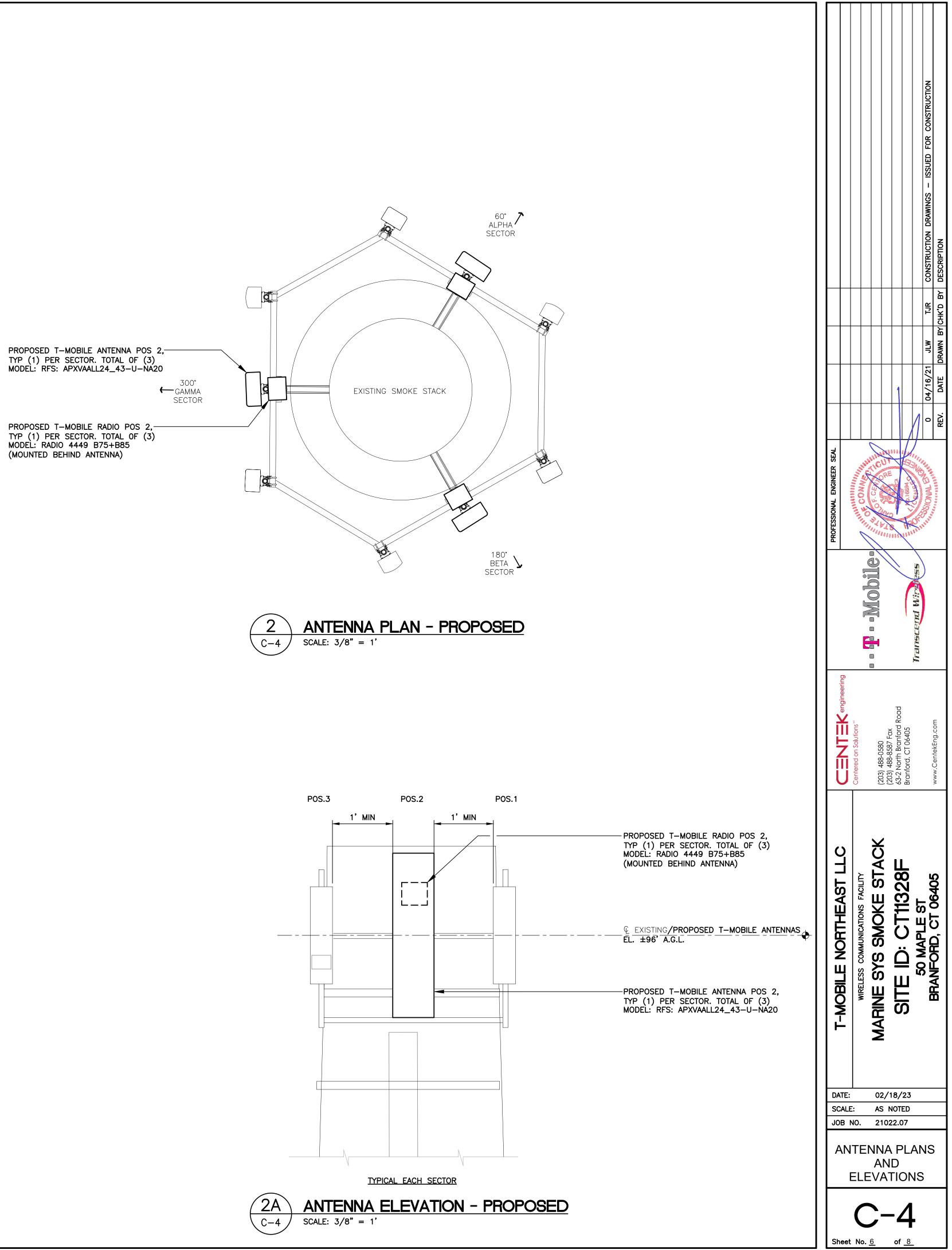


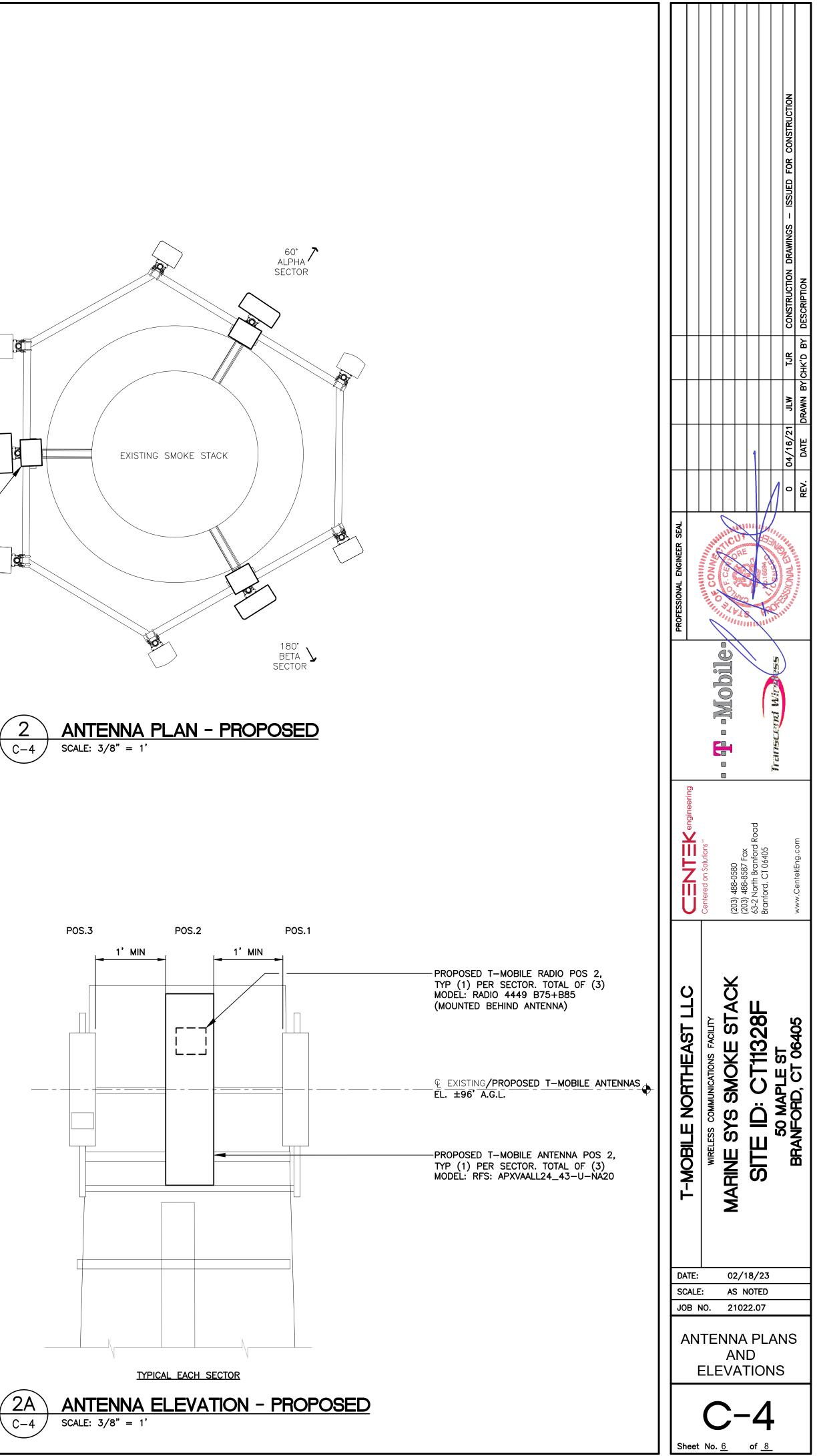


• TOP OF EXISTING STRUCTURE EL. ±100' A.G.L.

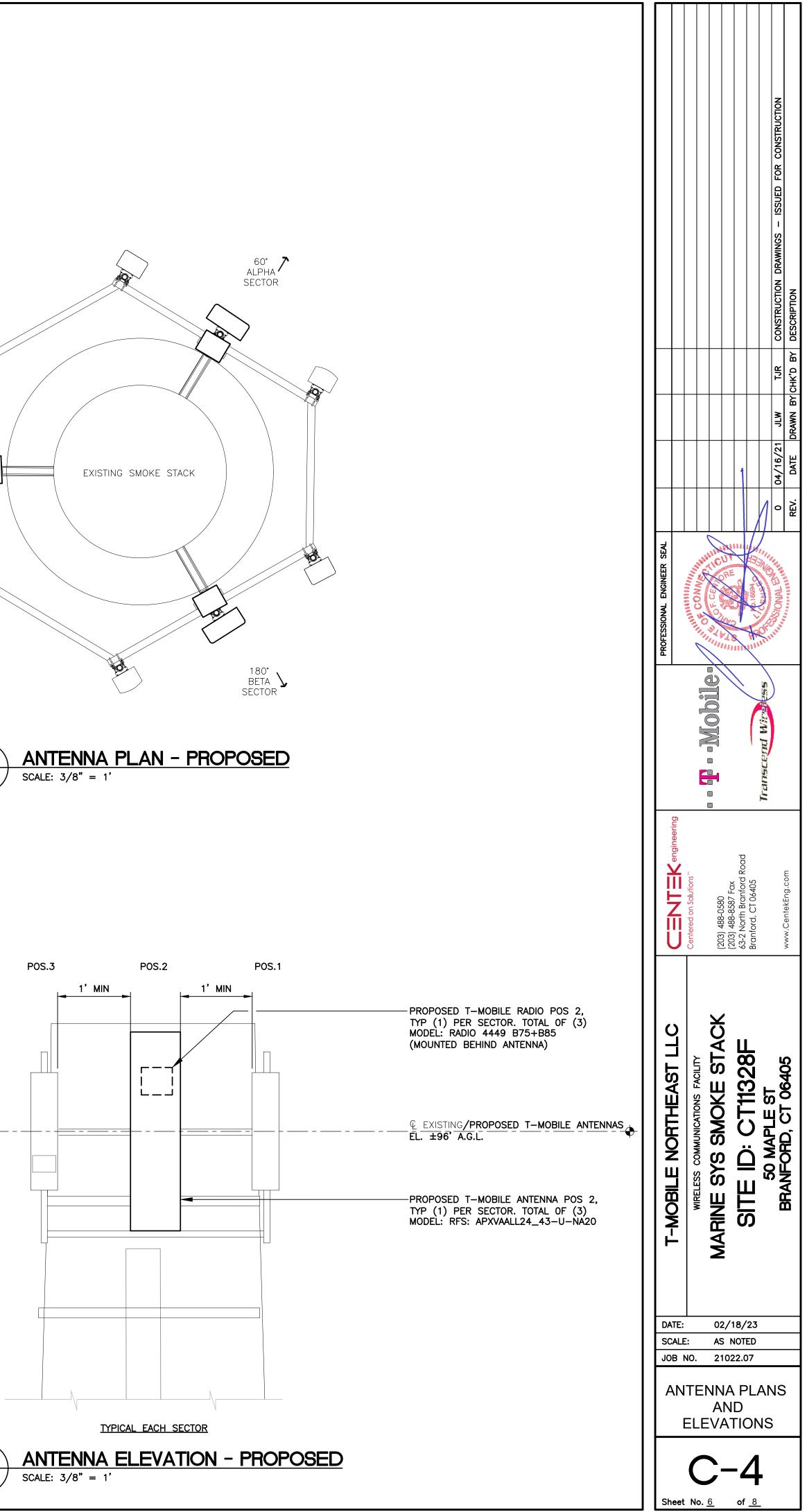

 $\widehat{\Box}$

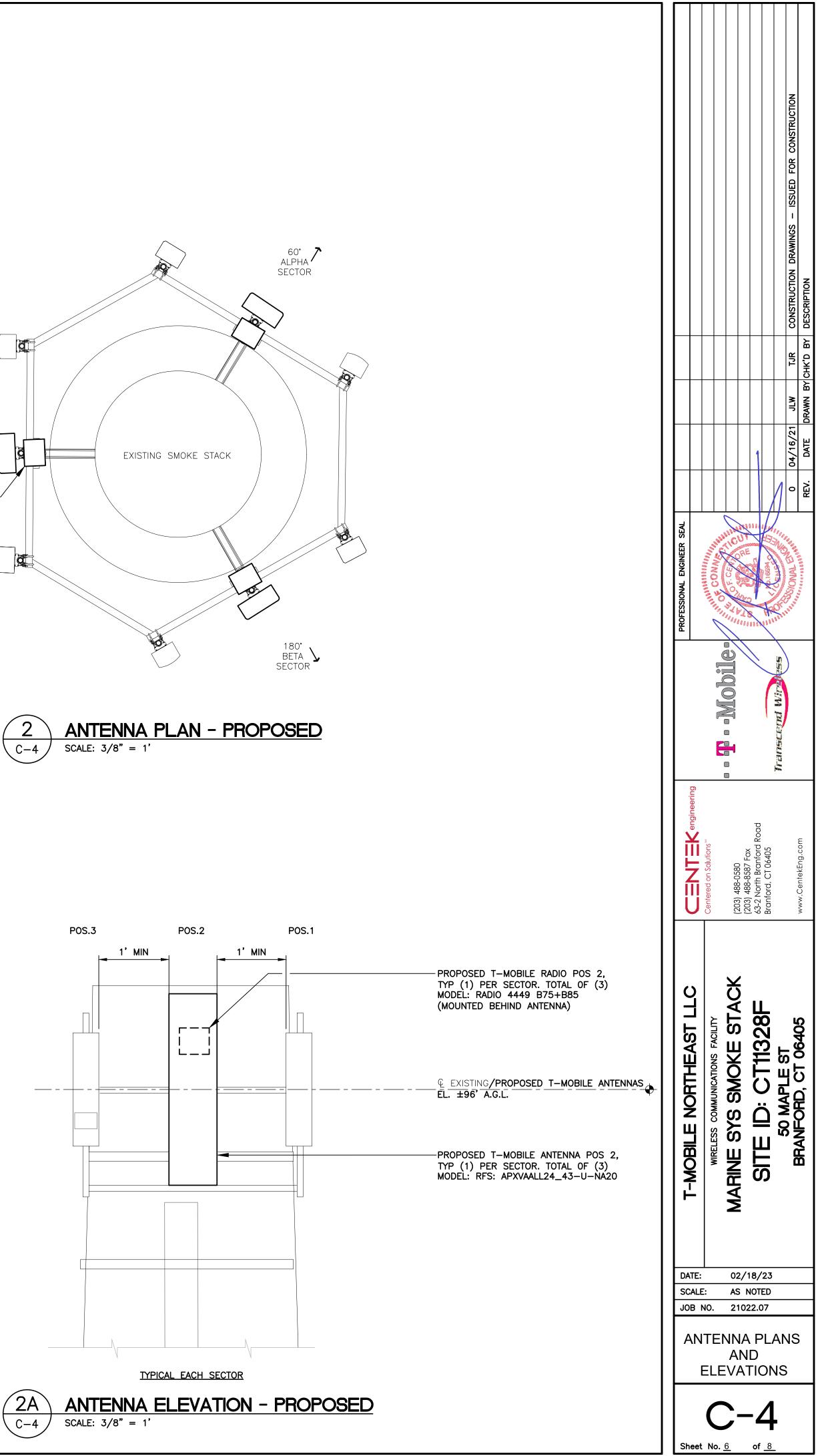

 $\widehat{\Box}$

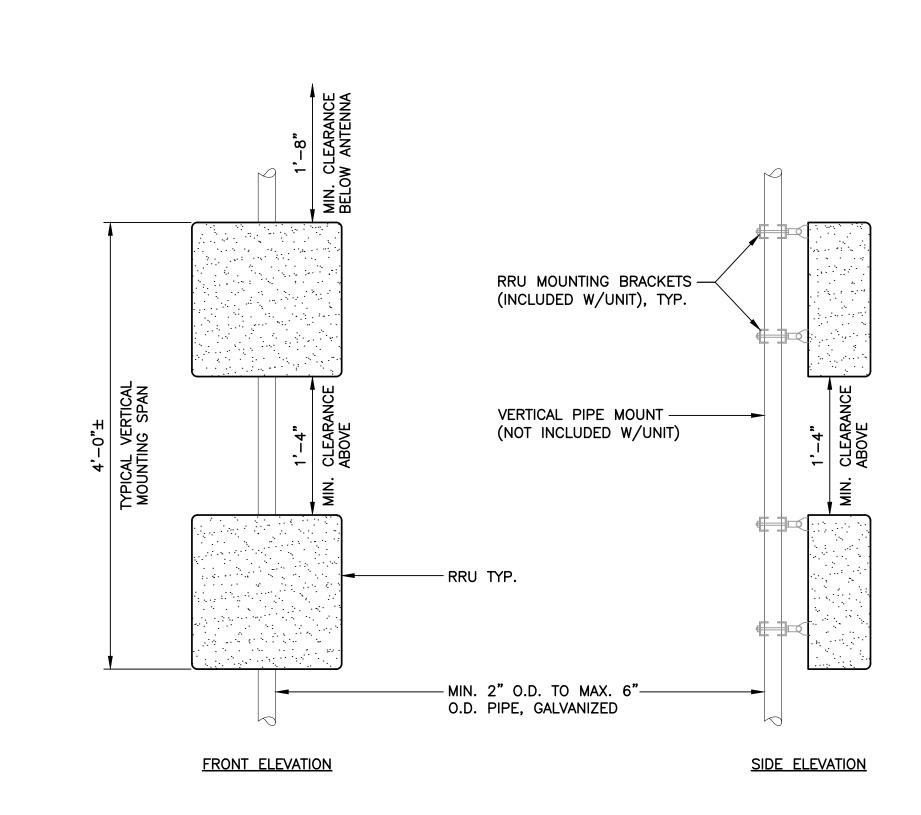




1 EQUIPMENT PLAN - EXISTING/PROPOSED C-3 SCALE: 1/2" = 1'




EXISTING T-MOBILE RRU POS 2, TYP (1) PER SECTOR. TOTAL OF (3) MODEL: RRUS11 B12 (TO BE REMOVED AND REPLACED)


- EXISTING T-MOBILE ANTENNA POS 1, TYP. (1) PER SECTOR. TOTAL OF (3) MODEL: ERICSSON-AIR21 KRC118023-1_B2P_B4A (<u>TO REMAIN</u>)

- <u>€ Existing T-mobile antennas</u> ↔ EL. ±96' a.g.L.

- EXISTING T-MOBILE ANTENNA POS 2, TYP. (1) PER SECTOR. TOTAL OF (3) MODEL: ANDREW-LNX 6515DS-A1M (TO BE REMOVED AND REPLACED)

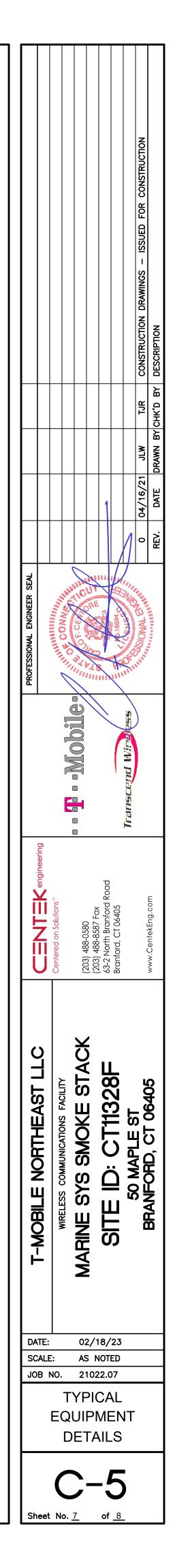
NOTES:

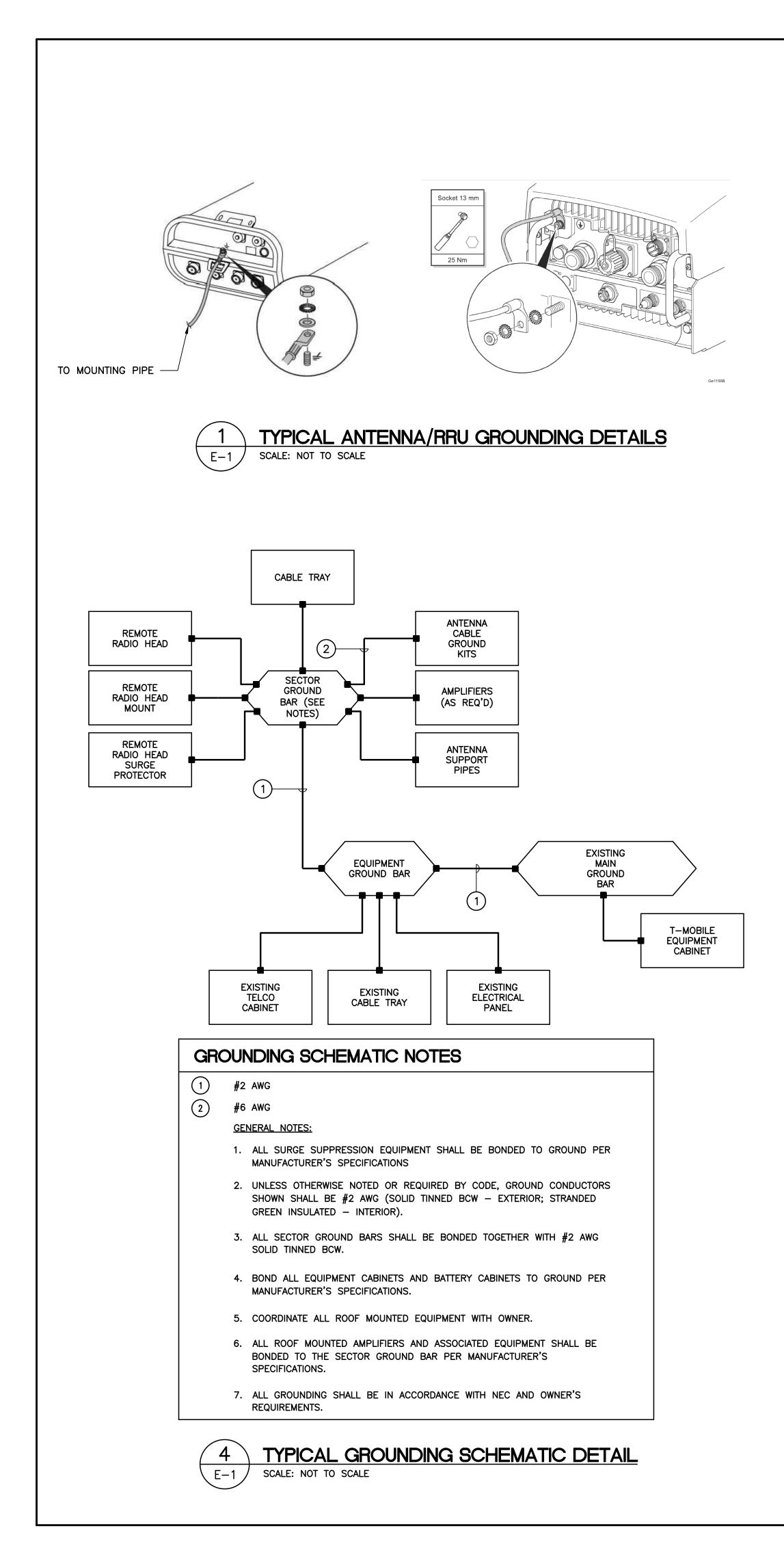
- 1. T-MOBILE SHALL SUPPLY RRU, AND RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL SUPPLY POLE/PIPE AND INSTALL ALL MOUNTING HARDWARE INCLUDING ERICSSON RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL INSTALLS RRU AND MAKES CABLE TERMINATIONS.
- 2. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.

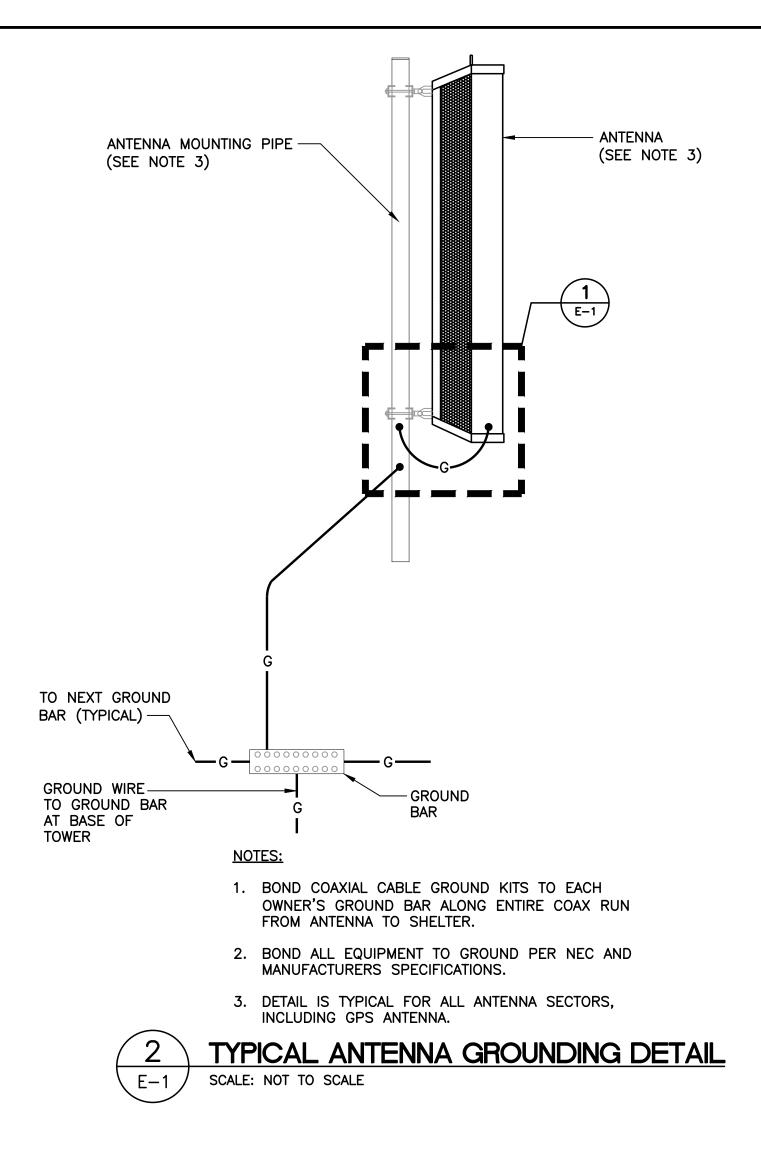
APXVAALL24_43-U-NA20

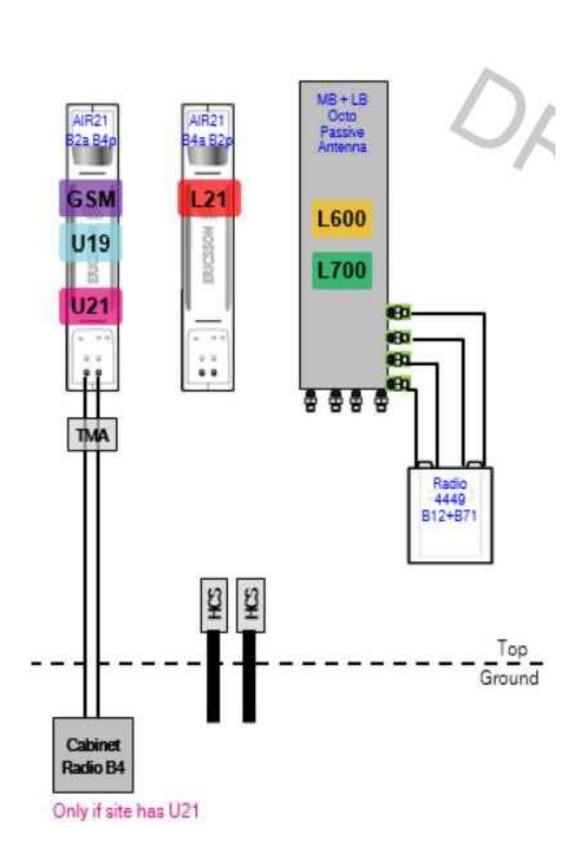
ALPHA	/BETA/GAMMA ANTENNA	
EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: RFS MODEL: APXVAALL24_43-U-NA20	95.9"L x 24.0"W x 8.5"D	±127 LBS.
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EC CONSTRUCTION MANAGER PRIOR TO OF		WITH T-MOBILE

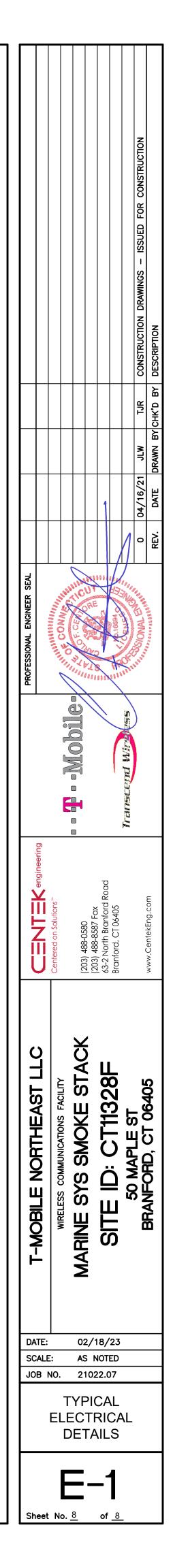
MAKE: MODEL: <u>NOTES:</u> 1. CC


<u>RADIO 4449 B71+B85</u>


RRU (REMOTE RADIO UNIT)						
EQUIPMENT	DIMENSIONS	WEIGHT	CLEARANCES			
ERICSSON : RADIO 4449 B71+B85	14.9"L x 13.2"W x 5.4"D	±74 LBS.	BEHIND ANT.: 8" MIN. BELOW ANT.: 20" MIN. BELOW RRU: 16" MIN.			


NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH T-MOBILE CONSTRUCTION MANAGER PRIOR TO ORDERING.


SCALE: NOT TO SCALE



 PLUMBING DIAGRAM (PROVIDED BY RFDS)

 SCALE: NOT TO SCALE

Structural Analysis Report

±100-ft Existing Masonry Smokestack

T-Mobile Site Ref: CT11328F

50 Maple Street Branford, CT 06405

Centek Project No. 21022.07

Date: March 3, 2021

Prepared for: T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- EQUIPMENT INSTALLATION SUMMARY
- DESIGN LOADING
- RESULTS
- CONCLUSION AND RECOMMENDATIONS

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 – CALCULATIONS

- WIND LOADING
- ANTENNA FRAME RISA 3D OUTPUT REPORT
- SMOKESTACK ANALYSIS

SECTION 4 – REFERENCES (NOT ATTACHED)

- RF DATA SHEET, DATED 3/1/2021
- STRUCTURAL ANLAYSIS REPORT AS PREPARED BY INTERNATIONAL CHMINEY CORP., DATED 08/08/2016.

<u>Introduction</u>

The purpose of this report is to summarize the results of the structural analysis of the equipment installation proposed by T-Mobile on the existing host masonry smokestack located in Branford, CT.

The host structure is a ± 100 -ft tall masonry smokestack. The smokestack geometry and structural information was obtained from a field investigation and inspection report prepared by International Chimney Corporation dated August 8, 2016.

<u>Equipment Installation Summary</u>

- <u>T-Mobile (Existing to Remain):</u> <u>Antennas:</u> Six (6) Ericsson AIR21 and three (3) TMAs mounted on custom sector mounts with RAD center elevations of ±96-ft AGL. <u>Cables</u>: Six (6) 1-5/8" Ø coax cables and three (3) 9x18 fiber cables inside cable tray on exterior of smokestack.
- <u>T-Mobile (Existing to Remove):</u> <u>Antennas:</u> Three (3) Andrew LNX-6515DS-A1M panel antennas and three (3) Ericsson RRUS-11 B12 remote radio units mounted on custom sector mounts with RAD center elevations of ±96-ft AGL.
 Cables: Six (6) 1-5/8" Ø coax cables inside cable tray on exterior of smokestack.
- <u>T-Mobile (Final):</u> <u>Antennas:</u> Three (3) RFS APXVAALL24_43-U-NA20 panel antennas and three (3) Ericsson 4449 remote radio units mounted on custom sector mounts with RAD center elevations of ±96-ft AGL. <u>Cables</u>: Three (3) 6x24 fiber cables inside cable tray on exterior of smokestack.

<u>Design Loading</u>

Loading was determined per the requirements of the 2015 International Building Code as amended by the 2018 CT Building Code and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed:	Vult = 130 mph	[Appendix N of the 2018 CT Building Code]
Exposure Category:	C	
Risk Category	II	[ASCE 7-10, Table 1.5-1]

<u>Results</u>

Smokestack:

Component	Stress Ratio (percentage of capacity)	Result
Compression	24.0%	PASS
Tension of Mortar	39.0%	PASS

Conclusion and Recommendations

This analysis shows that the subject smokestack <u>is adequate</u> to support the proposed T-Mobile equipment installation.

The analysis is based, in part on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
 meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
 loads or other relevant parameters are to be different from the minimum values
 recommended by the codes, the client shall specify the exact requirement. In the
 absence of information to the contrary, all work will be performed in accordance with the
 latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

	Subject:		Wind Load on Equipme	ent per ASCE 7-10		
Centered on Solutions [™] www.centekeng.com 63-2 North Branford Road P:(203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Branford, CT			
	Rev. 0: 3/3/21		Prepared by: T.J.L; Checked by: C.F.C Job No. 21022.07			
Design Wind Load on Other St	ructures:	(Based on IBC 2015, CSBC 20	018 and ASCE 7-10)			
W	ind Speed =	V := 130 mph	(User Input)	(CSBC Appendix-N)		
Ris	k Category =	BC := II	(User Input)	(IBC Table 1604.5)		
Exposure	Category =	Exp := C	(User Input)			
Stru	cture Type =	Structuretype := Round_Ch	nimney (User Input)			
Struct	ure Height =	Height := 100 ft	(User Input)			
Horizontal Dimension of Str	ucture =	Width := 9.5 ft	(User Input)			
Terrain Exposure	Constants:					
Nominal Height of the Atmospheric Boundary La	/er=	zg:= 1200 if Exp = B =	= 900	(Table 26.9-1)		
		900 if Exp = C				
		700 if Exp = D		(Table 26.9-1)		
3-Sec Gust Speed Power Law Exp	onent=	' '	= 9.5	(,		
		9.5 if Exp = C 11.5 if Exp = D				
		• • • • • • • • • • • • • • • • • • •	500	(Table 26.9-1)		
Integral Length Scale	Factor =	I:= 320 if Exp = B = 3 500 if Exp = C	500			
		650 if Exp = D				
Integral Length Scale Power Law Expo	nent=	E := $\begin{vmatrix} \frac{1}{3} & \text{if } Exp = B \end{vmatrix} = 0$ $\frac{1}{5} & \text{if } Exp = C$).2	(Table 26.9-1)		
		1 1 # Even O				
		ł				
		$\frac{1}{8}$ if Exp = D				
		c:= 0.3 if Exp = B =	- 0.2	(Table 26.9-1)		
Turbulence Intensit	y Factor =	0.2 if Exp = C				
		0.15 if Exp = D				
Exposure	e Constant =	Z _{min} := 30 if Exp = B	= 15	(Table 26.9-1)		
		Z _{min} := 30 if Exp = B = 15 if Exp = C 7 if Exp = D				
		7 if Exp = D				

Topographic Factor =	K _{zt} ≔ 1	(Eq. 26.8-2)
Wind Directionality Factor =	K _d = 0.95	(Table 26.6-1)
Peak Factor for Background Response =	g _Q := 3.4	(Sec 26.9.4)
Peak Factor for Wind Response =	g _V := 3.4	(Sec 26.9.4)

CENTE	K engineering	Subject:		Wind Load on Equipme	ent per ASCE 7-10
Centered on Solutions 63-2 North Branford Road Branford, CT 06405	P: (203) 488-0580 F: (203) 488-8587	Location:		Branford, CT	
braniora, C1 00405	r: (203) 400-0307	Rev. 0: 3/3/21		Prepared by: T.J.L; Che Job No. 21022.07	ecked by: C.F.C
	Equivalent Height of Stru	icture =	z := Z _{min} if Z _{min} > 0.6 0.6 Height otherwis	6∙Height = 60 se	(Sec 26.9.4)
	Intensity of Turb	ul ence =	$I_{z} := c \cdot \left(\frac{33}{z}\right)^{\left(\frac{1}{6}\right)} = 0.181$		(Eq. 26.9-7)
Integ	ral Length Scale of Turbule	nce =	$L_{Z} := I \cdot \left(\frac{z}{33}\right)^{E} = 563.505$		(Eq. 26.9-9)
	Background Respons	e Factor =	$Q := \sqrt{\frac{1}{1+0.63\left(\frac{\text{Width} + L_2}{\text{Width} + L_2}\right)}}$	$\frac{1}{1} \frac{1}{2} = 0.904$	(Eq. 26.9-8)
	Gust Respons	se Factor =	$G := 0.925 \cdot \left[\frac{\left(1 + 1.7 \cdot g_Q \cdot I\right)}{1 + 1.7 \cdot g_V} \right]$	$\left[\frac{z \cdot Q}{z}\right] = 0.879$	(Eq. 26.9-6)
	Velocity	Pressure =	$q_{z} \coloneqq 0.00256 \cdot K_{zt} \cdot K_{d} \cdot V^{2}$	= 41.1	(Eq. 29.3-1)
	Force C	coefficient=	$C_{f} = 0.82$		(Fig 29.5-1 - 29.5-3)
	Ultimate Wind F	Pressure =	$F := q_{Z} \cdot G \cdot C_{f} = 29.6$	psf	
	Height Abo v	e Grade =	Z := 85 ft $\left(\frac{2}{\alpha}\right)$	(User Input)	(T-1-1-00-0-4)
	Exposure Co	efficient =	$K_{z} := \begin{bmatrix} 2.01 \left(\frac{z}{zg}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \\ 2.01 \left(\frac{15}{zg}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \end{bmatrix}$ $K_{z} = 1.223$	$15 \le Z \le zg = 1.22$ Z < 15	(Table 29.3-1)
	Height Abo	e Grade =	$Z := 55$ ft $\left(\frac{2}{-}\right)$	(User Input)	
	Exposure Co	efficient =	$K_{z} := \begin{bmatrix} 2.01 \left(\frac{z}{zg}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \\ 2.01 \left(\frac{15}{zg}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \end{bmatrix}$	$15 \leq Z \leq zg = 1.12$ $Z < 15$	(Table 29.3-1)

Subject:			Wind Lo	ad on Equipmen	t per ASCE 7-10
Location:					
Rev. 0: 3/3/21					Ked by. C.F.C
Grade =	Z:= 35	ft		(User Input)	
officient =	$K_{Z} := 2.01 \left(\frac{Z}{z_{S}}\right)$	$\begin{pmatrix} 2\\ \alpha \end{pmatrix} $ if $\begin{pmatrix} 2\\ - \end{pmatrix}$	15 ≤ Z ≤ zg	= 1.01	(Table 29.3-1)
	$2.01\left(\frac{15}{20}\right)$	$\left(\frac{5}{3}\right)^{(\alpha)}$ if	Z < 15		
	K _z = 1.015				
Grade =	Z := 27	ft		(User Input)	
afficient =	$K_z := 2.01 \left(\frac{z}{z_s}\right)$	$\frac{2}{\alpha}$ if	15 ≤ Z ≤ zg	= 0.96	(Table 29.3-1)
	$2.01\left(\frac{12}{25}\right)$	$\left(\frac{2}{\alpha}\right)$ if	Z < 15		
	K _Z = 0.961				
Grade =	Z:= 20	ft		(User Input)	
officient =	$K_{z} := 2.01 \left(\frac{z}{z_{s}}\right)$	$\begin{pmatrix} 2\\ \alpha \end{pmatrix} $ if $\begin{pmatrix} 2\\ - \end{pmatrix}$	15 ≤ Z ≤ zg	= 0.9	(Table 29.3-1)
	$2.01 \left(\frac{11}{z_{c}}\right)$ $K_{z} = 0.902$	$\left(\frac{5}{g}\right)^{(\alpha)}$ if	Z < 15		
	Location: Rev. 0: 3/3/21 Grade = fficient = fficient = fficient =	Location: Rev. 0: 3/3/21 Grade = Z := 35 fficient = K _Z := $2.01 \left(\frac{Z}{Z_{1}}\right)^{2}$ $2.01 \left(\frac{11}{Z_{2}}\right)^{2}$ $K_{Z} = 1.015$ Grade = Z := 27 fficient = K _Z := $2.01 \left(\frac{Z}{Z_{1}}\right)^{2}$ $K_{Z} = 0.961$ Grade = Z := 20 fficient = K _Z := $2.01 \left(\frac{11}{Z_{2}}\right)^{2}$	Location: Rev. 0: 3/3/21 Grade = $Z := 35$ ft fficient = $K_Z := \begin{bmatrix} 2.01 \left(\frac{Z}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \\ 2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \end{bmatrix}$ $K_Z = 1.015$ Grade = $Z := 27$ ft fficient = $K_Z := \begin{bmatrix} 2.01 \left(\frac{Z}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \end{bmatrix}$ $K_Z = 0.961$ Grade = $Z := 20$ ft $K_Z = 0.961$ Grade = $Z := 20$ ft $K_Z := \begin{bmatrix} 2.01 \left(\frac{Z}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \end{bmatrix}$ $K_Z = 0.961$ Grade = $Z := 20$ ft $K_Z := \begin{bmatrix} 2.01 \left(\frac{Z}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \end{bmatrix}$ $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if} \end{bmatrix}$	Location: Branford Rev. 0: 3/3/21 Prepared Job No. Grade = Z := 35 ft fficient = $K_z := \begin{bmatrix} 2.01\left(\frac{z}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 2 < 15 \end{bmatrix}$ $K_z = 1.015$ Grade = Z := 27 ft fficient = $K_z := \begin{bmatrix} 2.01\left(\frac{z}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 2 < 15 \end{bmatrix}$ $K_z = 0.961$ Grade = Z := 20 ft fficient = $K_z := \begin{bmatrix} 2.01\left(\frac{z}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le 2g\\ 2.01\left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 2 < 15\\ \end{bmatrix}$	Location:Branford, CTRev. 0: 3/3/21Prepared by: T.J.L; Chec Job No. 21022.07Grade =Z:= 35ft(User Input)afficient = $K_z :=$ $2.01 \left(\frac{z}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $15 \le Z \le zg$ = 1.01 $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $15 \le Z \le zg$ = 0.961Grade = $Z := 20$ ft $K_z :=$ $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ $K_z :=$ $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $15 \le Z \le zg$ = 0.961Grade = $Z := 20$ ft $K_z :=$ $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $15 \le Z \le zg$ = 0.9 $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$ if $2.01 \left(\frac{15}{2g}\right)^{\left(\frac{2}{\alpha}\right)}$

Job :	CT11328F	Project No.	21022.07	Sheet	1 of 2
Address:	50 Maple Street Branford, CT 06405	Computed by	TJL	Date	3/3/21
Description:	Smokestack Evaluation	Checked by	LAA	Date	

	Wind Force		Height Above	
	(lb)	Weight (lb)	Base (ft)	Height (in)
T-Mobile	2500	1500	96	1152
Sprint	1883	936	88	1056

					Area At Base	Tot. Vol	Unit Weight			
Section	Top Dia (in)	Bot Dia (in)	Wall Thk (in)	Sect Height (in)	(in^2)	(ft^3)	(pcf)	Weight of Section (lb)	Total Weight (lb)	Axial Stress fa
1	114	135.67	8	356.4	3207.0704	604.97204	127	76831.4485	79267.4485	24.7
2	135.67	161.4	8.5	360	4080.901	778.2026	125	97275.3249	176542.7734	43.3
3	161.4	169.92	9.5	120	4785.3286	323.30268	125	40412.83516	216955.6086	45.3
4	169.92	175.68	10.5	80	5445.9846	247.58964	125	30948.70445	247904.313	45.5
5	175.68	177.96	13	76	6733.6672	293.93989	125	36742.48571	284646.7987	42.3

Job :	CT11328F	Project No.	21022.07	Sheet 2 of 2
Address:	50 Maple Street Branford, CT 06405	Computed by	TJL	Date 3/3/21
Description:	Smokestack Evaluation	Checked by	LAA	Date

Ultimate Wind	ASD Wind					Section Modulus @	Bending Stress fb	Allowable	Allowable Fb						
Pressure (psf)	Pressure (psf)	KZ	Wind Area (sf)	Wind Force (lb)	Moment @ Base	Base	(psi)	Fa (psi)	(psi)	fa/Fa+fb/Fb		ft	Ft	ft/Ft	
30	18	1.23	309.0	6840.5	3299840.856	96703.96897	34.1	375	500	0.13	OK	9.4	40	0.24	OK
30	18	1.12	371.3	7486.2	8687817.964	148233.9248	58.6	375	500	0.23	OK	15.3	40	0.38	OK
30	18	1.02	138.1	2534.6	11085056.05	181821.2694	61.0	375	500	0.24	OK	15.6	40	0.39	OK
30	18	0.096	96.0	165.9	12791234.22	212305.0695	60.2	375	500	0.24	OK	14.7	40	0.37	OK
0	0	0	93.3	0.0	14418407.22	259009.3359	55.7	375	500	0.22	OK	13.4	40	0.33	OK

Centered on Solutions[™]

Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site #: CT11328F

50 Maple Street Branford, CT

Centek Project No. 21022.07

Date: March 3, 2021

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

CENTEK Engineering, Inc. Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CT11328F Branford, CT March 3, 2021

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 – CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 – REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

RF DATA SHEET, DATED 3/1/2021

March 3, 2021

Mr. Dan Reid Transcend Wireless 10 Industrial Ave Mahwah, NJ 07430

Structural Letter ~ Antenna Mount Re: T-Mobile – Site Ref: CT11328F 50 Maple Street Branford, CT 06405

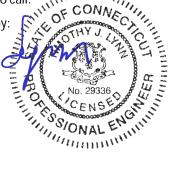
Centek Project No. 21022.07

Dear Mr. Reid,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting three (3) sector mounts with stiff arms to support the proposed/existing equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) and ASCE 7-10.

The loads considered in this analysis consist of the following:

T-Mobile:


Sector Frames: Three (3) RFS APXVAALL24_43 panel antennas, six (6) Ericsson AIR21 panel antennas, three (3) TMAs and three (3) Ericsson 4449 remote radio units mounted on three (3) sector frames with a RAD center elevation of 96-ft +/- AGL.

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering an ultimate design wind speed of 130 mph for Branford as required in Appendix N of the 2018 Connecticut State Building Code.

Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

CENTEK Engineering, Inc.

Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CT11328F Branford, CT March 3, 2021

Section 2 - Calculations

	Subject:			Wind Load	on Equipme	nt per ASCE 7-10			
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Branford, CT					
	Rev. 0: 3/3/21	Prepared by: T.J.L; Checked by: C.F.C. Job No. 21022.07							
Design Wind Load on Other Str.	uctures:	(Based on IBC 20 ⁻	15, CSBC 201	18 and ASCE 7-1	0)				
Wi	nd Speed =	V := 130	mph		(User Input)	(CSBC Appendix-N)			
Risk	Category =	BC := II			(User Input)	(IBC Table 1604.5)			
Exposure	Category=	Exp := C			(User Input)				
Height Abo v	e Grade =	Z:= 96	ft		(User Input)				
Struc	ture Type =	Structuretype :=	Square_Chi	imney	(User Input)				
Structu	re Height=	Height := 8	ft		(User Input)				
Horizontal Dimension of Stru	cture =	Width := 2	ft		(User Input)				
Terrain Exposure C	Constants:								
Nominal Height of the Atmospheric Boundary Laye		zg:= 1200 if 900 if 1 700 if 1		900		(Table 26.9-1)			
3-Sec Gust Speed Power Law Expo	pnent=	α:= 7 if Exp 9.5 if E 11.5 if E	= B = xp = C	9.5		(Table 26.9-1)			
Integral Length Scale I	Factor =	l:= 320 if Ex 500 if Ex 650 if Ex	$\varphi = B = 50$ $\varphi = C$	00		(Table 26.9-1)			
Integral Length Scale Power Law Expon	ent=	$E := \begin{bmatrix} \frac{1}{3} & \text{if } Exp \\ \frac{1}{5} & \text{if } Exp \end{bmatrix}$	p = B = 0.: p = C	2		(Table 26.9-1)			
		$\frac{1}{8}$ if Ex	p = D						
Turbulence Intensity	Factor =	c:= 0.3 if Ex 0.2 if Ex 0.15 if E	xp = B = 0 xp = C Exp = D	0.2		(Table 26.9-1)			
Exposure	Constant=	Z _{min} := 30 if 15 if 7 if	Exp = B = Exp = C Exp = D	15		(Table 26.9-1)			
Exposure Co	efficient =	$K_{z} := 2.01 \left(\frac{z}{z_{0}} \right)$ $2.01 \left(\frac{10}{z_{0}} \right)$	$\frac{2}{2} \begin{pmatrix} \frac{2}{\alpha} \\ \frac{2}{\alpha} \end{pmatrix}$ if 1 $\frac{2}{2} \begin{pmatrix} \frac{2}{\alpha} \\ \frac{2}{\alpha} \end{pmatrix}$ if 2	5 ≤ Z ≤ zg = Z < 15	1.25	(Table 29.3-1)			

	Subject:		Wind Load on Equip	nent per ASCE 7-10
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Branford, CT	
	Rev. 0: 3/3/21		Prepared by: T.J.L; C Job No. 21022.07	hecked by: C.F.C.
Topograp	hic Factor =	K _{zt} := 1		(Eq. 26.8-2)
Wind Directional	lity Factor =	K _d = 0.9		(Table 26.6-1)
Velocity	/Pressure =	$q_{z} \coloneqq 0.00256 \cdot K_{z} \cdot K_{zt} \cdot K_{d} \cdot V$	$r^{2} = 48.86$	(Eq. 29.3-1)
Peak Factor for Background Re	esponse =	g _Q := 3.4		(Sec 26.9.4)
Peak Factor for Wind R	esponse =	g _V := 3.4		(Sec 26.9.4)
Equivalent Height of St	ructure =	z := Z _{min} if Z _{min} > 0.6 0.6 Height otherwise	i-Height = 15 e	(Sec 26.9.4)
Intensity of Tur	bulence =	$I_{z} := c \cdot \left(\frac{33}{z}\right)^{\left(\frac{1}{6}\right)} = 0.228$		(Eq. 26.9-7)
Integral Length Scale of Turbu	lence =	$L_{Z} := I \cdot \left(\frac{z}{33}\right)^{E} = 427.057$		(Eq. 26.9-9)
Background Respon	se Factor =	$Q := \sqrt{\frac{1}{1 + 0.63 \left(\frac{\text{Width} + \text{L}_{Z}}{\text{L}_{Z}}\right)}}$	$\frac{1}{1} = 0.972$	(Eq. 26.9-8)
GustRespo	nse Factor =	$G := 0.925 \cdot \left[\frac{\left(1 + 1.7 \cdot g_{\mathbf{Q}} \cdot I_z\right)}{1 + 1.7 \cdot g_{\mathbf{V}} \cdot I_z} \right]$	$\left[\frac{z \cdot Q}{z}\right] = 0.91$	(Eq. 26.9-6)
Force	Coefficient=	C _f = 1.35		(Fig 29.5-1 - 29.5-3)
	Wind Force =	$F \coloneqq q_{Z} \cdot G \cdot C_{f} = 60$	psf	

Subject:

Location:

Rev. 0: 3/3/21

Wind Load on Equipment per ASCE 7-10

Branford, CT

Prepared by: T.J.L; Checked by: C.F.C. Job No. 21022.07

Development of Wind & Ice Load on Antennas

Antenna Data:			
Antenna Model =	Ericsson AIR21		
Antenna Shape =	Flat		(User Input)
Anterna Height=	L _{ant} := 56	in	(User Input)
Antenna Width =	W _{ant} := 12.1	in	(User Input)
Antenna Thickness =	T _{ant} := 7.9	in	(User Input)
Antenna Weight =	WT _{ant} := 90	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)

Wind Load (Front)

Surface Area for One Antenna =	$SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 4.7$	sf
--------------------------------	---	----

Antenna Projected Surface Area =

Total Anten na Wind Force =

Wind Load (Side)

Surface Area for One Antenna =

Antenna Projected Surface Area =

Total Anten na Wind Force =

Gravity Load (without ice)

Weight of All Antennas=

$A_{ant} := SA_{ant} \cdot N_{ant} = A_{ant} \cdot N_{ant} = A_{ant} \cdot N_{ant} = A_{ant} \cdot N_{ant} = A_{ant} \cdot N_{ant} \cdot N_{ant} = A_{ant} \cdot N_{ant} \cdot N_$	4.7	sf
$F_{ant} := F \cdot A_{ant} = 282$		lbs

 $SA_{ant} := \frac{L_{ant} T_{ant}}{144} = 3.1$ sf

 $A_{ant} = SA_{ant} N_{ant} = 3.1$ sf

F_{ant} := F·A_{ant} = 184 lbs

lbs

WT_{ant}·N_{ant} = 90

Subject:

Location:

Rev. 0: 3/3/21

Wind Load on Equipment per ASCE 7-10

Branford, CT

Prepared by: T.J.L; Checked by: C.F.C. Job No. 21022.07

lbs

lbs

Development of Wind & Ice Load on Antennas

Antenna Data:			
Antenna Model =	RFSAPXVAALL24-43		
Antenna Shape =	Flat		(User Input)
Anterna Height =	L _{ant} := 95.9	in	(User Input)
Antenna Width =	W _{ant} := 24	in	(User Input)
Antenna Thickness =	T _{ant} := 8.5	in	(User Input)
Antenna Weight =	WT _{ant} := 150	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)

Wind Load (Front)

Surface Area for One Antenna =	$SA_{ant} \coloneqq \frac{L_{ant} W_{ant}}{144} = 16$	sf
Antenna Projected Surface Area =	$A_{ant} := SA_{ant} \cdot N_{ant} = 16$	sf

 $F_{ant} := F \cdot A_{ant} = 959$

TotalAnten na Wind Force =

Wind Load (Side)

Surface Area for One Antenna =

Antenna Projected Surface Area =

TotalAnten na Wind Force =

Gravity Load (without ice)

Weight of All Antennas=

$SA_{ant} := \frac{L_{ant} \cdot T_{ant}}{144} = 5.7$ sf

 $A_{ant} := SA_{ant} \cdot N_{ant} = 5.7$ sf

 $F_{ant} := F \cdot A_{ant} = 340$ lbs

 $WT_{ant} \cdot N_{ant} = 150$

CENTER	<pre>< engineering</pre>
Centered on Solutions*	www.centekeng.com
63-2 North Branford Road Branford, CT 06405	P: (203) 488-0580 F: (203) 488-8587

Location:

Subject:

Rev. 0: 3/3/21

Wind Load on Equipment per ASCE 7-10

Branford, CT

Prepared by: T.J.L; Checked by: C.F.C. Job No. 21022.07

lbs

lbs

Development of Wind & Ice Load on RRHs

RRUS Data:			
RRUS Model =	Ericsson 4449		
RRUS Shape =	Flat		(User Input)
RRUS Height =	L _{RRH} ≔ 14.9	in	(User Input)
RRUS Width=	W _{RRH} ≔ 13.2	in	(User Input)
RRUS Thickness =	T _{RRH} ≔ 10.4	in	(User Input)
RRUS Weight=	WT _{RRH} := 74	lbs	(User Input)
Number of RRUS's =	N _{RRH} := 1		(User Input)

Wind Load (Front)

RRH Projected Surface Area =

Total RRH Wind Force =

Wind Load (Side)

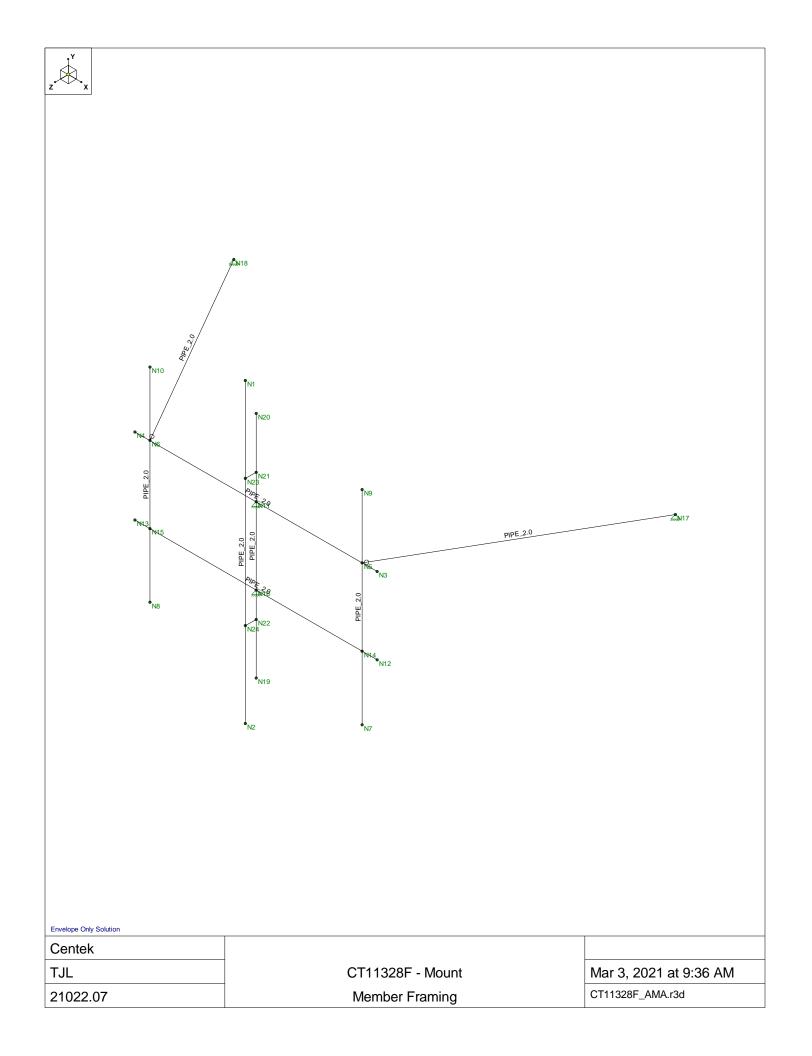
Surface Area for One R RH =

RRH Projected Surface Area =

Total RRH Wind Force =

Gravity Load (without ice)

Weight of All RRHs =


 $SA_{RRH} := \frac{L_{RRH} W_{RRH}}{144} = 1.4$ sf $A_{RRH} := SA_{RRH} N_{RRH} = 1.4$ sf

F_{RRH} := F·A_{RRH} = 82

$SA_{RRH} := \frac{L_{RRH} T_{RRH}}{144} = 1.1$	sf
Appu := SAppu Nopu = 1.1	sf

 $A_{RRH} := SA_{RRH} \cdot N_{RRH} = 1.1$ sf $F_{RRH} := F \cdot A_{RRH} = 65$ lbs

WT_{RRH}·N_{RRH} = 74

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-12: ASD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-14
Masonry Code	ACI 530-13: ASD
Aluminum Code	AA ADM1-15: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul	.A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Pipe 2.0	PIPE_2.0	Beam	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
2	Antenna Mast	PIPE_2.0	Column	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
3	Horizontal	PIPE_2.0	Beam	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[.Lcomp bot[L-t	torq	Куу	Kzz	Cb	Functi
1	M1	Antenna Mast	11.667			Lbyy	Se	egm				Lateral
2	M2	Horizontal	9.5			Lbyy		6				Lateral
3	M3	Antenna Mast	8			Lbyy						Lateral
4	M4	Antenna Mast	8			Lbyy						Lateral
5	M5	Horizontal	9.5			Lbyy		6				Lateral
6	M6	Pipe 2.0	8.998			Lbyy						Lateral
7	M7	Pipe 2.0	8.998			Lbyy						Lateral
8	M8	Antenna Mast	9			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Material	Design R
1	M1	N1	N2			Antenna Mast	Column	Pipe	A53 Grade B	Typical
2	M2	N4	N3			Horizontal	Beam	Pipe	A53 Grade B	Typical
3	M3	N8	N10			Antenna Mast	Column	Pipe	A53 Grade B	Typical
4	M4	N7	N9			Antenna Mast	Column	Pipe	A53 Grade B	Typical
5	M5	N13	N12			Horizontal	Beam	Pipe	A53 Grade B	Typical
6	M6	N6	N18			Pipe 2.0	Beam	Pipe	A53 Grade B	Typical
7	M7	N5	N17			Pipe 2.0	Beam	Pipe	A53 Grade B	Typical
8	M8	N19	N20			Antenna Mast	Column	Pipe	A53 Grade B	Typical
9	M9	N21	N23			RIGID	None	None	RIGID	Typical
10	M10	N22	N24			RIGID	None	None	RIGID	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
1	N1	0	5.833333	3.416667	0	
2	N2	0	-5.833333	3.416667	0	
3	N3	4.75	1.5	3	0	
4	N4	-4.75	1.5	3	0	
5	N5	4.166667	1.5	3	0	
6	N6	-4.166667	1.5	3	0	
7	N7	4.166667	-4	3	0	
8	N8	-4.166667	-4	3	0	
9	N9	4.166667	4	3	0	
10	N10	-4.166667	4	3	0	
11	N11	0	1.5	3	0	
12	N12	4.75	-1.5	3	0	
13	N13	-4.75	-1.5	3	0	
14	N14	4.166667	-1.5	3	0	
15	N15	-4.166667	-1.5	3	0	
16	N16	0	-1.5	3	0	

Page 4

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
17	N17	8.666667	1.5	-4.791667	0	
18	N18	-8.666667	1.5	-4.791667	0	
19	N19	0.	-4.5	3	0	
20	N20	0.	4.5	3	0	
21	N21	0	2.5	3	0	
22	N22	0	-2.5	3	0	
23	N23	0	2.5	3.416667	0	
24	N24	0	-2.5	3.416667	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N11	Reaction	Reaction	Reaction			
2	N16	Reaction	Reaction	Reaction			
3	N18	Reaction	Reaction	Reaction			
4	N17	Reaction	Reaction	Reaction			
5	N21						
6	N22						
7	N23						
8	N24						

Member Point Loads (BLC 2 : Weight of Equipment)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Y	045	7.5
2	M4	Y	045	3.5
3	M3	Y	045	7.5
4	M3	Y	045	3.5
5	M3	Y	075	1
6	M1	Y	075	.5
7	M1	Y	075	7.5
8	M1	Y	074	5

Member Point Loads (BLC 3 : Wind Load X)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Х	.092	7.5
2	M4	Х	.092	3.5
3	M3	Х	.092	7.5
4	M3	Х	.092	3.5
5	M3	Х	.011	1
6	M1	Х	.17	.5
7	M1	Х	.17	7.5
8	M1	Х	.065	4

Member Point Loads (BLC 4 : Wind Load Z)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Z	.141	7.5
2	M4	Z	.141	3.5
3	M3	Z	.141	7.5
4	M3	Z	.141	3.5

Member Point Loads (BLC 4 : Wind Load Z) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
5	M3	Z	.017	1
6	M1	Z	.48	.5
7	M1	Z	.48	7.5
8	M1	Z	.082	4

Member Distributed Loads (BLC 3 : Wind Load X)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
1	M6	Х	.007	.007	0	0
2	M7	Х	.007	.007	0	0
3	M1	Х	.007	.007	0	0
4	M3	Х	.007	.007	0	0
5	M4	Х	.007	.007	0	0
6	M8	Х	.007	.007	0	0

Member Distributed Loads (BLC 4 : Wind Load Z)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
1	M2	Z	.007	.007	0	0
2	M5	Z	.007	.007	0	0
3	M3	Z	.007	.007	0	3.308
4	M4	Z	.007	.007	0	3.308
5	M1	Z	.007	.007	8	11.667

Basic Load Cases

	BLC Description	Category	X Gra	Y Gra	Z Gra	Joint	Point	Distrib.	Area(Surfa
1	Self Weight	DL		-1						
2	Weight of Equipment	DL					8			
3	Wind Load X	WLX					8	6		
4	Wind Load Z	WLZ					8	5		

Load Combinations

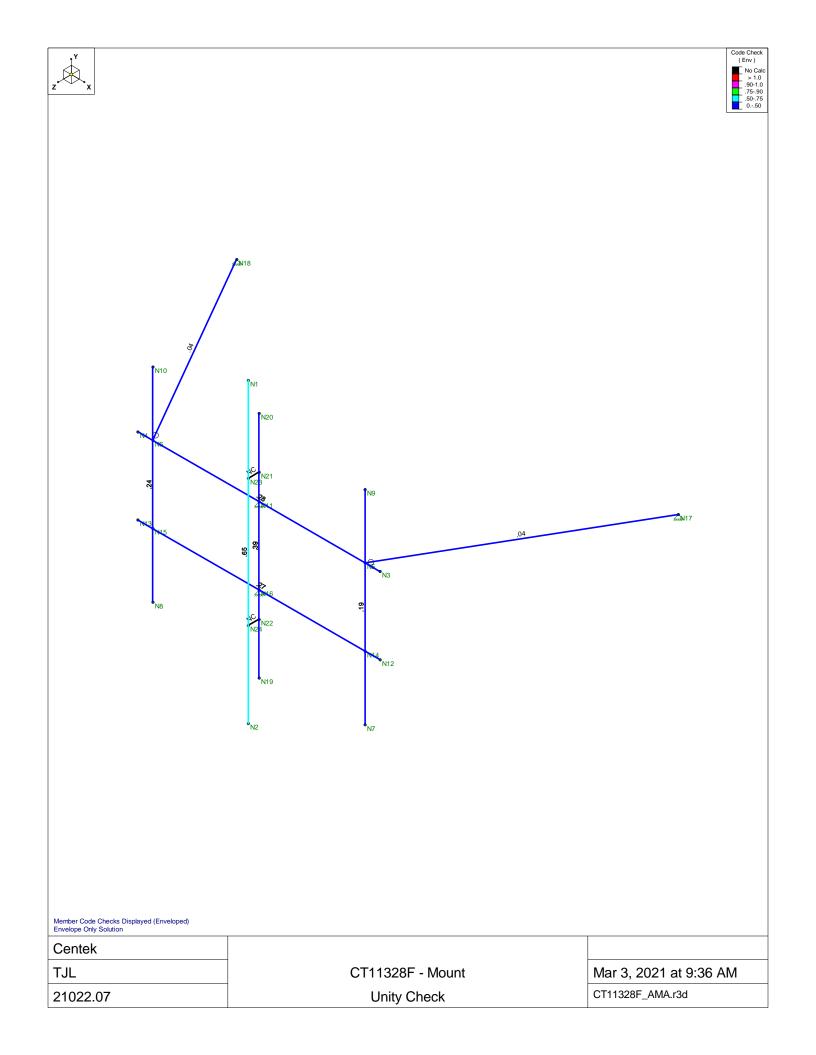
	Description	Solve	PS.	B	Fa	BLC	Fact	.BLC	Fa	BLC	Fa	BLC	Fa	В	Fa								
1	IBC 16-8	Yes	Υ	DL	1																		
2	IBC 16-9	Yes	Υ	DL	1	LL	1	LLS	1														
3	IBC 16-12 (a) (a)	Yes	Υ	DL	1	WLX	.6																
4	IBC 16-12 (a) (b)	Yes	Υ	DL	1	WLZ	.6																
5	IBC 16-12 (a) (c)	Yes	Y	DL	1	WLX	6																
6	IBC 16-12 (a) (d)	Yes	Y	DL	1	WLZ	6																
7	IBC 16-13 (a) (a)	Yes	Y	DL	1	WLX	.45	LL	.75	LLS	.75												
8	IBC 16-13 (a) (b)	Yes	Y	DL	1	WLZ	.45	LL	.75	LLS	.75												
9	IBC 16-13 (a) (c)	Yes	Y	DL	1	WLX	45	LL	.75	LLS	.75												
10	IBC 16-13 (a) (d)	Yes	Y	DL	1	WLZ	45	LL	.75	LLS	.75												
11	IBC 16-15 (a)	Yes	Y	DL	.6	WLX	.6																
12	IBC 16-15 (b)	Yes	Y	DL	.6	WLZ	.6																
13	IBC 16-15 (c)	Yes	Y	DL	.6	WLX	6																
14	IBC 16-15 (d)	Yes	Y	DL	.6	WLZ	6																

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N11	max	.689	5	1.614	6	.632	14	0	14	0	14	0	14
2		min	523	11	-1.038	12	689	4	0	1	0	1	0	1
3	N16	max	002	13	1.601	4	.084	6	0	14	0	14	0	14
4		min	164	3	-1.049	14	027	12	0	1	0	1	0	1
5	N18	max	.117	14	.016	4	.202	14	0	14	0	14	0	14
6		min	117	4	.009	14	203	4	0	1	0	1	0	1
7	N17	max	.111	4	.016	4	.192	14	0	14	0	14	0	14
8		min	111	14	.009	14	193	4	0	1	0	1	0	1
9	Totals:	max	.7	13	.735	10	1.097	14						
10		min	7	3	.441	11	-1.097	4						

Envelope Joint Displacements

			onacon											
	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]		Y Rotatio	-		
1	N1	max	.286	11	.018	14	.553	4	1.586e-02	4	1.348e-03		7.868e-03	-
2		min	307	5	021	4	522	14	-1.521e-02		-1.378e-03	5	-7.491e-03	
3	N2	max	.052	3	.015	14	.121	14	3.212e-03	4	9.449e-04	3	1.033e-03	
4		min	032	13	018	4	151	4	-2.596e-03	14	-9.045e-04	13	-6.733e-04	
5	N3	max	0	3	016	13	.002	4	1.31e-03	4	2.148e-04	5	1.694e-05	13
6		min	0	13	093	3	002	14	-1.194e-03	14	-1.942e-04	11	-1.084e-03	3
7	N4	max	0	11	051	11	.003	4	7.106e-04	4	1.982e-04	13	1.52e-03	5
8		min	0	5	15	5	003	14	-6.168e-04	14	-2.081e-04	3	2.342e-04	11
9	N5	max	0	3	016	13	.001	4	1.31e-03	4	2.148e-04	5	1.762e-05	13
10		min	0	13	086	3	001	14	-1.194e-03	14	-1.942e-04	11	-1.083e-03	3
11	N6	max	0	11	049	11	.002	4	7.106e-04	4	1.982e-04	13	1.518e-03	5
12		min	0	5	139	5	001	14	-6.168e-04	14	-2.081e-04	3	2.335e-04	11
13	N7	max	007	13	016	13	.035	12	9.315e-04	6	4.006e-04	6	-2.405e-04	13
14		min	026	3	085	3	042	6	-8.15e-04	12	-3.242e-04	12	-8.234e-04	3
15	N8	max	.035	5	049	11	.087	12	1.778e-03	6	7.529e-04	12	1.123e-03	5
16		min	.018	11	139	5	092	6	-1.684e-03	12	-8.197e-04	6	6.239e-04	11
17	N9	max	.06	3	016	13	.078	4	2.988e-03	4	2.148e-04	5	1.22e-03	13
18		min	027	13	086	3	074	14	-2.871e-03	14	-1.942e-04	11	-2.287e-03	3
19	N10	max	.02	11	049	11	.06	4	2.388e-03	4	1.982e-04	13	2.723e-03	5
20		min	073	5	139	5	057	14	-2.293e-03	14	-2.081e-04	3	-9.682e-04	11
21	N11	max	0	14	0	14	0	14	2.563e-03	4	5.155e-04	11	1.6e-03	5
22		min	0	1	0	1	0	1	-2.351e-03	14	-5.234e-04	5	-1.074e-03	11
23	N12	max	0	11	017	13	.014	12	8.234e-04	6	4.02e-04	6	-1.33e-04	13
24		min	0	5	092	3	018	6	-7.068e-04	12	-3.255e-04	12	-9.33e-04	3
25	N13	max	0	3	052	11	.043	12	1.561e-03	6	7.542e-04	12	1.308e-03	5
26		min	0	13	148	5	046	6	-1.465e-03	12	-8.211e-04	6	4.442e-04	11
27	N14	max	0	11	016	13	.012	12	8.234e-04	6	4.006e-04	6	-1.323e-04	13
28		min	0	5	085	3	015	6	-7.068e-04	12	-3.242e-04	12	-9.319e-04	3
29	N15	max	0	3	049	11	.037	12	1.561e-03	6	7.529e-04	12	1.307e-03	5
30		min	0	13	139	5	04	6	-1.465e-03	12	-8.197e-04	6	4.435e-04	11
31	N16	max	0	14	0	14	0	14	2.097e-04	4	5.154e-04	3	5.094e-04	3
32		min	0	1	0	1	0	1	1.662e-05	14	-4.967e-04	13	1.676e-05	13
33	N17	max	0	14	0	14	0	14	2.137e-03	3	1.098e-03	3	8.231e-04	6
34		min	0	1	0	1	0	1	6.162e-04	13	-1.095e-03	13	-3.661e-04	12
35	N18	max	0	14	0	14	0	14	2.752e-03	5	1.094e-03	11	1.888e-04	13
36	-	min	0	1	0	1	0	1	9.894e-04	11	-1.099e-03	5	-5.343e-04	



Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotatio	LC
37	N19	max	.028	3	Ó	14	.083	14	3.47e-03	4	9.449e-04	3	8.325e-04	3
38		min	014	13	0	4	104	4	-2.853e-03	14	-9.045e-04	13	-4.722e-04	13
39	N20	max	.105	11	0	12	.152	4	4.371e-03	4	1.348e-03	11	3.589e-03	5
40		min	119	5	0	6	132	14	-3.741e-03	14	-1.378e-03	5	-3.223e-03	11
41	N21	max	.028	11	0	12	.047	4	4.371e-03	4	1.348e-03	11	3.533e-03	5
42		min	034	5	0	6	042	14	-3.74e-03	14	-1.378e-03	5	-3.167e-03	11
43	N22	max	.009	3	0	14	.015	14	3.471e-03	4	9.449e-04	3	7.772e-04	3
44		min	003	13	0	4	02	4	-2.853e-03	14	-9.045e-04	13	-4.168e-04	13
45	N23	max	.035	11	.018	14	.047	4	4.371e-03	4	1.348e-03	11	3.533e-03	5
46		min	04	5	021	4	042	14	-3.74e-03	14	-1.378e-03	5	-3.167e-03	11
47	N24	max	.014	3	.015	14	.015	14	3.471e-03	4	9.449e-04	3	7.772e-04	3
48		min	008	13	018	4	02	4	-2.853e-03	14	-9.045e-04	13	-4.168e-04	13

Envelope AISC 14th(360-10): ASD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	SheLo	Dir .	.Pnc/	Pnt/o	Mny	Mnz	Cb	Eqn
1	M1	PIPE_2.0	.655	3	4	.045.608			21.377				
2	M8	PIPE_2.0	.388	6	14	.111 6	5	8.08	21.377	1.245	1.245	3.3	.H1
3	M2	PIPE_2.0	.281	4.75	3	.0584.75	4	7.252	21.377	1.245	1.245	1.8	H1
4	M5	PIPE_2.0	.273	4.75	5	.0544.75	4	7.252	21.377	1.245	1.245	1.8	.H1
5	M3	PIPE_2.0	.244	5.5	4	.046 3.5	e	9.924	21.377	1.245	1.245	4.9	H1
6	M4	PIPE_2.0	.193	5.5	4	.030 5.5	0	9.924	21.377	1.245	1.245	4.9	.H1
7	M6	PIPE_2.0	.043	4	6	.004 8	5	8.084	21.377	1.245	1.245	1.1	H1
8	M7	PIPE_2.0	.042	4	6	.004 8	5	8.084	21.377	1.245	1.245	1.1	.H1

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11328F

Marine Sys. Smoke Stack 50 Maple Street Branford, Connecticut 06405

April 13, 2021

EBI Project Number: 6221001755

Site Comp	liance Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	17.13%

April 13, 2021

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTII328F - Marine Sys. Smoke Stack

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **50 Maple Street** in **Branford, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 50 Maple Street in Branford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 UMTS channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 6) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

- 7) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 8) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 9) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antennas used in this modeling are the Ericsson AIR 21 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Ericsson AIR 21 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector A, the Ericsson AIR 21 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Ericsson AIR 21 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector B, the Ericsson AIR 21 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 2100 MHz channel(s) in Sector B, the Ericsson AIR 21 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Ericsson AIR 21 for the 1900 MHz channel(s), the Ericsson AIR 21 for the 1900 MHz channel(s), the Ericsson AIR 21 for the 1900 MHz channel(s), the Ericsson AIR 21 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 11) The antenna mounting height centerline of the proposed antennas is 96 feet above ground level (AGL).
- 12) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 13) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:		Antenna #:	1	Antenna #:	
Make / Model:	Ericsson AIR 21	Make / Model:	Ericsson AIR 21	Make / Model:	Ericsson AIR 21
	2100 MHz	Frequency Bands:	2100 MHz		2100 MHz
Frequency Bands:	15.35 dBd		15.35 dBd	Frequency Bands:	15.35 dBd
Gain:		Gain:		Gain:	
Height (AGL):	96 feet	Height (AGL):	96 feet	Height (AGL):	96 feet
Channel Count:	2	Channel Count:	2	Channel Count:	2
Total TX Power (W):		Total TX Power (W):		Total TX Power (W):	
ERP (W):	4,113.21	ERP (VV):	4,113.21	ERP (VV):	4,113.21
Antenna AI MPE %:	I.83%	Antenna BI MPE %	1.83%	Antenna CI MPE %:	1.83%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20
Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz
Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd
Height (AGL):	96 feet	Height (AGL):	96 feet	Height (AGL):	96 feet
Channel Count:	5	Channel Count:	5	Channel Count:	5
Total TX Power (W):	200 Watts	Total TX Power (W):	200 Watts	Total TX Power (W):	200 Watts
ERP (VV):	4,059.02	ERP (VV):	4,059.02	ERP (W):	4,059.02
Antenna A2 MPE %:	4.30%	Antenna B2 MPE %	4.30%	Antenna C2 MPE %:	4.30%
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Ericsson AIR 21	Make / Model:	Ericsson AIR 21	Make / Model:	Ericsson AIR 21
Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz
Gain:	15.35 dBd / 15.35 dBd / 15.35 dBd	Gain:	15.35 dBd / 15.35 dBd / 15.35 dBd	Gain:	15.35 dBd / 15.35 dBd / 15.35 dBd
Height (AGL):	96 feet	Height (AGL):	96 feet	Height (AGL):	96 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts
ERP (W):	8,226.43	ERP (W):	8,226.43	ERP (W):	8,226.43
Antenna A3 MPE %:	3.65%	Antenna B3 MPE %	3.65%	Antenna C3 MPE %	3.65%

Site Composite MPE	Site Composite MPE %									
Carrier	MPE %									
T-Mobile (Max at Sector A):	9.77%									
Sprint	7.36%									
Site Total MPE % :	17.13%									

T-Mobile MPE % Per Sector				
T-Mobile Sector A Total:	9.77%			
T-Mobile Sector B Total:	9.77%			
T-Mobile Sector C Total:	9.77%			
Site Total MPE % :	17.13%			

T-Mobile Maximum MPE Power Values (Sector A)									
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE		
T-Mobile 2100 MHz LTE	2	2056.61	96.0	18.26	2100 MHz LTE	1000	1.83%		
T-Mobile 600 MHz LTE	2	591.73	96.0	5.25	600 MHz LTE	400	1.31%		
T-Mobile 600 MHz NR	I	1577.94	96.0	7.00	600 MHz NR	400	1.75%		
T-Mobile 700 MHz LTE	2	648.82	96.0	5.76	700 MHz LTE	467	1.23%		
T-Mobile 1900 MHz GSM	4	1028.30	96.0	18.26	1900 MHz GSM	1000	1.83%		
T-Mobile 1900 MHz UMTS	2	1028.30	96.0	9.13	1900 MHz UMTS	1000	0.91%		
T-Mobile 2100 MHz UMTS	2	1028.30	96.0	9.13	2100 MHz UMTS	1000	0.91%		
				1		Total:	9.77%		

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)		
Sector A:	9.77%		
Sector B:	9.77%		
Sector C:	9.77%		
T-Mobile Maximum MPE % (Sector A):	9.77%		
Site Total:	17.13%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **17.13%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.