

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

April 14, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 21 Acorn Road, Branford, CT 06405 Latitude: 41.293086 Longitude: -72.762886 Site #: 876316 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 21 Acorn Road, Branford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 126-foot level of the existing 147foot monopole tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing building. Included are plans by Infinigy, dated April 6, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated September 23, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Branford Planning & Zoning Commission on September 4, 1997. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to James Cosgrove, First Selectman and Harry Smith, Town Planner for the Town of Branford as well as the tower owner (Crown Castle) and property owner (21 Acorn Road LLC).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 147-feet and the Dish Wireless LLC antennas will be located at a center line height of 126-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 21.13% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole tower in Branford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 126-foot level of the existing 147-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Branford.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: James Cosgrove, First Selectman Town of Branford 1019 Main Street Branford, CT 06405

Harry Smith, Town Planner Town of Branford 1019 Main Street Branford, CT 06405

21 Acorn Road LLC 21 Acorn Road Branford, CT 06405

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

H5/3/10

PLANNING AND ZONING COMMISSION TOWN OF BRANFORD TOWN HALL DRIVE P.O. BOX 150 Branford, Connecticut 06405 488-1255

NOTICE OF DECISION

September 5, 1997

Sprint PCS 9 Barnes Industrial Road Wallingford, Connecticut 06492

SUBJECT: Special Exception

APPLICATION: <u>#97-5.1</u>

LOCATION: 21 Acorn Road

OWNER OF RECORD: Altrio Investment Group

Dear Sir:

At a meeting of the Branford Planning & Zoning Commission held on <u>Thursday</u>, <u>September 4, 1997</u>, the Commission voted to:

 \underline{X} Approve your above subject application with the conditions noted below.

Very truly yours,

Comuses Shirley Rashussen

Town Planner

NOTE: This Special Exception shall become effective only after it is filed on the Land Records in the office of the Town Clerk.

- Prior to issuance of a building permit, revise landscape plan to show plantings 5 to 6 feet in height on all four sides of the equipment area.
 Splants on two sides only
- All users of the telecommunications facility must demonstrate compliance with current FCC regulations for electromagnetic frequency emissions and any future changes in these standards.
- 3. The owner of the telecommunications facility shall provide for and encourage co-location of other antennae on the facility.
- NOTE: Special Exception shall become null and void in the event the applicant fails to obtain a building permit within one (1) year of date of approval. (Per Section 31.7 of the Branford Zoning Regulations)

Exhibit B

Property Card

21 ACORN RD

Location	21 ACORN RD	Mblu	H05/000 003/ 00010/ /
Acct#	008133	Owner	21 ACORN ROAD LLC
Assessment	\$778,360	Appraisal	\$1,111,770
PID	1176	Building Count	1

Current Value

Appraisal						
Valuation Year Improvements Land Total						
2021	\$626,560	\$485,210	\$1,111,770			
	Assessment					
Valuation Year	Improvements	Land	Total			
2021	\$438,680	\$339,680	\$778,360			

Owner of Record

Owner	21 ACORN ROAD LLC	Sale Price	\$0
Co-Owner		Certificate	
Address	21 ACORN RD	Book & Page	1279/0300
	BRANFORD, CT 06405		

 Sale Date
 03/17/2020

 Instrument
 3

Ownership History

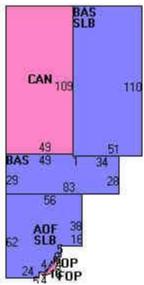
Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
21 ACORN ROAD LLC	\$0		1279/0300	3	03/17/2020
ALTRIO INVESTMENT GROUP LLC	\$0		0568/0731		04/08/1994

Building Information

Building 1 : Section 1

Year Built:	2001
Living Area:	10,912
Replacement Cost:	\$698,920
Building Percent Good:	70
Replacement Cost	
Less Depreciation:	\$489,200

Building Attributes			
Field	Description		
Style:	Warehouse		
Model	Ind/Comm		
Grade	В		
Stories:	1		
Occupancy	1.00		
Exterior Wall 1	Concr/Cinder		


Building Photo

(http://images.vgsi.com/photos/BranfordCTPhotos//\0031\ACORN%20RD% 2_31344.jpg)

Exterior Wall 2	
Roof Structure	Flat
Roof Cover	T&G/Rubber
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Forced Air-Duc
АС Туре	None
Struct Class	
Bldg Use	COMM WHS MDL96
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	3160
Heat/AC	HEAT/AC SPLIT
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	AVERAGE
Wall Height	17.00
% Comn Wall	0.00

Building Layout

(http://images.vgsi.com/photos/BranfordCTPhotos//Sketches/1176_1176.jp

	<u>Legend</u>		
Code	Description	Gross Area	Living Area
BAS	First Floor	7,983	7,983
AOF	Office	2,929	2,929
CAN	Сапору	5,341	0
FOP	Porch, Open	80	0
SLB	Slab	8,539	0
		24,872	10,912

	Extra Features Legen					
Code	Description	Size	Value	Bldg #		
SPR1	SPRINKLERS-WET	13324.00 S.F.	\$14,000	1		
SPR2	WET/CONCEALED	2928.00 S.F.	\$4,100	1		
A/C	AIR CONDITION	2928.00 S.F.	\$4,500	1		
GEN4	GEN 100+ KW PRMT BKP	0.00 UNITS	\$30,000	1		

Land

Land Use		Land Line Valuation
Use Code	3160	Size (Acres) 1.56
Description	COMM WHS MDL96	Frontage
Zone	IG-2	Depth
Neighborhood	350	Assessed Value \$339,680
Alt Land Appr	No	Appraised Value \$485,210
Category		

Outbuildings

	Outbuildings <u>Legend</u>					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV1	PAVING-ASPHALT			21000.00 S.F.	\$24,300	1
FN3	FENCE-6' CHAIN			500.00 L.F.	\$3,500	1

Valuation History

Appraisal

Valuation Year	Improvements	Land	Total
2021	\$626,560	\$485,210	\$1,111,770
2019	\$626,560	\$485,210	\$1,111,770
2018	\$507,600	\$428,300	\$935,900

Assessment													
Valuation Year	Improvements	Land	Total										
2021	\$438,680	\$339,680	\$778,360										
2019	\$438,680	\$339,680	\$778,360										
2018	\$355,300	\$299,900	\$655,200										

(c) 2022 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

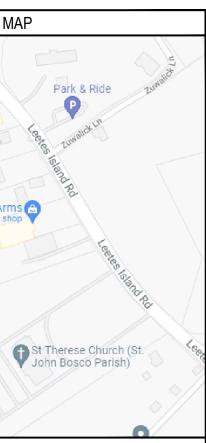
Construction Drawings

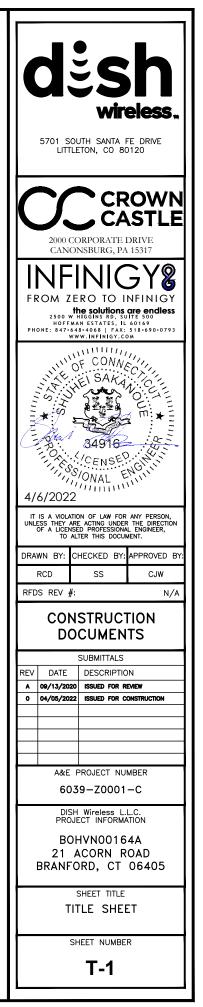
		SITE INF	ORMATION	
		Property owner: Address:	21 ACORN ROAD LLC 21 ACORN RD BRANFORD, CT 06405	A
CESN		TOWER TYPE:	MONOPOLE	,
		TOWER CO SITE ID:	876316	
	SCOPE OF WORK	TOWER APP NUMBER:	553381	
wireless	THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE.	COUNTY:	NEW HAVEN	s
wireiess	THE PROJECT CENERALLY CONSISTS OF THE FOLLOWING: TOWER SCOPE OF WORK:	LATITUDE (NAD 83):	41° 17' 35.1" N 41.293072	
	INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT INSTALL PROPOSED JUMPERS	LONGITUDE (NAD 83): ZONING JURISDICTION:	72° 45' 46.4" W -72.76288889 CT-CONNECTICUR SITTING	5
	INSTALL (6) PROPOSED RUS (2 PER SECTOR) INSTALL (1) PROPOSED VER VOLTAGE PROTECTION DEVICE (OVP) INSTALL (1) PROPOSED HYBRID CABLE	ZONING DISTRICT:	COUNCIL	
BOHVN00164A	GROUND SCOPE OF WORK: • INSTALL (1) PROPOSED METAL PLATFORM	PARCEL NUMBER:	TBD	C
DISH Wireless L.L.C. SITE ADDRESS:	INSTALL (1) PROPOSED ICE BRIDGE INSTALL (1) PROPOSED PPC CABINET INSTALL (1) PROPOSED EQUIPMENT CABINET	OCCUPANCY GROUP:	U	R
21 ACORN ROAD,	INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT INSTALL (1) PROPOSED TELCO-FIBER BOX	CONSTRUCTION TYPE:	II—B	
	INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED) INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)	POWER COMPANY:	CONNECTICUT LIGHT AND POWER (EVERSOURCE)	
BRANFORD, CT 06405	EXISTING METER SOCKET TO BE UTILIZE	TELEPHONE COMPANY:	TBD	
CONNECTICUT CODE OF COMPLIANCE	SITE PHOTO		DIREC	TIC
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES CODE TYPE CODE BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS		AVE, TURN LEFT ONTO ON THE RIGHT FOR I-9 FOR LEETES ISLAND RD	D NEW HAVEN AIRPORT: RTHEAST), AVIS RENT A CAR ON N THE CORNER, TURN RIGHT OI THOMPSON AVE, KEEP STRAIGHT 5 NORTH AND HEAD TOWARD N TOWARD STONY CREEK, BEAR TURN LEFT ONTO ACORN RD,	t to New L Right
SHEET INDEX	La construction de la construction		VICINI	TY
SHEET NO. SHEET TITLE		2		/
T-1 TITLE SHEET			Gould Ln	
LS1 SITE SURVEY			deway Inn & Suites Branford - Guilford 💼	
A-1 OVERALL AND ENLARGED SITE PLAN A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE			3.6 ★ (119) 2-star hotel	2
A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS	the second se		New Age Motors Auto repair shop	8
A-4 EQUIPMENT DETAILS A-5 EQUIPMENT DETAILS A-6 EQUIPMENT DETAILS		Stan Packaging supply		
E-1 ELECTRICAL/FIBER ROUTE PLAN AND NOTES			Wilso	on A Gun
E-2 ELECTRICAL DETAILS E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT			1
G-1 GROUNDING PLANS AND NOTES	(800) 922-4455 WWW.CBYD.COM	SITE	LOCATION	
G-2 GROUNDING DETAILS G-3 GROUNDING DETAILS	CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION		d	
RF-1 RF CABLE COLOR CODE	GENERAL NOTES			
GN-1 LEGEND AND ABBREVIATIONS GN-2 RF SIGNAGE	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON			
GN-3 GENERAL NOTES GN-4 GENERAL NOTES	DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.			
GN-5 GENERAL NOTES	11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED			
	CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE		- And	
	PROCEEDING WITH THE WORK.	NO SCALE	/ /96/	_
NSH Wireless I.I.C. TEMPLATE VERSION 48 - 2/21/2022				_

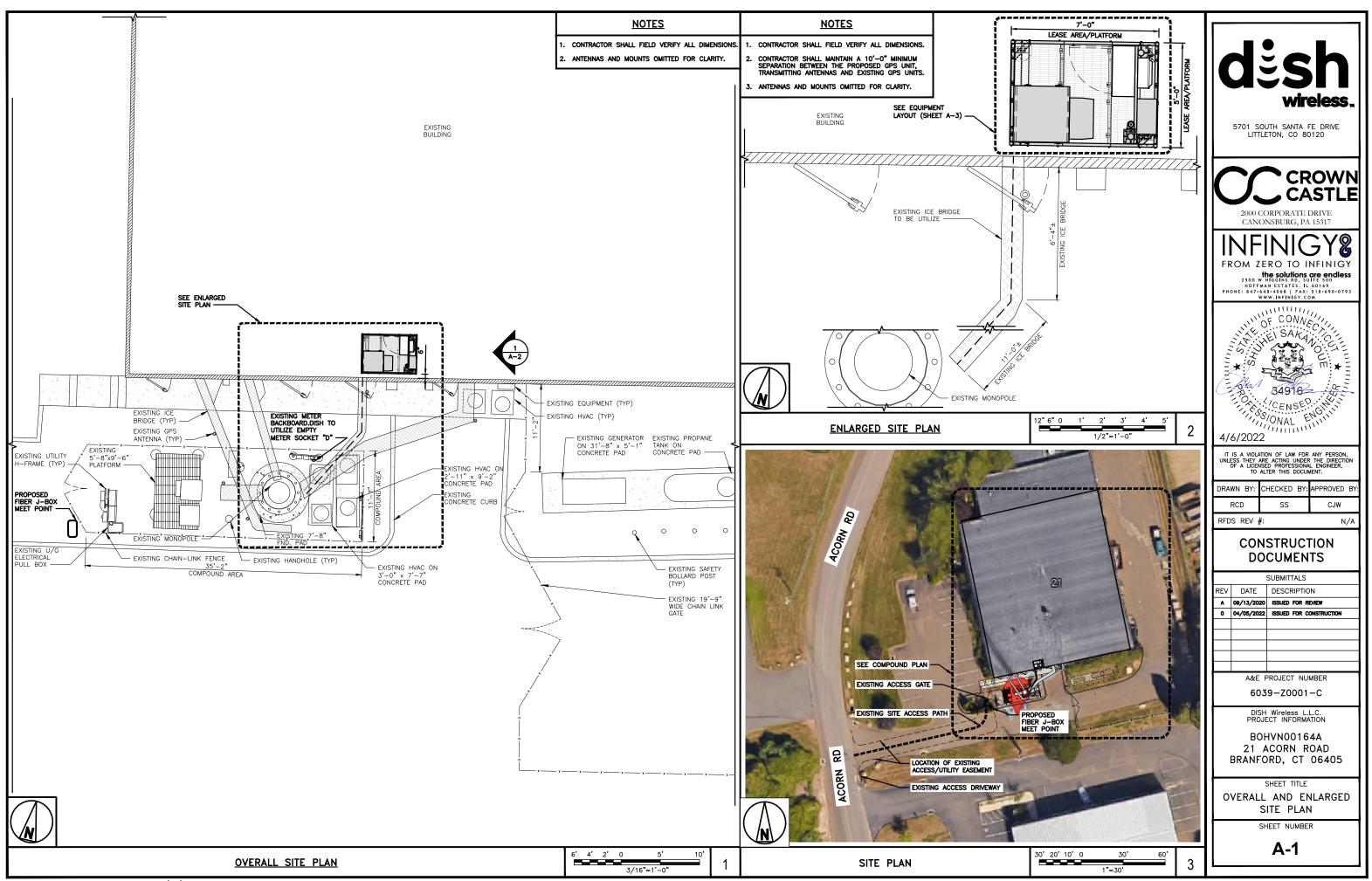
PPLICANT:	DISH Wireless L.L.C.
	5701 SOUTH SANTA FE DRIVE
	LITTLETON, CO 80120
OWER OWNER:	CROWN CASTLE

2000 CORPORATE DRIVE CANONSBURG, PA 15317 (877) 486-9377

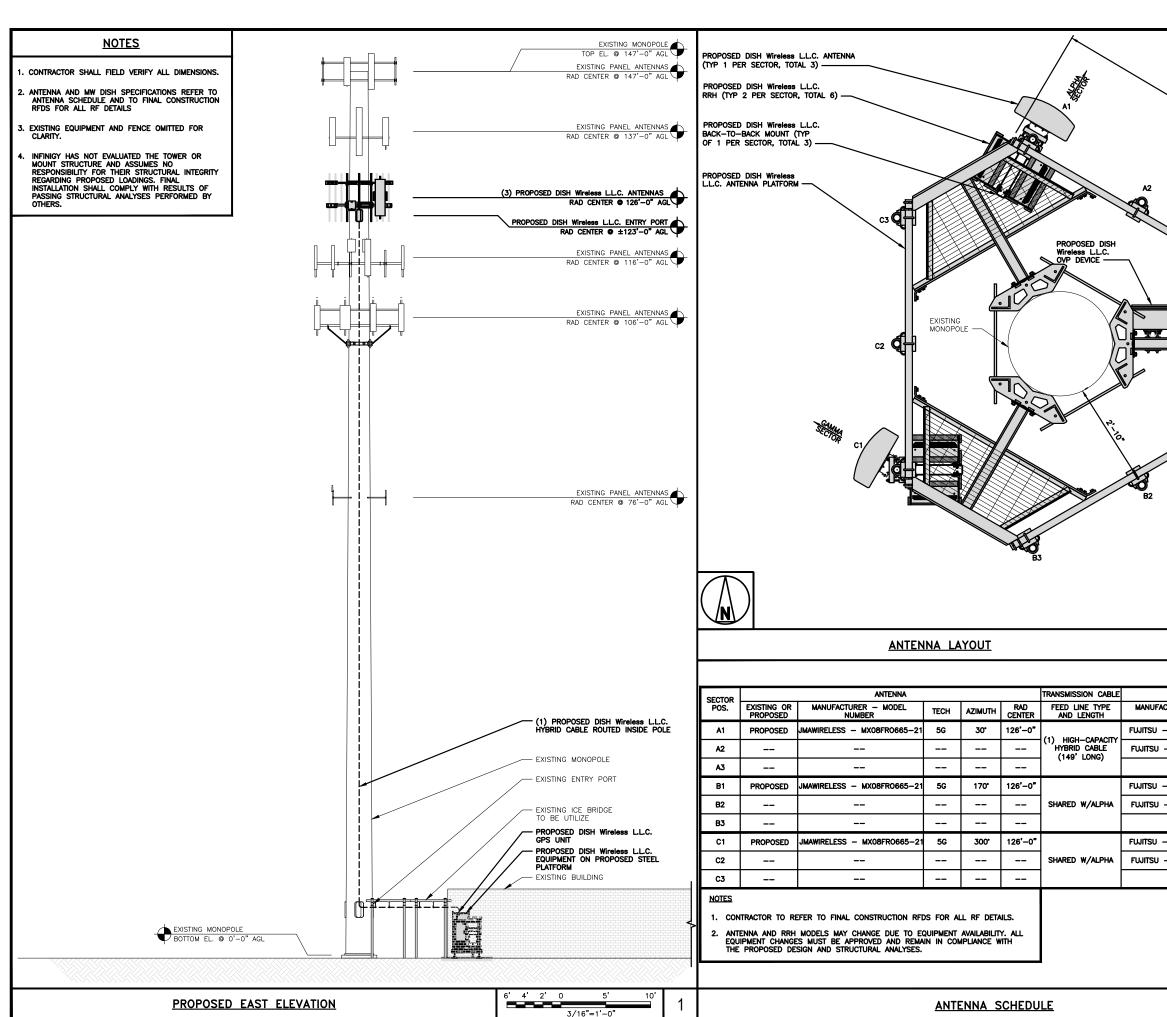
SITE DESIGNER: INFINIGY ENGINEERING, PLLC 2500 W. HIGGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60169 (847) 648-4068


ITE ACQUISITION: NICHOLAS CURRY (980) 430-8582 ONSTRUCTION MANAGER: JAVIER SOTO

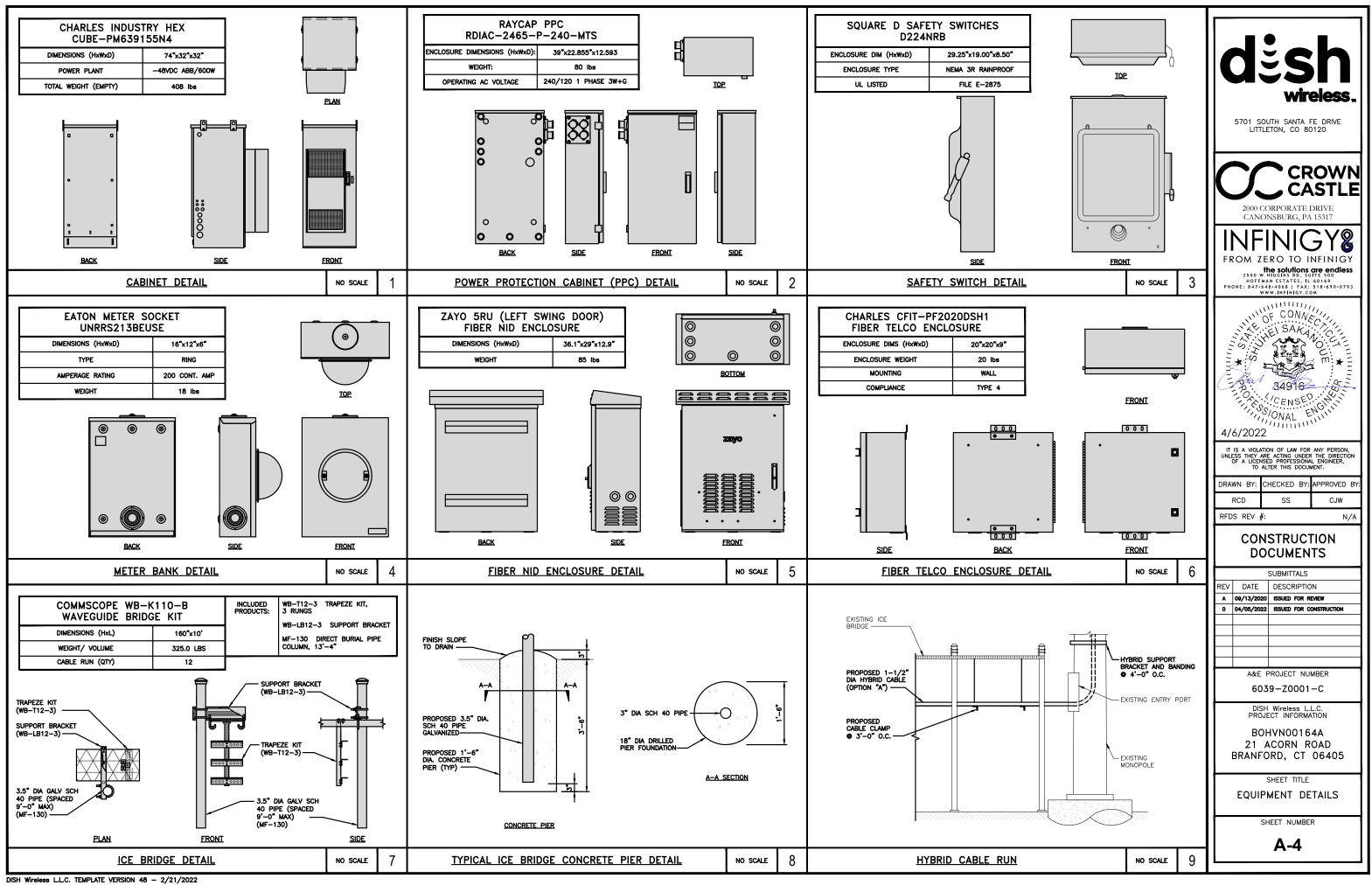

JAVIER.SOTOODISH.COM SYED ZAIDI RF ENGINEER:

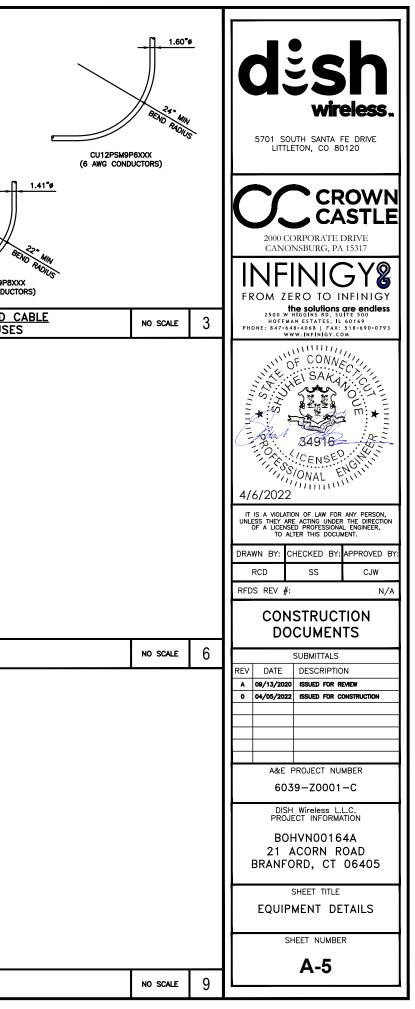

SYED.ZAIDIODISH.COM

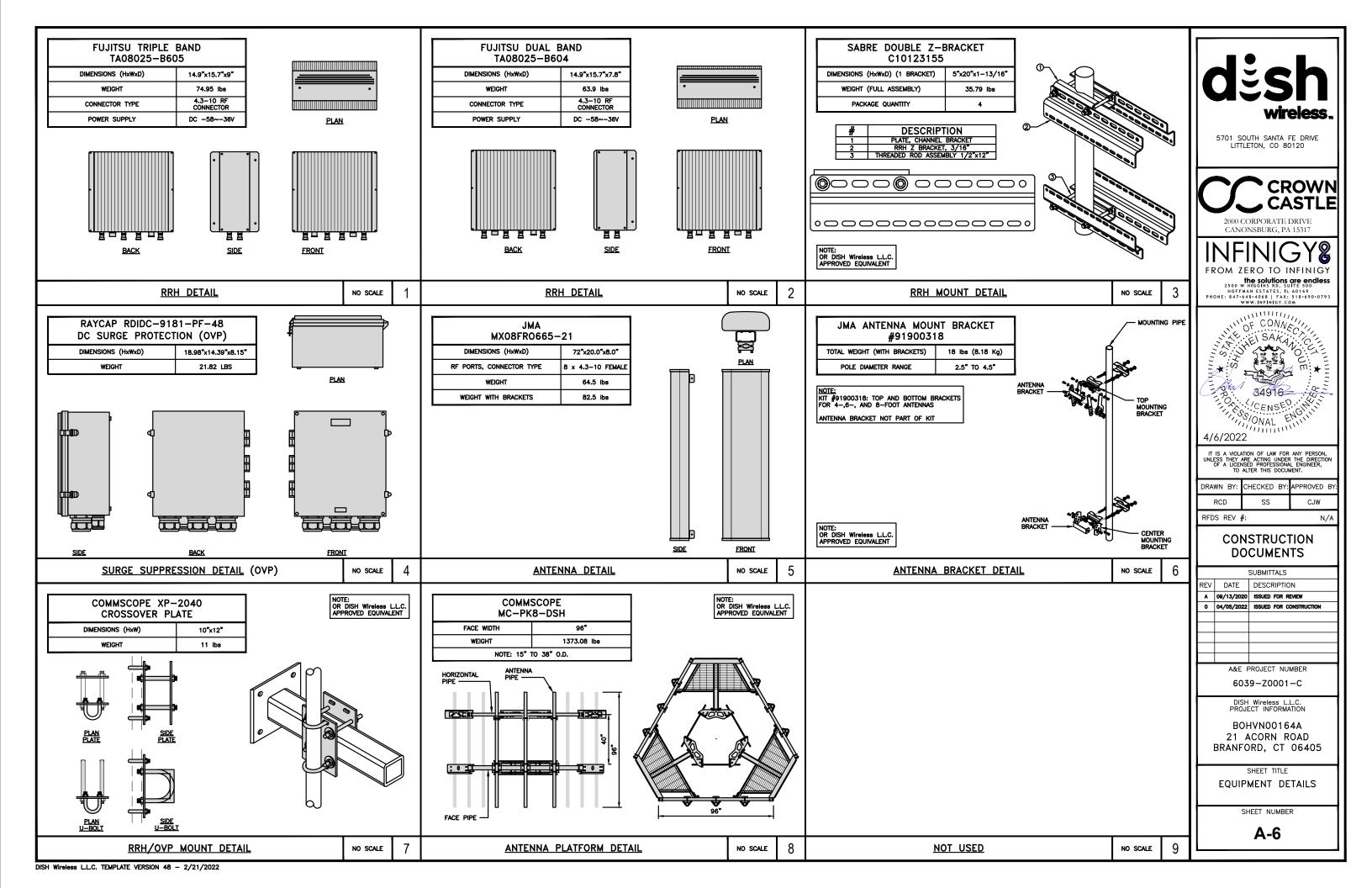
ONS

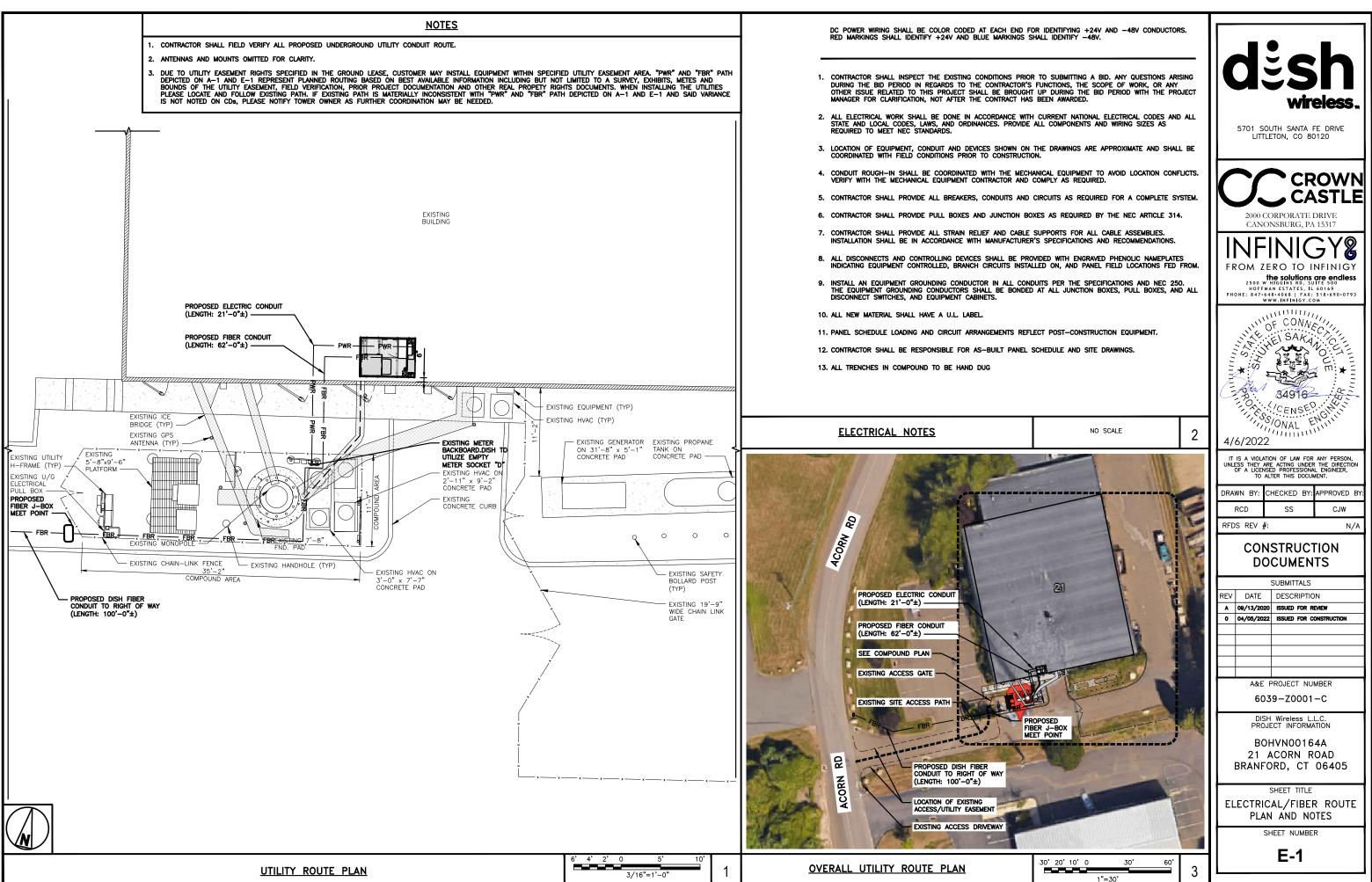

E CORNER, TURN RIGHT TOWARD BURR ST, BURR ST, KEEP STRAIGHT TO GET ONTO DODGE GET ONTO CT-100 / HIGH ST, TAKE THE RAMP LONDON, AT EXIT 56, HEAD RIGHT ON THE RAMP T ONTO GOULD LN, THEN IMMEDIATELY TURN N LEFT, ARRIVE AT, 21 ACORN ROAD, BRANFORD

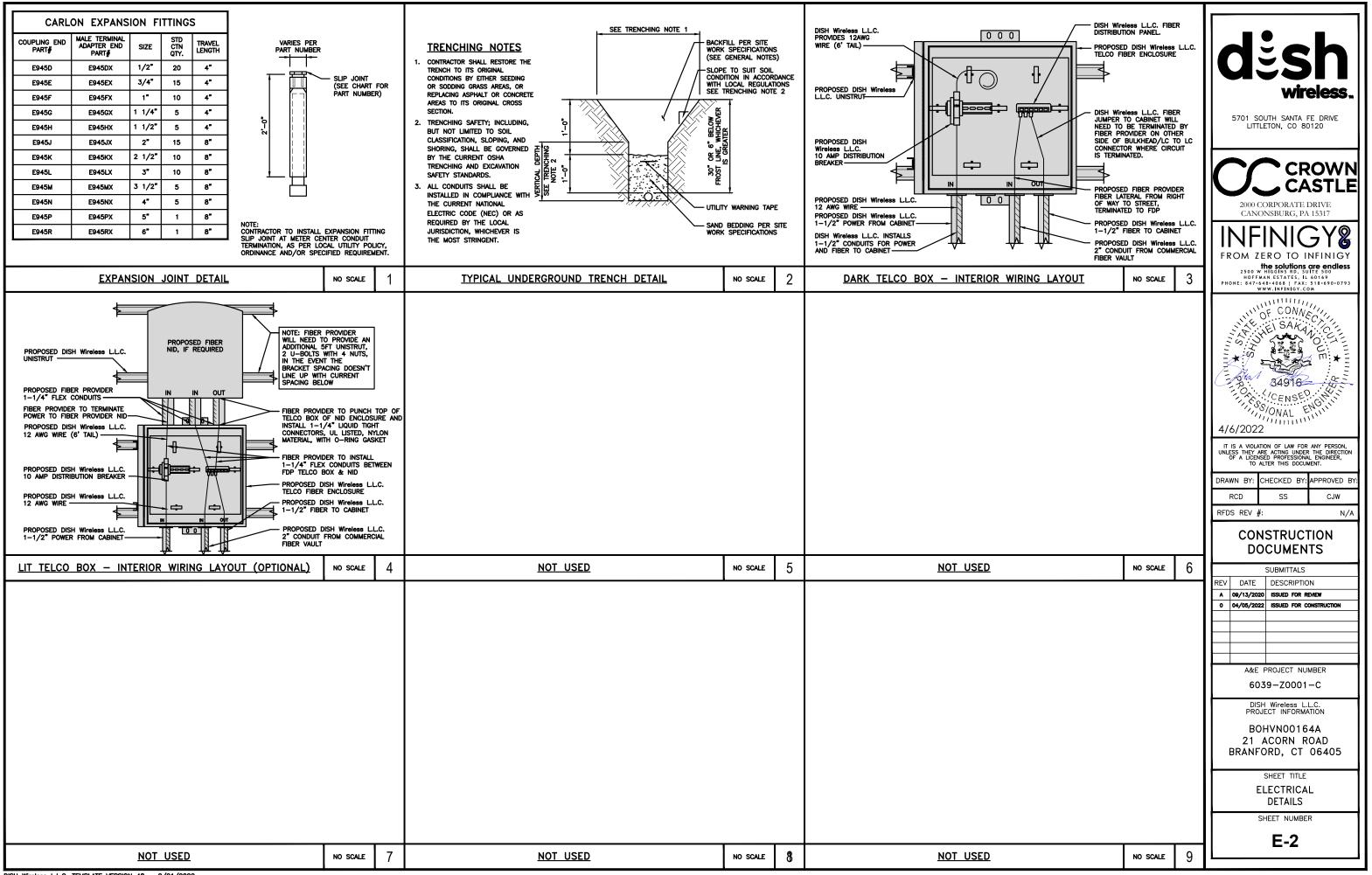


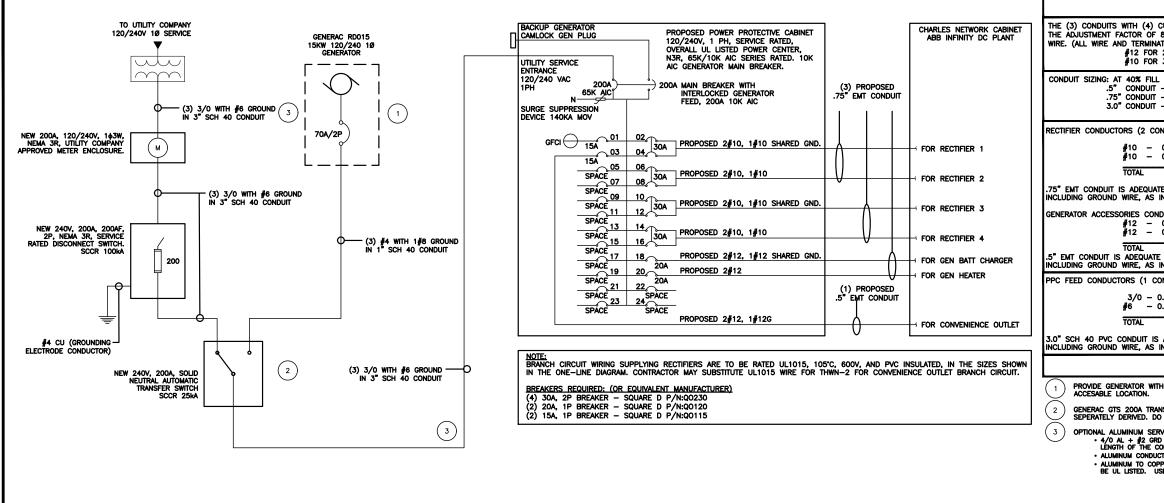


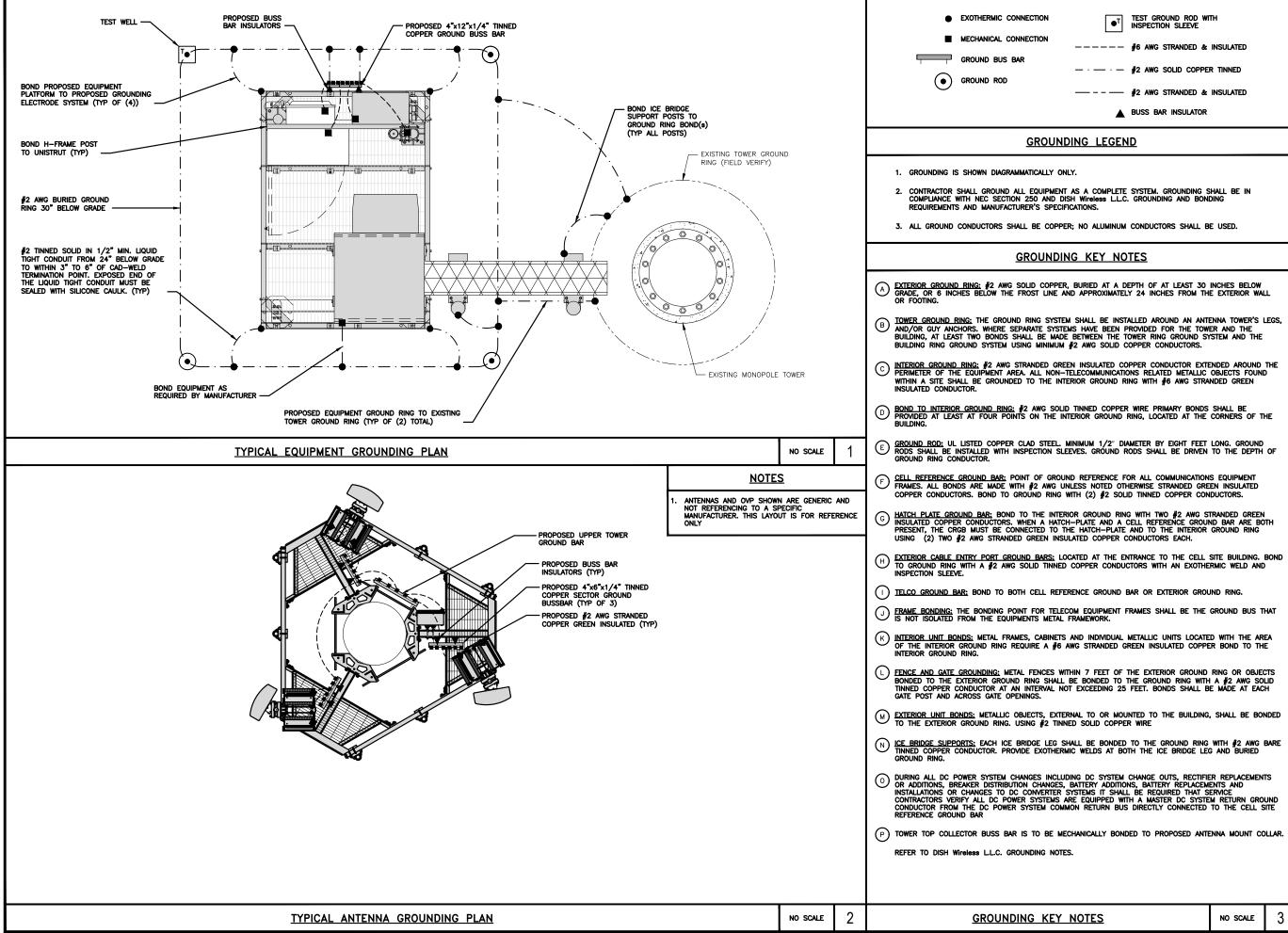


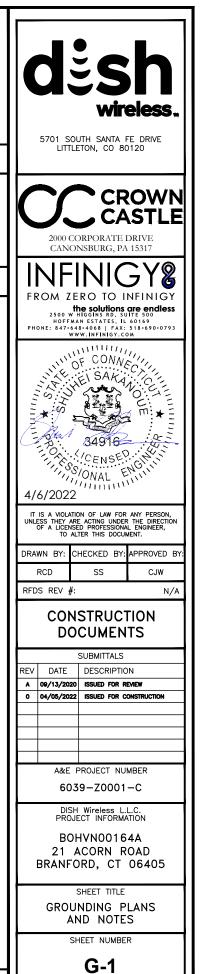

			7		ADDITION OF LAW FOR ANY PERSON, UNITED SALVALE MONTER THE DIRECTION OF ANY ARE ACTING UNDER THE DIRECTION OF ALLER THIS DOCUMENT.
12"6"0	1'	2'	3'		RFDS REV #: N/A
		2 :1 ' -0"	ى 	2	CONSTRUCTION DOCUMENTS
					SUBMITTALS
RRH ACTURER - MODEL	_		C MANUFAC)VP :Turfr	REV DATE DESCRIPTION A 09/13/2020 ISSUED FOR REVIEW
NUMBER	TECH	POS.	MANUFAC		0 04/05/2022 ISSUED FOR CONSTRUCTION
	5G 5G	A1 A1	RAYC	₽	
			RDIDC-918	1-PF-48	
- TA08025-B604	5G	B1			
- TA08025-B605	5G	B1	SHAR W/ALI		A&E PROJECT NUMBER 6039-Z0001-C
					DISH Wireless L.L.C.
- TA08025-B604	5G	C1			PROJECT INFORMATION
	5G	C1	SHAR W/ALI		BOHVN00164A 21 ACORN ROAD
					BRANFORD, CT 06405
					SHEET TITLE ELEVATION, ANTENNA LAYOUT AND SCHEDULE SHEET NUMBER A-2
		N	O SCALE	3	
				-	



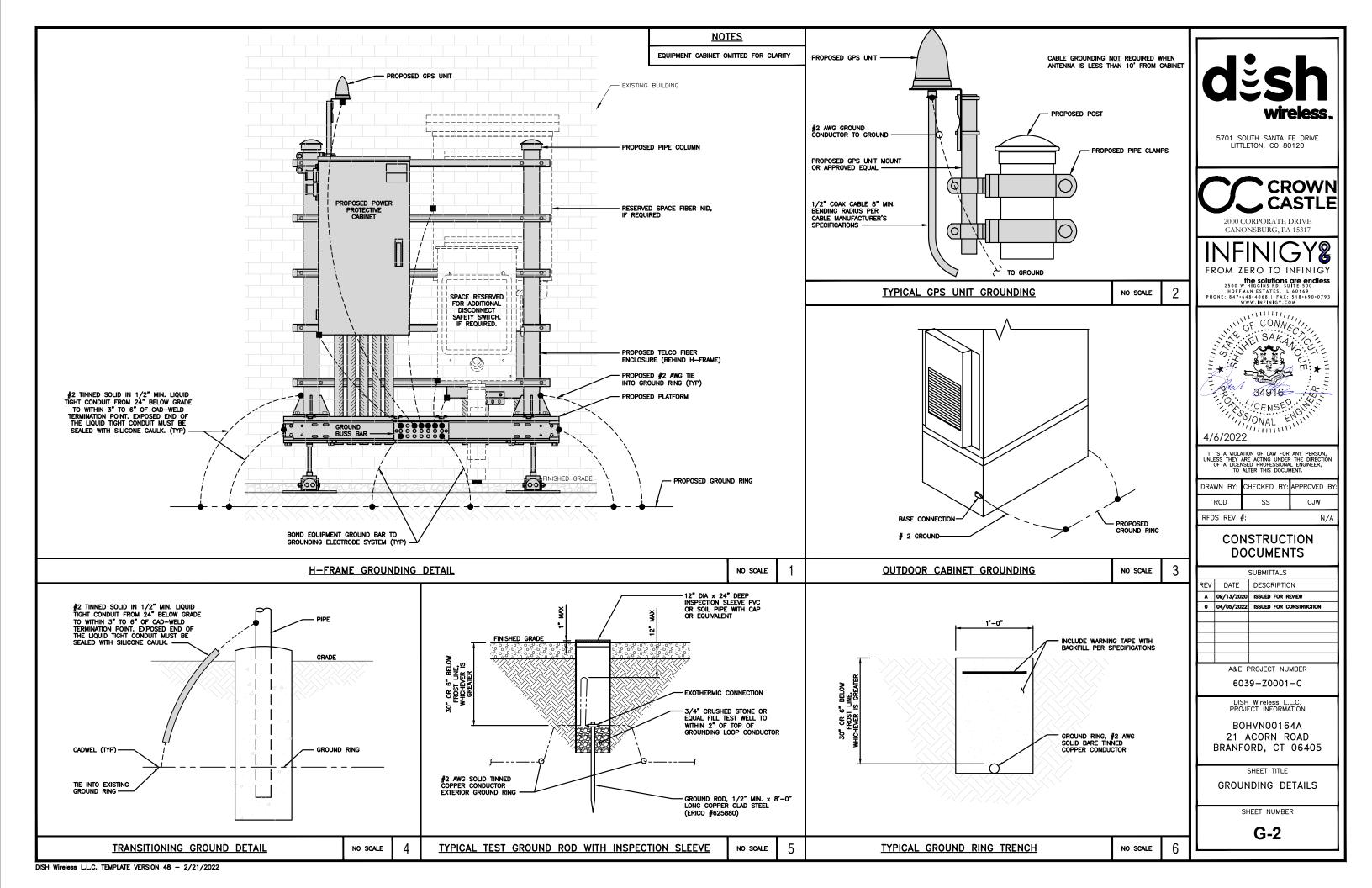



						-
			MINIMUM OF 75% OR 270° IN ANY DIRECTION GPS GPS UNIT BE BELOW 10° GPS UNIT GPS UNIT			CU12PSM6P4XXX (4 AWG CONDUCTORS)
<u>GPS_DETAIL</u>	NO SCALE	1	<u>GPS MINIMUM SKY VIEW REQUIREMENTS</u>	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
NOT USED	NO SCALE	4	<u>NOT_USED</u>	NO SCALE	5	NOT USED
NOT USED	NO SCALE	7	NOT_USED	NO SCALE	8	NOT USED
DISH Wireless LLC. TEMPLATE VERSION 48 - 2/21/2022	1	•			Ť	





		LOC	ATION	м	VOLTAGE: 240/120 1Ø MOUNTING/ENCLOSURE: SURFACE/NEMA 3R MAIN C/B: 200 AMPS AVAIL FAULT CURRENT: BUS RATING: 200 AMPS SHORT CIRCUIT RATING: 65,000 / 10,000 SERIES RATED											
AMPS		- 1			1	r –	BUS NA	TING: 20	I AMPS			SHORT CIRCUIT	RATING:	65,000 / 10,000 SERIES		
POLES	WIRE & CONDUIT	TYPE	DES	SCRIPTION	KVA	скт	A		в	скт	KVA	DESCRIPTION	TYPE	WIRE & CONDUIT	POL	
15/1	2 #12, 1 #12G	R	INTE	ERNAL GFCI	0.18	1	2.18	1		2	2.00	RECTIFIER	EQ	SEE ONE LINE	30/	/2
15/1	SEE ONE LINE	R		NIENCE OUTLET	0.18	3			2.18	4	2.00		EQ			
				SPACE		5	2.00			6	2.00	RECTIFIER	EQ	SEE ONE LINE	30/	/2
				SPACE		7			2.00	8	2.00		EQ		_	
				SPACE SPACE		9 11	2.00		0.00	10 12	2.00	RECTIFIER	EQ EQ	SEE ONE LINE	30/	/2
				SPACE		11	2.00		2.00	12	2.00	RECTIFIER	EQ	SEE ONE LINE	30/	/2
				SPACE		15	2.00		2.00	14	2.00	neorinen	EQ	OLL ONE LINE	- 30/	<u></u>
				SPACE	1	17	1.00	1		18	1.00	GEN BATT CHARGER	EQ	2 #12, 1 #12G, 1/2"C	20/	/1
				SPACE	1	19		1	1.00	20	1.00	GEN HEATER	EQ	2 #12, 1 #12G, 1/2"C		
				SPACE		21				22		SPACE				
				SPACE		23				24		SPACE				
					PHASED	LOAD	9.2		9.2	KVA						_
												TOTAL CONNECTE TOTAL DEMAN		18.4 kVA 18.4 kVA	77	
1045		CONN	. LOAD	DEMAND	DESIGN		1					TOTAL DEMAN		18.4 KVA	77	<u>^</u>
LOAD TYPE	DESCRIPTION	KVA	AMPS	FACTOR		AMPS	•									
L .	LIGHTING	0.0	0.0	1.25	0.0	0.0	1									
R	RECEPTACLE	0.4	1.5	NEC	0.4	1.5	1									
м	MOTOR	0.0	0.0	NEC	0.0	0.0	1									
Н	HEATING	0.0	0.0	1.00	0.0	0.0]									
AC	HVAC	0.0	0.0	1.00	0.0	0.0										
EQ	EQUIPMENT	18.0	75.0	1.00	18.0	75.0										
E	EXISTING	0.0	0.0	1.25	0.0	0.0	J									
	IPMENT LOADS CONS															


NOTES										
<u></u>										
CURRENT CARRYING CONDUCTORS 80% PER 2020 NEC TABLE 310 IATION HARDWARE TO BE RATED 20A OCPD WIRE DERATING: (30A OCPD WIRE DERATING: (.15(C)(1) FOR U /5°C)).8 x 25A = 20			: 5	h					
L PER NEC CHAPTER 9, TABLE 4 1220 SQ. IN AREA 2130 SQ. IN AREA - 3.538 SQ. IN AREA	, article 358.					eless.				
ONDUIT): USING THWN-2, CU.					OUTH SANTA I					
0.0211 SQ. IN X 4 = 0.844 S 0.0211 SQ. IN X 1 = 0.0211	SQ. IN <ground< th=""><td></td><td></td><td></td><td></td></ground<>									
= 0.1055 SQ NTE TO HANDLE THE TOTAL OF (5 INDICATED ABOVE.						OWN				
NDUCTORS (1 CONDUIT): USING T 0.0133 SQ. IN X 2 = 0.0266 0.0133 SQ. IN X 1 = 0.0133	SQ. IN)			CORPORATE					
= 0.0399 SQ E TO HANDLE THE TOTAL OF (5) INDICATED ABOVE	. IN				ONSBURG, PA					
CONDUIT): USING THWN, CU.					ERO TO I					
0.2679 SQ. IN X 3 = 0.8037 S 0.0507 SQ. IN X 1 = 0.0507 S = 0.8544 S	Q. IN <ground< th=""><td></td><td></td><td>2500 \ HOFF DNE: 847-</td><td>the solutions w Higgins RD, SL MAN ESTATES, IL 648-4068 FAX: www.INFINIGY.C</td><td>are endless</td></ground<>			2500 \ HOFF DNE: 847-	the solutions w Higgins RD, SL MAN ESTATES, IL 648-4068 FAX: www.INFINIGY.C	are endless				
S ADEQUATE TO HANDLE THE TOT. INDICATED ABOVE.		S			OF CONN					
<u>KEYNOTES</u>					LEI SAKA	N. C.				
TH EMERGENCY SHUNT TRIP BUTTO	I LOCATED IN REA	ADILY		NS H						
ANSFER SWITCH. OPTIONAL EMERGEN DO NOT BOND NEUTRAL AT GENERTO	ICY SYSTEM IS "N	IOT"		*:*		≰ ^m * <u>∃</u>				
RVICE CONDUCTOR:			G	Alta I	34916					
RD MAY BE USED INSTEAD OF 3/0 CU CONDUCTOR IS LESS THAN 300 FT FR JCTORS MUST BE 90°C TO CARRY THE	FULL 200A LOAD F	REQUIRED			CENSE	NOLIT				
PPER BUSS CONNECTIONS MUST MEET USE ANTI CORROSION CONDUCTIVE LUB	AND CONFORM TO	ANSI AND	, .	11	SIONAL E	in.				
			· ·	6/202	2 ATION OF LAW FOR ARE ACTING UNDEF ISED PROFESSION					
			UNL	OF A LICEN	ARE ACTING UNDER ISED PROFESSIONA ALTER THIS DOCU	N THE DIRECTION L ENGINEER, MENT.				
	NO SCALE	1				APPROVED BY:				
	-			RCD S REV #	SS #:	CJW N/A				
					, 					
					NSTRUC [®] DCUMEN					
			REV	DATE	SUBMITTALS	DN .				
			•	09/13/20	20 ISSUED FOR R	EVIEW				
			•	04/05/20	22 ISSUED FOR C	ONSTRUCTION				
			A&E PROJECT NUMBER							
		6039-Z0001-C								
					DISH Wireless L.L.C. PROJECT INFORMATION					
				PRC	DIECT INFORM	4A				
				PRC B(21	JECT INFORM	4A OAD				
			ELE	BRANF	NJECT INFORM DHVN0016 ACORN R ORD, CT SHEET TITLE	4A OAD 06405 NE, FAULT				
			ELE	PRC 21 BRANF CTRIC	DHVN0016 ACORN R ORD, CT	4A OAD 06405 NE, FAULT CHEDULE				
			ELE	PRC 21 BRANF CTRIC	DIJECT INFORM/ DHVN0016 ACORN R ORD, CT SHEET TITLE AL ONE-LII & PANEL S SHEET NUMBE	4A OAD 06405 NE, FAULT CHEDULE				
	NO SCALE	3	ELE	PRC 21 BRANF CTRIC	DIECT INFORM DHVN0016 ACORN R ORD, CT SHEET TITLE AL ONE-LII PANEL S	4A OAD 06405 NE, FAULT CHEDULE				

●T	TEST GROUND ROD WITH INSPECTION SLEEVE
	#6 AWG STRANDED & INSULATED
<u> </u>	#2 AWG SOLID COPPER TINNED
	#2 AWG STRANDED & INSULATED
	BUSS BAR INSULATOR

<u>ES</u>	NO SCALE	3	
-----------	----------	---	--

TYPECAL DECOMMINGE. NOTES IN DIREGAL EXITINGE TWO HOLE LUG IN SECON IN DIREGAL EXITINGE TWO HOLE LUG IN DIREGAL EXITINGE TWO HOLE L	 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GI BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERI WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRAC 7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	Larger. IPOUND IDUCTOR DLTED ON TOR. S		TOOTHED EXTERIOR TWO-HOLE SHRINK UV BUTT U CONNECTORS OF ALL CONNECTORS OF ALL CONNE	CTOR INSULATION P AGAINST THE CTOR BARREL		TOOTHED BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE SHRINK BUTT CONNECTORS 3/8" DIA x1 1/2" CONNECTORS CONNECTORS 3/8" DIA x1 1/2" S/S LOCK CONNECTORS S/S LOCK CONNECTORS CONNECTORS S/S LOCK CONNECTORS CONNECTORS S/S FLAT CONNECTORS CONNECTORS S/S FLAT CONNECTORS CONNECTORS S/S FLAT CONNECTORS CONNECTORS	ICTOR INSULATION		DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCR
	TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HOLE LUG	NO SCALE	3	PHONE: 847 648 4068 FAX: 518 690 0793
REV DATE DESCRIPTION AVEX DESCRIPTION BODY	TO BE VISIBLE (TYP)	Washer (typ) Asher (typ) Asher (typ)								CONSTRUCTION
A WYARKANG BADL PAR SHORE A WYARKANG A WYARKANG	LUG DETAIL	NO SCALE	4	NOT_USED	NO SCALE	5	NOT_USED	NO SCALE	6	
										A 09/13/2020 ISSUED FOR REVIEW 0 04/05/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 6039-Z0001-C DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00164A 21 ACORN ROAD BRANFORD, CT 06405 SHEET TITLE GROUNDING DETAILS SHEET NUMBER
	NOT USED	NO SCALE	7	NOT USED	NO SCALE	8	NOT USED	NO SCALE	9	U - U

HYBRID/DISCREET CABLES	3	5/4" TAPE WIDTHS WITH 3/4" SI				OPTIONAL - (N29) ORANGE	
LOW–BAND RRH (600 MHz N71 BASEBAND) + (850 MHz N26 BAND) +	ALPHA RRH PORT 1 PORT 2 PORT 3 PORT 4 + SLANT - SLANT + SLANT - SLANT	BETA RRH PORT 1 PORT 2 PORT 3 POR + SLANT - SLANT + SLANT - SL	T 4 PORT 1 PORT 2	A RRH PORT 3 PORT 4 + SLANT - SLANT			
(700 MHz N29 BAND) - OPTIONAL PER MARKET ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BAND)	RED RED RED ORANGE ORANGE RED RED () () () () () () () () () () () () () (BLUE BLUE BLUE BLUE ORANGE ORANGE BLUE BLUE (UE ORANGE ORANGE			CBRS TECH (3 GHz) YELLOW	
						ALPHA SECTOR	8
MD-BAND RRH (AWS BANDS N66+N70) ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	RED RED RED PURPLE PURPLE RED	BLVE BLVE BLVE BLVE BLVE		GREEN GREEN GREEN GREEN		RED	
				PURPLE PURPLE	-	COLOR IDENTIFIER	
HYBRID/DISCREET CABLES INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS.	EXAMPLE 1 EXAMPLE 2	EXAMPLE 3 CANISTER COAX#1 COAX#2 (ALPHA) (ALPHA)					
EXAMPLE 1 - HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS.	RED RED BLUE BLUE	RED RED					
EXAMPLE 2 - HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS.	GREEN GREEN	RED					
EXAMPLE 3 - MAIN COAX WITH GROUND MOUNTED RRHs.	ORANGE YELLOW PURPLE						
FIBER JUMPERS TO RRHs	LOW BAND RRH MID BAND RRH	LOW BAND RRH MID BAND RRH		MID BAND RRH			
LOW-BAND HHR FIBER CABLES HAVE SECTOR STRIPE ONLY.	RED RED ORANGE PURPLE	BLUE BLUE ORANGE PURPLE	GREEN ORANGE	GREEN PURPLE			
POWER CABLES TO RRHs	LOW BAND RRH MID BAND RRH	LOW BAND RRH MID BAND RRH	LOW BAND RRH	MID BAND RRH			
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED RED	BLUE BLUE ORANGE PURPLE	GREEN	GREEN PURPLE		<u>NOT_USED</u>	
RET MOTORS AT ANTENNAS	ANTENNA 1 ANTENNA 1 MID BAND LOW BAND	ANTENNA 1 ANTENNA 1 MID BAND LOW BAND	ANTENNA 1 ANTENNA MID BAND LOW BAND				
RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA.	IN IN		IN IN				
SEPARATE RET CABLES ARE USED WHEN ANTENNA PORTS PROVIDE INPUTS FOR BOTH LOW AND MID BANDS.	RED RED PURPLE ORANGE	BLUE BLUE PURPLE ORANGE	GREEN GREEN PURPLE ORANGE				
MICROWAVE RADIO LINKS	FORWARD AZIMUTH OF 0-120 DEGREDS	FORWARD AZIMUTH OF 120-240 DEGRI PRIMARY SECONDARY		DF 240-359 DEGREES			
LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO.	PRIMARY SECONDARY WHITE RED RED	WHITE WHITE BLUE BLUE	PRIMARY SECONDAR WHITE WHITE GREEN GREEN				
MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S.	WHITE WHITE RED WHITE	WHITE WHITE BLUE WHITE	WHITE GREEN WHITE				
	CABLE COLOR CODES		1	NO SCALE		NOT USED	

	ch
NEGATIVE SLANT PORT ON ANT/RRH WHITE TOR GAMMA SECTOR	SINC CROWN CASTLE PORATE DRIVE PORATE DRIVE
GREEN	BURG, PA 15317
NO SCALE 2	O TO INFINIGY solutions are encless (SINS RD, SUITE 500 ESTATES, IL 60169 (JG66] [FAX: 518-690-0793
A/6/2022 T IS A VIOLATION UNLESS THEY ARE A OF A LIGATION UNLESS THEY ARE A OF A LIGATION TO ALTER DRAWN BY: CHE RCD RFDS REV #: CONS	CONVECTION SAK TO CONVECTION SAK TO CONVECTION SAL TO CONVECTION REAL TO CONVECTION REAL STREAM OF THE DIRECTION PROFESSIONAL ENGINEER, THIS DOCUMENT. CKED BY: APPROVED BY: SS CJW N/A TRUCTION UMENTS
NO SCALE 3	IBMITTALS
A 00/13/2020 0 0 04/08/2022 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DESCRIPTION SUED FOR REMEW SUED FOR CONSTRUCTION OJECT NUMBER -Z0001-C Vireless L.L.C. T INFORMATION /NO0164A CORN ROAD D, CT 06405 EET TITLE RF COLOR CODES ET NUMBER
	RF-1

EXOTHERMIC CONNECTION

MECHANICAL CONNECTION

CHEMICAL ELECTROLYTIC GROUNDING SYSTEM

BUSS BAR INSULATOR

MAS MASONRY TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM €T AGL ABOVE GROUND LEVEL MAX MAXIMUM AMPERAGE INTERRUPTION CAPACITY EXOTHERMIC WITH INSPECTION SLEEVE AIC MB MACHINE BOLT ALUM ALUMINUM MECH MECHANICAL GROUNDING BAR -----ALT ALTERNATE MFR MANUFACTURER GROUND ROD ANT ANTENNA MGB MASTER GROUND BAR APPROX II-DT APPROXIMATE TEST GROUND ROD WITH INSPECTION SLEEVE MIN MINIMUM ARCH ARCHITECTURAL MISC MISCELLANEOUS \$ ATS AUTOMATIC TRANSFER SWITCH MTL SINGLE POLE SWITCH METAL AMERICAN WIRE GAUGE AWG MTS MANUAL TRANSFER SWITCH Φ DUPLEX RECEPTACLE BATT BATTERY MICROWAVE MW BLDG BUILDING NEC NATIONAL ELECTRIC CODE 働 DUPLEX GFCI RECEPTACLE BLK BLOCK NM NEWTON METERS BLKG BLOCKING NUMBER NO. BM FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48-T8 BEAM NUMBER F # BTC BARE TINNED COPPER CONDUCTOR NTS NOT TO SCALE SD BOF BOTTOM OF FOOTING SMOKE DETECTION (DC) oc ON-CENTER CAB CABINET OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION OSHA CANT CANTILEVERED EMERGENCY LIGHTING (DC) OPNG OPENING CHG CHARGING P/C PRECAST CONCRETE CLG CEILING SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW PCS PERSONAL COMMUNICATION SERVICES CLR CLEAR LED-1-25A400/51K-SR4-120-PE-DDBTXD PCU PRIMARY CONTROL UNIT COL COLUMN PRC PRIMARY RADIO CABINET CHAIN LINK FENCE COMM COMMON PP POLARIZING PRESERVING WOOD/WROUGHT IRON FENCE CONC ______ CONCRETE -0-PSF POUNDS PER SQUARE FOOT CONSTR CONSTRUCTION WALL STRUCTURE POUNDS PER SQUARE INCH PSI DOUBLE DBL PT PRESSURE TREATED LEASE AREA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ DC DIRECT CURRENT PWR POWER CABINET PROPERTY LINE (PL) DEPT DEPARTMENT QTY QUANTITY DOUGLAS FIR DF _____ SETBACKS RAD RADIUS DIAMETER DIA RECT RECTIFIER ICE BRIDGE DIAG DIAGONAL REF REFERENCE CABLE TRAY DIM DIMENSION REINF REINFORCEMENT DWG DRAWING WATER LINE — w — — w — w REQ'D REQUIRED DWL DOWEL RET REMOTE ELECTRIC TILT UNDERGROUND POWER — UGP — UGP — UGP — UGP — UGP — EA EACH RF RADIO FREQUENCY UNDERGROUND TELCO – UGT —– UGT —– UGT —– UGT —– EC ELECTRICAL CONDUCTOR RIGID METALLIC CONDUIT RMC EL. ELEVATION OVERHEAD POWER - 0HP-RRH REMOTE RADIO HEAD ELEC ELECTRICAL RRU REMOTE RADIO UNIT OVERHEAD TELCO — онт — — онт — - OHT ---— онт — ELECTRICAL METALLIC TUBING EMT RWY RACEWAY ENG ENGINEER UNDERGROUND TELCO/POWER UGT/P ---- UGT/P ----- UGT/P -----SCH SCHEDULE EQ EQUAL ABOVE GROUND POWER - AGP SHT SHEET EXP EXPANSION SIAD SMART INTEGRATED ACCESS DEVICE ABOVE GROUND TELCO — AGT —— AGT —— AGT —— AGT —— AGT —— EXT EXTERIOR SIM SIMILAR EW EACH WAY ABOVE GROUND TELCO/POWER — AGT/P —— AGT/P —— AGT/P —— AGT/P —— SPEC SPECIFICATION FAB FABRICATION WORKPOINT W.P. SQ SQUARE FF FINISH FLOOR STAINLESS STEEL SS $\begin{pmatrix} xx \\ x-x \end{pmatrix}$ FG FINISH GRADE SECTION REFERENCE STD STANDARD FIF FACILITY INTERFACE FRAME STL STEEL FIN FINISH(ED) TEMP TEMPORARY FLR FLOOR THICKNESS THK FOUNDATION FDN DETAIL REFERENCE TMA TOWER MOUNTED AMPLIFIER FOC FACE OF CONCRETE TN TOE NAIL FOM FACE OF MASONRY TOP OF ANTENNA TOA FOS FACE OF STUD TOC TOP OF CURB FOW FACE OF WALL TOF TOP OF FOUNDATION FS FINISH SURFACE TOP TOP OF PLATE (PARAPET) FT FOOT TOS TOP OF STEEL FTG FOOTING TOW TOP OF WALL GA GAUGE TVSS TRANSIENT VOLTAGE SURGE SUPPRESSION GEN GENERATOR TYP TYPICAL GFCI GROUND FAULT CIRCUIT INTERRUPTER UG UNDERGROUND GLB GLUE LAMINATED BEAM UNDERWRITERS LABORATORY UL GLV GALVANIZED UNO UNLESS NOTED OTHERWISE GPS GLOBAL POSITIONING SYSTEM UMTS UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM GND GROUND UPS UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) GSM GLOBAL SYSTEM FOR MOBILE VIF VERIFIED IN FIELD HDG HOT DIPPED GALVANIZED WIDE w HDR HEADER HGR W/ WITH HANGER WD WOOD HVAC HEAT/VENTILATION/AIR CONDITIONING WP WEATHERPROOF HT HEIGHT WT WEIGHT INTERIOR GROUND RING IGR **LEGEND ABBREVIATIONS**

AB

ABV

AC

ADDL

AFF

AFG

-

ANCHOR BOLT

ALTERNATING CURRENT

ABOVE FINISHED FLOOR

ABOVE FINISHED GRADE

ABOVE

ADDITIONAL

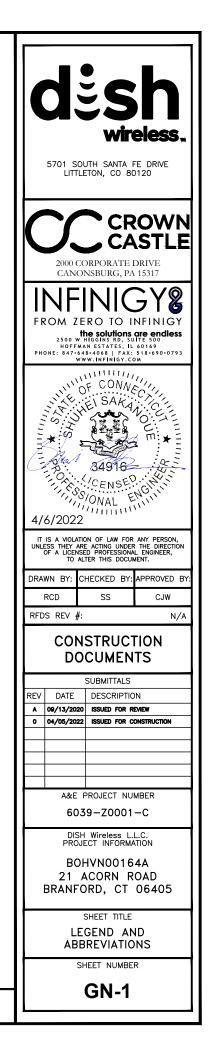
IN

INT

LB(S)

LF

LTE


INCH

INTERIOR

POUND(S)

LINEAR FEET

LONG TERM EVOLUTION

		SIGN TYPES
TYPE	COLOR	COLOR CODE PURPOSE
INFORMATION	GREEN	"INFORMATIONAL SIGN" TO NOTIFY OTHERS OF SITE OWNERSHIP & CONTACT NUMBER AND POTENTIAL RF EXPOSURE.
NOTICE	BLUE	"NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
CAUTION	YELLOW	"CAUTION BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
WARNING	ORANGE/RED	"WARNING BEYOND THIS POINT" RF FIELDS AT THIS SITE EXCEED FCC RULES FOR HUMAN EXPOSURE. FAILURE TO OBEY ALL POSTEI SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS COULD RESULT IN SERIOUS INJURY. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)

Image:	, [
image:		R COLOR CODE PURPOSE			
<form></form>		"NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS PO POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF	INT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS		wireless.
<text><section-header><section-header><section-header><form></form></section-header></section-header></section-header></text>	CAUTION YELLO	W POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF I COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 C	ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS SFR-1.1307(b)	This is an access point to an	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
<form></form>	WARNING ORANGE	RED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONI COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY	VALUED FOULD RESULT IN SERIOUS INJURY. IN ACCORDANCE WITH FEDERAL Y EMISSIONS 47 CFR-1.1307(b)		
<form></form>	- RF SIGNAGE PLACEM	ENT SHALL FOLLOW THE RECOMMENDATIONS OF AN EXISTING EME RE	PORT, CREATED BY A THIRD PARTY PREVIOUSLY AUTHORIZED BY DISH	area with transmitting antennas.	
<text><text><text><text><text><section-header><image/><image/><image/></section-header></text></text></text></text></text>	A) IF THE INFO B) IF THE INFO	RMATION SIGN IS A STICKER, IT SHALL BE PLACED ON EXISTING DISI RMATION SIGH IS A METAL SIGN IT SHALL BE PLACED ON EXISTING I	H Wireless L.L.C EQUIPMENT CABINET. DISH Wireless L.L.C H-FRAME WITH A SECURE ATTACH METHOD.		
<text><text><text><text><text><section-header></section-header></text></text></text></text></text>	FURTHER INSTRUCTION		ENTS; PLEASE CONTACT DISH WIREless LLC. CONSTRUCTION MANAGER FOR		
<text></text>	1. FOR DISH Wireless		,		FROM ZERO TO INFINIGY
<text><text><text><section-header><section-header><image/></section-header></section-header></text></text></text>					PHONE: 847-648-4068 FAX: 518-690-0793
<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	•				OF CONNECTION
<section-header><section-header><section-header><image/><image/></section-header></section-header></section-header>	6. ALL SIGNS TO BE	8.5"x11" AND MADE WITH 0.04" OF ALUMINUM MATERIAL			SAFA OCT
Argenting Arternaio Transmitting Arternaio Radio frequency fields beyond this point IMAY Sception for Coccupational expounce field Cocupational expounce fields beyond this point IMAY Sception for Coccupational expounce field Call the DBH Winesse LLC, NOC at 1988-824-887 rate mBH Win				THIS SIGN IS FOR REFERENCE PURPOSES ONLY	
Argenting Arternaio Transmitting Arternaio Radio frequency fields beyond this point IMAY Sception for Coccupational expounce field Cocupational expounce fields beyond this point IMAY Sception for Coccupational expounce field Call the DBH Winesse LLC, NOC at 1988-824-887 rate mBH Win					34916 Q
Image: And a star guidelines for working in radio frequency environments. Call the DBH Wheese LLC, NOC at 1488-824-8677 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the prior.					SONAL ENVIL
Image: And a star guidelines for working in radio frequency environments. Call the DBH Wheese LLC, NOC at 1488-824-8677 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the prior to working is not in the DBH Wheese LLC (NOC at 1488-824-6877 prior to working is not in the prior.					4/6/2022
Image: Note: Second		UTIUL			IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
Image: And December 2 Transmitting Arisema(s) Ratio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency fields beyond this point. Site ID:					DRAWN BY: CHECKED BY: APPROVED BY:
Transmitting Antenna(s) Transmitting Antenna(s) <td></td> <td></td> <td></td> <td></td> <td></td>					
Transmitting Artenna(s) Radio frequency fields bayond this point MAY EXCEED the FCC Occupational exposure limit. Obey all posted signs and site guidelines for working in radio frequency environments. Call the DISH Wireless LLC, NOC at 1486-824-6874 prior to working beyond this point Bo BDL00011C Bo BDL00011C <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
Transmitting Antenna(s) Transmitting Antenna(s) Radio frequency flexib spond this point MAY ECCEED the FCC Occupational exposure limit. Transmitting Antenna(s) Obey all posted signs and sits guidelines for working in radio frequency environments. Bailo frequency flexib spond this point. Sits ID:					
Transmitting Antenna(s) Transmitting Antenna(s) Transmitting Antenna(s) Radio frequency fields beyond this point. Obey all posted signs and site guidelines for working in radio frequency environments. Transmitting Antenna(s) Radio frequency fields beyond this point. Call the DISH Wireless LLC. NOC at 1-866-624-6874 prior to working beyond this point. Obey all posted signs and site guidelines for working beyond this point. Transmitting Antenna(s) Mate Frequency fields beyond this point. Site ID: BOBDL00011C BobDL00011C BobDL00011C Mate Frequency fields beyond this point. Site ID: BOBDL00011C Site ID: BOBDL00011C Site ID: BOBDL00011C RF Call the DISH Wireless LLC. NOC at 1-866-624-6874 Site ID: BOBDL00011C Site ID: BOBDL00011C BOBDL00011C BOBDL00011C Site ID: BOBDL00011C Site ID: BOBDL00011C RF GESSh Site ID: BOBDL00011C Site ID: BOBDL00011C Site ID: BOBDL00011C RF GESSh Site ID: BOBDL00011C Site ID: BOBDL00011C Site ID: BOBDL00011C RF GESSh Site ID: BOBDL00011C Site ID: Site ID: Site ID: <td></td> <td></td> <td></td> <td></td> <td>REV DATE DESCRIPTION</td>					REV DATE DESCRIPTION
Radio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit. No Obey all posted signs and site guidelines for working in radio frequency environments. No Call the DISH Wireless LLC. NOC at 1-866-624-6874 prior to working beyond this point. Site ID:	Transmittin	a Antenna(s)	Transmitting Antenna(s)	Transmitting Antenna(s)	, ,
EXCEED the FCC Occupational exposure limit.			×.	× · · · · · · · · · · · · · · · · · · ·	
Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency environments. Obey all posted signs and site guidelines for working in radio frequency envi			EXCEED the FCC Occupational exposure lim	nit. $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
Call the DISH Wireless LL.C. NOC at 1-866-624-6874 prior to working beyond this point. Site ID:					
prior to working beyond this point. prior to working beyond th	-				DISH Wireless L.L.C. PROJECT INFORMATION
ste ib: BOBDLOOOTTC desh Site ib: BOBDLOOOTTC ste ib: BOBDLOOOTC ste ib: BOBDLOOTC ste ib: BOBDLOOTC					21 ACORN ROAD
děsh f děsh f děsh f GN-2	Site ID:	BOBDL00011C	Site ID: BOBDL00011C	Site ID: BOBDL00011C	
GN-2	\backslash	dish	[₽] dềsh	dish ^f	RF SIGNAGE
RF_SIGNAGE					
			RF SIGNAGE		GN-2

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELSS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELS LL.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

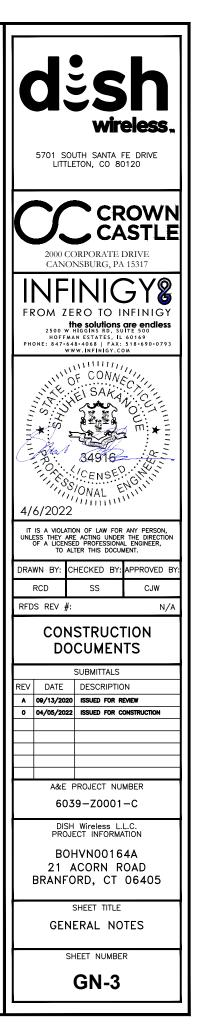
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.


10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (I'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES, AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL), THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

TIE WRAPS ARE NOT ALLOWED.

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW. THWN. THWN-2, XHHW. XHHW-2, THW. THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW. THWN. THWN-2. XHHW. XHHW-2. THW. THW-2. RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

16.

18. OCCURS OR FLEXIBILITY IS NEEDED.

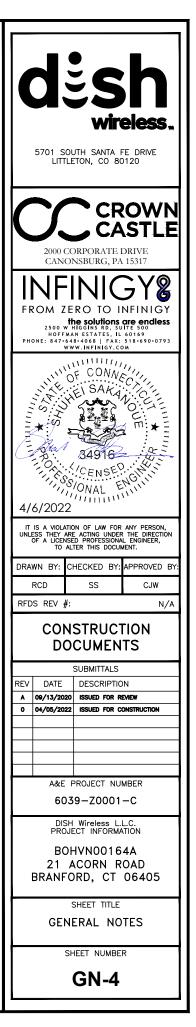
ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19. SCREW FITTINGS ARE NOT ACCEPTABLE. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. NEC. 21 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS

(WIREMOLD SPECMATE WIREWAY).

22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).

23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.

EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.


25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.

THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.

- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

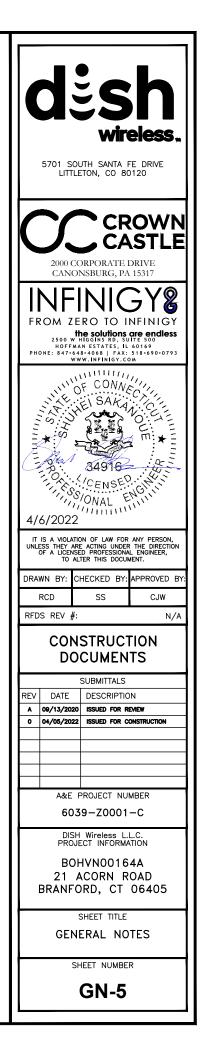
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.


17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Date: September 23, 2021

Crown Castle 2000 Corporate Drive Canonsburg. PA 15317 (724) 416-2000

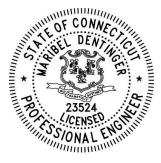
Subject:	Structural Analysis Report	
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number: Site Name:	BOHVN00164A CT-CCI-T-876316
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	876316 SECONDINO PROPERTY 645173 1964043 553381 Rev. 1
Engineering Firm Designation:	Crown Castle Project Number:	1964043
Site Data:	21 Acorn Road, BRANFORD, NE Latitude <i>41° 17' 35.06''</i> , Longitud 147 Foot - Monopole Tower	•

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity-94.0%


This analysis utilizes an ultimate 3-second gust wind speed of 122 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Kibreab Gebremariam

Respectfully submitted by:

Lenti Maribel Dentinger, P.E. Senior Project Engineer

Maribel Dentinger Digitally signed by Maribel Dentinger Date: 2021.09.23 18:04:12 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 147 ft Monopole tower designed by SUMMIT. The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision: Risk Category:	TIA-222-H II
Wind Speed:	122 mph
Exposure Category:	С
Topographic Factor:	1
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
126.0	126.0	3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
		3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
		3	alcatel lucent	1900MHZ RRH (65MHZ)			
		3	alcatel lucent	800 EXTERNAL NOTCH FILTER			
		3	alcatel lucent	800MHZ RRH			
		3	alcatel lucent	TD-RRH8X20-25			
147.0	147.0	9	rfs celwave	ACU-A20-N	1	5/8	
		147.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	3	1-1/4
			3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe		
		1	tower mounts	Miscellaneous [NA 510-3]	-		
		1	tower mounts	Platform Mount [LP 1201-1]			
	137.0	3	ericsson	RADIO 4415 B66A			
		3	ericsson	RADIO 4424 B25_TMOV1			
136.0		137.0	3 ericsson	ericsson	RADIO 4449 B71 B85A_T- MOBILE	3	1-5/8
			3	ericsson	AIR6449 B41_T-MOBILE w/ Mount Pipe		1-0/0
		3	rfs celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)					
		3	rfs celwave	APXVAALL24_43-U- NA20_TMO w/ Mount Pipe							
	136.0	1	tower mounts	RMQP-469-HK							
118.0	118.0	2	raycap	RRFDC-3315-PF-48	2	1-1/4					
		2	antel	LPA-80063/6CF w/ Mount Pipe							
		2	antel	LPA-80080/4CF w/ Mount Pipe							
		3	commscope	CBC78T-DS-43-2X							
		6	commscope	JAHH-65B-R3B w/ Mount Pipe							
		2	rfs celwave	APL868013-42T0 w/ Mount Pipe							
115.0	116.0	3	samsung telecommunications	RFV01U-D1A	6	1-5/8					
		3	samsung telecommunications	RFV01U-D2A							
		3	VZW	Sub6 Antenna - VZS01 w/ Mount Pipe							
	115.0	1	tower mounts	Platform Mount [LP 714-1]							
		3	andrew	SBNHH-1D65A w/ Mount Pipe							
		3	cci antennas	DMP65R-BU4D w/ Mount Pipe							
				[3	cci antennas	TPA-65R-BU4AA-K w/ Mount Pipe			
		3	ericsson	RADIO 4449 B5/B12							
		3ericssonRRUS 32 B2_CCIV23ericssonRRUS 32 B30		RRUS 32 B2_CCIV2							
				0	17/64						
						ĺ	3	ericsson	RRUS 4426 B66	2	17/64 3/8
106.0	106.0	3	ericsson	RRUS 4478 B14		3/4					
		106.0	100.0	100.0	100.0	100.0	6	powerwave technologies	7020.00	2 4 12	7/8 1-1/4
		3	powerwave technologies	7770.00 w/ Mount Pipe							
		6	powerwave technologies	LGP21401							
		3	raycap	DC6-48-60-18-8F							
		1	tower mounts	Platform Mount [LP 1201- 1_KCKR-HR-1]							
	77.0	1	kathrein	OG-860/1920/GPS-A							
76.0	11.0	1	lucent	KS24019-L112A	-	-					
	76.0	1	tower mounts	Side Arm Mount [SO 701-3]							

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1529736	CCISITES
4-POST-MODIFICATION INSPECTION	2031904	CCISITES
4-POST-MODIFICATION INSPECTION	2417887	CCISITES
4-POST-MODIFICATION INSPECTION	7151513	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1632435	CCISITES
4-TOWER MANUFACTURER DRAWINGS	1632399	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	6823303	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2251030	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - S	ection Capacit	y (Summary)

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
147 - 142	Pole	TP22.85x22x0.25	Pole	4.7%	Pass
142 - 137	Pole	TP23.7x22.85x0.25	Pole	8.6%	Pass
137 - 132	Pole	TP24.55x23.7x0.25	Pole	16.0%	Pass
132 - 127	Pole	TP25.4x24.55x0.25	Pole	22.6%	Pass
127 - 122	Pole	TP26.251x25.4x0.25	Pole	31.0%	Pass
122 - 117	Pole	TP27.101x26.251x0.25	Pole	38.8%	Pass
117 - 112	Pole	TP27.951x27.101x0.25	Pole	49.1%	Pass
112 - 108.75	Pole	TP29.141x27.951x0.25	Pole	55.6%	Pass
108.75 - 103.75	Pole	TP28.854x28.003x0.3125	Pole	53.4%	Pass
103.75-98.75	Pole	TP29.704x28.854x0.3125	Pole	61.9%	Pass

98.75-93.75	Pole	TP30.554x29.704x0.3125	Pole	69.6%	Pass
93.75-89.67	Pole	TP31.248x30.554x0.3125	Pole	75.3%	Pass
89.67-89.42	Pole	TP31.291x31.248x0.3125	Pole	75.6%	Pass
89.42-88.08	Pole	TP31.518x31.291x0.3125	Pole	77.5%	Pass
88.08-87.83	Pole + Reinf.	TP31.56x31.518x0.5125	Reinf. 5 Tension Rupture	65.8%	Pass
87.83-85.83	Pole + Reinf.	TP31.9x31.56x0.5125	Reinf. 5 Tension Rupture	68.2%	Pass
85.83-85.58	Pole + Reinf.	TP31.943x31.9x0.5125	Reinf. 3 Tension Rupture	68.5%	Pass
85.58-84.5	Pole + Reinf.	TP32.127x31.943x0.5125	Reinf. 5 Tension Rupture	69.8%	Pass
84.5 - 84.25	Pole + Reinf.	TP32.17x32.127x0.475	Reinf. 3 Tension Rupture	72.1%	Pass
84.25-79.25	Pole + Reinf.	TP33.02x32.17x0.4625	Reinf. 3 Tension Rupture	77.7%	Pass
79.25-78	Pole + Reinf.	TP33.955x33.02x0.4625	Reinf. 3 Tension Rupture	79.1%	Pass
78-72.75	Pole + Reinf.	TP33.5x32.607x0.5625	Reinf. 2 Tension Rupture	75.6%	Pass
72.75-67.75	Pole + Reinf.	TP34.35x33.5x0.5625	Reinf. 2 Tension Rupture	79.8%	Pass
67.75-63.08	Pole + Reinf.	TP35.144x34.35x0.55	Reinf. 2 Tension Rupture	83.4%	Pass
63.08-62.83	Pole + Reinf.	TP35.187x35.144x0.7125	Reinf. 10 Tension Rupture	68.4%	Pass
62.83-57.83	Pole + Reinf.	TP36.037x35.187x0.7	Reinf. 10 Tension Rupture	71.6%	Pass
57.83-52.83	Pole + Reinf.	TP36.887x36.037x0.6875	Reinf. 10 Tension Rupture	74.7%	Pass
52.83-47.83	Pole + Reinf.	TP37.737x36.887x0.6875	Reinf. 10 Tension Rupture	77.5%	Pass
47.83-47.5	Pole + Reinf.	TP38.601x37.737x0.675	Reinf. 10 Tension Rupture	77.7%	Pass
47.5-42.5	Pole + Reinf.	TP37.894x37.043x0.75	Reinf. 10 Tension Rupture	76.2%	Pass
42.5-37.5	Pole + Reinf.	TP38.744x37.894x0.7375	Reinf. 10 Tension Rupture	78.5%	Pass
37.5-32.75	Pole + Reinf.	TP39.551x38.744x0.7375	Reinf. 10 Tension Rupture	80.6%	Pass
32.75-32.5	Pole + Reinf.	TP39.594x39.551x0.7875	Reinf. 3 Tension Rupture	74.3%	Pass
32.5-27.5	Pole + Reinf.	TP40.444x39.594x0.775	Reinf. 3 Tension Rupture	76.1%	Pass
27.5-22.5	Pole + Reinf.	TP41.294x40.444x0.7625	Reinf. 8 Tension Rupture	77.9%	Pass
22.5-17.5	Pole + Reinf.	TP42.144x41.294x0.7625	Reinf. 8 Tension Rupture	79.6%	Pass
17.5-12.5	Pole + Reinf.	TP42.995x42.144x0.75	Reinf. 8 Tension Rupture	81.2%	Pass
12.5-8.08	Pole + Reinf.	TP43.746x42.995x0.7375	Reinf. 8 Tension Rupture	82.5%	Pass
8.08-7.83	Pole + Reinf.	TP43.788x43.746x0.8	Reinf. 3 Tension Rupture	80.4%	Pass
7.83-6.42	Pole + Reinf.	TP44.029x43.788x0.7875	Reinf. 3 Tension Rupture	80.8%	Pass
6.42-6.17	Pole + Reinf.	TP44.071x44.029x0.775	Reinf. 3 Tension Rupture	81.1%	Pass
6.17-3.25	Pole + Reinf.	TP44.567x44.071x0.7625	Reinf. 3 Tension Rupture	81.9%	Pass
3.25-3	Pole + Reinf.	TP44.61x44.567x0.7875	Reinf. 1 Tension Rupture	77.2%	Pass
3 - 2	Pole + Reinf.	TP44.78x44.61x0.7875	Reinf. 1 Tension Rupture	77.4%	Pass
2 - 1.75	Pole + Reinf.	TP44.822x44.78x0.775	Reinf. 11 Tension Yield	73.8%	Pass
1.75-0	Pole + Reinf.	TP45.12x44.822x0.775	Reinf. 11 Tension Yield	74.2%	Pass
				Summary	
			Pole	77.5%	Pass
			Reinforcement	83.4%	Pass
			Overall	83.4%	Pass

Table 5 -	Tower Cor	nponent	Stresses v	s. Capacity	- I C7
Table J -		ponent		s. Capacity	

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	94.0	Pass
1	Base Plate	0	78.9	Pass
1	Base Foundation (Structure)	0	54.3	Pass
1	Base Foundation (Soil Interaction)	0	56.6	Pass

Structure Rating (max from all components) = 94%
--

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Section	464	46 64 3424 40 9	#G 9 38	37	36	35	34	33 32	31	30 29	28	27	26	25 24	23	22 21	1 20	1987	ଗାସ୍ତି43 12	11	10	<u></u>	8	7	9	2	4	e	7	-
Length (ft)	3 0.	205-202-	0.00000.90.00.054.42	2 5.00	5.00	5.00		5.000 254.75	5 5.00	. 3700	8 5.00	5.00	5.00 0.	0.254.67	5.00	5.2600	50001	00.2883	2085005354.0	.08 5.00	5.00) 5.007.00		5.00 5	5.00	5.00 5	5.00 5.	5.00 5.	5.00 5	5.00
Number of Sides		1818588181838	888 18	18	18	18	18	18 18	18	18 18	18	18	18	18 18	18	18 16	18 18	·	88 8181 83 8 18	3 18	18	18	18	18	18	18	18	18	18	18
Thickness (in)	0.70052	CON BECC	0.700000000000000000000000000000000000	75 0.7500	0 0.7625	25 0.7625		0.775078057375		0.73705750006750	50 0.6875	5 0.6875		0.70007105500		0.5626.5626.4625		260K60E	0.4620003000000000000000000000000000000000	25 0.3125		0.3126.3125 0.2500		0.2500 0.2	0.2500 0.	0.2500 0.2	0.2500 0.2	0.2500 0.2	0.2500 0.	0.2500
Socket Length (ft)	(#)						-			4.75	10					4.25	25						3.75			-				
Top Dia (in)	44.850	E PODA 2	CBB2B 0-	46 42.144	14 41.294	42 40.44	40 39.55	44 448006664323 6946421444441294240.444039.5 33 53355867437373737	37 37.890	350487373	N	36.8871 36.0369 35.18857 34.2502 33.5080 60 23.0198	9 35.16%	57-342350	12 33.500	B 60 33 0		393129900	32 1633 29 28 55 29 7039 28 55 00 3 27 9508	54129.70;	39 28.852	36.003.427		.1007 26.	.2506 25	27.1007 26.2506 25.4005 24.5504 23.7002 22.8501 22.0000	5504 23.	7002 22.	8501 22	0000
Bot Dia (in)	4542	7.960.80	C	56 42.994	16 42.14	44 41.29	42 40.44	45.448086844075642.994642.1444441.294240.44800399551438.7437838560	14 38.74	37833666	0	37.7372 36.8871	1 36.03%	36.0369 867 442 34.3582 5000.9550	12 34 350	12 50 00 9		138169386	33.0 1938 159 281 162 281 10 15 24 1	18430.55	41 29.702	29.70 29 .853@9.1410		9508 27	.1007 26	27.9508 27.1007 26.2506 25.4005 24.5504 23.7002	4005 24	5504 23.	7002 22	22.8501
Grade						-		-							A6	A607-60	-													
Weight (K)	31 20 600111 10 0 51	00111-10	0.00 1 1.5	1.7	1.7	1.7	1.6	§ 0 <mark>,1 1.4</mark>	1.5	15 1.4	1.3	1.3	1.3	0,1 0.9	1.0	1.0 0.9	9.0.8		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0.5	0.5	0.5	0.5	0.4 (0.4	0.3	0.3 C	0.3 C	0.3	0.3
	<u>0.0 ft</u>	<u>3.3 ft</u> 1.8 ft	<u>8.1 ft</u> 6.4 ft	<u>12.5 ft</u>	<u>17.5 ft</u>	22.5 ft	<u>27.5 ft</u>	<u>32.8 ft</u>	<u>37.5 ft</u>	<u>42.8 ft</u>	<u>47.8 ft</u>	<u>52.8 ft</u>	<u>57.8 ft</u>	<u>63.1 ft</u>	<u>67.8 ft</u>	<u>73.8 ft</u>	<u>79.3 ft</u>	<u>85.8 ft</u> 84.3 ft	<u>89.7 ft</u> <u>88.1 ft</u>	<u>93.8 ft</u>	<u>98.8 ft</u>	<u>105.0 ft</u>	<u>112.0 ft</u>	<u>117.0 ft</u>	<u>122.0 ft</u>	<u>127.0 ft</u>	<u>132.0 ft</u>	<u>137.0 ft</u>	<u>142.0 ft</u>	<u>147.0 ft</u>
							₩								H						-	┠╟╫								
	Ⅲ																	₩							╢		-			∎ I
																							_	-						

 \bigcirc

ALL REACTIONS ARE FACTORED

AXIAL 90 K

J TORQUE 1 kip-ft 50 mph WIND - 1.0000 in ICE

> AXIAL 64 K

TORQUE 4 kip-ft REACTIONS - 122 mph WIND

MOMENT

MOMENT

4043 kip-ft

1030 kip-ft

SHEAR

9K (

SHEAR

37 K |

		MATERIAL	Fu GRADE Fy Fu 5 ksi			
GRADE	Fy	Fu	GRADE	Fy	Fu	
A607-60	60 ksi	75 ksi				

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
 Tower designed for a 122 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 83.4%

	Crown Castle	^{Job:} BU 876316		
CROWN		Project:		
CASILE	Canonsburg. PA 15317		^{Drawn by:} KGebremariam	App'd:
The pathway to Possible	Phone: (724) 416-2000	^{Code:} TIA-222-H	Date: 09/23/21	Scale: NTS
		Path: C:\Users\KGebremariam\Desktop\W	ork Area\876316\WO 1964043 - SA\Prod\876316-R.e	Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 115.00 ft.
- Basic wind speed of 122 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- TOWER RATING: 83.4%.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios
 √ Use Code Safety Factors - Guys
 Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- ✓ Assume Rigid Index Plate
 ✓ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- $\sqrt{}$ Bypass Mast Stability Checks $\sqrt{}$ Use Azimuth Dish Coefficients
- $\sqrt{\frac{1}{2}}$ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

 ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	147.00-142.00	5.00	0.00	18	22.0000	22.8501	0.2500	1.0000	A607-60
L2	142.00-137.00	5.00	0.00	18	22.8501	23.7002	0.2500	1.0000	(60 ksi) A607-60 (60 ksi)
L3	137.00-132.00	5.00	0.00	18	23.7002	24.5504	0.2500	1.0000	À607-60
L4	132.00-127.00	5.00	0.00	18	24.5504	25.4005	0.2500	1.0000	(60 ksi) A607-60 (60 koi)
L5	127.00-122.00	5.00	0.00	18	25.4005	26.2506	0.2500	1.0000	(60 ksi) A607-60 (60 ksi)
L6	122.00-117.00	5.00	0.00	18	26.2506	27.1007	0.2500	1.0000	A607-60 (60 ksi)
L7	117.00-112.00	5.00	0.00	18	27.1007	27.9508	0.2500	1.0000	A607-60 (60 ksi)
L8	112.00-105.00	7.00	3.75	18	27.9508	29.1410	0.2500	1.0000	A607-60 (60 ksi)
L9	105.00-103.75	5.00	0.00	18	28.0034	28.8536	0.3125	1.2500	À607-60 (60 ksi)
L10	103.75-98.75	5.00	0.00	18	28.8536	29.7039	0.3125	1.2500	A607-60 (60 ksi)
L11	98.75-93.75	5.00	0.00	18	29.7039	30.5541	0.3125	1.2500	A607-60 (60 ksi)
L12	93.75-89.67	4.08	0.00	18	30.5541	31.2484	0.3125	1.2500	A607-60 (60 ksi)
L13	89.67-89.42	0.25	0.00	18	31.2484	31.2909	0.3125	1.2500	A607-60 (60 ksi)
L14 L15	89.42-88.08 88.08-87.83	1.33 0.25	0.00 0.00	18 18	31.2909 31.5177	31.5177 31.5603	0.3125 0.5125	1.2500 2.0500	A607-60 (60 ksi) A607-60
L15	87.83-85.83	2.00	0.00	18	31.5603	31.9003	0.5125	2.0500	(60 ksi) A607-60
L17	85.83-85.58	0.25	0.00	18	31.9003	31.9429	0.5125	2.0500	(60 ksi) A607-60
L18	85.58-84.50	1.08	0.00	18	31.9429	32.1270	0.5125	2.0500	(60 ksi) A607-60
L19	84.50-84.25	0.25	0.00	18	32.1270	32.1695	0.4750	1.9000	(60 ksi) A607-60
L20	84.25-79.25	5.00	0.00	18	32.1695	33.0198	0.4625	1.8500	(60 ksi) A607-60
L21	79.25-73.75	5.50	4.25	18	33.0198	33.9550	0.4625	1.8500	(60 ksi) A607-60
L22	73.75-72.75	5.25	0.00	18	32.6073	33.5000	0.5625	2.2500	(60 ksi) A607-60
L23	72.75-67.75	5.00	0.00	18	33.5000	34.3502	0.5625	2.2500	(60 ksi) A607-60
L24	67.75-63.08	4.67	0.00	18	34.3502	35.1442	0.5500	2.2000	(60 ksi) A607-60 (60 kai)
L25	63.08-62.83	0.25	0.00	18	35.1442	35.1867	0.7125	2.8500	(60 ksi) A607-60 (60 ksi)
L26	62.83-57.83	5.00	0.00	18	35.1867	36.0369	0.7000	2.8000	A607-60 (60 ksi)
L27	57.83-52.83	5.00	0.00	18	36.0369	36.8871	0.6875	2.7500	A607-60 (60 ksi)
L28	52.83-47.83	5.00	0.00	18	36.8871	37.7372	0.6875	2.7500	A607-60 (60 ksi)
L29	47.83-42.75	5.08	4.75	18	37.7372	38.6010	0.6750	2.7000	A607-60 (60 ksi)
L30	42.75-42.50	5.00	0.00	18	37.0433	37.8935	0.7500	3.0000	À607-60 (60 ksi)
L31	42.50-37.50	5.00	0.00	18	37.8935	38.7437	0.7375	2.9500	À607-60 (60 ksi)
L32	37.50-32.75	4.75	0.00	18	38.7437	39.5514	0.7375	2.9500	A607-60 (60 ksi)
L33	32.75-32.50	0.25	0.00	18	39.5514	39.5939	0.7875	3.1500	A607-60 (60 ksi)
L34	32.50-27.50	5.00	0.00	18	39.5939	40.4440	0.7750	3.1000	A607-60 (60 ksi)
L35	27.50-22.50	5.00	0.00	18	40.4440	41.2942	0.7625	3.0500	A607-60

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
									(60 ksi)
L36	22.50-17.50	5.00	0.00	18	41.2942	42.1444	0.7625	3.0500	A607-60
									(60 ksi)
L37	17.50-12.50	5.00	0.00	18	42.1444	42.9946	0.7500	3.0000	A607-60
									(60 ksi)
L38	12.50-8.08	4.42	0.00	18	42.9946	43.7456	0.7375	2.9500	A607-60
									(60 ksi)
L39	8.08-7.83	0.25	0.00	18	43.7456	43.7881	0.8000	3.2000	A607-60
									(60 ksi)
L40	7.83-6.42	1.42	0.00	18	43.7881	44.0289	0.7875	3.1500	A607-60
									(60 ksi)
L41	6.42-6.17	0.25	0.00	18	44.0289	44.0714	0.7750	3.1000	A607-60
									(60 ksi)
L42	6.17-3.25	2.92	0.00	18	44.0714	44.5674	0.7625	3.0500	A607-60
									(60 ksi)
L43	3.25-3.00	0.25	0.00	18	44.5674	44.6099	0.7875	3.1500	A607-60
									(60 ksi)
L44	3.00-2.00	1.00	0.00	18	44.6099	44.7799	0.7875	3.1500	A607-60
									(60 ksi)
L45	2.00-1.75	0.25	0.00	18	44.7799	44.8224	0.7750	3.1000	A607-60
									(60 ksi)
L46	1.75-0.00	1.75		18	44.8224	45.1200	0.7750	3.1000	A607-60
									(60 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I,	r	С	I/C	J	lt/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	22.3008	17.2586	1031.4832	7.7212	11.1760	92.2945	2064.3237	8.6310	3.4320	13.728
	23.1641	17.9332	1157.2217	8.0230	11.6079	99.6929	2315.9661	8.9683	3.5816	14.326
L2	23.1641	17.9332	1157.2217	8.0230	11.6079	99.6929	2315.9661	8.9683	3.5816	14.326
	24.0273	18.6078	1292.7845	8.3248	12.0397	107.3766	2587.2702	9.3057	3.7312	14.925
L3	24.0273	18.6078	1292.7845	8.3248	12.0397	107.3766	2587.2702	9.3057	3.7312	14.925
	24.8905	19.2823	1438.5414	8.6266	12.4716	115.3455	2878.9756	9.6430	3.8809	15.523
L4	24.8905	19.2823	1438.5414	8.6266	12.4716	115.3455	2878.9756	9.6430	3.8809	15.523
	25.7538	19.9569	1594.8617	8.9284	12.9034	123.5997	3191.8219	9.9803	4.0305	16.122
L5	25.7538	19.9569	1594.8617	8.9284	12.9034	123.5997	3191.8219	9.9803	4.0305	16.122
	26.6170	20.6315	1762.1150	9.2302	13.3353	132.1391	3526.5487	10.3177	4.1801	16.72
L6	26.6170	20.6315	1762.1150	9.2302	13.3353	132.1391	3526.5487	10.3177	4.1801	16.72
	27.4802	21.3060	1940.6710	9.5320	13.7672	140.9638	3883.8955	10.6550	4.3297	17.319
L7	27.4802	21.3060	1940.6710	9.5320	13.7672	140.9638	3883.8955	10.6550	4.3297	17.319
	28.3435	21.9806	2130.8991	9.8338	14.1990	150.0736	4264.6021	10.9924	4.4793	17.917
L8	28.3435	21.9806	2130.8991	9.8338	14.1990	150.0736	4264.6021	10.9924	4.4793	17.917
	29.5520	22.9250	2417.5313	10.2563	14.8036	163.3067	4838.2436	11.4647	4.6888	18.755
L9	29.0347	27.4659	2660.7625	9.8303	14.2257	187.0387	5325.0261	13.7356	4.3786	14.012
	29.2505	28.3092	2913.4545	10.1321	14.6576	198.7668	5830.7426	14.1573	4.5282	14.49
L10	29.2505	28.3092	2913.4545	10.1321	14.6576	198.7668	5830.7426	14.1573	4.5282	14.49
	30.1139	29.1526	3181.6592	10.4339	15.0896	210.8516	6367.5048	14.5791	4.6779	14.969
L11	30.1139	29.1526	3181.6592	10.4339	15.0896	210.8516	6367.5048	14.5791	4.6779	14.969
	30.9772	29.9959	3465.8386	10.7358	15.5215	223.2931	6936.2377	15.0008	4.8275	15.448
L12	30.9772	29.9959	3465.8386	10.7358	15.5215	223.2931	6936.2377	15.0008	4.8275	15.448
	31.6822	30.6845	3710.0702	10.9822	15.8742	233.7173	7425.0221	15.3452	4.9497	15.839
L13	31.6822	30.6845	3710.0702	10.9822	15.8742	233.7173	7425.0221	15.3452	4.9497	15.839
	31.7254	30.7267	3725.3861	10.9973	15.8958	234.3633	7455.6741	15.3663	4.9572	15.863
L14	31.7254	30.7267	3725.3861	10.9973	15.8958	234.3633	7455.6741	15.3663	4.9572	15.863
	31.9557	30.9517	3807.8246	11.0779	16.0110	237.8254	7620.6597	15.4788	4.9971	15.991
L15	31.9249	50.4354	6125.5276	11.0069	16.0110	382.5822	12259.115 3	25.2225	4.6451	9.064
	31.9681	50.5046	6150.7583	11.0220	16.0326	383.6406	12309.610 0	25.2571	4.6526	9.078
L16	31.9681	50.5046	6150.7583	11.0220	16.0326	383.6406	12309.610 0	25.2571	4.6526	9.078
	32.3134	51.0578	6355.1029	11.1427	16.2054	392.1602	12718.568 0	25.5338	4.7125	9.195
L17	32.3134	51.0578	6355.1029	11.1427	16.2054	392.1602	12718.568	25.5338	4.7125	9.195
nxTowe	r Report - v	ersion 8.1	.1.0							

Section	Tip Dia. in	Area in²	I in⁴	r in	C in	I/C in³	J in⁴	lt/Q in²	w in	w/t
	32.3566	51.1270	6380.9598	11.1578	16.2270	393.2318	0 12770.315	25.5683	4.7199	9.21
L18	32.3566	51.1270	6380.9598	11.1578	16.2270	393.2318	/ 12770.315	25.5683	4.7199	9.21
	32.5436	51.4265	6493.7817	11.2232	16.3205	397.8906	/ 12996.108	25.7182	4.7524	9.273
L19	32.5493	47.7202	6040.0696	11.2365	16.3205	370.0905	12088.086	23.8646	4.8184	10.144
	32.5925	47.7842	6064.4393	11.2516	16.3421	371.0926	8 12136.858	23.8967	4.8258	10.16
L20	32.5944	46.5451	5911.8380	11.2560	16.3421	361.7547	3 11831.454	23.2770	4.8478	10.482
	33.4578	47.7932	6400.2843	11.5578	16.7740	381.5591	9 12808.990	23.9012	4.9975	10.805
L21	33.4578	47.7932	6400.2843	11.5578	16.7740	381.5591	2 12808.990	23.9012	4.9975	10.805
	34.4075	49.1662	6967.8502	11.8898	17.2491	403.9535	2 13944.869	24.5877	5.1621	11.161
L22	33.7573	57.2120	7422.3235	11.3759	16.5645	448.0859	0 14854.413	28.6114	4.7489	8.442
	33.9300	58.8058	8060.0585	11.6928	17.0180	473.6198	5 16130.722	29.4085	4.9060	8.722
L23	33.9300	58.8058	8060.0585	11.6928	17.0180	473.6198	5 16130.722	29.4085	4.9060	8.722
	34.7933	60.3236	8700.4359	11.9946	17.4499	498.5958	5 17412.320	30.1675	5.0556	8.988
L24	34.7952	59.0049	8516.5381	11.9991	17.4499	488.0572	17044.282	29.5081	5.0776	9.232
	35.6015	60.3911	9130.9799	12.2809	17.8533	511.4461	18273.974	30.2013	5.2174	9.486
L25	35.5765	77.8665	11662.860	12.2233	17.8533	653.2623	23341.067	38.9406	4.9314	6.921
	35.6196	77.9626	8 11706.110	12.2383	17.8749	654.8926	23427.623	38.9887	4.9389	6.932
L26	35.6215	76.6226	11513.254	12.2428	17.8749	644.1034	23041.658	38.3186	4.9609	7.087
	36.4848	78.5115	4 12385.894	12.5446	18.3067	676.5756	24788.086	39.2632	5.1105	7.301
L27	36.4868	77.1368	4 12177.631	12.5490	18.3067	665.1994	5 24371.286	38.5757	5.1325	7.465
	37.3500	78.9920	_	12.8508	18.7386	697.8935	26172.339	39.5035	5.2821	7.683
L28	37.3500	78.9920	7 13077.565	12.8508	18.7386	697.8935	1 26172.339	39.5035	5.2821	7.683
	38.2133	80.8471	7 14020.779	13.1527	19.1705	731.3722	1 28060.007	40.4313	5.4318	7.901
L29	38.2153	79.4040	13779.793	13.1571	19.1705	718.8016	27577.719	39.7095	5.4538	8.08
	39.0924	81.2546	8 14765.877	13.4637	19.6093	753.0035	4 29551.184	40.6350	5.6058	8.305
L30	38.3192	86.3963	14377.600	12.8841	18.8180	764.0338	28774.120	43.2064	5.1996	6.933
	38.3624	88.4201	15411.843	13.1859	19.2499	800.6192	30843.967	44.2185	5.3493	7.132
L31	38.3643	86.9757	9 15170.285	13.1904	19.2499	788.0707	30360.532	43.4961	5.3713	7.283
	39.2276	88.9658	5 16235.638	13.4922	19.6818	824.9064	32492.639	44.4914	5.5209	7.486
L32	39.2276	88.9658	2 16235.638	13.4922	19.6818	824.9064	6 32492.639	44.4914	5.5209	7.486
	40.0477	90.8564	2 17292.856	13.7789	20.0921	860.6799	6 34608.467	45.4369	5.6630	7.679
L33	40.0400	96.8912	3 18393.984	13.7612	20.0921	915.4840	36812.172	48.4548	5.5750	7.079
	40.0832	96.9975	4 18454.563	13.7763	20.1137	917.5129	1 36933.410	48.5080	5.5825	7.089
L34	40.0851	95.4886	8 18179.190	13.7807	20.1137	903.8221	5 36382.300	47.7534	5.6045	7.232
	40.9484	97.5799	1 19399.971	14.0825	20.5456	944.2410	8 38825.470	48.7992	5.7542	7.425

147 Ft Monopole Tower Structural Analysis Project Number 1964043, Order 553381, Revision 1

Section	Tip Dia. in	Area in²	I in⁴	r in	C in	I/C in³	J in⁴	lt/Q in ²	w in	w/t
L35	40.9503	96.0363		14.0869	20.5456	929.8898	5 38235.375	48.0273	5.7762	7.575
	41.8136	98.0938	1 20359.593	14.3888	20.9775	970.5462	2 40745.977	49.0562	5.9258	7.772
L36	41.8136	98.0938	7 20359.593	14.3888	20.9775	970.5462	1 40745.977	49.0562	5.9258	7.772
	42.6769	100.1514	7 21667.815	14.6906	21.4093	1012.0726	43364.142	50.0852	6.0754	7.968
L37	42.6788	98.5393	5 21331.924 5	14.6950	21.4093	996.3836	42691.918	49.2790	6.0974	8.13
	43.5421	100.5632	22673.475 7	14.9968	21.8412	1038.1040	2 45376.785 8	50.2911	6.2470	8.329
L38	43.5441	98.9164	, 22315.381 9	15.0013	21.8412	1021.7087	44660.126	49.4676	6.2690	8.5
	44.3067	100.6745	23526.503	15.2679	22.2228	1058.6666	47083.964	50.3468	6.4012	8.68
L39	44.2970	109.0475	25409.177 6	15.2457	22.2228	1143.3849	50851.789	54.5341	6.2912	7.864
	44.3402	109.1554	25484.704	15.2608	22.2444	1145.6702	51002.942	54.5881	6.2987	7.873
L40	44.3421	107.4811	25108.396 0	15.2652	22.2444	1128.7532	50249.830	53.7508	6.3207	8.026
	44.5866	108.0829	-	15.3507	22.3667	1141.5432	51098.643 5	54.0517	6.3631	8.08
L41	44.5885	106.3981	-	15.3551	22.3667	1124.3980	50331.177	53.2091	6.3851	8.239
	44.6317	106.5026	25223.263	15.3702	22.3883	1126.6286	50479.715 4	53.2614	6.3926	8.248
L42	44.6336	104.8151	24837.936	15.3747	22.3883	1109.4175	49708.555	52.4175	6.4146	8.413
	45.1373	106.0155	25701.110 9	15.5507	22.6402	1135.1964	51436.039	53.0178	6.5019	8.527
L43	45.1334	109.4289	26498.349 6	15.5419	22.6402	1170.4098	53031.566	54.7249	6.4579	8.2
	45.1766	109.5352	26575.611 5	15.5570	22.6618	1172.7039	53186.191 8	54.7780	6.4653	8.21
L44	45.1766	109.5352	26575.611 5	15.5570	22.6618	1172.7039	53186.191 8	54.7780	6.4653	8.21
	45.3492	109.9602	26886.160 8	15.6173	22.7482	1181.9025	53807.699	54.9905	6.4953	8.248
L45	45.3512	108.2455	26481.957 3	15.6218	22.7482	1164.1340	52998.760 2	54.1330	6.5173	8.409
	45.3943	108.3501	-	15.6368	22.7698	1166.4036	53152.499	54.1853	6.5247	8.419
L46	45.3943	108.3501	26558.776 1	15.6368	22.7698	1166.4036	53152.499 0	54.1853	6.5247	8.419
	45.6965	109.0820	27100.671 6	15.7425	22.9210	1182.3533	54237.002 9	54.5514	6.5771	8.487

Tower	Gusset	Gusset	Gusset GradeAdjust. Factor	Adjust.	Weight Mult.	-	-	Double Angle
Elevation	Area (per face)	Thickness	A_f	Factor		Stitch Bolt Spacing	Stitch Bolt Spacing	Stitch Bolt Spacing
	(per lace)			Ar		Diagonals	Horizontals	Redundants
ft	ft^2	in				in	in	in
L1 147.00-			1	1	1			
142.00								
L2 142.00-			1	1	1			
137.00								
L3 137.00-			1	1	1			
132.00								
L4 132.00-			1	1	1			
127.00								
L5 127.00-			1	1	1			
122.00								
L6 122.00-			1	1	1			
117.00								
L7 117.00-			1	1	1			
112.00								

tnxTower Report - version 8.1.1.0

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor A _f	Adjust. Factor Ar	Weight Mult. L	Double Angle Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing Redundants
<u>ft</u>	ft ²	in				in	in	in
L8 112.00- 105.00			1	1	1			
L9 105.00-			1	1	1			
103.75 L10 103.75-			1	1	1			
98.75								
L11 98.75- 93.75			1	1	1			
L12 93.75-			1	1	1			
89.67 L13 89.67-			1	1	1			
89.42 L14 89.42-			1	1	1			
88.08			I	I				
L15 88.08- 87.83			1	1	0.949309			
L16 87 83-			1	1	0.94563			
85.83 L17 85.83-			1	1	0.945176			
85.58								
L18 85.58- 84.50			1	1	0.943222			
L1984.50-			1	1	1.016			
84.25 L20 84.25-			1	1	1.03345			
79.25								
L21 79.25- 73.75			1	1	1.03113			
L22 73 75-			1	1	0.958709			
72.75 L2372.75-			1	1	0.951361			
67 75 L24 67 75-			1	1	0.065049			
63.08			I	I	0.965948			
L25 63.08- 62.83			1	1	0.979776			
L26 62.83-			1	1	0.985815			
57.83 L27 57.83-			1	1	0.992629			
52.83								
L28 52 83- 47 83			1	1	0.982368			
L29 47.83-			1	1	0.99955			
42.75 L30 42.75-			1	1	0.983527			
42.50			,					
L31 42 50- 37 50			1	1	0.990764			
L32 37.50-			1	1	0.982492			
32.75 L33 32.75-			1	1	0.986624			
32.50 L34 32.50-			1	1	0 002822			
27.50			I	I	0.992833			
L35 27 50- 22 50			1	1	0.999667			
L36 22 50-			1	1	0.990917			
17.50 L37 17.50-			1	1	0.998599			
12.50			I	I				
L38 12.50- 8.08			1	1	1.00785			
8.08 L39 8.08-7.83			1	1	1.03361			
L40 7 83 6 42 L41 6 42 6 17			1	1 1	1.04696 1.01			
L42 6.17-3.25			1	1	1.02114			
L43 3.25-3.00			1	1	0.963188			

Tower	Gusset	Gusset	Gusset GradeAdjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			Ar		Spacing	Spacing	Spacing
	. ,					Diagonals	Horizontals	Redundants
ft	ft^2	in				in	in	in
L44 3.00-2.00			1	1	0.961613			
L45 2.00-1.75			1	1	0.989369			
L46 1.75-0.00			1	1	0.986518			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque	Componen t Type	Placement ft	Total Number	Number PerRow	Start/En d Position	Diamete r	Perimete r	Weight plf
147		Calculation						in	in	
HB058-M12-XXXF(5/8)	A	No	Surface Ar (CaAa)	147.00 - 0.00	1	1	-0.167 -0.167	0.8400		0.24
HB158-21U6S24- xxM_TMO(1-5/8) ***	В	No	(CaAa) (CaAa)	136.00 - 0.00	3	3	0.333 0.333	1.9960		2.50
(Area) Aero MP3-05 (H)	А	No	Surface Af (CaAa)	10.50 - 0.00	1	1	-0.167 -0.167	5.3300	14.8400	0.00
(Area) Aero MP3-05 (H) ****	С	No	Surface Af (CaAa)	10.50 - 0.00	1	1	0.500 0.500	5.3300	14.8400	0.00
(Area) Aero MP3-05 (H) ****	A	No	Surface Af (CaAa)	79.00 - 4.00	1	1	-0.333 -0.333	5.3300	14.8400	0.00
(Area) Aero MP3-05 (H)	С	No	Surface Af (CaAa)	90.50 - 0.00	1	1	-0.333 -0.333	5.3300	14.8400	0.00
(Area) Aero MP3-05 (H) ****	В	No	Surface Af (CaAa)	90.50 - 0.00	1	1	-0.333 -0.333	5.3300	14.8400	0.00
(Area) Aero MP3-05 (H)	С	No	Surface Af (CaAa)	88.25 - 73.25	1	1	0.500 0.500	5.3300	14.8400	0.00
(Area) Aero MP3-05 (H)	A	No	Surface Af (CaAa)	92.08 - 82.08	1	1	-0.333 -0.333	5.3300	14.8400	0.00
(Area) CCI-65FP- 065125 (H)	А	No	Surface Af (CaAa)	35.50 - 0.00	1	1	0.167 0.167	6.5000	15.5000	0.00
(Area) CCI-65FP- 065125 (H)	В	No	Surface Af (CaAa)	35.50 - 0.00	1	1	0.333 0.333	6.5000	15.5000	0.00
(Area) CCI-65FP- 065125 (H) ***	С	No	Surface Af (CaAa)	35.50 - 0.00	1	1	0.167 0.167	6.5000	15.5000	0.00
(Area) CCI-65FP- 060100 (H)	А	No	Surface Af (CaAa)	65.58 - 35.50	1	1	0.167 0.167	6.0000	14.0000	0.00
(Area) CCI-65FP- 060100 (H)	В	No	(CaAa) Surface Af (CaAa)	65.58 - 35.50	1	1	0.333	6.0000	14.0000	0.00
(Area) CCI-ồ5́FP- 060100 (H) ***********	С	No	(CaAa) Surface Af (CaAa)	65.58 - 35.50	1	1	0.333 0.167 0.167	6.0000	14.0000	0.00
** CU12PSM9P6XXX(1- 1/2) **	A	No	Surface Ar (CaAa)	126.00 - 0.00	1	1	0.490 0.500	1.6000		2.35

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque	Componen t Type	Placement ft	Total Number		C _A A _A ft²/ft	Weight plf
			Calculation	•					
HB114-1-0813U4- M5J(1-1/4)	A	No	No	Inside Pole	147.00-0.00	3	No Ice 1/2" Ice	0.00 0.00	1.20 1.20

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
136							1" Ice	0.00	1.20
118									
HFT1208-	в	No	No	Inside Pole	118.00-0.00	2	No Ice	0.00	1.17
24S26(1-1/4)	_					-	1/2" Ice	0.00	1.17
,							1" Ice	0.00	1 17
115									
LDF7-50A(1-5/8)	В	No	No	Inside Pole	115.00-0.00	6	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
106									
LDF2-50A(3/8)	С	No	No	Inside Pole	106.00-0.00	1	No Ice	0.00	0.08
							1/2" Ice	0.00	0.08
							1" I ce	0.00	0.08
LDF6-50A(1-1/4)	С	No	No	Inside Pole	106.00-0.00	12	No Ice	0.00	0.60
							1/2" I ce	0.00	0.60
	_						1" Ice	0.00	0.60
6-8AWG 3	С	No	No	Inside Pole	106.00-0.00	4	No Ice	0.00	0.68
PAIR(7/8)							1/2" Ice	0.00	0.68
	_					-	1" Ice	0.00	0.68
A-	С	No	No	Inside Pole	106.00-0.00	2	No Ice	0.00	0.03
DQZNB2YN1750							1/2" Ice	0.00	0.03
N(17/64)	~						1" Ice	0.00	0.03
WR-VG86ST-	С	No	No	Inside Pole	106.00-0.00	2	No Ice	0.00	0.58
BRD(3/4)							1/2" Ice	0.00	0.58
	~				100.00.000		1" Ice	0.00	0.58
2" Flexible Conduit	С	No	No	Inside Pole	106.00-0.00	1	No Ice	0.00	0.34
							1/2" Ice	0.00	0.34
****							1" I ce	0.00	0.34
**									

Feed Line/Linear Appurtenances Section Areas

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tower	Tower	Face	A _R	AF	$C_A A_A$	$C_A A_A$	Weight
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sectio	Elevation						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	ft		ft^2	ft^2	ft^2	ft^2	ĸ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L1	147.00-142.00		0.000	0.000	0.420	0.000	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			В	0.000	0.000	0.000	0.000	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			С	0.000	0.000	0.000	0.000	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L2	142.00-137.00		0.000	0.000	0.420	0.000	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.000	0.000	0.000	0.000	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			С	0.000	0.000	0.000	0.000	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L3	137.00-132.00		0.000	0.000	0.420	0.000	0.02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			В	0.000	0.000	2.395	0.000	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			С	0.000	0.000	0.000	0.000	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L4	132.00-127.00	А	0.000	0.000	0.420	0.000	0.02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			В	0.000	0.000	2.994	0.000	0.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			С	0.000	0.000	0.000	0.000	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L5	127.00-122.00	А	0.000	0.000	1.060	0.000	0.03
L6 122.00-117.00 A 0.000 0.000 1.220 0.000 0.03 B 0.000 0.000 2.994 0.000 0.04 C 0.000 0.000 0.000 0.000 0.000 L7 117.00-112.00 A 0.000 0.000 1.220 0.000 0.03 B 0.000 0.000 2.994 0.000 0.03 C 0.000 0.000 2.994 0.000 0.00 L8 112.00-105.00 A 0.000 0.000 1.708 0.000 0.04 B 0.000 0.000 1.708 0.000 0.04 B 0.000 0.000 4.192 0.000 0.10 C 0.000 0.000 0.000 0.000 0.001			В	0.000	0.000	2.994	0.000	0.04
B 0.000 0.000 2.994 0.000 0.04 C 0.000 0.000 0.000 0.000 0.000 0.000 L7 117.00-112.00 A 0.000 0.000 1.220 0.000 0.03 B 0.000 0.000 2.994 0.000 0.06 C 0.000 0.000 2.994 0.000 0.06 L8 112.00-105.00 A 0.000 0.000 1.708 0.000 0.04 B 0.000 0.000 4.192 0.000 0.10 C 0.000 0.000 0.000 0.000 0.01			С	0.000	0.000	0.000	0.000	0.00
C 0.000 0.000 0.000 0.000 0.000 L7 117.00-112.00 A 0.000 0.000 1.220 0.000 0.03 B 0.000 0.000 2.994 0.000 0.06 C 0.000 0.000 0.000 0.000 0.000 L8 112.00-105.00 A 0.000 0.000 1.708 0.000 0.04 B 0.000 0.000 4.192 0.000 0.10 C 0.000 0.000 0.000 0.000 0.01	L6	122.00-117.00	А	0.000	0.000	1.220	0.000	0.03
L7 117.00-112.00 A 0.000 0.000 1.220 0.000 0.03 B 0.000 0.000 2.994 0.000 0.06 C 0.000 0.000 0.000 0.000 0.000 L8 112.00-105.00 A 0.000 0.000 1.708 0.000 0.04 B 0.000 0.000 4.192 0.000 0.10 C 0.000 0.000 0.000 0.000 0.001			В	0.000	0.000	2.994	0.000	0.04
B 0.000 2.994 0.000 0.06 C 0.000 0.000 0.000 0.000 0.000 L8 112.00-105.00 A 0.000 0.000 1.708 0.000 0.04 B 0.000 0.000 4.192 0.000 0.100 C 0.000 0.000 0.000 0.000 0.01			С	0.000	0.000	0.000	0.000	0.00
C 0.000 0.000 0.000 0.000 0.000 L8 112.00-105.00 A 0.000 0.000 1.708 0.000 0.04 B 0.000 0.000 4.192 0.000 0.100 C 0.000 0.000 0.000 0.000 0.01	L7	117.00-112.00	А	0.000	0.000	1.220	0.000	0.03
L8 112.00-105.00 A 0.000 0.000 1.708 0.000 0.04 B 0.000 0.000 4.192 0.000 0.10 C 0.000 0.000 0.000 0.000 0.000			В	0.000	0.000	2.994	0.000	0.06
B 0.000 0.000 4.192 0.000 0.10 C 0.000 0.000 0.000 0.000 0.00			С	0.000	0.000	0.000	0.000	0.00
C 0.000 0.000 0.000 0.000 0.00	L8	112.00-105.00	А	0.000	0.000	1.708	0.000	0.04
C 0.000 0.000 0.000 0.000 0.00			В	0.000	0.000	4.192	0.000	0.10
				0.000	0.000	0.000	0.000	0.01
	L9	105.00-103.75	А	0.000	0.000	0.305	0.000	0.01

Tower Sectio	Tower Elevation	Face	A _R	A _F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
n	ft		ft^2	ft^2	ft ²	ft ²	ĸ
		В	0.000	0.000	0.749	0.000	0.02
		С	0.000	0.000	0.000	0.000	0.01
L10	103.75-98.75	А	0.000	0.000	1.220	0.000	0.03
		В	0.000	0.000	2.994	0.000	0.07
	~~ ~~ ~~ ~~	С	0.000	0.000	0.000	0.000	0.06
L11	98.75-93.75	A	0.000	0.000	1.220	0.000	0.03
		В	0.000	0.000	2.994	0.000	0.07
	~~ ~~ ~~ ~~	С	0.000	0.000	0.000	0.000	0.06
L12	93.75-89.67	A	0.000	0.000	2.998	0.000	0.03
		В	0.000	0.000	3.185	0.000	0.06
		С	0.000	0.000	0.740	0.000	0.05
L13	89.67-89.42	A	0.000	0.000	0.268	0.000	0.00
		В	0.000	0.000	0.372	0.000	0.00
		С	0.000	0.000	0.222	0.000	0.00
L14	89.42-88.08	А	0.000	0.000	1.431	0.000	0.01
		В	0.000	0.000	1.984	0.000	0.02
		С	0.000	0.000	1.333	0.000	0.02
L15	88.08-87.83	А	0.000	0.000	0.268	0.000	0.00
		В	0.000	0.000	0.372	0.000	0.00
		С	0.000	0.000	0.444	0.000	0.00
L16	87.83-85.83	А	0.000	0.000	2.145	0.000	0.01
		В	0.000	0.000	2.974	0.000	0.03
		С	0.000	0.000	3.553	0.000	0.02
L17	85.83-85.58	А	0.000	0.000	0.268	0.000	0.00
		В	0.000	0.000	0.372	0.000	0.00
		С	0.000	0.000	0.444	0.000	0.00
L18	85.58-84.50	А	0.000	0.000	1.162	0.000	0.01
		В	0.000	0.000	1.611	0.000	0.02
		С	0.000	0.000	1.924	0.000	0.01
L19	84.50-84.25	А	0.000	0.000	0.268	0.000	0.00
		В	0.000	0.000	0.372	0.000	0.00
		С	0.000	0.000	0.444	0.000	0.00
L20	84.25-79.25	А	0.000	0.000	3.015	0.000	0.03
		В	0.000	0.000	7.436	0.000	0.07
		С	0.000	0.000	8.883	0.000	0.06
L21	79.25-73.75	А	0.000	0.000	6.006	0.000	0.03
		В	0.000	0.000	8.179	0.000	0.08
		С	0.000	0.000	9.772	0.000	0.06
L22	73.75-72.75	А	0.000	0.000	1.132	0.000	0.01
		В	0.000	0.000	1.487	0.000	0.01
		С	0.000	0.000	1.333	0.000	0.01
L23	72.75-67.75	А	0.000	0.000	5.662	0.000	0.03
		В	0.000	0.000	7.436	0.000	0.07
		С	0.000	0.000	4.442	0.000	0.06
L24	67.75-63.08	Ă	0.000	0.000	7.788	0.000	0.03
		В	0.000	0.000	9.445	0.000	0.07
		Ē	0.000	0.000	6.649	0.000	0.05
L25	63.08-62.83	Ā	0.000	0.000	0.533	0.000	0.00
		В	0.000	0.000	0.622	0.000	0.00
		Ċ	0.000	0.000	0.472	0.000	0.00
L26	62.83-57.83	Ă	0.000	0.000	10.662	0.000	0.03
		В	0.000	0.000	12.436	0.000	0.07
		č	0.000	0.000	9.442	0.000	0.06
L27	57.83-52.83	Ă	0.000	0.000	10.662	0.000	0.03
,	0.100 02100	В	0.000	0.000	12.436	0.000	0.07
		č	0.000	0.000	9.442	0.000	0.06
L28	52.83-47.83	Ă	0.000	0.000	10.662	0.000	0.03
220	02.00 47.00	В	0.000	0.000	12,436	0.000	0.07
		C	0.000	0.000	9.442	0.000	0.06
L29	47.83-42.75	Ă	0.000	0.000	10.832	0.000	0.03
L23	41.00-42.10	B	0.000	0.000	12.635	0.000	0.03
		C	0.000	0.000	9.593	0.000	0.07
L30	42.75-42.50	A	0.000	0.000	9.593 0.533	0.000	0.06
L30	42.70-42.00						
		B	0.000	0.000	0.622	0.000	0.00
1.04	10 50 07 50	C	0.000	0.000	0.472	0.000	0.00
L31	42.50-37.50	A	0.000	0.000	10.662	0.000	0.03
		В	0.000	0.000	12.436	0.000	0.07
1 2 2	27 60 22 76	C	0.000	0.000	9.442	0.000	0.06
L32	37.50-32.75	A	0.000	0.000	10.358	0.000	0.03

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft^2	ft^2	ft ²	ft ²	к
		В	0.000	0.000	12.043	0.000	0.07
		C	0.000	0.000	9.199	0.000	0.07
L33	32.75-32.50	A	0.000	0.000	0.554	0.000	0.00
L00	52.75-52.50	В	0.000	0.000	0.643	0.000	0.00
		C	0.000	0.000	0.493	0.000	0.00
L34	32.50-27.50	^	0.000	0.000	11.078	0.000	0.00
L34	32.30-27.30	A B	0.000	0.000	12.852	0.000	0.03
		C	0.000	0.000	9.858	0.000	0.06
L35	27.50-22.50	C A	0.000	0.000	11.078	0.000	0.00
L00	21.00-22.00	B	0.000	0.000	12.852	0.000	0.03
		B C	0.000	0.000	9.858	0.000	0.06
L36	22.50-17.50	A	0.000	0.000	11.078	0.000	0.00
L30	22.00-17.00	B	0.000	0.000	12.852	0.000	0.03
		C	0.000	0.000	9.858	0.000	0.07
L37	17.50-12.50	Ă	0.000	0.000	11.078	0.000	0.00
207	17.50-12.50	B	0.000	0.000	12.852	0.000	0.03
		B C	0.000	0.000	9.858	0.000	0.06
L38	12.50-8.08	^	0.000	0.000	11.827	0.000	0.03
L30	12.00-0.00	A B	0.000	0.000	11.354	0.000	0.03
		C	0.000	0.000	10.749	0.000	0.05
L39	8.08-7.83	A	0.000	0.000	0.765	0.000	0.00
200	0.007.00	B	0.000	0.000	0.643	0.000	0.00
		B C	0.000	0.000	0.704	0.000	0.00
L40	7.83-6.42	Δ	0.000	0.000	4.333	0.000	0.00
LHU	1.00 0.42	A B C	0.000	0.000	3.640	0.000	0.02
		C.	0.000	0.000	3.987	0.000	0.02
L41	6.42-6.17	Ă	0.000	0.000	0.765	0.000	0.00
	0.12 0.11	В	0.000	0.000	0.643	0.000	0.00
		č	0.000	0.000	0.704	0.000	0.00
L42	6.17-3.25	Δ	0.000	0.000	8.259	0.000	0.02
	0.11 0.20	B	0.000	0.000	7.498	0.000	0.02
		A B C	0.000	0.000	8.213	0.000	0.03
L43	3.25-3.00	Ă	0.000	0.000	0.543	0.000	0.00
210	0.20 0.00	B	0.000	0.000	0.643	0.000	0.00
		B C	0.000	0.000	0.704	0.000	0.00
L44	3.00-2.00	Ā	0.000	0.000	2.171	0.000	0.01
644	0.00 2.00	A B	0.000	0.000	2.570	0.000	0.01
		c C	0.000	0.000	2.816	0.000	0.01
L45	2.00-1.75	C A	0.000	0.000	0.543	0.000	0.00
	2100 1110	B	0.000	0.000	0.643	0.000	0.00
		B C	0.000	0.000	0.704	0.000	0.00
L46	1.75-0.00	Ă	0.000	0.000	3.800	0.000	0.01
2.5		В	0.000	0.000	4.498	0.000	0.03
		Č	0.000	0.000	4.927	0.000	0.02

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness		_	In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft^2	ĸ
L1	147.00-142.00	А	0.985	0.000	0.000	1.405	0.000	0.03
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
L2	142.00-137.00	А	0.982	0.000	0.000	1.402	0.000	0.03
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
L3	137.00-132.00	А	0.978	0.000	0.000	1.398	0.000	0.03
		В		0.000	0.000	3.972	0.000	0.06
		С		0.000	0.000	0.000	0.000	0.00
L4	132.00-127.00	Α	0.975	0.000	0.000	1.395	0.000	0.03
		В		0.000	0.000	4.961	0.000	0.07
		С		0.000	0.000	0.000	0.000	0.00
L5	127.00-122.00	А	0.971	0.000	0.000	2.807	0.000	0.05
		В		0.000	0.000	4.956	0.000	0.07
		С		0.000	0.000	0.000	0.000	0.00
L6	122.00-117.00	А	0.967	0.000	0.000	3,153	0.000	0.06

ower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft^2	ft²	ft ²	ft ²	ĸ
		В		0.000	0.000	4.951	0.000	0.08
		С		0.000	0.000	0.000	0.000	0.00
L7	117.00-112.00	А	0.963	0.000	0.000	3.145	0.000	0.06
		В		0.000	0.000	4.946	0.000	0.10
		С		0.000	0.000	0.000	0.000	0.00
L8	112.00-105.00	Ă	0.957	0.000	0.000	4.389	0.000	0.08
20	112.00 100.00	В	0.007	0.000	0.000	6.915	0.000	0.15
					0.000			
1.0	105 00 100 75	C	0.054	0.000		0.000	0.000	0.01
L9	105.00-103.75	A	0.954	0.000	0.000	0.784	0.000	0.01
		В		0.000	0.000	1.235	0.000	0.03
		С		0.000	0.000	0.000	0.000	0.01
L10	103.75-98.75	А	0.951	0.000	0.000	3.122	0.000	0.06
		В		0.000	0.000	4.931	0.000	0.11
		С		0.000	0.000	0.000	0.000	0.06
L11	98 75 93 75	А	0.946	0.000	0.000	3.112	0.000	0.06
		В		0.000	0.000	4.925	0.000	0.11
		Ē		0.000	0.000	0.000	0.000	0.06
L12	93,75-89,67	Ă	0.941	0.000	0.000	4.786	0.000	0.06
L 1 Z	33.13-03.01	B	0.341	0.000	0.000	4.914	0.000	0.08
40	00.07.00.40	C	0.000	0.000	0.000	0.897	0.000	0.05
L13	89.67-89.42	A	0.939	0.000	0.000	0.388	0.000	0.00
		В		0.000	0.000	0.515	0.000	0.01
		С		0.000	0.000	0.269	0.000	0.00
L14	89.42-88.08	Α	0.938	0.000	0.000	2.070	0.000	0.02
		В		0.000	0.000	2.747	0.000	0.04
		С		0.000	0.000	1.614	0.000	0.03
L15	88.08-87.83	Ā	0.938	0.000	0.000	0.388	0.000	0.00
		В		0.000	0.000	0.515	0.000	0.01
		č		0.000	0.000	0.537	0.000	0.01
L16	87.83-85.83	Ă	0.936	0.000	0.000	3.101	0.000	0.04
	07.03-03.03		0.950	0.000	0.000	4.116	0.000	0.04
		В						
		C	0.005	0.000	0.000	4.295	0.000	0.05
L17	85.83-85.58	A	0.935	0.000	0.000	0.387	0.000	0.00
		В		0.000	0.000	0.514	0.000	0.01
		С		0.000	0.000	0.537	0.000	0.01
L18	85.58-84.50	А	0.934	0.000	0.000	1.678	0.000	0.02
		В		0.000	0.000	2.228	0.000	0.03
		С		0.000	0.000	2.325	0.000	0.03
L19	84.50-84.25	A	0.934	0.000	0.000	0.387	0.000	0.00
		В		0.000	0.000	0.514	0.000	0.01
		č		0.000	0.000	0.537	0.000	0.01
L20	81 25 70 25		0.931	0.000	0.000	5.099	0.000	0.07
-20	84.25-79.25	A	0.931					
		В		0.000	0.000	10.278	0.000	0.14
	70 05 70 75	C	0.005	0.000	0.000	10.727	0.000	0.12
L21	79.25-73.75	A	0.925	0.000	0.000	9.011	0.000	0.10
		В		0.000	0.000	11.291	0.000	0.16
		С		0.000	0.000	11.787	0.000	0.14
_22	73.75-72.75	А	0.921	0.000	0.000	1.687	0.000	0.02
		В		0.000	0.000	2.053	0.000	0.03
		С		0.000	0.000	1.608	0.000	0.02
L23	72.75-67.75	A	0.917	0.000	0.000	8.412	0.000	0.09
		В		0.000	0.000	10.247	0.000	0.14
		č		0.000	0.000	5.358	0.000	0.09
L24	67.75-63.08	A	0.910	0.000	0.000	10.793	0.000	0.00
-27	01.10-00.00	B	0.010	0.000	0.000	12.512	0.000	0.10
		0						
05		C	0.007	0.000	0.000	7.954	0.000	0.10
_25	63.08-62.83	A	0.907	0.000	0.000	0.714	0.000	0.01
		В		0.000	0.000	0.807	0.000	0.01
		С		0.000	0.000	0.563	0.000	0.01
L26	62.83-57.83	А	0.903	0.000	0.000	14.273	0.000	0.12
		В		0.000	0.000	16.118	0.000	0.17
		Ĉ		0.000	0.000	11.247	0.000	0.12
L27	57.83-52.83	Ă	0.895	0.000	0.000	14.242	0.000	0.12
	01100 02100	В	0.000	0.000	0.000	16.093	0.000	0.12
		C			0.000		0.000	0.17
	50.00.47.00		0.007	0.000		11.232		
L28	52.83-47.83	A	0.887	0.000	0.000	14.208	0.000	0.12
		В		0.000	0.000	16.066	0.000	0.17
_29		С		0.000	0.000	11.215	0.000	0.12
	47.83-42.75	Α	0.877	0.000	0.000	14.398	0.000	0.12

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
п	ft	Leg	in	ft ²	ft²	In Face ft ²	ft^2	K
		В		0.000	0.000	16.292	0.000	0.17
		C A		0.000	0.000	11.375	0.000	0.12
L30	42.75-42.50	A	0.872	0.000	0.000	0.709	0.000	0.01
		B C		0.000	0.000	0.802	0.000	0.01
		С		0.000	0.000	0.560	0.000	0.01
L31	42.50-37.50	A B C	0.866	0.000	0.000	14.128	0.000	0.11
		В		0.000	0.000	16.000	0.000	0.17
	07 50 00 75	C	0.055	0.000	0.000	11.175	0.000	0.12
L32	37.50-32.75	A	0.855	0.000	0.000	13.608	0.000	0.11
		В		0.000	0.000	15.395	0.000	0.16
1.00	00 75 00 50	C	0.040	0.000	0.000	10.824	0.000	0.11
L33	32.75-32.50	A	0.849	0.000	0.000	0.724	0.000	0.01
		В		0.000	0.000	0.818	0.000	0.01
1.04		C A	0.040	0.000	0.000	0.578	0.000	0.01
L34	32.50-27.50	A	0.842	0.000	0.000	14.446	0.000	0.11
		B C		0.000	0.000	16.337	0.000	0.16
1.05			0.007	0.000 0.000	0.000	11.542	0.000	0.12
L35	27.50-22.50	A B	0.827		0.000	14.385	0.000	0.11 0.16
		Б С		0.000	0.000	16.288	0.000	
L36	22.50-17.50	A	0.808	0.000 0.000	0.000 0.000	11.512 14.312	$0.000 \\ 0.000$	0.12 0.11
L30	22.50-17.50	A	0.808	0.000				
		B C		0.000	0.000 0.000	16.228 11.475	0.000 0.000	0.16 0.12
1.27	17.50-12.50		0.796	0.000	0.000			0.12
L37	17.50-12.50	A B	0.786	0.000	0.000	14.220 16.154	0.000 0.000	0.11
		C		0.000	0.000	11.429	0.000	0.10
L38	12.50-8.08	A	0.756	0.000	0.000	14.703	0.000	0.11
200	12.00-0.00	В	0.750	0.000	0.000	14.187	0.000	0.14
		C		0.000	0.000	12.288	0.000	0.14
L39	8.08-7.83	Δ	0.737	0.000	0.000	0.933	0.000	0.01
200	0.00 / .00	A B	0.707	0.000	0.000	0.800	0.000	0.01
		č		0.000	0.000	0.798	0.000	0.01
L40	7 83-6 42	Ă	0.729	0.000	0.000	5.273	0.000	0.04
2.0		B	011 20	0.000	0.000	4.523	0.000	0.04
		B C		0.000	0.000	4.515	0.000	0.04
L41	6.42-6.17	A	0.720	0.000	0.000	0.929	0.000	0.01
		В		0.000	0.000	0.797	0.000	0.01
		С		0.000	0.000	0.796	0.000	0.01
L42	6.17-3.25	A	0.700	0.000	0.000	10.014	0.000	0.07
		В		0.000	0.000	9.261	0.000	0.09
		С		0.000	0.000	9.257	0.000	0.08
L43	3 25 3 00	А	0.672	0.000	0.000	0.662	0.000	0.00
		В		0.000	0.000	0.789	0.000	0.01
		С		0.000	0.000	0.790	0.000	0.01
L44	3.00-2.00	А	0.657	0.000	0.000	2.639	0.000	0.02
		В		0.000	0.000	3.147	0.000	0.03
		С		0.000	0.000	3.152	0.000	0.03
L45	2.00-1.75	А	0.638	0.000	0.000	0.656	0.000	0.00
		В		0.000	0.000	0.784	0.000	0.01
		С		0.000	0.000	0.786	0.000	0.01
L46	1.75-0.00	Α	0.591	0.000	0.000	4.536	0.000	0.03
		В		0.000	0.000	5.433	0.000	0.05
		С		0.000	0.000	5.457	0.000	0.04

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
				Ice	lce
	ft	in	in	in	in
L1	147.00-142.00	-0.6561	-0.1152	-1.1704	-0.2055
L2	142.00-137.00	-0.6566	-0.1153	-1.1739	-0.2061
L3	137.00-132.00	2.5108	0.4409	1.6577	0.2911
L4	132.00-127.00	3.0971	0.5439	2.1446	0.3766
L5	127.00-122.00	2.9465	-0.2137	2.0354	-0.4433
L6	122.00-117.00	2.9310	-0.3927	2.0300	-0.6387

tnxTower Report - version 8.1.1.0

Section	Elevation	CP_X	CPz	CPx	CPz
	£1			Ice	lce
	ft	in	in	in	in
L7	117.00-112.00	2.9549	-0.3964	2.0550	-0.6454
L8	112.00-105.00	2.9824	-0.4007	2.0840	-0.6529
L9	105.00-103.75	2.9884	-0.4016	2.0900	-0.6550
L10	103.75-98.75	3.0020	-0.4038	2.1054	-0.6569
L11	98.75-93.75	3.0232	-0.4071	2.1282	-0.6623
L12	93.75-89.67	1.0655	0.7946	1.0642	0.1112
L13	89.67-89.42	1.6818	-0.3472	1.6245	-0.6490
L14	89.42-88.08	1.2134	-0.4444	1.2564	-0.7214
L15	88.08-87.83	-1.6347	-1.0248	-1.0496	-1.1641
L16	87.83-85.83	-1.6423	-1.0301	-1.0539	-1.1686
L17	85.83-85.58	-1.6499	-1.0354	-1.0582	-1.1731
L18	85.58-84.50	-1.6544	-1.0385	-1.0607	-1.1758
L19	84.50-84.25	-1.6588	-1.0416	-1.0631	-1.1784
L20	84.25-79.25	-0.6310	-2.2640	-0.2572	-2.0472
L21	79.25-73.75	-1.7601	-1.0357	-1.2309	-1.0631
L22	73.75-72.75	-0.2495	-0.6028	-0.0207	-0.7260
L23	72.75-67.75	1.5977	-0.2161	1.4216	-0.4342
L24	67.75-63.08	1.0396	0.6900	1.0138	0.3324
L25	63.08-62.83	0.7194	1.2063	0.7555	0.8138
L26	62.83-57.83	0.7262	1.2187	0.7619	0.8220
L27	57.83-52.83	0.7390	1.2423	0.7740	0.8376
L28	52.83-47.83	0.7517	1.2657	0.7861	0.8532
L29	47.83-42.75	0.7644	1.2891	0.7982	0.8690
L30	42.75-42.50	0.7600	1.2811	0.7945	0.8645
L31	42.50-37.50	0.7666	1.2932	0.8014	0.8742
L32	37.50-32.75	0.7469	1.3648	0.7915	0.9322
L33	32.75-32.50	0.7304	1.4112	0.7820	0.9708
L34	32.50-27.50	0.7365	1.4239	0.7881	0.9802
L35	27.50-22.50	0.7479	1.4480	0.7999	0.9983
L36	22.50-17.50	0.7593	1.4720	0.8119	1.0171
L37	17.50-12.50	0.7706	1.4957	0.8244	1.0372
L38	12.50-8.08	-1.6616	1.1776	-1.1528	0.8329
L39	8.08-7.83	3.3416	0.9531	-2.6026	0.6789
L40	7.83-6.42	-3.3503	0.9555	-2.6089	0.6822
L41	6.42-6.17	-3.3590	0.9580	-2.6153	0.6857
L42	6.17-3.25	-3.0557	0.6116	2.3111	0.3737
L43	3.25-3.00	-2.0404	-0.5171	-1.3447	-0.6060
L44	3.00-2.00	-2.0443	-0.5182	-1.3486	-0.6026
L45	2.00-1.75	-2.0482	-0.5192	-1.3530	-0.5981
L46	1.75-0.00	2.0545	-0.5210	-1.3619	-0.5855

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	2	HB058-M12-XXXF(5/8)	142.00 -	1.0000	1.0000
			147.00		
L2	2	HB058-M12-XXXF(5/8)	137.00 -	1.0000	1.0000
			142.00		
L3	2	HB058-M12-XXXF(5/8)	132.00 -	1.0000	1.0000
			137.00		
L3	6	HB158-21U6S24-	132.00 -	1.0000	1.0000
		xxM_TMO(1-5/8)	136.00		
L4	2	HB058-M12-XXXF(5/8)	127.00 -	1.0000	1.0000
			132.00		
L4	6	HB158-21U6S24-	127.00 -	1.0000	1.0000
		xxM_TMO(1-5/8)	132.00	1 0 0 0 0	4 0 0 0 0
L5	2	HB058-M12-XXXF(5/8)	122.00 -	1.0000	1.0000
			127.00		

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
L5	6	HB158-21U6S24-	<i>Elev.</i> 122.00 -	1.0000	1.0000
L5	41	xxM_TMO(1-5/8) CU12PSM9P6XXX(1-1/2)	127.00 122.00 -	1.0000	1.0000
L6	2	HB058-M12-XXXF(5/8)	126.00 117.00 -	1.0000	1.0000
L6	6	HB158-21U6S24-	122.00 - 117.00	1.0000	1.0000
L6	41	xxM_TMO(1-5/8) CU12PSM9P6XXX(1-1/2)	122.00 - 117.00	1.0000	1.0000
L7	2	HB058-M12-XXXF(5/8)	122.00 112.00 -	1.0000	1.0000
L7	6	HB158-21U6S24-	117.00 112.00 -	1.0000	1.0000
L7	41	xxM_TMO(1-5/8) CU12PSM9P6XXX(1-1/2)	117.00 - 112.00 117.00	1.0000	1.0000
L8	2	HB058-M12-XXXF(5/8)	105.00 - 112.00	1.0000	1.0000
L8	6	HB158-21U6S24- xxM_TMO(1-5/8)	105.00 - 112.00	1.0000	1.0000
L8	41	CU12PSM9P6XXX(1-1/2)	105.00 - 112.00	1.0000	1.0000
L9	2	HB058-M12-XXXF(5/8)	103.75 - 105.00	1.0000	1.0000
L9	6	HB158-21U6S24- xxM_TMO(1-5/8)	103.75 - 105.00	1.0000	1.0000
L9	41	CU12PSM9P6XXX(1-1/2)	103.75 - 105.00	1.0000	1.0000
L10	2	HB058-M12-XXXF(5/8)	98.75 103.75	1.0000	1.0000
L10	6	HB158-21U6S24- xxM_TMO(1-5/8)	98.75 103.75	1.0000	1.0000
L10	41	CU12PSM9P6XXX(1-1/2)	98.75 103.75	1.0000	1.0000
L11	2	HB058-M12-XXXF(5/8)	93.75 98.75	1.0000	1.0000
L11	6	HB158-21U6S24- xxM_TMO(1-5/8)	93.75 - 98.75	1.0000	1.0000
L11	41	CU12PSM9P6XXX(1-1/2)	93.75 - 98.75	1.0000	1.0000
L12	2	HB058-M12-XXXF(5/8)	89.67 - 93.75	1.0000	1.0000
L12	6	HB158-21U6S24- xxM_TMO(1-5/8)	89.67 - 93.75	1.0000	1.0000
L12		(Area) Aero MP3-05 (H)	89.67 - 90.50	1.0000	1.0000
L12	25	(Area) Aero MP3-05 (H)	89.67 - 90.50	1.0000	1.0000
L12	28	(Area) Aero MP3-05 (H)	89.67 - 92.08	1.0000	1.0000
L12	41	CU12PSM9P6XXX(1-1/2)	89.67 - 93.75	1.0000	1.0000
L13	2	HB058-M12-XXXF(5/8)	89.42 - 89.67	1.0000	1.0000
L13	6	HB158-21U6S24- xxM_TMO(1-5/8)	89.42 - 89.67	1.0000	1.0000
L13	24	(Area) Aero MP3-05 (H)	89.42 - 89.67	1.0000	1.0000
L13	25	(Area) Aero MP3-05 (H)	89.42 - 89.67	1.0000	1.0000
L13	28 41	(Area) Aero MP3-05 (H) CU12PSM9P6XXX(1-1/2)	89.42 - 89.67 89.42 -	1.0000 1.0000	1.0000 1.0000
L13	2	HB058-M12-XXXF(5/8)	89.42 - 89.67 88.08 -	1.0000	1.0000
L14	6	HB158-21U6S24-	88.08 - 89.42 88.08 -	1.0000	1.0000
L14		xxM_TMO(1-5/8)	89.42		1.0000
I L14	24	(AICA) ACIU MF3-03 (A)	00.00-	1.0000	1.0000

Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K₄ No Ice	K _a Ice
L14	25	(Area) Aero MP3-05 (H)	89.42 88.08 -	1.0000	1.0000
L14	27	(Area) Aero MP3-05 (H)	89.42 - 88.08 - 88.25	1.0000	1.0000
L14	28	(Area) Aero MP3-05 (H)	88.08 - 89.42	1.0000	1.0000
L14	41	CU12PSM9P6XXX(1-1/2)	88.08 - 89.42	1.0000	1.0000
L15	2	HB058-M12-XXXF(5/8)	87.83 - 88.08	1.0000	1.0000
L15	6	HB158-21U6S24- xxM_TMO(1-5/8)	87.83 - 88.08	1.0000	1.0000
L15	24	(Area) Aero MP3-05 (H)	- 87.83 88.08	1.0000	1.0000
L15	25	(Area) Aero MP3-05 (H)	87.83 - 88.08	1.0000	1.0000
L15	27	(Area) Aero MP3-05 (H)	87.83 - 88.08	1.0000	1.0000
L15	28	(Area) Aero MP3-05 (H)	87.83 - 88.08	1.0000	1.0000
L15	41	CU12PSM9P6XXX(1-1/2)	87.83 - 88.08	1.0000	1.0000
L16	2	HB058-M12-XXXF(5/8)	85.83 - 87.83	1.0000	1.0000
L16	6	HB158-21U6S24- xxM_TMO(1-5/8)	85.83 - 87.83	1.0000	1.0000
L16	24	(Area) Aero MP3-05 (H)	85.83 - 87.83	1.0000	1.0000
L16	25	(Area) Aero MP3-05 (H)	85.83 - 87.83	1.0000	1.0000
L16	27	(Area) Aero MP3-05 (H)	85.83 - 87.83	1.0000	1.0000
L16	28	(Area) Aero MP3-05 (H)	85.83 - 87.83	1.0000	1.0000
L16	41	CU12PSM9P6XXX(1-1/2)	85.83 - 87.83	1.0000	1.0000
L17	2	HB058-M12-XXXF(5/8)	85.58 - 85.83	1.0000	1.0000
L17	6	HB158-21U6S24- xxM_TMO(1-5/8)	85.58 - 85.83	1.0000	1.0000
L17	24	(Area) Aero MP3-05 (H)	85.58 - 85.83	1.0000	1.0000
L17	25	(Area) Aero MP3-05 (H)	85.58 - 85.83	1.0000	1.0000
L17	27	(Area) Aero MP3-05 (H)	85.58 - 85.83	1.0000	1.0000
L17	28	(Area) Aero MP3-05 (H)	85.58 - 85.83	1.0000	1.0000
L17	41	CU12PSM9P6XXX(1-1/2)	85.58 - 85.83	1.0000	1.0000
L18 L18	6	HB058-M12-XXXF(5/8) HB158-21U6S24-	84.50 - 85.58 84.50 -	1.0000 1.0000	1.0000
	24	xxM_TMO(1-5/8)	85.58	1.0000	
L18 L18	24	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H)	84.50 - 85.58 84.50 -	1.0000	1.0000 1.0000
L18	25	(Area) Aero MP3-05 (H)	84.50 - 85.58 84.50 -	1.0000	1.0000
L18	27	(Area) Aero MP3-05 (H)	84.50- 85.58 84.50-	1.0000	1.0000
L18	41	CU12PSM9P6XXX(1-1/2)	85.58 84.50 -	1.0000	1.0000
L19	2	HB058-M12-XXXF(5/8)	85.58 84.25 -	1.0000	1.0000
L19	6	HB158-21U6S24-	84.50 84.25 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L19	24	(Area) Aero MP3-05 (H)	84.25 -	1.0000	1.0000
L19	25	(Area) Aero MP3-05 (H)	84.50 84.25 - 84.50	1.0000	1.0000
L19	27	(Area) Aero MP3-05 (H)	84.25 -	1.0000	1.0000
L19	28	(Area) Aero MP3-05 (H)	84.50 84.25 - 84.50	1.0000	1.0000
L19	41	CU12PSM9P6XXX(1-1/2)	84.25 - 84.50	1.0000	1.0000
L20	2	HB058-M12-XXXF(5/8)	79.25 - 84.25	1.0000	1.0000
L20	6	HB158-21U6S24- xxM TMO(1-5/8)	79.25 - 84.25	1.0000	1.0000
L20	24	(Area) Aero MP3-05 (H)	79.25 - 84.25	1.0000	1.0000
L20	25	(Area) Aero MP3-05 (H)	79.25 - 84.25	1.0000	1.0000
L20	27	(Area) Aero MP3-05 (H)	79.25 - 84.25	1.0000	1.0000
L20	28	(Area) Aero MP3-05 (H)	82.08 - 84.25	1.0000	1.0000
L20	41	CU12PSM9P6XXX(1-1/2)	79.25 - 84.25	1.0000	1.0000
L21	2	HB058-M12-XXXF(5/8)	73.75 - 79.25	1.0000	1.0000
L21	6	HB158-21U6S24- xxM_TMO(1-5/8)	73.75 - 79.25	1.0000	1.0000
L21	22	(Area) Aero MP3-05 (H)	73.75 - 79.00	1.0000	1.0000
L21	24	(Area) Aero MP3-05 (H)	73.75 - 79.25	1.0000	1.0000
L21	25	(Area) Aero MP3-05 (H)	73.75 - 79.25	1.0000	1.0000
L21	27	(Area) Aero MP3-05 (H)	73.75 - 79.25	1.0000	1.0000
L21	41	CU12PSM9P6XXX(1-1/2)	73.75 - 79.25	1.0000	1.0000
L22	2	HB058-M12-XXXF(5/8)	72.75 - 73.75	1.0000	1.0000
L22	6	HB158-21U6S24- xxM_TMO(1-5/8)	72.75 - 73.75	1.0000	1.0000
L22	22	(Area) Aero MP3-05 (H)	72.75 - 73.75	1.0000	1.0000
L22	24	(Area) Aero MP3-05 (H)	72.75 - 73.75	1.0000	1.0000
L22	25	(Area) Aero MP3-05 (H)	72.75 - 73.75	1.0000	1.0000
L22	27	(Area) Aero MP3-05 (H)	73.25 - 73.75	1.0000	1.0000
L22	41	CU12PSM9P6XXX(1-1/2)	72.75 - 73.75	1.0000	1.0000
L23	2	HB058-M12-XXXF(5/8)	67.75 - 72.75	1.0000	1.0000
L23	6	HB158-21U6S24- xxM TMO(1-5/8)	67.75 72.75	1.0000	1.0000
L23	22	(Area) Aero MP3-05 (H)	67.75 - 72.75	1.0000	1.0000
L23	24	(Area) Aero MP3-05 (H)	67.75 - 72.75	1.0000	1.0000
L23	25	(Area) Aero MP3-05 (H)	67.75 - 72.75	1.0000	1.0000
L23	41	CU12PSM9P6XXX(1-1/2)	67.75 - 72.75	1.0000	1.0000
L24	2	HB058-M12-XXXF(5/8)	63.08 - 67.75	1.0000	1.0000
L24	6	HB158-21U6S24- xxM_TMO(1-5/8)	63.08 - 67.75	1.0000	1.0000
L24	22			1.0000	1.0000

L24 25 (Area) Aero MP3-05 (H) 67.75 L24 34 (Area) CCI-65FP-060100 63.08 - 1.0000 1.0000 L24 35 (Area) CCI-65FP-060100 63.08 - 1.0000 1.0000 L24 36 (Area) CCI-65FP-060100 63.08 - 1.0000 1.0000 L24 36 (Area) CCI-65FP-060100 67.75 1.0000 1.0000 L25 2 HB058-M12-XXXF(5/8) 62.83 - 1.0000 1.0000 1.0000 L25 6 HB158-21U6S24 - 62.83 - 1.0000 1.0000 1.0000 L25 22 (Area) Aero MP3-05 (H) 63.08 - 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 63.08 - 1.0000 1.0000 L25 24 (Area) CCI-65FP-060100 62.83 - 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83 - 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83 - 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 67.83 - 1.0000 1.0000 <t< th=""><th>Tower Section</th><th>Feed Line Record No.</th><th>Description</th><th>Feed Line Segment Elev.</th><th>K_a No Ice</th><th>K_a Ice</th></t<>	Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L24 25 (Area) Aero MP3-05 (H) (Area) CCI-65FP-060100 (H) (B, 558 63.08 1.0000 1.0000 (B, 75) L24 35 (Area) CCI-65FP-060100 (Area) CCI-65FP-060100 63.08 1.0000 (B, 558 1.0000 1.0000 L24 36 (Area) CCI-65FP-060100 63.08 1.0000 1.0000 L24 41 CU12PSM9P6XXX(1-1/2) 63.08 1.0000 1.0000 L25 2 HB058-M12-XXXF(5/8) 62.83 1.0000 1.0000 L25 22 (Area) Aero MP3-05 (H) 62.83 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 62.83 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 62.83 1.0000 1.0000 L25 34 (Area) CCI-65FP-060100 62.83 1.0000 1.0000 L25 35 (Area) CCI-65FP-060100 62.83 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83 1.0000 1.0000 L26 2 HB058-M12-	L24	24	(Area) Aero MP3-05 (H)	63.08 -	1.0000	1.0000
L24 34 (Area) CCI-65FP-060100 63.08- (H) 1.0000 1.0000 L24 35 (Area) CCI-65FP-060100 63.08- (H) 1.0000 1.0000 L24 36 (Area) CCI-65FP-060100 63.08- (H) 1.0000 1.0000 L24 41 CU12PSM9P6XXX(1-1/2) 63.08- (63.08) 1.0000 1.0000 L25 2 HB058-M12-XXXF(5/8) 62.83- (63.08) 1.0000 1.0000 L25 2 (Area) Aero MP3-05 (H) 63.08- (63.08) 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 63.08- (63.08) 1.0000 1.0000 L25 34 (Area) CCI-65FP-060100 62.83- (H) 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83- (H) 1.0000 1.0000 L26 31 CU12PSM9F6XXX(1-1/2) 63.08 1.0000 1.0000 L26 41 CU12PSM9F6XXX(1-1/2) 63.28- (Area) Aero MP3-05 (H) 63.28- (Area) Aero MP3-05 (H) 63.28- (Area) Aero MP3-05 (H) 62.83- (Area) Aero MP3-05 (H)	L24	25	(Area) Aero MP3-05 (H)	63.08 -	1.0000	1.0000
L24 35 (Area) CCI-65FP-060100 63.08- (H) 1.0000 L24 36 (Area) CCI-65FP-060100 63.08- (H) 1.0000 1.0000 L24 41 CU12PSM9P6XXX(1-1/2) 63.08- 63.08 1.0000 1.0000 L25 2 HB058-M12-XXXF(5/8) 62.83- 63.08 1.0000 1.0000 L25 2 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 63.08 63.08 1.0000 1.0000 L25 24 (Area) CCI-65FP-060100 (G.2.83- 1.0000 1.0000 1.0000 L25 34 (Area) CCI-65FP-060100 (H) 62.83- 62.83- 1.0000 1.0000 L25 35 (Area) CCI-65FP-060100 (H) 62.83- 62.83 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83- 62.83 1.0000 1.0000 L26 2 (Area) Aero MP3-05 (H) 62.83 1.0000	L24	34		63.08 -	1.0000	1.0000
L24 36 (Area) CCI-65FP-060100 (H) 63.08- 65.58 1.0000 1.0000 L24 41 CU12PSM9P6XX(1-1/2) 63.08- 63.08 1.0000 1.0000 L25 2 HB058-M12-XXXF(5/8) 62.83- 62.83 1.0000 1.0000 L25 6 HB158-21U6S24- 82.83 62.83- 63.08 1.0000 1.0000 L25 22 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 25 (Area) CCI-65FP-060100 62.83- 63.08 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83- 63.08 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83- 62.83 1.0000 1.0000 L26 21 CU12PSM9P6XX(1-1/2) 62.83- 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83- 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H)	L24	35	(Area) CCI-65FP-060100	63.08 -	1.0000	1.0000
L24 41 CU12PSM9P6XXX(1-1/2) 63.08 1.0000 1.0000 L25 2 HB058-M12-XXXF(5/8) 62.83 1.0000 1.0000 L25 2 (Area) Aero MP3-05 (H) 62.83 1.0000 1.0000 L25 22 (Area) Aero MP3-05 (H) 62.83 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 62.83 1.0000 1.0000 L25 25 (Area) Aero MP3-05 (H) 62.83 1.0000 1.0000 L25 24 (Area) CCI-65FP-060100 62.83 1.0000 1.0000 L25 34 (Area) CCI-65FP-060100 62.83 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83 1.0000 1.0000 L26 21 CU12PSM9P6XX(1-1/2) 62.83 1.0000 1.0000 L26 21 HB058-H12-XXXF(5/8) 57.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 67.83 1.0000 1.0000 <	L24	36	(Area) CCI-65FP-060100	63.08 -	1.0000	1.0000
L25 2 HB058-M12-XXXF(5/8) 62.83- 63.08 1.0000 1.0000 L25 6 HB158-21U6S24- xxM_TMO(1-5/8) 62.83- 63.08 1.0000 1.0000 L25 22 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 24 (Area) CCI-65FP-060100 62.83- 63.08 1.0000 1.0000 L25 34 (Area) CCI-65FP-060100 62.83- 63.08 1.0000 1.0000 L25 35 (Area) CCI-65FP-060100 62.83- 63.08 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83- 63.08 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83- 62.83 1.0000 1.0000 L26 2 (Area) Aero MP3-05 (H) 62.83- 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83- 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H)	L24	41	()	63.08 -	1.0000	1.0000
L25 6 HB158-21U6S24- xxM_TMO(1-5/8) 63.08 62.83- 63.08 1.0000 1.0000 L25 22 (Area) Aero MP3-05 (H) 63.08 62.83- 63.08 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 63.08 62.83- 63.08 1.0000 1.0000 L25 25 (Area) Aero MP3-05 (H) 63.08 62.83- 63.08 1.0000 1.0000 L25 34 (Area) CCI-65FP-060100 62.83- 63.08 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83- 62.83 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83- 62.83 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83- 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 62.83 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 62.83 1.0000 1.0000 L26 34 (Area) CCI-65FP-060100 57.83- 1.0000 1.0000 L26 34 (Area) CCI-65FP-060100 57.83- 1.0	L25	2	HB058-M12-XXXF(5/8)	62.83 -	1.0000	1.0000
L25 22 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 24 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 25 (Area) Aero MP3-05 (H) 62.83- 63.08 1.0000 1.0000 L25 34 (Area) CCI-65FP-060100 62.83- 63.08 1.0000 1.0000 L25 35 (Area) CCI-65FP-060100 62.83- 63.08 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 62.83- 62.83 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83- 62.83 1.0000 1.0000 L26 2 (Area) Aero MP3-05 (H) 62.83 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83- 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 62.83 62.83 1.0000 1.0000 L26 34 (Area) CCI-65FP-060100 62.83 1.0000 1.0000 L26 34 (Area) CCI-65FP-060100 62.83 1.0000 <td>L25</td> <td>6</td> <td></td> <td>62.83 -</td> <td>1.0000</td> <td>1.0000</td>	L25	6		62.83 -	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L25	22		62.83 -	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L25	24	(Area) Aero MP3-05 (H)	62.83 -	1.0000	1.0000
L25 34 (Area) CCI-65FP-060100 (H) 62.83- 63.08 1.0000 63.08 L25 35 (Area) CCI-65FP-060100 (H) 62.83- 63.08 1.0000 62.83- 1.0000 1.0000 L25 36 (Area) CCI-65FP-060100 (H) 62.83- 63.08 1.0000 1.0000 L25 41 CU12PSM9P6XXX(1-1/2) 62.83- 62.83 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83- 62.83 1.0000 1.0000 L26 6 HB158-21U6S24- xxM_TMO(1-5/8) 57.83- 62.83 1.0000 1.0000 L26 22 (Area) Aero MP3-05 (H) 57.83- 62.83 1.0000 1.0000 L26 24 (Area) CCI-65FP-060100 57.83- 62.83 1.0000 1.0000 L26 35 (Area) CCI-65FP-060100 57.83- 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83- 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83- 62.83 1.0000 1.0000 L27 2 HB058-M12-XXXF(5/	L25	25	(Area) Aero MP3-05 (H)	62.83 -	1.0000	1.0000
L25 35 (Area) CCI-65FP-060100 (H) 62.83- 63.08 1.0000 62.83- 1.0000 1.0000 62.83- 1.0000 L25 41 CU12PSM9P6XXX(1-1/2) 62.83- 63.08 1.0000 62.83- 1.0000 1.0000 62.83- 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83- 62.83 1.0000 1.0000 62.83 L26 6 HB158-21U6S24- xxM_TMO(1-5/8) 57.83- 62.83 1.0000 1.0000 62.83 L26 22 (Area) Aero MP3-05 (H) 57.83- 62.83 1.0000 1.0000 62.83 L26 24 (Area) Aero MP3-05 (H) 57.83- 62.83 1.0000 1.0000 62.83 L26 25 (Area) Aero MP3-05 (H) 57.83- 62.83 1.0000 1.0000 62.83 L26 34 (Area) CCI-65FP-060100 (H) 57.83- 62.83 1.0000 1.0000 62.83 L26 35 (Area) CCI-65FP-060100 (H) 57.83- 62.83 1.0000 1.0000 62.83 L26 41 CU12PSM9P6XXX(1-1/2) 57.83- 7.83 1.0000 1.0000 62.83 L27 2 HB058-M12-XXXF(5/8) 52.83- 7.83 1.0000 1.0000 67.83 L27 24 (Area) Aero MP3-05 (H) 7.83	L25	34		62.83 -	1.0000	1.0000
L25 36 (Area) CCI-65FP-060100 (H) 62.83 63.08 1.0000 1.0000 L25 41 CU12PSM9P6XXX(1-1/2) 62.83 63.08 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) 57.83 - 62.83 1.0000 1.0000 L26 6 HB158-21U6S24- xxM_TMO(1-5/8) 57.83 - 62.83 1.0000 1.0000 L26 22 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 25 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 34 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L26 41 CU12PSM9P6XXX(1-1/2) 57.83 - 57.83 1.0000 1.0000 L27 2 HB058-M12-XXXF(5	L25	35	(Area) CCI-65FP-060100	62.83 -	1.0000	1.0000
L25 41 CU12PSM9P6XXX(1-1/2) 62.83 63.08 63.08 62.83 1.0000 1.0000 L26 2 HB058-M12-XXXF(5/8) XM_TMO(1-5/8) XM_TMO(1-5/8) 57.83 - 62.83 1.0000 1.0000 L26 6 HB158-2106S24- XM_TMO(1-5/8) 57.83 - 62.83 1.0000 1.0000 L26 22 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 25 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 25 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L27 2 HB058-M12-XXXF(5/8) 52.83 - 7.83 1.0000 1.0000 L27 2 HB058-M12-XXF(5/8) 57.83 1.0000 1.0000 L27 24	L25	36	(Area) CCI-65FP-060100	62.83 -	1.0000	1.0000
L26 2 HB058-M12-XXXF(5/8) 57.83 - 62.83 1.0000 1.0000 L26 6 HB158-21U6S24 - xxM_TMO(1-5/8) 57.83 - 62.83 1.0000 1.0000 L26 22 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 25 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 25 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - 62.83 1.0000 1.0000 L27 2 HB058-M12-XXXF(5/8) 52.83 - 7.83 1.0000 1.0000 L27 2 (Area) Aero MP3-05 (H) 52.83 - 7.83 1.0000 1.0000 L27 24 (Area) Aero MP3-0	L25	41	. ,	62.83 -	1.0000	1.0000
L26 6 HB158-21U6S24- xxM_TMO(1-5/8) 57.83 - 62.83 1.0000 1.0000 L26 22 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 25 (Area) CCI-65FP-060100 57.83 - (H) 1.0000 1.0000 L26 34 (Area) CCI-65FP-060100 57.83 - (H) 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - (H) 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - (H) 1.0000 1.0000 L26 41 CU12PSM9P6XXX(1-1/2) 57.83 - (H) 1.0000 1.0000 L27 2 HB058-41U6S24- xXM_TMO(1-5/8) 57.83 1.0000 1.0000 L27 22 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 57.83 L27 24 (Area) Aero MP3-05 (H	L26	2	HB058-M12-XXXF(5/8)	57.83 -	1.0000	1.0000
L26 22 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 L26 24 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 L26 25 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 25 (Area) CCI-65FP-060100 57.83 - 1.0000 1.0000 62.83 L26 34 (Area) CCI-65FP-060100 57.83 - 1.0000 1.0000 L26 35 (Area) CCI-65FP-060100 57.83 - 1.0000 1.0000 (H) 62.83 1.0000 1.0000 62.83 L27 2 HB058-M12-XXXF(5/8) 52.83 - 1.0000 1.0000 L27 2 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) <td>L26</td> <td>6</td> <td></td> <td>57.83 -</td> <td>1.0000</td> <td>1.0000</td>	L26	6		57.83 -	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L26	22		57.83 -	1.0000	1.0000
L26 25 (Area) Aero MP3-05 (H) 57.83 - 62.83 1.0000 1.0000 L26 34 (Area) CCI-65FP-060100 57.83 - (H) 1.0000 1.0000 L26 35 (Area) CCI-65FP-060100 57.83 - (H) 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - (H) 1.0000 1.0000 L26 36 (Area) CCI-65FP-060100 57.83 - (H) 1.0000 1.0000 L26 41 CU12PSM9P6XXX(1-1/2) 57.83 - (E2.83) 1.0000 1.0000 L27 2 HB058-M12-XXXF(5/8) 52.83 - 57.83 1.0000 1.0000 L27 2 (Area) Aero MP3-05 (H) 52.83 - 57.83 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 57.83 1.0000 1.0000 L27 25 (Area) CCI-65FP-060100 52.83 - 57.83 1.0000 1.0000 L27 34 (Area) CCI-65FP-060100 52.83 - 57.83 1.0000 1.0000 L27 36 (Area) CCI-65FP-060100 <td>L26</td> <td>24</td> <td>(Area) Aero MP3-05 (H)</td> <td>57.83 -</td> <td>1.0000</td> <td>1.0000</td>	L26	24	(Area) Aero MP3-05 (H)	57.83 -	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L26	25	(Area) Aero MP3-05 (H)	57.83 -	1.0000	1.0000
L26 35 (Area) CCI-65FP-060100 57.83 - (1.0000) 1.0000 (H) 62.83 1.0000 1.0000 (L27) 2 HB058-M12-XXXF(5/8) 52.83 - 1.0000 1.0000 L27 6 HB158-21U6S24- 52.83 - 1.0000 1.0000 xxM_TMO(1-5/8) 57.83 1.0000 1.0000 L27 22 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 34 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 1.0000 1.0000 1.0000 1.0000 1.0000 L27 35 (Area) CCI-65FP-060100 52.83 - 1.0000	L26	34		57.83 -	1.0000	1.0000
L26 36 (Area) CCI-65FP-060100 57.83 - 1.0000 1.0000 (H) 62.83 1.0000 1.0000 L26 41 CU12PSM9P6XXX(1-1/2) 57.83 - 1.0000 1.0000 L27 2 HB058-M12-XXXF(5/8) 52.83 - 1.0000 1.0000 L27 6 HB158-21U6S24 - 52.83 - 1.0000 1.0000 xxM_TMO(1-5/8) 57.83 1.0000 1.0000 L27 22 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 L27 34 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 1.0000 1.0000 (H) 57.83 L27 36 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 1.0000 1.0000 (H) 57.83 1.0000 1.0000 (H) L27 <td< td=""><td>L26</td><td>35</td><td>(Area) CCI-65FP-060100</td><td>57.83 -</td><td>1.0000</td><td>1.0000</td></td<>	L26	35	(Area) CCI-65FP-060100	57.83 -	1.0000	1.0000
L26 41 CU12PSM9P6XXX(1-1/2) 57.83 - (1.0000) 1.0000) L27 2 HB058-M12-XXXF(5/8) 52.83 - (1.0000) 1.0000) L27 6 HB158-21U6S24- (52.83 - (1.0000)) 1.0000) 57.83 L27 6 HB158-21U6S24- (52.83 - (1.0000)) 1.0000) 57.83 L27 22 (Area) Aero MP3-05 (H) 52.83 - (1.0000) 1.0000) L27 24 (Area) Aero MP3-05 (H) 52.83 - (1.0000) 1.0000) L27 25 (Area) Aero MP3-05 (H) 52.83 - (1.0000) 1.0000) L27 25 (Area) Aero MP3-05 (H) 52.83 - (1.0000) 1.0000) L27 25 (Area) CCI-65FP-060100 52.83 - (1.0000) 1.0000) L27 34 (Area) CCI-65FP-060100 52.83 - (1.0000) 1.0000) (H) 57.83 1.0000) 1.0000) (H) 57.83 L27 36 (Area) CCI-65FP-060100) 52.83 - (1.0000) 1.0000) (H) L27 36 (Area) CCI-65FP-060100 52.83 - (1.0000) 1.0000) (H) L27 36 (Area) CCI-65F	L26	36	(Area) CCI-65FP-060100	57.83 -	1.0000	1.0000
L27 2 HB058-M12-XXXF(5/8) 52.83 - 1.0000 1.0000 L27 6 HB158-21U6S24- 52.83 - 1.0000 1.0000 1.0000 xxM_TMO(1-5/8) 57.83 1.0000 1.0000 L27 22 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 L27 34 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 1.0000 1.0000 (H) 57.83 L27 35 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 L27 36 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 L27 36 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 L27 36 (L26	41		57.83 -	1.0000	1.0000
L27 6 HB158-21U6S24- xxM_TMO(1-5/8) 52.83 - 57.83 1.0000 1.0000 L27 22 (Area) Aero MP3-05 (H) 52.83 - 57.83 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 57.83 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 57.83 1.0000 1.0000 L27 25 (Area) Aero MP3-05 (H) 52.83 - 57.83 1.0000 1.0000 L27 34 (Area) CCI-65FP-060100 52.83 - (H) 1.0000 1.0000 L27 35 (Area) CCI-65FP-060100 52.83 - (H) 1.0000 1.0000 L27 36 (Area) CCI-65FP-060100 52.83 - (H) 1.0000 1.0000 L27 41 CU12PSM9P6XXX(1-1/2) 52.83 - 57.83 1.0000 1.0000 <td>L27</td> <td>2</td> <td>HB058-M12-XXXF(5/8)</td> <td>52.83 -</td> <td>1.0000</td> <td>1.0000</td>	L27	2	HB058-M12-XXXF(5/8)	52.83 -	1.0000	1.0000
L27 22 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 24 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) CCI-65FP-060100 57.83 1.0000 1.0000 L27 34 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 1.0000 L27 35 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 1.0000 L27 36 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 1.0000 L27 36 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0	L27	6		52.83 -	1.0000	1.0000
L27 24 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 25 (Area) Aero MP3-05 (H) 52.83 - 1.0000 1.0000 L27 34 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 1.0000 1.0000 (L27) 36 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 1.0000 1.0000 1.0000 1.0000 (H) 57.83 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1	L27	22		52.83 -	1.0000	1.0000
L27 25 (Area) Aero MP3-05 (H) 52.83 - 57.83 1.0000 1.0000 L27 34 (Area) CCI-65FP-060100 (H) 52.83 - 57.83 1.0000 1.0000 L27 35 (Area) CCI-65FP-060100 (H) 52.83 - 57.83 1.0000 1.0000 L27 35 (Area) CCI-65FP-060100 (H) 52.83 - 57.83 1.0000 1.0000 L27 36 (Area) CCI-65FP-060100 (H) 52.83 - 57.83 1.0000 1.0000 L27 36 (Area) CCI-65FP-060100 (H) 52.83 - 57.83 1.0000 1.0000	L27	24	(Area) Aero MP3-05 (H)	52.83 -	1.0000	1.0000
L27 34 (Area) CCI-65FP-060100 (H) 57.83 L27 35 (Area) CCI-65FP-060100 (H) 57.83 L27 36 (Area) CCI-65FP-060100 (H) 57.83 L27 41 CU12PSM9P6XXX(1-1/2) 52.83 - 1.0000 (H) 57.83 L27 41 CU12PSM9P6XXX(1-1/2) 52.83 - 1.0000 57.83	L27	25	(Area) Aero MP3-05 (H)	52.83 -	1.0000	1.0000
L27 35 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 1.0000 1.0000	L27	34		52.83 -	1.0000	1.0000
L27 36 (Area) CCI-65FP-060100 52.83 - 1.0000 1.0000 (H) 57.83 L27 41 CU12PSM9P6XXX(1-1/2) 52.83 - 1.0000 1.0000 57.83	L27	35	(Area) CCI-65FP-060100	52.83 -	1.0000	1.0000
L27 41 CU12PSM9P6XXX(1-1/2) 52.83 - 1.0000 1.0000 57.83	L27	36	(Area) CCI-65FP-060100	52.83 -	1.0000	1.0000
	L27	41	()	52.83 -	1.0000	1.0000
	L28	2	HB058-M12-XXXF(5/8)	47.83 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
L28	6	HB158-21U6S24-	<i>Elev.</i> 47.83 -	1.0000	1.0000
L28	22	xxM_TMO(1-5/8) (Area) Aero MP3-05 (H)	52.83 47.83 -	1.0000	1.0000
L28	24	(Area) Aero MP3-05 (H)	52.83 47.83 -	1.0000	1.0000
L28	25	(Area) Aero MP3-05 (H)	52.83 47.83 - 52.83	1.0000	1.0000
L28	34	(Area) CCI-65FP-060100	47.83 -	1.0000	1.0000
L28	35	(H) (Area) CCI-65FP-060100	52.83 47.83 -	1.0000	1.0000
L28	36	(H) (Area) CCI-65FP-060100	52.83 47.83 -	1.0000	1.0000
L28	41	(H) CU12PSM9P6XXX(1-1/2)	52.83 47.83 - 52.83	1.0000	1.0000
L29	2	HB058-M12-XXXF(5/8)	42.75 - 47.83	1.0000	1.0000
L29	6	HB158-21U6S24- xxM_TMO(1-5/8)	47.83 42.75 - 47.83	1.0000	1.0000
L29	22	(Area) Aero MP3-05 (H)	47.83 42.75 - 47.83	1.0000	1.0000
L29	24	(Area) Aero MP3-05 (H)	47.83 42.75 - 47.83	1.0000	1.0000
L29	25	(Area) Aero MP3-05 (H)	47.83 42.75 - 47.83	1.0000	1.0000
L29	34	(Area) CCI-65FP-060100 (H)	47.83 42.75 - 47.83	1.0000	1.0000
L29	35	(Area) CCI-65FP-060100 (H)	42.75 - 47.83	1.0000	1.0000
L29	36	(Area) CCI-65FP-060100 (H)	42.75 - 47.83	1.0000	1.0000
L29	41	CU12PSM9P6XXX(1-1/2)	47.83 42.75 - 47.83	1.0000	1.0000
L30	2	HB058-M12-XXXF(5/8)	42.50 - 42.75	1.0000	1.0000
L30	6	HB158-21U6S24-	42.50 -	1.0000	1.0000
L30	22	xxM_TMO(1-5/8) (Area) Aero MP3-05 (H)	42.75 42.50 - 42.75	1.0000	1.0000
L30	24	(Area) Aero MP3-05 (H)	42.75 42.50 - 42.75	1.0000	1.0000
L30	25	(Area) Aero MP3-05 (H)	42.75 42.50 - 42.75	1.0000	1.0000
L30	34	(Area) CCI-65FP-060100 (H)	42.75	1.0000	1.0000
L30	35	(Area) CCI-65FP-060100 (H)	42.50 - 42.75	1.0000	1.0000
L30	36	(Area) CCI-65FP-060100 (H)	42.50 - 42.75	1.0000	1.0000
L30	41	(II) CU12PSM9P6XXX(1-1/2)	42.73 42.50 - 42.75	1.0000	1.0000
L31	2	HB058-M12-XXXF(5/8)	42.73 37.50 - 42.50	1.0000	1.0000
L31	6	HB158-21U6S24- xxM TMO(1-5/8)	42.30 37.50 - 42.50	1.0000	1.0000
L31	22	(Area) Aero MP3-05 (H)	42.30 37.50 - 42.50	1.0000	1.0000
L31	24	(Area) Aero MP3-05 (H)	42.50 37.50 - 42.50	1.0000	1.0000
L31	25	(Area) Aero MP3-05 (H)	37.50 - 42.50	1.0000	1.0000
L31	34	(Area) CCI-65FP-060100 (H)	37.50 - 42.50	1.0000	1.0000
L31	35	(Area) CCI-65FP-060100 (H)	37.50 - 42.50	1.0000	1.0000
L31	36	(Area) CCI-65FP-060100 (H)	37.50 - 42.50	1.0000	1.0000
L31	41	CU12PSM9P6XXX(1-1/2)	37.50 -	1.0000	1.0000

Tower Feed Line Description Section Record No.		Feed Line Segment Elev.	K _a No Ice	K _a Ice	
L32	2	HB058-M12-XXXF(5/8)	42.50 32.75 - 37.50	1.0000	1.0000
L32	6	HB158-21U6S24-	32.75 -	1.0000	1.0000
L32	22	xxM_TMO(1-5/8) (Area) Aero MP3-05 (H)	37.50 32.75 -	1.0000	1.0000
L32	24	(Area) Aero MP3-05 (H)	37.50 32.75 -	1.0000	1.0000
L32	25	(Area) Aero MP3-05 (H)	37.50 32.75 -	1.0000	1.0000
L32	30	(Area) CCI-65FP-065125	37.50 32.75 - 35.50	1.0000	1.0000
L32	31	(H) (Area) CCI-65FP-065125 (H)	35.50 32.75 - 35.50	1.0000	1.0000
L32	32	(II) (Area) CCI-65FP-065125 (H)	32.75 - 35.50	1.0000	1.0000
L32	34	(17) (Area) CCI-65FP-060100 (H)	35.50 35.50 - 37.50	1.0000	1.0000
L32	35	(17) (Area) CCI-65FP-060100 (H)	35.50 - 37.50	1.0000	1.0000
L32	36	(Area) CCI-65FP-060100 (H)	35.50 - 37.50	1.0000	1.0000
L32	41	CU12PSM9P6XXX(1-1/2)	32.75 - 37.50	1.0000	1.0000
L33	2	HB058-M12-XXXF(5/8)	32.50 - 32.75	1.0000	1.0000
L33	6	HB158-21U6S24- xxM TMO(1-5/8)	32.50 - 32.75	1.0000	1.0000
L33	22	(Area) Aero MP3-05 (H)	32.50 - 32.75	1.0000	1.0000
L33	24	(Area) Aero MP3-05 (H)	32.50 - 32.75	1.0000	1.0000
L33	25	(Area) Aero MP3-05 (H)	32.50 - 32.75	1.0000	1.0000
L33	30	(Area) CCI-65FP-065125 (H)	32.50 - 32.75	1.0000	1.0000
L33	31	(Area) CCI-65FP-065125 (H)	32.50 - 32.75	1.0000	1.0000
L33	32	(Area) CCI-65FP-065125 (H)	32.50 32.75	1.0000	1.0000
L33	41	CU12PSM9P6XXX(1-1/2)	32.50 - 32.75	1.0000	1.0000
L34	2	HB058-M12-XXXF(5/8)	27.50 - 32.50	1.0000	1.0000
L34	6	HB158-21U6S24- xxM TMO(1-5/8)	27.50 - 32.50	1.0000	1.0000
L34	22	(Area) Aero MP3-05 (H)	27.50 - 32.50	1.0000	1.0000
L34	24	(Area) Aero MP3-05 (H)	27.50 - 32.50	1.0000	1.0000
L34	25	(Area) Aero MP3-05 (H)	27.50 - 32.50	1.0000	1.0000
L34	30	(Area) CCI-65FP-065125 (H)	27.50 - 32.50	1.0000	1.0000
L34	31	(Area) CCI-65FP-065125 (H)	27.50 - 32.50	1.0000	1.0000
L34	32	(Area) CCI-65FP-065125 (H)	27.50 - 32.50	1.0000	1.0000
L34	41	CU12PSM9P6XXX(1-1/2)	27.50 - 32.50	1.0000	1.0000
L35	2	HB058-M12-XXXF(5/8)	22.50 - 27.50	1.0000	1.0000
L35	6	HB158-21U6S24- xxM TMO(1-5/8)	22.50 - 27.50	1.0000	1.0000
L35	22	(Area) Aero MP3-05 (H)	22.50 - 27.50	1.0000	1.0000
L35	24	(Area) Aero MP3-05 (H)	22.50 - 27.50	1.0000	1.0000

Section 7 L35 L35 L35 L35 L36 L36 L36 L36 L36 L36 L36 L36	Record No. 25 30 31 32 41 2 6 22 24 25 30 31 32 41 22 6 22	Description (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24- xXM_TMO(1-5/8) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24- wM_TMO(1-5/8)	Segment Elev. 22.50 - 27.50 22.50 - 27.50 22.50 - 27.50 22.50 - 27.50 22.50 - 27.50 17.50 - 22.50 17.50 - 25.50 17.50 - 25.50	No Ice 1.0000	Ice 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L35 L35 L35 L36 L36 L36 L36 L36 L36 L36 L36 L36 L37 L37 L37	30 31 32 41 2 6 22 24 25 30 31 32 41 2 6	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24- xXM_TMO(1-5/8) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	$\begin{array}{c} 22.50 \\ 27.50 \\ 22.50 \\ 27.50 \\ 22.50 \\ 27.50 \\ 22.50 \\ 27.50 \\ 22.50 \\ 27.50 \\ 27.50 \\ 27.50 \\ 17.50 \\ 22.50 \\ 17.50 \\$	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L35 L35 L36 L36 L36 L36 L36 L36 L36 L36 L37 L37 L37 L37	 31 32 41 2 6 22 24 25 30 31 32 41 2 6 	(H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24- xXM_TMO(1-5/8) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	$\begin{array}{c} 22.50 - \\ 27.50 \\ 22.50 - \\ 27.50 \\ 22.50 - \\ 27.50 \\ 27.50 \\ 27.50 \\ 17.50 - \\ 22.50 \\ 17.50 \\ 10.50 \\$	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L35 L36 L36 L36 L36 L36 L36 L36 L36 L37 L37 L37 L37	32 41 2 6 22 24 25 30 31 32 41 2 6	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24- xXM_TMO(1-5/8) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	$\begin{array}{c} 22.50 \\ 27.50 \\ 22.50 \\ 27.50 \\ 22.50 \\ 27.50 \\ 27.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 22.50 \\ 17.50 \\ 17.50 \\ 22.50 \\ 17.50 \\$	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L35 L36 L36 L36 L36 L36 L36 L36 L37 L37 L37 L37	41 2 6 22 24 25 30 31 32 41 2 6	(Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24- xxM_TMO(1-5/8) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	$\begin{array}{c} 22.50 - \\ 27.50 \\ 22.50 - \\ 27.50 \\ 17.50 - \\ 22.50 \\ 10.50 \\ 1$	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L36 L36 L36 L36 L36 L36 L36 L37 L37 L37 L37	2 6 22 24 25 30 31 32 41 2 6	CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24- xxM_TMO(1-5/8) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	$\begin{array}{c} 22.50 - \\ 27.50 \\ 17.50 - \\ 22.50 \\ 10.50 \\$	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L36 L36 L36 L36 L36 L36 L37 L37 L37 L37	6 22 24 25 30 31 32 41 2 6	HB158-21U6S24- xxM_TMO(1-5/8) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 17.50 - 22.50 12.50 - 22.50 17.50 - 22.50 17.5	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L36 L36 L36 L36 L36 L36 L37 L37 L37 L37	22 24 25 30 31 32 41 2 6	xxM_TMO(1-5/8) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 17.50 - 22.50 12.50 - 17.50	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L36 L36 L36 L36 L36 L37 L37 L37 L37	24 25 30 31 32 41 2 6	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 12.50 - 12.50 - 17.50 -	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L36 L36 L36 L37 L37 L37 L37 L37	25 30 31 32 41 2 6	(Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 12.50 - 12.50 - 17.50 -	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000
L36 L36 L36 L37 L37 L37 L37 L37	30 31 32 41 2 6	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 12.50 - 17.50 - 17.50	1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000
L36 L36 L37 L37 L37 L37 L37	31 32 41 2 6	(H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 12.50 - 17.50	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
L36 L37 L37 L37 L37 L37 L37	32 41 2 6	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 17.50 - 22.50 17.50 - 22.50 12.50 - 17.50	1.0000 1.0000 1.0000	1.0000 1.0000
L36 L37 L37 L37 L37 L37	41 2 6	(Area) CCI-65FP-065125 (H) CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 17.50 - 22.50 12.50 - 17.50	1.0000 1.0000	1.0000
L37 L37 L37 L37 L37	2 6	CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8) HB158-21U6S24-	17.50 - 22.50 12.50 - 17.50	1.0000	
L37 L37 L37 L37	6	HB158-21U6S24-	12.50 - 17.50		1.0000
L37 L37 L37					
L37 L37	22	6 HB158-21U6S24- 12.5		1.0000	1.0000
L37	22	(Area) Aero MP3-05 (H)	17.50 12.50 -	1.0000	1.0000
	24	(Area) Aero MP3-05 (H)	17.50 12.50 -	1.0000	1.0000
L37	25	(Area) Aero MP3-05 (H)	17.50 12.50 -	1.0000	1.0000
	30	(Area) CCI-65FP-065125	17.50 12.50 -	1.0000	1.0000
L37	31	(H) (Area) CCI-65FP-065125	17.50 12.50 -	1.0000	1.0000
L37	32	(H) (Area) CCI-65FP-065125	17.50 12.50 -	1.0000	1.0000
L37	41	(H) CU12PSM9P6XXX(1-1/2)	17.50 12.50 -	1.0000	1.0000
L38	2	HB058-M12-XXXF(5/8)	17.50 8.08 - 12.50	1.0000	1.0000
L38	6	HB158-21U6S24- xxM_TMO(1-5/8)	8.08 - 12.50	1.0000	1.0000
L38 L38	19 20	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H)	8.08 - 10.50 8.08 - 10.50	1.0000 1.0000	1.0000 1.0000
L38	20	(Area) Aero MP3-05 (H)		1.0000	
			8.08 - 12.50		1.0000
L38	24	(Area) Aero MP3-05 (H)	8.08 - 12.50	1.0000	1.0000
L38	25	(Area) Aero MP3-05 (H)	8.08 - 12.50	1.0000	1.0000
L38	30	(Area) CCI-65FP-065125 (H)	8.08 - 12.50	1.0000	1.0000
L38	31	(Area) CCI-65FP-065125 (H)	8.08-12.50	1.0000	1.0000
L38	32	(Area) CCI-65FP-065125 (H)	8.08-12.50	1.0000	1.0000
L38	41	CU12PSM9P6XXX(1-1/2)	8.08 - 12.50	1.0000	1.0000
L39 L39	2	HB058-M12-XXXF(5/8) HB158-21U6S24-	7.83-8.08	1.0000	1.0000
		xxM TMO(1-5/8)			
L39	19	(Area) Aero MP3-05 (H)	7.83-8.08	1.0000	1.0000
L39	20	(Area) Aero MP3-05 (H)		1.0000	1.0000
			7.83-8.08		
L39	22	(Area) Aero MP3-05 (H)	7.83-8.08	1.0000	1.0000
L39	24	(Area) Aero MP3-05 (H)	7.83-8.08	1.0000	1.0000
L39	25	(Area) Aero MP3-05 (H)	7.83-8.08	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	K _a	Ka
Section	Record No.	Description	Segment	No Ice	lce
			Ĕlev.		
L39	30	(Area) CCI-65FP-065125	7.83-8.08	1.0000	1.0000
		(H)			
L39	31	(Area) CCI-65FP-065125	7.83-8.08	1.0000	1.0000
		(H)			
L39	32	(Area) CCI-65FP-065125	7.83-8.08	1.0000	1.0000
1.00			7 00 0 00	4 0000	4 0000
L39	41	CU12PSM9P6XXX(1-1/2)	7.83-8.08	1.0000	1.0000 1.0000
L40 L40	2 6	HB058-M12-XXXF(5/8) HB158-21U6S24-	6 42 - 7 83 6 42 - 7 83	1.0000 1.0000	1.0000
L40	0	xxM TMO(1-5/8)	0.42 - 7.03	1.0000	1.0000
L40	19	(Area) Aero MP3-05 (H)	6.42-7.83	1.0000	1.0000
L40	20	(Area) Aero MP3-05 (H)	6.42 - 7.83	1.0000	1.0000
L40	22	(Area) Aero MP3-05 (H)	6.42 - 7.83	1.0000	1.0000
L40	24	(Area) Aero MP3-05 (H)	6.42-7.83	1.0000	1.0000
L40	25	(Area) Aero MP3-05 (H)	6.42 - 7.83	1.0000	1.0000
L40	30	(Area) CCI-65FP-065125	6.42 - 7.83	1.0000	1.0000
		(H)			
L40	31	(Area) CCI-65FP-065125	6.42 - 7.83	1.0000	1.0000
		(H)			
L40	32	(Area) CCI-65FP-065125	6.42 - 7.83	1.0000	1.0000
1.40			0.40.7.00	4 0000	1 0000
L40	41	CU12PSM9P6XXX(1-1/2)	6.42-7.83	1.0000	1.0000
L41 L41	2 6	HB058-M12-XXXF(5/8)	6.17 - 6.42	1.0000 1.0000	1.0000
L4 I	0	HB158-21U6S24- xxM TMO(1-5/8)	6.17-6.42	1.0000	1.0000
L41	19	(Area) Aero MP3-05 (H)	6.17-6.42	1.0000	1.0000
L41	20	(Area) Aero MP3-05 (H)	6.17 - 6.42	1.0000	1.0000
L41	22	(Area) Aero MP3-05 (H)	6.17 - 6.42	1.0000	1.0000
L41	24	(Area) Aero MP3-05 (H)	6.17 - 6.42	1.0000	1.0000
L41	25	(Area) Aero MP3-05 (H)	6.17-6.42	1.0000	1.0000
L41	30	(Area) ĆCI-65FP-065125	6.17 - 6.42	1.0000	1.0000
		(H)			
L41	31	(Area) CCI-65FP-065125	6.17-6.42	1.0000	1.0000
		(H)			
L41	32	(Area) CCI-65FP-065125	6.17 - 6.42	1.0000	1.0000
L41	41		6 17 6 40	1.0000	1 0000
L41 L42		CU12PSM9P6XXX(1-1/2) HB058-M12-XXXF(5/8)	6.17-6.42 3.25-6.17	1.0000	1.0000 1.0000
L42 L42	2 6	HB158-21U6S24-	3.25-6.17	1.0000	1.0000
L72	0	xxM TMO(1-5/8)	0.20 0.17	1.0000	1.0000
L42	19	(Area) Aero MP3-05 (H)	3.25-6.17	1.0000	1.0000
L42	20	(Area) Aero MP3-05 (H)	3.25-6.17	1.0000	1.0000
L42	22	(Area) Aero MP3-05 (H)	4.00-6.17	1.0000	1.0000
L42	24	(Area) Aero MP3-05 (H)	3.25-6.17	1.0000	1.0000
L42	25	(Area) Aero MP3-05 (H)	3.25-6.17	1.0000	1.0000
L42	30	(Area) CCI-65FP-065125	3.25-6.17	1.0000	1.0000
			0.05.0./-	4 6 6 6 5	4
L42	31	(Area) CCI-65FP-065125	3.25-6.17	1.0000	1.0000
1 4 2	20	(H) (Area) CCI-65FP-065125	2 25 6 17	1 0000	1 0000
L42	32	(Area) CCI-65FP-065125 (H)	3.25-6.17	1.0000	1.0000
L42	41	CU12PSM9P6XXX(1-1/2)	3.25-6.17	1.0000	1.0000
L42 L43	2	HB058-M12-XXXF(5/8)	3.00 - 3.25	1.0000	1.0000
L43	6	HB158-21U6S24-	3.00 - 3.25	1.0000	1.0000
2.5	0	xxM TMO(1-5/8)	0.20		
L43	19	(Area) Aero MP3-05 (H)	3.00-3.25	1.0000	1.0000
L43	20	(Area) Aero MP3-05 (H)	3.00 - 3.25	1.0000	1.0000
L43	24	(Area) Aero MP3-05 (H)	3.00-3.25	1.0000	1.0000
L43	25	(Area) Aero MP3-05 (H)	3.00 - 3.25	1.0000	1.0000
L43	30	(Area) CCI-65FP-065125	3.00-3.25	1.0000	1.0000
				4 0 0 0 0	4
L43	31	(Area) CCI-65FP-065125	3.00-3.25	1.0000	1.0000
1.40		(H)	3 00 3 05	1 0000	1 0000
L43	32	(Area) CCI-65FP-065125	3.00-3.25	1.0000	1.0000
L43	41	(H) CU12PSM9P6XXX(1-1/2)	3.00-3.25	1.0000	1.0000
L43 L44	2	HB058-M12-XXXF(5/8)	2.00-3.00	1.0000	1.0000
L44	6	HB158-21U6S24-	2.00 - 3.00	1.0000	1.0000
= · ·	Ĵ	xxM_TMO(1-5/8)			
		(

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L44	19	(Area) Aero MP3-05 (H)	2.00-3.00	1.0000	1.0000
L44	20	(Area) Aero MP3-05 (H)	2.00-3.00	1.0000	1.0000
L44	24	(Area) Aero MP3-05 (H)	2.00-3.00	1.0000	1.0000
L44	25	(Area) Aero MP3-05 (H)	2.00-3.00	1.0000	1.0000
L44	30	(Area) CCI-65FP-065125	2.00-3.00	1.0000	1.0000
L44	31	(H) (Area) CCI-65FP-065125	2.00-3.00	1.0000	1.0000
	01	(H)	2100 0100		
L44	32	(Area) CCI-65FP-065125	2.00-3.00	1.0000	1.0000
		、 <i>′</i> (H)			
L44	41	CU12PSM9P6XXX(1-1)2)	2.00-3.00	1.0000	1.0000
L45	2	HB058-M12-XXXF(5/8)	1.75-2.00	1.0000	1.0000
L45	6	HB158-21U6S24-	1.75-2.00	1.0000	1.0000
		xxM_TMO(1-5/8)			
L45	19		1.75-2.00	1.0000	1.0000
L45	20	(Area) Aero MP3-05 (H)	1.75-2.00	1.0000	1.0000
L45	24	(Area) Aero MP3-05 (H)	1.75-2.00	1.0000	1.0000
L45	25	(Area) Aero MP3-05 (H)	1.75-2.00	1.0000	1.0000
L45	30	(Area) CCI-65FP-065125	1.75-2.00	1.0000	1.0000
			4 75 0 00	1 0000	1 0000
L45	31	(Area) CCI-65FP-065125	1.75-2.00	1.0000	1.0000
L45	32	(H) (Area) CCI-65FP-065125	1.75-2.00	1.0000	1.0000
L43	52	(H)	1.75-2.00	1.0000	1.0000
L45	41	CU12PSM9P6XXX(1-1/2)	1.75-2.00	1.0000	1.0000
L46	2	HB058-M12-XXXF(5/8)	0.00 - 1.75	1.0000	1.0000
L46	6	HB158-21U6S24-	0.00 - 1.75	1.0000	1.0000
		xxM TMO(1-5/8)			
L46	19	(Area) Aero MP3-05 (H)	0.00-1.75	1.0000	1.0000
L46	20	(Area) Aero MP3-05 (H)	0.00-1.75	1.0000	1.0000
L46	24	(Area) Aero MP3-05 (H)	0.00 - 1.75	1.0000	1.0000
L46	25	(Area) Aero MP3-05 (H)	0.00 - 1.75	1.0000	1.0000
L46	30	(Area) ĆCI-65FP-065125	0.00-1.75	1.0000	1.0000
	24	(H)	0 00 1 75	1 0000	1 0000
L46	31	(Area) CCI-65FP-065125	0.00-1.75	1.0000	1.0000
L46	32	(H) (Area) CCI-65FP-065125	0.00-1.75	1.0000	1.0000
	52	(Alea) 001-0011 -000120 (H)	5.00 1.70	1.0000	1.0000
L46	41	CU12PSM9P6XXX(1-1/2)	0.00-1.75	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Ĕlev.	n	Ratio
				Method	
L12	24	(Area) Aero MP3-05 (H)	89.67 -	Auto	0.0737
			90.50		
L12	25	(Area) Aero MP3-05 (H)		Auto	0.0737
			90.50		
L12	28	(Area) Aero MP3-05 (H)		Auto	0.0781
		<i>/.</i>	92.08		
L13	24	(Area) Aero MP3-05 (H)		Auto	0.0706
	05		89.67		0.0700
L13	25	(Area) Aero MP3-05 (H)		Auto	0.0706
1 1 1 2			89.67	A	0.0700
L13	28	(Area) Aero MP3-05 (H)	89.42 - 89.67	Auto	0.0706
L14	24	(Area) Aero MP3-05 (H)		Auto	0.0662
	24	(Alea) Aero MPS-05 (H)	89.42		0.0002
L14	25	(Area) Aero MP3-05 (H)		Auto	0.0662
I L14	25	(Alea) Aelo MP3-03 (H)	00.00-	ι Αυιο	0.0002

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Elev.	n Method	Ratio
L14	27	(Area) Aero MP3-05 (H)	89.42 88.08 - 88.25	Auto	0.0629
L14	28	(Area) Aero MP3-05 (H)	88.08 -	Auto	0.0662
L15	24	(Area) Aero MP3-05 (H)	89.42 87.83 - 88.08	Auto	0.1278
L15	25	(Area) Aero MP3-05 (H)	87.83 -	Auto	0.1278
L15	27	(Area) Aero MP3-05 (H)		Auto	0.1278
L15	28	(Area) Aero MP3-05 (H)	88.08 - 87.83 88.08	Auto	0.1278
L16	24	(Area) Aero MP3-05 (H)	85.83 -	Auto	0.1215
L16	25	(Area) Aero MP3-05 (H)	87.83 85.83 -	Auto	0.1215
L16	27	(Area) Aero MP3-05 (H)	87.83 - 85.83 87.83	Auto	0.1215
L16	28	(Area) Aero MP3-05 (H)		Auto	0.1215
L17	24	(Area) Aero MP3-05 (H)		Auto	0.1152
L17	25	(Area) Aero MP3-05 (H)		Auto	0.1152
L17	27	(Area) Aero MP3-05 (H)		Auto	0.1152
L17	28	(Area) Aero MP3-05 (H)		Auto	0.1152
L18	24	(Area) Aero MP3-05 (H)		Auto	0.1114
L18	25	(Area) Aero MP3-05 (H)		Auto	0.1114
L18	27	(Area) Aero MP3-05 (H)		Auto	0.1114
L18	28	(Area) Aero MP3-05 (H)		Auto	0.1114
L19	24	(Area) Aero MP3-05 (H)		Auto	0.0953
L19	25	(Area) Aero MP3-05 (H)		Auto	0.0953
L19	27	(Area) Aero MP3-05 (H)	84.25 - 84.50	Auto	0.0953
L19	28	(Area) Aero MP3-05 (H)		Auto	0.0953
L20	24	(Area) Aero MP3-05 (H)		Auto	0.0764
L20	25	(Area) Aero MP3-05 (H)	79.25 - 84.25	Auto	0.0764
L20	27	(Area) Aero MP3-05 (H)	79.25 - 84.25	Auto	0.0764
L20	28	(Area) Aero MP3-05 (H)	82.08 - 84.25	Auto	0.0844
L21	22	(Area) Aero MP3-05 (H)	73.75 - 79.00	Auto	0.0462
L21	24	(Area) Aero MP3-05 (H)		Auto	0.0469
L21	25	(Area) Aero MP3-05 (H)		Auto	0.0469
L21	27	(Area) Aero MP3-05 (H)		Auto	0.0469
L22	22	(Area) Aero MP3-05 (H)	72.75 - 73.75	Auto	0.0824
L22	24	(Area) Aero MP3-05 (H)	72.75 - 73.75	Auto	0.0824
L22	25	(Area) Aero MP3-05 (H)	72.75 - 73.75	Auto	0.0824
L22	27	(Area) Aero MP3-05 (H)		Auto	0.0838

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Elev.	n Method	Ratio
L23	22	(Area) Aero MP3-05 (H)	73.75 67.75 - 70.75	Auto	0.0655
L23	24	(Area) Aero MP3-05 (H)	72.75 67.75 -	Auto	0.0655
L23	25	(Area) Aero MP3-05 (H)	72.75 - 67.75 72.75	Auto	0.0655
L24	22	(Area) Aero MP3-05 (H)	63.08 -	Auto	0.0342
L24	24	(Area) Aero MP3-05 (H)	67.75 63.08 -	Auto	0.0342
L24	25	(Area) Aero MP3-05 (H)	67.75 63.08 67.75	Auto	0.0342
L24	34	(Area) CCI-65FP-060100	67.75 63.08 -	Auto	0.1367
L24	35	(H) (Area) CCI-65FP-060100	65.58 - 63.08 65.58	Auto	0.1367
L24	36	(H) (Area) CCI-65FP-060100 (H)	63.08 - 65.58	Auto	0.1367
L25	22	(ח) (Area) Aero MP3-05 (H)	62.83 - 63.08	Auto	0.0741
L25	24	(Area) Aero MP3-05 (H)	62.83 - 63.08	Auto	0.0741
L25	25	(Area) Aero MP3-05 (H)	62.83 - 63.08	Auto	0.0741
L25	34	(Area) CCI-65FP-060100 (H)	62.83 - 63.08	Auto	0.1775
L25	35	(Area) CCI-65FP-060100 (H)	62.83 - 63.08	Auto	0.1775
L25	36	(Area) CCI-65FP-060100 (H)	62.83 - 63.08	Auto	0.1775
L26	22	(17) (Area) Aero MP3-05 (H)	57.83 - 62.83	Auto	0.0552
L26	24	(Area) Aero MP3-05 (H)	57.83 - 62.83	Auto	0.0552
L26	25	(Area) Aero MP3-05 (H)	57.83 - 62.83	Auto	0.0552
L26	34	(Area) CCI-65FP-060100 (H)	57.83 - 62.83	Auto	0.1607
L26	35	(Area) CCI-65FP-060100 (H)	57.83 - 62.83	Auto	0.1607
L26	36	(Area) CCI-65FP-060100	57.83 - 62.83	Auto	0.1607
L27	22	(H) (Area) Aero MP3-05 (H)	52.83 57.83	Auto	0.0230
L27	24	(Area) Aero MP3-05 (H)	52.83 57.83	Auto	0.0230
L27	25	(Area) Aero MP3-05 (H)	52.83 - 57.83	Auto	0.0230
L27	34	(Area) CCI-65FP-060100	52.83 -	Auto	0.1321
L27	35	(H) (Area) CCI-65FP-060100 (ایا)	57.83 52.83 -	Auto	0.1321
L27	36	(H) (Area) CCI-65FP-060100 (H)	57.83 - 52.83 - 57.83	Auto	0.1321
L28	22	(H) (Area) Aero MP3-05 (H)	47.83 - 52.83	Auto	0.0014
L28	24	(Area) Aero MP3-05 (H)	47.83 - 52.83	Auto	0.0014
L28	25	(Area) Aero MP3-05 (H)	47.83 - 52.83	Auto	0.0014
L28	34	(Area) CCI-65FP-060100 (H)	47.83 - 52.83	Auto	0.1072
L28	35	(Area) CCI-65FP-060100 (H)	47.83 - 52.83	Auto	0.1072
L28	36	(ח) (Area) CCI-65FP-060100 (H)	47.83 - 52.83	Auto	0.1072
L29	22	(Area) Aero MP3-05 (H)		Auto	0.0000

September 23, 2021 CCI BU No 876316 Page 33

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculatio n	Width Ratio
			47.83	Method	
L29	24	(Area) Aero MP3-05 (H)	42.75 -	Auto	0.0000
L29	25	(Area) Aero MP3-05 (H)	47.83 42.75 -	Auto	0.0000
L29	34	(Area) CCI-65FP-060100	47.83 42.75 -	Auto	0.0784
L29	35	(H) (Area) CCI-65FP-060100	47.83 42.75 -	Auto	0.0784
L29	36	(H) (Area) CCI-65FP-060100	47.83 42.75 -	Auto	0.0784
L30	22	(H) (Area) Aero MP3-05 (H)	47.83 42.50 -	Auto	0.0000
L30	24	(Area) Aero MP3-05 (H)	42.75 42.50 -	Auto	0.0000
L30	25	(Area) Aero MP3-05 (H)	42.75 42.50 -	Auto	0.0000
L30	34	(Area) CCI-65FP-060100	42.75 42.50 -	Auto	0.1091
L30	35	(H) (Area) CCI-65FP-060100	42.75 - 42.50 42.75	Auto	0.1091
L30	36	(H) (Area) CCI-65FP-060100	42.75 42.50 - 42.75	Auto	0.1091
L31	22	(H) (Area) Aero MP3-05 (H)	42.75 37.50 - 42.50	Auto	0.0000
L31	24	(Area) Aero MP3-05 (H)	42.50 37.50 - 42.50	Auto	0.0000
L31	25	(Area) Aero MP3-05 (H)	42.50 37.50 - 42.50	Auto	0.0000
L31	34	(Area) CCI-65FP-060100	42.50 37.50 - 42.50	Auto	0.0923
L31	35	(H) (Area) CCI-65FP-060100 (بار)	42.50 37.50 - 42.50	Auto	0.0923
L31	36	(H) (Area) CCI-65FP-060100 (لا)	42.50 37.50 - 42.50	Auto	0.0923
L32	22	(H) (Area) Aero MP3-05 (H)	42.30 32.75 - 37.50	Auto	0.0000
L32	24	(Area) Aero MP3-05 (H)	32.75 - 37.50	Auto	0.0000
L32	25	(Area) Aero MP3-05 (H)	32.75 - 37.50	Auto	0.0000
L32	30	(Area) CCI-65FP-065125 (H)	32.75 - 35.50	Auto	0.1351
L32	31	(17) (Area) CCI-65FP-065125 (H)	32.75 - 35.50	Auto	0.1351
L32	32	(17) (Area) CCI-65FP-065125 (H)	32.75 - 35.50	Auto	0.1351
L32	34	(17) (Area) CCI-65FP-060100 (H)	35.50 35.50 - 37.50	Auto	0.0749
L32	35	(17) (Area) CCI-65FP-060100 (H)	37.50 35.50 - 37.50	Auto	0.0749
L32	36	(17) (Area) CCI-65FP-060100 (H)	35.50 - 37.50	Auto	0.0749
L33	22	(17) (Area) Aero MP3-05 (H)	32.50 32.75	Auto	0.0000
L33	24	(Area) Aero MP3-05 (H)	32.75 32.50 - 32.75	Auto	0.0000
L33	25	(Area) Aero MP3-05 (H)	32.73 32.50 - 32.75	Auto	0.0000
L33	30	(Area) CCI-65FP-065125 (H)	32.50 - 32.75	Auto	0.1417
L33	31	(Area) CCI-65FP-065125 (H)	32.73 32.50 - 32.75	Auto	0.1417
L33	32	(Area) CCI-65FP-065125 (H)	32.73 32.50 - 32.75	Auto	0.1417
L34	22	(11) (Area) Aero MP3-05 (H)	27.50 - 32.50	Auto	0.0000
L34	24	(Area) Aero MP3-05 (H)		Auto	0.0000

147 Ft Monopole Tower Structural Analysis Project Number 1964043, Order 553381, Revision 1

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Elev.	n Method	Ratio
L34	25	(Area) Aero MP3-05 (H)	32.50 27.50 - 32.50	Auto	0.0000
L34	30	(Area) CCI-65FP-065125	27.50 -	Auto	0.1263
L34	31	(H) (Area) CCI-65FP-065125 (H)	32.50 - 27.50 32.50	Auto	0.1263
L34	32	(Area) CCI-65FP-065125	27.50 -	Auto	0.1263
L35	22	(H) (Area) Aero MP3-05 (H)	32.50 - 22.50 27.50	Auto	0.0000
L35	24	(Area) Aero MP3-05 (H)	27.50 22.50 - 27.50	Auto	0.0000
L35	25	(Area) Aero MP3-05 (H)	22.50 - 27.50	Auto	0.0000
L35	30	(Area) CCI-65FP-065125 (H)	- 22.50 27.50	Auto	0.0999
L35	31	(Area) CCI-65FP-065125 (H)	22.50 - 27.50	Auto	0.0999
L35	32	(Area) CCI-65FP-065125 (H)	22.50 - 27.50	Auto	0.0999
L36	22	(Area) Aero MP3-05 (H)	17.50 - 22.50	Auto	0.0000
L36	24	(Area) Aero MP3-05 (H)	- 17.50 22.50	Auto	0.0000
L36	25	(Area) Aero MP3-05 (H)	17.50 - 22.50	Auto	0.0000
L36	30	(Area) CCI-65FP-065125 (H)	- 17.50 22.50	Auto	0.0768
L36	31	(Area) CCI-65FP-065125 (H)	- 17.50 22.50	Auto	0.0768
L36	32	(Area) CCI-65FP-065125 (H)	17.50 - 22.50	Auto	0.0768
L37	22	(Area) Aero MP3-05 (H)	12.50 - 17.50	Auto	0.0000
L37	24	(Area) Aero MP3-05 (H)	12.50 - 17.50	Auto	0.0000
L37	25	(Area) Aero MP3-05 (H)	12.50 - 17.50	Auto	0.0000
L37	30	(Area) CCI-65FP-065125 (H)	12.50 - 17.50	Auto	0.0504
L37	31	(Area) CCI-65FP-065125 (H)	12.50 - 17.50	Auto	0.0504
L37	32	(Area) CCI-65FP-065125 (H)	12.50 -	Auto	0.0504
L38	19	(Area) Aero MP3-05 (H)	8.08-10.50	Auto	0.0000
L38	20 22	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H)	8.08 - 10.50 8.08 - 12.50	Auto Auto	0.0000 0.0000
L38		(Area) Aero MP3-05 (H)		Auto	0.0000
L38	25	(Area) Aero MP3-05 (H)	8.08 - 12.50	Auto	0.0000
L38	30	(Area) CCI-65FP-065125 (H)	8.08 - 12.50	Auto	0.0254
L38	31	(Area) CCI-65FP-065125 (H)	8.08-12.50	Auto	0.0254
L38	32	(Area) CCI-65FP-065125 (H)	8.08 - 12.50	Auto	0.0254
L39 L39	19 20	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H)	7.83-8.08 7.83-8.08	Auto Auto	0.0000 0.0000
L39	22	(Area) Aero MP3-05 (H)	7.83-8.08	Auto	0.0000
L39	24	(Area) Aero MP3-05 (H)	7.83-8.08	Auto	0.0000
L39	25	(Area) Aero MP3-05 (H)	7.83-8.08	Auto	0.0000
L39	30	(Area) CCI-65FP-065125 (H)	7.83-8.08	Auto	0.0315
L39	31	(Area) CCI-65FP-065125 (H)	7.83-8.08	Auto	0.0315
L39	32	(Area) CCI-65FP-065125 (H)	7.83-8.08	Auto	0.0315
L40	19	(Area) Aero MP3-05 (H)	6.42-7.83	Auto	0.0000

Section F L40 L40 L40 L40 L40 L40 L40 L40 L40 L41 L41 L41 L42 L42 L43 L43 L43 L43 L43 L43 L43 L44 L44 L44	Record No. 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 31 32 31 32 30 31 32 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 24 25 30 31 32 22 24 25 30 31 32 22 24 25 30 31 32 30 31 32 24 25 30 30 31 32 24 25 30 31 32 24 25 30 31 32 24 25 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 30 31 32 32 30 31 32 32 32 30 31 32 32 30 31 32 32 30 31 32 32 30 31 32 32 30 31 32 32 30 31 32 32 30 31 32 32 32 30 31 32 32 32 32 32 32 30 31 32 32 32 32 32 30 31 32 32 32 32 32 32 32 32 32 32	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H)	Segment Elev. 6.42 - 7.83 6.42 - 7.83 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Calculatio n Method Auto Auto Auto Auto Auto Auto Auto Auto	Width Ratio 0.0000 0.0000 0.0000 0.0243 0.0243 0.0243 0.0243 0.0243 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L40 L40 L40 L40 L41 L41 L41 L41 L41 L41 L41 L41 L41 L41	22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 30 31 32 19	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	$\begin{array}{c} 6.42 - 7.83\\ 6.42 - 7.83\\ 6.42 - 7.83\\ 6.42 - 7.83\\ 6.42 - 7.83\\ 6.42 - 7.83\\ 6.42 - 7.83\\ 6.42 - 7.83\\ 6.42 - 7.83\\ 6.42 - 7.83\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 6.17 - 6.42\\ 3.25 - 6.17\\ 3.25 - 6.17\\ 3.25 - 6.17\\ 3.25 - 6.17\\ 3.25 - 6.17\\ 3.25 - 6.17\\ 3.25 - 6.17\\ 3.25 - 6.17\\ 3.25 - 6.17\\ \end{array}$	Method Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0243 0.0243 0.0243 0.0243 0.0000 0.0000 0.0000 0.0000 0.0000 0.00171 0.0171 0.0171 0.0171 0.0171 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000
L40 L40 L40 L40 L41 L41 L41 L41 L41 L41 L41 L41 L41 L41	22 24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 30 31 32 19	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.42 - 7.83 6.42 - 7.83 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0243 0.0243 0.0243 0.0243 0.0000 0.0000 0.0000 0.0000 0.0000 0.0171 0.0171 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L40 L40 L40 L40 L41 L41 L41 L41 L41 L41 L41 L41 L41 L41	24 25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 30 31 32 19	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0243 0.0243 0.0243 0.0000 0.0000 0.0000 0.0000 0.00171 0.0171 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000
L40 L40 L40 L41 L41 L41 L41 L41 L41 L41 L41 L41 L41	25 30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 30 31 32	(Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) ACI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0243 0.0243 0.00243 0.0000 0.0000 0.0000 0.0000 0.0171 0.0171 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000
L40 L40 L41 L41 L41 L41 L41 L41 L41 L41 L41 L41	30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 30 31 32	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0243 0.0243 0.0000 0.0000 0.0000 0.0000 0.00171 0.0171 0.0171 0.00171 0.0000 0.0000 0.0000 0.0000 0.0000
L40 L40 L41 L41 L41 L41 L41 L41 L41 L41 L41 L41	30 31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 30 31 32	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.42 - 7.83 6.42 - 7.83 6.42 - 7.83 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0243 0.0243 0.0000 0.0000 0.0000 0.0000 0.00171 0.0171 0.0171 0.00171 0.0000 0.0000 0.0000 0.0000 0.0000
L40 L41 L41 L41 L41 L41 L41 L41 L41 L41 L41	31 32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 31 32 19	(H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.42 - 7.83 6.42 - 7.83 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0243 0.0000 0.0000 0.0000 0.0000 0.0000 0.0171 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000
L40 L41 L41 L41 L41 L41 L41 L41 L41 L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	32 19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 31 32	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) ACI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.42 - 7.83 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0243 0.0000 0.0000 0.0000 0.0000 0.0171 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L41 L41 L41 L41 L41 L41 L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	19 20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 31 32	(Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) ACI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0171 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L41 L41 L41 L41 L41 L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 31 32	(Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L41 L41 L41 L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	20 22 24 25 30 31 32 19 20 22 24 25 30 31 32 31 32	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L41 L41 L41 L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	22 24 25 30 31 32 19 20 22 24 25 30 31 32 19	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L41 L41 L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	24 25 30 31 32 19 20 22 24 25 30 31 31 32 19	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.00171 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L41 L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	25 30 31 32 19 20 22 24 25 30 31 31 32 19	(Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.17 - 6.42 6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	30 31 32 19 20 22 24 25 30 31 31 32 19	(Area) ĆCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0171 0.0171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	31 32 19 20 22 24 25 30 31 32 19	(H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.17 - 6.42 6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto Auto Auto	0.0171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L41 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	32 19 20 22 24 25 30 31 31 32	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	6.17 - 6.42 3.25 - 6.17 3.25 - 6.17 4.00 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto	0.0171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L42 L42 L42 L42 L42 L42 L42 L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L43	19 20 22 24 25 30 31 32 19	(Area) CCI-65FP-065125 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H)	3.25 - 6.17 3.25 - 6.17 4.00 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0000 0.0000 0.0064
L42 L42 L42 L42 L42 L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	20 22 24 25 30 31 32 19	(Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	3.25 - 6.17 4.00 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0000 0.0000
L42 L42 L42 L42 L42 L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	20 22 24 25 30 31 32 19	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	3.25 - 6.17 4.00 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0000 0.0000
L42 L42 L42 L42 L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	22 24 25 30 31 32 19	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	4.00 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0064
L42 L42 L42 L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	24 25 30 31 32 19	(Area) Aero MP3-05 (H) (Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	3.25 - 6.17 3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto Auto	0.0000 0.0000 0.0064
L42 L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	25 30 31 32 19	(Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto	0.0000 0.0064
L42 L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	25 30 31 32 19	(Area) Aero MP3-05 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	3.25 - 6.17 3.25 - 6.17 3.25 - 6.17	Auto Auto Auto	0.0000 0.0064
L42 L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	30 31 32 19	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	3.25-6.17 3.25-6.17	Auto Auto	0.0064
L42 L42 L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	31 32 19	(H) (Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125	3.25-6.17	Auto	
L42 L43 L43 L43 L43 L43 L43 L43 L44 L44 L44	32 19	(Area) CCI-65FP-065125 (H) (Area) CCI-65FP-065125			0.0064
L43 L43 L43 L43 L43 L43 L43 L43 L44 L44	19	(Area) CCI-65FP-065125	0.05 0.47		
L43 L43 L43 L43 L43 L43 L43 L44 L44			3.25-6.17	Auto	0.0064
L43 L43 L43 L43 L43 L43 L43 L44 L44		(Area) Aero MP3-05 (H)	3.00-3.25	Auto	0.0000
L43 L43 L43 L43 L43 L43 L44 L44 L44	20]				
L43 L43 L43 L43 L44 L44 L44 L44	20 24 25	(Area) Aero MP3-05 (H)	3.00-3.25	Auto	0.0000
L43 L43 L43 L44 L44 L44		(Area) Aero MP3-05 (H)	3.00 - 3.25	Auto	0.0000
L43 L43 L44 L44 L44		(Area) Aero MP3-05 (H)	3.00-3.25	Auto	0.0000
L43 L44 L44 L44	30	(Area) CCI-65FP-065125	3.00-3.25	Auto	0.0059
L44 L44 L44	31	(H) (Area) CCI-65FP-065125	3.00-3.25	Auto	0.0059
L44 L44	32	(H) (Area) CCI-65FP-065125	3.00-3.25	Auto	0.0059
L44 L44	10	(H) (A		. .	0.000
L44	19	(Area) Aero MP3-05 (H)	2.00-3.00	Auto	0.0000
	20	(Area) Aero MP3-05 (H)	2.00-3.00	Auto	0.000
	24	(Area) Aero MP3-05 (H)	2.00 - 3.00	Auto	0.000
	25	(Area) Aero MP3-05 (H)	2.00-3.00	Auto	0.000
L44	30	(Area) CCI-65FP-065125 (H)	2.00-3.00	Auto	0.003
L44	31	(Area) CCI-65FP-065125 (H)	2.00-3.00	Auto	0.0030
L44	32	(Area) CCI-65FP-065125 (H)	2.00-3.00	Auto	0.0030
L45	19	(Area) Aero MP3-05 (H)	1.75-2.00	Auto	0.0000
L45	20	(Area) Aero MP3-05 (H)	1.75 - 2.00	Auto	0.0000
L45	24	(Area) Aero MP3-05 (H)	1.75-2.00	Auto	0.000
L45	25	(Area) Aero MP3-05 (H)	1.75-2.00	Auto	0.000
L45	30	(Area) CCI-65FP-065125	1.75-2.00	Auto	0.000
		(H)			
L45	31	(Area) CCI-65FP-065125 (H)	1.75-2.00	Auto	0.000
L45	32	(Area) CCI-65FP-065125 (H)	1.75-2.00	Auto	0.0000
L46	19	(Area) Aero MP3-05 (H)	0.00-1.75	Auto	0.000
L46	20	(Area) Aero MP3-05 (H)	0.00 - 1.75	Auto	0.000
		(Area) Aero MP3-05 (H)	0.00 - 1.75	Auto	0.0000
L46		(Area) Aero MP3-05 (H)	0.00-1.75	Auto	0.000
L46	24 25 30	(Area) CCI-65FP-065125	0.00 - 1.75	Auto	0.000

	Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
Ì	L46	31	(Area) CCI-65FP-065125	0.00-1.75	Auto	0.0000
	L46	32	(H) (Area) CCI-65FP-065125 (H)	0.00-1.75	Auto	0.0000

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement
	Leg		Vert		
			ft	٥	ft
			ft ft		
147			п		
APXVSPP18-C-A20 w/ Mount Pipe	А	From Leg	4.00	-20.0000	147.00
			-6.00		
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	0.00 4.00	20.0000	147.00
AFXV3FF10-C-AZUW/Mount ripe	В	FIOITLeg	-6.00	20.0000	147.00
			0.00		
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.00	0.0000	147.00
			-6.00 0.00		
APXVTM14-C-120 w/ Mount Pipe	А	From Leg	4.00	-20.0000	147.00
'		0	2.00		
	Р	Ensue La s	0.00	20.0000	447.00
APXVTM14-C-120 w/ Mount Pipe	В	From Leg	4.00 2.00	20.0000	147.00
			0.00		
APXVTM14-C-120 w/ Mount Pipe	С	From Leg	4.00	0.0000	147.00
			2.00		
800 EXTERNAL NOTCH FILTER	А	From Leg	0.00 4.00	-20.0000	147.00
	7	TION LOg	-6.00	20.0000	147.00
			0.00		
800 EXTERNAL NOTCH FILTER	В	From Leg	4.00	20.0000	147.00
			-6.00 0.00		
800 EXTERNAL NOTCH FILTER	С	From Leg	4.00	0.0000	147.00
			-6.00		
800MHZ RRH	А	From Log	0.00 4.00	-20.0000	147.00
	A	From Leg	-6.00	-20.0000	147.00
			0.00		
800MHZ RRH	В	From Leg	4.00	20.0000	147.00
			-6.00 0.00		
800MHZ RRH	С	From Leg	4.00	0.0000	147.00
		5	-6.00		
	•	Ensue Line	0.00	00.0000	447.00
(3) ACU-A20-N	A	From Leg	4.00 -6.00	-20.0000	147.00
			0.00		
(3) ACU-A20-N	В	From Leg	4.00	20.0000	147.00
			-6.00		
(3) ACU-A20-N	С	From Leg	0.00 4.00	0.0000	147.00
	Ŭ	1.000 209	-6.00	0.0000	
		<u> </u>	0.00		=
1900MHZ RRH (65MHZ)	А	From Leg	4.00	-20.0000	147.00

147 Ft Monopole Tower Structural Analysis Project Number 1964043, Order 553381, Revision 1

Description	Face or	Offset Type	Offsets: Horz	Azimuth	Placement
	Leg	Туре	Horz Lateral	Adjustment	
	-		Vert	0	<i>c</i> ,
			ft ft	°	ft
			ft		
			-6.00		
1900MHZ RRH (65MHZ)	В	From Leg	0.00 4.00	20.0000	147.00
	-		-6.00		
	0		0.00	0.0000	4.47.00
1900MHZ RRH (65MHZ)	С	From Leg	4.00 -6.00	0.0000	147.00
			0.00		
TD-RRH8X20-25	A	From Leg	4.00 2.00	-20.0000	147.00
			0.00		
TD-RRH8X20-25	В	From Leg	4.00	20.0000	147.00
			2.00		
TD-RRH8X20-25	С	From Leg	0.00 4.00	0.0000	147.00
			2.00		
	٨	Energy Law	0.00	0.0000	447.00
(2) 2.4" Dia x 6-ft Pipe	A	From Leg	4.00 2.00	0.0000	147.00
			0.00		
(2) 2.4" Dia x 6-ft Pipe	В	From Leg	4.00	0.0000	147.00
			2.00 0.00		
(2) 2.4" Dia x 6-ft Pipe	С	From Leg	4.00	0.0000	147.00
· · · · · · · · · · · · · · · · · · ·			2.00		
Miscellaneous [NA 510-3]	С	None	0.00	0.0000	147.00
Platform Mount [LP 1201-1]	Č	None		0.0000	147.00
***136 [*] **	٨	En en la en	4.00	20,0000	400.00
AIR6449 B41_T-MOBILE w/ Mount Pipe	A	From Leg	4.00 -6.00	30.0000	136.00
			1.00		
AIR6449 B41_T-MOBILE w/ Mount Pipe	В	From Leg	4.00	30.0000	136.00
			-6.00 1.00		
AIR6449 B41_T-MOBILE w/ Mount Pipe	С	From Leg	4.00	30.0000	136.00
			-6.00		
PXVAALL24_43-U-NA20_TMO w/ Mount Pipe	А	From Leg	1.00 4.00	30.0000	136.00
		3	-2.00		
	P		1.00	20,0000	100.00
PXVAALL24_43-U-NA20_TMO w/ Mount Pipe	В	From Leg	4.00 -2.00	30.0000	136.00
			1.00		
PXVAALL24_43-U-NA20_TMO w/ Mount Pipe	С	From Leg	4.00	30.0000	136.00
			-2.00 1.00		
APX16DWV-16DWV-S-E-A20w/ Mount Pipe	А	From Leg	4.00	30.0000	136.00
			6.00		
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	В	From Leg	1.00 4.00	30.0000	136.00
			6.00		
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	C	Eromlar	1.00	20,0000	100.00
	С	From Leg	4.00 6.00	30.0000	136.00
			1.00		
RADIO 4449 B71 B85A_T-MOBILE	А	From Leg	4.00	30.0000	136.00
			-6.00 1.00		
RADIO 4449 B71 B85A_T-MOBILE	В	From Leg	4.00	30.0000	136.00
		-	-6.00		
RADIO 4449 B71 B85A_T-MOBILE	С	From Leg	1.00 4.00	30.0000	136.00
	0	rion Ley	-6.00	00.0000	130.00
			1.00		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement
	g		Vert ft ft	٥	ft
RADIO 4415 B66A	A	From Leg		30.0000	136.00
RADIO 4415 B66A	В	From Leg	-2.00 1.00 4.00 -2.00	30.0000	136.00
RADIO 4415 B66A	С	From Leg	1.00 4.00 -2.00	30.0000	136.00
RADIO 4424 B25_TMOV1	А	From Leg	1.00 4.00 6.00 1.00	30.0000	136.00
RADIO 4424 B25_TMOV1	В	From Leg	4.00 6.00 1.00	30.0000	136.00
RADIO 4424 B25_TMOV1	С	From Leg	4.00 6.00 1.00	30.0000	136.00
2.4" x 8' Pipe	A	From Leg	4.00 2.00 0.00	30.0000	136.00
2.4" x 8' Pipe	В	From Leg	4.00 2.00 0.00	30.0000	136.00
2.4" x 8' Pipe	С	From Leg	4.00 2.00 0.00	30.0000	136.00
RMQP-469-HK ***118***	С	None		0.0000	136.00
RRFDC-3315-PF-48	A	From Leg	1.00 0.00 0.00	0.0000	118.00
RRFDC-3315-PF-48	В	From Leg	1.00 0.00 0.00	0.0000	118.00
115 (2) LPA-80080/4CF w/ Mount Pipe	A	From Leg	4.00 0.00 1.00	30.0000	115.00
(2) LPA-80063/6CF w/ Mount Pipe	В	From Leg	4.00 0.00 1.00	30.0000	115.00
(2) APL868013-42T0 w/ Mount Pipe	С	From Leg	4.00 0.00 1.00	30.0000	115.00
Sub6 Antenna - VZS01 w/ Mount Pipe	A	From Leg	4.00 0.00 1.00	30.0000	115.00
Sub6 Antenna - VZS01 w/ Mount Pipe	В	From Leg	4.00 0.00 1.00	30.0000	115.00
Sub6 Antenna - VZS01 w/ Mount Pipe	С	From Leg	4.00 0.00 1.00	30.0000	115.00
(2) JAHH-65B-R3B w/ Mount Pipe	A	From Leg	4.00 0.00 1.00	30.0000	115.00
(2) JAHH-65B-R3B w/ Mount Pipe	В	From Leg	4.00 0.00 1.00	30.0000	115.00
(2) JAHH-65B-R3B w/ Mount Pipe	С	From Leg	4.00 0.00 1.00	30.0000	115.00
CBC78T-DS-43-2X	А	From Leg	4.00 -6.00	30.0000	115.00

147 Ft Monopole Tower Structural Analysis Project Number 1964043, Order 553381, Revision 1

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral Vert		
			ft	٥	ft
			ft ft		
CBC78T-DS-43-2X	В	From Leg	1.00 4.00	30.0000	115.00
CBC/01-D3-43-2X	D	FIGHTLeg	-6.00	30.0000	115.00
CBC78T-DS-43-2X	С	From Leg	1.00 4.00	30.0000	115.00
	-		-6.00		
RFV01U-D1A	А	From Leg	1.00 4.00	30.0000	115.00
			3.00 1.00		
RFV01U-D1A	В	From Leg	4.00	30.0000	115.00
			3.00 1.00		
RFV01U-D1A	С	From Leg	4.00 3.00	30.0000	115.00
			1.00		
RFV01U-D2A	A	From Leg	4.00 6.00	30.0000	115.00
	_		1.00		
RFV01U-D2A	В	From Leg	4.00 6.00	30.0000	115.00
RFV01U-D2A	С	FromLog	1.00	30.0000	115.00
RFV0T0-DZA	C	From Leg	4.00 6.00	30.0000	115.00
(2) 2.4" Dia x 4-ft Mount Pipe	А	From Leg	1.00 4.00	0.0000	115.00
	~	TIOITLeg	0.00	0.0000	115.00
(2) 2.4" Dia x 4-ft Mount Pipe	В	From Leg	1.00 4.00	0.0000	115.00
		Ū	0.00		
(2) 2.4" Dia x 4-ft Mount Pipe	С	From Leg	1.00 4.00	0.0000	115.00
			0.00 1.00		
Platform Mount [LP 714-1]	С	None	1.00	0.0000	115.00
106 7770.00 w/ Mount Pipe	А	From Leg	4.00	35.0000	106.00
		C C	-6.00 0.00		
7770.00 w/ Mount Pipe	В	From Leg	4.00	23.0000	106.00
			-6.00 0.00		
7770.00 w/ Mount Pipe	С	From Leg	4.00	23.0000	106.00
			-6.00 0.00		
SBNHH-1D65A w/ Mount Pipe	А	From Leg	4.00 -2.00	23.0000	106.00
			0.00		
SBNHH-1D65A w/ Mount Pipe	В	From Leg	4.00 -2.00	45.0000	106.00
	-		0.00		
SBNHH-1D65A w/ Mount Pipe	С	From Leg	4.00 -2.00	23.0000	106.00
DMP65R-BU4D w/ Mount Pipe	А	From Leg	0.00 4.00	23.0000	106.00
	~	r on Ley	2.00	20.0000	100.00
DMP65R-BU4D w/ Mount Pipe	В	From Leg	0.00 4.00	45.0000	106.00
	-		2.00		
DMP65R-BU4D w/ Mount Pipe	С	From Leg	0.00 4.00	23.0000	106.00
		<u> </u>	2.00 0.00		
TPA-65R-BU4AA-K w/ Mount Pipe	А	From Leg	4.00	23.0000	106.00
		•	6.00		

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemen
	Leg		Lateral Vert ft ft ft	٥	ft
TPA-65R-BU4AA-K w/ Mount Pipe	В	From Leg	0.00 4.00	45.0000	106.00
·····			6.00 0.00		
TPA-65R-BU4AA-K w/ Mount Pipe	С	From Leg	4.00 6.00 0.00	23.0000	106.00
(2) LGP21401	A	From Leg	4.00 -6.00 0.00	35.0000	106.00
(2) LGP21401	В	From Leg	4.00 -6.00 0.00	23.0000	106.00
(2) LGP21401	С	From Leg	4.00 -6.00	23.0000	106.00
(2) 7020.00	A	From Leg	0.00 4.00 -6.00	35.0000	106.00
(2) 7020.00	В	From Leg	0.00 4.00 -6.00	23.0000	106.00
(2) 7020.00	С	From Leg	0.00 4.00 -6.00	23.0000	106.00
RRUS 32 B2_CCIV2	А	From Leg	0.00 4.00 -2.00	23.0000	106.00
RRUS 32 B2_CCIV2	В	From Leg	0.00 4.00 -2.00	45.0000	106.00
RRUS 32 B2_CCIV2	С	From Leg	0.00 4.00 -2.00	23.0000	106.00
RADIO 4449 B5/B12	А	From Leg	0.00 4.00 2.00	23.0000	106.00
RADIO 4449 B5/B12	В	From Leg	0.00 4.00 2.00	45.0000	106.00
RADIO 4449 B5/B12	С	From Leg	0.00 4.00 2.00	23.0000	106.00
RRUS 4478 B14	А	From Leg	0.00 4.00 2.00	23.0000	106.00
RRUS 4478 B14	В	From Leg	0.00 4.00 2.00	45.0000	106.00
RRUS 4478 B14	С	From Leg	0.00 4.00 2.00	23.0000	106.00
RRUS 4426 B66	А	From Leg	0.00 4.00 6.00	23.0000	106.00
RRUS 4426 B66	В	From Leg	0.00 4.00 6.00	45.0000	106.00
RRUS 4426 B66	С	From Leg	0.00 4.00 6.00	23.0000	106.00
RRUS 32 B30	А	From Leg	0.00 4.00 6.00	23.0000	106.00
RRUS 32 B30	В	From Leg	0.00 4.00	45.0000	106.00

Description	Face	Offset	Offsets:	Azimuth	Placement
	or Leg	Туре	Horz Lateral	Adjustment	
	LUG		Vert		
			ft	٥	ft
			ft ft		
			6.00		
			0.00		
RRUS 32 B30	С	From Leg	4.00	23.0000	106.00
			6.00 0.00		
DC6-48-60-18-8F	А	From Leg	4.00	23.0000	106.00
			2.00		
	P	Ensue Lie e	0.00	45 0000	100.00
DC6-48-60-18-8F	В	From Leg	4.00 2.00	45.0000	106.00
			0.00		
DC6-48-60-18-8F	С	From Leg	4.00	23.0000	106.00
			2.00		
Platform Mount [LP 1201-1_KCKR-HR-1]	С	None	0.00	0.0000	106.00
76	U	None		0.0000	100.00
OG-860/1920/GPS-A	В	From Leg	3.00	0.0000	76.00
			0.00		
KS24019-L112A	С	From Leg	1.00 3.00	0.0000	76.00
	U	TIONIECG	0.00	0.0000	70.00
			1.00		
Side Arm Mount [SO 701-3]	С	None		0.0000	76.00
Commscope MC-PK8-DSH	С	None		0.0000	126.00
(2) 8' x 2" Mount Pipe	Ă	From Leg	4.00	0.0000	126.00
		-	0.00		
(2) 8' x 2" Mount Pipo	В	From Log	0.00 4.00	0.0000	126.00
(2) 8' x 2" Mount Pipe	D	From Leg	0.00	0.0000	120.00
			0.00		
(2) 8' x 2" Mount Pipe	С	From Leg	4.00	0.0000	126.00
			0.00 0.00		
MX08FRO665-21 w/ Mount Pipe	А	From Leg	4.00	0.0000	126.00
			0.00		
	_		0.00		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	126.00
			0.00		
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00	0.0000	126.00
			0.00		
TA08025-B604	А	From Leg	0.00 4.00	0.0000	126.00
1700020-0004	~	rioni Ley	4.00 0.00	0.0000	120.00
			0.00		
TA08025-B604	В	From Leg	4.00	0.0000	126.00
			0.00 0.00		
TA08025-B604	С	From Leg	4.00	0.0000	126.00
	-	ر · · ·	0.00		
	٨	European Line	0.00	0.0000	100.00
TA08025-B605	A	From Leg	4.00 0.00	0.0000	126.00
			0.00		
TA08025-B605	В	From Leg	4.00	0.0000	126.00
			0.00		
TA08025-B605	С	From Leg	0.00 4.00	0.0000	126.00
	Ŭ	Lion Log	0.00	0.0000	120100
		_	0.00		
RDIDC-9181-PF-48	А	From Leg	4.00	0.0000	126.00
			0.00 0.00		
****			0.00		

Load Combinations

Comb.	Description
<u>No.</u> 1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg-No Ice
6	1.2 Dead+1.0 Wind 60 deg-No Ice
7	0.9 Dead+1.0 Wind 60 deg-No Ice
8	1.2 Dead+1.0 Wind 90 deg-No Ice
9	0.9 Dead+1.0 Wind 90 deg-No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg – No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30 31	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33 34	1.2 Dead+1.0 Wind 100 deg+1.0 Ice+1.0 Temp
34 35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg-Service
44	Dead+Wind 150 deg-Service
45	Dead+Wind 180 deg-Service
46	Dead+Wind 210 deg-Service
47	Dead+Wind 240 deg-Service
48	Dead+Wind 270 deg-Service
49	Dead+Wind 300 deg-Service
50	Dead+Wind 330 deg-Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
L1	147 - 142	Pole	Max Tension	26	0.00	0.00	-0.00
			Max. Compression	26	-8.20	0.00	0.01
			Max. Mx	20	-4.45	24.44	0.41

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
			Max. My	2	-4.43	0.50	24.95
			Max.Vy	8	5.09	-24.43	-0.48
			Max. Vx	2	-5.19	0.50	24.95
			Max. Torque	13			0.74
L2	142 - 137	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-8.76	0.01	0.02
			Max. Mx	20	-4.81	50.87	0.86
			Max. My	2	-4.79	0.94	51.91
			Max. Vy	8	5.49	-50.87	-0.93
			Max.Vx	2	-5.60	0.94	51.91
			Max. Torque	13			0.74
L3	137 - 132	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-16.69	-0.06	0.07
			Max. Mx	8	-9.29	-101.73	-1.36
			Max. My	2	-9.27	1.35	103.30
			Max. Vy	8	10.75	-101.73	-1.36
			Max, Vx	2	-10.86	1.35	103.30
			Max, Torque	13			0.74
L4	132 - 127	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-17.36	0.14	0.13
			Max. Compression Max. Mx	8	-9.74	-156.55	1.79
			Max. My	2	-9.71	1.75	158.65
			Max. Vy	2 8	11.17	-156.55	-1.79
			Max. Vy Max. Vx	2	11.28	1.75	158.65
			Max. Torque	13	-11.20	1.75	0.74
L5	127 - 122	Pole	Max. Tension	1	0.00	0.00	0.00
LJ	127 - 122	FUIE	Max Compression	26	-22.97	-0.20	0.53
			8	-13.09	-228.01	2.13	
		Max. Mx Max. My	° 2	-13.09	2.16	230.95	
				2			
			Max.Vy		15.22	-228.01	-2.13
			Max. Vx	2	-15.38	2.16	230.95
	100 117	D.L.	Max. Torque	10	0.00	0.00	0.89
L6	122 - 117	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-23.90	-0.44	0.72
			Max. Mx	8	-13.66	-305.49	-2.57
			Max. My	2	-13.62	2.55	309.21
			Max. Vy	8	15.90	-305.49	-2.57
			Max.Vx	2	-16.08	2.55	309.21
			Max. Torque	12			1.11
L7	117 - 112	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-32.67	-1.75	0.31
			Max. Mx	8	-17.61	407.52	-3.67
			Max. My	2	-17.57	3.60	411.66
			Max.Vy	8	22.18	407.52	-3.67
			Max. Vx	2	-22.32	3.60	411.66
			Max. Torque	14			3.56
L8	112 - 105	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-33.20	-1.79	0.36
			Max Mx	8	-18.03	480.00	-4.41
			Max. My	2	-18.00	4.32	484.61
			Max. Vy	8	22.43	-480.00	-4.41
			Max. Vx	2	-22.57	4.32	484.61
			Max. Torque	14		-	3 56
L9	105 - 103.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-44.03	-1.86	0.45
			Max. Mx	8	-24.19	-606.10	5.39
			Max. My	2	-24.13	5.31	611.75
			Max, Vy	8	28,56	606 10	5.39
			Max. Vy Max. Vx	2	-28.85	5.31	611 75
			Max. Torque	14	20.00	0.01	4.22
L10	103.75 - 98.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-45.05	-1.93	0.54
			Max. Max. Mx	8	-25.09	-749.79	6.11
			Max. My	2	-25.03	6.02	756.86
			Max. Wy	8	28.93	-749.79	-6.11
			Max. Vx	2	-29.21	6.02	756.86
			Max. Torque	14	20.21	0.02	4.22

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
110.	93.75			Comb.	N	Кр-п	кір-п
	00110		Max. Compression	26	-46.09	-2.00	0.63
			Max. Mx	8	-26.03	895.24	6.84
			Max. My	2	-25.98	6.73	903.74
			Max. Vy	8	29.27	895 24	-6.84
			Max, Vx	2	-29.56	6.73	903.74
			Max Torque	14	20.00	0110	4.21
L12	93.75 -	Pole	Max Tension	1	0.00	0.00	0.00
	89.667						
			Max. Compression	26	-46.98	-2.02	0.70
			Max. Mx	8	-26.82	-1015.28	-7.43
			Max. My	2	-26.77	7.31	1024.95
			Max. Vy	8	29.54	-1015.28	-7.43
			Max. Vx	2	-29.84	7.31	1024.95
			Max. Torque	14			4.21
L13	89.667 -	Pole	Max Tension	1	0.00	0.00	0.00
	89.417						
			Max. Compression	26	-47.04	-2.03	0.70
			Max. Mx	8	-26.88	-1022.66	-7.47
			Max. My	2	-26.84	7.35	1032.41
			Max.Vy	8	29.55	-1022.66	-7.47
			Max.Vx	2	-29.84	7.35	1032.41
			Max. Torque	14			4.21
L14	89.417 -	Pole	Max Tension	1	0.00	0.00	0.00
	88.083				47.05	0.04	0.70
		Max. Compression	26	-47.35	-2.04	0.72 -7.66	
			Max. Mx	8	-27.13	-1062.14	
			Max. My	2	-27.08	7.53	1072.28
			Max. Vy	8	29.65	-1062.14	-7.66
			Max. Vx	2	-29.96	7.53	1072.28
			Max Torque	14			4.21
L15	88.083 -	Pole	Max Tension	1	0.00	0.00	0.00
	87.833		Max. Compression	26	-47.43	-2.04	0.72
			Max. Compression Max. Mx	8	-27.21	-1069.55	-7.69
					-27.21	7.57	1079.77
			Max. My	2 8	29.66	-1069.55	-7.69
			Max. Vy				
			Max. Vx	2	-29.96	7.57	1079.77 4.21
140	07.000	Dele	Max. Torque	14	0.00	0.00	
L16	87.833 - 85.833	Pole	Max Tension	1	0.00	0.00	0.00
	05.055		Max. Compression	26	-48.06	-2.04	0.74
			Max. Compression Max. Mx	8	-27.71	-1129.03	7.98
			Max. My	2	-27.67	7.85	1139.88
			Max. Vy	2	29.83	-1129.03	-7.98
			Max. Vy Max. Vx	2	-30.15	7.85	1139.88
			Max. Vx Max. Torque	2 14	-30.15	7.05	4.21
L17	85.833 -	Pole	Max Tension		0.00	0.00	0.00
	85.583	FUIR		1	0.00	0.00	0.00
	00.000		Max. Compression	26	-48.13	-2.04	0.74
			Max. Max. Mx	8	-27.79	-1136.49	-8.02
			Max. My	2	-27.74	7.89	1147 41
			Max. Vy	8	29.84	-1136.49	-8.02
			Max. Vx	2	-30.16	7.89	1147.41
			Max. Torque	14	55.10	1.00	4.20
L18	85.583 -	Pole	Max Tension	1	0.00	0.00	0.00
-	84.5						
			Max. Compression	26	-48.47	-2.04	0.75
			Max. Mx	8	-28.05	-1168.86	-8.17
			Max. My	2	-28.01	8.04	1180.13
			Max. Vy	8	29.94	-1168.86	-8.17
			Max. Vx	2	-30.27	8.04	1180.13
			Max. Torque	14			4.20
L19	84.5-84.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-48.55	2.04	0.75
			Max Mx	8	-28.13	-1176.34	-8.21
		Max. My	2	-28.08	8.08	1187.70	
			Max. Vy	8	29.95	-1176.34	-8.21

Max. Torque 14	Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L20 84.25- 79.25 Pole Max Tension 1 0.00 0.00 0.00 Max. NM 8 -29.43 -1327.07 -8.9 0.73 Max. NW 2 -29.33 -8.76 1.30 Max. Wy 2 -29.33 8.76 1.30 Max. Vy 2 -30.68 8.78 1.30 Max. Ny 2 -30.68 8.78 1.30 Max. Ny 2 -30.68 8.78 1.30 Max. Ny 2 -30.78 8.96 1.37 Max. Wy 2 -30.78 8.96 1.37 Max. Vy 8 -30.47 -2.10 0.8 Max. Vy 8 -31.27 -2.10 0.8 Max. Vy 8 -31.27 -2.10 0.8 Max. Wy 8 -33.27 -2.10 0.8 Max. Wy 8 -31.40 0.00 0.00 Max. Wy 8 -31.67 9.01 <	110.			Max. Torque		<u>/</u>	nip n	4.20
Max. Kompression 26 -60.11 -2.08 -0.7 Max. My 2 -29.33 -8.78 1340 Max. Wy 8 30.35 -1327.07 -8.98 Max. Vy 2 -29.38 8.78 1340 Max. Torque 14 -42.23 -8.78 1340 Max. Torque 14 -0.00 0.00 0.00 Max. Torque 14 -29.75 -1365.06 -9.1 Max. Ny 2 -29.71 8.96 1376 Max. Vy 8 30.45 -1365.06 -9.1 Max. Ny 2 -30.78 8.96 4.2 L22 73.75 Pole Max. Torque 14 -0.00 0.00 Max. My 2 -32.23 9.77 8.96 4.2 -9.8 L23 72.75 Pole Max. Torque 14 -0.0 0.00 Max. My 2 -32.32 9.70 15.2 0.8 -9.8	L20		Pole			0.00	0.00	0.00
L21 79.25- 73.75 Pole Max. Wy Max. Vy Max. Torque 26 -30.68 -32.70 -8.9 Max. Vy Max. Vy Max. Torque 2 -30.68 -30.68 -42.0 -42.0 L21 79.25- 73.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Nov Max. Nov		10120		Max. Compression	26	-50.11	-2.08	0.79
Max. My 2 -29.38 8.78 1327.07 -9.9 Max. Vx 2 -30.68 8.78 1340 L21 79.25- Pole Max. Torque 14 -4.2 Max. Compression 26 -50.50 -2.08 0.8 Max. My 2 -29.71 8.966 1376 Max. My 2 -29.71 8.966 1376 Max. My 2 -29.71 8.966 1378 Max. My 2 -30.78 8.966 1378 Max. My 2 -32.71 8.966 1378 Max. My 2 -32.28 9.70 1542 Max. My 2 -32.28 9.70 1542 Max. My 2 -315.0 9.70 1542 Max. Torque 14 -10.0 0.00 0.00 Max. Torque 14 -10.0 Max. My 2 -31.50 9.70 1542 L23 67.75 Pol								-8.92
Max. Vy 8 30.35 157.6 73.75 Pole Max. Torque 14 42.0 L21 79.25- 73.75 Pole Max. Torque 14 0.00 0.00 0.00 Max. Torque 14 0.00 0.00 0.00 0.00 Max. More 2 29.75 -1365.06 -9.1 Max. My 2 29.75 -1365.06 -9.1 Max. Ny 8 30.45 -1365.86 -9.8 Max. Ny 8 31.14 -1526.83 -9.8 Max. Ny 8 31.14 -1526.83 -9.8 Max. Torque 14 -42.2 -163.42								1340.09
Max. Vx 2 3-0.68 8.78 13-00 L21 79.25- 73.75 Pole Max. Torrgue 14 Max. My 0.00 0.00 0.00 Max. Compression 26 5-0.50 -2.08 0.8 -9.1 Max. My 2 -29.71 3.95.66 -9.1 Max. My 2 -29.71 3.95.66 -9.1 Max. Vy 2 -30.78 8.9.66 137.6 Max. Vy 2 -30.78 8.9.66 137.8 Max. Vy 2 -30.78 8.9.66 137.8 Max. Noru 2 -31.60 9.0 42.2 72.75 Pole Max. Torrgue 14 -20.0 0.00 Max. My 2 -31.50 9.70 154.2 9.8 Max. My 2 -31.50 9.70 154.2 9.8 Max. My 2 -31.50 9.70 154.2 9.4 Max. Torrgue 14 -0.00 0.00 0.00 0.00 0.00					8			-8.92
L21 79.25- 73.75 Pole Max Torque Max Kension 14 42.00 0.00 0.00 Max. Max Tension 1 0.00 0.00 0.00 0.00 0.00 Max. MM 8 2-97.5 1365.06 -91.1 8.96 1376 Max. Vy 8 30.45 1365.06 -91.1 8.96 1376 Max. Vy 8 30.45 1365.06 -91.1 4.2 14 4.2 L22 73.75 Pole Max Torque 14 0.00 0.00 0.0 Max. Max Torque 14 0.00 0.00 0.00 0.00 0.00								
L21 79,25- 73,75 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -50.50 -2.08 0.8 0.4 Max. MM 8 -29.71 8.96 1378 0.00 0.00 Max. MV 2 -20.71 8.96 1378 0.42 0.00 0.00 0.00 L22 73.75 Pole Max Tension 1 0.00 0.00 0.00 0.00 Max. Norup 2 -33.78 8.96 1378 -36.33 -9.8 Max. Norup 2 -32.32 -152.63 -9.8 -9.8 -9.7 Max. Norup 3 31.14 -152.63 -9.8 -9.8 -9.7 -9.8 -9.7 -9.7 -9.7 -9.1 Max. Norup 2 -31.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-50.00</td> <td>0.70</td> <td></td>						-50.00	0.70	
Max. Xbx 26 -50.50 -2.08 0.9.1 Max. MM 2 -29.71 1365.06 -9.1 Max. Wy 2 -29.71 1365.06 -9.1 Max.Vy 2 -30.78 8.96 1378. Max.Vy 2 -30.78 8.96 1378. Max.Torque 1 0.00 0.00 0.00 Max.Nov 2 -53.67 -2.10 0.8 Max.Nov 2 -31.50 9.70 1542. Max.Vy 8 31.14 -1526.83 -9.8 Max.Vy 8 31.14 -1526.83 -9.8 Max.Vy 8 31.14 -1526.83 -9.8 Max.Vy 8 31.51 9.70 1542 Max.Wy 8 31.52 -1683.42 -10.1 Max.MW 8 -33.80 -1683.42 -10.1 Max.Vy 8 31.52 -1683.42 -10.1 Max.NW 8	L21		Pole			0.00	0.00	0.00
Max. Mx 8 -29.75 -1365.06 -9.11 Max. Wy 8 30.45 -1365.06 -9.1 Max. Vy 8 30.45 -1365.06 -9.1 Max. Vy 8 30.45 -1365.06 -9.1 Max. Torque 14 -30.78 8.96 1376 Max. Torque 14 0.00 0.00 0.00 72.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Wx 2 -31.50 9.70 1542. -42.2 Max. Torque 14 -42.2 L23 72.75 Pole Max. Torque 14 -10.0 0.00 0.00 Max. Compression 26 -55.38 -2.15 0.8 -10.1 Max. Torque 14 -2.15 0.8 -10.1 Max. Vy 31.35 -168.3.42 -10.1 Max. Torque 14 -2.2.1 0.9 Max. Vy 31.85 -168.3.42 -10.1 M		/3./5		Max. Compression	26	-50.50	-2.08	0.80
Max. Vy 8 30.45 -1365.06 -9.1 Max. Va 2 -30.78 8.96 4.2 L22 73.75 Pole Max. Torque 14 4.2 Max. Torque 14 0.00 0.00 0.00 Max. My 8 -32.32 -1526.83 -9.8 Max. Wy 8 31.14 -1529.83 -9.8 Max. Torque 14 -1529.83 -168.342 -10.1 Max. Torque 14 -10.0 0.00 0.00 0.00 Max. Torque 14 -10.41 1700.0 Max. Torque 14 -12.1 L24 67.75 Pole Max. Torque 14 -2.21 0.9 Max. Wy 2 -31.90 10.41 1700.0 0.00 0.00 L24				Max. Mx		-29.75	-1365.06	-9.10
Max. Vy 8 30.45 -1365.06 -9.1 Max. Va 2 -30.78 8.96 4.2 L22 73.75 Pole Max. Torque 14 4.2 Max. Torque 14 0.00 0.00 0.00 Max. My 8 -32.32 -1526.83 -9.8 Max. Wy 8 31.14 -1529.83 -9.8 Max. Torque 14 -1529.83 -168.342 -10.1 Max. Torque 14 -10.0 0.00 0.00 0.00 Max. Torque 14 -10.41 1700.0 Max. Torque 14 -12.1 L24 67.75 Pole Max. Torque 14 -2.21 0.9 Max. Wy 2 -31.90 10.41 1700.0 0.00 0.00 L24				Max. Mv	2	-29.71	8.96	1378.49
Max. Vx 2 -30.78 8.96 1378 L22 73.75- 72.75 Pole Max. Torque 14 0.00 0.00 0.00 Max. Mx 8 -32.32 -52.63 -9.8 -9.8 -9.8 Max. Mx 8 -32.22 9.70 1542 -9.8 -9.8 Max. Vy 8 31.14 -1526.83 -9.8 -9.8 Max. Vy 8 31.14 -1526.83 -9.8 Max. Vy 8 31.94 -1526.83 -9.8 Max. Vy 8 33.80 -1683.42 -10.0 Max. My 2 -33.75 10.41 1700 Max. My 2 -31.90 10.41 1700 Max. Vy 8 31.52 -1683.42 -10.1 Max. Ny 2 -31.90 10.41 1700 Max. Ny 2 -31.90 10.41 1700 Max. Ny 8 -35.20 -1831.35 -11.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>30.45</td> <td>-1365.06</td> <td>-9.10</td>						30.45	-1365.06	-9.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1378.49
L22 73.75- 72.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Nx 8 -53.67 -2.10 0.8 -9.8 -9.8 Max. Mx 8 -32.32 9.70 1542. -9.8 -9.8 Max. Wy 8 31.14 -1526.83 -9.8 -9.8 Max. Wy 8 31.14 -1526.83 -9.8 Max. Vy 8 31.14 -1526.83 -9.8 Max. Vy 8 31.62 -1683.42 -10.3 Max. Mx 8 -33.80 -1683.42 -10.3 Max. My 2 -31.50 10.41 1700 Max. Ny 8 31.52 -1683.42 -10.3 Max. Torque 14 4.2 -1683.42 -10.41 L24 67.75 Pole Max. Torque 14 4.2 Max. My 2 -32.28 11.06 1850 Max. My 2 -32.28 11.01						00.70	0.00	
72.75 Max. Compression 26 -53.67 -2.10 0.80 Max. Mx 8 -32.32 -1526.83 -9.8 Max. My 2 -32.28 9.70 1542 Max. Vy 8 31.14 -1526.83 -9.8 Max. Vy 2 -31.50 9.70 1542 Max. Torque 14 -42.2 -31.50 9.70 1542 Max. Torque 14 -42.2 -33.60 -1683.42 -10.0 Max. My 2 -33.75 10.41 1700 Max.Vy 8 31.52 -1663.42 -10.0 Max. Wy 2 -33.75 10.41 1700 Max.Vy 8 31.61 11.61 180.0 0.00	1.22	73 75	Pole			0.00	0.00	
Max. Mx 8 -32.28 -1526.83 -9.8 Max. Vy 8 31.14 -1526.83 -9.8 Max. Vy 8 31.14 -1526.83 -9.8 Max. Vy 8 31.14 -1526.83 -9.8 Max. Torque 14 -4.2 -4.2 Max. Mx 2 -31.50 9.70 1542 L23 72.75- Pole Max Tension 1 0.00 0.00 0.0 67.75 Pole Max. Mx 8 -33.80 -1683.42 -10.1 Max. Wy 2 -33.75 10.41 1700. Max. Vy 8 31.52 -1683.42 -10.1 Max. Vy 8 31.52 -1831.35 -11.1 Max. Vy 8 31.51 -11.1 L24 67.75 Pole Max. Mx 8 -35.20 -1831.35 -11.1 Max. Wy 8 31.86 -1831.35 -11.1 Max. My 8 31.81 -11.	LZZ		i ole					
Max. Wy 2 -32.28 9.70 1542 Max. Vy 8 31.14 -1526,83 9.88 Max. Torque 14 -1226,83 9.70 1542 Max. Torque 14 -1226,83 9.70 1542 Max. Torque 14 -1226,83 9.70 1542 Max. Torque 14 -1226,83 -9.70 1542 Max. Torque 14 -2.15 0.88 -1683,42 -10.3 Max. Wy 2 -33.75 10.41 1700 Max. Torque 14 -2.21 0.9 Max. Wy 2 31.52 -1683,42 -10.3 -11.1 1700 Max. Torque 14 -2.21 0.9 Max. Wy 2 35.16 11.06 1850 Max. Wx 2 -35.16 11.06 1850 Max. Wy 2 -35.16 11.06 1850 Max. Wy 2 -35.27 11.10 1858 Max. Wy 2 -35.27								0.80
Max. Vy 8 31.14 -1526.83 -9.8 L23 72.75- 67.75 Pole Max. Torque 14 1 1.0.0 0.00 0.00 Max. Compression 26 -55.38 -2.15 0.8 -10.1 Max. My 2 -33.75 10.41 1700 Max. My 2 -33.75 10.41 1700 Max. Wy 8 31.52 -1683.42 -10.1 Max. My 2 -33.75 10.41 1700 Max. Vx 2 -31.90 10.41 1700 Max. My 2 -31.90 10.41 1700 Max. Nx 2 -31.90 10.41 1700 Max. My 2 -168.142 -10.1 Max. My 2 -35.16 11.06 1850 Max. My 2 -168.135 -11.1 Max. My 2 -35.16 11.06 1850 Max. My 2 -32.28 11.06 1850 Max. My 2 -35.27 <								
Max. Vx 2 -31.50 9.70 1542 L23 72.75- 67.75 Pole Max. Torque 14 0.00 0.00 67.75 Pole Max. Compression 26 -55.38 -2.15 0.81 Max. Mx 8 -33.75 10.41 1700 Max. Vy 8 31.52 -1683.42 -10.3 Max. Vy 8 31.52 -1683.42 -10.3 Max. Vy 8 31.52 -1683.42 -10.3 Max. Torque 14					2			
L23 72.75- 67.75 Pole Max. Torque Max. Tension 14 4.2 L23 72.75- 67.75 Pole Max. Tension 1 0.00 0.00 0.00 Max. Mx 8 -53.80 -2.15 0.8 -168.3.42 -10.1 Max. My 2 -33.75 10.41 1700. Max. Vx 2 -31.90 10.41 1700. Max. Vy 8 31.52 -168.3.42 -10.3 Max. Vx 2 -31.90 10.41 1700. Max. Vy 8 31.52 -168.3.42 -10.3 Max. Vx 2 -31.90 0.00 0.00 63.08 Pole Max. Compression 26 -57.03 -2.21 0.91 Max. Mx 8 -35.20 -1831.35 -11.1 Max. Mx 8 -1831.35 -11.1 Max. Mx 8 -36.20 -85.30 -1831.35 -11.1 Max. Mx 8 -36.30 -1831.35 -11.1 Max. Mx 8 <								
L23 72,75- 67.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Mx 8 -33.80 -168.342 -10.3 Max. Mx 8 -33.75 10.41 1700 Max. Wy 8 31.52 -188.342 -10.3 Max. Vy 8 31.52 -188.342 -10.41 Max. Vy 8 31.52 -188.342 -10.9 Max. Torque 14 -4.2 -183.135 -11.1 Max. Mx 8 -35.20 -183.135 -11.1 Max. My 2 -35.16 11.06 1850. Max. Ny 8 31.86 -1831.35 -11.1 Max. Vy 8 31.86 -1831.35 -11.1 Max. Ny 2 -35.20 11.06 1850. Max. Wy 2 -35.27 11.01 1850. Max. Compression 26 -57.14 -2.21 0.9 Max. Compression 10 0.00						-31.50	9.70	
67.75 Max. Compression Max. Mx 26 -55.38 -2.15 0.81 Max. Mx 8 -33.80 -1683.42 -10.1 Max. Wy 2 -33.75 10.41 1700 Max. Vy 8 31.52 -1683.42 -10.1 Max. Torque 14 0.00 0.00 0.00 Max. Torque 14 0.00 0.00 0.00 Max. Wx 8 -35.20 -1831.35 -11.1 Max. Wy 8 31.86 -1831.35 -11.1 Max. Vy 8 31.86 -1831.35 -11.1 Max. Vy 8 31.80 -183.931 -11.1 Max. Vy 8 31.81 -183.931 -11.1 Max. Wy 2 -35.27 11.10 1858. </td <td>1 2 3</td> <td>72 75 -</td> <td>Pole</td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td></td>	1 2 3	72 75 -	Pole			0.00	0.00	
Max. Mx 8 -33.80 -1683.42 -10.1 Max. My 2 -33.75 10.41 1700. Max. Vy 8 31.52 -1683.42 -10.4 Max. Vy 8 31.52 -1683.42 -10.4 Max. Torque 14 -4.22 -10.41 1700. Max. Torque 14 -4.22 -10.41 -10.41 L24 67.75 - Pole Max Tension 1 0.00 0.00 0.00 63.08 Max. Compression 26 -57.03 -2.21 0.9 Max. My 2 -35.16 11.06 1850. Max. Vy 8 31.86 -1831.35 -11.3 Max. Torque 14 -4.21 0.9 Max. Ny 2 -35.16 11.06 1850. Max. Ny 2 -35.27 11.10 1858. Max. My 2 -35.27 11.10 1858. Max. Torque 14 -4.21	220		1 010			0.00	0.00	0.00
Max. My 2 -33.75 10.41 1700. Max. Vy Max. Vy 8 31.52 -1683.42 -100. (Max. Vx 2 -31.90 10.41 1700. (Max. Vx 4.22 L24 67.75- 63.08 Pole Max. Compression 26 -57.03 -2.21 0.90 Max. Vy 8 31.86 -1831.35 -11.1 Max. Vx 2 -32.28 11.06 1850. Max. Vx 4.22 L25 63.08- 62.83 Pole Max Tension 1 0.00 0.00 0.00 0.00 Max. Vy 8 31.87 -11.10 1858. Max. Vy 8 -35.71 11.10 1858. Max. Vx 2 -32.27 11.10 1858. Max. Vy								0.89
Max. Vý 8 31.52 -1683.42 -10.1 Max. Vx 2 -31.90 10.41 1700 Max. Torque 14 4.2 63.08 Max. Compression 26 -57.03 -2.21 0.9 Max. Mx 8 -35.20 -1831.35 -11.7 Max. My 2 -35.16 11.06 1850 Max. Vy 8 31.86 -1831.35 -11.7 Max. Vy 8 31.87 -1339.31 -11.7 Max. My 2 -35.27 11.10 1858 Max. Vy 8 31.87 -1839.31 -11.7 Max. Torque 14 -11.10 1858 Max. Ny 8 31.87 -1399.31 -11.7 Max. Torque 14				Max. Mx		-33.80		-10.56
L24 67.75- 63.08 Pole Max. Torque Max. Torque 14				Max. My			10.41	1700.57
L24 67.75 - 63.08 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -57.03 -2.21 0.9 Max. Mx 8 -35.16 11.06 1850. Max. My 2 -35.16 11.06 1850. -4.2 -11.3 Max. My 2 -35.16 11.06 1850. -11.3 -11.1 Max. My 2 -35.16 11.06 1850. -4.2 -11.1 Max. Torque 14 -12.21 0.9				Max Vy	8	31.52	-1683.42	-10.56
L24 67.75- 63.08 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression Max. Mx 8 -35.20 -1831.35 -11.2 0.90 Max. My 2 -35.16 11.06 1850. Max. Vy 8 31.86 -1831.35 -11.2 Max. Torque 14				Max. Vx	2	-31.90	10.41	1700.57
63.08 Max. Compression 26 -57.03 -2.21 0.9 Max. Mx 8 -35.20 -1831.35 -11.3 Max. Vy 8 31.86 -1831.35 -11.3 Max. Torque 14 -4.22 -32.28 11.06 1850.0 Max. Torque 14 -4.22 0.9 -4.22 0.9 -4.22 0.9 Max. Mx 8 -35.30 -1839.31 -11.3 -11.2 Max. My 2 -35.27 11.10 1858.9 Max. My 2 -32.29 11.10 1858.9 -11.3 Max.Vy 8 31.87 -1839.31 -11.3 Max. My 2 -32.29 11.10 1858.9 -11.9 Max.Ny 2 -32.27 1.00 Max. Torque				Max. Torque	14			4.24
Max. Compression 26 -57.03 -2.21 0.90 Max. Mx 8 -35.20 -1831.35 -11.1 Max. My 2 -35.16 11.06 1850. Max. Vy 8 31.86 -1831.35 -11.1 Max. Vy 8 31.86 -1831.35 -11.2 Max. Vx 2 -32.28 11.06 1850. Max. Torque 14 -4.2 0.90 Max. Mx 8 -35.30 -1839.31 -11.2 Max. Mx 8 -35.30 -1839.31 -11.2 Max. My 2 -32.27 11.10 1858. Max. Vy 8 31.87 -1839.31 -11.2 Max. Vy 8 31.86 -1999.67 -11.2 Max. My	L24		Pole	Max Tension	1	0.00	0.00	0.00
Max. My 2 -35.16 11.06 1850. Max. Vy Max. Vy 8 31.86 -1831.35 -11.1 Max. Vx 2 L25 63.08 - 62.83 Pole Max Torque 14 -4.2 Max. Nx 2 -35.27 11.06 1850. Max. Mx -1839.31 Max. Mx 8 -35.30 -1839.31 -11.1 Max. My 2 -35.27 11.10 1858. Max. My 2 Max. Vy 8 31.87 -1839.31 -11.1. Max. My 2 Max. Vy 8 31.87 -1839.31 -11.1. Max. Vy 14 L26 62.83 - 57.83 Pole Max Torque 14 -4.21 L26 62.83 - 57.83 Pole Max Compression 26 -59.35 -2.27 1.00 Max. My 2 -37.12 11.79 2021. Max. My 8 32.28 -1999.67 -11.5 Max. Vy 8 32.24 -1999.67 -11.5 Max. My 2		00.00			26	-57.03	-2.21	0.96
Max. Vy 8 31.86 -1831.35 -11.1 Max. Vx 2 -32.28 11.06 1850. Max. Torque 14 4.27 L25 63.08- Pole Max Tension 1 0.00 0.00 0.00 62.83 Max. Compression 26 -57.14 -2.21 0.97 Max. Mx 8 -35.30 -1839.31 -11.2 Max. My 2 -35.27 11.10 1858. Max. Vx 2 -32.29 11.10 1858. Max. Vx 2 -32.29 11.10 1858. Max. Vx 2 -32.29 11.10 1858. Max. Torque 14 -4.27 -4.27 L26 62.83 - Pole Max Tension 1 0.00 0.00 57.83 Pole Max. Compression 26 -59.35 -2.27 1.00 Max. Mx 8 -32.75 11.79 2021. Max. Ny 2				Max. Mx	8	-35.20	-1831.35	-11.22
Max. Vy 8 31.86 -1831.35 -11.1 Max. Vx 2 -32.28 11.06 1850. Max. Torque 14 4.27 L25 63.08 - Pole Max Tension 1 0.00 0.00 0.00 62.83 Max. Compression 26 -57.14 -2.21 0.97 Max. Mx 8 -35.30 -1839.31 -11.2 Max. My 2 -35.27 11.10 1858. Max. Vx 2 -32.29 11.10 1858. Max. Vx 2 -32.29 11.10 1858. Max. Vx 2 -32.29 11.10 1858. Max. Torque 14 -4.27 -4.27 L26 62.83 - Pole Max Tension 1 0.00 0.00 57.83 Pole Max. Compression 26 -59.35 -2.27 1.00 Max. Mx 8 -37.16 -1999.67 -11.5 Max. My 2				Max. My	2	-35.16	11.06	1850.40
Max. Torque 14 4.23 L25 63.08- 62.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression Max. Mx 26 -57.14 -2.21 0.97 Max. Mx 8 -35.30 -1839.31 -11.2 Max. My 2 -35.27 11.10 1858. Max. Vx 2 L26 62.83 - 57.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Nx 2 -32.29 11.10 1858. Max. Vx 2 -32.29 11.10 1858. Max. Vx L26 62.83 - 57.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Nx 8 -37.16 -1999.67 -11.5 Max. My 2 -37.12 11.79 2021. Max. Mx Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Ny 2 -37.12 11.79 2021.				Max. Vy	8	31.86	-1831.35	-11.22
L25 63.08- 62.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression Max. Mx 26 -57.14 -2.21 0.97 Max. Mx 8 -35.30 -1839.31 -11.37 Max. My 2 -35.27 11.10 1858. Max. Vy 8 31.87 -1839.31 -11.37 Max. Torque 14 -4.22 -4.29 -4.29 L26 62.83 - 57.83 Pole Max Compression 26 -59.35 -2.27 1.00 Max. My 2 -37.12 11.79 2021. Max. Vy 8 32.28 -1999.67 -11.5 Max. My 2 -32.75 11.79 2021. Max. Torque 14 -4.22 L27 57.83 - P				Max Vx	2	-32.28	11.06	1850.40
L25 63.08- 62.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression Max. Mx 8 -35.30 -1839.31 -11.2 0.90 Max. Mx 8 -35.30 -1839.31 -11.2 0.90 Max. My 2 -35.27 11.10 1858. Max. Vy 8 31.87 -1839.31 -11.2 Max. Vy 8 31.87 -1839.31 -11.2 Max. Vx 2 -32.29 11.10 1858. Max. Vx 2 -32.29 11.10 1858. Max. Torque 14 -4.22 -4.22 L26 62.83 - Pole Max Tension 1 0.00 0.00 0.00 57.83 Pole Max. Mx 8 -37.12 11.79 2021. Max. Vy 8 32.28 -1999.67 -11.5 Max. Wy 2 -33.16 -2.24 1.1.5 Max. Compression 26				Max. Torque	14			4.23
Max. Compression 26 -57.14 -2.21 0.9 Max. Mx 8 -35.30 -1839.31 -11.3 Max. My 2 -35.27 11.10 1858. Max. Vy 8 31.87 -1839.31 -11.3 Max. Vy 8 31.87 -1839.31 -11.3 Max. Vx 2 -32.29 11.10 1858. Max. Torque 14 4.23 L26 62.83 - Pole Max Tension 1 0.00 0.00 0.00 57.83 Pole Max. Compression 26 -59.35 -2.27 1.00 Max. My 2 -37.12 11.79 2021. Max. My 2 -37.12 11.79 2021. Max. Vy 8 32.28 -1999.67 -11.5 Max. My 2 -37.12 11.79 2021. Max. Torque 14 4.23 -11.5 Max. Mx 8 -39.04 -2162.01	L25		Pole		1	0.00	0.00	0.00
Max. My 2 -35.27 11.10 1858. Max. Vy Max. Vy 8 31.87 -1839.31 -11.2 Max. Vx 2 -32.29 11.10 1858. Max. Torque 14 L26 62.83 - 57.83 Pole Max Tension 1 0.00 0.00 Max. Nx 2 -37.12 11.79 2021. Max. Mx 8 -37.16 -1999.67 -11.9 Max. My 2 -37.12 11.79 2021. Max. Vy 8 32.28 -1999.67 -11.9 Max. Vy 8 32.28 -1999.67 -11.9 4.21 Max. Vy 8 32.28 -1999.67 -11.9 Max. Vy 8 32.28 -1999.67 -11.9 Max. Vy 8 32.27 11.79 2021. Max. Torque 14 4.21 4.21 L27 57.83 - Pole Max Tension 1 0.00 0.00 Max. Wy 2 -39.01 12.49		02.00		Max. Compression	26	-57.14	-2.21	0.97
Max. Vý 8 31.87 -1839.31 -11.2 Max. Vx 2 -32.29 11.10 1858. Max. Torque 14 4.21 L26 62.83 - Pole Max Tension 1 0.00 0.00 0.00 57.83 Max. Compression 26 -59.35 -2.27 1.00 Max. Mx 8 -37.16 -1999.67 -11.5 Max. My 2 -37.12 11.79 2021. Max. My 2 -37.12 11.79 2021. Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Torque 14 -4.21 -421 L27 57.83 - Pole Max Tension 1 0.00 0.00 0.00 52.83 Pole Max. Compression 26 -61.57 -2.34 1.13 Max. Mx 8 -39.04 -2162.01 -12.6				Max. Mx	8	-35.30	-1839.31	-11.25
Max. Vy 8 31.87 -1839.31 -11.2 Max. Vx 2 -32.29 11.10 1858. Max. Torque 14 4.22 L26 62.83 - Pole Max Tension 1 0.00 0.00 57.83 Pole Max Compression 26 -59.35 -2.27 1.00 Max. Mx 8 -37.16 -1999.67 -11.5 Max. My 2 -37.12 11.79 2021. Max. My 2 -37.12 11.79 2021. Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Torque 14 4.22 -32.75 11.79 2021. Max. Torque 14 -4.23 -42.23 -42.24 -42.23 L27 57.83 - Pole Max Tension 1 0.00 0.00 0.00 52.83 Pole Max. Mx 8 -39.04				Max. My	2	-35.27	11.10	1858.47
Max. Vx 2 -32.29 11.10 1858. 4.23 L26 62.83 - 57.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression Max. Mx 8 -37.16 -1999.67 -11.9 2021. Max. My 2 -37.12 11.79 2021. Max. Vy 8 32.28 -1999.67 -11.9 2021. Max. Vx 4.21				Max. Vy	8	31.87	-1839.31	-11.25
L26 62.83 - 57.83 Pole Max Tension 14 4.23 Max. Scompression 26 -59.35 -2.27 1.00 Max. Mx 8 -37.16 -1999.67 -11.9 Max. My 2 -37.12 11.79 2021 Max. My 2 -37.12 11.79 2021 Max. Vy 8 32.28 -1999.67 -11.9 Max. Vx 2 -32.75 11.79 2021 Max. Vx 2 -32.75 11.79 2021 Max. Mx 8 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185 Max. My 8 32.67 -2162.01 -12.6 Max. Vy 8 32.67 -2162.01 -12.6 <				Max. Vx	2	-32.29	11.10	1858.47
L26 62.83- 57.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression Max. Mx 8 -59.35 -2.27 1.00 Max. Mx 8 -37.16 -1999.67 -11.5 Max. My 2 -37.12 11.79 2021 Max. My 2 -37.12 11.79 2021 Max. My 2 -37.12 11.79 2021 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Torque 14 -4.21 -11.79 2021 Max. Torque 14 -4.21 -11.50 -2.27 Max. Torque 14 -2.34 1.11 -2.34 1.11 Max. My 2 -39.01 12.49 2185 -2.162.01 -12.6 Max. My 2 -39.01 12.49 2185 -2.162.01 -12.6 Max. Vy 8 32.67 -2				Max. Torque	14			4.23
Max. Compression 26 -59.35 -2.27 1.03 Max. Mx 8 -37.16 -1999.67 -11.5 Max. My 2 -37.12 11.79 2021 Max. My 2 -37.12 11.79 2021 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vx 2 -32.75 11.79 2021 Max. Torque 14 -4.21 L27 57.83 - Pole Max Tension 1 0.00 0.00 52.83 Max. Compression 26 -61.57 -2.34 1.13 Max. My 2 -39.01 12.49 2185 Max. Vy 8 32.67 -2162.01 -12.6 Max. Vy 8 32.67 -2162.01 -12.6 Max. Vy 8 32.67 -2162.01 -12.6	L26		Pole		1	0.00	0.00	0.00
Max. Mx 8 -37.16 -1999.67 -11.5 Max. My 2 -37.12 11.79 2021 Max. My 2 -37.12 11.79 2021 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vx 2 -32.75 11.79 2021 Max. Torque 14 4.21 Max. Torque 14 4.21 Max. Compression 26 -61.57 -2.34 1.11 Max. My 2 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185 Max. Vy 8 32.67 -2162.01 -12.6 Max. Torque 14 4.21 4.21		51.83		Max. Compression	26	-59.35	-2.27	1.05
Max. My 2 -37.12 11.79 2021 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vy 8 32.28 -1999.67 -11.5 Max. Vx 2 -32.75 11.79 2021 Max. Vx 2 -32.75 11.79 2021 Max. Torque 14 4.21 L27 57.83 - Pole Max Tension 1 0.00 0.00 0.00 52.83 Max. Compression 26 -61.57 -2.34 1.13 Max. Mx 8 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185 Max. Vy 8 32.67 -2162.01 -12.6 Max. Vy 8 32.67 -2162.01 -12.6 Max. Vy 8 32.67 -2162.01 -12.6 Max. Torque 14 4.21 4.24 L28 52.83 - Pole Max Tension 1								-11.95
Max. Vy 8 32.28 -1999.67 -11.5 Max. Vx 2 -32.75 11.79 2021 Max. Torque 14 4.2 L27 57.83 - Pole Max Tension 1 0.00 0.00 0.00 52.83 Max. Compression 26 -61.57 -2.34 1.13 Max. Mx 8 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185 Max. Vy 8 32.67 -2162.01 -12.6 Max. Torque 14 4.23 -142.6 Max. Torque 14 4.23 -142.6 Max. Torque 14 4.23 -142.6 Max. Torque								2021.06
Max. Vx 2 -32.75 11.79 2021 Max. Torque 14 4.23 L27 57.83 - 52.83 Pole Max Tension 1 0.00 0.00 0.00 52.83 Max. Compression 26 -61.57 -2.34 1.13 Max. Mx 8 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185 Max. Vy 8 32.67 -2162.01 -12.6 Max. Torque 14 4.23 4.24 4.24 L28 52.83 - 4 Pole Max Tension 1 0.00 0.00 47.83 14.83 14.9 4.25 14.9 4.25 14.9 14.9								-11.95
Max. Torque 14 4.23 L27 57.83 - 52.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -61.57 -2.34 1.13 Max. Mx 8 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185 Max. Vy 8 32.67 -2162.01 -12.6 Max. Torque 14 4.23 4.24 L28 52.83 - 47.83 Pole Max Tension 1 0.00 0.00								2021.06
L27 57.83 - 52.83 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -61.57 -2.34 1.11 Max. Mx 8 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185 Max. Vy 8 32.67 -2162.01 -12.6 Max. Vy 8 32.67 -2162.01 -12.6 Max. Vy 8 32.67 -2162.01 -12.6 Max. Torque 14 4.21 2185 Max. Torque 14 4.21 47.83 Pole Max Tension 1 0.00 0.00						02170		4.23
Max. Compression 26 -61.57 -2.34 1.13 Max. Mx 8 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185. Max. Vy 8 32.67 -2162.01 -12.6 Max. Vx 2 -33.18 12.49 2185. Max. Torque 14 4.23 L28 52.83 - Pole Max Tension 1 0.00 0.00 47.83 47.	L27		Pole			0.00	0.00	0.00
Max. Mx 8 -39.04 -2162.01 -12.6 Max. My 2 -39.01 12.49 2185. Max. Vy 8 32.67 -2162.01 -12.6 Max. Torque 14 4.23 L28 52.83 - Pole Max Tension 1 0.00 0.00 0.00 47.83 9 10.00 1.000 0.00 0.00 0.00		52.83		Max Compression	26	-61.57	_2 34	1.13
Max. My 2 -39.01 12.49 2185. Max. Vy 8 32.67 -2162.01 -12.6 Max. Vy 8 32.67 -2162.01 -12.6 Max. Vx 2 -33.18 12.49 2185. Max. Torque 14 4.23 L28 52.83 - Pole Max Tension 1 0.00 0.00 47.83 2 -33.18 12.49 2185. 12.49 2185.								-12.64
Max. Vy 8 32.67 -2162.01 -12.6 Max. Vx 2 -33.18 12.49 2185. Max. Torque 14 4.23 L28 52.83 - Pole Max Tension 1 0.00 0.00 0.00 47.83								2185.86
Max. Vx 2 -33.18 12.49 2185. Max. Torque 14 4.23 L28 52.83 - Pole Max Tension 1 0.00 0.00 0.00 47.83				5				
Max. Torque 14 4.2: L28 52.83 - Pole Max Tension 1 0.00 0.00 0.00 47.83								
L28 52.83 - Pole Max Tension 1 0.00 0.00 0.00 47.83						-33.18	12.49	
47.83	L28	52.83 -	Pole			0.00	0.00	4.23 0.00
·· · · · · · · · · · ·	•							
								1.21 -13.34

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip ft	Minor Axis Moment
NO.			NA NA			kip-ft	kip-ft
			Max. My	2	-40.92	13.18	2352.76
			Max. Vy	8	33.05	-2326.27	-13.34
			Max.Vx	2	-33.59	13.18	2352.76
			Max. Torque	14			4.23
L29	47.83 - 42.75	Pole	Max Tension	1	0.00	0.00	0.00
	42.75		Max. Compression	26	-63.97	-2.41	1.21
			Max. Mx	8	-41.09	-2337.18	-13.38
			Max. My	2	-41.06	13.23	2363.85
			Max. Vy	8	33.06	-2337.18	-13.38
			Max. Vx	2	-33.61	13.23	2363.85
			Max. Torque	14			4.23
_30	42,75-42,5	Pole	Max Tension	1	0.00	0.00	0.00
		1 010	Max. Compression	26	-68.13	2.47	1.30
			Max. Complession Max. Mx	8	-44.66	-2503.78	-14.07
			Max. My	2	-44.62	13.92	2533.27
			Max.Vy	8	33.57	-2503.78	-14.07
			Max. Vx	2	-34.14	13.92	2533.27
			Max. Torque	14			4.23
.31	42.5-37.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-70.54	-2.54	1.38
			Max. Mx	8	-46.74	-2672.45	-14.76
			Max. My	2	-46.71	14.61	2704.94
			Max. Vy	8	33.91	-2672.45	-14.76
			Max. Vx	2	-34.53	14.61	2704.94
			Max. Torque	14			4.23
L32	37.5-32.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-72.86	2.60	1.46
			Max. Mx	8	-48.76	-2834 22	-15.40
			Max. My	2	-48.73	15.26	2869.68
			Max. Vy	8	34.22	-2834.22	-15.40
				2			
			Max.Vx	2 14	-34.86	15.26	2869.68
	00.75 00.5	Dele	Max. Torque		0.00	0.00	4.23
L33	32.75-32.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-72.99	-2.60	1.46
			Max. Mx	8	-48.89	-2842.77	-15.44
			Max. My	2	-48.86	15.29	2878.39
			Max. Vy	8	34.22	-2842.77	-15.44
			Max. Vx	2	-34.86	15.29	2878.39
			Max. Torque	14			4.23
_34	32.5-27.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-75.59	-2.67	1.54
			Max. Mx	8	-51.15	-3014.68	-16.11
			Max. My	2	-51.13	15.98	3053.59
			Max. Vy	8	34.55	-3014.68	-16.11
			Max.Vx	2	-35.22	15.98	3053.59
			Max. Torque	14			4.23
L35	27.5-22.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-78.21	2.74	1.63
			Max. Mx	8	-53.45	-3188.08	-16.79
			Max. My	2	-53.43	16.66	3230.41
			Max. Vy	8	34.83	-3188.08	-16.79
			Max. Vx	2	-35.53	16.66	3230.41
			Max. Torque	14	30.00	10.00	4.22
_36	22.5-17.5	Pole	Max Tension	1	0.00	0.00	0.00
	22.0-11.0				-80.84	-2.81	1.71
			Max. Compression	26			
			Max. Mx	8	-55.78	-3362.83	-17.45
			Max. My	2	-55.77	17.33	3408.70
			Max.Vy	8	35.09	-3362.83	-17.45
			Max. Vx	2	-35.81	17.33	3408.70
		_	Max. Torque	14			4.22
L37	17.5-12.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-83.49	-2.88	1.80
			Max. Mx	8	-58.14	-3538.80	-18.11
			Max. My	2	-58.13	18.00	3588.30
			Mary Mr.	8	35.32	-3538.80	-18.11
			Max. Vy	0	00.02	0000100	10.11
			Max. Vy Max. Vx	2	-36.05	18.00	3588 30

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	к	kip-ft	kip-ft
			Max. Compression	26	-85.86	-2.90	1.86
			Max. Mx	8	-60.24	-3695.15	-18.69
			Max. My	2	-60.23	18.59	3747.98
			Max. Vy	8	35.51	-3695.15	-18.69
			Max. Vy Max. Vx	2	36.28	18.59	3747.98
					-30.20	10.55	4 22
1.20	0.000	Dala	Max. Torque	14	0.00	0.00	
L39	8.083 - 7.833	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-86.01	-2.90	1.86
			Max, Mx	8	-60.39	-3704.03	-18.72
			Max. My	2	-60.38	18.63	3757.05
			Max. Vy	8	35.50	-3704.03	-18.72
			Max, Vx	2	-36.27	18.63	3757.05
			Max Torque	14	00121		4 22
L40	7.833 -	Pole	Max Tension	1	0.00	0.00	0.00
	6.417		Max Compression	26	96 95	2 90	1 07
			Max. Compression	26	-86.85	-2.89	1.87
			Max. Mx	8	-61.11	-3754.35	-18.91
			Max. My	2	-61.11	18.81	3808.48
			Max.Vy	8	35.59	-3754.35	-18.91
			Max.Vx	2	-36.38	18.81	3808.48
			Max. Torque	14			4.22
L41	6.417 - 6.167	Pole	Max Tension	1	0.00	0.00	0.00
	0.107		Max. Compression	26	-86.99	-2.89	1.88
			Max. Mx	8	-61.26	-3763.24	-18.94
			Max. My	2	-61.25	18.85	3817.57
			Max. Vy	8	35.58	-3763.24	-18.94
			Max. Vx	2	-36.37	18.85	3817.57
			Max. Torque	14			4.22
L42	6.167 - 3.25	Pole	Max Tension	1	0.00	0.00	0.00
-			Max. Compression	26	-88.63	-2.89	1.91
			Max. Compression Max. Mx	8	-62.71	-3867.21	-19.32
			Max. My	2	-62.71	19.23	3923.90
			Max. Wy Max. Vy	2 8	35.73	-3867.21	-19.32
			,				
			Max. Vx	2	-36.55	19.23	3923.90
1.40	2.25.0	Dela	Max. Torque	14	0.00	0.00	4.22
L43	3.25-3	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-88.77	-2.89	1.91
			Max. Mx	8	-62.85	-3876.13	-19.35
			Max. My	2	-62.85	19.26	3933.03
			Max.Vy	8	35.71	-3876.13	-19.35
			Max.Vx	2	-36.53	19.26	3933.03
			Max. Torque	14			4.22
L44	3 - 2	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-89.31	-2.90	1.92
			Max. Mx	8	-63.34	-3911.87	-19.48
			Max. My	2	-63.34	19.40	3969.59
			Max. Vy	8	35.77	-3911.87	-19.48
			Max. Vy Max. Vx	2	-36.59	19.40	3969.59
			Max. Torque	14	50.55	10.40	4.22
L45	2-1.75	Pole	Max. Torque Max Tension	14	0.00	0.00	0.00
L40	2-1./3	FUIE	Max Tension Max. Compression	26	-89.45	-2.90	1.92
			Max. Mx	8	-63.47	-3920.81	-19.51
			Max. My	2	-63.47	19.43	3978.74
			Max. Vy	8	35.76	-3920.81	-19.51
			Max.Vx	2	-36.59	19.43	3978.74
			Max. Torque	14			4.22
L46	1.75-0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-90.41	-2.92	1.94
			Max. Mx	8	-64.33	-3983.47	-19.74
			Max. My	2	-64.33	19.66	4042.84
			Max. Vy	8	35.87	-3983.47	-19.74
			Max. Vy Max. Vx	2	-36.70	19.66	4042.84
			Max. VX Max. Torque	2 14	-30.70	19.00	4042.84
			Max TUIQUE	14			7.22

Г

	Maximum Reactions								
Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K				
Pole	Max. Vert	27	90.41	0.02	9.14				
	Max. H _x	20	64.36	35.83	0.14				
	Max. H _z	2	64.36	0.14	36.66				
	Max. M _x	2	4042.84	0.14	36.66				
	Max. Mz	8	3983.47	-35.83	-0.14				
	Max. Torsion	14	4.22	-0.14	-36.66				
	Min. Vert	19	48.27	30.96	-17.93				
	Min. H _x	8	64.36	-35.83	-0.14				
	Min. H _z	14	64.36	-0.14	-36.66				
	Min. M _x	14	-4040.21	-0.14	-36.66				
	Min. Mz	20	-3980.58	35.83	0.14				
	Min. Torsion	2	-4.22	0.14	36.66				

Maximum Reactions

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	К	К	К	kip-ft	kip-ft	kip-ft
Dead Only	53.63	0.00	0.00	-1.04	-1.13	0.00
2 Dead+1.0 Wind 0 deg -	64.36	-0.14	-36.66	-4042.84	19.66	4.22
lo Ice						
9 Dead+1.0 Wind 0 deg -	48.27	-0.14	-36.66	-3987.32	19.68	4.21
lo Ice						
.2 Dead+1.0 Wind 30 deg-	64.36	17.80	-31.19	-3469.04	-1974.18	3.31
lo Ice						
.9 Dead+1.0 Wind 30 deg-	48.27	17.80	-31.19	-3421.21	-1946.85	3.31
lo Ice						
.2 Dead+1.0 Wind 60 deg-	64.36	30.96	-17.93	-1991.29	-3439.49	1.52
lo Ice						
.9 Dead+1.0 Wind 60 deg-	48.27	30.96	-17.93	-1963.73	-3392.06	1.52
lo Ice						
.2 Dead+1.0 Wind 90 deg-	64.36	35.83	0.14	19.74	-3983.47	-0.69
lo Ice						
.9 Dead+1.0 Wind 90 deg-	48.27	35.83	0.14	19.74	-3928.57	-0.68
lo Ice						
.2 Dead+1.0 Wind 120 deg	64.36	31.10	18.17	2025.05	-3460.39	-2.71
No Ice						
.9 Dead+1.0 Wind 120 deg	48.27	31.10	18.17	1997.58	-3412.64	-2.70
No Ice						
.2 Dead+1.0 Wind 150 deg	64.36	18.04	31.33	3487.32	-2010.55	-4.00
No Ice						
.9 Dead+1.0 Wind 150 deg	48.27	18.04	31.33	3439.85	-1982.64	-4.00
No Ice						
2 Dead+1.0 Wind 180 deg	64.36	0.14	36.66	4040.21	-22.43	-4.22
	40.07	0.44	20.00	2005.07	04 70	4.00
9 Dead+1.0 Wind 180 deg	48.27	0.14	36.66	3985.37	-21.73	-4.22
No Ice	C4 00	47.00	24.40	2400.27	4074.07	2.24
.2 Dead+1.0 Wind 210 deg	64.36	-17.80	31.19	3466.37	1971.37	-3.31
No Ice 9 Dead+1.0 Wind 210 deg	48.27	-17.80	31,19	3419,24	1944.78	-3.30
No Ice	40.27	-17.00	51.19	5419.24	1944.70	-3.50
.2 Dead+1.0 Wind 240 deg	64.36	-30,96	17.93	1988.63	3436.62	-1.51
No Ice	04.50	-30.90	17.95	1900.03	3430.02	-1.51
.9 Dead+1.0 Wind 240 deg	48.27	-30.96	17.93	1961.75	3389.95	-1.51
No Ice	40.27	-00.00	17.00	1301.75	0000.00	-1.01
.2 Dead+1.0 Wind 270 deg	64.36	-35.83	-0.14	-22.36	3980.58	0.69
No Ice	07.00	00.00	0.14	22.00	0000.00	0.00
.9 Dead+1.0 Wind 270 deg	48.27	-35.83	-0.14	-21.68	3926.45	0.69
No Ice	10.27	00.00	0.14	21.00	0020110	0.00
.2 Dead+1.0 Wind 300 deg	64.36	-31,10	-18.17	-2027.62	3457.54	2.70
No Ice	0.100	0.1.0			0.0.101	
9 Dead+1.0 Wind 300 deg	48.27	-31.10	-18.17	-1999.49	3410.54	2.70

tnxTower Report - version 8.1.1.0

147 Ft Monopole Tower Structural Analysis Project Number 1964043, Order 553381, Revision 1

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M₂	Torque
	К	К	к	kip-ft	kip-ft	kip-ft
- No Ice						
1.2 Dead+1.0 Wind 330 deg	64.36	-18.04	-31.33	-3489.90	2007.76	3.99
- No Ice						
0.9 Dead+1.0 Wind 330 deg	48.27	-18.04	-31.33	-3441.76	1980.58	3.99
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	90.41	0.00	-0.00	-1.94	-2.92	0.00
1.2 Dead+1.0 Wind 0	90.41	-0.02	-9.14	-1030.42	0.37	0.82
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 30	90.41	4.53	-7.90	-890.91	-511.59	0.66
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 60	90.41	7.87	-4.55	-513.23	-887.31	0.33
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 90	90.41	9.10	0.02	1.43	-1026.10	-0.09
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	90.41	7.89	4.59	515.15	-890.79	-0.43
deg+1.0 Ice+1.0 Temp					- /	
1.2 Dead+1.0 Wind 150	90.41	4.57	7.93	890.29	-517.62	-0.7
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	90.41	0.02	9.14	1026.33	-6.59	-0.8
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	90.41	-4.53	7.90	886.81	505.37	-0.6
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 240	90.41	-7.87	4.55	509.13	881.08	-0.3
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 270	90.41	-9.10	-0.02	-5.53	1019.87	0.0
deg+1.0 lce+1.0 Temp	00.44	7.00	4.50	540.05	004 50	
1.2 Dead+1.0 Wind 300	90.41	-7.89	-4.59	-519.25	884.56	0.4
deg+1.0 lce+1.0 Temp					544.00	
1.2 Dead+1.0 Wind 330	90.41	-4.57	-7.93	-894.38	511.39	0.7
deg+1.0 Ice+1.0 Temp	50.00	0.00	0.05	045.00	0.50	0.0
Dead+Wind 0 deg - Service	53.63	-0.03	-8.35	-915.20	3.56	0.9
Dead+Wind 30 deg - Service	53.63	4.06	-7.11	-785.37	-447.38	0.7
Dead+Wind 60 deg - Service	53.63	7.06	-4.09	-451.15	-778.76	0.3
Dead+Wind 90 deg - Service	53.63	8.17	0.03	3.66	-901.80	-0.1
Dead+Wind 120 deg-	53.63	7.09	4.14	457.20	-783.52	-0.6
Service						
Dead+Wind 150 deg-	53.63	4.11	7.14	787.94	-455.61	-0.93
Service						
Dead+Wind 180 deg-	53.63	0.03	8.35	913.01	-5.95	-0.9
Service						
Dead+Wind 210 deg-	53.63	-4.06	7.11	783.19	444.99	-0.7
Service						
Dead+Wind 240 deg-	53.63	-7.06	4.09	448.97	776.37	-0.3
Service						
Dead+Wind 270 deg-	53.63	-8.17	-0.03	-5.84	899.41	0.1
Service						
Dead+Wind 300 deg-	53.63	-7.09	-4.14	-459.38	781.12	0.6
Service						
Dead+Wind 330 deg-	53.63	-4.11	-7.14	-790.12	453.22	0.9
Service						

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-53.63	0.00	0.00	53.63	0.00	0.000%
2	-0.14	-64.36	-36.66	0.14	64.36	36.66	0.000%
3	-0.14	-48.27	-36.66	0.14	48.27	36.66	0.000%
4	17.80	-64.36	-31.19	-17.80	64.36	31.19	0.000%
5	17.80	-48.27	-31.19	-17.80	48.27	31.19	0.000%
6	30.96	-64.36	-17.93	-30.96	64.36	17.93	0.000%
7	30.96	-48.27	-17.93	-30.96	48.27	17.93	0.000%
8	35.83	-64.36	0.14	-35.83	64.36	-0.14	0.000%
9	35.83	-48.27	0.14	-35.83	48.27	-0.14	0.000%
10	31.10	-64.36	18.17	-31.10	64.36	-18.17	0.000%

		n of Applied Force	es		Sum of Reactio		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	К	K	K	К	ĸ	K	
11	31.10	-48.27	18.17	-31.10	48.27	-18.17	0.000%
12	18.04	-64.36	31.33	-18.04	64.36	-31.33	0.000%
13	18.04	-48.27	31.33	-18.04	48.27	-31.33	0.000%
14	0.14	-64.36	36.66	-0.14	64.36	-36.66	0.000%
15	0.14	-48.27	36.66	-0.14	48.27	-36.66	0.000%
16	-17.80	-64.36	31.19	17.80	64.36	-31.19	0.000%
17	-17.80	-48.27	31.19	17.80	48.27	-31.19	0.000%
18	-30.96	-64.36	17.93	30.96	64.36	-17.93	0.000%
19	-30.96	-48.27	17.93	30.96	48.27	-17.93	0.000%
20	-35.83	-64.36	-0.14	35.83	64.36	0.14	0.000%
21	-35.83	-48.27	-0.14	35.83	48.27	0.14	0.000%
22	-31.10	-64.36	-18.17	31.10	64.36	18.17	0.000%
23	-31.10	-48.27	-18.17	31.10	48.27	18.17	0.000%
24	-18.04	-64.36	-31.33	18.04	64.36	31.33	0.000%
25	-18.04	-48.27	-31.33	18.04	48.27	31.33	0.000%
26	0.00	-90.41	0.00	-0.00	90.41	0.00	0.000%
27	-0.02	-90.41	-9.14	0.02	90.41	9.14	0.000%
28	4.53	-90.41	-7.90	-4.53	90.41	7.90	0.000%
29	7.87	-90.41	-4.55	-7.87	90.41	4.55	0.000%
30	9.10	-90.41	0.02	-9.10	90.41	-0.02	0.000%
31	7.89	-90.41	4.59	-7.89	90.41	-4.59	0.000%
32	4.57	-90.41	7.93	-4.57	90.41	-7.93	0.000%
33	0.02	-90.41	9.14	-0.02	90.41	-9.14	0.000%
34	-4.53	-90.41	7.90	4.53	90.41	-7.90	0.000%
35	-7.87	-90.41	4.55	7.87	90.41	-4.55	0.000%
36	-9.10	-90.41	-0.02	9.10	90.41	0.02	0.000%
37	-7.89	-90.41	-4.59	7.89	90.41	4.59	0.000%
38	-4.57	-90.41	-7.93	4.57	90.41	7.93	0.000%
39	-0.03	-53.63	-8.35	0.03	53.63	8.35	0.000%
40	4.06	-53.63	-7.11	-4.06	53.63	7.11	0.000%
41	7.06	-53.63	-4.09	-7.06	53.63	4.09	0.000%
42	8.17	-53.63	0.03	-8.17	53.63	-0.03	0.000%
43	7.09	-53.63	4.14	-7.09	53.63	-4.14	0.000%
44	4.11	-53.63	7.14	-4.11	53.63	-7.14	0.000%
45	0.03	-53.63	8.35	-0.03	53.63	-8.35	0.000%
46	-4.06	-53.63	7.11	4.06	53.63	-7.11	0.000%
47	-7.06	-53.63	4.09	7.06	53.63	-4.09	0.000%
48	-8.17	-53.63	-0.03	8.17	53.63	0.03	0.000%
49	-7.09	-53.63	-4.14	7.09	53.63	4.14	0.000%
50	-4.11	-53.63	-7.14	4.11	53.63	7.14	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	6	0.00000001	0.00016035
3	Yes	6	0.00000001	0.00005619
4	Yes	7	0.00000001	0.00012909
5	Yes	6	0.00000001	0.00066406
6	Yes	7	0.00000001	0.00012055
7	Yes	6	0.00000001	0.00061868
8	Yes	5	0.00000001	0.00040528
9	Yes	5	0.00000001	0.00014849
10	Yes	7	0.00000001	0.00012130
11	Yes	6	0.00000001	0.00062176
12	Yes	7	0.00000001	0.00013289
13	Yes	6	0.00000001	0.00068326
14	Yes	6	0.00000001	0.00021656
15	Yes	6	0.00000001	0.00007531
16	Yes	7	0.00000001	0.00011760
17	Yes	6	0.00000001	0.00060307
18	Yes	7	0.00000001	0.00012520
19	Yes	6	0.00000001	0.00064405
20	Yes	5	0.00000001	0.00099851

21	Yes	5	0.0000001	0.00045446
22	Yes	7	0.0000001	0.00013012
23	Yes	6	0.0000001	0.00066890
24	Yes	7	0.0000001	0.00011948
25	Yes	6	0.0000001	0.00061177
26	Yes	4	0.0000001	0.00017485
27	Yes	6	0.0000001	0.00079279
28	Yes	6	0.0000001	0.00097388
29	Yes	6	0.0000001	0.00096331
30	Yes	6	0.0000001	0.00078851
31	Yes	6	0.0000001	0.00096889
32	Yes	6	0.0000001	0.00098151
33	Yes	6	0.0000001	0.00078955
34	Yes	6	0.0000001	0.00094946
35	Yes	6	0.0000001	0.00095440
36	Yes	6	0.0000001	0.00078055
37	Yes	6	0.0000001	0.00097139
38	Yes	6	0.0000001	0.00096428
39	Yes	5	0.0000001	0.00016328
40	Yes	5	0.0000001	0.00048946
41	Yes	5	0.0000001	0.00040803
42	Yes	5	0.0000001	0.00008022
43	Yes	5	0.0000001	0.00040946
44	Yes	5	0.0000001	0.00051719
45	Yes	5	0.0000001	0.00017170
46	Yes	5	0.0000001	0.00038769
47	Yes	5	0.0000001	0.00044641
48	Yes	5	0.0000001	0.00008301
49	Yes	5	0.0000001	0.00048640
50	Yes	5	0.00000001	0.00040098

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	147 - 142	23.902	39	1.4514	0.0065
L2	142 - 137	22.385	39	1.4478	0.0063
L3	137 - 132	20.875	39	1.4378	0.0061
L4	132 - 127	19.379	39	1.4198	0.0059
L5	127 - 122	17.907	39	1.3921	0.0057
L6	122 - 117	16.469	39	1.3551	0.0055
L7	117 - 112	15.074	39	1.3083	0.0054
L8	112 - 105	13.733	39	1.2519	0.0049
L9	108.75-103.75	12.896	39	1.2093	0.0044
L10	103.75 - 98.75	11.648	39	1.1677	0.0041
L11	98.75-93.75	10.462	39	1.0956	0.0035
L12	93.75 - 89.667	9.356	39	1.0155	0.0029
L13	89.667 - 89.417	8.518	39	0.9451	0.0025
L14	89.417 - 88.083	8.468	39	0.9407	0.0025
L15	88.083 - 87.833	8.209	39	0.9170	0.0024
L16	87.833 - 85.833	8.161	39	0.9142	0.0024
L17	85.833 - 85.583	7.783	39	0.8915	0.0023
L18	85.583 - 84.5	7.736	39	0.8886	0.0022
L19	84.5-84.25	7.536	39	0.8761	0.0022
L20	84.25 - 79.25	7.490	39	0.8730	0.0022
L21	79.25 - 73.75	6.610	39	0.8071	0.0019
L22	78-72.75	6.401	39	0.7902	0.0018
L23	72.75-67.75	5.551	39	0.7507	0.0017
L24	67.75-63.08	4.798	39	0.6885	0.0014
L25	63.08-62.83	4.154	39	0.6282	0.0013
L26	62.83 - 57.83	4.121	39	0.6257	0.0013
L27	57.83-52.83	3.493	39	0.5735	0.0011
L28	52.83 - 47.83	2.920	39	0.5200	0.0010
L29	47.83-42.75	2.404	39	0.4662	0.0008
L30	47.5-42.5	2.372	39	0.4626	0.0008
L31	42.5-37.5	1.901	39	0.4344	0.0008
L32	37.5-32.75	1.475	39	0.3807	0.0006

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L33	32.75-32.5	1.121	39	0.3300	0.0005
L34	32.5-27.5	1.104	39	0.3275	0.0005
L35	27.5-22.5	0.788	39	0.2767	0.0004
L36	22.5 - 17.5	0.525	39	0.2255	0.0003
L37	17.5 - 12.5	0.315	39	0.1747	0.0003
L38	12.5-8.083	0.159	39	0.1235	0.0002
L39	8.083 - 7.833	0.066	39	0.0780	0.0001
L40	7.833 - 6.417	0.062	39	0.0756	0.0001
L41	6.417 - 6.167	0.041	39	0.0621	0.0001
L42	6.167 - 3.25	0.038	39	0.0597	0.0001
L43	3.25-3	0.011	39	0.0309	0.0000
L44	3 - 2	0.009	39	0.0286	0.0000
L45	2 - 1.75	0.004	39	0.0191	0.0000
L46	1.75-0	0.003	39	0.0167	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	o	ft
147.00	APXVSPP18-C-A20 w/ Mount Pipe	39	23.902	1.4514	0.0065	41664
136.00	AIR6449 B41_T-MOBILE w/ Mount Pipe	39	20.574	1.4349	0.0060	18726
126.00	Commscope MC-PK8-DSH	39	17.616	1.3855	0.0057	8385
118.00	RRFDC-3315-PF-48	39	15.349	1.3182	0.0054	5844
115.00	(2) LPA-80080/4CF w/ Mount Pipe	39	14.531	1.2876	0.0052	5060
106.00	7770.00 w/ Mount Pipe	39	12.203	1.1864	0.0042	5556
76.00	OG-860/1920/GPS-A	39	6.072	0.7721	0.0017	6362

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	o	0
L1	147 - 142	105.705	2	6.4359	0.0290
L2	142 - 137	98,997	2	6.4200	0.0279
L3	137 - 132	92.320	2	6.3754	0.0270
L4	132 - 127	85.706	2	6.2955	0.0260
L5	127 - 122	79 <u>.</u> 197	2	6.1723	0.0252
L6	122 - 117	72.837	2	6.0080	0.0245
L7	117 - 112	66.670	2	5.7999	0.0238
L8	112 - 105	60.740	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.5496	0.0215
L9	108.75 - 103.75	57.035	2	5.3601	0.0196
L10	103.75-98.75	51.516	2	5.1752	0.0179
L11	98.75-93.75	46.272	2	4.8546	0.0153
L12	93.75 - 89.667	41.380	2	4.4979	0.0129
L13	89.667 - 89.417	37.671	2	4.1846	0.0111
L14	89.417 - 88.083	37.452	2	4.1649	0.0110
L15	88.083 - 87.833	36.304	2	4.0597	0.0104
L16	87.833 - 85.833	36.092	2	4.0472	0.0104
L17	85.833 - 85.583	34.419		3.9462	0.0099
L18	85.583-84.5	34.213	2	3.9335	0.0098
L19	84.5-84.25	33.328	2	3.8783	0.0095
L20	84.25-79.25	33,125	2	3.8644	0.0095
L21	79.25 - 73.75	29.233	2 2 2 2 2 2 2 2 2 2 2	3.5723	0.0082
L22	78-72.75	28.308	2	3.4975	0.0079
L23	72.75-67.75	24.549	2	3.3222	0.0072
L24	67.75-63.08	21.215	2	3.0469	0.0063
L25	63.08-62.83	18.367	2	2.7796	0.0055

147 Ft Monopole Tower Structural Analysis Project Number 1964043, Order 553381, Revision 1

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
140.	ft	in	Comb.	٥	o
L26	62.83-57.83	18.222	2	2.7683	0.0054
L27	57.83 - 52.83	15.444	2	2.5374	0.0048
L28	52.83 - 47.83	12.912	2	2.3004	0.0042
L29	47.83-42.75	10.628	2	2.0621	0.0036
L30	47.5-42.5	10.486	2	2.0460	0.0036
L31	42.5-37.5	8.406	2	1,9211	0.0033
L32	37.5-32.75	6.519	2	1.6838	0.0028
L33	32.75-32.5	4,956	2	1.4591	0.0023
L34	32.5-27.5	4.880	2	1.4480	0.0023
L35	27.5-22.5	3.481	2	1.2234	0.0019
L36	22.5 - 17.5	2.319	2 2	0.9968	0.0015
L37	17.5 - 12.5	1.393	2	0.7721	0.0011
L38	12.5 - 8.083	0.703	2	0.5458	0.0008
L39	8.083 - 7.833	0.291	2	0.3447	0.0005
L40	7.833 - 6.417	0.273	2	0.3342	0.0005
L41	6.417 - 6.167	0.183	2	0.2745	0.0004
L42	6.167 - 3.25	0.169	2	0.2638	0.0004
L43	3.25-3	0.047	2	0.1367	0.0002
L44	3 - 2	0.040	2	0.1261	0.0002
L45	2 - 1.75	0.018	2	0.0843	0.0001
L46	1.75-0	0.014	2	0.0737	0.0001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	0	ft
147.00	APXVSPP18-C-A20 w/ Mount	2	105.705	6.4359	0.0290	9634
	Pipe					
136.00	AIR6449 B41_T-MOBILE w/	2	90.991	6.3625	0.0268	4329
	Mount Pipe					
126.00	Commscope MC-PK8-DSH	2	77.912	6.1428	0.0251	1936
118.00	RRFDC-3315-PF-48	2	67.886	5.8441	0.0240	1347
115.00	(2) LPA-80080/4CF w/ Mount	2	64.265	5.7082	0.0231	1164
	Pipe					
106.00	7770.00 w/ Mount Pipe	2	53.971	5.2585	0.0186	1275
76.00	OG-860/1920/GPS-A	2	26.851	3.4174	0.0076	1446

Compression Checks

	Pole Design Data								
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
L1	147 - 142 (1)	TP22.8501x22x0.25	5.00	0.00	0.0	17.933 2	-4.43	968.39	0.005
L2	142 - 137 (2)	TP23.7002x22.8501x0.25	5.00	0.00	0.0	18.607 8	-4.78	1004.82	0.005
L3	137 - 132 (3)	TP24.5504x23.7002x0.25	5.00	0.00	0.0	19.282 3	-9.26	1041.25	0.009
L4	132 - 127 (4)	TP25.4005x24.5504x0.25	5.00	0.00	0.0	19.956 9	-9.71	1077.67	0.009
L5	127 - 122 (5)	TP26.2506x25.4005x0.25	5.00	0.00	0.0	20.631 5	-13.05	1114.10	0.012
L6	122 - 117 (6)	TP27.1007x26.2506x0.25	5.00	0.00	0.0	21.306 0	-13.61	1150.53	0.012
L7	117 - 112 (7)	TP27.9508x27.1007x0.25	5.00	0.00	0.0	21.980	-17.55	1186.95	0.015

Section No.	Elevation	Size	L	Lu	Kl/r	А	P_u	ϕP_n	Ratio P _u
110.	ft		ft	ft		in²	К	к	$\frac{1}{\phi P_n}$
L8	112 - 105 (8)	TP29.141x27.9508x0.25	7.00	0.00	0.0	6 22.419	-17.98	1210.63	0.015
L9	105 - 103.75	TP28.8536x28.0034x0.31 25	5.00	0.00	0.0	28.309 2	-24.13	1528.70	0.016
L10	(9) 103.75 - 98.75 (10)	23 TP29.7039x28.8536x0.31 25	5.00	0.00	0.0	29.152 6	-25.03	1574.24	0.016
L11	98.75-93.75 (11)	TP30.5541x29.7039x0.31 25	5.00	0.00	0.0	29.995 9	-25.97	1619.78	0.016
L12	93.75- 89.667 (12)	TP31.2484x30.5541x0.31 25	4.08	0.00	0.0	30.684 5	-26.77	1656.96	0.016
L13	89.667 89.417 (13)	TP31.2909x31.2484x0.31 25	0.25	0.00	0.0	30.726 7	-26.84	1659.24	0.016
L14	89.417 - 88.083 (14)	TP31.5177x31.2909x0.31 25	1.33	0.00	0.0	30.951 7	-27.08	1671.39	0.016
L15	88.083 - 87.833 (15)	TP31.5603x31.5177x0.51 25	0.25	0.00	0.0	50.504 6	-27.17	2727.25	0.010
L16	87.833 - 85.833 (16)	TP31.9003x31.5603x0.51 25	2.00	0.00	0.0	51.057 8	-27.67	2757.12	0.010
L17	85.833 - 85.583 (17)	TP31.9429x31.9003x0.51 25	0.25	0.00	0.0	51.127 0	-27.74	2760.86	0.010
L18	85.583-84.5 (18)	TP32.127x31.9429x0.512 5	1.08	0.00	0.0	51.426 5	-28.01	2777.03	0.010
L19	84.5-84.25 (19)	TP32.1695x32.127x0.475	0.25	0.00	0.0	47.784 2	-28.08	2580.35	0.011
L20	84.25 - 79.25 (20)	TP33.0198x32.1695x0.46 25	5.00	0.00	0.0	47.793 2	-29.38	2580.83	0.011
L21	79.25-73.75 (21)	TP33.955x33.0198x0.462	5.50	0.00	0.0	48.105 3	-29.71	2597.68	0.011
L22	73.75-72.75	TP33.5x32.6073x0.5625	5.25	0.00	0.0	58.805 8	-32.28	3175.51	0.010
L23	72.75-67.75 (23)	TP34.3502x33.5x0.5625	5.00	0.00	0.0	60.323 6	-33.76	3257.48	0.010
L24	67.75-63.08 (24)	TP35.1442x34.3502x0.55	4.67	0.00	0.0	60.391 1	-35.16	3261.12	0.011
L25	63.08 - 62.83 (25)	TP35.1867x35.1442x0.71 25	0.25	0.00	0.0	77.962 6	-35.27	4209.98	0.008
L26	62.83 - 57.83 (26)	TP36.0369x35.1867x0.7	5.00	0.00	0.0	78.511 5	-37.13	4239.62	0.009
L27	57.83-52.83 (27)	TP36.8871x36.0369x0.68 75	5.00	0.00	0.0	78.992 0	-39.02	4265.57	0.009
L28	52.83-47.83 (28)	TP37.7372x36.8871x0.68 75	5.00	0.00	0.0	80.847 1	-40.93	4365.75	0.009
L29	47.83-42.75 (29)		5.08	0.00	0.0	79.524 2	-41.07	4294.31	0.010
L30	42.75 - 42.5 (30)	TP37.8935x37.0433x0.75	5.00	0.00	0.0	88.420 1	-44.62	4774.69	0.009
L31	42.5-37.5 (31)	TP38.7437x37.8935x0.73 75	5.00	0.00	0.0	88.965 8	-46.71	4804.16	0.010
L32	(37) 37.5-32.75 (32)	TP39.5514x38.7437x0.73 75	4.75	0.00	0.0	90.856 4	-48.73	4906.25	0.010
L33	(32) 32.75-32.5 (33)	TP39.5939x39.5514x0.78 75	0.25	0.00	0.0	96.997 5	-48.86	5237.86	0.009
L34	(33) 32.5-27.5 (34)	TP40.444x39.5939x0.775	5.00	0.00	0.0	97.579 9	-51.13	5269.31	0.010
L35	(34) 27.5-22.5 (35)	TP41.2942x40.444x0.762 5	5.00	0.00	0.0	98.093 8	-53.43	5297.07	0.010
L36	(33) 22.5 - 17.5 (36)	5 TP42.1444x41.2942x0.76 25	5.00	0.00	0.0	0 100.15 10	-55.77	5408.18	0.010
L37	(30) 17.5 - 12.5 (37)	TP42.9946x42.1444x0.75	5.00	0.00	0.0	100.56 30	-58.13	5430.41	0.011
L38	(37) 12.5 - 8.083 (38)	TP43.7456x42.9946x0.73 75	4.42	0.00	0.0	100.67 40	-60.23	5436.42	0.011
L39	(38) 8.083 - 7.833 (39)	TP43.7881x43.7456x0.8	0.25	0.00	0.0	109.15 50	-60.38	5894.39	0.010
L40		TP44.0289x43.7881x0.78 75	1.42	0.00	0.0	108.08 30	-61.11	5836.48	0.010
L41		75 TP44.0714x44.0289x0.77 5	0.25	0.00	0.0	30 106.50 30	-61.25	5751.14	0.011

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	К	к	ϕP_n
L42	6.167 - 3.25 (42)	TP44.5674x44.0714x0.76 25	2.92	0.00	0.0	106.01 50	-62.71	5724.84	0.011
L43	3.25 - 3 (43)	TP44.6099x44.5674x0.78 75	0.25	0.00	0.0	109.53 50	-62.85	5914.90	0.011
L44	3-2 (44)	TP44.7799x44.6099x0.78 75	1.00	0.00	0.0	109.96 00	-63.34	5937.85	0.011
L45	2 - 1.75 (45)	TP44.8224x44.7799x0.77 5	0.25	0.00	0.0	108.35 00	-63.47	5850.91	0.011
L46	1.75-0 (46)	TP45.12x44.8224x0.775	1.75	0.00	0.0	109.08 20	-64.33	5890.43	0.011

Pole Bending Design Data

Section	Elevation	Size	M _{ux}	φM _{nx}	Ratio	Muy	φ Μ _{nv}	Ratio
No.				1	Mux	-,	1	Muy
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	φM _{ny}
L1	147 - 142 (1)	TP22.8501x22x0.25	25.20	569.75	0.044	0.00	569.75	0.000
L2	142 - 137 (2)	TP23.7002x22.8501x0.25	52.41	613.66	0.085	0.00	613.66	0.000
L3	137 - 132 (3)	TP24.5504x23.7002x0.25	104.03	659.20	0.158	0.00	659.20	0.000
L4	132 - 127 (4)	TP25.4005x24.5504x0.25	159.61	703.27	0.227	0.00	703.27	0.000
L5	127 - 122 (5)	TP26.2506x25.4005x0.25	232.09	745.67	0.311	0.00	745.67	0.000
L6 L7	122 - 117 (6)	TP27.1007x26.2506x0.25	310.51	788.87	0.394 0.497	0.00	788.87	0.000
L7 L8	117 - 112 (7) 112 - 105 (8)	TP27.9508x27.1007x0.25 TP29.141x27.9508x0.25	413.67 487.12	832.83 861.78	0.497	0.00 0.00	832.83 861.78	0.000 0.000
L0 L9	105 - 103 75	TP28.8536x28.0034x0.31	614.79	1135.95	0.541	0.00	1135.95	0.000
LU	(9)	25	014.70	1100.00	0.041	0.00	1100.00	0.000
L10	103.75 - 98.75 (10)	TP29.7039x28.8536x0.31 25	760.13	1205.02	0.631	0.00	1205.02	0.000
L11	98.75-93.75 (11)	TP30.5541x29.7039x0.31 25	907.26	1276.12	0.711	0.00	1276.12	0.000
L12	93.75- 89.667 (12)	TP31.2484x30.5541x0.31 25	1028.67	1335.00	0.771	0.00	1335.00	0.000
L13	89.667 - 89.417 (13)	TP31.2909x31.2484x0.31 25	1036.13	1338.26	0.774	0.00	1338.26	0.000
L14	89.417 - 88.083 (14)	TP31.5177x31.2909x0.31 25	1076.06	1355.65	0.794	0.00	1355.65	0.000
L15	88.083 - 87.833 (15)	25 TP31.5603x31.5177x0.51 25	1083.55	2192.51	0.494	0.00	2192.51	0.000
L16	87.833 - 85.833 (16)	23 TP31.9003x31.5603x0.51 25	1143.70	2241.19	0.510	0.00	2241.19	0.000
L17	85.833 - 85.583 (17)	23 TP31.9429x31.9003x0.51 25	1151.24	2247.32	0.512	0.00	2247.32	0.000
L18	85.583 - 84.5 (18)	TP32.127x31.9429x0.512 5	1183.97	2273.94	0.521	0.00	2273.94	0.000
L19	84.5-84.25 (19)	TP32.1695x32.127x0.475	1191.54	2120.79	0.562	0.00	2120.79	0.000
L20	84.25-79.25 (20)	TP33.0198x32.1695x0.46 25	1343.95	2180.61	0.616	0.00	2180.61	0.000
L21	79.25-73.75 (21)	TP33.955x33.0198x0.462 5	1382.35	2209.38	0.626	0.00	2209.38	0.000
L22	73.75-72.75 (22)	TP33.5x32.6073x0.5625	1545.88	2706.73	0.571	0.00	2706.73	0.000
L23	72.75-67.75 (23)	TP34.3502x33.5x0.5625	1704.13	2849.47	0.598	0.00	2849.47	0.000
L24	67.75-63.08 (24)	TP35.1442x34.3502x0.55	1853.62	2922.92	0.634	0.00	2922.92	0.000
L25	63.08 - 62.83 (25)	TP35.1867x35.1442x0.71 25	1861.67	3742.71	0.497	0.00	3742.71	0.000
L26	62.83-57.83 (26)	TP36.0369x35.1867x0.7	2023.68	3866.63	0.523	0.00	3866.63	0.000
L27	57.83-52.83 (27)	TP36.8871x36.0369x0.68 75	2187.68	3988.46	0.549	0.00	3988.46	0.000
L28	52.83-47.83 (28)	TP37.7372x36.8871x0.68 75	2353.58	4179.79	0.563	0.00	4179.79	0.000
L29	47.83-42.75	TP38.601x37.7372x0.675	2364.60	4120.51	0.574	0.00	4120.51	0.000

Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio M _{ux}	Muy	ϕM_{ny}	Ratio M _{uy}
110.	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L30	(29) 42.75-42.5 (30)	TP37.8935x37.0433x0.75	2533.31	4575.54	0.554	0.00	4575.54	0.000
L31	42.5-37.5 (31)	TP38.7437x37.8935x0.73 75	2704.97	4714.34	0.574	0.00	4714.34	0.000
L32	37.5 - 32.75 (32)	TP39.5514x38.7437x0.73 75	2869.72	4918.78	0.583	0.00	4918.78	0.000
L33	32.75-32.5 (33)	TP39.5939x39.5514x0.78 75	2878.43	5243.58	0.549	0.00	5243.58	0.000
L34	32.5-27.5 (34)	TP40.444x39.5939x0.775	3053.63	5396.34	0.566	0.00	5396.34	0.000
L35	27.5-22.5 (35)	TP41.2942x40.444x0.762 5	3230.45	5546.68	0.582	0.00	5546.68	0.000
L36	22.5-17.5 (36)	TP42.1444x41.2942x0.76 25	3408.75	5783.99	0.589	0.00	5783.99	0.000
L37	17.5-12.5 (37)	TP42.9946x42.1444x0.75	3588.35	5932.77	0.605	0.00	5932.77	0.000
L38	12.5-8.083 (38)	TP43.7456x42.9946x0.73 75	3748.03	6050.28	0.619	0.00	6050.28	0.000
L39	8.083 - 7.833 (39)	TP43.7881x43.7456x0.8	3757.10	6547.51	0.574	0.00	6547.51	0.000
L40	7.833-6.417 (40)	TP44.0289x43.7881x0.78 75	3808.53	6523.92	0.584	0.00	6523.92	0.000
L41	6.417-6.167 (41)	TP44.0714x44.0289x0.77 5	3817.62	6438.68	0.593	0.00	6438.68	0.000
L42	6.167 - 3.25 (42)	TP44.5674x44.0714x0.76 25	3923.94	6487.65	0.605	0.00	6487.65	0.000
L43	3.25-3 (43)	TP44.6099x44.5674x0.78 75	3933.07	6702.00	0.587	0.00	6702.00	0.000
L44	3-2 (44)	TP44.7799x44.6099x0.78 75	3969.63	6754.57	0.588	0.00	6754.57	0.000
L45	2 - 1.75 (45)	TP44.8224x44.7799x0.77 5	3978.78	6666.00	0.597	0.00	6666.00	0.000
L46	1.75-0 (46)	TP45.12x44.8224x0.775	4042.89	6757.15	0.598	0.00	6757.15	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	147 - 142 (1)	TP22.8501x22x0.25	5.24	290.52	0.018	0.74	574.99	0.001
L2	142 - 137 (2)	TP23.7002x22.8501x0.25	5.65	301.45	0.019	0.74	619.07	0.001
L3	137 - 132 (3)	TP24.5504x23.7002x0.25	10.91	312.37	0.035	0.74	664.76	0.001
L4	132 - 127 (4)	TP25.4005x24.5504x0.25	11.33	323.30	0.035	0.74	712.09	0.001
L5	127 - 122 (5)	TP26.2506x25.4005x0.25	15.42	334.23	0.046	0.87	761.04	0.001
L6	122 - 117 (6)	TP27.1007x26.2506x0.25	16.14	345.16	0.047	1.11	811.62	0.001
L7	117 - 112 (7)	TP27.9508x27.1007x0.25	22.48	356.09	0.063	3.29	863.83	0.004
L8	112 - 105 (8)	TP29.141x27.9508x0.25	22.74	363.19	0.063	3.29	898.63	0.004
L9	105-103.75	TP28.8536x28.0034x0.31	28.91	458.61	0.063	4.02	1146.29	0.004
	(9)	25						
L10	103.75 -	TP29.7039x28.8536x0.31	29.27	472.27	0.062	4.02	1215.60	0.003
	98.75 (10)	25						
L11	98.75-93.75	TP30.5541x29.7039x0.31	29.61	485.93	0.061	4.00	1286.95	0.003
	(11)	25						
L12	93.75-	TP31.2484x30.5541x0.31	29.88	497.09	0.060	4.00	1346.72	0.003
	89.667 (12)	25						
L13	89.667 -	TP31.2909x31.2484x0.31	29.89	497.77	0.060	4.00	1350.43	0.003
	89.417 (13)	25						
L14	89.417 -	TP31.5177x31.2909x0.31	29.99	501.42	0.060	4.00	1370.28	0.003
	88.083 (14)	25						
L15	88.083 -	TP31.5603x31.5177x0.51	29.99	818.17	0.037	4.00	2224.63	0.002
	87.833 (15)	25						
L16	87.833 -	TP31.9003x31.5603x0.51	30.17	827.14	0.036	4.00	2273.63	0.002
	85.833 (16)	25						
L17	85.833 -	TP31.9429x31.9003x0.51	30.18	828.26	0.036	4.00	2279.78	0.002

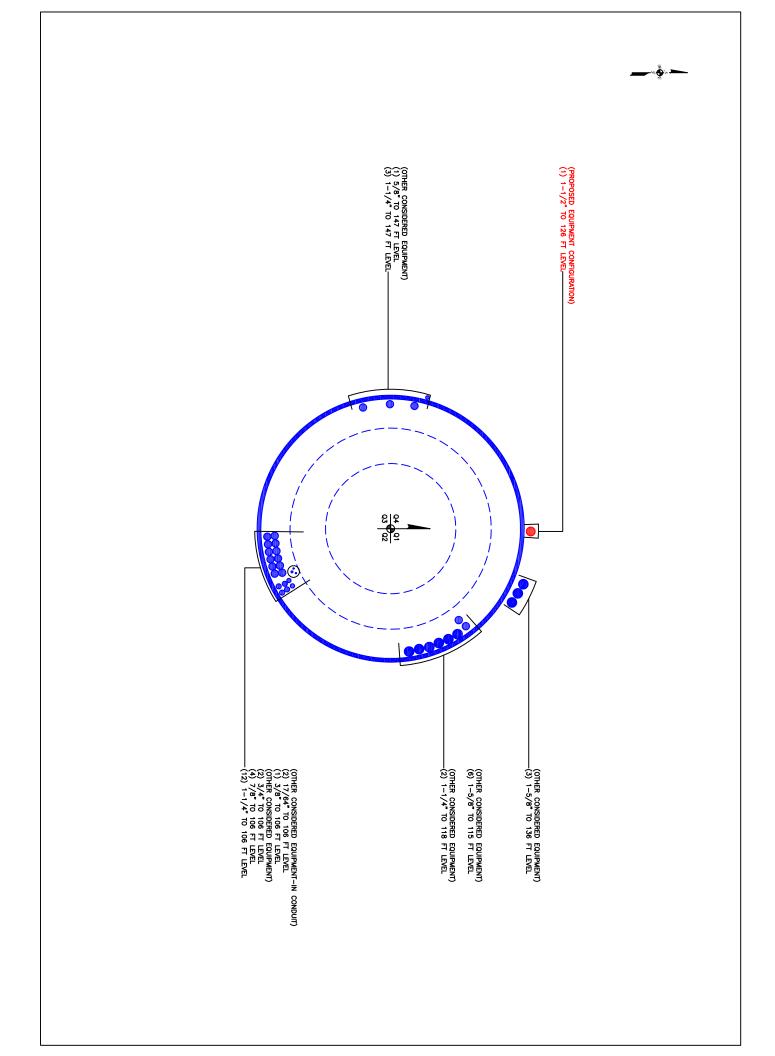
Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
	ft		ĸ	К	$\frac{\nabla u}{\phi V_n}$	kip-ft	kip-ft	$\frac{T_{u}}{\phi T_{n}}$
L18	85.583 (17) 85.583 - 84.5 (18)	25 TP32.127x31.9429x0.512 5	30.28	833.11	0.036	4.00	2306.58	0.002
L19	(18) 84.5-84.25 (19)	TP32.1695x32.127x0.475	30.29	774.11	0.039	4.00	2148.64	0.002
L20	84.25-79.25 (20)	TP33.0198x32.1695x0.46 25	30.69	774.25	0.040	3.99	2207.54	0.002
L21	79.25-73.75 (21)	TP33.955x33.0198x0.462 5	30.78	779.30	0.040	3.99	2236.46	0.002
L22	73.75 - 72.75 (22)	TP33.5x32.6073x0.5625	31.47	952.65	0.033	4.01	2747.93	0.001
L23	72.75-67.75 (23)	TP34.3502x33.5x0.5625	31.85	977.24	0.033	4.00	2891.62	0.001
L24	67.75-63.08 (24)	TP35.1442x34.3502x0.55	32.20	978.34	0.033	4.00	2963.96	0.001
L25	63.08-62.83 (25)	TP35.1867x35.1442x0.71 25	32.20	1262.99	0.025	4.00	3813.07	0.001
L26	62.83-57.83 (26)	TP36.0369x35.1867x0.7	32.62	1271.89	0.026	4.00	3936.02	0.001
L27	57.83-52.83 (27)	TP36.8871x36.0369x0.68 75	33.01	1279.67	0.026	4.00	4056.78	0.001
L28	52.83-47.83 (28)	TP37.7372x36.8871x0.68 75	33.38	1309.72	0.025	4.00	4249.57	0.001
L29	47.83-42.75 (29)	TP38.601x37.7372x0.675	33.40	1288.29	0.026	4.00	4187.77	0.001
L30	42.75-42.5 (30)	TP37.8935x37.0433x0.75	34.14	1432.41	0.024	4.22	4659.39	0.001
L31	42.5-37.5 (31)	TP38.7437x37.8935x0.73 75	34.53	1441.25	0.024	4.22	4797.03	0.001
L32	37.5-32.75 (32)	TP39.5514x38.7437x0.73 75	34.86	1471.87	0.024	4.22	5003.08	0.001
L33	32.75-32.5 (33)	TP39.5939x39.5514x0.78 75	34.86	1571.36	0.022	4.22	5340.21	0.001
L34	32.5-27.5 (34)	TP40.444x39.5939x0.775	35.22	1580.79	0.022	4.22	5491.70	0.001
L35	27.5-22.5 (35)	TP41.2942x40.444x0.762 5	35.53	1589.12	0.022	4.22	5640.68	0.001
L36	22.5 - 17.5 (36)	TP42.1444x41.2942x0.76 25	35.81	1622.45	0.022	4.22	5879.80	0.001
L37	17.5 - 12.5 (37)	TP42.9946x42.1444x0.75	36.05	1629.12	0.022	4.22	6027.05	0.001
L38	12.5-8.083 (38)	TP43.7456x42.9946x0.73 75	36.28	1630.93	0.022	4.22	6142.77	0.001
L39	8.083 - 7.833 (39)	TP43.7881x43.7456x0.8	36.27	1768.32	0.021	4.22	6657.16	0.001
L40	(40)	TP44.0289x43.7881x0.78 75	36.38	1750.94	0.021	4.22	6630.58	0.001
L41	6.417 - 6.167 (41)	TP44.0714x44.0289x0.77 5	36.37	1725.34	0.021	4.22	6541.95	0.001
L42	6.167 - 3.25 (42)	TP44.5674x44.0714x0.76 25	36.55	1717.45	0.021	4.22	6588.51	0.001
L43	3.25 - 3 (43)	TP44.6099x44.5674x0.78 75	36.53	1774.47	0.021	4.22	6809.97	0.001
L44	3 - 2 (44)	TP44.7799x44.6099x0.78 75	36.59	1781.35	0.021	4.22	6862.91	0.001
L45	2 - 1.75 (45)	TP44.8224x44.7799x0.77 5 TP45.40x44.0004x0.775	36.59	1755.27	0.021	4.22	6770.87	0.001
L46	1.75-0 (46)	TP45.12x44.8224x0.775	36.70	1767.13	0.021	4.22	6862.67	0.001

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio Muy	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\frac{1}{\phi P_n}$	ϕM_{nx}	φ <i>M_{ny}</i>	$\frac{1}{\phi V_n}$	$\frac{1}{\phi T_n}$	Ratio	Ratio	
L1	147 - 142 (1)	0.005	0.044	0.000	0.018	0.001	0.049	1.050	4.8.2
L2	142 - 137 (2)	0.005	0.085	0.000	0.019	0.001	0.091	1.050	4.8.2
L3	137 - 132 (3)	0.009	0.158	0.000	0.035	0.001	0.168	1.050	4.8.2
L4	132 - 127 (4)	0.009	0.227	0.000	0.035	0.001	0.237	1.050	4.8.2
L5	127 - 122 (5)	0.012	0.311	0.000	0.046	0.001	0.325	1.050	4.8.2
L6 L7	122 - 117 (6) 117 - 112 (7)	0.012 0.015	0.394 0.497	0.000 0.000	0.047 0.063	0.001 0.004	0.408 0.516	1.050 1.050	4.8.2 4.8.2
L8	112 - 105 (8)	0.015	0.565	0.000	0.063	0.004	0.584	1.050	4.8.2
L9	105 - 103.75 (9)	0.016	0.541	0.000	0.063	0.004	0.561	1.050	4.8.2
L10	103.75 - 98.75 (10)	0.016	0.631	0.000	0.062	0.003	0.651	1.050	4.8.2
L11	98.75-93.75 (11)	0.016	0.711	0.000	0.061	0.003	0.731	1.050	4.8.2
L12	93.75 - 89.667 (12)	0.016	0.771	0.000	0.060	0.003	0.791	1.050	4.8.2
L13	89.667 89.417 (13)	0.016	0.774	0.000	0.060	0.003	0.794	1.050	4.8.2
L14	89.417 - 88.083 (14)	0.016	0.794	0.000	0.060	0.003	0.814	1.050	4.8.2
L15	88.083 - 87.833 (15)	0.010	0.494	0.000	0.037	0.002	0.506	1.050	4.8.2
L16	87.833 - 85.833 (16)	0.010	0.510	0.000	0.036	0.002	0.522	1.050	4.8.2
L17	85.833 - 85.583 (17)	0.010	0.512	0.000	0.036	0.002	0.524	1.050	4.8.2
L18	85.583-84.5 (18)	0.010	0.521	0.000	0.036	0.002	0.532	1.050	4.8.2
L19	84.5-84.25 (19)	0.011	0.562	0.000	0.039	0.002	0.574	1.050	4.8.2
L20 L21	84.25 - 79.25 (20) 79.25 - 73.75	0.011 0.011	0.616 0.626	0.000 0.000	0.040 0.040	0.002 0.002	0.629 0.639	1.050 1.050	4.8.2 4.8.2
L21	(21) 73.75-72.75	0.011	0.571	0.000	0.040	0.002	0.582	1.050	4.8.2
L23	(22) 72.75-67.75	0.010	0.598	0.000	0.033	0.001	0.610	1.050	4.8.2
L24	(23) 67.75-63.08	0.011	0.634	0.000	0.033	0.001	0.646	1.050	4.8.2
L25	(24) 63.08-62.83	0.008	0.497	0.000	0.025	0.001	0.506	1.050	4.8.2
L26	(25) 62.83-57.83	0.009	0.523	0.000	0.026	0.001	0.533	1.050	4.8.2
L27	(26) 57.83-52.83	0.009	0.549	0.000	0.026	0.001	0.558	1.050	4.8.2
L28	(27) 52.83-47.83	0.009	0.563	0.000	0.025	0.001	0.573	1.050	4.8.2
L29	(28) 47.83-42.75 (20)	0.010	0.574	0.000	0.026	0.001	0.584	1.050	4.8.2
L30	(29) 42.75-42.5 (30)	0.009	0.554	0.000	0.024	0.001	0.564	1.050	4.8.2
L31	(30) 42.5-37.5 (31)	0.010	0.574	0.000	0.024	0.001	0.584	1.050	4.8.2
L32	(31) 37.5-32.75 (32)	0.010	0.583	0.000	0.024	0.001	0.594	1.050	4.8.2
L33	(32) 32.75-32.5 (33)	0.009	0.549	0.000	0.022	0.001	0.559	1.050	4.8.2
L34	32.5-27.5 (34)	0.010	0.566	0.000	0.022	0.001	0.576	1.050	4.8.2
L35	27.5-22.5 (35)	0.010	0.582	0.000	0.022	0.001	0.593	1.050	4.8.2
L36	22.5 - 17.5 (36)	0.010	0.589	0.000	0.022	0.001	0.600	1.050	4.8.2
L37	17.5 - 12.5 (37)	0.011	0.605	0.000	0.022	0.001	0.616	1.050	4.8.2
L38	12.5 - 8.083 (38)	0.011	0.619	0.000	0.022	0.001	0.631	1.050	4.8.2
L39	8.083-7.833	0.010	0.574	0.000	0.021	0.001	0.585	1.050	4.8.2

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ M _{nx}	φM _{ny}	φVn	ϕT_n	Ratio	Ratio	
	(39)								
L40	7.833-6.417 (40)	0.010	0.584	0.000	0.021	0.001	0.595	1.050	4.8.2
L41	6.417-6.167 (41)	0.011	0.593	0.000	0.021	0.001	0.604	1.050	4.8.2
L42	6.167 - 3.25 (42)	0.011	0.605	0.000	0.021	0.001	0.616	1.050	4.8.2
L43	3.25 - 3 (43)	0.011	0.587	0.000	0.021	0.001	0.598	1.050	4.8.2
L44	3 - 2 (44)	0.011	0.588	0.000	0.021	0.001	0.599	1.050	4.8.2
L45	2 - 1.75 (45)	0.011	0.597	0.000	0.021	0.001	0.608	1.050	4.8.2
L46	1.75-0 (46)́	0.011	0.598	0.000	0.021	0.001	0.610	1.050	4.8.2

Section Capacity Table


Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
L1	147 - 142	Pole	TP22.8501x22x0.25	1	-4.43	1016.81	4.7	Pass
L2	142 - 137	Pole	TP23.7002x22.8501x0.25	2	-4.78	1055.06	8.6	Pass
L3	137 - 132	Pole	TP24.5504x23.7002x0.25	3	-9.26	1093.31	16.0	Pass
L4	132 - 127	Pole	TP25.4005x24.5504x0.25	4	-9.71	1131.55	22.6	Pass
L5	127 - 122	Pole	TP26.2506x25.4005x0.25	5	-13.05	1169.80	31.0	Pass
L6	122 - 117	Pole	TP27.1007x26.2506x0.25	6	-13.61	1208.06	38.8	Pass
L7	117 - 112	Pole	TP27.9508x27.1007x0.25	7	-17.55	1246.30	49.1	Pass
L8	112 - 105	Pole	TP29.141x27.9508x0.25	8	-17.98	1271.16	55.7	Pass
L9	105 - 103 75	Pole	TP28.8536x28.0034x0.3125	9	-24.13	1605.13	53.5	Pass
L10	103.75-98.75	Pole	TP29.7039x28.8536x0.3125	10	-25.03	1652.95	62.0	Pass
L11	98.75-93.75	Pole	TP30.5541x29.7039x0.3125	11	-25.97	1700.77	69.6	Pass
L12	93.75-89.667	Pole	TP31.2484x30.5541x0.3125	12	-26.77	1739.81	75.3	Pass
L13	89.667 - 89.417	Pole	TP31.2909x31.2484x0.3125	13	-26.84	1742.20	75.7	Pass
L14	89.417-88.083	Pole	TP31.5177x31.2909x0.3125	14	-27.08	1754.96	77.5	Pass
L15	88.083-87.833	Pole	TP31.5603x31.5177x0.5125	15	-27.17	2863.61	48.2	Pass
L16	87.833 - 85.833	Pole	TP31.9003x31.5603x0.5125	16	27.67	2894.98	49.7	Pass
L17	85.833 - 85.583	Pole	TP31.9429x31.9003x0.5125	17	-27.74	2898.90	49.9	Pass
L18	85 583 -84 5	Pole	TP32.127x31.9429x0.5125	18	-28.01	2915.88	50.7	Pass
L19	84.5-84.25	Pole	TP32.1695x32.127x0.475	19	-28.08	2709.37	54.7	Pass
L20	84.25 - 79.25	Pole	TP33.0198x32.1695x0.4625	20	-29.38	2709.87	59.9	Pass
L21	79.25-73.75	Pole	TP33.955x33.0198x0.4625	21	-29.71	2727.56	60.8	Pass
L22	73.75-72.75	Pole	TP33.5x32.6073x0.5625	22	-32.28	3334.29	55.5	Pass
L23	72.75-67.75	Pole	TP34.3502x33.5x0.5625	23	-33.76	3420.35	58.1	Pass
L24	67.75-63.08	Pole	TP35.1442x34.3502x0.55	24	-35.16	3424.18	61.5	Pass
L25	63.08-62.83	Pole	TP35.1867x35.1442x0.7125	25	-35.27	4420.48	48.2	Pass
L26	62.83 - 57.83	Pole	TP36.0369x35.1867x0.7	26	-37.13	4451.60	50.7	Pass
L27	57.83-52.83	Pole	TP36.8871x36.0369x0.6875	27	-39.02	4478.85	53.2	Pass
L28	52.83 - 47.83	Pole	TP37.7372x36.8871x0.6875	28	-40.93	4584.04	54.6	Pass
L29	47.83-42.75	Pole	TP38.601x37.7372x0.675	29	-41.07	4509.03	55.6	Pass
L30	42.75-42.5	Pole	TP37.8935x37.0433x0.75	30	-44.62	5013.42	53.7	Pass
L31	42.5-37.5	Pole	TP38.7437x37.8935x0.7375	31	-46.71	5044.37	55.6	Pass
L32	37.5-32.75	Pole	TP39.5514x38.7437x0.7375	32	-48.73	5151.56	56.6	Pass
L33	32.75-32.5	Pole	TP39.5939x39.5514x0.7875	33	-48.86	5499.75	53.2	Pass
L34	32.5-27.5	Pole	TP40 444x39 5939x0 775	34	-51.13	5532.78	54.9	Pass
L35	27.5-22.5	Pole	TP41.2942x40.444x0.7625	35	-53.43	5561.92	56.5	Pass
L36	22.5-17.5	Pole	TP42.1444x41.2942x0.7625	36	-55.77	5678.59	57.2	Pass
L37	17.5-12.5	Pole	TP42.9946x42.1444x0.75	37	-58.13	5701.93	58.7	Pass
L38	12.5-8.083	Pole	TP43.7456x42.9946x0.7375	38	-60.23	5708.24	60.1	Pass
L39	8.083 - 7.833	Pole	TP43.7881x43.7456x0.8	39	-60.38	6189.11	55.7	Pass
L40	7.833-6.417	Pole	TP44.0289x43.7881x0.7875	40	-61.11	6128.30	56.6	Pass
L41	6.417-6.167	Pole	TP44.0714x44.0289x0.775	41	-61.25	6038.70	57.5	Pass
L42	6.167-3.25	Pole	TP44.5674x44.0714x0.7625	42	-62.71	6011.08	58.7	Pass
L43	3.25-3	Pole	TP44.6099x44.5674x07875	43	-62.85	6210.64	56.9	Pass
L44	3 - 2	Pole	TP44.7799x44.6099x0.7875	44	-63.34	6234.74	57.0	Pass
L45	2-1.75	Pole	TP44.8224x44.7799x0.775	45	-63.47	6143.46	57.9	Pass
L46	1.75-0	Pole	TP45,12x44,8224x0,775	46	-64.33	6184.95	58.1	Pass

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
							Summary	
						Pole (L14)	77.5	Pass
						RATING =	77.5	Pass

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Site BU: 876316 Work Order: 1964043

Ро	le Geometry							Copyright @	2019 Crown Castle
	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	147	42	3.75	18	22	29.141	0.25	Auto	A607-60
2	108.75	35	4.25	18	28.00	33.955	0.3125	Auto	A607-60
3	78	35.25	4.75	18	32.61	38.601	0.375	Auto	A607-60
4	47.5	47.5	0	18	37.04	45.12	0.4375	Auto	A607-60

Reinforcement Configuration

						1	1	l I	l I	1	1	1 1	I		1 1	l I	I	I 1		1 1		1	1 1
	Bottom Effective	Top Effective																					
	Elevation (ft)	Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	2	8.083	channel	1P3-05 (1.25in) Welde	2					x		х											
2	6.417	76.583	channel	MP3-05 (1.25in)	1						x												
3	2	88.083	channel	1P3-05 (1.25in) Welde	2												x						×
4	75.667	85.833	channel	MP3-05 (1.25in)	1							х											
5	84.5	89.667	channel	MP3-05 (1.25in)	1						x												
6	0	3.25	plate	TS 1 6.5"X1.25"	2	с									2.5								
7	0	3.25	plate	TS2 6.5"X1.25"	1														х				
8	3.25	32.75	plate	CCI-SFP-065125	2			х						х									
9	3.25	32.75	plate	WCFP-065125	1														х				
10	32.75	63.08	plate	CCI-AFP-060100	3			х						х					х				
11	0	2	plate	TS 3.2"X1.25"	6																		
12																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in ²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	5.33	2.09	5.65	0.79	Welded	n/a	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
2	5.33	2.09	5.65	0.79	PC 8.8 - M20 (100)	29	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
3	5.33	2.09	5.65	0.79	Welded	n/a	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
4	5.33	2.09	5.65	0.79	PC 8.8 - M20 (100)	29	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
5	5.33	2.09	5.65	0.79	PC 8.8 - M20 (100)	29	PC 8.8 - M20 (100)	29.000	18.000	4.994	1.2500	A572-65
6	1.25	5.75	7.1875	2.875	Welded	n/a	None	n/a	0.000	7.188	0.0000	A572-65
7	1.25	5.75	7.1875	2.875	Welded	n/a	None	n/a	0.000	7.188	0.0000	A572-65
8	6.5	1.25	8.125	0.625	PC 8.8 - M20 (100)	33	PC 8.8 - M20 (100)	33.000	19.000	6.563	1.1875	A572-65
9	6.5	1.25	8.125	0.625	Welded	n/a	PC 8.8 - M20 (100)	33.000	19.000	6.563	1.1875	A572-65
10	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
11	1.25	3.2	4	1.6	Welded	n/a	None	n/a	0.000	4.000	0.0000	A572-65

Connection Details for Custom Reinforcements

Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
MP3-05 (1.25in)	Тор	10	N	3	2	-	-	-	-	-	-	-	-	-
Welded	Bottom	-	-	-	-	70	None	-	-	-	-	18	0.375	-
WCFP-065125	Тор	11	N	3	3	-	-	-	-	-	-	-	-	-
WCFP-005125	Bottom	-	-	-	-	70	None	-	-	-	-	29	0.375	-
TS 1 6.5"X1.25"	Тор	1	N	3	3	-	-	-	-	-	-	-	-	-
13 1 0.5 A1.25	Bottom	-	-	-	-	80	CJP Groove	5.75	0.625	45	0.625	78	0.375	-
TS2 6.5"X1.25"	Тор	1	N	3	3	-	-	-	-	-	-	-	-	-
132 0.3 A1.23	Bottom	-	-	-	-	80	CJP Groove	5.75	0.625	45	0.625	78	0.375	-
TS 3.2"X1.25"	Тор	1	N	3	3	-	-	-	-	-	-	-	-	-
13 3.2 X1.25	Bottom	-	-	-	-	70	PJP Groove	5.25	0.5	45	0.5	42	0.313	-

TNX Geometry Input

Inc	rement (ft): 5 Ex	port to TNX							
			Lap Splice Length			Bottom Diameter	Wall Thickness	Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	(in)	Grade	Multiplier
1	147 - 142	5		18	22.000	22.850	0.25	A607-60	1.000
2	142 - 137	5		18	22.850	23.700	0.25	A607-60	1.000
3	137 - 132	5		18	23.700	24.550	0.25	A607-60	1.000
4	132 - 127	5		18	24.550	25.400	0.25	A607-60	1.000
5	127 - 122	5		18	25.400	26.251	0.25	A607-60	1.000
6	122 - 117	5		18	26.251	27.101	0.25	A607-60	1.000
7	117 - 112	5		18	27.101	27.951	0.25	A607-60	1.000
8	112 - 108.75	7	3.75	18	27.951	29.141	0.25	A607-60	1.000
9	108.75 - 103.75	5		18	28.003	28.854	0.3125	A607-60	1.000
10	103.75 - 98.75	5		18	28.854	29.704	0.3125	A607-60	1.000
11	98.75 - 93.75	5		18	29.704	30.554	0.3125	A607-60	1.000
12	93.75 - 89.667	4.083		18	30.554	31.248	0.3125	A607-60	1.000
13	89.667 - 89.417	0.25		18	31.248	31.291	0.3125	A607-60	1.000
14	89.417 - 88.083	1.334		18	31.291	31.518	0.3125	A607-60	1.000
15	88.083 - 87.833	0.25		18	31.518	31.560	0.5125	A607-60	0.949
16	87.833 - 85.833	2		18	31.560	31.900	0.5125	A607-60	0.946
17	85.833 - 85.583	0.25		18	31.900	31.943	0.5125	A607-60	0.945
18	85.583 - 84.5	1.083		18	31.943	32.127	0.5125	A607-60	0.943
19	84.5 - 84.25	0.25		18	32.127	32.170	0.475	A607-60	1.016
20	84.25 - 79.25	5		18	32.170	33.020	0.4625	A607-60	1.033
21	79.25 - 78	5.5	4.25	18	33.020	33.955	0.4625	A607-60	1.031
22	78 - 72.75	5.25		18	32.607	33.500	0.5625	A607-60	0.959
23	72.75 - 67.75	5		18	33.500	34.350	0.5625	A607-60	0.951
24	67.75 - 63.08	4.67		18	34.350	35.144	0.55	A607-60	0.966
25	63.08 - 62.83	0.25		18	35.144	35.187	0.7125	A607-60	0.980
26	62.83 - 57.83	5		18	35.187	36.037	0.7	A607-60	0.986
27	57.83 - 52.83	5		18	36.037	36.887	0.6875	A607-60	0.993
28	52.83 - 47.83	5		18	36.887	37.737	0.6875	A607-60	0.982
29	47.83 - 47.5	5.08	4.75	18	37.737	38.601	0.675	A607-60	1.000
30	47.5 - 42.5	5		18	37.043	37.894	0.75	A607-60	0.984
31	42.5 - 37.5	5		18	37.894	38.744	0.7375	A607-60	0.991
32	37.5 - 32.75	4.75		18	38.744	39.551	0.7375	A607-60	0.982
33	32.75 - 32.5	0.25		18	39.551	39.594	0.7875	A607-60	0.987
34	32.5 - 27.5	5		18	39.594	40.444	0.775	A607-60	0.993
35	27.5 - 22.5	5		18	40.444	41.294	0.7625	A607-60	1.000
36	22.5 - 17.5	5		18	41.294	42.144	0.7625	A607-60	0.991
37	17.5 - 12.5	5		18	42.144	42.995	0.75	A607-60	0.999
38	12.5 - 8.083	4.417		18	42.995	43.746	0.7375	A607-60	1.008
39	8.083 - 7.833	0.25		18	43.746	43.788	0.8	A607-60	1.034
40	7.833 - 6.417	1.416		18	43.788	44.029	0.7875	A607-60	1.034
40	6.417 - 6.167	0.25		18	44.029	44.029	0.775	A607-60	1.047
41	6.167 - 3.25	2.917		18	44.029	44.071	0.7625	A607-60	1.010
42		0.25		18	44.071	44.567	0.7875	A607-60 A607-60	0.963
43									
44 45		1		18 18	44.610	44.780	0.7875	A607-60	0.962
45 46	2 - 1.75	0.25			44.780	44.822	0.775	A607-60	0.989
46	1.75 - 0	1.75		18	44.822	45.120	0.775	A607-60	0.987

TNX Section Forces

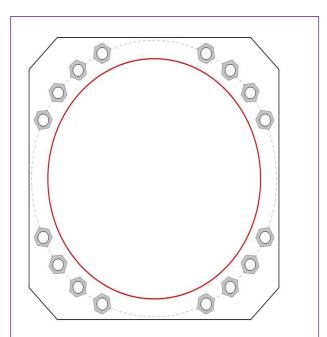
Incr	ement (f	t):	5	Г	NX Outpu	ıt
					M _{ux} (kip-	Vu
		He	ight (ft)	P _u (K)	ft)	(К)
1	147	-	142	4.43	25.20	5.24
2	142	-	137	4.78	52.41	5.65
3	137	-	132	9.26	104.03	10.91
4	132	-	127	9.71	159.61	11.33
5	127	-	122	13.05	232.09	15.42
6	122	-	117	13.61	310.51	16.14
7	117	-	112	17.55	413.67	22.48
8	112	-	108.75	17.98	487.12	22.74
9	108.75	-	103.75	24.13	614.79	28.91
10	103.75	-	98.75	25.03	760.13	29.27
11	98.75	-	93.75	25.97	907.25	29.61
12	93.75	-	89.667	26.77	1028.66	29.88
13	89.667	-	89.417	26.84	1036.13	29.89
14	89.417	-	88.083	27.08	1076.06	29.99
15	88.083	-	87.833	27.17	1083.55	29.99
16	87.833	-	85.833	27.67	1143.70	30.17
17	85.833	-	85.583	27.74	1151.24	30.18
18	85.583	-	84.5	28.01	1183.97	30.28
19	84.5	-	84.25	28.08	1191.54	30.29
20	84.25	-	79.25	29.38	1343.95	30.69
21	79.25	-	78	29.71	1382.35	30.78
22	78	-	72.75	32.28	1545.87	31.47
23	72.75	-	67.75	33.76	1704.13	31.85
24	67.75	-	63.08	35.16	1853.62	32.20
25	63.08	-	62.83	35.27	1861.66	32.20
26	62.83	-	57.83	37.13	2023.68	32.62
27	57.83	-	52.83	39.02	2187.67	33.01
28	52.83	-	47.83	40.93	2353.58	33.38
29	47.83	-	47.5	41.07	2364.60	33.40
30	47.5	-	42.5	44.62	2533.31	34.14
31	42.5	-	37.5	46.71	2704.97	34.53
32	37.5	-	32.75	48.73	2869.72	34.86
33	32.75	-	32.5	48.86	2878.44	34.86
34	32.5	-	27.5	51.13	3053.63	35.22
35	27.5	-	22.5	53.43	3230.45	35.53
36	22.5	-	17.5	55.77	3408.75	35.81
37	17.5	-	12.5	58.13	3588.35	36.05
38	12.5	-	8.083	60.23	3748.03	36.28
39	8.083	-	7.833	60.38	3757.10	36.27
40	7.833	-	6.417	61.11	3808.52	36.38
41	6.417	-	6.167	61.25	3817.62	36.37
42	6.167	-	3.25	62.71	3923.94	36.55
43	3.25	-	3	62.85	3933.08	36.53
44	3	-	2	63.34	3969.64	36.59
45	2	-	1.75	63.47	3978.78	36.59
46	1.75	-	0	64.33	4042.89	36.70

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fa
147 - 142	Pole	TP22.85x22x0.25	Pole	4.7%	Pass
142 - 137	Pole	TP23.7x22.85x0.25	Pole	8.6%	Pass
137 - 132	Pole	TP24.55x23.7x0.25	Pole	16.0%	Pass
132 - 127	Pole	TP25.4x24.55x0.25	Pole	22.6%	Pass
127 - 122	Pole	TP26.251x25.4x0.25	Pole	31.0%	Pass
122 - 117	Pole	TP27.101x26.251x0.25	Pole	38.8%	Pass
117 - 112	Pole	TP27.951x27.101x0.25	Pole	49.1%	Pass
112 - 108.75	Pole	TP29.141x27.951x0.25	Pole	55.6%	Pass
108.75 - 103.75	Pole	TP28.854x28.003x0.3125	Pole	53.4%	Pass
103.75 - 98.75	Pole	TP29.704x28.854x0.3125	Pole	61.9%	Pass
98.75 - 93.75	Pole	TP30.554x29.704x0.3125	Pole	69.6%	Pass
93.75 - 89.67	Pole	TP31.248x30.554x0.3125	Pole	75.3%	Pass
89.67 - 89.42	Pole	TP31.291x31.248x0.3125	Pole	75.6%	Pass
89.42 - 88.08	Pole	TP31.518x31.291x0.3125	Pole	77.5%	Pass
88.08 - 87.83	Pole + Reinf.	TP31.56x31.518x0.5125	Reinf. 5 Tension Rupture	65.8%	Pass
87.83 - 85.83	Pole + Reinf.	TP31.9x31.56x0.5125	Reinf 5 Tension Rupture	68.2%	Pass
85.83 - 85.58	Pole + Reinf.	TP31.943x31.9x0.5125	Reinf. 3 Tension Rupture	68.5%	Pass
85.58 - 84.5	Pole + Reinf.	TP32.127x31.943x0.5125	Reinf. 5 Tension Rupture	69.8%	Pass
84.5 - 84.25	Pole + Reinf.	TP32.17x32.127x0.475	Reinf. 3 Tension Rupture	72.1%	Pass
84.25 - 79.25	Pole + Reinf	TP33.02x32.17x0.4625	Reinf. 3 Tension Rupture	77.7%	Pass
79.25 - 78	Pole + Reinf.	TP33.955x33.02x0.4625	Reinf. 3 Tension Rupture	79.1%	Pass
78 - 72.75	Pole + Reinf.	TP33.5x32.607x0.5625	Reinf. 2 Tension Rupture	75.6%	Pass
72.75 - 67.75	Pole + Reinf.	TP34.35x33.5x0.5625	Reinf. 2 Tension Rupture	79.8%	Pass
67.75 - 63.08	Pole + Reinf.	TP35.144x34.35x0.55	Reinf. 2 Tension Rupture	83.4%	Pass
63.08 - 62.83	Pole + Reinf.	TP35.187x35.144x0.7125	· · · · · · · · · · · · · · · · · · ·	68.4%	
			Reinf. 10 Tension Rupture		Pass
62.83 - 57.83	Pole + Reinf.	TP36.037x35.187x0.7	Reinf. 10 Tension Rupture	71.6%	Pass
57.83 - 52.83	Pole + Reinf	TP36.887x36.037x0.6875	Reinf. 10 Tension Rupture	74.7%	Pass
52.83 - 47.83	Pole + Reinf	TP37.737x36.887x0.6875	Reinf. 10 Tension Rupture	77.5%	Pass
47.83 - 47.5	Pole + Reinf	TP38.601x37.737x0.675	Reinf. 10 Tension Rupture	77.7%	Pass
47.5 - 42.5	Pole + Reinf.	TP37.894x37.043x0.75	Reinf. 10 Tension Rupture	76.2%	Pass
42.5 - 37.5	Pole + Reinf.	TP38.744x37.894x0.7375	Reinf. 10 Tension Rupture	78.5%	Pass
37.5 - 32.75	Pole + Reinf.	TP39.551x38.744x0.7375	Reinf. 10 Tension Rupture	80.6%	Pass
32.75 - 32.5	Pole + Reinf.	TP39.594x39.551x0.7875	Reinf. 3 Tension Rupture	74.3%	Pass
32.5 - 27.5	Pole + Reinf.	TP40.444x39.594x0.775	Reinf. 3 Tension Rupture	76.1%	Pass
27.5 - 22.5	Pole + Reinf.	TP41.294x40.444x0.7625	Reinf. 8 Tension Rupture	77.9%	Pass
22.5 - 17.5	Pole + Reinf.	TP42.144x41.294x0.7625	Reinf. 8 Tension Rupture	79.6%	Pass
17.5 - 12.5	Pole + Reinf.	TP42.995x42.144x0.75	Reinf. 8 Tension Rupture	81.2%	Pass
12.5 - 8.08	Pole + Reinf.	TP43.746x42.995x0.7375	Reinf. 8 Tension Rupture	82.5%	Pass
8.08 - 7.83	Pole + Reinf.	TP43.788x43.746x0.8	Reinf. 3 Tension Rupture	80.4%	Pass
7.83 - 6.42	Pole + Reinf.	TP44.029x43.788x0.7875	Reinf. 3 Tension Rupture	80.8%	Pass
6.42 - 6.17	Pole + Reinf.	TP44.071x44.029x0.775	Reinf. 3 Tension Rupture	81.1%	Pass
6.17 - 3.25	Pole + Reinf.	TP44.567x44.071x0.7625	Reinf. 3 Tension Rupture	81.9%	Pass
3.25 - 3	Pole + Reinf.	TP44.61x44.567x0.7875	Reinf. 1 Tension Rupture	77.2%	Pass
3 - 2	Pole + Reinf.	TP44.78x44.61x0.7875	Reinf. 1 Tension Rupture	77.4%	Pass
2 - 1.75	Pole + Reinf.	TP44.822x44.78x0.775	Reinf. 11 Tension Yield	73.8%	Pass
1.75 - 0	Pole + Reinf.	TP45.12x44.822x0.775	Reinf. 11 Tension Yield	74.2%	Pass
		THE REAL PROPERTY OF THE		Summary	. 400
			Pole	77.5%	Pass
			Reinforcement	83.4%	Pass
			Overall	83.4%	Pass

Additional Calculations

Section	Mom	ent of Inerti	a (in ⁴)		Area (in ²)						9	6 Capaci	ty*					
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R1
147 - 142	1157	n/a	1157	17.93	n/a	17.93	4.7%											
142 - 137	1292	n/a	1292	18.61	n/a	18.61	8.6%											
137 - 132	1438	n/a	1438	19.28	n/a	19.28	16.0%											
132 - 127	1594	n/a	1594	19.96	n/a	19.96	22.6%											_
127 - 122	1761	n/a	1761	20.63	n/a	20.63	31.0%											-
122 - 117	1940	n/a	1940	21.31	n/a	21.31	38.8%											
117 - 112	2130	n/a	2130	21.98	n/a	21.98	49.1%											
112 - 108.75	2260	n/a	2260	22.42	n/a	22.42	55.6%											-
108.75 - 103.75	2912	n/a	2912	28.31	n/a	28.31	53.4%											
103.75 - 98.75	3181 3465	n/a	3181	29.15	n/a	29.15	61.9%											-
98.75 - 93.75		n/a	3465	29.99	n/a	29.99	69.6%											_
93.75 - 89.67	3709	n/a	3709	30.68	n/a	30.68	75.3%											-
89.67 - 89.42	3724	n/a	3724	30.73	n/a	30.73	75.6%											_
89.42 - 88.08	3807	n/a	3807	30.95	n/a	30.95	77.5%											-
88.08 - 87.83	3822	2338	6160	30.99	16.95	47.94	47.5%			65.8%		65.8%						-
87.83 - 85.83	3948	2386	6334	31.33	16.95	48.28	49.4%			68.2%		68.2%						
85.83 - 85.58	3964	2392	6356	31.37	16.95	48.32	49.6%			68.5%		68.5%						
85.58 - 84.5	4034	2418	6452	31.55	16.95	48.50	50.6%			69.8%		69.8%						
84.5 - 84.25	4062	1973	6035	31.60	16.95	48.55	57.1%			72.1%	69.0%							
84.25 - 79.25	4396	2074	6469	32.44	16.95	49.39	62.0%			77.7%	74.5%							
79.25 - 78	4482	2099	6581	32.65	16.95	49.60	63.2%			79.1%	75.8%							
78 - 72.75	5464	2618	8082	39.43	16.95	56.38	54.5%		75.6%	75.6%								
72.75 - 67.75	5895	2746	8641	40.44	16.95	57.39	57.6%		79.8%	79.8%								
67.75 - 63.08	6318	2868	9187	41.38	16.95	58.33	60.2%		83.4%	83.4%								
63.08 - 62.83	6350	5315	11665	41.43	34.95	76.38	49.4%		64.3%	67.3%							68.4%	
62.83 - 57.83	6826	5564	12390	42.45	34.95	77.40	51.7%		67.3%	70.5%							71.6%	,
57.83 - 52.83	7326	5818	13145	43.46	34.95	78.41	53.9%		70.1%	73.4%							74.7%	
52.83 - 47.83	7850	6079	13928	44.47	34.95	79.42	56.1%		72.8%	76.2%							77.5%	,
47.83 - 47.5	7885	6096	13981	44.54	34.95	79.49	56.3%		73.0%	76.3%							77.7%	
47.5 - 42.5	9225	6129	15354	52.01	34.95	86.96	54.8%		71.5%	74.5%							76.2%	,
42.5 - 37.5	9868	6396	16263	53.19	34.95	88.14	56.5%		73.7%	76.7%							78.5%	
37.5 - 32.75	10505	6655	17159	54.31	34.95	89.26	58.0%		75.6%	78.7%							80.6%	
32.75 - 32.5	10545	7805	18350	54.37	41.33	95.70	54.7%		70.6%	74.3%					74.2%	71.8%		
32.5 - 27.5	11246	8130	19376	55.55	41.33	96.88	56.1%		72.4%	76.1%					76.1%	73.7%		-
27.5 - 22.5	11978	8461	20440	56.73	41.33	98.06	57.5%		74.1%	77.9%					77.9%	75.5%		
22.5 - 17.5	12741	8799	21541	57.91	41.33	99.24	58.7%		75.7%	79.5%					79.6%	77.2%		1
17.5 - 12.5	13536	9144	22680	59.09	41.33	100.42	59.9%		77.2%	81.0%					81.2%	78.7%		\mathbf{t}
12.5 - 8.08	14265	9455	23719	60.14	41.33	101.46	60.9%		78.4%	82.3%					82.5%	80.0%		1
8.08 - 7.83	14441	11059	25500	60.20	52.63	112.82	58.7%	63.2%	60.0%	80.4%					74.1%	74.4%		\mathbf{t}
7.83 - 6.42	14441	11033	25859	60.53	52.63	113.15	59.1%	63.6%	60.4%	80.8%					74.5%	74.8%		1
6.42 - 6.17	14649	10631	25280	60.59	46.98	107.56	60.2%	71.6%	00.478	81.1%					77.7%	77.8%		\vdash
6.17 - 3.25	15153	10851	26017	61.28	46.98	107.36	60.2%	72.3%		81.9%					78.5%	78.6%		+
3.25 - 3	15155	10864	26706	61.28	46.98	108.25	57.5%	77.2%		73.1%			68.3%	73.0%	10.5%	10.0%		+
3.25 - 3	15118	11589	26706	61.34	44.16	105.50	57.5%	77.4%		73.1%			68.6%	73.0%				-
		116/1						11.4%		13.4%								+-
2 - 1.75	15477		26691	61.63	45.56	107.19	62.3%						64.3%	73.4%				73
1.75 - 0	15790 checked using	11350	27140	62.05	45.56	107.61	62.8%						64.7%	73.8%				74


Monopole Base Plate Connection

CCCROWN

Site Info	
BU #	876316
Site Name	Secondino Property
Order #	

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	Yes
l _{ar} (in)	1.75

Applied Loads								
Moment (kip-ft)	4043.00							
Axial Force (kips)	64.00							
Shear Force (kips)	37.00							

Connection Properties

Anchor Rod Data

(16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 52" BC Anchor Spacing: 6 in

Base Plate Data

53" W x 3" Plate (A572-50; Fy=50 ksi, Fu=65 ksi); Clip: 6 in

Stiffener Data

N/A

Pole Data

45.12" x 0.4375" 18-sided pole (A572-60; Fy=60 ksi, Fu=75 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 229.07	φPn_t = 243.75	Stress Rating
Vu = 2.31	φVn = 149.1	94.0%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	35.5	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	78.9%	Pass

_
$\mathbf{\sigma}$
_
_
<u> </u>
_
n I
_
0
_
J
_
=
<u> </u>
_
\sim

CCROWN

Check Limitation Apply TIA-222-H Section 15.5:

Additional Longitudinal Rebar

Analysis Results

Input Effective Depths (else Actual): Shear Design Options Check Shear along Depth of Pier: Utilize Shear-Friction Methodology: Override Critical Depth: Go to Soil Calcul

BU # : 876316	Site Name: Secondino Property		Н	Monopole	
]: # N8	Site Name:	Order Number:	TIA-222 Revison: H	Tower Type: Monopole	

. . .

	Uplift				
Applied Loads	Comp.	4043	64	37	
Applie		Moment (kip-ft)	Axial Force (kips)	Shear Force (kips)	

					Re					Re
Rebar 2, Fy Rebar 3, Fy	ovenue (ksi)			er Options		Pole Inputs	er Inputs			
Rebar 2, Fy	(ksi)			Rebar & Pier Options		Embedded Pole Inputs	Belled Pier Inputs		-	
Material Properties	3 ksi	60 ksi	40 ksi	Pier Design Data	22.5 ft	0.5 ft	Pier Section 1	From 0.5' above grade to 22.5' below grade	7 ft	32
Materia	Concrete Strength, f'c:	Rebar Strength, Fy:	Tie Yield Strength, Fyt:	Pier De	Depth	Ext. Above Grade	Pier	From 0.5' above gre	Pier Diameter	Rebar Quantity

Rebar & Pie		Embedded P	Belled Pier							
	ft	ft		ı grade	ft			in		18 in
Pier Design Data	22.5 ft	0.5 ft	Pier Section 1	ade to 22.5' below	2	32	11	4	5	18
Pier De	Depth	Ext. Above Grade	Pier S	From 0.5' above grade to 22.5' below grade	Pier Diameter	Rebar Quantity	Rebar Size	Clear Cover to Ties	Tie Size	Tie Spacing

	Soil Lateral Check	Compression	Uplift
	D _{v=0} (ft from TOC)	5.78	
	Soil Safety Factor	2.24	ı
	Max Moment (kip-ft)	4307.29	1
	Rating*	56.6%	I
	Soil Vertical Check	Compression	Uplift
Υ Υ	Skin Friction (kips)	202.37	ı
3	End Bearing (kips)	1723.16	1
	Weight of Concrete (kips)	111.77	ı
	Total Capacity (kips)	1925.53	I
	Axial (kips)	175.77	ı
SC	Rating*	8.7%	
	Reinforced Concrete Flexure	Compression	Uplift
뭐	Critical Depth (ft from TOC)	5.59	I
	Critical Moment (kip-ft)	4306.74	ı
	Critical Moment Capacity	7549.10	ı
	Rating*	54.3%	
	Reinforced Concrete Shear	Compression	Uplift
	Critical Depth (ft from TOC)	18.89	T
	Critical Shear (kip)	339.85	
	Critical Shear Capacity	767.74	
	Rating*	42.2%	1

Shear-Friction Methodology is Applied

54.3%	56.6%	115.5
Structural Foundation Rating*	Soil Interaction Rating*	*Rating per TIA-222-H Section 15.5

			_					_		_	
		Soil Type	Cohesionless	Cohesive	Cohesionless						
		SPT Blow Count									
		Ult. Net Bearing Capacity (ksf)									58.1
		Ultimate Skin Friction Uplift Override (ksf)	00'0	00.00	0.18	0.28	0.28	0.38	0.48	1.20	0.76 58.1
		Ultimate Skin Friction Comp Override (ksf)	00.00	00.0	0.18	0.28	0.28	0.38	0.48	1.20	0.76
		Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp Friction Comp Friction Uplift Override (ksf) (ksf) (ksf)	000 0	000.0	000.0	000'0	000'0	000.0	00.00	1.78	00'0
ofile		Calculated Ultimate Skin Friction Comp (ksf)	000 0	0.000	0.000	000.0	0.000	0.000	00.0	1.78	00.00
Soil Profile	6	Angle of Friction (degrees)	0	0	38	41	41	45	45	0	45
	# of Layers	Cohesion (ksf)	0	0	0	0	0	0	0	3.25	0
		Y _{concrete} (pcf)	150	150	150	150	87.6	87.6	87.6	87.6	87.6
		Y _{soil} (pcf)	116	115	115	116	54	55	55	55	55
		Thickness (ft)	3	0.5	1.5	-	1	3	5	5	2.5
	9	Bottom (ft)	e	3.5	5	9	2	10	15	20	22.5
	er Depth	Top (ft)	0	e	3.5	5	9	7	10	15	20
	Groundwater Depth	Layer	-	2	ĉ	4	5	9	2	ω	6

Version 5.0.3

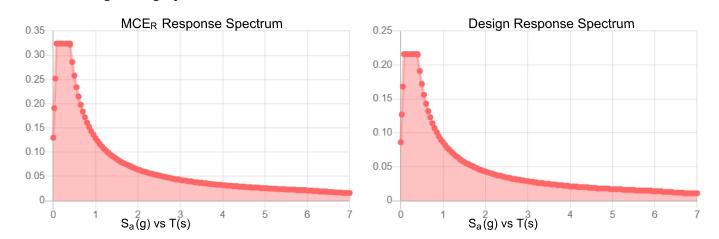
ASCE 7 Hazards Report

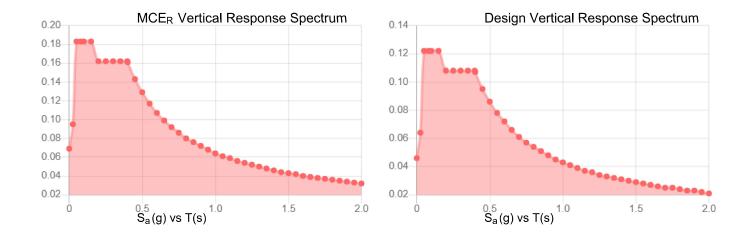
Address: No Address at This Location Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

Elevation: 115.09 ft (NAVD 88) Latitude: 41.293072 Longitude: -72.762889

Wind

Results:


Wind Speed:	122 Vmph
10-year MRI	75 Vmph
25-year MRI	85 Vmph
50-year MRI	93 Vmph
100-year MRI	99 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Thu Sep 23 2021


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.203	S _{D1} :	0.086	
S ₁ :	0.054	T∟ :	6	
F _a :	1.6	PGA :	0.113	
F _v :	2.4	PGA M :	0.178	
S _{MS} :	0.324	F _{PGA} :	1.573	
S _{M1} :	0.129	e :	1	
S _{DS} :	0.216	C _v :	0.705	
Seismic Design Category	В			

Data Accessed: Date Source: Thu Sep 23 2021 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Thu Sep 23 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Michael McWilliams Crown Castle 8000 Avalon Blvd, Suite 700 Alpharetta, GA 30009 (770) 375-4936		Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730
Subject:	Mount Replacement Analysis Repor	rt
Carrier Designation:	Dish Network Dish 5G Carrier Site Number: Carrier Site Name:	BOHVN00164A CT-CCI-T-876316
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Order Number:	876316 SECONDINO PROPERTY 645173 553381 Rev. 1
Engineering Firm Designation:	Trylon Report Designation:	191859
Site Data:	21 Acorn Road, Branford, New Have Latitude 41°17'35.06" Longitude -72	- · · · · · · · · · · · · · · · · · · ·
Structure Information:	Tower Height & Type: Mount Elevation: Mount Type:	147.0 ft Monopole 126.0 ft 8.0 ft Platform
Dear Michael McWilliams.		

Dear Michael McWilliams,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient* *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Ionela Neamtu

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B Software Input Calculations

7) APPENDIX C Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC / 2018 CTSBS
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	130 mph
Exposure Category:	С
Topographic Factor at Base:	1.00
Topographic Factor at Mount:	1.00
Ice Thickness:	1.50 in
Wind Speed with Ice:	50 mph
Seismic S _s :	0.180
Seismic S ₁ :	0.061
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA WIRELESS	MX08FRO665-21	9.0 ft Diatform
126.0	126.0 126.0		3 FUJITSU TA0802	TA08025-B604	8.0 ft Platform
120.0	120.0	3	FUJITSU	TA08025-B605	MC-PK8-C1
		1	RAYCAP	RDIDC-9181-PF-48	MC-FRO-C]

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553381, Rev. 1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.

6)	Steel grades have been assumed as follows, unless noted otherwise:	
	Channel, Solid Round, Angle, Plate ASTM A36 (GR 36)	
	HSS (Rectangular)	ASTM A500 (GR B-46)
	Pipe	ASTM A53 (GR 35)
	Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP1		38.6	Pass
	Horizontal(s)	H3		12.4	Pass
1,2	Standoff(s)	M2		48.4	Pass
	Plan Bracing(s)	M1	126.0	37.2	Pass
	Handrail(s)	M21]	14.3	Pass
[Plate(s)	M10		28.6	Pass
	Mount Connection(s)			20.0	Pass

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Structure Rating (max from all components) =	48.4%	

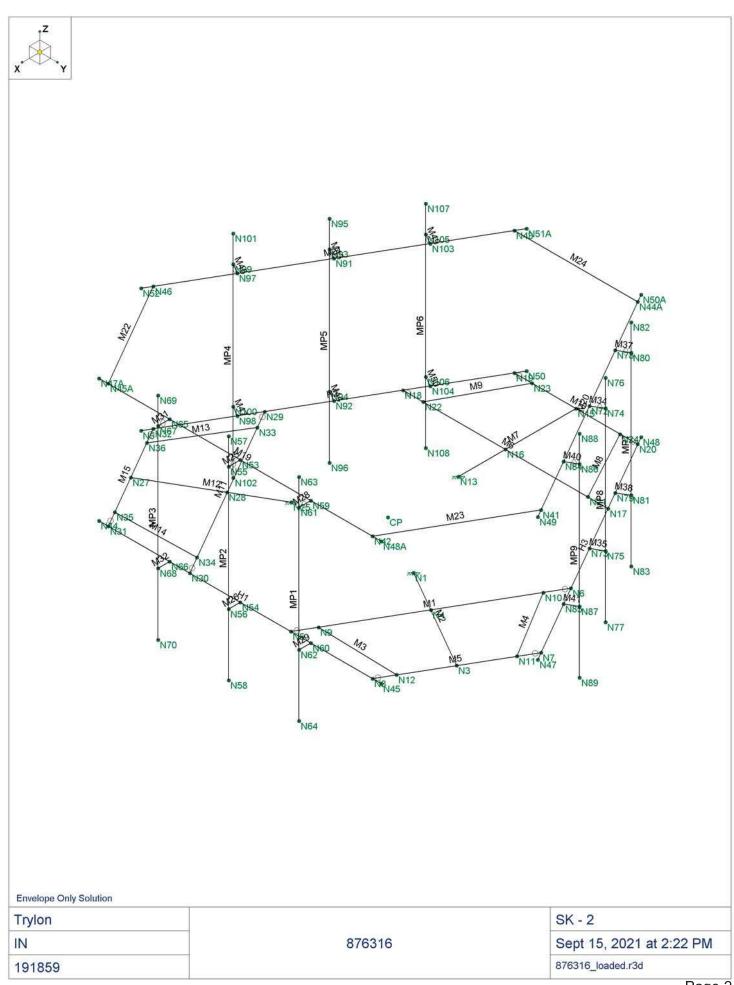
Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H, Section 15.5

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.


1. Commscope, MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

x		
Envelope Only Solution Trylon		SK - 1
IN 191859	876316	Sept 15, 2021 at 2:22 PM 876316_loaded.r3d

8.0 ft Platform Mount Replacement Analysis Order 553381, Revision 1 September 15, 2021 CCI BU No 876316 Page 7

APPENDIX B

SOFTWARE INPUT CALCULATIONS

ENG-FRM-10208, Rev. D

ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 115.09 ft (NAVD 88) Latitude: 41.293072 Longitude: -72.762889

lce

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Wed Sep 15 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.1

PROJECT DATA			
Job Code:	191859		
Carrier Site ID:	876316		
Carrier Site Name:	SECONDINO PROPERTY		

CODES AND STANDARDS			
Building Code:	2015 IBC		
Local Building Code:	Connecticut State Building		
Design Standard:	TIA-222-H		

STRUCTURE DETAILS			
Mount Type:	Platform		
Mount Elevation:	126.0	ft.	
Number of Sectors:	3		
Structure Type:	Monopole		
Structure Height:	147.0	ft.	

ANALYSIS CRITERIA					
Structure Risk Category:	Ш				
Exposure Category:	С				
Site Class:	D - Stiff Soil				
Ground Elevation:	115.09	ft.			

TOPOGRAPHIC DATA						
Topographic Category:	1.00					
Topographic Feature:	N/A					
Crest Point Elevation:	0.00	ft.				
Base Point Elevation:	0.00	ft.				
Crest to Mid-Height (L/2):	0.00	ft.				
Distance from Crest (x):	0.00	ft.				
Base Topo Factor (K _{zt}):	1.00					
Mount Topo Factor (K _{zt}):	1.00					

WIND PARAMETERS					
Design Wind Speed:	130	mph			
Wind Escalation Factor (K _s):	1.00				
Velocity Coefficient (Kz):	1.33				
Directionality Factor (K _d):	0.95				
Gust Effect Factor (Gh):	1.00				
Shielding Factor (K _a):	0.90				
Velocity Pressure (q _z):	54.38	psf			
Ground Elevation Factor (K _e):	1.00				

ICE PARAMETERS						
Design Ice Wind Speed:	50	mph				
Design Ice Thickness (t _i):	1.50	in				
Importance Factor (I _i):	1.00					
Ice Velocity Pressure (q _{zi}):	54.38	psf				
Mount Ice Thickness (t _{iz}):	1.72	in				

WIND STRUCTURE CALCULATIONS						
Flat Member Pressure: 97.89 ps						
Round Member Pressure:	58.74	psf				
Ice Wind Pressure:	7.48	psf				

SEISMIC PARAMETERS						
Importance Factor (I _e):	1.00					
Short Period Accel .(S _s):	0.180	g				
1 Second Accel (S ₁):	0.061	g				
Short Period Des. (S _{DS}):	0.19	g				
1 Second Des. (S _{D1}):	0.10	g				
Short Period Coeff. (F _a):	1.60					
1 Second Coeff. (F _v):	2.40					
Response Coefficient (Cs):	0.10					
Amplification Factor (A _S):	1.20					

LOAD COMBINATIONS [LRFD]

#	Description
#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24 25	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI 0.9DL + 1WL 180 AZI
20	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0,9DL + 1WL 330 AZ
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62 63	(1.2+0.2Sds) + 1.0E 270 AZI (1.2+0.2Sds) + 1.0E 300 AZI
	/
64 65	(1.2+0.2Sds) + 1.0E 315 AZI (1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 0 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 40 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 313 AZI
	· · · · · · · · · · · · · · · · · · ·
82-88	1.2D + 1.5 Lv1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

*This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	126	No Ice	8.01	3.21	82.50
			w/ Ice	9.62	4.62	281.32
TA08025-B604	3	126	No Ice	1.96	0.98	63.90
			w/ Ice	2.38	1.31	69.08
TA08025-B605	3	126	No Ice	1.96	1.13	75.00
			w/ Ice	2.38	1.47	73.59
RDIDC-9181-PF-48	1	126	No Ice	2.01	1.17	21.85
			w/ Ice	2.44	1.52	72.53
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

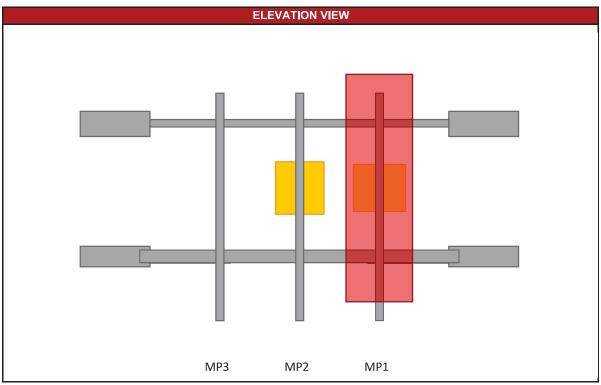
EQUIPMENT LOADING [CONT.]

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA ₇ (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

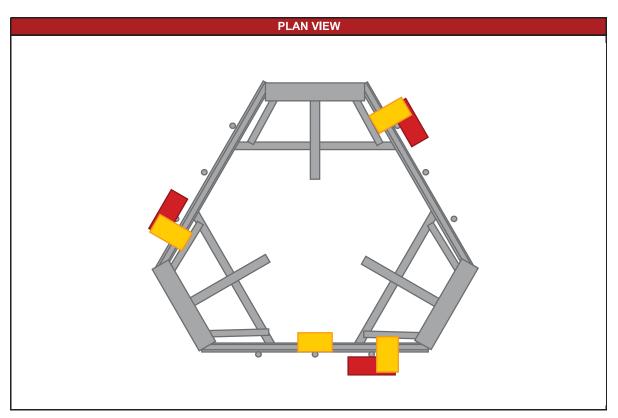
EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	126	1.00	1.33	0.95	1.72	54.38	8.05
TA08025-B604	3	126	1.00	1.33	0.95	1.72	54.38	8.05
TA08025-B605	3	126	1.00	1.33	0.95	1.72	54.38	8.05
RDIDC-9181-PF-48	1	126	1.00	1.33	0.95	1.72	54.38	8.05
	1							

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	392.06	215.85	333.32	157.12	333.32	215.85
		w/ Ice	69.66	42.52	60.62	33.47	60.62	42.52
TA08025-B604	3	No Ice	96.11	60.04	84.08	48.02	84.08	60.04
		w/ Ice	17.26	11.41	15.31	9.47	15.31	11.41
TA08025-B605	3	No Ice	96.11	65.49	85.90	55.28	85.90	65.49
		w/ Ice	17.26	12.30	15.60	10.64	15.60	12.30
RDIDC-9181-PF-48	1	No Ice	98.47	67.50	88.15	57.18	88.15	67.50
		w/ Ice	17.65	12.68	15.99	11.02	15.99	12.68
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						


EQUIPMENT LATERAL WIND FORCE CALCULATIONS

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]


Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	3	126	82.5	9.50
TA08025-B604		126	63.9	7.36
TA08025-B605	3	126	75	8.64
RDIDC-9181-PF-48	1	126	21.85	2.52

*Elevation View Shows Alpha Sector Only

Equipment Name	Total Quantity	Antenna Centerline	Mount Pipe Positions	Equipment Azimuths
MX08FRO665-21	3	126	MP1/MP4/MP7	0/120/240
TA08025-B604	3	126	MP1/MP4/MP7	90/210/330
TA08025-B605	3	126	MP1/MP4/MP7	90/210/330
RDIDC-9181-PF-48	1	126	MP2	0

8.0 ft Platform Mount Replacement Analysis Order 553381, Revision 1 September 15, 2021 CCI BU No 876316 Page 8

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

ENG-FRM-10208, Rev. D

Company	: Trylon
Designer	: IN
Job Number	: 191859
Model Name	: 876316

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in ²)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AISI S100-12: LRFD
Wood Code	None
Wood Temperature	< 100F
Concento Codo	Mana

Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	lorll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Labe	E[ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[psi]	Fu[psi]
1	A653 SS Gr33	29500	11346	.3	.65	.49	33000	45000
2	A653 SS Gr50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	L6.6"X4.46"X0.25"	Beam	Single Angle	A36 Gr.36	Typical	2.702	4.759	12.473	.055
7	Horizontals	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
8	Mount Pipes	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Cold Formed Steel Section Sets

	Label	Shape	Туре	Design List	Materia	Design Rul	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 SS	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravi	.Y Gravi	Z Gravity	Joint	Point	Distrib	. Area(Memb	Surface
1	Self Weight	DL			-1		13		3	
2	Structure Wind X	WLX						51		
3	Structure Wind Y	WLY						51		
4	Wind Load 0 AZI	WLX					26			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZ	None					26			
8	Wind Load 90 AZI	WLY					26			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	Ice Weight	OL1					13	51	3	
13	Ice Structure Wind X	OL2						51		
14	Ice Structure Wind Y	OL3						51		
15	Ice Wind Load 0 AZI	OL2					26			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					26			
20	Ice Wind Load 120 AZ	None					26			
21	Ice Wind Load 135 AZ	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load X	ELX	115				13			
24	Seismic Load Y	ELY		115			13			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			

Company	:	Trylon
Designer	:	IN
Job Number	:	191859
Model Name	:	876316

Basic Load Cases (Continued)

	BLC Description	Category	X Gravi	.Y Gravi.	.Z Gravity	Joint	Point	Distrib	Area(Memb.	.Surface
34	Maintenance Load 1 (Lm)	None					1			
35	Maintenance Load 2 (Lm)	None					1			
36	Maintenance Load 3 (Lm)	None					1			
37	Maintenance Load 4 (Lm)	None					1			
38	Maintenance Load 5 (Lm)	None					1			
39	Maintenance Load 6 (Lm)	None					1			
40	Maintenance Load 7 (Lm)	None					1			
41	Maintenance Load 8 (Lm)	None					1			
42	Maintenance Load 9 (Lm)	None					1			
43	BLC 1 Transient Area Loads	None						9		
44	BLC 12 Transient Area Loads	None						9		

Load Combinations

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Description	Solve	PDS	BLC	Fa	В	.FaB	5Fa.	B	Fa	.B	Factor	В	.Fa	В	Fa	В	Fa	В	Fa	В	Fa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1.4DL	Yes	Y	DL	1.4																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	1.2DL + 1WL 0 AZI	Yes	Y	DL	1.2	2	1	3	4	1												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1.2DL + 1WL 30 AZI	Yes	Y	DL	1.2	2	.866 (3 .5	5	1												
6 1.2DL + 1WL 90 AZI Yes Y DL 1.2 2 3 1 8 1 7 1.2DL + 1WL 120 AZI Yes Y DL 1.2 2 -5 3 866 9 1 8 1.2DL + 1WL 136 AZI Yes Y DL 1.2 2 -5 3 866 9 1 9 1.2DL + 1WL 136 AZI Yes Y DL 1.2 2 -8. 3 .5 5 1 1 10 1.2DL + 1WL 20 AZI Yes Y DL 1.2 2 -8. 3 .5 5 -1 1 11 1.2DL + 1WL 20 AZI Yes Y DL 1.2 2 -5 3 -8 7 -1 1	4	1.2DL + 1WL 45 AZI	Yes	Y	DL	1.2	2	.707 (3 .70	76	1												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1.2DL + 1WL 60 AZI	Yes	Y	DL	1.2	2	.5 🕻	3 .86	6 7	1												
8 1.2DL + 1WL 135 AZI Yes Y DL 1.2 2 73 7.07 10 1 9 1.2DL + 1WL 150 AZI Yes Y DL 1.2 2 83 5 11 1 10 1.2DL + 1WL 180 AZI Yes Y DL 1.2 2 83 5 5 1 11 1.2DL + 1WL 240 AZI Yes Y DL 1.2 2 73 76 -1 12 1.2DL + 1WL 240 AZI Yes Y DL 1.2 2 3 -5 5 -1 13 1.2DL + 1WL 240 AZI Yes Y DL 1.2 2 -5 3 -6 -1 14 1.2DL + 1WL 270 AZI Yes Y DL 1.2 2 5 3 -1 -1 16 1.2DL + 1WL 300 AZI Yes Y DL 9 2 10 1 -1 17 1.2DL + 1WL 30 AZI Yes Y DL 9 2 707 3 7	6	1.2DL + 1WL 90 AZI	Yes	Y	DL	1.2	2		3 1	8	1												
9 1.2DL + 1WL 150 AZI Yes Y DL 1.2 2 -83 3 .5 11 1 10 1.2DL + 1WL 210 AZI Yes Y DL 1.2 2 -83 .5 11 1 11 1.2DL + 1WL 20AZI Yes Y DL 1.2 2 -83 -5 5 -1 12 1.2DL + 1WL 225 AZI Yes Y DL 1.2 2 -73 -76 -1 13 1.2DL + 1WL 270 AZI Yes Y DL 1.2 2 .5 3 -87 -1 16 1.2DL + 1WL 300 AZI Yes Y DL 1.2 2 .5 3 -77 10 -1 17 1.2DL + 1WL 30 AZI Yes Y DL 9.2 1.3 4 1 1 18 0.9DL + 1WL 30 AZI Yes Y DL 9.2 .5 3 .66 7 1 20 0.9DL + 1WL 45 AZI Yes Y DL 9.2 .5	7	1.2DL + 1WL 120 AZI	Yes	Y	DL	1.2	2	5 🕻	3 .86	69	1												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1.2DL + 1WL 135 AZI	Yes	Y	DL	1.2	2	7 (3 .70	7 10	1												
11 1.2DL + 1WL 210 AZI Yes Y DL 1.2 2 -83 -5 5 -1 12 1.2DL + 1WL 225 AZI Yes Y DL 1.2 2 -73 -76 -1 Image: Constraint of the state of the stat	9	1.2DL + 1WL 150 AZI	Yes	Y	DL	1.2	2	8 (3 .5	11	1												
12 1.2DL + 1WL 225 AZI Yes Y DL 1.2 2 -7 6 -1 13 1.2DL + 1WL 240 AZI Yes Y DL 1.2 2 -7 6 -1 14 1.2DL + 1WL 270 AZI Yes Y DL 1.2 2 -5 3 -8 7 -1 14 1.2DL + 1WL 300 AZI Yes Y DL 1.2 2 -5 3 -8 9 -1 16 1.2DL + 1WL 300 AZI Yes Y DL 1.2 2 .707 3 -7 10 -1 17 1.2DL + 1WL 300 AZI Yes Y DL .9 2 .1 3 4 1 19 0.9DL + 1WL 0 AZI Yes Y DL .9 2 .5 3 .866 7 1 21 0.9DL + 1WL 45 AZI Yes Y DL .9 2 .5 3 .866 9 1 22 0.9DL + 1WL 45 AZI Yes Y DL	10	1.2DL + 1WL 180 AZI	Yes	Y	DL	1.2	2	-1 (3	4	-1												
13 1.2DL + 1WL 240 AZI Yes Y DL 1.2 2 -5 3 -8 7 -1 14 1.2DL + 1WL 270 AZI Yes Y DL 1.2 2 -5 3 -8 7 -1 14 1.2DL + 1WL 270 AZI Yes Y DL 1.2 2 -5 3 -8 9 -1 15 1.2DL + 1WL 300 AZI Yes Y DL 1.2 2 .707 3 -7 10 -1 17 1.2DL + 1WL 00 AZI Yes Y DL 1.2 2 .866 3 .5 5 1 -1 18 0.9DL + 1WL 00 AZI Yes Y DL .9 2 .707 3 .707 6 1 -1	11	1.2DL + 1WL 210 AZI	Yes	Y	DL	1.2	2	8 (35	5 5	-1												
14 1.2DL + 1WL 270 AZI Yes Y DL 1.2 2 3 -1 8 -1 15 1.2DL + 1WL 300 AZI Yes Y DL 1.2 2 .5 3 -8 9 -1 16 1.2DL + 1WL 315 AZI Yes Y DL 1.2 2 .707 3 -7 10 -1 17 1.2DL + 1WL 300 AZI Yes Y DL 1.2 2 .866 3 -5 11 -1 18 0.9DL + 1WL 0 AZI Yes Y DL .9 2 1 3 4 1 19 0.9DL + 1WL 45 AZI Yes Y DL .9 2 .5 5 1	12		Yes	Y	DL	1.2	2	7 (37.	. 6	-1												
15 1.2DL + 1WL 300 AZI Yes Y DL 1.2 2 .5 3 -89 -1 16 1.2DL + 1WL 315 AZI Yes Y DL 1.2 2 .50 3 -89 -1 17 1.2DL + 1WL 330 AZI Yes Y DL 1.2 2 .707 3 -710 -1 18 0.9DL + 1WL 0AZI Yes Y DL .9 2 .866 3 .5 5 1 -1 19 0.9DL + 1WL 0AZI Yes Y DL .9 2 .707 3 .707 6 1 -1	13	1.2DL + 1WL 240 AZI	Yes	Y	DL	1.2	2	5 🕻	38.	. 7	-1												
16 1.2DL + 1WL 315 AZI Yes Y DL 1.2 2 707 3 -710 -1 17 1.2DL + 1WL 300 AZI Yes Y DL 1.2 2 .866 3 5 11 -1 18 0.9DL + 1WL 0 AZI Yes Y DL .9 2 1 3 4 1 19 0.9DL + 1WL 30 AZI Yes Y DL .9 2 .707 3 .707 6 1 20 0.9DL + 1WL 45 AZI Yes Y DL .9 2 .707 3 .707 6 1	14	1.2DL + 1WL 270 AZI	Yes	Y	DL	1.2	2		3 -1	8	-1												
17 1.2DL + 1WL 330 AZI Yes Y DL 1.2 2 866 3 5 11 -1	15	1.2DL + 1WL 300 AZI	Yes		DL	1.2	2	.5 🕻		-													
18 0.9DL + 1WL 0 AZI Yes Y DL .9 2 1 3 4 1 19 0.9DL + 1WL 30 AZI Yes Y DL .9 2 .866 3 .5 5 1 20 0.9DL + 1WL 45 AZI Yes Y DL .9 2 .707 3 .707 6 1 21 0.9DL + 1WL 45 AZI Yes Y DL .9 2 .5 3 .866 7 1 22 0.9DL + 1WL 45 AZI Yes Y DL .9 2 .5 3 .866 7 1 23 0.9DL + 1WL 120 AZI Yes Y DL .9 2 .5 3 .866 9 1	16		Yes	Y	DL	1.2	2	.707 (37.	. 10	-1												
19 0.9DL + 1WL 30 AZI Yes Y DL .9 2 .866 3 .5 5 1	17	1.2DL + 1WL 330 AZI	Yes	Y	DL	1.2	2	.866 (35	5 11	-1												
20 0.9DL + 1WL 45 AZI Yes Y DL .9 2 .707 3 .707 6 1	18	0.9DL + 1WL 0 AZI	Yes	Y	DL		2	1 3	3	4	1												
21 0.9DL + 1WL 60 AZI Yes Y DL .9 2 .5 3 .866 7 1	19	0.9DL + 1WL 30 AZI	Yes	Y	DL	.9	2	.866 (3 .5	5	1												
22 0.9DL + 1WL 90 AZI Yes Y DL 9 2 3 1 8 1 23 0.9DL + 1WL 120 AZI Yes Y DL 9 2 5 3 .866 9 1 1 1 24 0.9DL + 1WL 135 AZI Yes Y DL .9 2 5 3 .866 9 1 <	20	0.9DL + 1WL 45 AZI	Yes	Y	DL	.9	2	.707 (3 .70	7 6	1												
23 0.9DL + 1WL 120 AZI Yes Y DL 9 2 5 3 .866 9 1	21	0.9DL + 1WL 60 AZI	Yes	Y	DL	.9				6 7	1												
24 0.9DL + 1WL 135 AZI Yes Y DL .9 2 -73 .707 10 1	22	0.9DL + 1WL 90 AZI	Yes	Y	DL					8	1												
25 0.9DL + 1WL 150 AZI Yes Y DL .9 2 .8 3 .5 11 1	23		Yes		DL					69	1												
26 0.9DL + 1WL 180 AZI Yes Y DL .9 2 -1 3 4 -1 27 0.9DL + 1WL 210 AZI Yes Y DL .9 2 -8 3 5 5 -1 28 0.9DL + 1WL 225 AZI Yes Y DL .9 2 7 3 7 6 -1 .	24	0.9DL + 1WL 135 AZI	Yes	Y	DL	.9	2	7 (3 .70	7 10	1												
27 0.9DL + 1WL 210 AZI Yes Y DL .9 2 -8 3 5 5 -1	25	0.9DL + 1WL 150 AZI	Yes	Y	DL	.9	2	8 (3 .5	11	1												
28 0.9DL + 1WL 225 AZI Yes Y DL .9 2 .7 3 .7 6 -1	26		Yes		DL																		
29 0.9DL + 1WL 240 AZI Yes Y DL .9 2 5 3 8 7 -1 <td>27</td> <td></td> <td>Yes</td> <td></td> <td>DL</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	27		Yes		DL					_													
30 0.9DL + 1WL 270 AZI Yes Y DL .9 2 3 -1 8 -1 9 1 1 31 0.9DL + 1WL 300 AZI Yes Y DL .9 2 .5 3 8 9 -1 1 </td <td>28</td> <td>0.9DL + 1WL 225 AZI</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>.9</td> <td>2</td> <td>7 (</td> <td>37.</td> <td>. 6</td> <td>-1</td> <td></td>	28	0.9DL + 1WL 225 AZI	Yes	Y	DL	.9	2	7 (37.	. 6	-1												
31 0.9DL + 1WL 300 AZI Yes Y DL .9 2 .5 3 -8 9 -1	29	0.9DL + 1WL 240 AZI	Yes	Y	DL	.9		5 🕻	38.	. 7	-1												
32 0.9DL + 1WL 315 AZI Yes Y DL .9 2 .707 3 .7 10 -1 <td>30</td> <td>0.9DL + 1WL 270 AZI</td> <td>Yes</td> <td></td> <td>DL</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-1</td> <td></td>	30	0.9DL + 1WL 270 AZI	Yes		DL					_	-1												
33 0.9DL + 1WL 330 AZI Yes Y DL .9 2 .866 3 5 11 -1	31	0.9DL + 1WL 300 AZI	Yes	Y	DL	.9				. 9	-1												
34 1.2DL + 1DLi + 1WLi 0 Yes Y DL 1.2 0 1 13 1 14 15 1 Image: Constraint of the state	32	0.9DL + 1WL 315 AZI	Yes	Y	DL			.707 (37.	. 10	-1												
35 1.2DL + 1DLi + 1WLi 3 Yes Y DL 1.2 0 1 13 .866 14 .5 16 1	33	0.9DL + 1WL 330 AZI	Yes	Y	DL	.9	2	.866 (35	5 11	-1												
	34		Yes	Y	DL	1.2	O	1 1	3 1	14		15	1										
36 1.2DL + 1DLi + 1WLi 4 Yes Y DL 1.2 0 1 13 .707 14 .707 17 1	35	1.2DL + 1DLi + 1W Li 3	Yes	Y	DL	1.2	0						1										
	36	1.2DL + 1DLi + 1W Li 4	Yes	Y	DL	1.2	0	1 1	3.70	714	.707	17	1										

RISA-3D Version 17.0.4 [\...\...\...\Engineering\MRA_09.15.2021\01.RISA\876316_loaded.r3d] Page 4

Company	:	Trylon
Designer	:	IN
Job Number	:	191859
Model Name	:	876316

Load Combinations (Continued)

	Description	Solve	PD	S	BLC	Fa.	в	Fa	.B	Fa	В	Fa	.B	Factor	В	Fa	в	Fa	.в	Fa	в	Fa	В	Fa.
37	1.2DL + 1DLi + 1W Li 6	Yes	Y		DL	1.2	<u>2</u> 0	1	13	.5	14	.866	⁵ 18	1										
38	1.2DL + 1DLi + 1W Li 9	Yes	Y		DL	1.2	<u>2</u> 0	1	13		14	1	19	1										
39	1.2DL + 1DLi + 1W Li 1	Yes	Y		DL	1.2	<u>2</u> 0	1	13	5	14	.866	320	1										
40	1.2DL + 1DLi + 1W Li 1	Yes	Y		DL		20	1	13	7	14	.707	721	1										
41	1.2DL + 1DLi + 1W Li 1	Yes	Y		DL	1.2	<u>2</u> O	1	13	8	14	.5	22	1										
42	1.2DL + 1DLi + 1W Li 1	Yes	Y		DL		20	1		-1	14		15	-1										
43	1.2DL + 1DLi + 1W Li 2	Yes	Y		DL		20	1		8	14	5	16	-1										
	1.2DL + 1DLi + 1W Li 2	Yes	Y		DL		2 0			7				-1										
	1.2DL + 1DLi + 1W Li 2	Yes	Y		DL		20			5				-1										
	1.2DL + 1DLi + 1W Li 2	Yes	Y		DL		20		13		14	-	19											
	1.2DL + 1DLi + 1W Li 3	Yes	Y		DL		20		13				20	-1										
	1.2DL + 1DLi + 1W Li 3	Yes	Ý		DL		20			.707				-1										
	1.2DL + 1DLi + 1W Li 3	Yes	Ý		DL		20	1	_	.866				-1										
	(1.2+0.2Sds)DL + 1E	Yes	Y		DL	-	23		24															
	(1.2+0.2Sds)DL + 1E	Yes	Y		DL		23																	<u> </u>
	(1.2+0.2Sds)DL + 1E	Yes	Y							.707														
	(1.2+0.2Sds)DL + 1E	Yes	Y		DL					.866														<u> </u>
	(1.2+0.2Sds)DL + 1E	Yes	Y				23		24															
	(1.2+0.2Sds)DL + 1E	Yes	Y		DL					.866														<u> </u>
	(1.2+0.2Sds)DL + 1E	Yes	Y							.707														
	(1.2+0.2Sds)DL + 1E	Yes	Y		DL	_	23		_															<u> </u>
	(1.2+0.2Sds)DL + 1E	Yes	Y				23																	
	(1.2+0.2Sds)DL + 1E	Yes	Y		DL		23																	<u> </u>
	(1.2+0.2Sds)DL + 1E	Yes	Y																					
	(1.2+0.2Sds)DL + 1E	Yes	Y		DL	-	23																	
	(1.2+0.2Sds)DL + 1E	Yes	Y				23			-1														-
	(1.2+0.2Sds)DL + 1E	Yes	Y				23																	<u> </u>
	(1.2+0.2Sds)DL + 1E	Yes	Y		DL	_	23		_															
• •	(1.2+0.2Sds)DL + 1E	Yes	Y			_	23		_															<u> </u>
	(0.9-0.2Sds)DL + 1E 0	Yes	Y		DL DL		223																	-
	(0.9-0.2Sds)DL + 1E 3	Yes	Y				223																	
	(0.9-0.2Sds)DL + 1E 4		Y		DL																			-
	(0.9-0.2Sds)DL + 1E 4 (0.9-0.2Sds)DL + 1E 6	Yes	-		DL					.707									-					-
		Yes	Y		DL				-	.866														
	(0.9-0.2Sds)DL + 1E 9	Yes	Y		DL		223		24															
	(0.9-0.2Sds)DL + 1E 1	Yes	Y		DL	-	_		-	.866														
	(0.9-0.2Sds)DL + 1E 1	Yes	Y		DL	-	_		_	.707														
	(0.9-0.2Sds)DL + 1E 1	Yes	Y		DL	_	223		_															
	(0.9-0.2Sds)DL + 1E 1	Yes	Y		DL																			
	(0.9-0.2Sds)DL + 1E 2	Yes	Y		DL																			
	(0.9-0.2Sds)DL + 1E 2	Yes	Y							7														-
	(0.9-0.2Sds)DL + 1E 2	Yes	Y				223																	
	(0.9-0.2Sds)DL + 1E 2	Yes	Y		DL					-1														
-	(0.9-0.2Sds)DL + 1E 3	Yes	Y			-	223		_															
	(0.9-0.2Sds)DL + 1E 3	Yes	Y			_	_		_	7														
-	(0.9-0.2Sds)DL + 1E 3	Yes	Y		DL					5														
82	1.2DL + 1Lv1	Yes	Y				2 25																	
83	1.2DL + 1Lv2	Yes	Y		DL		2 26																	
84	1.2DL + 1Lv3	Yes	Y		DL		2 27																	
85	1.2DL + 1Lv4	Yes	Y		DL		2 28																	
86	1.2DL + 1Lv5	Yes	Y				2 2 9																	
87	1.2DL + 1Lv6	Yes	Y		DL		2 30																	
88	1.2DL + 1Lv7	Yes	Y		DL	11 0	121	1 5											1		1			1

RISA-3D Version 17.0.4 [\...\...\...\...\Engineering\MRA_09.15.2021\01.RISA\876316_loaded.r3d] Page 5

Company	:	Trylon
Designer	:	IN
Job Number	:	191859
Model Name	:	876316

Load Combinations (Continued)

	Description	Solve	PD\$	S BLC	Fa	. B F	аВ.	Fa	В	Fa	в	Factor	В	Fa	В	Fa	в	Fa	В	Fa	В	.Fa.
89	1.2DL + 1Lv8	Yes	Y	DL		32 1																
90	1.2DL + 1Lv9	Yes	Y	DL		33 1																
91	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	34 1	.5 2	.053	3		4	.053										
92	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	34 1	.5 2	.046	3	.027	5	.053										
93	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	34 1	.5 2	.038	3	.038	6	.053										
94	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	34 1	.5 2	.027	3	.046	7	.053										
95	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	34 1	.5 2		3	.053	8	.053										
96	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	34 1	.5 2	0	3	.046	9	.053										
97	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		34 1		0	3	.038	10	.053										
98	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	34 1	.5 2	0	3	.027	11	.053										
99	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	34 1			3		4	053										
100	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		34 1			3	0	5	053										
101	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		34 1			3	0	6	053										
102	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		34 1			3	0	7	053										
103	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		34 1			3	0	8	053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		34 1				0	-	053										
	1.2DL + 1.5Lm + 1Wm	Yes	Ý	DL		34 1		_		0	-	053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		34 1				0		053										
	1.2DL + 1.5Lm + 1Wm	Yes	Ý	DL		35 1					4	.053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1				.027		.053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1		.038		.038		.053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1		.027		.046		.053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1			3	.053		.053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1			3	.046		.053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1			3	.038		.053										
1.10	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1			3	.027		.053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			35 1		-	3	.027	4	053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1			3	0		053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			35 1			3	0		053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		35 1				0	7	053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			35 1			3	0	8	053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y			35 1				0	9	053										-
	1.2DL + 1.5Lm + 1Wm		Y					_		0	-											
	1.2DL + 1.5Lm + 1Wm	Yes				35 1				0		053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y			35 1				0		053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1				027	4	.053										
		Yes	Y			36 1				.027		.053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1		_		.038	-	.053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1				.046		.053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1			3	.053		.053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1				.046		.053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1		-		.038		.053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1				.027		.053										
	1.2DL + 1.5Lm + 1Wm.	Yes	Y			36 1				0	4	053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1				0	-	053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1			3	0	-	053										-
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1				0	-	053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y			36 1				0		053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		36 1				0		053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		36 1				0	10	053										
	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		36 1				0	11	053										
130	1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		37 1					4	.053										
	1.2DL + 1.5Lm + 1Wm		Y	DL				.046		.027		.053									1	1

RISA-3D Version 17.0.4 [\...\...\...\...\Engineering\MRA_09.15.2021\01.RISA\876316_loaded.r3d] Page 6

Company	:	Trylon
Designer	:	IN
Job Number	:	191859
Model Name	:	876316

Load Combinations (Continued)

Description	Solve	PD	S BLC) Fa.	B	FaB	Fa	В	FaB.	Factor	в	.Fa	. B	.Fa	.в	.Fa	. B	Fa	В	Fa
141 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	-		1.5 2		-	.038 6	.053					T		Τ			
142 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 37				.046 7	.053										
143 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 37			3	.053 8	.053										
144 1.2DL + 1.5Lm + 1Wm	Yes	Ý	DL		2 37				.046 9	.053										
145 1.2DL + 1.5Lm + 1Wm	Yes	Ý	DL		2 37				.0381(
146 1.2DL + 1.5Lm + 1Wm	Yes	Ý	DL		2 37				.027 11											
147 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 37			3	4	053										
148 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 37				0 5	053										
149 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL				_	3	06	053										
150 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 37				07	053										
151 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 37			3	0 8	053					-					
152 1.2DL + 1.5Lm + 1Wm	Yes	Y			2 37				09	053										
153 1.2DL + 1.5Lm + 1Wm	Yes	Y				1.5 2	_	-	010		-		-		-		-			
154 1.2DL + 1.5Lm + 1Wm	Yes	Y		_	2 37				011											
155 1.2DL + 1.5Lm + 1Wm	Yes	Y			2 38					-					-		-			
100		Y							.027 5	.053										
156 1.2DL + 1.5Lm + 1Wm 157 1.2DL + 1.5Lm + 1Wm	Yes	Y			2 38		_			.053					-					
158 1.2DL + 1.5Lm + 1Wm	Yes				2 38				.038 6	.053										
159 1.2DL + 1.5Lm + 1Wm	Yes	Y			2 38		_	-	.046 7	.053					-					
	Yes	Y	DL		2 38			3	.053 8	.053										
160 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 38		_	-	.046 9	.053					_					
161 1.2DL + 1.5Lm + 1Wm.	Yes	Y	DL		2 38			-	.038 1(_				_					
162 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 38			-	.027 11											
163 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2		-	4	053										
164 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 38			-	0 5	053										
165 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 38			3	06	053										
166 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 38				0 7	053										
167 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 38			3	0 8	053										
168 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 38		_	-	0 9	053										
169 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			010)053										
170 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			011											
171 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			4	.053										
172 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 39			3	.027 5	.053										
173 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	_	2 39				.038 6	.053										
174 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	. 1.2	2 39	1.5 2	.027	3	.046 7	.053										
175 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	. 1.2	2 39	1.5 2	2	3	.053 8	.053										
176 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL		2 39			-	.046 9	.053										
177 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	2 39	1.5 2	0	3	.038 1(.053										
178 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL						.027 11	.053										
179 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			4											
180 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	2 39	1.5 2	0	3	0 5	053										
181 1.2DL + 1.5Lm + 1Wm	Yes	Υ	DL	1.2	2 39	1.5 2	0	3	06	053										
182 1.2DL + 1.5Lm + 1Wm	Yes	Υ	DL			1.5 2			0 7											
183 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			0 8											
184 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL					-	0 9											
185 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL						01(
186 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL						011											
187 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			4	.053										
188 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			.027 5	.053										
189 1.2DL + 1.5Lm + 1Wm	Yes	Ý	DL			1.5 2			.038 6	.053										
190 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			.046 7											
191 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			.053 8											
192 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL			1.5 2			.046 9	.053										
	100				- 10	1.0 2			0											

RISA-3D Version 17.0.4 [\...\...\...\...\Engineering\MRA_09.15.2021\01.RISA\876316_loaded.r3d] Page 7

Company	:	Trylon
Designer	:	IN
Job Number	:	191859
Model Name	:	876316

Load Combinations (Continued)

Des cription	Solve	PDS	. BLC	FaE	3 Fa	aB.	Fa	В	FaB	Factor	В	Fa								
193 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24				3	.038 10	.053										
194 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24			0	3	.027 11	.053										
195 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24				3	4	053										
196 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2				3	0 5	053										
197 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			0	3	06	053										
198 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			0	3	07	053										
199 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	40 1	.5 2		3	0 8	053										
200 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	40 1	.5 2	.027	3	09	053										
201 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	40 1	.5 2	.038	3	010	053										
202 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	40 1	.5 2	.046	3	011	053										
203 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	.053	3	4	.053										
204 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	.046	3	.027 5	.053										
205 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	.038	3	.038 6	.053										
206 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	.027	3	.046 7	.053										
207 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2		3	.053 8	.053										
208 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	0	3	.046 9	.053										
209 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	0	3	.038 10	.053										
210 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	0	3	.027 11	.053										
211 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	0	3	4	053										
212 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	0	3	0 5	053										
213 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	0	3	06	053										
214 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			0	3	07	053										
215 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24	41 1	.5 2		3	0 8	053										
216 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	.027	3	09	053										
217 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			.038	_	010	053										
218 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	41 1	.5 2	.046	3	011	053										
219 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24	42 1	.5 2	.053	3	4	.053										
220 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	42 1	.5 2	.046	3	.027 5	.053										
221 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			.038	3	.038 6	.053										
222 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			.027		.046 7	.053										
223 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24				3	.053 8	.053										
224 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24	42 1	.5 2	0	3	.046 9	.053										
225 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24	42 1	.5 2	0	3	.038 10	.053										
226 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24	42 1	.5 2	0	3	.027 11	.053										
227 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.24	42 1	.5 2	0	3	4	053										
228 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			0	3	0 5	053										
229 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			0	3	0 6	053										
230 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			0	3	07	053										
231 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2				3	0 8	053										
232 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2			.027	3	0 9	053										
233 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	42 1		.038	3	010	053										
234 1.2DL + 1.5Lm + 1Wm	Yes	Y	DL	1.2	42 1	.5 2	.046	3	011	053										

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1794.6327	3	1182.8412	20	1930.2507	39	440.3349	31	464.8732	33	2118.9158	19
2		min	-1788.1426	27	-1188.1246	12	-82.2234	31	-3549.4271	39	-1976.0695	130	-2121.5966	11
3	N1	max	1841.6746	17	1077.835	8	1930.2838	45	3362.5594	45	488.1401	19	2118.3203	25
4		min	-1839.6716	25	-1069.8381	32	-82.2462	21	-425.8826	21	-2297.8997	43	-2122.328	17
5	N13	max	501.4446	18	1798.3005	22	1859.548	34	755.886	167	3889.5636	34	1754.9566	30

RISA-3D Version 17.0.4 [\...\...\...\Engineering\MRA_09.15.2021\01.RISA\876316_loaded.r3d] Page 8

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [I b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
6		min	-510.465	10	-1800.7846	14	-121.3603	26	-621.2985	223	-598.727	26	-1758.3325	6
7	Totals:	max	3786.2878	18	3539.4516	6	5377.3014	41						
8		min	-3786.2881	10	-3539.4512	30	1367.2128	81						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Checl	LocLSheLoc	LC	phi*Pnc [lb]	phi*Pnt [I b]	_phi*Mn yphi*Mn Cb _ Eqn _
1	M2	PIPE 3.5	.508	40 45 .201 40	9	64491.4237	78750	7953.75 7953.75 2.1. H1-1b
2	M12	PIPE 3.5	.508	40 39 .195 40	3	64491.4237	78750	7953.75 7953.75 2.1. H1-1b
3	M7	PIPE 3.5	.490	40 34 .179 40	14	64491.4237	78750	7953.75 7953.75 2.1. H1-1b
4	MP1	PIPE 2.0	.405	51 14 .047 51	15	20866.7334	32130	1871.625 1871.625 2.4. H1-1b
5	MP4	PIPE 2.0	.397	51 10 .049 51	11	20866.7334	32130	1871.625 1871.625 1 H1-1b
6	M1	C3X5	.393	3445 .137 63y	40	32858.7668	47628	981.263 4104 1.3. H1-1b
7	M11	C3X5	.387	3440 .139 63y	35	32858.7668	47628	981.263 4104 1.3. H1-1b
8	MP7	PIPE 2.0	.385	51 3 .039 51	2	20866.7334	32130	1871.625 1871.625 1 H1-1b
9	MP2	PIPE 2.0	.380	51 6 .055 51	8	20866.7334	32130	1871.625 1871.625 1 H1-1b
10	MP3	PIPE 2.0	.376	51 5 .037 51	10	20866.7334	32130	1871.625 1871.625 1 H1-1b
11	M6	C3X5	.371	3434 .132 63y	46	32858.7668	47628	981.263 4104 1.3H1-1b
12	MP9	PIPE 2.0	.371	51 10 .032 51	3	20866.7334	32130	1871.625 1871.625 1.6. H1-1b
13	MP8	PIPE 2.0	.354	51 10 .042 51	11	20866.7334	32130	1871.625 1871.625 1.9. H1-1b
14	MP5	PIPE 2.0	.346	51 17 .051 51	3	20866.7334	32130	1871.625 1871.625 2.2. H1-1b
15	MP6	PIPE 2.0	.340	51 16 .034 51	8	20866.7334	32130	1871.625 1871.625 2.2. H1-1b
16	M10	6.5"x0.37" Plate	.301	21 2 .095 21 y	48	27548.2459	75757.5	583.9628 6344.1 1.1 H1-1b
17	M15	6.5"x0.37" Plate	.299	21 7 .097 21 y	37	27548.2459	75757.5	583.9628 6312.0 1.1H1-1b
18	M5	6.5"x0.37" Plate	.288	21 12 .099 21 y	42	27548.2459	75757.5	583.9628 6573.407 1.2 H1-1b
19	M13	L2x2x3	.217	0 14 .027 0 z	43	18084.2002	23392.8	557.7166 1182.4 1 H2-1
20	M3	L2x2x3	.203	0 3 .028 0 z	49	18084.2002	23392.8	557.7166 1182.4 1 H2-1
21	M8	L2x2x3	.197	0 10 .026 0 z	38	18084.2002	23392.8	557.7166 1182.4 1 H2-1
22	M4	L2x2x3	.174	0 13 .029 0 y	41	18084.2002	23392.8	557.7166 1182.4 1 H2-1
23	M9	L2x2x3	.155	0 2 .028 0 y	46	18084.2002	23392.8	557.7166 1182.4 1 H2-1
24	M21	PIPE_2.0	.150	725 .142 72	13	14916.0955	32130	1871.625 1871.625 1.4. H1-1b
25	M20	PIPE_2.0	.149	2416 .141 72	8	14916.0955	32130	1871.625 1871.625 1.5. H1-1b
26	M19	PIPE_2.0	.149	7210 .147 72	2	14916.0955	32130	1871.625 1871.625 1.4. H1-1b
27	M14	L2x2x3	.145	0 7 .030 0 y	36	18084.2002	23392.8	557.7166 1182.4 1 H2-1
28	H3	PIPE 3.5	.130	3110 .108 24	16	60666.1271	78750	7953.75 7953.75 1.1. H1-1b
29	H1	PIPE 3.5	.128	315 .114 24	10	60666.1271	78750	7953.75 7953.75 1.0. H1-1b
30	H2	PIPE_3.5	.124	3115 .102 24	5	60666.1271	78750	7953.75 7953.75 1.1. H1-1b
31	M22	L6.6"X4.46"X0.25"	.077	0 21 .041 42 z	4	51170.9499	87561	2464.817125.3 1 H2-1
32	M23	L6.6"X4.46"X0.25"	.069	0 26 .040 0 y	9	51170.9499	87561	2464.81 7125.3 1 H2-1
33	M24	L6.6"X4.46"X0.25"	.061	0 32 .037 0 y	14	51170.9499	87561	2464.817125.3 1 H2-1

Envelope AISI S100-12: LRFD Cold Formed Steel Code Checks

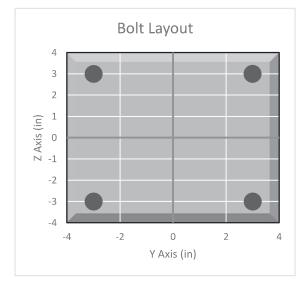
Member Shap	e CodeLoc[in] LC ShearLoc[in] Dir LC phi*Pn[lb]phi*Tn[lb] phi*Mn phi*Mn	Cb	Cmyy Cmzz	Eqn
	No Data to Print			

8.0 ft Platform Mount Replacement Analysis Order 553381, Revision 1 September 15, 2021 CCI BU No 876316 Page 9

APPENDIX D

ADDITIONAL CALCUATIONS

ENG-FRM-10208, Rev. D



BOLT TOOL 1.5.2

Project Data									
Job Code:	191859								
Carrier Site ID:									
Carrier Site Name:	SECONDINO PROPERTY								

Code									
Design Standard:	TIA-222-H								
Slip Check:	No								
Pretension Standard:	AISC								

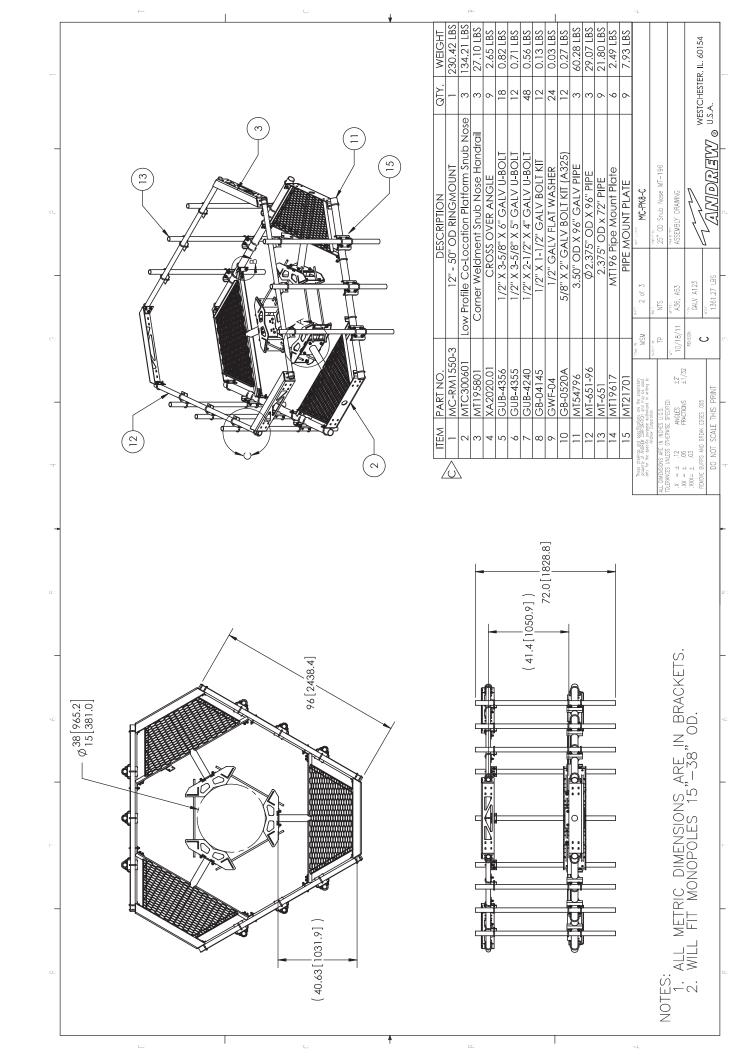
Bolt Properties								
Connection Type:	B	olt						
Diameter:	0.625	in						
Grade:	A325							
Yield Strength (Fy):	92	ksi						
Ultimate Strength (Fu):	120	ksi						
Number of Bolts:	4							
Threads Included:	No							
Double Shear:	No							
Connection Pipe Size:	_	in						

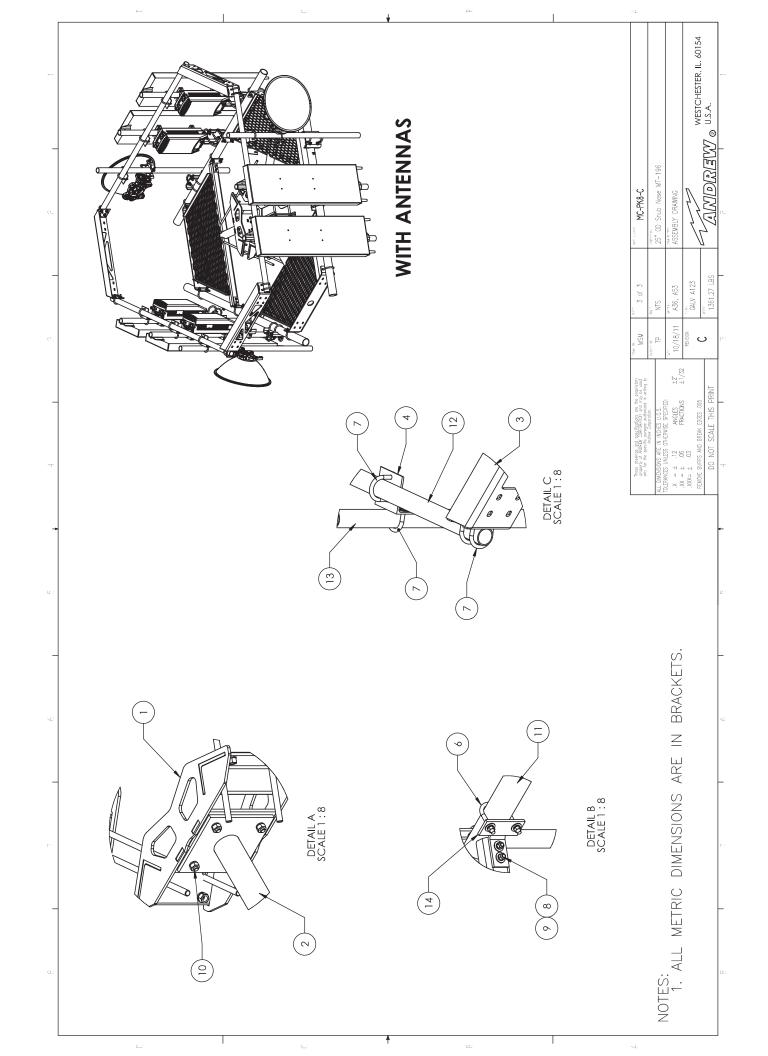
Connection Description

Standoff to Monopole

Bolt Check*										
Tensile Capacity (φT _n):		lbs								
Shear Capacity (φV _n):		lbs								
Tension Force (T _u):	4272.2	lbs								
Shear Force (V _u):	722.3	lbs								
Tension Usage:	20.0%									
Shear Usage:	4.0%									
Interaction:	20.0%	Pass								
Controlling Member:	M2									
Controlling LC:	42									

*Rating per TIA-222-H Section 15.5


8.0 ft Platform Mount Replacement Analysis Order 553381, Revision 1 September 15, 2021 CCI BU No 876316 Page 10


APPENDIX E

SUPPLEMENTAL DRAWINGS

ENG-FRM-10208, Rev. D

	<u></u>	د ۲	<u>a:</u>	4	
BY DATE BR 12/27/11 MSM 11/25/14 RJC 04/07/15		V			WESTCHESTER, IL. 60154 U.S.A.
L REVISIONS L REVISIONS DESCRIPTION DESCRIPTION NITAL RELEASE CHANGE NOSE CORNER BRYT, ADD GUB-4240 A N NEW RINGMOUNT WELDMENT DESIGN 1				MC_PK3_C	RM KIT 8' FACE
REV. ECN A 8000005979 CH				the Arabidia Societation on the Providers	/32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
I F F F . WEIGHT NOTE NO. Image: F F 402.64 LBS A02.64 LBS Image: F <	ONLY			and and	awi (k 1 metric) (k 1 metric) awi (k 1 metric) (k 1 metric) ALL MMESORS ARE TOLEMANES WURSE (k 1 metric) (k 1
I DESCRIPTION QTY. STEEL BUNDLE FOR SNUB NOSE PLATFORM 1 PIPE STEEL BUNDLE FOR MC-PK8-C 1 HARDWARE KIT FOR MC-PK8-C 1	FOR BOM ENTRY ONLY				NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3.
n TIEM PART NO.		_	<u>111</u>	-	NOTES: 1. CUSTON

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00164A

876316 21 Acorn Road Branford, Connecticut 06405

November 19, 2021

EBI Project Number: 6221007198

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	21.13%			

environmental | engineering | due diligence

November 19, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00164A - 876316

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **21 Acorn Road** in **Branford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 21 Acorn Road in Branford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 126 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

-		-	-	-	-
Sector:	A	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	Ι
Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-	Make / Model: JM/	JMA MX08FRO665-
Make / Model:	20	Make / Model:	20	Make / Model:	20
Engrupper Pandar	600 MHz / 1900	Englisher av Pandar	600 MHz / 1900	European and Danielau	600 MHz / 1900
Frequency Bands:	MHz / 2190 MHz	Frequency Bands:	MHz / 2190 MHz	Frequency Bands:	MHz / 2190 MHz
Gain:	17.45 dBd / 22.65	Gain:	17.45 dBd / 22.65	Gain:	17.45 dBd / 22.65
Gain.	dBd / 22.65 dBd	Gaili.	dBd / 22.65 dBd	Gain.	dBd / 22.65 dBd
Height (AGL):	126 feet	Height (AGL):	126 feet	Height (AGL):	126 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (VV):	5,236.31	ERP (W):	5,236.31	ERP (VV):	5,236.31
Antenna AI MPE %:	I.64%	Antenna BI MPE %:	I.64%	Antenna CI MPE %:	I.64%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	I.64%			
AT&T	8.96%			
T-Mobile	5.94%			
Verizon	3.9%			
Sprint	0.32%			
Nextel	0.37%			
Site Total MPE % :	21.13%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	1.64%			
Dish Wireless Sector B Total:	1.64%			
Dish Wireless Sector C Total:	1.64%			
Site Total MPE % :	21.13%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)# ChannelsWatts ERP (Per Channel)Height (feet)Total Power Density (µW/cm²)Frequency (MHz)Allowable MPE (µW/cm²)Calculated % MPE							
Dish Wireless 600 MHz n71	4	223.68	126.0	2.23	600 MHz n71	400	0.56%
Dish Wireless 1900 MHz n70	4	542.70	126.0	5.42	1900 MHz n70	1000	0.54%
Dish Wireless 2190 MHz n66	4	542.70	126.0	5.42	2190 MHz n66	1000	0.54%
						Total:	1.64%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	I.64%		
Sector B:	1.64%		
Sector C:	I.64%		
Dish Wireless Maximum MPE % (Sector A):	1.64%		
Site Total:	21.13%		
	21.13/0		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **21.13%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

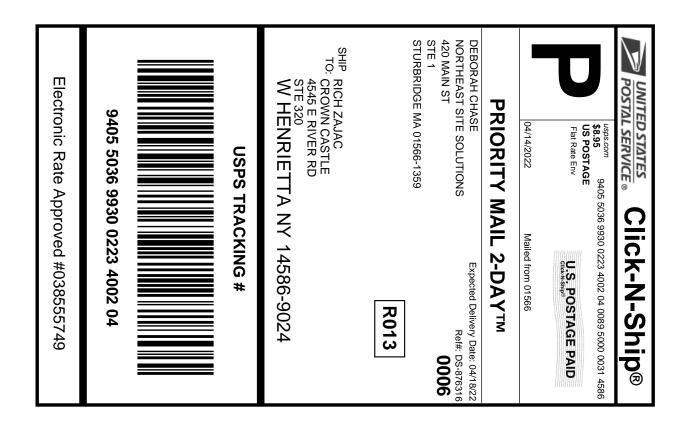
Re: Tower Share Application Crown Castle telecommunications site at: 21 ACORN ROAD, BRANFORD, CT 06405

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: Customer Site ID: Site Address:

876316/SECONDINO PROPERTY BOHVN00164A/CT-CCI-T-876316 21 Acorn Road, BRANFORD, CT 06405

Crown Castle

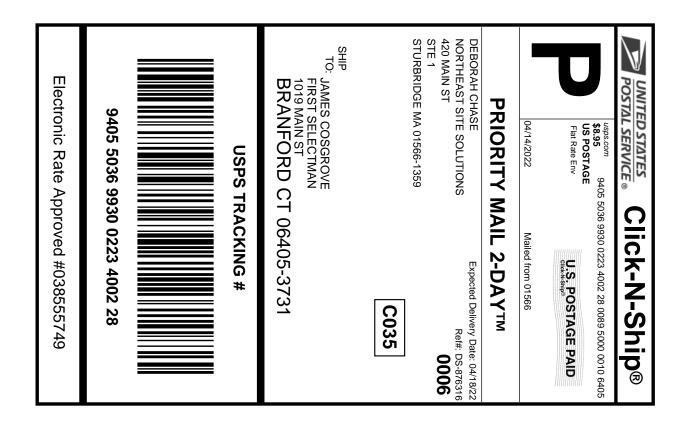

By:

4/12/2022 Date:

Richard Zajac Site Acquisition Specialist

Exhibit H

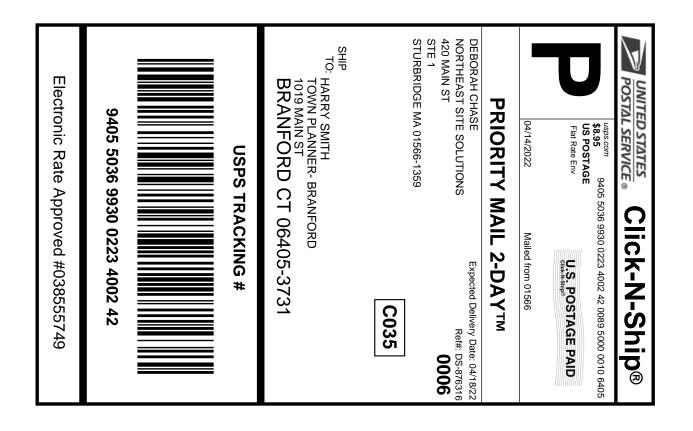
Recipient Mailings



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

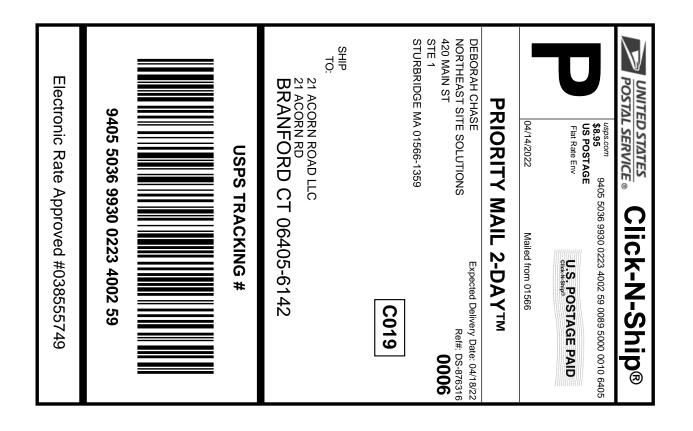
Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

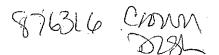
Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

P	UNITED STATES POSTAL SERVICE.				
E ADMENDE AND					

2: FARMINGTON	ARMINGTO 10 MAIN N, CT 06	ST 032-9998	
1/1/73570000	0)275-8	/77	04:13 PM
	Otv	llni+	D
Prepaid Mail West Henrietta, Weight: O lb 2 Acceptance Date Fri 04/15/2 Tracking #: 9405 5036 9	1 NY 1458 00 oz : 022	36	\$0.00
Prepaid Mail Branford, CT 06 Weight: O 15 9 Acceptance Date Fri 04/15/20 Tracking #: 9405 5036 99	405 .10 oz : 022	4002 59	\$0.00
Prepaid Mail Branford, CT 064 Weight: O 1b 9. Acceptance Date: Fri 04/15/20 Tracking #: 9405 5036 99	105 00 oz	4002 28	\$0.00
Prepaid Mail Branford, CT 064 Weight: O 1b 9. Acceptance Date: Fri 04/15/20 Tracking #: 9405 5036 99	1 05 10 oz 22 30 0223	4002 42	\$0.00
Grand Total;			#0.00

----- - -