

10 INDUSTRIAL AVE, SUITE 3 MAHWAH NJ 07430

PHONE: 201.684.0055 FAX: 201.684.0066

July 30, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification

10 Polly Lane, Bozrah, CT 06336 (also known as 3 Polly Lane)

Latitude: 41.574423100 Longitude: -72.20040200

T-Mobile Site#: CT11258B - L600

#### Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 182-foot level of the existing 187-foot guyed tower at 10 Polly Lane in Bozarah, CT. The 187-foot guyed tower is owned and operated by Everest Communications. The property is owned by 17 Mile Real Estate LLC. T-Mobile now intends to remove the six (6) existing antennas and add three (3) new 600/700/1900/2100 MHz antennas. The new antennas will support 5G services and will be installed at the new 177-foot level of the tower. New mounts will need to be installed as per the enclosed mount analysis.

#### **Planned Modifications:**

#### Tower:

#### Remove

- (3) EMS RR90-17-XXDP
- (3) TMA
- (12) 1-5/8" coax

#### Remove and Replace:

(3) LNX-6515DS-A1M for (3) APXVALL24 43-U-NA20 600/700/1900/2100 MHz antennas

#### **Install New:**

- (3) Radio 4415 B25 RRU
- (3) Radio 4415 B66
- (3) Radio 4449 B71+ B85
- (3) 1-5/8" Hybrid

#### Existing to Remain:

N/A

#### **Ground:**

#### Install New:

(1) 6160 Cabinet and (1) B160 Battery Cabinet

This facility was not originally approved by the Connecticut Siting Council. Based on previous Siting Council filings for this tower, the Town of Bozrah does not have record of the original facility approval. Enclosed is a memo related to this.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman – Carl Zorn, Elected Official, and Stephen Seder, Chairman of the Town of Bozrah Planning and Zoning Commission, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

#### **Kyle Richers**

Transcend Wireless Cell: 908-447-4716

Email: krichers@transcendwireless.com

#### **Attachments**

cc: Carl Zorn – Town of Bozrah First Selectman Stephen Seder– Town of Bozrah Planning and Zoning Commission Chairman Everest Communications – Tower Owner 17 Mile Real Estate LLC- Property Owner

From: UPS <pkginfo@ups.com>

**Sent:** Thursday, August 5, 2021 11:23 PM **To:** krichers@transcendwireless.com

**Subject:** UPS Schedule Delivery Update, Tracking Number 1ZV257424291991689

×

Your scheduled delivery date has changed.

**Scheduled Delivery Date:** Monday, 08/09/2021

# **Important Delivery Information**

From: TRANSCEND WIRELESS

**Tracking Number:** <u>1ZV257424291991689</u>

**Shipment Details** 

**Everest Infrastructure Partners** 

**Ship To:** Two Allegheny Center ALLEGHENY, PA 15212

US

Number of Packages: 1

**Signature Required:** A signature is required for package delivery

Weight: 1.0 LBS

**Reference Number 1:** CT11258B CSC TO

From: UPS <pkginfo@ups.com>

**Sent:** Thursday, August 5, 2021 11:23 PM **To:** krichers@transcendwireless.com

**Subject:** UPS Schedule Delivery Update, Tracking Number 1ZV257424294917674



Your scheduled delivery date has changed.

**Scheduled Delivery Date:** Friday, 08/06/2021

# **Important Delivery Information**

From: TRANSCEND WIRELESS

**Tracking Number:** <u>1ZV257424294917674</u>

**Shipment Details** 

**Ship To:** 

Stephen Seder

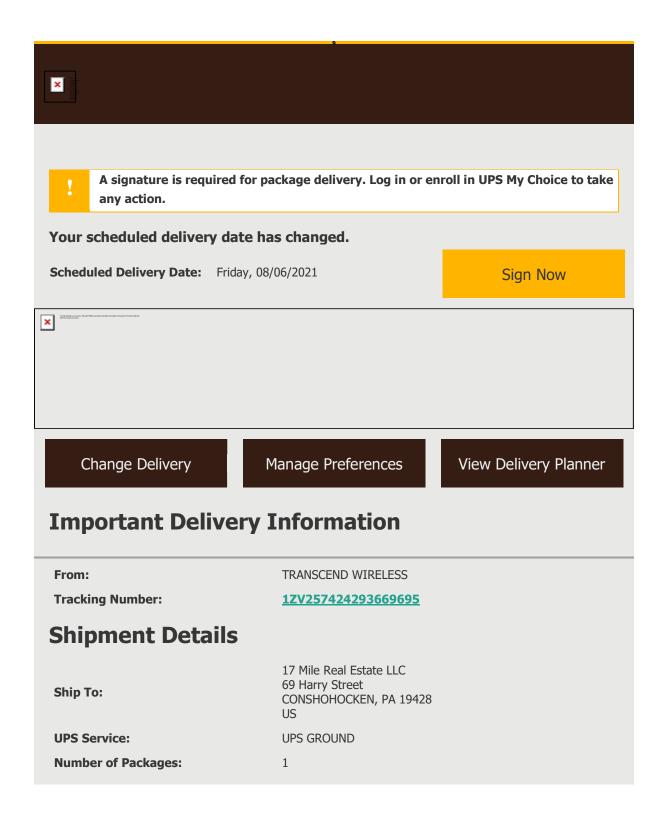
Town of Bozrah 1 River Road

BOZRAH, CT 06334

US

Number of Packages: 1

**Signature Required:** A signature is required for package delivery


Weight: 1.0 LBS

**Reference Number 1:** CT11258B CSC ZO

From: UPS <pkginfo@ups.com>

**Sent:** Thursday, August 5, 2021 11:23 PM **To:** krichers@transcendwireless.com

Subject: UPS Schedule Delivery Update, Tracking Number 1ZV257424293669695



From: UPS <pkginfo@ups.com>

**Sent:** Thursday, August 5, 2021 11:23 PM **To:** krichers@transcendwireless.com

**Subject:** UPS Schedule Delivery Update, Tracking Number 1ZV257424290847668



Your scheduled delivery date has changed.

**Scheduled Delivery Date:** Friday, 08/06/2021

# **Important Delivery Information**

From: TRANSCEND WIRELESS

**Tracking Number:** <u>1ZV257424290847668</u>

**Shipment Details** 

**Ship To:** 

Carl Zorn

Town of Bozrah 1 River Road

BOZRAH, CT 06334

US

Number of Packages: 1

**Signature Required:** A signature is required for package delivery

Weight: 1.0 LBS

**Reference Number 1:** CT11258B CSC EO

All information is for assessment purposes only. Assessments are calculated at 70% of the estimated October 1, 2017 market value which was the date of the last revaluation as completed by eQuality Valuation Services, LLC.



Information on the Property Records for the Municipality of Bozrah was last updated on 8/3/2021.



## **Parcel Information**

| Location:                | POLLY LA | Property Use:     | Vacant Land | Primary Use:      | Commercial Vacant<br>Land |
|--------------------------|----------|-------------------|-------------|-------------------|---------------------------|
| Unique ID:               | 00073200 | Map Block<br>Lot: | 02/039      | Acres:            | 8.40                      |
| 490 Acres:               | 0.00     | Zone:             | I-80        | Volume /<br>Page: | 107/ 483                  |
| Developers<br>Map / Lot: |          | Census:           | 7131        |                   |                           |

## **Value Information**

|                       | Appraised Value | Assessed Value |
|-----------------------|-----------------|----------------|
| Land                  | 149,520         | 104,660        |
| Buildings             | 0               | 0              |
| Detached Outbuildings | 0               | 0              |

|       | Appraised Value | Assessed Value |
|-------|-----------------|----------------|
| Total | 149,520         | 104,660        |

# **Owner's Information**

#### Owner's Data

17 MILE REAL ESTATE LLC 69 HARRY STREET CONSHOCKEN, PA 19428

# Owner History - Sales

| Owner Name              | Volume | Page | Sale Date  | Deed Type     | Sale Price  |
|-------------------------|--------|------|------------|---------------|-------------|
| 17 MILE REAL ESTATE LLC | 0107   | 0483 | 01/02/2019 | Warranty Deed | \$1,141,162 |
| MAYNARD LEONARD P       | 0084   | 0593 | 09/19/2006 |               | \$0         |
| MAYNARD ALICE M         | 0021   | 0524 |            |               | \$0         |

Information Published With Permission From The Assessor



June 11, 2020

Memo: No Initial Zoning Decision Found: EM-AT&T-013-200604 (Polly Lane, Bozrah)

No original facility approval for this tower could be found, despite consultation with Tom Weber, Building Official for the Town of Bozrah. The building official's phone number is 860.889.2689 Ext. 206.

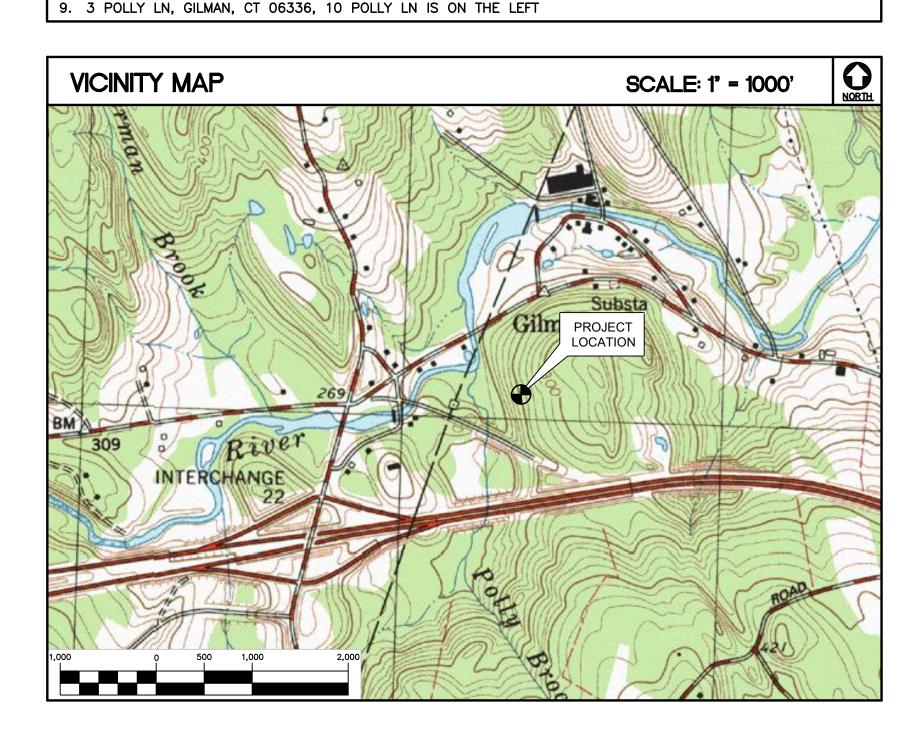
Please contact me with any questions or concerns regarding this matter.

Best Regards,

Ryan Lynch
Real Estate Manager
Smartlink
781.392.4040
Ryan.Lynch@smartlinkgroup.com

# - II - Mobile -

# WIRELESS COMMUNICATIONS FACILITY


BOZRAH-1/RT. 2 SITE ID: CT11258B 10 POLLY LANE BOZRAH, CT 06336

# **GENERAL NOTES**

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2018 CONNECTICUT FIRE SAFETY CODE, 2017 NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.

- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT ARFA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

#### SITE DIRECTIONS FROM: 35 GRIFFIN ROAD SOUTH TO: 10 POLLY LANE BOZRAH, CT 06336 BLOOMFIELD, CT 06002 HEAD NORTH ON GRIFFIN ROAD S. TOWARD HARTMAN RD. 0.30 MI. TAKE THE 2ND RIGHT ONTO DAY HILL RD. 3.64 MI. MERGE ONTO I-91 S TOWARD HARTFORD 7.65 MI. MERGE ONTO I-84 E/US-6 E via EXIT 30 ON THE LEFT TOWARD NEW LONDON/E HARTFORD/CT-2. 0.61 MI. MERGE ONTO CT-2 E via EXIT 55 TOWARD NEW LONDON/NORWICH 30.16 MI. TAKE EXIT 22 TOWARD LEBANON/GILMAN 0.25 MI. . TURN LEFT ONTO SCOTT HILL RD 0.36 MI. B. TURN RIGHT ONTO NORWICH AVE. TURN RIGHT ONTO POLLY LN 0.31 MI.



# T-MOBILE RF CONFIGURATION

# 67D97C

# PROJECT SUMMARY

 THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING

A. REMOVE (1) EXISTING RBS 6201 ODE CABINET
B. INSTALL (1) B160 CABINET AND 6160 CABINET
C. REMOVE (3) EMS. ANTENIAS.

D. REMOVE (3) LB DUAL ANTENNAS
E. INSTALL (3) LB/MB OCTA 8' ANTENNAS
F. REMOVE (3) GENERIC TWIN STYLE TMA

H. INSTALL (3) RADIO 4415 B66A I. INSTALL (3) RADIO 4449 J. REMOVE (12) COAX CABLES

K. INSTALL (3) NEW 6X12 HYBRIDS

L. REMOVE EXISTING 100A METER AND DISCONNECT

N. INSTALL (1) NEW 200A PPC CABINE

# PROJECT SUMMARY (STRUCTURAL)

FOR REQUIRED STRUCTURAL MODIFICATIONS, SEE SHEET(S) S-1 FOR ADDITIONAL DETAILS. SECTOR MOUNTS NEED TO BE REPLACED.

EXISTING SECTOR FRAMES AT 172' A.G.L TO BE REMOVED BY OTHERS
 EXISTING T-MOBILE MOUNT AT 182' A.G.L. TO BE REMOVED BY OTHERS

INSTALL NEW ANTENNA MOUNTS AT 177' A.G.L.

# PROJECT INFORMATION

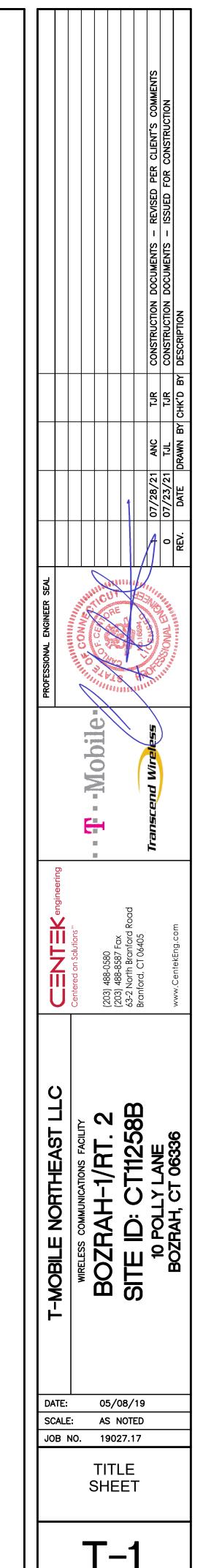
SITE NAME: BOZRAH-1/RT. 2
SITE ID: CT11258B

SITE ADDRESS: 10 POLLY LANE BOZRAH, CT 06336

**ENGINEER:** 

APPLICANT: T-MOBILE NORTHEAST, LLC
35 GRIFFIN ROAD SOUTH
BLOOMFIELD, CT 06002

CONTACT PERSON: DAN REID (PROJECT MANAGER)
TRANSCEND WIRELESS, LLC
(203) 592-8291


63–2 NORTH BRANFORD RD. BRANFORD, CT 06405

PROJECT COORDINATES: LATITUDE: 41°-34'-32.2" N
LONGITUDE: 72°-12'-8.9" W
GROUND ELEVATION: 318'± AMSL

SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

CENTEK ENGINEERING, INC.

| SHEET    | INDEX                                        |     |
|----------|----------------------------------------------|-----|
| SHT. NO. | DESCRIPTION                                  | RE\ |
| T-1      | TITLE SHEET                                  | 1   |
| N-1      | DESIGN BASIS AND SITE NOTES                  | 1   |
| C-1      | SITE LOCATION PLAN                           | 1   |
| C-2      | COMPOUND PLAN AND ELEVATION                  | 1   |
| C-3      | ANTENNA MOUNTING CONFIGURATION               | 1   |
| C-4      | TYPICAL EQUIPMENT DETAILS                    | 1   |
| S-1      | STRUCTURAL DETAILS                           | 1   |
| E-1      | ELECTRICAL RISER DIAGRAM AND CONDUIT ROUTING | 1   |
| E-2      | TYPICAL ELECTRICAL DETAILS                   | 1   |
| E-3      | ELECTRICAL SPECIFICATIONS                    | 1   |



# NOTES AND SPECIFICATIONS

# **DESIGN BASIS:**

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

- 1. DESIGN CRITERIA:
- RISK CATEGORY III (BASED ON IBC TABLE 1604.5)
- NOMINAL DESIGN SPEED (OTHER STRUCTURE): 105 MPH (Vasd) (EXPOSURE C/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

# SITE NOTES

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

# **GENERAL NOTES**

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND IT'S COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 18. CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 19. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS.
- 20. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.

# STRUCTURAL STEEL

(FY = 46 KSI)

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- A. STRUCTURAL STEEL (W SHAPES) --- ASTM A992 (FY = 50 KSI)
   B. STRUCTURAL STEEL (OTHER SHAPES) --- ASTM A36 (FY = 36 KSI)
   C. STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B,
- D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B,
- (FY = 42 KSI)E. PIPE---ASTM A53 (FY = 35 KSI)
- F. CONNECTION BOLTS——ASTM A325—N
- G. U-BOLTS---ASTM A36 H. ANCHOR RODS---ASTM F 1554
- I. WELDING ELECTRODE——ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 3. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY

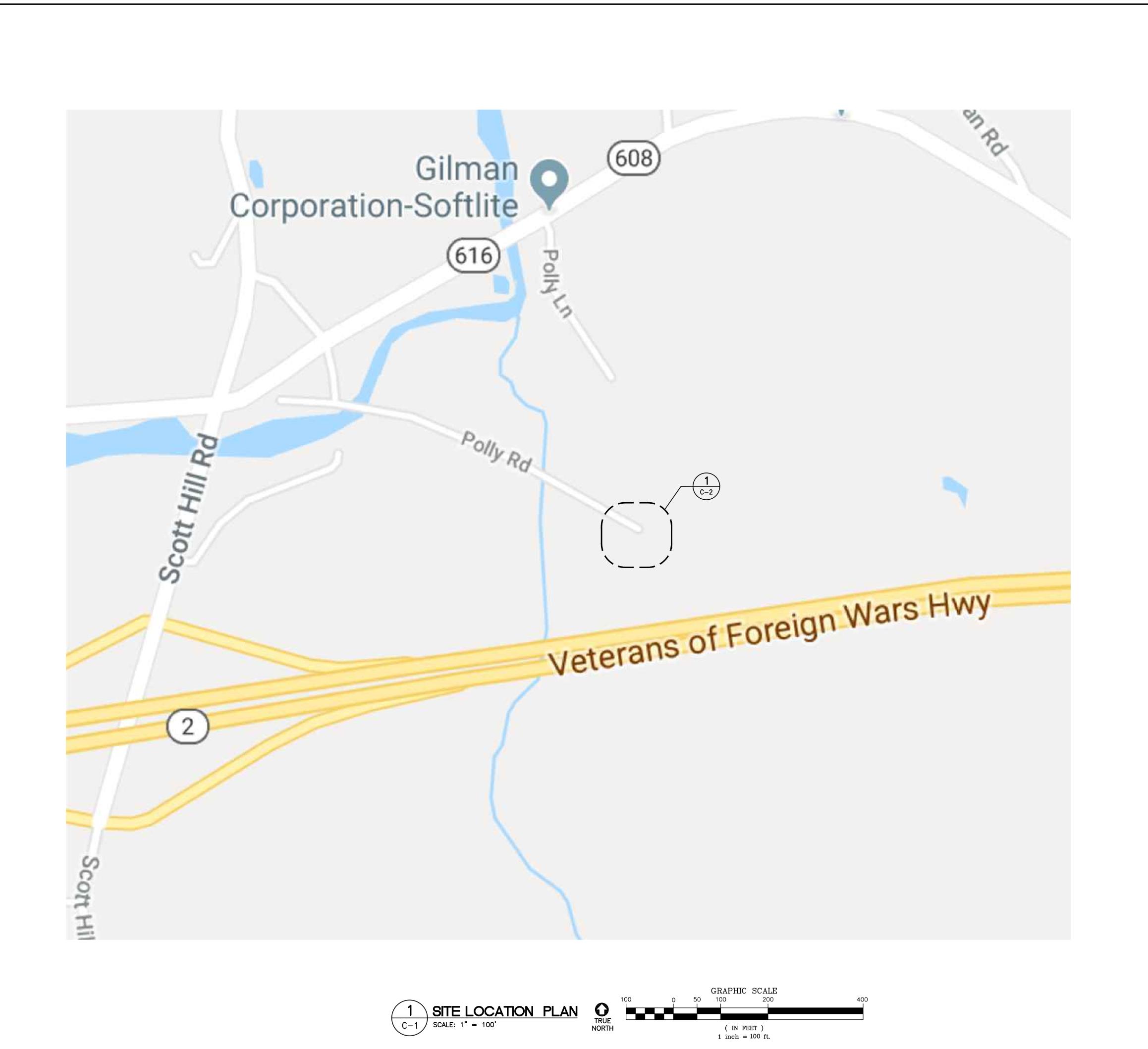
OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.

- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

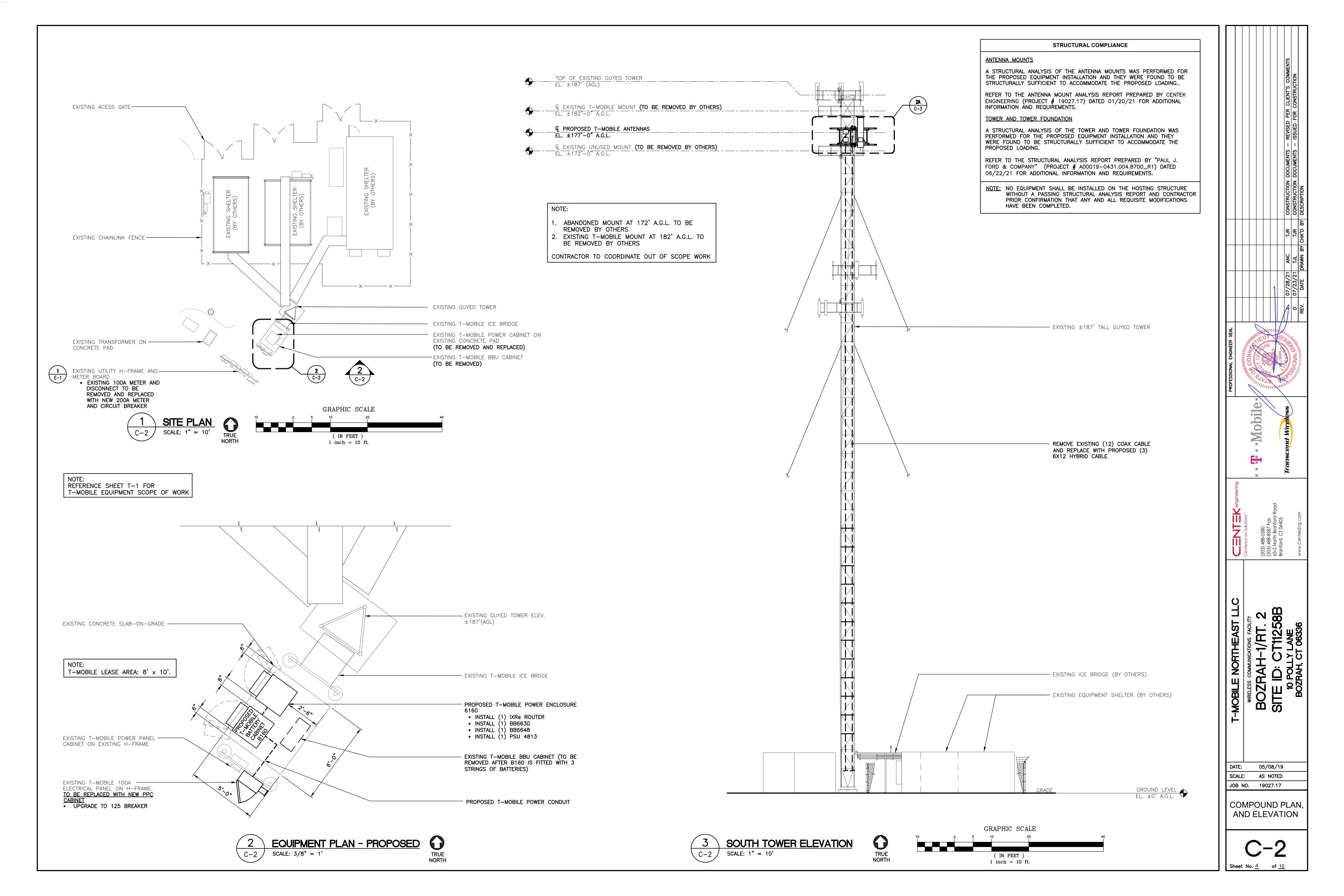
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |   |                                         | CONSTRUCTION DOCUMENTS - REVISED PER CLIENT'S COMMENTS | CONSTRUCTION DOCUMENTS - ISSUED FOR CONSTRUCTION | DRAWN BY CHK'D BY DESCRIPTION |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---|-----------------------------------------|--------------------------------------------------------|--------------------------------------------------|-------------------------------|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |   |                                         | TJR                                                    | TJR                                              | CHK'D BY                      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |   |                                         | ANC                                                    | TJL                                              | DRAWN BY                      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | 1 |                                         | 07/28/21                                               | 07/23/21                                         | DATE                          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |   |                                         | A                                                      | 0                                                | REV.                          |
| William Control | The County of th | THE CONTRACTOR OF THE PARTY OF | NOTE AND |   | 1 1 10 10 10 10 10 10 10 10 10 10 10 10 | No.                                                    | III OCONAL EL SANA                               |                               |

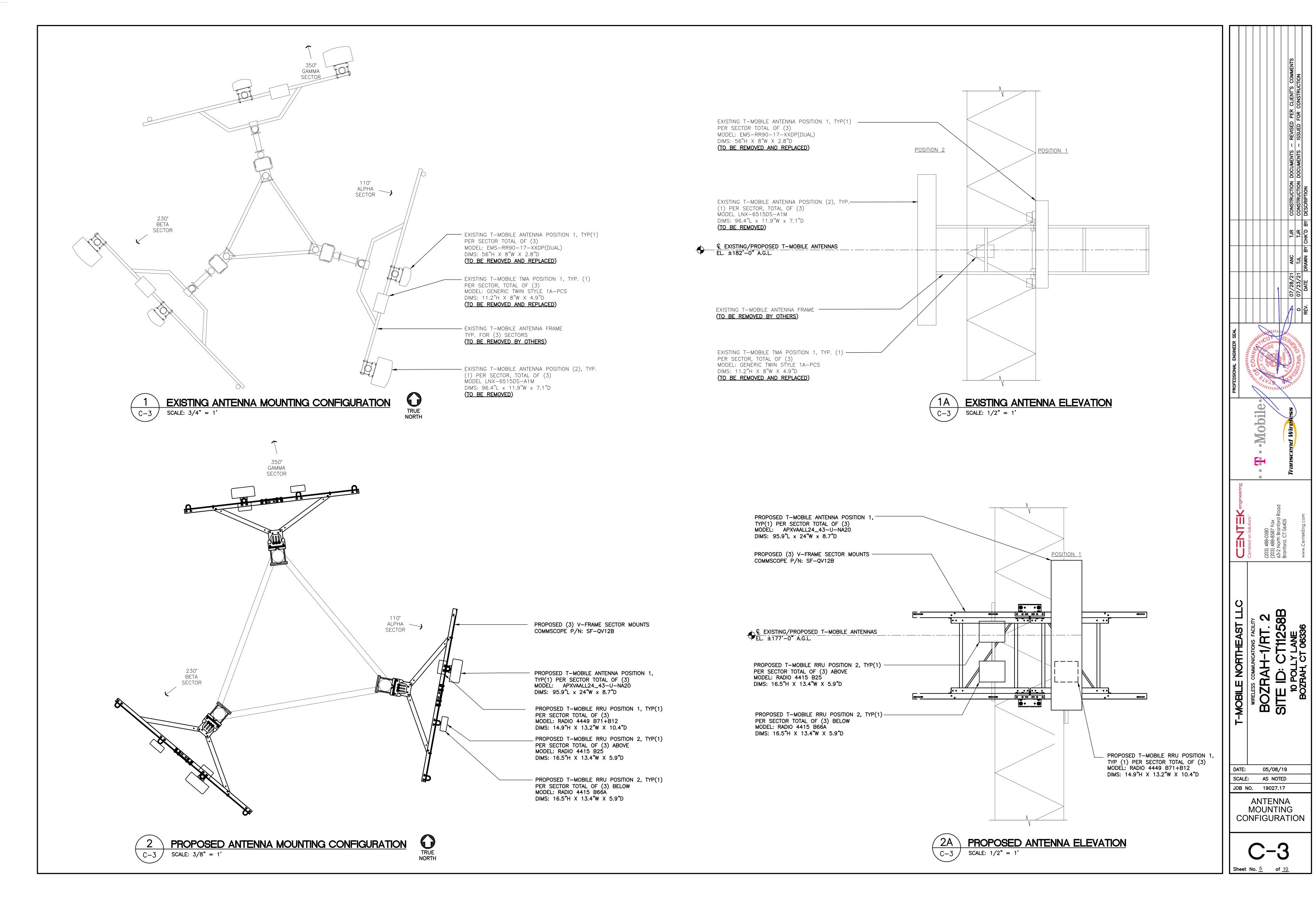
-- T -- Mobile
Transcend Wireless

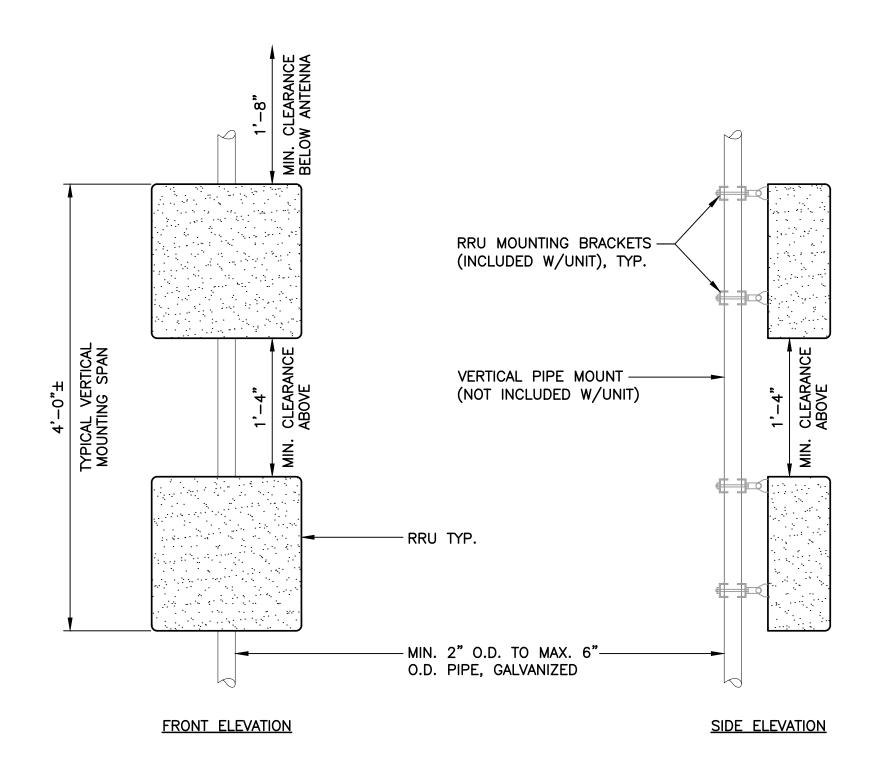
(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405


BOZRAH-1/RT. 2
SITE ID: CT11258B
10 POLLY LANE
BOZRAH, CT 06336

DATE: 05/08/19
SCALE: AS NOTED


DESIGN BASIS AND SITE NOTES


JOB NO. 19027.17






-Mobile BOZRAH-1/RT. 2
SITE ID: CT11258B
10 POLLY LANE
BOZRAH, CT 06336 DATE: 05/08/19
SCALE: AS NOTED JOB NO. 19027.17 SITE LOCATION PLAN

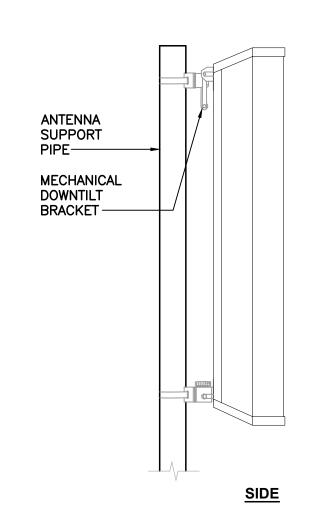






## NOTES:

- 1. T-MOBILE SHALL SUPPLY RRU, AND RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL SUPPLY POLE/PIPE AND INSTALL ALL MOUNTING HARDWARE INCLUDING ERICSSON RRU POLE-MOUNTING BRACKET. CONTRACTOR SHALL INSTALLS RRU AND MAKES CABLE TERMINATIONS.
- 2. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.






| EQUIPME         | NT CABINET                         |                          |           |
|-----------------|------------------------------------|--------------------------|-----------|
| EQUIPME         | NT                                 | DIMENSIONS               | WEIGHT    |
| MAKE:<br>MODEL: | ERICSSON<br>ENCLOSURE 6160 CABINET | 62.0"H × 26.0"W × 26.0"D | ±1200 LBS |

4 ENCLOSURE 6160 CABINET DETAIL

SCALE: NOT TO SCALE





| ALPHA                                                                        | /BETA/GAMMA ANTENNA     |               |
|------------------------------------------------------------------------------|-------------------------|---------------|
| EQUIPMENT                                                                    | DIMENSIONS              | WEIGHT        |
| MAKE: RFS<br>MODEL: APXVAALL24_43-U-NA20                                     | 95.9"L × 24.0"W × 8.5"D | ±150 LBS.     |
| NOTES:  1. CONTRACTOR TO COORDINATE FINAL ECCONSTRUCTION MANAGER PRIOR TO OF |                         | WITH T-MOBILE |

PROPOSED ANTENNA DETAIL

C-4 SCALE: NOT TO SCALE



| EQUIPMENT CABINET                             |                          |           |
|-----------------------------------------------|--------------------------|-----------|
| EQUIPMENT                                     | DIMENSIONS               | WEIGHT    |
| MAKE: ERICSSON<br>MODEL: BATTERY B160 CABINET | 62.0"H x 26.0"W x 26.0"D | ±1883 LBS |

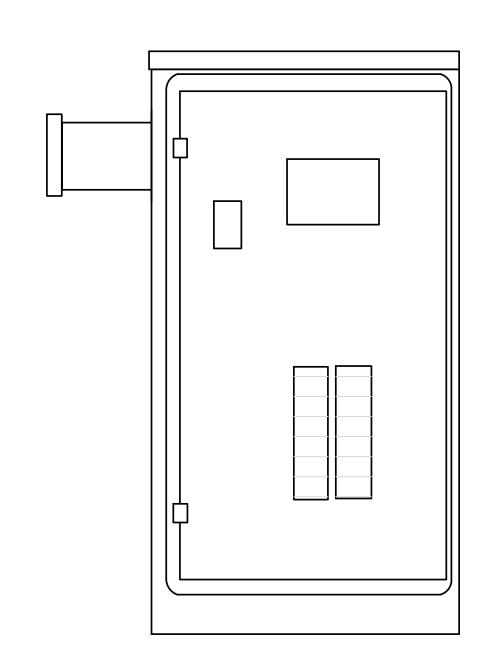
5 BATTERY B160 CABINET DETAIL

C-4 SCALE: NOT TO SCALE





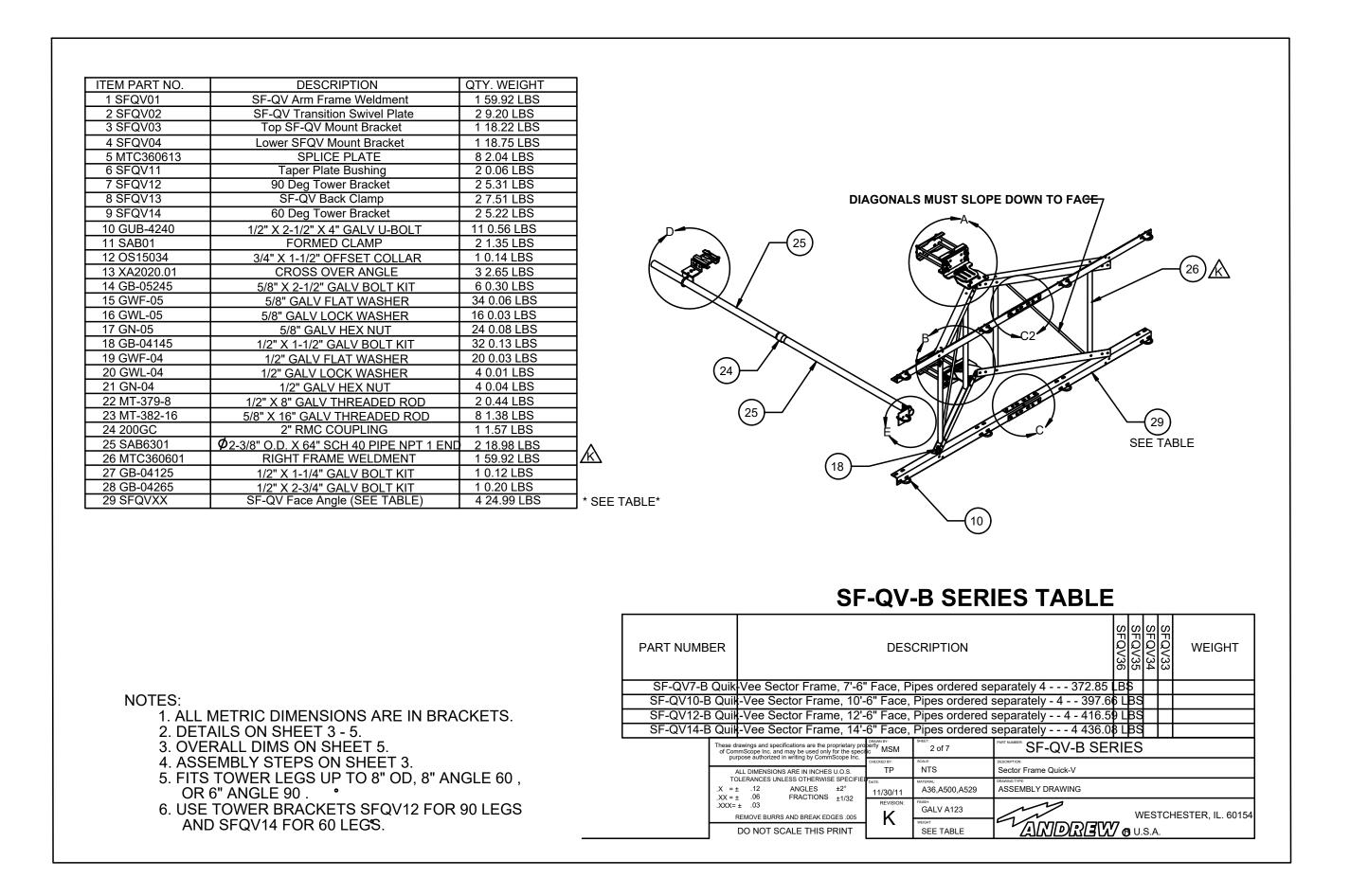
RADIO 4415 B25/B66

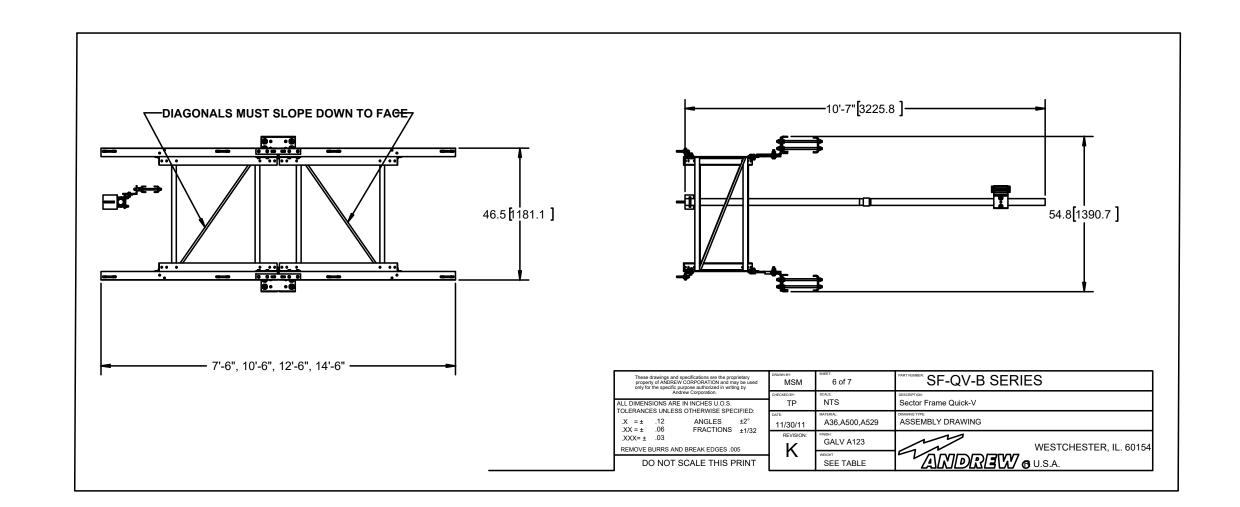

RADIO 4449 B71+B85

|                 |                                   | RRU (REMOTE RADIO UNIT) |          |                                                                     |
|-----------------|-----------------------------------|-------------------------|----------|---------------------------------------------------------------------|
|                 | EQUIPMENT                         | DIMENSIONS              | WEIGHT   | CLEARANCES                                                          |
| MAKE:<br>MODEL: | ERICSSON<br>RADIO 4415 B25/B66    | 16.5"L x 13.4"W x 5.9"D | ±46 LBS. | BEHIND ANT.: 8" MIN.<br>BELOW ANT.: 20" MIN.<br>BELOW RRU: 16" MIN. |
| MAKE:<br>MODEL: | ERICSSON<br>RADIO 4449<br>B71+B85 | 17.9"L x 13.2"W x 9.4"D | ±74 LBS. | BEHIND ANT.: 8" MIN.<br>BELOW ANT.: 20" MIN.<br>BELOW RRU: 16" MIN. |

NOTES:

1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH T-MOBILE CONSTRUCTION MANAGER PRIOR TO ORDERING.

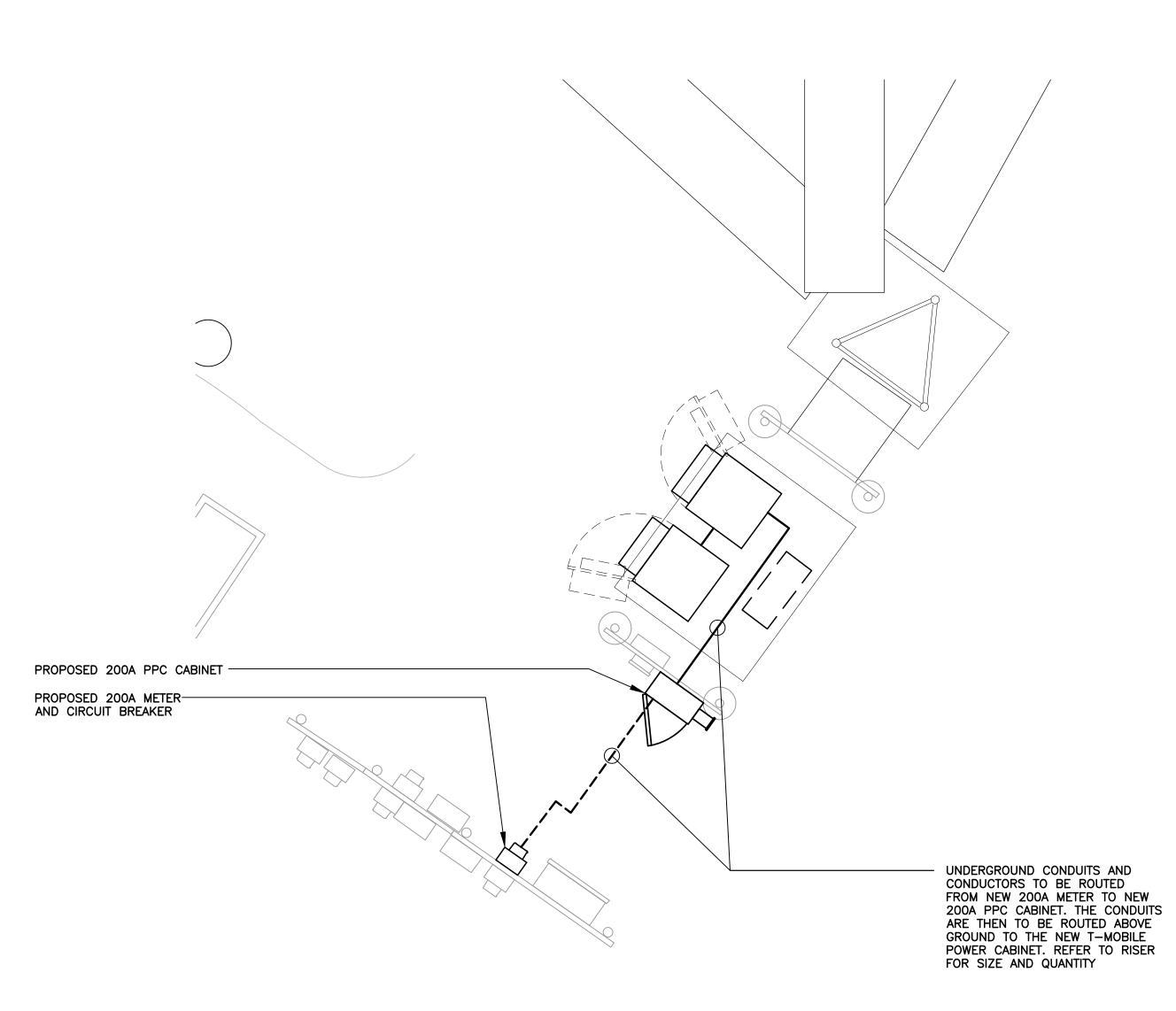



|                 | Р                        | PC CABINET               |         |
|-----------------|--------------------------|--------------------------|---------|
| EQUIPME         | NT                       | DIMENSIONS               | WEIGHT  |
| MAKE:<br>MODEL: | EMERSON<br>CAC-A75201090 | 40.0"H x 20.0"W x 10.0"D | ±80 LBS |

6 PPC CABINET DETAIL
C-4 NOT TO SCALE

| _                              |                                  |                           |                    | PROFESSIONAL ENGINEER SEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |            |                                    |                                               |
|--------------------------------|----------------------------------|---------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|------------------------------------|-----------------------------------------------|
| TE:                            |                                  |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                                    |                                               |
| 10.                            | WIDELESS COMMINICATIONS FACILITY | Centered on Solutions *** |                    | THE COMME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |                                    |                                               |
| Q۱                             |                                  |                           |                    | The Opposite of the Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |                                    |                                               |
| AS<br>19<br>YF<br>UI           | BOZBAH-1/RT o                    | (202) 489 0580            | LamoomT.           | IN THE COUNTY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |            |                                    |                                               |
| 902<br>902<br>PI               | 7                                | (203) 488-9587 FOX        |                    | NOTE AND VILLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |            |                                    |                                               |
| 08/<br>10T<br>27.1<br>CA<br>ME | CITE ID: CT#050D                 | 63-2 North Branford Road  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |            |                                    |                                               |
| ED<br>17<br>L                  | 0 C L I C O L I C O D            | Branford, CT 06405        |                    | 11 10000 III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                    |                                               |
|                                | HNA I Y I IOR OF                 |                           | Transcend Wireless | A STATE OF THE STA | 07/28/21 ANC | ANC        | TJR CONSTRUCT                      | CONSTRUCTION DOCUMENTS - REVISED PER CLIENT'S |
|                                |                                  | 1 -                       |                    | SONAL ENGINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 07/23/21   | Tol        | TJR CONSTRUCT                      | CONSTRUCTION DOCUMENTS - ISSUED FOR CONSTRUC  |
|                                | BOZHAH, C.I. UOSSO               | www.CentekEng.com         |                    | ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REV. DATE    | DRAWN BY C | DATE DRAWN BY CHK'D BY DESCRIPTION | Z                                             |
|                                |                                  |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                                    |                                               |

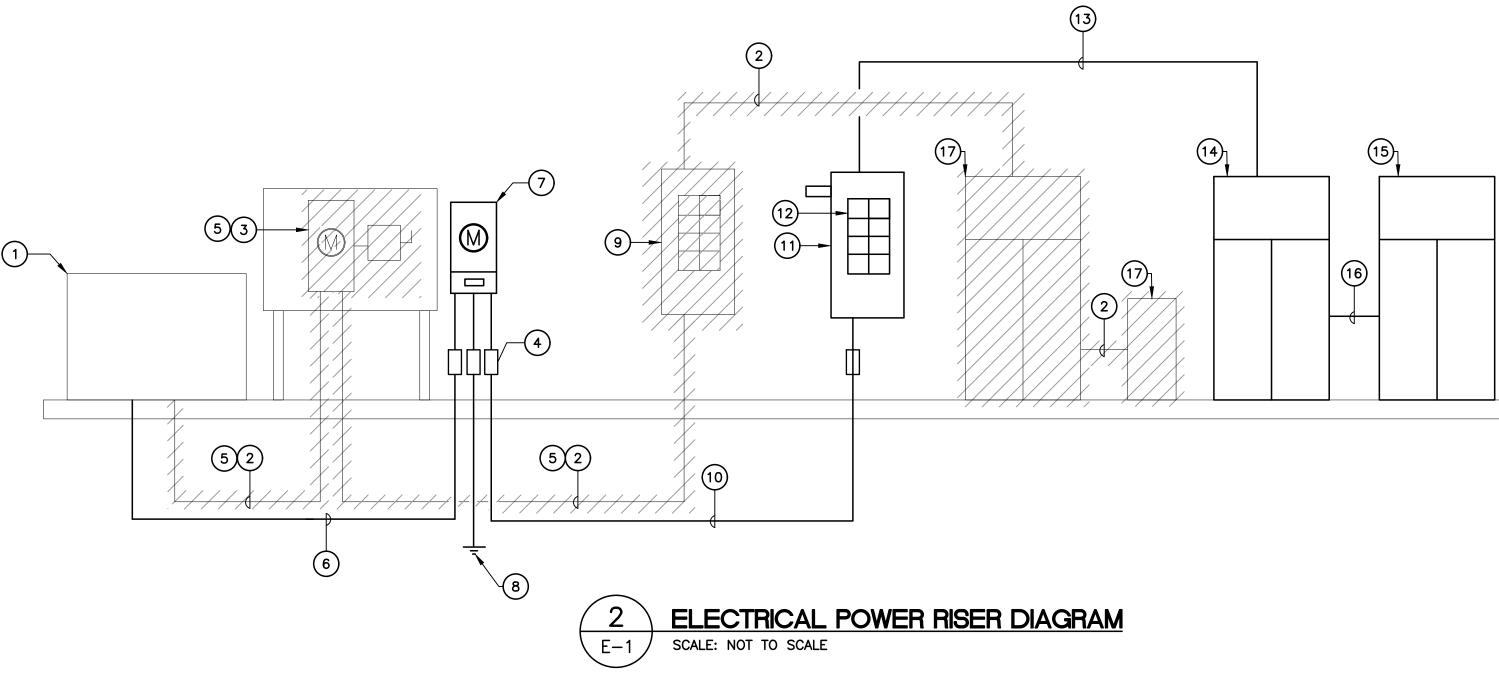









| i                          | ピラ | Centered on Solutions |                          | (203) 488-0580<br>(203) 488-8587 Fax | 63-2 North Branfor | Branford, CT 06405 |                                                        |                                                  | www.CentekEng.com                       |
|----------------------------|----|-----------------------|--------------------------|--------------------------------------|--------------------|--------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| PROFESSIONAL ENGINEER SEAL |    |                       | T Mobile - Sie Secondary | RE                                   | d Road             |                    | Transcend Wireless                                     | ))                                               | WO.                                     |
| EAL                        |    |                       | , re                     |                                      | 1                  |                    | 07/28/21 ANC TJR                                       | 0  07/23/21  TJL   TJR                           | REV. DATE DRAWN BY CHK'D BY DESCRIPTION |
|                            |    |                       |                          |                                      |                    |                    | CONSTRUCTION DOCUMENTS - REVISED PER CLIENT'S COMMENTS | CONSTRUCTION DOCUMENTS - ISSUED FOR CONSTRUCTION | Y DESCRIPTION                           |

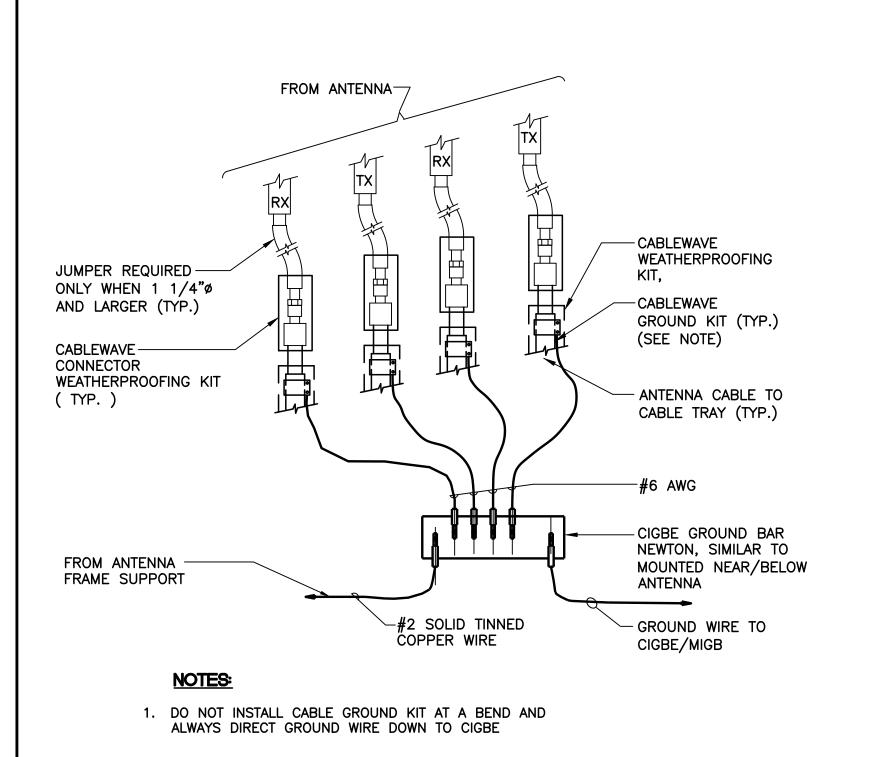



1 ELECTRICAL CONDUIT ROUTING PLAN

SCALE: 3/8" = 1'

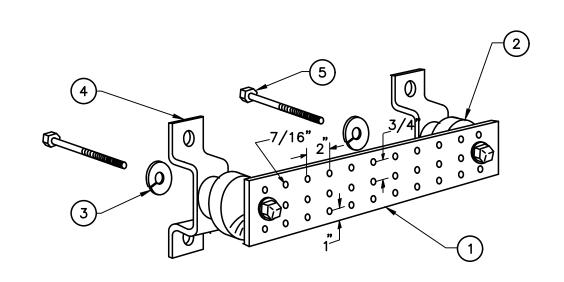
# RISER DIAGRAM NOTES

- 1) EXISTING UTILITY TRANSFORMER TO REMAIN.
- (2) EXISTING CONDUITS AND CONDUCTORS TO BE REMOVED.
- 3 EXISTING UTILITY METER AND METER SOCKET TO BE REMOVED.
- 4 EXPANSION COUPLING TYP.
- EXISTING ELEMENTS MAYBE REUSED PROVIDED THEY MEET THE SPECIFICATIONS IN THESE DRAWINGS AND ARE IN GOOD WORKING CONDITIONS
- 6 (3) 3/0 AWG, 3" CONDUIT. COORDINATE REQUIREMENTS WITH UTILITY COMPANY.
- 7 NEW 200A, 240V, SINGLE PHASE, NEMA-3R METER SOCKET WITH 200A/2P CIRCUIT BREAKER AND 200A, SINGLE PHASE, 240V RATED UTILITY METER. ALL EQUIPMENT TO BE UTILITY APPROVED.
- (1) #4 AWG GROUNDING ELECTRODE CONDUCTOR IN 3/4" CONDUIT BONDED TO EXISTING COMPOUND GROUND RING
- 9 EXISTING 100A ELECTRICAL PANEL TO BE REMOVED AND REPLACED. RELOCATE ALL EXISTING CIRCUIT BREAKERS TO NEW PPC CABINET.
- (10) (3) 3/0 AWG, (1) #6 AWG GROUND, 2-1/2" CONDUIT
- 11) NEW 200A PPC CABINET.
- (12) NEW 125A/2P CIRCUIT BREAKER TO SERVE NEW EQUIPMENT CABINET
- (13) (3) #1 AWG, (1) #6 AWG GROUND, 1-1/2" CONDUIT.
- 14) NEW T-MOBILE EQUIPMENT CABINET
- 15) NEW T-MOBILE BATTERY CABINET
- DC CONDUIT AND CONDUCTORS FOR BATTERY CABINET CONNECTION PER MANUFACTURERS SPECIFICATIONS.
- 17) EXISTING CABINETS TO BE REMOVED.




| -                       | -    | O I I TOVELLE A ST. I TOVELLE |                    | PROFESSIONAL ENGINEER SEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |        |                         |                                                        |   |
|-------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|-------------------------|--------------------------------------------------------|---|
| B N                     | TE:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | - 44 5 6 5 5 E B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |                         |                                                        |   |
|                         |      | WIRELESS COMMUNICATIONS FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | CONNECTION CONNECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |        |                         |                                                        |   |
| 19                      |      | BOZRAH-1/RT. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (203) 488-0580     | TO SECOND STATE OF SECOND STAT |            |        |                         |                                                        |   |
| NO <sup>-</sup><br>027. | /08, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (203) 488-8587 Fax | The state of the s |            |        |                         |                                                        |   |
| 17                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | THE SEGON OF THE PARTY OF THE P |            |        |                         |                                                        |   |
| -                       |      | IN I Y I I CH OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Transcend Wireless | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107/28/21  | 21 ANC | TJR C                   | CONSTRUCTION DOCUMENTS - REVISED PER CLIENT'S COMMENTS |   |
| _                       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | ANOIS THE STATE OF | 0 07/23/21 | 21 TJL | TJR C                   | CONSTRUCTION DOCUMENTS - ISSUED FOR CONSTRUCTION       |   |
| <br>                    |      | DOZNAM, CT UGSSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | www.CeniekEng.com  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REV. DATE  | DRAWN  | BY CHK'D BY DESCRIPTION | SCRIPTION                                              |   |
|                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |                         |                                                        | 1 |

ELECTRICAL RISER
DIAGRAM AND
CONDUIT ROUTING


E-1

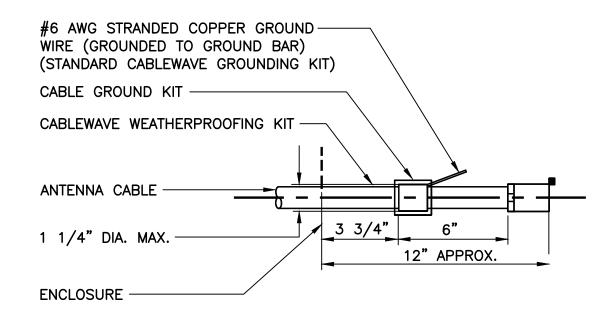
Sheet No. <u>8</u> of



1 CONNECTION OF GROUND WIRES TO GROUND BAR

| E-2 | SCALE: NOT TO SCALE




# **NOTES**

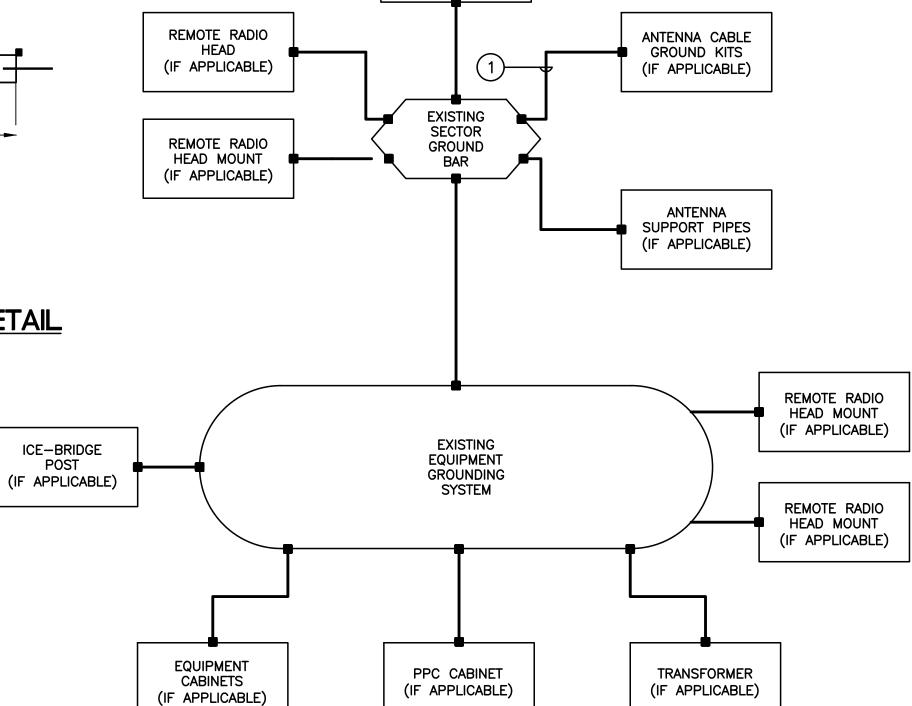
- TINNED COPPER GROUND BAR, 1/4" x 4" x 20", NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.
- (2) INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4.
- (3) 5/8" LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.
- 4) WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056.
- 5/8-11 x 1" STAINLESS STEEL TRUSS SPANNER MACHINE SCREWS.



**GROUND BAR DETAIL** 

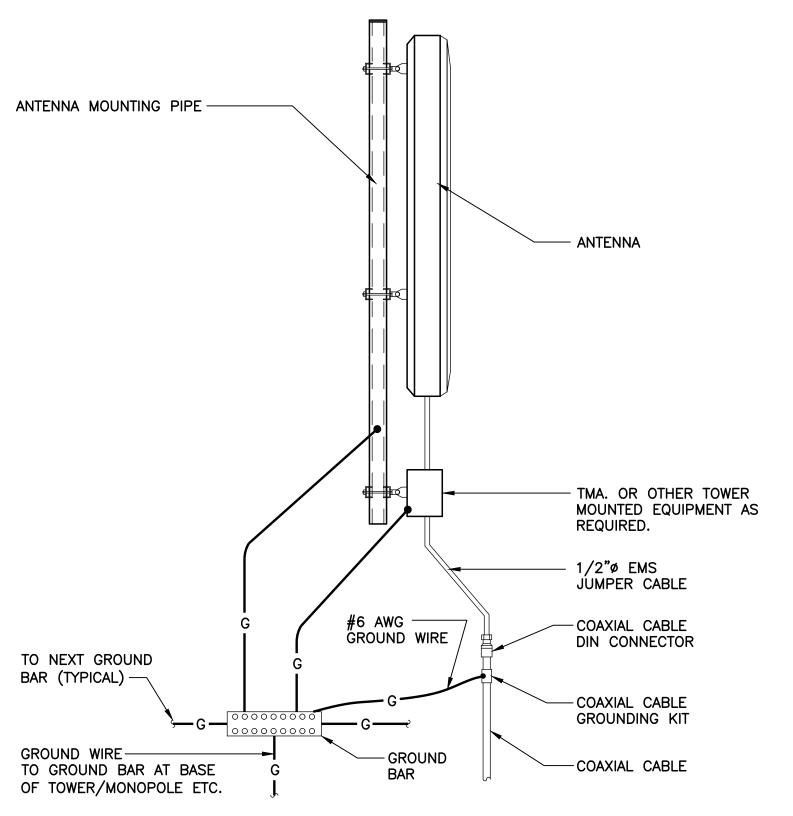
SCALE: NOT TO SCALE



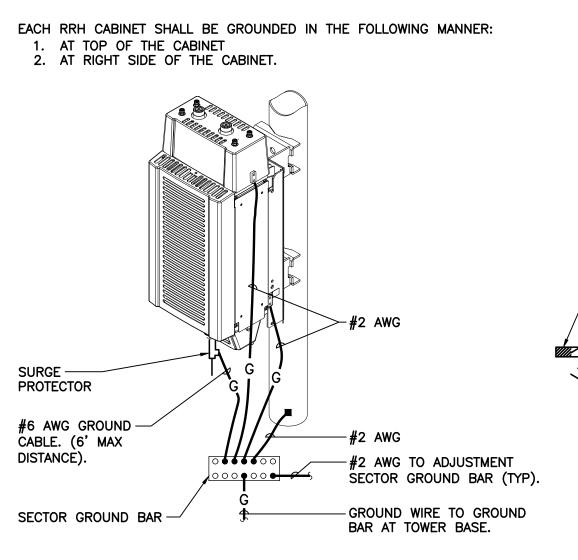

NOTES:

 DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.

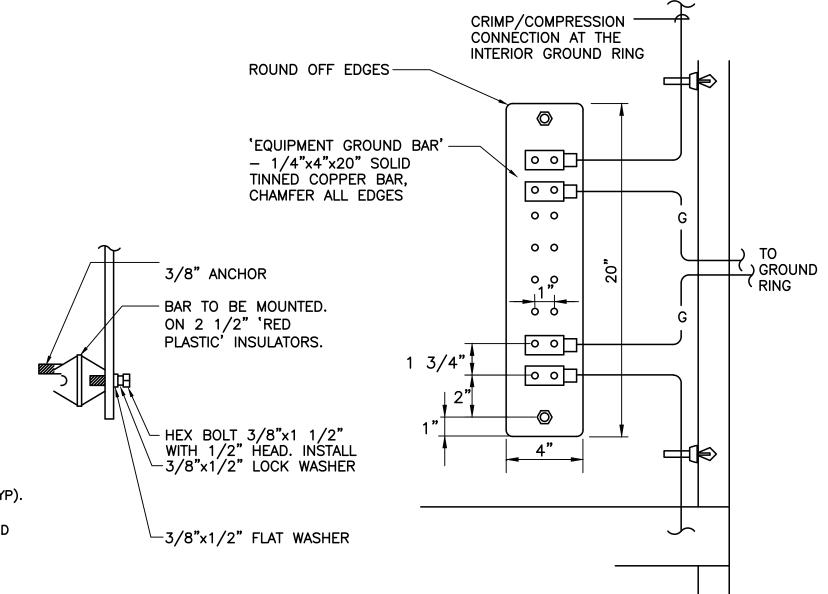



ANTENNA CABLE GROUNDING DETAIL

SCALE: NOT TO SCALE




CABLE TRAY


(IF APPLICABLE)











6 EQUIPMENT GROUND BAR DETAIL

SCALE: NOT TO SCALE

# GROUNDING SCHEMATIC NOTES

1 #6 AWG

GENERAL NOTES:

1. ALL SURGE SUPPRESSION EQUIPMENT SHALL BE BONDED TO GROUND PER MANUFACTURER'S SPECIFICATIONS

- 2. UNLESS OTHERWISE NOTED OR REQUIRED BY CODE, GROUND CONDUCTORS SHOWN SHALL BE #2 AWG (SOLID TINNED BCW EXTERIOR; STRANDED GREEN INSULATED INTERIOR).
- 3. BOND CABLE TRAY SECTIONS TOGETHER WITH #6 AWG STRANDED GREEN INSULATED JUMPERS.
- SOLID TINNED BCW.

  5. BOND ALL EQUIPMENT CABINETS AND BATTERY CABINETS TO GROUND

4. ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG

6. REFER TO ALL ELECTRICAL AND GROUNDING DETAILS.

PER MANUFACTURER'S SPECIFICATIONS.

- 7. COORDINATE ALL ROOF MOUNTED EQUIPMENT WITH OWNER.
- 8. ALL ROOF MOUNTED AMPLIFIERS AND ASSOCIATED EQUIPMENT SHALL BE BONDED TO THE SECTOR GROUND BAR PER MANUFACTURER'S SPECIFICATIONS.
- 9. ALL GROUNDING SHALL BE IN ACCORDANCE WITH NEC AND OWNER'S REQUIREMENTS.





# **ELECTRICAL SPECIFICATIONS**

# **SECTION 16010**

1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
- 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

# SECTION 16111

1.01. CONDUITS

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

|                                  | CONDUI                        | F SCHEDULE SECTION 16111                                                                                                |                                                           |
|----------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| CONDUIT TYPE                     | NEC REFERENCE                 | APPLICATION                                                                                                             | MIN. BURIAL DEPTH (PER<br>NEC TABLE 300.5) <sup>2,3</sup> |
| EMT                              | ARTICLE 358                   | INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS                                                                          | N/A                                                       |
| RMC, RIGID GALV.<br>STEEL        | ARTICLE 344,<br>300.5, 300.50 | ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.                                                       | 6 INCHES                                                  |
| PVC, SCHEDULE 40                 | ARTICLE 352,<br>300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. 1 | 18 INCHES                                                 |
| PVC, SCHEDULE 80                 | ARTICLE 352,<br>300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. 1     | 18 INCHES                                                 |
| LIQUID TIGHT FLEX.<br>METAL      | ARTICLE 350                   | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.                                               | N/A                                                       |
| FLEX. METAL                      | ARTICLE 348                   | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.                                               | N/A                                                       |
| 1 PHYSICAL DAMAGE IS SU          | BJECT TO THE AUTHO            | RITY HAVING JURISDICTION.                                                                                               |                                                           |
| <sup>2</sup> UNDERGROUND CONDUIT | INSTALLED UNDER RDA           | ADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HA                                                                         | VE MINIMUM DEPTH OF 24".                                  |

<sup>3</sup> WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED

RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2' OF CONCRETE EXTENDING DOWN TO ROCK.

# **SECTION 16123**

1.01. CONDUCTORS

A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT—BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:

120/208/240V 277/480V

LINE COLOR COLOR

A BLACK BROWN

B RED ORANGE

C BLUE YELLOW

N CONTINUOUS WHITE GREY

G CONTINUOUS GREEN GREEN WITH YELLOW STRIPE

B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

# **SECTION 16130**

- 1.01. BOXES
- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

# <u>SECTION 16140</u>

- 1.01. WIRING DEVICES
  - A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
  - 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
  - 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE
  - 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
  - 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
  - B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
  - C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

# **SECTION 16170**

1.01. DISCONNECT SWITCHES

A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

# SECTION 16190

1.01. SEISMIC RESTRAINT

A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

# SECTION 16195

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT
- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT.
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

# **SECTION 16450**

1.01. GROUNDING

- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- C. GROUNDING OF PANELBOARDS:
- 1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT CORROSION.
- 2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).
- D. EQUIPMENT GROUNDING CONDUCTOR:
- 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
- 3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S).
- E. CELLULAR GROUNDING SYSTEM:

CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

- 1. GROUND BARS
- 2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED).
- 3. ANTENNA GROUND CONNECTIONS AND PLATES.
- F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.
- G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

# SECTION 16470

1.01. DISTRIBUTION EQUIPMENT

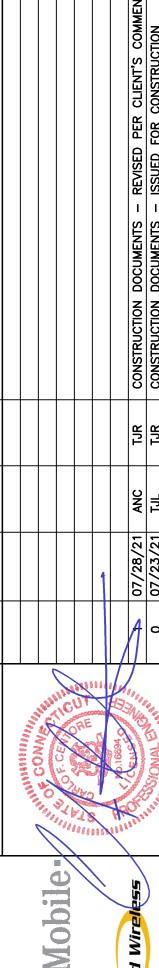
A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

# **SECTION 16477**

.01. FUSES

A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

# **SECTION 16960**


1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:
- TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.
- TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.
- THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:
- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.

# <u>SECTION 16961</u>

1.01. TESTS BY CONTRACTOR

- A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.
- B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.
- C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.



Centered on Solutions \*\*

[203] 488-0580
[203] 488-8587 Fax
63-2 North Branford Road
Branford, CT 06405

Transcend Wireless

0

BOZRAH-1/RT. 2
SITE ID: CT11258B
10 POLLY LANE
BOZRAH, CT 06336

HEAST

DATE: 05/08/19

SCALE: AS NOTED

JOB NO. 19027.17

ELECTRICAL SPECIFICATIONS

Sheet No. <u>10</u>



Report Date: June 22, 2021

Client: Everest Infrastructure Partners

Two Allegheny Center Pittsburgh, PA 15212 Attn: Thomas Rigg (603) 498-7462

tom.rigg@everestinfrastructure.com

**Structure:** Modified 187-ft Guyed Tower

Site Name: Bozrah Polly Lane

Site Reference #: 701695 Site Address: 10 Polly Lane

City, County, State: Bozrah, New London County, CT

**Latitude, Longitude:** 41.573333°, -72.203333°

**PJF Project:** A00019-0431.004.8700\_R1

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the tower stress level

#### **Analysis Criteria:**

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 135 mph converted to a nominal 3-second gust wind speed of 104 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.000 and Risk Category II was used in this analysis.

#### **Proposed Appurtenance Loads:**

The structure was analyzed with the proposed loading configuration shown in Table 1 combined with the other considered equipment shown in Table 2 of this report.

#### **Summary of Analysis Results:**

Existing Structure: Pass – 87.9% Existing Foundation: Pass – 83.8%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Everest Infrastructure Partners. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

Anthony Pelino, E.I. Structural Designer apelino@pauljford.com

SFM

.06.23

:33-04'00'

#### **TABLE OF CONTENTS**

#### 1) INTRODUCTION

#### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

#### 3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

#### 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity

4.1) Recommendations

#### 5) APPENDIX A

tnxTower Output

#### 6) APPENDIX B

**Base Level Drawing** 

#### 7) APPENDIX C

**Additional Calculations** 

#### 1) INTRODUCTION

This tower is a 187 ft Guyed tower designed by Fred A. Nudd Corporation.

The tower has been modified per reinforcement drawings prepared by Paul J. Ford in March of 2020. Reinforcement consists of expanding the Base Foundation by adding concrete.

#### 2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-G

Risk Category:

Wind Speed: 105 mph

Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Seismic Ss:
NA
Seismic S1:
NA
Service Wind Speed:

B
0.75 in
0.75 in
NA
NA
60 mph

**Table 1 - Proposed Equipment Configuration** 

| Mounting<br>Level (ft) | Flevation | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                         | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |  |
|------------------------|-----------|--------------------------|-------------------------|---------------------------------------|----------------------------|---------------------------|--|
|                        |           | 3                        | ericsson                | RADIO 4415                            |                            |                           |  |
|                        |           |                          | 3                       | ericsson                              | RADIO 4415 B66A            |                           |  |
|                        |           |                          |                         | 3                                     | ericsson                   | RADIO 4449 B12/B71        |  |
| 177.0                  | 177.0     | 3                        | rfs celwave             | APXVAALL24_43-U-NA20 w/<br>Mount Pipe | 3                          | 1-3/8                     |  |
|                        |           | 3                        | tower mounts            | 8' x 2" Sch 40 Pipe Mount             |                            |                           |  |
|                        |           | 3                        | commscope               | SF-QV12-B [SM 502-3]                  |                            |                           |  |

Table 2 - Other Considered Equipment

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                          | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |  |
|------------------------|-------------------------------------|--------------------------|-------------------------|----------------------------------------|----------------------------|---------------------------|--|
|                        |                                     | 6                        | cci antennas            | DMP65R-BU8D w/ Mount Pipe              |                            |                           |  |
|                        |                                     | 3                        | ericsson                | RRUS 4449 B5/B12                       |                            | Line                      |  |
|                        |                                     | 3                        | ericsson                | RRUS 4478 B14                          |                            |                           |  |
|                        |                                     | 3                        | ericsson                | RRUS 8843 B2/B66A                      | 12                         | 1 5/0                     |  |
| 187.0                  | 187.0                               | 3                        | powerwave technologies  | 7770.00 w/ Mount Pipe                  | 1 2 2                      | 1-3/8                     |  |
|                        |                                     | 6                        | powerwave technologies  | LGP 17201                              | _                          |                           |  |
|                        |                                     | 2                        | raycap                  | DC6-48-60-18-8F                        |                            |                           |  |
|                        |                                     | 1                        | tower mounts            | Sector Mount [SM 801-3]                |                            |                           |  |
|                        |                                     | 3                        | alcatel lucent          | 1900 MHz 4x45W RRH                     |                            |                           |  |
|                        |                                     | 3                        | alcatel lucent          | RRH 8x20W + Solar Shield               |                            |                           |  |
|                        |                                     |                          | 6                       | alcatel lucent                         | RRH2x50-WCS                |                           |  |
| 150.0                  | 150.0                               | 3                        | commscope               | DT465B-2XR w/ Mount Pipe               | 4                          | 1/4                       |  |
|                        |                                     | 3                        | rfs celwave             | APXV9ERR18-C-A20 w/ Mount<br>Pipe      |                            |                           |  |
|                        |                                     | 1                        | tower mounts            | Sector Mount [SM 502-3]                |                            |                           |  |
|                        |                                     | 3                        | antel                   | BXA-171085-8CF-EDIN-X w/<br>Mount Pipe |                            |                           |  |
| 400.0                  | 400.0                               | 3                        | antel                   | BXA-70063/6CF-EDIN w/ Mount<br>Pipe    | 40                         | 4.5/0                     |  |
| 136.0                  | 136.0                               | 6                        | antel                   | LPA-80080-4CF-EDIN-0 w/<br>Mount Pipe  | 12                         | 1-5/8                     |  |
|                        |                                     | 6                        | rfs celwave             | FD9R6004/2C-3L                         |                            |                           |  |
|                        |                                     | 1                        | tower mounts            | Sector Mount [SM 502-3]                |                            |                           |  |

#### 3) ANALYSIS PROCEDURE

**Table 3 - Documents Provided** 

| Document                     | Remarks                                 | Reference                   | Source  |
|------------------------------|-----------------------------------------|-----------------------------|---------|
| Foundation Mapping Report    | TEP, 11/20/2019                         | 133845.318836               | Everest |
| Geotechnical Report          | TEP, 8/24/2009                          | 080004.46E                  | Everest |
| Previous Structural Analysis | Fred A. Nudd Corporation,<br>12/28/2017 | 117-23243.4                 | Everest |
| Tower Modification Drawings  | Paul J. Ford, 3/12/020                  | A00019-<br>0431.002.8800_R1 | Everest |
| Construction Drawings        | Centek Engineering, 5/8/2019            | 19027.17                    | Everest |
| Collocation Application      | Everest, 2/18/2021                      | -                           | Everest |

#### 3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

#### 3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) The structure was modified in conformance with the referenced modification drawings as shown in the referenced post modification inspection.
- 4) The guy anchor foundation drawings were not available at the time of analysis. Therefore, we have assumed the material grades, guy rod information, and reinforcing steel information provided in the previous structural analysis report, referenced in Table 3, are correct.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

#### 4) ANALYSIS RESULTS

**Table 4 - Section Capacity (Summary)** 

| Section<br>No. | Elevation (ft) | Component Type | Size                     | Critical<br>Element | P (K)  | SF*P_allow<br>(K) | %<br>Capacity | Pass / Fail |
|----------------|----------------|----------------|--------------------------|---------------------|--------|-------------------|---------------|-------------|
| T1             | 187 - 180      | Leg            | P2.875"x0.203" (2.5 STD) | 3                   | -17.03 | 74.72             | 22.8          | Pass        |
| T2             | 180 - 160      | Leg            | P2.875"x0.203" (2.5 STD) | 25                  | -67.04 | 79.61             | 84.2          | Pass        |
| Т3             | 160 - 140      | Leg            | P2.875"x0.203" (2.5 STD) | 86                  | -67.12 | 79.61             | 84.3          | Pass        |
| T4             | 140 - 120      | Leg            | P2.875"x0.203" (2.5 STD) | 146                 | -69.30 | 79.61             | 87.1          | Pass        |
| T5             | 120 - 100      | Leg            | P2.875"x0.203" (2.5 STD) | 206                 | -66.96 | 79.61             | 84.1          | Pass        |
| T6             | 100 - 80       | Leg            | P2.875"x0.203" (2.5 STD) | 267                 | -53.59 | 79.61             | 67.3          | Pass        |
| T7             | 80 - 60        | Leg            | P2.875"x0.203" (2.5 STD) | 327                 | -55.35 | 79.61             | 69.5          | Pass        |
| Т8             | 60 - 40        | Leg            | P2.875"x0.203" (2.5 STD) | 387                 | -61.56 | 79.61             | 77.3          | Pass        |
| Т9             | 40 - 20        | Leg            | P2.875"x0.203" (2.5 STD) | 447                 | -63.59 | 79.61             | 79.9          | Pass        |
| T10            | 20 - 0         | Leg            | P2.875"x0.203" (2.5 STD) | 505                 | -63.66 | 79.61             | 80.0          | Pass        |
| T1             | 187 - 180      | Diagonal       | 5/8                      | 13                  | 7.81   | 9.94              | 78.6          | Pass        |
| T2             | 180 - 160      | Diagonal       | C3x4.1                   | 39                  | -5.74  | 31.24             | 18.4          | Pass        |
| Т3             | 160 - 140      | Diagonal       | 5/8                      | 142                 | 6.85   | 9.94              | 68.9          | Pass        |
| T4             | 140 - 120      | Diagonal       | 5/8                      | 166                 | 4.62   | 9.94              | 46.4          | Pass        |
| T5             | 120 - 100      | Diagonal       | 5/8                      | 261                 | 6.12   | 9.94              | 61.5          | Pass        |
| T6             | 100 - 80       | Diagonal       | 5/8                      | 322                 | 3.75   | 9.94              | 37.7          | Pass        |
| T7             | 80 - 60        | Diagonal       | 5/8                      | 336                 | 4.10   | 9.94              | 41.2          | Pass        |
| Т8             | 60 - 40        | Diagonal       | 5/8                      | 439                 | 4.19   | 9.94              | 42.1          | Pass        |
| Т9             | 40 - 20        | Diagonal       | 5/8                      | 458                 | 3.63   | 9.94              | 36.5          | Pass        |
| T10            | 20 - 0         | Diagonal       | 5/8                      | 517                 | 4.62   | 9.94              | 46.4          | Pass        |
| T1             | 187 - 180      | Horizontal     | L 1.5 x 1.5 x 3/16       | 16                  | -6.32  | 7.19              | 87.9          | Pass        |
| T2             | 180 - 160      | Horizontal     | L 1.5 x 1.5 x 3/16       | 67                  | -3.11  | 7.19              | 43.2          | Pass        |
| Т3             | 160 - 140      | Horizontal     | L 1.5 x 1.5 x 3/16       | 137                 | -5.29  | 7.19              | 73.6          | Pass        |
| T4             | 140 - 120      | Horizontal     | L 1.5 x 1.5 x 3/16       | 169                 | -4.90  | 7.19              | 68.2          | Pass        |

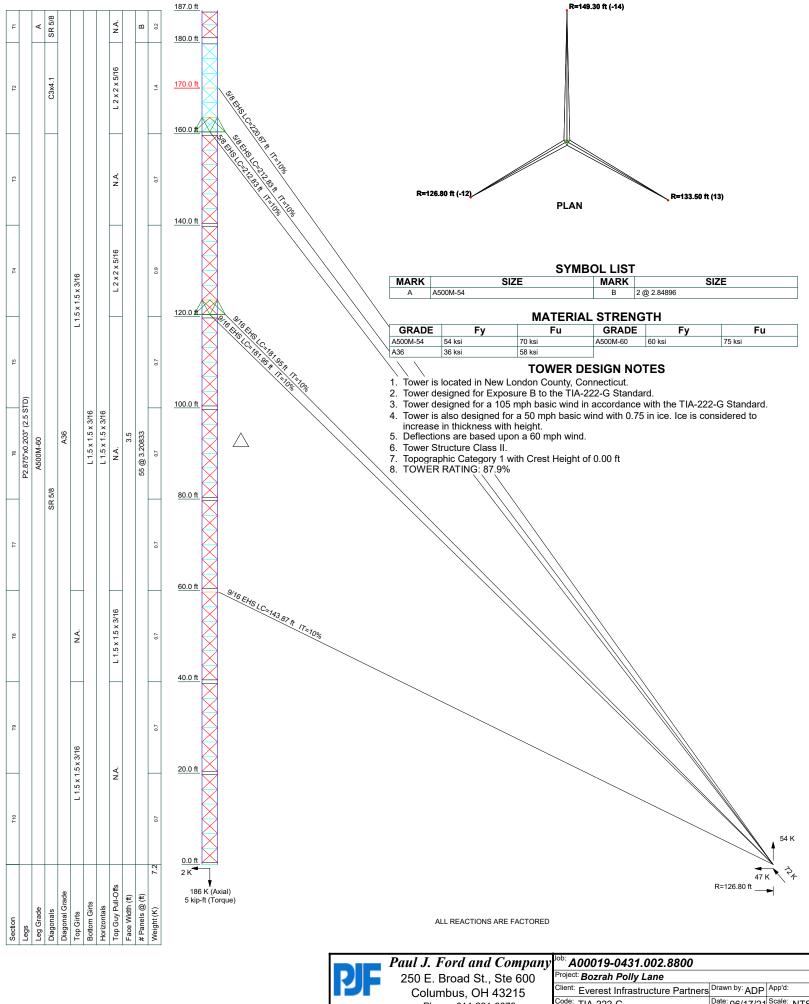
| Section<br>No. | Elevation (ft) | Component Type               | Size               | Critical<br>Element | P (K) | SF*P_allow<br>(K) | %<br>Capacity | Pass / Fail |
|----------------|----------------|------------------------------|--------------------|---------------------|-------|-------------------|---------------|-------------|
| T5             | 120 - 100      | Horizontal                   | L 1.5 x 1.5 x 3/16 | 257                 | -4.17 | 7.19              | 58.1          | Pass        |
| T6             | 100 - 80       | Horizontal                   | L 1.5 x 1.5 x 3/16 | 282                 | -3.74 | 7.19              | 52.0          | Pass        |
| T7             | 80 - 60        | Horizontal                   | L 1.5 x 1.5 x 3/16 | 378                 | -3.62 | 7.19              | 50.4          | Pass        |
| T8             | 60 - 40        | Horizontal                   | L 1.5 x 1.5 x 3/16 | 400                 | -3.59 | 7.19              | 50.0          | Pass        |
| T9             | 40 - 20        | Horizontal                   | L 1.5 x 1.5 x 3/16 | 462                 | -3.77 | 7.19              | 52.5          | Pass        |
| T10            | 20 - 0         | Horizontal                   | L 1.5 x 1.5 x 3/16 | 558                 | -3.63 | 7.19              | 50.5          | Pass        |
| T1             | 187 - 180      | Top Girt                     | L 1.5 x 1.5 x 3/16 | 4                   | -4.24 | 7.19              | 59.0          | Pass        |
| T2             | 180 - 160      | Top Girt                     | L 1.5 x 1.5 x 3/16 | 30                  | -1.16 | 7.19              | 16.1          | Pass        |
| Т3             | 160 - 140      | Top Girt                     | L 1.5 x 1.5 x 3/16 | 89                  | -4.06 | 7.19              | 56.4          | Pass        |
| T4             | 140 - 120      | Top Girt                     | L 1.5 x 1.5 x 3/16 | 149                 | -2.63 | 7.19              | 36.6          | Pass        |
| T5             | 120 - 100      | Top Girt                     | L 1.5 x 1.5 x 3/16 | 210                 | -3.42 | 7.19              | 47.5          | Pass        |
| T6             | 100 - 80       | Top Girt                     | L 1.5 x 1.5 x 3/16 | 269                 | -2.18 | 7.19              | 30.3          | Pass        |
| T7             | 80 - 60        | Top Girt                     | L 1.5 x 1.5 x 3/16 | 330                 | -2.03 | 7.19              | 28.2          | Pass        |
| Т9             | 40 - 20        | Top Girt                     | L 1.5 x 1.5 x 3/16 | 448                 | -1.79 | 7.19              | 24.9          | Pass        |
| T10            | 20 - 0         | Top Girt                     | L 1.5 x 1.5 x 3/16 | 510                 | -2.06 | 7.19              | 28.7          | Pass        |
| T1             | 187 - 180      | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 7                   | -4.65 | 7.19              | 64.7          | Pass        |
| T2             | 180 - 160      | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 33                  | 5.93  | 17.09             | 34.7          | Pass        |
| Т3             | 160 - 140      | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 91                  | -2.41 | 7.19              | 33.6          | Pass        |
| T4             | 140 - 120      | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 152                 | -4.43 | 7.19              | 61.6          | Pass        |
| T5             | 120 - 100      | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 213                 | -2.14 | 7.19              | 29.8          | Pass        |
| T6             | 100 - 80       | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 271                 | -1.88 | 7.19              | 26.1          | Pass        |
| T7             | 80 - 60        | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 333                 | -1.79 | 7.19              | 24.9          | Pass        |
| T8             | 60 - 40        | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 393                 | -2.12 | 7.19              | 29.5          | Pass        |
| Т9             | 40 - 20        | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 453                 | -1.85 | 7.19              | 25.7          | Pass        |
| T10            | 20 - 0         | Bottom Girt                  | L 1.5 x 1.5 x 3/16 | 512                 | -0.38 | 7.19              | 5.3           | Pass        |
| T2             | 180 - 160      | Guy A@160.375                | 5/8                | 577                 | 14.17 | 25.44             | 55.7          | Pass        |
|                |                | Guy A@170                    | 5/8                | 606                 | 14.95 | 25.44             | 58.7          | Pass        |
| T4             | 140 - 120      | Guy A@120.375                | 9/16               | 595                 | 8.35  | 21.00             | 39.8          | Pass        |
| T8             | 60 - 40        | Guy A@59.625                 | 9/16               | 603                 | 7.95  | 21.00             | 37.9          | Pass        |
| T2             | 180 - 160      | Guy B@160.375                | 5/8                | 572                 | 13.90 | 25.44             | 54.6          | Pass        |
|                |                | Guy B@170                    | 5/8                | 605                 | 14.88 | 25.44             | 58.5          | Pass        |
| T4             | 140 - 120      | Guy B@120.375                | 9/16               | 590                 | 8.84  | 21.00             | 42.1          | Pass        |
| T8             | 60 - 40        | Guy B@59.625                 | 9/16               | 602                 | 9.11  | 21.00             | 43.4          | Pass        |
| T2             | 180 - 160      | Guy C@160.375                | 5/8                | 566                 | 15.50 | 25.44             | 60.9          | Pass        |
| Í              |                | Guy C@170                    | 5/8                | 604                 | 16.12 | 25.44             | 63.4          | Pass        |
| T4             | 140 - 120      | Guy C@120.375                | 9/16               | 583                 | 9.82  | 21.00             | 46.8          | Pass        |
| T8             | 60 - 40        | Guy C@59.625                 | 9/16               | 601                 | 9.06  | 21.00             | 43.2          | Pass        |
| T2             | 180 - 160      | Top Guy Pull-<br>Off@160.375 | L 2 x 2 x 5/16     | 41                  | 10.55 | 37.26             | 28.3          | Pass        |
|                |                | Top Guy Pull-<br>Off@170     | L 1.5 x 1.5 x 3/16 | 60                  | 4.79  | 17.09             | 28.0          | Pass        |
| T4             | 140 - 120      | Top Guy Pull-<br>Off@120.375 | L 2 x 2 x 5/16     | 162                 | -7.15 | 21.94             | 32.6          | Pass        |
| Т8             | 60 - 40        | Top Guy Pull-<br>Off@59.625  | L 1.5 x 1.5 x 3/16 | 388                 | -1.22 | 6.70              | 18.2          | Pass        |
| T2             | 180 - 160      | Torque Arm                   | L 3 x 3 x 1/4      | 567                 | 15.05 | 46.58             | 32.3          | Pass        |
| T4             | 140 - 120      | Torque Arm<br>Top@120.375    | L 3 x 3 x 1/4      | 585                 | 8.46  | 46.58             | 18.2          | Pass        |

| Section<br>No. | Elevation (ft) | Component Type               | Size          | Critical<br>Element | P (K)  | SF*P_allow<br>(K)           | %<br>Capacity | Pass / Fail |
|----------------|----------------|------------------------------|---------------|---------------------|--------|-----------------------------|---------------|-------------|
| T2             | 180 - 160      | Torque Arm<br>Bottom@160.375 | L 3 x 3 x 1/4 | 575                 | -12.66 | 36.39                       | 34.8          | Pass        |
| T4             | 140 - 120      | Torque Arm<br>Bottom@120.375 | L 3 x 3 x 1/4 | 593                 | -7.76  | 36.39                       | 21.3          | Pass        |
|                |                |                              |               |                     |        |                             | Summary       |             |
|                |                |                              |               |                     |        | Leg (T4)                    | 87.1          | Pass        |
|                |                |                              |               |                     |        | Diagonal<br>(T1)            | 78.6          | Pass        |
|                |                |                              |               |                     |        | Horizontal<br>(T1)          | 87.9          | Pass        |
|                |                |                              |               |                     |        | Top Girt<br>(T1)            | 59.0          | Pass        |
|                |                |                              |               |                     |        | Bottom Girt<br>(T1)         | 64.7          | Pass        |
|                |                |                              |               |                     |        | Guy A (T2)                  | 58.7          | Pass        |
|                |                |                              |               |                     |        | Guy B (T2)                  | 58.5          | Pass        |
|                |                |                              |               |                     |        | Guy C (T2)                  | 63.4          | Pass        |
|                |                |                              |               |                     |        | Top Guy<br>Pull-Off<br>(T4) | 32.6          | Pass        |
|                |                |                              |               |                     |        | Torque Arm<br>Top (T2)      | 32.3          | Pass        |
|                |                |                              |               |                     |        | Torque Arm<br>Bottom (T2)   | 34.8          | Pass        |
|                |                |                              |               |                     |        | Bolt Checks                 | 21.9          | Pass        |
|                |                |                              |               |                     |        | Rating =                    | 87.9          | Pass        |

**Table 5 - Tower Component Stresses vs. Capacity** 

| Notes | Component                              | Elevation (ft) | % Capacity | Pass / Fail |
|-------|----------------------------------------|----------------|------------|-------------|
| 1     | Base Foundation Structural             | -              | 0.4        | Pass        |
| 1     | Base Foundation Soil Interaction       | -              | 63.8       | Pass        |
| 1     | Guy Anchor Shaft                       | -              | 77.5       | Pass        |
| 1     | Guy Anchor Foundation Structural       | -              | 41.8       | Pass        |
| 1     | Guy Anchor Foundation Soil Interaction | -              | 83.8       | Pass        |

| Structure Rating (max from all components) = 87.9% |
|----------------------------------------------------|
|----------------------------------------------------|


Notes:

#### 4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

<sup>1)</sup> See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

# APPENDIX A TNXTOWER OUTPUT



Date: 06/17/21 Scale: NTS Code: TIA-222-G Phone: 614-221-6679 Dwg No. E-1 FAX:

#### **Tower Input Data**

The main tower is a 3x guyed tower with an overall height of 187.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.50 ft at the top and 3.50 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- Tower is located in New London County, Connecticut.
- Basic wind speed of 105 mph.
- Structure Class II.
- Exposure Category B.
- Topographic Category 1.
- Crest Height 0.00 ft.
- Nominal ice thickness of 0.7500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- Tension only take-up is 0.0313 in.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.
- Safety factor used in guy design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

#### **Options**

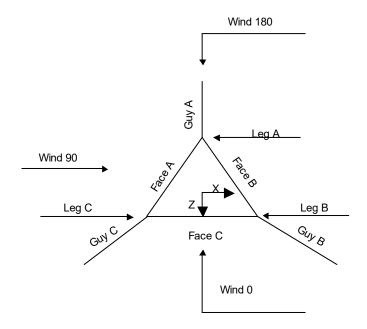
Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
   Always Use Max Kz
   Use Special Wind Profile
- √ Include Bolts In Member Capacity
- √ Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
  Use Diamond Inner Bracing (4 Sided)
  SR Members Have Cut Ends
  SR Members Are Concentric

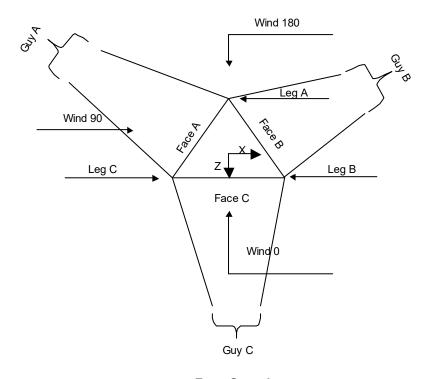
Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.
- √ Autocalc Torque Arm Areas

Add IBC .6D+W Combination


- √ Sort Capacity Reports By Component
- √ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
- All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption


  Use TIA-222-G Tension Splice
  - Use TIA-222-G Tension Splice Exemption

#### Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known



**Corner & Starmount Guyed Tower** 



Face Guyed

| <b>Tower Section Geometry</b> | / |
|-------------------------------|---|
|-------------------------------|---|

| Tower   | Tower         | Assembly | Description | Section | Number   | Section |
|---------|---------------|----------|-------------|---------|----------|---------|
| Section | Elevation     | Database | •           | Width   | of       | Length  |
|         |               |          |             |         | Sections | . 3     |
|         | ft            |          |             | ft      |          | ft      |
| T1      | 187.00-180.00 |          |             | 3.50    | 1        | 7.00    |
| T2      | 180.00-160.00 |          |             | 3.50    | 1        | 20.00   |
| Т3      | 160.00-140.00 |          |             | 3.50    | 1        | 20.00   |
| T4      | 140.00-120.00 |          |             | 3.50    | 1        | 20.00   |
| T5-T6   | 120.00-80.00  |          |             | 3.50    | 2        | 20.00   |
| T7      | 80.00-60.00   |          |             | 3.50    | 1        | 20.00   |
| T8-T10  | 60.00-0.00    |          |             | 3.50    | 3        | 20.00   |

| Tower<br>Section | Tower<br>Elevation | Diagonal<br>Spacing | Bracing<br>Type | Has<br>K Brace<br>End | Has<br>Horizontals | Top Girt<br>Offset | Bottom Gin<br>Offset |
|------------------|--------------------|---------------------|-----------------|-----------------------|--------------------|--------------------|----------------------|
|                  | ft                 | ft                  |                 | Panels                |                    | in                 | in                   |
| T1               | 187.00-180.00      | 2.85                | TX Brace        | No                    | Yes                | 3.7500             | 11.8750              |
| T2               | 180.00-160.00      | 3.21                | X Brace         | No                    | Yes                | 4.5000             | 4.5000               |
| T3               | 160.00-140.00      | 3.21                | TX Brace        | No                    | Yes                | 4.5000             | 4.5000               |
| T4               | 140.00-120.00      | 3.21                | TX Brace        | No                    | Yes                | 4.5000             | 4.5000               |
| T5-T6            | 120.00-80.00       | 3.21                | TX Brace        | No                    | Yes                | 4.5000             | 4.5000               |
| T7               | 80.00-60.00        | 3.21                | TX Brace        | No                    | Yes                | 4.5000             | 4.5000               |

| Tower<br>Section | Tower<br>Elevation | Diagonal<br>Spacing | Bracing<br>Type | Has<br>K Brace<br>End | Has<br>Horizontals | Top Girt<br>Offset | Bottom Girt<br>Offset |
|------------------|--------------------|---------------------|-----------------|-----------------------|--------------------|--------------------|-----------------------|
|                  | ft                 | ft                  |                 | Panels                |                    | in                 | in                    |
| T8-T10           | 60.00-0.00         | 3.21                | TX Brace        | No                    | Yes                | 4.5000             | 4.5000                |

| Tower                 | Leg  | Leg                      | Leg                  | Diagonal    | Diagonal | Diagonal                       |
|-----------------------|------|--------------------------|----------------------|-------------|----------|--------------------------------|
| Elevation<br>ft       | Type | Size                     | Grade                | Туре        | Size     | Grade                          |
| T1 187.00-<br>180.00  | Pipe | P2.875"x0.203" (2.5 STD) | A500M-54<br>(54 ksi) | Solid Round | 5/8      | A36<br>(36 ksi)                |
| T2 180.00-<br>160.00  | Pipe | P2.875"x0.203" (2.5 STD) | A500M-60<br>(60 ksi) | Channel     | C3x4.1   | A36 (36 ksi)                   |
| T3 160.00-<br>140.00  | Pipe | P2.875"x0.203" (2.5 STD) | A500M-60<br>(60 ksi) | Solid Round | 5/8      | A36 (36 ksi)                   |
| T4 140.00-<br>120.00  | Pipe | P2.875"x0.203" (2.5 STD) | AŠ00M-60<br>(60 ksi) | Solid Round | 5/8      | ` A36 <sup>′</sup><br>(36 ksi) |
| T5-T6<br>120.00-80.00 | Pipe | P2.875"x0.203" (2.5 STD) | A500M-60<br>(60 ksi) | Solid Round | 5/8      | `A36 ´<br>(36 ksi)             |
| T7 80.00-60.00        | Pipe | P2.875"x0.203" (2.5 STD) | A500M-60<br>(60 ksi) | Solid Round | 5/8      | ` A36 <sup>′</sup><br>(36 ksi) |
| T8-T10<br>60.00-0.00  | Pipe | P2.875"x0.203" (2.5 STD) | A500M-60<br>(60 ksi) | Solid Round | 5/8      | A36<br>(36 ksi)                |

| Tower                 | Top Girt    | Top Girt           | Top Girt                       | Bottom Girt | Bottom Girt        | Bottom Girt                    |
|-----------------------|-------------|--------------------|--------------------------------|-------------|--------------------|--------------------------------|
| Elevation<br>ft       | Туре        | Size               | Grade                          | Type        | Size               | Grade                          |
| T1 187.00-<br>180.00  | Equal Angle | L 1.5 x 1.5 x 3/16 | A36<br>(36 ksi)                | Equal Angle | L 1.5 x 1.5 x 3/16 | A36<br>(36 ksi)                |
| T2 180.00-<br>160.00  | Equal Angle | L 1.5 x 1.5 x 3/16 | A36 (36 ksi)                   | Equal Angle | L 1.5 x 1.5 x 3/16 | A36 (36 ksi)                   |
| T3 160.00-<br>140.00  | Equal Angle | L 1.5 x 1.5 x 3/16 | A36 (36 ksi)                   | Equal Angle | L 1.5 x 1.5 x 3/16 | A36 (36 ksi)                   |
| T4 140.00-<br>120.00  | Equal Angle | L 1.5 x 1.5 x 3/16 | `A36 ´<br>(36 ksi)             | Equal Angle | L 1.5 x 1.5 x 3/16 | ` A36 <sup>′</sup><br>(36 ksi) |
| T5-T6<br>120.00-80.00 | Equal Angle | L 1.5 x 1.5 x 3/16 | `A36 <sup>′</sup><br>(36 ksi)  | Equal Angle | L 1.5 x 1.5 x 3/16 | ` A36 <sup>′</sup><br>(36 ksi) |
| T7 80.00-60.00        | Equal Angle | L 1.5 x 1.5 x 3/16 | `A36 <sup>′</sup><br>(36 ksi)  | Equal Angle | L 1.5 x 1.5 x 3/16 | ` A36 <sup>′</sup><br>(36 ksi) |
| T8-T10<br>60.00-0.00  | Equal Angle | L 1.5 x 1.5 x 3/16 | ` A36 <sup>′</sup><br>(36 ksi) | Equal Angle | L 1.5 x 1.5 x 3/16 | ` A36 <sup>′</sup><br>(36 ksi) |

# **Tower Section Geometry** (cont'd)

| Tower      | No.   | Mid Girt | Mid Girt | Mid Girt | Horizontal  | Horizontal         | Horizontal |
|------------|-------|----------|----------|----------|-------------|--------------------|------------|
| Elevation  | of    | Type     | Size     | Grade    | Type        | Size               | Grade      |
|            | Mid   | • ·      |          |          | • •         |                    |            |
| ft         | Girts |          |          |          |             |                    |            |
| T1 187.00- | None  | Flat Bar |          | A36      | Equal Angle | L 1.5 x 1.5 x 3/16 | A36        |
| 180.00     |       |          |          | (36 ksi) |             |                    | (36 ksi)   |
| T2 180.00- | None  | Flat Bar |          | A36      | Equal Angle | L 1.5 x 1.5 x 3/16 | A36        |
| 160.00     |       |          |          | (36 ksi) |             |                    | (36 ksi)   |
| T3 160.00- | None  | Flat Bar |          | A36      | Equal Angle | L 1.5 x 1.5 x 3/16 | A36        |
| 140.00     |       |          |          | (36 ksi) |             |                    | (36 ksi)   |
| T4 140.00- | None  | Flat Bar |          | A36      | Equal Angle | L 1.5 x 1.5 x 3/16 | A36        |
| 120.00     |       |          |          | (36 ksi) | . •         |                    | (36 ksi)   |

tnxTower Report - version 8.0.9.0

| Tower<br>Elevation | No.<br>of | Mid Girt<br>Type | Mid Girt<br>Size | Mid Girt<br>Grade | Horizontal<br>Type | Horizontal<br>Size | Horizontal<br>Grade |
|--------------------|-----------|------------------|------------------|-------------------|--------------------|--------------------|---------------------|
|                    | Mid       |                  |                  |                   |                    |                    |                     |
| ft                 | Girts     |                  |                  |                   |                    |                    |                     |
| T5-T6              | None      | Flat Bar         |                  | A36               | Equal Angle        | L 1.5 x 1.5 x 3/16 | A36                 |
| 120.00-80.00       |           |                  |                  | (36 ksi)          | . •                |                    | (36 ksi)            |
| T7 80.00-60.00     | None      | Flat Bar         |                  | `A36 ´            | Equal Angle        | L 1.5 x 1.5 x 3/16 | `A36 ´              |
|                    |           |                  |                  | (36 ksi)          | . •                |                    | (36 ksi)            |
| T8-T10             | None      | Flat Bar         |                  | `A36 <sup>^</sup> | Equal Angle        | L 1.5 x 1.5 x 3/16 | A36                 |
| 60.00-0.00         |           |                  |                  | (36 ksi)          | . 0                |                    | (36 ksi)            |

| Tower        | Gusset             | Gusset    | Gusset Grade | Adjust. Factor | Adjust.                  | Weight Mult. | Double Angle                        | Double Angle                          | Double Angle                         |
|--------------|--------------------|-----------|--------------|----------------|--------------------------|--------------|-------------------------------------|---------------------------------------|--------------------------------------|
| Elevation    | Area<br>(per face) | Thickness |              | $A_f$          | Factor<br>A <sub>r</sub> | J            | Stitch Bolt<br>Spacing<br>Diagonals | Stitch Bolt<br>Spacing<br>Horizontals | Stitch Bolt<br>Spacing<br>Redundants |
| ft           | ft <sup>2</sup>    | in        |              |                |                          |              | in                                  | in                                    | in                                   |
| T1 187.00-   | 0.00               | 0.0000    | A36          | 1              | 1                        | 1            | 36.0000                             | 36.0000                               | 36.0000                              |
| 180.00       |                    |           | (36 ksi)     |                |                          |              |                                     |                                       |                                      |
| T2 180.00-   | 0.00               | 0.0000    | A36          | 1              | 1                        | 1            | 36.0000                             | 36.0000                               | 36.0000                              |
| 160.00       |                    |           | (36 ksi)     |                |                          |              |                                     |                                       |                                      |
| T3 160.00-   | 0.00               | 0.0000    | A36          | 1              | 1                        | 1            | 36.0000                             | 36.0000                               | 36.0000                              |
| 140.00       |                    |           | (36 ksi)     |                |                          |              |                                     |                                       |                                      |
| T4 140.00-   | 0.00               | 0.0000    | A36          | 1              | 1                        | 1            | 36.0000                             | 36.0000                               | 36.0000                              |
| 120.00       |                    |           | (36 ksi)     |                |                          |              |                                     |                                       |                                      |
| T5-T6        | 0.00               | 0.0000    | A36          | 1              | 1                        | 1            | 36.0000                             | 36.0000                               | 36.0000                              |
| 120.00-80.00 |                    |           | (36 ksi)     |                |                          |              |                                     |                                       |                                      |
| T7 80.00-    | 0.00               | 0.0000    | A36          | 1              | 1                        | 1            | 36.0000                             | 36.0000                               | 36.0000                              |
| 60.00        |                    |           | (36 ksi)     |                |                          |              |                                     |                                       |                                      |
| T8-T10       | 0.00               | 0.0000    | A36          | 1              | 1                        | 1            | 36.0000                             | 36.0000                               | 36.0000                              |
| 60.00-0.00   |                    |           | (36 ksi)     |                |                          |              |                                     |                                       |                                      |

|                    |                     |                    |      |                     |                     | K Fad           | ctors1 |        |                |                |
|--------------------|---------------------|--------------------|------|---------------------|---------------------|-----------------|--------|--------|----------------|----------------|
| Tower<br>Elevation | Calc<br>K<br>Single | Calc<br>K<br>Solid | Legs | X<br>Brace<br>Diags | K<br>Brace<br>Diags | Single<br>Diags | Girts  | Horiz. | Sec.<br>Horiz. | Inner<br>Brace |
|                    | Angles              | Rounds             |      | X                   | X                   | X               | X      | X      | X              | X              |
| ft                 |                     |                    |      | Υ                   | Υ                   | Y               | Y      | Y      | Y              | Y              |
| T1 187.00-         | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| 180.00             |                     |                    |      | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| T2 180.00-         | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| 160.00             |                     |                    |      | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| T3 160.00-         | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| 140.00             |                     |                    |      | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| T4 140.00-         | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| 120.00             |                     |                    |      | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| T5-T6              | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| 120.00-            |                     |                    |      | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| 80.00              |                     |                    |      |                     |                     |                 |        |        |                |                |
| T7 80.00-          | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| 60.00              |                     |                    |      | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| T8-T10             | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |
| 60.00-0.00         |                     |                    |      | 1                   | 1                   | 1               | 1      | 1      | 1              | 1              |

<sup>&</sup>lt;sup>1</sup>Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

# **Tower Section Geometry** (cont'd)

| Tower<br>Elevation<br>ft | Leg                       |   | Leg Diagonal                 |      | Тор С                     | Top Girt |                              | Bottom Girt |                              | Mid Girt |                              | rizontal | Short Horizontal             |      |
|--------------------------|---------------------------|---|------------------------------|------|---------------------------|----------|------------------------------|-------------|------------------------------|----------|------------------------------|----------|------------------------------|------|
|                          | Net Width<br>Deduct<br>in | U | Net<br>Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U        | Net<br>Width<br>Deduct<br>in | U           | Net<br>Width<br>Deduct<br>in | U        | Net<br>Width<br>Deduct<br>in | U        | Net<br>Width<br>Deduct<br>in | U    |
| T1 187.00-<br>180.00     | 0.0000                    | 1 | 0.0000                       | 0.75 | 0.0000                    | 0.75     | 0.0000                       | 0.75        | 0.0000                       | 0.75     | 0.0000                       | 0.75     | 0.0000                       | 0.75 |
| T2 180.00-<br>160.00     | 0.0000                    | 1 | 0.0000                       | 0.75 | 0.0000                    | 0.75     | 0.0000                       | 0.75        | 0.0000                       | 0.75     | 0.0000                       | 0.75     | 0.0000                       | 0.75 |
| T3 160.00-<br>140.00     | 0.0000                    | 1 | 0.0000                       | 0.75 | 0.0000                    | 0.75     | 0.0000                       | 0.75        | 0.0000                       | 0.75     | 0.0000                       | 0.75     | 0.0000                       | 0.75 |
| T4 140.00-<br>120.00     | 0.0000                    | 1 | 0.0000                       | 0.75 | 0.0000                    | 0.75     | 0.0000                       | 0.75        | 0.0000                       | 0.75     | 0.0000                       | 0.75     | 0.0000                       | 0.75 |
| T5-T6<br>120.00-80.00    | 0.0000                    | 1 | 0.0000                       | 0.75 | 0.0000                    | 0.75     | 0.0000                       | 0.75        | 0.0000                       | 0.75     | 0.0000                       | 0.75     | 0.0000                       | 0.75 |
| T7 80.00-<br>60.00       | 0.0000                    | 1 | 0.0000                       | 0.75 | 0.0000                    | 0.75     | 0.0000                       | 0.75        | 0.0000                       | 0.75     | 0.0000                       | 0.75     | 0.0000                       | 0.75 |
| T8-T10<br>60.00-0.00     | 0.0000                    | 1 | 0.0000                       | 0.75 | 0.0000                    | 0.75     | 0.0000                       | 0.75        | 0.0000                       | 0.75     | 0.0000                       | 0.75     | 0.0000                       | 0.75 |

| Tower<br>Elevation<br>ft |                           |      | Horizontal Diagonal          |      | Redundant Sub-<br>Diagonal Horizontal |      |                              | Redundant<br>Vertical |                              | Redundant Hip |                              | Redundant Hip<br>Diagonal |                              |      |
|--------------------------|---------------------------|------|------------------------------|------|---------------------------------------|------|------------------------------|-----------------------|------------------------------|---------------|------------------------------|---------------------------|------------------------------|------|
|                          | Net Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in             | U    | Net<br>Width<br>Deduct<br>in | U                     | Net<br>Width<br>Deduct<br>in | U             | Net<br>Width<br>Deduct<br>in | U                         | Net<br>Width<br>Deduct<br>in | U    |
| T1 187.00-<br>180.00     | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                                | 0.75 | 0.0000                       | 0.75                  | 0.0000                       | 0.75          | 0.0000                       | 0.75                      | 0.0000                       | 0.75 |
| T2 180.00-<br>160.00     | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                                | 0.75 | 0.0000                       | 0.75                  | 0.0000                       | 0.75          | 0.0000                       | 0.75                      | 0.0000                       | 0.75 |
| T3 160.00-<br>140.00     | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                                | 0.75 | 0.0000                       | 0.75                  | 0.0000                       | 0.75          | 0.0000                       | 0.75                      | 0.0000                       | 0.75 |
| T4 140.00-<br>120.00     | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                                | 0.75 | 0.0000                       | 0.75                  | 0.0000                       | 0.75          | 0.0000                       | 0.75                      | 0.0000                       | 0.75 |
| T5-T6<br>120.00-80.00    | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                                | 0.75 | 0.0000                       | 0.75                  | 0.0000                       | 0.75          | 0.0000                       | 0.75                      | 0.0000                       | 0.75 |
| T7 80.00-<br>60.00       | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                                | 0.75 | 0.0000                       | 0.75                  | 0.0000                       | 0.75          | 0.0000                       | 0.75                      | 0.0000                       | 0.75 |
| T8-T10<br>60.00-0.00     | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                                | 0.75 | 0.0000                       | 0.75                  | 0.0000                       | 0.75          | 0.0000                       | 0.75                      | 0.0000                       | 0.75 |

| Tower           | Leg                | Leg       |     | Diagor    | nal | Top G     | irt | Bottom    | Girt | Mid G     | irt | Long Horiz | zontal | Shor      |      |
|-----------------|--------------------|-----------|-----|-----------|-----|-----------|-----|-----------|------|-----------|-----|------------|--------|-----------|------|
| Elevation<br>ft | Connection<br>Type | -         |     |           |     |           |     |           |      |           |     |            |        | Horizor   | ntal |
|                 |                    | Bolt Size | No.  | Bolt Size | No. | Bolt Size  | No.    | Bolt Size | No.  |
|                 |                    | in        |     | in        |     | in        |     | in        |      | in        |     | in         |        | in        |      |
| T1 187.00-      | Flange             | 0.7500    | 4   | 0.6250    | 0   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250     | 0      | 0.6250    | 0    |
| 180.00          | _                  | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N      |        | A325N     |      |
| T2 180.00-      | Flange             | 0.7500    | 4   | 0.6250    | 0   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250     | 0      | 0.6250    | 0    |
| 160.00          |                    | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N      |        | A325N     |      |
| T3 160.00-      | Flange             | 0.7500    | 4   | 0.6250    | 0   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250     | 0      | 0.6250    | 0    |
| 140.00          |                    | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N      |        | A325N     |      |
| T4 140.00-      | Flange             | 0.7500    | 4   | 0.6250    | 0   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250     | 0      | 0.6250    | 0    |
| 120.00          |                    | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N      |        | A325N     |      |
| T5-T6           | Flange             | 0.7500    | 4   | 0.6250    | 0   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250     | 0      | 0.6250    | 0    |
| 120.00-80.00    | )                  | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N      |        | A325N     |      |
| T7 80.00-       | Flange             | 0.7500    | 4   | 0.6250    | 0   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250     | 0      | 0.6250    | 0    |
| 60.00           |                    | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N      |        | A325N     |      |
| T8-T10          | Flange             | 0.7500    | 4   | 0.6250    | 0   | 0.6250    | 0   | 0.6250    | 0    | 0.6250    | 0   | 0.6250     | 0      | 0.6250    | 0    |
| 60.00-0.00      |                    | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N      |        | A325N     |      |

| Guy | <b>Data</b> |
|-----|-------------|
|-----|-------------|

| Guy<br>Elevation | Guy<br>Grade |   | Guy<br>Size | Initial<br>Tension | %   | Guy<br>Modulus | Guy<br>Weight | Lu     | Anchor<br>Radius | Anchor<br>Azimuth<br>Adj. | Anchor<br>Elevation | End<br>Fitting<br>Efficiency |
|------------------|--------------|---|-------------|--------------------|-----|----------------|---------------|--------|------------------|---------------------------|---------------------|------------------------------|
| ft               |              |   |             | K                  |     | ksi            | plf           | ft     | ft               | 0                         | ft                  | %                            |
| 160.375          | EHS          | Α | 5/8         | 4.24               | 10% | 23000          | 0.813         | 228.10 | 149.30           | 0.0000                    | -14.00              | 100%                         |
|                  |              | В | 5/8         | 4.24               | 10% | 23000          | 0.813         | 197.38 | 133.50           | 0.0000                    | 13.00               | 100%                         |
|                  |              | С | 5/8         | 4.24               | 10% | 23000          | 0.813         | 212.66 | 126.80           | 0.0000                    | -12.00              | 100%                         |
| 120.375          | EHS          | Α | 9/16        | 3.50               | 10% | 23000          | 0.671         | 199.25 | 149.30           | 0.0000                    | -14.00              | 100%                         |
|                  |              | В | 9/16        | 3.50               | 10% | 23000          | 0.671         | 169.66 | 133.50           | 0.0000                    | 13.00               | 100%                         |
|                  |              | С | 9/16        | 3.50               | 10% | 23000          | 0.671         | 181.81 | 126.80           | 0.0000                    | -12.00              | 100%                         |
| 59.625           | EHS          | Α | 9/16        | 3.50               | 10% | 23000          | 0.671         | 164.53 | 149.30           | 0.0000                    | -14.00              | 100%                         |
|                  |              | В | 9/16        | 3.50               | 10% | 23000          | 0.671         | 139.40 | 133.50           | 0.0000                    | 13.00               | 100%                         |
|                  |              | С | 9/16        | 3.50               | 10% | 23000          | 0.671         | 143.76 | 126.80           | 0.0000                    | -12.00              | 100%                         |
| 170              | EHS          | Α | 5/8         | 4.24               | 10% | 23000          | 0.813         | 235.50 | 149.30           | 0.0000                    | -14.00              | 100%                         |
|                  |              | В | 5/8         | 4.24               | 10% | 23000          | 0.813         | 204.63 | 133.50           | 0.0000                    | 13.00               | 100%                         |
|                  |              | С | 5/8         | 4.24               | 10% | 23000          | 0.813         | 220.50 | 126.80           | 0.0000                    | -12.00              | 100%                         |

# Guy Data(cont'd)

| Guy<br>Elevation<br>ft | Mount<br>Type | Torque-Arm<br>Spread | Torque-Arm<br>Leg Angle | Torque-Arm<br>Style | Torque-Arm<br>Grade | Torque-Arm<br>Type | Torque-Arm Size |
|------------------------|---------------|----------------------|-------------------------|---------------------|---------------------|--------------------|-----------------|
|                        |               | ft                   | ۰                       |                     |                     |                    |                 |
| 160.375                | Torque Arm    | 7.00                 | 30.0000                 | Dog Ear             | A36<br>(36 ksi)     | Single Angle       | L 3 x 3 x 1/4   |
| 120.375                | Torque Arm    | 7.00                 | 30.0000                 | Dog Ear             | A36<br>(36 ksi)     | Single Angle       | L 3 x 3 x 1/4   |
| 59.625                 | Corner        |                      |                         |                     | . ,                 |                    |                 |
| 170                    | Corner        |                      |                         |                     |                     |                    |                 |

# Guy Data (cont'd)

| Guy<br>Elevation<br>ft | Diagonal<br>Grade   | Diagonal<br>Type | Upper Diagonal<br>Size | Lower Diagonal<br>Size | Is<br>Strap. | Pull-Off<br>Grade              | Pull-Off Type | Pull-Off Size      |
|------------------------|---------------------|------------------|------------------------|------------------------|--------------|--------------------------------|---------------|--------------------|
| 160.38                 | A572-50<br>(50 ksi) | Solid Round      |                        |                        | No           | A36<br>(36 ksi)                | Equal Angle   | L 2 x 2 x 5/16     |
| 120.38                 | A572-50<br>(50 ksi) | Solid Round      |                        |                        | No           | A36<br>(36 ksi)                | Equal Angle   | L 2 x 2 x 5/16     |
| 59.63                  | A572-50<br>(50 ksi) | Solid Round      |                        |                        | No           | A36 (36 ksi)                   | Equal Angle   | L 1.5 x 1.5 x 3/16 |
| 170.00                 | À572-50<br>(50 ksi) | Solid Round      |                        |                        | No           | ` A36 <sup>′</sup><br>(36 ksi) | Equal Angle   | L 1.5 x 1.5 x 3/16 |

# Guy Data (cont'd)

| Guy<br>Elevation | Cable<br>Weight<br>A | Cable<br>Weight<br>B | Cable<br>Weight<br>C | Cable<br>Weight<br>D | Tower<br>Intercept<br>A | Tower<br>Intercept<br>B | Tower<br>Intercept<br>C | Tower<br>Intercept<br>D |
|------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| ft               | K                    | K                    | K                    | K                    | ft                      | ft                      | ft                      | ft                      |
| 160.375          | 0.19                 | 0.16                 | 0.17                 |                      | 4.91                    | 3.69                    | 4.27                    |                         |

| Guy<br>Elevation | Cable<br>Weight<br>A | Cable<br>Weight<br>B | Cable<br>Weight<br>C | Cable<br>Weight<br>D | Tower<br>Intercept<br>A | Tower<br>Intercept<br>B | Tower<br>Intercept<br>C | Tower<br>Intercept<br>D |
|------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| ft               | K                    | K                    | K                    | K                    | ft                      | ft                      | ft                      | ft                      |
|                  |                      |                      |                      |                      | 3.8                     | 3.3                     | 3.6 sec/pulse           |                         |
|                  |                      |                      |                      |                      | sec/pulse               | sec/pulse               |                         |                         |
| 120.375          | 0.13                 | 0.11                 | 0.12                 |                      | 3.76                    | 2.73                    | 3.13                    |                         |
|                  |                      |                      |                      |                      | 3.3                     | 2.9                     | 3.1 sec/pulse           |                         |
|                  |                      |                      |                      |                      | sec/pulse               | sec/pulse               |                         |                         |
| 59.625           | 0.11                 | 0.09                 | 0.10                 |                      | 2.58                    | 1.86                    | 1.97                    |                         |
|                  |                      |                      |                      |                      | 2.8                     | 2.4                     | 2.4 sec/pulse           |                         |
|                  |                      |                      |                      |                      | sec/pulse               | sec/pulse               | ·                       |                         |
| 170              | 0.19                 | 0.17                 | 0.18                 |                      | 5.23                    | 3.96                    | 4.59                    |                         |
|                  |                      |                      |                      |                      | 3.9                     | 3.4                     | 3.7 sec/pulse           |                         |
|                  |                      |                      |                      |                      | sec/pulse               | sec/pulse               | ·                       |                         |

# Guy Data (cont'd)

|                        |                               |                              | Torque Arm     |                | Pul            | l Off          | Diagonal       |                |  |
|------------------------|-------------------------------|------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Guy<br>Elevation<br>ft | Calc<br>K<br>Single<br>Angles | Calc<br>K<br>Solid<br>Rounds | K <sub>x</sub> | K <sub>y</sub> | K <sub>x</sub> | K <sub>y</sub> | K <sub>x</sub> | K <sub>y</sub> |  |
| 160.375                | No                            | No                           | 1              | 1              | 1              | 1              | 1              | 1              |  |
| 120.375                | No                            | No                           | 1              | 1              | 1              | 1              | 1              | 1              |  |
| 59.625                 | No                            | No                           |                |                | 1              | 1              | 1              | 1              |  |
| 170                    | No                            | No                           |                |                | 1              | 1              | 1              | 1              |  |

# Guy Data (cont'd)

|                        | Torque-Arm      |        |                           |      | Pull Off        |        |                           |      |                 | Diagonal |                           |      |  |
|------------------------|-----------------|--------|---------------------------|------|-----------------|--------|---------------------------|------|-----------------|----------|---------------------------|------|--|
| Guy<br>Elevation<br>ft | Bolt Size<br>in | Number | Net Width<br>Deduct<br>in | U    | Bolt Size<br>in | Number | Net Width<br>Deduct<br>in | U    | Bolt Size<br>in | Number   | Net Width<br>Deduct<br>in | U    |  |
| 160.375                | 0.0000<br>A325N | 0      | 0.0000                    | 1    | 0.6250<br>A325N | 0      | 0.0000                    | 0.75 | 0.6250<br>A325N | 0        | 0.0000                    | 0.75 |  |
| 120.375                | 0.0000<br>A325N | 0      | 0.0000                    | 1    | 0.6250<br>A325N | 0      | 0.0000                    | 0.75 | 0.6250<br>A325N | 0        | 0.0000                    | 0.75 |  |
| 59.625                 | 0.6250<br>A325N | 0      | 0.0000                    | 0.75 | 0.6250<br>A325N | 0      | 0.0000                    | 0.75 | 0.6250<br>A325N | 0        | 0.0000                    | 0.75 |  |
| 170                    | 0.6250<br>A325N | 0      | 0.0000                    | 0.75 | 0.6250<br>A325N | 0      | 0.0000                    | 0.75 | 0.6250<br>A325N | 0        | 0.0000                    | 0.75 |  |

# **Guy Pressures**

| Guy<br>Elevation | Guy<br>Location | Z     | qz  | q <sub>z</sub><br>Ice | Ice<br>Thickness |
|------------------|-----------------|-------|-----|-----------------------|------------------|
| ft               |                 | ft    | psf | psf                   | in               |
| 160.375          | Α               | 73.19 | 22  | 5                     | 1.6244           |
|                  | В               | 86.69 | 23  | 5                     | 1.6521           |
|                  | С               | 74.19 | 22  | 5                     | 1.6266           |
| 120.375          | Α               | 53.19 | 20  | 4                     | 1.5733           |
|                  | В               | 66.69 | 21  | 5                     | 1.6093           |
|                  | С               | 54.19 | 20  | 5                     | 1.5763           |
| 59.625           | Α               | 22.81 | 17  | 4                     | 1.4456           |
|                  | В               | 36.31 | 18  | 4                     | 1.5144           |
|                  | С               | 23.81 | 17  | 4                     | 1.4518           |
| 170              | Α               | 78.00 | 22  | 5                     | 1.6347           |
|                  | В               | 91.50 | 23  | 5                     | 1.6610           |
|                  | С               | 79.00 | 22  | 5                     | 1.6368           |

# Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description                                   | Face<br>or<br>Leg | Allow<br>Shield | Exclude<br>From<br>Torque<br>Calculation | Componen<br>t<br>Type | Placement<br>ft  | Face<br>Offset<br>in | Lateral<br>Offset<br>(Frac FW) | #  | #<br>Per<br>Row | Clear<br>Spacin<br>g<br>in | Width or<br>Diameter<br>in | Perimete<br>r<br>in | Weight<br>plf |
|-----------------------------------------------|-------------------|-----------------|------------------------------------------|-----------------------|------------------|----------------------|--------------------------------|----|-----------------|----------------------------|----------------------------|---------------------|---------------|
| FDH1206-<br>24S50-xxM(1<br>3/8)<br>(T-Mobile) | Α                 | No              | No                                       | Ar (CaAa)             | 182.00 -<br>0.00 | 0.0000               | 0.1                            | 3  | 3               | 1.0000<br>1.4300           | 1.4300                     |                     | 1.63          |
| FXL-1480(1-<br>1/4)<br>(Sprint)               | В                 | No              | No                                       | Ar (CaAa)             | 150.00 -<br>0.00 | 0.0000               | 0.25                           | 4  | 4               | 1.0000<br>1.5700           | 1.5700                     |                     | 0.45          |
| AVA7-50(1-<br>5/8)<br>(AT&T)                  | В                 | No              | No                                       | Ar (CaAa)             | 187.00 -<br>0.00 | 0.0000               | 0.25                           | 12 | 4               | 1.0000<br>2.0100           | 2.0100                     |                     | 0.70          |
| AVA7-50(1-<br>5/8)<br>(Verizon)               | Α                 | No              | No                                       | Ar (CaAa)             | 136.00 -<br>0.00 | 0.0000               | 0.4                            | 12 | 6               | 1.0000<br>2.0100           | 2.0100                     |                     | 0.70          |
| .66" Fiber<br>(AT&T)                          | В                 | No              | No                                       | Ar (CaAa)             | 187.00 -<br>0.00 | 0.0000               | 0.25                           | 2  | 2               | 0.6600                     | 0.6600                     |                     | 0.40          |
| FDH1206-<br>24S50-<br>xxM(1-3/8)<br>(AT&T)    | В                 | No              | No                                       | Ar (CaAa)             | 187.00 -<br>0.00 | 0.0000               | 0.25                           | 1  | 1               | 1.4300                     | 1.4300                     |                     | 1.63          |
| 3" Conduit (2<br>1/2" EMT)<br>(AT&T)<br>***** | В                 | No              | No                                       | Ar (CaAa)             | 187.00 -<br>0.00 | 0.0000               | 0.25                           | 1  | 1               | 2.8750                     | 2.8750                     |                     | 2.16          |
| Safety Line<br>3/8<br>*****                   | С                 | No              | No                                       | Ar (CaAa)             | 187.00 -<br>0.00 | 0.5000               | 0                              | 1  | 1               | 0.3750                     | 0.3750                     |                     | 0.22          |

| Discrete  | Tower | l nade |
|-----------|-------|--------|
| 1116(7616 | IOWEI | 1 0208 |

| Description                                                     | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                                           | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|-----------------------------------------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|-------------------------------------------|----------------------------------------|---------------------------------------|----------------------|
|                                                                 |                   |                | ft<br>ft<br>ft                      | ۰                         | ft        |                                           | ft²                                    | ft²                                   | K                    |
| ***187***<br>(2) DMP65R-BU8D_TIA w/<br>Mount Pipe<br>(P - AT&T) | Α                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice                     | 18.11<br>18.84<br>19.59                | 10.26<br>11.78<br>13.33               | 0.14<br>0.26<br>0.39 |
| (2) DMP65R-BU8D_TIA w/<br>Mount Pipe<br>(P - AT&T)              | В                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 187.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 18.11<br>18.84<br>19.59                | 10.26<br>11.78<br>13.33               | 0.14<br>0.26<br>0.39 |
| (2) DMP65R-BU8D_TIA w/<br>Mount Pipe<br>(P - AT&T)              | С                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 187.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 18.11<br>18.84<br>19.59                | 10.26<br>11.78<br>13.33               | 0.14<br>0.26<br>0.39 |
| RRUS 4449 B5/B12<br>(P - AT&T)                                  | Α                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 187.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 1.97<br>2.14<br>2.33                   | 1.41<br>1.56<br>1.73                  | 0.07<br>0.09<br>0.11 |
| RRUS 4449 B5/B12<br>(P - AT&T)                                  | В                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.97<br>2.14<br>2.33                   | 1.41<br>1.56<br>1.73                  | 0.07<br>0.09<br>0.11 |
| RRUS 4449 B5/B12<br>(P - AT&T)                                  | С                 | From Leg       | 4.00<br>0.00                        | 0.0000                    | 187.00    | No Ice<br>1/2"                            | 1.97<br>2.14                           | 1.41<br>1.56                          | 0.07<br>0.09         |

tnxTower Report - version 8.0.9.0

| Description                           | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                 | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|---------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---------------------------------|----------------------------------------|---------------------------------------|----------------------|
|                                       |                   |                | Vert<br>ft<br>ft<br>ft      | ۰                         | ft        |                                 | ft²                                    | ft²                                   | K                    |
|                                       |                   |                | 0.00                        |                           |           | Ice<br>1" Ice                   | 2.33                                   | 1.73                                  | 0.11                 |
| RRUS 8843 B2/B66A<br>(P - AT&T)       | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 1.64<br>1.80<br>1.97                   | 1.35<br>1.50<br>1.65                  | 0.07<br>0.09<br>0.11 |
| RRUS 8843 B2/B66A<br>(P - AT&T)       | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 1.64<br>1.80<br>1.97                   | 1.35<br>1.50<br>1.65                  | 0.07<br>0.09<br>0.11 |
| RRUS 8843 B2/B66A<br>(P - AT&T)       | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 1.64<br>1.80<br>1.97                   | 1.35<br>1.50<br>1.65                  | 0.07<br>0.09<br>0.11 |
| RRUS 4478 B14<br>(P - AT&T)           | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 2.02<br>2.20<br>2.39                   | 1.25<br>1.40<br>1.55                  | 0.06<br>0.08<br>0.10 |
| RRUS 4478 B14<br>(P - AT&T)           | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 2.02<br>2.20<br>2.39                   | 1.25<br>1.40<br>1.55                  | 0.06<br>0.08<br>0.10 |
| RRUS 4478 B14<br>(P - AT&T)           | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 2.02<br>2.20<br>2.39                   | 1.25<br>1.40<br>1.55                  | 0.06<br>0.08<br>0.10 |
| 7770_TIA w/ Mount Pipe<br>(E - AT&T)  | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 5.75<br>6.18<br>6.61                   | 4.25<br>5.01<br>5.71                  | 0.06<br>0.10<br>0.16 |
| 7770_TIA w/ Mount Pipe<br>(E - AT&T)  | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 5.75<br>6.18<br>6.61                   | 4.25<br>5.01<br>5.71                  | 0.06<br>0.10<br>0.16 |
| 7770_TIA w/ Mount Pipe<br>(E - AT&T)  | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 5.75<br>6.18<br>6.61                   | 4.25<br>5.01<br>5.71                  | 0.06<br>0.10<br>0.16 |
| (2) LGP 17201<br>(E - AT&T)           | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 1.67<br>1.83<br>2.00                   | 0.47<br>0.57<br>0.68                  | 0.03<br>0.04<br>0.06 |
| (2) LGP 17201<br>(E - AT&T)           | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 1.67<br>1.83<br>2.00                   | 0.47<br>0.57<br>0.68                  | 0.03<br>0.04<br>0.06 |
| (2) LGP 17201<br>(E - AT&T)           | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 1.67<br>1.83<br>2.00                   | 0.47<br>0.57<br>0.68                  | 0.03<br>0.04<br>0.06 |
| (2) DC6-48-60-18-8F<br>(E - AT&T)     | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 1.21<br>1.89<br>2.11                   | 1.21<br>1.89<br>2.11                  | 0.03<br>0.05<br>0.08 |
| Sector Mount [SM 801-3]<br>(E - AT&T) | С                 | None           |                             | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 20.61<br>29.42<br>38.23                | 20.61<br>29.42<br>38.23               | 0.88<br>1.28<br>1.82 |
| mount mods                            | Α                 | From Leg       | 2.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 4.16<br>5.29<br>6.42                   | 8.47<br>10.84<br>13.22                | 0.24<br>0.27<br>0.29 |
| mount mods                            | В                 | From Leg       | 2.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | No Ice<br>1/2"<br>Ice           | 4.16<br>5.29<br>6.42                   | 8.47<br>10.84<br>13.22                | 0.24<br>0.27<br>0.29 |

| Description                                                      | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                           | $C_AA_A$<br>Front       | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|------------------------------------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|-------------------------------------------|-------------------------|---------------------------------------|----------------------|
|                                                                  |                   |                | Vert<br>ft<br>ft<br>ft      | ۰                         | ft        |                                           | ft²                     | ft²                                   | К                    |
| mount mods                                                       | С                 | From Leg       | 2.00<br>0.00<br>0.00        | 0.0000                    | 187.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 4.16<br>5.29<br>6.42    | 8.47<br>10.84<br>13.22                | 0.24<br>0.27<br>0.29 |
| ***177***<br>APXVAALL24_43-U-<br>NA20_TIA w/ Mount Pipe<br>(TMO) | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 20.48<br>21.23<br>21.99 | 11.02<br>12.55<br>14.10               | 0.19<br>0.32<br>0.47 |
| APXVAALL24_43-U-<br>NA20_TIA w/ Mount Pipe<br>(TMO)              | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 20.48<br>21.23<br>21.99 | 11.02<br>12.55<br>14.10               | 0.19<br>0.32<br>0.47 |
| APXVAALL24_43-U-<br>NA20_TIA w/ Mount Pipe<br>(TMO)              | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 20.48<br>21.23<br>21.99 | 11.02<br>12.55<br>14.10               | 0.19<br>0.32<br>0.47 |
| RADIO 4449 B12/B71<br>(TMO)                                      | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.65<br>1.81<br>1.98    | 1.16<br>1.30<br>1.45                  | 0.07<br>0.09<br>0.11 |
| RADIO 4449 B12/B71<br>(TMO)                                      | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.65<br>1.81<br>1.98    | 1.16<br>1.30<br>1.45                  | 0.07<br>0.09<br>0.11 |
| RADIO 4449 B12/B71<br>(TMO)                                      | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.65<br>1.81<br>1.98    | 1.16<br>1.30<br>1.45                  | 0.07<br>0.09<br>0.11 |
| RADIO 4415<br>(TMO)                                              | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.86<br>2.03<br>2.20    | 0.87<br>1.00<br>1.14                  | 0.05<br>0.06<br>0.08 |
| RADIO 4415<br>(TMO)                                              | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.86<br>2.03<br>2.20    | 0.87<br>1.00<br>1.14                  | 0.05<br>0.06<br>0.08 |
| RADIO 4415<br>(TMO)                                              | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.86<br>2.03<br>2.20    | 0.87<br>1.00<br>1.14                  | 0.05<br>0.06<br>0.08 |
| RADIO 4415 B66A<br>(TMO)                                         | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.86<br>2.03<br>2.20    | 0.87<br>1.00<br>1.13                  | 0.05<br>0.06<br>0.08 |
| RADIO 4415 B66A<br>(TMO)                                         | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.86<br>2.03<br>2.20    | 0.87<br>1.00<br>1.13                  | 0.05<br>0.06<br>0.08 |
| RADIO 4415 B66A<br>(TMO)                                         | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.86<br>2.03<br>2.20    | 0.87<br>1.00<br>1.13                  | 0.05<br>0.06<br>0.08 |
| 8' x 2" Sch 40 Pipe Mount                                        | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.90<br>2.73<br>3.40    | 1.90<br>2.73<br>3.40                  | 0.03<br>0.04<br>0.06 |
| 8' x 2" Sch 40 Pipe Mount                                        | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.90<br>2.73<br>3.40    | 1.90<br>2.73<br>3.40                  | 0.03<br>0.04<br>0.06 |
| 8' x 2" Sch 40 Pipe Mount                                        | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 177.00    | No Ice<br>1/2"<br>Ice                     | 1.90<br>2.73<br>3.40    | 1.90<br>2.73<br>3.40                  | 0.03<br>0.04<br>0.06 |

| Description                                       | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                           | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|---------------------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|-------------------------------------------|----------------------------------------|---------------------------------------|----------------------|
|                                                   |                   |                | Vert<br>ft<br>ft<br>ft      | ۰                         | ft        |                                           | ft²                                    | ft²                                   | K                    |
| Sector Mount [SM 1305-3]<br>(TMO)                 | С                 | None           |                             | 0.0000                    | 177.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 31.68<br>41.02<br>50.37                | 31.68<br>41.02<br>50.37               | 1.25<br>1.94<br>2.79 |
| ***173***<br>***150***                            |                   |                |                             |                           |           |                                           |                                        |                                       |                      |
| APXV9ERR18-C-A20_TIA<br>w/ Mount Pipe<br>(Sprint) | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 8.26<br>8.82<br>9.35                   | 7.47<br>8.66<br>9.56                  | 0.10<br>0.17<br>0.24 |
| APXV9ERR18-C-A20_TIA<br>w/ Mount Pipe<br>(Sprint) | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | No Ice<br>1/2"<br>Ice                     | 8.26<br>8.82<br>9.35                   | 7.47<br>8.66<br>9.56                  | 0.10<br>0.17<br>0.24 |
| APXV9ERR18-C-A20_TIA<br>w/ Mount Pipe<br>(Sprint) | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 8.26<br>8.82<br>9.35                   | 7.47<br>8.66<br>9.56                  | 0.10<br>0.17<br>0.24 |
| DT465B-2XR w/ Mount<br>Pipe<br>(Sprint)           | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 5.50<br>5.97<br>6.45                   | 4.38<br>4.84<br>5.30                  | 0.09<br>0.16<br>0.25 |
| DT465B-2XR w/ Mount<br>Pipe<br>(Sprint)           | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 5.50<br>5.97<br>6.45                   | 4.38<br>4.84<br>5.30                  | 0.09<br>0.16<br>0.25 |
| DT465B-2XR w/ Mount<br>Pipe<br>(Sprint)           | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 5.50<br>5.97<br>6.45                   | 4.38<br>4.84<br>5.30                  | 0.09<br>0.16<br>0.25 |
| 1900 MHz 4x45W RRH<br>(Sprint)                    | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 2.32<br>2.53<br>2.74                   | 2.24<br>2.44<br>2.65                  | 0.06<br>0.08<br>0.11 |
| 1900 MHz 4x45W RRH<br>(Sprint)                    | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 2.32<br>2.53<br>2.74                   | 2.24<br>2.44<br>2.65                  | 0.06<br>0.08<br>0.11 |
| 1900 MHz 4x45W RRH<br>(Sprint)                    | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 2.32<br>2.53<br>2.74                   | 2.24<br>2.44<br>2.65                  | 0.06<br>0.08<br>0.11 |
| RRH 8x20W + Solar Shield<br>(Sprint)              | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 4.05<br>4.30<br>4.56                   | 1.53<br>1.71<br>1.90                  | 0.07<br>0.10<br>0.13 |
| RRH 8x20W + Solar Shield<br>(Sprint)              | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | No Ice<br>1/2"<br>Ice                     | 4.05<br>4.30<br>4.56                   | 1.53<br>1.71<br>1.90                  | 0.07<br>0.10<br>0.13 |
| RRH 8x20W + Solar Shield<br>(Sprint)              | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 4.05<br>4.30<br>4.56                   | 1.53<br>1.71<br>1.90                  | 0.07<br>0.10<br>0.13 |
| (2) RRH2x50-WCS<br>(Sprint)                       | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 4.91<br>5.23<br>5.55                   | 2.70<br>3.00<br>3.30                  | 0.08<br>0.11<br>0.14 |
| (2) RRH2x50-WCS<br>(Sprint)                       | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 4.91<br>5.23<br>5.55                   | 2.70<br>3.00<br>3.30                  | 0.08<br>0.11<br>0.14 |
| (2) RRH2x50-WCS<br>(Sprint)                       | С                 | From Leg       | 4.00<br>0.00                | 0.0000                    | 150.00    | 1" Ice<br>No Ice<br>1/2"                  | 4.91<br>5.23                           | 2.70<br>3.00                          | 0.08<br>0.11         |

| Description                                                      | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                 | $C_A A_A$ Front         | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|------------------------------------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---------------------------------|-------------------------|---------------------------------------|----------------------|
|                                                                  |                   |                | Vert<br>ft<br>ft<br>ft      | •                         | ft        |                                 | ft²                     | ft²                                   | K                    |
|                                                                  |                   |                | 0.00                        |                           |           | Ice<br>1" Ice                   | 5.55                    | 3.30                                  | 0.14                 |
| Sector Mount [SM 502-3]                                          | С                 | None           |                             | 0.0000                    | 150.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 29.82<br>42.21<br>54.43 | 29.82<br>42.21<br>54.43               | 1.67<br>2.27<br>3.05 |
| ***136***<br>(2) LPA-80080-4CF-EDIN-<br>0 w/ Mount Pipe<br>(VZW) | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 2.86<br>3.22<br>3.59    | 6.57<br>7.19<br>7.84                  | 0.03<br>0.08<br>0.13 |
| (2) LPA-80080-4CF-EDIN-<br>0 w/ Mount Pipe<br>(VZW)              | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 2.86<br>3.22<br>3.59    | 6.57<br>7.19<br>7.84                  | 0.03<br>0.08<br>0.13 |
| (2) LPA-80080-4CF-EDIN-<br>0 w/ Mount Pipe<br>(VZW)              | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 2.86<br>3.22<br>3.59    | 6.57<br>7.19<br>7.84                  | 0.03<br>0.08<br>0.13 |
| BXA-70063/6CF_TIA w/<br>Mount Pipe<br>(VZW)                      | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 7.87<br>8.42<br>8.94    | 6.27<br>7.43<br>8.30                  | 0.06<br>0.12<br>0.19 |
| BXA-70063/6CF_TIA w/<br>Mount Pipe<br>(VZW)                      | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 7.87<br>8.42<br>8.94    | 6.27<br>7.43<br>8.30                  | 0.06<br>0.12<br>0.19 |
| BXA-70063/6CF_TIA w/<br>Mount Pipe<br>(VZW)                      | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 7.87<br>8.42<br>8.94    | 6.27<br>7.43<br>8.30                  | 0.06<br>0.12<br>0.19 |
| BXA-171085-8CF-EDIN-X<br>w/ Mount Pipe<br>(VZW)                  | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 3.16<br>3.53<br>3.90    | 3.33<br>3.94<br>4.56                  | 0.03<br>0.06<br>0.10 |
| BXA-171085-8CF-EDIN-X<br>w/ Mount Pipe<br>(VZW)                  | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 3.16<br>3.53<br>3.90    | 3.33<br>3.94<br>4.56                  | 0.03<br>0.06<br>0.10 |
| BXA-171085-8CF-EDIN-X<br>w/ Mount Pipe<br>(VZW)                  | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 3.16<br>3.53<br>3.90    | 3.33<br>3.94<br>4.56                  | 0.03<br>0.06<br>0.10 |
| (2) FD9R6004/2C-3L<br>(VZW)                                      | Α                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 0.31<br>0.39<br>0.47    | 0.08<br>0.12<br>0.17                  | 0.00<br>0.01<br>0.01 |
| (2) FD9R6004/2C-3L<br>(VZW)                                      | В                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 0.31<br>0.39<br>0.47    | 0.08<br>0.12<br>0.17                  | 0.00<br>0.01<br>0.01 |
| (2) FD9R6004/2C-3L<br>(VZW)                                      | С                 | From Leg       | 4.00<br>0.00<br>0.00        | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 0.31<br>0.39<br>0.47    | 0.08<br>0.12<br>0.17                  | 0.00<br>0.01<br>0.01 |
| Sector Mount [SM 502-3]                                          | С                 | None           |                             | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 29.82<br>42.21<br>54.43 | 29.82<br>42.21<br>54.43               | 1.67<br>2.27<br>3.05 |
| ****<br>*                                                        |                   |                |                             |                           |           | 1 100                           |                         |                                       |                      |

# Force Totals (Does not include forces on guys)

| Load<br>Case                        | Vertical<br>Forces<br>K | Sum of<br>Forces<br>X<br>K | Sum of<br>Forces<br>Z<br>K | Sum of<br>Torques |
|-------------------------------------|-------------------------|----------------------------|----------------------------|-------------------|
|                                     |                         |                            |                            | kip-ft            |
| Leg Weight                          | 3.25                    |                            |                            |                   |
| Bracing Weight                      | 3.96                    |                            |                            |                   |
| Total Member Self-Weight            | 7.21                    |                            |                            |                   |
| Guy Weight                          | 2.61                    |                            |                            |                   |
| Total Weight                        | 25.73                   |                            |                            |                   |
| Wind 0 deg - No Ice                 |                         | 0.00                       | -22.50                     | 6.14              |
| Wind 30 deg - No Ice                |                         | 10.92                      | -18.92                     | 5.29              |
| Wind 60 deg - No Ice                |                         | 19.60                      | -11.31                     | 0.72              |
| Wind 90 deg - No Ice                |                         | 23.87                      | 0.00                       | -5.19             |
| Wind 120 deg - No Ice               |                         | 20.96                      | 12.10                      | -8.06             |
| Wind 150 deg - No Ice               |                         | 11.43                      | 19.79                      | -6.87             |
| Wind 180 deg - No Ice               |                         | 0.00                       | 22.10                      | -6.14             |
| Wind 210 deg - No Ice               |                         | -10.92                     | 18.92                      | -5.29             |
| Wind 240 deg - No Ice               |                         | -19.94                     | 11.51                      | -0.72             |
| Wind 270 deg - No Ice               |                         | -23.87                     | 0.00                       | 5.19              |
| Wind 300 deg - No Ice               |                         | -20.61                     | -11.90                     | 8.06              |
| Wind 330 deg - No Ice<br>Member Ice | 19.65                   | -11.43                     | -19.79                     | 6.87              |
| Guy Ice                             | 14.98                   |                            |                            |                   |
| Total Weight Ice                    | 112.72                  |                            |                            |                   |
| Wind 0 deg - Ice                    | 112.72                  | 0.00                       | -8.54                      | 1.63              |
| Wind 30 deg - Ice                   |                         | 4.27                       | -7.39                      | 1.44              |
| Wind 60 deg - Ice                   |                         | 7.56                       | -4.37                      | 0.44              |
| Wind 90 deg - Ice                   |                         | 8.92                       | 0.00                       | -1.03             |
| Wind 120 deg - Ice                  |                         | 7.73                       | 4.46                       | -1.80             |
| Wind 150 deg - Ice                  |                         | 4.33                       | 7.50                       | -1.73             |
| Wind 180 deg - Ice                  |                         | 0.00                       | 8.47                       | -1.63             |
| Wind 210 deg - Ice                  |                         | -4.27                      | 7.39                       | -1.44             |
| Wind 240 deg - Ice                  |                         | -7.62                      | 4.40                       | -0.44             |
| Wind 270 deg - Ice                  |                         | -8.92                      | 0.00                       | 1.03              |
| Wind 300 deg - Ice                  |                         | -7.67                      | -4.43                      | 1.80              |
| Wind 330 deg - Ice                  |                         | -4.33                      | -7.50                      | 1.73              |
| Total Weight                        | 25.73                   |                            |                            |                   |
| Wind 0 deg - Service                |                         | 0.00                       | -7.35                      | 2.01              |
| Wind 30 deg - Service               |                         | 3.57                       | -6.18                      | 1.73              |
| Wind 60 deg - Service               |                         | 6.40                       | -3.69                      | 0.23              |
| Wind 90 deg - Service               |                         | 7.79                       | 0.00                       | -1.70             |
| Wind 120 deg - Service              |                         | 6.85                       | 3.95                       | -2.64             |
| Wind 150 deg - Service              |                         | 3.73                       | 6.46                       | -2.24             |
| Wind 180 deg - Service              |                         | 0.00                       | 7.22                       | -2.01             |
| Wind 210 deg - Service              |                         | -3.57                      | 6.18                       | -1.73             |
| Wind 240 deg - Service              |                         | -6.51                      | 3.76                       | -0.23             |
| Wind 270 deg - Service              |                         | -7.79                      | 0.00                       | 1.70              |
| Wind 300 deg - Service              |                         | -6.73                      | -3.89                      | 2.64              |
| Wind 330 deg - Service              |                         | -3.73                      | -6.46                      | 2.24              |

# **Load Combinations**

| Comb.      |                                            | Description |
|------------|--------------------------------------------|-------------|
| <u>No.</u> |                                            |             |
| 1          | Dead Only                                  |             |
| 2          | 1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy   |             |
| 3          | 1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy  |             |
| 4          | 1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy  |             |
| 5          | 1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy  |             |
| 6          | 1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy |             |
| 7          | 1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy |             |

| Comb.      | Description                                                                      |
|------------|----------------------------------------------------------------------------------|
| <u>No.</u> | 4.2.2.4.4.0.1.4.0.1.4.0.0                                                        |
| 8          | 1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy                                       |
| 9          | 1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy                                       |
| 10         | 1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy                                       |
| 11         | 1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy                                       |
| 12         | 1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy                                       |
| 13         | 1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy                                       |
| 14         | 1.2 Dead+1.0 Ice+1.0 Temp+Guy                                                    |
| 15         | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy                                 |
| 16         | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy                                |
| 17         | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy                                |
| 18         | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy                                |
| 19         | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy                               |
| 20         | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy                               |
| 21         | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy                               |
| 22<br>23   | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy                               |
|            | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy                               |
| 24         | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy                               |
| 25<br>26   | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy                               |
| 26<br>27   | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy Dead+Wind 0 deg - Service+Guy |
| 28         | Dead+Wind 30 deg - Service+Guy                                                   |
| 20<br>29   | Dead+Wind 60 deg - Service+Guy                                                   |
| 30         | Dead+Wind 90 deg - Service+Guy                                                   |
| 31         | Dead+Wind 120 deg - Service+Guy                                                  |
| 32         | Dead+Wind 150 deg - Service+Guy                                                  |
| 33         | Dead+Wind 180 deg - Service+Guy                                                  |
| 34         | Dead+Wind 210 deg - Service+Guy                                                  |
| 35         | Dead+Wind 240 deg - Service+Guy                                                  |
| 36         | Dead+Wind 270 deg - Service+Guy                                                  |
| 37         | Dead+Wind 300 deg - Service+Guy                                                  |
| 38         | Dead+Wind 330 deg - Service+Guy                                                  |

# **Maximum Tower Deflections - Service Wind**

| Section<br>No. | Elevation | Horz.<br>Deflection | Gov.<br>Load | Tilt   | Twist  |
|----------------|-----------|---------------------|--------------|--------|--------|
| 740.           | ft        | in                  | Comb.        | •      | ۰      |
| T1             | 187 - 180 | 2.410               | 29           | 0.2126 | 0.0514 |
| T2             | 180 - 160 | 2.079               | 29           | 0.2061 | 0.0468 |
| T3             | 160 - 140 | 1.369               | 29           | 0.1251 | 0.0445 |
| T4             | 140 - 120 | 1.001               | 29           | 0.0744 | 0.0599 |
| T5             | 120 - 100 | 0.762               | 29           | 0.0362 | 0.0643 |
| T6             | 100 - 80  | 0.712               | 30           | 0.0176 | 0.1054 |
| T7             | 80 - 60   | 0.650               | 30           | 0.0239 | 0.1232 |
| T8             | 60 - 40   | 0.538               | 30           | 0.0208 | 0.1185 |
| Т9             | 40 - 20   | 0.468               | 31           | 0.0283 | 0.0953 |
| T10            | 20 - 0    | 0.294               | 31           | 0.0571 | 0.0538 |

# **Critical Deflections and Radius of Curvature - Service Wind**

| Elevation | Appurtenance                              | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|-------------------------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                                           | Comb.        | in         | ۰      | ۰      | ft                     |
| 187.00    | (2) DMP65R-BU8D_TIA w/<br>Mount Pipe      | 29           | 2.410      | 0.2126 | 0.0514 | 18325                  |
| 177.00    | APXVAARR24_43-U-NA20_TIA<br>w/ Mount Pipe | 29           | 1.948      | 0.1985 | 0.0453 | 12471                  |
| 170.00    | Guy                                       | 29           | 1.675      | 0.1707 | 0.0437 | 11461                  |
| 160.38    | Guy                                       | 29           | 1.379      | 0.1266 | 0.0443 | 10166                  |
| 150.00    | APXV9ERR18-C-A20_TIA w/<br>Mount Pipe     | 29           | 1.158      | 0.0947 | 0.0528 | 18287                  |
| 136.00    | (2) LPA-80080-4CF-EDIN-0 w/<br>Mount Pipe | 29           | 0.944      | 0.0665 | 0.0604 | 60723                  |

| Elevation | Appurtenance | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|--------------|--------------|------------|--------|--------|------------------------|
| ft        |              | Comb.        | in         | ۰      | ۰      | ft                     |
| 120.38    | Guy          | 29           | 0.765      | 0.0368 | 0.0639 | 20204                  |
| 59.63     | Guy          | 30           | 0.537      | 0.0207 | 0.1182 | 55589                  |

# **Maximum Tower Deflections - Design Wind**

| Section<br>No. | Elevation | Horz.<br>Deflection | Gov.<br>Load | Tilt   | Twist  |
|----------------|-----------|---------------------|--------------|--------|--------|
|                | ft        | in                  | Comb.        | •      | ۰      |
| T1             | 187 - 180 | 20.270              | 6            | 1.5765 | 0.3523 |
| T2             | 180 - 160 | 17.931              | 6            | 1.5459 | 0.3421 |
| T3             | 160 - 140 | 12.409              | 6            | 1.1325 | 0.3322 |
| T4             | 140 - 120 | 8.820               | 6            | 0.7909 | 0.4090 |
| T5             | 120 - 100 | 6.344               | 6            | 0.4611 | 0.4335 |
| T6             | 100 - 80  | 5.337               | 6            | 0.2191 | 0.6736 |
| T7             | 80 - 60   | 4.643               | 6            | 0.1778 | 0.7301 |
| T8             | 60 - 40   | 3.857               | 6            | 0.1678 | 0.6754 |
| T9             | 40 - 20   | 3.158               | 6            | 0.2246 | 0.5363 |
| T10            | 20 - 0    | 1.898               | 6            | 0.3827 | 0.3073 |

# Critical Deflections and Radius of Curvature - Design Wind

| Elevation | Appurtenance                              | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|-------------------------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                                           | Comb.        | in         | ۰      | ۰      | ft                     |
| 187.00    | (2) DMP65R-BU8D_TIA w/<br>Mount Pipe      | 6            | 20.270     | 1.5765 | 0.3523 | 3976                   |
| 177.00    | APXVAARR24_43-U-NA20_TIA<br>w/ Mount Pipe | 6            | 16.978     | 1.5090 | 0.3380 | 2646                   |
| 170.00    | Guy                                       | 6            | 14.917     | 1.3710 | 0.3306 | 2356                   |
| 160.38    | Guy                                       | 6            | 12.493     | 1.1409 | 0.3317 | 2112                   |
| 150.00    | APXV9ERR18-C-A20_TIA w/<br>Mount Pipe     | 6            | 10.434     | 0.9459 | 0.3623 | 3260                   |
| 136.00    | (2) LPA-80080-4CF-EDIN-0 w/<br>Mount Pipe | 6            | 8.231      | 0.7264 | 0.4123 | 5311                   |
| 120.38    | Guy                                       | 6            | 6.376      | 0.4670 | 0.4309 | 2511                   |
| 59.63     | Guy                                       | 6            | 3.844      | 0.1676 | 0.6737 | 11783                  |

# **Bolt Design Data**

| Section<br>No. | Elevation | Component<br>Type | Bolt<br>Grade | Bolt Size | Number<br>Of | Maximum<br>Load | Allowable<br>Load | Ratio<br>Load | Allowable<br>Ratio | Criteria            |
|----------------|-----------|-------------------|---------------|-----------|--------------|-----------------|-------------------|---------------|--------------------|---------------------|
|                | ft        |                   |               | in        | Bolts        | per Bolt<br>K   | per Bolt<br>K     | Allowable     |                    |                     |
| T1             | 187       | Leg               | A325N         | 0.7500    | 4            | 0.36            | 29.82             | 0.012         | 1                  | <b>Bolt Tension</b> |
| T2             | 180       | Leg               | A325N         | 0.7500    | 4            | 3.24            | 29.82             | 0.109         | 1                  | <b>Bolt Tension</b> |
| Т3             | 160       | Leg               | A325N         | 0.7500    | 4            | 6.52            | 29.82             | 0.219         | 1                  | <b>Bolt Tension</b> |
| T4             | 140       | Leg               | A325N         | 0.7500    | 4            | 4.04            | 29.82             | 0.136         | 1                  | <b>Bolt Tension</b> |
| T5             | 120       | Leg               | A325N         | 0.7500    | 4            | 5.55            | 29.82             | 0.186         | 1                  | <b>Bolt Tension</b> |
| Т6             | 100       | Leg               | A325N         | 0.7500    | 4            | 4.08            | 29.82             | 0.137         | 1                  | <b>Bolt Tension</b> |
| T7             | 80        | Leg               | A325N         | 0.7500    | 4            | 4.35            | 29.82             | 0.146         | 1                  | <b>Bolt Tension</b> |
| T8             | 60        | Leg               | A325N         | 0.7500    | 4            | 4.52            | 29.82             | 0.152         | 1                  | <b>Bolt Tension</b> |
| Т9             | 40        | Leg               | A325N         | 0.7500    | 4            | 5.07            | 29.82             | 0.170         | 1                  | <b>Bolt Tension</b> |
| T10            | 20        | Leg               | A325N         | 0.7500    | 4            | 5.23            | 29.82             | 0.175         | 1                  | Bolt Tension        |

| Guv | Design  | Data |
|-----|---------|------|
| Juv | DESIGII | Data |

| Section<br>No. | Elevation<br>ft     | Size     | Initial<br>Tension<br>K | Breaking<br>Load<br>K | Actual<br>T <sub>u</sub><br>K | Allowable<br>∳T <sub>n</sub><br>K | Required<br>S.F. | Actual<br>S.F. |
|----------------|---------------------|----------|-------------------------|-----------------------|-------------------------------|-----------------------------------|------------------|----------------|
| T2             | 160.38 (A)<br>(577) | 5/8 EHS  | 4.24                    | 42.40                 | 14.17                         | 25.44                             | 1.000            | 1.795          |
|                | 160.38 (A)<br>(578) | 5/8 EHS  | 4.24                    | 42.40                 | 13.45                         | 25.44                             | 1.000            | 1.892          |
|                | 160.38 (B)<br>(571) | 5/8 EHS  | 4.24                    | 42.40                 | 13.28                         | 25.44                             | 1.000            | 1.915          |
|                | 160.38 (B)<br>(572) | 5/8 EHS  | 4.24                    | 42.40                 | 13.90                         | 25.44                             | 1.000            | 1.831          |
|                | 160.38 (C)<br>(565) | 5/8 EHS  | 4.24                    | 42.40                 | 15.38                         | 25.44                             | 1.000            | 1.654          |
|                | 160.38 (C)<br>(566) | 5/8 EHS  | 4.24                    | 42.40                 | 15.50                         | 25.44                             | 1.000            | 1.641          |
|                | 170.00 (A)<br>(606) | 5/8 EHS  | 4.24                    | 42.40                 | 14.95                         | 25.44                             | 1.000            | 1.702          |
|                | 170.00 (B)<br>(605) | 5/8 EHS  | 4.24                    | 42.40                 | 14.88                         | 25.44                             | 1.000            | 1.709          |
|                | 170.00 (C)<br>(604) | 5/8 EHS  | 4.24                    | 42.40                 | 16.12                         | 25.44                             | 1.000            | 1.578          |
| T4             | 120.38 (A)<br>(595) | 9/16 EHS | 3.50                    | 35.00                 | 8.35                          | 21.00                             | 1.000            | 2.515          |
|                | 120.38 (A)<br>(596) | 9/16 EHS | 3.50                    | 35.00                 | 7.96                          | 21.00                             | 1.000            | 2.638          |
|                | 120.38 (B)<br>(589) | 9/16 EHS | 3.50                    | 35.00                 | 7.89                          | 21.00                             | 1.000            | 2.660          |
|                | 120.38 (B)<br>(590) | 9/16 EHS | 3.50                    | 35.00                 | 8.84                          | 21.00                             | 1.000            | 2.377          |
|                | 120.38 (C)<br>(583) | 9/16 EHS | 3.50                    | 35.00                 | 9.82                          | 21.00                             | 1.000            | 2.139          |
|                | 120.38 (C)<br>(584) | 9/16 EHS | 3.50                    | 35.00                 | 9.19                          | 21.00                             | 1.000            | 2.285          |
| T8             | 59.63 (A)<br>(603)  | 9/16 EHS | 3.50                    | 35.00                 | 7.95                          | 21.00                             | 1.000            | 2.641          |
|                | 59.63 (B)<br>(602)  | 9/16 EHS | 3.50                    | 35.00                 | 9.11                          | 21.00                             | 1.000            | 2.305          |
|                | 59.63 (C)<br>(601)  | 9/16 EHS | 3.50                    | 35.00                 | 9.06                          | 21.00                             | 1.000            | 2.317          |

# Compression Checks

# Leg Design Data (Compression)

| Section<br>No. | Elevation | Size                     | L     | Lu   | KI/r           | Α      | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|--------------------------|-------|------|----------------|--------|--------|------------|-------------------------|
|                | ft        |                          | ft    | ft   |                | in²    | K      | K          | $\phi P_n$              |
| T1             | 187 - 180 | P2.875"x0.203" (2.5 STD) | 7.00  | 2.85 | 36.1<br>K=1.00 | 1.7040 | -17.03 | 74.72      | 0.228 1                 |
| T2             | 180 - 160 | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | 40.6<br>K=1.00 | 1.7040 | -67.04 | 79.61      | 0.842 1                 |
| Т3             | 160 - 140 | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | 40.6<br>K=1.00 | 1.7040 | -67.12 | 79.61      | 0.843 <sup>1</sup>      |
| T4             | 140 - 120 | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | 40.6<br>K=1.00 | 1.7040 | -69.30 | 79.61      | 0.871 <sup>1</sup>      |
| T5             | 120 - 100 | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | 40.6<br>K=1.00 | 1.7040 | -66.96 | 79.61      | 0.841 1                 |
| T6             | 100 - 80  | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | 40.6<br>K=1.00 | 1.7040 | -53.59 | 79.61      | 0.673 1                 |
| T7             | 80 - 60   | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | 40.6           | 1.7040 | -55.35 | 79.61      | 0.695 1                 |

| Section<br>No. | Elevation | Size                     | L     | Lu   | KI/r           | Α      | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|--------------------------|-------|------|----------------|--------|--------|------------|-------------------------|
|                | ft        |                          | ft    | ft   |                | in²    | K      | K          | $\Phi P_n$              |
| Т8             | 60 - 40   | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | K=1.00<br>40.6 | 1.7040 | -61.56 | 79.61      | 0.773 <sup>1</sup>      |
| 10             | 00 - 40   | F2.073 X0.203 (2.331D)   | 20.00 | 3.21 | K=1.00         | 1.7040 | -01.50 | 79.01      | 0.773                   |
| Т9             | 40 - 20   | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | 40.6<br>K=1.00 | 1.7040 | -63.59 | 79.61      | 0.799 <sup>1</sup>      |
| T10            | 20 - 0    | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21 | 40.6<br>K=1.00 | 1.7040 | -63.66 | 79.61      | 0.800 <sup>1</sup>      |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

|                |           | Diagona | al Desig | n Da | ta (Co         | mpres           | sion) |                 |                         |
|----------------|-----------|---------|----------|------|----------------|-----------------|-------|-----------------|-------------------------|
| Section<br>No. | Elevation | Size    | L        | Lu   | KI/r           | Α               | Pu    | φP <sub>n</sub> | Ratio<br>P <sub>u</sub> |
|                | ft        |         | ft       | ft   |                | in <sup>2</sup> | K     | K               | $\Phi P_n$              |
| T2             | 180 - 160 | C3x4.1  | 4.75     | 2.21 | 65.7<br>K=1.00 | 1.2100          | -5.74 | 31.24           | 0.184 1                 |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

| Section<br>No. | Elevation | Size               | L    | Lu   | KI/r            | Α      | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|--------------------|------|------|-----------------|--------|-------|------------|-------------------------|
|                | ft        |                    | ft   | ft   |                 | in²    | K     | K          | $\phi P_n$              |
| T1             | 187 - 180 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -6.32 | 7.19       | 0.879 <sup>1</sup>      |
| T2             | 180 - 160 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -3.11 | 7.19       | 0.432 1                 |
| Т3             | 160 - 140 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -5.29 | 7.19       | 0.736 <sup>1</sup>      |
| T4             | 140 - 120 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -4.90 | 7.19       | 0.682 1                 |
| T5             | 120 - 100 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -4.17 | 7.19       | 0.581 <sup>1</sup>      |
| T6             | 100 - 80  | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -3.74 | 7.19       | 0.520 <sup>1</sup>      |
| T7             | 80 - 60   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -3.62 | 7.19       | 0.504 <sup>1</sup>      |
| Т8             | 60 - 40   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -3.59 | 7.19       | 0.500 <sup>1</sup>      |
| Т9             | 40 - 20   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -3.77 | 7.19       | 0.525 <sup>1</sup>      |
| T10            | 20 - 0    | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -3.63 | 7.19       | 0.505 <sup>1</sup>      |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

|                | Top Girt Design Data (Compression) |                    |      |      |                 |        |       |                         |                         |  |  |  |
|----------------|------------------------------------|--------------------|------|------|-----------------|--------|-------|-------------------------|-------------------------|--|--|--|
| Section<br>No. | Elevation                          | Size               | L    | Lu   | KI/r            | Α      | Pu    | φ <b>P</b> <sub>n</sub> | Ratio<br>P <sub>u</sub> |  |  |  |
|                | ft                                 |                    | ft   | ft   |                 | in²    | K     | K                       | ${\Phi P_n}$            |  |  |  |
| T1             | 187 - 180                          | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -4.24 | 7.19                    | 0.590 <sup>1</sup>      |  |  |  |

| Section<br>No. | Elevation | Size               | L    | $L_u$ | KI/r            | Α      | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|--------------------|------|-------|-----------------|--------|-------|------------|-------------------------|
|                | ft        |                    | ft   | ft    |                 | in²    | Κ     | K          | $\Phi P_n$              |
| T2             | 180 - 160 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273 | -1.16 | 7.19       | 0.161 1                 |
| Т3             | 160 - 140 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273 | -4.06 | 7.19       | 0.564 <sup>1</sup>      |
| T4             | 140 - 120 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273 | -2.63 | 7.19       | 0.366 1                 |
| T5             | 120 - 100 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273 | -3.42 | 7.19       | 0.475 <sup>1</sup>      |
| Т6             | 100 - 80  | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273 | -2.18 | 7.19       | 0.303 1                 |
| T7             | 80 - 60   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273 | -2.03 | 7.19       | 0.282 1                 |
| Т9             | 40 - 20   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273 | -1.79 | 7.19       | 0.249 1                 |
| T10            | 20 - 0    | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273 | -2.06 | 7.19       | 0.287 1                 |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

| <b>Bottom</b> | Girt Design  | Data | (Com | nression)   |
|---------------|--------------|------|------|-------------|
| DOLLOIII      | Oll C Design | Data |      | DI COOIUII) |

| Section<br>No. | Elevation | Size               | L    | Lu   | KI/r            | Α      | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|--------------------|------|------|-----------------|--------|-------|------------|-------------------------|
|                | ft        |                    | ft   | ft   |                 | in²    | K     | K          | $\phi P_n$              |
| T1             | 187 - 180 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -4.65 | 7.19       | 0.647 <sup>1</sup>      |
| T2             | 180 - 160 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -1.65 | 7.19       | 0.229 1                 |
| Т3             | 160 - 140 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -2.41 | 7.19       | 0.336 1                 |
| T4             | 140 - 120 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -4.43 | 7.19       | 0.616 <sup>1</sup>      |
| T5             | 120 - 100 | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -2.14 | 7.19       | 0.298 1                 |
| Т6             | 100 - 80  | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -1.88 | 7.19       | 0.261 <sup>1</sup>      |
| T7             | 80 - 60   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -1.79 | 7.19       | 0.249 1                 |
| Т8             | 60 - 40   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -2.12 | 7.19       | 0.295 <sup>1</sup>      |
| Т9             | 40 - 20   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -1.85 | 7.19       | 0.257 <sup>1</sup>      |
| T10            | 20 - 0    | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 128.2<br>K=0.96 | 0.5273 | -0.38 | 7.19       | 0.053 <sup>1</sup>      |

 $<sup>^{1}</sup>$  P  $_{u}$  /  $\phi P_{n}$  controls

# Top Guy Pull-Off Design Data (Compression)

| Section<br>No. | Elevation | Size               | L    | Lu   | KI/r            | Α               | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|--------------------|------|------|-----------------|-----------------|-------|------------|-------------------------|
|                | ft        |                    | ft   | ft   |                 | in <sup>2</sup> | K     | K          | $\phi P_n$              |
| T2             | 180 - 160 | L 2 x 2 x 5/16     | 3.50 | 3.26 | 100.3<br>K=1.00 | 1.1500          | -4.64 | 21.94      | 0.212 1                 |
| T4             | 140 - 120 | L 2 x 2 x 5/16     | 3.50 | 3.26 | 100.3<br>K=1.00 | 1.1500          | -7.15 | 21.94      | 0.326 1                 |
| T8             | 60 - 40   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 133.4<br>K=1.00 | 0.5273          | -1.22 | 6.70       | 0.182 <sup>1</sup>      |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

| Section<br>No. | Elevation          | Size          | L    | Lu   | KI/r           | Α      | Pu     | φ <b>P</b> <sub>n</sub> | Ratio<br>P <sub>u</sub> |
|----------------|--------------------|---------------|------|------|----------------|--------|--------|-------------------------|-------------------------|
| 740.           | ft                 |               | ft   | ft   |                | in²    | K      | K                       | $\Phi_n$                |
| T2             | 180 - 160<br>(569) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -12.53 | 36.39                   | 0.344 1                 |
| T2             | 180 - 160<br>(570) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -11.52 | 36.39                   | 0.317 <sup>1</sup>      |
| T2             | 180 - 160<br>(575) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -12.66 | 36.39                   | 0.348 <sup>1</sup>      |
| T2             | 180 - 160<br>(576) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -11.44 | 36.39                   | 0.314 <sup>1</sup>      |
| T2             | 180 - 160<br>(581) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -11.61 | 36.39                   | 0.319 <sup>1</sup>      |
| T2             | 180 - 160<br>(582) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -11.82 | 36.39                   | 0.325 <sup>1</sup>      |
| T4             | 140 - 120<br>(587) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -7.18  | 36.39                   | 0.197 <sup>1</sup>      |
| T4             | 140 - 120<br>(588) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -6.31  | 36.39                   | 0.174 <sup>1</sup>      |
| T4             | 140 - 120<br>(593) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -7.76  | 36.39                   | 0.213 <sup>1</sup>      |
| T4             | 140 - 120<br>(594) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -6.29  | 36.39                   | 0.173 <sup>1</sup>      |
| T4             | 140 - 120<br>(599) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -6.68  | 36.39                   | 0.184 <sup>1</sup>      |
| T4             | 140 - 120<br>(600) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 68.5<br>K=1.00 | 1.4375 | -7.22  | 36.39                   | 0.198 <sup>1</sup>      |

 $<sup>^{1}</sup>$  P  $_{u}$  /  $\phi P_{n}$  controls

# Tension Checks

|                |           | Leg                      | Desig | n Dat | a (Te | nsion) |       |                 |                    |
|----------------|-----------|--------------------------|-------|-------|-------|--------|-------|-----------------|--------------------|
| Section<br>No. | Elevation | Size                     | L     | Lu    | KI/r  | Α      | $P_u$ | φP <sub>n</sub> | Ratio<br>Pu        |
|                | ft        |                          | ft    | ft    |       | in²    | K     | K               | $\Phi P_n$         |
| T1             | 187 - 180 | P2.875"x0.203" (2.5 STD) | 7.00  | 2.85  | 36.1  | 1.7040 | 12.96 | 82.82           | 0.156 <sup>1</sup> |
| T2             | 180 - 160 | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21  | 40.6  | 1.7040 | 38.64 | 92.02           | 0.420 <sup>1</sup> |
| Т3             | 160 - 140 | P2.875"x0.203" (2.5 STD) | 20.00 | 3.21  | 40.6  | 1.7040 | 26.08 | 92.02           | 0.283 1            |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

|                |           | Diag   | onal De | sign l | Data ( | Tensic | n)    |       |                         |
|----------------|-----------|--------|---------|--------|--------|--------|-------|-------|-------------------------|
| Section<br>No. | Elevation | Size   | L       | Lu     | KI/r   | Α      | $P_u$ | φPn   | Ratio<br>P <sub>u</sub> |
|                | ft        |        | ft      | ft     |        | in²    | K     | K     | $\frac{P_u}{\phi P_n}$  |
| T1             | 187 - 180 | 5/8    | 4.51    | 4.20   | 322.9  | 0.3068 | 7.81  | 9.94  | 0.786 <sup>1</sup>      |
| T2             | 180 - 160 | C3x4.1 | 4.75    | 2.21   | 65.7   | 1.2100 | 6.57  | 39.20 | 0.168 <sup>1</sup>      |
| T3             | 160 - 140 | 5/8    | 4.75    | 4.42   | 339.7  | 0.3068 | 6.85  | 9.94  | 0.689 <sup>1</sup>      |
| T4             | 140 - 120 | 5/8    | 4.75    | 4.42   | 339.7  | 0.3068 | 4.62  | 9.94  | 0.464 1                 |

| Section<br>No. | Elevation | Size | L    | $L_u$ | KI/r  | Α      | $P_u$ | $\phi P_n$ | Ratio<br>Pu           |
|----------------|-----------|------|------|-------|-------|--------|-------|------------|-----------------------|
|                | ft        |      | ft   | ft    |       | in²    | K     | Κ          | $\overline{\phi P_n}$ |
| T5             | 120 - 100 | 5/8  | 4.75 | 4.42  | 339.7 | 0.3068 | 6.12  | 9.94       | 0.615 <sup>1</sup>    |
| Т6             | 100 - 80  | 5/8  | 4.75 | 4.42  | 339.7 | 0.3068 | 3.75  | 9.94       | 0.377 1               |
| T7             | 80 - 60   | 5/8  | 4.75 | 4.42  | 339.7 | 0.3068 | 4.10  | 9.94       | 0.412 1               |
| T8             | 60 - 40   | 5/8  | 4.75 | 4.42  | 339.7 | 0.3068 | 4.19  | 9.94       | 0.421 <sup>1</sup>    |
| Т9             | 40 - 20   | 5/8  | 4.75 | 4.42  | 339.7 | 0.3068 | 3.63  | 9.94       | 0.365 <sup>1</sup>    |
| T10            | 20 - 0    | 5/8  | 4.75 | 4.42  | 339.7 | 0.3068 | 4.62  | 9.94       | 0.464 1               |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

|                |           | Horizo             | ntal De | esign          | Data | (Tensi | on)   |            |                       |
|----------------|-----------|--------------------|---------|----------------|------|--------|-------|------------|-----------------------|
| Section<br>No. | Elevation | Size               | L       | L <sub>u</sub> | KI/r | Α      | $P_u$ | $\phi P_n$ | Ratio                 |
|                | ft        |                    | ft      | ft             |      | in²    | Κ     | K          | $\overline{\phi P_n}$ |
| T1             | 187 - 180 | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 0.29  | 17.09      | 0.017 1               |
| T2             | 180 - 160 | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 4.86  | 17.09      | 0.284 <sup>1</sup>    |
| T3             | 160 - 140 | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 1.16  | 17.09      | 0.068 <sup>1</sup>    |
| T4             | 140 - 120 | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 1.20  | 17.09      | 0.070 <sup>1</sup>    |
| T5             | 120 - 100 | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 1.16  | 17.09      | 0.068 <sup>1</sup>    |
| T6             | 100 - 80  | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 0.93  | 17.09      | 0.054 <sup>1</sup>    |
| T7             | 80 - 60   | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 0.96  | 17.09      | 0.056 <sup>1</sup>    |
| T8             | 60 - 40   | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 1.07  | 17.09      | 0.062 <sup>1</sup>    |
| T9             | 40 - 20   | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 1.10  | 17.09      | 0.064 <sup>1</sup>    |
| T10            | 20 - 0    | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26           | 85.7 | 0.5273 | 1.10  | 17.09      | 0.065 <sup>1</sup>    |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

|                | Top Girt Design Data (Tension) |                    |      |      |      |        |       |                         |                         |  |  |  |  |
|----------------|--------------------------------|--------------------|------|------|------|--------|-------|-------------------------|-------------------------|--|--|--|--|
| Section<br>No. | Elevation                      | Size               | L    | Lu   | KI/r | Α      | $P_u$ | φ <b>P</b> <sub>n</sub> | Ratio<br>P <sub>u</sub> |  |  |  |  |
|                | ft                             |                    | ft   | ft   |      | in²    | K     | K                       | $\phi P_n$              |  |  |  |  |
| T2             | 180 - 160                      | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 85.7 | 0.5273 | 1.16  | 17.09                   | 0.068 1                 |  |  |  |  |
| T3             | 160 - 140                      | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 85.7 | 0.5273 | 1.16  | 17.09                   | 0.068 1                 |  |  |  |  |
| T4             | 140 - 120                      | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 85.7 | 0.5273 | 1.20  | 17.09                   | 0.070 1                 |  |  |  |  |
| T5             | 120 - 100                      | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 85.7 | 0.5273 | 1.16  | 17.09                   | 0.068 1                 |  |  |  |  |
| T6             | 100 - 80                       | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 85.7 | 0.5273 | 0.93  | 17.09                   | 0.054 1                 |  |  |  |  |
| T7             | 80 - 60                        | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 85.7 | 0.5273 | 0.96  | 17.09                   | 0.056 <sup>1</sup>      |  |  |  |  |
| T9             | 40 - 20                        | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 85.7 | 0.5273 | 1.10  | 17.09                   | 0.064 1                 |  |  |  |  |
| T10            | 20 - 0                         | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26 | 85.7 | 0.5273 | 1.10  | 17.09                   | 0.065 <sup>1</sup>      |  |  |  |  |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

|                |           | Bottom             | Girt D | esign | Data | (Tens  | ion)  |                         |                         |
|----------------|-----------|--------------------|--------|-------|------|--------|-------|-------------------------|-------------------------|
| Section<br>No. | Elevation | Size               | L      | Lu    | KI/r | Α      | $P_u$ | φ <b>P</b> <sub>n</sub> | Ratio<br>P <sub>u</sub> |
|                | ft        |                    | ft     | ft    |      | in²    | K     | K                       | $\Phi P_n$              |
| T1             | 187 - 180 | L 1.5 x 1.5 x 3/16 | 3.50   | 3.26  | 85.7 | 0.5273 | 0.29  | 17.09                   | 0.017 1                 |
| T2             | 180 - 160 | L 1.5 x 1.5 x 3/16 | 3.50   | 3.26  | 85.7 | 0.5273 | 5.93  | 17.09                   | 0.347 1                 |
| Т3             | 160 - 140 | L 1.5 x 1.5 x 3/16 | 3.50   | 3.26  | 85.7 | 0.5273 | 1.16  | 17.09                   | 0.068 <sup>1</sup>      |
| T4             | 140 - 120 | L 1.5 x 1.5 x 3/16 | 3.50   | 3.26  | 85.7 | 0.5273 | 1.20  | 17.09                   | 0.070 <sup>1</sup>      |
| T5             | 120 - 100 | L 1.5 x 1.5 x 3/16 | 3.50   | 3.26  | 85.7 | 0.5273 | 1.16  | 17.09                   | 0.068 <sup>1</sup>      |
| T6             | 100 - 80  | L 1.5 x 1.5 x 3/16 | 3.50   | 3.26  | 85.7 | 0.5273 | 0.93  | 17.09                   | 0.054 <sup>1</sup>      |
| T7             | 80 - 60   | L 1.5 x 1.5 x 3/16 | 3.50   | 3.26  | 85.7 | 0.5273 | 0.96  | 17.09                   | 0.056 <sup>1</sup>      |

| Section | Elevation | Size               | L    | Lu         | KI/r | Α      | $P_u$ | $\phi P_n$ | Ratio              |
|---------|-----------|--------------------|------|------------|------|--------|-------|------------|--------------------|
| No.     |           |                    | •    | <b>5</b> 4 |      |        | 14    |            | Pu                 |
|         | π         |                    | π    | π          |      | in²    | K     | K          | $\phi P_n$         |
| T8      | 60 - 40   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26       | 85.7 | 0.5273 | 1.07  | 17.09      | 0.062 <sup>1</sup> |
| T9      | 40 - 20   | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26       | 85.7 | 0.5273 | 1.10  | 17.09      | 0.064 <sup>1</sup> |
| T10     | 20 - 0    | L 1.5 x 1.5 x 3/16 | 3.50 | 3.26       | 85.7 | 0.5273 | 0.69  | 17.09      | 0.041 1            |

 $<sup>^{1}</sup>$  P  $_{u}$  /  $\phi P_{n}$  controls

|                |           | Top Guy P          | Pull-Of | f Desi | gn D | ata (Te | nsion) |                         |                         |
|----------------|-----------|--------------------|---------|--------|------|---------|--------|-------------------------|-------------------------|
| Section<br>No. | Elevation | Size               | L       | Lu     | KI/r | Α       | Pu     | φ <b>P</b> <sub>n</sub> | Ratio<br>P <sub>u</sub> |
|                | ft        |                    | ft      | ft     |      | in²     | K      | K                       | $\Phi P_n$              |
| T2             | 180 - 160 | L 2 x 2 x 5/16     | 3.50    | 3.26   | 65.1 | 1.1500  | 10.55  | 37.26                   | 0.283 <sup>1</sup>      |
| T2             | 180 - 160 | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26   | 85.7 | 0.5273  | 4.79   | 17.09                   | 0.280 1                 |
| Т8             | 60 - 40   | L 1.5 x 1.5 x 3/16 | 3.50    | 3.26   | 85.7 | 0.5273  | 2.39   | 17.09                   | 0.140 <sup>1</sup>      |

<sup>&</sup>lt;sup>1</sup>  $P_u$  /  $\phi P_n$  controls

| Torque-Arm Top Design Data |                    |               |      |      |      |        |       |                                |                         |
|----------------------------|--------------------|---------------|------|------|------|--------|-------|--------------------------------|-------------------------|
| Section<br>No.             | Elevation          | Size          | L    | Lu   | KI/r | Α      | Pu    | <b>♦</b> <i>P</i> <sub>n</sub> | Ratio<br>P <sub>u</sub> |
|                            | ft                 |               | ft   | ft   |      | in²    | K     | K                              | $\phi P_n$              |
| T2                         | 180 - 160<br>(567) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 15.05 | 46.58                          | 0.323 1                 |
| T2                         | 180 - 160<br>(568) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 14.95 | 46.58                          | 0.321 1                 |
| T2                         | 180 - 160<br>(573) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 14.67 | 46.58                          | 0.315 <sup>1</sup>      |
| T2                         | 180 - 160<br>(574) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 14.94 | 46.58                          | 0.321 1                 |
| T2                         | 180 - 160<br>(579) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 13.82 | 46.58                          | 0.297 1                 |
| T2                         | 180 - 160<br>(580) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 13.93 | 46.58                          | 0.299 1                 |
| T4                         | 140 - 120<br>(585) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 8.46  | 46.58                          | 0.182 <sup>1</sup>      |
| T4                         | 140 - 120<br>(586) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 8.36  | 46.58                          | 0.179 <sup>1</sup>      |
| T4                         | 140 - 120<br>(591) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 7.30  | 46.58                          | 0.157 <sup>1</sup>      |
| T4                         | 140 - 120<br>(592) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 7.73  | 46.58                          | 0.166 <sup>1</sup>      |
| T4                         | 140 - 120<br>(597) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 6.93  | 46.58                          | 0.149 <sup>1</sup>      |
| T4                         | 140 - 120<br>(598) | L 3 x 3 x 1/4 | 4.75 | 4.59 | 59.1 | 1.4375 | 7.13  | 46.58                          | 0.153 <sup>1</sup>      |

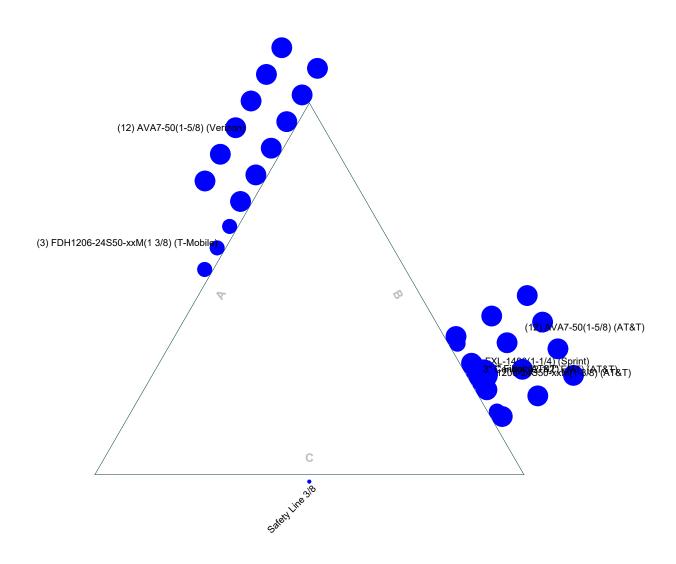
 $<sup>^{1}</sup>$  P  $_{u}$  /  $\phi P_{n}$  controls

|         |           | Torque        | -Arm | <u>Botto</u> | m De | sign D | <u>ata</u> |                         |                        |
|---------|-----------|---------------|------|--------------|------|--------|------------|-------------------------|------------------------|
| Section | Elevation | Size          | L    | Lu           | KI/r | Α      | Pu         | φ <b>P</b> <sub>n</sub> | Ratio                  |
| No.     | ft        |               | ft   | ft           |      | in²    | K          | K                       | $\frac{P_u}{\phi P_n}$ |
| T2      | 180 - 160 | L 3 x 3 x 1/4 | 3.50 | 3.38         | 43.6 | 1.4375 | 4.72       | 46.58                   | 0.101 <sup>1</sup>     |

| Section<br>No. | Elevation          | Size          | L    | Lu   | KI/r | Α               | $P_u$ | $\phi P_n$ | Ratio<br>Pu                     |
|----------------|--------------------|---------------|------|------|------|-----------------|-------|------------|---------------------------------|
|                | ft                 |               | ft   | ft   |      | in <sup>2</sup> | K     | K          | $\frac{\partial}{\partial P_n}$ |
|                | (569)              |               |      |      |      |                 |       |            | ·                               |
| T2             | 180 - 160<br>(570) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 4.18  | 46.58      | 0.090 1                         |
| T2             | 180 - 160<br>(575) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 5.00  | 46.58      | 0.107 <sup>1</sup>              |
| T2             | 180 - 160<br>(576) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 4.36  | 46.58      | 0.094 1                         |
| T2             | 180 - 160<br>(581) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 5.08  | 46.58      | 0.109 <sup>1</sup>              |
| T2             | 180 - 160<br>(582) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 5.18  | 46.58      | 0.111 1                         |
| T4             | 140 - 120<br>(587) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 3.67  | 46.58      | 0.079 <sup>1</sup>              |
| T4             | 140 - 120<br>(588) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 3.45  | 46.58      | 0.074 1                         |
| T4             | 140 - 120<br>(593) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 3.74  | 46.58      | 0.080 1                         |
| T4             | 140 - 120<br>(594) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 3.79  | 46.58      | 0.081 1                         |
| T4             | 140 - 120<br>(599) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 4.40  | 46.58      | 0.094 1                         |
| T4             | 140 - 120<br>(600) | L 3 x 3 x 1/4 | 3.50 | 3.38 | 43.6 | 1.4375          | 4.11  | 46.58      | 0.088 1                         |

 $<sup>^{1}</sup>$  P  $_{u}$  /  $\phi P_{n}$  controls

# **Section Capacity Table**


| Section | Elevation         | Component  | Size                                     | Critical | P                | øP <sub>allow</sub> | %            | Pass |
|---------|-------------------|------------|------------------------------------------|----------|------------------|---------------------|--------------|------|
| No.     | ft                | Туре       | 0/20                                     | Element  | K                | K allow             | Capacity     | Fail |
| T1      | 187 - 180         |            | P2.875"x0.203" (2.5 STD)                 | 3        | -17.03           | 74.72               | 22.8         | Pass |
| T2      | 180 - 160         | Leg<br>Leg | P2.875"x0.203" (2.5 STD)                 | 25       | -17.03<br>-67.04 | 79.61               | 84.2         | Pass |
| T3      | 160 - 140         | Leg        | P2.875"x0.203" (2.5 STD)                 | 86       | -67.12           | 79.61               | 84.3         | Pass |
| T4      | 140 - 120         | Leg        | P2.875"x0.203" (2.5 STD)                 | 146      | -69.30           | 79.61               | 87.1         | Pass |
| T5      | 120 - 100         | Leg        | P2.875"x0.203" (2.5 STD)                 | 206      | -66.96           | 79.61               | 84.1         | Pass |
| T6      | 100 - 80          | Leg        | P2.875"x0.203" (2.5 STD)                 | 267      | -53.59           | 79.61               | 67.3         | Pass |
| T7      | 80 - 60           | Leg        | P2.875"x0.203" (2.5 STD)                 | 327      | -55.35           | 79.61               | 69.5         | Pass |
| T8      | 60 - 40           | Leg        | P2.875"x0.203" (2.5 STD)                 | 387      | -61.56           | 79.61               | 77.3         | Pass |
| T9      | 40 - 20           | Leg        | P2.875"x0.203" (2.5 STD)                 | 447      | -63.59           | 79.61               | 79.9         | Pass |
| T10     | 20 - 0            | Leg        | P2.875"x0.203" (2.5 STD)                 | 505      | -63.66           | 79.61               | 80.0         | Pass |
| T1      | 187 - 180         | Diagonal   | 5/8                                      | 13       | 7.81             | 9.94                | 78.6         | Pass |
| T2      | 180 - 160         | Diagonal   | C3x4.1                                   | 39       | -5.74            | 31.24               | 18.4         | Pass |
| T3      | 160 - 140         | Diagonal   | 5/8                                      | 142      | 6.85             | 9.94                | 68.9         | Pass |
| T4      | 140 - 120         | Diagonal   | 5/8                                      | 166      | 4.62             | 9.94                | 46.4         | Pass |
| T5      | 120 - 100         | Diagonal   | 5/8                                      | 261      | 6.12             | 9.94                | 61.5         | Pass |
| T6      | 100 - 80          | Diagonal   | 5/8                                      | 322      | 3.75             | 9.94                | 37.7         | Pass |
| T7      | 80 - 60           | Diagonal   | 5/8                                      | 336      | 4.10             | 9.94                | 41.2         | Pass |
| T8      | 60 - 40           | Diagonal   | 5/8                                      | 439      | 4.19             | 9.94                | 42.1         | Pass |
| T9      | 40 - 20           | Diagonal   | 5/8                                      | 458      | 3.63             | 9.94                | 36.5         | Pass |
| T10     | 20 - 0            | Diagonal   | 5/8                                      | 517      | 4.62             | 9.94                | 46.4         | Pass |
| T1      | 187 - 180         | Horizontal | L 1.5 x 1.5 x 3/16                       | 16       | -6.32            | 7.19                | 87.9         | Pass |
| T2      | 180 - 160         | Horizontal | L 1.5 x 1.5 x 3/16                       | 67       | -0.32<br>-3.11   | 7.19                | 43.2         | Pass |
| T3      | 160 - 160         | Horizontal | L 1.5 x 1.5 x 3/16                       | 137      | -5.11<br>-5.29   | 7.19<br>7.19        | 73.6         | Pass |
| T4      | 140 - 120         | Horizontal | L 1.5 x 1.5 x 3/16                       | 169      | -3.29<br>-4.90   | 7.19                | 68.2         | Pass |
| T5      | 120 - 120         | Horizontal | L 1.5 x 1.5 x 3/16                       | 257      | -4.90<br>-4.17   | 7.19                | 58.1         | Pass |
| T6      | 120 - 100         | Horizontal | L 1.5 x 1.5 x 3/16<br>L 1.5 x 1.5 x 3/16 | 282      | -4.17<br>-3.74   | 7.19<br>7.19        | 50.1<br>52.0 | Pass |
| T7      | 80 - 60           | Horizontal | L 1.5 x 1.5 x 3/16                       | 378      | -3.74<br>-3.62   | 7.19                | 50.4         | Pass |
| T8      | 60 - 40           |            |                                          |          |                  |                     |              |      |
| T9      |                   | Horizontal | L 1.5 x 1.5 x 3/16                       | 400      | -3.59            | 7.19                | 50.0         | Pass |
|         | 40 - 20<br>20 - 0 | Horizontal | L 1.5 x 1.5 x 3/16                       | 462      | -3.77            | 7.19<br>7.19        | 52.5         | Pass |
| T10     |                   | Horizontal | L 1.5 x 1.5 x 3/16                       | 558      | -3.63            |                     | 50.5         | Pass |
| T1      | 187 - 180         | Top Girt   | L 1.5 x 1.5 x 3/16                       | 4        | -4.24            | 7.19                | 59.0         | Pass |
| T2      | 180 - 160         | Top Girt   | L 1.5 x 1.5 x 3/16                       | 30       | -1.16            | 7.19                | 16.1         | Pass |
| T3      | 160 - 140         | Top Girt   | L 1.5 x 1.5 x 3/16                       | 89       | -4.06            | 7.19                | 56.4         | Pass |
| T4      | 140 - 120         | Top Girt   | L 1.5 x 1.5 x 3/16                       | 149      | -2.63            | 7.19                | 36.6         | Pass |

| Section<br>No. | Elevation<br>ft | Component<br>Type                             | Size                                 | Critical<br>Element | P<br>K         | øP <sub>allow</sub><br>K    | %<br>Capacity | Pass<br>Fail |
|----------------|-----------------|-----------------------------------------------|--------------------------------------|---------------------|----------------|-----------------------------|---------------|--------------|
| T5             | 120 - 100       | Top Girt                                      | L 1.5 x 1.5 x 3/16                   | 210                 | -3.42          | 7.19                        | 47.5          | Pass         |
| T6             | 100 - 80        | Top Girt                                      | L 1.5 x 1.5 x 3/16                   | 269                 | -2.18          | 7.19                        | 30.3          | Pass         |
| T7             | 80 - 60         | Top Girt                                      | L 1.5 x 1.5 x 3/16                   | 330                 | -2.03          | 7.19                        | 28.2          | Pass         |
| T9             | 40 - 20         | Top Girt                                      | L 1.5 x 1.5 x 3/16                   | 448                 | -1.79          | 7.19                        | 24.9          | Pass         |
| T10            | 20 - 0          | Top Girt                                      | L 1.5 x 1.5 x 3/16                   | 510                 | -2.06          | 7.19                        | 28.7          | Pass         |
| T1             | 187 - 180       | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 7                   | -4.65          | 7.19                        | 64.7          | Pass         |
| T2             | 180 - 160       | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 33                  | 5.93           | 17.09                       | 34.7          | Pass         |
| T3             | 160 - 140       | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 91                  | -2.41          | 7.19                        | 33.6          | Pass         |
| T4             |                 |                                               |                                      |                     | -2.41<br>-4.43 |                             |               |              |
|                | 140 - 120       | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 152                 |                | 7.19                        | 61.6          | Pass         |
| T5             | 120 - 100       | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 213                 | -2.14          | 7.19                        | 29.8          | Pas          |
| T6             | 100 - 80        | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 271                 | -1.88          | 7.19                        | 26.1          | Pas          |
| T7             | 80 - 60         | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 333                 | -1.79          | 7.19                        | 24.9          | Pas          |
| T8             | 60 - 40         | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 393                 | -2.12          | 7.19                        | 29.5          | Pas          |
| T9             | 40 - 20         | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 453                 | -1.85          | 7.19                        | 25.7          | Pas          |
| T10            | 20 - 0          | Bottom Girt                                   | L 1.5 x 1.5 x 3/16                   | 512                 | -0.38          | 7.19                        | 5.3           | Pas          |
| T2             | 180 - 160       | Guy A@160.375                                 | 5/8                                  | 577                 | 14.17          | 25.44                       | 55.7          | Pas          |
|                |                 | Guy A@170                                     | 5/8                                  | 606                 | 14.95          | 25.44                       | 58.7          | Pas          |
| T4             | 140 - 120       | Guy A@120.375                                 | 9/16                                 | 595                 | 8.35           | 21.00                       | 39.8          | Pas          |
| T8             | 60 - 40         | Guy A@59.625                                  | 9/16                                 | 603                 | 7.95           | 21.00                       | 37.9          | Pas          |
| T2             | 180 - 160       | Guy B@160.375                                 | 5/8                                  | 572                 | 13.90          | 25.44                       | 54.6          | Pas          |
|                | .55 100         | Guy B@170                                     | 5/8                                  | 605                 | 14.88          | 25.44                       | 58.5          | Pas          |
| T4             | 140 - 120       | Guy B@120.375                                 | 9/16                                 | 590                 | 8.84           | 21.00                       | 42.1          | Pas          |
| T8             | 60 - 40         | Guy B@59.625                                  | 9/16                                 | 602                 | 9.11           | 21.00                       | 43.4          | Pas          |
|                |                 | , ,                                           |                                      |                     |                |                             |               |              |
| T2             | 180 - 160       | Guy C@160.375                                 | 5/8                                  | 566                 | 15.50          | 25.44                       | 60.9          | Pas          |
| <b>T</b> 4     | 440 400         | Guy C@170                                     | 5/8                                  | 604                 | 16.12          | 25.44                       | 63.4          | Pas          |
| T4             | 140 - 120       | Guy C@120.375                                 | 9/16                                 | 583                 | 9.82           | 21.00                       | 46.8          | Pas          |
| T8             | 60 - 40         | Guy C@59.625                                  | 9/16                                 | 601                 | 9.06           | 21.00                       | 43.2          | Pas          |
| T2             | 180 - 160       | Top Guy Pull-<br>Off@160.375<br>Top Guy Pull- | L 2 x 2 x 5/16<br>L 1.5 x 1.5 x 3/16 | 41<br>60            | 10.55<br>4.79  | 37.26<br>17.09              | 28.3<br>28.0  | Pas<br>Pas   |
| T4             | 140 - 120       | Off@170<br>Top Guy Pull-                      | L 2 x 2 x 5/16                       | 162                 | -7.15          | 21.94                       | 32.6          | Pas          |
| T8             | 60 - 40         | Off@120.375<br>Top Guy Pull-                  | L 1.5 x 1.5 x 3/16                   | 388                 | -1.22          | 6.70                        | 18.2          | Pas          |
| T2             | 180 - 160       | Off@59.625<br>Torque Arm                      | L 3 x 3 x 1/4                        | 567                 | 15.05          | 46.58                       | 32.3          | Pas          |
| T4             | 140 - 120       | Top@160.375<br>Torque Arm                     | L 3 x 3 x 1/4                        | 585                 | 8.46           | 46.58                       | 18.2          | Pas          |
| T2             | 180 - 160       | Top@120.375<br>Torque Arm                     | L 3 x 3 x 1/4                        | 575                 | -12.66         | 36.39                       | 34.8          | Pas          |
| T4             | 140 - 120       | Bottom@160.375<br>Torque Arm                  | L 3 x 3 x 1/4                        | 593                 | -7.76          | 36.39                       | 21.3          | Pas          |
|                |                 | Bottom@120.375                                |                                      |                     |                |                             | Summary       |              |
|                |                 |                                               |                                      |                     |                | Leg (T4)                    | 87.1          | Pas          |
|                |                 |                                               |                                      |                     |                | Diagonal<br>(T1)            | 78.6          | Pas          |
|                |                 |                                               |                                      |                     |                | Horizontal<br>(T1)          | 87.9          | Pas          |
|                |                 |                                               |                                      |                     |                | Top Girt<br>(T1)            | 59.0          | Pas          |
|                |                 |                                               |                                      |                     |                | Bottom Girt<br>(T1)         | 64.7          | Pas          |
|                |                 |                                               |                                      |                     |                | Guy A (T2)                  | 58.7          | Pas          |
|                |                 |                                               |                                      |                     |                | Guy B (T2)                  | 58.5          | Pas          |
|                |                 |                                               |                                      |                     |                | Guy C (T2)                  | 63.4          | Pas          |
|                |                 |                                               |                                      |                     |                | Top Guy<br>Pull-Off<br>(T4) | 32.6          | Pas          |
|                |                 |                                               |                                      |                     |                | Torque<br>Arm Top           | 32.3          | Pas          |
|                |                 |                                               |                                      |                     |                | (T2)<br>Torque<br>Arm       | 34.8          | Pas          |
|                |                 |                                               |                                      |                     |                | Bottom<br>(T2)<br>Bolt      | 21.9          | Pas          |
|                |                 |                                               |                                      |                     |                | Checks                      |               | _            |
|                |                 |                                               |                                      |                     |                | RATING =                    | 87.9          | Pa           |

# APPENDIX B BASE LEVEL DRAWING

### Feed Line Plan

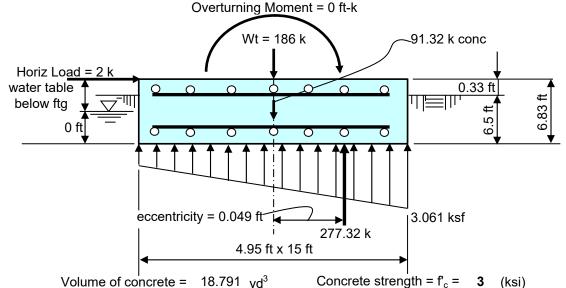
 Round
 \_\_\_\_\_\_ Flat
 \_\_\_\_\_\_ App In Face
 App Out Face



| , | <sup>Job:</sup> <b>A00019-0431.002.8800</b>                                      |                                  |           |
|---|----------------------------------------------------------------------------------|----------------------------------|-----------|
|   | Project: Bozrah Polly Lane                                                       |                                  |           |
|   | Client: Everest Infrastructure Partners                                          |                                  |           |
|   | Code: TIA-222-G                                                                  | Date: 06/17/21                   | Scale: N7 |
|   | Path: G:TOWER:000 Miscl2019:00019-0431 Bozzah Poliv Lane 701695:00019-0431.004.8 | 700 SA/tnx/00019-0431.004.8700.c | Dwg No. E |

# APPENDIX C ADDITIONAL CALCULATIONS

#### foundation loads


Limit states Tower or Pole Weight = 186 kips limit states total horizontal force = kips limit states overturning moment = 0 ft-kips

#### soil properties

Safety factor against overturning = Soil Density = 115 pcf Ultimate soil bearing = 8 ksf Depth to water table = 20 ft

#### mat dimensions

depth to bottom of footing = 6.5 Footing thickness = **6.833** ft Footing Width = **4.95** ft Footing Length = 15 ft Tower/Pole Center Offset =



Rebar = (18) #9 x 4.45 ft long plus (58) #9 x 14.5 ft long

reinforcing steel = (9) #9 by 4.45 long @ 21.75 in o.c. top and bot short bars reinforcing steel = (29) #9 by 14.5 long @ 1.91 in o.c. top and bot long bars

Rebar strength =  $F_v = 60$  (ksi)

minimum cover over rebar = 3 inches

## Summary of analysis results

**Overturning Moment:** (Stress Ratio = 0.027)

Calculated Ultimate Overturning Moment = 13.7 ft-kips Resisting Moment = 514.8 ft-kips

Factor of Safety against overturning = 37.669 > 1 okay

Soil Bearing (Stress Ratio = 0.638) < CONTROLLING CRITERIA

Limit States Maximum Net Soil Bearing = 4.8 ksf

Calculated limit states Soil Bearing Pressure = 3.061 ksf < 4.8 ksf okay

**Bending Moment** (Stress Ratio = 0.001)

Ultimate Bending Moment Resistance = 9339 ft-kips

Calculated Ultimate Bending Moment = 7 ft-kips < 9339 ft-kips okay

(Stress Ratio = 0.004) Bending Shear

Ultimate Bending Shear Resistance = 377 kips

Calculated Ultimate Bending Shear = 1 kips < 377 kips okay

Finished Grade

6.25 ft

Height = 2.5 ft

Length = 9 ft

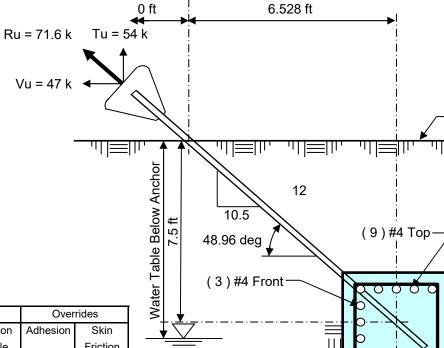
8.8

Depth =

## **Deadman Guy Anchor Analysis (LRFD)**

Guy Anchor: Bozrah, CT

PJF Job No. <u>00019-0431.004.8700</u> Project Name:


Project Name: Bozrah Polly Lane

Engineer: ADP

'||<u>|</u>|||| Width = 5 ft

Uplift Force = Horizontal Force = Load Factor, Concrete Weight = Φ, Soil Weight = Depth to Water Table = Toe Width (If Any) = Toe Height (If Any) = Depth to Bottom of Deadman = Deadman Block Height = Deadman Block Width = Deadman Block Length = Guy Rod Steel Strength, Fy = Guy Rod Cross-Sectional Area = Concrete Strength, f'c = Rebar Strength, Fy = Minimum Cover Over Rebar = Horiz. Ult. Passive Press. Override =

| 54    | k      |
|-------|--------|
| 47    | k      |
| 0.9   | _      |
| 0.75  | =<br>= |
| 20    | ft     |
| 0     | in     |
| 0     | in     |
| 8.75  | ft     |
| 2.5   | ft     |
| 5     | ft     |
| 9     | ft     |
| 48    | ksi    |
| 2.405 | in^2   |
| 3     | ksi    |
| 60    | ksi    |
| 3     | in     |
|       | ksf/ft |



|       |          |          | Up       | lift     | Horiz    | contal   | Over     | rides    |
|-------|----------|----------|----------|----------|----------|----------|----------|----------|
| Layer | Dry Soil | Sat Soil | Cohesion | Friction | Cohesion | Friction | Adhesion | Skin     |
| Thk   | Density  | Density  |          | Angle    |          | Angle    |          | Friction |
| ft    | pcf      | pcf      | ksf      | degrees  | ksf      | degrees  | ksf      | ksf      |
| 2.5   | 110      | 100      |          | 29       |          | 29       |          |          |
| 2.5   | 115      | 115      |          | 32       |          | 32       |          |          |
| 12    | 120      | 120      |          | 36       |          | 36       |          |          |
|       |          |          |          |          |          |          |          |          |
|       |          |          |          |          |          |          |          |          |

Uplift Based on:

Soil Cone

Concrete Volume per Anchor = Concrete Volume for (3) Anchors =

**4.17** yd^3 **12.50** yd^3 Inverted pyramid of soil in uplift will be taken from the top of the anchor.

## **Summary Results:**

|                                    | Required         | Available         |                  |                            |
|------------------------------------|------------------|-------------------|------------------|----------------------------|
| Guy Rod Tensile Force =            | <b>71.59</b> k   | <b>92.4</b> k     | Capacity Ratio = | 77.5% in Tensile Force     |
| Soil, Horizontal Resistance =      | <b>47.0</b> k    | <b>56.1</b> k     | Capacity Ratio = | 83.8% in Horiz Resistance  |
| Soil, Uplift Resistance =          | <b>54.0</b> k    | <b>96.7</b> k     | Capacity Ratio = | 55.8% in Uplift Resistance |
| Steel, Uplift Bending Moment =     | <b>81.3</b> k-ft | <b>199.2</b> k-ft | Capacity Ratio = | 40.8% in Bending Moment    |
| Steel, Horizontal Bending Moment = | <b>52.9</b> k-ft | <b>126.4</b> k-ft | Capacity Ratio = | 41.8% in Bending Moment    |
| Toe Shear =                        | k/ft             | k/ft              | Capacity Ratio = | in Shear                   |

# STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- 1) Paul J. Ford and Company has not made a field inspection to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these drawings, we should be contacted immediately to evaluate the significance of the deviation.
- 2) No allowance was made for any damaged, missing, or rusted members. The analysis of this tower assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the tower members have the same load carrying capacity as the day the tower was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing tower. The structural analysis by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.
- 4) This tower has been analyzed according to the minimum design wind loads recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-G. If the owner or local or state agencies require a higher design wind load, Paul J. Ford and Company should be made aware of this requirement.
- 5) The enclosed sketches are a schematic representation of the tower that we have analyzed. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions and for the proper fit and clearance in the field.
- 6) Miscellaneous items such as antenna mounts etc. have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.



Centered on Solutions<sup>™</sup>

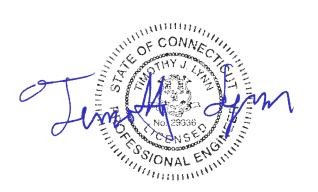
# Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site #: CT11258B

10 Polly Lane Bozrah, CT

Centek Project No. 19027.17


Date: May 3, 2019

Rev 2: January 20, 2021

Max Stress Ratio = 94.3%

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002



CENTEK Engineering, Inc.

Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CT11258B Bozrah, CT Rev 2 ~ January 20, 2021

# Table of Contents

## SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

## SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

### SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

RF DATA SHEET

TABLE OF CONTENTS TOC-1



#### Centered on Solutions<sup>™</sup>

January 20, 2021

Mr. Dan Reid Transcend Wireless 10 Industrial Ave Mahwah, NJ 07430

Re: Structural Letter ~ Antenna Mount T-Mobile – Site Ref: CT11258B 10 Polly Lane Bozrah, CT 06249

Centek Project No. 19027.17

Dear Mr. Reid,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the proposed mount, consisting three (3) V-frame sector mounts (Commscope P/N: SF-QV12-B) with stiff arms to support the proposed/existing equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

#### T-Mobile:

<u>V-Frames:</u> Three (3) RFS APXVAARR24-43-NA20 panel antennas, three (3) Ericsson 4449 B71\_B12 remote radio units, three (3) Ericsson 4415 B25 remote radio units and three (3) Ericsson 4415 B66A remote radio units mounted on three (3) V-Frames with a RAD center elevation of 177-ft +/- AGL.

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 105 mph for Bozrah as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the subject proposed replacement antenna frames have sufficient capacity to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Timothy J. Lynn, PE

Structural Engineer

Prepared by:

Fernando J. Palacios

Engineer

**CENTEK** Engineering, Inc.

Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CT11258B Bozrah, CT Rev 2 ~ January 20, 2021

# Section 2 - Calculations



F: (203) 488-8587

Subject:

TIA-222-G Loads

Bozrah, CT Location:

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 2: 1/20/21 Job No. 19027.17

#### Development of Design Heights, Exposure Coefficients, and Velocity Pressures Per TIA-222-G

#### Wind Speeds

Structure Height =

Basic Wind Speed V := 105mph (User Input - 2018 CSBC Appendix N) (User Input per Annex B of TIA-222-G) Basic Wind Speed with Ice  $V_i := 50$ mph

Structure Type = Structure\_Type := Lattice (User Input)

Structure Category = SC := II(User Input)

Exposure Category = Exp := C(User Input)

h:= 187 (User Input)

Height to Center of Antennas=  $z_{Ant} = 177$ (User Input)

Radial Ice Thickness =  $t_i := 0.75$ (User Input per Annex B of TIA-222-G)

Radial Ice Density= Id := 56.00pcf (User Input)

Topograpic Factor =  $K_{zt} := 1.0$ (User Input)

> $K_a := 1.0$ (User Input)

Gust Response Factor = G<sub>H</sub> := 1.113 (User Input)

 $K_d := \begin{bmatrix} 0.95 & \text{if Structure\_Type} = \text{Pole} \end{bmatrix} = 0.85$ Wind Direction Probability Factor = (Per Table 2-2 of

TIA-222-G) 0.85 if Structure\_Type = Lattice

 $I_{Wind} := \begin{cases} 0.87 & \text{if } SC = 1 \\ 1.00 & \text{if } SC = 2 \\ 1.15 & \text{if } SC = 3 \end{cases}$ Importance Factors = (Per Table 2-3 of TIA-222-G)

 $I_{Wind\_w\_lce} := \begin{bmatrix} 0 & \text{if } SC = 1 \\ 1.00 & \text{if } SC = 2 \\ 1.00 & \text{if } SC = 3 \end{bmatrix} = 1$ 

 $K_{iz} := \left(\frac{z_{Ant}}{33}\right)^{0.1} = 1.183$  $t_{iz} := 2.0 \cdot t_i \cdot l_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 1.774$ 

 $Kz_{Ant} := 2.01 \left( \left( \frac{z_{Ant}}{z_{\alpha}} \right) \right)^{\frac{2}{\alpha}} = 1.427$ Velocity Pressure Coefficient Antennas =

 $qz_{Ant} := 0.00256 \cdot K_{d} \cdot Kz_{Ant} \cdot V^2 \cdot I_{Wind} = 34.241$ Velocity Pressure w/o Ice Antennas =

 $qz_{ice,Ant} = 0.00256 \cdot K_d \cdot Kz_{Ant} \cdot V_i^2 \cdot I_{Wind} = 7.764$ Velocity Pressure with Ice Antennas =



Centered on Solutions www.centekeng.com 63-3 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Development of Wind & Ice Load on Antennas

Subject:

TIA-222-G Loads

Bozrah, CT

Location:

Rev. 2: 1/20/21

Prepared by: T.J.L. Checked by: C.F.C.

sf lbs

lbs

Job No. 19027.17

#### Antenna Data:

Antenna Model = RFSAPXVAARR24-43

Flat Antenna Shape = (User Input)

Antenna Height= L<sub>ant</sub> := 95.9 (User Input)

 $W_{ant} = 24$ Antenna Width = in (User Input)

Antenna Thickness =  $T_{ant} = 8.7$ in (User Input)

Antenna Weight =  $WT_{ant} := 153$ (User Input)

Number of Antennas =  $N_{ant} := 1$ (User Input)

 $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.0$ Antenna Aspect Ratio =

Ca<sub>ant</sub> = 1.27 Antenna Force Coefficient =

#### Wind Load (without ice)

 $SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 16$ Surface Area for One Antenna =

 $F_{ant} := qz_{Ant} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ant} = 771$ Total Antenna Wind Force=

 $SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 5.8$ Surface Area for One Antenna = sf

Total Antenna Wind Force=  $F_{ant} := qz_{Ant} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antS} = 280$ lhs

#### Wind Load (with ice)

Surface Area for One Antenna w/Ice =

Total Antenna Wind Forcew/Ice =

Surface Area for One Antenna w/ Ice =

Total Antenna Wind Forcew/Ice =

#### Gravity Load (without ice)

Weight of All Antennas=

Gravity Loads (ice only)

Volume of Each Antenna =

Volume of Ice on Each Antenna =

Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =

 $SA_{ICEantF} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 19$ sf

Fi<sub>ant</sub> := qz<sub>ice.Ant</sub>·G<sub>H</sub>·Ca<sub>ant</sub>·K<sub>a</sub>·SA<sub>ICEantF</sub> = 208 lbs

 $SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 8.5$ 

Fi<sub>ant</sub> := qz<sub>ice,Ant</sub>·G<sub>H</sub>·Ca<sub>ant</sub>·K<sub>a</sub>·SA<sub>ICEantS</sub> = 93 lbs

## $WT_{ant} \cdot N_{ant} = 153$

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2 \times 10^4$ cu in

 $V_{ice} := (L_{ant} + 2 \cdot t_{iz})(W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 1 \times 10^4$ cu in

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 439$ lbs

W<sub>ICEant</sub>·N<sub>ant</sub> = 439 lbs



F: (203) 488-8587

Subject:

TIA-222-G Loads

Bozrah, CT

Location:

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 2: 1/20/21 Job No. 19027.17

#### Development of Wind & Ice Load on RRUS's

#### **RRUS Data:**

RRUS Model = Ericsson 4449

RRUS Shape = Flat (User Input)

RRUS Height= L<sub>RRUS</sub> := 14.9 (User Input)

RRUS Width =  $W_{RRUS} = 13.2$ in (User Input)

RRUS Thickness =  $T_{RRUS} = 10.4$ (User Input)

RRUS Weight=  $WT_{RRUS} = 74$ lbs (User Input)

Number of RRUS's =  $N_{RRUS} := 1$ (User Input)

 $Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.1$ RRUS Aspect Ratio =

RRUS Force Coefficient =  $Ca_{RRUS} = 1.2$ 

#### Wind Load (without ice)

 $SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 1.4$ Surface Area for One RRUS =

 $F_{RRUS} := qz_{Ant} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 62$ 

Surface Area for One R RUS =

 $SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.1$ 

Total RRUS Wind Force =

Total RRUS Wind Force =

F<sub>RRUS</sub> := qz<sub>Ant</sub>·G<sub>H</sub>·Ca<sub>RRUS</sub>·K<sub>a</sub>·SA<sub>RRUSS</sub> = 49

#### Wind Load (with ice)

Surface Area for One RRUS w/Ice =

 $SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.1$ sf

Total RRUS Wind Force w/ Ice =

Fi<sub>RRUS</sub> := qz<sub>ice,Ant</sub>·G<sub>H</sub>·Ca<sub>RRUS</sub>·K<sub>a</sub>·SA<sub>ICERRUSF</sub> = 22

Surface Area for One RRUS w/Ice =

 $SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 1.8$ sf

Total RRUS Wind Force w/ Ice =

Fire Price and GH. Carry Ray SAICERRUSS = 19

#### Gravity Load (without ice)

Weight of All RRUSs=

WT<sub>RRUS</sub>·N<sub>RRUS</sub> = 74

lbs

sf

lbs

lbs

lbs

#### Gravity Loads (ice only)

Volume of Each RRUS =

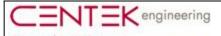
VRRUS := LRRUS·WRRUS·TRRUS = 2045

cu in

Volume of Ice on EachRRUS =

 $V_{ice} := (L_{RRUS} + 2 \cdot t_{iz})(W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 2266$ 

Weight of Ice on Each RRUS =


 $W_{ICERRUS} = \frac{V_{ice}}{1728} \cdot Id = 73$ 

lbs

Weight of Ice on All RRUSs=

W<sub>ICERRUS</sub>·N<sub>RRUS</sub> = 73

lbs



F: (203) 488-8587

Subject:

TIA-222-G Loads

Location:

Bozrah, CT

Prepared by: T.J.L. Checked by: C.F.C.

sf lbs

lbs

lbs

Job No. 19027.17

Rev. 2: 1/20/21

#### Development of Wind & Ice Load on RRUS's

#### **RRUS Data:**

RRUS Model = Ericsson 4415 B25

RRUS Shape = (User Input)

RRUS Height =  $L_{RRUS} = 16.5$ (User Input)

RRUS Width = W<sub>RRUS</sub> := 13.4 (User Input)

RRUS Thickness =  $T_{RRUS} = 5.9$ (User Input)

RRUS Weight=  $WT_{RRUS} = 46$ lbs (User Input)

Number of RRUS's = (User Input)  $N_{RRUS} = 1$ 

 $Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.2$ RRUS Aspect Ratio =

RRUS Force Coefficient =  $Ca_{RRUS} = 1.2$ 

#### Wind Load (without ice)

 $SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 1.5$ Surface Area for One R RUS =

Total RRUS Wind Force =  $F_{RRUS} := qz_{Ant} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 70$ 

 $SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 0.7$ Surface Area for One R RUS = sf

Total RRUS Wind Force =  $F_{RRUS} := qz_{Ant} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSS} = 31$ lbs

#### Wind Load (with ice)

Surface Area for One RRUS w/Ice =

Total RRUS Wind Force w/ Ice =

Surface Area for One RRUS w/Ice =

Total RRUS Wind Force w/ Ice =

#### Gravity Load (without ice)

Weight of All RRUSs=

## Gravity Loads (ice only)

Volume of Each RRUS =

Volume of Ice on EachRRUS =

Weight of Ice on Each RRUS =

Weight of Ice on All RRUSs=

## $SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.4$ sf

Fi<sub>RRUS</sub> := qz<sub>ice.Ant</sub>·G<sub>H</sub>·Ca<sub>RRUS</sub>·K<sub>a</sub>·SA<sub>ICERRUSF</sub> = 24 lbs

$$SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 1.3$$
 sf

Fire Price and GH. Carry Rays Ka. SAICERRUSS = 14

#### WT<sub>RRUS</sub>·N<sub>RRUS</sub> = 46

cu in V<sub>RRUS</sub> := L<sub>RRUS</sub>·W<sub>RRUS</sub>·T<sub>RRUS</sub> = 1304

 $V_{ice} := (L_{RRUS} + 2 \cdot t_{iz})(W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 1906$ 

 $W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 62$ lbs

W<sub>ICERRUS</sub>·N<sub>RRUS</sub> = 62 lbs



F: (203) 488-8587

Subject:

TIA-222-G Loads

Bozrah, CT

Location:

Rev. 2: 1/20/21

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 19027.17

#### Development of Wind & Ice Load on RRUS's

#### **RRUS Data:**

RRUS Model = Ericsson 4415 B66

RRUS Shape = (User Input)

RRUS Height=  $L_{RRUS} := 16.54$  in (User Input)

RRUS Width=  $W_{RRUS} = 13.46$  in (User Input)

RRUS Thickness =  $T_{RRUS} = 5.86$  in (User Input)

RRUS Weight=  $WT_{RRUS} = 47.4$  lbs

Number of RRUS's=  $N_{RRUS} := 1$ (User Input)

 $Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.2$ RRUS Aspect Ratio =

RRUS Force Coefficient =  $Ca_{RRUS} = 1.2$ 

#### Wind Load (without ice)

Surface Area for One R RUS =

 $SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 1.5$ 

sf lbs

Total RRUS Wind Force =

Surface Area for One R RUS =

 $SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 0.7$ 

Total RRUS Wind Force =

 $F_{RRUS} := qz_{Ant} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSS} = 31$ 

 $F_{RRUS} := qz_{Ant} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 71$ 

lbs

sf

lbs

lbs

#### Wind Load (with ice)

Surface Area for One RRUS w/Ice =

 $SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.4$ 

Total RRUS Wind Force w/ Ice =

Fire azice. Ant GH Carrus Ka SAICERRUSF = 25

Surface Area for One RRUS w/Ice =

 $SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 1.3$ sf

Total RRUS Wind Force w/ Ice =

Fire Price and GH. Carry Rays Ka. SAICERRUSS = 14

#### Gravity Load (without ice)

Weight of All RRUSs=

WT<sub>RRUS</sub>·N<sub>RRUS</sub> = 47

lbs

#### Gravity Loads (ice only)

Volume of Each RRUS =

VRRUS := LRRUS·WRRUS·TRRUS = 1305

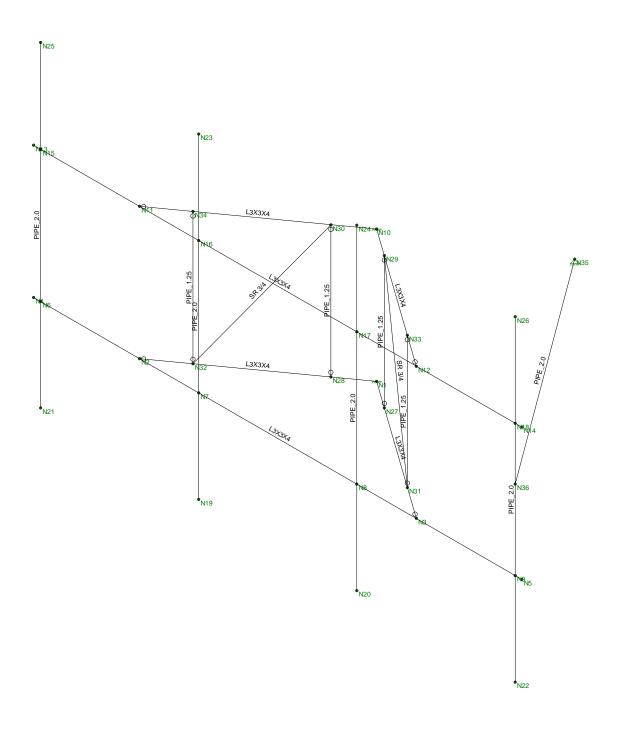
cu in

Volume of Ice on EachRRUS =

 $V_{ice} := (L_{RRUS} + 2 \cdot t_{iz})(W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 1910$ 

Weight of Ice on Each RRUS =

 $W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 62$ 


lbs

Weight of Ice on All RRUSs=

WICERRUS - NRRUS = 62

lbs





Envelope Only Solution

| Centek   |                |                         |
|----------|----------------|-------------------------|
| FJP      | CT11258B_AMA   | Jan 20, 2021 at 1:25 PM |
| 19027.17 | Member Framing | CT11258B_AMA.r3d        |



Company : Centek
Designer : FJP
Job Number : 19027.17
Model Name : CT11258B\_AMA

Jan 20, 2021 1:24 PM Checked By: CAG

## (Global) Model Settings

| Display Sections for Member Calcs          | 5                  |
|--------------------------------------------|--------------------|
| Max Internal Sections for Member Calcs     | 97                 |
| Include Shear Deformation?                 | Yes                |
| Increase Nailing Capacity for Wind?        | Yes                |
| Include Warping?                           | Yes                |
| Trans Load Btwn Intersecting Wood Wall?    | Yes                |
| Area Load Mesh (in^2)                      | 144                |
| Merge Tolerance (in)                       | .12                |
| P-Delta Analysis Tolerance                 | 0.50%              |
| Include P-Delta for Walls?                 | Yes                |
| Automatically Iterate Stiffness for Walls? | Yes                |
| Max Iterations for Wall Stiffness          | 3                  |
| Gravity Acceleration (ft/sec^2)            | 32.2               |
| Wall Mesh Size (in)                        | 12                 |
| Eigensolution Convergence Tol. (1.E-)      | 4                  |
| Vertical Axis                              | Υ                  |
| Global Member Orientation Plane            | XZ                 |
| Static Solver                              | Sparse Accelerated |
| Dynamic Solver                             | Accelerated Solver |
|                                            |                    |

| Hot Rolled Steel Code  | AISC 14th(360-10): LRFD    |
|------------------------|----------------------------|
| Adjust Stiffness?      | Yes(Iterative)             |
| RISAConnection Code    | AISC 14th(360-10): ASD     |
| Cold Formed Steel Code | AISI S100-10: ASD          |
| Wood Code              | AWC NDS-12: ASD            |
| Wood Temperature       | < 100F                     |
| Concrete Code          | ACI 318-11                 |
| Masonry Code           | ACI 530-11: ASD            |
| Aluminum Code          | AA ADM1-10: ASD - Building |
| Stainless Steel Code   | AISC 14th(360-10): ASD     |
| Adjust Stiffness?      | Yes(Iterative)             |

| Number of Shear Regions       | 4                  |
|-------------------------------|--------------------|
| Region Spacing Increment (in) | 4                  |
| Biaxial Column Method         | Exact Integration  |
| Parme Beta Factor (PCA)       | .65                |
| Concrete Stress Block         | Rectangular        |
| Use Cracked Sections?         | Yes                |
| Use Cracked Sections Slab?    | No                 |
| Bad Framing Warnings?         | No                 |
| Unused Force Warnings?        | Yes                |
| Min 1 Bar Diam. Spacing?      | No                 |
| Concrete Rebar Set            | REBAR_SET_ASTMA615 |
| Min % Steel for Column        | 1                  |
| Max % Steel for Column        | 8                  |



Company : Centek Designer : FJP Job Number : 19027.17

Model Name : CT11258B\_AMA

Jan 20, 2021 1:24 PM Checked By: CAG

## (Global) Model Settings, Continued

| Seismic Code                      | ASCE 7-10   |
|-----------------------------------|-------------|
| Seismic Base Elevation (ft)       | Not Entered |
| Add Base Weight?                  | Yes         |
| Ct X                              | .02         |
| Ct Z                              | .02         |
| T X (sec)                         | Not Entered |
| T Z (sec)                         | Not Entered |
| RX                                | 3           |
| RZ                                | 3           |
| Ct Exp. X                         | .75         |
| Ct Exp. Z                         | .75         |
| SD1                               | 1           |
| SDS                               | 1           |
| S1                                | 1           |
| TL (sec)                          | 5           |
| Risk Cat                          | I or II     |
| Drift Cat                         | Other       |
| Om Z                              | 1           |
| Om X                              | 1           |
| Cd Z                              | 4           |
| Cd X                              | 4           |
| Rho Z                             | 1           |
| Rho X                             | 1           |
|                                   |             |
| Footing Overturning Safety Factor | 1           |
| Optimize for OTM/Sliding          | No          |
| Check Concrete Bearing            | No          |
| Footing Concrete Weight (k/ft^3)  | 150.001     |
| Footing Concrete f'c (ksi)        | 4           |
| Footing Concrete Ec (ksi)         | 3644        |
| Lambda                            | 1           |
| Footing Steel fy (ksi)            | 60          |
| Minimum Steel                     | 0.0018      |
| Maximum Steel                     | 0.0075      |
| Footing Top Bar                   | #3          |
| Footing Top Bar Cover (in)        | 2           |
| Footing Bottom Bar                | #3          |
| Footing Bottom Bar Cover (in)     | 3.5         |
| Pedestal Bar                      | #3          |
| Pedestal Bar Cover (in)           | 1.5         |
| Pedestal Ties                     | #3          |

# **Hot Rolled Steel Properties**

|   | Label       | E [ksi] | G [ksi] | Nu | Therm (\ | Density[k/ft^3] | Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|---|-------------|---------|---------|----|----------|-----------------|------------|-----|---------|-----|
| 1 | A36 Gr.36   | 29000   | 11154   | .3 | .65      | .49             | 36         | 1.5 | 58      | 1.2 |
| 2 | A572 Gr.50  | 29000   | 11154   | .3 | .65      | .49             | 50         | 1.1 | 58      | 1.2 |
| 3 | A992        | 29000   | 11154   | .3 | .65      | .49             | 50         | 1.1 | 58      | 1.2 |
| 4 | A500 Gr.42  | 29000   | 11154   | .3 | .65      | .49             | 42         | 1.3 | 58      | 1.1 |
| 5 | A500 Gr.46  | 29000   | 11154   | .3 | .65      | .49             | 46         | 1.2 | 58      | 1.1 |
| 6 | A53 Grade B | 29000   | 11154   | .3 | .65      | .49             | 35         | 1.5 | 58      | 1.2 |



Company Designer Job Number : Centek : FJP : 19027.17

Model Name : CT11258B\_AMA

Jan 20, 2021 1:24 PM Checked By: CAG

## **Hot Rolled Steel Section Sets**

|   | Label                 | Shape     | Type | Design List | Material    | Design Rul. | A [in2] | lyy [in4] | Izz [in4] | J [in4] |
|---|-----------------------|-----------|------|-------------|-------------|-------------|---------|-----------|-----------|---------|
| 1 | L3x3x1/4              | L3X3X4    | Beam | Pipe        | A36 Gr.36   | Typical     | 1.44    | 1.23      | 1.23      | .031    |
| 2 | Pipe 1.25             | PIPE_1.25 | Beam | Pipe        | A53 Grade B | Typical     | .625    | .184      | .184      | .368    |
| 3 | Pipe 2.0              | PIPE_2.0  | Beam | Pipe        | A53 Grade B | Typical     | 1.02    | .627      | .627      | 1.25    |
| 4 | Antenna Mast Pipe 2.0 | PIPE_2.0  | Beam | Pipe        | A53 Grade B | Typical     | 1.02    | .627      | .627      | 1.25    |
| 5 | SR3/4                 | SR 3/4    | Beam | Pipe        | A36 Gr.36   | Typical     | .442    | .016      | .016      | .031    |

## Hot Rolled Steel Design Parameters

|    | Label | Shape             | Length[ft] | Lbyy[ft] | Lbzz[ft] | Lcomp top[ | .Lcomp bot[ | .L-torq | Kyy | Kzz | Cb | Functi  |
|----|-------|-------------------|------------|----------|----------|------------|-------------|---------|-----|-----|----|---------|
| 1  | M1    | L3x3x1/4          | 4.301      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 2  | M2    | L3x3x1/4          | 4.301      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 3  | M3    | L3x3x1/4          | 12.34      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 4  | M4    | L3x3x1/4          | 4.301      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 5  | M5    | L3x3x1/4          | 4.301      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 6  | M6    | L3x3x1/4          | 12.34      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 7  | M7    | Antenna Mast Pipe | 8          |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 8  | M8    | Antenna Mast Pipe | 8          |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 9  | M9    | Antenna Mast Pipe | 8          |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 10 | M10   | Antenna Mast Pipe | 8          |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 11 | M11   | Pipe 1.25         | 3.333      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 12 | M12   | Pipe 1.25         | 3.333      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 13 | M13   | Pipe 1.25         | 3.333      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 14 | M14   | Pipe 1.25         | 3.333      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 15 | M15   | SR3/4             | 4.166      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 16 | M16   | SR3/4             | 4.166      |          |          | Lbyy       |             |         |     |     |    | Lateral |
| 17 | M17   | Pipe 2.0          | 7.049      |          |          | Lbyy       |             |         |     |     |    | Lateral |

## Member Primary Data

|    | Label | I Joint | J Joint | K Joint | Rotate(d | Section/Shape         | Туре | Design List | Material  | Design Rul |
|----|-------|---------|---------|---------|----------|-----------------------|------|-------------|-----------|------------|
| 1  | M1    | N1      | N3      |         | 270      | L3x3x1/4              | Beam | Pipe        | A36 Gr.36 | Typical    |
| 2  | M2    | N1      | N2      |         |          | L3x3x1/4              | Beam | Pipe        | A36 Gr.36 | Typical    |
| 3  | M3    | N4      | N5      |         | 180      | L3x3x1/4              | Beam | Pipe        | A36 Gr.36 | Typical    |
| 4  | M4    | N10     | N12     |         | 180      | L3x3x1/4              | Beam | Pipe        | A36 Gr.36 | Typical    |
| 5  | M5    | N10     | N11     |         | 90       | L3x3x1/4              | Beam | Pipe        | A36 Gr.36 | Typical    |
| 6  | M6    | N13     | N14     |         | 270      | L3x3x1/4              | Beam | Pipe        | A36 Gr.36 | Typical    |
| 7  | M7    | N25     | N21     |         |          | Antenna Mast Pipe 2.0 | Beam | Pipe        | A53 Gra   | Typical    |
| 8  | M8    | N19     | N23     |         |          | Antenna Mast Pipe 2.0 | Beam | Pipe        | A53 Gra   | Typical    |
| 9  | M9    | N20     | N24     |         |          | Antenna Mast Pipe 2.0 | Beam | Pipe        | A53 Gra   | Typical    |
| 10 | M10   | N26     | N22     |         |          | Antenna Mast Pipe 2.0 | Beam | Pipe        | A53 Gra   | Typical    |
| 11 | M11   | N29     | N27     |         |          | Pipe 1.25             | Beam | Pipe        | A53 Gra   | Typical    |
| 12 | M12   | N33     | N31     |         |          | Pipe 1.25             | Beam | Pipe        | A53 Gra   | Typical    |
| 13 | M13   | N30     | N28     |         |          | Pipe 1.25             | Beam | Pipe        | A53 Gra   | Typical    |
| 14 | M14   | N34     | N32     |         |          | Pipe 1.25             | Beam | Pipe        | A53 Gra   | Typical    |
| 15 | M15   | N30     | N32     |         |          | SR3/4                 | Beam | Pipe        | A36 Gr.36 | Typical    |
| 16 | M16   | N29     | N31     |         |          | SR3/4                 | Beam | Pipe        | A36 Gr.36 | Typical    |
| 17 | M17   | N36     | N35     |         |          | Pipe 2.0              | Beam | Pipe        | A53 Gra   | Typical    |



Company : Centek Designer : FJP Job Number : 19027.1

Job Number : 19027.17 Model Name : CT11258B\_AMA Jan 20, 2021 1:24 PM Checked By: CAG

Joint Coordinates and Temperatures

|    | Label | X [ft]    | Y [ft] | Z [ft]   | Temp [F] | Detach From Dia |
|----|-------|-----------|--------|----------|----------|-----------------|
| 1  | N1    | 0         | 0      | 0        | 0        |                 |
| 2  | N2    | -3.5      | 0      | 2.5      | 0        |                 |
| 3  | N3    | 3.5       | 0      | 2.5      | 0        |                 |
| 4  | N4    | -6.17     | 0      | 2.5      | 0        |                 |
| 5  | N5    | 6.17      | 0      | 2.5      | 0        |                 |
| 6  | N6    | -6        | 0      | 2.5      | 0        |                 |
| 7  | N7    | -2        | 0      | 2.5      | 0        |                 |
| 8  | N8    | 2         | 0      | 2.5      | 0        |                 |
| 9  | N9    | 6         | 0      | 2.5      | 0        |                 |
| 10 | N10   | 0         | 3.333  | 0        | 0        |                 |
| 11 | N11   | -3.5      | 3.333  | 2.5      | 0        |                 |
| 12 | N12   | 3.5       | 3.333  | 2.5      | 0        |                 |
| 13 | N13   | -6.17     | 3.333  | 2.5      | 0        |                 |
| 14 | N14   | 6.17      | 3.333  | 2.5      | 0        |                 |
| 15 | N15   | -6        | 3.333  | 2.5      | 0        |                 |
| 16 | N16   | -2        | 3.333  | 2.5      | 0        |                 |
| 17 | N17   | 2         | 3.333  | 2.5      | 0        |                 |
| 18 | N18   | 6         | 3.333  | 2.5      | 0        |                 |
| 19 | N19   | -2        | -2.333 | 2.5      | 0        |                 |
| 20 | N20   | 2         | -2.333 | 2.5      | 0        |                 |
| 21 | N21   | -6        | -2.333 | 2.5      | 0        |                 |
| 22 | N22   | 6         | -2.333 | 2.5      | 0        |                 |
| 23 | N23   | -2        | 5.667  | 2.5      | 0        |                 |
| 24 | N24   | 2         | 5.667  | 2.5      | 0        |                 |
| 25 | N25   | -6        | 5.667  | 2.5      | 0        |                 |
| 26 | N26   | 6         | 5.667  | 2.5      | 0        |                 |
| 27 | N27   | 0.675399  | 0      | 0.482428 | 0        |                 |
| 28 | N28   | -0.675399 | 0      | 0.482428 | 0        |                 |
| 29 | N29   | 0.675399  | 3.333  | 0.482428 | 0        |                 |
| 30 | N30   | -0.675399 | 3.333  | 0.482428 | 0        |                 |
| 31 | N31   | 2.709732  | 0      | 1.935523 | 0        |                 |
| 32 | N32   | -2.709732 | 0      | 1.935523 | 0        |                 |
| 33 | N33   | 2.709732  | 3.333  | 1.935523 | 0        |                 |
| 34 | N34   | -2.709732 | 3.333  | 1.935523 | 0        |                 |
| 35 | N35   | 1.825     | 2      | -3.18    | 0        |                 |
| 36 | N36   | 6         | 2      | 2.5      | 0        |                 |

## **Joint Boundary Conditions**

|   | Joint Label | X [k/in] | Y [k/in] | Z [k/in] | X Rot.[k-ft/rad] | Y Rot.[k-ft/rad] | Z Rot.[k-ft/rad] |
|---|-------------|----------|----------|----------|------------------|------------------|------------------|
| 1 | N1          | Reaction | Reaction | Reaction | Reaction         | Reaction         | Reaction         |
| 2 | N10         | Reaction | Reaction | Reaction | Reaction         | Reaction         | Reaction         |
| 3 | N35         | Reaction | Reaction | Reaction |                  |                  |                  |

## Member Point Loads (BLC 2 : Dead Load)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M10          | Υ         | 074               | 1.5            |
| 2 | M10          | Υ         | 046               | 2.917          |
| 3 | M10          | Υ         | 047               | 2.833          |



Job Number

: Centek : FJP : 19027.17 Model Name : CT11258B\_AMA Jan 20, 2021 1:24 PM Checked By: CAG

#### Member Point Loads (BLC 2 : Dead Load) (Continued)

| Membe |   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|-------|---|--------------|-----------|-------------------|----------------|
|       | 4 | M10          | Υ         | 077               | 1              |
|       | 5 | M10          | Υ         | 077               | 7              |

#### Member Point Loads (BLC 3 : Ice Load)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M10          | Υ         | 073               | 1.5            |
| 2 | M10          | Υ         | 062               | 2.917          |
| 3 | M10          | Υ         | 062               | 2.833          |
| 4 | M10          | Υ         | 22                | 1              |
| 5 | M10          | Υ         | 22                | 7              |

## Member Point Loads (BLC 4: Wind with Ice X)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M10          | X         | .019              | 1.5            |
| 2 | M10          | X         | .014              | 2.917          |
| 3 | M10          | X         | .014              | 2.833          |
| 4 | M10          | X         | .047              | 1              |
| 5 | M10          | Χ         | .047              | 7              |

#### Member Point Loads (BLC 5 : Wind X)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M10          | X         | .049              | 1.5            |
| 2 | M10          | X         | .031              | 2.917          |
| 3 | M10          | X         | .031              | 2.833          |
| 4 | M10          | X         | .14               | 1              |
| 5 | M10          | X         | .14               | 7              |

#### Member Point Loads (BLC 6: Wind with Ice Z)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M10          | Z         | .104              | 1              |
| 2 | M10          | Z         | .104              | 7              |

#### Member Point Loads (BLC 7: Wind Z)

|   | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,%] |
|---|--------------|-----------|-------------------|----------------|
| 1 | M10          | Ζ         | .386              | 1              |
| 2 | M10          | Z         | .386              | 7              |

#### Member Distributed Loads (BLC 4: Wind with Ice X)

|   | Member Label | Direction | Start Magnitude[k/ft, | End Magnitude[k/ft,F | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-----------------------|----------------------|----------------------|--------------------|
| 1 | M1           | Χ         | .002                  | .002                 | 0                    | 0                  |
| 2 | M2           | Χ         | .002                  | .002                 | 0                    | 0                  |
| 3 | M4           | Χ         | .002                  | .002                 | 0                    | 0                  |
| 4 | M5           | Χ         | .002                  | .002                 | 0                    | 0                  |
| 5 | M8           | Χ         | .002                  | .002                 | 0                    | 0                  |
| 6 | M9           | Χ         | .002                  | .002                 | 0                    | 0                  |
| 7 | M17          | Χ         | .002                  | .002                 | 0                    | 0                  |
| 8 | M10          | Χ         | .002                  | .002                 | 0                    | 0                  |
| 9 | M7           | X         | .002                  | .002                 | 0                    | 0                  |



Company Designer : Centek : FJP Job Number : 19027.17

Model Name : CT11258B\_AMA

Jan 20, 2021 1:24 PM Checked By: CAG

#### Member Distributed Loads (BLC 4: Wind with Ice X) (Continued)

|    | Member Label | Direction | Start Magnitude[k/ft, | End Magnitude[k/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|-----------------------|----------------------|----------------------|--------------------|
| 10 | M8           | X         | .002                  | .002                 | 0                    | 0                  |

## Member Distributed Loads (BLC 5 : Wind X)

|    | Member Label | Direction | Start Magnitude[k/ft, | End Magnitude[k/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|-----------------------|----------------------|----------------------|--------------------|
| 1  | M1           | Χ         | .009                  | .009                 | 0                    | 0                  |
| 2  | M2           | X         | .009                  | .009                 | 0                    | 0                  |
| 3  | M4           | Χ         | .009                  | .009                 | 0                    | 0                  |
| 4  | M5           | Χ         | .009                  | .009                 | 0                    | 0                  |
| 5  | M8           | Χ         | .007                  | .007                 | 0                    | 0                  |
| 6  | M9           | Χ         | .007                  | .007                 | 0                    | 0                  |
| 7  | M17          | Χ         | .007                  | .007                 | 0                    | 0                  |
| 8  | M10          | Χ         | .007                  | .007                 | 0                    | 0                  |
| 9  | M7           | Χ         | .007                  | .007                 | 0                    | 0                  |
| 10 | M8           | X         | .007                  | .007                 | 0                    | 0                  |

## Member Distributed Loads (BLC 6: Wind with Ice Z)

|   | Member Label | Direction | Start Magnitude[k/ft, | End Magnitude[k/ft,F | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-----------------------|----------------------|----------------------|--------------------|
| 1 | M6           | Z         | .002                  | .002                 | 0                    | 0                  |
| 2 | M3           | Z         | .002                  | .002                 | 0                    | 0                  |
| 3 | M2           | Z         | .002                  | .002                 | 0                    | 0                  |
| 4 | M5           | Z         | .002                  | .002                 | 0                    | 0                  |
| 5 | M4           | Z         | .002                  | .002                 | 0                    | 0                  |
| 6 | M1           | Z         | .002                  | .002                 | 0                    | 0                  |
| 7 | M8           | Z         | .002                  | .002                 | 0                    | 0                  |
| 8 | M9           | Z         | .002                  | .002                 | 0                    | 0                  |
| 9 | M7           | Z         | .002                  | .002                 | 0                    | 0                  |

#### Member Distributed Loads (BLC 7 : Wind Z)

|   | Member Label | Direction | Start Magnitude[k/ft, | End Magnitude[k/ft,F | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-----------------------|----------------------|----------------------|--------------------|
| 1 | M6           | Z         | .009                  | .009                 | 0                    | 0                  |
| 2 | M3           | Z         | .009                  | .009                 | 0                    | 0                  |
| 3 | M2           | Z         | .009                  | .009                 | 0                    | 0                  |
| 4 | M5           | Z         | .009                  | .009                 | 0                    | 0                  |
| 5 | M4           | Z         | .009                  | .009                 | 0                    | 0                  |
| 6 | M1           | Z         | .009                  | .009                 | 0                    | 0                  |
| 7 | M8           | Z         | .007                  | .007                 | 0                    | 0                  |
| 8 | M9           | Z         | .007                  | .007                 | 0                    | 0                  |
| 9 | M7           | Z         | .007                  | .007                 | 0                    | 0                  |

#### **Basic Load Cases**

|   | BLC Description | Category | X Gra | Y Gra | Z Gra | Joint | Point | Distrib | .Area( | Surfa |
|---|-----------------|----------|-------|-------|-------|-------|-------|---------|--------|-------|
| 1 | Self Weight     | DL       |       | -1    |       |       |       |         |        |       |
| 2 | Dead Load       | None     |       |       |       |       | 5     |         |        |       |
| 3 | Ice Load        | None     |       |       |       |       | 5     |         |        |       |
| 4 | Wind with Ice X | None     |       |       |       |       | 5     | 10      |        |       |
| 5 | Wind X          | None     |       |       |       |       | 5     | 10      |        |       |
| 6 | Wind with Ice Z | None     |       |       |       |       | 2     | 9       |        |       |
| 7 | Wind Z          | None     |       |       |       |       | 2     | 9       |        |       |



Company : Centek
Designer : FJP
Job Number : 19027.17
Model Name : CT11258B\_AMA

Jan 20, 2021 1:24 PM

Checked By: CAG

## **Load Combinations**

|   | Description         | Solve | P | S | В | Fa  | BLC | Fact | .BLC | Fa  | BLC | Fa | BLC | Fa | В | Fa |
|---|---------------------|-------|---|---|---|-----|-----|------|------|-----|-----|----|-----|----|---|----|---|----|---|----|---|----|---|----|
| 1 | 1.2D + 1.6W (X-dir  | Yes   | Υ |   | 1 | 1.2 | 2   | 1.2  | 5    | 1.6 |     |    |     |    |   |    |   |    |   |    |   |    |   |    |
| 2 | 0.9D + 1.6W (X-dir  | Yes   | Υ |   | 1 | .9  | 2   | .9   | 5    | 1.6 |     |    |     |    |   |    |   |    |   |    |   |    |   |    |
| 3 | 1.2D + 1.0Di + 1.0  | Yes   | Υ |   | 1 | 1.2 | 2   | 1.2  | 3    | 1   | 4   | 1  |     |    |   |    |   |    |   |    |   |    |   |    |
| 4 | 1.2D + 1.6W (Z-dire | Yes   | Υ |   | 1 | 1.2 | 2   | 1.2  | 7    | 1.6 |     |    |     |    |   |    |   |    |   |    |   |    |   |    |
| 5 | 0.9D + 1.6W (Z-dire | Yes   | Υ |   | 1 | .9  | 2   | .9   | 7    | 1.6 | -   |    |     |    |   |    |   |    |   |    |   |    |   |    |
| 6 | 1.2D + 1.0Di + 1.0  | Yes   | Υ |   | 1 | 1.2 | 2   | 1.2  | 3    | 1   | 6   | 1  |     |    |   |    |   |    |   |    |   |    |   |    |

## **Envelope Joint Reactions**

|   | Joint   |     | X [k]  | LC | Y [k] | LC | Z [k]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|---|---------|-----|--------|----|-------|----|--------|----|-----------|----|-----------|----|-----------|----|
| 1 | N1      | max | 1.81   | 6  | .635  | 3  | .884   | 3  | 081       | 5  | 1.328     | 4  | .509      | 1  |
| 2 |         | min | 145    | 2  | .299  | 5  | 258    | 5  | 214       | 3  | 866       | 2  | 526       | 5  |
| 3 | N10     | max | 025    | 5  | .819  | 6  | 526    | 2  | 114       | 2  | .98       | 5  | .623      | 4  |
| 4 |         | min | -1.934 | 3  | .309  | 2  | 969    | 6  | 284       | 6  | -1.145    | 1  | 421       | 2  |
| 5 | N35     | max | .149   | 2  | .029  | 6  | .277   | 1  | 0         | 6  | 0         | 6  | 0         | 6  |
| 6 |         | min | 819    | 4  | .012  | 5  | -1.087 | 4  | 0         | 1  | 0         | 1  | 0         | 1  |
| 7 | Totals: | max | 0      | 6  | 1.48  | 6  | 0      | 3  |           |    |           |    |           |    |
| 8 |         | min | -1.4   | 1  | .632  | 2  | -2.107 | 4  |           |    |           |    |           |    |

## **Envelope Joint Displacements**

|    | Joint |     | X [in] | LC | Y [in] | LC | Z [in] | LC | X Rotation [rad] | LC | Y Rotatio  | LC | Z Rotatio  | LC |
|----|-------|-----|--------|----|--------|----|--------|----|------------------|----|------------|----|------------|----|
| 1  | N1    | max | 0      | 6  | 0      | 6  | 0      | 6  | 0                | 6  | 0          | 6  | 0          | 6  |
| 2  |       | min | 0      | 1  | 0      | 1  | 0      | 1  | 0                | 1  | 0          | 1  | 0          | 1  |
| 3  | N2    | max | .085   | 2  | .011   | 6  | .119   | 2  | 2.39e-03         | 3  | 4.46e-03   | 2  | -1.514e-04 | 2  |
| 4  |       | min | 153    | 4  | 003    | 1  | 213    | 4  | 8.902e-04        | 2  | -3.593e-03 | 4  | -4.052e-04 | 6  |
| 5  | N3    | max | .085   | 2  | 04     | 2  | .216   | 4  | 5.932e-04        | 1  | 2.369e-03  | 3  | -2.586e-03 | 5  |
| 6  |       | min | 155    | 4  | 102    | 6  | 119    | 2  | -6.997e-03       | 5  | -6.626e-03 | 5  | -8.262e-03 | 3  |
| 7  | N4    | max | .085   | 2  | .047   | 6  | .27    | 2  | 5.011e-03        | 3  | 4.942e-03  | 2  | -6.719e-04 | 2  |
| 8  |       | min | 153    | 4  | .011   | 2  | 302    | 4  | 1.383e-03        | 5  | -2.296e-03 | 4  | -1.916e-03 | 6  |
| 9  | N5    | max | .085   | 2  | 119    | 5  | .466   | 5  | 2.448e-03        | 1  | 5.909e-04  | 3  | -6.792e-04 | 5  |
| 10 |       | min | 155    | 4  | 404    | 3  | 115    | 1  | -2.431e-02       | 5  | -8.871e-03 | 5  | -6.272e-03 | 3  |
| 11 | N6    | max | .085   | 2  | .043   | 6  | .259   | 2  | 5.011e-03        | 3  | 4.942e-03  | 2  | -6.719e-04 | 2  |
| 12 |       | min | 153    | 4  | .01    | 2  | 297    | 4  | 1.383e-03        | 5  | -2.296e-03 | 4  | -1.916e-03 | 6  |
| 13 | N7    | max | .085   | 2  | .003   | 6  | .041   | 2  | 1.834e-03        | 6  | 4.202e-03  | 2  | -1.694e-04 | 2  |
| 14 |       | min | 153    | 4  | 006    | 1  | 14     | 4  | 6.497e-04        | 2  | -4.332e-03 | 4  | -8.223e-04 | 6  |
| 15 | N8    | max | .085   | 2  | 006    | 2  | .112   | 4  | -8.527e-04       | 5  | 1.694e-03  | 2  | -9.991e-04 | 2  |
| 16 |       | min | 154    | 4  | 015    | 4  | 095    | 2  | -3.658e-03       | 3  | -5.364e-03 | 4  | -2.682e-03 | 6  |
| 17 | N9    | max | .085   | 2  | 118    | 5  | .448   | 5  | 2.448e-03        | 1  | 5.908e-04  | 3  | -6.792e-04 | 5  |
| 18 |       | min | 155    | 4  | 391    | 3  | 118    | 1  | -2.431e-02       | 5  | -8.871e-03 | 5  | -6.272e-03 | 3  |
| 19 | N10   | max | 0      | 6  | 0      | 6  | 0      | 6  | 0                | 6  | 0          | 6  | 0          | 6  |
| 20 |       | min | 0      | 1  | 0      | 1  | 0      | 1  | 0                | 1  | 0          | 1  | 0          | 1  |
| 21 | N11   | max | .126   | 1  | .011   | 6  | .176   | 1  | 2.683e-03        | 6  | 6.026e-03  | 1  | -1.372e-04 | 2  |
| 22 |       | min | 103    | 5  | 0      | 1  | 143    | 5  | 9.985e-04        | 2  | -3.106e-03 | 5  | -4.032e-04 | 6  |
| 23 | N12   | max | .127   | 1  | 025    | 5  | .146   | 5  | 5.71e-03         | 5  | -8.485e-04 | 2  | -1.493e-03 | 5  |
| 24 |       | min | 104    | 5  | 099    | 3  | 176    | 1  | -9.937e-04       | 1  | -3.622e-03 | 4  | -8.136e-03 | 3  |
| 25 | N13   | max | .126   | 1  | .047   | 6  | .361   | 1  | 5.016e-03        | 3  | 5.407e-03  | 1  | -7.064e-04 | 2  |
| 26 |       | min | 103    | 5  | .011   | 2  | 224    | 5  | 2.026e-03        | 2  | -2.438e-03 | 5  | -1.911e-03 | 6  |
| 27 | N14   | max | .128   | 1  | 126    | 5  | .29    | 4  | 1.695e-02        | 4  | -1.38e-03  | 3  | -3.374e-03 | 2  |
| 28 |       | min | 104    | 5  | 406    | 3  | 081    | 2  | -1.215e-03       | 2  | -5.21e-03  | 4  | -6.877e-03 | 6  |



Company : Centek Designer : FJP Job Number : 19027.1

: 19027.17 : CT11258B\_AMA Jan 20, 2021 1:24 PM Checked By: CAG

## **Envelope Joint Displacements (Continued)**

|    | Joint |     | X [in] | LC | Y [in] | LC | Z [in] | LC | X Rotation [rad] | I.C. | Y Rotatio  | I C | Z Rotatio LC |
|----|-------|-----|--------|----|--------|----|--------|----|------------------|------|------------|-----|--------------|
| 29 | N15   | max | .126   | 1  | .043   | 6  | .35    | 1  | 5.016e-03        | 3    | 5.407e-03  | 1   | -7.064e-04 2 |
| 30 |       | min | 103    | 5  | .01    | 2  | 219    | 5  | 2.026e-03        | 2    | -2.438e-03 | 5   | -1.911e-03 6 |
| 31 | N16   | max | .127   | 1  | .003   | 6  | .07    | 1  | 1.979e-03        | 4    | 5.539e-03  | 1   | -5.394e-04 2 |
| 32 |       | min | 103    | 5  | 006    | 1  | 077    | 5  | 6.523e-04        | 2    | -4.002e-03 | 5   | -8.61e-04 3  |
| 33 | N17   | max | .127   | 1  | 006    | 2  | .09    | 5  | 1.21e-04         | 5    | 2.428e-03  | 1   | -4.23e-04 5  |
| 34 |       | min | 104    | 5  | 015    | 4  | 16     | 1  | -3.685e-03       | 3    | -3.188e-03 | 5   | -2.592e-03 3 |
| 35 | N18   | max | .128   | 1  | 118    | 5  | .279   | 4  | 1.695e-02        | 4    | -1.38e-03  | 3   | -3.374e-03 2 |
| 36 |       | min | 104    | 5  | 392    | 3  | 087    | 2  | -1.215e-03       | 2    | -5.21e-03  | 4   | -6.877e-03 6 |
| 37 | N19   | max | .09    | 2  | .003   | 6  | .022   | 2  | 1.792e-03        | 6    | 4.202e-03  | 2   | 2.999e-04 2  |
| 38 |       | min | 167    | 4  | 006    | 1  | 172    | 4  | 6.496e-04        | 2    | -4.332e-03 | 4   | -8.221e-04 6 |
| 39 | N20   | max | .062   | 2  | 006    | 2  | .187   | 6  | -1.087e-03       | 5    | 1.694e-03  | 2   | -7.644e-04 2 |
| 40 |       | min | 2      | 4  | 015    | 4  | 055    | 2  | -3.658e-03       | 3    | -5.364e-03 | 4   | -2.681e-03 6 |
| 41 | N21   | max | .071   | 2  | .043   | 6  | .203   | 2  | 5.01e-03         | 3    | 4.942e-03  | 2   | -4.372e-04 2 |
| 42 |       | min | 181    | 4  | .01    | 2  | 345    | 4  | 1.148e-03        | 5    | -2.296e-03 | 4   | -1.916e-03 6 |
| 43 | N22   | max | .107   | 2  | 118    | 5  | 1.253  | 5  | 2.445e-03        | 1    | 5.908e-04  | 3   | 1.203e-03 2  |
| 44 |       | min | 246    | 6  | 392    | 3  | 187    | 1  | -2.971e-02       | 5    | -8.871e-03 | 5   | -6.223e-03 6 |
| 45 | N23   | max | .154   | 1  | .003   | 6  | .097   | 3  | 2.214e-03        | 4    | 5.539e-03  | 1   | -6.253e-04 5 |
| 46 |       | min | 086    | 5  | 006    | 1  | 022    | 5  | 6.523e-04        | 2    | -4.002e-03 | 5   | -1.098e-03 1 |
| 47 | N24   | max | .157   | 1  | 006    | 2  | .099   | 5  | 3.56e-04         | 5    | 2.428e-03  | 1   | -4.23e-04 5  |
| 48 |       | min | 092    | 5  | 015    | 4  | 21     | 1  | -3.686e-03       | 3    | -3.188e-03 | 5   | -2.635e-03 3 |
| 49 | N25   | max | .156   | 1  | .043   | 6  | .421   | 1  | 5.023e-03        | 6    | 5.407e-03  | 1   | -8.506e-04 5 |
| 50 |       | min | 079    | 5  | .01    | 2  | 156    | 5  | 2.026e-03        | 2    | -2.438e-03 | 5   | -1.95e-03 3  |
| 51 | N26   | max | .298   | 1  | 118    | 5  | .88    | 4  | 2.244e-02        | 4    | -1.38e-03  | 3   | -4.222e-03 5 |
| 52 |       | min | .014   | 5  | 392    | 3  | 121    | 2  | -1.218e-03       | 2    | -5.21e-03  | 4   | -7.369e-03 3 |
| 53 | N27   | max | .005   | 2  | 002    | 2  | .011   | 4  | -9.184e-05       | 2    | 1.735e-03  | 2   | -8.562e-05 2 |
| 54 |       | min | 008    | 4  | 005    | 3  | 007    | 2  | -8.005e-04       | 4    | -2.429e-03 | 4   | -6.101e-04 4 |
| 55 | N28   | max | .005   | 2  | 0      | 6  | .007   | 2  | 3.139e-04        | 6    | 1.526e-03  | 2   | -2.768e-05 2 |
| 56 |       | min | 008    | 4  | 0      | 1  | 011    | 4  | 1.219e-04        | 2    | -2.558e-03 | 4   | -1.792e-04 6 |
| 57 | N29   | max | .008   | 1  | 003    | 2  | .007   | 5  | 7.806e-04        | 4    | 2.215e-03  | 1   | 2.135e-04 5  |
| 58 |       | min | 005    | 5  | 008    | 6  | 01     | 1  | -7.794e-05       | 3    | -1.835e-03 | 5   | -6.563e-04 3 |
| 59 | N30   | max | .007   | 1  | 0      | 6  | .009   | 1  | 4.647e-04        | 6    | 2.197e-03  | 1   | -3.63e-05 2  |
| 60 |       | min | 005    | 5  | 0      | 1  | 007    | 5  | 1.256e-04        | 2    | -1.753e-03 | 5   | -3.134e-04 6 |
| 61 | N31   | max | .063   | 2  | 009    | 2  | .133   | 4  | 7.549e-04        | 1    | 3.578e-03  | 2   | -1.768e-03 2 |
| 62 |       | min | 095    | 4  | 027    | 6  | 088    | 2  | -1.785e-03       | 5    | -7.817e-03 | 4   | -5.289e-03 6 |
| 63 | N32   | max | .057   | 2  | .002   | 6  | .079   | 2  | 8.882e-04        | 6    | 4.002e-03  | 2   | -1.927e-04 2 |
| 64 |       | min | 102    | 4  | 0      | 1  | 141    | 4  | 4.306e-04        | 2    | -7.233e-03 | 4   | -1.239e-03 6 |
| 65 | N33   | max | .081   | 1  | 01     | 2  | .101   | 5  | 2.879e-03        | 5    | 6.136e-03  | 1   | 1.016e-03 5  |
| 66 |       | min | 072    | 5  | 03     | 6  | 112    | 1  | -8.675e-04       | 3    | -4.783e-03 | 5   | -5.722e-03 3 |
| 67 | N34   | max | .085   | 1  | .003   | 6  | .118   | 1  | 1.267e-03        | 6    | 5.904e-03  | 1   | -4.769e-04 2 |
| 68 |       | min | 069    | 5  | 0      | 1  | 095    | 5  | 4.915e-04        | 2    |            | 5   | -1.492e-03 6 |
| 69 | N35   | max | 0      | 6  | 0      | 6  | 0      | 6  | 5.194e-03        | 3    | 3.799e-03  | 1   | -1.555e-03 2 |
| 70 |       | min | 0      | 1  | 0      | 1  | 0      | 1  | 8.147e-04        | 5    |            | 5   | -3.696e-03 3 |
| 71 | N36   | max | .1     | 1  | 118    | 5  | .124   | 5  | 1.519e-03        | 6    | -4.155e-04 | 3   | -5.524e-04 2 |
| 72 |       | min | 16     | 5  | 392    | 3  | 075    | 1  | 2.844e-04        | 5    | -5.523e-03 | 4   | -1.55e-03 4  |

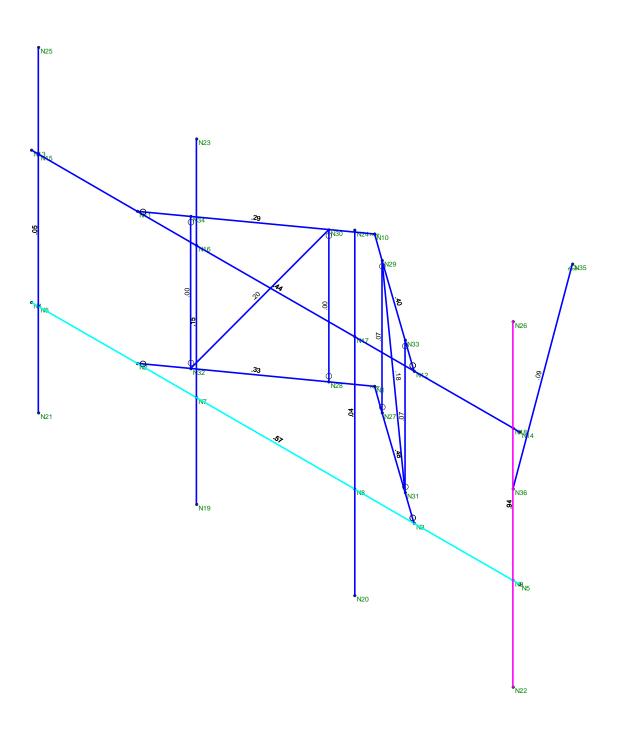
## Envelope AISC 14th(360-10): LRFD Steel Code Checks

|   | Member | Shape  | Code Check | Lo | LC | She  | Lo   |     | phi*P  | phi*P  | *ihq  | phi*  | Cb  | Eqn  |
|---|--------|--------|------------|----|----|------|------|-----|--------|--------|-------|-------|-----|------|
| 1 | M1     | L3X3X4 | .476       | 3  | 6  | .080 | 3.36 | z 6 | 30.969 | 46.656 | 1.688 | 3.707 | 1.6 | H2-1 |
| 2 | M2     | L3X3X4 | .330       | 0  | 4  | .016 | 4    | z 4 | 30.969 | 46.656 | 1.688 | 3.714 | 1.6 | H2-1 |
| 3 | M3     | L3X3X4 | .571       | 12 | 6  | .092 | 9    | y 4 | 5.077  | 46.656 | 1.688 | 3.158 | 2.0 | H2-1 |



Company Designer Job Number : Centek : FJP : 19027.17 Model Name

: CT11258B\_AMA


Jan 20, 2021 1:24 PM Checked By: CAG

## Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

|    | Member | Shape     | Code Check | Lo   | LC | SheLo   | D      | phi*P  | phi*P  | phi*  | phi*  | Cb   | Eqn  |
|----|--------|-----------|------------|------|----|---------|--------|--------|--------|-------|-------|------|------|
| 4  | M4     | L3X3X4    | .404       | 3.36 | 3  | .063    |        |        |        |       |       |      |      |
| 5  | M5     | L3X3X4    | .287       | 0    | 1  | .013.8  | 51 y 1 | 30.969 | 46.656 | 1.688 | 3.756 | 1.7  | H2-1 |
| 6  | M6     | L3X3X4    | .439       | 12   | 3  | .054 9. | z 4    | 5.077  | 46.656 | 1.688 | 3.262 | 2.3  | H2-1 |
| 7  | M7     | PIPE_2.0  | .049       | 5    | 6  | .021 5. | 3      | 14.916 | 32.13  | 1.872 | 1.872 | 4.9  | H1   |
| 8  | M8     | PIPE_2.0  | .155       | 2    | 3  | .071 2. | 3      | 14.916 | 32.13  | 1.872 | 1.872 | 4.6  | H1   |
| 9  | M9     | PIPE_2.0  | .044       | 5    | 5  | .043 5. | 4      | 14.916 | 32.13  | 1.872 | 1.872 | 2.97 | H1   |
| 10 | M10    | PIPE_2.0  | .943       | 3    | 4  | .177 3. | 5      | 14.916 | 32.13  | 1.872 | 1.872 | 2.4  | H1   |
| 11 | M11    | PIPE_1.25 | .069       | 3    | 6  | .012    | ) 6    | 14.908 | 19.688 | .801  | .801  | 1    | H1   |
| 12 | M12    | PIPE_1.25 | .074       | 3    | 3  | .076    | 0 6    | 14.908 | 19.688 | .801  | .801  | 1    | H1   |
| 13 | M13    | PIPE_1.25 | .003       | 0    | 6  | .019    | ) 6    | 14.908 | 19.688 | .801  | .801  | 1    | H1   |
| 14 | M14    | PIPE_1.25 | .003       | 0    | 3  | .057    | 0 6    | 14.908 | 19.688 | .801  | .801  | 1    | H1   |
| 15 | M15    | SR 3/4    | .199       | 4    | 6  | .018    | ) 4    | 1.404  | 14.314 | .179  | .179  | 2.0  | H1   |
| 16 | M16    | SR 3/4    | .176       | 4    | 6  | .009 4. | 6      | 1.404  | 14.314 | .179  | .179  | 2.4  | H1   |
| 17 | M17    | PIPE_2.0  | .093       | 0    | 4  | .005 7. | 1      | 17.707 | 32.13  | 1.872 | 1.872 | 1.1  | H1   |







Member Code Checks Displayed (Enveloped) Envelope Only Solution

| Centek   |              |                         |
|----------|--------------|-------------------------|
| FJP      | CT11258B_AMA | Jan 20, 2021 at 1:25 PM |
| 19027.17 | Unity Check  | CT11258B_AMA.r3d        |



# RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11258B

Bozrah-I/Rt 2 IO Polly Lane Bozrah, Connecticut 06336

August 5, 2021

EBI Project Number: 6221004298

| Site Compliance Summary                                    |           |  |  |  |  |  |  |  |
|------------------------------------------------------------|-----------|--|--|--|--|--|--|--|
| Compliance Status:                                         | COMPLIANT |  |  |  |  |  |  |  |
| Site total MPE% of FCC general population allowable limit: | 9.68%     |  |  |  |  |  |  |  |



August 5, 2021

T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CT11258B - Bozrah-1/ Rt 2

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **10 Polly Lane** in **Bozrah, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm²). The number of  $\mu$ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400  $\mu$ W/cm² and 467  $\mu$ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000  $\mu$ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.



Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

#### **CALCULATIONS**

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 10 Polly Lane in Bozrah, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 6) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.



- 7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antennas used in this modeling are the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector A, the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector B, the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antenna mounting height centerline of the proposed antennas is 177 feet above ground level (AGL).
- 11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 12) All calculations were done with respect to uncontrolled / general population threshold limits.



# **T-Mobile Site Inventory and Power Data**

| Sector:             | Α                                                                              | Sector:             | В                                                                              | Sector:             | С                                                                              |
|---------------------|--------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------|
| Antenna #:          | I                                                                              | Antenna #:          | I                                                                              | Antenna #:          | I                                                                              |
| Make / Model:       | RFS<br>APXVAALL24_43-<br>U-NA20                                                | Make / Model:       | RFS<br>APXVAALL24_43-<br>U-NA20                                                | Make / Model:       | RFS<br>APXVAALL24_43-<br>U-NA20                                                |
| Frequency Bands:    | 600 MHz / 600 MHz<br>/ 700 MHz / 1900<br>MHz / 1900 MHz /<br>2100 MHz          | Frequency Bands:    | 600 MHz / 600 MHz<br>/ 700 MHz / 1900<br>MHz / 1900 MHz /<br>2100 MHz          | Frequency Bands:    | 600 MHz / 600 MHz<br>/ 700 MHz / 1900<br>MHz / 1900 MHz /<br>2100 MHz          |
| Gain:               | 12.95 dBd / 12.95<br>dBd / 13.65 dBd /<br>15.45 dBd / 15.45<br>dBd / 16.45 dBd | Gain:               | 12.95 dBd / 12.95<br>dBd / 13.65 dBd /<br>15.45 dBd / 15.45<br>dBd / 16.45 dBd | Gain:               | 12.95 dBd / 12.95<br>dBd / 13.65 dBd /<br>15.45 dBd / 15.45<br>dBd / 16.45 dBd |
| Height (AGL):       | 177 feet                                                                       | Height (AGL):       | 177 feet                                                                       | Height (AGL):       | 177 feet                                                                       |
| Channel Count:      | 13                                                                             | Channel Count:      | 13                                                                             | Channel Count:      | 13                                                                             |
| Total TX Power (W): | 560 Watts                                                                      | Total TX Power (W): | 560 Watts                                                                      | Total TX Power (W): | 560 Watts                                                                      |
| ERP (W):            | 17,868.72                                                                      | ERP (W):            | 17,868.72                                                                      | ERP (W):            | 17,868.72                                                                      |
| Antenna A1 MPE %:   | 2.90%                                                                          | Antenna B1 MPE %:   | 2.90%                                                                          | Antenna C1 MPE %:   | 2.90%                                                                          |

# environmental | engineering | due diligence

| Site Composite MPE          | : %   |
|-----------------------------|-------|
| Carrier                     | MPE % |
| T-Mobile (Max at Sector A): | 2.90% |
| AT&T                        | 2.1%  |
| Sprint                      | 2.62% |
| Verizon                     | 2.06% |
| Site Total MPE %:           | 9.68% |

| T-Mobile MPE % F         | er Sector |
|--------------------------|-----------|
| T-Mobile Sector A Total: | 2.90%     |
| T-Mobile Sector B Total: | 2.90%     |
| T-Mobile Sector C Total: | 2.90%     |
|                          |           |
| Site Total MPE % :       | 9.68%     |

| T-Mobile Maximum MPE Power Values (Sector A)          |               |                               |                  |                              |                    |                           |                  |  |  |  |  |
|-------------------------------------------------------|---------------|-------------------------------|------------------|------------------------------|--------------------|---------------------------|------------------|--|--|--|--|
| T-Mobile Frequency Band /<br>Technology<br>(Sector A) | #<br>Channels | Watts ERP<br>(Per<br>Channel) | Height<br>(feet) | Total Power Density (µW/cm²) | Frequency<br>(MHz) | Allowable MPE<br>(μW/cm²) | Calculated % MPE |  |  |  |  |
| T-Mobile 600 MHz LTE                                  | 2             | 591.73                        | 177.0            | 1.46                         | 600 MHz LTE        | 400                       | 0.36%            |  |  |  |  |
| T-Mobile 600 MHz NR                                   | I             | 1577.94                       | 177.0            | 1.94                         | 600 MHz NR         | 400                       | 0.49%            |  |  |  |  |
| T-Mobile 700 MHz LTE                                  | 2             | 695.22                        | 177.0            | 1.71                         | 700 MHz LTE        | 467                       | 0.37%            |  |  |  |  |
| T-Mobile 1900 MHz GSM                                 | 4             | 1052.26                       | 177.0            | 5.17                         | 1900 MHz GSM       | 1000                      | 0.52%            |  |  |  |  |
| T-Mobile 1900 MHz LTE                                 | 2             | 2104.51                       | 177.0            | 5.17                         | 1900 MHz LTE       | 1000                      | 0.52%            |  |  |  |  |
| T-Mobile 2100 MHz LTE                                 | 2             | 2649.42                       | 177.0            | 6.51                         | 2100 MHz LTE       | 1000                      | 0.65%            |  |  |  |  |
|                                                       |               |                               |                  |                              |                    | Total:                    | 2.90%            |  |  |  |  |

<sup>•</sup> NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.



## **Summary**

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

| T-Mobile Sector         | Power Density Value (%) |
|-------------------------|-------------------------|
| Sector A:               | 2.90%                   |
| Sector B:               | 2.90%                   |
| Sector C:               | 2.90%                   |
| T-Mobile Maximum        | 2.90%                   |
| MPE % (Sector A):       |                         |
|                         |                         |
| Site Total:             | 9.68%                   |
|                         |                         |
| Site Compliance Status: | COMPLIANT               |

The anticipated composite MPE value for this site assuming all carriers present is **9.68**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.