

Filed by: Kri Pelletier, Property Specialist - SBA Communications 134 Flanders Rd., Suite 125, Westborough, MA 01581 508.251.0720 x 3804 - kpelletier@sbasite.com

July 27, 2018

Melanie A. Bachman Acting Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Notice of Exempt Modification 131 Gifford Lane, Bozrah, CT 41 33 9.06 N -72 9 2.55 W Sprint #: CT33XC574

Dear Ms. Bachman:

Sprint currently maintains antennas at the 175-foot level of the existing 195-foot Self Support Tower at 131 Gifford Lane in Bozrah, CT. The tower is owned by SBA Towers, LLC. The property is owned by Richard Orr and Patti Duerrler. Sprint now intends to replace (6) existing cell antennas with (6) newer technology cell antennas at the 99-foot level of the tower. The proposed full scope of work is as follows:

Remove:

• (6) 1-5/8" lines

Remove and Replace:

- Remove:
 - o (6) Decibel DB908h90e-m Panel Antennas
- Replace with:
 - o (3) RFS APXVTM14-C-I20 Panel Antennas
 - o (3) Commscope NNVV-65B-R4 Panel Antennas

Install:

- (3) ALU 1900 MHz RRHs
- (6) ALU 800 MHz RRHs
- (3) ALU TD-RRH 8x20-25
- (3) Sitepro SFS H-L
- (4) 1-1/4" fiber

Existing Equipment to Remain (Including entitlements):

• (3) T -Frames

This facility was originally approved by the Town of Bozrah's on February 11, 1999. The Planning & Zoning Commission approved Special Permit for a 196' telecom tower with the condition that the drive/access road be construction per the Town's guidelines. No further conditions were set. As such, this modification complies with all conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16.50j-72(b)(2). In accordance with R.C.S.A. § 16.50j-73, a copy of this letter is being sent to the Town of Bozrah's First Selectman, Glenn Pianka, and Chair of the Planning & Zoning Commission, Seymour Adelman, as well as to the property owner. (Separate notice is not being sent to tower owner, as it belongs to SBA.)

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. §16.50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modification will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above-referenced telecommunication facility constitute an exempt modifications under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kri Pelletier

Property Specialist

SBA COMMUNICATIONS CORPORATION

134 Flanders Rd., Suite 125

Westborough, MA 01581

508.251.0720 x3804 + T

508.366.2610 + F

203.446.7700 + C

kpelletier@sbasite.com

Attachments

cc: Glenn Painka, First Selectman / with attachments

Town of Bozrah, Town Hall, 1 River Road, Bozrah, CT 06334

Seymour Adelman, Chair-Planning & Zoning Commission / with attachments

Town of Bozrah, Town Hall, 1 River Road, Bozrah, CT 06334

Patti Duerrler and Richard Orr / with attachments

131 Gifford Lane, Bozrah, CT 06334

POWER DENSITY

SPRINT Site Inventory and Power Data by Antenna

Sector:	Α	Sector:	В	Sector:	C
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Commscope NNVV-65B-R4	Make / Model:	Commscope NNVV-65B-R4	Make / Model:	Commscope NNVV-65B-R4
Gain:	12.75 / 15.05 dBd	Gain:	12.75 / 15.05 dBd	Gain:	12.75 / 15.05 dBd
Height (AGL):	175 feet	Height (AGL):	175 feet	Height (AGL):	175 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	280 Watts	Total TX Power(W):	280 Watts	Total TX Power(W):	280 Watts
ERP (W):	7,378.61	ERP (W):	7,378.61	ERP (W):	7,378.61
Antenna A1 MPE%	1.15 %	Antenna B1 MPE%	1.15 %	Antenna C1 MPE%	1.15 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVTM14- ALU- I20	Make / Model:	RFS APXVTM14- ALU- I20	Make / Model:	RFS APXVTM14- ALU- I20
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	175 feet	Height (AGL):	175 feet	Height (AGL):	175 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE%	0.78 %	Antenna B2 MPE%	0.78 %	Antenna C2 MPE%	0.78 %

Site Composite MPE%					
Carrier	MPE%				
SPRINT - Max per sector	1.93 %				
Omnipoint (T-Mobile)	0.08 %				
Verizon Wireless	1.91 %				
AT&T	1.81 %				
Site Total MPE %:	5.73 %				

1.93 %		
1.93 %		
1.93 %		
5.73 %		

SPRINT _ Frequency Band / Technology Max Power Values (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Sprint 850 MHz CDMA	1	376.73	175	0.47	850 MHz	567	0.09%
Sprint 850 MHz LTE	2	941.82	175	2.37	850 MHz	567	0.42%
Sprint 1900 MHz (PCS) CDMA	5	511.82	175	3.22	1900 MHz (PCS)	1000	0.32%
Sprint 1900 MHz (PCS) LTE	2	1,279.56	175	3.22	1900 MHz (PCS)	1000	0.32%
Sprint 2500 MHz (BRS) LTE	8	778.09	175	7.84	2500 MHz (BRS)	1000	0.78%
		MARIE VINCEROUS SERVICES	STATE OF THE			Total:	1.93%

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

All information is for assessment purposes only. Assessments are calculated at 70% of the estimated October 1, 2017 market value which was the date of the last revaluation as completed by eQuality Valuation Services, LLC.

Information on the Property Records for the Municipality of Bozrah was last updated on 5/4/2018.

Property Summary Information

rcel Data And	Values Building	g v Outbuil	ldings Sales	Permits Go	oogle Map
		Parcel	Information		
Location:	131 GIFFORD LA	Property Use:	Residential	Primary Use:	Residential
Unique ID:	00083400	Map Block Lot:	07/119-B	Acres:	1.97
490 Acres:	0.00	Zone:	R-1	Volume / Page:	0092/0318
Developers Map / Lot:		Census:	7131		

Value Information

	Appraised Value	Assessed Value
and	67,710	47,390
Buildings	152,597	106,820
Detached Outbuildings	1,094	770
Total	221,401	154,980

Owner's Information

Owner's Data

ORR RICHARD & DUERRLER PATTI 131 GIFFORD LANE BOZRAH, CT 06334

Back To Search (JavaScript:window.history.back(1);)

Print View (PrintPage.aspx?towncode=013&uniqueid=00083400)

Information Published With Permission From The Assessor

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT33XC574

N. Bozrah 131 Gifford Lane Bozrah, CT 06334

July 6, 2018

EBI Project Number: 6218004931

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of				
FCC general	5.73 %			
population	3.73 /0			
allowable limit:				

July 6, 2018

SPRINT Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Emissions Analysis for Site: CT33XC574 – N. Bozrah

EBI Consulting was directed to analyze the proposed SPRINT facility located at **131 Gifford Lane**, **Bozrah**, **CT**, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 850 MHz Band is approximately 567 μ W/cm². The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at **131 Gifford Lane**, **Bozrah**, **CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 50 Watts per Channel.
- 3) 5 CDMA channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
- 4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the **Commscope NNVV-65B-R4** and the **RFS APXVTM14-ALU-I20** for transmission in the 850 MHz, 1900 MHz (PCS) and 2500 MHz
 (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerlines of the proposed antennas are **175 feet** above ground level (AGL) for **Sector A**, **175 feet** above ground level (AGL) for **Sector B** and **175 feet** above ground level (AGL) for Sector C.
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

SPRINT Site Inventory and Power Data by Antenna

Sector:	A	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Commscope NNVV-65B-R4	Make / Model:	Commscope NNVV-65B-R4	Make / Model:	Commscope NNVV-65B-R4
Gain:	12.75 / 15.05 dBd	Gain:	12.75 / 15.05 dBd	Gain:	12.75 / 15.05 dBd
Height (AGL):	175 feet	Height (AGL):	175 feet	Height (AGL):	175 feet
Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)	Frequency Bands	850 MHz / 1900 MHz (PCS)
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	280 Watts	Total TX Power(W):	280 Watts	Total TX Power(W):	280 Watts
ERP (W):	7,378.61	ERP (W):	7,378.61	ERP (W):	7,378.61
Antenna A1 MPE%	1.15 %	Antenna B1 MPE%	1.15 %	Antenna C1 MPE%	1.15 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVTM14-ALU- I20	Make / Model:	RFS APXVTM14-ALU- I20	Make / Model:	RFS APXVTM14-ALU- I20
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	175 feet	Height (AGL):	175 feet	Height (AGL):	175 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE%	0.78 %	Antenna B2 MPE%	0.78 %	Antenna C2 MPE%	0.78 %

Site Composite MPE%						
Carrier MPE%						
SPRINT – Max per sector	1.93 %					
Omnipoint (T-Mobile)	0.08 %					
Verizon Wireless	1.91 %					
AT&T	1.81 %					
Site Total MPE %:	5.73 %					

SPRINT Sector A Total:	1.93 %
SPRINT Sector B Total:	1.93 %
SPRINT Sector C Total:	1.93 %
Site Total:	5.73 %

SPRINT _ Frequency Band / Technology Max Power Values (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Sprint 850 MHz CDMA	1	376.73	175	0.47	850 MHz	567	0.09%
Sprint 850 MHz LTE	2	941.82	175	2.37	850 MHz	567	0.42%
Sprint 1900 MHz (PCS) CDMA	5	511.82	175	3.22	1900 MHz (PCS)	1000	0.32%
Sprint 1900 MHz (PCS) LTE	2	1,279.56	175	3.22	1900 MHz (PCS)	1000	0.32%
Sprint 2500 MHz (BRS) LTE	8	778.09	175	7.84	2500 MHz (BRS)	1000	0.78%
						Total:	1.93%

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (%)	
Sector A:	1.93 %	
Sector B:	1.93 %	
Sector C:	1.93 %	
SPRINT Maximum	1.93 %	
Total (per sector):	1.93 %	
Site Total:	5.73 %	
Site Compliance Status:	COMPLIANT	

The anticipated composite MPE value for this site assuming all carriers present is **5.73** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

9221 Lyndon B. Johnson Freeway, #204, Dallas, TX 75243 ★ PHONE 972-231-8893 ★ FAX 1-866-364-8375 www.allprocgi.com ★ e-mail: info@allprocgi.com

Tower Structural Analysis Report for SBA Communications Corporation

Existing 195' Self Support Tower

SBA Site Name: Bozrah
SBA Site Number: CT01105-S-02
Carrier Name: Sprint Nextel

Carrier Site ID/Name: CT33XC574 / N. Bozrah

App #: 73320, v3

Site Location: 131 Gifford Lane, Bozrah, CT 06334 New London County

Latitude: 41.552517 Longitude: -72.150708

ACGI Job # 18-3611

ANALYSIS RESULTS				
Tower Components	87.3 %	Pass		
Tower Foundation Capacity	72.1 %	Pass		
		Change from previous Structural Analysis by		
Net Change in Tower Stress	-1.4 %	SBA, Project # CT01105-VZW-011816, dated		
	21176	01/26/2016 (F Code)		
Net change in stress due to	.2.2.0/	Addition of (6) Site Pro 1 SCXx-K to (3) V-		
Mount Modification	+2.2 %	Brace Kit SFS-H-L Mounts.		

Prepared By: Bob Akech.

<u>05/25/2018</u> Approved By: Joji Geroge, P.E. CT PE #24444

TABLE OF CONTENTS

ANALYSIS SUMMARY	III
SCOPE & SOURCE OF INFORMATION	III
SOURCE OF INFORMATION	III
ANALYSIS METHODS & DATA	IV
SITE DATA	IV
TOWER DATA	IV
TOWER HISTORY	IV
CONCLUSIONS	V
RESULT SUMMARY	V
DISCLAIMER	VI
ASSUMPTIONS	VI
APPURTENANCE LISTING	VII
EXISTING LOAD DESCRIPTION	
FINAL SPRINT NEXTEL LOAD DESCRIPTION	VII
SUMMARY OF WORKING PERCENTAGE OF STRUCTURA	AL COMPONENTS VIII
APPENDIX	IX
COAX LAYOUT	
TOWER ELEVATION DRAWING	XII
MISCELLANEOUS PLOTS	XIII
TNX TOWER CALCULATION PRINTOUT	XIV

. ANALYSIS SUMMARY

The existing 195' Self Support Tower located in Bozrah, CT was analyzed by Allpro Consulting Group, Inc (ACGI) for the existing loads and the proposed **Sprint Nextel** antennas and coaxes as per application 73320, v3 as authorized by SBA Communication Corp. Based on the results of the analysis, the existing tower with mentioned proposed and existing loading is found to be in code compliance with TIA-222-G, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and IBC 2012.

2. SCOPE & SOURCE OF INFORMATION

The purpose of this structural analysis is to determine whether the existing structure is capable of supporting additional proposed loads.

SOURCE OF INFORMATION					
Tower Data:	Pirod Inc.	Original Tower Drawings by Pirod, Inc. (Job No. A-115466 dated 04/01/1999)			
	SBA	Previous Structural Analysis by SBA, Project # CT01105-VZW-011816 dated 01/26/2016.			
Foundation Data:	Pirod Inc.	Original Tower Drawings by Pirod, Inc. (Job No. A-115466 dated 04/01/1999)			
Geotechnical Report:	Jaworski Geotech, Inc.	Geotechnical report by Jaworski Geotech, Inc., Project # C98492G, dated 12/14/1998.			
Loading Data:	SBA	Existing loading as per redlined previous Structural Analysis by SBA, Project # CT01105- VZW-011816 dated 01/26/2016.			
	SBA Communication Corp.	Site information based on SBA Site Summary, dated 02/10/2017.			
		Proposed final loading for Sprint Nextel as per SBA Portal, App #73320, v3.			
Authorization:	SBA Communication Corp.				

ANALYSIS METHODS & DATA

The analysis was performed in accordance with Telecommunication Industry Association specification TIA-222-G. The tower was modeled using TNX Tower, a 3-D finite element program. TNX Tower is a general-purpose modeling, analysis, and design program created specifically for communication towers using the EIA-222-C, EIA-222-D, TIA/EIA-222-F or TIA-222-G standards. The 3-D model included the tower, with existing appurtenances and all proposed loads.

SITE DATA				
SBA Site Name:	Bozrah			
SBA Site Number:	CT01105-S-02			
Carrier Site ID:	CT33XC574 / N. Bozrah			
City, State:	Bozrah, CT			
County:	New London County			
Code Wind Load Requirement:	TIA-222-G & IBC 2012 (132 mph ultimate wind speed equivalent to 102 mph basic wind speed)			
Wind Load Used:	 TIA-222-G Code: Basic wind speed of 102 mph (3 second gust wind speed) Structure Class II*. Exposure Category B. Topographic Category 1. Crest Height 0.00 ft. A wind speed of 50 mph is used in combination with ice Nominal ice thickness of 0.75 in. 			
Seismic Check:	S_s =0.170 < 1.0, thus seismic loading can be ignored as per 2.7.3 of the TIA-222-G Code			

^{*}This structural analysis is based upon the tower being classified as a class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

TOWER DATA		
Tower Type:	Self Support Tower	
Height:	195s'	
Cross Section:	Triangular	
Steel Strength:	Legs – 50 ksi , Braces – 36 ksi & 50 ksi	
Type of Foundation:	Mat Foundation	

TOWER HISTORY			
Tower Manufacturer / Model:	Pirod Inc./ U-22.0 x 193'		
Date of Original Design:	04/01/1999		
Previous Modifications:	N/A		
Original Design Code Requirements:	TIA/EIA-222-F-1996 85 mph basic wind speed and 0.5" ice with 25% reduced wind speed		

. CONCLUSIONS

	RESULT SUMMARY				
MEMBER	% Capacity	Pass/Acceptable			
Legs	71.0 %	Pass			
Diagonals	87.3 %	Pass			
Girts	6.1 %	Pass			
Bolt checks	87.3 %	Pass			
Anchor Bolts	26.7 %	Pass			
Foundation	Bearing	Doce			
(see attached	(3.3 %)	Pass			
MathCAD for	Horizontal shear	Door			
details)	(8.6 %)	Pass			
	Safety against overturning	Dana			
	(72.1 %)	Pass			
	OVERALL TOWER RATING = 87.3 %	•			

As per the results of the analysis, the existing tower <u>is in code compliance</u> for the new and existing antenna loads.

Maximum tower stress is less than 100%, the acceptable stress ratio making it in code compliance under the TIA-222-G code and 2012 International Building Code adopted by 2016 CSBC (Connecticut State Building Code).

5. DISCLAIMER

Installation procedures and related loading are not within the scope of this analysis. A contractor experienced in similar work should perform all installation work. The engineering services provided by Allpro Consulting Group, Inc. (ACGI) are limited to the computer analysis and calculations of the structure with the proposed and existing loads. This analysis is considered void if the loading mentioned in this report is changed or is different as installed. It is assumed that the existing structure is properly maintained and is in good condition free of any defects. Scope of this analysis does not include existing connections, except as noted in this report.

ACGI does not make any warranties, expressed or implied in connection with this engineering analysis report and disclaims any liability arising from deficiencies or any existing conditions of the original structure. ACGI will not be responsible for consequential or incidental damages sustained by any parties as a result of any data or conclusions included in this Report. The maximum liability of ACGI pursuant to this report shall be limited to the consulting fee received for the preparation of the report.

6. ASSUMPTIONS

This analysis was completed based on the following assumptions:

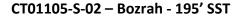
- Tower has been properly maintained.
- Tower erection was in accordance to manufacturer drawings and modification reports.
- Leg flanges have been properly designed by manufacturer to not be a limiting reaction.
- Welds have been properly designed and installed by manufacturer to not be a limiting reaction.
- Foundation data was not provided. It is assumed that the foundation is designed to resist the original tower reactions.
- Foundation does not have structural damage.
- Bolts have been properly tightened according to manufacturer specifications.
- Appurtenance, mount and transmission line sizes and weights are best estimates using the tnxTower database and manufacturer information.

7.

APPURTENANCE LISTING

	EXISTING LOAD DESCRIPTION						
ELEV (ft.)	Qty.	Antenna Description	Mount Type & Qty.	TX. LINE (in)	<u>TENANT</u>		
195±	9	EMS RR90-17-02DP	(1) Low Profile Platform	(12) 1-5/8"	T-Mobile		
	6	CCI HPA-65R-BUU-H8 Antennas					
	3	Powerwave 7770 Antennas					
	6	Powerwave LGP21401 TMAs					
	6	Ericsson RRUS 11	(3) 12.5'	(4.2) 4. 5 (0)			
182±	3	Ericsson RRUS 12	TFrames (Commscope	(12) 1-5/8" (2) 5/8" Fiber	AT&T		
1021	3	Ericsson RRUS A2	P/N: MTC	(4) 3/4" DC Power	AIQI		
	3	Ericsson RRUS 32 3615)		(1) 3) 1 2010 Well			
	3						
	6	Powerwave LGP21903					
	2	Raycap DC6-48-60-18-8F					
175±	6	Decibel DB908h90e-m Antennas	(3) T -Frames	(6) 1-5/8"	Sprint Nextel		
	6	Commscope HBXX-6517DS-A2M					
	3	Commscope LNX-6514DS-A1M					
	3	Amphenol QUAD656C0000x					
460.	3	Alcatel Lucent RRH2x60-AWS	(0) 7 5	(12) 1-5/8" Coax (2) 1-5/8" Fiber			
162±	3	Alcatel Lucent RRH2x60-1900	(3) T -Frames		Verizon		
	3	Alcatel Lucent RRH2x60-700					
	6	RFS FD9R6004/2CL-3CL					
	2	RFS DB-T1-6Z-8AB-0Z					
100±	1	Lucent KS24019-L112A GPS	Direct Mount	(1) GPS Line			
30±	2	Andrew PC1N0F-0190B-002ME911 Omnis	Direct Mount	(2) 1/2"	T-Mobile		

	FINAL SPRINT NEXTEL LOAD DESCRIPTION					
<u>ELEV</u> (ft.)	Qty.	Antenna Description	Mount Type & Qty.	TX. LINE (in)	<u>TENANT</u>	
	3	RFS APXVTM14-C-I20 Antennas				
	3	Commscope NNVV-65B-R4 Antenna	(3) T –Frames (3) Sitepro SFS-	(4) 1-1/4" Fiber		
175±	3	ALU 1900 MHz RRH			Sprint Nextel	
	6	ALU 800 MHz RRH	H-L			
	3	ALU TD-RRH 8X20-25				


- 1. ACGI should be notified of any discrepancies found in the data listed in this report.
- 2. Notify ACGI if any potential physical and other interference with existing antennas for a redesign.

8.

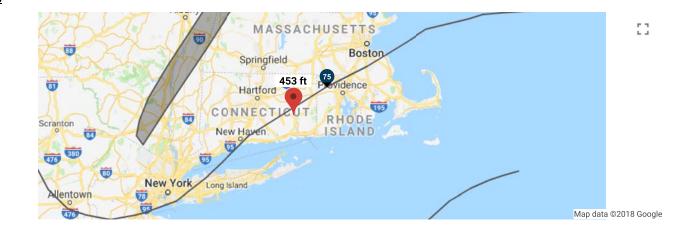

SUMMARY OF WORKING PERCENTAGE OF STRUCTURAL COMPONENTS

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
T1	193 - 185	Leg	2	1	-6.21	111.48	5.6	Pass
		Diagonal	1	11	-1.28	13.28	9.6	Pass
		Horizontal	7/8	23	-0.15	3.94	3.9	Pass
		Top Girt	1 1/4	5	-0.62	16.42	3.8	Pass
		Bottom Girt	1 1/4	8	-0.69	16.42	4.2	Pass
T2	185 - 170	Leg	2	32	-43.07	111.48	38.6	Pass
		Diagonal	1	44	-5.90	13.28	44.4	Pass
		Horizontal	7/8	48	-0.34	3.94	8.7	Pass
		Top Girt	1 1/4	33	-0.23	16.42	1.4	Pass
		Bottom Girt	1 1/4	36	-1.00	16.42	6.1	Pass
		Mid Girt	1 1/4	39	-0.36	16.42	2.2	Pass
T3	170 - 160	Leg	Pirod 105244	84	-52.85	142.49	51.2	Pass
		Diagonal	L2 1/2x2 1/2x3/16	87	-9.87	13.56	72.8	Pass
							83.8 (b)	
T4	160 - 140	Leg	Pirod 105217	93	-107.86	214.86	50.2	Pass
		Diagonal	L3x3x3/16	102	-10.20	18.18	56.1	Pass
							87.3 (b)	
T5	140 - 120	Leg	Pirod 105217	108	-152.48	214.86	71.0	Pass
		Diagonal	L3x3x3/16	111	-8.30	14.96	55.5	Pass
							71.1 (b)	
T6	120 - 100	Leg	Pirod 105218	123	-192.63	300.68	64.1	Pass
		Diagonal	L3x3x5/16	126	-8.18	19.32	42.3	Pass
T7	100 - 80	Leg	Pirod 105219	138	-230.18	399.87	57.6	Pass
		Diagonal	L3x3x5/16	141	-8.26	15.76	52.4	Pass
Т8	80 - 60	Leg	Pirod 105219	153	-265.76	399.87	66.5	Pass
		Diagonal	L3 1/2x3 1/2x5/16	158	-8.81	20.74	42.5	Pass
T9	60 - 40	Leg	Pirod 105220	168	-300.52	512.38	58.7 60.3 (b)	Pass
		Diagonal	L3 1/2x3 1/2x5/16	173	-8.92	17.15	52.0	Pass
T10	40 - 20	Leg	Pirod 105220	183	-336.18	512.38	65.6	Pass
		8					67.0 (b)	
		Diagonal	L3 1/2x3 1/2x5/16	194	-10.63	15.65	67.9	Pass
T11	20 - 0	Leg	Pirod 112738	198	-349.82	613.14	57.1	Pass
		Diagonal	2L3 1/2x3 1/2x5/16x1	203	-19.22	44.46	43.2	Pass
							Summary	
						Leg (T5)	71.0	Pass
						Diagonal (T4)	87.3	Pass
						Horizontal	8.7	Pass
						(T2) Top Girt	3.8	Pass
						(T1)		
						Bottom Girt (T2)	6.1	Pass
						Mid Girt (T2)	2.2	Pass
						Bolt Checks	87.3	Pass
						RATING =	87.3	Pass

APPENDIX

Tower Data

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.


Search Information

 Coordinates:
 41.552517, -72.150708

 Timestamp:
 2018-05-25T21:18:21.618Z

Hazard Type: Wind

Map Results

Google

Text Results

ASCE 7-16

MRI 10-Year	
MRI 25-Year	
MRI 50-Year	96 mp
MRI 100-Year	101 mp
Risk Category I	
Risk Category II	
Risk Category III	<u>A</u> 133 mp
f the structure under consideration is a healthcare facility, you are in a wind-be speed contours to determine if you are in a wind-borne debris region.	orne debris region. If other occupancy, use the Risk Category II basic wind
Risk Category IV	▲ 137 m _l
ou are in a wind-borne debris region if you are also within 1 mile of the coast	al mean high water line.
ASCE 7-10	
IRI 10-Year	
IRI 25-Year	
IRI 50-Year	
IRI 100-Year	
Risk Category I	121 m

Risk Category II

You are in a wind-borne debris region if you are also within 1 mile of the coastal mean high water line.

Risk Category III-IV

A 142 mph

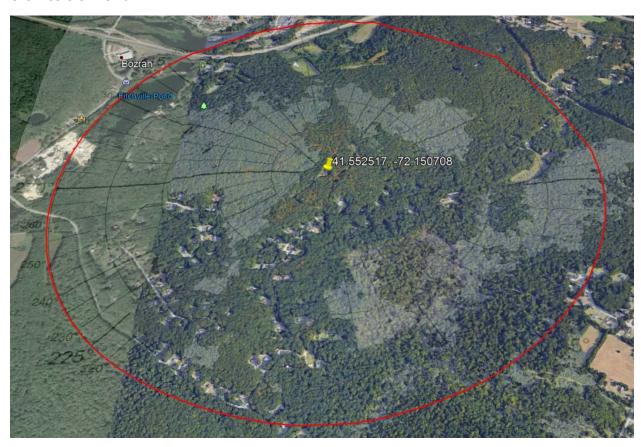
If the structure under consideration is a healthcare facility, you are in a wind-borne debris region. If other occupancy, use the Risk Category II basic wind speed contours to determine if you are in a wind-borne debris region.

ASCE 7-05

ASCE 7-05 Wind Speed

A 112 mph

You are in a wind-borne debris region if you are also within 1 mile of the coastal mean high water line.


The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

CT01105-S-02 Bozrah

Exposure Category B.
Topographic Category 1.

Design Maps Summary Report

User-Specified Input

Report Title CT01105-S-02 BOZRA

Fri May 25, 2018 21:35:46 UTC

Building Code Reference Document 2012/2015 International Building Code

(which utilizes USGS hazard data available in 2008)

Site Coordinates 41.55252°N, 72.15071°W

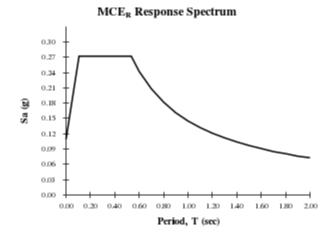
Site Soil Classification Site Class D - "Stiff Soil"

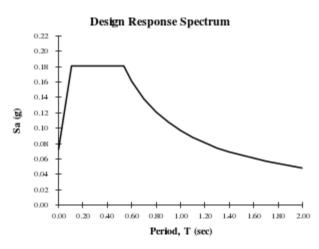
Risk Category I/II/III

USGS-Provided Output

$$S_s = 0.170 g$$

$$S_{MS} = 0.272 g$$

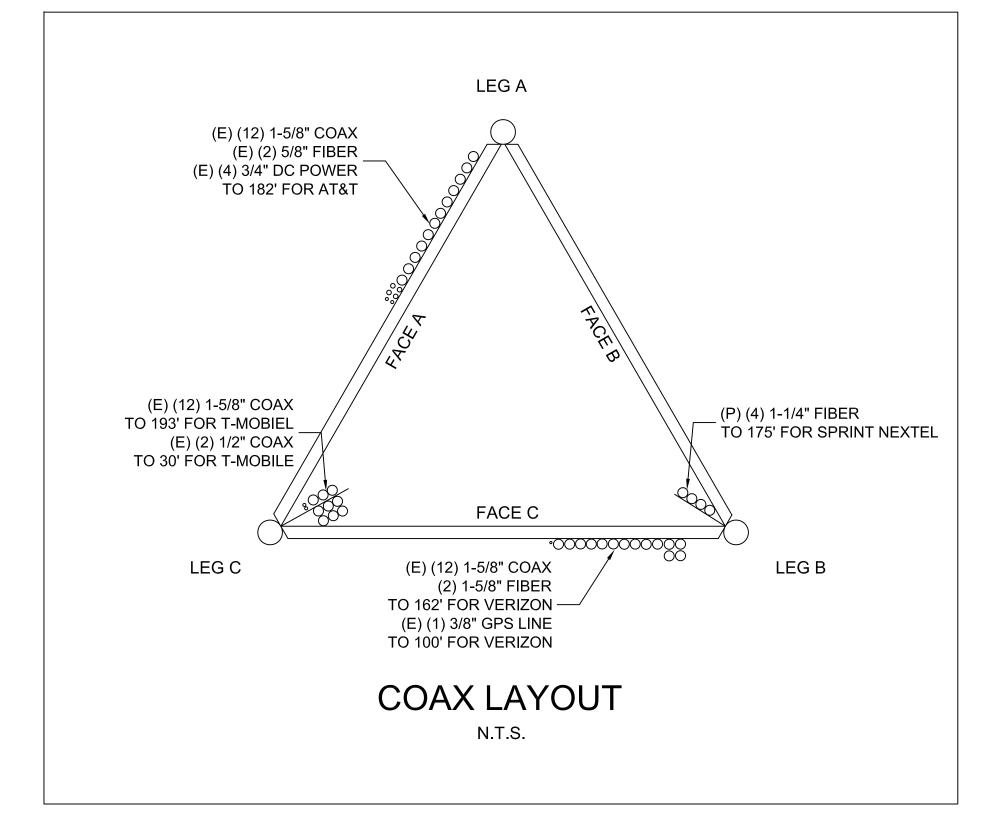

$$S_{MS} = 0.272 g$$
 $S_{DS} = 0.181 g$


$$S_1 = 0.061 g$$

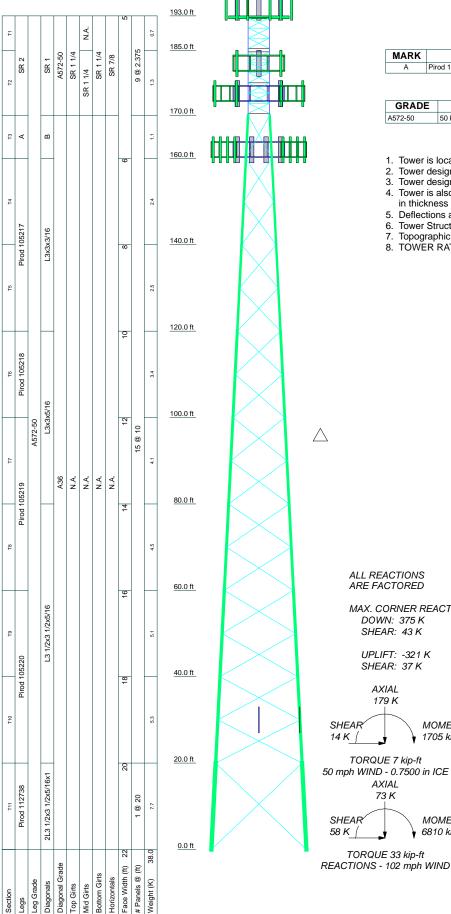
$$S_{M1} = 0.145 g$$

$$S_{D1} = 0.097 g$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.



Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.


COAX LAYOUT

TOWER ELEVATION DRAWING

SYMBOL LIST

MARK	SIZE	MARK	SIZE
Α	Pirod 105244	В	L2 1/2x2 1/2x3/16

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- Tower is located in New London County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 102 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Structure Class II.
- Topographic Category 1 with Crest Height of 0.00 ft
- 8. TOWER RATING: 87.3%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 375 K SHEAR: 43 K

SHEAR: 37 K

179 K MOMENT 1705 kip-ft

TORQUE 7 kip-ft 50 mph WIND - 0.7500 in ICE

MOMENT 6810 kip-ft

TORQUE 33 kip-ft

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

ob: 18-3611		
Project: CT01105-S-02	2 BOZRAH	
	Drawn by: bakech	App'd:
Code: TIA-222-G	Date: 05/29/18	Scale: NTS
Path:		Dwg No. E-

Lange Princed 1052219 Pr	Section	111	T10	T9	T8	44	T6	T5	T4	E E	172	F
17 17 17 17 17 17 17 17	Legs	Pirod 112738	Pirod	1105220	ig	od 105219	Pirod 105218	Pirod 1	05217	∢	SR 2	
13 12 12 12 12 12 12 12	Leg Grade					A572-50						
NA	Diagonals	2L3 1/2x3 1/2x5/16x1		L3 1/2x3 1/2x5/16		L3X;	3x5/16	L3x3)	x3/16	œ.	SR 1	
N A A N A A N A A N A A N A A N A A A A	Diagonal Grade					A36					A572-50	
NAN	Top Girts					N.A.					SR 1 1/4	
100.0 ft	Mid Girts					N.A.					SR 1 1/4	N.A.
100.0 ft 100.0 ft	Bottom Girts					N.A.					SR 1 1/4	
185.0 ft 180.0 ft 160.0 ft 120.0 ft 100.0 ft	Horizontals					N.A.					SR 7/8	
185.0 ft 170.0 ft 140.0 ft 120.0 ft 2 40.0 ft 2 20.0 ft 20.0 ft				8	16					9		2
170.0 ft 160.0 ft 120.0 ft 30.0 ft 40.0 ft 20.0 ft 30.0 ft 30.0 ft	# Panels @ (ft)	1 @ 20		-		15 @ 10					9 @ 2.37	20
185.0 ft 170.0 ft 160.0 ft 100.0 ft 40.0 ft 20.0 ft			5.3	5.1	4.5	1.4	3.4	2.5	2.4	11	1.3	0.7
	_		20.0 ft	40.0 ft	60.0 ft	80.0 ft	100.0 ft		140.0 ft	160.0 ft	<u>170.0 ft</u>	
	•											

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
(3) RR90-17-02DP w/ Mount Pipe	193	NNVV-65B-R4 Antenna	175
(3) RR90-17-02DP w/ Mount Pipe	193	NNVV-65B-R4 Antenna	175
(3) RR90-17-02DP w/ Mount Pipe	193	(2) 800 MHz RRH	175
(1) Low Profile Platform	193	(2) 800 MHz RRH	175
Lightning Rod	193	(2) 800 MHz RRH	175
Powerwave 7770 w/ Mount Pipe	182	1900 MHz RRH	175
Powerwave 7770 w/ Mount Pipe	182	1900 MHz RRH	175
(2) HPA-65R-BUU-H8 w/ Mount Pipe	182	1900 MHz RRH	175
(2) HPA-65R-BUU-H8 w/ Mount Pipe	182	TD-RRH8x20-25	175
(2) HPA-65R-BUU-H8 w/ Mount Pipe	182	TD-RRH8x20-25	175
(2) LGP21401	182	TD-RRH8x20-25	175
(2) LGP21401	182	(2) FD9R6004/2C-3L	162
(2) LGP21401	182	Empty Mount Pipe	162
(2) LGP21903 Diplexer	182	Empty Mount Pipe	162
(2) LGP21903 Diplexer	182	Empty Mount Pipe	162
(2) LGP21903 Diplexer	182	RRH2x60-AWS	162
(2) RRUS 11	182	RRH2x60-AWS	162
(2) RRUS 11	182	RRH2x60-AWS	162
(2) RRUS 11	182	RRH2x60-1900	162
RRUS 12	182	RRH2x60-1900	162
RRUS 12	182	RRH2x60-1900	162
RRUS 12	182	RRH2x60-700	162
(2) RRUS A2	182	RRH2x60-700	162
RRUS A2	182	RRH2x60-700	162
RRUS A2	182	(3) T-Frames	162
RRUS-32	182	(2) HBXX-6517DS-A2M w/ Mount Pipe	162
RRUS-32	182	(2) HBXX-6517DS-A2M w/ Mount Pipe	162
RRUS-32	182	(2) HBXX-6517DS-A2M w/ Mount Pipe	162
1000860	182	LNX-6514DS-A1M	162
1000860	182	LNX-6514DS-A1M	162
1000860	182	LNX-6514DS-A1M	162
DC6-48-60-18-8F	182	QUAD656C0000x	162
DC6-48-60-18-8F	182	QUAD656C0000x	162
(3) 12.5' T-Frames (Commscope P/N:	182	QUAD656C0000x	162
MTC3615)		DB-T1-6Z-8AB-0Z	162
Powerwave 7770 w/ Mount Pipe	182	DB-T1-6Z-8AB-0Z	162
Modified T-Frames (3)	175	(2) FD9R6004/2C-3L	162
RFS APXVSPP18-C-A20	175	(2) FD9R6004/2C-3L	162
RFS APXVSPP18-C-A20	175	KS24019-L112A	100
RFS APXVSPP18-C-A20	175	PC1N0F-0190B-002M	30
NNVV-65B-R4 Antenna	175	PC1N0F-0190B-002M	30

SYMBOL LIST

MARK	SIZE	MARK	SIZE
Α	Pirod 105244	В	L2 1/2x2 1/2x3/16

MATERIAL STRENGTH

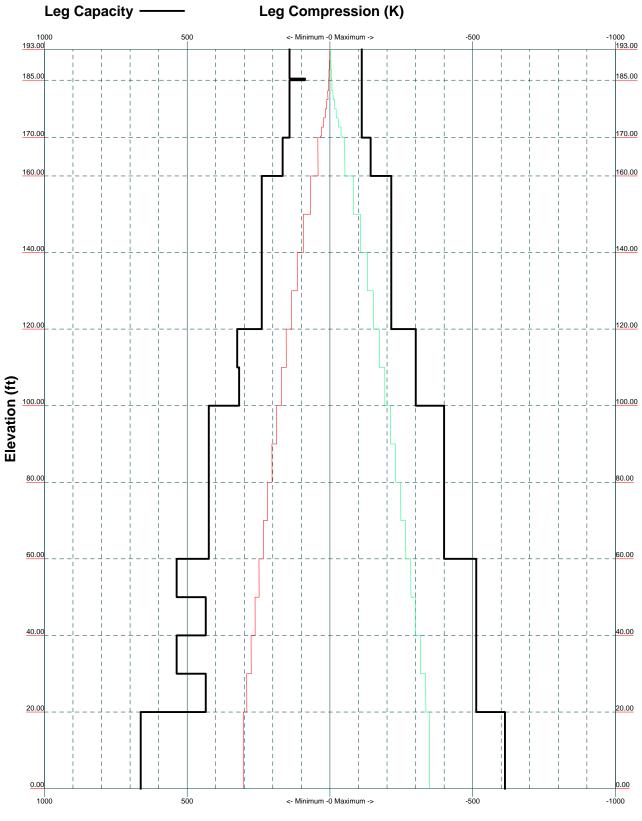
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

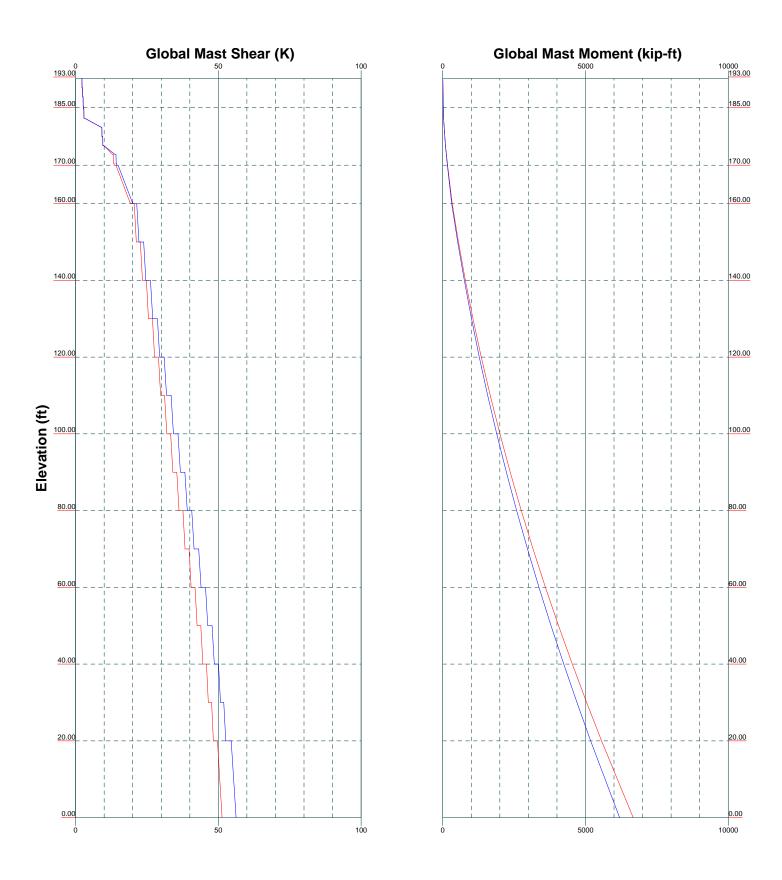
TOWER DESIGN NOTES

- Tower is located in New London County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
- 3. Tower designed for a 102 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Structure Class II.
 Topographic Category 1 with Crest Height of 0.00 ft

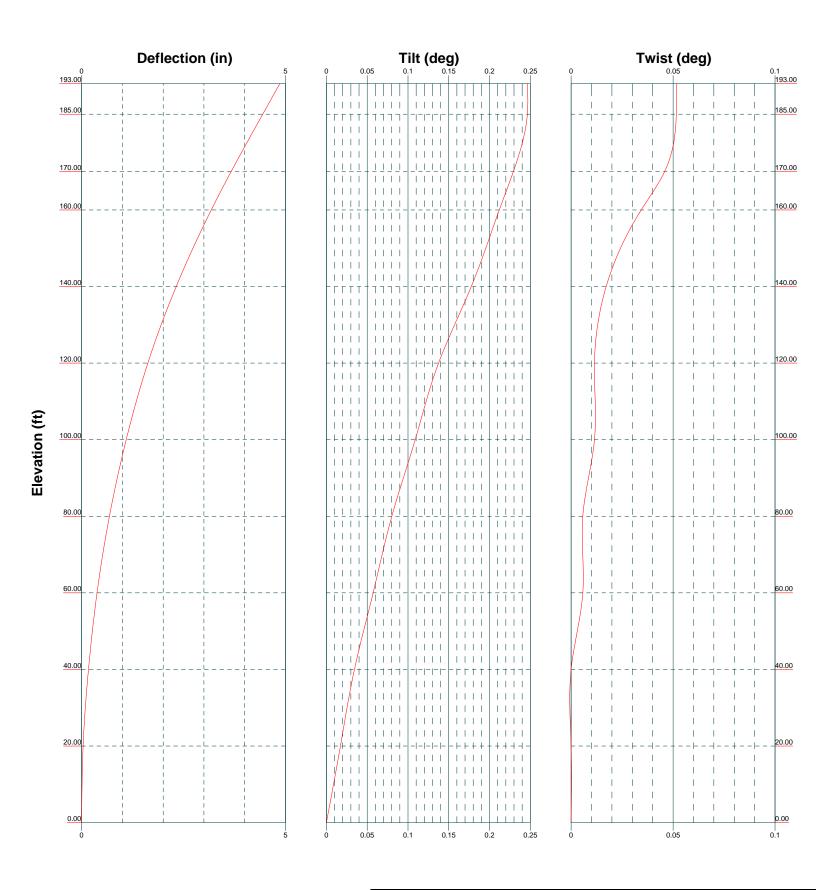
Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204 Dalls Tx. 75243

Phone: 972 231 8893 FAX: 866 364 8375


^{b:} 18-3611						
Project: CT01105-S-0.	2 BOZRAH					
Client: SBA	Drawn by: bakech	App'd:				
Code: TIA-222-G	Date: 05/29/18	Scale: NTS				
Path:	COT Color count Transcription Color County Color Report Co. Co. Color Co	Dwg No. E-				


MISCELLANEOUS PLOTS

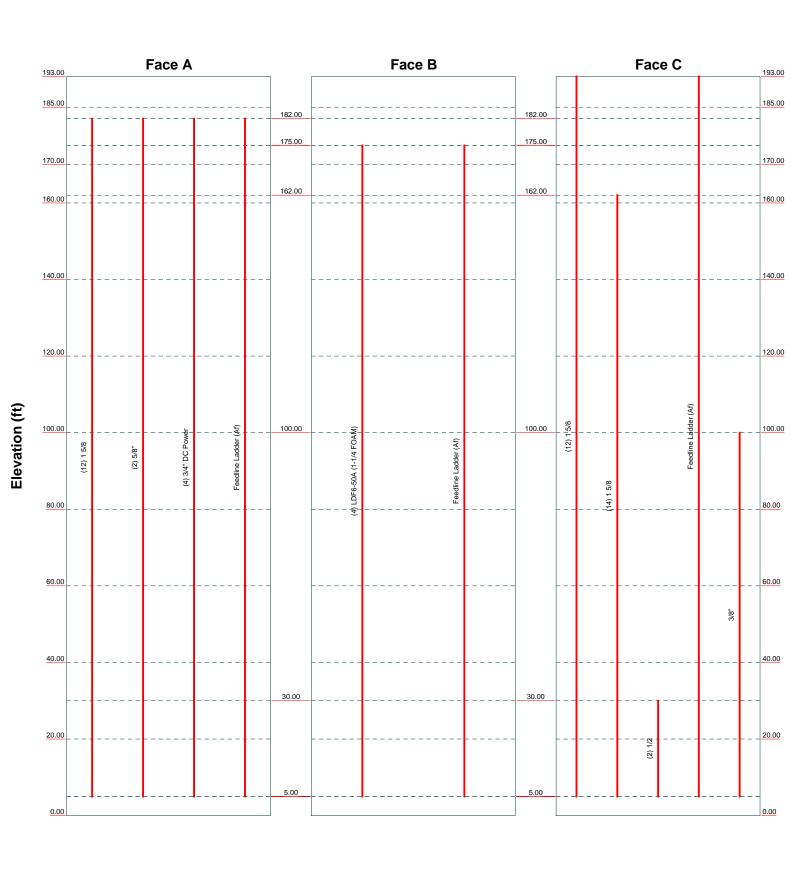
TIA-222-G - 102 mph/50 mph 0.7500 in Ice Exposure B


Allpro Consultants group inc	Job:
ozzi iyildoli b jollooli i looway. Odito zo i	Proje
Dalis 1x. /5243	Clier
Phone: 972 231 8893	Code
FAX: 866 364 8375	Path

^{Job:} 18-3611							
Project: CT01105-S-0	2 BOZRAH						
Client: SBA	Drawn by: bakech	App'd:					
^{Code:} TIA-222-G	Date: 05/25/18	Scale: NTS					
Path:		Dwg No. E-:					

Allpro Consultants group inc
9221 lyndon B johson Freeway. Suite 204
Dalls Tx. 75243
Phone: 972 231 8893
FAX: 866 364 8375

10-3011		
roject: CT01105-S-0.	2 BOZRAH	
lient: SBA	Drawn by: bakech	App'd:
ode: TIA-222-G	Date: 05/25/18	Scale: NT
ath:		Dwg No. F-

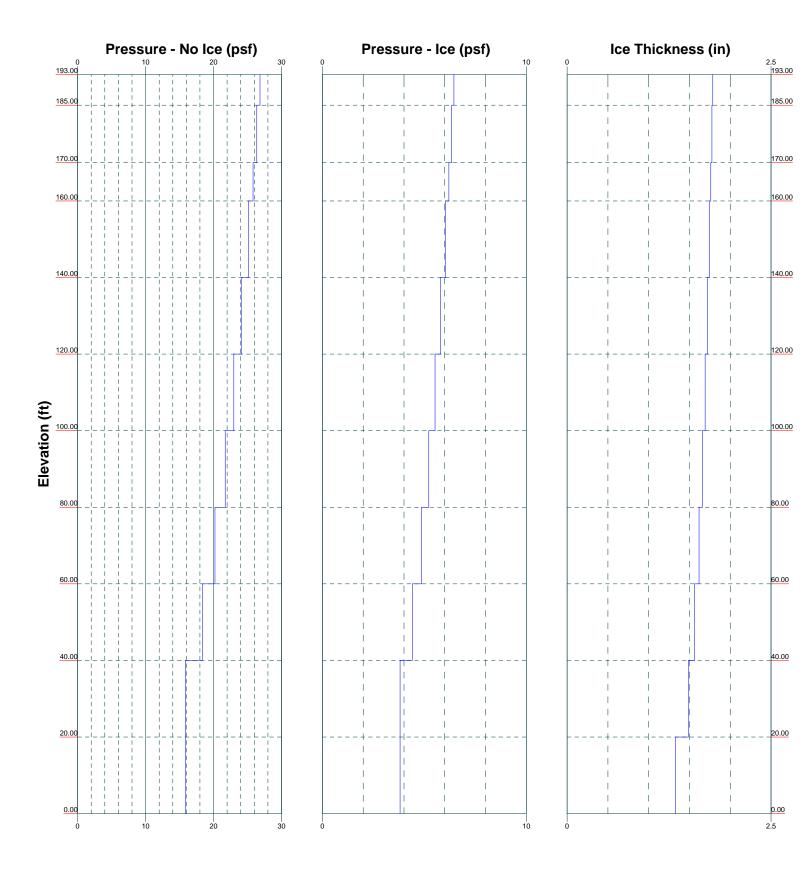

Allpro Consultants group inc
9221 lyndon B johson Freeway. Suite 204
Dalls Tx. 75243
Phone: 972 231 8893

FAX: 866 364 8375

^{Job:} 18-3611		
Project: CT01105-S- 0)2 BOZRAH	
Client: SBA	Drawn by: bakech	App'd:
Code: TIA-222-G	Date: 05/25/18	Scale: NT
Path:	-	Dwg No. E-

Feed Line Distribution Chart 0' - 193'

App Out Face _ Truss Leg Flat Round



Allpro Consultants group inc
9221 lyndon B johson Freeway. Suite 204
Dalls Tx. 75243

Phone: 972 231 8893 FAX: 866 364 8375

^{Job:} 18-3611		
Project: CT01105-S-0	2 BOZRAH	
Client: SBA	Drawn by: bakech	App'd:
Code: TIA-222-G	Date: 05/25/18	Scale: NTS
Path:		Dwg No. E-7

Wind Pressures and Ice Thickness TIA-222-G - 102 mph/50 mph 0.7500 in Ice Exposure B

	^{Job:} 18-3611		
9221 lyndon B johson Freeway. Suite 204	Project: CT01105-S-0	2 BOZRAH	
Dalls Tx. 75243	Client: SBA	Drawn by: bakech	App'd:
Phone: 972 231 8893	Code: TIA-222-G	Date: 05/25/18	Scale: NTS
FAX: 866 364 8375	Path:	6 SST Sories neural/TXXXCTS1106-G-02 Boorein Sories Neural SA 0117201	Dwg No. E-9

TNX TOWER CALCULATION PRINTOUT

1	tnxTower	Job		Page
	inxiower		18-3611	1 of 26
	Allono Consultants anoun inc	Project		Date
	Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204		CT01105-S-02 BOZRAH	16:18:49 05/29/18
	Dalls Tx. 75243	Client		Designed by
	Phone: 972 231 8893 FAX: 866 364 8375		SBA	bakech

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 193.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 22.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in New London County, Connecticut.

ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).

Basic wind speed of 102 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

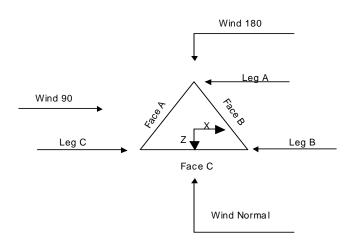
Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules


- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check
 Use TIA-222-G Bracing Resist. Exemption
 Use TIA-222-G Tension Splice Exemption
 Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	2 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Triangular Tower

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	193.00-185.00			5.00	1	8.00
T2	185.00-170.00			5.00	1	15.00
T3	170.00-160.00			5.00	1	10.00
T4	160.00-140.00			6.00	1	20.00
T5	140.00-120.00			8.00	1	20.00
T6	120.00-100.00			10.00	1	20.00
T7	100.00-80.00			12.00	1	20.00
T8	80.00-60.00			14.00	1	20.00
Т9	60.00-40.00			16.00	1	20.00
T10	40.00-20.00			18.00	1	20.00
T11	20.00-0.00			20.00	1	20.00

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	193.00-185.00	2.38	X Brace	No	Steps	5.2500	5.2500
T2	185.00-170.00	2.38	X Brace	No	Steps	4.5000	4.5000
T3	170.00-160.00	10.00	X Brace	No	No	0.0000	0.0000
T4	160.00-140.00	10.00	X Brace	No	No	0.0000	0.0000

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	3 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T5	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
T6	120.00-100.00	10.00	X Brace	No	No	0.0000	0.0000
T7	100.00-80.00	10.00	X Brace	No	No	0.0000	0.0000
T8	80.00-60.00	10.00	X Brace	No	No	0.0000	0.0000
T9	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000
T10	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000
T11	20.00-0.00	20.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1 193.00-185.00	Solid Round	2	A572-50	Solid Round	1	A572-50
			(50 ksi)			(50 ksi)
T2 185.00-170.00	Solid Round	2	A572-50	Solid Round	1	A572-50
			(50 ksi)			(50 ksi)
T3 170.00-160.00	Truss Leg	Pirod 105244	A572-50	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(50 ksi)			(36 ksi)
T4 160.00-140.00	Truss Leg	Pirod 105217	A572-50	Equal Angle	L3x3x3/16	A36
			(50 ksi)			(36 ksi)
T5 140.00-120.00	Truss Leg	Pirod 105217	A572-50	Equal Angle	L3x3x3/16	A36
			(50 ksi)			(36 ksi)
T6 120.00-100.00	Truss Leg	Pirod 105218	A572-50	Equal Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T7 100.00-80.00	Truss Leg	Pirod 105219	A572-50	Equal Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T8 80.00-60.00	Truss Leg	Pirod 105219	A572-50	Equal Angle	L3 1/2x3 1/2x5/16	A36
			(50 ksi)			(36 ksi)
T9 60.00-40.00	Truss Leg	Pirod 105220	A572-50	Equal Angle	L3 1/2x3 1/2x5/16	A36
			(50 ksi)			(36 ksi)
T10 40.00-20.00	Truss Leg	Pirod 105220	A572-50	Equal Angle	L3 1/2x3 1/2x5/16	A36
			(50 ksi)			(36 ksi)
T11 20.00-0.00	Truss Leg	Pirod 112738	A572-50	Double Equal	2L3 1/2x3 1/2x5/16x1	A36
	C		(50 ksi)	Angle		(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 193.00-185.00	Solid Round	1 1/4	A572-50	Solid Round	1 1/4	A572-50
			(50 ksi)			(50 ksi)
T2 185.00-170.00	Solid Round	1 1/4	A572-50	Solid Round	1 1/4	A572-50
			(50 ksi)			(50 ksi)

4 T	Job		Page
tnxTower		18-3611	4 of 26
Allano Consultanta anova in a	Project		Date
Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204		CT01105-S-02 BOZRAH	16:18:49 05/29/18
Dalls Tx. 75243	Client		Designed by
Phone: 972 231 8893 FAX: 866 364 8375		SBA	bakech

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T1 193.00-185.00	None	Flat Bar		A36	Solid Round	7/8	A36
				(36 ksi)			(36 ksi)
T2 185.00-170.00	1	Solid Round	1 1/4	A572-50	Solid Round	7/8	A36
				(50 ksi)			(36 ksi)

	Tower Section Geometry (cont'd)													
Tower Elevation ft	Gusset Area (per face)	Gusset Thickness in	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in					
	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000					
193.00-185.00			(36 ksi)											
T2	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000					
185.00-170.00			(36 ksi)											
T3	0.00	0.5000	A36	1	1	1.05	36.0000	36.0000	36.0000					
170.00-160.00			(36 ksi)											
T4	0.00	0.5000	A36	1	1	1.05	36.0000	36.0000	36.0000					
160.00-140.00	0.00	0.5000	(36 ksi)			1.05	260000	260000	260000					
T5	0.00	0.5000	A36	1	1	1.05	36.0000	36.0000	36.0000					
140.00-120.00 T6	0.00	0.5000	(36 ksi) A36	1	1	1.05	26,0000	26,0000	26,0000					
120.00-100.00	0.00	0.3000	(36 ksi)	1	1	1.05	36.0000	36.0000	36.0000					
T7	0.00	0.5000	A36	1	1	1.05	36.0000	36.0000	36.0000					
100.00-80.00	0.00	0.5000	(36 ksi)	1	1	1.03	30.0000	30.0000	30.0000					
T8 80.00-60.00	0.00	0.5000	A36	1	1	1.05	36.0000	36.0000	36.0000					
10 00.00 00.00	0.00	0.5000	(36 ksi)	1		1.05	50.0000	30.0000	50.0000					
T9 60.00-40.00	0.00	0.5000	A36	1	1	1.05	36.0000	36.0000	36.0000					
			(36 ksi)		_									
T10	0.00	0.5000	A36	1	1	1.05	36.0000	36.0000	36.0000					
40.00-20.00			(36 ksi)											
T11 20.00-0.00	0.00	1.0000	A36	1	1	1.05	0.0000	36.0000	36.0000					
			(36 ksi)											

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Angles	Rounds		X Y	X Y	$X \\ Y$	X Y	X Y	X Y	X Y
T1 193.00-185.00	Yes	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
T2 185.00-170.00	Yes	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
T3 170.00-160.00	Yes	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
T4 60.00-140.00	Yes	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1

4T	Job		Page
tnxTower		18-3611	5 of 26
Allpro Consultants group inc	Project		Date
9221 lyndon B johson Freeway. Suite 204		CT01105-S-02 BOZRAH	16:18:49 05/29/18
Dalls Tx. 75243	Client		Designed by
Phone: 972 231 8893 FAX: 866 364 8375		SBA	bakech

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T5	Yes	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T7	Yes	Yes	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T8	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
Т9	Yes	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T10	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T11	Yes	Yes	1	1	1	1	1	1	1	1
20.00-0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

			Truss-Leg	K Factors		
	Trus	s-Legs Used As Leg Me	mbers	Truss	-Legs Used As Inner M	embers
Tower Elevation ft	Leg Panels	X Brace Diagonals	Z Brace Diagonals	Leg Panels	X Brace Diagonals	Z Brace Diagonals
T3 170.00-160.00	1	0.5	0.85	1	0.5	0.85
T4 160.00-140.00	1	0.5	0.85	1	0.5	0.85
T5 140.00-120.00	1	0.5	0.85	1	0.5	0.85
T6 120.00-100.00	1	0.5	0.85	1	0.5	0.85
T7 100.00-80.00	1	0.5	0.85	1	0.5	0.85
T8 80.00-60.00	1	0.5	0.85	1	0.5	0.85
T9 60.00-40.00	1	0.5	0.85	1	0.5	0.85
T10 40.00-20.00	1	0.5	0.85	1	0.5	0.85
T11 20.00-0.00	1	0.5	0.85	1	0.5	0.85

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	6 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Tower Elevation	Leg		Diago	nal	Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
193.00-185.00														
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
185.00-170.00														
T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
170.00-160.00														
T4	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00														
T5	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														
T6	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00				0.75		0.55		0.55		0.55	0.0000	0.75		0.55
T7	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00				0.75		0.55		0.55		0.55	0.0000	0.75		0.55
T8 80.00-60.00		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 60.00-40.00		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
40.00-20.00	0.0000		0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 20.00-0.00	0.0000	I	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower	Leg	Leg		Diagon	al	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	izontal	Short Hori	izontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Sleeve DS	0.6250	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
193.00-185.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	1.0000	6	0.7500	0	0.7500	0	0.7500	0	0.6250	0	0.6250	0	0.6250	0
185.00-170.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	1.0000	6	1.0000	1	1.0000	0	1.0000	0	0.6250	0	0.6250	0	0.6250	0
170.00-160.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N>1"		A325N>1"		A325N		A325N		A325N		A325N		A325N	
T8 80.00-60.00	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N>1"		A325N>1"		A325N		A325N		A325N		A325N		A325N	
T9 60.00-40.00	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N>1"		A325N>1"		A325N		A325N		A325N		A325N		A325N	
T10	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
40.00-20.00		A325N>1"		A325N>1"		A325N		A325N		A325N		A325N		A325N	
T11 20.00-0.00	Flange	2.0000	6	1.0000	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A687		A325N		A325N		A325N		A325N		A325N		A325N	

	Job	Page
tnxTower	18-3611	7 of 26
Allpro Consultants group inc 2221 lyndon B johson Freeway. Suite 204	Project CT01105-S-02 BOZRAH	Date 16:18:49 05/29/18
Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375	Client	Designed by bakech

Feed Line/Linear Appurtenances -	- Entered As Round Or Fla	ŀ
i ced Lille/Lilledi Appulterialices		L

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
1 5/8 ***	С	No	Ar (CaAa)	193.00 - 5.00	0.0000	0.15	12	4	0.5000	1.9800		1.04
1 5/8	A	No	Ar (CaAa)	182.00 - 5.00	0.0000	0.3	12	12	0.5000	1.9800		1.04
5/8"	Α	No	Ar (CaAa)	182.00 - 5.00	0.0000	0.25	2	1	0.5000	0.8800		0.40
3/4" DC Power ***	A	No	Ar (CaAa)	182.00 - 5.00	0.0000	0.2	4	2	0.5000	0.9950		0.47
LDF6-50A (1-1/4 FOAM) ***	В	No	Ar (CaAa)	175.00 - 5.00	0.0000	0.15	4	4	0.5000	1.5500		0.66
1 5/8	C	No	Ar (CaAa)	162.00 - 5.00	0.0000	0.2	14	12	0.5000	1.9800		1.04
1/2	C	No	Ar (CaAa)	30.00 - 5.00	0.0000	0.4	2	1	0.5000 0.5800	0.5800		0.25

Feedline Ladder (Af)	A	No	Af (CaAa)	182.00 - 5.00	0.0000	0.25	1	1	3.0000	1.5000		8.40
Feedline Ladder (Af) ***	С	No	Af (CaAa)	193.00 - 5.00	0.0000	0.2	1	1	3.0000	1.5000		8.40
	0	N	. (0.1)	100.00 5.00	0.0000	0.20		,	0.2750	0.2750		0.10
3/8"	C	No	Ar (CaAa)	100.00 - 5.00	0.0000	0.28	1	l	0.3750	0.3750		0.18
Feedline Ladder (Af)	В	No	Af (CaAa)	175.00 - 5.00	0.0000	0.15	1	1	3.0000	1.5000		8.40

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number	C_AA_A	Weight
	Leg		J1	ft		ft²/ft	plf

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft ²	ft^2	ft^2	K
T1	193.00-185.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	21.008	0.000	0.17
T2	185.00-170.00	Α	0.000	0.000	38.400	0.000	0.28
		В	0.000	0.000	4.350	0.000	0.06
		C	0.000	0.000	39.390	0.000	0.31
T3	170.00-160.00	A	0.000	0.000	32.000	0.000	0.24
		В	0.000	0.000	8.700	0.000	0.11
		C	0.000	0.000	31.804	0.000	0.24
T4	160.00-140.00	A	0.000	0.000	64.000	0.000	0.47
		В	0.000	0.000	17.400	0.000	0.22
		C	0.000	0.000	107.960	0.000	0.71

T	ob	Page
tnxTower	18-3611	8 of 26
Allano Conquitanta anova in a	Project	Date
Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Dalls Tx. 75243	Client	Designed by
Phone: 972 231 8893 FAX: 866 364 8375	SBA	bakech

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	_
	ft		ft^2	ft ²	ft^2	ft ²	K
T5	140.00-120.00	A	0.000	0.000	64.000	0.000	0.47
		В	0.000	0.000	17.400	0.000	0.22
		C	0.000	0.000	107.960	0.000	0.71
T6	120.00-100.00	A	0.000	0.000	64.000	0.000	0.47
		В	0.000	0.000	17.400	0.000	0.22
		C	0.000	0.000	107.960	0.000	0.71
T7	100.00-80.00	A	0.000	0.000	64.000	0.000	0.47
		В	0.000	0.000	17.400	0.000	0.22
		C	0.000	0.000	108.710	0.000	0.71
T8	80.00-60.00	A	0.000	0.000	64.000	0.000	0.47
		В	0.000	0.000	17.400	0.000	0.22
		C	0.000	0.000	108.710	0.000	0.71
T9	60.00-40.00	A	0.000	0.000	64.000	0.000	0.47
		В	0.000	0.000	17.400	0.000	0.22
		C	0.000	0.000	108.710	0.000	0.71
T10	40.00-20.00	A	0.000	0.000	64.000	0.000	0.47
		В	0.000	0.000	17.400	0.000	0.22
		C	0.000	0.000	109.870	0.000	0.72
T11	20.00-0.00	A	0.000	0.000	48.000	0.000	0.35
		В	0.000	0.000	13.050	0.000	0.17
		C	0.000	0.000	83.272	0.000	0.54

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft ²	ft ²	ft^2	K
T1	193.00-185.00	A	1.786	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	21.570	0.000	0.53
T2	185.00-170.00	A	1.775	0.000	0.000	80.939	0.000	1.30
		В		0.000	0.000	10.745	0.000	0.19
		C		0.000	0.000	40.351	0.000	0.98
Т3	170.00-160.00	A	1.762	0.000	0.000	67.295	0.000	1.08
		В		0.000	0.000	21.421	0.000	0.37
		C		0.000	0.000	35.265	0.000	0.80
T4	160.00-140.00	A	1.745	0.000	0.000	134.192	0.000	2.14
		В		0.000	0.000	42.664	0.000	0.73
		C		0.000	0.000	137.728	0.000	2.74
T5	140.00-120.00	A	1.720	0.000	0.000	133.601	0.000	2.12
		В		0.000	0.000	42.401	0.000	0.72
		C		0.000	0.000	137.305	0.000	2.71
T6	120.00-100.00	A	1.692	0.000	0.000	132.922	0.000	2.09
		В		0.000	0.000	42.099	0.000	0.71
		C		0.000	0.000	136.819	0.000	2.68
T7	100.00-80.00	A	1.658	0.000	0.000	132.122	0.000	2.05
		В		0.000	0.000	41.742	0.000	0.70
		C		0.000	0.000	143.629	0.000	2.73
Т8	80.00-60.00	A	1.617	0.000	0.000	131.142	0.000	2.01
		В		0.000	0.000	41.307	0.000	0.68
		C		0.000	0.000	142.762	0.000	2.69
Т9	60.00-40.00	A	1.564	0.000	0.000	129.869	0.000	1.95
		В		0.000	0.000	40.740	0.000	0.66
		C		0.000	0.000	141.636	0.000	2.63
T10	40.00-20.00	A	1.486	0.000	0.000	128.018	0.000	1.87
		В		0.000	0.000	39.918	0.000	0.64
		C		0.000	0.000	147.374	0.000	2.62
T11	20.00-0.00	A	1.331	0.000	0.000	93.261	0.000	1.29

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	9 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client		Designed by
	SBA	bakech

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
		В		0.000	0.000	28.717	0.000	0.44
		C		0.000	0.000	112.815	0.000	1.88

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	193.00-185.00	-9.4121	20.3071	-9.8164	19.9308
T2	185.00-170.00	-6.7049	-9.8412	-6.3408	-8.9762
T3	170.00-160.00	-5.6740	-10.9638	-4.3959	-9.8672
T4	160.00-140.00	-10.3423	-10.7581	-8.7107	-9.5225
T5	140.00-120.00	-13.2447	-13.9660	-11.1696	-12.3828
T6	120.00-100.00	-16.1471	-17.1738	-13.6456	-15.2608
T7	100.00-80.00	-19.1912	-19.9332	-17.0302	-15.8375
T8	80.00-60.00	-22.1155	-23.0717	-19.6805	-18.4445
T9	60.00-40.00	-25.0399	-26.2103	-22.3689	-21.1226
T10	40.00-20.00	-28.3271	-28.3259	-26.4734	-21.2047
T11	20.00-0.00	-31.2825	-29.9238	-30.3834	-21.2641

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	1	1 5/8	185.00 -	0.6000	0.4614
T1	15	Feedline Ladder (Af)		0.6000	0.4614
T2	1	1 5/8		0.6000	0.4628
T2	3	1 5/8		0.6000	0.4628
T2	5	5/8"	182.00 170.00 -	0.6000	0.4628
T2	6	3/4" DC Power	182.00 170.00 -	0.6000	0.4628
T2	8	LDF6-50A (1-1/4 FOAM)	182.00 170.00 -	0.6000	0.4628
T2	14	Feedline Ladder (Af)	175.00 170.00 -	0.6000	0.4628
T2	15	Feedline Ladder (Af)		0.6000	0.4628
T2	19	Feedline Ladder (Af)	185.00 170.00 -	0.6000	0.4628
Т3	1	1 5/8		0.6000	0.3192
Т3	3	1 5/8		0.6000	0.3192
Т3	5	5/8"	170.00 160.00 -	0.6000	0.3192
Т3	6	3/4" DC Power	170.00 160.00 -	0.6000	0.3192

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Job		Page
	18-3611	10 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
section	Recora No.			ivo ice	ice
Т3	8	LDF6-50A (1-1/4 FOAM)	170.00 160.00 -	0.6000	0.3192
Т3	10	1 5/8	170.00 160.00 - 162.00	0.6000	0.3192
Т3	14	Feedline Ladder (Af)	160.00 - 170.00	0.6000	0.3192
Т3	15	Feedline Ladder (Af)	160.00 - 170.00	0.6000	0.3192
Т3	19	Feedline Ladder (Af)	160.00 - 170.00	0.6000	0.3192
T4	1	1 5/8	140.00 - 160.00	0.6000	0.4127
T4	3	1 5/8 5/8"	140.00 - 160.00	0.6000	0.4127
T4 T4	5	3/4" DC Power	140.00 - 160.00 140.00 -	0.6000 0.6000	0.4127 0.4127
T4	8	LDF6-50A (1-1/4 FOAM)	160.00 - 160.00 -	0.6000	0.4127
T4	10	1 5/8	160.00 140.00 -	0.6000	0.4127
T4	14	Feedline Ladder (Af)	160.00 140.00 -	0.6000	0.4127
T4	15	Feedline Ladder (Af)	160.00 140.00 -	0.6000	0.4127
T4	19	Feedline Ladder (Af)	160.00 140.00 - 160.00	0.6000	0.4127
Т5	1	1 5/8	120.00 - 140.00	0.6000	0.5118
Т5	3	1 5/8	120.00 - 140.00	0.6000	0.5118
T5	5	5/8"	120.00 - 140.00	0.6000	0.5118
T5	6	3/4" DC Power	120.00 - 140.00	0.6000	0.5118
T5 T5	8	LDF6-50A (1-1/4 FOAM) 1 5/8	120.00 - 140.00 120.00 -	0.6000 0.6000	0.5118 0.5118
T5	14	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.5118
Т5	15	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.5118
Т5	19	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.5118
Т6	1	1 5/8	140.00 100.00 - 120.00	0.6000	0.5764
Т6	3	1 5/8	100.00 - 120.00	0.6000	0.5764
Т6	5	5/8"	100.00 - 120.00	0.6000	0.5764
Т6	6	3/4" DC Power	100.00 - 120.00	0.6000	0.5764
Т6	8	LDF6-50A (1-1/4 FOAM)	100.00 - 120.00	0.6000	0.5764
T6 T6	10	1 5/8 Feedline Ladder (Af)	100.00 - 120.00 100.00 -	0.6000 0.6000	0.5764 0.5764
T6	14	Feedline Ladder (Af)	120.00	0.6000	0.5764
Т6	15	Feedline Ladder (Af)	100.00 -	0.6000	0.5764

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

	Job		Page
	18-	3611	11 of 26
	Project		Date
1	CT01105-S	-02 BOZRAH	16:18:49 05/29/18
	Client	D.A.	Designed by
	5	BA	bakech

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
Section	necora ivo.		120.00	110 100	100
Т6	19	Feedline Ladder (Af)	100.00 -	0.6000	0.5764
10	17	recume Lauder (Ar)	120.00	0.0000	0.5704
T7	1	1.5/8	80.00 - 100.00	0.6000	0.6000
T7	3	1 5/8		0.6000	0.6000
T7	5	5/8"	80.00 - 100.00	0.6000	0.6000
T7	6	3/4" DC Power		0.6000	0.6000
T7	8	LDF6-50A (1-1/4 FOAM)		0.6000	0.6000
T7	10	1 5/8	80.00 - 100.00	0.6000	0.6000
T7	14	Feedline Ladder (Af)		0.6000	0.6000
T7	15	Feedline Ladder (Af)		0.6000	0.6000
T7	18	3/8"	80.00 - 100.00	0.6000	0.6000
T7	19	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
T8	1	1 5/8	60.00 - 80.00	0.6000	0.6000
T8	3	1 5/8	60.00 - 80.00	0.6000	0.6000
T8	5	5/8"	60.00 - 80.00	0.6000	0.6000
T8	6	3/4" DC Power	60.00 - 80.00	0.6000	0.6000
T8	8	LDF6-50A (1-1/4 FOAM)	60.00 - 80.00	0.6000	0.6000
Т8	10	1 5/8	60.00 - 80.00	0.6000	0.6000
Т8	14	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Т8	15	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Т8	18	3/8"	60.00 - 80.00	0.6000	0.6000
Т8	19	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Т9	1	1 5/8	40.00 - 60.00	0.6000	0.6000
Т9	3	1 5/8	40.00 - 60.00	0.6000	0.6000
Т9	5	5/8"	40.00 - 60.00	0.6000	0.6000
T9	6	3/4" DC Power	40.00 - 60.00	0.6000	0.6000
T9	8	LDF6-50A (1-1/4 FOAM)	40.00 - 60.00	0.6000	0.6000
T9	10	1 5/8	40.00 - 60.00	0.6000	0.6000
T9	14	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т9	15	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т9	18	3/8"	40.00 - 60.00	0.6000	0.6000
Т9	19	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T10	1	1 5/8	20.00 - 40.00	0.6000	0.6000
T10	3	1 5/8	20.00 - 40.00	0.6000	0.6000
T10	5	5/8"	20.00 - 40.00	0.6000	0.6000
T10	6	3/4" DC Power	20.00 - 40.00	0.6000	0.6000
T10	8	LDF6-50A (1-1/4 FOAM)	20.00 - 40.00	0.6000	0.6000
T10	10	1 5/8	20.00 - 40.00	0.6000	0.6000
T10	12	1/2	20.00 - 30.00	0.6000	0.6000
T10	14	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T10	15	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T10	18	3/8"	20.00 - 40.00	0.6000	0.6000
T10	19	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T11	1	1 5/8	5.00 - 20.00	0.6000	0.6000
T11	3	1 5/8	5.00 - 20.00	0.6000	0.6000
T11	5	5/8" 2/4" DC Power	5.00 - 20.00	0.6000	0.6000
T11	6	3/4" DC Power LDF6-50A (1-1/4 FOAM)	5.00 - 20.00 5.00 - 20.00	0.6000	0.6000
T11 T11	8	,	5.00 - 20.00 5.00 - 20.00	0.6000 0.6000	0.6000
T11	10	1 5/8 1/2	5.00 - 20.00	0.6000	0.6000
T11	12 14	Feedline Ladder (Af)	5.00 - 20.00	0.6000	0.6000 0.6000
T11	15	Feedline Ladder (Af)	5.00 - 20.00	0.6000	0.6000
T11	18	3/8"	5.00 - 20.00	0.6000	0.6000
T11	18	Feedline Ladder (Af)	5.00 - 20.00	0.6000	0.6000
111	19	recuille Laudel (AI)	3.00 - 20.00	0.0000	0.0000

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	12 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	004	Designed by
	SBA	bakech

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft ²	K
			ft ft		J .		J .	J .	
3) RR90-17-02DP w/ Mount	A	From Leg	3.00	0.0000	193.00	No Ice	4.59	3.32	0.03
Pipe			0.00			1/2" Ice	5.09	4.09	0.07
	_		2.00			1" Ice	5.58	4.78	0.12
3) RR90-17-02DP w/ Mount	В	From Leg	3.00	0.0000	193.00	No Ice	4.59	3.32	0.03
Pipe			0.00			1/2" Ice	5.09	4.09	0.07
2) PP00 17 02PP / M	0	Б. Т	2.00	0.0000	102.00	1" Ice	5.58	4.78	0.12
3) RR90-17-02DP w/ Mount	C	From Leg	3.00	0.0000	193.00	No Ice	4.59	3.32	0.03
Pipe			0.00			1/2" Ice	5.09	4.09	0.07
(1) I D C1 D1 (C		N	2.00	0.0000	102.00	1" Ice	5.58	4.78	0.12
(1) Low Profile Platform	A	None		0.0000	193.00	No Ice	24.33	24.33 30.22	1.65
						1/2" Ice	30.22		2.03
***						1" Ice	36.11	36.11	2.41
Powerwave 7770 w/ Mount	A	From Leg	3.00	0.0000	182.00	No Ice	6.46	4.59	0.06
Pipe	. 1	110m Leg	0.00	0.0000	102.00	1/2" Ice	7.14	5.66	0.11
- ·P•			0.00			1" Ice	7.73	6.45	0.17
Powerwave 7770 w/ Mount	В	From Leg	3.00	0.0000	182.00	No Ice	6.46	4.59	0.06
Pipe			0.00			1/2" Ice	7.14	5.66	0.11
1 .pv			0.00			1" Ice	7.73	6.45	0.17
Powerwave 7770 w/ Mount	C	From Leg	3.00	0.0000	182.00	No Ice	6.46	4.59	0.06
Pipe		110111 208	0.00	0.0000	102.00	1/2" Ice	7.14	5.66	0.11
			0.00			1" Ice	7.73	6.45	0.17
(2) HPA-65R-BUU-H8 w/	Α	From Leg	3.00	0.0000	182.00	No Ice	13.30	9.18	0.09
Mount Pipe			0.00			1/2" Ice	13.99	10.48	0.19
1			0.00			1" Ice	14.70	11.49	0.29
(2) HPA-65R-BUU-H8 w/	В	From Leg	3.00	0.0000	182.00	No Ice	13.30	9.18	0.09
Mount Pipe		C	0.00			1/2" Ice	13.99	10.48	0.19
			0.00			1" Ice	14.70	11.49	0.29
(2) HPA-65R-BUU-H8 w/	C	From Leg	3.00	0.0000	182.00	No Ice	13.30	9.18	0.09
Mount Pipe		_	0.00			1/2" Ice	13.99	10.48	0.19
			0.00			1" Ice	14.70	11.49	0.29
(2) LGP21401	Α	From Leg	3.00	0.0000	182.00	No Ice	0.00	0.23	0.01
			0.00			1/2" Ice	0.00	0.31	0.02
			0.00			1" Ice	0.00	0.40	0.03
(2) LGP21401	В	From Leg	3.00	0.0000	182.00	No Ice	0.00	0.23	0.01
			0.00			1/2" Ice	0.00	0.31	0.02
			0.00			1" Ice	0.00	0.40	0.03
(2) LGP21401	C	From Leg	3.00	0.0000	182.00	No Ice	0.00	0.23	0.01
			0.00			1/2" Ice	0.00	0.31	0.02
			0.00			1" Ice	0.00	0.40	0.03
(2) LGP21903 Diplexer	A	From Leg	3.00	0.0000	182.00	No Ice	0.27	0.18	0.01
			0.00			1/2" Ice	0.34	0.25	0.01
	_		0.00			1" Ice	0.43	0.32	0.01
(2) LGP21903 Diplexer	В	From Leg	3.00	0.0000	182.00	No Ice	0.27	0.18	0.01
			0.00			1/2" Ice	0.34	0.25	0.01
(a) I CD21002 5: I	<i>C</i>	ъ .	0.00	0.0000	102.00	1" Ice	0.43	0.32	0.01
(2) LGP21903 Diplexer	C	From Leg	3.00	0.0000	182.00	No Ice	0.27	0.18	0.01
			0.00			1/2" Ice	0.34	0.25	0.01
(2) P.D.V.C. 1.1	,	ъ .	0.00	0.0000	102.00	1" Ice	0.43	0.32	0.01
(2) RRUS 11	Α	From Leg	3.00	0.0000	182.00	No Ice	3.25	1.37	0.05
			0.00			1/2" Ice	3.49	1.55	0.07
(2) P.D.U.C. 1.1	Р	F 1	0.00	0.0000	102.00	1" Ice	3.74	1.74	0.10
(2) RRUS 11	В	From Leg	3.00	0.0000	182.00	No Ice	3.25	1.37	0.05
			0.00			1/2" Ice	3.49	1.55	0.07

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Job		Page
	18-3611	13 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Laierai Vert						
			ft ft	٥	ft		ft^2	ft ²	K
			ft						
			0.00			1" Ice	3.74	1.74	0.10
(2) RRUS 11	C	From Leg	3.00	0.0000	182.00	No Ice	3.25	1.37	0.05
			0.00			1/2" Ice	3.49	1.55	0.07
			0.00			1" Ice	3.74	1.74	0.10
RRUS 12	A	From Leg	3.00	0.0000	182.00	No Ice	3.67	1.49	0.06
			0.00			1/2" Ice	3.93	1.67	0.08
DDIIC 12	D	F I	0.00	0.0000	192.00	1" Ice	4.19	1.87	0.11
RRUS 12	В	From Leg	3.00 0.00	0.0000	182.00	No Ice 1/2" Ice	3.67 3.93	1.49 1.67	0.06 0.08
			0.00			1" Ice	4.19	1.87	0.08
RRUS 12	C	From Leg	3.00	0.0000	182.00	No Ice	3.67	1.49	0.11
RROD 12	C	Trom Leg	0.00	0.0000	102.00	1/2" Ice	3.93	1.67	0.08
			0.00			1" Ice	4.19	1.87	0.11
(2) RRUS A2	Α	From Leg	3.00	0.0000	182.00	No Ice	2.41	0.53	0.02
()			0.00			1/2" Ice	2.62	0.67	0.03
			0.00			1" Ice	2.84	0.81	0.05
RRUS A2	В	From Leg	3.00	0.0000	182.00	No Ice	2.41	0.53	0.02
		_	0.00			1/2" Ice	2.62	0.67	0.03
			0.00			1" Ice	2.84	0.81	0.05
RRUS A2	C	From Leg	3.00	0.0000	182.00	No Ice	2.41	0.53	0.02
			0.00			1/2" Ice	2.62	0.67	0.03
			0.00			1" Ice	2.84	0.81	0.05
RRUS-32	A	From Leg	3.00	0.0000	182.00	No Ice	3.87	2.76	0.08
			0.00			1/2" Ice	4.15	3.02	0.10
DDIIC 22	D	г т	0.00	0.0000	102.00	1" Ice	4.44	3.29	0.14
RRUS-32	В	From Leg	3.00	0.0000	182.00	No Ice	3.87	2.76	0.08
			$0.00 \\ 0.00$			1/2" Ice 1" Ice	4.15 4.44	3.02 3.29	0.10 0.14
RRUS-32	C	From Leg	3.00	0.0000	182.00	No Ice	3.87	2.76	0.14
KKU5-32	C	110III Leg	0.00	0.0000	162.00	1/2" Ice	4.15	3.02	0.00
			0.00			1" Ice	4.44	3.29	0.14
1000860	Α	From Leg	3.00	0.0000	182.00	No Ice	1.95	0.50	0.03
			0.00			1/2" Ice	2.13	0.62	0.04
			0.00			1" Ice	2.33	0.75	0.06
1000860	В	From Leg	3.00	0.0000	182.00	No Ice	1.95	0.50	0.03
		_	0.00			1/2" Ice	2.13	0.62	0.04
			0.00			1" Ice	2.33	0.75	0.06
1000860	C	From Leg	3.00	0.0000	182.00	No Ice	1.95	0.50	0.03
			0.00			1/2" Ice	2.13	0.62	0.04
DGC 10 CO 10 OF			0.00	0.0000	100.00	1" Ice	2.33	0.75	0.06
DC6-48-60-18-8F	В	From Leg	3.00	0.0000	182.00	No Ice	2.57	2.57	0.02
			0.00			1/2" Ice	2.80	2.80	0.04
DCC 40 CO 10 0E	C	F I	0.00	0.0000	192.00	1" Ice	3.04	3.04	0.07
DC6-48-60-18-8F	C	From Leg	3.00 0.00	0.0000	182.00	No Ice 1/2" Ice	2.57 2.80	2.57 2.80	0.02 0.04
			0.00			1" Ice	3.04	3.04	0.04
(3) 12.5' T-Frames	C	None	0.00	0.0000	182.00	No Ice	49.30	49.30	2.29
(Commscope P/N:		1,0110		0.0000	102.00	1/2" Ice	52.20	52.20	2.68
MTC3615) ***						1" Ice	55.10	55.10	3.07
*** PC1N0F-0190B-002M	A	From Leg	0.00	0.0000	30.00	No Ice	0.03	0.03	0.00
		9	0.00			1/2" Ice	0.06	0.06	0.00
			0.00			1" Ice	0.10	0.10	0.00
PC1N0F-0190B-002M	В	From Leg	0.00	0.0000	30.00	No Ice	0.03	0.03	0.00
			0.00			1/2" Ice	0.06	0.06	0.00
			0.00			1" Ice	0.10	0.10	0.00

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Job		Page
	18-3611	14 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	ū		Vert ft ft ft	o	ft		ft ²	ft ²	K
Lightning Rod	С	From Leg	0.00 0.00	0.0000	193.00	No Ice 1/2" Ice	0.25 0.66	0.25 0.66	0.03 0.03
			2.00			1" Ice	0.97	0.97	0.04

(3) T-Frames	C	None		0.0000	162.00	No Ice 1/2" Ice	19.83 29.41	19.83 29.41	0.92 1.33
(2) HBXX-6517DS-A2M w/ Mount Pipe	Α	From Leg	4.00 0.00	0.0000	162.00	1" Ice No Ice 1/2" Ice	38.99 8.98 9.65	38.99 6.96 8.18	1.73 0.07 0.14
(2) HBXX-6517DS-A2M w/ Mount Pipe	В	From Leg	0.00 4.00 0.00	0.0000	162.00	1" Ice No Ice 1/2" Ice	10.29 8.98 9.65	9.14 6.96 8.18	0.21 0.07 0.14
(2) HBXX-6517DS-A2M w/	C	From Leg	0.00 4.00	0.0000	162.00	1" Ice No Ice	10.29 8.98	9.14 6.96	0.21 0.07
Mount Pipe			$0.00 \\ 0.00$			1/2" Ice 1" Ice	9.65 10.29	8.18 9.14	0.14 0.21
LNX-6514DS-A1M	Α	From Leg	4.00 0.00 0.00	0.0000	162.00	No Ice 1/2" Ice 1" Ice	8.41 8.96 9.52	5.41 5.86 6.33	0.04 0.09 0.15
LNX-6514DS-A1M	В	From Leg	4.00 0.00	0.0000	162.00	No Ice 1/2" Ice	8.41 8.96	5.41 5.86	0.04 0.09
LNX-6514DS-A1M	C	From Leg	0.00 4.00 0.00	0.0000	162.00	1" Ice No Ice 1/2" Ice	9.52 8.41 8.96	6.33 5.41 5.86	0.15 0.04 0.09
QUAD656C0000x	A	From Leg	0.00 4.00 0.00	0.0000	162.00	1" Ice No Ice 1/2" Ice	9.52 13.24 14.01	6.33 5.62 6.32	0.15 0.05 0.13
QUAD656C0000x	В	From Leg	0.00 4.00 0.00	0.0000	162.00	1" Ice No Ice 1/2" Ice	14.78 13.24 14.01	7.02 5.62 6.32	0.21 0.05 0.13
QUAD656C0000x	С	From Leg	0.00 4.00	0.0000	162.00	1" Ice No Ice	14.78 13.24	7.02 5.62	0.21 0.05
DB-T1-6Z-8AB-0Z	A	From Leg	0.00 0.00 4.00	0.0000	162.00	1/2" Ice 1" Ice No Ice	14.01 14.78 4.80	6.32 7.02 2.00	0.13 0.21 0.04
DB-T1-6Z-8AB-0Z	В	From Leg	0.00 0.00 4.00	0.0000	162.00	1/2" Ice 1" Ice No Ice	5.21 5.62 4.80	2.29 2.58 2.00	0.08 0.12 0.04
			$0.00 \\ 0.00$			1/2" Ice 1" Ice	5.21 5.62	2.29 2.58	0.08 0.12
(2) FD9R6004/2C-3L	A	From Leg	4.00 0.00 0.00	0.0000	162.00	No Ice 1/2" Ice 1" Ice	0.37 0.45 0.54	0.08 0.14 0.20	0.00 0.01 0.01
(2) FD9R6004/2C-3L	В	From Leg	4.00 0.00 0.00	0.0000	162.00	No Ice 1/2" Ice 1" Ice	0.37 0.45 0.54	0.08 0.14 0.20	0.00 0.01 0.01
(2) FD9R6004/2C-3L	С	From Leg	4.00 0.00	0.0000	162.00	No Ice 1/2" Ice	0.37 0.45	0.08 0.14	0.00 0.01
KS24019-L112A	A	From Leg	0.00 4.00 0.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice 1" Ice	0.54 0.16 0.22 0.30	0.20 0.16 0.22 0.30	0.01 0.01 0.01 0.01
***			0.00			1 100	0.50	0.50	5.01
Empty Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	162.00	No Ice 1/2" Ice 1" Ice	1.43 1.92 2.29	1.43 1.92 2.29	0.02 0.03 0.05

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Job		Page
	18-3611	15 of 26
Project		Date
1	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg	7.1	Lateral Vert	v					
			ft	0	ft		ft^2	ft^2	K
			ft ft		J.		<i>J</i> -	J	
Empty Mount Pipe	В	From Leg	4.00	0.0000	162.00	No Ice	1.43	1.43	0.02
			0.00			1/2" Ice	1.92	1.92	0.03
	~		0.00			1" Ice	2.29	2.29	0.05
Empty Mount Pipe	C	From Leg	4.00	0.0000	162.00	No Ice	1.43	1.43	0.02
			0.00 0.00			1/2" Ice 1" Ice	1.92 2.29	1.92 2.29	0.03
RRH2x60-AWS	Α	From Leg	4.00	0.0000	162.00	No Ice	3.50	1.82	0.00
RRIENOO ITWO	71	1 folii Leg	0.00	0.0000	102.00	1/2" Ice	3.89	2.17	0.08
			0.00			1" Ice	4.28	2.52	0.10
RRH2x60-AWS	В	From Leg	4.00	0.0000	162.00	No Ice	3.50	1.82	0.06
		C	0.00			1/2" Ice	3.89	2.17	0.08
			0.00			1" Ice	4.28	2.52	0.10
RRH2x60-AWS	C	From Leg	4.00	0.0000	162.00	No Ice	3.50	1.82	0.06
			0.00			1/2" Ice	3.89	2.17	0.08
DD112 (0.1000		Б. Т	0.00	0.0000	162.00	1" Ice	4.28	2.52	0.10
RRH2x60-1900	A	From Leg	4.00 0.00	0.0000	162.00	No Ice 1/2" Ice	1.87 2.14	1.22	0.04 0.06
			0.00			1" Ice	2.14	1.44 1.66	0.08
RRH2x60-1900	В	From Leg	4.00	0.0000	162.00	No Ice	1.87	1.22	0.04
KK112X00-1700	ь	1 Ioni Leg	0.00	0.0000	102.00	1/2" Ice	2.14	1.44	0.06
			0.00			1" Ice	2.41	1.66	0.08
RRH2x60-1900	C	From Leg	4.00	0.0000	162.00	No Ice	1.87	1.22	0.04
		C	0.00			1/2" Ice	2.14	1.44	0.06
			0.00			1" Ice	2.41	1.66	0.08
RRH2x60-700	A	From Leg	4.00	0.0000	162.00	No Ice	3.50	1.82	0.06
			0.00			1/2" Ice	3.89	2.17	0.08
DDII2 (0.700	ъ	г т	0.00	0.0000	162.00	1" Ice	4.28	2.52	0.10
RRH2x60-700	В	From Leg	4.00	0.0000	162.00	No Ice	3.50	1.82	0.06
			0.00 0.00			1/2" Ice 1" Ice	3.89 4.28	2.17 2.52	0.08
RRH2x60-700	C	From Leg	4.00	0.0000	162.00	No Ice	3.50	1.82	0.06
14412/00 700	C	Trom Leg	0.00	0.0000	102.00	1/2" Ice	3.89	2.17	0.08
			0.00			1" Ice	4.28	2.52	0.10

Modified T-Frames (3)	C	None		0.0000	175.00	No Ice	26.91	26.91	1.50
						1/2" Ice	34.78	34.78	2.00
EC ADVICEDIO C A20		F I	2.00	0.0000	175.00	1" Ice	42.65	42.65	2.50
FS APXVSPP18-C-A20	A	From Leg	3.00 0.00	0.0000	175.00	No Ice 1/2" Ice	8.02 8.48	5.28 5.74	0.06
			0.00			1" Ice	8.94	6.20	0.16
FS APXVSPP18-C-A20	В	From Leg	3.00	0.0000	175.00	No Ice	8.02	5.28	0.06
			0.00			1/2" Ice	8.48	5.74	0.11
			0.00			1" Ice	8.94	6.20	0.16
FS APXVSPP18-C-A20	C	From Leg	3.00	0.0000	175.00	No Ice	8.02	5.28	0.06
			0.00			1/2" Ice	8.48	5.74	0.11
			0.00			1" Ice	8.94	6.20	0.16
NNVV-65B-R4 Antenna	Α	From Leg	3.00	0.0000	175.00	No Ice	12.27	5.75	0.08
			0.00			1/2" Ice	12.77	6.21	0.16
NNVV 65B D4 Antonna	٨	From Log	0.00	0.0000	175.00	1" Ice No Ice	13.27 12.27	6.67 5.75	0.24
NNVV-65B-R4 Antenna	A	From Leg	3.00 0.00	0.0000	1/3.00	No Ice 1/2" Ice	12.27	5.75 6.21	0.08
			0.00			1" Ice	13.27	6.67	0.10
NNVV-65B-R4 Antenna	A	From Leg	3.00	0.0000	175.00	No Ice	12.27	5.75	0.08
		8	0.00			1/2" Ice	12.77	6.21	0.16
			0.00			1" Ice	13.27	6.67	0.24
(2) 800 MHz RRH	A	From Leg	30.00	0.0000	175.00	No Ice	2.06	1.71	0.05
			0.00			1/2" Ice	2.24	1.88	0.07

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	16 of 26
Project		Date
1	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	۰	ft		ft ²	ft ²	K
						1" Ice	2.43	2.06	0.09
(2) 800 MHz RRH	В	From Leg	3.00	0.0000	175.00	No Ice	2.06	1.71	0.05
(2) 000 MHZ RRI		Trom Eeg	0.00	0.0000	175.00	1/2" Ice	2.24	1.88	0.07
			0.00			1" Ice	2.43	2.06	0.09
(2) 800 MHz RRH	C	From Leg	3.00	0.0000	175.00	No Ice	2.06	1.71	0.05
(=) ***			0.00	*****	-,	1/2" Ice	2.24	1.88	0.07
			0.00			1" Ice	2.43	2.06	0.09
1900 MHz RRH	Α	From Leg	3.00	0.0000	175.00	No Ice	2.31	2.38	0.05
			0.00			1/2" Ice	2.52	2.58	0.07
			0.00			1" Ice	2.73	2.79	0.10
1900 MHz RRH	В	From Leg	3.00	0.0000	175.00	No Ice	2.31	2.38	0.05
		Č	0.00			1/2" Ice	2.52	2.58	0.07
			0.00			1" Ice	2.73	2.79	0.10
1900 MHz RRH	C	From Leg	3.00	0.0000	175.00	No Ice	2.31	2.38	0.05
		C	0.00			1/2" Ice	2.52	2.58	0.07
			0.00			1" Ice	2.73	2.79	0.10
TD-RRH8x20-25	A	From Leg	3.00	0.0000	175.00	No Ice	3.70	1.29	0.07
		_	0.00			1/2" Ice	3.95	1.46	0.09
			0.00			1" Ice	4.20	1.64	0.12
TD-RRH8x20-25	A	From Leg	3.00	0.0000	175.00	No Ice	3.70	1.29	0.07
		_	0.00			1/2" Ice	3.95	1.46	0.09
			0.00			1" Ice	4.20	1.64	0.12
TD-RRH8x20-25	A	From Leg	3.00	0.0000	175.00	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09
			0.00			1" Ice	4.20	1.64	0.12

Truss-Leg Properties

Section Designation	Area	Area Ice	Self Weight	Ice Weight	Equiv. Diameter	Equiv. Diameter	Leg Area
						Ice	
	in^2	in^2	K	K	in	in	in^2
Pirod 105244	1026.8606	3167.5615	0.56	0.62	7.1310	21.9970	3.6816
Pirod 105217	2130.7479	6575.8153	0.62	1.19	7.3984	22.8327	5.3014
Pirod 105217	2130.7479	6553.8954	0.62	1.16	7.3984	22.7566	5.3014
Pirod 105218	2263.4687	6600.7000	0.75	1.16	7.8593	22.9191	7.2158
Pirod 105219	2441.8688	6642.9857	0.94	1.16	8.4787	23.0659	9.4248
Pirod 105219	2441.8688	6606.6036	0.94	1.12	8.4787	22.9396	9.4248
Pirod 105220	2578.8005	6631.3031	1.12	1.08	8.9542	23.0254	11.9282
Pirod 105220	2578.8005	6562.4670	1.12	1.00	8.9542	22.7863	11.9282
Pirod 112738	3466.5160	8653.0272	1.69	1.18	12.0365	30.0452	14.7262

Load Combinations

Comb.	Description	
No.		

¹ Dead Only

^{2 1.2} Dead+1.6 Wind 0 deg - No Ice

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	17 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Comb.	Description
No.	2 osc. quoi
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
28 29	1.2 Dead+1.0 Wind 50 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
33 34	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
33 36	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	
	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38 39	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39 40	Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service
40 41	Dead+Wind 60 deg - Service Dead+Wind 60 deg - Service
41	
42	Dead+Wind 90 deg - Service Dead+Wind 120 deg - Service
44 45	Dead+Wind 180 deg - Service
45 46	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	193 - 185	4.861	50	0.2465	0.0506
T2	185 - 170	4.442	50	0.2455	0.0509
T3	170 - 160	3.666	50	0.2318	0.0461
T4	160 - 140	3.180	50	0.2145	0.0326
T5	140 - 120	2.320	50	0.1804	0.0199

4	Job		Page
tnxTower		18-3611	18 of 26
Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204	Project	CT01105-S-02 BOZRAH	Date 16:18:49 05/29/18
Dalls Tx. 75243 Phone: 972 231 8893	Client	SBA	Designed by bakech
FAX: 866 364 8375			bakech

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
T6	120 - 100	1.624	50	0.1393	0.0126
T7	100 - 80	1.094	50	0.1069	0.0093
T8	80 - 60	0.682	50	0.0816	0.0065
T9	60 - 40	0.379	50	0.0561	0.0045
T10	40 - 20	0.169	50	0.0360	0.0026
T11	20 - 0	0.037	50	0.0158	0.0008

FAX: 866 364 8375

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	٥	٥	ft
193.00	(3) RR90-17-02DP w/ Mount Pipe	50	4.861	0.2465	0.0506	Inf
182.00	Powerwave 7770 w/ Mount Pipe	50	4.285	0.2442	0.0510	211425
175.00	Modified T-Frames (3)	50	3.920	0.2384	0.0497	58322
162.00	(3) T-Frames	50	3.275	0.2181	0.0353	33792
100.00	KS24019-L112A	50	1.094	0.1069	0.0093	43549
30.00	PC1N0F-0190B-002M	50	0.091	0.0257	0.0016	51237

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	193 - 185	22.274	24	1.1194	0.2345
T2	185 - 170	20.370	24	1.1148	0.2362
T3	170 - 160	16.845	24	1.0552	0.2137
T4	160 - 140	14.627	24	0.9805	0.1511
T5	140 - 120	10.680	24	0.8278	0.0922
T6	120 - 100	7.484	24	0.6404	0.0584
T7	100 - 80	5.041	24	0.4920	0.0429
T8	80 - 60	3.146	24	0.3759	0.0303
T9	60 - 40	1.746	24	0.2583	0.0208
T10	40 - 20	0.778	24	0.1657	0.0120
T11	20 - 0	0.173	24	0.0726	0.0039

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	۰	ft
193.00	(3) RR90-17-02DP w/ Mount Pipe	24	22.274	1.1194	0.2345	257382
182.00	Powerwave 7770 w/ Mount Pipe	24	19.656	1.1089	0.2365	47787
175.00	Modified T-Frames (3)	24	18.003	1.0835	0.2305	14208
162.00	(3) T-Frames	24	15.059	0.9961	0.1635	7768
100.00	KS24019-L112A	24	5.041	0.4920	0.0429	9493
30.00	PC1N0F-0190B-002M	24	0.422	0.1183	0.0076	11113

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	19 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	00.4	Designed by
	SBA	bakech

D . 14	D	D - 1 -
KOI t	Design	i jata
	Design	Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
T1	193	Leg	A325N	0.6250	5	1.24	24.85	0.050	1	Bolt DS
T2	185	Leg	A325N	1.0000	6	5.57	53.01	0.105	1	Bolt Tension
T3	170	Leg	A325N	1.0000	6	7.04	53.01	0.133	1	Bolt Tension
		Diagonal	A325N	1.0000	1	8.94	10.66	0.838	1	Member Block Shear
T4	160	Leg	A325N	1.0000	6	15.47	53.01	0.292	1	Bolt Tension
		Diagonal	A325N	1.0000	1	10.19	11.68	0.873	1	Member Block Shear
T5	140	Leg	A325N	1.0000	6	22.37	53.01	0.422	1	Bolt Tension
		Diagonal	A325N	1.0000	1	8.30	11.68	0.711	1	Member Block Shear
T6	120	Leg	A325N	1.0000	6	28.38	53.01	0.535	1	Bolt Tension
		Diagonal	A325N	1.0000	1	7.96	19.47	0.409	1	Member Block Shear
T7	100	Leg	A325N>1'	1.2500	6	33.85	72.48	0.467	1	Bolt Tension
		Diagonal	A325N>1'	1.2500	1	7.95	20.30	0.391	1	Member Block Shear
Т8	80	Leg	A325N>1'	1.2500	6	38.92	72.48	0.537	1	Bolt Tension
		Diagonal	A325N>1'	1.2500	1	8.34	23.70	0.352	1	Member Block Shear
Т9	60	Leg	A325N>1'	1.2500	6	43.72	72.48	0.603	1	Bolt Tension
		Diagonal	A325N>1'	1.2500	1	8.69	23.70	0.366	1	Member Block Shear
T10	40	Leg	A325N>1'	1.2500	6	48.56	72.48	0.670	1	Bolt Tension
		Diagonal	A325N>1'	1.2500	1	10.58	23.70	0.446	1	Member Block Shear
T11	20	Leg	A687	2.0000	6	50.56	220.89	0.229	1	Bolt Tension
		Diagonal	A325N	1.0000	2	8.16	35.53	0.230	1	Member Block Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	193 - 185	2	8.00	2.38	57.0	3.1416	-6.21	111.48	0.056 1
					K=1.00				

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

	Job	Page
	18-3611	20 of 26
	Project	Date
4	CT01105-S-02 BOZRAH	16:18:49 05/29/18
	Client	Designed by
	SBA	bakech

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T2	185 - 170	2	15.00	2.38	57.0 K=1.00	3.1416	-43.07	111.48	0.386 1
Т3	170 - 160	Pirod 105244	10.02	10.02	45.4 K=1.00	3.6816	-52.85	142.49	0.371 1
T4	160 - 140	Pirod 105217	20.03	10.02	37.8 K=1.00	5.3014	-107.86	214.86	0.502 1
T5	140 - 120	Pirod 105217	20.03	10.02	37.8 K=1.00	5.3014	-152.48	214.86	0.710 1
T6	120 - 100	Pirod 105218	20.03	10.02	32.4 K=1.00	7.2158	-192.63	300.68	0.641 1
T7	100 - 80	Pirod 105219	20.03	10.02	28.4 K=1.00	9.4248	-230.18	399.87	0.576 1
Т8	80 - 60	Pirod 105219	20.03	10.02	28.4 K=1.00	9.4248	-265.76	399.87	0.665 1
Т9	60 - 40	Pirod 105220	20.03	10.02	25.2 K=1.00	11.9282	-300.52	512.38	0.587 1
T10	40 - 20	Pirod 105220	20.03	10.02	25.2 K=1.00	11.9282	-336.18	512.38	0.656 1
T11	20 - 0	Pirod 112738	20.03	20.03	32.6 K=1.00	14.7262	-349.82	613.14	0.571 1

¹ P_u / ϕP_n controls

Truss-Lea D	iagonal Data
-------------	--------------

Section No.	Elevation ft	Diagonal Size	$egin{array}{c} L_d \ ft \end{array}$	Kl/r	$\Phi_n \choose K$	$A in^2$	$egin{array}{c} V_u \ K \end{array}$	$egin{array}{c} oldsymbol{\psi} V_n \ K \end{array}$	Stress Ratio
T3	170 - 160	0.5	1.48	121.0	165.67	0.1963	1.73	3.39	0.512
T4	160 - 140	0.5	1.47	120.0	238.57	0.1963	0.30	3.34	0.090
T5	140 - 120	0.5	1.47	120.0	238.57	0.1963	0.31	3.34	0.093
Т6	120 - 100	0.5	1.46	119.0	324.71	0.1963	0.26	3.38	0.077
T7	100 - 80	0.625	1.45	94.4	424.12	0.3068	0.26	6.96	0.038
Т8	80 - 60	0.625	1.45	94.4	424.12	0.3068	0.27	6.96	0.039
Т9	60 - 40	0.625	1.43	93.6	536.77	0.3068	0.45	7.01	0.065
T10	40 - 20	0.625	1.43	93.6	536.77	0.3068	2.95	7.01	0.422
T11	20 - 0	0.75	1.73	93.9	662.68	0.4418	1.48	14.36	0.104

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Job		Page
	18-3611	21 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Diagonal D	esign i	Data (Com	pression)	

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	193 - 185	1	5.54	2.68	115.6 K=0.90	0.7854	-1.28	13.28	0.096 1
T2	185 - 170	1	5.54	2.68	115.6 K=0.90	0.7854	-5.90	13.28	0.444 1
Т3	170 - 160	L2 1/2x2 1/2x3/16	11.42	4.98	120.8 K=1.00	0.9023	-9.87	13.56	0.728 1
T4	160 - 140	L3x3x3/16	11.93	5.38	111.2 K=1.03	1.0898	-10.20	18.18	0.561 1
T5	140 - 120	L3x3x3/16	13.80	6.33	127.3 K=1.00	1.0898	-8.30	14.96	0.555 1
Т6	120 - 100	L3x3x5/16	15.24	7.08	144.3 K=1.00	1.7800	-8.18	19.32	0.423 1
T7	100 - 80	L3x3x5/16	16.80	7.84	159.7 K=1.00	1.7800	-8.26	15.76	0.524 1
Т8	80 - 60	L3 1/2x3 1/2x5/16	18.45	8.68	150.9 K=1.00	2.0900	-8.81	20.74	0.425 1
Т9	60 - 40	L3 1/2x3 1/2x5/16	20.16	9.54	165.9 K=1.00	2.0900	-8.92	17.15	0.520 1
T10	40 - 20	L3 1/2x3 1/2x5/16	21.03	9.99	173.7 K=1.00	2.0900	-10.63	15.65	0.679 ¹
T11	20 - 0	2L3 1/2x3 1/2x5/16x1	29.01	13.87	145.7 K=0.95	4.1797	-19.22	44.46	0.432 1

¹ P_u / ϕP_n controls

Horizontal Design Data (Compression)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	193 - 185	7/8	5.00	4.83	185.6 K=0.70	0.6013	-0.15	3.94	0.039 1
T2	185 - 170	7/8	5.00	4.83	185.6 K=0.70	0.6013	-0.34	3.94	0.087 1

¹ P_u / ϕP_n controls

		Top (irt Des	ign D	ata (C	Compr	ession)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
110.	ft		ft	ft		in^2	K	K	$\frac{P_n}{\phi P_n}$
T1	193 - 185	1 1/4	5.00	4.83	129.9 K=0.70	1.2272	-0.62	16.42	0.038 1

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job		Page
	18-3611	22 of 26
Project		Date
1	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T2	185 - 170	1 1/4	5.00	4.83	129.9	1.2272	-0.23	16.42	0.014 1
					K=0.70				/

¹ P_u / ϕP_n controls

		Botton	n Girt De	esign	Data	(Comp	oressio	n)	
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	193 - 185	1 1/4	5.00	4.83	129.9 K=0.70	1.2272	-0.69	16.42	0.042 1
T2	185 - 170	1 1/4	5.00	4.83	129.9 K=0.70	1.2272	-1.00	16.42	0.061 1

¹ P_u / ϕP_n controls

		Mid (3irt Des	ign D	ata (C	Compre	ession)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T2	185 - 170	1 1/4	5.00	4.83	129.9 K=0.70	1.2272	-0.36	16.42	0.022 1

¹ P_u / ϕP_n controls

Tension Checks

	Leg Design Data (Tension)											
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u			
	ft		ft	ft		in^2	K	K	ϕP_n			
T1	193 - 185	2	8.00	2.38	57.0	1.7942	4.26	87.47	0.049 1 #			
T2	185 - 170	2	15.00	2.38	57.0	3.1416	33.39	141.37	0.236 1			
Т3	170 - 160	Pirod 105244	10.02	10.02	45.4	3.6816	42.27	165.67	0.255 1			
T4	160 - 140	Pirod 105217	20.03	10.02	37.8	5.3014	92.82	238.57	0.389 1			

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Job		Page
	18-3611	23 of 26
Project		Date
	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T5	140 - 120	Pirod 105217	20.03	10.02	37.8	5.3014	134.23	238.57	0.563 1
Т6	120 - 100	Pirod 105218	20.03	10.02	32.4	7.2158	170.29	324.71	0.524 1
T7	100 - 80	Pirod 105219	20.03	10.02	28.4	9.4248	203.07	424.12	0.479 1
Т8	80 - 60	Pirod 105219	20.03	10.02	28.4	9.4248	233.50	424.12	0.551 1
Т9	60 - 40	Pirod 105220	20.03	10.02	25.2	11.9282	262.34	536.77	0.489 1
T10	40 - 20	Pirod 105220	20.03	10.02	25.2	11.9282	291.36	536.77	0.543 1
T11	20 - 0	Pirod 112738	20.03	20.03	32.6	14.7262	303.35	662.68	0.458 1

¹ P_u / ϕP_n controls

[#] Based on net area of leg in section below

			Truss-	Leg D	iagon	al Data	1		
Section No.	Elevation ft	Diagonal Size	L_d ft	Kl/r	ϕP_n K	A in ²	$V_u \ K$	$\phi V_n \ K$	Stress Ratio
Т3	170 - 160	0.5	1.48	121.0	165.67	0.1963	1.73	3.39	0.512
T4	160 - 140	0.5	1.47	120.0	238.57	0.1963	0.30	3.34	0.090
T5	140 - 120	0.5	1.47	120.0	238.57	0.1963	0.31	3.34	0.093
T6	120 - 100	0.5	1.46	119.0	324.71	0.1963	0.26	3.38	0.077
T7	100 - 80	0.625	1.45	94.4	424.12	0.3068	0.26	6.96	0.038
Т8	80 - 60	0.625	1.45	94.4	424.12	0.3068	0.27	6.96	0.039
Т9	60 - 40	0.625	1.43	93.6	536.77	0.3068	0.45	7.01	0.065
T10	40 - 20	0.625	1.43	93.6	536.77	0.3068	2.95	7.01	0.422
T11	20 - 0	0.75	1.73	93.9	662.68	0.4418	1.48	14.36	0.104

		Dia	gonal I	Desig	n Data	a (Ten	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P
110.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
T1	193 - 185	1	5.54	2.68	128.4	0.7854	1.24	35.34	0.035 1

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Job		Page
	18-3611	24 of 26
Project		Date
1	CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	SBA	Designed by bakech

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
NO.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
									~
T2	185 - 170	1	5.54	2.68	128.4	0.7854	5.80	35.34	0.164 1
Т3	170 - 160	L2 1/2x2 1/2x3/16	11.42	4.98	80.0	0.5186	8.94	22.56	0.396 1
T4	160 140	1.2,,2,,2/16	11.02	5 20	71.4	0.6502	10.10	20 67	0.2561
14	160 - 140	L3x3x3/16	11.93	5.38	71.4	0.6592	10.19	28.67	0.356 1
T5	140 - 120	L3x3x3/16	13.13	6.02	79.5	0.6592	8.30	28.67	0.290 1
T6	120 - 100	L3x3x5/16	14.50	6.73	90.3	1.0713	7.96	46.60	0.171 1
									~
T7	100 - 80	L3x3x5/16	16.01	7.45	100.3	1.0127	7.95	44.05	0.180 1
Т8	80 - 60	L3 1/2x3 1/2x5/16	18.45	8.68	99.2	1.2452	8.34	54.17	0.154 1
Т9	60 - 40	L3 1/2x3 1/2x5/16	20.16	0.54	108.8	1 2452	8.69	54.17	0.160.1
19	00 - 40	L3 1/2X3 1/2X3/10	20.16	9.54	108.8	1.2452	8.09	54.17	0.160 1
T10	40 - 20	L3 1/2x3 1/2x5/16	21.92	10.43	118.6	1.2452	10.58	54.17	0.195 1
T11	20 - 0	2L3 1/2x3 1/2x5/16x1	29.01	13.87	156.9	2.6074	16.31	113.42	0.144 1
									~

¹ P_u / ϕP_n controls

		Но	rizontal	Desiç	gn Da	ta (Ten	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	193 - 185	7/8	5.00	4.83	265.1	0.6013	0.21	19.48	0.011 1
T2	185 - 170	7/8	5.00	4.83	265.1	0.6013	0.55	19.48	0.028 1

¹ P_u / ϕP_n controls

Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	193 - 185	1 1/4	5.00	4.83	185.6	1.2272	0.61	55.22	0.011 1
T2	185 - 170	1 1/4	5.00	4.83	185.6	1.2272	0.25	55.22	0.005 1

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

Job	Page
18-3611	25 of 26
Project	Date
CT01105-S-02 BOZRAH	16:18:49 05/29/18
Client	Designed by
SBA	bakech

¹ P_u / ϕP_n controls

Bottom Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	193 - 185	1 1/4	5.00	4.83	185.6	1.2272	0.74	55.22	0.013 1
T2	185 - 170	1 1/4	5.00	4.83	185.6	1.2272	1.17	55.22	0.021 1

¹ P_u / ϕP_n controls

		Mi	id Girt D)esigi	n Data	a (Tens	ion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T2	185 - 170	1 1/4	5.00	4.83	185.6	1.2272	0.55	55.22	0.010 1

¹ P_u / ϕP_n controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
T1	193 - 185	Leg	2	1	-6.21	111.48	5.6	Pass
		Diagonal	1	11	-1.28	13.28	9.6	Pass
		Horizontal	7/8	23	-0.15	3.94	3.9	Pass
		Top Girt	1 1/4	5	-0.62	16.42	3.8	Pass
		Bottom Girt	1 1/4	8	-0.69	16.42	4.2	Pass
T2	185 - 170	Leg	2	32	-43.07	111.48	38.6	Pass
		Diagonal	1	44	-5.90	13.28	44.4	Pass
		Horizontal	7/8	48	-0.34	3.94	8.7	Pass
		Top Girt	1 1/4	33	-0.23	16.42	1.4	Pass
		Bottom Girt	1 1/4	36	-1.00	16.42	6.1	Pass
		Mid Girt	1 1/4	39	-0.36	16.42	2.2	Pass
T3	170 - 160	Leg	Pirod 105244	84	-52.85	142.49	51.2	Pass
		Diagonal	L2 1/2x2 1/2x3/16	87	-9.87	13.56	72.8	Pass
		C					83.8 (b)	
T4	160 - 140	Leg	Pirod 105217	93	-107.86	214.86	50.2	Pass
		Diagonal	L3x3x3/16	102	-10.20	18.18	56.1	Pass
							87.3 (b)	
T5	140 - 120	Leg	Pirod 105217	108	-152.48	214.86	71.0	Pass
		Diagonal	L3x3x3/16	111	-8.30	14.96	55.5	Pass
		-					71.1 (b)	
T6	120 - 100	Leg	Pirod 105218	123	-192.63	300.68	64.1	Pass

Allpro Consultants group inc 9221 lyndon B johson Freeway. Suite 204

Dalls Tx. 75243 Phone: 972 231 8893 FAX: 866 364 8375

	Job	Page
	18-3611	26 of 26
	Project	Date
4	CT01105-S-02 BOZRAH	16:18:49 05/29/18
	Client	Designed by
	SBA	bakech

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
		Diagonal	L3x3x5/16	126	-8.18	19.32	42.3	Pass
T7	100 - 80	Leg	Pirod 105219	138	-230.18	399.87	57.6	Pass
		Diagonal	L3x3x5/16	141	-8.26	15.76	52.4	Pass
T8	80 - 60	Leg	Pirod 105219	153	-265.76	399.87	66.5	Pass
		Diagonal	L3 1/2x3 1/2x5/16	158	-8.81	20.74	42.5	Pass
T9	60 - 40	Leg	Pirod 105220	168	-300.52	512.38	58.7	Pass
							K Capacity 19.32 42.3 399.87 57.6 15.76 52.4 399.87 66.5 20.74 42.5 512.38 58.7 60.3 (b) 52.0 512.38 65.6 67.0 (b) 15.65 613.14 57.1 44.46 43.2 Summary Leg (T5) 71.0 Diagonal (T4) Iorizontal (T2) 8.7 Top Girt (T2) 3.8 Ottom Girt (T1) 6.1	
		Diagonal	L3 1/2x3 1/2x5/16	173	-8.92	17.15	52.0	Pass
T10	40 - 20	Leg	Pirod 105220	183	-336.18	512.38	65.6	Pass
							67.0 (b)	
		Diagonal	L3 1/2x3 1/2x5/16	194	-10.63	15.65	67.9	Pass
T11	20 - 0	Leg	Pirod 112738	198	-349.82	613.14	57.1	Pass
		Diagonal	2L3 1/2x3 1/2x5/16x1	203	-19.22	44.46	43.2	Pass
							Summary	
						Leg (T5)	71.0	Pass
						Diagonal	87.3	Pass
						(T4)		
						Horizontal	8.7	Pass
						(T2)		
						Top Girt	3.8	Pass
						(T1)		
						Bottom Girt	6.1	Pass
						(T2)		
						Mid Girt	2.2	Pass
						(T2)		
						Bolt Checks	87.3	Pass
						RATING =	87.3	Pass

 $Program\ Version\ 8.0.1.0-2/8/2018\ File: P:/2018/Structural/18-3611\ CT01105-S-02\ Bozrah\ SA\ SBA\ 195\ SST\ Sprint\ nextel/TNX/CT01105-S-02_Bozrah_Sprint\ Nextel_SA_01172018.eri$

MATHCAD CALCULATION PRINTOUT

EXISTING 195' SELF SUPPORT TOWER ANCHOR BOLT CHECK

REACTIONS ON THE FOUNDATION

As per Tnx output (see attached)

 $\begin{array}{lll} \text{Down load;} & P_{V} \coloneqq 375 \cdot kips & \text{Shear;} & V_{u} \coloneqq 37 \cdot kips \\ \text{Uplift load;} & P_{up} \coloneqq 321 \cdot kips & \text{Moment;} & M \coloneqq 0 \cdot kips \cdot ft \end{array}$

Anchor Rod Data is as per tower design by Pirod Inc., ENG. File No. A-115466 dated 04/01/1999

Number of Anchor Rods: $N_{anchors} := 6$

Diameter of Anchors: $D_{anchors} := 2.0 in$ $n := 4.5 in^{-1}$

Area of anchor bolts $A_b := \frac{\pi \cdot \left(D_{anchors}^2\right)}{4} = 3.142 \cdot in^2$

Net Tensile Area of Anchors: $A_{net} := \frac{\pi}{4} \cdot \left(D_{anchors} - \frac{0.9743}{n} \right)^2 = 2.498 \cdot in^2$

Minimum Yield Stress $F_{Yanchors} := 105 ksi$ (Grade A354)

Ultimate Tensile Stress: $F_{Uanchors} := 125 ksi$

Saftey Factor for Anchor: $\phi_t := 0.8$ (Section 4.9.9, TIA-222-G Addendum 2)

Allowable Axial Load $T_{cap} \coloneqq \varphi_t \cdot F_{Uanchors} \cdot A_{net}$ per Anchor:

 $T_{cap} = 249.822 \cdot kips$

Interaction Equation for Anchor Rods as per Section 4.9.9, TIA-222-G Addendum 1 and Figure 4.4

For detail type (C) as per $\eta := 0.55$ Figure 4.4

 $P_u := if(\eta > 0.5, P_{up}, Pv) = 321 \cdot kips$

 $\mbox{Maximum Load on Anchor:} \qquad \mbox{T_{max}} := \frac{\mbox{P_u} + \frac{\mbox{v_u}}{\mbox{η}}}{\mbox{$N_{anchors}$}}$

 $T_{\text{max}} = 64.712 \cdot \text{kips}$

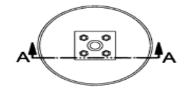
Anchor Rod Capacity: $\frac{T_{\text{max}}}{T_{\text{cap}}} = 25.903 \cdot \%$ OK!

Anchor_Rod_Check := if $\left(T_{max} < T_{cap}, "OK", "Not OK"\right)$

Anchor Rod Check = "OK"

Summary

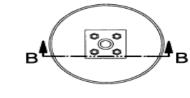
-Foundation Reactions from Tower Base-


 $\begin{array}{lll} \text{Shear} & V_u = 37 \cdot \text{kips} \\ \text{Down load} & P_v = 375 \cdot \text{kips} \\ \text{Uplift load} & P_{up} = 321 \cdot \text{kips} \\ \text{Moment} & M = 0 \cdot \text{ft} \cdot \text{kip} \end{array}$

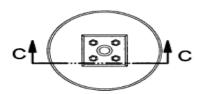
Anchor Rod Check $T_{max} = 64.712 \cdot kips$ $T_{cap} = 249.822 \cdot kips$

Anchor Rod Check := $if(T_{max} < T_{cap}, "OK", "Not OK")$

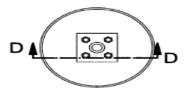
Anchor_Rod_Check = "OK"

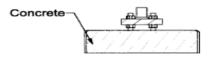

ANSI/TIA-222-G

SECTION A-A


Detail Type (a)

SECTION B-B


Detail Type (b)



SECTION C-C

Detail Type (c)

SECTION D-D

Detail Type (d) (See Note 1 below)

Note:

 When clear distance from top of concrete to the bottom face of the leveling nut exceeds 1.5 times the diameter of the anchor rod, bending of the anchor rod shall be considered (refer to 4.9.9).

Figure 4-4: Anchor Rod Detail Types

4.9.9 Anchor Rods

For anchor rods, the following interaction equation shall be satisfied:

$$\left(\frac{P_u + \frac{V_u}{\eta}}{\phi R_{nt}}\right) \le 1$$

where:

 $\phi = 0.80$

P_u = tension force for detail types (a), (b) & (c) and larger of compression or tension force for type (d) as depicted in Figure 4-4.

V_u = shear force (direct shear and torsion components) corresponding to P_u

R_{nt} = nominal tensile strength of anchor rod as per 4.9.6.1

η = 0.90 for detail type (a)

= 0.70 for detail type (b)

= 0.55 for detail type (c)

= 0.50 for detail type (d)

For detail type (d), when the clear distance from the top of concrete to the bottom leveling nut exceeds 1.0 times the diameter of the anchor rod, the following interaction equation shall also be satisfied:

$$\left(\frac{V_u}{\phi R_{nv}}\right)^2 + \left(\frac{P_u}{\phi R_{nt}}\right) + \frac{M_u}{\phi R_{nm}}\right)^2 \le 1$$

where:

 M_u = bending moment corresponding to V_u = 0.65 $I_{ar}V_u$

I_{ar} = length from top of concrete to bottom of anchor rod leveling nut

Addendum 1

φR_{nv} = design shear strength of anchor rod as per 4.9.6.3

\$\phi R_{nm}\$ = design flexural strength of anchor rod in accordance with 4.7.1 using the tensile |
root diameter for the determination of z

d_{rt} = tensile root diameter of rod, in [mm]

= d – 0.9743/n inches

= d - 0.9382(p) mm

d = nominal rod diameter, in [mm]

n = number of threads per inch

p = pitch of threads, mm

4.9.6.3 Design Shear Strength

The design shear strength of a bolt, ϕR_{nv} , shall be taken as:

$$\phi = 0.75$$

- (a) When threads are excluded from the shear plane: $R_{nv} = 0.55 F_{ub} A_b$
- (b) When threads are included in the shear plane: $R_{nv} = 0.45 F_{ub} A_b$

where:

F_{ub} = Specified minimum tensile strength of bolt

A_b = nominal unthreaded area of bolt

4.7.1 Solid Round Members

For solid round members, Mn shall be determined as follows:

$$M_n = F_v'Z$$

where:

Fy' = effective yield stress as determined from 4.5.4.1

Z = plastic section modulus

4.5.4.1 Effective Yield Stress

For 60° and 90° angle members, the effective yield stress for axial compression, F'_y, shall be determined as follows:

$$w/t \le 0.47 \sqrt{\frac{E}{F_y}} \qquad \qquad F'_y = F_y$$

$$0.47 \sqrt{\frac{E}{F_y}} < w/t \le 0.85 \sqrt{\frac{E}{F_y}} \qquad \qquad F'_y = [1.677 - 0.677 \left(\frac{w/t}{0.47 \sqrt{E/F_y}}\right)] F_y$$

$$0.85\sqrt{\frac{E}{F_{y}}} < w/t \le 25$$
 $F'_{y} = [0.0332 \pi^{2} E/(w/t)^{2}]$

The width to thickness ratio (w/t) shall not exceed 25 for angle members (refer to Figure 4-3).

For solid round members, the effective yield stress, F'y, shall be equal to Fy.

For tubular round members, the diameter to thickness ratio (D/t) shall not exceed 400. The effective yield stress, F'_y, shall be determined as follows:

$$D/t \le 0.114 E/F_y \qquad \qquad F'_y = F_y$$

0.114 E/F_y < D/t < 0.448 E/F_y
$$F'_y = \left(\frac{0.0379E}{(D/t)F_y} + \frac{2}{3}\right)F_y$$

0.448 E/F_y < D/t
$$\leq$$
 400 F'_y = $\frac{0.337E}{(D/t)}$

Existing 195 ft. Self Support Tower Foundation Check

Customer Name: SBA Communications Corporation
Customer Site Name: Bozrah
Customer Site ID: CT01105-S-02

Carrier Name: Sprint Nextel

Allpro Consulting Group Inc.

```
Foundation check
-Foundation Reactions-
(As per TNX output results from the Tower Structural Analysis by Allpro
Consulting Group Inc.)
  Total Shear S := 58 \cdot \text{kips}
                                             Compression on Pedestal: P_c := 375 \cdot kips
  Moment
                 M := 6810 \cdot ft \ K
                                             Uplift on Pedestal: P_{up} := 321 \cdot kips
                  Pv := 73 \cdot kips
  Down load,
                                                                       Sh := 43 \cdot kips
                                             Shear on Pedestal:
  Tower weight
-Soil Properties- Soil data is as per Geotechnical Report by Jaworski
Geotech, Inc.. Projetc # C98492G, dated 12/14/1998
Factor of Saftey
                                             FS_h := 3
Allowable Bearing Capacity
                                             Brg_{all} := 20ksf
Ultimate Bearing Capacity
                                             Brg_{ult} := FS_b \cdot Brg_{all} = 60 \cdot ksf
                                                            (Reduced Internal Friction due to
Internal angle of friction for soil, \phi := 30 \cdot \text{deg}
                                                            backfill Actual 34 deg)
Unit wt. of soil,
                                            \gamma_s := 0.170 \cdot \text{kcf}
Alowable Passive Pressure
                                            see next page
Cohesion of soil,
                                            c_u := 0 \cdot ksf
Friction Factor
                                             FF := 0.7
Depth to be neglected
                                            L_{neg} := 1.5ft (frost depth)
-Material Parameters-
Conforming to the design requirements as in ACI 318-10
Unit wt. of concrete,
                                      \gamma_c := 0.150 \cdot \text{kcf}
Concrete compressive strength, f_c := 3000 \cdot psi
Rebar yield strength,
                                      f_{v} := 60000 \cdot psi
-Factor of Safety for soil strength-
  \phi_{\text{S Bear}} := 0.75 as per TIA-222-G code for bearing, 9.4.1
  \phi_{\text{S friction}} \coloneqq 0.75 as per TIA-222-G code for skin friction resistance, 9.4.1
  \phi_{\text{s lateral}} := 0.75 as per TIA-222-G code for lateral resistance, 9.4.1
  \phi_{\text{S uplift}} \coloneqq 0.75 as per TIA-222-G code for lateral resistance, 9.4.1
DIMENSIONS
Dimensions of foundation as per Foundation design by Pirod Inc., Job
No. A-115466 dated 04/01/1999
Tower face width TWFW := 22 \cdot ft
                                                          Tower ht. Tw_{ht} := 195 \cdot ft
The tower location is eccentric by L_{pe} := 3.177 \cdot ft
Type of column, col.t=0 for circular,=1 for rectangular/square col_t := 0
Depth of mat,
                                D_{f} := 4.5 \cdot ft
Thickness of mat,
                               T_f := 5 \cdot ft
Pedestal size,
                                Ped_s := 0 \cdot ft No. of pedestals Nped := 3
```

Extension above the grade, $E_g \coloneqq 0.5 \cdot ft$

Mat Dimensions, LxB $L := 32.5 \cdot ft \times B := 32.5 \cdot ft$

-Reinforcement Data-

Typical concrete cover cc := 3in

MAT CALCULATIONS

 $K_p := 5$ (As per Geotechnical Report)

$$P_{pave} := \frac{\left(D_f - T_f - L_{neg}\right) \cdot K_p \cdot \gamma_s + \left(D_f - L_{neg}\right) \cdot K_p \cdot \gamma_s}{2} \qquad P_{pave} = 0.425 \cdot ksf$$

Safety against overturning and location of resultant on the base

Area_{ped} := if
$$\left(\operatorname{col}_{\mathsf{t}} = 1, \operatorname{Ped}_{\mathsf{s}}^{2}, \frac{\pi}{4} \cdot \operatorname{Ped}_{\mathsf{s}}^{2}\right)$$
 Area_{ped} = 0

component value, kips

lever arm, ft resisting moment, ft-kips

1) Concrete wt.
$$C_{w} := L \cdot B \cdot T_{f} \cdot \left(\gamma_{c} \right) + Area_{ped} \cdot \gamma_{c} \cdot \left(D_{f} + E_{g} - T_{f} \right) \cdot Nped \qquad L_{c} := \frac{L}{2} \qquad \qquad R_{c} := C_{w} \cdot L_{c}$$

$$C_{w} = 792.187 \cdot kips \qquad \qquad L_{c} = 16.25 \text{ ft} \qquad \qquad R_{c} = 12873.047 \cdot ft \text{ }_\text{Ft}$$

2) Soil wt.
$$S_W := 0 \\ S_W = 0 \cdot \text{kips}$$

$$L_S := \frac{L}{2} \\ R_S := S_W \cdot L_S \\ R_S = 0 \cdot \text{ft_K}$$

3) Wt. of soil
$$W_{w} := \left(D_{f}\right) \cdot \frac{1}{2} \cdot \left(D_{f} \cdot tan(\varphi)\right) \cdot B \cdot \left(\gamma_{S}\right) \qquad L_{w} := \left(L + D_{f} \cdot \frac{tan(\varphi)}{3}\right) \qquad R_{w} := W_{w} \cdot L_{w}$$
 wedge
$$W_{w} = 32.297 \cdot kips \qquad L_{w} = 33.366 \, ft \qquad R_{w} = 1077.634 \cdot ft _K$$

4) Passive pressure
$$\begin{array}{c} Pe_p := T_f \cdot B \cdot P_{pave} \\ Pe_p = 69.063 \cdot kips \end{array} \qquad \begin{array}{c} L_p := \frac{T_f}{3} \\ L_p := \frac{1.667}{3} \end{array} \qquad \begin{array}{c} R_p := Pe_p \cdot L_p \\ R_p := 115.104 \cdot ft_K \end{array}$$

5) Vertical
$$Pv = 73 \cdot kips$$

$$S_{w1} := L \cdot B \cdot D_f \cdot \gamma_s \qquad S_{w1} = 808.031 \cdot kips < --- \text{ for net calcs} \qquad L_v := \frac{L}{2} \qquad \qquad R_v := Pv \cdot L_v$$

$$\text{Total weight} \, T_W := C_W + S_W + W_W + Pv \qquad \qquad T_W = 897.485 \cdot \text{kips} \qquad L_V = 16.25 \, \text{ft} \qquad \qquad R_V = 1186.25 \cdot \text{ft_K}$$

Overturning Moments component

value, kips lever arm, ft Overturning Moment ft-kips

1) Moment on foundation due to eccentric location of tower

$$Pv = 73 \cdot kips$$
 $L_{pe} = 3.177 \text{ ft}$ $M_{pe} := L_{pe} \cdot Pv$

 $M_{pe} = 231.921 \cdot ft_K$

2) Moment on foundation

$$M = 6810 \cdot ft_K$$

3) Moment due to $S_t := S \qquad \qquad L_{hs} := D_f + E_g \qquad O_{hs} := L_{hs} \cdot S_t$ horizontal shear

$$+ E_g \qquad O_{hs} := L_{hs} \cdot S_t$$

$$L_{hs} = 5 \text{ ft}$$
 $O_{hs} = 290 \cdot \text{ft}_K$

$$O_{hs} = 290 \cdot ft_K$$

Total Overturning Moment=

$$M_0 := M + O_{hs} + M_{pe}$$
 $M_0 = 7331.921 \cdot ft_K$

$$M_0 = 7331.921 \cdot ft K$$

Check Safety Factor against Overturning about mid axis parallel to base

$$\mathsf{SF} := \frac{\mathsf{M}_r}{\mathsf{M}_o}$$

Calculate eccentricity, e

$$e := \frac{M_0}{T_w}$$

$$e = 8.169 \, ft$$

Check location of eccentricity and determine pressure distribution under the mat

$$L_{loc} = 5.417 \text{ ft}$$

$$L_{loc} := \frac{L}{6}$$

$$L_{loc} = 5.417 \, \text{ft}$$
 For net bearing calcs $T_{w1} := S_{w1} + W_w$ $T_{w1} = 840.329 \cdot \text{kips}$

$$T_{w1} = 840.329 \cdot kips$$

$$P_{\text{max1}} := if \left[e \le L_{\text{loc}}, \frac{T_{\text{w}}}{L \cdot B} \cdot \left[1 + \left(6 \cdot \frac{e}{L} \right) \right], 4 \cdot \frac{T_{\text{w}}}{3 \cdot B \cdot (L - 2 \cdot e)} \right]$$

$$P_{\text{max1}} = 2.278 \cdot \text{ksf}$$

$$P_{\text{max2}} := \left(\frac{T_{\text{w1}}}{L \cdot B}\right) \qquad P_{\text{max2}} = 0.796 \cdot \text{ksf} \qquad P_{\text{net}} := P_{\text{max1}} - P_{\text{max2}} \qquad P_{\text{max}} := P_{\text{net}}$$

$$P_{\text{max2}} = 0.796 \cdot \text{ksf}$$

$$P_{net} := P_{max1} - P_{max2}$$

$$P_{max} := P_{net}$$

$$P_{net} = 1.483 \cdot kst$$

Net soil pressure,
$$P_{net} = 1.483 \cdot ksf$$
 < $Brg_{ult} \cdot \phi_{s_Bear} = 45 \cdot ksf$

$$P_{min} := if \left[e \le L_{loc}, \frac{T_w}{L \cdot B} \cdot \left[1 - \left(6 \cdot \frac{e}{L} \right) \right], 0 \cdot ksf \right]$$

$$P_{min} = 0 \cdot ksf$$

$$\underline{\text{Check for horizontal shear}} \qquad \qquad P_{hor} := Pe_p + \left(Pv + C_w + S_w\right) \cdot FF$$

$$P_{hor} = 674.694 \cdot kips$$
 > $S = 58 \cdot kips$

$$S = 58 \cdot kips$$

REINFORCED CONCRETE DESIGN CALCULATIONS

General Input parameters

Concrete Cover $cc := 3.0 \cdot in$

Reduction factors as per respective ACI sections

 $\phi_{\text{shear}} := 0.75$ as per ACI 9.3.2.3 Reinforced concrete load

 $\phi_{\text{compr}} := 0.75$ as per ACI 9.3.2.2 factor as per EIA 3.1.16

 $\phi_{\text{axten}} := 0.9$ as per ACI 9.3.2.2 a

 $RC_{fac} := 1.0$

(Loads already factored under TIA/EIA-222-G Code)

Check for wide beam or single shear in mat

Allowable shear stress in concrete for wide beam shear criteria=

$$\nu_{\text{wide}} \coloneqq 2 \cdot \varphi_{\text{shear}} \cdot \sqrt{f_{\text{C}} \cdot \text{psi}} \qquad \nu_{\text{wide}} = 82.158 \cdot \text{psi}$$

 $\text{Effective depth of steed} := T_f - cc \qquad d = 57 \cdot in \quad L_{eff} := if \Big(e \leq L_{loc} \,, L \,, L - 2 \cdot e \Big) \, \, L_{eff} = 16.161 \, ft = 16.16$

$$\mathsf{dist} \coloneqq \mathsf{if} \Bigg[\mathsf{Nped} = 3 \, , \Bigg(\frac{\mathsf{L}}{2} - \frac{1}{3} \cdot \mathsf{sin} \big(60 \cdot \mathsf{deg} \big) \cdot \mathsf{TWFW} - \frac{1}{2} \cdot \mathsf{Ped}_{\mathsf{S}} - \mathsf{d} \Bigg) \, , \Bigg(\frac{\mathsf{L}}{2} - \frac{\mathsf{TWFW}}{2} - \frac{1}{2} \cdot \mathsf{Ped}_{\mathsf{S}} - \mathsf{d} \Bigg) \Bigg]$$

Factor load by RC $P_{maxf} := P_{max} \cdot RC_{fac}$ $P_{minf} := P_{min} \cdot RC_{fac}$

shear on the face of concrete=

Shear_{wide} := (dist)·B·
$$\frac{\left[\frac{P_{maxf} + \left[P_{maxf} - \frac{P_{maxf} - P_{minf}}{L_{eff}} \cdot (dist) \right]}{2} \right]}{2}$$

Shear_{wide} = $208.6 \cdot \text{kips}$

O.K!

Area of concrete in shear= $A_{shear} := B \cdot d$ $A_{shear} = 22230 \cdot in^2$

Shear stress acting on concrete fa $\nu_{act} := \frac{Shear_{wide}}{A_{shear}}$ $\nu_{act} = 9.384 \cdot psi$

 $\nu_{\text{act}} = 9.384 \cdot \text{psi}$ < $\nu_{\text{wide}} = 82.158 \cdot \text{psi}$

Check for punching or two-way shear in mat

Calculate allowable shear stress in concrete for punching/two-way shear

$$\beta := \frac{L}{B} \qquad \beta = 1$$

$$\nu_{punch} := \mathsf{if} \left[\left(2 + \frac{4}{\beta} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right. \\ \leq 4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(2 + \frac{4}{\beta} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \,, \\ \left(4 \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}} \cdot \mathsf{psi}} \right) \cdot \varphi_{\mathsf{Shear}} \cdot \sqrt{f_{\mathsf{C}}$$

$$\nu_{\text{punch}} = 164.317 \cdot \text{psi}$$
 Area_{col} := if $\text{col}_{\text{t}} = 0$, $\frac{\pi}{4} \cdot \left(\text{Ped}_{\text{s}} + \text{d} \right)^2$, $\left(\text{Ped}_{\text{s}} + \text{d} \right)^2$

$$\mathsf{P}_{\mathsf{avg}} \coloneqq \frac{\mathsf{P}_{\mathsf{maxf}} + \mathsf{P}_{\mathsf{minf}}}{2} \\ \mathsf{Peri}_{\mathsf{col}} \coloneqq \mathsf{if} \left[\mathsf{col}_{\mathsf{t}} = 0 \,, 2 \cdot \pi \cdot \frac{\mathsf{Ped}_{\mathsf{S}} + \mathsf{d}}{2} \,, 4 \cdot \left(\mathsf{Ped}_{\mathsf{S}} + \mathsf{d} \right) \right]$$

Allpro Consulting Group Inc.

Factor vertical load Pvf := RC_{fac}·Pv

Shear stress acting on the concrete face= $v_{acc} = \frac{P_c - Area_{col} \cdot P_{avg}}{P_{col}}$

 $v_{\text{act}} = 8.863 \cdot \text{psi}$ < $v_{\text{punch}} = 164.317 \cdot \text{psi}$ O.K!

 $\underline{\textbf{Design of mat footing}} \quad C_{wped} := Area_{ped} \cdot \gamma_{c} \cdot \left(D_{f} + E_{g} - T_{f}\right) \cdot Nped \qquad \text{Wt. of concrete pedestals}$

$$P_{upnet} := P_{up} - \frac{C_{wped} + S_w \cdot 0.95}{Nped}$$

$$P_{upnet} = 321 \cdot kips$$
Net uplift acting at mat level creating bending

bending

Calculate bending moment for mat design:

moment in the slab. Soil wt. reduced by 5 % to account for variation in

$$B_{mo} := RC_{fac} \cdot \left\lceil \left(TWFW \cdot P_{upnet} \right) \cdot Langle + S_t \cdot \left(D_f + E_g \right) \right\rceil \\ B_{mo} = 6405.871 \cdot ft _K$$

$$\mathsf{B}_{\mathsf{mo1}} \coloneqq \frac{\mathsf{P}_{\mathsf{max}} - \mathsf{P}_{\mathsf{min}}}{(\mathsf{L} - 2 \cdot \mathsf{e}) \cdot 2} \cdot \left(\mathsf{TWFW} \cdot \mathsf{Langle} \cdot \frac{1}{3} + \frac{\mathsf{Ped}_{\mathsf{s}}}{2} \right) \cdot \left[\left(\mathsf{L} - 2 \cdot \mathsf{e} \right) - \left(\mathsf{TWFW} \cdot \mathsf{Langle} \cdot \frac{1}{3} + \frac{\mathsf{Ped}_{\mathsf{s}}}{2} \right) \right]^2 \cdot 0.5 \right] \cdot \mathsf{B}_{\mathsf{mon}} \cdot \mathsf$$

 $W_e := TWFW \cdot Langle + Ped_s W_e = 19.053 ft$

Reinforcement middle bandwidth.

 $B_{mo1} = 455624.425 \, \text{ft} \cdot \text{lb}$

required
$$R_u := \frac{B_{mo}}{\Phi_{hend} \cdot B \cdot d} R_u = 67.407 \cdot psi$$
 $m := \frac{f_y}{\beta_1 \cdot f_c} m = 23.529$

required

$$\rho := \frac{1}{m} \cdot \left[1 - \sqrt{1 - \left(\frac{2 \cdot m \cdot R_u}{f_y} \right)} \right] \qquad \rho = 0.001$$

required area of steel for mat=

 $Ast_f := \rho \cdot B \cdot d$ $Ast_f = 25.313 \cdot in^2$

minimum area of steel required,

$$\mathsf{Ast}_{\mathsf{fuse}} := \mathsf{if} \big(\mathsf{Ast}_{\mathsf{f}} > \mathsf{Ast}_{\mathsf{minf}} \,, \mathsf{Ast}_{\mathsf{f}} \,, \mathsf{Ast}_{\mathsf{minf}} \big) \qquad \qquad \mathsf{Ast}_{\mathsf{fuse}} = 42.12 \cdot \mathsf{in}^2$$

$$Ast_{fuse} = 42.12 \cdot in^2$$

bar size used
$$f_{bar} := 11 \qquad \qquad f_{dia} := \frac{f_{bar}}{8} \cdot in \qquad f_{dia} = 1.375 \cdot in$$
 Bar area=
$$f_{abar} := \pi \cdot \frac{f_{dia}^2}{4} \qquad \qquad f_{abar} = 1.485 \cdot in^2$$

Number of bars required=
$$Nf_{bars} := if \left(Ast_{fuse} = Ast_{minf}, \frac{Ast_{fuse}}{f_{abar}}, \frac{Ast_{fuse}}{f_{abar}}, \frac{L}{W_e} \right)$$
 $Nf_{bars} = 28.366$

(Total 49 Horizontal bars provided each way, Top and Bottom Total = 196)

 $Nf_{bars} := 49$ OK!

Summary

-Foundation Reactions-

Shear $S = 58 \cdot kips$

Down load $Pv = 73 \cdot kips$ (Weight)

Uplift load $P_{up} = 321 \cdot kips$ Moment; $M = 6810 \cdot ft \cdot kip$

Size of Mat

$$L = 32.5 \, ft$$
 $B = 32.5 \, ft$

Depth of base of mat $D_f = 4.5\,\mathrm{ft}$ Thickness of Mat $T_f = 5\,\mathrm{ft}$

Pedestal size $Ped_s = 0$

The tower location is eccentric by $L_{pe}=3.177\,\mathrm{ft}$ with respect to the mat foundation center towards the base

Stability Calculations

Safety Factor SF = 2.08 > 1.5

against Overturning

Net soil pressure

 $P_{net} = 1.483 \cdot ksf$ < $Brg_{ult} \cdot \phi_{s_Bear} = 45 \cdot ksf$

Check for horizontal shear $P_{hor} = 674.694 \cdot kips > S = 58 \cdot kips$

 $\frac{113}{SF} = 72.11 \cdot \%$

 $\frac{P_{\text{net}}}{Brg_{\text{ult}} \cdot \phi_{\text{s Bear}}} = 3.29 \cdot \%$ O.K.!

$$\frac{S}{P_{hor}} = 8.6 \cdot \%$$

O.K !

SPECIAL CONSTRUCTION NOTE:

WORK IS CONTINGENT ON THE FOLLOWING:

COMPLETION OF A GLOBAL STRUCTURAL STABILITY ANALYSIS.

COMPLETION OF AN ANTENNA/RRH MOUNT STRUCTURAL ASSESSMENT.
GC SHALL FURNISH, INSTALL AND COMPLETE ALL REQUIRED STRUCTURAL MODIFICATIONS AS

INDICATED IN BEFORE-MENTIONED ANALYSIS AND ASSESSMENT.

PROGRAM: DO MACRO UPGRADE

EQUIPMENT DEPLOYMENT

DRAWING INDEX

TITLE SHEET & PROJECT DATA

ANTENNA LAYOUT & MOUNTING DETAILS

EQUIPMENT & MOUNTING DETAILS

ELECTRICAL & GROUNDING DETAILS

REVIEW BY THE LOCAL BUILDING DEPARTMENT AND MAY IMPOSE

CHANGES OR MODIFICATIONS.

OUTLINE SPECIFICATIONS

OUTLINE SPECIFICATIONS

OUTLINE SPECIFICATIONS

SITE PLAN

DETAILS

TOWER ELEVATION

RE DATA SHEET

PLUMBING DIAGRAM

SHEET TITLE

CT33XC574 SITE NUMBER:

131 GIFFORD LANE SITE ADDRESS:

BOZRAH, CT 06334

EXISTING 195' SELF SUPPORT TOWER SITE TYPE:

SHEET NO.

SP-2

A-2

A-3

A-4

A-5

RF-1

SP-3

MAHWAH, NJ 07495 TEL: (800) 357-7641 PROJECT MANAGER:

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581

FROM ZERO TO INFINIGY the solutions are endless

033 Watervliet Shaker Rd | Albany, NY 1220 Phone: 518-690-0790 | Fax: 518-690-0793 JOB NUMBER 526-104

■ ENGINEERING LICENSE: REV. 0

CHECKED BY

0

0

0

DATE

PPROVED BY

۱	REVISIONS:			
ł	DESCRIPTION	DATE	BY	RE۱
ı				
ı				
ı				
ı				
ı	ISSUED FOR CONSTRUCTION	03/22/18	SL	0
ı	ISSUED FOR REVIEW	01/18/18	RCD	Α
ı				

CT33XC574

131 GIFFORD LANE, BOZRAH, CT 06334

TITLE SHEET & PROJECT DATA

T-1

PROJECT INFORMATION AREA MAP **SITE INFORMATION:** 41° 33' .0893" N LATITUDE: (PER SBA RECORDS) 41.55251667° LONGITUDE: -72° 09' 02.73" W (PER SBA RECORDS) -72.15070833* STRUCTURE HEIGHT: 195'± STRUCTURE TYPE: SELF SUPPORT TOWER **APPLICANT:** 1 INTERNATIONAL BLVD, SUITE 800 MAHWAH, NJ 07495 **TOWER OWNER:** SBA TOWERS LLC. 8051 CONGRESS AVENUE BOCA RATON, FL 33487 SBA SITE ID: CT01105-S SBA SITE NAME: BOZRAH

SPRINT PROPOSES TO MODIFY AN EXISTING UNMANNED TELECOMMUNICATIONS FACILITY. REMOVE (6) PANEL ANTENNAS INSTALL (6) PANEL ANTENNAS INSTALL (3) 2.5 GHz RRH'S ON PROPOSED DUAL RRH MOUNT RELOCATE (3) 1900 MHz RRH'S ON PROPOSED DUAL RRH MOUNT INSTALL (6) 800 MHz RRH'S ON PROPOSED DUAL RRH MOUNT INSTALL (4) HYBRID CABLES
INSTALL STRUCTURAL AUGMENTS INSTALL RAN EQUIPMENT INSIDE EXISTING MMBTS CABINET REMOVE (4) RUNS OF EXISTING 1-5/8" COAX

THESE PLANS HAVE BEEN DEVELOPED FOR THE MODIFICATION OF AN EXISTING UNMANNED TELECOMMUNICATIONS FACILITY OWNED OR LEASED BY SPRINT IN ACCORDANCE WITH THE SCOPE OF WORK PROVIDED BY SPRINT. INFINIGY HAS INCORPORATED THIS SCOPE OF WORK IN THE PLANS. THESE PLANS ARE NOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASSING STRUCTURAL STABILITY ANALYSIS PREPARED BY A LICENSED STRUCTURAL ENGINEER. STRUCTURAL ANALYSIS MUST INCLUDE BOTH TOWER AND MOUNT

PROJECT DESCRIPTION

APPLICABLE CODES

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALL IN

CALL CONNECTICUT ONE CALL (800) 922-4455 **CALL 3 WORKING DAYS BEFORE YOU DIG!** Know what's below. Call before you dig.

THIS IS AN UNMANNED TELECOMMUNICATION FACILITY AND NOT FOR HUMAN HABITATION:

• ADA COMPLIANCE NOT REQUIRED.

• POTABLE WATER OR SANITARY SERVICE IS NOT REQUIRED.

• NO OUTDOOR STORAGE OR ANY SOLID WASTE RECEPTACLES CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON JOB SITE. CONTRACTOR SHALL IMMEDIATELY AND CONDITIONS ON JOB STIE. CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK. FAILURE TO NOTIFY THE ARCHITECT/ENGINEER PLACE THE RESPONSIBILITY ON THE CONTRACTOR TO CORRECT THE DISCREPANCIES AT THE CONTRACTOR'S EXPENSE

LOCATION MAP ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOT CONFORMING TO THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES. SBA CONTACT: STEPHEN ROTH (860) 539-4920 INTERNATIONAL BUILDING CODE (2012 IBC) INTERNATIONAL BUILDING CODE (2012 IBC)
TIA-222-G OR LATEST EDITION
NFPA 780 - LIGHTNING PROTECTION CODE
2014 NATIONAL ELECTRIC CODE OR LATEST EDITION
ANY OTHER NATIONAL OR LOCAL APPLICABLE CODES,
MOST RECENT EDITIONS
OF BUILDING CODE **APPROVALS** CT BUILDING CODE LOCAL BUILDING CODE TITLE SIGNATURE 8. CITY/COUNTY ORDINANCES PROJECT MANAGER: GENERAL NOTES CONSTRUCTION: RF ENGINEER: ZONING/SITE ACQ: OPERATIONS: TOWER OWNER: THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO THESE OUTLINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

SECTION 01 100 - SCOPE OF WORK

PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT CONSTRUCTION STANDARDS FOR WIRELESS SITES, CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- 1.3 PRECEDENCE: SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES INCLUDING THE STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.

1.4 NATIONALLY RECOGNIZED CODES AND STANDARDS:

- A. THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:
- 1. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION
- 5. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.
- 3. GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS EQUIPMENT.
- NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE — "NEC") AND NFPA 101 (LIFE SAFETY CODE).
- 5. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
- 6. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE)
- 7. AMERICAN CONCRETE INSTITUTE (ACI)
- 8. AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA)
- 9. CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
- 11. PORTLAND CEMENT ASSOCIATION (PCA)
- 12. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
- 13. BRICK INDUSTRY ASSOCIATION (BIA)
- 14. AMERICAN WELDING SOCIETY (AWS)
- 15. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- 16. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
- 17. DOOR AND HARDWARE INSTITUTE (DHI)
- 18. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA)
- 19. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.

1.5 DEFINITIONS:

- A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- B. COMPANY: SPRINT CORPORATION
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT
- D. CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK
- E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK.
- F. OFCI: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT
- G. CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT...

- 1.6 SITE FAMILIARITY: CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS.
- 1.7 POINT OF CONTACT: COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.
- 1.8 ON—SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- 1.9 DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.
 - A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS—BUILT" DRAWINGS.
 - B. DETAILS ARE INTENDED TO SHOW DESIGN INTENT. MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK. CONTRACTOR SHALL NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY VARIATIONS PRIOR TO PROCEEDING WITH THE
 - C. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK.
- 1.10 USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STACING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.
- 1.11 UTILITIES SERVICES: WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY COMPANY INVOLVED:
- 1.12 PERMITS / FEES: WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 1.13 CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.
- 1.14 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL PERFORM WORK AS DESCRIBED IN THE FOLLOWING INSTALLATION AND COMMISSIONING MOPS.

NOTE: IN SHORT-FORM SPECIFICATIONS ON THE DRAWINGS, A/E TO INSERT LIST OF APPLICABLE MOPS INCLUDING EN-2012-001, EN-2013-002, EL-0568, AND TS-0193

1.15 USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS:

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

- 3.1 TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.
- 3.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.
- 3.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD—PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.
- 3.4 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.

3.5 EXISTING CONDITIONS: NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

SECTION 01 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

- 3.1 RECEIPT OF MATERIAL AND EQUIPMENT:
- A. A COMPANY FURNISHED MATERIAL AND EQUIPMENT IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS.
- B. THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL:
- 1 ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
- 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES.
- 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT.
- RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY—FOUR HOURS AFTER RECEIPT, REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH.
- 5. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING.
- COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE.

3.2 DELIVERABLES:

- A. COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE.
- B. IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY.
- C. UPLOAD DOCUMENTATION INTO SPRINT SITE MANAGEMENT SYSTEM (SMS) AND/OR PROVIDE HARD COPY DOCUMENTATION AS REQUESTED.

SECTION 01 300 - CELL SITE CONSTRUCTION CO. PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.

1.3 NOTICE TO PROCEED

- A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF THE WORK ORDER.
- B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.

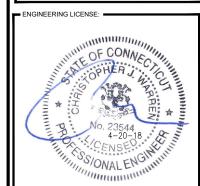
PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 FUNCTIONAL REQUIREMENTS:

- A. THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. THE ACTIVITIES DESCRIBED ARE NOT EXHAUSTIVE, AND CONTRACTOR SHALL TAKE ANY AND ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.
- B. SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED.
- C. MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES
- D. PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING:

Sprint International Blvd, suite 800


MAHWAH, NJ 07495 TEL: (800) 357-7641

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 TEL: (508) 251-0720

FROM ZERO TO INFINIGY
the solutions are endless

033 Watervliet Shaker Rd | Albany, NY 1220 Phone: 518-690-0790 | Fax: 518-690-0793 www.inffinigy.com JOB NUMBER 526-104

CHECKED BY:

APPROVED BY

REVISIONS:						
DESCRIPTION	DATE	BY	RE۱			
ISSUED FOR CONSTRUCTION	03/22/18	SL	0			
ISSUED FOR REVIEW	01/18/18	RCD	A			

SITE NUMBER:

CT33XC574

SITE ADDRESS

131 GIFFORD LANE, BOZRAH, CT 06334

SHEET DESCRIPTION:

OUTLINE SPECIFICATIONS

SHEET NUMBER:

SP-1

CONTINUE FROM SP-1

- 1. PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION.
- PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND SURFACE TREATMENTS.
- 3. MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND TELCO BACKHAUL.
- 4. INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS CONDUITS, AND UNDERGROUND GROUNDING SYSTEM.
- 5. INSTALL ABOVE GROUND GROUNDING SYSTEMS.
- 6. PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.
- 7. INSTALL "H-FRAMES". CABINETS AND SHELTERS AS INDICATED.
- 8. INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED.
- 9. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.
- 10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS.
- 11. PROVIDE SLABS AND EQUIPMENT PLATFORMS
- 12. INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS
- 13. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER.
- 14. CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER
- 15. INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.
- 16. INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS REQUIRED.
- INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RFIATED FOLIPMENT.
- 18. PERFORM, DOCUMENT, AND CLOSE OUT ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES AND LANDLOPPS
- PERFORM ANTENNAL AND COAX SWEEP TESTING AND MAKE ANY AND ALL NECESSARY CORRECTIONS.
- 20. REMAIN ON SITE MOBILIZED THROUGHOUT HAND—OFF AND INTEGRATION TO ASSIST AS NEEDED UNTIL SITE IS DEEMED SUBSTANTIALLY COMPLETE AND PLACED "ON AIR."

3.2 GENERAL REQUIREMENTS FOR CIVIL CONSTRUCTION:

- A. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES AND SURPLUS MATERIALS
- B. EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS.
- C. CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
- IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY.
- CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- D. CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION
- E. CONDUCT TESTING AS REQUIRED HEREIN.

3.3 DELIVERABLES

- A. CONTRACTOR SHALL REVIEW, APPROVE, AND SUBMIT TO SPRINT SHOP DRAWINGS, PRODUCT DATA, SAMPLES, AND SIMILAR SUBMITTALS AS REQUIRED HEREINAFTER
- B. PROVIDE DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS
- 1. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS.
- 2. PROJECT PROGRESS REPORTS.
- CIVIL CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- ELECTRICAL SERVICE COMPLETION DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).

- LINES AND ANTENNA INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- POWER INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- TELCO READY DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 8. PPC (OR SHELTER) INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- TOWER CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- TOWER CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- BTS AND RADIO EQUIPMENT DELIVERED AT SITE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 12. NETWORK OPERATIONS HANDOFF CHECKLIST (HOC WALK) COMPLETE (UPLOAD FORM IN SMS)
- CIVIL CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 14. SITE CONSTRUCTION PROGRESS PHOTOS UNLOADED INTO SMS.

SECTION 01 400 - SUBMITTALS & TESTS

PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.

1.3 SUBMITTALS

- A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE SPECIFICATIONS.
- B. SUBMIT THE FOLLOWING TO COMPANY REPRESENTATIVE FOR APPROVAL.
 - CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING.
 - 2. CONCRETE BREAK TESTS AS SPECIFIED HEREIN.
 - 3. SPECIAL FINISHES FOR INTERIOR SPACES, IF ANY.
 - 4. ALL EQUIPMENT AND MATERIALS SO IDENTIFIED ON THE CONSTRUCTION DRAWINGS.
 - 5. CHEMICAL GROUNDING DESIGN
- D. ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

1.4 TESTS AND INSPECTIONS:

- A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION.
- B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- 1. COAX SWEEPS AND FIBER TESTS PER TS-0200 REV 4 ANTENNA LINE ACCEPTANCE STANDARDS.
- AGL, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL.
- 3. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- C. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES, BUT IS NOT LIMITED TO THE FOLLOWING;
 - AZIMUTH, DOWNTILT, AGL UPLOAD REPORT FROM ANTENNA ALIGNMENT TOOL TO SITERRA TASK 465. INSTALLED AZIMUTH, DOWNTILT, AND AGL MUST CONFORM TO THE RF DATA SHEETS. SWEEP AND FIBER TESTS
- 2. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT
- 3. ALL AVAILABLE JURISDICTIONAL INFORMATION
- 4. PDF SCAN OF REDLINES PRODUCED IN FIELD

5. ELECTRONIC AS—BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS. ANY FIELD CHANGE MUST BE REFLECTED BY MODIFYING THE PLANS, ELEVATIONS, AND DETAILS IN THE DRAWING SETS. GENERAL NOTES INDICATING MODIFICATIONS WILL NOT BE ACCEPTED. CHANGES SHALL BE HIGHLIGHTED AS "CLOUDS" IDENTIFIED AS THE "AS—BUILT" CONDITION.

- 6. LIEN WAIVERS
- 7. FINAL PAYMENT APPLICATION
- 8. REQUIRED FINAL CONSTRUCTION PHOTOS
- 9 . CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS
- 10. ALL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLETED IN SITERRA (SPRINTS DOCUMENT REPOSITORY OF RECORD).
- 1.5 COMMISSIONING: PERFORM ALL COMMISSIONING AS REQUIRED BY APPLICABLE
- 1.6 INTEGRATION: PERFORM ALL INTEGRATION ACTIVITIES AS REQUIRED BY APPLICABLE MOPs

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

- 3.1 REQUIREMENTS FOR TESTING:
 - A. THIRD PARTY TESTING AGENCY:
 - WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL. ROCK, AND GROUNDWATER CONDITIONS.
 - 2. THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.
 - 3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.
 - 4. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.

3.2 REQUIRED TESTS:

- A. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
 - CONCRETE CYLINDER BREAK TESTS FOR THE TOWER AND ANCHOR FOUNDATIONS AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING.
 - ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY TESTING AS SPECIFIED IN SECTION: HOT MIX ASPHALT PAYING.
 - FIELD QUALITY CONTROL TESTING AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING.
 - 4. TESTING REQUIRED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS, PADS AND ANCHOR LOCATIONS
 - 5. STRUCTURAL BACKFILL COMPACTION TESTS FOR THE TOWER FOUNDATION.
 - SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN.
 - ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS.
 - 8. GROUNDING AT ANTENNA MASTS FOR GPS AND ANTENNAS
 - 9. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION.

3.3 REQUIRED INSPECTIONS

- A. SCHEDULE INSPECTIONS WITH COMPANY REPRESENTATIVE.
- B. CONDUCT INSPECTIONS INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- GROUNDING SYSTEM INSTALLATION PRIOR TO EARTH CONCEALMENT DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE.
- FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE.
- COMPACTION OF BACKFILL MATERIALS; AGGREGATE BASE FOR ROADS, PADS, AND ANCHORS; ASPHALT PAVING; AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT THIRD PARTY AGENCY.
- 4. PRE— AND POST—CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING FACILITIES.
- 5. TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY.
- ANTENNA AZIMUTH , DOWN TILT AND PER SUNLIGHT TOOL SUNSIGHT INSTRUMENTS — ANTENNALIGN ALIGNMENT TOOL (AAT)

INTERNATIONAL BLVD, SUITE 800 MAHWAH, NJ 07495 TEL: (800) 357-7641

SBA (1))

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581

TEL: (508) 251-0720

PLANS PREPARED BY:

INFINITY

FROM ZERO TO INFINITY

the solutions are endless

033 Watervliet Shaker Rd I Albany, NY 1220

Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com

JOB NUMBER 526-104

ENGINEERING LICENSE:

OF CONNECTION

OPHER

No. 23544
4-20-18

CENSE ON SE ON

CHECKED BY:

APPROVED BY

REVISIONS:						
DESCRIPTION	DATE	BY	REV			
ISSUED FOR CONSTRUCTION	03/22/18	SL	0			
ISSUED FOR REVIEW	01/18/18	RCD	Α			

SITE NUMBER:

CT33XC574

SITE ADDRESS

131 GIFFORD LANE, BOZRAH, CT 06334

SHEET DESCRIPTION:

OUTLINE SPECIFICATIONS

SHEET NUMBER

SP-2

CONTINUE FROM SP-2

- VERIFICATION DOCUMENTED WITH THE ANTENNA CHECKLIST REPORT, BY A&E, SITE DEVELOPMENT REP, OR RF REP.
- FINAL INSPECTION CHECKLIST AND HANDOFF WALK (HOC.). SIGNED FORM SHOWING ACCEPTANCE BY FIELD OPS IS TO BE UPLOADED INTO SMS.
- COAX SWEEP AND FIBER TESTING DOCUMENTS SUBMITTED VIA SMS FOR RF APPROVAL.
- 10. SCAN-ABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT
- 11. ALL AVAILABLE JURISDICTIONAL INFORMATION
- 12. PDF SCAN OF REDLINES PRODUCED IN FIELD
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- D. CONSTRUCTION INSPECTIONS AND CORRECTIVE MEASURES SHALL BE DOCUMENTED BY THE CONTRACTOR WITH WRITTEN REPORTS AND PHOTOGRAPHS. PHOTOGRAPHS MUST BE DIGITAL AND OF SUFFICIENT QUALITY TO CLEARLY SHOW THE SITE CONSTRUCTION. PHOTOGRAPHS MUST CLEARLY IDENTIFY THE PHOTOGRAPHED ITEM AND BE LABELED WITH THE SITE CASCADE NUMBER, SITE NAME, DESCRIPTION, AND DATE.
- 3.4 DELIVERABLES: TEST AND INSPECTION REPORTS AND CLOSEOUT DOCUMENTATION SHALL BE UPLOADED TO THE SMS AND/OR FORWARDED TO SPRINT FOR INCLUSION INTO THE PERMANENT SITE FILES.
- A. THE FOLLOWING TEST AND INSPECTION REPORTS SHALL BE PROVIDED AS APPLICABLE.
- 1. CONCRETE MIX AND CYLINDER BREAK REPORTS.
- 2. STRUCTURAL BACKFILL COMPACTION REPORTS.
- 3. SITE RESISTANCE TO EARTH TEST.
- 4. ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
- 5. TOWER ERECTION INSPECTIONS AND MEASUREMENTS DOCUMENTING TOWER INSTALLED PER SUPPLIER'S REQUIREMENTS AND THE APPLICABLE SECTIONS LEPPIN
- COAX CABLE SWEEP TESTS PER COMPANY'S "ANTENNA LINE ACCEPTANCE STANDARDS".
- B. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES THE FOLLOWING;
- TEST WELLS AND TRENCHES: PHOTOGRAPHS OF ALL TEST WELLS; PHOTOGRAPHS SHOWING ALL OPEN EXCAVATIONS AND TRENCHING PRIOR TO BACKFILLING SHOWING A TAPE MEASURE VISIBLE IN THE EXCAVATIONS INDICATING DEPTH.
- CONDUITS, CONDUCTORS AND GROUNDING: PHOTOGRAPHS SHOWING TYPICAL INSTALLATION OF CONDUCTORS AND CONNECTORS; PHOTOGRAPHS SHOWING TYPICAL BEND RADIUS OF INSTALLED GROUND WIRES AND GROUND ROD SPACING;
- 3. CONCRETE FORMS AND REINFORCING: CONCRETE FORMING AT TOWER AND EQUIPMENT/SHELTER PAD/FOUNDATIONS PHOTOGRAPHS SHOWING ALL REINFORCING STEEL, UTILITY AND CONDUIT STUB OUTS; PHOTOGRAPHS SHOWING CONCRETE POUR OF SHELTER SLAB/FOUNDATION, TOWER FOUNDATION AND GUY ANCHORS WITH VIBRATOR IN USE; PHOTOGRAPHS SHOWING EACH ANCHOR ON GUYED TOWERS, BEFORE CONCRETE POUR.
- 4. TOWER, ANTENNAS AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; PHOTOS OF GPS ANTENNA(S): PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING TOP AND BOTTOM; PHOTOS OF COAX GROUNDING—TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF:
- 6. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS.
- 7. FINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.
- 8. REQUIRED MATERIALS CERTIFICATIONS: CONCRETE MIX DESIGNS; MILL CERTIFICATION FOR ALL REINFORCING AND STRUCTURAL STEEL; AND ASPHALT PAVING MIX DESIGN.
- 9. ANY AND ALL SUBMITTALS BY THE JURISDICTION OR COMPANY.

SECTION 01 400 - SUBMITTALS & TESTS

PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 WEEKLY REPORTS:

- A. CONTRACTOR SHALL PROVIDE SPRINT WITH WEEKLY REPORTS SHOWING PROJECT STATUS. THIS STATUS REPORT FORMAT WILL BE PROVIDED TO THE CONTRACTOR BY SPRINT. THE REPORT WILL CONTAIN SITE ID NUMBER, THE MILESTONES FOR EACH SITE, INCLUDING THE BASELINE DATE, ESTIMATED COMPLETION DATE AND ACTUAL COMPLETION DATE.
- B. REPORT INFORMATION WILL BE TRANSMITTED TO SPRINT VIA ELECTRONIC MEANS AS REQUIRED. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT.

3.2 PROJECT CONFERENCE CALLS:

A. SPRINT MAY HOLD WEEKLY PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY.

3.3 PROJECT TRACKING IN SMS:

A. CONTRACTOR SHALL PROVIDE SCHEDULE UPDATES AND PROJECTIONS IN THE SMS SYSTEM ON A WEEKLY BASIS.

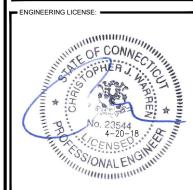
3.4 ADDITIONAL REPORTING:

A. ADDITIONAL OR ALTERNATE REPORTING REQUIREMENTS MAY BE ADDED TO THE REPORT AS DETERMINED TO BE REASONABLY NECESSARY BY COMPANY.

3.5 PROJECT PHOTOGRAPHS

- A. FILE DIGITAL PHOTOGRAPHS OF COMPLETED SITE IN JPEG FORMAT IN THE SMS PHOTO LIBRARY FOR THE RESPECTIVE SITE. PHOTOGRAPHS SHALL BE CLEARLY LABELED WITH SITE NUMBER, NAME AND DESCRIPTION, AND SHALL INCLUDE AT A MINIMUM THE FOLLOWING AS APPLICABLE:
 - 1. 1SHELTER AND TOWER OVERVIEW.
- 2. TOWER FOUNDATION(S) FORMS AND STEEL BEFORE POUR (EACH ANCHOR ON GUYED TOWERS).
- TOWER FOUNDATION(S) POUR WITH VIBRATOR IN USE (EACH ANCHOR ON GUYED TOWERS).
- 4. TOWER STEEL AS BEING INSTALLED INTO HOLE (SHOW ANCHOR STEEL ON GUYED TOWERS).
- 5. PHOTOS OF TOWER SECTION STACKING
- 6. CONCRETE TESTING / SAMPLES.
- 7. PLACING OF ANCHOR BOLTS IN TOWER FOUNDATION.
- 8. BUILDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS.
- 9. SHELTER FOUNDATION—FORMS AND STEEL BEFORE POURING.
- 10. SHELTER FOUNDATION POUR WITH VIBRATOR IN USE.
- 11. COAX CABLE ENTRY INTO SHELTER.
- 12. PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- 13. ROOFTOP PRE AND POST CONSTRUCTION PHOTOS TO INCLUDE PENETRATIONS AND INTERIOR CEILING.
- 14. PHOTOS OF TOWER TOP COAX LINE COLOR CODING AND COLOR CODING AT GROUND LEVEL.
- 15. PHOTOS OF ALL APPROPRIATE COMPANY OR REGULATORY SIGNAGE.
- 16. PHOTOS OF EQUIPMENT BOLT DOWN INSIDE SHELTER.
- 17. POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND TELCO SUPPLY LOCATIONS INCLUDING METER/DISCONNECT.
- 18. ELECTRICAL TRENCH(S) WITH ELECTRICAL / CONDUIT BEFORE BACKFILL.
- 19. ELECTRICAL TRENCH(S) WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL.
- 20. TELCO TRENCH WITH TELEPHONE / CONDUIT BEFORE BACKFILL.
- 21. TELCO TRENCH WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL
- 22. SHELTER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).
- 23. TOWER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).

- 24. FENCE GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).
- 25. ALL BTS GROUND CONNECTIONS.
- 26. ALL GROUND TEST WELLS.
- 27. ANTENNA GROUND BAR AND EQUIPMENT GROUND BAR.
- 28. ADDITIONAL GROUNDING POINTS ON TOWERS ABOVE 200'.
- 29. HVAC UNITS INCLUDING CONDENSERS ON SPLIT SYSTEMS.
- 30. GPS ANTENNAS.
- 31. CABLE TRAY AND/OR WAVEGUIDE BRIDGE.
- 32. DOGHOUSE/CABLE EXIT FROM ROOF.
- 33. EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA.
- 34. MASTER BUS BAR.
- 35. TELCO BOARD AND NIU.
- 36. ELECTRICAL DISTRIBUTION WALL
- 37. CABLE ENTRY WITH SURGE SUPPRESSION
- 38. ENTRANCE TO EQUIPMENT ROOM.
- 39. COAX WEATHERPROOFING-TOP AND BOTTOM OF TOWER.
- 40. COAX GROUNDING -TOP AND BOTTOM OF TOWER.
- 41. ANTENNA AND MAST GROUNDING.
- 42. LANDSCAPING WHERE APPLICABLE.
- 3.6 FINAL PROJECT ACCEPTANCE: COMPLETE ALL REQUIRED REPORTING TASKS PER CONTRACT, CONTRACT DOCUMENTS OR THE SPRINT INTEGRATED CONSTRUCTION STANDARDS FOR WIRELESS SITES AND UPLOAD INTO SITERRA.


INTERNATIONAL BLVD, SUITE 800 MAHWAH, NJ 07495 TEL: (800) 357-7641

PROJECT MANAGER:

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 TEL: (508) 251-0720

FROM ZERO TO INFINIGY
the solutions are endless

CHECKED BY:

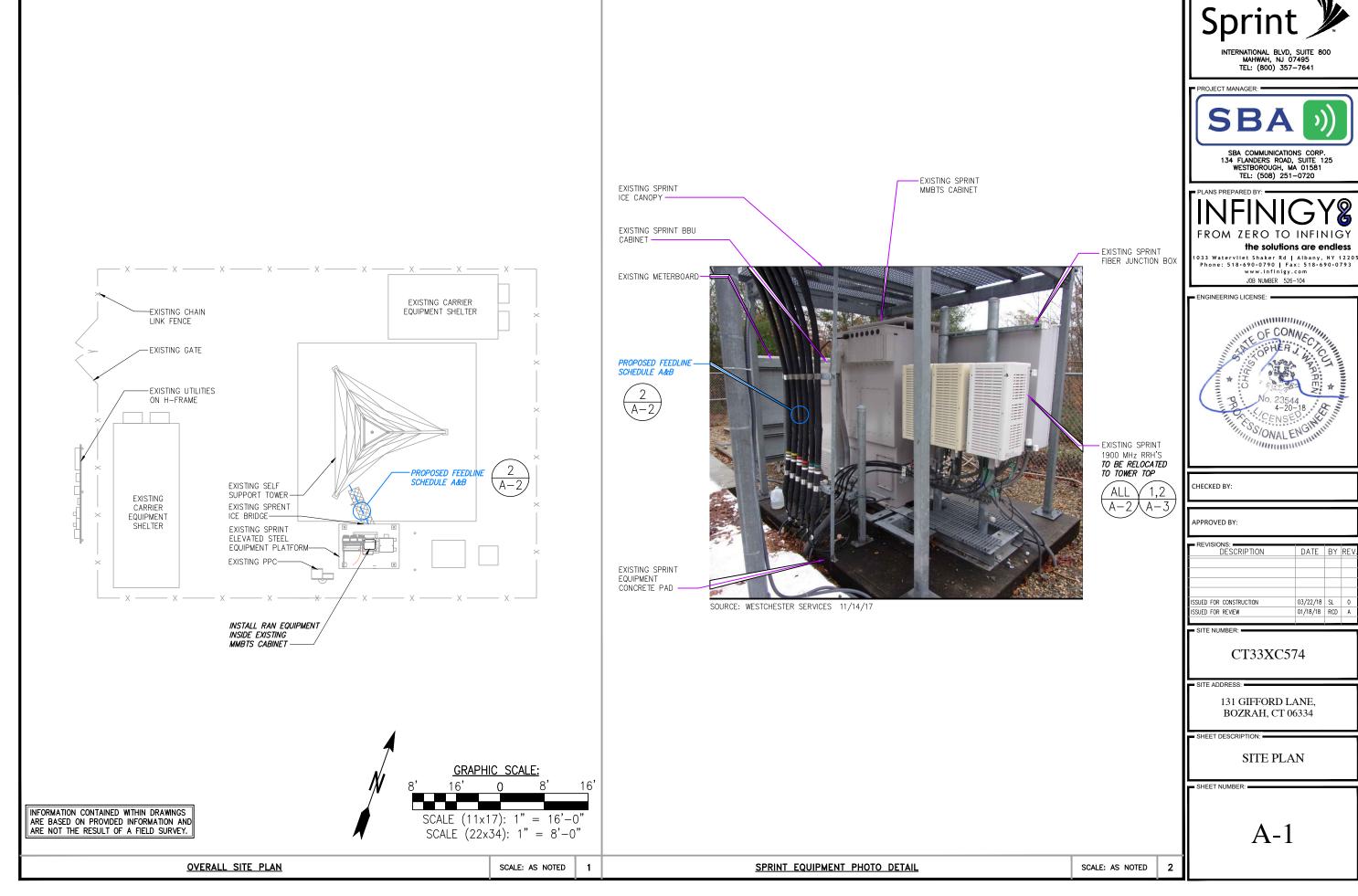
APPROVED BY:

REVISIONS:			
DESCRIPTION	DATE	BY	REV
ISSUED FOR CONSTRUCTION	03/22/18	SL	0
ISSUED FOR REVIEW	01/18/18	RCD	Α

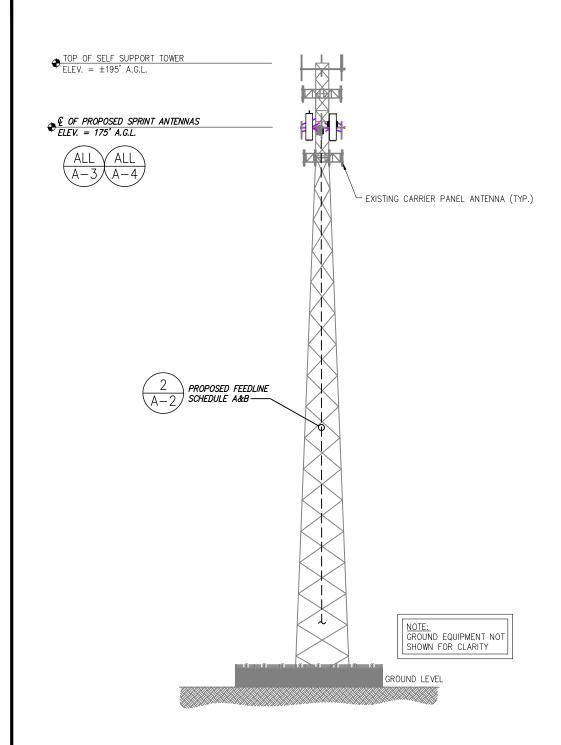
SITE NUMBER:

CT33XC574

SITE ADDRESS:

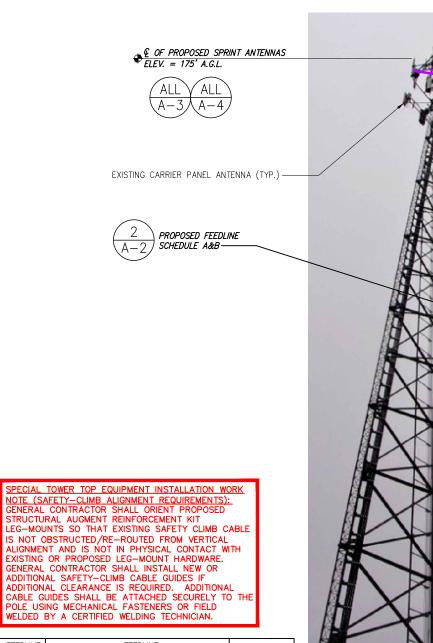

131 GIFFORD LANE, BOZRAH, CT 06334

SHEET DESCRIPTION:


OUTLINE SPECIFICATIONS

SHEET NUMBER:

SP-3



THESE PLANS HAVE BEEN DEVELOPED FOR THE MODIFICATION OF AN EXISTING UNMANNED TELECOMMUNICATIONS FACILITY OWNED OR LEASED BY SPRINT IN ACCORDANCE WITH THE SCOPE OF WORK PROVIDED BY SPRINT. INFINIGY HAS INCORPORATED THIS SCOPE OF WORK IN THE PLANS. THESE PLANS ARE NOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASSING STRUCTURAL STABILITY ANALYSIS PREPARED BY A LICENSED STRUCTURAL ENGINEER. STRUCTURAL ANALYSIS MUST INCLUDE BOTH TOWER AND MOUNT.

MPERS FROM RRHs TO ANTENNA SHALL NOT XCEED 15'. NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY DISCREPANCY

VERIFY PROPOSED AZIMUTHS WITH R ENGINEER PRIOR TO INSTALLATION

SOURCE: WESTCHESTER SERVICES 11/14/17

FEEDLINE FEEDLINE LOCATION SCHEDULE DESCRIPTION EXISTING TO BE REMOVED: UP SELF SUPPORT (4) 1 5/8" COAX EXISTING TO REMAIN: TOWER TO RAD (2) 1 5/8" COAX UP SELF SUPPORT PROPOSED: (4) HYBRID TO 175' RAD В TOWER TO RAD

<u>NOTE:</u> EXISTING SPRINT EQUIPMENT FEEDLINE INVENTORY BASED ON COLOCATION APPLICATION AND SBA RECORD, NOT FIELD OBSERVATIONS. RFDS AND FEEDLINE LEASING ENTITLEMENTS MAY DIFFER.

INTERNATIONAL BLVD, SUITE 800 MAHWAH, NJ 07495 TEL: (800) 357-7641

PROJECT MANAGER: =

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581

PLANS PREPARED BY:

FROM ZERO TO INFINIGY the solutions are endless

1033 Watervliet Shaker Rd | Albany, NY 12209 Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com JOB NUMBER 526-104

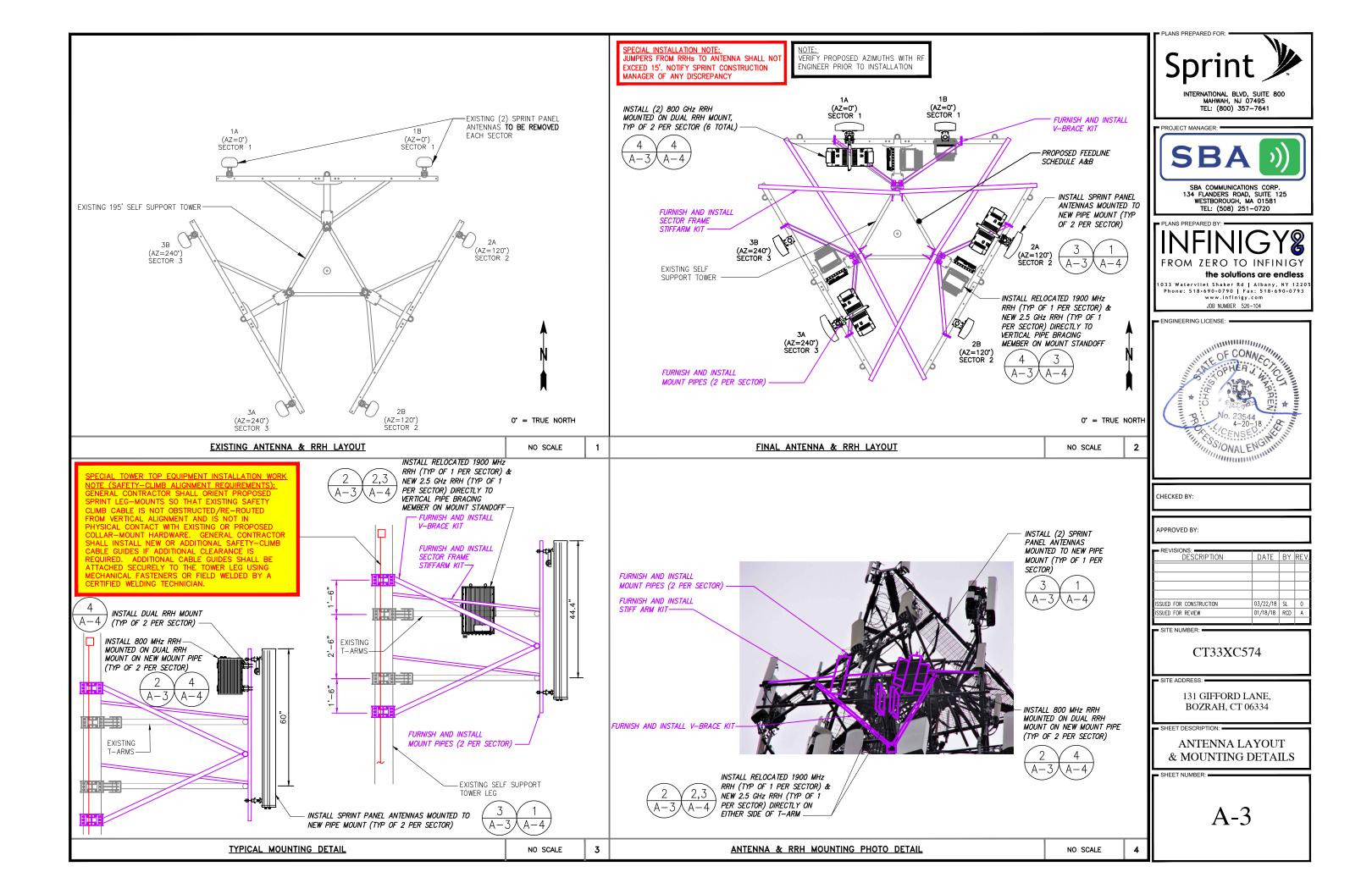
ENGINEERING LICENSE: •

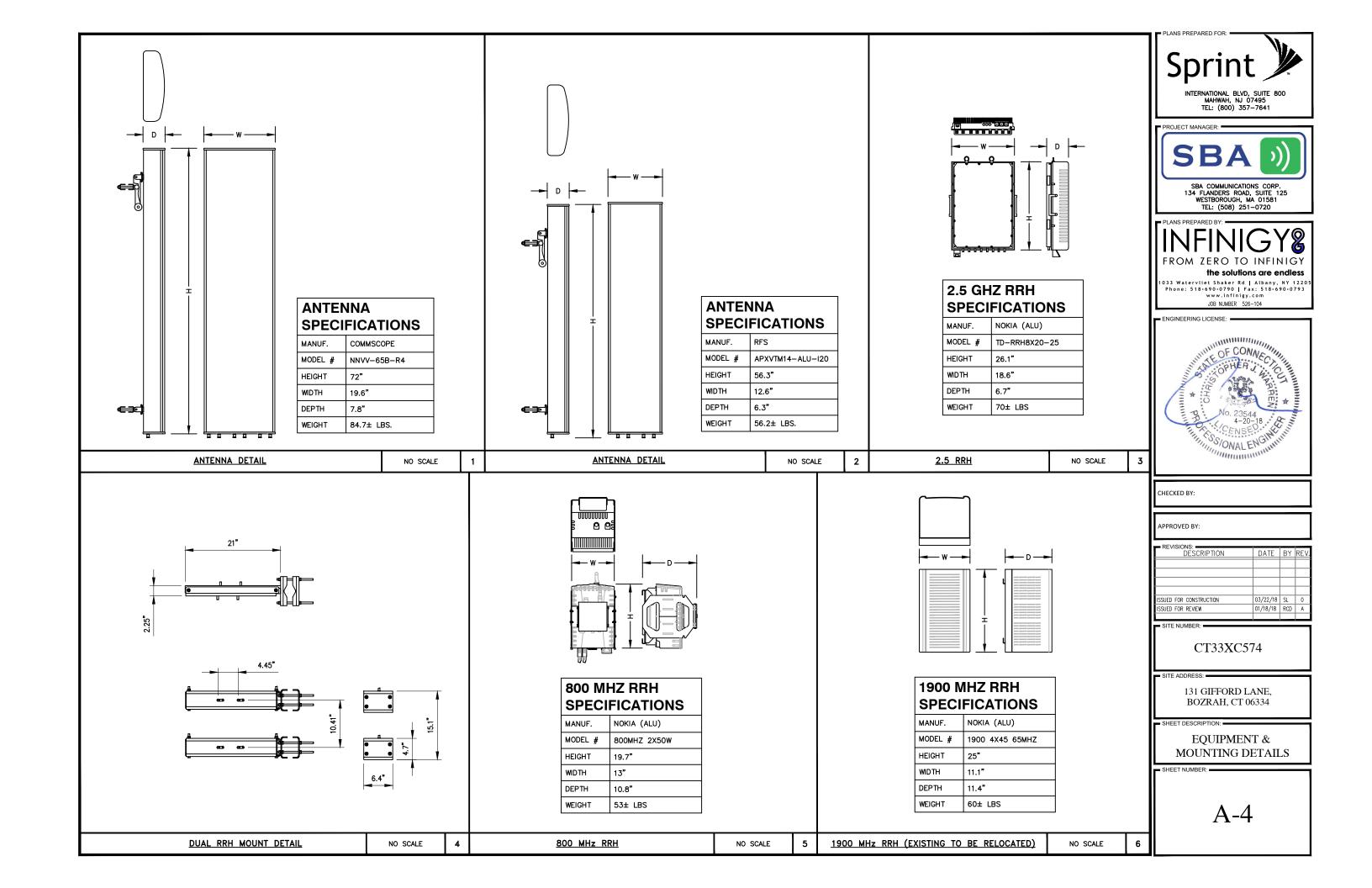
CHECKED BY:

APPROVED BY:

REVISIONS:				
DESCRIPTION	DATE	BY	REV.	
ISSUED FOR CONSTRUCTION	03/22/18	SL	0	
ISSUED FOR REVIEW	01/18/18	RCD	Α	

SITE NUMBER:

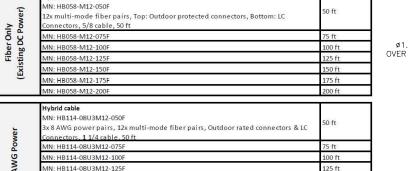

CT33XC574


131 GIFFORD LANE, BOZRAH, CT 06334

TOWER ELEVATION

A-2

TOWER ELEVATION NO SCALE TOWER ELEVATION PHOTO DETAIL NO SCALE



RFS HYBRIFLEX RISER CABLE SCHEDULE

Hybrid cable

MN: HB114-08U3M12-150F

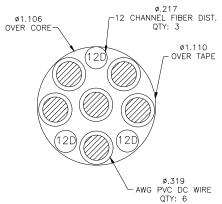
MN: HR114-08U3M12-175F

	MN: HB114-08U3M12-200F	200 ft	
6 AWG Power	Hybrid cable MN: HB114-13U3M12-225F 3x 6 AWG powerpair, 12x multi-mode fiber pairs, Outdoor rated connectors & LC Connectors. 1 1/4 cable. 225 ft	225 ft	-
	MN: HB114-13U3M12-250F	250 ft	
	MN: HB114-13U3M12-275F	275 ft	_
•	MN: HB114-13U3M12-300F	300 ft	_

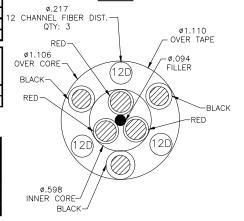
G Power	Hybrid cable MN: HB114-21U3M12-325F 3x 4 AWG power pair, 12x multi-mode fiber pairs, Outdoor rated connectors & LC Connectors. 1 1/4 cable. 325 ft	325 ft
3	MN: HB114-21U3M12-350F	350 ft
4	MN: HB114-21U3M12-375F	375 ft

RFS HYBRIFLEX JUMPER CABLE SCHEDULE

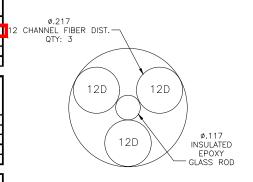
Ą	Hybrid Jumper cable MN: HBF012-M3-SF1 5 ft, 3x multi-mode fiber pairs, Outdoor & LC connectors, 1/2 cable	5 ft
Fiber Only	MN: HBF012-M3-10F1	10 ft
ber	MN: HBF012-M3-15F1	15 ft
证	MN: HBF012-M3-20F1	20 ft
	MN: HBF012-M3-25F1	25 ft
	MN: HBF012-M3-30F1	30 ft


8 AWG Power	Hybrid Jumper cable MN: HBF058-08U1M3-5F1 5 ft, 1x 8 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors, 5/8 cable	5 ft
	MN: HBF058-08U1M3-10F1	10 ft
3	MN: HBF058-08U1M3-15F1	15 ft
8	MN: HBF058-08U1M3-20F1	20 ft
	MN: HBF058-08U1M3-25F1	25 ft
	MN: HBF058-08U1M3-30F1	30 ft

Power	Hybrid Jumper cable MN: HBF058-13U1M3-5F1 5 ft, 1x 6 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors, 5/8 cable	5 ft
	MN: HBF058-13U1M3-10F1	10 ft
6 AWG	MN: HBF058-13U1M3-15F1	15 ft
9	MN: HBF058-13U1M3-20F1	20 ft
	MN: HBF058-13U1M3-25F1	25 ft
	MN: HBF058-13U1M3-30F1	30 ft


4 AW G Power	Hybrid Jumper cable MN: HBF078-21U1M3-5F1 5 ft, 1x 4 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors, 7/8 cable	5 ft
9	MN: HBF078-21U1M3-10F1	10 ft
3	MN: HBF078-21U1M3-15F1	15 ft
4	MN: HBF078-21U1M3-20F1	20 ft
	MN: HBF078-21U1M3-25F1	25 ft
	MN: HBF078-21U1M3-30F1	30 ft

NOTE: SPRINT CM TO CONFIRM HYBRID OR FIBER RISER CABLE AND HYBRID OR FIBER JUMPER CABLE MODEL NUMBERS IF HYBRID CABLES ARE REQUIRED BEFORE PREPARING BOM.


- * PROPOSED CABLE LENGTH WAS DETERMINED USING THE SUM OF THE RAD CENTER OF ANTENNAS, AND DISTANCE FROM EXISTING EQUIPMENT AREA TO TOWER BASE WITH AN ADDITIONAL 20' BUFFER. LENGTH TO BE VERIFIED IN FIELD PRIOR TO ORDERING MATERIALS.
- * SPRINT CM TO CONFIRM HYBRID RISER CABLE AND HYBRID JUMPER CABLE MODEL NUMBERS BEFORE PREPARING BOM.

4 AWG

8 & 6 AWG

FIBER ONLY

PROJECT MANAGER:

SBA COMMUNICATIONS CORP.
134 FLANDERS ROAD, SUITE 125
WESTBOROUGH, MA 01581
TEL: (508) 251-0720

INFINGY&
FROM ZERO TO INFINIGY

1033 Watervliet Shaker Rd | Albany, NY 1220: Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com JOB NUMBER 526-104

the solutions are endless

ENGINEERING LICENSE:

OF CONNECTION

OPHER

No. 23544

4-20-18

CENSEO

ONAL ENGINEERING

CHECKED BY:

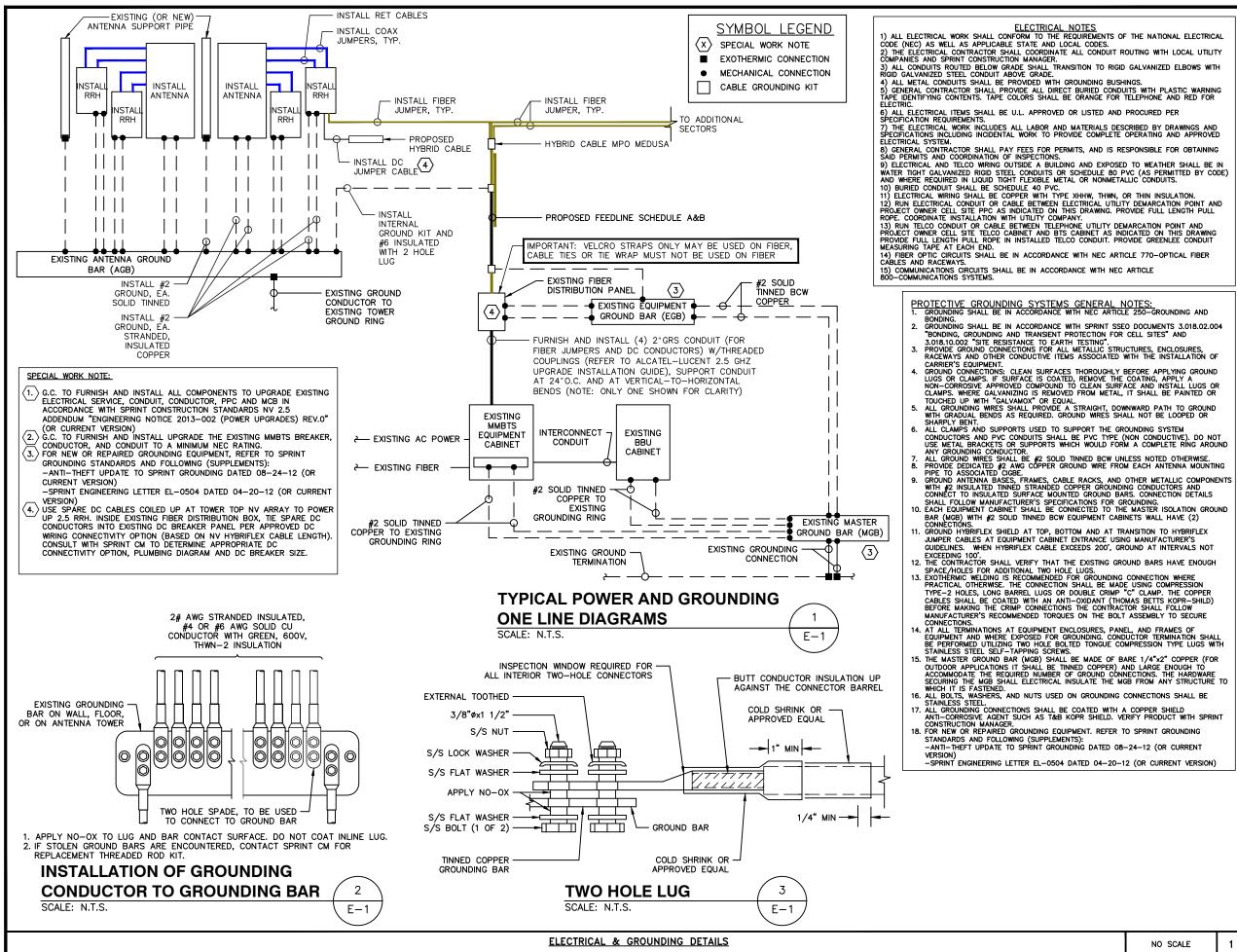
APPROVED BY:

REVISIONS:			
DESCRIPTION	DATE	BY	RE'
ISSUED FOR CONSTRUCTION	03/22/18	SL	0
ISSUED FOR REVIEW	01/18/18	RCD	Α

SITE NUMBER:

CT33XC574

SITE ADDRESS


131 GIFFORD LANE, BOZRAH, CT 06334

SHEET DESCRIPTION:

DETAILS

SHEET NUMBER:

A-5

2) THE ELECTRICAL CONTRACTOR SHALL COORDINATE ALL CONDUIT ROUTING WITH LOCAL UTILITY COMPANIES AND SPRINT CONSTRUCTION MANAGER.

6) ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED AND PROCURED PER SPECIFICATION REQUIREMENTS.

SPECIFICATION REQUIREMENTS.
7) THE ELECTRICAL WORK INCLUDES ALL LABOR AND MATERIALS DESCRIBED BY DRAWINGS AND SPECIFICATIONS INCLUDING INCIDENTAL WORK TO PROVIDE COMPLETE OPERATING AND APPROVED

ELECTRICAL STIEM.

8) GENERAL CONTRACTOR SHALL PAY FEES FOR PERMITS, AND IS RESPONSIBLE FOR OBTAINING SAID PERMITS AND COORDINATION OF INSPECTIONS.

9) ELECTRICAL AND TELCO WIRING OUTSIDE A BUILDING AND EXPOSED TO WEATHER SHALL BE IN

WATER TIGHT GALVANIZED RIGID STEEL CONDUITS OR SCHEDULE 80 PVC (AS PERMITTED BY CODE) AND WHERE REQUIRED IN LIQUID TIGHT FLEXIBLE METAL OR NONMETALLIC CONDUITS.

10) BURIED CONDUIT SHALL BE SCHEDULE 40 PVC.

11) ELECTRICAL WIRING SHALL BE COPPER WITH TYPE XHHW, THWN, OR THIN INSULATION.

11) ELECTRICAL WRING SHALL BE COPPER WITH TYPE XHHW, THYMN, OR THIN INSULATION 12) RUN ELECTRICAL CONDUIT OR CABLE BETWEEN ELECTRICAL UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE PPC AS INDICATED ON THIS DRAWING, PROVIDE FULL LENGTH PULL ROPE. COORDINATE INSTALLATION WITH UTILITY COMPANY.

13) RUN TELCO CONDUIT OR CABLE BETWEEN TELEPHONE UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE TELCO CABINET AND BTS CABINET AS INDICATED ON THIS DRAWING PROVIDE FULL LENGTH PULL ROPE IN INSTALLED TELCO CONDUIT. PROVIDE GREENLEE CONDUIT MEASURING TAPE AT EACH END.

GROUNDING SHALL BE IN ACCORDANCE WITH SPRINT SSEO DOCUMENTS 3.018.02.004

"BONDING, GROUNDING AND TRANSIENT PROTECTION FOR CELL SITES" AND 3.018.10.002. "SITE RESISTANCE TO EARTH TESTING".

PROVIDE GROUND CONNECTIONS FOR ALL METALLIC STRUCTURES, ENCLOSURES, RACEWAYS AND OTHER CONDUCTIVE ITEMS ASSOCIATED WITH THE INSTALLATION OF

RACEWAYS AND OTHER CONDUCTIVE ITEMS ASSOCIATED WITH THE INSTALLATION OF CARRIER'S EQUIPMENT.
GROUND CONNECTIONS: CLEAN SURFACES THOROUGHLY BEFORE APPLYING GROUND LUGS OR CLAMPS. IF SURFACE IS COATED, REMOVE THE COATING, APPLY A NON-CORROSIVE APPROVED COMPOUND TO CLEAN SURFACE AND INSTALL LUGS OR CLAMPS. WHERE GALVANIZING IS REMOVED FROM METAL, IT SHALL BE PAINTED OR TOUCHED UP WITH "GALVAMOX" OR EQUIAL.
ALL GROUNDING WRES SHALL PROVIDE A STRAIGHT, DOWNWARD PATH TO GROUND WITH GRADUAL BENDS AS REQUIRED. GROUND WIRES SHALL NOT BE LOOPED OR SHARPLY BENT.

11. GROUND HYBRIFLEX SHIELD AT TOP, BOTTOM AND AT TRANSITION TO HYBRIFLEX JUMPER CABLES AT EQUIPMENT CABINET ENTRANCE USING MANUFACTURER'S GUIDELINES. WHEN HYBRIFLEX CABLE EXCEEDS 200', GROUND AT INTERVALS NOT

EXCEEDING 100'.

12. THE CONTRACTOR SHALL VERIFY THAT THE EXISTING GROUND BARS HAVE ENOUGH

12. THE CONTRACTOR SHALL VERIFY THAT THE EXISTING GROUND BARS HAVE ENOUGH SPACE/HOLES FOR ADDITIONAL TWO HOLE LUGS.

13. EXOTHERMIC WELDING IS RECOMMENDED FOR GROUNDING CONNECTION WHERE PRACTICAL OTHERWISE. THE CONNECTION SHALL BE MADE USING COMPRESSION TYPE—2 HOLES, LONG BARREL LUGS OR DOUBLE CRIMP "C" CLAMP. THE COPPER CABLES SHALL BE COATED WITH AN ANTI—OXIDANT (THOMAS BETTS KOPR—SHILD) BEFORE MAKING THE CRIMP CONNECTIONS THE CONTRACTOR SHALL FOLLOW MANUFACTURER'S RECOMMENDED TORQUES ON THE BOLT ASSEMBLY TO SECURE

CONNECTIONS.

14. AT ALL TERMINATIONS AT EQUIPMENT ENCLOSURES, PANEL, AND FRAMES OF EQUIPMENT AND WHERE EXPOSED FOR GROUNDING. CONDUCTOR TERMINATION SHALL BE PERFORMED UTILIZING TWO HOLE BOLIED TONGUE COMPRESSION TYPE LUGS WITH STAINLESS STEEL SELF—TAPPING SCREWS.

STAINLESS STELL SELF-TAPPING SCREWS.

15. THE MASTER GROUND BAR (MGB) SHALL BE MADE OF BARE 1/4"x2" COPPER (FOR OUTDOOR APPLICATIONS IT SHALL BE TINNED COPPER) AND LARGE ENOUGH TO ACCOMMODATE THE REQUIRED NUMBER OF GROUND CONNECTIONS. THE HARDWARE SECURING THE MGB SHALL ELECTRICAL INSULATE THE MGB FROM ANY STRUCTURE TO WHICH IT IS FASTENED.

ALL BOLTS, WASHERS, AND NUTS USED ON GROUNDING CONNECTIONS SHALL BE STAINLESS STEEL.

STAINLESS STEEL.

17. ALL GROUNDING CONNECTIONS SHALL BE COATED WITH A COPPER SHIELD

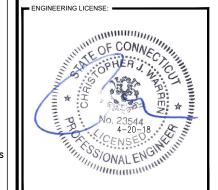
ANTI-CORROSIVE AGENT SUCH AS T&B KOPR SHIELD. VERIFY PRODUCT WITH SPRINT
CONSTRUCTION MANAGER.

18. FOR NEW OR REPAIRED GROUNDING EQUIPMENT. REFER TO SPRINT GROUNDING STANDARDS AND FOLLOWING (SUPPLEMENTS):

-ANTI-THEFT UPDATE TO SPRINT GROUNDING DATED 08-24-12 (OR CURRENT

-SPRINT ENGINEERING LETTER EL-0504 DATED 04-20-12 (OR CURRENT VERSION)

INTERNATIONAL BLVD, SUITE 800


PROJECT MANAGER:

MAHWAH, NJ 07495 TEL: (800) 357-7641

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 TEL: (508) 251-0720

PLANS PREPARED BY FROM ZERO TO INFINIGY the solutions are endless

) 33 Watervliet Shaker Rd | Albanv. NY 1220 Phone: 518 690 0790 | Fax: 518 690 0793 JOB NUMBER 526-104

HECKED BY

PPROVED BY:

REVISIONS:			
DESCRIPTION	DATE	BY	REV
ISSUED FOR CONSTRUCTION	03/22/18	SL	0
ISSUED FOR REVIEW	01/18/18	RCD	Α

SITE NUMBER:

CT33XC574

131 GIFFORD LANE, BOZRAH, CT 06334

ELECTRICAL & GROUNDING DETAILS

E-1

RF Design Sheet

Site Identification			
Cascade	CT33XC574		
SMS Schedule ID	12343898		
SMS Schedule Name	DO Macro Upgrade		
PID			
RRU OEM	ALU		
Switch OEM	Alcatel Lucent		
RFDS Issue Date	2017-08-15 00:00:00.0		
RFDS Revision Date	2017-10-20 10:11:35.0		
RFDS Revision	3		

Filter Analysis Complete	YES
RFDS - Issue Date	08/15/2017
Design Status	Complete
Project Description	DO Mecro Upgrede - Add 800MHz (SG + 4G) and 2500 MHz

Contact Information	
Engineer Email	Bill.M.Hastings@sprint.com
Sprint Badged RF Engineer	Bill Hastings
RF Engineer Email	Bill.M.Hastings@sprint.com
RF Engineer Phone	978-590-9700
RF Manager	Jonathan Hull
RF Manager Email	Jonathan.B.Hull@Sprint.com
RF Manager Phone	617-233-2920

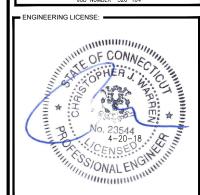
Carrier Count				
2500 LTE	3			
1900 LTE	1			
1900 EVDO				
1900 Voice	1			
800 LTE	1			
800 Voice	1			

Location Details		
Latitude	41.55139	
Longitude	-72.15139	
Market	Northern Connecticut	
Region	Northeast	
City	Bozrah	
State	ст	
Zip Code	CT/06334	
County	New London	

2500MHz	3
1900MHz	3
800MHz	3

Band: 2500	Alpha	Beta	Gamma	Delta	Epsilon	Zeta
Radio Model						
Model Number	TD-RRH8x20-25	TD-RRH8x20-25	TD-RRH8x20-25	N/A	N/A	N/A
Weight (lbs)	76.2	76.2	76.2	N/A	N/A	N/A
	26 x 18.6 x 6.7	26 x 18.6 x 6.7	26 x 18.6 x 6.7	N/A	N/A	N/A
Manufacturer		ALU	ALU	N/A	N/A	N/A
Number of RRUs needed		1	1	0	0	0
		'		U	ŭ .	· ·
Trunk Cable 1	11.1.2	****	1.00	h1/A		
Model Number	A.	N/A	N/A	N/A	N/A	N/A
Weight (Lbs.)		N/A	N/A	N/A	N/A	N/A
Dimensions (In.)	1.54	N/A	N/A	N/A	N/A	N/A
Manufacturer	ALU	N/A	N/A	N/A	N/A	N/A
Band: 800	Alpha	Beta	Gamma	Delta	Epsilon	Zeta
Radio Model	Аірііц	Deur	Guinna	Della	Ерания	Eotu
	RRH-2x50-800	RRH-2x50-800	RRH-2x50-800	N/A	N/A	N/A
Weight (lbs)	ENTRY IN THE PERSON NAMED	69.1	69.1	N/A	N/A	N/A
	16 x 13 x 10	16 x 13 x 10	16 x 13 x 10	N/A	N/A	N/A
Manufacturer	Walter Committee	ALU	ALU	N/A	N/A	N/A
Number of RRUs needed		2	2	0	0	0
		I			ī	1
Band: 2500	Alpha	Beta	Gamma	Delta	Epsilon	Zeta
Antenna1	ADVAGENA ALLE 100	ADVA (7444 ALLI 100	LADVO (TMAA ALLI 100		1	
	APXVTM14-ALU-I20	APXVTM14-ALU-I20	APXVTM14-ALU-I20	N// A	N// 8	N/A
Weight (lbs)		56.2	56.2	N/A	N/A	N/A
	56.3 x 12.6 x 6.3	56.3 x 12.6 x 6.3	56.3 x 12.6 x 6.3	N/A	N/A	N/A
Manufacturer		RFS	RFS	N/A	N/A	N/A
Ant1 Top Jumper Make/Mode/Qtyl		2.5 Jumper 8	2.5 Jumper 8	N/A 0	N/A 0	N/A 0
Ant 1 RF requested Diameter	1/2"	1/2"	1/2"	N/A	N/A	N/A
Ant 1 RF requested Top Jumper	8	8	8	N/A	N/A	N/A
Length(ft) Antenna 1 Azimuth	0	120	240	N/A	N/A	N/A
Antenna 1 Mechanical DT	N/A	N/A	N/A	N/A	N/A	N/A
	174.9671972	174.9671972	174.9671972	N/A	N/A	N/A
Antenna 1 Center Line (ft)	2	2	2	N/A	N/A	
Antenna 1 Electrical DT						N/A
Antenna 1 Electrical DT 2	N/A	N/A	N/A	N/A	N/A	N/A
Antenna 1 Electrical DT 3	N/A	N/A	N/A	N/A	N/A	N/A
Antenna 1 Twist	N/A	N/A	N/A	N/A	N/A	N/A
Band: 1900	Alpha	Beta	Gamma	Delta	Epsilon	Zeta
Antenna1	Luna (050 D)		L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u> </u>
Model Number	NNVV-65B-R4	NNVV-65B-R4	NNVV-65B-R4			
Weight (lbs)		84.7	84.7	N/A	N/A	N/A
Dimensions	72 x 19.6 x 7.8	72 x 19.6 x 7.8	72 x 19.6 x 7.8	N/A	N/A	N/A
Manufacturer		CommScope	CommScope	N/A	N/A	N/A
Ant1 Top Jumper Make/Mode/Qtyl	800/1900 Jumper 4	800/1900 Jumper 4	800/1900 Jumper 4	N/A 0	N/A 0	N/A 0
Ant 1 RF requested Diameter	1/2"	1/2"	1/2"	N/A	N/A	N/A
Ant 1 RF requested Top Jumper Length(ft)	8	8	8	N/A	N/A	N/A
	0	120	240	N/A	N/A	N/A
Antenna 1 Azimuth Antenna 1 Mechanical DT	N/A	N/A	N/A	N/A	N/A	N/A
	174.9671972	174.9671972	174.9671972	N/A	N/A	N/A
Antenna 1 Center Line (ft)	3	3	3		N/A	N/A
Antenna 1 Electrical DT			N/A	N/A		
	N/A	N/A	IN/A	N/A	N/A	N/A
Antenna 1 Electrical DT 2	11/A		h1/4	A1/A		
Antenna 1 Electrical DT 3	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A

INTERNATIONAL BLVD, SUITE 800 MAHWAH, NJ 07495 TEL: (800) 357-7641


PROJECT MANAGER:

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 TEL: (508) 251-0720

FROM ZERO TO INFINIGY
the solutions are endless

1033 Watervilet Shaker Rd | Albany, NY 12205 Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com JOB NUMBER 526-104

CHECKED BY:

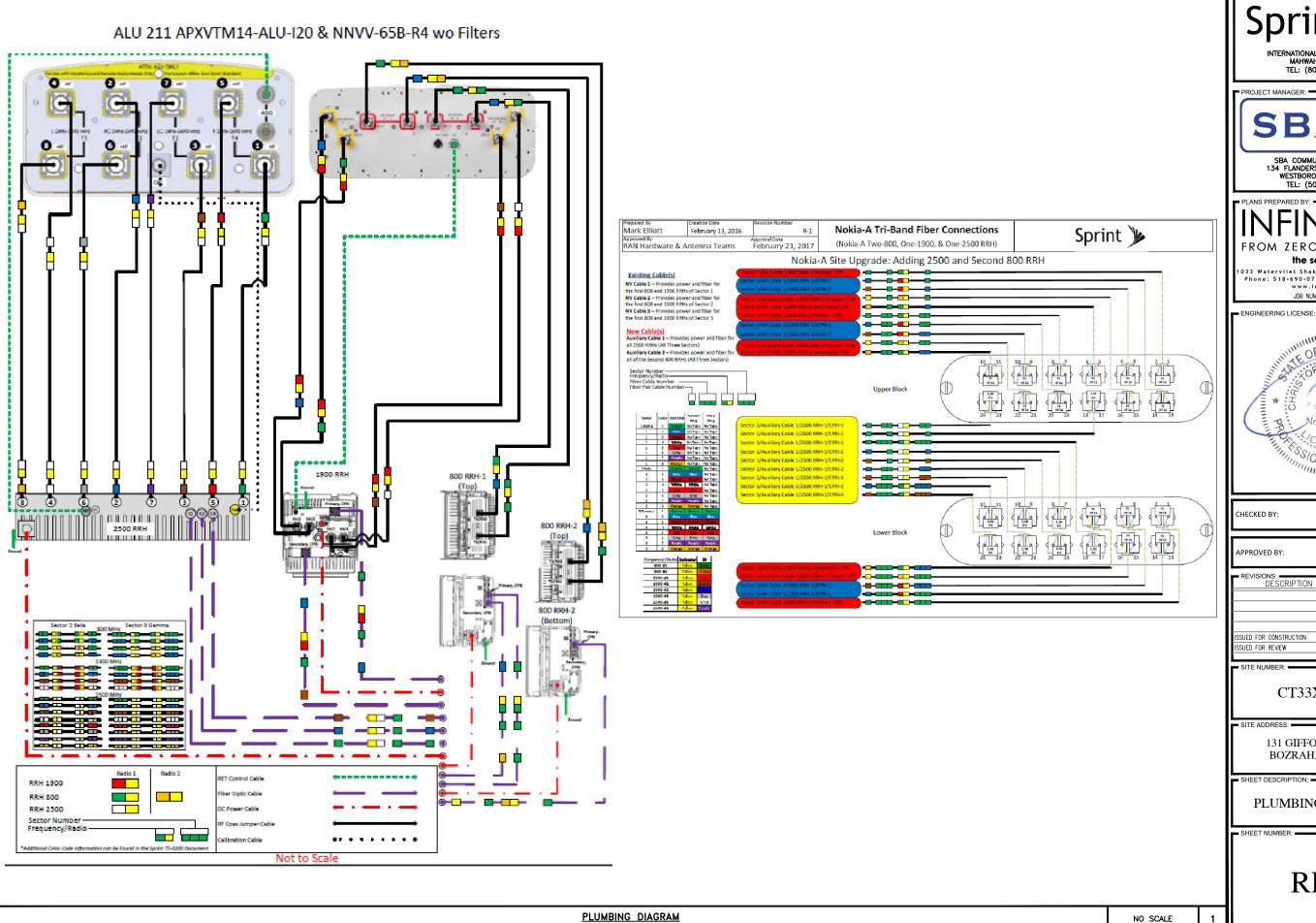
APPROVED BY:

REVISIONS:			
DESCRIPTION	DATE	BY	REV
ISSUED FOR CONSTRUCTION	03/22/18	SL	0
ISSUED FOR REVIEW	01/18/18	RCD	Α

SITE NUMBER

CT33XC574

SITE ADDRESS


131 GIFFORD LANE, BOZRAH, CT 06334

SHEET DESCRIPTION:

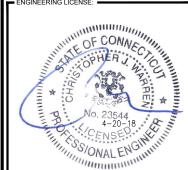
RF DATA SHEET

SHEET NUMBER:

RF-1

INTERNATIONAL BLVD, SUITE 800 MAHWAH, NJ 07495 TEL: (800) 357-7641

PROJECT MANAGER:



SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581

FROM ZERO TO INFINIGY

1033 Watervliet Shaker Rd | Albany, NY 12209 Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com JOB NUMBER 526-104

the solutions are endless

REVISIONS:			
DESCRIPTION	DATE	BY	RE'
ISSUED FOR CONSTRUCTION	03/22/18	SL	0
ISSUED FOR REVIEW	01/18/18	RCD	Α

CT33XC574

131 GIFFORD LANE, BOZRAH, CT 06334

PLUMBING DIAGRAM

RF-2