Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

July 25, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 785 Park Avenue, Bloomfield, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an wireless telecommunications facility at the Bloomfield Police Station at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a monopole telecommunications tower and associated equipment on the ground near the base of the tower. The existing tower was approved by the Town of Bloomfield ("Town") in October of 2002. Cellco's use of the tower was approved by the Council in November of 2002 (EM-VER-011-021017). Copies of the Town's approval and Council's EM-VER-011-021017 approval are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing three (3) existing antennas and installing three (3) new Samsung MT6407-77A antennas on the existing antenna platform. Cellco also intends to replace six (6) remote radio heads ("RRHs") with six (6) new RRHs in the same general locations on the platform. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRHs specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Bloomfield's Chief Elected Official and Land Use Officer. The Town is the owner of the tower and Property.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. July 25, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas will be installed on Cellco's existing antenna mounts.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna platform and mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. July 25, 2022 Page 3

Sincerely,

Kunig mm

Kenneth C. Baldwin

Enclosures

Copy to:

Stanley Hawthorne, Bloomfield Town Manager Jennifer Valentino-Rodriguez, Director of Planning and Zoning Alex Tyurin, Verizon Wireless

ATTACHMENT 1

TOWN OF BLOOMFIELD

800 Bloomfield Avenue - P.O. Box 337 Bloomfield, CT 06002 (860) 769-3516

BUILDING PERMIT APPLICATION

Job Location: 785 Park Ave, Bloomfield, CT Lot #: Zone:							
Purpose structure, it is dostavod to accompany town Polico + Moscowo Communications and of Permit: four wirelass carriers.							
Building Permit No: 2/872 Use Group: 1/							
Type of Construction:							
Property Owner - Name/Address	Contractor - Na	me/Address	Arch/Eng/.	Agent - Name/Address			
Town of Bloomfield	Construction So	ruicos	Natcomm, 1	Jde			
800 Bloom Field Auc	of Brawford, hnc. 6	3-3 North	63-2 Vorth	Brauford Rd,			
Bloomfield, CT, 06002	Bravioral Rd, Bravie	nd, CT, 06405	Branford, CT	r,06405			
Phone:	Phone: (203) 485 -	2170	Phone: (203) 4	+88-0560			
	USE:			λ			
Residential Use	Public Assembly	,	Industri	al			
Single Family	□ Business		□ Storage				
Multi Family	Educational		□ Utility				
FEE INCLUDES:	ESTIMATED	COST	·····	FEE			
General Contractor	\$_110,000		\$				
Plumbing Permit #:	\$	s		\$			
Heating Permit #:	\$		\$				
□ A/C Permit #:	\$		\$ <u>`</u>				
Electric Permit #:	\$		\$				
Sprinkler Permit #:	\$		\$				
Li #:	J	0	TOTAL \$	540.00			
CERTIFICATION: I hereby certify that: I am the owner of record of the named property or I that the proposed work is authorized by the owner of record and/or I have been authorized to make this application as an agent, and we agree to conform to all applicable laws, regulations and ordinances. All mation contained within is the and accurate to the best of my knowledge and belief							
Simula Alt	Date: Contractor's License #:						
Signed: UNY Owner Contractor Agent 10/25/02 mc0.900576							

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm

November 8, 2002

Kenneth C. Baldwin Robinson & Cole 280 Trumbull Street Hartford, CT 06103-3597

RE: **EM-VER-011-021017** - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 785 Park Avenue, Bloomfield, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on November 7, 2002, the Connecticut Siting Council (Council) acknowledged your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated October 17, 2002. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Very truly yours.

Chairman

MAG/laf

c: Honorable Faith McMahon, Mayor, Town of Bloomfield Thomas B. Hooper, Director of Planning, Town of Bloomfield Christopher B. Fisher, Esq., Cuddy & Feder & Worby LLP

ATTACHMENT 2

verizon⁄ WIRELESS COMMUNICATIONS FACILITY

BLOOMFIELD 3 CT 785 PARK AVENUE BLOOMFIELD, CT 06002

DRAWING INDEX

T-1 TITLE SHEET

- C-1 COMPOUND PLAN, TOWER ELEVATION, EQUIPMENT **CONFIGURATION PLANS & ELEVATIONS.**
- **RF BILL OF MATERIALS, MECHANICAL SPECIFICATIONS &** B-1 EQUIPMENT DETAILS.
- N-1 NOTES & SPECIFICATIONS

SITE DIRECTIONS

START:	20 ALEXANDER DRIVE
	WALLINGFORD, CONNECTICUT 06492

END:	785 PARK AVENUE
	BLOOMFIELD, CT 06002

1.	HEAD SOUTH TOWARDS ALEXANDER DRIVE	279 FT
2.	SLIGHT RIGHT TOWARDS ALEXANDER DRIVE	289 FT
З.	TURN RIGHT TOWARDS ALEXANDER DRIVE	167 FT
4.	TURN RIGHT ONTO ALEXANDER DRIVE	0.3 MI
5.	TURN RIGHT ONTO BARNES INDUSTRIAL RD S.	0.1 MI
6.	TURN LEFT ONTO CT-68 E	1.6 M
7.	CONTINUE STRAIGHT TO STAY ON CT-68 E	0.2 MI
8.	SHARP LEFT TO MERGE ONTO I-91 N TOWARD HARTFORD	0.3 MI
9.	MERGE ONTO I-91 N	21.5 M
10.	TAKE EXIT 36 FOR CT-178/PARK AVE. TOWARD BLOOMFIELD	0.2 MI
11.	TURN LEFT ONTO CT-178/PARK AVE.	2.4 MI
12.	SLIGHT LEFT TO STAY ON CT-178 W	0.5 MI
13.	TAKE RIGHT TO STAY ON CT-178 W (DESTINATION WILL BE ON LEFT)	1.5 MI

13. TAKE RIGHT TO STAY ON CT-178 W (DESTINATION WILL BE ON LEFT)

SITE INFORMATION

VZ SITE NAME: BLOOMFIELD 3 CT VZ STIE NAME BLOOMHELD VZ PROJ FUZE I.D.: 16272375 VZ LOCATION CODE: 468782 VZ PROJECT CODE: 20212234137 LOCATION: 785 PARK AVENUE BLOOMFIELD, CT 06002

PROJECT SCOPE: REFER TO NOTES ON DRAWING C-1 FOR SCOPE OF WORK MAP-BLOCK-LOT: 177-3-6

ZONING DISTRICT: BCD (BUSINESS)

LATITUDE: 41° 49' 42.63" N (41.6285083° N) SITE COORDINATES AND GROUND ELEVATION OBTAINED FROM GOOGLE EARTH.

LONGITUDE: 72° 44' 01.09' W (72.7336361° W)

GROUND ELEVATION: 118 ± AMSL

PROPERTY OWNER: TOWN OF BLOOMFIELD C/O POLICE STATION 800 BLOOMFIELD AVE BLOOMFIELD, CT 06002

> APPLICANT: CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492

LEGAL/REGULATORY COUNSEL: ROBINSON & COLE, LLP KENNETH C BAI DWIN ESO 280 TRUMBULL STREET HARTFORD, CT 06103

> ENGINEER CONTACT: ALL-POINTS TECHNOLOGY CORPORATION. P.C. 567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 (860) 663-1697

VERIZON SMART TOOL PROJECT #: 10044566; 10115591

OF CONNE EL TRO /CENS SIONAL PROF: MICHAEL S. TRODDEN P.E COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 06385 TOWN OF BLOOMFIEL C/O POLICE STATION DDRESS: 800 BLOOMFIELD AVE. BLOOMFIELD, CT 06003 BLOOMFIELD 3 CT SITE 785 PARK AVENUE ADDRESS: BLOOMFIELD, CT 0600 APT FILING NUM P. CT141 125 DRAWN BY: DR DATE: 08/06/21 CHECKED BY: JR VZ PROJECT CODE: 20212234137 VZ LOCATION CODE: 466782 VZ FUZE ID: 16272375 SHEET TITLE: TITLE SHEET SHEET N T-1

Cellco Partnership d/b/a verizon

ALL-POINTS TECHNOLOGY CORPOR/ AUXHALL STREET EXTENSION - SUITE 31 CONSTRUCTION DOCUME

NO DATE REVISION 08/06/21 FOR REVIEW: JR 01/25/22 FOR FILING: JRW 01/26/22 FOR FILING: JR

DERGN BASS	MANAGER AND DEADE ALL ACTIVITES IN AFFECTED AREAS UNTL NOTIFIED BY THE CONSTRUCTION TO RESUME OPERATIONS.	REGULATIONS. ALL OPOUNDING ILLICTFODIS PRESENT AT FACH DERVICE LOCATION	ALL CASLES AND ANTENNAS TO THE MANUFACTURERS AND OWNERS SPECIFICATIONS	Cellco Partnership d/b/a
DOVERNING CODES/DESIGN STANDARDS 2015 NETRINATIONAL BUILDING CODE (SIC) AS AMENDED BY THE	EXIST. ELECTRICAL AND MECHANICAL FIXTURES, PIPING, WIRING AND EQUIPMENT COSTRUCTING THE WORK SHALL BE REMOVED AND PROVIDED AS DESCRIPTION OF DESCRIPTION OF DESCRIPTION.	SHALL BE BONDED TOGETHER TO FORM THE SPOUNDING ELECTROCE SYSTEM	ANTENNA GABLES SHALL SE POAM DELECTRO OGAXAL GABLES AS POLICIWS:	- /
2018 CONNECTIOUT STATE BUILDING CODE ASCIL 7-10	MANAGER TEMPORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.	GIGUNDID BY THE INSTALLATION OF A SERVICE GIGUNDING CONDUCTOR FOR ALL PEDER AND SHANCH DROUTS THAT IS 622D	7.0" DAMETER FOR CALLE LINGTHE UP TO 100 FT. 1.40" DAMETER FOR CALLE LINGTHE ORIGITER THAN 100 FT.	verizon ^v
In the second se	05 STEEL:	CONTINUOUS IN LEWISCH, AND BHALL BE KINDED TO EACH BACAGUINE PARKED THROUGH, CONDUIT SHALL IN OT BE USED AS A GROUNDING OR	OPG ANTEINIAG: TOP CAMETER FOR CARLE LENGTHS UP TO 200 FT. TOP COMPTENDER OF CARLE LENGTHS UP TO 200 FT. TOP COMPTENDER OF CARLE LENGTHS OF CARLES THAN 300 FT.	
OT GENERAL: ADDREVATIONS USED IN THESE SPECIFICATIONS INCLUDE THE	THESE EPEOPRATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HEREN.	BONDING WHE OR ORDUTTS BOND ALL METALLIC CONDUCTS TOGETHER THAT ARE CONNECTED TO NON-METALLIC INCLOSURE. IN ORDUND ROPE, AND TO AN	MINIMUM BENDING RADIUS FOR COAXIAL CABLES BHALL BE: +15/TF FOR 7/F COAXIAL CABLES	20 ALEXANDER DRIVE
ACI AMERICAN CONCRETE INSTITUTE AND AMERICAN INATIONAL STANDARDS INSTITUTE	WDE FLANGE ASTM Add2, GR 50 TUBING ASTM Add2, GR 50	ENCLOSURE WHERE A GROUND BUG IS SPECIFIED OR BUPPLED. ACCOMPLISH THE BOND WITH GROUNDING CONDUCTORS MINIMUM STED TO THE LARGEST GROUNDING COMPLICTOR SECONT IN THE	+ 25 FT FOR 1-SM* COADEAL CABLED. CABLE SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS	WALLINGFORD, CT 05462
AWS AMERICAN WELDING SOCIETY ASC AMERICAN INSTITUTE OF STIEL CONSTRUCTION	PIPE ASTM ASS, GR B BOLTS ASTM ASIS OBJETAD TYPE ON 2 (1.18%) TYPE ON 2	VILAUSE BRIHRUE BEYT BRICKLORE A OT CETSENROS BRUESLORE IN ELEKAN ROTADOMROSA BRIV DAUGRE MUMAN RO BISTE REELES PREMISTING SECTORES BET BRUTSAN MAN AND REALINES	SHALL BE BEALED MANEDATELY AFTER BEING NETALLED. ALL EXTERIOR CABLE CONNECTIONS & ALL BE CONTRED WITH A	
ASTM AMERICAN STANDARDS AND TESTING METHODS ORIG CONDUITE REINFORCES BY THE NOTICE	EXISTING METALIS ASTM ASS ENCODE CRITECATION THAT WELCERS TO BE LISTO IN WORK ARE	COUPMENT RECUNDING AND LOAD BDE BONDING CONSUCTORS SHALL BE GZED PER THE OROLITS OVER-CURRENT PROTECTIVE DEVICE	WATERPROF SPLONG KT. CONTRACTOR 644LL VERIFY EACT LENGTH AND DRECTON OF TRAVE.	ALL-POINTS
TA TELEDOMMUNICATIONS NUMERAL ASSOCIATION	LICENSED AND HAVE BATISFACTORILY PASSED AWS QUALFCATION TEST UNDER THE PROVISIONS OF APPENDIX D, PARTS II AND III OF THE AND CONTRACT THE DATA AND AND AND AND AND AND AND AND AND AN	DOPD SZE, WHERE THE UNGROUNDED CONDUCTORS ARE INDREASED IN BZE ABOVE THE STANDARD FOR THE CIPULTS COPD, INCREASE THE GROUNDING CONDUCTOR NEWORTCONNEELY TO THE	CABLE BHALL BE FURNISHED AND INSTALLED WITHOUT BPLICES AND WITH CONNECTORS AT EACH END.	TECHNOLOGY CORPORATION
UL UNDERWITTING LABORATORIES NEC NATIONAL ELECTRICAL COCE NETA NATIONAL FIRE PROTECTION ASSOCIATION	ALL BULDING CONNECTION POINTS TO BE CENTERED ON EXISTING STRUCTURAL BEARING POINTS AND THE LOCATIONS ARE TO BE VEHIFIED	CHOSE-BLOTIONAL AREA OF THE UNDERDUNDED CONDUCTORS GREVOE MAN BONDING JUMPERS AND GROUNDING BLECTRODE CONTROLOGY AND ADDRESS AND BREVEN AND ADDRESS	27 CABLE TRAY: THESE SPECIFICATIONS BHALL INCLUDE THE GENERAL SPECIFICATIONS	567 VAUXHALL STREET EXTENSION - SUITE 311 WATERCORD, CT 08365 PHONE: (880)-483-1897
06HA OCCUPATIONAL BATETY AND HEALTH ADMINISTRATION EVERY NOMOLIAL TRADE, DISCPLINE, AND CONTRACTOR BHALL	IN RELD PRIOR TO THE FARMONTON OF STIELL DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE LATERT FRITON OF AND REFORMATION FOR THE OWNER.	ALL APPLICABLE CODE AND REAL ATONE 26 LIGHTNING PROTECTION:	HEREN CABLE TRAY SHALL BE MADE OF ETHER CORROSION RESISTANT METAL OF WITH A CORROSION RESISTANT FINISH	WWWALLPOINTSTECH.COM FAX: (880)-665-0935
THE ENGINEER IS NOT REPORTED FOR NOR A SUMMATION OF THE INSTALLING CONTRACTORS WORK, ADECLARY OF ANY SITE	PARAMENTION AND EXECTION OF STRUCTURAL STEEL FOR SCALDINGS' NON-STRUCTURAL CONNECTIONS FOR STEEL CRATING MAY USE 58'	THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS AND THE GROUNDING SPECIFICATIONS HEREIN.	CABLE THAY SHALL BE OF LADDER THAY TYPE WITH FLAT COVER CLAMPED TO BDE PALS.	CONSTRUCTION DOCUMENTS
COMPONENT, SUPERVISION OF ANY WORK, AND SAFETY IN, ON, OR ABOUT THE WORK SITE.	DAMETER GALWANZED ASTM A 307 BOLTS UNLESS OTHERWISE NOTED. ALL STEEL MATERIAL BHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A 125 12NO (HOT-OTHER GALVANIZED)	THE LEHTING PROTECTION GROUNDING SYSTEM (UNG) BHALL CONSTCOP BONDING ALL BOUMAINT AND CONDUCTVE STRUCTURES TO LOCALIZED BINGLE POINT SHOUNDING CONNECTIONS ("VPROALLY	CARLE LADDIN GALL BE SZIE TO FIT ALL CARLES N ACCORDANCE WITH NEO AND NEMA 11-15-64. CARLE LADDIN TRAVE RIVAL BE NIMA CLASS 12A ITY FW INDUITING.	NO DATE REVISION
GRALL BE PRE-APPROVED BY THE CONGTRUCTION MANAGER BEFORE INSTALLATION	COATINGS' ON IRON AND STEEL PRODUCTS WITH A COATING WEIGHT OF 2 OZ/SF:	SYSTEM, IF THE LPGS IS ON A BUILDING, IT SHALL BE SFECTIVELY BONDED TO THE ELECTRICAL SERVICE MAN BONDING JUMPER AND TO	INC. OR EQUAL. CABLE LADDER TRAY SHALL BE SUPPORTED IN ADDORDANCE WITH	1 01/25/22 FOR FILING: JRM
ALL TRADES SHALL COORDANTE THER WORK WITH ALL OTHER TRADES AND OTHER WORK AND CONDITIONS AS APPRIMENTE OF REQUIRED TO AVOID CONFLICTS. PESCAVE AND COORDINATE ALL CONFLICTS WITH	WEATHER BHALL BE GALWANZED IN ACCORDANCE WITH ABIN A153 72NC COATING (HOT DP) ON IRON AND BITEL HARDWARE *	ADDITIONAL IN GROUND IL SCIPIODE AS MAY BE REQUIRED OR INDIGATED, IF THE LPGS IS ON A DEDIGATED COMMUNICATION BITE, ALL EQUIPMENT AREAS AND TOWERS ENALL EXCHANCE THER OWN	ALL WORKANSHIP SHILL CONFORM TO THESE REQUIREMENTS AND ALL WORKANSHIP SHALL CONFORM TO THESE REQUIREMENTS AND ALL LOOK AND STANDARDS TO ENSURE SATE AND ADDILATE	2 01/26/22 FOR FILING: JRM 3
ALL APPECTED WORK AND STEE OPERATIONS. DOORDIVATION WITH THE STEE SHALL BE WITH THE OWNER, OR OWNERS SPECFED REPRESENTATIVE, FOR EVERYTHING RELATED TO THE INSTALLATION OF	DAMAGED GALWARED BURYACEE BYALL BE REFAILED BY TOUCHING UP ALL DAMAGED GALWARED BTEEL WITH OOLD ZING, 'GALVANGR', 'DRY GALV, OR 'ZNCIT', IN ACCORDANCE WITH MANUFACTURES	IN GROUND INSUMITH EVENT INSEED NOT THE AND ALL CONDUCTIVE STRUCTURES IN CLOSE PROXIMITY FENCES. ICE BRIDGES. ISOLATED EQUIPMENT, ITC.) ALSO BONDED TO PROVIDE A COMPACY	GROUNDING GYSTEM	4
THIS PROJECT. ALL WORK GRALL BE IN STRUCT ACCORDANCE WITH ALL APPLICABLE EDVTORS OF ALL APPLICABLE CODER AND SHALL BE ACCEPTAIN E TO	GLIDELNER, TOUCH UP DAMAGED NON GALVANZED BTEEL WITH BAVE PAINT APPLIED IN BYOP OR PIELD. THE RAINNEER BHALL BE NOTEED OF ANY INCORRECTLY FAREIGATED.	ILLIGTINGA, EQUIPOTENTIAL BYSTEM FOR ALL CONDUCTIVE ELEMENTS AND BITRUCTURES. CONTACTORIS.		6
ALL AUTHORITIE HAVING JURIEDICTION (AHJ), WHITH A DONELIDT ISOBTO BETWEEN CODE, FLANS, BREOFICATIONS, AND/OR ANJ, THE MORE RETIMETER A INFORMATION AND A TRANSPORT	DAMAGED OR OTHERWISE MISETTING OR NONCONFORMING MATERIALS OR DONUTIONS TO REMEDIAL OR CORPECTIVE ACTION ANY BUOH ACTION INVILL REQUIRE REINING MULTING OF	MIN #2 AWG SOLD BARE TINNED COPPER (SETC) FOR ALL IN GROUND CONDUCTORS		
BETWEEN PLANS AND SPECIFICATIONS, PLAN SHALL APPLY WHERE CONFLICT EXISTS BETWEEN PLAN SHEETS, CONSTRUCTION WAVAGER Real LIP CONFLICT TO DEVICE TO COMMENTIAL ANY WORK	STRUCTURAL STEEL & NOT PERMITTED DICEPT WITH THE PRICE. APPROVAL OF THE INSTRUM.	STRUCTURES, AND FOR INTER-BYSTEM BONDING OF NOVIDUAL ILLIMENTS SUCH AS GROUND BAR TO GROUND BAR		
CONTINUTION SHALL PROVIDE ALL LABOR, MATHURLS, INSURANCE, EGUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION,	THE BITEL BITHLOTUPE SHALL BE DESIGNED TO BE SELF-SUPPORTING	MIN 46 AWG COPPER GREEN BEHANDED OF ALL EQUIPMENT BONDING INSTALL ALL IN-GROUND CONDUCTORS IN THE SAME HORIZONTAL		INTE OF CONNECTION
THROUGHOUT AND AS INDICATED ON THE DRAWING AND AS SPECIFIED HEREIN AND/OR OTHERWISE REQUIRED.	BLOOD BROTOLATINGO BH'S BL'I ALGUIL PARO RETAR SUBARI CAN BLORELODE GANA BRUCELOOPRO HOTOOREE BROTOLO YTLLEBRACHER TAILMORMOO BL'I GAN DALLAU HIT YO YTHINKE BH'S BH'S BRUCH OT CAN	FLANE OR IN A DOMENTARIA DIRECTION AWAY FROM THE TOWER AND EQUIPMENT AREAS AND CLUMB RUNS. MAKE DIRECT RUNS AS MUCH AS PORTING F		NAR JAEL TROP C
CONTRACTOR BHALL VEREY ALL EXISTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT IN THE FIELD PROFITO BD, FABRICATION, AND INSTALLATION OF ANY WORK.	PARTIE DURING ISROTION. ALL STEEL ELEVENTS GRALL BE INSTALLED PLUMS AND LEVEL.	FLACE THROUGH NON-METALLIC BLEEVER WHEN PAGENG THROUGH RUCKIE, WALLE, CELINDE, AND BMILAN STRUCTURES MILEN STRUCTURES		S S S S S S S
CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PHON TO FASHIGATION AND ERECTION OF ANY MATIENAL. THE	CONSTRUCTED IN ACCORDANCE WITH THE LATERT EDTION OF THE AIBC CONSTRUCTED IN ACCORDANCE WITH THE LATERT EDTION OF THE AIBC	EXCITEEING WELDING IN CALLED WIT DON'T WITH EXCITEEING WELDING, INVEXTIGATION OF THE COMPLETIONS WITH EXCITEEING WELDING, INVEXTIGATION OF THE COMPLETIONS WITH		
PRINTING AND OF ANY CONTINUE WHICH PROLUDE COMPLETION OF THE WORK N ADDORDANCE WITH THE CONTRACT	MANUAL OF BTEEL CONSTRUCTION", CONNECTIONS & ALL BE PROVIDED TO CONFORM TO THE RECURRENTS OF TYPE 2 CONSTRUCTION	 INSTALL ALL CONDUCTORS WITH A MINIMUM 18 INCH BEND RADIUS AND NO BEIND LONGER THAN A 50 DEGREE ARC. ALL BENDS INVALL 		Mathematic
CONTRACTOR BHALL VIBIT THE SITE TO MANAGE AND GAIN APPROVAL FOR ALL TENANT DISPUPTIONS, POWER OUTAGES, WORK SCHEDULES,	STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325 ALL BOLTS SHALL BE MINIMUM 34P DIAMETER AND EACH CONNECTION	BE HORIZONTAL, OR DOWINIARD TOWARDS EARTH ALL CONDUCTORS PASSING FROM ABOVE GROUND TO IN-GROUND CONNECTIONS, WARRE SPORED, SHALL BE COVERED AND		P 33313
DEPINITION OF WORK AREA AND WORK ETDEMAIL. NEWER BUILD NEWER ACCESS, NOISE AND CLEANLINESS REQUIREMENTS WITH THE BUILD NEWERIT MANAGEMENT PROF TO ALL WORK. ANY DISPUPTIONS	PREMITTED FOR ASS STEEL ASSEMELTED, IF TENSION CONTROL BOLTS ANU USED, CONNECTIONS BRALL BI DISTANED FOR SLP ONTION, BOLT	PROTECTED WITH A NON-METALLIC CONDUCT SEALED AT BOTH ENDS. JES OR MORE IN GROUND CONDUCTOR ADE IN THE BANE DATE OF		A LICENSED
BRALL BE KEPT TO A MINIMUM AND GHALL BE INFLEMENTED ONLY LIPON WRITTEN APPROVAL OF THE CANNER.	ALLOWING THE YALKED DESIGN CONNECTONS AT BEAM ENDS FOR 10 KIPS (MIN) ALL LUCK TED CONNECTONS SHALL BE COMPLETED WITH DOLESE	BADGE OVER APPING, BONDING FOLLOWING ANOTHER RING OR RADUL, OR BUILLAR, COMBINE WITH A BHARED BINGLE		SIONAL ENJUN
APPLICTING TENANT EXPLISION OF COMPROMISING STELEDURITY MEASURES	NUTE OF A LOOK WASHER CONTRACTOR BHALL COMPLY WITH AWE CODE FOR PROCEEVINES,	EQUIPMENT AND TOWER GROUND RINGS SHULL BE: +BONDED TO ANY CONSULTIVE OSJECT OR STRUCTURE WITHIN 5		and an
PROFID ALL BILLOW-GRADI WORK AND ANY BURKADI WORK IN A NEW ARIA FOR STRUCTURES OR VEHCLES, CONTRACTOR SHALL INVASE A MARKUT BERINGE TO DENTIFY ANY UNDERGROUND	DHALL BE CLAUFIED IN ACCORDING WITH AWS STANDARD DUAL PECADON PROCEDURES'. ALL WILDING BHALL BE PERFORMED	FIELD OF EQUIPMENT GROUND RINGS AND WITHIN 20 FEEL OF TOWER GROUND RINGS UNITALIZE MINIMUM 16 INCHES FEED FOLINEATIONS, FOCTINGS,		
STRUCTURES, CONDUITS, AND PRELIMES IN THE AREA. ALL BOSTING SIMPLIR, WATER, GAS, ELECTRIC, FISER OFTIC, AND OTHER UNDERVISIOUND UTLITTES DENTIFIED OR ENCOUNTERED, SHALL BE	USING EF30X ELECTRODES AND SHALL CONFORM TO A BC AND D1 1 WHERE FILLET WILD SIZES ARE NOT SHOWN. PROVIDE THE LARGER OF 1/8 FILLET OR MINIALM BIZE FRE TABLE 22.4 IN THE ADD TABLE OF	AND SIMILAR. INSTALL ALL IN GROUND RINGS, BADIALS, BONDS CONNECTING THEM,		
PROTECTED AT ALL TIMES. EXTREME CAUTON BHOULD BE USED BY THE CONTRACTOR WHEN DISGING OR EXCAVATING IN ANY MANNER AROUND OR NEAR SUCH UTLIES. CONTRACTOR IS REPORTED FOR	BTABLE CONSTITUENTIANT AT THE COMPLETION OF WELDING, ALL DAMAGE TO BALVANZED COATING SHALL BE REPARED. SEE NOTE REGATIONS DAMAGED CALVANZED SUIFACES	AND ALL BIMLAR GROUND NG: + MN 30 NOHED BELOW GRADI, OR 6 NOHEB BELOW THE PROFE LINE, WHICH WER IS GREATER DEPTH.		PROF: MICHAEL & TRODDEN R.E.
REPARE, REPLACEMENT, AND ALL DAMAGES OUE TO DAMAGE OF UTILITIES BY HIS OPERATIONS. ALL EVENTIES AND DEVELOPMENT AND MATERIAL LOCATIONS	ALL ARD AND GAS WELDING GHALL BE DONE BY A LICENSED AND CERTIFIED WELDER IN ACCORDANCE WITH AWE.	 MIN 2 PEET FROM FOUNDATIONS, FOOTNES, OTHER GROUNDING STREEMS, AND SMLAR STRUCTURES, DODET WHEN MAKING A BOND TO ANY OF THESE STRUCTURES. DO NOT TO 		COMP: ALL-POINTS TECHNOLOGY
ADJ. EX6 INC. REPLATION, MOUNTING, SPECIFICATIONS AND GENERAL INITIALLIES CHARACTERNITICS 6-HUL BIT CONSIDERED CHARAMMATIC INITIALLIES CHARACTERNITICS 6-HUL BIT CONSIDERED CHARAMMATIC	SIAL ALL PINITRATONS AND BLAMS SITVILIN MASONIY AND STILL WITH DOW COPINING 760 BLICONE BUILDING BEALANT OF EQUAL,	POUNDATION INTERNAL REINFORDEMENT ALL BOLIPHIENT GROUPED IN A COMMON AVEA, COMPOUND,		ADD: 567 VAUXHALL STREET EXT.
FILD PROFITD ANY INSTALLATION. ANY DIFFERENCES THAT MAY DAUGE SCHEDULE, COST, OF CAULTY BHALL BE BROUGHT TO THE	28 ELECTRICAL: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS	and use the second seco		SUITE 311 WATERFORD, CT 06385
ALL REPERSION THE OWNER OF EAST ON OF ANY CONDITION OF STE, RELD, RANS, OR SPECTION OF ANY CONDITION OF STE, FIELD, RANS, OR SPECTION OF PROFILE TO ANY WORK SHALL BETTHE	HENEN. ALL ELECTRICAL CONDUCTORS INSULATION SHALL BE MINIMUM BOXY TYPE THEN, THAN & OR	MINIMUM WITH IACH ONDUCTOR NETALLID DRIEGTONALLY AWAY FROM EACH OTHER AND PARALLEL TO THE N-GROUND CONDUCTOR, UNDUCTOR CONDUCTOR,		OWNER: TOWN OF BLOOMFIELD
PALL RESPONSES. TY OF THE CONTRACTOR. ANY AND ALL ADDITIONS, NODFICATIONS, CHANGES, REPAIR, OR DEMOLITON AS A RESULT OF FAILURE TO BRING ANY EXECTING CONDITION NEMERLY TO THE	30HW • BRANCH CREUIT CONDUCTORS BHALL BE SOFT DRAWN 99% MINING CONDUCTORS WHALL BE SOFT DRAWN 99%	TOWER CROCINGING		ADDRESS: 600 BLOOMFIELD AVE. BLOOMFIELD, CT 06002
ATTINTION OF THE OWNER OR ENGINEER SHALL BE THE FULL REINONBELTY OF THE CONTRACTOR WITHOUT DELAY, COST, OR CHANGES IN QUALITY.	FEEDER CIRCUT OCHOUCTORS GHALL BE INTER COPPER OR ALUMINUM OF THE APNEWRATE SZE FOR THE APNEWRATION, OR AS	TOWIRE, OR MONOPOLIE, BHALL HAVE 2 BONDE ON OPPOBITE BODE BOND TO TOWIRE BARE NOT TO VEHICLE TOWER ATK AT HE		
ALL NOTES THIS SHEET SHALL AFFLY UNLISS SPECIFICALLY NOTED OTHERWISE ON THE NOLLOED DRAWINGS OR IN SERVICE PROJECT OPERATORS AND ADDR COMPLETED TO THE OWNER OWNER THE	PERMANENTLY NOTED PERMANENTLY LISEL OF TAG ALL CONSUCTORS WITH THEIR CIRCUIT DEBONATION AT ALL TERMINATION ENDS, SPLOTE, AND	AWAY FROM TOWER MOUNTING HARDWARE • EACH BOND BHALL HAVE A COVERBPONDING GROUND ROD ON THE BANK		
CONSIDERED REQUIRED UNLESS APPROVED EQUAL BY THE OWNER, CONSIDERUTION MANAGER, OR INVENTION AS APPLICABLE	ALL CONDUCT, RACEWAY, WREWAYS, DUCTS, ETC. SHALL BE LISTED AND SUMALE FOR THE APPLICATION, ONLY THE POLLOWING CONDUCTS	 EACH BOND SHALL CONSIST OF 2 CONDUCTORS FROM THE TOWER TO THE RING WITH EACH CONDUCTOR ORECTED IN OPPOSITE 		
INSTALL CONTINUED IN BUILD IN CALL AND AND PATCHING AS	AS APPROVED AND USTED FOR THE APPLICATION SHALL BE ACCEPTABLE: HEROTIONAL METALLICITURING (EMT).	OPPORTE SIZES OF THE GROUND ROD. EQUIPMENT AREA GROUND NO:		
RECURED FOR THE INSTALLATION OF HIS WORK. ANY PATCH NG SHALL MATCH EXISTING SUPPOLINDING AREA IN ALL REPECTS. ALL REMOVED MATTINAL SHALL BE REMOVIDE FROM THE PRIMINISE DALLY IN AN	COMPRESSION COUPLINGS AND CONNECTORS ONLY MADE UP WRENCH TIGHT.	ODMANUNICATION AREAS ON EARTH SHALL HAVE A GROUND RING. BOND ALL SOLITIMENT TO A SINGLE FONT GROUND GROUND SAVE.		
APPROVED BATE MANNER. ALL BURPLIES MATERIAL BE FEMOLED FROM THE STE PROMPTLY WARDER ROL TO BE STERLING.	FILERELE METAL CONDUCT (FMC) AND LIQUIDTRHT FLERELE METAL CONDUCT (FMC) FINAL CONNECTIONS TO VIEWATING OF ADJUSTABLE	GROUD THE BUT WITH MINIMUM 2 CONCENTRON TO THE DEVICED IN OPPOSITE DRECTIONS WITH PAPALLEL CONNECTIONS ON THE RNS.		
EVERY CONTRACTOR BHALL IN REPONDERLE FOR THE INCIDENTION OF HIS WORK AND NEWLY INSTALLED OR INSTITUTING WORK, INCLUDING	EQUIPMENT NOLIDING, BUT NOT LIMITED TO, LIGHT FOTURER, HVAC UNITE, TRANSPORKERS, MOTORE, ETC. OR WHERE EQUIPMENT IS FLADED UPON BLAS ON GRADE.	P EQUIPMENT IS ENCLOSED IN A SHELT ST. P THE SHELTER IS CONSIDERED TO BE EXPOSED TO A DIRECT LIGHTING STRING, NETALL A BUILDING LIGHTING PROTECTION		
PROTECTION OF THE BITE, ALL STRUCTURES, AND ALL COCUPANTS PURNEY, NETALL, MANTAN, AND REMOVE AS APPLEWRATE, ALL APPLEWRATE BARRENS, SAFETY GUADO, SGNARE, NO SECURITY AS	ROD GALVANZED STEEL (RDS). ALL PITTINGS, CONNECTORS, AND COUPLINGS SHALL BE THREADED MODE UP WIRENED TO PT.	SYSTEM FER APPLICABLE VERBON OF NFPA 780. • BOND ALL FRED CONDUCTIVE BUILDING COMPONENTS TOGETHER AND TO THE INJURIAN RINS BROWND AT THE CONVERS. THE IS		
PEQUINED. EVERY CONTINUTION SHALL BE RESPONSED FOR THE R RESPECTIVE PERS, PERMITS, INSPECTIONS, TERTING, ORTIFICATES, AND ALL	RED POLYMMY, CHLORIDE (PVQ) BOHEDULE 40 CR 80-EDULE 80 MAY BE USED FOR BETWICES, BRTERION, BELOW GRADE, AND WET	TYPICALLY CALLED THE HALO GROUND DO NOT BOND EQUIPMENT TO THE HALO GROUND BOND ALL RELIMENT TOOPTHER TO A SINGLE POINT OF INTERIOR		
MANAGEMENT OF BANE REQUIRED FOR COMPLETION OF AND LEGAL COCUPANOY OF THE FINISHED FROJECT.	HARD ATTEL HARD AND BUILDING ON OPPORTE SLASS NOR EXPOSED WITHIN A BUILDING OR STRUCTURE	EQUIPMENT RING GROUND (EGG) BOND THE BASILE FOINT OR IDOR TO THE EXTERNAL ISSUPPORT RING GROUND ISSUED STREAM OF AN INFORMATION OF THE REAL PROVIDED THE STREAM OF THE STR		BLOOMFIELD 3 CT
BEVICES, MATERIALS, JOS ADS, AND PERSONNEL REQUIRED FOR THE DECUTION OF THER WORK	METAL-OLAD CABLE (MG) ODNORALD NETALLATIONE ONLY. WITHIN A DUCT WITH SMOOTH OR CORPUSATED METAL JACKET	GROUND RODE: * SEPARATION SPACE BETWEEN ANY 2 GROUND RODE SHALL BE NO		SITE 785 PARK AVENUE
INVESTIGATION OF A DESCRIPTION OF A DESC	AND NO OUTER COMERING OVER THE METAL JACKET. IN PRICE BRACES ALL CONDUCTS BHALL BE CONDEXED EXCEPT TO DATE AND ADDRESS OF THE DATE OF THE PROPERTY OF THE PROP	CAUMENT HAN THER DEPTH. THE APPLEE TO ALL BODS IN THE COMPLETE SYSTEM. - DRVIE VERTICALLY IN UNDISTURBED GOL WITH THE TOP AT GAME		ADDRESS: BLOOMFIELD, CT 06002
THE CAMPEH AND ENGINEER ALL WORK SHALL BE PERFORMED BY LICENSED CONTRACTORS IN THE TIMDE HAVING JURGEDUCTION.	Advices the bandwidth of the burners with more than the second se	DEPTH AS THE IN-GROUND CONDUCTOR. IF NOT POSSIBLE TO INSTALL VERTICALLY, PLACE AS CLOSE TO VERTICAL AS POSSIBLE AND IN A DIRECTION AWAY FROM THE INSPECT ADAMS GROUND		APT FILING NUMBER: CT141_12570
ANY DEVATION, MCOFFAITON, ADDITION, OR CHANGE IN DEBON 8HALL NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE OWNER OR 1944 JUNE	BIZED AND MARKED SROUNDING CONDUCTOR, HER APPLICABLE CODES, THAT BONDS ALL ENCLOSURES, BOXES, ETC. CONDUCT SHALL NOT BE USED AS A GROUNDING OR BONDING CONDUCTOR.	CONDUCTIVE ELEMENT (TOWER, EQUIPMENT, ETC.) PADIALS (TYP: NEW DEDICATED COVINUNICATION STEER:		DRAWN BY: DRA
ALL CONTRACTORS BHALL SUBMT SHOP DRAWINGS OF ALL EQUIPMENT AND MATERIALS TO THE ENGINEER FOR APPROVAL PROFITS	IF EXISTING ELECTING BERVICE IS TO REMAIN, CONTRACTOR SHALL BE VEREY THAT IT MEETS PROJECT REQUIREMENTS WITHOUT MODIFICATION. IF IT IS DIR ADDRESS OF BRIEF AND A LARGE AND AND A LARGE AN	HYPETRI CHARLELE WITH ENCLOSE BYACE AVAILABLE, NETALLA NINIMUM OF 4, MAXIMUM 10 FINS BADALS EACH PADIALS LENGTH SHALL BE MIN 20 FT, MAX 80 FT.		VZ PROJECT CODE: 20212234137
PAIRGATION AND INSTALLATION, AND BHALL NOT PROCEED UNTIL ENGINEER APPROVAL IN WRITING IS RETURNED. EACH CONTRACTOR BHALL MAINTAIN ON JOB BITE A COMPLETE SET OF SHOP DRAWINGS	WORK CONTRACTOR BALL ORDER FROM COORDINATE WITH AND GAN APPROVAL FROM THE ELECTRICAL UTLITY, ALL ELECTRICAL FOLIPPERT BALL IS AS REPORTED AND AS APPROVED BY THE COAL	 EXTEND PACALE PERFENDICULAR FROM RINGE N AS STRAGHT LINE AS POSSIBLE, AWAY FROM OTHER RING GROUNDS, INDIALS, BONDS, AND OMLAR. 		VZ LOCATION CODE: 468782
WITH ANY DEVIATIONS FROM THE ORIGINAL DESIGN SHALL BE NOTED. ALL MATERALS AND EQUIPMENT SHALL BE NEW, WITHOUT BLANSH OR DEFECT AND SUITABLE AND IS TOTAL DEVICE NETAL AND SUITABLE AND SUIT	UTILITY WHERE APPLICABLE. ALL EQUIPMENT, ENGLOGUERE, ETC. 9-HILL BE BUTABLE FOR THE	A COMMON PRACTICE IS TO PLACE 4 RADIALS FROM THE TOWER RING TO THE 4 CORNERS OF THE AVAILABLE AVEA		VZ FUZE ID: 16272375
DE INSTALLED IN ACCORDANCE WITH MANUFACTURERS RECOMMENDATIONS OR BECONGLINON. ALL TEMS OF EQUIPMENT OR MATERIAL THAT ARE OF ONE GAMENT TYPE RAVEL BE OWN	INSTALLED ENVERTIGENT, MINIMUM NEWA 38 FOR ALL EXTERIOR INSTALLATIONS WIRNA DEVICES SHALL BE SPECIFICATION SPACE AND WIRNS DEVICE	POSTS AND GATE HORSE TO THE UNDER PREVAILY, NETWORK OF THE POSTS AND GATE HORSE TO THE VALUE POSTS AND ALL POSTS TO THE PENCE LINE, BONDING ALL POSTS TO THE RENOT HAS POSTS TO THE PENCE LINE, BONDING ALL POSTS TO		
MANUFACTURER THROUGHOUT. ALL MARTENALS, EQUIPMENT, TOOLS, AND ITEMS UNCER THE	COVER PLATES BHALL BE PLASTIC WITH ENGRAVING AS SPECIFED. COLOR SHALL BE VORY. ALL DEVICES AND COVER PLATES SHALL BE OF THE SHALL MAKE MANUFACTURES.	27 ANTENNAS & CARLES		SHEET TITLE:
ADEQUATE Y BECURED, MAINTAINED, AND PROTECTED, SO AS NOT TO BECOME DAMAGED ON DRIVEN AND PROTECTED, SO AS NOT TO BECOME DAMAGED ON DRIVEN ANY HAZARD TO PERSONNEL ON	ALL FIRE PATED PENETRATIONS 6-ALL BE SEALED USING A BUTABLE AND LISTED FIRE GEALING DEVICE OR GROUTTHAT WILL MAINTAIN THE PRE DATED OF THE GEALING DEVICE OR GROUTTHAT WILL MAINTAIN THE	THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HEREIN.		NOTES&
NEWERTY. THE CONTRACTORS HOURS OF WORK SHALL BE IN ACCORDANCE WITH LOCAL CODIS AND DRDNANCES AND BE APPROVED BY THE OWNER.	PROVIDE PERMANENTLY APPORT PROFILEMENTS. PROVIDE PERMANENTLY APPORT ENGRAVED NAMEPLATES FOR ALL CODE REQUIRED LASELING AND ON ALL PANELS, METERING,	THE CONTRACTOR BHALL FURNISH AND INSTALL ALL TRANSMISSION CARLIES, JUMPER, CONNECTORS, GROUNDING STRAFS, ANTENNAS, MOUNT AND INFORMATE. ALL MATERIALS SHALL BE INSTATED BY THE		SPECIFICATIONS
CONTRACTOR SHALL PROVIDE SAFETY TWINING FOR ALL OF HIS CREW AND INSURE THAT EVERY CREW MEMBER FOLLOWS BAVE WORK DRAFTS THAT EVERY CREW MEMBER FOLLOWS BAVE WORK	DISCONNECTS, AND ELECTRICAL EQUIPMENT THAT IDENTIFIES EQUIPMENT SERVED, SECUTIONAL SOURCE WITH CIRCUIT IDENTIFICATION, AND VOLTAGES WITHIN	CONTRACTOR FOR DAMAGE UPON DELATIV, JUMPERS 8-HALL BE SUPPLED AT ANTENNAS AND EQUIPMENT NICE HELTER COOPENANT LUNGTH OF JUMPER CARLIES WITH CONTRACTOR		
PALL PROTECTION, CONFINID BRACII INTER, BLICTINGAL BARTY, AND TRENCHAGERGAWATION BAPETY WHERE BUCH WORK & DECUTED OR PROCENTIERD.	ELECTRICAL CONTRACTOR IS RESPONDED FOR ALL FINAL TELEVINATIONS TO ARL EQUIPMENT.	AND VERIFY ALL OF THE WATERALS TO BE PROVIDED WITH OWNER PHON TO GUERNITING BID AND ORDERING WATERALS		SHEET NUMBER:
ALL TEMPORARY WORK REQUIRED OR BRECIPED AS A PART OF THIS WORK, SHALL MEET ALL OF THE SAME REQUIREMENTS AS PERMANENT	ALL CLOWING APPLIET MANGES THAT ARE DISCONSIGNED AND A COMPLETELY REMOVED WITH ISSUES AS A COMPLETE AND A COMPL	APTECH INSTALLATION, THE THANIBALISTICAL UNE WITHTEM GRALL BE PAU / WHETP TESTED FOR INSWER INSTALLATION AND DAMAGES WITH ANTERNAS CONVECTED CONTRACTOR BHALL OBTAIN AND USE LATEST		
INSTALLATIONS, BHALL WET ALL APPUGABLE CODE REQUIREMENTS, AND SHALL BE COMPLETELY REMOVED APTER ITS PURPOSED HAVE BEEN GENERD.	MARTHERE LABLING, AND CODE-REQUIRED LABELING, BRALL BE VERFED AND NEWERLY COMPLETED TO MATCH THE INSTALLATION. 28 GROUNDING:	I BERNING PROCEDURES FROM OWNER OR MANUFACTURES PROVID BIDDNG. ANTENNA CARLES SHALL BE UNQUELY COLOR-CODED AT THE		
ANY EXEMPTING UTLITY, BEFMORE, ETHLOTLINE, EQUIPMENT, OR FORTURE OBSTRUCTING THE WORK BAYLE BE REMOVED AND/OR HELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGEM	THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HEREIN	ANTENNAS, BOTH SDES OF BOUPMENT SHELTER WALL, AND JUMPER CARLIS AT THE ISOUTHENT. THE CONTRACTOR EVALUATION OF AND INSTALLALL COMPANY		
IF ADDRETOR IS ENCOUNTERED DURING WORK EXECUTION, CONTRACTOR SHALL MAREDATELY NOTIFY THE CONSTRUCTION	GROUND ALL BYSTEME AND EQUIPMENT IN ACCORDANCE WITH BEET INDUSTRY PRACTICE, THE REQUIREMENTS OF THE NPPA TO NATIONAL ELECTRICAL CODE (FEG, AND ALL OTHER APPLICABLE CODES AND	ABBODATED CARLE MOUNTING AND GROUNDING HARDWARE, WALL MOUNTIN, BTANDOFFR, AND ALL ABBODATED HARDWARE TO INSTALL		

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A

Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

Dual-Band Radio Unit AWS/PCS (B66/B2) RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz) Instantaneous Bandwidth: 70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 255mm (36.8L) Weight: 38.3kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

Dual-Band Radio Unit 700/850MHz (B13/B5) RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L) Weight: 31.9kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

ATTACHMENT 3

	General	Power	Density					
Site Name: Bloomfield 3								
Tower Height: Verizon @ 105ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*Police UHF	1.25	75	143.5	406	0.0018	0.2707	0.07%	
*Police Back up repeater	1	161	144	453.83	0.003	0.3026	0.10%	
*Hartford Co. Fire	1	86	147.2	33.94	0.0016	0.2	0.08%	
*State Police	1	89	72.8	45.86	0.0072	0.2	0.36%	
*NPSAC	1	35	141.5	821.01	0.0007	0.5473	0.01%	
*RAFS	2	39	94	460.06	0.0036	0.3067	0.12%	
*Sprint	1	377	115	850	0.0114	0.5667	0.20%	
*Sprint	2	377	115	850	0.0228	0.5667	0.40%	
*Sprint	5	512	115	1900	0.0775	1	0.77%	
*Sprint	2	1280	115	1900	0.0775	1	0.77%	
*Sprint	1	2512	115	11000	0.076	1	0.76%	
*Sprint	8	640	115	2500	0.155	1	1.55%	
*Nextel	12	100	89	851	0.0626	0.5673	1.10%	
*Clearwire	2	153	115	2496	0.0093	1	0.09%	
*Clearwire	1	211	115	11 GHz	0.0064	1	0.06%	
*T-Mobile	2	6413	138	2500	0.2647	1	2.65%	
*T-Mobile	2	6413	138	2500	0.2647	1	2.65%	
*T-Mobile	2	649	138	700	0.0268	0.4667	0.57%	
*T-Mobile	2	592	138	600	0.0244	0.4	0.61%	
*T-Mobile	1	1578	138	600	0.0326	0.4	0.81%	
*T-Mobile	2	2204	138	1900	0.091	1	0.91%	
*T-Mobile	2	1295	138	2100	0.0535	1	0.53%	
*T-Mobile	2	2308	138	2100	0.0953	1	0.95%	
*T-Mobile	2	2057	138	1900	0.0849	1	0.85%	
*T-Mobile	4	1028	138	1900	0.0849	1	0.85%	
VZW 700	4	698	105	751	0.0091	0.5007	1.82%	
VZW CDMA	2	396	105	869	0.0026	0.5793	0.45%	
VZW Cellular	4	826	105	869	0.0108	0.5793	1.86%	
VZW PCS	4	1593	105	1980	0.0208	1.0000	2.08%	
VZW AWS	4	1581	105	2120	0.0206	1.0000	2.06%	
VZW CBAND	4	6531	105	3730.08	0.0852	1.0000	8.52%	
								34.61%
* Source: Siting Council								

ATTACHMENT 4

CONDITION ASSESSMENT & STRUCTURAL ANALYSIS REPORT 136-ft MONOPOLE TOWER BLOOMFIELD, CONNECTICUT

Prepared for Verizon Wireless

Verizon Wireless Site Ref: 468782; Bloomfield 3 CT

Site Address: 785 Park Avenue, Bloomfield, Connecticut 06002

APT Filing No. CT141_12570

January 25, 2022 Rev. 1 January 26, 2022

CONDITION ASSESSMENT & STRUCTURAL ANALYSIS REPORT 136-ft MONOPOLE TOWER BLOOMFIELD, CONNECTICUT prepared for Verizon Wireless

EXECUTIVE SUMMARY:

All-Points Technology Corporation, P.C. (APT) performed a condition assessment and structural evaluation of an existing 136-ft monopole tower structure to support a proposed Verizon equipment modification.

The proposed Verizon antenna and appurtenance modification consists of the replacement of three (3) existing panel antennas, six (6) existing remote radio heads (RRHs) and one (1) existing 60VP with three (3) new LSub-6 antennas w/ integrated RRHs, six (6) new Samsung dual-band RRHs, and two (2) new 60VPs. Equipment shall be fed by six (6) existing 1-5/8" coaxial cables and two (2) new 6x12 Low-Inductance (LI) hybrid lines routed vertically inside the monopole as specified in the table below. All other existing equipment is to remain.

Equipment shall be installed on the existing 14-foot low-profile platform. The existing platform requires modification prior to the installation of the new Verizon equipment.

Our analysis indicates that the subject tower structure and base foundation meets the requirements of the International Building Code 2015 (IBC 2015), as amended by the 2018 Connecticut State Building Code, and the ANSI/TIA-222-H standard with the existing, proposed and future equipment loading.

INTRODUCTION:

A condition assessment and structural analysis was performed on the above-mentioned communications tower by APT for Verizon Wireless. The subject tower is located at 785 Park Avenue in Bloomfield, Connecticut.

The following information was utilized in the preparation of this analysis:

- Field observations compiled during a site visit conducted by APT on June 23, 2021.
- Structural Analysis Report prepared by Hudson Design Group, LLC, dated May 31, 2017.
- Structural Analysis Report prepared by Maser Consulting Connecticut, (Maser Project No. 17924009A) dated October 23, 2017.
- Structural Analysis Report prepared by Centek Engineering, Inc. (Project No. 18098.03) marked Rev 1, dated September 10, 2018.
- RFDS provided by Verizon Wireless, latest version.
- Post-Modification Antenna Mount Analysis Report and PMI Requirements prepared by Maser Consulting Connecticut (Maser Project No. 21777224A) dated November 16, 2021.
- Mount Modification Drawings prepared by Colliers Engineering & Design (Job No. 21777224A) dated November 16, 2021.
- Construction Drawings prepared by APT (APT Project No. CT141_12570), marked Rev. 2 dated January 26, 2022.

Carrier	Antenna and Appurtenance Make/Model	Elevation ³	Status	Mount Type	Coax/Feed- Line
	Cambium PTP400, Transtector box	140'	ETR	4' x 2-3/8" Pipe Mount	1/4"
	18' 8-Bay Dipole	137'	ETR	Center Pole	(2) 7/8"
T-Mobile	 (3) Ericsson AIR32, (3) Ericsson AIR 6449 B41 & (3) RFS APXVAARR24-43 panels, (3) Radio 4449 B71+B12 RRHs, (3) Radio 4415 B25 RRHs, (3) Twin TMAs 	136'	ETR	15' Platform w/ Rails	(18) 1-5/8" ²
Sprint	 (3) Andrew NNVV-65B-R4 & (3) Commscope LLPX-310 R panels, (6) FD-RRH 2x50 800 RRHs, (3) FD-RRH 4x45 1900 RRHs, 14" Microwave Dish w/ ODU 	115'	ETR	(3) 6' T-Arms	(4) 1-1/4", (2) 2" conduit, 1/2"
Verizon	 (6) Andrew SBNHH-1D65A, (1) Amphenol BXA-80080/4, (1) Amphenol BXA-80080/6, (1) Amphenol BXA-80063/4 & (3) Samsung MT6407-77A antennas w/ integrated RRHs, (3) Samsung RFV01U-D1A RRHs, (3) Samsung RFV01U-D2A RRHs, (2) Raycap RHSDC-3315-PF-48 60VPs 	105'	ETR ETR ETR ETR P P P P	14' Low-Profile Platform w/ reinforcements	(6) 1-5/8°, (2) 6x12 Ll hybrid feed lines
	(3) DB Spectra DS7C09P36U(14' Omnidirectional Whip)	85'	E	(3) 3' Standoffs	(3) 1-5/8"
	(3) Cambium PTP400,(2) Transtector boxes	80'	Е	(3) 4' x 2-3/8" Pipe Mounts	(3) 1/4"
	3' Microwave Dish	75'	E	Chain Mount	1/2"
	14" dish w/ ODU	72'	E	Chain Mount, 4' x 2-3/8" Pipe Mount	1/2"

The analysis was conducted with the following antenna inventory (proposed equipment shown in **bold** text):

Notes:

1. ETR = Existing to remain; P = Proposed.

2. APT observed eight of T-Mobile's existing feed lines were inactive.

3. Elevations refer to AGL.

CONDITION ASSESSMENT:

- General Observations: The tower, an 18-sided tapered steel monopole, appeared to be in sound condition. No signs of movement or overstress of the tower were observed.
- Antenna Connections: Antenna mounting hardware was in good condition, with corrosion resistant hardware and galvanized members prevalent. <u>APT observed</u> <u>eight of T-Mobile's existing feed lines were inactive.</u>
- **Base Plate:** Base plate and anchor bolts appeared to be in good condition. No loose or missing nuts were observed.
- Foundation: Visible concrete appeared to be in good condition.

Methodology:

This structural analysis has been prepared in accordance with the ANSI/TIA-222-H standard entitled "Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures"; American Institute of Steel Construction (AISC) Manual of Steel Construction, and the 2015 International Building Code (IBC), as amended by the 2018 Connecticut State Building Code.

Antenna, appurtenance and mount assembly loads were evaluated utilizing the ANSI/TIA-222-H standard

- Load Case 1: 126 mph (3-second gust), 0" ice (Ultimate Wind Speed)
- Load Case 2: 50mph (3-second gust) w/ 1.5" ice thickness
- Load Case 3: 60mph (3-second gust) (Service Load)
- Risk Category: III
- Exposure Category: B
- Topographic Category: 1

ANALYSIS RESULTS:

The analysis was conducted in accordance with the criteria outlined above with the aforementioned existing and proposed equipment loading. The following table summarizes the results of the analysis:

Elevation	Pole Capacity 1,2
88.75'-137'	61%
47.75'-88.75'	53%
1'-47.75'	57%
Base Plate	60%

Notes:

 Based on ASTM A572 Gr. 55 tapered pole. For diameter and Based on ASTM A572 Gr. 55 base plate. Base plate is 3.25" thick. Based on ASTM A572 Gr. 65 tapered pole. Pole diameter and thickness vary.

Foundation:

The existing foundation system consists of a 7-ft dia. x 32-ft long reinforced concrete caisson. An evaluation of the existing caisson was performed utilizing caisson design data and subsoil characteristics noted within a previous structural analysis report prepared by Centek Engineering dated September 10, 2018. The Centek caisson analysis was based on original tower manufacturer design information prepared by Paul J. Ford & Company on behalf of PennSummit Tubular, LLC dated September 17, 2002.

Base reactions imposed with the proposed and future equipment changes were calculated as follows:

Load Effect	Calculated Reaction
Max Axial	72.8 k
Max Shear	28.0 k
Overturning	2,476 ft-k
Moment	

The caisson foundation was found to be structurally adequate:

Design Limit	Proposed Loading	Result
Moment Capacity	67%	PASS
Lateral Deflection	0.08" 2	PASS

² Lateral deflection as calculated under service load of 60mph (3 sec, gust Nominal).

CONCLUSIONS AND SUGGESTIONS:

In conclusion, our analysis indicates that the existing 136-ft monopole tower structure, located at 785 Park Avenue in Bloomfield, Connecticut meets the requirements of IBC 2015, as amended by the 2018 Connecticut State Building Code, and the ANSI/TIA-222-H standard with the existing, proposed and future equipment loading.

The existing foundation system consists of a 6-ft dia. x 45.5-ft long reinforced concrete caisson. An evaluation of the existing caisson was performed utilizing caisson design data and subsoil characteristics noted within an aforementioned structural analysis report previously provided to APT. The existing caisson was found to be adequately sized to support the proposed equipment configuration.

Sincerely,

All-Points Technology Corp. P.C.

Michael T. Larson, P.E. Project Engineer

Prepared By: All-Points Technology Corp. P.C.

Ali Adair Project Scientist

LIMITATIONS:

This report is based on the following:

- 1. Tower is properly installed and maintained.
- 2. All members are in an undeteriorated condition.
- 3. All bolts are in place and are properly tightened.
- 4. Tower is in plumb condition.
- 5. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 6. Record drawings accurately reflect tower dimensions and height.

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Adding or relocating antennas.
- 2. Installing antenna mounting gates or side arms.
- 3. Extending tower.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Tower Schematic

TYPE	ELEVATION	TYPE	ELEVATION
PTP400	137	MT6407-77A (Verizon)	105
Transtector (1101-778 ALPU-ORT)	137	B5/B13 RRHBR04C (RFV01UD2A)	105
4'x2 3/8" Pipe Mount	137	(Verizon)	
18' 8 Bay Di-Pole	137	B5/B13 RRHBR04C (RFV01UD2A)	105
AIR32 B66Aa/B2a (T-Mobile)	136		105
AIR32 B66Aa/B2a (T-Mobile)	136	(Verizon)	105
AIR32 B66Aa/B2a (T-Mobile)	136	B2/B66A RRHBRO49 (REV011LD1A)	105
AIR 6449 B41 (T-Mobile)	136	(Verizon)	100
AIR 6449 B41 (T-Mobile)	136	B2/B66A RRHBRO49 (RFV01U-D1A)	105
AIR 6449 B41 (T-Mobile)	136	(Verizon)	
APXVAARR 24_43 (T-Mobile)	136	B2/B66A RRHBRO49 (RFV01U-D1A)	105
APXVAARR 24_43 (T-Mobile)	136	(Verizon)	
APXVAARR 24_43 (T-Mobile)	136	Raycap RHSDC-3315-PF-48 D-box	105
Radio 4449 (T-Mobile)	136		105
Radio 4449 (T-Mobile)	136	(Verizon)	105
Radio 4449 (T-Mobile)	136	14' low-profile platform (Verizon)	105
Radio 4415 (T-Mobile)	136	2.5'L 2x2 angle (Verizon)	105
Radio 4415 (T-Mobile)	136	3.5 L3x3 angle (Verizon)	105
Radio 4415 (T-Mobile)	136	3.5 L3x3 angle (Verizon)	105
Twin TMA (T-Mobile)	136	SitePro1 VZWSMART-PLK5 kicker kit	105
Twin TMA (T-Mobile)	136	(Verizon)	100
Twin TMA (T-Mobile)	136	(2) 6'x2 3/8" Pipe Mount (Verizon)	105
15' platform w/rails (T-Mobile)	136	13.5' x 2-7/8" pipe mount (Verizon)	105
NNVV-65B-R4 (Sprint)	115	13.5' x 2-7/8" pipe mount (Verizon)	105
NNVV-65B-R4 (Sprint)	115	13.5' x 2-7/8" pipe mount (Verizon)	105
NNVV-65B-R4 (Sprint)	115	(2) SBNHH-1D65A (Verizon)	105
LLPX310R-V1 (Sprint)	115	db Spectra DS7C09P36U-D	85
LLPX310R-V1 (Sprint)	115	db Spectra DS7C09P36U-D	85
LLPX310R-V1 (Sprint)	115	3' standoffs w/ HSS arms	85
(2) FD-RRH-2x50-800 (Sprint)	115	3' standoffs w/ HSS arms	85
(2) FD-RRH-2x50-800 (Sprint)	115	3' standoffs w/ HSS arms	85
(2) FD-RRH-2x50-800 (Sprint)	115	db Spectra DS7C09P36U-D	85
FD-RRH-4x45-1900 (Sprint)	115	PTP400	80
FD-RRH-4x45-1900 (Sprint)	115	PTP400	80
FD-RRH-4x45-1900 (Sprint)	115	Transtector (1101-778 ALPU-ORT)	80
6' T-arm (Sprint)	115	Transtector (1101-778 ALPU-ORT)	80
6' T-arm (Sprint)	115	4'x2 3/8" Pipe Mount	80
6' T-arm (Sprint)	115	4'x2 3/8" Pipe Mount	80
DragonWave Horizon Compact + ODU	115	4'x2 3/8" Pipe Mount	80
14" dish	115	PTP400	80
(2) SBNHH-1D65A (Verizon)	105	3' dish with radome	76
(2) SBNHH-1D65A (Verizon)	105	14" dish	73
BXA-80080/6 (Verizon)	105	DragonWave Horizon Compact + ODU	72
BXA-80063/4 (Verizon)	105	4'x2 3/8" Pipe Mount	72
BXA-80080/4 (Verizon)	105		1
MT6407-77A (Verizon)	105		
MT6407-77A (Verizon)	105		

	MATERIAL STRENGTH								
	GRADE	Fy	Fu	GRADE	Fy	Fu			
ALL REACTIONS ARE FACTORED	A607-65	65 ksi	80 ksi						
AXIAL 72833 lb R b b M	OMENT 5499 lb-ft								
TORQUE 140 lb-ft nph WIND - 1.5000 in l	ĊĒ								
AXIAL 37866 lb									
	10MENT 75540 lb-ft								

TORQUE 372 lb-ft								
REACTIONS - 126 mph WIND								

All Points Technology	^{Job:} 136' Monopole Tower						
567 Vauxhall St. Ext., Suite 3	P ^{roject:} CT141_12570 Bloomfield 3						
Waterford CT 06385	Client: VzW Site #468782; Bloomfield 3 CT	Drawn by: AMA	App'd:				
Phone: (860) 663-1697	^{Code:} TIA-222-H	Date: 01/05/22	Scale:	NTS			
FAX: (860) 663-0935	Path: C1UsersWserDoournentsIAPTRobVerison WirelessICT141 12570 Bloomfield 20CT141 12570 Bl	oomfield 3.ERI	Dwg No	[.] E-1			

Appendix B

Photographs

Overview photo of the existing 136' monopole tower.

Overview photos of existing equipment and mounts.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Photo of existing hatch plates and ground bar at shelter.

Photo of existing feed lines and ground bars at tower.

Additional photos of existing feed lines and ground bars at tower.

Photos of existing feed lines and ice bridges.

Photos of Verizon Wireless's typical existing equipment and mounts at 105'.

Photos taken by All-Points Technology Corporation, P.C. on June 23, 2021.

Additional photos of Verizon Wireless's typical existing equipment and mounts at 105'.

Photos taken by All-Points Technology Corporation, P.C. on June 23, 2021.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Photos of Sprint's typical existing equipment and mounts at 115'.

Additional photos of Sprint's typical existing equipment and mounts at 115'.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Photos of T-Mobile's typical existing equipment and mounts at 136'.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Additional photos of T-Mobile's typical existing equipment and mounts at 136'.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Photos of typical existing equipment and mounts.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Additional photos of typical existing equipment and mounts.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Photos of existing top mount.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Overview photos of existing ice bridges from tower.

VERIZON WIRELESS 136' MONOPOLE TOWER BLOOMFIELD, CONNECTICUT VERIZON SITE #468782; BLOOMFIELD 3 CT

Photos of typical existing base foundation.

Appendix C

Calculations

567 Vauxhall St. Ext., Suite 3. Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935

AT	Job	Page	
tnx 1 ower		1 of 10	
All Points Technology	Project		Date
67 Vauxhall St. Ext., Suite 311		CT141_12570 Bloomfield 3	08:41:30 01/05/22
Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935	Client	VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower base elevation above sea level: 1.00 ft. Basic wind speed of 126 mph. Risk Category III. Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0.00 ft. Nominal ice thickness of 1.5000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Description	S	Sector	Exclude From	Component Type	Placement	Total Numbe	Number r Per Row	Start/End Position	Width or Diameter	Perimeter	Weigh
			Torque	Type	ft	i umbe	1 1 67 169	1 03111011	in	in	plf
		(Calculation		5						15
1 1/4		С	Yes	Surface Ar	115.00 -	4	4	0.000	0.7500		0.66
(Clearwire)				(CaAa)	6.00			0.000			
1 5/8		С	Yes	Surface Ar	136.00 -	6	6	0.000	1.9800		1.04
(T-Mobile)				(CaAa)	6.00			0.000			
D:	E	477	F 1 1	<u> </u>	D/		<i>T</i> , 1		<i>C</i> (117 -	1.
Description	Face	Allow	Exclude	Component	Placeme	ıt	Total		$C_A A_A$	Wei	ght
	or	sniela	Trom	Туре	G	1	vumber		<u>02/0</u>		C
	Leg		Calculatio	14	Ji				jt=/jt	pl	/
1.5/8	C	No	Ves	Inside Pole	85.00 - 6	nn	3 N	Jo Ice	0.00	1.0	14
1 5/0	C	NU	105	inside i ole	85.00 - 0.	00	5 1	2" Ice	0.00	1.0	4
							1/	" Ice	0.00	1.0	14
								" Ice	0.00	1.0	14
7/8	С	No	Yes	Inside Pole	137.00 - 6	00	2 1	lo Ice	0.00	0.5	4
		1.0			101100 0		- D	'2" Ice	0.00	0.5	4
							1	" Ice	0.00	0.5	4
							2	2" Ice	0.00	0.5	4
1/2	С	No	Yes	Inside Pole	75.00 - 6.	00	1 N	lo Ice	0.00	0.2	5
							1/	2" Ice	0.00	0.2	5
							1	" Ice	0.00	0.2	5
							4	2" Ice	0.00	0.2	5
1/2	С	No	Yes	Inside Pole	72.00 - 6.	00	1 N	lo Ice	0.00	0.2	5
							1/	'2" Ice	0.00	0.2	5
							1	" Ice	0.00	0.2	5

Feed Line/Linear Appurtenances

tnxTower

Job		Page
	136' Monopole Tower	2 of 10
Project		Date
	CT141_12570 Bloomfield 3	08:41:30 01/05/22
Client	VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Description	Face	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	Smerta	Torque Calculation	Type	ft	110000		ft²/ft	plf
							2" Ice	0.00	0.25
1/4	С	No	Yes	Inside Pole	80.00 - 6.00	3	No Ice	0.00	0.05
							1/2" Ice	0.00	0.05
							1" Ice	0.00	0.05
							2" Ice	0.00	0.05
1/4	С	No	Yes	Inside Pole	137.00 - 6.00	1	No Ice	0.00	0.05
							1/2" Ice	0.00	0.05
							1" Ice	0.00	0.05
							2" Ice	0.00	0.05
1/2	С	No	Yes	Inside Pole	115.00 - 6.00	1	No Ice	0.00	0.25
(Clearwire)							1/2" Ice	0.00	0.25
							1" Ice	0.00	0.25
							2" Ice	0.00	0.25
2" conduit	С	No	Yes	Inside Pole	115.00 - 6.00	2	No Ice	0.00	2.00
(Clearwire)							1/2" Ice	0.00	2.00
							1" Ice	0.00	2.00
							2" Ice	0.00	2.00
1 5/8	С	No	Yes	Inside Pole	136.00 - 6.00	12	No Ice	0.00	1.04
(T-Mobile)							1/2" Ice	0.00	1.04
· · · ·							1" Ice	0.00	1.04
							2" Ice	0.00	1.04
1 5/8	С	No	Yes	Inside Pole	104.00 - 6.00	6	No Ice	0.00	1.04
(Verizon)							1/2" Ice	0.00	1.04
							1" Ice	0.00	1.04
							2" Ice	0.00	1.04
6x12 LI hybrid	С	No	Yes	Inside Pole	104.00 - 6.00	2	No Ice	0.00	1.88
(Verizon)	-					_	1/2" Ice	0.00	1.88
· · · · · · · · · · · · · · · · · · ·							1" Ice	0.00	1.88
							2" Ice	0.00	1.88

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	208		Vert ft ft	٥	ft		ft²	ft²	lb
PTP400	В	From Leg		0.0000	137.00	No Ice	1.75	0.48	15.00
111100	Ъ	110m Log	0.00	0.0000	157100	1/2" Ice	1.92	0.58	26.43
			4.00			1" Ice	2.09	0.69	40.18
						2" Ice	2.46	0.92	75.41
Transtector (1101-778	в	From Leg	0.50	0.0000	137.00	No Ice	0.25	0.13	2.00
ALPU-ORT)		5	0.00			1/2" Ice	0.31	0.19	4.34
,			4.00			1" Ice	0.39	0.25	7.76
						2" Ice	0.56	0.39	18.59
4'x2 3/8" Pipe Mount	В	From Leg	0.00	0.0000	137.00	No Ice	0.87	0.87	14.60
*		e	0.00			1/2" Ice	1.11	1.11	21.91
			4.00			1" Ice	1.36	1.36	32.07
						2" Ice	1.90	1.90	61.50
18' 8 Bay Di-Pole	в	From Leg	0.50	0.0000	137.00	No Ice	4.00	4.00	55.00
			0.00			1/2" Ice	6.00	6.00	100.00
			9.00			1" Ice	8.00	8.00	145.00
						2" Ice	12.00	12.00	235.00
AIR32 B66Aa/B2a	Α	From Face	4.00	0.0000	136.00	No Ice	6.51	4.71	133.00
(T-Mobile)			0.00			1/2" Ice	6.89	5.07	178.82
			0.00			1" Ice	7.27	5.43	229.91

tnxTower

	Job	Page
<i>tnx1ower</i>	136' Monopole Tower	3 of 10
All Points Technology 567 Vauxhall St. Ext., Suite 311	Project CT141_12570 Bloomfield 3	Date 08:41:30 01/05/22
Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935	Client VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	lb
						2" Ice	8.06	6.18	348.65
AIR32 B66Aa/B2a	В	From Face	4.00	0.0000	136.00	No Ice	6.51	4.71	133.00
(T-Mobile)			0.00			1/2" Ice	6.89	5.07	178.82
			0.00			1" Ice	7.27	5.43	229.91
	C	P	1.00	0.0000	126.00	2" Ice	8.06	6.18	348.65
AIR32 B66Aa/B2a	C	From Face	4.00	0.0000	136.00	NO ICE	6.51	4./1	133.00
(1-Mobile)			0.00			172 ICe	0.89	5.07	229.91
			0.00			2" Ice	8.06	6.18	348.65
AIR 6449 B41	А	From Face	4.00	0.0000	136.00	No Ice	5.68	2.49	110.00
(T-Mobile)			0.00			1/2" Ice	5.98	2.72	149.12
			0.00			1" Ice	6.29	2.95	192.46
						2" Ice	6.93	3.44	292.63
AIR 6449 B41	В	From Face	4.00	0.0000	136.00	No Ice	5.68	2.49	110.00
(T-Mobile)			0.00			1/2" Ice	5.98	2.72	149.12
			0.00			1" Ice	6.29	2.95	192.46
ATD (440 D41	C	Energy Energy	1.00	0.0000	126.00	2" Ice	6.93	3.44	292.63
(T Mobile)	C	From Face	4.00	0.0000	136.00	1/2" Lee	5.08	2.49	140.12
(1-Mobile)			0.00			1" Ice	6.29	2.72	192.46
			0.00			2" Ice	6.93	3 44	292.63
APXVAARR 24 43	А	From Face	4.00	0.0000	136.00	No Ice	20.24	8.89	75.00
(T-Mobile)			0.00			1/2" Ice	20.89	9.49	187.59
,			0.00			1" Ice	21.54	10.09	308.72
						2" Ice	22.87	11.33	577.33
APXVAARR 24_43	в	From Face	4.00	0.0000	136.00	No Ice	20.24	8.89	75.00
(T-Mobile)			0.00			1/2" Ice	20.89	9.49	187.59
			0.00			1" Ice	21.54	10.09	308.72
	G	F F	1.00	0.0000	126.00	2" Ice	22.87	11.33	577.33
APXVAARR 24_43	C	From Face	4.00	0.0000	136.00	No Ice	20.24	8.89	/5.00
(1-Mobile)			0.00			1/2" Ice	20.89	9.49	187.59
			0.00			2" Ice	21.34	11.33	577 33
Radio 4449	А	From Face	3 50	0.0000	136.00	No Ice	1.65	1 16	80.00
(T-Mobile)			0.00	010000	100100	1/2" Ice	1.81	1.30	96.16
()			0.00			1" Ice	1.98	1.45	114.95
						2" Ice	2.34	1.76	161.18
Radio 4449	в	From Face	3.50	0.0000	136.00	No Ice	1.65	1.16	80.00
(T-Mobile)			0.00			1/2" Ice	1.81	1.30	96.16
			0.00			1" Ice	1.98	1.45	114.95
D 1: 4440	G	F F	2.50	0.0000	126.00	2" Ice	2.34	1.76	161.18
(T. Mahila)	C	From Face	3.50	0.0000	136.00	No Ice	1.65	1.16	80.00
(1-Mobile)			0.00			1/2" Ice	1.81	1.50	90.10
			0.00			2" Ice	2 34	1.45	161 18
Radio 4415	А	From Face	3 50	0.0000	136.00	No Ice	1.64	0.68	50.00
(T-Mobile)			0.00	0.0000	100100	1/2" Ice	1.80	0.79	62.41
			0.00			1" Ice	1.97	0.91	77.18
						2" Ice	2.32	1.18	114.61
Radio 4415	В	From Face	3.50	0.0000	136.00	No Ice	1.64	0.68	50.00
(T-Mobile)			0.00			1/2" Ice	1.80	0.79	62.41
			0.00			1" Ice	1.97	0.91	77.18
D - 11 - 4417	~	F	2.50	0.0000	126.00	2" Ice	2.32	1.18	114.61
Kadio 4415 (T. Mahila)	C	From Face	5.50	0.0000	136.00	No Ice 1/2" Ior	1.64	0.68	50.00
(1-woone)			0.00			1/2 Tee	1.60	0./9	02.41 77.18
			0.00			2" Ice	2.32	1.18	114.61

tnxTow

trase Tosta ou	Job	Page
<i>inx1ower</i>	136' Monopole Tower	4 of 10
All Doints Taskuslam	Project	Date
567 Vauxhall St. Ext., Suite 311	CT141_12570 Bloomfield 3	08:41:30 01/05/22
Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935	Client VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	208		Vert						
			ft ft ft	Ŭ	ft		ft²	ft²	lb
Twin TMA	А	From Face	3.50	0.0000	136.00	No Ice	0.57	0.28	15.00
(T-Mobile)			0.00			1/2" Ice	0.67	0.35	19.83
			0.00			1" Ice	0.77	0.43	26.16
	D	F F	2.50	0.0000	126.00	2" Ice	1.00	0.62	44.13
Twin TMA	В	From Face	3.50	0.0000	136.00	No Ice	0.57	0.28	15.00
(1-Mobile)			0.00			1/2" Ice	0.07	0.35	19.85
			0.00			2" Ice	1.00	0.43	44 13
Twin TMA	С	From Face	3.50	0.0000	136.00	No Ice	0.57	0.28	15.00
(T-Mobile)	0	1101111000	0.00	010000	120100	1/2" Ice	0.67	0.35	19.83
()			0.00			1" Ice	0.77	0.43	26.16
						2" Ice	1.00	0.62	44.13
15' platform w/rails	А	None		0.0000	136.00	No Ice	13.50	11.69	1400.00
(T-Mobile)						1/2" Ice	14.55	12.61	2418.60
						1" Ice	15.61	13.54	3459.74
						2" Ice	17.76	15.42	5610.46
NNVV-65B-R4	А	From Leg	1.00	0.0000	115.00	No Ice	12.27	5.75	81.00
(Sprint)			0.00			1/2" Ice	12.77	6.21	155.14
			0.00			2" Ice	14.20	7.62	410.17
NNVV-65B-R4	в	From Leg	1.00	0.0000	115.00	No Ice	12.25	5.75	81.00
(Sprint)	Б	110III Leg	0.00	0.0000	115.00	1/2" Ice	12.27	6.21	153.14
(oprimi)			0.00			1" Ice	13.27	6.67	231.92
			0100			2" Ice	14.29	7.62	410.17
NNVV-65B-R4	С	From Leg	1.00	0.0000	115.00	No Ice	12.27	5.75	81.00
(Sprint)		_	0.00			1/2" Ice	12.77	6.21	153.14
			0.00			1" Ice	13.27	6.67	231.92
						2" Ice	14.29	7.62	410.17
LLPX310R-V1	А	From Leg	1.00	0.0000	115.00	No Ice	4.34	1.97	30.00
(Sprint)			0.00			1/2" Ice	4.64	2.24	56.12
			0.00			I" Ice	4.94	2.52	86.24
LIDV210D VI	р	Enom Log	1.00	0.0000	115.00	2" Ice	5.56	3.08	159.27
(Sprint)	в	From Leg	0.00	0.0000	115.00	1/2" Lee	4.54	1.97	56.12
(Sprint)			0.00			1" Ice	4.04	2.24	86.24
			0.00			2" Ice	5.56	3.08	159.27
LLPX310R-V1	С	From Leg	1.00	0.0000	115.00	No Ice	4.34	1.97	30.00
(Sprint)	-		0.00			1/2" Ice	4.64	2.24	56.12
,			0.00			1" Ice	4.94	2.52	86.24
						2" Ice	5.56	3.08	159.27
(2) FD-RRH-2x50-800	Α	From Leg	0.50	0.0000	115.00	No Ice	2.13	1.79	53.00
(Sprint)			0.00			1/2" Ice	2.32	1.96	74.30
			0.00			1" Ice	2.51	2.14	98.61
(2) ED BBH 2 50 000	D	Б I	0.50	0.0000	115.00	2" Ice	2.92	2.53	157.08
(2) FD-RRH-2x50-800	В	From Leg	0.50	0.0000	115.00	No Ice	2.13	1.79	53.00
(Sprint)			0.00			1/2" Ice	2.52	1.96	/4.30
			0.00			1 ICC 2" ICC	2.31	2.14	98.01
(2) FD-RRH-2x50-800	С	From Leg	0.50	0.0000	115.00	No Ice	2.12	1.79	53.00
(Sprint)	C	Trom Leg	0.00	0.0000	115.00	1/2" Ice	2.32	1.96	74.30
()			0.00			1" Ice	2.51	2.14	98.61
						2" Ice	2.92	2.53	157.08
FD-RRH-4x45-1900	А	From Leg	0.50	0.0000	115.00	No Ice	2.42	2.42	60.00
(Sprint)		2	0.00			1/2" Ice	2.62	2.62	84.92
			0.00			1" Ice	2.84	2.84	113.16
						2" Ice	3.29	3.29	180.37
FD-RRH-4x45-1900	В	From Leg	0.50	0.0000	115.00	No Ice	2.42	2.42	60.00

tnxTowe

tuxTowar	Job	Page
Inx I Ower	136' Monopole Tower	5 of 10
All Paints Technology	Project	Date
567 Vauxhall St. Ext., Suite 311	CT141_12570 Bloomfield 3	08:41:30 01/05/22
Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935	Client VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or Lea	Туре	Horz Lateral	Adjustment			Front	Side	
	Leg		Vert						
			ft	0	ft		ft^2	ft^2	lb
			ft G						
(Sprint)			0.00			1/2" Ice	2.62	2.62	84.92
()			0.00			1" Ice	2.84	2.84	113.16
						2" Ice	3.29	3.29	180.37
FD-RRH-4x45-1900	С	From Leg	0.50	0.0000	115.00	No Ice	2.42	2.42	60.00
(Sprint)			0.00			1/2" Ice	2.62	2.62	84.92
			0.00			1" Ice	2.84	2.84	113.10
6' T-arm	А	None		0.0000	115.00	No Ice	1.30	0.90	75.00
(Sprint)				0.0000		1/2" Ice	1.54	1.08	119.98
						1" Ice	1.79	1.26	169.69
						2" Ice	2.31	1.65	284.09
6' T-arm	В	None		0.0000	115.00	No Ice	3.50	1.75	65.00
(Sprint)						1/2" Ice	4.85	2.43	95.00
						1" Ice	0.33 8 00	5.67 4.47	125.00
6' T-arm	С	None		0.0000	115.00	No Ice	1.30	0.90	75.00
(Sprint)	C	Wone		0.0000	115.00	1/2" Ice	1.54	1.08	119.98
()						1" Ice	1.79	1.26	169.69
						2" Ice	2.31	1.65	284.09
DragonWave Horizon	С	None		0.0000	115.00	No Ice	0.69	0.32	10.00
Compact + ODU						1/2" Ice	0.80	0.40	15.82
						1" Ice	0.91	0.48	23.28
(2) SBNHH-1D65A	Δ	From Face	4 00	0.0000	105.00	Z ICE	5.88	3.86	45.89
(Verizon)	11	1101111400	0.00	0.0000	105.00	1/2" Ice	6.25	4.22	83.03
(0.00			1" Ice	6.62	4.57	127.06
						2" Ice	7.38	5.29	230.86
(2) SBNHH-1D65A	в	From Face	4.00	0.0000	105.00	No Ice	5.88	3.86	44.00
(Verizon)			0.00			1/2'' Ice	6.25	4.22	83.03
			0.00			1" Ice	6.62 7.38	4.5/	127.06
(2) SBNHH-1D654	C	From Face	4.00	0.0000	105.00	Z ICC	5.88	3.29	230.80
(Verizon)	U	1101111400	0.00	0.0000	105.00	1/2" Ice	6.25	4.22	83.03
			0.00			1" Ice	6.62	4.57	127.06
						2" Ice	7.38	5.29	230.86
BXA-80080/6	Α	From Face	4.00	0.0000	105.00	No Ice	7.57	3.76	25.00
(Verizon)			0.00			1/2" Ice	8.02	4.19	65.60
			0.00			2" Ice	8.47 0.40	4.05	223.06
BXA-80063/4	в	From Face	4.00	0.0000	105.00	No Ice	4.71	2.25	20.00
(Verizon)	2	11011111000	0.00	0.0000	100.00	1/2" Ice	5.03	2.55	47.83
			0.00			1" Ice	5.35	2.85	79.94
						2" Ice	6.02	3.49	157.79
BXA-80080/4	С	From Face	4.00	0.0000	105.00	No Ice	4.80	2.84	20.00
(Verizon)			0.00			1/2" Ice	5.12	3.15	51.00
			0.00			1" Ice	5.45	3.47	86.43
MT6407-77A	А	From Face	4 00	0.0000	105.00	No Ice	0.15 4 69	1.84	90.00
(Verizon)		1101111400	0.00	0.0000	105.00	1/2" Ice	4.98	2.06	119.24
			0.00			1" Ice	5.28	2.29	152.35
						2" Ice	5.89	2.77	230.94
MT6407-77A	В	From Face	4.00	0.0000	105.00	No Ice	4.69	1.84	90.00
(Verizon)			0.00			1/2" Ice	4.98	2.06	119.24
			0.00			1" Ice 2" Ice	5.28 5.80	2.29	152.55
MT6407-77A	С	From Face	4.00	0.0000	105.00	No Ice	4.69	1.84	250.94
(Verizon)	~		0.00	010000	200100	1/2" Ice	4.98	2.06	119.24

tnxTower

teres Teres and	Job	Page
<i>tnx1ower</i>	136' Monopole Tower	6 of 10
All Points Technology	Project CT141 12570 Bloomfield 3	Date 08:41:30 01/05/22
Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935	Client VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	D	ft		ft²	ft²	lb
			0.00			1" Ice	5.28	2.29	152.35
						2" Ice	5.89	2.77	230.94
B5/B13 RRHBR04C	Α	From Face	3.50	0.0000	105.00	No Ice	1.88	1.01	100.00
(RFV01UD2A)			0.00			1/2" Ice	2.05	1.14	116.43
(Verizon)			0.00			1" Ice	2.22	1.28	135.53
						2" Ice	2.60	1.59	182.50
B5/B13 RRHBR04C	в	From Face	3.50	0.0000	105.00	No Ice	1.88	1.01	100.00
(RFV01UD2A)			0.00			1/2" Ice	2.05	1.14	116.43
(Verizon)			0.00			1" Ice	2.22	1.28	135.53
	G	F F	2.50	0.0000	105.00	2" Ice	2.60	1.59	182.50
B5/B13 KKHBR04C	C	From Face	3.50	0.0000	105.00	No Ice	1.88	1.01	100.00
(RFV0TUD2A)			0.00			1/2" Ice	2.05	1.14	116.43
(verizon)			0.00			1º Ice	2.22	1.28	135.55
D2/D66A DDUDD040	٨	From Face	3 50	0.0000	105.00	Z ICe	2.00	1.39	85.00
(PEV01U-D1A)	A	FIOII Face	0.00	0.0000	105.00	1/2" Ice	2.05	1.25	103.34
(Verizon)			0.00			172 ICC	2.03	1.59	103.34
(verizon)			0.00			2" Ice	2.60	1.86	175.87
B2/B66A RRHBRO49	в	From Face	3.50	0.0000	105.00	No Ice	1.88	1.25	85.00
(RFV01U-D1A)	D	1101111400	0.00	0.0000	105.00	1/2" Ice	2.05	1.39	103.34
(Verizon)			0.00			1" Ice	2.22	1.54	124.47
(******)						2" Ice	2.60	1.86	175.87
B2/B66A RRHBRO49	С	From Face	3.50	0.0000	105.00	No Ice	1.88	1.25	85.00
(RFV01U-D1A)	-		0.00			1/2" Ice	2.05	1.39	103.34
(Verizon)			0.00			1" Ice	2.22	1.54	124.47
						2" Ice	2.60	1.86	175.87
Raycap RHSDC-3315-PF-48	Α	None		0.0000	105.00	No Ice	1.34	3.79	40.00
D-box						1/2" Ice	1.49	4.04	71.37
(Verizon)						1" Ice	1.65	4.30	106.49
						2" Ice	1.98	4.84	188.76
Raycap RHSDC-3315-PF-48	С	None		0.0000	105.00	No Ice	1.34	3.79	40.00
D-box						1/2" Ice	1.49	4.04	71.37
(Verizon)						1" Ice	1.65	4.30	106.49
		N		0.0000	105.00	2" Ice	1.98	4.84	188.76
14' low-profile platform	А	None		0.0000	105.00	No Ice	8.40	7.28	1200.00
(Verizon)						1/2" Ice	9.57	8.12	2063.51
						1" Ice	10.55	8.97	2947.93
3 5' I 3x3 angle	۸	None		0.0000	105.00	Z ICC	0.00	0.07	14 70
(Verizon)	Λ	None		0.0000	105.00	1/2" Ice	1.12	0.11	23.39
(venzon)						1" Ice	1.35	0.16	34.99
						2" Ice	1.83	0.27	67.72
3.5' L3x3 angle	в	None		0.0000	105.00	No Ice	0.90	0.07	14.70
(Verizon)						1/2" Ice	1.12	0.11	23.39
(1" Ice	1.35	0.16	34.99
						2" Ice	1.83	0.27	67.72
3.5' L3x3 angle	С	None		0.0000	105.00	No Ice	0.90	0.07	14.70
(Verizon)						1/2" Ice	1.12	0.11	23.39
						1" Ice	1.35	0.16	34.99
						2" Ice	1.83	0.27	67.72
SitePro1 VZWSMART-PLK5	Α	None		0.0000	105.00	No Ice	3.38	3.38	466.00
kicker kit						1/2" Ice	5.06	5.06	616.00
(Verizon)						1" Ice	6.75	6.75	766.00
	~			0.0000	105.00	2" Ice	10.13	10.13	1066.00
(2) 6'x2 3/8" Pipe Mount	С	None		0.0000	105.00	No Ice	1.43	1.43	21.90
(Verizon)						1/2" Ice	1.92	1.92	32.73
						I" Ice	2.29	2.29	47.61

tnxTower

teres Teres en	Job	Page
<i>tnx1ower</i>	136' Monopole Tower	7 of 10
All Points Technology	Project CT141 12570 Bloomfield 3	Date 08:41:30 01/05/22
567 Vauxhall St. Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935	Client VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert ft	D	Ĥ		θ^2	θ^2	lh
			ft ft		Jt		ji	ji	10
						2" Ice	3.06	3.06	90.18
13.5' x 2-7/8" pipe mount	А	None		0.0000	105.00	No Ice	4.03	4.03	107.00
(Verizon)						1/2" Ice	5.46	5.46	136.25
						1" Ice	6.91	6.91	174.49
12.51 - 2.7/811 - 1	Б	Nama		0.0000	105.00	2" Ice	9.85	9.85	278.58
(Verizon)	в	Inone		0.0000	105.00	1/2" Ice	4.05	4.05	107.00
(verizon)						172 ICe	5.40	5.40	174 49
						2" Ice	9.85	9.85	278.58
13.5' x 2-7/8" pipe mount	С	None		0.0000	105.00	No Ice	4.03	4.03	107.00
(Verizon)						1/2" Ice	5.46	5.46	136.25
						1" Ice	6.91	6.91	174.49
						2" Ice	9.85	9.85	278.58
db Spectra DS7C09P36U-D	Α	From Leg	0.50	0.0000	85.00	No Ice	3.55	3.55	73.00
			0.00			1/2" Ice	5.00	5.00	99.33
			7.00			1" Ice	6.46	6.46	134.75
dh Smaatra DS7C00D26U D	р	Enom Log	0.50	0.0000	85.00	2" Ice	9.45	9.45	233.44
do specifa DS/C09P360-D	Б	From Leg	0.50	0.0000	85.00	1/2" Ice	5.00	5.55	/5.00
			7.00			1" Ice	6.46	6.46	134 75
			7.00			2" Ice	9.45	9.45	233.44
db Spectra DS7C09P36U-D	С	From Leg	0.50	0.0000	85.00	No Ice	3.55	3.55	73.00
		8	0.00			1/2" Ice	5.00	5.00	99.33
			7.00			1" Ice	6.46	6.46	134.75
						2" Ice	9.45	9.45	233.44
3' standoffs w/ HSS arms	Α	None		0.0000	85.00	No Ice	1.30	1.30	34.00
						1/2" Ice	1.57	1.57	45.51
						I" Ice	1.86	1.86	60.28
21 standarffs and HEC among	р	Nana		0.0000	85.00	2º Ice	2.38	2.38	80.04
5' standons w/ HSS anns	в	None		0.0000	85.00	1/2" Ice	1.50	1.30	34.00 45.51
						1" Ice	1.57	1.37	60.28
						2" Ice	2.38	2.38	80.04
3' standoffs w/ HSS arms	С	None		0.0000	85.00	No Ice	1.30	1.30	34.00
						1/2" Ice	1.57	1.57	45.51
						1" Ice	1.86	1.86	60.28
						2" Ice	2.38	2.38	80.04
PTP400	А	From Leg	0.50	0.0000	80.00	No Ice	1.75	0.48	15.00
			0.00			1/2" Ice	1.92	0.58	26.43
			0.00			1" Ice	2.09	0.69	40.18
PTP 400	р	From Log	0.50	0.0000	80.00	2 [°] Ice	2.40	0.92	/5.41
F1F400	D	riom Leg	0.30	0.0000	80.00	1/2" Ice	1.75	0.48	26.43
			0.00			1" Ice	2.09	0.58	40.18
			0.00			2" Ice	2.46	0.92	75.41
PTP400	С	From Leg	0.50	0.0000	80.00	No Ice	1.75	0.48	15.00
		e	0.00			1/2" Ice	1.92	0.58	26.43
			0.00			1" Ice	2.09	0.69	40.18
						2" Ice	2.46	0.92	75.41
Transtector (1101-778	Α	From Leg	0.50	0.0000	80.00	No Ice	0.25	0.13	2.00
ALPU-ORT)			0.00			1/2" Ice	0.31	0.19	4.34
			0.00			1" Ice	0.39	0.25	/./6
Transfector (1101-778	C	From Leg	0.50	0 0000	80.00	Z ICE	0.56	0.59	2 00
ALPU-ORT)	C	From Leg	0.00	0.0000	00.00	1/2" Ice	0.31	0.19	4.34
nei o orrij			0.00			1" Ice	0.39	0.25	7.76
						2" Ice	0.56	0.39	18.59

tnxTower
una l'unei

Job		Page
	136' Monopole Tower	8 of 10
Project		Date
	CT141_12570 Bloomfield 3	08:41:30 01/05/22
Client	VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Weight

lb

14.60

21.91

32.07

61.50

14.60

21.91

32.07

61.50

14.60

21.91

32.07

61.50

14.60

21.91

32.07

61.50

10.00

15.82

23.28

43.89

Description Face Offset Offsets: Placement $C_A A_A$ $C_A A_A$ Azimuth Туре Horz Adjustment Front Side orLeg Lateral Vert 0 ft^2 ft ft ft^2 ft ft 4'x2 3/8" Pipe Mount А None 0.0000 80.00 No Ice 0.87 0.87 1/2" Ice 1.11 1.11 1" Ice 1.36 1.36 2" Ice 1.90 1.90 4'x2 3/8" Pipe Mount В 0.0000 80.00 No Ice 0.87 None 0.87 1/2" Ice 1.11 1.11 1" Ice 1.36 1.36 2" Ice 1.90 1.90 4'x2 3/8" Pipe Mount С None 0.0000 80.00 No Ice 0.87 0.87 1/2" Ice 1.11 1.11 1" Ice 1.36 1.36 2" Ice 1.90 1.90 0.0000 4'x2 3/8" Pipe Mount в None 72.00 No Ice 0.87 0.87 1/2" Ice 1.11 1.11 1" Ice 1.36 1.36 2" Ice 1.90 1.90 0.0000 DragonWave Horizon В None 72.00 No Ice 0.69 0.32 1/2" Ice Compact + ODU 0.80 0.40 1" Ice 0.91 0.48

Dishes

2" Ice

1.16

0.68

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	٥	ft	ft		ft^2	lb
14" dish	А	Paraboloid w/o	From	0.50	0.0000		115.00	1.50	No Ice	1.77	30.00
		Radome	Leg	0.00					1/2" Ice	1.97	50.00
				0.00					1" Ice	2.18	60.00
									2" Ice	2.64	90.00
3' dish with radome	в	Paraboloid	From	0.50	0.0000		76.00	3.00	No Ice	7.07	75.00
		w/Radome	Leg	0.00					1/2" Ice	7.47	113.33
				0.00					1" Ice	7.86	151.66
									2" Ice	8.66	228.32
14" dish	в	Paraboloid w/o	From	0.50	0.0000		73.00	1.50	No Ice	1.77	30.00
		Radome	Leg	0.00					1/2" Ice	1.97	50.00
				0.00					1" Ice	2.18	60.00
									2" Ice	2.64	90.00

Job		Page
	136' Monopole Tower	9 of 10
Project		Date
	CT141_12570 Bloomfield 3	08:41:30 01/05/22
Client	VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Solution Summary

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	137 - 88.75	16.396	42	1.0140	0.0008
L2	92.75 - 47.75	7.719	48	0.7730	0.0002
L3	52 - 1	2.423	48	0.4332	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	O	0	ft
137.00	PTP400	42	16.396	1.0140	0.0009	59508
136.00	AIR32 B66Aa/B2a	42	16.187	1.0093	0.0008	59508
115.00	14" dish	48	11.862	0.9073	0.0005	13524
105.00	(2) SBNHH-1D65A	48	9.920	0.8518	0.0004	9297
85.00	db Spectra DS7C09P36U-D	48	6.458	0.7157	0.0002	6373
80.00	PTP400	48	5.704	0.6760	0.0002	6165
76.00	3' dish with radome	48	5.135	0.6430	0.0002	6009
73.00	14" dish	48	4.730	0.6176	0.0002	5897
72.00	4'x2 3/8" Pipe Mount	48	4.599	0.6091	0.0002	5860

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	137 - 88.75	81.348	20	5.0304	0.0037
L2	92.75 - 47.75	38.305	20	3.8387	0.0011
L3	52 - 1	12.018	20	2.1502	0.0005

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
137.00	PTP400	20	81.348	5.0304	0.0042	12154
136.00	AIR32 B66Aa/B2a	20	80.310	5.0074	0.0041	12154
115.00	14" dish	20	58.870	4.5033	0.0025	2760
105.00	(2) SBNHH-1D65A	20	49.228	4.2288	0.0018	1895
85.00	db Spectra DS7C09P36U-D	20	32.046	3.5540	0.0010	1295
80.00	PTP400	20	28.302	3.3567	0.0009	1251
76.00	3' dish with radome	20	25.481	3.1926	0.0008	1219
73.00	14" dish	20	23.468	3.0666	0.0007	1195
72.00	4'x2 3/8" Pipe Mount	20	22.817	3.0241	0.0007	1187

Job		Page
	136' Monopole Tower	10 of 10
Project		Date
	CT141_12570 Bloomfield 3	08:41:30 01/05/22
Client	VzW Site #468782; Bloomfield 3 CT	Designed by AMA

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
L1	137 - 88.75	Pole	TP30.22x23x0.1875	1	-11891.20	1024740.00	60.8	Pass
L2	88.75 - 47.75	Pole	TP36.36x29.2465x0.375	2	-21277.80	2458840.00	53.3	Pass
L3	47.75 - 1	Pole	TP43.36x34.9382x0.5	3	-37838.70	3979100.00	56.8	Pass
							Summary	
						Pole (L1)	60.8	Pass
						Base Plate	59.8	Pass
						RATING =	60.8	Pass

Program Version 8.1.1.0 - 6/3/2021 File:C:/Users/User/Documents/APT/Rob/Verizon Wireless/CT141_12570 Bloomfield 3/CT141_12570 Bloomfield 3.ERI

LPile for Windows, Version 2019-11.007 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved ______ This copy of LPile is being used by: JRM All Points Technology Corp. P.C. Serial Number of Security Device: 161634460 This copy of LPile is licensed for exclusive use by: All-Points Technology Corp., Che Use of this program by any entity other than All-Points Technology Corp., Che is a violation of the software license agreement. _____ Files Used for Analysis _____ Path to file locations: \Shared\CT office\APT Files\VZ NE - 141 All Sites (fka CT)\Bloomfield 3 CT\Bloomfield 3 CT - CT141_12570\Engineering\Resources\Structure\Tower SA\Caisson\ Name of input data file: Bloomfield 3 CT.lp11d Name of output report file: Bloomfield 3 CT.lp110 Name of plot output file: Bloomfield 3 CT.lp11p Name of runtime message file: Bloomfield 3 CT.lp11r _____ Date and Time of Analysis _____

Date:	January	25,	2022
-------	---------	-----	------

Time: 13:15:15

Problem Title	
Project Name: Bloomfield 3 CT	
Job Number: CT141_12570	
Client: Verizon	
Engineer: JRM	
Description: Caisson Analysis	
Program Options and Settings	5
Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations - US Customary System Units (pounds, feet, inches)	5:
Analysis Control Options: - Maximum number of iterations allowed - Deflection tolerance for convergence - Maximum allowable deflection - Number of pile increments	= 999 = 1.0000E-05 in = 100.0000 in = 100
Loading Type and Number of Cycles of Loading: - Static loading specified	
- Use of p-y modification factors for p-y curves not	selected

- Analysis uses layering correction (Method of Georgiadis)

 No distributed lateral Loading by lateral soil Input of shear resistar Input of moment resistar Input of side resistand Computation of pile-heat Push-over analysis of pile Buckling analysis of pile 	loads are entered movements acting on the at the pile tip of ance at the pile tip the moment along pile ad foundation stiffno bile not selected the not selected	n pile not select not selected not selected not selected ess matrix not se	ed lected
Output Options: - Output files use decima - Report only summary tak and maximum shear force - No p-y curves to be con - Print using wide report	I points to denote o les of pile-head de in output report f: puted and reported - formats	decimal symbols. flection, maximum ile. for user-specifie	bending moment, d depths
Pile	Structural Propertie	es and Geometry	
Number of pile sections de Total length of pile Depth of ground surface be	efined elow top of pile	= = =	1 45.500 ft 5.5000 ft
Pile diameters used for p-	y curve computation	s are defined usi	ng 2 points.
p-y curves are computed us the length of the pile. A	ing pile diameter va summary of values o [.]	alues interpolate f pile diameter v	d with depth over s. depth follows.
Depth Below	Pile		

	рерсп ветом	PITE	
Point	Pile Head	Diameter	
No.	feet	inches	
1	0.000	72.0000	
2	45.500	72.0000	

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a round drilled shaft, bored pile	e, or CID	H pile	
Length of section	=	45.500000	ft
Shaft Diameter	=	72.000000	in
Shear capacity of section	=	0.0000	lbs

_____ Ground Slope and Pile Batter Angles Ground Slope Angle = 0.000 degrees 0.000 radians = = Pile Batter Angle 0.000 degrees 0.000 radians _____ Soil and Rock Layering Information _____ The soil profile is modelled using 2 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer=5.500000 ftDistance from top of pile to bottom of layer=10.500000 ftEffective unit weight at top of layer=57.600000 pcf = 57.600000 pcf = 30.000000 deg Effective unit weight at bottom of layer = Friction angle at top of layer 30.000000 deg. = 30.000000 deg. Friction angle at bottom of layer = 60.000000 pci Subgrade k at top of layer = Subgrade k at bottom of layer 60.000000 pci Layer 2 is sand, p-y criteria by Reese et al., 1974 = 10.500000 ft = 75.000000 ft Distance from top of pile to top of layer Distance from top of pile to bottom of layer = 67.600000 pcf Effective unit weight at top of layer = 67.600000 pcf = 67.600000 pcf = 22.000000 deg. = 22.000000 deg. = 60.000000 pci Effective unit weight at bottom of layer Friction angle at top of layer Friction angle at bottom of layer Subgrade k at top of layer Subgrade k at bottom of layer = 60.000000 pci (Depth of the lowest soil layer extends 29.500 ft below the pile tip) _____ Summary of Input Soil Properties _____

Soil Type Laver Layer Effective Angle of Layer Name Depth Unit Wt. Friction kpy ft pcf Num. (p-y Curve Type) deg. pci --------------------Sand 5.5000 57.6000 30.0000 1 60.0000 (Reese, et al.)10.500057.6000Sand10.500067.6000(Reese, et al.)75.000067.6000 30.0000 30.0000 60.0000 2 60.0000 60.0000 _____ Static Loading Type -----Static loading criteria were used when computing p-y curves for all analyses. Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 2Condition Axial Thrust Load Load Condition Compute Top y Run Analysis 2 1 Force, lbs No. Type vs. Pile Length ----- ----------------1 1 V = 28039.lbs M = 29707200.in-lbs 37855. Yes Yes 2 1 V = 5689.lbs M = 5993064.in-lbs 31546. Yes Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1 Pile Section No. 1: Dimensions and Properties of Drilled Shaft (Bored Pile): -----Length of Section = 45.500000 ft Shaft Diameter = 72.000000 in Concrete Cover Thickness (to edge of long. rebar) = 4.000000 in Number of Reinforcing Bars = 20 bars 60000. psi = Yield Stress of Reinforcing Bars = 29000000. psi Modulus of Elasticity of Reinforcing Bars = Gross Area of Shaft 4072. sq. in. = 31.200000 sq. in. Total Area of Reinforcing Steel = Area Ratio of Steel Reinforcement 0.77 percent = 0.77 per = 8.381233 in = 0.750000 in Edge-to-Edge Bar Spacing Maximum Concrete Aggregate Size = Ratio of Bar Spacing to Aggregate Size 11.17 Offset of Center of Rebar Cage from Center of Pile = 0.0000 in Axial Structural Capacities: -----Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As=12174.775 kipsTensile Load for Cracking of Concrete=-1567.598 kipsNominal Axial Tensile Capacity=-1872.000 kips

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	Х	Y
Number	inches	sq. in.	inches	inches
1	1.410000	1.560000	31.295000	0.0000
2	1.410000	1.560000	29.763314	9.670687
3	1.410000	1.560000	25.318187	18.394739
4	1.410000	1.560000	18.394739	25.318187
5	1.410000	1.560000	9.670687	29.763314
6	1.410000	1.560000	0.0000	31.295000
7	1.410000	1.560000	-9.670687	29.763314
8	1.410000	1.560000	-18.394739	25.318187
9	1.410000	1.560000	-25.318187	18.394739
10	1.410000	1.560000	-29.763314	9.670687
11	1.410000	1.560000	-31.295000	0.0000
12	1.410000	1.560000	-29.763314	-9.670687
13	1.410000	1.560000	-25.318187	-18.394739
14	1.410000	1.560000	-18.394739	-25.318187
15	1.410000	1.560000	-9.670687	-29.763314

16	1.410000	1.560000	0.0000	-31.295000
17	1.410000	1.560000	9.670687	-29.763314
18	1.410000	1.560000	18.394739	-25.318187
19	1.410000	1.560000	25.318187	-18.394739
20	1.410000	1.560000	29.763314	-9.670687

NOTE: The positions of the above rebars were computed by LPile

Minimum spacing between any two bars not equal to zero = 8.381 inches between bars 17 and 18.

Ratio of bar spacing to maximum aggregate size = 11.17

Concrete Properties:

Compressive Strength of Concrete	=	3000.	psi
Modulus of Elasticity of Concrete	=	3122019.	psi
Modulus of Rupture of Concrete	=	-410.791918	psi
Compression Strain at Peak Stress	=	0.001634	
Tensile Strain at Fracture of Concrete	=	-0.0001160	
Maximum Coarse Aggregate Size	=	0.750000	in
Compression Strain at Peak Stress Tensile Strain at Fracture of Concrete Maximum Coarse Aggregate Size	= = =	-410.791918 0.001634 -0.0001160 0.750000	in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 2

Number	Axial Thrust Force
	kips
1	31.546
2	37.855

Summary of Results for Nominal Moment Capacity for Section 1

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load	Axial Thrust	Nominal Mom. Cap.	Max. Comp.
No.	kips	in-kip	Strain
1	31.546	54602.069	0.00300000
2	37.855	54755.660	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Stiff.	Resist.	Nominal	Nominal	Ult. (Fac)	Ult. (Fac)	Bend.
Load Ult Mom	Factor	Ax. Thrust	Moment Cap	Ax. Thrust	Moment Cap	at
No.		kips	in-kips	kips	in-kips	
1 941968378	0.65	31.546000	54602.	20.504900	35491.	
2 945004975	0.65	37.855000	54756.	24.605750	35591.	
1 919103253	0.75	31.546000	54602.	23.659500	40952.	
2 922082277	0.75	37.855000	54756.	28.391250	41067.	
1 649116739	0.90	31.546000	54602.	28.391400	49142.	
2 651886695	0.90	37.855000	54756.	34.069500	49280.	

Layering Correction Equivalent Depths of Soil & Rock Layers

-	-	-	-	

Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer lbs	F1 Integral for Layer lbs
1	5.5000	0.00	N.A.	No	0.00	38470.
2	10.5000	6.3949	Yes	No	38470.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

```
_____
       Pile-head Deflection vs. Pile Length for Load Case 1
  _____
Boundary Condition Type 1, Shear and Moment
Shear
      =
              28039. lbs
Moment
            29707200. in-lbs
      =
Axial Load =
              37855. lbs
          Pile Head Maximum
  Pile
                               Maximum
          Deflection
                                Shear
  Length
                     Moment
          inches
  feet
                     ln-lbs
                                lbs
_ _ _ _ _ _ _ _ _ _ _ _ _ _
         ----- -----
  45.500001.7623533732774800.43.225001.8391003832765052.
                               -129040.
                               -137731.
                   32748254.
32723931.
32683000.
  40.95000 2.00503000
                               -149744.
  38.67500 2.31244385
                               -164056.
  36.40000 2.95070986
                               -181143.
                  32627309.
32649485.
  34.12500 4.10389163
                               -199554.
  31.85000
          6.56466617
                               -222299.
 _____
            Computed Values of Pile Loading and Deflection
             for Lateral Loading for Load Case Number 2
           _____
Pile-head conditions are Shear and Moment (Loading Type 1)
Shear force at pile head
                                            5689.0 lbs
                                      =
Applied moment at pile head
                                      =
                                          5993064.0 in-lbs
Axial thrust load on pile head
                                           31546.0 lbs
                                      =
                         Shear Slope
                Bending
  Depth Deflect.
                                       Total
                                               Bending
                                                      Soil
Res. Soil Spr. Distrib.
                         Force
                                  S Stress Stiffness
   Х
          У
                Moment
                                                         р
    Es*H
         Lat. Load
  feet
       inches in-lbs
                         lbs radians
                                       psi*
                                              lb-in^2
lb/inch
       lb/inch
               lb/inch
_____
----- -----
    0.00 0.08837 5993064. 5689. -4.62E-04 0.00
                                               5.19E+12
```

0.00 0.00 0.00

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 2:

Pile-head deflection	=	0.08837363	inches		
Computed slope at pile head	=	-0.00046204	radians		
Maximum bending moment	=	6606647.	inch-lbs		
Maximum shear force	=	-24663.	lbs		
Depth of maximum bending moment	=	10.92000000	feet below	pile	head
Depth of maximum shear force	=	28.66500000	feet below	pile	head
Number of iterations	=	6			
Number of zero deflection points	=	1			

Pile-head Deflection vs. Pile Length for Load Case 2

Boundary Condition Type 1, Shear and Moment

Shear	=	5689.	lbs
Moment	=	5993064.	in-lbs
Axial Load	=	31546.	lbs

Pile Length feet	Pile Head Deflection inches	Maximum Moment ln-lbs	Maximum Shear lbs
45.50000	0.08837363	6606647.	-24663.
43.22500	0.09193220	6599712.	-26351.
40.95000	0.09913846	6588335.	-28458.
38.67500	0.11052188	6574891.	-30812.
36.40000	0.12776541	6559010.	-33390.
34.12500	0.15252715	6541685.	-36349.
31.85000	0.18765982	6524688.	-39808.
29.57500	0.23931233	6511586.	-43868.
27.30000	0.33542954	6506754.	-49154.
25.02500	0.62581598	6500800.	-57361.
22.75000	1.53226844	6501152.	-67429.
20.47500	5.02556057	6538303.	-79890.

Summary of Pile-head Responses for Conventional Analyses

·

Definitions of Pile-head Loading Conditions:

```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs
Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians
```

Load Load	Load		Axial	Pile-head	Pile-head	Max
Shear Max Moment						
Case Type Pile-head Pile in Pile	Туре	Pile-head	Loading	Deflection	Rotation	in
No. 1 Load 1 in-lbs	2	Load 2	lbs	inches	radians	lbs
1 V, lb 28039. -129040. 3.28E+07	M, in-lb	2.97E+07	37855.	1.7624	-0.01074	
2 V, lb 5689. -24663. 6606647.	M, in-lb	5993064.	31546.	0.08837	-4.62E-04	

Maximum pile-head deflection = 1.7623533750 inches Maximum pile-head rotation = -0.0107350961 radians = -0.615076 deg.

The analysis ended normally.

Maser Consulting Connecticut 1055 Washington Blvd Stamford, CT 06901 856.797.0412 peter.albano@colliersengineering.com

Post-Modification Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10115591 Maser Consulting Connecticut Project #: 21777224A

November 16, 2021

Site Information

Site ID: Site Name: Carrier Name: Address: 468782-VZW / BLOOMFIELD 3 CT BLOOMFIELD 3 CT Verizon Wireless 785 NEW PARK AVE BLOOMFIELD, Connecticut 06002 Hartford County 41.828486° -72.733233°

Latitude: Longitude:

Structure Information

Tower Type: Mount Type: 137-Ft Monopole 14.00-Ft Platform

FUZE ID # 16272375

Analysis Results

Platform: 48.4% Pass

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements also Noted on Mount Modification Drawings Requirements may also be Noted on A & E drawings For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Andy Hanes

Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 674845, dated July 30, 2021
Construction Drawings	All-Points, Site Name: BLOOMFIELD 3 CT, dated August 6, 2021
Mount Mapping Report	RKS Design & Engineering, LLC, Site ID: VZW:468782, dated October 24, 2021
Previous Mount Analysis	Maser Consulting Connecticut, Project #: 21777224A, dated November 3, 2021
Mount Modification Drawings	Maser Consulting Connecticut, Project #: 21777224A, dated November 16, 2021

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), VULT: Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, Ke:	116 mph 50 mph 1.50 in II C 1 N/A N/A 0.996
Seismic Parameters:	Ss: S1:	0.181 g 0.055 g
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		3	Samsung	MT6407-77A	
		2	RFS	DB-B1-6C-12AB-0Z	Addad
		3	Samsung	B2/B66A RRH-BR049	Audeu
105.00	105.00	3	Samsung	B5/B13 RRH-BR04C	
105.00	105.00	1	Amphenol	BXA-80063-4BF-EDIN-0	
		1	Amphenol Antel	BXA-80080-4CF-EDIN-0	Potainad
		1	Amphenol Antel	BXA-80080-6CF-EDIN-2	Retaineu
		6	Andrew	SBNHH-1D65B	

The following equipment has been considered for the analysis of the mount:

Any proposed antennas note currently installed should be mounted such that the centerline of the antennas does not exceed 6 inches vertically from the center of the antenna mounts.

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
RC3DC-4750-PF-48	6	OVP-6
RHSDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation and field observations. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

0	Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
0	HSS (Rectangular)	ASTM 500 (Gr. B-46)
0	Pipe	ASTM A53 (Gr. B-35)
0	Threaded Rod	F1554 (Gr. 36)
0	Bolts	ASTM À325

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail		
Connection Check	33.2 %	Pass		
Platform Angle	45.4 %	Pass		
Back Standoff HSS	24.7 %	Pass		
Front Standoff HSS	16.8 %	Pass		
Mount Pipe	48.4 %	Pass		
MOD Support Rail	10.2 %	Pass		
MOD Corner Angle	16.5 %	Pass		
MOD Kicker	10.1 %	Pass		
Structure Rating – (Controlli	48.4%			

Recommendation:

The existing mount will be **SUFFICIENT** for the final loading after the proposed modifications are successfully completed.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.
Mount Post-Modification Analysis Report (1) 14.00-Ft Platform

Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption and Wind Speed Usage Letter

		Ante	enna Mount Ma	opina	Form		IT PEN	DING)		V4.() Updated on 3-3	FCC #
		,		J		(,				UNKNOWN
MASEK	Tower Owner:	UNKNOW	N				Mapping	Date:			10/24	4/2021
CONSULTING P.A.	Site Name:	VZW: 800	782				Tower Ty	pe:			MON	
	Mapping Contractor:	RKS Desir	n & Engineering LLC				Nount Ele	eight (Ft.):	•)•		1	04
This antenna mapping form is the property	of TES and under PATENT PENDING. The formatio	n contained	herein is considered confide	ential in na	ature and is t	o be used on	y for the spe	ecific custom		eproduction.	transmission,	publication,
modification or disclosure by any method is	prohibited except by express written permission	of TES. All me	eans and methods are the r	esponsibil	ity of the cor	ntractor and th	he work shal	ll be complia	ant with ANSI/ASSE A 10.	48, OSHA, FO	C, FAA and oth	her safety
requirements that may apply. TES is not wa	rrantying the usability of the safety climb as it mu	st be assesse	d prior to each use in comp	liance with	n OSHA requi	rements.						
			1		Mount Pip	e Configura	tion and G	eometries	[Unit = Inches]			-
		Sector /			Offret	Horizontal	Sector /				Offret	Horizontal
		Position	Mount Pipe Size & L	ength	Dimension	Offset "C1,	Position	r	Mount Pipe Size & Len	gth	Dimension	Offset "C1,
		1 OSTGOIT			"u"	C2, C3, etc."	1 osicion				"u"	C2, C3, etc."
		A1	PIPE 2.375"Ø X 0.15" X	72" LONG	34.50	20.25	C1	PIPE 2.875	5"Ø X 0.15" X 72" LON	G	34.50	20.25
		A2	PIPE 2.375"Ø X 0.15" X	72" LONG	34.50	43.50	C2	PIPE 2.375	5"Ø X 0.15" X 72" LON	G	34.50	43.50
		A3	PIPE 2.375"Ø X 0.15" X	72" LONG	34.50	89.25	C3	PIPE 2.375	5"Ø X 0.15" X 72" LON	G	34.50	89.25
		A4	PIPE 2.375"Ø X 0.15" X	72" LONG	34.50	134.25	C4	PIPE 2.375	5"Ø X 0.15" X 72" LON	G	34.50	134.25
		A5					C5	<u> </u>				
Please insert the sketches	of the antenna mount from the	A6		72" LONG	24.50	20.25	C6	<u> </u>				
"Sketches" tab with dir	mensions and members here.	81	PIPE 2.875 W X 0.15 X	72 LONG	34.50	43.50	01					
		B2 B3	PIPE 2.375"Ø X 0.15" X	72" LONG	34.50	89.25	D2					
		B4	PIPE 2.375"Ø X 0.15" X	72" LONG	34.50	134.25	D4					
		B5	proces k				D5					
		B6					D6					
			Distance between bo	ttom rai	l and mour	nt CL elevat	ion (dim d). Unit is i	nches. See 'Mount El	ev Ref' tab	for details. :	
			Distance	e from to	op of botto	m support	rail to lowe	est tip of a	ant./eqpt. of Carrier a	above. (N//	A if > 10 ft.) :	
			Distance	from to	p of bottor	n support r	ail to highe	est tip of a	ant./eqpt. of Carrier I	below. (N//	A if > 10 ft.) :	4.75
					Please ent	er addition	al infomat	ion or con	nments below.			
		T F	14/11 14 1 1 1 1	6.)		T	c' 0 1	cl. 0.01				
		Tower Fac	e width at Nount Elev. (TL.):	t the molel of	Tower Leg	Size or Pole	e Shatt Dial	meter at Mount Elev. (in.):		27.75
		FOL 1-ATTI	s/ Flation in monopole	es, report	t the welus	ize ironi the	main stand	Join to the	plate poining into the o		ι.	
	SECTOR C											
SECION B	SECION C		Enter antenna	a model	If not labe	led enter "	Unknown		Mountir	ng Location	S	Photos of
FACE B			Enter anterna	a mouch.	in not labe	icu, cricer	onanown		[Units are inc	hes and de	grees]	antennas
	IFC C					1					1	
		ms					Coax	Antenna	Vertical	Horiz.	Antenna	
TE AS		Ite	Antenna Models if	Width	Depth	Height	Size and	Center-	Distances"b1a, b2a,	(Use "-" if	Azimuth	Photo
The second second		nts	Known	(in.)	(in.)	(in.)	Qty	line (Ft.)	b _{3a} , b _{1b} " (Inches)	Ant. is	(Degrees)	Numbers
	1	۷							50 10 1 1	behind)		
							Sector A	4	-			
SECTOR A	GA C	Ant _{1a}										
		Ant _{1b}	BXA-80080-6CF-EDIN	8.00	6.00	71.00		103.583	39.50	10.00	0.00	141
	- • +	Ant _{1c}										
	+ Horizontal Offset "h"	Antza	B4 RRH2X60-4R	10.50	5.75	36.50		105.167	20.50	-7.00		141
	<u> </u>	Ant _{2b}	UNKNOWN PANEL	12.00	7.50	73.50		104.167	32.50	10.50	0.00	141
		Anta										
		Ant	318533864441 3	12.00	7.50	21.00		104 625	27.00	-5.00		142
Anta Anta		Ant.	BXA-70062-6CE-EDINI	11.00	5.00	71.00		103 017	35.50	8.00	0.00	142
	Antsa	Ant	DAT 70003-0CF-EDIN	11.00	5.00	71.00		103.517	53.50	0.00	0.00	142
e Antıb g Antıb g	Antas a Antas Antas	Ant _{3c}						<u> </u>				
		Ant _{4a}										
	28 · · · · · ·	Ant _{4b}	UNKNOWN PANEL	12.00	7.50	73.50		104.167	32.50	10.50	0.00	143
		Ant _{4c}										
		Ant _{5a}										
		Ant _{5b}										
		Ant _{5c}										
		Ant on										
C1 C	UARTLSe UANT4c UART5c	Standoff	KKFDC-3315-PF-48	16.00	10.50	26.00						142
		Ant on										
- C3 C4		Standoff										
	C5	Ant on										
[*		Tower										
	oking Out From Towar)	Ant on										
Antenna Layout (Lo	Joking Out From Tower]	Terrer										

Mou	nt Azimuth (I	Degree	e)	Tower Leg Azimuth (Deg	ree)						Sector B					
G a b b	for Each Sect	tor	1	for Each Sector	0.	Ant _{1a}	PVA 90000 405 5000	11.00	5.50	45.00		104.042	24.00	0.00	120.00	4.45
Sector A:	120.00	Deg	Leg A:		Deg	Ant _{1b}	BAA-80063-4BF-EDIN	11.00	5.50	45.00		104.042	34.00	9.00	120.00	145
Sector B:	240.00	Deg	Leg C:		Deg	Ant _{2a}	B4 RRH2X60-4R	10.50	5.75	36.50		105.167	20.50	-7.00		145
Sector D:		Deg	Leg D:		Deg	Ant _{2b}	UNKNOWN PANEL	12.00	7.50	73.50		104.167	32.50	10.50	120.00	145
		Climb	oing Fac	ility Information		Ant _{2c}										
Location:	240.00	Deg		Sector C		Ant_{3a}	3JR53386AAAL 3	12.00	7.50	21.00		104.625	27.00	-5.00		146
Climbing	Corrosi	on Typ	e:	N/A		Ant _{3b}	SLCP 2X6014	14.00	11.00	53.00		104.208	32.00	10.00	120.00	146
Facility	Acc	ess:		Climbing path was unobstructe	d.	Ant _{3c}										
	Cond	lition:		Good condition.		Ant _{4a}		12.00	7.50	73.50		104 167	32.50	10.50	120.00	147
						Ant _{4c}	ONKNOWN FANLL	12.00	7.50	73.50		104.107	52.50	10.50	120.00	147
						Ant _{5a}										
						Ant _{5b}										
						Ant _{5c}										
						Ant on Standoff										
						Ant on										
						Standoff Ant on										
Plea	ise insert a ph	oto of	the mo	ount centerline measurement h	ere.	Tower										
						Ant on Tower										
						Tower					Sector C					
						Ant _{1a}										
						Ant _{1b}	BXA-80080-4CF-EDIN	8.00	6.00	47.50		104.042	34.00	9.00	280.00	149
						Ant _{1c}		10.50	E 75	36.50		105 167	20.50	.7.00		140
						Ant _{2a}	UNKNOWN PANEL	12.00	7.50	73.50		103.167	32.50	10.50	280.00	149
						Ant _{2c}		12.00		. 5.50		201107	52.00	10.50		1.5
		M	Th .	_		Ant _{3a}	3JR53386AAAL 3	12.00	7.50	21.00		104.625	27.00	-5.00		150
Г	1 A		ШÅ	Ê		Ant _{3b}	SLCP 2X6014	14.00	11.00	53.00		104.208	32.00	10.00	280.00	150
						Ant _{3c}										
4	_==={;	計管	ttl:			Ant _{4a}	LINKNOWN PANEL	12.00	7.50	73.50		104 167	32.50	10.50	280.00	152
	u u					Ant _{4c}	ONKIOWNTANEE	12.00	7.50	75.50		104.107	52.50	10.50	200.00	152
Γ			Шг	DISTANCE FROM TO PLATFORM MONBER OF ANL/EDIT. OF	P OF MAIN TO LOWEST TIP CARRIER ABOVE	Ant _{5a}										
-			††††	(N/A IF > 10 FT.		Ant _{5b}										
	╞╤═ᡶ╞		╤╤╢		POFMAN	Ant _{5c}										
EXISTING PLATFORM-				OF ANT /DDPL OF (N/A IF > 10 FT.)	TO HIGHEST THP GARRIER BIELOW.	Standoff										
Г	դ բլ		۵.	TIP OF EQUIPMENT		Ant on										
						Ant on										
c		- #	<u>r</u>	p		Tower										
L	ᆔᆝ	Щ	1			Ant on Tower										
		FOR PLAT	FORMS								Sector D					
	-1-		-8-			Ant _{1a}										
			_			Ant _{1b}										
4			7			Ant _{1c}										
4	╞╾╍╼╴╢╞╴		≡Ļģ	TT TP OF EQUIPMENT		Ant _{2b}										
	2					Ant _{2c}										
Г		K	-	DISTANCE FROM T SUPPORT RAL TO	OP OF BOTTOM LOWEST TIP OF	Ant _{3a}										
_				ANT./EQPT. OF C (N/A F > 10 FT.	ARMER ABOVE.)	Ant _{3b}										
						Ant _{ac}										
	J		거	USTANCE FROM T	op of Bottom Highest tip of	Ant _{4b}										
NOUN	NT	K	r	ANT./BOFT. OF C (N/A F > 10 FT.	ARBER BELOW.	Ant _{4c}										
Lu Lu	l La					Ant _{5a}										
c :		_	=			Ant _{5b}										
			_ [•		Ant _{5c}										
Ļ	Ļ			ĻJ		Standoff										
For T-Arms, member to	/Platforms on the plate bolt	monop	oles, re	cord the weld size from the main s lar. See below for reference	tandoff	Ant on Standoff										
//						Ant on										
		-		//		Tower										
T				``\/		Tower										
ľ	Ħ			REPORT VELD SIZE FR STANDDFF TO PLATE B INTO COLLAR MOUNT.	DM DLTING											

Observed Safety and Structural Issues During the Mount Mapping											
Issue #	Description of Issue	Photo #									
1	COAX TOTAL (13): (12) FH 1-5/8, (1) 1.5"Ø HYB										
2	BOLT MISSING ON MOUNT	91									
3											
4											
5											
6											
7											
8											

			Obser	rved Obstructions to Tower Lighting System										
If the tower lighting system is being obst	f the tower lighting system is being obstructed by the carrier's equipment (for example: a light nested by the antennas), please provide photos and fill in the information below. Photo #													
Description of Obstruction:														
Type of Light:	Type of Light: Photo # Additional Comments:													
Lighting Technology:	F	Photo #												
Elevation (AGL) at base of light (Ft.):	F	Photo #												
Is a service loop available?	F	Photo #												
Is beacon installed on an extension? Photo #														

Mapping Notes

1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)

2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.

3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.

6. Please measure and report the size and length of all existing antenna mounting pipes.

7. Please measure and report the antenna information for all sectors.

8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

Standard Conditions

	SK - 1
	Nov 12, 2021 at 10:15 AM 468782-VZW_MT_LO_H.r3d

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					96			
2	Antenna Di	None					96			
3	Antenna Wo (0 Deg)	None					96			
4	Antenna Wo (30 Deg)	None					96			
5	Antenna Wo (60 Deg)	None					96			
6	Antenna Wo (90 Deg)	None					96			
7	Antenna Wo (120 Deg)	None					96			
8	Antenna Wo (150 Deg)	None					96			
9	Antenna Wo (180 Deg)	None					96			
10	Antenna Wo (210 Deg)	None					96			
11	Antenna Wo (240 Deg)	None					96			
12	Antenna Wo (270 Deg)	None					96			
13	Antenna Wo (300 Deg)	None					96			
14	Antenna Wo (330 Deg)	None					96			
15	Antenna Wi (0 Deg)	None					96			
16	Antenna Wi (30 Deg)	None					96			
17	Antenna Wi (60 Deg)	None					96			
18	Antenna Wi (90 Deg)	None					96			
19	Antenna Wi (120 Deg)	None					96			
20	Antenna Wi (150 Deg)	None					96			
21	Antenna Wi (180 Deg)	None					96			
22	Antenna Wi (210 Deg)	None					96			
23	Antenna Wi (240 Deg)	None					96			
24	Antenna Wi (270 Deg)	None					96			
25	Antenna Wi (300 Deg)	None					96			
26	Antenna Wi (330 Deg)	None					96			
27	Antenna Wm (0 Deg)	None					96			
28	Antenna Wm (30 Deg)	None					96			
29	Antenna Wm (60 Deg)	None					96			
30	Antenna Wm (90 Deg)	None					96			
31	Antenna Wm (120 Deg)	None					96			
32	Antenna Wm (150 Deg)	None					96			
33	Antenna Wm (180 Deg)	None					96			
34	Antenna Wm (210 Deg)	None					96			
35	Antenna Wm (240 Deg)	None					96			
36	Antenna Wm (270 Deg)	None					96			
37	Antenna Wm (300 Deg)	None					96			
38	Antenna Wm (330 Deg)	None					96			
39	Structure D	None		-1					3	
40	Structure Di	None						41	3	
41	Structure Wo (0 Deg)	None						82		
42	Structure Wo (30 Deg)	None						82		
43	Structure Wo (60 Deg)	None						82		
44	Structure Wo (90 Deg)	None						82		
45	Structure Wo (120 D	None						82		
46	Structure Wo (150 D	None						82		
47	Structure Wo (180 D	None						82		
48	Structure Wo (210 D	None						82		
49	Structure Wo (240 D	None						82		
50	Structure Wo (270 D	None						82		
51	Structure Wo (300 D	None						82		
52	Structure Wo (330 D	None						82		
53	Structure Wi (0 Deg)	None						82		

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
54	Structure Wi (30 Deg)	None						82		
55	Structure Wi (60 Deg)	None						82		
56	Structure Wi (90 Deg)	None						82		
57	Structure Wi (120 De	None						82		
58	Structure Wi (150 De	None						82		
59	Structure Wi (180 De	None						82		
60	Structure Wi (210 De	None						82		
61	Structure Wi (240 De	None						82		
62	Structure Wi (270 De	None						82		
63	Structure Wi (300 De	None						82		
64	Structure Wi (330 De	None						82		
65	Structure Wm (0 Deg)	None						82		
66	Structure Wm (30 De	None						82		
67	Structure Wm (60 De	None						82		
68	Structure Wm (90 De	None						82		
69	Structure Wm (120 D	None						82		
70	Structure Wm (150 D	None						82		
71	Structure Wm (180 D	None						82		
72	Structure Wm (210 D	None						82		
73	Structure Wm (240 D	None						82		
74	Structure Wm (270 D	None						82		
75	Structure Wm (300 D	None						82		
76	Structure Wm (330 D	None						82		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					96			
82	Antenna Eh (0 Deg)	None					64			
83	Antenna Eh (90 Deg)	None					64			
84	Structure Ev	ELY								
85	Structure Eh (0 Deg)	ELZ	03							
86	Structure Eh (90 Deg)	ELX			.03					
87	BLC 39 Transient Are	None						34		
88	BLC 40 Transient Are	None						34		

Load Combinations

	Description	Solve	P	S	BLC	Fac																		
1	1.2D+1.0Wo (0 D.	-Yes	Υ		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30	Yes	Y		1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60	Yes	Υ		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90	Yes	Υ		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (12	Yes	Υ		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (15	Yes	Υ		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (18	Yes	Υ		1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (21	Yes	Υ		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (24	Yes	Υ		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (27	Yes	Υ		1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (30	Yes	Υ		1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (33	Yes	Υ		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1	Yes	Υ		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1	Yes	Υ		1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1	Yes	Υ		1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1	Yes	Υ		1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1	Yes	Υ		1	1.2	39	1.2	2	1	40	1	19	1	57	1								

Load Combinations (Continued)

		Description So	lve P.	S B	LCFa	cBL	CFac.	.BLC	Fac.	.BLC	Fac.	BLC	Fac	.BLC	Fac	BLC	Fac	BLC	FacI	3LC Fa	cBLC	Fac
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1.2D + 1.0Di + 1Y	es 1	Y	1 1.	2 39	1.2	2	1	40	1	20	1	58	1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1.2D + 1.0Di + 1Y	s)	Y	1 1	2 39	12	2	1	40	1	21	1	59	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	1.2D + 1.0Di + 1 Y	29 1	/	1 1	2 30	1 1 2	2	1	40	1	22	1	60	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	1.2D + 1.0Di + 1 Y		v .	1 1	2 30	1 1 2	2	1	40	1	23	1	61	1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	12D + 10Di + 1		v -	1 1	2 30	1 1 2	2	1	10	1	24	1	62	1							
$ \begin{array}{c} 24 & 120 + 1001 + 1142 & 144 & 142 & 144 & 142 & 144$	22	1.2D + 1.0Di + 1 100			1 1	$\frac{2}{2}$	1.2	2	1	40	1	24	1	62	1						_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1.2D + 1.0Di + 1 1			1 1.	2 3	1.2	2	1	40	1	20	1	64	1							
$ \begin{array}{c} 26 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 29 & 12 & 77 & 15 & 28 & 166 & 1 \\ 27 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 29 & 12 & 77 & 15 & 28 & 166 & 1 \\ 28 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 29 & 12 & 77 & 15 & 30 & 166 & 1 \\ 29 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 29 & 12 & 77 & 15 & 30 & 1 & 68 & 1 \\ 29 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 77 & 15 & 30 & 1 & 68 & 1 \\ 20 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 77 & 15 & 30 & 1 & 77 & 15 & 30 & 1 & 77 \\ 30 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 77 & 15 & 33 & 1 & 71 & 1 \\ 31 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 77 & 15 & 36 & 1 & 72 & 1 \\ 33 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 77 & 15 & 36 & 1 & 74 & 1 \\ 34 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 77 & 15 & 36 & 1 & 74 & 1 \\ 36 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 77 & 15 & 36 & 1 & 76 & 1 \\ 36 & 120 + 1.5 \text{ Im}^2 + .4 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 28 & 1 & 66 & 1 \\ 39 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 28 & 1 & 66 & 1 \\ 41 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 30 & 1 & 76 & 1 \\ 44 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 33 & 1 & 77 & 1 \\ 44 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 33 & 1 & 77 & 1 \\ 45 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 33 & 1 & 73 & 1 \\ 47 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 33 & 1 & 76 & 1 \\ 47 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 36 & 1 & 74 & 1 \\ 47 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 36 & 1 & 74 & 1 \\ 47 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 36 & 1 & 76 & 1 \\ 48 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & 39 & 12 & 78 & 15 & 36 & 1 & 76 & 1 \\ 48 & 120 + 1.5 \text{ Im}^24 \text{ Fes} & Y & 1 & 12 & $	24	1.2D + 1.5L m1 +				2 33		2	4 5	40		20		04								
$ \begin{array}{c} 26 & 1.20 + 1.5.11 & 1Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 29 & 1 & 67 & 1 \\ 28 & 1.20 + 1.5.11 & 1Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 30 & 1 & 68 & 1 \\ 29 & 1.20 + 1.5.11 & 1Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 33 & 1 & 67 & 1 \\ 30 & 1.20 + 1.5.11 & 1Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 33 & 1 & 71 & 1 \\ 31 & 1.20 + 1.5.11 & 1Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 33 & 1 & 71 & 1 \\ 32 & 1.20 + 1.5.11 & 1Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 33 & 1 & 71 & 1 \\ 33 & 1.20 + 1.5.11 & 1Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 34 & 1 & 72 & 1 \\ 33 & 1.20 + 1.5.11 & 1Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 36 & 1 & 74 & 1 \\ 33 & 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 & 1.2 & 7 & 1.5 & 36 & 1 & 74 & 1 \\ 33 & 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 & 1.2 & 77 & 1.5 & 37 & 1 & 75 & 1 \\ 33 & 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 & 1.2 & 77 & 1.5 & 37 & 1 & 75 & 1 \\ 33 & 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 & 1.2 & 78 & 1.5 & 28 & 1 & 66 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 & 1.2 & 78 & 1.5 & 28 & 1 & 66 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 & 1.2 & 78 & 1.5 & 28 & 1 & 66 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 & 1.2 & 78 & 1.5 & 33 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 & 1.2 & 78 & 1.5 & 33 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 78 & 1.5 & 33 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 78 & 1.5 & 33 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 78 & 1.5 & 33 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 78 & 1.5 & 33 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 78 & 1.5 & 33 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 71 & 75 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 71 & 1.5 & 31 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 71 & 1.5 & 31 & 1 & 71 & 1 \\ 1.20 + 1.5.111 &Yes & Y & 1 & 1.2 & 39 + 1.2 & 71 & 1.5 & 31 & 1 & 71 & 1 \\ 1.$	25	$1.2D + 1.5Linit + \gamma$	es i	(2 3	1.2	11	1.5	21		65									_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	26	1.2D + 1.5Liii1 + Y	es 1		1 1.	2 3	1.2	11	1.5	28	1	66	1									4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27	$1.2D + 1.5Lm1 + \gamma_0$	es 1	<u> </u>	1 1.	2 39	1.2	11	1.5	29	1	67	1								_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	28	1.2D + 1.5Lm1 +Y	es 1	<u> </u>	1 1.	2 39	1.2	77	1.5	30	1	68	1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29	1.2D + 1.5Lm1 +Y	es 1	Ý ľ	1 1.	2 39	1.2	77	1.5	31	1	69	1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30	1.2D + 1.5Lm1 +Y	es 1	()	1 1.	2 39	1.2	77	1.5	32	1	70	1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	31	1.2D + 1.5Lm1 +Y	es 1	Y 1	1 1.	2 39	1.2	77	1.5	33	1	71	1									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	1.2D + 1.5Lm1 +Y	es 1	Y !	1 1.	2 39	1.2	77	1.5	34	1	72	1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33	1.2D + 1.5Lm1 +Y	es 1	Y '	1 1.	2 39	1.2	77	1.5	35	1	73	1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	34	1.2D + 1.5Lm1 +Y	es 1	Y	1 1.	2 39	1.2	77	1.5	36	1	74	1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	1.2D + 1.5Lm1 +Y	es 1	Y	1 1	2 3) 1.2	77	1.5	37	1	75	1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	1.2D + 1.5Lm1 +Y	as 1	Y .	1 1	2 30	12	77	1.5	38	1	76	1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1.2D + 1.5Lm2 +		Y .	1 1	2 30	1 1 2	78	1.5	27	1	65	1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	$1.2D + 1.5I m^2 + V_1$		↓ ✓ ·	1 1	2 30	1.2	78	1.5	28	1	66	1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	1.2D + 1.5Lm2 + T			1 1	$\frac{2}{2}$	1.2	70	1.5	20	1	67	1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	39	1.2D + 1.5Lm2 + 10			1 1.	2 33	1.2	70	1.5	29	1	60	1									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40	1.2D + 1.5Lin2 + Y			1 1. 4 4	2 3	1.2	70	1.5	30	1	60	1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	$1.2D + 1.5Lm2 + \gamma$	es 1	(1 1.	2 3	1.Z	78	1.5	31		69	1								_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	$1.2D + 1.5Lm2 + \gamma_0$	es 1	<u> </u>	1 1.	2 39	1.2	78	1.5	32	1	10	1									-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	1.2D + 1.5Lm2 +Υ	es 1	r ·	1 1.	2 39	1.2	78	1.5	33	1	71	1									
45 1.20 + 1.5.Lm2 +Yes Y 1 1.2 39 1.2 78 1.5 35 1 73 1 46 1.20 + 1.5.Lm2 +Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 48 1.20 + 1.5.Lm2 +Yes Y 1 1.2 39 1.2 78 1.5 36 1 76 1 49 1.20 + 1.5.Lv1 Yes Y 1 1.2 39 1.2 80 1.5 -	44	1.2D + 1.5Lm2 +Y	es 1	/	1 1.	2 39	1.2	78	1.5	34	1	72	1									
46 1.20 + 1.5.Lm2 +Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 47 1.20 + 1.5.Lm2 +Yes Y 1 1.2 39 1.2 78 1.5 1 1 49 1.20 + 1.5Lv2 Yes Y 1 1.2 39 1.2 79 1.5 1 1 1.5 1 1 1.2 39 1.2 79 1.5 1 1 1.40 Yes Y 1 1.2 39 1.2 79 1.5 1 1 1.40 Yes Y 1 1.2 39 1.2 81 1 ELV 1 82 1.8 83 ELZ 1 ELX 1.5 1 1.5	45	1.2D + 1.5Lm2 +Y	es 1	<u> </u>	1 1.	2 39) 1.2	78	1.5	35	1	73	1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	1.2D + 1.5Lm2 +Y	es 1	<u>(</u>	1 1.	2 39	1.2	78	1.5	36	1	74	1									
48 $1.20 + 1.5Lv1$ Yes Y 1 $1.2.$ 39 $1.2.$ 78 $1.5.$ Image: triangle	47	1.2D + 1.5Lm2 +Y	es 1	<u> </u>	1 1.	2 39	1.2	78	1.5	37	1	75	1									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	48	1.2D + 1.5Lm2 +Y	es 1	Y I	1 1.	2 39	1.2	78	1.5	38	1	76	1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	1.2D + 1.5Lv1 Y	es 1	Y '	1 1.	2 39	1.2	79	1.5													
51 1.40 Yes Y 1 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 30 1.4 30 1.4 30 1.4 30 1.4 30 1.4 30 1.4 30 1.4 30 1.4 31 EUV 1 82 1.83 EUZ 1 EUX 53 1.20 1.10Ev + 1 Y 1 1.2 39 1.2 81 1 EUY 1 82 .5 83 .866 EUZ .5 EUX 1 56 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 EUY 1 82 5 83 .866 EUZ 5 EUZ .166 EUZ .5 EUZ .166 EUZ .5 EUZ .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 </td <td>50</td> <td>1.2D + 1.5Lv2 Y</td> <td>es)</td> <td>Y</td> <td>1 1.</td> <td>2 39</td> <td>1.2</td> <td>80</td> <td>1.5</td> <td></td>	50	1.2D + 1.5Lv2 Y	es)	Y	1 1.	2 39	1.2	80	1.5													
52 12.D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 83 ELZ 1 ELX 53 12.D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .866 83 .5 ELZ .866 ELX .5 54 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .866 ELZ .5 ELX .866 55 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 .866 ELZ .5 ELX .866 56 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 ELX .866 ELZ .5 ELX .5 ELX .5 .5 .5 ELX .5 .5 .5 .5 .5 .5 .5 .5	51	1 4D Y		Y -	1 1	4 39	14															
53 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 1.82 866 83 .5 ELZ 866 ELZ .5 54 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .866 83 .5 ELZ .66 83 .5 ELZ .66 83 .5 ELZ .66 .5 ELZ .66 .6 .66 .6 .5 ELZ .6 83 .5 ELZ .66 .6 .5 ELZ .6 .6 .6 .7 .66 .7 .66 .7 .66 .7 .66 .8 .5 .5 .5 58 1.2D + 1.0Ev + 1 Y 1 1.2 .39 1.2 81 1 ELY 1 82 .66 83 .5 ELZ .866 .83 .5 ELZ .866 .2 .5 .2 .866 .2 .5 .2 .866 .2 .5 .2 <t< td=""><td>52</td><td>1.2D + 1.0Ev + 1</td><td></td><td>v .</td><td>1 1</td><td>2 30</td><td>1 1 2</td><td>81</td><td>1</td><td>FI Y</td><td>1</td><td>82</td><td>1</td><td>83</td><td></td><td>FI Z</td><td>1</td><td>FI X</td><td></td><td></td><td></td><td></td></t<>	52	1.2D + 1.0Ev + 1		v .	1 1	2 30	1 1 2	81	1	FI Y	1	82	1	83		FI Z	1	FI X				
54 1.20 + 1.0Ev + 1 Y 1 1.2 39 1.2 01 1 ELV 1 82 100 100 1.50 ELX 1.66 54 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELV 1 82 58 866 ELZ 5 ELX 1 56 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELV 1 82 -5 83 866 ELZ .5 ELX 866 57 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 .866 ELZ .5 ELX .66 59 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 .666 ELZ .5 ELX .66 61 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81	53	1.2D + 1.0Ev + 1		↓ ✓ ·	1 1	2 30	1.2	81	1	FLY	1	82	866	83	5	FLZ	866	FIX	5		_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	1.2D + 1.0Ev + 1		1 V	1 1	$\frac{2}{2}$	1.2	Q1	1	FLY	1	02	.000	00	226	FI Z	.000	FIX	222		_	
55 1.20 + 1.0EV + 1 Y 1 1.2 39 1.2 81 1 EU 1 82 -53 1 EUZ 1	54	1.2D + 1.0Ev + 1			. 4 4	2 33	1.2	01	1		1	02	.o	00	.000		.o		.000			+
50 1.20 + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELT 1 82 866 83 .5 ELZ 866 ELX .5 57 1.20 + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 866 83 .5 ELZ 1 ELX .5 59 1.20 + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 5 83 5 ELZ 5 ELX .5 60 1.20 + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 5 83 5 ELX 5 ELX .666 ELX 5 ELX .666 ELX .5 ELX .466 .61 1.20 + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .866 83 .5 ELZ .866 .5	55	1.2D + 1.0EV + 1				2 3		01			1	82	-	83	000		-		0000	_	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	1.2D + 1.0EV + 1	i		1 1.	2 3	1.Z	81	1		1	82	5	83	.866		5		.866			
58 1.2D + 1.0EV + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 -1 83 ELZ -1 ELX 59 1.2D + 1.0EV + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 -866 83 5 ELZ 666 ELX 5 ELX .5 ELX .5 ELX .5 ELX .5 ELX .5 ELX .5 ELX <t< td=""><td>5/</td><td>1.2D + 1.0EV + 1</td><td></td><td></td><td>1.</td><td>2 39</td><td>1.2</td><td>81</td><td>1</td><td>ELY</td><td>1</td><td>82</td><td>866</td><td>83</td><td>.5</td><td></td><td>866</td><td></td><td>.5</td><td></td><td>_</td><td></td></t<>	5/	1.2D + 1.0EV + 1			1.	2 39	1.2	81	1	ELY	1	82	866	83	.5		866		.5		_	
59 1.20 + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 866 83 5 ELZ 666 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	58	1.2D + 1.0EV + 1			1 1.	2 39	1.2	81	1	ELY	1	82	-1	83	_		-1	ELX	_			
60 $1.2D + 1.0Ev + 1$ Y1 1.2 39 1.2 81 1 ELY 1 82 -5 83 866 ELZ 5 $ELX666$ 61 $1.2D + 1.0Ev + 1$ Y1 1.2 39 1.2 81 1 ELY 1 82 83 -1 ELZ $ELX1$ 62 $1.2D + 1.0Ev + 1$ Y1 1.2 39 1.2 81 1 ELY 1 82 $.5$ 83 866 ELZ $.5$ $ELX1$ 63 $1.2D + 1.0Ev + 1$ Y1 1.2 39 1.2 81 1 ELY 1 82 $.5$ 83 866 ELZ $.5$ $ELX666$ 64 $0.9D - 1.0Ev + 1$ Y1 $.9$ 39 $.9$ 81 -1 ELY -1 82 183 ELZ 1 ELX 65 $0.9D - 1.0Ev + 1$ Y1 $.9$ 39 $.9$ 81 -1 ELY -1 82 $.866$ 83 $.5$ ELZ $.866$ 67 $0.9D - 1.0Ev + 1$ Y1 $.9$ 39 $.9$ 81 -1 ELY -1 82 $.5$ 83 $.866$ ELZ $.5$ ELX 1 68 $0.9D - 1.0Ev + 1$ Y1 $.9$ 39 $.9$ 81 -1 ELY -1 82 $.5$ 83 $.5$ ELZ $.5$ ELX 1 70<	59	1.2D + 1.0Ev + 1		r i	1 1.	2 39	1.2	81	1	ELY	1	82	866	83	5	ELZ	866	ELX	5			
61 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 83 -1 ELZ ELX -1 62 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 -1 ELZ .5 ELX .66 63 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 5 ELZ .5 ELX .5 64 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 1 83 ELZ 1 ELX 5 65 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 .66 ELZ .5 ELX .5 ELX .5 ELX .5 ELX .5 ELX .5 ELX .5	60	1.2D + 1.0Ev + 1		r i	1 1.	2 39	1.2	81	1	ELY	1	82	5	83	866	ELZ	5	ELX	866			
62 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 866 ELZ .5 ELX866 63 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .866 83 5 ELZ .866 ELX5 .5 64 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 1 83 ELZ 1 ELX .5 .5 65 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 .566 ELZ .5 ELX .5	61	1.2D + 1.0Ev + 1)	<u> </u>	1 1.	2 39	1.2	81	1	ELY	1	82		83	-1	ELZ		ELX	-1			
63 1.2D + 1.0Ev + 1 Y 1 1.2 39 1.2 81 1 ELY 1 82 .866 83 5 ELZ .866 ELX 5 64 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 1 83 ELZ 1 ELX 65 0.9D - 1.0Ev + 1 Y 1 Y 1 81 -1 ELY -1 82 ELZ 1 ELX	62	1.2D + 1.0Ev + 1	1	(1 1.	2 39	1.2	81	1	ELY	1	82	.5	83	866	ELZ	.5	ELX	866			
64 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 1 83 ELZ 1 ELX 65 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .866 83 .5 ELZ 1 ELX .5 .5 66 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 .66 ELZ .5 ELX .666 .5 ELX .5 .5 ELX .5 .5 .5	63	1.2D + 1.0Ev + 1	1	Y	1 1.	2 39	1.2	81	1	ELY	1	82	.866	83	5	ELZ	.866	ELX	5			
65 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .866 83 .5 ELZ .866 ELX .5 66 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .866 83 .5 ELZ .666 ELX .5 ELX .866 67 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 .866 ELZ .5 ELX .1 68 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 .66 ELZ .5 ELX 1 68 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 5 83 .66 ELZ .5 ELX .66 69 0.9D - 1.0Ev + 1 Y	64	0.9D - 1.0Ev + 1		Y	1	39	9. (81	-1	ELY	-1	82	1	83	-	ELZ	1	ELX				
66 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 .866 ELZ .5 ELX .866 67 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 .866 ELZ .5 ELX .866 67 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 16 ELZ .5 ELX 1 68 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 5 83 .866 ELZ .5 ELX 1 .5 69 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 5 ELZ .666 ELZ .5 ELX .666 .5 .5 .5 .5 .5 .5	65	0.9D - 1.0Ev + 1		Y	1	39	9	81	-1	ELY	-1	82	.866	83	.5	ELZ	.866	ELX	.5			
67 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 83 1 ELZ ELX 1 .00 68 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 83 1 ELZ ELX 1 68 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 83 1 ELZ ELX 1 69 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 83 ELZ	66	0.9D - 1.0Ev + 1		Y	1 0	3 30	9 9	81	-1	ELY	-1	82	.5	83	.866	ELZ		ELX	.866			
68 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 -5 83 .866 ELZ 5 ELX .866 69 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 5 83 .866 ELZ 5 ELX .866 69 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 866 83 .5 ELZ 5 ELX .866 70 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 -3 866 ELZ .1 ELX .5 71 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 5 83 5 ELZ 5 72 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81	67	0.9D - 1.0Ev + 1		Y .	1 0	3 30	, a	81	_1	ELY	_1	82	.0	83	1	EL7	.0	ELX	1			
69 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 3 63 .5 ELZ .866 ELZ .5 ELZ .666 ELZ <	68	0.9D - 1.0Ev + 1		/	1 0	$\frac{1}{2}$		81	_1	FLY	_1	82	- 5	83	228	FLZ	_ 5	FLX	228			
OS 0.00 + 1.0EV + 1 Y 1 .9 39 .9 81 -1 ELY -1 62 000 63 .5 ELZ 000 ELX .5 Image: Constraint of the state of th	60	0.00 - 1.0Ev + 1		v	1 .		· .9	01	-1	EL I	-1	02	0	00	.000	FI 7	0	EL V	.000			
70 0.5D + 1.5E + 1 Y 1 .9 39 .9 81 -1 ELT -1 82 -1 83 ELZ -1 ELX	09					1 3	.9	01	-1		-1	02	000	03	.0		000		.э			
71 0.9D - 1.0EV + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 -366 83 5 ELZ -866 IZ 72 0.9D - 1.0EV + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 5 83 5 ELZ 866 IZ 5 ELX 5 ELX 666 IZ 5 ELX 666 IZ 5 ELX 1 IZ IZ IZ 1 IZ IZ IZ	70	0.9D - 1.0EV + 1				3	.9	81	-1		-1	82	-1	83	-		-1		_			
72 0.9D - 1.0EV + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 5 83 866 ELZ 5 ELX 866 73 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 83 -1 ELZ 5 ELX 866 74 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 5 ELX 1	/1	0.9D - 1.0EV + 1			1 .	39	.9	81	-1	ELY	-1	82	866	83	5		866		5		_	+
73 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 83 -1 ELZ ELX -1 74 0.9D - 1.0Ev + 1 Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83 -3 ELX -1	72	0.9D - 1.0EV + 1			1 .9	39	.9	81	-1	ELY	-1	82	5	83	866	ELZ	5	ELX	866			
74 0.9D - 1.0Ev + 1, Y 1 .9 39 .9 81 -1 ELY -1 82 .5 83866 ELZ .5 ELX866	73	0.9D - 1.0Ev + 1		r i	1.	39	9. 9	81	-1	ELY	-1	82		83	-1	ELZ		ELX	-1			
	74	0.9D - 1.0Ev + 1		<u> </u>	1 .9	39	9. 9	81	-1	ELY	-1	82	.5	83	866	ELZ	.5	ELX	866			

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d]

Load Combinations (Continued)

	Description	Solve P	S	BLC	Fac	.BLC	Fac	.BLC	Fac.	BLC	Fac	.BLC	Fac	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac	.BLC	Fac
75	0.9D - 1.0Ev + 1	Y		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	5	ELZ	.866	3ELX	5				

Joint Coordinates and Temperatures

1	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
2	N2	7	0.100007	0.291667	0	
3	N3	-7	0	0.291667	0	
1	NA	0	0	-1 625	0	
5	N5	3 666667	0	-1.625	0	
6	NG	-3 666667	0	-1.625	0	
7	NIZ	-3.000007	0 166667	2.604167	0	
2 Q	NR	0	-0.100007	-2.004107	0	
0	NI22A	0	0	-3.033333	0	
10	N26	0	0 166667	1.625	0	
11	N11	3 572355	-0.166667	5 805833	0	
12	N12	0.072355	-0.100007	-11.058011	0	
12	N12	7.072355	0	0 166344	0	
14	N14	1.012333	0	4 0275	0	
14	N14	0.070120	0	-4.9375	0	
10	N15	0.079139	0	-0.112920	0	
10		1.06440	0 166667	-1.702074	0	
10	N10	2 572255	-0.100007	-4.447917	0	
10	N20	1 012472	0 166667	-0.0900000	0	
19	N20	2.572255	-0.100007	-4.9373	0	
20	N22	-3.372333	-0.100007	-0.090000	0	
21	N22	-7.072355	0	0.100344	0	
22	N23	-0.072355	0	-11.958011	0	
23	N24	-1.912473	0	-4.9375	0	
24	N25	-3.745806	0	-1.762074	0	
25	NZ6A	-0.079139	0 400007	-8.112926	0	
26	N27	-1.06449	-0.166667	-4.447917	0	
21	N29	-3.072300	0 10007	-0.890833	0	
28	N3U NICOA	-1.912473	-0.100007	-4.9375	0	
29	N29A	0.075747	0	-10.035469	0	
30	N30A	-0.075747	0	-10.035469	0	
31	N30	-5.40908	0	-0.797865	0	
32	N37	-5.333333	0	-0.000007	0	
33	N43	5.333333	0	-0.000007	0	
34	N44	5.40908	0	-0.797865	0	
35	N35	5.3125	0	0.291667	0	
30	N36A	5.3125	0 075	0.541667	0	
37	N37A	5.3125	2.875	0.541667	0	
38	N38	0.075	-3.125	0.541667	0	
39	N39	3.375	0	0.291667	0	
40	N40	3.375	0 075	0.541667	0	
41	N41	3.375	2.875	0.541667	0	
42	N42	3.375	-3.125	0.541667	0	
43	N43A	-0.4375	0	0.291667	0	
44	N44A	-0.4375	0	0.541667	0	
45	N45	-0.4375	2.875	0.541667	0	
46	N46	-0.4375	-3.125	0.541667	0	
4/	N47	-4.18/5	0	0.291667	0	
48	N48	-4.18/5	0	0.541667	0	
49	N49	-4.18/5	2.875	0.541667	0	
50	N50	-4.18/5	-3.125	0.541667	0	
51	N52	0.916105	0	-10.496593	0	

Page 8

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
52	N53	1.132611	0	-10.621593	0	
53	N54	1.132611	2.875	-10.621593	0	
54	N55	1.132611	-3.125	-10.621593	0	
55	N56	1.884855	0	-8.818669	0	
56	N57	2.101361	0	-8.943669	0	
57	N58	2.101361	2.875	-8.943669	0	
58	N59	2.101361	-3.125	-8.943669	0	
59	N60	3.791105	0	-5.516947	0	
60	N61	4.007611	0	-5.641947	0	
61	N62	4.007611	2.875	-5.641947	0	
62	N63	4.007611	-3.125	-5.641947	0	
63	N64	5.666105	0	-2.269352	0	
64	N65	5.882611	0	-2.394352	0	
65	N66	5.882611	2.875	-2.394352	0	
66	N67	5.882611	-3.125	-2.394352	0	
67	N69	-6.228605	0	-1.295073	0	
68	N70	-6.445111	0	-1.420073	0	
69	N71	-6.445111	2.875	-1.420073	0	
70	N72	-6.445111	-3.125	-1.420073	0	
71	N73	-5.259855	0	-2.972998	0	
72	N74	-5.476361	0	-3.097998	0	
73	N75	-5 476361	2 875	-3 097998	0	
74	N76	-5.476361	-3.125	-3.097998	0	
75	N77	-3.353605	0	-6.274719	0	
76	N78	-3.570111	0	-6.399719	0	
77	N79	-3.570111	2.875	-6.399719	0	
78	N80	-3 570111	-3 125	-6 399719	0	
79	N81	-1 478605	0	-9 522315	Ő	
80	N82	-1 695111	0	-9.647315	0	
81	N83	-1 695111	2 875	-9.647315	0	
82	N84	-1.695111	-3 125	-9.647315	0	
83	N83A	4 007611	1 875	-5 641947	0	
84	N84A	4.007611	-2 125	-5 641947	0	
85	N85	4 440624	1 875	-5 891947	0	
86	N86	4 440624	-2 125	-5 891947	0	
87	N87	4 440624	2 875	-5 891947	0	
88	N88	4 440624	-3 125	-5 891947	0	
89	N89	6 75	2.5	0.291667	0	
90	N90	-6.75	2.5	0.291667	0	
91	N91	5 3125	2.5	0.291667	0	
92	N92	5 3125	2.5	0.541667	0	
93	N93	3 375	2.5	0.291667	0	
94	N94	3 375	2.5	0.541667	0	
95	N95	-0.4375	2.5	0.291667	0	
96	N96	-0.4375	2.5	0.541667	0	
97	N97	-4 1875	2.5	0.291667	0	
98	N98	-4 1875	2.5	0.541667	0	
99	N100	0 197355	2.5	-11 741505	0	
100	N101	6.947355	2.5	-0.050162	0 0	
101	N102	0.916105	2.5	-10,496593	0	
102	N103	1,132611	2.5	-10.621593	Ő	
103	N104	1.884855	2.5	-8.818669	0	
104	N105	2,101361	2.5	-8.943669	Ő	
105	N106	3,791105	2.5	-5.516947	Ő	
106	N107	4.007611	2.5	-5.641947	Ő	
107	N108	5.666105	2.5	-2.269352	0	
108	N109	5.882611	2.5	-2.394352	Ő	
100	11100	0.002011	2.0	2.004002	V	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
109	N111	-6.947355	2.5	-0.050162	0	
110	N112	-0.197355	2.5	-11.741505	0	
111	N113	-6.228605	2.5	-1.295073	0	
112	N114	-6.445111	2.5	-1.420073	0	
113	N115	-5.259855	2.5	-2.972998	0	
114	N116	-5.476361	2.5	-3.097998	0	
115	N117	-3.353605	2.5	-6.274719	0	
116	N118	-3.570111	2.5	-6.399719	0	
117	N119	-1.478605	2.5	-9.522315	0	
118	N120	-1.695111	2.5	-9.647315	0	
119	N119A	-4.75	2.5	0.291667	0	
120	N120A	4.75	2.5	0.291667	0	
121	N121	-4.75	2.5	0.166667	0	
122	N122	4.75	2.5	0.166667	0	
123	N124	5.947355	2.5	-1.782213	0	
124	N125	1.197355	2.5	-10.009454	0	
125	N126	5.839102	2.5	-1.719713	0	
126	N127	1.089102	2.5	-9.946954	0	
127	N129	-1.197355	2.5	-10.009454	0	
128	N130	-5.947355	2.5	-1.782213	0	
129	N131	-1.089102	2.5	-9.946954	0	
130	N132	-5.839102	2.5	-1.719713	0	
131	N131A	0.072355	0	-10.958011	0	
132	N132A	-0.072355	0	-10.958011	0	
133	N133	-0.	0	-10.958011	0	
134	N134	-0.	-2.166667	-5.0625	0	
135	N135	0	-2	-3.833333	0	
136	N136	-1.06449	-2.166667	-3.21875	0	
137	N137	1.06449	-2.166667	-3.21875	0	
138	N139	-6.206329	0	-0.333656	0	
139	N140	-6.133975	0	-0.208333	0	
140	N141	-6.170152	0	-0.270994	0	
141	N144	6.133975	0	-0.208333	0	
142	N145	6.206329	0	-0.333656	0	
143	N146	6.170152	0	-0.270994	0	
144	N146A	5.882611	1.875	-2.394352	0	
145	N147	5.882611	-2.125	-2.394352	0	
146	N148	6.315624	1.875	-2.644352	0	
147	N149	6.315624	-2.125	-2.644352	0	
148	N150	6.315624	2.875	-2.644352	0	
149	N151	6.315624	-3.125	-2.644352	0	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Back Standoff H	HSS4X4X5	Beam	Tube	A500 Gr. B 46	Typical	4.1	9.14	9.14	15.3
2	Platform Angle	L3X3X5	Beam	Single Angle	A36 Gr.36	Typical	1.78	1.5	1.5	.06
3	Mount Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
4	Front Standoff H	HSS4.5X4	Beam	Tube	A500 Gr. B 46	Typical	2.93	9.02	9.02	14.4
5	MOD Support Rail	PIPE 2.5	Beam	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
6	MOD Corner An	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
7	MOD Kicker	LL3x3x3x6	Column	Double Angle (- A36 Gr.36	Typical	2.18	4.97	1.9	.027

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N3	N2		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
2	M2	N2	N5		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
3	M3	N5	N6		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
4	M4	N6	N3		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
5	M5	N7	N26			Back Standoff	Beam	Tube	A500 Gr	Typical
6	M22	N23A	N1			RIGID	None	None	RIGID	Typical
7	M23	N4	N26			RIGID	None	None	RIGID	Typical
8	M8	N26	N1			Front Standoff	Beam	Tube	A500 Gr	Typical
9	M9	N13	N12		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
10	M10	N12	N15		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
11	M11	N15	N16		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
12	M12	N16	N13		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
13	M13	N17	N20			Back Standoff	Beam	Tube	A500 Gr	Typical
14	M14	N19	N11			RIGID	None	None	RIGID	Typical
15	M15	N14	N20			RIGID	None	None	RIGID	Typical
16	M16	N20	N11			Front Standoff	Beam	Tube	A500 Gr	Typical
17	M17	N23	N22		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
18	M18	N22	N25		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
19	M19	N25	N26A		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
20	M20	N26A	N23		270	Platform Angle	Beam	Single Angle	A36 Gr.36	Typical
21	M21	N27	N30			Back Standoff	Beam	Tube	A500 Gr	Typical
22	M22A	N29	N21			RIGID	None	None	RIGID	Typical
23	M23A	N24	N30			RIGID	None	None	RIGID	Typical
24	M24	N30	N21			Front Standoff	- Beam	Tube	A500 Gr	Typical
25	M25	N26A	N15			RIGID	None	None	RIGID	Typical
26	M26	N30A	N29A			RIGID	None	None	RIGID	Typical
27	M27	N23	N12			RIGID	None	None	RIGID	Typical
28	M28	N6	N25			RIGID	None	None	RIGID	Typical
29	M29	N37	N36			RIGID	None	None	RIGID	Typical
30	M30	N3	N22			RIGID	None	None	RIGID	Typical
31	M31	N16	N5			RIGID	None	None	RIGID	Typical
32	M32	N44	N43			RIGID	None	None	RIGID	Typical
33	M33	N13	N2			RIGID	None	None	RIGID	Typical
34	M34	N35	N36A			RIGID	None	None	RIGID	Typical
35	MP1A	N37A	N38			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
36	M36	N39	N40			RIGID	None	None	RIGID	Typical
37	MP2A	N41	N42			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
38	M38	N43A	N44A			RIGID	None	None	RIGID	Typical
39	MP3A	N45	N46			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
40	M40	N47	N48			RIGID	None	None	RIGID	Typical
41	MP4A	N49	N50			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
42	M42	N52	N53			RIGID	None	None	RIGID	Typical
43	MP1C	N54	N55			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
44	M44	N56	N57			RIGID	None	None	RIGID	Typical
45	MP2C	N58	N59			Mount Pipe	Column	Pipe	A53 Gr. B	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
46	M46	N60	N61			RIGID	None	None	RIGID	Typical
47	MP3CA	N62	N63			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
48	M48	N64	N65			RIGID	None	None	RIGID	Typical
49	MP4CA	N66	N67			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
50	M50	N69	N70			RIGID	None	None	RIGID	Typical
51	MP1B	N71	N72			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
52	M52	N73	N74			RIGID	None	None	RIGID	Typical
53	MP2B	N75	N76			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
54	M54	N77	N78			RIGID	None	None	RIGID	Typical
55	MP3B	N79	N80			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
56	M56	N81	N82			RIGID	None	None	RIGID	Typical
57	MP4B	N83	N84			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
58	M58	N83A	N85			RIGID	None	None	RIGID	Typical
59	M59	N84A	N86			RIGID	None	None	RIGID	Typical
60	MP3C	N87	N88			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
61	M61	N90	N89		270	MOD Support	Beam	Pipe	A53 Gr. B	Typical
62	M62	N91	N92			RIGID	None	None	RIGID	Typical
63	M63	N93	N94			RIGID	None	None	RIGID	Typical
64	M64	N95	N96			RIGID	None	None	RIGID	Typical
65	M65	N97	N98			RIGID	None	None	RIGID	Typical
66	M66	N101	N100		270	MOD Support	Beam	Pipe	A53 Gr. B	Typical
67	M67	N102	N103			RIGID	None	None	RIGID	Typical
68	M68	N104	N105			RIGID	None	None	RIGID	Typical
69	M69	N106	N107			RIGID	None	None	RIGID	Typical
70	M70	N108	N109			RIGID	None	None	RIGID	Typical
71	M71	N112	N111		270	MOD Support	Beam	Pipe	A53 Gr. B	Typical
72	M72	N113	N114			RIGID	None	None	RIGID	Typical
73	M73	N115	N116			RIGID	None	None	RIGID	Typical
74	M74	N117	N118			RIGID	None	None	RIGID	Typical
75	M75	N119	N120			RIGID	None	None	RIGID	Typical
76	M76	N119A	N121			RIGID	None	None	RIGID	Typical
77	M77	N120A	N122			RIGID	None	None	RIGID	Typical
78	M78	N124	N126			RIGID	None	None	RIGID	Typical
79	M79	N125	N127			RIGID	None	None	RIGID	Typical
80	M80	N129	N131			RIGID	None	None	RIGID	Typical
81	M81	N130	N132			RIGID	None	None	RIGID	Typical
82	M82	N121	N132		90	MOD Corner A	Beam	Single Angle	A36 Gr.36	Typical
83	M83	N126	N122		90	MOD Corner A	Beam	Single Angle	A36 Gr.36	Typical
84	M84	N131	N127		90	MOD Corner A	Beam	Single Angle	A36 Gr.36	Typical
85	M85	N132A	N131A			RIGID	None	None	RIGID	Typical
86	M86	N133	N134			MOD Kicker	Column	Double Angle (. A36 Gr.36	Typical
87	M87	N140	N139			RIGID	None	None	RIGID	Typical
88	M88	N141	N136			MOD Kicker	Column	Double Angle (. A36 Gr.36	Typical
89	M89	N145	N144			RIGID	None	None	RIGID	Typical
90	M90	N146	N137			MOD Kicker	Column	Double Angle (. A36 Gr.36	Typical
91	M91	N146A	N148			RIGID	None	None	RIGID	Typical
92	M92	N147	N149			RIGID	None	None	RIGID	Typical
93	MP4C	N150	N151			Mount Pipe	Column	Pipe	A53 Gr. B	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	M1						Yes		-		None
2	M2						Yes				None
3	M3						Yes				None
4	M4						Yes				None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
5	M5						Yes			None
6	M22						Yes	** NA **		None
7	M23						Yes	** NA **		None
8	M8						Yes			None
9	M9						Yes			None
10	M10						Yes			None
11	M11						Yes			None
12	M12						Yes			None
13	M13						Yes			None
14	M14						Yes	** NA **		None
15	M15						Yes	** NA **		None
16	M16						Yes			None
17	M17						Yes			None
18	M18						Yes			None
19	M19						Yes			None
20	M20						Yes			None
21	M21						Yes			None
22	M22A						Yes	** NA **		None
23	M23A						Yes	** NA **		None
24	M24						Yes			None
25	M25	000X00					Yes	** NA **		None
26	M26	000X00					Yes	** NA **		None
27	M27	000000					Yes	** NA **		None
28	M28	000X00					Yes	** NA **		None
29	M29	000000					Yes	** NA **		None
30	M30	000X00					Yes	** NA **		None
31	M31	000X00					Yes	** NA **		None
32	M32	000000					Yes	** NA **		None
33	M33	000X00					Yes	** NA **		None
34	M34						Yes	** NA **		None
35	MP1A						Yes	** NA **		None
36	M36						Yes	** NA **		None
37	MP2A						Yes	** NA **		None
38	M38						Yes	** NA **		None
39	MP3A						Yes	** NA **		None
40	M40						Yes	** NA **		None
41	MP4A						Yes	** NA **		None
42	M42						Yes	** NA **		None
43	MP1C						Yes	** NA **		None
44	M44						Yes	** NA **		None
45	MP2C						Yes	** NA **		None
46	M46						Yes	** NA **		None
47	MP3CA						Yes	** NA **		None
48	M48						Yes	** NA **		None
40	MP4CA						Yes	** NA **		None
50	M50						Yes	** NA **		None
51	MP1R						Yes	** NA **		None
52	M52						Ves	** NA **		None
53	MP2R						Yes	** NA **		None
54	M54						Yes	** NA **		None
55	MP3B						Yes	** NA **		None
56	M56						Yes	** NA **		None
57	MP4R						Yes	** NA **		None
58	M58						Yes	** NA **		None
59	M59						Yes	** NA **		None
60	MP3C						Yes	** NA **		None
61	M61						Yes			None
	NIQ I				1		103			

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
62	M62						Yes	** NA **		None
63	M63						Yes	** NA **		None
64	M64						Yes	** NA **		None
65	M65						Yes	** NA **		None
66	M66						Yes			None
67	M67						Yes	** NA **		None
68	M68						Yes	** NA **		None
69	M69						Yes	** NA **		None
70	M70						Yes	** NA **		None
71	M71						Yes			None
72	M72						Yes	** NA **		None
73	M73						Yes	** NA **		None
74	M74						Yes	** NA **		None
75	M75						Yes	** NA **		None
76	M76		000000				Yes	** NA **		None
77	M77		000000				Yes	** NA **		None
78	M78		000000				Yes	** NA **		None
79	M79		000000				Yes	** NA **		None
80	M80		000000				Yes	** NA **		None
81	M81		000000				Yes	** NA **		None
82	M82						Yes			None
83	M83						Yes			None
84	M84						Yes			None
85	M85						Yes	** NA **		None
86	M86	BenPIN	BenPIN				Yes	** NA **		None
87	M87						Yes	** NA **		None
88	M88	BenPIN	BenPIN				Yes	** NA **		None
89	M89						Yes	** NA **		None
90	M90	BenPIN	BenPIN				Yes	** NA **		None
91	M91						Yes	** NA **		None
92	M92						Yes	** NA **		None
93	MP4C						Yes	** NA **		None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Y	-43.55	2
2	MP4A	My	022	2
3	MP4A	Mz	0	2
4	MP4A	Y	-43.55	4
5	MP4A	My	022	4
6	MP4A	Mz	0	4
7	MP4B	Y	-43.55	2
8	MP4B	My	.011	2
9	MP4B	Mz	019	2
10	MP4B	Y	-43.55	4
11	MP4B	My	.011	4
12	MP4B	Mz	019	4
13	MP4C	Y	-43.55	2
14	MP4C	Му	0	2
15	MP4C	Mz	.022	2
16	MP4C	Y	-43.55	4
17	MP4C	My	0	4
18	MP4C	Mz	.022	4
19	MP1A	Y	-32	11
20	MP1A	My	.016	1

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mz	0	1
22	MP1B	Y	-32	1
23	MP1B	My	008	1
24	MP1B	Mz	.014	1
25	MP2A	Y	-84.4	1.5
26	MP2A	My	.042	1.5
27	MP2A	Mz	0	1.5
28	MP2B	Y	-84.4	1.5
29	MP2B	My	021	1.5
30	MP2B	Mz	.037	1.5
31	MP2C	Y	-84.4	1.5
32	MP2C	Mv	0	1.5
33	MP2C	Mz	042	1.5
34	MP3A	Y	-70.3	1.5
35	MP3A	Mv	.035	1.5
36	MP3A	Mz	0	1.5
37	MP3B	Y	-70.3	1.5
38	MP3B	Mv	018	1.5
39	MP3B	Mz	.03	1.5
40	MP3C	Y	-70.3	1.5
41	MP3C	Mv	0	1.5
42	MP3C	Mz	035	1.5
43	MP1B	Y	-9.6	.5
44	MP1B	Mv	.002	.5
45	MP1B	Mz	- 004	.5
46	MP1B	Y	-9.6	5.5
47	MP1B	My	002	5.5
48	MP1B	Mz	- 004	5.5
40	MP1C	V V	-6	1.5
50	MP1C	My	0	1.5
51	MP1C	MZ	003	1.5
52	MP1C	V V	-6	4.5
53	MP1C	My	0	4.5
54	MP1C	MZ	003	4.5
55	MP1A	Y Y	-9	
56	MP1A	My	- 004	.5
57	MP1A	Mz	004	.5
58	MP1A	V	-9	.5
59	MP1A	My	- 004	5.5
60	MP1A	Mz	004	5.5
61	MP3A	V	-20	5.5
62	MP34	My	- 01	.5
63	MP34	Mz	012	.5
64	MP3A	V	-20	55
65	MP3A	My	- 01	5.5
66	MP3A	Mz	012	5.5
67	MP3R		_20	5.5
68	MD3R	My	-20	.5
69		IVI y Mz	005	.5
70	MD2D		014	.5
70	MD2P	I NAV	-20	5.5
72			005	5.5
72			014	5.5 E
73	MD2C	Y NA	-20	.0
74	IVIP3C	IVIY	.012	.5
15		IVIZ	.01	.5
70	MP3C	Υ	-20	5.5
	MP3C	IVIY	.012	5.5

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 14

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP3C	Mz	.01	5.5
79	MP3A	Y	-20	.5
80	MP3A	My	01	.5
81	MP3A	Mz	012	.5
82	MP3A	Y	-20	5.5
83	MP3A	My	01	5.5
84	MP3A	Mz	012	5.5
85	MP3B	Y	-20	.5
86	MP3B	My	.015	.5
87	MP3B	Mz	003	.5
88	MP3B	Y	-20	5.5
89	MP3B	My	.015	5.5
90	MP3B	Mz	003	5.5
91	MP3C	Y	-20	.5
92	MP3C	My	012	.5
93	MP3C	Mz	.01	.5
94	MP3C	Y	-20	5.5
95	MP3C	My	012	5.5
96	MP3C	Mz	.01	5.5

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Y	-54.72	2
2	MP4A	My	027	2
3	MP4A	Mz	0	2
4	MP4A	Y	-54.72	4
5	MP4A	My	027	4
6	MP4A	Mz	0	4
7	MP4B	Y	-54.72	2
8	MP4B	My	.014	2
9	MP4B	Mz	024	2
10	MP4B	Y	-54.72	4
11	MP4B	My	.014	4
12	MP4B	Mz	024	4
13	MP4C	Y	-54.72	2
14	MP4C	My	0	2
15	MP4C	Mz	.027	2
16	MP4C	Y	-54.72	4
17	MP4C	Mv	0	4
18	MP4C	Mz	.027	4
19	MP1A	Y	-116.168	1
20	MP1A	My	.058	1
21	MP1A	Mz	0	1
22	MP1B	Y	-116.168	1
23	MP1B	My	029	1
24	MP1B	Mz	.05	1
25	MP2A	Y	-69.503	1.5
26	MP2A	My	.035	1.5
27	MP2A	Mz	0	1.5
28	MP2B	Y	-69.503	1.5
29	MP2B	My	017	1.5
30	MP2B	Mz	.03	1.5
31	MP2C	Y	-69.503	1.5
32	MP2C	My	0	1.5
33	MP2C	Mz	035	1.5
34	MP3A	Y	-62.733	1.5

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP3A	My	.031	1.5
36	MP3A	Mz	0	1.5
37	MP3B	Υ	-62.733	1.5
38	MP3B	My	016	1.5
39	MP3B	Mz	.027	1.5
40	MP3C	Y	-62.733	1.5
41	MP3C	My	0	1.5
42	MP3C	Mz	031	1.5
43	MP1B	Y	-77.625	.5
44	MP1B	My	.019	.5
45	MP1B	Mz	034	.5
46	MP1B	Y	-77.625	5.5
47	MP1B	Mv	.019	5.5
48	MP1B	Mz	034	5.5
49	MP1C	Y	-47.799	1.5
50	MP1C	My	0	1.5
51	MP1C	Mz	.024	1.5
52	MP1C	Y	-47.799	4.5
53	MP1C	Mv	0	4.5
54	MP1C	Mz	.024	4.5
55	MP1A	Y	-69.019	.5
56	MP1A	My	035	.5
57	MP1A	Mz	0	.5
58	MP1A	Y	-69.019	5.5
59	MP1A	Mv	035	5.5
60	MP1A	Mz	0	5.5
61	MP3A	Y	-93 442	5
62	MP3A	My	- 047	
63	MP3A	Mz	055	.0
64	MP3A	Y	-93 442	5.5
65	MP3A	My	- 047	5.5
66	MP3A	Mz	055	5.5
67	MP3B	V V	-93 442	5
68	MP3B	My	- 024	
69	MP3B	Mz	- 068	.0
70	MP3B	V	-93.442	5.5
71	MP3B	My	- 024	5.5
72	MP3B	Mz	- 068	5.5
73	MP3C	V	-93 442	5
74	MP3C	My	055	
75	MP3C	Mz	047	.5
76	MP3C	V	-93 442	5.5
77	MP3C	Mv	055	5.5
78	MP3C	Mz	047	5.5
79	MP3A	Y	-93 442	5
80	MP3A	My	- 047	.5
81	MP3A	Mz	047	.5
82	MP3A		000	.5
83	MP3A	My	- 047	5.5
84	MP3A	Mz	047	5.5
85	MP3R	V V	000	5.5
86	MD3B	N/N/	071	.5
87	MD2D		.071	.5
88	MD2D		013	.5
80	MD2D	T NAV	-50.442	5.5
09	MD2D		.071	5.5
90	MD2C		013	5.5
31	IVIP30	Ĩ	-93.442	G.

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP3C	My	055	.5
93	MP3C	Mz	.047	.5
94	MP3C	Y	-93.442	5.5
95	MP3C	My	055	5.5
96	MP3C	Mz	.047	5.5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	-88.123	2
3	MP4A	Mx	0	2
4	MP4A	X	0	4
5	MP4A	Z	-88.123	4
6	MP4A	Mx	0	4
7	MP4B	X	0	2
8	MP4B	Z	-47.906	2
9	MP4B	Mx	.021	2
10	MP4B	X	0	4
11	MP4B	Z	-47.906	4
12	MP4B	Mx	.021	4
13	MP4C	X	0	2
14	MP4C	Z	-34.5	2
15	MP4C	Mx	017	2
16	MP4C	X	0	4
17	MP4C	Z	-34.5	4
18	MP4C	Mx	017	4
19	MP1A	X	0	1
20	MP1A	Z	-142,121	1
21	MP1A	Mx	0	1
22	MP1B	X	0	1
23	MP1B	Z	-106.085	1
24	MP1B	Mx	046	1
25	MP2A	X	0	1.5
26	MP2A	Z	-70.123	1.5
27	MP2A	Mx	0	1.5
28	MP2B	X	0	1.5
29	MP2B	Z	-52.686	1.5
30	MP2B	Mx	023	1.5
31	MP2C	X	0	1.5
32	MP2C	Z	-46.874	1.5
33	MP2C	Mx	.023	1.5
34	MP3A	X	0	1.5
35	MP3A	Z	-70.123	1.5
36	MP3A	Mx	0	1.5
37	MP3B	X	0	1.5
38	MP3B	Z	-46.007	1.5
39	MP3B	Mx	02	1.5
40	MP3C	X	0	1.5
41	MP3C	Z	-37.968	1.5
42	MP3C	Mx	.019	1.5
43	MP1B	X	0	.5
44	MP1B	Z	-90.771	.5
45	MP1B	Mx	.039	.5
46	MP1B	X	0	5.5
47	MP1B	Z	-90,771	5.5
48	MP1B	Mx	.039	5.5
			1000	0.0

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
49	MP1C	X	0	1.5
50	MP1C	Z	-52.364	1.5
51	MP1C	Mx	026	1.5
52	MP1C	X	0	4.5
53	MP1C	Z	-52.364	4.5
54	MP1C	Mx	026	4.5
55	MP1A	Х	0	.5
56	MP1A	Z	-107.997	.5
57	MP1A	Mx	0	.5
58	MP1A	X	0	5.5
59	MP1A	Z	-107.997	5.5
60	MP1A	Mx	0	5.5
61	MP3A	Х	0	.5
62	MP3A	Z	-152.996	.5
63	MP3A	Mx	089	.5
64	MP3A	Х	0	5.5
65	MP3A	Z	-152.996	5.5
66	MP3A	Mx	089	5.5
67	MP3B	X	0	.5
68	MP3B	Z	-114.132	.5
69	MP3B	Mx	.083	.5
70	MP3B	Х	0	5.5
71	MP3B	Z	-114.132	5.5
72	MP3B	Mx	.083	5.5
73	MP3C	Х	0	.5
74	MP3C	Z	-101.177	.5
75	MP3C	Mx	051	.5
76	MP3C	Х	0	5.5
77	MP3C	Z	-101.177	5.5
78	MP3C	Mx	051	5.5
79	MP3A	Х	0	.5
80	MP3A	Z	-152.996	.5
81	MP3A	Mx	.089	.5
82	MP3A	X	0	5.5
83	MP3A	Z	-152.996	5.5
84	MP3A	Mx	.089	5.5
85	MP3B	Х	0	.5
86	MP3B	Z	-114.132	.5
87	MP3B	Mx	.016	.5
88	MP3B	X	0	5.5
89	MP3B	Z	-114.132	5.5
90	MP3B	Mx	.016	5.5
91	MP3C	X	0	.5
92	MP3C	Z	-101.177	.5
93	MP3C	Mx	051	.5
94	MP3C	X	0	5.5
95	MP3C	Z	-101.177	5.5
96	MP3C	Mx	051	5.5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	37.359	2
2	MP4A	Z	-64.707	2
3	MP4A	Mx	019	2
4	MP4A	Х	37.359	4
5	MP4A	Z	-64.707	4

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	019	4
7	MP4B	Х	17.25	2
8	MP4B	Z	-29.878	2
9	MP4B	Mx	.017	2
10	MP4B	Х	17.25	4
11	MP4B	Z	-29.878	4
12	MP4B	Mx	.017	4
13	MP4C	Х	23.953	2
14	MP4C	Z	-41.487	2
15	MP4C	Mx	021	2
16	MP4C	Х	23.953	4
17	MP4C	Z	-41,487	4
18	MP4C	Mx	- 021	4
19	MP1A	X	65.055	1
20	MP1A	7	-112 678	1
21	MP1A	Mx	033	1
22	MP1B	X	47.037	1
23	MP1B	7	-81 47	1
24	MP1B	My	- 047	1
25	MP2A	Y	32 155	15
20	MD2A	7	-55.695	1.5
20	MD2A		-55.095	1.5
20	MD2R		23 437	1.5
20	MD2R	~ 7	40.504	1.5
29	MD2R	<u> </u>	-40.354	1.5
31	MP2C		025	1.5
22	MP2C	~ 7	45.629	1.5
22			-45.020	1.5
34	MD3V		31.042	1.5
35	MP3A	7	53 767	1.5
36	MD3A		-55.707	1.5
37	MD3R		18 08/	1.5
38	MP3B	7	_32.881	1.5
30	MD3B		-019	1.5
40	MP2C		019	1.5
40	MP3C	~ 7	23.003	1.5
41	MP3C		-39.043	1.5
42			.02	5
43		7	65 510	.5
44			-03.519	.5
40	MD1R	IVIX V	37 927	.5
40	MP18	7	-65 510	5.5
18	MP1R		03.313	5.5
40	MP1C	Y	27 08	1.5
50	MP1C	7	_18 463	1.5
51	MP1C	∠ M⊻	_ 024	1.5
52	MP1C	VIX V	27.08	1.5
52	MP1C	7	48 463	4.5
54	MP1C	<u> </u>	-40.403	4.5
55	MP1A	X	51 188	5
56	MP1A	7	-88.66	.5
57	MP1A	M _Y	- 026	.5
58	MP1A	X	51 188	55
59	MP1A	7	-88.66	5.5
60	MP1A	Mx	- 026	5.5
61	MP3A	X	70.021	5
62	MP3A	7	-121 279	
02		L	-121.213	.0

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP3A	Mx	106	.5
64	MP3A	X	70.021	5.5
65	MP3A	Z	-121.279	5.5
66	MP3A	Mx	106	5.5
67	MP3B	X	50.589	.5
68	MP3B	Z	-87.622	.5
69	MP3B	Mx	.051	.5
70	MP3B	X	50.589	5.5
71	MP3B	Z	-87.622	5.5
72	MP3B	Mx	.051	5.5
73	MP3C	X	57.066	.5
74	MP3C	Z	-98.841	.5
75	MP3C	Mx	016	.5
76	MP3C	X	57.066	5.5
77	MP3C	Z	-98.841	5.5
78	MP3C	Mx	016	5.5
79	MP3A	X	70.021	.5
80	MP3A	Z	-121.279	.5
81	MP3A	Mx	.036	.5
82	MP3A	X	70.021	5.5
83	MP3A	Z	-121.279	5.5
84	MP3A	Mx	.036	5.5
85	MP3B	X	50.589	.5
86	MP3B	Z	-87.622	.5
87	MP3B	Mx	.051	.5
88	MP3B	X	50.589	5.5
89	MP3B	Z	-87.622	5.5
90	MP3B	Mx	.051	5.5
91	MP3C	X	57.066	.5
92	MP3C	Z	-98.841	.5
93	MP3C	Mx	083	.5
94	MP3C	X	57.066	5.5
95	MP3C	Z	-98.841	5.5
96	MP3C	Mx	083	5.5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	41.487	2
2	MP4A	Z	-23.953	2
3	MP4A	Mx	021	2
4	MP4A	Х	41.487	4
5	MP4A	Z	-23.953	4
6	MP4A	Mx	021	4
7	MP4B	Х	41.487	2
8	MP4B	Z	-23.953	2
9	MP4B	Mx	.021	2
10	MP4B	Х	41.487	4
11	MP4B	Z	-23.953	4
12	MP4B	Mx	.021	4
13	MP4C	Х	64.707	2
14	MP4C	Z	-37.359	2
15	MP4C	Mx	019	2
16	MP4C	Х	64.707	4
17	MP4C	Z	-37.359	4
18	MP4C	Mx	019	4
19	MP1A	X	91.872	1

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	-53.043	1
21	MP1A	Mx	.046	1
22	MP1B	Х	91.872	1
23	MP1B	Z	-53.043	1
24	MP1B	Mx	046	1
25	MP2A	X	45.628	1.5
26	MP2A	7	-26.343	1.5
27	MP2A	Mx	023	1.5
28	MP2R	X	45.628	1.5
20	MP2B	7	-26.343	1.5
20	MD2D	<u> </u>	-20.343	1.5
21	MD2C		023	1.5
20	MP20	~ ~ ~	00.455	1.5
32	MP2C	<u> </u>	-32.155	1.5
33	MP2C	NX	.016	1.5
34	MP3A	X	39.843	1.5
35	MP3A	<u> </u>	-23.003	1.5
36	MP3A	MX	.02	1.5
37	MP3B	X	39.843	1.5
38	MP3B	Z	-23.003	1.5
39	MP3B	Mx	02	1.5
40	MP3C	Х	53.767	1.5
41	MP3C	Ζ	-31.042	1.5
42	MP3C	Mx	.016	1.5
43	MP1B	Х	78.61	.5
44	MP1B	Z	-45.386	.5
45	MP1B	Mx	.039	.5
46	MP1B	Х	78.61	5.5
47	MP1B	Z	-45,386	5.5
48	MP1B	Mx	.039	5.5
49	MP1C	X	54 691	1.5
50	MP1C	7	-31 576	1.5
51	MP1C	Mx	- 016	1.5
52	MP1C	X	54 691	4.5
53	MP1C	7	-31 576	4.5
54	MP1C	 My	- 016	4.5
55	MP10		78.024	4.5
56		7	10.524	.5
57		 Mx	-40.007	.5
57			039	.5
50		<u>^</u>	10.924	5.5
59	MP1A		-45.567	5.5
00			039	0.0 F
60	IVIE 3A	λ 7	90.041	.5
62	MP3A	<u> </u>	-57.066	.5
63	MP3A	MX	083	.5
64	MP3A	X	98.841	5.5
65	MP3A	Z	-57.066	5.5
66	MP3A	Mx	083	5.5
67	MP3B	X	98.841	.5
68	MP3B	Z	-57.066	.5
69	MP3B	Mx	.016	.5
70	MP3B	Х	98.841	5.5
71	MP3B	Z	-57.066	5.5
72	MP3B	Mx	.016	5.5
73	MP3C	X	121.279	.5
74	MP3C	Z	-70.021	.5
75	MP3C	Mx	.036	.5
76	MP3C	Х	121.279	5.5
				010

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 21

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
77	MP3C	Z	-70.021	5.5
78	MP3C	Mx	.036	5.5
79	MP3A	Х	98.841	.5
80	MP3A	Z	-57.066	.5
81	MP3A	Mx	016	.5
82	MP3A	Х	98.841	5.5
83	MP3A	Z	-57.066	5.5
84	MP3A	Mx	016	5.5
85	MP3B	Х	98.841	.5
86	MP3B	Z	-57.066	.5
87	MP3B	Mx	.083	.5
88	MP3B	Х	98.841	5.5
89	MP3B	Z	-57.066	5.5
90	MP3B	Mx	.083	5.5
91	MP3C	Х	121.279	.5
92	MP3C	Z	-70.021	.5
93	MP3C	Mx	106	.5
94	MP3C	Х	121.279	5.5
95	MP3C	Z	-70.021	5.5
96	MP3C	Mx	106	5.5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	34.5	2
2	MP4A	Z	0	2
3	MP4A	Mx	017	2
4	MP4A	Х	34.5	4
5	MP4A	Z	0	4
6	MP4A	Mx	017	4
7	MP4B	Х	74.717	2
8	MP4B	Z	0	2
9	MP4B	Mx	.019	2
10	MP4B	X	74.717	4
11	MP4B	Z	0	4
12	MP4B	Mx	.019	4
13	MP4C	Х	88.123	2
14	MP4C	Z	0	2
15	MP4C	Mx	0	2
16	MP4C	Х	88.123	4
17	MP4C	Z	0	4
18	MP4C	Mx	0	4
19	MP1A	X	94.073	1
20	MP1A	Z	0	1
21	MP1A	Mx	.047	1
22	MP1B	X	130.109	1
23	MP1B	Ζ	0	1
24	MP1B	Mx	033	1
25	MP2A	Χ	46.874	1.5
26	MP2A	Z	0	1.5
27	MP2A	Mx	.023	1.5
28	MP2B	Х	64.311	1.5
29	MP2B	Z	0	1.5
30	MP2B	Mx	016	1.5
31	MP2C	Χ	70.123	1.5
32	MP2C	Z	0	1.5
33	MP2C	Mx	0	1.5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
34	MP3A	Х	37.968	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	.019	1.5
37	MP3B	X	62.084	1.5
38	MP3B	Z	0	1.5
39	MP3B	Mx	016	1.5
40	MP3C	Х	70.123	1.5
41	MP3C	Z	0	1.5
42	MP3C	Mx	0	1.5
43	MP1B	Х	121.005	.5
44	MP1B	Z	0	.5
45	MP1B	Mx	.03	.5
46	MP1B	X	121.005	5.5
47	MP1B	Z	0	5.5
48	MP1B	Mx	.03	5.5
49	MP1C	X	66 748	1.5
50	MP1C	7	0	1.5
51	MP1C	Mx	0	1.5
52	MP1C	X	66 748	4.5
53	MP1C	7	0	4.5
54	MP1C	My	0	4.5
55	MP1A	X	85 512	4.5
56	MP1A	7	00.012	.5
57	MP1A	<u> </u>	- 043	.5
58	MP1A		043	.5
50		~ ~ 7	00.012	5.5
60		<u> </u>	042	5.5
61			043	5.5
01	INIP3A	<u>^</u>	101.177	.5
02	INIP3A		051	.5
03	INIP3A	IVIX	051	.5
64	MP3A	λ 7	101.177	5.5
65	MP3A	<u> </u>	0	5.5
00	MP3A	IVIX	051	5.5
67	MP3B	X	140.041	.5
68	MP3B		0	.5
69	MP3B	Mx	036	.5
70	MP3B	X	140.041	5.5
71	MP3B	Z	0	5.5
72	MP3B	Mx	036	5.5
73	MP3C	X	152.996	.5
74	MP3C	Z	0	.5
75	MP3C	Mx	.089	.5
76	MP3C	X	152.996	5.5
77	MP3C	Z	0	5.5
78	MP3C	Mx	.089	5.5
79	MP3A	X	101.177	.5
80	MP3A	Z	0	.5
81	MP3A	Mx	051	.5
82	MP3A	X	101.177	5.5
83	MP3A	Z	0	5.5
84	MP3A	Mx	051	5.5
85	MP3B	Х	140.041	.5
86	MP3B	Z	0	.5
87	MP3B	Mx	.106	.5
88	MP3B	Х	140.041	5.5
89	MP3B	Z	0	5.5
90	MP3B	Mx	.106	5.5

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 23

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
91	MP3C	Х	152.996	.5
92	MP3C	Z	0	.5
93	MP3C	Mx	089	.5
94	MP3C	Х	152.996	5.5
95	MP3C	Z	0	5.5
96	MP3C	Mx	089	5.5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	41.487	2
2	MP4A	Z	23.953	2
3	MP4A	Mx	021	2
4	MP4A	X	41.487	4
5	MP4A	Z	23.953	4
6	MP4A	Mx	021	4
7	MP4B	X	76.317	2
8	MP4B	Z	44.061	2
9	MP4B	Mx	0	2
10	MP4B	X	76.317	4
11	MP4B	Z	44.061	4
12	MP4B	Mx	0	4
13	MP4C	X	64.707	2
14	MP4C	Z	37.359	2
15	MP4C	Mx	.019	2
16	MP4C	X	64.707	4
17	MP4C	Z	37.359	4
18	MP4C	M×	.019	4
19	MP1A	X	91.872	1
20	MP1A	Z	53.043	1
21	MP1A	M×	.046	1
22	MP1B	X	123.081	1
23	MP1B	Z	71.061	1
24	MP1B	Mx	0	1
25	MP2A	X	45.628	1.5
26	MP2A	Z	26.343	1.5
27	MP2A	Mx	.023	1.5
28	MP2B	X	60.728	1.5
29	MP2B	Z	35.062	1.5
30	MP2B	Mx	0	1.5
31	MP2C	X	55.695	1.5
32	MP2C	Z	32.155	1.5
33	MP2C	Mx	016	1.5
34	MP3A	X	39.843	1.5
35	MP3A	Z	23.003	1.5
36	MP3A	M×	.02	1.5
37	MP3B	X	60.728	1.5
38	MP3B	Z	35.062	1.5
39	MP3B	M×	0	1.5
40	MP3C	X	53.767	1.5
41	MP3C	Z	31.042	1.5
42	MP3C	Mx	016	1.5
43	MP1B	X	117.885	.5
44	MP1B	Z	68.061	.5
45	MP1B	Mx	0	.5
46	MP1B	X	117.885	5.5
47	MP1B	Z	68.061	5.5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
48	MP1B	Mx	0	5.5
49	MP1C	X	54.691	1.5
50	MP1C	Z	31.576	1.5
51	MP1C	Mx	.016	1.5
52	MP1C	X	54.691	4.5
53	MP1C	Z	31.576	4.5
54	MP1C	Mx	.016	4.5
55	MP1A	X	78.924	.5
56	MP1A	Z	45.567	.5
57	MP1A	Mx	039	.5
58	MP1A	X	78.924	5.5
59	MP1A	Z	45.567	5.5
60	MP1A	Mx	039	5.5
61	MP3A	X	98.841	.5
62	MP3A	Z	57.066	.5
63	MP3A	Mx	016	.5
64	MP3A	X	98.841	5.5
65	MP3A	Z	57.066	5.5
66	MP3A	Mx	016	5.5
67	MP3B	X	132.499	.5
68	MP3B	Z	76.498	.5
69	MP3B	Mx	089	.5
70	MP3B	X	132.499	5.5
71	MP3B	Z	76.498	5.5
72	MP3B	Mx	089	5.5
73	MP3C	X	121.279	.5
74	MP3C	Z	70.021	.5
75	MP3C	Mx	.106	.5
76	MP3C	X	121.279	5.5
77	MP3C	Z	70.021	5.5
78	MP3C	Mx	.106	5.5
79	MP3A	X	98.841	.5
80	MP3A	Z	57.066	.5
81	MP3A	Mx	083	.5
82	MP3A	X	98.841	5.5
83	MP3A	Z	57.066	5.5
84	MP3A	Mx	083	5.5
85	MP3B	X	132.499	.5
86	MP3B	Z	76.498	.5
87	MP3B	Mx	.089	.5
88	MP3B	Х	132.499	5.5
89	MP3B	Z	76.498	5.5
90	MP3B	Mx	.089	5.5
91	MP3C	Χ	121.279	.5
92	MP3C	Z	70.021	.5
93	MP3C	Mx	036	.5
94	MP3C	X	121.279	5.5
95	MP3C	Z	70.021	5.5
96	MP3C	Mx	036	5.5

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	37.359	2
2	MP4A	Z	64.707	2
3	MP4A	Mx	019	2
4	MP4A	Х	37.359	4

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP4A	Z	64.707	4
6	MP4A	Mx	019	4
7	MP4B	Х	37.359	2
8	MP4B	Z	64.707	2
9	MP4B	Mx	019	2
10	MP4B	X	37.359	4
11	MP4B	7	64 707	4
12	MP4B	Mx	- 019	4
13	MP4C	X	23 953	2
14	MP4C	7	41 487	2
15	MP40	My	021	2
16	MP4C	V V	22.052	<u> </u>
17		~ 7	23.955	4
17	MP40		41.467	4
18	MP4C		.021	4
19	MPIA	λ 7	65.055	
20	MP1A	<u> </u>	112.678	
21	MP1A	IVIX	.033	1
22	MP1B	X	65.055	1
23	MP1B		112.678	1
24	MP1B	Mx	.033	1
25	MP2A	Χ	32.155	1.5
26	MP2A	Z	55.695	1.5
27	MP2A	Mx	.016	1.5
28	MP2B	X	32.155	1.5
29	MP2B	Z	55.695	1.5
30	MP2B	Mx	.016	1.5
31	MP2C	Х	26.343	1.5
32	MP2C	Z	45.628	1.5
33	MP2C	Mx	023	1.5
34	MP3A	Х	31.042	1.5
35	MP3A	Z	53.767	1.5
36	MP3A	Mx	.016	1.5
37	MP3B	X	31.042	1.5
38	MP3B	Z	53,767	1.5
39	MP3B	Mx	016	1.5
40	MP3C	X	23.003	1.5
40	MP3C	7	39.843	1.5
12	MP3C	My	- 02	1.5
42	MP1B	Y	60.502	5
40	MP1B	7	104 793	.5
44	MP1R	∠ M∨	_ 03	.5
45	MD1D		03	.5
40		7	104 702	5.5
47			104.793	5.5
40			03	0.0
49		λ 7	21.90	1.0
50	MP1C		48.403	1.5
51	MP1C	IVIX	.024	1.5
52	MP1C	X	27.98	4.5
53	MP1C	Ζ	48.463	4.5
54	MP1C	Mx	.024	4.5
55	MP1A	X	51.188	.5
56	MP1A	Z	88.66	.5
57	MP1A	Mx	026	.5
58	MP1A	X	51.188	5.5
59	MP1A	Ζ	88.66	5.5
60	MP1A	Mx	026	5.5
61	MP3A	X	70.021	.5
RISA-3D Version 17.0.4 [R:\\\\\\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 26				

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
62	MP3A	Z	121.279	.5
63	MP3A	Mx	.036	.5
64	MP3A	X	70.021	5.5
65	MP3A	Z	121.279	5.5
66	MP3A	Mx	.036	5.5
67	MP3B	X	70.021	.5
68	MP3B	Z	121.279	.5
69	MP3B	Mx	106	.5
70	MP3B	X	70.021	5.5
71	MP3B	Z	121.279	5.5
72	MP3B	Mx	106	5.5
73	MP3C	X	57.066	.5
74	MP3C	Z	98.841	.5
75	MP3C	Mx	.083	.5
76	MP3C	X	57.066	5.5
77	MP3C	Z	98.841	5.5
78	MP3C	Mx	.083	5.5
79	MP3A	X	70.021	.5
80	MP3A	Z	121.279	.5
81	MP3A	Mx	106	.5
82	MP3A	X	70.021	5.5
83	MP3A	Z	121.279	5.5
84	MP3A	Mx	106	5.5
85	MP3B	X	70.021	.5
86	MP3B	Z	121.279	.5
87	MP3B	Mx	.036	.5
88	MP3B	X	70.021	5.5
89	MP3B	Z	121.279	5.5
90	MP3B	Mx	.036	5.5
91	MP3C	Х	57.066	.5
92	MP3C	Z	98.841	.5
93	MP3C	Mx	.016	.5
94	MP3C	Х	57.066	5.5
95	MP3C	Z	98.841	5.5
96	MP3C	Mx	.016	5.5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	0	2
2	MP4A	Z	88.123	2
3	MP4A	Mx	0	2
4	MP4A	Х	0	4
5	MP4A	Z	88.123	4
6	MP4A	Mx	0	4
7	MP4B	Х	0	2
8	MP4B	Z	47.906	2
9	MP4B	Mx	021	2
10	MP4B	Х	0	4
11	MP4B	Z	47.906	4
12	MP4B	Mx	021	4
13	MP4C	Х	0	2
14	MP4C	Z	34.5	2
15	MP4C	Mx	.017	2
16	MP4C	Х	0	4
17	MP4C	Z	34.5	4
18	MP4C	Mx	.017	4

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
19	MP1A	X	0	1
20	MP1A	Z	142.121	1
21	MP1A	Mx	0	1
22	MP1B	X	0	1
23	MP1B	Z	106.085	1
24	MP1B	Mx	.046	1
25	MP2A	X	0	1.5
26	MP2A	7	70 123	1.5
27	MP2A	Mx	0	1.5
28	MP2B	X	0	1.5
20	MP2B	7	52 686	1.5
20	MDDD		022	1.5
21			.023	1.5
20	MP20	~ ~	40.074	1.5
32	MP2C	<u> </u>	40.874	1.5
33	MP2C	IVIX	023	1.5
34	MP3A	<u>×</u>	0	1.5
35	MP3A		70.123	1.5
36	MP3A	Mx	0	1.5
37	MP3B	X	0	1.5
38	MP3B	Z	46.007	1.5
39	MP3B	Mx	.02	1.5
40	MP3C	X	0	1.5
41	MP3C	Z	37.968	1.5
42	MP3C	Mx	019	1.5
43	MP1B	Х	0	.5
44	MP1B	Z	90,771	.5
45	MP1B	Mx	039	.5
46	MP1B	X	0	5.5
47	MP1B	7	90 771	5.5
48	MP1B	My	- 039	5.5
40	MP1C	X	039	1.5
50	MP1C	7	52 364	1.5
50			026	1.5
51			.020	1.5
52	MPIC	<u> </u>	50.004	4.5
53	MP1C	<u> </u>	52.364	4.5
54	MP1C	MX	.026	4.5
55	MP1A	<u> </u>	0	.5
56	MP1A	Z	107.997	.5
57	MP1A	Mx	0	.5
58	MP1A	X	0	5.5
59	MP1A	Z	107.997	5.5
60	MP1A	Mx	0	5.5
61	MP3A	Χ	0	.5
62	MP3A	Z	152.996	.5
63	MP3A	Mx	.089	.5
64	MP3A	Х	0	5.5
65	MP3A	Z	152.996	5.5
66	MP3A	Mx	.089	5.5
67	MP3B	X	0	.5
68	MP3B	Z	114,132	.5
69	MP3B	Mx	- 083	5
70	MP3B	X	0	5.5
71	MP3B	7	114 132	5.5
72	MP3R	My	- 083	5.5
72	MD2C	V	005	5.5
74		~ 7	101 177	.5
74	MD2C		051	.0
<u> </u>	IVIP3U	IVIX	1 60.	.5
RISA	-3D Version 17.0.4 [R:\\\	\\Mount Fix\F	Rev 0\Risa\468782-VZW MT	LO H.r3d] Page 28

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
76	MP3C	Х	0	5.5
77	MP3C	Z	101.177	5.5
78	MP3C	Mx	.051	5.5
79	MP3A	Х	0	.5
80	MP3A	Z	152.996	.5
81	MP3A	Mx	089	.5
82	MP3A	Х	0	5.5
83	MP3A	Z	152.996	5.5
84	MP3A	Mx	089	5.5
85	MP3B	Х	0	.5
86	MP3B	Z	114.132	.5
87	MP3B	Mx	016	.5
88	MP3B	Х	0	5.5
89	MP3B	Z	114.132	5.5
90	MP3B	Mx	016	5.5
91	MP3C	Х	0	.5
92	MP3C	Z	101.177	.5
93	MP3C	Mx	.051	.5
94	MP3C	Х	0	5.5
95	MP3C	Z	101.177	5.5
96	MP3C	Mx	.051	5.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-37.359	2
2	MP4A	Z	64.707	2
3	MP4A	Mx	.019	2
4	MP4A	X	-37.359	4
5	MP4A	Z	64.707	4
6	MP4A	Mx	.019	4
7	MP4B	X	-17.25	2
8	MP4B	Z	29.878	2
9	MP4B	Mx	017	2
10	MP4B	Х	-17.25	4
11	MP4B	Z	29.878	4
12	MP4B	Mx	017	4
13	MP4C	Х	-23.953	2
14	MP4C	Z	41.487	2
15	MP4C	Mx	.021	2
16	MP4C	X	-23.953	4
17	MP4C	Z	41.487	4
18	MP4C	Mx	.021	4
19	MP1A	Х	-65.055	1
20	MP1A	Z	112.678	1
21	MP1A	Mx	033	1
22	MP1B	Х	-47.037	1
23	MP1B	Z	81.47	1
24	MP1B	Mx	.047	1
25	MP2A	Х	-32.155	1.5
26	MP2A	Z	55.695	1.5
27	MP2A	Mx	016	1.5
28	MP2B	X	-23.437	1.5
29	MP2B	Z	40.594	1.5
30	MP2B	Mx	.023	1.5
31	MP2C	Х	-26.343	1.5
32	MP2C	Z	45.628	1.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP2C	Mx	023	1.5
34	MP3A	X	-31.042	1.5
35	MP3A	Z	53.767	1.5
36	MP3A	Mx	016	1.5
37	MP3B	X	-18.984	1.5
38	MP3B	Z	32.881	1.5
39	MP3B	Mx	.019	1.5
40	MP3C	X	-23.003	1.5
41	MP3C	Z	39.843	1.5
42	MP3C	Mx	02	1.5
43	MP1B	X	-37.827	.5
44	MP1B	Z	65.519	.5
45	MP1B	Mx	038	.5
46	MP1B	X	-37.827	5.5
47	MP1B	Z	65.519	5.5
48	MP1B	Mx	038	5.5
49	MP1C	X	-27.98	1.5
50	MP1C	Z	48.463	1.5
51	MP1C	Mx	.024	1.5
52	MP1C	X	-27.98	4.5
53	MP1C	Z	48.463	4.5
54	MP1C	Mx	.024	4.5
55	MP1A	X	-51.188	.5
56	MP1A	Z	88.66	.5
57	MP1A	Mx	.026	.5
58	MP1A	X	-51.188	5.5
59	MP1A	Z	88.66	5.5
60	MP1A	Mx	.026	5.5
61	MP3A	X	-70.021	.5
62	MP3A	Z	121.279	.5
63	MP3A	Mx	.106	.5
64	<u>MP3A</u>	X	-70.021	5.5
65	MP3A	Z	121.279	5.5
66	MP3A	Mx	.106	5.5
67	MP3B	X	-50.589	.5
68	MP3B	Z	87.622	.5
69	MP3B	Mx	051	.5
70	MP3B	X	-50.589	5.5
71	MP3B	Z	87.622	5.5
72	MP3B	Mx	051	5.5
73	MP3C	X	-57.066	.5
74	MP3C		98.841	.5
75	MP3C	IVIX	.016	.5
70	MP3C	Χ 7	-57.066	5.5
70	MP3C		98.841	5.5
78	MP3C	IVIX V	.016	5.5
79	IVIP3A	X	-70.021	.5
80	IVIP3A		121.279	.5
01	IVIE 3A		030	.0
02	IVIP3A	7	-70.021	5.5
03	IVIE 3A		121.279	5.5
84	IVIP3A	IVIX	030	5.5
80	IVIE3B	λ 7	-50.589	.0
00	IVIP3B		07.022	.0
0/	IVIE3B MD2D		051	.0
00	IVIP3B	7	-50.589	5.5 E E
09	IVIE3B		01.022	5.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
90	MP3B	Mx	051	5.5
91	MP3C	Х	-57.066	.5
92	MP3C	Z	98.841	.5
93	MP3C	Mx	.083	.5
94	MP3C	Х	-57.066	5.5
95	MP3C	Z	98.841	5.5
96	MP3C	Mx	.083	5.5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-41.487	2
2	MP4A	Z	23.953	2
3	MP4A	Mx	.021	2
4	MP4A	X	-41.487	4
5	MP4A	Z	23.953	4
6	MP4A	Mx	.021	4
7	MP4B	X	-41.487	2
8	MP4B	Z	23.953	2
9	MP4B	Mx	021	2
10	MP4B	X	-41.487	4
11	MP4B	Z	23.953	4
12	MP4B	Mx	021	4
13	MP4C	X	-64.707	2
14	MP4C	Z	37.359	2
15	MP4C	Mx	.019	2
16	MP4C	X	-64.707	4
17	MP4C	Z	37.359	4
18	MP4C	Mx	.019	4
19	MP1A	X	-91.872	1
20	MP1A	Z	53.043	1
21	MP1A	Mx	046	1
22	MP1B	X	-91.872	1
23	MP1B	Z	53.043	1
24	MP1B	Mx	.046	1
25	MP2A	X	-45.628	1.5
26	MP2A	Z	26.343	1.5
27	MP2A	Mx	023	1.5
28	MP2B	X	-45.628	1.5
29	MP2B	Z	26.343	1.5
30	MP2B	Mx	.023	1.5
31	MP2C	X	-55.695	1.5
32	MP2C	Z	32.155	1.5
33	MP2C	Mx	016	1.5
34	MP3A	X	-39.843	1.5
35	MP3A	Z	23.003	1.5
36	MP3A	Mx	02	1.5
37	MP3B	X	-39.843	1.5
38	MP3B	Z	23.003	1.5
39	MP3B	Mx	.02	1.5
40	MP3C	Х	-53.767	1.5
41	MP3C	Z	31.042	1.5
42	MP3C	Mx	016	1.5
43	MP1B	Х	-78.61	.5
44	MP1B	Z	45.386	.5
45	MP1B	Mx	039	.5
46	MP1B	Х	-78.61	5.5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
47	MP1B	Z	45.386	5.5
48	MP1B	Mx	039	5.5
49	MP1C	X	-54.691	1.5
50	MP1C	Z	31.576	1.5
51	MP1C	Mx	.016	1.5
52	MP1C	X	-54.691	4.5
53	MP1C	Z	31.576	4.5
54	MP1C	Mx	.016	4.5
55	MP1A	X	-78.924	.5
56	MP1A	Z	45.567	.5
57	MP1A	M×	.039	.5
58	MP1A	X	-78,924	5.5
59	MP1A	Z	45.567	5.5
60	MP1A	Mx	.039	5.5
61	MP3A	X	-98.841	.5
62	MP3A	Z	57.066	.5
63	MP3A	M×	.083	.5
64	MP3A	X	-98.841	5.5
65	MP3A	Z	57.066	5.5
66	MP3A	M×	.083	5.5
67	MP3B	X	-98.841	.5
68	MP3B	Z	57.066	.5
69	MP3B	M×	016	.5
70	MP3B	X	-98.841	5.5
71	MP3B	Z	57.066	5.5
72	MP3B	M×	016	5.5
73	MP3C	X	-121.279	.5
74	MP3C	Z	70.021	.5
75	MP3C	Mx	036	.5
76	MP3C	X	-121.279	5.5
77	MP3C	Z	70.021	5.5
78	MP3C	Mx	036	5.5
79	MP3A	X	-98.841	.5
80	MP3A	Z	57.066	.5
81	MP3A	Mx	.016	.5
82	MP3A	X	-98.841	5.5
83	MP3A	Z	57.066	5.5
84	MP3A	Mx	.016	5.5
85	MP3B	X	-98.841	.5
86	MP3B	Z	57.066	.5
87	MP3B	Mx	083	.5
88	MP3B	X	-98.841	5.5
89	MP3B	Z	57.066	5.5
90	MP3B	Mx	083	5.5
91	MP3C	Х	-121.279	.5
92	MP3C	Z	70.021	.5
93	MP3C	Mx	.106	.5
94	MP3C	Х	-121.279	5.5
95	MP3C	Z	70.021	5.5
96	MP3C	Mx	.106	5.5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-34.5	2
2	MP4A	Z	0	2
3	MP4A	Mx	.017	2

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]		
4	MP4A	Х	-34.5	4		
5	MP4A	Z	0	4		
6	MP4A	Mx	.017	4		
7	MP4B	Χ	-74.717	2		
8	MP4B	Z	0	2		
9	MP4B	Mx	019	2		
10	MP4B	X	-74.717	4		
11	MP4B	Z	0	4		
12	MP4B	Mx	019	4		
13	MP4C	X	-88.123	2		
14	MP4C	Z	0	2		
15	MP4C	Mx	0	2		
16	MP4C	<u>X</u>	-88.123	4		
17	MP4C	Z	0	4		
18	MP4C	Mx	0	4		
19	MP1A	<u> </u>	-94.073	1		
20	MP1A		0	1		
21	MP1A	MX	047	1		
22	MP1B	X	-130.109	1		
23	MP1B	2	0	1		
24	MP1B	MX	.033	1		
25	MP2A	X	-46.874	1.5		
26	MP2A	Ζ	0	1.5		
27	MPZA	IVIX	023	1.5		
28	MP2B	X	-64.311	1.5		
29	MP2B		0	1.5		
30	MP2B	IVIX	.016	1.5		
31	MP2C	X	-70.123	1.5		
32	MP2C		0	1.5		
33	MP2C	IVIX	0	1.5		
34	MP3A	Χ	-37.968	1.5		
35	MP3A		010	1.5		
30	MP3A		019	1.5		
3/	MP3B	λ 7	-62.084	1.5		
30	MD2D		016	1.5		
39	NIP3D		.010	1.5		
40	MP3C	~ ~	-70.123	1.5		
41	MP3C		0	1.5		
42	MP1P		121.005	5		
43	MD1R	~ 7	-121.005			
44	MD1R	<u> </u>	03			
45	MP1B	Y	-121.005	.5		
40	MP1B	7	-121.005	5.5		
48	MP1B	Mv	- 03	5.5		
40	MP1C	Y	03	1.5		
50	MP1C	7	-00.740	1.5		
51	MP1C	My	0	1.5		
52	MP1C	X	-66 748	4.5		
53	MP1C	7	0	4.5		
54	MP1C	Mx	0	4.5		
55	MP1A	X	-85 512	5		
56	MP1A	7	0			
57	MP1A	Mx	043	5		
58	MP1A	X	-85 512	5.5		
59	MP1A	7	0.012	5.5		
60	MP1A	Mx	043	5.5		
		IVIZ		0.0		
RISA	RISA-3D Version 17.0.4 [R:\\\\\\\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 33					

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3A	Х	-101.177	.5
62	MP3A	Z	0	.5
63	MP3A	Mx	.051	.5
64	MP3A	Х	-101.177	5.5
65	MP3A	Z	0	5.5
66	MP3A	Mx	.051	5.5
67	MP3B	X	-140.041	.5
68	MP3B	Z	0	.5
69	MP3B	Mx	.036	.5
70	MP3B	X	-140.041	5.5
71	MP3B	Z	0	5.5
72	MP3B	Mx	.036	5.5
73	MP3C	X	-152.996	.5
74	MP3C	Z	0	.5
75	MP3C	Mx	089	.5
76	MP3C	X	-152.996	5.5
77	MP3C	Z	0	5.5
78	MP3C	Mx	089	5.5
79	MP3A	Х	-101.177	.5
80	MP3A	Z	0	.5
81	MP3A	Mx	.051	.5
82	MP3A	X	-101.177	5.5
83	MP3A	Z	0	5.5
84	MP3A	Mx	.051	5.5
85	MP3B	X	-140.041	.5
86	MP3B	Z	0	.5
87	MP3B	Mx	106	.5
88	MP3B	X	-140.041	5.5
89	MP3B	Z	0	5.5
90	MP3B	Mx	106	5.5
91	MP3C	X	-152.996	.5
92	MP3C	Z	0	.5
93	MP3C	Mx	.089	.5
94	MP3C	X	-152.996	5.5
95	MP3C	Z	0	5.5
96	MP3C	Mx	.089	5.5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-41.487	2
2	MP4A	Z	-23.953	2
3	MP4A	Mx	.021	2
4	MP4A	Х	-41.487	4
5	MP4A	Z	-23.953	4
6	MP4A	Mx	.021	4
7	MP4B	Х	-76.317	2
8	MP4B	Z	-44.061	2
9	MP4B	Mx	0	2
10	MP4B	Х	-76.317	4
11	MP4B	Z	-44.061	4
12	MP4B	Mx	0	4
13	MP4C	Х	-64.707	2
14	MP4C	Z	-37.359	2
15	MP4C	Mx	019	2
16	MP4C	Х	-64.707	4
17	MP4C	Z	-37.359	4

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP4C	Mx	019	4
19	MP1A	Х	-91.872	1
20	MP1A	Z	-53.043	1
21	MP1A	Mx	046	1
22	MP1B	Х	-123.081	1
23	MP1B	Z	-71.061	1
24	MP1B	Mx	0	1
25	MP2A	X	-45 628	1.5
26	MP2A	7	-26 343	1.5
27	MP2A	My	- 023	1.5
28	MD2R	Y	020	1.5
20	MD2R	7	-00.720	1.5
20	MD2D		-55.002	1.5
21			55 605	1.5
22	MP2C	~ 7	-00.090	1.5
32	MD2C		-52.155	1.5
24			.010	1.5
34	IVIP 3A	λ 7	-39.043	1.5
30	IVIE 3A		-23.003	1.5
30	MP3A	IVIX	02	1.5
37	MP3B	λ 7	-60.728	1.5
38	MP3B		-35.062	1.5
39	MP3B	IVIX	0	1.5
40	MP3C	X 7	-53.767	1.5
41	MP3C	<u> </u>	-31.042	1.5
42	MP3C	IVIX	.016	1.5
43	MP1B	X	-117.885	.5
44	MP1B		-68.061	.5
45	MP1B	MX	0	.5
46	MP1B	X	-117.885	5.5
4/	MP1B	<u> </u>	-68.061	5.5
48	MP1B	MX	0	5.5
49	MP1C	X	-54.691	1.5
50	MP1C	<u> </u>	-31.576	1.5
51	MP1C	MX	016	1.5
52	MP1C	<u> </u>	-54.691	4.5
53	MP1C	<u> </u>	-31.576	4.5
54	MP1C	MX	016	4.5
55	MP1A	X	-78.924	.5
56	MP1A		-45.567	.5
57	MP1A	MX	.039	.5
58	MP1A	X	-78.924	5.5
59	MP1A		-45.567	5.5
60	MP1A	MX	.039	5.5
61	MP3A	X	-98.841	.5
62	MP3A	Z	-57.066	.5
63	MP3A	Mx	.016	.5
64	MP3A	X	-98.841	5.5
65	MP3A	Z	-57.066	5.5
66	MP3A	Mx	.016	5.5
67	MP3B	X	-132.499	.5
68	MP3B	2	-76.498	.5
69	MP3B	MX	.089	.5
70	MP3B	X	-132.499	5.5
/1	MP3B	Z	-/6.498	5.5
72	MP3B	Mx	.089	5.5
73	MP3C	X	-121.279	.5
/4	MP3C	Z	-70.021	.5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
75	MP3C	Mx	106	.5
76	MP3C	Х	-121.279	5.5
77	MP3C	Z	-70.021	5.5
78	MP3C	Mx	106	5.5
79	MP3A	Х	-98.841	.5
80	MP3A	Z	-57.066	.5
81	MP3A	Mx	.083	.5
82	MP3A	Х	-98.841	5.5
83	MP3A	Z	-57.066	5.5
84	MP3A	Mx	.083	5.5
85	MP3B	Х	-132.499	.5
86	MP3B	Z	-76.498	.5
87	MP3B	Mx	089	.5
88	MP3B	Х	-132.499	5.5
89	MP3B	Z	-76.498	5.5
90	MP3B	Mx	089	5.5
91	MP3C	Х	-121.279	.5
92	MP3C	Z	-70.021	.5
93	MP3C	Mx	.036	.5
94	MP3C	X	-121.279	5.5
95	MP3C	Z	-70.021	5.5
96	MP3C	Mx	.036	5.5

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-37.359	2
2	MP4A	Z	-64.707	2
3	MP4A	Mx	.019	2
4	MP4A	Х	-37.359	4
5	MP4A	Z	-64.707	4
6	MP4A	Mx	.019	4
7	MP4B	Х	-37.359	2
8	MP4B	Z	-64.707	2
9	MP4B	Mx	.019	2
10	MP4B	Х	-37.359	4
11	MP4B	Z	-64.707	4
12	MP4B	Mx	.019	4
13	MP4C	Х	-23.953	2
14	MP4C	Z	-41.487	2
15	MP4C	Mx	021	2
16	MP4C	Х	-23.953	4
17	MP4C	Z	-41.487	4
18	MP4C	Mx	021	4
19	MP1A	Х	-65.055	1
20	MP1A	Z	-112.678	1
21	MP1A	Mx	033	1
22	MP1B	Х	-65.055	1
23	MP1B	Z	-112.678	1
24	MP1B	Mx	033	1
25	MP2A	Х	-32.155	1.5
26	MP2A	Z	-55.695	1.5
27	MP2A	Mx	016	1.5
28	MP2B	Х	-32.155	1.5
29	MP2B	Z	-55.695	1.5
30	MP2B	Mx	016	1.5
31	MP2C	Х	-26.343	1.5

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
32	MP2C	Z	-45.628	1.5
33	MP2C	Mx	.023	1.5
34	MP3A	X	-31.042	1.5
35	MP3A	Z	-53.767	1.5
36	MP3A	Mx	016	1.5
37	MP3B	X	-31.042	1.5
38	MP3B	Z	-53.767	1.5
39	MP3B	Mx	016	1.5
40	MP3C	X	-23.003	1.5
41	MP3C	7	-39.843	1.5
42	MP3C	Mx	02	1.5
43	MP1B	X	-60 502	5
11	MP1B	7	-104 793	
45	MD1B		03	
40	MP1B		-60.502	.5
40		7	104 703	5.5
47			-104.795	5.5
40			.03	
49		<u>^</u>	-27.98	1.5
50	MPIC	<u> </u>	-48.463	1.5
51	MP1C	MIX X	024	1.5
52	MP1C	<u>X</u>	-27.98	4.5
53	MP1C	<u> </u>	-48.463	4.5
54	MP1C	Mx	024	4.5
55	MP1A	X	-51.188	.5
56	MP1A	Z	-88.66	.5
57	MP1A	Mx	.026	.5
58	MP1A	X	-51.188	5.5
59	MP1A	Z	-88.66	5.5
60	MP1A	Mx	.026	5.5
61	MP3A	X	-70.021	.5
62	MP3A	Z	-121.279	.5
63	MP3A	Mx	036	.5
64	MP3A	X	-70.021	5.5
65	MP3A	Z	-121.279	5.5
66	MP3A	Mx	036	5.5
67	MP3B	Х	-70.021	.5
68	MP3B	Z	-121.279	.5
69	MP3B	Mx	.106	.5
70	MP3B	Х	-70.021	5.5
71	MP3B	Z	-121.279	5.5
72	MP3B	Mx	.106	5.5
73	MP3C	X	-57.066	.5
74	MP3C	Z	-98.841	.5
75	MP3C	Mx	083	.5
76	MP3C	X	-57,066	5.5
77	MP3C	7	-98 841	5.5
78	MP3C	Mx	- 083	5.5
79	MP34	X	-70 021	5
80	MP30	7	-121 279	
81	MP3A	Mv	106	
82	MP3A	Y	-70.021	.5
82	MD30	7	_121 270	5.5
84	MD2A		106	5.5
95			70.021	5.5
00		~ 7	-10.021	.5
00	IVIE 3D		-121.279	.0 F
8/	IVIP3B	IVIX	030	.0
88	IVIP3B	X	-70.021	0.0
RISA	A-3D Version 17.0.4 [R:\\\	\\\\Mount Fix\I	Rev 0\Risa\468782-VZW MT	LO H.r3d] Page 37

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
89	MP3B	Z	-121.279	5.5
90	MP3B	Mx	036	5.5
91	MP3C	Х	-57.066	.5
92	MP3C	Z	-98.841	.5
93	MP3C	Mx	016	.5
94	MP3C	Х	-57.066	5.5
95	MP3C	Z	-98.841	5.5
96	MP3C	Mx	016	5.5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	-19.517	2
3	MP4A	Mx	0	2
4	MP4A	X	0	4
5	MP4A	Z	-19.517	4
6	MP4A	Mx	0	4
7	MP4B	Х	0	2
8	MP4B	Z	-11.359	2
9	MP4B	Mx	.005	2
10	MP4B	X	0	4
11	MP4B	Z	-11.359	4
12	MP4B	Mx	.005	4
13	MP4C	Х	0	2
14	MP4C	Z	-8.64	2
15	MP4C	Mx	004	2
16	MP4C	X	0	4
17	MP4C	Z	-8.64	4
18	MP4C	Mx	004	4
19	MP1A	X	0	1
20	MP1A	Z	-31.814	1
21	MP1A	Mx	0	1
22	MP1B	X	0	1
23	MP1B	Z	-24.557	1
24	MP1B	M×	011	1
25	MP2A	X	0	1.5
26	MP2A	Z	-16.869	1.5
27	MP2A	M×	0	1.5
28	MP2B	X	0	1.5
29	MP2B	Z	-13.176	1.5
30	MP2B	Mx	006	1.5
31	MP2C	X	0	1.5
32	MP2C	Z	-11.945	1.5
33	MP2C	Mx	.006	1.5
34	MP3A	X	0	1.5
35	MP3A	Z	-16.869	1.5
36	MP3A	M×	0	1.5
37	MP3B	X	0	1.5
38	MP3B	Z	-11.772	1.5
39	MP3B	Mx	005	1.5
40	MP3C	X	0	1.5
41	MP3C	Z	-10.073	1.5
42	MP3C	Mx	.005	1.5
43	MP1B	X	0	.5
44	MP1B	Z	-20,793	.5
45	MP1B	Mx	.009	.5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP1B	X	0	5.5
47	MP1B	Z	-20.793	5.5
48	MP1B	Mx	.009	5.5
49	MP1C	X	0	1.5
50	MP1C	Z	-12.581	1.5
51	MP1C	Mx	006	1.5
52	MP1C	X	0	4.5
53	MP1C	Z	-12.581	4.5
54	MP1C	Mx	006	4.5
55	MP1A	X	0	.5
56	MP1A	Z	-24.257	.5
57	MP1A	Mx	0	.5
58	MP1A	X	0	5.5
59	MP1A	Z	-24.257	5.5
60	MP1A	Mx	0	5.5
61	MP3A	X	0	.5
62	MP3A	Z	-32.784	.5
63	MP3A	Mx	019	.5
64	MP3A	X	0	5.5
65	MP3A	Z	-32.784	5.5
66	MP3A	Mx	019	5.5
67	MP3B	X	0	.5
68	MP3B	Z	-25.459	.5
69	MP3B	Mx	.018	.5
70	MP3B	X	0	5.5
71	MP3B	Z	-25.459	5.5
72	MP3B	Mx	.018	5.5
73	MP3C	X	0	.5
74	MP3C	Z	-23.017	.5
75	MP3C	Mx	012	.5
76	MP3C	X	0	5.5
77	MP3C	Z	-23.017	5.5
/8	MP3C	Mx	012	5.5
79	MP3A	X	0	.5
80	MP3A	Z	-32.784	.5
81	MP3A	Mx	.019	.5
82	MP3A	X	0	5.5
83	MP3A	Z	-32.784	5.5
84	MP3A	MX	.019	5.5
85	MP3B	X	0	.5
86	MP3B	<u> </u>	-25.459	.5
87	MP3B	IVIX	.004	.5
88	MP3B	X	0	5.5
89	MP3B		-25.459	5.5
90	MP3B	NIX V	.004	5.5
91	MP3C	X	00.017	.0
92	MP3C		-23.017	.5
93	MP3C	IVIX	012	.0
94		7	22.017	5.5
95	MD2C		-23.017	5.5
90	NF3U	IVIX	012	0.0

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	8.399	2
2	MP4A	Z	-14.547	2

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP4A	Mx	004	2
4	MP4A	Х	8.399	4
5	MP4A	Z	-14.547	4
6	MP4A	Mx	004	4
7	MP4B	Х	4.32	2
8	MP4B	Z	-7.482	2
9	MP4B	Mx	.004	2
10	MP4B	X	4.32	4
11	MP4B	7	-7 482	4
12	MP4B	Mx	004	4
13	MP4C	X	5 679	2
14	MP4C	7	_0.837	2
15	MP4C	<u> </u>	- 005	2
10	MP4C		005	2
10	MP4C	∧ 7	0.079	4
17	MP4C	<u> </u>	-9.037	4
10	MP4C	IVIX	005	4
19	MP1A	X	14.698	1
20	MP1A		-25.457	1
21	MP1A	Mx	.007	1
22	MP1B	X	11.069	1
23	MP1B	Ζ	-19.172	1
24	MP1B	Mx	011	1
25	MP2A	X	7.819	1.5
26	MP2A	Z	-13.543	1.5
27	MP2A	Mx	.004	1.5
28	MP2B	Х	5.972	1.5
29	MP2B	Z	-10.344	1.5
30	MP2B	Mx	006	1.5
31	MP2C	X	6.588	1.5
32	MP2C	Z	-11,411	1.5
33	MP2C	Mx	006	1.5
34	MP3A	X	7 585	1.5
35	MP3A	7	-13 138	1.5
36	MP3A	My	004	1.5
37	MD3R	Y	5.037	1.5
20	MD2D	7	9 724	1.5
20	MD2D		-0.724	1.5
39	MD20		005	1.5
40	MP3C	∧ 7	3.000	1.5
41	MP3C	<u> </u>	-10.195	1.5
42	MP3C	IVIX	.005	1.5
43	MP1B	X	8.957	.5
44	MP1B	2	-15.514	.5
45	MP1B	MX	.009	.5
46	MP1B	X	8.957	5.5
47	MP1B	Z	-15.514	5.5
48	MP1B	Mx	.009	5.5
49	MP1C	Χ	6.644	1.5
50	MP1C	Z	-11.507	1.5
51	MP1C	Mx	006	1.5
52	MP1C	Х	6.644	4.5
53	MP1C	Z	-11.507	4.5
54	MP1C	Mx	006	4.5
55	MP1A	Х	11.586	.5
56	MP1A	Z	-20.067	.5
57	MP1A	Mx	006	.5
58	MP1A	X	11,586	5.5
59	MP1A	7	-20.067	5.5
			20.001	0.0
RISA	A-3D Version 17.0.4 [R:\\\	\\\Mount Fix\F	Rev 0\Risa\468782-VZW MT	LO H.r3d] Page 40

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP1A	Mx	006	5.5
61	MP3A	X	15.171	.5
62	MP3A	Z	-26.277	.5
63	MP3A	Mx	023	.5
64	MP3A	Х	15.171	5.5
65	MP3A	Z	-26.277	5.5
66	MP3A	Mx	023	5.5
67	MP3B	X	11.509	.5
68	MP3B	Z	-19.934	.5
69	MP3B	Mx	.012	.5
70	MP3B	X	11.509	5.5
71	MP3B	Z	-19.934	5.5
72	MP3B	Mx	.012	5.5
73	MP3C	Х	12.73	.5
74	MP3C	Z	-22.048	.5
75	MP3C	Mx	004	.5
76	MP3C	X	12.73	5.5
77	MP3C	Z	-22.048	5.5
78	MP3C	Mx	004	5.5
79	MP3A	Х	15.171	.5
80	MP3A	Z	-26.277	.5
81	MP3A	Mx	.008	.5
82	MP3A	X	15.171	5.5
83	MP3A	Z	-26.277	5.5
84	MP3A	Mx	.008	5.5
85	MP3B	X	11.509	.5
86	MP3B	Z	-19.934	.5
87	MP3B	Mx	.012	.5
88	MP3B	X	11.509	5.5
89	MP3B	Z	-19.934	5.5
90	MP3B	Mx	.012	5.5
91	MP3C	X	12.73	.5
92	MP3C	Z	-22.048	.5
93	MP3C	Mx	018	.5
94	MP3C	Х	12.73	5.5
95	MP3C	Z	-22.048	5.5
96	MP3C	Mx	018	5.5

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	9.837	2
2	MP4A	Z	-5.679	2
3	MP4A	Mx	005	2
4	MP4A	Х	9.837	4
5	MP4A	Z	-5.679	4
6	MP4A	Mx	005	4
7	MP4B	Х	9.837	2
8	MP4B	Z	-5.679	2
9	MP4B	Mx	.005	2
10	MP4B	Х	9.837	4
11	MP4B	Z	-5.679	4
12	MP4B	Mx	.005	4
13	MP4C	Х	14.547	2
14	MP4C	Z	-8.399	2
15	MP4C	Mx	004	2
16	MP4C	X	14.547	4

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

17 MP4C Z -8.399 4 18 MP4C Mx 004 4 19 MP1A X 21.267 1 20 MP1A Z -12.279 1 21 MP1A Mx .011 1 22 MP1B X 21.267 1 23 MP1B X .12.279 1 24 MP1B Mx .011 1 25 MP2A Z -6.588 1.5 26 MP2A Z -6.583 1.5 27 MP2B Mx .006 1.5 30 MP2B Mx .004 1.5 31 MP2C Z .7.819 1.5 33 MP2C Z .5.886 1.5 33 MP3A X 10.195 1.5 34 MP3A X 10.195 1.5 35 MP3A <td< th=""><th></th><th>Member Label</th><th>Direction</th><th>Magnitude[lb,k-ft]</th><th>Location[ft,%]</th></td<>		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18 MP4C Mx 004 4 19 MP1A X 21.267 1 20 MP1A Z -12.279 1 21 MP1B X 21.267 1 22 MP1B X 21.267 1 23 MP1B Z -12.279 1 24 MP1B X 21.267 1 23 MP2A X 11.411 1.5 26 MP2A Z -6.588 1.5 27 MP2A M .006 1.5 28 MP2B Z -6.588 1.5 30 MP2B Z -6.588 1.5 33 MP2C X 13.543 1.5 33 MP2C Mx .004 1.5 34 MP3A Z -5.886 1.5 35 MP3A Z -5.886 1.5 38 MP38	17	MP4C	Z	-8.399	4
19 MP1A X 21267 1 20 MP1A Z -12.279 1 21 MP1A Mx .011 1 22 MP1B X .21.267 1 23 MP1B X .21.267 1 23 MP1B Mx .011 1 25 MP2A Z -6.588 1.5 26 MP2A Z -6.588 1.5 27 MP2B X 11.411 1.5 28 MP2B X 11.411 1.5 30 MP2B X 13.543 1.5 31 MP2C X 13.543 1.5 33 MP2C Z -7.819 1.5 34 MP3A X 10.195 1.5 35 MP3A X 10.195 1.5 36 MP3A Mx .005 1.5 37 MP38	18	MP4C	Mx	004	4
20 MP1A Z -12.279 1 21 MP1B X 21.267 1 23 MP1B Z -12.279 1 24 MP1B Mx -011 1 25 MP2A X 11.411 1.5 26 MP2A Z -6.588 1.5 27 MP2A MX 11.411 1.5 28 MP2B Z -6.588 1.5 30 MP2B Z -6.688 1.5 31 MP2C X 11.5141 1.5 33 MP2C Z -7.819 1.5 34 MP3A Z -5.866 1.5 35 MP3A MX 0.005 1.5 36 MP3A X 10.195 1.5 37 MP3B Z -5.886 1.5 38 MP3B MX -005 1.5 39 M38	19	MP1A	Х	21.267	1
21 MP1A Mx .011 1 22 MP1B X .21.267 1 23 MP1B X .21.267 1 24 MP1B Mx .011 1 25 MP2A X .11.411 1.5 26 MP2A Z .6.588 1.5 27 MP2A X .11.411 1.5 28 MP2B X .11.411 1.5 29 MP2B Mx .006 .15 31 MP2C X .13.543 .15 32 MP2B Mx .004 .15 33 MP2C Z .7.819 .15 34 MP3A X .10.195 .15 36 MP3A X .10.195 .15 37 MP3B Z .5.886 .15 39 MP3A X .10.197 .5 41 MP3C <td>20</td> <td>MP1A</td> <td>Z</td> <td>-12.279</td> <td>1</td>	20	MP1A	Z	-12.279	1
22 MP1B X 21,267 1 23 MP1B Xx -12,279 1 24 MP1B Mx -011 1 25 MP2A X 11,411 1.5 26 MP2A Z -5,688 1.5 27 MP2A X 11,411 1.5 28 MP2B Z -6,688 1.5 30 MP2C X 13,643 1.5 31 MP2C X 10,195 1.5 33 MP2A Z -6,886 1.5 33 MP3A Z -5,886 1.5 34 MP3A X 10,195 1.5 35 MP3A Z -5,886 1.5 36 MP3A X 10,195 1.5 37 MP3B Z -5,886 1.5 39 MP3B Z -5,866 1.5 41 MP3C <td>21</td> <td>MP1A</td> <td>Mx</td> <td>.011</td> <td>1</td>	21	MP1A	Mx	.011	1
23 MP1B Z -12.279 1 24 MP1B Mx -011 1 25 MP2A X 11.411 1.5 26 MP2A Z -6.588 1.5 27 MP2A X 11.411 1.5 28 MP2B X 11.411 1.5 29 MP2B X 11.411 1.5 30 MP2B X 10.1915 1.5 31 MP2C X 13.543 1.5 33 MP2C X 10.195 1.5 34 MP3A Z -5.886 1.5 36 MP3A X 10.195 1.5 37 MP3B X 10.195 1.5 38 MP3C X 10.3138 1.5 41 MP3C Z -7.585 1.5 42 MP3C X 18.007 .5 43 MP1B<	22	MP1B	Х	21.267	1
24 MP1B Mx 011 1 25 MP2A X 11.411 1.5 26 MP2A Z -6.588 1.5 27 MP2B X 11.411 1.5 28 MP2B X 11.411 1.5 29 MP2B Z -6.588 1.5 30 MP2B Mx -0.06 1.5 31 MP2C X 13.543 1.5 32 MP2C Z -7.819 1.5 33 MP2C X 10.195 1.5 34 MP3A X 10.195 1.5 36 MP3A X 10.195 1.5 38 MP3B X 10.195 1.5 39 MP3B X 10.397 5 41 MP3C X 18.007 .5 42 MP3B X 18.007 .5 43 MP1B	23	MP1B	Z	-12.279	1
25 MP2A X 11.411 1.5 26 MP2A Z -6.588 1.5 27 MP2A Mx -006 1.5 28 MP2B X 11.411 1.5 29 MP2B X 11.411 1.5 30 MP2B X -13.843 1.5 31 MP2C X 13.943 1.5 32 MP2C Z -7.819 1.5 34 MP3A X 10.195 1.5 35 MP3A Z -5.886 1.5 36 MP3A X 10.195 1.5 38 MP3B Z -5.886 1.5 40 MP3C X 11.3138 1.5 41 MP3C Z -7.585 1.5 42 MP3C Z -10.397 5 43 MP1B X 18.007 5.5 44 MP1	24	MP1B	Mx	011	1
26 MP2A Z -6.588 1.5 27 MP2A Mx 006 1.5 28 MP2B Z -6.588 1.5 30 MP2B Z -6.588 1.5 31 MP2C X 13.543 1.5 32 MP2C Z -7.819 1.5 33 MP2C Mx 0.04 1.5 34 MP3A X 10.195 1.5 36 MP3A X 10.195 1.5 36 MP3A Mx .005 1.5 38 MP3B Z -5.886 1.5 40 MP3C X 10.195 1.5 41 MP3C Z -7.885 1.5 42 MP3C X 18.007 .6 43 MP1B Z -10.397 .5 44 MP1B Z -10.397 .5 45 MP1A <td>25</td> <td>MP2A</td> <td>Х</td> <td>11.411</td> <td>1.5</td>	25	MP2A	Х	11.411	1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	26	MP2A	Z	-6.588	1.5
28 MP2B X 11.411 1.5 30 MP2B Z -6.588 1.5 31 MP2C X 13.543 1.5 32 MP2C Z -7.819 1.5 33 MP2C Z -7.819 1.5 34 MP3A X 10.195 1.5 35 MP3A Z -5.886 1.5 36 MP3A MX 0.05 1.5 38 MP3B Z -5.886 1.5 39 MP3B Z -5.886 1.5 40 MP3C X 13.138 1.5 41 MP3C Z -7.585 1.5 42 MP3C X 18.007 .6 44 MP1B Z -10.397 .6 44 MP1B Z -10.397 .5 45 MP1B MX .009 .5 46 MP1B </td <td>27</td> <td>MP2A</td> <td>Mx</td> <td>.006</td> <td>1.5</td>	27	MP2A	Mx	.006	1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	28	MP2B	X	11.411	1.5
30 MP2B Mx 006 1.5 31 MP2C X 13.543 1.5 32 MP2C Z -7.819 1.5 33 MP2C Mx 0.04 1.5 34 MP3A X 10.195 1.5 35 MP3A Z -5.886 1.5 36 MP3B Z -5.886 1.5 37 MP3B X 10.195 1.5 38 MP3B Z -5.886 1.5 39 MP3C X 13.138 1.5 41 MP3C Z -7.655 1.5 42 MP3C Mx .004 1.5 43 MP1B X 18.007 .5 44 MP1B Z -10.397 .5 45 MP1B Mx .009 .5 46 MP1B X 18.007 .5 50 MP1C	29	MP2B	Z	-6.588	1.5
31 MP2C X 13 543 15 32 MP2C Z -7.819 1.5 33 MP2C Mx .004 1.5 34 MP3A X 10.195 1.5 35 MP3A Z -5.886 1.5 36 MP3A X 10.195 1.5 37 MP3B X 10.195 1.5 38 MP3B X 10.195 1.5 39 MP3B X 10.195 1.5 41 MP3C X 13.138 1.5 42 MP3C X 13.007 .5 44 MP1B X 18.007 .5 45 MP1B X 18.007 .5.5 46 MP1B X 18.007 .5.5 48 MP1B X 18.007 .5.5 50 MP1C X 12.73 1.5 51 MP1C<	30	MP2B	Mx	006	1.5
12 MP2C 2 -7.819 1.5 33 MP2C Mx .004 1.5 34 MP3A X 10.195 1.5 35 MP3A Z -5.886 1.5 36 MP3A X 10.195 1.5 37 MP3B X 10.195 1.5 38 MP3B X 10.195 1.5 39 MP3B X 10.195 1.5 40 MP3C X 13.138 1.5 41 MP3C Z -7.585 1.5 42 MP3C Mx .004 1.5 43 MP1B X 18.007 .5 44 MP1B X 18.007 .5 45 MP1B Mx .009 .5 46 MP1B X 18.007 .5.5 50 MP1C X 12.73 1.5 51 MP1C	31	MP2C	X	13.543	1.5
33 MP2C Mx .004 1.5 34 MP3A X 10.195 1.5 35 MP3A Z -5.886 1.5 36 MP3A X 10.195 1.5 37 MP3B X 10.195 1.5 38 MP3B Z -5.886 1.5 39 MP3B X 10.195 1.5 34 MP3B X 10.195 1.5 39 MP3B X 10.195 1.5 41 MP3C X 13.138 1.5 42 MP3C X 18.007 .5 44 MP1B Z -10.397 .5 45 MP1B X 18.007 .5.5 46 MP1B X 12.73 1.5 50 MP1C X 12.73 1.5 51 MP1C X 12.73 4.5 52 MP1C <td>32</td> <td>MP2C</td> <td>7</td> <td>-7 819</td> <td>1.5</td>	32	MP2C	7	-7 819	1.5
34 MP3A X 10.195 1.5 35 MP3A Z -5.886 1.5 36 MP3B X 10.195 1.5 37 MP3B X 10.195 1.5 38 MP3B Z -5.886 1.5 39 MP3B Z -5.886 1.5 40 MP3C X 13.138 1.5 41 MP3C Z -7.585 1.5 42 MP3C Mx .004 1.5 43 MP1B X 18.007 .5 44 MP1B Z -10.397 .5 45 MP1B Mx .009 .5 46 MP1B X 18.007 .5.5 47 MP1B Mx .009 .5.5 50 MP1C Z -7.35 1.5 51 MP1C X 12.73 4.5 52 MP1C <td>33</td> <td>MP2C</td> <td>Mx</td> <td>004</td> <td>1.5</td>	33	MP2C	Mx	004	1.5
35 MP3A Z -5.886 1.5 36 MP3A Mx 005 1.5 37 MP3B X 10.195 1.5 38 MP3B Z -5.886 1.5 39 MP3B X 10.195 1.5 40 MP3C X 13.138 1.5 41 MP3C X 13.138 1.5 42 MP3C X 18.007 .5 44 MP1B Z -10.397 .5 44 MP1B X 18.007 .5 45 MP1B Z -10.397 .5 46 MP1B Z -10.397 .5 48 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C X 12.73 4.5 52 MP1C X 18.186 .5 53 MP1A	34	MP3A	X	10,195	1.5
36 MP3A Mx .005 1.5 37 MP3B X 10.195 1.5 38 MP3B X 10.195 1.5 39 MP3B X 13.138 1.5 40 MP3C X 13.138 1.5 41 MP3C Z -7.585 1.5 42 MP3C X 18.007 .5 43 MP1B X 18.007 .5 44 MP1B Z -10.397 .5 45 MP1B X 18.007 .5.5 46 MP1B X 10.099 .5.5 47 MP1B Z -10.397 .5.5 50 MP1C X 12.73 1.5 51 MP1C X 12.73 1.5 52 MP1C X 12.73 4.5 53 MP1C X 18.186 .5 54 MP1C </td <td>35</td> <td>MP3A</td> <td>7</td> <td>-5.886</td> <td>1.5</td>	35	MP3A	7	-5.886	1.5
37 MP3B X 10.195 1.5 38 MP3B Z -5.886 1.5 39 MP3B X 13.138 1.5 40 MP3C X 13.138 1.5 41 MP3C Z -7.585 1.5 42 MP3C Mx 004 1.5 43 MP1B X 18.007 .5 44 MP1B X 18.007 .5 45 MP1B X 18.007 .5.5 46 MP1B X 18.007 .5.5 47 MP1B Z -10.397 .5.5 48 MP1B X 18.007 .5.5 49 MP1C Z .7.35 1.5 50 MP1C Z .7.35 1.5 51 MP1C Z .7.35 4.5 52 MP1C X 12.73 4.5 53 MP1C<	36	MP3A	Mx	005	1.5
38 MP3B Z -5.886 1.5 39 MP3B Mx 005 1.5 40 MP3C X 13.138 1.5 41 MP3C Z -7.585 1.5 42 MP3C Mx .004 1.5 43 MP1B X 18.007 .5 44 MP1B Z -10.397 .5 45 MP1B X 18.007 .5.5 46 MP1B Z -10.397 .5.5 47 MP1B Z -10.397 .5.5 48 MP1B X 18.007 .5.5 49 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C X 12.73 4.5 52 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 <td< td=""><td>37</td><td>MP3B</td><td>X</td><td>10 195</td><td>1.5</td></td<>	37	MP3B	X	10 195	1.5
Box M South South	38	MP3B	7	-5.886	1.5
0 MP3C X 13.138 1.5 41 MP3C Z -7.585 1.5 42 MP3C Z -7.585 1.5 43 MP1B X 18.007 .5 44 MP1B Z -10.397 .5 45 MP1B X 18.007 .5.5 46 MP1B Z -10.397 .5.5 47 MP1B Z -10.397 .5.5 48 MP1B X 18.007 .5.5 49 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C X 12.73 .4.5 53 MP1C X 12.73 .4.5 54 MP1C Mx 004 1.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A	39	MP3B	Mx	- 0.000	1.5
\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} 41 MP3C X 1 \mathbf{M} 0 1 42 MP3C Mx 0 1 5 43 MP1B X 18 0 5 44 MP1B Z -10.397 5 45 MP1B X 18 0 46 MP1B Z -10.397 5 48 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 52 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C Mx -0.04 4.5 55 MP1A Z -10.5 5 56 MP1A Z -10.5 5 58 MP1A Z $-10.$	40	MP3C	Y	13 138	1.5
41 MB3C Z 7,303 1.5 42 MP3C Mx 0.04 1.5 43 MP1B X 18.007 .5 44 MP1B Z -10.397 .5 45 MP1B Mx .009 .5 46 MP1B X 18.007 .5.5 48 MP1B Z -10.397 .5.5 48 MP1B X 18.007 .5.5 49 MP1C X 12.73 1.5 50 MP1C X 12.73 1.5 51 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C X 18.186 .5 55 MP1A Z -10.5 .5 56 MP1A Z -10.5 .5 57 MP1A Z -10.5 .5 59 MP1A	40	MP3C	7	-7 585	1.5
HZ MIX JOH JOH <thjoh< th=""> <thjoh< th=""> <thjoh< th=""></thjoh<></thjoh<></thjoh<>	41	MP3C	My	-1.505	1.5
43 MP 1B Z -10.397 .5 44 MP1B Z -10.397 .5 45 MP1B Mx 009 .5 46 MP1B Z -10.397 5.5 47 MP1B Z -10.397 5.5 48 MP1B Mx .009 5.5 49 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C X 12.73 4.5 52 MP1C X 12.73 4.5 53 MP1C X 12.73 4.5 54 MP1C Mx 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 60 MP1A Z -10.5 .55 60 MP3A	42	MD1R	V N	18 007	5
44 MP1B Z -10.397 .3 45 MP1B Mx .009 .5 46 MP1B X 18.007 5.5 47 MP1B Z -10.397 5.5 48 MP1B Mx .009 5.5 49 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C Mx 004 1.5 52 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C Mx 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 58 MP1A X 18.186 5.5 60 MP3A X 22.048 .5 61 MP3A	43		~ 7	10.007	.5
45 MP1B MX .009 .5 46 MP1B X 18.007 5.5 47 MP1B Z -10.397 5.5 48 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C X 12.73 4.5 52 MP1C Z -7.35 4.5 53 MP1C Z -7.35 4.5 53 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C Mx 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 5 57 MP1A Mx 009 5.5 60 MP1A Z -10.5 5.5 61 MP3A Z -12.73 .5 62 MP3A	44			-10.397	.5
40 MP IB X 10.007 5.3 47 MP1B Z -10.397 5.5 48 MP1B Mx .009 5.5 49 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C X 12.73 4.5 52 MP1C X 12.73 4.5 53 MP1C X 12.73 4.5 54 MP1C X 12.73 4.5 55 MP1A X 18.186 .5 56 MP1A X 18.186 .5 57 MP1A Mx -0.09 .5 58 MP1A X 18.186 5.5 59 MP1A X 18.186 5.5 60 MP3A Z -10.5 5.5 61 MP3A X 22.048 .5 62 MP3A	40			19.007	.5
47 MP 1B L -10.397 5.5 48 MP1B Mx .009 5.5 49 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C Mx 004 1.5 52 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C Mx 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 58 MP1A X 18.186 5.5 59 MP1A Z -10.5 5.5 60 MP1A X 2.048 .5 61 MP3A Z -12.73 .5 63 MP3A Z -12.73 .5 64 MP3A Z -12.73 .5 66 MP3A Z -12.73	40		~ ~ 7	10.007	5.5
Ho MP ID MX .009 .5.3 49 MP1C X 12.73 1.5 50 MP1C Z -7.35 1.5 51 MP1C Mx 004 1.5 52 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C X 12.73 4.5 54 MP1C X 12.73 4.5 55 MP1A X 18.186 .5 56 MP1A X 18.186 .5 57 MP1A Mx 009 .5 58 MP1A Z -10.5 5.5 60 MP1A Mx 009 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A Z -12.73 .5 64 MP3A	47			-10.397	5.5
49 MP1C A 12.73 1.3 50 MP1C Z -7.35 1.5 51 MP1C X 12.73 4.5 52 MP1C X 12.73 4.5 53 MP1C X 12.73 4.5 54 MP1C X 12.73 4.5 54 MP1C X 12.73 4.5 55 MP1A X 18.186 .5 56 MP1A X 18.186 .5 57 MP1A Mx 009 .5 58 MP1A X 18.186 5.5 60 MP1A Z -10.5 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A Z -12.73 .5 64 MP3A Z -12.73 .5 65 MP3A	40			10.72	1.5
30 MP1C Z -7.33 1.3 51 MP1C Mx 004 1.5 52 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C Mx 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A X 18.186 .5 59 MP1A Z -10.5 .5 60 MP1A Z -10.5 .5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 .5.5 64 MP3A Z -12.73 .5 65 MP3A Z -12.73 .5 66 MP3A X 22.048 .5 67 MP3B	49	MP1C	~ 7	7.25	1.5
51 MP1C Mix 004 1.5 52 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C Mx 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 58 MP1A Z -10.5 5.5 60 MP1A X 18.186 5.5 60 MP1A Z -10.5 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 5.5 64 MP3A Z -12.73 .5 65 MP3A Z -12.73 .5 66 MP3A X 22.048 .5 67 MP3B	50	MPIC		-7.35	1.5
52 MP1C X 12.73 4.5 53 MP1C Z -7.35 4.5 54 MP1C Mx 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 58 MP1A X 18.186 5.5 59 MP1A Z -10.5 5.5 60 MP1A X 18.186 5.5 61 MP3A Z -10.5 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 5.5 64 MP3A Z -12.73 5.5 67 MP3B X 22.048 .5 68 MP3B X 22.048 .5 69 MP3B	51	MPTC	IVIX	004	1.5
53 MP1C Z -7.35 4.5 54 MP1C Mx 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 58 MP1A X 18.186 5.5 59 MP1A Z -10.5 5.5 60 MP1A Mx 009 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 5.5 64 MP3A X 22.048 5.5 65 MP3A Z -12.73 5.5 66 MP3A Z -12.73 5.5 67 MP3B Z -12.73 5.5 68 MP3B X 22.048 .5 69 MP3B	52	MPIC	λ 7	12.73	4.5
54 MPTC MX 004 4.5 55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 58 MP1A X 18.186 5.5 59 MP1A Z -10.5 5.5 60 MP1A X 18.186 5.5 61 MP3A X 2.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 5.5 64 MP3A X 22.048 5.5 65 MP3A X 22.048 5.5 66 MP3A X 22.048 5.5 67 MP3B X 22.048 5.5 68 MP3B X 22.048 .5 69 MP3B X 22.048 .5 70 MP3B	53	MPIC	<u> </u>	-7.35	4.5
55 MP1A X 18.186 .5 56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 58 MP1A X 18.186 5.5 59 MP1A Z -10.5 5.5 60 MP1A Z -10.5 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 .5 64 MP3A X 22.048 5.5 65 MP3A X 22.048 5.5 66 MP3A X 22.048 5.5 67 MP3B X 22.048 .5 68 MP3B X 22.048 .5 69 MP3B X 22.048 .5 69 MP3B X 22.048 .5 70 MP3B	54	MP1C	IVIX	004	4.5
56 MP1A Z -10.5 .5 57 MP1A Mx 009 .5 58 MP1A X 18.186 5.5 59 MP1A Z -10.5 5.5 60 MP1A Z -10.5 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 .5 64 MP3A X 22.048 .5 65 MP3A Z -12.73 .5 66 MP3A X 22.048 .5 67 MP3B X 22.048 .5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B Mx .004 .5 71 MP3B X 22.048 5.5 71 MP3B <	55	MP1A	X	18.186	.5
57 MIX 009 .5 58 MP1A X 18.186 5.5 59 MP1A Z -10.5 5.5 60 MP1A Mx 009 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 .5 64 MP3A X 22.048 .5 64 MP3A X 22.048 .5 65 MP3A X 22.048 .5 66 MP3A X 22.048 .5 65 MP3A Z -12.73 .5 66 MP3A X 22.048 .5 67 MP3B X 22.048 .5 68 MP3B X 22.048 .5 70 MP3B X 22.048 5.5 71 MP3B X	56	MP1A		-10.5	.5
56 MP1A X 18.186 5.5 59 MP1A Z -10.5 5.5 60 MP1A Mx 009 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A X 22.048 .5 64 MP3A X 22.048 .5 65 MP3A Z -12.73 .5 66 MP3A X 22.048 5.5 65 MP3A Z -12.73 5.5 66 MP3A Z -12.73 5.5 66 MP3A Z -12.73 5.5 67 MP3B X 22.048 .5 68 MP3B X 22.048 .5 70 MP3B X 22.048 5.5 71 MP3B X 22.048 5.5 71 MP3B	5/	MP1A	IVIX	009	.5
59 MPTA Z -10.5 5.5 60 MP1A Mx 009 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A Mx 018 .5 64 MP3A X 22.048 5.5 65 MP3A X 22.048 5.5 66 MP3A X 22.048 5.5 66 MP3A X 22.048 5.5 66 MP3A Z -12.73 5.5 66 MP3A X 22.048 .5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B X 22.048 5.5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B	58	MP1A	X	18.186	5.5
60 MP1A Mx 009 5.5 61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A Mx 018 .5 64 MP3A X 22.048 5.5 65 MP3A X 22.048 5.5 66 MP3A Z -12.73 5.5 66 MP3A Z -12.73 5.5 66 MP3A Z -12.73 5.5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B X .004 .5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 .5 72 MP3B X 22.048 5.5 73 MP3B X .004 .5 73 MP3C	59	MP1A	<u> </u>	-10.5	5.5
61 MP3A X 22.048 .5 62 MP3A Z -12.73 .5 63 MP3A Mx 018 .5 64 MP3A X 22.048 5.5 65 MP3A X 22.048 5.5 66 MP3A Z -12.73 5.5 66 MP3A Z -12.73 5.5 66 MP3A Z -12.73 5.5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B X .004 .5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B X 22.048 5.5 73 MP3C X 26.277 .5	60	MP1A	MX	009	5.5
62 MP3A Z -12.73 .5 63 MP3A Mx 018 .5 64 MP3A X 22.048 5.5 65 MP3A Z -12.73 5.5 66 MP3A Z -12.73 5.5 66 MP3A X 22.048 5.5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B X 22.048 .5 70 MP3B X 22.048 5.5 71 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	61	MP3A	X	22.048	.5
63 MP3A Mx 018 .5 64 MP3A X 22.048 5.5 65 MP3A Z -12.73 5.5 66 MP3A Mx 018 5.5 66 MP3A Mx 018 5.5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B Mx .004 .5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B X 22.048 5.5 72 MP3B X 22.048 5.5 73 MP3C X 26.277 .5	62	MP3A		-12.73	.5
64 MP3A X 22.048 5.5 65 MP3A Z -12.73 5.5 66 MP3A Mx 018 5.5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B Z -12.73 .5 70 MP3B Mx .004 .5 71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 22.048 5.5	63	MP3A	Mx	018	.5
65 MP3A Z -12.73 5.5 66 MP3A Mx 018 5.5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B X 22.048 .5 70 MP3B X .004 .5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	64	MP3A	X	22.048	5.5
66 MP3A Mx 018 5.5 67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B Mx .004 .5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	65	MP3A	Z	-12.73	5.5
67 MP3B X 22.048 .5 68 MP3B Z -12.73 .5 69 MP3B Mx .004 .5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	66	MP3A	Mx	018	5.5
68 MP3B Z -12.73 .5 69 MP3B Mx .004 .5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	67	MP3B	X	22.048	.5
69 MP3B Mx .004 .5 70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	68	MP3B	Z	-12.73	.5
70 MP3B X 22.048 5.5 71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	69	MP3B	Mx	.004	.5
71 MP3B Z -12.73 5.5 72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	70	MP3B	Х	22.048	5.5
72 MP3B Mx .004 5.5 73 MP3C X 26.277 .5	71	MP3B	Ζ	-12.73	5.5
73 MP3C X 26.277 .5	72	MP3B	Mx	.004	5.5
	73	MP3C	X	26.277	.5

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 42

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
74	MP3C	Z	-15.171	.5
75	MP3C	Mx	.008	.5
76	MP3C	X	26.277	5.5
77	MP3C	Z	-15.171	5.5
78	MP3C	Mx	.008	5.5
79	MP3A	Χ	22.048	.5
80	MP3A	Z	-12.73	.5
81	MP3A	Mx	004	.5
82	MP3A	Х	22.048	5.5
83	MP3A	Z	-12.73	5.5
84	MP3A	Mx	004	5.5
85	MP3B	X	22.048	.5
86	MP3B	Z	-12.73	.5
87	MP3B	Mx	.018	.5
88	MP3B	Х	22.048	5.5
89	MP3B	Z	-12.73	5.5
90	MP3B	Mx	.018	5.5
91	MP3C	X	26.277	.5
92	MP3C	Z	-15.171	.5
93	MP3C	Mx	023	.5
94	MP3C	Х	26.277	5.5
95	MP3C	Z	-15.171	5.5
96	MP3C	Mx	023	5.5

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	8.64	2
2	MP4A	Z	0	2
3	MP4A	Mx	004	2
4	MP4A	Х	8.64	4
5	MP4A	Z	0	4
6	MP4A	Mx	004	4
7	MP4B	Х	16.798	2
8	MP4B	Z	0	2
9	MP4B	Mx	.004	2
10	MP4B	Х	16.798	4
11	MP4B	Z	0	4
12	MP4B	Mx	.004	4
13	MP4C	Х	19.517	2
14	MP4C	Z	0	2
15	MP4C	Mx	0	2
16	MP4C	Х	19.517	4
17	MP4C	Z	0	4
18	MP4C	Mx	0	4
19	MP1A	Х	22.138	1
20	MP1A	Z	0	1
21	MP1A	Mx	.011	1
22	MP1B	Х	29.395	1
23	MP1B	Z	0	1
24	MP1B	Mx	007	1
25	MP2A	Х	11.945	1.5
26	MP2A	Z	0	1.5
27	MP2A	Mx	.006	1.5
28	MP2B	Х	15.638	1.5
29	MP2B	Z	0	1.5
30	MP2B	Mx	004	1.5

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP2C	Х	16.869	1.5
32	MP2C	Z	0	1.5
33	MP2C	Mx	0	1.5
34	MP3A	Х	10.073	1.5
35	MP3A	Z	0	1.5
36	MP3A	M×	.005	1.5
37	MP3B	X	15.17	1.5
38	MP3B	7	0	1.5
39	MP3B	Mx	- 004	1.5
40	MP3C	X	16.869	1.5
40	MP3C	7	10:000	1.5
42	MP3C		0	1.5
42	MP3C		26 551	1.5
43		~ 7	20.001	.5
44	MP1B	<u> </u>	0	.5
45	MP1B	NX	.007	.5
46	MP1B	<u>×</u>	26.551	5.5
47	MP1B	<u> </u>	0	5.5
48	MP1B	Mx	.007	5.5
49	MP1C	X	15.406	1.5
50	MP1C	Z	0	1.5
51	MP1C	Mx	0	1.5
52	MP1C	X	15.406	4.5
53	MP1C	Z	0	4.5
54	MP1C	Mx	0	4.5
55	MP1A	X	19.914	.5
56	MP1A	Z	0	.5
57	MP1A	Mx	01	.5
58	MP1A	Х	19.914	5.5
59	MP1A	Z	0	5.5
60	MP1A	Mx	01	5.5
61	MP3A	X	23.017	.5
62	MP3A	Z	0	.5
63	MP3A	Mx	- 012	5
64	MP3A	X	23.017	5.5
65	MP3A	7	0	5.5
66	MP3A	My	- 012	5.5
67	MP3R	X	30.343	5
68	MD2D	7	0	
60	MD2D		008	
70	IVIF JD		000	
70	MD2D	~ ~ ~	0	5.5
70	IVIF JD		009	5.5
72	MP3B		008	5.5
73	MP30	λ 7	32.784	.5
74	MP3C	2	0	.5
/5	MP3C	MX	.019	.5
/6	MP3C	X	32.784	5.5
77	MP3C	Z	0	5.5
78	MP3C	Mx	.019	5.5
79	MP3A	X	23.017	.5
80	MP3A	Z	0	.5
81	MP3A	Mx	012	.5
82	MP3A	Х	23.017	5.5
83	MP3A	Z	0	5.5
84	MP3A	Mx	012	5.5
85	MP3B	X	30.343	.5
86	MP3B	Z	0	.5
87	MP3B	Mx	.023	.5
RIS	A-5D version 17.0.4 [K:\\\		xev UKISa 468/82-VZW MI	LO HISU Page 44

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP3B	X	30.343	5.5
89	MP3B	Z	0	5.5
90	MP3B	Mx	.023	5.5
91	MP3C	Х	32.784	.5
92	MP3C	Z	0	.5
93	MP3C	Mx	019	.5
94	MP3C	Х	32.784	5.5
95	MP3C	Z	0	5.5
96	MP3C	Mx	019	5.5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	9.837	2
2	MP4A	Z	5.679	2
3	MP4A	Mx	005	2
4	MP4A	Х	9.837	4
5	MP4A	Z	5.679	4
6	MP4A	Mx	005	4
7	MP4B	Х	16.902	2
8	MP4B	Z	9.758	2
9	MP4B	Mx	0	2
10	MP4B	X	16,902	4
11	MP4B	Z	9.758	4
12	MP4B	Мх	0	4
13	MP4C	X	14.547	2
14	MP4C	Z	8.399	2
15	MP4C	Mx	.004	2
16	MP4C	X	14.547	4
17	MP4C	Z	8.399	4
18	MP4C	Mx	.004	4
19	MP1A	X	21.267	1
20	MP1A	Z	12.279	1
21	MP1A	Mx	.011	1
22	MP1B	Х	27.552	1
23	MP1B	Z	15.907	1
24	MP1B	Mx	0	1
25	MP2A	Х	11.411	1.5
26	MP2A	Z	6.588	1.5
27	MP2A	Mx	.006	1.5
28	MP2B	Х	14.609	1.5
29	MP2B	Z	8.435	1.5
30	MP2B	Mx	0	1.5
31	MP2C	Х	13.543	1.5
32	MP2C	Z	7.819	1.5
33	MP2C	Mx	004	1.5
34	MP3A	Х	10.195	1.5
35	MP3A	Z	5.886	1.5
36	MP3A	Mx	.005	1.5
37	MP3B	Х	14.609	1.5
38	MP3B	Z	8.435	1.5
39	MP3B	Mx	0	1.5
40	MP3C	X	13.138	1.5
41	MP3C	Z	7.585	1.5
42	MP3C	Mx	004	1.5
43	MP1B	X	25.487	.5
44	MP1B	Z	14.715	.5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP1B	Mx	0	.5
46	MP1B	X	25.487	5.5
47	MP1B	Z	14.715	5.5
48	MP1B	Mx	0	5.5
49	MP1C	Х	12.73	1.5
50	MP1C	Z	7.35	1.5
51	MP1C	Mx	.004	1.5
52	MP1C	X	12.73	4.5
53	MP1C	Z	7.35	4.5
54	MP1C	Mx	.004	4.5
55	MP1A	X	18,186	.5
56	MP1A	7	10.5	5
57	MP1A	Mx	- 009	.5
58	MP1A	X	18 186	5.5
59	MP1A	7	10.5	5.5
60	MP1A	Mx	- 009	5.5
61	MP3A	X	22.048	5
62	MP3A	7	12 73	.5
63	MP3A	Mx	- 004	.5
64	MP3A	X	22 048	5.5
65	MP3A	7	12 73	5.5
66	MP3A	Mx	- 004	5.5
67	MP3B	X	28.392	5
68	MP3B	7	16.392	.5
69	MP3B	Mx	- 019	.5
70	MP3B	X	28 392	55
71	MP3B	7	16 392	5.5
72	MP3B	Mx	- 019	5.5
73	MP3C	X	26.277	5
74	MP3C	7	15 171	.5
75	MP3C	Mx	023	.5
76	MP3C	X	26 277	5.5
77	MP3C	7	15 171	5.5
78	MP3C	Mx	023	5.5
79	MP3A	X	22.048	5
80	MP3A	7	12 73	.5
81	MP3A	Mx	- 018	.5
82	MP3A	X	22 048	5.5
83	MP3A	7	12 73	5.5
84	MP3A	Mx	- 018	5.5
85	MP3B	X	28.392	5
86	MP3B	7	16.392	.5
87	MP3B	Mx	019	.5
88	MP3B	X	28 392	5.5
89	MP3B	7	16 392	5.5
90	MP3R	Mv	010	5.5
Q1	MP3C	X	26 277	5.5
97	MP3C	7	15 171	.5
92	MP3C		- 008	.5
94	MP3C	X	26.277	.5
95	MP3C	7	15 171	5.5
96	MP3C	Mx	- 008	5.5
00		IVIA	.000	0.0

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	8.399	2

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2	MP4A	Z	14.547	2
3	MP4A	Mx	004	2
4	MP4A	Х	8.399	4
5	MP4A	Z	14.547	4
6	MP4A	Mx	004	4
7	MP4B	X	8.399	2
8	MP4B	7	14 547	2
ğ	MP4B	Mx	- 004	2
10	MP4B	X	8 399	<u> </u>
11	MP4B	7	14 547	
12	MP4B	My	- 004	4
12	MP4C		5.670	
14	MP4C	~ 7	0.079	2
14	MP4C		9.037	2
15	MP4C		.005	
10	MP4C	λ 7	5.079	4
17	MP4C	2	9.837	4
18	MP4C	IVIX	.005	4
19	MP1A	<u>×</u>	14.698	1
20	MP1A	Z	25.457	1
21	MP1A	Mx	.007	1
22	MP1B	X	14.698	1
23	MP1B	Z	25.457	1
24	MP1B	Mx	.007	1
25	MP2A	Χ	7.819	1.5
26	MP2A	Z	13.543	1.5
27	MP2A	Mx	.004	1.5
28	MP2B	X	7.819	1.5
29	MP2B	Z	13.543	1.5
30	MP2B	Mx	.004	1.5
31	MP2C	X	6.588	1.5
32	MP2C	Z	11.411	1.5
33	MP2C	Mx	006	1.5
34	MP3A	X	7 585	1.5
35	MP3A	7	13 138	1.5
36	MP3A	Mx	004	1.5
37	MP3B	X	7 585	1.5
38	MD3B	7	13 138	1.5
30	MD3D	<u> </u>	13.130	1.5
40	MP2C		5 996	1.5
40	MP2C	∧ 7	10,105	1.5
41	MP3C		10.195	1.5
42			005	1.5
43		<u>^</u>	13.270	.5
44	MP1B	Δ	22.994	.5
45	MP1B	IVIX	007	.5
46	MP1B	X	13.276	5.5
47	MP1B	Z	22.994	5.5
48	MP1B	Mx	007	5.5
49	MP1C	X	6.644	1.5
50	MP1C	Z	11.507	1.5
51	MP1C	Mx	.006	1.5
52	MP1C	X	6.644	4.5
53	MP1C	Z	11.507	4.5
54	MP1C	Mx	.006	4.5
55	MP1A	X	11.586	.5
56	MP1A	Z	20.067	.5
57	MP1A	Mx	006	.5
58	MP1A	Х	11.586	5.5
RISA		11111.	Rev UKISa1408782-VZVV MI	LU HIISUI Pade 4/

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
59	MP1A	Z	20.067	5.5
60	MP1A	Mx	006	5.5
61	MP3A	X	15.171	.5
62	MP3A	Z	26.277	.5
63	MP3A	Mx	.008	.5
64	MP3A	X	15.171	5.5
65	MP3A	Z	26.277	5.5
66	MP3A	Mx	.008	5.5
67	MP3B	X	15.171	.5
68	MP3B	Z	26.277	.5
69	MP3B	Mx	023	.5
70	MP3B	X	15.171	5.5
71	MP3B	Z	26.277	5.5
72	MP3B	Mx	023	5.5
73	MP3C	X	12.73	.5
74	MP3C	Z	22.048	.5
75	MP3C	Mx	.018	.5
76	MP3C	X	12.73	5.5
77	MP3C	Z	22.048	5.5
78	MP3C	Mx	.018	5.5
79	MP3A	X	15.171	.5
80	MP3A	Z	26.277	.5
81	MP3A	Mx	023	.5
82	MP3A	X	15.171	5.5
83	MP3A	Z	26.277	5.5
84	MP3A	Mx	023	5.5
85	MP3B	X	15.171	.5
86	MP3B	Z	26.277	.5
87	MP3B	Mx	.008	.5
88	MP3B	X	15.171	5.5
89	MP3B	Z	26.277	5.5
90	MP3B	Mx	.008	5.5
91	MP3C	X	12.73	.5
92	MP3C	Z	22.048	.5
93	MP3C	Mx	.004	.5
94	MP3C	X	12.73	5.5
95	MP3C	Z	22.048	5.5
96	MP3C	Mx	.004	5.5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	0	2
2	MP4A	Z	19.517	2
3	MP4A	Mx	0	2
4	MP4A	Х	0	4
5	MP4A	Z	19.517	4
6	MP4A	Mx	0	4
7	MP4B	Х	0	2
8	MP4B	Z	11.359	2
9	MP4B	Mx	005	2
10	MP4B	Х	0	4
11	MP4B	Z	11.359	4
12	MP4B	Mx	005	4
13	MP4C	Х	0	2
14	MP4C	Z	8.64	2
15	MP4C	Mx	.004	2

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP4C	Х	0	4
17	MP4C	Z	8.64	4
18	MP4C	Mx	.004	4
19	MP1A	Х	0	1
20	MP1A	Z	31.814	1
21	MP1A	Mx	0	1
22	MP1B	Х	0	1
23	MP1B	Z	24.557	1
24	MP1B	Mx	.011	1
25	MP2A	X	0	1.5
26	MP2A	Z	16,869	1.5
27	MP2A	Mx	0	1.5
28	MP2B	Х	0	1.5
29	MP2B	Z	13.176	1.5
30	MP2B	Mx	.006	1.5
31	MP2C	Х	0	1.5
32	MP2C	Z	11.945	1.5
33	MP2C	Mx	006	1.5
34	MP3A	Х	0	1.5
35	MP3A	Z	16.869	1.5
36	MP3A	Mx	0	1.5
37	MP3B	Х	0	1.5
38	MP3B	Z	11.772	1.5
39	MP3B	Mx	.005	1.5
40	MP3C	X	0	1.5
41	MP3C	Z	10.073	1.5
42	MP3C	Mx	005	1.5
43	MP1B	X	0	.5
44	MP1B	Z	20.793	.5
45	MP1B	Mx	009	.5
46	MP1B	Х	0	5.5
47	MP1B	Z	20.793	5.5
48	MP1B	Mx	009	5.5
49	MP1C	Χ	0	1.5
50	MP1C	Z	12.581	1.5
51	MP1C	Mx	.006	1.5
52	MP1C	X	0	4.5
53	MP1C	Ζ	12.581	4.5
54	MP1C	Mx	.006	4.5
55	MP1A	<u>X</u>	0	.5
56	MP1A	Z	24.257	.5
57	MP1A	Mx	0	.5
58	MP1A	X	0	5.5
59	MP1A	Z	24.257	5.5
60	MP1A	MX	0	5.5
61	MP3A	X	0	.5
62	MP3A	<u> </u>	32.784	.5
63	MP3A	Mx	.019	.5
64	MP3A	X	0	5.5
65	MP3A		32.784	5.5
60	MP3A	IVIX	.019	5.5
67	MD2D	Χ	0	.5
00	MD2D		20.409	.5
70	IVIE3B MD2D	IVIX	018	.5
70	MD3D	λ 7	0	5.5 E E
71			20.409	5.5 5.5
12	IVIE 3D	IVIX	010	0.0

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 49

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP3C	Х	0	.5
74	MP3C	Z	23.017	.5
75	MP3C	Mx	.012	.5
76	MP3C	Х	0	5.5
77	MP3C	Z	23.017	5.5
78	MP3C	Mx	.012	5.5
79	MP3A	X	0	.5
80	MP3A	Z	32.784	.5
81	MP3A	Mx	019	.5
82	MP3A	Х	0	5.5
83	MP3A	Z	32.784	5.5
84	MP3A	Mx	019	5.5
85	MP3B	Х	0	.5
86	MP3B	Z	25.459	.5
87	MP3B	Mx	004	.5
88	MP3B	X	0	5.5
89	MP3B	Z	25.459	5.5
90	MP3B	Mx	004	5.5
91	MP3C	Х	0	.5
92	MP3C	Z	23.017	.5
93	MP3C	Mx	.012	.5
94	MP3C	Х	0	5.5
95	MP3C	Z	23.017	5.5
96	MP3C	Mx	.012	5.5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-8.399	2
2	MP4A	Z	14.547	2
3	MP4A	Mx	.004	2
4	MP4A	X	-8.399	4
5	MP4A	Z	14.547	4
6	MP4A	Mx	.004	4
7	MP4B	Х	-4.32	2
8	MP4B	Z	7.482	2
9	MP4B	Mx	004	2
10	MP4B	Х	-4.32	4
11	MP4B	Z	7.482	4
12	MP4B	Mx	004	4
13	MP4C	Х	-5.679	2
14	MP4C	Z	9.837	2
15	MP4C	Mx	.005	2
16	MP4C	Х	-5.679	4
17	MP4C	Z	9.837	4
18	MP4C	Mx	.005	4
19	MP1A	Х	-14.698	1
20	MP1A	Z	25.457	1
21	MP1A	Mx	007	1
22	MP1B	X	-11.069	1
23	MP1B	Z	19.172	1
24	MP1B	Mx	.011	1
25	MP2A	Х	-7.819	1.5
26	MP2A	Z	13.543	1.5
27	MP2A	Mx	004	1.5
28	MP2B	Х	-5.972	1.5
29	MP2B	Z	10.344	1.5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
30	MP2B	Mx	.006	1.5
31	MP2C	Х	-6.588	1.5
32	MP2C	Z	11.411	1.5
33	MP2C	Mx	006	1.5
34	MP3A	Х	-7.585	1.5
35	MP3A	Z	13.138	1.5
36	MP3A	Mx	004	1.5
37	MP3B	Х	-5.037	1.5
38	MP3B	Z	8.724	1.5
39	MP3B	Mx	.005	1.5
40	MP3C	X	-5.886	1.5
41	MP3C	Z	10,195	1.5
42	MP3C	Mx	- 005	1.5
43	MP1B	X	-8.957	5
44	MP1B	7	15 514	.5
45	MP1B	Mx	- 009	.0
46	MP1B	X	-8 957	5.5
40	MP1B	7	15 514	5.5
48	MP1R	Mx	- 009	5.5
40	MP10	X	-6 644	1.5
50	MP1C	7	11 507	1.5
51	MP1C	<u> </u>	006	1.5
52	MP1C	Y	-6 644	1.5
53	MP1C	7	11 507	4.5
54	MP1C	My	006	4.5
55	MP1A	Y		4.5
56	MP1A	7	20.067	.5
57		<u> </u>	006	.5
58	MP1A	Y	_11 586	.5
50	MP1A	7	20.067	5.5
60	MP1A	My	006	5.5
61	MP3A	X	-15 171	5
62	MP3A	7	26.277	.5
63	MP3A	My	023	.5
64	MP3A	X	-15 171	5.5
65	MP3A	7	26.277	5.5
66	MP3A	My	023	5.5
67	MP3B	X	-11 509	5
68	MP3B	7	19 934	.5
69	MP3B	Mx	- 012	.5
70	MP3B	X	-11 509	5.5
71	MP3B	7	19 934	5.5
72	MP3B	Mx	- 012	5.5
73	MP3C	X	-12 73	.5
74	MP3C	7	22.048	.5
75	MP3C	Mx	.004	.5
76	MP3C	X	-12.73	5.5
77	MP3C	Z	22.048	5.5
78	MP3C	Mx	.004	5.5
79	MP3A	X	-15.171	.5
80	MP3A	Z	26.277	.5
81	MP3A	Mx	008	.5
82	MP3A	X	-15.171	5.5
83	MP3A	Z	26.277	5.5
84	MP3A	Mx	008	5.5
85	MP3B	X	-11.509	.5
86	MP3B	Z	19.934	.5
		<u>_</u>	10.001	

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
87	MP3B	Mx	012	.5
88	MP3B	Х	-11.509	5.5
89	MP3B	Z	19.934	5.5
90	MP3B	Mx	012	5.5
91	MP3C	Х	-12.73	.5
92	MP3C	Z	22.048	.5
93	MP3C	Mx	.018	.5
94	MP3C	Х	-12.73	5.5
95	MP3C	Z	22.048	5.5
96	MP3C	Mx	.018	5.5

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-9.837	2
2	MP4A	Z	5.679	2
3	MP4A	Mx	.005	2
4	MP4A	Х	-9.837	4
5	MP4A	Z	5.679	4
6	MP4A	Mx	.005	4
7	MP4B	Х	-9.837	2
8	MP4B	Z	5.679	2
9	MP4B	Mx	005	2
10	MP4B	Х	-9.837	4
11	MP4B	Z	5.679	4
12	MP4B	Mx	005	4
13	MP4C	Х	-14.547	2
14	MP4C	Z	8.399	2
15	MP4C	Mx	.004	2
16	MP4C	Х	-14.547	4
17	MP4C	Z	8.399	4
18	MP4C	Mx	.004	4
19	MP1A	Х	-21.267	1
20	MP1A	Z	12.279	1
21	MP1A	Mx	011	1
22	MP1B	Х	-21.267	1
23	MP1B	Z	12.279	1
24	MP1B	Mx	.011	1
25	MP2A	Х	-11.411	1.5
26	MP2A	Z	6.588	1.5
27	MP2A	Mx	006	1.5
28	MP2B	X	-11.411	1.5
29	MP2B	Z	6.588	1.5
30	MP2B	Mx	.006	1.5
31	MP2C	Х	-13.543	1.5
32	MP2C	Z	7.819	1.5
33	MP2C	Mx	004	1.5
34	MP3A	Х	-10.195	1.5
35	MP3A	Z	5.886	1.5
36	MP3A	Mx	005	1.5
37	MP3B	X	-10.195	1.5
38	MP3B	Z	5.886	1.5
39	MP3B	Mx	.005	1.5
40	MP3C	Х	-13.138	1.5
41	MP3C	Z	7.585	1.5
42	MP3C	Mx	004	1.5
43	MP1B	Х	-18.007	.5

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
44	MP1B	Z	10.397	.5
45	MP1B	Mx	009	.5
46	MP1B	X	-18.007	5.5
47	MP1B	Z	10.397	5.5
48	MP1B	Mx	009	5.5
49	MP1C	X	-12.73	1.5
50	MP1C	Z	7.35	1.5
51	MP1C	Mx	.004	1.5
52	MP1C	X	-12.73	4.5
53	MP1C	Z	7.35	4.5
54	MP1C	Mx	.004	4.5
55	MP1A	X	-18.186	.5
56	MP1A	Z	10.5	.5
57	MP1A	Mx	.009	.5
58	MP1A	X	-18.186	5.5
59	MP1A	Z	10.5	5.5
60	MP1A	Mx	.009	5.5
61	MP3A	X	-22.048	.5
62	MP3A	Z	12.73	.5
63	MP3A	Mx	.018	.5
64	MP3A	X	-22.048	5.5
65	MP3A	Z	12.73	5.5
66	MP3A	Mx	.018	5.5
67	MP3B	X	-22.048	.5
68	MP3B	Z	12.73	.5
69	MP3B	Mx	004	.5
70	MP3B	X	-22.048	5.5
71	MP3B	Z	12.73	5.5
72	MP3B	Mx	004	5.5
73	MP3C	X	-26.277	.5
74	MP3C	Z	15.171	.5
75	MP3C	Mx	008	.5
76	MP3C	X	-26.277	5.5
77	MP3C	Z	15.171	5.5
78	MP3C	Mx	008	5.5
79	MP3A	X	-22.048	.5
80	MP3A	Z	12.73	.5
81	MP3A	Mx	.004	.5
82	MP3A	X	-22.048	5.5
83	MP3A	Z	12.73	5.5
84	MP3A	Mx	.004	5.5
85	MP3B	X	-22.048	.5
86	MP3B	Z	12.73	.5
87	MP3B	Mx	018	.5
88	MP3B	X	-22.048	5.5
89	MP3B	Z	12.73	5.5
90	MP3B	Mx	018	5.5
91	MP3C	X	-26.277	.5
92	MP3C	Z	15.171	.5
93	MP3C	Mx	.023	.5
94	MP3C	X	-26.277	5.5
95	MP3C	Z	15.171	5.5
96	MP3C	Mx	.023	5.5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

Member Label

Magnitude[lb,k-ft]

Location[ft,%]

Direction

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-8.64	2
2	MP4A	Z	0	2
3	MP4A	Mx	.004	2
4	MP4A	X	-8.64	4
5	MP4A	Z	0	4
6	MP4A	Mx	.004	4
7	MP4B	Х	-16.798	2
8	MP4B	Z	0	2
9	MP4B	Mx	004	2
10	MP4B	X	-16.798	4
11	MP4B	Z	0	4
12	MP4B	Mx	004	4
13	MP4C	Х	-19.517	2
14	MP4C	Z	0	2
15	MP4C	Mx	0	2
16	MP4C	Х	-19.517	4
17	MP4C	Z	0	4
18	MP4C	Mx	0	4
19	MP1A	X	-22.138	1
20	MP1A	Z	0	1
21	MP1A	Mx	011	1
22	MP1B	Х	-29.395	1
23	MP1B	Z	0	1
24	MP1B	Mx	.007	1
25	MP2A	X	-11.945	1.5
26	MP2A	Z	0	1.5
27	MP2A	Mx	006	1.5
28	MP2B	X	-15.638	1.5
29	MP2B	Z	0	1.5
30	MP2B	Mx	.004	1.5
31	MP2C	X	-16.869	1.5
32	MP2C	Z	0	1.5
33	MP2C	Mx	0	1.5
34	MP3A	X	-10.073	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	005	1.5
37	MP3B	X	-15.17	1.5
38	MP3B	Z	0	1.5
39	MP3B	Mx	.004	1.5
40	MP3C	X	-16.869	1.5
41	MP3C	Z	0	1.5
42	MP3C	Mx	0	1.5
43	MP1B	Х	-26.551	.5
44	MP1B	Z	0	.5
45	MP1B	Mx	007	.5
46	MP1B	X	-26.551	5.5
47	MP1B	Z	0	5.5
48	MP1B	Mx	007	5.5
49	MP1C	X	-15.406	1.5
50	MP1C	Z	0	1.5
51	MP1C	Mx	0	1.5
52	MP1C	X	-15,406	4.5
53	MP1C	Z	0	4.5
54	MP1C	Mx	Ŏ	4.5
55	MP1A	X	-19.914	.5
56	MP1A	Z	0	.5
57	MP1A	Mx	.01	.5
	1011 17 \		.01	.0

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 54

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1A	X	-19.914	5.5
59	MP1A	Z	0	5.5
60	MP1A	Mx	.01	5.5
61	MP3A	X	-23.017	.5
62	MP3A	Z	0	.5
63	MP3A	Mx	.012	.5
64	MP3A	X	-23.017	5.5
65	MP3A	Z	0	5.5
66	MP3A	Mx	.012	5.5
67	MP3B	X	-30.343	.5
68	MP3B	Z	0	.5
69	MP3B	Mx	.008	.5
70	MP3B	X	-30.343	5.5
71	MP3B	Z	0	5.5
72	MP3B	Mx	.008	5.5
73	MP3C	X	-32.784	.5
74	MP3C	Z	0	.5
75	MP3C	Mx	019	.5
76	MP3C	X	-32.784	5.5
77	MP3C	Z	0	5.5
78	MP3C	Mx	019	5.5
79	MP3A	X	-23.017	.5
80	MP3A	Z	0	.5
81	MP3A	Mx	.012	.5
82	MP3A	X	-23.017	5.5
83	MP3A	Z	0	5.5
84	MP3A	Mx	.012	5.5
85	MP3B	X	-30.343	.5
86	MP3B	Z	0	.5
87	MP3B	Mx	023	.5
88	MP3B	X	-30.343	5.5
89	MP3B	Z	0	5.5
90	MP3B	Mx	023	5.5
91	MP3C	Х	-32.784	.5
92	MP3C	Z	0	.5
93	MP3C	Mx	.019	.5
94	MP3C	Х	-32.784	5.5
95	MP3C	Z	0	5.5
96	MP3C	Mx	.019	5.5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-9.837	2
2	MP4A	Z	-5.679	2
3	MP4A	Mx	.005	2
4	MP4A	Х	-9.837	4
5	MP4A	Z	-5.679	4
6	MP4A	Mx	.005	4
7	MP4B	Х	-16.902	2
8	MP4B	Z	-9.758	2
9	MP4B	Mx	0	2
10	MP4B	Х	-16.902	4
11	MP4B	Z	-9.758	4
12	MP4B	Mx	0	4
13	MP4C	Х	-14.547	2
14	MP4C	Z	-8.399	2

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
15	MP4C	Mx	004	2	
16	MP4C	Х	-14.547	4	
17	MP4C	Z	-8.399	4	
18	MP4C	Mx	004	4	
19	MP1A	Х	-21.267	1	
20	MP1A	Z	-12.279	1	
21	MP1A	Mx	- 011	1	
22	MP1B	X	-27 552	1	
23	MP1B	7	-15 907	1	
24	MP1B	My	0	1	
25	MP2A	Y	_11 /11	1.5	
20		7	6 599	1.5	
20			-0.000	1.5	
21	MPOP		006	1.5	
28	MP2B	<u> </u>	- 14.609	1.5	
29	MP2B	<u> </u>	-8.435	1.5	
30	MP2B	MIX N	0	1.5	
31	MP2C	X	-13.543	1.5	
32	MP2C		-7.819	1.5	
33	MP2C	Mx	.004	1.5	
34	MP3A	X	-10.195	1.5	
35	MP3A	Z	-5.886	1.5	
36	MP3A	Mx	005	1.5	
37	MP3B	X	-14.609	1.5	
38	MP3B	Z	-8.435	1.5	
39	MP3B	Mx	0	1.5	
40	MP3C	Х	-13.138	1.5	
41	MP3C	Z	-7.585	1.5	
42	MP3C	Mx	.004	1.5	
43	MP1B	Х	-25.487	.5	
44	MP1B	Z	-14,715	.5	
45	MP1B	Mx	0	.5	
46	MP1B	X	-25.487	5.5	
47	MP1B	7	-14 715	5.5	
48	MP1B	Mx	0	5.5	
40	MP1C	X	-12 73	1.5	
50	MP1C	7	-7.35	1.5	
51	MP10	<u> </u>	-7.55	1.5	
57	MP1C		004	1.5	
52	MP10	~ 7	7.25	4.5	
55	MPIC		-7.35	4.5	
54	MP1C	IVIX	004	4.5	
55	MP1A	λ	-18.186	.5	
50	MP1A	Δ.	-10.5	.5	
5/	MP1A	MX	.009	.5	
58	MP1A	X	-18.186	5.5	
59	MP1A	Z	-10.5	5.5	
60	MP1A	Mx	.009	5.5	
61	MP3A	Χ	-22.048	.5	
62	MP3A	Z	-12.73	.5	
63	MP3A	Mx	.004	.5	
64	MP3A	Х	-22.048	5.5	
65	MP3A	Z	-12.73	5.5	
66	MP3A	Mx	.004	5.5	
67	MP3B	X	-28.392	.5	
68	MP3B	Z	-16.392	.5	
69	MP3B	Mx	.019	.5	
70	MP3B	X	-28.392	5.5	
71	MP3B	Z	-16.392	5.5	
RIS	RISA-3D Version 17.0.4 [R:\\\\\\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 56				

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
72	MP3B	Mx	.019	5.5
73	MP3C	X	-26.277	.5
74	MP3C	Z	-15.171	.5
75	MP3C	Mx	023	.5
76	MP3C	X	-26.277	5.5
77	MP3C	Z	-15.171	5.5
78	MP3C	Mx	023	5.5
79	MP3A	Х	-22.048	.5
80	MP3A	Z	-12.73	.5
81	MP3A	Mx	.018	.5
82	MP3A	Х	-22.048	5.5
83	MP3A	Z	-12.73	5.5
84	MP3A	Mx	.018	5.5
85	MP3B	Х	-28.392	.5
86	MP3B	Z	-16.392	.5
87	MP3B	Mx	019	.5
88	MP3B	Х	-28.392	5.5
89	MP3B	Z	-16.392	5.5
90	MP3B	Mx	019	5.5
91	MP3C	Х	-26.277	.5
92	MP3C	Z	-15.171	.5
93	MP3C	Mx	.008	.5
94	MP3C	Х	-26.277	5.5
95	MP3C	Z	-15.171	5.5
96	MP3C	Mx	.008	5.5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-8.399	2
2	MP4A	Z	-14.547	2
3	MP4A	Mx	.004	2
4	MP4A	Х	-8.399	4
5	MP4A	Z	-14.547	4
6	MP4A	Mx	.004	4
7	MP4B	Х	-8.399	2
8	MP4B	Z	-14.547	2
9	MP4B	Mx	.004	2
10	MP4B	Х	-8.399	4
11	MP4B	Z	-14.547	4
12	MP4B	Mx	.004	4
13	MP4C	Х	-5.679	2
14	MP4C	Z	-9.837	2
15	MP4C	Mx	005	2
16	MP4C	Х	-5.679	4
17	MP4C	Z	-9.837	4
18	MP4C	Mx	005	4
19	MP1A	Х	-14.698	1
20	MP1A	Z	-25.457	1
21	MP1A	Mx	007	1
22	MP1B	Х	-14.698	1
23	MP1B	Z	-25.457	1
24	MP1B	Mx	007	1
25	MP2A	Х	-7.819	1.5
26	MP2A	Z	-13.543	1.5
27	MP2A	Mx	004	1.5
28	MP2B	X	-7.819	1.5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

29 MP2B Z -13.543 30 MP2B Mx 004	1.5
30 MP2B Mx004	1.5
31 MP2C X -6.588	1.5
32 MP2C Z -11.411	1.5
33 MP2C Mx .006	1.5
34 MP3A X -7.585	1.5
35 MP3A Z -13.138	1.5
36 MP3A Mx004	1.5
37 MP3B X -7.585	1.5
38 MP3B Z -13.138	1.5
39 MP3B Mx004	1.5
40 MP3C X -5.886	1.5
41 MP3C Z -10.195	1.5
42 MP3C Mx .005	1.5
43 MP1B X -13.276	.5
44 MP1B Z -22.994	.5
45 MP1B Mx .007	.5
46 MP1B X -13.276	5.5
47 MP1B Z -22.994	5.5
48 MP1B Mx .007	5.5
49 MP1C X -6.644	1.5
50 MP1C Z -11.507	1.5
51 MP1C Mx006	1.5
52 MP1C X -6.644	4.5
53 MP1C Z -11.507	4.5
54 MP1C Mx006	4.5
55 MP1A X -11.586	.5
56 MP1A Z -20.067	.5
57 MP1A Mx .006	.5
58 MP1A X -11.586	5.5
59 MP1A Z -20.067	5.5
60 MP1A Mx .006	5.5
61 MP3A X -15.171	.5
62 MP3A Z -26.277	.5
63 MP3A Mx008	.5
64 MP3A X -15.171	5.5
65 MP3A Z -26.277	5.5
66 MP3A Mx008	5.5
67 MP3B X -15.171	.5
68 MP3B Z -26.277	.5
69 MP3B Mx .023	.5
70 MP3B X -15.171	5.5
71 MP3B Z -26.277	5.5
72 MP3B Mx .023	5.5
73 MP3C X -12.73	.5
74 MP3C Z -22.048	.5
75 MP3C Mx018	.5
76 MP3C X -12.73	5.5
77 MP3C Z -22.048	5.5
78 MP3C Mx018	5.5
79 MP3A X -15.171	.5
80 MP3A Z -26.277	.5
81 MP3A Mx .023	.5
82 MP3A X -15.171	5.5
83 MP3A Z -26.277	5.5
84 MP3A Mx .023	5.5
85 MP3B X -15.171	.5

RISA-3D Version 17.0.4 [R:\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 58

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3B	Z	-26.277	.5
87	MP3B	Mx	008	.5
88	MP3B	Х	-15.171	5.5
89	MP3B	Z	-26.277	5.5
90	MP3B	Mx	008	5.5
91	MP3C	Х	-12.73	.5
92	MP3C	Z	-22.048	.5
93	MP3C	Mx	004	.5
94	MP3C	Х	-12.73	5.5
95	MP3C	Z	-22.048	5.5
96	MP3C	Mx	004	5.5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	-5.894	2
3	MP4A	Mx	0	2
4	MP4A	X	0	4
5	MP4A	Z	-5.894	4
6	MP4A	Mx	0	4
7	MP4B	X	0	2
8	MP4B	Z	-3.204	2
9	MP4B	Mx	.001	2
10	MP4B	X	0	4
11	MP4B	Z	-3.204	4
12	MP4B	Mx	.001	4
13	MP4C	Х	0	2
14	MP4C	Z	-2.308	2
15	MP4C	Mx	001	2
16	MP4C	X	0	4
17	MP4C	Z	-2.308	4
18	MP4C	Mx	001	4
19	MP1A	Х	0	1
20	MP1A	Z	-9.506	1
21	MP1A	Mx	0	1
22	MP1B	X	0	1
23	MP1B	Z	-7.095	1
24	MP1B	Mx	003	1
25	MP2A	X	0	1.5
26	MP2A	Z	-4.69	1.5
27	MP2A	Mx	0	1.5
28	MP2B	X	0	1.5
29	MP2B	Z	-3.524	1.5
30	MP2B	Mx	002	1.5
31	MP2C	X	0	1.5
32	MP2C	Z	-3.135	1.5
33	MP2C	Mx	.002	1.5
34	MP3A	X	0	1.5
35	MP3A	Z	-4.69	1.5
36	MP3A	Mx	0	1.5
37	MP3B	Х	0	1.5
38	MP3B	Z	-3.077	1.5
39	MP3B	Mx	001	1.5
40	MP3C	Х	0	1.5
41	MP3C	Z	-2.539	1.5
42	MP3C	Mx	.001	1.5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP1B	X	0	.5
44	MP1B	Z	-6.071	.5
45	MP1B	Mx	.003	.5
46	MP1B	X	0	5.5
47	MP1B	Z	-6.071	5.5
48	MP1B	Mx	.003	5.5
49	MP1C	X	0	1.5
50	MP1C	Z	-3.502	1.5
51	MP1C	Mx	002	1.5
52	MP1C	X	0	4.5
53	MP1C	Z	-3.502	4.5
54	MP1C	Mx	002	4.5
55	MP1A	X	0	.5
56	MP1A	Z	-7.223	.5
57	MP1A	Mx	0	.5
58	MP1A	Х	0	5.5
59	MP1A	Z	-7.223	5.5
60	MP1A	Mx	0	5.5
61	MP3A	X	0	.5
62	MP3A	Z	-10.233	.5
63	MP3A	Mx	006	.5
64	MP3A	X	0	5.5
65	MP3A	Z	-10.233	5.5
66	MP3A	Mx	006	5.5
67	MP3B	X	0	.5
68	MP3B	Z	-7.634	.5
69	MP3B	Mx	.006	.5
70	MP3B	X	0	5.5
71	MP3B	Z	-7.634	5.5
72	MP3B	Mx	.006	5.5
73	MP3C	X	0	.5
74	MP3C	Z	-6.767	.5
75	MP3C	Mx	003	.5
76	MP3C	X	0	5.5
77	MP3C	Z	-6.767	5.5
78	MP3C	Mx	003	5.5
79	MP3A	X	0	.5
80	MP3A	Z	-10.233	.5
81	MP3A	Mx	.006	.5
82	MP3A	X	0	5.5
83	MP3A	Z	-10.233	5.5
84	MP3A	Mx	.006	5.5
85	MP3B	X	0	.5
86	MP3B	Z	-7.634	.5
87	MP3B	Mx	.001	.5
88	MP3B	X	0	5.5
89	MP3B	Z	-7.634	5.5
90	MP3B	Mx	.001	5.5
91	MP3C	X	0	.5
92	MP3C	Z	-6.767	.5
93	MP3C	Mx	003	.5
94	MP3C	X	0	5.5
95	MP3C	Z	-6.767	5.5
96	MP3C	Mx	003	5.5
~~		111/		

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	2.499	2
2	MP4A	Z	-4.328	2
3	MP4A	Mx	001	2
4	MP4A	Х	2.499	4
5	MP4A	Z	-4.328	4
6	MP4A	Mx	001	4
7	MP4B	X	1.154	2
8	MP4B	Z	-1.998	2
9	MP4B	Mx	001	2
10	MP4B	X	1 154	
11	MP4B	7	-1 998	4
12	MP4B	My	001	
12	MP4C	VIA V	1.602	+
14	MP4C	~ 7	2.775	2
14	MP4C		-2.775	2
10	MP4C	IVIX	001	2
10	MP4C	<u> </u>	1.602	4
17	MP4C	<u> </u>	-2.775	4
18	MP4C	NX	001	4
19	MP1A	<u> </u>	4.351	1
20	MP1A	Z	-7.536	1
21	MP1A	Mx	.002	1
22	MP1B	Х	3.146	1
23	MP1B	Z	-5.449	1
24	MP1B	Mx	003	1
25	MP2A	X	2.151	1.5
26	MP2A	Z	-3.725	1.5
27	MP2A	Mx	.001	1.5
28	MP2B	Х	1.568	1.5
29	MP2B	Z	-2.715	1.5
30	MP2B	Mx	002	1.5
31	MP2C	X	1 762	1.5
32	MP2C	7	-3.052	1.5
33	MP2C	Mx	002	1.5
3/	MP30	X	2 076	1.5
35	MD3A	7	-3 596	1.5
36	MD2A	<u> </u>	-0.050	1.5
27	MD2D		1.001	1.5
37	IVIP3D	~ ~ ~	1.27	1.5
30	MDDD		-2.199	1.5
39	MP3B	IVIX	001	1.5
40	MP3C	<u> </u>	1.539	1.5
41	MP3C	<u> </u>	-2.665	1.5
42	MP3C	MIX	.001	1.5
43	MP1B	X	2.53	.5
44	MP1B	Z	-4.382	.5
45	MP1B	Mx	.003	.5
46	MP1B	X	2.53	5.5
47	MP1B	Ζ	-4.382	5.5
48	MP1B	Mx	.003	5.5
49	MP1C	X	1.871	1.5
50	MP1C	Z	-3.241	1.5
51	MP1C	Mx	002	1.5
52	MP1C	Х	1.871	4.5
53	MP1C	Z	-3.241	4.5
54	MP1C	Mx	002	4.5
55	MP1A	X	3.424	.5
56	MP1A	7	-5.93	
57	MP1A	Mx	- 002	.5
VI				
RISA-3D Version 17.0.4 [R:\\\\\\\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 61				

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1A	X	3.424	5.5
59	MP1A	Z	-5.93	5.5
60	MP1A	Mx	002	5.5
61	MP3A	X	4.683	.5
62	MP3A	Z	-8.112	.5
63	MP3A	Mx	007	.5
64	MP3A	X	4.683	5.5
65	MP3A	Z	-8.112	5.5
66	MP3A	Mx	007	5.5
67	MP3B	X	3.384	.5
68	MP3B	Z	-5.861	.5
69	MP3B	Mx	.003	.5
70	MP3B	X	3.384	5.5
71	MP3B	Z	-5.861	5.5
72	MP3B	Mx	.003	5.5
73	MP3C	X	3.817	.5
74	MP3C	Z	-6.611	.5
75	MP3C	Mx	001	.5
76	MP3C	X	3.817	5.5
77	MP3C	Z	-6.611	5.5
78	MP3C	Mx	001	5.5
79	MP3A	X	4.683	.5
80	MP3A	Z	-8.112	.5
81	MP3A	Mx	.002	.5
82	MP3A	X	4.683	5.5
83	MP3A	Z	-8.112	5.5
84	MP3A	Mx	.002	5.5
85	MP3B	X	3.384	.5
86	MP3B	Z	-5.861	.5
87	MP3B	Mx	.003	.5
88	MP3B	X	3.384	5.5
89	MP3B	Z	-5.861	5.5
90	MP3B	Mx	.003	5.5
91	MP3C	X	3.817	.5
92	MP3C	Z	-6.611	.5
93	MP3C	Mx	006	.5
94	MP3C	X	3.817	5.5
95	MP3C	Z	-6.611	5.5
96	MP3C	Mx	006	5.5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	2.775	2
2	MP4A	Z	-1.602	2
3	MP4A	Mx	001	2
4	MP4A	Х	2.775	4
5	MP4A	Z	-1.602	4
6	MP4A	Mx	001	4
7	MP4B	Х	2.775	2
8	MP4B	Z	-1.602	2
9	MP4B	Mx	.001	2
10	MP4B	Х	2.775	4
11	MP4B	Z	-1.602	4
12	MP4B	Mx	.001	4
13	MP4C	Х	4.328	2
14	MP4C	Z	-2.499	2

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
15	MP4C	Mx	001	2
16	MP4C	Х	4.328	4
17	MP4C	Z	-2.499	4
18	MP4C	Mx	001	4
19	MP1A	Х	6.145	1
20	MP1A	Z	-3.548	1
21	MP1A	Mx	003	1
22	MP1B	X	6 145	1
23	MP1B	7	-3 548	1
24	MP1B	Mx	- 003	1
25	MP2A	Y	3.052	1.5
20	MD2A	7	1 762	1.5
20			-1.702	1.5
21	MDDD		.002	1.5
28	MP2B	<u> </u>	3.052	1.5
29	MP2B	<u> </u>	-1.762	1.5
30	MP2B	NX	002	1.5
31	MP2C	X	3.725	1.5
32	MP2C	Z	-2.151	1.5
33	MP2C	Mx	.001	1.5
34	MP3A	X	2.665	1.5
35	MP3A	Z	-1.539	1.5
36	MP3A	Mx	.001	1.5
37	MP3B	X	2.665	1.5
38	MP3B	Z	-1.539	1.5
39	MP3B	Mx	001	1.5
40	MP3C	Х	3.596	1.5
41	MP3C	Z	-2.076	1.5
42	MP3C	Mx	.001	1.5
43	MP1B	Х	5.258	.5
44	MP1B	Z	-3.036	.5
45	MP1B	Mx	.003	.5
46	MP1B	X	5.258	5.5
47	MP1B	7	-3.036	5.5
48	MP1B	Mx	003	5.5
40	MP1C	X	3 658	1.5
50	MP1C	7	_2 112	1.5
51	MP1C		-2.112	1.5
52	MP1C		001	1.5
52	MP1C	~ 7	2 112	4.5
55	MP1C		-2.112	4.5
54	MP1C		001	4.5
55	MP1A	λ	5.279	.5
50	MP1A	<u> </u>	-3.048	.5
5/	MP1A	MX	003	.5
58	MP1A	X	5.279	5.5
59	MP1A	Z	-3.048	5.5
60	MP1A	Mx	003	5.5
61	MP3A	Χ	6.611	.5
62	MP3A	Z	-3.817	.5
63	MP3A	Mx	006	.5
64	MP3A	X	6.611	5.5
65	MP3A	Z	-3.817	5.5
66	MP3A	Mx	006	5.5
67	MP3B	X	6.611	.5
68	MP3B	Z	-3.817	.5
69	MP3B	Mx	.001	.5
70	MP3B	X	6.611	5.5
71	MP3B	Z	-3.817	5.5
RISA-3D Version 17.0.4 [R:\\\\\\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 63				

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
72	MP3B	Mx	.001	5.5
73	MP3C	Х	8.112	.5
74	MP3C	Z	-4.683	.5
75	MP3C	Mx	.002	.5
76	MP3C	Х	8.112	5.5
77	MP3C	Z	-4.683	5.5
78	MP3C	Mx	.002	5.5
79	MP3A	Х	6.611	.5
80	MP3A	Z	-3.817	.5
81	MP3A	Mx	001	.5
82	MP3A	Х	6.611	5.5
83	MP3A	Z	-3.817	5.5
84	MP3A	Mx	001	5.5
85	MP3B	Х	6.611	.5
86	MP3B	Z	-3.817	.5
87	MP3B	Mx	.006	.5
88	MP3B	Х	6.611	5.5
89	MP3B	Z	-3.817	5.5
90	MP3B	Mx	.006	5.5
91	MP3C	Х	8.112	.5
92	MP3C	Z	-4.683	.5
93	MP3C	Mx	007	.5
94	MP3C	Х	8.112	5.5
95	MP3C	Z	-4.683	5.5
96	MP3C	Mx	007	5.5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	2.308	2
2	MP4A	Z	0	2
3	MP4A	Mx	001	2
4	MP4A	X	2.308	4
5	MP4A	Z	0	4
6	MP4A	Mx	001	4
7	MP4B	Х	4.997	2
8	MP4B	Z	0	2
9	MP4B	Mx	.001	2
10	MP4B	X	4.997	4
11	MP4B	Z	0	4
12	MP4B	Mx	.001	4
13	MP4C	Х	5.894	2
14	MP4C	Z	0	2
15	MP4C	Mx	0	2
16	MP4C	Х	5.894	4
17	MP4C	Z	0	4
18	MP4C	Mx	0	4
19	MP1A	Х	6.292	1
20	MP1A	Z	0	1
21	MP1A	Mx	.003	1
22	MP1B	X	8.702	1
23	MP1B	Z	0	1
24	MP1B	Mx	002	1
25	MP2A	Х	3.135	1.5
26	MP2A	Z	0	1.5
27	MP2A	Mx	.002	1.5
28	MP2B	Х	4.301	1.5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP2B	Z	0	1.5
30	MP2B	Mx	001	1.5
31	MP2C	X	4.69	1.5
32	MP2C	Z	0	1.5
33	MP2C	Mx	0	1.5
34	MP3A	Х	2.539	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	.001	1.5
37	MP3B	X	4,152	1.5
38	MP3B	Z	0	1.5
39	MP3B	Mx	- 001	1.5
40	MP3C	X	4 69	1.5
40	MP3C	7	4.00	1.5
12	MP3C	My	0	1.5
42	MP1B	X	8 093	1.5
43	MD1R	7	0.095	.5
44			002	.5
45			.002	.5
40		~ ~ ~	0.093	5.5
47	MP1B		0	5.5
48	MP1B	IVIX	.002	5.5
49	MP1C	<u>×</u>	4.464	1.5
50	MP1C	<u> </u>	0	1.5
51	MP1C	Mx	0	1.5
52	MP1C	<u> </u>	4.464	4.5
53	MP1C	Z	0	4.5
54	MP1C	Mx	0	4.5
55	MP1A	X	5.719	.5
56	MP1A	Z	0	.5
57	MP1A	Mx	003	.5
58	MP1A	X	5.719	5.5
59	MP1A	Z	0	5.5
60	MP1A	Mx	003	5.5
61	MP3A	Х	6.767	.5
62	MP3A	Z	0	.5
63	MP3A	Mx	003	.5
64	MP3A	X	6.767	5.5
65	MP3A	Z	0	5.5
66	MP3A	Mx	- 003	5.5
67	MP3B	X	9.367	5
68	MP3B	7	0	.5
69	MP3B	Mx	- 002	.0
70	MP3B	X	9 367	5.5
71	MP3B	7	0	5.5
72	MP3B	My	- 002	5.5
72	MP3C	NIA V	002	5.5
73	MP3C	~ 7	10.255	
74	MP3C		006	.5
75	MP3C		.000	.5
70	MP3C	λ 7	10.233	0.0
70			0	5.5
78		IVIX	.006	5.5
79	MP3A	× – – – – – – – – – – – – – – – – – – –	6./6/	.5
80	MP3A	<u> </u>	0	.5
81	MP3A	MX	003	.5
82	MP3A	X	6.767	5.5
83	MP3A	Z	0	5.5
84	MP3A	Mx	003	5.5
85	MP3B	X	9.367	.5
RISA	A-3D Version 17.0.4 [R:\\\	\\\Mount Fix\F	Rev 0\Risa\468782-VZW MT	LO H.r3d] Page 65

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3B	Z	0	.5
87	MP3B	Mx	.007	.5
88	MP3B	Х	9.367	5.5
89	MP3B	Z	0	5.5
90	MP3B	Mx	.007	5.5
91	MP3C	Х	10.233	.5
92	MP3C	Z	0	.5
93	MP3C	Mx	006	.5
94	MP3C	Х	10.233	5.5
95	MP3C	Z	0	5.5
96	MP3C	Mx	006	5.5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	2.775	2
2	MP4A	Z	1.602	2
3	MP4A	Mx	001	2
4	MP4A	X	2.775	4
5	MP4A	Z	1.602	4
6	MP4A	Mx	001	4
7	MP4B	X	5.104	2
8	MP4B	Z	2.947	2
9	MP4B	Mx	0	2
10	MP4B	X	5.104	4
11	MP4B	Z	2.947	4
12	MP4B	Mx	0	4
13	MP4C	X	4.328	2
14	MP4C	Z	2.499	2
15	MP4C	Mx	.001	2
16	MP4C	X	4.328	4
17	MP4C	Z	2.499	4
18	MP4C	Mx	.001	4
19	MP1A	X	6.145	1
20	MP1A	Z	3.548	1
21	MP1A	Mx	.003	1
22	MP1B	X	8.232	1
23	MP1B	Z	4.753	1
24	MP1B	Mx	0	1
25	MP2A	X	3.052	1.5
26	MP2A	Z	1.762	1.5
27	MP2A	Mx	.002	1.5
28	MP2B	X	4.062	1.5
29	MP2B	Z	2.345	1.5
30	MP2B	Mx	0	1.5
31	MP2C	X	3.725	1.5
32	MP2C	Z	2.151	1.5
33	MP2C	Mx	001	1.5
34	MP3A	X	2.665	1.5
35	MP3A	Z	1.539	1.5
36	MP3A	Mx	.001	1.5
37	MP3B	Х	4.062	1.5
38	MP3B	Z	2.345	1.5
39	MP3B	Mx	0	1.5
40	MP3C	Х	3.596	1.5
41	MP3C	Z	2.076	1.5
42	MP3C	Mx	001	1.5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP1B	X	7.885	.5
44	MP1B	Z	4.552	.5
45	MP1B	Mx	0	.5
46	MP1B	X	7.885	5.5
47	MP1B	Z	4.552	5.5
48	MP1B	Mx	0	5.5
49	MP1C	X	3.658	1.5
50	MP1C	Z	2.112	1.5
51	MP1C	Mx	.001	1.5
52	MP1C	X	3.658	4.5
53	MP1C	Z	2.112	4.5
54	MP1C	Mx	.001	4.5
55	MP1A	X	5.279	.5
56	MP1A	Z	3.048	.5
57	MP1A	Mx	003	.5
58	MP1A	X	5.279	5.5
59	MP1A	Z	3.048	5.5
60	MP1A	Mx	003	5.5
61	MP3A	X	6.611	.5
62	MP3A	Z	3.817	.5
63	MP3A	Mx	001	.5
64	MP3A	X	6.611	5.5
65	MP3A	Z	3.817	5.5
66	MP3A	Mx	001	5.5
67	MP3B	X	8.862	.5
68	MP3B	Z	5.117	.5
69	MP3B	Mx	006	.5
70	MP3B	X	8.862	5.5
71	MP3B	Z	5.117	5.5
72	MP3B	Mx	006	5.5
73	MP3C	X	8.112	.5
74	MP3C	Z	4.683	.5
75	MP3C	Mx	.007	.5
76	MP3C	X	8.112	5.5
77	MP3C	Z	4.683	5.5
78	MP3C	Mx	.007	5.5
79	MP3A	X	6.611	.5
80	MP3A	Z	3.817	.5
81	MP3A	Mx	006	.5
82	MP3A	X	6.611	5.5
83	MP3A	Z	3.817	5.5
84	MP3A	Mx	006	5.5
85	MP3B	X	8.862	.5
86	MP3B	Z	5.117	.5
87	MP3B	Mx	.006	.5
88	MP3B	X	8.862	5.5
89	MP3B	Ζ	5.117	5.5
90	MP3B	Mx	.006	5.5
91	MP3C	X	8.112	.5
92	MP3C		4.683	.5
93	MP3C	MX	002	.5
94	MP3C	X 7	8.112	5.5
95	MP3C		4.683	5.5
96	MP3C	MX	002	5.5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	2.499	2
2	MP4A	Z	4.328	2
3	MP4A	Mx	001	2
4	MP4A	X	2.499	4
5	MP4A	Z	4.328	4
6	MP4A	Mx	001	4
7	MP4B	Х	2.499	2
8	MP4B	Z	4.328	2
9	MP4B	Mx	001	2
10	MP4B	Х	2.499	4
11	MP4B	Z	4.328	4
12	MP4B	Mx	001	4
13	MP4C	X	1.602	2
14	MP4C	Z	2.775	2
15	MP4C	Mx	.001	2
16	MP4C	Х	1.602	4
17	MP4C	Z	2.775	4
18	MP4C	Mx	.001	4
19	MP1A	X	4.351	1
20	MP1A	Z	7.536	1
21	MP1A	Mx	.002	1
22	MP1B	Х	4.351	1
23	MP1B	Z	7.536	1
24	MP1B	Mx	.002	1
25	MP2A	X	2.151	1.5
26	MP2A	Z	3.725	1.5
27	MP2A	Mx	.001	1.5
28	MP2B	X	2.151	1.5
29	MP2B	Z	3.725	1.5
30	MP2B	Mx	.001	1.5
31	MP2C	X	1.762	1.5
32	MP2C	Z	3.052	1.5
33	MP2C	Mx	002	1.5
34	MP3A	X	2.076	1.5
35	MP3A	Z	3.596	1.5
36	MP3A	Mx	.001	1.5
37	MP3B	X	2.076	1.5
38	MP3B	Z	3.596	1.5
39	MP3B	Mx	.001	1.5
40	MP3C	X	1.539	1.5
41	MP3C	Z	2.665	1.5
42	MP3C	Mx	001	1.5
43	MP1B	X	4.047	.5
44	MP1B	Z	7.009	.5
45	MP1B	Mx	002	.5
46	MP1B	X	4.047	5.5
47	MP1B	Z	7.009	5.5
48	MP1B	Mx	002	5.5
49	MP1C	X	1.871	1.5
50	MP1C	Z	3.241	1.5
51	MP1C	Mx	.002	1.5
52	MP1C	X	1.871	4.5
53	MP1C	Z	3.241	4.5
54	MP1C	Mx	.002	4.5
55	MP1A	X	3.424	.5
56	MP1A	Z	5.93	.5
57	MP1A	Mx	002	.5
	1711 17 3	19125		.0

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1A	X	3.424	5.5
59	MP1A	Z	5.93	5.5
60	MP1A	Mx	002	5.5
61	MP3A	X	4.683	.5
62	MP3A	Z	8.112	.5
63	MP3A	Mx	.002	.5
64	MP3A	X	4.683	5.5
65	MP3A	Z	8.112	5.5
66	MP3A	Mx	.002	5.5
67	MP3B	X	4.683	.5
68	MP3B	Z	8.112	.5
69	MP3B	Mx	007	.5
70	MP3B	X	4.683	5.5
71	MP3B	Z	8.112	5.5
72	MP3B	Mx	007	5.5
73	MP3C	X	3.817	.5
74	MP3C	Z	6.611	.5
75	MP3C	Mx	.006	.5
76	MP3C	X	3.817	5.5
77	MP3C	Z	6.611	5.5
78	MP3C	Mx	.006	5.5
79	MP3A	X	4.683	.5
80	MP3A	Z	8.112	.5
81	MP3A	Mx	007	.5
82	MP3A	X	4.683	5.5
83	MP3A	Z	8.112	5.5
84	MP3A	Mx	007	5.5
85	MP3B	X	4.683	.5
86	MP3B	Z	8.112	.5
87	MP3B	Mx	.002	.5
88	MP3B	X	4.683	5.5
89	MP3B	Z	8.112	5.5
90	MP3B	Mx	.002	5.5
91	MP3C	X	3.817	.5
92	MP3C	Z	6.611	.5
93	MP3C	Mx	.001	.5
94	MP3C	X	3.817	5.5
95	MP3C	Z	6.611	5.5
96	MP3C	Mx	.001	5.5

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	0	2
2	MP4A	Z	5.894	2
3	MP4A	Mx	0	2
4	MP4A	Х	0	4
5	MP4A	Z	5.894	4
6	MP4A	Mx	0	4
7	MP4B	X	0	2
8	MP4B	Z	3.204	2
9	MP4B	Mx	001	2
10	MP4B	Х	0	4
11	MP4B	Z	3.204	4
12	MP4B	Mx	001	4
13	MP4C	Х	0	2
14	MP4C	Z	2.308	2

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
15	MP4C	Mx	.001	2
16	MP4C	X	0	4
17	MP4C	Z	2.308	4
18	MP4C	Mx	.001	4
19	MP1A	X	0	1
20	MP1A	Z	9.506	1
21	MP1A	Mx	0	1
22	MP1B	X	0	1
23	MP1B	Z	7.095	1
24	MP1B	Mx	.003	1
25	MP2A	X	0	1.5
26	MP2A	Z	4.69	1.5
27	MP2A	Mx	0	1.5
28	MP2B	X	0	1.5
29	MP2B	Z	3.524	1.5
30	MP2B	Mx	.002	1.5
31	MP2C	X	0	1.5
32	MP2C	Z	3.135	1.5
33	MP2C	Mx	002	1.5
34	MP3A	X	0	1.5
35	MP3A	Z	4.69	1.5
36	MP3A	Mx	0	1.5
37	MP3B	X	0	1.5
38	MP3B	Z	3.077	1.5
39	MP3B	Mx	.001	1.5
40	MP3C	X	0	1.5
41	MP3C	Z	2.539	1.5
42	MP3C	Mx	001	1.5
43	MP1B	X	0	.5
44	MP1B	Z	6.071	.5
45	MP1B	Mx	003	.5
46	MP1B	X	0	5.5
47	MP1B	Z	6.071	5.5
48	MP1B	Mx	003	5.5
49	MP1C	X	0	1.5
50	MP1C	Z	3.502	1.5
51	MP1C	Mx	.002	1.5
52	MP1C	X	0	4.5
53	MP1C	Z	3.502	4.5
54	MP1C	Mx	.002	4.5
55	MP1A	Χ	0	.5
56	MP1A	Z	7.223	.5
57	MP1A	Mx	0	.5
58	MP1A	X	0	5.5
59	MP1A	Z	7.223	5.5
60	MP1A	Mx	0	5.5
61	MP3A	X	0	.5
62	MP3A	Z	10.233	.5
63	MP3A	Mx	.006	.5
64	MP3A	X	0	5.5
65	MP3A	Z	10.233	5.5
66	MP3A	Mx	.006	5.5
67	MP3B	Χ	0	.5
68	MP3B	Z	7.634	.5
69	MP3B	Mx	006	.5
70	MP3B	X	0	5.5
	MP3B	Z	7.634	5.5

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 70

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
72	MP3B	Mx	006	5.5
73	MP3C	Х	0	.5
74	MP3C	Z	6.767	.5
75	MP3C	Mx	.003	.5
76	MP3C	Х	0	5.5
77	MP3C	Z	6.767	5.5
78	MP3C	Mx	.003	5.5
79	MP3A	Х	0	.5
80	MP3A	Z	10.233	.5
81	MP3A	Mx	006	.5
82	MP3A	Х	0	5.5
83	MP3A	Z	10.233	5.5
84	MP3A	Mx	006	5.5
85	MP3B	Х	0	.5
86	MP3B	Z	7.634	.5
87	MP3B	Mx	001	.5
88	MP3B	Х	0	5.5
89	MP3B	Z	7.634	5.5
90	MP3B	Mx	001	5.5
91	MP3C	Х	0	.5
92	MP3C	Z	6.767	.5
93	MP3C	Mx	.003	.5
94	MP3C	X	0	5.5
95	MP3C	Z	6.767	5.5
96	MP3C	Mx	.003	5.5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-2.499	2
2	MP4A	Z	4.328	2
3	MP4A	Mx	.001	2
4	MP4A	X	-2.499	4
5	MP4A	Z	4.328	4
6	MP4A	Mx	.001	4
7	MP4B	Х	-1.154	2
8	MP4B	Z	1.998	2
9	MP4B	Mx	001	2
10	MP4B	Х	-1.154	4
11	MP4B	Z	1.998	4
12	MP4B	Mx	001	4
13	MP4C	Х	-1.602	2
14	MP4C	Z	2.775	2
15	MP4C	Mx	.001	2
16	MP4C	Х	-1.602	4
17	MP4C	Z	2.775	4
18	MP4C	Mx	.001	4
19	MP1A	Х	-4.351	1
20	MP1A	Z	7.536	1
21	MP1A	Mx	002	1
22	MP1B	X	-3.146	1
23	MP1B	Z	5.449	1
24	MP1B	Mx	.003	1
25	MP2A	Х	-2.151	1.5
26	MP2A	Z	3.725	1.5
27	MP2A	Mx	001	1.5
28	MP2B	Х	-1.568	1.5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP2B	Z	2.715	1.5
30	MP2B	Mx	.002	1.5
31	MP2C	X	-1.762	1.5
32	MP2C	Z	3.052	1.5
33	MP2C	Mx	002	1.5
34	MP3A	X	-2.076	1.5
35	MP3A	7	3 596	1.5
36	MP3A	Mx	- 001	1.5
37	MP3B	X	-1 27	1.5
38	MP3B	7	2 100	1.5
30	MP3B		001	1.5
40	MP3C	NIA V	_1 539	1.5
40	MP3C	7	2,665	1.5
41	MP3C		2.005	1.5
42	MD1D		001	1.5
43		<u>^</u>	-2.00	.5
44			4.362	.5
45	MP1B	IVIX	003	.5
46	MP1B	X	-2.53	5.5
47	MP1B	2	4.382	5.5
48	MP1B	Mx	003	5.5
49	MP1C	X	-1.871	1.5
50	MP1C	Z	3.241	1.5
51	MP1C	Mx	.002	1.5
52	MP1C	X	-1.871	4.5
53	MP1C	Z	3.241	4.5
54	MP1C	Mx	.002	4.5
55	MP1A	X	-3.424	.5
56	MP1A	Z	5.93	.5
57	MP1A	Mx	.002	.5
58	MP1A	X	-3.424	5.5
59	MP1A	Z	5.93	5.5
60	MP1A	Mx	.002	5.5
61	MP3A	X	-4.683	.5
62	MP3A	Z	8.112	.5
63	MP3A	Mx	.007	.5
64	MP3A	X	-4,683	5.5
65	MP3A	Z	8.112	5.5
66	MP3A	Mx	007	5.5
67	MP3B	X	-3.384	5
68	MP3B	7	5.861	.5
69	MP3B	Mx	- 003	5
70	MP3B	X	-3 384	55
71	MP3R	7	5 861	5.5
72	MP3R	Mv	- 003	5.5
72	MP3C	Y	_3.817	5.5
74	MD2C	7	-5.017	.5
74			0.01	.5
70			.001	.0
70	MP30	λ 7	-3.017	0.0
70	IVIP30		0.01	5.5
78	MP30	IVIX	.001	5.5
79	WP3A	X	-4.683	.5
80	MP3A	2	8.112	.5
81	MP3A	MX	002	.5
82	MP3A	X	-4.683	5.5
83	MP3A	Z	8.112	5.5
84	MP3A	Mx	002	5.5
85	MP3B	<u>X</u>	-3.384	.5
RISA	A-3D Version 17.0.4 [R:\\\	\\\Mount Fix\F	Rev 0\Risa\468782-VZW MT	LO H.r3d] Page 72

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3B	Z	5.861	.5
87	MP3B	Mx	003	.5
88	MP3B	Х	-3.384	5.5
89	MP3B	Z	5.861	5.5
90	MP3B	Mx	003	5.5
91	MP3C	X	-3.817	.5
92	MP3C	Z	6.611	.5
93	MP3C	Mx	.006	.5
94	MP3C	Х	-3.817	5.5
95	MP3C	Z	6.611	5.5
96	MP3C	Mx	.006	5.5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-2.775	2
2	MP4A	Z	1.602	2
3	MP4A	Mx	.001	2
4	MP4A	X	-2.775	4
5	MP4A	Z	1.602	4
6	MP4A	Mx	.001	4
7	MP4B	X	-2.775	2
8	MP4B	Z	1.602	2
9	MP4B	Mx	001	2
10	MP4B	X	-2.775	4
11	MP4B	Z	1.602	4
12	MP4B	Mx	001	4
13	MP4C	X	-4.328	2
14	MP4C	Z	2.499	2
15	MP4C	Mx	.001	2
16	MP4C	X	-4.328	4
17	MP4C	Z	2.499	4
18	MP4C	Mx	.001	4
19	MP1A	X	-6.145	1
20	MP1A	Z	3.548	1
21	MP1A	Mx	003	1
22	MP1B	X	-6.145	1
23	MP1B	Z	3.548	1
24	MP1B	Mx	.003	1
25	MP2A	X	-3.052	1.5
26	MP2A	Z	1.762	1.5
27	MP2A	Mx	002	1.5
28	MP2B	X	-3.052	1.5
29	MP2B	Z	1.762	1.5
30	MP2B	Mx	.002	1.5
31	MP2C	X	-3.725	1.5
32	MP2C	Z	2.151	1.5
33	MP2C	Mx	001	1.5
34	MP3A	X	-2.665	1.5
35	MP3A	Ζ	1.539	1.5
36	MP3A	Mx	001	1.5
37	MP3B	Χ	-2.665	1.5
38	MP3B	Z	1.539	1.5
39	MP3B	Mx	.001	1.5
40	MP3C	Х	-3.596	1.5
41	MP3C	Z	2.076	1.5
42	MP3C	Mx	001	1.5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP1B	X	-5.258	.5
44	MP1B	Z	3.036	.5
45	MP1B	Mx	003	.5
46	MP1B	X	-5.258	5.5
47	MP1B	Z	3.036	5.5
48	MP1B	Mx	003	5.5
49	MP1C	X	-3.658	1.5
50	MP1C	Z	2.112	1.5
51	MP1C	Mx	.001	1.5
52	MP1C	X	-3.658	4.5
53	MP1C	Z	2.112	4.5
54	MP1C	Mx	.001	4.5
55	MP1A	X	-5.279	.5
56	MP1A	Z	3.048	.5
57	MP1A	Mx	.003	.5
58	MP1A	X	-5.279	5.5
59	MP1A	Z	3.048	5.5
60	MP1A	Mx	.003	5.5
61	MP3A	X	-6.611	.5
62	MP3A	Z	3.817	.5
63	MP3A	Mx	.006	.5
64	MP3A	X	-6.611	5.5
65	MP3A	Z	3.817	5.5
66	MP3A	Mx	.006	5.5
67	MP3B	X	-6.611	.5
68	MP3B	Z	3.817	.5
69	MP3B	Mx	001	.5
70	MP3B	X	-6.611	5.5
71	MP3B	Z	3.817	5.5
72	MP3B	Mx	001	5.5
73	MP3C	X	-8.112	.5
74	MP3C	Z	4.683	.5
75	MP3C	Mx	002	.5
76	MP3C	X	-8.112	5.5
77	MP3C	Z	4.683	5.5
78	MP3C	Mx	002	5.5
79	MP3A	X	-6.611	.5
80	MP3A	Z	3.817	.5
81	MP3A	Mx	.001	.5
82	MP3A	X	-6.611	5.5
83	MP3A	Z	3.817	5.5
84	MP3A	MX	.001	5.5
85	MP3B	X	-6.611	.5
86	MP3B		3.81/	.5
87	MP3B	MX	006	.5
88	MP3B	X	-6.611	5.5
89	MP3B	Ζ	3.81/	5.5
90	MP3B	MX	006	5.5
91	MP3C	X	-8.112	.5
92	MP3C		4.683	.5
93	MP3C	IVIX	.007	.5
94	MP3C	Χ 7	-8.112	5.5
95	MP3C	Δ	4.083	5.5
96	MP3C	IVIX	.007	5.5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-2.308	2
2	MP4A	Z	0	2
3	MP4A	Mx	.001	2
4	MP4A	X	-2.308	4
5	MP4A	Z	0	4
6	MP4A	Mx	.001	4
7	MP4B	Х	-4.997	2
8	MP4B	Z	0	2
9	MP4B	Mx	001	2
10	MP4B	Х	-4.997	4
11	MP4B	Z	0	4
12	MP4B	Mx	001	4
13	MP4C	X	-5.894	2
14	MP4C	Z	0	2
15	MP4C	Mx	0	2
16	MP4C	Х	-5.894	4
17	MP4C	Z	0	4
18	MP4C	Mx	0	4
19	MP1A	X	-6.292	1
20	MP1A	Z	0	1
21	MP1A	Mx	003	1
22	MP1B	Х	-8,702	1
23	MP1B	Z	0	1
24	MP1B	Mx	.002	1
25	MP2A	X	-3.135	1.5
26	MP2A	Z	0	1.5
27	MP2A	Mx	002	1.5
28	MP2B	X	-4.301	1.5
29	MP2B	Z	0	1.5
30	MP2B	Mx	.001	1.5
31	MP2C	X	-4.69	1.5
32	MP2C	Z	0	1.5
33	MP2C	Mx	0	1.5
34	MP3A	X	-2.539	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	001	1.5
37	MP3B	X	-4.152	1.5
38	MP3B	Z	0	1.5
39	MP3B	Mx	.001	1.5
40	MP3C	X	-4.69	1.5
41	MP3C	Z	0	1.5
42	MP3C	Mx	0	1.5
43	MP1B	Х	-8.093	.5
44	MP1B	Z	0	.5
45	MP1B	Mx	002	.5
46	MP1B	X	-8.093	5.5
47	MP1B	Z	0	5.5
48	MP1B	Mx	002	5.5
49	MP1C	X	-4.464	1.5
50	MP1C	Z	0	1.5
51	MP1C	Mx	0	1.5
52	MP1C	X	-4.464	4.5
53	MP1C	Z	0	4.5
54	MP1C	Mx	Ő	4.5
55	MP1A	X	-5.719	.5
56	MP1A	Z	0	.5
57	MP1A	Mx	.003	.5
	1711 17 A			.0

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 75

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1A	X	-5.719	5.5
59	MP1A	Z	0	5.5
60	MP1A	Mx	.003	5.5
61	MP3A	X	-6.767	.5
62	MP3A	Z	0	.5
63	MP3A	Mx	.003	.5
64	MP3A	X	-6.767	5.5
65	MP3A	Z	0	5.5
66	MP3A	Mx	.003	5.5
67	MP3B	X	-9.367	.5
68	MP3B	Z	0	.5
69	MP3B	Mx	.002	.5
70	MP3B	X	-9.367	5.5
71	MP3B	Z	0	5.5
72	MP3B	Mx	.002	5.5
73	MP3C	X	-10.233	.5
74	MP3C	Z	0	.5
75	MP3C	Mx	006	.5
76	MP3C	X	-10.233	5.5
77	MP3C	Z	0	5.5
78	MP3C	Mx	006	5.5
79	MP3A	X	-6.767	.5
80	MP3A	Z	0	.5
81	MP3A	Mx	.003	.5
82	MP3A	X	-6.767	5.5
83	MP3A	Z	0	5.5
84	MP3A	Mx	.003	5.5
85	MP3B	X	-9.367	.5
86	MP3B	Z	0	.5
87	MP3B	Mx	007	.5
88	MP3B	X	-9.367	5.5
89	MP3B	Z	0	5.5
90	MP3B	Mx	007	5.5
91	MP3C	X	-10.233	.5
92	MP3C	Z	0	.5
93	MP3C	Mx	.006	.5
94	MP3C	Х	-10.233	5.5
95	MP3C	Z	0	5.5
96	MP3C	Mx	.006	5.5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-2.775	2
2	MP4A	Z	-1.602	2
3	MP4A	Mx	.001	2
4	MP4A	Х	-2.775	4
5	MP4A	Z	-1.602	4
6	MP4A	Mx	.001	4
7	MP4B	Х	-5.104	2
8	MP4B	Z	-2.947	2
9	MP4B	Mx	0	2
10	MP4B	Х	-5.104	4
11	MP4B	Z	-2.947	4
12	MP4B	Mx	0	4
13	MP4C	Х	-4.328	2
14	MP4C	Z	-2.499	2

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
15	MP4C	Mx	001	2
16	MP4C	Х	-4.328	4
17	MP4C	Z	-2.499	4
18	MP4C	Mx	001	4
19	MP1A	Х	-6.145	1
20	MP1A	Z	-3.548	1
21	MP1A	Mx	003	1
22	MP1B	X	-8.232	1
23	MP1B	Z	-4.753	1
24	MP1B	Mx	0	1
25	MP2A	X	-3 052	1.5
26	MP2A	7	-1 762	1.5
27	MP2A	Mx	- 002	1.5
28	MP2B	X	-4 062	1.5
29	MP2B	7	-2.345	1.5
30	MP2B	Mx	0	1.5
31	MP2C	X	-3 725	1.5
32	MP2C	7	-2 151	1.5
33	MP2C	My	001	1.5
34	MP3A	Y	-2 665	1.5
35	MP3A	7	-2.005	1.5
36	MD2A		-1.559	1.5
27	MD2D		001	1.5
30	MD3D	~ 7	-4.002	1.5
30			-2.345	1.5
39	MD2C		2 506	1.5
40	MP3C	∧ 7	-3.390	1.5
41	MP3C		-2.076	1.5
42	MP3C	IVIX	.001	1.5
43	MP1B	λ 7	-7.885	.5
44	MP1B		-4.552	.5
45	MP1B	IVIX	0	.5
46	MP1B	X	-7.885	5.5
47	MP1B	2	-4.552	5.5
48	MP1B	MX	0	5.5
49	MP1C	X	-3.658	1.5
50	MP1C		-2.112	1.5
51	MP1C	MX	001	1.5
52	MP1C	X	-3.658	4.5
53	MP1C	Z	-2.112	4.5
54	MP1C	Mx	001	4.5
55	MP1A	X	-5.279	.5
56	MP1A	Z	-3.048	.5
57	MP1A	Mx	.003	.5
58	MP1A	X	-5.279	5.5
59	MP1A	Z	-3.048	5.5
60	MP1A	Mx	.003	5.5
61	MP3A	Х	-6.611	.5
62	MP3A	Z	-3.817	.5
63	MP3A	Mx	.001	.5
64	MP3A	Х	-6.611	5.5
65	MP3A	Z	-3.817	5.5
66	MP3A	Mx	.001	5.5
67	MP3B	X	-8.862	.5
68	MP3B	Z	-5.117	.5
69	MP3B	Mx	.006	.5
70	MP3B	Х	-8.862	5.5
71	MP3B	Z	-5.117	5.5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
72	MP3B	Mx	.006	5.5
73	MP3C	Х	-8.112	.5
74	MP3C	Z	-4.683	.5
75	MP3C	Mx	007	.5
76	MP3C	Х	-8.112	5.5
77	MP3C	Z	-4.683	5.5
78	MP3C	Mx	007	5.5
79	MP3A	Х	-6.611	.5
80	MP3A	Z	-3.817	.5
81	MP3A	Mx	.006	.5
82	MP3A	Х	-6.611	5.5
83	MP3A	Z	-3.817	5.5
84	MP3A	Mx	.006	5.5
85	MP3B	Х	-8.862	.5
86	MP3B	Z	-5.117	.5
87	MP3B	Mx	006	.5
88	MP3B	Х	-8.862	5.5
89	MP3B	Z	-5.117	5.5
90	MP3B	Mx	006	5.5
91	MP3C	Х	-8.112	.5
92	MP3C	Z	-4.683	.5
93	MP3C	Mx	.002	.5
94	MP3C	Х	-8.112	5.5
95	MP3C	Z	-4.683	5.5
96	MP3C	Mx	.002	5.5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-2.499	2
2	MP4A	Z	-4.328	2
3	MP4A	Mx	.001	2
4	MP4A	X	-2.499	4
5	MP4A	Z	-4.328	4
6	MP4A	Mx	.001	4
7	MP4B	Х	-2.499	2
8	MP4B	Z	-4.328	2
9	MP4B	Mx	.001	2
10	MP4B	Х	-2.499	4
11	MP4B	Z	-4.328	4
12	MP4B	Mx	.001	4
13	MP4C	Х	-1.602	2
14	MP4C	Z	-2.775	2
15	MP4C	Mx	001	2
16	MP4C	Х	-1.602	4
17	MP4C	Z	-2.775	4
18	MP4C	Mx	001	4
19	MP1A	Х	-4.351	1
20	MP1A	Z	-7.536	1
21	MP1A	Mx	002	1
22	MP1B	X	-4.351	1
23	MP1B	Z	-7.536	1
24	MP1B	Mx	002	1
25	MP2A	Х	-2.151	1.5
26	MP2A	Z	-3.725	1.5
27	MP2A	Mx	001	1.5
28	MP2B	Х	-2.151	1.5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP2B	Z	-3.725	1.5
30	MP2B	Mx	001	1.5
31	MP2C	Х	-1.762	1.5
32	MP2C	Z	-3.052	1.5
33	MP2C	Mx	.002	1.5
34	MP3A	X	-2.076	1.5
35	MP3A	Z	-3.596	1.5
36	MP3A	Mx	- 001	1.5
37	MP3B	X	-2 076	1.5
38	MP3B	7	-3 596	1.5
30	MP3B	 Mv	-0.01	1.5
40	MP3C		-1.530	1.5
40	MP3C	7	-1.559	1.5
41	MP3C		-2.005	1.5
42			.001	1.0 E
43		~ ~ ~	-4.047	.5
44			-7.009	.0
45		IVIX	.002	.5
40		Χ 7	-4.047	5.5
4/	MP1B	Ζ	-7.009	5.5
48	MP1B	IVIX	.002	5.5
49	MP1C	X	-1.8/1	1.5
50	MP1C	<u>∠</u>	-3.241	1.5
51	MP1C	Mx	002	1.5
52	MP1C	<u> </u>	-1.8/1	4.5
53	MP1C		-3.241	4.5
54	MP1C	Mx	002	4.5
55	MP1A	<u> </u>	-3.424	.5
56	MP1A	Z	-5.93	.5
57	MP1A	Mx	.002	.5
58	MP1A	<u> </u>	-3.424	5.5
59	MP1A	<u> </u>	-5.93	5.5
60	MP1A	Mx	.002	5.5
61	MP3A	<u> </u>	-4.683	.5
62	MP3A	Z	-8.112	.5
63	MP3A	MX	002	.5
64	MP3A	<u> </u>	-4.683	5.5
65	MP3A	<u> </u>	-8.112	5.5
66	MP3A	Mx	002	5.5
67	MP3B	<u> </u>	-4.683	.5
68	MP3B	Z	-8.112	.5
69	MP3B	Mx	.007	.5
70	MP3B	X	-4.683	5.5
71	MP3B	Z	-8.112	5.5
72	MP3B	Mx	.007	5.5
73	MP3C	X	-3.817	.5
74	MP3C	Z	-6.611	.5
75	MP3C	Mx	006	.5
76	MP3C	Х	-3.817	5.5
77	MP3C	Z	-6.611	5.5
78	MP3C	Mx	006	5.5
79	MP3A	Χ	-4.683	.5
80	MP3A	Z	-8.112	.5
81	MP3A	Mx	.007	.5
82	MP3A	Х	-4.683	5.5
83	MP3A	Z	-8.112	5.5
84	MP3A	Mx	.007	5.5
85	MP3B	X	-4.683	.5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3B	Z	-8.112	.5
87	MP3B	Mx	002	.5
88	MP3B	Х	-4.683	5.5
89	MP3B	Z	-8.112	5.5
90	MP3B	Mx	002	5.5
91	MP3C	X	-3.817	.5
92	MP3C	Z	-6.611	.5
93	MP3C	Mx	001	.5
94	MP3C	Х	-3.817	5.5
95	MP3C	Z	-6.611	5.5
96	MP3C	Mx	001	5.5

Member Point Loads (BLC 77 : Lm1)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 M1	Y	-500	%47

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Y	-500	%20

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Y	-250	%100

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Y	-250	%50

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Y	0	2
2	MP4A	My	0	2
3	MP4A	Mz	0	2
4	MP4A	Y	0	4
5	MP4A	My	0	4
6	MP4A	Mz	0	4
7	MP4B	Y	0	2
8	MP4B	My	0	2
9	MP4B	Mz	0	2
10	MP4B	Y	0	4
11	MP4B	My	0	4
12	MP4B	Mz	0	4
13	MP4C	Y	0	2
14	MP4C	My	0	2
15	MP4C	Mz	0	2
16	MP4C	Y	0	4
17	MP4C	My	0	4
18	MP4C	Mz	0	4
19	MP1A	Y	0	1
20	MP1A	My	0	1
21	MP1A	Mz	0	1
22	MP1B	Y	0	1
23	MP1B	My	0	1
24	MP1B	Mz	0	1

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP2A	Y	0	1.5
26	MP2A	My	0	1.5
27	MP2A	Mz	0	1.5
28	MP2B	Y	0	1.5
29	MP2B	My	0	1.5
30	MP2B	Mz	0	1.5
31	MP2C	Y	0	1.5
32	MP2C	Mv	0	1.5
33	MP2C	Mz	0	1.5
34	MP3A	Y	0	1.5
35	MP3A	Mv	0	1.5
36	MP3A	Mz	0	1.5
37	MP3B	Y	0	1.5
38	MP3B	Mv	0	1.5
39	MP3B	Mz	0	1.5
40	MP3C	Y	0	1.5
41	MP3C	Mv	0	1.5
42	MP3C	Mz	0	1.5
43	MP1B	Y	0	5
44	MP1B	My	0	
45	MP1B	Mz	0	.0
46	MP1B	Y	0	5.5
47	MP1B	Mv	0	5.5
48	MP1B	Mz	0	5.5
49	MP1C	Y	0	1.5
50	MP1C	My	0	1.5
51	MP1C	Mz	0	1.5
52	MP1C	Y	0	4.5
53	MP1C	My	0	4.5
54	MP1C	Mz	0	4.5
55	MP1A	V	0	
56	MP1A	My	0	.5
57	MP1A	Mz	0	.0
58	MP1A	Y	0	5.5
59	MP1A	My	0	5.5
60	MP1A	Mz	0	5.5
61	MP3A	Y	0	5
62	MP3A	My	0	.0
63	MP3A	Mz	0	.0
64	MP3A	Y	0	5.5
65	MP3A	Mv	0	5.5
66	MP3A	Mz	0	5.5
67	MP3B	Y	0	.5
68	MP3B	Mv	0	.5
69	MP3B	Mz	0	.5
70	MP3B	Y	0	5.5
71	MP3B	Mv	0	5.5
72	MP3B	Mz	0	5.5
73	MP3C	Y	0	5
74	MP3C	Mv	0	
75	MP3C	Mz	0	.5
76	MP3C	V	0	5.5
77	MP3C	Mv	0	5.5
78	MP3C	Mz	0	5.5
79	MP3A	V	0	5.5
80	MP3A	My	0	.5
81	MP3A	Mz	0	.5
	IVIE SA	11/12	U	.0

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
82	MP3A	Y	0	5.5
83	MP3A	My	0	5.5
84	MP3A	Mz	0	5.5
85	MP3B	Y	0	.5
86	MP3B	My	0	.5
87	MP3B	Mz	0	.5
88	MP3B	Y	0	5.5
89	MP3B	My	0	5.5
90	MP3B	Mz	0	5.5
91	MP3C	Y	0	.5
92	MP3C	My	0	.5
93	MP3C	Mz	0	.5
94	MP3C	Y	0	5.5
95	MP3C	My	0	5.5
96	MP3C	Mz	0	5.5

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Z	-1.306	2
2	MP4A	Mx	0	2
3	MP4A	Z	-1.306	4
4	MP4A	Mx	0	4
5	MP4B	Z	-1.306	2
6	MP4B	Mx	.000566	2
7	MP4B	Z	-1.306	4
8	MP4B	Mx	.000566	4
9	MP4C	Z	-1.306	2
10	MP4C	Mx	000653	2
11	MP4C	Z	-1.306	4
12	MP4C	Mx	000653	4
13	MP1A	Z	96	1
14	MP1A	Mx	0	1
15	MP1B	Z	96	1
16	MP1B	Mx	000416	1
17	MP2A	Z	-2.532	1.5
18	MP2A	Mx	0	1.5
19	MP2B	Z	-2.532	1.5
20	MP2B	Mx	001	1.5
21	MP2C	Z	-2.532	1.5
22	MP2C	Mx	.001	1.5
23	MP3A	Z	-2.109	1.5
24	MP3A	Mx	0	1.5
25	MP3B	Z	-2.109	1.5
26	MP3B	Mx	000913	1.5
27	MP3C	Z	-2.109	1.5
28	MP3C	Mx	.001	1.5
29	MP1B	Z	288	.5
30	MP1B	Mx	.000125	.5
31	MP1B	Z	288	5.5
32	MP1B	Mx	.000125	5.5
33	MP1C	Z	18	1.5
34	MP1C	Mx	-9e-5	1.5
35	MP1C	Z	18	4.5
36	MP1C	Mx	-9e-5	4.5
37	MP1A	Z	27	.5
38	MP1A	Mx	0	.5

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
39	MP1A	Z	27	5.5
40	MP1A	Mx	0	5.5
41	MP3A	Z	6	.5
42	MP3A	Mx	00035	.5
43	MP3A	Z	6	5.5
44	MP3A	Mx	00035	5.5
45	MP3B	Z	6	.5
46	MP3B	Mx	.000435	.5
47	MP3B	Z	6	5.5
48	MP3B	Mx	.000435	5.5
49	MP3C	Z	6	.5
50	MP3C	Mx	0003	.5
51	MP3C	Z	6	5.5
52	MP3C	Mx	0003	5.5
53	MP3A	Z	6	.5
54	MP3A	Mx	.00035	.5
55	MP3A	Z	6	5.5
56	MP3A	Mx	.00035	5.5
57	MP3B	Z	6	.5
58	MP3B	Mx	8.5e-5	.5
59	MP3B	Z	6	5.5
60	MP3B	Mx	8.5e-5	5.5
61	MP3C	Z	6	.5
62	MP3C	Mx	0003	.5
63	MP3C	Z	6	5.5
64	MP3C	Mx	0003	5.5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	1.306	2
2	MP4A	Mx	000653	2
3	MP4A	Х	1.306	4
4	MP4A	Mx	000653	4
5	MP4B	Х	1.306	2
6	MP4B	Mx	.000327	2
7	MP4B	Х	1.306	4
8	MP4B	Mx	.000327	4
9	MP4C	Х	1.306	2
10	MP4C	Mx	0	2
11	MP4C	Х	1.306	4
12	MP4C	Mx	0	4
13	MP1A	Х	.96	1
14	MP1A	Mx	.00048	1
15	MP1B	Х	.96	1
16	MP1B	Mx	00024	1
17	MP2A	Х	2.532	1.5
18	MP2A	Mx	.001	1.5
19	MP2B	Х	2.532	1.5
20	MP2B	Mx	000633	1.5
21	MP2C	Х	2.532	1.5
22	MP2C	Mx	0	1.5
23	MP3A	Х	2.109	1.5
24	MP3A	Mx	.001	1.5
25	MP3B	Х	2.109	1.5
26	MP3B	Mx	000527	1.5
27	MP3C	X	2.109	1.5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
28	MP3C	Mx	0	1.5
29	MP1B	Х	.288	.5
30	MP1B	Mx	7.2e-5	.5
31	MP1B	Х	.288	5.5
32	MP1B	Mx	7.2e-5	5.5
33	MP1C	X	.18	1.5
34	MP1C	Mx	0	1.5
35	MP1C	X	.18	4.5
36	MP1C	Mx	0	4.5
37	MP1A	X	.27	.5
38	MP1A	Mx	000135	.5
39	MP1A	X	.27	5.5
40	MP1A	Mx	000135	5.5
41	MP3A	Х	.6	.5
42	MP3A	Mx	0003	.5
43	MP3A	Х	.6	5.5
44	MP3A	Mx	0003	5.5
45	MP3B	Х	.6	.5
46	MP3B	Mx	000153	.5
47	MP3B	Х	.6	5.5
48	MP3B	Mx	000153	5.5
49	MP3C	Х	.6	.5
50	MP3C	Mx	.00035	.5
51	MP3C	X	.6	5.5
52	MP3C	Mx	.00035	5.5
53	MP3A	X	.6	.5
54	MP3A	Mx	0003	.5
55	MP3A	X	.6	5.5
56	MP3A	Mx	0003	5.5
57	MP3B	X	.6	.5
58	MP3B	Mx	.000453	.5
59	MP3B	X	.6	5.5
60	MP3B	Mx	.000453	5.5
61	MP3C	X	.6	.5
62	MP3C	Mx	00035	.5
63	MP3C	X	.6	5.5
64	MP3C	Mx	00035	5.5

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Y	-12.194	-12.194	0	%100
2	M2	Y	-12.194	-12.194	0	%100
3	M3	Y	-12.194	-12.194	0	%100
4	M4	Y	-12.194	-12.194	0	%100
5	M5	Y	-15.104	-15.104	0	%100
6	M8	Y	-16.559	-16.559	0	%100
7	M9	Y	-12.194	-12.194	0	%100
8	M10	Y	-12.194	-12.194	0	%100
9	M11	Y	-12.194	-12.194	0	%100
10	M12	Y	-12.194	-12.194	0	%100
11	M13	Y	-15.104	-15.104	0	%100
12	M16	Y	-16.559	-16.559	0	%100
13	M17	Y	-12.194	-12.194	0	%100
14	M18	Y	-12.194	-12.194	0	%100
15	M19	Y	-12.194	-12.194	0	%100

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
16	M20	Y	-12.194	-12.194	0	%100
17	M21	Y	-15.104	-15.104	0	%100
18	M24	Y	-16.559	-16.559	0	%100
19	MP1A	Y	-8.351	-8.351	0	%100
20	MP2A	Y	-8.351	-8.351	0	%100
21	MP3A	Y	-8.351	-8.351	0	%100
22	MP4A	Y	-8.351	-8.351	0	%100
23	MP1C	Y	-8.351	-8.351	0	%100
24	MP2C	Y	-8.351	-8.351	0	%100
25	MP3CA	Y	-8.351	-8.351	0	%100
26	MP4CA	Y	-8.351	-8.351	0	%100
27	MP1B	Y	-8.351	-8.351	0	%100
28	MP2B	Y	-8.351	-8.351	0	%100
29	MP3B	Y	-8.351	-8.351	0	%100
30	MP4B	Y	-8.351	-8.351	0	%100
31	MP3C	Y	-8.351	-8.351	0	%100
32	M61	Y	-9.38	-9.38	0	%100
33	M66	Y	-9.38	-9.38	0	%100
34	M71	Y	-9.38	-9.38	0	%100
35	M82	Y	-12.194	-12.194	0	%100
36	M83	Y	-12.194	-12.194	0	%100
37	M84	Y	-12.194	-12.194	0	%100
38	M86	Y	-17.353	-17.353	0	%100
39	M88	Y	-17.353	-17.353	0	%100
40	M90	Y	-17.353	-17.353	0	%100
41	MP4C	Y	-8.351	-8.351	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	-18.75	-18.75	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-11.832	-11.832	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	-18.75	-18.75	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	-11.832	-11.832	0	%100
9	M5	X	0	0	0	%100
10	M5	Z	0	0	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	-4.687	-4.687	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	-4.9e-5	-4.9e-5	0	%100
17	M11	X	0	0	0	%100
18	M11	Z	-4.687	-4.687	0	%100
19	M12	Χ	0	0	0	%100
20	M12	Z	-11.784	-11.784	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	-8.014	-8.014	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	-10.423	-10.423	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	-4.687	-4.687	0	%100
27	M18	X	0	0	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
28	M18	Z	-11.784	-11.784	0	%100
29	M19	Х	0	0	0	%100
30	M19	Z	-4.687	-4.687	0	%100
31	M20	Х	0	0	0	%100
32	M20	Z	-4.9e-5	-4.9e-5	0	%100
33	M21	X	0	0	0	%100
34	M21	Z	-8.014	-8.014	0	%100
35	M24	Х	0	0	0	%100
36	M24	Z	-10.423	-10.423	0	%100
37	MP1A	X	0	0	0	%100
38	MP1A	Z	-8.906	-8,906	0	%100
39	MP2A	X	0	0	0	%100
40	MP2A	Z	-8,906	-8,906	0	%100
41	MP3A	X	0	0	0	%100
42	MP3A	Z	-8.906	-8.906	Ő	%100
43	MP4A	Х	0	0	0	%100
44	MP4A	Z	-8.906	-8.906	0	%100
45	MP1C	X	0	0	0	%100
46	MP1C	Z	-8.906	-8,906	0	%100
47	MP2C	X	0	0	0	%100
48	MP2C	Z	-8.906	-8.906	0	%100
49	MP3CA	X	0	0	0	%100
50	MP3CA	Z	-8.906	-8.906	0	%100
51	MP4CA	Х	0	0	0	%100
52	MP4CA	Z	-8.906	-8.906	0	%100
53	MP1B	X	0	0	0	%100
54	MP1B	Z	-8.906	-8.906	0	%100
55	MP2B	Х	0	0	0	%100
56	MP2B	Z	-8.906	-8.906	0	%100
57	MP3B	Х	0	0	0	%100
58	MP3B	Z	-8.906	-8.906	0	%100
59	MP4B	Х	0	0	0	%100
60	MP4B	Z	-8.906	-8.906	0	%100
61	MP3C	Х	0	0	0	%100
62	MP3C	Z	-8.906	-8.906	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	-10.781	-10.781	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	-2.695	-2.695	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	-2.695	-2.695	0	%100
69	M82	Х	0	0	0	%100
70	M82	Z	-3.415	-3.415	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	-3.415	-3.415	0	%100
73	M84	X	0	0	0	%100
74	M84	Z	-13.66	-13.66	0	%100
75	M86	X	0	0	0	%100
76	M86	Z	-3.862	-3.862	0	%100
77	M88	Х	0	0	0	%100
78	M88	Z	-15.028	-15.028	0	%100
79	M90	Χ	0	0	0	%100
80	M90	Z	-15.028	-15.028	0	%100
81	MP4C	X	0	0	0	%100
82	MP4C	Z	-8.906	-8.906	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	7.031	7.031	0	%100
2	M1	Z	-12.178	-12.178	0	%100
3	<u>M2</u>	X	7.872	7.872	0	%100
4	M2	Z	-13.634	-13.634	0	%100
5	M3	X	7.031	7.031	0	%100
6	M3	Z	-12.178	-12.178	0	%100
7	M4	X	1.98	1.98	0	%100
8	M4	Z	-3.429	-3.429	0	%100
9	M5	X	1.336	1.336	0	%100
10	M5	Z	-2.313	-2.313	0	%100
11	M8	X	1.737	1.737	0	%100
12	M8	Z	-3.009	-3.009	0	%100
13	M9	X	7.031	7.031	0	%100
14	M9	Z	-12.178	-12.178	0	%100
15	M10	Х	1.98	1.98	0	%100
16	M10	Z	-3.429	-3.429	0	%100
17	M11	Х	7.031	7.031	0	%100
18	M11	Z	-12.178	-12.178	0	%100
19	M12	Х	7.872	7.872	0	%100
20	M12	Z	-13.634	-13.634	0	%100
21	M13	Х	1.336	1.336	0	%100
22	M13	Z	-2.313	-2.313	0	%100
23	M16	X	1.737	1.737	0	%100
24	M16	Z	-3.009	-3.009	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	0	0	0	%100
27	M18	x	1.956	1.956	0	%100
28	M18	7	-3 388	-3.388	0	%100
29	M19	x	0	0	0	%100
30	M19	7	0	0	Ő	%100
31	M20	x	1 956	1 956	0	%100
32	M20	Z	-3.388	-3.388	0	%100
33	M21	x	5 343	5 343	0	%100
34	M21	7	-9 254	-9 254	0	%100
35	M24	x	6 949	6.949	0	%100
36	M24	7	-12 035	-12 035	0	%100
37	MP1A	X	4 453	4 453	0	%100
38	MP1A	7	-7 713	-7 713	0	%100
39	MP2A	x	4 453	4 453	0	%100
40	MP2A	7	-7 713	-7 713	Ő	%100
41	MP3A	X	4,453	4,453	0	%100
42	MP3A	7	-7,713	-7,713	0	%100
43	MP4A	X	4,453	4,453	0	%100
44	MP4A	7	-7.713	-7.713	Ő	%100
45	MP1C	×	4 453	4 453	0	%100
46	MP1C	7	-7 713	-7 713	0	%100
47	MP2C	×	4 453	4 453	0	%100
18	MP2C	7	-7 713	-7 713	0	%100
40	MP3CA	×	4 453	4 453	0	%100
50	MP3CA	7	-7 713	-7 713	0	%100
51	MDACA	×	1.113	1 153	0	%100
52	MDACA	~ 7	-7 712	-7 712	0	%100
52			-1.115	-1.115	0	%100 %100
53		~ ~	4.403	4.403	0	% 100
04 EE			-1.113	-1.113	0	% 100 % 100
55	MD2D	~ ~ ~	4.403	4.400	0	% TUU % 400
50	MP2D	<u>∠</u>	-1.113	-1.113	0	%100
<u>)</u>	IVIP3B	X	4.453	4.453	U	<u>%</u> 100

RISA-3D Version 17.0.4 [R:\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 87

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	-7.713	-7.713	0	%100
59	MP4B	Х	4.453	4.453	0	%100
60	MP4B	Z	-7.713	-7.713	0	%100
61	MP3C	Х	4.453	4.453	0	%100
62	MP3C	Z	-7.713	-7.713	0	%100
63	M61	Х	4.043	4.043	0	%100
64	M61	Z	-7.002	-7.002	0	%100
65	M66	Х	4.043	4.043	0	%100
66	M66	Z	-7.002	-7.002	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	5.122	5.122	0	%100
70	M82	Z	-8.872	-8.872	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	5.122	5.122	0	%100
74	M84	Z	-8.872	-8.872	0	%100
75	M86	Х	3.792	3.792	0	%100
76	M86	Z	-6.568	-6.568	0	%100
77	M88	Х	3.792	3.792	0	%100
78	M88	Z	-6.568	-6.568	0	%100
79	M90	Х	9.375	9.375	0	%100
80	M90	Z	-16.238	-16.238	0	%100
81	MP4C	Х	4.453	4.453	0	%100
82	MP4C	Z	-7.713	-7.713	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	4.059	4.059	0	%100
2	M1	Z	-2.344	-2.344	0	%100
3	M2	X	10.205	10.205	0	%100
4	M2	Z	-5.892	-5.892	0	%100
5	M3	X	4.059	4.059	0	%100
6	M3	Z	-2.344	-2.344	0	%100
7	M4	Х	4.2e-5	4.2e-5	0	%100
8	M4	Z	-2.5e-5	-2.5e-5	0	%100
9	M5	Х	6.94	6.94	0	%100
10	M5	Z	-4.007	-4.007	0	%100
11	M8	Х	9.027	9.027	0	%100
12	M8	Z	-5.211	-5.211	0	%100
13	M9	X	16.238	16.238	0	%100
14	M9	Z	-9.375	-9.375	0	%100
15	M10	X	10.246	10.246	0	%100
16	M10	Z	-5.916	-5.916	0	%100
17	M11	Х	16.238	16.238	0	%100
18	M11	Z	-9.375	-9.375	0	%100
19	M12	Х	10.246	10.246	0	%100
20	M12	Z	-5.916	-5.916	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	0	0	0	%100
23	M16	Х	0	0	0	%100
24	M16	Z	0	0	0	%100
25	M17	Х	4.059	4.059	0	%100
26	M17	Z	-2.344	-2.344	0	%100
27	M18	X	4.2e-5	4.2e-5	0	%100
28	M18	Z	-2.5e-5	-2.5e-5	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	X	4.059	4.059	0	%100
30	M19	Z	-2.344	-2.344	0	%100
31	M20	Х	10.205	10.205	0	%100
32	M20	Z	-5.892	-5.892	0	%100
33	M21	Х	6.94	6.94	0	%100
34	M21	Z	-4.007	-4.007	0	%100
35	M24	Х	9.027	9.027	0	%100
36	M24	Z	-5.211	-5.211	0	%100
37	MP1A	Х	7.713	7.713	0	%100
38	MP1A	Z	-4.453	-4.453	0	%100
39	MP2A	Х	7.713	7.713	0	%100
40	MP2A	Z	-4.453	-4.453	0	%100
41	MP3A	X	7.713	7.713	0	%100
42	MP3A	Z	-4.453	-4.453	0	%100
43	MP4A	X	7.713	7,713	0	%100
44	MP4A	Z	-4.453	-4.453	0	%100
45	MP1C	Х	7.713	7.713	0	%100
46	MP1C	Z	-4.453	-4.453	0	%100
47	MP2C	X	7.713	7,713	0	%100
48	MP2C	Z	-4.453	-4.453	0	%100
49	MP3CA	x	7,713	7,713	0	%100
50	MP3CA	Z	-4.453	-4,453	0	%100
51	MP4CA	x	7.713	7,713	0	%100
52	MP4CA	Z	-4.453	-4.453	0	%100
53	MP1B	x	7,713	7,713	0	%100
54	MP1B	7	-4 453	-4 453	0	%100
55	MP2B	X	7 713	7 713	0	%100
56	MP2B	7	-4 453	-4 453	0	%100
57	MP3B	x	7 713	7 713	0	%100
58	MP3B	7	-4 453	-4 453	0	%100
59	MP4B	x	7 713	7 713	0	%100
60	MP4B	Z	-4.453	-4,453	0	%100
61	MP3C	x	7 713	7 713	0	%100
62	MP3C	7	-4 453	-4 453	0	%100
63	M61	x	2 334	2 334	0	%100
64	M61	7	-1.348	-1 348	0	%100
65	M66	x	9 337	9 337	0	%100
66	M66	7	-5.39	-5.39	0	%100
67	M71	x	2 334	2 334	0	%100
68	M71	7	-1.348	-1.348	0	%100
69	M82	X	11.83	11.83	0	%100
70	M82	7	-6.83	-6.83	0 0	%100
71	M83	x	2,957	2,957	0	%100
72	M83	7	-1.707	-1.707	Ő	%100
73	M84	X	2 957	2 957	0	%100
74	M84	7	-1 707	-1 707	Ő	%100
75	M86	x	13 014	13 014	0	%100
76	M86	7	-7 514	-7 514	0	%100
77	M88	X	3.345	3.345	0	%100
78	M88	7	-1 931	-1 931	0 0	%100
79	M90	X	13 014	13 014	0	%100
80	M90	7	-7 514	-7 514	0	%100
81	MP4C	X	7 713	7 713	0	%100
82	MP4C	7	-4 453	-4 453	õ	%100
V2		<u> </u>	7.700	-1100	v	70100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

<u>Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)</u>

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	<u> </u>	0	0	0	%100
2	<u>M1</u>		0	0	0	%100
3	<u>M2</u>	<u> </u>	3.912	3.912	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	3.912	3.912	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	10.685	10.685	0	%100
10	M5	Z	0	0	0	%100
11	M8	Х	13.897	13.897	0	%100
12	M8	Z	0	0	0	%100
13	M9	Х	14.062	14.062	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	15,743	15,743	0	%100
16	M10	7	0	0	0	%100
17	M11	x	14 062	14 062	0	%100
18	M11	7	0	0	0	%100
19	M12	X	3.96	3 96	0	%100
20	M12	7	0.00	0.00	0	%100
20	M12	X	2 671	2 671	0	%100
22	M13	7	2.071	2.071	0	%100
22	M16	<u> </u>	2 474	3 474	0	%100
23	M16	7	0	0	0	%100
24	N417	<u> </u>	14.062	14.062	0	%100 %100
20		~ ~ 7	14.002	14.002	0	%100
20	N110	<u> </u>	0	0	0	%100
27	M18	× 7	3.96	3.90	0	%100
28	M18	<u> </u>	0	0	0	%100
29	M19	X	14.062	14.062	0	%100
30	M19	<u> </u>	0	0	0	%100
31	M20	X	15.743	15.743	0	%100
32	M20	<u> </u>	0	0	0	%100
33	M21	X	2.671	2.6/1	0	%100
34	M21	Ζ	0	0	0	%100
35	M24	<u> </u>	3.474	3.474	0	%100
36	M24	Z	0	0	0	%100
37	MP1A	X	8.906	8.906	0	%100
38	MP1A	Z	0	0	0	%100
39	MP2A	X	8.906	8.906	0	%100
40	MP2A	Z	0	0	0	%100
41	MP3A	X	8.906	8.906	0	%100
42	MP3A	Z	0	0	0	%100
43	MP4A	X	8.906	8.906	0	%100
44	MP4A	Z	0	0	0	%100
45	MP1C	X	8.906	8.906	0	%100
46	MP1C	Z	0	0	0	%100
47	MP2C	X	8.906	8.906	0	%100
48	MP2C	Z	0	0	0	%100
49	MP3CA	X	8.906	8.906	0	%100
50	MP3CA	Z	0	0	0	%100
51	MP4CA	Х	8.906	8.906	0	%100
52	MP4CA	Z	0	0	0	%100
53	MP1B	Х	8.906	8.906	0	%100
54	MP1B	Z	0	0	0	%100
55	MP2B	X	8.906	8.906	0	%100
56	MP2B	Z	0	0	0	%100
57	MP3B	X	8.906	8.906	0	%100
					-	

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	0	0	0	%100
59	MP4B	Х	8.906	8.906	0	%100
60	MP4B	Z	0	0	0	%100
61	MP3C	Х	8.906	8.906	0	%100
62	MP3C	Z	0	0	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	0	0	0	%100
65	M66	Х	8.086	8.086	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	8.086	8.086	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	10.245	10.245	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	10.245	10.245	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	0	0	0	%100
74	M84	Z	0	0	0	%100
75	M86	Х	18.75	18.75	0	%100
76	M86	Z	0	0	0	%100
77	M88	Х	7.584	7.584	0	%100
78	M88	Z	0	0	0	%100
79	M90	Х	7.584	7.584	0	%100
80	M90	Z	0	0	0	%100
81	MP4C	Х	8.906	8.906	0	%100
82	MP4C	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	4.059	4.059	0	%100
2	M1	Z	2.344	2.344	0	%100
3	M2	Х	4.2e-5	4.2e-5	0	%100
4	M2	Z	2.5e-5	2.5e-5	0	%100
5	M3	Х	4.059	4.059	0	%100
6	M3	Z	2.344	2.344	0	%100
7	M4	Х	10.205	10.205	0	%100
8	M4	Z	5.892	5.892	0	%100
9	M5	Х	6.94	6.94	0	%100
10	M5	Z	4.007	4.007	0	%100
11	M8	Х	9.027	9.027	0	%100
12	M8	Z	5.211	5.211	0	%100
13	M9	Х	4.059	4.059	0	%100
14	M9	Z	2.344	2.344	0	%100
15	M10	Х	10.205	10.205	0	%100
16	M10	Z	5.892	5.892	0	%100
17	M11	Х	4.059	4.059	0	%100
18	M11	Z	2.344	2.344	0	%100
19	M12	Х	4.2e-5	4.2e-5	0	%100
20	M12	Z	2.5e-5	2.5e-5	0	%100
21	M13	Х	6.94	6.94	0	%100
22	M13	Z	4.007	4.007	0	%100
23	M16	Х	9.027	9.027	0	%100
24	M16	Z	5.211	5.211	0	%100
25	M17	Х	16.238	16.238	0	%100
26	M17	Z	9.375	9.375	0	%100
27	M18	Х	10.246	10.246	0	%100
28	M18	Z	5.916	5.916	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	Х	16.238	16.238	0	%100
30	M19	Z	9.375	9.375	0	%100
31	M20	Х	10.246	10.246	0	%100
32	M20	Z	5.916	5.916	0	%100
33	M21	Х	0	0	0	%100
34	M21	Z	0	0	0	%100
35	M24	Х	0	0	0	%100
36	M24	Z	0	0	0	%100
37	MP1A	Х	7.713	7,713	0	%100
38	MP1A	Z	4,453	4,453	0	%100
39	MP2A	X	7.713	7.713	0	%100
40	MP2A	Z	4,453	4,453	0	%100
41	MP3A	X	7,713	7,713	0	%100
42	MP3A	Z	4,453	4,453	0	%100
43	MP4A	x	7.713	7.713	0	%100
44	MP4A	Z	4.453	4.453	0	%100
45	MP1C	X	7.713	7.713	0	%100
46	MP1C	Z	4.453	4.453	0	%100
47	MP2C	X	7.713	7.713	0	%100
48	MP2C	Z	4,453	4,453	0	%100
49	MP3CA	x	7,713	7,713	0	%100
50	MP3CA	Z	4,453	4,453	0	%100
51	MP4CA	x	7.713	7.713	0	%100
52	MP4CA	Z	4.453	4.453	0	%100
53	MP1B	X	7.713	7.713	0	%100
54	MP1B	Z	4.453	4.453	0	%100
55	MP2B	X	7.713	7.713	0	%100
56	MP2B	Z	4.453	4.453	0	%100
57	MP3B	X	7.713	7.713	0	%100
58	MP3B	Z	4.453	4.453	0	%100
59	MP4B	X	7.713	7.713	0	%100
60	MP4B	Z	4.453	4.453	0	%100
61	MP3C	Х	7.713	7.713	0	%100
62	MP3C	Z	4.453	4,453	0	%100
63	M61	Х	2.334	2.334	0	%100
64	M61	Z	1.348	1,348	0	%100
65	M66	Х	2.334	2.334	0	%100
66	M66	Z	1.348	1.348	0	%100
67	M71	Х	9.337	9.337	0	%100
68	M71	Z	5.39	5.39	0	%100
69	M82	X	2.957	2.957	0	%100
70	M82	Z	1.707	1.707	0	%100
71	M83	X	11.83	11.83	0	%100
72	M83	Z	6.83	6.83	0	%100
73	M84	X	2.957	2.957	0	%100
74	M84	Z	1.707	1.707	0	%100
75	M86	Х	13.014	13.014	0	%100
76	M86	Z	7.514	7.514	0	%100
77	M88	Х	13.014	13.014	0	%100
78	M88	Z	7.514	7.514	0	%100
79	M90	Х	3.345	3.345	0	%100
80	M90	Z	1.931	1.931	0	%100
81	MP4C	X	7.713	7.713	0	%100
82	MP4C	Z	4.453	4.453	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	7.031	7.031	0	%100
2	M1	Z	12.178	12.178	0	%100
3	M2	X	1.98	1.98	0	%100
4	M2	Z	3.429	3.429	0	%100
5	M3	Х	7.031	7.031	0	%100
6	M3	Z	12.178	12.178	0	%100
7	M4	Х	7.872	7.872	0	%100
8	M4	Z	13.634	13.634	0	%100
9	M5	x	1.336	1 336	0	%100
10	M5	7	2 313	2 313	0	%100
11	M8	X	1 737	1 737	0	%100
12	M8	7	3,009	3,009	0	%100
13	MQ	X	0.000	0.000	0	%100
14	MQ	7	0	0	0	%100
15	M10	X	1 956	1 956	0	%100
16	M10	7	3 388	3 388	0	%100
17	N11	<u> </u>	0.000	0.300	0	0/ 100
10		~ ~ 7	0	0	0	% TOU 0/ 100
10			1.056	1.056	0	%100
19		λ 7	1.950	1.900	0	%100
20	M12	<u> </u>	3.388	3.388	0	%100
21	M13	X	5.343	5.343	0	%100
22	M13	<u> </u>	9.254	9.254	0	%100
23	M16	X	6.949	6.949	0	%100
24	M16		12.035	12.035	0	%100
25	M17	X	7.031	7.031	0	%100
26	M17	Z	12.178	12.178	0	%100
27	M18	X	7.872	7.872	0	%100
28	M18	Z	13.634	13.634	0	%100
29	M19	X	7.031	7.031	0	%100
30	M19	Z	12.178	12.178	0	%100
31	M20	X	1.98	1.98	0	%100
32	M20	Z	3.429	3.429	0	%100
33	M21	X	1.336	1.336	0	%100
34	M21	Z	2.313	2.313	0	%100
35	M24	X	1.737	1.737	0	%100
36	M24	Z	3.009	3.009	0	%100
37	MP1A	X	4.453	4.453	0	%100
38	MP1A	Z	7.713	7.713	0	%100
39	MP2A	X	4.453	4.453	0	%100
40	MP2A	Z	7.713	7.713	0	%100
41	MP3A	X	4.453	4.453	0	%100
42	MP3A	Z	7.713	7.713	0	%100
43	MP4A	X	4.453	4.453	0	%100
44	MP4A	Z	7.713	7.713	0	%100
45	MP1C	X	4.453	4.453	0	%100
46	MP1C	Z	7.713	7.713	0	%100
47	MP2C	Х	4.453	4.453	0	%100
48	MP2C	Z	7.713	7.713	0	%100
49	MP3CA	X	4.453	4.453	0	%100
50	MP3CA	Z	7.713	7.713	0	%100
51	MP4CA	Х	4.453	4.453	0	%100
52	MP4CA	Z	7,713	7,713	0	%100
53	MP1B	x	4,453	4,453	0	%100
54	MP1R	7	7 713	7 713	Ő	%100
55	MP2B	X	4 453	4 453	0	%100
56	MP2R	7	7 713	7 713	0	%100
57	MP3R	X	4 453	4 4 5 3	0	%100
JI		^	7.400	7.700	0	70100

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 93

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	7.713	7.713	0	%100
59	MP4B	Х	4.453	4.453	0	%100
60	MP4B	Z	7.713	7.713	0	%100
61	MP3C	Х	4.453	4.453	0	%100
62	MP3C	Z	7.713	7.713	0	%100
63	M61	Х	4.043	4.043	0	%100
64	M61	Z	7.002	7.002	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	4.043	4.043	0	%100
68	M71	Z	7.002	7.002	0	%100
69	M82	Х	0	0	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	5.122	5.122	0	%100
72	M83	Z	8.872	8.872	0	%100
73	M84	Х	5.122	5.122	0	%100
74	M84	Z	8.872	8.872	0	%100
75	M86	Х	3.792	3.792	0	%100
76	M86	Z	6.568	6.568	0	%100
77	M88	Х	9.375	9.375	0	%100
78	M88	Z	16.238	16.238	0	%100
79	M90	Х	3.792	3.792	0	%100
80	M90	Z	6.568	6.568	0	%100
81	MP4C	Х	4.453	4.453	0	%100
82	MP4C	7	7,713	7,713	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	18.75	18.75	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	11.832	11.832	0	%100
5	M3	Х	0	0	0	%100
6	M3	Z	18.75	18.75	0	%100
7	M4	Х	0	0	0	%100
8	M4	Z	11.832	11.832	0	%100
9	M5	Х	0	0	0	%100
10	M5	Z	0	0	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	0	0	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	4.687	4.687	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	4.9e-5	4.9e-5	0	%100
17	M11	Х	0	0	0	%100
18	M11	Z	4.687	4.687	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	11.784	11.784	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	8.014	8.014	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	10.423	10.423	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	4.687	4.687	0	%100
27	M18	X	0	0	0	%100
28	M18	Z	11.784	11.784	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	X	0	0	0	%100
30	M19	Z	4.687	4.687	0	%100
31	M20	X	0	0	0	%100
32	M20	Z	4.9e-5	4.9e-5	0	%100
33	M21	Х	0	0	0	%100
34	M21	Z	8.014	8.014	0	%100
35	M24	Х	0	0	0	%100
36	M24	Z	10.423	10.423	0	%100
37	MP1A	Х	0	0	0	%100
38	MP1A	Z	8.906	8.906	0	%100
39	MP2A	Х	0	0	0	%100
40	MP2A	Z	8.906	8.906	0	%100
41	MP3A	Х	0	0	0	%100
42	MP3A	Z	8.906	8.906	0	%100
43	MP4A	Х	0	0	0	%100
44	MP4A	Z	8.906	8.906	0	%100
45	MP1C	Х	0	0	0	%100
46	MP1C	Z	8.906	8.906	0	%100
47	MP2C	Х	0	0	0	%100
48	MP2C	Z	8,906	8.906	0	%100
49	MP3CA	X	0	0	0	%100
50	MP3CA	Z	8,906	8.906	0	%100
51	MP4CA	X	0	0	0	%100
52	MP4CA	Z	8.906	8.906	0	%100
53	MP1B	X	0	0	0	%100
54	MP1B	Z	8,906	8,906	0	%100
55	MP2B	x	0	0	0	%100
56	MP2B	Z	8,906	8,906	0	%100
57	MP3B	X	0	0	0	%100
58	MP3B	Z	8,906	8,906	0	%100
59	MP4B	X	0	0	0	%100
60	MP4B	Z	8.906	8.906	0	%100
61	MP3C	X	0	0	0	%100
62	MP3C	Z	8,906	8.906	0	%100
63	M61	X	0	0	0	%100
64	M61	Z	10.781	10,781	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	2.695	2.695	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	2.695	2.695	0	%100
69	M82	X	0	0	0	%100
70	M82	Z	3.415	3.415	0	%100
71	M83	X	0	0	0	%100
72	M83	Z	3,415	3.415	0	%100
73	M84	X	0	0	0	%100
74	M84	Z	13.66	13.66	0	%100
75	M86	x	0	0	0	%100
76	M86	Z	3.862	3.862	0	%100
77	M88	x	0	0	0	%100
78	M88	Z	15.028	15.028	0	%100
79	M90	X	0	0	0	%100
80	M90	Z	15.028	15.028	0	%100
81	MP4C	X	0	0	0	%100
82	MP4C	Z	8.906	8.906	0	%100
02		2	0.000	0.000	V	70100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	-7.031	-7.031	0	%100
2	M1	Z	12.178	12.178	0	%100
3	<u>M2</u>	X	-7.872	-7.872	0	%100
4	M2	Z	13.634	13.634	0	%100
5	M3	X	-7.031	-7.031	0	%100
6	M3	Z	12.178	12.178	0	%100
7	M4	X	-1.98	-1.98	0	%100
8	M4	Z	3.429	3.429	0	%100
9	M5	Χ	-1.336	-1.336	0	%100
10	M5	Z	2.313	2.313	0	%100
11	M8	Х	-1.737	-1.737	0	%100
12	M8	Z	3.009	3.009	0	%100
13	M9	X	-7.031	-7.031	0	%100
14	M9	Z	12.178	12.178	0	%100
15	M10	Х	-1.98	-1.98	0	%100
16	M10	Z	3.429	3.429	0	%100
17	M11	Х	-7.031	-7.031	0	%100
18	M11	Z	12.178	12.178	0	%100
19	M12	Х	-7.872	-7.872	0	%100
20	M12	Z	13.634	13.634	0	%100
21	M13	Х	-1.336	-1.336	0	%100
22	M13	Z	2.313	2.313	0	%100
23	M16	Х	-1.737	-1.737	0	%100
24	M16	Z	3.009	3.009	0	%100
25	M17	Х	0	0	0	%100
26	M17	Z	0	0	0	%100
27	M18	Х	-1.956	-1.956	0	%100
28	M18	Z	3.388	3.388	0	%100
29	M19	Х	0	0	0	%100
30	M19	Z	0	0	0	%100
31	M20	X	-1.956	-1.956	0	%100
32	M20	Z	3.388	3.388	0	%100
33	M21	X	-5.343	-5.343	0	%100
34	M21	Z	9.254	9.254	0	%100
35	M24	X	-6.949	-6.949	0	%100
36	M24	Z	12.035	12.035	0	%100
37	MP1A	Х	-4.453	-4.453	0	%100
38	MP1A	Z	7,713	7.713	0	%100
39	MP2A	Х	-4.453	-4.453	0	%100
40	MP2A	Z	7.713	7.713	0	%100
41	MP3A	Х	-4.453	-4.453	0	%100
42	MP3A	Z	7.713	7.713	0	%100
43	MP4A	Х	-4.453	-4.453	0	%100
44	MP4A	Z	7.713	7.713	0	%100
45	MP1C	Х	-4.453	-4.453	0	%100
46	MP1C	Z	7.713	7.713	0	%100
47	MP2C	Х	-4.453	-4.453	0	%100
48	MP2C	Z	7.713	7.713	0	%100
49	MP3CA	X	-4.453	-4.453	0	%100
50	MP3CA	Z	7.713	7.713	Ő	%100
51	MP4CA	X	-4.453	-4.453	0	%100
52	MP4CA	Z	7,713	7,713	0	%100
53	MP1B	X	-4,453	-4,453	0	%100
54	MP1B	Z	7,713	7.713	0	%100
55	MP2B	x	-4,453	-4,453	0	%100
56	MP2B	Z	7,713	7,713	0	%100
57	MP3B	x	-4,453	-4,453	0	%100
					~	/0100

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 96

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	7.713	7.713	0	%100
59	MP4B	Х	-4.453	-4.453	0	%100
60	MP4B	Z	7.713	7.713	0	%100
61	MP3C	Х	-4.453	-4.453	0	%100
62	MP3C	Z	7.713	7.713	0	%100
63	M61	Х	-4.043	-4.043	0	%100
64	M61	Z	7.002	7.002	0	%100
65	M66	Х	-4.043	-4.043	0	%100
66	M66	Z	7.002	7.002	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	-5.122	-5.122	0	%100
70	M82	Z	8.872	8.872	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	-5.122	-5.122	0	%100
74	M84	Z	8.872	8.872	0	%100
75	M86	Х	-3.792	-3.792	0	%100
76	M86	Z	6.568	6.568	0	%100
77	M88	Х	-3.792	-3.792	0	%100
78	M88	Z	6.568	6.568	0	%100
79	M90	Х	-9.375	-9.375	0	%100
80	M90	Z	16.238	16.238	0	%100
81	MP4C	X	-4.453	-4.453	0	%100
82	MP4C	Z	7,713	7.713	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-4.059	-4.059	0	%100
2	M1	Z	2.344	2.344	0	%100
3	M2	X	-10.205	-10.205	0	%100
4	M2	Z	5.892	5.892	0	%100
5	M3	X	-4.059	-4.059	0	%100
6	M3	Z	2.344	2.344	0	%100
7	M4	Х	-4.2e-5	-4.2e-5	0	%100
8	M4	Z	2.5e-5	2.5e-5	0	%100
9	M5	X	-6.94	-6.94	0	%100
10	M5	Z	4.007	4.007	0	%100
11	M8	Х	-9.027	-9.027	0	%100
12	M8	Z	5.211	5.211	0	%100
13	M9	X	-16.238	-16.238	0	%100
14	M9	Z	9.375	9.375	0	%100
15	M10	X	-10.246	-10.246	0	%100
16	M10	Z	5.916	5.916	0	%100
17	M11	Х	-16.238	-16.238	0	%100
18	M11	Z	9.375	9.375	0	%100
19	M12	Х	-10.246	-10.246	0	%100
20	M12	Z	5.916	5.916	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	0	0	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	0	0	0	%100
25	M17	X	-4.059	-4.059	0	%100
26	M17	Z	2.344	2.344	0	%100
27	M18	Х	-4.2e-5	-4.2e-5	0	%100
28	M18	Z	2.5e-5	2.5e-5	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	Х	-4.059	-4.059	0	%100
30	M19	Z	2.344	2.344	0	%100
31	M20	Х	-10.205	-10.205	0	%100
32	M20	Z	5.892	5.892	0	%100
33	M21	Х	-6.94	-6.94	0	%100
34	M21	Z	4.007	4.007	0	%100
35	M24	Х	-9.027	-9.027	0	%100
36	M24	Z	5.211	5.211	0	%100
37	MP1A	Х	-7.713	-7.713	0	%100
38	MP1A	Z	4.453	4.453	0	%100
39	MP2A	Х	-7.713	-7.713	0	%100
40	MP2A	Z	4.453	4.453	0	%100
41	MP3A	Х	-7.713	-7.713	0	%100
42	MP3A	Z	4.453	4.453	0	%100
43	MP4A	Х	-7.713	-7.713	0	%100
44	MP4A	Z	4.453	4.453	0	%100
45	MP1C	X	-7.713	-7.713	0	%100
46	MP1C	Z	4.453	4.453	0	%100
47	MP2C	X	-7.713	-7.713	0	%100
48	MP2C	Z	4.453	4.453	0	%100
49	MP3CA	Χ	-7.713	-7.713	0	%100
50	MP3CA	Z	4.453	4.453	0	%100
51	MP4CA	X	-7.713	-7.713	0	%100
52	MP4CA	Z	4.453	4.453	0	%100
53	MP1B	X	-7.713	-7.713	0	%100
54	MP1B	Z	4.453	4.453	0	%100
55	MP2B	X	-7.713	-7.713	0	%100
56	MP2B	Z	4.453	4.453	0	%100
57	MP3B	X	-7.713	-7.713	0	%100
58	MP3B	Z	4.453	4.453	0	%100
59	MP4B	<u>X</u>	-7.713	-7.713	0	%100
60	MP4B	Z	4.453	4.453	0	%100
61	MP3C	X	-7./13	-7.713	0	%100
62	MP3C	<u> </u>	4.453	4.453	0	%100
63	M61	X	-2.334	-2.334	0	%100
64	M61	<u> </u>	1.348	1.348	0	<u>%100</u>
65	M66	X	-9.337	-9.337	0	%100
66	NI66	Z	5.39	5.39	0	%100
6/	IVI/1	X	-2.334	-2.334	0	%100
60	IVI/1	Z	1.348	1.348	0	%100
09		λ 7	-11.83	-11.83	0	%100
70		<u> </u>	0.83	0.03	0	%100
72	IVIOJ MOD	7	-2.907	-2.907	0	% 100 % 100
72	IVIOJ MOA		2.057	2.057	0	% 100 % 100
74	IVI04	7	-2.907	-2.907	0	% 100 % 100
74	IVIO4		12 014	12 014	0	% 100 % 100
75		7	-13.014	-13.014	0	% 100 % 100
70		<u>ک</u>	1.014	7.014	0	% 100
79		~ 7	-5.545	-3.343	0	% 100 % 100
70	MOO		-13 014	-13 014	0	%100
80	MOO	~ 7	7 514	7 514	0	%100
81	MP4C	Z Y	-7 712	-7 713	0	%100
82	MD4C	7	-1.115	1.115	0	%100
02	IVIE 40	2	4.400	4.400	U	/0100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	<u> </u>	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	-3.912	-3.912	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	0	0	0	%100
7	M4	Х	-3.912	-3.912	0	%100
8	M4	Z	0	0	0	%100
9	M5	x	-10 685	-10 685	0	%100
10	M5	7	0	0	0	%100
11	M8	X	_13.807	_13.807	0	%100
12	MQ	7	0	0	0	%100
12	MO	<u> </u>	14.062	14.062	0	%100
14	N	7	-14.002	-14.002	0	9/ 100
14	N110		15 742	15 742	0	%100
10	N110	~ ~ ~	-10.743	-15.743	0	%100
16	MIU	<u> </u>	0	0	0	%100
17	M11	X	-14.062	-14.062	0	%100
18	M11		0	0	0	%100
19	M12	<u> </u>	-3.96	-3.96	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	-2.671	-2.671	0	%100
22	M13	Z	0	0	0	%100
23	M16	X	-3.474	-3.474	0	%100
24	M16	Z	0	0	0	%100
25	M17	X	-14.062	-14.062	0	%100
26	M17	Z	0	0	0	%100
27	M18	Х	-3.96	-3.96	0	%100
28	M18	Z	0	0	0	%100
29	M19	X	-14.062	-14.062	0	%100
30	M19	7	0	0	0	%100
31	M20	x	-15 743	-15 743	0	%100
32	M20	7	0	0	0	%100
33	M21	X	-2 671	-2 671	0	%100
34	M21	7	-2.071	-2.071	0	%100
25		<u> </u>	2 474	2 474	0	9/ 100
30	10124	~ 7	-3.474	-3.474	0	%100
30		<u> </u>	0	0	0	%100
37		× 7	-8.906	-8.906	0	%100
38	MP1A	<u> </u>	0	0	0	%100
39	MP2A	X	-8.906	-8.906	0	%100
40	MP2A	<u> </u>	0	0	0	%100
41	MP3A	<u> </u>	-8.906	-8.906	0	%100
42	MP3A	Z	0	0	0	%100
43	MP4A	X	-8.906	-8.906	0	%100
44	MP4A	Z	0	0	0	%100
45	MP1C	X	-8.906	-8.906	0	%100
46	MP1C	Z	0	0	0	%100
47	MP2C	X	-8.906	-8.906	0	%100
48	MP2C	Z	0	0	0	%100
49	MP3CA	X	-8.906	-8.906	0	%100
50	MP3CA	Z	0	0	0	%100
51	MP4CA	X	-8.906	-8.906	0	%100
52	MP4CA	Z	0	0	0	%100
53	MP1B	x	-8,906	-8,906	0	%100
54	MP1B	7	0	0	Ő	%100
55	MP2R	x	-8 906	-8 906	0	%100
56	MP2B	7	0.000	0.000	0	%100
57	MD2B	×	2008	2008	0	%100
51		∧	-0.900	-0.900	V	/0 I UU

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	0	0	0	%100
59	MP4B	Х	-8.906	-8.906	0	%100
60	MP4B	Z	0	0	0	%100
61	MP3C	Х	-8.906	-8.906	0	%100
62	MP3C	Z	0	0	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	0	0	0	%100
65	M66	Х	-8.086	-8.086	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	-8.086	-8.086	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	-10.245	-10.245	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	-10.245	-10.245	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	0	0	0	%100
74	M84	Z	0	0	0	%100
75	M86	Х	-18.75	-18.75	0	%100
76	M86	Z	0	0	0	%100
77	M88	Х	-7.584	-7.584	0	%100
78	M88	Z	0	0	0	%100
79	M90	Х	-7.584	-7.584	0	%100
80	M90	Z	0	0	0	%100
81	MP4C	Х	-8.906	-8.906	0	%100
82	MP4C	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-4.059	-4.059	0	%100
2	M1	Z	-2.344	-2.344	0	%100
3	M2	X	-4.2e-5	-4.2e-5	0	%100
4	M2	Z	-2.5e-5	-2.5e-5	0	%100
5	M3	Х	-4.059	-4.059	0	%100
6	M3	Z	-2.344	-2.344	0	%100
7	M4	Х	-10.205	-10.205	0	%100
8	M4	Z	-5.892	-5.892	0	%100
9	M5	Х	-6.94	-6.94	0	%100
10	M5	Z	-4.007	-4.007	0	%100
11	M8	Х	-9.027	-9.027	0	%100
12	M8	Z	-5.211	-5.211	0	%100
13	M9	X	-4.059	-4.059	0	%100
14	M9	Z	-2.344	-2.344	0	%100
15	M10	Х	-10.205	-10.205	0	%100
16	M10	Z	-5.892	-5.892	0	%100
17	M11	Х	-4.059	-4.059	0	%100
18	M11	Z	-2.344	-2.344	0	%100
19	M12	Х	-4.2e-5	-4.2e-5	0	%100
20	M12	Z	-2.5e-5	-2.5e-5	0	%100
21	M13	X	-6.94	-6.94	0	%100
22	M13	Z	-4.007	-4.007	0	%100
23	M16	X	-9.027	-9.027	0	%100
24	M16	Z	-5.211	-5.211	0	%100
25	M17	X	-16.238	-16.238	0	%100
26	M17	Z	-9.375	-9.375	0	%100
27	M18	X	-10.246	-10.246	0	%100
28	M18	Z	-5.916	-5.916	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

29 M19 X -:6:236 -:6:236 0 %:100 30 M19 Z -9:375 -9:375 0 %:100 31 M20 X -:10:246 -:10:246 0 %:100 33 M21 X 0 0 0 %:100 33 M21 X 0 0 0 %:100 34 M21 Z 0 0 0 %:100 35 M24 X 0 0 0 %:100 36 M24 Z 0 0 0 %:100 36 M24 Z -4:453 -4:453 0 %:100 41 M23A Z -4:453 -4:453 0 %:100 42 M23A Z -4:453 -4:453 0 %:100 43 M44A Z -4:453 -4:453 0 %:100 44 M2A		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
30 M19 Z -9.375 0 %100 31 M20 Z -5916 -0 %100 33 M21 Z 0 0 0 %100 34 M21 Z 0 0 0 %100 34 M21 Z 0 0 0 %100 35 M24 Z 0 0 0 %100 36 M24 Z 0 0 0 %100 38 MP1A X -7713 -7713 0 %100 38 MP2A X -7713 -7713 0 %100 40 MP2A Z 4453 4453 0 %100 44 MP3A Z 4453 -4713 0 %100 45 MP4A Z 4453 -4713 0 %100 44 MP3A Z 4453 4453 0	29	M19	X	-16.238	-16.238	0	%100
31 M20 X -10.246 -10.246 0 $\%$ 100 33 M21 X 0 0 0 $\%$ 100 33 M21 X 0 0 0 $\%$ 100 34 M21 Z 0 0 0 $\%$ 100 35 M24 X 0 0 0 $\%$ 100 36 M24 Z 0 0 0 $\%$ 100 36 MP1A X -7.713 -7.713 0 $\%$ 100 36 MP2A X -7.713 -7.713 0 $\%$ 100 40 MP2A Z -4.453 -4.453 0 $\%$ 100 41 MP3A Z -4.453 -4.453 0 $\%$ 100 42 MP3A Z -4.453 -4.453 0 $\%$ 100 44 MP4A Z -4.453 -4.453 0 $\%$ 100 45 MP1C	30	M19	Z	-9.375	-9.375	0	%100
32 M20 Z -5.916 -5.916 0 9.4100 33 M21 Z 0 0 0 9.4100 34 M21 Z 0 0 0 9.4100 35 M24 X 0 0 0 9.4100 36 M24 Z 0 0 0 9.4100 37 MP1A X -7.713 -7.713 0 %.100 38 MP2A X -7.713 -7.713 0 %.100 39 MP2A X -7.713 -7.713 0 %.100 41 MP3A X -7.713 -7.713 0 %.100 43 MP4A Z -4.453 -4.453 0 %.100 44 MP4A Z -4.453 -4.453 0 %.100 45 MP1C Z -7.713 -7.713 0 %.100 46 MP1	31	M20	Х	-10.246	-10.246	0	%100
33 M21 X 0 0 0 94100 35 M24 X 0 0 0 94100 36 M24 Z 0 0 0 94100 37 MP1A X -7.713 -7.713 0 94100 38 MP1A Z -4.453 -4.453 0 %100 39 MP2A X -7.713 -7.713 0 %100 40 MP2A Z -4.453 -4.453 0 %100 41 MP3A Z -4.453 -4.453 0 %100 42 MP3A Z -4.453 -4.453 0 %100 44 MP4A Z -4.453 -4.453 0 %100 45 MP1C Z -7.713 -7.713 0 %100 46 MP2C Z -4.453 -4.453 0 %100 47 MP2	32	M20	Z	-5.916	-5.916	0	%100
34 M21 Z 0 0 0 9,4100 35 M24 Z 0 0 0 9,4100 36 M24 Z 0 0 0 9,4100 37 MP1A X -7,713 -7,713 0 9,4100 39 MP2A X -7,713 -7,713 0 9,4100 39 MP2A X -7,713 -7,713 0 9,4100 40 MP2A Z -4,453 -4,453 0 9,100 41 MP3A X -7,713 -7,713 0 9,100 43 MP4A X -7,713 -7,713 0 9,100 44 MP4A Z -4,453 -4,453 0 9,100 46 MP1C Z -4,453 -4,453 0 9,100 47 MP2C Z -4,453 -4,453 0 9,100 50 <td>33</td> <td>M21</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	33	M21	Х	0	0	0	%100
36 M24 X 0 0 0 0 %100 37 MP1A X -7.713 -7.713 0 %100 38 MP1A Z -4453 -4453 0 %100 38 MP2A X -7.713 -7.713 0 %100 40 MP2A X -7.713 -7.713 0 %100 40 MP3A X -7.713 -7.713 0 %100 41 MP3A X -7.713 -7.713 0 %100 42 MP3A Z -4.453 -4.453 0 %100 43 MP4A Z -4.453 -4.453 0 %100 44 MP4A Z -4.453 -4.453 0 %100 45 MP1C Z -4.453 -4.453 0 %100 50 MP3CA Z -7.713 -7.713 0 %100	34	M21	Z	0	0	0	%100
	35	M24	Х	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	M24	Z	0	0	0	%100
38 MP1A Z 4453 -4453 0 %100 39 MP2A Z -4453 -7.713 0 %100 40 MP2A Z -4453 -7.713 0 %100 41 MP3A X -7.713 -7.713 0 %100 42 MP3A Z -4453 -4453 0 %100 43 MP4A X -7.713 -7.713 0 %100 44 MP4A Z -4453 -4453 0 %100 45 MP1C X -7.713 -7.713 0 %100 45 MP1C Z -4453 -4453 0 %100 46 MP2C Z -4453 -4453 0 %100 50 MP3CA Z -7.713 -7.713 0 %100 51 MP4CA Z -4453 -4453 0 %100 53 <	37	MP1A	Х	-7.713	-7.713	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	MP1A	Z	-4.453	-4.453	0	%100
	39	MP2A	Х	-7.713	-7.713	0	%100
	40	MP2A	Z	-4.453	-4.453	0	%100
42 MP3A Z 4453 -4453 0 %100 43 MP4A X -7.713 -7.713 0 %100 44 MP4A Z -4.453 -4.453 0 %100 45 MP1C X -7.713 -7.713 0 %100 45 MP1C Z -4.453 -4.453 0 %100 46 MP1C Z -4.453 -4.453 0 %100 47 MP2C X -7.713 -7.713 0 %100 48 MP3CA X -7.713 -7.713 0 %100 50 MP3CA X -7.713 -7.713 0 %100 51 MP4CA Z -4.453 -4.453 0 %100 52 MP4B Z -4.453 -4.453 0 %100 54 MP1B Z -4.453 -4.453 0 %100	41	MP3A	X	-7.713	-7.713	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	MP3A	Z	-4.453	-4.453	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	MP4A	X	-7.713	-7.713	0	%100
45 MP1C X -7.713 -7.713 0 %100 46 MP1C Z -4.453 -4.453 0 %100 47 MP2C X -7.713 -7.713 0 %100 48 MP2C Z -4.453 -4.453 0 %100 49 MP3CA X -7.713 -7.713 0 %100 50 MP3CA Z -4.453 -4.453 0 %100 51 MP4CA Z -4.453 -4.453 0 %100 52 MP4CA Z -4.453 -4.453 0 %100 54 MP1B Z -7.713 -7.713 0 %100 56 MP2B Z -7.713 -7.713 0 %100 57 MP3B X -7.713 -7.713 0 %100 59 MP4B X -7.713 -7.713 0 %100	44	MP4A	Z	-4.453	-4.453	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	MP1C	Х	-7.713	-7.713	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	MP1C	Z	-4.453	-4.453	0	%100
48 MP2C Z 4.453 4.453 0 $\%100$ 49 MP3CA X -7.713 -7.713 0 $\%100$ 50 MP3CA Z -4.453 -4.453 0 $\%100$ 51 MP4CA X -7.713 -7.713 0 $\%100$ 52 MP4CA Z -4.453 -4.453 0 $\%100$ 53 MP1B X -7.713 -7.713 0 $\%100$ 54 MP1B Z -4.453 -4.453 0 $\%100$ 56 MP2B X -7.713 -7.713 0 $\%100$ 56 MP2B Z -4.453 -4.453 0 $\%100$ 58 MP3B Z -4.453 -4.453 0 $\%100$ 61 MP3C X -7.713 -7.713 0 $\%100$ 62 MP3C X -7.713 -7.713	47	MP2C	X	-7.713	-7.713	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	MP2C	Z	-4.453	-4.453	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	MP3CA	X	-7.713	-7.713	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	MP3CA	Z	-4.453	-4.453	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	MP4CA	x	-7.713	-7.713	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	MP4CA	Z	-4.453	-4.453	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	MP1B	X	-7.713	-7.713	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	MP1B	Z	-4.453	-4.453	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	MP2B	X	-7.713	-7.713	0	%100
57MP3BX-7.713-7.7130%10058MP3BZ-4.453-4.4530%10059MP4BX-7.713-7.7130%10060MP4BZ-4.453-4.4530%10061MP3CX-7.713-7.7130%10062MP3CZ-4.453-4.4530%10063M61X-2.334-2.3340%10064M61Z-1.348-1.3480%10065M66X-2.334-2.3340%10066M66Z-1.348-1.3480%10067M71X-9.337-9.3370%10068M71Z-5.39-5.390%10069M82X-2.9570%10070M82Z-1.707-1.7070%10071M83X-11.830%10072M83Z-6.83-6.830%10073M84X-2.9570%10074M84Z-7.514-7.5140%10075M86X-13.014-13.0140%10076M86Z-7.514-7.5140%10079M90X-3.345-3.3450%10081MP4CX-7.713-7.7130%	56	MP2B	Z	-4.453	-4.453	0	%100
58MP3BZ 4.453 -4.453 0 $%100$ 59 MP4BX -7.713 -7.713 0 $%100$ 60 MP4BZ -4.453 -4.453 0 $%100$ 61 MP3CX -7.713 -7.713 0 $%100$ 62 MP3CZ -4.453 -4.453 0 $%100$ 62 MP3CZ -4.453 -4.453 0 $%100$ 63 M61X -2.334 -2.334 0 $%100$ 64 M61Z -1.348 -1.348 0 $%100$ 65 M66X -2.334 -2.334 0 $%100$ 66 M66Z -1.348 -1.348 0 $%100$ 67 M71X -9.337 -9.337 0 $%100$ 68 M71Z -5.39 -5.39 0 $%100$ 69 M82X -2.957 -2.957 0 $%100$ 70 M82Z -1.707 -1.707 0 $%100$ 71 M83X -11.83 -6.83 -6.83 0 $%100$ 74 M84Z -7.514 -7.514 0 $%100$ 76 M86X -13.014 -13.014 0 $%100$ 78 M88Z -7.514 -7.514 0 $%100$ 79 M90X -3.345 -3.345 0 $%100$ 80 M90Z -1.931	57	MP3B	X	-7.713	-7.713	0	%100
59MP4BX-7.713-7.7130%10060MP4BZ-4.453-4.4530%10061MP3CX-7.713-7.7130%10062MP3CZ-4.453-4.4530%10063M61X-2.334-2.3340%10064M61Z-1.348-1.3480%10065M66X-2.334-2.3340%10066M66Z-1.348-1.3480%10067M71X-9.337-9.3370%10068M71Z-5.39-5.390%10069M82X-2.957-2.9570%10070M82Z-1.707-1.7070%10071M83X-11.83-11.830%10073M84X-2.957-2.9570%10074M84Z-1.707-1.7070%10075M86X-13.014-13.0140%10076M86Z-7.514-7.5140%10077M88X-13.014-13.0140%10078M88Z-7.514-7.5140%10079M90X-3.345-3.3450%10081MP4CX-7.713-7.7130%10082MP4CZ </td <td>58</td> <td>MP3B</td> <td>Z</td> <td>-4.453</td> <td>-4.453</td> <td>0</td> <td>%100</td>	58	MP3B	Z	-4.453	-4.453	0	%100
60 MP4B Z -4.453 -4.453 0 %100 61 MP3C X -7.713 -7.713 0 %100 62 MP3C Z -4.453 -4.453 0 %100 63 M61 X -2.334 -2.334 0 %100 64 M61 Z -1.348 -1.348 0 %100 65 M66 X -2.334 -2.334 0 %100 65 M66 X -2.334 -2.334 0 %100 66 M66 Z -1.348 -1.348 0 %100 67 M71 X -9.337 -9.337 0 %100 68 M71 Z -5.39 -5.39 0 %100 70 M82 Z -1.707 -1.707 0 %100 71 M83 Z -6.83 -6.83 0 %100 74	59	MP4B	X	-7.713	-7.713	0	%100
61MP3CX-7.713-7.7130 $\%100$ 62MP3CZ-4.453-4.4530 $\%100$ 63M61X-2.334-2.3340 $\%100$ 64M61Z-1.348-1.3480 $\%100$ 65M66X-2.334-2.3340 $\%100$ 66M66Z-1.348-1.3480 $\%100$ 67M71X-9.337-9.3370 $\%100$ 68M71Z-5.39-5.390 $\%100$ 69M82X-2.957-2.9570 $\%100$ 70M82Z-1.707-1.7070 $\%100$ 71M83X-11.83-11.830 $\%100$ 72M83Z-6.83-6.830 $\%100$ 73M84X-2.957-2.9570 $\%100$ 74M86X-13.014-13.0140 $\%100$ 75M86X-13.014-13.0140 $\%100$ 76M86Z-7.514-7.5140 $\%100$ 77M88X-13.014-13.0140 $\%100$ 78M88Z-7.514-7.5140 $\%100$ 79M90X-3.345-3.3450 $\%100$ 80M90Z-1.931-1.9310 $\%100$ 81MP4CZ-4.453-4.4530 $\%100$	60	MP4B	Z	-4.453	-4.453	0	%100
62MP3CZ-4.453-4.4530 $\%100$ 63M61X-2.334-2.3340 $\%100$ 64M61Z-1.348-1.3480 $\%100$ 65M66X-2.334-2.3340 $\%100$ 66M66Z-1.348-1.3480 $\%100$ 67M71X-9.337-9.3370 $\%100$ 68M71Z-5.39-5.390 $\%100$ 69M82X-2.957-2.9570 $\%100$ 70M82Z-1.707-1.7070 $\%100$ 71M83X-11.83-11.830 $\%100$ 72M83Z-6.83-6.830 $\%100$ 73M84X-2.957-2.9570 $\%100$ 74M84Z-1.707-1.7070 $\%100$ 75M86X-13.014-13.0140 $\%100$ 76M86Z-7.514-7.5140 $\%100$ 78M88Z-7.514-7.5140 $\%100$ 79M90X-3.345-3.3450 $\%100$ 80M90Z-1.931-1.9310 $\%100$ 81MP4CZ-4.453-4.4530 $\%100$	61	MP3C	X	-7.713	-7.713	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	MP3C	Z	-4.453	-4.453	0	%100
64 M61 Z -1.348 -1.348 0 %100 65 M66 X -2.334 -2.334 0 %100 66 M66 Z -1.348 -1.348 0 %100 66 M66 Z -1.348 -1.348 0 %100 67 M71 X -9.337 -9.337 0 %100 68 M71 Z -5.39 -5.39 0 %100 69 M82 X -2.957 -2.957 0 %100 70 M82 Z -1.707 -1.707 0 %100 71 M83 X -11.83 -11.83 0 %100 72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -7.514 -7.514 0 %100 76	63	M61	X	-2.334	-2.334	0	%100
65 M66 X -2.334 -2.334 0 %100 66 M66 Z -1.348 -1.348 0 %100 67 M71 X -9.337 -9.337 0 %100 68 M71 Z -5.39 -5.39 0 %100 69 M82 X -2.957 -2.957 0 %100 70 M82 Z -1.707 -1.707 0 %100 71 M83 X -11.83 -11.83 0 %100 72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 78	64	M61	Z	-1.348	-1.348	0	%100
66 M66 Z -1.348 -1.348 0 %100 67 M71 X -9.337 -9.337 0 %100 68 M71 Z -5.39 -5.39 0 %100 69 M82 X -2.957 -2.957 0 %100 70 M82 Z -1.707 -1.707 0 %100 71 M83 X -11.83 -11.83 0 %100 72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79	65	M66	X	-2.334	-2.334	0	%100
67 M71 X -9.337 -9.337 0 %100 68 M71 Z -5.39 -5.39 0 %100 69 M82 X -2.957 -2.957 0 %100 70 M82 Z -1.707 -1.707 0 %100 71 M83 X -11.83 -11.83 0 %100 72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80	66	M66	Z	-1.348	-1.348	0	%100
68 M71 Z -5.39 -5.39 0 %100 69 M82 X -2.957 -2.957 0 %100 70 M82 Z -1.707 -1.707 0 %100 71 M83 X -11.83 -11.83 0 %100 72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -2.957 -2.957 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80	67	M71	X	-9.337	-9.337	0	%100
69 M82 X -2.957 -2.957 0 %100 70 M82 Z -1.707 -1.707 0 %100 71 M83 X -11.83 -11.83 0 %100 72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 <td>68</td> <td>M71</td> <td>Z</td> <td>-5.39</td> <td>-5.39</td> <td>0</td> <td>%100</td>	68	M71	Z	-5.39	-5.39	0	%100
70 M82 Z -1.707 -1.707 0 %100 71 M83 X -11.83 -11.83 0 %100 72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -2.957 -2.957 0 %100 76 M86 Z -7.514 -7.514 0 %100 77 M88 X -13.014 -13.014 0 %100 77 M88 X -13.014 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 <td>69</td> <td>M82</td> <td>X</td> <td>-2.957</td> <td>-2.957</td> <td>0</td> <td>%100</td>	69	M82	X	-2.957	-2.957	0	%100
71 M83 X -11.83 -11.83 0 %100 72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100	70	M82	Z	-1.707	-1.707	0	%100
72 M83 Z -6.83 -6.83 0 %100 73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 77 M88 X -13.014 -13.014 0 %100 77 M88 Z -7.514 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 -4.453 0 %100	71	M83	X	-11.83	-11.83	0	%100
73 M84 X -2.957 -2.957 0 %100 74 M84 Z -1.707 -1.707 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 77 M88 X -13.014 -13.014 0 %100 77 M88 X -13.014 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 -4.453 0 %100	72	M83	Z	-6.83	-6.83	0	%100
74 M84 Z -1.707 -1.707 0 %100 75 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 77 M88 X -13.014 -13.014 0 %100 78 M88 Z -7.514 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 -4.453 0 %100	73	M84	X	-2.957	-2.957	0	%100
T5 M86 X -13.014 -13.014 0 %100 76 M86 Z -7.514 -7.514 0 %100 77 M88 X -13.014 -7.514 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 -0 %100	74	M84	Z	-1.707	-1.707	0	%100
76 M86 Z -7.514 -7.514 0 %100 77 M88 X -13.014 -13.014 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 0 %100	75	M86	X	-13.014	-13.014	0	%100
77 M88 X -13.014 -13.014 0 %100 78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 -4.453 0 %100	76	M86	Z	-7.514	-7.514	0	%100
78 M88 Z -7.514 -7.514 0 %100 79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 0 %100	77	M88	x	-13.014	-13.014	0	%100
79 M90 X -3.345 -3.345 0 %100 80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 -4.453 0 %100	78	M88	Z	-7.514	-7,514	0	%100
80 M90 Z -1.931 -1.931 0 %100 81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 -4.453 0 %100	79	M90	X	-3.345	-3,345	0	%100
81 MP4C X -7.713 -7.713 0 %100 82 MP4C Z -4.453 -4.453 0 %100	80	M90	Z	-1.931	-1,931	0	%100
82 MP4C Z -4.453 -4.453 0 %100	81	MP4C	X	-7.713	-7.713	0	%100
	82	MP4C	Z	-4.453	-4.453	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F.	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-7.031	-7.031	0	%100
2	M1	Z	-12.178	-12.178	0	%100
3	M2	X	-1.98	-1.98	0	%100
4	M2	Z	-3.429	-3.429	0	%100
5	M3	X	-7.031	-7.031	0	%100
6	M3	Z	-12.178	-12.178	0	%100
7	M4	X	-7.872	-7.872	0	%100
8	M4	Z	-13.634	-13.634	0	%100
9	M5	X	-1.336	-1.336	0	%100
10	M5	Z	-2.313	-2.313	0	%100
11	M8	Х	-1.737	-1.737	0	%100
12	M8	Z	-3.009	-3.009	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	-1.956	-1.956	0	%100
16	M10	Z	-3.388	-3.388	0	%100
17	M11	X	0	0	0	%100
18	M11	Z	0	0	0	%100
19	M12	x	-1 956	-1.956	0	%100
20	M12	7	-3.388	-3.388	0	%100
21	M12	X	-5.343	-5.343	0	%100
22	M13	7	-9 254	-9 254	0	%100
23	M16	X	-6 949	-6 949	0	%100
24	M16	7	-12 035	-12 035	0	%100
25	M10	X	-7.031	-7.031	0	%100
26	M17	7	_12 178	_12 178	0	%100
20	M18	× ×	-7.872	-7.872	0	%100
21	M10	7	12 624	-1.012	0	0/ 100
20	W10	<u> </u>	-13.034	-13.034	0	2/ 100 9/ 100
29	N10	~ 7	-7.031	-7.031	0	%100
21	N19		-12.170	-12.170	0	<u> </u>
31	N20	7	-1.90	-1.90	0	%100
<u>⊃∠</u>	W21		-3.429	-3.429	0	<u> </u>
33	N21	7	-1.330	-1.330	0	%100
34		<u> </u>	-2.313	-2.313	0	%100
35	N24	× 7	-1.737	-1.737	0	%100
30	M24	<u> </u>	-3.009	-3.009	0	%100
37	MP1A	X	-4.453	-4.453	0	%100
38	MP1A	<u> </u>	-7.713	-7.713	0	%100
39	MP2A	X	-4.453	-4.453	0	%100
40	MP2A	Z	-7.713	-7.713	0	%100
41	MP3A	X	-4.453	-4.453	0	%100
42	MP3A	Z	-7.713	-7.713	0	%100
43	MP4A	X	-4.453	-4.453	0	%100
44	MP4A	Z	-7.713	-7.713	0	%100
45	MP1C	X	-4.453	-4.453	0	%100
46	MP1C	Z	-7.713	-7.713	0	%100
47	MP2C	X	-4.453	-4.453	0	%100
48	MP2C	Z	-7.713	-7.713	0	%100
49	MP3CA	X	-4.453	-4.453	0	%100
50	MP3CA	Z	-7.713	-7.713	0	%100
51	MP4CA	X	-4.453	-4.453	0	%100
52	MP4CA	Z	-7.713	-7.713	0	%100
53	MP1B	X	-4.453	-4.453	0	%100
54	MP1B	Z	-7.713	-7.713	0	%100
55	MP2B	Х	-4.453	-4.453	0	%100
56	MP2B	Z	-7.713	-7.713	0	%100
57	MP3B	X	-4.453	-4.453	0	%100

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d]
 Page 102

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	-7.713	-7.713	0	%100
59	MP4B	Х	-4.453	-4.453	0	%100
60	MP4B	Z	-7.713	-7.713	0	%100
61	MP3C	Х	-4.453	-4.453	0	%100
62	MP3C	Z	-7.713	-7.713	0	%100
63	M61	Х	-4.043	-4.043	0	%100
64	M61	Z	-7.002	-7.002	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	-4.043	-4.043	0	%100
68	M71	Z	-7.002	-7.002	0	%100
69	M82	X	0	0	0	%100
70	M82	Z	0	0	0	%100
71	M83	X	-5.122	-5.122	0	%100
72	M83	Z	-8.872	-8.872	0	%100
73	M84	Х	-5.122	-5.122	0	%100
74	M84	Z	-8.872	-8.872	0	%100
75	M86	Х	-3.792	-3.792	0	%100
76	M86	Z	-6.568	-6.568	0	%100
77	M88	Х	-9.375	-9.375	0	%100
78	M88	Z	-16.238	-16.238	0	%100
79	M90	Х	-3.792	-3.792	0	%100
80	M90	Z	-6.568	-6.568	0	%100
81	MP4C	Х	-4.453	-4.453	0	%100
82	MP4C	Z	-7.713	-7.713	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	-5.83	-5.83	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	-3.593	-3.593	0	%100
5	M3	Х	0	0	0	%100
6	M3	Z	-5.83	-5.83	0	%100
7	M4	Х	0	0	0	%100
8	M4	Z	-3.593	-3.593	0	%100
9	M5	Х	0	0	0	%100
10	M5	Z	0	0	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	0	0	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	-1.458	-1.458	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	-1.5e-5	-1.5e-5	0	%100
17	M11	Х	0	0	0	%100
18	M11	Z	-1.458	-1.458	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	-3.578	-3.578	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	-2.548	-2.548	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	-3.104	-3.104	0	%100
25	M17	Х	0	0	0	%100
26	M17	Z	-1.458	-1.458	0	%100
27	M18	X	0	0	0	%100
28	M18	Z	-3.578	-3.578	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	X	0	0	0	%100
30	M19	Z	-1.458	-1.458	0	%100
31	M20	X	0	0	0	%100
32	M20	Z	-1.5e-5	-1.5e-5	0	%100
33	M21	X	0	0	0	%100
34	M21	Z	-2.548	-2.548	0	%100
35	M24	X	0	0	0	%100
36	M24	Z	-3.104	-3.104	0	%100
37	MP1A	X	0	0	0	%100
38	MP1A	Z	-3.844	-3.844	0	%100
39	MP2A	X	0	0	0	%100
40	MP2A	Z	-3.844	-3.844	0	%100
41	MP3A	Х	0	0	0	%100
42	MP3A	Z	-3.844	-3.844	0	%100
43	MP4A	Х	0	0	0	%100
44	MP4A	Z	-3.844	-3.844	0	%100
45	MP1C	Х	0	0	0	%100
46	MP1C	Z	-3.844	-3.844	0	%100
47	MP2C	Х	0	0	0	%100
48	MP2C	Z	-3.844	-3.844	0	%100
49	MP3CA	Х	0	0	0	%100
50	MP3CA	Z	-3.844	-3.844	0	%100
51	MP4CA	Х	0	0	0	%100
52	MP4CA	Z	-3.844	-3.844	0	%100
53	MP1B	Х	0	0	0	%100
54	MP1B	Z	-3.844	-3.844	0	%100
55	MP2B	Х	0	0	0	%100
56	MP2B	Z	-3.844	-3.844	0	%100
57	MP3B	Х	0	0	0	%100
58	MP3B	Z	-3.844	-3.844	0	%100
59	MP4B	Х	0	0	0	%100
60	MP4B	Z	-3.844	-3.844	0	%100
61	MP3C	Х	0	0	0	%100
62	MP3C	Z	-3.844	-3.844	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	-4.35	-4.35	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	-1.087	-1.087	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	-1.087	-1.087	0	%100
69	M82	X	0	0	0	%100
70	M82	Z	-1.034	-1.034	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	-1.034	-1.034	0	%100
73	M84	Х	0	0	0	%100
74	M84	Z	-4.135	-4.135	0	%100
75	M86	X	0	0	0	%100
76	M86	Z	983	983	0	%100
77	M88	X	0	0	0	%100
78	M88	Z	-4.533	-4.533	0	%100
79	M90	X	0	0	0	%100
80	M90	Z	-4.533	-4.533	0	%100
81	MP4C	X	0	0	0	%100
82	MP4C	Z	-3.844	-3.844	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	2.186	2.186	0	%100
2	M1	Z	-3.787	-3.787	0	%100
3	M2	X	2.39	2.39	0	%100
4	M2	Z	-4.14	-4.14	0	%100
5	M3	X	2.186	2.186	0	%100
6	M3	Z	-3.787	-3.787	0	%100
7	M4	Х	.601	.601	0	%100
8	M4	Z	-1.041	-1.041	0	%100
9	M5	Х	.425	.425	0	%100
10	M5	Z	735	735	0	%100
11	M8	X	.517	.517	0	%100
12	M8	Z	- 896	896	0	%100
13	M9	x	2 186	2 186	0	%100
14	M9	7	-3 787	-3 787	0	%100
15	M10	X	601	601	0	%100
16	M10	7	-1 041	-1 041	0	%100
17	M11	X	2 186	2 186	0	%100
18	M11	7	_3 787	-3 787	0	%100
10	M12	X	2 30	2 39	0	%100
20	M12	7	-4 14	-4 14	0	%100
20	M12	× ×	425	4.14	0	%100
21	M13	7	- 735	- 735	0	%100
22	M15	X	517	733	0	%100
20	M16	7	- 806	- 806	0	%100
24	M17	× ×	030	030	0	%100
20	N17	7	0	0	0	%100
20	N10	×	504	504	0	%100 %100
21		~ 7	1.020	1.020	0	70 TOO
20	IVI IO		-1.029	-1.029	0	% 100 9/ 100
29	N10	~ 7	0	0	0	% 100 % 100
21	N19	2 V	504	504	0	%100 %100
22	M20	∧ 7	1.020	.094	0	% 100 % 100
22	W21		-1.029	-1.029	0	70 TOO
24	M21	~ 7	2.042	1.099	0	70 TOO
25	N24		-2.942	-2.942	0	70 TOO
30	N24	~ 7	2.009	2.009	0	70100
27			-0.004	-3.304	0	70 TUU 9/ 100
20		~ 7	2.220	1.922	0	70100
30	MD2A		-3.329	-3.329	0	%100
39	MP2A	× 7	1.922	1.922	0	%100
40	MP2A		-3.329	-3.329	0	%100
41	MD2A	∧ 7	1.922	1.922	0	% 100
42			-3.329	-3.329	0	%100
43		∧ 7	1.922	1.922	0	% 100
44	MD10		-3.329	-3.329	0	%100
45		λ 7	1.922	1.922	0	%100
40	MPTC	<u> </u>	-3.329	-3.329	0	%100
47	WIP20	λ 7	1.922	1.922	0	%100
48	MP2CA	<u>∠</u> ×	-3.329	-3.329	0	%100
49	MD2CA	× 7	1.922	1.922	0	%100
50	MP3CA	<u> </u>	-3.329	-3.329	0	%100
51	MP4CA	X	1.922	1.922	0	%100
52	MP4CA	<u> </u>	-3.329	-3.329	0	%100
53	MP1B	X	1.922	1.922	0	%100
54	MP1B	Ζ	-3.329	-3.329	0	%100
55	MP2B	X	1.922	1.922	0	%100
56	MP2B	Z	-3.329	-3.329	0	%100
57	MP3B	X	1.922	1.922	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	-3.329	-3.329	0	%100
59	MP4B	Х	1.922	1.922	0	%100
60	MP4B	Z	-3.329	-3.329	0	%100
61	MP3C	Х	1.922	1.922	0	%100
62	MP3C	Z	-3.329	-3.329	0	%100
63	M61	Х	1.631	1.631	0	%100
64	M61	Z	-2.825	-2.825	0	%100
65	M66	Х	1.631	1.631	0	%100
66	M66	Z	-2.825	-2.825	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	1.551	1.551	0	%100
70	M82	Z	-2.686	-2.686	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	1.551	1.551	0	%100
74	M84	Z	-2.686	-2.686	0	%100
75	M86	Х	1.083	1.083	0	%100
76	M86	Z	-1.876	-1.876	0	%100
77	M88	Х	1.083	1.083	0	%100
78	M88	Z	-1.876	-1.876	0	%100
79	M90	Х	2.858	2.858	0	%100
80	M90	Z	-4.95	-4.95	0	%100
81	MP4C	X	1.922	1.922	0	%100
82	MP4C	Z	-3.329	-3.329	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	1.262	1.262	0	%100
2	M1	Z	729	729	0	%100
3	M2	Х	3.099	3.099	0	%100
4	M2	Z	-1.789	-1.789	0	%100
5	M3	Х	1.262	1.262	0	%100
6	M3	Z	729	729	0	%100
7	M4	Х	1.3e-5	1.3e-5	0	%100
8	M4	Z	-7e-6	-7e-6	0	%100
9	M5	Х	2.206	2.206	0	%100
10	M5	Z	-1.274	-1.274	0	%100
11	M8	Х	2.688	2.688	0	%100
12	M8	Z	-1.552	-1.552	0	%100
13	M9	Х	5.049	5.049	0	%100
14	M9	Z	-2.915	-2.915	0	%100
15	M10	Х	3.111	3.111	0	%100
16	M10	Z	-1.796	-1.796	0	%100
17	M11	Х	5.049	5.049	0	%100
18	M11	Z	-2.915	-2.915	0	%100
19	M12	Х	3.111	3.111	0	%100
20	M12	Z	-1.796	-1.796	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	0	0	0	%100
23	M16	Х	0	0	0	%100
24	M16	Z	0	0	0	%100
25	M17	Х	1.262	1.262	0	%100
26	M17	Z	729	729	0	%100
27	M18	Х	1.3e-5	1.3e-5	0	%100
28	M18	Z	-7e-6	-7e-6	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

29 M19 X 1,262 1,262 0 $\frac{9}{4100}$ 30 M19 Z -729 -729 0 $\frac{9}{4100}$ 31 M20 X 3099 3.099 0 $\frac{9}{4100}$ 32 M20 Z -1.789 -1.789 0 $\frac{9}{4100}$ 33 M21 X 2.206 0 $\frac{9}{4100}$ 34 M21 Z -1.652 -1.552 0 $\frac{9}{4100}$ 36 M24 Z -1.552 -1.922 0 $\frac{9}{4100}$ 38 MP1A Z -1.922 -1.922 0 $\frac{9}{4100}$ 39 MP2A Z -1.922 -1.922 0 $\frac{9}{4100}$ 40 MP3A Z -1.922 -1.922 0 $\frac{9}{8100}$ 43 MP4A X 3.329 3.329 0 $\frac{9}{8100}$ 44 MP4A Z -1.922 0 $\frac{9}{8100}$ </th <th></th> <th>Member Label</th> <th>Direction</th> <th>Start Magnitude[lb/ft,</th> <th>.End Magnitude[lb/ft,F</th> <th>. Start Location[ft,%]</th> <th>End Location[ft,%]</th>		Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
30 M19 Z 729 0 $\%100$ 31 M20 X 3.099 0.099 0.099 0.099 33 M21 X 2.206 2.206 0 $\%100$ 34 M21 Z -1.274 -1.274 0 $\%100$ 35 M24 X 2.668 2.668 0 $\%100$ 36 M24 Z -1.552 -1.522 0 $\%100$ 37 MP1A Z -1.922 -1.922 0 $\%100$ 38 MP1A Z -1.922 -1.922 0 $\%100$ 40 MP2A X 3.329 0 $\%100$ 43 MP4A X 3.329 0 $\%100$ 43 MP4A X 3.329 0 $\%100$ 44 MP4A Z -1.922 0 $\%100$ 45 MP1C X	29	M19	Х	1.262	1.262	0	%100
	30	M19	Z	729	729	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	M20	Х	3.099	3.099	0	%100
	32	M20	Z	-1.789	-1.789	0	%100
	33	M21	Х	2.206	2.206	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	34	M21	Z	-1.274	-1.274	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	M24	X	2.688	2.688	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	M24	Z	-1.552	-1.552	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	MP1A	x	3.329	3,329	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	MP1A	7	-1.922	-1.922	0	%100
40 MP2A Z -1.922 -1.922 -1.922 0 $%100$ 41 MP3A X 3.329 3.329 0 $%100$ 42 MP3A Z -1.922 -1.922 0 $%100$ 43 MP4A X 3.329 3.329 0 $%100$ 44 MP4A Z -1.922 -1.922 0 $%100$ 45 MP1C X 3.329 3.329 0 $%100$ 46 MP1C Z -1.922 -1.922 0 $%100$ 47 MP2C X 3.329 3.329 0 $%100$ 50 MP3CA X 3.329 3.329 0 $%100$ 51 MP4CA Z -1.922 -1.922 0 $%100$ 52 MP4CA Z -1.922 -1.922 0 $%100$ 53 MP1B Z	39	MP2A	x	3 329	3 329	0	%100
At MPSA X 3.329 3.329 0 $\%$ 100 42 MPSA Z -1.922 -1.922 0 $\%$ 100 43 MP4A X 3.329 0 $\%$ 100 44 MP4A Z -1.922 -1.922 0 $\%$ 100 44 MP4A Z -1.922 -1.922 0 $\%$ 100 45 MP1C Z -1.922 -1.922 0 $\%$ 100 46 MP1C Z -1.922 -1.922 0 $\%$ 100 47 MP2C X 3.329 3.329 0 $\%$ 100 49 MP3CA X 3.329 3.329 0 $\%$ 100 50 MP3CA Z -1.922 -1.922 0 $\%$ 100 51 MP4CA Z -1.922 -1.922 0 $\%$ 100 53 MP1B Z -1.922 -1.922 0 $\%$ 100 <t< td=""><td>40</td><td>MP2A</td><td>7</td><td>-1 922</td><td>-1 922</td><td>0</td><td>%100</td></t<>	40	MP2A	7	-1 922	-1 922	0	%100
42 MP3A Z -1.922 -1.922 0 %100 43 MP4A X 3.329 3.329 0 %100 44 MP4A Z -1.922 -1.922 0 %100 45 MP1C X 3.329 3.329 0 %100 46 MP1C Z -1.922 -1.922 0 %100 47 MP2C X 3.329 3.329 0 %100 48 MP2C Z -1.922 -1.922 0 %100 49 MP3GA Z -1.922 -1.922 0 %100 50 MP3GA Z -1.922 -1.922 0 %100 51 MP4CA Z -1.922 -1.922 0 %100 53 MP1B Z -1.922 -1.922 0 %100 54 MP3B Z -1.922 -1.922 0 %100 <	40	MP3A	X	3 329	3 329	0	%100
At MP4A Z 1.022 1.022 0 $\%$ 100 44 MP4A Z -1.922 -1.922 0 $\%$ 100 45 MP1C X 3.329 3.329 0 $\%$ 100 46 MP1C Z -1.922 -1.922 0 $\%$ 100 47 MP2C Z -1.922 -1.922 0 $\%$ 100 48 MP2C Z -1.922 -1.922 0 $\%$ 100 49 MP3CA X 3.329 3.329 0 $\%$ 100 50 MP3CA Z -1.922 -1.922 0 $\%$ 100 51 MP4CA X 3.329 3.329 0 $\%$ 100 52 MP4CA Z -1.922 -1.922 0 $\%$ 100 53 MP1B Z -1.922 -1.922 0 $\%$ 100 56 MP2B Z -1.922 -1.922 0 $\%$ 100 <	42	MP3A	7	_1 922	_1 922	0	%100
Har A 0.022 -1.922 0 -9.100 44 MP4A Z -1.922 -1.922 0 -9.100 45 MP1C X 3.329 3.329 0 -9.100 46 MP1C Z -1.922 -1.922 0 -9.100 47 MP2C X 3.329 3.329 0 -9.100 48 MP2C Z -1.922 -1.922 0 -9.100 49 MP3CA X 3.329 3.329 0 -9.100 50 MP3CA Z -1.922 -1.922 0 -9.100 51 MP4CA Z -1.922 -1.922 0 -9.100 53 MP1B X 3.329 3.329 0 -9.100 54 MP3B X 3.329 3.329 0 -9.100 55 MP2B X 3.329 3.329 <	42	MP4A	X	3 329	3 329	0	%100
The method Z 1.322 1.322 0 7.000 46 MP1C Z -1.922 -1.922 0 %100 47 MP2C X 3.329 3.329 0 %100 48 MP2C Z -1.922 -1.922 0 %100 49 MP3CA X 3.329 3.329 0 %100 50 MP3CA Z -1.922 -1.922 0 %100 51 MP4CA X 3.329 3.329 0 %100 52 MP4CA Z -1.922 -1.922 0 %100 53 MP1B X 3.329 3.329 0 %100 56 MP2B X 3.329 3.329 0 %100 56 MP3B Z -1.922 -1.922 0 %100 58 MP3B Z -1.922 -1.922 0 %100 61	40	MP4A	7	_1 022	_1 022	0	%100
To MP1C Z -1.922 -1.922 0 7000 47 MP2C X 3.329 3.329 0 $\%100$ 48 MP2C Z -1.922 -1.922 0 $\%100$ 49 MP3CA X 3.329 3.329 0 $\%100$ 50 MP3CA X 3.329 0 $\%100$ 51 MP4CA X 3.329 0 $\%100$ 52 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B X 3.329 3.329 0 $\%100$ 54 MP2B X 3.329 3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X 3.329 3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0	44	MP1C	× ×	3 320	3 320	0	%100
40 MP1C 2 $-1,322$ $-1,322$ 0 $\%100$ 48 MP2C Z $-1,922$ $-1,922$ 0 $\%100$ 49 MP3CA X $3,329$ $3,329$ 0 $\%100$ 50 MP3CA Z $-1,922$ $-1,922$ 0 $\%100$ 51 MP4CA Z $-1,922$ $-1,922$ 0 $\%100$ 52 MP4CA Z $-1,922$ $-1,922$ 0 $\%100$ 53 MP1B X $3,329$ $3,329$ 0 $\%100$ 54 MP1B Z $-1,922$ $-1,922$ 0 $\%100$ 56 MP2B X $3,329$ $3,329$ 0 $\%100$ 57 MP3B Z $-1,922$ $-1,922$ 0 $\%100$ 58 MP3B Z $-1,922$ $-1,922$ 0 $\%100$ 61 MP4B X $3,329$	45	MP1C	7	1 022	1 022	0	%100
47 MP2C X 3.329 3.329 0 $\%$ 100 48 MP2C Z -1.922 -1.922 0 $\%$ 100 50 MP3CA Z -1.922 -1.922 0 $\%$ 100 51 MP4CA X 3.329 3.329 0 $\%$ 100 52 MP4CA Z -1.922 -1.922 0 $\%$ 100 53 MP1B X 3.329 3.329 0 $\%$ 100 54 MP1B Z -1.922 -1.922 0 $\%$ 100 55 MP2B Z -1.922 -1.922 0 $\%$ 100 56 MP2B Z -1.922 -1.922 0 $\%$ 100 56 MP2B Z -1.922 -1.922 0 $\%$ 100 57 MP3B X 3.329 3.329 0 $\%$ 100 58 MP3B Z -1.922 -1.922 0 $\%$ 100 60 MP4B Z -1.922 0 $\%$ 100 61	40	MP2C	Z V	-1.922	-1.922	0	%100
49 MP2C Z -1.922 -1.922 0 $\%100$ 50 MP3CA Z -1.922 -1.922 0 $\%100$ 51 MP4CA X 3.329 3.329 0 $\%100$ 51 MP4CA X 3.329 3.329 0 $\%100$ 52 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B X 3.329 3.329 0 $\%100$ 54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B X 3.329 3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 59 MP4B X 3.329 3.329 0 $\%100$ 61 MP3C X 3.329 3.329 0 $\%100$ 62 MP3C X 3.329 3.329	47	MP2C	~ 7	1.020	1.022	0	9/ 100
49 MP3CA X 3.329 3.329 0 %100 50 MP3CA Z -1.922 -1.922 0 %100 51 MP4CA X 3.329 0 %100 52 MP4CA Z -1.922 -1.922 0 %100 53 MP1B X 3.329 0 %100 54 MP1B Z -1.922 -1.922 0 %100 56 MP2B Z -1.922 0 %100 56 56 MP2B Z -1.922 -1.922 0 %100 57 MP3B X 3.329 3.329 0 %100 58 MP3B Z -1.922 -1.922 0 %100 60 MP4B X 3.329 3.329 0 %100 61 MP3C Z -1.922 -1.922 0 %100 62 MP3C Z	40			-1.922	-1.922	0	%100
50 MP3CA 2 -1.922 -1.922 0 $\%100$ 51 MP4CA X 3.329 3.329 0 $\%100$ 52 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B X 3.329 3.329 0 $\%100$ 54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B X 3.329 3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X 3.329 3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X 3.329 3.329 0 $\%100$ 62 MP3C Z -1.922 -1.922	49	MD2CA	~ 7	3.329	3.329	0	%100
51 MP4CA X 3.229 -3.29 0 $-\%100$ 52 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B X 3.329 3.329 0 $\%100$ 54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B X 3.329 3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 59 MP4B X 3.329 3.329 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X 3.329 3.329 0 $\%100$ 62 MP3C X 3.329 3.329 0 $\%100$ 63 M61 X 3.767 3.920 0 $\%100$ <	50	MP4CA	<u> </u>	-1.922	-1.922	0	%100
52 MP4CA Z -1.922 -1.922 0 $\%$ 100 53 MP1B X 3.329 3.329 0 $\%$ 100 54 MP1B Z -1.922 -1.922 0 $\%$ 100 55 MP2B X 3.329 3.329 0 $\%$ 100 56 MP2B Z -1.922 -1.922 0 $\%$ 100 57 MP3B Z -1.922 -1.922 0 $\%$ 100 58 MP3B Z -1.922 -1.922 0 $\%$ 100 58 MP3B Z -1.922 -1.922 0 $\%$ 100 60 MP4B X 3.329 3.329 0 $\%$ 100 61 MP3C X 3.329 3.329 0 $\%$ 100 62 MP4C X 3.329 3.329 0 $\%$ 100 63 M61 X 3.329 3.329	51	MP4CA	7	3.329	3.329	0	%100
53 MP1B X 3.329 3.329 0 $\%100$ 54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B X 3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X 3.329 3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 59 MP4B X 3.329 3.329 0 $\%100$ 61 MP3C X 3.329 3.329 0 $\%100$ 61 MP3C X 3.329 3.329 0 $\%100$ 62 MP3C Z -1.922 -1.922 0 $\%100$ 63 M61 X 3.767 $0.\%100$ $\%100$ 64 M66 Z -2.175 -2.175 0 $\%100$	52		<u> </u>	-1.922	-1.922	0	%100
54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B X 3.329 3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X 3.329 3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 59 MP4B X 3.329 3.329 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X 3.329 3.329 0 $\%100$ 62 MP3C Z -1.922 -1.922 0 $\%100$ 63 M61 X $.942$.942 0 $\%100$ 64 M61 Z -2.175 0 $\%100$ 65 M66 Z -2.175 0 $\%100$	53	MP1B	X 7	3.329	3.329	0	%100
55 MP2B X 3.329 3.329 0 %100 56 MP2B Z -1.922 -1.922 0 %100 57 MP3B X 3.329 3.329 0 %100 58 MP3B Z -1.922 -1.922 0 %100 59 MP4B X 3.329 3.329 0 %100 60 MP4B Z -1.922 -1.922 0 %100 61 MP3C X 3.329 3.329 0 %100 62 MP3C Z -1.922 -1.922 0 %100 63 M61 Z 544 544 0 %100 64 M61 Z 2.175 -2.175 0 %100 66 M66 Z -2.175 -2.175 0 %100 68 M71 Z 544 544 0 %100	54	MP1B	Z	-1.922	-1.922	0	%100
56 MP2B Z -1.922 -1.922 0 %100 57 MP3B X 3.329 3.329 0 %100 58 MP3B Z -1.922 -1.922 0 %100 59 MP4B X 3.329 3.329 0 %100 60 MP4B Z -1.922 -1.922 0 %100 61 MP3C X 3.329 3.329 0 %100 62 MP3C Z -1.922 -1.922 0 %100 63 M61 X 942 942 0 %100 63 M61 Z 544 544 0 %100 64 M61 Z -2.175 -2 0 %100 65 M66 Z -2.175 0 %100 6 67 M71 X .942 .942 0 %100 68 M71 <td>55</td> <td>MP2B</td> <td>X</td> <td>3.329</td> <td>3.329</td> <td>0</td> <td>%100</td>	55	MP2B	X	3.329	3.329	0	%100
57 MP3B X 3.329 3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 60 MP4B X 3.329 3.329 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X 3.329 3.329 0 $\%100$ 62 MP3C Z -1.922 -1.922 0 $\%100$ 63 M61 X $.942$ $.942$ 0 $\%100$ 64 M61 Z -544 -544 0 $\%100$ 65 M66 X 3.767 3.767 0 $\%100$ 66 M66 Z -2.175 -2.175 0 $\%100$ 67 M71 X $.942$ $.942$ 0 $\%100$ 68 M71 Z -5.17 -5.17 0.517	56	MP2B	<u> </u>	-1.922	-1.922	0	%100
58 MP3B Z -1.922 -1.922 0 $\%100$ 59 MP4B X 3.329 3.329 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X 3.329 3.329 0 $\%100$ 62 MP3C Z -1.922 -1.922 0 $\%100$ 63 M61 X $.942$ $.942$ 0 $\%100$ 64 M61 Z -544 -544 0 $\%100$ 65 M66 X 3.767 3.767 0 $\%100$ 66 M66 Z -2.175 -2.175 0 $\%100$ 67 M71 X $.942$ $.942$ 0 $\%100$ 68 M71 Z -544 -544 0 $\%100$ 70 M82 Z -2.068 -2.068 0 <td>57</td> <td>MP3B</td> <td>X</td> <td>3.329</td> <td>3.329</td> <td>0</td> <td>%100</td>	57	MP3B	X	3.329	3.329	0	%100
59 MP4B X 3.329 3.329 0 %100 60 MP4B Z -1.922 -1.922 0 %100 61 MP3C X 3.329 3.329 0 %100 62 MP3C Z -1.922 -1.922 0 %100 63 M61 X .942 .942 0 %100 64 M61 Z 544 544 0 %100 65 M66 X 3.767 0 %100 66 M66 Z -2.175 0 %100 67 M71 X .942 .942 0 %100 68 M71 Z 544 .544 0 %100 69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 72 M83 Z 517	58	MP3B	<u> </u>	-1.922	-1.922	0	%100
60MP4BZ -1.922 -1.922 0 $\%100$ 61MP3CX 3.329 0 $\%100$ 62MP3CZ -1.922 -1.922 0 $\%100$ 63M61X $.942$ $.942$ 0 $\%100$ 64M61Z 544 544 0 $\%100$ 65M66X 3.767 3.767 0 $\%100$ 66M66Z -2.175 -2.175 0 $\%100$ 67M71X $.942$ $.942$ 0 $\%100$ 68M71Z 544 0 $\%100$ 69M82X 3.581 3.581 0 $\%100$ 70M82Z -2.068 -2.068 0 $\%100$ 71M83X $.895$ $.895$ 0 $\%100$ 72M83Z 517 517 0 $\%100$ 73M84X $.895$ $.895$ 0 $\%100$ 74M84Z 517 517 0 $\%100$ 75M86X 3.926 3.926 0 $\%100$ 77M88X $.852$ $.852$ 0 $\%100$ 78M88Z 492 492 0 $\%100$ 79M90X 3.926 0 $\%100$	59	MP4B	X	3.329	3.329	0	%100
61 MP3C X 3.329 3.329 0 %100 62 MP3C Z -1.922 -1.922 0 %100 63 M61 X .942 .942 0 %100 64 M61 Z 544 .544 0 %100 65 M66 X 3.767 3.767 0 %100 66 M66 Z -2.175 -2.175 0 %100 67 M71 X .942 .942 0 %100 68 M71 Z 544 544 0 %100 69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 75 M86 X </td <td>60</td> <td>MP4B</td> <td><u> </u></td> <td>-1.922</td> <td>-1.922</td> <td>0</td> <td>%100</td>	60	MP4B	<u> </u>	-1.922	-1.922	0	%100
62 MP3C Z -1.922 -1.922 0 %100 63 M61 X .942 .942 0 %100 64 M61 Z 544 544 0 %100 65 M66 X 3.767 3.767 0 %100 66 M66 Z -2.175 -2.175 0 %100 67 M71 X .942 .942 0 %100 68 M71 Z 544 544 0 %100 69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 75 M86	61	MP3C	X	3.329	3.329	0	%100
63 M61 X .942 .942 0 %100 64 M61 Z 544 544 0 %100 65 M66 X 3.767 3.767 0 %100 66 M66 Z -2.175 -2.175 0 %100 67 M71 X .942 .942 0 %100 68 M71 Z 544 .544 0 %100 69 M82 X 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 73 M84 X .895 .895 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z 517 517 0 %100 76 M86 Z <td< td=""><td>62</td><td>MP3C</td><td>Ζ</td><td>-1.922</td><td>-1.922</td><td>0</td><td>%100</td></td<>	62	MP3C	Ζ	-1.922	-1.922	0	%100
64 M61 Z 544 544 0 %100 65 M66 X 3.767 3.767 0 %100 66 M66 Z -2.175 -2.175 0 %100 67 M71 X .942 .942 0 %100 68 M71 Z 544 544 0 %100 69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z 517 517 0 %100 76 M86	63	M61	<u> </u>	.942	.942	0	%100
65 M66 X 3.767 3.767 0 %100 66 M66 Z -2.175 -2.175 0 %100 67 M71 X .942 .942 0 %100 68 M71 Z 544 .544 0 %100 69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 .517 0 %100 73 M84 X .895 .895 0 %100 74 M84 Z 517 .517 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88	64	M61	Z	544	544	0	%100
66 M66 Z -2.175 -2.175 0 %100 67 M71 X .942 .942 0 %100 68 M71 Z .544 .544 0 %100 69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 .517 0 %100 73 M84 X .895 .895 0 %100 74 M84 Z 517 .517 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 78 M88 Z 492 .492 0 %100 79 M90	65	M66	<u> </u>	3.767	3.767	0	%100
67 M71 X .942 .942 0 %100 68 M71 Z 544 544 0 %100 69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 74 M84 Z 517 .517 0 %100 75 M86 X 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 78 M88 Z .492 .492 0 %100 78 M88 Z .492 .492 0 %100 79 M90 X 3	66	M66	Z	-2.175	-2.175	0	%100
68 M71 Z 544 544 0 %100 69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	67	M71	X	.942	.942	0	%100
69 M82 X 3.581 3.581 0 %100 70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	68	M71	Z	544	544	0	%100
70 M82 Z -2.068 -2.068 0 %100 71 M83 X .895 .895 0 %100 72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	69	M82	X	3.581	3.581	0	%100
71 M83 X .895 .895 0 %100 72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	70	M82	Z	-2.068	-2.068	0	%100
72 M83 Z 517 517 0 %100 73 M84 X .895 .895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	71	M83	Χ	.895	.895	0	%100
73 M84 X .895 .895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	72	M83	Z	517	517	0	%100
74 M84 Z 517 0 %100 75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	73	M84	X	.895	.895	0	%100
75 M86 X 3.926 3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	74	M84	Z	517	517	0	%100
76 M86 Z -2.266 -2.266 0 %100 77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100	75	M86	Х	3.926	3.926	0	%100
77 M88 X .852 .852 0 %100 78 M88 Z 492 492 0 %100 79 M90 X 3.926 3.926 0 %100 90 X 3.926 3.926 0 %100	76	M86	Z	-2.266	-2.266	0	%100
78 M88 Z 492 0 %100 79 M90 X 3.926 3.926 0 %100 90 X 3.926 3.926 0 %100	77	M88	X	.852	.852	0	%100
79 M90 X 3.926 3.926 0 %100 20 M90 X 3.926 0 %100	78	M88	Z	492	492	0	%100
	79	M90	X	3.926	3.926	0	%100
80 M90 Z -2.266 -2.266 0 %100	80	M90	Z	-2.266	-2.266	0	%100
81 MP4C X 3.329 3.329 0 %100	81	MP4C	Х	3.329	3.329	0	%100
82 MP4C Z -1.922 -1.922 0 %100	82	MP4C	Z	-1.922	-1.922	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
2 M1 Z 0 0 0 %100 4 M2 Z 0 0 0 %100 5 M3 X 0 0 0 %100 6 M3 Z 0 0 0 %100 7 M4 X 1.188 1.188 0 %100 9 M5 X 3.397 3.397 0 %100 9 M5 Z 0 0 0 %100 11 M8 Z 0 0 0 %100 12 M8 Z 0 0 0 %100 14 M9 Z 0 0 0 %100 14 M9 Z 0 0 0 %100 15 M10 X 4.78 4.78 0 %100 16 M10 Z 0 0 0 %100<	1	M1	X	0	0	0	%100
3 M2 X 1.185 0 %100 5 M3 X 0 0 0 %100 6 M3 Z 0 0 0 %100 7 M4 X 1.188 1.188 0 %100 8 M4 Z 0 0 0 %100 9 M5 X 3.397 3.397 0 %100 10 M5 Z 0 0 0 %100 11 M8 X 4.139 0 %100 12 M8 Z 0 0 0 %100 14 M9 X 4.373 4.373 0 %100 15 M10 X 4.78 4.78 0 %100 16 M11 X 4.373 4.373 0 %100 20 M12 Z 0 0 %100 %100	2	M1	Z	0	0	0	%100
4 M2 Z 0 0 0 %100 5 M3 Z 0 0 0 %100 6 M3 Z 0 0 0 %100 7 M4 X 1.188 1.188 0 %100 9 M5 X 3.397 3.397 0 %100 10 M5 Z 0 0 0 %100 11 M8 X 4.139 4.139 0 %100 13 M9 X 4.373 4.373 0 %100 14 M9 Z 0 0 0 %100 15 M10 Z 0 0 0 %100 16 M10 Z 0 0 0 %100 20 M11 X 4.373 4.373 0 %100 21 M13 X 849 849 <t< td=""><td>3</td><td>M2</td><td>X</td><td>1.188</td><td>1.188</td><td>0</td><td>%100</td></t<>	3	M2	X	1.188	1.188	0	%100
5 M3 X 0 0 0 %100 6 M3 Z 0 0 0 %100 7 M4 X 1.188 1.188 0 %100 9 M5 X 3.397 3.397 0 %100 10 M5 X 3.397 0 %100 11 M8 X 4.139 0 %100 12 M8 Z 0 0 0 %100 13 M9 X 4.373 4.373 0 %100 14 M9 Z 0 0 0 %100 16 M10 Z 0 0 0 %100 18 M11 Z 0 0 0 %100 20 M12 X 1.202 1.202 0 %100 21 M13 X 849 849 0 %100 </td <td>4</td> <td>M2</td> <td>Z</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	4	M2	Z	0	0	0	%100
6 M3 Z 0 0 0 %100 8 M4 Z 0 0 0 %100 9 M5 X 3.397 0.397 0 %100 10 M5 Z 0 0 0 %100 11 M8 X 4.139 4.139 0 %100 12 M8 Z 0 0 0 %100 13 M9 X 4.373 4.373 0 %100 14 M9 Z 0 0 0 %100 15 M10 X 4.78 4.78 0 %100 16 M10 Z 0 0 %100 %100 17 M11 X 4.373 4.373 0 %100 20 M12 X 1.202 1.202 0 %100 21 M13 X 0 0	5	M3	X	0	0	0	%100
7 M4 X 1.188 1.188 0 $\%100$ 9 M5 X 3.397 3.397 0 $\%100$ 10 M5 Z 0 0 0 $\%100$ 11 M8 X 4.139 0 $\%100$ 12 M8 X 4.139 0 $\%100$ 13 M9 X 4.373 4.373 0 $\%100$ 14 M9 Z 0 0 0 $\%100$ 16 M10 Z 0 0 0 $\%100$ 17 M11 X 4.373 4.373 0 $\%100$ 20 M12 1.202 1.202 0 0 $\%100$ 21 M13 X 849 849 0 $\%100$ 22 M13 Z 0 0 0 $\%100$ 23 M16 Z 0.0 0 <	6	M3	Z	0	0	0	%100
8 M4 Z 0 0 0 %100 10 M5 Z 0 0 0 %100 11 M8 X 4.139 4.139 0 %100 12 M8 Z 0 0 0 %100 13 M9 X 4.373 4.373 0 %100 14 M9 Z 0 0 0 %100 15 M10 X 4.78 4.78 0 %100 16 M10 Z 0 0 0 %100 17 M11 X 4.373 4.373 0 %100 20 M12 Z 0 0 0 %100 21 M13 X 849 .849 0 %100 22 M18 X 1.035 1.035 0 %100 23 M16 X 1.202 1.202 </td <td>7</td> <td>M4</td> <td>X</td> <td>1.188</td> <td>1.188</td> <td>0</td> <td>%100</td>	7	M4	X	1.188	1.188	0	%100
9 M5 X 3.397 3.397 0 $\%100$ 11 M8 X 4.139 0 0 $\%100$ 12 M8 Z 0 0 0 $\%100$ 13 M9 X 4.373 4.373 0 $\%100$ 14 M9 Z 0 0 0 $\%100$ 14 M9 Z 0 0 0 $\%100$ 14 M10 Z 0 0 0 $\%100$ 16 M10 Z 0 0 0 $\%100$ 17 M11 X 4.373 4.373 0 $\%100$ 20 M12 Z 0 0 0 $\%100$ 21 M13 Z 0 0 0 $\%100$ 23 M16 Z 0 0 0 $\%100$ 24	8	M4	Z	0	0	0	%100
	9	M5	X	3.397	3.397	0	%100
11 M8 X 4.139 0 9%100 13 M9 X 4.373 4.373 0 9%100 14 M9 Z 0 0 0 0 9%100 14 M9 Z 0 0 0 9%100 15 M10 X 4.78 4.78 0 9%100 16 M10 Z 0 0 0 9%100 17 M11 X 4.373 4.373 0 %100 19 M12 X 1.202 1.202 0 9%100 20 M12 Z 0 0 0 9%100 22 M13 Z 0 0 0 9%100 23 M16 X 1.035 1.035 0 %100 24 M16 Z 0 0 0 9%100 25 M17 X 4.373	10	M5	Z	0	0	0	%100
12 M8 Z 0 0 0 0 %100 14 M9 Z 0 0 0 0 %100 15 M10 X 4.78 4.78 0 %100 16 M10 Z 0 0 0 %100 17 M11 X 4.373 4.373 0 %100 18 M11 Z 0 0 0 %100 20 M12 Z 0 0 0 %100 21 M13 X 849 849 0 %100 22 M16 X 1.035 1.035 0 %100 23 M16 X 1.022 1.202 0 0 %100 24 M16 Z 0 0 0 %100 %100 25 M17 X 4.373 4.373 0 %100 %100 <t< td=""><td>11</td><td>M8</td><td>X</td><td>4.139</td><td>4.139</td><td>0</td><td>%100</td></t<>	11	M8	X	4.139	4.139	0	%100
	12	M8	Z	0	0	0	%100
14 M9 Z 0 0 0 $\%100$ 15 M10 X 4.78 0. 9	13	M9	X	4.373	4.373	0	%100
15 M10 X 4.78 0 0 9%100 16 M10 Z 0 0 0 9%100 17 M11 X 4.373 4.373 0 9%100 18 M11 Z 0 0 0 9%100 20 M12 Z 0 0 0 9%100 21 M13 X 849 849 0 9%100 22 M13 Z 0 0 0 9%100 23 M16 X 1.035 1.035 0 9%100 24 M16 Z 0 0 0 9%100 25 M17 X 4.373 4.373 0 9%100 26 M17 Z 0 0 0 9%100 28 M19 X 4.373 4.373 0 9%100 30 M19 Z 0	14	M9	Z	0	0	0	%100
16M10Z00099917M11X4.3734.37309919M12X1.2021.2020%20M12Z000%21M13X.849.8490%22M13Z000%23M16X1.0351.0350%24M16Z000%25M17X4.3734.3730%26M17Z000%27M18X1.2021.2020%28M18Z000%29M19X4.3734.3730%30M19Z000%31M20X4.784.780%33M21X.849.8490%34M21Z000%33M21X.8443.8440%36M24Z000%37MP1AX3.8443.8440%36M24Z000%37M24Z000%36M24Z000%37MP1AX<	15	M10	Х	4.78	4.78	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	M10	Z	0	0	0	%100
18M11Z0009%10019M12X1.2021.2020%10020M12Z000%10021M13X.849.8490%10022M13Z000%10023M16X1.0351.0350%10024M16Z000%10025M17X4.3734.3730%10026M17Z000%10028M18X1.2021.2020%10029M19X4.3734.3730%10030M19Z000%10031M20X4.784.780%10033M21X.849.8490%10034M21Z000%10035M24X1.0351.0350%10038MP1AZ000%10039MP2AX3.8443.8440%10041MP3AX3.8443.8440%10043MP4AZ000%10044MP3AZ000%10045MP1CX3.8443.8440%10046MP1CZ00 <td< td=""><td>17</td><td>M11</td><td>X</td><td>4.373</td><td>4.373</td><td>0</td><td>%100</td></td<>	17	M11	X	4.373	4.373	0	%100
19 M12 X 1.202 0 %100 20 M12 Z 0 0 0 %100 21 M13 X .849 .849 0 %100 22 M13 Z 0 0 0 %100 23 M16 X 1.035 1.035 0 %100 24 M16 Z 0 0 0 %100 26 M17 X 4.373 4.373 0 %100 28 M18 Z 0 0 0 %100 29 M19 X 4.373 4.373 0 %100 30 M19 Z 0 0 0 %100 31 M20 Z 0 0 0 %100 32 M21 X .849 .649 0 %100 33 M21 X .844 .844 0<	18	M11	Z	0	0	0	%100
20M12Z000%410021M13X.849.8490%10022M13Z000%10023M16X1.0351.0350%10024M16Z000%10025M17X4.3734.3730%10026M17Z000%10027M18X1.2021.2020%10028M18Z000%10029M19X4.3734.3730%10030M19Z000%10031M20X4.784.780%10032M20Z000%10033M21X.849.8490%10034M21Z000%10035M24X1.0351.0350%10036M24Z000%10038MP1AZ000%10040MP2AZ000%10041MP3AZ000%10043MP4AX3.8443.8440%10044MP3AZ000%10045MP1CX3.8443.8440%100<	19	M12	X	1.202	1.202	0	%100
21 M13 X 849 849 0 %100 22 M13 Z 0 0 0 %100 23 M16 X 1.035 1.035 0 %100 24 M16 Z 0 0 0 %100 25 M17 X 4.373 4.373 0 %100 26 M17 Z 0 0 0 %100 28 M18 Z 0 0 0 %100 29 M19 X 4.373 4.373 0 %100 30 M19 Z 0 0 0 %100 31 M20 X 4.78 4.78 0 %100 33 M21 X 849 849 0 %100 34 M21 Z 0 0 0 %100 36 M24 Z 0 0	20	M12	Z	0	0	0	%100
22 M13 Z 0 0 0 %100 23 M16 X 1.035 1.035 0 %100 24 M16 Z 0 0 0 %100 25 M17 X 4.373 4.373 0 %100 26 M17 Z 0 0 0 %100 28 M18 X 1.202 1.202 0 %100 29 M19 X 4.373 4.373 0 %100 30 M19 Z 0 0 0 %100 31 M20 Z 0 0 0 %100 33 M21 X 849 849 0 %100 34 M24 X 1.035 1.035 0 %100 36 M24 Z 0 0 0 %100 36 M24 Z 0 0 </td <td>21</td> <td>M13</td> <td>X</td> <td>.849</td> <td>.849</td> <td>0</td> <td>%100</td>	21	M13	X	.849	.849	0	%100
23M16X1.0351.0350 $\%100$ 24M16Z000 $\%100$ 25M17X4.3734.3730 $\%100$ 26M17Z000 $\%100$ 28M18Z000 $\%100$ 29M19X4.3734.3730 $\%100$ 20M19Z000 $\%100$ 31M20X4.784.780 $\%100$ 32M20Z000 $\%100$ 33M21X8498490 $\%100$ 34M21Z000 $\%100$ 36M24Z000 $\%100$ 37MP1AZ000 $\%100$ 38MP1AZ000 $\%100$ 39MP2AX3.8443.8440 $\%100$ 42MP3AZ000 $\%100$ 43MP4AX3.8443.8440 $\%100$ 44MP3AZ000 $\%100$ 45MP1CZ000 $\%100$ 46MP1CZ000 $\%100$ 47MP2CX3.8443.8440 $\%100$ 48MP2CZ000 $\%100$ 49MP3CAX3.844 <t< td=""><td>22</td><td>M13</td><td>Z</td><td>0</td><td>0</td><td>0</td><td>%100</td></t<>	22	M13	Z	0	0	0	%100
24M16Z000%10025M17X4.3734.3730%10026M17Z000%10027M18X1.2021.2020%10028M18Z000%10029M19X4.3734.3730%10030M19Z000%10031M20X4.784.780%10032M20Z000%10034M21Z000%10035M24X1.0351.0350%10036M24Z000%10038MP1AZ000%10039MP2AX3.8443.8440%10041MP3AZ000%10043MP4AZ000%10044MP3AZ000%10044MP3AZ000%10045MP1CX3.8443.8440%10046MP1CZ000%10047MP2CZ000%10048MP2CZ000%10044MP3AZ000%10045 <t< td=""><td>23</td><td>M16</td><td>X</td><td>1.035</td><td>1.035</td><td>0</td><td>%100</td></t<>	23	M16	X	1.035	1.035	0	%100
25M17X 4.373 4.373 0 $\%100$ 26M17Z000 $\%100$ 27M18X 1.202 1.202 0 $\%100$ 28M18Z0000 $\%100$ 29M19X 4.373 4.373 0 $\%100$ 30M19Z000 $\%100$ 31M20X 4.78 4.78 0 $\%100$ 32M20Z000 $\%100$ 33M21X 849 849 0 $\%100$ 34M21Z000 $\%100$ 35M24X 1.035 1.035 0 $\%100$ 36M24Z000 $\%100$ 37MP1AX 3.844 3.844 $0.\%100$ 38MP2AX 3.844 3.844 $0.\%100$ 40MP2AZ000 $\%100$ 41MP3AX 3.844 3.844 $0.\%100$ 43MP4AZ000 $\%100$ 44MP4AZ000 $\%100$ 45MP1CX 3.844 3.844 $0.\%100$ 46MP1CZ000 $\%100$ 47MP2CZ000 $\%100$ 48MP2AZ000 $\%100$ 49MP	24	M16	Z	0	0	0	%100
26M17Z000 $%100$ 27M18X1.2021.2020 $%100$ 28M18Z000 $%100$ 29M19X4.3734.3730 $%100$ 30M19Z000 $%100$ 31M20X4.784.780 $%100$ 32M20Z000 $%100$ 33M21X.849.8490 $%100$ 34M21Z000 $%100$ 35M24X1.0351.0350 $%100$ 36M24Z000 $%100$ 39MP1AX3.8443.8440 $%100$ 41MP3AX3.8443.8440 $%100$ 43MP4AX3.8443.8440 $%100$ 44MP3AZ000 $%100$ 45MP1CX3.8443.8440 $%100$ 46MP1CZ000 $%100$ 47MP2CZ000 $%100$ 48MP2CZ000 $%100$ 44MP4AZ000 $%100$ 43MP4AX3.8443.8440 $%100$ 44MP4AZ000 $%100$ 45MP1CX<	25	M17	X	4.373	4.373	0	%100
27M18X1.2021.2020 $\%100$ 28M18Z0000 $\%100$ 29M19X4.3734.3730 $\%100$ 30M19Z0000 $\%100$ 31M20X4.784.780 $\%100$ 32M20Z000 $\%100$ 33M21X.849.8490 $\%100$ 34M21Z000 $\%100$ 36M24X1.0351.0350 $\%100$ 36M24Z000 $\%100$ 38MP1AX3.8443.8440 $\%100$ 39MP2AX3.8443.8440 $\%100$ 41MP3AX3.8443.8440 $\%100$ 43MP4AZ000 $\%100$ 44MP4AZ000 $\%100$ 45MP1CX3.8443.8440 $\%100$ 46MP1CZ000 $\%100$ 47MP2CX3.8443.8440 $\%100$ 48MP2CZ000 $\%100$ 49MP3CAX3.8443.8440 $\%100$ 50MP3CAZ000 $\%100$ 51MP4CAZ000 $\%100$	26	M17	Z	0	0	0	%100
28 M18 Z 0 0 0 %100 29 M19 X 4.373 4.373 0 %100 30 M19 Z 0 0 0 %100 31 M20 X 4.78 4.78 0 %100 32 M20 Z 0 0 0 %100 33 M21 X .849 .849 0 %100 34 M21 Z 0 0 0 %100 35 M24 X 1.035 1.035 0 %100 36 M24 Z 0 0 0 %100 38 MP1A Z 0 0 %100 %100 39 MP2A X 3.844 3.844 0 %100 41 MP3A X 3.844 3.844 0 %100 43 MP4A X 3.844	27	M18	Х	1.202	1.202	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	M18	Z	0	0	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29	M19	Х	4.373	4.373	0	%100
31M20X 4.78 4.78 0 $%100$ 32 M20Z000 $%100$ 33 M21X.849.8490 $%100$ 34 M21Z000 $%100$ 35 M24X1.0351.0350 $%100$ 36 M24Z000 $%100$ 37 MP1AX3.8443.8440 $%100$ 38 MP1AZ000 $%100$ 39 MP2AX3.8443.8440 $%100$ 40 MP2AZ000 $%100$ 41 MP3AX3.8443.8440 $%100$ 42 MP3AZ000 $%100$ 43 MP4AX3.8443.8440 $%100$ 44 MP4AZ000 $%100$ 45 MP1CZ3.8443.8440 $%100$ 46 MP1CZ000 $%100$ 47 MP2CZ000 $%100$ 48 MP2CZ000 $%100$ 50 MP3CAX3.8443.8440 $%100$ 51 MP4CAZ000 $%100$ 52 MP4CAZ000 $%100$ 54 MP1BZ000 $%$	30	M19	Z	0	0	0	%100
32M20Z000%10033M21X.849.8490%10034M21Z000%10035M24X1.0351.0350%10036M24Z000%10037MP1AX3.8443.8440%10038MP1AZ000%10039MP2AX3.8443.8440%10040MP2AZ000%10041MP3AX3.8443.8440%10043MP4AX3.8443.8440%10044MP4AZ000%10045MP1CX3.8443.8440%10046MP1CZ000%10047MP2CX3.8443.8440%10048MP2CZ000%10050MP3CAX3.8443.8440%10051MP4CAZ000%10053MP1BX3.8443.8440%10054MP1BZ000%10055MP2BX3.8443.8440%10056MP2BZ000%10057MP3BX3.8443.844<	31	M20	Х	4.78	4.78	0	%100
33 M21 X .849 .849 0 %100 34 M21 Z 0 0 0 %100 35 M24 X 1.035 1.035 0 %100 36 M24 Z 0 0 0 %100 37 MP1A X 3.844 3.844 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 3.844 3.844 0 %100 40 MP3A Z 0 0 0 %100 41 MP3A X 3.844 3.844 0 %100 43 MP4A X 3.844 3.844 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C Z 0 <td>32</td> <td>M20</td> <td>Z</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	32	M20	Z	0	0	0	%100
34 M21 Z 0 0 0 %100 35 M24 X 1.035 1.035 0 %100 36 M24 Z 0 0 0 %100 37 MP1A X 3.844 3.844 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 3.844 3.844 0 %100 40 MP3A Z 0 0 0 %100 41 MP3A Z 0 0 %100 %100 42 MP3A Z 0 0 %100 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 46 MP1C Z 3.844 3.844 0 %100 48 MP2C Z 0	33	M21	X	.849	.849	0	%100
35 M24 X 1.035 1.035 0 %100 36 M24 Z 0 0 0 0 %100 37 MP1A X 3.844 3.844 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 3.844 3.844 0 %100 40 MP3A Z 0 0 0 %100 41 MP3A Z 0 0 %100 42 MP3A Z 0 0 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C Z 0 0 0 %100 46 MP1C Z 0 0 0 %100 48 MP2C Z 0 0 %100<	34	M21	Z	0	0	0	%100
36 M24 Z 0 0 0 %100 37 MP1A X 3.844 3.844 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 3.844 3.844 0 %100 40 MP2A Z 0 0 0 %100 41 MP3A X 3.844 3.844 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C Z 0 0 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 3.844 3.844 0 %100 48 MP2C Z 0	35	M24	X	1.035	1.035	0	%100
37 MP1A X 3.844 3.844 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 3.844 3.844 0 %100 40 MP2A Z 0 0 0 %100 41 MP3A Z 0 0 %100 42 MP3A Z 0 0 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 3.844 3.844 0 %100 48 MP2C Z 0 0 0 %100 50 MP3CA Z 0 0 %100	36	M24	Z	0	0	0	%100
38 MP1A Z 0 0 %100 39 MP2A X 3.844 3.844 0 %100 40 MP2A Z 0 0 0 %100 41 MP3A X 3.844 3.844 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C Z 0 0 %100 48 MP2C Z 0 0 %100 50 MP3CA X 3.844 3.844 0 %100	37	MP1A	Х	3.844	3.844	0	%100
39 MP2A X 3.844 3.844 0 %100 40 MP2A Z 0 0 0 %100 41 MP3A X 3.844 3.844 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C Z 0 0 %100 %100 48 MP2C Z 0 0 %100 %100 50 MP3CA X 3.844 3.844 0 %100 51 MP4CA Z 0 0 %100 %100 52 MP4CA Z 0<	38	MP1A	Z	0	0	0	%100
40 MP2A Z 0 0 0 %100 41 MP3A X 3.844 3.844 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C Z 0 0 %100 48 MP2C Z 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 %100 %100 51 MP4CA Z 0 0 %100 %100 53 MP1B X 3.844 3.844 0 <td>39</td> <td>MP2A</td> <td>X</td> <td>3.844</td> <td>3.844</td> <td>0</td> <td>%100</td>	39	MP2A	X	3.844	3.844	0	%100
41 MP3A X 3.844 3.844 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 3.844 3.844 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA Z 0 0 0 %100 52 MP4CA Z 0	40	MP2A	Z	0	0	0	%100
42 MP3A Z 0 0 0 %100 43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 3.844 3.844 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B Z 0	41	MP3A	X	3.844	3.844	0	%100
43 MP4A X 3.844 3.844 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C Z 0 0 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 %100 %100 56 MP2B Z 0	42	MP3A	Z	0	0	0	%100
44 MP4A Z 0 0 0 %100 45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 3.844 3.844 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0<	43	MP4A	Х	3.844	3.844	0	%100
45 MP1C X 3.844 3.844 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 3.844 3.844 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 %100 %100 57 MP3B X <td< td=""><td>44</td><td>MP4A</td><td>Z</td><td>0</td><td>0</td><td>0</td><td>%100</td></td<>	44	MP4A	Z	0	0	0	%100
46 MP1C Z 0 0 0 %100 47 MP2C X 3.844 3.844 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 %100 %100 57 MP3B X 3.844 3.844 0 %100	45	MP1C	X	3.844	3.844	0	%100
47 MP2C X 3.844 3.844 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 %100 %100 57 MP3B X 3.844 3.844 0 %100	46	MP1C	Z	0	0	0	%100
48 MP2C Z 0 0 0 %100 49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 %100 %100 57 MP3B X 3.844 3.844 0 %100	47	MP2C	X	3.844	3.844	0	%100
49 MP3CA X 3.844 3.844 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 0 %100 57 MP3B X 3.844 3.844 0 %100	48	MP2C	Z	0	0	0	%100
50 MP3CA Z 0 0 0 %100 51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 %100 %100 57 MP3B X 3.844 3.844 0 %100	49	MP3CA	X	3.844	3.844	0	%100
51 MP4CA X 3.844 3.844 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 0 %100 57 MP3B X 3.844 3.844 0 %100	50	MP3CA	Z	0	0	0	%100
52 MP4CA Z 0 0 0 %100 53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 0 %100 57 MP3B X 3.844 3.844 0 %100	51	MP4CA	Х	3.844	3.844	0	%100
53 MP1B X 3.844 3.844 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 0 %100 57 MP3B X 3.844 3.844 0 %100	52	MP4CA	Z	0	0	0	%100
54 MP1B Z 0 0 %100 55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 0 %100 57 MP3B X 3.844 3.844 0 %100	53	MP1B	X	3.844	3.844	0	%100
55 MP2B X 3.844 3.844 0 %100 56 MP2B Z 0 0 0 %100 57 MP3B X 3.844 3.844 0 %100	54	MP1B	Z	0	0	0	%100
56 MP2B Z 0 0 %100 57 MP3B X 3.844 3.844 0 %100	55	MP2B	Х	3.844	3.844	0	%100
57 MP3B X 3.844 3.844 0 %100	56	MP2B	Z	0	0	0	%100
	57	MP3B	Х	3.844	3.844	0	%100

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d]
 Page 108

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	0	0	0	%100
59	MP4B	Х	3.844	3.844	0	%100
60	MP4B	Z	0	0	0	%100
61	MP3C	Х	3.844	3.844	0	%100
62	MP3C	Z	0	0	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	0	0	0	%100
65	M66	Х	3.262	3.262	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	3.262	3.262	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	3.101	3.101	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	3.101	3.101	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	0	0	0	%100
74	M84	Z	0	0	0	%100
75	M86	Х	5.716	5.716	0	%100
76	M86	Z	0	0	0	%100
77	M88	Х	2.166	2.166	0	%100
78	M88	Z	0	0	0	%100
79	M90	Х	2.166	2.166	0	%100
80	M90	Z	0	0	0	%100
81	MP4C	X	3.844	3.844	0	%100
82	MP4C	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	1.262	1.262	0	%100
2	M1	Z	.729	.729	0	%100
3	M2	Х	1.3e-5	1.3e-5	0	%100
4	M2	Z	7e-6	7e-6	0	%100
5	M3	Х	1.262	1.262	0	%100
6	M3	Z	.729	.729	0	%100
7	M4	Х	3.099	3.099	0	%100
8	M4	Z	1.789	1.789	0	%100
9	M5	Х	2.206	2.206	0	%100
10	M5	Z	1.274	1.274	0	%100
11	M8	Х	2.688	2.688	0	%100
12	M8	Z	1.552	1.552	0	%100
13	M9	Х	1.262	1.262	0	%100
14	M9	Z	.729	.729	0	%100
15	M10	Х	3.099	3.099	0	%100
16	M10	Z	1.789	1.789	0	%100
17	M11	Х	1.262	1.262	0	%100
18	M11	Z	.729	.729	0	%100
19	M12	Х	1.3e-5	1.3e-5	0	%100
20	M12	Z	7e-6	7e-6	0	%100
21	M13	Х	2.206	2.206	0	%100
22	M13	Z	1.274	1.274	0	%100
23	M16	X	2.688	2.688	0	%100
24	M16	Z	1.552	1.552	0	%100
25	M17	Х	5.049	5.049	0	%100
26	M17	Z	2.915	2.915	0	%100
27	M18	Х	3.111	3.111	0	%100
28	M18	Z	1.796	1.796	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	Х	5.049	5.049	0	%100
30	M19	Z	2.915	2.915	0	%100
31	M20	Х	3.111	3.111	0	%100
32	M20	Z	1.796	1.796	0	%100
33	M21	Х	0	0	0	%100
34	M21	Z	0	0	0	%100
35	M24	Х	0	0	0	%100
36	M24	Z	0	0	0	%100
37	MP1A	Х	3.329	3.329	0	%100
38	MP1A	Z	1.922	1,922	0	%100
39	MP2A	X	3.329	3.329	0	%100
40	MP2A	Z	1.922	1,922	0	%100
41	MP3A	x	3 329	3 329	0	%100
42	MP3A	7	1 922	1 922	0	%100
43	MP4A	x	3 329	3.329	0	%100
44	MP4A	7	1 922	1 922	0	%100
45	MP1C	X	3 329	3 329	0	%100
46	MP1C	7	1 922	1 922	0	%100
40	MP2C	X	3 320	3 320	0	%100
47	MP2C	7	1 022	1 022	0	%100
40	MP3CA	<u> </u>	3 320	3 320	0	%100
4 3	MP3CA	7	1.022	1 022	0	%100
50	MP4CA	Z V	2 3 2 0	2 3 2 0	0	%100
52	MP4CA	7	1 022	1.022	0	%100
52		Z V	2 2 2 2 0	2 2 2 2 0	0	%100
55		~ 7	3.329	3.329	0	%100
54		<u> </u>	1.922	1.922	0	%100
55	MP2B	<u> </u>	3.329	3.329	0	%100
50	MP2B	<u> </u>	1.922	1.922	0	%100
57	MP3B	X 7	3.329	3.329	0	%100
58	MP3B	<u> </u>	1.922	1.922	0	%100
59	MP4B	X 7	3.329	3.329	0	%100
60	MP4B	<u> </u>	1.922	1.922	0	%100
61	MP3C	X 7	3.329	3.329	0	%100
62	MP3C	<u> </u>	1.922	1.922	0	%100
63	M61	X	.942	.942	0	%100
64	M61	<u> </u>	.544	.544	0	%100
65	M66	<u> </u>	.942	.942	0	%100
66	M66	Z	.544	.544	0	%100
67	M71	<u> </u>	3.767	3.767	0	%100
68	M71	Z	2.175	2.175	0	%100
69	M82	X	.895	.895	0	%100
70	M82	Z	.517	.517	0	%100
71	M83	X	3.581	3.581	0	%100
72	M83	Z	2.068	2.068	0	%100
73	M84	X	.895	.895	0	%100
74	M84	Z	.517	.517	0	%100
75	M86	Χ	3.926	3.926	0	%100
76	M86	Z	2.266	2.266	0	%100
77	M88	X	3.926	3.926	0	%100
78	M88	Z	2.266	2.266	0	%100
79	M90	X	.852	.852	0	%100
80	M90	Z	.492	.492	0	%100
81	MP4C	X	3.329	3.329	0	%100
82	MP4C	Z	1.922	1.922	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

1	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
2	M1	7	3 787	3 787	0	%100
2	M2	× ×	601	601	0	%100
1	M2	7	1 0/1	1 0/1	0	%100
5	M3	X	2 186	2 186	0	%100
6	M3	7	3 787	3 787	0	%100
7	MA	X	2 30	2 30	0	%100
8	MA	7	4.14	2.00 A 1A	0	%100
a	M5	× ×	425	425	0	%100
10	M5	7	735	735	0	%100
11	M8	× ×	517	517	0	%100
12	M8	7	896	896	0	%100
12	MQ	X	0	.000	0	%100
14	MQ	7	0	0	0	%100
14	M10	X	59/	59/	0	%100
16	M10	7	1 029	1 020	0	%100
17	M10	X	0	0	0	%100
18	N/11	7	0	0	0	%100
10	M12	× ×	59/	59/	0	%100
20	M12	7	1 020	1 020	0	%100
20	M13	×	1.029	1.029	0	%100
22	M13	7	2 9/2	2 9/2	0	%100
22	M15	× ×	2.942	2.942	0	%100
20	M16	7	3 58/	3 58/	0	%100
25	M10	X	2 186	2 186	0	%100
26	M17	7	3 787	3 787	0	%100
20	M18	X	2 30	2 30	0	%100
28	M18	7	4.14	<u> </u>	0	%100
20	M10	X	2 186	2 186	0	%100
30	M19	7	3 787	3 787	0	%100
31	M10	× ×	601	601	0	%100
32	M20	7	1 041	1 041	0	%100
33	M20	X	425	425	0	%100
34	M21	7	735	735	0	%100
35	M24	X	517	517	0	%100
36	M24	7	896	896	0	%100
37	MP1A	X	1 922	1 922	0	%100
38	MP1A	7	3 329	3 329	0	%100
39	MP2A	X	1 922	1 922	0	%100
40	MP2A	7	3 329	3 329	0	%100
41	MP3A	X	1,922	1 922	0	%100
42	MP3A	7	3,329	3,329	Õ	%100
43	MP4A	x	1,922	1,922	0	%100
44	MP4A	7	3 329	3 329	Ő	%100
45	MP1C	x	1.922	1.922	0	%100
46	MP1C	7	3 329	3.329	Ő	%100
47	MP2C	X	1,922	1 922	0	%100
48	MP2C	7	3 329	3 329	Ő	%100
49	MP3CA	×	1.922	1.922	0	%100
50	MP3CA	7	3.329	3.329	Õ	%100
51	MP4CA	X	1,922	1,922	0	%100
52	MP4CA	7	3 329	3 329	0 0	%100
53	MP1B	X	1,922	1,922	0	%100
54	MP1B	7	3.329	3.329	Õ	%100
55	MP2B	X	1,922	1,922	0	%100
56	MP2B	7	3.329	3.329	Õ	%100
57	MP3B	×	1,922	1,922	0	%100
			1.922	1.922	ÿ	/0100

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d]
 Page 111

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	3.329	3.329	0	%100
59	MP4B	Х	1.922	1.922	0	%100
60	MP4B	Z	3.329	3.329	0	%100
61	MP3C	Х	1.922	1.922	0	%100
62	MP3C	Z	3.329	3.329	0	%100
63	M61	Х	1.631	1.631	0	%100
64	M61	Z	2.825	2.825	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	1.631	1.631	0	%100
68	M71	Z	2.825	2.825	0	%100
69	M82	Х	0	0	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	1.551	1.551	0	%100
72	M83	Z	2.686	2.686	0	%100
73	M84	Х	1.551	1.551	0	%100
74	M84	Z	2.686	2.686	0	%100
75	M86	Х	1.083	1.083	0	%100
76	M86	Z	1.876	1.876	0	%100
77	M88	Х	2.858	2.858	0	%100
78	M88	Z	4.95	4.95	0	%100
79	M90	Х	1.083	1.083	0	%100
80	M90	Z	1.876	1.876	0	%100
81	MP4C	Х	1.922	1.922	0	%100
82	MP4C	7	3.329	3.329	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	5.83	5.83	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	3.593	3.593	0	%100
5	M3	Х	0	0	0	%100
6	M3	Z	5.83	5.83	0	%100
7	M4	Х	0	0	0	%100
8	M4	Z	3.593	3.593	0	%100
9	M5	Х	0	0	0	%100
10	M5	Z	0	0	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	1.458	1.458	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	1.5e-5	1.5e-5	0	%100
17	M11	Х	0	0	0	%100
18	M11	Z	1.458	1.458	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	3.578	3.578	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	2.548	2.548	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	3.104	3.104	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	1.458	1.458	0	%100
27	M18	X	0	0	0	%100
28	M18	Z	3.578	3.578	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F.	. Start Location[ft,%]	End Location[ft,%]
29	M19	Χ	0	0	0	%100
30	M19	Z	1.458	1.458	0	%100
31	M20	Χ	0	0	0	%100
32	M20	Z	1.5e-5	1.5e-5	0	%100
33	M21	Χ	0	0	0	%100
34	M21	Z	2.548	2.548	0	%100
35	M24	Х	0	0	0	%100
36	M24	Z	3.104	3.104	0	%100
37	MP1A	Х	0	0	0	%100
38	MP1A	Z	3.844	3.844	0	%100
39	MP2A	Х	0	0	0	%100
40	MP2A	Z	3.844	3.844	0	%100
41	MP3A	Х	0	0	0	%100
42	MP3A	Z	3.844	3.844	0	%100
43	MP4A	Х	0	0	0	%100
44	MP4A	Z	3.844	3.844	0	%100
45	MP1C	Х	0	0	0	%100
46	MP1C	Z	3.844	3.844	0	%100
47	MP2C	Х	0	0	0	%100
48	MP2C	Z	3.844	3.844	0	%100
49	MP3CA	Х	0	0	0	%100
50	MP3CA	Z	3.844	3.844	0	%100
51	MP4CA	Х	0	0	0	%100
52	MP4CA	Z	3.844	3.844	0	%100
53	MP1B	Х	0	0	0	%100
54	MP1B	Z	3.844	3.844	0	%100
55	MP2B	Х	0	0	0	%100
56	MP2B	Z	3.844	3.844	0	%100
57	MP3B	Х	0	0	0	%100
58	MP3B	Z	3.844	3.844	0	%100
59	MP4B	Х	0	0	0	%100
60	MP4B	Z	3.844	3.844	0	%100
61	MP3C	Х	0	0	0	%100
62	MP3C	Z	3.844	3.844	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	4.35	4.35	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	1.087	1.087	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	1.087	1.087	0	%100
69	M82	Х	0	0	0	%100
70	M82	Z	1.034	1.034	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	1.034	1.034	0	%100
73	M84	Х	0	0	0	%100
74	M84	Z	4.135	4.135	0	%100
75	M86	Х	0	0	0	%100
76	M86	Z	.983	.983	0	%100
77	M88	Х	0	0	0	%100
78	M88	Z	4.533	4.533	0	%100
79	M90	Х	0	0	0	%100
80	M90	Z	4.533	4.533	0	%100
81	MP4C	Х	0	0	0	%100
82	MP4C	Z	3.844	3.844	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

1	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
2	M1	7	3 787	3 787	0	%100
2	M2	×	2 30	2 20	0	%100
1	M2	7	-2.55	-2.55	0	%100
4	N2	×	2 196	2 196	0	%100
6	N3	7	3 787	2.100	0	%100
7	N	× ×	601	601	0	%100
2 2	N14	7	001	001	0	%100
0	N5	× ×	- 425	1.041	0	%100
10	N5	7	735	735	0	%100
11	NO	×	.735	.733	0	<u> </u>
12		7	517	517	0	%100
12	MQ	×	-2 186	-2 186	0	%100
14	MO	~ 7	2.100	2 797	0	%100
14	N10	Z V	- 601	- 601	0	%100
16	M10	7	1.041	1.041	0	%100
17	N11	×	2 196	2 196	0	%100
10	N411	7	2.100	2.100	0	%100
10	M12	× ×	-2.30	2 30	0	%100
20	M12	7	-2.59	-2.59	0	%100
20	M13	×	- 425	4.14	0	%100
21	M13	7	735	735	0	%100
22	M15	× ×	- 517	- 517	0	%100
20	M16	7	896	896	0	%100
25	M10	X	0.000	.030	0	%100
26	M17	7	0	0	0	%100
20	M18	X	- 594	- 594	0	%100
28	M18	7	1 020	1 020	0	%100
20	M10	X	0	0	0	%100
30	M19	7	0	0	0	%100
31	M10	X	- 594	- 594	0	%100
32	M20	7	1 029	1 029	0	%100
33	M20	X	-1 699	-1 699	0	%100
34	M21	7	2 942	2 942	0	%100
35	M24	X	-2.069	-2.069	0	%100
36	M24	7	3 584	3 584	0	%100
37	MP1A	X	-1 922	-1 922	0	%100
38	MP1A	7	3 329	3 329	0	%100
39	MP2A	X	-1 922	-1 922	0	%100
40	MP2A	7	3 329	3.329	0	%100
41	MP3A	X	-1.922	-1.922	0	%100
42	MP3A	Z	3.329	3.329	0	%100
43	MP4A	x	-1.922	-1.922	0	%100
44	MP4A	Z	3,329	3.329	0	%100
45	MP1C	x	-1.922	-1.922	0	%100
46	MP1C	Z	3,329	3.329	0	%100
47	MP2C	x	-1.922	-1.922	0	%100
48	MP2C	Z	3,329	3.329	0	%100
49	MP3CA	x	-1.922	-1.922	0	%100
50	MP3CA	Z	3.329	3.329	0	%100
51	MP4CA	X	-1.922	-1.922	0	%100
52	MP4CA	Z	3.329	3.329	0	%100
53	MP1B	X	-1.922	-1.922	0	%100
54	MP1B	Z	3.329	3.329	0	%100
55	MP2B	X	-1.922	-1.922	0	%100
56	MP2B	Z	3.329	3.329	0	%100
57	MP3B	X	-1.922	-1.922	0	%100
					-	

 RISA-3D Version 17.0.4
 [R:\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d]
 Page 114

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	3.329	3.329	0	%100
59	MP4B	Х	-1.922	-1.922	0	%100
60	MP4B	Z	3.329	3.329	0	%100
61	MP3C	Х	-1.922	-1.922	0	%100
62	MP3C	Z	3.329	3.329	0	%100
63	M61	Х	-1.631	-1.631	0	%100
64	M61	Z	2.825	2.825	0	%100
65	M66	Х	-1.631	-1.631	0	%100
66	M66	Z	2.825	2.825	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	-1.551	-1.551	0	%100
70	M82	Z	2.686	2.686	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	-1.551	-1.551	0	%100
74	M84	Z	2.686	2.686	0	%100
75	M86	Х	-1.083	-1.083	0	%100
76	M86	Z	1.876	1.876	0	%100
77	M88	Х	-1.083	-1.083	0	%100
78	M88	Z	1.876	1.876	0	%100
79	M90	Х	-2.858	-2.858	0	%100
80	M90	Z	4.95	4.95	0	%100
81	MP4C	X	-1.922	-1.922	0	%100
82	MP4C	Z	3.329	3.329	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-1.262	-1.262	0	%100
2	M1	Z	.729	.729	0	%100
3	M2	Х	-3.099	-3.099	0	%100
4	M2	Z	1.789	1.789	0	%100
5	M3	Х	-1.262	-1.262	0	%100
6	M3	Z	.729	.729	0	%100
7	M4	Х	-1.3e-5	-1.3e-5	0	%100
8	M4	Z	7e-6	7e-6	0	%100
9	M5	Х	-2.206	-2.206	0	%100
10	M5	Z	1.274	1.274	0	%100
11	M8	Х	-2.688	-2.688	0	%100
12	M8	Z	1.552	1.552	0	%100
13	M9	Х	-5.049	-5.049	0	%100
14	M9	Z	2.915	2.915	0	%100
15	M10	Х	-3.111	-3.111	0	%100
16	M10	Z	1.796	1.796	0	%100
17	M11	Х	-5.049	-5.049	0	%100
18	M11	Z	2.915	2.915	0	%100
19	M12	Х	-3.111	-3.111	0	%100
20	M12	Z	1.796	1.796	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	0	0	0	%100
23	M16	Х	0	0	0	%100
24	M16	Z	0	0	0	%100
25	M17	Х	-1.262	-1.262	0	%100
26	M17	Z	.729	.729	0	%100
27	M18	Х	-1.3e-5	-1.3e-5	0	%100
28	M18	Z	7e-6	7e-6	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	X	-1.262	-1.262	0	%100
30	M19	Z	.729	.729	0	%100
31	M20	Х	-3.099	-3.099	0	%100
32	M20	Z	1.789	1.789	0	%100
33	M21	Х	-2.206	-2.206	0	%100
34	M21	Z	1.274	1.274	0	%100
35	M24	Х	-2.688	-2.688	0	%100
36	M24	Z	1.552	1.552	0	%100
37	MP1A	Х	-3.329	-3.329	0	%100
38	MP1A	Z	1.922	1.922	0	%100
39	MP2A	Х	-3.329	-3.329	0	%100
40	MP2A	Z	1.922	1.922	0	%100
41	MP3A	Х	-3.329	-3.329	0	%100
42	MP3A	Z	1.922	1.922	0	%100
43	MP4A	Х	-3.329	-3.329	0	%100
44	MP4A	Z	1.922	1.922	0	%100
45	MP1C	Х	-3.329	-3.329	0	%100
46	MP1C	Z	1.922	1.922	0	%100
47	MP2C	Х	-3.329	-3.329	0	%100
48	MP2C	Z	1.922	1.922	0	%100
49	MP3CA	Х	-3.329	-3.329	0	%100
50	MP3CA	Z	1.922	1.922	0	%100
51	MP4CA	Х	-3.329	-3.329	0	%100
52	MP4CA	Z	1.922	1.922	0	%100
53	MP1B	Х	-3.329	-3.329	0	%100
54	MP1B	Z	1.922	1.922	0	%100
55	MP2B	Х	-3.329	-3.329	0	%100
56	MP2B	Z	1.922	1.922	0	%100
57	MP3B	Х	-3.329	-3.329	0	%100
58	MP3B	Z	1.922	1.922	0	%100
59	MP4B	Х	-3.329	-3.329	0	%100
60	MP4B	Z	1.922	1.922	0	%100
61	MP3C	Х	-3.329	-3.329	0	%100
62	MP3C	Z	1.922	1.922	0	%100
63	M61	Х	942	942	0	%100
64	M61	Z	.544	.544	0	%100
65	M66	Х	-3.767	-3.767	0	%100
66	M66	Z	2.175	2.175	0	%100
67	M71	X	942	942	0	%100
68	M71	Z	.544	.544	0	%100
69	M82	X	-3.581	-3.581	0	%100
70	M82	Z	2.068	2.068	0	%100
71	M83	X	895	895	0	%100
72	M83	Z	.517	.517	0	%100
73	M84	X	895	895	0	%100
74	M84	Z	.517	.517	0	%100
75	M86	X	-3.926	-3.926	0	%100
76	M86	Z	2.266	2.266	0	%100
77	M88	X	852	852	0	%100
78	M88	Z	.492	.492	0	%100
79	M90	X	-3.926	-3.926	0	%100
80	M90	Z	2.266	2.266	0	%100
81	MP4C	X	-3.329	-3.329	0	%100
82	MP4C	Z	1.922	1.922	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

<u>Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)</u>

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F.	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	<u> </u>	0	0	0	%100
2	<u>M1</u>		0	0	0	%100
3	<u>M2</u>	<u> </u>	-1.188	-1.188	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	-1.188	-1.188	0	%100
8	M4	Z	0	0	0	%100
9	M5	Х	-3.397	-3.397	0	%100
10	M5	7	0	0	0	%100
11	M8	x	-4 139	-4 139	0	%100
12	M8	7	0	0	0	%100
13	MQ	X	_1 373	_/ 373	0	%100
14	MO	7	-4.575	-4.575	0	%100
14	N10		4.79	4.79	0	%100 9/ 100
10	N110	~ 7	-4.70	-4.70	0	9/ 100
10	N110	<u> </u>	0	4.070	0	%100
17	M11	X	-4.373	-4.373	0	%100
18	M11		0	0	0	%100
19	M12	<u> </u>	-1.202	-1.202	0	%100
20	M12	Ζ	0	0	0	%100
21	M13	Χ	849	849	0	%100
22	M13	Z	0	0	0	%100
23	M16	X	-1.035	-1.035	0	%100
24	M16	Z	0	0	0	%100
25	M17	Х	-4.373	-4.373	0	%100
26	M17	Z	0	0	0	%100
27	M18	X	-1.202	-1.202	0	%100
28	M18	7	0	0	0	%100
29	M19	x	-4 373	-4 373	Ő	%100
30	M19	7	0	0	0	%100
31	M10	X	_1 78	_1 78	0	%100
32	M20	7	-4.70	-4.70	0	%100
22	M21	<u> </u>	940	840	0	%100
24	N/21	~ 7	049	049	0	9/ 100
34		<u> </u>	1.025	1.025	0	%100
35	N24	X 7	-1.035	-1.035	0	%100
36	M24	<u> </u>	0	0	0	%100
37	MP1A	<u> </u>	-3.844	-3.844	0	%100
- 38	MP1A	Z	0	0	0	%100
39	MP2A	X	-3.844	-3.844	0	%100
40	MP2A	Z	0	0	0	%100
41	MP3A	X	-3.844	-3.844	0	%100
42	MP3A	Z	0	0	0	%100
43	MP4A	X	-3.844	-3.844	0	%100
44	MP4A	Z	0	0	0	%100
45	MP1C	X	-3.844	-3.844	0	%100
46	MP1C	Z	0	0	0	%100
47	MP2C	X	-3.844	-3.844	0	%100
48	MP2C	7	0	0	Õ	%100
49	MP3CA	×	-3 844	-3 844	0	%100
50	MP3CA	7	0	0	0 0	%100
51	MP4CA	×	-3.844	-3.844	0	%100
52	MD4CA	7	-0.044	-0.044	0	%100
52			2 0 1 4	2 0 1 1	0	0/ 100
55		~ ~	-3.044	-3.044	0	70 TUU 0/ 100
54	INIP 1B	Z	0	0.044	0	%100
55	NIP2B	X	-3.844	-3.844	U	%100
56	MP2B	<u> </u>	0	0	0	%100
5/	MP3B	X	-3.844	-3.844	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	0	0	0	%100
59	MP4B	Х	-3.844	-3.844	0	%100
60	MP4B	Z	0	0	0	%100
61	MP3C	Х	-3.844	-3.844	0	%100
62	MP3C	Z	0	0	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	0	0	0	%100
65	M66	Х	-3.262	-3.262	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	-3.262	-3.262	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	-3.101	-3.101	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	-3.101	-3.101	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	0	0	0	%100
74	M84	Z	0	0	0	%100
75	M86	Х	-5.716	-5.716	0	%100
76	M86	Z	0	0	0	%100
77	M88	Х	-2.166	-2.166	0	%100
78	M88	Z	0	0	0	%100
79	M90	Х	-2.166	-2.166	0	%100
80	M90	Z	0	0	0	%100
81	MP4C	X	-3.844	-3.844	0	%100
82	MP4C	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-1.262	-1.262	0	%100
2	M1	Z	729	729	0	%100
3	M2	Х	-1.3e-5	-1.3e-5	0	%100
4	M2	Z	-7e-6	-7e-6	0	%100
5	M3	Х	-1.262	-1.262	0	%100
6	M3	Z	729	729	0	%100
7	M4	Х	-3.099	-3.099	0	%100
8	M4	Z	-1.789	-1.789	0	%100
9	M5	Х	-2.206	-2.206	0	%100
10	M5	Z	-1.274	-1.274	0	%100
11	M8	Х	-2.688	-2.688	0	%100
12	M8	Z	-1.552	-1.552	0	%100
13	M9	Х	-1.262	-1.262	0	%100
14	M9	Z	729	729	0	%100
15	M10	Х	-3.099	-3.099	0	%100
16	M10	Z	-1.789	-1.789	0	%100
17	M11	Х	-1.262	-1.262	0	%100
18	M11	Z	729	729	0	%100
19	M12	Х	-1.3e-5	-1.3e-5	0	%100
20	M12	Z	-7e-6	-7e-6	0	%100
21	M13	X	-2.206	-2.206	0	%100
22	M13	Z	-1.274	-1.274	0	%100
23	M16	Х	-2.688	-2.688	0	%100
24	M16	Z	-1.552	-1.552	0	%100
25	M17	Х	-5.049	-5.049	0	%100
26	M17	Z	-2.915	-2.915	0	%100
27	M18	Х	-3.111	-3.111	0	%100
28	M18	Z	-1.796	-1.796	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

29 M19 X -5.049 -5.049 0 $\%100$ 30 M19 Z 2.915 0 $\%100$ 31 M20 X -3.111 -3.111 0 $\%100$ 33 M21 X 0 0 0 $\%100$ 34 M21 Z 0 0 0 $\%100$ 35 M24 X 0 0 0 $\%100$ 36 M24 Z 0 0 0 $\%100$ 38 MP1A Z -1.922 -1.922 0 $\%100$ 38 MP2A Z -1.922 -1.922 0 $\%100$ 40 MP2A Z -1.922 -1.922 0 $\%100$ 41 MP3A Z -1.922 -1.922 0 $\%100$ 43 MP4A Z -1.922 -1.922 0 $\%100$ 44 MP4A		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
30 M19 Z -2.915 -2.915 0 %100 31 M20 Z -1.786 0 %100 33 M21 Z 0 0 0 %100 34 M21 Z 0 0 0 %100 34 M21 Z 0 0 0 %100 35 M24 Z 0 0 0 %100 36 M24 Z 0 0 0 %100 38 MP1A Z -1922 -1922 0 %100 40 MP2A Z -1922 -1922 0 %100 41 MP3A Z -1922 -1320 0 %100 43 MP4A Z -1922 -1322 0 %100 44 MP4A Z -1322 -1322 0 %100 45 MP1C Z -1322 -	29	M19	Х	-5.049	-5.049	0	%100
	30	M19	Z	-2.915	-2.915	0	%100
32 M20 Z -1.796 -1.796 0 94100 33 M21 Z 0 0 0 94100 34 M21 Z 0 0 0 94100 35 M24 X 0 0 0 94100 36 M24 Z 0 0 94100 94100 37 MP1A X -3.329 -3.329 0 94100 38 MP2A X -3.329 -3.329 0 94100 40 MP2A Z -1.922 -1.922 0 94100 41 MP3A X -3.329 -3.329 0 94100 43 MP4A X -3.329 -3.329 0 94100 44 MP4A Z -1.922 1.922 0 94100 45 MP1C X -3.329 -3.329 0 94100 46 MP2C	31	M20	Х	-3.111	-3.111	0	%100
33 M21 X 0 0 0 %100 35 M24 X 0 0 0 %100 36 M24 Z 0 0 0 %100 36 M24 Z 0 0 0 %100 38 MP1A Z -1.922 -1.922 0 %100 38 MP2A X -3.329 -3.329 0 %100 40 MP2A Z -1.922 -1.922 0 %100 41 MP3A Z -1.922 -1.922 0 %100 42 MP3A Z -1.922 -1.922 0 %100 43 MP4A Z -1.922 -1.922 0 %100 44 MP4A Z -1.922 -1.922 0 %100 45 MP1C Z -1.922 -1.922 0 %100 46 MP2C	32	M20	Z	-1.796	-1.796	0	%100
34 M21 Z 0 0 0 936 35 M24 X 0 0 0 0 93100 36 M24 Z 0 0 0 0 94100 37 MP1A X -3329 -3329 0 94100 39 MP2A X -3329 -3329 0 94100 41 MP3A X -3329 -3329 0 94100 41 MP3A X -3329 -3329 0 94100 43 MP4A X -3329 -3329 0 94100 43 MP4A Z -1922 -1922 0 94100 44 MP4A Z -1329 -3329 0 94100 45 MP1C Z -1322 -1922 0 94100 46 MP2C Z -1922 0 94100 50	33	M21	Х	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	M21	Z	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	M24	X	0	0	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	M24	Z	0	0	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	37	MP1A	x	-3.329	-3.329	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	MP1A	7	-1.922	-1.922	0	%100
40 MP2A 2 -1.922 -1.922 0 $%100$ 41 MP3A X -3.329 -3.329 0 $%100$ 42 MP3A Z -1.922 0 $%100$ 43 MP4A X -3.329 -3.329 0 $%100$ 44 MP4A X -3.329 -3.329 0 $%100$ 45 MP1C X -3.329 -3.329 0 $%100$ 46 MP2C Z -1.922 -1.922 0 $%100$ 47 MP2C X -3.329 0 $%100$ 50 MP3CA X -3.329 -3.329 0 $%100$ 51 MP4CA Z -1.922 -1.922 0 $%100$ 53 MP1B Z -1.922 -1.922 0 $%100$ 54 MP4A X -3.329 -3.329 0	39	MP2A	x	-3.329	-3 329	0	%100
At MBA Z 1.322 0 $\frac{1}{9}$ 100 41 MBA X -3.329 0 $\frac{1}{9}$ 100 42 MPAA Z -1.922 -1.922 0 $\frac{1}{9}$ 100 43 MP4A X -3.329 0 $\frac{1}{9}$ 100 44 MP4A Z -1.922 -1.922 0 $\frac{1}{9}$ 100 44 MP4A Z -1.922 -1.922 0 $\frac{1}{9}$ 100 44 MP4A Z -1.922 -1.922 0 $\frac{1}{9}$ 100 45 MP1C Z -1.922 -1.922 0 $\frac{1}{9}$ 100 46 MP2C Z -1.922 -1.922 0 $\frac{1}{9}$ 100 50 MP3CA X -3.329 -3.329 0 $\frac{1}{9}$ 100 51 MP4CA Z -1.922 0 $\frac{1}{9}$ 100 52 MP4CA Z -1.922 -1.922 0 $\frac{1}{9}$ 100	40	MP2A	7	_1 922	_1 922	0	%100
1 MIDA Z -1.922 -1.922 -0.122 0 $\%100$ 43 MP4A X -3.329 -3.329 0 $\%100$ 44 MP4A Z -1.922 0 $\%100$ 45 MP1C X -3.329 -3.329 0 $\%100$ 46 MP1C Z -1.922 -1.922 0 $\%100$ 47 MP2C X -3.329 -3.329 0 $\%100$ 48 MP2C Z -1.922 -1.922 0 $\%100$ 50 MP3CA X -3.329 -3.329 0 $\%100$ 51 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B Z -1.922 -1.922 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X -3.329	40	MP3A	X	-3.320	-3.320	0	%100
As MPAA Z -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 -1.322 $-0.\%100$ 46 MP1C Z -1.322 -1.922 $0.\%100$ $-\%100$ 47 MP2C Z -1.922 -1.922 $0.\%100$ $-\%100$ 48 MP2C Z -1.922 -1.922 $0.\%100$ $-\%100$ 50 MP3CA Z -1.922 -1.922 $0.\%100$ $-\%100$ 51 MP4CA X -3.329 -3.329 $0.\%100$ $-\%100$ 52 MP4CA Z -1.922 -1.922 $0.\%100$ -55 53 MP1B X -3.329 -3.329 $0.\%100$ -56 56 MP2B Z -1.922 -1.922 $0.\%100$ -56 57	12	MP3A	7	_1 022	_1 022	0	%100
Har A 0.029 0.022 0 %100 44 MP4A Z 1.922 1.922 0 %100 45 MP1C X -3.329 -3.329 0 %100 46 MP1C Z 1.922 0 %100 47 MP2C X -3.329 -3.329 0 %100 48 MP2C Z 1.922 -1.922 0 %100 49 MP3CA X -3.329 -3.329 0 %100 50 MP3CA Z -1.922 -1.922 0 %100 51 MP4CA Z -1.922 -1.922 0 %100 53 MP1B Z -1.922 -1.922 0 %100 54 MP1B Z -1.922 -1.922 0 %100 56 MP2B Z -1.922 -1.922 0 %100 56 MP3B	42	MP4A	X	-1.922	-3.320	0	%100
H MI HA Z -1.322 -1.322 0 0.00 46 MP1C Z -1.322 0 $\%(100$ 46 MP1C Z -1.922 -1.922 0 $\%(100$ 47 MP2C X -3.329 -3.329 0 $\%(100$ 48 MP2C Z -1.922 -1.922 0 $\%(100$ 50 MP3CA X -3.329 -3.329 0 $\%(100$ 51 MP4CA X -3.329 -3.329 0 $\%(100$ 52 MP4CA X -3.329 -3.329 0 $\%(100$ 53 MP1B Z -1.922 -1.922 0 $\%(100$ 56 MP2B X -3.329 -3.329 0 $\%(100$ 57 MP3B X -3.329 -3.329 0 $\%(100$ 58 MP3B Z -1.922	43	MP4A	7	-1.022	-1.023	0	%100
Abs Abs <td>44</td> <td>MP1C</td> <td><u> </u></td> <td>2 3 2 0</td> <td>3 3 2 0</td> <td>0</td> <td>%100</td>	44	MP1C	<u> </u>	2 3 2 0	3 3 2 0	0	%100
40 MP1C 2 1.322 1.322 0 7.100 48 MP2C Z 1.922 1.922 0 $\%100$ 49 MP3CA X 3.329 0.329 0 $\%100$ 50 MP3CA Z -1.922 -1.922 0 $\%100$ 51 MP4CA X -3.329 0 $\%100$ 52 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B X -3.329 0 $\%100$ 55 54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B Z -1.922 -1.922 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 61 MP3C X -3.329 0 $\%100$	45	MP1C	7	-3.329	-3.329	0	9/ 100
47 MP2C X -3.329 -3.329 0 76100 48 MP2C Z -1.922 -1.922 0 %100 50 MP3CA Z -1.922 -1.922 0 %100 51 MP4CA X -3.329 -3.329 0 %100 52 MP4CA X -3.329 -3.329 0 %100 53 MP1B X -3.329 -3.329 0 %100 54 MP1B Z -1.922 -1.922 0 %100 56 MP2B X -3.329 0 %100 56 MP2B Z -1.922 -1.922 0 %100 58 MP3B Z -1.922 -1.922 0 %100 59 MP4B X -3.329 -3.329 0 %100 61 MP3C X -3.329 -3.329 0 %100 62	40	MD2C	<u> </u>	-1.922	-1.922	0	%100 9/ 100
40 MP2C Z -1.922 -1.922 0 76100 49 MP3CA X -3.329 0 96100 50 MP3CA Z -1.922 -1.922 0 96100 51 MP4CA X -3.329 0 96100 52 MP4CA Z -1.922 -1.922 0 96100 53 MP1B Z -1.922 -1.922 0 96100 54 MP1B Z -1.922 -1.922 0 96100 56 MP2B X -3.329 0 96100 56 57 MP3B X -3.329 0 96100 58 58 MP3B Z -1.922 -1.922 0 96100 60 MP4B Z -1.922 -1.922 0 96100 61 MP3C Z -1.922 -1.922 0 96100	47	MP2C	~ 7	-3.329	-3.329	0	%100
49 MP3CA X -3.329 -3.329 0 $\%100$ 50 MP3CA Z -1.922 -1.922 0 $\%100$ 51 MP4CA X -3.329 0 $\%100$ 52 MP4CA Z -1.922 -1.922 0 $\%100$ 52 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B X -3.329 0 $\%100$ 54 MP1B Z -1.922 -1.922 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 56 MP3B Z -1.922 -1.922 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 61 MP3C X -3.329 -3.329 0 $\%100$ 62 MP3C X -3.329 -3.329 0 $\%100$	40		<u> </u>	-1.922	-1.922	0	%100
50 MP3CA Z -1.922 -1.922 0 $\%100$ 51 MP4CA X -3.329 -3.329 0 $\%100$ 52 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B X -3.329 -3.329 0 $\%100$ 54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B Z -1.922 -1.922 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X -3.329 -3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 61 MP3C Z -1.922 -1.922 0 $\%100$ 62 MP3C Z -1.922 -1.922 0 $\%100$ 63 M61 X 942 942 </td <td>49</td> <td>MP3CA</td> <td><u> </u></td> <td>-3.329</td> <td>-3.329</td> <td>0</td> <td>%100</td>	49	MP3CA	<u> </u>	-3.329	-3.329	0	%100
51 MP4CA Z -1.329 0 %100 52 MP4CA Z -1.922 -1.922 0 %100 53 MP1B X -3.329 0 %100 54 MP1B Z -1.922 -1.922 0 %100 55 MP2B X -3.329 0 %100 56 MP2B Z -1.922 -1.922 0 %100 57 MP3B Z -1.922 -1.922 0 %100 58 MP3B Z -1.922 -1.922 0 %100 59 MP4B X -3.329 -3.329 0 %100 61 MP3C X -3.329 -3.329 0 %100 62 MP3C Z -1.922 -1.922 0 %100 63 M61 Z -544 -544 0 %100 64 M66 Z -544	50	MP3CA	<u> </u>	-1.922	-1.922	0	%100
52 MP4CA Z -1.922 -1.922 0 $\%100$ 53 MP1B X -3.329 -3.329 0 $\%100$ 54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B X -3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X -3.329 -3.329 0 $\%100$ 59 MP4B X -3.329 -3.329 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X -3.329 -3.329 0 $\%100$ 62 MP3C Z -1.922 -1.922 0 $\%100$ 63 M61 X 942 942 0 $\%100$ 64 M61 Z 544 544 0	51	MP4CA	<u> </u>	-3.329	-3.329	0	%100
53 MP1B X -3.329 -3.329 0 $\%100$ 54 MP1B Z -1.922 -1.922 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X -3.329 -3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X -3.329 -3.329 0 $\%100$ 62 MP3C Z -1.922 -1.922 0 $\%100$ 63 M61 X -942 -942 0 $\%100$ 64 M61 Z 544 544 0 $\%100$ 65 M66 X 942 942	52	MP4CA	Ζ	-1.922	-1.922	0	%100
54 MP1B Z -1.922 -1.922 0 $\%100$ 55 MP2B X -3.329 -3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X -3.329 -3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 59 MP4B X -3.329 -3.329 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X -3.329 -3.329 0 $\%100$ 62 MP3C Z -1.922 0 $\%100$ 6 63 M61 X 942 942 0 $\%100$ 64 M66 Z 544 544 0 $\%100$ 66 M66 Z 544 544 0 $\%100$ <	53	MP1B	X	-3.329	-3.329	0	%100
55 MP2B X -3.329 -3.329 0 $\%100$ 56 MP2B Z -1.922 -1.922 0 $\%100$ 57 MP3B X -3.329 -3.329 0 $\%100$ 58 MP3B Z -1.922 -1.922 0 $\%100$ 59 MP4B X -3.329 -3.329 0 $\%100$ 60 MP4B Z -1.922 -1.922 0 $\%100$ 61 MP3C X -3.329 -3.329 0 $\%100$ 62 MP4C X -3.329 -3.329 0 $\%100$ 63 M61 X -942 -942 0 $\%100$ 64 M61 Z 544 544 0 $\%100$ 65 M66 X 942 942 0 $\%100$ 67 M71 X -3.767 0 $\%1$	54	MP1B	<u> </u>	-1.922	-1.922	0	%100
56 MP2B Z -1.922 -1.922 0 %100 57 MP3B X -3.329 -3.329 0 %100 58 MP3B Z -1.922 -1.922 0 %100 59 MP4B X -3.329 -3.329 0 %100 60 MP4B Z -1.922 -1.922 0 %100 61 MP3C X -3.329 -3.329 0 %100 62 MP3C Z -1.922 -1.922 0 %100 63 M61 Z 544 544 0 %100 64 M61 Z 544 544 0 %100 65 M66 X 942 942 0 %100 66 M66 Z 544 544 0 %100 67 M71 X -3.767 0 %100	55	MP2B	X	-3.329	-3.329	0	%100
57 MP3B X -3.329 -3.329 0 %100 58 MP3B Z -1.922 -1.922 0 %100 59 MP4B X -3.329 -3.329 0 %100 60 MP4B Z -1.922 -1.922 0 %100 61 MP3C X -3.329 -3.329 0 %100 62 MP3C Z -1.922 -1.922 0 %100 63 M61 X -942 942 0 %100 64 M61 Z 544 544 0 %100 65 M66 Z 544 942 0 %100 66 M66 Z 544 544 0 %100 68 M71 Z -2.175 -2.175 0 %100 70 M82 Z 517 517 0 %100 71	56	MP2B	<u> </u>	-1.922	-1.922	0	%100
58 MP3B Z -1.922 -1.922 0 %100 59 MP4B X -3.329 0 %100 60 MP4B Z -1.922 -1.922 0 %100 61 MP3C X -3.329 0 %100 62 MP3C Z -1.922 -1.922 0 %100 63 M61 X 942 942 0 %100 64 M61 Z 544 544 0 %100 65 M66 X 942 942 0 %100 66 M66 Z 544 544 0 %100 67 M71 X -3.767 -3.767 0 %100 68 M71 Z -2.175 -2.175 0 %100 70 M82 Z 517 517 0 %100 71 M83 Z	57	MP3B	X	-3.329	-3.329	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	MP3B	Z	-1.922	-1.922	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59	MP4B	<u> </u>	-3.329	-3.329	0	%100
61MP3CX -3.329 -3.329 0 $\%100$ 62MP3CZ -1.922 -1.922 0 $\%100$ 63M61X 942 942 0 $\%100$ 64M61Z 544 544 0 $\%100$ 65M66X 942 942 0 $\%100$ 66M66Z 544 544 0 $\%100$ 67M71X -3.767 -3.767 0 $\%100$ 68M71Z -2.175 -2.175 0 $\%100$ 69M82X 895 895 0 $\%100$ 70M82Z 517 517 0 $\%100$ 71M83X -3.581 -3.581 0 $\%100$ 72M83Z -2.068 -2.068 0 $\%100$ 73M84X 895 895 0 $\%100$ 74M84Z 517 517 0 $\%100$ 76M86X -3.926 -3.926 0 $\%100$ 78M88Z -2.266 -2.266 0 $\%100$ 79M90X 852 852 0 $\%100$ 80M90Z 492 492 0 $\%100$ 81MP4CX 3329 322 0 $\%100$	60	MP4B	Z	-1.922	-1.922	0	%100
62MP3CZ-1.922-1.9220 $\%100$ 63M61X9429420 $\%100$ 64M61Z5445440 $\%100$ 65M66X9429420 $\%100$ 66M66Z5445440 $\%100$ 67M71X-3.767-3.7670 $\%100$ 68M71Z-2.175-2.1750 $\%100$ 69M82X8950 $\%100$ 70M82Z5175170 $\%100$ 71M83X-3.581-3.5810 $\%100$ 72M83Z-2.068-2.0680 $\%100$ 73M84X8958950 $\%100$ 74M84Z5175170 $\%100$ 75M86X-3.9260 $\%100$ 76M86Z-2.266-2.2660 $\%100$ 77M88X-3.926-3.9260 $\%100$ 78M88Z-2.266-2.2660 $\%100$ 79M90X8528520 $\%100$ 80M90Z4924920 $\%100$ 81MP4CX-3.329-3.3290 $\%100$	61	MP3C	<u> </u>	-3.329	-3.329	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	MP3C	Z	-1.922	-1.922	0	%100
	63	M61	X	942	942	0	%100
65M66X 942 942 0 $\%100$ 66M66Z 544 544 0 $\%100$ 67M71X -3.767 -3.767 0 $\%100$ 68M71Z -2.175 -2.175 0 $\%100$ 69M82X 895 895 0 $\%100$ 70M82Z 517 517 0 $\%100$ 71M83X -3.581 0 $\%100$ 72M83Z -2.068 -2.068 0 $\%100$ 73M84X 895 895 0 $\%100$ 74M84Z 517 517 0 $\%100$ 75M86X -3.926 -3.926 0 $\%100$ 76M86Z -2.266 -2.266 0 $\%100$ 77M88X -3.926 -3.926 0 $\%100$ 78M88Z -2.266 -2.266 0 $\%100$ 79M90X 852 852 0 $\%100$ 80M90Z 492 492 0 $\%100$ 81MP4CX -3.329 0 $\%100$	64	M61	Z	544	544	0	%100
66 M66 Z 544 544 0 %100 67 M71 X -3.767 -3.767 0 %100 68 M71 Z -2.175 -2.175 0 %100 69 M82 X 895 895 0 %100 70 M82 Z 517 517 0 %100 71 M83 X -3.581 0 %100 72 M83 Z -2.068 -2.068 0 %100 73 M84 X 895 895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90	65	M66	X	942	942	0	%100
67 M71 X -3.767 -3.767 0 %100 68 M71 Z -2.175 -2.175 0 %100 69 M82 X 895 895 0 %100 70 M82 Z 517 517 0 %100 71 M83 X -3.581 -3.581 0 %100 72 M83 Z -2.068 -2.068 0 %100 73 M84 X 895 895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 <	66	M66	Z	544	544	0	%100
68 M71 Z -2.175 -2.175 0 %100 69 M82 X 895 895 0 %100 70 M82 Z 517 517 0 %100 71 M83 X -3.581 -3.581 0 %100 72 M83 Z -2.068 -2.068 0 %100 73 M84 X 895 895 0 %100 74 M84 Z 517 517 0 %100 74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 <td< td=""><td>67</td><td>M71</td><td>Χ</td><td>-3.767</td><td>-3.767</td><td>0</td><td>%100</td></td<>	67	M71	Χ	-3.767	-3.767	0	%100
69 M82 X 895 895 0 %100 70 M82 Z 517 517 0 %100 71 M83 X -3.581 -3.581 0 %100 72 M83 Z -2.068 -2.068 0 %100 73 M84 X 895 895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C <td< td=""><td>68</td><td>M71</td><td>Z</td><td>-2.175</td><td>-2.175</td><td>0</td><td>%100</td></td<>	68	M71	Z	-2.175	-2.175	0	%100
70 M82 Z 517 517 0 %100 71 M83 X -3.581 -3.581 0 %100 72 M83 Z -2.068 -2.068 0 %100 73 M84 X 895 895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X -3.926 -3.926 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82	69	M82	Χ	895	895	0	%100
71 M83 X -3.581 -3.581 0 %100 72 M83 Z -2.068 -2.068 0 %100 73 M84 X 895 895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X -3.926 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100	70	M82	Z	517	517	0	%100
72 M83 Z -2.068 -2.068 0 %100 73 M84 X 895 895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X -3.926 -3.926 0 %100 78 M88 Z -2.266 -2.266 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	71	M83	Х	-3.581	-3.581	0	%100
73 M84 X 895 895 0 %100 74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X -3.926 -3.926 0 %100 78 M88 Z -2.266 -2.266 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	72	M83	Z	-2.068	-2.068	0	%100
74 M84 Z 517 517 0 %100 75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X -3.926 -3.926 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	73	M84	Х	895	895	0	%100
75 M86 X -3.926 -3.926 0 %100 76 M86 Z -2.266 -2.266 0 %100 77 M88 X -3.926 -3.926 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	74	M84	Z	517	517	0	%100
76 M86 Z -2.266 -2.266 0 %100 77 M88 X -3.926 -3.926 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	75	M86	X	-3.926	-3.926	0	%100
77 M88 X -3.926 -3.926 0 %100 78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	76	M86	Z	-2.266	-2.266	0	%100
78 M88 Z -2.266 -2.266 0 %100 79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	77	M88	X	-3.926	-3.926	0	%100
79 M90 X 852 852 0 %100 80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	78	M88	Z	-2.266	-2.266	0	%100
80 M90 Z 492 492 0 %100 81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	79	M90	X	852	852	0	%100
81 MP4C X -3.329 -3.329 0 %100 82 MP4C Z -1.922 -1.922 0 %100	80	M90	Z	492	492	0	%100
82 MP4C Z -1.922 -1.922 0 %100	81	MP4C	x	-3.329	-3.329	0	%100
	82	MP4C	Z	-1.922	-1.922	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

1	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
2		X 7	-2.180	-2.180	0	%100
2		<u> </u>	-3.707	-3.707	0	%100
3	M2	X 7	601	601	0	%100
4	M2	<u> </u>	-1.041	-1.041	0	%100
5	M3	X	-2.186	-2.186	0	%100
6	M3	Z	-3.787	-3.787	0	%100
7	M4	<u> </u>	-2.39	-2.39	0	%100
8	M4	Z	-4.14	-4.14	0	%100
9	M5	X	425	425	0	%100
10	M5	Z	735	735	0	%100
11	M8	Χ	517	517	0	%100
12	M8	Z	896	896	0	%100
13	M9	Χ	0	0	0	%100
14	M9	Z	0	0	0	%100
15	M10	Χ	594	594	0	%100
16	M10	Z	-1.029	-1.029	0	%100
17	M11	X	0	0	0	%100
18	M11	Z	0	0	0	%100
19	M12	Х	594	594	0	%100
20	M12	Z	-1.029	-1.029	0	%100
21	M13	Х	-1.699	-1.699	0	%100
22	M13	Z	-2.942	-2.942	0	%100
23	M16	X	-2.069	-2.069	0	%100
24	M16	Z	-3.584	-3.584	0	%100
25	M17	Х	-2.186	-2.186	0	%100
26	M17	Z	-3.787	-3.787	0	%100
27	M18	Х	-2.39	-2.39	0	%100
28	M18	Z	-4.14	-4.14	0	%100
29	M19	Х	-2.186	-2.186	0	%100
30	M19	Z	-3.787	-3.787	0	%100
31	M20	Х	601	601	0	%100
32	M20	Z	-1.041	-1.041	0	%100
33	M21	Х	425	425	0	%100
34	M21	Z	735	735	0	%100
35	M24	Х	517	517	0	%100
36	M24	Z	896	896	0	%100
37	MP1A	Х	-1.922	-1.922	0	%100
38	MP1A	Z	-3.329	-3.329	0	%100
39	MP2A	Х	-1.922	-1.922	0	%100
40	MP2A	Z	-3.329	-3.329	0	%100
41	MP3A	X	-1.922	-1.922	0	%100
42	MP3A	Z	-3.329	-3.329	0	%100
43	MP4A	X	-1.922	-1.922	0	%100
44	MP4A	Z	-3.329	-3.329	0	%100
45	MP1C	X	-1.922	-1.922	0	%100
46	MP1C	Z	-3.329	-3.329	0	%100
47	MP2C	X	-1.922	-1.922	0	%100
48	MP2C	Z	-3.329	-3.329	0	%100
49	MP3CA	X	-1.922	-1.922	0	%100
50	MP3CA	Z	-3.329	-3.329	0	%100
51	MP4CA	X	-1.922	-1.922	0	%100
52	MP4CA	Z	-3.329	-3.329	0	%100
53	MP1B	Χ	-1.922	-1.922	0	%100
54	MP1B	Z	-3.329	-3.329	0	%100
55	MP2B	X	-1.922	-1.922	0	%100
56	MP2B	Z	-3.329	-3.329	0	%100
57	MP3B	X	-1.922	-1.922	0	%100

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\...\Mount Fix\Rev 0\Risa\468782-VZW_MT_LO_H.r3d] Page 120

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	-3.329	-3.329	0	%100
59	MP4B	Х	-1.922	-1.922	0	%100
60	MP4B	Z	-3.329	-3.329	0	%100
61	MP3C	Х	-1.922	-1.922	0	%100
62	MP3C	Z	-3.329	-3.329	0	%100
63	M61	Х	-1.631	-1.631	0	%100
64	M61	Z	-2.825	-2.825	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	-1.631	-1.631	0	%100
68	M71	Z	-2.825	-2.825	0	%100
69	M82	Х	0	0	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	-1.551	-1.551	0	%100
72	M83	Z	-2.686	-2.686	0	%100
73	M84	Х	-1.551	-1.551	0	%100
74	M84	Z	-2.686	-2.686	0	%100
75	M86	Х	-1.083	-1.083	0	%100
76	M86	Z	-1.876	-1.876	0	%100
77	M88	Х	-2.858	-2.858	0	%100
78	M88	Z	-4.95	-4.95	0	%100
79	M90	Х	-1.083	-1.083	0	%100
80	M90	Z	-1.876	-1.876	0	%100
81	MP4C	Х	-1.922	-1.922	0	%100
82	MP4C	7	-3.329	-3.329	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	-1.254	-1.254	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	791	791	0	%100
5	M3	Х	0	0	0	%100
6	M3	Z	-1.254	-1.254	0	%100
7	M4	Х	0	0	0	%100
8	M4	Z	791	791	0	%100
9	M5	Х	0	0	0	%100
10	M5	Z	0	0	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	0	0	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	314	314	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	-3e-6	-3e-6	0	%100
17	M11	Х	0	0	0	%100
18	M11	Z	314	314	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	788	788	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	536	536	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	697	697	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	314	314	0	%100
27	M18	X	0	0	0	%100
28	M18	Z	788	788	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	X	0	0	0	%100
30	M19	Z	314	314	0	%100
31	M20	X	0	0	0	%100
32	M20	Z	-3e-6	-3e-6	0	%100
33	M21	X	0	0	0	%100
34	M21	Z	536	536	0	%100
35	M24	X	0	0	0	%100
36	M24	Z	697	697	0	%100
37	MP1A	X	0	0	0	%100
38	MP1A	Z	596	596	0	%100
39	MP2A	X	0	0	0	%100
40	MP2A	Z	596	596	0	%100
41	MP3A	X	0	0	0	%100
42	MP3A	Z	596	596	0	%100
43	MP4A	Χ	0	0	0	%100
44	MP4A	Z	596	596	0	%100
45	MP1C	Χ	0	0	0	%100
46	MP1C	Z	596	596	0	%100
47	MP2C	Χ	0	0	0	%100
48	MP2C	Z	596	596	0	%100
49	MP3CA	Χ	0	0	0	%100
50	MP3CA	Z	596	596	0	%100
51	MP4CA	X	0	0	0	%100
52	MP4CA	Z	596	596	0	%100
53	MP1B	X	0	0	0	%100
54	MP1B	Z	596	596	0	%100
55	MP2B	X	0	0	0	%100
56	MP2B	Z	596	596	0	%100
57	MP3B	X	0	0	0	%100
58	MP3B	Z	596	596	0	%100
59	MP4B	X	0	0	0	%100
60	MP4B	Z	596	596	0	%100
61	MP3C	<u> </u>	0	0	0	%100
62	MP3C	Z	596	596	0	%100
63	M61	<u> </u>	0	0	0	%100
64	M61	Z	721	721	0	%100
65	M66	<u> </u>	0	0	0	%100
66	M66	Z	18	18	0	%100
67	M71	<u> </u>	0	0	0	%100
68	M71	Z	18	18	0	%100
69	M82	X	0	0	0	%100
70	M82	<u> </u>	228	228	0	%100
/1	M83	X	0	0	0	%100
72	M83	<u> </u>	228	228	0	%100
73	M84	X	0	0	0	%100
74	M84	<u> </u>	914	914	0	%100
15	M86	X	0	0	0	%100
76	M86	<u> </u>	258	258	0	%100
11	M88	X	0	0	0	%100
78	M88	<u> </u>	-1.005	-1.005	0	%100
/9	M90	X	0	0	0	%100
80	MP40	Z	-1.005	-1.005	0	%100
81	MP4C	X	0	0	0	%100
82	MP4C		596	596	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

<u>Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)</u>

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.47	.47	0	%100
2	M1	Z	815	815	0	%100
3	M2	X	.526	.526	0	%100
4	M2	Z	912	912	0	%100
5	M3	Х	.47	.47	0	%100
6	M3	Z	815	815	0	%100
7	M4	X	.132	.132	0	%100
8	M4	7	- 229	- 229	0	%100
9	M5	x	089	089	0	%100
10	M5	7	- 155	- 155	0	%100
11	M8	x	116	116	0	%100
12	M8	7	- 201	- 201	0	%100
13	MQ	X	47	.201	0	%100
14	MQ	7	_ 815	- 815	0	%100
15	M10	X	132	132	0	%100
16	M10	7	- 220	- 229	0	%100
17	M10	×	223	223	0	%100
10		~ 7	.47	.47	0	%100
10	IVI I I M40		010	010	0	% 100 % 100
19		∧ 7	.320	.020	0	% TUU % 400
20			912	912	0	%100
21	IVI I 3	X 7	.089	.089	0	%100
22	M13	Ζ	155	155	0	%100
23	M16	X 7	.116	.116	0	%100
24	M16		201	201	0	%100
25	M17	X	0	0	0	%100
26	M17	<u> </u>	0	0	0	%100
27	M18	X	.131	.131	0	%100
28	M18		227	227	0	%100
29	M19	X	0	0	0	%100
30	M19	Z	0	0	0	%100
31	M20	X	.131	.131	0	%100
32	M20	Z	227	227	0	%100
33	M21	<u> </u>	.357	.357	0	%100
34	M21	Z	619	619	0	%100
35	M24	<u> </u>	.465	.465	0	%100
36	M24	Z	805	805	0	%100
37	MP1A	Х	.298	.298	0	%100
38	MP1A	Z	516	516	0	%100
39	MP2A	X	.298	.298	0	%100
40	MP2A	Z	516	516	0	%100
41	MP3A	X	.298	.298	0	%100
42	MP3A	Z	516	516	0	%100
43	MP4A	X	.298	.298	0	%100
44	MP4A	Z	516	516	0	%100
45	MP1C	X	.298	.298	0	%100
46	MP1C	Z	516	516	0	%100
47	MP2C	Х	.298	.298	0	%100
48	MP2C	Z	516	516	0	%100
49	MP3CA	X	.298	.298	0	%100
50	MP3CA	Z	516	516	0	%100
51	MP4CA	Х	.298	.298	0	%100
52	MP4CA	Z	-,516	516	0	%100
53	MP1B	X	.298	.298	0	%100
54	MP1B	Z	516	516	0	%100
55	MP2B	x	.298	.298	0	%100
56	MP2B	Z	516	516	0	%100
57	MP3B	x	.298	.298	0	%100
			.200	.200	~	70100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	516	516	0	%100
59	MP4B	Х	.298	.298	0	%100
60	MP4B	Z	516	516	0	%100
61	MP3C	Х	.298	.298	0	%100
62	MP3C	Z	516	516	0	%100
63	M61	Х	.27	.27	0	%100
64	M61	Z	468	468	0	%100
65	M66	Х	.27	.27	0	%100
66	M66	Z	468	468	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	.343	.343	0	%100
70	M82	Z	593	593	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	.343	.343	0	%100
74	M84	Z	593	593	0	%100
75	M86	Х	.254	.254	0	%100
76	M86	Z	439	439	0	%100
77	M88	Х	.254	.254	0	%100
78	M88	Z	439	439	0	%100
79	M90	Х	.627	.627	0	%100
80	M90	Z	-1.086	-1.086	0	%100
81	MP4C	Х	.298	.298	0	%100
82	MP4C	Z	516	516	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.272	.272	0	%100
2	M1	Z	157	157	0	%100
3	M2	X	.683	.683	0	%100
4	M2	Z	394	394	0	%100
5	M3	Х	.272	.272	0	%100
6	M3	Z	157	157	0	%100
7	M4	Х	3e-6	3e-6	0	%100
8	M4	Z	-2e-6	-2e-6	0	%100
9	M5	X	.464	.464	0	%100
10	M5	Z	268	268	0	%100
11	M8	X	.604	.604	0	%100
12	M8	Z	349	349	0	%100
13	M9	X	1.086	1.086	0	%100
14	M9	Z	627	627	0	%100
15	M10	Х	.685	.685	0	%100
16	M10	Z	396	396	0	%100
17	M11	Х	1.086	1.086	0	%100
18	M11	Z	627	627	0	%100
19	M12	Х	.685	.685	0	%100
20	M12	Z	396	396	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	0	0	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	0	0	0	%100
25	M17	X	.272	.272	0	%100
26	M17	Z	157	157	0	%100
27	M18	Х	3e-6	3e-6	0	%100
28	M18	Z	-2e-6	-2e-6	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	Х	.272	.272	0	%100
30	M19	Z	157	157	0	%100
31	M20	Х	.683	.683	0	%100
32	M20	Z	394	394	0	%100
33	M21	Х	.464	.464	0	%100
34	M21	Z	268	268	0	%100
35	M24	Х	.604	.604	0	%100
36	M24	Z	349	349	0	%100
37	MP1A	Х	.516	.516	0	%100
38	MP1A	Z	298	298	0	%100
39	MP2A	X	.516	.516	0	%100
40	MP2A	Z	298	298	0	%100
41	MP3A	X	.516	.516	0	%100
42	MP3A	Z	- 298	298	0	%100
43	MP4A	x	.516	.516	0	%100
44	MP4A	Z	- 298	298	0	%100
45	MP1C	x	.516	516	0	%100
46	MP1C	Z	- 298	- 298	0	%100
47	MP2C	x	516	516	0	%100
48	MP2C	7	- 298	- 298	0	%100
49	MP3CA	X	516	516	0	%100
50	MP3CA	7	- 298	- 298	0	%100
51	MP4CA	X	516	516	0	%100
52	MP4CA	7	- 298	- 298	0	%100
53	MP1B	X	516	516	0	%100
54	MP1B	7	_ 298	- 298	0	%100
55	MP2B	X	516	516	0	%100
56	MP2B	7	- 298	- 298	0	%100
57	MP3B	X	516	516	0	%100
58	MP3B	7	- 298	- 298	0	%100
59	MP4B	X	516	230	0	%100
60	MP4B	7	- 298	- 298	0	%100
61	MP3C	X	516	516	0	%100
62	MP3C	7	_ 298	_ 208	0	%100
63	M61	X	156	156	0	%100
64	M61	7	_ 00	- 09	0	%100
65	M66	<u> </u>	624	624	0	%100
66	M66	7	- 361	- 361	0	%100
67	M71	× ×	156	501	0	%100
68	N/71	7	_ 09	_ 00	0	%100
60	M82	× ×	09	09	0	%100
70	M82	7	_ 157	- 457	0	%100
71	M82	×	108	108	0	%100
72	N03	7	114	.190	0	%100
72	N84	× ×	114	114	0	%100
74	M84	7	114	.190	0	%100
74	M96		114	114	0	%100
75		∧ 7	.07	.07	0	% 100 9/ 100
70	001/1	<u> </u>	003	003	0	% 100 % 100
79		∧ 7	.224	.224	0	% 100 % 100
70			129	129	0	% 100 % 100
19	M00	∧ 7	.07	.07	0	% 100 9/ 100
00	MD4C		505	505	0	0/100
01		∧ 7	010	010	0	% 100 9/ 100
02	IVIP40		298	290	U	70100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

<u>Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)</u>

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	.262	.262	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	.262	.262	0	%100
8	M4	Z	0	0	0	%100
9	M5	Х	.715	.715	0	%100
10	M5	Z	0	0	0	%100
11	M8	X	.93	.93	0	%100
12	M8	7	0	0	0	%100
13	M9	x	941	941	0	%100
14	M9	7	0	0	0	%100
15	M10	X	1 053	1 053	0	%100
16	M10	7	0	0	0	%100
17	M11	× ×	0/1	0/1	0	%100
10	N411	7	.341	.941	0	%100
10			0	265	0	%100 9/ 100
19	N112	~ 7	.205	.205	0	⁷⁰ 100
20	N112		170	170	0	%100
21	M13	× 7	.179	.179	0	%100
22	M13	Ζ	0	0	0	%100
23	M16	X	.232	.232	0	%100
24	M16	<u> </u>	0	0	0	%100
25	M17	X	.941	.941	0	%100
_26	M17	Z	0	0	0	%100
27	M18	X	.265	.265	0	%100
28	M18	Z	0	0	0	%100
29	M19	X	.941	.941	0	%100
30	M19	Z	0	0	0	%100
31	M20	X	1.053	1.053	0	%100
32	M20	Z	0	0	0	%100
33	M21	X	.179	.179	0	%100
34	M21	Z	0	0	0	%100
35	M24	Х	.232	.232	0	%100
36	M24	Z	0	0	0	%100
37	MP1A	Х	.596	.596	0	%100
38	MP1A	Z	0	0	0	%100
39	MP2A	Х	.596	.596	0	%100
40	MP2A	Z	0	0	0	%100
41	MP3A	Х	.596	.596	0	%100
42	MP3A	Z	0	0	0	%100
43	MP4A	X	.596	.596	0	%100
44	MP4A	Z	0	0	Ő	%100
45	MP1C	x	596	596	Ő	%100
46	MP1C	7	0	0	Ő	%100
47	MP2C	X	596	596	0	%100
48	MP2C	7	0		0	%100
40	MP3CA	X	596	596	0	%100
50	MP3CA	7	.030	.000	0	%100
51		×	506	506	0	%100
52	MDACA	7	.390	.090	0	%100
52			506	506	0	% 100 9/ 100
53		∧ 7	.090	.090	0	% TUU 9/ 100
04 77	MD0D	<u> </u>	0	500	0	%100
55	MP2B	X	.596	.596	0	%100
56	MP2B	<u> </u>	0	0	0	%100
5/	MP3B	X	.596	.596	U	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	0	0	0	%100
59	MP4B	Х	.596	.596	0	%100
60	MP4B	Z	0	0	0	%100
61	MP3C	Х	.596	.596	0	%100
62	MP3C	Z	0	0	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	0	0	0	%100
65	M66	Х	.541	.541	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	.541	.541	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	.685	.685	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	.685	.685	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	0	0	0	%100
74	M84	Z	0	0	0	%100
75	M86	Х	1.254	1.254	0	%100
76	M86	Z	0	0	0	%100
77	M88	Х	.507	.507	0	%100
78	M88	Z	0	0	0	%100
79	M90	Х	.507	.507	0	%100
80	M90	Z	0	0	0	%100
81	MP4C	Х	.596	.596	0	%100
82	MP4C	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.272	.272	0	%100
2	M1	Z	.157	.157	0	%100
3	M2	X	3e-6	3e-6	0	%100
4	M2	Z	2e-6	2e-6	0	%100
5	M3	X	.272	.272	0	%100
6	M3	Z	.157	.157	0	%100
7	M4	Х	.683	.683	0	%100
8	M4	Z	.394	.394	0	%100
9	M5	X	.464	.464	0	%100
10	M5	Z	.268	.268	0	%100
11	M8	Х	.604	.604	0	%100
12	M8	Z	.349	.349	0	%100
13	M9	X	.272	.272	0	%100
14	M9	Z	.157	.157	0	%100
15	M10	X	.683	.683	0	%100
16	M10	Z	.394	.394	0	%100
17	M11	Х	.272	.272	0	%100
18	M11	Z	.157	.157	0	%100
19	M12	X	3e-6	3e-6	0	%100
20	M12	Z	2e-6	2e-6	0	%100
21	M13	X	.464	.464	0	%100
22	M13	Z	.268	.268	0	%100
23	M16	X	.604	.604	0	%100
24	M16	Z	.349	.349	0	%100
25	M17	X	1.086	1.086	0	%100
26	M17	Z	.627	.627	0	%100
27	M18	X	.685	.685	0	%100
28	M18	Z	.396	.396	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	X	1.086	1.086	0	%100
30	M19	Z	.627	.627	0	%100
31	M20	Х	.685	.685	0	%100
32	M20	Z	.396	.396	0	%100
33	M21	Х	0	0	0	%100
34	M21	Z	0	0	0	%100
35	M24	Х	0	0	0	%100
36	M24	Z	0	0	0	%100
37	MP1A	Х	.516	.516	0	%100
38	MP1A	Z	.298	.298	0	%100
39	MP2A	X	.516	.516	0	%100
40	MP2A	Z	.298	.298	0	%100
41	MP3A	X	.516	.516	0	%100
42	MP3A	Z	.298	.298	0	%100
43	MP4A	x	.516	.516	0	%100
44	MP4A	7	298	298	0	%100
45	MP1C	x	.516	.516	0	%100
46	MP1C	Z	.298	298	0	%100
47	MP2C	x	516	516	0	%100
48	MP2C	7	298	298	0	%100
49	MP3CA	X	516	516	0	%100
50	MP3CA	7	298	298	0	%100
51	MP4CA	X	516	516	0	%100
52	MP4CA	7	298	298	0	%100
53	MP1B	X	516	516	0	%100
54	MP1B	7	298	298	0	%100
55	MP2B	X	516	516	0	%100
56	MP2B	7	208	208	0	%100
57	MP3B	X	516	516	0	%100
58	MP3B	7	208	208	0	%100
59	MP4B	X	516	516	0	%100
60	MP4B	7	208	208	0	%100
61	MP3C	X	516	516	0	%100
62	MP3C	7	208	208	0	%100
63	M61	X	156	156	0	%100
64	M61	7	.100	.100	0	%100
65	M66	X	156	156	0	%100
66	M66	7	.100	.100	0	%100
67	M71	×	624	624	0	%100
68	M71	7	361	361	0	%100
69	M82	X	108	108	0	%100
70	M82	7	11/	11/	0	%100
71	M83	X	701	701	0	%100
72	M83	7	157	/57	0	%100
72	M84	X	108	108	0	%100
74	MQ/	7	11/	11/	0	%100
75	MRE	×	.114	.114	0	%100
76	MPG	~ 7	.07	.07	0	%100
70		<u> </u>	.505	.505	0	%100
79		~ 7	.07	.07	0	% 100 9/ 100
70			.000	.000	0	%100 %100
19	MOO	~ 7	.224	.224	0	9/ 100
0U Q1	MD4C		.129	516	0	%100
01	MD4C	∧ 7	.010	.010	0	% 100 9/ 100
02		Δ	.290	.290	0	70100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	.47	.47	0	%100
2	M1	Z	.815	.815	0	%100
3	M2	X	.132	.132	0	%100
4	M2	Z	.229	.229	0	%100
5	M3	X	.47	.47	0	%100
6	M3	Z	.815	.815	0	%100
7	M4	X	.526	.526	0	%100
8	M4	Z	.912	.912	0	%100
9	M5	X	.089	.089	0	%100
10	M5	Z	.155	.155	0	%100
11	M8	Х	.116	.116	0	%100
12	M8	Z	.201	.201	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	.131	.131	0	%100
16	M10	Z	.227	.227	0	%100
17	M11	X	0	0	0	%100
18	M11	Z	0	0	0	%100
19	M12	x	.131	.131	Ő	%100
20	M12	Z	.227	.227	Õ	%100
21	M13	x	.357	.357	0	%100
22	M13	7	619	619	0	%100
23	M16	X	.465	465	0	%100
24	M16	Z	.805	.805	0	%100
25	M17	x	47	47	0	%100
26	M17	7	815	815	0	%100
27	M18	X	526	526	0	%100
28	M18	7	912	912	0	%100
29	M19	X	47	47	0	%100
30	M19	7	815	815	0	%100
31	M20	X	132	132	0	%100
32	M20	7	229	229	0	%100
33	M21	X	089	089	0	%100
34	M21	7	155	155	0	%100
35	M24	X	116	116	0	%100
36	M24	7	201	201	0	%100
37	MP1A	X	298	298	0	%100
38	MP1A	7	516	516	0	%100
39	MP2A	X	298	298	0	%100
40	MP2A	7	516	516	0	%100
41	MP3A	X	298	298	0	%100
42	MP3A	7	516	516	Ő	%100
43	MP4A	X	.298	.298	0	%100
44	MP4A	7	.516	.516	Ő	%100
45	MP1C	x	.298	.298	0	%100
46	MP1C	7	.516	.516	Ő	%100
47	MP2C	x	298	298	0	%100
48	MP2C	7	.516	.516	Ő	%100
49	MP3CA	×	.298	.298	0	%100
50	MP3CA	7	.516	.516	Õ	%100
51	MP4CA	x	.298	.298	0	%100
52	MP4CA	7	516	516	Ő	%100
53	MP1B	X	298	298	0	%100
54	MP1B	7	.516	.516	Ő	%100
55	MP2B	x	.298	.298	0	%100
56	MP2B	Z	.516	.516	Ő	%100
57	MP3B	x	.298	.298	0	%100
			.200	.200		70100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	.516	.516	0	%100
59	MP4B	Х	.298	.298	0	%100
60	MP4B	Z	.516	.516	0	%100
61	MP3C	Х	.298	.298	0	%100
62	MP3C	Z	.516	.516	0	%100
63	M61	Х	.27	.27	0	%100
64	M61	Z	.468	.468	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	.27	.27	0	%100
68	M71	Z	.468	.468	0	%100
69	M82	Х	0	0	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	.343	.343	0	%100
72	M83	Z	.593	.593	0	%100
73	M84	Х	.343	.343	0	%100
74	M84	Z	.593	.593	0	%100
75	M86	Х	.254	.254	0	%100
76	M86	Z	.439	.439	0	%100
77	M88	Х	.627	.627	0	%100
78	M88	Z	1.086	1.086	0	%100
79	M90	Х	.254	.254	0	%100
80	M90	Z	.439	.439	0	%100
81	MP4C	Х	.298	.298	0	%100
82	MP4C	7	516	516	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	1.254	1.254	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	.791	.791	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	1.254	1.254	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	.791	.791	0	%100
9	M5	X	0	0	0	%100
10	M5	Z	0	0	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	.314	.314	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	3e-6	3e-6	0	%100
17	M11	Х	0	0	0	%100
18	M11	Z	.314	.314	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	.788	.788	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	.536	.536	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	.697	.697	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	.314	.314	0	%100
27	M18	X	0	0	0	%100
28	M18	Z	.788	.788	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	X	0	0	0	%100
30	M19	Z	.314	.314	0	%100
31	M20	X	0	0	0	%100
32	M20	Z	3e-6	3e-6	0	%100
33	M21	Х	0	0	0	%100
34	M21	Z	.536	.536	0	%100
35	M24	Х	0	0	0	%100
36	M24	Z	.697	.697	0	%100
37	MP1A	x	0	0	0	%100
38	MP1A	7	596	596	0	%100
30	MP2A	X	.000	0	0	%100
40	MP2A	7	596	596	0	%100
40	MD3A	×		.030	0	%100
41	MD2A	7	506	506	0	0/ 100
42			.590	.090	0	%100
43		~ 7	506	506	0	%100
44	NP4A	<u> </u>	.596	.390	0	%100
40	MPIC	~ ~ ~	0	0	0	%100
40	MP1C	<u> </u>	.596	.596	0	%100
47	MP2C	X	0	0	0	%100
48	MP2C	<u> </u>	.596	.596	0	%100
49	MP3CA	<u> </u>	0	0	0	%100
50	MP3CA	Z	.596	.596	0	%100
51	MP4CA	<u> </u>	0	0	0	%100
52	MP4CA	Z	.596	.596	0	%100
53	MP1B	X	0	0	0	%100
54	MP1B	Z	.596	.596	0	%100
55	MP2B	X	0	0	0	%100
56	MP2B	Z	.596	.596	0	%100
57	MP3B	X	0	0	0	%100
58	MP3B	Z	.596	.596	0	%100
59	MP4B	X	0	0	0	%100
60	MP4B	Z	.596	.596	0	%100
61	MP3C	X	0	0	0	%100
62	MP3C	Z	.596	.596	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	.721	.721	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	.18	.18	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	.18	.18	0	%100
69	M82	X	0	0	0	%100
70	M82	Z	.228	.228	0	%100
71	M83	X	0	0	0	%100
72	M83	7	228	228	0	%100
73	M84	x	0	0	0	%100
74	M84	7	914	914	0	%100
75	M86	×	0	0	0	%100
76	M86	7	258	258	0	%100
77	M88	×	.200	.200	0	%100
78	M88	7	1 005	1 005	0	%100
70	MOO	×	0	0	0	%100
80	MOO	~ 7	1 005	1.005	0	%100
<u>81</u>	MD4C	Z V	1.005	1.005	0	%100
82		~ 7	506	506	0	%100
02	IVIP4C	Δ	.590	.590	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

1	M1	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
2	M1	7	815	815	0	%100
3	M2	X	- 526	- 526	0	%100
1	M2	7	012	012	0	%100
5	M3	×	.312	.312	0	%100
5	M2	7	47	47	0	0/ 100
7	MA	× ×	122	122	0	%100
0	N/4	7	132	152	0	0/ 100
0	N/5		.229	.229	0	%100 9/ 100
10	N/5	~ 7	009	009	0	9/ 100
10	CIVI OM		.100	.100	0	%100
12	IVIO	~ 7	110	110	0	%100
12	IVIO MO		.201	.201	0	%100
13	NO NO	~ 7	47	47	0	%100
14	M10		.010	.010	0	%100
16	M10	~ 7	132	152	0	9/ 100
17	M11	<u> </u>	.229	.229	0	%100
10	M11	7	47	47	0	%100
10	M12	X	.013	.013	0	%100
20	M12	7	520	320	0	%100
20	M13	X	- 080	- 080	0	%100
21	M13	7	005	009	0	%100
22	M16	X	_ 116	- 116	0	%100
20	M16	7	201	201	0	%100
25	M17	×	.201	.201	0	%100
26	M17	7	0	0	0	%100
20	M18	×	_ 131	_ 131	0	%100
28	M18	7	227	227	0	%100
20	M10	×	.227	.227	0	%100
30	M19	7	0	0	0	%100
31	M20	X	- 131	- 131	0	%100
32	M20	7	227	227	0	%100
33	M21	X	- 357	- 357	0	%100
34	M21	7	619	619	0	%100
35	M24	X	- 465	- 465	0	%100
36	M24	7	805	805	0	%100
37	MP1A	x	- 298	- 298	0	%100
38	MP1A	7	516	516	0	%100
39	MP2A	x	- 298	- 298	0	%100
40	MP2A	7	516	516	0	%100
41	MP3A	X	298	298	0	%100
42	MP3A	Z	.516	.516	0	%100
43	MP4A	X	298	298	0	%100
44	MP4A	Z	.516	.516	0	%100
45	MP1C	X	298	298	0	%100
46	MP1C	Z	.516	.516	0	%100
47	MP2C	X	298	298	0	%100
48	MP2C	Z	.516	.516	0	%100
49	MP3CA	X	298	298	0	%100
50	MP3CA	Z	.516	.516	0	%100
51	MP4CA	Х	298	298	0	%100
52	MP4CA	Z	.516	.516	0	%100
53	MP1B	X	298	298	0	%100
54	MP1B	Z	.516	.516	0	%100
55	MP2B	X	298	298	0	%100
56	MP2B	Z	.516	.516	0	%100
57	MP3B	Х	298	298	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	.516	.516	0	%100
59	MP4B	Х	298	298	0	%100
60	MP4B	Z	.516	.516	0	%100
61	MP3C	Х	298	298	0	%100
62	MP3C	Z	.516	.516	0	%100
63	M61	Х	27	27	0	%100
64	M61	Z	.468	.468	0	%100
65	M66	Х	27	27	0	%100
66	M66	Z	.468	.468	0	%100
67	M71	Х	0	0	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	343	343	0	%100
70	M82	Z	.593	.593	0	%100
71	M83	Х	0	0	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	343	343	0	%100
74	M84	Z	.593	.593	0	%100
75	M86	Х	254	254	0	%100
76	M86	Z	.439	.439	0	%100
77	M88	Х	254	254	0	%100
78	M88	Z	.439	.439	0	%100
79	M90	Х	627	627	0	%100
80	M90	Z	1.086	1.086	0	%100
81	MP4C	X	298	298	0	%100
82	MP4C	7	.516	.516	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	272	272	0	%100
2	M1	Z	.157	.157	0	%100
3	M2	Х	683	683	0	%100
4	M2	Z	.394	.394	0	%100
5	M3	Х	272	272	0	%100
6	M3	Z	.157	.157	0	%100
7	M4	Х	-3e-6	-3e-6	0	%100
8	M4	Z	2e-6	2e-6	0	%100
9	M5	Х	464	464	0	%100
10	M5	Z	.268	.268	0	%100
11	M8	Х	604	604	0	%100
12	M8	Z	.349	.349	0	%100
13	M9	Х	-1.086	-1.086	0	%100
14	M9	Z	.627	.627	0	%100
15	M10	Х	685	685	0	%100
16	M10	Z	.396	.396	0	%100
17	M11	Х	-1.086	-1.086	0	%100
18	M11	Z	.627	.627	0	%100
19	M12	Х	685	685	0	%100
20	M12	Z	.396	.396	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	0	0	0	%100
23	M16	Х	0	0	0	%100
24	M16	Z	0	0	0	%100
25	M17	Х	272	272	0	%100
26	M17	Z	.157	.157	0	%100
27	M18	X	-3e-6	-3e-6	0	%100
28	M18	Z	2e-6	2e-6	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	X	272	272	0	%100
30	M19	Z	.157	.157	0	%100
31	M20	Х	683	683	0	%100
32	M20	Z	.394	.394	0	%100
33	M21	Х	464	464	0	%100
34	M21	Z	.268	.268	0	%100
35	M24	Х	604	604	0	%100
36	M24	Z	.349	.349	0	%100
37	MP1A	Х	516	516	0	%100
38	MP1A	Z	.298	.298	0	%100
39	MP2A	X	516	516	0	%100
40	MP2A	Z	.298	.298	0	%100
41	MP3A	X	516	516	0	%100
42	MP3A	Z	.298	.298	0	%100
43	MP4A	X	516	516	0	%100
44	MP4A	Z	.298	.298	0	%100
45	MP1C	X	516	516	0	%100
46	MP1C	Z	.298	.298	0	%100
47	MP2C	x	516	516	0	%100
48	MP2C	7	298	298	0	%100
49	MP3CA	x	- 516	- 516	0	%100
50	MP3CA	7	298	298	0	%100
51	MP4CA	x	- 516	- 516	0	%100
52	MP4CA	7	298	298	0	%100
53	MP1B	x	- 516	- 516	0	%100
54	MP1B	7	298	298	Ő	%100
55	MP2B	X	- 516	- 516	0	%100
56	MP2B	7	298	298	0	%100
57	MP3B	x	- 516	- 516	0	%100
58	MP3B	7	298	298	0	%100
59	MP4B	X	- 516	- 516	0	%100
60	MP4B	7	298	298	0	%100
61	MP3C	x	- 516	- 516	0	%100
62	MP3C	7	298	298	0	%100
63	M61	X	- 156	- 156	0	%100
64	M61	7	.100	.100	0	%100
65	M66	X	- 624	- 624	0	%100
66	M66	7	361	361	0	%100
67	M71	X	- 156	- 156	0	%100
68	M71	7	09	09	0	%100
69	M82	X	- 791	- 791	0	%100
70	M82	7	457	457	Ő	%100
71	M83	X	- 198	- 198	0	%100
72	M83	7	114	114	0	%100
73	M84	X	_ 108	_ 108	0	%100
74	M84	7	114	114	0	%100
75	M86	X	- 87	- 87	0	%100
76	M86	7	07	07	0	%100
77	M88	×	- 224	- 224	0	%100
79	M88	7	120	120	0	%100
70	MOO	×	_ 27	_ 87	0	%100
80	MQO	7	07	07	0	%100
81	MP/C	×	- 516	- 516	0	%100
82	MP4C	7	010	010	0	%100
02	IVIE 40		.290	.290	U	/0100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

Nov 12, 2021 10:16 AM Checked By:___

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	M1	X	0	0	0	%100
3 M2 X -262 -262 0 0 0 3100 5 M3 X 0 0 0 0 3100 6 M3 Z 0 0 0 3100 7 M4 X -262 -262 0 3100 9 M5 X -715 -715 0 3100 10 M5 Z 0 0 0 3100 11 M8 Z -933 0 3100 3100 113 M9 X -9411 -9411 0 3100 13 M9 Z 0 0 0 3100 14 M9 Z 0 0 0 3100 14 M9 Z 0 0 0 3100 15 M10 Z 0 0 0 3100	2	M1	Z	0	0	0	%100
4 M2 Z 0 0 0 9 9400 5 M3 Z 0 0 0 0 94100 6 M3 Z 0 0 0 94100 9 M5 X -715 -715 0 94100 9 M5 X -715 -715 0 94100 10 M5 Z 0 0 0 94100 11 M8 X -93 -93 0 94100 12 M8 Z 0 0 0 9410 94100 13 M9 X -941 -941 0 94100 94100 16 M10 Z 0 0 0 94100 94100 20 M12 X -265 -265 0 94100 21 M13 X -179 -179 0 94100	3	M2	Х	262	262	0	%100
	4	M2	Z	0	0	0	%100
6 M3 2 0 0 0 9 9 7 M4 X -262 0 9 100 9 M5 X -715 -715 0 9 100 10 M5 Z 0 0 0 9 100 100 100 100 100 <td>5</td> <td>M3</td> <td>X</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	5	M3	X	0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	M3	7	0	0	0	%100
1 1	7	MA	X	- 262	- 262	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	MA	7	.202	.202	0	%100
3 M0 X 2.710 0.710 0.710 0.710 0.710 0.710 10 M5 Z 0 0 0 0.9100 11 M8 X 931 933 0 0.9100 12 M8 Z 0 0 0 0.9100 13 M9 X 9411 9411 0 0.91000 14 M9 Z 0 0 0 0.910000 16 M10 X -1.053 -1.053 0 $0.9100000000000000000000000000000000000$	0	N4	×	715	715	0	%100
10 M3 2 0 0 0 0 7100 11 M8 X -93 -93 0 %100 12 M8 Z 0 0 0 0 %100 13 M9 X -941 -941 0 %100 14 M9 Z 0 0 0 0 %100 15 M10 X -1053 0 %100 %100 15 M11 Z 0 0 0 %100 18 M11 Z 0 0 0 %100 20 M12 Z 0 0 0 %100 21 M13 X -179 -179 0 %100 23 M16 X -232 -232 0 0 %100 25 M17 Z 0 0 0 %100 %100 26 </td <td>10</td> <td>N</td> <td>~ 7</td> <td>715</td> <td>715</td> <td>0</td> <td>⁷⁰100</td>	10	N	~ 7	715	715	0	⁷⁰ 100
11 M8 X 93 93 0 700 12 M8 Z 0 0 0 %100 13 M9 X 941 941 0 %100 14 M9 Z 0 0 0 %100 14 M9 Z 0 0 0 %100 15 M10 X -1053 -1053 0 %100 16 M11 Z 0.941 0 %100 %100 19 M12 Z -265 -265 0 %100 20 M12 Z 0 0 0 %100 21 M13 X <t-179< td=""> 0 %100 %100 23 M16 Z 0 0 0 %100 24 M16 Z 0 0 0 %100 25 M17 X -241 -941</t-179<>	10			0	0	0	⁷⁰ 100
12 M8 2 0 0 0 0 9%100 14 M9 Z 0 0 0 0 %100 15 M10 X -1.053 0 %100 16 M10 Z 0 0 0 0 %100 17 M11 X -5941 0 0 %100 %100 18 M11 Z -0.265 265 0 %100 20 M12 Z 0 0 0 %100 21 M13 X 179 179 0 %100 23 M16 X 232 232 0 %100 24 M16 Z 0 0 0 %100 26 M17 X 941 941 0 %100 26 M18 X 265 265 0 %100 28 <	10	IV18	× 7	93	93	0	%100
13 M9 X 941 941 0 $\%100$ 14 M9 Z 0 0 0 %100 15 M10 X -1.053 0 $\%100$ 16 M10 Z 0 0 0 $\%100$ 18 M11 Z 0 0 0 $\%100$ 19 M12 X 265 0.255 0 $\%100$ 20 M12 Z 265 0.560 $\%100$ 21 M13 X 179 0.5722 0.525 0.5760 $\%100$ 23 M16 X 232 232 0.5320 $\%100$ 24 M16 Z 0.0 0.0 $\%100$ $\%100$ 25 M17 Z 0.0 0.0 $\%100$ $\%100$ 26 M17 Z 0.0 0.0 $\%100$ $\%100$	12	INI8	Ζ	0	0	0	%100
14 M9 Z 0 0 0 %100 15 M10 X -1.053 -1.053 0 %100 16 M10 Z 0 0 0 %100 17 M11 X 941 .941 0 %100 18 M11 Z 0 0 0 %100 20 M12 X 265 265 0 %100 21 M13 X 179 179 0 %100 22 M16 X 232 232 0 %100 24 M16 Z 0 0 0 %100 25 M17 X 941 941 0 %100 26 M17 Z 0 0 0 %100 26 M18 X 265 265 0 %100 30 M19 Z 0	13	M9	X	941	941	0	%100
15 M10 X -1.053 -1.053 0 %100 16 M10 Z 0 0 0 %100 17 M11 X 941 941 0 %100 19 M12 X 265 0 %100 20 M12 Z 0 0 0 %100 21 M13 X 179 0.179 0 %100 22 M13 Z 0 0 0 %100 24 M16 X 232 232 0 %100 25 M17 X 941 941 0 %100 26 M17 Z 0 0 0 %100 28 M18 Z 0 0 0 %100 30 M19 Z 0 0 0 %100 32 M20 Z 0 0 0 %100 33 M21 X 179 0 %100	14	M9	Z	0	0	0	%100
16 M10 Z 0 0 0 %100 17 M11 X $\cdot \cdot $	15	M10	X	-1.053	-1.053	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	M10	Z	0	0	0	%100
18 M11 Z 0 0 0 %100 20 M12 Z 0 0 0 %100 21 M13 X 179 179 0 %100 22 M13 Z 0 0 0 %100 23 M16 X 232 232 0 %100 24 M16 Z 0 0 0 %100 25 M17 X 941 941 0 %100 26 M17 Z 0 0 0 %100 27 M18 X 265 265 0 %100 28 M18 Z 0 0 0 %100 31 M20 X -1.053 -1.053 0 %100 32 M20 Z 0 0 0 %100 33 M21 X 179 -	17	M11	X	941	941	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18	M11	Z	0	0	0	%100
20 M12 Z 0 0 0 %100 21 M13 X 179 179 0 %100 22 M13 Z 0 0 0 %100 23 M16 X 232 232 0 %100 24 M16 Z 0 0 0 %100 25 M17 X 941 941 0 %100 26 M17 Z 0 0 0 %100 26 M18 X 265 265 0 %100 28 M18 Z 0 0 0 %100 30 M19 Z 0 0 0 %100 31 M20 Z 0 0 0 %100 33 M21 X 179 179 0 %100 34 M21 Z 0 0	19	M12	X	265	265	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	M12	Z	0	0	0	%100
22 M13 Z 0 0 0 0 %100 23 23 M16 X -232 -232 0 $\%100$ 24 24 M16 Z 0 0 0 $\%100$ 25 M17 X -941 -941 0 $\%100$ 26 M17 Z 0 0 0 $\%100$ 26 M18 X -265 -265 0 $\%100$ 28 M18 Z 0 0 0 $\%100$ 29 M19 Z 0 0 0 $\%100$ 31 M20 X -1.053 -1.053 0 $\%100$ 32 M21 X -179 -179 0 $\%100$ 34 M21 Z 0 0 0 $\%100$ 35 M24 X -596 -596 0 $\%100$ 36 <td>21</td> <td>M13</td> <td>X</td> <td>179</td> <td>179</td> <td>0</td> <td>%100</td>	21	M13	X	179	179	0	%100
23 M16 X -232 -232 0 $\%100$ 24 M16 Z 0 0 0 9%100 26 M17 X -941 -941 0 9%100 26 M17 Z 0 0 0 9%100 26 M17 Z 0 0 0 9%100 27 M18 X -265 -265 0 %100 29 M19 X -941 -941 0 9%100 30 M20 X -1053 0 9%100 32 M20 Z 0 0 0 9%100 33 M21 X -179 -179 0 9%100 35 M24 Z 0 0 0 9%100 36 M24 Z 0 0 0 9%100 38 MP1A X -596	22	M13	Z	0	0	0	%100
24 M16 Z 0 0 0 0 %100 25 M17 X 941 .941 0 %100 26 M17 Z 0 0 0 %100 27 M18 X 265 265 0 %100 28 M18 Z 0 0 0 %100 29 M19 X 941 941 0 %100 30 M19 Z 0 0 0 %100 31 M20 Z 0 0 0 %100 33 M21 X 179 179 0 %100 34 M21 Z 0 0 0 %100 36 M24 Z 0 0 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A Z 0	23	M16	x	- 232	- 232	0	%100
25 M10 Z -941 -941 0 $%100$ 26 M17 Z 0 0 0 0 $%100$ 27 M18 X -265 -265 0 $%100$ 28 M18 Z 0 0 0 $%100$ 29 M19 X 9411 9411 0 $%100$ 30 M19 Z 0 0 0 $%100$ 31 M20 X -1.053 -1.053 0 $%100$ 32 M20 Z 0 0 0 $%100$ 34 M21 Z 0 0 0 $%100$ 35 M24 X 232 232 0 $%100$ 36 M24 Z 0 0 0 $%100$ 38 MP1A Z 0 0 0 <td>24</td> <td>M16</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	24	M16	7	0	0	0	%100
26 M17 Z 0 <td>25</td> <td>M10</td> <td>X</td> <td>- 941</td> <td>- 941</td> <td>0</td> <td>%100</td>	25	M10	X	- 941	- 941	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	M17	7	0	0	0	%100
27 M18 X -263 0 7000 28 M18 Z 0 0 0 %100 29 M19 X -941 -941 0 %100 30 M19 Z 0 0 0 %100 31 M20 X -1053 -1053 0 %100 32 M20 Z 0 0 0 %100 33 M21 X 179 0 %100 34 M21 Z 0 0 0 %100 36 M24 X 232 232 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 596 596 0 %100 41 MP3A X 596 596 0 %100 43 MP4A X 596 <t< td=""><td>20</td><td>N/19</td><td>×</td><td>265</td><td>265</td><td>0</td><td>0/ 100</td></t<>	20	N/19	×	265	265	0	0/ 100
20 M10 Z 0 0 0 7000 30 M19 Z 0 0 0 94100 31 M20 X -1.053 0 0 0 32 M20 Z 0 0 0 0 $%100$ 33 M21 X 179 179 0 $%100$ 34 M21 Z 0 0 0 $%100$ 35 M24 X 232 232 0 $%100$ 36 M24 Z 0 0 0 $%100$ 37 MP1A X 596 596 0 $%100$ 38 MP2A Z 0 0 0 $%100$ 41 MP3A Z 0 0 $%100$ $%100$ 42 MP3A Z 0 0 $%100$	21		~ 7	205	205	0	0/100
29M19X 941 941 941 0 $%100$ 30M19Z000%10031M20X -1.053 -1.053 0%10032M20Z000%10033M21X 179 179 0%10034M21Z000%10035M24X 232 232 0%10036M24Z000%10037MP1AX 596 596 0%10039MP2AX 596 596 0%10040MP2AZ000%10041MP3AX 596 596 0%10043MP4AX 596 596 0%10044MP4AZ000%10045MP1CX 596 596 0%10046MP1CZ000%10047MP2CZ000%10048MP2CZ000%10050MP3CAZ000%10051MP4CAZ000%10052MP4CAZ000%10054MP1BX 596 596 0%100 <t< td=""><td>20</td><td>N10</td><td></td><td>011</td><td>041</td><td>0</td><td>% 100 9/ 100</td></t<>	20	N10		011	041	0	% 100 9/ 100
30 M19 Z 0 0 0 %100 31 M20 X -1.053 -1.053 0 %100 32 M20 Z 0 0 0 %100 33 M21 X 179 179 0 %100 34 M21 Z 0 0 0 %100 35 M24 X 232 232 0 %100 36 M24 Z 0 0 0 %100 37 MP1A X 596 596 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 596 596 0 %100 41 MP3A X 596 596 0 %100 42 MP3A Z 0 0 0 %100 44 MP4A Z 0	29	M19	× 7	941	941	0	%100
31M20X-1.053-1.0530 $\%100$ 32M20Z0000%10033M21X1791790%10034M21Z0000%10035M24X2322320%10036M24Z000%10037MP1AX5965960%10038MP1AZ000%10039MP2AX5965960%10040MP2AZ000%10041MP3AX5965960%10042MP3AZ000%10043MP4AX5965960%10044MP4AZ000%10045MP1CX5965960%10046MP1CZ000%10048MP2CZ000%10050MP3CAX5965960%10051MP4CAZ000%10053MP1BX5965960%10054MP2BZ000%10055MP2BZ000%10056MP2BZ0 </td <td>30</td> <td>M19</td> <td>Z</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	30	M19	Z	0	0	0	%100
32M20Z000%100 33 M21X1791790%100 34 M21Z000%100 35 M24X2322320%100 36 M24Z000%100 37 MP1AX5965960%100 38 MP1AZ000%100 39 MP2AX5965960%100 40 MP2AZ000%100 41 MP3AZ000%100 42 MP3AZ000%100 44 MP4AX5965960%100 44 MP4AZ000%100 45 MP1CZ000%100 46 MP1CZ000%100 47 MP2CX5965960%100 48 MP2CZ000%100 50 MP3CAX5965960%100 51 MP4CAX5965960%100 53 MP1BX5965960%100 55 MP2BZ000%100 56 MP2BZ000%100 56 MP2B <t< td=""><td>31</td><td>M20</td><td>X</td><td>-1.053</td><td>-1.053</td><td>0</td><td>%100</td></t<>	31	M20	X	-1.053	-1.053	0	%100
33 M21 X 1/9 1/9 0 %100 34 M21 Z 0 0 0 0 %100 35 M24 X 232 .232 0 %100 36 M24 Z 0 0 0 %100 37 MP1A X 596 .596 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 596 .596 0 %100 40 MP3A Z 0 0 0 %100 41 MP3A X 596 .596 0 %100 43 MP4A X 596 .596 0 %100 45 MP1C X .596 .596 0 %100 44 MP4A Z 0 0 0 %100 48 MP2C Z	32	M20		0	0	0	%100
34M21Z000 $\%100$ 35M24X2322320 $\%100$ 36M24Z0009 $\%100$ 37MP1AX5965960 $\%100$ 38MP1AZ000 $\%100$ 39MP2AX5965960 $\%100$ 40MP2AZ000 $\%100$ 41MP3AX5965960 $\%100$ 42MP3AZ000 $\%100$ 43MP4AX5965960 $\%100$ 44MP4AZ000 $\%100$ 45MP1CX5965960 $\%100$ 46MP1CZ000 $\%100$ 47MP2CZ000 $\%100$ 48MP2CZ000 $\%100$ 49MP3CAX5965960 $\%100$ 50MP3CAZ000 $\%100$ 51MP4CAZ000 $\%100$ 52MP4CAZ000 $\%100$ 54MP1BZ000 $\%100$ 55MP2BZ000 $\%100$ 56MP2BZ000 $\%100$	33	<u>M21</u>	X	1/9	179	0	%100
35 M24 X 232 232 0 %100 36 M24 Z 0 0 0 0 %100 37 MP1A X 596 596 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 596 596 0 %100 40 MP2A Z 0 0 0 %100 41 MP3A X 596 596 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 596 596 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 %100 48 MP2C Z	34	M21	Z	0	0	0	%100
36M24Z000 $%100$ 37 MP1AX 596 596 0 $%100$ 38 MP1AZ000 $%100$ 39 MP2AX 596 596 0 $%100$ 40 MP2AZ000 $%100$ 41 MP3AX 596 596 0 $%100$ 42 MP3AZ000 $%100$ 43 MP4AX 596 596 0 $%100$ 44 MP4AZ000 $%100$ 45 MP1CX 596 596 0 $%100$ 46 MP1CZ000 $%100$ 47 MP2CX 596 596 0 $%100$ 48 MP2CZ000 $%100$ 49 MP3CAX 596 596 0 $%100$ 50 MP3CAZ000 $%100$ 51 MP4CAZ000 $%100$ 52 MP4CAZ000 $%100$ 53 MP1BX 596 596 0 $%100$ 54 MP2BX 596 596 0 $%100$ 55 MP2BX 596 596 0 $%100$ 56 MP2BZ000 $%100$	35	M24	X	232	232	0	%100
37 MP1A X 596 596 0 %100 38 MP1A Z 0 0 0 %100 39 MP2A X 596 596 0 %100 40 MP2A Z 0 0 0 %100 41 MP3A X 596 596 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 596 596 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 596 596 0 %100 50 MP3CA X 596 0 %100 %100 51 MP4CA Z <	36	M24	Z	0	0	0	%100
38 MP1A Z 0 0 0 %100 39 MP2A X 596 596 0 %100 40 MP2A Z 0 0 0 %100 41 MP3A X 596 596 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 596 596 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C Z 0 0 %100 %100 48 MP2C Z 0 0 %100 %100 50 MP3CA X 596 596 0 %100 51 MP4CA Z 0	37	MP1A	Х	596	596	0	%100
39 MP2A X 596 596 0 %100 40 MP2A Z 0 0 0 %100 41 MP3A X 596 596 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 596 596 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 596 596 0 %100 45 MP1C X 596 0 %100 46 MP1C Z 0 0 %100 47 MP2C X 596 596 0 %100 48 MP2C Z 0 0 %100 %100 50 MP3CA X 596 596 0 %100 51 MP4CA Z 0 0 <	38	MP1A	Z	0	0	0	%100
40 MP2A Z 0 0 0 %100 41 MP3A X 596 596 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 596 596 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C Z 0 0 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 596 596 0 %100 52 MP4CA Z 0	39	MP2A	Х	596	596	0	%100
41 MP3A X 596 596 0 %100 42 MP3A Z 0 0 0 %100 43 MP4A X 596 596 0 %100 44 MP4A Z 0 0 0 %100 44 MP4A Z 0 0 0 %100 45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 596 596 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 596 596 0 %100 52 MP4CA Z 0<	40	MP2A	Z	0	0	0	%100
42 MP3A Z 0 0 0 0 %100 43 MP4A X 596 596 0 %100 44 MP4A Z 0 0 0 0 %100 44 MP4A Z 0 0 0 0 %100 45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 %100 46 MP2C Z 0 0 0 %100 47 MP2C Z 0 0 0 %100 48 MP2C Z 0 0 0 %100 50 MP3CA X 596 596 0 %100 51 MP4CA X 596 596 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1	41	MP3A	Х	596	596	0	%100
43 MP4A X 596 596 0 %100 44 MP4A Z 0 0 0 0 %100 45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C Z 0 0 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA Z 0 0 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 56 MP2B Z <td< td=""><td>42</td><td>MP3A</td><td>Z</td><td>0</td><td>0</td><td>0</td><td>%100</td></td<>	42	MP3A	Z	0	0	0	%100
44 MP4A Z 0 0 0 0 0 %100 45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 596 596 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA Z 0 0 %100 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 56 <td< td=""><td>43</td><td>MP4A</td><td>Х</td><td>596</td><td>596</td><td>0</td><td>%100</td></td<>	43	MP4A	Х	596	596	0	%100
45 MP1C X 596 596 0 %100 46 MP1C Z 0 0 0 %100 47 MP2C X 596 596 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA Z 0 0 %100 %100 52 MP4CA Z 0 0 %100 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 %100 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100	44	MP4A	7	0	0	0	%100
46 MP1C Z 0 0 0 0 %100 47 47 MP2C X 596 596 0 %100 48 MP2C Z 0 0 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA X 596 596 0 %100 50 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 596 596 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100 %100 %100 %100 </td <td>45</td> <td>MP1C</td> <td>x</td> <td>- 596</td> <td>- 596</td> <td>0</td> <td>%100</td>	45	MP1C	x	- 596	- 596	0	%100
47 MP2C X 596 596 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA X 596 596 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA Z 0 0 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100	46	MP1C	7	0	0	Ő	%100
Him 20 X 330 330 0 %100 48 MP2C Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA Z 0 0 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100	40	MP2C	×	- 596	- 596	0	%100
+0 M120 Z 0 0 0 %100 49 MP3CA X 596 596 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 596 596 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100	19	MD2C	7	000	080	0	%100
45 MILSOR X 590 390 0 %100 50 MP3CA Z 0 0 0 %100 51 MP4CA X 596 596 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100	40	MD2CA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	506	506	0	% 100
50 MP3CA Z 0 0 0 %100 51 MP4CA X 596 596 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100	49	MD2CA	~ 7	090	090	0	0/ 100
51 MP4CA X 596 0 %100 52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100	50	MDACA		EOC	500	0	%100
52 MP4CA Z 0 0 0 %100 53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100	51	IVIP4CA	Χ	596	596	0	%100
53 MP1B X 596 596 0 %100 54 MP1B Z 0 0 0 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100	52	MP4CA	Z	0	0	0	%100
54 MP1B Z 0 0 %100 55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 0 %100	53	MP1B	X	596	596	0	%100
55 MP2B X 596 596 0 %100 56 MP2B Z 0 0 %100	54	MP1B	Z	0	0	0	%100
56 MP2B Z 0 0 0 %100	55	MP2B	X	596	596	0	%100
	56	MP2B	Z	0	0	0	%100
57 MP3B X596596 0 %100	57	MP3B	X	596	596	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	0	0	0	%100
59	MP4B	Х	596	596	0	%100
60	MP4B	Z	0	0	0	%100
61	MP3C	Х	596	596	0	%100
62	MP3C	Z	0	0	0	%100
63	M61	Х	0	0	0	%100
64	M61	Z	0	0	0	%100
65	M66	Х	541	541	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	541	541	0	%100
68	M71	Z	0	0	0	%100
69	M82	Х	685	685	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	685	685	0	%100
72	M83	Z	0	0	0	%100
73	M84	Х	0	0	0	%100
74	M84	Z	0	0	0	%100
75	M86	Х	-1.254	-1.254	0	%100
76	M86	Z	0	0	0	%100
77	M88	Х	507	507	0	%100
78	M88	Z	0	0	0	%100
79	M90	Х	507	507	0	%100
80	M90	Z	0	0	0	%100
81	MP4C	Х	596	596	0	%100
82	MP4C	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	272	272	0	%100
2	M1	Z	157	157	0	%100
3	M2	X	-3e-6	-3e-6	0	%100
4	M2	Z	-2e-6	-2e-6	0	%100
5	M3	Х	272	272	0	%100
6	M3	Z	157	157	0	%100
7	M4	X	683	683	0	%100
8	M4	Z	394	394	0	%100
9	M5	Х	464	464	0	%100
10	M5	Z	268	268	0	%100
11	M8	X	604	604	0	%100
12	M8	Z	349	349	0	%100
13	M9	X	272	272	0	%100
14	M9	Z	157	157	0	%100
15	M10	X	683	683	0	%100
16	M10	Z	394	394	0	%100
17	M11	Х	272	272	0	%100
18	M11	Z	157	157	0	%100
19	M12	Х	-3e-6	-3e-6	0	%100
20	M12	Z	-2e-6	-2e-6	0	%100
21	M13	X	464	464	0	%100
22	M13	Z	268	268	0	%100
23	M16	X	604	604	0	%100
24	M16	Z	349	349	0	%100
25	M17	X	-1.086	-1.086	0	%100
26	M17	Z	627	627	0	%100
27	M18	X	685	685	0	%100
28	M18	Z	396	396	0	%100

Nov 12, 2021 10:16 AM Checked By:___

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M19	Х	-1.086	-1.086	0	%100
30	M19	Z	627	627	0	%100
31	M20	Х	685	685	0	%100
32	M20	Z	396	396	0	%100
33	M21	Х	0	0	0	%100
34	M21	Z	0	0	0	%100
35	M24	X	0	0	0	%100
36	M24	Z	0	0	0	%100
37	MP1A	X	516	516	0	%100
38	MP1A	Z	298	298	0	%100
39	MP2A	X	516	516	0	%100
40	MP2A	Z	298	298	0	%100
41	MP3A	X	516	516	0	%100
42	MP3A	Z	298	298	0	%100
43	MP4A	X	516	516	0	%100
44	MP4A	Z	298	298	0	%100
45	MP1C	X	516	516	0	%100
46	MP1C	Z	298	298	0	%100
47	MP2C	X	516	516	0	%100
48	MP2C	Z	298	298	0	%100
49	MP3CA	X	516	516	0	%100
50	MP3CA	Z	298	298	0	%100
51	MP4CA	X	516	516	0	%100
52	MP4CA	Z	298	298	0	%100
53	MP1B	X	516	516	0	%100
54	MP1B	Z	298	298	0	%100
55	MP2B	X	516	516	0	%100
56	MP2B	Z	298	298	0	%100
57	MP3B	X	516	516	0	%100
58	MP3B	Z	298	298	0	%100
59	MP4B	<u> </u>	516	516	0	%100
60	MP4B		298	298	0	%100
61	MP3C	X	516	516	0	%100
62	MP3C		298	298	0	%100
63	M61	X	156	156	0	%100
64	M61	<u> </u>	09	09	0	%100
60	NICO NICO	× 7	150	100	0	%100
67	NIDO NIZI	<u> </u>	09	09	0	%100
69		∧ 7	024	024	0	% TUU 9/ 100
00	IVI7 I MOD		301	301	0	%100
70		~ 7	190	190	0	%100
70		Z V	114	114	0	%100
72	IVIOJ MOD	~ 7	191	191	0	% 100
72	M84	Z V	407	457	0	%100
73	M84	7	190	190	0	%100
75	MQG	Z V	114	114	0	%100
76	M86	7	07	07	0	%100
77	M88	×	303	005	0	%100
78	M88	7	- 503	- 503	0	%100
79	MQO	X	- 224	- 224	0	%100
80	MQO	7	_ 129	- 129	0	%100
81	MP4C	×	- 516	- 516	0	%100
82	MP4C	7	- 298	- 298	0	%100
02		_	.200	.200	J	70100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

Nov 12, 2021 10:16 AM Checked By:___

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

1	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
2	M1	7	_ 815	- 815	0	%100
2	M2	× ×	010	- 132	0	%100
3		7	152	132	0	%100
4			229	229	0	9/ 100
5	1/13	~ ~	47	47	0	%100
6	MI3	<u> </u>	815	815	0	%100
/	M4	X	526	526	0	%100
8	M4		912	912	0	%100
9	<u>M5</u>	<u> </u>	089	089	0	%100
10	M5	Z	155	155	0	%100
11	M8	X	116	116	0	%100
12	M8	Z	201	201	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	0	0	0	%100
15	M10	Х	131	131	0	%100
16	M10	Z	227	227	0	%100
17	M11	Х	0	0	0	%100
18	M11	Z	0	0	0	%100
19	M12	Х	131	131	0	%100
20	M12	Z	227	227	0	%100
21	M13	x	- 357	- 357	0	%100
22	M13	7	- 619	- 619	0 0	%100
23	M16	x	- 465	- 465	0	%100
24	M16	7	- 805	- 805	0 0	%100
25	M10	X	- 47	.000	0	%100
26	N17	7	_ 815	_ 815	0	%100
20	N/19	×	013	013	0	%100 9/ 100
21		~ 7	520	520	0	9/ 100
20	N110	<u> </u>	912	912	0	%100
29	M19	~ ~	47	47	0	%100
30	M19	<u> </u>	815	815	0	%100
31	M20	X	132	132	0	%100
32	M20		229	229	0	%100
33	M21	X	089	089	0	%100
34	M21	<u> </u>	155	155	0	%100
35	M24	<u> </u>	116	116	0	%100
36	M24	Z	201	201	0	%100
37	MP1A	X	298	298	0	%100
38	MP1A	Z	516	516	0	%100
39	MP2A	X	298	298	0	%100
40	MP2A	Z	516	516	0	%100
41	MP3A	X	298	298	0	%100
42	MP3A	Z	516	516	0	%100
43	MP4A	X	298	298	0	%100
44	MP4A	Z	516	516	0	%100
45	MP1C	X	298	298	0	%100
46	MP1C	Z	516	516	0	%100
47	MP2C	X	298	298	0	%100
48	MP2C	Z	516	516	0	%100
49	MP3CA	X	298	298	0	%100
50	MP3CA	Z	516	516	0	%100
51	MP4CA	Х	298	298	0	%100
52	MP4CA	Z	516	516	0	%100
53	MP1B	X	298	298	0	%100
54	MP1B	Z	516	516	0	%100
55	MP2B	X	298	298	0	%100
56	MP2B	Z	516	516	0	%100
57	MP3B	X	- 298	- 298	0	%100
			.200	.200	~	70100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	MP3B	Z	516	516	0	%100
59	MP4B	Х	298	298	0	%100
60	MP4B	Z	516	516	0	%100
61	MP3C	Х	298	298	0	%100
62	MP3C	Z	516	516	0	%100
63	M61	Х	27	27	0	%100
64	M61	Z	468	468	0	%100
65	M66	Х	0	0	0	%100
66	M66	Z	0	0	0	%100
67	M71	Х	27	27	0	%100
68	M71	Z	468	468	0	%100
69	M82	Х	0	0	0	%100
70	M82	Z	0	0	0	%100
71	M83	Х	343	343	0	%100
72	M83	Z	593	593	0	%100
73	M84	Х	343	343	0	%100
74	M84	Z	593	593	0	%100
75	M86	Х	254	254	0	%100
76	M86	Z	439	439	0	%100
77	M88	Х	627	627	0	%100
78	M88	Z	-1.086	-1.086	0	%100
79	M90	Х	254	254	0	%100
80	M90	Z	439	439	0	%100
81	MP4C	Х	298	298	0	%100
82	MP4C	7	- 516	- 516	0	%100

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Y	098	-2.901	0	2
2	M1	Y	-2.901	-4.745	2	4
3	M1	Y	-4.745	-4.48	4	6
4	M1	Y	-4.48	-4.48	6	8
5	M1	Y	-4.48	-4.745	8	10
6	M1	Y	-4.745	-2.901	10	12
7	M1	Y	-2.901	098	12	14
8	M2	Y	48	-2.341	0	1.923
9	M2	Y	-2.341	-4.202	1.923	3.845
10	M3	Y	-4.861	-4.861	.013	7.32
11	M4	Y	-4.202	-2.341	0	1.923
12	M4	Y	-2.341	48	1.923	3.845
13	M9	Y	989	-2.531	0	2.333
14	M9	Y	-2.531	-4.53	2.333	4.667
15	M9	Y	-4.53	-5.758	4.667	7
16	M9	Y	-5.758	-4.53	7	9.333
17	M9	Y	-4.53	-2.531	9.333	11.667
18	M9	Y	-2.531	989	11.667	14
19	M10	Y	48	-2.341	0	1.923
20	M10	Y	-2.341	-4.202	1.923	3.845
21	M11	Υ	-4.861	-4.861	.013	7.32
22	M12	Y	-4.202	-2.341	0	1.923
23	M12	Y	-2.341	48	1.923	3.845
24	M17	Y	989	-2.531	0	2.333
25	M17	Y	-2.531	-4.53	2.333	4.667
26	M17	Y	-4.53	-5.758	4.667	7
27	M17	Y	-5.758	-4.53	7	9.333
28	M17	Y	-4.53	-2.531	9.333	11.667

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
29	M17	Y	-2.531	989	11.667	14
30	M18	Y	48	-2.341	0	1.923
31	M18	Y	-2.341	-4.202	1.923	3.845
32	M19	Y	-4.861	-4.861	.013	7.32
33	M20	Y	-4.202	-2.341	0	1.923
34	M20	Y	-2.341	48	1.923	3.845

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Y	307	-9.109	0	2
2	M1	Y	-9.109	-14.899	2	4
3	M1	Y	-14.899	-14.066	4	6
4	M1	Y	-14.066	-14.066	6	8
5	M1	Y	-14.066	-14.899	8	10
6	M1	Y	-14.899	-9.109	10	12
7	M1	Y	-9.109	307	12	14
8	M2	Y	-1.508	-7.351	0	1.923
9	M2	Y	-7.351	-13.193	1.923	3.845
10	M3	Y	-15.265	-15.265	.013	7.32
11	M4	Y	-13.193	-7.351	0	1.923
12	M4	Y	-7.351	-1.508	1.923	3.845
13	M9	Y	-3.106	-7.949	0	2.333
14	M9	Y	-7.949	-14.225	2.333	4.667
15	M9	Y	-14.225	-18.08	4.667	7
16	M9	Y	-18.08	-14.225	7	9.333
17	M9	Y	-14.225	-7.949	9.333	11.667
18	M9	Y	-7.949	-3.106	11.667	14
19	M10	Y	-1.508	-7.351	0	1.923
20	M10	Y	-7.351	-13.193	1.923	3.845
21	M11	Y	-15.265	-15.265	.013	7.32
22	M12	Y	-13.193	-7.351	0	1.923
23	M12	Y	-7.351	-1.508	1.923	3.845
24	M17	Y	-3.106	-7.949	0	2.333
25	M17	Y	-7.949	-14.225	2.333	4.667
26	M17	Y	-14.225	-18.08	4.667	7
27	M17	Y	-18.08	-14.225	7	9.333
28	M17	Y	-14.225	-7.949	9.333	11.667
29	M17	Y	-7.949	-3.106	11.667	14
30	M18	Y	-1.508	-7.351	0	1.923
31	M18	Y	-7.351	-13.193	1.923	3.845
32	M19	Y	-15.265	-15.265	.013	7.32
33	M20	Y	-13.193	-7.351	0	1.923
34	M20	Y	-7.351	-1.508	1.923	3.845

Member Area Loads (BLC 39 : Structure D)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N3	N6	N5	N2	Y	Two Way	005
2	N13	N16	N15	N12	Y	Two Way	005
3	N23	N26A	N25	N22	Y	Two Way	005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N3	N6	N5	N2	Y	Two Way	016
2	N13	N16	N15	N12	Y	Two Way	016

Member Area Loads (BLC 40 : Structure Di) (Continue

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
3	N23	N26A	N25	N22	Y	Two Way	016

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N7	max	2215.923	9	1596.446	21	1231.657	1	-1.094	2	1.787	9	.298	3
2		min	-2393.448	3	516.709	3	-1228.814	7	-3.908	20	-1.919	3	451	45
3	N17	max	1709.026	10	1623.831	17	1938.716	1	1.827	13	1.763	5	3.645	17
4		min	-1760.594	4	530.822	12	-2132.1	7	.352	7	-1.634	11	.897	11
5	N27	max	1579.417	10	1635.474	24	2043.176	1	2.187	13	1.602	12	959	4
6		min	-1586.174	4	512.715	42	-2055.128	7	.376	6	-1.61	6	-3.427	22
7	N134	max	58.379	10	1418.214	13	-948.273	7	0	51	0	4	0	10
8		min	-58.364	4	372.263	7	-3635.545	13	0	1	0	10	0	4
9	N136	max	-899.341	3	1534.507	21	1976.309	21	0	18	0	48	0	48
10		min	-3423.439	21	405.452	3	519.387	3	001	48	0	18	0	18
11	N137	max	3756.784	17	1675.402	17	2169.237	17	0	8	0	8	0	8
12		min	977.931	11	438.801	11	564.61	11	0	2	0	2	0	2
13	Totals:	max	5155.076	10	9355.274	14	4949.882	1						
14		min	-5155.082	4	3235.407	8	-4949.872	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft] LC	Shear	Loc[ft]	Dir	LC phi*Pnc [phi*	*Pnt [lb]pl	hi*Mn y	phi*Mn z	.Cb Eqn	1
1	M1	L3X3X5	.454	2.771 47	.129	7	z	31 19170.188 57	7672	2.015	4.387	1 H2-'	1
2	M2	L3X3X5	.256	0 14	.042	.961	z	18 41471.941 57	7672	2.015	4.572	4 H2-'	1
3	M3	L3X3X5	.141	3.667 18	.016	3.667	z	24 17649.468 57	7672	2.015	4.303	1 H2-'	1
4	M4	L3X3X5	.270	3.845 24	.043	2.884	z	23 41471.941 57	7672	2.015	4.572	3 H2-'	1
5	M5	HSS4X4X5	.234	0 15	.071	0	z	3 169034.316	69740 ⁻	19.285	19.285	1H1-1	b
6	M8	HSS4.5X4.5	.154	0 16	.053	0	У	42 119907.912	21302	16.25	16.25	1H1-1	b
7	M9	L3X3X5	.418	0 15	.130	7	ý	3 19170.188 57	7672	2.015	2.99	1 H2-	1
8	M10	L3X3X5	.218	0 22	.032	.961	z	14 41471.941 57	7672	2.015	4.572	3 H2-	1
9	M11	L3X3X5	.142	3.667 17	.017	3.667	z	18 17649.468 57	7672	2.015	4.327	1 H2-'	1
10	M12	L3X3X5	.296	3.845 20	.045	2.884	z	1941471.941 57	7672	2.015	4.572	3 H2-'	1
11	M13	HSS4X4X5	.247	0 17	.078	0	z	5 169034.316	69740 ⁻	19.285	19.285	1H1-1	b
12	M16	HSS4.5X4.5	.168	0 18	.056	0	y	24 119907.912	21302	16.25	16.25	1H1-1	b
13	M17	L3X3X5	.384	14 22	.101	7	ý	11 19170.188 57	7672	2.015	2.99	1 H2-'	1
14	M18	L3X3X5	.230	0 18	.040	.961	z	22 41471.941 57	7672	2.015	4.572	3 H2-'	1
15	M19	L3X3X5	.131	3.667 22	.016	3.667	z	14 17649.468 57	7672	2.015	4.296	1 H2-'	1
16	M20	L3X3X5	.239	3.845 16	.035	2.884	z	15 41471.941 57	7672	2.015	4.572	3 H2-'	1
17	M21	HSS4X4X5	.233	0 22	.068	0	z	1 169034.316	69740 ⁻	19.285	19.285	1H1-1	b
18	M24	HSS4.5X4.5	.162	0 14	.054	0	У	22 119907.912	21302	16.25	16.25	1H1-1	b
19	MP1A	PIPE 2.0	.255	2.875 15	.071	2.875		15 20866.733 32	2130	1.872	1.872	3H1-1	b
20	MP2A	PIPE 2.0	.108	.375 4	.051	1.438		6 20866.733 32	2130	1.872	1.872	2H1-1	b
21	MP3A	PIPE 2.0	.484	2.875 1	.096	2.875		3 20866.733 32	2130	1.872	1.872	4H1-1	b
22	MP4A	PIPE 2.0	.178	2.875 23	.040	2.875		8 20866.733 32	2130	1.872	1.872	3H1-1	b
23	MP1C	PIPE 2.0	.194	2.875 23	.040	1.438		12 20866.733 32	2130	1.872	1.872	3H1-1	b
24	MP2C	PIPE 2.0	.101	2.875 11	.055	1.438		14 20866.733 32	2130	1.872	1.872	2H1-1	b
25	MP3CA	PIPE 2.0	.331	2.875 11	.153	1		12 20866.733 32	2130	1.872	1.872	1H1-1	b
26	MP4CA	PIPE_2.0	.238	2.875 18	.092	.375		24 20866.733 32	2130	1.872	1.872	1H1-1	b
27	MP1B	PIPE 2.0	.246	2.875 5	.060	2.875		7 20866.733 32	2130	1.872	1.872	1H1-1	b
28	MP2B	PIPE_2.0	.099	2.875 1	.043	.375		4 20866.733 32	2130	1.872	1.872	3H1-1	b
29	MP3B	PIPE 2.0	.483	2.875 5	.094	2.875		3 20866.733 32	2130	1.872	1.872	1H1-1	b
30	MP4B	PIPE_2.0	.215	2.875 15	.045	2.875		1220866.733 32	2130	1.872	1.872	2H1-1	b
31	MP3C	PIPE 2.0	.135	5 11	.084	1		2 20866.733 32	2130	1.872	1.872	1H1-1	b
32	M61	PIPE_2.5	.084	10.125 16	.050	10.125		6 12481.817 5(0715	3.596	3.596	1H1-1	b
33	M66	PIPE_2.5	.102	6.188 14	.059	11.953		14 12481.817 5(0715	3.596	3.596	1 H1-1	b

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [phi*Pnt [lb]	∣phi*Mn y	.phi*Mn z	.Cb	Eqn
34	M71	PIPE 2.5	.083	10.125	12	.046	6.188		11	12481.817	50715	3.596	3.596	1	H1-1b
35	M82	L3X3X4	.131	0	5	.057	2.178	y	43	42001.368	46656	1.688	3.756	2	H2-1
36	M83	L3X3X4	.165	2.178	14	.028	2.178	У	15	42001.368	46656	1.688	3.756	2	H2-1
37	M84	L3X3X4	.094	0	15	.029	0	ý	16	42001.368	46656	1.688	3.756	1	H2-1
38	M86	LL3x3x3x6	.085	6.281	13	.004	0	У	16	46017.434	70632	6.362	3.751	1	H1-1b*
39	M88	LL3x3x3x6	.092	6.281	21	.006	0	ý	48	46017.434	70632	6.362	3.751	1	H1-1b*
40	M90	LL3x3x3x6	.101	6.281	17	.004	0	z	8	46017.434	70632	6.362	3.751	1	H1-1b*
41	MP4C	PIPE 2.0	.078	1	5	.037	1		3	20866.733	32130	1.872	1.872	2	H1-1b

Version 3.1

I. Mount-to-Tower Connection Check

RISA Model Data

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N7	90
N27	330
N17	210

Tower Connection Plate and Weld Check

Connecting Standoff Member Shape: W1 (in): W2 (in): Weld Size (1/16 in): Phi*Rn (kip/in): Required Weld Strength (kip/in): Weld Capacity:

Rect	
4	
4	
5	
6.96	
2.31	I
33.2%	

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Mount Modification

Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u> For additional questions and support, please reach out to pmisupport@colliersengineering.com

<u>**Purpose**</u> – to upload the proper documentation to the SMART Tool in order to allow the SMART Tool engineering vendor to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

Base Requirements:

- If installation of the modification will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawings (proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the post-modification passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo shall be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: <u>https://pmi.vzwsmart.com</u>

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation of the modifications.
 - Photos of the mount after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to modification.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation of modifications. Each entire sector must be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed modification per the modification drawings; pictures shall also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the distances (relative distance between collars) of the installed modifications from the appropriate reference locations shown in the modification drawings.
- Photos showing the installed modifications onto the tower (i.e. ring/collar mounts, tiebacks, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, an elevation measurement shall be provided before the elevation change.

Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by the SMART Tool vendor.
 - o If the materials are as specified on the drawings
 - The contractor shall provide the packing list, or the materials certifications for the materials utilized to perform the mount modification
 - Commscope, Metrosite, Perfect Vision, Sabre, and Site Pro have all agreed to support Verizon vendors with the necessary material certifications
 - o If seeking permission to use an equivalent
 - It is required that the SMART Tool engineering vendor approval of such is included in the contractor submission package. There may be an additional charge for approval if the equivalent submission doesn't meet specifications as prescribed in the drawings.

 \Box All hardware has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified on the SMART Tool engineering vendor Mount Modification Drawings and included in the material certification folder is a packing list or invoice for these materials.

OR

□ The material utilized was approved by a SMART Tool as an "equivalent" and this approval is included as part of the contractor submission.

Antenna & equipment placement and Geometry Confirmation:

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

□ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

Comments:

Certifying Individual:		

Company:	
Employee Name:	
Contact Phone:	
Email:	
Date:	

Was the mount modification completed in conjunction with the equipment change / installation?

🗆 Yes 🛛 🗆 No

Special Instructions / Validation as required from the MA or Mod Drawings:

Issue:

Contractor to install safety climb cable guide in locations where wire rope is rubbing against mount collar. Contractor to provide photos of safety climb cable guide installation.

Contractor shall inspect all mount bolts and replace any damaged or missing members as needed.

Response:

Contractor certifies that the climbing facility /	<u>' safety climb was not</u>	damaged or obstructed	<u>prior to</u>
starting work:			

🗆 Yes	🗆 No
-------	------

Contractor certifies no new damage/obstructions created during the current installation:

<u>Contractor to certify the condition of the safety climb and verify no obstructions when leaving the site:</u>

 \Box Safety climb in good condition with no obstructions

□ Safety Climb Damaged

□ Safety Climb Obstructed

Comments:

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A7	BXA-80080-6CF-EDIN-2	71	8	147.75	1	а	Front	36	0	Retained	10/24/2021
A2	DB-B1-6C-12AB-0Z	28.9	15.7	147.75	1	а	Behind	12	0	Added	
R3	B2/B66A RRH-BR049	15	15	124.5	2	а	Behind	18	0	Added	
A8	SBNHH-1D65B	72.6	11.9	78.75	3	а	Front	36	7	Retained	10/24/2021
A8	SBNHH-1D65B	72.6	11.9	78.75	3	b	Front	36	-7	Retained	10/24/2021
R4	B5/B13 RRH-BR04C	15	15	78.75	3	а	Behind	18	0	Added	
R1	MT6407-77A	35.1	16.1	33.75	4	а	Front	36	0	Added	

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A8	SBNHH-1D65B	72.6	11.9	78.75	3	а	Front	36	7	Retained	10/24/2021
A8	SBNHH-1D65B	72.6	11.9	78.75	3	b	Front	36	-7	Retained	10/24/2021
R4	B5/B13 RRH-BR04C	15	15	78.75	3	а	Behind	18	0	Added	
R1	MT6407-77A	35.1	16.1	33.75	4	а	Front	36	0	Added	
A5	BXA-80063-4BF-EDIN-0	68.6	11.2	147.75	1	а	Front	36	0	Retained	10/24/2021
A2	DB-B1-6C-12AB-0Z	28.9	15.7	147.75	1	а	Behind	12	0	Added	
R3	B2/B66A RRH-BR049	15	15	124.5	2	а	Behind	18	0	Added	

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A6	BXA-80080-4CF-EDIN-0	47.5	8	147.75	1	а	Front	36	0	Retained	10/24/2021
R3	B2/B66A RRH-BR049	15	15	124.5	2	а	Behind	18	0	Added	
A8	SBNHH-1D65B	72.6	11.9	78.75	3	а	Front	36	7	Retained	10/24/2021
A8	SBNHH-1D65B	72.6	11.9	78.75	3	b	Front	36	-7	Retained	10/24/2021
R4	B5/B13 RRH-BR04C	15	15	78.75	3	а	Behind	18	0	Added	
R1	MT6407-77A	35.1	16.1	33.75	4	а	Front	36	0	Added	

Maser Consulting Connecticut

<u>Subject</u>	TIA-222-H Usage	
Site Information	Site ID: Site Name: Carrier Name: Address:	468782-VZW / BLOOMFIELD 3 CT BLOOMFIELD 3 CT Verizon Wireless 785 Park Ave Bloomfield, Connecticut 06002 Hartford County
	Latitude: Longitude:	41.828486° -72.733233°
Structure Information	Tower Type: Mount Type:	137-Ft Monopole 14.00-Ft Platform

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Peter Albano, PE

Project Manager

Engineering & Design www.cellenengeneng.cell www.cellenengenengenengenengenengenengenenge	verizon				D IMPE IM	000 400 100 100 100 100 100 100 100 100	S/ONA EN	IT IS A MORE AND A MARKED AND A	SITE NAME:	BLOOMFIELD 3 CT 468782	HARTFORD COUNTY HARTFORD COUNTY	Collices ICON Manual (on boules of atamics of the standard of the standard of Regimeering construction at the standard of a Design proving at the standard of the proving standard of the standard of the standard of the proving standard of the standard of the standard of the proving standard of the standard of the standard of the proving standard of the standard of the standard of the proving standard of the standard of the standard of the prov	Mitrinu TITLE SHEET	SETTIMATE ST-I
							SHEET INDEX	SHEET DESCRIPTION 51-1 TITLE SHEET 580M-1 BILL OF MATERIALS	SGN-I GENERAL NOTES SCF-I CUMBING FACILITY DETAIL sc-1 MODIFICATION DETAIL	35-1 Prodiverview de muia 55-2 MOUNT PHOTOS 5PECIFICATION SHEETS				LON
	AAWINGS ORM	A BER: N/A	IFIELD 3 CT 468782	E 002 Y	6° N 3° W		PROJECT INFORMATION	APPLICANT/LESSEE Company: verizon wireless	CLIENT REPRESENTATIVE COMPANY: VENIZON WIRELES	PROJECT MANAGER COMPANY: COULIERS ENGINEERING & DESIGN CONTACT: PETER AI AANO.	PHONE 65,797 04.2 EMAIL: PETEX.ALBANOBCOLLIESSENGINERING.COM	CONTRACTOR PMI REQUIREMENTS	PMI LOCATION HTTPS//IPMI/VZWSMART.COM SMART TOOL PROJECT #, 10115591 10115591 ANNT/SEDATE 11/162001	PMI REQUIREMENTS EMBEDDED WITHIN MOUNT MODIFICATION REPORT
verizon	MOUNT MODIFICATION DF EXISTING 14.00' PLATF(TOWER OWNER: N/ TOWER OWNER SITE NUM	CARRIER SITE NAME: BLOON CARRIER SITE NUMBER: FUZE ID: 16272375	785 NEW PARK AVI BLOOMFIELD, CT 06(HARTFORD COUNT	LATITUDE: 41.828480 LONGITUDE: 72.733233		DESIGN CRITERIA	WIND LOADS BASIC WIND SFEED (3 SECOND GUST), V = 116 MPH EXPOSURE CATEGORY C	TOPORAPHIC CATRGORY 1 MEAN BASE BLEVATION (AMSU) = 118.67	ICE TLOADS ICE WIND SPEED (3 SECOND GUST), V = 30 MPH ICE THICKNESS = 1.50 IN	SERVIC LOADS SERVIC DESIGN CATEGORY B SHORT TERM MCER GROUND MOTION, §, = 0.181 LONG TERM MCER GROUND MOTION, §, = 0.055			
												COLLIERS ENGINEERING & DESIGN COLLIERS ENGINEERING & DESIGN	THIS DRAWING AND ALL THE INFORMATION CONTAINED HEREN IS AUTHORIZED FOR USE ONLY BY THE PARENT FOR WHOM THE WORK WAS CONTRACTED ON TO WHOM TE GRAFTED THE BAARWIG WAY NO THE CONED, RAISED, DISCLOSED, DISTRUETED OR RELED	UPON FOR MAY OTHER PLARADSE WITHOUT THE EXPRESS WRITTEN CONSENT OF COLLIERS ENGINEERING & DESIGN

Colliers Engineering & Design	www.colliersengneering.com	Upped on the control of the control of the control of the control of an inter- ter international terror utilities for the control of the provident of the control of the control of the control of the control of the control of the con- ditional of edition in order to the control of the control of the con- ditional of the control of the control of the control of the con- ditional of the control of the control of the control of the con- ditional of the control of the control of the control of the con- ditional of the control of the control of the control of the control of the control of t	Doing Business as				Verizon							PROTECT YOURSELF	ALLSTATE REQUERIOREX OR ANY RESCH EXCENTORS DESIGNERS, OR ANY RESCH REVAND OF DURING THE RATHS	Convertient of the second surveyor of the second se	FOR STATE SHEDRIC DIRECT PHONE HUMBERS WER: WWW CALLIERT COM	504: AS SHOWN JOB 1777224A	C 11/10/21 ISSUED FCM AH PWA	REV DESCRIPTION DRIVIN OVECIED BY		MICHAEL CONNECTION	8ANC		The Development of the second	could have a grantities	IT IS A VIDUATION OF LAW FOR ANY PERSON.	OF THE REPORTED IN THE WALL IN UNDER THE UNDER TOTAL OF THE REPORTSION AL ENGINEER, TO ALTER THIS DOCUMENT.	SITE NAME:	BLOOMFIELD 3 CT	408782 795 NEW DADK AVE	ASS NEW PARK AVE BLOOMFIELD, CT 06002 HARTFORD COUNTY		Colliers 1055 Washington Boulevard Ramford, 67 0900	Engineering Phone 2013/2340900 Coulds creater of could be adding to a construct a construction of the could be adding to a construction of the could be could be adding to a construction of the could be construction of the could be ad	Petrinte BILL OF MATERIALS	MELLINGHER
		WEIGHT (LBS.)	06	291	150	84	44	168			WEIGHT (LBS.)	237	39	30						1133	6611																
		UNIT WEIGHT (LBS.)	30	291	150	42	22	4			UNIT WEIGHT (LBS.)	79	13	S						TOTAL	IOIVE																
LL OF MATERIALS	TION I - VZWSMART KITS	NOTES		CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL STEEL' NOTES ON SHEET SON-1.						1 2 - OTHER REQUIRED PARTS	NOTES	GALVANIZED.	GALVANIZED. CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL STEEP. NOTES ON SHEET SGN-I.	GALVANIZED.								TS - APPROVED VENDORS	COMMSCOPE	ALVADOR ANGUIANO 317 304-345	ALVADOR.ANGUIANO@COMMSCOPE.COM	TTE FABRICATORS, LLC	ENT RAMEY DAV. 134: 77A4: 001-0788 JMI	ENT@METROSITELLC.COM	IETROSTEFABRICATORS.COM DERFECTVISION	VIRELESS SALES 444 087-6723	VWW.JERFECT-VISION COM	VRELESSALE&@PERFECT-VBION.COM .E. INDUSTRIES, INC.	NGIE WEICH	adi varenza Kwelch@sabrendustres.com	WWW SABRESITESOLUTIONS.COM SITE PRO 1	AULA BOSWELL	NA JANONALA AULA BULAUMONT.COM MUSTERROI.COM
BII	SECT	DESCRIPTION	SUPPORT RAIL CORNER BRACKET	KICKER KIT	MONOPOLE COLLAR MOUNT ASSEMBLY	PIPE TO PIPE CLAMPS	2" LONG, PIPE 2 STD (2.375"OD X 0.154" THK)	CROSSOVER PLATE		SECTION	DESCRIPTION	162" LONG, P2 1/2 STD PIPE	30" LONG, L3x3x1/4 ANGLE	6" LONG, HSS3x3x1/4 SHIM								VZWSMART Kľ		CONTACT S/ PHONE (8	EMAIL S/	METROS	CONTACT KI	EMAIL	WEBSITE M	CONTACT W PHONE (8	EMAIL W	BEEN WEBSITE W SABR	CONTACT A	TED FROME NO	WEBSITE	ED CONTACT PL	EMAIL PY WEBSITE V
		PART NUMBER	VZWSMART-PLK3	VZWSMART-PLK5	VZWSMART-PLK7	VZWSMART-MSK3D	VZWSMART-P40-238X072 7.	VZWSMART-MSKI		_	PART NUMBER																					WARE OF WHICH KITS HAVE	HEY AKE IN LURN APPROVEL D ON THE MOUNT	DF THE DESKTOP PMI COMPLE IIRED THAT THE VZW KITS	·	ODIFICATIONS BUT NOT LIST CTHE CONTRACTOR.	
		MANUFACTURER					VZWSMART	<u> </u>			MANUFACTURER																						APPROVAL PROCESS AND I HAT THE MATERIAL UTILIZE	L BE REVIEWED AS A PART C VENDOR. IT WILL BE REQU	ED IN THE MODIFICATIONS	IRED FOR THE DESIGNED M SUMED TO BE PROVIDED BY	
		QUANTITY	m	_	_	2	2	12			QUANTITY	e	m	ę																TES:	THE MANUES CTUDED	MOUNT KITS. EACH P	I HROUGH I HE V ZW SELL. PLEASE NOTE TH	BY THE SMART TOOL	SPECIFIED ARE UTILIZI	ALL MATERIALS REQUIN THIS SHEET ARE AS	

SZ _

SBOM-I

Colliers Engineering	www.colliersengineering.com	Chapter 2011 Class Expressive Energy stages from a factoring of a first threadons from the control of the stage of the provide the state of a first most of a control of the state of the state of the state of the state of the first of each of species stresses end before the state of the state of the state of each of the state of	Doing Business as			verizon			IOTTETTVU INTERIE	Contraction Contraction Contractions Contraction Contracti		REV DATE DESCRIPTION DRAWN DECYED		TOTAL AND A THE RESOLUTION OF LAW FOR A THE ORECTION IN THE RESOLUTION OF LAW FOR A THE ORECTION OF THE RESOLUTION OF LAW FOR EXCEPTION OF THE RESOLUTION OF THE RESOLUTION OF THE RESOLUTION OF THE RESOLUTION OF THE RESOLUTION OF THE RESOLUTION	SITE NAME:	BLOOMFIELD 3 CT 468782 785 NEW PARK AVE BLOOMFIELD, CT 06002 HARTFORD COUNTY	Collicer Stantono Collicer 1055 Haring to Sureard and the Stantono Begineering Inner 201240300 6 Design proventingerundersconkred	MODIFICATION NOTES	SGN-I
	BOLT SCHEDULE (IN.)	BOLT STANDARD SHORT MIN.EDGE SPACING DIAMETER HOLE SLOT DISTANCE	1/2 9/16 9/16 k × 11/16 7/18 1 1/2 coo 11112 11112 1110 1 7/0	3/4 13/16 13/16×1 11/4 2.1/4	7/8 I5/16 I5/16×11/8 11/2 25/8	WORKABLE GAGES (IN.)	LEG GAGE 4 2 1/2	3 1/2 2 3 1 3/4	2 1/2 1/2	MAKEN DOLT NOTES WASHER AND A RANK TABLES ARE ACC FINALINA A RANK TABLES ARE ACC FINALINA REQUERTS CONTINGS IN FIEL AND OF TRANSMERT DISTANCE AND A LESS THAN HOCE ROVIDES	NUT 11 THE DIMENSIONS PROVIDED ARE INVENSIONS OF REQUISEMENTS ACTUAL DIMENSIONS OF REPORTS ACTUAL DIMENSIONS OF REPORTS ACTUAL THE ABC INVENSION OF REPORTS ACTUAL FROM THE ABC INVENSION	REQUIREMENTS. 3. SHORT SLOT HOLES SHALL ONLY BE	USE WHEN DEFICTED IN THE RARVINGS ARE COMPROMED APPLICABLE UNUSS MINIMUM EDGE DISTANCES ARE COMPROMED	ALLOWABLE COPING	GAGE		K APPROVAL		
1.1 ALL PROPOSED AND/OR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT IS AT LEAST FLUSH WITH THE FACE OF THE NULT. IT SO TERMITTED FOR THE BOLT FOLD TO BE BELOW THE FACE OF THE NULT AFTER TIGHTENING S COMPLETED.	 GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED. ALL EXISTING PAINTEDICALVANIZED SURFACES DAMAGED DURING REHAB 	INCLUDING AREA UNDER STIFFEREN FALTES SHALL BE WIRE BULSHED CLEAN, REPRIED BY COLD GALVANIZING (ZINGA OR ZINC COTE), AND REPAINTED TO MATCH THE BOKTING RINGH (R APPL/CAELE).	 ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 11/6" LARGER THAN THE BOLT DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE 	WELDING NOTES all weiding shall be done in accordance with aws did of a feet	EDITION). THIS SHALL INCLUDE A CERTIFIED WELD INSPECTION (CWI) FOR ACCEPTANCE OR REJECTION OF ALL WELDING OPERATIONS, PRE, DURING,	AND POST INSTALLITON'S UNBAT FILE ACTIVACE CRITERED OF AWS DI I. 2. CONTRACTOR IS RESONABLE FOR COMMISSIONING A THAID PART 2. CENTRED WED INSPECTOR (CW) THROUGHOUT THE BUTRETY OF THE INDICAT PASSING CMI REPORT STALL BE MONDED TO THE BUGNER URD/COMPETION OF THE ROLES.	T. THE CREATED WED INSECTOS AJALL INJECTIR, IN A WAITTRN CM. R RPOIT, THAT ALL WEDING OFFATTON'S REL, DUBING, AND POST INSTALLATON WERE CONJOUCTED IN ACCORDANCE WITH ANS DI 1 WITH PHOTOGRAPHS AND DOCUMENTATION SUPPORTING THA ACCEPTANCE OR REJECTION OF ALL WOULD CALL COW WEAD INSECTION OF ALL REGULATION AND PHOTOS AJALL BE SUPPORTING THA ACCEPTANCE OR DOCUMENTATION AND PHOTOS AJALL BE SUPPORTING DUBING THE PHOL DOCUMENTATION AND PHOTOS AJALL BE SUPPORTING THE ACCEPTANCE OR REJECTION OF ALL WOULD CALL COW WAIL BE SUPPORTING DUBING THE ACCEPTANCE OR DOCUMENTATION AND PHOTOS AJALL BE SUPPORTING DUBING THE ACCEPTANCE OR REJECTION OF ALL WOULD CALL COW WAIL BE SUPPORTING THAN ACCEPTANCE OR REJECTION AND PHOTOS AJALL BE SUPPORTING THAN ACCEPTANCE OR REJECTION OF ALL WOULD CALL COW WAIL BE SUPPORTING THAN ACCEPTANCE OR REJECTION OF ALL WOULD CALL COW WAIL BE SUPPORTING THAN ACCEPTANCE OR REJECTION OF ALL WOULD CALL COW WAIL BE SUPPORTING THAN A CLEW WAILE REJECTION ADDIVIDUAL COMPANY AND ADDIVIDUAL COM WAIL REJECTION ADDIVIDUAL COM WAIT AND ADDIVIDUAL COM WAIT ARE SUPPORTING ADDIVIDUAL COM WAIT AND ADDIVIDUAL COM ADDIVIDUAL COM WAIT AND ADDIVIDUAL COM	 IN CASE WHERE A WELD IS SPECIFIED BETWEEN TWO MERGES IN WHICH THERE IS A GAP IN BETWEEN THE WELD IS TO BE BULFLUP SUCH THAT THE SIZE OF WELD ON THE MERGER IS EQUAL TO THAT SHOWN IN THE DRAWINGS. 	CONTRIL GA WEDNIG OR BRAZING STRICTV PROHIBITED SPECIFICALTY NO TORCH CUTTING S REWITTED ON STE ALL HOLES SHALL BE CUT WITH A GINICER CUTTACTOR SHALL DERIGES CAUTION WHEN WEDNIG A GAUNALIZED CUTACTOR SHALL DERIGES CAUTION WHEN WEDNIG A GAUNALIZED SURVACT	 CONTRACT PARL FRAME REFORMED IN LIGHT PARLET FRAME CONTRACT PARL PARL PARL AND AND AND AND AND AND AND AND AND AND					EDGE SPACING				
CONTRACTOR SHALL BE REPONSIBLE FOR THE STRENGTH AND STRAILITY OF THE STRUCTURE DURING ERECTION CONTRACTOR SHALL REOVIDE TEMPORARY SUPPORT, STRANGK, BRACKAR DAY NY OTCUR DURING SYSTEPS AS REQUIRED TO RESIT FLUE PORE THAT THAY OCCUR DURING	HANDLING AND FRECTION UNTIL THE STRUCTURE IS FULLY COMPLETED. TEMPORARY SUPPORTS, BRACING AND OTHER STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTORS	REOFERTY AFTER THEIR USE 9. ALLI INSTALATIONS PERPORAND ON THIS STRUCTURE SHALL BE COMPLETED 10. ACCORDANCE WITH THE GOVENING REOVISIONS OF THE STAUARD	FOR INSTALLATION, ALTERATION AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS, ANS/174-322.	 CONTRACTOR SHALL EXCLUES IN EACK TO EXCING CONJUNO UNDER VALUES AND CONVERTALL FENCE, STONE, GEORARIC, GROUNDING, AND SURPOUNDING GROEFSHALL ER REPLACED AND REPLACED AS MANUTATION OF AND CAMPENDALIZE AND REPLACED AS MANUTATION OF AND ADDRESS AND ADDRESS AND REPLACED AS MANUTATION OF AND ADDRESS AND ADDRESS AND REPLACED AS MANUTATION OF AND ADDRESS AND ADDRESS AND REPLACED AS MANUTATION OF ADDRESS AND ADDRESS	REQUIPTION OF ALL REPORTED AT A CALL FOR THE CARAGE AND A REAL REPORTED AT A REAL REPORTED AT A REAL REPORTED AT A REAL REAL AND A REAL AT A	1. CONRECTORS BIT WERE SUPPORT DID FIT HIS TOTAL TO BE AND THE STRUCTURE NOT SPECIFICALLY DETAILED IN THE CONTRACT DOCUMENTS ARE THE RESIDNABILITY OF THE CONTRACTOR SUCH CONTRACT DOCUMENTS SALL BE DESIGNED. COORDANTED AND INSPECTED BY A REOFERSIONAL STRUCTURE AND REMEMBER AND INSPECTED BY A REOFERSIONAL STRUCTURE AND SALED CALCULATIONS DARROS DARROS PRAVING REVEN STRUCTURE AND SALED CALCULATIONS DARROS PRAVING REVEN	 DO NOT SCALE DRAWINGS. DO NOT SCALE DRAWINGS FOR ANY OTHER SITE. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE. LI MATERIAL UTILZED FOR THE REQISCT MUST BE NEW AND FREE OF ANY DEFECT. SITE NOTICE FOR THE REQUEST MUST BE NEW AND FREE OF ANY DEFECT. SITE NOTICE FOR THE REQUEST MUST BE NOT DWITED TO DEFECT. SITE NOTICE RESERVANCE FOR ANY ONLY INCOMINGE OF DO DEFECT. 	ADDERGREEN WATING. ADDERGREEN WATING. 15. THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF POINT.	DISCINCTURATION DISCINCTORY STREAM DISCINCTION OF ARRICTION AND RECTION OF STREAM RECONCRIPTING THE CONTRIGUENT OF AUTOMACE RECEIPTING THE CONTRIGUENT OF AUTOMACE RECEIPTING THE CONTRUCT DOWNER RECONSTRUCTOR OF STREE CONSTRUCTION (ASS PANALAL OF A PREMIUTE OF STREE CONSTRUCTION (ASS PANALAL OF A PREMIUME OF STREE CONSTRUCTION (ASS PANALAL OF A PREMIUME OF STREE CONSTRUCTION (ASS PANALAL OF A PREMIUME OF A PREMIUME OF A PREMIUME OF A PREMIUME OF A A PREMIUME OF A PREMIUME OF A PREMIUME OF A PREMIUME OF A PREMIUME OF A A PREMIUME OF A PREMIUME OF A PREMIUME OF A PREMIUME OF A PREMIUME OF A A PREMIUME OF A PREMIUME OF A A PREMIUME OF A PREMIUME	STEE. CONSTRUCTION (15TH EDITION) b. SPECIPICATION FOR STRUCTURAL JOINTS USING ASTM A235 OR A490 BOLTS c. ASC CODE OF STANDARD PRACTICE 2. STRUCTURAL STEEL SWALL CONFORM TO THE FOLLOWING UNLESS 1. OTHERWEESHOWN	CHANNELA ANGLES, PLATES, ETC. ASTM AJS (54) 36) STEEL PIE BOLTS ASTM AJ35 (54) 35 ASTM AJ35 NUTS ASTM A459	LOCK WASHERS LOCKING STRUCTURAL GRADE 3. ALL SUBSTITUTIONS PROPOSED BY THE CONTRACTOR SHALL BE APPROVED	In WINTER STY HE REVIEW FOR VERTING THE SUBSTITUTE DOCUMENTATION TO ENGINEER FOR VERTING THE SUBSTITUTE SOUTHOL FOR USE AND FUEL SOUTHOL FOR USE AND FUEL SOUTHOL END AND THE RAVE. FERAL REPARATION THE ORIGINAL DESIZAL INCLUDING SAMATERTANALE REPARATION THE SUBSTITUTION (INCLUDING SAMATERTANALE REPARATION FOR THE RAVERENT SAVALE REPARATION SALE REPARATION SALE REPARATION SALE REPARATION SALE REPARATION SALE REPARATION SALES AND COSTS TO SUBSCINTERCONS) SALE REPARATION AND/OS SPECIFICATIONS SALE REPARATION AND/OS SPECIFICATIONS SALE REPARATION AND/OS SPECIFICATIONS SALE REPARATION AND/OS SPECIFICATIONS SALE RAVIES TO THE REVIEWER A REPARATION AND/OS SPECIFICATIONS SALES AND COSTS TO SUBSCINTERCONS) SALES AND COSTS AND	DE LE LE MARTIN DE LE	 DRIL NO HOLES IN AAY NEW OR DISTING STRUCTURAL STEEL MENBERS OTHER THAN THOSE SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE PPROVAL OF THE ENGINEER OF RECORD. 	6. GALVANIZED STAT AJ33 BOLTS PAILL NOT RE RUSLED TAL INEW STEEL SHALL BE HOT BE DIRPED GALVANIZED FOR HULL WATHER PROFECTORY IN ADDITION ALL NEW STEEL SHALL BE SHARTED TO MATCH BESTING STEEL CONTRATICAS PAILL OBTAIN WRITTEN PERMISSION TO ROTECT STEEL ROTECTOR PAILL OBTAIN WRITTEN PERMISSION TO ROTECT STEEL ROTECTOR USE OF ALL ROLECT STEEL WITH TWO (3) COATS OF COLD GALVANIZATION (ZINKA) AR ZINC COTTS RUCH STEEL ROLE ROLE OF COLD GALVANIZATION (ZINKA) AR ZINC COTTS RUCH STEEL ROLE ROLE OF COLD GALVANIZATION (ZINKA) AR ZINC COTTS RUCH STEEL ROLE ROLE COLD GALVANIZATION (ZINKA) AR ZINC COTTS RUCH STEEL ROLE ROLE ROLE ROLE ROLES FOR ROLE ROLES FOR ROLE ROLE ROLE ROLES FOR ROLES FOR ROLE ROLES FOR ROLE ROLES FOR ROLES	9. ALLIGUT STRENELIS OF STIRUCTIVAL PREDERGE REBERGENTED IN THIS DAMINIS REQUIRE LOCKNOK DEVICES TO RE INSTALLED IN ACCORDANCE WITH TIA 222-H SECTION 4/2 REQUIREMENTS. ID WHERE CONNECTIONS ARE NOT FLUCT POINT DO NT THERE DRAWINGS. IN MILLION RAVILL TRANSIC CONNECTIONS IN DIRECT TO REVIEL TO REVIERTA REVIEL TO REVIEL TO REVIERTURARIA REVIERTURARIARIA REVIERTURARIARIARIA REVIERTURAR	WITCHER PROVINCION DAMINIASIA AND AS OUL LINEA IN SYNCHICATIONS. 11. FOR PRIMERS BEING REPLACED, ROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GRADE MAINTIN AISC REQUIREMENTS FOR MINIMUM BOLT DISTANCE AND SPACING.	
PROJECT NOTES 1. SEE MODIFICATION NOTES	 THE CONTRACTOR SHALL COMPLY WITH ALL APPLCABLE CODES. ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES. UTILITY 	COMPANES OR OTHER PUBLICIGOVERNING AUTHORITIES.	AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.	 THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER. IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE 	SUBMISSION OF BIDS OR PERFORMANCE OF WORK.	 THE CONTRACTOR SHALL RESERVISIES FOR POTECTION. LL BUSTING STEPPROVEHENTS PRIOR TO CONFRICUED ON THE CONTRACTON SHALL BREAM IN DARAGEAS A RESULT OF CONTRACTON OF THE RACIUM'ST THE CONTRACTOR'S SPENSE TO THE SATISFACTION OF THE OWNER. 	 THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUEE PROVIDING ALL MATERIALS EQUIPMENT THAND MADIA REQUIRED TO COMPLET THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMPRIDATIONS. 	 THE CONTRACTOR SHALL VISIT THE RROJECT SITE PROR TO SUBMITTING THE BID TO VERIN' THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS. 	8 THE CONTRACTOR SHALL VERIFY ALL EXGTING DIMENSIONS AND CONDITIONS RIGHT TO COMPREICING AND WORK, ALL LINENSIONS OF EXSTITUG CONSTRUCTION SHOWN ON THE REE DRAWNESS NUCT BE VERIFIED THE CONTRACTORS AND NOTIFY THE CONSTRUCTION MANAGER OF AND DECERPANCIES RIGHT OF ORDERING ANTERAL, OR RECEEDING WITH DISCREPANCIES RIGHT OF ORDERING ANTERAL, OR RECEEDING WITH DISCREPANCIES RIGHT OF ORDERING ANTERAL, OR RECEEDING WITH DISCREPANCIES RIGHT OF DISCREPANCIES RIGHT.	CONSTRUCTION. SINCE THE CLAURT MAY BE ACTIVE ALL AKETY RECAUTIONS MUST BE TAREA WHEN WORKING AROUND THICH LIFER OF RECENTION RADATION COUNTED STROUDE BE SHUTCOWN RENOT DE RECORMINS ANY WORK THAT COULD EXPOSIT THE WORKER TO BANGER. PERSONAL RE EXOLUZE DONUED RODGEN THE RECURLED TO BE WORN TO ALRET OF ANY POTFTTALLY DAVREPOUND SPROSULE LIFER.	10. NO NORE, BWOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.	11. THE PACILIE TO SUMMARED AND NOT FOR AN PORTAN PARTA FUN (NO HANDICAP ACCESS REQUIRED GENERAL NOTES	 THEE MODIFICATIONS HAVE BEEN DEGRADED IN ACCORDANCE WITH THE COVERNME REMONISHING THE TELECONTRACTOR MIDSTRY STANDARD THA 2324 HAVE BEEN DEGRADED IN ACCORDANCE WITH THE CONTRACTOR SHALL CONFORM TO THE ABOVE PROTOBED YTHE CONTRACTOR SHALL CONFORM TO THE ABOVE PROTOBED CODES. CONTRACTOR SHALL CONFORM TO THE ABOVE PROTOBED CODES. CONTRACTOR SHALL CONFORM TO THE ABOVE PROTOBED CODES. CONTRACTOR SHALL RECLAURDS AND DEARGED FO DESTING DARAGET DE SKITING STRUCTURES. ANY DARAGET DE SKITING DARAGET DE SKITING STRUCTURES. ANY DARAGET DE SKITING DARAGET DE SKITING STRUCTURES ANY DARAGET DE SKITING DARAGET DE SKITING STRUCTURES. ANY DARAGET DE SKITING DARAGET DE SKITING STRUCTURES ANY DARAGET DE SKITING DARAGET DE SKITING STRUCTURES. ANY DARAGET DE SKITING DARAGET DE SKITING STRUCTURES AND DARAGET DE SKITING DARAGET DE SKITING STRUCTURES. AND DARAGET DE SKITING DARAGET DE SKITING STRUCTURES AND DARAGET DE SKITING DARAGET DE SKITING STRUCTURES. ANY DARAGET DE SKITING DARAGET DE SKITING STRUCTURES AND DARAGET DE SKITING SOUTIONS AND DESCURDED DARAWINGS AND DESCRIPTION OF THE DARAGET DE SKITING CONDITIONS AND THE DARAGET DE SKITING DARAGET DE SKITING SOUTION DARAGET DE SKITING DARAGET DE SKITING STRUCTURES AND DARAGET DE SKITING DARAGET DE SKITING STRUCTURES AND DARAGET DE SKITING SOUTIONS AND DARAGET DE SKITING DARAGET DE SKITING STRUCTURES AND DARAGET DE SKITING SOUTIONS AND DARAGET DE SKITING DARAGET DE SKITING DARAGET DE SKITING SOUTIONS AND DARAGET DE SKITING DARAGET DARAGET DE SKITING DARAGET DARAGET DARAGET DARAGET DE SKITING DAR	CONTRACT DOCUMENTS SHALL BE RROUGHT TO THE IMMEDIATE ATTENTION OF THE RENORMED. F THE CONTRACTOR DISOVER ANY EXSTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT WOULD INTERFERE WITH THE INSTALLATION	OF THE MODIFICATIONS, NOTH THE BYOLINER IMPRICATELY. 1. IT's ASSUMED THAT ANY STRUCTUREL MODIFICATION WORK SECIFIED ON 1. THESE PANS WILL BE ACCOMPLISHED IS YNOWLEDGABLE WORKHEN	 THE CONTRACTORS INCLOR AND INSECT THE WORK AND SHALL BE THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLER PREPORSIBLE FOR LLA CONSTITUCTOR METHODS, MEANS, TECHNIQUES, SEQUENCISE, AND PRECEDURES. ALL CONSTITUCTION MEANS AND METHODS, MEANS, AND RECLEMENTE TO ALL CONSTITUCTION MEANS AND METHODS. RECLUINING AND RECLEMENTE TO ALL CONSTITUCTION MEANS AND METHODS RECLUINING AND RECLEMENTE TO ALL CONSTITUCTION MEANS AND METHOD RECLUINING AND RECLEMENTE TO ALL CONSTITUCTION MEANS AND METHOD RECLUINING MEAN REPORTING TO ALL CONSTITUCTION MEANS AND METHOD REPORTING TO ALL CONSTITUCTION MEANS AND RECLUIN METHOD REPORTING TO ALL CONSTITUCTION AND RECLUIN AND METHOD REPORTING TO ALL CONSTITUCTION AND RECLUIN AND METHOD REPORTING TO ALL CONSTITUCTION AND RECLUIN AND AND RECLUIN AND AND AND RECLUIN AND AND RECLUIN AND AND AND AND AND AND AND AND AND AN	ANSITTA-21 CULTER TOTATION COSH, ANAL MODERERA LINE CONSTRUCTION OF A CONSTRUCTION. FORTOWING FOR CLASS IN CONSTRUCTION.	A PRU SOFEKSATER SALES ALL SAFET CODES: APPLICABLE SAFET CODES: 8. WORK CABLE SAFET CODES: 14AN 30-PPH, THE STRUCTURE SHOWN ON THE DRAWINGS IS	STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE

SGN-I NOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTION

VzW SMART Tool [®] Verizon	29046, BFLHR CLECKED BFL 4444 Ten. 3020511014 BFL 4444 And Tensissien are acrossed And Tensissien are acrossed and acrossed acrossed And Tensissien are acrossed
2 2/6, 138,	SKET) MT SHEET # WT SHEET # WT PLK3-F1 9 V 2 2 2 2 2
	ASTM. A123. ASTM. A123. EXEMART-PLK3 (SUPPORT RAIL CORNER BRA DESCRIPTION DESCRIPTION CORNER BENT PLATE BRACKET CORNER BENT PLATE BRACKET CORNER BENT PLATE BRACKET CORNER BENT PLATE BRACKET CORNER BENT PLATE BRACKET DESCRIPTION
	NOTES: NOTES: 1. HOT-DIPPED CALVANIZED PER. J VZ VZ VZ MO. OTY PART NO. 1 1 CBP-L 2 2 1 CBP-L 2 3 4 MS02-652-00-500 0 4 B C 5 16 TW-625 7 16 NUT-625
The second secon	

ATTACHMENT 5

W E

Approximate Scale: 1 inch = 100 feet Disclaimer: This map is for informational purposes only. All information is subject to verification by any user. The Town of Bloomfield and its mapping contractors assume no legal responsibility for the information contained herein.

Map Produced December 2021

Town of Bloomfield, CT

Property Listing Report

Map Block Lot 31-373

Building # 1 PID

7721 Account

Property Information

Property Location	785 PARK	AVE						
Owner	BLOOMFIE		I OF					
Co-Owner	POLICE ST	POLICE STATION						
Mailing Address	800 BLOO	800 BLOOMFIELD AVE.						
	BLOOMFIE	BLOOMFIELD CT						
Land Use	922	Mun Bld	lg Com					
Land Class	E							
Zoning Code	BCD							
Census Tract	4713							

Site Index	c
Acreage	2.25
Utilities	
Lot Setting/Desc	
Fire District	c
Book / Page	0033/0070

Primary Construction Details

Year Built	1991
Building Desc.	Commercial
Building Style	Other Municip
Building Grade	С
Stories	1
Occupancy	1.00
Exterior Walls	Brick/Masonry
Exterior Walls 2	NA
Roof Style	Flat
Roof Cover	Enam Mtl Shing
Interior Walls	Drywall
Interior Walls 2	NA
Interior Floors 1	Carpet
Interior Floors 2	

Heating Fuel	Gas
Heating Type	Forced Air
АС Туре	100
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	NA
Bsmt Fin Area	0
Rec Rm Area	0
Bsmt Gar	0
Fireplaces	0

(*Industrial / Commercial Details)							
Building Use	Commercial						
Building Condition	Α						
Sprinkler %	100						
Heat / AC	None						
Frame Type	Masonry						
Baths / Plumbing	Average						
Ceiling / Wall	Ceil & Wall						
Rooms / Prtns	Average						
Wall Height	16.00						
First Floor Use							
Foundation	POURED CONC.						

Report Created On **7/21/2022**

Town of Bloomfield, CT

Property Listing Report

Map Block Lot 31-373

Building # 1 PID

7721 Account

		-						
Item	Appraised		Assessed	Subarea Type	G	Gross Area (sq ft)	Living Area (sq ft)	
Buildings	3477300		2434110	First Floor		20887	20887	
Extras	1500		1050	Finished Open Porc	:h	30	0	
Improvements								
Outbuildings	119300		83510					
Land	540000		378000					
Total	4138100		2896670					
Outbuilding an	nd Extra F	eatures						
Type Descriptio		Description						
Light Single		66 UNITS						
Paving		34040 S.F.						
Ovhd 8'		2 UNITS						
Fence 2052		2052 L.F.						
				Total Area		20917	20887	
Sales History								
Owner of Record			Book/ Page	Sale Date	Sale Pric	e		

ATTACHMENT 6

Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender 2 2 Postmaster, per (name of receiving employee)		Affix Stamp Here Postmark with Date of Receipt. neopost 07/25/2022 US POSTAGE 21P 06103 041L12203837					
USPS [®] Tracking Number Firm-specific Identifier	Ad (Name, Street, City,	dress State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift		
1. 2. 3.	Stanley Hawthorne, To Town of Bloomfield 800 Bloomfield Avenu Bloomfield, CT 0600 Jennifer Valentino-Ro Town of Bloomfield 800 Bloomfield Avenu Bloomfield, CT 0600	own Manager 1e 2 driguez, Director of Planr 1e 2	ing and Zoning		JUL 25 202	2 101 08103		
4.								
5.								
6.								