

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

February 24, 2012

Steve Levine, Real Estate Consultant New Cingular Wireless PCS, LLC 500 Enterprise Drive Rocky Hill, CT 06067-3900

RE: **EM-CING-009-120207** - New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 7 Stoney Hill Road, Bethel, Connecticut.

Dear Mr. Levine:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated February 6, 2012. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts
Executive Director

LR/CDM/laf

c: The Honorable Matthew S. Knickerbocker, First Selectman, Town of Bethel Steve Palmer, Planning & Zoning Official, Town of Bethel Robert D. Gray, Program Administrator, Third Party Attachments Transmission Projects, Northeast Utilities Service Co.

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

February 8, 2012

The Honorable Matthew S. Knickerbocker First Selectman Town of Bethel 1 School Street Bethel Municipal Center Bethel, CT 06801-2105

RE: **EM-CING-009-120207** - New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 7 Stoney Hill Road, Bethel, Connecticut.

Dear First Selectman Knickerbocker:

The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

If you have any questions or comments regarding this proposal, please call me or inform the Council by February 24, 2012.

Thank you for your cooperation and consideration.

Very truly yours,

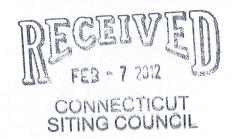
Linda Roberts

Executive Director

LR/jbw

Enclosure: Notice of Intent

c: Steve Palmer, Planning & Zoning Official, Town of Bethel


New Cingular Wireless PCS, LLC 500 Enterprise Drive Rocky Hill, Connecticut 06067-3900 Phone: (860) 463-5511 Fax: (860) 513-7190

Douglas L. Culp Real Estate Consultant

HAND DELIVERED

February 6, 2012

Ms. Linda Roberts
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, Connecticut 06051

Re: New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 7 Stoney Hill Road Bethel, CT (owner Northeast Utilities/CL&P).

Dear Ms. Roberts:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT&T") plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

UMTS technology offers services to mobile computer and phone users anywhere in the world. Based on the Global System for Mobile ("GSM") communication standard, UMTS is the planned worldwide standard for mobile users. UMTS, fully implemented, gives computer and phone users high-speed access to the Internet as they travel. They have the same capabilities even when they roam, through both terrestrial wireless and satellite transmissions.

LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in AT&T's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2). 1.

- The height of the overall structure will be unaffected.
- The proposed changes will not extend the site boundaries. There will be no effect on 2. the site compound other than some enlarged equipment pads as may be noted in the
- The proposed changes will not increase the noise level at the existing facility by six 3. decibels or more.
- Radio frequency power density may increase due to use of one or more GSM channel 4. for UMTS transmissions. Moreover, LTE will utilize additional radio frequencies newlylicensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, New Cingular Wireless respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-

Please feel free to call me at (860) 463-5511 with questions concerning this matter. Thank you for your consideration.

Sincerely,

Douglas L. Culp

Real Estate Consultant

Attachments

107 Selden Street, Berlin, CT 06037

Northeast Utilities Service Company P.O. Box 270 Hartford, CT 06141-0270 (203) 665-5000

February 7, 2012

Mr. Tim Burks AT&T Wireless. 500 Enterprise Drive Rocky Hill, CT 06067

RE: AT&T Antenna Site, CT-5176, 7 Stony Hill Rd., Norwalk CT, structure 10254.

Dear Mr. Burks:

Based on our reviews of the site drawings, the structural analysis provided by Centek Engineering and, and the foundation analyses and modification performed by Centek Engineering, we have reviewed for acceptance this modification

Since there are no outstanding structural issues to resolve at this time please contact Mr. Green (860-665-6926) to resolve any lease issues; once the lease amendment is secured you may Mr. Mike McKinnon, DIRECTOR-TRANSMISSION MAINTENANCE & WORK MANAGEMENT, directly (860-665-3839) to begin the construction arrangements.

111

Robert Gray

Transmission Line Engineering

ref:

CT5013 LTE Structural 1-9-12.pdf

CT5013 LTE CD REV3 01-19-12.pdf

CC:

Douglas Culp

NEW CINGULAR WIRELESS PCS, LLC **Equipment Modification**

7 Stoney Hill Road Bethel, CT Site Number CT5176 Exempt Mod

Tower Owner/Manager:

Northeast Utilities/CL&P

Equipment configuration: Power Mount of Utility Stanchion

Current and/or approved: Three PowerWave P7770 antennas @ 145 ft

Six PowerWave TMA's @ 145 ft Six runs 1 5/8 inch coax @ 145 ft Equipment on Concrete Pad

Planned Modifications:

Retain existing PowerWave P7770 Antenna's and TMA's @ 145 ft

Retain all Coax Cabling

Install six 1 5/8" Coax Cabling

Install Three PowerWave P65-16 or equivalent @ 145 ft

Install three PowerWave TMA's TTAW-07BP111-001 @ 145 ft Install additional Equipment with existing fenced compound

Power Density:

Worst-case calculations for existing wireless operations at the site, using standard parameters for other carriers, indicate a radio frequency electromagnetic radiation power density, measured at ground level beside the Tower, of approximately 12.9 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density following proposed modifications would be approximately 14.7 % of the standard.

Existing

		12.9%
<u> </u>	1.0000	7.30
) 1	1.0000	7.30
3 0	0.5867	1.46
<u>`</u>	1.0000	1.7 1
1 1	1.0000	1,71
		2.47
	T	

^{*} Data for other users are from Siting Council records.

Proposed

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm ²)	Percent of Limit
Other Users							2.47
AT&T UMTS	145	800 Band	1	500	0.0086	0.5867	1.46
AT&T UMTS	145	1900 Band	2	500	0.0171	1.0000	1.71
AT&T GSM	145	1900 Band	10	427	0.0730	1.0000	7.30
AT&T LTE	145	740 - 746	1	500	0.0086	0.4933	1.73
Total						<u></u>	14.7%

^{*} Data for other users are from Siting Council records.

Structural information:

The attached structural analysis demonstrates that the monopole and foundation have adequate structural capacity to accommodate the proposed modifications. (Centek dated 1-31-12).

DESIGNED BY: DRAWN BY: CHK'D BY:

WIRELESS COMMUNICATIONS FACILITY CT5176

CL&P STRUCT. NO. 10254 STONY HILI

7 STONY HILL RD, BETHEL, CT

OWO 830

PROJECT SUMMARY

852222222 85222222222 TO: 7 STONY HILL ROAD The state of the present of the pres FROM: SOO ENTERPRISE DRIVE ROCKY HILL, COMMECTICU SITE DIRECTIONS

VICINITY MAP

SOIL IMPROVEMENT 3. SOIL IMPROVEMENT UPERADE REFER T OFFICE (PROJ. NO. ADDITIONAL REQUIR	PROJECT INF	AT&T SITE NUMBER: AT&T SITE NAME: SITE ADDRESS:	LESSEE/APPLICANT: ENGINEER:	PROJECT COORDINATES:	SHEET INDEX	ci	T-1 TIME SHEET
SCALE 1' - 1000'					To comment		
		DIPELINE A				PROJECT	TOO

THE PROPOSED SLOPE OF WORK GENERALLY CONSISTS OF THE INSTALLTION OF ONE (1) LTE PANEL ANTENNA & TAA PER SECTOR FOR A TOTAL OF (3) LTE ANTENNAS TO THE EXISTING ATER ANTENNA ARRAY.	AND ADDITIONALLY AN LEE BESTAND COUPAGEN UNT (RBS) WILL EE RESTALLD ALNO WIT (D. BLOCK BESTOWN WILL (RRAD) AND ASSOCIATED SHORT RESTOWN AND ADJACENT TO THE EXISTING JARE PARK PARK PARK PARK PARK PARK PARK PARK	SOIL IMPROVAZIONS WILL BE REQUIRED AS PART OF THIS SOURCE, REFERED BY THE OFFICE (PROJ. MO. 1102-12055, DATED 2/1/12) FOR ADDITIONAL REQUIREMENTS.	MATION	76	STONY HELL	7 STONY HILL RD, BETHEL, CT 06801	A7&T MOBILITY 500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067	CENTEK ENGINEERING, INC. 63-2 NORTH BRANTORD RD. BRANFORD, CT. 06405
SCOPE OF ONE (1) OTAL OF RRAY.	LTE BAS DNG WITH ASSOCIA THE EX TO THE EX	TO DRAW TO DRAW D. 11021 REMENTS	FORM	CT5176	STON	7.870	AT& SOC XXX	CENT 63-2 BRANI
THE PROPOSED SINSTALLATION OF SECTOR FOR A TART ANTENNA A	ADDITIONALLY, AN LIE BE INSTALLED ALONG I PER SECTOR AND ASS AND ADLACENT TO THE EQUIPMENT. REFER TO FURTHER INFORMATION.	SOIL IMPROVEMENTS WILL UPGRADE. REFER TO DRAW OFFICE (PROJ. NO. 11021. ADDITIONAL REQUIREMENTS.	PROJECT INFORMATION	AT&T SITE NUMBER:	AT&T SITE NAME:	SITE ADDRESS:	LESSEE/APPLICANT:	EER
÷	N	ri	P	AT&T	AT&T	SITE	TESS	ENGINEER

at&t SAL Omeracion tokkey (20) 48 530 (20) 48 537 For 672 North Branford Bo Branford, CT 04425

SHT. NO.		
	DESCRIPTION	REV.
į	TITLE SHEET	-
ž Ž	NOTES AND SPECIFICATIONS	+
C-1	PLANS AND ELEVATION	-
C-2	LTE SYSTEM EQUIPMENT PLANS & DETAILS	-
E-1	ELECTRICAL DETAILS AND NOTES	-
E-2 E	ELECTRICAL DETAILS	-
		+
		-

SITE NUMBER: CT5176
SITE NAME: STONY HILL
CL&P STRUCT, NO. 10254
STONY HILL
BETHEL CT00001

YTIJIBOM T&TA

LATRUDE: 41'24'86.9" N LONORUDE: 73'24'6.1" W GROUND ELEVATION: ±430'

	_
ŭ	ď
Ē	Ξ
7	ટ્ટ
-	-
7	Ź
e	Ç
y	¥
ũ	j
C	5

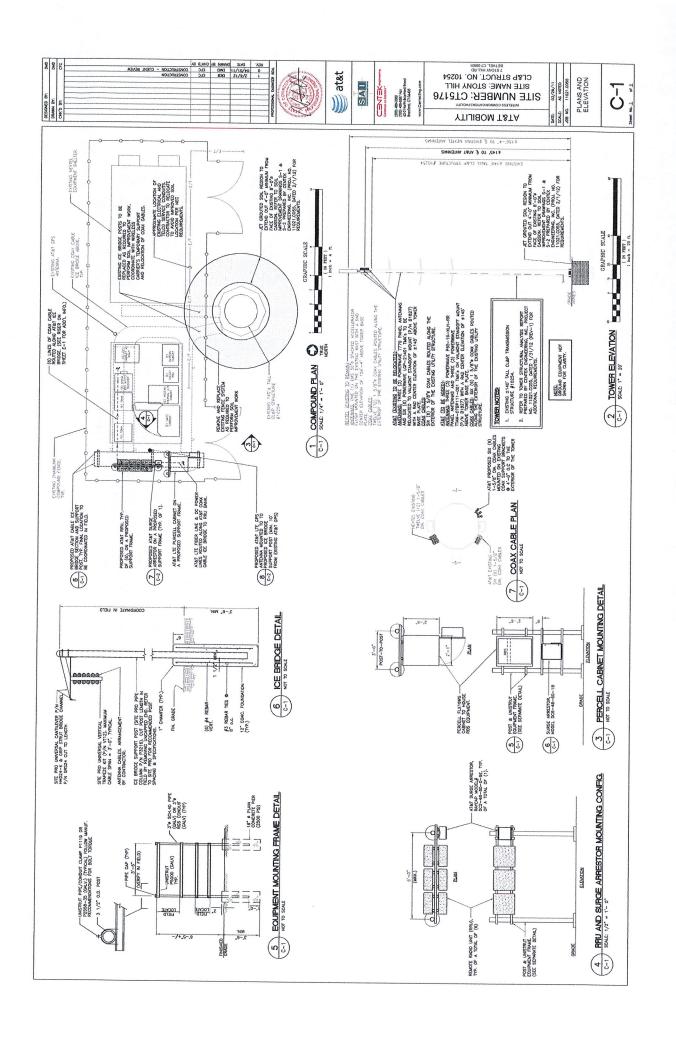
- LA WORS SHALL BE A MACROSIANE WITH THE COOR INTERNITURAL BULDING CODE. AS MORPED BY THE GOOD CONNECTION TS SPECIALISM. SPECIAL SHEEPING THE TOWN CHARLENGE STREEL ANTERNATION TO SHEEPING STREEL ANTERNATION TO SHEEPING STREET ANTERNATION TOWN SHEPPONDS TREETING THE STREETING STREETING THE STREETING STREETIN
 - THE CONTROL THERE ARMAY DROUND RING. ELECTROL, ELEMPOR TO THE WERE REMOVED RELEASED. STATE TO THE ELECTROL THE WEST ARMAY REPORTED STATE THE SHALL BE COMPRISED. FIT THE CONTROL RAY THE CONTROL SHELL BY OUR CONTROL WHITH THE DRAWNES, THE CONTROL PREJUCT MACHINETE VARIET HE DRAWNES, THE CONTROL BY WAT ATFECTS WHITH THE DRAWNES, THE CONTROL RELEASED.
- CONTRACTOR SHELL RENEW LIL DRAWINGS AND SECRECATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL CONTRACTOR SHALL CONTRACTOR SHALL CONTRACTOR SHALL CONTRACTOR SHALL CONTRACTOR SHALL RELATED PREPRINGS AND SHALL RELATED PREPRINGS SHALL SHALL TO SHALL SHALL
 - CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRÜCTURAL, MECHANICAL, AND ELECTRICAL, COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWING OR IN THE WRITTEN SPECIFICATIONS.
 - COMTRACTOR SHALL FURNISH ALL MATERAL, LABOR AND EQUIPMENT TO COMPLETED, JUB ALL IN ACCORDANCE WITH LOCAL AND STATE COVERNING AUTHORITIES AND OTHER ALTHORITIES HANNE LAWFOLL JURSDOCTION OARS THE WORK.
- CONTRECTOR SALL UNKINNE A CLERKET SET OF DRIBMASS AND SECRETATION OF SECRETATION OF SECRETARION OF SECRETARION OF SECRETARION OF SECRETARION SHAPE SECRETARION FAMILIES OF SECRETARION SHAPE SECRETARION SHAPE SECRETARION OF SECRETARION OF SECRETARION SHAPE SECRETARI CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL MSPECTORED FOR REQUIRED FOR THE GENERAL CONSTRUCTION, PULJURING, ELECTRICAL AND HANC. PERMITS SHALL BE PAUD FOR BY THE RESPECTIVE SUBCONTRACTORS.
- LOCATION OF EQUIPMENT, AND WORK SUPPLED BY OTHERS THAT IS DIACRAMATICALLY INFOCUTED ON THE DEMANDACE SHALL BE EXTENSIONED THE CONTRACTOR SHALL DETERMENT BY THE CONTRACTOR, THE CONTRACTOR SHALL DETERMENT SHALL DETERMENT SHALL DETERMENT SHALL DESCONTRACTORS.

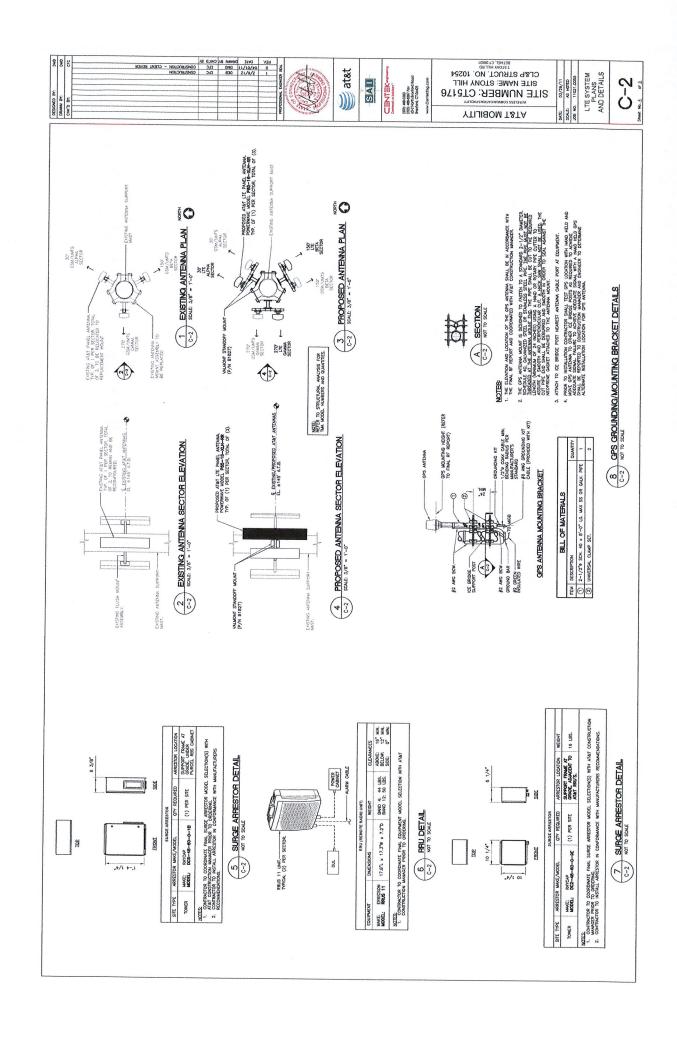
 AND WORK OF THE SUBCONTRACTORS.
- COUNTRY OR SELLY RESPONSE. TO DETEND CONTRUCTION PROCEDURE AND SELLY RESPONSE. TO STRONG THE SERLY OF THE SER

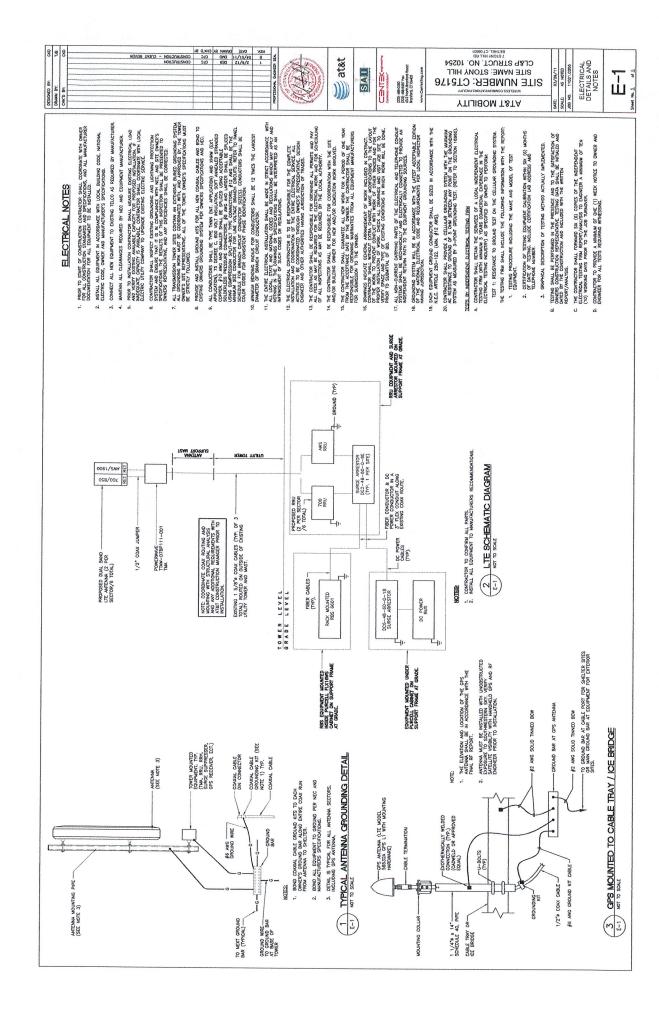
- 12 ALL CONTROLLOR AND ALL PROTUCES FOR DESCRIPTION OF CONTROLLOR ALL PROTUCES FOR DESCRIPTION OF SUPPORT CONTROLLOR OF SUPPORT PROTUCES FOR ALL PROTUCES FOR SUPPORT OF SUPPORT PROTUCES FOR ALL DESCRIPTION AND ACCESSION OF SUPPORT PROTUCES FOR ALL SUPPORTS AND ACCESSION OF SUPPORT PROTUCES FOR ALL CONTROLLOR OF SUPPORT PROTUCES F 11. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
 - CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE UNB SARRARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBJUIT COPY TO ENCHIEER FOR APPROVAL, DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBJUITING TO THE CONSTRUCTION MANAGER FOR REVIEW.
 - THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, AND EXSTING CONDITIONS AT THE SITE, PRIOR TO FARRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
 - COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPHOFFRANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL, AND TELECOMALINICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTION. THE CONTRACTOR WILL BE HELD LUBIE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES. LE COMPLET LE CONTRACTOR DE RECHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICAGES SUB-CONTRACTORS FOR ANY CONDITION POR THE MANUFACTURES OCCURRENCE TO SUPPLY THESE TELES AT NO COST TO OWNER OR CONSTITUTION MANUFAC
 - THE CONTRACTOR SHALL CONTACT "CALL BETDRE "YOU DIG" AT LEAST MOINTS PROFILE BY BEDDRESS ALL UNTILES SHALL BY REPORT WAS ED PROVINGS AT I "CHARLED PROFILE BY WAS ED PROVING TO WHIS WAS ED PROVING WAS ED PROVINGED WAS EXALL MANABLA AND PROTECT WAS WASCO UTILIES THROUGHOUT PROJECT COMPLETION.
- CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCANATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

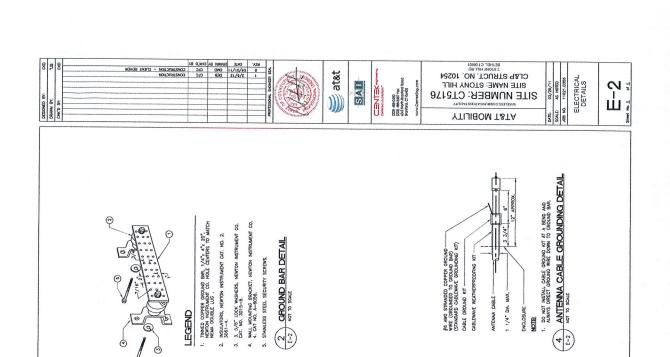
	TITLE SHEET	1-1
-	-	

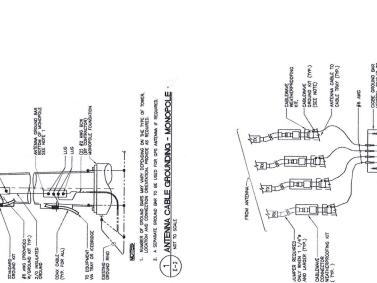
STRUCTURAL SPECIFICATIONS		DESIGNED BY: CFC DRUMN BY: DMD CHCT BY: CFC
DESIGN BASIS CONERATION, BUILDING COOF (8C) AS WORTED BY THE 2005 CONECTION STATE BUILDING COOF AND 2009 AMENDRING.	EQUIDATION CONSTRUCTION NOTES 1. AL PODTINGS SHALL BE FUCED ON SUTURAL, CORRACTED SOL, HANNE ABEQUITE BENEW CHANTITY AND PREET OF ROAWS CONTINGS, CANCER OF USERS, AUTHOR, ADDITIONAL COMMENTAL BE RELEASED SELVE TOWNER, ELEVANDES, MOCKUTE P. DESIGNAEL MATTER, ES DEDOMITED. 1. RELEASED SELVE TOWNER, ELEVANDES, MOCKUTE P. DESIGNAEL MATTER, ES DEDOMITED. 1. RELEASED SELVE TOWNER, TOWNER, SELVE TOWNER, TOW	
AND CHIEFING. WHO LOAD: PER DATIVA EZE FSE & NA DRIEBAN (MATIONA MODUNES): ES UPH (PASTEST MAND CHARLES AND CHARLES AND CHARLES AND CHARLES AND CHARLES AND CHARLES. 11 OH MAY (SECOND CHARLES AND CHARLES AND CHARLES.): 11 OH MAY (SECOND CHARLES AND CHARLES.): 11 OH MAY (SECOND CHARLES AND CHARLES.): 12 DESCEND ON CHARLES.): 12 DESCEND ON CHARLES. CONTROL (TREE) AND CHARLES	2. SEGROCH SERVANDER E NEURIFIELS EST DE FLOORINGER, DOORGE ALL INSERTIGES, PIECE AND THE PROPERTIES OF THE SERVENCES. PIECE AND THE PROPERTIES AND CONFINE THE SERVENCES. PIECE AND	AGA38 J
SESSION CODES AND COMPROLY PER ASCE 7—99 MINIMUM DESIGN LONGS FOR BULDINGS AND OTHER STRUCTURES.	3. ALL SDI. SURROUADHO AND LHORRY ALL PODINGS SHALL BE KEPT REAGONARY DEY AND PROTECTED PROJECTION OF THE COLORS OF OLGOSTROTHON. * WHERE DROUBLANTER IS DROUGHTERD, DEWINTERN SHALL BE ACCOUNTEDING SHAT DROUBLESHED COMMUNICAY AND	ж - спен
OENCEAL NOTES I. # ANY RELD CONNECTOR SEST WHICH PRECLUCE COMPLACE WITH THE DRAWNES, THE CONTROLLER'S SHALL IMMEDITY, WAITY THE DOWNERS AND SHALL PROCEDD WITH AFFECTED WHICH AFFECTED WH	COMPATENT UNISHER FOUNDATION CONSTRUCTION, PROVINC CRUSHED STORE TO STRUCTURE TO STABLEZ STABLES THE STABLES STORED STORED STORED TO STABLEZ STABLES STORED	CONZUNICUE
CATION TO DEFINE SHALL BE CHECKED AGAINST THE PRE MANUFACTURED EQUIPMENT BUILDING SHOP PRANIFYS.	STEUFICIEU BT THE ENGINEER.	35
THE CONTRACTOR SMALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.	CONCRETE CONSTRUCTION NOTES	1 BL CH
REFER TO DRAWING 71 FOR ADDITIONAL NOTES AND REQUIREMENTS.	 CONDRETE, CUNSTRUCTION STALL CONFORM TO THE FOLLOWING STANDARDS: AGI 211 — STANDARD PRACTICE FOR SELECTING PROPORTIONS FOR NORMAL AND HEAVYWEIGHT CONCRETE. 	NINYSO INCI ISCI
	ACI 301 - SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS.	21/9
THE CONTRACTOR SHALL CALL UTLITES PRIOR TO THE START OF CONSTRUCTION.	ACI 302 - GUIDE FOR CONCRETE FLOOR AND SIJA CONSTRUCTION	/10
ACINE, EMISTAG UTILLIES, WHERE ENCONNTERED IN THE WORK, SAULL BE PROTECTED AT ALL TAKES, THE CHARKERS SAULL BE NUTIFED IMPLORATILY, PRIOR TO PROJECTIONS, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCREMANCE WITH THE COMPANET DOCUMENTS.	ACI 304 — RECOMMENDED PRACTICE FOR MEXINNO, MIXINO, TRANSPORTING, AND PLACING CONCRETE. ACI 300-1 STANDARD SPECIFICATION FOR COLD WEATHER CONCRETING	, 738 0
ALL RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED OFF SITE AND BE LEGALLY DISPOSED, AT NO ADDITIONL. COST,	ACI 318 - BUILDING CODE REQUIREMENTS FOR REINFORCED CONDRETT.	PROFESSORAL DASHEDS SEAL
THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE EQUIPMENT AND TOWER AREAS.		
NO FILL OR EMBANOMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW, OR ICE SHALL NOT BE PLACED IN ARY FILL OR EMBANIKMENT,	- PORTLAND CENTRY ASTA CTSQ. TYPE I, (SHO LBS/CUBIC YARD)	Charles I
THE SUBGRACE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SUBFACE APPLICATION.	- WATER: POTABLE WITH MAXIMUM WATER CEMENT RATIO OF .55 - SILVING TO 4	Section of the sectio
THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.	- AJMIKUTEN, EDLE ME WIRKANEN GADEN TOWNENNEN TO KSTM ZEGO WITH 4 TO 6% TOTAL JAF. USE WITTER REDUCING AGENT CONFORMENT TO ASTIM CEGA, TYPE A, IN ALL CONFORCTE, CALCIUM CALDRIDE MAY NOT BE USED TO ACCELERATE THE CONCRETE SETTING TIME.	0
CONTRACTOR SHALL MINIMIZE DISTUBBANCE TO EXISTING SITE DURING CONSTRUCTION, ERCSION CONTROL MINICAJRES, SHALL BE IN CONFORMANCE WITH THE LOCAL GAIDELINES FOR EROSION AND SEDIMENT CONTROL.	3. REINFORCING STEEL SAULL BE 60,000 PSI YELD STRENGTH. 4. WELDED WIRE FABRIC SHALL CONFORM TO ASTM- A-188.	at&t
EARTHWORK NOTES	5. ALL DETALING, FABRICATION, AND ERECTION OF RENIFORCING BARS, UNILESS OTHERWISE NOTED, MUST FOLLOW THE LATEST ACI CODE AND LATEST ACI "MARALAL OF STANDARD PRACTICE FOR DETALING	SAU
compacted gravel fill shall be furnished and placed as a foundation for structures, where shown on the contract dramings or directed by the engineer.	REMY ONCED CONCRETE STRUCTURES. 6. CONCRETE COVER OVER REMYORGING SHALL CONFORM TO THE FOLLOWING. UNLESS OTHERWISE SHOWN.	- Line
CRUSHED STONE FILL SHALL BE PLACED IN 12" MAX. LIFTS AND CONSOLIDATED USING A HAND OPERATED VIBRATORY PLATE COMPACTOR WITH A MINIMUM OF 2 PAGSSES OF COMPACTOR PER LIFT.	BOTTOM OF FOOTNOS 3 INCHES	Carlened on Soldens
COMPACTED GRAVEL FILL TO BE WELL GRADED BANK RUN GRAVEL MEETING THE FOLLOWING GRADATION REQUIREMENTS:		(200) 486 GBD (200) 486 4087 Fox 452 North Bronford Bood
SIDIE DESIGNATION Z. PASSING	NO STEEL WIRE, METAL FORM TES, OR ANY OTHER METAL SHALL REMAIN WITHIN THE REQUIRED COVER OF ANY CONCRETE SURFACE.	Manford, CT 04-05
6-70 8-70 4-8	8. ALL RENIFORCIMENT SHALL BE CONTINUOUS UNLESS OPPERWISE NOTED. SPUCES SHALL BE WILL STRUCTED. ADDITIONAL BASE AND SPECUL BEROWING DETAILS, ARE REQUIRED AT MERSESTED WILLS AND AND AND AND AND AND SPECUL BASE SHALL SHALL CAMPY, WITH ALD STRUCTURED SHALL BE SHOWN.	www.Centelchg.com
CRUSHED STONE TO BE UNIFORMLY GRADED, CLEAN, HARD PROCESS AGGREGATE METING THE FOLLOWING GRACATION REQUIREMENTS:	9. NO TACK WELDING OF REINFORCING WILL BE PERMITTED.	-
	TO NO CALCIAM CHLORDE OR ADMICTURES CONTAINING MORE THAN 1% CHLORIDE BY WEIGHT OF ADMIXTURE SHALL BE USED IN THE CONGRETE.	ITIH LGT
90-100 91-15 9-4	11. UNLESS OTHERWISE NOTED, ALL LAP SPLICES STALL BE 48 BAR DAMETERS. 12. SLAB ON GRADE FINISHES:	10°.
STEECT BACKFILL FOR FOUNDATION WALLS SHALL BE FREE OF ORGANIC MATERIAL, TOPSOIL, DEBRIS AND BOLLDERS LINGER THAN 6.	EXTEROR SLAB: NON-SLP BROOM FINGH INTEROR SLAB: STEEL TROVEL PRISH	
GRAVEL AND GRANULAR FILL SHALL BE INSTALLED IN 8° MAX. UFTS. COMPACTED TO 95% MIN. AT MAX. DRY DENSITY.	GENERAL NOTES (REFERENCE)	MC BMA JAT
NON WORKE GEOTESTILE FOR SEPARATION PLIPPOSES SHALL BE MIRAFI 140H, OR ENGINEER APPROVED EQUAL.	1. CONFIGURE TO RETER TO THE CEREALA, MOST ON SEET THE ADMINISTRAL INCREMENDA. SETTEN TO SOIL WERDONDOT DEAWNEDS 5-1. & 2-2 PREFERED FY COUNTY, INCREMENDA. INC. (PRIOL 11021, LOS). LATTO 2///12) FOR ALT GROUNG WITE AND SPECIFICATION.	MARL
		S

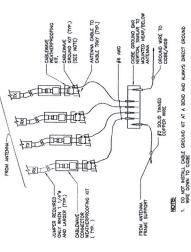

- GENERAL NOTES (EXTERNOT)


 1. COMPACTOR TO REFER TO THE GENERAL NOTES ON SHEET 7-1 FOR ADDITIONAL INFORMATION.


 2. RETER TO SOIL MEROPLICATE DEWNINGS 5-1 & 5-2 RESPERADS BY COURTE DEMICEISMIC, INC. (PRICE, NO. 1102), GOSS. UNID 21/1/2), FOR LET GROUNG NOTES AND SPECIFORDISC.


NOTES AND SPECIFICATIONS


N-



— ANTENNA GROUND BAR TOP OF MONOPOLE SEE SCHEMATE DIAGRAM OF GROUNDING SYSTEM ON DRAWING E-3

TO ANTENNA

STANDARD GROUND KIT

(3) CONNECTION OF GROUND WIFES TO GROUND BAR (F-2) NOT TO SOME

Centered on Solutions**

Structural Analysis of PCS Mast and CL&P Pole

AT&T Site Ref: CT5176: Stony Hill

CL&P Structure No. 10254 140' Electric Transmission Pole

> 7 Stony Hill Road Bethel, CT

CENTEK Project No. 11021.CO55

Date: August 17, 2011 Rev 1: January 31, 2012

Prepared for: AT&T Mobility 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION AND RECOMMENDATIONS

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
 - RISA 3-D
 - PLS POLE
 - L-PILE

SECTION 3 - DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS
- NU DESIGN CRITERIA TABLE
- PCS SHAPE FACTOR CRITERIA
- WIRE LOADS SHEET

SECTION 4 - DRAWINGS

- EL-1 POLE AND MAST ELEVATION
- S-1 PLAN, ELEVATION AND NOTES
- S-2 JET GROUTING NOTES

SECTION 5 - EIA/TIA-222-F LOAD CALCULATIONS FOR MAST ANALYSIS

MAST WIND & ICE LOAD

SECTION 6 - MAST ANALYSIS PER EIA/TIA-222F

- LOAD CASES AND COMBINATIONS (TIA/EIA LOADING)
- RISA 3-D ANALYSIS REPORT
- MAST CONNECTION TO CL&P POLE ANALYSIS

TABLE OF CONTENTS TOC-1

SECTION 7 - NECS/NU LOAD CALCULATIONS FOR OBTAINING MAST REACTIONS APPLIED TO UTILITY STRUCTURE

MAST WIND LOAD

SECTION 8 - MAST ANALYSIS PER NESC/NU FOR OBTAINING REACTIONS APPLIED TO UTILITY STRUCTURE

- LOAD CASES AND COMBINATIONS (NESC/NU LOADING)
- RISA 3-D ANALYSIS REPORT

SECTION 9 - PLS POLE RESULTS FROM MAST REACTIONS CALCULATED IN RISA WITH NESC/NU CRITERIA

- COAX CABLE LOAD ON CL&P POLE CALCULATION
- PLS REPORT
- ANCHOR BOLT ANALYSIS.
- MATHCAD CAISSON FOUNDATION ANALYSIS.
- L-PILE CAISSON ANALYSIS. (EXISTING CAISSON)
- L-PILE LATERAL DEFLECTION VS. DEPTH. (EXISTING CAISSON)
- L-PILE BENDING MOMENT VS. DEPTH. (EXISTING CAISSON)
- L-PILE SHEAR FORCE VS. DEPTH. (EXISTING CAISSON)
- L-PILE CAISSON ANALYSIS. (REINFORCED CAISSON)
- L-PILE LATERAL DEFLECTION VS. DEPTH. (REINFORCED CAISSON)
- L-PILE BENDING MOMENT VS. DEPTH. (REINFORCED CAISSON)
- L-PILE SHEAR FORCE VS. DEPTH. (REINFORCED CAISSON)
- L-PILE CAISSON ANALYSIS. (PY CURVE COMPUTATION)
- L-PILE P-Y CURVE

SECTION 10 - REFERENCE MATERIAL

- RFDS SHEET
- EQUIPMENT CUT SHEETS

TABLE OF CONTENTS TOC-2

<u>Introduction</u>

The purpose of this report is to analyze the existing mast and 140' CL&P pole located at 7 Stony Hill Road in Bethel, CT for the proposed antenna and equipment upgrade by AT&T.

The existing/proposed loads consist of the following:

NEXTEL (Existing to Remain):

Antennas: One (1) EMS 30" \varnothing Stacked Accellerator flush mounted on the existing mast with a RAD center elevation of 156-ft-4-in above grade level.

<u>Coax Cables:</u> Twelve (12) 1-5/8" \varnothing coax cables running on the exterior of the CL&P pole and pcs mast.

Mast: HSS 4"x0.237" 2' long pipe flange connected to a HSS18"x0.375" x 8' long pipe.

AT&T (Existing to Relocate):

Antennas: Three (3) Powerwave 7770 panel antennas and six (6) Powerwave LGP-21401 TMAs mounted on three (3) proposed Valmont Dual Standoff Mounts P/N B1827 to the existing mast with a RAD center elevation of 145-ft above grade level.

Coax Cables: Six (6) 1-5/8" Ø coax cables running on the exterior of the CL&P pole.

AT&T (Proposed):

Antennas: Three (3) Powerwave P65-16-XLH-RR panel antennas and three (3) Powerwave TTAW-07BP111-001 TMAs mounted on three (3) proposed Valmont Dual Standoff Mounts P/N B1827 to the existing mast with a RAD center elevation of 145-ft above grade level.

Coax Cables: Six (6) 1-5/8" Ø coax cables running on the exterior of the CL&P pole.

Primary assumptions used in the analysis

- Allowable steel stresses are defined by AISC-ASD 9th edition for design of the PCS Mast and antenna supporting elements.
- ASCE Manual No. 72, "Design of Steel Transmission Pole Structures Second Edition", defines allowable steel stresses for evaluation of the CL&P utility pole.
- All utility pole members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- Pipe mast will be properly installed and maintained.
- No residual stresses exist due to incorrect pole erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- Pipe mast and utility pole will be in plumb condition.
- Utility pole was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.

Analysis

Structural analysis of the existing *Mast* was independently completed using the current version of RISA-3D computer program licensed to CENTEK Engineering, Inc.

The existing mast consisting of a HSS4"x0.237" x 2' long pipe conforming to ASTM A500 Grade B (Fy = 42ksi) flange connected to a HSS18"x0.375" x 8' long pipe conforming to ASTM A500 Grade B (Fy = 42ksi) connected at one point to the existing pole was analyzed for its ability to resist loads prescribed by the TIA/EIA standard. Section 5 of this report details these gravity and lateral wind loads. NESC prescribed loads were also applied to the mast in order to obtain reactions needed for analyzing the CL&P pole structure. These loads are developed in Section 7 of this report. Load cases and combinations used in RISA-3D for TIA/EIA loading and for NESC/NU loading are listed in report Sections 6 and 8, respectively.

An envelope solution was first made to determine maximum and minimum forces, stresses, and deflections to confirm the selected section as adequate. Additional analyses were then made to determine the NESC forces to be applied to the CL&P pole structure.

The RISA-3D program contains a library of all AISC shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized. The forces calculated in RISA-3D using NESC guidelines were then applied to the CL&P pole using PLS-Pole. Maximum usage for the pole was calculated considering the additional forces from the mast and associated appurtenances.

<u>Design Basis</u>

Our analysis was performed in accordance with TIA/EIA-222-F-1996, ASCE Manual No. 72 – "Design of Steel Transmission Pole Structures Second Edition", NESC C2-2007 and Northeast Utilities Design Criteria.

The CL&P pole structure, considering existing and future conductor and shield wire loading, with the pcs antenna mast was analyzed under two conditions:

UTILITY POLE ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility pole to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the NU Design Criteria Table, NESC C2-2007 ~ Construction Grade B, and ASCE Manual No. 72.

Load cases considered:

second gust)

Load Ca	ase 1: NESC Heavy	
Wind P	ressure	4.0 psf
Vertical	Overload Capacity Factor	1.50
Wind O	verload Capacity Factor	2.50
Wire Te	ension Overload Capacity Factor	1.65
	ase 2: NESC Extreme	40
Wind S	peed 10	00 mph ⁽¹⁾
Radial I	ce Thickness	0"
Note 1:	NESC C2-2007, Section25, Rule 250C: Extre Loading, 1.25 x Gust Response Factor (wind s	me Wind speed: 3-

MAST ASSEMBLY ANALYSIS

Mast, appurtenances and connections to the utility tower were analyzed and designed in accordance with the NU Design Criteria Table, TIA/EIA-222-F, and AISC-ASD standards.

Load cases considered:

Load Case 2:

Radial Ice Thickness...... 0.5"

Note 2: Per NU Mast Design Criteria Exception 1.

Results

MAST ASSEMBLY

The existing mast was determined to be structurally adequate.

Member	Stress Ratio (% of capacity)	Result
HSS4"x0.237" pipe x 2-ft long	13.8%	PASS
HSS 18"x0.375" pipe x 8-ft long	20.1%	PASS
3/4" Ø ASTM A325 Bolt	51.5%	PASS

UTILITY POLE

This analysis finds that the subject utility pole is adequate to support the proposed antenna mast and related appurtenances. The pole stresses meet the requirements set forth by the ASCE Manual No. 72, "Design of Steel Transmission Pole Structures Second Edition", for the applied NESC Heavy and NESC Extreme load cases. The detailed analysis results are provided in Section 9 of this report. The analysis results are summarized as follows:

A maximum usage of **96.65%** occurs in the utility pole base plate under the **NESC Extreme** loading condition.

POLE SECTION:

The utility pole was found to be within allowable limits.

Tower Section	Elevation	Stress Ratio (% of capacity)	Result
Tube Number 3	0'-41.17' (AGL)	88.85%	PASS

BASE PLATE:

The base plate was found to be within allowable limits from the PLS output based on 24 bend lines.

Tower Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Base Plate	Bending	96.65%	PASS

FOUNDATION AND ANCHORS

The existing foundation consists of a 8-ft \varnothing x 20.5-ft long reinforced concrete caisson. The base of the tower is connected to the foundation by means of (20) 2.25" \varnothing , ASTM A615-75 anchor bolts embedded approximately 9-ft into the concrete foundation structure. Foundation information was obtained from NUSCO drawing # 01143-60001.

The existing foundation was determined to be structurally inadequate due to deflection limitations. A 16-ft \emptyset x 12-ft deep area of soil will be jet grouted in order to increase the amount of soil that is used to resistance the deflection of the caisson. Refer to section 4 of this report for modification details.

Review of the foundation and anchor design consisted of verification of applied loads obtained from the tower design calculations and code checks of allowable stresses:

BASE REACTIONS:

From PLS-Pole analysis of CL&P pole based on NESC/NU prescribed loads.

Load Case	Shear	Axial	Moment
NESC Heavy Wind	35.7 kips	99.6 kips	3890.2 ft-kips
NESC Extreme Wind	51.1 kips	48.9 kips	5121.9 ft-kips

Note 1 – 10% increase applied to tower base reactions per OTRM 051

ANCHOR BOLTS:

The anchor bolts were found to be within allowable limits.

Tower Component	Design Limit	Stress Ratio (% of capacity)	Result
Anchor Bolts	Tension	75.5%	PASS

FOUNDATION:

The foundation with the proposed modifications was found to be within allowable limits.

Foundation	Design Limit	Proposed Loading ⁽¹⁾	Result
Reinforced Concrete	Moment Capacity	31.0% (2)	PASS
Caisson	Lateral Deflection	3.09 in. ^{(3) (4)}	PASS
	Bearing Capacity ⁽⁵⁾	80.0% (6)	PASS

- Note 1: 10% increase to PLS base reactions used in foundation analysis per OTRM 051.
- Note 2: Based on existing 8-ft \emptyset x 20.5-ft long concrete caisson.
- Note 3: Based on 8-ft of the caisson taken as 16-ft Ø due to effects of soil jet grouting. Top 4-ft of jet grouted soil ignored per Northeast Utilities.
- Note 4: Lateral deflection approved by Northeast Utilities on 1/25/2012.
- Note 5: Factor of safety of 2 applied to the bearing capacity of existing caisson against proposed jet grouted soil.
- Note 6: Bearing capacity of existing caisson against proposed jet grouted soil limited to 425 pci.

Conclusions and Recommendations

This analysis shows that the subject utility pole with the proposed foundation modifications <u>is adequate</u> to support the proposed AT&T equipment upgrade.

The analysis is based, in part on the information provided to this office by Northeast Utilities and AT&T Mobility. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Carlo F. Centore, PE

Principal ~ Structural Engineer

Prepared by:

Timothy J. Lynn, EIT Structural Engineer

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

<u>GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM~RISA-3D</u>

RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems & conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases & rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements
- 1-Way members, for tension only bracing, slipping, etc.

- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot & print virtually everything with color coding & labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000,EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd & 3rd, HSS Specification, CAN/CSA-S16.1-1994 & 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, Marino\WARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member & joint deflections, beam & plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

<u>GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM~PLS-POLE</u>

PLS-POLE provides all of the capabilities a structural engineer requires to design transmission, substation or communications structures. It does so using a simple easy to use graphical interface that rests upon our time tested finite element engine. Regardless of whether you want to model a simple wood pole or a guyed steel X-Frame; PLS-POLE can handle the job simply, reliably and efficiently.

Modeling Features:

- Structures are made of standard reusable components that are available in libraries. You can
 easily create your own libraries or get them from a manufacturer
- Structure models are built interactively using interactive menus and graphical commands
- Automatic generation of underlying finite element model of structure
- Steel poles can have circular, 4, 6, 8, 12, 16, or 18-sided, regular, elliptical or user input cross sections (flat-to-flat or tip-to-tip orientations)
- Steel and concrete poles can be selected from standard sizes available from manufacturers
- Automatic pole class selection
- Cross brace position optimizer
- Capability to specify pole ground line rotations
- Capability to model foundation displacements
- Can optionally model foundation stiffness
- Guys are easily handled (modeled as exact cable elements in nonlinear analysis)
- Powerful graphics module (members color-coded by stress usage)
- Graphical selection of joints and components allows graphical editing and checking
- Poles can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces

Analysis Features:

- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Design checks for ASCE, ANSI/TIA/EIA 222 (Revisions F and G) or other requirements
- Automatic calculation of dead and wind loads
- Automated loading on structure (wind, ice and drag coefficients) according to:
 - ASCE 74-1991
 - NESC 2002
 - NESC 2007
 - IEC 60826:2003
 - EN50341-1:2001 (CENELEC)
 - EN50341-3-9:2001 (UK NNA)
 - EN50341-3-17:2001 (Portugal NNA)
 - ESAA C(b)1-2003 (Australia)
 - TPNZ (New Zealand)
 - REE (Spain)
 - EIA/TIA 222-F
 - ANSI/TIA 222-G
 - CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Detects buckling by nonlinear analysis

Results Features:

- Detects buckling by nonlinear analysis
- Easy to interpret text, spreadsheet and graphics design summaries
- Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Automatic tracking of part numbers and costs

LPILE Plus:

LPILE Plus is a special purpose program based on rational procedures for analyzing a pile under lateral loading. The program computes deflection, shear, bending moment, and soil response with respect to depth in nonlinear soils. Components of the stiffness matrix at the pile head may be computed internally by the program to help the users in their super-structure analysis. Several pile lengths may be automatically checked by the program in order to help the user produce a design with an optimum pile penetration.

Soil behavior is modeled with p-y curves internally generated by the computer program following published recommendations for various types of soils; alternatively, the user can manually introduce other p-y curves. Special procedures are programmed for developing p-y curves for layered soils and for rocks.

Several types of pile-head boundary conditions may be selected, and the properties of the pile can also vary as a function of depth. LPILE Plus has capabilities to compute the ultimate-moment capacity of a pile's section and can provide design information for rebar arrangement. The user may optionally ask the program to generate and take into account nonlinear values of flexural stiffness (EI) which are generated internally based on specified pile dimensions, material properties, and cracked/uncracked concrete behavior.

A single, user-friendly interface written for the Microsoft Windows© environment is provided for the preparation of input, analytical run, and for the graphical observation of data contained in the output file. The program has been written in 32-bit programming codes for compatibility with the latest versions of the Microsoft Windows operating system. The program produces plain-text input and output files that may be observed and/or edited for their inclusion in project reports.

Criteria for Design of PCS Facilities On or Extending Above Metal Electric Transmission Towers & Analysis of Transmission Towers Supporting PCS Masts (1)

<u>Introduction</u>

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA/EIA-222 covering the design of telecommunications structures specifies a working strength/allowable stress design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that it does not exceed some defined percentage of failure strength (allowable stress).

ANSI Standard C2-2007 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50-year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.

Note 1: Prepared from documentation provide from Northeast Utilities.

PCS Mast

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA/EIA Standard 222 with two exceptions:

- An 85 mph extreme wind speed shall be used for locations in all counties throughout the NU system.
- 2. The stress increase of TIA Section 3.1.1.1 is disallowed. The combined wind and ice condition shall consider ½" radial ice in combination with the wind load (0.75 Wi) as specified in TIA section 2.3.16.

ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "NU Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

DESIGN CRITERIA SECTION 3-2

Northeast Utilities Overhead Transmission Standards

Attachment A

NU Design Criteria

								
			S Basic Wind Speed	Q (PSF)	N Height Factor	Gust Factor	Load or Stress Factor	Force Coef - Shape Factor
no	TIMELA	, "Ānienna Mount	TIA	TIA (75WI)	ŤΙΑ	TIA	TIA Section 3.1.1.1 disallowed for connection design	a TIA (
Ice Condition	Heavy	Tower/Pole Analysis with antennas extending above top of Tower/Pole (Yield Stress)		4	1.00	1.00	2.50	1.6 Flat Surfaces 1.3 Round Surfaces
lce	NESC Heavy	Tower/Pole Analysis with Antennas below top of Stower/Pole Hon two faces)		4	1,00	# # 1.00 h	2.50	1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:			Conductor	loads provided by	NU	
ndtion	TIAEIA	Antenna Mount	8 5	TA .	TIÁ.	+ TIA	TIA Section 3.1.1.1 disallowed for sconnection design a	Y TIA
High Wind Condtion	Extreme ind	Tower/Pole Analysis with antennas extending above top of Tower/Pole	Use		7, Section 25, Rule 2 1.25 x Gust Respons ground level based o	se Factor	d Loading	1.6 Flat Surfaces 1.3 Round Surfaces
High V	NESC Extr Wind	Tower/Pole Analysis with Antennas below top of Tower/Pole	Use	NESC C2-2007 Height above	Section 25, Rule 2 e ground level based	50C: Extreme Win on top of Tower/P	d Loading ole	1.6 Flat Surfaces 1:3 Round Surfaces
		Conductors:			Conductor	loads provided by	NU	
ctreme	Wind ton*	Tower/Pole Analysis with antennas extending above top of Tower/Pole	UseNE	4PSF Wind Loa	ection 25, Rule 250D ad 1.25 ground level based o	x Gust Response F	actor	1.6 Flat Surfaces 1.3 Round Surfaces
NESC Extreme	Ice with Wind Conditon*	Tower/Pole Analysis with Antennas below top of Tower/Pole		IPSF Wind Load	ction 25 Rule 250D 1 9 ground level based			1.6 Flat Surfaces 1.3 Round Surfaces
_		Conductors:			Conductor	loads provided by	NU	And a second sec
	[* Only for Structures Installed aft	er 2007					

Communication Antennas on	Transmission St	tructures (CL&P	& WMECo Only)
Northeast Utilities	Design	OTRM 059	Rev.0
Approved by: DEH (NU)	Design	Page 7 of 9	11/17/2009

Northeast Utilities Overhead Transmission Standards

2) STEP 2 - The electric transmission structure analysis and evaluation shall be performed in accordance with NESC requirements and shall include the mast and antenna loads determined from NESC applied loading conditions (not TIA/EIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)

The structure shall be analyzed using yield stress theory in accordance with Attachment A, "NU Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:

- a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
- b) Conductors and related devices and hardware (wire loads will be provided by NU).
- c) Electric Transmission Structure
 - i) The loads from the wireless communication equipment components based on NESC and NU Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower.
 - ii) Shape Factor Multiplier:

NESC Structure Shape	Cd
Polyround (for polygonal steel poles)	1.3
Flat	1.6
Open Lattice	3.2

iii) When Coaxial Cables are mounted along side the pole structure, the shape multiplier shall be:

Mount Type	Cable Cd	Pole Cd
Coaxial Cables on outside periphery (One layer)	1.45	1.45
Coaxial Cables mounted on stand offs	1.6	1.3

d) The uniform loadings and factors specified for the above components in Attachment A, "NU Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.

Note: The NESC does not require ice load be included in the supporting structure. (Ice on conductors and shield wire only, and NU will provide these loads).

e) Mast reaction loads shall be evaluated for local effects on the transmission structure members at the attachment points.

If the electric transmission structure is not sufficient to support the additional loadings of the wireless communication mast, reinforcement will be required to upgrade the strength of the overstressed members. Any reinforcement design will be reviewed by NU TL&CE to determine the feasibility of construction and its impact on the use of the structure as a transmission structure.

Communication Antennas on	Transmission St	ructures (CL&P	& WMECo Only)
Northeast Utilities	Design	OTRM 059	Rev.0
Approved by: DEH (NU)	Design	Page 3 of 9	11/17/2009

CLAP # 10254
CONDUCTOR LOADS
Original Cable Parameters

DIAM= WEIGHT

LOADING PARAMETERS
743 RS

sub-cond

	>	2651
HI WIND	н	4709
	V	8051
1" ICE	H	765
	>	6229
NESC	Н	4069
WGT	SPAN	805
WIND	SPAN	820
	SPAN	
	ANGLE	1.5
	-	A
	STR	10254

TITLE Nextel Bethel Site

05/19/2000

STRUCT CL&P 10254

CONDUCTOR SHIELD WIRE

	AHEAD		BACK	
	3/8 AW	[▼	3/8 AW	: ▼
ι	0.0	000	0.0	000
•	7 #8	Al Weld	7 #8	Al Weld
DIAM =	0.3	385	0.3	85
WEIGHT =	0.3	262	0.2	262
TENSION (LBS)		4,200	BACK	4,200

LOADCASE	NESC HEAVY
WIND (PSF)	4
ICE (IN)	0.50
OLF ANG	1.65
OLF WIND	2.50
OLF WT	1.50

		WIND	WGT		NESC HEAV	Y
STR	ANGLE	SPAN	SPAN	'H	L	V
	.75	410	403	564	-6929	491
BACK AHEAD	.75	410	403	564	6929	491
		820	806	1128	0	982
TOTALS	1.5	820	806	1120		

TITLE Nextel Bethel Site

05/19/2000

STRUCT CL&P 10254

CONDUCTOR SHIELD WIRE

- 05 au	- 1
3/8 AW	_
0.000 0.000	
7 #8 Al Weld 7 #8 Al Weld	_
DIAM = 0.385 0.385	1
WEIGHT = 0.262 0.262	╛
TENSION (LBS) AHEAD 5,615 BACK 5,615	

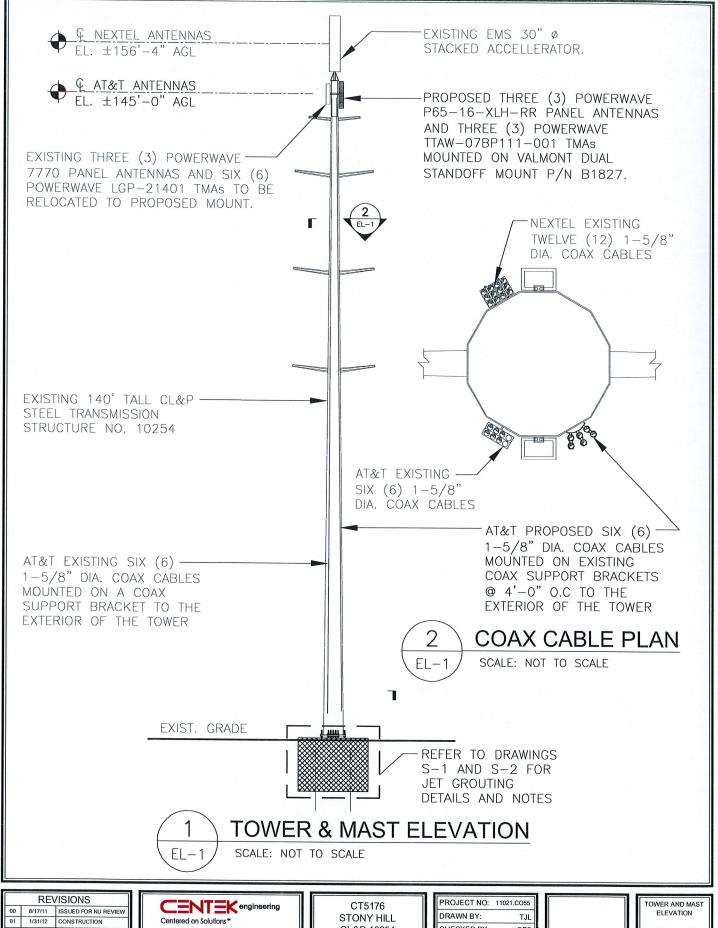
LOADCASE	1* RAD ICE ▼
WIND (PSF)	0
ICE (IN)	1.00
OLF ANG	1.15
OLF WIND	1.15
OLF WT	1.15

		WIND '	WGT	1" RAD ICE		
STR	ANGLE	SPAN	SPAN	Н	L	V
BACK	.75	410	403	85	-6457	920
AHEAD	.75	410	403	85	6457	920
		820	806	169	0	1839
TOTALS	1.5	820	000			

TITLE Nextel Bethel Site

05/19/2000

STRUCT CL&P 10254


CONDUCTOR SHIELD WIRE

AHEAD			BACK		
3/8 AW		•	3/8 AW		~
0.000 7 #8 Al Weld			0.0	000	
			7 #8 Al Weld		
. 0.3 8 5 0.262			0.385		
			0.262		
AHEAD	2,583		BACK	2,583	
	3/8 AW 0.0 7 #8 0.3 0.2	0.000 7 #8 Al Weld 0.385 0.262	0.000 7 #8 Al Weld 0.385 0.262	3/8 AW	3/8 AW

The second liverage in	
LOADCASE	HI WIND .
WIND (PSF)	20
ICE (IN)	0.00
OLF ANG	1.15
OLF WIND	1.15
OLF WT	1.15

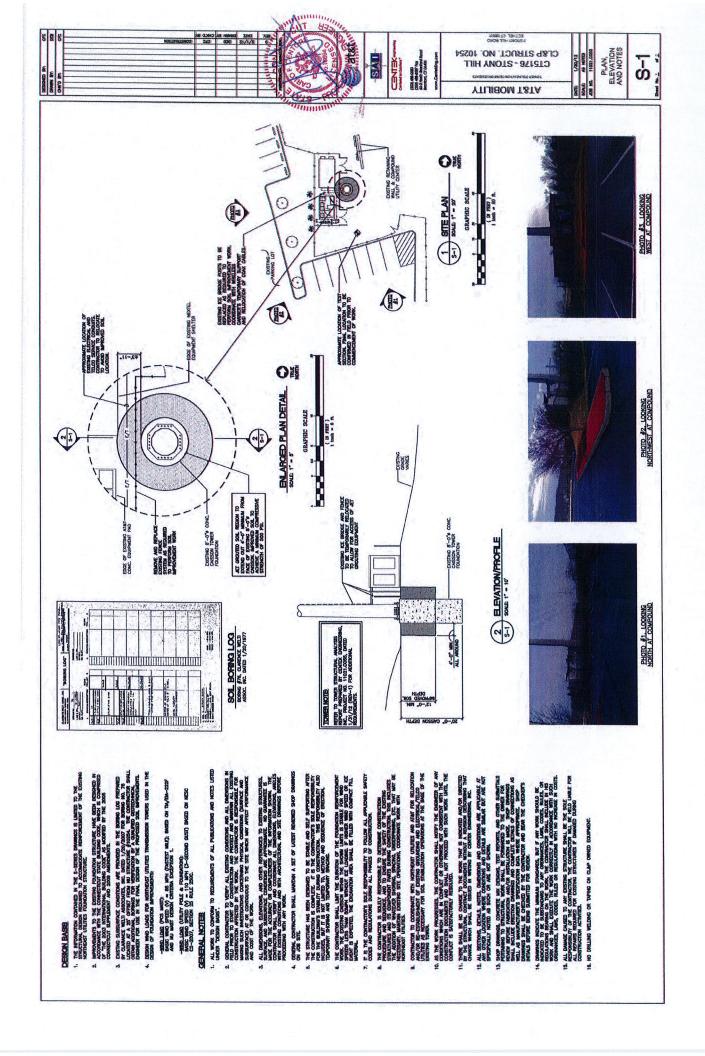
		WIND '	WGT	HI WIND			
STR	ANGLE	SPAN	SPAN	Н	L	V	
BACK	.75	410	403	341	-2970	121	
AHEAD	.75	410	403	341	2970	121	
TOTALS	1.5	820	806	683	0	243	

٤,

RE	VISIONS
8/17/11	ISSUED FOR NU REVIEW
1/31/12	CONSTRUCTION
	8/17/11

Www.CentekEng.com (203) 488-0580 (203) 488-8587 Fax 63-2 North Brantord Road, Brantord, CT 06405

CL&P 10254


7 STONY HILL ROAD

BETHEL, CT 06801

PROJECT NO:	11021.CO55
DRAWN BY:	TJL
CHECKED BY:	CFC
SCALE:	AS NOTED
DATE:	8/10/11

LL-1

DWG. 1 OF 1

	OSCIONAL BY OCC OSCIONAL BY OCCO.
DATIOL. OUR THE WATCH HS ONE GUALITY CORRIGE FOR THE WARDST DOOR LINEST HE DESCRIBED GOTTICHARD. DEWIETER, DEWIETER, THE WARDSTONE AND SPECIFIED HERBY.	Working Control
THE CHEMICIANS CONTROL OF STATEMENT OF STATEMENT CONTROL OF STATEMENT CONTROL OF STATEMENT CONTROL.	
GROUT MOLE OFF OF BANKERS SET THE RESELS OF MEDICHMEN. OF ELANDERS WITH SERVELS OF MOLE OF WITH SERVELS. OF OFFILIAN ON MACHINE SHALL AT SEARCHES WITH ROUT AND SERVELS OF MONIES MICE. SHALL AND MACHINE SHALL WHATER AT NO ACCIDITANT. COST TO THE CHIRES.	
ANETHON AND MONTOR ROTATION AND SHALL RE THE TO PRODUCE SHOOT OLD MANNERS WERE THE DARFIES, DEPTH, AND WHITEM, REPORTEY REQUIREDITS SPECKED INSERT, TOWN AND MAINTENEST SHOULD BE SHOULD BE SERVED.	моночниям
OF FOR WINNS, HOLDING, AND PLANDING GROUP SHALL BE IN A SECURE. I AND SHALL BE CHEDATED TO LABORING SHALL OF WATERAL. NO WIL BE ALLOHED TO SHIP STOKEN DRAWS OF CHIRE HOWANGE.	AB 0.38 330
SCHOOLS SAUL BE WANTANED BY THE GROUPING CONTRICTOR AND SO THE CHRISTYS REPRESENTANCE. ONTHALLIS SEQUENTIAL SECUENCY ALL SECUENCY SPECIAL SECUENCY SECUENCY.	
AUTHOLOGISTICS WILL WANTON SPECIFICATION SAIL RE	31vd) 81/1/6
O FOR THE MANUFACTUREN FOR THAT SHEWELF OF BENTANCE. O THE SITE. CENTREPARE OF COMPLANCE WITH THE SPECIFICATION SHALL BE FORD THE MANUFACTURES FOR EACH SHEWERF OF BENTANCE.	7,5394 G
DI TO THE SITE. WITER FOR SLURFY MOUND SHALL BE TESTED ONCE DICH (GNANGE IN	
LURRY A COMPLET, SCRES OF TESTS SHALL BE CONDUCTED FROM THE PER YANG CONTINUED PROSENT FROM THE PER SHIPT, THIRD TO STATE FOR SHIPT, THIRD TO STATE FOR SHIPT,	2
OWN CATHOD PRIVATE CONTINUES CORRES OF THE SECURITY CONTINUES CONT	8 8
STATE (ST. LOCATIONS, THE CORE HOLDS SHALL BE DRAILED FROM THE METER THE ST. CORE HOLDS WITH CAROLITISMS, NON-SHARK GROUT LIFON OF THE LOCATIONS OF THE CORE HOLDS WILL BE DETERMINED THOUSING BY THE CORE HOLDS WILL BE DETERMINED.	atar
LOWING REQUIREMENTS APPLY TO SAMPLES. LOWING REQUIREMENTS APPLY TO SAMPLES.	-BAIL
THE DEPTH AND COLLINNS FROM WHICH THE S SHALL BE WRAPPED IN PLASTIC FILM (E.C., MOSETURE LOSS.	CENTER seasons
MPLES SHUL BE STORED BN A COCU, DRY LOCATON (PRETBARLY B) A CONTROLLED TROUBLE ON SITE THE DNY THAT THEY DRILLED, WET S SHILL BE STRUED EN MERCHALLED ARRESPANCED TO BE SO THE CHARLES FOR SHIPPING TO A LAGGANIONY PAS.	(200) ABA-CHRIT (200) ABA-CHRIT (200) ABA-CHRIT PRINCIPAL BOOD (ABA-CHRIT PRINCIPAL BOOD (BANDON, CT) (A445)
MPLES SHALL NOT BE ALLONED TO PREZZE. MENENTAL MOT BE ALLONED TO PREZZE. MENENTAL MOT BE ALLONED TO PREZZE.	www.Cunteking.com
SERVES THE RIGHT TO SELECT A SMALL STRENGTH TESTING,	
THE BY CORE SAMPLING TO MEET THE RECLIREMENTS LISTED IN TABLE 1. OTHER	V HIL
OF ALL TESTS PERFORMED SHALL BE RECORDED ON TORAIS ACCESSIVALE DEMONSTRANCES SHOWED THE ALT GOLD SPECULAGE. THESE FORMS MANAGE TO THE DEMONSTOR IT ALL THESE FOR INS ASSECTION. SP. ALL QUARTE CONTINUE, DOCUMENTS WILL BE SHIBMITED DAILY TO THE TORS HAN STRENGLYON.	NOTS
NAT PROFILE DAMPING SHALL BE COMBADISED WATERED BY THE TOTAL THE REFOLK SHALL BEIGHT OF THE STORE OF THE MAN THE TOTAL SHALL SHALL BE SHALL BE SHALL BE SHALL BY THE DIMBERS.	181A - 87121 JRT2 9.
DIT AND PRIVATENT FOR THE JET GROUTING SHALL BE MADE AT THE CONTRACT PRICE. SHALL HOUSE ALL DOORS FOR THE CONTRACT PRICE. NO OF THE JET GROUTING, NO SEPARATE PARKED WILL BE MADE FOR	
** CONNECTS CALIENT SCHOOLS OF CALIFFY CORPOR. THE PROPERTY CALIFFY CORPOR. THE PROPERTY CALIFFY CALIF	SEALS. AS HOTED.
	JET GROUTING NOTES
	S-2
	Sheet No. 2 of 2

IS. FIELD TEST

E BOTTONIO PARTI. - THE ORDOT/SUINT BRUIND PLATE SAME INCLUDE THE MISSESSER TORDOTORY THE ORDOTORY THE ORDOTORY OF PROTUCUS INCLUDES OF THE ORDOTORY ORD ORDOT

ALL GOLFRONT UND FOR DISLING BORDFOLDS, LONDRING, RAISHO AND ROTTING CALL SPECIAL BORDFOLDS, SPECIAL AND ALL A

THE METHOD OF INSTITUTION OF THE TEST SECTION SMALL COMPUT WITH THIS SPECIATION AND SEVEL BE PERFORMED USING THE SMALL GROUT LINE SIZES, DRELLING AND GROUTING STAUPHENT AND PROCEDURES AS THAT TO BE USED PRODUCTION WINS.

ADMITTORIZED BASE - THE CONTROLORS SHALL SHARL A CHAINT CONTROL

MOMENTED BASE SHALL SHARL SHARL SHARL SHALL SHARL SHALL SHARL SHARL

MANITORIAS, BLAN — A CROUND MONBARIN MONITORING PLAN TO MEDISINE. MENDICAL MONBARINS OR HEME/SETTEMBIN OF UNLINES, STRUCTURES, AN ROADWINS IN THE VICINITY OF THE JET GROUTING OPERATIONS.

WEERL, PROFESTES, SOURCES, AND (AMMERCHARSTS) CERT CONTINUE, OF DRAWAGE, SPILE, WISTES, ETC. CLEMI-UP, SPOILS DEFOSAL, GROUT DISPOSAL.

THE SCOPE OF WORK CONSISTS OF FUNKSHING ALL PLANT, LABOR, EXCHRADIT, ON MATERIALS AND OF PERFORMEN ALL OFFORTIONS OF REQUIRED TO CONSTRUCT THE SOLLICIES SYMMETRION, VALUE OROCITING METHOD.

JET CROUTING SOIL CRETE STABILIZATION NOTES

API NP 138-1. API NECONAMENDED PRACTICE STANDARD PROCEDURE FOR PELD TESTING WATER-BASED DRILLANG PLINDS

TEST METHOD FOR UNIT WEIGHT OF CONCRETE

PARTICLE-SIZE ANALYSIS OF SOILS

API SPEC 13A API SPECIFICATION FOR OIL-WELL DRILLING-FLIED MATERIALS

FOLLOWING ARE THE RETERENCED STANDARDS FOR JET GROUTING BETERENCE ITTLE OR DESCRIPTION

THE SECTION COLORES WILL REVEND THEN AND COLORED SHIP IN THE THE SECTION COLORED WINE AND COLORED SHIP IN THE SECTION SHIP COLORED OF A LEGISL MODIFIED SHIP IN THE SECTION OF MEXING SHIP IN THE SECTION OF THE SECTION OF THE SECTION SHIP IN THE SECTION OF THE SE

C. ALI TISTINO TO DETENBRIC SPECIFICATION COMPLIANCE WILL SE PRODUCE BY MEZPONOTO TISTING AND FOR TEXTURE OF THE WINNESS THE MEDICALISM OF THE WINNESS THE WINNESS SHOULD BY THE STANDARD WINNESS SHOULD BY THE STANDARD WINNESS SHOULD BY THE STANDARD WINNESS THE WORLD THE WORLD

PRIOR TO COMMENCEMENT OF PRODUCTION GROUTING ONE (1) TEST SECTIONS SWILL BE PERFORMED. THE RECALIED MINISTRATIONS MORNET THAT PRECALIED GROUND MAPONIAGENT HAS NOT BEEN ACHIEVED, THE GROUTING CONTINUED SHALL REPASE THE PROCEDURES IN THE WORK PLAN AND RE-TIE

DELING COURDER. — USC DRILHOE EDUNBEIT OF A TYPE AND CAPACITY STATES OF RELIABLE AND EDUNBEITS, AND LONGTHAN AND RESISTS, AND RECISTOR AND LONGTHIS TO THE COPIES AND LONGTHE AND THE COLUMN STATES TO AND COLUMN STATES TO THE COLUMN STATES AND THE COLUMN STATES AND

A SOME PARTS AND EQUIPMENT SHALL BE AMBLABLE ON SITE TO MARKINH JET CHOUNG DECEMBER AT THE STREAM OF OFFICE OF STREAM.

C. PINAL REPORTS SHALL BE SUGNITIED WITHIN TWO (2) WEBGS OF THE COMPLETION OF WORL.

O. G.-BALL PACELL — A RECORD OF COLLAN CONSTRUCTO BACLLION OF COLLAN CONSTRUCTO BACLLION OF COLLAN CONSTRUCTO BACLLION OF CONSTRUCTOR A G.-BALL COLLAN FORTILL OF CONSTRUCTOR A G.-BALL CO. BALL C

B. LABORATORY TEST RESULTS SHWL. BE SUBMITTED WITHIN 36 MOURS OF RECEPT OF THE REPORT FROM THE LABORATORY.

A. DALY REPORTS SHALL BE SUBMITTED BY NOON OF THE DAY FOLLOWING THE DATE OF THE REPORT.

HYDRAULIC CONDUCTIVITY USING A FLEGBLE WALL PERMEANETER

FOLLOWING ARE ABBREVATIONS AND DEFINITIONS USED:

ASTIA D 5084

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS

DENSITY OF BENTONTE SUIRNES

MATERIALS FINER THAN NO, 200 SIEVE

ASTIR C 138 ASTIR D 422 ASTIR D 1140 THE FOLLOWING INFORMATION SHALL BE SUBLITIED TO THE ENGINEER ON A REQUEAR SCHEDULE DURING THE PROCRESS OF THE WORK.

O. JET GROUTING MONITORS — USE JET GROUTING MONITORS HANNE CAPACITY SUITABLE FOR PROVIDEN COULTERE COLLINERS IN THE WORK SITE 201. THYES INCURSION THE GOSTICHNICAL REPORTS, AND OF THE SIZE AND DEPTH SHOW ON THE COMPANIO TORNINGS AND AS SPECIFIED HERBIN.

F. QUMITY CONTROL DATA - A PECORD OF QUMITY CONTROL SAMPLES, TESTS TEST RESULTS.

F. LESSEZ'S REPRESENTANC — THE LESSEZ'S REPRESENTATION OF THE ENGINEEN IS CENTED CHIEF ENGINEER IN LESSEZ AND APPROVED BY THE EXCUSTRAN OF THESE SPECIALIZATION OF THESE

C. OWNER — THE OWNER AS REFERRED TO HEREN AS CONNECTICAT LIGHT & POWER (CLAP).

B. ASTM - AMERICAN SOCIETY FOR TESTING AND MATERIALS

D. OWNER'S REPRESENTATIVE — THE OWNER'S REPRESENTATIVE OR THE BARNESS NOTICES THAT INSTRUCTIVE ORDER PROPERTY OF THE OWNER TO ALT ON ITS BEHAVE IN THE EXCOUNT OF THESE SPECIALIZATIONS.

E. LESSEE - ATRY WRELESS

A JET GROUT SLIERY - THE GROUT SLIRRY SWALL CONSTST OF A STABLE. WAACDSBOOKS MATCHER OF CADENT/SPONTONE, IN WORT AND SWALL BE. COMPROLLED BY ACCORDANCE WITH THE MOST CLIRREDIT AN RECOMMENDED PRACTICE 138-1, AND THE POLLOMBNO REQUIREDITIES.

B. THE FOL

C. THE CONTINUED SHALL THRAUNENT BRAIN WITH STIRE, IN PRICIALLA, WITH CONTINUE OF THE ADDRESS (CACADO UTLITES (C.A., ORSHEGO TLEFFORE AND POWER LANSE) THAT WAS OF PROSECUE STIR. IT IS ARMICHATED THAT THAT OCCURRENTATION FOR UTLITIES AT THE PROJECT STIR. IT IS ARMICHATED THAT THAT CONTINUED THAT A SARRIPHANT MARRIES OF THE ATT OCCURRENT WAS OFF AND AND TO ADDRESS WITH MARRIES OF THE ATT OFFICE ATT WITH UTLITIES.

C. CHASTI — COMENT USED IN PREPARING GROUT SHALL CONFIGNAT TO ASTA CTISO. PORTIND. TYPE I OR 10 NO ASTA CTISO, GROUND GRANULAR BLAST FURNACE. SLAC OR A MATURE OF BOTH.

8. BENTANT — BOTTONIT USED IN PREDVISIO SLIBRY SWIL ER PULVESZEE SWILL METT THE MOST CHROSIF MY STANDARD 134, SECTION 4. THE YELD THE BENTONITE SWILL BE [80] BURRELS PER TON.

FOR COMBIT CROUT, PROPERTIES SHOUD INCLUDE A CALCULATED DESIGN DESIGN AND A PLANNED VISCOSITY

SOLDRETE ... THE RESULT FROM BROWN OF THE IN-EITH SOLES WITH A ACCOUNT TO MEET SPECIFIC STANDARD OF STRENGTH OF PERMEABUTY.

THE CHARGE CAT THORNING IN THE PROCESS OF CHARGE SHEETERS IN THE PROCESS OF CHARGE SHEETERS AT THE PROCESS.

THE WAS SHEETER FULSO OF CHARGE SHEETERS IN THE PROCESS.

FOR SHEETER FOR THE DO S, A MARINE SHEETER IN THE PROCESS.

FOR SHEETER FOR THE SHEETER SHEETER

1, AT GROUT COLLAN — A CILIDORDAL ANSS OF SCALCHEEF FRANKS FROM THE ATTENDED FROM THE ATTENDED FROM THE ATTENDED AND SUCCESSION OF CONTROLLING AND SUCCESSION AND SUCCESSIO

MONTHS - A FLUO ONLY PER EXEMPLE TO PETATE THE ELEMENT OF THE FRONTING PROCESS. THE MONTHS HIS ONE OR MORE BACKENING PROFESS THE MONTHS HIS ONE OR MORE BACKENING PROFESS. THE MONTH HAN VELOCITY HID THE SOLL TO MAY IN THE "BACKENING OR ROOTS."

A MIRES - FROM WITH, PAT OF DOZDER, AMANDER OF DELIDORES.

3.005/WASTS THAT AND ENTER THE PROPERTIES OF HIS GOOTS SUIT, ONLY OF THE THE PROPERTIES OF HIS GOOTS SUIT, ONLY OF THE WASTS OF DEPOPULATIONS OF THE WASTS OF THE WASTS WASTS OF THE PROPERTIES OF HIS CORPORATION OF HIS CORPORATION OF THE SUIT OF SHALLOWS OF THIS SUIT OF THE SUIT OF THE WASTS WASTS HALLOWS OF THIS SUIT OF THE SUIT OF THE WASTS WASTS WASTS THE SHALLOWS OF THE SUIT OF THE SUI

THE JET GROUTING OPERATIONS FOR INSTALLATION OF TIALL COLLIMNS AND PRODUCTION COLLIMNS MUST CONFORM TO THE APPRIMED JET GROUTING PLAN

A JET GROUTHG MAY CONSIST OF A SHAZE JET (GROUT INVESTION ONLY), DOJA JET (GROUT AN ENETTON, OR THELE ELY, (WITE, AR NA DGOOT INVESTION STATUS, ANY OF THESE SYSTEMS IN ACCEPTABLE, PROVIDING THE PREPORTANCE, PROVIDING THE SYSTEMS CHART.

DECUTION OF THE WORK

REPORTED LEGIS AUTOMON CONTROL AND CONTROL OF CONTROL OT CONTROL OF CONTROL OT CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OT CONTROL OF CONTROL OT CONTROL O

F. AT ALL TAKES DATING AND AT COMPLETION OF JET GROUTING OPENATIONS, THE STILL EXPROVENTY CARBOD OF ALL DESTES, WANCE, RETURN FOR AN SPILL DESTONE, WAS LET WATER AND WASTE.

WITERALS IN ANNIER ACCEPTABLE TO ALL ARBNOOMS WHATEVALION.

G, PREVENT ANY AND ALL MATERIAL FROM DATEBAIG STORM DRAINS OR OTHER DRAINGE COURSES, OR LEAVING THE SITE VA RUINGIF.

CAMBIOLISMS — FOR SENTING SLIGHT, ADMINISTS OF THE TIPSE LOSS. WITE CONTRIBUTION SLICH & STITZBER, LASTS. WITE OF CONTRIBUTION SLICH & STITZBER, LASTS OF THE CONTRIBUTION WE KE ACCORD TO THE WITE OF THE SLIGHT TO PERSON SPEZION SEC OF SENTING AND PROPER WORKSLIFT OF THE SLIGHT. HE DEBREESS SHALL SE ADMINIST USED. WE ALL ADMINIST SIGN.

MALENDERS & CARRIERDE. HE COMMENTE RER. (TORNER COMMENTE RES. (TORNER COMMENT RE

THE FOLLOWING INFORMATION SHALL BE SUBALTED AT LEAST FOUR (4) WEDIS 1908 TO CONSTRUCTION.

IN PRINCILIA, A JET GRUIT SPECIALES SHALL SUPERAGE THE COMERNORM, AND OLUTH COMPILE. THE JET GROUT SPECIALS SHALL WE ARE LEAST PIPE (5) TOARS OF DEPENDED. AND PIPE (5) OR MOTE PROJECTS BY SUCCESSFUL, COMERNITION OF JET GROUTING.

MARK PLAN — THE CONTRACTOR SHALL SUBMIT A DETAILD OFFERNING PAY DESCRIBILES. THIS SHALL NCLUDE, BUT NOT BE LIMITO TO, THE COMPACTOR PLAN FOR:

THE COMPANY NAME, KEY COMPACT, AND CALLIFICATIONS OF THE COMPACTION OF PIECE OPPOSITION WILL HAVE PROVIDED STREAM SCLOCKEE MATERIALS, DEPERANCED LABORATION TECHNICAMES, AND FLIGHBLE WILL PETALEVALLY TESTING EXUMPLET.

A CONTINUE SAY THE EXPENSION OF A ACCORDANCE WITH THE AFFORMATION OF A CONTINUE TO A C

H. COMPLY WITH APPLICABLE REQUISIONENTS OF ALL REGULATORY AUTHORITIES.

1. COMPLY WITH THE TRAFFIC MANTENING REQUIREMENTS.

A JET GROUT COLLINES SHALL BE RETALLED AT LOCATIONS WHERE JET GROUTING ENDOY TO CHEMIT A PLAL GROUTED CHEMIT A PROPODENCE RECURRENTEL.

B. CHEATE SOLLINETZ COLUMNS BY LET GROUTING PROCESS FROM THE BOTTOM HT. THE SY THE GROUT AND AS SHOOM ON THE CHARMAGE, THE SOTTOM THE LET GROUT MEAN IS TO THE LET OF THE LET GROUT MEAN IS TO DETERMENT THE LAPPROVIN, OF THE DIRECTAL

C. GROUTING FOR AN INDIVIDUAL JET GROUT COLUMN SYMIL, BE CONTRIUGUS WITHOUT RIEBRALFITION.

E. MANTAN GOOD CONTROL, OF THE JET GROUTHING PROCESS, IN REGARD TO SPOIL RETURN SO AS TO MINIMIZE OR ELANBANTE GROUND HEAVE.

D. DPOSE ALL NEW-SURYAC UTLITES IN THE VICHITY OF THER JET GROUTNY OPERATIONS TO ENSURE THAT THE DRILL-RIO GOES NOT PENETRATE, THESE UTILITIES.

A AT COUPLETON OF DUITY LET GROUTING OPERATIONS, THOROUGHLY GLENN STIET, AND SPINLED WITERALL, STOIL, EDENGE, WITER, AND SPILLED WITERALL, STOIL, STOCKPULING OVERWEAT IS PERMITTED PRIOR TO TRANSFER TO A PREDETENMENT WASTE OF TILL LOCATION.

A THE LESSEE MAY REDUIL A SOIL TESTING FIRM OR ASK THE LET GROUNDED CONTRACTOR TO PERFORM THE IN STUT TESTING AS DIRECTED BY THE OMERY'S DIAMERS. TEST SECTIONS WILL BE PERFORMED BEFORE AND DURANG PRODUCTION WORK.

JET CHCUTING PROCEDURES— WETHOD OF DRILLING, JET CHOUTING (J.E. SINGLE, DOUBLE, TRIPLE, JET SYSTEMS), FLUID INJECTION PRESSURE(S), ROTATIONAL SPEED AND WITHORW RATE FOR LET CHCUTING THROUGH THE SOIL STRUTA.

EDZIENERIT SET-UP AND SITE USE LAYOUT INCLUDING STORNGE AREAS, HAIX, ROJOS AND WORK PLATFORM DIMENSIONS.

EDUIPMENT SPECIFICATIONS INCLUDING: CAPABILITY OF JET GROUT RIG; AND SPECIFICATIONS OF GROUT MORING EQUIPMENT.

COORDINATING THE CONSTRUCTION, MANTEMANZ, AND READON, OF WORDIN, LATITORIES, MEXING POLICY, AND WILL RANDS WITH THE UNKER, GENERAL, CONTINUED ON SITE.

THE EFFECTIVENESS OF THE JET GROUTING WILL BE VERRIED AS FOLLOWS:

THE DEPOLICATION COLOURS, DESCRIPED WAS COMMONDES STOLE RETURN UP.

THE DEPOLICATION COLOURS, DESCRIPED INTO COMMONDES STOLE RETURNS AS CONTROLLED AND COLOUR COLOUR STOLEN OF STOLEN DESCRIPED AND COLOUR COLOUR STOLEN OF STOLEN

P: (203) 488-0580 F: (203) 486-8587 Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Development of Design Heights, Exposure Coefficients, and Velocity Pressures Per TIA/EIA

Wind Speeds

Basic Wind Speed

Basic Wind Speed with Ice

V := 85 $V_i := 74$ mph mph

ft

ft

ft

(User Input per NU Mast Design Criteria Exception 1)

(User Input per TIA/EIA-222-F Section 2.3.16)

Heights above ground level, z

Mast 1

z_{mast1} := 144

(User Input)

Mast 2

 $z_{\text{mast2}} = 149$

(User Input)

Nextel

 $z_{nextel} = 156.33$

(User Input)

AT&T

 $z_{att} := 145$

(User Input)

Coax Cable

 $z_{coax} = 145$

(User Input)

Exposure Coefficients, kz

(per TIA/EIA-222-F Section 2.3.3)

Mast 1

$$Kz_{\text{mast1}} := \left(\frac{z_{\text{mast1}}}{33}\right)^{\frac{2}{7}} = 1.523$$

Mast 2

$$\langle z_{\text{mast2}} := \left(\frac{z_{\text{mast2}}}{33}\right)^{\frac{-7}{7}} = 1.538$$

Nextel

$$Kz_{nextel} := \left(\frac{z_{nextel}}{33}\right)^{\frac{2}{7}} = 1.56$$

$$Kz_{att} := \left(\frac{z_{att}}{33}\right)^{\frac{2}{7}} = 1.526$$

$$Kz_{coax} := \left(\frac{z_{coax}}{33}\right)^{\frac{2}{7}} = 1.526$$

AT&T

$$Kz_{att} := \left(\frac{z_{att}}{33}\right)^7 = 1.526$$

Coax Cable

$$Kz_{coax} := \left(\frac{z_{coax}}{33}\right)^{\frac{1}{7}} = 1.526$$

P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Velocity Pressure without ice, cz

(per TIA/EIA-222-F Section 2.3.3)

Mast 1 $qz_{mast1} := 0.00256 \cdot Kz_{mast1} \cdot V^2 = 28.177$

Mast 2 $qz_{mast2} = 0.00256 \cdot Kz_{mast2} \cdot V^2 = 28.453$

Nextel $qz_{nextel} = 0.00256 \cdot Kz_{nextel} \cdot V^2 = 28.846$

AT&T $qz_{att} := 0.00256 \cdot Kz_{att} \cdot V^2 = 28.233$

Coax Cable $qz_{coax} := 0.00256 \cdot Kz_{coax} \cdot V^2 = 28.233$

Velocity Pressure with ice, qzICE (per TIA/EIA-222-F Section 2.3.3)

Mast 1 $qzICE_{mast1} := 0.00256 \cdot Kz_{mast1} \cdot V_i^2 = 21.356$

Mast 2 $qzICE_{mast2} := 0.00256 \cdot Kz_{mast2} \cdot V_1^2 = 21.565$

Nextel $qzICE_{nextel} := 0.00256 \cdot Kz_{nextel} \cdot V_i^2 = 21.863$

AT&T $qzICE_{att} := 0.00256 \cdot Kz_{att} \cdot V_i^2 = 21.398$

Coax Cable $qzICE_{coax} := 0.00256 \cdot Kz_{coax} \cdot V_i^2 = 21.398$

TIA/EIA Common Factors:

Gust Response Factor = $G_H := 1.69$ (User Input per TIA/EIA-222-F Section 2.3.4)

Gust Response Factor Multiplier = m := 1.25 (User Input per TIA/EIA-222-F Section 2.3.4.4)

Radial Ice Thickness = Ir := 0.50 in (User Input per TIA/EIA-222-F Section 2.3.1)

Radial Ice Density = Id := 56.00 pcf (User Input)

P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Development of Wind & Ice Load on PCS Mast

(per TIA/EIA-222-F-1996 Criteria)

Existing Mast Data:

(HSS18x0.375)

(User Input)

Mast Shape =

Round

(User Input)

Mast Diameter =

act Diamotor

 $D_{\text{mast}} := 18$ $L_{\text{mast}} := 8$

(User Input)

Mast Length =

ft

(User Input)

Mast Thickness =

 $t_{\text{mast}} = 0.375$

(User Input)

Mast Aspect Ratio =

 $Ar_{mast} := \frac{12L_{mast}}{D_{mast}} = 5.3$

Mast Force Coefficient =

 $Ca_{mast} = 0.8$

(per TIA/EIA-222-F Table 3)

Wind Load (without ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Mast Projected Surface Area =

 $A_{mast} := \frac{D_{mast}}{12} = 1.5$

sf/ft

Total Mast Wind Force =

qz_{mast1}·G_H·Ca_{mast}·A_{mast} = 57

plf BLC 5

Wind Load (with ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Mast Projected Surface Area w/ Ice =

 $AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot Ir\right)}{12} = 1.58$

sf/ft

Total Mast Wind Force w/ Ice =

 $qzICE_{mast1} \cdot G_{H} \cdot Ca_{mast} \cdot AICE_{mast} = 46$

plf BLC 4

Gravity Loads (without ice)

Weight of the mast =

Self Weight

(Computed internally by Risa-3D)

f BLC 1

Gravity Loads (ice only)

Ice Area per Linear Foot =

 $Ai_{mast} := \frac{\pi}{4} \left[\left(D_{mast} + Ir \cdot 2 \right)^2 - D_{mast}^2 \right] = 29.1$

sq in

Weight of Ice on Mast =

 $W_{ICEmast} := Id \cdot \frac{Ai_{mast}}{144} = 11$

plf BLC 3

Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Development of Wind & Ice Load on PCS Mast

(per TIA/EIA-222-F-1996 Criteria)

Existing Mast Data:

(HSS4.5x0.237)

(User Input)

Mast Shape =

Round

(User Input)

Mast Diameter =

 $D_{\text{mast}} = 4.5$

(User Input)

Mast Length =

 $L_{\text{mast}} = 2$

(User Input)

 $t_{\text{mast}} = 0.237$ Mast Thickness =

(User Input)

Mast As pect Ratio =

Mast Force Coefficient =

 $Ca_{mast} = 0.8$

(per TIA/EIA-222-F Table 3)

Wind Load (without ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Mast Projected Surface Area =

 $A_{mast} := \frac{D_{mast}}{12} = 0.375$

sf/ft

Total Mast Wind Force =

 $qz_{mast2} \cdot G_{H} \cdot Ca_{mast} \cdot A_{mast} = 14$

BLC 5 plf

Wind Load (with ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Mast Projected Surface Area w/ Ice =

 $AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot Ir\right)}{12} = 0.46$

sf/ft

Total Mast Wind Force w/ Ice =

 $qzICE_{mast2} \cdot G_{H} \cdot Ca_{mast} \cdot AICE_{mast} = 13$

BLC 4 plf

Gravity Loads (without ice)

Weight of the mast =

Self Weight

(Computed internally by Risa-3D)

BLC 1

Gravity Loads (ice only)

Ice Area per Linear Foot =

 $Ai_{mast} := \frac{\pi}{4} \left[\left(D_{mast} + Ir \cdot 2 \right)^2 - D_{mast}^2 \right] = 7.9$

sq in

Weight of Ice on Mast =

 $W_{ICEmast} := Id \cdot \frac{Ai_{mast}}{144} = 3$

BLC 3

P: (203) 488-0580 F: (203) 488-8587

Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Development of Wind & Ice Load on Antennas

Existing Antenna Data:

(Nextel)

Antenna Model =

Antenna Shape =

Round

(User Input)

Antenna Diameter =

 $D_{ant} = 30.0$

(User Input)

 $L_{ant} = 152$

(per TIA/EIA-222-F-1996 Criteria)

PCS 30" Acel lerator Stacked

(User Input)

Antenna Height = Antenna Weight =

 $WT_{ant} = 530$

(User Input)

Antenna Aspect Ratio =

 $Ar_{ant} := \frac{L_{ant}}{D_{ant}} = 5.1$

Number of Antennas =

 $N_{ant} := 1$

Antenna Force Coefficient =

 $Ca_{ant} = 0.8$

(per TIA/EIA-222-F-1996 Table 3)

Wind Load (without ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Antenna Projected Surface Area =

 $A_{ant} := \frac{D_{ant} L_{ant}}{144} = 31.7$

sf

Total Anterna Wind Force =

qz_{nextel}·G_H·Ca_{ant}·A_{ant} = 1235

BLC 5 lbs

Wind Load (with ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Antenna Projected Surface Area w/ I ce =

 $\mathsf{AICE}_{ant} \coloneqq \frac{\left(\mathsf{D}_{ant} + 2 \cdot \mathsf{Ir}\right) \cdot \left(\mathsf{L}_{ant} + 2 \cdot \mathsf{Ir}\right)}{144} = 32.9$

Total Antenna Wind Force w/ Ice =

qzICE_{nextel}·G_H·Ca_{ant}·AICE_{ant} = 974

BLC 4 lbs

Gravity Load (without ice)

Weight of All Antennas =

WT_{ant}·N_{ant} = 530

lbs BLC 2

Gravity Loads (ice only)

Ice Area per Linear Foot =

 $Ai_{ant} := \frac{\pi}{4} \left[\left(D_{ant} + Ir \cdot 2 \right)^2 - D_{ant}^2 \right] = 47.9$

sq in

Weight of Ice on Mast =

 $W_{ICEant} := Id \cdot \frac{Ai_{ant}}{144} \cdot \frac{L_{ant}}{12} = 236$

BLC 3

P: (203) 488-0580

Subject:

Location:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

(User Input)

(User Input)

(User Input)

(User Input)

(User Input)

(User Input)

Prepared by: T.J.L. Checked by: C.F.C. Job No. 11021.CO55

Rev. 1: 1/30/12

Development of Wind & Ice Load on Antennas

Existing Antenna Data:

Antenna Model =

Antenna Shape =

Antenna Height =

Antenna Width =

Antenna Thickness =

Antenna Weight =

Number of Antennas =

Antenna Aspect Ratio =

Antenna Force Coefficient =

 $Ca_{ant} = 1.4$

 $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 5.0$

(AT&T)

 $L_{ant} = 55$

 $T_{ant} := 5$

 $N_{ant} := 3$

W_{ant} := 11.0

 $WT_{ant} := 39$

Powerwave 7770

(per TIA/EIA-222-F-1996 Table 3)

Wind Load (without ice) (per TIA/EIA-222-F-1996 Section 2.3.2)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna =

Antenna Projected Surface Area =

Total Antema Wind Force =

Wind Load (with ice)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ I ce =

Total Antenna Wind Force w/ Ice =

Gravity Load (without ice)

Weight of All Antennas = Gravity Loads (ice only)

Volum e of Each Antenna =

Volum e of Ice on Each Antenna =

Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =

(per TIA/EIA-222-F-1996 Criteria)

 $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 4.2$

 $A_{ant} := SA_{ant} \cdot N_{ant} = 12.6$

 $F_{ant} := qz_{att} \cdot G_H \cdot Ca_{ant} \cdot A_{ant} = 842$

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $SA_{ICEant} := \frac{\left(L_{ant} + 1\right) \cdot \left(W_{ant} + 1\right)}{144} = 4.7$

 $A_{ICEant} = SA_{ICEant} \cdot N_{ant} = 14$

Fiant := qzICEatt·GH·Caant·AICEant = 709

 $WT_{ant} \cdot N_{ant} = 117$

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 3025$

 $V_{ice} := (L_{ant} + 1)(W_{ant} + 1) \cdot (T_{ant} + 1) - V_{ant} = 1007$

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 33$

W_{ICEant}·N_{ant} = 98

cu in

sf

sf

lbs

sf

sf

lbs

lbs

cu in

BLC 5

BLC 4

BLC 2

lbs

lbs BLC 3

P. (203) 488-0580

Subject:

Location:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 11021.CO55

Rev. 1: 1/30/12

Development of Wind & Ice Load on Antennas

Proposed Antenna Data:

Antenna Model =

Antenna Shape =

Antenna Height = Antenna Width =

Antenna Thickness =

Antenna Weight =

Number of Antennas =

Antenna Asped Ratio =

Antenna Force Coefficient =

Wind Load (without ice)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna =

Antenna Projected Surface Area =

Total Anterna Wind Force =

Wind Load (with ice)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w I ce =

Total Antenna Wind Force w/ Ice =

Gravity Load (without ice)

Weight of All Antennas =

Gravity Loads (ice only)

Volum e of Each Antenna =

Volum e of Ice on Each Antenna =

Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =

(per TIA/EIA-222-F-1996 Criteria)

(AT&T)

Flat

Powerwave P65-16-XLH-RR

(User Input)

 $L_{ant} = 72$ (User Input)

 $W_{ant} = 12$ (User Input)

 $T_{ant} = 6$ in (User Input)

 $WT_{ant} = 64$ (User Input)

 $N_{ant} = 3$ (User Input)

 $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 6.0$

 $Ca_{ant} = 1.4$ (per TIA/EIA-222-F-1996 Table 3)

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 6$

 $A_{ant} := SA_{ant} \cdot N_{ant} = 18$

 $F_{ant} := qz_{att} \cdot G_H \cdot Ca_{ant} \cdot A_{ant} = 1202$

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $SA_{ICEant} := \frac{\left(L_{ant} + 1\right) \cdot \left(W_{ant} + 1\right)}{144} = 6.6$

 $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 19.8$

Fiant := qzICEatt · GH·Caant · AICEant = 1001

 $WT_{ant} \cdot N_{ant} = 192$

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 5184$

 $V_{ice} := (L_{ant} + 1)(W_{ant} + 1) \cdot (T_{ant} + 1) - V_{ant} = 1459$

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 47$

 $W_{ICEant} \cdot N_{ant} = 142$

lbs BLC 3

sf

sf

sf

lbs

lbs

cu in

cu in

lbs

BLC 5

BLC 4

BLC 2

Subject:

Location:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 11021.CO55

Rev. 1: 1/30/12

Development of Wind & Ice Load on TMA's

Existing TMA Data:

(AT&T)

TMA Model =

TMA Shape = Flat

TMA Height =

TMA Width =

TMA Thickness =

TMA Weight =

Number of TMA's =

TMA Aspect Ratio =

TMA Force Coefficient =

 $Ca_{TMA} = 1.4$

(per TIA/EIA-222-F Table 3)

sf

sf

lbs

sf

sf

lbs

lbs

BLC 5

BLC 4

BLC 2

Wind Load (without ice)

Assumes Maximum Possible Wind Pressure Applied to All TMA's Simultaneously

Surface Area for One TMA =

TMA Projected Surface Area =

Total TMA Wind Force =

Wind Load (with ice)

Assumes Maximum Possible Wind Pressure Applied to All TMA's Simultaneously

Surface Area for One TMA w/ Ice =

TMA Projected Surface Area w/ Ice =

Total TMA Wind Force w/ Ice =

Gravity Load (without ice)

Weight of All TMA's =

Gravity Load (ice only)

Volume of Each TMA =

Volume of Ice on Each TMA =

Weight of Ice on Each TMA =

Weight of Ice on All TMA's

(per TIA/EIA-222-F-1996 Criteria)

Powerwave LGP 21401

(User Input)

 $L_{TMA} := 14.4$ (User Input)

(User Input) $W_{TMA} := 9.2$

 $T_{TMA} := 2.6$ (User Input)

 $WT_{TMA} := 14.1$ (User Input)

 $N_{TMA} := 6$ (User Input)

 $Ar_{TMA} := \frac{L_{TMA}}{W_{TMA}} = 1.6$

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 0.9$

 $A_{TMA} := SA_{TMA} \cdot N_{TMA} = 5.5$

 $F_{TMA} := qz_{att} \cdot G_H \cdot Ca_{TMA} \cdot A_{TMA} = 369$

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $SA_{ICETMA} := \frac{\left(L_{TMA} + 1\right) \cdot \left(W_{TMA} + 1\right)}{144} = 1.1$

AICETMA := SAICETMA·NTMA = 6.5

Fi_{TMA} := qzICE_{att}·G_H·Ca_{TMA}·A_{ICETMA} = 331

 $WT_{TMA} \cdot N_{TMA} = 85$

 $V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 344$

cu in cu in

lbs

 $V_{ice} := (L_{TMA} + 1)(W_{TMA} + 1)(T_{TMA} + 1) - V_{TMA} = 221$

 $W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 7$

 $W_{ICETMA} \cdot N_{TMA} = 43$

lbs BLC 3

Bramford, CT 06405

F: (203) 488-8587

Subject:

Location:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Development of Wind & Ice Load on TMA's

Proposed TMA Data: (AT&T)

Rev. 1: 1/30/12

TMA Model = Powerwave TTAW-07B P111-001

TMA Shape = (User Input)

(per TIA/EIA-222-F-1996 Criteria)

TMA Height = (User Input) $L_{TMA} := 9.9$

TMA Width = $W_{TMA} := 6.7$ in (User Input)

TMA Thickness = $T_{TMA} := 5.4$ (User Input)

TMA Weight = $WT_{TMA} := 18$ (User Input) Number of TMA's = (User Input) $N_{TMA} := 3$

 $Ar_{TMA} := \frac{L_{TMA}}{W_{TMA}} = 1.5$ TMA Aspect Ratio =

TMA Force Coefficient = $Ca_{TMA} = 1.4$ (per TIA/EIA-222-F Table 3)

Wind Load (without ice)

Assumes Maximum Possible Wind Pressure Applied to All TMA's Simultaneously

Surface Area for One TMA =

TMA Projected Surface Area =

Total TMA Wind Force =

Wind Load (with ice)

Assumes Maximum Possible Wind Pressure Applied to All TMA's Simultaneously

Surface Area for One TMA w/ Ice =

TMA Projected Surface Area w/ Ice =

Total TMA Wind Force w/ Ice =

Gravity Load (without ice)

Weight of All TMA's =

Gravity Load (ice only)

Volume of Each TMA =

Volume of Ice on Each TMA =

Weight of Ice on Each TMA =

Weight of Ice on All TMA's

$SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 0.5$

(per TIA/EIA-222-F-1996 Section 2.3.2)

 $A_{TMA} := SA_{TMA} \cdot N_{TMA} = 1.4$

 $F_{TMA} := qz_{att} \cdot G_H \cdot Ca_{TMA} \cdot A_{TMA} = 92$

(per TIA/EIA-222-F-1996 Section 2.3.2)

$$SA_{ICETMA} := \frac{\left(L_{TMA} + 1\right) \cdot \left(W_{TMA} + 1\right)}{144} = 0.6$$

 $A_{ICETMA} := SA_{ICETMA} \cdot N_{TMA} = 1.7$

Fi_{TMA} := qzICE_{att}·G_H·Ca_{TMA}·A_{ICETMA} = 89 lbs

$WT_{TMA} \cdot N_{TMA} = 54$

 $V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 358$

 $V_{ice} := (L_{TMA} + 1)(W_{TMA} + 1)(T_{TMA} + 1) - V_{TMA} = 179$

 $W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 6$

WICETMA: N_{TMA} = 17

lbs BLC 2

cu in

sf

sf

lbs

sf

sf

BLC 5

BLC 4

cu in

lbs

lbs BLC 3

Development of Wind & Ice Load on Antenna Mounts

Subject:

Location:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 11021.CO55

Rev. 1: 1/30/12

Mount Data:

Mount Type:

(3) Valmont Dual Standoff Mounts P/N B1827

(per TIA/EIA-222-F-1996 Criteria)

Platform Shape =

Flat

(User Input)

Platform Area =

Platform Area w/ lce =

 $A_{plt} := 5.3$

sq ft (User Input)

sq ft (User Input)

Platform Weight =

 $A_{ICE.plt} = 6.63$ $WT_{plt} := 640$

lbs (User Input)

Platform Weight w/ Ice =

 $WT_{ICE.plt} = 745$

 $Ca_{plt} := 1.4$

(User Input) lbs

(User Input)

(per TIA/EIA-222-F Table 3)

Wind Load (without ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Total Platform Wind Force =

Platform Force Coefficient =

 $F_{plt} := qz_{att} \cdot G_{H} \cdot Ca_{plt} \cdot A_{plt} = 354$

lbs

BLC 5

Wind Load (with ice)

(per TIA/EIA-222-F-1996 Section 2.3.2)

Total Platform Wind Force w/ Ice =

 $Fi_{plt} := qzICE_{att} \cdot G_H \cdot Ca_{plt} \cdot A_{ICE,plt} = 336$

lbs BLC 4

Gravity Load (without ice)

Weight of Platform =

 $WT_{plt} = 640$

lbs

BLC 2

Gravity Loads (ice only)

Weight of Ice on Platform =

 $WT_{ICE,plt} - WT_{plt} = 105$

lbs

BLC 3

Subject:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Location:

Rev. 1: 1/30/12

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Development of Wind & Ice Load on Coax Cables

per TIA/EIA-222-F-96 Criteria

Existing Coax Cable Data:

Coax Type = HELIAX 1-5/8"

Shape =

(User Input) Round

Coax Outside Diameter = $D_{coax} := 1.98$ (User Input)

Coax Cable Length = $L_{coax} = 10.0$ (User Input)

 $Wt_{coax} := 1.04$ Weight of Coax per foot = plf (User Input)

Total Number of Coax = (User Input) $N_{coax} := 12$

No. of Coax Projecting Outside Face of PCS Mast = $NP_{coax} := 3$ (User Input)

> $Ar_{coax} := \frac{\left(L_{coax} \cdot 12\right)}{D_{coax}} = 60.6$ Coax aspect ratio,

Coax Cable Force Factor Coefficient = TIA/EIA-222-F-96 Table 3 $Ca_{coax} = 1.2$

Wind Load (without ice)

per TIA/EIA-222-F-96 Section 2.3.2

 $A_{coax} := \frac{\left(NP_{coax}D_{coax}\right)}{12} = 0.5$ Coax projected surface area = sf/ft

Total Coax Wind Force = $F_{coax} := Ca_{coax} \cdot qz_{coax} \cdot G_H \cdot A_{coax} = 28$

BLC 5 plf

sq in

Wind Load (with ice) per TIA/EIA-222-F-96 Section 2.3.2

 $AICE_{coax} := \frac{\left(NP_{coax} \cdot D_{coax} + 2 \cdot Ir\right)}{12} = 0.6$ Coax projected surface area w/ Ice = sf/ft

Total Coax Wind Force w/ Ice = $Fi_{coax} := Ca_{coax} \cdot qzICE_{coax} \cdot G_H \cdot AICE_{coax} = 25$ plf BLC 4

Gravity Loads (without ice)

Weight of all cables w/o ice $WT_{coax} := Wt_{coax} \cdot N_{coax} = 12$ BLC 2

Gravity Loads (ice only)

 $Ai_{coax} := \frac{\pi}{4} \left[\left(D_{coax} + 2 \cdot Ir \right)^2 - D_{coax}^2 \right] = 3.9$ Ice Area per Linear Foot =

 $WTi_{coax} := N_{coax} \cdot Id \cdot \frac{Ai_{coax}}{144} = 18$ Ice Weight All Coax per foot = BLC 3

CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road	Subject:	Analysis of TIA/EIA Win Mast Only Tabulated Load Cases	d and Ice Loads f	for Analysis of
Branford, CT 06405	Location:	Bethel, CT		
Ph. 203-488-0580 / Fax. 203-488-858	7 Date: 7/19/11	Prepared by: T.J.L.	Checked by: C.F.C.	Job No. 11021.CO5
Load Case		Description		
1		Self Weight (Mast)	· · · · · · · · · · · · · · · · · · ·	
2	,	Weight of Appurtenances		
3	Weight	of Ice Only on PCS Struc	ture ⁽¹⁾	
4	TIA/EIA V	Wind with Ice on PCS Stru	cture ⁽¹⁾	
5	TIA/E	EIA Wind on PCS Structur	e ⁽¹⁾	
Footnotes:				
(1) PCS Structure inc	ludes: Mast and A	ppurtenances		

ations
Sombina
Load (
IIA-EIA
6-1

ťΛ
×
Suc
랿
Ë
E
Õ
and
Cases
ad
೭

	CENTEK engineering, INC. Consulting Engineers	Subject: Analysis of TIA/EIA Wind and Ice Loads for Analysis of Mast Only Load Combinations Table	Analysis of TIA/EIA Wind a Load Combinations Table	EIA Win ons Tak	d and ole	Ice Lo	ads for	Analysi	s of Ma	ast Only		*
	Branford, CT 06405	Location: Bethel, CT	iel, CT									
	Ph. 203-488-0580 / Fax. 203-488-8587	Date: 7/19/11	Prepared by: T.J.L.	r, T.J.L.	ō	ecked b	Checked by: C.F.C.			Jo.	Job No. 11021.CO55	1.CO55
Load Combination	Description	Envelope Wind Soultion Factor P-Delta BLC Factor BLC Factor BLC Factor BLC Factor	id or P-Delta I	3LC Fa	ctor B	LC Fa	ctor Bl	C Fact	or BLC	Facto	r BLC	Factor
-	TIA/EIA Wind + Ice on PCS Structure	1		τ	<u></u>	2	_	3 1	4	-		
7	TIA/EIA Wind on PCS Structure	~		-	~	2	←					*********
												-
	Footnotes: (1) BLC = Basic Load Case (2) PCS Structure includes: Mast and Appurtenances											
]

Company Designer Job Number

: CENTEK Engineering, INC. : tjl, cfc : 11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast

Jan 30, 2012 3:01 PM Checked By:

Global

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation	Yes
Include Warping	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Vertical Axis	Y
Global Member Orientation Plane	XZ

Hot Rolled Steel Code	AISC 9th: ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF&PA NDS-97: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-02
Masonry Code	ACI 530-05/08; ASD
Aluminum Code	AA ADM1-05: ASD

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections	Yes
Bad Framing Warnings	No
Unused Force Warnings	Yes

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Ct X	.035
Ct Z	.035
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	8.5
RZ	8.5
Ct Exp. X	.75
Ct Exp. Z	.75
Ca	.36
Cv	.54
Nv	1
SD1	1
SDS	1
S1	1
Occupancy Code	4
Seismic Zone	3
Use Group	
Use Gravity Self Wt in Diaphragm Mass	Yes
Use Deck Self Wt in Diaphragm Mass	Yes
Use Lateral Self Wt in Diaphragm Mass	Yes
Seismic Detailing Code	None
Om X	1
Om Z	1
Rho X	1
Rho Z	1

Company : CENTEK Engineering, INC.

Designer : tjl, cfc

Job Number : 11021.CO55 /AT&T CT5176 CL&P # 10254 - Mast Jan 30, 2012 3:01 PM Checked By:

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Design Parameters

	Label	Shape	Lengt	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	Kyy	Kzz	Cm	.Cm	Cb	y sw	z sw.	Function
1	M1	Existing.													Lateral
2	M2	Existing.	. 2												Lateral

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rul	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Existing Lower Mast	HSS18X0.375	Beam	Pipe	A500 Gr.42	Typical	19.4	754	754	1510
2	Existing Upper Mast	4.5" Mast w/ Stiffen	Beam	Pipe	A500 Gr.42	Typical	7.37	74.86	74.86	14.465

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N2	N3			Existing Lower	Beam	Pipe	A500 Gr.42	Typical
2	M2	N3	N4			Existing Upper	Beam	Pipe	A500 Gr.42	Typical
3	M3	N1	N2			RIGID	None	None	RIGID	Typical
4	M4	N4	N5			RIGID	None	None	RIGID	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	1.5	0	0	
3	N3	0	9.5	0	0	
4	N4	0	11.5	0	0	
5	N5	0	17.83	0	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	N2		Reaction					
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction	

Joint Loads and Enforced Displacements

Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
	No Data to Print		

: CENTEK Engineering, INC. Company Designer : tjl, cfc

Job Number

: 11021.CO55 /AT&T CT5176 CL&P # 10254 - Mast Jan 30, 2012 3:01 PM Checked By:

Member Point Loads (BLC 2: Weight of Appurtenances)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Υ	53	6.3
2	M1	Y	117	5
3	M1	Υ	192	5
4	M1	Y	085	5
5	M1	Υ	054	5
6	M1	Y	64	5

Member Point Loads (BLC 3: Weight of Ice Only on PCS Struct)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Υ	236	6.3
2	M1	Υ	098	5
3	M1	Y	142	5
4	M1	Υ	043	5
5	M1	Υ	017	5
6	<u>M1</u>	Υ	105	5

Member Point Loads (BLC 4: TIA/EIA Wind with Ice on PCS Str)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	X	.974	6.3
2	M1	X	.709	5
3	M1	X	1.001	5
4	M1	X	.331	5
5	M1	X	.089	5
6	M1	X	.336	5

Member Point Loads (BLC 5: TIA/EIA Wind on PCS Structure)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	X	1.235	6.3
2	<u>M1</u>	X	.842	5
3	M1	X	1.202	5
4	M1	X	.369	5
5	M1	X	.092	5
6	M1	X	.354	5

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,d	Start Location[ft,%]	End Location[ft,%]
1	M1	Υ	012	012	0	0
2	M2	Υ	012	012	0	0

Member Distributed Loads (BLC 3 : Weight of Ice Only on PCS Struct)

	Member Label	Direction	Start Magnitude[k/ft	End Magnitude[k/ft,d	Start Location[ft.%]	End Location[ft,%]
1	M1	Υ	011	011	0	0
2	M2	Υ	003	003	0	0
3	M1	Υ	018	018	0	0
4	M2	Υ	018	018	0	0

Member Distributed Loads (BLC 4 : TIA/EIA Wind with Ice on PCS Str)

Member Label	Direction	Start Magnitude[k/ft, End Magnitude[k/ft,d	Start Location[ft,%]	End Location[ft,%]

Company : CENTEK Engineering, INC.

Designer : tjl, cfc

Job Number : 11021.CO55 /AT&T CT5176

AT&T CT5176 CL&P # 10254 - Mast

Jan 30, 2012 3:01 PM Checked By:

Member Distributed Loads (BLC 4: TIA/EIA Wind with Ice on PCS Str) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,d	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.046	.046	0	0
2	M2	X	.013	.013	0	0
3	M1	X	.025	.025	0	0
4	M2	X	.025	.025	0	0

Member Distributed Loads (BLC 5 : TIA/EIA Wind on PCS Structure)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,d	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.057	.057	0	0
2	M2	X	.014	.014	0	0
3	M1	X	.028	.028	0	0
4	M2	X	.028	.028	0	0

Basic Load Cases

	BLC Description	Category	X Gravi	Y Gravi.	.Z Gravity	Joint	Point	Distrib	. Area(MS	Surfac
1	Self Weight (PCS Mast)	None		-1						
2	Weight of Appurtenances	None					6	2		
3	Weight of Ice Only on PCS Struct	None					6	4		
4	TIA/EIA Wind with Ice on PCS Str	None					6	4		
5	TIA/EIA Wind on PCS Structure	None					6	4		

Load Combinations

	Description	Sol	PDSR	.BLC	Fact.	.BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact.
1	TIA/EIA Wind + Ice on PCS Stru	Yes		1	1	2	1	3	1	4	1								
2	TIA/EIA Wind on PCS Structure	Yes		1	1	2	1	5	1										
3	Self Weight			1	1				*/55/2	ampoint of the		STATE OF THE PARTY		35540406572	100000000000000000000000000000000000000	140020000	CONTRACTOR OF THE SECOND		10.70 h 10.00

Envelope Member Section Forces

	Member	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	v-v Momen	. LC	z-z Momen.	LC
1	M1	1	max	3.231	1	4.858	2	0	1	0	1	0	1	37.901	2
2			min	2.316	2	4.084	1	0	1	0	1	0	1	31.162	1
3		2	max	3.017	1	4.688	2	0	1	0	1	0	1	28.355	2
4			min	2.16	2	3.942	1	0	1	0	1	0	1	23.136	1
5		3	max	2.803	1	4.518	2	0	1	0	1	0	1	19.149	2
6			min	2.004	2	3.8	1	0	1	0	1	0	1	15.394	1
7		4	max	1.096	1	1.489	2	0	1	0	1	0	1	13.142	2
8			min	.76	2	1.192	1	0	1	0	1	0	1	10.402	1
9		5	max	.882	1	1.319	2	0	1	0	1	0	1	10.334	2
10			min	.604	2	1.05	1	0	1	0	1	0	1	8.16	1
11	M2	1	max	.882	1	1.319	2	0	1	0	1	0	1	10.334	2
12			min	.604	2	1.05	1	0	1	0	1	0	1	8.16	1
13		2	max	.853	1	1.298	2	0	1	0	1	0	1	9.68	2
14			min	.586	2	1.031	1	0	1	0	1	0	1	7.64	1
15		3	max	.824	1	1.277	2	0	1	0	1	0	1	9.036	2
16			min	.567	2	1.012	1	0	1	0	1	0	1	7.129	1
17		4	max	.795	1	1.256	2	0	1	0	1	0	1	8.403	2
18			min	.549	2	.993	1	0	1	0	1	0	1	6.628	1
19		5	max	.766	1	1.235	2	0	1	0	1	0	1	7.78	2
20			min	.53	2	.974	1	0	1	0	1	0	1	6.136	1

Company Designer : CENTEK Engineering, INC.

: tjl, cfc

Job Number : 11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast

Jan 30, 2012 3:01 PM Checked By:

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	v-v Momen	. LC	z-z Momen	LC
21	M3	1	max	0	1	4.858	2	0	1	0	1	0	1	45.188	2
22			min	0	1	4.084	1	0	1	0	1	0	1	37.288	1
23		2	max	0	1	4.858	2	0	1	0	1	0	1	43.367	2
24			min	0	1	4.084	1	0	1	0	1	0	1	35.757	1
25		3	max	0	1	4.858	2	0	1	0	1	0	1	41.545	2
26			min	0	1	4.084	1	0	1	0	1	0	1	34.225	1
27		4	max	0	1	4.858	2	0	1	0	1	0	1	39.723	2
28			min	0	1	4.084	1	0	1	0	1	0	1	32.694	1
29		5	max	0	1	4.858	2	0	1	0	1	0	1	37.901	2
30			min	0	1	4.084	1	0	1	0	1	0	1	31.162	1
31	M4	1	max	.766	1	1.235	2	0	1	0	1	0	1	7.78	2
32			min	.53	2	.974	1	0	1	0	1	0	1	6.136	1
33		2	max	.766	1	1.235	2	0	1	0	1	0	1	5.826	2
34			min	.53	2	.974	1	0	1	0	1	0	1	4.595	1
35		3	max	.766	1	1.235	2	0	1	0	1	0	1	3.872	2
36			min	.53	2	.974	1	0	1	0	1	0	1	3.053	1
37		4	max	.766	1	1.235	2	0	1	0	1	0	1	1.917	2
38			min	.53	2	.974	1	0	1	0	1	0	1	1.512	1
39		5	max	0	1	0	1	0	1	0	1	0	1	0	2
40			min	0	1	0	1	0	1	0	1	0	1	0	1

Envelope Member Section Stresses

	Member	Sec		Axial[ksi]	LC	y Shear[LC	z Shear[LC	y-Top[ksi]	LC	v-Bot[ksi]	LC	z-Top[ksi]	LC	z-Bot[ksi]	LC
1	M1	1	max	.167	1	.501	2	0	1	-4.464	1	5.429	2	0	1	0	1
2			min	.119	2	.421	1	0	1	-5.429	2	4.464	1	0	1	0	1
3		2	max	.156	1	.483	2	0	1	-3.314	1	4.062	2	0	1	0	1
4			min	.111	2	.406	1	0	1	-4.062	2	3.314	1	0	1	0	1
5		3	max	.144	1	.466	2	0	1	-2.205	1	2.743	2	0	1	0	1
6			min	.103	2	.392	1	0	1	-2.743	2	2.205	1	0	1	0	1
7		4	max	.057	1	.154	2	0	1	-1.49	1	1.882	2	0	1	0	1
8			min	.039	2	.123	1	0	1	-1.882	2	1.49	1	0	1	0	1
9		5	max	.045	1	.136	2	0	1	-1.169	1	1.48	2	0	1	0	1
10			min	.031	2	.108	1	0	1	-1.48	2	1.169	1	0	1	0	1
11	M2	1	max	.12	1	.358	2	0	1	-2.943	1	3.727	2	0	1	0	1
12			min	.082	2	.285	1	0	1	-3.727	2	2.943	1	0	1	0	1
13		2	max	.116	1	.352	2	0	1	-2.756	1	3.491	2	0	1	0	1
14			min	.079	2	.28	1	0	1	-3.491	2	2.756	1	0	1	0	1
15		3	max	.112	1	.347	2	0	1	-2.571	1	3.259	2	0	1	0	1
16			min	.077	2	.275	1	0	1	-3.259	2	2.571	1	0	1	0	1
17		4	max	.108	1	.341	2	0	1	-2.391	1	3.031	2	0	1	0	1
18			min	.074	2	.269	1	0	1	-3.031	2	2.391	1	0	1	0	1
19		5	max	.104	1	.335	2	0	1	-2.213	1	2.806	2	0	1	0	1
20		4	min	.072	2	.264	1	0	1	-2.806	2	2.213	1	0	1	0	1
21	M3	1	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
22			min	.0	1	0	1	0	1	0	1	0	1	0	1	0	1
23		2	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
24			min	0	1	0	1	0	1	0	1	0	1	0	1	0	1
25		3	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
26			min	0	1	0	1	0	1	0	1	0	1	0	1	0	1
27		4	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
28	1912 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		min	0	1.	0	1	0	1	0	1	0	1	0	1	0	1

Company : CENTEK Engineering, INC.

Designer : tjl, cfc

 Jan 30, 2012 3:01 PM

Checked By:_

Envelope Member Section Stresses (Continued)

out of the	Member	Sec		Axial[ksi]	LC	y Shear[LC	z Shear[LC	v-Top[ksi]	LC	v-Bot[ksi]	LC	z-Top[ksi]	LC	z-Bot[ksi]	LC
29		5	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
30			min	0	1	0	1	0	1	0	1	0	1	0	1	0	1
31	M4	1	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
32			min	0	2	0	1	0	1	0	1	0	1	0	1	0	1
33		2	max	0	1	0	1	0	1	0	1	0	1	0	1	n	1
34	3********		min	0	2	0	1	0	1	0	1	0	1	0	1	0	1
35		3	max	0	1	0	1	0	1	0	1	0	1	0	1	n	1
36			min	0	2	0	1	0	1	0	1	0	1	0	1	0	1
37		4	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
38			min	0	2	0	1	0	1	0	1	0	1	0	1	n	1
39		5	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
40			min	0	1	0	1	0	1	0	1	0	1	0	1	0	

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N2	max	0	1	3.231	1	0	1	0	1	0	1	0	1
2		min	0	1	2.316	2	0	1	0	1	0	1	0	1
3	N1	max	-4.084	1	0	1	0	1	0	1	0	1	45.188	2
4		min	-4.858	2	0	2	0	1	0	1	0	1	37.288	1
5	Totals:	max	-4.084	1	3.231	1	0	1		1 SECTION 1805/		eranned Skop	01.200	######################################
6		min	-4.858	2	2.316	2	0	1						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation	ſ LC	Y Rotation	I.C	Z Rotation [LC
1	N1	max	0	2	0	2	0	1	0	1	0	1	0	1
2		min	0	1	0	1	0	1	0	1	0	1	Ö	2
3	N2	max	0	2	0	2	0	1	0	1	0	1	0	1
4		min	0	1	0	1	0	1	0	1	0	1	Ŏ	2
5	N3	max	.068	2	0	2	0	1	0	1	0	1	-8.941e-4	1
6		min	.056	1	0	1	0	1	0	1	0	1	-1.106e-3	2
7	N4	max	.111	2	0	2	0	1	0	1	0	1	-1.841e-3	1
8		min	.09	1	0	1	0	1	0	1	0	1	-2.305e-3	
9	N5	max	.286	2	0	2	0	1	0	1	0	1	-1.841e-3	
10		min	.229	1	0	1	0	1	0	1	0	1	-2.305e-3	HISTORIAN CONTRACTOR

Envelope AISC ASD Steel Code Checks

	Membe	er Shape	Code Check	Loc[ft]	LC	Shea	Loc[ft]	LFa [kFt [ksi]Fb yFb z C C ASD
1	M1	HSS18X0.375	.201	0	2	.030	0	2 24.265 25.2 27.72 27.72 16 .85 H1-2
2	M2	4.5" Mast w/	.138	0	2	.021	0	2 24.788 25.2 27.72 27.72 16 .85 H1-2

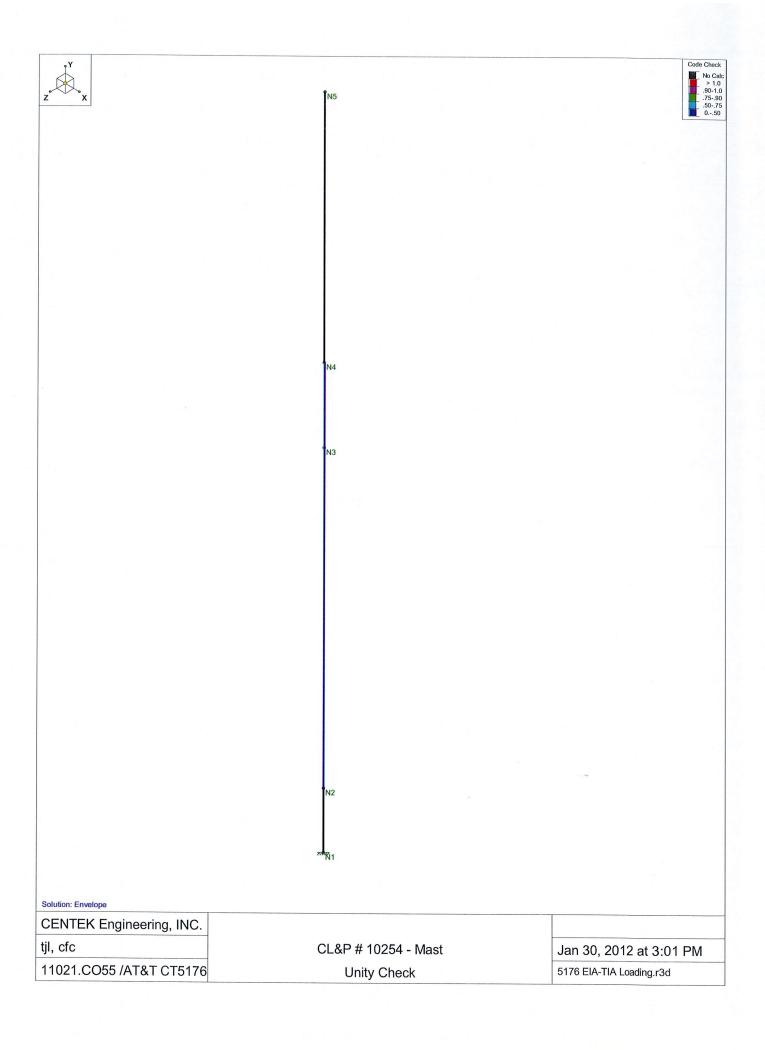
Company : CENTEK Engineering, INC.
Designer : tjl, cfc
Job Number : 11021.CO55 /AT&T CT5176

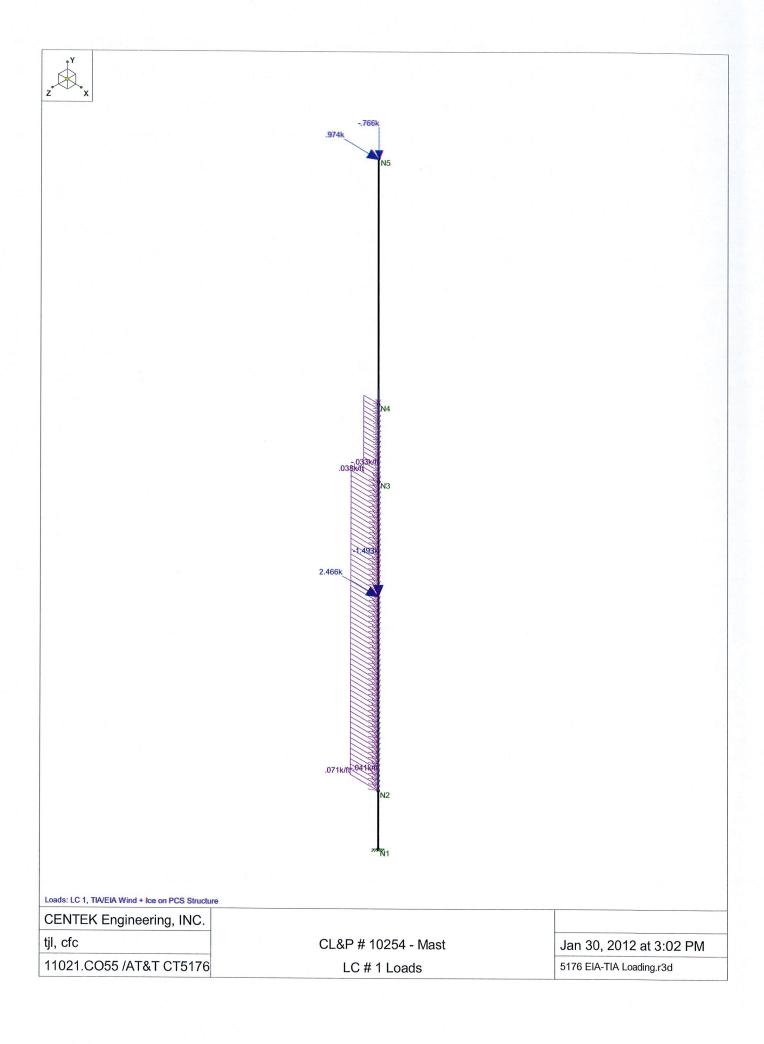
CL&P # 10254 - Mast

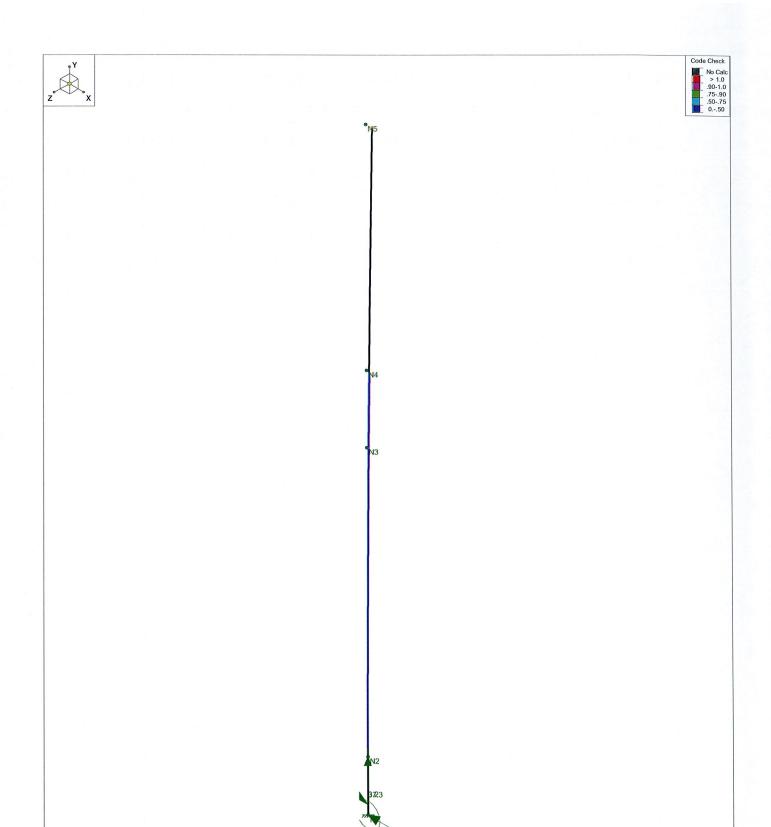
Jan 30, 2012 3:04 PM Checked By:

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	N2	0	3.231	0	0	0	0
2	1	N1	-4.084	0	0	0	0	37.288
3	1	Totals:	-4.084	3.231	0			
4	1	COG (ft):	X: 0	Y: 9.058	Z: 0			

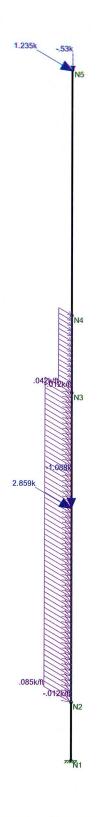

Company : CENTEK Engineering, INC.
Designer : tjl, cfc
Job Number : 11021.CO55 /AT&T CT5176


CL&P # 10254 - Mast


Jan 30, 2012 3:05 PM Checked By:

Joint Reactions

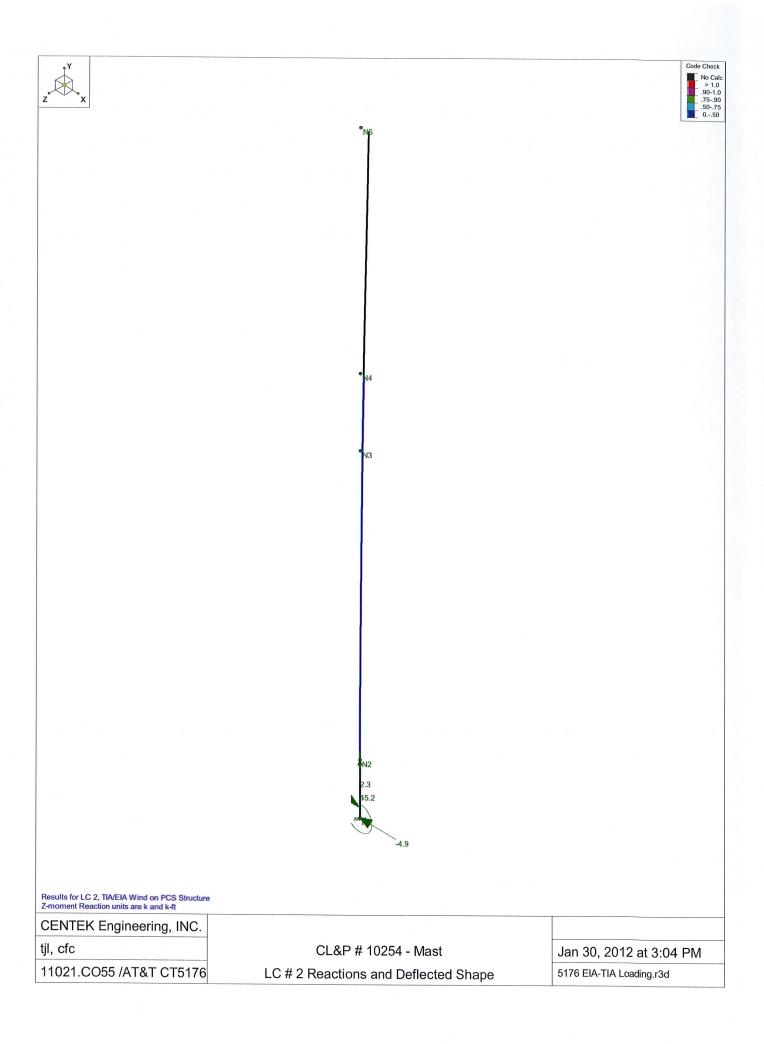
	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	N2	0	2.316	0	0	0	0
2	2	N1	-4.858	0	0	0	0	45.188
3	2	Totals:	-4.858	2.316	0			101100
4	2	COG (ft):	X: 0	Y: 8.944	Z: 0			


Results for LC 1, TIA/EIA Wind + Ice on PCS Structure Z-moment Reaction units are k and k-ft

CENTEK Engineering, INC. tjl, cfc

11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast LC # 1 Reactions and Deflected Shape Jan 30, 2012 at 3:04 PM 5176 EIA-TIA Loading.r3d



Loads: LC 2, TIA/EIA Wind on PCS Structure

CENTEK Engineering, INC.
tjl, cfc
11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast LC # 2 Loads

Jan 30, 2012 at 3:02 PM 5176 EIA-TIA Loading.r3d

Subject:

Connection of Mast to CL&P Pole # 10254

Centered on Solutions* at 632 North Branford Road Branford, CT 06405

P: (205) 488-0980 F: (205) 488-8587

Location:

Rev. 1: 1/30/12

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Mast Connection to CL&P Pole:

Reactions:

Moment = Moment := 45.2·kip·ft

(Input From Risa-3D)

Vertical =

Vertical := 0-kips

(Input From Risa-3D)

Horizontal x-dir =

Horizontal := 4.9 kips

(Input From Risa-3D)

Bolt Data:

Bolt Type =

ASTM A325

(User Input)

Bolt Diameter =

 $D:=\,0.75{\cdot}in$

(User Input)

Number of Bolts Per Angle =

 $N_b := 4$

(User Input)

Allowable Tensile Strength =

 $F_t := 19.9 \cdot \text{kips}$

(User Input)

Allowable Shear Strength =

 $F_V := 10.6 \cdot kips$

(User Input)

Distance Between Bolts =

 $\mathsf{D}_{bolt} \coloneqq \mathsf{25} {\cdot} \mathsf{in}$

(User Input)

Shear Force =

$$f_{\text{V}} \coloneqq \sqrt{\left(\frac{\text{Horizontal}}{N_b \cdot 2}\right)^2 + \left(\frac{\text{Moment}}{D_{\text{bolt}} \cdot N_b}\right)^2} = 5.5 \cdot \text{kips}$$

Bolt Shear % of Capacity =

$$\frac{f_V}{F_V} = 51.5 \cdot \%$$

Check Bolt Shear =

$$Bolt_Shear := if \left(\frac{f_V}{F_V} \le 1.00, "OK", "Overstressed" \right)$$

Bolt_Shear = "OK"

Tension Force =

$$f_t := \frac{\text{Horizontal}}{N_b} = 1.2 \cdot \text{kips}$$

Bolt Tenison % of Capacity =

$$\frac{f_t}{F_t} = 6.16 \cdot \%$$

Check Bolt Tension =

$$Bolt_Tension := if \left(\frac{f_t}{F_t} \le 1.00, "OK", "Overstressed" \right)$$

Bolt_Tension = "OK"

Subject:

Location:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C. Job No. 10021.CO55

Rev. 1: 1/30/12

Basic Components

Heavy Wind Pressure = (User Input NESC 2007 Figure 250-1 & Table 250-1) p := 4.00

Basic Windspeed = (User Input NESC 2007 Figure 250-2(e)) mph V := 100

Radial Ice Thickness = Ir := 0.50in (User Input)

Radial Ice Density = (User Input) Id := 56.0pcf

Factors for Extreme Wind Calculation

Elevation of Top of PCS Mast Above Grade = TME := 162.67 ft

> Multiplier Gust Response Factor = (User Input - Only for NESC Extreme wind case) m := 1.25

> > NESC Factor = kv := 1.43(User Input from NESC 2007 Table 250-3 equation)

(User Input)

Importance Factor = (User Input from NESC 2007 Section 250.C.2) I := 1.0

 $Kz := 2.01 \cdot \left(\frac{TME}{900}\right)^{0.5} = 1.402$ Velocity Pressure Coefficient = (NESC 2007 Table 250-2)

> Exposure Factor = (NESC 2007 Table 250-3)

> Bs := $\frac{1}{\left(1 + 0.375 \cdot \frac{\text{TME}}{220}\right)} = 0.783$ Response Term = (NESC 2007 Table 250-3)

 $Grf := \frac{\left[1 + \left(\frac{1}{2.7 \cdot Es \cdot Bs} \cdot \frac{1}{2}\right)\right]}{2} = 0.83$ Gust Response Factor = (NESC 2007 Table 250-3)

 $qz := 0.00256 \cdot Kz \cdot V^2 \cdot Grf \cdot I = 29.8$ Wind Pressure = (NESC 2007 Section 250.C.2)

Shape Factors

NUS Design Criteria Issued April 12, 2007

Shape Factor for Round Members = (User Input) $Cd_R := 1.3$

Shape Factor for Flat Members = $Cd_{F} := 1.6$ (User Input) Shape Factor for Coax Cables Attached to Outside of Pde = (User Input) $Cd_{coax} := 1.45$

> Overload Factors NU Design Criteria Table

Overload Factors for Wind Loads:

NESC Heavy Loading = 2.5 (User Input) Apply in Risa-3D Analysis NESC Extreme Loading = 1.0 Apply in Risa-3D Analysis (User Input)

Overload Factors for Vertical Loads:

NESC Heavy Loading = 1.5 (User Input) Apply in Risa-3D Analysis NESC Extreme Loading = 1.0 (User Input) Apply in Risa-3D Analysis

P: (203) 488-0580 F: (203) 488-0580 Subject:

Location:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 10021.CO55

Development of Wind & Ice Load on PCS Mast

Existing PCS Mast Data:

(HSS 18.0x0.375)

Mast Shape =

Rev. 1: 1/30/12

Round

(User Input)

Mast Diameter =

 $D_{\text{mast}} = 18$

(User Input)

Mast Length =

L_{mast} := 8

(User Input)

in

ft

in

Mast Thickness =

 $t_{\text{mast}} = 0.375$

(User Input)

Wind Load (NESC Extreme)

Mast Projected Surface Area =

$$A_{mast} := \frac{D_{mast}}{12} = 1.5$$

sf/ft

Total Mast Wind Force =

$$qz \cdot Cd_R \cdot A_{mast} \cdot m = 73$$

plf BLC 5

Wind Load (NESE Heavy)

Mast Projected Surface Area w/ Ice =

$$AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot Ir\right)}{12} = 1.583$$

sf/ft

Total Mast Wind Force w/ Ice =

$$p \cdot Cd_R \cdot AICE_{mast} = 8$$

plf BLC 4

Gravity Loads (without ice)

Weight of the mast =

Self Weight

(Computed internally by Risa-3D)

plf BLC 1

Gravity Loads (ice only)

Ice Area per Linear Foot =

$$Ai_{mast} := \frac{\pi}{4} \left[\left(D_{mast} + Ir \cdot 2 \right)^2 - D_{mast}^2 \right] = 29.1$$

sq in

$$W_{ICEmast} := Id \cdot \frac{Ai_{mast}}{144} = 11$$

olf BLC 3

Subject:

Load Analysis of Pipe Mast on CL&P

Structure #10254

63-2 North Branford Road P: (203) 488
Branford, CT 06405 F: (203) 488

Location:

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 10021.CO55

Development of Wind & Ice Load on PCS Mast

Existing PCS Mast Data:

(HSS 4.5x0.237)

Mast Shape =

Rev. 1: 1/30/12

Round

(User Input)

Mast Diameter =

 $D_{\text{mast}} = 4.5$

(User Input)

Mast Length =

L_{mast} := 2

(User Input)

in

ft

in

Mast Thickness =

 $t_{\text{mast}} = 0.237$

(User Input)

Wind Load (NESC Extreme)

Mast Projected Surface Area =

$$A_{mast} := \frac{D_{mast}}{12} = 0.375$$

sf/ft

Total Mast Wind Force =

$$qz \cdot Cd_R \cdot A_{mast} \cdot m = 18$$

plf BLC 5

Wind Load (NESE Heavy)

Mast Projected Surface Area w/ Ice =

$$AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot Ir\right)}{12} = 0.458$$

sf/ft

Total Mast Wind Force w/ Ice =

$$p \cdot Cd_R \cdot AICE_{mast} = 2$$

plf BLC 4

Gravity Loads (without ice)

Weight of the mast =

Self Weight

(Computed internally by Risa-3D)

plf BLC 1

Gravity Loads (ice only)

Ice Area per Linear Foot =

$$Ai_{mast} := \frac{\pi}{4} \left[\left(D_{mast} + Ir \cdot 2 \right)^2 - D_{mast}^2 \right] = 7.9$$

sq in

$$W_{ICEmast} := Id \cdot \frac{Ai_{mast}}{144} = 3$$

plf BLC 3

Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 10021.CO55

Development of Wind & Ice Load on Antennas

Existing Antenna Data:

(Nextel)

Antenna Model =

PCS 30" Acel lerator Stacked

(User Input)

Antenna Diameter = Antenna Height =

 $D_{ant} := 30.0$

(User Input)

Lant := 152

(User Input)

Antenna Weight =

 $WT_{ant} = 530$ lbs

in

(User Input)

Number of Antennas =

 $N_{ant} := 1$

(User Input)

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Antenna Projected Surface Area =

 $A_{ant} := \frac{L_{ant} \cdot D_{ant}}{144} = 31.7$

sf

Total Anterna Wind Force =

 $qz \cdot Cd_R \cdot A_{ant} \cdot m = 1533$

BLC 5 lbs

Wind Load (NESE Heavy)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Antenna Projected Surface Area w/ I ce =

 $AICE_{ant} := \frac{\left(D_{ant} + 2 \cdot Ir\right) \cdot L_{ant}}{144} = 32.7$

sf

Total Mast Wind Force w/ Ice =

 $p \cdot Cd_R \cdot AICE_{ant} = 170$

BLC 4 lbs

Gravity Loads (without ice)

Weight of the Antenna =

 $WT_{ant} \cdot N_{ant} = 530$

lbs BLC 2

Gravity Loads (ice only)

Ice Area per Linear Foot =

 $Ai_{ant} := \frac{\pi}{4} \left[\left(D_{ant} + Ir \cdot 2 \right)^2 - D_{ant}^2 \right] = 47.9$

sq in

Weight of Ice on the Antenna =

 $W_{ICEant} := Id \cdot \frac{Ai_{ant}}{144} \cdot \frac{L_{ant}}{12} = 236$

BLC 3 lbs

Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 10021.CO55

Development of Wind & Ice Load on Antennas

Existing Antenna Data:

(AT&T)

Antenna Model =

Powerwave 7770

Antenna Shape =

Flat

(User Input)

Antenna Height =

Antenna Thickness =

Number of Antemas =

Antenna Weight =

21.2

(User Input)

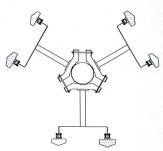
Antenna Width =

 $L_{ant} := 55$ $W_{ant} := 11.0$

(User Input)

in (User Input)

 $T_{ant} = 5$


lbs (Use

 $WT_{ant} = 39$

 $N_{ant} := 3$

(User Input)

(User Input)

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

$$SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 4.2$$

Antenna Projected Surface Area =

$$A_{ant} := SA_{ant} \cdot N_{ant} = 12.6$$

Total Antenna Wind Force =

$F_{ant} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 751$

lbs BLC 5

Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

$$SA_{ICEant} := \frac{\left(L_{ant} + 1\right) \cdot \left(W_{ant} + 1\right)}{144} = 4.7$$

$$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 14$$

$$Fi_{ant} := p \cdot Cd_F \cdot A_{ICEant} = 90$$

lbs BLC 4

Total Anterna Wind Force w/ Ice =

Gravity Load (without ice) Weight of All Antennas =

$$WT_{ant} \cdot N_{ant} = 117$$

lbs BLC 2

Gravity Load (ice only)

$$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 3025$$

$$V_{ice} := (L_{ant} + 1)(W_{ant} + 1) \cdot (T_{ant} + 1) - V_{ant} = 1007$$

$$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 33$$

P: (203) 488-0580 F: (203) 488-8587 Subject:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Location:

Prepared by: T.J.L Checked by: C.F.C. Job No. 10021.CO55

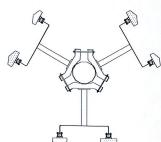
Development of Wind & Ice Load on Antennas

Proposed Antenna Data:

Antenna Model = Powerwave P65-16-XLH-RR

Antenna Shape = Flat (User Input)

(AT&T)


Antenna Height = $L_{ant} = 72$ in (User Input)

Antenna Width = (User Input) $W_{ant} = 12$ in

Antenna Thickness = $T_{ant} := 6$ in (User Input)

Antenna Weight = $WT_{ant} = 64$ lbs (User Input)

Number of Antennas = $N_{ant} := 3$ (User Input)

lbs

sf

BLC 5

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

> $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 6$ Surface Area for One Antenna = sf

Antenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot N_{ant} = 18$ sf

Total Antenna Wind Force = $F_{ant} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 1072$

Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

> $SA_{ICEant} := \frac{\left(L_{ant} + 1\right) \cdot \left(W_{ant} + 1\right)}{144} = 6.6$ Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ I ce = $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 19.8$

Total Antenna Wind Force w/ Ice = Fiant := p·Cd_F·A_{ICFant} = 127 BLC 4 lbs

Gravity Load (without ice)

Weight of All Antennas = $WT_{ant} \cdot N_{ant} = 192$ lbs BLC 2

Gravity Load (ice only)

Volum e of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 5184$ cu in

 $V_{ice} := (L_{ant} + 1)(W_{ant} + 1) \cdot (T_{ant} + 1) - V_{ant} = 1459$ Volum e of Ice on Each Antenna = cu in

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 47$ Weight of Ice on Each Antenna = lbs

Weight of Ice on All Antennas = $W_{ICEant} \cdot N_{ant} = 142$ lbs BLC 3

Centered on Solutions 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488 8587

Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C.

sf

lbs

sf

lbs

lbs

BLC 5

BLC 4

BLC 2

Job No. 10021.CO55

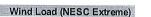
Development of Wind & Ice Load on TMA's

Existing TMA Data:

TMA Model = Powerwave LGP 21401

TMA Shape = Flat (User Input)

(AT&T)


TMA Height = in (User Input) $L_{TMA} = 14.4$

TMA Width = $W_{TMA} = 9.2$ in (User Input)

TMA Thickness = $T_{TMA} = 2.6$ in (User Input)

TMA Weight = (User Input) $WT_{TMA} := 14.1$ lbs

Number of TMA's = (User Input) $N_{TMA} := 6$

Assumes Maximum Possible Wind Pressure Applied to All TMA's Simultaneously

 $SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 0.9$ Surface Area for One TMA =

TMA Projected Surface Area = $A_{TMA} := SA_{TMA} \cdot N_{TMA} = 5.5$ sf

Total TMA Wind Force = $F_{TMA} := qz \cdot Cd_F \cdot A_{TMA} \cdot m = 329$

Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure Applied to All TMA's Simultaneously

 $SA_{ICETMA} := \frac{\left(L_{TMA} + 1\right) \cdot \left(W_{TMA} + 1\right)}{144} = 1.1$ Surface Area for One TMA w/ Ice =

TMA Projected Surface Area w/ Ice = $A_{ICETMA} := SA_{ICETMA} \cdot N_{TMA} = 6.5$ sf

 $WT_{TMA} \cdot N_{TMA} = 85$

Total TMA Wind Force w/ Ice = $Fi_{TMA} := p \cdot Cd_F \cdot A_{ICETMA} = 42$

Gravity Load (without ice)

Weight of All TMA's =

Volume of Each TMA =

Gravity Load (ice only)

 $V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 344$ cu in

Volume of Ice on Each TMA = $V_{ice} := (L_{TMA} + 1)(W_{TMA} + 1)(T_{TMA} + 1) - V_{TMA} = 221$ cu in

 $W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 7$ Weight of Ice on Each TMA = lbs

Weight of Ice on All TMA's $W_{ICETMA} \cdot N_{TMA} = 43$ BLC 3 lbs

Centered on Solutions 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 E: (203) 488-8587 Subject:

Location:

Rev. 1: 1/30/12

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C.

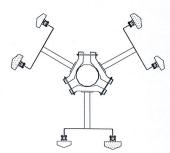
Job No. 10021.CO55

Development of Wind & Ice Load on TMA's

Proposed TMA Data: (AT&T)

TMA Model = Powerwave TTAW-07B P111-001

TMA Shape = Flat (User Input)


TMA Height = L_{TMA} := 9.9 in (User Input)

TMA Width = $W_{TMA} := 6.7$ in (User Input)

TMA Thickness = T_{TMA} := 5.4 in (User Input)

TMA Weight = WT_{TMA} := 18 lbs (User Input)

Number of TMA's = $N_{TMA} := 3$ (User Input)

sf

lbs

BLC 2

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure
Applied to All TMA's Simultaneously

Surface Area for One TMA = $SA_{TMA} := \frac{L_{TMA} \cdot W_{TMA}}{144} = 0.5$ sf

TMA Projected Surface Area = $A_{TMA} := SA_{TMA} \cdot N_{TMA} = 1.4$ sf

Total TMA Wind Force = $F_{TMA} := qz \cdot Cd_{F} \cdot A_{TMA} \cdot m = 82$ lbs **BLC 5**

Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure
Applied to All TMA's Simultaneously

Surface Area for One TMA w/ Ice = $SA_{\mbox{ICETMA}} := \frac{\left(L_{\mbox{TMA}} + 1\right) \cdot \left(W_{\mbox{TMA}} + 1\right)}{144} = 0.6$

TMA Projected Surface Area w/ Ice = A_{ICETMA}:= SA_{ICETMA}·N_{TMA} = 1.7 sf

Total TMA Wind Force w/ Ice = Fi_{TMA} := p·Cd_F·A_{ICETMA} = 11 lbs **BLC 4**

Gravity Load (without ice)

Weight of All TMA's = WT_{TMA}·N_{TMA} = 54

Gravity Load (ice only)

Volume of Each TMA = $V_{TMA} := L_{TMA} \cdot W_{TMA} \cdot T_{TMA} = 358$ cu in

 $Volum \ e \ d \ lce \ on \ Each \ TMA = \qquad \qquad V_{ice} := \Big(L_{TMA} + 1\Big)\Big(W_{TMA} + 1\Big)\Big(T_{TMA} + 1\Big) - V_{TMA} = 179 \qquad \quad cu \ in \ A = 179 \qquad \quad Cu \ in \$

Weight of Ice on Each TMA = $W_{ICETMA} := \frac{V_{ice}}{1728} \cdot Id = 6$ lbs

Weight of Ice on All TMA's W_{ICETMA}·N_{TMA} = 17 lbs **BLC 3**

Centered on Solutions" 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-0580 Subject:

Location:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 10021.CO55

Development of Wind & Ice Load on Mounts

Mount Data:

Rev. 1: 1/30/12

(AT&T)

Mount Type =

(3) Valmont Dual Standoff Mounts P/N B1827

Mount Shape =

Flat

(User Input)

Mount Area =

 $A_{mnt} = 5.3$

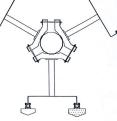
sq ft (User Input)

Mount Area w/ Ice =

Mount Weight =

 $A_{ICEmnt} = 6.63$

sq ft (User Input)


 $WT_{mnt} := 640$

s (User Input)

Mount Weight w/ Ice =

WT_{ICEmnt} := 745

(User Input)

Wind Load (NESC Extreme)

Total Mount Wind Force =

 $F_{mnt} := qz \cdot Cd_F \cdot A_{mnt} \cdot m = 316$

lbs BLC 5

Wind Load (NESC Heavy)

Total Mount Wind Force w/ Ice =

 $Fi_{mnt} := p \cdot Cd_F \cdot A_{ICEmnt} = 42$

lbs BLC 4

Gravity Load (without ice)

Weight of Mount =

 $WT_{mnt} = 640$

lbs BLC 2

Gravity Load (ice only)

Weight of Ice on Mount =

 $WT_{ICEmnt} - WT_{mnt} = 105$

lbs BLC 3

Subject:

Load Analysis of Pipe Mast on CL&P

Structure #10254

Location:

Bethel, CT

Rev. 1: 1/30/12

Prepared by: T.J.L Checked by: C.F.C.

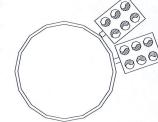
Job No. 10021.CO55

Development of Wind & Ice Load on Coax Cables

Coax Cable Data:

Coax Type = HELIAX 1-5/8"

Shape = Round (User Input)


Coax Outside Diameter = D_{coax} := 1.98 in (User Input)

 $\label{eq:coax_coax} \mbox{Coax Cable Length} = \mbox{L_{coax} := 10} \mbox{ ft} \mbox{$(\mbox{User Input)}$}$

Weight of Coax per foot = Wt_{COAX} := 1.04 plf (User Input)

Total Number of Coax = $N_{coax} = 12$ (User Input)

No. of Coax Projecting Outside Face of PCS Mast = NP_{coax} := 3 (User Input)

Wind Load (NESC Extreme)

Coax projected surface area = $A_{\text{coax}} := \frac{\left(NP_{\text{coax}}D\right)}{\sqrt{NP_{\text{coax}}D}}$

$$A_{\text{coax}} := \frac{\left(\text{NP}_{\text{coax}}D_{\text{coax}}\right)}{12} = 0.5$$
 sf/ft

Total Coax Wind Force =

 $\mathsf{F}_{coax} \coloneqq \mathsf{qz} \cdot \mathsf{Cd}_{coax} \cdot \mathsf{A}_{coax} \cdot \mathsf{m} = 27$

plf BLC 5

Wind Load (NESC Heavy)

Coax projected surface area w/ Ice =

$$AICE_{coax} := \frac{\left(NP_{coax} \cdot D_{coax} + 2 \cdot Ir\right)}{12} = 0.6$$

sf/ft

Total Coax Wind Force w/ Ice =

$$Fi_{coax} := p \cdot Cd_{coax} \cdot AICE_{coax} = 3$$

plf BLC 4

Gravity Loads (without ice)

Weight of all cables w/o ice

$$WT_{coax} := Wt_{coax} \cdot N_{coax} = 12$$

plf BLC 2

Gravity Load (ice only)

Ice Area per Linear Foot =

$$Ai_{coax} := \frac{\pi}{4} \left[\left(D_{coax} + 2 \cdot Ir \right)^2 - D_{coax}^2 \right] = 3.9$$

sq in

$$WTi_{COax} := N_{COax} \cdot Id \cdot \frac{Ai_{COax}}{144} = 18$$

plf BLC 3

CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road	Subject:	Analysis of NESC Heavy Wi for Obtaining PCS Structure Tabulated Load Cases						
Branford, CT 06405	Location:	Location: Bethel, CT						
Ph. 203-488-0580 / Fax. 203-488-8587	Date:7/19/11	Prepared by: T.J.L.	Checked by: C.F.C.	Job No. 11021.CO55				
Load Case		Description						
1		Self Weight (Mast)	7					
2		Weight of Appurtenances						
3	Wei	ght of Ice Only on PCS Structu	re ⁽¹⁾					
4		SC Heavy Wind on PCS Structo						
5		C Extreme Wind on PCS Struc						
_				<u> </u>				
Footnotes:								
(1) PCS Structure inclu	des: Mast and App	ourtenances						

	CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405	Subject: Analysis of for Obtaini Load Comb Location: Bethel. CT	Subject: Analysis of NESC Heavy Wind and NESC Extreme Wind for Obtaining PCS Structure Reactions Applied to CL&P Pole Location: Bethel. CT	feavy Wi Structure s Table	nd and N Reactic	IESC E	xtreme died to	Wind CL&P I	Pole		
	Ph. 203-488-0580 / Fax. 203-488-8587	Date: 7/19/11	Prepared by: T.J.L.	J.F.	Checked by: C.F.C.	y: C.F.C			٦	Job No. 11021.CO55	21.CO55
Load Combination	Description	Envelope Wind Soultion Factor	Envelope Wind Soultion Factor P-Delta BLC Factor BLC Factor BLC Factor BLC Factor	C Factor	BLC Fa	actor B	LC Fac	tor BL(C Fact	or BLC	Factor
·	NESC Heavy Wind on PCS Structure		F	1.5	1.5 2 1.5	1.5	3	1.5 4	2.5		
2	NESC Extreme Wind on PCS Structure	~	~	~	2	-	ۍ 1				
- 1											
					,	ļ				:	
Fo. (1)	Footnotes: (1) BLC = Basic Load Case (2) PCS Structure includes: Mast and Appurtenances										

Company : CENTEK Engineering, INC.

Designer Job Number

: tjl, cfc : 11021.CO55 /AT&T CT5176 CL&P # 10254 - Mast Jan 30, 2012 4:01 PM Checked By:_

Global

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation	Yes
Include Warping	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Vertical Axis	Y
Global Member Orientation Plane	XZ

Hot Rolled Steel Code	AISC 9th: ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF&PA NDS-97: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-02
Masonry Code	ACI 530-05/08: ASD
Aluminum Code	AA ADM1-05: ASD

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections	Yes
Bad Framing Warnings	No
Unused Force Warnings	Yes

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Ct X	.035
Ct Z	.035
T X (sec)	Not Entered
TZ(sec)	Not Entered
RX	8.5
RZ	8.5
Ct Exp. X	.75
Ct Exp. Z	.75
Ca	.36
Cv	.54
Nv	1
SD1	1
SDS	1
S1	1
Occupancy Code	4
Seismic Zone	3
Use Group	
Use Gravity Self Wt in Diaphragm Mass	Yes
Use Deck Self Wt in Diaphragm Mass	Yes
Use Lateral Self Wt in Diaphragm Mass	Yes
Seismic Detailing Code	None
Om X	1
Om Z	1
Rho X	1
Rho Z	1

Company :

: CENTEK Engineering, INC.

Designer

: tjl, cfc

Job Number : 11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast

Jan 30, 2012 4:01 PM Checked By:

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Densitv[k/ft.	Yield[ksi]	Rv	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	11	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Design Parameters

4	Label	Shape		. Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	Куу	Kzz	Cm	.Cm	Cb	y sw	z sw	Function
	M1	Existing.	- 8					4 2							Lateral
2	M2	Existing.	2						2000000		2573111720453	S. Desire de la constanti			Laterai
4621 A 1227	reapsilvi A see	j=/in.ig .	. 4												Lateral

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rul	A [in2]	lvv [in4]	lzz [in4]	J [in4]
	Existing Lower Mast			Pipe	A500 Gr.42		19.4		754	1510
2	Existing Upper Mast	4.5" Mast w/ Stiffen	Beam	SE COSTANIDA DA LOS LAS DA LAS CALADOS CONTOS	CONTRACTOR OF CO	U STANCESCO DE LA COMPTENZA DE	SHOW THE THE RESIDENCE			14.465

Member Primary Data

1	Label M1 M2	I Joint N2 N3	J Joint N3 N4	K Joint	Rotate(deg)	Existing Lower	Dodin	Design List Pipe	Material A500 Gr.42	Typrodi
3	M3	N1	N4 N2			Existing Upper RIGID	Beam None	Pipe None	A500 Gr.42 RIGID	Typical Typical
4	M4	N4	N5			RIGID	None	None	RIGID	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	Dotaon From Biap
2	N2	0	1.5	0	0	
3	N3	0	9.5	0	0	
4	N4	0	11.5	0	0	
5	N5	0	17.83	0	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction	roomig
2	N2		Reaction					

Joint Loads and Enforced Displacements

Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
	No Data to Print		gg. (in g. a.g.), (in g. a.g.), (in g. a.g.)

Company

: CENTEK Engineering, INC.

Designer

: tjl, cfc

Job Number : 11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast

Jan 30, 2012 4:01 PM Checked By:

Member Point Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Y	53	6.3
2	M1	Υ	117	5
3	M1	Y	192	5
4	M1	Y	085	5
5	M1	Y	054	5
6	M1	Y	64	5

Member Point Loads (BLC 3: Weight of Ice Only on PCS Struct)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	Y	236	6.3
2	M1	Y	098	5
3	M1	Υ	5	
4	M1	Y	142 043	5
5	M1	Y	017	5
6	M1	Y	105	5

Member Point Loads (BLC 4: NESC Wind with Ice on PCS Str)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	X	.17	6.3
2	M1	X	.09	5
3	M1	X	5	
4	M1	X	.127 .042	5
5	M1	X	.011	5
6	M1	X	.042	5

Member Point Loads (BLC 5 : NESC Wind on PCS Structure)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M4	X	1.533	6.3
2	M1	X	.751	5
3	M1	X	1.072	5
4	M1	X	.329	5
5	M1	X	.082	5
6	M1	X	.316	5

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,d	Start Location[ft,%]	End Location[ft,%]
1	M1	Y	012	012	0	0
2	M2	Υ	012	012	0	0

Member Distributed Loads (BLC 3 : Weight of Ice Only on PCS Struct)

	Member Label	Direction	Start Magnitude[k/ft	. End Magnitude[k/ft,d	Start Location[ft %]	End Location[ft,%]
1	M1	Υ	011	011	0	0
2	M2	Υ	003	003	0	0
3	M1	Υ	018	018	0	0
4	M2	Y	018	018	0	0

Member Distributed Loads (BLC 4 : NESC Wind with Ice on PCS Str)

Member Label	Direction	Start Magnitude[k/ft, End Magnitude[k/ft,d Start Location[ft,%]	End Location[ft,%]
DICA OD Varreion 0.4.0	F11 1 1 10		

Company : CENTEK Engineering, INC.

Designer : tjl, cfc

 Jan 30, 2012 4:01 PM Checked By:

Member Distributed Loads (BLC 4: NESC Wind with Ice on PCS Str) (Continued)

	Member Label	Direction	Start Magnitude[k/ft	. End Magnitude[k/ft,d	Start Location[ft %]	End Location[ft,%]
1	M1	X	.008	.008	0	O
2	M2	X	.002	.002	0	0
3	M1	X	.003	.003	0	0
4	M2	X	.003	.003	0	Ŏ

Member Distributed Loads (BLC 5 : NESC Wind on PCS Structure)

	Member Label	Direction	Start Magnitude[k/ft	End Magnitude[k/ft,d	Start Location[ft %]	End Location[ft,%]
1	M1	X	.073	.073	0	0
2	M2	X	.018	.018	0	0
3	M1	X	.027	.027	0	0
4	M2	X	.027	.027	0	0

Basic Load Cases

	BLC Description	Category	X Gravi	Y Gravi.	.Z Gravity	Joint	Point	Distrib	Area(M.	Surfac
1	Self Weight (PCS Mast)	None		-1					7 00(111	- Curiao
2	Weight of Appurtenances	None					6	2		
3	Weight of Ice Only on PCS Struct	None					6	1		
4	NESC Wind with Ice on PCS Str	None					6	4		
5	NESC Wind on PCS Structure	None					6	4	0.0000000000000000000000000000000000000	

Load Combinations

	Description	Sol	PD	SR	BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact.	BLC	Fact	BLC	Fact
1	NESC Heavy Wind on PCS Stru	Yes			1	1.5	2	1.5	3	1.5	4	25								dott
2	NESC Extreme Wind on PCS Str	.Yes			1	1	2	1	5	1		2.0								
3	Self Weight				1	1	100,	0.00000 0 .0000		2000	9500049458			0.60h/0.924-6-6			Controller			

Envelope Member Section Forces

	Member	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	v-v Momen.	. LC	z-z Momen.	LC
1	M1	1	max	4.847	1	4.973	2	0	1	0	1	0	1	41.748	2
2			min	2.316	2	1.45	1	0	1	0	1	0	1	11.932	1
3		2	max	4.526	1	4.773	2	0	1	0	1	0	1	32.002	2
4			min	2.16	2	1.395	1	0	1	0	1	0	1	9.087	1
5		3	max	4.205	1	4.573	2	0	1	0	1	0	1	22.656	2
6			min	2.004	2	1.34	1	0	1	0	1	0	1	6.352	1
7		4	max	1.644	1	1.823	2	0	1	0	1	0	1	16.26	2
8			min	.76	2	.505	1	0	1	0	1	0	1	4.507	1
9		5	max	1.323	1	1.623	2	0	1	0	1	0	1	12.814	2
10			min	.604	2	.45	1	0	1	0	1	0	1	3.552	1
11	M2	1	max	1.323	1	1.623	2	0	1	0	1	0	1	12.814	2
12			min	.604	2	.45	1	0	1	0	1	0	1	3.552	1
13		2	max	1.28	1	1.6	2	0	1	0	1	0	1	12.008	2
14			min	.586	2	.444	1	0	1	0	1	0	1	3.329	1
15		3	max	1.236	1	1.578	2	0	1	0	1	0	1	11.213	2
16			min	.567	2	.437	1	0	1	0	1	0	1	3.109	1
17		4	max	1.193	1	1.555	2	0	1	0	4	0	4		III WILLIAM ACTOR
18			min	.549	2	.431	1	0	1	0	4	0	1	10.43	2
19		5	max	1.149	1	1.533	2	0	1	0	4	0	4	2.892	
20			min	.53	2	.425	1	0	1	0	1	NEW YORK OF THE PARTY OF THE PA		9.658	2
	2D V- :	a Kasayata	A CHILL	.00	4	.440		U	I	U		0		2.677	121

Company : CENTEK Engineering, INC.

Designer : tjl, cfc

Job Number : 11021.CO55 /AT&T CT5176 C

CL&P # 10254 - Mast

Jan 30, 2012 4:01 PM Checked By:

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	v-v Momen	LC	z-z Momen.	10
21	M3	1	max	0	1	4.973	2	0	1	0	1	0	1	49.207	2
22			min	0	1	1.45	1	0	1	0	1	0	1	14.107	1
23		2	max	0	1	4.973	2	0	1	0	1	0	1	47.343	2
24			min	0	1	1.45	1	0	1	0	1	0	1	13.564	1
25		3	max	0	1	4.973	2	0	1	0	1	0	1	45.478	2
26			min	0	1	1.45	1	0	1	0	1	0	1	13.02	1
27		4	max	0	1	4.973	2	0	1	0	1	0	1	43.613	2
28			min	0	1	1.45	1	0	1	0	1	0	1	12.476	1
29		5	max	0	1	4.973	2	0	1	0	1	0	1	41.748	2
30			min	0	1	1.45	1	0	1	0	1	0	1	11.932	1
31	M4	1	max	1.149	1	1.533	2	0	1	0	1	0	1	9.658	2
32			min	.53	2	.425	1	0	1	0	1	0	1	2.677	1
33	1510-111-2510-251	2	max	1.149	1	1.533	2	0	1	0	1	0	1	7.232	2
34			min	.53	2	.425	1	0	1	0	1	0	1	2.005	1
35		3	max	1.149	1	1.533	2	0	1	0	1	0	1	4.806	2
36			min	.53	2	.425	1	0	1	0	1	0	1	1.332	1
37		4	max	1.149	1	1.533	2	0	1	0	1	0	1	2.38	2
38			min	.53	2	.425	1	0	1	0	1	0	1	.66	1
39		5	max	0	1	0	1	0	1	0	1	0	1	0	1
40			min	0	1	0	1	0	1	0	1	0	1	0	2

Envelope Member Section Stresses

	Member	Sec		Axial[ksi]	LC	y Shear[. LC	z Shear[LC	v-Ton[ksi]	LC	v-Bot[ksi]	LC	z-Ton[kei]	10	z-Bot[ksi]	10
1	M1	1	max	.25	1	.513	2	0	1	-1.709	1	5.98	2	0	1	0	1
2			min	.119	2	.149	1	0	1	-5.98	2	1.709	1	0	1	0	1
3		2	max	.233	1	.492	2	0	1	-1.302	1	4.584	2	0	1	0	1
4			min	.111	2	.144	1	0	1	-4.584	2	1.302	1	0	1	0	1
5		3	max	.217	1	.471	2	0	1	91	1	3.245	2	0	1	0	1
6			min	.103	2	.138	1	0	1	-3.245	2	.91	1	0	1	0	1
7		4	max	.085	1	.188	2	0	1	646	1	2.329	2	0	1	0	1
8			min	.039	2	.052	1	0	1	-2.329	2	.646	1	0	1	0	1
9		5	max	.068	1	.167	2	0	1	509	1	1.835	2	0	1	0	1
10			min	.031	2	.046	1	0	1	-1.835	2	.509	1	0	1	0	1
11	M2	1	max	.18	1	.44	2	0	1	-1.281	1	4.622	2	0	1	0	1
12			min	.082	2	.122	1	0	1	-4.622	2	1.281	1	0	1	0	1
13		2	max	.174	1	.434	2	0	1	-1.201	1	4.331	2	0	1	0	1
14			min	.079	2	.12	1	0	1	-4.331	2	1.201	1	0	1	0	1
15		3	max	.168	1	.428	2	0	1	-1.121	1	4.044	2	0	1	0	1
16			min	.077	2	.119	1	0	1	-4.044	2	1.121	1	0	1	0	1
17		4	max	.162	1	.422	2	0	1	-1.043	1	3.762	2	0	1	0	1
18			min	.074	2	.117	1	0	1	-3.762	2	1.043	1	0	1	0	1
19		5	max	.156	1	.416	2	0	1	966	1	3.483	2	0	1	0	1
20			min	.072	2	.115	1	0	1	-3.483	2	.966	1	0	1	0	1
21	M3	1	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
22			min	0	1	0	1	0	1	0	1	0	1	0	1	0	1
23		2	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
24			min	0	1	. 0	1	0	1	0	1	0	1	0	1	0	1
25		3	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
26			min	0	1	0	1	0	1	0	1	0	1	0	1	0	1
27		4	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
28		100	min	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Company

: CENTEK Engineering, INC.

Designer

: tjl, cfc

Job Number

: 11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast

Jan 30, 2012 4:01 PM Checked By:

Envelope Member Section Stresses (Continued)

	Member	Sec		Axial[ksi]	LC	y Shear[LC	z Shear[LC	y-Top[ksi]	LC	y-Bot[ksi]	LC	z-Top[ksi]	LC	z-Bot[ksi]	LC
29		5	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
30			min	0	1	0	1	0	1	0	1	0	1	0	1	0	1
31	M4	1	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
32			min	0	2	0	1	0	1	0	1	0	1	0	1	0	1
33		2	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
34			min	0	2	0	1	0	1	0	1	0	1	0	1	0	1
35		3	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
36			min	0	2	0	1	0	1	0	1	0	1	0	1	0	1
37		4	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
38			min	0	2	0	1	0	1	0	1	0	1	0	1	0	1
39		5	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
40			min	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	-1.45	1	0	1	0	1	0	1	0	1	49.207	2
2		min	-4.973	2	0	2	0	1	0	1	0	1	14.107	1
3	N2	max	0	1	4.847	1	0	1	0	1	0	1	0	1
4		min	0	1	2.316	2	0	1	0	1	0	1	0	1
5	Totals:	max	-1.45	1	4.847	1	0	1						
6		min	-4.973	2	2.316	2	0	1						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation	[LC	Y Rotation [.	LC	Z Rotation [. LC
1	N1	max	0	2	0	2	0	1	0	1	0	1	0	1
2		min	0	1	0	1	0	1	0	1	0	1	0	2
3	N2	max	0	2	0	2	0	1	0	1	0	1	0	1
4		min	0	1	0	1	0	1	0	1	0	1	0	2
5	N3	max	.077	2	0	2	0	1	0	1	0	1	-3.617e-4	1
6		min	.022	1	0	1	0	1	0	1	0	1	-1.283e-3	2
7	N4	max	.128	2	0	2	0	1	0	1	0	1	-7.743e-4	1
8		min	.036	1	0	1	0	1	0	1	0	1	-2.772e-3	2
9	N5	max	.338	2	0	2	0	1	0	1	0	1	-7.743e-4	1
10		min	.095	1	0	1	0	1	0	1	0	1	-2.772e-3	2

Envelope AISC ASD Steel Code Checks

	Membe	r Shape	Code Check	Loc[ft]	LC	Shea	Loc[ft]	LFa [kFt [ksi]Fb yFb z C C ASD
1	M1	HSS18X0.375	.166	0	2	.023	0	2 32.27233.51636.86836.86816 .85 H1-2
2	M2	4.5" Mast w/	.128	0	2	.020	0	2 32.96833.51636.86836.86816 .85 H1-2

Company Designer

: CENTEK Engineering, INC. : tjl, cfc : 11021.CO55 /AT&T CT5176 Job Number

CL&P # 10254 - Mast

Jan 30, 2012 4:03 PM Checked By:

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	N1	-1.45	0	0	0	0	14.107
2	1	N2	0	4.847	0	0	0	0
3	1	Totals:	-1.45	4.847	0			2 1021-1021-1021-1021-1021-1021-1021-102
4	1	COG (ft):	X: 0	Y: 9.058	Z: 0			

Company Designer

: CENTEK Engineering, INC.

: tjl, cfc

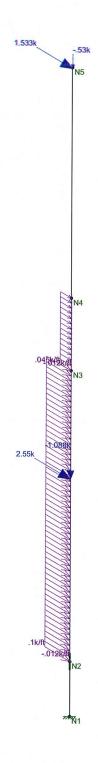

Job Number : 11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast

Jan 30, 2012 4:03 PM Checked By:

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	N1	-4.973	0	0	0	0	49.207
2	2	N2	0	2.316	0	0	0	0
3	2	Totals:	-4.973	2.316	0			
4	2	COG (ft):	X: 0	Y: 8.944	Z: 0			

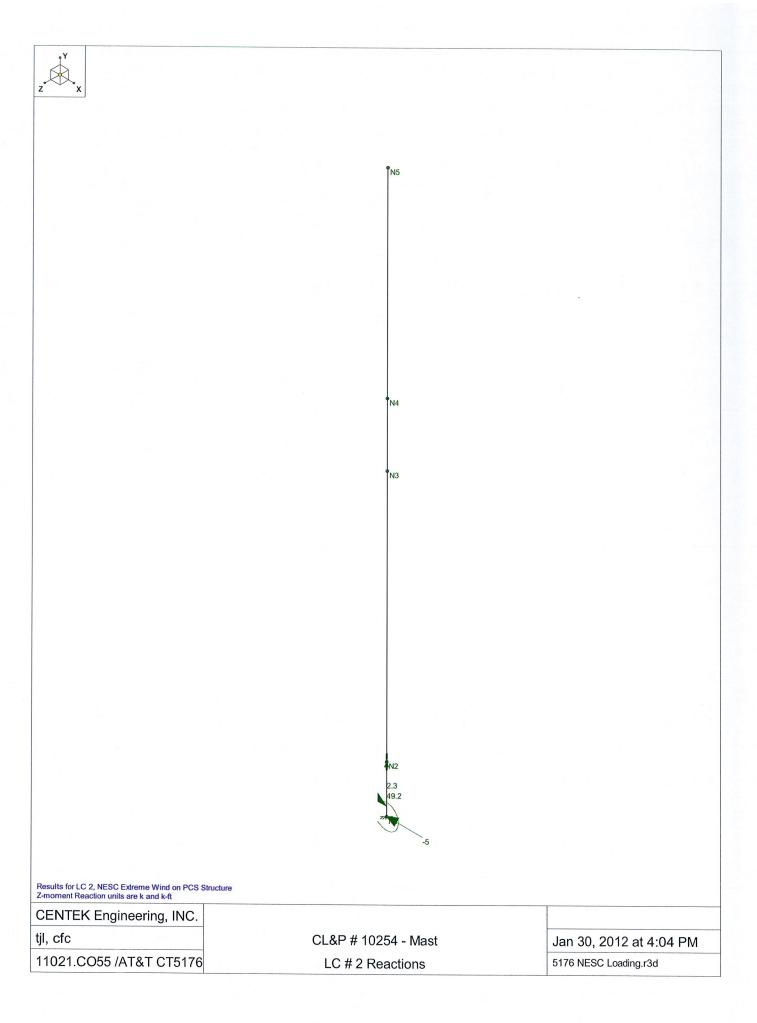

tjl, cfc

11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast LC # 1 Loads Jan 30, 2012 at 4:01 PM 5176 NESC Loading.r3d

z x		
	•	
	[®] N5	
	N4	
	• • • • • • • • • • • • • • • • • • • •	
	NЗ	
	N2	
	14.1	
	A-8	
	J-1.4	
Results for LC 1, NESC Heavy Wind on PCS Structure Z-moment Reaction units are k and k-ft		
CENTEK Engineering, INC.		
tjl, cfc	CL&P # 10254 - Mast	lon 20, 0040 -14,00 Dt
11021.CO55 /AT&T CT5176		Jan 30, 2012 at 4:03 PM
1.021.0000/AT&T 0101/0	LC # 1 Reactions	5176 NESC Loading.r3d

Loads: LC 2, NESC Extreme Wind on PCS Structure


CENTEK Engineering, INC. tjl, cfc

11021.CO55 /AT&T CT5176

CL&P # 10254 - Mast LC # 2 Loads

Jan 30, 2012 at 4:02 PM

5176 NESC Loading.r3d

Subject:

Coax Cable on CL&P Pole # 10254

Location:

Bethel, CT

Prepared by: T.J.L Checked by: C.F.C.

Rev. 0: 7/19/11

Job No. 11021.CO55

(User Input)

Coax Cable on CL&P Pole

Distance Between Coax Cable Attach Points =

Diameter of Coax Cable = $\mathsf{D}_{coax1} \coloneqq \mathsf{1.98} {\cdot} \mathsf{in}$ (User Input)

Weight of Coax Cable = $W_{coax1} := 1.04 \cdot plf$ (User Input) Number of Coax Cables =

 $N_{coax1} := 24$ Number of Projected Coax Cables = $NP_{coax1} = 5$ (User Input)

> Extreme Wind Pressure = $qz := 29.8 \cdot psf$ (User Input)

Heavy Wind Pressure = $p := 4 \cdot psf$ (User Input)

Radial Ice Thickness = $Ir := 0.5 \cdot in$ (User Input) Radial Ice Density = Id := 56.pcf (User Input)

Shape Factor = $Cd_{coax} := 1.45$ (User Input)

Overload Factor for NESC Heavy Wind Load = OF_{HW} := 2.5 (User Input)

Overload Factor for NESC Extreme Wind Load = $OF_{FW} := 1.0$ (User Input) Overload Factor for NESC Heavy Vertical Load =

 $OF_{HV} := 1.5$ (User Input) Overload Factor for NESC Extreme Vertical Load = OF_{FV} := 1.0 (User Input)

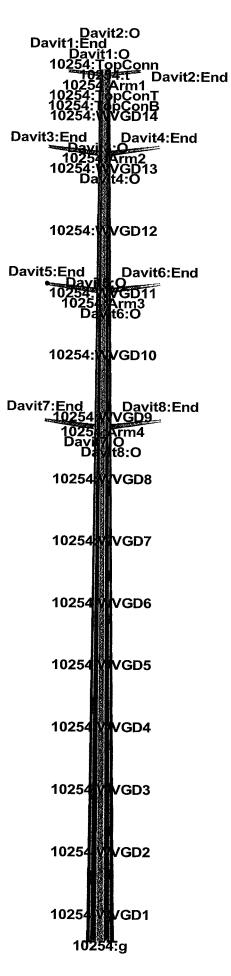
> Wind Area with Ice = $A_{ice} := \left(NP_{coax1} \cdot D_{coax1} + 2 \cdot Ir\right) = 10.9 \cdot in$

 $A := \left(NP_{coax1} \cdot D_{coax1} \right) = 9.9 \cdot in$ Wind Area wit hout I ce =

 $Ai_{coax1} := \frac{\pi}{4} \cdot \left[\left(D_{coax1} + 2 \cdot Ir \right)^2 - D_{coax1}^2 \right] = 0.027 \, ft^2$ Ice Area per Liner Ft =

Weight of Ice on All Coax Cables = $W_{ice} := Ai_{coax1} \cdot Id \cdot N_{coax1} = 36 \cdot plf$

Subject:


Coax Cable on CL&P Pole # 10254

Location:

Bethel, CT

Rev. 0: 7/19/11

Prepared by: T.J.L Checked by: C.F.C. Job No. 11021.CO55

Project Name: 11021.COS5 - Bethel, CT
Project Notes: CL&P Structure # 10254 / AT&T 5176
Project Notes: CL&P Structure # 10254 / AT&T 5176
Project File: J:\Dobs\1102100.WT\CO-55 - CT\$176 - 7 Stony Hill Road, Bethel,CT\Structural\Rev (1)\Calcs\PIS-Pole\Cl&p Structure # 10254.pol Date run : 4:55:44 PM Monday, January 30, 2012
by : PLS-POLE Version 11.1
Licensed to : Centek Engineering Inc

Successfully performed nonlinear analysis

The model has 0 warnings.

Loads from file: j:\jobs\1102100.wi\co-55 - ct5176 - 7 stony hill road, bethel,ct\structural\rev (1)\calcs\pls-pole\cl&p #10254.lca

*** Analysis Results:

Maximum element usage is 96.65% for Base Plate "10254" in load case "NESC Extreme" Maximum insulator usage is 61.51% for Clamp "Clamp25" in load case "NESC Extreme"

Summary of Joint Support Reactions For All Load Cases;

Found. Usage	000.00
Bending Moment (ft-k)	3890.15 5121.93
Vert. Moment (ft-k)	00.00
Long. Moment 1 (ft-k)	-9.74 -2.95
Tran. Moment M (ft-k) (35.70 3890.14 51.10 5121.93
Shear Force (kips)	35.70 51.10
Vert. Force (kips)	99.62
Tran. Force (kips)	-35.70
Long. Force (kips)	-0.15
Joint Label	10254:g 10254:g
Case	NESC Heavy SC Extreme
Load	NESC Heavy NESC Extreme

Summary of Tip Deflections For All Load Cases:

Note: postive tip load results in positive rotation

Twist	(ded)	00.0
Tran. Rot.	(ded)	-5.41 -7.20
Long. Rot.	(deg)	0.00
 Tran. Vert. Resultant Long. Iran. Twist Defl. Defl. Rot. Rot. 	(in)	88.03 0.01 -5.41 0.00 114.55 0.00 -7.20 0.00
Vert. Def1.	(in)	-3.12
Tran. Defl.	(in)	0.17 87.97 -3.12
e to	(in)	0.17
Joint I Label I		10254:t 10254:t
Load Case		NESC Heavy 10254:t NESC Extreme 10254:t
ğ	1	NES

Tubes Summary:

Resultant Moment (ft-k)	1037.34 3111.27 5121.93
Maximum Usage	72.52 85.25 88.85
Load Case	NESC Extreme NESC Extreme NESC Extreme
Weight (lbs)	5023 N 10059 N 10117 N
Tube Num.	32
Pole Label	10254 10254 10254

*** Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress

Summary of Steel Pole Usages:

ent	37 28299.2
Se	88.85 NESC Extreme
Steel Pole Ma Label Us	10254

Summary of Tubular Davit Usages:

61.2	61.2	121.4	121.4
1	1	1	Н
Heavy	Heavy	Heavy	Heavy
NESC	NESC	NESC	NESC
13.03	16.73	68.65	80.83
Davit1	Davit2	Davit3	Davit4
	Davitl 13.03 NESC Heavy 1 6	Davit1 13.03 NESC Heavy 1 6 Davit2 16.73 NESC Heavy 1 6	Davit1 13.03 NSSC Heavy 1 6 Davit2 16.73 NESC Heavy 1 6 Davit3 68.65 NESC Heavy 1 12

121.4	121.4	121.4	121.4
П	Н		-
Heavy	Heavy	Heavy	Heavy
NESC	NESC	NESC	NESC
		70.51	
Davit5	Davit6	Davit7	Davit8

*** Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

Ē	g
Slement	avit8
Label	10254
Maximum]	82
Usage %	96
Load Case	NESC Extreme

Summary of Steel Pole Usages by Load Case:

Segment Number	37
Steel Pole	10254
Label	10254
Maximum	68.80
Usage %	88.85
Load Case	NES

Summary of Base Plate Usages by Load Case:

Usage	æ	75.05
Minimum Plate Thickness	(in)	2.816 3.195
Bolt # Bolts Max Bolt Minimum Moment Acting On Load For Plate Sum Bend Line Bend Line Thickness	(kips)	143.053 184.091
Bolt # Bolts Max Bolt Moment Acting On Load For Sum Bend Line Bend Line		ហល
Bolt Moment A		264.235 340.297
Y Bending Moment Stress	(ft-k) (ft-k) (ksi)	45.029
	(ft-k)	-9.741 45.029 -2.953 57.992
X Moment	(ft-k)	99.624 3890.138 48.899 5121.928
Vertical Load	(kips)	99.624 48.899
Fole Bend Length Vertical Label Line Load	(in)	12 40.000 12 40.000
Pole Bend Label Line		10254 J
Load Case		NESC Heavy 10254 NESC Extreme 10254

Summary of Tubular Davit Usages by Load Case:

Segment Number	НН
r Davit Label	Davi
m Tubula *	
Maximu Usage	82.17
Load Case	avy eme

Summary of Insulator Usages:

Insulator Label	Insulator Maximum Type Usage %	Maximum Usage %	Load	Load Case	Weight (lbs)
Clamp1	Clamp	1.87	NESC	Heavy	0.0
Clamp2	Clamp	1.87	NESC	Heavy	0.0
Clamp3	Clamp	9.30	NESC	Heavy	0.0
Clamp4	Clamp	9.30	NESC	Heavy	0.0
Clamp5	Clamp	9.30	NESC	Heavy	0.0
Clamp6	Clamp	9.30	NESC	Heavy	0.0
Clamp7	Clamp	9.30	NESC	Heavy	0.0
Clamp8	Clamp	9.30	NESC	Heavy	0.0
Clamp9	Clamp	90.9	NESC	Heavy	0.0
Clamp10	Clamp	1.16	NESC	Heavy	0.0
Clamp11	Clamp	1.16	NESC	Heavy	0.0
Clamp12	Clamp	1.16	NESC	Heavy	0.0
Clamp13	Clamp	1.16	NESC	Heavy	0.0
Clamp14	Clamp	1.16	NESC 1	Heavy	0.0
Clamp15	Clamp	1.16	NESC	Heavy	0.0
Clamp16	Clamp	1.16	NESC	Heavy	0.0
Clamp17	Clamp	1.16	NESC	Heavy	0.0

000000000	8.70
C Heavy C Heavy C Heavy C Heavy C Heavy C Heavy Extreme Extreme	850.8 28299.2 29150.0
NESC NESC NESC NESC NESC NESC EX): Arms:
1.16 1.16 1.16 1.16 1.16 1.16 61.51 61.51	e (lbs Davit les:
Clamp Clamp Clamp Clamp Clamp Clamp Clamp Clamp Clamp	
Clamp18 Clamp19 Clamp20 Clamp21 Clamp22 Clamp23 Clamp24 Clamp24	*** Weight of Weight of Weight of Total:

*** End of Report

************************** ********************** POLE AND FRAME ANALYSIS AND DESIGN COpyright Power Line Systems, Inc. 1999-2011 PLS-POLE

Project Name : 11021.CO55 - Bethel, CT
Project Notes: CL&P Structure # 10254 / AT&T 5176
Project Notes: CL&P Structure # 10254 / AT&T 5176
Project File : 3:\Jobat102100.WI\CO-55 - CT5176 - 7 Stony Hill Road, Bethel,CT\Structural\Rev (1)\Calcs\PLS-Pole\classPole\clas

Successfully performed nonlinear analysis

The model has 0 warnings.

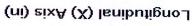
Modeling options:
Offset Arms from Pole/Mast: Yes
Offset Braces from Pole/Mast: Yes
Offset Gays from Pole/Mast: Yes
Offset Posts from Pole/Mast: Yes
Offset Strains from Pole/Mast: Yes
Offset Strains from Pole/Mast: Yes
Steel poles checked with ASCE/SEI 48-05

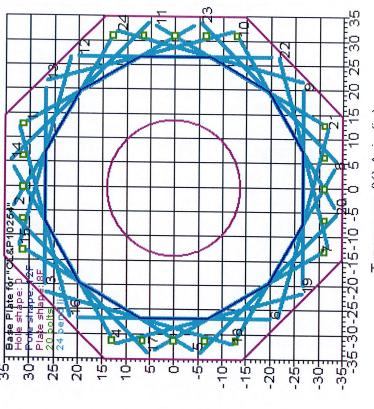
Default Modulus of Elasticity for Steel = 29000.00 (ksi) Default Weight Density for Steel = $490.00~(\mathrm{lbs/ft^3})$

Steel Pole Properties:

Ultimate	Long.	Load	(kips)		0.0000
Ultimate	Trans.	Load	(kips)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000.0
)istance	From	Tip	(££)		0.000
Strength I	Check	Type	(ft) (kips) (kips)		Calculated 0.000 0.0000 0.0000
	At	Base			
Weight	/ Density	Override	(ksi) (lbs/ft^3)		0
Taper Default Tubes Modulus of	Elasticity	Override	(ksi) (J		0
Tubes					3 tubes
Default	Drag	Coef.			1.3
Taper			n/ft)		0
Base	iameter		(in) (in/ft)		20.19 53.5 0 1.3 3 tubes
Tip	Diameter Diameter		(in)		20.19
Shape	Ω				12F
Base	Plate				Yes
Default	Embedded Plate	Length	(ft)		0
Length	_		(ft)		140.00
Stock	Number				10254
Steel Pole Stock Length Default	Property Number	Label			CL&P10254 10254 140.00

Steel Tubes Properties:

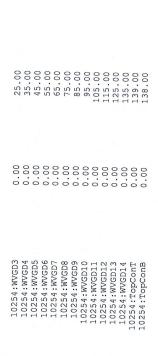

е	_	1 1000
Diam	Έţ	4.15 5.60 0.00
1.5x Lap 1	(in) (ft)	
Bot. leter	(in)	33.86 45.67 53.50
Tube		
Top	(in)	20.19 32.08 43.26
Tube		! !
culated Tube Top ' Taper Diameter	n/ft)	0.24866 0.24866 0.24866
Calcu	T.	000
enter of Gravity	(££)	29.85 28.95 21.32
Cente Gra		888
. Tube Center of Calculated Tube Top Tube Bot. 1.5x Diam. Reight Gravity Taper Diameter Diameter Lap Length	(1bs)	5023 10059 10117
lp. de ₩e	<u>,</u>	0.000
nt Ca Werri	(£¢-	000.0
Моше		
Yield Moment Cap. Stress Override V	(ksi)	0.000 65.000 0.000 65.000 0.000 65.000
Lap Gap S	(ui	0000
	_	
Lap Length	(££)	4.670 6.170 0.000
Jess	(in)	0.3125 0.4375 .46875
Thick		0.46
Tube Length Thickness No.	(££)	55 54.67 41.17
e Ler	-	1 2 54 3 41
da r		
Pole roperty		.l.&P10254 .l.&P10254 .l.&P10254
Pro	 	CL&P CL&P CL&P

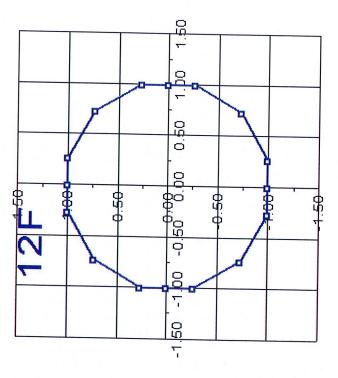

Base Plate Properties:

Bolt Cage Y Inertia	(120 cm 14)
Bolt Cage X Inertia	
Num. Of Bolts	i
Bolt Bolt Num. Diam. Pattern Of Diam. Bolts	490.00 60.000 2.250 62.375
Bolt Diam.	2.250
J Steel y Yield Stress	60.000
Steel Density	490.00
Hole Shape	
Hole Diam.	28.000
Plate Bend Line Weight Length Override	40.000 28.000
Plate Weight	3100
Plate Thick.	j m
Plate Shape	88
Plate Diam. S	70.000
Pole Property	CL&P10254 70.000

Base Plate Bolt Coordinates for Property "CL&P10254":

Bolt Angle (deg)	000000
Bolt Y Coord.	0.2064 0.4128 1 1
Bolt X Coord.	0 1 0.4128 0.2064




Transverse (Y) Axis (in)

Steel Pole Connectivity:

Base Embed % Embed C. Connect Override Override (ft)	0 00.0
erty Attach. Set Labels Co	1 labels
Prop	CL&P10254 21 labels
X of Y of Z of Inclin. Inclin. Base Base Base About X About Y (ft) (ft) (ft) (deg) (deg)	0
Inclin. About X (deg)	0
Z of Sase (ft)	0
ase l	0
Pole Tip Base X of Y of Z of Inclin. Inclin. Label Joint Joint Base Base Base About X About Y (ft) (ft) (deg) (deg) (deg)	0
Tip	
Pole Label	10254

Relative Attachment Labels for Steel Pole "10254":

zixA (X) IstnozinoH\lsnibutignoJ

Transverse/Vertical (Y) Axis

Pole Steel Properties:

ASCE Cap Long. (ft-k)	541.96 551.57 551.57 555.71 555.71
Joint Rel. Outer Area T-Moment L-Moment D/t W/t Fy Fa ASCE Cap ASCE Cap Osition Dist. Diam. Inertia Max. Min. Trans. Long. (ft) (in/2) (in/4) (in/4) (ksi) (ksi) (ft-k) (ft-k)	541.96 551.57 551.57 555.71 555.71
Fa Min. (ksi)	65.00 65.00 65.00 65.00
Fy (ksi)	55.00
W/t Max.	2 1 1 1 4 4 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6
D/t	000000
Area T-Moment L-Moment D/t W/t Inertia Inertia Max. (in^2) (in^4) (in^4)	1009.93 0.00 14.6 65.00 65.00 1036.69 0.00 14.8 65.00 65.00 1036.69 0.00 14.8 65.00 65.00 1048.31 0.00 14.8 65.00 65.00 1048.31 0.00 14.8 65.00 65.00
T-Moment Inertia (in^4)	0.00 20.19 19.97 1009.93 0.70 20.36 20.15 1036.69 1.00 20.44 20.22 1048.30 1.00 20.44 20.22 1048.31 1.00 20.44 20.22 1048.31 1.50 20.56 20.35 1057.85
Rel. Outer Area Dist. Diam.	0.00 20.19 19.97 0.70 20.36 20.15 0.070 20.36 20.15 1.00 20.44 20.22 1.50 20.56 20.35
Outer Diam. (in)	0.00 20.19 0.70 20.36 0.70 20.36 1.00 20.44 1.50 20.56
Rel. Dist. (ft)	0.00 0.70 1.00 1.50
Joint Position	10254 10254:t 10254:t ori 10254 10254:Arml 10254:Arml End 10254 10254:Arml 10254:Arml Ori 10254 10254:Arml 10254:TopConT End 10254 10254:TopConT 10254:TopConT ori 10254 10254:TopConT 10254:TopConT ori 10254 10254:TopConT 10254:TopConT End
Joint Label	10254:t 10254:Arm1 10254:Arm1 10254:TopConT 10254:TopConT 10254:TopConT
Element Label	10254 10254 10254 10254 10254

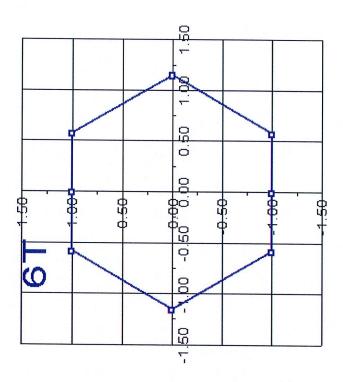
5.65 5.65 6.102 6.103 6.10
562.65 569.63 612.43 612.43 612.43 612.43 612.43 613.43 614.74 614.74 740.12
65.00 65.00
0.00 0.00 15.1 0.00 15.1 0.00 15.1 0.00 15.2 0.00 15.2 0.00 15.3 0.00 15.3 0.00 17.8 0
0867.8 2017.6 087.8
10000000000000000000000000000000000000
20.56 20.58 20.68 20.68 20.68 20.68 20.68 20.68 20.68 20.68 20.68 20.68 20.68 20.68 20.68 20.68 20.69
11.50 11
10254:TopConn Ori 10254:TopConB End 10254:WoED14 Ori 10254:WWED14 Ori 10254:Awm2 End 10254:Awm2 End 10254:Awm2 End 10254:WWED13 End 10254:WWED13 End 10254:WWED12 End 10254:WWED11 End 10254:WWED11 End 10254:WWED11 End 10254:WWED11 End 10254:WWED10 End 10254:WWED10 End 10254:WWED10 End 10254:WWED10 End 10254:WWED1 End 10254:WWED1 End 10254:WWED1 End 10254:WWED1 End 10254:WWED END
10254:TopConn 10254:TopConn 10254:WGD14 10254:WGD14 10254:WGD14 10254:WGD13 10254:WGD213 10254:WGD13 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD213 10254:WGD21 10254:WGD21 10254:WGD21 10254:WGD21
00000000000000000000000000000000000000

10254

Tubular Davit Properties:

Weight Steel Density Shape Override At End		0.0
	(ksi) (lbs/ft^3)	
Yield Stress	(ksi) (65 65
Long. Capacity	(1bs) (1bs) (1bs)	00
Compres. Capacity	(1bs)	00
Tension (00
/ertical	(1bs)	00
Strength Vertical Tension Compres. Long. Yield Check Capacity Capacity Capacity Stress Type		Calculated Calculated
Modulus Geometry of Elasticity	(ksi)	29000 1 point Calculated 29000 1 point Calculated
Drag Coef.	1 1 2 2 1 1	1.3
Taper	(in) (in/ft)	00
Tip Diameter or Depth	- {	ഗഗ
Base Diameter) or Depth	(ui) (ui)	6.4
	(ai)	0.1875
Steel II Shape		6 6 7 6 7
Davit Stock Property Number Label		
Davit Property Label	1	ARM1 ARM2

Intermediate Joints for Davit Property "ARM1":


Joint Horz. Vert.
Label Offset Offset
(ft) (ft)

Intermediate Joints for Davit Property "ARM2":

Joint Horz. Vert.
Label Offset Offset
(ft) (ft)
End 8 -1

Tubular Davit Arm Connectivity:

Davit Azimuth perty Set (deg)	180	0	180	0	180	0	180	0
Davit Property Set	ARM1	ARMI	ARM2	ARM2	ARM2	ARM2	ARM2	ARM2
	10254:Arml	10254:Arm1	10254:Arm2	10254:Arm2	10254:Arm3	10254:Arm3	10254:Arm4	10254:Arm4
Davit Label	Davit1	Davit2	Davit3	Davit4	Davit5	Davit6	Davit7	Davit8

Transverse/Vertical (Y) Axis

Tubular Davit Arm Steel Properties:

ASCE Cap H-Mom. (ft-k)	36.64 28.75 28.75 21.82	36.64 28.75 28.75 21.82	74.35 44.17 44.17 21.82	74.35 44.17 21.82
ASCE Cap V-Mom. (ft-k)	31.74 24.90 24.90 18.89	31.74 24.90 24.90 18.89	64.38 38.25 38.25 18.89	64.38 38.25 38.25 18.89
Fa Min. (ksi)	65.00 65.00 65.00 65.00	65.00 65.00 65.00	65.00 65.00 65.00	65.00 65.00 65.00
Fy (ksi)	21.65 0.00 13.9 65.00 6 15.13 0.00 11.8 65.00 6 15.13 0.00 11.8 65.00 6 10.07 0.00 9.6 65.00 6	65.00 65.00 65.00	65.00 65.00 65.00	65.00 65.00 65.00
W/t Max.	113.9 111.8 10.8 10.8	111.8	1221.0	21.9 15.8 15.8
D/t	0000	00000	61.76 0.00 28.54 0.00 28.54 0.00 10.07 0.00	61.76 0.00 28.54 0.00 28.54 0.00 110.07 0.00
H-Moment Inertia (in^4)	21.65 15.13 15.13	21.65 15.13 15.13 10.07	61.76 28.54 28.54 10.07	61.76 28.54 28.54 10.07
Area V-Moment H-Moment Inertia Inertia .n^2) (in^4) (in^4)	21.65 15.13 15.13 10.07	21.65 15.13 15.13 10.07	61.76 28.54 28.54 10.07	61.76 28.54 28.54 10.07
Area (in^2)	4.04 3.58 3.58 3.13	3.58 3.58 3.13	5.72 4.42 4.42 3.13	5.72 4.42 4.42 3.13
Outer Diam. (in)	6.40 5.70 5.70	6.40 5.70 5.00	9.00	9.00
Rel. Dist. (ft)	0.00 2.51 2.51 5.02	0.00 2.51 2.51 5.02	0.00 4.03 8.06	0.00 4.03 4.03 8.06
Joint	Origin End Origin End	Origin End Origin End	Origin End Origin End	Origin End Origin End
Joint	Davitl:0 #Davitl:0 #Davitl:0 Davitl:End	Davit2:0 #Davit2:0 #Davit2:0 Davit2:End	Davit3:0 #Davit3:0 #Davit3:0 Davit3:End	Davit4:0 #Davit4:0 #Davit4:0 Davit4:End
Element Label	Davitl Davitl Davitl Davitl	Davit2 Davit2 Davit2 Davit2	Davit3 Davit3 Davit3 Davit3	Davit4 Davit4 Davit4 Davit4

74.35	74.35	74.35	74.35
44.17	44.17	44.17	44.17
44.17	44.17	44.17	44.17
21.82	21.82	21.82	21.82
64.38 38.25 38.25 18.89	64.38 38.25 38.25 18.89	64.38 38.25 38.25 18.89	38.2.3 38.2.3 8.2.5 8.2.5 8.95
61.76 0.00 21.9 65.00 65.00 28.54 0.00 15.8 65.00 65.00 28.54 0.00 15.8 65.00 65.00 10.07 0.00 9.6 65.00 65.00	76 0.00 21.9 65.00 65.00 54 0.00 15.8 65.00 65.00 54 0.00 15.8 65.00 65.00 07 0.00 9.6 65.00 65.00	76 0.00 21.9 65.00 65.00 54 0.00 15.8 65.00 65.00 54 0.00 15.8 65.00 65.00 07 0.00 9.6 65.00 65.00	76 0.00 21.9 65.00 65.00 54 0.00 15.8 65.00 65.00 54 0.00 15.8 65.00 65.00 07 0.00 9.6 65.00 65.00
51.76 61.	61.76 61.76	28.54 61.76	28.54 28.54
28.54 28.	28.54 28.54	28.54 28.54	28.54 28.54
28.54 28.	28.54 28.54	28.54 28.54	28.54 28.54
10.07 10.	10.07 10.07	10.07	10.07
5.72 6:	5.72 61	5.72 61	5.72 61
4.42 28	4.42 28	4.42 28	4.42 28
4.42 28	4.42 28	4.42 28	4.42 28
3.13 10	3.13 10	3.13 10	3.13 10
9.00 7.00 5.00	9.00	9.00	9.00 7.00 5.00
0.00 4.03 4.03 8.06	0.00 4.03 8.06	0.00 4.03 8.06	0.00 4.03 8.06
Origin	Origin	Origin	Origin
End	End	End	End
Origin	Origin	Origin	Origin
End	End	End	End
Davit5:0	Davit6:0	Davit7:0	Davit8:0
#Davit5:0	#Davit6:0	#Davit7:0	#Davit8:0
#Davit5:0	#Davit6:0	#Davit7:0	#Davit8:0
Davit5:End	Davit6:End	Davit7:End	Davit8:End
Davit5	Davit6	Davit7	Davit8
Davit5	Davit6	Davit7	Davit8
Davit5	Davit6	Davit7	Davit8
Davit5	Davit6	Davit7	Davit8

*** Insulator Data

Clamp Properties:

Imbel Stock Holding
Number Capacity
(lbs)

clamp clamp 8e+004

Clamp Insulator Connectivity:

Min. Required Vertical Load (uplift) (lbs)	No Limit
Property Set	clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp clamp
Structure And Tip Attach	Davit1:End Davit2:End Davit2:End Davit4:End Davit4:End Davit6:End Davit6:End Davit6:End 10254:WvGD1 10254:WvGD2 10254:WvGD2 10254:WvGD3 10254:WvGD3 10254:WvGD3 10254:WvGD3 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10254:WvGD1 10264:WvGD1 10
Clamp Label	Clamp1 Clamp3 Clamp3 Clamp6 Clamp6 Clamp6 Clamp9 Clamp9 Clamp1 Clamp2 Clamp2 Clamp2 Clamp2

Loads from file: j:\jobs\1102100.wi\co-55 - ct5176 - 7 stony hill road, bethel,ct\structural\rev (1)\calcs\pls-pole\cl&p #10254.lca

Insulator dead and wind loads are already included in the point loads printed below.

Loading Method Parameters:

Structure Height Summary (used for calculating wind/ice adjust with height):

Z of ground for wind height adjust
0.00 (ft) and structure Z coordinate that will be put on the centerline ground profile in PLS-CADD.

Ground elevation shift
0.00 (ft)
2 of ground habit
140.00 (ft)
Structure height
Structure height
Structure height above ground
140.00 (ft)

Vector Load Cases:

Ice Temperature 0.0 0.0 (deg F) 0.000 Density (in) (lbs/ft^3) 56.000 Ice Wind Thick. 0.500 0.000 0 0 (psf) Longit. Pressure Wind Trans. 25.6 Pressure 4 (bsf) Wind/Ice Model Wind on All NESC 2007 1.00000 0.6500 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 26 loads Point 1.00000 0.6500 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 26 loads Loads SF for Non Braces Insuls. Found. Arms and Tubular Guys Tens. Cables Zero Conc. First Crack Conc. Conc. UIt. Wood Poles Area Steel Poles Tubular Arms and Towers Wind Factor Factor NESC Extreme 1.0000 1.0000 To Limit 0 NESC Heavy 1.5000 2.5000 Deflection Deflection Load Dead Limit le Pole Description 1 Load Case % or (ft) Check

Point Loads for Load Case "NESC Heavy":

Joint Label	Vertical Load (1bs)	Transverse Load (1bs)	Longitudinal Load (1bs)	Load
Davit1:End	982	1128	0	
Davit2:End	982	1128	0	
Davit3: End	6229	90	0	
Davit4:End	6229	0	0	
Davit5:End	6229	4069	0	
Davit6:End	6229	4069	0	
Davit7:End	6229	Q	0	
Davit8:End	6229	4069	0	
10254:WVGD1	920	m	0	
10254:WVGD2	920	132	0	
10254:WVGD3	920	m	0	
10254:WVGD4	920	3	0	
10254:WVGD5	920	3	0	
10254:WVGD6	920	132	0	
10254:WVGD7	920	132	0	
10254:WVGD8	920	സ	0	
10254:WVGD9	920	132	0	
10254:WVGD10	920	132	0	
10254:WVGD11	920	132	0	
10254:WVGD12	920	132	0	
10254:WVGD13		132	0	
10254:WVGD14	920	132	0	

0

0

4847

10254:t

000 1450 14107 -14107 000 10254:TopConn 10254:TopConT 10254:TopConB Detailed Pole Loading Data for Load Case "NESC Heavy":

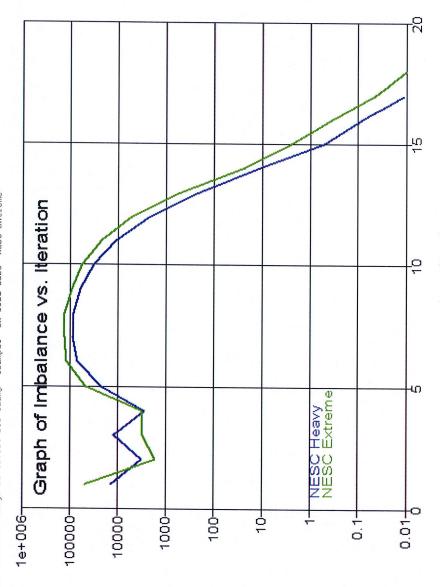
Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads. Wind load is calculated for the undeformed shape of a pole.

Long. Wind Load (lbs)		0.00
Tran. Wind Load (1bs)	16.13 16.13 16.13 11.65 11.65 11.71 10.83 10.83 145.08 1159.45	285.12 291.86
Pole Ice Wind Load (1bs)	0000 6 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	5.42 2
Pole Ice Vertical Load (1bs)	8.87 8.87 9.645 9.64	161.41 165.30
Pole Wind Load (1bs)	15.38 15.38 11.10 99.54 99.54 99.54 104.31 139.66 1154.24 1154.24 1154.24 1154.24 116.48 116.81 116.81 116.81 116.81 116.81 116.93 117.05 117.	279.70
Pole Vert. Load (1bs)	71.67 30.167 31.67 31.67 31.76 31.76 31.76 481.70 482.08 6653.12 6653.12 6653.12 678.70 722.43 722.43 722.43 722.43 722.43 722.43 722.43 722.43 722.43 723.10 128.00 953.01 128.00 953.01 128.00 1	968.13 2
Adjusted Ice Thickness (in)		0.50
Drag Adjusted Coef. Wind Pressure (psf)		10.00
0	1.3000	1.300
Reynolds Number	9.66+005 9.76+005 9.71+005 9.71+005 1.09+006 1.12+0	2.44e+006 2.5e+006
Outer Diameter (in)	20.3275 20.3275 20.6288 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.6288 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.6288 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.6288 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.6288 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.6288 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.628 20.6288 20.6	51.635
Section Average Elevation (ft)	139.65 139.15 138.75 138.75 138.75 138.75 132.91 122.50 107.50 10	7.50
Section Bottom Z 1 (ft)	138.50 138.50 138.50 138.50 138.50 125.00 115.00 115.00 115.00 104.63 104.63 104.63 104.63 104.63 104.63 104.63 104.63 104.63 104.63 104.63 104.63 104.63 104.63 104.63 105.00 106.00 10	0.00
Section Top Z (ft)	1140 1140 11388 11388 11286 11	10.00
Bottom Joint	10254:Arm1 10254:TopConn 10254:TopConn 10254:TopConn 10254:WGD14 10254:WVGD11 10254:WVGD11 10254:WVGD10 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0 10254:WVGD0	10254:WVGD1 10254:g
Top	10254:Arm1 10254:TopConT 10224:TopConT 10254:TopConD 10254:WVGD14 10254:WVGD13 10254:WVGD11 10254:WVGD10 10254:WVGD0 10254:WVGD0 10254:WVGD6 10254:WVGD6 10254:WVGD6 10254:WVGD6 10254:WVGD6 10254:WVGD6 10254:WVGD6 10254:WVGD6 10254:WVGD6	10254:WVGD1
Pole Label	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10254 10254

Point Loads for Load Case "NESC Extreme":

inal Load Load Comment 1bs)								
Joint Vertical Transverse Longitudinal Label Load Load Load (lbs) (lbs) (lbs)	0	0	0	0	0	0	0	0
Transverse Load (1bs)	683	683	4709	4709	4709	4709	4709	4709
Vertical Load (1bs)	243	243	2651	2651	2651	2651	2651	2651
Joint Label	Davit1:End	Davit2:End	Davit3:End	Davit4:End	Davit5:End	Davit6:End	Davit7:End	Davit8:End

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
S	ß	ഗ	ഗ	S	356	S	ın	1O	ın	LO	IO	10	10	0	4973	49207	-49207
250	250	250	250	250	250	250	250	250	250	250	250	250	250	2316	0	0	0
10254:WVGD1	10254:WVGD2	10254:WVGD3	10254:WVGD4	10254:WVGD5	10254:WVGD6	10254:WVGD7	10254:WVGD8	10254:WVGD9	2	10254:WVGD11	10254:WVGD12	10254:WVGD13	10254:WVGD14	10254:t	10254:TopConn	10254:TopConT	10254:TopConB


Detailed Pole Loading Data for Load Case "NESC Extreme":

Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads. Wind load is calculated for the undeformed shape of a pole.

31.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	31.83 0.00 0.00 0.00 23.13.72 0.00 0.00 0.00 23.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	31.83 0.00 0.00 0.00 23.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
131.83 131.83 12.98 22.98 22.98 22.98 20.61.4	31.83 131.83 12.98 22.98 22.98 215.92 815.92 815.92 815.92 816.92 816.92 816.92 816.92 816.92 816.92 816.92 816.92 816.92 816.93 816.92 816.93	31.83 131.83 12.98 22.98 22.98 23.12 206.16 215.92 215.92 215.92 206.16
111.2 122.3 122.3 122.3 122.3 123.9 12	20.60 34.51 212.79 34.72 36.72 309.82 206.14 309.82 326.14 32.02 414.17 32.03 415.43 416.23 416.63 303.03 416.63 303.03 416.63 303.03 416.63 310.03 416.63 310.03 416.63 310.03 416.63 310.03 416.63 310.03 416.63 310.03 416.63 310.03 416.63 310.03 3	22.98 22.98 22.98 2006.14 215.99 2006.14 22.59 2006.14 22.59 22.59 22.59 22.59 22.99 22.99 23.90 23.90 23.90 24.33 23.90 24.33 24.33 24.33 24.33 24.33 24.33 24.33 25.29 26.20 27.20
22.98 22.98 20.01	34.51 22.98 34.72 122.98 36.72 206.14 309.82 206.14 34.73 215.92 34.73 215.92 414.17 246.13 456.68 33.03 477.94 316.97 36.70 24.33 471.94 316.97 36.70 24.33 501.31 332.17 286.08 189.26 592.12 193.46 1189.50 593.28 594.73 313.39 618.04 293.28 618.04 293.28 618.04 293.28 618.04 293.28 618.07 43.37 918.97 43.49 918.97 43.49 918.97 43.49 918.97 43.49 918.97 43.49 918.97 43.49 918.97 43.49 918.97 43.31 1184.56 523.21 1152 67 509.27 1184.56 523.21 11216.44 537.15	22.98 22.98 200.14 215.92 215.92 215.92 22.93 22.93 23.93 23.93 24.93 24.93 25.93 26.93 27.03 28.93 28
12.00 12.00 13.00 15.00 15.00 15.00 15.00 15.00 16	24.72 23.12 309.82 201.67 309.82 204.1.67 324.73 215.92 414.17 275.15 435.43 289.09 475.68 303.03 477.70 24.32 501.31 322.17 286.08 189.26 597.12 193.46 618.02 212 193.46 618.02 201.33 889.22 421.49 918.97 435.43 918.97 435.43 918.97 435.43 1008.25 421.49 918.97 435.43 1152.67 509.27 1152.67 509.27 1154.65 523.21 1164.56 523.21 1164.56 523.21	12.3.12 2.061.67 2.06
215.92 215.92 28.42 28.42 28.9.09 28.9.09 28.33 319.26 319.27 319.26 319.27 319.26 319.27 319.26 319.27 319.26 319.27 319.26 319.27 319.26 319.27 319.26 319.27 319.26 319.27 319.26 319.27 319.26 319.27	309.82 206.14 324.73 215.92 130.03 86.42 131.03 86.42 131.03 86.42 131.03 86.42 131.03 86.42 131.03 86.42 131.03 86.42 131.03 131.03 131.03 131.03 131.03 131.03 131.03 131.03 131.03 131.03 131.03 131.03 132.03 132.03 133.03 133.03 134.03 135.43 1008.25 135.43 1008.25 135.43 1008.25 135.43 1008.25 135.43 136.26 135.43 136.26 136.26 137.43 138.43 138.63 13	215.92 215.92 286.42 286.42 289.09 303.03 303.03 304.33 319.26
215.92 286.42 288.09 303.03 318.03 318.26 319.26 0.00	324.73 215.92 0.00 1310.03 86.42 0.00 0.00 45.43 289.09 0.00 45.68 303.03 0.00 0.00 45.68 303.03 0.00 0.00 0.00 45.68 303.03 0.00 0.00 0.00 1.00 1.00 1.00 1.	215.92 86.42 289.09 316.15 316.33 319.26 0.00
86.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	130.03 86.42 0.00 4.44 1.72 1.515 0.00 4.56 8 303.03 0.00 0.00 4.56 68 303.03 0.00 0.00 0.00 4.77 94 316.97 0.00 0.00 4.56 68 303.03 0.00 0.00 0.00 4.56 68 316.97 0.00 0.00 0.00 6.51 1.32 1.32 1.5 0.00 0.00 0.00 6.35 34 301.39 0.00 0.00 0.00 6.35 34 301.39 0.00 0.00 0.00 6.35 34 301.39 0.00 0.00 0.00 6.35 34 301.39 0.00 0.00 0.00 0.00 6.35 34 301.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	86.42 2893.03 303.03 303.03 316.97 24.33 0.00 0.00 318.97 0.00 0.00 318.26 0.00 0.00 332.17 0.00 0.00 345.29 0.00 0.00 345.29 0.00 0.00 347.29 0.00 0.00 0.00 347.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
275.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00	414.17 275.15 0.00 0.00 435.43 289.09 0.00 477.94 316.97 0.00 0.00 477.94 316.97 0.00 0.00 36.70 24.33 0.00 0.00 501.16 219.26 0.00 0.00 286.08 189.50 0.00 0.00 286.08 189.50 0.00 0.00 286.08 189.50 0.00 0.00 376.26 178.60 0.00 0.00 518.04 293.28 0.00 0.00 618.04 293.28 0.00 0.00 618.04 293.28 0.00 0.00 618.04 493.31 0.00 0.00 978.49 463.31 0.00 0.00 172.44 375.01 0.00 0.00 172.44 375.01 0.00 0.00 115.2 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00 1184.15 67 509.27 0.00 0.00	275.15 0.00 0.00 0.00 316.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
289.09 0.00 0.00 316.33 0.00 0.00 0.00 24.33 0.00 0.00 0.00 0.00 3319.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	435, 43, 289.09 0.00 475, 68 393.03 0.00 477, 94 346, 97 0.00 36, 70 471, 94 346, 97 0.00 36, 70 471, 94 346, 97 0.00 36, 70 481, 68 319.26 0.00 0.00 286, 08 189.50 0.00 0.00 286, 08 345, 29 0.00 0.00 376, 28 46, 40 40 40 40 40 40 40 40 40 40 40 40 40	289.09 0.00 0.00 316.33 0.00 0.00 24.33 0.00 0.00 0.00 0.00 319.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
318.3 (3 9.00) 0.00 24.33 0.00 24.33 0.00 23.19.26 0.00 33.21.17 0.00 193.46 0.00 193.46 0.00 193.46 0.00 193.46 0.00 194.55 0.00 293.28 0.00 293.28 0.00 421.49 0.00 435.43 0.00 435.43 0.00 447.25 0.00 6.00 435.43 0.00 6.00 435.43 0.00 6.00 435.43 0.00 6.00 435.43 0.00 6.00 437.25 0.00 6.00 307.26 0.00 6.00 307.26 0.00 6.00 307.26 0.00 6.00 307.26 0.00 6.00 6.00 307.26 0.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0	456.68 343.03 0.00 0.00 36.70 24.33 0.00 0.00 36.70 24.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00	313.73 0.00 0.00 316.33 0.00 0.00 318.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
24.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00	477.94 316.97 0.00 481.62 319.26 0.00 501.31 332.17 0.00 292.12 193.46 0.00 0.00 1246.73 345.29 0.00 0.00 376.26 178.66 0.00 0.00 635.34 301.39 0.00 0.00 635.34 301.39 0.00 0.00 948.73 449.37 0.00 0.00 948.73 449.37 0.00 0.00 1134.15 304.98 0.00 0.00 1152.67 509.27 0.00 0.00 1184.56 523.21 0.00 0.00 1184.56 523.21 0.00 0.00 1184.56 523.21 0.00 0.00	316.97 0.00 0.00 319.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
319.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	481.62 319.26 0.00 0.00 292.12 193.46 0.00 0.00 0.00 292.12 193.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	319.26 332.17 193.46 0.00 345.29 0.00 178.60 0.00 0.00 178.60 0.00 0.00 178.60 0.00
332.17 0.00 0.00 0.00 345.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	501.31 332.17 0.00 0.00 286.08 189.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00	332.17 0.00 0.00 345.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
189.50 0.00 0.00 193.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	286.08 188.50 0.00 0.00 292.12 193.46 0.00 0.00 376.26 178.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00	189.50 0.00 0.00 193.46 0.00 0.00 0.00 178.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00
193.46 0.00 0.00 345.29 0.00 0.00 293.28 0.00 0.00 407.39 0.00 0.00 421.49 0.00 0.00 449.543 0.00 0.00 447.25 0.00 0.00 477.25 0.00 0.00 307.26 0.00 0.00 307.26 0.00 0.00 307.26 0.00 0.00 307.26 0.00 0.00 307.26 0.00 0.00 307.26 0.00 0.00	292.12 193.46 0.00 0.00 1246.73 345.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	345.29 0.00 0.00 293.28 0.00 0.00 293.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
345.29 0.00 0.00 293.28 60 0.00 0.00 293.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1246.73 349.29 0.00 618.04 293.28 0.00 618.04 293.28 0.00 635.34 301.39 0.00 635.34 301.39 0.00 635.34 301.39 0.00 918.97 435.43 0.00 948.73 449.37 0.00 978.49 4 633.31 0.00 1008.25 477.25 0.00 792.44 375.01 0.00 1334.15 304.98 0.00 1357.34 307.26 0.00 1152.67 509.27 0.00 1184.65 523.21 0.00 1248.32 551.09 0.00	345.29 0.00 0.00 293.28 60 0.00 0.00 0.00 0.00 0.00 0.00 0.00
293.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	618.04 293.28 0.00 0.00 859.46 301.39 0.00 889.22 421.49 0.00 0.00 918.97 425.43 0.00 0.00 918.97 425.43 0.00 0.00 918.49 465.31 0.00 0.00 0.00 1.357.34 375.01 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.34 307.26 0.00 0.00 1.357.35 51.09 0.00 0.00 1.248.32 551.09 0.00 0.00	293.28 0.00 0.00 421.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
301.39 0.00 0.00 407.55 0.00 0.00 435.43 0.00 0.00 449.37 0.00 0.00 449.31 0.00 0.00 307.25 0.00 0.00 307.26 0.00 0.00 307.26 0.00 0.00 537.15 0.00 0.00	635.34 301.39 0.00 0.00 859.46 407.55 0.00 0.00 918.97 435.43 0.00 0.00 948.73 449.37 0.00 0.00 0.00 978.49 463.31 0.00 0.00 0.00 1357.34 307.25 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 1357.34 307.26 0.00 0.00 125.64 325.11 0.00 0.00 0.00 124.83 251.09 0.00 0.00 0.00	301.39 0.00 0.00 407.25 0.00 0.00 449.37 0.00 0.00 449.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
407.55 0.00 0.00 421.49 0.00 0.00 449.37 0.00 0.00 449.31 0.00 0.00 477.25 0.00 0.00 304.98 0.00 0.00 307.26 0.00 0.00 559.27 0.00 0.00	859.46 497.55 0.00 0.00 889.22 421.49 0.00 0.00 918 91.22 421.49 0.00 0.00 918 91.23 449.37 0.00 0.00 918 91.25 43.31 0.00 0.00 0.00 1357.34 375.01 0.00 0.00 1357.34 307.26 0.00 0.00 116.2.67 509.27 0.00 0.00 116.44 537.15 0.00 0.00 1248.32 551.09 0.00 0.00	407.55 0.00 0.00 421.49 0.00 0.00 449.37 0.00 0.00 449.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
421.49 0.00 0.00 4435.37 0.00 0.00 463.31 0.00 0.00 477.25 0.00 0.00 375.01 0.00 0.00 304.98 0.00 0.00 5593.27 0.00 0.00	889.22 421.49 0.00 0.00 918.91.29 435.43 0.00 0.00 978.49 463.31 0.00 0.00 0.00 1008.25 477.25 0.00 0.00 134.15 304.98 0.00 0.00 1152.67 509.27 0.00 0.00 1184.55 523.21 0.00 0.00 1248.32 551.09 0.00 0.00 1248.32 551.09 0.00 0.00	421.49 0.00 0.00 435.43 0.00 0.00 463.31 0.00 0.00 477.25 0.00 0.00 375.01 0.00 0.00 307.26 0.00 0.00 509.27 0.00 0.00 523.21 0.00 0.00 551.09 0.00 0.00
435.43 0.00 0.00 449.31 0.00 0.00 477.25 0.00 0.00 304.98 0.00 0.00 307.26 0.00 0.00 559.27 0.00 0.00 537.15 0.00 0.00	918.97 435.43 0.00 0.00 948.73 449.37 0.00 978.49 463.31 0.00 0.00 1008.25 477.25 0.00 0.00 134.15 304.98 0.00 0.00 1357.34 307.26 0.00 0.00 1152.67 509.27 0.00 0.00 1184.56 523.21 0.00 0.00 1248.32 551.09 0.00 0.00 1248.32 551.09 0.00 0.00	435.43 0.00 0.00 449.37 0.00 0.00 477.25 0.00 0.00 375.01 0.00 0.00 304.98 0.00 0.00 509.27 0.00 0.00 523.21 0.00 0.00 551.09 0.00 0.00
449.37 0.00 0.00 463.31 0.00 0.00 375.01 0.00 0.00 304.98 0.00 0.00 307.26 0.00 0.00 5593.21 0.00 0.00	948.73 449.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	449.37 0.00 0.00 463.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00
463.31 0.00 0.00 477.25 0.00 0.00 304.98 0.00 0.00 509.27 0.00 0.00 537.15 0.00 0.00	978 49 463.31 0.00 0.00 1008.25 477.25 0.00 0.00 1324.15 304.98 0.00 0.00 1357.34 307.26 0.00 0.00 1152.67 509.27 0.00 0.00 1184.56 523.21 0.00 0.00 1216.44 537.15 0.00 0.00	463.31 0.00 0.00 477.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
375.01 0.00 0.00 304.98 0.00 0.00 307.26 0.00 0.00 509.27 0.00 0.00 537.15 0.00 0.00	1008.25 477.25 0.00 0.00 134.415 304.98 0.00 0.00 1357.34 307.26 0.00 0.00 1152.67 509.27 0.00 0.00 1184.55 523.21 0.00 0.00 12184.537.15 0.00 0.00 1248.32 551.09 0.00 0.00	375.01 0.00 0.00 3.04 3.04 98 0.00 0.00 3.07.26 0.00 0.00 5.09.27 0.00 0.00 5.23.21 0.00 0.00 5.52.09 0.00 0.00 5.52.09 0.00 0.00 5.52.09 0.00 0.00 0.00
375.01 0.00 0.00 304.98 0.00 0.00 307.26 0.00 0.00 509.27 0.00 0.00 523.21 0.00 0.00	375.01 0.00 0.00 304.98 0.00 0.00 307.26 0.00 0.00 509.27 0.00 0.00 533.21 0.00 0.00 551.09 0.00 0.00	375.01 0.00 0.00 307.26 0.00 209.27 0.00 0.00 253.21 0.00 0.00 2521.09 0.00 2551.09 0.00 2551.09 0.00 2551.09 0.00 0.00
304.98 0.00 0.00 307.26 0.00 0.00 509.27 0.00 0.00 523.21 0.00 0.00	304.98 0.00 0.00 307.26 0.00 0.00 509.27 0.00 0.00 537.15 0.00 0.00 551.09 0.00 0.00	304.98 0.00 0.00 307.26 0.00 2533.21 0.00 0.00 2551.09 0.00 2551.09 0.00 2551.09 0.00 2551.09 0.00 2551.09 0.00 0.00 2551.09 0.00 0.00 2551.09 0.00 0.00 0.00 2551.09 0.00 0.00 0.00 2551.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00
307.26 0.00 0.00 509.27 0.00 0.00 523.21 0.00 0.00 537.15 0.00 0.00	307.26 0.00 0.00 509.27 0.00 0.00 523.21 0.00 0.00 537.15 0.00 0.00 551.09 0.00 0.00	307.26 0.00 0.00 509.27 0.00 0.00 523.21 0.00 0.00 537.15 0.00 0.00 551.09 0.00 0.00 565.03 0.00 0.00
509.27 0.00 0.00 523.21 0.00 0.00 537.15 0.00	509.27 0.00 0.00 523.21 0.00 0.00 537.15 0.00 0.00 551.09 0.00	509.27 0.00 0.00 523.21 0.00 0.00 537.15 0.00 0.00 551.09 0.00 0.00 565.03 0.00 0.00
523.21 0.00 0.00 537.15 0.00 0.00	523.21 0.00 0.00 5.00 537.15 0.00 0.00 551.09 0.00	523.21 0.00 0.00 537.15 0.00 0.00 551.09 0.00 0.00 565.03 0.00 0.00
537.15 0.00 0.00	537.15 0.00 0.00 551.09 0.00 0.00	537.15 0.00 0.00 551.09 0.00 551.09 0.00 0.00 565.03 0.00
	551.09 0.00 0.00	551.09 0.00 0.00 565.03 0.00 0.00
565.03 0.00 0.00 578.97 0.00 0.00	1312.09 578.97 0.00 0.00 578.97	

*** Analysis Results:

Maximum element usage is 96.65% for Base Plate "10254" in load case "NESC Extreme" Maximum insulator usage is 61.51% for Clamp "Clamp25" in load case "NESC Extreme"

Րօմ ֈ ը օէ լաքցյցոշե (լpa)

Iteration#

*** Analysis Results for Load Case No. 1 "NESC Heavy" - Number of iterations in SAPS 17

Equilibrium Joint Positions and Rotations for Load Case "NESC Heavy":

Z-Pos (ft)	0	139.7	139	138.7	138.2
Y-Pos Z-Pos (ft) (ft)	0	7.331	7.265	7.237	7.19
X-Pos (ft)	0	0.01384	0.01373	0.01368	0.0136
Z-Rot (deg)	0.000.0	0.0001	0.0001	0.0001	0.0001
Y-Rot (deg)	0.000.0	0.0092	0.0092	0.0092	0.0092
X-Rot (deg)	0 0.000 0.0000	-5.4068	-5.4067	-5.4066	-5.4057 0.0092
Z-Displ X (ft) (0	-0.2604	-0.2573 -5.4067 (-0.2559	-0.2537
Y-Displ (ft)	0	7.331	7.265	7.237	7.19
X-Displ (ft)	0	0.01384	0.01373	0.01368	0.0136
Joint Label	10254:9	10254:t	10254:Arm1	10254:TopConT	10254:TopConn

137.7	134.8	126.4	124.8	114.8	104.9	104.5	94.91	84.94	82.57	74.96	64.97	54.98	44.99	34.99	25	15	Ŋ	139.1	140.1	139	139	126.5	128.1	126.3	126.4	104.6	106.1	104.4	104.6	82.66	84.04	85.48	82.82
7.143	6.86	6.08	5.931	5.032	4.188	4.157	3.412	2.719	2.566	2.103	1.565	1.107	0.7314	0.4366	0.2199	0.07828	0.00876	6.42	1.488	8.11	13.13	5.105	-2.793	7.056	15.12	2.954	-4.963	5.361	13.42	1.159	-6.783	3.973	12.03
0.01352	0.01304	0.0117	0.01145	0.009882	0.008378	0.008323	0.006961	0.005658	0.005365	0.004468	0.003398	0.002459	0.001662	0.001015	0.0005232	0.0001908	2.205e-005	0.01374	0.01391	0.01371	0.0137	0.01172	0.012	0.01169	0.01169	0.008339	0.00858	0.008307	0.008325	0.005377	0.005557	0.005353	0.005389
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.0001	0.0002	0.0001	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000.0	0.0001	0.000.0	0.000.0
0.0092	0.0092	0.0091	0.0091	0.0088	0.0084	0.0084	0.0078	0.0071	0.0070	0.0065	0.0058	0.0050	0.0041	0.0033	0.0024	0.0014	0.0005	0.0092	0.0092	0.0092	0.0092	0.0091	0.0092	0.0091	0.0091	0.0084	0.0084	0.0084	0.0084	0.0070	0.0070	0.0070	0.0070
-5.4036	-5.3837	-5.2931	-5.2667	-5.0117	-4.6572	-4.6427	-4.2144					-2.3822	-1.9153	-1.4592	-1.0198	-0.5979	-0.1946	-5.4067	-5.2369	-5.4067	-5.6281	-5.2931	-3.8271	-5.2931	-7.0210	-4.6427	-3.1602	-4.6427	-6.3828	-3.6384	-2.1309	-3.6384	-5.3968
-0.2515	-0.2382	-0.2016	-0.1947	-0.1539	-0.1178	-0.1166	-0.08722	-0.06272	-0.05771	-0.04331	-0.02836	-0.01744	-0.00993	-0.005138	-0.002348	-0.000906	-0.0002226	-0.1773	0.2822	-0.3372	-0.823	-0.1113	0.5038			-0.01885						-0.1472	-0.8023
7.143	6.86	6.08	5.931	5.032	4.188	4.157	3.412	2.719	2.566	2.103	1.565	1.107	0.7314	0.4366	0.2199	0.07828	0.00876	7.269	7.336	7.261	7.286	6.085	6.186	6.076	6.138	4.161	4.245	4.153	4.213	2.569	2.627	2.563	2.618
0.01352	0.01304	0.0117	0.01145	0.009882	0.008378	0.008323	0.006961	0.005658	0.005365	0.004468	0.003398	0.002459	0.001662	0.001015	0.0005232	0.0001908	2.205e-005	0.01374	0.01391	0.01371	0.0137	0.01172	0.012	0.01169	0.01169	0.008339	0.00858	0.008307	0.008325	0.005377	0.005557	0.005353	0.005389
10254:TopConB	10254:WVGD14	10254:Arm2	10254:WVGD13	10254:WVGD12	10254:WVGD11	10254:Arm3	10254:WVGD10	10254:WVGD9	10254:Arm4	10254:WVGD8	10254:WVGD7	10254:WVGD6	10254:WVGD5	10254:WVGD4	10254:WVGD3	10254:WVGD2	10254:WVGD1	Davit1:0	Davit1:End	Davit2:0	Davit2:End	Davit3:0	Davit3:End	Davit4:0	Davit4:End	Davit5:0	Davit5:End	Davit6:0	Davit6:End	Davit7:0	Davit7:End	Davit8:0	Davit8:End

Joint Support Reactions for Load Case "NESC Heavy":

Max.	Jsage	æ	0.0
Z-M. Max.	Usage 1	οķο	0.0
N	foment	(ft-k)	-0.00
Y-M.	Usage 1	æ	0.0
X	Moment	(ft-k) % (ft-k) % (ft-k) %	
X-M.	Usage 1	ø	0.0
×	Moment Usage Moment Usage Moment Usage Usage	(£t-k)	3890.14
Z Comp. Uplift Result. Result.	Usage	æ	0.0
Result.	Usage Force	(kips)	105.83
Uplift	Usage	oko	0.0
Comp	Usage	%(kips) %	0.0
N	Force	(kips)	99.62
×	Usage	ф	0.0
Ħ	Force	(kips) % (kips) %	-35.70
×	Usage	æ	0.0
×	Force	kips)	-0.15
Joint	Label Force Usage Force Usage Force Usage U	_	10254:9 -0.15 0.0 -35.70 0.0 99.62 0.0 0.0 105.83 0.0 3890.14 0.0 -9.7 0.0 -0.00 0.0 0.0

Detailed Steel Pole Usages for Load Case "NESC Heavy":

10254 10254:t Origin 0.00 87.97 0.17 -3.12 -0.00 10254 10254:hxml End 0.70 87.18 0.16 -3.09 0.33 10254 10254:ropconT	<pre>Lrans. Long. Vert. Tran Defl. Defl. Defl. (Lo (in) (in) (in)</pre>	Trans. Mom. Long. Mom. ' (Local Mx) (Local My) (ft-k) (ft-k) (Tors. Axial Mom. Force ft-k) (kips)	Tran. Shear (kips)	Long. P/A Shear (kips) (ksi)	A M/S.	V/Q. (ksi)	T/R. (ksi)	Res. U	Max. Usage P	At Pt.
10254:Arml End 0.70 87.18 0.16 -3.09 10254:TopConT Cigin 0.70 86.28 0.16 -3.09 10254:TopConT Cigin 1.00 86.84 0.16 -3.07 10254:TopConn Cigin 1.00 86.28 0.16 -3.07 10254:TopConn Cigin 1.50 86.28 0.16 -3.07 10254:TopConn Cigin 1.50 86.28 0.16 -3.04 10254:TopConn Cigin 1.50 86.28 0.16 -3.04 10254:TopConn Cigin 2.00 85.71 0.16 -3.02 10254:WVGD14 Cigin 5.00 82.33 0.16 -2.86 10254:WVGD14 Cigin 5.00 82.33 0.16 -2.86 10254:Arm2 Cigin 9.19 77.63 0.15 -2.64 10254:Arm2 Cigin 13.38 72.97 0.14 -2.42	0.17		i	0.47	1	1	0.05	00.00	0.26	0.4	i ro
10254:Arml Origin 0.70 87.18 0.16 -3.09 10254:TOpConT End 1.00 86.84 0.16 -3.07 10254:TOpConn End 1.00 86.84 0.16 -3.07 10254:TOpConn Origin 1.50 86.28 0.16 -3.07 10254:TOpConn Origin 1.50 86.28 0.16 -3.04 10254:TOpConn Origin 1.50 86.28 0.16 -3.04 10254:TOpConn Origin 1.50 86.28 0.16 -3.04 10254:TOpConn Origin 2.00 85.71 0.16 -3.02 10254:TOpConn Origin 5.00 82.33 0.16 -2.86 10254:WVGD14 Origin 5.00 82.33 0.16 -2.86 10254:Arm2 End 13.38 72.97 0.14 -2.42	0.16			0.47			0.01	00.0	0.28	4.0	0
10254:TopConT	0.16	·		2.93			0.29	00.0	0.63	0.1	4
10254:TopConT Origin 1.00 86.84 0.16 -3.07 10254:TopConn End 1.50 86.28 0.16 -3.04 10254:TopConn Origin 1.50 86.28 0.16 -3.04 10254:TopConn Origin 1.50 86.28 0.16 -3.04 10254:TopConn Origin 2.00 85.71 0.16 -3.02 10254:TopConn Origin 2.00 85.71 0.16 -2.86 10254:WVGD14 Origin 5.00 82.33 0.16 -2.86 10254:WVGD14 Origin 9.19 77.63 0.15 -2.64 10254:Arm2 End 13.38 72.97 0.14 -2.42 10254:Arm2 Origin 13.38 72.97 0.14 -2.42	0.16			2.93			0.21	0.00	99.0	1.0	m
10254:TopConn	0.16			16.99		_	1.71	0.00	2.98	4.6	S
10254:TopConn Origin 1.50 86.28 0.16 -3.04 10254:TopConB End 2.00 85.71 0.16 -3.02 10254:TopConB Origin 2.00 85.71 0.16 -3.02 10254:WVGD14 Origin 5.00 82.33 0.16 -2.86 10254:WVGD14 Origin 5.00 82.33 0.16 -2.86 10254:WVGD14 Origin 9.19 77.63 0.15 -2.64 10254:Arm2 End 13.38 72.97 0.14 -2.42	0.16			16.99		_	1.70	00.0	2.96	4.6	'n
10254:TopConB	0.16			18.45		_	1.85	00.0	3.21	9.9	ß
10254:WOGDL	0.16	•		18.45	-	_	1.78	0.00	3.20	4.9	Ą
10254:WVGD14 End 5.00 82.33 0.16 -2.86 10254:WVGD14 Origin 5.00 82.33 0.16 -2.86 Tube 1 End 9.19 77.63 0.15 -2.64 Tube 1 Origin 9.19 77.63 0.15 -2.64 10254:Arm2 End 13.38 72.97 0.14 -2.42	0.16	•		4.47		•	0.12	00.0	2.65	4.1	2
10254.WVGD14 Origin 5.00 82.33 0.16 -2.86 Tube 1 End 9.19 77.63 0.15 -2.64 Tube 1 Origin 9.19 77.63 0.15 -2.64 10254.Arm2 End 13.38 72.97 0.14 -2.42	0.16	•		4.47	-	.,	0.11	00.0	3.89	0.9	7
Tube 1 End 9.19 77.63 0.15 -2.64 Tube 1 Origin 9.19 77.63 0.15 -2.64 10254:Arm2 End 13.38 72.97 0.14 -2.42 10254:Arm2 Origin 13.38 72.97 0.14 -2.42	0.16			4.81	-		0.12	0.00	3.96	6.1	~
Tube 1 Origin 9.19 77.63 0.15 -2.64 10254:Arm2 End 13.38 72.97 0.14 -2.42 10254:Arm2 Origin 13.38 72.97 0.14 -2.42	0.15			4.81			0.11	0.00	5.55	8.5	2
10254:Arm2 End 13.38 72.97 0.14 -2.42 10254:Arm2 Origin 13.38 72.97 0.14 -2.42	0.15			4.96			0.12	0.00	5.57	9.8	2
10254:Arm2 Origin 13.38 72.97 0.14 -2.42	0.14			4.96		_	0.11	0.00	6.92	10.7	~
*** ** ** ** ** ** ** ** ** ** ** ** **	0.14	82.51 -0.08	0.0 -21.30	14.35	-0.01 -0.91	7.25	0.33	00.0	8.18	12.6	2
10254:WVGD13 End 15.00 /1.1/ 0.14 -2.34	0.14	•	•	14.35			0.32	00.0	9.89	15.2	7

7	7	C1 C	1 <1	7	0 C	2 7	7	00	1 7	8	α (7 0	7	7	0 0	4 6	7	7	~ ~	4 C	1 ~	7	2	< c	7 0	1 ~	7	~ ~	N 6	1 (2)	7	N 6	~	0	7 0	1 ~	ι 🛇	2	0 0	7 (7 ~	1 (2)	7	~ ~	N 0	1
•				.,		,	.,	. , `	•	ш,	٠, .	,, 6,	۵,	٠,	~ `	. 4	4	ш,	., .	, .	, ,,	ш,	ш,	u, (D C		w	w c	D W	w	w	v u	w	w	D U) Q	Q	Φ	w (0	שע	. 6	w	w c	9 6	,
9.95	14.63	14.66	18.54	21.72	21.75	24.40	24.58	25.48	98.60	33.49	33.54	35.33	36.93	36.97	29.55	30.41	30.93	33.03	33.06	20. 40	37.02	37.05	88.79	8 6	33	1.54	1.59	2.60	3.63	3.49	4.02	3.05	3.24	3.52	2. co		4.22	4.26	4.44	4.4	4.07	4.66	4.69	4.68	4.72	, ,
00.	00.	88	80.	00	000	88	00	8 8	00	00	8	200	00	00	000	80	00	00	8	3 6	000	00	00	000	200	00	00	000	000	00	00	900	00	00	000	200	00	7 00	000	000	200	00	00	00	00.00	
0.33	0.31	0.31	0.31	0.29	0.30	0.29	0.29	0.46	0.44	0.42	0.43	0.42	0.41	0.41	0.50	0.29	0.39	0.38	0.38	3.0	0.36	0.36	0.35	0.35	34	0.33	0.33	0.32	0.32	0.31	0.30	280	0.28	0.28	0.28	0.27	0.27	0.27	0.26	0 2 0	0.25	0.25	0.25	0.24	0.24	
8.98	3.71	3.71	7.57	0.79	2.79	3.44	3.62	4.08 7.08	8.49	2.17	2.17		5.60	9.60		9.41	9.65	1.79	1.79	30.	5.79	5.79	7.57	7.57	0 0	0.32	0.32	1.37	2.23	2.23	2.78	2.78	2.02	2.32	25.2	27.72	3.01	3.01	3.23	2.23	3.50	3.44	3.44	3.46	43.46	
96	.91	2, a	96.	.91	94	. 95	. 95	٠ ٩	.36	.31	.38	35.	.32	36	96.	9 6	.27	. 24	. 26	27	23	. 26	. 22	. 26	22	22	. 26	22	22	.26	23	9 6	21	13	24	2 2	20	.24	21	77	25	22	25	22	2 6)
.02	- 65	0.00	. 02	. 02	50.6	.03	.03		0.4	- 04	- 50.	20.4	04	- 60.	0.05	0.05	- 90	- 90	90.	9 6	90	- 70	- 70.	70.	2 6	080	- 60	၂ ရ	1 1 50	107	10	9 6	10	10	 	1 5	12 -	12 -	12 -	٦; ا	7 C	1 2	14 -	14	0.15 -1.)
4.67	4.67	4.82	5.18	5.18	32.32	5.60	5.60	80	4.88	4.88	5.12	5.15	5.15	5.24 -	2.24	5.52	4.51 -	4.51		7.04	1.76	1.78	1.78	000	000	. 66	5.16 -	2.16	9.1.0	5.32	5.32	32	5.34 -	- 34	24. 4 20. 20	747	5.47	- 65.5	65.5	90.0	0.00	. 67	. 63	. 63	73.73	?
												• • •	•			• • •	.,	,	.,,	,	,,	(-,	(,,	,	, ,	, (-,	(')	(*) (., (,	(-,	(,,	., (•	(*)	(')	•, (•) (*)	, (*)	(*)	(*) (') (') (') (*)	(")	(*) (* * * *)
0.	۰. ۱	<u>ې</u> د	. 0.	0.	. c	0	0,1	0,0	. 0	0	0.0	0.0	0	0	0 0	0	0	0	0 0) C	0	0	0	0 0	> C	0	0	0 0	0 0	0	0	0 0	0	0 1	> C	Ç	0	0	0	0	> C	0	0	0	.0 -98.47	0
																																													0 4	
0-	ဝှင) 	9	7.0	0 0	9	0-	0 9	9	9	0	7 7	1.1.	-1:1	7 7	-1.4	-1.4	-1.		7 7	-2.2	-2.2	-2.5	2,0	2.0		-3.3	-3.7	. 4-	-4.2	9.4-	0.4	-4.9	-5.2	υ. 	0 10	-6.3	-6.3	6.9	9 1	0.71	- 80	. 8	0.6	-9.00	
m e	m c	m c			~	. m	m /					0.10		•	.0.1	. ~	61	_									_			_					_											
105.8	179.1	1/9.I	253.3	329.2	329.2 405.8	405.8	411.6	419.6	538.9	658.7	658.7	725.6	792.6	792.6	910.5	971.1	978.93	1110.4	1210.4	1242.1	1415.94	1415.94	1589.8	1589.86	1764 7	1939.69	1939.6	2115.50	2291.30	2291.30	2426.56	2426.56	2535.52	2644.55	2844.55	2822.01	2999.34	2999.34	3177.27	31//2	3355.04	3533.36	3533.36	3711.51	3711.51	
.34	ກ ເ	ص تر	. 85	. 62	. 62	.41	.40	.40	.21	.05	.05	o 0	88	.88	.75	000	69.	. 60	9.	20.0	.42	.42	.34	.34	12.	.21	.21	.16	12	.12	60.	n 80	.08	90.	90.	. o.c.	.03	. 03	.02	70.5		10.	.01	.00	8.5))
1	1	1 1	Τ	Τ,	T T	7	ï	7 7	7	7	1	7 7	ì	Ÿ.	1 1	, 0	٩	Ŷ	0 0	1	9	9	0	9 9	1	9	9	9 9	7 9	0	<u>٩</u>	0 0	9	9 '	? ?	P	9	9	9 9	0 0	7 9	0	9	9	0 0)
	_ `		, ,	٠.				<i>-</i>	, 0				0	0		, 0	J	O	0 0	3 (, 0	O	0	0 0	э C	, 0	0	00	0	0	0	o c	0	0	o c	0 0	0	0	0 0	o (o c	0	0	0	000)
71.17	_		_	-, -	., .	,	-		~	7	٠,	,,	٠.,	.,	., .	,,	١٠,			, .,	1 (1	.,		-1-		·		Π.	-1																0.11	
15.00	20.00	20.00	25.00	30.00	35.00	35.00	35.38	35.38	40.19	45.00	45.00	47.67	50.33	50.33	55.00	57.38	57.38	61.19	61.19	65.00	70.00	70.00	75.00	75.00	80.00	85.00	85.00	90.00	95.00	95.00	98.83	98.83	101.92	105.00	110.00	10.00	115.00	115.00	20.00	20.00	25.00	30.00	30.00	35.00	135.00))
Origin	Fud	Origin	Origin	End .	Origin	Origin	End .	Origin	Origin	End	Origin	ena Oriain	End	Origin	End	End	Origin	End	Origin	Origin	End	Origin	End	Origin	Origin	End	Origin	End	Origin	Origin	End	Origin Fnd		End	Origin	Origin	End	Origin	,	Origin	Origin	T C	Origin 1	End	Origin 1	, ;
GD13	Tube I	De L	GD12	Tube 1	Tube I	3D11	Arm3	4:Arm3	ר Pec Pec	3010	GD10	oe Je	iceT	iceT	VGD9	Arm4	Arm4	oe 2	0e 2 0r 2	7508	, e 5	Je 2	/GD/	/GD7	2 e	7GD6	9Q5/	5 c	3e 2 7GD5	7GD5	.ceT	SpliceT)e 2	/GD4	/GD4	υ α ο α	/GD3	7GD3	ლ დ დ	S 6	1:WVGD2	, m	e e	'GD1	VGD1	ν •
10254:WVGD1	7 6	0254:	025	T.	0254	0254	10254:	3	Tube	0254:WV	0254:WV	Tube 1	Spl	Spl	10254:W	10254:	10254:	Ţŭ.	ò	10254:W	Tube 2	Tui	10254:W	10254:W	j (i.e.	10254:W	10254:WY	'A 'E	10254:WVGD5	10254:WY	Spl.	Spl	Tul	10254:WVGD4	W: 8520I	10 E	10254:WVGD3	10254:WY	Tube	i	10254:W\	1	Tube	10254:WVGD1	10254:WT	1
10254 1	204	-	-	1254	,-		254	254										254														254	254										254			۲ ک
10	7 6	10	10	100	٦ - ا	10	10	7 5	101	10	10	101	10	10	2 5	100	10	10	10	10	107	10	10	010	2 5	12	10	9 5	010	10	10	0 0	10.	10	2 5	9 6	10	10.	01.0	0 5	2 5	2 0	10	10	01.0	1

Detailed Tubular Davit Arm Usages for Load Case "NESC Heavy":

Pt.	H
Max. Usage	13.0
Res. (ksi)	8.47
T/R. (ksi)	0.00
P/A M/S. V/Q. T/R. Res. Max. i Usage P' ksi) (ksi) (ksi) (ksi) *	00.0
M/S. (ksi)	8.15
P/A (ksi)	-0.32
<pre>Horz. Tors. Axial Vert. Horz. P/A M/S. V/Q. T/R. Res. Max. Mom. Mom. Force Shear Shear ft-k)(ft-k)(kips) (kips) (kips) (ksi) (ksi) (ksi) (ksi) 8</pre>	0.00 0.00 -1.31 0.81 -0.00 -0.32 8.15 0.00 0.00 8.47 13.0 1
Vert. Shear (kips)	0.81
Axial Force (kips)	-1.31
<pre>forz. Tors. Mom. Mom. ft-k)(ft-k)(</pre>	0.0
Horz. Mom. (ft-k) (00.00
Trans. Long. Vert. Vert. Horz. Tors. Axial Vert. Horz. P/A M/S. V/Q. T/R. Res. Max. Defl. Defl. Defl. Mom. Mom. Rom. Force Shear Shear (in) (in) (ft-k) (ft-k) (ft-k) (kips) (kips) (kips) (ksi) (ksi) (ksi) (ksi) (ksi)	-3.98
Vert. Defl. (in)	-2.13
Long. Vert. Defl. Defl. (in) (in)	0.16
Trans. La Defl. Do (in)	87.23 0.16
Rel. Dist. (ft)	00.00
Joint Joint Label Position	Origin
Joint Label P	Davit1 Davit1:0 Origin 0.00
Element Label	Davit1

٦	не	Н	~ .	⊣ ო		٠.	-	ım	\vdash	-	-	ım	Н	П	-	1 M	+	-	ı e-t	m	-	-	٠,-	ım	H	H	П	m
æ.s	ω. 	16.7	10.6	1.9	4		58.3	10.1	80.8	67.7	67.7	11.6	69.4	58.9	8	10.2	81.4	68.1	68.2	11.7	70.5	50.0	000	10.3	82.2	8.89	68.8	11.8
5.42	5.42	10.88	6.91	1.24	62 62	37.92	37.90	6.56	52.54	43.99	44.01	7.56	45.10	38.32	38.29	6.63	52.89	44.28	44.30	7.61	5.83	38.92	38.90	6.73	33.4I	14.71	44.74	7.68
00.0	0.00	00.00	0.00	0.00	0	00.00	00.0	00.0				0.00				00.00				0.00				0.00			0.00	
	0.00	00.00	0.00	0.69	00	00.0	0.00	3.67	00.00	0.00	0.00	4.30	00.00	0.00	00.0	3.71	00.0	00.0	00.0	4.33	00.00	00.0	00.0	3.77	00.0	00.0	0.00	4.38
	0.00			0.00	43.70	36.72	36.72	00.0	51.85	43.10	43.10	0.00	44.19	37.13	37.13	00.0	52.21	43.41	43.41	00.00	44.93	37.76	37.76	00.0	52.76	43.87	43.87	00.0
-0.37	-0.36	0.28	0.31	0.36	-0.93	-1.20	-1.18	-1.67	0.69	0.89	0.91	1.29	-0.91	-1.18	-1.16	-1.65	0.67	0.87	0.90	1.27				-1.61			0.87	
	00.00	00.0	0.00	0.00		-0.00			0.00	00.0	0.00	00.0				-0.00-	00.0	0.00	0.00	00.00				- 00.00-	00.0	0.00	00.0	00.0
0.81	0.77	1.05	1.05	1.01	5.38	5.38	5.36	5.36	6.45	6.45	6.29	6.29	5.44	5.44	5.42	5.42	6.49	6.49	6.34	6.34	5.53	5.53	5.51	5.51	6.56	6.56	6.40	6.40
-1.31	-1.30	1.12	1.12	1.13	-5.30	-5.30	-5.21	-5.21	3.93	3.93	4.03	4.03	-5.24	-5.24	-5.14	-5.14	3.85	3.85	3.96	3.96	-5.14	-5.14	-5.04	-5.04	3.74	3.74	3.85	3.85
0.0	0.0	0.0	0.0			0.0			-0.0	0.0	0.0	0.0				0.0	0.0-	0.0-	0.0	0.0				0.0	0.0-	-0.0	0.0	0.0
0.00	00.0	-0.00	00.00	0.00	0.01	00.0	00.0	00.00	-0.01	-0.00	-0.00	00.0	0.01	00.0	00.0	00.00	-0.01	-0.00	-0.00	00.00	0.01	00.0	00.0	00.00	-0.01	-0.00	-0.00	00.00
-1.94	-0.00	-5.17	12.53	00.0	-43.28	-21.61	-21.61	-0.00	-51.36	-25.37	-25.37	-0.00	-43.77	-21.85	-21.85	-0.00	-51.72	-25.55	-25.55	-0.00	-44.51	-22.22	-22.22	-0.00	-52.26	-25.82	-25.82	00.00
0.65	3.9	-4.05	16.93 29.03	88.6-	-1.34	2.68	2.68	6.05	-3.50	-8.42	-8.42	-14.13	-0.23	3.25	3.25	90.9	-2.57	-6.94	-6.94	12.11	0.38	3.02	3.02	4.98	-1.77	-5.29	-5.29	-y-63
0.17	0.17	0.16	0.16	0.16	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.10	0.10	0.10	0.10	0.10			•	90.0	0.07	0.07	0.07	90.0	90.0	0.06	0.0
87.64	88.04	87.14	87.79	87.44	73.02	73.69	73.69	74.24	72.92	73.28	73.28	73.65	49.94	50.50	50.50	50.94	49.84	50.19	50.19	50.56	30.82	31.23	31.23	31.52	30.76	31.07	31.07	31.41
2.51	5.02	0.00	2.51	5.02	00.0	4.03	4.03	90.8	00.0	4.03	4.03	8.06	00.0	4.03	4.03	8.06	00.00	4.03	4.03	8.06	00.00	4.03	4.03	90.8	00.00	4.03	4.0 5.0 5.0	α·Ω
End	End	Origin	Origin	End	Origin	End	Origin	End	Origin	End	Origin	End	Origin	End	Origin	End	Origin	End	Origin	End	Origin	End	Origin	End	Origin	End	Origin	Eng.
#Davit1:0	Davit1:End	Davit2:0	#Davit2:0	Davit2:End	Davit3:0	#Davit3:0	#Davit3:0	Davit3:End	Davit4:0	#Davit4:0	#Davit4:0	Davit4:End	Davit5:0	#Davits:0	#Davit5:0	Davit5:End	Davit6:0	#Davit6:0	#Davit6:0	Davit6:End	Davit7:0	#Davit7:0	#Davit7:0	Davit7:End	Davit8:0	#Davit8:0	#Davit8:0	avico: End
Davit1		Davit2	Davit2		Davit3	Davit3		Davit3 D				Davit4 D				Davit5 D				Davit6 D				Davit7 Da			Davits :	

Summary of Clamp Capacities and Usages for Load Case "NESC Heavy":

Usage *	i .	1.87	œ,	•	9.30	9.30	ű,	9.30	w.	٥.	۲.	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Factored Holding Capacity (kips)	1	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	0.0	٥.	80.00	٥.	80.00	80.00	80.00	80.00	80.00	80.00	80.00
Input Holding Capacity (kips)	!	80.00	80.00	80.00	80.00	80.00	80.00	80.00	0.0	0.0	80.00	80.00	0.0	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00
Force (kips)	i i		1.496	7.440	7.440	7.440	7.440	7.440	7.440	4.847	0.929	.92	0.929	0.929	0.929	0.929	0.929	0.929	0.929		0.929
Clamp Label		C⊥amp1	Clamp2	Clamp3	Clamp4	Clamp5	Clamp6	Clamp7	Clamp8	Clamp9	Clamp10	Clamp11	Clamp12	Clamp13	Clamp14	Clamp15	Clamp16	Clamp17	Clamp18	Clamp19	Clamp20

1.16	1.16	1.16	1.81	~	17.63
80.00	80.00	80.00	80.00	80.00	80.00
	80.00				
0.929	0.929	0.929	1.45	14.107	4.10
amp2	Clamp22	amp2	amp2	amp2	amp2

*** Analysis Results for Load Case No. 2 "NESC Extreme" - Number of iterations in SAPS 18

Equilibrium Joint Positions and Rotations for Load Case "NESC Extreme":

Z-Pos (ft)	! ⁰	9.0	٥.	138.6	1.	137.6	9.	<u>ر</u>	7.	. 7	ω.	4.	94.86	84.9	53	93	96	97	4.99	66	25	15	Ŋ	139	40.1	ω.	9.	.4	۳.	.2	г.	9.	.4	ო.	4.	65	.26	.42	.7
Y-Pos Z-] (ft) (j	i 0 0	.536 13	8	9.41	347	.285					5.413 104	5.374 104.4	_		ω		m		5	ന	_		0.01154		П			6.908 126.4				.173	ın	.575	14.64 104.	1.914 82.6	.985 84	1 82	12.78 82
X-Pos (ft)	0	0.004064	0.004031	0.004017	0.003994	0.003971	0.003832	0.003445	0.00337	0.002916	0.002478	0.002462	0.002064	0.001682	0.001596	0.001331	0.001015	0.0007363						0.004037	0.004097	0.004025	0.004013	0.003452	1		0.003428	0.002468	0.002554	0.002456	0.002454	0.0016	0.001663	.001	0.001598
Z-Rot (deg)	0.000.0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	000000	•		0000.0	0000.0	0.000.0	0.000.0	0000.0	0000.0	0000.0			0.000.0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000.0	0.0001	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0
Y-Rot (deg)	0.000.0	0	0.0027	0.0027	0.0027	0.0027	0.0027	0.0026	0.0026	0.0026	0.0025	0.0024	0.0023	0.0021	0.0021	0.0019	0.0017	0.0015	•		•	0.0004		0.0027	0.0027	•	•	0.0026	0.0027	0.0026	0.0026		0.0025		0.0024	0.0021	٥.	0.0021	0.0021
X-Rot (deg)	0.000.0	-7.1984	-7.1983	-7.1982	-7.1963	-7.1910	-7.1428	-6.9632	-6.9177	-6.5334	-6.0375	-6.0176	-5.4431	-4.8161	-4.6894	-4.2636	-3.6772	-3.0787	-2.4818	-1.8966	-1.3300	-0.7827	-0.2557	-7.1983	-7.1758	-7.1983	-7.2519	-6.9632	-6.5570	-6.9632		•	-5.5874	.017	-6.7645	-4.6894	. 22	. 689	-5.4653
Z-Displ (ft)	0	-0.4357	-0.4302	-0.4278	-0.4238	-0.4199	-0.3964	-0.3329	-0.3209	-0.2516	-0.1911	-0.189			-0.09199	-0.06849	-0.04418	-0.02651	-0.01447	-0.006919			-0.0001183		0.2975							-0.06241	0.736	3156			. 6363	.2072	-0.9289
Y-Displ	0	9.536	9.448	9.41	9.347	9.285	8.91	7.881	7.684	6.51	5.413	5.374	4.41	3.516	3.319	2.723	2.029	1.439	0.9525	0.5699			1154	9.454	9.556	9.441	9.464	7.888	8.061	7.874	7.936	5.38	5.521	5.367	5.429	3.324	. 42		3.372
X-Displ (ft)	0	0.004064	0.004031	0.004017	0.003994	0.003971	0.003832	0.003445	0.00337	0.002916	0.002478	0.002462	0.002064	0.001682	0.001596	0.001331	0.001015	0.0007363	0.0004989	0.0003055	0.0001578	5.769e-005	6.687e-006	0.004037	0.004097	0.004025		0.003452	0.003553	0.003438	0.003428	0.002468	0.002554		0.002454	0.0016	0.001663		0.001598
Joint Label	10254:9	10254:t	10254:Arm1	10254:TopConT	10254:TopConn	10254:TopConB	10254:WVGD14	10254:Arm2	10254:WVGD13	10254:WVGD12	10254:WVGD11	10254:Arm3	10254:WVGD10	10254:WVGD9	10254:Arm4	10254:WVGD8	10254:WVGD7	10254:WVGD6	10254:WVGD5	10254:WVGD4		54:WVGD2		Davit1:0	Davit1:End	Davit2:0	Davit2:End	Davit3:0	Davit3:End	Davit4:0	Davit4:End	Davit5:0	Davit5:End	Davit6:0	Davit6:End	Davit7:0	Davit7: End	Davit8:0	Davit8:End

Joint Support Reactions for Load Case "NESC Extreme":

Max	Usage	œ		0.0
Z-M.	Usage	ο¥ο		0.0
Ŋ	Moment	(ft-k)		-0.00
Y~M.	Usage 1	% (ft-k)		0.0
×	Moment	ft-k) % (ft-k)	1	-3.0
X-M.	Usage 1	œ		0.0
×	Moment Usage Moment Usage Moment Usage Usage	(ft-k)		0.0 5121.93 0.0 -3.0
Result.	Usage	dę		0.0
Z Comp. Uplift Result. Result.	Jsage Force	(kips)		0.0 70.73
Uplift	Usage	æ		0.0
Comp.	Usage	œ		0.0
N	Usage Force Usage	% (kips) %		0.0 48.90 0
×	Usage	*		0.0
×	Force t	(kips)) -51.10
×	Usage	æ		0.0
×	abel Force Usage	kips)		-0.05
Joint	Label	_		10254:g -0.05

Detailed Steel Pole Usages for Load Case "NESC Extreme":

At Pt.	1 2 2
Max. Usage 1	0.2
Res. (ksi)	0.13
T/R. (ksi)	0.00
V/Q.	0.03
M/S. (ksi)	0.00
P/A (ksi)	-0.12
Long. Shear (kips)	00.00
Tran. Shear (kips)	0.31
Axial Force (kips)	-2.32
Tors. Mom. ft-k)	0.0
Long. Mom. Tors. (Local My) Mom. (ft-k) (ft-k)	00.00
Trans. Mom. (Local Mx) (ft-k)	-0.00
Vert. Defl. (in)	-5.23
Long. Defl. (in)	0.05
Trans. Defl. (in)	114.43
Rel. Dist. (ft)	0.00
Joint Position	Origin End
Joint Label 1	10254 10254:t Origin 0.00
Element Label	10254 10254

4 4 N N N N U U U U U U U U U U U U U U	00000000
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
000000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
000 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	337 336 336 35
00000000000000000000000000000000000000	സനതതനനവ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.00
$\begin{array}{c} 1100000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	
7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	28899 557 777 777 789 789 789 789 789 789 789 78
0.0	00000000
	00000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.4.4.4.6.2.2.2
# ド ド ド ド ド ド ド ド ド ド ド ド ド	
0.94 1.47 26.77 26.77 26.77 26.77 26.77 75.09 106.21 106.21 106.21 106.21 106.21 116.96 269.18 362.91 460.08 362.91 116.96 269.18 362.91 116.96 269.18 362.91 1185.55 566.43 362.91 1185.55 566.43 362.91 1185.55 11996.29 1133.57 113	
113 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3638.53 3638.53 3878.48 3878.48 4122.04 4367.43
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.05 3688.53 -0.05 3688.53 -0.03 3878.48 -0.02 4122.04 -0.02 4122.04 -0.01 4367.43
0.05 5.16 0.05 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.006 6.05 6.13 0.007 6.05 6.13	0.00 -0.05 3638.53 0.00 -0.05 3638.53 0.00 -0.03 3878.48 0.00 -0.02 4122.04 0.00 -0.02 4122.04 0.00 -0.01 4367.43
0.05 5.16 0.05 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.005 6.05 6.13 0.006 6.05 6.13 0.007 6.05 6.13	0.00 -0.05 3638.53 0.00 -0.05 3638.53 0.00 -0.03 3878.48 0.00 -0.02 4122.04 0.00 -0.02 4122.04 0.00 -0.01 4367.43
1113.37 0.05 -5.16 1112.92 0.05 -5.13 1112.17 0.05 -5.03 1111.42 0.05 -5.03 1111.42 0.05 -5.03 1111.42 0.05 -5.03 1100.71 0.05 -5.04 1000.71 0.05 -5.04 1000.71 0.04 -4.37 1000.71 0.04 -4.37 1000.71 0.04 -4.37 1000.71 0.04 -4.37 1000.71 0.04 -3.85 1000.71 0.04 -3.85 1000.71 0.04 -3.85 1000.71 0.04 -3.85 1000.71 0.04 -3.85 1000.71 0.04 -3.85 1000.71 0.03 -2.29 1000.71 0.03 -1.09 1000.71 0.05 1000.71 0.05 10	5.00 0.00 -0.05 3638.53 3.45 0.00 -0.03 3878.48 3.45 0.00 -0.03 3878.48 2.20 0.00 -0.02 4122.04 2.20 0.00 -0.02 4122.04 1.23 0.00 -0.01 4367.43
0.70 113.37 0.05 -5.13 1.00 112.92 0.05 -5.13 1.50 112.17 0.05 -5.09 2.00 111.42 0.05 -5.09 2.00 111.42 0.05 -5.04 5.00 106.92 0.05 -5.04 5.00 106.92 0.05 -4.76 9.19 100.71 0.04 -4.37 13.38 94.57 0.04 -3.99 15.00 92.21 0.04 -3.99 15.00 92.21 0.04 -3.85 15.00 92.21 0.04 -3.85 16.00 92.21 0.04 -3.85 17.00 92.21 0.05 -1.69 17.00 92.21 0.05 -1.69 17.00 92.21 0.03 -1.60 17.00 92.21 0.05 -1.20 17.00 92.21 0.05 -1.20 17.00 92.35 17.00 92.35 17.	110.00 5.00 0.00 -0.05 3638.53 110.00 5.00 0.00 -0.05 3638.53 115.00 3.45 0.00 -0.03 3878.48 120.00 2.20 0.00 -0.02 4122.04 120.00 2.20 0.00 -0.02 4122.04 125.00 1.23 0.00 -0.01 4367.43 125.00 1.23 0.00 -0.01 4367.43
Origin 0.70 113.37 0.05 -5.18 End 1.00 112.92 0.05 -5.13 Origin 1.00 112.92 0.05 -5.13 Origin 1.50 112.17 0.05 -5.09 End 2.00 111.42 0.05 -5.09 End 2.00 111.42 0.05 -5.04 Origin 2.00 111.42 0.05 -5.04 Origin 5.00 106.92 0.05 -4.76 End 9.19 100.71 0.04 -4.37 Origin 13.38 94.57 0.04 -3.89 Origin 13.38 94.57 0.04 -3.89 Origin 13.38 94.57 0.04 -3.89 Origin 13.00 92.21 0.04 -3.89 Origin 20.00 85.07 0.04 -3.89 End 25.00 11.41 0.03 -2.64 Origin 35.00 64.95 0.02 -1.69 Origin 35.00 64.95 0.03 -2.29 End 30.00 71.41 0.03 -2.64 Origin 35.00 64.95 0.02 -1.69 Origin 47.67 49.93 0.02 -1.69 Origin 47.67 49.93 0.02 -1.69 Origin 50.33 47.04 0.02 -1.20 Origin 55.00 42.19 0.02 -1.20 Origin 61.19 36.17 0.02 -0.96 End 65.00 32.67 0.02 -0.96 End 65.00 22.65 0.01 -0.41 End 85.00 17.26 0.01 -0.53 Origin 75.00 24.35 0.01 -0.53 Origin 85.00 17.26 0.01 -0.24 Origin 85.00 17.26 0.01 -0.17 Origin 98.83 9.53 0.01 -0.17 Origin 98.83 9.53 0.00 -0.11 Origin 98.83 9.53 0.00 -0.18 End 11.92 8.12 0.00 -0.08	End 110.00 5.00 0.00 -0.05 3638 53 Origin 110.00 5.00 0.00 -0.05 3638.33 End 115.00 3.45 0.00 -0.03 3678.48 Origin 115.00 2.20 0.00 -0.02 4122.04 Origin 120.00 2.20 0.00 -0.02 4122.04 Origin 120.00 2.20 0.00 -0.02 4122.04 Origin 125.00 1.23 0.00 -0.01 4367.43 Origin 125.00 1.23 0.00 -0.01 4367.43
Origin 0.70 113.37 0.05 -5.18 End 1.00 112.92 0.05 -5.13 Origin 1.00 112.92 0.05 -5.13 Origin 1.50 112.17 0.05 -5.09 End 2.00 111.42 0.05 -5.09 End 2.00 111.42 0.05 -5.04 Origin 2.00 111.42 0.05 -5.04 Origin 5.00 106.92 0.05 -4.76 End 9.19 100.71 0.04 -4.37 Origin 13.38 94.57 0.04 -3.89 Origin 13.38 94.57 0.04 -3.89 Origin 13.38 94.57 0.04 -3.89 Origin 13.00 92.21 0.04 -3.89 Origin 20.00 85.07 0.04 -3.89 End 25.00 11.41 0.03 -2.64 Origin 35.00 64.95 0.02 -1.69 Origin 35.00 64.95 0.03 -2.29 End 30.00 71.41 0.03 -2.64 Origin 35.00 64.95 0.02 -1.69 Origin 47.67 49.93 0.02 -1.69 Origin 47.67 49.93 0.02 -1.69 Origin 50.33 47.04 0.02 -1.20 Origin 55.00 42.19 0.02 -1.20 Origin 61.19 36.17 0.02 -0.96 End 65.00 32.67 0.02 -0.96 End 65.00 22.65 0.01 -0.41 End 85.00 17.26 0.01 -0.53 Origin 75.00 24.35 0.01 -0.53 Origin 85.00 17.26 0.01 -0.24 Origin 85.00 17.26 0.01 -0.17 Origin 98.83 9.53 0.01 -0.17 Origin 98.83 9.53 0.00 -0.11 Origin 98.83 9.53 0.00 -0.18 End 11.92 8.12 0.00 -0.08	End 110.00 5.00 0.00 -0.05 3638 53 Origin 110.00 5.00 0.00 -0.05 3638.33 End 115.00 3.45 0.00 -0.03 3678.48 Origin 115.00 2.20 0.00 -0.02 4122.04 Origin 120.00 2.20 0.00 -0.02 4122.04 Origin 120.00 2.20 0.00 -0.02 4122.04 Origin 125.00 1.23 0.00 -0.01 4367.43 Origin 125.00 1.23 0.00 -0.01 4367.43
10254;Nzml Origin 0.70 113.37 0.05 -5.15 10254;TopConf Crigin 1.00 112.92 0.05 -5.13 10254;TopConf Crigin 1.00 112.92 0.05 -5.13 10254;TopConf Crigin 1.50 112.17 0.05 -5.09 10254;TopConf Crigin 1.50 112.17 0.05 -5.09 10254;TopConf Crigin 1.50 112.17 0.05 -5.09 10254;TopConf Crigin 1.50 112.17 0.05 -5.04 10254;TopConf Crigin 1.50 111.42 0.05 -5.04 10254;TopConf Crigin 1.50 111.42 0.05 -4.76 10254;TopConf Crigin 1.50 111.42 0.05 -4.76 10254;TopConf Crigin 1.50 110.01 0.04 -4.37 10254;TopConf Crigin 1.30 100.71 0.04 -4.37 10254;TopConf Crigin 1.30 100.71 0.04 -3.85 10254;TopConf Crigin 1.30 100.71 0.03 -2.20 10254;TopConf Crigin 1.30 10.20 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.3	Tube 3 End 110.00 5.00 0.00 -0.05 3638.53 Tube 3 Origin 110.00 5.00 0.00 -0.05 3638.53 10254:WVGD3 End 115.00 3.45 0.00 -0.03 3878.48 10254:WVGD3 Origin 115.00 2.20 0.00 -0.02 4122.04 Tube 3 Origin 120.00 2.20 0.00 -0.02 4122.04 Tube 3 Origin 120.00 2.20 0.00 -0.02 4122.04 10254:WVGD2 End 125.00 1.23 0.00 -0.01 4367.43
Origin 0.70 113.37 0.05 -5.18 Drigin 1.00 112.92 0.05 -5.13 Origin 1.50 112.17 0.05 -5.09 End 2.00 111.42 0.05 -5.09 End 2.00 111.42 0.05 -5.09 End 2.00 111.42 0.05 -5.04 Origin 2.00 111.42 0.05 -5.04 Origin 5.00 106.92 0.05 -4.76 End 9.19 100.71 0.04 -4.37 Origin 13.38 94.57 0.04 -3.85 Origin 13.38 94.57 0.04 -3.85 Origin 13.00 92.21 0.04 -3.85 Origin 2.00 18.12 0.03 -2.64 Origin 2.00 78.12 0.03 -2.64 Origin 2.00 78.12 0.03 -2.64 Origin 35.00 64.95 0.03 -2.64 Origin 47.67 49.93 0.02 -1.69 End 45.00 52.92 0.02 -1.69 End 50.33 47.04 0.02 -1.20 End 50.33 47.04 0.02 -1.69 End 61.19 36.17 0.02 -1.20 Origin 50.33 47.04 0.02 -1.20 Origin 75.00 24.35 0.01 -0.53 End 61.19 36.17 0.02 -0.96 End 65.00 32.67 0.02 -0.96 End 65.00 32.67 0.02 -0.96 End 65.00 22.65 0.01 -0.41 End 85.00 17.26 0.01 -0.24 End 95.00 11.43 0.01 -0.24 Origin 85.00 17.26 0.01 -0.24 End 95.00 11.43 0.01 -0.17 Origin 98.83 9.53 0.01 -0.13 Origin 99.00 11.13 Origin 90.00 10.11	Tube 3 End 110.00 5.00 0.00 -0.05 3638.53 Tube 3 Origin 110.00 5.00 0.00 -0.05 3638.53 10254:WVGD3 End 115.00 3.45 0.00 -0.03 3878.48 10254:WVGD3 Origin 115.00 2.20 0.00 -0.02 4122.04 Tube 3 Origin 120.00 2.20 0.00 -0.02 4122.04 Tube 3 Origin 120.00 2.20 0.00 -0.02 4122.04 10254:WVGD2 End 125.00 1.23 0.00 -0.01 4367.43

88888888888888888888888888888888888888
0.00 57.32 0.00 57.34 0.00 57.56 0.00 57.58 0.00 57.76
0.35 0.35 0.34 0.34
-0.04 -0.59 56.73 -0.04 -0.61 56.73 -0.04 -0.59 56.96 -0.05 -0.62 56.96 -0.05 -0.60 57.15
49.81 50.18 50.18 50.92 50.92
0.0 -44.78 0.0 -46.30 0.0 -46.30 0.0 -48.11 0.0 -48.11
-2.50 -2.50 -2.72 -2.72 -2.95
4616.45 4616.45 4867.35 4867.35
00000
00.000
0.55 0.14 0.14
End 130.00 Origin 130.00 End 135.00 Origin 135.00 End 140.00
Tube 3 Tube 3 10254:WVGD1 10254:WVGD1
10254 10254 10254 10254 10254

00000

Detailed Tubular Davit Arm Usages for Load Case "NESC Extreme"

At Pt.	0 7 7 7	пннм	нччю	- -	ਜਜਜਲ	н н н ю	н н н м	
Max. Usage	1.3	4.3 7.7 0.0	20.2 17.4 17.4 3.7	34.2 29.4 29.5 5.3	21.2 18.3 18.3	35.8 30.2 5.5	22.8 19.6 19.6	37.2
Res.	1.33 0.84 0.84	2.79 1.76 1.76 0.36	13.10 11.32 11.31 2.42	22.68 19.14 19.14 3.47	13.81 11.91 11.91 2.49	23.30 19.65 19.66 3.55	14.80 12.75 12.74 2.59	24.15 20.36
T/R. (ksi)	0000	0.00	00000	0000	00.00	0.00	00.00	00.00
V/Q.	0.00	0.00 0.00 0.16	0.00	0.00 0.00 1.80	0.00 0.00 0.00	0.00 0.00 0.00 1.86	0.00 0.00 0.00	00.0
M/S. (ksi)	1.15 0.64 0.64 0.00	2.62 1.57 1.57 0.00	12.18 10.14 10.14 0.00	21.86 18.08 18.08 0.00	12.90 10.74 10.74 0.00	22.48 18.60 18.60 0.00	13.90 11.58 11.58 0.00	23.35
P/A (ksi)	-0.18 -0.20 -0.20 -0.23	0.17 0.19 0.19 0.22	-0.91 -1.18 -1.18 -1.67	0.82 1.06 1.07 1.51	-0.91 -1.18 -1.17	0.82 1.05 1.06	-0.90 -1.17 -1.16	0.80
Horz. Shear (kips)	00.00	00000	00000	00000	00000	00.00	00000	000
Vert. Shear (kips)	0.13	0.27 0.27 0.28 0.28	1.51 1.51 1.48 1.48	2.73 2.73 2.64 2.64	1.60 1.60 1.57	2.81 2.81 2.72 2.72	1.72 1.72 1.69 1.69	2.92
Axial Force (kips)	-0.73 -0.73 -0.72 -0.72	00.00	-5.23 -5.23 -5.21 -5.21	4.71 4.71 4.73 4.73	-5.20 -5.20 -5.18	4.67 4.67 4.69	-5.17 -5.17 -5.15 -5.15	4.60
Tors. Mom. (ft-k) (0000	0.000	0000	0.000	0000	0000	0000	0.00
Horz. Mom. (ft-k)(00.00	00.00	00000	00.00	00000	00000	00000	000
Vert. Mom. (ft-k)	-0.56 -0.25 -0.00	-1.28 -0.60 -0.60 0.00	-12.07 -5.97 -5.97	-21.65 -10.64 -10.64	-12.78 -6.32 -6.32	-22.27 -10.95 -10.95	-13.76 -6.81 -6.81	-23.13
Vert. Def1. (in)	-3.89 -0.16 3.57	-6.44 -10.23 -10.23 -14.04	-2.57 3.10 3.10 8.59	-5.42 -11.48 -11.48	-0.75 4.14 8.14 8.83	-3.79 -9.05 -9.05	0.28 4.06 4.06 7.64	-2.49 -6.64 -6.64
Long. Def1. (in)	0.05 0.05 0.05 0.05	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.04 0.04 0.04	0.04	0.03	0.03	0.02	0.02
Trans. Def1. (in)	113.45 114.07 114.07	113.29 113.43 113.43	94.66 95.71 95.71 96.73	94.48 94.86 94.86	64.56 65.43 65.43 66.26	64.40 64.77 64.77 65.15	39.89 40.51 40.51 41.10	39.77
Rel. Dist. (ft)	0.00 2.51 2.51 5.02	0.00 2.51 2.51 5.02	0.00 4.03 4.03 8.06	0.00 4.03 4.03 8.06	0.00 4.03 4.03 8.06	0.00 4.03 4.03 8.06	0.00 4.03 4.03 8.06	0.00 4.03
Joint Joint Label Position	Origin End Origin End	Origin End Origin						
Joint Label F	Davit1:0 #Davit1:0 #Davit1:0 Davit1:End	Davit2:0 #Davit2:0 #Davit2:0 Davit2:End	Davit3:0 #Davit3:0 #Davit3:0 Davit3:End	Davit4:0 #Davit4:0 #Davit4:0 Davit4:End	Davit5:0 #Davit5:0 #Davit5:0 Davit5:End	Davit6:0 #Davit6:0 #Davit6:0 Davit6:End	Davit7:0 #Davit7:0 #Davit7:0 Davit7:End	Davit8:0 #Davit8:0 #Davit8:0
Element Label	Davitl Davitl Davitl Davitl	Davit2 Davit2 Davit2 Davit2 D	Davit3 Davit3 Davit3 Davit3 D	Davit4 Davit4 Davit4 Davit4 D	Davit5 Davit5 Davit5 Davit5	Davit6 Davit6 Davit6 Davit6 Davit6	Davit7 # Davit7 # Davit7 # Davit7 #	Davit8 Davit8 # Davit8 #

Summary of Clamp Capacities and Usages for Load Case "NESC Extreme":

Usage %	0.91 0.91 6.75 6.75
re Prit Ps	00.00
b it it is	00.08 80.00 80.00 00.08
Force (kips)	0.725 0.725 5.404 5.404
Clamp Label	Clamp1 Clamp2 Clamp3 Clamp4 Clamp6

Centek Engineering Inc - cl&p structure # 10254

6.75	`.	۲.	œ.	ĸ,	ν.	'n.	ς.	ĸ.	ι,	5.	ς.	ι,	r.	5	ı,	r.	5	2	1.5	ιū
80.00	·	ö	٥.	ö	ö	ö	0	ď	ö	Ċ	Ċ	ď	Ċ	<u>.</u>	ċ	<u>.</u>	•	80.00	80.00	80.00
80.00	0.0	0.0	0.0	0.0	ö	0:	0:0	0.0	0.0	0.0	0.0	0:	0.	0.0	0.0	0.0	0.	0.0	0.	0
5.404	24.	.40	.31	.43	.43	.43	.43	.43	.43	.43	.43	.43	.43	.43	.43	.43	.43	.97	.20	49.207
Clamp6	amb	lamp	Clamp9		Clamp11	$\overline{}$	amp1	Clamp14	\rightarrow	Clamp16	Clamp17	amp1	amp1	Clamp20	Clamp21	N	Clamp23	Clamp24	Clamp25	Clamp26

*** Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress

Summary of Steel Pole Usages:

Weight (lbs)	28299.2
Segment Number	37
l Case	treme
oad	İX
н	NESC
Maximum Usage %	88.85
Steel Pole N Label U	10254

Base Plate Results by Bend Line:

Usage %		5.26	2.51	8.43	0.28	32.86	000	0.12	3.50	3.68	5.32	5.05	1.14	0.7	3.7	0	11.	90.	1.11	1.20	50	.83	.19	44	. 54	23.87	14.42	.25	80.	.23	.37	50 C	. 4	92	.87	.42	.18	.17	. 64	.37	.36	. 61	14.14	.24	77	r
		m																	•			16	44	45	15	23	14	44	94	44	14	λ L Δ π	4 4 } ቢ	96	56	21	1.5	14	20	55	55	20	14	15	21	
Actual Thickness	(in)	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3 250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3 250	
Min Plate Thickness T	(in)	1.930	1.150	1.395	1.042	7.75	1.861	1.034	1.398	1.157	1.931	2.816	2.159	1.330	1.044	1.267	2.084	2.083	1.264	1.038	1.149	1.333	2.160	2.191	1.281	1.588	1.234	2.162	3.152	2.161	1.232	1.388	2.191	3,195	2.451	1.504	1.266	1.223	1.476	2.418	2.418	1.476	1.222	1.269	ת ת	
Bolt M Max Load T	(kips)	142.910	61.573	61.573	-52.301	-133.090	-132.948	-51.610	62.264	62.264	143.053	143.053	142.981	147./6/	-52.301	-133.090	-133.090	-133.019	-132.805	-51.610	62.264	143.053	143.053	184.048	77.306	77.306	-72.626	-179.202	-179.202	179.158	77.416	27.515	184.091	184.091	184.070	184.005	77.306	-72.626	179.202	179.202	179.180	179.115	-72.416	77.515	100	
# Bolts Acting		ю	ო	ഗ	mi	יזני	m	m	S	ო	ო	<u>س</u>	4 ር	V <	יי ס	. 2	4	4.	5	4	4	7	4	м	ო	5	က	, ო	ι.	n i	ກຸ	nr) m	ഗ	4	2	4	4	5	4	4.	7	4	4	•	•
Bolt : Mom. Sum	(ft-k)	124.149	44.053	64.879	36.192	245.815	115.488	35.622	65.134	44.654	124.350	264.235	155.407	73.304	36.306	53.497	144.743	144.567	53,215	35.922	43.997	59.246	155.583	159.986	54.730	84.031	50.762	155.795	331.256	155.734	000000000000000000000000000000000000000	54.108	160.046	340.297	200.229	75.404	53.440	49.892	72.667	194.962	194.908	72.582	49.776	53.641		2
Bending Stress	(ksi)	21.157	7.507	11.056	0.10g	41.890	19.681	6.070	11.100	7.610	21.191	45.029	26.484	0 TO	6.187	9.117	24.666	24.636	690.6	6.122	7.498	10.096	26.514	27.264	9.327	14.320	8.651	26.550	56.451	26.539	120.0		27.274	57.992	34.122	12.850	9.107	8.502	12.384	33.224	33.215	12.369	8.483	9.141	, , ,	74X
Length	(in)	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000	000.00	40.000	40.000	40.000	40.000	10.000	10.000	10.000	10.000	10.000	10.000	40.000	10.000	10.000	10.000	000.01	000.00	000.0	000	000.01	000.01	000.01	0000.0	0000.0	000.0	0.000	0.000	0000.0	000.0	40.000	0.000		
	(£t)	2.764	2.558	1.667	0.329	-2.229											-	.2.661	.2.810	-2.207	1.013 4	0.453 4	1.798	2.764	•	1.667	٧.	~															-2.207 4			7 7 5 7
End	(£¢)	-0.329	1.097	2.229	7.704	1.667	0.329	-1.097	-2.229	-2.764	-2.558	-1.667	-1.013	204.0	2.661	2.810 -	2.207 -							-0.329		2.229	2.764	2.558 -				-2.764 -												2.661 -		
Start	(ft)	1.097	-0.329	-1.667	200.7-	-2.229	-1.097														2.207 -	2.810 -	2.661 -	1.097 -		-1.667	-2.558	-2.764															1.013 -	2.207 -		
Start	(£t)	2.558	2.764			-1.667															-1.798	-0.453	1.013	2.558																			-2.661			447
Bend Line	# ! !	1	~	m -	n u) W	7	00	o	0	T C	7 .	უ	ינ	1 6	17	8	19	50	21	22	23	24	Н	2	m	4		ı Or	- 0	0 0	, 5	11	12	13	14	15	16	17	ι Θ	ი ი	20 -	21 -	22 -	0	· ·
Load Case		NESC Heavy	NESC Heavy	二:	NESC Redvy	NESC Heavy		NESC Heavy		NESC Heavy		NESC Heavy			NESC Heavy		NESC Heavy			щ		NESC Heavy		щ	14	JESC Extreme	щ	щ				NESC Extreme											ESC Extreme	SC Extreme		10212
Pole Label		10254	10254	10254	10234	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254	10254 N	~	4	4					10254 NE		_	_	_	_	Pares.	10254 NE	~	2	2	10254 NE	~		727

Summary of Tubular Davit Usages:

Weight (1bs)	61.2 61.2 121.4 121.4 121.4 121.4 121.4
Segment Weight Number (lbs)	ਰਿਜਰਕਰਜਜਜ
Ŭ i	Heavy Heavy Heavy Heavy Heavy Heavy
	NESC NESC NESC NESC NESC NESC NESC
Tubular Davit Maximum Label Usage %	13.0 16.77.8 80.8 80.8 81.3 70.5
ar Davît Label	मुल्लास्ट्रिस्ट
Tubular	

^{***} Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

Element Type	du ^T
abe	Davit8 10254
Maximum Usage %	82.17 96.65
9	NESC Heavy

Summary of Steel Pole Usages by Load Case:

egment Number	37
Steel Pole S Label	10254
Maximum St Usage %	68.80 88.85
Load Case	NESC Heavy

Summary of Base Plate Usages by Load Case:

Usage	æ	
Minimum Plate Thickness	(in)	2.816 3.195
Max Bolt Minimum Load For Plate Bend Line Thickness	(ksi) (ft-k) (kips) (in)	143.053 184.091
Bolt # Bolts Max Bolt Moment Acting On Load For Sum Bend Line Bend Line		លល
Bolt Moment A	(ft-k)	264.235 340.297
Y Bending Moment Stress	(ksi)	45.029
	(ft-k) (ft-k) (ksi)	-9.741 45.029 -2.953 57.992
X Moment	(ft-k)	99.624 3890.138 48.899 5121.928
Vertical Load	(kips)	99.624
Fole Bend Length Vertical Label Line Load	(in)	12 40.000 12 40.000
Bend Line		ਜੋਜੋ
Pole Label		10254 10254
Load Case	(in) (kips) (ft-k) (ft-k)	NESC Heavy 10254 NESC Extreme 10254

Summary of Tubular Davit Usages by Load Case:

Segment Number	
Davit Label	Davit8 Davit8
Tubular	i i
Maximum Usage %	2.17
Load Case	ESC Heavy C Extreme

Summary of Insulator Usages:

Insulator Label	Insulator Type			Case	Weigh (1bs
i	Clamp	1.87	NESC	Heavy	0.0
Clamp2	Clamp	1.87	NESC	Heavy	0.0
Clamp3	Clamp	9.30	NESC	Heavy	0.0
Clamp4	Clamp	9.30	NESC	Heavy	0.0
Clamp5	Clamp	9.30	NESC	Heavy	0.0
Clamp6	Clamp	9.30	NESC	Heavy	0.0
Clamp7	Clamp	9.30	NESC	Heavy	0.0

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Heavy	NESC Extreme	NESC Extreme	NESC Extreme
90.9	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	6.22	61.51	61.51
Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp
Clamp9	Clamp10	Clamp11	Clamp12	Clamp13	Clamp14	Clamp15	Clamp16	Clamp17	Clamp18	Clamp19	Clamp20	Clamp21	Clamp22	Clamp23	Clamp24	Clamp25	Clamp26
	Clamp 6.06 NESC	9 Clamp 6.06 NESC Heavy 0 Clamp 1.16 NESC Heavy	09 Clamp 6.06 NESC Heavy 10 Clamp 1.16 NESC Heavy 11 Clamp 1.16 NESC Heavy	0 Clamp 6.06 NESC Heavy 0 Clamp 1.16 NESC Heavy 1.16 NESC Heavy 1.16 NESC Heavy 1.16 NESC Heavy	Clamp 6.06 NESC Heavy 10 Clamp 1.16 NESC Heavy 1.1 Clamp 1.16 NESC Heavy 1.2 Clamp 1.16 NESC Heavy 1.3 Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy 10 Clamp 1.16 NESC Heavy 11 Clamp 1.16 NESC Heavy 12 Clamp 1.16 NESC Heavy 13 Clamp 1.16 NESC Heavy 14 Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy 11 Clamp 1.16 NESC Heavy 12 Clamp 1.16 NESC Heavy 13 Clamp 1.16 NESC Heavy 13 Clamp 1.16 NESC Heavy 14 Clamp 1.16 NESC Heavy 15 Clamp 1.16 NESC Heavy 16 Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy Clamp 1.116 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy 7 Clamp 1.16 NESC Heavy 7 Clamp 1.16 NESC Heavy 8 Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy Clamp 1.16 NESC Heavy Clamp 1.16 NESC Heavy Clamp 1.116 NESC Heavy Clamp 1.116 NESC Heavy Clamp 1.116 NESC Heavy Clamp 1.116 NESC Heavy Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy Clamp Clamp 1.16 NESC Heavy	Clamp 6.06 NESC Heavy Clamp 1.16 NESC Heavy Clamp 6.12 NESC Extreme

Loads At Insulator Attachments For All Load Cases:

Case Label Type	Label	Type	Attach Attach	Attach Load X	Attach Load Y	Attach Load 2	Attach Load Res
				(kips)	(kips)	3 🙃	(kips)
NESC Heavy	Clamp1	Clamp	Davit1:End	000.0	1.128	0.982	1.496
NESC Heavy	Clamp2	Clamp	Davit2:End	0.000	1.128	0.982	1.496
NESC Heavy	Clamp3	Clamp	Davit3:End	0.000	4.069	6.229	7.440
NESC Heavy	Clamp4	Clamp	Davit4:End	0.000	4.069	6.229	7.440
NESC Heavy	Clamp5	Clamp	Davit5:End	0.000	4.069	6.229	7.440
NESC Heavy	Clamp6	Clamp	Davit6:End	0.000	4.069	6.229	7.440
NESC Heavy	Clamp7	Clamp	Davit7:End	0.000	4.069	6.229	7.440
NESC Heavy	Clamp8	Clamp	Davit8: End	0.000	4.069	6.229	7.440
NESC Heavy	Clamp9	Clamp	10254:t	000.0	00000	4.847	4.847
NESC Heavy	Clamp10	Clamp	10254:WVGD1	000-0	0.132	0.920	0.929
	Clamp11	Clamp	10254:WVGD2	000.0	0.132	0.920	0.929
NESC Heavy	Clamp12	Clamp	10254:WVGD3	000.0	0.132	0.920	0.929
NESC Heavy	Clamp13	Clamp	10254:WVGD4	0.000	0.132	0.920	0.929
NESC Heavy	Clamp14	Clamp	10254:WVGD5	0.000	0.132	0.920	0.929
NESC Heavy	Clamp15	Clamp	10254:WVGD6	0.000	0.132	0.920	0.929
	Clamp16	Clamp	10254:WVGD7	000.0	0.132	0.920	0.929
NESC Heavy	Clamp17	Clamp	10254:WVGD8	000.0	0.132	0.920	0.929
NESC Heavy	Clamp18	Clamp	10254:WVGD9	000.0	0.132	0.920	0.929
NESC Heavy	Clamp19	Clamp	10254:WVGD10	0.000	0.132	0.920	0.929
NESC Heavy	Clamp20	Clamp	10254:WVGD11	0.000	0.132	0.920	0.929
	Clamp21	Clamp	10254:WVGD12	000.0	0.132	0.920	0.929
	Clamp22	Clamp	10254:WVGD13	0.000	0.132	0.920	0.929
	Clamp23	Clamp	10254:WVGD14	0.000	0.132	0.920	0.929
	Clamp24	Clamp	10254:TopConn	0.000	1.450	000.0	1.450
	Clamp25	Clamp	10254:TopConT	0.000	14.107	00000	14.107
NESC Heavy	Clamp26	Clamp	10254:TopConB	0.000	-14.107	000.0	14.107
Extreme	Clampl	Clamp	Davit1:End	0.000	0.683	0.243	0.725
_	Clamp2	Clamp	Davit2:End	0.000	0.683	0.243	0.725
	Clamp3	Clamp	Davit3:End	0.000	4.709	2.651	5.404
	Clamp4	Clamp	Davit4:End	0.000	4.709		5.404
	Clamp5	Clamp	Davit5:End	0.000	4.709	2.651	5.404
NESC Extreme	Clamp6	Clamp	Davit6: End	000.0	4.709	•	5.404
NESC Extreme	Clamp7	Clamp	Davit7:End	000.0	4.709	•	5.404
NESC Extreme	Clamp8	Clamp	Davit8: End	000.0	4.709		5.404
NESC Extreme	Clamp9	Clamp	10254:t	000.0	0.000	2.316	۳.
NESC Extreme	Clamp10	Clamp	10254:WVGD1	000.0	0.356	0.250	4.
NESC Extreme	Clamp11	Clamp	10254:WVGD2	0.000	0.356	0.250	0.435
	Clamp12	Clamp	10254:WVGD3	0.000	0.356	0.250	4.
•	,		100EA : MICOL	0		0	0
alla LX			100 M	000.0	0.000	0.730	0.430

0.435	0.435	0.435	0.435	0.435	0.435	0.435	0.435	0.435	4.973	49.207	49.207
0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.000	0.000	0.000
0.356	0.356	0.356	0.356	0.356	0.356	0.356	0.356	0.356	4.973	49.207	-49.207
0.000	000.0	000.0	000.0	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.00
10254:WVGD6	10254:WVGD7	10254:WVGD8	10254:WVGD9	10254:WVGD10	10254:WVGD11	10254:WVGD12	10254:WVGD13	10254:WVGD14	10254:TopConn	10254:TopConT	10254:TopConB
Clamp					Clamp						
Clamp15	Clamp16	Clamp17	Clamp18	Clamp19	Clamp20	Clamp21	Clamp22	Clamp23	Clamp24	Clamp25	Clamp26
: Extreme	Extreme	Extreme	ш	щ	щ	Extreme	Extreme	Extreme		Extreme	Extreme
NESC	NESC	NESC	NESC	NESC	NESC	NESC	NESC	NESC	NESC	NESC	NESC

Overturning Moments For User Input Concentrated Loads:

Moments are static equivalents based on central axis of $0\,,0\,$ (i.e. a single pole).

Load Case	Total	Total	Total	Transverse	Total Total Transverse Longitudinal
	Tran.	Long.	Vert.	Vert. Overturning	Overturning
	Load	Load	Load	Moment	Moment
	(kips)	(kips) (kips) (kips)	(kips)	(£t-k)	
NESC Heavy	29.968	000.0	0.000 57.065	3238.410	
NESC Extreme 39.577 0.000 22.208	39.577	0.000	22.208	4262.143	-0.000
*** Weight of structure (lbs):	structu	re (1b)			
Weight of Tubular Davit Arms:	Tubular	Davit	Arms:	850.8	
Weight of Steel Poles:	Steel P	oles:		28299.2	
Total:				29150.0	

^{***} End of Report

Subject:

Anchor Bolt Analysis

CL&P Pole #10254

Location:

Rev. 0: 7/19/11

Bethel, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 11021.CO55

Anchor Bolt Analysis:

Input Data:

Bolt Force:

Maximum Tensile Force =

 $T_{Max} := 184 \cdot kips$

(User Input from PLS-Pole)

Anchor Bolt Data:

Use ASTM A615 Grade 75

Number of Anchor Bolts =

N := 25

(User Input)

Bolt "Column" Distance =

I := 3.0·in

(User Input)

Bolt Ultimate Strength =

F_{II}:= 100·ksi

(User Input)

Bolt Yeild Strength=

 $F_V := 75 \cdot ksi$

(User Input)

Bolt Modulus =

E := 29000·ksi

(User Input)

Diameter of Anchor Bolts =

D := 2.25·in

(User Input)

Threads per Inch =

n := 4.5

(User Input)

Anchor Bolt Analysis:

Calculated Anchor Bolt Properties:

Net Area of Bolt =

 $A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 = 3.248 \cdot in^2$

Bolt Tension Check:

Allowable Tensile Force (Net Area) =

 $T_{ALL.Net} := 1.0 \cdot (A_n \cdot F_y) = 243.576 \cdot \text{kips}$

Bolt Tension % of Capacity =

 $T_{\text{Max}} = 75.54 \cdot \%$

Condition1 =

 $Condition1 := if \left(\frac{T_{Max}}{T_{ALL.Net}} \le 1.00, "OK", "Overstressed" \right)$

Condition1 = "OK"

Subject:

CAISSON FOUNDATION ANALYSIS

Location:

Rev. 1: 1/30/12

Bethel, CT

Prepared by: TJL Checked by: C.F.C.

Job No. 11021.CO55

Caisson Foundation:

Input Data:

Bending Moment = Mu := 5813.1ft-k USER INPUT-FROM LPILE

Moment Capacity = Mn := 24488.3ft·k USER INPUT-FROM LPILE

Foundation Diameter = d := 8ft USER INPUT

Overall Length of Caisson = $L_c := 20.5$ ft USER INPUT

Area of Rebar = Ar := 1.27in² USER INPUT

Concrete Comp Strength = fc := 3.5ksi USER INPUT

Check Moment Capacity:

Factor of Safety = $FS := \frac{Mn}{Mu} = 4.2$

Factor of Safety Required = FS_{reqd} := 1.3

 $FOSCheck := if(FS \ge FS_{reqd}, "OK", "NO GOOD")$

FOSCheck = "OK"

LPILE Plus for Windows, Version 5.0 (5.0.39)

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method

(c) 1985-2007 by Ensoft, Inc. All Rights Reserved

```
______
 This program is licensed to:
 Centek Engineering Inc
Path to file locations: J:\Jobs\1102100.WT\CO-55 - CT5176 - 7 Sto (1)\Calcs\L-Pile\Existing Caisson\
Name of input data file: Caisson Analysis - Existing Caisson.lpd Name of output file: Caisson Analysis - Existing Caisson.lpo Name of plot output file: Caisson Analysis - Existing Caisson.lpp Name of runtime file: Caisson Analysis - Existing Caisson.lpr
                                                 J:\Jobs\1102100.WI\CO-55 - CT5176 - 7 Stony Hill Road, Bethel,CT\Structural\Rev
   -----
                                         Time and Date of Analysis
                          Date: January 30, 2012
                                                                      Time: 17:38:08
                                                      Problem Title
 11021.CO55 / CT5176 - Stony Hill / CL&P # 10254
                                                    Program Options
 -------
 Units Used in Computations - US Customary Units: Inches, Pounds
 Basic Program Options:
 Analysis Type 3:
- Computation of Nonlinear Bending Stiffness and Ultimate Bending Moment
Capacity with Pile Response Computed Using Nonlinear EI
Computation Options:

Only internally-generated p-y curves used in analysis

Analysis does not use p-y multipliers (individual pile or shaft action only)

Analysis assumes no shear resistance at pile tip

Analysis for fixed-length pile or shaft only

Analysis includes computation of foundation stiffness matrix elements

Output summary table of values for pile-head deflection, maximum bending moment, and shear force only

Analysis includes effects of soil movement on pile response

Additional p-y curves computed at specified depths
 Computation Options:
Solution Control Parameters:
- Number of pile increments = - Maximum number of iterations allowed =
                                                                                   100
                                                                                   250
- Deflection tolerance for convergence = - Maximum allowable deflection =
                                                                       1.0000E-04 in
                                                                       1.0000E+02 in
Printing Options:
   Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.
                                Pile Structural Properties and Geometry
Pile Length
                                                                                246.00 in
Depth of ground surface below top of pile =
                                                                                   6.00 in
Slope angle of ground surface
                                                                                     .00 deg.
Structural properties of pile defined using 2 points
Point
               Depth
                                      Pile
                                                       Moment of
                                                                                 Pile
                                                                                                 Modulus of
                                   Diameter
                                                        Inertia
                                                                                                 Elasticity
                                                                                 Area
```

		_		Analysis - E	xisting Caisson.lpo
	٦n	٦n	in**4	Sq.in	lbs/Šq.in
1	0.0000	96.00000000	4169220.	7238.2000	3300000.
2	246.0000	96.00000000	4169220.	7238.2000	3300000.

Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of moment of inertia and modulus of are not used for any computations other than total stress due to combined axial loading and bending.

Soil and Rock Layering Information

```
The soil profile is modelled using 4 layers
```

```
Layer 1 is sand, p-y criteria by Reese et al., Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = P. y subgrade modulus k for top of soil layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of soil layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for top of soil layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of layer = P. y subgrade modulus k for top of soil layer = P. y subgrade modulus k for top of soil layer = P. y subgrade modulus k for top of soil layer = P. y subgrade modulus k for top of soil layer = P. y subgrade modulus k for top of soil layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus k for bottom of layer = P. y subgrade modulus h subgrade modulus h
```

(Depth of lowest layer extends

.00 in below pile tip)

Effective Unit Weight of Soil vs. Depth

Effective unit weight of soil with depth defined using 8 points

Point No.	Depth X in	Eff. Unit Weight lbs/in**3
1	6.00	06700
1	6.00	.06700
2 3	90.00	.06700
3	90.00	.06700
4	144.00	.06700
5	144.00	.07500
6	186.00	.07500
7	186.00	.03900
8	246.00	.03900

Shear Strength of Soils

Shear strength parameters with depth defined using 8 points

Point No.	Depth X in	Cohesion c lbs/in**2	Angle of Friction Deg.	E50 or k_rm	RQD %
1	6.000	.00000	30.00		
2	90.000	.00000	30.00		
3	90.000	.00000	30.00		
Ä	144.000	.00000			
4			30.00		
5	144.000	.00000	40.00		
6	186.000	.00000	40.00		
7	186,000	.00000	40.00		
0	246.000	.00000	40.00		

Notes:

⁽¹⁾ Cohesion = uniaxial compressive strength for rock materials.(2) Values of E50 are reported for clay strata.

Caisson Analysis - Existing Caisson.lpo Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata. Lateral Soil Movements Profile of soil movement with depth defined using 2 points Point Depth X Soil Movement 1 .000 .000 .000Loading Type Static loading criteria was used for computation of p-y curves. Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 1Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 56210.000 lbs

Bending moment at pile head = 67609476.000 in-lbs

Axial load at pile head = 53790.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Output of p-y Curves at Specified Depths p-y curves are generated and printed for verification at 1 depths. Depth Depth Below Pile Head Depth Below Ground Surface 144.000 138.000 Depth of ground surface below top of pile = 6.00 in Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness Number of sections = 1Pile Section No. 1 **** WARNING **** An unreasonable input value for concrete cover thickness has been specified. The input value is either smaller than 0.8 inches or larger than 8 inches. You should check your input for correctness. The sectional shape is a circular drilled shaft (bored pile). Outside Diameter 192.0000 in Material Properties:

Compressive Strength of Concrete

Caisson Analysis - Existing Caisson.lpo
Yield Stress of Reinforcement = 60. kip/in**2
Modulus of Elasticity of Reinforcement = 29000. kip/in**2
Number of Reinforcing Bars = 38
Area of Single Bar = 1.27000 in**2
Number of Rows of Reinforcing Bars = 19
Area of Steel = 48.260 in**2
Area of Shaft = 28952.918 in**2
Percentage of Steel Reinforcement = .167 percent
Cover Thickness (edge to bar center) = 53.635 in

Unfactored Axial Squash Load Capacity = 88886.96 kip

Distribution and Area of Steel Reinforcement

Row Number	Area of Reinforcement in**2	Distance to Centroidal Axis in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540	42.220 41.069 38.797 35.467 31.169 26.021 20.164 13.756 6.973 0.000 -6.973 -13.756 -20.164 -26.021 -31.169 -35.467 -38.797 -41.069 -42.220

Axial Thrust Force = 53790.00 lbs

Bending Moment in-1bs	Bending Stiffness 1b-in2	Bending Curvature rad/in	Maximum Strain in/in	Neutral Axis Position inches	Max. Concrete Stress psi	Max. Steel Stress psi
in-1bs	1b-in2	rad/in 3.125000E-07 6.250000E-07 9.375000E-07 .00000125 .00000188 .00000219 .00000250 .00000313 .00000344 .00000375 .00000466 .00000438 .00000438				
2.793269E+08 2.793269E+08	4.965812E+13 4.704453E+13 4.469230E+13 4.256410E+13 4.062937E+13 3.724359E+13 3.575384E+13 3.437870E+13 3.10541E+13 3.10541E+13 2.979487E+13 2.979487E+13 2.793269E+13 2.708625E+13 2.553846E+13 2.482906E+13	.00000563 .00000594 .00000625 .00000688 .00000719 .00000781 .00000813 .00000844 .00000875 .0000996 .0000998 .0000998 .0000998	.00016599 .00017500 .00018402 .00019305 .00020209 .00021113 .00022019 .00022925 .00023833 .00024741 .00025650 .00027471 .00028383 .00027471 .00028383 .00029296 .00030209	29.50932741 29.47388792 29.44338083 29.41711092 29.39450598 29.35848284 29.34434366 29.33239603 29.32240248 29.31415987 29.30749369 29.30224943 29.29829550 29.29381227 29.29381227 29.29327154 29.29327154 29.29327154	510.07370 536.35766 562.733 588.58244 614.52269 640.34777 666.05739 691.65128 717.12911 742.49058 767.73540 792.86328 817.87386 842.76685 867.54196 892.19884 916.73712 941.15663 965.4591	17733.47774 18724.77318 19715.81697 20706.60731 21697.14309 22687.42307 23677.44568 24667.20932 25656.71285 26645.95480 27634.93358 28623.64745 29612.09555 30600.27621 31588.18753 32575.82835 33563.19769 34550.29249 35537.11234
2.793269E+08 2.793269E+08 2.793269E+08 2.793269E+08 2.793269E+08 2.793269E+08 2.793269E+08	2.415800E+13 2.352227E+13 2.291913E+13 2.180112E+13 2.078712E+13 1.986325E+13 1.901800E+13	.00001156 .00001188 .00001219 .00001281 .00001344 .00001406	.00033874 .00034792 .00035711 .00037553 .00039399 .00041249	29.29607248 29.29857302 29.30173731 29.30988264 29.32019663 29.33242464 29.34635210	989.63764 1013.69856 1037.63928 1085.15887 1132.19370 1178.74105 1224.79800	36523.65573 37509.92043 38495.90522 40467.02771 42437.00983 44405.83750 46373.49806

2.793269E+08	1.824176E+13			xisting Caisson		
2.793269E+08	1.752639E+13	.00001531 .00001594	.00044960 .00046822	29.36180162 29.37863016	1270.36164 1315.42925	48339.97784 50305.26022
2.793269E+08	1.686502E+13	.00001656	.00048688	29.39671183	1359.99785	52269.33068
2.793269E+08 2.793269E+08	1.625175E+13	.00001719	.00050559	29.41593504	1404.06419	54232.17668
2.793269E+08	1.568151E+13 1.514993E+13	.00001781 .00001844	.00052433 .00054312	29.43621683 29.45747423	1447.62552	56193.77902
2.793269E+08	1.465321E+13	.00001944	.00056192	29.47798491	1490.67851 1533.14523	58154.12450 60000.00000
2.793269E+08	1.418803E+13	.00001969	.00057981	29.45052767	1572.85085	60000.00000
2.793269E+08 2.793269E+08	1.375148E+13 1.334099E+13	.00002031	.00059703	29.39241171	1610.48876	60000.00000
2.793269E+08	1.295429E+13	.00002094 .00002156	.00061378 .00063021	29.31509829 29.22691011	1646.53599 1681.35801	60000.00000 60000.00000
2.793269E+08	1.258938E+13	.00002219	.00064648	29.13723135	1715.40038	60000.00000
2.793269E+08 2.793269E+08	1.224447E+13	.00002281	.00066234	29.03409433	1748.07343	60000.00000
2.793269E+08	1.191795E+13 1.160839E+13	.00002344	.00067815 .00069371	28.93454790	1780.22063	60000.00000
2.793269E+08	1.131451E+13	.00002469	.00071100	28.82951689 28.79999971	1811.39563 1845.79334	60000.00000 60000.00000
2.793269E+08	1.103514E+13	.00002531	.00072900	28.79999971	1881.14053	60000.00000
2.793269E+08 2.793269E+08	1.076923E+13 1.051584E+13	.00002594	.00074671	28.78893042	1915.34283	60000.00000
2.793269E+08	1.027409E+13	.00002656 .00002719	.00076127 .00077585	28.65952635 28.53691149	1942.68524 1969.71540	60000.00000 60000.00000
2.793269E+08	1.004321E+13	.00002781	.00079040	28.41885138	1996.33509	60000.00000
2.793269E+08 2.793269E+08	9.822484E+12	.00002844	.00080448	28.28926420	2021.68241	60000.00000
2.793269E+08	9.611248E+12 9.408906E+12	.00002906 .00002969	.00081857 .00083269	28.16595984 28.04854631	2046.73633	60000.00000
2.793269E+08	9.214908E+12	.00003031	.00084683	27.93666887	2071.49553 2095.95898	60000.00000 60000.00000
2.793269E+08	9.028748E+12	.00003094	.00086054	27.81541014	2119.30222	60000.00000
2.793269E+08 2.793269E+08	8.849961E+12 8.678117E+12	.00003156	.00087420	27.69748735	2142.24804	60000.00000
2.793269E+08	8.512820E+12	.00003219 .00003281	.00088788 .00090158	27.58473444 27.47685957	2164.91574 2187.30413	60000.00000 60000.00000
2.793269E+08	8.353702E+12	.00003344	.00091530	27.37359381	2209.41205	60000.00000
2.793269E+08 2.793269E+08	8.200423E+12	.00003406	.00092865	27.26300955	2230.56158	60000.00000
2.793269E+08	8.052667E+12 7.910142E+12	.00003469 .00003531	.00094192 .00095521	27.15445089 27.05022955	2251.30085	60000.00000
2.793269E+08	7.772575E+12	.00003594	.00096852	26.95012808	2271.77601 2291.98634	60000.00000 60000.00000
2.793269E+08	7.639710E+12	.00003656	.00098185	26.85393476	2311.93053	60000.00000
2.793269E+08 2.793269E+08	7.511312E+12 7.267041E+12	.00003719 .00003844	.00099519	26.76145506	2331.60745	60000.00000
2.793269E+08	7.038158E+12	.00003844	.00102110 .00104701	26.56522608 26.38132238	2368.87515 2405.02896	60000.00000 60000.00000
2.793269E+08	6.823253E+12	.00004094	.00107298	26.21027899	2440.16734	60000.00000
2.793269E+08 2.793269E+08	6.621082E+12	.00004219	.00109864	26.04194212	2473.75031	60000.00000
2.793269E+08	6.430547E+12 6.250672E+12	.00004344 .00004469	.00112392 .00114925	25.87431479 25.71747637	2505.71766 2536.71412	60000.00000
2.793269E+08	6.080586E+12	.00004594	.00117600	25.59999990	2568.43440	60000.00000 60000.00000
2.793269E+08 2.793269E+08	5.919511E+12	.00004719	.00120800	25.59999990	2605.28559	60000.00000
2.793269E+08	5.766749E+12 5.621674E+12	.00004844 .00004969	.00124000 .00126646	25.59999990	2640.38640	60000.00000
2.793269E+08	5.483718E+12	.00005094	.00128989	25.48860312 25.32293558	2667.71534 2690.68927	60000.00000 60000.00000
2.793269E+08	5.352372E+12	.00005219	.00131335	25.16605711	2712.81564	60000.00000
2.793269E+08 2.793269E+08	5.227170E+12 5.107692E+12	.00005344 .00005469	.00133592 .00135854	24.99968290	2733.17408	60000.00000
2.793269E+08	4.993554E+12	.00005594	.00138122	24.84193754 24.69225740	2752.76187 2771.57302	60000.00000 60000.00000
2.793269E+08	4.884405E+12	.00005719	.00140396	24.55012178	2789.60108	60000.00000
2.793269E+08 2.793269E+08	4.779926E+12 4.679822E+12	.00005844 .00005969	.00142602	24.40248156 24.25861788	2806.24475	60000.00000
2.793269E+08	4.583826E+12	.00005303	.00144794 .00146991	24.23001700	2821.99497 2837.01235	60000.00000 60000.00000
2.793269E+08	4.491689E+12	.00006219	.00149193	23.99079752	2851.29143	60000.00000
2.793269E+08 2.793269E+08	4.403183E+12 4.318097E+12	.00006344	.00151317	23.85291052	2864.27868	60000.00000
2.793269E+08	4.236237E+12	.00006469 .00006594	.00153440 .00155567	23.72011614 23.59310675	2876.53644 2888.10406	60000.00000 60000.00000
2.793269E+08	4.157424E+12	.00006719	.00157616	23.45910215	2898.52016	60000.00000
2.796017E+08 2.798011E+08	4.085504E+12 4.015084E+12	.00006844	.00159636	23.32578707	2908.12479	60000.00000
2.799934E+08	3.947044E+12	.00006969 .00007094	.00161600 .00163568	23.18916750 23.05797815	2916.81740 2924.92433	60000.00000 60000.00000
2.801783E+08	3.881258E+12	.00007219	.00165540	22.93193579	2932.44106	60000.00000
2.803560E+08 2.805262E+08	3.817613E+12	.00007344	.00167517	22.81078863	2939.36337	60000.00000
2.806890E+08	3.755999E+12 3.696316E+12	.00007469 .00007594	.00169498 .00171484	22.69428778 22.58221292	2945.68658 2951.40633	60000.00000
2.808442E+08	3.638468E+12	.00007719	.00171484	22.47434950	2956.51793	60000.00000 60000.00000
2.816981E+08	3.591370E+12	.00007844	.00175700	22.40000010	2961.55123	60000.00000
2.842568E+08 2.867549E+08	3.567144E+12 3.542918E+12	.00007969 .00008094	.00178500	22.40000010	2966.84054	60000.00000
2.891925E+08	3.518692E+12	.00008219	.00181300 .00184100	22.40000010 22.40000010	2970.81514 2973.47502	60000.00000 60000.00000
2.915695E+08	3.494466E+12	.00008344	.00186900	22.40000010	2974.82017	60000.00000
2.938591E+08 2.938591E+08	3.469923E+12 3.419451E+12	.00008469	.00189700	22.40000010	2972.30250	60000.00000
2.938591E+08	3.370427E+12	.00008594 .00008719	.00192100 .00193855	22.35345125 22.23424673	2967.51563 2964.13243	60000.00000
2.938591E+08	3.276478E+12	.00008969	.00197377	22.23424073	2957.33891	60000.00000 60000.00000
2.938591E+08	3.187624E+12	.00009219	.00200916	21.79428720	2950.50874	60000.00000
2.938591E+08 2.938591E+08	3.103462E+12 3.023631E+12	.00009469 .00009719	.00204472 .00208046	21.59443331	2950.45358	60000.00000
2.938591E+08	2.947803E+12	.00009719	.00211638	21.40666151 21.23009634	2957.24031 2962.96983	60000.00000 60000.00000
2.938591E+08	2.875685E+12	.00010219	.00215247	21.06394815	2967.61783	60000.00000
2.938591E+08 2.938591E+08	2.807012E+12 2.741543E+12	.00010469	.00218875	20.90750742	2971.15922	60000.00000
2.938591E+08	2.741343E+12 2.679057E+12	.00010719 .00010969	.00222523 .00226189	20.76013613 20.62124777	2973.56806 2974.81733	60000.00000 60000.00000
2.938591E+08	2.619357£+12	.00011219	.00229896	20.49213552	2972.52847	60000.00000
2.938591E+08 2.938591E+08	2.562259E+12 2.507598E+12	.00011469	.00233641	20.37198400	2966.99077	60000.00000
~ . 22023TE+00	7.301330E+T7	.00011719	.00237397	20.25785494	2961.43022	60000.00000

```
Caisson Analysis - Existing Caisson.lpo
.00011969 .00241163 20.14938211 2955.84653
.00012219 .00244940 20.04623652 2950.23922
2.938591E+08 2.455220E+12
2.938591E+08 2.404985E+12
                                                                                                                                                          60000.00000
2.938591E+08
2.938591E+08
                                                                                                                                                           60000.00000
                                                                                  .00248728
.00252527
.00256338
.00260160
                         2.356765E+12
                                                         .00012469
                                                                                                        19.94810629
                                                                                                                                   2944.60806
                                                                                                                                                           60000.00000
2.938591E+08
2.938591E+08
                         2.310440E+12
2.265902E+12
2.223048E+12
                                                                                                       19.85471392
19.76579332
19.68110991
                                                         .00012719
                                                                                                                                   2938.95254
2933.27243
                                                                                                                                                           60000.00000
                                                         .00012969
                                                                                                                                                          60000.00000
                                                                                                                                  2933.27243
2934.13180
2941.11610
2947.48550
2953.22767
2958.33015
2962.77982
2.938591E+08
                                                         .00013219
                                                                                                                                                          60000.00000
                        2.223048E+12
2.181785E+12
2.142025E+12
2.103689E+12
2.066701E+12
2.030992E+12
1.996495E+12
1.963151E+12
2.938591E+08
2.938591E+08
                                                         .00013469
                                                                                  .00263993
                                                                                                        19.60044050
                                                                                                                                                          60000.00000
60000.00000
60000.00000
60000.00000
                                                                                                        19.52358198
                                                         .00013719
                                                                                  .00267839
2.938591E+08
2.938591E+08
2.938591E+08
2.938591E+08
                                                         .00013969
                                                                                  .00271697
                                                                                                        19.45034266
                                                                                  .00275567
                                                         .00014219
                                                                                                        19.38055086
                                                         .00014469
                                                                                                       19.31404066
19.25066614
19.20000029
                                                        .00014719
.00014969
.00015219
                                                                                  .00283346
                                                                                                                                   2966.56342
2969.87440
2973.06561
                                                                                                                                                           60000.00000
2.938591E+08
                                                                                                                                                          60000.00000
2.938591E+08
                         1.930902E+12
                                                                                  .00292200
.00297000
.00301800
                                                                                                        19.20000029
                                                                                                                                                           60000.00000
2.938591E+08
2.938591E+08
                                                         .00015469
                                                                                                                                   2974.73206
2972.52008
2966.42762
2960.33517
                         1.899695E+12
                                                                                                       19.20000029
19.20000029
19.20000029
                                                                                                                                                          60000.00000
                         1.869481E+12
                                                         .00015719
                                                                                                                                                          60000.00000
60000.00000
2.938591E+08
                          1.840214E+12
                                                         .00015969
                                                                                  .00306600
2.938591E+08
                         1.811848E+12
                                                         .00016219
                                                                                  .00311400
                                                                                                        19.20000029
                                                                                                                                                          60000.00000
```

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 293859.10247 in-kip

p-y Curve in Sand Computed Using Reese Criteria for Static Loading Conditions

```
Soil Layer Number
Depth below pile head
                                                   144.000 in
Depth below ground surface
                                                   138.000 in
Equivalent Depth (see note) =
                                                   137.128 in
Pile Diameter
Angle of Friction
Avg. Eff. Unit Weight
                                                    96.000 in
35.000 deg
.06700 pci
                                                    90.000 pci
A (static)
                                                    1.8101
B (static)
                                                    1.3087
                                               6758.142 lbs/in
47747.930 lbs/in
6758.142 lbs/in
7657.3791
3.2622
Pst
Psd
PS
Cbar
n
                                        =
                                               1694.4458
.5024 in
m
уk
                                                8844.072 lbs/in
1.6000 in
12232.964 lbs/in
pm
рu
                                                    3.6000 in
p-multiplier
                                        =
                                                   1.00000
y-multiplier
                                                   1.00000
```

This p-y curve is computed using the equivalent depth.

p, 1bs/in
p, lbs/in 0.0000 1645.5374 * 3291.0749 * 4936.6123 * 6315.2821 6762.3884 7151.0990 7497.1301 7810.3813 8097.5349 8363.3370 8611.2927 8844.0722
10538.5180 12232.9638 12232.9638 12232.9638

* p value(s) computed using p = k * Eff x * y

```
Computed Values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
```

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 56210.000 lbs Specified moment at pile head = 67609476.000 in-lbs

```
Caisson Analysis - Existing Caisson.lpo
= 53790.000 lbs
Specified axial load at pile head
```

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

**** WARNING - POSSIBLE SOLUTION ERROR 5501 ****

Force and moment imbalances may be too large.

The cause of the imbalance may be due to extreme changes in magnitude of nonlinear bending stiffness within three nodal points of the top of the pile which may affect the finite difference computation of shear force.

Please examine curves and printed output for deflection, moment, shear force, and number of iterations to determine if computed values are reasonable. If the shear force shows large changes, increase the number of nodal points (pile increments) and repeat the analysis.

Maximum moment imbalance for pile = Maximum lateral force imbalance for pile = -2.8170 in-1bs .5741599 lbs

Summary of Pile Response(s)

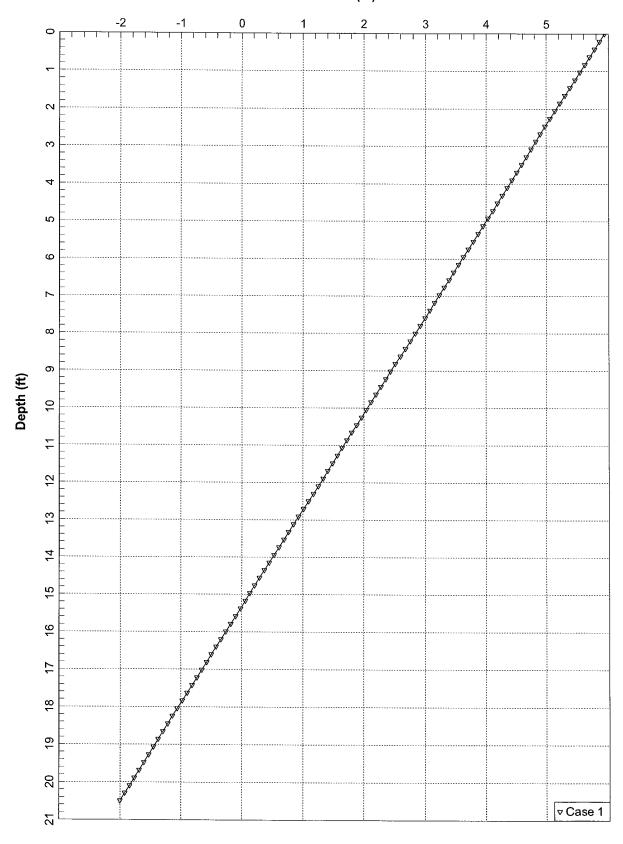
Definition of Symbols for Pile-Head Loading Conditions:

```
Type 1 = Shear and Moment,
Type 2 = Shear and Slope,
Type 3 = Shear and Rot. Stiffness,
Type 4 = Deflection and Moment,
Type 5 = Deflection and Slope,
Type 5 = Deflection and Slope,
Type 6 = Shear and Moment,
Type 7 = Pile-head displacment in
M = Pile-head Moment lbs-in
V = Pile-head Shear Force lbs
S = Pile-head Slope, radians
R = Rot. Stiffness of Pile-head in-lbs/rad
```

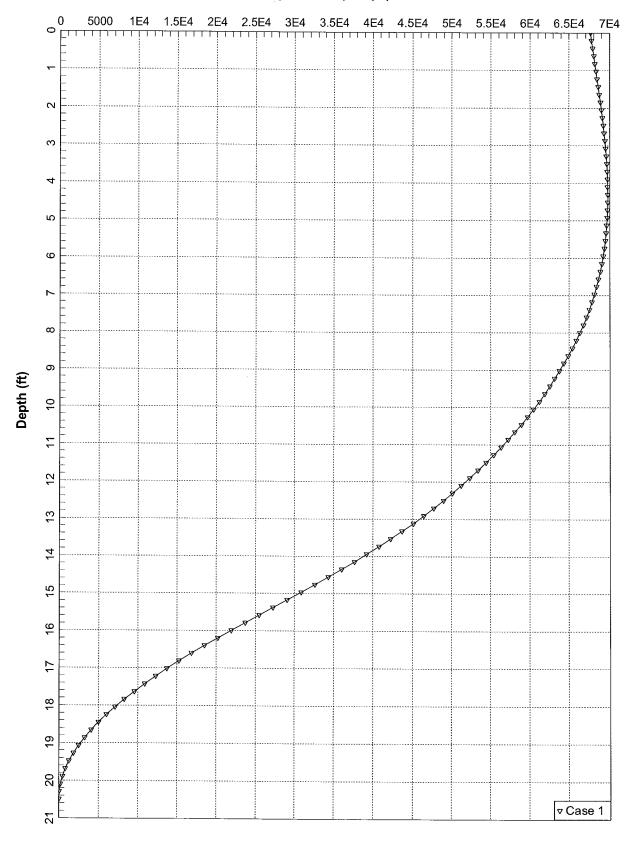
Load Type	Pile-Head Condition 1	Pile-Head Condition 2	Axial Load lbs	Pile-Head Deflection in	Maximum Moment in-lbs	Maximum Shear lbs
1	V= 56210.	M= 6.76E+07	53790.0000	5.9357	6.9757E+07	-731605.

Computed Pile-head Stiffness Matrix Members k22, K23, K32, K33 for Superstructure

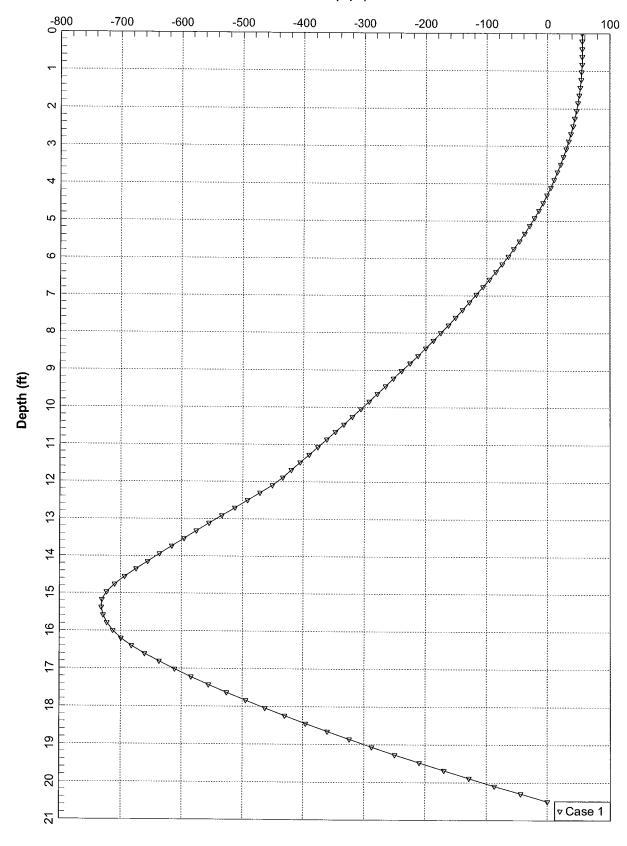
Тор у Shear React. Mom. React. K22 lbs lbs/in in-1bs/in in-1bs 3156691. 3156691. 3156691. 5.295185E+08 5.295185E+08 5.295185E+08 5.295185E+08 .00178066 5621.00008 942893.53034 5621.00008 16920.89606 26818.98573 33841.79212 39289.10394 43739.88179 47502.96083 50762.68817 53637.97147 56210.00002 .00536033 2838392. 4498745. .01072065 5676785. .01244629 6590543. 7337138. 7968375. 8515177. 8997491. 5.295185E+08 5.295185E+08 3156691. .01385624 3156691. .01504834 3156691. 5.295185E+08 .01608098 3156691. 5.295185E+08 3156691. 5.295185E+08 3156691. 5.295185E+08 .01699183 .01780662 56210.00002 9428935.


Top Rota.	Shear React.	Mom. React.	K23	K33
rad	lbs	in-1bs	lbs/rad	in-lbs/rad
.00006932 .00020869 .00033076 .00041737 .00048455 .00053945 .00058586 .0006606	36708.35605 110503.16097 175143.36635 221006.32194 256580.39403 285646.52732 310221.59286 331509.48292 350286.73271 367083.55501	6760948. 20352480. 32257918. 40704961. 47256996. 52610398. 57136636. 61057441. 64515836. 67609476.	5.295186E+08 5.295186E+08 5.295186E+08 5.295186E+08 5.295186E+08 5.295186E+08 5.295186E+08 5.295186E+08 5.295186E+08	9.752677E+10 9.752677E+10 9.752677E+10 9.752677E+10 9.752677E+10 9.752677E+10 9.752677E+10 9.752677E+10 9.752677E+10

K22 = abs(Shear Reaction/Top y)
K23 = abs(Shear Reaction/Top Rotation)
K32 = abs(Moment Reaction/Top y)
K33 = abs(Moment Reaction/Top Rotation)


The analysis ended normally.

Caisson Analysis - Existing Caisson.lpo	,
Summary of Warning Messages	



Bending Moment (in-kips)

Shear Force (kips)

LPILE Plus for Windows, Version 5.0 (5.0.39)

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method

> (c) 1985-2007 by Ensoft, Inc. All Rights Reserved

```
This program is licensed to:
 Centek Engineering Inc
Path to file locations:
(1)\Calcs\L-Pile\
Name of input data file:
Name of output file:
Name of plot output file:
Name of runtime file:
                                                 J:\Jobs\1102100.WI\CO-55 - CT5176 - 7 Stony Hill Road, Bethel,CT\Structural\Rev
                                                 Caisson Analysis - Manipulated Soil Diameter.lpd
Caisson Analysis - Manipulated Soil Diameter.lpo
Caisson Analysis - Manipulated Soil Diameter.lpp
Caisson Analysis - Manipulated Soil Diameter.lpr
 ------
                                           Time and Date of Analysis
                          Date: January 30, 2012
                                                                       Time: 17:24:16
                                                    Problem Title
 11021.CO55 / CT5176 - Stony Hill / CL&P # 10254
                                                    Program Options
Units Used in Computations - US Customary Units: Inches, Pounds
Basic Program Options:
Analysis Type 3:
- Computation of Nonlinear Bending Stiffness and Ultimate Bending Moment
Capacity with Pile Response Computed Using Nonlinear EI
Computation Options:

Only internally-generated p-y curves used in analysis

Analysis does not use p-y multipliers (individual pile or shaft action only)

Analysis assumes no shear resistance at pile tip

Analysis for fixed-length pile or shaft only

Analysis includes computation of foundation stiffness matrix elements

Output summary table of values for pile-head deflection, maximum bending moment, and shear force only

Analysis includes effects of soil movement on pile response

Additional p-y curves computed at specified depths
 Computation Options:
Solution Control Parameters:
Number of pile incrementsMaximum number of iterations allowed
- Deflection tolerance for convergence = - Maximum allowable deflection =
                                                                        1.0000E-04 in
                                                                        1.0000E+02 in
Printing Options:
   Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.
                                Pile Structural Properties and Geometry
Pile Length
                                                                                246.00 in
Depth of ground surface below top of pile =
                                                                                    6.00 in
Slope angle of ground surface
                                                                                     .00 deg.
Structural properties of pile defined using 6 points
Point
               Depth
                                       Pile
                                                       Moment of
                                                                                                   Modulus of
                                   Diameter
                                                         Inertia
                                                                                  Area
                                                                                                   Elasticity
```

Caisson Analysis - Manipulated Soil Diameter.lpo

	in	in	in**4	Sq.in	lbs/Sq.in
1 2 3 4 5	0.0000 54.0000 54.0000 150.0000 150.0000 246.0000	96.00000000 96.00000000 192.00000 192.00000 96.00000000	4169220. 4169220. 66707523. 66707523. 4169220. 4169220.	7238.2000 7238.2000 28952.9000 28952.9000 7238.2000 7238.2000	3300000. 3300000. 3300000. 3300000. 3300000.

Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of moment of inertia and modulus of are not used for any computations other than total stress due to combined axial loading and bending.

Soil and Rock Layering Information

The soil profile is modelled using 4 layers

```
Layer 1 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 6.000 in
Distance from top of pile to bottom of layer = 90.000 in
P-y subgrade modulus k for top of soil layer = 90.000 lbs/in**3
P-y subgrade modulus k for bottom of layer = 90.000 lbs/in**3

Layer 2 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 90.000 in
```

Layer 2 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 90.000 in
Distance from top of pile to bottom of layer = 144.000 in
p-y subgrade modulus k for top of soil layer = 90.000 lbs/in**3
p-y subgrade modulus k for bottom of layer = 90.000 lbs/in**3

Layer 3 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 144.000 in
Distance from top of pile to bottom of layer = 186.000 in
p-y subgrade modulus k for top of soil layer = 225.000 lbs/in**3
p-y subgrade modulus k for bottom of layer = 225.000 lbs/in**3

Layer 4 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 186.000 in
Distance from top of pile to bottom of layer = 246.000 in
p-y subgrade modulus k for top of soil layer = 125.000 lbs/in**3
p-y subgrade modulus k for bottom of layer = 125.000 lbs/in**3

(Depth of lowest layer extends .00 in below pile tip)

Effective Unit Weight of Soil vs. Depth

Effective unit weight of soil with depth defined using 8 points

Point No.	Depth X in	Eff. Unit Weight lbs/in**3
1	6.00	.06700
2 3	90.00	.06700
3 4	90.00 144.00	.06700 .06700
5	144.00	.07500
6	186.00	.07500
8	186.00 246.00	.03900 .03900

Shear Strength of Soils

Shear strength parameters with depth defined using 8 points

Point No.	Depth X in	Cohesion c lbs/in**2	Angle of Friction Deg.	E50 or k_rm	RQD %
					-
Ŧ	6.000	.00000	30.00		
2	90.000	.00000	30.00		
3	90.000	.00000	30.00		
4	144.000	.00000	30.00		
Ś	144.000	.00000	40.00		
č	186.000				
0		.00000	40.00		
/	186.000	.00000	40.00		
8	246.000	.00000	40.00		-

Notes:

(2) Valu (3) Defa	ues of E50 are re ault values will :	ported for clav s	F50 when input values are 0
(1) IIQS	and Kerm are rep	or ted only for we	ak Tock Scrata.
		Lateral Soil M	ovements
Profile o	of soil movement	with depth define	d using 2 points
			a world
1 2	.000	.000	
		Loading T	ype
			tation of p-y curves.
	Pile-head Lo	oading and Pile-h	ead Fixity Conditions
Number of	f loads specified	= 1	
	e Number 1		
Pile-head Shear for Bending m Axial loa	d boundary condit rce at pile head noment at pile head ad at pile head	ions are Shear and = 56210. ad = 67609476. = 53790.	d Moment (BC Type 1) 000 lbs 000 in-lbs 000 lbs
may rotat	moment at pile ho ce under the appl ment) condition.	ead for this load ied pile-head load	case indicates the pile-head ding, but is not a free-head
	Output	of p-y Curves at	Specified Depths
p-y curve	es are generated a	and printed for v	erification at 1 depths.
Depth No.	Depth Below Pi	le Head Depti	h Below Ground Surface in
1	144.000		138.000
Depth of	ground surface be	elow top of pile :	= 6.00 in
Comput	ations of Nomina	l Moment Capacity	and Nonlinear Bending Stiffness
Number of	sections = 3		
Pile Sect	ion No. 1		
The secti	onal shape is a o	circular drilled	shaft (bored pile).
Outside D	piameter	=	96.0000 in
Material	Properties:		
Yield Str	ve Strength of Co ess of Reinforcen of Elasticity of F	oncrete = ment = Reinforcement =	, ,
			Dago 2

Caisson Analysis - Manipulated Soil Diameter.lpo
= 38
= 1.27000 in**2
ars = 19
= 48.260 in**2
= 7238.229 in**2
at = .667 percent
ater) = 4.000 in Number of Reinforcing Bars = Area of Single Bar = Number of Rows of Reinforcing Bars = Area of Steel = Area of Shaft = Percentage of Steel Reinforcement = Cover Thickness (edge to bar center) =

Unfactored Axial Squash Load Capacity = 24285.76 kip

Distribution and Area of Steel Reinforcement

Row Number	Area of Reinforcement in**2	Distance to Centroidal Axis in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540	43.850 42.654 40.294 36.835 32.372 27.025 20.942 14.287 7.242 0.000 -7.242 -14.287 -20.942 -27.025 -32.372 -36.835 -40.294 -42.654
19	2.540	-43.850

Axial Thrust Force = 53790.00 lbs

Bending Moment in-lbs	Bending Stiffness 1b-in2	Bending Curvature rad/in	Maximum Strain in/in	Neutral Axis Position inches	Max. Concrete Stress psi	Max. Steel Stress psi
			·			ps 1
9680885.	1.548942E+13	6.250000E-07	.00003219	51.50283194	106.82232	858.26496
19259171.	1.540734E+13	.00000125	.00006230	49.84267759	204.88393	1656.34933
28735289.	1.532549E+13	.00000188	.00009246	49.31153440	301.37440	2455.64308
38106361.	1.524254E+13	.00000250	.00012257	49.02919149	396.02165	3253.72092
38106361.	1.219404E+13	.00000313	.00007808	24.98612452	251.55446	6059.51313
38106361.	1.016170E+13	.00000375	.00009199	24.53060961	295.01982	7320.95300
38106361.	8.710025E+12	.00000438	.00010592	24.20921659	338.19122	8581.88858
38106361.	7.621272E+12	.00000500	.00012000	23.99999857	381.51753	9838.20927
38106361.	6.774464E+12	.00000563	.00013409	23.83766985	424.49195	11094.46530
38106361.	6.097018E+12	.00000625	.00014802	23.68379831	466.63866	12355.07289
38106361.	5.542743E+12	.00000688	.00016198	23.56067705	508.49330	13615.12748
38106361.	5.080848E+12	.00000750	.00017595	23.46063852	550.05482	14874.62472
38106361. 38106361.	4.690014E+12	.00000813	.00018995	23.37837267	591.32214	16133.56067
38106361.	4.355013E+12	.00000875	.00020396	23.31009150	632.29426	17391.93015
38106361.	4.064679E+12 3.810636E+12	.00000938	.00021800	23.25300837	672.96993	18649.73035
38106361.		.00001000	.00023205	23.20504332	713.34819	19906.95557
38106361.	3.586481E+12 3.387232E+12	.00001063	.00024612	23.16459990	753.42787	21163.60192
38106361.	3.208957E+12	.00001125	.00026022	23.13043642	793.20777	22419.66551
38106361.	3.048509E+12	.00001188	.00027433	23.10157442	832.68675	23675.14184
38322426.	2.919804E+12	.00001250	.00028847	23.07723284	871.86371	24930.02576
40057154.	2.91304E+12 2.913248E+12	.00001313	.00030262	23.05677938	910.73753	26184.31214
41789841.	2.913246E+12 2.907119E+12	.00001375	.00031680	23.03969049	949.30681	27437.99835
43520459.	2.90/119E+12 2.901364E+12	.00001438 .00001500	.00033099	23.02554560	987.57064	28691.07674
45249005.	2.895936E+12	.00001500	.00034521	23.01398134	1025.52753	29943.54531
46975462.	2.890798E+12	.00001363	.00035945	23.00470304	1063.17645	31195.39726
48699819.	2.885915E+12	.00001623	.00037371 .00038799	22.99745607	1100.51608	32446.62829
50422059.	2.881261E+12	.00001088	.00038799	22.99202585	1137.54521	33697.23294
52142165.	2.876809E+12	.00001730	.00040229	22.98822641	1174.26251	34947.20682
53860130.	2.872540E+12	.00001813	.00041662	22.98589754 22.98490477	1210.66662	36196.54547
55575939.	2.868436E+12	.00001873	.00043097	22.98512793	1246.75640	37445.24203
57289574.	2.864479E+12	.00001938	.00045973	22.98646116	1282.53051 1317.98754	38693.29138
59001030.	2.860656E+12	.00002063	.00047414	22.98881578	1353.12633	39940.68879
60710278.	2.856954E+12	.00002125	.00047414	22.99210596	1387.94524	41187.42695 42433.50323
62417310.	2.853363E+12	.00002123	.00050304	22.99626303	1422.44304	43678.91030
64122114.	2.849872E+12	.00002250	.00050504	23.00122404	1456.61836	44923.64211
65824661.	2.846472E+12	.00002313	.00053204	23.00692892	1490.46958	46167.69522
67524961.	2.843156E+12	.00002375	.00053204	23.0032832	1523.99568	47411.05875
69222967.	2.839917E+12	.00002438	.00054037	23.02038717	1557.19469	48653.73301
72612098.	2.833643E+12	.00002563	.00059031	23.02036717	1622.60669	51136.97514
75991914.	2.827606E+12	.00002688	.00061959	23.05437040	1686.69343	53617.37379
79362298.	2.821771E+12	.00002813	.00064897	23.07439470	1749.44294	56094.87281
82723080.	2.816105E+12	.00002938	.00067845	23.09617281	1810.84206	58569.42605
85889787.	2.804564E+12	.00003063	.00070750	23.10188055	1869.75602	60000.00000
88306442.	2.770398E+12	.00003188	.00073442	23.04056597	1922.85173	60000.00000
				_3.0.030337	1722.03173	00000,00000

Page 4

		Caisson Analy	/sis - Manipu	lated Soil Dia	meter.lpo	
90352109.	2.727611E+12	.00003313	.00076028	22.95181704	1972.54442	60000.00000
92096892. 93744636.	2.679182E+12 2.631428E+12	.00003438	.00078523	22.84306097	2019.28206	60000.00000
95113075.	2.579338E+12	.00003688	.00080994 .00083372	22.73506021 22.60926962	2064.44302 2106.81015	60000.00000 60000.00000
96405952.	2.528681E+12	.00003813	.00085729	22.48637438	2147.80197	60000.00000
97830631.	2.484587E+12	.00003938	.00088200	22.40000010	2189.77996	60000.00000
98715620. 99691041.	2.429923E+12	.00004063	.00090620	22.30635309	2229.79450	60000.00000
1.006634E+08	2.380682E+12 2.334223E+12	.00004188 .00004313	.00092826 .00095037	22.16743612	2265.22825	60000.00000
1.015635E+08	2.288755E+12	.00004313	.00097219	22.03766012 21.90852785	2299.87496 2333.18736	60000.00000 60000.00000
1.022814E+08	2.241785E+12	.00004563	.00099316	21.76785707	2364.34878	60000.00000
1.029968E+08 1.037096E+08	2.197265E+12	.00004688	.00101417	21.63556623	2394.79658	60000.00000
1.044199E+08	2.155005E+12 2.114833E+12	.00004813 .00004938	.00103522 .00105631	21.51100588	2424.52620	60000.00000
1.051039E+08	2.076126E+12	.00004938	.00103031	21.39359808 21.28010988	2453.53346 2481.62390	60000.00000 60000.00000
1.056139E+08	2.035930E+12	.00005188	.00109734	21.15362692	2507.64614	60000.00000
1.061217E+08	1.997585E+12	.00005313	.00111742	21.03379297	2533.01195	60000.00000
1.066274E+08 1.071309E+08	1.960964E+12 1.925949E+12	.00005438 .00005563	.00113753	20.92015886	2557.71787	60000.00000
1.076987E+08	1.893603E+12	.000055688	.00115768 .00118300	20.81230688 20.79999876	2581.75973 2611.25720	60000.00000 60000.00000
1.082027E+08	1.861551E+12	.00005813	.00120277	20.69279623	2633.23974	60000.00000
1.086896E+08	1.830562E+12	.00005938	.00122243	20.58834028	2654.42000	60000.00000
1.090603E+08 1.093950E+08	1.798933E+12 1.768000E+12	.00006063 .00006188	.00124124	20.47397947	2673.99120	60000.00000
1.097281E+08	1.738267E+12	.00006313	.00125980 .00127840	20.36041403 20.25187254	2692.69806 2710.83851	60000.00000 60000.00000
1.100596E+08	1.709664E+12	.00006438	.00129703	20.14806318	2728.40919	60000.00000
1.103894E+08	1.682125E+12	.00006563	.00131570	20.04872274	2745.40714	60000.00000
1.107176E+08 1.110440E+08	1.655590E+12 1.630004E+12	.00006688	.00133440	19.95359945	2761.82878	60000.00000
1.113688E+08	1.605316E+12	.00006938	.00135313 .00137190	19.86247015 19.77512312	2777.67120	60000.00000
1.116919E+08	1.581478E+12	.00007063	.00137130	19.69135523	2792.93107 2807.60469	60000.00000 60000.00000
1.120132E+08	1.558445E+12	.00007188	.00140954	19.61099195	2821.68916	60000.00000
1.123012E+08 1.125162E+08	1.535743E+12 1.512823E+12	.00007313	.00142810	19.52955008	2834.94836	60000.00000
1.129420E+08	1.469164E+12	.00007438 .00007688	.00144598 .00148183	19.44172812 19.27588034	2847.13018 2869.89169	60000.00000
1.139714E+08	1.435860E+12	.00007038	.00148183	19.20000029	2894.00567	60000.00000 60000.00000
1.139714E+08	1.392017E+12	.00008188	.00156163	19.07334280	2912.76984	60000.00000
1.142566E+08 1.146393E+08	1.354152E+12	.00008438	.00159634	18.91961432	2927.82357	60000.00000
1.140393E+08	1.319589E+12 1.286900E+12	.00008688 .00008938	.00163118 .00166615	18.77620554	2940.84273	60000.00000
1.153886E+08	1.255931E+12	.00009188	.00100013	18.64227247 18.51706553	2951.80340 2960.68113	60000.00000 60000.00000
1.156717E+08	1.225660E+12	.00009438	.00173520	18.38627386	2967.22857	60000.00000
1.158981E+08 1.161199E+08	1.196367E+12	.00009688	.00176847	18.25520754	2971.71431	60000.00000
1.163358E+08	1.168502E+12 1.141947E+12	.00009938 .00010188	.00180186 .00183537	18.13194036	2974.30475	60000.00000
1.165409E+08	1.116560E+12	.00010188	.00186901	18.01591730 17.90663481	2973.96235 2967.07931	60000.00000 60000.00000
1.167438E+08	1.092340E+12	.00010688	.00190276	17.80363798	2964.71602	60000.00000
1.169445E+08 1.171428E+08	1.069207E+12	.00010938	.00193665	17.70651484	2969.53721	60000.00000
1.171428E+08	1.047086E+12 1.024199E+12	.00011188 .00011438	.00197067 .00201300	17.61488485 17.59999895	2972.85778	60000.00000
1.176327E+08	1.006483E+12	.00011438	.00201300	17.58373976	2974.89078 2969.45219	60000.00000 60000.00000
1.178101E+08	9.868909E+11	.00011938	.00208816	17.49247885	2963.56317	60000.00000
1.179861E+08	9.680914E+11	.00012188	.00212133	17.40581274	2962.07963	60000.00000
1.181608E+08 1.183024E+08	9.500365E+11 9.324329E+11	.00012438 .00012688	.00215461 .00218711	17.32347822	2966.77049	60000.00000
1.183958E+08	9.151363E+11	.00012088	.00218711	17.23832560 17.14709044	2970.30446 2972.74118	60000.00000 60000.00000
1.184881E+08	8.984881E+11	.00013188	.00224979	17.06000662	2974.30094	60000.00000
1.185795E+08 1.186680E+08	8.824519E+11	.00013438	.00228126	16.97685385	2974.97238	60000.00000
1.187554E+08	8.669812E+11 8.520568E+11	.00013688 .00013938	.00231296 .00234475	16.89830732	2971.44176	60000.00000
1.188422E+08	8.376543E+11	.00013338	.00237662	16.82334852 16.75148535	2966.69870 2961.94163	60000.00000 60000.00000
1.189285E+08	8.237469E+11	.00014438	.00240855	16.68256617	2957.17026	60000.00000
1.190141E+08 1.190992E+08	8.103087E+11 7.973166E+11	.00014688	.00244054	16.61643934	2958.29638	60000.00000
1.191836E+08	7.847482E+11	.00014938 .00015188	.00247260 .00250473	16.55297613 16.49204493	2962.58293 2966.24746	60000.00000
1.192675E+08	7.725830E+11	.00015438	.00253693	16.43353128	2969.28306	60000.00000 60000.00000
1.193508E+08	7.608016E+11	.00015688	.00256919	16.37732363	2971.68251	60000.00000
1.194334E+08 1.195154E+08	7.493859E+11	.00015938	.00260153	16.32331896	2973.43852	60000.00000
1.195967E+08	7.383189E+11 7.275845E+11	.00016188 .00016438	.00263394	16.27142000 16.22153521	2974.54362	60000.00000
1.196757E+08	7.171576E+11	.00016688	.00269911	16.17443419	2974.99021 2971.62608	60000.00000 60000.00000
1.197539E+08	7.070343E+11	.00016938	.00273188	16.12917280	2967.54198	60000.00000
1.198319E+08 1.199061E+08	6.972037E+11	.00017188	.00276469	16.08549070	2963.44805	60000.00000
1.199061E+08 1.202352E+08	6.876333E+11 6.703005E+11	.00017438 .00017938	.00279780	16.04470396	2959.29179	60000.00000
1.209327E+08	6.559064E+11	.00017938	.00287000 .00295000	16.00000048 16.00000048	2949.67337 2959.41401	60000.00000 60000.00000
1.216385E+08	6.423158E+11	.00018938	.00303000	16.00000048	2968.36516	60000.00000
1.216385E+08	6.257932E+11	.00019438	.00310615	15.98021364	2973.24794	60000.00000
1.216385E+08 1.216385E+08	6.100993E+11 5.951733E+11	.00019938 .00020438	.00317088	15.90407896	2974.81687	60000.00000
1.216385E+08	5.809602E+11	.00020438	.00323633 .00330222	15.83524561 15.77178240	2971.57830 2965.07490	60000.00000 60000.00000
1.216385E+08	5.674101E+11	.00021438	.00336825	15.77178240	2958.53931	60000.00000
1.216385E+08	5.544777E+11	.00021938	.00343444	15.65557337	2951.97081	60000.00000
1.216385E+08 1.216385E+08	5.421217E+11 5.303043E+11	.00022438	.00350078	15.60238123	2945.36857	60000.00000
1.216385E+08	5.189911E+11	.00022938 .00023438	.00356729 .00363395	15.55220175 15.50486326	2938.73172	60000.00000
1.216385E+08	5.081506E+11	.00023438	.00370079	15.46020555	2944.31092 2951.69322	60000.00000 60000.00000
1.216385E+08	4.977536E+11	.00024438	.00376779	15.41808271	2958.10580	60000.00000

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 121373.86716 in-kip

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Number of sections = 3

Pile Section No. 2

**** WARNING ****

An unreasonable input value for concrete cover thickness has been specified. The input value is either smaller than 0.8 inches or larger than 8 inches. You should check your input for correctness.

The sectional shape is a circular drilled shaft (bored pile).

Outside Diameter

192.0000 in

Material Properties:

Compressive Strength of Concrete
Yield Stress of Reinforcement = 60. kip/in**2
Modulus of Elasticity of Reinforcement = 29000. kip/in**2
Number of Reinforcing Bars = 38
Area of Single Bar = 1.27000 in**2
Number of Rows of Reinforcing Bars = 19
Area of Steel = 48.260 in**2
Area of Shaft = 28952.918 in**2
Percentage of Steel Reinforcement = .167 percent
Cover Thickness (edge to bar center) = 52.000 in
Unfactored Axial Squash Load Capacity = 88886.96 kip

Distribution and Area of Steel Reinforcement

Row Number	Area of Reinforcement in**2	Distance to Centroidal Axis in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540	43.850 42.654 40.294 36.835 32.372 27.025 20.942 14.287 7.242 0.000 -7.242 -14.287 -20.942 -27.025 -32.372 -36.835 -40.294 -42.654
19	2.540	-43.850

Axial Thrust Force = 53790.00 lbs

Bending	Bending	Bending	Maximum	Neutral Axis	Max. Concrete	Max. Steel
Moment	Stiffness	Curvature	Strain	Position	Stress	Stress
in-1bs	lb-in2	rad/in	in/in	inches	psi	psi
71107381. 1.413842E+08 2.108318E+08 2.794504E+08 2.794504E+08 2.794504E+08 2.794504E+08 2.794504E+08 2.794504E+08 2.794504E+08 2.794504E+08 2.794504E+08	2.275436E+14 2.262147E+14 2.248873E+14 2.235603E+14 1.788483E+14 1.490402E+14 1.277488E+14 1.17802E+14 9.936015E+13 8.942413E+13 8.129467E+13 7.452011E+13 6.878780E+13	3.125000E-07 6.250000E-07 9.375000E-07 .00000125 .00000188 .00000219 .00000250 .00000281 .00000313 .00000344 .00000375	.00003066 .00006077 .00009088 .00012098 .00012098 .00005852 .00006743 .00007635 .00008527 .00009421 .00010315 .00011210	98.11165094 97.22823000 96.93335867 96.78562117 31.75282717 31.20862627 30.82362127 30.53813124 30.31899977 30.14633131 30.00746584 29.89396620 29.79999018	101.71175 199.84066 296.26348 390.98025 158.11064 185.85485 213.48835 241.01089 268.42220 295.72200 322.91002 349.98601 376.94971	416.52490 817.03780 1217.53989 1618.03103 4898.14035 5907.35935 6916.34299 7925.09002 8933.59918 9941.86939 10949.89948 11957.68798 12965.23352

2.794504E+08	6.387438E+13	Caisson Analy	sis - Manipu/ .00013003	lated Soil Diar 29.72136068	neter.lpo 403.80079	13972.53530
2.794504E+08	5.961609E+13	.00000450	.00013003	29.65501928	430.53900	14979.59181
2 794504E+08	5.589008E+13	.00000500	.00014799	29.59867144	457.16408	15986.40171
2.794504E+08 2.794504E+08	5.260243E+13 4.968007E+13	.00000531 .00000563	.00015699 .00016599	29.55056334 29.50932741	483.67575 510.07370	16992.96347 17999.27616
2.794504E+08	4.706533E+13	.00000594	.00017500	29.47388792	536.35766	19005.33819
2.794504E+08 2.794504E+08	4.471207E+13 4.258292E+13	.00000625	.00018402	29.44338083	562.52733	20011.14856
2.794504E+08	4.064733E+13	.00000656 .00000688	.00019305 .00020209	29.41711092 29.39450598	588.58244 614.52269	21016.70548 22022.00784
2.794504E+08	3.888006E+13	.00000719	.00021113	29.37509394	640.34777	23027.05439
2.794504E+08 2.794504E+08	3.726006E+13 3.576965E+13	.00000750	.00022019	29.35848284	666.05739	24031.84358
2.794504E+08	3.439390E+13	.00000781 .00000813	.00022925	29.34434366 29.33239603	691.65128 717.12911	25036.37380 26040.64392
2.794504E+08	3.312005E+13	.00000844	.00024741	29.32240248	742.49058	27044.65244
2.794504E+08 2.794504E+08	3.193719E+13 3.083591E+13	.00000875 .00000906	.00025650 .00026560	29.31415987	767.73540	28048.39780
2.794504E+08	2.980804E+13	.00000938	.00027471	29.30749369 29.30224943	792.86328 817.87386	29051.87825 30055.09293
2.794504E+08	2.884649E+13	.00000969	.00028383	29.29829550	842.76685	31058.04017
2.794504E+08 2.794504E+08	2.794504E+13 2.709822E+13	.00001000 .00001031	.00029296 .00030209	29.29551744 29.29381227	867.54196 892.19884	32060.71807 33063.12546
2.794504E+08	2.630122E+13	.00001031	.00030203	29.29308844	916.73712	34065.26139
2.794504E+08	2.554975E+13	.00001094	.00032040	29.29327154	941.15663	35067.12276
2.794504E+08 2.794504E+08	2.484004E+13 2.416868E+13	.00001125 .00001156	.00032956 .00033874	29.29428720 29.29607248	965.45691 989.63764	36068.70920 37070.01916
2.794504E+08	2.353267E+13	.00001130	.00033674	29.29857302	1013.69856	38071.05045
2.794504E+08	2.292927E+13	.00001219	.00035711	29.30173731	1037.63928	39071.80182
2.794504E+08 2.794504E+08	2.181076E+13 2.079631E+13	.00001281 .00001344	.00037553 .00039399	29.30988264 29.32019663	1085.15887 1132.19370	41072.45746 43071.97274
2.794504E+08	1.987203E+13	.00001344	.00041249	29.33242464	1178.74105	45070.33357
2.794504E+08 2.794504E+08	1.902641E+13	.00001469	.00043102	29.34635210	1224.79800	47067.52728
2.794504E+08	1.824982E+13 1.753414E+13	.00001531 .00001594	.00044960 .00046822	29.36180162 29.37863016	1270.36164 1315.42925	49063.54023 51058.35577
2.794504E+08	1.687248E+13	.00001656	.00048688	29.39671183	1359.99785	53051.95938
2.794504E+08 2.794504E+08	1.625893E+13	.00001719	.00050559	29.41593504	1404.06419	55044.33854
2.794504E+08 2.794504E+08	1.568844E+13 1.515663E+13	.00001781 .00001844	.00052433 .00054312	29.43621683 29.45747423	1447.62552 1490.67851	57035.47404 59025.35268
2.794504E+08	1.465969E+13	.00001906	.00056157	29.45945692	1532.30868	60000.00000
2.794504E+08 2.794504E+08	1.419431E+13	.00001969	.00057904	29.41159487	1571.06025	60000.00000
2.794504E+08	1.375756E+13 1.334689E+13	.00002031 .00002094	.00059600 .00061267	29.34157705 29.26162863	1608.10885 1643.98990	60000.00000 60000.00000
2.794504E+08	1.296002E+13	.00002156	.00062887	29.16511202	1678.36719	60000.00000
2.794504E+08 2.794504E+08	1.259495E+13 1.224988E+13	.00002219 .00002281	.00064497 .00066071	29.06923056	1712.05855	60000.00000
2.794504E+08	1.192322E+13	.00002281	.00067648	28.96275473 28.86300802	1744.51560 1776.60328	60000.00000 60000.00000
2.794504E+08	1.161352E+13	.00002406	.00069300	28.79999971	1809.88410	60000.00000
2.794504E+08 2.794504E+08	1.131951E+13 1.104002E+13	.00002469 .00002531	.00071100 .00072900	28.79999971 28.79999971	1845.79334 1881.14053	60000.00000 60000.00000
2.794504E+08	1.077399E+13	.00002594	.00074403	28.68558455	1909.89380	60000.00000
2.794504E+08	1.052049E+13	.00002656	.00075852	28.55588007	1937.16107	60000.00000
2.794504E+08 2.794504E+08	1.027864E+13 1.004766E+13	.00002719 .00002781	.00077302 .00078739	28.43296480 28.31050730	1964.11929 1990.44703	60000.00000 60000.00000
2.794504E+08	9.826828E+12	.00002844	.00080139	28.18063402	2015.72447	60000.00000
2.794504E+08 2.794504E+08	9.615498E+12 9.413067E+12	.00002906 .00002969	.00081541	28.05704069	2040.71164	60000.00000
2.794504E+08	9.218983E+12	.00002303	.00084351	27.93933535 27.82716322	2065.40727 2089.81035	60000.00000 60000.00000
2.794504E+08	9.032741E+12	.00003094	.00085711	27.70440531	2113.02540	60000.00000
2.794504E+08 2.794504E+08	8.853875E+12 8.681955E+12	.00003156 .00003219	.00087069 .00088429	27.58621359 27.47318602	2135.91512 2158.52976	60000.00000 60000.00000
2.794504E+08	8.516584E+12	.00003213	.00089792	27.36503649	2180.86848	60000.00000
2.794504E+08	8.357396E+12	.00003344	.00091156	27.26149035	2202.92981	60000.00000
2.794504E+08 2.794504E+08	8.204049E+12 8.056228E+12	.00003406 .00003469	.00092488	27.15245962 27.04365206	2224.14001 2244.83818	60000.00000 60000.00000
2.794504E+08	7.913640E+12	.00003531	.00095129	26.93918467	2265.27572	60000.00000
2.794504E+08 2.794504E+08	7.776012E+12 7.643088E+12	.00003594 .00003656	.00096452	26.83882856	2285.45128	60000.00000
2.794504E+08	7.514633E+12	.00003719	.00097777 .00099103	26.74238062 26.64964628	2305.36408 2325.01301	60000.00000 60000.00000
2.794504E+08	7.270255E+12	.00003844	.00101698	26.45790911	2362.52482	60000.00000
2.794504E+08 2.794504E+08	7.041270E+12 6.826270E+12	.00003969 .00004094	.00104273 .00106855	26.27355909 26.10206366	2398.64308	60000.00000
2.794504E+08	6.624010E+12	.00004334	.00100633	25.94140005	2433.75860 2467.81015	60000.00000 60000.00000
2.794504E+08	6.433391E+12	.00004344	.00111953	25.77338934	2499.77598	60000.00000
2.794504E+08 2.794504E+08	6.253436E+12 6.083274E+12	.00004469 .00004594	.00114472 .00117600	25.61615896 25.59999990	2530.78256	60000.00000
2.794504E+08	5.922128E+12	.00004719	.00120800	25.59999990	2568.43440 2605.28559	60000.00000 60000.00000
2.794504E+08	5.769299E+12	.00004844	.00123731	25.54450178	2637.31254	60000.00000
2.794504E+08 2.794504E+08	5.624159E+12 5.486143E+12	.00004969 .00005094	.00126050 .00128374	25.36848307 25.20226622	2661.15554 2684.18870	60000.00000 60000.00000
2.794504E+08	5.354739E+12	.00005219	.00130704	25.04516172	2706.40549	60000.00000
2.794504E+08 2.794504E+08	5.229481E+12	.00005344	.00133040	24.89630842	2727.78682	60000.00000
2.794504E+08 2.794504E+08	5.109950E+12 4.995762E+12	.00005469 .00005594	.00135287 .00137539	24.73813963 24.58803034	2747.45284 2766.35380	60000.00000 60000.00000
2.794504E+08	4.886565E+12	.00005719	.00139797	24.44545698	2784.48332	60000.00000
2.794504E+08 2.794504E+08	4.782039E+12	.00005844	.00142061	24.30995035	2801.83538	60000.00000
2.794504E+08	4.681892E+12 4.585853E+12	.00005969 .00006094	.00144297 .00146482	24.17543650 24.03803301	2818.14081 2833.25996	60000.00000 60000.00000
2.794504E+08	4.493675E+12	.00006219	.00148672	23.90699530	2847.64994	60000.00000
2.794504E+08 2.794504E+08	4.405130E+12 4.320006E+12	.00006344 .00006469	.00150867 .00153060	23.78195429 23.66149378	2861.30498	60000.00000
_11.5150-16100	JE0000LTIE	.00000403	.00133000	73.001433/0	2874.17563	60000.00000

```
Caisson Analysis - Manipulated Soil Diameter.lpo
.00006594 .00155179 23.53429842 2885.83
.00006719 .00157303 23.41256762 2896.88
2.794504E+08 4.238111E+12
                                                                                                                  2885.83505
                                                                                                                                      60000.00000
 2.794504E+08
                      4.159262E+12
                                                                                                                  2896.80538
                                                                                                                                      60000.00000
2.794504E+08
                                                                                          23.29601526
23.17548609
23.05658770
                      4.083294E+12
                                                  .00006844
                                                                        .00159432
                                                                                                                  2907.08157
                                                                                                                                      60000.00000
2.796628E+08
                                                                                                                  2916.36295
2924.88079
2932.44106
2939.36337
                      4.013098E+12
                                                  .00006969
                                                                        .00161504
                                                                                                                                      60000.00000
2.799792E+08
2.801783E+08
                      3.946843E+12
3.881258E+12
                                                  .00007094
                                                                        .00163558
                                                                                                                                      60000.00000
                                                                                                                                      60000.00000
60000.00000
60000.00000
60000.00000
                                                  .00007219
                                                                                          22.93193579
                                                                        .00165540
2.803560E+08
                      3.817613E+12
3.755999E+12
                                                  .00007344
                                                                        .00167517
                                                                                          22.81078863
2.805262E+08
2.806890E+08
                                                  .00007469
                                                                                                                  2945.68658
                                                                        .00169498
                                                                                          22.69428778
                                                  .00007594
                      3.696316E+12
                                                                        .00171484
                                                                                          22.58221292
                                                                                                                  2951.40633
2.808442E+08
2.816981E+08
2.842568E+08
                                                                       .00173474
.00173700
.00178500
.00181300
                      3.638468E+12
                                                 .00007719
                                                                                          22.47434950
                                                                                                                  2956.51793
                                                                                                                                      60000.00000
                      3.591370E+12
                                                  .00007844
                                                                                          22.40000010
                                                                                                                  2961.55123
                                                                                                                                      60000.00000
                      3.567144E+12
                                                 .00007969
                                                                                          22.40000010
22.40000010
22.40000010
                                                                                                                  2966.84054
                                                                                                                                      60000.00000
2.867549E+08
2.891925E+08
                      3.542918E+12
                                                 .00008094
                                                                                                                  2970.81514
                                                                                                                                      60000.00000
                                                                                                                 2970.81514
2973.47502
2974.82017
2972.30250
2967.51563
2964.13243
2957.33891
2950.50874
                      3.518692E+12
                                                 .00008219
                                                                        .00184100
                                                                                                                                      60000.00000
2.915695E+08
                      3.494466E+12
3.469923E+12
3.419451E+12
3.370427E+12
                                                 .00008344
                                                                        .00186900
                                                                                          22.40000010
                                                                                                                                      60000.00000
2.938591E+08
2.938591E+08
                                                 .00008469
                                                                        .00189700
                                                                                          22.40000010
                                                                                                                                      60000.00000
                                                                                          22.35345125
22.23424673
                                                                                                                                      60000.00000
                                                 .00008594
                                                                        .00192100
2.938591E+08
2.938591E+08
                                                  .00008719
                                                                        .00193855
                      3.276478E+12
                                                 .00008969
                                                                                                                                      60000.00000
                                                                        .00197377
                                                                                          22.00719595
2.938591E+08
2.938591E+08
                      3.187624E+12
3.103462E+12
                                                 .00009219
                                                                        00200916
                                                                                          21.79428720
                                                 .00009469
                                                                       .00204472
.00208046
.00211638
                                                                                          21.59443331
                                                                                                                  2950.45358
                                                                                                                                      60000.00000
2.938591E+08
                      3.023631E+12
                                                 .00009719
                                                                                          21.40666151
                                                                                                                 2957.24031
2962.96983
                                                                                                                                      60000.00000
2.938591E+08
2.938591E+08
2.938591E+08
2.938591E+08
                      2.947803E+12
                                                 .00009969
                                                                                          21.23009634
21.06394815
20.90750742
                     2.947803E+12
2.875685E+12
2.807012E+12
2.741543E+12
2.679057E+12
2.562259E+12
2.507598E+12
2.455220E+12
2.404985E+12
356765E+12
                                                                                                                                      60000.00000
                                                                                                                 2962.96983
2967.61783
2971.15922
2973.56806
2974.81733
2972.52847
2966.99077
                                                 .00010219
                                                                        .00215247
                                                                                                                                      60000.00000
                                                 .00010469
                                                                       .00218875
                                                                                                                                      60000.00000
                                                                                                                                      60000.00000
60000.00000
60000.00000
60000.00000
                                                 .00010719
                                                                       .00222523
                                                                                          20.76013613
2.938591E+08
                                                                       .00226189
                                                  .00010969
                                                                                          20.62124777
2.938591E+08
                                                 .00011219
                                                                        .00229896
                                                                                          20.49213552
2.938591E+08
                                                 .00011469
                                                                        .00233641
                                                                                          20.37198400
2.938591E+08
                                                                       .00237397
.00241163
.00244940
                                                                                                                  2961.43022
2955.84653
                                                                                          20.25785494
                                                                                                                                      60000.00000
2.938591E+08
2.938591E+08
2.938591E+08
2.938591E+08
                                                 .00011969
                                                                                          20.14938211
                                                                                                                                      60000.00000
                                                 .00012219
                                                                                                                 2950.23922
2944.60806
2938.95254
2933.27243
2934.13180
                     2.404985E+12
2.356765E+12
2.310440E+12
2.265902E+12
2.223048E+12
2.142025E+12
2.103689E+12
2.066701E+12
2.030992E+12
1.996495E+13
                                                                                          20.04623652
19.94810629
19.85471392
                                                                                                                                      60000.00000
                                                 .00012469
                                                                        .00248728
                                                                                                                                      60000.00000
                                                 .00012719
                                                                       .00252527
                                                                                                                                      60000.00000
60000.00000
60000.00000
2.938591E+08
                                                 .00012969
                                                                       .00256338
                                                                                          19.76579332
2.938591E+08
                                                 .00013219
                                                                       .00260160
                                                                                          19.68110991
2.938591E+08
                                                 .00013469
                                                                                                                 2941.11610
2947.48550
                                                                        .00263993
                                                                                          19.60044050
                                                                                                                                      60000.00000
                                                                       .00267839
.00271697
.00275567
.00279450
2.938591E+08
                                                                                          19.52358198
                                                                                                                                      60000.00000
2.938591E+08
                                                 .00013969
                                                                                          19.45034266
                                                                                                                  2953.22767
                                                                                                                                      60000.00000
2.938591E+08
                                                 .00014219
                                                                                          19.38055086
                                                                                                                  2958.33015
                                                                                                                                      60000.00000
                                                                                                                 2958.33015
2962.77982
2966.56342
2969.87440
2973.06561
2974.73206
2972.52008
2.938591E+08
                                                 .00014469
                                                                                         19.31404066
19.25066614
                                                                                                                                      60000.00000
2.938591E+08
2.938591E+08
                     1.996495E+12
1.963151E+12
1.930902E+12
1.899695E+12
                                                 .00014719
                                                                       .00283346
                                                                                                                                      60000.00000
                                                 .00014969
                                                                       .00287400
                                                                                          19.20000029
                                                                                                                                      60000.00000
2.938591E+08
                                                                                                                                      60000.00000
                                                 .00015219
                                                                       .00292200
                                                                                          19.20000029
2.938591E+08
                                                 .00015469
                                                                       .00297000
                                                                                          19.20000029
2.938591E+08
                      1.869481E+12
                                                 .00015719
                                                                       .00301800
                                                                                          19.20000029
                                                                                                                                      60000.00000
  .938591E+08
                      1.840214E+12
                                                                        00306600
                                                                                          19.20000029
                                                                                                                  2966,42762
                                                                                                                                      60000.00000
2.938591E+08
                      1.811848E+12
                                                 .00016219
                                                                       .00311400
                                                                                         19.20000029
                                                                                                                 2960.33517
                                                                                                                                      60000.00000
```

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 293859.10247 in-kip

```
Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness
Number of sections = 3
Pile Section No. 3
The sectional shape is a circular drilled shaft (bored pile).
Outside Diameter
                                                                96.0000 in
Material Properties:
Compressive Strength of Concrete = Yield Stress of Reinforcement = Modulus of Elasticity of Reinforcement =
                                                                   3.500 kip/in**2
                                                                 60. kip/in**2
29000. kip/in**2
Number of Reinforcing Bars
Area of Single Bar
Number of Rows of Reinforcing Bars
Area of Steel
Area of Shaft
                                                                       38
                                                                1.27000 in**2
                                                              19
48.260 in**2
7238.229 in**2
.667 percent
4.000 in
Percentage of Steel Reinforcement
Cover Thickness (edge to bar center)
Unfactored Axial Squash Load Capacity =
                                                              24285.76 kip
```

Distance to

Distribution and Area of Steel Reinforcement

Reinforcement Centroidal Axis

Area of

in**2

Row

Number

1	2.540	43.850
2	2.540	42.654
3	2.540	40.294
4	2.540	36.835
5	2.540	32.372
6	2.540	27.025
2 3 4 5 6 7	2.540	20.942
8	2.540	14.287
8 9	2.540	7.242
10	2.540	0.000
$\bar{1}\dot{1}$	2.540	-7.242
12	2.540	-14.287
13	2.540	-20.942
14	2.540	-20.342
15 15	2.540	-32.372
16	2.540	-32.372 -36.835
17	2.540	
18	2.540	-40.294
19	2.540	-42.654
ТЭ	2.340	-43.850

Axial Thrust Force = 53790.00 lbs

Bending Moment in-lbs	Bending Stiffness 1b-in2	Bending Curvature rad/in	Maximum Strain in/in	Neutral Axis Position inches	Max. Concrete Stress psi	Max. Steel Stress psi
9680885.	1.548942E+13	6.250000E-07	.00003219	51.50283194	106.82232	050 36406
19259171.	1.540734E+13	.00000125	.00006230	49.84267759	204.88393	858.26496 1656.34933
28735289.	1.532549E+13	.00000188	.00009246	49.31153440	301.37440	2455.64308
38106361.	1.524254E+13	.00000250	.00012257	49.02919149	396.02165	3253.72092
38106361.	1.219404E+13	.00000313	.00007808	24.98612452	251.55446	6059.51313
38106361.	1.016170E+13	.00000375	.00009199	24.53060961	295.01982	7320.95300
38106361.	8.710025E+12	.00000438	.00010592	24.20921659	338.19122	8581.88858
38106361.	7.621272E+12	.00000500	.00012000	23.99999857	381.51753	9838.20927
38106361.	6.774464E+12	.00000563	.00013409	23.83766985	424.49195	11094.46530
38106361. 38106361.	6.097018E+12 5.542743E+12	.00000625	.00014802	23.68379831	466.63866	12355.07289
38106361.	5.080848E+12	.00000688	.00016198	23.56067705	508.49330	13615.12748
38106361.	4.690014E+12	.00000750 .00000813	.00017595	23.46063852	550.05482	14874.62472
38106361.	4.355013E+12	.00000875	.00018995	23.37837267 23.31009150	591.32214 632.29426	16133.56067
38106361.	4.064679E+12	.00000938	.00020390	23.25300837	672.96993	17391.93015 18649.73035
38106361.	3.810636E+12	.00001000	.00023205	23.20504332	713.34819	19906.95557
38106361.	3.586481E+12	.00001063	.00024612	23.16459990	753.42787	21163.60192
38106361.	3.387232E+12	.00001125	.00026022	23.13043642	793.20777	22419.66551
38106361.	3.208957E+12	.00001188	.00027433	23.10157442	832.68675	23675.14184
38106361.	3.048509E+12	.00001250	.00028847	23.07723284	871.86371	24930.02576
38322426.	2.919804E+12	.00001313	.00030262	23.05677938	910.73753	26184.31214
40057154.	2.913248E+12	.00001375	.00031680	23.03969049	949.30681	27437.99835
41789841. 43520459.	2.907119E+12 2.901364E+12	.00001438	.00033099	23.02554560	987.57064	28691.07674
45249005.	2.895936E+12	.00001500 .00001563	.00034521	23.01398134	1025.52753	29943.54531
46975462.	2.890798E+12	.00001363	.00035945	23.00470304 22.99745607	1063.17645	31195.39726
48699819.	2.885915E+12	.00001623	.00037371	22.99202585	1100.51608	32446.62829
50422059.	2.881261E+12	.00001750	.00040229	22.98822641	1137.54521 1174.26251	33697.23294 34947.20682
52142165.	2.876809E+12	.00001813	.00041662	22.98589754	1210.66662	36196.54547
53860130.	2.872540E+12	.00001875	.00043097	22.98490477	1246.75640	37445.24203
55575939.	2.868436E+12	.00001938	.00044534	22.98512793	1282.53051	38693.29138
57289574.	2.864479E+12	.00002000	.00045973	22.98646116	1317.98754	39940.68879
59001030.	2.860656E+12	.00002063	.00047414	22.98881578	1353.12633	41187.42695
60710278.	2.856954E+12	.00002125	.00048858	22.99210596	1387.94524	42433.50323
62417310. 64122114.	2.853363E+12 2.849872E+12	.00002188	.00050304	22.99626303	1422.44304	43678.91030
65824661.	2.846472E+12	.00002250 .00002313	.00051753	23.00122404	1456.61836	44923.64211
67524961.	2.843156E+12	.00002313	.00053204 .00054657	23.00692892 23.01333475	1490.46958	46167.69522
69222967.	2.839917E+12	.00002373	.00054037	23.02038717	1523.99568 1557.19469	47411.05875
72612098.	2.833643E+12	.00002563	.00059031	23.03629446	1622.60669	48653.73301 51136.97514
75991914.	2.827606E+12	.00002688	.00061959	23.05437040	1686.69343	53617.37379
79362298.	2.821771E+12	.00002813	.00064897	23.07439470	1749.44294	56094.87281
82723080.	2.816105E+12	.00002938	.00067845	23.09617281	1810.84206	58569.42605
85889787.	2.804564E+12	.00003063	.00070750	23.10188055	1869.75602	60000.00000
88306442.	2.770398E+12	.00003188	.00073442	23.04056597	1922.85173	60000.00000
90352109.	2.727611E+12	.00003313	.00076028	22.95181704	1972.54442	60000.00000
92096892. 93744636.	2.679182E+12	.00003438	.00078523	22.84306097	2019.28206	60000.00000
95113075.	2.631428E+12 2.579338E+12	.00003563	.00080994	22.73506021	2064.44302	60000.00000
96405952.	2.528681E+12	.00003688 .00003813	.00083372 .00085729	22.60926962	2106.81015	60000.00000
97830631.	2.484587E+12	.00003938	.00088200	22.48637438 22.40000010	2147.80197	60000.00000
98715620.	2.429923E+12	.00004063	.00090620	22.30635309	2189.77996 2229.79450	60000.00000 60000.00000
99691041.	2.380682E+12	.00004188	.00092826	22.16743612	2265.22825	60000.00000
1.006634E+08	2.334223E+12	.00004313	.00095037	22.03766012	2299.87496	60000.00000
1.015635E+08	2.288755E+12	.00004438	.00097219	21.90852785	2333.18736	60000.00000
1.022814E+08	2.241785E+12	.00004563	.00099316	21.76785707	2364.34878	60000.00000
1.029968E+08	2.197265E+12	.00004688	.00101417	21.63556623	2394.79658	60000.00000
1.037096E+08	2.155005E+12	.00004813	.00103522	21.51100588	2424.52620	60000.00000
1.044199E+08 1.051039E+08	2.114833E+12	.00004938	.00105631	21.39359808	2453.53346	60000.00000
T.03T033E+08	2.076126E+12	.00005063	.00107731	21.28010988	2481.62390	60000.00000

```
Caisson Analysis - Manipulated Soil Diameter.lpo
.00005188 .00109734 21.15362692 2507.64
.00005313 .00111742 21.03379297 2533.01
.00005438 .00113753 20.92015886 2557.71
.0000563 .00115768 20.81230688 2581.75
.00005688 .00118300 20.79999876 2611.25
 1.056139E+08
1.061217E+08
1.066274E+08
                              2.035930E+12
1.997585E+12
                                                                                                                                                            2507.64614
2533.01195
                                                                                                                                                                                        60000.00000
                                                                                                                                                                                         60000.00000
                                                                                                                                                            2533.01195
2557.71787
2581.75973
2611.25720
2633.23974
2654.42000
2673.99120
2692.69806
2710.83851
2728.40919
2745.40714
82878
                               1.960964E+12
                                                                                                  .00113753
.00115768
.00118300
.00120277
.00122243
                                                                                                                                                                                         60000.00000
 1.071309E+08
                               1.925949E+12
                                                                                                                                                                                         60000.00000
 1.076987E+08
                                1.893603E+12
                                                                                                                            20.79999876
20.69279623
20.58834028
                                                                                                                                                                                         60000.00000
 1.082027E+08
                                                                     .00005813
                                                                                                                                                                                         60000.00000
 1.086896E+08
1.090603E+08
1.093950E+08
1.097281E+08
1.100596E+08
                               1.830562E+12
                                                                     .00005938
                                                                                                                                                                                         60000.00000
                               1.798933E+12
1.768000E+12
                                                                                                  .00124124
                                                                     .00006063
                                                                                                                            20.47397947
                                                                                                                                                                                        60000.00000 60000.00000
                                                                      00006188
                                                                                                                            20.36041403
                               1.738267E+12
1.738267E+12
1.709664E+12
1.682125E+12
1.655590E+12
                                                                     .00006313
.00006438
                                                                                                  .00127840
                                                                                                                                                                                        60000.00000
60000.00000
                                                                                                                            20.25187254
                                                                                                                            20.14806318
                                                                                                                           20.14806318
20.04872274
19.95359945
19.86247015
19.77512312
19.69135523
19.61099195
19.52955008
19.44172812
 1.103894E+08
                                                                    .00006563
                                                                                                   .00131570
                                                                                                                                                                                         60000.00000
                                                                                                                                                           2745.40714
2761.82878
2777.67120
2792.93107
2807.60469
2821.68916
2834.94836
2847.13018
2869.89169
2894.00567
2912.76988
2927.82357
2940.84273
                                                                                                  .00133440
.00135313
.00137190
.00139070
 1.107176E+08
                                                                                                                                                                                         60000.00000
 1.110440E+08
                               1.630004E+12
                                                                    .00006813
                                                                                                                                                                                         60000.00000
                               1.605316E+12
1.581478E+12
 1.113688E+08
                                                                     .00006938
                                                                                                                                                                                         60000.00000
 1.116919E+08
                                                                     .00007063
                                                                                                                                                                                         60000.00000
                              1.5814/8E+12
1.558445E+12
1.515823E+12
1.512823E+12
1.469164E+12
1.435860E+12
1.392017E+12
 1.120132E+08
                                                                     .00007188
                                                                                                   .00140954
                                                                                                                                                                                        60000.00000
 1.123012E+08
1.125162E+08
                                                                     .00007313
                                                                                                   .00142810
                                                                                                                                                                                        60000.00000
                                                                                                                                                                                        60000.00000
                                                                     .00007438
                                                                                                   .00144598
 1.129420E+08
1.139714E+08
                                                                     00007688
                                                                                                   .00148183
                                                                                                                            19.27588034
                                                                                                                                                                                        60000.00000
                                                                     .00007938
                                                                                                   .00152400
                                                                                                                            19.20000029
 1.139714E+08
                                                                     .00008188
                                                                                                   .00156163
                                                                                                                            19.07334280
 1.142566E+08
                                                                    .00008438
                                                                                                   .00159634
                                                                                                                            18.91961432
                                                                                                                                                                                         60000.00000
                                                                                                                                                           2927.82357
2940.84273
2951.80340
2960.68113
2967.22857
2971.71431
2974.30475
2973.96235
2967.07931
                                                                                                                           18.77620554
18.64227247
18.51706553
18.38627386
18.25520754
18.13194036
 1.146393E+08
                               1.319589E+12
                                                                    .00008688
                                                                                                   .00163118
                                                                                                                                                                                         60000.00000
 1.150167E+08
                               1.286900E+12
                                                                     .00008938
                                                                                                  .00166615
.00170126
.00173520
                                                                                                                                                                                         60000.00000
 1.153886E+08
                               1.255931E+12
                                                                     .00009188
                                                                                                                                                                                         60000.00000
 1.156717E+08
                               1.225660E+12
                                                                                                                                                                                        60000.00000
60000.00000
60000.00000
60000.00000
60000.00000
                                                                    .00009438
 1.158981E+08
1.161199E+08
1.163358E+08
                              1.196367E+12
1.196367E+12
1.168502E+12
1.141947E+12
1.116560E+12
1.092340E+12
                                                                     .00009688
                                                                                                   .00176847
                                                                     .00009938
                                                                                                  .00180186
                                                                    .00010188
                                                                                                   .0018353
                                                                                                                            18.01591730
 1.165409E+08
                                                                                                  .00186901
                                                                                                                            17.90663481
                                                                                                                                                           2967.07931
2964.71602
2969.53721
2972.85778
2974.89078
2969.45219
2963.56317
2962.07963
2966.77049
2970.30446
2972.74118
2974.30094
2974.97238
2971.44176
2966.69870
2961.94163
2957.17026
2958.29638
2962.58293
2966.58293
 1.167438E+08
                                                                     .00010688
                                                                                                   .00190276
                                                                                                                            17.80363798
                                                                                                                                                                                        60000.00000
                                                                    .00010088
 1.169445E+08
                               1.069207E+12
                                                                                                  .00193665
                                                                                                                           17.70651484
17.61488485
17.59999895
17.58373976
                                                                                                                                                                                         60000.00000
 1.171428E+08
                               1.047086E+12
                                                                                                                                                                                        60000.00000
1.171428E+08
1.171428E+08
1.176327E+08
1.178101E+08
1.179861E+08
1.181608E+08
                                                                                                  .00201300
                                                                                                                                                                                        60000.00000
60000.00000
60000.00000
60000.00000
                               1.024199E+12
                                                                     .00011438
                               1.006483E+12
                                                                    .00011688
                              9.868909E+11
9.680914E+11
9.500365E+11
9.324329E+11
9.151363E+11
                                                                                                                            17.49247885
17.40581274
                                                                     .00011938
                                                                                                   .00208816
                                                                     .00012188
                                                                     .00012438
                                                                                                   .00215461
                                                                                                                            17.32347822
                                                                                                                                                                                        60000.00000
 1.183024E+08
1.183958E+08
                                                                    .00012688
.00012938
.00013188
                                                                                                                            17.23832560
17.14709044
17.06000662
                                                                                                   .00218711
                                                                                                                                                                                        60000.00000
                                                                                                  .00221840
.00224979
.00228126
.00231296
                                                                                                                                                                                        60000.00000
 1.184881E+08
1.185795E+08
                               8.984881E+11
                                                                                                                                                                                        60000.00000
                                                                                                                           16.97685385
16.89830732
16.82334852
16.75148535
                               8.824519E+11
                                                                     .00013438
                                                                                                                                                                                        60000.00000
1.183793E+08
1.186680E+08
1.187554E+08
1.188422E+08
1.189285E+08
1.190141E+08
                               8.669812E+11
                                                                     .00013688
                                                                                                                                                                                        60000.00000
                              8.5059812E+11
8.520568E+11
8.376543E+11
8.237469E+11
8.103087E+11
7.973166E+11
7.847482E+11
                                                                                                                                                                                        60000.00000
60000.00000
60000.00000
60000.00000
60000.00000
                                                                    .00013938
                                                                                                  .00234475
                                                                     .00014188
                                                                                                   .00237662
                                                                   .00014188
.00014438
.00014688
.00014938
.00015188
.00015438
                                                                                                  .00240855
                                                                                                                            16.68256617
                                                                                                                            16.61643934
16.55297613
                                                                                                   .00244054
 1.190992E+08
                                                                                                   .00247260
                                                                                                                                                           2962.58293
2966.24746
2969.28306
2971.68251
2974.54362
2974.99021
2971.62608
2967.54198
2963.44805
2969.2917
2959.2917
 1.191836E+08
                                                                                                                           16.49204493
16.43353128
16.37732363
16.32331896
16.27142000
                                                                                                  .00250473
.00253693
.00256919
                                                                                                                                                                                        60000.00000
60000.00000
1.191836E+08
1.192675E+08
1.193508E+08
1.194334E+08
1.195154E+08
1.195967E+08
1.196757E+08
1.197539E+08
1.198319E+08
                               7.725830E+11
                              7.725830E+11
7.608016E+11
7.493859E+11
7.383189E+11
7.275845E+11
7.171576E+11
7.070343E+11
6.876333E+11
6.703005E+11
6.559064E+11
                                                                                                                                                                                        60000.00000
                                                                    .00015938
                                                                                                   .00260153
                                                                                                                                                                                        60000.00000
                                                                    .00016188
                                                                                                  .00263394
                                                                                                                                                                                        60000.00000
60000.00000
60000.00000
                                                                    .00016438
                                                                                                  .00266641
                                                                                                                            16.22153521
                                                                                                   .00269911
                                                                                                                            16.17443419
                                                                                                  .00273188
.00276469
.00279780
.00287000
                                                                    .00016938
.00017188
.00017438
                                                                                                                                                                                        60000.00000
                                                                                                                            16.12917280
                                                                                                                           16.08549070
 1.199061E+08
                                                                                                                           16.04470396
16.00000048
16.00000048
                                                                                                                                                                                        60000.00000
                                                                                                                                                           2959.29179
2949.67337
2959.41401
2968.36516
2973.24794
2974.81687
2971.57830
2965.07490
2958.53931
2951.97081
1.202352E+08
1.209327E+08
                                                                    .00017938
                                                                                                                                                                                        60000.00000
                                                                                                                                                                                       60000.00000
60000.00000
60000.00000
60000.00000
60000.00000
60000.00000
60000.00000
                               6.559064E+11
                                                                    .00018438
                                                                                                  .00295000
1.216385E+08
1.216385E+08
1.216385E+08
1.216385E+08
1.216385E+08
                                                                                                                           16.00000048
15.98021364
                               6.423158E+11
                                                                    .00018938
                                                                                                  .00303000
                               6.257932E+11
                                                                    .00019438
                                                                                                  .00310615
                              6.100993E+11
5.951733E+11
5.809602E+11
5.674101E+11
5.544777E+11
                                                                    .00019938
                                                                                                  .00317088
                                                                                                                           15.90407896
                                                                                                                           15.83524561
15.77178240
15.71196985
                                                                    .00020438
                                                                                                  .00323633
                                                                    .00020938
.00021438
.00021938
                                                                                                   .00330222
1.216385E+08
                                                                                                   .00336825
1.216385E+08
                                                                                                  .00343444
.00350078
.00356729
                                                                                                                           15.65557337
15.60238123
                                                                                                                                                                                        60000.00000
60000.00000
                                                                                                                                                            2951.97081
                                                                                                                                                           2945.36857
2938.73172
2944.31092
2951.69322
2958.10580
2963.52670
                                                                   .00022438
1.216385E+08
                               5.421217E+11
1.216385E+08
                               5.303043E+11
                                                                                                                           15.55220175
15.50486326
15.46020555
                                                                                                                                                                                        60000.00000
1.216385E+08
1.216385E+08
1.216385E+08
                               5.189911E+11
                                                                                                  .00363395
                                                                    .00023438
                                                                                                                                                                                        60000.00000
                                                                                                  .00370079
                                  .081506E+11
                                                                    .00023938
                                                                                                                                                                                        60000.00000
60000.00000
60000.00000
                              4.977536E+11
4.877736E+11
                                                                                                                           15.41808271
15.37836599
                                                                    .00024438
1.216385E+08
                                                                    .00024938
                                                                                                  .00383498
```

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 121373.86716 in-kip

p-y Curve in Sand Computed Using Reese Criteria for Static Loading Conditions

```
Soil Layer Number = 2
Depth below pile head = 144.000 in
Depth below ground surface = 138.000 in
Equivalent Depth (see note) = 126.611 in
Pile Diameter = 192.000 in
Angle of Friction = 35.000 deg.
```

```
Caisson Analysis - Manipulated Soil Diameter.lpo
                                                       Calsson Analysis - .06700 pci
90.000 pci
2.3620
1.7375
8759.266 lbs/in
95495.860 lbs/in
8759.266 lbs/in
Avg. Eff. Unit Weight
A (static)
B (static)
Psd
PS
                                                      10893.1577
Cbar
                                                       3.4779
1367.5203
n
m
                                                       . 9387 in
15219.480 lbs/in
3.2000 in
20689.561 lbs/in
7.2000 in
yk
pm
                                               =
Vm
                                               =
pu
ṕ-multiplier
                                                           1.00000
y-multiplier
                                                           1.00000
```

This p-y curve is computed using the equivalent depth.

* p value(s) computed using p = k * Eff x * y

```
Computed Values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
```

```
Pile-head boundary conditions are Shear and Moment (BC Type 1)
Specified shear force at pile head = 56210.000 lbs
Specified moment at pile head = 67609476.000 in-lbs
Specified axial load at pile head = 53790.000 lbs
```

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

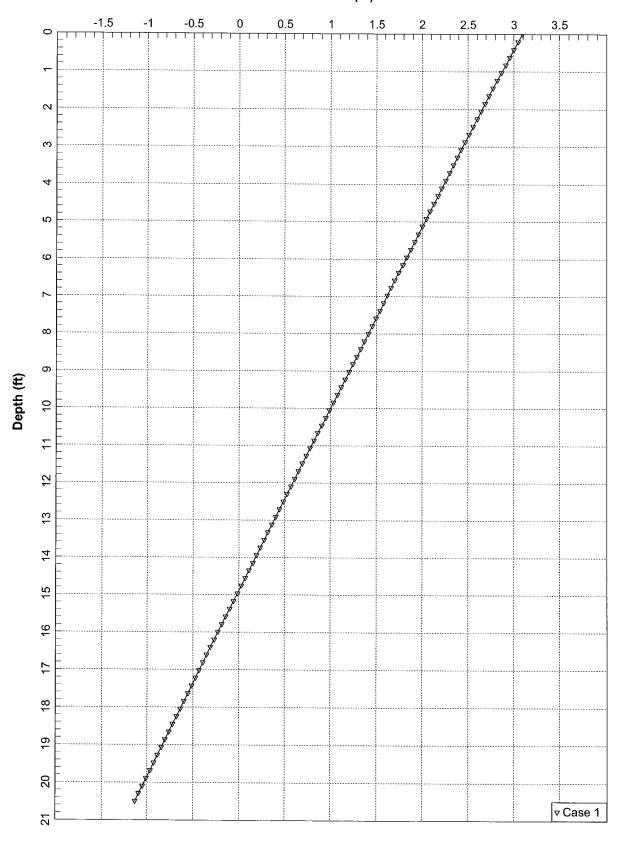
```
Summary of Pile Response(s)
```

Definition of Symbols for Pile-Head Loading Conditions:

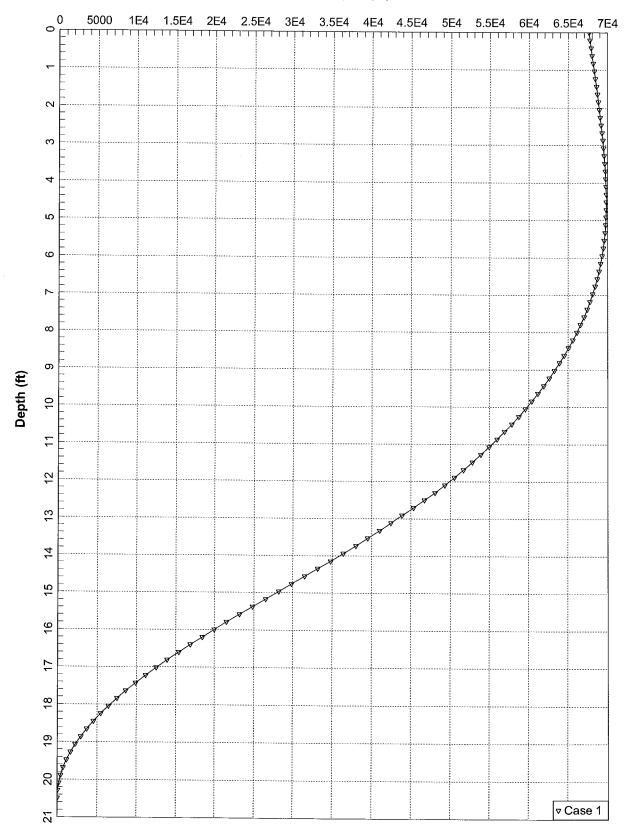
```
Type 1 = Shear and Moment,
Type 2 = Shear and Slope,
Type 3 = Shear and Rot. Stiffness,
Type 4 = Deflection and Moment,
Type 5 = Deflection and Slope,
Type 5 = Deflection and Slope,
Type 6 = Shear and Rot. Stiffness,
Type 7 = Pile-head displacment in
M = Pile-head Moment lbs-in
V = Pile-head Shear Force lbs
S = Pile-head Slope, radians
R = Rot. Stiffness of Pile-head in-lbs/rad
Load Pile-Head
                                    Pile-Head
                                                                         Axial
                                                                                           Pile-Head
                                                                                                                     Maximum
                                                                                                                                               Maximum
                                                                                   Deflection
                                   Condition
Type Condition
                                                                        Load
                                                                                                                        Moment
                                                                                                                                                 Shear
                                                                          lbs
                                                                                                 in
                                                                                                                        in-1bs
   1 V= 56210. M= 6.76E+07 53790.0000
```

3.0920 6.9842E+07

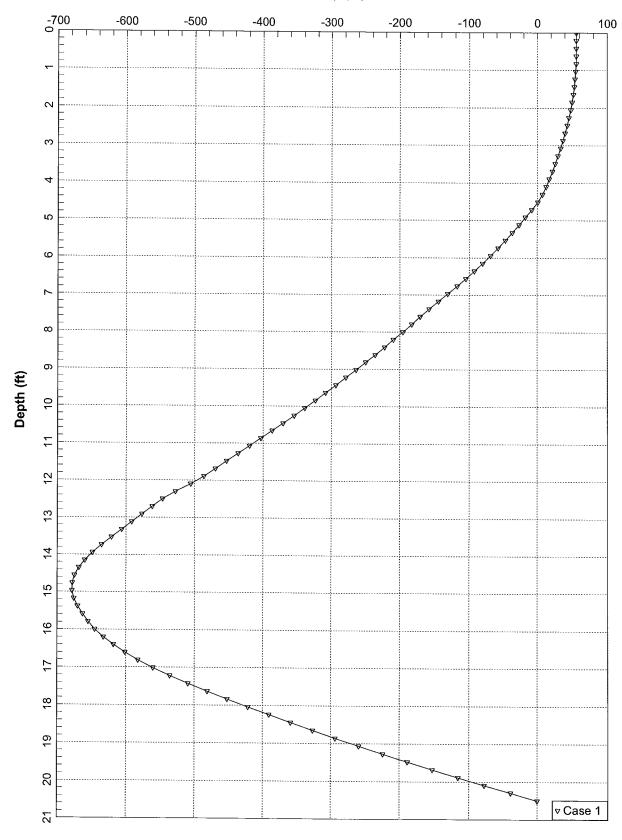
Computed Pile-head Stiffness Matrix Members K22, K23, K32, K33 for Superstructure


_	Top y	Shear React.	Mom. React.	K22	K32
	in	1bs	in-lbs	ībs/in	in-lbs/in
	.00213981 .00644148 .01020951 .01288297 .01495666 .01665100 .01808353 .01932445 .02041902 .02139815	5621.00008 16920.89606 26818.98573 33841.79211 39289.10394 43739.88179 47502.96083 50762.68817 53637.97146 56210.00000	936123.90822 2818014. 4466446. 5636027. 6543225. 7284460. 7911165. 8454041. 8932892. 9361239.	2626863. 2626863. 2626863. 2626863. 2626863. 2626863. 2626863. 2626863. 2626863.	4.374789E+08 4.374789E+08 4.374789E+08 4.374789E+08 4.374789E+08 4.374789E+08 4.374789E+08 4.374789E+08 4.374789E+08 4.374789E+08 4.374789E+08
_	Top Rota.	Shear React.	Mom. React.	K23	K33
	rad	lbs	in-lbs	1bs/rad	in-1bs/rad
	.00008299 .00025008 .00039684 .00050558 .00089471 .00115529 .00132478 .00142777 .00151088	36306.43708 109295.03670 173231.86305 218602.20437 255051.36852 285797.57798 311512.05870 333082.13000 351965.89420 368858.54974	6760948. 20352480. 32257918. 40704961. 47256996. 52610398. 57136636. 61057441. 64515836. 67609476.	4.374789E+08 4.370426E+08 4.365284E+08 4.323826E+08 2.850674E+08 2.473812E+08 2.351419E+08 2.32877E+08 2.329548E+08 2.326740E+08	8.146688E+10 8.138431E+10 8.128699E+10 8.051207E+10 5.281850E+10 4.553861E+10 4.312905E+10 4.276408E+10 4.276408E+10 4.27649E+10

K22 = abs(Shear Reaction/Top y)
K23 = abs(Shear Reaction/Top Rotation)
K32 = abs(Moment Reaction/Top y)
K33 = abs(Moment Reaction/Top Rotation)


The analysis ended normally.

Summary of Warning Messages


Lateral Deflection (in)

Bending Moment (in-kips)

Shear Force (kips)

LPILE Plus for Windows, Version 5.0 (5.0.39)

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method

> (c) 1985-2007 by Ensoft, Inc. All Rights Reserved

```
This program is licensed to:
 Centek Engineering Inc
Path to file locations:

(1)\Calcs\L-Pile\Improved Soil Condition\
Name of input data file:
Name of output file:
Name of plot output file:
Name of runtime file:

Caisson Analysis - Improved Soil Condition.lpo
  -----
                                                  Time and Date of Analysis
                                Date: January 30, 2012 Time: 17:43:35
                                                               Problem Title
 11021.C055 / CT5176 - Stony Hill / CL&P # 10254
                                                                 Program Options
 Units Used in Computations - US Customary Units: Inches, Pounds
 Basic Program Options:
Analysis Type 3:
- Computation of Nonlinear Bending Stiffness and Ultimate Bending Moment
Capacity with Pile Response Computed Using Nonlinear EI
Computation Options:

Only internally-generated p-y curves used in analysis

Analysis does not use p-y multipliers (individual pile or shaft action only)

Analysis assumes no shear resistance at pile tip

Analysis for fixed-length pile or shaft only

Analysis includes computation of foundation stiffness matrix elements

Output summary table of values for pile-head deflection, maximum bending moment, and shear force only

Analysis includes effects of soil movement on pile response

Additional p-y curves computed at specified depths
 Computation Options:
 Solution Control Parameters:
- Number of pile increments = - Maximum number of iterations allowed = - Deflection tolerance for convergence = - Maximum allowable deflection =
                                                                                                        100
                                                                                         1.0000E-04 in
                                                                                         1.0000E+02 in
Printing Options:
- Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.
                                       Pile Structural Properties and Geometry
Pile Length
                                                                                                    246.00 in
Depth of ground surface below top of pile =
                                                                                                        6.00 in
Slope angle of ground surface
                                                                                                          .00 deg.
Structural properties of pile defined using 2 points
Point
                                                Pile
                                                                    Moment of
                                                                                                      Pile
                                                                                                                          Modulus of
                                            Diameter
                                                                      Inertia
                                                                                                      Area
                                                                                                                          Elasticity
```

	in	in	Caisson Anal in**4	ysis – Impro Sq.in	oved Soil Condition.lpo lbs/Sq.in	
1 2	0.0000 246.0000	96.00000000 96.00000000	4169220. 4169220.	7238.2000 7238.2000	3300000. 3300000.	

Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of moment of inertia and modulus of are not used for any computations other than total stress due to combined axial loading and bending.

Soil and Rock Layering Information

The soil profile is modelled using 4 layers

```
Layer 1 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 54.000 in
p-y subgrade modulus k for top of soil layer = 90.000 lbs/in**3
p-y subgrade modulus k for bottom of layer = 90.000 lbs/in**3

Layer 2 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 54.000 in
p-y subgrade modulus k for top of soil layer = 550.000 in
p-y subgrade modulus k for top of soil layer = 300.000 lbs/in**3
p-y subgrade modulus k for bottom of layer = 300.000 lbs/in**3

Layer 3 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 150.000 in
Distance from top of pile to top of layer = 150.000 in
Distance from top of pile to bottom of layer = 150.000 in
Distance from top of pile to bottom of layer = 25.000 lbs/in**3
p-y subgrade modulus k for top of soil layer = 25.000 lbs/in**3
Layer 4 is sand, p-y criteria by Reese et al., 1974
```

Layer 4 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer = 186.000 in
Distance from top of pile to bottom of layer = 246.000 in
p-y subgrade modulus k for top of soil layer = 125.000 lbs/in**3
p-y subgrade modulus k for bottom of layer = 125.000 lbs/in**3

(Depth of lowest layer extends

.00 in below pile tip)

Effective Unit Weight of Soil vs. Depth

Effective unit weight of soil with depth defined using 8 points

Point No.	Depth X in	Eff. Unit Weight lbs/in**3
1	6.00	.06700
2 3	54.00	.06700
3	54.00	.07500
4	150.00	.07500
5	150.00	.07500
6	186.00	.07500
7	186.00	.03900
8	246.00	.03900

Shear Strength of Soils

Shear strength parameters with depth defined using 8 points

Point No.	Depth X in	Cohesion c lbs/in**2	Angle of Friction Deg.	E50 or k_rm	RQD %
1	6.000	.00000	30.00		
2	54.000	.00000	30.00		
3	54.000	.00000	40.00		
4	150,000	,00000	40.00		
5	150.000	.00000	40.00		
ő.	186.000	.00000	40.00		
7					
1	186.000	.00000	40.00		
8	246.000	.00000	40.00		

Notes:

Cohesion = uniaxial compressive strength for rock materials.
 Values of E50 are reported for clay strata.

Caisson Analysis - Improved Soil Condition.lpo Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata. Lateral Soil Movements -----Profile of soil movement with depth defined using 2 points Point Depth X Soil Movement in No. in 1 2 .000 -----Loading Type Static loading criteria was used for computation of p-y curves. Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 1Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 56210.000 lbs Bending moment at pile head = 67609476.000 in-lbs Axial load at pile head = 53790.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Output of p-y Curves at Specified Depths p-y curves are generated and printed for verification at 1 depths. Depth Depth Below Pile Head Depth Below Ground Surface 144.000 138.000 Depth of ground surface below top of pile = 6.00 in Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness Number of sections = 1

Pile Section No. 1

**** WARNING ****

An unreasonable input value for concrete cover thickness has been specified. The input value is either smaller than 0.8 inches or larger than 8 inches. You should check your input for correctness.

The sectional shape is a circular drilled shaft (bored pile).

Outside Diameter = 192.0000 in

Material Properties:

Compressive Strength of Concrete = 3.500 kip/in**2

Caisson Analysis - Improved Soil Condition.lpo
= 60. kip/in**2
cement = 29000. kip/in**2
= 38
= 1.27000 in**2 Vield Stress of Reinforcement = Modulus of Elasticity of Reinforcement = Number of Reinforcing Bars = Area of Single Bar = Number of Rows of Reinforcing Bars = Area of Steel = Area of Shaft = Cover Thickness (edge to bar center) = 1.27000 HTM-2 19 48.260 in**2 28952.918 in**2 .167 percent 53.635 in

Unfactored Axial Squash Load Capacity = 88886.96 kip

Distribution and Area of Steel Reinforcement

Row Number	Area of Reinforcement in**2	Distance to Centroidal Axis in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540	42.220 41.069 38.797 35.467 31.169 26.021 20.164 13.756 6.973 0.000 -6.973 -13.756 -20.164 -26.021 -31.169 -35.467 -38.797 -41.069
10	2.340	-42.220

Axial Thrust Force = 53790.00 lbs

Bending Moment	Bending Stiffness	Bending Curvature	Maximum Strain	Neutral Axis Position	Max. Concrete Stress	Max. Steel Stress
in-1bs	lb-in2	rad/in	in/in	inches	psi	psi
71076502.	2.274448E+14	3.125000E-07	.00003066	98.11165094	101.71175	401.75832
1.413224E+08	2.261158E+14	6.250000E-07	.00006077	97.22823000	199.84066	787.50464
2.107392E+08	2.247885E+14	9.375000E-07	.00009088	96.93335867	296.26348	1173.24015
2.793269E+08	2.234615E+14	.00000125	.00012098	96.78562117	390.98025	1558.96472
2.793269E+08	1.787692E+14	.00000156	.00004961	31.75282717	158.11064	4824.30746
2.793269E+08	1.489743E+14	.00000188	.00005852	31.20862627	185.85485	5818.75987
2.793269E+08	1.276923E+14	.00000219	.00006743	30.82362127	213.48835	6812.97694
2.793269E+08	1.117308E+14	.00000250	.00007635	30.53813124	241.01089	7806.95738
2.793269E+08	9.931623E+13	.00000281	.00008527	30.31899977	268.42220	8800.69997
2.793269E+08	8.938461E+13	.00000313	.00009421	30.14633131	295.72200	9794.20360
2.793269E+08 2.793269E+08	8.125874E+13	.00000344	.00010315	30.00746584	322.91002	10787.46711
2.793269E+08	7.448717E+13	.00000375	.00011210	29.89396620	349.98601	11780.48902
2.793269E+08	6.875739E+13 6.384615E+13	.00000406	.00012106	29.79999018	376.94971	12773.26799
2.793269E+08	5.958974E+13	.00000438	.00013003	29.72136068	403.80079	13765.80319
2.793269E+08	5.586538E+13	.00000469	.00013901	29.65501928	430.53900	14758.09313
2.793269E+08	5.257918E+13	.00000531	.00014799	29.59867144	457.16408	15750.13644
2.793269E+08	4.965812E+13	.00000563	.00015699	29.55056334	483.67575	16741.93162
2.793269E+08	4.704453E+13	.00000594	.00016399	29.50932741	510.07370	17733.47774
2.793269E+08	4.469230E+13	.00000594	.00017300	29.47388792	536.35766	18724.77318
2.793269E+08	4.256410E+13	.00000623	.00018402	29.44338083 29.41711092	562.52733 588.58244	19715.81697
2.793269E+08	4.062937E+13	.00000688	.00019303	29.41711092	614.52269	20706.60731
2.793269E+08	3.886287E+13	.00000719	.00020203	29.37509394	640.34777	21697.14309 22687.42307
2.793269E+08	3.724359E+13	.00000719	.00021113	29.35848284	666.05739	23677.44568
2.793269E+08	3.575384E+13	.00000730	.00022019	29.33646264	691.65128	24667.20932
2.793269E+08	3.437870E+13	.00000731	.00022323	29.33239603	717.12911	25656.71285
2.793269E+08	3.310541E+13	.00000844	.00023833	29.32240248	742.49058	26645.95480
2 793269E+08	3.192307E+13	.00000875	.00025650	29.31415987	767.73540	27634.93358
2.793269E+08	3.082228E+13	.00000906	.000256560	29.30749369	792.86328	28623.64745
2 793269E+08	2.979487E+13	.00000938	.00027471	29.30224943	817.87386	29612.09555
2.793269E+08	2.883374E+13	.00000969	.00028383	29.29829550	842.76685	30600.27621
2.793269E+08	2.793269E+13	.00001000	.00029296	29.29551744	867.54196	31588.18753
2.793269E+08	2.708625E+13	.00001031	.00030209	29.29381227	892.19884	32575.82835
2.793269E+08	2.628959E+13	.00001063	.00031124	29.29308844	916.73712	33563.19769
2.793269E+08	2.553846E+13	.00001094	.00032040	29.29327154	941.15663	34550.29249
2.793269E+08	2.482906E+13	.00001125	.00032956	29.29428720	965.45691	35537.11234
2.793269E+08	2.415800E+13	.00001156	.00033874	29.29607248	989.63764	36523.65573
2.793269E+08	2.352227E+13	.00001188	.00034792	29.29857302	1013.69856	37509.92043
2.793269E+08	2.291913E+13	.00001219	.00035711	29.30173731	1037.63928	38495.90522
2.793269E+08	2.180112E+13	.00001281	.00037553	29.30988264	1085.15887	40467.02771
2.793269E+08	2.078712E+13	.00001344	.00039399	29.32019663	1132.19370	42437.00983
2.793269E+08	1.986325E+13	.00001406	.00041249	29.33242464	1178.74105	44405.83750
2.793269E+08	1.901800E+13	.00001469	.00043102	29.34635210	1224.79800	46373.49806

2.793269E+08	1.824176E+13	Caisson Ana	ysis - Impro	oved Soil Condi		40000 07704
2.793269E+08	1.752639E+13	.00001531 .00001594	.00044960	29.36180162 29.37863016	1270.36164 1315.42925	48339.97784 50305.26022
2.793269E+08	1.686502E+13	.00001656	.00048688	29.39671183	1359.99785	52269.33068
2.793269E+08	1.625175E+13	.00001719	.00050559	29.41593504	1404.06419	54232.17668
2.793269E+08 2.793269E+08	1.568151E+13 1.514993E+13	.00001781	.00052433	29.43621683	1447.62552	56193.77902
2.793269E+08	1.465321E+13	.00001844 .00001906	.00054312 .00056192	29.45747423 29.47798491	1490.67851 1533.14523	58154.12450 60000.00000
2.793269E+08	1.418803E+13	.00001969	.00057981	29.45052767	1572.85085	60000.00000
2.793269E+08	1.375148E+13	.00002031	.00059703	29.39241171	1610.48876	60000.00000
2.793269E+08 2.793269E+08	1.334099E+13 1.295429E+13	.00002094	.00061378	29.31509829	1646.53599	60000.00000
2.793269E+08	1.258938E+13	.00002156 .00002219	.00063021 .00064648	29.22691011 29.13723135	1681.35801 1715.40038	60000.00000 60000.00000
2.793269E+08	1.224447E+13	.00002281	.00066234	29.03409433	1748.07343	60000.00000
2.793269E+08	1.191795E+13	.00002344	.00067815	28.93454790	1780.22063	60000.00000
2.793269E+08 2.793269E+08	1.160839E+13	.00002406	.00069371	28.82951689	1811.39563	60000.00000
2.793269E+08	1.131451E+13 1.103514E+13	.00002469 .00002531	.00071100 .00072900	28.79999971 28.79999971	1845.79334 1881.14053	60000.00000 60000.00000
2.793269E+08	1.076923E+13	.00002594	.00074671	28.78893042	1915.34283	60000.00000
2.793269E+08	1.051584E+13	.00002656	.00076127	28.65952635	1942.68524	60000.00000
2.793269E+08 2.793269E+08	1.027409E+13 1.004321E+13	.00002719 .00002781	.00077585	28.53691149	1969.71540	60000.00000
2.793269E+08	9.822484E+12	.00002781	.00079040 .00080448	28.41885138 28.28926420	1996.33509 2021.68241	60000.00000 60000.00000
2.793269E+08	9.611248E+12	.00002906	.00081857	28.16595984	2046.73633	60000.00000
2 793269E+08	9.408906E+12	.00002969	.00083269	28.04854631	2071.49553	60000.00000
2.793269E+08 2.793269E+08	9.214908E+12 9.028748E+12	.00003031	.00084683	27.93666887	2095.95898	60000.00000
2.793269E+08	8.849961E+12	.00003034	.00086054 .00087420	27.81541014 27.69748735	2119.30222 2142.24804	60000.00000 60000.00000
2.793269E+08	8.678117E+12	.00003219	.00088788	27.58473444	2164.91574	60000.00000
2.793269E+08	8.512820E+12	.00003281	.00090158	27.47685957	2187.30413	60000.00000
2.793269E+08 2.793269E+08	8.353702E+12 8.200423E+12	.00003344 .00003406	.00091530	27.37359381	2209.41205	60000.00000
2.793269E+08	8.052667E+12	.00003469	.00092865 .00094192	27.26300955 27.15445089	2230.56158 2251.30085	60000.00000 60000.00000
2.793269E+08	7.910142E+12	.00003531	.00095521	27.05022955	2271.77601	60000.00000
2.793269E+08	7.772575E+12	.00003594	.00096852	26.95012808	2291.98634	60000.00000
2.793269E+08 2.793269E+08	7.639710E+12 7.511312E+12	.00003656 .00003719	.00098185	26.85393476	2311.93053	60000.00000
2.793269E+08	7.267041E+12	.00003719	.00099519 .00102110	26.76145506 26.56522608	2331.60745 2368.87515	60000.00000 60000.00000
2.793269E+08	7.038158E+12	.00003969	.00104701	26.38132238	2405.02896	60000.00000
2.793269E+08	6.823253E+12	.00004094	.00107298	26.21027899	2440.16734	60000.00000
2.793269E+08 2.793269E+08	6.621082E+12 6.430547E+12	.00004219 .00004344	.00109864 .00112392	26.04194212	2473.75031	60000.00000
2.793269E+08	6.250672E+12	.00004344	.00112392	25.87431479 25.71747637	2505.71766 2536.71412	60000.00000 60000.00000
2.793269E+08	6.080586E+12	.00004594	.00117600	25.59999990	2568.43440	60000.00000
2.793269E+08 2.793269E+08	5.919511E+12	.00004719	.00120800	25.59999990	2605.28559	60000.00000
2.793269E+08	5.766749E+12 5.621674E+12	.00004844	.00124000 .00126646	25.59999990 25.48860312	2640.38640 2667.71534	60000.00000
2.793269E+08	5.483718E+12	.00005094	.00128989	25.32293558	2690.68927	60000.00000 60000.00000
2.793269E+08	5.352372E+12	.00005219	.00131335	25.16605711	2712.81564	60000.00000
2.793269E+08 2.793269E+08	5.227170E+12 5.107692E+12	.00005344	.00133592	24.99968290	2733.17408	60000.00000
2.793269E+08	4.993554E+12	.00005469 .00005594	.00135854 .00138122	24.84193754 24.69225740	2752.76187 2771.57302	60000.00000 60000.00000
2.793269E+08	4.884405E+12	.00005719	.00140396	24,55012178	2789.60108	60000.00000
2.793269E+08	4.779926E+12	.00005844	.00142602	24.40248156	2806.24475	60000.00000
2.793269E+08 2.793269E+08	4.679822E+12 4.583826E+12	.00005969 .00006094	.00144794 .00146991	24.25861788	2821.99497	60000.00000
2.793269E+08	4.491689E+12	.00006219	.00149193	24.12152052 23.99079752	2837.01235 2851.29143	60000.00000 60000.00000
2.793269E+08	4.403183E+12	.00006344	.00151317	23.85291052	2864.27868	60000.00000
2.793269E+08 2.793269E+08	4.318097E+12	.00006469	.00153440	23.72011614	2876.53644	60000.00000
2.793269E+08	4.236237E+12 4.157424E+12	.00006594 .00006719	.00155567 .00157616	23.59310675	2888.10406	60000.00000
2.796017E+08	4.085504E+12	.00006844	.00157616	23.45910215 23.32578707	2898.52016 2908.12479	60000.00000 60000.00000
2.798011E+08	4.015084E+12	.00006969	.00161600	23.18916750	2916.81740	60000.00000
2.799934E+08 2.801783E+08	3.947044E+12 3.881258E+12	.00007094 .00007219	.00163568 .00165540	23.05797815	2924.92433	60000.00000
2.803560E+08	3.817613E+12	.00007219	.00167517	22.93193579 22.81078863	2932.44106 2939.36337	60000.00000
2.805262E+08	3.755999E+12	.00007469	.00169498	22.69428778	2945.68658	60000.00000
2.806890E+08	3.696316E+12	.00007594	.00171484	22.58221292	2951.40633	60000.00000
2.808442E+08 2.816981E+08	3.638468E+12 3.591370E+12	.00007719 .00007844	.00173474	22.47434950	2956.51793	60000.00000
2.842568E+08	3.567144E+12	.00007844	.00175700 .00178500	22.40000010 22.40000010	2961.55123 2966.84054	60000.00000 60000.00000
2.867549E+08	3.542918E+12	.00008094	.00181300	22.40000010	2970.81514	60000.00000
2.891925E+08	3.518692E+12	.00008219	.00184100	22.40000010	2973.47502	60000.00000
2.915695E+08 2.938591E+08	3.494466E+12 3.469923E+12	.00008344	.00186900	22.40000010	2974.82017	60000.00000
2.938591E+08	3.419451E+12	.00008594	.00189700 .00192100	22.40000010 22.35345125	2972.30250 2967.51563	60000.00000 60000.00000
2.938591E+08	3.370427E+12	.00008719	.00193855	22.23424673	2964.13243	60000.00000
2.938591E+08	3.276478E+12	.00008969	.00197377	22.00719595	2957.33891	60000.00000
2.938591E+08 2.938591E+08	3.187624E+12 3.103462E+12	.00009219	.00200916	21.79428720	2950.50874	60000.00000
2.938591E+08	3.023631E+12	.00009469 .00009719	.00204472 .00208046	21.59443331 21.40666151	2950.45358 2957.24031	60000.00000 60000.00000
2.938591E+08	2.947803E+12	.00009969	.00211638	21.23009634	2962.96983	60000.00000
2.938591E+08	2.875685E+12	.00010219	.00215247	21.06394815	2967.61783	60000.00000
2.938591E+08 2.938591E+08	2.807012E+12 2.741543E+12	.00010469	.00218875	20.90750742	2971.15922	60000.00000
2.938591E+08	2.741543E+12 2.679057E+12	.00010719 .00010969	.00222523 .00226189	20.76013613 20.62124777	2973.56806 2974.81733	60000.00000 60000.00000
2.938591E+08	2.619357E+12	.00011219	.00229896	20.49213552	2974.61733	60000.00000
2.938591E+08	2.562259E+12	.00011469	.00233641	20.37198400	2966.99077	60000.00000
2.938591E+08	2.507598E+12	.00011719	.00237397	20.25785494	2961.43022	60000.00000

```
Caisson Analysis - Improved Soil Condition.lpo
.00011969 .00241163 20.14938211 2955.8
.00012219 .00244940 20.04623652 2950.2
                                                                                                                                                              60000 .00000
60000 .00000
60000 .00000
60000 .00000
60000 .00000
60000 .00000
2.938591E+08 2.455220E+12
2.938591E+08 2.404985E+12
                                                                                                                                      2955.84653
2950.23922
2944.60806
2938.95254
                         2.404985E+12
2.356765E+12
2.310440E+12
2.265902E+12
2.223048E+12
2.938591E+08
                                                           .00012469
                                                                                     .00248728
                                                                                                          19.94810629
2.938591E+08
                                                           .00012719
                                                                                     .00252527
                                                                                                          19.85471392
2.938591E+08
                                                           .00012969
                                                                                     .00256338
                                                                                                          19.76579332
                                                                                                                                       2933.27243
                                                                                                                                      2934.13180
2934.13180
2947.48550
2953.22767
2958.33015
2962.77982
2966.56342
2969.87440
2973.06561
2.938591E+08
                                                           .00013219
                                                                                     .00260160
                                                                                                          19.68110991
                         2.181785E+12
2.142025E+12
                                                                                    .00263993
.00267839
.00271697
.00275567
2.938591E+08
                                                                                                          19.60044050
19.52358198
19.45034266
19.38055086
19.31404066
                                                           .00013469
2.938591E+08
2.938591E+08
                                                           .00013719
                                                                                                                                                               60000.00000
60000.00000
                         2.142025E+12
2.103689E+12
2.066701E+12
2.030992E+12
1.996495E+12
1.930902E+12
1.899695E+12
1.869481E+12
                                                           .00013969
                                                                                                                                                              60000.00000
60000.00000
60000.00000
60000.00000
60000.00000
2.938591E+08
                                                           .00014219
2.938591E+08
2.938591E+08
                                                           .00014469
                                                                                     .00279450
                                                           .00014719
                                                                                     .00283346
                                                                                                          19.25066614
2.938591E+08
2.938591E+08
                                                           .00014969
                                                                                    .00287400
                                                                                                          19.20000029
                                                                                                          19.20000029
19.20000029
                                                           .00015219
                                                                                     .00292200
2.938591E+08
2.938591E+08
                                                                                                                                       2974.73206
2972.52008
                                                           .00015469
                                                                                     .00297000
                                                           .00015719
                                                                                    .00301800
                                                                                                          19.20000029
                                                                                                                                                               60000.00000
   938591E+08
                          1.840214E+12
                                                           00015969
                                                                                     .00306600
                                                                                                          19.20000029
                                                                                                                                       2966.42762
                                                                                                                                                               60000.00000
2.938591E+08
                         1.811848E+12
                                                          .00016219
                                                                                    .00311400
                                                                                                          19.20000029
                                                                                                                                      2960.33517
                                                                                                                                                               60000.00000
```

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 293859.10247 in-kip

p-y Curve in Sand Computed Using Reese Criteria for Static Loading Conditions

```
Soil Layer Number
                                                  144.000 in
Depth below pile head
Depth below ground surface
                                                  138.000 in
                                                  119.426 in
96.000 in
Equivalent Depth (see note) =
Pile Diameter
Angle of Friction
Avg. Eff. Unit Weight
                                                   40.000 deg.
                                                 .07222 pci
300.000 pci
A (static)
B (static)
                                                  1.9392
1.4082
                                              8390.430 lbs/in
99642.284 lbs/in
Pst
Psd
Pς
                                                8390.430 lbs/in
Cbar
                                             10253.8767
n
                                                  3.3153
                                              2227.4757
m
                                              .1667 in
11815.633 lbs/in
1.6000 in
16270.585 lbs/in
                                       =
рm
                                       =
уm
pu
                                                  3.6000 in
p-multiplier
                                                  1.00000
y-multiplier
                                                 1.00000
```

This p-y curve is computed using the equivalent depth.

y, in	p, 1bs/in
0.0000 .1333333 .2666667 .4000000 .5333333 .6666667 .8000000 .9333333 1.0667 1.2000 1.3333 1.4667 1.6000 2.6000 3.6000 99.6000	0.0000 4777.0500 * 6882.4406 7777.8050 8482.8629 9073.4721 9586.4327 10042.6945 10455.4426 10833.5703 11183.3903 11509.5621 11815.6332 14043.1089 16270.5845 16270.5845

* p value(s) computed using p = k * Eff x * y

```
Computed Values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
```

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 56210.000 lbs Specified moment at pile head = 67609476.000 in-lbs

Caisson Analysis - Improved Soil Condition.lpo Specified axial load at pile head = 53790.000 lbs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

**** WARNING - POSSIBLE SOLUTION ERROR 5501 ****

Force and moment imbalances may be too large.

The cause of the imbalance may be due to extreme changes in magnitude of nonlinear bending stiffness within three nodal points of the top of the pile which may affect the finite difference computation of shear force.

Please examine curves and printed output for deflection, moment, shear force, and number of iterations to determine if computed values are reasonable. If the shear force shows large changes, increase the number of nodal points (pile increments) and repeat the analysis.

Maximum moment imbalance for pile = Maximum lateral force imbalance for pile = -7.4153 in-lbs

Summary of Pile Response(s)

Definition of Symbols for Pile-Head Loading Conditions:

```
Type 1 = Shear and Moment,
Type 2 = Shear and Slope,
Type 3 = Shear and Rot. Stiffness,
Type 4 = Deflection and Moment,
Type 5 = Deflection and Slope,
Type 5 = Deflection and Slope,
Type 6 = Shear and Rot. Stiffness,
Type 7 = Pile-head displacment in
M = Pile-head Moment lbs-in
V = Pile-head Shear Force lbs
S = Pile-head Slope, radians
R = Rot. Stiffness of Pile-head in-lbs/rad
```

Type	Condition 1	Condition 2	Axiai Load 1bs	Pile-Head Deflection in	Maxımum Moment in-lbs	Maximum Shear 1bs
1	V= 56210.	M= 6.76E+07	53790.0000	2.5474	6.9896E+07	-699893.

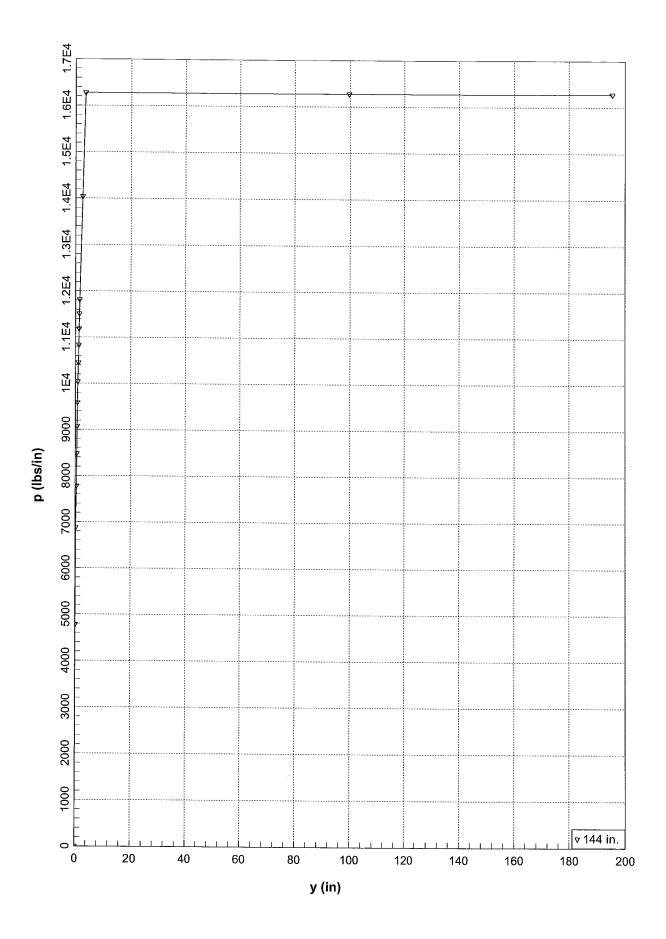
Computed Pile-head Stiffness Matrix Members K22, K23, K32, K33 for Superstructure

Mom Peact

V22

V22

_	in	lbs	in-1bs	lbs/in	K32 in-lbs/in
	.00117689 .00354280 .00561521 .00708561 .00822613 .00915801 .00994590 .01062841 .01123042 .01176894	5621.00008 16920.89606 26818.98573 33841.79211 39289.10394 43739.88180 47502.96083 50762.68816 53637.97146 56209.99999	863166.85024 2598391. 4118353. 5196782. 6033277. 6716744. 7294606. 7795173. 8236705. 8631668.	4776133. 4776133. 4776133. 4776133. 4776133. 4776133. 4776133. 4776133. 4776133.	7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08
_	Top Rota. rad	Shear React. 1bs	Mom. React. in-1bs	K23 lbs/rad	K33 in-1bs/rad
	.00005367 .00016156 .00025606 .00032312 .00041762 .00045355 .00048468	39362.07010 118491.63615 187804.79994 236983.27229 275129.05898 306296.43609 332648.07796 355474.90844 375609.59988	6760948. 20352480. 32257918. 40704961. 47256996. 52610398. 57136636. 61057441.	7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08 7.334281E+08	1.259758E+11 1.259758E+11 1.259758E+11 1.259758E+11 1.259758E+11 1.259758E+11 1.259758E+11 1.259758E+11


K22 = abs(Shear Reaction/Top y)

Shear React

The analysis ended normally.

Ton v

K23 = abs(Shear Reaction/Top Rotation)
K32 = abs(Moment Reaction/Top y)
K33 = abs(Moment Reaction/Top Rotation)

FDS NAME: SUE: EVISION: INITIATIVE / PROJECT:	F	5176 inal 0704	DATE: Approved? (Y/N) RF MANAGER:	4/13/20 Walter C.	11 11:04 Y	GENERAL REFORMA RE DESIGN ENG: REF DESIGN PHONE: REF DESIGN EMAIL:	TION	Radu Ali (860) 9i ra9161⊚		RE PERF ENG: RE PERF PHONE: RF PERF EMAIL: TRIDENT: GSM FREQUENCY: LITE FREQUE	TBD TBD TBD TBD Dual Band NER-RCTB-10-0	1:
D: SION: DRESS: CODE: ITUDE (D:M-S): ECTIONS, ACCESS AND JIPMENT LOCATION:	7 STONY 06	M43 h East HILL ROAD 801 " 56.85"	FALOCATION CODE: MARKET CLUSTER: GITY: COUNTY: LONGITUDE (D-M-S):		100 New BE FAIR -73° 2	IGATION INFORMATION 171269 Ingland ITHEL IFFIELD IA' 6.12*	GCATION NAME: MARKET: STATE: MSA/RSA: LAT (DEC. DEG.):	AWE - ST C C C 4 411.4	T	ORACLE PRITE 1: ORACLE PRITE 2: ORACLE PRITE 3: ORACLE PRITE 4: SEARCH RING MAME: SEARCH RING ID. BTA: LONG (DEC. DEG.): BORDER CELL WITH AM STUDY REQU (V/N) FREQ COORD:	73.4 -73.4	003238 N/A N/A N/A 121 101699 18D 18D
A - NO FIUNG TRIGGERED: A - MINOR FILING NEEDED: A - MAJOR FILING NEEDED: JCTURE AT&T OWNEO?: TIONAL REGULATORY?: -LEASE RIGHTS?: TITING TYPE:		TBD TBD TBD TBD TBD TBD TBD TBD	GROUND ELEVATION (II HEIGHT OVERALL (II): STRUCTURE HEIGHT (II)	GSA LOSS: GSA EXT AGMT NEED! GSA SCORECARD UPD	ED: ATED: Section 4 • TOWER/ 410' TBD TBD	TBD TBD TBD REGULATORY INFOR	MATION Flagpole On Roof TBD	PCS REDUCED - UPS ZIP- PCS POPS REDUCED: MKT LOCATION 850 MH MKT LOCATION 1900 M MKT LOCATION 700 MH MKT LOCATION AWS M	IZ CALL SIGN(S): HZ CALL SIGN(S):	TBD TBD TBD TBD		
HA A MMA TA ILON		4176	NAVE:			TBD TBD TBD TBD TBD TBD	1	PROVIDER: BD BD BD	IMUREQUIRED: TBD TBD TBD	ESRN: TBD TBD TBD TBD	TBD TBD TBD TBD	TBD TBD TBD
LSITE TYPE: LOCATION ID: //RNC IPMENT VENDOR IPMENT TYPE ATION INEL LOCATION	ME BRPTC 05 T NC	SECTORIZED TBD TBD TRBS SPO1 CTBSC06 0015 BD DOKIA BD BD	SITE TYPE: ORIGINATING CO: UMIS 151 C/ TB BRITCHO 599 255 ERICS RBS:	D ICR0R03 5 5 SON 206	Section 7 - RBS UMIS 2ND T BRPTCT 5 5 6 ERIC	NO CORO VITE SPECIFIC INFORMAT CARRIER RB53 BD 04CR0R03 995 SSSON S33206 BD	BRPTCT 5 ERIC RB	CARRIER RB55 (BD) 04CR0R03 995 255 SSON S3206 (BD)	GOLD CT-South Bridgeport UMTS QT	DPS ZONE: RF ZONE: HCARRIER RBS\$	NE_CT_S_ BE	FRED NE CS BP06 FR8S FR8S CSSON S6601
ID/BCF COMMON ID AA (OR OMNI) MA A LON	G5M 850 985 N/A N/A S5M 850 935 N/A N/A N/A	321P5176 321P5176 321P5176 321P5176 321P51761 321P51762 321P51762	CTV5176 CTV5176	N/A N/A	N/A N/A Section 9	CTV5176 CTU5176 - SOFT SECTOR ID	N/A N/A	CTV4176 CTV4176		UMTS 4TH 1900 RBS	CTL05176_7A_	1
IA (OR OMNI) MA A ON	SSM'850 R3S N/A N/A N/A N/A	51761 51762 51763	51761 51762 51763	N/A N/A N/A	N/A N/A N/A N/A Section 11 - CURRE	51767 51768 51769 NT RADIO COUNTS (I	N/A N/A N/A	41767 41768 41769		UMTS 47H 1900 RBS		
HA (OR OMNI) A MMA IA (ON	GSM 850 R35 N/A N/A N/A N/A	GSM 1900 RBS 3 2 5 5	UMTS 850 885 3 3 3 3 3	3 3 3 Section	3 3 3	JUMTS 2ND 1900 RBS 3 3 3 3 SE BAND CONFIGURA	3 3 3	3 3 3		UNITS 4TH 1900 RBS		
PROFILE mobining or Ethernet? and Model pard GIV FEGU Board Model FEGU Board Model Board GIV FFGU Board GIV	Т	1 Talanti 2 2 8D 8D	4 TB	D	1	BD		no Cabinet 4 FBD FBD	II	ist Cabinet	LTE 21	d Cabinet
IA (OR OMNI) MA A ON			UMTS 850 RBS 1	Secti	UMTS 2ND 850 RBS	SED BASE BAND COL	LUMTS 300.850 RBS			S UMTS 4TH 1940 RBS		
ombining or Ethernet? lard Model lard QTY ECU Board Model ECU Board QTY Board QTY Board QTY Board QTY Type(Qty-Model) Jumper Juble biber Dem. Box												

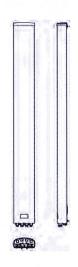
ANTENNA CONFIG [FROM BACK):	ANTE	Section 15A NNA 1 850 / 1900) or	- CURRENT SECTOR/CELL INFORMATIO ANTENNA 2 GSM, UMTS (850 / 1900) or	A-ALPHA (OR OMIN) ANTENNA 3 GSM, UMTS (850 / 1900) or	ANTENNA 4	ANTENNA 5
TX/RX7 TECHNOLOGY	LTE (70)	-TxRx / Rx-TxRx -UMTS / GSM-UMTS	LTE (700 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)
RRH LOCATION (Top/Bottom/None) FEEDERS TYPE Feeder Length (feet)	N/A 1 5/8" - Andrew 170 '	N/A 1 5/8" - Andrew 170 "				
ANTENNA ATOLL ANTENNA MAKE - MODEL ANTENNA VENDOR	77	70 rwave				
ANTENNA SIZE (H. X. W.X. D) ANTENNA WEIGHT ANTENNA GAIN	55.0 x 1	1.0 x 5.0 5 16.5 dBi				
AZIMUTH RADIATION CENTER (feel) ANTENNA TIP HEIGHT	34 14) * 5 '				
ELECTRICAL TILT (700/850/1900/AWS) MECHANICAL DOWNTILT FEEDER AMOUNT	0 °	0 *				
Antenna RET Motor (QTY/MODEL) Antenna RET Splitter (QTY/MODEL) Antenna RET Earth (Grounding) Clamp (QTY/MODEL)	1 / Powerwa N N	/A				
Antenna RET Surge Arrestor (QTY/MODEL) Antenna RET CONTROL UNIT (QTY/MODEL) usually per site DC BLOCK (QTY/MODEL)	N	/A vave / 7070				
TMA/INA (TYPE/MODEL) CURRENT INJECTORS FOR TMA (QTY/MODEL) POULFOR TMAS (QTY/MODEL) Usually per site	2 / LGP 21401 (I Polyphase	DB - 850 Bypass) or 1000860 ND 850 Bypass TMA)				
SURGE ARRESTOR (QTY/MODEL) DIPLEKER (QTY/MODEL) HYBRID COMBINER (QTY/MODEL) DUPLEKER (QTY/MODEL)	0 + 2 / Powerw N	ave LGP 21901				
DUPLEXER [GTY/MODEL] FILTER [GTY/MODEL] RXAIT KIT MODULE?	N N 1900 CCI RXAIT	/A /A				
TRIPLEXER OF NARROW BAND LLC (QTY/MODEL) SCPA/MCPA MODULE? Additional Component1	N/A 1900 CCI SCPA	N/A				
Additional Component2 Additional Component3 Additional Component3	Polyp N Home Ru	/A in to BTS				
HATCHPLATE POWER (Watts) ERP (Watts)	TBD TBD	TBD TBD				
Local Market Note1 Local Market Note2 Local Market Note3			J.C. AUDORIUS AND			
ANTENNA CONFIG (FROM BACK):	GSM, UMTS (n 15B - CURRENT SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (850 / 1900) or	AATION - BETA ANTENNA 3 GSM, UMTS (850 / 1900) or	ANTENNA 4 GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTS (850 / 1900) or
TX/RX? TECHNOLOGY RRH LOCATION (Top/Bottom/None)	-Rx / TxRx-Rx -UMTS / GSM-UMTS N/A			LTE (700 / AWS)	LTE (700 / AWS)	LTE (700 / AWS)
EEDERS TYPE eeder Length (feet)	N/A 1 5/8" - Andrew 170 '	N/A 1 5/8" - Andrew 170 '				
ANTENNA ATOLL ANTENNA MAKE - MODEL ANTENNA VENDOR ANTENNA SIZE (H x W x D)	77 Powe	rwave				
WITENNA WEIGHT WITENNA GAIN WIMUTH	55.0 x 1 3 13.5 dBi	5 16.5 dBi				
ANDATION CENTER (feet) ANTENNA TIP HEIGHT ELECTRICAL TILT (700/850/1900/AWS)	15 14 14	5' 7'				
FEEDER AMOUNT	0.0	2				
Antenna RET Motor (QTY/MODEL) Antenna RET Splitter (QTY/MODEL) Antenna RET Earth (Grounding) Clamp (QTY/MODEL)	1 / Powerway N.	/A /A				
Antenna RET Surge Arrestor (QTY/MODEL.) Antenna RET CONTROL UNIT (QTY/MODEL.) usually per site DC BLOCK (QTY/MODEL.)	N	rave / 7070				
(MA/LNA (TYPE/MODEL) CURRENT INJECTORS FOR TMA (QTY/MODEL) PDU FOR TMAS (QTY/MODEL) usually per site	2 / LGP 21401 (D Polyphase LGP 12104 (1900 AN	r 1000860 ID 850 Bypass TMA)				
URGE ARRESTOR (QTY/MODEL) IPLEXER (QTY/MODEL) IYBRID COMBINER (QTY/MODEL)	0 + 2 / Powerw N	ave LGP 21901 'A				
DUPLEXER (QTY/MODEL) PILTER (QTY/MODEL) XXAIT KIT MODULE?	N N 1900 CCI RXAIT	'A				
RIPLEXER OF NARROW BAND LLC (QTY/MODEL) CPA/MCPA MODULE? dditional Component1	N/A 1900 CCI SCPA Polyp N	N/A haser				
dditional Component2 dditional Component3 AGNETIC DECLINATION	Home Ru	n to BTS				
IATCHPLATE POWER (Watts) RP (Watts) ocal Market Note 1	TBD TBD	TBD TBD				
ocal Market Note2 ocal Market Note3		Section	15C - CURRENT SECTOR/CELL INFORMA	ATION - GAMMA		
NTENNA CONFIG (FROM BACK):	ANTER GSM, UMTS (I LTE (700	NNA 1 850 / 1900) or / AWS)	ANTENNA 2 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 3 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)
XJRX? ECHNOLOGY RH LOCATION (Top/Bottom/None)	LTE (700 -Rx / TxRx-Rx -UMTS / GSM-UMTS N/A	N/A				
EEDERS TYPE eeder Length (feet) NTENNA ATOLL	1 5/8" - Andrew 170 '	1 5/8" - Andrew 170 '				
NTENNA MAKE - MODEL NTENNA VENDOR NTENNA SIZE (H x W x D)	55.0 x 1	wave 1.0 x 5.0			-	'
NTENNA WEIGHT NTENNA GAIN ZIMUTH	13.5 dBi	5 16.5 dBi				
ADIATION CENTER (feet) NTENNA TIP HEIGHT LECTRICAL TILT (700/850/1900/AWS)	14 14 0*	5' 7' 0°				
RECHANGAL DOWNTILT EEDER AMOUNT Interna RET Motor (CITY/MODEL) Interna RET Splitter (CITY/MODEL)	0 1 / Powerway	e 7020 (DB)				
ntenna RET Earth (Grounding) Clamp (QTY/MODEL) ntenna RET Surge Arrestor (QTY/MODEL)	N/ N/ N/	A A				
INTERNA RET CONTROL UNIT (QTY/MODEL) usually per site OC BLOCK (QTY/MODEL) MA/LNA (TYPE/MODEL)	1 / Powerw N/ 2 / LGP 21401 (D	ave / 7070 A 0B - 850 Bypass)				
URRENT INJECTORS FOR TMA (QTY/MODEL) DU FOR TMAS (QTY/MODEL) busually per site URGE ARRESTOR (QTY/MODEL)	Polyphase LGP 12104 (1900 AN	r 1000860 ID 850 Bypass TMA)				
IPLEXER (QTY/MODEL) UPLEXER (QTY/MODEL) UPLEXER (QTY/MODEL)	0 + 2 / Powerwa N/ N/	ave LGP 21901				
LTER (QTY/MODEL) XAIT KIT MODULE? RIPLEXER or NARROW BAND LLC (QTY/MODEL)	1900 CCI RXAIT	A N/A				
CPA/MCPA MODULE? dditional Component1 dditional Component2	N/A 1900 CCI SCPA Polypi N/	haser				
dditional Component3 AGONETIC DECLINATION	Home Ru	n to BTS				
ATCHPLATE POWER (Watts)						
ATCHPLATE POWER (Watts) RP (Watts) Deal Market Note 1 Scal Market Note 2	TBD TBD	TBD		1 1 2		

ANTENINA CONFIG (FROM BACK): TEXANZ	ANTENNA 1 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	150 - CURRENT SECTOR CELL DIFFORM ANTENNA 2 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ATION - SELTA ANTENNA 3 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)
TECHNOLOSY BRH LOCATION (Top/dottom/None) TEDERS TYPE EEGEST English ((jet) GHTENNA ATOLL AVTENNA MAKE - MODEL AVTENNA MAKE - MODEL AVTENNA MAKE - MODEL					
ANTENNA VERDOR ANTENNA VEG (H & W AD) ANTENNA VEG (H & W AD) ANTENNA VEG (H & WATENNA GAN) AZMUTH EZADATION (ECNTER (Ret)					
ANTENNA TIP REIGHT ELECTRICA. THI (TROJSSO/1900/AWS) MECHANICAL DOWNTLY FEEDER AMOUNT Antenna RET Motor (CITY/MODEL)					
Antenan RT Splitter (DT/MODEL) Antenan RT Settin (Grounding) (Jamp (QTY/MODEL) Antenan RT Surge Arrestor (QTY/MODEL) Antenan RT SURGE Arrestor (QTY/MODEL) DE BLOCK (QTY/MODEL) THIND (THE TOTAL OF THE					
CURRENT INJECTIONS FOR THAN (CITY/MODEL) POUTOR THAN GOT/MODEL SHEARING PRINTER SURGE ARRESTOR (CITY/MODEL) DIPLEXER (CITY/MODEL) HYBRID COMBINER (CITY/MODEL) DUPLEXER (CITY/MODEL)					
RITER (DTYMODE) REAT INT MODULE? TRIPLERS OF MARROW BANGLLC (QTY/MODE) SEPAMCEPA MODULE? Additional Compenent Additional Compenent					
Additional Component? Additional Component3 Walditional Component3 Walditional Component3 Walditional Component3 Walditional Exposure Waltis) Bey Watts) Local Market Note1 Local Market Note2					
Local Market Note3 ANTENNA CONFIG (FROM BACK):	Section ANTENNA 1 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	15E - CURRENT SECTOR/GELL INFORMA ANTENNA 2 GSM, UMTS (880 / 1900) or LTE (700 / AWS)	ATION - EPSILON ANTENNA 3 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)
IX/RX7 IECHNOLOGY BBH LOCATION (Top/Bottom/None) FEEDERS TYPE Feeder Length (feet) AMTENNA ATOLL					
ANTERNA MAKE - MOBE ANTERNA YEMDOR ANTERNA SZE (H X W X D) ANTERNA SZE (H X W X D) ANTERNA WEIGHT ANTERNA GAIN AOWUTH		I			
RADATION CENTER ((ee) ANTENNA TIP REGIST ELECTRICAL TILT (700/50/1900/AWS) MECHANICAL DOWNTLY FEDER AMOUNT Antenna RET Motor (QTY/MODEL)					
Antena RET Spilter (QTY/MODEL) Antena RET Serif (Grouding) Clamp (QTY/MODEL) Antena RET Surge Arrestor (QTY/MODEL) Antena RET Surge Arrestor (QTY/MODEL) USUAlty Per site DE BLOCK (QTY/MODEL) USUAlty Per site DE BLOCK (QTY/MODEL)					
CURRENT HIECTORS FOR TRIM (CITYMODEL) POU FOR TIMAS (CITYMODEL) INJUSTIFY POR PROPERTY OF THE SURRE ARRESTOR (CITYMODEL) DEPEXER (CITYMODEL) HYBRID COMBINER (CITYMODEL) DUPLEXER (CITYMODEL) DUPLEXER (CITYMODEL)					
BILER (GTY/MODE) BEATK IT MODIUSE TRIPLER OF MARROW BAND LLC (GTY/MODE) SEPAMCEPA MODULE Additional Component Additional Component					
Additional Components MAGNETIC DELIVATION HACHRAITE POWER (WAILS) EVE (WAILS) LOCAL MARKET MORE LOCAL MARKET MORE) LOCAL MARKET MORE					
ANTENNA CONFIG (FROM BACK): DURKY	ANTENNA 1 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	n 15F - CURRENT SECTOR/CELL INFORM ANTENNA 2 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 3 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)
TECHNOLOGY BRAI LOCATION (Top/Bottom/None) FEDERS TYPE Feders tength (feet) ANTENNA ATOLL ANTENNA MAKE - MODEL					
AMTENNA VENDOR AMTENNA SUE (Hx W x b) AMTENNA WEIGHT AMTENNA AUGHT AMTENNA GAIN AZMUTH AZMUTH AZMATH AZMATHA CERTER (feet)				L	
AMTENNA TIP HEGHT ELECTRICAL TILL (TOOJSSO/1900/AWS) MECHANICAL DOWNTLT FEBER AMOUNT ANTENNA BET MOTOR (QTY/MODEL) ARTENNA BET MOTOR (QTY/MODEL)				I	
Antenna RET Earth (Grounding) Clamp (GTY/MODEL) Antenna RET Gruge Arristor (GTY/MODEL) Antenna RET GTY/MODEL) DE BLOCK (GTY/MODEL) USWAII/PPER/MODEL) TAMA/MA (TYPE/MODEL) USWAII/PPE/MODEL) GUBBERT (HINTENS ERST MA (GTY/MODEL)					
POUFOR TMAS (QTP/MODEL) usually per site SURGE ARRESTOR (QTP/MODEL) DIPLEKER (QTP/MODEL) HYBRID COMBINER (QTP/MODEL) DUPLEKER (QTP/MODEL)					
BILER (INT/MODEL) BOAT KIT MODULE TIRPLERE RE MARROW BAND LLC (CITY/MODEL) SCRYMCPA MODULE? Additional Component! Additional Component!					
Additional Components MAGNETIC DECUNATION PATCHPLATE POWER (Watts) GRP (Watts) GROWNING LOCAL MARKEN Note) LOCAL MARKEN Notes LOCAL MARKEN Notes					

	ANT	Section (6A - N ENNA 1	EW PROPOSED SEC	CTORICELL RIFORMA IENNAZ	TION - ALPHA (OR OWNS) ANTENNA 3	ANTENNA 4	ANTENNAS
ANTENNA CONFIG (FROM BACK):	GSM, UMTS	(850 / 1900) or 00 / AWS)	GSM, UMTS	(850 / 1900) or 00 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)
TECHNOLOGY RRH LOCATION (Top/Bottom/None) FEEDERS TYPE	N/A	-TxRx / Rx-TxRx S-UMTS / GSM-UMTS N/A	BOTTOM	N/A			
Feeder Length (feet) ANTENNA ATOLL	1 5/8" - Andrew 170 '	1 5/8" - Andrew 170 '	1 5/8" - Andrew 170 '	1 5/8" - Andrew 170 '			
ANTENNA MAKE - MODEL ANTENNA VENDOR ANTENNA SIZE (H x W x D)	Pow	770 erwave 11.0 x 5.0	P65-1	6-XLH-RR verwave 12.0 x 6.0			
INTENNA WEIGHT INTENNA GAIN IZIMUTH	13.5 dBi	35 16.5 dBi	14.0 dBi	64			
ADIATION CENTER (feet) INTENNA TIP HEIGHT	1	45' 47'		30 ° 145 ' 148 '			
LECTRICAL TILT (700/850/1900/AWS) MECHANICAL DOWNTILT EEDER AMOUNT	0.	0 *	2 *	0 °			
ntenna RET Motor (QTY/MODEL) ntenna RET Splitter (QTY/MODEL) ntenna RET Earth (Grounding) Clamp (QTY/MODEL)		ave 7020 (DB) N/A N/A		Built-in RET Equipment N/A			
ntenna RET Surge Arrestor (QTY/MODEL) ntenna RET CONTROL UNIT (QTY/MODEL) usually per site C BLOCK (QTY/MODEL)	1 / Power	V/A wave / 7070		N/A N/A N/A			
AA/LNA (TYPE/MODEL) JRRENT INJECTORS FOR TMA (QTY/MODEL) JU FOR TMAS (QTY/MODEL) usually per site	2 / LGP 21401 Polyphas	V/A DB - 850 Bypass) er 1000860	1 / Dougousus / T	N/A TTAW-07BP111-001 G Diplexer (Built In)			
NJ FOR TIMAS (QTY/MODEL) usually per site REGEARRESTOR (QTY/MODEL) PLEKER (QTY/MODEL) BRID COMBINER (QTY/MODEL)	LGP 12104 (1900 A	ND 850 Bypass TMA) V/A wave LGP 21901	2/APTDC-BDF0	N/A DM-DBW Broadband CM1007-DBPXBC-003			
BRID COMBINER (QTY/MODEL) PLEXER (QTY/MODEL) TER (QTY/MODEL)		N/A N/A		N/A N/A			
AIT KIT MODULE? IPLEXER OF NARROW BAND LLC (QTY/MODEL)	1900 CCI RXAIT N/A 1900 CCI SCPA		N/A N/A	N/A N/A N/A			
PA/MCPA MODULE? ditional Component1 ditional Component2	Poly	phaser N/A	N/A	N/A N/A N/A			
ditional Component3 AGNETIC DECLINATION TICHPLATE POWER (Watts)	Home R	un to BTS		N/A 14 °			
cal Market Note1	TBD TBD	TBD TBD	TBD TBD RET	TBD TBD via RRH			
cal Market Note2 cal Market Note3		Section 1	6B - NEW/PROPOSE	D SECTOR/CELL INFO	ORMATION - BETA		
TENNA CONFIG (FROM BACK):	GSM, UMTS	ENNA 1 (850 / 1900) or 0 / AWS)	GSM, UMTS	ENNA 2 (850 / 1900) or 00 / AWS)	ANTENNA 3 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 4 GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTS (850 / 1900) or
/RX? CHNOLOGY	-Rx / TxRx-TxRx -UMTS / GSM-UMT	-TxRx / Rx-TxRx -UMTS / GSM-UMTS	TBD LTE / 700	N/A	LTE (700 / AWS)	LTE (700 / AWS)	LTE (700 / AW5)
H LOCATION (Top/Bottom/None) DERS TYPE oder Length (feet)	N/A 1 5/8" - Andrew 170 "	N/A 1 5/8" - Andrew 170 '	BOTTOM 1 5/8" - Andrew 170 '	1 5/8" - Andrew 170 '			
TENNA ATOLL TENNA MAKE - MODEL TENNA VENDOR	7	770 erwave	P65-16	S-XLH-RR rerwave			
TENNA SIZE (H x W x D) TENNA WEIGHT TENNA GAIN	55.0 x	11.0 x 5.0 35	72.0 x	12.0 x 6.0 64			
MUTH DIATION CENTER (feet)	1	16.5 dBi 50 ° 45 '		50 °			
TENNA TIP HEIGHT CTRICAL TILT (700/850/1900/AWS) CHANICAL DOWNTILT	0 °	47' 0°	6 °	48 ' 0 °			
EDER AMOUNT Lenna RET Motor (QTY/MODEL) Lenna RET Splitter (QTY/MODEL)	1 / Powerwa	2 ive 7020 (DB)	N/A / Powerwave / B	2 Built-in RET Equipment			
tenna RET Earth (Grounding) Clamp (QTY/MODEL)	1	I/A I/A		N/A N/A N/A			
tenna RET CONTROL UNIT (QTY/MODEL.) usually per site BLOCK (QTY/MODEL) A/LNA (TYPE/MODEL)	1	wave / 7070 I/A DB - 850 Bypass)		N/A N/A TAW-07BP111-001			
RRENT INJECTORS FOR TMA (QTY/MODEL) J FOR TMAS (QTY/MODEL) usually per site IGE ARRESTOR (QTY/MODEL)	Polyphas LGP 12104 (1900 A	er 1000860 ND 850 Bypass TMA) I/A	Powerwave AISO	G Diplexer (Built In) N/A NM-DBW Broadband			
LEXER (QTY/MODEL) IRID COMBINER (QTY/MODEL)	0 + 2 / Powerv	rave LGP 21901 I/A	0 + 2 / Powerwave /	CM1007-DBPXBC-003 N/A			
PLEXER (QTY/MODEL) ER (QTY/MODEL) UT KIT MODULE?		I/A I/A	N/A	N/A N/A N/A			
PLEXER OF NARROW BAND LLC (QTY/MODEL) A/MCPA MODULE? Hitional Component1	N/A 1900 CCI SCPA	N/A phaser	N/A N/A	N/A N/A			
ditional Component2 ditional Component3 GNETIC DECLINATION	Home R	I/A un to BTS	1	WA WA			
CHPLATE POWER (Watts) (Watts)	TBD TBD	4 ° TBD TBD	TBD TBD	TBD TBD			
al Market Note1 al Market Note2 al Market Note3			RET	via RRH			
TENNA CONFIG (FROM BACK):	ANTE	Section 160 NNA1		SECTOR/CELL INFOR	MATION - GAMMA	promote the state of the state	
RY)				ENNA 2	ANTENNA 3	ANTENNA 4	ANTENNA 5
OH CONTRACTOR OF THE CONTRACTO	-Rx / TxRx-TxRx	OFO (4000)		(850 / 1900) or (0 / AWS)		ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 5 GSM, UMTS (850 / 1900) o LTE (700 / AWS)
LOCATION (Top/Bottom/None)	-Rx / TxRx-TxRx -UMTS / GSM-UMTS	850 / 1900) or 0 / AWS) -TxRx / Rx-TxRx -UMTS / GSM-UMTS N/A	GSM, UMTS LTE [70 TBD LTE / 700 BOTTOM	(850 / 1900) or O / AWS) N/A	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)
LOCATION (Top/Bottom/None) DERS TYPE fer Length (feet) ENNA ATOLL	-Rx / TxRx-TxRx -UMTS / GSM-UMTS N/A 15/8" - Andrew 170'	850 / 1900) or D / AWS) -TxRx / Rx-TxRx -UMTS / GSM-UMTS N/A 1 5/8" - Andrew 170'	GSM, UMTS LTE 70 TBD LTE 700 BOTTOM 15/8" - Andrew 170"	(850 / 1900) or O / AWS) N/A 1 5/8" - Andrew 170 '	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTS (850 / 1900) o ETE (700 / AWS)
LOCATION (Top/Botton/None) PER TYPE Bet Length (Lect) ENNA ATOL ENNA MAKE - MODEL ENNA WASTE (N W W D)	LTE [70 -Rx / TxRx-TxRx -UMTS / GSM-UMTS / N/A 15/8" - Andrew 170 ' 77	850 / 1990) or 0 / 1990 or 0 / 1990 or 0 / 1990 or 0 / 1787 / Rx-TxRx - UMTS / GSM-UMTS N/A 15/8" - Andrew 170 ' 1770	GSM, UMTS LTE (70 TBD LTE / 700 BOTTOM 15/8" - Andrew 170'	(850 / 1900) or O / AWS) N/A 1 5/8" - Andrew 170 '	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNAS GSM, UMTS (850 / 1900) 6: LTE (700 / AWS)
LICATION (TopBottom/None) EST YPE For Leight (Leet) FONDA ATOLI ENNA MARE - MODEL ENNA VERNA DOR ENNA VERNA SE (H x w x x) ENNA VERNA SE (H x w x x) ENNA MARE - MODEL ENNA MAR	LTE PO -Rx / TARx-TARx -UMTS / GSM-UMTS N/A 15/8* - Andrew 170 77 Pown 55.0 x 1	850 / 1900) or 0 / AVIS) 0 / AVIS) - TXRX / RX-TXRX - TXRX / RX-TXRX - UMTS / GSM-UMTS N/A 1 5/8" - Andrew 170" 1.0 x 5.0 5 16.5 dBi	G5M; UMTS TBD LTE /700 BOTTOM 1 5/8* - Andrew 170* P65-16 Pow 72.0 x	(850 / 1900) or 80 / AWS) N/A 1 5/8" - Andrew 170" XLH-RR enwave 12.0 x 6.0 64	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTR 1850 / 1900) 6 LTE (700 / AWS)
LICATION (TopRotton/None) PER TYPE PE TYPE PER T	-Rx / TxRx-TxRx -UMTS / GSM-UMTS N/A 15/8* - Andrew 170*	850 / 1900) or 0 / AVIS) - 178Rx / Rx-TxRx - UMTS / GSM-UMTS N/A 1 5/8* - Andrew 170' 170 10 x 5 . 0 15 16.5 dBi 0 * 15 * C	GSM, UMTS TBD LTE /700 BOTTOM 1 5/8° - Andrew 170 ' P65-16 Pow 72.0 x ' 14.0 dBi 2	15/8" - Andrew 15/8" - Andrew 170" XLH-RR enwave 12.0 x 6.0 64	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTI (850 / 1900) o LTE (700 / AWS)
LICATION (Top/Bottom/None) PER TYPE PE TYPE	THE 100 AND THE 10	850 / 1900) or 0 / AVIS) - 178Rx / Rx-TxRx - UMTS / GSM-UMTS N/A 1 5/8* - Andrew 170' 170 10 x 5 . 0 15 16.5 dBi 0 * 15 * C	GSM, LMTS TBD TBD TE1700 BOTTOM 15/6* - Andrew 170* P65-16 Pow 72.0 x	(\$50 / 1900) or o/ / AWS) N/A 1 5/8* - Andrew 170 ' XLH-RR erwave 12.0 x 6.0 64 170 ' 45 ' 45 ' 46 '	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTI (850 / 1900) o LTE (700 / AWS)
LICACION (Top/Botton/None) DEST YPE BET ENERGY (Iter) ENMA ATOL ENMA MAKE - MODEL ENMA WAKE - MODEL E	101 101	\$50 / 1900) or of /AVS) - TrRx/ Re-TrRx - UMTS / GSM-UMTS - N/A - 156* - Andrew - 170* - 10 × 55 - 16.5 dB) - 0* - 15.5* - 16.5 dB) - 0* - 17.7* - 18.5* - 18.	G5M, WMS LTE/Z0 TBD TBD LTE / 700 BOTTOM 1 5/8" - Andrew 1 70" P65-16 Pow 72.0 x 14.0 dBi 2. 1. 1. 8" N/A / Powerway / B	(\$50 / 1900) or or of AW3) N/A 1 5/8" - Andrew 170"	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 CSM, UMTI [860 / 1900] or ETE [700 / AWS]
LICACION (Top/Botton/None) DEST YPE Bet length (Iten) ENNA ANALE MODEL ENNA MAKE - MODEL ENNA VANGEN ENNA STATE (ITEN STATE S	187 (70 - 187 - 18	#80 / 1900) or O/AWS) - TSRX / Re-TSRX - UMITS / GSM-UMITS N/A 1 56° - Andrew 170 ' 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	G554, LMTS	(\$80 / 1900) or or of AW3) N/A 15/8* - Andrew 170* - XUH-RR retreave 12 0 x 60 64 64 65 10 10 10 10 10 10 10 10 10 10 10 10 10	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTI [880 / 1900] or LTE [700 / AWS]
ILOCATION (Top/Botton/None) ORS TYPE der Length (Lee) (ERNA AMAE: MODEL FENNA AMAE: MODEL FENNA MARE: MODEL FENNA MARE: MODEL FENNA SHAP JOHN A SHE JOHN	187 POWERNE 17 P	#80 / 1900) or of /AWS) - TARK / Ra-TARK - LWMTS / GSM-UMTS - N/A - 1 / 1/6 /	G54, LMTS TED TED TED TED TED TED TO BOTTOM 156"- Andrew 170" Pow 72.0 x 14.0 dBi 1.	(\$8) f 1900) or or of AW3) N/A 1 5/8" - Andrew 170"	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTI [880 / 1900] or LTE (700 / AWS)
ILOCATION (Top/Bottont/None) DES TYPE det Length (Len) TENNA ATOLL	11/Powerws	#\$0 / 1900) or of /AWS) - TARK/ Rs-TARK - UMITS / GSM-UMITS - N/A	G5M, LMTS TBD TED TED TED TED TO BOTTOM 156" - Andrew 170" 170" 156" - Andrew 170" 14.0 dBi 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	(85) f 1900) or or of AW3) N/A N/A 1 5/8" - Andrew 1 5/8" - Andrew 1 5/8" - Andrew 1 5/8" - Andrew 1 20 v.6 0 64 1 10 0 10 10 0	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTI [800 / 1900] or LTE [700 / AWS]
LICACION TOP/BOSTON/MONE) ERES TYPE SEE LENGH (IEEE) ENNA ANAKE - MODEL ENNA MAKE - M	187 / 1985 - 1884 - 1885 - 1884 - 1885 - 188	#\$0 / 1900) or of /AWS) - TARK/ Rs-TARK - UMITS / GSM-UMITS - N/A	G5M, LMTS TBD LTE /700 BOTTOM 150°- Andrew 150°- Andrew 170° PROM 72 0 x 14 0 dBi 1	(85) f 1900) or or of AW3) N/A N/A 1 5/8" - Andrew 170" XLHRR 1 5/8" - Andrew 170" XLHRR 1 20 v 6 0 64 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTI (850 / 1900) ol LTE (700 / AWS)
ILOCATION Top/Botton/None) DEST TYPE der Length (feet) TENNA AMKE - MODEL TENNA AMKE - MODEL TENNA AMKE - MODEL TENNA AMKE - MODEL TENNA VERNA TOP TENNA TOP	11/Poverwes 11/Pov	# \$50 / 1900) or of /AWS) - Thrak Ra-Thrak Ra-Thra	G5M, LMTS TEP TED	(85) f 1900) or or of AW3) N/A N/A 1 5/8" - Andrew 1 5/8" - Andrew 1 7/0" XJ.H.RR 2. Andrew 1 120 v.6 0 64 1 1 70" 455" 46" 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTI SB0 / 1900) or LTE (700 / AWS)
ILLOCATION (Top/Botton/None) ORS TYPE der Length (feet) FERNA ATOLL FERNA MAKE - MODEL FERNA MAKE - MODEL FERNA WERST FERNA STERLE FER	SET POWER	#\$0 f 1900 or of AWS] - TARKI Rs-TARK - UMITS I GSM-LMMS - NA - NA - 1 168" - Andrew - 170" - 70 - Invave - 170 - Invave - 1	G5M, LMTS TBD TET / TOD TBD TET / TOD BOTTOM TSO / TOD TSO / T	(85) f 1900) or or of AW3) N/A N/A 1 5/8" - Andrew 170" - X,LH-RR envawe 12 0x 6: 0 64 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTI SB0 7 1900) or LTE (700 / AWS)
INCOMENT OF THE PROPERTY OF TH	117 Powerson 1 1 Powerson 1 Powerson 1 Powerson 1 Powe	# # # # # # # # # # # # # # # # # # #	G54, LMTS TED TED TED TED TET 700 BOTTOM 156" - Andrew 170" Power 72.0 x 14.0 dBi 14.0 dBi 1.0 s	(\$80 f 1900) or or of AWS) N/A N/A 1 5/8" - Andrew 170"	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, UMTIS (80 / 1900) or LTE (700 / AWS)
ILOCATION TIGYBOSTOM/NONE) OPEN TYPE der Length (feet) FERNA ATOLL FERNA ATOLL FERNA ATOLL FERNA ATOLL FERNA ATOLL FERNA VERGETT FER	117 Powerson 1 1 Powerson 1 Powerson 1 Powerson 1 Powe	# \$50 / 1900) or of /AWS) - TARK/ Rs-TARK - UMITS / GSM-UMTS - N/A - N/A - 1 / 100	G54, LMTS TED TED TED TED TET 700 BOTTOM 156" - Andrew 170" Power 72.0 x 14.0 dBi 14.0 dBi 1.0 s	(85) f 1900) or or of AW3) N/A N/A 1 5/8" - Andrew 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ANTENNA 3 GSM, UMTS (850 / 1900) or	GSM, UMTS (850 / 1900) or	ANTENNA 5 GSM, URTI \$80 / 1900] or LTE [700 / AWS)

ANTENNA CONFIG (FROM BACK): TYPING THERMOLOGY	Section 18 ANTENNA 1 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	D - NEW-PROPOSED SECTOR CELL INFO ANTENNA 2 GSM, UM15 (850 / 1900) or LTE (700 / AWS)	RMATION - DELTA ANTENNA 3 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 4 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)
GRH LOCATION Toy/Bettom/None) FEDERS TYPE FEEDER TYPE					
ANTENNA SZE (H S W X D) ANTENNA SZE (H S W X D) ANTENNA SZE (H S W X D) ANTENNA GAN AZWUMH BADARIOH CENTER (Icel) ANTENNA THE HEIGHT					
THE TERM IN PROBEM THE TERM AND THE TOP	1				
Antensa RET CONTROL UNIT (QTV/MODEL.) usually per site De GIOCK (QTV/MODEL) TIMA/INA (TYPE/MODEL) FOUL FOR TIMA (QTV/MODEL.) FOUL FOR TIMAS (QTV/MODEL.) FOUL FOR TIMAS (QTV/MODEL.) ROUGH TIMAS (QTV/MODEL.) ROUGH TIMAS (QTV/MODEL.)					
DPLEKE (DTYMODE) HYBBO COMBINE (DTYMODE) DUPLEKE (DTYMODE) FLITE (DTYMODE) RAUL KIT MODULE? FRIPLEKE ON NARROW BAND LLC (DTYMODE) SEPAMICA MODULE?					
Ledowna Woods (1) Ledowna Wood					
Ocal Market Note 1 Cocal Market Note 2 Cocal Market Note 3 ANTENNA CONFIG (FROM BACK):	Section 16E ANTENNA 1 GSM, UMTS (850 / 1900) or	- NEW/PROPOSED SECTOR/CELL INFOR	MATION - EPSILON ANTENNA 3	ANTENNA 4	ANTENNA 5
TV/RX/ TECHNOLOGY BRH LOCATION (Top/Bettom/None) FEDRST VPE FEDRST VPE FEDRST VPE	LTE (700 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)	GSM, UMTS (850 / 1900) or LTE (700 / AWS)
AMTERNA MAGE - MODEL AMTERNA MAGE - MODEL AMTERNA MAGE - MODEL AMTERNA VERNOR AMTERNA WEBGHT AMTERNA GAIN AZMUTH					
SADATON ERHER (feet) ANTENNA THE PERHER BLEEREAL THE (TOOJSSO)/ANS) MECHANICAL DOWNTY FEEDER AMOUNT Alterna RET Motor (DIY/MODEL) Antenna RET Sphitter (DIY/MODEL)			J		
Antenna RET Estry (controlling) (Lamp (LLIY/MODEL) Antenna RET Surge Arrestor (GIY/MODEL) Antenna RET CONTROL UNIT (QTY/MODEL)) usually per site DC BLOCK (QTY/MODEL) TMA/LINA (TYPE/MODEL)					
CURRENT INJECTORS FORTMAL (CITYMODEL) POUT OR TIMAS (CITYMODEL) SURGE ARREST OR (CITYMODEL) HYBRO COMBINER (CITYMODEL) DUPLERE (CITYMODEL) DUPLERE (CITYMODEL) ELITER (CITYMODEL)					
BACH KE MODULE? IMPLEER OF MARKOV BAND LLC (GTY/MODEL) SCPA/MCPA MODULE? Additional Componenta Additional Componenta Additional Componenta Additional Componenta MODERNE DELINITION MODERNE DELINITION					
HATCHATE POWER (WAIL) ERR (WAIL) Local Market Note1 Local Market Note2 Local Market Note2	Section 16	F - NEW/PROPOSED SECTOR/CELL INFO	RMATION - ZETA		
ANTENNA CONFIG (FROM BACK): IT/NR/ IECHNOLOGY RBH LOCATION (Top/Bottom/Mone) FEEDERS TYPE FEEDERS TYPE	ANTENNA 1 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 2 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 3 GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA A GSM, UMTS (850 / 1900) or LTE (700 / AWS)	ANTENNA 5 GSM, UMTS (850 / 1900) or LTE (700 / AWS)
Feeder Length (Best) ANTENNA ATOL ANTENNA MAKE - MODEL ANTENNA MAKE - MODEL ANTENNA MAKE - MODEL ANTENNA SZE (H x W x D) ANTENNA SZE (H x W x D) ANTENNA SZE (H x W X D)					
AMTENIA GAIN AZMUTH RADATON CENTER (fee) AMTENIA TH FLEGHT ELECTRICAL TIT (700/550/1900/AWS) MECHARICA DOWNITT ERDER AMOUNT					
Antenna RET Motor (GDY/MODEL) Antenna RET Spitter (GDY/MODEL) Antenna RET Earth (Grounding) Clamp (GTY/MODEL) Antenna RET Earth (Grounding) Clamp (GTY/MODEL) Antenna RET EARTH (GROUNDEL) Antenna RET COMTROL UNIT (GTY/MODEL) usually per site De BLOCK (GTY/MODEL)					
IMA/IMA (TYPE/MODE) CURRENT INSECTORS FOR THAI (GITY/MODEL) POU FOR TMAS (GITY/MODEL) Issually per site SURGE ARRESTOR (GITY/MODEL) POPERER (GITY/MODEL) HYBRID COMBINER (GITY/MODEL) HYBRID COMBINER (GITY/MODEL)					
BLES (QTY/MODEL) RAMAR KY MODULE? TRIPLESE OF NARROW BAND LLC (QTY/MODEL) SEPAMCPA MODULE? Additional Component Additional Component					
Additional Components MAGNETIC DECUNATION MACHELIE FOWER Waits) GER (WAITS) GERS WARREN (MOET GERS WARREN (MOET) GERS MARKEN (MOET)					

P65-16-XLH-RR Dual Broadband Antennas


POLARIZATION: Dual linear ±45° FREQUENCY (MHz): 698-894, 1710-2170 HORIZONTAL BEAM WIDTH (°): 65, 65 GAIN (dBi/dBd): 15.5/13.4 17.5/15.4

TILT: 1-12, 0-8 LENGTH: 72"

Frequency range (MHz)	698	-894		1710-2170	
Frequency band (MHz)	698-806	806-894	1710-1880	1850-1990	1900-2170
Gain (dBi/dBd)	14.8/12.7	15.5/13.4	16.9/14.8	17.2/15.1	17.5/15.4
Polarization	Dual Line	ear +/- 45		Dual Linear +/- 45	
Nominal Impedance (Ω)	5	0	e en transmissi an de la company de la c	50	
VSWR	<1	.5:1		< 1.5:1	
Horizontal beam width, -3 dB (°)	66	65	60	63	63
Vertical beam width, -3 dB (°)	14.7	12.5	6.8	6.4	5.7
Electrical down tilt (°)	1 to	12		0 to 8	
Side lobe suppression, vertical 1st upper (dB)	> 16	>16	>16		
	>16	>16			
Isolation between inputs (dB)	> 30	> 30	> 30	> 30	
Inter band Isolation (dB)	>	40		> 40	
Tracking, horizontal plane ±60° (dB)	< 2		< 2	< 2	< 2
First null fill (dB)			>-20	>-20	>-20
Vertical beam squint (°)	< 0.8	< 0.8	< 0.5	< 0.5	< 0.5
Front to back ratio (dB) 180°±30° copolar	>24	>24	> 30	>30	>28
Front to back ratio (dB) 180°±30° total power				nannannannannannannannanana	A CONTRACTOR A CONTRACTOR A CONTRACTOR A
Cross polar discrimination (XPD) 0° (dB)	> 15	> 15	> 15	> 15	> 15
Cross polar discrimination (XPD) ±60° (dB)	> 10	> 10	> 10	> 10	> 10
Far field coupling					
IM3, 2xTx@43dBm (dBc)	<-1	153		<-153	Nichaes/Schines/Interferentation
IM7, 2xTx@43dBm (dBc)					
Power handling, average per input (W)	50	00	ra provincia con esta de Carlo	250	
Power handling, average total (W)	10	00		500	

MECHANICA	SPECIF	ICATIONS*
-----------	--------	------------------

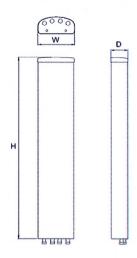
Connector	4 X 7/16 DIN Female, IP67
Connector position	Bottom
Dimensions, HxWxD, mm (ft)	72" x 12" x 6" (1829 x 305 x 152)
Mounting	Pre-mounted Tilt Brackets
Weight, with brackets, kg (lbs)	29 (64)
Weight, without brackets, kg (lbs)	24 (53)
Wind load, frontal/lateral/rear side 42 m/s Cd=1.6 (N)	1380
Maximum operational wind speed, m/s (mph)	100 (45)
Survival wind speed, m/s (mph)	150 (67)
Lightning protection	DC Ground
Operating Temperature	-40C to +60C
Radome material	PVC, IP55
Packet size, HxWxD, mm (ft)	87" x 16" x 10" (2225 x 400 x 225)
Radome colour	Light Grey
Shipping weight, kg (lbs)	34 (75)
RET	iRET AISGv1.1, MET and AISGv2.0
Brackets	7256.00, 7454.00

^{*}All specifications subject to change without notice. Please contact your Powerwave representative for complete performance data.

ANTENNA PATTERNS*

For detailed patterns visit http://www.powerwave.com/rpa/.

7770.00A


DBB90 Broadband Cross Polarized

POLARIZATION: XX-Pol FREQUENCY (MHz): 824-896, 1710-2170 HORIZONTAL BEAM WIDTH (°): 90 GAIN (dBi/dBd): 13.5/11.4, 15.5/13.4 TILT: MET

LENGTH: 1.4m (4'7")

ECTRICAL SPECIFICATIONS*				
Frequency range (MHz)	824-896		1710-2170	
Frequency band (MHz)	824-896	1710-1880	1850-1990	1900-2170
Gain (dBi/dBd)	13.5/11.4	15.5/13.4	15.5/13.4	15.5/13.4
Polarization	Dual linear ±45°		Dual linear ±45°	
Nominal Impedance (Ω)	50	a a marane a merana mendamena mendamena manamena mendamena mendamena mendamena mendamena mendamena mendamena m	50	
VSWR	<1.5:1		<1.5:1	
Horizontal beam width, -3 dB (°)	85	90	90	90
Vertical beam width, -3 dB (°)	15	7	7	7
Electrical down tilt (°)	0 to 10	and the second of the second s	0 to 8	
Side lobe suppression, vertical 1st upper (dB)	>18	>18	>18	>18
Isolation between inputs (dB)	>30	>30	>30	>25
Inter band Isolation (dB)	>36		>36	
Tracking, horizontal plane ±60° (dB)	<2	<2	<2	<2
First null fill (dB)			•	-
Vertical beam squint (°)	<1.0	<0.5	<0.5	<0.5
Front to back ratio (dB) 180°±30° copolar	>25	>25	>25	>25
Front to back ratio (dB) 180°±30° total power	>22	>21	>21	>21
Cross polar discrimination (XPD) 0° (dB)		-	-	•
Cross polar discrimination (XPD) ±60° (dB)	>10	>10	>10	>10
Far field coupling	•	-	<u>.</u>	
IM3, 2xTx@43dBm (dBc)	<-153	ACTION CONTRACTOR CONTRACTOR FOR FOR FOR FACILITY CONTRACTOR CONTRACTOR FOR FACILITY CONTRACTOR FOR FACILITY CONTRACTOR FOR FACILITY CONTRACTOR FA	<-153	
IM7, 2xTx@43dBm (dBc)			<-160	
Power handling, average per input (W)	500	an en en au profesionale de la main, de mante profesion de la profesion de la profesion de la profesion de la p	250	
Power handling, average total (W)	800		500	

IECHANICAL SPECIFICATIONS*	
Connector	4 x 7/16 DIN Female
Connector position	Bottom
Dimensions, HxWxD, mm (ft)	1408x280x125mm
Mounting	Pre-mounted heavy duty brackets
Weight, with brackets, kg (lbs)	17.6 (39)
Weight, without brackets, kg (lbs)	12.1 (27)
Wind load, frontal/lateral/rear side 42 m/s Cd=1.6 (N)	415
Maximum operational wind speed, m/s (mph)	42 (93)
Survival wind speed, m/s (mph)	55 (123)
Lightning protection	DC grounded
Operating Temperature	-40°C to +60°C
Radome material	GRP
Package size, HxWxD, mm (ft)	1550x355x255 (61"x1'2"x10")
Radome colour	Light Grey
Shipping weight, kg (lbs)	21.5 (47.4)
RET	8220.10, 8220.40, 8210.10, 8210.40
Brackets	7256.00, 7454.00

ANTENNA PATTERNS*

For detailed patterns visithttp://www.powerwave.com/rpa/.

^{*}All specifications subject to change without notice. Please contact your Powerwave representative for complete performance data.

TTAW-07BP111-001

TMA Twin Dual Band AWS with 700 Bypass 13 dB AISG

ELECTRICAL SPECIFICATIONS	
UL Frequency Range (MHz)	1710-1770 with 698-746 bypass
UL Rejection	>80 dB TX rejection, >25 dB rejection at 1700 and 1800 MHz
UL Gain(dB)	13
UL Return Loss	>18 dB
UL Noise Figure	<1.6 dB
UL Output 3rd Order Intercept Point(dBm)	>+23 (Input IP3 >+11)
UL Bypass Loss(dB)	<1.9
UL Max Input Power (dBm)	+14 dBm
DL Frequency Range (MHz)	2110-2170 with 698-746 bypass
DL Return Loss	>18 dB
DL Insertion Loss (dB)	<0.4
Intermodulation	<-155 dBc (2x43 dBm TX)
Input Voltage (V)	8.0-30V (AISG Mode 10-30V; Current Alarm Mode 8-17)
Alarm Functionality	AISG compatible or in case of no AISG command received, current alarm mode 170-190 mA
Power Consumption	<1.5 W
Power Handling, RMS	700: 500 W; AWS 300W
AISG Compatibility	AISG 1.1 fully upgreadable to AISG 2.0 (AISG version only depended on loaded SW version) TTAW-07BP112-001 has AISG 2.0 loaded from factory

MECHA	NICAL	CDECIE	PATIONS
NIECHA	INICAL	SPECIFI	CATIONS

Dimension HxWxD mm(ft)	250x169x139 (9.9"x6.7"x5.4")
Weight(lbs)	<18 (<8 kg)
Colors	Off white (NCS 1502-R)
RF Connectors	Female 7/16 DIN, long neck
Mounting Kit	Mounting kit for pole and wall is included

ENVIRONMENTAL SPECIFICATIONS

Temperature Range	-40 to +65°C
Operational	ETS 300 019-1-4
Transportation	ETS 300 019-1-2
Storage	ETS 300 019-1-1
Lightning Protection	IEC 61312-1: 2 kA 8/20 μs, 3 kA 10/350 μs
Housing	Aluminium
MTBF	>1 million hours
Ingress Protection	IP67 minimum

APPROVAL AND TESTS

Safety	UL 60950; UL 1950, TUV
EMC	FCC part 15

^{*}All specifications subject to change without notice. Contact your Powerwave representative for complete performance data.

Tower Mounted Amplifier

N 2 0 5 0 6 0 0 0 0

Technical Specifications

Product Number

LGP214nn

850 MHz

Bypass (MHz) Return loss* (dB)

Insertion loss* (dB)

824-894 > 20 < 0.3

1900 MHz

Up-link

Frequency range, full band (60 MHz)

1850-1910

Nominal gain (dB) Return loss* (dB) Noise figure* (dB)

> 20

Output 3rd order Intercept Point* (dBm)

< 1.7 > +23

Down-link

Frequency range, full band (60 MHz) Insertion loss* (dB)

1930-1990 < 0.6

Return loss* (dB)

> 20

Intermodulation

2 Tx@x43 dBm (dBc)

<-158

Alarm Functionality

Power Consumption

Two levels, individually supervised LNAs

@12 VDC

1.2 W

* Typical

All specifications subject to change without notice. Please contact your Powerwave representative for complete performance data.

Mechanical Specifications

Size,W x H x D (without mounting plate)

Weight

Color

Housing

RF-connectors Mounting kit

Temperature range

MTBF

Ingress protection, IP 65

Environmental

EMC

235 x 366 x 66 mm (9.2 x 14.4 x 2.6 in)

6.4 kg (14.1 lbs)

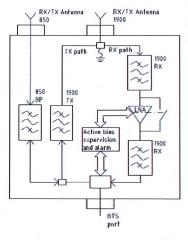
Off white (NCS 1502-R)

Aluminum

DIN 7/16 female.

Mounting kit for pole and wall is included

-40 °C to +65 °C (-40 °F to +149 °F)


>1 million hours

UL 60 950

EN 60 529

ETS 300 019

FCC Part 15

Corporate Headquarters

Powerwave Technologies, Inc. 1801 East St. Andrew Place Santa Ana, CA 92705 USA

Tel: 714-466-1000 Fax: 714-466-5800 www.powerwave.com Main European Office Antennvägen 6 SE-187 80 Täby Sweden

Tel: +46 8 540 822 00 Fax: +46 8 540 823 40

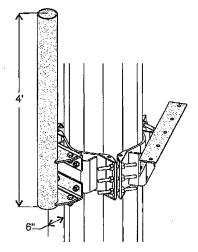
Main Asia-Pacific Office 23 F Tai Yau Building 181 Johnston Road Wanchai, Hong Kong Tel: +852 2512 6123 Fax: +852 2575 4860

©Copyright 2006, Powerwave Technologies, Inc. All Rights reserved. Powerwave, Powerwave Technologies, The Power in Wireless and the Powerwave logo are registered trademarks of Powerwave Technologies, Inc.

COVERAGE AND CAPACITY

GLOBAL PARTNER

Monopole Pipe Mounts

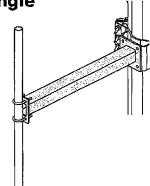

Tri-Sector Adapter Kit for Single Antenna per Sector

The Tri-Sector Adapter Kit provides adapter plates (3 per kit) for supporting a single wireless antenna per each sector, positioned adjacent to the pole. The plates bolt directly to the tri-bracket with included 5/8" diameter hardware. Tri- Kit Includes 3 Plates bracket and 2-3/8" antenna and Hardware mounting pipes ordered separately.

separately.	
Description	P/N
Tri-Sector Adapter Kit	- B1865

Pipe Mount for Polygon or Round Poles

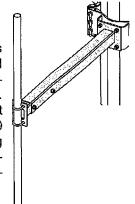
The B2102 Pipe Mount, for round or polygon poles has a 4-1/2" O. D. x 4' mounting pipe. The mounting pipe is cantilevered upward 3' for the attachment of a dish antenna up to 6' diameter. To use the included side strut bracket the antenna may need to be installed inverted to position the



antenna side strut closer to the side strut bracket. The mount bolts to the separately ordered tri-bracket with included 5/8" diameter hardware.

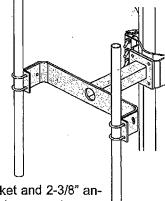
Description	P/N	_
Plpe Mount, 4-1/2" x 48"	B2102	_

Standoff Arm for Single Antenna


This Standoff Arm provides support for a single wireless sector antenna from the tribracket. The Standoff Arm bolts to the separately ordered tri-bracket with included 5/8" diameter hardware. The wireless panel antenna mounts on a separately ordered 2-3/8" O. D. antenna mounting pipe.

Description	P/N
1' 6" Standoff Arm for single antenna	B2434
2' Standoff Arm for single antenna	B2758
3' Standoff Arm for single antenna	B2759
4' Standoff Arm for single antenna	B1826

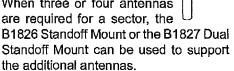
5' - 8' Adjustable Standoff Arm

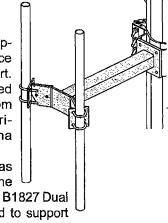

The Adjustable Standoff Arm allows for the field adjustment as required for the site. The adjustable arm telescopes in 1' increments from 5' to 8'. When the Mount is fully extended, it will support an applied load of 400 lbs. Hardware included for mounting to tri-bracket and antenna pipe. Tri-bracket and 2-3/8" antenna mounting pipe ordered separately.

Description	 P/N
5' - 8' Standoff Arm	B2065

Dual Standoff Mount

The Dual Standoff Mount provides support for two antennas that face the same azimuth and are positioned 2' 3-9/16" from the tri-bracket. The two antennas, separated by 3', can be down-tilted from 0° to 30°. The mount bolts to a separately ordered tri-bracket with included 5/8"



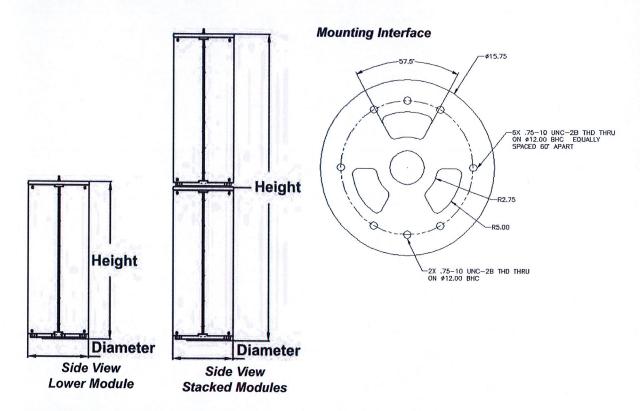

diameter hardware. Tri-bracket and 2-3/8" antenna mounting pipes ordered separately.

Description	P/N
Dual Standoff for two antennas	B1827

Standoff Arm for Two Antennas

The Standoff Arm provides support for two antennas that face adjacent sectors, 120° apart. The two antennas, separated by 1'8-1/2", can be tilted from 0° to 30°. Galvanized. Tribracket and 2-3/8" antenna pipes ordered separately. When three or four antennas

Standoff From Tri-Bracket	Sector Antenna Separation*	P/N
3' 3-5/16"	6'	B1868
5' 7-1/16"	10'	B1970


*The "Sector Antenna Separation" is for two antennas on each sector, where multiple Straight Arm Sector Mounts are installed.

PCS 30" AcCELLERATOR™

Mechanical Specifications		Single	Stacked	
Dimensions:	Height	76 inches (193 cm)	152 inches (386 cm)	
	Diameter	30 inches	s (76.2 cm)	
Rated Wind Velocity		100 mph (161 kph)		
Side Wind Load @ 100 mph		317 lbs (1408 N)	634 lbs (2816 N)	
Weight		265 lbs (120 kg)	530 lbs (240 kg)	
Mounting Interface		6 ea. 3/4-10 Bolts	on 12 inch Bolt Circle	

P65-15-XLH-RR

Dual Broadband Antennas

POLARIZATION: Dual linear ±45° FREQUENCY (MHz): 698-894, 1710-2170 HORIZONTAL BEAM WIDTH (*): 65, 65 GAIN (dBi/dBd): 14.7/12.6, 17.0/14.9 TILT: 0-13, 0-9

LENGTH: 51"

ELECTRICAL SPECIFICATIONS*					
Frequency range (MHz)	698	-894		1710-2170	~~·······
Frequency band (MHz)	698-806	806-894	1710-1880	1850-1990	1900-2170
Gain (dBi/dBd)	14/11.9	14.7/12.6	16.4/14.3	16.7/14.6	17.0/14,9
Polarization	Dual Line	ear +/- 45		Dual Linear +/- 45	
Nominal Impedance (Ω)	5	0		50	
VSWR	< 1	.5:1		< 1.5:1	
Horizontal beam width, -3 dB (°)	73	63	65	61	60
Vertical beam width, -3 dB (°)	1	7		7.5	•
Electrical down tilt (°)	0-	13		0-9	
Side lobe suppression, vertical 1st upper (dB)	>	14		>20	
Isolation between inputs (dB)	>:	30		> 30	
Inter band Isolation (dB)	>	40		> 40	
Tracking, horizontal plane ±60° (dB)	<	2		< 2	
Vertical beam squint (°)	<1	.25		< 0.5	
Front to back ratio (dB) 180°±30° copolar	>	25		> 28	
Front to back ratio (dB) 180°±30° total power	>	25		> 25	
Cross polar discrimination (XPD) 0° (dB)	>	15		> 15	
Cross polar discrimination (XPD) ±60° (dB)	> 10		> 10		
IM3, 2xTx@43dBm (dBc)	<-1	53		<-153	
Power handling, average per input (W)	50	00		300	
Power handling, average total (W)	10	00		600	

MECHANICAL	SPECIFICATIONS*

Connector	4 X 7/16 DIN Female, IP67
Connector position	Bottom
Dimensions, HxWxD, in (mm)	51"x12"x6" (1290x312.5x147.5)
Mounting	Pre-mounted Tilt Brackets
Weight, with brackets, lbs (kg)	41 (19)
Weight, without brackets, lbs (kg)	30 (14)
Wind load, frontal/lateral/rear side 42 m/s Cd=1.0 (N)	404 / 75 / 511
Maximum operational wind speed, mph (m/s)	100 (45)
Survival wind speed, mph (m/s)	150 (67)
Lightning protection	DC Ground
Operating Temperature	-40°C to +60°C
Radome material	PVC, IP55
Package size, HxWxD, in (mm)	60" x 16" x 10" (1524 x 400 x 255)
Radome colour	Light Grey
Shipping weight, lbs (kg)	52 (24)
RET	iRET AISGv1.1, MET and AISGv2.0
Brackets	7256.00, 7454.00A

^{*}All specifications subject to change without notice. Please contact your Powerwave representative for complete performance data.

ANTENNA PATTERNS*

For detailed patterns visit http://www.powerwave.com/rpa/.

TTAW-07BP111-001

TMA Twin Dual Band AWS with 700 Bypass 13 dB AISG

ELECTRICAL SPECIFICATIONS	
UL Frequency Range (MHz)	1710-1770 with 698-746 bypass
UL Rejection	>80 dB TX rejection, >25 dB rejection at 1700 and 1800 MHz
UL Gain(dB)	13
UL Return Loss	>18 dB
UL Noise Figure	<1.6 dB
UL Output 3rd Order Intercept Point(dBm)	>+23 (Input IP3 >+11)
UL Bypass Loss(dB)	<1.9
UL Max Input Power (dBm)	+14 dBm
DL Frequency Range (MHz)	2110-2170 with 698-746 bypass
DL Return Loss	>18 dB
DL Insertion Loss (dB)	<0.4
Intermodulation	<-155 dBc (2x43 dBm TX)
Input Voltage (V)	8.0-30V (AISG Mode 10-30V; Current Alarm Mode 8-17)
Alarm Functionality	AISG compatible or in case of no AISG command received, current alarm mode 170-190 mA
Power Consumption	<1.5 W
Power Handling, RMS	700: 500 W; AWS 300W
AISG Compatibility	AISG 1.1 fully upgreadable to AISG 2.0 (AISG version only depended on loaded SW version) TTAW-07BP112-001 has AISG 2.0 loaded from factory

MECHANICAL	SPEC	IFICAT	PINE
MECHANICA		HIVAI	CNO

Dimension HxWxD mm(ft)	250x169x139 (9.9"x6.7"x5.4")
Weight(lbs)	<18 (<8 kg)
Colors	Off white (NCS 1502-R)
RF Connectors	Female 7/16 DIN, long neck
Mounting Kit	Mounting kit for pole and wall is included

ENVIRONMENTAL SPECIFICATIONS

Temperature Range	-40 to +65°C
Operational	ETS 300 019-1-4
Transportation	ETS 300 019-1-2
Storage	ETS 300 019-1-1
Lightning Protection	IEC 61312-1: 2 kA 8/20 μs, 3 kA 10/350 μs
Housing	Aluminium
MTBF	>1 million hours
Ingress Protection	IP67 minimum

APPROVAL AND TESTS

Safety	UL 60950; UL 1950, TUV
EMC	FCC part 15

^{*}All specifications subject to change without notice. Contact your Powerwave representative for complete performance data.

New Cingular Wireless PCS, LLC

500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900

Phone: (860) 463-5511 Fax: (860) 513-7190

Douglas L. Culp Real Estate Consultant

February 6, 2012

Honorable Matt Knickerbocker First Selectman Bethel Bethel Town Hall 1 School Street Bethel, CT 06801

Re: Telecommunications Facility – 7 Stoney Hill Road Bethel, CT

Dear First Selectman Knickerbocker:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT&T") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review AT&T's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Cingular's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures; please call me at (860) 463-5511 or Ms. Linda Roberts, Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Douglas L. Culp Real Estate Consultant

Enclosure