JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport
WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com
March 25, 2015

Attorney Melanie Bachman
Acting Executive Director Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 Blue Sky Towers/T-Mobile equipment upgrade T-Mobile Site ID CT11115F 38 Spring Hill Lane, Bethel Connecticut

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Blue Sky Towers owns the existing telecommunications tower and related facility at 38 Spring Hill Lane, Bethel Connecticut (latitude 41.421013 /longitude -72.749453). T-Mobile intends to add three (3) antennas, and related equipment at this existing facility in Bethel ("Bethel Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16 $50 \mathrm{j}-73$, of construction which constitutes an exempt modification pursuant to R.C.S.A. § $16-$ $50 \mathrm{j}-72(\mathrm{~b})(2)$. In accordance with R.C.S.A. § $16-50 \mathrm{j}-73$, a copy of this letter is being sent to the First Selectman, Matt Knickerbocker and the property owner, Spring Hill Lane Properties, LLC.

The existing Bethel Facility consists of a 124 foot monopole tower. ${ }^{1}$ T-Mobile plans to add three (3) antennas and three (3) RRUs (remote radio units) on proposed pipe mounts on the tower at a centerline of 101 feet. T-Mobile will also add hybrid cable that will run inside the monopole and within the compound area. (See the plans revised to March 23, 2015 attached hereto as Exhibit A). The existing tower is structurally capable of supporting T-Mobile's proposed use. See the Structural Analysis Report dated February 25, 2015 attached hereto as Exhibit B.

The planned modifications to the Bethel Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

[^0]March 25, 2015
Site ID CT11115F
Page 2

1. The proposed modification will not increase the height of the tower. T-Mobile's new antennas and equipment will be installed at the 101 foot level. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The installation of the hybrid cable in the existing compound, as reflected on the attached site plan, will not require an extension of the site boundaries. (See Sheet A-1).
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the additional antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated March 13, 2015 T-Mobile's operations would add 13.37\% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 90.77% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed additional antennas and equipment at the Bethel Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,

cc: First Selectman, Matt Knickerbocker
Blue Sky Towers
Spring Hill Lane Properties, LLC
Elizabeth Jamieson, Transcend Wireless (via e-mail)

EXHIBIT A

STRUCTURAL ANALYSIS REPORT

For

CT11115F

CT115/SNET VALLEY \qquad
38 SPRING HILL LANE BETHEL, CT 06801

Antennas Mounted to the Monopole

Prepared for:

Transcend Wireless

Dated: February 25, 2015

Prepared by:

1600 Osgood Street BIdg. 20 N Suite 3090
North Andover, MA 01845
(P) 978.557.5553 (F) 978.336 .5586
www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by T-Mobile to conduct a structural evaluation of the 124 ' monopole supporting the existing and proposed TMobile's antennas located at elevation 101 ' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of T-Mobile's existing and proposed antennas listed below.

Record drawings of the existing monopole were not available for our use. The previous structural analysis report prepared by RAMAKER \& Associates, Inc., dated December 29, 2014, was available and obtained for our use.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing monopole is in conformance with the ANSI/TIA-222-F Standard for the loading considered under the criteria listed in this report. The monopole structure is rated at 94.9% - (Pole section L2 from EL.47.7' to EL.96.0' Controllingl.

APPURTANENCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
	15^{\prime} Omni	130^{\prime}	Low Profile Platform
AT\&T	(3) RRUS-11	124^{\prime}	Low Profile Plafform
AT\&T	(6) 7770 Antennas	1235^{\prime}	Low Profile Platform
AT\&T	(9) LGP13519	123.5^{\prime}	Low Profile Platform
AT\&T	(3) P65-16-XLH-RR Antennas	122^{\prime}	Low Profile Platform
AT\&T	Surge Arrestor DC6-48-60-18-8F	120^{\prime}	Low Profile Platform
Sprint	(3) APXVSPP18 Antennas	116^{\prime}	Low Profile Platform
Sprint	(3) APXV9TM14 Antennas	116^{\prime}	Low Profile Plafform
Sprint	(3) RRH8x20-25	116^{\prime}	Low Profile Platform
Sprint	(3) RRH-800	108^{\prime}	Low Profile Platform
Sprint	(6) RRH-1900	105^{\prime}	Low Profile Platform
	10' Dipole	106^{\prime}	Low Profile Platform
T-Mobile	(6) APX16PV-16PVL Antennas	101^{\prime}	Low Profile Platform
T-Mobile	(3) LNX-6515DS-VTM Antennas	101^{\prime}	Low Profile Platform
T-Mobile	(3) RRUS-11	101^{\prime}	Low Profile Platform
	(2) 10' Omni	96^{\prime}	Low Profile Platform
Verizon	(6) RRUS-11	93^{\prime}	Low Profile Platform
Verizon	(6) 5' Panel Antennas	92^{\prime}	Low Profile Platform
Verizon	(3) 2' Antennas	92^{\prime}	Low Profile Platform
Verizon	(3) 6.5' Panel Antennas	91^{\prime}	Low Profile Platform
	Low Profile Platform	81^{\prime}	
	Low Profile Plafform	71^{\prime}	
	15^{\prime} Dipole	63^{\prime}	Low Profile Platform

*Proposed T-Mobile Appurtenances shown in Bold.

T-MOBILE EXISTING/PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
T-Mobile	(12) $15 / 8^{\prime \prime}$ Cables	101^{\prime}	Inside Monopole
T-Mobile	(1) Hybrid Cable	101^{\prime}	Inside Monopole

*Proposed T-Mobile Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Pole Section-L1	48.7%	$96.0-124$	PASS	
Pole Section-L2	94.9%	$47.7-96.0$	PASS	Controlling
Pole Section-L3	88.8%	$1.0-47.7$	PASS	
Anchor Rod \& Base Plate	92.7%	1.0	PASS	

DESIGN CRITERIA:

1. EIA/TIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: Fairfield
Wind Load: 85 mph (fastest mile)
105 mph (3 second gust)
Nominal Ice Thickness: 1/2 inch
2. Approximate height above grade to proposed antennas: 101^{\prime}

*Calculations and referenced documents are aftached.

ASSUMPTIONS:

1. The monopole dimensions, member sizes and strength of material are as indicated in the previous structural analysis report prepared by RAMAKER \& Associates, Inc., dated December 29, 2014.
2. The appurtenances configuration is as stated in the previous structural analysis report prepared by RAMAKER \& Associates, Inc., dated December 29, 2014. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
3. The monopole and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
4. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
5. All prior structural modification, if any, are assumed to be as per the data supplied (if available), and installed properly.
6. The foundation of the monopole was not checked due to lack of information. Asbuilt foundation drawings and geotechnical report would be required to determine whether the foundation is capable of supporting the proposed loadings.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas and RRHs be mounted on the existing steel platform supported by the monopole.

Reference HDG's Latest Construction Drawings for all component and connection requirements (attached).

ONGOING AND PERIODIC INSPTECTION AND MAINTENANCE:

After the Contractor has successfully completed the installation and the work has been accepted, the Owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at lease yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

Photo 1: Photo illustrating the Monopole with Appurtenances shown.

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Collar Mount	124	RRH-800	106
PiROD 13' Low Profile Platform (ATI)	122	RRH-800	106
2"x8' pipe	122	RRH-800	106
$2^{14} \times 8^{\prime}$ pipe	122	Collar Mount	105
2"x8' pipe	122	PiROD 13' Low Profile Platform (T-MOBILE - existing)	101
Powerwave 7770 w/mount pipe	122		
Powerwave 7770 w/mount pipe	122	(4) 2" ' $^{\text {P }}$ ' pipe	104
Powerwave 7770 w/mount pipe	122	(4) 2"x8' pipe	101
Powerwave 7770 w/mount pipe	122	(4) 2"x8' pipe	101
Powerwave 7770 w/mount pipe	122	(2) RFS APX16PV-16PVL	104
Powerwave 7770 w/mount pipe	122	(2) RFS APX16PV-16PVL	101
Powerwave P65-16-XLH-RR w/mount pipe	122	(2) RFS APX16PV-16PVL	109
		10' Dipole	101
Powerwave P65-16-XLH-RR w/mount pipe	122	LNX-6515DS-VTM (T-MOB:LE - proposed)	101
Powerwave P65-16-XLH-RR w/mount pipe	122	LNX-6515DS-VTM	101
		LNX-6515DS-VTM	101
Powerwave LGP13519 diplexer	122	Ericsson RRUS-11	101
Powerwave LGP13519 diplexer	122	Ericssan RRUS-11	101
Powerwave LGP13519 diplexer	122	Ericsson RRUS-11	101
Powerwave LGP13519 diplexer	122	PiROD 13' Low Profile Piatform (Verizon)	91
Powerwave LGP13519 diplexer	122		
Powerwave LGP13519 diplexer	122	Panel Antenna $5^{\prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$ w/mount pipe	91
Powerwave LGP13519 diplexer	122	Panel Antenna $5^{\prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$ w/mount pipe	91
Powerwave LGP13519 diplexer	122	Panel Antenna $5^{\prime} \times 8^{\prime \prime} \times 66^{\prime \prime}$ w/mount pipe	91
Powerwave LGP13519 diplexer	122	Panel Antenna 60"x8" $\times 3$ " w/mount pipe	91
Omni 3"x15'	122		
Ericsson RRUS-11	120	Panei Antenna 60" $\times 0^{\prime \prime} \times 3^{" 1}$ w/mount pipe	91
Ericsson RRUS-11	120		
Ericsson RRUS-11	120	Panel Antenna 60 " $\times 5^{\prime \prime} \times 3^{\prime \prime}$ w/mount pipe	91
DC6-48-60-18-8F	120	Panel Antenna 6.5'x11"x5" w/mount pipe	91
(4) 2"x8' pipe	116		
(4) $2^{\prime \prime} \times 8^{\prime}$ pipe	116	Panel Antenna 6.5'x11" $\times 5^{\prime \prime}$ w/mount pipe	91
(4) 2"x8' pipe	116		
APXV9TM14 w/mount pipe	116	Panel Antenna 6.5'x11" $\times 5$ "' w/mount pipe	91
APXV9TM14 w/mount pipe	116		
APXV9TM14 w/mount pipe	176	2'x5" Antenna	91
APXVSPP18-C w/mount pipe	116	2'x5" Antenna	91
APXVSPP18-C w/mount pipe	116	2'x5" Antenna	91
APXVSPP18-C w/mount pipe	116	RRUS 11	91
RRH 8 $\times 20-25$	116	RRUS 11	91
RRH 8x20-25	116	RRUS 11	91
RRH 8x20-25	116	RRUS 11	91
PiROD 13' Low Profile Platform (SPRINT)	113	RRUS 11	91
		RRUS 11	91
RRH-1900	106	Omni $21 / 2^{\prime \prime} \times 10^{\prime}$	91
RRH-1900	106	Omni $21 / 2^{\prime \prime} \times 10^{\prime}$	91
RRH-1900	106	PiROD 13' Low Profile Platform	81
RRH-1900	106	PiROD 13' Low Profile Platform	71
RRH-1900	106	15' Dipole	71
RRH-1900	106		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
$4572-65$	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.
2. Tower designed for a 85.0 mph basic wind in accordance with the TIANEIA-222-F Standard.
3. Tower is also designed for a 73.6 mph basic wind with 0.50 in ice.
4. Deflections are based upon a 50.0 mph wind.

	${ }^{\text {Pob }}$ CT11115F		
	Project: 124 ft monopo/e		
	Client: T-MOBILE	Drawn by: kw	App'd:
	Code: TIA/EIA-222-F	Daale: 02/24/15	Scale: NTS
	Path:		Dwg No. E-1

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CT11115F	$\text { Page } \quad \text { of } 10$
	Project	124 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ 16: 43: 3702 / 24 / 15 \end{array}$
	Client	T-MOBILE	Designed by kw

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Fairfield County, Connecticut.
Basic wind speed of 85.0 mph .
Nominal ice thickness of 0.5000 in.
Ice density of 56.0 pcf .
A wind speed of 73.6 mph is used in combination with ice.
Temperature drop of $50.0^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50.0 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry									
Section	Elevation $f t$	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	125.00-96.04	28.96	3.92	18	18.0000	26.9000	0.1875	0.7500	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L2	$96.04-47.67$	52.29	5.67	18	25.3203	41.2800	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L3	47.67-1.00	52.34		18	39.0494	55.0000	0.3125	1.2500	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$

Monopole Base Plate Data

Base Plate Data	
Base plate is square	
Base plate is grouted	
Anchor bolt grade	A615-75
Anchor bolt size	2,2500 in
Number of bolts	12
Embedment length	60.0000 in
f_{c}	3.0 ksi
Grout space	3.2500 in
Base plate grade	A572-60
Base plate thickness	1.7500 in
Bolt circle diameter	63.0000 in
Outer diameter	69.0000 in
Inner diameter	45.0000 in
Base plate type	Stiffened Plate
Bolts per stiffener	1
Stiffener thickness	0.5000 in
Stiffener height	12.0000 in

tnx Tower	Job	CT11115F	$\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 10 \end{aligned}$
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Project	124 ft monopole	Date $16: 43: 37 \text { 02/24/15 }$
	Client	T-MOBILE	Designed by kw

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Component Type		Placement		Total Number	$C_{A} A_{A}$

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Avimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

$l b$

\hline Omni $3^{\prime \prime} \times 15^{\prime}$ \& C \& From Leg \& \[
$$
\begin{aligned}
& 3.50 \\
& 0.00 \\
& 8.00
\end{aligned}
$$

\] \& 0.0000 \& 122.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.50 \\
& 6.03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.50 \\
& 6.03
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
70.00 \\
102.48
\end{gathered}
$$
\]

\hline | ********** |
| :--- |
| PiROD 13' Low Profile |
| Platform |
| (AT\&T) | \& A \& None \& \& 0.0000 \& 122.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 15.70 \\
& 20.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.70 \\
& 20.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1300.00 \\
& 1765.00
\end{aligned}
$$
\]

\hline 2"x8' pipe \& A \& From Face \& $$
\begin{gathered}
3.50 \\
-2.00 \\
0.00
\end{gathered}
$$ \& 0.0000 \& 122.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 1.90 \\
& 2.73
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.90 \\
& 2.73
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 30.00 \\
& 44.37
\end{aligned}
$$
\]

\hline $2^{\prime \prime} \times 8^{1}$ pipe \& B \& From Face \& \[
$$
\begin{array}{r}
3.50 \\
-2.00 \\
0.00
\end{array}
$$

\] \& 0.0000 \& 122.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 1.90 \\
& 2.73
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.90 \\
& 2.73
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 30.00 \\
& 44.37
\end{aligned}
$$
\]

\hline 2"x8' pipe \& C \& From Face \& $$
\begin{gathered}
3.50 \\
-2.00 \\
0.00
\end{gathered}
$$ \& 0.0000 \& 122.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.90 \\
& 2.73
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
1.90 \\
2.73
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 30.00 \\
& 44.37
\end{aligned}
$$
\]

\hline Powerwave $7770 \mathrm{w} / \mathrm{mount}$ pipe \& A \& From Face \& \[
$$
\begin{gathered}
3.50 \\
-6.00 \\
1.50
\end{gathered}
$$

\] \& 0.0000 \& 122.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline Powerwave $7770 \mathrm{w} / \mathrm{mount}$ pipe \& B \& From Face \& \[
$$
\begin{gathered}
3.50 \\
-6.00 \\
1.50
\end{gathered}
$$

\] \& 0.0000 \& 122.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline Powerwave $7770 \mathrm{w} /$ mount pipe \& C \& From Face \& \[
$$
\begin{gathered}
3.50 \\
-6.00 \\
1.50
\end{gathered}
$$

\] \& 0.0000 \& 122.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline Powerwave $7770 \mathrm{w} /$ mount pipe \& A \& From Face \& \[
$$
\begin{aligned}
& 3.50 \\
& 2.00 \\
& 1.50
\end{aligned}
$$

\] \& 0.0000 \& 122.00 \& | No Ice |
| :--- |
| $1 / 2^{11}$ Ice | \& \[

$$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline
\end{tabular}

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CT11115F	$\begin{aligned} & \text { Page } \\ & \\ & \\ & \text { of } 10 \end{aligned}$
	Project	124 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:43:37 02/24/15 } \end{array}$
	Client	T-MOBILE	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
ft \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| f^{2} | \& $C_{A} A_{A}$ Side π^{2} \& Weight

\hline Powerwave $7770 \mathrm{w} / \mathrm{mount}$ pipe \& B \& From Face \& \[
$$
\begin{aligned}
& 3.50 \\
& 2.00 \\
& 1.50
\end{aligned}
$$

\] \& 0.0000 \& 122.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline Powerwave $7770 \mathrm{w} /$ mount pipe \& C \& From Face \& \[
$$
\begin{aligned}
& 3.50 \\
& 2.00 \\
& 1.50
\end{aligned}
$$

\] \& 0.0000 \& 122.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline Powerwave P65-16-XLH-RR w/mount pipe \& A \& From Face \& $$
\begin{aligned}
& 3.50 \\
& 6.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 122.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 8.64 \\
& 9.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.36 \\
& 7.54
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
48.55 \\
114.33
\end{gathered}
$$
\]

\hline Powerwave P65-16-XLH-RR w/mount pipe \& B \& From Face \& $$
\begin{aligned}
& 3.50 \\
& 6.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 122.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8.64 \\
& 9.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.36 \\
& 7.54
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
48.55 \\
114.33
\end{gathered}
$$
\]

\hline Powerwave P65-16-XLH-RR w/mount pipe \& C \& From Face \& $$
\begin{aligned}
& 3.50 \\
& 6.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 122.00 \& No Ice $1 / 2^{\text {" }}$ Ice \& \[

$$
\begin{aligned}
& 8,64 \\
& 9.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.36 \\
& 7.54
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
48.55 \\
114.33
\end{gathered}
$$
\]

\hline Powerwave LGP13519 diplexer \& A \& From Face \& $$
\begin{gathered}
3.00 \\
-6.50 \\
1.50
\end{gathered}
$$ \& 0.0000 \& 122.00 \& No Ice $1 / 2^{11}$ Ice \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Powerwave LGP13519 diplexer \& A \& From Face \& $$
\begin{gathered}
3.00 \\
-5.50 \\
1.50
\end{gathered}
$$ \& 0.0000 \& 122.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Powerwave LGP13519 diplexer \& B \& From Face \& $$
\begin{gathered}
3.00 \\
-6.50 \\
1.50
\end{gathered}
$$ \& 0.0000 \& 122.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Powerwave LGP13519 diplexer \& B \& From Face \& $$
\begin{gathered}
3.00 \\
-5.50 \\
1.50
\end{gathered}
$$ \& 0.0000 \& 122.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Powerwave LGP13519 diplexer \& C \& From Face \& \[
$$
\begin{gathered}
3.00 \\
-6.50 \\
1.50
\end{gathered}
$$

\] \& 0.0000 \& 122.00 \& | No Ice |
| :--- |
| $1 / 2^{\text {II }}$ Ice | \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Powerwave LGP13519 diplexer \& C \& From Face \& \[
$$
\begin{gathered}
3.00 \\
-5.50 \\
1.50
\end{gathered}
$$

\] \& 0.0000 \& 122.00 \& | No Ice |
| :--- |
| $1 / 2^{\text {n }}$ Ice | \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Powerwave LGP13519 diplexer \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 2.00 \\
& 1.50
\end{aligned}
$$ \& 0.0000 \& 122.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Powerwave LGP13519 diplexer \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 2.00 \\
& 1.50
\end{aligned}
$$ \& 0.0000 \& 122.00 \& No Ice $1 / 2^{11}$ Ice \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Powerwave LGP13519 diplexer \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 2.00 \\
& 1.50
\end{aligned}
$$ \& 0.0000 \& 122.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline Collar Mount \& A \& None \& \& 0.0000 \& 124.00 \& $$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.40 \\
& 2.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.40 \\
& 2.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20.00 \\
& 35.00
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& A \& From Face \& $$
\begin{aligned}
& 0.50 \\
& 0.00 \\
& 4.00
\end{aligned}
$$ \& 0.0000 \& 120.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& B \& From Face \& $$
\begin{aligned}
& 0.50 \\
& 0.00 \\
& 4.00
\end{aligned}
$$ \& 0.0000 \& 120.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& C \& From Face \& $$
\begin{aligned}
& 0.50 \\
& 0.00 \\
& 4.00
\end{aligned}
$$ \& 0.0000 \& 120.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline DC6-48-60-18-8F

********** \& A \& From Leg \& $$
\begin{aligned}
& 1.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 120.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.27 \\
& 1.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.27 \\
& 1.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20.00 \\
& 35.12
\end{aligned}
$$
\]

\hline
\end{tabular}

tnxTower	Job		Page
		CT11115F	4 of 10
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090	Project		Date
		124 ft monopole	16:43:37 02/24/15
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Client	T-MOBILE	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \(C_{.} A_{A}\)
Side \& Weight

$7 b$

\hline \multirow[t]{4}{*}{| PiROD 13^{1} Low Profile Platform (SPRINT) |
| :--- |
| (4) $2^{\prime \prime} x 8^{\prime}$ pipe |} \& A \& None \& \& 0.0000 \& 113.00 \& \& 15.70 \& 15.70 \& 1300.00

\hline \& \& \& \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 20.10 \& 20.10 \& 1765.00

\hline \& A \& From Face \& 3.50 \& 0.0000 \& 116.00 \& No Ice \& 1.90 \& 1.90 \& 30.00

\hline \& \& \& 0.00
-3.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.73 \& 2.73 \& 44.37

\hline \multirow[t]{2}{*}{(4) $2^{\prime \prime} \mathrm{x}^{\prime}$ pipe} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Face} \& 3.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{116.00} \& \multirow[t]{2}{*}{| No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice |} \& \multirow[t]{2}{*}{1.90

2.73} \& \multirow[t]{2}{*}{1.90
2.73} \& \multirow[t]{2}{*}{30.00
44.37}

\hline \& \& \& 0.00
-3.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(4) $2^{\prime \prime} x 8^{\prime}$ pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\text {I }}$ Ice} \& 1.90 \& 1.90 \& 30.00

\hline \& \& \& 0.00 \& \& \& \& \multirow[t]{2}{*}{2.73} \& \multirow[t]{2}{*}{2.73} \& \multirow[t]{2}{*}{44.37}

\hline \& \& \& -3.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{APXV9TM14 w/mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{11}$ Ice} \& 7.21 \& 5.03 \& 91.90

\hline \& \& \& -2.00 \& \& \& \& \multirow[t]{2}{*}{7.77} \& \multirow[t]{2}{*}{5.89} \& \multirow[t]{2}{*}{147.31}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{APXV9TM14 w/mount pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\prime \prime}$ Ice} \& 7.21 \& 5.03 \& 91.90

\hline \& \& \& -2.00 \& \& \& \& \multirow[t]{2}{*}{7.77} \& \multirow[t]{2}{*}{5.89} \& \multirow[t]{2}{*}{147.31}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{APXV9TM14 w/mount pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\prime \prime}$ Ice} \& 7.21 \& 5.03 \& 91.90

\hline \& \& \& -2.00 \& \& \& \& \multirow[t]{2}{*}{7.77} \& \multirow[t]{2}{*}{5.89} \& \multirow[t]{2}{*}{147.31}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{APXVSPP18-C w/mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\prime \prime}$ Ice} \& 8.55 \& 7.30 \& 97.53

\hline \& \& \& 2.00 \& \& \& \& \multirow[t]{2}{*}{9.18} \& \multirow[t]{2}{*}{8.32} \& \multirow[t]{2}{*}{168.85}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{APXVSPP18-C w/mount pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$} \& 8.55 \& 7.30 \& 97.53

\hline \& \& \& 2.00 \& \& \& \& \multirow[t]{2}{*}{9.18} \& \multirow[t]{2}{*}{8.32} \& \multirow[t]{2}{*}{168.85}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{APXVSPP18-C w/mount pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\text {" }}$ Ice} \& 8.55 \& 7.30 \& 97.53

\hline \& \& \& 2.00 \& \& \& \& \multirow[t]{2}{*}{9.18} \& \multirow[t]{2}{*}{8.32} \& \multirow[t]{2}{*}{168.85}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH 8×20-25} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{11}$ Ice} \& 4.72 \& 1.70 \& 70.00

\hline \& \& \& -2.00 \& \& \& \& \multirow[t]{2}{*}{5.01} \& \multirow[t]{2}{*}{1.92} \& \multirow[t]{2}{*}{97.14}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH 8x20-25} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{116.00} \& \multirow[t]{3}{*}{No Ice

$$
1 / 2^{11} \text { Ice }
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4.72 \\
& 5.01
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.70 \\
& 1.92
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 70.00 \\
& 97.14
\end{aligned}
$$
\]}

\hline \& \& \& -2.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH 8×20-25} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 3.50 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{116.00} \& \multirow[t]{4}{*}{No Ice $1 / 2^{\text {" }}$ Ice} \& 4.72 \& 1.70 \& 70.00

\hline \& \& \& -2.00 \& \& \& \& \multirow[t]{3}{*}{5.01} \& \multirow[t]{3}{*}{1.92} \& \multirow[t]{3}{*}{97.14}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline ********** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{Collar Mount} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{None} \& \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{105.00} \& \multirow[t]{2}{*}{No Ice $1 / 2^{\text {" Ice }}$} \& 1.40 \& 1.40 \& 20.00

\hline \& \& \& \& \& \& \& 2.40 \& 2.40 \& 35.00

\hline \multirow[t]{3}{*}{RRH-1900} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{106.00} \& \multirow[t]{2}{*}{| No Ice |
| :--- |
| $1 / 2^{\text {" }}$ Ice |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 2.71 \\
& 2.95
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 3.66 \\
& 3.92
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 60.00 \\
& 88.32
\end{aligned}
$$
\]}

\hline \& \& \& -1.00 \& \& \& \& \& \&

\hline \& \& \& -1.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH-1900} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{106.00} \& \multirow[t]{2}{*}{| No Ice |
| :--- |
| $1 / 2^{\text {" }}$ Ice |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 2.71 \\
& 2.95
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 3.66 \\
& 3.92
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 60.00 \\
& 88.32
\end{aligned}
$$
\]}

\hline \& \& \& 1.00 \& \& \& \& \& \&

\hline \& \& \& -1.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH-1900} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{106.00} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 2.71 \\
& 2.95
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.66 \\
& 3.92
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 60.00 \\
& 88.32
\end{aligned}
$$
\]}

\hline \& \& \& -1.00 \& \& \& \& \& \&

\hline \& \& \& -1.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH-1900} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{106.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\text {" }}$ Ice} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& 2.71 \\
& 2.95
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.66 \\
& 3.92
\end{aligned}
$$
\]} \& 60.00

\hline \& \& \& 1.00 \& \& \& \& \& \& \multirow[t]{2}{*}{88.32}

\hline \& \& \& -1.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH-1900} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{106.00} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 2.71 \\
& 2.95
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.66 \\
& 3.92
\end{aligned}
$$
\]} \& 60.00

\hline \& \& \& -1.00 \& \& \& \& \& \& \multirow[t]{2}{*}{88.32}

\hline \& \& \& -1.00 \& \& \& \& \& \&

\hline
\end{tabular}

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CT11115F	$\begin{aligned} & \text { Page } \\ & \\ & 5 \text { of } 10 \end{aligned}$
	Project	124 ft monopole	$\begin{array}{\|l\|} \text { Date } \\ \text { 16:43:37 02/24/15 } \end{array}$
	Client	T-MOBILE	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side \& Weight

$l b$

\hline \multirow[t]{2}{*}{RRH-1900} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Face} \& 1.00 \& 0.0000 \& 106.00 \& No Ice \& 2.71 \& 3.66 \& 60.00

\hline \& \& \& 1.00
-1.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.95 \& 3.92 \& 88.32

\hline \multirow[t]{3}{*}{RRH-800} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 106.00 \& No Ice \& 2.49 \& 3.22 \& 64.00

\hline \& \& \& 1.00 \& \& \& 1/2" Ice \& 2.71 \& 3.46 \& 91.74

\hline \& \& \& 2.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH-800} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 106.00 \& No Ice \& 2.49 \& 3.22 \& 64.00

\hline \& \& \& 1.00 \& \& \& $1 / 2^{1 \prime}$ Ice \& 2.71 \& 3.46 \& 91.74

\hline \& \& \& 2.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRH-800} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 1.00 \& 0.0000 \& 106.00 \& No Ice \& 2.49 \& 3.22 \& 64.00

\hline \& \& \& 1.00 \& \& \& $1 / 2^{1 \prime}$ Ice \& 2.71 \& 3.46 \& 91.74

\hline \& \& \& 2.00 \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{**********}

\hline \multirow[t]{5}{*}{PiROD 13' Low Profile Platform (T-MOBILE - existing) (4) $2^{\prime \prime} x 8^{\prime}$ pipe} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{None} \& \& 0.0000 \& 101.00 \& No Ice \& 15.70 \& 15.70 \& 1300.00

\hline \& \& \& \& \& \& $1 / 2^{11}$ Ice \& 20.10 \& 20.10 \& 1765.00

\hline \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& No Ice \& 1.90 \& 1.90 \& 30.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.73 \& 2.73 \& 44.37

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(4) 2"x8' pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& No Ice \& 1.90 \& 1.90 \& 30.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.73 \& 2.73 \& 44.37

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(4) $2^{\prime \prime}$ x8' pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& No Ice \& 1.90 \& 1.90 \& 30.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.73 \& 2.73 \& 44.37

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) RFS APX16PV-16PVL} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& No Ice \& $$
6.70
$$ \& \[

2.84

\] \& \[

40.00
\]

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

7.13

\] \& \[

3.17

\] \& \[

75.57
\]

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) RFS APX16PV-16PVL} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& No Ice \& 6.70 \& 2.84 \& 40.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.13 \& 3.17 \& 75.57

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) RFS APX16PV-16PVL} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& No Ice \& 6.70 \& 2.84 \& 40.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {I }}$ Ice \& 7.13 \& 3.17 \& 75.57

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{10^{\prime} Dipole} \& \multirow[t]{4}{*}{A} \& \multirow[t]{3}{*}{From Face} \& \& 0.0000 \& 101.00 \& \& 4.00 \& 4.00 \& 25.00

\hline \& \& \& -3.00 \& \& \& $$
1 / 2^{11} \text { Ice }
$$ \& 4.97 \& 4.97 \& 53.13

\hline \& \& \& 5.00 \& \& \& \& \& \&

\hline \multicolumn{9}{|l|}{**********} \&

\hline \multirow[t]{3}{*}{| LNX-6515DS-VTM |
| :--- |
| (T-MOBILE - proposed) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& No Ice \& 11.45 \& 7.70 \& 50.30

\hline \& \& \& -3.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 12.06 \& 8.29 \& 116.17

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{LNX-6515DS-VTM} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& No Ice \& 11.45 \& 7.70 \& 50.30

\hline \& \& \& -3.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 12.06 \& 8.29 \& 116.17

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{LNX-6515DS-VTM} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.50 \& 0.0000 \& 101.00 \& \& 11.45 \& 7.70 \& 50.30

\hline \& \& \& -3.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 12.06 \& 8.29 \& 116.17

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Ericsson RRUS-11} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 2.50 \& 0.0000 \& 101.00 \& No Ice \& 3.26 \& 1.38 \& 50.70

\hline \& \& \& -3.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 3.50 \& 1.56 \& 71.57

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Ericsson RRUS-11} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 2.50 \& 0.0000 \& 101.00 \& No Ice \& 3.26 \& 1.38 \& 50.70

\hline \& \& \& -3.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.50 \& 1.56 \& 71.57

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Ericsson RRUS-11} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 2.50 \& 0.0000 \& 101.00 \& No Ice \& 3.26 \& 1.38 \& 50.70

\hline \& \& \& -3.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.50 \& 1.56 \& 71.57

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline ********** \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Description	$\begin{aligned} & \text { Face } \\ & \text { or } \\ & \text { Leg } \end{aligned}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment -	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side f^{2}	Weight
PiROD 13' Low Profile Platform (Verizon)	A	None		0.0000	91.00	No Ice $1 / 2^{\prime \prime} \text { Ice }$	$\begin{aligned} & 15.70 \\ & 20.10 \end{aligned}$	$\begin{aligned} & 15.70 \\ & 20.10 \end{aligned}$	$\begin{aligned} & 1300.00 \\ & 1765.00 \end{aligned}$
Panel Antenna 5'x8"x6" w/mount pipe	A	From Face	$\begin{aligned} & 3.50 \\ & 6.00 \\ & 1.00 \end{aligned}$	0.0000	91.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 4.96 \\ & 5.43 \end{aligned}$	$\begin{aligned} & 5.17 \\ & 6.05 \end{aligned}$	$\begin{aligned} & 51.90 \\ & 99.00 \end{aligned}$
Panel Antenna 5'x8"x6" w/mount pipe	B	From Face	$\begin{aligned} & 3.50 \\ & 6.00 \\ & 1.00 \end{aligned}$	0.0000	91.00	No Ice $1 / 2^{\text {I }}$ Ice	$\begin{aligned} & 4.96 \\ & 5.43 \end{aligned}$	$\begin{aligned} & 5.17 \\ & 6.05 \end{aligned}$	$\begin{aligned} & 51.90 \\ & 99.00 \end{aligned}$
Panel Antenna 5'x8"x6" w/mount pipe	C	From Face	$\begin{aligned} & 3.50 \\ & 6.00 \\ & 1.00 \end{aligned}$	0.0000	91.00	No Ice $1 / 2^{11}$ Ice	$\begin{aligned} & 4.96 \\ & 5.43 \end{aligned}$	$\begin{aligned} & 5.17 \\ & 6.05 \end{aligned}$	$\begin{aligned} & 51.90 \\ & 99.00 \end{aligned}$
Panel Antenna $60^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ w/mount pipe	A	From Face	$\begin{aligned} & 3.50 \\ & 4.50 \\ & 1.00 \end{aligned}$	0.0000	91.00	No Ice $1 / 2^{\text {1 }}$ Ice	$\begin{aligned} & 4.22 \\ & 4.81 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 5.04 \end{aligned}$	$\begin{aligned} & 55.55 \\ & 94.39 \end{aligned}$
Panel Antenna 60" $\times 6^{\prime \prime} \times 3^{\prime \prime}$ w/mount pipe	B	From Face	$\begin{aligned} & 3.50 \\ & 4.50 \\ & 1.00 \end{aligned}$	0.0000	91.00	No Ice $1 / 2^{11}$ Ice	$\begin{aligned} & 4.22 \\ & 4.81 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 5.04 \end{aligned}$	$\begin{aligned} & 55.55 \\ & 94.39 \end{aligned}$
Panel Antenna 60"x6"x3" w/mount pipe	C	From Face	$\begin{aligned} & 3.50 \\ & 4.50 \\ & 1.00 \end{aligned}$	0.0000	91.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 4.22 \\ & 4.81 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 5.04 \end{aligned}$	$\begin{aligned} & 55.55 \\ & 94.39 \end{aligned}$
Panel Antenna $6.5^{\prime} \times 11^{\prime \prime} \times 5^{\prime \prime}$ w/mount pipe	A	From Face	$\begin{gathered} 3.50 \\ -1.00 \\ 0.00 \end{gathered}$	0.0000	91.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 8.48 \\ & 9.09 \end{aligned}$	$\begin{aligned} & 6.23 \\ & 7.43 \end{aligned}$	$\begin{gathered} 55.55 \\ 119.35 \end{gathered}$
Panel Antenna $6.5^{\prime} \times 11^{\prime \prime} \times 5^{\prime \prime}$ w/mount pipe	B	From Face	$\begin{gathered} 3.50 \\ -1.00 \\ 0.00 \end{gathered}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 8.48 \\ & 9.09 \end{aligned}$	$\begin{aligned} & 6.23 \\ & 7.43 \end{aligned}$	$\begin{gathered} 55.55 \\ 119.35 \end{gathered}$
Panel Antenna 6.5'x11"x5" w/mount pipe	C	From Face	$\begin{gathered} 3.50 \\ -1.00 \\ 0.00 \end{gathered}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{11} \text { Ice } \end{aligned}$	$\begin{aligned} & 8.48 \\ & 9.09 \end{aligned}$	$\begin{aligned} & 6.23 \\ & 7.43 \end{aligned}$	$\begin{gathered} 55.55 \\ 119.35 \end{gathered}$
2'x.5' Antenna	A	From Face	$\begin{gathered} 3.50 \\ -6.00 \\ 1.00 \end{gathered}$	0.0000	91.00	No Ice $1 / 2^{11}$ Ice	$\begin{aligned} & 1.17 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 20.00 \\ & 27.78 \end{aligned}$
2'x5' Antenna	B	From Face	$\begin{gathered} 3.50 \\ -6.00 \\ 1.00 \end{gathered}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 20.00 \\ & 27.78 \end{aligned}$
2'x5' Antenna	C	From Face	$\begin{gathered} 3.50 \\ -6.00 \\ 1.00 \end{gathered}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 20.00 \\ & 27.78 \end{aligned}$
RRUS 11	A	From Face	$\begin{array}{r} 3.00 \\ -1.00 \\ 2.00 \end{array}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 3.25 \\ & 3.49 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 50.70 \\ & 71.50 \end{aligned}$
RRUS 11	B	From Face	$\begin{gathered} 3.00 \\ -1.00 \\ 2.00 \end{gathered}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{11} \text { Ice } \end{aligned}$	$\begin{aligned} & 3.25 \\ & 3.49 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 50.70 \\ & 71.50 \end{aligned}$
RRUS 11	C	From Face	$\begin{gathered} 3.00 \\ -1.00 \\ 2.00 \end{gathered}$	0.0000	91.00	No Ice $1 / 2^{\text {" Ice }}$	$\begin{aligned} & 3.25 \\ & 3.49 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 50.70 \\ & 71.50 \end{aligned}$
RRUS 11	A	From Face	$\begin{gathered} 3.00 \\ -6.00 \\ 2.00 \end{gathered}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 3.25 \\ & 3.49 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 50.70 \\ & 71.50 \end{aligned}$
RRUS 11	B	From Face	$\begin{gathered} 3.00 \\ -6.00 \\ 2.00 \end{gathered}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 3.25 \\ & 3.49 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 50.70 \\ & 71.50 \end{aligned}$
RRUS 11	C	From Face	$\begin{array}{r} 3.00 \\ -6.00 \\ 2.00 \end{array}$	0.0000	91.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 3.25 \\ & 3.49 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 50.70 \\ & 71.50 \end{aligned}$

tnxTower	Job		Page
		CT11115F	7 of 10
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090	Project		Date
		124 ft monopole	16:43:37 02/24/15
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Client	T-MOBILE	Designed by kW

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

lb

\hline \multirow[t]{2}{*}{Omni $21 / 2^{\prime \prime} \times 10^{\prime}$} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 6.50 \& 0.0000 \& 91.00 \& No Ice \& 2.50 \& 2.50 \& 25.00

\hline \& \& \& 0.00
5.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.53 \& 3.53 \& 43.64

\hline \multirow[t]{3}{*}{Omni $21 / 2^{\prime \prime} \times 10^{\prime}$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 6.50 \& 0.0000 \& 91.00 \& No Ice \& 2.50 \& 2.50 \& 25.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.53 \& 3.53 \& 43.64

\hline \& \& \& 5.00 \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{**********}

\hline \multirow[t]{2}{*}{PiROD 13' Low Profile Platform} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{None} \& \& 0.0000 \& 81.00 \& No Ice \& 15.70 \& 15.70 \& 1300.00

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 20.10 \& 20.10 \& 1765.00

\hline \multirow[t]{4}{*}{PiROD 13' Low Profile Platform 15' Dipole} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{None} \& \& 0.0000 \& 71.00 \& No Ice \& 15.70 \& 15.70 \& 1300.00

\hline \& \& \& \& \& \& $1 / 2^{\text {" }}$ Ice \& 20.10 \& 20.10 \& 1765.00

\hline \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Face} \& 3.50 \& 0.0000 \& 71.00 \& No Ice \& 6.00 \& 6.00 \& 40.00

\hline \& \& \& $$
\begin{aligned}
& -5.00 \\
& -8.00
\end{aligned}
$$ \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.54 \& 7.54 \& 81.87

\hline
\end{tabular}

Load Combinations

Comb. No.		Description
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead + Ice + Temp	
15	Dead+Wind 0 deg+Ice + Temp	
16	Dead+Wind 30 deg + Ice + Temp	
17	Dead+Wind 60 deg + Ice + Temp	
18	Dead + Wind $90 \mathrm{deg}+$ Ice + Temp	
19	Dead + Wind 120 deg + Ice + Temp	
20	Dead + Wind 150 deg + Ice + Temp	
21	Dead + Wind $180 \mathrm{deg}+$ Ice + Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg + Ice + Temp	
26	Dead+Wind 330 deg+Ice + Temp	
27	Dead + Wind 0 deg - Service	
28	Dead + Wind 30 deg - Service	
29	Dead +Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead + Wind 210 deg - Service	

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CT11115F	$\begin{aligned} & \text { Page } \\ & 8 \text { of } 10 \end{aligned}$
	Project	124 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ 16: 43: 3702 / 24 / 15 \end{array}$
	Client	T-MOBILE	Designed by kw

Comb.	Description	
No.		
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

		Maximum Reactions			
Location	Condition	Gov. Load Comb.	$\begin{gathered} \text { Vertical } \\ \text { Ib } \end{gathered}$	$\begin{gathered} \text { Horizontal, } X \\ \quad l b \end{gathered}$	$\begin{gathered} \text { Horizontal, } Z \\ l b \end{gathered}$
Pole	Max. Vert	24	39715.47	24121.08	0.00
	Max. H_{x}	11	31136.01	28174.68	-0.00
	Max. H_{z}	2	31136.01	0.00	28174.68
	Max. M_{x}	2	2583298.98	0.00	28174.68
	Max. M_{z}	5	2583009.22	-28174.68	-0.00
	Max. Torsion	13	3594.47	14087.34	24399.99
	Min. Vert	1	31136.01	0.00	0.00
	Min. H_{x}	5	31136.01	-28174.68	-0.00
	Min. H_{2}	8	31136.01	0.00	-28174.68
	Min. M_{x}	8	-2584109.79	0.00	-28174.68
	Min. $\mathrm{M}_{\mathbf{z}}$	11	-2584399.54	28174.68	-0.00
	Min. Torsion	7	-3594.45	-14087.34	-24399.99

Tower Mast Reaction Summary

Load Combination	Vertical $l b$	Sheary $l b$	Shear $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	31136.01	0.00	0.00	388.26	666.69	0.00
Dead+Wind 0 deg - No Ice	31136.01	-0.00	-28174.68	-2583298.98	682.73	-3214.73
Dead+Wind 30 deg - No rce	31136.01	14087.34	-24399.99	-2237146.51	-1291164.90	-1973.50
Dead+Wind 60 deg - No Ice	31136.01	24399.99	-14087.34	-1291447.30	-2236861.00	-203.54
Dead+Wind 90 deg - No Ice	31136.01	28174.68	0.00	399.18	-2583009.22	1621.02
Dead+Wind 120 deg - No Ice	31136.01	24399.99	14087.34	1292248.76	-2236866.42	3011.16
Dead+Wind 150 deg - No Ice	31136.01	14087.34	24399.99	2237954.21	-1291170.32	3594.45
Dead+Wind 180 deg - No Ice	31136.01	-0.00	28174.68	2584109.79	682.72	3214.68
Dead+Wind 210 deg - No Ice	31136.01	-14087.34	24399.99	2237965.00	1292541.93	1973.47
Dead+Wind 240 deg - No Ice	31136.01	-24399.99	14087.34	1292259.54	2238250.50	203.51
Dead + Wind 270 deg - No Ice	31136.01	-28174.68	0.00	399.17	2584399.54	-1620.99
Dead + Wind 300 deg - No Ice	31136.01	-24399.99	-14087.34	-1291458.11	2238245.09	-3011.10
Dead+Wind 330 deg - No Ice	31136.01	-14087.34	-24399.99	-2237157.31	1292536.53	-3594.47
Dead+Ice+Temp	39715.47	-0.00	0.00	668.41	1238.55	-0.00
Dead+Wind 0 deg+Ice+Temp	39715.47	0.00	-24121.08	-2272843.75	1287.19	-3064.77
Dead+Wind 30 deg+Ice+Temp	39715.47	12060.54	-20889.47	-1968241.88	-1135479.58	-1824.16
Dead+Wind 60 deg+Ice + Temp	39715.47	20889.47	-12060.54	-1136069.71	-1967648.57	-94.80
Dead+Wind 90 deg+Ice + Temp	39715.47	24121.08	-0.00	695.92	-2272246.10	1660.01
Dead + Wind 120 deg + Ice + Temp	39715.47	20889.47	12060.54	1137465.60	-1967655.62	2970.00
Dead+Wind $150 \mathrm{deg}+$ Ice + Temp	39715.47	12060.54	20889.47	1969645.89	-1135486.65	3484.11
Dead+Wind 180 deg + Ice + Temp	39715.47	0.00	24121.08	2274251.81	1287.16	3064.69
Dead + Wind 210 deg + Ice + Temp	39715.47	-12060.54	20889.47	1969658.42	1138068.22	1824.11
Dead+Wind 240 deg+Ice+Temp	39715.47	-20889.47	12060.54	1137478.12	1970251.69	94.74
Dead+Wind 270 deg + Ice + Temp	39715.47	-24121.08	-0.00	695.88	2274849.42	-1659.97
Dead+Wind $300 \mathrm{deg}+$ Ice + Temp	39715.47	-20889.47	-12060.54	-1136082.28	1970244.66	-2969.92
Dead + Wind 330 deg+Ice+Temp	39715.47	-12060.54	-20889.47	-1968254.43	1138061.20	-3484.15

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CT11115F	$\begin{aligned} & \text { Page } \\ & \qquad 9 \text { of } 10 \end{aligned}$
	Project	124 ft monopole	$\begin{aligned} & \text { Date } \\ & \text { 16:43:37 02/24/15 } \end{aligned}$
	Client	T-MOBILE	Designed by kw

Load Combination	Vertical $l b$	Shear x_{x} $l b$	Shear z_{z} $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead+Wind 0 deg - Service	31136.01	-0.00	-9749.03	-894440.83	698.37	-1119.44
Dead+Wind 30 deg - Service	31136.01	4874.51	-8442.90	-774553.37	-446725.35	-687.17
Dead+Wind 60 deg - Service	31136.01	8442.90	-4874.51	-447016,35	-774262.00	-70.78
Dead+Wind 90 deg - Service	31136.01	9749.03	0.00	407.23	-894148.95	564.58
Dead+Wind 120 deg - Service	31136.01	8442.90	4874.51	447831.19	-774262.65	1048.66
Dead+Wind 150 deg - Service	31136.01	4874.51	8442.90	775368.96	-446726.01	1251.74
Dead+Wind 180 deg - Service	31136.01	-0.00	9749.03	895256.79	698.36	1119.43
Dead+Wind 210 deg - Service	31136.01	-4874.51	8442.90	775370.25	448123.48	687.16
Dead+Wind 240 deg - Service	31136.01	-8442.90	4874.51	447832.48	775661.62	70.77
Dead+Wind 270 deg - Service	31136.01	-9749.03	0.00	407.23	895548.67	-564.58
Dead+Wind 300 deg - Service	31136.01	-8442.90	-4874.51	-447017.65	775660.97	-1048.66
Dead+Wind 330 deg - Service	31136.01	-4874.51	-8442.90	-774554.67	448122.83	-1251.76

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	PZ	$P X$	PY	PZ	
Comb.	$l b$	$l b$	$l b$	$l b$	$1 b$	$l b$	
1	0.00	-31136.01	0.00	0.00	31136.01	0.00	0.000\%
2	0.00	-31136.01	-28174.68	0.00	31136.01	28174.68	0.000\%
3	14087,34	-31136.01	-24399.99	-14087,34	31136.01	24399.99	0.000\%
4	24399.99	-31136.01	-14087.34	-24399.99	31136.01	14087.34	0.000\%
5	28174.68	-31136.01	0.00	-28174.68	31136.01	-0.00	0.000\%
6	24399.99	-31136.01	14087.34	-24399.99	31136.01	-14087.34	0.000\%
7	14087.34	-31136.01	24399.99	-14087.34	31136.01	-24399.99	0.000\%
8	0.00	-31136.01	28174.68	0.00	31136.01	-28174.68	0.000\%
9	-14087.34	-31136.01	24399.99	14087.34	31136.01	-24399.99	0.000\%
10	-24399.99	-31136.01	14087.34	24399.99	31136.01	-14087.34	0.000\%
11	-28174.68	-31136.01	0.00	28174.68	31136.01	-0.00	0.000\%
12	-24399.99	-31136.01	-14087.34	24399.99	31136.01	14087.34	0.000\%
13	-14087.34	-31136.01	-24399.99	14087.34	31136.01	24399.99	0.000\%
14	0.00	-39715.47	0.00	0.00	39715.47	-0.00	0.000\%
15	0.00	-39715.47	-24121.07	-0.00	39715.47	24121.08	0.000\%
16	12060.54	-39715.47	-20889.46	-12060.54	39715.47	20889.47	0.000\%
17	20889.46	-39715.47	-12060.54	-20889.47	39715.47	12060.54	0.000\%
18	24121.07	-39715.47	0.00	-24121.08	39715.47	0.00	0.000\%
19	20889.46	-39715.47	12060.54	-20889.47	39715.47	-12060.54	0.000\%
20	12060.54	-39715.47	20889.46	-12060.54	39715.47	-20889.47	0.000\%
21	0.00	-39715.47	24121.07	-0.00	39715.47	-24121.08	0.000\%
22	-12060.54	-39715.47	20889.46	12060.54	39715.47	-20889.47	0.000\%
23	-20889.46	-39715.47	12060.54	20889.47	39715.47	-12060.54	0.000\%
24	-24121.07	-39715.47	0.00	24121.08	39715.47	0.00	0.000\%
25	-20889.46	-39715.47	-12060.54	20889.47	39715.47	12060.54	0.000\%
26	-12060.54	-39715.47	-20889.46	12060.54	39715.47	20889.47	0.000\%
27	0.00	-31136.01	-9749.02	0.00	31136.01	9749.03	0.000\%
28	4874.51	-31136.01	-8442.90	-4874.51	31136.01	8442.90	0.000\%
29	8442.90	-31136.01	-4874.51	-8442.90	31136.01	4874.51	0.000\%
30	9749.02	-31136.01	0.00	-9749.03	31136.01	-0.00	0.000\%
31	8442.90	-31136.01	4874.51	-8442.90	31136.01	-4874.51	0.000\%
32	4874.51	-31136.01	8442.90	-4874.51	31136.01	-8442.90	0.000\%
33	0.00	-31136.01	9749.02	0.00	31136.01	-9749.03	0.000\%
34	-4874.51	-31136.01	8442.90	4874.51	31136.01	-8442.90	0.000\%
35	-8442.90	-31136.01	4874.51	8442.90	31136.01	-4874.51	0.000\%
36	-9749.02	-31136.01	0.00	9749.03	31136.01	-0.00	0.000\%
37	-8442.90	-31136.01	-4874.51	8442.90	31136.01	4874.51	0.000\%
38	-4874.51	-31136.01	-8442.90	4874.51	31136.01	8442.90	0.000\%

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CT11115F	$\begin{aligned} & \text { Page } 10 \text { of } 10 \end{aligned}$
	Project	124 ft monopole	$\begin{array}{\|l\|} \text { Date } \\ \text { 16:43:37 02/24/15 } \end{array}$
	Client	T-MOBILE	Designed by kw

	Maximum Tower Deflections - Service W				
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	f	in	Comb.	0	-
L1	125-96.04	24.0311	35	1.7332	0.0093
L2	99.96-47.67	15.2683	35	1.5384	0.0062
L3	53.34-1	3.9261	35	0.7137	0.0018

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
f		Comb.	in	\circ	0	ft

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	Pass Fail
L1	125-96.04	Pole	TP26.9x18x0.1875	1	-7808.54	789179.96	48.7	Pass
L2	96.04-47.67	Pole	TP41.28x25.3203x0.25	2	-19094.50	1588016.16	94.9	Pass
L3	47.67-1	Pole	TP55x39.0494x0.3125	3	-31114.10	2618145.19	88.8	Pass
							Summary	
						Pole (L2)	94.9	Pass
						Base Plate	92.7	Pass
						RATING =	94.9	Pass

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11115F
SNET Valley_FT
38 Spring Hill Lane Bethel, CT 06801

March 13, 2015
EBI Project Number: 6215001452

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	90.77%

March 13, 2015

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11115F - SNET Valley_FT

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 38 Spring Hill Lane,
Bethel, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{3 8}$ Spring Hill Lane, Bethel, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the Ericsson AIR21 (B4A/B2P\& B2A/B4P) for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 (B4A/B2P\& B2A/B4P) has a maximum gain of 15.9 dBd at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6}$ dBd at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 0 1}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

AEBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	101	Height (AGL):	101	Height (AGL):	101
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	2	Channel Count	2	\# PCS Channels:	2
Total TX Power:	120	Total TX Power:	120	\# AWS Channels:	120
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A1 MPE\%	1.86	Antenna B1 MPE\%	1.86	Antenna C1 MPE\%	1.86
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B2A/B4P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson ATR21 } \\ \text { B2A/B4P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B2A/B4P } \\ \hline \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	101	Height (AGL):	101	Height (AGL):	101
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power:	120	Total TX Power:	120	Total TX Power:	120
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A2 MPE\%	1.86	Antenna B2 MPE\%	1.86	Antenna C2 MPE\%	1.86
Antenna \#:	3	Antenna \#:	3	Antenna\#:	3
Make / Model:	Commscope LNX-6515DS-VTM	Make / Model:	Commscope LNX-6515DS-VTM	Make / Model:	Commscope LNX-6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	101	Height (AGL):	101	Height (AGL):	101
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A3 MPE\%	0.74	Antenna B3 MPE\%	0.74	Antenna C3 MPE\%	0.74
	Site Composite MPE\%			T-Mobile Sector 1 Total:	1: 4.46%
	Carrier	MPE\%		T-Mobile Sector 2 Total:	1: 4.46%
	T-Mobile	13.37		T-Mobile Sector 3 Total:	l: 4.46%
	Bethel PD	No Data Available		Site Total:	1: 90.77%

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	4.46%
Sector 2:	4.46%
Sector 3:	4.46%
T-Mobile Total:	13.37%
Site Total:	90.77%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{9 0 . 7 7 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

＇9595－995（91ర）

 x：

－К доо в вити！

 чุ！
：นәшәриәŋ рие sә！рет

 90086 VM＂อนงəโ甲อ

－${ }^{\circ}$＇V SO श！qOW＂L
х马ран 㑛
bloz＇Il əuns
$\pm 5111110 \%$

：paleq
 ： 84
 ：κ g

भ！耳०N－L $\mathrm{E} / \mathrm{q} / \mathrm{P}$
OTT ‘ Z XYOMLAN SAILITIOYA LNIOdINWO

：LNVNGIL

＇рәриәше пәәq

 Ки！

GLVOIALL甘け TヨddOLSA LNYNGL

-Kı!!Pe

:иวurpurà pur seppet

I!

DT1 'รә!
bloz '0l aunc

DTT ‘se!padodd out' Itth iupls

[^0]: ${ }^{1}$ This Facility was approved in Docket No. 288. The Docket No. 288 Decision and Order contains no limitations or restrictions relevant to T-Mobile's proposed modifications.

