

### 1280 Route 46 West, Suite 9, Parsippany NJ, 07054

Ms. Melanie Bachman, Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification Application 38 Spring Hill Lane, Bethel, CT 06801

October 9, 2017

Dear Ms. Bachman:

Sprint Spectrum Realty Company, L.P. ("Sprint"), is submitting to the Connecticut Siting Council for a Notice of Exempt Modification for Proposed Modifications to an Existing Telecommunications Facility located at the above-referenced site. Sprint currently maintains 3 existing panel antenna and 9 remote radio units at the 115' level of the Tower. Sprint proposes to add 1 panel antenna per sector and 1 remote radio unit at 115' tower level as well as 1 fiber cable and 3 fiber jumpers, 27 antenna to RRU jumper cables, one new battery string in existing ground based battery cabinet and one new radio cabinet for future growth.

The Sprint installation was initially approved on 8/18/2004 by CT Siting Council and a Bethel Building permit was issued on 9/30/2005. The structural documents enclosed have been modified where necessary to reflect the current reality of the installations on the Tower.

If you have any questions, please feel free to contact me.

Thank you,

By: Paul F. Sagristano

Paul F. Sagristano Cherundolo Consulting 917.841.0247 psagristano@lrivassoc.com



### 1280 Route 46 West, Suite 9, Parsippany NJ, 07054

Ms. Melanie Bachman Executive Director CT Siting Council 10 Franklin Square New Britain, CT 06051

October 4, 2017

Re: Notice of Exempt Modification – Existing Sprint Telecommunication Facility 38 Spring Hill Lane Bethel, CT 06801

Latitude: N41.3622 Longitude: W73.3967

Dear Ms. Bachman:

Sprint currently maintains 3 existing panel antenna and 9 remote radio units at the 115' centerline level of the existing monopole. Sprint proposes to add 3 panel antenna and 3 remote radio unit at 115' centerline on the tower. Sprint further proposes to add 1 fiber cable, 3 fiber jumpers, 27 antenna to RRU jumpers and 1 ground based Radio cabinet for future growth. Sprint is performing a new high-performance upgrade for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

The facility noted above was approved building by the Town of Bethel on September 30. 2005. A copy of this approval is attached. The original CSC approval for Sprint's Tower Share was August 18, 2004, also attached.

Please accept this letter as notification to the Council, pursuant to R.C.S.A. Section 16-50j-73, for construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter is being sent to Bob Rech, President of Bluesky Tower Partners, LLC, the property owner and to Matt Knickerbocker, First Selectman of the Town of Bethel and Beth Cavagna, Planning director for the Town of Bethel.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower with proposed modifications to accommodate the revised antenna configuration.

### **Existing Facility**

The Bethel facility is located at 38 Spring Hill Lane, Bethel, CT, the Site coordinates are: N41. 3622, W – 73.3967. The facility is owned by Blue Sky Tower Partners, LLC., The existing facility consists of a 125' Monopole. Sprint currently operates wireless communications equipment on a concrete slab at the facility and has 3 antennas and 9 RRU's mounted on at a centerline of 115' feet.

### **Statutory Considerations**

The planned modifications to the facility fall within the activities explicitly provided for in R.C.S.A. 16-50j-72(b)(2)

- 1. The height of the overall structure will be unaffected.
- 2. The proposed changes will not require an extension of the property boundaries.
- 3. The proposed additions will not increase the noise level at the existing facility by

six decibels or more, or to levels that exceed state and/or local criteria

- 4. The changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A Section §16-50j-72(b)(2).

Respectfully submitted,

### Paul F. Sagristano

Paul F. Sagristano Charles Cherundolo Consulting 917-841-0247 psagristano@lrivassoc.com

PFS/mtf

Additional Recipients:

Town of Bethel – Matt Knickerbocker – First Selectman – Via Fed Ex Blue Sky Tower Partners, LLC – Jim Rech - President - Via Fed Ex Town of Bethel – Planning Director – Beth Cavagna – Via Fed Ex



October 13,2017

Dear Customer:

The following is the proof-of-delivery for tracking number **770451622020**.

**Delivery Information:** 

Status: Delivered Delivered to: Receptionist/Front Desk

Delivery date:

Signed for by: A.REMILLARD **Delivery location:** 158 MAIN ST 2

NORFOLK, MA 02056

Oct 12, 2017 10:42

Service type: FedEx Express Saver

Special Handling: **Deliver Weekday** 

Direct Signature Required



Shipper:

**Shipping Information:** 

Tracking number: Ship date: Oct 9, 2017 770451622020

Weight: 2.0 lbs/0.9 kg

Recipient:

Reference

Jim Rech, President Paul Sagristano Blue Sky Tower Partners, LLC CCC 4 Davis Road West 158 Main Street. Suite 2 Suite 5

NORFOLK, MA 02056 US

OLD LYME, CT 06371 US CT54XC749 CSC to Blue Sky

Thank you for choosing FedEx.



October 11,2017

Dear Customer:

The following is the proof-of-delivery for tracking number **770451795603**.

**Delivery Information:** 

Status: Delivered to: Delivered Receptionist/Front Desk

Delivery date:

Signed for by: P.KANSKY **Delivery location:** 1 SCHOOL ST.

BETHEL, CT 06801

Oct 11, 2017 12:50

Service type: FedEx Express Saver

Special Handling: **Deliver Weekday** 

Direct Signature Required



Shipper:

CCC

Suite 5

Paul Sagristano

4 Davis Road West

**Shipping Information:** 

Tracking number: 770451795603 Ship date: Oct 9, 2017

Weight: 2.0 lbs/0.9 kg

Recipient:

Mark Knickerbocker, 1st Selectman Town of Bethel 1 School St.

BETHEL, CT 06801 US

OLD LYME, CT 06371 US Reference

CT54XC749 CSC to 1st Selectman

Thank you for choosing FedEx.



October 11,2017

Dear Customer:

The following is the proof-of-delivery for tracking number **770451739029**.

**Delivery Information:** 

Status: Delivered to: Receptionist/Front Desk

Delivery date:

Signed for by: N.LOBALBO Delivery location: 1 SCHOOL ST.

BETHEL, CT 06801 Oct 11, 2017 12:51

Service type: FedEx Express Saver

Special Handling: Deliver Weekday

Direct Signature Required



Shipper:

CCC

Suite 5

Paul Sagristano

4 Davis Road West

**Shipping Information:** 

**Tracking number:** 770451739029 **Ship date:** Oct 9, 2017

**Weight:** 2.0 lbs/0.9 kg

Recipient:

Beth Cavagna Town of Bethel 1 School St.

BETHEL, CT 06801 US

OLD LYME, CT 06371 US

Reference CT54XC749 CSC to Planning Dir

Thank you for choosing FedEx.

### **Bethel, CT: Commercial Property Record Card**

[ Back to Search Results ]

[ Start a New Search ][ Help with Printing ]

**Search For Properties** 

Account Map Block Lot Street # **Street Name** 

SPRING HILL LANE

Search Reset Search

Map-Block-Lot Account Card 32 47A 121 R06064

Location SPRING HILL LANE **Zoning** R-40

**State Class** 504 - n/a

Acres 1.625

**Living Units** 

### **Owner Information**

Blue Sky Towers Llc Po Box 191 Franklin MA 02038

#### **Deed Information**

Book/Page: 1051/496 **Deed Date:** 2014/10/03

### **Building Information**

**Building No:** 0 Year Built: 0 No of Units: 0

**Structure Type:** 

**Grade:** 

**Identical Units:** 0 **Net Leasable Area:** 0

#### **Valuation**

Land: \$151,380 **Building:** \$113,930 Total: \$265,310 \$185,720 **Net Assessment:** 

### **Property Picture**



#### **Sales History**

Book/Page **Date Price** Type **Validity** 1051/496 2014/10/03 \$220,720 Land + Bldg 979/229 2009/10/02 \$240,000 Land Only 03

### **Permit History**

**Date Purpose Price** 2016/06/21 3 ANT EMPIRE \$0 2015/03/31 3 ANT TMOBILE \$0

#### **Out Building Information**

| Structure Code  | Width | Lgth/SqFt | Year | RCNLD     |
|-----------------|-------|-----------|------|-----------|
| Utility Frame   | 9     | 23        | 2006 | \$3,130   |
| Utility Frame   | 8     | 15        | 2006 | \$1,810   |
| Utility Frame   | 9     | 12        | 2006 | \$1,630   |
| Utility Frame   | 10    | 12        | 2006 | \$1,810   |
| Cell Tower 120' | 0     | 120       | 2011 | \$105,550 |

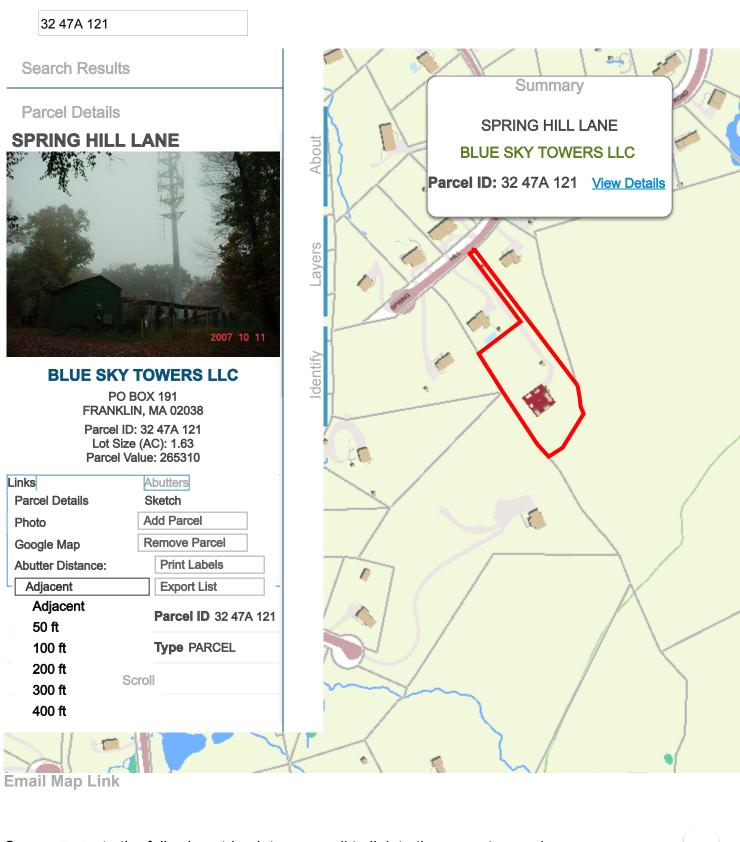
#### **Exterior/Interior Information**

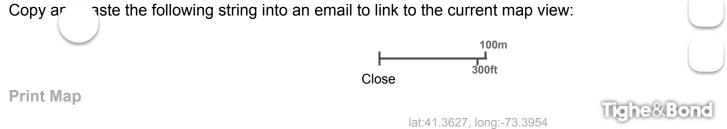
Levels Size Use Type Ext. Walls Const. Type Partitions Heating A/C Plumbing Condition Func. Utility Unadj. RCNLD

| Building Sketch |                 |
|-----------------|-----------------|
|                 | Descriptor/Area |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |

### **Notice**

The information delivered through this on-line database is provided in the spirit of open access to government information and is intended as an enhanced service and convenience for citizens of Bethel, CT.


The providers of this database: CLT, Big Room Studios, and Bethel, CT assume no liability for any error or omission in the information provided here.


**Currently All Values Have Not Been Finalized and Are Subject To Change.** 

Comments regarding this service should be directed to: <a href="mailto:Assessor@betheltownhall.org">Assessor@betheltownhall.org</a>



10/9/2017 Bethel, CT Web GIS





Size: ▼
Scale: 1" = ft. Title:

Close Print





### STATE OF CONNECTICUT

### CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us www.ct.gov/csc

May 18, 2005

Christopher B. Fisher, Esq. Cuddy & Feder & Worby LLP 90 Maple Avenue White Plains, NY 10601-5196

RE:

**DOCKET NO. 288** - Valley Communications, Inc. Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 38 Spring Hill Lane, Bethel, Connecticut.

Dear Attorney Fisher:

At a public meeting of the Connecticut Siting Council held on May 11, 2005, the Connecticut Siting Council (Council) considered and approved the Development and Management (D&M) Plan submitted for this project on April 18, 2005.

The D&M Plan requested relief of Council Decision and Order Condition 1 to accommodate the placement of one 16-foot whip antenna at the top of the monopole for use by the Bethel Police Department. The Council approved this request with the following condition: relief of Council Decision and Order Condition 1 applies only to the one whip antenna presented in the D&M Plan for use by the Bethel Police Department. No other whip antennas shall be placed at the top of the structure. The approved whip antenna shall be removed from the tower if it ceases to serve the Bethel Police Department.

This approval applies only to the D&M Plan submitted on April 18, 2005. Any changes to the D&M Plan require advance Council notification and approval.

Please be advised that deviations from this plan are enforceable under the provisions of the Connecticut General Statutes § 16-50u. Enclosed is a copy of the staff report on this D&M Plan, dated May 11, 2005.

Thank you for your attention and cooperation.

Very truly yours,

Chairman

Enclosure:

Staff Report, dated May 11, 2005

c: Parties and Intervenors

Parties and Intervenors
Alice M. Hutchinson, First Selectman, Town of Bethel Steve Palmer, Planning and Zoning Official, Town of Bethel



#### **DOCKET NO. 288**

Valley Communications, Inc.
Development and Management Plan
Bethel, Connecticut
Staff Report
May 11, 2005

On April 18, 2005, Valley Communications, Inc. submitted a Development and Management Plan (D&M Plan) for a facility at 38 Spring Hill Lane in Bethel, Connecticut. The facility was approved by the Connecticut Siting Council on August 12, 2004. The approved facility would replace an existing 90-foot guyed lattice tower located at the site to accommodate tower sharing for four wireless carriers as well as communication antennas for the Town of Bethel and several private dispatch services.

Valley Communications would construct a 125-foot monopole at the site. The tower would be capable of supporting six antenna platforms with a ten-foot vertical separation and four whip antennas mounted in various locations. Tower tenants and antenna locations are listed below:

- Town of Bethel Police Department, one 16-foot whip with a diameter of 3.5" mounted at 125 feet agl;
- New Cingular Wireless PCS, LLC, 12 panel antennas on a platform at 122 feet agl;
- Sprint Spectrum L.P., 12 panel antennas on a platform at 112 feet agl;
- Omnipoint Communications, Inc. (T-Mobile), 12 panel antennas on a platform at 102 feet agl;
- Yankee Gas, one 16-foot telewave antenna mounted on the T-Mobile platform at 102 feet agl;
- Town of Bethel and Valley Communications, two 16-foot whip antennas mounted on a platform at 92 feet agl with the platform available for future use;
- Nextel Communications, Inc., 12 panel antennas on a platform at 82 feet agl; and
- Tower space available at 72 feet agl.

In D&O Condition 1, the Council restricted the height of the tower to 125 feet agl including appurtenances. Valley Communications is requesting relief of this condition to allow the placement of one 16-foot whip antenna at the top of the tower for use by the Bethel Police Department. The police department contends that the design of the police communication system requires a 35-foot separation between the receive and transmit antennas. If the receive antenna was located at the 100-foot level to prevent the overall height of the facility from exceeding 125 feet, the transmit antenna would have to be located at the 72-foot level of the tower, within the tree line and 20 feet less than the transmit antenna's current location on the existing lattice tower, compromising system performance.

Based on the photo simulations and visibility analysis presented in the application, Valley Communications contends the placement of the receive antenna at the top of the tower would not significantly affect visibility. The photo simulations assumed the facility would consist of a 130-foot monopole with seven 16-foot long whip antennas mounted at the top.

Docket No. 288 Development and Management Plan Page 2

Valley Communications would construct a 75-foot by 75-foot equipment compound at the base of the tower. Cingular would construct a 10-foot by 20-foot equipment shelter within the compound. Sprint and T-Mobile would install equipment cabinets on concrete pads within the compound. The existing equipment shelters for Nextel and Valley Communications would remain in place outside of the compound, serviced by overhead cables.

Valley Communications, in consultation with the Town of Bethel, would resurface and re-grade the access road. Privacy slats would be installed on the fencing on the west side of the compound. Large evergreens would also be planted on the west side of the compound to mitigate the view from neighboring residences. No improvements to the existing access gate are proposed.



Bethel Building Department
ord J. Hurgin Municipal Center 1 School Street Ball Contents

Clifford J. Hurgin Municipal Center, 1 School Street, Bethel, CT 06801 Phone (203) 794-8517 Fax (203) 794-8595

Gary Boughton, Building Official Joseph P. Fallo, Assistant Building Official

REV.07/08/05

PLEASE CALL FOR INSPECTIONS. INSPECTIONS ARE REQUIRED AT THESE POINTS IN YOUR PLEASE KNOW YOUR PROJECT. ITEMS WE MISS AND DO NOT CHECK OFF ON THIS

| ROJEC       | THAT, IN FACT, DO REQUIRE INSPECTION ARE YO                                                                                                                                               | OUR RESPONSIBILITY TO                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| HEET        | THAT, IN FACT, DO                                                                                                                                                                         | ,                                                                           |
| ETERM       |                                                                                                                                                                                           | THE MIST BE RECEIVED AND APPROVED BY                                        |
|             | IF REQUIRED, TWO COPIES OF FOUNDATION AS-BUITHE ZONING DEPARTMENT BEFORE FURTHER WORK MAY                                                                                                 | COMMENCE!                                                                   |
|             | FOOTING DRAINS                                                                                                                                                                            |                                                                             |
|             | WATERPROOFING FOUNDATION                                                                                                                                                                  |                                                                             |
| 4.          | FOUNDATION INSULATION                                                                                                                                                                     | THE TANDER CROUND                                                           |
| 5.          | UNDERGROUND PLUMBING, PLUMBING IN SLA                                                                                                                                                     | AB, SPRINKLER UNDERGROUND                                                   |
| 6.          | UNDERGROUND SERVICE (ELECTRICAL CONTE                                                                                                                                                     | ACTORS SHABE DO                                                             |
| 7.          | TEMPORARY SERVICES                                                                                                                                                                        |                                                                             |
| 8.          | DECK FOOTING INSPECTION WITH LEDGER F                                                                                                                                                     | BOARD AND FLASHING.                                                         |
| 9.          | HEARTH INSPECTION                                                                                                                                                                         |                                                                             |
| 10.         | SMOKE SHELF INSPECTION                                                                                                                                                                    |                                                                             |
| 11.         | FRAMING INSPECTION BEFORE MECHANICAL                                                                                                                                                      | S                                                                           |
| * 12.       | ELECTRICAL ROUGH                                                                                                                                                                          | WE DO A FULL MECHANICAL<br>ROUGH INSPECTION AS ONE<br>INSPECTION. ALL THESE |
|             | ·PLUMBING ROUGH                                                                                                                                                                           | MUST BE READY WHEN YOU                                                      |
| <b>*</b> 14 | ·HEATING ROUGH (INCLUDING OIL TANK)                                                                                                                                                       | CALL.                                                                       |
| 15          | INSULATION                                                                                                                                                                                | T DECUIRED                                                                  |
| 16          | aPOOL BONDING, STRUCTURAL STEEL/REBAR                                                                                                                                                     | & POTTING - IF REQUIRED                                                     |
| 16          | bPOOL LIGHTS & POTTING(BEFORE POOL IS                                                                                                                                                     | FILLED), GROUNDING & CONDOIL                                                |
| 16          | DC. POOL GATECOMPLETE BARRIER, ALARMS                                                                                                                                                     | -COMPLETE ELECTRIC-WE MOSI HAVE                                             |
| ) 17        | CERTIFICATE OF OCCUPANCY YOU MUST CO                                                                                                                                                      | MUESE ADDROVATS! (FOR NEW                                                   |
| ZONI        | ING (794-8519) OR FUBLIC WORKS (794-6549) FOR LDING, ITEMS BELOW MUST BE RECEIVED AT LEAS                                                                                                 | T TEN BUSINESS DAYS PRIOR TO                                                |
| BUII        | LDING, ITEMS BELOW MUST BE RECEIVED AT LEAS<br>JING CERTIFICATE OF OCCUPANCY) (APPROVALS MU<br>LIC WORKS, & A ZONING COMPLIANCE CERTIFICAT<br>LIC WORKS, & A ZONING COMPLIANCE CERTIFICAT | ST BE RECEIVED FROM HEALTH, &<br>E MUST BE ISSUED, BEFORE A                 |
| PUBI        | LIC WORKS, & A ZONING COMPLETION CAN OCCUR.                                                                                                                                               | )                                                                           |
| CER         | TIFICATE OF OCCOPANCE AND WELL COMPLETE                                                                                                                                                   | ONC) SEPTIC AS BUILT                                                        |
| A)          | TIFICATE OF OCCUPANCY INSPECTION CAN OCCUR.  WATER TEST SITE PLAN AS BUILT E) DRIVEWAY/SOIL& E                                                                                            | ROSION/DRIVEWAL APRON                                                       |
| E) ]        | METER(S) OF OCCT                                                                                                                                                                          | DANCY BEFORE IT IS OCCUPIED.                                                |
| AN          | METER(S) EW BUILDING MUST HAVE A CERTIFICATE OF OCCU                                                                                                                                      |                                                                             |

# BETHEL BUILDING DEPARTMENT

# **BUILDING PERMIT NO. 05-605**

BETHEL MUNICIPAL CENTER 1 SCHOOL STREET

| SCHOOL STREET<br>BETHEL, CT 06801<br>FEL. (203) 794-8517 | FAX. (203) 794-8595                                                                                                          | DATE                                    | OF PERMIT _                        | 9/30/2005        |                         |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|------------------|-------------------------|
|                                                          | itenna                                                                                                                       |                                         | OSED USE                           | NUMBER           | UNITS                   |
| AT: (STREET & NO.)                                       | SPRING HILL LANE                                                                                                             |                                         |                                    | DISTRICT         |                         |
|                                                          | MAP 32                                                                                                                       | AND<br>BLOCK47A L                       | OT <u>121</u>                      | ASSESSOR<br>#    | LOT<br>SIZE01.63Acr_    |
| SUBDIVISION                                              |                                                                                                                              |                                         |                                    |                  |                         |
|                                                          | Enterprise Drive, Suite 3A (STREET)                                                                                          |                                         | CT<br>(ST.                         | ATE)             | 06067<br>(ZIP)          |
| (NO.) BUILDING IS TO BE                                  | FEET WIDE BY                                                                                                                 | PEET LONG                               | AREA OR<br>OLUME<br>CUBIC          | PERM<br>VSQ FEET | NT FEE \$1,213.00       |
|                                                          | E                                                                                                                            |                                         |                                    |                  |                         |
| REMARKS Install teleco                                   | ommunications facility including<br>nas. Facility to be fenced in ar                                                         | 125' mono pole and end screened. Remove | equipment shelt<br>existing smalle |                  |                         |
| OWNER VALLEY COM                                         | MUNICATIONS INC                                                                                                              |                                         |                                    | TOWN             | DEPARTMENT<br>DE BETHEL |
| ADDRESS                                                  |                                                                                                                              | HELTON CT                               | 0648400 BY                         | dary,            | Boughton                |
|                                                          | IVEYS NO RIGHT TO OCCUPY ANY<br>INCROACHMENTS ON PUBLIC PRO<br>HE JURISDICTION. STREET OR ALL<br>THE DEPARTMENT OF PUBLIC WO |                                         |                                    |                  |                         |

FROM THE CONDITIONS OF ANY APPLICABLE SUBDIVISION RESTRICTIONS.

INSPECTIONS REQUIRED FOR ALL CONSTRUCTION WORK, INCLUDING:

1. FOUNDATIONS OR FOOTINGS. 2. FULL ROUGH, AND INSULATION PRIOR TO COVERING STRUCTURAL

MEMBERS. 3. FINAL INSPECTION BEFORE C/O. APPROVED PLANS MUST BE RETAINED ON JOB AND THIS CARD KEPT POSTED UNTIL FINAL INSPECTION HAS BEEN MADE. WHERE A CERTIFICATE OF OCCUPANCY IS REQUIRED, SUCH BUILDING SHALL NOT BE OCCUPIED UNTIL FINAL INSPECTION HAS BEEN MADE.

WHERE APPLICABLE SEPARATE PERMITS ARE REQUIRED FOR ELECTRICAL. PLUMBING AND MECHANICAL INSTALLATIONS.

WORK SHALL NOT PROCEED UNTIL THE INSPECTOR HAS APPROVED THE VARIOUS STAGES OF CONSTRUCTION.

PERMIT WILL BECOME NULL AND VOID IF CONSTRUCTION WORK IS NOT STARTED WITHIN SIX MONTHS OF DATE THE PERMIT IS ISSUED AS NOTED ABOVE.

### TOWN OF BETHEL

ONE

### BUILDING EQUIPMENT INSTALLATION

| SCHOOL STREET BETHEL, CT 06601<br>TEL. 203 794-6517 |                                                                  |
|-----------------------------------------------------|------------------------------------------------------------------|
| 1EL. 200 7 04 00 11                                 | To the best of my knowledge the new work complies with the provi |

This is to certify that the work described below has been inspected and approved. To the best of my

It is specifically understood that this certificate becomes null and void when secured through fraud or by reason of latent violations not ascertainable at the time of inspection, or when changes are made following inspection, without inspector's approval. ☐ RESIDENTIAL ☐ COMMERCIAL ☐ INDUSTRIAL ☑ OTHER cell tower DATE NEW REPLACEMENT 9/30/2005 121 SPRING HILL LANE TYPE OF PERMIT - CHECK ONE BOX ONLY (EXCEPT WHERE INDICATED) TAPPLIANCE\* **X** ELECTRIC Heating\* TYPE OF SYSTEM (HEATING ONLY) ☐ WATER HEATER\* ☐ PLUMBING ☐ POOL HEATER\* Warm Air Hot Water □ VENTILATING ☐ AIR CONDITIONING\* ] SPRINKLER □ OTHER\* ☐ WOOD STOVE Heat Pump Radiation Steam ☐ WELL PUMP TWATER CONDITIONER SPECIFY OTHER TANK INSTALLATION Other (COMPLETE ONLY FOR ITEMS MARKED WITH A \*ABOVE) □ELECTRIC □GAS □OIL □SOLAR □OTHER \$24,000 EQUIPMENT RATING \_ \_ BTU'S ESTIMATED COST \$ TOTAL HEAT LOSS/GAIN BTU'S McPhee Michael E. McPhee Electric NAME OF CONTRACTOR 06032 Farmington Main Street ADDRESS 860-677-9797

### Remarks / Work To Be Done

LICENSE NO. AND CLASS

MAKE AND MODEL \_\_

ADDRESS

125222 E1

Permit to furnish and install 1,200 amp 120/240 volt meter center, supply power (200 amp 120/240 volt) to three new cellular carriers and re-feed existing two. Telephone conduits to each cellular carrier as well as arounding of site. APPLICANT'S SIGNATURE NAME OF OWNER VALLEY COMMUNICATIONS INC 860-677-9797 Ext. 346

SHELTON

OFFICE USE ONLY

DATE ISSUED BLDG, PERMIT NO. FEE 9/30/2005 05-606 \$212.84

155 WOOSTER STREET

CT

TEL. NO.

0648400

FIRE-MARSHAL

TEL. NO. \_

### BETHEL BUILDING DEPARTMENT

### **BUILDING PERMIT NO. 05-605**

BETHEL MUNICIPAL CENTER 1 SCHOOL STREET BETHEL, CT 06801

9/30/2005 TEL. (203) 794-8517 FAX. (203) 794-8595 DATE OF PERMIT NUMBER OF PERMIT TO Ceil Tower Antenna DWELLING UNITS PROPOSED USE ZONING SPRING HILL LANE AT: (STREET & NO.) DISTRICT BETWEEN\_\_\_\_ \_\_\_\_\_ AND \_\_\_\_ ASSESSOR LOT SUBDIVISION \_\_\_\_\_ MAP 32 BLOCK 47A LOT 121 # SIZE 01.63 \_\_\_\_PHONE APPLICANT \_\_\_\_\_CT 06067 Rocky Hill 500 Enterprise Drive, Suite 3A **ADDRESS** (STATE) (STREET) (CITY) AREA OR BUILDING IS TO BE FEET WIDE BY FEET LONG VOLUME PERMIT FEE \$1,213.00 CONSTRUCTION TYPE \_\_\_\_\_ USE GROUP \_\_\_\_ ESTMATED COST \_\_ REMARKS [Install telecommunications facility including 125' mono pole and equipment shelters. run Coax to mono pole and install antennas. Facility to be fenced in and screened. Remove existing smaller tower. OWNER VALLEY COMMUNICATIONS INC **BUILDING DEPARTMENT** TOWN OF BETHEL 0648400 BY SHELTON 155 WOOSTER STREET **ADDRESS** THIS PERMIT CONVEYS NO RIGHT TO OCCUPY ANY STREET, ALLEY OR SIDEWALK OR ANY PART THEREOF. EITHER TEMPORARILY OR PERMANENTLY, ENCROACHMENTS ON PUBLIC PROPERTY, NOT SPECIFICALLY PERMITTED UNDER THE BUILDING CODE, MUST BE APPROVED BY THE JURISDICTION. STREET OR ALLEY GRADES AS WELL AS DEPTH AND LOCATION OF PUBLIC SEWERS MAY BE

OBTAINED FROM THE DEPARTMENT OF PUBLIC WORKS. THE ISSUANCE OF THIS PERMIT DOES NOT RELEASE THE APPLICANT FROM THE CONDITIONS OF ANY APPLICABLE SUBDIVISION RESTRICTIONS.

INSPECTIONS REQUIRED FOR ALL CONSTRUCTION WORK, INCLUDING: 1. FOUNDATIONS OR FOOTINGS.

2. FULL ROUGH, AND INSULATION PRIOR TO COVERING STRUCTURAL MEMBERS.

3. FINAL INSPECTION BEFORE C/O.

APPROVED PLANS MUST BE RETAINED ON JOB AND THIS CARD KEPT POSTED UNTIL FINAL INSPECTION HAS BEEN MADE. WHERE A CERTIFICATE OF OCCUPANCY IS REQUIRED. SUCH BUILDING SHALL NOT BE OCCUPIED UNTIL FINAL INSPECTION HAS BEEN MADE.

WHERE APPLICABLE SEPARATE PERMITS ARE REQUIRED FOR ELECTRICAL PLUMBING AND MECHANICAL INSTALLATIONS

WORK SHALL NOT PROCEED UNTIL THE INSPECTOR HAS APPROVED THE VARIOUS STAGES OF CONSTRUCTION.

PERMIT WILL BECOME NULL AND VOID IF CONSTRUCTION WORK IS NOT STARTED WITHIN SIX MONTHS OF DATE THE PERMIT IS ISSUED AS NOTED ABOVE.



## RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

## **SPRINT Existing Facility**

Site ID: CT54XC749

Cingular 38 Spring Hill Road Bethel, CT 06801

**September 14, 2017** 

EBI Project Number: 6217004055

| Site Compliance Summary |           |  |  |  |
|-------------------------|-----------|--|--|--|
| Compliance Status:      | COMPLIANT |  |  |  |
| Site total MPE% of      |           |  |  |  |
| FCC general             | 21.84 %   |  |  |  |
| population              | 21.04 /0  |  |  |  |
| allowable limit:        |           |  |  |  |



September 14, 2017

SPRINT Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Emissions Analysis for Site: CT54XC749 - Cingular

EBI Consulting was directed to analyze the proposed SPRINT facility located at **38 Spring Hill Road**, **Bethel**, **CT**, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm2). The number of  $\mu$ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm²). The general population exposure limits for the 850 MHz Band is approximately 567  $\mu$ W/cm². The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is 1000  $\mu$ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.



Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

### **CALCULATIONS**

Calculations were done for the proposed SPRINT Wireless antenna facility located at **38 Spring Hill Road, Bethel, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 3) 5 CDMA channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
- 4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.



- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the **RFS APXVSPP18-C-A20** and the **RFS APXVTM14-ALU-120** for transmission in the 850 MHz, 1900 MHz (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerlines of the proposed antennas are **115 feet** above ground level (AGL) for **Sector A**, **115 feet** above ground level (AGL) for **Sector B** and **115 feet** above ground level (AGL) for Sector C.
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.



### **SPRINT Site Inventory and Power Data by Antenna**

| Sector:               | A                           | Sector:               | В                           | Sector:               | C                           |
|-----------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|-----------------------------|
| Antenna #:            | 1                           | Antenna #:            | 1                           | Antenna #:            | 1                           |
| Make / Model:         | RFS<br>APXVSPP18-C-A20      | Make / Model:         | RFS<br>APXVSPP18-C-A20      | Make / Model:         | RFS<br>APXVSPP18-C-A20      |
| Gain:                 | 13.4 / 15.9 dBd             | Gain:                 | 13.4 / 15.9 dBd             | Gain:                 | 13.4 / 15.9 dBd             |
| Height (AGL):         | 115 feet                    | Height (AGL):         | 115 feet                    | Height (AGL):         | 115 feet                    |
| Frequency Bands       | 850 MHz /<br>1900 MHz (PCS) | Frequency Bands       | 850 MHz /<br>1900 MHz (PCS) | Frequency Bands       | 850 MHz /<br>1900 MHz (PCS) |
| Channel Count         | 10                          | Channel Count         | 10                          | Channel Count         | 10                          |
| Total TX<br>Power(W): | 220 Watts                   | Total TX<br>Power(W): | 220 Watts                   | Total TX<br>Power(W): | 220 Watts                   |
| ERP (W):              | 7,537.38                    | ERP (W):              | 7,537.38                    | ERP (W):              | 7,537.38                    |
| Antenna A1 MPE%       | 2.58 %                      | Antenna B1 MPE%       | 2.58 %                      | Antenna C1 MPE%       | 2.58 %                      |
| Antenna #:            | 2                           | Antenna #:            | 2                           | Antenna #:            | 2                           |
|                       | RFS                         |                       | RFS                         |                       | RFS                         |
| Make / Model:         | APXVTM14-                   | Make / Model:         | APXVTM14-                   | Make / Model:         | APXVTM14-                   |
|                       | ALU-120                     |                       | ALU-120                     |                       | ALU-120                     |
| Gain:                 | 15.9 dBd                    | Gain:                 | 15.9 dBd                    | Gain:                 | 15.9 dBd                    |
| Height (AGL):         | 115 feet                    | Height (AGL):         | 115 feet                    | Height (AGL):         | 115 feet                    |
| Frequency Bands       | 2500 MHz (BRS)              | Frequency Bands       | 2500 MHz (BRS)              | Frequency Bands       | 2500 MHz (BRS)              |
| Channel Count         | 8                           | Channel Count         | 8                           | Channel Count         | 8                           |
| Total TX<br>Power(W): | 160 Watts                   | Total TX<br>Power(W): | 160 Watts                   | Total TX<br>Power(W): | 160 Watts                   |
| ERP (W):              | 6,224.72                    | ERP (W):              | 6,224.72                    | ERP (W):              | 6,224.72                    |
| Antenna A2 MPE%       | 1.88 %                      | Antenna B2 MPE%       | 1.88 %                      | Antenna C2 MPE%       | 1.88 %                      |

| Site Composite MPE%     |         |  |  |  |
|-------------------------|---------|--|--|--|
| Carrier                 | MPE%    |  |  |  |
| SPRINT – Max per sector | 4.47 %  |  |  |  |
| Bethel PD               | 0.00 %  |  |  |  |
| Thomas Refuse           | 0.00 %  |  |  |  |
| Utilty Cmcns            | 0.00 %  |  |  |  |
| Valley Cmcns            | 0.00 %  |  |  |  |
| Yankee Gas              | 0.00 %  |  |  |  |
| T-Mobile                | 4.46 %  |  |  |  |
| AT&T                    | 4.73 %  |  |  |  |
| Nextel                  | 2.44 %  |  |  |  |
| Verizon Wireless        | 5.74 %  |  |  |  |
| Site Total MPE %:       | 21.84 % |  |  |  |

| SPRINT Sector A Total: | 4.47 %  |
|------------------------|---------|
| SPRINT Sector B Total: | 4.47 %  |
| SPRINT Sector C Total: | 4.47 %  |
|                        |         |
| Site Total:            | 21.84 % |

| SPRINT _ Max Values per<br>Frequency Band / Technology<br>Per Sector | #<br>Channels | Watts ERP<br>(Per Channel) | Height<br>(feet) | Total Power Density (µW/cm²) | Frequency (MHz) | Allowable<br>MPE<br>(µW/cm²) | Calculated<br>% MPE |
|----------------------------------------------------------------------|---------------|----------------------------|------------------|------------------------------|-----------------|------------------------------|---------------------|
| Sprint 850 MHz CDMA                                                  | 1             | 437.55                     | 115              | 1.32                         | 850 MHz         | 567                          | 0.24%               |
| Sprint 850 MHz LTE                                                   | 2             | 437.55                     | 115              | 2.65                         | 850 MHz         | 567                          | 0.47%               |
| Sprint 1900 MHz (PCS) CDMA                                           | 5             | 622.47                     | 115              | 9.42                         | 1900 MHz (PCS)  | 1000                         | 0.94%               |
| Sprint 1900 MHz (PCS) LTE                                            | 2             | 1,556.18                   | 115              | 9.42                         | 1900 MHz (PCS)  | 1000                         | 0.94%               |
| Sprint 2500 MHz (BRS) LTE                                            | 8             | 778.09                     | 115              | 18.84                        | 2500 MHz (BRS)  | 1000                         | 1.88%               |
|                                                                      |               |                            |                  |                              |                 | Total:                       | 4.47%               |



### **Summary**

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

| SPRINT Sector           | Power Density Value (%) |
|-------------------------|-------------------------|
| Sector A:               | 4.47 %                  |
| Sector B:               | 4.47 %                  |
| Sector C:               | 4.47 %                  |
| SPRINT Maximum          | 4.47 %                  |
| Total (per sector):     |                         |
|                         |                         |
| Site Total:             | 21.84 %                 |
|                         |                         |
| Site Compliance Status: | COMPLIANT               |

The anticipated composite MPE value for this site assuming all carriers present is **21.84** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.



August 23, 2017

Tom Jupin Charles Cherundolo Consulting, Inc. 1280 Rt. 46 West Parsippany, NJ 07054

Ramaker & Associates, Inc. 855 Community Drive Sauk City, WI 53583

SUBJECT: STRUCTURAL ASSESSMENT

125-FOOT MONOPOLE TOWER

**CARRIER: SPRINT** 

SITE: **CINGULAR (CT54XC749-B)** 

38 SPRING HILL ROAD

**BETHEL, FAIRFIELD COUNTY, CONNECTICUT 06801 RAMAKER & ASSOCIATES PROJECT NUMBER: 28746** 

**RESULTS:** TOWER: 92.4% **PASS** 

> **FOUNDATION:** 80.1% **PASS**

Dear Tom Jupin:

Ramaker & Associates, Inc. (RAMAKER) respectfully submits this structural assessment for the above mentioned site. The purpose of this report is to determine the structural integrity of the existing structure with the existing and proposed loading. Engineering recommendations regarding the analysis results are provided in the following pages.

RAMAKER developed a finite element model of the tower using tnxTower analysis software. All information contained herein is valid only for the described structure configuration and loading conditions. RAMAKER reserves the right to modify our recommendations should alterations to the tower loading occur.

If you have any questions or comments, please do not hesitate to contact our office.

Sincerely,

Structural Designer

RAMAKER & ASSOCIATES, INC.

Supervising Engineer

#### **ANALYSIS CRITERIA**

| State Building Code                         | 2016 CT State Building Code |
|---------------------------------------------|-----------------------------|
| Adopted Building Code                       | 2012 IBC                    |
| Referenced Standard                         | TIA-222-G                   |
| Risk Category                               | II                          |
| Ultimate Design Wind Speed, Vult            | 120 mph (3 sec. gust)       |
| Nominal Design Wind Speed, V <sub>asd</sub> | 93 mph (3 sec. gust)        |
| Design Wind Speed w/ Ice                    | 50 mph (3 sec. gust)        |
| Ice Thickness                               | 3/4 inch                    |
| Exposure Category                           | В                           |
| Topographic Category                        | 5 (SEAW RSM-03)             |
| Crest Height                                | 352 feet                    |
| Slope Distance                              | 2932 feet                   |

### **SUPPORTING DOCUMENTATION**

- Structural analysis by Salient Associates, LLC., dated 12/14/12
- Structural analysis by Centek Engineering, project number 12124.C04, dated 3/7/13
- $\bullet$  Structural analysis by Bennett & Pless, site number CT-5003, dated 5/25/16
- Construction drawings by RAMAKER, project number 28746
- Site visit(s) conducted by RAMAKER
- Other pertinent data procured or assumed by RAMAKER during site due diligence activities

### **TOWER LOADING**

RAMAKER understands that the loading to be used for this analysis will consist of the antenna equipment, mount, and cable configurations as shown in the following chart:

| Elevation | Appurtenance                   | Mount                | Coax                                                                 | Owner    | Status   |  |
|-----------|--------------------------------|----------------------|----------------------------------------------------------------------|----------|----------|--|
|           | 15' Omni                       |                      | (1) 1-5/8                                                            |          |          |  |
|           | (3) Powerwave 7770.00          |                      |                                                                      |          |          |  |
|           | (1) CCI HPA-65R-BUU-H8         |                      |                                                                      |          |          |  |
| 122       | (2) CCI HPA-65R-BUU-H6         | Low-Profile Platform |                                                                      |          |          |  |
|           | (3) Powerwave P65-16-XLH-RR    |                      | (10) 1.5/0                                                           | AT&T     | Existing |  |
|           | (6) Powerwave LGP21401         |                      | (12) 1-3/8                                                           |          |          |  |
|           | (3) Ericsson RRUS-32 B30       |                      |                                                                      |          |          |  |
| 120       | (6) Ericsson RRUS-11           | Callerana            | (12) 1-5/8  unt (3) Hybrid (1) Hybrid  atform (10) 1-5/8  (12) 1-5/8 |          |          |  |
| 120       | (2) Raycap DC6-48-60-18-8F     | Collar Mount         |                                                                      |          |          |  |
|           | (3) RFS APXVSPP18-C            |                      |                                                                      |          | Existing |  |
| 115       | (3) RFS APXVTM14-ALU-I20       | Low-Profile Platform | (3) Hybrid S                                                         |          | Duamanad |  |
|           | (3) ALU TD-RRH8×20-25          |                      |                                                                      | Sprint   | Proposed |  |
| 105       | (6) ALU 1900MHz 4x45W RRH      | Calley Mayer         |                                                                      |          | F        |  |
| 105       | (3) ALU 800MHz 2x50W RRH       | Collar Mount         |                                                                      |          | Existing |  |
|           | (6) Ericsson AIR21 B2A B4P     |                      |                                                                      |          |          |  |
| 102       | (3) Andrew LNX-6515DS-VTM      | Low-Profile Platform | (10) 1 5/0                                                           | T-Mobile | Existing |  |
| 102       | (3) Ericsson RRUS-11           | Low-Profile Platform | (10) 1-5/6                                                           |          |          |  |
|           | (1) 10' Dipole                 |                      |                                                                      |          |          |  |
|           | (2) Antel LPA-80063-6CF-EDIN-X |                      |                                                                      |          |          |  |
|           | (1) Andrew DBXNH-6565B-R2M     |                      |                                                                      |          |          |  |
|           | (6) Andrew LNX-6514DS-T4M      |                      | (10) 1 5 /0                                                          |          |          |  |
| 93        | (2) Kathrein 800 10722         | Low-Profile Platform | (12) 1-3/6                                                           | Verizon  | Existing |  |
|           | (1) JMA Wireless X7C-680       |                      |                                                                      |          |          |  |
|           | (6) Ericsson RRUS-11           |                      |                                                                      |          |          |  |
|           | (2) 10' Omni                   |                      | (2) 1-5/8                                                            |          |          |  |
| 82        |                                | Low-Profile Platform |                                                                      |          | Existing |  |
| 72        | (1) 15' Dipole                 | Low-Profile Platform | (1) 1-5/8                                                            | Tower    | Existing |  |

#### **TOWER RESULTS**

The maximum tower member stress capacities under the loading conditions previously described are as follows:

| Component Type | Percent Capacity | Pass/Fail |
|----------------|------------------|-----------|
| Section 1      | 45.4             | Pass      |
| Section 2      | 92.4             | Pass      |
| Section 3      | 86.5             | Pass      |
| Anchor Rod     | 80.2             | Pass      |
| Base Plate     | 90.4             | Pass      |
| RATING         | 92.4             | PASS      |

Results of the analysis show that the existing tower will be stressed to a maximum of 92.4 percent of capacity. Therefore, the existing tower will pass the TIA-222-G analysis requirements under proposed loading conditions.

### **FOUNDATION RESULTS**

The maximum foundation stress capacities are as follows:

| Component Type   | Percent Capacity | Pass/Fail |  |  |
|------------------|------------------|-----------|--|--|
| Soil Interaction | 78.1             | Pass      |  |  |
| Structural       | 80.1             | Pass      |  |  |
| RATING           | 80.1             | PASS      |  |  |

The foundations were analyzed utilizing the structural reports referenced above. Results of the analysis show that the existing foundation will be stressed to a maximum of 80.1 percent of capacity. Therefore, the existing foundation will pass the TIA-222-G analysis requirements under proposed loading conditions.

#### **LIMITATIONS**

The recommendations contained within this report were developed using the supporting documentation as previously described. All recommendations pertain only to the proposed antenna installation activities as described in this report. RAMAKER assumes no responsibility for failures caused by factors beyond our control. These include but are not limited to the following:

- Missing, corroding, and/or deteriorating members
- Improper manufacturing and/or construction
- Improper maintenance

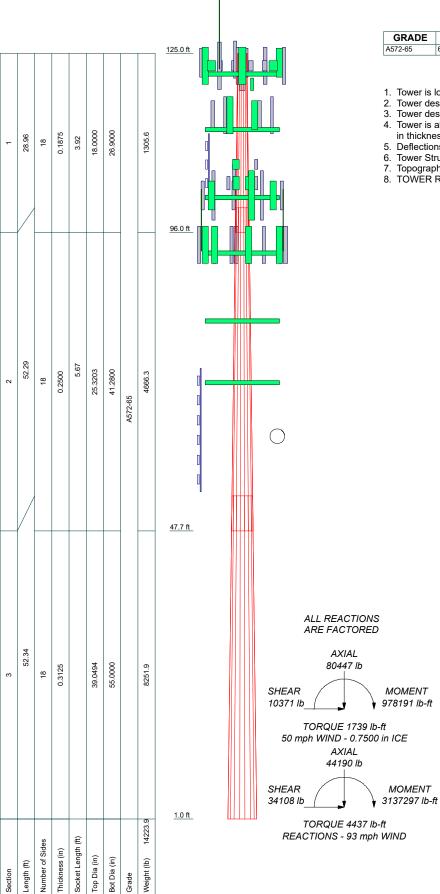
RAMAKER assumes no responsibility for modifications completed prior to or hereafter in which RAMAKER was not directly involved. These modifications include but are not limited to the following:

- Replacing or strengthening bracing members
- Reinforcing or extending vertical members
- Installing or removing antenna mounting gates or side arms
- Changing loading configurations

The tower owner is responsible for verifying that the existing loading on the structure is consistent with the loading applied to the structure within this report. If there is any information contrary to that contained herein, or if there are any defects arising from the original design, material, fabrication and erection deficiencies, this report should be disregarded and RAMAKER should be contacted immediately. RAMAKER is not liable for any representation, recommendation, or conclusion not expressly stated herein.

This analysis pertains only to the tower structure, and no analyses or conclusions were made regarding the antenna and equipment mounting structure(s). Analysis and certification of the antenna and equipment mounting structure(s) is performed and submitted separately.

### **ATTACHMENTS**


- Analysis Figures
- Analysis Calculations

#### TYPE **ELEVATION ELEVATION** Tri-Antenna Mount (Sprint) 15' Omni (Tower) (2) AIR 21 B2A B4P w/Mount Pipe 102 7770.00 w/Mount Pipe (ATT) 122 (T-Mobile) 7770.00 w/Mount Pipe (ATT) 122 (2) AIR 21 B2A B4P w/Mount Pipe (T-Mobile) 102 7770.00 w/Mount Pipe (ATT) 122 HPA-65R-BUU-H8 w/Mount Pipe 122 (2) AIR 21 B2A B4P w/Mount Pipe 102 HPA-65R-BUU-H6 w/Mount Pipe 122 LNX-6515DS-VTM w/Mount Pipe (ATT) 102 HPA-65R-BUU-H6 w/Mount Pipe 122 18.0000 26.9000 LNX-6515DS-VTM w/Mount Pipe 102 0.1875 (ATT) 28.96 3.92 8 (T-Mobile) P65-16-XLH-RR w/Mount Pipe (ATT) 122 LNX-6515DS-VTM w/Mount Pipe 102 P65-16-XLH-RR w/Mount Pipe (ATT) 122 (T-Mobile) P65-16-XLH-RR w/Mount Pipe (ATT) 122 RRUS-11 (T-Mobile) 102 (2) LGP214nn (ATT) 122 RRUS-11 (T-Mobile) 102 (2) LGP214nn (ATT) 122 RRUS-11 (T-Mobile) 102 (2) LGP214nn (ATT) 122 10' Dipole (T-Mobile) 102 RRUS-32 B30 (ATT) 8'x2" Antenna Mount Pipe (T-Mobile) 102 RRUS-32 B30 (ATT) 122 96.0 ft 8'x2" Antenna Mount Pipe (T-Mobile) 102 RRUS-32 B30 (ATT) 122 8'x2" Antenna Mount Pipe (T-Mobile) 102 8'x2" Antenna Mount Pipe (ATT) 122 Platform Mount [LP 1201-1] (T-Mobile) 102 8'x2" Antenna Mount Pipe (ATT) 122 LPA-80063-6CF-EDIN-X w/Mount Pipe 93 8'x2" Antenna Mount Pipe (ATT) 122 (Verizon) Platform Mount [LP 1201-1] (ATT) 122 LPA-80063-6CF-EDIN-X w/Mount Pipe 93 (2) RRUS-11 (ATT) 120 DBXNH-6565B-R2M w/Mount Pipe (2) RRUS-11 (ATT) 120 93 (Verizon) (2) RRUS-11 (ATT) 120 LNX-6514DS-T4M w/Mount Pipe 93 DC6-48-60-18-8F (ATT 120 (Verizon) DC6-48-60-18-8F (ATT) LNX-6514DS-T4M w/Mount Pipe 93 Tri-Antenna Mount (ATT) 120 (Verizon) APXVSPP18-C w/Mount Pipe (Sprint) 115 52.29 LNX-6514DS-T4M w/Mount Pipe 93 APXVSPP18-C w/Mount Pipe (Sprint) 115 25.3203 41.2800 0.2500 (Verizon) 8 APXVSPP18-C w/Mount Pipe (Sprint) 115 800 10722 w/Mount Pipe (Verizon) 93 APXVTM14-ALU-120 w/Mount Pipe 115 800 10722 w/Mount Pipe (Verizon) 93 A572-65 (Sprint) X7C-680 w/Mount Pipe (Verizon) 93 APXVTM14-ALU-120 w/Mount Pipe 115 LNX-6514DS-T4M w/Mount Pipe 93 (Sprint) (Verizon) APXVTM14-ALU-120 w/Mount Pipe 115 LNX-6514DS-T4M w/Mount Pipe 93 (Sprint) TD-RRH8x20-25 (Sprint) 115 LNX-6514DS-T4M w/Mount Pipe 93 TD-RRH8x20-25 (Sprint) 115 (Verizon) TD-RRH8x20-25 (Sprint) 115 RRUS-11 (Verizon) 93 (2) 8'x2" Antenna Mount Pipe (Sprint) 115 RRUS-11 (Verizon) 93 (2) 8'x2" Antenna Mount Pipe (Sprint) 115 RRUS-11 (Verizon) 93 (2) 8'x2" Antenna Mount Pipe (Sprint) 115 RRUS-11 (Verizon) 93 Platform Mount [LP 1201-1] (Sprint) 115 RRUS-11 (Verizon) 93 47.7 ft 1900MHz 4x45W RRH (Sprint) 105 RRUS-11 (Verizon) 93 1900MHz 4x45W RRH (Sprint) 105 10' Omni (Verizon) 93 1900MHz 4x45W RRH (Sprint) 105 93 10' Omni (Verizon) 1900MHz 4x45W RRH (Sprint) 105 Platform Mount [LP 1201-1] (Verizon) 93 1900MHz 4x45W RRH (Sprint) 105 Platform Mount [LP 1201-1] (Empty) 82 1900MHz 4x45W RRH (Sprint) 105 15' Dipole (Other) 800MHz 2x50W RRH (Sprint) 105 Platform Mount [LP 1201-1] (Other) 72 800MHz 2x50W RRH (Sprint) 105 ALL REACTIONS 800MHz 2x50W RRH (Sprint) 105 ARE FACTORED **MATERIAL STRENGTH** AXIAI GRADE Fu GRADE Fy Fu Fy 80447 lb 55.0000 9 A572-65 က 3251 SHEAR **TOWER DESIGN NOTES** 10371 lb Tower is located in Fairfield County, Connecticut. Tower designed for Exposure B to the TIA-222-G Standard. TORQUE 1739 lb-f2. Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard. 50 mph WIND - 0.7500 i<sup>3</sup>. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase AXIAL in thickness with height. 44190 lb Deflections are based upon a 60 mph wind. Tower Structure Class II. SHEAR Topographic Category 5 with Crest Height of 352.00 ft 34108 lb TOWER RATING: 92.4% 1.0 ft 14223.9 TORQUE 4437 lb-ft REACTIONS - 93 mph WIND Thickness (in) Socket Length Top Dia (in) 9 Bot Dia (in) Weight ( Length ( Grade

**DESIGNED APPURTENANCE LOADING** 

Ramaker & Associates, Inc.
855 Community Drive
Sauk City, WI 53583
Phone: (608) 643-4100

FAX: (608) 643-7999



#### **MATERIAL STRENGTH**

| GRADE   | Fy     | Fu     | GRADE | Fy | Fu |
|---------|--------|--------|-------|----|----|
| A572-65 | 65 ksi | 80 ksi |       |    |    |

#### **TOWER DESIGN NOTES**

- 1. Tower is located in Fairfield County, Connecticut.
- 2. Tower designed for Exposure B to the TIA-222-G Standard.
- Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

  5. Deflections are based upon a 60 mph wind.

  6. Tower Structure Class II.

- 7. Topographic Category 5 with Crest Height of 352.00 ft8. TOWER RATING: 92.4%



| ob: Cingular (CT54XC749)   |                |           |  |  |  |  |  |  |
|----------------------------|----------------|-----------|--|--|--|--|--|--|
| Project: <b>28746</b>      |                |           |  |  |  |  |  |  |
|                            | ILIVI          | App'd:    |  |  |  |  |  |  |
| Code: TIA-222-G            | Date: 08/23/17 | Scale: N7 |  |  |  |  |  |  |
| Path: I:\28700\28746\Struc | Dwg No. E      |           |  |  |  |  |  |  |

| tnx <sub>T</sub> | 'ower |
|------------------|-------|
|                  |       |

### Ramaker & Associates, Inc.

855 Community Drive Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 1 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Sprint               | Designed by TEM   |

### **Tower Input Data**

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut.

ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).

Basic wind speed of 93 mph.

Structure Class II.

Exposure Category B.

Topographic Category 5.

Crest Height 352.00 ft.

SEAW RSM-03 procedures for wind speed-up calculations are used.

Topographic Feature: Hill. Slope Distance L: 2932.00 ft. Distance from Crest x: 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used. Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

#### **Tapered Pole Section Geometry** Elevation Splice Number Тор Bottom Wall Bend Pole Grade Section Section Length Length Diameter Diameter Thickness Radius Sides in in in in L1 125.00-96.04 28.96 3.92 18.0000 26.9000 0.1875 0.7500 A572-65 (65 ksi) L2 96.04-47.67 52.29 5.67 18 25.3203 41.2800 0.2500 1.0000 A572-65 (65 ksi) L3 47.67-1.00 52.34 18 39.0494 55.0000 0.3125 1.2500 A572-65 (65 ksi)

|         |          |         |           |         |         | _        |                 |         |        |        |
|---------|----------|---------|-----------|---------|---------|----------|-----------------|---------|--------|--------|
| Section | Tip Dia. | Area    | I         | r       | C       | I/C      | J               | It/O    | w      | w/t    |
|         | in       | $in^2$  | $in^4$    | in      | in      | $in^3$   | in <sup>4</sup> | $in^2$  | in     |        |
| L1      | 18.2777  | 10.6007 | 424.9328  | 6.3234  | 9.1440  | 46.4712  | 850.4248        | 5.3013  | 2.8380 | 15.136 |
|         | 27.3150  | 15.8973 | 1433.1421 | 9.4829  | 13.6652 | 104.8753 | 2868.1699       | 7.9501  | 4.4044 | 23.49  |
| L2      | 26.9258  | 19.8933 | 1579.6584 | 8.9000  | 12.8627 | 122.8091 | 3161.3953       | 9.9485  | 4.0164 | 16.065 |
|         | 41.9168  | 32.5573 | 6924.5082 | 14.5657 | 20.9702 | 330.2064 | 13858.1278      | 16.2817 | 6.8253 | 27.301 |

**Tapered Pole Properties** 

Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

\*\*\*\*\*\*

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 2 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  |                      | Designed by       |
|         | Sprint               | TEM               |

| Section | Tip Dia. | Area    | I          | r       | C       | I/C      | J          | It/Q           | w      | w/t    |
|---------|----------|---------|------------|---------|---------|----------|------------|----------------|--------|--------|
|         | in       | $in^2$  | $in^4$     | in      | in      | $in^3$   | $in^4$     | $in^{\bar{2}}$ | in     |        |
| L3      | 41.4064  | 38.4222 | 7284.0012  | 13.7516 | 19.8371 | 367.1906 | 14577.5869 | 19.2147        | 6.3227 | 20.233 |
|         | 55.8485  | 54.2432 | 20495.5041 | 19.4141 | 27.9400 | 733.5542 | 41017.9768 | 27.1267        | 9.1300 | 29.216 |

| Tower          | Gusset     | Gusset    | Gusset Grade | Adjust. Factor | Adjust. | Weight Mult. | Double Angle | Double Angle | Double Angle |
|----------------|------------|-----------|--------------|----------------|---------|--------------|--------------|--------------|--------------|
| Elevation      | Area       | Thickness |              | $A_f$          | Factor  |              | Stitch Bolt  | Stitch Bolt  | Stitch Bolt  |
|                | (per face) |           |              |                | $A_r$   |              | Spacing      | Spacing      | Spacing      |
|                |            |           |              |                |         |              | Diagonals    | Horizontals  | Redundants   |
| ft             | $ft^2$     | in        |              |                |         |              | in           | in           | in           |
| L1             |            |           |              | 1              | 1       | 1            |              |              |              |
| 125.00-96.04   |            |           |              |                |         |              |              |              |              |
| L2 96.04-47.67 |            |           |              | 1              | 1       | 1            |              |              |              |
| L3 47.67-1.00  |            |           |              | 1              | 1       | 1            |              |              |              |

| Fe          | Feed Line/Linear Appurtenances - Entered As Round Or Flat |        |           |           |        |         |         |          |           |        |  |  |  |
|-------------|-----------------------------------------------------------|--------|-----------|-----------|--------|---------|---------|----------|-----------|--------|--|--|--|
|             |                                                           |        |           |           |        |         |         |          |           |        |  |  |  |
| Description | Face                                                      | Allow  | Component | Placement | Total  | Number  | Clear   | Width or | Perimeter | Weight |  |  |  |
|             | or                                                        | Shield | Туре      |           | Number | Per Row | Spacing | Diameter |           |        |  |  |  |
|             | Loc                                                       |        |           | G         |        |         | in      | in       | in        | n.lf   |  |  |  |

| Description      | Face<br>or | Allow<br>Shield | Component<br>Type | Placement     | Total Number |          | $C_AA_A$ | Weigh |
|------------------|------------|-----------------|-------------------|---------------|--------------|----------|----------|-------|
|                  | Leg        |                 |                   | ft            |              |          | ft²/ft   | plf   |
| ******           |            |                 |                   |               |              |          |          |       |
| 1 5/8            | A          | No              | Inside Pole       | 122.00 - 1.00 | 12           | No Ice   | 0.00     | 1.04  |
| (ATT)            |            |                 |                   |               |              | 1/2" Ice | 0.00     | 1.04  |
|                  |            |                 |                   |               |              | 1" Ice   | 0.00     | 1.04  |
| HB114-1-08U4-M5J | В          | No              | Inside Pole       | 116.00 - 1.00 | 3            | No Ice   | 0.00     | 1.08  |
| (Sprint)         |            |                 |                   |               |              | 1/2" Ice | 0.00     | 1.08  |
|                  |            |                 |                   |               |              | 1" Ice   | 0.00     | 1.08  |
| 1 1/4            | В          | No              | Inside Pole       | 116.00 - 1.00 | 1            | No Ice   | 0.00     | 0.66  |
| (Sprint)         |            |                 |                   |               |              | 1/2" Ice | 0.00     | 0.66  |
| ,                |            |                 |                   |               |              | 1" Ice   | 0.00     | 0.66  |
| 1 5/8            | C          | No              | Inside Pole       | 101.00 - 1.00 | 10           | No Ice   | 0.00     | 1.04  |
| (T-Mobile)       |            |                 |                   |               |              | 1/2" Ice | 0.00     | 1.04  |
| ,                |            |                 |                   |               |              | 1" Ice   | 0.00     | 1.04  |
| 1 5/8            | C          | No              | Inside Pole       | 91.00 - 1.00  | 14           | No Ice   | 0.00     | 1.04  |
| (Verizon)        |            |                 |                   |               |              | 1/2" Ice | 0.00     | 1.04  |
| ,                |            |                 |                   |               |              | 1" Ice   | 0.00     | 1.04  |
| 1 5/8            | Α          | No              | Inside Pole       | 71.00 - 1.00  | 1            | No Ice   | 0.00     | 1.04  |
| (Dipole)         |            | _               |                   |               | _            | 1/2" Ice | 0.00     | 1.04  |
| (I)              |            |                 |                   |               |              | 1" Ice   | 0.00     | 1.04  |
| *****            |            |                 |                   |               |              | - 100    |          |       |

| Feed Line/Linear Appurtenances Section Areas |           |      |       |       |           |          |        |  |  |  |
|----------------------------------------------|-----------|------|-------|-------|-----------|----------|--------|--|--|--|
| Tower                                        | Tower     | Face | $A_R$ | $A_F$ | $C_A A_A$ | $C_AA_A$ | Weight |  |  |  |
| Section                                      | Elevation |      |       |       | In Face   | Out Face |        |  |  |  |
|                                              |           |      |       |       |           |          |        |  |  |  |

Ramaker & Associates, Inc. 855 Community Drive Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 3 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | •                    | Designed by       |
|         | Sprint               | TEM               |

| Tower   | Tower        | Face | $A_R$           | $A_F$           | $C_A A_A$       | $C_A A_A$ | Weight  |
|---------|--------------|------|-----------------|-----------------|-----------------|-----------|---------|
| Section | Elevation    |      |                 |                 | In Face         | Out Face  |         |
|         | ft           |      | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup> | ft²       | lb      |
| L1      | 125.00-96.04 | A    | 0.000           | 0.000           | 0.000           | 0.000     | 323.98  |
|         |              | В    | 0.000           | 0.000           | 0.000           | 0.000     | 77.84   |
|         |              | C    | 0.000           | 0.000           | 0.000           | 0.000     | 51.58   |
| L2      | 96.04-47.67  | A    | 0.000           | 0.000           | 0.000           | 0.000     | 627.92  |
|         |              | В    | 0.000           | 0.000           | 0.000           | 0.000     | 188.64  |
|         |              | C    | 0.000           | 0.000           | 0.000           | 0.000     | 1133.93 |
| L3      | 47.67-1.00   | A    | 0.000           | 0.000           | 0.000           | 0.000     | 630.98  |
|         |              | В    | 0.000           | 0.000           | 0.000           | 0.000     | 182.01  |
|         |              | C    | 0.000           | 0.000           | 0.000           | 0.000     | 1164.88 |

|                  | Feed Line/Linear Appurtenances Section Areas - With Ice |            |                     |        |        |                                          |                                           |         |  |  |  |  |
|------------------|---------------------------------------------------------|------------|---------------------|--------|--------|------------------------------------------|-------------------------------------------|---------|--|--|--|--|
| Tower<br>Section | Tower<br>Elevation                                      | Face<br>or | Ice Thickness<br>in | $A_R$  | $A_F$  | C <sub>A</sub> A <sub>A</sub><br>In Face | C <sub>A</sub> A <sub>A</sub><br>Out Face | Weight  |  |  |  |  |
|                  | ft                                                      | Leg        |                     | $ft^2$ | $ft^2$ | ft²                                      | $ft^2$                                    | lb      |  |  |  |  |
| L1               | 125.00-96.04                                            | A          | 1.889               | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 323.98  |  |  |  |  |
|                  |                                                         | В          |                     | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 77.84   |  |  |  |  |
|                  |                                                         | C          |                     | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 51.58   |  |  |  |  |
| L2               | 96.04-47.67                                             | A          | 1.828               | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 627.92  |  |  |  |  |
|                  |                                                         | В          |                     | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 188.64  |  |  |  |  |
|                  |                                                         | C          |                     | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 1133.93 |  |  |  |  |
| L3               | 47.67-1.00                                              | A          | 1.662               | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 630.98  |  |  |  |  |
|                  |                                                         | В          |                     | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 182.01  |  |  |  |  |
|                  |                                                         | C          |                     | 0.000  | 0.000  | 0.000                                    | 0.000                                     | 1164.88 |  |  |  |  |

|         | Feed Line Center of Pressure |        |        |            |                        |  |  |  |  |  |
|---------|------------------------------|--------|--------|------------|------------------------|--|--|--|--|--|
| Section | Elevation                    | $CP_X$ | $CP_Z$ | $CP_X$ Ice | CP <sub>Z</sub><br>Ice |  |  |  |  |  |
|         | ft                           | in     | in     | in         | in                     |  |  |  |  |  |
| L1      | 125.00-96.04                 | 0.0000 | 0.0000 | 0.0000     | 0.0000                 |  |  |  |  |  |
| L2      | 96.04-47.67                  | 0.0000 | 0.0000 | 0.0000     | 0.0000                 |  |  |  |  |  |
| L3      | 47.67-1.00                   | 0.0000 | 0.0000 | 0.0000     | 0.0000                 |  |  |  |  |  |

| Shielding Factor Ka |           |             |           |       |       |  |  |  |  |
|---------------------|-----------|-------------|-----------|-------|-------|--|--|--|--|
| Tower               | Feed Line | Description | Feed Line | $K_a$ | $K_a$ |  |  |  |  |

# Discrete Tower Loads

Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 4 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Sprint               | Designed by       |
| Client  | 28746<br>Sprint      |                   |

| Description                            | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_AA_A$<br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight           |
|----------------------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|-------------------|---------------------------------------|------------------|
|                                        |                   |                | Vert<br>ft<br>ft<br>ft      | ٥                     | ft        |                    | ft²               | ft²                                   | lb               |
| ************************************** | С                 | From Leg       | 3.50                        | 0.0000                | 122.00    | No Ice             | 4.13              | 4.13                                  | 40.00            |
| (Tower)                                | C                 | Trom Leg       | 0.00<br>8.00                | 0.0000                | 122.00    | 1/2" Ice<br>1" Ice | 5.66<br>7.20      | 5.66<br>7.20                          | 70.14<br>109.87  |
| *******                                |                   |                |                             |                       |           |                    |                   |                                       |                  |
| 7770.00 w/Mount Pipe<br>(ATT)          | A                 | From Face      | 3.50<br>-6.00               | 0.0000                | 122.00    | No Ice<br>1/2" Ice | 5.66<br>6.04      | 4.11<br>4.76                          | 30.35<br>76.38   |
| 7770.00 w/Mount Pipe                   | В                 | From Face      | 1.50<br>3.50                | 0.0000                | 122.00    | 1" Ice<br>No Ice   | 6.44<br>5.66      | 5.43<br>4.11                          | 128.70<br>30.35  |
| (ATT)                                  | Б                 | 110III 1 acc   | -6.00                       | 0.0000                | 122.00    | 1/2" Ice           | 6.04              | 4.76                                  | 76.38            |
| (7111)                                 |                   |                | 1.50                        |                       |           | 1" Ice             | 6.44              | 5.43                                  | 128.70           |
| 7770.00 w/Mount Pipe                   | C                 | From Face      | 3.50                        | 0.0000                | 122.00    | No Ice             | 5.66              | 4.11                                  | 30.35            |
| (ATT)                                  |                   |                | -6.00                       |                       |           | 1/2" Ice           | 6.04              | 4.76                                  | 76.38            |
|                                        |                   |                | 1.50                        |                       |           | 1" Ice             | 6.44              | 5.43                                  | 128.70           |
| HPA-65R-BUU-H8 w/Mount Pipe            | A                 | From Face      | 3.50                        | 0.0000                | 122.00    | No Ice             | 13.05             | 9.42                                  | 97.20            |
| (ATT)                                  |                   |                | 0.00                        |                       |           | 1/2" Ice           | 13.66             | 10.82                                 | 192.07           |
| IIDA 65D DIJII II6 w/Mount Dino        | В                 | From Face      | 1.00<br>3.50                | 0.0000                | 122.00    | 1" Ice<br>No Ice   | 14.27<br>9.90     | 12.07<br>7.18                         | 296.65<br>76.55  |
| HPA-65R-BUU-H6 w/Mount Pipe<br>(ATT)   | В                 | From Face      | 0.00                        | 0.0000                | 122.00    | 1/2" Ice           | 9.90<br>10.47     | 8.36                                  | 153.48           |
| (AII)                                  |                   |                | 1.00                        |                       |           | 1" Ice             | 11.01             | 9.26                                  | 238.58           |
| HPA-65R-BUU-H6 w/Mount Pipe            | C                 | From Face      | 3.50                        | 0.0000                | 122.00    | No Ice             | 9.90              | 7.18                                  | 76.55            |
| (ATT)                                  |                   | 11011111111    | 0.00                        | 0.0000                | 122.00    | 1/2" Ice           | 10.47             | 8.36                                  | 153.48           |
| ,                                      |                   |                | 1.00                        |                       |           | 1" Ice             | 11.01             | 9.26                                  | 238.58           |
| P65-16-XLH-RR w/Mount Pipe             | A                 | From Face      | 3.50                        | 0.0000                | 122.00    | No Ice             | 8.13              | 6.13                                  | 85.90            |
| (ATT)                                  |                   |                | 6.00                        |                       |           | 1/2" Ice           | 8.59              | 7.07                                  | 149.07           |
|                                        |                   |                | 1.00                        |                       |           | 1" Ice             | 9.05              | 7.90                                  | 219.94           |
| P65-16-XLH-RR w/Mount Pipe             | В                 | From Face      | 3.50                        | 0.0000                | 122.00    | No Ice             | 8.13              | 6.13                                  | 85.90            |
| (ATT)                                  |                   |                | 6.00<br>1.00                |                       |           | 1/2" Ice<br>1" Ice | 8.59<br>9.05      | 7.07<br>7.90                          | 149.07<br>219.94 |
| P65-16-XLH-RR w/Mount Pipe             | C                 | From Face      | 3.50                        | 0.0000                | 122.00    | No Ice             | 8.13              | 6.13                                  | 85.90            |
| (ATT)                                  | C                 | 1 Iom 1 acc    | 6.00                        | 0.0000                | 122.00    | 1/2" Ice           | 8.59              | 7.07                                  | 149.07           |
| (1111)                                 |                   |                | 1.00                        |                       |           | 1" Ice             | 9.05              | 7.90                                  | 219.94           |
| (2) LGP214nn                           | A                 | From Face      | 3.00                        | 0.0000                | 122.00    | No Ice             | 1.11              | 0.21                                  | 14.10            |
| (ATT)                                  |                   |                | 0.00                        |                       |           | 1/2" Ice           | 1.25              | 0.28                                  | 21.30            |
|                                        |                   |                | 1.50                        |                       |           | 1" Ice             | 1.39              | 0.35                                  | 30.39            |
| (2) LGP214nn                           | В                 | From Face      | 3.00                        | 0.0000                | 122.00    | No Ice             | 1.11              | 0.21                                  | 14.10            |
| (ATT)                                  |                   |                | 0.00<br>1.50                |                       |           | 1/2" Ice<br>1" Ice | 1.25<br>1.39      | 0.28<br>0.35                          | 21.30<br>30.39   |
| (2) LGP214nn                           | С                 | From Face      | 3.00                        | 0.0000                | 122.00    | No Ice             | 1.39              | 0.33                                  | 14.10            |
| (ATT)                                  | C                 | 1 Ioin 1 acc   | 0.00                        | 0.0000                | 122.00    | 1/2" Ice           | 1.25              | 0.28                                  | 21.30            |
| (1111)                                 |                   |                | 1.50                        |                       |           | 1" Ice             | 1.39              | 0.35                                  | 30.39            |
| RRUS-32 B30                            | A                 | From Face      | 3.00                        | 0.0000                | 122.00    | No Ice             | 2.69              | 1.59                                  | 50.80            |
| (ATT)                                  |                   |                | 0.00                        |                       |           | 1/2" Ice           | 2.91              | 1.78                                  | 71.33            |
|                                        |                   |                | 0.00                        |                       |           | 1" Ice             | 3.14              | 1.97                                  | 95.01            |
| RRUS-32 B30                            | В                 | From Face      | 3.00                        | 0.0000                | 122.00    | No Ice             | 2.69              | 1.59                                  | 50.80            |
| (ATT)                                  |                   |                | 0.00                        |                       |           | 1/2" Ice           | 2.91              | 1.78                                  | 71.33            |
| RRUS-32 B30                            | С                 | Erom Food      | 0.00                        | 0.0000                | 122.00    | 1" Ice<br>No Ice   | 3.14<br>2.69      | 1.97<br>1.59                          | 95.01<br>50.80   |
| (ATT)                                  | C                 | From Face      | 3.00<br>0.00                | 0.0000                | 122.00    | 1/2" Ice           | 2.69              | 1.78                                  | 71.33            |
| (1111)                                 |                   |                | 0.00                        |                       |           | 1" Ice             | 3.14              | 1.78                                  | 95.01            |
| 8'x2" Antenna Mount Pipe               | A                 | From Face      | 3.50                        | 0.0000                | 122.00    | No Ice             | 1.90              | 1.90                                  | 30.00            |
| (ATT)                                  |                   | -              | -2.00                       |                       |           | 1/2" Ice           | 2.73              | 2.73                                  | 44.34            |
|                                        |                   |                | 0.00                        |                       |           | 1" Ice             | 3.40              | 3.40                                  | 63.96            |
| 8'x2" Antenna Mount Pipe               | В                 | From Face      | 3.50                        | 0.0000                | 122.00    | No Ice             | 1.90              | 1.90                                  | 30.00            |
| (ATT)                                  |                   |                | -2.00                       |                       |           | 1/2" Ice           | 2.73              | 2.73                                  | 44.34            |
|                                        | С                 | From Face      | 0.00<br>3.50                | 0.0000                | 122.00    | 1" Ice             | 3.40              | 3.40                                  | 63.96<br>30.00   |
| 8'x2" Antenna Mount Pipe               |                   |                |                             |                       |           | No Ice             | 1.90              | 1.90                                  |                  |

Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 5 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Sprint               | Designed by TEM   |

| Description                               | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral  | Azimuth<br>Adjustment | Placement |                                        | $C_AA_A$<br>Front               | $C_A A_A$<br>Side               | Weight                                 |
|-------------------------------------------|-------------------|----------------|------------------------------|-----------------------|-----------|----------------------------------------|---------------------------------|---------------------------------|----------------------------------------|
|                                           | Lig               |                | Vert<br>ft<br>ft<br>ft       | 0                     | ft        |                                        | ft²                             | ft²                             | lb                                     |
| (ATT)                                     |                   |                | -2.00                        |                       |           | 1/2" Ice                               | 2.73                            | 2.73                            | 44.34                                  |
| Platform Mount [LP 1201-1]<br>(ATT)       | С                 | None           | 0.00                         | 0.0000                | 122.00    | 1" Ice<br>No Ice<br>1/2" Ice<br>1" Ice | 3.40<br>23.10<br>26.80<br>30.50 | 3.40<br>23.10<br>26.80<br>30.50 | 63.96<br>2100.00<br>2500.00<br>2900.00 |
| *******                                   |                   |                |                              |                       |           | 1 Ice                                  | 30.30                           | 30.30                           | 2900.00                                |
| (2) RRUS-11<br>(ATT)                      | A                 | From Face      | 0.50<br>0.00<br>3.00         | 0.0000                | 120.00    | No Ice<br>1/2" Ice<br>1" Ice           | 2.78<br>2.99<br>3.21            | 1.19<br>1.33<br>1.49            | 50.71<br>71.49<br>95.32                |
| (2) RRUS-11<br>(ATT)                      | В                 | From Face      | 0.50<br>0.00                 | 0.0000                | 120.00    | No Ice<br>1/2" Ice<br>1" Ice           | 2.78<br>2.99                    | 1.19<br>1.33                    | 50.71<br>71.49                         |
| (2) RRUS-11<br>(ATT)                      | С                 | From Face      | 3.00<br>0.50<br>0.00         | 0.0000                | 120.00    | No Ice<br>1/2" Ice                     | 3.21<br>2.78<br>2.99            | 1.49<br>1.19<br>1.33            | 95.32<br>50.71<br>71.49                |
| DC6-48-60-18-8F<br>(ATT)                  | A                 | From Leg       | 3.00<br>1.00<br>0.00         | 0.0000                | 120.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 3.21<br>0.92<br>1.46            | 1.49<br>0.92<br>1.46            | 95.32<br>32.80<br>50.52                |
| DC6-48-60-18-8F<br>(ATT)                  | В                 | From Leg       | 0.00<br>1.00<br>0.00         | 0.0000                | 120.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 1.64<br>0.92<br>1.46            | 1.64<br>0.92<br>1.46            | 70.72<br>32.80<br>50.52                |
| Tri-Antenna Mount (ATT)                   | A                 | From Face      | 0.00<br>0.50<br>0.00<br>4.00 | 0.0000                | 120.00    | 1" Ice<br>No Ice<br>1/2" Ice<br>1" Ice | 1.64<br>5.00<br>6.00<br>7.00    | 1.64<br>5.00<br>6.00<br>7.00    | 70.72<br>270.00<br>290.00<br>310.00    |
| ******                                    |                   |                | 4.00                         |                       |           | 1 Ice                                  | 7.00                            | 7.00                            | 310.00                                 |
| APXVSPP18-C w/Mount Pipe<br>(Sprint)      | A                 | From Face      | 3.50<br>2.00<br>0.00         | 0.0000                | 115.00    | No Ice<br>1/2" Ice<br>1" Ice           | 8.31<br>8.87<br>9.40            | 6.95<br>8.13<br>9.03            | 82.55<br>150.82<br>227.06              |
| APXVSPP18-C w/Mount Pipe<br>(Sprint)      | В                 | From Face      | 3.50<br>2.00                 | 0.0000                | 115.00    | No Ice<br>1/2" Ice                     | 8.31<br>8.87                    | 6.95<br>8.13                    | 82.55<br>150.82                        |
| APXVSPP18-C w/Mount Pipe<br>(Sprint)      | С                 | From Face      | 0.00<br>3.50<br>2.00         | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 9.40<br>8.31<br>8.87            | 9.03<br>6.95<br>8.13            | 227.06<br>82.55<br>150.82              |
| APXVTM14-ALU-120 w/Mount Pipe<br>(Sprint) | A                 | From Face      | 0.00<br>3.50<br>-2.00        | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 9.40<br>6.65<br>7.14            | 9.03<br>5.03<br>5.89            | 227.06<br>77.02<br>132.43              |
| APXVTM14-ALU-120 w/Mount Pipe<br>(Sprint) | В                 | From Face      | 0.00<br>3.50<br>-2.00        | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 7.60<br>6.65<br>7.14            | 6.63<br>5.03<br>5.89            | 194.59<br>77.02<br>132.43              |
| APXVTM14-ALU-120 w/Mount Pipe<br>(Sprint) | С                 | From Face      | 0.00<br>3.50<br>-2.00        | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 7.60<br>6.65<br>7.14            | 6.63<br>5.03<br>5.89            | 194.59<br>77.02<br>132.43              |
| TD-RRH8x20-25<br>(Sprint)                 | A                 | From Face      | 0.00<br>3.50<br>-2.00        | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 7.60<br>4.05<br>4.30            | 6.63<br>1.53<br>1.71            | 194.59<br>70.00<br>97.14               |
| TD-RRH8x20-25<br>(Sprint)                 | В                 | From Face      | 0.00<br>3.50<br>-2.00        | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 4.56<br>4.05<br>4.30            | 1.90<br>1.53<br>1.71            | 127.80<br>70.00<br>97.14               |
| TD-RRH8x20-25<br>(Sprint)                 | C                 | From Face      | 0.00<br>3.50<br>-2.00        | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 4.56<br>4.05<br>4.30            | 1.90<br>1.53<br>1.71            | 127.80<br>70.00<br>97.14               |
| (2) 8'x2" Antenna Mount Pipe<br>(Sprint)  | A                 | From Face      | 0.00<br>3.50<br>0.00         | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 4.56<br>1.90<br>2.73            | 1.90<br>1.90<br>2.73            | 127.80<br>30.00<br>44.34               |
| (2) 8'x2" Antenna Mount Pipe<br>(Sprint)  | В                 | From Face      | -3.00<br>3.50<br>0.00        | 0.0000                | 115.00    | 1" Ice<br>No Ice<br>1/2" Ice           | 3.40<br>1.90<br>2.73            | 3.40<br>1.90<br>2.73            | 63.96<br>30.00<br>44.34                |

Ramaker & Associates, Inc. 855 Community Drive

855 Community Drive Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 6 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Sprint               | Designed by TEM   |

| Description                                   | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_AA_A$<br>Front | $C_A A_A$<br>Side | Weig          |
|-----------------------------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|-------------------|-------------------|---------------|
|                                               | Leg               |                | Laierai<br>Vert<br>ft       | 0                     | ft        |                    | ft²               | ft²               | lb            |
|                                               |                   |                | ft<br>ft                    |                       | ji        |                    | Ji                | Ji                | 10            |
|                                               |                   |                | -3.00                       |                       |           | 1" Ice             | 3.40              | 3.40              | 63.9          |
| (2) 8'x2" Antenna Mount Pipe                  | C                 | From Face      | 3.50                        | 0.0000                | 115.00    | No Ice             | 1.90              | 1.90              | 30.0          |
| (Sprint)                                      |                   |                | 0.00                        |                       |           | 1/2" Ice           | 2.73              | 2.73              | 44.3          |
| Platform Mount [LP 1201-1]                    | С                 | From Leg       | -3.00<br>0.00               | 0.0000                | 115.00    | 1" Ice<br>No Ice   | 3.40<br>23.10     | 3.40<br>23.10     | 63.9<br>2100. |
| (Sprint)                                      | C                 | From Leg       | 0.00                        | 0.0000                | 113.00    | 1/2" Ice           | 26.80             | 26.80             | 2500.         |
| (Sprint)                                      |                   |                | -2.00                       |                       |           | 1" Ice             | 30.50             | 30.50             | 2900          |
| *******                                       |                   |                |                             |                       |           |                    |                   |                   |               |
| 1900MHz 4x45W RRH                             | A                 | From Face      | 1.00                        | 0.0000                | 105.00    | No Ice             | 2.32              | 2.24              | 59.5          |
| (Sprint)                                      |                   |                | -1.00                       |                       |           | 1/2" Ice           | 2.53              | 2.44              | 82.6          |
| 1000 01 4 45W PPH                             |                   | Б Б            | -1.00                       | 0.0000                | 105.00    | 1" Ice             | 2.74              | 2.65              | 108.9         |
| 1900MHz 4x45W RRH                             | A                 | From Face      | 1.00                        | 0.0000                | 105.00    | No Ice<br>1/2" Ice | 2.32              | 2.24              | 59.5          |
| (Sprint)                                      |                   |                | 1.00<br>-1.00               |                       |           | 1/2" Ice           | 2.53<br>2.74      | 2.44<br>2.65      | 82.6<br>108.  |
| 1900MHz 4x45W RRH                             | В                 | From Face      | 1.00                        | 0.0000                | 105.00    | No Ice             | 2.74              | 2.24              | 59.5          |
| (Sprint)                                      | В                 | Trom ruce      | -1.00                       | 0.0000                | 105.00    | 1/2" Ice           | 2.53              | 2.44              | 82.6          |
| (-F)                                          |                   |                | -1.00                       |                       |           | 1" Ice             | 2.74              | 2.65              | 108.          |
| 1900MHz 4x45W RRH                             | В                 | From Face      | 1.00                        | 0.0000                | 105.00    | No Ice             | 2.32              | 2.24              | 59.5          |
| (Sprint)                                      |                   |                | 1.00                        |                       |           | 1/2" Ice           | 2.53              | 2.44              | 82.6          |
|                                               |                   |                | -1.00                       |                       |           | 1" Ice             | 2.74              | 2.65              | 108.          |
| 1900MHz 4x45W RRH                             | C                 | From Face      | 1.00                        | 0.0000                | 105.00    | No Ice             | 2.32              | 2.24              | 59.5          |
| (Sprint)                                      |                   |                | -1.00                       |                       |           | 1/2" Ice           | 2.53              | 2.44              | 82.6          |
| 1900MHz 4x45W RRH                             | С                 | From Face      | -1.00                       | 0.0000                | 105.00    | 1" Ice<br>No Ice   | 2.74<br>2.32      | 2.65<br>2.24      | 108.<br>59.5  |
| (Sprint)                                      | C                 | Fioni Face     | 1.00<br>1.00                | 0.0000                | 103.00    | 1/2" Ice           | 2.52              | 2.44              | 82.0          |
| (Sprint)                                      |                   |                | -1.00                       |                       |           | 1" Ice             | 2.74              | 2.65              | 108.          |
| 800MHz 2x50W RRH                              | A                 | From Face      | 1.00                        | 0.0000                | 105.00    | No Ice             | 2.06              | 1.93              | 64.0          |
| (Sprint)                                      |                   |                | 1.00                        |                       |           | 1/2" Ice           | 2.24              | 2.11              | 86.           |
|                                               |                   |                | 2.00                        |                       |           | 1" Ice             | 2.43              | 2.29              | 111.          |
| 800MHz 2x50W RRH                              | В                 | From Face      | 1.00                        | 0.0000                | 105.00    | No Ice             | 2.06              | 1.93              | 64.0          |
| (Sprint)                                      |                   |                | 1.00                        |                       |           | 1/2" Ice           | 2.24              | 2.11              | 86.           |
| 900MIL- 250W DDII                             | C                 | F F            | 2.00                        | 0.0000                | 105.00    | 1" Ice             | 2.43              | 2.29              | 111.          |
| 800MHz 2x50W RRH                              | С                 | From Face      | 1.00<br>1.00                | 0.0000                | 105.00    | No Ice<br>1/2" Ice | 2.06<br>2.24      | 1.93<br>2.11      | 64.0<br>86.1  |
| (Sprint)                                      |                   |                | 2.00                        |                       |           | 1" Ice             | 2.43              | 2.11              | 111.          |
| Tri-Antenna Mount                             | A                 | From Face      | 0.50                        | 0.0000                | 105.00    | No Ice             | 5.00              | 5.00              | 270.          |
| (Sprint)                                      | • •               | 11011111       | 0.00                        | 0.0000                | 100.00    | 1/2" Ice           | 6.00              | 6.00              | 290.          |
| <b>\ 1</b> /                                  |                   |                | -1.00                       |                       |           | 1" Ice             | 7.00              | 7.00              | 310.          |
| ******                                        |                   |                |                             |                       |           |                    |                   |                   |               |
| (2) AIR 21 B2A B4P w/Mount Pipe               | A                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 6.37              | 5.74              | 104.          |
| (T-Mobile)                                    |                   |                | 0.00                        |                       |           | 1/2" Ice           | 6.85              | 6.59              | 162.          |
| (2) AID 21 B2A B4D w/Mount Bins               | В                 | From Face      | 0.00                        | 0.0000                | 102.00    | 1" Ice<br>No Ice   | 7.30              | 7.31              | 226.<br>104.  |
| (2) AIR 21 B2A B4P w/Mount Pipe<br>(T-Mobile) | D                 | riom race      | 3.50<br>0.00                | 0.0000                | 102.00    | 1/2" Ice           | 6.37<br>6.85      | 5.74<br>6.59      | 164.<br>162.  |
| (1-1/100110)                                  |                   |                | 0.00                        |                       |           | 1" Ice             | 7.30              | 7.31              | 226.          |
| (2) AIR 21 B2A B4P w/Mount Pipe               | C                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 6.37              | 5.74              | 104.          |
| (T-Mobile)                                    |                   |                | 0.00                        |                       |           | 1/2" Ice           | 6.85              | 6.59              | 162.          |
|                                               |                   |                | 0.00                        |                       |           | 1" Ice             | 7.30              | 7.31              | 226.          |
| LNX-6515DS-VTM w/Mount Pipe                   | A                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 11.64             | 9.84              | 83.1          |
| (T-Mobile)                                    |                   |                | -1.50                       |                       |           | 1/2" Ice           | 12.36             | 11.36             | 172.          |
| LNIV CELEDO UTM AL L.D.                       | D                 | E E            | 0.00                        | 0.0000                | 102.00    | 1" Ice             | 13.08             | 12.90             | 271.          |
| LNX-6515DS-VTM w/Mount Pipe<br>(T-Mobile)     | В                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice<br>1/2" Ice | 11.64             | 9.84              | 83.1          |
| (1-Modile)                                    |                   |                | -1.50<br>0.00               |                       |           | 1/2" Ice<br>1" Ice | 12.36<br>13.08    | 11.36<br>12.90    | 172.<br>271.  |
| LNX-6515DS-VTM w/Mount Pipe                   | С                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 11.64             | 9.84              | 83.1          |
|                                               | C                 | 1 10111 1 400  | -1.50                       | 0.0000                | 102.00    | 1/2" Ice           | 12.36             | 11.36             | 172.:         |
| (T-Mobile)                                    |                   |                | -1.50                       |                       |           | 1/2 100            |                   |                   |               |

Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 7 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Sprint               | Designed by TEM   |

| Description                              | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_AA_A$<br>Front | $C_A A_A$<br>Side | Weig         |
|------------------------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|-------------------|-------------------|--------------|
|                                          | Leg               |                | Vert<br>ft                  | 0                     | ft        |                    | ft²               | ft²               | lb           |
|                                          |                   |                | ft<br>ft                    |                       |           |                    |                   |                   |              |
| RRUS-11                                  | A                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 2.78              | 1.19              | 50.7         |
| (T-Mobile)                               |                   |                | -1.50                       |                       |           | 1/2" Ice           | 2.99              | 1.33              | 71.4         |
|                                          |                   |                | 0.00                        |                       |           | 1" Ice             | 3.21              | 1.49              | 95.3         |
| RRUS-11                                  | В                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 2.78              | 1.19              | 50.          |
| (T-Mobile)                               |                   |                | -1.50                       |                       |           | 1/2" Ice<br>1" Ice | 2.99              | 1.33              | 71.4         |
| RRUS-11                                  | С                 | From Face      | 0.00<br>3.50                | 0.0000                | 102.00    | No Ice             | 3.21<br>2.78      | 1.49<br>1.19      | 95<br>50.    |
| (T-Mobile)                               | C                 | 1 Iom 1 acc    | -1.50                       | 0.0000                | 102.00    | 1/2" Ice           | 2.78              | 1.33              | 71.4         |
| (1 Moone)                                |                   |                | 0.00                        |                       |           | 1" Ice             | 3.21              | 1.49              | 95.          |
| 10' Dipole                               | A                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 3.00              | 3.00              | 30.0         |
| (T-Mobile)                               |                   |                | -3.00                       |                       |           | 1/2" Ice           | 4.03              | 4.03              | 51.          |
|                                          |                   |                | 5.00                        |                       |           | 1" Ice             | 5.03              | 5.03              | 80.          |
| 8'x2" Antenna Mount Pipe                 | A                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 1.90              | 1.90              | 30.          |
| (T-Mobile)                               |                   |                | 0.00                        |                       |           | 1/2" Ice           | 2.73              | 2.73              | 44.          |
| Str2!! Antonno Mount Dino                | D                 | From Face      | 0.00<br>3.50                | 0.0000                | 102.00    | 1" Ice<br>No Ice   | 3.40<br>1.90      | 3.40              | 63.<br>30.   |
| 8'x2" Antenna Mount Pipe<br>(T-Mobile)   | В                 | From Face      | 0.00                        | 0.0000                | 102.00    | 1/2" Ice           | 2.73              | 1.90<br>2.73      | 30.<br>44.   |
| (1-Moone)                                |                   |                | 0.00                        |                       |           | 1" Ice             | 3.40              | 3.40              | 63.          |
| 8'x2" Antenna Mount Pipe                 | C                 | From Face      | 3.50                        | 0.0000                | 102.00    | No Ice             | 1.90              | 1.90              | 30.          |
| (T-Mobile)                               |                   | 110111111100   | 0.00                        | 0.0000                | 102.00    | 1/2" Ice           | 2.73              | 2.73              | 44.          |
| ,                                        |                   |                | 0.00                        |                       |           | 1" Ice             | 3.40              | 3.40              | 63.          |
| Platform Mount [LP 1201-1]               | C                 | None           |                             | 0.0000                | 102.00    | No Ice             | 23.10             | 23.10             | 2100         |
| (T-Mobile)                               |                   |                |                             |                       |           | 1/2" Ice<br>1" Ice | 26.80<br>30.50    | 26.80<br>30.50    | 2500<br>2900 |
| *******                                  |                   |                |                             |                       |           |                    |                   |                   |              |
| LPA-80063-6CF-EDIN-X w/Mount Pipe        | A                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 9.99              | 10.27             | 40.          |
| (Verizon)                                |                   |                | 6.00                        |                       |           | 1/2" Ice           | 10.57             | 11.45             | 133          |
| VD. 00000 (CD PDDV V . 0.0               | -                 |                | 1.00                        | 0.0000                | 02.00     | 1" Ice             | 11.11             | 12.35             | 235          |
| LPA-80063-6CF-EDIN-X w/Mount Pipe        | В                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 9.99              | 10.27             | 40.          |
| (Verizon)                                |                   |                | 6.00<br>1.00                |                       |           | 1/2" Ice<br>1" Ice | 10.57<br>11.11    | 11.45<br>12.35    | 133<br>235   |
| DBXNH-6565B-R2M w/Mount Pipe             | C                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 8.40              | 7.07              | 71.          |
| (Verizon)                                | C                 | 1 Iom 1 acc    | 6.00                        | 0.0000                | 75.00     | 1/2" Ice           | 8.95              | 8.25              | 140          |
| (**************************************  |                   |                | 1.00                        |                       |           | 1" Ice             | 9.48              | 9.15              | 217          |
| LNX-6514DS-T4M w/Mount Pipe              | A                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 8.41              | 7.08              | 64.          |
| (Verizon)                                |                   |                | 4.50                        |                       |           | 1/2" Ice           | 8.97              | 8.27              | 133          |
|                                          |                   |                | 1.00                        |                       |           | 1" Ice             | 9.50              | 9.18              | 210          |
| LNX-6514DS-T4M w/Mount Pipe              | В                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 8.41              | 7.08              | 64.          |
| (Verizon)                                |                   |                | 4.50                        |                       |           | 1/2" Ice           | 8.97              | 8.27              | 133          |
| LNV 6514DC T4M yy/Mount Ding             | C                 | Enome Eooo     | 1.00                        | 0.0000                | 02.00     | 1" Ice             | 9.50              | 9.18              | 210          |
| LNX-6514DS-T4M w/Mount Pipe<br>(Verizon) | С                 | From Face      | 3.50<br>4.50                | 0.0000                | 93.00     | No Ice<br>1/2" Ice | 8.41<br>8.97      | 7.08<br>8.27      | 64.<br>133   |
| (VCIIZOII)                               |                   |                | 1.00                        |                       |           | 1" Ice             | 9.50              | 9.18              | 210          |
| 800 10722 w/Mount Pipe                   | A                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 8.26              | 6.36              | 82.          |
| (Verizon)                                |                   |                | -1.00                       |                       |           | 1/2" Ice           | 8.82              | 7.54              | 148          |
| , ,                                      |                   |                | 1.00                        |                       |           | 1" Ice             | 9.35              | 8.43              | 221          |
| 800 10722 w/Mount Pipe                   | В                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 8.26              | 6.36              | 82.          |
| (Verizon)                                |                   |                | -1.00                       |                       |           | 1/2" Ice           | 8.82              | 7.54              | 148          |
| V7C (00 /M · P                           | ~                 | F F            | 1.00                        | 0.0000                | 02.00     | 1" Ice             | 9.35              | 8.43              | 221          |
| X7C-680 w/Mount Pipe                     | C                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 8.64              | 7.00              | 67.          |
| (Verizon)                                |                   |                | -1.00<br>1.00               |                       |           | 1/2" Ice<br>1" Ice | 9.21<br>9.73      | 8.19<br>9.08      | 138<br>216   |
| LNX-6514DS-T4M w/Mount Pipe              | A                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 9.73<br>8.41      | 9.08<br>7.08      | 64.          |
| (Verizon)                                | А                 | 1 Iom Face     | -6.00                       | 0.0000                | 75.00     | 1/2" Ice           | 8.97              | 8.27              | 133          |
| ( . 51.2511)                             |                   |                | 1.00                        |                       |           | 1" Ice             | 9.50              | 9.18              | 210          |
|                                          |                   |                |                             |                       |           |                    |                   |                   |              |
| LNX-6514DS-T4M w/Mount Pipe              | В                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice             | 8.41              | 7.08              | 64.          |

Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 8 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Sprint               | Designed by       |
|         | Spriit               | TEM               |

| Description                 | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |          | $C_AA_A$<br>Front | $C_A A_A$<br>Side | Weight  |
|-----------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|----------|-------------------|-------------------|---------|
|                             |                   |                | Vert<br>ft<br>ft<br>ft      | 0                     | ft        |          | ft²               | ft²               | lb      |
|                             |                   |                | 1.00                        |                       |           | 1" Ice   | 9.50              | 9.18              | 210.50  |
| LNX-6514DS-T4M w/Mount Pipe | C                 | From Face      | 3.50                        | 0.0000                | 93.00     | No Ice   | 8.41              | 7.08              | 64.16   |
| (Verizon)                   |                   |                | -6.00                       |                       |           | 1/2" Ice | 8.97              | 8.27              | 133.31  |
|                             |                   |                | 1.00                        |                       |           | 1" Ice   | 9.50              | 9.18              | 210.50  |
| RRUS-11                     | A                 | From Face      | 3.00                        | 0.0000                | 93.00     | No Ice   | 2.78              | 1.19              | 50.71   |
| (Verizon)                   |                   |                | -1.00                       |                       |           | 1/2" Ice | 2.99              | 1.33              | 71.49   |
| , ,                         |                   |                | 2.00                        |                       |           | 1" Ice   | 3.21              | 1.49              | 95.32   |
| RRUS-11                     | В                 | From Face      | 3.00                        | 0.0000                | 93.00     | No Ice   | 2.78              | 1.19              | 50.71   |
| (Verizon)                   |                   |                | -1.00                       |                       |           | 1/2" Ice | 2.99              | 1.33              | 71.49   |
|                             |                   |                | 2.00                        |                       |           | 1" Ice   | 3.21              | 1.49              | 95.32   |
| RRUS-11                     | C                 | From Face      | 3.00                        | 0.0000                | 93.00     | No Ice   | 2.78              | 1.19              | 50.71   |
| (Verizon)                   |                   |                | -1.00                       |                       |           | 1/2" Ice | 2.99              | 1.33              | 71.49   |
| •                           |                   |                | 2.00                        |                       |           | 1" Ice   | 3.21              | 1.49              | 95.32   |
| RRUS-11                     | A                 | From Face      | 3.00                        | 0.0000                | 93.00     | No Ice   | 2.78              | 1.19              | 50.71   |
| (Verizon)                   |                   |                | -6.00                       |                       |           | 1/2" Ice | 2.99              | 1.33              | 71.49   |
|                             |                   |                | 2.00                        |                       |           | 1" Ice   | 3.21              | 1.49              | 95.32   |
| RRUS-11                     | В                 | From Face      | 3.00                        | 0.0000                | 93.00     | No Ice   | 2.78              | 1.19              | 50.71   |
| (Verizon)                   |                   |                | -6.00                       |                       |           | 1/2" Ice | 2.99              | 1.33              | 71.49   |
|                             |                   |                | 2.00                        |                       |           | 1" Ice   | 3.21              | 1.49              | 95.32   |
| RRUS-11                     | C                 | From Face      | 3.00                        | 0.0000                | 93.00     | No Ice   | 2.78              | 1.19              | 50.71   |
| (Verizon)                   |                   |                | -6.00                       |                       |           | 1/2" Ice | 2.99              | 1.33              | 71.49   |
| , ,                         |                   |                | 2.00                        |                       |           | 1" Ice   | 3.21              | 1.49              | 95.32   |
| 10' Omni                    | В                 | From Leg       | 6.50                        | 0.0000                | 93.00     | No Ice   | 2.75              | 2.75              | 30.00   |
| (Verizon)                   |                   | C              | 0.00                        |                       |           | 1/2" Ice | 3.78              | 3.78              | 50.21   |
| ` ,                         |                   |                | 5.00                        |                       |           | 1" Ice   | 4.83              | 4.83              | 76.96   |
| 10' Omni                    | C                 | From Leg       | 6.50                        | 0.0000                | 93.00     | No Ice   | 2.75              | 2.75              | 30.00   |
| (Verizon)                   |                   |                | 0.00                        |                       |           | 1/2" Ice | 3.78              | 3.78              | 50.21   |
| ` ,                         |                   |                | 5.00                        |                       |           | 1" Ice   | 4.83              | 4.83              | 76.96   |
| Platform Mount [LP 1201-1]  | C                 | None           |                             | 0.0000                | 93.00     | No Ice   | 23.10             | 23.10             | 2100.00 |
| (Verizon)                   |                   |                |                             |                       |           | 1/2" Ice | 26.80             | 26.80             | 2500.00 |
| •                           |                   |                |                             |                       |           | 1" Ice   | 30.50             | 30.50             | 2900.00 |
| ********                    |                   |                |                             |                       |           |          |                   |                   |         |
| Platform Mount [LP 1201-1]  | C                 | None           |                             | 0.0000                | 82.00     | No Ice   | 23.10             | 23.10             | 2100.00 |
| (Empty)                     |                   |                |                             |                       |           | 1/2" Ice | 26.80             | 26.80             | 2500.00 |
| ` • • •                     |                   |                |                             |                       |           | 1" Ice   | 30.50             | 30.50             | 2900.00 |
| ********                    |                   |                |                             |                       |           |          |                   |                   |         |
| 15' Dipole                  | A                 | From Face      | 3.50                        | 0.0000                | 72.00     | No Ice   | 4.50              | 4.50              | 40.00   |
| (Other)                     |                   |                | -5.00                       |                       |           | 1/2" Ice | 6.03              | 6.03              | 72.48   |
| , ,                         |                   |                | -8.00                       |                       |           | 1" Ice   | 7.58              | 7.58              | 114.58  |
| Platform Mount [LP 1201-1]  | C                 | None           |                             | 0.0000                | 72.00     | No Ice   | 23.10             | 23.10             | 2100.00 |
| (Other)                     |                   |                |                             |                       |           | 1/2" Ice | 26.80             | 26.80             | 2500.00 |
| ` '                         |                   |                |                             |                       |           | 1" Ice   | 30.50             | 30.50             | 2900.00 |
| *******                     |                   |                |                             |                       |           |          |                   |                   |         |

| _ |              |     | _  | 4           |    |
|---|--------------|-----|----|-------------|----|
|   | $\mathbf{a}$ | rca |    | <b>\</b> †2 | ıe |
|   | v            | rce | 10 | ıα          | ıə |

| Load       | Vertical | Sum of | Sum of | Sum of Overturning | Sum of Overturning | Sum of Torques |
|------------|----------|--------|--------|--------------------|--------------------|----------------|
| Case       | Forces   | Forces | Forces | Moments, $M_x$     | Moments, $M_z$     |                |
|            |          | X      | Z      | lb-ft              | lb-ft              |                |
|            | lb       | lb     | lb     |                    | ·                  | lb-ft          |
| Leg Weight | 14223.89 |        |        |                    |                    |                |

# Ramaker & Associates, Inc. 855 Community Drive

855 Community Drive Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 9 of 16           |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Sprint               | Designed by TEM   |

| Load                     | Vertical | Sum of    | Sum of    | Sum of Overturning | Sum of Overturning | Sum of Torques |
|--------------------------|----------|-----------|-----------|--------------------|--------------------|----------------|
| Case                     | Forces   | Forces    | Forces    | Moments, $M_x$     | Moments, Mz        |                |
|                          |          | X         | Z         | lb-ft              | lb-ft              |                |
|                          | lb       | lb        | lb        | ,                  | y                  | lb-ft          |
| Bracing Weight           | 0.00     |           |           |                    |                    |                |
| Total Member Self-Weight | 14223.89 |           |           | 945.53             | 3068.19            |                |
| Total Weight             | 36825.00 |           |           | 945.53             | 3068.19            |                |
| Wind 0 deg - No Ice      |          | -10.43    | -21313.95 | -1876942.33        | 4340.92            | -2790.96       |
| Wind 30 deg - No Ice     |          | 10637.16  | -18453.21 | -1624716.70        | -933945.89         | -1977.47       |
| Wind 60 deg - No Ice     |          | 18434.54  | -10647.94 | -936896.18         | -1621160.53        | -634.11        |
| Wind 90 deg - No Ice     |          | 21292.40  | 10.43     | 2218.26            | -1873164.40        | 879.15         |
| Wind 120 deg - No Ice    |          | 18444.97  | 10666.01  | 940991.68          | -1622433.27        | 2156.85        |
| Wind 150 deg - No Ice    |          | 10655.23  | 18463.64  | 1627880.48         | -936150.33         | 2856.62        |
| Wind 180 deg - No Ice    |          | 10.43     | 21313.95  | 1878833.38         | 1795.45            | 2790.96        |
| Wind 210 deg - No Ice    |          | -10637.16 | 18453.21  | 1626607.75         | 940082.26          | 1977.47        |
| Wind 240 deg - No Ice    |          | -18434.54 | 10647.94  | 938787.23          | 1627296.90         | 634.11         |
| Wind 270 deg - No Ice    |          | -21292.40 | -10.43    | -327.21            | 1879300.78         | -879.15        |
| Wind 300 deg - No Ice    |          | -18444.97 | -10666.01 | -939100.62         | 1628569.64         | -2156.85       |
| Wind 330 deg - No Ice    |          | -10655.23 | -18463.64 | -1625989.43        | 942286.70          | -2856.62       |
| Member Ice               | 10286.25 |           |           |                    |                    |                |
| Total Weight Ice         | 72189.20 |           |           | 2474.32            | 6388.87            |                |
| Wind 0 deg - Ice         |          | -0.86     | -10371.33 | -881086.39         | 6494.27            | -1686.58       |
| Wind 30 deg - Ice        |          | 5180.84   | -8981.40  | -762659.00         | -434935.49         | -1120.25       |
| Wind 60 deg - Ice        |          | 8974.34   | -5184.92  | -439214.76         | -758112.74         | -253.75        |
| Wind 90 deg - Ice        |          | 10363.17  | 0.86      | 2579.71            | -876442.40         | 680.75         |
| Wind 120 deg - Ice       |          | 8975.20   | 5186.41   | 444345.95          | -758218.13         | 1432.84        |
| Wind 150 deg - Ice       |          | 5182.33   | 8982.26   | 767713.04          | -435118.04         | 1801.00        |
| Wind 180 deg - Ice       |          | 0.86      | 10371.33  | 886035.03          | 6283.48            | 1686.58        |
| Wind 210 deg - Ice       |          | -5180.84  | 8981.40   | 767607.64          | 447713.23          | 1120.25        |
| Wind 240 deg - Ice       |          | -8974.34  | 5184.92   | 444163.40          | 770890.48          | 253.75         |
| Wind 270 deg - Ice       |          | -10363.17 | -0.86     | 2368.92            | 889220.14          | -680.75        |
| Wind 300 deg - Ice       |          | -8975.20  | -5186.41  | -439397.31         | 770995.88          | -1432.84       |
| Wind 330 deg - Ice       |          | -5182.33  | -8982.26  | -762764.40         | 447895.78          | -1801.00       |
| Total Weight             | 36825.00 |           |           | 945.53             | 3068.19            |                |
| Wind 0 deg - Service     |          | -3.89     | -7937.72  | -698415.74         | 3542.18            | -1039.41       |
| Wind 30 deg - Service    |          | 3961.48   | -6872.33  | -604482.11         | -345893.73         | -736.45        |
| Wind 60 deg - Service    |          | 6865.38   | -3965.50  | -348324.62         | -601825.58         | -236.16        |
| Wind 90 deg - Service    |          | 7929.70   | 3.89      | 1419.52            | -695676.63         | 327.41         |
| Wind 120 deg - Service   |          | 6869.26   | 3972.23   | 351036.65          | -602299.57         | 803.25         |
| Wind 150 deg - Service   |          | 3968.21   | 6876.21   | 606847.15          | -346714.71         | 1063.86        |
| Wind 180 deg - Service   |          | 3.89      | 7937.72   | 700306.80          | 2594.19            | 1039.41        |
| Wind 210 deg - Service   |          | -3961.48  | 6872.33   | 606373.16          | 352030.11          | 736.45         |
| Wind 240 deg - Service   |          | -6865.38  | 3965.50   | 350215.67          | 607961.95          | 236.16         |
| Wind 270 deg - Service   |          | -7929.70  | -3.89     | 471.53             | 701813.00          | -327.41        |
| Wind 300 deg - Service   |          | -6869.26  | -3972.23  | -349145.60         | 608435.94          | -803.25        |
| Wind 330 deg - Service   |          | -3968.21  | -6876.21  | -604956.10         | 352851.08          | -1063.86       |

# **Load Combinations**

| Comb. | Description                       |
|-------|-----------------------------------|
| No.   |                                   |
| 1     | Dead Only                         |
| 2     | 1.2 Dead+1.6 Wind 0 deg - No Ice  |
| 3     | 0.9 Dead+1.6 Wind 0 deg - No Ice  |
| 4     | 1.2 Dead+1.6 Wind 30 deg - No Ice |
| 5     | 0.9 Dead+1.6 Wind 30 deg - No Ice |
| 6     | 1.2 Dead+1.6 Wind 60 deg - No Ice |
| 7     | 0.9 Dead+1.6 Wind 60 deg - No Ice |
| 8     | 1.2 Dead+1.6 Wind 90 deg - No Ice |
| 9     | 0.9 Dead+1.6 Wind 90 deg - No Ice |

# Ramaker & Associates, Inc. 855 Community Drive

855 Community Drive Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 10 of 16          |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  |                      | Designed by       |
|         | Sprint               | TEM               |

| Comb.    | Description                                              |
|----------|----------------------------------------------------------|
| No.      |                                                          |
| 10       | 1.2 Dead+1.6 Wind 120 deg - No Ice                       |
| 11       | 0.9 Dead+1.6 Wind 120 deg - No Ice                       |
| 12       | 1.2 Dead+1.6 Wind 150 deg - No Ice                       |
| 13       | 0.9 Dead+1.6 Wind 150 deg - No Ice                       |
| 14       | 1.2 Dead+1.6 Wind 180 deg - No Ice                       |
| 15       | 0.9 Dead+1.6 Wind 180 deg - No Ice                       |
| 16       | 1.2 Dead+1.6 Wind 210 deg - No Ice                       |
| 17       | 0.9 Dead+1.6 Wind 210 deg - No Ice                       |
| 18       | 1.2 Dead+1.6 Wind 240 deg - No Ice                       |
| 19       | 0.9 Dead+1.6 Wind 240 deg - No Ice                       |
| 20       | 1.2 Dead+1.6 Wind 270 deg - No Ice                       |
| 21       | 0.9 Dead+1.6 Wind 270 deg - No Ice                       |
| 22       | 1.2 Dead+1.6 Wind 300 deg - No Ice                       |
| 23       | 0.9 Dead+1.6 Wind 300 deg - No Ice                       |
| 24       | 1.2 Dead+1.6 Wind 330 deg - No Ice                       |
| 25       | 0.9 Dead+1.6 Wind 330 deg - No Ice                       |
| 26       | 1.2 Dead+1.0 Ice+1.0 Temp                                |
| 27       | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp                 |
| 28       | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp                |
| 29       | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp                |
| 30       | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp                |
| 31       | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp               |
| 32       | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp               |
| 33       | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp               |
| 34       | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp               |
| 35       | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp               |
| 36       | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp               |
| 37       | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp               |
| 38       | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp               |
| 39<br>40 | Dead+Wind 0 deg - Service                                |
|          | Dead+Wind 30 deg - Service                               |
| 41<br>42 | Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service    |
| 42       | Dead+Wind 120 deg - Service  Dead+Wind 120 deg - Service |
| 43<br>44 | Dead+Wind 150 deg - Service  Dead+Wind 150 deg - Service |
| 45       | Dead+Wind 180 deg - Service                              |
| 45<br>46 | Dead+Wind 210 deg - Service Dead+Wind 210 deg - Service  |
| 47       | Dead+Wind 240 deg - Service  Dead+Wind 240 deg - Service |
| 48       | Dead+Wind 270 deg - Service  Dead+Wind 270 deg - Service |
| 48<br>49 | Dead+Wind 300 deg - Service                              |
| 50       | Dead+Wind 330 deg - Service                              |
|          | Dead wind 350 deg - Service                              |

# **Maximum Member Forces**

| Section | Elevation     | Component | Condition        | Gov.  | Axial     | Major Axis | Minor Axis  |
|---------|---------------|-----------|------------------|-------|-----------|------------|-------------|
| No.     | ft            | Туре      |                  | Load  |           | Moment     | Moment      |
|         |               |           |                  | Comb. | lb        | lb-ft      | lb-ft       |
| L1      | 125 - 96.04   | Pole      | Max Tension      | 20    | 0.06      | -0.01      | 1.39        |
|         |               |           | Max. Compression | 26    | -31929.01 | 6230.14    | -1520.22    |
|         |               |           | Max. Mx          | 20    | -13061.18 | 236909.03  | -285.08     |
|         |               |           | Max. My          | 14    | -13066.51 | 2553.58    | -233999.19  |
|         |               |           | Max. Vy          | 20    | -17884.17 | 236909.03  | -285.08     |
|         |               |           | Max. Vx          | 14    | 17861.65  | 2553.58    | -233999.19  |
|         |               |           | Max. Torque      | 15    |           |            | -3376.46    |
| L2      | 96.04 - 47.67 | Pole      | Max Tension      | 1     | 0.00      | 0.00       | 0.00        |
|         |               |           | Max. Compression | 26    | -61381.61 | 8182.85    | -3103.61    |
|         |               |           | Max. Mx          | 20    | -29580.13 | 1459146.40 | 48.65       |
|         |               |           | Max. My          | 14    | -29579.07 | 2630.63    | -1457341.53 |
|         |               |           | Max. Vy          | 20    | -30040.24 | 1459146.40 | 48.65       |

Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 11 of 16          |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | 0 : 1                | Designed by       |
|         | Sprint               | TEM               |

| Section | Elevation | Component | Condition        | Gov.  | Axial     | Major Axis | Minor Axis  |
|---------|-----------|-----------|------------------|-------|-----------|------------|-------------|
| No.     | ft        | Туре      |                  | Load  |           | Moment     | Moment      |
|         |           |           |                  | Comb. | lb        | lb-ft      | lb-ft       |
|         |           |           | Max. Vx          | 14    | 30073.70  | 2630.63    | -1457341.53 |
|         |           |           | Max. Torque      | 25    |           |            | 4454.64     |
| L3      | 47.67 - 1 | Pole      | Max Tension      | 1     | 0.00      | 0.00       | 0.00        |
|         |           |           | Max. Compression | 26    | -80446.51 | 8337.01    | -3162.08    |
|         |           |           | Max. Mx          | 20    | -44157.82 | 3135889.00 | 925.88      |
|         |           |           | Max. My          | 14    | -44157.79 | 1813.14    | -3135883.72 |
|         |           |           | Max. Vy          | 20    | -34109.55 | 3135889.00 | 925.88      |
|         |           |           | Max. Vx          | 14    | 34144.02  | 1813.14    | -3135883.72 |
|         |           |           | Max. Torque      | 25    |           |            | 4444.19     |
|         |           |           |                  |       |           |            |             |

| Maximum Reactions |                     |                       |                |                     |                     |  |  |  |
|-------------------|---------------------|-----------------------|----------------|---------------------|---------------------|--|--|--|
| Location          | Condition           | Gov.<br>Load<br>Comb. | Vertical<br>lb | Horizontal, X<br>lb | Horizontal, 2<br>lb |  |  |  |
| Pole              | Max. Vert           | 36                    | 80446.51       | 10363.31            | 0.86                |  |  |  |
|                   | Max. H <sub>x</sub> | 20                    | 44190.00       | 34067.86            | 16.69               |  |  |  |
|                   | Max. H <sub>z</sub> | 2                     | 44190.00       | 16.69               | 34102.33            |  |  |  |
|                   | Max. M <sub>x</sub> | 2                     | 3133441.83     | 16.69               | 34102.33            |  |  |  |
|                   | $Max. M_z$          | 8                     | 3127966.64     | -34067.84           | -16.69              |  |  |  |
|                   | Max. Torsion        | 25                    | 4436.80        | 17048.37            | 29541.83            |  |  |  |
|                   | Min. Vert           | 19                    | 33142.50       | 29495.27            | -17036.71           |  |  |  |
|                   | Min. H <sub>x</sub> | 9                     | 33142.50       | -34067.84           | -16.69              |  |  |  |
|                   | Min. H <sub>z</sub> | 14                    | 44190.00       | -16.69              | -34102.33           |  |  |  |
|                   | Min. M <sub>x</sub> | 14                    | -3135883.72    | -16.69              | -34102.33           |  |  |  |
|                   | Min. M <sub>z</sub> | 20                    | -3135889.00    | 34067.86            | 16.69               |  |  |  |
|                   | Min. Torsion        | 13                    | -4436.12       | -17048.37           | -29541.83           |  |  |  |

# **Tower Mast Reaction Summary**

| Load<br>Combination                | Vertical | $Shear_x$ | $Shear_z$ | Overturning Moment, $M_x$ | Overturning Moment, $M_z$ | Torque   |
|------------------------------------|----------|-----------|-----------|---------------------------|---------------------------|----------|
|                                    | lb       | lb        | lb        | lb-ft                     | lb-ft                     | lb-ft    |
| Dead Only                          | 36825.00 | -0.00     | 0.00      | 997.52                    | 3240.10                   | 0.11     |
| 1.2 Dead+1.6 Wind 0 deg - No Ice   | 44190.00 | -16.69    | -34102.33 | -3133441.83               | 6097.56                   | -4319.00 |
| 0.9 Dead+1.6 Wind 0 deg - No Ice   | 33142.50 | -16.69    | -34102.33 | -3098781.55               | 5013.97                   | -4345.32 |
| 1.2 Dead+1.6 Wind 30 deg - No Ice  | 44190.00 | 17019.46  | -29525.13 | -2712407.51               | -1560154.84               | -3075.05 |
| 0.9 Dead+1.6 Wind 30 deg - No Ice  | 33142.50 | 17019.46  | -29525.13 | -2682448.84               | -1543753.13               | -3089.55 |
| 1.2 Dead+1.6 Wind 60 deg - No Ice  | 44190.00 | 29495.27  | -17036.71 | -1564256.81               | -2707303.56               | -1007.36 |
| 0.9 Dead+1.6 Wind 60 deg - No Ice  | 33142.50 | 29495.27  | -17036.71 | -1547114.34               | -2678094.75               | -1006.28 |
| 1.2 Dead+1.6 Wind 90 deg - No Ice  | 44190.00 | 34067.84  | 16.69     | 3359.35                   | -3127966.64               | 1330.03  |
| 0.9 Dead+1.6 Wind 90 deg - No Ice  | 33142.50 | 34067.84  | 16.69     | 3006.29                   | -3094055.03               | 1346.49  |
| 1.2 Dead+1.6 Wind 120 deg - No Ice | 44190.00 | 29511.96  | 17065.62  | 1570396.16                | -2709437.68               | 3311.02  |
| 0.9 Dead+1.6 Wind 120 deg - No Ice | 33142.50 | 29511.96  | 17065.62  | 1552555.25                | -2680199.91               | 3338.38  |
| 1.2 Dead+1.6 Wind 150 deg - No Ice | 44190.00 | 17048.37  | 29541.83  | 2716977.23                | -1563863.03               | 4405.18  |
| 0.9 Dead+1.6 Wind 150 deg - No Ice | 33142.50 | 17048.37  | 29541.83  | 2686340.69                | -1547410.92               | 4436.12  |
| 1.2 Dead+1.6 Wind 180 deg - No Ice | 44190.00 | 16.69     | 34102.33  | 3135883.72                | 1811.89                   | 4319.40  |
| 0.9 Dead+1.6 Wind 180 deg - No Ice | 33142.50 | 16.69     | 34102.33  | 3100573.27                | 786.04                    | 4345.67  |
| 1.2 Dead+1.6 Wind 210 deg - No Ice | 44190.00 | -17019.46 | 29525.13  | 2714861.50                | 1568076.56                | 3076.18  |
| 0.9 Dead+1.6 Wind 210 deg - No Ice | 33142.50 | -17019.46 | 29525.13  | 2684249.94                | 1549562.81                | 3090.73  |
| 1.2 Dead+1.6 Wind 240 deg - No Ice | 44190.00 | -29495.27 | 17036.71  | 1566706.35                | 2715241.76                | 1008.34  |
| 0.9 Dead+1.6 Wind 240 deg - No Ice | 33142.50 | -29495.27 | 17036.71  | 1548911.86                | 2683917.26                | 1007.13  |
| 1.2 Dead+1.6 Wind 270 deg - No Ice | 44190.00 | -34067.86 | -16.69    | -926.26                   | 3135889.00                | -1329.98 |

Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 12 of 16          |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Sprint               | Designed by TEM   |

| Load<br>Combination                        | Vertical | $Shear_x$ | $Shear_z$ | Overturning<br>Moment, M <sub>x</sub> | Overturning<br>Moment, M <sub>z</sub> | Torque   |
|--------------------------------------------|----------|-----------|-----------|---------------------------------------|---------------------------------------|----------|
| Combination                                | lb       | lb        | lb        | lb-ft                                 | lb-ft                                 | lb-ft    |
| 0.9 Dead+1.6 Wind 270 deg - No Ice         | 33142.50 | -34067.84 | -16.69    | -1221.65                              | 3099880.72                            | -1346.55 |
| 1.2 Dead+1.6 Wind 300 deg - No Ice         | 44190.00 | -29511.96 | -17065.62 | -1567975.27                           | 2717367.73                            | -3311.57 |
| 0.9 Dead+1.6 Wind 300 deg - No Ice         | 33142.50 | -29511.96 | -17065.62 | -1550780.05                           | 2686015.92                            | -3339.14 |
| 1.2 Dead+1.6 Wind 330 deg - No Ice         | 44190.00 | -17048.37 | -29541.83 | -2714551.88                           | 1571776.60                            | -4405.63 |
| 0.9 Dead+1.6 Wind 330 deg - No Ice         | 33142.50 | -17048.37 | -29541.83 | -2684561.91                           | 1553214.09                            | -4436.80 |
| 1.2 Dead+1.0 Ice+1.0 Temp                  | 80446.51 | -0.02     | 0.01      | 3162.08                               | 8337.01                               | 0.40     |
| 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp   | 80446.51 | -0.87     | -10371.46 | -966777.72                            | 8551.73                               | -1633.57 |
| 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp  | 80446.51 | 5180.90   | -8981.51  | -836764.11                            | -476054.03                            | -1090.63 |
| 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp  | 80446.51 | 8974.45   | -5184.98  | -481685.28                            | -830840.59                            | -255.36  |
| 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp  | 80446.51 | 10363.30  | 0.86      | 3316.76                               | -960745.45                            | 648.46   |
| 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp | 80446.51 | 8975.31   | 5186.48   | 488288.26                             | -830961.09                            | 1378.60  |
| 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp | 80446.51 | 5182.40   | 8982.38   | 843282.86                             | -476261.23                            | 1739.41  |
| 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp | 80446.51 | 0.86      | 10371.46  | 973179.37                             | 8314.92                               | 1634.28  |
| 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp | 80446.51 | -5180.91  | 8981.51   | 843169.88                             | 492925.94                             | 1091.38  |
| 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp | 80446.51 | -8974.45  | 5184.98   | 488088.57                             | 847718.70                             | 256.15   |
| 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp | 80446.51 | -10363.31 | -0.86     | 3079.93                               | 977624.48                             | -647.60  |
| 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp | 80446.51 | -8975.32  | -5186.48  | -481895.70                            | 847834.86                             | -1377.74 |
| 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp | 80446.51 | -5182.40  | -8982.38  | -836887.81                            | 493128.81                             | -1738.66 |
| Dead+Wind 0 deg - Service                  | 36825.00 | -3.89     | -7937.73  | -724186.58                            | 3796.64                               | -1020.31 |
| Dead+Wind 30 deg - Service                 | 36825.00 | 3961.48   | -6872.33  | -626779.97                            | -358554.91                            | -725.92  |
| Dead+Wind 60 deg - Service                 | 36825.00 | 6865.38   | -3965.50  | -361156.01                            | -623947.19                            | -237.00  |
| Dead+Wind 90 deg - Service                 | 36825.00 | 7929.70   | 3.89      | 1511.60                               | -721268.74                            | 315.44   |
| Dead+Wind 120 deg - Service                | 36825.00 | 6869.26   | 3972.23   | 364046.53                             | -624442.47                            | 783.39   |
| Dead+Wind 150 deg - Service                | 36825.00 | 3968.21   | 6876.21   | 629308.08                             | -359412.81                            | 1041.48  |
| Dead+Wind 180 deg - Service                | 36825.00 | 3.89      | 7937.73   | 726219.69                             | 2806.14                               | 1020.55  |
| Dead+Wind 210 deg - Service                | 36825.00 | -3961.48  | 6872.33   | 628813.65                             | 365158.26                             | 726.19   |
| Dead+Wind 240 deg - Service                | 36825.00 | -6865.38  | 3965.50   | 363189.48                             | 630551.30                             | 237.25   |
| Dead+Wind 270 deg - Service                | 36825.00 | -7929.70  | -3.89     | 521.10                                | 727873.03                             | -315.23  |
| Dead+Wind 300 deg - Service                | 36825.00 | -6869.26  | -3972.23  | -362014.39                            | 631046.20                             | -783.21  |
| Dead+Wind 330 deg - Service                | 36825.00 | -3968.21  | -6876.21  | -627275.73                            | 366015.77                             | -1041.29 |

# **Solution Summary**

|       | Sı        | um of Applied Forces |           |           | Sum of Reactions |           |         |
|-------|-----------|----------------------|-----------|-----------|------------------|-----------|---------|
| Load  | PX        | PY                   | PZ        | PX        | PY               | PZ        | % Error |
| Comb. | lb        | lb                   | lb        | lb        | lb               | lb        |         |
| 1     | 0.00      | -36825.00            | 0.00      | 0.00      | 36825.00         | -0.00     | 0.000%  |
| 2     | -16.69    | -44190.00            | -34102.33 | 16.69     | 44190.00         | 34102.33  | 0.000%  |
| 3     | -16.69    | -33142.50            | -34102.33 | 16.69     | 33142.50         | 34102.33  | 0.000%  |
| 4     | 17019.46  | -44190.00            | -29525.13 | -17019.46 | 44190.00         | 29525.13  | 0.000%  |
| 5     | 17019.46  | -33142.50            | -29525.13 | -17019.46 | 33142.50         | 29525.13  | 0.000%  |
| 6     | 29495.27  | -44190.00            | -17036.71 | -29495.27 | 44190.00         | 17036.71  | 0.000%  |
| 7     | 29495.27  | -33142.50            | -17036.71 | -29495.27 | 33142.50         | 17036.71  | 0.000%  |
| 8     | 34067.84  | -44190.00            | 16.69     | -34067.84 | 44190.00         | -16.69    | 0.000%  |
| 9     | 34067.84  | -33142.50            | 16.69     | -34067.84 | 33142.50         | -16.69    | 0.000%  |
| 10    | 29511.96  | -44190.00            | 17065.62  | -29511.96 | 44190.00         | -17065.62 | 0.000%  |
| 11    | 29511.96  | -33142.50            | 17065.62  | -29511.96 | 33142.50         | -17065.62 | 0.000%  |
| 12    | 17048.37  | -44190.00            | 29541.83  | -17048.37 | 44190.00         | -29541.83 | 0.000%  |
| 13    | 17048.37  | -33142.50            | 29541.83  | -17048.37 | 33142.50         | -29541.83 | 0.000%  |
| 14    | 16.69     | -44190.00            | 34102.33  | -16.69    | 44190.00         | -34102.33 | 0.000%  |
| 15    | 16.69     | -33142.50            | 34102.33  | -16.69    | 33142.50         | -34102.33 | 0.000%  |
| 16    | -17019.46 | -44190.00            | 29525.13  | 17019.46  | 44190.00         | -29525.13 | 0.000%  |
| 17    | -17019.46 | -33142.50            | 29525.13  | 17019.46  | 33142.50         | -29525.13 | 0.000%  |
| 18    | -29495.27 | -44190.00            | 17036.71  | 29495.27  | 44190.00         | -17036.71 | 0.000%  |
| 19    | -29495.27 | -33142.50            | 17036.71  | 29495.27  | 33142.50         | -17036.71 | 0.000%  |
| 20    | -34067.84 | -44190.00            | -16.69    | 34067.86  | 44190.00         | 16.69     | 0.000%  |
| 21    | -34067.84 | -33142.50            | -16.69    | 34067.84  | 33142.50         | 16.69     | 0.000%  |
| 22    | -29511.96 | -44190.00            | -17065.62 | 29511.96  | 44190.00         | 17065.62  | 0.000%  |

Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 13 of 16          |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | •                    | Designed by       |
|         | Sprint               | TEM               |

|       | Sı        | ım of Applied Forces |           |           | Sum of Reactions | 1         |         |
|-------|-----------|----------------------|-----------|-----------|------------------|-----------|---------|
| Load  | PX        | PY                   | PZ        | PX        | PY               | PZ        | % Error |
| Comb. | lb        | lb                   | lb        | lb        | lb               | lb        |         |
| 23    | -29511.96 | -33142.50            | -17065.62 | 29511.96  | 33142.50         | 17065.62  | 0.000%  |
| 24    | -17048.37 | -44190.00            | -29541.83 | 17048.37  | 44190.00         | 29541.83  | 0.000%  |
| 25    | -17048.37 | -33142.50            | -29541.83 | 17048.37  | 33142.50         | 29541.83  | 0.000%  |
| 26    | 0.00      | -80446.51            | 0.00      | 0.02      | 80446.51         | -0.01     | 0.000%  |
| 27    | -0.86     | -80446.51            | -10371.33 | 0.87      | 80446.51         | 10371.46  | 0.000%  |
| 28    | 5180.84   | -80446.51            | -8981.40  | -5180.90  | 80446.51         | 8981.51   | 0.000%  |
| 29    | 8974.34   | -80446.51            | -5184.92  | -8974.45  | 80446.51         | 5184.98   | 0.000%  |
| 30    | 10363.17  | -80446.51            | 0.86      | -10363.30 | 80446.51         | -0.86     | 0.000%  |
| 31    | 8975.20   | -80446.51            | 5186.41   | -8975.31  | 80446.51         | -5186.48  | 0.000%  |
| 32    | 5182.33   | -80446.51            | 8982.26   | -5182.40  | 80446.51         | -8982.38  | 0.000%  |
| 33    | 0.86      | -80446.51            | 10371.33  | -0.86     | 80446.51         | -10371.46 | 0.000%  |
| 34    | -5180.84  | -80446.51            | 8981.40   | 5180.91   | 80446.51         | -8981.51  | 0.000%  |
| 35    | -8974.34  | -80446.51            | 5184.92   | 8974.45   | 80446.51         | -5184.98  | 0.000%  |
| 36    | -10363.17 | -80446.51            | -0.86     | 10363.31  | 80446.51         | 0.86      | 0.000%  |
| 37    | -8975.20  | -80446.51            | -5186.41  | 8975.32   | 80446.51         | 5186.48   | 0.000%  |
| 38    | -5182.33  | -80446.51            | -8982.26  | 5182.40   | 80446.51         | 8982.38   | 0.000%  |
| 39    | -3.89     | -36825.00            | -7937.72  | 3.89      | 36825.00         | 7937.73   | 0.000%  |
| 40    | 3961.48   | -36825.00            | -6872.33  | -3961.48  | 36825.00         | 6872.33   | 0.000%  |
| 41    | 6865.38   | -36825.00            | -3965.50  | -6865.38  | 36825.00         | 3965.50   | 0.000%  |
| 42    | 7929.70   | -36825.00            | 3.89      | -7929.70  | 36825.00         | -3.89     | 0.000%  |
| 43    | 6869.26   | -36825.00            | 3972.23   | -6869.26  | 36825.00         | -3972.23  | 0.000%  |
| 44    | 3968.21   | -36825.00            | 6876.21   | -3968.21  | 36825.00         | -6876.21  | 0.000%  |
| 45    | 3.89      | -36825.00            | 7937.72   | -3.89     | 36825.00         | -7937.73  | 0.000%  |
| 46    | -3961.48  | -36825.00            | 6872.33   | 3961.48   | 36825.00         | -6872.33  | 0.000%  |
| 47    | -6865.38  | -36825.00            | 3965.50   | 6865.38   | 36825.00         | -3965.50  | 0.000%  |
| 48    | -7929.70  | -36825.00            | -3.89     | 7929.70   | 36825.00         | 3.89      | 0.000%  |
| 49    | -6869.26  | -36825.00            | -3972.23  | 6869.26   | 36825.00         | 3972.23   | 0.000%  |
| 50    | -3968.21  | -36825.00            | -6876.21  | 3968.21   | 36825.00         | 6876.21   | 0.000%  |

# **Non-Linear Convergence Results**

| Load        | Converged? | Number    | Displacement | Force      |
|-------------|------------|-----------|--------------|------------|
| Combination |            | of Cycles | Tolerance    | Tolerance  |
| 1           | Yes        | 4         | 0.0000001    | 0.0000001  |
| 2           | Yes        | 5         | 0.0000001    | 0.00020023 |
| 3           | Yes        | 5         | 0.0000001    | 0.00009201 |
| 4           | Yes        | 6         | 0.0000001    | 0.00006362 |
| 5           | Yes        | 5         | 0.0000001    | 0.00051786 |
| 6           | Yes        | 6         | 0.0000001    | 0.00006938 |
| 7           | Yes        | 5         | 0.0000001    | 0.00056655 |
| 8           | Yes        | 5         | 0.0000001    | 0.00005491 |
| 9           | Yes        | 4         | 0.0000001    | 0.00064188 |
| 10          | Yes        | 6         | 0.0000001    | 0.00007275 |
| 11          | Yes        | 5         | 0.0000001    | 0.00059536 |
| 12          | Yes        | 6         | 0.0000001    | 0.00006279 |
| 13          | Yes        | 5         | 0.0000001    | 0.00051040 |
| 14          | Yes        | 5         | 0.0000001    | 0.00019487 |
| 15          | Yes        | 5         | 0.0000001    | 0.00008956 |
| 16          | Yes        | 6         | 0.0000001    | 0.00007324 |
| 17          | Yes        | 5         | 0.0000001    | 0.00059783 |
| 18          | Yes        | 6         | 0.0000001    | 0.00006694 |
| 19          | Yes        | 5         | 0.0000001    | 0.00054396 |
| 20          | Yes        | 4         | 0.0000001    | 0.00097519 |
| 21          | Yes        | 4         | 0.0000001    | 0.00058361 |
| 22          | Yes        | 6         | 0.0000001    | 0.00006458 |
| 23          | Yes        | 5         | 0.0000001    | 0.00052419 |

Ramaker & Associates, Inc. 855 Community Drive Sauk City, WI 53583

Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 14 of 16          |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  |                      | Designed by       |
|         | Sprint               | TEM               |

| 24 | Yes | 6 | 0.0000001 | 0.00007509 |
|----|-----|---|-----------|------------|
| 25 | Yes | 5 | 0.0000001 | 0.00061436 |
| 26 | Yes | 4 | 0.0000001 | 0.00005735 |
| 27 | Yes | 5 | 0.0000001 | 0.00036652 |
| 28 | Yes | 5 | 0.0000001 | 0.00054618 |
| 29 | Yes | 5 | 0.0000001 | 0.00057262 |
| 30 | Yes | 5 | 0.0000001 | 0.00033164 |
| 31 | Yes | 5 | 0.0000001 | 0.00061678 |
| 32 | Yes | 5 | 0.0000001 | 0.00055408 |
| 33 | Yes | 5 | 0.0000001 | 0.00037177 |
| 34 | Yes | 5 | 0.0000001 | 0.00064969 |
| 35 | Yes | 5 | 0.0000001 | 0.00060846 |
| 36 | Yes | 5 | 0.0000001 | 0.00034443 |
| 37 | Yes | 5 | 0.0000001 | 0.00057907 |
| 38 | Yes | 5 | 0.0000001 | 0.00065639 |
| 39 | Yes | 4 | 0.0000001 | 0.00023960 |
| 40 | Yes | 4 | 0.0000001 | 0.00034458 |
| 41 | Yes | 4 | 0.0000001 | 0.00042611 |
| 42 | Yes | 4 | 0.0000001 | 0.00007187 |
| 43 | Yes | 4 | 0.0000001 | 0.00049970 |
| 44 | Yes | 4 | 0.0000001 | 0.00035092 |
| 45 | Yes | 4 | 0.0000001 | 0.00023987 |
| 46 | Yes | 4 | 0.0000001 | 0.00052420 |
| 47 | Yes | 4 | 0.0000001 | 0.00039867 |
| 48 | Yes | 4 | 0.0000001 | 0.00007223 |
| 49 | Yes | 4 | 0.0000001 | 0.00036786 |
| 50 | Yes | 4 | 0.0000001 | 0.00056063 |

| Maximum Tower Deflections - Service Wind |               |            |       |        |        |  |
|------------------------------------------|---------------|------------|-------|--------|--------|--|
| Section                                  | Elevation     | Horz.      | Gov.  | Tilt   | Twist  |  |
| No.                                      |               | Deflection | Load  |        |        |  |
|                                          | ft            | in         | Comb. | 0      | 0      |  |
| L1                                       | 125 - 96.04   | 19.518     | 48    | 1.4129 | 0.0101 |  |
| L2                                       | 99.96 - 47.67 | 12.392     | 48    | 1.2466 | 0.0057 |  |
| L3                                       | 53.34 - 1     | 3.190      | 48    | 0.5797 | 0.0015 |  |

# Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                      | Gov.  | Deflection | Tilt   | Twist  | Radius of Curvature |
|-----------|-----------------------------------|-------|------------|--------|--------|---------------------|
|           |                                   | Load  |            |        |        | ft                  |
| ft        |                                   | Comb. | in         | 0      | 0      |                     |
| 122.00    | 15' Omni                          | 48    | 18.633     | 1.3977 | 0.0096 | 24095               |
| 120.00    | (2) RRUS-11                       | 48    | 18.045     | 1.3874 | 0.0092 | 24095               |
| 115.00    | APXVSPP18-C w/Mount Pipe          | 48    | 16.584     | 1.3599 | 0.0082 | 12047               |
| 105.00    | 1900MHz 4x45W RRH                 | 48    | 13.751     | 1.2916 | 0.0065 | 6023                |
| 102.00    | (2) AIR 21 B2A B4P w/Mount Pipe   | 48    | 12.935     | 1.2659 | 0.0060 | 5268                |
| 93.00     | LPA-80063-6CF-EDIN-X w/Mount Pipe | 48    | 10.618     | 1.1696 | 0.0048 | 4525                |
| 82.00     | Platform Mount [LP 1201-1]        | 48    | 8.079      | 1.0203 | 0.0035 | 4138                |
| 72.00     | 15' Dipole                        | 48    | 6.075      | 0.8670 | 0.0027 | 3839                |

# **Maximum Tower Deflections - Design Wind**

| tnx <sub>T</sub> | <i>ower</i> |
|------------------|-------------|
|                  |             |

Ramaker & Associates, Inc. 855 Community Drive Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 15 of 16          |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  |                      | Designed by       |
|         | Sprint               | TEM               |

| Section | Elevation     | Horz.      | Gov.  | Tilt   | Twist  |
|---------|---------------|------------|-------|--------|--------|
| No.     |               | Deflection | Load  |        |        |
|         | ft            | in         | Comb. | 0      | 0      |
| L1      | 125 - 96.04   | 83.725     | 20    | 6.0344 | 0.0436 |
| L2      | 99.96 - 47.67 | 53.287     | 20    | 5.3506 | 0.0244 |
| L3      | 53.34 - 1     | 13.746     | 22    | 2.4985 | 0.0065 |

|           | Critical Deflections and Radius of Curvature - Design Wind |              |            |        |        |                           |  |  |  |  |
|-----------|------------------------------------------------------------|--------------|------------|--------|--------|---------------------------|--|--|--|--|
| Elevation | Appurtenance                                               | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of Curvature<br>ft |  |  |  |  |
| ft        |                                                            | Comb.        | in         | 0      | 0      |                           |  |  |  |  |
| 122.00    | 15' Omni                                                   | 20           | 79.950     | 5.9732 | 0.0411 | 5872                      |  |  |  |  |
| 120.00    | (2) RRUS-11                                                | 20           | 77.438     | 5.9315 | 0.0394 | 5872                      |  |  |  |  |
| 115.00    | APXVSPP18-C w/Mount Pipe                                   | 20           | 71.204     | 5.8203 | 0.0353 | 2935                      |  |  |  |  |
| 105.00    | 1900MHz 4x45W RRH                                          | 20           | 59.099     | 5.5390 | 0.0277 | 1465                      |  |  |  |  |
| 102.00    | (2) AIR 21 B2A B4P w/Mount Pipe                            | 20           | 55.610     | 5.4316 | 0.0257 | 1280                      |  |  |  |  |
| 93.00     | LPA-80063-6CF-EDIN-X w/Mount Pipe                          | 20           | 45.688     | 5.0253 | 0.0204 | 1090                      |  |  |  |  |
| 82.00     | Platform Mount [LP 1201-1]                                 | 20           | 34.793     | 4.3892 | 0.0151 | 985                       |  |  |  |  |
| 72.00     | 15' Dipole                                                 | 22           | 26.177     | 3.7330 | 0.0114 | 905                       |  |  |  |  |

# **Compression Checks**

|                | Pole Design Data  |                      |       |       |      |         |           |            |                         |  |
|----------------|-------------------|----------------------|-------|-------|------|---------|-----------|------------|-------------------------|--|
| Section<br>No. | Elevation         | Size                 | L     | $L_u$ | Kl/r | A       | $P_u$     | $\phi P_n$ | Ratio<br>P <sub>u</sub> |  |
|                | ft                |                      | ft    | ft    |      | $in^2$  | lb        | lb         | $\phi P_n$              |  |
| L1             | 125 - 96.04 (1)   | TP26.9x18x0.1875     | 28.96 | 0.00  | 0.0  | 15.1803 | -13061.20 | 1026070.00 | 0.013                   |  |
| L2             | 96.04 - 47.67 (2) | TP41.28x25.3203x0.25 | 52.29 | 0.00  | 0.0  | 31.1841 | -29578.50 | 1984880.00 | 0.015                   |  |
| L3             | 47.67 - 1 (3)     | TP55x39.0494x0.3125  | 52.34 | 0.00  | 0.0  | 54.2432 | -44157.80 | 3272700.00 | 0.013                   |  |

| Pole Bending Design Data |                   |                      |            |               |                              |          |               |                          |
|--------------------------|-------------------|----------------------|------------|---------------|------------------------------|----------|---------------|--------------------------|
| Section<br>No.           | Elevation         | Size                 | $M_{ux}$   | $\phi M_{nx}$ | Ratio<br>M <sub>ux</sub>     | $M_{uy}$ | $\phi M_{ny}$ | Ratio<br>M <sub>uy</sub> |
|                          | ft                |                      | lb-ft      | lb-ft         | $\frac{M_{ux}}{\phi M_{nx}}$ | lb-ft    | lb-ft         | $\phi M_{ny}$            |
| L1                       | 125 - 96.04 (1)   | TP26.9x18x0.1875     | 236909.17  | 538469.17     | 0.440                        | 0.00     | 538469.17     | 0.000                    |
| L2                       | 96.04 - 47.67 (2) | TP41.28x25.3203x0.25 | 1459325.00 | 1606425.00    | 0.908                        | 0.00     | 1606425.00    | 0.000                    |
| L3                       | 47.67 - 1 (3)     | TP55x39.0494x0.3125  | 3137300.00 | 3688183.33    | 0.851                        | 0.00     | 3688183.33    | 0.000                    |

# Pole Shear Design Data

# Ramaker & Associates, Inc. 855 Community Drive

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

| Job     |                      | Page              |
|---------|----------------------|-------------------|
|         | Cingular (CT54XC749) | 16 of 16          |
| Project |                      | Date              |
|         | 28746                | 11:28:51 08/23/17 |
| Client  | Outsint              | Designed by       |
|         | Sprint               | TEM               |

| Section | Elevation         | Size                 | Actual   | $\phi V_n$ | Ratio      | Actual  | $\phi T_n$ | Ratio      |
|---------|-------------------|----------------------|----------|------------|------------|---------|------------|------------|
| No.     |                   |                      | $V_u$    |            | $V_u$      | $T_u$   |            | $T_u$      |
|         | ft                |                      | lb       | lb         | $\phi V_n$ | lb-ft   | lb-ft      | $\phi T_n$ |
| L1      | 125 - 96.04 (1)   | TP26.9x18x0.1875     | 17884.20 | 513034.00  | 0.035      | 375.72  | 1078258.33 | 0.000      |
| L2      | 96.04 - 47.67 (2) | TP41.28x25.3203x0.25 | 30063.40 | 992442.00  | 0.030      | 3318.81 | 3216775.00 | 0.001      |
| L3      | 47.67 - 1 (3)     | TP55x39.0494x0.3125  | 34132.60 | 1636350.00 | 0.021      | 3311.55 | 7385383.33 | 0.000      |
|         |                   |                      |          |            |            |         |            |            |

| Pole Interaction Design Data |                   |                         |                          |                          |             |                         |                       |                        |          |
|------------------------------|-------------------|-------------------------|--------------------------|--------------------------|-------------|-------------------------|-----------------------|------------------------|----------|
| Section<br>No.               | Elevation         | Ratio<br>P <sub>u</sub> | Ratio<br>M <sub>ux</sub> | Ratio<br>M <sub>uy</sub> | Ratio $V_u$ | Ratio<br>T <sub>u</sub> | Comb.<br>Stress Ratio | Allow.<br>Stress Ratio | Criteria |
|                              | ft                | $\phi P_n$              | $\phi M_{nx}$            | $\phi M_{nv}$            | $\phi V_n$  | $\phi T_n$              |                       |                        |          |
| L1                           | 125 - 96.04 (1)   | 0.013                   | 0.440                    | 0.000                    | 0.035       | 0.000                   | 0.454                 | 1.000                  | 4.8.2    |
| L2                           | 96.04 - 47.67 (2) | 0.015                   | 0.908                    | 0.000                    | 0.030       | 0.001                   | 0.924                 | 1.000                  | 4.8.2    |
| L3                           | 47.67 - 1 (3)     | 0.013                   | 0.851                    | 0.000                    | 0.021       | 0.000                   | 0.865                 | 1.000                  | 4.8.2    |

| Section Capacity Table |                 |                   |                      |                     |           |                          |            |              |
|------------------------|-----------------|-------------------|----------------------|---------------------|-----------|--------------------------|------------|--------------|
| Section<br>No.         | Elevation<br>ft | Component<br>Type | Size                 | Critical<br>Element | P<br>lb   | $ otag P_{allow} \\ lb $ | % Capacity | Pass<br>Fail |
| L1                     | 125 - 96.04     | Pole              | TP26.9x18x0.1875     | 1                   | -13061.20 | 1026070.00               | 45.4       | Pass         |
| L2                     | 96.04 - 47.67   | Pole              | TP41.28x25.3203x0.25 | 2                   | -29578.50 | 1984880.00               | 92.4       | Pass         |
| L3                     | 47.67 - 1       | Pole              | TP55x39.0494x0.3125  | 3                   | -44157.80 | 3272700.00               | 86.5       | Pass         |
|                        |                 |                   |                      |                     |           |                          | Summary    |              |
|                        |                 |                   |                      |                     |           | Pole (L2)                | 92.4       | Pass         |
|                        |                 |                   |                      |                     |           | RATING =                 | 92.4       | Pass         |

Program Version 7.0.7.0 - 7/18/2016 File:I:/28700/28746/Structural/tnx/28746 rev2.eri

# Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev G Assumption: Clear space between bottom of leveling nut and top of concrete **not** exceeding (1)\*(Rod Diameter)

Site Data

Project #: 28746 Site Name: CT54XC749

| Pole Manufacturer: | Other |
|--------------------|-------|

| Anchor Rod Data |        |     |  |  |
|-----------------|--------|-----|--|--|
| Qty:            | 12     |     |  |  |
| Diam:           | 2.25   | in  |  |  |
| Rod Material:   | A615-J |     |  |  |
| Strength (Fu):  | 100    | ksi |  |  |
| Yield (Fy):     | 75     | ksi |  |  |
| Bolt Circle:    | 63     | in  |  |  |

| Plate Data        |       |     |  |  |
|-------------------|-------|-----|--|--|
| Diam:             | 69    | in  |  |  |
| Thick:            | 1.75  | in  |  |  |
| Grade:            | 60    | ksi |  |  |
| Single-Rod B-eff: | 14.55 | in  |  |  |

| Stiffener Data (Welding at both sides) |        |             |  |  |  |
|----------------------------------------|--------|-------------|--|--|--|
| Config:                                | 0      | *           |  |  |  |
| Weld Type:                             | Fillet |             |  |  |  |
| Groove Depth:                          |        | < Disregard |  |  |  |
| Groove Angle:                          |        | < Disregard |  |  |  |
| Fillet H. Weld:                        | 0.4375 | in          |  |  |  |
| Fillet V. Weld:                        | 0.25   | in          |  |  |  |
| Width:                                 | 6.5    | in          |  |  |  |
| Height:                                | 20     | in          |  |  |  |
| Thick:                                 | 1.5    | in          |  |  |  |
| Notch:                                 | 1      | in          |  |  |  |
| Grade:                                 | 50     | ksi         |  |  |  |
| Weld str.:                             | 70     | ksi         |  |  |  |

| Pole Data          |        |              |  |  |
|--------------------|--------|--------------|--|--|
| Diam:              | 55     | in           |  |  |
| Thick:             | 0.3125 | in           |  |  |
| Grade:             | 65     | ksi          |  |  |
| # of Sides:        | 18     | "0" IF Round |  |  |
| Fu                 | 80     | ksi          |  |  |
| Reinf. Fillet Weld | 0      | "0" if None  |  |  |

| Reactions     |        |                  |  |  |  |
|---------------|--------|------------------|--|--|--|
| Mu:           | 3137.3 | ft-kips          |  |  |  |
| Axial, Pu:    | 44.2   | kips             |  |  |  |
| Shear, Vu:    | 34.1   | kips             |  |  |  |
| Eta Factor, η | 0.5    | TIA G (Fig. 4-4) |  |  |  |

| If No stiffeners, Criteria: | AISC LRFD | <-Only Applcable to Unstiffened Cases |
|-----------------------------|-----------|---------------------------------------|

**Anchor Rod Results** 

Max R Allowa Ancho

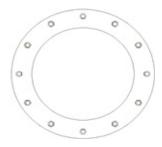
| Rod (Cu+ Vu/ή):        | 208.6 Kips | AISC LRFD |
|------------------------|------------|-----------|
| able Axial, Φ*Fu*Anet: | 260.0 Kips | φ*Tn      |
| or Rod Stress Ratio:   | 80.2% Pass |           |
|                        |            |           |

**Base Plate Results** Flexural Check Base Plate Stress: 48.8 ksi Allowable Plate Stress: 54.0 ksi Base Plate Stress Ratio: 90.4% Pass

| Non-Rigid    |
|--------------|
| AISC LRFD    |
| φ*Fy         |
| Y.L. Length: |
| 30.72        |

Non-Rigid

<u>n/a</u>


Stiffener Results

Horizontal Weld: n/a Vertical Weld: n/a Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a Plate Comp. (AISC Bracket):

Horiz. weld fails with stiffeners added. Therefore, they were conservatively ignored.

**Pole Results** 

Pole Punching Shear Check: n/a





<sup>\* 0 =</sup> none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

<sup>\*\*</sup> Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

# Pier and Pad Foundation

Project #: CT54XC749-B
Site Name: 28746

TIA-222 Revision: G
Tower Type: Monopole

| Superstructure Analysis Reactions             |        |         |  |  |
|-----------------------------------------------|--------|---------|--|--|
| Compression, P <sub>comp</sub> :              | 44.2   | kips    |  |  |
| Base Shear, Vu_comp:                          | 34.1   | kips    |  |  |
|                                               |        |         |  |  |
|                                               |        |         |  |  |
| Moment, <b>M</b> <sub>u</sub> :               | 3137.3 | ft-kips |  |  |
| Tower Height, <b>H</b> :                      | 125    | ft      |  |  |
|                                               |        |         |  |  |
| BP Dist. Above Fdn, <b>bp<sub>dist</sub>:</b> | 3      | in      |  |  |
|                                               |        |         |  |  |

| Pier Properties                               |          |    |  |  |
|-----------------------------------------------|----------|----|--|--|
| Pier Shape:                                   | Circular |    |  |  |
| Pier Diameter, <b>dpier</b> :                 | 7.0      | ft |  |  |
| Ext. Above Grade, <b>E</b> :                  | 1        | ft |  |  |
| Pier Rebar Size, <b>Sc</b> :                  | 9        |    |  |  |
| Pier Rebar Quantity, <b>mc</b> :              | 24       |    |  |  |
| Pier Tie/Spiral Size, <b>St</b> :             | 4        |    |  |  |
| Pier Tie/Spiral Quantity, <b>mt</b> :         | 3        |    |  |  |
| Pier Reinforcement Type:                      | Tie      |    |  |  |
| Pier Clear Cover, <b>cc</b> <sub>pier</sub> : | 3        | in |  |  |

| Pad Properties                            |      |    |  |
|-------------------------------------------|------|----|--|
| Depth, <b>D</b> :                         | 4.5  | ft |  |
| Pad Width, <b>W</b> :                     | 25.0 | ft |  |
| Pad Thickness, <b>T</b> :                 | 4.5  | ft |  |
| Pad Rebar Size, <b>Sp</b> :               | 9    |    |  |
| Pad Rebar Quantity, <b>mp</b> :           | 28   |    |  |
| Pad Clear Cover, <b>cc<sub>pad</sub>:</b> | 3    | in |  |

| Material Properties                 |       |     |  |
|-------------------------------------|-------|-----|--|
| Rebar Grade, <b>Fy</b> :            | 60000 | psi |  |
| Concrete Compressive Strength, F'c: | 3000  | psi |  |
| Dry Concrete Density, δ <b>c</b> :  | 150   | pcf |  |

| Soil Properties                      |       |         |  |
|--------------------------------------|-------|---------|--|
| Total Soil Unit Weight, γ:           | 100   | pcf     |  |
| Ultimate Gross Bearing, Qult:        | 6.000 | ksf     |  |
| Cohesion, <b>Cu</b> :                | 0.000 | ksf     |  |
| Friction Angle, $oldsymbol{arphi}$ : | 30    | degrees |  |
| SPT Blow Count, Noblows:             |       |         |  |
| Base Friction, $\mu$ :               | 0.45  |         |  |
| Neglected Depth, N:                  | 3.3   | ft      |  |
| Groundwater Depth, <b>gw</b> :       | None  | ft      |  |

Block Foundation?:

| Foundation Analysis Checks    |          |         |       |      |  |
|-------------------------------|----------|---------|-------|------|--|
|                               | Rating   | Check   |       |      |  |
|                               |          |         |       |      |  |
| Lateral (Sliding) (kips)      | 166.85   | 34.10   | 20.4% | Pass |  |
| Bearing Pressure (ksf)        | 4.50     | 2.20    | 49.0% | Pass |  |
| Overturning (kip*ft)          | 4266.88  | 3333.38 | 78.1% | Pass |  |
| Pier Flexure (Comp.) (kip*ft) | 3957.05  | 3171.40 | 80.1% | Pass |  |
|                               |          |         |       |      |  |
| Pier Compression (kip)        | 18370.97 | 51.13   | 0.3%  | Pass |  |
| Pad Flexure (kip*ft)          | 6074.46  | 1319.27 | 21.7% | Pass |  |
| Pad Shear - 1-way (kips)      | 1215.32  | 171.62  | 14.1% | Pass |  |
| Pad Shear - 2-way (kips)      | 3393.17  | 51.13   | 1.5%  | Pass |  |

Soil Rating: 78.1%
Structural Rating: 80.1%

<--Toggle between Gross and Net



August 23, 2017

Tom Jupin Charles Cherundolo Consulting, Inc. 1280 Rt. 46 West Parsippany, NJ 07054

Ramaker & Associates, Inc. 855 Community Drive Sauk City, WI 53583

SUBJECT: MOUNT ASSESSMENT

CARRIER: SPRINT

SITE: CINGULAR (CT54XC749-B)

38 SPRING HILL ROAD

BETHEL, FAIRFIELD COUNTY, CONNECTICUT 06801 RAMAKER & ASSOCIATES PROJECT NUMBER: 28746

RESULTS: MOUNT: PASS

Dear Tom Jupin:

Ramaker & Associates, Inc. (RAMAKER) respectfully submits this mount assessment for the above mentioned site. The purpose of this report is to determine the structural integrity of the mounting structure with the proposed loading configurations. Engineering recommendations regarding the analysis results are provided in the following pages.

RAMAKER developed a finite element model of the mount(s) using RISA analysis software. All information contained herein is valid only for the described structure configuration and loading conditions. RAMAKER reserves the right to modify our recommendations should alterations to the mount loading occur.

If you have any questions or comments, please do not hesitate to contact our office.

Sincerely,

Structural Designer

RAMAKER & ASSOCIATES, INC.

James R. Skowronski,

Supervising Engineer

# **ANALYSIS CRITERIA**

| State Building Code              | 2016 CT State Building Code |
|----------------------------------|-----------------------------|
| Adopted Building Code            | 2012 IBC                    |
| Referenced Standard              | TIA-222-G                   |
| Risk Category                    | II                          |
| Ultimate Design Wind Speed, Vult | 120 mph (3 sec. gust)       |
| Nominal Design Wind Speed, Vasd  | 93 mph (3 sec. gust)        |
| Design Wind Speed w/ Ice         | 50 mph (3 sec. gust)        |
| Ice Thickness                    | 3/4 inch                    |
| Exposure Category                | В                           |
| Topographic Category             | 5 (Hill)                    |
| Crest Height                     | 352 FT                      |

## **SUPPORTING DOCUMENTATION**

- Construction drawings by RAMAKER, project number 28746
- Site visit(s) conducted by RAMAKER
- Other pertinent data procured or assumed by RAMAKER during site due diligence activities

# **MOUNT LOADING**

RAMAKER understands that the loading to be used for this analysis will consist of the antennas and equipment configurations as shown in the following chart(s):

| Antenna Mount – All Sectors                |     |                          |          |          |  |
|--------------------------------------------|-----|--------------------------|----------|----------|--|
| Elevation Position Appurtenance Mount Type |     |                          |          | Status   |  |
|                                            | 1   |                          |          |          |  |
|                                            | 115 | (1) RFS APXVTM14-ALU-I20 |          | Duranced |  |
| 115                                        |     | (1) ALU TD-RRH8x20-25 P  | Platform | Proposed |  |
|                                            | 3   | (1) RFS APXVSPP18-C-A20  |          | Existing |  |
|                                            |     |                          |          |          |  |

| Antenna Mount – All Sectors |                                                 |              |                      |              |              |
|-----------------------------|-------------------------------------------------|--------------|----------------------|--------------|--------------|
| Elevation                   | Position                                        | Appurtenance | Mount Type           | Status       |              |
| 105                         | 105 (2) ALU RRH1900-4×45<br>(1) ALU RRH2×50-800 | 105          | (2) ALU RRH1900-4x45 | Callan Manut | Fortation or |
| 105                         |                                                 | Collar Mount | Existing             |              |              |

# **MOUNT RESULTS**

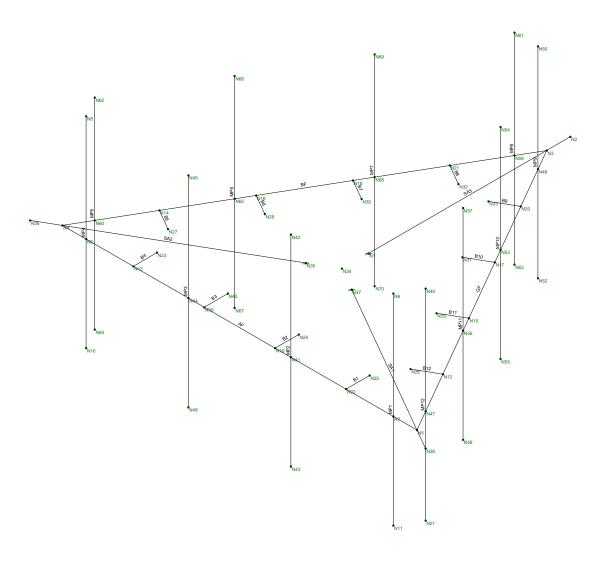
By engineering calculation and inspection, the antenna and equipment mounting structure(s) are capable of supporting the proposed loading configurations without causing an overstress condition in the antenna and equipment mounting structure(s).

# **LIMITATIONS**

The recommendations contained within this report were developed using the supporting documentation as previously described. All recommendations pertain only to the proposed antenna installation activities as described in this report. RAMAKER assumes no responsibility for failures caused by factors beyond our control. These include but are not limited to the following:

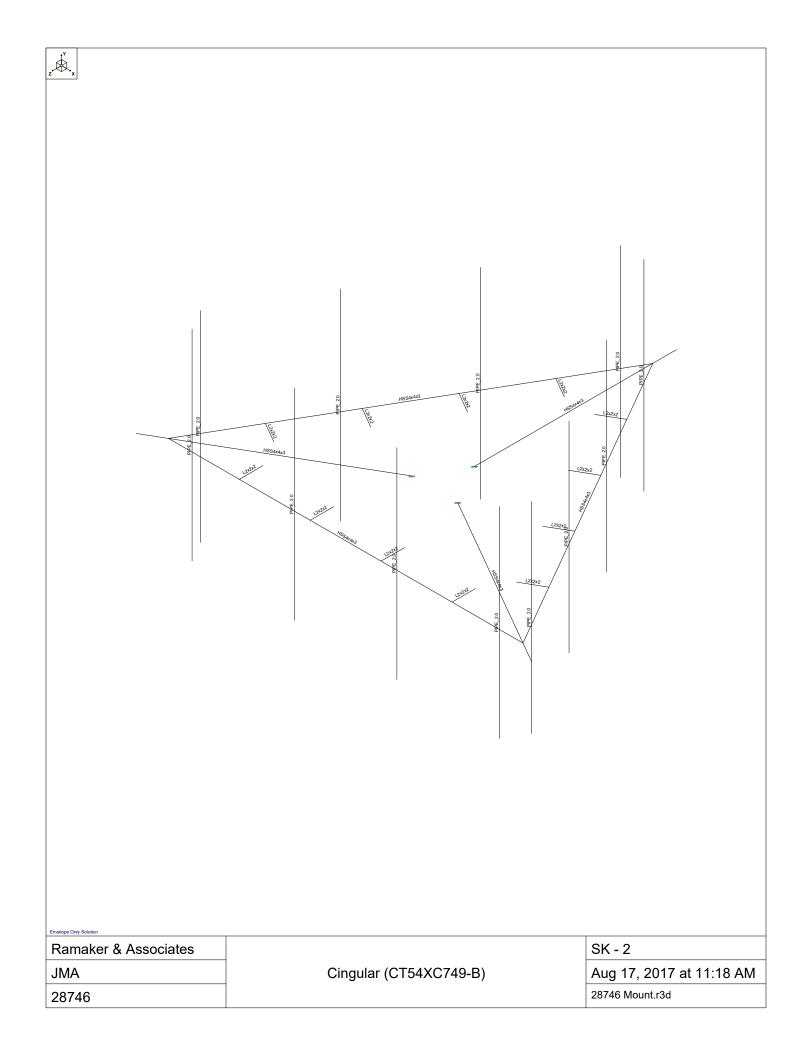
- Missing, corroding, and/or deteriorating members
- Improper manufacturing and/or construction
- Improper maintenance
- Member grades less than assumed grades show below:

| Assumed Steel Member Grades |                        |  |  |
|-----------------------------|------------------------|--|--|
| Angles/Plates               | ASTM A36, 36 ksi       |  |  |
| HSS (Square Tube)           | ASTM A36, 36 ksi       |  |  |
| Pipes                       | ASTM A53 Gr. B, 35 ksi |  |  |


RAMAKER is not responsible for verifying that the loading on the structure is consistent with the loading applied to the structure within this report. If there is any information contrary to that contained herein, or if there are any defects arising from the original design, material, fabrication and erection deficiencies, this report should be disregarded and RAMAKER should be contacted immediately. RAMAKER is not liable for any representation, recommendation, or conclusion not expressly stated herein.

This analysis pertains only to the mounting structure, and no analyses or conclusions were made regarding the supporting structure. Analysis and certification of the supporting structure is performed and submitted separately.

# **ATTACHMENTS**


- Analysis Figures
- Analysis Calculations





Envelope Only Solution

| Ramaker & Associates |                        | SK - 1                   |
|----------------------|------------------------|--------------------------|
| JMA                  | Cingular (CT54XC749-B) | Aug 17, 2017 at 11:18 AM |
| 28746                |                        | 28746 Mount.r3d          |



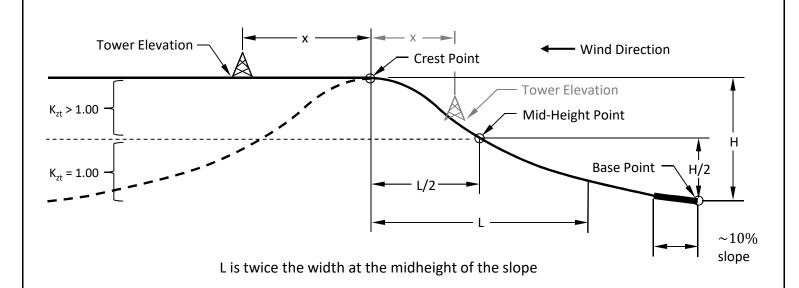


Cingular (CT54XC749-B) Job:

Project: 28746

Date:

JMA By: 8/23/17


# **Topographical Multipliers**

2.6.2 Topographic Factor KT

Elevations are Above Mean Sea Level

| Method =              | SEAW RSM-03 |
|-----------------------|-------------|
| Topographic Feature = | Hill        |

| Exp =              | В    |    | Exposure Category                     | <u>Override z Value</u> |
|--------------------|------|----|---------------------------------------|-------------------------|
| Original Input z = | 115  | ft | Height of antennas above ground level | ft                      |
|                    |      |    |                                       |                         |
| CP Elev =          | 811  | ft | Crest Point Elevation                 |                         |
| BP Elev =          | 459  | ft | Base Point Elevation                  |                         |
| MHP Elev =         | 635  | ft | Mid-Height Point Elevation            |                         |
| L/2 =              | 1466 | ft | Crest to Mid-Height Distance          |                         |
| TP Elev =          | 811  | ft | Tower Point Elevation                 | Potential Tower Dist. x |
| x =                | 0    | ft | Tower Distance from Crest Line        | 0.0 ft                  |
|                    |      |    |                                       |                         |
| H =                | 352  | ft | Crest Height                          |                         |
| L =                | 2932 | ft | Slope Distance                        |                         |
| x =                | 0    | ft | Distance from Crest Line              |                         |
|                    |      |    |                                       |                         |
| KT =               | 1.37 |    | Topographic Factor at z = 115.0 ft    |                         |





Job: Cingular (CT54XC749-B)

Project: 28746

By: JMA

Date: 8/23/17

# Wind Load on Antennas TIA-222-G

 $q_z = 0.00256 K_z K_{zt} K_d V^2 I$ 

 $F = q_z G_h C_a A_a$ 

Occupancy: II Classification of Structures (Table 2-1)

Exposure: B Exposure Category

V: 93 mph Basic Wind Speed (Annex B)

z: 115 ft Height above ground level to the center of the antenna

I: 1.00 Importance Factor (Table 2-3)

K<sub>z</sub>: 1.03 Velocity Pressure Coefficient (2.6.5.2)

K<sub>zt</sub>: 1.37 Topographic Factor (2.6.6.4)

K<sub>d</sub>: 0.95 Wind Direction Probability Factor (Table 2-2)

q₂: 29.5 psf Velocity Pressure at Height z

G<sub>h</sub>: 1.00 Strength Design of Appurtenances and their Connections

# **Mount & Antenna Wind Loads**

| Appurtenance          | Height | Width | h/D  | Shape | $C_a$ | $A_f$ | Force | Force |
|-----------------------|--------|-------|------|-------|-------|-------|-------|-------|
|                       | in     | in    |      |       |       | sq ft | lb    | plf   |
| APXVTM14-ALU-I20      | 56.3   | 12.6  | 4.5  | Flat  | 1.287 | 4.93  | 187.3 |       |
| TD-RRH8x20-25         | 26.1   | 18.6  | 1.4  | Flat  | 1.200 | 3.37  | 119.5 |       |
| APXVSPP18-C-A20       | 72.0   | 11.9  | 6.1  | Flat  | 1.358 | 5.95  | 238.5 |       |
| 1900MHz 4x45W RRH     | 25.1   | 11.1  | 2.3  | Flat  | 1.200 | 1.93  | 68.6  |       |
| 800MHz 2x50W RRH      | 19.0   | 13.0  | 1.5  | Flat  | 1.200 | 1.72  | 60.8  |       |
|                       |        |       |      |       |       |       |       |       |
| HSS4X4X3/16 x 15 ft   | 180.0  | 4.0   | 45.0 | Flat  | 2.000 | 5.00  | 295.3 | 19.7  |
| HSS4X4X3/16 x 8.54 ft | 102.5  | 4.0   | 25.6 | Flat  | 2.000 | 2.85  | 168.2 | 19.7  |
| Pipe2STD x 8.5 ft     | 102.0  | 2.4   | 42.9 | Round | 1.200 | 1.68  | 59.6  | 7.0   |
| L2X2X1/8 x 1 ft       | 12.0   | 2.0   | 6.0  | Flat  | 1.356 | 0.17  | 6.7   | 6.7   |



Job: Cingular (CT54XC749-B)

Project: 28746

By: JMA Date: 8/23/17

# Wind Load on Antennas TIA-222-G

 $q_z = 0.00256 K_z K_{zt} K_d V^2 I$ 

 $F = q_z G_h C_a A_a$ 

Occupancy: II Classification of Structures (Table 2-1)

Exposure: B Exposure Category

V: 93 mph Basic Wind Speed (Annex B)

z: 115 ft Height above ground level to the center of the antenna

I: 1.00 Importance Factor (Table 2-3)

K<sub>z</sub>: 1.03 Velocity Pressure Coefficient (2.6.5.2)

K<sub>zt</sub>: 1.37 Topographic Factor (2.6.6.4)

K<sub>d</sub>: 0.95 Wind Direction Probability Factor (Table 2-2)

q₂: 29.5 psf Velocity Pressure at Height z

G<sub>h</sub>: 1.00 Strength Design of Appurtenances and their Connections

# **Mount & Antenna Wind Loads**

| Appurtenance          | Height | Depth | h/D  | Shape | $C_a$ | $A_f$ | Force | Force |
|-----------------------|--------|-------|------|-------|-------|-------|-------|-------|
|                       | in     | in    |      |       |       | sq ft | lb    | plf   |
| APXVTM14-ALU-I20      | 56.3   | 6.3   | 8.9  | Flat  | 1.465 | 2.46  | 106.5 | _     |
| TD-RRH8x20-25         | 26.1   | 6.7   | 3.9  | Flat  | 1.262 | 1.21  | 45.3  |       |
| APXVSPP18-C-A20       | 72.0   | 7.0   | 10.3 | Flat  | 1.509 | 3.50  | 156.2 |       |
| 1900MHz 4x45W RRH     | 25.1   | 10.7  | 2.3  | Flat  | 1.200 | 1.86  | 66.0  |       |
| 800MHz 2x50W RRH      | 19.0   | 12.2  | 1.6  | Flat  | 1.200 | 1.61  | 57.1  |       |
|                       |        |       |      |       |       |       |       |       |
| HSS4X4X3/16 x 15 ft   | 180.0  | 4.0   | 45.0 | Flat  | 2.000 | 5.00  | 295.3 | 19.7  |
| HSS4X4X3/16 x 8.54 ft | 102.5  | 4.0   | 25.6 | Flat  | 2.000 | 2.85  | 168.2 | 19.7  |
| Pipe2STD x 8.5 ft     | 102.0  | 2.4   | 42.9 | Round | 1.200 | 1.68  | 59.6  | 7.0   |
| L2X2X1/8 x 1 ft       | 12.0   | 2.0   | 6.0  | Flat  | 1.356 | 0.17  | 6.7   | 6.7   |



Job: Cingular (CT54XC749-B)

Project: 28746

By: <u>JMA</u>
Date: 8/23/17

# Ice Wind Load on Antennas TIA-222-G

 $q_z = 0.00256 K_z K_{zt} K_d V^2 I$ 

 $F = q_z G_h C_a A_a$ 

Occupancy: II Classification of Structures (Table 2-1)

Exposure: B Exposure Category

V<sub>i</sub>: 50 mph Basic Wind Speed (Annex B)

z: 115 ft Height above ground level to the center of the antenna

I: 1.00 Importance Factor (Table 2-3)

K<sub>z</sub>: 1.03 Velocity Pressure Coefficient (2.6.5.2)

K<sub>zt</sub>: 1.37 Topographic Factor (2.6.6.4)

K<sub>d</sub>: 0.95 Wind Direction Probability Factor (Table 2-2)

q₂: 8.54 psf Velocity Pressure at Height z

G<sub>h</sub>: 1.00 Strength Design of Appurtenances and their Connections

K<sub>iz</sub>: 1.13 Height Escalation Factor for Ice Thickness

t<sub>iz</sub>: 1.90 in Factored Thickness of Radial Glaze Ice at Height z

# **Mount & Antenna Ice Wind Loads**

| Appurtenance          | Height | Width | h/D  | Shape | $C_a$ | $A_f$ | Force | Force |
|-----------------------|--------|-------|------|-------|-------|-------|-------|-------|
|                       | in     | in    |      |       |       | sq ft | lb    | plf   |
| APXVTM14-ALU-I20      | 60.1   | 16.4  | 3.7  | Flat  | 1.252 | 6.84  | 73.1  |       |
| TD-RRH8x20-25         | 29.9   | 22.4  | 1.3  | Flat  | 1.200 | 4.65  | 47.6  |       |
| APXVSPP18-C-A20       | 75.8   | 15.7  | 4.8  | Flat  | 1.304 | 8.25  | 91.9  |       |
| 1900MHz 4x45W RRH     | 28.9   | 14.9  | 1.9  | Flat  | 1.200 | 2.99  | 30.6  |       |
| 800MHz 2x50W RRH      | 22.8   | 16.8  | 1.4  | Flat  | 1.200 | 2.66  | 27.2  |       |
|                       |        |       |      |       |       |       |       |       |
| HSS4X4X3/16 x 15 ft   | 183.8  | 7.8   | 23.6 | Flat  | 1.953 | 9.94  | 165.8 | 10.8  |
| HSS4X4X3/16 x 8.54 ft | 106.3  | 7.8   | 13.6 | Flat  | 1.621 | 5.75  | 79.6  | 9.0   |
| Pipe2STD x 8.5 ft     | 105.8  | 6.2   | 17.2 | Round | 1.026 | 4.53  | 39.7  | 4.5   |
| L2X2X1/8 x 1 ft       | 15.8   | 5.8   | 2.7  | Flat  | 1.210 | 0.63  | 6.6   | 5.0   |



Job: Cingular (CT54XC749-B)

Project: 28746

By: JMA

Date: 8/23/17

# Ice Wind Load on Antennas TIA-222-G

 $q_z = 0.00256 K_z K_{zt} K_d V^2 I$ 

 $F = q_z G_h C_a A_a$ 

Occupancy: II Classification of Structures (Table 2-1)

Exposure: B Exposure Category

V<sub>i</sub>: 50 mph Basic Wind Speed (Annex B)

z: 115 ft Height above ground level to the center of the antenna

I: 1.00 Importance Factor (Table 2-3)

K<sub>z</sub>: 1.03 Velocity Pressure Coefficient (2.6.5.2)

K<sub>zt</sub>: 1.37 Topographic Factor (2.6.6.4)

K<sub>d</sub>: 0.95 Wind Direction Probability Factor (Table 2-2)

q₂: 8.54 psf Velocity Pressure at Height z

G<sub>h</sub>: 1.00 Strength Design of Appurtenances and their Connections

K<sub>iz</sub>: 1.13 Height Escalation Factor for Ice Thickness

t<sub>iz</sub>: 1.90 in Factored Thickness of Radial Glaze Ice at Height z

# **Mount & Antenna Ice Wind Loads**

| Appurtenance          | Height | Depth | h/D  | Shape | $C_a$ | $A_f$ | Force | Force |
|-----------------------|--------|-------|------|-------|-------|-------|-------|-------|
|                       | in     | in    |      |       |       | sq ft | lb    | plf   |
| APXVTM14-ALU-I20      | 60.1   | 10.1  | 6.0  | Flat  | 1.354 | 4.21  | 48.7  |       |
| TD-RRH8x20-25         | 29.9   | 10.5  | 2.8  | Flat  | 1.216 | 2.18  | 22.6  |       |
| APXVSPP18-C-A20       | 75.8   | 10.8  | 7.0  | Flat  | 1.401 | 5.68  | 68.0  |       |
| 1900MHz 4x45W RRH     | 28.9   | 14.5  | 2.0  | Flat  | 1.200 | 2.91  | 29.8  |       |
| 800MHz 2x50W RRH      | 22.8   | 16.0  | 1.4  | Flat  | 1.200 | 2.53  | 25.9  |       |
|                       |        |       |      |       |       |       |       |       |
| HSS4X4X3/16 x 15 ft   | 183.8  | 7.8   | 23.6 | Flat  | 1.953 | 9.94  | 165.8 | 10.8  |
| HSS4X4X3/16 x 8.54 ft | 106.3  | 7.8   | 13.6 | Flat  | 1.621 | 5.75  | 79.6  | 9.0   |
| Pipe2STD x 8.5 ft     | 105.8  | 6.2   | 17.2 | Round | 1.026 | 4.53  | 39.7  | 4.5   |
| L2X2X1/8 x 1 ft       | 15.8   | 5.8   | 2.7  | Flat  | 1.210 | 0.63  | 6.6   | 5.0   |



Job: Cingular (CT54XC749-B)

Project: 28746

By: JMA

Date: 8/23/17

# Ice Load on Antennas TIA-222-G

| Ice Weight:       | 56 pcf  | Ice Density                                            |
|-------------------|---------|--------------------------------------------------------|
| t <sub>i</sub> :  | 0.75    | Design Ice Thickness                                   |
| Occupancy:        | II      | Classification of Structures (Table 2-1)               |
| Exposure:         | В       | Exposure Category                                      |
| V <sub>i</sub> :  | 50 mph  | Basic Wind Speed (Annex B)                             |
| z:                | 115 ft  | Height above ground level to the center of the antenna |
| I:                | 1.00    | Importance Factor (Table 2-3)                          |
| K <sub>iz</sub> : | 1.13    | Height Escalation Factor for Ice Thickness             |
| K <sub>zt</sub> : | 1.37    | Topographic Factor (2.6.6.4)                           |
| t <sub>iz</sub> : | 1.90 in | Factored Thickness of Radial Glaze Ice at Height z     |

Platform Grating:

Bar

Ice Load:

13.5 psf

# **Mount & Antenna Ice Wind Loads**

| Appurtenance          | Height | Width | Depth | Diam. | Area   | Perim. | Ice W | eight |
|-----------------------|--------|-------|-------|-------|--------|--------|-------|-------|
|                       | in     | in    | in    | in    | sq in  | in     | lb    | plf   |
| APXVTM14-ALU-I20      | 60.1   | 16.4  | 10.1  | 14.09 | 95.15  | 45.38  | 173.6 |       |
| TD-RRH8x20-25         | 29.9   | 22.4  | 10.5  | 19.77 | 128.99 | 58.18  | 109.1 |       |
| APXVSPP18-C-A20       | 75.8   | 15.7  | 10.8  | 13.80 | 93.45  | 45.38  | 218.1 |       |
| 1900MHz 4x45W RRH     | 28.9   | 14.9  | 14.5  | 15.41 | 103.03 | 51.16  | 83.8  |       |
| 800MHz 2x50W RRH      | 22.8   | 16.8  | 16.0  | 17.83 | 117.42 | 57.98  | 72.3  |       |
|                       |        |       |       |       |        |        |       |       |
| HSS4X4X3/16 x 15 ft   | 183.8  | 7.8   | 7.8   | 5.31  | 42.88  | 28.67  | 250.1 | 16.7  |
| HSS4X4X3/16 x 8.54 ft | 106.3  | 7.8   | 7.8   | 5.31  | 42.88  | 28.67  | 142.4 | 16.7  |
| Pipe2STD x 8.5 ft     | 105.8  | 6.2   | 6.2   | 2.38  | 25.42  | 13.41  | 84.0  | 9.9   |
| L2X2X1/8 x 1 ft       | 15.8   | 5.8   | 5.8   | 2.83  | 28.12  | 15.58  | 10.9  | 10.9  |



Company : Ramaker & Associates
Designer : JMA
Job Number : 28746
Model Name : Cingular (CT54XC749-B)

Aug 17, 2017 11:19 AM Checked By:\_

# **Hot Rolled Steel Properties**

|   | Label      | E [ksi] | G [ksi] | Nu | Therm (\1 | Density[k/ft | . Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|---|------------|---------|---------|----|-----------|--------------|--------------|-----|---------|-----|
| 1 | A53 Gr. B  | 29000   | 11154   | .3 | .65       | .49          | 35           | 1.5 | 60      | 1.2 |
| 2 | A36 Gr.36  | 29000   | 11154   | .3 | .65       | .49          | 36           | 1.5 | 58      | 1.2 |
| 3 | Gr. 33     | 29000   | 11154   | .3 | .65       | .49          | 33           | 1.5 | 58      | 1.2 |
| 4 | A572 Gr.50 | 29000   | 11154   | .3 | .65       | .49          | 50           | 1.1 | 65      | 1.1 |
| 5 | A992       | 29000   | 11154   | .3 | .65       | .49          | 50           | 1.1 | 65      | 1.1 |
| 6 | A500 Gr.42 | 29000   | 11154   | .3 | .65       | .49          | 42           | 1.4 | 58      | 1.3 |
| 7 | A500 Gr.46 | 29000   | 11154   | .3 | .65       | .49          | 46           | 1.4 | 58      | 1.3 |

# **Hot Rolled Steel Section Sets**

|   | Label         | Shape    | Type | Design List  | Material  | Design R | A [in2] | lyy [in4] | Izz [in4] | J [in4] |
|---|---------------|----------|------|--------------|-----------|----------|---------|-----------|-----------|---------|
| 1 | pipe 2.0      | PIPE 2.0 | Beam | Pipe         | A53 Gr. B | Typical  | 1.02    | .627      | .627      | 1.25    |
| 2 | grating angle | L2x2x2   | Beam | Single Angle | A36 Gr.36 | Typical  | .491    | .189      | .189      | .003    |
| 3 | face/standoff | HSS4x4x3 | Beam | SquareTube   | A36 Gr.36 | Typical  | 2.58    | 6.21      | 6.21      | 10      |

# **Member Primary Data**

|    | Label | I Joint | J Joint | K Joint | Rotate(deg) | Section/Shape | Туре | Design List  | Material  | Design Rules |
|----|-------|---------|---------|---------|-------------|---------------|------|--------------|-----------|--------------|
| 1  | SA3   | N1      | N2      |         |             | face/standoff | Beam | SquareTube   | A36 Gr.36 | Typical      |
| 2  | BF    | N4      | N3      |         |             | face/standoff | Beam | SquareTube   | A36 Gr.36 | Typical      |
| 3  | GF    | N5      | N3      |         |             | face/standoff | Beam | SquareTube   | A36 Gr.36 | Typical      |
| 4  | AF    | N4      | N5      |         |             | face/standoff | Beam | SquareTube   | A36 Gr.36 | Typical      |
| 5  | MP1   | N11     | N9      |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 6  | MP4   | N10     | N8      |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 7  | B1    | N22     | N25     |         | 90          | grating angle | Beam | Single Angle |           | Typical      |
| 8  | B2    | N19     | N24     |         | 90          | grating angle |      | Single Angle | A36 Gr.36 | Typical      |
| 9  | B4    | N13     | N23     |         | 90          | grating angle | Beam | Single Angle | A36 Gr.36 | Typical      |
| 10 | B5    | N14     | N27     |         | 90          | grating angle | Beam | Single Angle |           | Typical      |
| 11 | B6    | N16     | N28     |         | 90          | grating angle | Beam | Single Angle | A36 Gr.36 | Typical      |
| 12 | B7    | N18     | N30     |         | 90          | grating angle | Beam | Single Angle | A36 Gr.36 | Typical      |
| 13 | B8    | N21     | N32     |         | 90          | grating angle | Beam | Single Angle |           | Typical      |
| 14 | B9    | N20     | N33     |         | 90          | grating angle | Beam | Single Angle | A36 Gr.36 | Typical      |
| 15 | B10   | N17     | N31     |         | 90          | grating angle | Beam | Single Angle |           | Typical      |
| 16 | B11   | N15     | N29     |         | 90          | grating angle | Beam | Single Angle | A36 Gr.36 | Typical      |
| 17 | B12   | N12     | N26     |         | 90          | grating angle | Beam | Single Angle | A36 Gr.36 | Typical      |
| 18 | SA2   | N35     | N36     |         |             | face/standoff | Beam | SquareTube   | A36 Gr.36 | Typical      |
| 19 | SA1   | N37     | N38     |         |             | face/standoff | Beam | SquareTube   | A36 Gr.36 | Typical      |
| 20 | B3    | N39     | N40     |         | 90          | grating angle | Beam | Single Angle | A36 Gr.36 | Typical      |
| 21 | MP2   | N43     | N42     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 22 | MP3   | N46     | N45     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 23 | MP9   | N52     | N50     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 24 | MP12  | N51     | N49     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 25 | MP10  | N55     | N54     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 26 | MP11  | N58     | N57     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 27 | MP5   | N64     | N62     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 28 | MP8   | N63     | N61     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |
| 29 | MP6   | N67     | N66     |         |             | pipe 2.0      | Beam |              | A53 Gr. B |              |
| 30 | MP7   | N70     | N69     |         |             | pipe 2.0      | Beam | Pipe         | A53 Gr. B | Typical      |

# **Basic Load Cases**

|   | BLC Description | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distributed | Area(Mem | .Surface(Pl |
|---|-----------------|----------|-----------|-----------|-----------|-------|-------|-------------|----------|-------------|
| 1 | Dead Load       | None     | ·         | -1        |           |       | 15    |             | 3        | ,           |
| 2 | Antenna Wind 0  | None     |           |           |           |       | 30    |             |          |             |



Company Designer Job Number Model Name

: Ramaker & Associates: JMA: 28746: Cingular (CT54XC749-B)

Aug 17, 2017 11:19 AM Checked By:\_

# **Basic Load Cases (Continued)**

|    | BLC Description                             | Category     | X Gravity | Y Gravity | Z Gravity | Joint | Point     | Distributed | Area(Mem. | .Surface(Pl |
|----|---------------------------------------------|--------------|-----------|-----------|-----------|-------|-----------|-------------|-----------|-------------|
| 3  | Antenna Wind 30                             | <u>None</u>  |           |           |           |       | 30        |             |           |             |
| 4  | Antenna Wind 45                             | None         |           |           |           |       | 30        |             |           |             |
| _5 | Antenna Wind 60                             | None         |           |           |           |       | 30        |             |           |             |
| 6  | Antenna Wind 90                             | None         |           |           |           |       | 30        |             |           |             |
| 7  | Antenna Wind 120                            | None         |           |           |           |       | 30        |             |           |             |
| 8  | Antenna Wind 135                            | None         |           |           |           |       | 30        |             |           |             |
| 9  | Antenna Wind 150                            | None         |           |           |           |       | 30        |             |           |             |
| 10 | Antenna Wind 180                            | None         |           |           |           |       | 30        |             |           |             |
| 11 | Antenna Wind 210                            | None         |           |           |           |       | 30        |             |           |             |
| 12 | Antenna Wind 225                            | None         |           |           |           |       | 30        |             |           |             |
| 13 | Antenna Wind 240                            | None         |           |           |           |       | 30        |             |           |             |
| 14 | Antenna Wind 270                            | None         |           |           |           |       | 30        |             |           |             |
| 15 | Antenna Wind 300                            | <u>None</u>  |           |           |           |       | 30        |             |           |             |
| 16 | Antenna Wind 315                            | None         |           |           |           |       | 30        |             |           |             |
| 17 | Antenna Wind 330                            | None         |           |           |           |       | 30        |             |           |             |
| 18 | Antenna Ice Dead Load                       | None         |           |           |           |       | <u>15</u> |             |           |             |
| 19 | Antenna Wind w/Ice 0                        | None         |           |           |           |       | 30        |             |           |             |
| 20 | Antenna Wind w/Ice 30                       | None         |           |           |           |       | 30        |             |           |             |
| 21 | Antenna Wind w/Ice 45 Antenna Wind w/Ice 60 | None         |           |           |           |       | 30        |             |           |             |
| 22 | Antenna Wind w/Ice 90 Antenna Wind w/Ice 90 | None         |           |           |           |       | 30        |             |           |             |
| 23 | Antenna Wind w/Ice 120                      | None         |           |           |           |       | 30        |             |           |             |
| 24 | Antenna Wind w/Ice 125                      | None         |           |           |           |       | 30        |             |           |             |
|    | Antenna Wind w/Ice 150                      | None         |           |           |           |       | 30        |             |           |             |
|    | Antenna Wind w/Ice 180                      | None         |           |           |           |       | 30        |             |           |             |
| 27 | Antenna Wind w/Ice 210                      | None         |           |           |           |       | 30        |             |           |             |
| 28 | Antenna Wind w/Ice 225                      | None         |           |           |           |       | 30        |             |           |             |
|    | Antenna Wind w/Ice 240                      | None         |           |           |           |       | 30<br>30  |             |           |             |
|    | Antenna Wind w/Ice 270                      | None         |           |           |           |       | 30<br>30  |             |           |             |
| 32 | Antenna Wind w/Ice 300                      | None<br>None |           |           |           |       | 30        |             |           |             |
| 33 | Antenna Wind w/Ice 315                      | None         |           |           |           |       | 30        |             |           |             |
| 34 | Antenna Wind w/Ice 330                      | None         |           |           |           |       | 30        |             |           |             |
| 35 | Member Wind 0                               | None         |           |           |           |       | 30        | 60          |           |             |
| 36 | Member Wind 30                              | None         |           |           |           |       |           | 60          |           |             |
| 37 | Member Wind 45                              | None         |           |           |           |       |           | 60          |           |             |
| 38 | Member Wind 43                              | None         |           |           |           |       |           | 60          |           |             |
| 39 | Member Wind 90                              | None         |           |           |           |       |           | 60          |           |             |
| 40 | Member Wind 120                             | None         |           |           |           |       |           | 60          |           |             |
| 41 | Member Wind 135                             | None         |           |           |           |       |           | 60          |           |             |
| 42 | Member Wind 150                             | None         |           |           |           |       |           | 60          |           |             |
| 43 | Member Wind 180                             | None         |           |           |           |       |           | 60          |           |             |
| 44 | Member Wind 210                             | None         |           |           |           |       |           | 60          |           |             |
| 45 | Member Wind 225                             | None         |           |           |           |       |           | 60          |           |             |
| 46 | Member Wind 240                             | None         |           |           |           |       |           | 60          |           |             |
| 47 | Member Wind 270                             | None         |           |           |           |       |           | 60          |           |             |
| 48 | Member Wind 300                             | None         |           |           |           |       |           | 60          |           |             |
| 49 | Member Wind 315                             | None         |           |           |           |       |           | 60          |           |             |
| 50 | Member Wind 330                             | None         |           |           |           |       |           | 60          |           |             |
| 51 | Member Ice Dead Load                        | None         |           |           |           |       |           | 30          | 3         |             |
| 52 | Member Wind w/Ice 0                         | None         |           |           |           |       |           | 60          |           |             |
| 53 | Member Wind w/Ice 30                        | None         |           |           |           |       |           | 60          |           |             |
| 54 | Member Wind w/Ice 45                        | None         |           |           |           |       |           | 60          |           |             |
| 55 | Member Wind w/Ice 60                        | None         |           |           |           |       |           | 60          |           |             |
| 56 | Member Wind w/Ice 90                        | None         |           |           |           |       |           | 60          |           |             |
| 57 | Member Wind w/Ice 120                       | None         |           |           |           |       |           | 60          |           |             |
| 58 | Member Wind w/Ice 135                       | None         |           |           |           |       |           | 60          |           |             |
| 59 | Member Wind w/Ice 150                       | None         |           |           |           |       |           | 60          |           |             |



Company Designer Job Number Model Name

: Ramaker & Associates: JMA: 28746: Cingular (CT54XC749-B)

Aug 17, 2017 11:19 AM Checked By:\_

# **Basic Load Cases (Continued)**

|    | BLC Description       | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distributed | Area(Mem | .Surface(Pl |
|----|-----------------------|----------|-----------|-----------|-----------|-------|-------|-------------|----------|-------------|
| 60 | Member Wind w/Ice 180 | None     |           |           |           |       |       | 60          |          |             |
| 61 | Member Wind w/Ice 210 | None     |           |           |           |       |       | 60          |          |             |
| 62 | Member Wind w/Ice 225 | None     |           |           |           |       |       | 60          |          |             |
| 63 | Member Wind w/Ice 240 | None     |           |           |           |       |       | 60          |          |             |
| 64 | Member Wind w/Ice 270 | None     |           |           |           |       |       | 60          |          |             |
| 65 | Member Wind w/Ice 300 | None     |           |           |           |       |       | 60          |          |             |
| 66 | Member Wind w/Ice 315 | None     |           |           |           |       |       | 60          |          |             |
| 67 | Member Wind w/Ice 330 | None     |           |           |           |       |       | 60          |          |             |
| 68 | Live Load - Area      | None     |           |           |           |       |       |             | 3        |             |
| 69 | Live Load - Point 1   | None     |           |           |           |       | 3     |             |          |             |
| 70 | Live Load - Point 2   | None     |           |           |           |       | 1     |             |          |             |
| 71 | Live Load - Point 3   | None     |           |           |           |       | 1     |             |          |             |
| 72 | Railing Dist. LL z    | None     |           |           |           |       |       |             |          |             |
| 73 | Railing Dist. LL x    | None     |           |           |           |       |       |             |          |             |
| 74 | Railing Point LL z    | None     |           |           |           |       |       |             |          |             |
| 75 | Railing Point LL x    | None     |           |           |           |       |       |             |          |             |
| 76 | BLC 1 Transient Area  | None     |           |           |           |       |       | 12          |          |             |

# **Load Combinations**

|    | Description          | SoP | S E | BLC Fa | cB  | BLC | Fac | .BLC | Fac | BLC | Fac | .BLC | Fac |
|----|----------------------|-----|-----|--------|-----|-----|-----|------|-----|-----|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|
| 1  | 1.4D                 | Y   |     | 1 1    | 4   |     |     |      |     |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 2  | 0.9D + 1.6 (0-Wind)  | Υ   |     | 1 .    | 9   | 2   | 1.6 | 35   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 3  | 0.9D + 1.6 (30-Wind) |     |     | 1 .    | 9   | 3   | 1.6 | 36   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 4  | 0.9D + 1.6 (45-Wind) | Υ   |     | 1 .    | 9   | 4   | 1.6 | 37   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 0.9D + 1.6 (60-Wind) |     |     | 1 .    | 9   | 5   |     |      | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 6  | 0.9D + 1.6 (90-Wind) |     |     | 1 .    | 9   | 6   | 1.6 | 39   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 7  | 0.9D + 1.6 (120-Wi   | Υ   |     | 1 .    | 9   | 7   | 1.6 | 40   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 8  | 0.9D + 1.6 (135-Wi   |     |     | 1 .    | 9   | 8   | 1.6 | 41   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 9  | 0.9D + 1.6 (150-Wi   |     |     | 1 .    | 9   | 9   | 1.6 | 42   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 0.9D + 1.6 (180-Wi   | Υ   |     | 1 .    | 9   | 10  | 1.6 | 43   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 11 | 0.9D + 1.6 (210-Wi   | Y   |     | 1 .    | 9   | 11  | 1.6 | 44   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 12 | 0.9D + 1.6 (225-Wi   |     |     | 1 .    | 9 . | 12  | 1.6 | 45   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 13 | 0.9D + 1.6 (240-Wi   | Υ   |     | 1 .    | 9 . | 13  | 1.6 | 46   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 14 | 0.9D + 1.6 (270-Wi   | Υ   |     | 1 .    | 9 . | 14  | 1.6 | 47   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 0.9D + 1.6 (300-Wi   | Υ   |     | 1 .    | 9   | 15  | 1.6 | 48   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 16 | 0.9D + 1.6 (315-Wi   | Υ   |     | 1 .    | 9   | 16  | 1.6 | 49   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 17 | 0.9D + 1.6 (330-Wi   | Υ   |     | 1 .    | 9   | 17  | 1.6 | 50   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 18 | 1.2D + 1.6 (0-Wind)  |     |     | 1 1    | 2   | 2   | 1.6 | 35   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (30-Wind) |     |     | 1 1    | 2   | 3   | 1.6 | 36   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 20 | 1.2D + 1.6 (45-Wind) |     |     | 1 1    | 2   | 4   | 1.6 | 37   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (60-Wind) |     |     | 1 1    | 2   | 5   | 1.6 | 38   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (90-Wind) |     |     | 1 1    | 2   | 6   | 1.6 | 39   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (120-Wi   |     |     | 1 1    | 2   | 7   | 1.6 | 40   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 24 | 1.2D + 1.6 (135-Wi   | Υ   |     | 1 1    | 2   | 8   | 1.6 | 41   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (150-Wi   | Υ   |     | 1 1    | 2   | 9   | 1.6 | 42   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 26 | 1.2D + 1.6 (180-Wi   |     |     | 1 1    | 2   | 10  | 1.6 | 43   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (210-Wi   | Y   |     | 1 1    | 2   | 11  | 1.6 | 44   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (225-Wi   | Y   |     | 1 1    |     |     | 1.6 |      |     |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (240-Wi   | Y   |     | 1 1    |     |     |     |      | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (270-Wi   |     |     | 1 1    | 2   | 14  | 1.6 | 47   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 31 | 1.2D + 1.6 (300-Wi   | Υ   |     | 1 1    | 2   | 15  | 1.6 | 48   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (315-Wi   |     |     | 1 1    | 2   | 16  | 1.6 | 49   | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
|    | 1.2D + 1.6 (330-Wi   | Y   |     | 1 1    | 2   | 17  | 1.6 |      | 1.6 |     |     |      |     |      |     |      |     |      |     |      |     |      |     |
| 34 | 1.2D + 1.0Di + 1.0 ( |     |     | 1 1    | 2   | 18  | 1   | 51   | 1   | 19  | 1   | 52   | 1   |      |     |      |     |      |     |      |     |      |     |
| 35 | 1.2D + 1.0Di + 1.0 ( | . Y |     | 1 1    | 2   | 18  | 1   | 51   | 1   | 20  | 1   | 53   | 1   |      |     |      |     |      |     |      |     |      |     |



Company : Ramaker & Associates
Designer : JMA
Job Number : 28746
Model Name : Cingular (CT54XC749-B)

Aug 17, 2017 11:19 AM Checked By:\_

# **Load Combinations (Continued)**

|    | Description Sc          | P   | S | BLC | Fac | BLC | Fac  | .BLC | Fac  | BLC | Fac | .BLC | Fac. | .BLC | Fac | BLC | Fac | .BLC | Fac | .BLC | Fac | BLC | Fac    |
|----|-------------------------|-----|---|-----|-----|-----|------|------|------|-----|-----|------|------|------|-----|-----|-----|------|-----|------|-----|-----|--------|
| 36 | 1.2D + 1.0Di + 1.0 (    | Υ   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 21  | 1   | 54   | 1    |      |     |     |     |      |     |      |     |     |        |
| 0. | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 22  | 1   | 55   | 1    |      |     |     |     |      |     |      |     |     |        |
| 38 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 |     |      | 51   | 1    | 23  | 1   | 56   | 1    |      |     |     |     |      |     |      |     |     |        |
| 39 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 |     | 1    | 51   | 1    | 24  | 1_  | 57   | 1    |      |     |     |     |      |     |      |     |     |        |
| 40 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 25  | 1   | 58   | 1    |      |     |     |     |      |     |      |     |     |        |
| 41 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 26  | 1   | 59   | 1    |      |     |     |     |      |     |      |     |     |        |
| 42 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 27  | 1   | 60   | 1    |      |     |     |     |      |     |      |     |     |        |
| 43 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 28  | 1   | 61   | 1    |      |     |     |     |      |     |      |     |     |        |
| 44 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 29  | 1   | 62   | 1    |      |     |     |     |      |     |      |     |     |        |
| 45 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 30  | 1   | 63   | 1    |      |     |     |     |      |     |      |     |     |        |
| 46 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 |     | 1    | 51   | 1    | 31  | 1   | 64   | 1    |      |     |     |     |      |     |      |     |     |        |
|    | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 32  | 1   | 65   | 1    |      |     |     |     |      |     |      |     |     |        |
| 48 | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 33  | 1   | 66   | 1    |      |     |     |     |      |     |      |     |     |        |
|    | 1.2D + 1.0Di + 1.0 (    | Y   |   | 1   | 1.2 | 18  | 1    | 51   | 1    | 34  | 1_  | 67   | 1    |      |     |     |     |      |     |      |     |     |        |
| 50 | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   |     | 1.5  | 72   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 68  |      | 73   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   |     | 1.5  | 74   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   |     | 1.5  | 75   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   | _ | 1   | 1   |     | 1.5  |      | 1.5  |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   | _ | 1   | 1   |     | 1.5  | 73   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 69  |      | 74   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1_  | 1   | 69  |      | 75   | 1.5  |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 70  | 1.5  | 72   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 70  |      | 73   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 70  | 1.5  |      | 1.5  |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 70  | 1.5  | 75   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   | _ | 1   | 1   | 71  | 1.5  | 72   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 71  | 1.5  | 73   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 71  | 1.5  | 74   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | 1.0D + 1.5LL + 1.5      | Y   |   | 1   | 1   | 71  | 1.5  | 75   |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (0-WiYe  |     |   | 1   | 1   | 2   |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (30 Ye   |     | _ | 1   | 1   | 3   |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (45 Ye   |     | _ | 1   | 1   | 4   |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (60 Ye   |     |   | 1   | 1   | 5   |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (90 Ye   | _   | _ | 1   | 1   | 6   |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (120Ye   |     | _ | 1   | 1   | 7   | .373 |      |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (135Ye   |     | _ | 1   | 1   | 8   |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (150 Ye  |     |   | 1   | 1   | 9   | .373 |      |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (180Ye   |     |   | 1   | 1   |     |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (210 Ye  | _   |   | 1   | 1   | 11  | .373 |      |      |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (225)Ye  |     | _ | 1   | 1   | 12  |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (240Ye   |     |   | 1   | 1   | 13  |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (270 Yes |     |   | 1   | 1   | 14  |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | Serviceability (300Ye   |     |   | 1   | 1   | 15  |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
|    | , ,                     | _   | _ | 1   |     |     |      |      | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     |        |
| 81 | Serviceability (330Ye   | s Y |   | 1   | 1   | 17  | .3/3 | 50   | .373 |     |     |      |      |      |     |     |     |      |     |      |     |     | $\Box$ |

# **Envelope Joint Reactions**

|   | Joint |     | X [lb]   | LC | Y [lb]  | LC | Z [lb]   | LC | MX [lb-ft] | LC | MY [lb-ft] | LC | MZ [lb-ft] | LC |
|---|-------|-----|----------|----|---------|----|----------|----|------------|----|------------|----|------------|----|
| 1 | N1    | max | 205.717  | 78 | 634.861 | 66 | 628.466  | 66 | 2705.945   | 66 | 619.545    | 70 | 139.599    | 70 |
| 2 |       | min | -205.716 | 70 | 497     | 74 | -628.136 | 74 | 1984.232   | 74 | -619.549   | 78 | -122.777   | 78 |
| 3 | N35   | max | 543.407  | 77 | 634.858 | 77 | 315.535  | 69 | -949.395   | 67 | 619.545    | 81 | -1721.357  | 70 |
| 4 |       | min | -543.136 | 69 | 496.997 | 69 | -315.724 | 77 | -1381.256  | 75 | -619.549   | 73 | -2348.766  | 78 |
| 5 | N37   |     | 544.829  | 79 | 634.858 | 71 | 312.602  | 79 | -958.483   | 81 | 619.545    | 75 | 2338.811   | 71 |
| 6 |       | min | -545.129 | 71 | 496.998 | 79 | -312.743 | 71 | -1401.199  | 73 | -619.549   | 67 | 1714.583   | 79 |



Company Designer Job Number Model Name

: Ramaker & Associates: JMA: 28746

: Cingular (CT54XC749-B)

Aug 17, 2017 11:19 AM Checked By:\_

# **Envelope Joint Reactions (Continued)**

|   | Joint   | X [lb]        | LC | Y [lb]   | LC | Z [lb]    | LC | MX [lb-ft] | LC | MY [lb-ft] | LC | MZ [lb-ft] | LC |
|---|---------|---------------|----|----------|----|-----------|----|------------|----|------------|----|------------|----|
| 7 | Totals: | max 1199.073  | 78 | 1697.273 | 66 | 1199.074  | 66 |            |    |            |    |            |    |
| 8 |         | min -1199.073 | 70 | 1697.273 | 74 | -1199.074 | 74 |            |    |            |    |            |    |

# Envelope AISC 13th(360-05): LRFD Steel Code Checks

|    | Member | Shape    | Code Check | Loc[ft] | LC | Shear Check | Loc Lphi*Pnphi*Pnphi*Mphi*M Egn                                |
|----|--------|----------|------------|---------|----|-------------|----------------------------------------------------------------|
| 1  | SA3    | HSS4x4x3 | .299       | 0       | 78 | .041        | 0 y 70 66435 83592 9909 9909 2 H1-1b                           |
| 2  | BF     | HSS4x4x3 | .160       | 0       | 71 | .038        | 0 y 71 4115383592 9909 9909 3 H1-1b                            |
| 3  | GF     | HSS4x4x3 | .161       | 15      | 68 | .038        | 15 V 77 4115383592 9909 9909 3 H1-1b                           |
| 4  | AF     | HSS4x4x3 | .160       | 15      | 66 | .038        | 15 y 66 41153 83592 9909 9909 3 H1-1b                          |
| 5  | MP1    | PIPE_2.0 | .017       | 4.073   | 73 | .001        | 4.0 73 13511 32130 1871 1871 1 H1-1b                           |
| 6  | MP4    | PIPE_2.0 | .017       | 4.073   | 75 | .001        | 4.0 75 1351132130 1871 1871 1H1-1b                             |
| 7  | B1     | L2x2x2   | .013       | 0       | 70 | .002        | 0 z 79 1386015908.4402.563844.6282H2-1                         |
| 8  | B2     | L2x2x2   | .023       | 0       | 70 | .003        | 0 z 70 1386015908.4402.563844.6282H2-1                         |
| 9  | B4     | L2x2x2   | .013       | 0       | 70 | .002        | 0 z 69 1386015908.4402.563844.6282H2-1                         |
| 10 | B5     | L2x2x2   | .013       | 0       | 75 | .002        | 0 z 68 1386015908.4402.563844.6282H2-1                         |
| 11 | B6     | L2x2x2   | .023       | 0       | 75 | .003        | 0 z 68 1386015908.4402.563844.6282H2-1                         |
| 12 | B7     | L2x2x2   | .023       | 0       | 75 | .003        | 0 z 68 1386015908.4 402.563 844.628 2H2-1                      |
| 13 | B8     | L2x2x2   | .013       | 0       | 75 | .002        | 0 z 68 1386015908.4402.563844.6282H2-1                         |
| 14 | B9     | L2x2x2   | .013       | 0       | 81 | .002        | 0 z 80 1386015908.4402.563844.6282H2-1                         |
| 15 | B10    | L2x2x2   | .023       | 0       | 81 | .003        | 0 z 80 1386015908.4402.563844.6282H2-1                         |
| 16 | B11    | L2x2x2   | .023       | 0       | 81 | .003        | 0 z 80 1386015908.4402.563844.6282H2-1                         |
| 17 | B12    | L2x2x2   | .013       | 0       | 81 | .002        | 0 z 80 1386015908.4402.563844.6282H2-1                         |
| 18 | SA2    | HSS4x4x3 | .302       | 0       | 80 | .041        | 0 y 80 66435 83592 9909 9909 2 H1-1b                           |
| 19 | SA1    | HSS4x4x3 | .300       | 0       | 68 | .041        | 0 y 75 66435 83592 9909 9909 2 H1-1b                           |
| 20 | B3     | L2x2x2   | .023       | 0       | 70 | .003        | 0 z 70 1386015908.4402.563844.6282H2-1                         |
| 21 | MP2    | PIPE_2.0 | .160       | 4.073   | 74 | .011        | 4.0 74 13511 <mark>32130</mark> 1871 1871 1H1-1b               |
| 22 | MP3    | PIPE_2.0 | .135       | 4.073   | 74 | .007        | 4.0 74 13511 32130 1871 1871 1 H1-1b                           |
| 23 | MP9    | PIPE_2.0 | .017       | 4.073   | 68 | .001        | 4.0 68 13511 <mark>32130</mark> 1871 1871 1H1-1b               |
| 24 | MP12   | PIPE_2.0 | .017       | 4.073   | 70 | .001        | 4.0 70 13511 32130 1871 1871 1 H1-1b                           |
| 25 | MP10   | PIPE_2.0 | .160       | 4.073   | 69 | .011        | 4.0 69 13511 <mark>32130</mark> 1871 1871 1 <mark>H1-1b</mark> |
| 26 | MP11   | PIPE_2.0 | .135       | 4.073   | 69 | .001        | 4.0 69 13511 <mark>32130</mark> 1871 1871 1H1-1b               |
| 27 | MP5    | PIPE_2.0 | .017       | 4.073   | 78 | .001        | 4.0 78 13511 32130 1871 1871 1 H1-1b                           |
| 28 | MP8    | PIPE_2.0 | .017       | 4.073   | 80 | .001        | 4.0 80 13511 <mark>32130</mark> 1871 1871 1H1-1b               |
| 29 | MP6    | PIPE_2.0 | .160       | 4.073   | 79 | .011        | 4.0 79 13511 32130 1871 1871 1 H1-1b                           |
| 30 | MP7    | PIPE_2.0 | .135       | 4.073   | 79 | .007        | 4.0 79 13511 <mark>32130</mark> 1871 1871 1H1-1b               |

Sprint®

# SITE ACQUISITION:

CHARLES CHERUNDOLO CONSULTING, INC. CONTACT: TOM JUPIN, PMP, PROJECT MANAGER CELL: (973) 819-9033 EMAIL: tom.jupin@cherundoloconsulting.com

SITE INFORMATION

PROPERTY OWNER:

SITE ADDRESS:

FAIRFIELD COUNTY

TOWN OF BETHEL

ZONING DISTRICT: R80 RESIDENTIAL

POWER COMPANY: CONNECTICUT LIGHT \$ POWER PH.: (800) 286-2000

AAV PROVIDER:

PH.: (210) 821-4105

38 SPRING HILL ROAD BETHEL, CT 06801

SPRING HILL LANE PROPERTIES LLC

GEOGRAPHIC COORDINATES:

ZONING JURISDICTION:

LATITUDE: 41.36221388° (41° 21' 43.97" N) LONGITUDE: 73.39668333° (73° 23' 48.06" W)

PLANS PREPARED BY:

RAMAKER & ASSOCIATES, INC. CONTACT: KEITH BOHNSACK, PROJECT MANAGER PH.: (608) 643-4100 EMAIL: kbohnsack@ramaker.com

PROJECT:

DO MACRO UPGRADE

SITE NAME:

CINGULAR

SHT NO:

SP-2

SP-3

A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

A-9

F-1

E-2

E-3

SITE CASCADE: CT54XC749-B

SITE ADDRESS: 38 SPRING HILL ROAD

BETHEL, CT 06801

TITLE SHEET

SITE PLAN

EQUIPMENT PLAN

RF DATA SHEET

SPRINT SPECIFICATIONS

SPRINT SPECIFICATIONS

SPRINT SPECIFICATIONS

FIBER PLUMBING DIAGRAM

ANTENNA & HYBRID CABLE DETAILS

EQUIPMENT UTILITY & GROUNDING PLAN

DC POWER DETAILS & PANEL SCHEDULES

CABLE COLOR CODING

EQUIPMENT DETAILS

EQUIPMENT DETAILS

GROUNDING DETAILS

SITE TYPE: 125'-0" MONOPOLE

SHEET INDEX

SHEET TITLE:

BUILDING ELEVATION # ANTENNA DETAILS

REV:

ENGINEER

JRS

JRS

JRS

JRS



OVERLAND PARK, KANSAS 66251

Sprint<sup>®</sup>

6580 SPRINT PARKWAY

855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

# Charles Cherundolo Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensec Professional Engineer under the laws of the State of <u>Connecticut</u>.



FINAL

DATE 08/23/2017

CINGULAR CT54XC749-B

38 SPRING HILL ROAD BETHEL, CT 06801 FAIRFIELD COUNTY

TITLE SHEET

SCALE: NONE

28746



# PROJECT DESCRIPTION

- INSTALL NEW 9929 GROWTH CABINET
- INSTALL NEW BATTERY STRING IN EXISTING BATTERY CABINET
- INSTALL (3) PANEL ANTENNAS
- INSTALL (3) RRH'S ON TOWER
- INSTALL (1) FIBER CABLE AND (3) FIBER JUMPERS
- INSTALL (27) ANTENNA / RRH JUMPERS

| Hoyts Hill Rd | m Par  |          | -           | Ichab | Colfish' |
|---------------|--------|----------|-------------|-------|----------|
| YY            | k-Rd   |          | Molipius Rd | nd b  |          |
| Spring till   | J-60   |          | Rd          |       | Katric   |
| 1             | _ SITE | LOCATION | 1           |       |          |

# LOCATION MAP



# APPLICABLE CODES

- \* ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.
- I. INTERNATIONAL BUILDING CODE
- 2. ANSI/TIA-222 STRUCTURAL STANDARD FOR ANTENNA STRUCTURES
- 3. NEPA 780 LIGHTNING PROTECTION CODE
- 4. NATIONAL ELECTRIC CODE



# 4)

# SECTION OI 100 - SCOPE OF WORK

THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE CONSTRUCTION DRAWINGS AND ASSOCIATED OUTLINE SPECIFICATIONS AND THE SITE SPECIFIC WORK ORDER, DESCRIBE THE WORK TO BE PERFORMED BY THIS CONSTRUCTION CONTRACTOR (SUPPLIER).

- RELATED DOCUMENTS:

  A. THE REQUIREMENTS OF EACH SECTION OF THIS SPECIFICATION APPLY TO ALL SECTIONS, INDIVIDUALLY
- B. RELATED DOCUMENTS: THE CONTRACTOR SHALL COMPLY WITH THE MOST CURRENT VERSION OF THE FOLLOWING SUPPLEMENTAL REQUIREMENTS FOR INSTALLATION AND TESTING.

  1. EN-2012-001: (FIBER OPTIC, DC CABLE, AND DC CIRCUIT BREAKER TAGGING STANDARDS)

  - TS-0200 (TRANSMISSION ANTENNA LINE ACCEPTANCE STANDARDS) 3.EL-0568: (FIBER TESTING POLICY)
- 4.NP-3 | 2-20 |: (EXTERIOR GROUNDING SYSTEM TESTING)
- 5.NP-760-500: ETHERNET, MICROWAVE, TESTING AND ACCEPTANCE

SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.

NATIONALLY RECOGNIZED CODES AND STANDARDS:
THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:

- A. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION
  B. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.
- C. GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR
- NETWORK TELECOMMUNICATIONS EQUIPMENT.
  D. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING
- NFPA 70 (NATIONAL ELECTRICAL CODE "NEC") AND NFPA 101 (LIFE SAFETY CODE). E. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
- F. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE)
  G. AMERICAN CONCRETE INSTITUTE (ACI)
- AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA)
- CONCRETE REINFORCING STEEL INSTITUTE (CRSI)

  AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
- K. PORTLAND CEMENT ASSOCIATION (PCA)
- NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
- M. BRICK INDUSTRY ASSOCIATION (BIA)
- N. AMERICAN WELDING SOCIETY (AWS)
   O. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
- Q DOOR AND HARDWARE INSTITUTE (DHI)
- . OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA)
- S. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.

- DEFINITIONS:

  A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.

  B. COMPANY: "SPRINT"; SPRINT NEXTEL CORPORATION AND IT'S OPERATING ENTITIES.

  THE DESIGN PROFESSIONAL
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
- D. CONTRACTOR: CONSTRUCTION CONTRACTOR, SUPPLIER, CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK.
- E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK
- F. CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT.

CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS.

COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.

THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK

DRAWINGS REQUIRED AT JOBSITE:
THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.

- THE JOBSITE DRAWINGS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S ARE VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS
- B. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK.

THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.

WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY

WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

 $\begin{array}{l} \underline{\text{CONTRACTOR:}} \\ \underline{\text{CONTRACTOR}} \text{ SHALL TAKE ALL } \underline{\text{MEASURES}} \text{ AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING} \\ \end{array}$ EXISTING EQUIPMENT AND PROPERTY.

USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS:
CONTRACTOR WILL UTILIZE ITS BEST EFFORTS TO WORK
SYSTEMS. CONTRACTOR UNDERSTANDS THAT SUFFICIENT INTERNET ACCESS, EQUIVALENT
TO "BROADBAND" OR BETTER, IS REQUIRED TO TIMELY AND EFFECTIVELY UTILIZE SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS AND AGREES TO MAINTAIN APPROPRIATE CONNECTIONS FOI CONTRACTOR'S STAFF AND OFFICES THAT ARE COMPATIBLE WITH SPRINT DATA AND DOCUMENT

TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS, TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY LITHUZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSOR'S OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.

ACCESS TO WORK:
THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.

VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.

NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

## SECTION O I 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT

FURNISHED MATERIALS: COMPANY FURNISHED MATERIALS AND EQUIPMENT TO BE INSTALLED BY THE CONTRACTOR (OFIC) IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS

A.THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT

- I. ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT
- 2.VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES.
  3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN
- B.RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT, REPORT TO
- SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH.
  C.PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING
- D.COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE.

A.COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE.
B.IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY

## SECTION 01 300 - CELL SITE CONSTRUCTION

A.NO WORK SHALL COMMENCE PRIOR TO COMPANY'S ISSUANCE OF THE WORK ORDER. B.UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.

- GENERAL REQUIREMENTS FOR CONSTRUCTION:

  A. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH.

  AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING
- RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.

  B.EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS. C.CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS
  - JOHNTHON.

    I. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY.
- 2. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.

  D.CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS, SHOULD AREAS OUTSIDE THE
- PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION

- A. THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK, CONTRACTOR SHALL TAKE ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.
- B.SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED C.MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES
- D.PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- I . PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION.
  2. PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND
- SURFACE TREATMENTS.

  3. MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND
- BACKHAUL (FIBER, COPPER, OR MICROWAVE).

  4.INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS CONDUITS, AND UNDERGROUND GROUNDING SYSTEM.
  5.INSTALL ABOVE GROUND GROUNDING SYSTEMS, CONDUIT AND BOXES.
- G.PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.
  7.INSTALL "H-FRAMES", CABINETS AND PADS AND PLATFORMS AS INDICATED.
- 8.INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED
- 9.ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.

- LO. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS
- PROVIDE SLABS AND EQUIPMENT PLATFORMS.
- INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER.
- CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.
- INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS REQUIRED.
- INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT.

- CONDUCT ALL REQUIRED TESTS AND INSPECTIONS
  PERFORM, DOCUMENT, AND CLOSE OUT ALL JURISDICTIONAL PERMITTING REQUIREMENTS AND ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES AND LANDLORDS.
- PERFORM ALL ADDITIONAL WORK AS IDENTIFIED IN SCOPE OF SERVICES ATTACHED TO THE SUPPLIER AGREEMENT FOR THIS PROJECT. THIS WORK MAY INCLUDE COMMISSIONING, INTEGRATION, SPECIAL WAREHOUSING, REVERSE LOGISTICS ACTIVITIES, ETC. PERFORM COMMISSIONING AND INTEGRATION ACTIVITIES PER APPLICABLE MOPS

DELIVERABLES:

A. THE CONTRACTOR SHALL PROVIDE ALL REQUIRED TEST REPORTS AND DOCUMENTATION INCLUDED BUT

- PRODUCT SPECIFICATIONS FOR MATERIALS OR SPECIAL CONSTRUCTION IF REQUIESTED BY SPRINT
- 2. ACTUALIZE ALL CONSTRUCTION RELATED MILESTONES IN SITERRA AND COMPLETE ALL ON-LINE FORMS AND COMPLETE DOCUMENT UP-LOADS. UPLOAD ALL REQUIRED CLOSEOUT DOCUMENTS AND FINAL
- 3. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT LEFT ON SITE INSIDE BASE OF MAIN RF CABINET IN A PROTECTIVE POUCH.
- 4 ALL REQUIRED TEST REPORTS
- 5. REQUIRED CLOSEOUT DOCUMENTATION INCLUDING BUT NOT LIMITED TO:
- a. ALL JURISDICTIONAL PERMITTING AND OCCUPANCY INFORMATION b. PDF SCAN OF REDLINES PRODUCED IN THE FIELD
- c. ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS d.LIEN WAIVERS
- e. FINAL PAYMENT APPLICATION

  f. REQUIRED FINAL CONSTRUCTION PHOTOS
- g. CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS h. LISTS OF SUBCONTRACTORS
- B.PROVIDE ADDITIONAL DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS.
- I. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS. 2. PROJECT PROGRESS REPORTS.
- 3. PRE-CONSTRUCTION MEETING NOTES
- SECTION 01 400 TESTS, INSPECTIONS, SUBMITTALS, AND PROJECT

A.THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT

- B.CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING: I. COAX SWEEPS AND FIBER TESTS PER TS-0200 (CURRENT VERSION) ANTENNA LINE ACCEPTANCE
- 2. POST CONSTRUCTION HEIGHT VERIFICATION, AZIMUTH AND DOWNTILT USING ELECTRONIC
- COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL. 3. CONCRETE BREAK TESTS
- 4. SITE RESISTANCE TO EARTH TEST
  5. STRUCTURAL BACKFILL COMPACTION TESTS
- 6. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- 7. ADDITIONAL TESTING AS REQUIRED ELSEWHERE IN THIS SPECIFICATION

- SUBMITTALS:

  A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE
- B.UPLOAD THE FOLLOWING TO SITERRA AS APPLICABLE INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING.
   CONCRETE BREAK TESTS AS SPECIFIED HEREIN.
- CHEMICAL GROUNDING SYSTEM
- 4 REINFORCEMENT CERTIFICATIONS
- STRUCTURAL BACKFILL TEST RESULTS SWEEP AND FIBER TESTS
- ANTENNA AZIMUTH AND DOWN-TILT VERIFICATION
- 8 POST CONSTRUCTION HEIGHT VERIFICATION ADDITIONAL SUBMITTALS MAY BE REQUIRED FOR SPECIAL CONSTRUCTION OR MINOR MATERIALS C.ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT

- A.EMPLOY AN AGENCY OF ENGINEERS AND SCIENTISTS WHO IS REGULARLY ENGAGED IN FIELD AND LABORATORY TESTING AND ANALYSIS. AGENCY SHALL HAVE BEEN IN BUSINESS A MINIMUM OF FIVE YEARS, AND BE LICENSED AS PROFESSIONAL ENGINEERS IN THE STATE WHERE THE PROJECT IS LOCATED.
- AGENCY IS SUBJECT TO APPROVAL BY COMPANY.

  I. AGENCY MUST HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING
- THE SOIL, ROCK, AND GROUNDWATER CONDITIONS.

  2. AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.

  3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM,
- AASJTO, AND OTHER METHODS IS NEEDED.
  B.REQUIRED THIRD PARTY TESTS:
- SITE RESISTANCE TO EARTH TEST PER NP-3 | 2-20 |
   CONCRETE CYLINDER BREAK TESTS FOR TOWER PIER AND ANCHORS PER NATIONALLY RECOGNIZED
- STANDARDS

  3. STRUCTURAL SOILS COMPACTION TESTS PER NATIONALLY RECOGNIZED STANDARDS REBAR PLACEMENT VERIFICATION WITH REPORT TESTING TENSION STUDY FOR ROCK ANCHORS
- 6. ALL THIRD PARTY TESTS AS REQUIRED BY LOCAL JURISDICTION C.REQUIRED TESTS BY CONTRACTOR
  - I. COAX SWEEP TESTS PER SPRINT STANDARD TS-0200
    2. FIBER TESTS PER SPRINT STANDARD EL-0568
  - MICROWAVE LINK TESTS PER NP-760-500
- 4. ANTENNA AZIMUTHS AND DOWN TILT USING ELECTRONIC ALIGNMENT TOOL PER ANTENNA INSTALLATION SPECIFICATION HEREIN.



6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

# **Charles Cherundolo** Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensec Professional Engineer under the laws of the State of <u>Connecticut</u>.



DATE 08/23/2017

CINGULAR CT54XC749-B

38 SPRING HILL ROAD BETHEL, CT 06801 FAIRFIELD COUNTY

FINAL

ROJECT TITLE:

SPRINT SPECIFICATIONS

SCALE: NONE

28746 SHEET

- POST CONSTRUCTION HEIGHT VERIFICATION AS REQUIRED HEREWITH IN THE TOWER INSTALLATION SPECIFICATIONS ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY
- TESTING AS SPECIFIED HEREWITH IN THE ASPHALT PAVING SPECIFICATIONS FIELD QUALITY CONTROL TESTING AS SPECIFIED HEREWITH IN THE CONCRETE PAVING
- SPECIFICATIONS
- TESTING REQUIRED HEREWITH UNDER SPECIFICATIONS FOR AGGREGATE BASE FOR ROADWAYS
- 9. ALL OTHER TESTS REQUIRED BY LOCAL JURISDICTION
  D.INSPECTIONS BY COMPANY: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN INSPECTION ACTIVITIES, FINAL ACCEPTANCE / PUNCH WALK REVIEW, AND/OR AS A RESULT OF TESTING
- E. SPRINT RESERVES THE RIGHT TO INSPECT THE CONSTRUCTION SITE AT ANY TIME VIA SITE WALKS AND/OR PHOTO REVIEWS. CONTRACTOR SHALL GIVE SPRINT 24 HOURS NOTICE PRIOR TO THE COMMENCEMENT
- OF THE FOLLOWING CONSTRUCTION ACTIVITIES AND PHOTOGRAPHS OF THE IN-PROGRESS WORK, I. GROUNDING SYSTEM AND BURIED UTILITIES INSTALLATION PRIOR TO EARTH CONCEALMENT DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A¢E OR SPRINT REPRESENTATIVE.
- FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A E OR SPRINT REPRESENTATIVE.
- COMPACTION OF BACKFILL MATERIALS, AGGREGATE BASE FOR ROADS, PADS, AND ANCHORS ASPHALT PAVING, AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT THIRD PARTY AGENCY.
- PRE AND POST CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING FACILITIES PRIOR TO CONSTRUCTION ACTIVITIES AND AFTER CONSTRUCTION IS COMPLETE, PROVIDE PHOTOGRAPHIC DOCUMENTATION OF ROOF, FLASHINGS, AND PARAPETS, BOTH BEFORE AND AFTER CONSTRUCTION IS COMPLETE
- TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY.
- TOWER TOP AND INACCESSIBLE EQUIPMENT (RRUS, ANTENNAS, AND CABLING): PROVIDE PHOTOS OF THE BACKS OF ALL ANTENNAS, RRUS, COMBINERS, FILTERS, FIBER AND DC CABLING, CABLE COLOR CODING. EQUIPMENT GROUNDING AND CONNECTOR WATER PROOFING INCLUDING NAME PLATE AND SERIAL NUMBER FOR ALL SERIALIZED EQUIPMENT

A FINAL ACCEPTANCE PLINCH WALK AND INSPECTION: AS IDENTIFIED IN THE SCOPE OF SERVICES, SPRINT WILL CONDUCT A FINAL PUNCH WALK OR FINAL DESK TOP PHOTO REVIEW (SITE MODIFICATIONS). PUNCH WALKS MUST BE SCHEDULED IN ADVANCE AS REQUIRED. AT THE PUNCH WALK / REVIEW, SPRINT MAY IDENTIFY CRITICAL DEFICIENCIES WHICH MUST BE CORRECTED PRIOR TO PUTTING SITE ON AIR. MINOR DEFICIENCIES MUST BE CORRECTED WITHIN 30 DAYS EXCEPT AS OTHERWISE REQUIRED. VERIFICATIONS OF CORRECTIONS MAY BE MADE BY COMPANY DURING A REPEAT SITE WALK OR DESK TOP PHOTO REVIEW AT COMPANYS SOLE DISCRETION.

B.CLOSEOUT DOCUMENTATION: ALL CLOSEOUT DOCUMENTATION AND PHOTOGRAPHS SHALL BE UPLOADED

PRIOR TO FINAL ACCEPTANCE. SPRINT WILL REVIEW CLOSEOUT DOCUMENTATION FOR PRESENCE AND CONTENT. CLOSEOUT DOCUMENTATION SHALL INCLUDE BUT IS NOT LIMITED TO THE FOLLOWING AS APPLICABLE:

- COAX SWEEP TESTS:
- FIBER TESTS:
  JURISDICTION FINAL INSPECTION DOCUMENTATION
- REINFORCEMENT CERTIFICATION (MILL CERTIFICATION)
  CONCRETE MIX DESIGN AND PRODUCT DATA (TOWER FOUNDATION)

- LIEN WAIVERS AND RELEASES.
  POST -CONSTRUCTION HEIGHT VERIFICATION
- JURISDICTION CERTIFICATE OF OCCUPANCY ELECTRONIC ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
- STRUCTURAL BACKFILL TEST RESULTS (IF APPLICABLE)
  CELL SITE UTILITY SETUP
- 12. AS-BUILT REDUNE CONSTRUCTION DRAWINGS (PDF SCAN OF FIELD MARKS)
  13. AS-BUILT CONSTRUCTION DRAWINGS IN DWG AND PDF FORMATS
- 14. LIST OF SUB CONTRACTORS 15. APPROVED PERMITTING DOCUMENTS
- FINAL SITE PHOTOS UP-LOADED TO SITERRA. INCLUDE THE FOLLOWING AS APPLICABLE:

  a. TOWER, ANTENNAS, RRUS, AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION
- STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX/CABLE LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN: PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR, PHOTOS OF GPS ANTENNA(S); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING - TOP AND BOTTOM; PHOTOS OF COAX GROUNDING.-TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- b.ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF;
- c. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS.
- FROM ALL FOUR CORNERS.

  d. FINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.

A.PROVIDE PROJECT CLOSEOUT GENERAL ARRANGEMENT PHOTOS OF ALL NEW WORK. THE FOLLOWING LIST REPRESENTS MINIMUM REQUIREMENTS AND MINIMUM QUANTITY. ADDITIONAL PHOTOS MAY BE REQUIRED

- TO ADEQUATELY DOCUMENT THE WORK.

  I. ASR AND RF MPE SIGNAGE (IF NOT IN PLACE, SUPPLIER NOTIFIES EMS FIELD REPRESENTATIVE)
- BACK OF ANTENNAS AND RRUS (I EACH SECTOR)
  BACK OF ANTENNAS AND RRUS (I EACH SECTOR) CLOSE UP SHOWING WEATHERPROOFING AND GROUNDING (AS REQUIRED). CLOSE-UP OF BACK SIDE OF EACH PERMANENT RRU SHOWING SERIAL NUMBER/BAR CODE
- VIEW (I EACH SECTOR) ALONG THE AZIMUTH AND TILT OF THE ANTENNAS
- TOP OF TOWER FROM GROUND, I EACH SECTOR MAINLINE HYBRID CABLE ROUTE DOWN TOWER SHOWING FASTENERS AND SUPPORT
- MAINLINE/HYBRID CABLE ROUTE ALONG ICE BRIDGE OR IN CABLE TRAY SHOWING FASTENERS AND
- GROUND MOUNTED RRU RACKS (FRONT AND BACK)
- FRONT, SIDE AND BACK ELEVATIONS OF ALL GROUND CABINETS
- LO VIEW OF COMPOUND FROM A DISTANCE
- . VIEW OF EACH GROUND CABINET (POWER, RF, FIBER SPOOL, PPC POWER, PPC TELCO WITH DOOR
- 12. BACKHAUL FIBER MEET-ME-POINT AND CONDUIT ROUTE (MICROWAVE INSTALLATION IF NOT FIBER)
- 13. AAV NETWORK INTERFACE DEVICE OR MICROWAVE RADIO INSTALLATION

CONTRACTOR IS RESPONSIBLE FOR ALL CORRECTIONS TO DEFICIENCIES IDENTIFIED THROUGH TESTING, REVIEW OF SUBMITTALS, INSPECTIONS AND CLOSEOUT REVIEWS

## SECTION O I 500 - PROJECT REPORTING

BASIS FOR PROGRESS MONITORING AND PAYMENT.

A CONTRACTOR SHALL REPORT TO SPRINT AT MINIMUM ON A WEEKLY BASIS VIA SITERRA BY LIPDATING ALL APPLICABLE POST END KEEPING MILESTONES WITH ACTUAL AND FORECASTED COMPLETION DATES.

B. ADDITIONAL REQUIREMENTS FOR REPORTING MAY BE IDENTIFIED ELSEWHERE OR REQUIRED BY THE SCOPE OF SERVICES OR SPRINTS LOCAL MARKET CONSTRUCTION MANAGER. THIS INFORMATION WILL PROVIDE A

SPRINT MAY HOLD PERIODIC PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY.

FINAL PROJECT ACCEPTANCE: PRIOR TO SPRINTS FINAL PROJECT ACCEPTANCE. ALL REQUIRED MILESTONE ACTUALS MUST BE UPDATED IN SITERRA AND ALL REQUIRED REPORTING TASKS MUST BE COMPLETE.

## SECTION I I 700 - ANTENNA ASSEMBLY, REMOTE RADIO UNITS AND CABLE INSTALLATION

SUMMARY: THIS SECTION SPECIFIES INSTALLATION OF ANTENNAS, RRUS, AND CABLE EQUIPMENT, INSTALLATION, AND TESTING OF COAXIAL FIBER CABLE.

THE NUMBER AND TYPE OF ANTENNAS AND RRU'S TO BE INSTALLED IS DETAILED ON THE CONSTRUCTION DRAWINGS.

HYBRID CABLE WILL BE DC/FIBER AND FURNISHED FOR INSTALLATION AT EACH SITE. CABLE SHALL BE INSTALLED PER THE CONSTRUCTION DRAWINGS AND THE APPLICABLE MANUFACTURER'S REQUIREMENTS.

JUMPERS AND CONNECTORS:
FURNISH AND INSTALL 1/2" COAX JUMPER CABLES BETWEEN THE RRU'S AND ANTENNAS, JUMPERS SHALL BE
TYPE LDF 4, FLC 1/2-50, CR 540, OR FXL 540. SUPER-FLEX CABLES ARE NOT ACCEPTABLE. JUMPERS
BETWEEN THE RRU'S AND ANTENNAS OR TOWER TOP AMPLIFIERS SHALL CONSIST OF 1/2 INCH FOAM DIELECTRIC, OUTDOOR RATED COAXIAL CABLE, MIN. LENGTH FOR JUMPER SHALL BE 10"-0".

## REMOTE ELECTRICAL TILT (RET) CABLES:

MISCELLANEOUS:
INSTALL SPLITTERS, COMBINERS, FILTERS PER RF DATA SHEET, FURNISHED BY SPRINT.

THE CONTRACTOR SHALL ASSEMBLE ALL ANTENNAS ONSITE IN ACCORDANCE WITH THE INSTRUCTIONS SUPPLIED BY THE MANUFACTURER, ANTENNA HEIGHT, AZIMUTH, AND FEED ORIENTATION INFORMATION SHALL BE A DESIGNATED ON THE CONSTRUCTION DRAWINGS

- A. THE CONTRACTOR SHALL POSITION THE ANTENNA ON TOWER PIPE MOUNTS SO THAT THE BOTTOM STRUT IS LEVEL. THE PIPE MOUNTS SHALL BE PLUMB TO WITHIN I DEGREE.
- B.ANTENNA MOUNTING REQUIREMENTS: PROVIDE ANTENNA MOUNTING HARDWARE AS INDICATED ON THE

## HYBRID CABLE INSTALLATION:

- A. THE CONTRACTOR SHALL ROUTE, TEST, AND INSTALL ALL CABLES AS INDICATED ON THE CONSTRUCTION DRAWINGS AND IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS
- B THE INSTALLED RADIUS OF THE CABLES SHALL NOT BE LESS THAN THE MANUFACTURER'S SPECIFICATIONS

C.EXTREME CARE SHALL BE TAKEN TO AVOID DAMAGE TO THE CABLES DURING HANDLING AND INSTALLATION.

- I. FASTENING MAIN HYBRID CABLES: ALL CABLES SHALL BE INSTALLED INSIDE MONOPOLE WITH CABLE SUPPORT GRIPS AS REQUIRED BY THE MANUFACTURER.
- 2. FASTENING INDIVIDUAL FIBER AND DC CABLES ABOVE BREAKOUT ENCLOSURE (MEDUSA), WITHIN THE MMBS CABINET AND ANY INTERMEDIATE DISTRIBUTION BOXES:
  - a. FIBER: SUPPORT FIBER BUNDLES USING 1/2" VELCRO STRAPS OF THE REQUIRED LENGTH AT 18" O.C. STRAPS SHALL BE UV, OIL AND WATER RESISTANT AND SUITABLE FOR INDUSTRIAL INSTALLATIONS AS MANUFACTURED BY TEXTOL OR APPROVED EQUAL.
  - b. DC: SUPPORT DC BUNDLES WITH ZIP TIES OF THE ADEQUATE LENGTH. ZIP TIES TO BE UV STABILIZED, BLACK NYLON, WITH TENSILE STRENGTH AT 12,000 PSI AS MANUFACTURED BY NELCO PRODUCTS OR EQUAL.
- 3. FASTENING JUMPERS: SECURE JUMPERS TO THE SIDE ARMS OR HEAD FRAMES USING STAINLESS STEEL TIE WRAPS OR STAINLESS STEEL BUTTERFLY CLIPS.
- 4. CABLE INSTALLATION
  - a. INSPECT CABLE PRIOR TO USE FOR SHIPPING DAMAGE, NOTIFY THE CONSTRUCTION
  - b. CABLE ROUTING: CABLE INSTALLATION SHALL BE PLANNED TO ENSURE THAT THE LINES VILL BE PROPERLY ROUTED IN THE CABLE ENVELOP AS INDICATED ON THE DRAWINGS. AVOID TWISTING AND CROSSOVERS
  - c. HOIST CABLE USING PROPER HOISTING GRIPS. DO NOT EXCEED MANUFACTURER'S RECOMMENDED MAXIMUM BEND RADIUS.
- 5. GROUNDING OF TRANSMISSION LINES: ALL TRANSMISSION LINES SHALL BE GROUNDED AS INDICATED
- 7. HYBRID CABLE LABELING: INDIVIDUAL HYBRID AND DC BUNDLES SHALL BE LABELED ALPHA-NUMERICALLY ACCORDING TO SPRINT CELL SITE ENGINEERING NOTICE - EN 2012-001, REV I

6. HYBRID CABLE COLOR CODING: ALL COLOR CODING SHALL BE AS REQUIRED IN TS 0200 (CURRENT

## WEATHERPROOFING EXTERIOR CONNECTORS AND HYBRID CABLE GROUND KITS:

A.ALL FIBER & COAX CONNECTORS AND GROUND KITS SHALL BE WEATHERPROOFED

- B. WEATHERPROOFED USING ONE OF THE FOLLOWING METHODS. ALL INSTALLATIONS MUST BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INDUSTRY BEST PRACTICES
- COLD SHRINK: ENCOMPASS CONNECTOR IN COLD SHRINK TUBING AND PROVIDE A DOUBLE WRAP 2" ELECTRICAL TAPE EXTENDING 2" BEYOND TUBING. PROVIDE 3M COLD SHRINK CXS SERIES OR
- 2 SELE-AMALGAMATING TAPE: CLEAN SURFACES, APPLY A DOLIBLE WRAP OF SELE-AMALGAMATING TAPE 2" BEYOND CONNECTOR. APPLY A SECOND WRAP OF SELF-AMALGAMATING TAPE IN OPPOSITE DIRECTION. APPLY DOUBLE WRAP OF 2" WIDE ELECTRICAL TAPE EXTENDING 2" BEYOND THE
- 3. 3M SLIM LOCK CLOSURE 716: SUBSTITUTIONS WILL NOT BE ALLOWED.
- 4. OPEN FLAME ON JOB SITE IS NOT ACCEPTABLE

# SECTION 1 1 800 - INSTALLATION OF MULTIMODAL BASE STATIONS (MMBS)

## SUMMARY

- A. THIS SECTION SPECIFIES MMBS CABINETS, POWER CABINETS, AND INTERNAL EQUIPMENT INCLUDING BY NOT LIMITED TO RECTIFIERS, POWER DISTRIBUTION UNITS, BASE BAND UNITS, SURGE ARRESTORS, BATTERIES, AND SIMILAR EQUIPMENT FURNISHED BY THE COMPANY FOR INSTALLATION BY THE CONTRACTOR (OFCI)
- B. CONTRACTOR SHALL PROVIDE AND INSTALL ALL MISCELLANEOUS MATERIALS AND PROVIDE ALL LABOR REQUIRED FOR INSTALLATION EQUIPMENT IN EXISTING CABINET OR NEW CABINET AS SHOWN ON DRAWINGS AND AS REQUIRED BY THE APPLICABLE INSTALLATION MOPS

C.COMPLY WITH MANUFACTURER'S INSTALLATION AND START-UP REQUIREMENTS.

## DC CIRCUIT BREAKER LABELING

A.NEW DC CIRCUIT IS REQUIRED IN MMBS CABINET SHALL BE CLEARLY IDENTIFIED AS TO RRU BEING SERVICED.

# SECTION 26 100 - BASIC ELECTRICAL REQUIREMENTS

SUMMARY: THIS SECTION SPECIFIES BASIC ELECTRICAL REQUIREMENTS FOR SYSTEMS AND COMPONENTS

## QUALITY ASSURANCE:

- A ALL EQUIPMENT FURNISHED UNDER DIVISION 26 SHALL CARRY UL LABELS AND LISTINGS WHERE SUCH LABELS AND LISTINGS ARE AVAILABLE IN THE INDUSTRY.
- B.MANUFACTURERS OF EQUIPMENT SHALL HAVE A MINIMUM OF THREE YEARS EXPERIENCE WITH THEIR EQUIPMENT INSTALLED AND OPERATING IN THE FIELD IN A USE SIMILAR TO THE PROPOSED USE FOR THIS
- C.MATERIALS AND EQUIPMENT: ALL MATERIALS AND EQUIPMENT SPECIFIED IN DIVISION 26 OF THE SAME TYPE SHALL BE OF THE SAME MANUFACTURER AND SHALL BE NEW, OF THE BEST QUALITY AND DESIGN, AND FREE FROM DEFECTS

# SUPPORTING DEVICES

- A.MANUFACTURED STRUCTURAL SUPPORT MATERIALS: SUBJECT TO COMPLIANCE WITH REQUIREMENTS, PROVIDE PRODUCTS BY THE FOLLOWING
- I. ALLIED TUBE AND CONDUIT
- 2. B-LINE SYSTEM.
- 3. UNISTRUT DIVERSIFIED PRODUCTS.
- 4. THOMAS & BETTS

B.FASTENERS: TYPES, MATERIALS, AND CONSTRUCTION FEATURES AS FOLLOWS

- I. EXPANSION ANCHORS: CARBON STEEL WEDGE OR SLEEVE TYPE.
- 2. POWER-DRIVEN THREADED STUDS: HEAT-TREATED STEEL, DESIGNED SPECIFICALLY FOR THE INTENDED
- 3. FASTEN BY MEANS OF WOOD SCREWS ON WOOD
- 4. TOGGLE BOLTS ON HOLLOW MASONRY UNITS.
- 5. CONCRETE INSERTS OR EXPANSION BOLTS ON CONCRETE OR SOLID MASONRY
- 6. MACHINE SCREWS, WELDED THREADED STUDS, OR SPRING-TENSION CLAMPS ON STEEL
- 7. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE SHALL NOT BE PERMITTED.
- 8. DO NOT WELD CONDUIT, PIPE STRAPS, OR ITEMS OTHER THAN THREADED STUDS TO STEEL
- 9. IN PARTITIONS OF LIGHT STEEL CONSTRUCTION, USE SHEET METAL SCREWS



6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

# **Charles Cherundolo** Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

## ertification # Seal:

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensec Professional Engineer under the laws of the State of <u>Connecticut</u>.



FINAL ROJECT TITLE:

> CINGULAR CT54XC749-B

DATE 08/23/2017

38 SPRING HILL ROAD BETHEL, CT 06801 FAIRFIELD COUNTY

SPRINT SPECIFICATIONS

SCALE: NONE

28746 SHEET

## SUPPORTING DEVICES:

- A. INSTALL SUPPORTING DEVICES TO FASTEN ELECTRICAL COMPONENTS SECURELY AND PERMANENTLY IN ACCORDANCE WITH NEC.
- B. COORDINATE WITH THE BUILDING STRUCTURAL SYSTEM AND WITH OTHER TRADES.
- C. UNLESS OTHERWISE INDICATED ON THE DRAWINGS, FASTEN ELECTRICAL ITEMS AND THEIR SUPPORTING HARDWARE SECURELY TO THE STRUCTURE IN ACCORDANCE WITH THE FOLLOWING:
- I. ENSURE THAT THE LOAD APPLIED BY ANY FASTENER DOES NOT EXCEED 25 PERCENT OF THE PROOF TEST LOAD.
- 2. USE VIBRATION AND SHOCK-RESISTANT FASTENERS FOR ATTACHMENTS TO CONCRETE SLABS.

## ELECTRICAL IDENTIFICATION:

- A. UPDATE AND PROVIDE TYPED CIRCUIT BREAKER SCHEDULES IN THE MOUNTING BRACKET, INSIDE DOORS OF AC PANEL BOARDS WITH ANY CHANGES MADE TO THE AC SYSTEM.
- BRANCH CIRCUITS FEEDING AVIATION OBSTRUCTION LIGHTING EQUIPMENT SHALL BE CLEARLY IDENTIFIED
  AS SUCH AT THE BRANCH CIRCUIT PANELBOARD.

## SECTION 26 200 - ELECTRICAL MATERIALS AND EQUIPMENT

- RIGID GALVANIZED STEEL (RGS) CONDUIT SHALL BE USED FOR EXTERIOR LOCATIONS ABOVE GROUND AND IN UNFINISHED INTERIOR LOCATIONS AND FOR UNDERGROUND RUNS. RIGID CONDUIT AND FITTINGS SHALL BE STEEL, COATED WITH ZINC EXTERIOR AND INTERIOR BY THE HOT DIP GALVANIZING PROCESS, CONDUIT SHALL BE PRODUCED TO ANSI SPECIFICATIONS C80.1, FEDERAL SPECIFICATION WY-C-581 AND SHALL BE UISTED WITH THE UNDERWRITERS' LABORATORIES, FITTINGS SHALL BE THREADED SET SCREW OR COMPRESSION FITTINGS WILL NOT BE ACCEPTABLE. RGS CONDUITS SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND.
- B. UNDERGROUND CONDUIT IN CONCRETE SHALL BE POLYVINYLCHLORIDE (PVC) SUITABLE FOR DIRECT BURIAL AS APPLICABLE. JOINTS SHALL BE BELLED, AND FLUSH SOLVENT WELDED IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. CONDUIT SHALL BE CARLON ELECTRICAL PRODUCTS OR APPROVED FOJIAI
- C. TRANSITIONS BETWEEN PVC AND RIGID (RGS) SHALL BE MADE WITH PVC COATED METALLIC LONG SWEEP RADIUS FIROWS
- D. EMT OR RIGID GALVANIZED STEEL CONDUIT MAY BE USED IN FINISHED SPACES CONCEALED IN WALLS AND CEILINGS. EMT SHALL BE MID STEEL, ELECTRICALLY WELDED, ELECTRO-GALVANIZED OR HOT-DIPPED GALVANIZED AND PRODUCED TO ANSI SPECIFICATION C80.3, FEDERAL SPECIFICATION WW-C-563, AND SHALL BE UL LISTED. EMT SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND, OR APPROVED EQUAL. FITTINGS SHALL BE METALLIC COMPRESSION. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE.
- E. LIQUID TIGHT FLEXIBLE METALLIC CONDUIT SHALL BE USED FOR FINAL CONNECTION TO EQUIPMENT. FITTINGS SHALL BE METALLIC GLAND TYPE COMPRESSION FITTINGS, MAINTAINING THE INTEGRITY OF CONDUIT SYSTEM. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE. MAXIMUM LENGTH OF FLEXIBLE CONDUIT SHALL NOT EXCEED 6-FEET. LFMC SHALL BE PROTECTED AND SUPPORTED AS REQUIRED BY NEC. MANUFACTURERS OF FLEXIBLE CONDUITS SHALL BE CAROL, ANACONDA METAL HOSE OR UNIVERSAL METAL HOSE, OR APPROVED EQUAL.
- F. MINIMUM SIZE CONDUIT SHALL BE 3/4 INCH (2 I MM).

## HUBS AND BOXES:

- A. AT ENTRANCES TO CABINETS OR OTHER EQUIPMENT NOT HAVING INTEGRAL THREADED HUBS PROVIDE METALLIC THREADED HUBS OF THE SIZE AND CONFIGURATION REQUIRED. HUB SHALL INCLUDE LOCKNUT AND NEOPRENE O-RING SEAL. PROVIDE IMPACT RESISTANT 105 DEGREE C PLASTIC BUSHINGS TO PROTECT CABLE INSULATION.
- B. CABLE TERMINATION FITTINGS FOR CONDUIT
  - I. CABLE TERMINATORS FOR RGS CONDUITS SHALL BE TYPE CRC BY O-Z/GEDNEY OR EQUAL BY ROXTEC
  - CABLE TERMINATORS FOR LFMC SHALL BE ETCO CL2075; OR MADE FOR THE PURPOSE PRODUCTS BY ROXTEC.
- C. EXTERIOR PULL BOXES AND PULL BOXES IN INTERIOR INDUSTRIAL AREAS SHALL BE PLATED CAST ALLOY, HEAVY DUTY, WEATHERPROOF, DUST PROOF, WITH GASKET, PLATED IRON ALLOY COVER AND STAINLESS STEEL COVER SCREWS, CROUSE-HINDS WAB SERIES OR EQUAL.
- D. CONDUIT OUTLET BODIES SHALL BE PLATED CAST ALLOY WITH SIMILAR GASKET COVERS. OUTLET BODIES SHALL BE OF THE CONFIGURATION AND SIZE SUITABLE FOR THE APPLICATION, PROVIDE CROUSE-HINDS FORM & OR EQUAL.
- E. MANUFACTURER FOR BOXES AND COVERS SHALL BE HOFFMAN, SQUARE "D", CROUSE-HINDS, COOPER, ADALET, APPLETON, O-Z GEDNEY, RACO, OR APPROVED EQUAL.

## SUPPLEMENTAL GROUNDING SYSTEM:

- A. FURNISH AND INSTALL A SUPPLEMENTAL GROUNDING SYSTEM TO THE EXTENT INDICATED ON THE DRAWINGS, SUPPORT SYSTEM WITH NON-MAGNETIC STAINLESS STEEL CLIPS WITH RUBBER GROUNDETS, GROUNDING CONNECTORS PHALL BE TINNED COPPER WIRE, SIZES AS INDICATED ON THE DRAWINGS. PROVIDE STRANDED OR SOLID BARE OR INSULATED CONDUCTORS EXCEPT AS OTHERWISE NOTED.
- B. SUPPLEMENTAL GROUNDING SYSTEM: ALL CONNECTIONS TO BE MADE WITH CAD WELDS, EXCEPT AT EQUIPMENT USE LUGS OR OTHER AVAILABLE GROUNDING MEANS AS REQUIRED BY MANUFACTURER; AT GROUND BASE USE TWO HOLE SPADES WITH NO-OX.
- C. STOLEN GROUND-BARS: IN THE EVENT OF STOLEN GROUND BARS, CONTACT SPRINT CM FOR REPLACEMENT INSTRUCTION USING THREADED ROD KITS.

## EXISTING STRUCTURE:

A. EXISTING EXPOSED WIRING AND ALL EXPOSED OUTLETS, RECEPTACLES, SWITCHES, DEVICES, BOXES, AND OTHER EQUIPMENT THAT ARE NOT TO BE UTILIZED IN THE COMPLETED PROJECT SHALL BE REMOVED OR DE-ENERGIZED AND CAPPED IN THE WALL, CEILING, OR FLOOR SO THAT THEY ARE CONCEALED AND SAFE. WALL, CEILING, OR FLOOR SHALL BE PATCHED TO MATCH THE ADJACENT CONSTRUCTION.

### CONDUIT AND CONDUCTOR INSTALLATION:

A.CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS, EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEPP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES, CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER, PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS, ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON DOCKNUT ON OUTSIDE AND INSIDE.

B.CONDUCTORS SHALL BE PULLED IN ACCORDANCE WITH ACCEPTED GOOD PRACTICE.



6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

# Charles Cherundolo Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

## ertification ¢ Seal:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.



PROJECT TITLE:

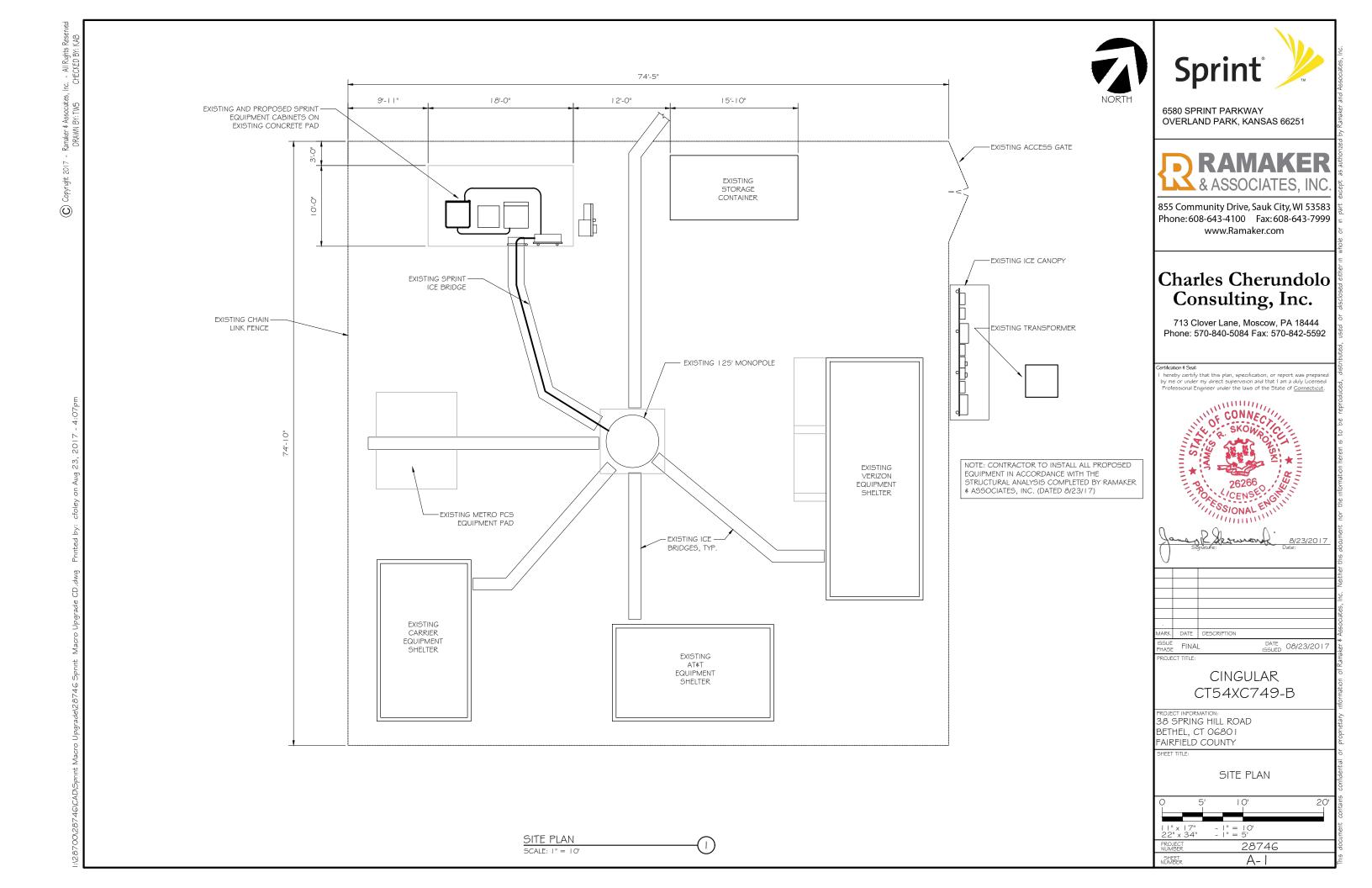
CINGULAR CT54XC749-B

DATE 08/23/2017

PROJECT INFORMATION:

38 SPRING HILL ROAD

BETHEL, CT 0680 I


FAIRFIELD COUNTY

SHEET TITLE:

SPRINT SPECIFICATIONS

SCALE: NONE

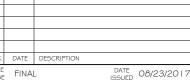
PROJECT 28746
SHEET SP-3







6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

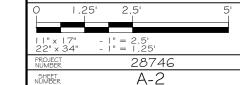


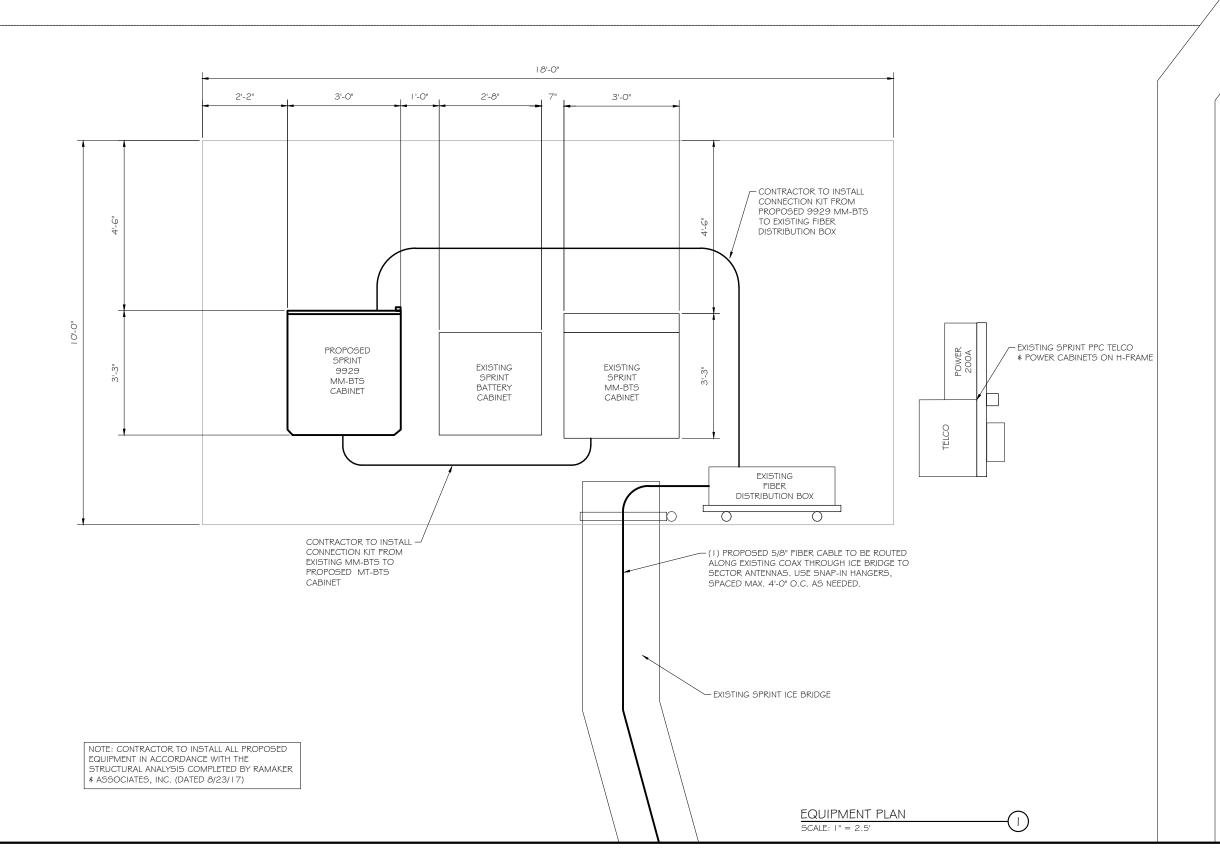

855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

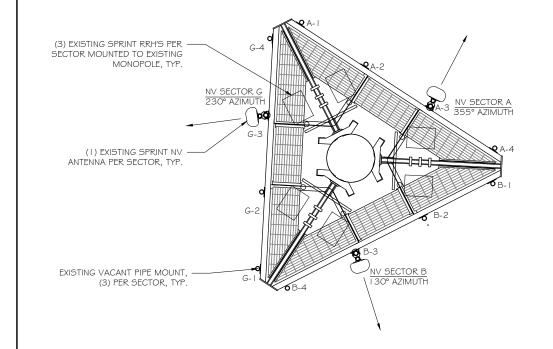
# Charles Cherundolo Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592





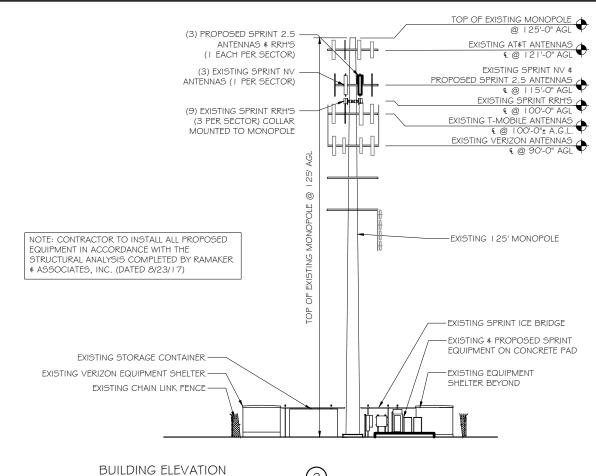


SSUE FINAL ROJECT TITLE:


> CINGULAR CT54XC749-B

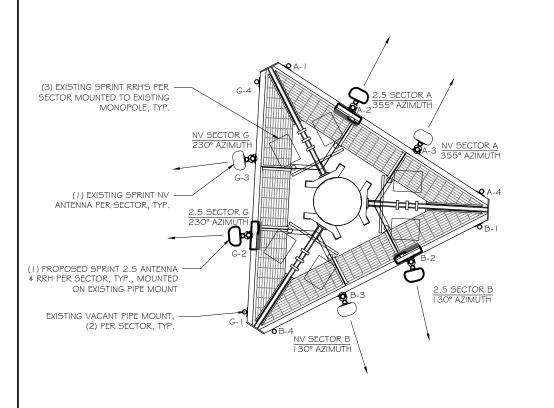
PROJECT INFORMATION: 38 SPRING HILL ROAD BETHEL, CT 06801 FAIRFIELD COUNTY

EQUIPMENT PLAN









EXISTING ANTENNA ARRAY

SCALE: NTS

SCALE: NTS



SCALE: I" = 30'



PROPOSED ANTENNA ARRAY



6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

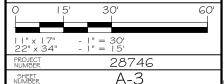
# Charles Cherundolo Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

ertification ¢ Seal:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.




MARK DATE DESCRIPTION
ISSUE FINAL DATE O8/23/2017

ECT TITLE:

CINGULAR CT54XC749-B

38 SPRING HILL ROAD BETHEL, CT 0680 I FAIRFIELD COUNTY

BUILDING ELEVATIONS \$
ANTENNA DETAILS



## **RFDS Sheet**

## **General Site Information**

| Site ID               | CT54XC749            |
|-----------------------|----------------------|
| Market                | Southern Connecticut |
| Region                | Northeast            |
| MLA                   | N/A                  |
| Structure Type        | Monopole             |
| BTS Type              |                      |
| MLA<br>Structure Type | N/A                  |

Equipment Vendor
Lattitude
Longitude
LL SITE ID
Alcatel-Lucent
41.3622
-73.3955
LL SITE ID
N/A

Solution ID

Siterra SR Equipment type
Equipment Vendor
Alcatel-Lucent

Incremental Power Draw needed by added Equipment 100

## **Base Equipment**

**Growth Cabinet** 

BBU Kit BBU Kit Qty ALU BBU Kit 1

9929 Growth Cabinet

 Top Hat
 None

 Top Hat Qty
 N/A

 Top Hat Dimenstions
 N/A

 Top Hat Weight (lbs)
 N/A

Growth Cabinet Qty Growth Cabinet Dimensions 1 75.8" x 35.4" x 37.8" 1000

TD-RRH8x20-25

26.1"x18.6"x6.7"

ALU Fiber Only

## **RF Path Information**

**Growth Cabinet Weight** 

RRH RRH Qty **RRH Dimensions** RRH Weight. Ibs. RRH Mount Weight. Lbs. Power and Fiber Cable Cable Qty Weight per foot. Lbs. Diameter. Inches. Length Ft. Coax Jumper Coax Jumper Qty Coax Jumper Length. Feet. Coax Jumper Weight Coax Jumper Diameter. Inches AISG Cable AISG Cable Qty AISG Diameter. Inches. AISG Cable length.

0.242 0.73 150 TBD 27 8 1.7 0.5 Commscope ATCB-B01-006

(calculated as antenna height plus 20%)

# Antenna Sector Information

Weight of entire AISG cable. Lbs.

Antenna make/model
Antenna qty
Antenna Dimensions. Inches
Antenna Weight. Lbs

Antenna Mounting Kit Weight. Lbs. CL Height Antenna Azimuth

Antenna Mechanical Downtilt Antenna etilt

# XREF

0.315

| Sector 1             | Sector 2             | Sector 3             |
|----------------------|----------------------|----------------------|
| RFS APXVTM14-ALU-I20 | RFS APXVTM14-ALU-I20 | RFS APXVTM14-ALU-I20 |
| 1                    | 1                    | 1                    |
| 56.3"x12.6"x6.3"     | 56.3"x12.6"x6.3"     | 56.3"x12.6"x6.3"     |
| 55.12                | 55.12                | 55.12                |
| 11                   | 11                   | 11                   |
| 115                  | 115                  | 115                  |
| 355                  | 130                  | 230                  |
| 0                    | 0                    | 0                    |
| 5                    | 0                    | 3                    |

\*RFDS SHEET WAS GENERATED BY RAMAKER \$ ASSOCIATES FROM PLAN OF RECORD (POR) PROVIDED BY SPRINT. CONTRACTOR SHALL VERIFY AND OBTAIN FINAL RFDS FROM SPRINT CONSTRUCTION MANAGER PRIOR TO CONSTRUCTION.

# NOTES:

- I. GENERAL CONTRACTOR TO FIELD VERIFY AZIMUTH AND C/L HEIGHT AND MECHANICAL DOWNTILT. IF DIFFERENT THAN CALLED OUT BELOW, HALT ANTENNA WORK FOR ONE HOUR, CALL SPRINT RF ENGINEER (OR MANAGER IF RF ENGINEER DOES NOT ANSWER, BUT STILL LEAVE A MESSAGE TO RF ENGINEER) USING CONTACT INFORMATION ABOVE FOR FURTHER INSTRUCTIONS. IF SPRINT DOES NOT RESPOND WITHIN ONE HOUR, PLACE 2.5GHZ ANTENNA AT SAME C/L HEIGHT AS I.9GHZ ANTENNA AND EMAIL CORRECT C/L HEIGHT AND AZIMUTH TO SPRINT RF ENGINEER. UPDATE AS-BUILD DRAWING WITH CORRECT C/L HEIGHT. ALSO EMAIL CORRECT I. 9GHZ AND BOOMHZ ANTENNA C/L HEIGHT, AZIMUTH AND MECHANICAL DOWNTILT TO RF ENGINEER.
- 2. AISG TESTS TO VERIFY OPERATION IS TO BE PERFORMED AFTER FINAL INSTALLATION OF ANTENNAS AND AISG CABLES HAVE BEEN CONNECTED, VERIFY OPERATION OF ALL EXISTING SPRINT AISG EQUIPMENT INCLUDING 800MHZ, I.9GHZ AND 2.5GHZ. TEST TO INCLUDE COMPLETE DOWNTILT, AZIMUTH (IF APPLICABLE) AND BEAMWIDTH SWINGS (IF APPLICABLE). DOCUMENT AISG TEST RESULTS IN COAX SWEEP TEST SPREADSHEET.
- 3. GENERAL CONTRACTOR MUST ENSURE THAT NO OBJECT IS LOCATED WITHIN 45 DEGREES OF LEFT AND RIGHT OF FRONT OF ANTENNA OR 7 DEGREES UP AND DOWN FROM CENTER OF ANTENNA. IF THIS IS NOT POSSIBLE, CONTACT RF ENGINEER FOR FURTHER INSTRUCTION. IN ADDITION, 2.5GHZ ANTENNA IS NOT TO BE PLACED IN FRONT OF ANY OTHER ANTENNA USING THE SAME 45 DEGREE RULE. THIS INCLUDES SPRINT AND NON-SPRINT ANTENNAS.
- 4. 2.5GHZ ANTENNA MUST BE AT LEAST 6" FROM 1.9GHZ ANTENNA, 30" FROM 800MHZ ANTENNA AND 30" FROM DUAL BAND 1.9GHZ AND 800MHZ ANTENNA
- 5. GENERAL CONTRACT IS REQUIRED TO USE A DIGITAL ALIGNMENT TOOL TO SET AZIMUTH, ROLL AND DOWNTILLT. AZIMUTH ACCURACY IS TO BE WITHIN I DEGREE. DOWNTILT AND ROLL (LEFT TO RIGHT TILT) IS TO BE WITHIN O. I DEGREES. IF FOR SOME REASON THIS ACCURACY CANNOT BE ACHIEVED, UPDATE AS-BUILT DRAWINGS AND EMAIL SPRINT RF ENGINEER WITH AS-BUILT SETTINGS. USE 3Z RF ALIGNMENT TOOL OR EQUIVALENT TOOL.



6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

# Charles Cherundolo Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

## ertification \$ Seal:

I hereby certify that this plan, specification, or report was prepare, by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.



| MARK | DATE | DESCRIPTION |
|------|------|-------------|

ISSUE FINAL

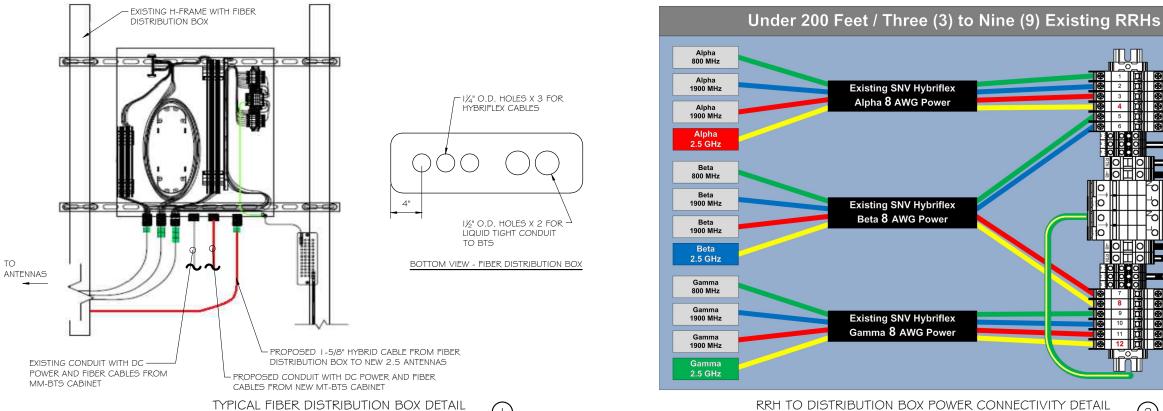
DATE 08/23/2017

PROJECT TITLE:

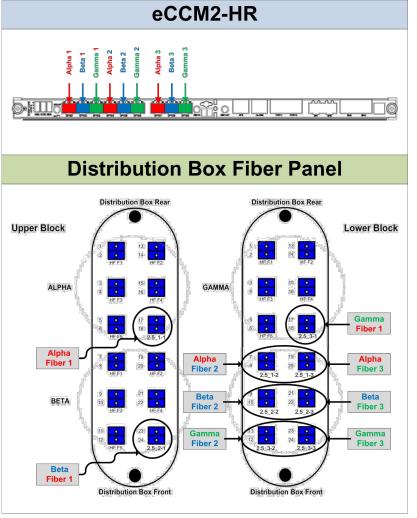
# CINGULAR CT54XC749-B

PROJECT INFORMATION:
38 SPRING HILL ROAD
BETHEL, CT 0680 I
FAIRFIELD COUNTY

SHEET TITLE:


RF DATA SHEET

SCALE: NONE


PROJECT 28746
SHEET A-4








RRH TO DISTRIBUTION BOX POWER CONNECTIVITY DETAIL



BTS TO DISTRIBUTION BOX FIBER CONNECTIVITY DETAIL (4)



RRH TO DISTRIBUTION BOX FIBER CONNECTIVITY DETAIL

Sprint

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

# Charles Cherundolo Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensec Professional Engineer under the laws of the State of <u>Connecticut</u>.



FINAL

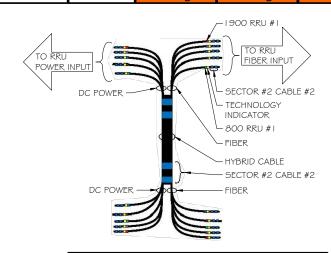
DATE 08/23/2017

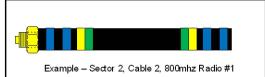
# CINGULAR CT54XC749-B

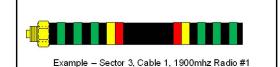
PROJECT INFORMATION: 38 SPRING HILL ROAD BETHEL, CT 06801 FAIRFIELD COUNTY

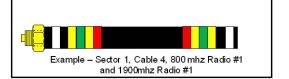
FIBER PLUMBING DIAGRAM

SCALE: NONE


28746 SHEET A-5


8T8R DETAIL (3)


| 2.5       |         |     |     |
|-----------|---------|-----|-----|
| FREQUENCY | INDICAT | OR  | ID  |
| 2500 -1   | YEL     | WHT | GRN |
| 2500 -2   | YEL     | WHT | RED |
| 2500 -3   | YEL     | WHT | BRN |
| 2500 -4   | YEL     | WHT | BLU |
| 2500 -5   | YEL     | WHT | SLT |
| 2500 -6   | YEL     | WHT | ORG |
| 2500 -7   | YEL     | WHT | WHT |
| 2500 -8   | YEL     | WHT | PPL |


| NV        |           |     |
|-----------|-----------|-----|
| FREQUENCY | INDICATOR | ID  |
| 800-1     | YEL       | GRN |
| 1900-1    | YEL       | RED |
| 1900-2    | YEL       | BRN |
| 1900-3    | YEL       | BLU |
| 1900-4    | YEL       | SLT |
| 800-1     | YEL       | ORG |
| RESERVED  | YEL       | WHT |
| RESERVED  | YEL       | PPL |

|         |       |            | Second  |            |
|---------|-------|------------|---------|------------|
| Sector  | Cable | First Ring | Ring    | Third Ring |
| 1 Alpha | 1     | Green      | No Tape | No Tape    |
| 1       | 2     | Blue       | No Tape | No Tape    |
| 1       | 3     | Brown      | No Tape | No Tape    |
| 1       | 4     | White      | No Tape | No Tape    |
| 1       | 5     | Red        | No Tape | No Tape    |
| 1       | 6     | Grey       | No Tape | No Tape    |
| 1       | 7     | Purple     | No Tape | No Tape    |
| 1       | 8     | Orange     | No Tape | No Tape    |
| 2 Beta  | 1     | Green      | Green   | No Tape    |
| 2       | 2     | Blue       |         | No Tape    |
| 2       | 3     | Brown      | Brown   | No Tape    |
| 2       | 4     | White      | White   | No Tape    |
| 2       | 5     | Red        | Red     | No Tape    |
| 2       | 6     | Grey       | Grey    | No Tape    |
| 2       | 7     | Purple     | Purple  | No Tape    |
| 2       | 8     | Orange     | Orange  | No Tape    |
| 3 Gamma | 1     | Green      | Green   | Green      |
| 3       | 2     | Blue       |         |            |
| 3       | 3     | Brown      | Brown   | Brown      |
| 3       | 4     | White      | White   | White      |
| 3       | 5     | Red        | Red     | Red        |
| 3       | 6     | Grey       | Grey    | Grey       |
| 3       | 7     | Purple     | Purple  | Purple     |
| 3       | 8     | Orange     | Orange  | Orange     |









COLOR CODING CHARTS

# CABLE MARKING NOTES

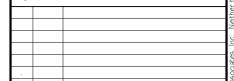
- ALL CABLES SHALL BE MARKED WITH 2" WIDE, UV STABILIZED, UL APPROVED TAPE.
- THE FIRST RING SHALL BE CLOSEST TO THE END OF THE CABLE AND SPACED APPROXIMATELY 2" FROM THE END CONNECTOR, WEATHERPROOFING, OR BREAKOUT UNIT. THERE SHALL BE 1" SPACE BETWEEN EACH RING.
- 3. A 2" GAP SHALL SEPARATE THE CABLE COLOR CODE FROM THE FREQUENCY COLOR CODE. THE 2" COLOR RINGS FOR THE FREQUENCY CODE SHALL BE PLACED NEXT TO EACH OTHER WITH NO SPACES.
- 4. THE 2" COLORED TAPE(S) SHALL BE WRAPPED A MINIMUM OF 3 TIMES AROUND THE INDIVIDUAL CABLES, AND THE TAPE SHALL BE KEPT IN THE SAME LOCATION AS MUCH AS POSSIBLE.
- 5. SITES WITH MORE THAN FOUR (4) SECTORS WILL REQUIRE ADDITIONAL RINGS FOR EACH SECTOR, FOLLOWING THE PATTERN. HIGH CAPACITY SITES WILL USE THE SECOND CABLE IDENTIFIED BY BLUE BANDS OF TAPE
- G. HYBRID FIBER CABLE SHALL BE SECTOR IDENTIFIED INSIDE THE CABINET ON FREQUENCY BUNDLES, ON THE SEALTITE, ON THE MAIN LINE UPON EXIT OF SEALTITE, AND BEFORE AND AFTER THE BREAKOUT UNIT (MEDUSA), AS WELL AS BEFORE AND AFTER ANY ENTRANCE OR EXIT.
- 7. HFC "MAIN TRUNK" WILL NOT BE MARKED WITH THE FREQUENCY CODES, AS IT CONTAINS ALL FREQUENCIES.
- INDIVIDUAL POWER PAIRS AND FIBER BUNDLES
   SHALL BE LABELED WITH BOTH THE CABLE AND
   FREQUENCY.



6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com


# Charles Cherundolo Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

## ertification \$ Seal:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.





SSUE FINAL
PROJECT TITLE:

CINGULAR CT54XC749-B

DATE 08/23/2017

PROJECT INFORMATION: 38 SPRING HILL ROAD BETHEL, CT 0680 I FAIRFIELD COUNTY

SHEET TITL

CABLE COLOR CODING

SCALE: NONE

PROJECT 28746
SHEET A-G

# HYBRID CABLE DC CONDUCTOR SIZE GUIDELINE

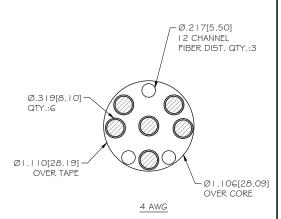
| CABLE      | LENGTH   | DC CONDUCTOR     | CABLE<br>DIAMETER |
|------------|----------|------------------|-------------------|
| Fiber Only | Varies   | Use NV Hybriflex | 5/8"              |
| Hybriflex  | <200'    | 8 AWG            | 1-1/4"            |
| Hybriflex  | 225-300' | 6 AWG            | 1-1/4"            |
| Hybriflex  | 325-375' | 4 AWG            | 1-1/4"            |

# RFS HYBRIFLEX RISER CABLE SCHEDULE

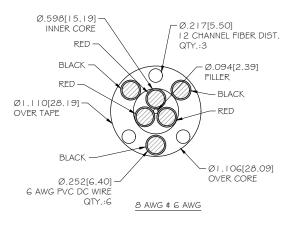
| FIBER ONLY (EXISTING DC POWER) | Hybrid cable                                                                                               |        |
|--------------------------------|------------------------------------------------------------------------------------------------------------|--------|
|                                | MN:HB058-M12-050F                                                                                          |        |
|                                | 12x multi-mode fiber pairs, Top:Outdoor protected connectors,<br>Bottom:LC<br>Connectors, 5/8 cable, 50 ft | 50 ft  |
|                                | MN:HB058-M12-075F                                                                                          | 75 ft  |
|                                | MN:HB058-M12-100F                                                                                          | 100 ft |
|                                | MN:HB058-M12-125F                                                                                          | 125 ft |
|                                | MN:HB058-M12-150F                                                                                          | 150 ft |
|                                | MN:HB058-M12-175F                                                                                          | 175 ft |
|                                | MN:HB058-M12-200F                                                                                          | 200 ft |
|                                |                                                                                                            |        |
| 8 AWG Power                    | Hybrid cable                                                                                               |        |
|                                | MN:HB114-08U3M12-050F                                                                                      | 50 ft  |

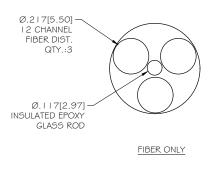
|             | MN:HB114-08U3M12-050F                                                                                           | 50 ft  |
|-------------|-----------------------------------------------------------------------------------------------------------------|--------|
|             | 3x 8 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC connectors. 1 1/4 cable, 50 ft  |        |
|             | MN:HB114-08U3M12-075F                                                                                           | 75 ft  |
|             | MN:HB114-08U3M12-100F                                                                                           | 100 ft |
|             | MN:HB114-08U3M12-125F                                                                                           | 125 ft |
|             | MN:HB114-08U3M12-150F                                                                                           | 150 ft |
|             | MN:HB114-08U3M12-175F                                                                                           | 175 ft |
|             | MN:HB114-08U3M12-200F                                                                                           | 200 ft |
| 6 AWG Power | Hybrid cable                                                                                                    |        |
|             | MN:HB114-13U3M12-225F                                                                                           | 225 ft |
|             | 3x 6 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC connectors. 1 1/4 cable, 225 ft |        |
|             | MN:HB114-13U3M12-250F                                                                                           | 250 ft |
|             | MN:HB114-13U3M12-275F                                                                                           | 275 ft |
|             |                                                                                                                 |        |

| MN:HB114-13U3M12-300F                                                                                           | 300 ft                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 |                                                                                                                                                                          |
| Hybrid cable                                                                                                    |                                                                                                                                                                          |
| MN:HB114-21U3M12-325F                                                                                           | 325 ft                                                                                                                                                                   |
| 3x 4 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC connectors. 1 1/4 cable, 325 ft |                                                                                                                                                                          |
| MN:HB114-21U3M12-350F                                                                                           | 350 ft                                                                                                                                                                   |
| MN:HB114-21U3M12-375F                                                                                           | 375 ft                                                                                                                                                                   |
|                                                                                                                 | Hybrid cable MN:HB114-21U3M12-325F 3x 4 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC connectors. 1 1/4 cable, 325 ft MN:HB114-21U3M12-350F |


# RFS HYBRIFLEX JUMPER CABLE SCHEDULE

| FIBER ONLY  | Hybrid Jumper cable                                                 |       |  |
|-------------|---------------------------------------------------------------------|-------|--|
|             | MN:HBF012-M3-5F1                                                    | 5 ft  |  |
|             | 5 ft, 3x multi-mode fiber pairs, Outdoor & LC connectors, 1/2 cable |       |  |
|             | MN:HBF012-M3-10F1                                                   | 10 ft |  |
|             | MN:HBF012-M3-15F1                                                   | 15 ft |  |
|             | SPECIAL INSTALLATION NOTE:                                          |       |  |
|             | JUMPERS FROM 2.5 RRH TO 2.5 ANTENNA SHALL NOT EXCEED 15'            |       |  |
|             | NOTIFY SPRINT CM OF ANY DISCREPANCY                                 |       |  |
|             |                                                                     |       |  |
| 8 AWG POWER | Hybrid Jumper cable                                                 |       |  |
|             | MN:HBF058-08U1M3-5F1                                                |       |  |


| 8 AWG POWER             | Hybrid Jumper cable                                                                      |       |  |
|-------------------------|------------------------------------------------------------------------------------------|-------|--|
| 5.11.5. 5.1 <u>.</u> 1. | MN:HBF058-08U1M3-5F1                                                                     |       |  |
|                         | 5 ft, 1x 8 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC connectors, 5/8 cable | 5 ft  |  |
|                         | MN:HBF058-08U1M3-10F1                                                                    | 10 ft |  |
|                         | MN:HBF058-08U1M3-15F1                                                                    | 15 ft |  |
|                         | SPECIAL INSTALLATION NOTE:                                                               |       |  |
|                         | JUMPERS FROM 2.5 RRH TO 2.5 ANTENNA SHALL NOT EXCEED                                     | 15'   |  |
|                         | NOTIFY SPRINT CM OF ANY DISCREPANCY                                                      |       |  |
| 6 AWG POWER             | Hybrid Jumper cable                                                                      |       |  |
| O AWOT OWER             | MN:HBF058-13U1M3-5F1                                                                     |       |  |
|                         | 5 ft, 1x 6 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC connectors, 5/8 cable | 5 ft  |  |
|                         | MN:HBF058-13U1M3-10F1                                                                    | 10 ft |  |
|                         | MN:HBF058-13U1M3-15F1                                                                    | 15 ft |  |
|                         | SPECIAL INSTALLATION NOTE:                                                               |       |  |
|                         | JUMPERS FROM 2.5 RRH TO 2.5 ANTENNA SHALL NOT EXCEED 15'                                 |       |  |
|                         | NOTIFY SPRINT CM OF ANY DISCREPANCY                                                      |       |  |
| 4 AWG POWER             | Hybrid Jumper cable                                                                      |       |  |
|                         | MN:HBF078-21U1M3-5F1                                                                     |       |  |
|                         | 5 ft, 1x 4 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC connectors, 7/8 cable | 5 ft  |  |
|                         |                                                                                          |       |  |


MN:HBF078-21U1M3-10F1 SPECIAL INSTALLATION NOTE JUMPERS FROM 2.5 RRH TO 2.5 ANTENNA SHALL NOT EXCEED 15' NOTIFY SPRINT CM OF ANY DISCREPANCY

HYBRID CABLE CROSS SECTION \$ DATA



6.3"



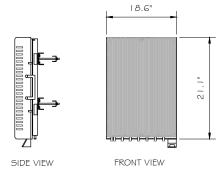


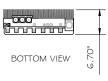
# RFS: APXVTM 14-ALU-120

DIMENSIONS, HxWxD:

WEIGHT, WITHOUT PRE-MOUNTED BRACKETS:

CONNECTOR:


56.3" x 12.6" x 7.3"


55.12 lbs.

(9) MINI-DIN FEMALE/BOTTOM



2.5 ANTENNA DETAIL SCALE: NTS





ALCATEL-LUCENT: TD-RRH8x20

 $HxWxD = (26.1" \times 18.6" \times 6.7")$ 

WEIGHT = 70 lbs.

2.5 RRH DETAIL SCALE: NTS





6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

# **Charles Cherundolo** Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

ertification \$ Seal:

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensec Professional Engineer under the laws of the State of <u>Connecticut</u>.



FINAL

CINGULAR CT54XC749-B

DATE 08/23/2017

PROJECT INFORMATION: 38 SPRING HILL ROAD BETHEL, CT 06801 FAIRFIELD COUNTY

ANTENNA # HYBRID CABLE DETAILS

SCALE: NONE

28746 SHEET A-7



INSTALL 1 1/8" HYBRID -

CABLE

MANUFACTURER SPECIFICATION DC POWER BREAKOUT BREAKOUTS TO RRU FIBER BREAKOUT BREAKOUT CYLINDER (SUPPLIED WITH HYBRID CABLE) TO BE SUPPORTED PER MANUFACTURER **SPECIFICATIONS** NOTES: BREAKOUT . LINE UP WHITE MARKINGS ON JUMPER AND RISER IP-MPO CONNECTORS AND SLIDE THE RISER
CONNECTOR TO THE JUMPER CONNECTOR. PUSH THE WHITE MARK ON THE JUMPER CONNECTOR FLUSH AGAIN THE RED SEAL ON THE RISER CONNECTOR. 2. ROTATE THE BAYONET HOUSING CLOCKWISE UNTIL YOU HEAR A CLICK SOUND.

TRUNK-LINE TO JUMPER CONNECTION (MPO) TO BE INSTALLED PER

> PROPOSED 2.5 EQUIPMENT EXISTING FIBER DISTRIBUTION AND RECTIFIER UNIT TO BE BOX MOUNTED ON H-FRAME INSTALLED IN NEW 2.5 9929 MT-BTS - INSTALL NEW 5/8" FIBER CABLE FROM FIBER DISTRIBUTION BOX TO NEW 2.5 ANTENNA. ROUTE ALONG EXISTING COAX INSTALL CONNECTION -KIT FROM NEW 9929 MT-BTS TO EXISTING MM-BTS PROVIDE 2" METALLIC HUB AND RIGID -CONDUIT CONNECTOR AND INSTALL CONNECTION KIT FROM NEW 9929 MT-BTS TO EXISTING FIBER

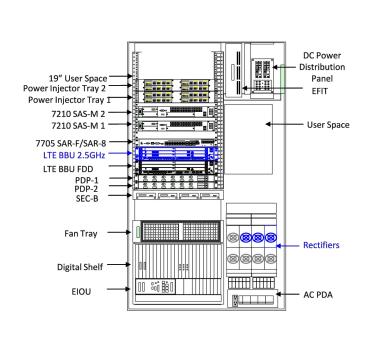
> > CABLE ROUTE FROM CABINET

SCALE: NTS



EXISTING BBU CABINET

SCALE: NTS


HYBRID BREAKOUT DETAIL

I) PROPOSED BATTERY STRING TO BE INSTALLED IN EXISTING BATTERY CABINET



DISTRIBUTION BOX WITH DC POWER \$

FIBER CABLES



EXISTING MMBS CABINET SCALE: NTS

Sprint

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251



855 Community Drive, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

# Charles Cherundolo Consulting, Inc.

713 Clover Lane, Moscow, PA 18444 Phone: 570-840-5084 Fax: 570-842-5592

## ertification \$ Seal:

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensec Professional Engineer under the laws of the State of <u>Connecticut</u>.



FINAL DATE 08/23/2017

# CINGULAR CT54XC749-B

PROJECT INFORMATION: 38 SPRING HILL ROAD BETHEL, CT 06801 FAIRFIELD COUNTY

EQUIPMENT DETAILS

SCALE: NONE

28746 SHEET A-8

# **ALCATEL-LUCENT** 9929 MULTI TECHNOLOGY BTS

# **OUTDOOR CABINET**

In order to help network operators to improve TCO for distributed radio based sites with extended battery backup requirements, Alcatel-Lucent proposes the 9929 Multi Technology Outdoor Cabinet for CDMA/LTE/WCDMA multi-standard configurations



AT THE SPEED OF IDEAS™

## 9929 MT-BTS OUTDOOR CABINET

- The 9929 MT-BTS cabinet is designed to provide, in a single footprint, a full site support with a capability to host 3G and 4G Telecom equipment with internal power and battery support.
- The 9929 MT-BTS Outdoor Cabinet offers 17.5 U of user space capable of hosting 19" rack based telecom equipment and rectification. The 9929 MT-BTS supports distributed RF deployment scenarios with the hosting of Digital base band unit and transport equipment.
- The 9929 MT-BTS cabinet can host up of 2 strings of batteries.
- The 9929 MT-BTS is AC powered and can deliver up to 10.5kW of -48V DC power thanks to its internal N+1 edundant rectifier.
- The 19" modules could have either front-back or side-side cooling. The cabinet uses direct air-cooling (fresh air filter) technology on front door to provide 8000 W of cooling capacity. A wide temperature operating range (-40°C to +50°C full operation) allows the deployment of this cabinet in various locations.
- The 9929 MT-BTS cabinet is compliant with Zone 4 earthquake regulations.
- As an matter of example the following configuration is supported by the cabinet:
  - ✓ Distributed configuration: AC configuration with up to 10.5kW DC Power, up to 3 baseband units, 2U service aggregation router, 2U of microwave transport equipment, up to 2 battery of 190AH.

······Alcatel·Lucent 🕖

## **FEATURES**

- Can host BBU(s) for CDMA/WCDMA/LTE
- Supports standard 19" Telecom equipment
- Uses Direct Air Cooling (no air conditioning) with fan speed control based upon temperature
- Support of up to two 190 Ah or up to two 145AH battery strings that can provide backup for 8 hours for up to 2375 W, or 4 hour backup for up to 4150
- Convenience AC outlet (2)

## **TECHNICAL SPECIFICATIONS**

## INTERFACE:

- ¬ CPRI (up to 9 RRH modules)
- ¬ Backhaul (Gigabit Ethernet or T1)
- ¬ External user alarms (up to 32 user alarms)
- ¬ AC Power input
- ¬ DC Power input for RRH (up to 9 RRH's)

## **PHYSICAL DIMENSIONS**

- ¬ Height: 1617 mm (63.65 in)
- ¬ Width: 800 mm (31.5 in)
- ¬ Depth: 900 mm (35.5 in)

## WEIGHT

- ¬ 197 kg (434 lbs) unloaded
- ¬ Up to 725 kg (1600 lbs) fully loaded

## **POWER**

Power supply:

- ¬ -48 VDC
- ¬ 230V AC (single phase or 3 phases)
- ¬ up to 10.5kW DC -48V output power
- ¬ Rectifier redundancy N+1

# SUPPORTED TELECOM EQUIPMENT

- ¬ LTE 9926 BBU
- ¬ CDMA 9926 BBU
- ¬ WDMA 9926 BBU
- ¬ SAR Aggregation router
- ¬ Microwave Indoor Unit

## **OPERATING ENVIRONMENT**

## STANDARDS COMPLIANCY

- ¬ UL 60950-1 / CAN/CSA C22.2 No. 60950-1-07
- ¬ UL 50/50E CSA C22.2 No. 94.1- 07/94.2-07
- ¬ EIA-310-D

## **EMC& ENVIRONNEMENTAL CONDITIONS**

- ¬ FCC Part 15 class B
- ¬ GR-487-CORE
- ¬ GR-1089-CORE

9929 Multi Technology Outdoor BTS ALCATEL-LUCENT DATA SHEET



- $\neg$  Outdoor temperature range: -40°C to +50°C
- ¬ Direct Air Cooling
- ¬ Enclosure:
- ¬ IP55 (International Protection rating)
- ¬ Zone 4 Earthquake

- ¬ EN50272-2
- ¬ GR-63-CORE,

PROPOSED 9929 MT-BTS OUTDOOR CABINET SCALE: NTS

EQUIPMENT DETAILS

CINGULAR

CT54XC749-B

DATE 08/23/2017

Sprint

6580 SPRINT PARKWAY

OVERLAND PARK, KANSAS 66251

& ASSOCIATES, INC

855 Community Drive, Sauk City, WI 53583

Phone: 608-643-4100 Fax: 608-643-7999

www.Ramaker.com

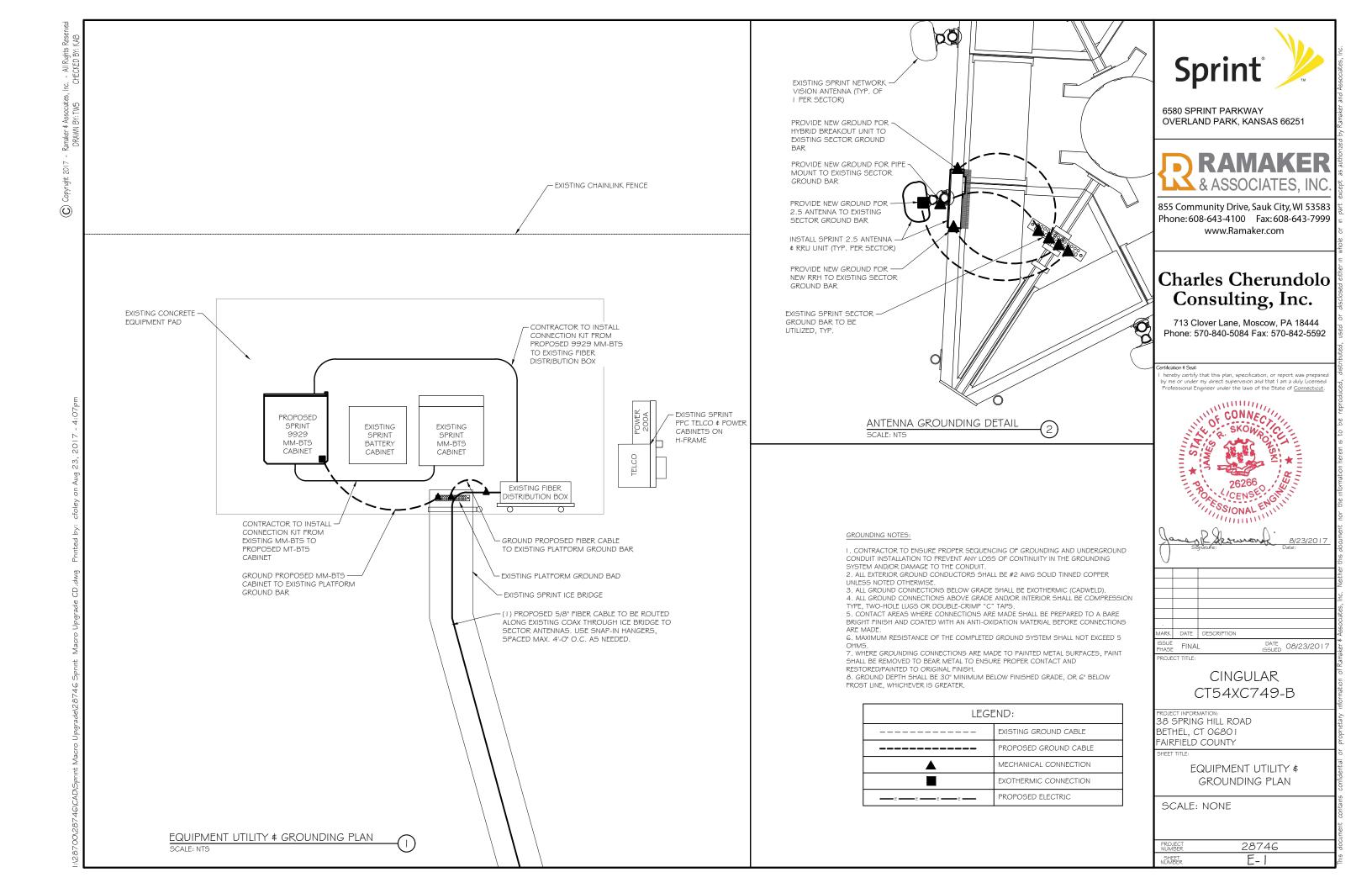
Charles Cherundolo

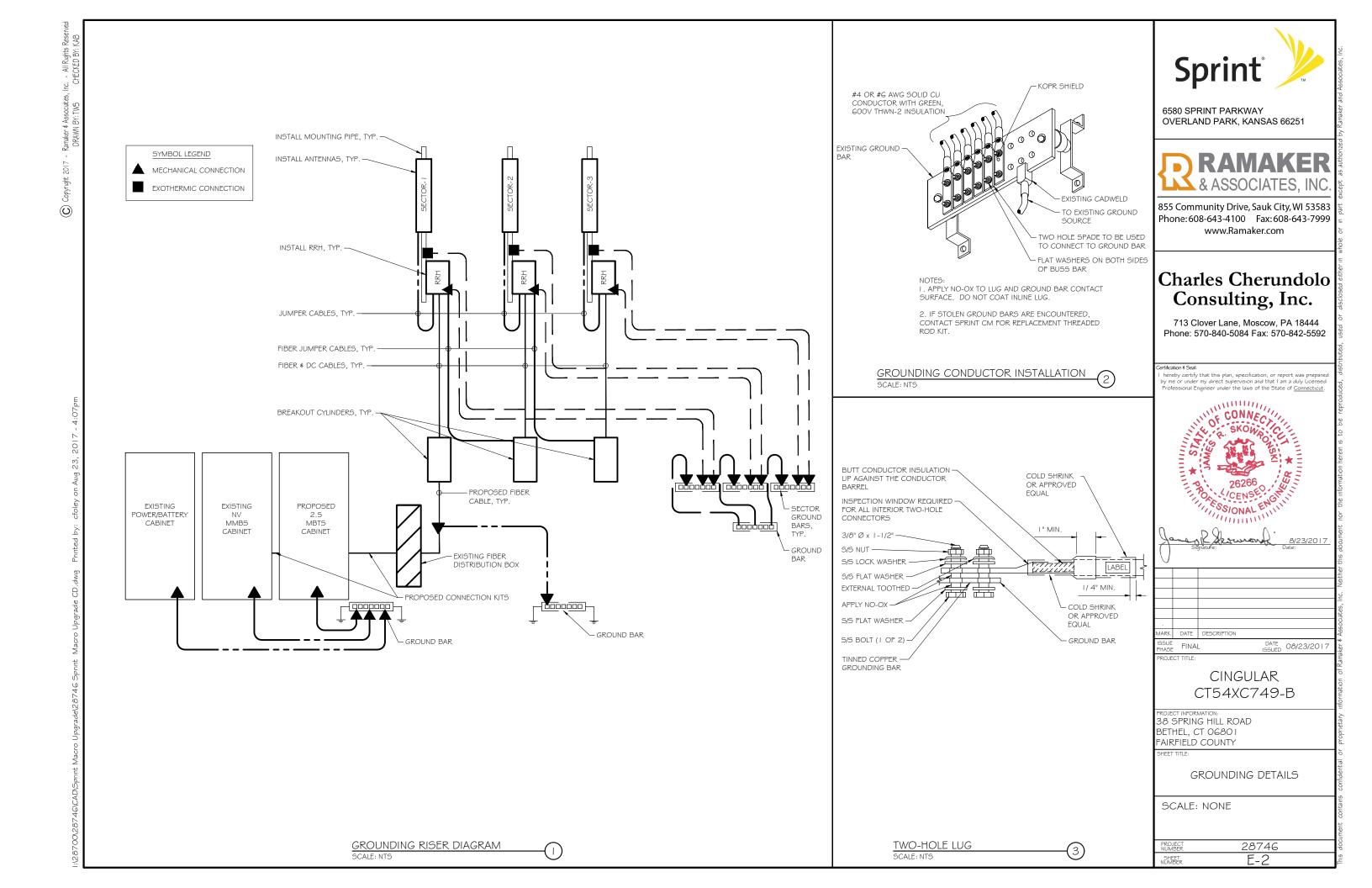
713 Clover Lane, Moscow, PA 18444

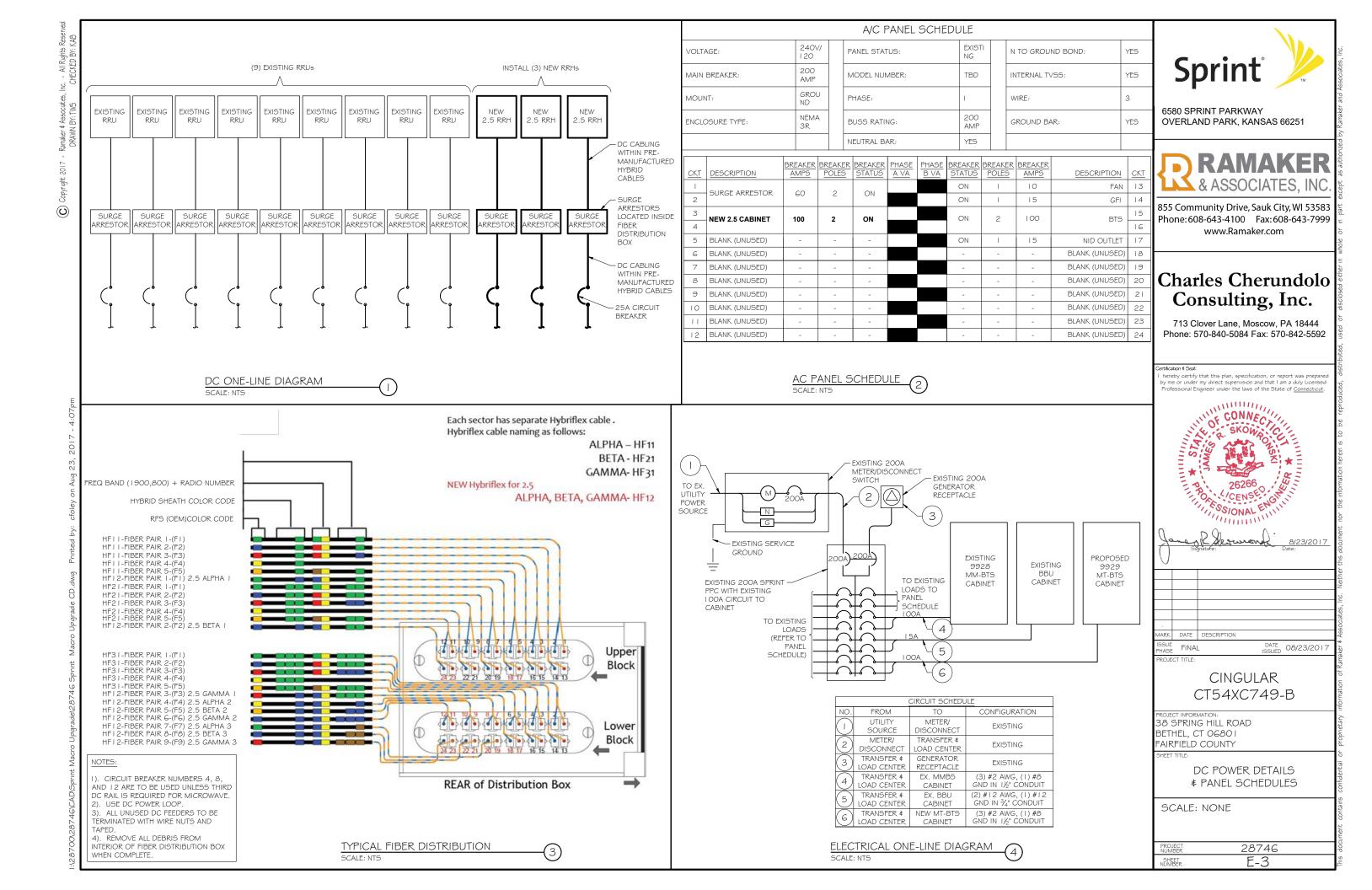
Phone: 570-840-5084 Fax: 570-842-5592

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensec Professional Engineer under the laws of the State of <u>Connecticut</u>.

Consulting, Inc.


SCALE: NONE


38 SPRING HILL ROAD BETHEL, CT 06801 FAIRFIELD COUNTY


FINAL

28746

SHEET A-9





