Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 9, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 11 Francis J. Clarke Circle, Bethel, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced address (the "Property"). Cellco's facility consists of antennas and remote radio heads attached to a tower. Equipment associated with the facility is located on the ground adjacent to the tower. Cellco's facility was approved by the Siting Council ("Council") in October of 2005 (EM-VER-009-051004). A copy of the Council's exempt modification approval is included in <u>Attachment 1</u>.

Cellco's proposed modification involves the installation of two (2) interference mitigation filters ("Filters") on Cellco's existing antenna platform and mounting assembly. The Filter specification sheet is included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Bethel's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The Filters will be installed on Cellco's existing antenna platform and mounting assembly.

Robinson+Cole

Melanie A. Bachman, Esq. August 9, 2023 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new Filters will not result in a change to radio frequency (RF) emissions from the facility. Therefore, no new RF emissions information is included in this filing.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, foundation, antenna platform and mounting assembly can support Cellco's proposed modifications. A copy of the SA and MA are included in <u>Attachment 3</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 5</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Enclosures

Copy to:

Daniel Carter, First Selectman Beth Cavagna, Director/Town Planner Estate of Costa Stergue, Property Owner Kamoya Bautista De Leon, Verizon Wireless

ATTACHMENT 1

The state of the s

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us www.ct.gov/csc

October 20, 2005

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: EM-VER-009-051004 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 11 Francis J. Clarke Circle, Bethel, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on October 19, 2005, the Connecticut Siting Council (Council) acknowledged your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated October 4, 2005, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Ven truly yours,

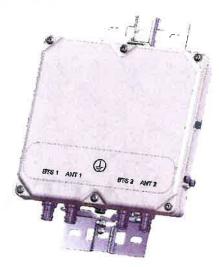
Pamela B. Katz, P.E.

Chairman

PBK/laf

c: The Honorable Alice M. Hutchinson, First Selectman, Town of Bethel Steve Palmer, Planning & Zoning Official, Town of Bethel Sheila R. Becker, Regional Director of Compliance, SBA, Inc. Thomas J. Regan, Esq., Brown Rudnick Berlack Israels LLP Christopher B. Fisher, Esq., Cuddy & Feder LLP Thomas F. Flynn III, Esq., Nextel Communications, Inc.

ATTACHMENT 2


BSF0020F3V1-1

TWIN BANDSTOP 900MHZ INTERFERENCE MITIGATION FILTER

The BSF0020 is ideal for co-located 700, 850 and 900 networks. Utilising a 2.6MHz guardband the BSF0020 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the BSF0020 contains two identical bandstop filters. suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

FEATURES

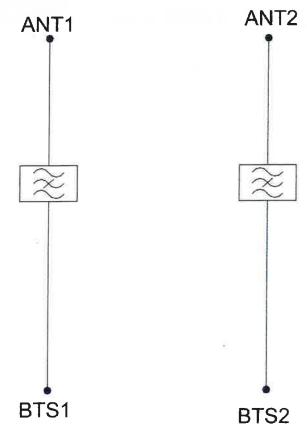
- · Passes full 700 and 850 bands
- Low insertion loss
- Rejection of 900MHz uplink
- DC/AISG pass
 - Twin unit
 - . Dual twin mounting available

TECHNICAL SPECIFICATIONS	5		
BAND NAME	700 BATH / 850 LIPLINK PATH	850 DOWNLINE PATH	
Passband	698 - 849MHz	869 - 891 5MHz	
Insertion loss	0,1dB typical / 0,3dB maximum	0.5dB typical, 1.45dB maximum	
Return loss	24dB typical,	18dB minimum	
Maximum input power (Per Port)	100W average	200W average and 66W per 5MHz	
Rejection	53dB minimum @ 894.1 - 896.5MHz		
ELECTRICAL			
Impedance	500	Ohms	
Intermodulation products	-160dBc maximum in UL Band (assumin -153dBc maximu	g 20MHz Signal), with 2 x 43dBm carriers m with 2 x 43dBm	

DC / AISG		
Passband	0 - 13MHz	
Insertion loss	0,3dB maximum	
Return loss	15dB minimum	
Input voltage range	± 33V	
DC current rating	2A continuous, 4A peak	
Compliance	3GPP TS 25.461	

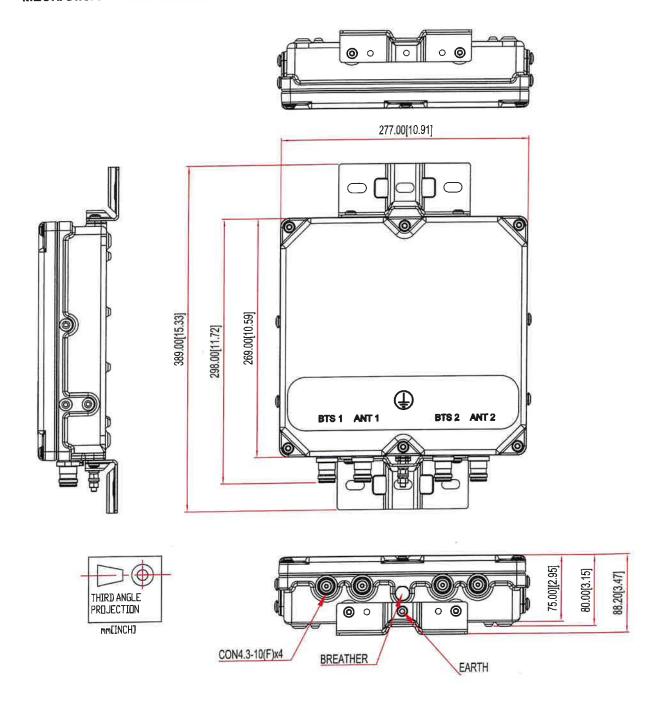
ENVIRONMENTAL For further details of environmental compliance, please contact Kaelus,				
Ingress protection	IP67			
Altitude	2600m 8530ft			
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 – Unit must be terminated with some lightning protection circuits.			
MTBF	>1,000,000 hours			
Compliance	ETSI EN 300 019 class 4.1H, RoHS, NEBS GR-487-CORE			

MECHANICAL	
Dimensions H x D x W	269 x 277 x 80mm i 10,60 x 10,90 x 3,15in (Excluding brackets and connectors)
Weight	8,0 kg 17,6 lbs (no bracket)
Finish	Powder coated, light grey (RAL7035)
Connectors	RF: 4.3-10 (F) x 4
Mounting	Optional pole/wall bracket supplied with two metal clamps 45-178mm diameter poles or custom bracket. See ordering information.



ORDERING INFORMATION

PART NUMBER	CONFIGURATION	OPTIONAL FEATURES	CONNECTORS
BSF0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS NO BRACKET	4.3-10 (F)
B\$F0020F3V1-1	TWIN, 2 in / 2 out	DC/AISG PASS	4.3-10 (F)
BSF0020F3V1-2	QUAD, 4 in / 4 out	DC/AISG PASS	4.3-10 (F)



ELECTRICAL BLOCK DIAGRAM

MECHANICAL BLOCK DIAGRAM

Contact Us: +1 303 768 8080 | +61 (0) 7 3907 1200 | www.kaelus.com

ATTACHMENT 3

SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487-1307

T + 561 995 7670 F + 561 995 7626

sbasite.com

Structural Analysis Report

Client: Verizon

Client Site ID / Name: 5000382994 / BETHEL WEST CT Application #: 232192, v2

SBA Site ID / Name: CT00248-S / North Bethel

155 ft Monopole

11 Francis J. Clarke Circle Bethel, Connecticut 06801 Lat: 41.360081, Long: -73.424989

Project number: CT00248-VZW-071123

Analysis Results

Tower	69.9%	Pass
Foundation	77.0%	Pass

to a difference distingtion of the second	N/A
Change in tower stress due to mount modification / replacement	INDA

Prepared by:

Reviewed by:

Asmerom Hagos Structural Engineer II 214-570-8110 ext 2612 Ahagos@sbasite.com Anantha (Shan) Shanubhogue, P.E. Senior Manager, Structural Engineering 561-981-7390 SShanubhogue@sbasile.com

July 12, 2023

Table of Contents

Introduction	
Analysis Criteria	
Appurtenance Loading	
Existing Loading:	
Proposed Loading:	
Analysis Results	
Tower	
Foundation	
Conclusions	
Installation Requirements	7
Assumptions and Limitations	8
Assumptions	8
Limitations	
Appendix	. 9
Tower Geometry	70
Coax Layout	
TESPole Report	
Foundation Analysis Report	

Introduction

The purpose of this report is to summarize the analysis results on the 155 ft Monopole to support the proposed antennas and transmissions lines in addition to those currently installed.

Table 1 List of Documents Used

Item	Document	_
Tower design/drawings	Summit Manufactoring LLC., Job # 4071, Dated 10/22/1998	
Foundation drawings	P.IF. Job # 29200-1210, Dated 08/17/2000	
Geotechnical report	Jaworski Geotech, Inc., Project # C98342E, Dated 12/5/2002	
Modification drawings	N/A	
Mount Analysis	Maser, Project # 20777631A, dated 02/25/2021	
Latest SA	TES, Project # 120514, dated 12/17/2021	_

Analysis Criteria

Jurisdiction (State/County/City)	Connecticut / Fairfield / Bethel	_
Governing Codes	ANSI/TIA/EIA 222-H, 2021 IBC / 2022 CSBC	_
Ultimate Wind Speed (3-Sec gust)	115.0 mph	
Wind Speed with Ice (3-Sec gust)	50 mph	
Service Wind Speed (3-Sec gust)	60 mph	
Ice Thickness	1.0"	
Structural Class		
Exposure Category	В	
Topographic Category	1	
Crest Height	0 ft	
Ground Elevation	411.4 ft.	-
Seismic Parameter S _s	0.226	
Seismic Parameter S ₁	0.056	_

This structural analysis is based upon the tower being classified as a risk category II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Appurtenance Loading

Existing Loading:

Table 3 Existing Appurtenances

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
1		3	Ericsson AIR6449 B41 - Panel	Modified		
2		3	RFS APXVAALL24_43-U-NA20 - Panel	Low Profile Platform		, 92
-3		4	RFS ACU-A20-N RET	& Collar Mount W/ (1)		
4	157.0	3	Ericsson 4480 B71 + B85 RRU	SitePro HRK14-HD (Top	(3) 1.9" Hybrid	T-Mobile
5		3	Ericsson 4460 B25 + B66 RRU	handrail kit), (1) HRK14-U	(5) 1.9 Hybrid	Sprint
6		3	ALU TD-RRH8x20-25	(Bottom handrail kit) &	-	
7		3	ALU 800 MHz Filter	(1) PRK-SFS (Handrail reinforcement kit)@ 155'		
5		3	Commscope FFVV-65B-R2 - Panel			
-	147.0	3	Fujitsu TA08025-B605 - RRU	Platform w/ HRK	(1) 1.75"	Dish
-	147.0	3	Fujitsu TA08025-B604 - RRU	(Commscope MC-PK8-	Hybrid*	Wireless
#		1	Raycap RDIDC-9181-PF-48 - OVP	DSH)	,	
8		2	Antel - LPA-80080-6CF - Panel			
9		2	Antel - LPA-80063/6CF 5 - Panel			
10		2	Antel - LPA-80080/4CF - Panel			
11	137.0	6	JMA - MX06FIT665-02 - Panel		(6) 1 5/8"	
13	137.0	3	Samsung - VZS01 - Panel	Low Profile Platform	(1) 12x24 - 1 5/8"	Verizon
14		3	Samsung - B2/B66A RRH-BR049 - RRU		Hybrid	
15		3	Samsung - B5/B13 RRH-BR04C - RRU			
16		1	Raycap - RCMDC-6627-PF-48			
17		3	Cci HPA65R-BU6A- Panel			
18		3	Cci DMP65R-BU6DA- Panel	(1) Low Profile Platform		
19		3	Powerwave 7770-Panel	with modifications		
20	127.0	6	Powerwave 21401 TMA	(1) Handrail Kit	(9) 1 1/4"	
21	127.0	6	Kathrein 860 10025 RET	SitePro1 HRK14	(1) 1/2" Fiber	AT&T
22		3	Ericsson RRUS 4449 B5/B12	(3) Platform	(2) 3/4" DC	
		3	Ericsson RRUS 8843 B2 B66A	Reinforcement		
23		1	Raycap DC6-48-60-18-8F	SitePro1 PRK-1245L		
24		3	Ericsson - Air 21 B2A/B4P - Panel	(0) = .	⁽¹⁾ (12) 1 5/8"	
25	117.0	3	Ericsson - Air 21 B4A/B2P - Panel	(3) T-Arms (Valmont P/N RMV12-3xx)	⁽²⁾ (1) 1 5/8" Hybrid	T-Mobile

Note: AT&T loading includes FirstNET equipment

^{1.} The (12)1 5/8" Coax and are considered double stacked running outside of the pole shaft

^{2.} The (1) 1 5/8" Hybrid is considered running outside of the pole shaft

^{*} Consider running outside of the pole shaft.

Proposed Loading:

Information pertaining to proposed antennas and transmission lines were based upon the Application #: 232192, v2 from Verizon and is listed in Table 4.

Table 4 Proposed Appurtenances

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
		2	Antel - LPA-80080-6CF - Panel			
		2	Antel - LPA-80063/6CF_5 - Panel			
	:	2	Antel - LPA-80080/4CF - Panel			
	:	6	JMA - MX06FIT665-02 - Panel	Low Profile	(6) 15/8"	
	137.0	3	Samsung - VZS01 - Panel	Platform	(1) 12x24 - 1	Verizon
	_	3	Samsung - B2/B66A RRH-BR049 - RRU	T lationiii	5/8" Hybrid	
		3	Samsung - B5/B13 RRH-BR04C - RRU			
		1	Raycap - RCMDC-6627-PF-48			
		2	Kaelus BSF0020F3V1-1 Filter			

Analysis Results

Tower

The results of the structural analysis are shown below in table 5. Additional information for the tower analysis is provided within the Appendix.

Table 5 Tower Analysis Summary

	Pole shafts	Anchor Bolts	Base Plate
Max. Usage:	69.9%	51.6%	62.4%
Pass/Fail	Pass	Pass	Pass

Foundation

The results of the foundation analysis are shown below in table 6. Additional information for the foundation analysis is provided within the Appendix.

Table 6 Foundation Analysis Summary

Structural Component	Max Usage (%)	Analysis Result
Foundation	77.0%	Pass

Conclusions

Based on the analysis results, the existing tower and foundation were found to be <u>sufficient</u> to safely support the equipment listed in this analysis. No modification to the tower and foundation is needed at this time.

Installation Requirements

This analysis was performed under the assumption that the carrier will place the proposed equipment and feed lines at the installation height listed in Table 4 and in accordance with the coax layout shown. TMAs and RRUs are to be installed on existing mounts behind tenant's antennas unless otherwise noted. No equipment is to be installed directly in the climbing path. All equipment is to be installed per mount manufacturer specifications. In case site conditions do not allow for the required installation parameters to be met the carrier must notify SBA Communications Corporation engineers for approval of an alternative placement.

Assumptions and Limitations

Assumptions

This analysis was completed based on the following assumptions:

- Tower and foundation were built in accordance to manufacturer specifications.
- Tower and foundation has been properly maintained in accordance with the manufacturer's specifications
- All existing structural members were assumed to be in good condition with no physical damage or deterioration associated with corrosion
- Welds and bolts are assumed able to carry their intended original design loads.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Table 3 and 4.
- This analysis may be affected if any assumptions are not valid or have been made in error. SBA should be notified to determine the effect on the structural integrity of the tower.

Limitations

The computer generated analysis performed by the tower software is limited to theoretical capacities of the towers structural members and does not account for any missing or damaged members or connections. The tower and foundation are assumed to have been properly designed, fabricated, installed and maintained, barring any conflicting findings from the most recent inspection.

SBA Communications Corporation has used its due diligence to verify the information provided to perform this analysis. It is unreasonable to perform a more detailed inspection of a tower and its components. This report is not a condition assessment of the tower or foundation.

Appendix

Usage Diagram - Max Ratio 69.91% at 123.3ft

Structure: CT00248-S

Code:

EIA/TIA-222-H

7/11/2023

Page: 1

Site Name: North Bethel Height:

Base Elev:

155.00 (ft)

0.000 (ft)

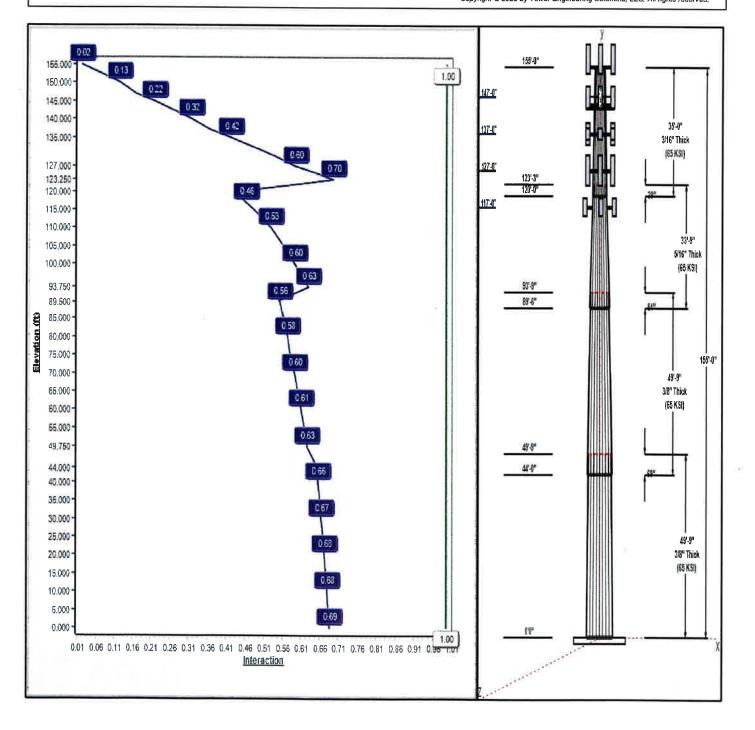
Exposure: B

Gh: 1.1

Dead Load Factor:

1.20

Wind Load Factor:


1.00

Load Case: 1.2D + 1.0W 115 mph Wind

Iterations:

25

Copyright © 2023 by Tower Engineering Solutions, LLC. All rights reserved.

Structure: CT00248-S

Tapered Type:

Site Name: North Bethel

Base Shape: 18 Sided

Taper: 0.27148

7/11/2023

SBA 🕦

155.00 (ft) Height: Base Elev: 0.00 (ft)

Page: 2	2
---------	---

			Shaft	Proper	ties					_ <u>Y</u> _	
	Length	Тор	Bottom	Thick	Joint		Grade		155'-0"		
Seq	(ft)	(in)	(in)	(in)	Type	Taper	(ksi)	_	199-0		-
1	49.75	43.32	56.83	0.375		0.27148	65			- IAI -	
2	49.75	32.13	45.63	0.375	Slip	0.27148	65	147"-0"		HHH	
3	33.75	24.74	33.91	0.313	Slip	0.27148	65				1
4	35.00	16.50	26.00	0.188	Slip	0.27148	65	137"-0"		BIAIB	35"-0"
		Dis	crete /	ppurte	nance	S		137-0		74.47	3/16" Thick
Attach	Force									ninin	(65 KSI)
Elev (ft)) Qty	Descri	ption		Carrier		127"-0"	1051 811	H H-1	
155.00			ACU-A	20-N		T-Mobile Spri	nt		123'-3"		•
155.00				ofile Platfor	rm	T-Mobile Spri	nt	4471.00	120-0		£ 20°
155.00				ning rod				117'-0"			
155.00				n 4480 B7	1 + B85	T-Mobile Spri	nt				
155.00				n 4460 B2		T-Mobile Spri	nt				331-9"
155.00				-RRH8x20		T-Mobile Spri	nt				5/16" Thic
155.00				0 MHz Filt	er	T-Mobile Spri	nt			1111	(65 KSI)
155.00	_					T-Mobile Spri	nt				(ac) total
155.00				-HD		T-Mobile Spri	nt		93'-9"	IIIIIII	<u> </u>
155.00						T-Mobile Spri	nt		89'-6"		541
155.00			RFS			T-Mobile Spri	nt				
155.00			3 Ericsso	n AIR6449	B41	T-Mobile Spri	nt				
147.00			FFVV-6	5C-R3-V1		Dish Wireless	;				· ·
147.00			1 MC-PK	8-DSH		Dish Wireless	;				
147.00			3 TA0802	25-B604		Dish Wireless	5				1
147.00) 3	3 TA0802	25-B605		Dish Wireless	3				49'-9"
147.00			RDIDC	-9181-PF-	48	Dish Wireless	i				3/8" Thick
137.00) 2	2 Kaelus	BSF0020F	3V1-1	Verizon				11111111	(65 KSI)
137.00) 2	2 LPA-80	080/4CF		Verizon		1			
137.00	137.00) 2	2 LPA-80	080/6CF		Verizon		1			1
137.00	137.00) 2	2 LPA-80	063/6CF_	5	Verizon		1	49'-9"		5
137.00	137.00) 1	1 Low Pr	ofile Platfo	rm	Verizon		1			
137.00	137.00) (3 JMA-N	MX06FIT66	65-02	Verizon		1	44'-0"		-684 4
137.00	137.00) 3	3 Samsu	ng VZS01		Verizon		1			1
137.00	137.00) :	3 Samsu	ng - B5/B1	3	Verizon		1			
137.00	137.00) :	3 Samsu	ng - B2/B6	6A	Verizon		1			1
137.00	137.00) 1	1 Comms	scope -		Verizon					1
127.00	127.00) .	1 DC6-48	3-60-18-8F		AT&T					49'-9"
127.00	127.00) ;	3 7770			AT&T					3/8" Thick
127.00	127.00) (860 10			AT&T					(65 KSI)
127.00	127.00) '	1 Low Pr	ofile Platfo	rm	AT&T					ialisi
127.00	127.00) '	1 HRK14	·		AT&T		1			
127.00) .	1 (3) PRI			AT&T					1
127.00	127.00) ;	3 HPA65	R-BU6A		AT&T					1
127.00	127.00) ;	3 DMP65	R-BU6DA		AT&T			010**		V2
127.00) ;	3 4449			AT&T					
127.00	127.00) ;	3 8843			AT&T					
127.00	127.00) (6 21401	TMA		AT&T					
117.00	117.00		3 T-Arms			T-Mobile			and the second		
117.00	117.00		3 Air 21 E			T-Mobile		7			
117.00	117.00	o :	3 Ericsso	n - Air 21 I	32A/B4P	T-Mobile					

Linear Appurtenances

Elev	Elev			
From (ft)	To (ft)	Placement	Description	Carrier
0.00	155.00	Inside	1.9" Hybrid	T-Mobile Sprint

Structure: CT00248-S

Type: Tapered

Base Shape: 18 Sided

7/11/2023

Site Name: North Bethel

Taper: 0.27148

SBA

Height: 155.00 (ft) Base Elev: 0.00 (ft)

Page: 3

0.00	147.00	Outside	1.75" Hybrid	Dish Wireless
0.00	137.00	Inside	1 5/8" Coax	Verizon
0.00	137.00	Inside	12x24 - 1 5/8" Hybrid	Verizon
0.00	127.00	Inside	1 1/4" Coax	AT&T
0.00	127.00	Inside	1/2" Fiber	AT&T
0.00	127.00	Inside	3/4" DC	AT&T
0.00	117.00	Outside	1 5/8" Coax	T-Mobile
0.00	117.00	Outside	1 5/8" Hybrid	T-Mobile

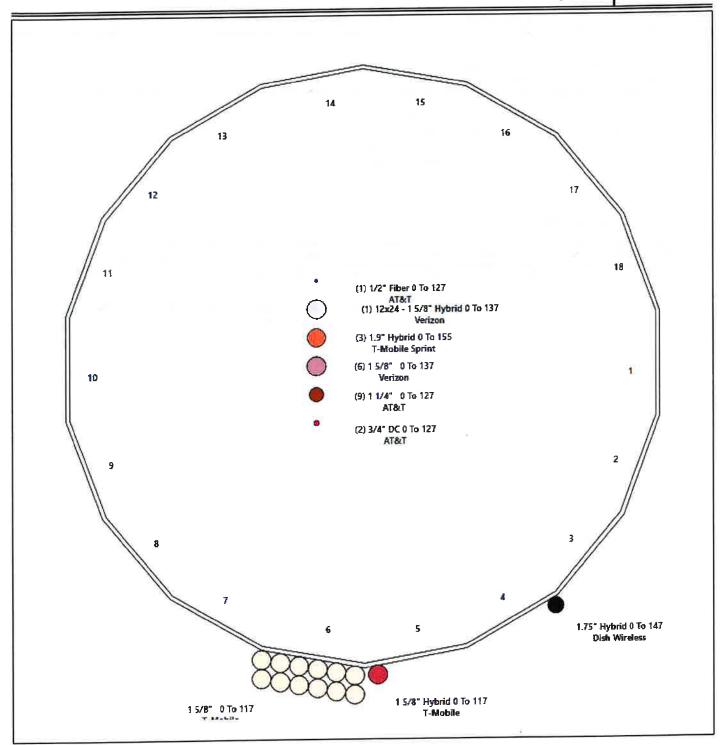
Anchor Bolts Grade Qty Specifications (ksi) Arrangement 20 2.25" 18J 75.0 Cluster

		Base Pla	te	
Thickness (in)	Specifications (in)	Grade (ksi)	Geometry	
2.7500	64.0	50.0	Clipped	

Re	actions			
Load Case	Moment (FT-Kips)	Shear (Kips)	Axial (Kips)	
1.2D + 1.0W 115 mph Wind	3418.0	28.7	48.7	
0.9D + 1.0W 115 mph Wind	3368.2	28.7	36.5	
1.2D + 1.0Di + 1.0Wi 50 mph Wind	962.9	8.1	70.1	
1.2D + 1.0Ev + 1.0Eh	98.6	0.7	50.7	
0.9D + 1.0Ev + 1.0Eh	97.3	0.7	38.5	
1.0D + 1.0W 60 mph Wind	826.3	7.0	40.6	

Structure: CT00248-S - Coax Line Placement

Monopole Type:


Height:

Site Name: North Bethel 155.00 (ft)

7/11/2023

SBA 🕦

Page: 4

Shaft Properties

Structure: CT00248-S

Site Name: North Bethel

155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1

Height:

Topography: 1

Code:

TIA-222-H

Exposure: В

Crest Height: 0.00

Site Class: D - Stiff Soil

Struct Class: II

7/11/2023

Page: 5

SBA

Sec. No.	Shape	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Overlap (in)	Weight (lb)
1	18	49.750	0.3750	65		0.00	10,014
2	18	49.750	0.3750	65	Slip	69.00	7,759
3	18	33.750	0.3125	65	Slip	51.00	3,305
4	18	35.000	0.1875	65	Slip	39.00	1,493
					Total Sha	aft Weight:	22,571

	Bottom							Тор						
Sec. No.	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Taper	
1	56.83	0.00	67.19	27057.20	25.31	151.55	43.32	49.75	51.12	11913.1	18.96	115.5	0.271484	
2	45.63	44.00	53.87	13941.55	20.05	121.69	32.13	93.75	37.79	4814.44	13.70	85.68	0.271484	
3	33.91	89.50	33.32	4751.23	17.72	108.50	24.74	123.25	24.23	1827.58	12.55	79.18	0.271484	
4	26.00	120.0	15.36	1293.40	23.04	138.68	16.50	155.00	9.71	326.37	14.11	88.00	0.271484	

Load Summary

Structure: CT00248-S

TIA-222-H Code:

7/11/2023

Site Name: North Bethel

В Exposure:

Height:

155.00 (ft)

Crest Height: 0.00

SBA

Base Elev: 0.000 (ft)

Site Class:

No Ice

Gh:

1.1

Topography: 1

D - Stiff Soil

Struct Class: ||

Discrete Appurtenances

Page: 6

Ice

					10 100						
No.	Elev (ft)	Description	Qty	Weight (lb)	CaAa (sf)	CaAa Factor	Weight (lb)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
_		ACU-A20-N	4	1.00	0.14	0.50	3.87	0.339	0.50	0.00	2.00
1		Low Profile Platform	1	1500.00	28.00	1.00	2375.47	43.035	1.00	0.00	0.00
3		6' Lightning rod	1	6.50	0.38	1.00	30.78	1.107	1.00	0.00	0.00
4		Ericsson 4480 B71 + B85 RRU	3	93.00	2.85	0.67	141.11	3.301	0.67	0.00	2.00
4 5		Ericsson 4460 B25 + B66 RRU	3	109.00	2.85	0.67	157.09	3.301	0.67	0.00	2.00
6		ALU TD-RRH8x20-25	3	70.00	4.05	0.67	138.88	4.579	0.67	0.00	2.00
7		ALU 800 MHz Filter	3	8.80	0.78	0.50	20.60	1.213	0.50	0.00	2.00
8		PRK-SFS	1	464.91	9.50	1.00	681.99	16.154	1.00	0.00	0.00
9		HRK14-HD	1	302.36	8.13	1.00	542.36	13.444	1.00	0.00	0.00
10		HRK14-U	1	261.72	6.75	1.00	469.46	11.162	1.00	0.00	0.00
11		RFS APXVAALL24_43-U-NA20	3	122.80	20.24	0.70	390.66	21.495	0.70	0.00	2.00
12		Ericsson AIR6449 B41	3	103.00	5.65	0.71	194.71	6.286	0.71	0.00	2.00
13		FFVV-65C-R3-V1	3	71.00	12.27	0.73	248.75	13.238	0.73	0.00	0.00
14		MC-PK8-DSH	1	1727.00	37.59	1.00	2849.95	69.016	1.00	0.00	0.00
15		TA08025-B604	3	63.90	1.96	0.67	97.58	2.333	0.67	0.00	0.00
16		TA08025-B605	3	75.00	1.96	0.67	109.80	2.333	0.67	0.00	0.00
17		RDIDC-9181-PF-48	1	21.90	2.01	1.00	57.33	2.388	1.00	0.00	0.00
18		Kaelus BSF0020F3V1-1	2	17.60	0.96	0.65	32.97	1.222	0.65	0.00	0.00
19		LPA-80080/4CF	2	12.00	2.61	0.93	142.00	6.895	0.93	0.00	0.00
20		LPA-80080/6CF	2	21.00	4.32	1.50	148.34	5.069	1.50	0.00	0.00
21		LPA-80063/6CF_5	2	27.00	9.59	0.95	201.07	10.466	0.95	0.00	0.00
22		Low Profile Platform	1	1200.00	28.00	1.00	1891.79	43.496	1.00	0.00	0.00
23		JMA - MX06FIT665-02	6	51.00	8.15	0.95	195.18	8.977	0.95	0.00	0.00
24		Samsung VZS01	3	87.10	4.70	0.70	161.21	5.296	0.70	0.00	0.00
25		Samsung - B5/B13 RRH-BR04C	3	84.40	1.88	0.83	117.91	2.240	0.83	0.00	0.00
26	137.00	Samsung - B2/B66A RRH-BR049	3	70.30	1.88	0.77	102.07	2.240	0.77	0.00	0.00
27	137.00	Commscope - RCMDC-6627-PF-48	1	45.00	4.80	0.71	121.06	5.360	0.71	0.00	0.00
28		DC6-48-60-18-8F	1	31.80	1.47	1.00	72.34	1.929	1.00	0.00	0.00
29	127.00		3	35.00	5.50	0.75	116.78	6.183	0.75	0.00	0.00
30		860 10025	6	1.20	0.18	0.67	5.13	0.428	0.67	0.00	0.00
31		Low Profile Platform	1	1500.00	25.00	1.00	2358.20	38.159	1.00	0.00	0.00
32	. —	HRK14	1	261.72	6.75	1.00	465.37	11.075	1.00	0.00	0.00
33		(3) PRK-1245	1	464.91	9.50	1.00	677.70	16.022	1.00	0.00	0.00
34		HPA65R-BU6A	3	54.00	11.23	0.86	217.97	12.326	0.88	0.00	0.00
35		DMP65R-BU6DA	3	79.40	12.71	0.72	272.52	13.670	0.74	0.00	0.00
36	127.00		3	70.00	1.65	0.67	110.89	1.989	0.67	0.00	0.00
37	127.00		3	75.00	1.65	0.67	119.96	1.989	0.67	0.00	0.00
38		21401 TMA	6	14.10	1.29	0.67	30.49	1.838	0.67	0.00	0.00
39		T-Arms	3	350.00	8.00	0.75	508.89	12.540	0.75	0.00	0.00
40		Air 21 B4A/B2P	3	90.40	6.09	0.86	192.89	6.787	0.86	0.00	0.00
41		Ericsson - Air 21 B2A/B4P	3	91.50	6.09	0.86	193.99	6.787	0.86	0.00	0.00

Totals:

103

13,755.62

25,885.72

Linear Appurtenances

Bottom Тор Elev. Elev. (ft)

Description (ft)

Exposed Width

Exposed

Discrete Appurtenances

		Description		No Ice			lce				
	Elev (ft)		Qty	Weight (Ib)	CaAa (sf)	CaAa Factor	Weight (lb)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
0.00	155.00	(3) 1.9" Hybrid		0	.00	Inside					
0.00	147.00	(1) 1.75" Hybrid		1	.75	Outside					
0.00	137.00	(6) 1 5/8" Coax		0	.00	Inside					
0.00	137.00	(1) 12x24 - 1 5/8" Hybrid		0	.00	Inside					
0.00	127.00	(9) 1 1/4" Coax		0	.00	Inside					
0.00	127.00	(1) 1/2" Fiber		0	.00	Inside					
0.00	127.00	(2) 3/4" DC		0	.00	Inside					
0.00	117.00	(12) 1 5/8" Coax		3	.96	Outside					
0.00	117.00	(1) 1 5/8" Hybrid		0	.00	Outside					

Shaft Section Properties

Structure: CT00248-S

Code:

TIA-222-H

7/11/2023

Site Name: North Bethel

Exposure:

В

Crest Height: 0.00

Height: Base Elev: 0.000 (ft)

155.00 (ft)

Site Class:

D - Stiff Soil

SBA D

Gh:

1.1

Topography: 1

Struct Class: ||

Page: 8

Increment Length:

5 (ft)

- Section 2	(in) 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750	(in) 56.830 55.473 54.115 52.758 51.400 50.043 48.685 47.328 45.971 44.885	62.346 60.731	(in^4) 27057.2 25152.0 23338.5 21614.3 19977.1 18424.8 16955.1	25.31 24.67 24.03 23.40 22.76 22.12 21.48	151.55 147.93 144.31 140.69 137.07 133.45	71.6 72.4 73.1 73.9 74.6 75.4	937.7 893.1 849.4 806.9 765.5 725.2	(lb) 0.0 1129.5 1102.0 1074.5 1047.0 1019.5
	0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750	55.473 54.115 52.758 51.400 50.043 48.685 47.328 45.971	65.578 63.962 62.346 60.731 59.115 57.499 55.884	25152.0 23338.5 21614.3 19977.1 18424.8 16955.1	24.67 24.03 23.40 22.76 22.12	147.93 144.31 140.69 137.07 133.45	72.4 73.1 73.9 74.6 75.4	893.1 849.4 806.9 765.5 725.2	1129.5 1102.0 1074.5 1047.0
	0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750	54.115 52.758 51.400 50.043 48.685 47.328 45.971	63.962 62.346 60.731 59.115 57.499 55.884	23338.5 21614.3 19977.1 18424.8 16955.1	24.03 23.40 22.76 22.12	144.31 140.69 137.07 133.45	73.1 73.9 74.6 75.4	849.4 806.9 765.5 725.2	1102.0 1074.5 1047.0
	0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750	52.758 51.400 50.043 48.685 47.328 45.971	62.346 60.731 59.115 57.499 55.884	21614.3 19977.1 18424.8 16955.1	23.40 22.76 22.12	140.69 137.07 133.45	73.9 74.6 75.4	806.9 765.5 725.2	1074.5 1047.0
	0.3750 0.3750 0.3750 0.3750 0.3750 0.3750	51.400 50.043 48.685 47.328 45.971	60.731 59.115 57.499 55.884	19977.1 18424.8 16955.1	22.76 22.12	137.07 133.45	74.6 75.4	765.5 725.2	1047.0
	0.3750 0.3750 0.3750 0.3750 0.3750	50.043 48.685 47.328 45.971	59.115 57.499 55.884	18424.8 16955.1	22.12	133.45	75.4	725.2	
	0.3750 0.3750 0.3750 0.3750	48.685 47.328 45.971	57.499 55.884	16955.1					1019.5
	0.3750 0.3750 0.3750	47.328 45.971	55.884		21.48				
	0.3750 0.3750	45.971				129.83		685.9	992.0
	0.3750		E4 260	15565.7	20.84	126.21		647.8	964.5
		11 985		14254.3	20.21	122.59		610.7	937.1
o - Section 1	0.3750	44.000		13259.9	19.69	119.69		581.9	729.9
o - Section 1		44.613	52.653	13018.7	19.57	118.97		574.8	362.5
14	0.3750	44.074		12548.2	19.31	117.53	0.0	0.0	1691.7
	0.3750	44.006	51.930	12489.8	19.28	117.35		559.0	44.2
	0.3750	42.648	50.314	11360.0	18.64	113.73		524.6	869.8
	0.3750	41.291	48.698	10300.4	18.00	110.11		491.3	842.3
	0.3750	39.934	47.083	9308.9	17.37	106.49		459.1	814.8
	0.3750	38.576	45.467	8383.1	16.73	102.87		428.0	787.3
	0.3750	37.219	43.852	7520.8	16.09	99.25		398.0	759.8
3	0.3750	35.861	42.236	6719.8	15.45	95.63		369.1	732.3
	0.3750	34.504	40.620	5977.8	14.81	92.01		341.2	704.9
- Section 3	0.3750	33.282	39.166	5358.6	14.24	88.75		317.1	610.9
	0.3750	33.146	39.005	5292.5	14.18	88.39		314.5	123.1
- Section 2	0.3125	32.753	32.176	4278.3	17.07	104.81	0.0	0.0	907.0
, , , , , , , , , , , , , , , , , , , ,	0.3125	32.414	31.840	4145.5	16.88	103.72	81.5	251.9	136.1
	0.3125	31.057	30.493	3641.5	16.11	99.38		230.9	530.3
	0.3125	29.699	29.147	3180.1	15.35	95.04		210.9	507.4
	0.3125	28.342	27.801	2759.5	14.58	90.69	82.5	191.8	484.4
	0.3125	26.984	26.454	2377.7	13.82	86.35		173.5	461.5
	0.3125	26.441	25.916	2235.4	13.51	84.61	82.5	166.5	178.2
- Section 4	0.3125	25.627	25.108	2032.8	13.05	82.01	82.5	156.2	260.4
- Section 3	0.1875	25.120	14.837	1165.3	22.21	133.97	0.0	0.0	439.8
, 50000110	0.1875	24.645	14.554	1099.9	21.77	131.44	75.8	87.9	87.5
	0.1875	24.102	14.231	1028.3	21.25	128.54	76.4	84.0	98.0
		23.287	13.747	926.7	20.49	124.20	77.3	78.4	142.8
		21.930	12.939	772.8	19.21	116.96	78.8	69.4	227.0
		21.387		716.3	18.70	114.06	79.4	66.0	87.0
		20.572	12.131	636.9	17.94	109.72	80.3	61.0	126.3
			11.323	517.9	16.66	102.48	81.8	53.1	199.5
				474.9	16.15	99.58	82.4	50.1	76.0
					15.38	95.24	82.5	45.8	109.8
						88.00	82.5	39.0	172.0
		0.1875 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875	0.1875 23.287 0.1875 21.930 0.1875 21.387 0.1875 20.572 0.1875 19.215 0.1875 18.672 0.1875 17.857	0.1875 23.287 13.747 0.1875 21.930 12.939 0.1875 21.387 12.616 0.1875 20.572 12.131 0.1875 19.215 11.323 0.1875 18.672 11.000 0.1875 17.857 10.515	0.1875 23.287 13.747 926.7 0.1875 21.930 12.939 772.8 0.1875 21.387 12.616 716.3 0.1875 20.572 12.131 636.9 0.1875 19.215 11.323 517.9 0.1875 18.672 11.000 474.9 0.1875 17.857 10.515 414.8	0.1875 23.287 13.747 926.7 20.49 0.1875 21.930 12.939 772.8 19.21 0.1875 21.387 12.616 716.3 18.70 0.1875 20.572 12.131 636.9 17.94 0.1875 19.215 11.323 517.9 16.66 0.1875 18.672 11.000 474.9 16.15 0.1875 17.857 10.515 414.8 15.38	0.1875 23.287 13.747 926.7 20.49 124.20 0.1875 21.930 12.939 772.8 19.21 116.96 0.1875 21.387 12.616 716.3 18.70 114.06 0.1875 20.572 12.131 636.9 17.94 109.72 0.1875 19.215 11.323 517.9 16.66 102.48 0.1875 18.672 11.000 474.9 16.15 99.58 0.1875 17.857 10.515 414.8 15.38 95.24	0.1875 23.287 13.747 926.7 20.49 124.20 77.3 0.1875 21.930 12.939 772.8 19.21 116.96 78.8 0.1875 21.387 12.616 716.3 18.70 114.06 79.4 0.1875 20.572 12.131 636.9 17.94 109.72 80.3 0.1875 19.215 11.323 517.9 16.66 102.48 81.8 0.1875 18.672 11.000 474.9 16.15 99.58 82.4 0.1875 17.857 10.515 414.8 15.38 95.24 82.5	0.1875 23.287 13.747 926.7 20.49 124.20 77.3 78.4 0.1875 21.930 12.939 772.8 19.21 116.96 78.8 69.4 0.1875 21.387 12.616 716.3 18.70 114.06 79.4 66.0 0.1875 20.572 12.131 636.9 17.94 109.72 80.3 61.0 0.1875 19.215 11.323 517.9 16.66 102.48 81.8 53.1 0.1875 18.672 11.000 474.9 16.15 99.58 82.4 50.1 0.1875 17.857 10.515 414.8 15.38 95.24 82.5 45.8

Wind Loading - Shaft

Structure: CT00248-S

Site Name: North Bethel

Height:

155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1

Topography: 1

Code:

TIA-222-H

Exposure: В

Crest Height: 0.00

Site Class: D - Stiff Soil

Struct Class: ||

7/11/2023

Page: 9

SBA

Load Case: 1.2D + 1.0W 115 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.00

Iterations

25

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	ice Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (Ib)	Tot Dead Load (lb)
0.00		1.00	0.70	22.181	24.40	459.26	0.730	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	22.181	24.40	448.29	0.730	0.000	5.00	23.757	17.34	423.2	0.0	1355.4
10.00		1.00	0.70	22.181	24:40	437.32	0.736 *	0.000	5.00	23.183	17.06	416.2	0.0	1322.4
15.00		1.00	0.70	22.181	24.40	426.35	0.741 *	0.000	5.00	22.609	16.76	409.0	0.0	1289.4
20.00		1.00	0.70	22.181	24.40	415.38	0.747 *	0.000	5.00	22.034	16.47	401.9	0.0	1256.4
25.00		1.00	0.70	22.181	24.40	404.41	0.754 *	0.000	5.00	21.460	16.18	394.7	0.0	1223.4
30.00		1.00	0.70	22.200	24.42		0.760 *	0.000		20.886	15.88	387.9	0.0	1190.4
35.00		1.00	0.73	23.200	25.52	391.15	0.768 *	0.000	5.00	20.311	15.59	397.8	0.0	1157.5
40.00		1.00	0.76	24.102	26.51	387.25	0.775 *	0.000		19.737	15.30	405.5	0.0	1124.5
44.00 Bot -	- Section 2	1.00	0.78	24.767	27.24		0.782 *	0.000		15.376	12.03	327.6	0.0	875.8
45.00		1.00		24.927	27.42		0.786 *	0.000	1.00	3.850	3.03	83.0	0.0	435.0
49.75 Top	- Section 1	1.00	0.81	25.652	28.22		0.791 *	0.000		17.974	14.22	401.2	0.0	2030.0
50.00		1.00		25.689	28.26		0.791 *	0.000	0.25	0.932	0.74	20.8	0.0	53.1
55.00		1.00	0.83	26.398	29.04		0.795 *	0.000		18.331	14.58	423.3	0.0	1043.7
60.00		1.00		27.062	29.77	368.57		0.000		17.757	14.28	425.2	0.0	1043.7
65.00		1.00		27.688	30.46	360.56		0.000		17.183	13.99	426.1	0.0	977.8
70.00		1.00		28.281	31,11	352.01		0.000		16.609	13.70	426.1	0.0	944.8
75.00		1.00	0.91	28.844	31.73	342.98		0.000		16.034	13.40	425.3	0.0	944.6 911.8
80.00		1.00		29.381	32.32	333.54		0.000		15.460	13.40	423.3		
85.00	×	1.00		29.894	32.88	323.70		0.000		14.886	12.82	423.7	0.0 0.0	878.8
89.50 Bot -	- Section 3	1.00		30.338	33.37	314.55		0.000		12.906	11.28	376.6		845.8
90.00		1.00		30.386	33.42	313.52		0.000	0.50	1.432	1.26		0.0	733.0
93.75 Top	- Section 2	1.00	0.97		33.82	305.66		0.000			-	42.2	0.0	147.7
95.00	00000112	1.00		30.859	33.95	308.97		0.000		10.555	9.38	317.1	0.0	1088.4
100.00		1.00		31.315	34.45	298.21			1.25	3.446	3.06	104.0	0.0	163.4
105.00		1.00		31.754	34.93	287.17		0.000		13.427	12.07	415.8	0.0	636.3
110.00		1.00		32.179	35.40	275.87		0.000		12.853	11.78	411.4	0.0	608.8
115.00		1.00	1.02	32.591	35.85	264.33				12.278	11.48	406.5	0.0	581.3
117.00 Appu	irtenance(s)	1.00		32.752	36.03			0.000		11.704	14.04	503.5	0.0	553.9
120.00 Bot -	` '	1.00		32.989	36.29	259.65	0.730	0.000	2.00	4.521	5.42	195.4	0.0	213.8
123,25 Top -		1.00		33.242	36.57	252.56	0.730	0.000	3.00	6.609	4.82	175.1	0.0	312.5
125.00	- Occilon 5	1.00				244.80		0.000	3.25	7.030	5.13	187.6	0.0	527.8
127.00 Appu	irtonanco(s)			33.376	36.71		0.730	0.000	1.75	3.685	2.69	98.8	0.0	105.0
130.00 Appo	internatice(s)	1.00		33.528	36.88	239.46	0.730	0.000	2.00	4.125	3.01	111.1	0.0	117.5
135.00		1.00 1.00		33.752	37.13	232.14	0.730	0.000	3.00	6.015	4.39	163.0	0.0	171.4
	utononos/s)		1.08	34.118	37.53	219.79	0.730	0.000	5.00	9.565	6.98	262.1	0.0	272.4
137.00 Appu 140.00	internance(s)	1.00		34.262	37.69	214.80	0.730	0.000	2.00	3.665	2.68	100.8	0.0	104.3
		1.00		34.475	37.92	207.26	0.730	0.000	3.00	5.326	3.89	147.4	0.0	151.6
145.00		1.00		34.822	38.30	194.56	0.730	0.000	5.00	8.417	6.14	235.4	0.0	239.4
147.00 Appu	irtenance(s)	1.00		34.959	38.45	189.43	0.730	0.000	2.00	3.206	2.34	90.0	0.0	91.2
150.00		1.00		35.161	38.68	181.69	0.730	0.000	3.00	4.637	3.38	130.9	0.0	131.8
155.00 Appu		1.00	1.12	35.492	39.04	168.67	0.730	0.000	5.00	7.268	5.31	207.1	0.0	206.4
Ci Adjuste	ed by Linear Load	ra chect						Totals:	155.00			11,721.9		27,084.8

Discrete Appurtenance Forces

CT00248-S Structure:

Code:

TIA-222-H

Dead

Load

(lb)

252.00

1800.00

4.80

7.80

334.80

392.40

370.80

557.89

362.83

314.06

442.08

31.68

2072.40

255.60

270.00

230.04

26.28

54.00

253.08

303.84

313.56

1440.00

64.80

50.40

28.80

42.24

367.20

1800.00

314.06

126.00

38.16

285.84

557.89

194.40

252.00

270.00

101.52

329.40

325.44

8.64

Horiz

Ecc

(ft)

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

7/11/2023

Elev

(ft)

Site Name: North Bethel

Exposure:

Ka

0.75

0.75

1.00

1.00

0.75

0.75

1.00

1.00

1.00

1.00

1.00

0.75

1.00

0.75

0.75

0.75

0.75

0.80

0.80

0.80

0.80

1.00

0.80

0.80

0.80

08.0

0.80

0.75

1.00

1.00

08.0

0.80

0.75

1.00

0.75

0.75

0.75

0.75

0.80

0.80

В

Crest Height: 0.00

SBA

25

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Height: Base Elev:

155.00 (ft) 0.000 (ft)

Wind Load Factor

155.00 ALU TD-RRH8x20-25

155.00 Low Profile Platform

155.00 Ericsson 4480 B71 + B85

155.00 Ericsson 4460 B25 + B66

155.00 Ericsson AIR6449 B41

155.00 ALU 800 MHz Filter

147.00 MC-PK8-DSH

147.00 FEVV-65C-R3-V1

147.00 TA08025-B605

147.00 TA08025-B604

137.00 Commscope -

147.00 RDIDC-9181-PF-48

137.00 Samsung - B2/B66A

137.00 Samsung - B5/B13

137.00 Low Profile Platform

137.00 LPA-80063/6CF 5

137.00 Kaelus BSF0020F3V1-1

137.00 JMA - MX06FIT665-02

127.00 Low Profile Platform

127.00 DC6-48-60-18-8F

127.00 DMP65R-BU6DA

127.00 (3) PRK-1245

127.00 HPA65R-BU6A

127.00 21401 TMA

117.00 T-Arms

117.00 Air 21 B4A/B2P

117.00 Ericsson - Air 21 B2A/B4P

137.00 LPA-80080/6CF

137.00 LPA-80080/4CF

127.00 860 10025

127.00 HRK14

127.00 7770

127.00 4449

127.00 8843

137.00 Samsung VZS01

155.00 6' Lightning rod

155.00 ACU-A20-N

155.00 PRK-SFS

155.00 HRK14-HD

155.00 HRK14-U

155.00 RFS

Orient

Factor

x Ka

0.50

0.38

1.00

1.00

0.50

0.50

0.71

1.00

1.00

1.00

0.70

0.38

1.00

0.55

0.50

0.50

0.75

0.57

0.62

0.66

0.56

1.00

0.76

1.20

0.74

0.52

0.76

0.50

1.00

1.00

0.60

0.80

0.54

1.00

0.65

0.50

0.50

0.50

0.69

0.69

0.56

qzGh

(psf)

39,185

39.185

39.041

39.041

39.185

39,185

39,185

39 041

39 185

39.185

38.455

37.688

37.688

αz

(psf)

35.622

35 622

35.492

35.492

35.622

35.622

35.622

35.492

35.622

35 622

34.959

34.262

34.262

35 492 39.041

35.492 39.041

34.959 38.455

34.959 38.455

34.959 38.455

34.959 38.455

34,262 37.688

34,262 37,688

34.262 37.688

34.262 37.688

34.262 37.688

34.262 37.688

34.262 37.688

34,262 37.688

33.528 36.881

33.528 36.881

33.528 36.881

33.528 36.881

33.528 36.881

33.528 36.881

36 881

36.881

36.881

36.881

36.881

36.027

36.027

36.027

33.528

33.528

33.528

33.528

33.528

32.752

32.752

32.752

D - Stiff Soil Site Class:

Total

CaAa

(sf)

6.11

0.21

28.00

0.38

4.30

4.30

12.03

9.50

8.13

6.75

42.50

0.88

37.59

20.15

2.95

2.95

1.51

2.73

3.47

3.74

7.90

28.00

14.58

10.37

3.88

1.00

37.16

25.00

0.54

6.75

9.90

1.18

20.59

9.50

21.73

2.49

2.49

3.89

12.57

12.57

13.50

Gh:

No.

1

2

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

1.1

Topography: 1

Struct Class: ||

Page: 10

Load Case: 1.2D + 1.0W 115 mph Wind

Description

Dead Load Factor

1.20

1.00

Qty

3

4

1

1

3

3

3

1

1

1

3

3

1

3

3

3

1

1

3

3

3

1

2

2

2

2

6

6

1

1

3

1

3

1

3

3

3

6

3

3

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Iterations

Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (lb-ft)
2.000	239.24	0.00	478.47
2.000	8.23	0.00	16.46
0.000	1093.16	0.00	0.00
0.000	14.84	0.00	0.00
2.000	168.35	0.00	336.70
2.000	168.35	0.00	336.70
2,000	471.57	0.00	943.13
0.000	370.89	0.00	0.00
0.000	317.41	0.00	0.00
0.000	263.53	0.00	0.00
2.000	1665.50	0.00	3331.00
2.000	34.38	0.00	68.77
0.000	1445.51	0.00	0.00
0.000	774.99	0.00	0.00
0.000	113.62	0.00	0.00
0.000	113.62	0.00	0.00
0.000	57.97	0.00	0.00
0.000	102.75	0.00	0.00
0.000	130.94	0.00	0.00
0.000	141.14	0.00	0.00
0.000	297.59	0.00	0.00
0.000	1055.27	0.00	0.00
0.000	549.37	0.00	0.00
0.000	390.75	0.00	0.00
0.000	146.37	0.00	0.00
0.000	37.63	0.00	0.00
0.000	1400.65	0.00	0.00
0.000	20.02	0.00	0.00
0.000	922.02	0.00	0.00
0.000	248.95	0.00	0.00
0.000	365.12	0.00	0.00

0.75 Totals:

1260.00 16,506.74

486.36 16,803.24

43.37

759.39

350.37

801.42

91.74

91.74

143.44

452.85

452.85

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Total Applied Force Summary

Structure: CT00248-S

Code:

TIA-222-H

7/11/2023

Site Name: North Bethel

Exposure:

В

Height:

155.00 (ft)

Crest Height: 0.00

Gh:

Base Elev: 0.000 (ft) 1.1

Topography: 1

Site Class: Struct Class: ||

D - Stiff Soil

Page: 11

SBA

Load Case: 1.2D + 1.0W 115 mph Wind

Dead Load Factor

1.20

Wind Load Factor

1.00

	ľ	
	<u></u>	X
, 1		

Iterations 25

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (lb)	Torsion MY (lb-ft)	Moment MZ (lb-ft)	
0.00		0.00	0.00	0.00	0.00	
5.00		423.16	1553.43	0.00	0.00	
10.00		416.18	1520.45	0.00	0.00	
15.00		409.02	1487.46	0.00	0.00	
20.00		401.86	1454.48	0.00	0.00	
25.00		394.70	1421.49	0.00	0.00	
30.00		387.87	1388.51	0.00	0.00	
35.00		397.84	1355.52	0.00	0.00	
40.00		405.53	1322.54	0.00	0.00	
44.00		327.62	1034.28	0.00	0.00	
45.00		83.00	474.57	0.00	0.00	
49.75		401.22	2218.19	0.00	0.00	
50.00		20.81	62.96	0.00	0.00	
55.00		423.30	1241.80	0.00	0.00	
60.00		425.22	1208.82	0.00	0.00	
65.00		426.12	1175.83	0.00	0.00	
70.00		426.11	1142.85	0.00	0.00	
75.00		425.28	1109.86	0.00	0.00	
80.00		423.71	1076.88	0.00	0.00	
85.00		421.46	1043.89	0.00	0.00	
89.50		376.58	911.30	0.00	0.00	
90.00		42.20	167.50	0.00	0.00	
93.75		317.07	1236.96	0.00	0.00	
95.00		104.00	212.89	0.00	0.00	
100.00		415.82	834.38	0.00	0.00	
105.00		411.41	806.89	0.00	0.00	
110.00		406.52	779.40	0.00	0.00	
115.00		593.89	751.92	0.00	0.00	
117.00	(9) attachments	1623.78	2207.91	0.00	0.00	
120.00		175.07	382.47	0.00	0.00	
123.25		187.64	603.56	0.00	0.00	
125.00		98.75	145.82	0.00	0.00	
127.00	(31) attachments	3948.62	4112.69	0.00	0.00	
130.00		163.03	216.84	0.00	0.00	
135.00		262.07	348.20	0.00	0.00	
137.00	(25) attachments	4353.31	3052.58	0.00	0.00	
140.00		147.43	170.62	0.00	0.00	
145.00		235.35	271.18	0.00	0.00	
147.00	(11) attachments	2595.71	2958.17	0.00	0.00	9
150.00		130.91	143.66	0.00	0.00	
155.00	(27) attachments	5022.58	5097.39	0.00	5511.24	
	Totals:	28,651.78	48,706.16	0.00	5,511.24	

Linear Appurtenance Segment Forces (Factored)

7/11/2023 TIA-222-H Code: Structure: CT00248-S

Exposure: В Site Name: North Bethel Crest Height: 0.00 155.00 (ft) Height:

D - Stiff Soil Site Class: Base Elev: 0.000 (ft)

Struct Class: || Topography: 1 1.1 Gh:

SBA

Load Case: 1.2D + 1.0W 115 mph Wind

1.20 **Dead Load Factor Wind Load Factor** 1.00

Page: 12

Iterations

erations	25	

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
		Yes	5.00	0,000	1.75	0.73	0.00	0.100	0.000	22.181	0.00	11.95
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.100	0.000	22.181	0.00	74.88
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.100	0.000	22.181	0.00	6.60
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.103	1.008	22.181	0.00	11.95
	1.75" Hybrid		5.00	0.000	3.96	1.65	0.00	0.103	1.008	22.181	0.00	74.88
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.103	1.008	22.181	0.00	6.60
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.105	1.016	22,181	0.00	11.95
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.105	1.016	22.181	0.00	74.88
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.105	1.016	22.181	0.00	6.60
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.108	1.024	22.181	0.00	11.95
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.108	1.024	22.181	0.00	74.88
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.108	1.024	22.181	0.00	6.60
	1 5/8" Hybrid	Yes		0.000	1.75	0.73	0.00	0.111	1.033	22.181	0.00	11.95
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.111	1.033	22.181	0.00	74.88
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.111	1.033	22.181	0.00	6.60
25.00	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.114	1.042	22.200	0.00	11.95
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.114	1.042	22.200	0.00	74.88
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.114	1.042	22.200	0.00	6.60
	1 5/8" Hybrid	Yes	5.00		1.75	0.73	0.00	0.117	1.051	23.200	0.00	11.95
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.117	1.051	23.200	0.00	74.88
	1 5/8" Coax	Yes	5.00	0.000		0.00	0.00	0.117	1.051	23.200	0.00	6.60
	1 5/8" Hybrid	Yes	5.00	0.000	0.00		0.00	0.117	1.062	24.102	0.00	11.95
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.121	1.062	24.102	0.00	74.88
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.121	1.062	24.102	0.00	6.60
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00			1.002	24.767	0.00	9.56
	1.75" Hybrid	Yes	4.00	0.000	1.75	0.58	0.00	0.124	1.071	24.767	0.00	59.90
	1 5/8" Coax	Yes	4.00	0.000	3.96	1.32	0.00	0.124	1.071	24.767	0.00	5.28
44.00	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.124	1.071	24.767	0.00	2.39
	1.75" Hybrid	Yes	1.00	0.000	1.75	0.15	0.00	0.126	1.077	24.927	0.00	14.98
45.00	1 5/8" Coax	Yes	1.00	0.000	3.96	0.33	0.00	0.126	1.077	24.927	0.00	1.32
45.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.126		24.927 25.652	0.00	11.35
49.75	1.75" Hybrid	Yes	4.75	0.000	1.75	0.69	0.00	0.128	1.084	25.652	0.00	71.14
49.75	1 5/8" Coax	Yes	4.75	0.000	3.96	1.57	0.00	0.128	1.084		0.00	6.27
49.75	1 5/8" Hybrid	Yes	4.75	0.000	0.00	0.00	0.00	0.128	1.084	25.652 25.689	0.00	0.60
50.00	1.75" Hybrid	Yes	0.25	0.000	1.75	0.04	0.00	0.128	1.083	25.689	0.00	3.74
50.00	1 5/8" Coax	Yes	0.25	0.000	3.96	0.08	0.00	0.128	1.083		0.00	0.33
50.00	1 5/8" Hybrid	Yes	0.25	0.000	0.00	0.00	0.00	0.128	1.083	25.689	0.00	11.95
55.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.130	1.089	26.398		74.88
55.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.130	1.089	26.398	0.00	6.60
55.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.130	1.089	26.398	0.00	11.95
60.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.134	1.102	27.062	0.00	
60.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.134	1.102	27.062	0.00	74.88
60.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.134	1.102	27.062	0.00	6.60
65.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.138	1.115	27.688	0.00	11.95
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.138	1.115	27.688	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.138	1.115	27.688	0.00	6.60
70.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.143	1.130	28.281	0.00	11.95
70.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.143	1.130	28.281	0.00	74.88

Copyright © 2023 by Tower Engineering Solutions, LLC. All rights reserved.

Linear Appurtenance Segment Forces (Factored)

Structure: CT00248-S

Site Name: North Bethel Height:

155.00 (ft)

Base Elev: 0.000 (ft)

Gh:

1.1

Code:

Topography: 1

TIA-222-H

Exposure: В

Crest Height: 0.00

Site Class: D - Stiff Soil

Struct Class: ||

Page: 13

7/11/2023

Iterations

SBA

25

Load Case: 1.2D + 1.0W 115 mph Wind

Dead Load Factor 1.20 **Wind Load Factor** 1.00

Top Elev		Wind	Length		Exposed Width	Area	CaAa		Cf Adjust	qz	Dead F X Load	
(ft)	Description	Exposed	(ft)	Ca	(in)	(sqft)	(sqft)	Ra	Factor	(psf)	(lb)	(lb)
70.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.143	1.130	28.281	0.00	6.60
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.148	1.145	28.844	0.00	11.95
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.148	1.145	28.844	0.00	74.88
75.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.148	1.145	28.844	0.00	6.60
80.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.154	1.162	29.381	0.00	11.95
80.00	1 5/8" Coax	Yes	5.00	0.000	3,96	1.65	0.00	0.154	1.162	29.381	0.00	74.88
80.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.154	1.162	29.381	0.00	6.60
85.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.160	1.179	29.894	0.00	11.95
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.160	1.179	29.894	0.00	74.88
85.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.160	1.179	29.894	0.00	6.60
89.50	1.75" Hybrid	Yes	4.50	0.000	1.75	0.66	0.00	0.166	1.198	30.338	0.00	10.75
89.50	1 5/8" Coax	Yes	4.50	0.000	3.96	1.48	0.00	0.166	1.198	30.338	0.00	67.39
89.50	1 5/8" Hybrid	Yes	4.50	0.000	0.00	0.00	0.00	0.166	1.198	30.338	0.00	5.94
	1.75" Hybrid	Yes	0.50	0.000	1.75	0.07	0.00	0.169	1.208	30.386	0.00	1.19
90.00	1 5/8" Coax	Yes	0.50	0.000	3.96	0.17	0.00	0.169	1.208	30.386	0.00	7.49
90.00	1 5/8" Hybrid	Yes	0.50	0.000	0.00	0.00	0.00	0.169	1.208	30.386	0.00	0.66
93.75	1.75" Hybrid	Yes	3.75	0.000	1.75	0.55	0.00	0.172	1.217	30.743	0.00	8.96
93.75	1 5/8" Coax	Yes	3.75	0.000	3.96	1.24	0.00	0.172	1.217	30.743	0.00	56.16
93.75	1 5/8" Hybrid	Yes	3.75	0.000	0.00	0.00	0.00	0.172	1.217	30.743	0.00	4.95
95.00	1.75" Hybrid	Yes	1.25	0.000	1.75	0.18	0.00	0.173	1.218	30.859	0.00	2.99
95.00	1 5/8" Coax	Yes	1.25	0.000	3.96	0.41	0.00	0.173	1.218	30.859	0.00	18.72
	1 5/8" Hybrid	Yes	1.25	0.000	0.00	0.00	0.00	0.173	1.218	30.859	0.00	1.65
100.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.177	1.232	31.315	0.00	11.95
100.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.177	1.232	31.315	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.177	1.232	31.315	0.00	6.60
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.185	1.255	31.754	0.00	11.95
105.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.185	1.255	31.754	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.185	1.255	31.754	0.00	6.60
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.194	1.281	32.179	0.00	11.95
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.194	1.281	32.179	0.00	74.88
110.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.194	1.281	32.1 7 9	0.00	6.60
115.00	1.75" Hybrid	Yes	5.00	1.200	1.75	0.73	0.87	0.203	0.000	32.591	31.37	11.95
115.00	1 5/8" Coax	Yes	5.00	0.998	3.96	1.65	1.65	0.203	0.000	32.591	59.02	74.88
115.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.203	0.000	32.591	0.00	6.60
117.00	1.75" Hybrid	Yes	2.00	1.200	1.75	0.29	0.35	0.211	0.000	32.752	12.61	4.78
	1 5/8" Coax	Yes	2.00	0.995	3.96	0.66	0.66	0.211	0.000	32.752	23.67	29.95
117.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.211	0.000	32.752	0.00	2.64
	1.75" Hybrid	Yes	3.00	0.000	1.75	0.44	0.00	0.066	0.000	32.989	0.00	7.17
123.25	1.75" Hybrid	Yes	3.25	0.000	1.75	0.47	0.00	0.068	0.000	33.242	0.00	7.76
	1.75" Hybrid	Yes	1.75	0.000	1.75	0.26	0.00	0.069	0.000	33.376	0.00	4.18
127.00	1.75" Hybrid	Yes	2.00	0.000	1.75	0.29	0.00	0.071	0.000	33.528	0.00	4.78
	1.75" Hybrid	Yes	3.00	0.000	1.75	0.44	0.00	0.073	0.000	33.752	0.00	7.17
135.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.076	0.000	34.118	0.00	11.95
	1.75" Hybrid	Yes	2.00	0.000	1.75	0.29	0.00	0.080	0.000	34.262	0.00	4.78
140.00	1.75" Hybrid	Yes	3.00	0.000	1.75	0.44	0.00	0.082	0.000	34.475	0.00	7.17
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.087	0.000	34.822	0.00	11.95
147.00	1.75" Hybrid	Yes	2.00	0.000	1.75	0.29	0.00	0.091	0.000	34.959	0.00	4.78

Copyright © 2023 by Tower Engineering Solutions, LLC. All rights reserved.

Linear Appurtenance Segment Forces (Factored)

Structure: CT00248-S

TIA-222-H Code:

7/11/2023

Site Name: North Bethel

Exposure: В

Height:

Gh:

155.00 (ft)

Crest Height: 0.00

SBAD

Base Elev: 0.000 (ft)

1.1

Topography: 1

Site Class: Struct Class: II

D - Stiff Soil

Page: 14

Load Case: 1.2D + 1.0W 115 mph Wind

Dead Load Factor

1.20

Wind Load Factor 1.00

Iterations

25

Тор Elev Description (ft)

Wind **Exposed**

Length (ft)

Ca

Exposed Width (in)

CaAa Area (sqft) (sqft)

Ra

Cf Adjust **Factor**

FΧ qz (psf) (lb)

Dead Load (lb)

Totals:

126.7 2,257.8

Calculated Forces

Structure: CT00248-S

1.1

Code:

Exposure:

TIA-222-H

7/11/2023

Height:

Gh:

Site Name: North Bethel 155.00 (ft)

Crest Height: 0.00

25

Iterations

Base Elev: 0.000 (ft)

Topography: 1

Site Class: D - Stiff Soil Struct Class: II

Page: 15

Load Case: 1.2D + 1.0W 115 mph Wind

Dead Load Factor 1.20 **Wind Load Factor** 1.00

Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation		
(ft)	(kips)			(ft-kips)		(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	Sway (deg)	Twist (deg)	Stress Ratio
0.00	-48.66	-28.73	0.00	-3418.0	0.00	3418.00	4331.76	1179.24	5523.56	5037.85	0.00	0.000	0.000	0.690
5.00	-47.02	-28.45	0.00	-3274.3	0.00	3274,36	4271.91	1150.89	5261.13	4848.00	0.09	-0.176	0.000	0.687
10.00	-45.41	-28.17	0.00	-3132.1	0.00	3132.12	4209.88	1122.53	5005.09	4659.10	0.38	-0.357	0.000	0.684
15,00	-43.83	-27.90	0.00	-2991.2	0.00	2991.27	4145.67	1094.18	4755.44	4471.34	0.85	-0.544	0.000	0.680
20.00	-42.29	-27.62	0.00	-2851.7	0.00	2851.79	4079.27	1065.82	4512.17	4284.91	1.52	-0.736	0.000	0.677
25.00	-40.78	-27.35	0.00	-2713.6	0.00	2713.69	4010.69	1037.47	4275.29	4099.98	2.40	-0.934	0.000	0.673
30.00	-39.30	-27.08	0.00	-2576.9	0.00	2576.94	3939.93	1009.12	4044.80	3916.74	3.49	-1.138	0.000	0.669
35.00	-37.85	-26.79	0.00	-2441.5	0.00	2441.54	3866.98	980.76	3820.69	3735.38	4.79	-1.349	0.000	0.664
40.00	-36.45	-26.48	0.00	-2307.5	0.00	2307.58	3791.85	952.41	3602.97	3556.07	6.32	-1.566	0.000	0.659
44.00	-35.38	-26.19	0.00	-2201.6	0.00	2201.65	3730.17	929.72	3433.39	3414.24	7.71	-1.746	0.000	0.655
45.00	-34.84	-26.18	0.00	-2175.4	0.00	2175.46	3714.54	924.05	3391.64	3379.01	8.08	-1.793	0.000	0.654
49.75	-32.59	-25.77	0.00	-2051.1	0.00	2051.12	3683.20	912.78	3309.41	3309.30	9.98	-2.012	0.000	0.629
50.00	-32.47	-25.81	0.00	-2044.6	0.00	2044.68	3679.23	911.37	3299.14	3300.56	10.08	-2.024	0.000	0.629
55.00	-31.14	-25.47	0.00	-1915.6	0.00	1915.62	3598.76	883.01	3097.05	3127.07	12.32	-2.250	0.000	0.622
60.00	-29.85	-25.12	0.00	-1788.2	0.00	1788.28	3516.10	854.66	2901.35	2956.28	14.80	-2.482	0.000	0.614
65.00	-28.59	-24.76	0.00	-1662.7	0.00	1662.70	3431.27	826.30	2712.03	2788.37	17.53	-2.720	0.000	0.606
70.00	-27.37	-24.39	0.00	-1538.9	0.00	1538.91	3344.24	797.95	2529.10	2623.52	20.51	-2.965	0.000	0.596
75.00	-26.17	-24.03	0.00	-1416.9	0.00	1416.94	3255.04	769.60	2352.56	2461.92	23.75	-3.216	0.000	0.585
80.00	-25.02	-23.65	0.00	-1296.8	0.00	1296.82	3137.93	741.24	2182.41	2285.03	27.25	-3.472	0.000	0.577
85.00	-23.90	-23.27	0.00	-1178.5	0.00	1178.55	3017.89	712.89	2018.64	2112.68	31.03	-3.734	0.000	0.567
89.50	-22.96	-22.89	0.00	-1073.8	0.00	1073.83	2909.87	687.37	1876.70	1963.34	34.66	-3.975	0.000	0.556
90.00	-22.75	-22.88	0.00	-1062.3	0.00	1062.38	2897.86	684.53	1861.25	1947.09	35.08	-4.004	0.000	0.555
93.75	-21.49	-22.53	0.00	-976.58	0.00	976.58	2354.99	564.69	1519.91	1569.17	38.31	-4.209	0.000	0.633
95.00	-21.21	-22.48	0.00	-948.42	0.00	948.42	2336.81	558.78	1488.28	1540.62	39.42	-4.280	0.000	0.626
100.00	-20.29	-22.11	0.00	-836.02	0.00	836.02	2262.72	535.16	1365.08	1428.08	44.06	-4.587	0.000	0.596
105.00	-19.40	-21.74	0.00	-725.47	0.00	725.47	2165.47	511.53	1247.20	1305.76	49.02	-4.892	0.000	0.566
110.00	-18.55	-21.36	0.00	-616.79	0.00	616.79	2065.44	487.90	1134.64	1187.31	54.30	-5.192	0.000	0.530
115.00	-17.79	-20.76	0.00	-510.00	0.00	510.00	1965.41	464.27	1027.40	1074.49	59.89	-5.482	0.000	0.486
117.00	-15.70	-18.97	0.00	-468.48	0.00	468.48	1925.40	454.82	986.00	1030.94	62.21	-5.599	0.000	0.464
120.00	-15.28	-18.80	0.00	-411.57	0.00	411.57	1865.39	440.64	925.49	967.30	65.78	-5.767	0.000	0.435
123.25	-14.66	-18.59	0.00	-350.46	0.00	350.46	1005.19	260.39	538.64	515.83	69.76	-5.941	0.000	0.699
125.00	-14.48	-18.51	0.00	-317.93	0.00	317.93	992.91	255.43	518.31	499.75	71.95	-6.032	0.000	0.656
127.00	-10.77	-14.18	0.00	-280.92	0.00	280.92	978.56	249.76	495.55	481.51	74.51	-6.187	0.000	0.598
130.00	-10.50	-14.04	0.00	-238.39	0.00	238.39	956.38	241.25	462.37	454.44	78.46	-6.402	0.000	0.539
135.00	-10.14	-13.78	0.00	-168.19	0.00	168.19	917.66	227.08	409.63	410.21	85.33	-6.714	0.000	0.425
137.00	-7.60	-9.11	0.00	-140.63	0.00	140.63	901.57	221.41	389.42	392.87	88.16	-6.828	0.000	0.368
140.00	-7.42	-8.97	0.00	-113.29	0.00	113.29	876.76	212.90	360.08	367.25	92.49	-6.979	0.000	0.319
145.00	-7.16	-8.72	0.00	-68.45	0.00	68.45	833.68	198.72	313.72	325.74	99.90	-7.182	0.000	0.221
147.00	-4.54	-5.78	0.00	-51.01	0.00	51.01	815.84	193.05	296.07	309.58	102.91	-7.248	0.000	0.171
150.00	-4.41	-5.63	0.00	-33.68	0.00	33.68	781.24	184.55	270.55	283.26	107.48	-7.324	0.000	0.125
155.00	0.00	-5.02	0.00	-5.51	0.00	5.51	721.23	170.37	230.58	241.20	115.17	-7.391	0.000	0.024
														J

Wind Loading - Shaft

CT00248-S Structure:

Site Name: North Bethel

155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1

Height:

Code:

TIA-222-H

Exposure: В

Crest Height: 0.00

Site Class: D - Stiff Soil

Struct Class: ||

Page: 16

7/11/2023

Iterations

SBA

25

Load Case: 0.9D + 1.0W 115 mph Wind

Dead Load Factor

0.90

Topography: 1

Wind Load Factor

1.00

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	Ice Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.70	22.181	24.40	459.26	0.730	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	22.181	24.40	448.29	0.730	0.000	5.00	23.757	17.34	423.2	0.0	1016.5
10.00		1.00		22.181	24.40	437.32	0.736 *	0.000		23.183	17.06	416.2	0.0	991.8
15.00		1.00	0.70	22.181	24.40	426.35	0.741 *	0.000	5.00	22.609	16.76	409.0	0.0	967.0
20.00		1.00		22.181	24.40	415.38	0.747 *	0.000	5.00	22.034	16.47	401.9	0.0	942.3
25.00 25.00		1.00	0.70	22.181	24.40		0.754 *	0.000	5.00	21.460	16.18	394.7	0.0	917.6
30.00		1.00		22.200	24.42	393.61	0.760 *	0.000	5.00	20.886	15.88	387.9	0.0	892.8
35.00		1.00		23.200	25.52	391.15	0.768 *	0.000	5.00	20.311	15.59	397.8	0.0	868.1
40.00		1.00		24.102	26.51	387.25	0.775 *	0.000	5.00	19.737	15.30	405.5	0.0	843.4
	- Section 2	1.00		24.767	27.24	383,29	0.782 *	0.000	4.00	15.376	12.03	327.6	0.0	656.9
45.00 DOL	- Section 2	1.00		24.927	27.42	382.19	0.786 *	0.000	1.00	3.850	3.03	83.0	0.0	326.2
	- Section 1	1.00		25.652	28.22	376.51	0.791 *	0.000	4.75	17.974	14.22	401.2	0.0	1522.5
50.00	- Section 1	1.00		25.689	28.26	382.71	0.791 *	0.000	0.25	0.932	0.74	20.8	0.0	39.8
55.00		1.00		26.398	29.04	375.99	0.795 *	0.000	5.00	18.331	14.58	423.3	0.0	782.8
60.00		1.00		27.062	29.77	368.57	0.804 *	0.000	5.00	17.757	14.28	425.2	0.0	758.1
65.00		1.00		27.688	30.46	360.56	0.814 *	0.000	5.00	17.183	13.99	426.1	0.0	733.3
		1.00		28.281	31.11	352.01	0.825 *	0.000	5.00	16.609	13.70	426.1	0.0	708.6
70.00		1.00		28.844	31.73	342.98	0.836 *	0.000	5.00	16.034	13.40	425.3	0.0	683.8
75.00		1.00		29.381	32.32		0.848 *	0.000	5.00	15.460	13.11	423.7	0.0	659.1
80.00		1.00		29.894	32.88		0.861 *	0.000	5.00	14.886	12.82	421.5	0.0	634.4
85.00	Castion 2	1.00		30.338	33.37	314.55	0.874 *	0.000	4.50	12.906	11.28	376.6	0.0	549.8
	- Section 3	1.00		30.386	33.42	313.52	0.882 *	0.000	0.50	1.432	1.26	42.2	0.0	110.8
90.00	Cartion 2	1.00		30.743	33.82		0.888 *	0.000	3.75	10.555	9.38	317.1	0.0	816.3
	- Section 2	1.00		30.859	33.95	308.97	0.889 *	0.000	1.25	3.446	3.06	104.0	0.0	122.5
95.00		1.00		31.315	34.45	298.21	0.899 *	0.000	5.00	13.427	12.07	415.8	0.0	477.2
00.00		1.00		31.754	34.93		0.916 *	0.000	5.00	12.853	11.78	411.4	0.0	456.6
05.00		1.00		32.179	35.40	275.87	0.935 *	0.000	5.00	12.278	11.48	406.5	0.0	436.0
110.00		1.00		32.591	35.85	264.33	1.200 *	0.000	5.00		14.04	503.5	0.0	415.4
115.00	1(-)	1.00		32.752	36.03		1.200 *	0.000	2.00	4.521	5.42	195.4	0.0	160.4
	ourtenance(s)	1.00		32.989	36.29	252.56		0.000	3.00	6.609	4.82	175.1	0.0	234.4
	- Section 4		1.05		36.57	244.80		0.000	3.25	7.030	5.13	187.6	0.0	395.8
	- Section 3	1.00 1.00		33.376	36.71		0.730	0.000	1.75	3.685	2.69	98.8	0.0	78.8
25.00				33.528	36.88	239.46		0.000	2.00	4.125	3.01	111.1	0.0	88.2
	ourtenance(s)	1.00		33.752	37.13		0.730	0.000	3.00	6.015	4.39	163.0	0.0	128.5
30.00		1.00			37.53	219.79		0.000	5.00	9.565	6.98	262.1	0.0	204.3
35.00		1.00	1.08	34.118 34.262	37.69	214.80		0.000	2.00	3.665	2.68	100.8	0.0	78.3
	ourtenance(s)	1.00			37.92		0.730	0.000	3.00	5.326	3.89	147.4	0.0	113.7
140.00		1.00	1.09		38.30	194.56		0.000	5.00	8.417	6.14	235.4	0.0	- 179.6
145.00		1.00		34.822	38.45	189.43		0.000	2.00	3.206	2.34	90.0	0.0	68.4
	ourtenance(s)	1.00	1.10		38.68	181.69		0.000	3.00	4.637	3.38	130.9	0.0	98.8
150.00		1.00		35.161	39.04	168.67		0.000	5.00		5.31	207.1	0.0	154.8
155.00 Apr	ourtenance(s) ted by Linear Loa	1.00	1.12	35.492	38.04	100.07	0.700	5.000		-		11,721.9	-	20,313.6

Discrete Appurtenance Forces

Structure: CT00248-S

Site Name: North Bethel

Height:

155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1 Code:

TIA-222-H

Exposure: В

Crest Height: 0.00 Site Class: D - Stiff Soil

Struct Class: ||

7/11/2023

SBA

Page: 17

Load Case: 0.9D + 1.0W 115 mph Wind

Topography: 1

Dead Load Factor 0.90 **Wind Load Factor** 1.00

Iterations

25

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (lb-ft)
1	155.00 A	ALU TD-RRH8x20-25	3	35.622	39.185	0.50	0.75	6.11	189.00	0.000	2.000	239.24	0.00	478.47
2	155.00 A	ACU-A20-N	4	35.622	39.185	0.38	0.75	0.21	3.60	0.000	2.000	8.23	0.00	16.46
3	155.00 L	ow Profile Platform	1	35.492	39.041	1.00	1.00	28.00	1350.00	0.000	0.000	1093.16	0.00	0.00
4	155.00 6	6' Lightning rod	1	35.492	39.041	1.00	1.00	0.38	5.85	0.000	0.000	14.84	0.00	0.00
5	155.00 E	Ericsson 4480 B71 + B85	3	35.622	39.185	0.50	0.75	4.30	251.10	0.000	2.000	168.35	0.00	336,70
6	155.00 E	Ericsson 4460 B25 + B66	3	35.622	39.185	0.50	0.75	4.30	294.30	0.000	2.000	168.35	0.00	336.70
7	155.00 E	Ericsson AIR6449 B41	3	35.622	39.185	0.71	1.00	12.03	278.10	0.000	2.000	471.57	0.00	943.13
8	155.00 P	PRK-SFS	1	35.492	39.041	1.00	1.00	9.50	418.42	0.000	0.000	370.89	0.00	0.00
9	155.00 H	IRK14-HD	1	35.492	39.041	1.00	1.00	8.13	272.12	0.000	0.000	317.41	0.00	0.00
10	155.00 H	łRK14-U	1	35.492	39.041	1.00	1.00	6.75	235.55	0.000	0.000	263.53	0.00	0.00
11	155.00 R	RFS	3	35.622	39.185	0.70	1.00	42.50	331.56	0.000	2.000	1665.50	0.00	3331.00
12		LU 800 MHz Filter	3	35.622	39.185	0.38	0.75	0.88	23.76	0.000	2.000	34.38	0.00	68.77
13	147.00 M	IC-PK8-DSH	1	34.959	38.455	1.00	1.00	37.59	1554.30	0.000	0.000	1445.51	0.00	0.00
14	147.00 F	FVV-65C-R3-V1	3	34.959	38.455	0.55	0.75	20.15	191.70	0.000	0.000	774.99	0.00	0.00
15	147.00 T	A08025-B605	3	34.959	38.455	0.50	0.75	2.95	202.50	0.000	0.000	113.62	0.00	0.00
16		A08025-B604	3	34.959	38.455	0.50	0.75	2.95	172.53	0.000	0.000	113.62	0.00	0.00
17		RDIDC-9181-PF-48	1	34.959	38.455	0.75	0.75	1.51	19.71	0.000	0.000	57.97	0.00	0.00
18		Commscope -	1	34.262	37.688	0.57	0.80	2.73	40.50	0.000	0.000	102.75	0.00	0.00
19		Samsung - B2/B66A	3	34.262	37.688	0.62	0.80	3.47	189.81	0.000	0.000	130.94	0.00	0.00
20		amsung - B5/B13	3	34.262		0.66	0.80	3.74	227.88	0.000	0.000	141.14	0.00	0.00
21		amsung VZS01	3	34.262	37.688	0.56	0.80	7.90	235.17	0.000	0.000	297.59	0.00	0.00
22		ow Profile Platform	1	34.262	37.688	1.00	1.00	28.00	1080.00	0.000	0.000	1055.27	0.00	0.00
23		PA-80063/6CF_5	2	34.262	37.688	0.76	0.80	14.58	48.60	0.000	0.000	549.37	0.00	0.00
24		PA-80080/6CF	2	34.262		1.20	0.80	10.37	37.80	0.000	0.000	390.75	0.00	0.00
25		PA-80080/4CF	2	34.262	37.688	0.74	0.80	3.88	21.60	0.000	0.000	146.37	0.00	0.00
26		aelus BSF0020F3V1-1	2	34.262	37.688	0.52	0.80	1.00	31.68	0.000	0.000	37.63	0.00	0.00
27		MA - MX06FIT665-02	6	34.262	37.688	0.76	0.80	37.16	275.40	0.000	0.000	1400.65	0.00	0.00
28	127.00 86		6		36.881	0.50	0.75	0.54	6.48	0.000	0.000	20.02	0.00	0.00
29		ow Profile Platform	1	33.528	36.881	1.00	1.00	25.00	1350.00	0.000	0.000	922.02	0.00	0.00
30	127.00 H		1	33.528	36.881	1.00	1.00	6.75	235.55	0.000	0.000	248.95	0.00	0.00
31	127.00 77		3	33.528	36.881	0.60	0.80	9.90	94.50	0.000	0.000	365.12	0.00	0.00
32		C6-48-60-18-8F	1	33.528	36.881	0.80	0.80	1.18	28.62	0.000	0.000	43.37	0.00	0.00
33		MP65R-BU6DA	3	33.528	36.881	0.54	0.75	20.59	214.38	0.000	0.000	759.39	0.00	0.00
34	,	B) PRK-1245	1	33.528	36.881	1.00	1.00	9.50	418.42	0.000	0.000	350.37	0.00	0.00
35		PA65R-BU6A	3		36.881	0.65	0.75	21.73	145.80	0.000	0.000	801.42	0.00	0.00
36	127.00 44	- · · -	3		36.881	0.50	0.75	2.49	189.00	0.000	0.000	91.74	0.00	0.00
37	127.00 88	- · -	3		36.881	0.50	0.75	2.49	202.50	0.000	0.000	91.74	0.00	0.00
38	127.00 21		6		36.881	0.50	0.75	3.89	76.14	0.000	0.000	143.44	0.00	0.00
39		ricsson - Air 21 B2A/B4P	3		36.027	0.69	0.80	12.57	247.05	0.000	0.000	452.85	0.00	0.00
40		ir 21 B4A/B2P	3	32.752		0.69	0.80	12.57	244.08	0.000	0.000	452.85	0.00	0.00
41	117.00 T-	-Arms	3	32.752	36.027	0.56	0.75	13.50	945.00	0.000	0.000	486.36	0.00	0.00

Totals:

12,380.06

16,803.24

Total Applied Force Summary

CT00248-S Structure:

Code:

TIA-222-H

7/11/2023

Site Name: North Bethel

Exposure:

Site Class:

Height:

155.00 (ft)

Crest Height: 0.00

SBA

Base Elev: 0.000 (ft)

D - Stiff Soil

В

Gh:

1.1

Topography: 1

Struct Class: ||

Page: 18

Iterations

25

Load Case: 0.9D + 1.0W 115 mph Wind

Dead Load Factor Wind Load Factor

0.90

1.00

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (lb)	Torsion MY (lb-ft)	Moment MZ (lb-ft)		
0.00		0.00	0.00	0.00	0.00		
5.00		423.16	1165.07	0.00	0.00		
10.00		416.18	1140.34	0.00	0.00		
15.00		409.02	1115.60	0.00	0.00		
20.00		401.86	1090.86	0.00	0.00		
25.00		394.70	1066.12	0.00	0.00		
30.00		387.87	1041.38	0.00	0.00		
35.00		397.84	1016.64	0.00	0.00		
40.00		405.53	991.90	0.00	0.00		
44.00		327.62	7 75.71	0.00	0.00		
45.00		83.00	355.93	0.00	0.00		
49.75		401.22	1663.64	0.00	0.00		
50.00		20.81	47.22	0.00	0.00		
55.00		423.30	931.35	0.00	0.00		
60.00		425.22	906.61	0.00	0.00		
65.00		426.12	881.88	0.00	0.00		
70.00		426.11	857.14	0.00	0.00		
75.00		425.28	832.40	0.00	0.00		
80.00		423.71	807.66	0.00	0.00		
85.00		421.46	782.92	0.00	0.00		
89.50		376.58	683.48	0.00	0.00		
90.00		42.20	125.62	0.00	0.00		
93.75		317.07	927.72	0.00	0.00		
95.00		104.00	159.67	0.00	0.00		
100.00		415.82	625.78	0.00	0.00		
105.00		411.41	605.17	0.00	0.00		
110.00		406.52	584.55	0.00	0.00		
115.00		593.89	563.94	0.00	0.00		
117.00	(9) attachments	1623.78	1655.93	0.00	0.00		
120.00	(5) attachments	175.07	286.85	0.00	0.00		
123.25		187.64	452.67	0.00	0.00		
125.20		98.75	109.36	0.00	0.00		
123.00	(31) attachments	3948.62	3084.52	0.00	0.00		
130.00	(51) attachments	163.03	162.63	0.00	0.00		
135.00		262.07	261.15	0.00	0.00		
	(25) attachments	4353.31	2289.44	0.00	0.00		
137.00 140.00	(20) attaciments	147.43	127.97	0.00	0.00		
		235.35	203.38	0.00	0.00		
145.00	(11) attachments	2595.71	2218.63	0.00	0.00		
147.00	(11) anacimients	130.91	107.75	0.00	0.00		
150.00 155.00	(27) attachments	5022.58	3823.04	0.00	5511.24		
100.00	(27) attachments Totals:	28,651.78	36,529.62	0.00	5,511.24		

Structure: CT00248-S

Code: TIA-222-H 7/11/2023

Gh:

Site Name: North Bethel

Exposure: В

Height:

155.00 (ft)

Crest Height: 0.00

SBA

Base Elev: 0.000 (ft)

1.1

Topography: 1

Site Class: D - Stiff Soil Struct Class: II

Page: 19

Iterations 25

Load Case: 0.9D + 1.0W 115 mph Wind

Dead Load Factor 0.90 Wind Load Factor 1.00

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
5.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.100	0.000	22.181	0.00	8.96
5.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.100	0.000	22.181	0.00	56.16
5.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.100	0.000	22.181	0.00	4.95
10.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.103	1.008	22.181	0.00	8.96
10.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.103	1.008	22.181	0.00	56.16
10.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.103	1.008	22.181	0.00	4.95
15.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.105	1.016	22.181	0.00	8.96
15.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.105	1.016	22.181	0.00	56.16
15.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.105	1.016	22.181	0.00	4.95
20.00	1. 75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.108	1.024	22.181	0.00	8.96
20.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.108	1.024	22.181	0.00	56.16
20.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.108	1.024	22.181	0.00	4.95
25.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.111	1.033	22.181	0.00	8.96
25.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.111	1.033	22.181	0.00	56.16
25.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.111	1.033	22.181	0.00	4.95
30.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.114	1.042	22.200	0.00	8.96
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.114	1.042	22.200	0.00	56.16
30.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.114	1.042	22.200	0.00	4.95
35.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.117	1.051	23.200	0.00	8.96
35.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.117	1.051	23.200	0.00	56.16
35.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.117	1.051	23.200	0.00	4.95
40.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.121	1.062	24.102	0.00	8.96
40.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.121	1.062	24.102	0.00	56.16
40.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.121	1.062	24.102	0.00	4.95
44.00	1.75" Hybrid	Yes	4.00	0.000	1.75	0.58	0.00	0.124	1.071	24.767	0.00	7.17
44.00	1 5/8" Coax	Yes	4.00	0.000	3.96	1.32	0.00	0.124	1.071	24,767	0.00	44.93
44.00	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.124	1.071	24.767	0.00	3.96
45.00	1.75" Hybrid	Yes	1.00	0.000	1.75	0.15	0.00	0.126	1.077	24.927	0.00	1.79
45.00	1 5/8" Coax	Yes	1.00	0.000	3.96	0.33	0.00	0.126	1.077	24.927	0.00	11.23
45.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.126	1.077	24.927	0.00	0.99
49.75	1. 75" Hybrid	Yes	4.75	0.000	1.75	0.69	0.00	0.128	1.084	25.652	0.00	8.51
49.75	1 5/8" Coax	Yes	4.75	0.000	3.96	1.57	0.00	0.128	1.084	25.652	0.00	53.35
	1 5/8" Hybrid	Yes	4.75	0.000	0.00	0.00	0.00	0.128	1.084	25.652	0.00	4.70
50.00	1.75" Hybrid	Yes	0.25	0.000	1.75	0.04	0.00	0.128	1.083	25.689	0.00	0.45
50.00	1 5/8" Coax	Yes	0.25	0.000	3.96	0.08	0.00	0.128	1.083	25.689	0.00	2.81
50.00	1 5/8" Hybrid	Yes	0.25	0.000	0.00	0.00	0.00	0.128	1.083	25.689	0.00	0.25
55.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.130	1.089	26.398	0.00	8.96
55.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.130	1.089	26.398	0.00	56.16
55.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.130	1.089	26.398	0.00	4.95
60.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.134	1.102	27.062	0.00	8.96
60.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.134	1.102	27.062	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.134	1.102	27.062	0.00	4.95
65.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.138	1.115	27.688	0.00	8.96
65.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.138	1.115	27.688	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.138	1.115	27.688	0.00	4.95
70.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.143	1.130	28.281	0.00	8.96
70.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.143	1.130	28.281	0.00	56.16

 ${\it Copyright @ 2023 \ by \ Tower \ Engineering \ Solutions, \ LLC. \ All \ rights \ reserved.}$

7/11/2023 TIA-222-H Code: CT00248-S Structure:

В Exposure: Site Name: North Bethel Crest Height: 0.00 Height: 155.00 (ft)

D - Stiff Soil Site Class: Base Elev: 0.000 (ft)

Struct Class: II Topography: 1 1.1 Gh:

Load Case: 0.9D + 1.0W 115 mph Wind

0.90 **Dead Load Factor** 1.00 Wind Load Factor

Page: 20

Iterations

25

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
				0.000	0.00	0.00	0.00	0.143	1.130	28.281	0.00	4.95
	1 5/8" Hybrid	Yes	5.00 5.00	0.000	1.75	0.73	0.00	0.148	1.145	28.844	0.00	8.96
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.148	1.145	28.844	0.00	56.16
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.148	1.145	28.844	0.00	4.95
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.154	1.162	29.381	0.00	8.96
	1.75" Hybrid	Yes		0.000	3.96	1.65	0.00	0.154	1.162	29.381	0.00	56.16
	1 5/8" Coax	Yes	5.00 5.00	0.000	0.00	0.00	0.00	0.154	1.162	29.381	0.00	4.95
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.160	1.179	29.894	0.00	8.96
	1.75" Hybrid	Yes		0.000	3.96	1.65	0.00	0.160	1.179	29.894	0.00	56.16
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.160	1.179	29.894	0.00	4.95
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.66	0.00	0.166	1.198	30.338	0.00	8.06
	1.75" Hybrid	Yes	4.50 4.50	0.000	3.96	1.48	0.00	0.166	1.198	30.338	0.00	50.54
	1 5/8" Coax	Yes		0.000	0.00	0.00	0.00	0.166	1.198	30.338	0.00	4.46
	1 5/8" Hybrid	Yes	4.50 0.50	0.000	1.75	0.07	0.00	0.169	1.208	30.386	0.00	0.90
	1.75" Hybrid	Yes	0.50	0.000	3.96	0.17	0.00	0.169	1.208	30.386	0.00	5.62
	1 5/8" Coax	Yes		0.000	0.00	0.00	0.00	0.169	1.208	30.386	0.00	0.50
	1 5/8" Hybrid	Yes	0.50 3.75	0.000	1.75	0.55	0.00	0.172	1.217	30.743	0.00	6.72
	1.75" Hybrid	Yes	3.75	0.000	3.96	1.24	0.00	0.172	1.217	30.743	0.00	42.12
	1 5/8" Coax	Yes		0.000	0.00	0.00	0.00	0.172	1.217	30.743	0.00	3.71
	1 5/8" Hybrid	Yes	3.75 1.25	0.000	1.75	0.18	0.00	0.173	1.218	30.859	0.00	2.24
_	1.75" Hybrid	Yes	1.25	0.000	3.96	0.41	0.00	0.173	1.218	30.859	0.00	14.04
	1 5/8" Coax	Yes		0.000	0.00	0.00	0.00	0.173	1.218	30.859	0.00	1.24
	1 5/8" Hybrid	Yes	1.25	0.000	1.75	0.73	0.00	0.177	1.232	31.315	0.00	8.96
	1.75" Hybrid	Yes	5.00 5.00	0.000	3.96	1.65	0.00	0.177	1.232	31.315	0.00	56.16
	1 5/8" Coax	Yes	5.00 5.00	0.000	0.00	0.00	0.00	0.177	1.232	31.315	0.00	4.95
	1 5/8" Hybrid	Yes		0.000	1.75	0.73	0.00	0.185	1.255	31.754	0.00	8.96
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.185	1.255	31.754	0.00	56.16
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.185	1.255	31.754	0.00	4.95
	1 5/8" Hybrid	Yes	5.00 5.00	0.000	1.75	0.73	0.00	0.194	1.281	32.179	0.00	8.96
	1.75" Hybrid	Yes		0.000	3.96	1.65	0.00	0.194	1.281	32.179	0.00	56.16
	1 5/8" Coax	Yes	5.00 5.00	0.000		0.00	0.00	0.194	1.281	32.179	0.00	4.95
	1 5/8" Hybrid	Yes	5.00	1.200		0.73	0.87	0.203	0.000	32.591	31.37	8.96
	1.75" Hybrid	Yes	5.00	0.998		1.65	1.65	0.203	0.000	32.591	59.02	56.16
	1 5/8" Coax	Yes	5.00	0.000		0.00	0.00	0.203	0.000	32.591	0.00	4.95
	1 5/8" Hybrid	Yes	2.00	1,200		0.29	0.35	0.211	0.000	32.752	12.61	3.58
	1.75" Hybrid	Yes	2.00	0.995		0.66	0.66	0.211	0.000	32.752	23.67	22.46
	1 5/8" Coax	Yes	2.00	0.000		0.00	0.00	0.211	0.000	32.752	0.00	1.98
	1 5/8" Hybrid	Yes	3.00	0.000		0.44	0.00	0.066	0.000	32.989	0.00	5.38
	1.75" Hybrid	Yes	3.25	0.000		0.47	0.00	0.068	0.000	33.242	0.00	5.82
	1.75" Hybrid	Yes	1.75	0.000		0.26	0.00	0.069	0.000	33.376	0.00	3.14
	1.75" Hybrid	Yes	2.00	0.000		0.29	0.00	0.071	0.000	33.528	0.00	3.58
	1.75" Hybrid	Yes	3.00	0.000		0.44	0.00	0.073	0.000	33.752	0.00	5.38
	1.75" Hybrid	Yes	5.00	0.000		0.73	0.00	0.076	0.000	34.118	0.00	8.96
	1.75" Hybrid	Yes	2.00	0.000		0.29	0.00	0.080	0.000	34.262	0.00	3.58
	1.75" Hybrid	Yes	3.00	0.000		0.44	0.00	0.082	0.000	34.475	0.00	5.38
	1.75" Hybrid	Yes	5.00	0.000		0.73	0.00	0.087	0.000	34.822	0.00	8.96
	1.75" Hybrid	Yes	2.00	0.000		0.29	0.00	0.091	0.000	34.959	0.00	3.58
147.00	1.75" Hybrid	Yes	2.00	0.000				rights ross				

Copyright © 2023 by Tower Engineering Solutions, LLC. All rights reserved.

Structure: CT00248-S

Site Name: North Bethel

155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1

Height:

Code:

TIA-222-H

Exposure: В

Crest Height: 0.00

Site Class: D - Stiff Soil Struct Class: II

Load Case: 0.9D + 1.0W 115 mph Wind

Dead Load Factor

0.90

Topography: 1

Wind Load Factor

1.00

Page: 21

7/11/2023

Iterations 25

(\$4) Parameter 1	Cf CaAa Adjust qz F X (sqft) Ra Factor (psf) (lb)	Dead Load (Ib)
---------------------	---	----------------------

Totals: 126.7 1,693.4

Calculated Forces

Structure: CT00248-S

Site Name: North Bethel

155.00 (ft) Height:

Base Elev: 0.000 (ft)

Gh: 1.1

TIA-222-H Code:

В Exposure:

Crest Height: 0.00

D - Stiff Soil Site Class:

Struct Class: II

Page: 22

-7.156

-7.222

105.28

112.80

283.26

241.20

270.55

230.58

193.05

184.55

170.37

0.000

0.000

0.121

0.024

7/11/2023

SBAD

Iterations

25

Load Case: 0.9D + 1.0W 115 mph Wind

0.90 **Dead Load Factor Wind Load Factor** 1.00

Topography: 1

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-36.49	-28.71	0.00	-3368.1	0.00	3368.17	4331.76	1179.24	5523.56	5037.85	0.00	0.000	0.000	0.678
5.00	-35.23	-28.39		-3224.6	0.00	3224.64	4271.91	1150.89	5261.13	4848.00	0.09	-0.173	0.000	0.674
10.00	-34.01	-28.08	0.00	-3082.6	0.00	3082.68	4209.88	1122.53	5005.09	4659.10	0.37	-0.352	0.000	0.670
15.00	-32.80	-27.77	0.00	-2942.3	0.00	2942.30	4145.67	1094.18	4755.44	4471.34	0.84	-0.535	0.000	0.667
20.00	-31.63	-27.46		-2803.4	0.00	2803.47	4079.27	1065.82	4512.17	4284.91	1.50	-0.724	0.000	0.663
25.00	-30.47	-27.15		-2666.1	0.00	2666.18	4010.69	1037.47	4275.29	4099.98	2.36	-0.919	0.000	0.659
30.00	-29.34	-26.85		-2530.4	0.00	2530.41	3939.93	1009.12	4044.80	3916.74	3.43	-1.120	0.000	0.654
35.00	-28.24	-26.54		-2396.1	0.00	2396.15	3866.98	980.76	3820.69	3735.38	4.72	-1.326	0.000	0.650
40.00	-27.17	-26.20		-2263.4	0.00	2263.47	3791.85	952.41	3602.97	3556.07	6.22	-1.539	0.000	0.644
44.00	-26.35	-25.90		-2158.6	0.00	2158.68	3730.17	929.72	3433.39	3414.24	7.59	-1.716	0.000	0.640
45.00	-25.94	-25.87		-2132.7	0.00	2132.78	3714.54	924.05	3391.64	3379.01	7.95	-1.762	0.000	0.639
49.75	-24.24	-25.46		-2009.9	0.00	2009.92	3683.20	912.78	3309.41	3309.30	9.81	-1.977	0.000	0.615
50.00	-24.14	-25.49		-2003.5	0.00	2003.55	3679.23	911.37	3299.14	3300.56	9.92	-1.989	0.000	0.614
55.00	-23.13	-25.12		-1876.1	0.00	1876.13	3598.76	883.01	3097.05	3127.07	12.12	-2.210	0.000	0.607
60.00	-22.14	-24.75		-1750.5	0.00	1750.54	3516.10	854.66	2901.35	2956.28	14.55	-2.437	0.000	0.599
65.00	-21.18	-24.37		-1626.8	0.00	1626.81	3431.27	826.30	2712.03	2788.37	17.23	-2.670	0.000	0.590
70.00	-20.24	-23.99		-1504.9	0.00	1504.97	3344.24	797.95	2529.10	2623.52	20.15	-2.909	0.000	0.581
75.00	-19.33	-23.60		-1385.0	0.00	1385.03	3255.04	769.60	2352.56	2461.92	23.33	-3.155	0.000	0.569
80.00	-18.44	-23.22		-1267.0	0.00	1267.02	3137.93	741.24	2182.41	2285.03	26.77	-3.405	0.000	0.561
85.00	-17.59	-22.82		-1150.9	0.00	1150.95	3017.89	712.89	2018.64	2112.68	30.47	-3.661	0.000	0.552
89.50	-16.88	-22.44		-1048.2	0.00	1048.25	2909.87	687.37	1876.70	1963.34	34.03	-3.897	0.000	0.541
90.00	-16.72	-22.42		-1037.0	0.00	1037.03	2897.86	684.53	1861.25	1947.09	34.44	-3.924	0.000	0.539
93.75	-15.76	-22.08		-952.95	0.00	952.95	2354.99	564.69	1519.91	1569.17	37.60	-4.125	0.000	0.616
95.00	-15.70	-22.00		-925.35	0.00	925.35	2336.81	558.78	1488.28	1540.62	38.69	-4.194	0.000	0.609
100.00	-14.83	-21.63		-815.29	0.00	815.29	2262.72	535.16	1365.08	1428.08	43.24	-4.493	0.000	0.579
105.00	-14.15	-21.24		-707.15	0.00	707.15	2165.47	511.53	1247.20	1305.76	48.10	-4.790	0.000	0.550
110.00	-13.50	-20.86	-	-600.93	0.00	600.93	2065.44	487.90	1134.64	1187.31	53.28	-5.083	0.000	0.514
115.00	-12.93	-20.26		-496.66	0.00	496.66	1965.41	464.27	1027.40	1074.49	58.75	-5.366	0.000	0.471
117.00	-12.93	-18.51		-456.14	0.00	456.14	1925.40	454.82	986.00	1030.94	61.02	-5.480	0.000	0.450
120.00	-11.06	-18.34		-400.61	0.00	400.61	1865.39	440.64	925.49	967.30	64.51	-5.643	0.000	0.422
123.25	-10.59	-18.13		-341.00	0.00	341.00	1005.19	260.39	538.64	515.83	68.40	-5.812	0.000	0.676
125.25	-10.35	-18.05		-309.26	0.00	309.26	992.91	255.43	518.31	499.75	70.55	-5.901	0.000	0.634
	-7.75	-13.82		-273.17	0.00	273.17	978.56	249.76	495.55	481.51	73.05	-6.051	0.000	0.578
127.00	-7.75 -7.55	-13.68		-231.70	0.00	231.70	956.38	241.25	462.37	454.44	76.91	-6.261	0.000	0.521
130.00	-7.27	-13.41		-163.32	0.00	163.32	917.66	227.08	409.63	410.21	83.63	-6.564	0.000	0.410
135.00	-7.27 -5.48	-8.84		-136.49	0.00	136.49	901.57	221.41	389.42	392.87	86.40	-6.674	0.000	0.355
137.00	-5.46 -5.34	-8.69		-109.98	0.00	109.98	876.76	212.90	360.08	367.25	90.63	-6.821	0.000	0.307
140.00	-5.34 -5.15	-8.45		-66.52	0.00	66.52	833.68	198.72	313.72	325.74	97.87	-7.018	0.000	0.212
145.00	-5.15	-6.40		40.62		49.62	815.84	193.05	296.07	309.58	100.82	-7.082	0.000	0.165

815.84

781.24

721.23

49.62

32.82

5.51

0.00

0.00

0.00

-5.60

-5.46

-5.02

-3.26

-3.16

0.00

147.00

150.00

155.00

0.00

0.00

0.00

-49.62

-32.82

-5.51

Wind Loading - Shaft

Structure: CT00248-S

Site Name: North Bethel Height:

155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1 Code:

TIA-222-H

Exposure:

Crest Height: 0.00

Site Class: D - Stiff Soil

Struct Class: ||

7/11/2023

Page: 23

SBA

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Topography: 1

Dead Load Factor 1.20 Wind Load Factor 1.00

Iterations

24

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (lb)	Tot Dead Load (lb)
0.00		1.00	0.70	4.193	4.61	0.00	1.200	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	4.193	4.61	0.00	1.200	0.828	5.00	24.447	29.34	135.3	292.1	1647.4
10.00		1.00	0.70	4.193	4.61	0.00	1.209 *	0.887	5.00	23.923	28.93	133.5	305.8	1628.2
15.00		1.00	0.70	4.193	4.61	0.00	1.219 *	0.924	5.00	23.379	28.49	131.4	310.8	1600.2
20.00		1.00	0.70	4.193	4.61	0.00	1.229 *	0.951	5.00	22.827	28.05	129.4	312.0	1568.4
25.00		1.00	0.70	4.193	4.61	0.00	1.239 *	0.973		22.271	27.60	127.3	310.9	1534.3
30.00		1.00	0.70	4.197	4.62	0.00	1.250 *	0.991	5.00	21.711	27.14	125.3	308.3	1498.7
35.00		1.00	0.73	4.386	4.82	0.00	1.262 *	1.006	5.00	21.150	26.68	128.7	304.6	1462.0
40.00		1.00	0.76	4.556	5.01	0.00	1.274 *	1.019		20.587	26.23	131.4	300.1	1424.6
44.00 Bot -	- Section 2	1.00	0.78	4.682	5.15	0.00	1.286 *	1.029		16.062	20.65	106.4	236.8	1112.6
45.00		1.00	0.79	4.712	5.18		1.292 *	1.032	1.00	4.022	5.20	26.9	60.0	494.9
49. 7 5 Top	- Section 1	1.00	0.81	4.849	5.33	0.00	1.300 *	1.042		18.799	24.45	130.4	279.7	2309.8
50.00		1.00	0.81	4.856	5.34	0.00	1.300 *	1.042	0.25	0.975	1.27	6.8	14.7	67.8
55.00		1.00	0.83	4.990	5.49		1.307 *	1.052		19.208	25.11	137.8	288.1	1331.8
60.00		1.00	0.85	5.116	5.63	0.00	1.322 *	1.062		18.642	24.65	138.7	281.7	1292.4
65.00		1.00	0.87	5.234	5.76	0.00	1.338 *	1.070		18.075	24.19	139.3	274.9	1252.6
70.00		1.00	0.89	5.346	5.88	0.00	1.356 *	1.078		17.507	23.73	139.6	267.8	1212.6
75.00		1.00	0.91	5.453	6.00		1.374 *	1.086		16.939	23.28	139.6	260.5	1172.3
80.00		1.00	0.93	5.554	6.11	0.00	1.394 *	1.093		16.370	22.82	139.4	252.9	1131.7
85.00		1.00	0.94	5.651	6.22		1.415 *	1.099		15.802	22.37	139.0	245.1	1091.0
89.50 Bot -	- Section 3	1.00	0.96	5.735	6.31		1.437 *	1.105	4.50	13.735	19.74	124.5	214.2	947.2
90.00		1.00	0.96	5.744	6.32		1.449 *	1.106	0.50	1.524	2.21	14.0	24.2	171.8
93.75 Top	- Section 2	1.00	0.97	5.811	6.39		1.460 *	1.110		11.249	16.43	105.0	176.6	1265.0
95.00		1.00	0.97	5.834	6.42	_	1.461 *	1.112	1.25	3.678	5.37	34.5	58.4	221.7
100.00		1.00	0.99	5.920	6.51		1.478 *	1.117		14.358	21.22	138.2	225.1	861.5
105.00		1.00	1.00	6.003	6.60		1.506 *	1.123		13.788	20.77	137.1	216.7	825.6
110.00		1.00	1.02	6.083	6.69		1.538 *	1.128		13.218	20.32	136.0	208.2	789.5
115.00		1.00	1.03	6.161	6.78		1.200 *	1.133		12.648	15.18	102.9	199.5	753.4
117.00 Appu	urtenance(s)	1.00	1.03	6.191	6.81		1.200 *	1.135	2.00	4.899	5.88	40.0	78.4	292.2
120.00 Bot -	Section 4	1.00	1.04	6.236	6.86	0.00	1.200	1.138	3.00	7.178	8.61	59.1	114.4	426.9
123.25 Top	- Section 3	1.00	1.05	6.284	6.91	0.00	1.200	1.141	3.25	7.647	9.18	63.4	122.0	649.7
125.00		1.00	1.05	6.309	6.94	0.00	1.200	1.142	1.75	4.018	4.82	33.5	64.6	169.6
127.00 Appu	urtenance(s)	1.00	1.06	6.338	6.97	0.00	1.200	1.144	2.00	4.506	5.41	37.7	72.4	189.9
130.00		1.00	1.07	6.380	7.02	0.00	1.200	1.147	3.00	6.588	7.91	55.5	105.3	276.7
135.00		1.00	1.08	6.450	7.09	0.00	1.200	1.151		10.525	12.63	89.6	166.4	438.8
137.00 Appu	urtenance(s)	1.00	1.08	6.477	7.12	0.00	1.200	1.153	2.00	4.050	4.86	34.6	65.1	169.4
140.00	, i	1.00	1.09	6.517	7.17	0.00	1.200	1.155	3.00	5.904	7.08	50.8	94.3	245.9
145.00		1.00	1.10	6.583	7.24	0.00	1.200	1.160	5.00	9.383	11.26	81.5	147.9	387.3
147.00 Appu	urtenance(s)	1.00	1.10	6.608	7.27	0.00	1.200	1.161	2.00	3.593	4.31	31.3	57.7	367.3 148.8
150.00		1.00	1.11	6.647	7.31	0.00	1.200	1.163	3.00	5.218	6.26	45.8	83.1	214.9
155.00 Appu	urtenance(s)	1.00	1.12	6.709	7.38	0.00	1.200	1.167	5.00	8.241	9.89	73.0	129.1	335.6
	ed by Linear Load					2.30		Totals:	155.00	J.ET1	0.08	3,774.3		34,614.9

Discrete Appurtenance Forces

CT00248-S Structure:

Code:

TIA-222-H

7/11/2023

Site Name: North Bethel

Exposure:

В

Height:

155.00 (ft)

Crest Height: 0.00

Struct Class: ||

SBA

Gh:

Base Elev: 0.000 (ft)

1.1

Topography: 1

Site Class:

D - Stiff Soil

Page: 24

24

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

1.20 **Dead Load Factor** 1.00 Wind Load Factor

Iterations

	Eiev		qz	qzGh	Orient Factor		Total CaAa	Dead Load	Horiz Ecc	Vert Ecc	Wind FX	Mom	Mom Z
No.	(ft) Description	Qty	(psf)	(psf)	х Ка	Ka	(sf)	(Ib)	(ft)	(ft)	(lb)	(lb-ft)	(lb-ft)
1	155.00 ALU TD-RRH8x20-25	3	6.734	7.407	0.50	0.75	6.90	458.64	0.000	2.000	51.13	0.00	102.27
2	155.00 ACU-A20-N	4	6.734	7.407	0.38	0.75	0.51	11.09	0.000	2.000	3.76	0.00	7.52
3	155.00 Low Profile Platform	1	6.709	7.380	1.00	1.00	43.03	2375.47	0.000	0.000	317.61	0.00	0.00
4	155.00 6' Lightning rod	1	6.709	7.380	1.00	1.00	1.11	26.78	0.000	0.000	8.17	0.00	0.00
5	155.00 Ericsson 4480 B71 + B85	5 3	6.734	7.407	0.50	0.75	4.98	428.14	0.000	2.000	36.86	0.00	73.72
6	155.00 Ericsson 4460 B25 + B66	3	6.734	7.407	0.50	0.75	4.98	485.69	0.000	2.000	36.86	0.00	73.72 198.35
7	155.00 Ericsson AIR6449 B41	3	6.734	7.407	0.71	1.00	13.39	550.84	0.000	2.000	99.17	0.00	0.00
8	155.00 PRK-SFS	1	6.709	7.380	1.00	1.00	16.15	679.88	0.000	0.000	119.22	0.00	
9	155.00 HRK14-HD	1	6.709	7.380	1.00	1.00	13.44	905.19	0.000	0.000	99.22	0.00	0.00 0.00
10	155.00 HRK14-U	1	6.709	7.380	1.00	1.00	11.16	783.53	0.000	0.000	82.38	0.00	
11	155.00 RFS	3	6.734	7.407	0.70	1.00	45.14	1245.66	0.000	2.000	334.37	0.00	668.73
12	155.00 ALU 800 MHz Filter	3	6.734	7.407	0.38	0.75	1.36	52.08	0.000	2.000	10.11	0.00	20.21
13	147.00 MC-PK8-DSH	1	6.608	7.269	1.00	1.00	69.02	2822.35	0.000	0.000	501.70	0.00	0.00
14	147.00 FFVV-65C-R3-V1	3	6.608	7.269	0.55	0.75	21.74	788.86	0.000	0.000	158.06	0.00	0.00
15	147.00 TA08025-B605	3	6.608	7.269	0.50	0.75	3.52	336.60	0.000	0.000	25.57	0.00	0.00
16	147.00 TA08025-B604	3	6.608	7.269	0.50	0.75	3.52	294.80	0.000	0.000	25.57	0.00	0.00
17	147.00 RDIDC-9181-PF-48	1	6.608	7.269	0.75	0.75	1.79	49.01	0.000	0.000	13.02	0.00	0.00
18	137.00 Commscope -	1	6.477	7.124	0.57	0.80	3.04	117.86	0.000	0.000	21.69	0.00	0.00
19	137.00 Samsung - B2/B66A	3	6.477	7.124	0.62	0.80	4.14	268.60	0.000	0.000	29.49	0.00	0.00
20	137.00 Samsung - B5/B13	3	6.477	7.124	0.66	0.80	4.46	411.88	0.000	0.000	31.79	0.00	0.00
21	137.00 Samsung VZS01	3	6.477	7.124	0.56	0.80	8.90	435.70	0.000	0.000	63.39	0.00	0.00
22	137.00 Low Profile Platform	1	6.477	7.124	1.00	1.00	43.50	1831.79	0.000	0.000	309.88	0.00	0.00
23	137.00 LPA-80063/6CF_5	2	6.477	7.124	0.76	0.80	15.91	466.94	0.000	0.000	113.33	0.00	0.00
24	137.00 LPA-80080/6CF	2	6.477	7.124	1.20	0.80	12.17	208.48	0.000	0.000	86.68	0.00	0.00
25	137.00 LPA-80080/4CF	2	6.477	7.124	0.74	0.80	10.26	288.80	0.000	0.000	73.10	0.00	0.00
26	137.00 Kaelus BSF0020F3V1-1	2	6.477	7.124	0.52	0.80	1.27	-6.23	0.000	0.000	9.06	0.00	0.00
27	137.00 JMA - MX06FIT665-02	6	6.477	7.124	0.76	0.80	40.93	950.89	0.000	0.000	291.64	0.00	0.00
28	127.00 860 10025	6	6.338	6.972	0.50	0.75	1.29	22.63	0.000	0.000	9.00	0.00	0.00
29	127.00 Low Profile Platform	1	6.338	6.972	1.00	1.00	38.16	2358.20	0.000	0.000	266.04	0.00	0.00
30	127.00 HRK14	1	6.338	6.972	1.00	1.00	11.08	779.43	0.000	0.000	77.22	0.00	0.00
31	127.00 7770	3	6.338	6.972	0.60	0.80	11.13	371.35	0.000	0.000	77.60	0.00	0.00
32	127.00 DC6-48-60-18-8F	1	6.338	6.972	0.80	0.80	1.54	61.00	0.000	0.000	10.76	0.00	0.00
33	127.00 DMP65R-BU6DA	3	6.338	6.972	0.55	0.75	22.76	663.31	0.000	0.000	158.68	0.00	0.00
34	127.00 (3) PRK-1245	1	6.338	6.972	1.00	1.00	16.02	675.60	0.000	0.000	111.70	0.00	0.00
35	127.00 HPA65R-BU6A	3	6.338	6.972	0.66	0.75	24.41	686.30	0.000	0.000	170.15	0.00	0.00
36	127.00 4449	3	6.338	6.972	0.50	0.75	3.00	374.67	0.000	0.000	20.91	0.00	0.00
37	127.00 8843	3	6.338	6.972	0.50	0.75	3.00	404.88	0.000	0.000	20.91	0.00	0.00
38	127.00 21401 TMA	6	6.338	6.972	0.50	0.75	5.54	157.27	0.000	0.000	38.63	0.00	0.00
39	117.00 Ericsson - Air 21 B2A/B4	P 3	6.191	6.810	0.69	0.80	14.01	636.86	0.000	0.000	95.40	0.00	0.00
40	117.00 Air 21 B4A/B2P	3	6.191	6.810	0.69	0.80	14.01	632.90	0.000	0.000	95.40	0.00	0.00
41	117.00 T-Arms	3	6.191	6.810	0.56	0.75	21.16	1526.67	0.000	0.000	144.11	0.00	0.00
-	LONGRADE					Totals		26.620.37			4,249.32		

Totals:

26,620.37

4,249.32

Total Applied Force Summary

Structure: CT00248-S

Site Name: North Bethel

Height:

Gh:

155.00 (ft)

Base Elev: 0.000 (ft)

Topography: 1

Code: TIA-222-H

Exposure: В

Crest Height: 0.00

D - Stiff Soil Site Class:

Struct Class: ||

Page: 25

7/11/2023

Iterations

24

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor

1.20

Wind Load Factor 1.00

Elev (ft)	Description	Lateral FX (-)	Axial FY (-)	Torsion MY	Moment MZ
_	Description	(lb)	(lb)	(lb-ft)	(lb-ft)
0.00		0.00	0.00	0.00	0.00
5.00		135.31	1969.24	0.00	0.00
10.00		133.45	1958.22	0.00	0.00
15.00		131.43	1935.38	0.00	0.00
20.00		129.37	1907.35	0.00	0.00
25.00		127.28	1876.31	0.00	0.00
30.00		125.29	1843.29	0.00	0.00
35.00		128.73	1808.84	0.00	0.00
40.00		131.44	1773.31	0.00	0.00
44.00		106.35	1392.77	0.00	0.00
45.00		26.94	565.02	0.00	0.00
49.75		130.40	2644.18	0.00	0.00
50.00		6.77	85.37	0.00	0.00
55.00		137.83	1685.38	0.00	0.00
60.00		138.72	1647.28	0.00	0.00
65.00		139.29	1608.75	0.00	0.00
70.00		139.57	1569.86	0.00	
75.00		139.61	1530.64		0.00
30.00		139.42		0.00	0.00
B5.00			1491.13	0.00	0.00
		139.03	1451.35	0.00	0.00
89.50		124.53	1272.33	0.00	0.00
90.00		13.96	207.97	0.00	0.00
93.75		105.01	1536.49	0.00	0.00
95.00		34.49	312.28	0.00	0.00
00.00		138.17	1224.50	0.00	0.00
05.00		137.15	1189.41	0.00	0.00
10.00		136.00	1154.15	0.00	0.00
15.00		137.56	1118.74	0.00	0.00
17.00	(9) attachments	388.90	3234.95	0.00	0.00
20.00		59.09	507.06	0.00	0.00
23.25		63.43	736.56	0.00	0.00
25.00		33.46	216.35	0.00	0.00
27.00	(31) attachments	999.30	6798.00	0.00	0.00
130.00	(o i) diadrillollo	55.49	332.41		
35.00		89.60		0.00	0.00
37.00	(2E) attachments		531.81	0.00	0.00
	(25) attachments	1064.67	5181.36	0.00	0.00
40.00		50.78	275.32	0.00	0.00
45.00		81.53	436.48	0.00	0.00
47.00	(11) attachments	75 5.25	4460.10	0.00	0.00
50.00		45.78	226.80	0.00	0.00
55.00	(27) attachments	1271.85	8358.34	0.00	1144.53
	Totals:	8,072.24	70,055.05	0.00	1,144.53

7/11/2023 TIA-222-H Code: Structure: CT00248-S

В Exposure: Site Name: North Bethel Crest Height: 0.00 155.00 (ft) Height:

D - Stiff Soil Site Class: Base Elev: 0.000 (ft)

Struct Class: || Topography: 1 1.1 Gh:

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 1.00 **Wind Load Factor**

Page: 26

Iterations

24

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
_		Yes	5.00	0.000	1.75	1.42	0.00	0.100	0.000	4.193	0.00	23.05
	1.75" Hybrid	Yes	5.00	0.000	3.96	2.34	0.00	0.100	0.000	4.193	0.00	175.21
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.100	0.000	4.193	0.00	18.90
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	1.47	0.00	0.103	1.008	4.193	0.00	24.07
	1.75" Hybrid		5.00	0.000	3.96	2.39	0.00	0.103	1.008	4.193	0.00	181.32
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.103	1.008	4.193	0.00	19.98
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	1.50	0.00	0.105	1.016	4.193	0.00	24.73
	1.75" Hybrid	Yes	5.00	0.000	3.96	2.42	0.00	0.105	1.016	4.193	0.00	185.12
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.105	1.016	4.193	0.00	20.67
	1 5/8" Hybrid	Yes		0.000	1.75	1.52	0.00	0.108	1.024	4.193	0.00	25.22
	1.75" Hybrid	Yes	5.00		3.96	2.44	0.00	0.108	1.024	4.193	0.00	187.92
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.108	1.024	4.193	0.00	21.19
	1 5/8" Hybrid	Yes	5.00	0.000		1.54	0.00	0.111	1.033	4.193	0.00	25.62
	1.75" Hybrid	Yes	5.00	0.000	1.75	2.46	0.00	0.111	1.033	4.193	0.00	190.16
25.00	1 5/8" Coax	Yes	5.00	0.000	3.96		0.00	0.111	1.033	4.193	0.00	21.61
25.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.114	1.042	4.197	0.00	25.96
	1.75" Hybrid	Yes	5.00	0.000	1.75	1.55	0.00	0.114	1.042	4.197	0.00	192.03
30.00	1 5/8" Coax	Yes	5.00	0.000	3.96	2.48	1.5	0.114	1.042	4.197	0.00	21.97
30.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00		1.042	4.386	0.00	26.25
35.00	1.75" Hybrid	Yes	5.00	0.000	1.75	1.57	0.00	0.117	1.051	4.386	0.00	193.64
35.00	1 5/8" Coax	Yes	5.00	0.000	3.96	2.49	0.00	0.117		4.386	0.00	22.27
35.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.117	1.051	4.556	0.00	26.51
40.00	1.75" Hybrid	Yes	5.00	0.000	1.75	1.58	0.00	0.121	1.062		0.00	195.05
	1 5/8" Coax	Yes	5.00	0.000	3.96	2.50	0.00	0.121	1.062	4.556	0.00	22.55
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.121	1.062	4.556		21.36
	1.75" Hybrid	Yes	4.00	0.000	1.75	1.27	0.00	0.124	1.071	4.682	0.00	156.86
	1 5/8" Coax	Yes	4.00	0.000	3.96	2.01	0.00	0.124	1.071	4.682	0.00	18.20
	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.124	1.071	4.682	0.00	5.35
	1.75" Hybrid	Yes	1.00	0.000	1.75	0.32	0.00	0.126	1.077	4.712	0.00	
	1 5/8" Coax	Yes	1.00	0.000	3.96	0.50	0.00	0.126	1.077	4.712	0.00	39.26
	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.126	1.077	4.712	0.00	4.56
	1.75" Hybrid	Yes	4.75	0.000	1.75	1.52	0.00	0.128	1.084	4.849	0.00	25.60
	1 5/8" Coax	Yes	4.75	0.000	3.96	2.39	0.00	0.128	1.084	4.849	0.00	187.54
	1 5/8" Hybrid	Yes	4.75	0.000	0.00	0.00	0.00	0.128	1.084	4.849	0.00	21.85
	1.75" Hybrid	Yes	0.25	0.000	1.75	0.08	0.00	0.128	1.083	4.856	0.00	1.35
	1.76 Tryond 1.5/8" Coax	Yes	0.25	0.000	3.96	0.13	0.00	0.128	1.083	4.856	0.00	9.87
	1 5/8" Hybrid	Yes	0.25	0.000	0.00	0.00	0.00	0.128	1.083	4.856	0.00	1.15
	1.75" Hybrid	Yes	5.00	0.000	1.75	1.61	0.00	0.130	1.089	4.990	0.00	27.15
	•	Yes	5.00	0.000	3.96	2.53	0.00	0.130	1.089	4.990	0.00	198.52
	Table 1	Yes	5.00	0.000	0.00	0.00	0.00	0.130	1.089	4.990	0.00	23.22
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	1.61	0.00	0.134	1.102	5.116	0.00	27.33
	1.75" Hybrid		5.00	0.000	3.96	2.53	0.00	0.134	1.102	5.116	0.00	199.49
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.134	1.102	5.116	0.00	23.41
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	1.62	0.00	0.138	1.115	5.234	0.00	27.50
	1.75" Hybrid	Yes	5.00	0.000	3.96	2.54	0.00	0.138	1.115	5.234	0.00	200.39
	1 5/8" Coax	Yes		0.000	0.00	0.00	0.00	0.138	1.115	5.234	0.00	23.59
	1 5/8" Hybrid	Yes	5.00		1.75	1.63	0.00	0.143	1.130	5.346	0.00	27.66
	1,75" Hybrid	Yes	5.00	0.000		2.55	0.00	0.143	1.130	5.346	0.00	201.23
70.00	1 5/8" Coax	Yes	5.00	0.000	3.96	2.53	0.00	0.173	1.100	0.0.0		

Copyright © 2023 by Tower Engineering Solutions, LLC. All rights reserved.

Structure: CT00248-S

Base Elev: 0.000 (ft)

Code: TIA-222-H

7/11/2023

Site Name: North Bethel

North Bethel 155.00 (ft)

Exposure: B
Crest Height: 0.00

Site Class: D - Stiff Soil

Gh:

Height:

1.1

Topography: 1

Struct Class: ||

Page: 27

Iterations

24

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.00

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
70.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.143	1.130	5.346	0.00	23.75
75.00	1.75" Hybrid	Yes	5.00	0.000	1.75	1.63	0.00	0.148	1.145	5.453	0.00	27.81
75.00	1 5/8" Coax	Yes	5.00	0.000	3.96	2.55	0.00	0.148	1.145	5.453	0.00	202.02
75.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.148	1.145	5.453	0.00	23.91
80.00	1.75" Hybrid	Yes	5.00	0.000	1.75	1.64	0.00	0.154	1.162	5.554	0.00	27.95
80.00	1 5/8" Coax	Yes	5.00	0.000	3.96	2.56	0.00	0.154	1.162	5.554	0.00	202.76
80.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.154	1.162	5.554	0.00	24.06
85.00	1. 7 5" Hybrid	Yes	5.00	0.000	1.75	1.65	0.00	0.160	1.179	5.651	0.00	28.09
85.00	1 5/8" Coax	Yes	5.00	0.000	3.96	2.57	0.00	0.160	1.179	5.651	0.00	203.46
85.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.160	1.179	5.651	0.00	24.20
89.50	1.75" Hybrid	Yes	4.50	0.000	1.75	1.48	0.00	0.166	1.198	5.735	0.00	25.38
89.50	1 5/8" Coax	Yes	4.50	0.000	3.96	2.31	0.00	0.166	1.198	5.735	0.00	183.66
89.50	1 5/8" Hybrid	Yes	4.50	0.000	0.00	0.00	0.00	0.166	1.198	5.735	0.00	21.89
90.00	1.75" Hybrid	Yes	0.50	0.000	1.75	0.17	0.00	0.169	1.208	5.744	0.00	2.82
	1 5/8" Coax	Yes	0.50	0.000	3.96	0.26	0.00	0.169	1.208	5.744	0.00	20.41
90.00	1 5/8" Hybrid	Yes	0.50	0.000	0.00	0.00	0.00	0.169	1.208	5.744	0.00	2.43
93.75	1.75" Hybrid	Yes	3.75	0.000	1.75	1.24	0.00	0.172	1.217	5.811	0.00	21.23
	1 5/8" Coax	Yes	3.75	0.000	3.96	1.93	0.00	0.172	1.217	5.811	0.00	153.46
93.75	1 5/8" Hybrid	Yes	3.75	0.000	0.00	0.00	0.00	0.172	1.217	5.811	0.00	18.32
95.00	1.75" Hybrid	Yes	1.25	0.000	1.75	0:41	0.00	0.173	1.218	5.834	0.00	7.08
95.00	1 5/8" Coax	Yes	1.25	0.000	3.96	0.64	0.00	0.173	1.218	5.834	0.00	51.19
95.00	1 5/8" Hybrid	Yes	1.25	0.000	0.00	0.00	0.00	0.173	1.218	5.834	0.00	6.12
100.00	1.75" Hybrid	Yes	5.00	0.000	1.75	1.66	0.00	0.177	1.232	5.920	0.00	28.45
100.00	1 5/8" Coax	Yes	5.00	0.000	3.96	2.58	0.00	0.177	1.232	5.920	0.00	205.37
100.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.177	1.232	5.920	0.00	24.58
105.00	1.75" Hybrid	Yes	5.00	0.000	1.75	1.66	0.00	0.185	1.255	6.003	0.00	28.56
	1 5/8" Coax	Yes	5.00	0.000	3.96	2.59	0.00	0.185	1.255	6.003	0.00	205.95
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.185	1.255	6.003	0.00	24.70
	1.75" Hybrid	Yes	5.00	0.000	1.75	1.67	0.00	0.194	1.281	6.083	0.00	28.67
	1 5/8" Coax	Yes	5.00	0.000	3.96	2.59	0.00	0.194	1.281	6.083	0.00	206.50
110.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.194	1.281	6.083	0.00	24.81
	1.75" Hybrid	Yes	5.00	1.200	1.75	1.67	2.01	0.203	0.000	6.161	13.61	28.78
	1 5/8" Coax	Yes	5.00	1.200	3.96	2.59	3.11	0.203	0.000	6.161	21.10	207.04
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.203	0.000	6.161	0.00	24.92
	1.75" Hybrid	Yes	2.00	1.200	1.75	0.67	0.80	0.211	0.000	6.191	5.48	11.53
	1 5/8" Coax	Yes	2.00	1.200	3.96	1.04	1.25	0.211	0.000	6.191	8.49	82.90
	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.211	0.000	6.191	0.00	9.99
	1.75" Hybrid	Yes	3.00	0.000	1.75	1.01	0.00	0.066	0.000	6.236	0.00	17.33
	1.75" Hybrid	Yes	3.25	0.000	1.75	1.09	0.00	0.068	0.000	6.284	0.00	18.81
	1.75" Hybrid	Yes	1.75	0.000	1.75	0.59	0.00	0.069	0.000	6.309	0.00	10.14
	1.75" Hybrid	Yes	2.00	0.000	1.75	0.67	0.00	0.071	0.000	6.338	0.00	11.60
	1.75" Hybrid	Yes	3.00	0.000	1.75	1.01	0.00	0.073	0.000	6.380	0.00	17.44
	1.75" Hybrid	Yes	5.00	0.000	1.75	1.69	0.00	0.076	0.000	6.450	0.00	29.16
	1.75" Hybrid	Yes	2.00	0.000	1.75	0.68	0.00	0.080	0.000	6.477	0.00	11.68
	1.75" Hybrid	Yes	3.00	0.000	1.75	1.02	0.00	0.082	0.000	6.517	0.00	17.55
	1.75" Hybrid	Yes	5.00	0.000	1.75	1.70	0.00	0.087	0.000	6.583	0.00	29.33
147.00	1.75" Hybrid	Yes	2.00	0.000	1.75	0.68	0.00	0.091	0.000	6.608	0.00	11.74

Copyright © 2023 by Tower Engineering Solutions, LLC. All rights reserved.

Structure: CT00248-S Code:

TIA-222-H

Site Name: North Bethel

Exposure:

В

7/11/2023

155.00 (ft)

Height: Base Elev: 0.000 (ft)

Crest Height: 0.00

SBA

1.1

Topography: 1

Site Class:

D - Stiff Soil

Gh:

Struct Class: ||

Page: 28

Iterations

24

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor

1.20

1.00 Wind Load Factor

Тор Elev (ft) Description

Wind **Exposed**

Length Ca (ft)

Exposed Width (in)

CaAa Area (sqft) (sqft)

Ra

Cf **Adjust** Factor

FΧ qz (psf) (lb)

Dead Load (lb)

Totals:

5,963.0 48.7

Calculated Forces

Structure: CT00248-S

Site Name: North Bethel Height: 155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1

Code:

TIA-222-H

Exposure: B

Crest Height: 0.00

Site Class: D - Stiff Soil

Struct Class: ||

Iterations

SBA 쀐

24

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Topography: 1

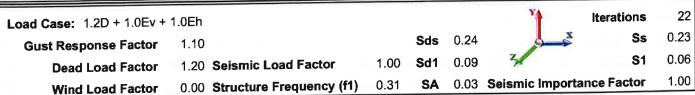
Dead Load Factor 1.20 Wind Load Factor 1.00

7/11/2023

Page: 29

Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	nhi	nhi	Total	Potetice	Detetle:	
Elev	FY (-)	FX (-)	MY (-)	MZ	MX	Moment	Pn	Vn	phi Tn	phi Мп	Deflect	Sway	Rotation Twist	Stress
(ft)	(kips)			(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	(deg)	Ratio
0.00	-70.05	-8.10	0.00	-962.92	0.00	962.92	4331.76	1179.24	5523.56	5037.85	0.00	0.000	0.000	0.207
5.00	-68.08	-8.03	0.00	-922.41	0.00	922.41	4 271.91	1150.89	5261.13	4848.00	0.03	-0.050	0.000	0.206
10.00	-66.11	-7.95	0.00	-882.28	0.00	882.28	4209.88	1122.53	5005.09	4659.10	0.11	-0.101	0.000	0.205
15.00	-64.17	-7.87	0.00	-842.54	0.00	842.54	4145.67	1094.18	4755.44	4471.34	0.24	-0.153	0.000	0.204
20.00	-62.25	-7.80	0.00	-803.17	0.00	803.17	4079.27	1065.82	4512.17	4284.91	0.43	-0.207	0.000	0.203
25.00	-60.37	-7.72	0.00	-764.18	0.00	764.18	4010.69	1037.47	4275.29	4099.98	0.68	-0.263	0.000	0.201
30.00	-58.52	-7.65	0.00	-725.56	0.00	725.56	3939.93	1009.12	4044.80	3916.74	0.98	-0.321	0.000	0.200
35.00	-56.70	-7.57	0.00	-687.32	0.00	687.32	3866.98	980.76	3820.69	3735.38	1.35	-0.380	0.000	0.199
40.00	-54.92	-7.48	0.00	-649.49	0.00	649.49	3791.85	952.41	3602.97	3556.07	1.78	-0.441	0.000	0.197
44.00	-53.53	-7.39	0.00	-619.58	0.00	619.58	3730.17	929.72	3433.39	3414.24	2.17	-0.492	0.000	0.196
45.00	-52.96	-7.39	0.00	-612.19	0.00	612.19	3714.54	924.05	3391.64	3379.01	2.28	-0.505	0.000	0.195
49.75	-50.31	-7.27	0.00	-577.08	0.00	577.08	3683.20	912.78	3309.41	3309.30	2.81	-0.567	0.000	0.188
50.00	-50.22	-7.29	0.00	-575.26	0.00	575.26	3679.23	911.37	3299.14	3300.56	2.84	-0.570	0.000	0.188
55.00	-48.53	-7.19	0.00	-538.83	0.00	538.83	3598.76	883.01	3097.05	3127.07	3.47	-0.633	0.000	0.186
60.00	-46.88	-7.08	0.00	-502.90	0.00	502.90	3516.10	854.66	2901.35	2956.28	4.17	-0.699	0.000	0.184
65.00	-45.26	-6.98	0.00	-467.48	0.00	467.48	3431.27	826.30	2712.03	2788.37	4.94	-0.766	0.000	0.181
70.00	-43.69	-6.87	0.00	-432.60	0.00	432.60	3344.24	797.95	2529.10	2623.52	5.78	-0.834	0.000	0.178
75.00	-42.15	-6.76	0.00	-398.26	0.00	398.26	3255.04	769.60	2352.56	2461.92	6.69	-0.905	0.000	0.175
80.00	-40.65	-6.65	0.00	-364.48	0.00	364.48	3137.93	741.24	2182.41	2285.03	7.67	-0.977	0.000	0.173
85.00	-39.19	-6.53	0.00	-331.25	0.00	331.25	3017.89	712.89	2018.64	2112.68	8.74	-1.051	0.000	0.170
89.50	-37.92	-6.41	0.00	-301.87	0.00	301.87	2909.87	687.37	1876.70	1963.34	9.76	-1.119	0.000	0.167
90.00	-37.71	-6.41	0.00	-298.67	0.00	298.67	2897.86	684.53	1861.25	1947.09	9.88	-1.126	0.000	0.166
93.75	-36.17	-6.30	0.00	-274.63	0.00	274.63	2354.99	564.69	1519.91	1569.17	10.79	-1.184	0.000	0.191
95.00	-35.85	-6.29	0.00	-266.76	0.00	266.76	2336.81	558.78	1488.28	1540.62	11.10	-1.204	0.000	0.189
100.00	-34.62	-6.18	0.00	-235.31	0.00	235.31	2262.72	535.16	1365.08	1428.08	12.41	-1.290	0.000	0.180
105.00	-33.43	-6.06	0.00	-204.42	0.00	204.42	2165.47	511.53	1247.20	1305.76	13.81	-1.376	0.000	0.172
110.00	-32.27	-5.95	0.00	-174.11	0.00	174.11	2065.44	487.90	1134.64	1187.31	15.29	-1.461	0.000	0.162
115.00	-31.15	-5.81	0.00	-144.38	0.00	144.38	1965.41	464.27	1027.40	1074.49	16.87	-1.543	0.000	0.150
117.00	-27.92	-5.35	0.00	-132.77	0.00	132.77	1925.40	454.82	986.00	1030.94	17.52	-1.576	0.000	0.143
120.00	-27.41	-5.30	0.00	-116.71	0.00	116.71	1865.39	440.64	925.49	967.30	18.53	-1.624	0.000	0.135
123.25	-26.67	-5.23	0.00	-99.48	0.00	99.48	1005.19	260.39	538.64	515.83	19.65	-1.673	0.000	0.220
125.00	-26.46	-5.21	0.00	-90.32	0.00	90.32	992.91	255.43	518.31	499.75	20.27	-1.699	0.000	0.208
127.00	-19.69	-4.03	0.00	-79.90	0.00	79.90	978.56	249.76	495.55	481.51	20.99	-1.743	0.000	0.186
130.00	-19.35	-3.99	0.00	-67.82	0.00	67.82	956.38	241.25	462.37	454.44	22.11	-1.804	0.000	0.170
135.00	-18.82	-3.90	0.00	-47.88	0.00	47.88	917.66	227.08	409.63	410.21	24.04	-1.893	0.000	0.138
137.00	-13.67	-2.67	0.00	-40.09	0.00	40.09	901.57	221.41	389.42	392.87	24.84	-1.925	0.000	0.117
140.00	-13.40	-2.62	0.00	-32.07	0.00	32.07	876.76	212.90	360.08	367.25	26.07	-1.968	0.000	0.103
145.00	-12.96	-2.53	0.00	-18.96	0.00	18.96	833.68	198.72	313.72	325.74	28.16	-2.025	0.000	0.074
147.00	-8.53	-1.62	0.00	-13.89	0.00	13.89	815.84	193.05	296.07	309.58	29.02	-2.043	0.000	0.055
150.00	-8.31	-1.57	0.00	-9.01	0.00	9.01	781.24	184.55	270.55	283.26	30.31	-2.064	0.000	0.043
155.00	0.00	-1.27	0.00	-1.14	0.00	1.14	721.23	170.37	230.58	241.20	32.48	-2.081	0.000	0.005

Seismic Segment Forces (Factored)


SBA

Structure: CT00248-S **Code**: TIA-222-H 7/11/2023

Site Name: North Bethel Exposure: B
Height: 155.00 (ft) Crest Height: 0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 30

Top Elev (ft) 0.00 5.00	Description		Wz	Hz				
0.00 5.00	Description		(lb)	(lb)	Ev (lb)	Fs (lb)		R: 1.50
5.00								
			0.00	0.00	0.00	0.00		
			1327.5	2.50	64.01	0.01		
10.00			1300.0	7.50	62.68	0.06		
15.00			1272.5	12.50	61.35	0.17		
20.00			1245.0	17.50	60.03	0.32		
25.00			1217.5	22.50	58.70	0.50		
30.00			1190.1	27.50	57.38	0.72		
35.00			1162.6	32.50	56.05	0.96		
40.00			1135.1	37.50	54.73	1.22		
44.00	Bot - Section 2		888.31	42.00	42.83	0.93		
45.00			402.08	44.50	19.39	0.21		
49.75	Top - Section 1		1879.8	47.38	90.63	5.32	1	
50.00			54.11	49.88	2.61	0.00		
55.00			1067.8	52.50	51.48	2.11		
60.00			1040.3	57.50	50.16	2.40		
65.00			1012.8	62.50	48.83	2.69		
70.00			985.38	67.50	47.51	2.97		
75.00			957.90	72.50	46.18	3.24		
80.00			930.41	77.50	44.86	3.49		
85.00			902.92	82.50	43.53	3.73		
89.50	Bot - Section 3		789.13	87.25	38.05	3.18		
90.00	Dot Gooden.		142.88	89.75	6.89	0.11		
93.75	Top - Section 2		1055.5	91.88	50.89	6.31		
95.00	rop obdion 2		185.66	94.38	8.95	0.21		
100.00			728.33	97.50	35.12	3.39		
105.00			705.42	102.50	34.01	3.51		
110.00			682.51	107.50	32.91	3.61		
115.00			659.61	112.50	31.80	3.70		
117.00	Appurtenance(s)		1853.1	116.00	89.35	31.02		
120.00	Bot - Section 4		330.38	118.50	15.93	1.03		
123.25	Top - Section 3		515.60	121.63	24.86	2.64		
125.20	Top - Section 5		128.32	124.13	6.19	0.17		
	Annustonance(c)		3435.0	126.00	165.61	125.76		
127.00	Appurtenance(s)		188.28	128.50	9.08	0.39		
130.00			302.80	132.50	14.60	1.08		
135.00	A ====================================		2548.8	136.00	122.89	80.67		
137.00	Appurtenance(s)		145.36	138.50	7.01	0.27		
140.00			231.27	142.50	11.15	0.73		
145.00			2467.2	146.00	118.95	87.11		
147.00	Appurtenance(s)		121.70	148.50	5.87	0.22		
150.00			4251.1	152.50	204.96	282.16		
155.00	Appurtenance(s)	Totals:	41,440.9	102.00	1,998.0	668.4	Total Wind:	28,651.8

Calculated Forces

Structure: CT00248-S

Code:

TIA-222-H

Site Name: North Bethel

Exposure:

В

7/11/2023

Height:

155.00 (ft)

Crest Height: 0.00

Base Elev: 0.000 (ft) Gh:

1.1

Topography: 1

Site Class: D - Stiff Soil Struct Class: ||

Page: 31

Load Case: 1.2D + 1.0Ev + 1.0Eh

Gust Response Factor

Sds 0.24

Ss 0.23

Iterations

Dead Load Factor

1.20 Seismic Load Factor

1.00 Sd1 0.09 S1 0.06

22

Wind Load Factor

0.00 Structure Frequency (f1)

0.31 SA 0.03 Seismic Importance Factor

1.00

Seg	Pu	Vu	Tu	N	м	D H. 4								1.00
Elev	FY (-)	FX (-)	MY (-)	Mu MZ	Mu MX	Resultant Moment	phi	phi	phi	phi	Total		Rotation	
(ft)	(kips)		(ft-kips)		(ft-kips)	(ft-kips)	Pn (kips)	Vn (kips)	Tn (ft-kips)	Mn (ft kine)	Deflect (in)	Sway	Twist	Stress
0.00	-50.70	-0.67	0.00	-98.56	0.00	98.56	4331.76	1179,24	5523.56	(ft-kips) 5037.85	(III)	(deg) 0.00	(deg)	Ratio
5.00	-49.09	-0.67	0.00	-95.21	0.00	95.21	4271.91	1179.24	5261.13	4848.00		0.00	0.00	0.031
10.00	-47.50	-0.68	0.00	-91.84	0.00	91.84	4209.88	1122.53	5005.09	4659.10		0.00	-0.01	0.031
15.00	-45.95	-0.68	0.00	-88.45	0.00	88.45	4145.67	1094.18	4755.44	4471.34			-0.01	0.031
20.00	-44.44	-0.69	0.00	-85.03	0.00	85.03	4079.27	1065.82	4512.17	4284.91		0.02 0.04	-0.02	0.031
25.00	-42.96	-0.69	0.00	-81.60	0.00	81.60	4010.69	1003.62	4275.29	4099.98		0.04	-0.02	0.031
30.00	-41.51	-0.69	0.00	-78.16	0.00	78.16	3939.93	1009.12	4044.80	3916.74		0.07	-0.03	0.031
35.00	-40.10	-0.70	0.00	-74.69	0.00	74.69	3866.98	980.76	3820.69	3735.38			-0.03	0.030
40.00	-38.72	-0.70	0.00	-71.22	0.00	71.22	3791.85	952.41	3602.97	3556.07		0.14	-0.04	0.030
44.00	-37.65	-0.70	0.00	-68.43	0.00	68.43	3730.17	929.72	3433.39	3414.24		0.19	-0.05	0.030
45.00	-37.15	-0.70	0.00	-67.73	0.00	67.73	3730.17	929.72	3391.64	3414.24		0.23	-0.05	0.030
49.75	-34.84	-0.69	0.00	-64.41	0.00	64.41	3683.20	912.78	3309.41	3309.30		0.24	-0.05	0.030
50.00	-34.78	-0.70	0.00	-64.23	0.00	64.23	3679.23	911.37	3299.14			0.30	-0.06	0.029
55.00	-33.49	-0.70	0.00	-60.75	0.00	60.75	3598.76	883.01	3097.05	3300.56 3127.07		0.30	-0.06	0.029
60.00	-32.23	-0.70	0.00	-57.26	0.00	57.26	3516.10	854.66	2901.35			0.37	-0.07	0.029
65.00	-31.00	-0.70	0.00	-53.78	0.00	53.78	3431.27	826.30	2712.03	2956.28 2788.37		0.44	-0.08	0.029
70.00	-29.81	-0.70	0.00	-50.29	0.00	50.29	3344.24					0.53	-0.08	0.028
75.00	-28.66	-0.70	0.00	-46.81	0.00	46.81	3255.04	797.95 769.60	2529.10 2352.56	2623.52		0.62	-0.09	0.028
80.00	-27.53	-0.69	0.00	-43.33	0.00	43.33	3137.93			2461.92		0.72	-0.10	0.028
85.00	-26.45	-0.69	0.00	-39.86	0.00	45.55 39.86	3017.89	741.24	2182.41	2285.03		0.83	-0.11	0.028
89.50	-25.50	-0.69	0.00	-36.74	0.00	36.74	2909.87	712.89	2018.64	2112.68		0.94	-0.12	0.028
90.00	-25.32	-0.69	0.00	-36.39	0.00	36.39		687.37	1876.70	1963.34		1.06	-0.12	0.027
93.75	-24.03	-0.68	0.00	-33.80	0.00	33.80	2897.86	684.53	1861.25	1947.09		1.07	-0.13	0.027
95.00	-23.81	-0.69	0.00	-32.95	0.00	32.95	2354.99 2336.81	564.69	1519.91	1569.17		1.17	-0.13	0.032
100.00	-22.94	-0.68	0.00	-29.52	0.00	29.52		558.78	1488.28	1540.62		1.21	-0.14	0.032
105.00	-22.10	-0.68	0.00	-26.10	0.00	29.52 26.10	2262.72	535.16	1365.08	1428.08		1.36	-0.15	0.031
110.00	-21.29	-0.68	0.00	-22.69	0.00	22.69	2165.47	511.53	1247.20	1305.76		1.51	-0.16	0.030
115.00	-20.51	-0.68	0.00	-19.28	0.00		2065.44	487.90	1134.64	1187.31		1.68	-0.17	0.029
117.00	-18.21	-0.64	0.00	-17.93	0.00	19.28	1965.41	464.27	1027.40	1074.49		1.87	-0.18	0.028
120.00	-17.81	-0.64	0.00	-16.00	0.00	17.93	1925.40	454.82	986.00	1030.94		1.94	-0.18	0.027
123.25	-17.18	-0.64	0.00	-13.92	0.00	16.00 13.92	1865.39	440.64	925.49	967.30		2.06	-0.19	0.026
125.20	-17.10	-0.64	0.00	-12.80			1005.19	260.39	538.64	515.83		2.19	-0.20	0.044
127.00	-12.75	-0.50	0.00	-12.60	0.00 0.00	12.80	992.91	255.43	518.31	499.75		2.26	-0.20	0.043
130.00	-12.73	-0.50	0.00	-10.03		11.53	978.56	249.76	495.55	481.51		2.35	-0.21	0.037
135.00	-12.33	-0.50	0.00	-7.53	0.00	10.03	956.38	241.25	462.37	454.44		2.48	-0.22	0.035
137.00	-8.99	-0.41	0.00	-7.53 -6.53	0.00	7.53	917.66	227.08	409.63	410.21		2.71	-0.23	0.032
140.00	-8.81	-0.41	0.00		0.00	6.53	901.57	221.41	389.42	392.87		2.81	-0.23	0.027
145.00	-8.53	-0.41 -0.41	0.00	-5.30	0.00	5.30	876.76	212.90	360.08	367.25		2.96	-0.24	0.024
145.00	-6.53 -5.45	-0.41		-3.26	0.00	3.26	833.68	198.72	313.72	325.74		3.22	-0.25	0.020
150.00	-5.45 -5.30		0.00	-2.45	0.00	2.45	815.84	193.05	296.07	309.58		3.32	-0.25	0.015
155.00	-5.30 0.00	-0.31 -0.28	0.00 0.00	-1.53	0.00	1.53	781.24	184.55	270.55	283.26		3.49	-0.26	0.012
100.00	0.00	-4.20	0.00	0.00	0.00	0.00	721.23	170.37	230.58	241.20		3.76	-0.26	0.000

Seismic Segment Forces (Factored)

Structure: CT00248-S **Code**: TIA-222-H 7/11/2023

Site Name:North BethelExposure:BHeight:155.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Page: 32

Load Case: 0.9D + 1.0Ev +	1.0Eh					Y	Iterations	22
Gust Response Factor	1.10			Sds	0.24	S ^X	Ss	0.23
Dead Load Factor	0.90	Seismic Load Factor	1.00	Sd1	0.09	3/	\$1	0.06
Wind Load Factor	0.00	Structure Frequency (f1)	0.31	SA	0.03	Seismic Importa	nce Factor	1.00

Description Bot - Section 2 Fop - Section 1		0.00 1278.0 1250.5 1223.0 1195.5 1168.0 1140.5 1113.1 1085.6 848.69 392.18	Hz (lb) 0.00 2.50 7.50 12.50 17.50 22.50 27.50 32.50 37.50	0.00 61.62 60.29 58.97 57.64 56.32 54.99 53.67	Fs (lb) 0.00 0.01 0.06 0.16 0.30 0.47 0.67 0.89		R: 1.50
3ot - Section 2		0.00 1278.0 1250.5 1223.0 1195.5 1168.0 1140.5 1113.1 1085.6 848.69	0.00 2.50 7.50 12.50 17.50 22.50 27.50 32.50 37.50	0.00 61.62 60.29 58.97 57.64 56.32 54.99 53.67	0.00 0.01 0.06 0.16 0.30 0.47 0.67		K. 1.30
		1278.0 1250.5 1223.0 1195.5 1168.0 1140.5 1113.1 1085.6 848.69	2.50 7.50 12.50 17.50 22.50 27.50 32.50 37.50	61.62 60.29 58.97 57.64 56.32 54.99 53.67	0.01 0.06 0.16 0.30 0.47 0.67		
		1250.5 1223.0 1195.5 1168.0 1140.5 1113.1 1085.6 848.69	7.50 12.50 17.50 22.50 27.50 32.50 37.50	60.29 58.97 57.64 56.32 54.99 53.67	0.06 0.16 0.30 0.47 0.67		
		1223.0 1195.5 1168.0 1140.5 1113.1 1085.6 848.69	12.50 17.50 22.50 27.50 32.50 37.50	58.97 57.64 56.32 54.99 53.67	0.16 0.30 0.47 0.67		
		1195.5 1168.0 1140.5 1113.1 1085.6 848.69	17.50 22.50 27.50 32.50 37.50	57.64 56.32 54.99 53.67	0.30 0.47 0.67		
		1168.0 1140.5 1113.1 1085.6 848.69	22.50 27.50 32.50 37.50	56.32 54.99 53.67	0.47 0.67		
		1140.5 1113.1 1085.6 848.69	27.50 32.50 37.50	54.99 53.67	0.67		
		1113.1 1085.6 848.69	32.50 37.50	53.67			
		1085.6 848.69	37.50		0.89		
		848.69			5.50		
			40.00	52.34	1.13		
Fop - Section 1		202.18	42.00	40.92	0.86		
Fop - Section 1		33Z.10	44.50	18.91	0.21		
		1832.8	47.38	88.37	5.13		
		51.64	49.88	2.49	0.00		
		1018.3	52.50	49.10	1.94		
		990.84	57.50	47.77	2.21		
		963.36	62.50	46.45	2.47		
		935.87	67.50	45.12	2.72		
		908.38	72.50	43.80	2.95		
			77.50	42.47	3.17		
				41.15	3.37		
Sot - Section 3				35.90	2.87		
301 - 3681011 3					0.10		
For Section 2					5.96		
rop - decilon 2					0.18		
					2.98		
					3.08		
					3.15		
				29.41	3.21		
\nnurtonance(e)				88.39			
11					0.94		
					2.48		
op - Section 3							
\(a)							
Appurtenance(s)							
\(a)							
Appurtenance(s)							
\							
Appurtenance(s)							
-15							
Appurtenance(s)		4240.1	152.50	204.12			
T 4 4	ot - Section 3 op - Section 2 ppurtenance(s) ot - Section 4 op - Section 3 ppurtenance(s) ppurtenance(s) ppurtenance(s)	ppurtenance(s) ot - Section 4 op - Section 3 ppurtenance(s) ppurtenance(s)	880.89 853.40 ot - Section 3 744.56 137.93 op - Section 2 1018.4 173.28 678.81 655.90 633.00 610.09 ppurtenance(s) 1833.3 ot - Section 4 312.90 op - Section 3 496.65 ppurtenance(s) 3423.3 176.91 283.85 ppurtenance(s) 2541.2 140.60 223.33 ppurtenance(s) 1873.4	880.89 77.50 853.40 82.50 ot - Section 3 744.56 87.25 ap - Section 2 1018.4 91.88 678.81 97.50 655.90 102.50 633.00 107.50 610.09 112.50 ppurtenance(s) 1833.3 116.00 ot - Section 4 312.90 118.50 ap - Section 3 496.65 121.63 appurtenance(s) 3423.3 126.00 ppurtenance(s) 3423.3 126.00 ppurtenance(s) 3423.3 126.00 ppurtenance(s) 3423.3 126.00 ppurtenance(s) 2541.2 136.00 ppurtenance(s) 2541.2 136.00 ppurtenance(s) 138.50 ppurtenance(s) 2464.0 146.00 ppurtenance(s) 140.60 148.50	880.89 77.50 42.47 853.40 82.50 41.15 ot - Section 3 744.56 87.25 35.90 137.93 89.75 6.65 op - Section 2 1018.4 91.88 49.10 173.28 94.38 8.35 678.81 97.50 32.73 655.90 102.50 31.62 633.00 107.50 30.52 610.09 112.50 29.41 ppurtenance(s) 1833.3 116.00 88.39 ot - Section 4 312.90 118.50 15.09 op - Section 3 496.65 121.63 23.95 ppurtenance(s) 3423.3 126.00 165.05 ppurtenance(s) 176.91 128.50 8.53 283.85 132.50 13.69 ppurtenance(s) 2541.2 136.00 122.52 140.60 138.50 6.78 223.33 142.50 10.77 ppurtenance(s) 146.00 118.80 118.73 148.50 5.72	880.89 77.50 42.47 3.17 853.40 82.50 41.15 3.37 ot - Section 3 744.56 87.25 35.90 2.87 137.93 89.75 6.65 0.10 op - Section 2 1018.4 91.88 49.10 5.96 173.28 94.38 8.35 0.18 678.81 97.50 32.73 2.98 655.90 102.50 31.62 3.08 633.00 107.50 30.52 3.15 610.09 112.50 29.41 3.21 ppurtenance(s) 1833.3 116.00 88.39 30.78 ot - Section 4 312.90 118.50 15.09 0.94 op - Section 3 18.12 124.13 5.69 0.15 ppurtenance(s) 3423.3 126.00 165.05 126.61 176.91 128.50 8.53 0.35 283.85 132.50 13.69 0.96 ppurtenance(s) 2464.0 138.50 6.78 0.26 ppurtenance(s) 2464.0 146.00 118.80 88.07 ppurtenance(s) 118.73 148.50 5.72 0.21	880.89 77.50 42.47 3.17 853.40 82.50 41.15 3.37 ot - Section 3 744.56 87.25 35.90 2.87 137.93 89.75 6.65 0.10 op - Section 2 1018.4 91.88 49.10 5.96 173.28 94.38 8.35 0.18 678.81 97.50 32.73 2.98 655.90 102.50 31.62 3.08 633.00 107.50 30.52 3.15 610.09 112.50 29.41 3.21 ppurtenance(s) 1833.3 116.00 88.39 30.78 ot - Section 4 312.90 118.50 15.09 0.94 op - Section 3 496.65 121.63 23.95 2.48 118.12 124.13 5.69 0.15 ppurtenance(s) 3423.3 126.00 165.05 126.61 176.91 128.50 8.53 0.35 283.85 132.50 13.69 0.96 ppurtenance(s) 2541.2 136.00 122.52 81.28 140.60 138.50 6.78 0.26 223.33 142.50 10.77 0.69 ppurtenance(s) 2464.0 146.00 118.80 88.07 118.73 148.50 5.72 0.21

Calculated Forces

Structure: CT00248-S **Code**: TIA-222-H 7/11/2023

Site Name:North BethelExposure:BHeight:155.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 33

Load Case: 0.9D + 1.0Ev + 1.0Eh **Iterations** 22 **Gust Response Factor** Sds 0.24 Ss 0.23 **Dead Load Factor** 0.90 Seismic Load Factor 1.00 Sd1 0.09 **\$1** 0.06 Wind Load Factor 0.00 Structure Frequency (f1) 0.31 SA 0.03 Seismic Importance Factor 1.00

Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation Sway	Rotation Twist	Stress
(ft)	(kips)	(kips)	(ft-kips)		(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	(deg)	Ratio
0.00	-38.47	-0.67	0.00	-97.32	0.00	97.32	4331.76	1179.24	5523.56	5037.85		0.00	0.00	0.028
5.00	-37.24	-0.67	0.00	-93.97	0.00	93.97	4271.91	1150.89	5261.13	4848.00		0.00	-0.01	0.028
10.00	-36.04	-0.68	0.00	-90.61	0.00	90.61	4209.88	1122.53	5005.09	4659.10		0.01	-0.01	0.028
15.00	-34.86	-0.68	0.00	-87.23	0.00	87.23	4145.67	1094.18	4755.44	4471.34		0.02	-0.02	0.028
20.00	-33.72	-0.68	0.00	-83.83	0.00	83.83	4079.27	1065.82	4512.17	4284.91		0.04	-0.02	0.028
25.00	-32.59	-0.68	0.00	-80.43	0.00	80.43	4010.69	1037.47	4275.29	4099.98		0.07	-0.03	0.028
30.00	-31.50	-0.69	0.00	-77 .01	0.00	77.01	3939.93	1009.12	4044.80	3916.74		0.10	-0.03	0.028
35.00	-30.43	-0.69	0.00	-73.58	0.00	73.58	3866.98	980.76	3820.69	3735.38		0.14	-0.04	0.028
40.00	-29.38	-0.69	0.00	-70.14	0.00	70.14	3791.85	952.41	3602.97	3556.07		0.18	-0.05	0.027
44.00	-28.56	-0.69	0.00	-67.38	0.00	67.38	3730.17	929.72	3433.39	3414.24		0.22	-0.05	0.027
45.00	-28.19	-0.69	0.00	-66.69	0.00	66.69	3714.54	924.05	3391.64	3379.01		0.24	-0.05	0.027
49.75	-26.44	-0.69	0.00	-63.41	0.00	63.41	3683.20	912.78	3309.41	3309.30		0.29	-0.06	0.026
50.00	-26.39	-0.69	0.00	-63.24	0.00	63.24	3679.23	911.37	3299.14	3300.56		0.30	-0.06	0.026
55.00	-25.41	-0.69	0.00	-59.80	0.00	59.80	3598.76	883.01	3097.05	3127.07		0.36	-0.07	0.026
60.00	-24.45	-0.69	0.00	-56.36	0.00	56.36	3516.10	854.66	2901.35	2956.28		0.44	-0.07	0.026
65,00	-23.52	-0.69	0.00	-52.93	0.00	52.93	3431.27	826.30	2712.03	2788.37		0.52	-0.08	0.026
70.00	-22.62	-0.69	0.00	-49.50	0.00	49.50	3344.24	797.95	2529.10	2623.52		0.61	-0.09	0.026
75.00	-21.75	-0.68	0.00	-46.07	0.00	46.07	3255.04	769.60	2352.56	2461.92		0.71	-0.10	0.025
80.00	-20.90	-0.68	0.00	-42.64	0.00	42.64	3137.93	741.24	2182.41	2285.03		0.81	-0.11	0.025
85.00	-20.07	-0.68	0.00	-39.23	0.00	39.23	3017.89	712.89	2018.64	2112.68		0.93	-0.11	0.025
89.50	-19.35	-0.68	0.00	-36.17	0.00	36.17	2909.87	687.37	1876.70	1963.34		1.04	-0.12	0.025
90.00	-19.22	-0.68	0.00	-35.83	0.00	35.83	2897.86	684.53	1861.25	1947.09		1.06	-0.12	0.025
93.75	-18.24	-0.67	0.00	-33.28	0.00	33.28	2354.99	564.69	1519.91	1569.17		1.16	-0.13	0.029
95.00	-18.08	-0.67	0.00	-32.44	0.00	32.44	2336.81	558.78	1488.28	1540.62		1.19	-0.13	0.029
100.00	-17.42	-0.67	0.00	-29.07	0.00	29.07	2262.72	535.16	1365.08	1428.08		1.34	-0.14	0.028
105.00	-16.78	-0.67	0.00	-25.71	0.00	25.71	2165.47	511.53	1247.20	1305.76		1.49	-0.15	0.027
110.00	-16.16	-0.67	0.00	-22.35	0.00	22.35	2065.44	487.90	1134.64	1187.31		1.66	-0.17	0.027
115.00	-15.57	-0.67	0.00	-19.01	0.00	19.01	1965.41	464.27	1027.40	1074.49		1.84	-0.18	0.026
117.00	-13.83	-0.63	0.00	-17.68	0.00	17.68	1925.40	454.82	986.00	1030.94		1.91	-0.18	0.024
120.00	-13.52	-0.63	0.00	-15.78	0.00	15.78	1865.39	440.64	925.49	967.30		2.03	-0.19	0.024
123.25	-13.05	-0.63	0.00	-13.73	0.00	13.73	1005.19	260.39	538.64	515.83		2.16	-0.19	0.040
125.00	-12.93	-0.63	0.00	-12.63	0.00	12.63	992.91	255.43	518.31	499.75		2.23	-0.20	0.038
127.00	-9.68	-0.49	0.00	-11.38	0.00	11.38	978.56	249.76	495.55	481.51		2.31	-0.20	0.034
130.00	-9.51	-0.49	0.00	-9.90	0.00	9.90	956.38	241.25	462.37	454.44		2.44	-0.21	0.032
135.00	-9.24	-0.49	0.00	-7.43	0.00	7.43	917.66	227.08	409.63	410.21		2.67	-0.23	0.028
137.00	-6.83	-0.40	0.00	-6.45	0.00	6.45	901.57	221.41	389.42	392.87		2.77	-0.23	0.024
140.00	-6.69	-0.40	0.00	-5.24	0.00	5.24	876.76	212.90	360.08	367.25		2.92	-0.24	0.022
145.00	-6.48	-0.40	0.00	-3.23	0.00	3.23	833.68	198.72	313.72	325.74		3.17	-0.25	0.018
147.00	-4.14	-0.30	0.00	-2.43	0.00	2.43	815.84	193.05	296.07	309.58		3.28	-0.25	0.013
150.00	-4.03	-0.30	0.00	-1.52	0.00	1.52	781.24	184.55	270.55	283.26		3.43	-0.25	0.011
155.00	0.00	-0.29	0.00	0.00	0.00	0.00	721.23	170.37	230.58	241.20		3.70	-0.26	0.000

Wind Loading - Shaft

7/11/2023 TIA-222-H Code: CT00248-S Structure:

В Exposure: Site Name: North Bethel Crest Height: 0.00 155.00 (ft) Height:

D - Stiff Soil Site Class: Base Elev: 0.000 (ft)

Struct Class: II Topography: 1 1.1 Gh:

Load Case: 1.0D + 1.0W 60 mph Wind

1.00 **Dead Load Factor** 1.00 **Wind Load Factor**

Page: 34

Iterations

24

Elev (ft) D	escription	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load ice (lb)	Tot Dead Load (Ib)
0.00		1.00	0.70	5.402	5.94	239.61	0.730	0.000	0.00	0.000	0.00	0.0		0.0
5.00		1.00	0.70	5.402	5.94	233.89	0.730	0.000	5.00	23.757	17.34	103.1	0.0	1129.5
10.00		1.00	0.70	5.402	5.94		0.736 *	0.000		23.183	17.06	101.4	0.0	1102.0
15.00		1.00	0.70	5.402	5.94	222.44	0.741 *	0.000	5.00	22.609	16.76	99.6	0.0	1074.5
20.00		1.00	0.70	5.402	5.94	216.72	0.747 *	0.000		22.034	16.47	97.9	0.0	1047.0
25.00		1.00	0.70	5.402	5.94	211.00	0.754 *	0.000		21.460	16.18	96.1	0.0	1019.5
30.00		1.00	0.70	5.407	5.95	205.36	0.760 *	0.000	5.00	20.886	15.88	94.5		992.0
35.00		1.00	0.73	5.650	6.22		0.768 *	0.000		20.311	15.59	96.9		964.5
40.00		1.00	0.76	5.870	6.46		0.775 *	0.000		19.737	15.30	98.8		937.1
44.00 Bot - Se	ection 2	1.00	0.78	6.032	6.64		0.782 *	0.000	4.00	15.376	12.03	79.8		729.9
45.00		1.00	0.79	6.071	6.68		0.786 *	0.000	1.00	3.850	3.03	20.2		362.5
49.75 Top - S	ection 1	1.00	0.81	6.248	6.87	196.44	0.791 *	0.000		17.974	14.22	97.7		1691.7
50.00		1.00	0.81	6.257	6.88		0.791 *	0.000	0.25	0.932	0.74	5.1	0.0	44.2
55.00		1.00	0.83	6.429	7.07		0.795 *	0.000			14.58	103.1	0.0	869.8
60.00		1.00	0.85	6.591	7.25	192.30	0.804 *	0.000	5.00	17.757	14.28	103.6	0.0	842.3
65.00		1.00	0.87	6.744	7.42		0.814 *	0.000	5.00		13.99	103.8		814.8
70.00		1.00	0.89	6.888	7.58	183.66	0.825 *	0.000		16.609	13.70	103.8		787.3
75.00		1.00	0.91	7.025	7.73	178.95	0.836 *	0.000		16.034	13.40	103.6		759.8
80.00		1.00	0.93	7.156	7.87	174.02	0.848 *	0.000		15.460	13.11	103.2		732.3
85.00		1.00	0.94	7.281	8.01		0.861 *	0.000		14.886	12.82	102.7	0.0	704.9
89.50 Bot - Se	ection 3	1.00	0.96	7.389	8.13		0.874 *	0.000		12.906	11.28	91.7		610.9
90.00		1.00	0.96	7.401	8.14		0.882 *	0.000	0.50	1.432	1.26	10.3		123.1
93.75 Top - S	Section 2	1.00	0.97	7.488	8.24	159.48	0.888 *	0.000		10.555	9.38	77.2		907.0
95.00		1.00	0.97	7.516	8.27	161.20	0.889 *	0.000	1.25	3.446	3.06	25.3		136.1
00.00		1.00	0.99	7.627	8.39	155.59	0.899 *	0.000		13.427	12.07	101.3		530.3
05.00		1.00	1.00	7.734	8.51		0.916 *	0.000		12.853	11.78	100.2		507.4
10.00		1.00	1.02	7.838	8.62	143.93	0.935 *	0.000		12.278	11.48	99.0		484.4
115.00		1.00	1.03	7.938	8.73		1.200 *	0.000	5.00		14.04	122.6		461.5
117.00 Appurte	enance(s)	1.00	1.03	7.977	8.77	135.47	1.200 *	0.000	2.00	4.521	5.42	47.6		178.2
20.00 Bot - S		1.00	1.04	8.035	8.84	131.77		0.000	3.00	6.609	4.82	42.6		260.4
23.25 Top - S		1.00	1.05	8.096	8.91	127.72		0.000	3.25	7.030	5.13	45.7		439.8
25.00		1.00	1.05	8.129	8.94	127.46		0.000	1.75		2.69	24.1	0.0	87.5
127.00 Appurte	enance(s)	1.00	1.06	8.166	8.98	124.94		0.000	2.00	4.125	3.01	27.0		98.0
30.00	` '	1.00	1.07	8.221	9.04	121.12		0.000	3.00	6.015	4.39	39.7		142.8
35.00		1.00	1.08	8.310	9.14	114.67		0.000	5.00	9.565	6.98	63.8		227.0
37.00 Appurte	enance(s)	1.00	1.08	8.345	9.18	112.07		0.000	2.00	3.665	2.68	24.6		87.0
40.00		1.00	1.09	8.397	9.24	108.14		0.000	3.00	5.326	3.89	35.9		126.3
45.00		1.00	1.10	8.481	9.33	101.51		0.000	5.00	8.417	6.14	57.3		199.5
47.00 Appurt	enance(s)	1.00	1.10	8.514	9.37	98.83		0.000	2.00	3.206	2.34	21.9		76.0
50.00		1.00	1.11	8.564	9.42	94.80		0.000	3.00	4.637	3.38	31.9		109.8
155.00 Appurt	enance(s)	1.00	1.12	8.644	9.51	88.00	0.730	0.000	5.00	7.268	5.31	50.5	0.0	172.0
	by Linear Loa	d Ra Effect						Totals:	155.00			2,855.0)	22,570.6

Discrete Appurtenance Forces

Structure: CT00248-S Site Name: North Bethel

Topography: 1

155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1

Height:

Code: TIA-222-H

Exposure:

Crest Height: 0.00

Site Class: D - Stiff Soil

Struct Class: ||

7/11/2023

Page: 35

Iterations

24

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00

	Elev			qz	qzGh	Orient Factor		Total CaAa	Dead Load	Horiz Ecc	Vert Ecc	Wind FX	Mom Y	Mom Z
No.	(ft)	Description	Qty	(psf)	(psf)	х Ка	Ka	(sf)	(lb)	(ft)	(ft)	(lb)	(lb-ft)	(lb-ft)
1		ALU TD-RRH8x20-25	3	8.676	9.544	0.50	0.75	6.11	210.00	0.000	2.000	58.27	0.00	116.54
2	155.00	ACU-A20-N	4	8.676	9.544	0.38	0.75	0.21	4.00	0.000	2.000	2.00	0.00	4.01
3		Low Profile Platform	1	8.644	9.509	1.00	1.00	28.00	1500.00	0.000	0.000	266.25	0.00	0.00
4	155.00	6' Lightning rod	1	8.644	9.509	1.00	1.00	0.38	6.50	0.000	0.000	3.61	0.00	0.00
5	155.00	Ericsson 4480 B71 + B85	3	8.676	9.544	0.50	0.75	4.30	279.00	0.000	2.000	41.00	0.00	82.01
6	155.00	Ericsson 4460 B25 + B66	3	8.676	9.544	0.50	0.75	4.30	327.00	0.000	2.000	41.00	0.00	82.01
7	155.00	Ericsson AIR6449 B41	3	8.676	9.544	0.71	1.00	12.03	309.00	0.000	2.000	114.85	0.00	229.71
8	155.00	PRK-SFS	1	8.644	9.509	1.00	1.00	9.50	464.91	0.000	0.000	90.33	0.00	0.00
9	155.00	HRK14-HD	1	8.644	9.509	1.00	1.00	8.13	302.36	0.000	0.000	77.31	0.00	0.00
10	155.00	HRK14-U	1	8.644	9.509	1.00	1.00	6.75	261.72	0.000	0.000	64.18	0.00	0.00
11	155.00	RFS	3	8.676	9.544	0.70	1.00	42.50	368.40	0.000	2.000	405.65	0.00	811.29
12	155.00	ALU 800 MHz Filter	3	8.676	9.544	0.38	0.75	0.88	26.40	0.000	2.000	8.37	0.00	16.75
13	147.00	MC-PK8-DSH	1	8.514	9.366	1.00	1.00	37.59	1727.00	0.000	0.000	352.06	0.00	0.00
14	147.00	FFVV-65C-R3-V1	3	8.514	9.366	0.55	0.75	20.15	213.00	0.000	0.000	188.76	0.00	0.00
15	147.00	TA08025-B605	3	8.514	9.366	0.50	0.75	2.95	225.00	0.000	0.000	27.67	0.00	0.00
16	147.00	TA08025-B604	3	8.514	9.366	0.50	0.75	2.95	191.70	0.000	0.000	27.67	0.00	0.00
17	147.00	RDIDC-9181-PF-48	1	8.514	9.366	0.75	0.75	1.51	21.90	0.000	0.000	14.12	0.00	0.00
18	137.00	Commscope -	1	8.345	9.179	0.57	0.80	2.73	45.00	0.000	0.000	25.03	0.00	0.00
19	137.00	Samsung - B2/B66A	3	8.345	9.179	0.62	0.80	3.47	210.90	0.000	0.000	31.89	0.00	0.00
20	137.00	Samsung - B5/B13	3	8.345	9.179	0.66	0.80	3.74	253.20	0.000	0.000	34.38	0.00	0.00
21	137.00	Samsung VZS01	3	8.345	9.179	0.56	0.80	7.90	261.30	0.000	0.000	72.48	0.00	0.00
22	137.00	Low Profile Platform	1	8.345	9.179	1.00	1.00	28.00	1200.00	0.000	0.000	257.02	0.00	0.00
23	137.00	LPA-80063/6CF_5	2	8.345	9.179	0.76	0.80	14.58	54.00	0.000	0.000	133.80	0.00	0.00
24	137.00	LPA-80080/6CF	2	8.345	9.179	1.20	0.80	10.37	42.00	0.000	0.000	95.17	0.00	0.00
25	137.00	LPA-80080/4CF	2	8.345	9.179	0.74	0.80	3.88	24.00	0.000	0.000	35.65	0.00	0.00
26	137.00	Kaelus BSF0020F3V1-1	2	8.345	9.179	0.52	0.80	1.00	35.20	0.000	0.000	9.16	0.00	0.00
27	137.00	JMA - MX06FIT665-02	6	8.345	9.179	0.76	0.80	37.16	306.00	0.000	0.000	341.14	0.00	0.00
28	127.00	860 10025	6	8.166	8.983	0.50	0.75	0.54	7.20	0.000	0.000	4.87	0.00	0.00
29	127.00	Low Profile Platform	1	8.166	8.983	1.00	1.00	25.00	1500.00	0.000	0.000	224.57	0.00	0.00
30	127.00	HRK14	1	8.166	8.983	1.00	1.00	6.75	261.72	0.000	0.000	60.63	0.00	0.00
31	127.00	7770	3	8.166	8.983	0.60	0.80	9.90	105.00	0.000	0.000	88.93	0.00	0.00
32	127.00	DC6-48-60-18-8F	1	8.166	8.983	0.80	0.80	1.18	31.80	0.000	0.000	10.56	0.00	0.00
33	127.00	DMP65R-BU6DA	3	8.166	8.983	0.54	0.75	20.59	238.20	0.000	0.000	184.95	0.00	0.00
34	127.00	(3) PRK-1245	1	8.166	8.983	1.00	1.00	9.50	464.91	0.000	0.000	85.34	0.00	0.00
35	127.00	HPA65R-BU6A	3	8.166	8.983	0.65	0.75	21.73	162.00	0.000	0.000	195.19	0.00	0.00
36	127.00	4449	3	8.166	8.983	0.50	0.75	2.49	210.00	0.000	0.000	22.34	0.00	0.00
37	127.00	8843	3	8.166	8.983	0.50	0.75	2.49	225.00	0.000	0.000	22.34	0.00	0.00
38	127.00	21401 TMA	6	8.166	8.983	0.50	0.75	3.89	84.60	0.000	0.000	34.94	0.00	
39		Ericsson - Air 21 B2A/B4P	3	7.977	8.775	0.69	0.80	12.57	274.50	0.000	0.000	110.29	0.00	0.00
40		Air 21 B4A/B2P	3	7.977	8.775	0.69	0.80	12.57	274.30	0.000	0.000	110.29	0.00	0.00 0.00
41	117.00		3	7.977	8.775	0.56	0.75	13.50	1050.00	0.000	0.000	118.46	0.00	
_				1.011	3.170	0.00	0.73	13.30	1030.00	0.000	0.000	110.40	0.00	0.00

Totals:

13,755.62

4,092.56

Total Applied Force Summary

Structure: CT00248-S

Base Elev: 0.000 (ft)

Code:

TIA-222-H

7/11/2023

Site Name: North Bethel

Exposure:

В

Crest Height: 0.00

SBA

Height:

155.00 (ft)

Site Class:

D - Stiff Soil

Gh:

1.1

Topography: 1

Struct Class: ||

Page: 36

Iterations 24

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor

1.00

Wind Load Factor

1.00

**	
	X
2	

Elev		Lateral FX (-)	Axial FY (-)	Torsion MY	Moment MZ (lb-ft)		
(ft)	Description	(lb)	(lb)	(lb-ft)			
0.00		0.00	0.00	0.00	0.00		
5.00		103.06	1294.53	0.00	0.00		
10.00		101.36	1267.04	0.00	0.00		
15.00		99.62	1239.55	0.00	0.00		
20.00		97.88	1212.06	0.00	0.00		
25.00		96.13	1184.58	0.00	0.00		
30.00		94.47	1157.09	0.00	0.00		
35.00		96.90	1129.60	0.00	0.00		
40.00		98.77	1102.11	0.00	0.00		
44.00		79.80	861.90	0.00	0.00		
45.00		20.21	395.48	0.00	0.00		
49.75		97.72	1848.49	0.00	0.00		
50.00		5.07	52.46	0.00	0.00		
55.00		103.10	1034.84	0.00	0.00		
60.00		103.57	1007.35	0.00	0.00		
65.00		103.79	979.86	0.00	0.00		
70.00		103.78	952.37	0.00	0.00		
75.00		103.58	924.89	0.00	0.00		
80.00		103.20	897.40	0.00	0.00		
85.00		102.65	869.91	0.00	0.00		
89.50		91.72	759.42	0.00	0.00		
90.00		10.28	139.58	0.00	0.00		
93.75		77.23	1030.80	0.00	0.00		
95.00		25.33	177.41	0.00	0.00		
100.00		101.28	695.32	0.00	0.00		
105.00		100.20	672.41	0.00	0.00		
110.00		99.01	649.50	0.00	0.00		
115.00		147.56	626.60	0.00	0.00		
117.00	(9) attachments	396.67	1839.92	0.00	0.00		
120.00	(0) and a minimum	42.64	318.73	0.00	0.00		
123.25		45.70	502.97	0.00	0.00		
125.20		24.05	121.52	0.00	0.00		
127.00	(31) attachments	961.72	3427.24	0.00	0.00		
130.00	(51) Bildomilionio	39.71	180.70	0.00	0.00		
135.00		63.83	290.17	0.00	0.00		
137.00	(25) attachments	1060.28	2543.82	0.00	0.00		
140.00	(20) attacimento	35.91	142.18	0.00	0.00		
145.00		57.32	225.98	0.00	0.00		
145.00	(11) attachments	632.21	2465.14	0.00	0.00		
150.00	(11) attachments	31.88	119.72	0.00	0.00		
155.00	(27) attachments	1223.29	4247.83	0.00	1342.30		
100.00	Totals:	6,982.47	40,588.46	0.00	1,342.30		

Structure: CT00248-S

Code:

TIA-222-H

7/11/2023

Site Name: North Bethel

Exposure:

В

Height:

155.00 (ft)

Crest Height: 0.00

Gh:

Base Elev: 0.000 (ft) 1.1

Topography: 1

Site Class: D - Stiff Soil Struct Class: ||

Page: 37

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00

Iterations

24

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
5.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.100	0.000	5.402	0.00	9.96
5.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.100	0.000	5.402	0.00	62.40
5.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.100	0.000	5.402	0.00	5.50
10.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.103	1.008	5.402	0.00	9.96
10.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.103	1.008	5.402	0.00	62.40
10.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.103	1.008	5.402	0.00	5.50
15.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.105	1.016	5.402	0.00	9.96
15.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.105	1.016	5.402	0.00	62.40
15.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.105	1.016	5.402	0.00	5.50
20.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.108	1.024	5.402	0.00	9.96
20.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.108	1.024	5.402	0.00	62.40
20.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.108	1.024	5.402	0.00	5.50
25.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.111	1.033	5.402	0.00	9.96
25.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.111	1.033	5.402	0.00	62.40
25.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.111	1.033	5.402	0.00	5.50
30.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.114	1.042	5.407	0.00	9.96
30.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.114	1.042	5.407	0.00	62.40
30.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.114	1.042	5.407	0.00	5.50
35.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.117	1.051	5.650	0.00	9.96
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.117	1.051	5.650	0.00	62.40
35.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.117	1.051	5.650	0.00	5.50
40.00	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.121	1.062	5.870	0.00	9.96
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.121	1.062	5.870	0.00	62.40
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.121	1.062	5.870	0.00	5.50
	1.75" Hybrid	Yes	4.00	0.000	1.75	0.58	0.00	0.124	1.071	6.032	0.00	7.96
	1 5/8" Coax	Yes	4.00	0.000	3.96	1.32	0.00	0.124	1.071	6.032	0.00	49.92
	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.124	1.071	6.032	0.00	4.40
	1.75" Hybrid	Yes	1.00	0.000	1.75	0.15	0.00	0.126	1.077	6.071	0.00	1.99
	1 5/8" Coax	Yes	1.00	0.000	3.96	0.33	0.00	0.126	1.077	6.071	0.00	12.48
	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.126	1.077	6.071	0.00	1.10
	1.75" Hybrid	Yes	4.75	0.000	1.75	0.69	0.00	0.128	1.084	6.248	0.00	9.46
	1 5/8" Coax	Yes	4.75	0.000	3.96	1.57	0.00	0.128	1.084	6.248	0.00	59.28
	1 5/8" Hybrid	Yes	4.75	0.000	0.00	0.00	0.00	0.128	1.084	6.248	0.00	5.23
	1.75" Hybrid	Yes	0.25	0.000	1.75	0.04	0.00	0.128	1.083	6.257	0.00	0.50
	1 5/8" Coax	Yes	0.25	0.000	3.96	80.0	0.00	0.128	1.083	6.257	0.00	3.12
	1 5/8" Hybrid	Yes	0.25	0.000	0.00	0.00	0.00	0.128	1.083	6.257	0.00	0.28
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.130	1.089	6.429	0.00	9.96
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.130	1.089	6.429	0.00	62.40
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.130	1.089	6.429	0.00	5.50
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.134	1.102	6.591	0.00	9.96
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.134	1.102	6.591	0.00	62.40
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.134	1.102	6.591	0.00	5.50
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.138	1.115	6.744	0.00	9.96
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.138	1.115	6.744	0.00	62.40
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.138	1.115	6.744	0.00	5.50
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.143	1.130	6.888	0.00	9.96
70.00	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.143	1.130	6.888	0.00	62.40

Copyright © 2023 by Tower Engineering Solutions, LLC. All rights reserved.

7/11/2023 TIA-222-H Code: Structure: CT00248-S

Exposure: Site Name: North Bethel Crest Height: 0.00 155.00 (ft) Height:

Site Class: D - Stiff Soil Base Elev: 0.000 (ft)

Page: 38 Struct Class: || Topography: 1 Gh: 1.1

Load Case: 1.0D + 1.0W 60 mph Wind

1.00 **Dead Load Factor** 1.00 Wind Load Factor

Iterations

24

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.143	1.130	6.888	0.00	5.50
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.148	1.145	7.025	0.00	9.96
	1 5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.148	1.145	7.025	0.00	62.40
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.148	1.145	7.025	0.00	5.50
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.154	1.162	7.156	0.00	9.96
	1.76 Tryong 1.5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.154	1.162	7.156	0.00	62.40
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.154	1.162	7.156	0.00	5.50
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.160	1.179	7.281	0.00	9.96
	1.75 Tryond 1.5/8" Coax	Yes	5.00	0.000	3.96	1.65	0.00	0.160	1.179	7.281	0.00	62.40
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.160	1.179	7.28 1	0.00	5.50
	1.75" Hybrid	Yes	4.50	0.000	1.75	0.66	0.00	0.166	1.198	7.389	0.00	8.96
	1.75 Tryblid 1.5/8" Coax	Yes	4.50	0.000	3.96	1.48	0.00	0.166	1.198	7.389	0.00	56.16
	1 5/8" Hybrid	Yes	4.50	0.000	0.00	0.00	0.00	0.166	1.198	7.389	0.00	4.95
	1.75" Hybrid	Yes	0.50	0.000	1.75	0.07	0.00	0.169	1.208	7.401	0.00	1.00
	1.75 Trybrid 1.5/8" Coax	Yes	0.50	0.000	3.96	0.17	0.00	0.169	1.208	7.401	0.00	6.24
	1 5/8" Hybrid	Yes	0.50	0.000	0.00	0.00	0.00	0.169	1.208	7.401	0.00	0.55
	1.75" Hybrid	Yes	3.75	0.000	1.75	0.55	0.00	0.172	1.217	7.488	0.00	7.47
	1.75 Hybrid 1.5/8" Coax	Yes	3.75	0.000	3.96	1.24	0.00	0.172	1.217	7.488	0.00	46.80
	1 5/8" Hybrid	Yes	3.75	0.000	0.00	0.00	0.00	0.172	1.217	7.488	0.00	4.13
	•	Yes	1.25	0.000	1.75	0.18	0.00	0.173	1.218	7.516	0.00	2.49
	1.75" Hybrid	Yes	1.25	0.000	3.96	0.41	0.00	0.173	1.218	7.516	0.00	15.60
	1 5/8" Coax	Yes	1.25	0.000	0.00	0.00	0.00	0.173	1.218	7.516	0.00	1.38
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.177	1.232	7.627	0.00	9.96
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.177	1.232	7.627	0.00	62.40
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.177	1.232	7.627	0.00	5.50
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.185	1.255	7.734	0.00	9.96
	1.75" Hybrid	Yes	5.00	0.000	3.96	1.65	0.00	0.185	1.255	7.734	0.00	62.40
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.185	1.255	7.734	0.00	5.50
	1 5/8" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.194	1.281	7.838	0.00	9.96
	1.75" Hybrid		5.00	0.000	3.96	1.65	0.00	0.194	1.281	7.838	0.00	62.40
	1 5/8" Coax	Yes	5.00	0.000	0.00	0.00	0.00	0.194	1.281	7.838	0.00	5.50
	1 5/8" Hybrid	Yes	5.00	1.200	1.75	0.73	0.87	0.203	0.000	7.938	7.64	9.96
	1.75" Hybrid	Yes	5.00	1.200	3.96	1.65	1.98	0.203	0.000	7.938	17.29	62.40
	1 5/8" Coax	Yes Yes	5.00	0.000	0.00	0.00	0.00	0.203	0.000	7.938	0.00	5.50
	1 5/8" Hybrid		2.00	1.200	1.75	0.29	0.35	0.211	0.000	7.977	3.07	3.98
	1.75" Hybrid	Yes	2.00	1.200	3.96	0.66	0.79	0.211	0.000	7.977	6.95	24.96
	1 5/8" Coax	Yes	2.00	0.000	0.00	0.00	0.00	0.211	0.000	7.977	0.00	2.20
	1 5/8" Hybrid	Yes	3.00	0.000	1.75	0.44	0.00	0.066	0.000	8.035	0.00	5.97
	1.75" Hybrid	Yes	3.00	0.000	1.75	0.47	0.00	0.068	0.000	8.096	0.00	6.47
	1.75" Hybrid	Yes	3.25 1.75	0.000	1.75	0.26	0.00	0.069	0.000	8.129	0.00	3.48
	1.75" Hybrid	Yes		0.000	1.75	0.29	0.00	0.071	0.000	8.166	0.00	3.98
	1.75" Hybrid	Yes	2.00	0.000	1.75	0.44	0.00	0.073	0.000	8.221	0.00	5.97
	1.75" Hybrid	Yes	3.00	0.000	1.75	0.73	0.00	0.076	0.000	8.310	0.00	9.96
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.080	0.000	8.345	0.00	3.98
	1.75" Hybrid	Yes	2.00	0.000	1.75	0.44	0.00	0.082	0.000	8.397	0.00	5.97
	1.75" Hybrid	Yes	3.00	0.000	1.75	0.44	0.00	0.087	0.000	8.481	0.00	9.96
	1.75" Hybrid	Yes	5.00	0.000	1.75	0.73	0.00	0.091	0.000	8.514	0.00	3.98
147.00	1.75" Hybrid	Yes	2.00	0.000	1.75	0.20	5.00	5.001	2.000			

Copyright © 2023 by Tower Engineering Solutions, LLC. All rights reserved.

Structure: CT00248-S

Site Name: North Bethel Height: 155.00 (ft)

Base Elev: 0.000 (ft)

Gh: 1.1

n Betnel Ex

Topography: 1

Code: TIA-222-H

Exposure: B

Crest Height: 0.00

Site Class: D - Stiff Soil

Struct Class: ||

SBA

Page: 39

7/11/2023

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00 Z X

Iterations

24

Тор					Exposed				Cf			Dead
Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Width (in)	Area (sqft)	CaAa (sqft)	Ra	Adjust Factor	qz (psf)	F X (lb)	Load (lb)

Totals:

34.9 1,881.5

Calculated Forces

CT00248-S Structure:

Base Elev: 0.000 (ft)

TIA-222-H Code:

Site Name: North Bethel

Height:

155.00 (ft)

В Exposure:

Crest Height: 0.00

D - Stiff Soil Site Class:

1.1 Gh:

Topography: 1

Struct Class: ||

Page: 40

7/11/2023

24

Iterations

SBA 🕖

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 1.00 **Wind Load Factor**

Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
(ft)	(kips)			(ft-kips)	(ft-kips)	(ft-kips)	(kips) 4331.76	1179.24	5523.56	5037.85	0.00	0.000	0.000	0.173
0.00	-40.59	-7.00	0.00	-826.30	0.00	826.30		1150.89	5261.13	4848.00	0.02	-0.043	0.000	0.172
5.00	-39.29	-6.92	0.00	-791.32	0.00	791.32	4271.91 4209.88	1122.53	5005.09	4659.10	0.09	-0.086	0.000	0.171
10.00	-38.01	-6.85	0.00	-756.70	0.00	756.70	4209.66	1094.18	4755.44	4471.34	0.21	-0.131	0.000	0.170
15.00	-36.77	-6.78	0.00	-722.45	0.00	722.45	4079.27	1065.82	4512.17	4284.91	0.37	-0.178	0.000	0.169
20.00	-35.55	-6.71	0.00	-688.56	0.00	688.56	•	1003.62	4275.29	4099.98	0.58	-0.226	0.000	0.168
25.00	-34.36	-6.63	0.00	-655.04	0.00	655.04	4010.69 3939.93	1009.12	4044.80	3916.74	0.84	-0.275	0.000	0.167
30.00	-33.20	-6.56	0.00	-621.86	0.00	621.86	3866.98	980.76	3820.69	3735.38	1.16	-0.326	0.000	0.166
35.00	-32.06	-6.49	0.00	-589.04	0.00	589.04	3791.85	952.41	3602.97	3556.07	1.53	-0.378	0.000	0.165
40.00	-30.96	-6.41	0.00	-556.59	0.00	556.59	3730.17	929.72	3433.39	3414.24	1.86	-0.421	0.000	0.164
44.00	-30.09	-6.34	0.00	-530.95	0.00	530.95	3730.17	924.05	3391.64	3379.01	1.95	-0.433	0.000	0.163
45.00	-29.69	-6.33	0.00	-524.61	0.00	524.61	3683.20	912.78	3309.41	3309.30	2.41	-0.486	0.000	0.157
49.75	-27.84	-6.23	0.00	-494.54	0.00	494.54	3679.23	911.37	3299.14	3300.56	2.44	-0.489	0.000	0.157
50.00	-27.79	-6.24	0.00	-492.98	0.00	492.98	3598.76	883.01	3097.05	3127.07	2.98	-0.543	0.000	0.155
55.00	-26.75	-6.16		-461.77	0.00	461.77		854.66	2901.35	2956.28	3.58	-0.599	0.000	0.153
60.00	-25.74	-6.07	0.00	-430.99	0.00	430.99	3516.10	826.30	2712.03	2788.37	4.23	-0.656	0.000	0.151
65.00	-24.75	-5.98	0.00	-400.66	0.00	400.66	3431.27	797.95	2529.10	2623.52	4.95	-0.715	0.000	0.148
70.00	-23.79	-5.89	0.00	-370.77	0.00	370.77	3344.24	769.60	2352.56	2461.92	5.73	-0.776	0.000	0.146
75.00	-22.86	-5.80		-341.33	0.00	341.33	3255.04	741.24	2182.41	2285.03	6.58	-0.838	0.000	0.144
80.00	-21.96	-5.70	0.00	-312.35	0.00	312.35	3137.93	712.89	2018.64	2112.68	7.49	-0.901	0.000	0.141
85.00	-21.09	-5.61	0.00	-283.83	0.00	283.83	3017.89	687.37	1876.70	1963.34	8.37	-0.959	0.000	0.139
89.50	-20.33	-5.52		-258.59	0.00	258.59	2909.87	684.53	1861.25	1947.09	8.47	-0.966	0.000	0.138
90.00	-20.19	-5.52		-255.83	0.00	255.83	2897.86	564.69	1519.91	1569.17	9.25	-1.015	0.000	0.158
93.75	-19.15	-5.43		-235.14	0.00	235.14	2354.99	558.78	1488.28	1540.62	9.52	-1.032	0.000	0.156
95.00	-18.97	-5.42		-228.36	0.00	228.36	2336.81	535.16	1365.08	1428.08	10.64	-1.106	0.000	0.149
100.00	-18.27	-5.33		-201.26	0.00	201.26	2262.72	511.53	1247.20	1305.76	11.83	-1.179	0.000	0.142
105.00	-17.59	-5.24		-174.63	0.00	174.63	2165.47	487.90	1134.64	1187.31	13.11	-1.252	0.000	0.133
110.00	-16.94	-5.14		-148.45	0.00	148.45	2065.44	464.27	1027.40	1074.49	14.46	-1.321	0.000	0.123
115.00	-16.31	-5.00		-122.72	0.00	122.72	1965.41	454.82	986.00	1074.49	15.02	-1.350	0.000	0.117
117.00	-14.48	-4.57	0.00	-112.73	0.00	112.73	1925.40		925.49	967.30	15.88	-1.390	0.000	0.110
120.00	-14.16	-4.53	0.00	-99.03	0.00	99.03	1865.39	440.64	538.64	515.83	16.84	-1.432	0.000	0.177
123.25	-13.66	-4.48	0.00	-84.32	0.00	84.32	1005.19	260.39		499.75	17.37	-1.454	0.000	0.167
125.00	-13.53	-4.46	0.00	-76.49	0.00	76.49	992.91	255.43	518.31	481.51	17.99	-1.491	0.000	0.151
127.00	-10.13	-3.41	0.00	-67.58	0.00	67.58	978.56	249.76	495.55		18.94	-1.543	0.000	0.137
130.00	-9.95	-3.38	0.00	-57.34	0.00	57.34	956.38	241.25	462.37	454.44	20.60	-1.618	0.000	0.109
135.00	-9.65	-3.32	0.00	-40.44	0.00	40.44	917.66	227.08	409.63	410.21	21.28	-1.645	0.000	0.094
137.00	-7.14	-2.19	0.00	-33.80	0.00	33.80	901.57	221.41	389.42	392.87		-1.682	0.000	0.082
140.00	-7.00	-2.15	0.00	-27.24	0.00	27.24	876.76	212.90	360.08	367.25	22.33		0.000	0.059
145.00	-6.77	-2.09	0.00	-16.47	0.00	16.47	833.68	198.72	313.72	325.74	24.12	-1.730 1.746	0.000	0.035
147.00	-4.33	-1.39	0.00	-12.28	0.00	12.28	815.84	193.05	296.07	309.58	24.84	-1.746 1.764	0.000	0.043
150.00	-4.21	-1.35	0.00	-8.11	0.00	8.11	781.24	184.55	270.55	283.26	25.95	-1.764 -1.781	0.000	0.004
155.00	0.00	-1.22	0.00	-1.34	0.00	1.34	721.23	170.37	230.58	241.20	27.81	-1.767	0.000	0.000

Final Analysis Summary

Structure: CT00248-S

Code:

TIA-222-H

7/11/2023

Site Name: North Bethel

Exposure:

В

Height:

155.00 (ft)

Crest Height: 0.00

Site Class:

D - Stiff Soil

SBA

Base Elev: 0.000 (ft) Gh: 1.1

Topography: 1

Struct Class: ||

Page: 41

Reactions

Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	
1.2D + 1.0W 115 mph Wind	28.7	0.00	48.66	0.00	0.00	3418.00	
0.9D + 1.0W 115 mph Wind	28.7	0.00	36.49	0.00	0.00	3368.17	
1.2D + 1.0Di + 1.0Wi 50 mph Wind	8.1	0.00	70.05	0.00	0.00	962.92	
1.2D + 1.0Ev + 1.0Eh	0.7	0.00	50.70	0.00	0.00	98.56	
0.9D + 1.0Ev + 1.0Eh	0.7	0.00	38.47	0.00	0.00	97.32	
1.0D + 1.0W 60 mph Wind	7.0	0.00	40.59	0.00	0.00	826.30	

Max Stresses

Load Case	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Elev (ft)	Stress Ratio
1.2D + 1.0W 115 mph Wind	-14.66	-18.59	0.00	-350.46	0.00	-350.46	1005.19	260.39	538.64	515.83	123.25	0.699
0.9D + 1.0W 115 mph Wind	-36.49	-28.71	0.00	-3368.1	0.00	-3368.1	4331.76	1179.2	5523.56	5037.85	0.00	0.678
1.2D + 1.0Di + 1.0Wi 50 mph Wind	-26.67	-5.23	0.00	-99.48	0.00	-99.48	1005.19	260.39	538.64	515.83	123.25	0.220
1.2D + 1.0Ev + 1.0Eh	-17.18	-0.64	0.00	-13.92	0.00	-13.92	1005.19	260.39	538.64	515.83	123.25	0.044
0.9D + 1.0Ev + 1.0Eh	-13.05	-0.63	0.00	-13.73	0.00	-13.73	1005.19	260.39	538.64	515.83	123.25	0.040
1.0D + 1.0W 60 mph Wind	-13.66	-4.48	0.00	-84.32	0.00	-84.32	1005.19	260.39	538.64	515.83	123.25	0.177

Base Plate Summary

CT00248-S Structure:

Code:

TIA-222-H

7/11/2023

Site Name: North Bethel

Exposure:

В

Height:

155.00 (ft)

SBA

Base Elev: 0.000 (ft)

Crest Height: 0.00

Gh:

1.1

Topography: 1

D - Stiff Soil Site Class:

Struct Class: II

Page: 42

Reaction	s	Base Pla	ate	Anchor Bolts		
Original Des		Yield (ksi):	50.00	Bolt Circle:	64.00	
Moment (kip-ft):	3850.00	Width (in):	64.00	Number Bolts:	20.00	
Axial (kip):	38.70	Style:	Clipped	Bolt Type:	2.25" 18J	
Shear (kip):	32.40	Polygon Sides:	0.00	Bolt Diameter (in):	2.25	
		Clip Length (in):	15.00	Yield (ksi):	75.00	
Analysis (1.2D -			8.82	Ultimate (ksi):	100.00	
Moment (kip-ft):	3418.00	Effective Len (in):	468.23	Arrangement:	Clustered	
Axial (kip):	48.66	Moment (kip-in):	67.50	Cluster Dist (in):	6.00	
Shear (kip):	28.73	Allow Stress (ksi):	41.85	Start Angle (deg):	45.00	
		Applied Stress (ksi):	0.62	Compre	ssion	
		Stress Ratio:	0.02	Force (kip):	130.61	
				Allowable (kip):	268.39	
				Ratio:	0.49	
				Tensio	on	
				Force (kip):	125.74	
				Allowable (kip):	243.75	
				Ratio:	0.52	

Allowable Foundation Overturning Resistance (kips-ft.):

Factor of Safety Against Overturning (O. R. Moment/Design Moment):

Mono	nole Mat Foundation	Doolan	Date			
Monopole Mat Foundation Design						
Customer Name:	Verizon	TIA Standard:	TIA-222-H			
Site Name:	1990	Structure Height (Ft.):	155			
Site Number:	CT00248-S	Engineer Name:	A. Hagos			
Engr. Number:	Chings Hw	Engineer Login ID:				

Foundation Info Obtained from: Structure Type:		Drawings/Calculations			<i>V</i>
		Manapole			
Analysis or Design?		Analysis			0.50
Base Reactions (Factored):					* 777
Axial Load (Kips):	48.7	Shear Force (Kips):	28.7		14 #
Uplift Force (Kips):	0.0	Moment (Kips-ft):	3418.0		99.0 28 #
Foundation Geometries:		Mode required Ver/No 2:	N		8.5
Diameter of Pier (ft.):	7.0	Mods required -Yes/No ?: Depth of Base BG (ft.):	No		28 #
Pier Height A. G. (ft.):	0.50	Thickness of Pad (ft):	8.5		
Length of Pad (ft.):	23.5	Width of Pad (ft.):	3.00 23.5		
Final Length of pad (ft)	23.5	Final width of pad (ft):	23.5		23.5
Material Properties and Reabr Info	1				7.0
Concrete Strength (psi):	3000	Steel Elastic Modulus:	29000	ksi	
ertical bar yield (ksi)	60	Tie steel yield (ksi):	40		
ertical Rebar Size #:	11	Tie / Stirrup Size #:	4		23.5
lty. of Vertical Rebars:	36	Tie Spacing (in):	8.0		
ad Rebar Yield (Ksi):	60	Pad Steel Rebar Size (#):	11		36 # 11
Concrete Cover (in.):	3	Unit Weight of Concrete:	150.0	pcf	
ebar at the bottom of the concrete	pad:				
Qty. of Rebar in Pad (L):	28	Qty. of Rebar in Pad (W):	28		0.0
ebar at the top of the concrete pad	ł:				23.5 L
tty. of Rebar in Pad (L):	28	Qty. of Rebar in Pad (W):	28		
oil Design Parameters:					
oil Unit Weight (pcf):	100.0	Soil Buoyant Weight:	37.6	Pcf	f
Vater Table B.G.S. (ft):	99.0	Unit Weight of Water:	62.4	pcf	f Angle from Top of Pad: 30
Iltimate Bearing Pressure (psf):	5000	Ultimate Skin Friction:	0	Psf	f Angle from Bottm of Pad: 25
onsider Friction for O.T.M. (Y/N):	No	Consider Friction for bearin		No	
onsider soil hor. resist. for OTM.:	Yes	Reduction factor on the ma	ximum so	il bear	ring pressure: 1.00
oundation Analysis and Design:	Uplift Str	ength Reduction Factor:	0.75	Comp	pression Strength Reduction Factor: 0.75
Total Dry Soil Volume (cu. Ft.):			2825.71	Total	l Dry Soil Weight (Kips): 282.57
Total Buoyant Soil Volume (cu. F			0.00	Total	Buoyant Soil Weight (Kips): 0.00
Total Effective Soil Weight (Kips)			282.57	Weigh	ght from the Concrete Block at Top (K): 0.00
Total Dry Concrete Volume (cu. F			1887.66		Dry Concrete Weight (Kips): 283.15
Total Buoyant Concrete Volume			0.00		Buoyant Concrete Weight (Kips): 0.00
Total Effective Concrete Weight	(Kips):		283.15	Total	Vertical Load on Base (Kips): 614.38
heck Soil Capacities:					Load/ Capacity Ratio
alculated Maxium Net Soil Pressure			2875	<	Allowable Factored Soil Bearing (psf): 3750 0.77
Illowable Foundation Overturning Re	esistance	(kins-ft)	CEEAO		Design Fortunal 84 (11) (5) 0444

6554.2

1.92

OK!

Design Factored Momont (kips-ft):

3411

0.52 OK!

7/12/2023

5 6 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6						
Check the capacities of Reinforceing Concrete:	0.90	Streng	gth reduction factor (Shear):	0.75		
Strength reduction factor (Flexure and axial tension):	0.65	_	Load Factor on Concrete Design:	1.00		
Strength reduction factor (Axial compresion):	0.05	*****	Edda i dotor on ochoros o saga		Capacity	
(d) Course Pion					Ratio	
(1) Concrete Pier: Vertical Steel Rebar Area (sq. in./each):	1.56		Tie / Stirrup Area (sq. in./each):	0.20		
Calculated Moment Capacity (Mn,Kips-Ft):	8832.5	>	Design Factored Moment (Mu, Kips-F1	3590.2	0.41	OK!
Calculated Montent Capacity (Kins):	589.7	>	Design Factored Shear (Kips):	28.7	0.05	OK!
Calculated Snear Capacity (Rips):	3032.6	>	Design Factored Tension (Tu Kips):	0.0	0.00	OK!
Calculated Compression Capacity (Pn, Kips):	7273.9	>	Design Factored Axial Load (Pu Kips):	48.7	0.01	OK!
Moment & Axial Strength Combination:	0.41	OK!	Check Tie Spacing (Design/Required):		0.6667	OK!
Pier Reinforcement Ratio:	0.010		Reinforcement Ratio is satisfied per Al	CI		
Pier Reimorcement Natio.						
(2).Concrete Pad:						
One-Way Design Shear Capacity (L-Direction, Kips):	748.6	>	One-Way Factored Shear (L-D. Kips):	221.2	0.30	OK!
One-Way Design Shear Capacity (W-Direction, Kips):	748.6	>	One-Way Factored Shear (W-D., Kips)	221.2	0.30	OKI
One-Way Design Shear Capacity (Corner-Corner. Kips):	664.2	>	One-Way Factored Shear (C-C, Kips):	210.7	0.32	OK!
Lower Steel Pad Reinforcement Ratio (L-Direct.):	0.0048	OK!	Lower Steel Pad Reinf. Ratio (W-Direc	0.0048		
Lower Steel Pad Moment Capacity (L-Direction. Kips-ft):	5993.2	>	Moment at Bottom (L-Dir. K-Ft):	1165.2	0.19	OK!
Lower Steel Pad Moment Capacity (W-Direction, Kips-ft):	5993.2	>	Moment at Bottom (W-Dir. K-Ft):	1165.2	0.19	OK!
Lower Steel Pad Moment Capacity (Corner-Corner,K-ft):	8340.4	>	Moment at Bottom (C-C Dir. K-Ft):	1647.9	0.20	OK!
Upper Steel Pad Reinforcement Ratio (L-Direct.):	0.0048	OK!	Upper Steel Reinf. Ratio (W-Dir.):	0.0048		
Upper Steel Pad Moment Capacity (L-Direc. Kips-ft):	5993.2	>	Moment at the top (L-Dir K-Ft):	499.4	0.08	OK!
Upper Steel Pad Moment Capacity (W-Direc. Kips-ft):	5993.2	>	Moment at the top (W-Dir K-Ft):	499.4	0.08	OK!
Upper Steel Pad Moment Capacity (Corner-Corner. K-ft):	8340.4	>	Moment at the top (C-C Dir. K-Ft):	469.8	0.06	OK!
opper steer ad Moment organization						
(3). Check Punching Shear Capacity due to Moment in the Pier:						
Moment transferred by punching shear:	1367.2	k-ft.	Max. factored shear stress v _{u_CD} :		3.4	Psi
Max. factored shear stress V _{u_AB} :	9.8	Psi	Factored shear Strength φν _n :		164.3	Psi
Max. factored shear stress v _u :	9.8	Psī	Check Usage of Punching Shear Cap	oacity:	0.06	OK!
Wild. Idecored Street Street						
(4). Check Bending Capacity of the Pad Within the Effective Slab Width:						
Overturning moment to be transferred by flexure:	1025.4	k-ft.	Effective Width for resisting OT momen	nt:	16.0	ft.
Calculated number of Rebar in Effective width:	20		Actual number of Rebar in Effective wi	dth:	20	
Steel Pad Moment Capacity (L-Direc. Kips-ft):	4268.3	k-ft.	Check Usage of the Flexure Capacit	y:	0.24	OK!
Steel Lan Moment cabacity (F pures who it).						

Colliers Engineering & Design CT. P.C. 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis

SMART Tool Project #: 10206286 Colliers Engineering & Design CT. P.C. Project #: 23777051 (Rev. 1)

July 10, 2023

Site Information

Site ID:

5000382994-VZW / BETHEL WEST CT

Site Name:

BETHEL WEST CT

Carrier Name:

Verizon Wireless

Address:

11 Francis J. Clarke Circle Bethel, Connecticut 06801

Fairfield County

Latitude:

41.360500°

Longitude:

-73.424472°

Structure Information

Tower Type:

Monopole

Mount Type:

14.00-Ft Platform

FUZE ID # 17123918

Analysis Results

Platform: 88.2% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report
Available & Submitted via portal at https://pmi.vzwsmart.com
For additional questions and support, please reach out to:
pmisupport@colliersengineering.com

Report Prepared By: Frank Centone

Page | 2

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 323446, dated January 21, 2020
Mount Mapping Report	RKS Design & Engineering, LLC, Site ID: SBA: CT0248, dated January 9, 2021
Previous Mount Analysis Report	Maser Consulting Connecticut, Project #: 20777631, dated June 3, 2021
Post-Modification Inspection Report	Maser Consulting Connecticut, Project #: 20777631, dated April 20, 2022
Filter Add Scope	Provided by Verizon Wireless

Analysis Criteria:

Codes	and	Standards:
00000	ariu	Otalidalus.

ANSI/TIA-222-H

2022 Connecticut State Building Code (CSBC), Effective October 1, 2022

Wind Parameters:

Basic Wind Speed (Ultimate 3-sec. Gust), Vult: 120 mph Ice Wind Speed (3-sec. Gust): 50 mph Design Ice Thickness: 1.00 in Risk Category: H **Exposure Category:** C Topographic Category: 1 Topographic Feature Considered: N/A Topographic Method: N/A Ground Elevation Factor, Ka: 0.985 S_s: 0.223 g S₁: 0.056 g Wind Speed (3-sec. Gust): 30 mph

Maintenance Parameters:

Seismic Parameters:

Maintenance Load, Lv: 250 lbs.
Maintenance Load, Lm: 500 lbs.

Analysis Software:

RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mount:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
(16)	11.57	6	JMA Wireless	MX06FIT665-02	
		3	Samsung	MT6407-77A	
	1	3	Samsung	B2/B66A RRH-BR049	
		3	Samsung	B5/B13 RRH-BR04C	Retained
135.50	137.00	1	Raycap	RVZDC-6627-PF-48	Ketamec
155.50	133.30	2	Antel	LPA-80063/6CF	
		2	Antel	LPA-80080/6CF	
		2	Antel	LPA-80080/4CF	
		2	KAelus	BSF0020F3V1-1	Added

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering & Design CT. P.C. and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design CT. P.C. to verify deviation will not adversely impact the analysis.
- Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design CT. P.C. is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate

ASTM A36 (Gr. 36)

HSS (Rectangular)

ASTM 500 (Gr. B-46)

o Pipe

ASTM A53 (Gr. B-35)

o Threaded Rod

F1554 (Gr. 36)

o Bolts

ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design CT. P.C..

Analysis Results:

Component	Utilization %	Pass/Fail
Standoff Horizontal	23.2 %	Pass
Inner Face Horizontal	28.8 %	Pass
Face Horizontal	88.2 %	Pass
Platform Connection Angle	9.3 %	Pass
Antenna Pipe	41.6 %	Pass
Proposed Support	12.9 %	Pass
Proposed Support Angle	19.5 %	Pass
Proposed Standoff Horizontal	30.2 %	Pass
Connection Check	15.5 %	Pass

CHI CHANGE CONTROL OF THE PROPERTY OF THE PROP	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND
Structure Rating – (Controlling Utilization of all Components)	88.2%
	The second of th

BASELINE mount weight per SBA agreement: 2637.90 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: No Change

The weights listed above include 3 sectors.

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipe	s Excluded	Mount Pipes Included				
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)			
0	38.9	38.9	53.6	53.6			
0.5	49.8	49.8	70.7	70.7			
1	60.3	60.3	87.4	87.4			

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 3 sector(s).
- Ka factors included in (EPA)a calculations

July 10, 2023 Site ID: 5000382994-VZW / BETHEL WEST CT Page | 5

Requirements:

The existing mount is **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop - Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000382994

SMART Project #: 10206286

Fuze Project ID: 17123918

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.

July 10, 2023 Site ID: 5000382994-VZW / BETHEL WEST CT

- Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

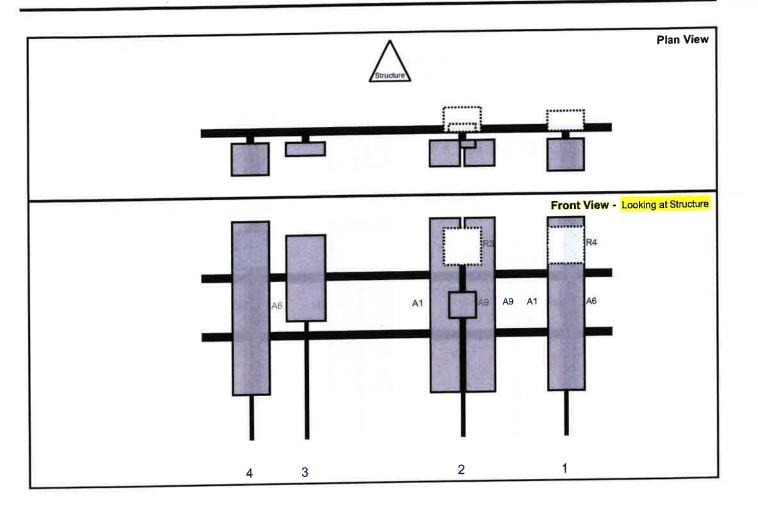
•	The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
	\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
	OR
	☐ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Specia	l Instructions / Validation as required from the MA or any other information the contractor
deems	necessary to share that was identified:
Issue:	
_	
Respo	nse:
	×
Specia	Il Instruction Confirmation:
	\square The contractor has read and acknowledges the above special instructions.
	\Box All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.
	☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.

Mount Structural Analysis Report MT_LO	July 10, 2023 Site ID: 5000382994-VZW / BETHEL WEST CT Page 3
☐ The material utilized was approved by a SI approval is included as part of the contractor	MART Tool engineering vendor as an "equivalent" and this submission.
Comments:	
Contractor certifies that the climbing facility / sa	afety climb was not damaged prior to starting work:
□ Yes □ No	
Contractor certifies no new damage created dur	ing the current installation:
□ Yes □ No	
Contractor to certify the condition of the safety	climb and verify no damage when leaving the site:
☐ Safety Climb in Good Condition	☐ Safety Climb Damaged
Certifying Individual:	
Company: Employee Name: Contact Phone: Email: Date:	

Structure: 5000382994-VZW - BETHEL WEST CT

Sector:

Mount Elev:


Structure Type: Monopole 135.50

10206286

7/10/2023

Colliers Engineering & Design

Page: 1

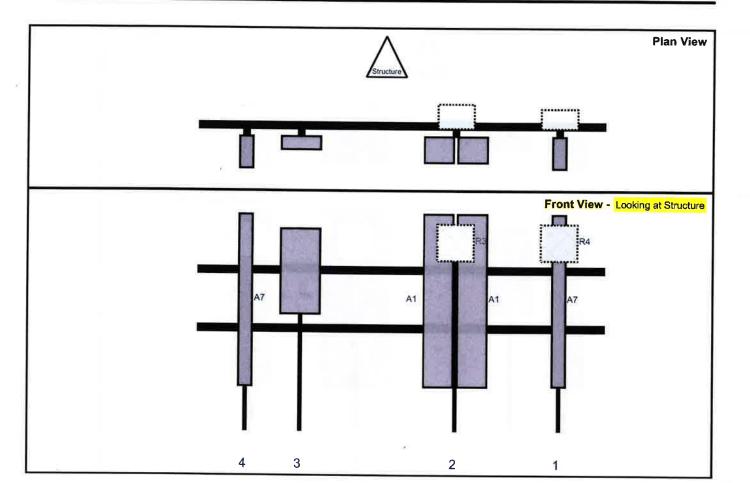
Ref#	Model	Height (in)	Width (in)	H Dist Fm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant Frm T.	Ant H Off	Status	Validation
A6	LPA-80063/6CF	70.9	15	149	1	а	Front	30	0	Retained	03/11/2022
R4	B5/B13 RRH-BR04C	15	15	149	1	а	Behind	6	0	Retained	03/11/2022
A1	MX06FIT665-02	71.3	12.2	106.5	2	а	Front	30	-7	Retained	03/11/2022
A1	MX06FIT665-02	71.3	12.2	106.5	2	b	Front	30	7	Retained	03/11/2022
R3	B2/B66A RRH-BR049	15	15	106.5	2	8	Behind	6	0	Retained	03/11/2022
A9	BSF0020F3V1-1	10.6	10.9	106.5	2	а	Behind	30	0	Added	-03
A9 A9	BSF0020F3V1-1	10.6	10.9	106.5	2	b	Front	30	0	Added	
A9 A2	MT6407-77A	35.1	16.1	42.5	3	а	Front	18	0	Retained	03/11/2022
A6	LPA-80063/6CF	70.9	15	20	4	a	Front	30	0	Retained	03/11/2022
OVP	RVZDC-6627-PF-48	28.9	15.7		Memb	er				Retained	03/11/2022

Sector:

Mount Elev:

В

135.50


Structure Type: Monopole

10206286

Colliers Engineering & Design

Page: 2

7/10/2023

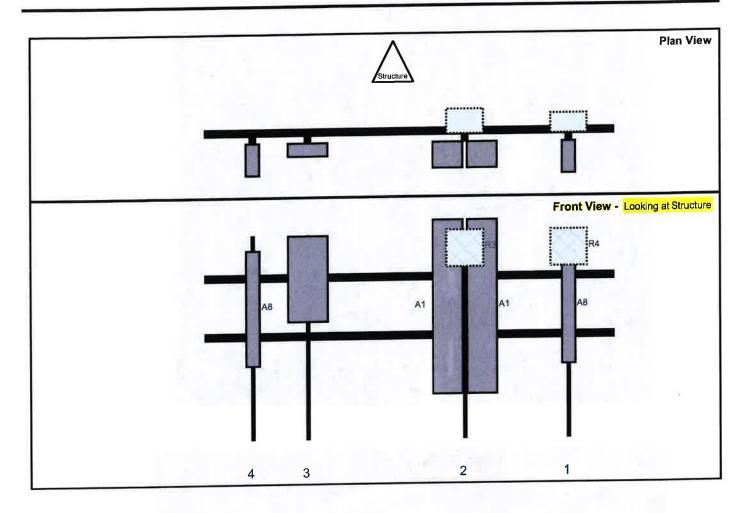
		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm Ta	H Off	Status	Validation
A7	LPA-80080/6CF	70.9	5.5	149	1	а	Front	30	0	Retained	03/11/2022
R4	B5/B13 RRH-BR04C	15	15	149	1	а	Behind	6	0	Retained	03/11/2022
A1	MX06FIT665-02	71.3	12.2	106.5	2	а	Front	30	-7	Retained	03/11/2022
A1	MX06FIT665-02	71.3	12.2	106.5	2	b	Front	30	7	Retained	03/11/2022
R3	B2/B66A RRH-BR049	15	15	106.5	2	8	Behind	6	0	Retained	03/11/2022
A2	MT6407-77A	35.1	16,1	42.5	3	а	Front	18	0	Retained	03/11/2022
A7	LPA-80080/6CF	70.9	5.5	20	4	a	Front	30	0	Retained	03/11/2022

Structure: 5000382994-VZW - BETHEL WEST CT

Sector:

Mount Elev:

7/10/2023


Structure Type: Monopole

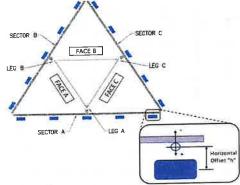
135.50

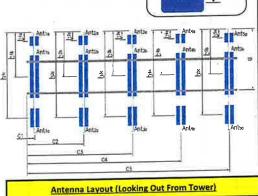
10206286

Colliers Engineering & Design

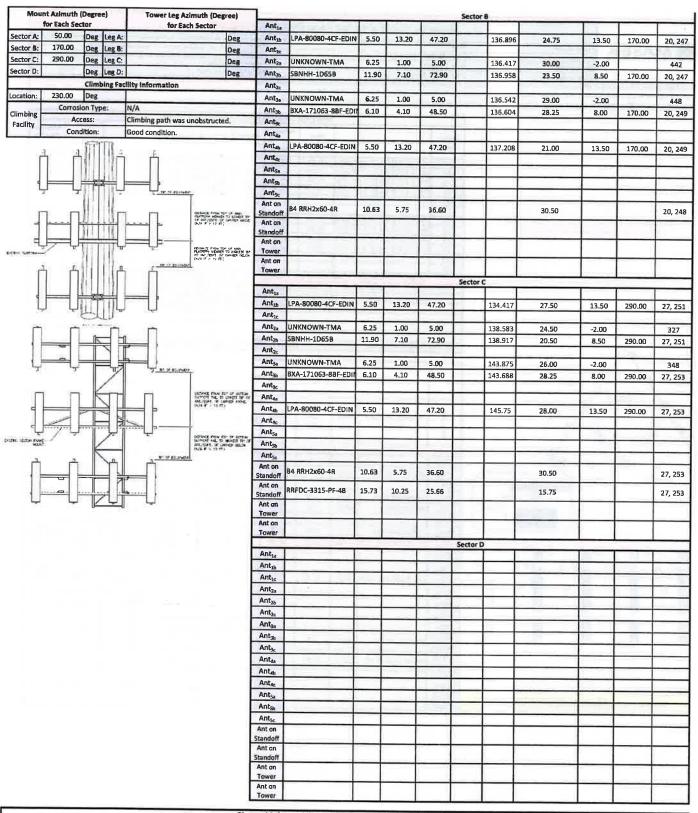
Page: 3

Ref#	Model	Height (in)	Width (in)	H Dist Fm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant	Ant H Off	Status	Validation
A8	LPA-80080/4CF	47.2	5.5	149	1	а	Front	30	0	Retained	03/11/2022
R4	B5/B13 RRH-BR04C	15	15	149	1	а	Behind	6	0	Retained	03/11/2022
A1	MX06FIT665-02	71.3	12.2	106.5	2	а	Front	30	-7	Retained	03/11/2022
A1	MX06FiT665-02	71.3	12.2	106.5	2	b	Front	30	7	Retained	03/11/2022
R3	B2/B66A RRH-BR049	15	15	106.5	2	а	Behind	6	0	Retained	03/11/2022
A2	MT6407-77A	35.1	16.1	42.5	3	а	Front	18	0	Retained	03/11/2022
A8	LPA-80080/4CF	47.2	5.5	20	4	0	Front	30	0	Retained	03/11/2022




			V3.0	(bdalad on 8-3	-2020
	Antenna Mount Mapping Fo	rm (PATENT PENDING)			1051875
	ISBA	Mapping Date:		10000	2021
Tower Owner:	VZW: BETHEL WEST CT	Tower Type:	10000	- 111-22	upule
Site Name: Site Number or ID:	SBA: CT0248	Tower Height (Ft.):			5.5
Mapping Contractor:	RKS Design & Engineering LLC	Mount Elevation (Ft.):	nordurtion t		100

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, PCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.


Please insert the sketches of the antenna mount from the "Sketches" tab with dimensions and members here.

Sector / Position	Mount Pipe Size & Length	Mount Pip Vertical Offset Dimension	Vertical Offset Offset Offset Offset"C1, Dimension C2 C3 stc." Position Vertical Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizonta Offset "C1 C2, C3, etc		
	PIPE 2.375"Ø X 0.15" X 84" LONG		19.00	C1	PIPE 2.375"Ø X 0.15" X 84" LONG	14.50	42.00
A1 A2	PIPE 2.375"Ø X 0.15" X 78" LONG		61.50	C2	PIPE 2.375"Ø X 0.15" X 78" LONG	61.50	38.00
AZ EA	PIPE 2.375"Ø X 0.15" X 84" LONG		125.50	C3	PIPE 2.375"Ø X 0.15" X 84" LONG	126.50	41.50
A4	PIPE 2.375"Ø X 0.15" X 84" LONG		148.00	C4	PIPE 2.375"Ø X 0.15" X 84" LONG	151.00	41.00
A5	PIPE 2.373 B N 0.23 N 31 15 15			C5			
A6		100		C6			
B1	PIPE 2.375"Ø X 0.15" X 84" LONG	41.50	19.00	D1			
B2	PIPE 2.375"Ø X 0.15" X 78" LONG		61.50	D2			
B3	PIPE 2.375" X 0.15" X 84" LONG	41.50	125.50	D3			
B4	PIPE 2,375"Ø X 0.15" X 84" LONG		148.00	D4			
85				D5			_
86				D6		1	-
	Distance between bottom rail	and mour	nt CL elevati	on (dim d). Unit is inches. See 'Mount Elev Ref' tal	for details.	
700	Distance from to	n of botto	m support r	ail to low	est tip of ant./eqpt. of Carrier above. (N)	All > TOIL!	
	Distance from to	of bottor	n support ra	all to high	est tip of ant./eqpt. of Carrier below. (N)	Alf > 10 ft.)	5.33
_		Please ent	er addition	al infomat	tion or comments below.		
_		-					
7.1							
1	e Width at Mount Elev. (ft.):		I		e Shaft Diameter at Mount Elev. (in.):	-	28.02

	Enter antenna	model.	If not label	led, enter '	'Unknown'		Mountin (Units are inch	g Locations nes and dep		Photos of antennas	
Ants, Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horlz, Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Numbers	
					Sector A						
Antı					O .					10000000000	
Ant _{1b}	UNKNOWN-PANEL	14.50	9.00	71.00		135.625	40.00	11.00	35.00	13, 243	
Ant _{1s}											
Antza	UNKNOWN-TMA	6.25	1.00	5,00		136.833	25.00	-2.00		409	
Ant _{2b}	SBNHH-1D65B	11.90	7.10	72.90		136.938	23.75	8.50	30.00	13, 244	
Ant _{2c}											
Ant _{3a}	UNKNOWN-TMA	6.25	1.00	5.00		136.5	29.50	-2.00		420	
Antab	BXA-171063-8BF-EDI	6.10	4.10	48.50		136.729	26.75	8.00	50.00	13, 245	
Ant _{3c}											
Ant _{4s}										45.24	
Antab	LPA-80080-4CF-EDIN	5.50	13.20	47.20		136.625	28.00	13.50	50.00	13, 249	
Ant _{4c}										_	
Antsa										_	
Ant _{5b}										-	
Antsc										-	
Ant on Standoff	B4 RRH2x60-4R	10.63	5.75	36.60			30.50			13, 243	
Ant on Standoff	RRFDC-3315-PF-48	15.73	10.25	25.66			15.75			13, 243	
Ant on Tower											
Ant on Tower											

The state of the s	Observed Safety and Structural Issues During the Mount Mapping	
Issue #	Description of Issue	Photo #

1 TOTAL COAX (14): (12) FH 1 5/8, (2) 1.5	2"Ø HYBRID
2	
3	
4	
S	
6	
7	
8	

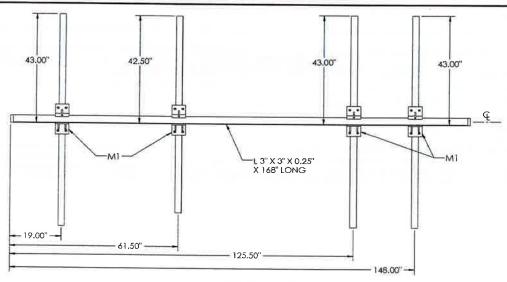
Mapping Notes

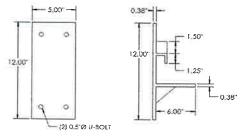
- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.
- rease measure and enter the bott sizes and types under the interiors box in the spreadsheet of the mount type.
 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
 6. Please measure and report the size and length of all existing antenna mounting pipes.
 7. Please measure and report the antenna information for all sectors.

- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

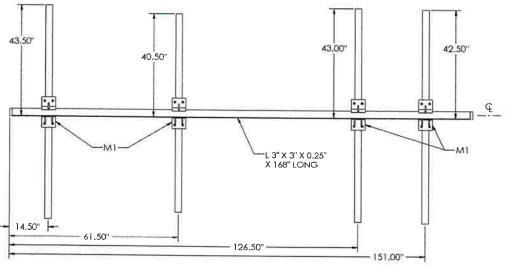
Standard Conditions

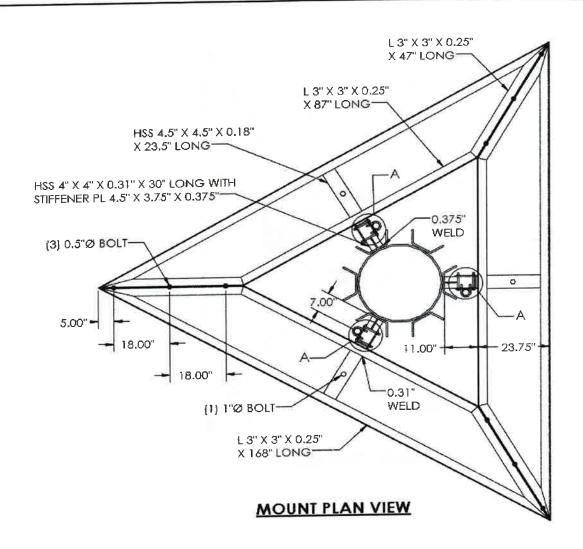
1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

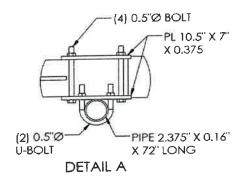

V3.0 Updated on 8-31-2020

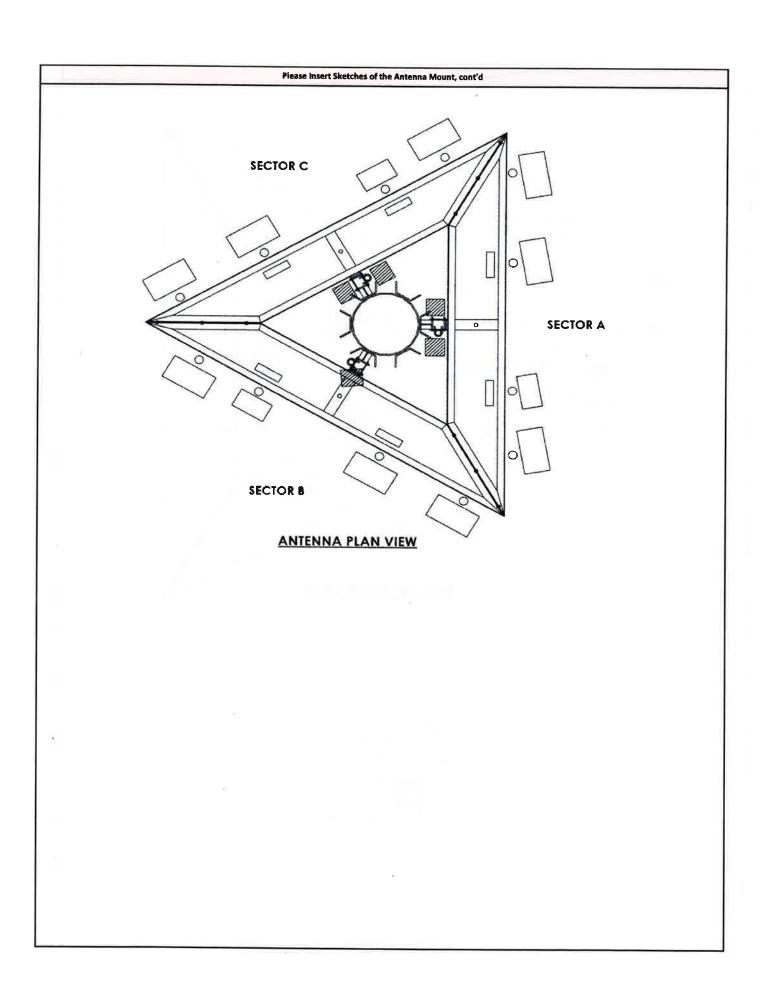

			V3.0	Updated on 8-31	1-2020
	Antenna Mount Mapping For	rm (PATENT PENDING)			FCC#
					1051825
Tower Owner:	SBA	Mapping Date:		1/9/2	2021
Site Name:	VZW: BETHEL WEST CT	Tower Type:		Mono	
Site Number or ID:	SBA: CT0248	Tower Height (Ft.):		UNKN	OWN
Mapping Contractor:	RKS Design & Engineering LLC	Mount Elevation (Ft.):		135	5.5
THE AND INCOME OF THE PERSON O					714

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained here in sconsidered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compilant with ANSI/ASSE A 10,48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety dimb as it must be assessed prior to each use in compilance with OSHA requirements.


Please Insert Sketches of the Antenna Mount


SECTOR - A & B



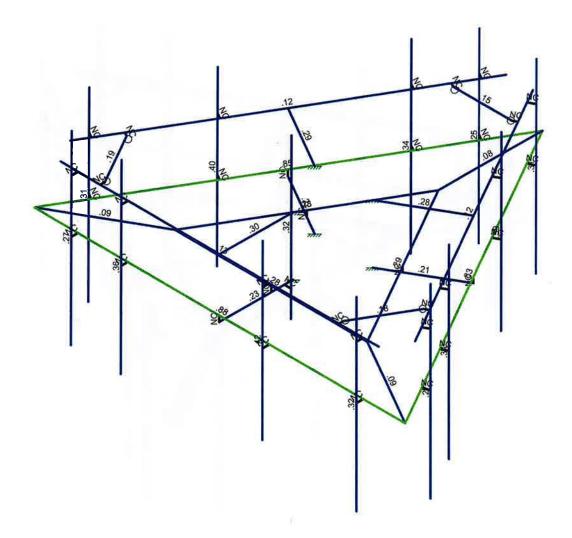

MI MEBER DETAIL

SECTOR - C

Envelope Only Solution

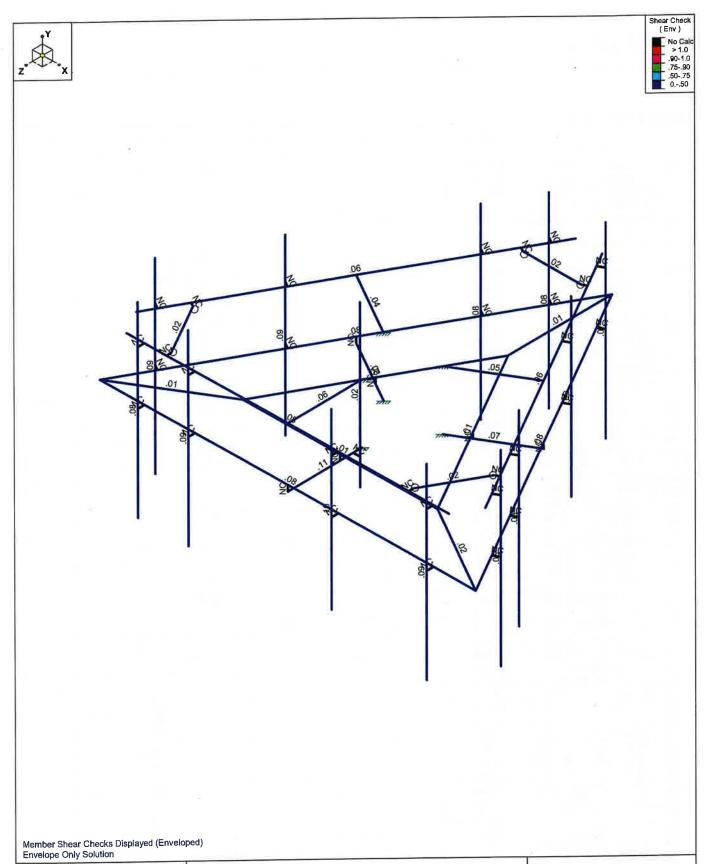
Colliers Engineering & De...

5000382994-VZW_MT_LO_H


SK - 1

July 6, 2023 at 2:20 PM

5000382994-VZW_MT_LO_H.r3d



Member Code Checks Displayed (Enveloped) Envelope Only Solution

Colliers Engineering & De		SK - 2
	5000382994-VZW_MT_LO_H	July 6, 2023 at 2:20 PM
		5000382994-VZW_MT_LO_H.r3d

 Colliers Engineering & De...
 SK - 3

 5000382994-VZW_MT_LO_H
 July 6, 2023 at 2:20 PM

 5000382994-VZW_MT_LO_H.r3d

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(
1	Antenna D	None					114		THOUGHTO	
2	Antenna Di	None					114			
3	Antenna Wo (0 Deg)	None					114	1		
4	Antenna Wo (30 Deg)	None					114			
5	Antenna Wo (60 Deg)	None					114			
6	Antenna Wo (90 Deg)	None					114			
7	Antenna Wo (120 Deg)	None					114			
8	Antenna Wo (150 Deg)	None					114			1
9	Antenna Wo (180 Deg)	None					114	1		
10	Antenna Wo (210 Deg)	None					114	†		-
11	Antenna Wo (240 Deg)	None					114	1		
12	Antenna Wo (270 Deg)	None	-				114	1	-	1
13	Antenna Wo (300 Deg)	None					114	4		-
14	Antenna Wo (330 Deg)	None					114	1		
15	Antenna Wi (0 Deg)	None					114		+	
16	Antenna Wi (30 Deg)	None					114	1000	 	
17	Antenna Wi (60 Deg)	None					114		-	
18	Antenna Wi (90 Deg)	None					114			
19	Antenna Wi (120 Deg)	None						_	-	
20	Antenna Wi (150 Deg)	None					114 114			
21	Antenna Wi (180 Deg)	None	1							
22	Antenna Wi (210 Deg)	None					114		-	
23	Antenna Wi (240 Deg)	None					114			
24	Antenna Wi (270 Deg)			-	-		114			
25	Antenna Wi (300 Deg)	None	+				114			
26	Antenna Wi (330 Deg)	None					114			
	Antenna Wm (0 Deg)	None					114			
27	Antenna Wm (30 Deg)	None					114			
28	Antenna Wm (60 Deg)	None					114			
29	Antenna Wm (90 Deg)	None					114			
30	Antenna Wm (120 Deg)	None					114			
31	Antenna Wm (120 Deg)	None	.				114			
32	Antenna Wm (150 Deg)	None					114			
33	Antenna Wm (180 Deg)	None					114			
34	Antenna Wm (210 Deg)	None					114			
35	Antenna Wm (240 Deg)	None					114			
36	Antenna Wm (270 Deg)	None					114			
37	Antenna Wm (300 Deg)	None					114			
38	Antenna Wm (330 Deg)	None					114			
39	Structure D	None		-1					3	
40	Structure Di	None						40	3	
	Structure Wo (0 Deg)	None						80		
42	Structure Wo (30 Deg)	None						80		
43	Structure Wo (60 Deg)	None						80		
44	Structure Wo (90 Deg)	None						80		
45	Structure Wo (120 Deg)	None						80		
46	Structure Wo (150 Deg)	None						80		
47	Structure Wo (180 Deg)	None						80		
48	Structure Wo (210 Deg)	None						80		
49	Structure Wo (240 Deg)	None						80		
50	Structure Wo (270 Deg)	None						80		
51	Structure Wo (300 Deg)	None						80		
52	Structure Wo (330 Deg)	None						80		
53	Structure Wi (0 Deg)	None						80		
54	Structure Wi (30 Deg)	None						80		
55	Structure Wi (60 Deg)	None						80		
56	Structure Wi (90 Deg)	None			1 2 12			80		
	1-73/	INDITE						LOU		

: Colliers Engineering & Design

5000382991-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Basic Load Cases (Continued)

BLC Description Structure Wi (120 Deg)	Category		1 Glavity	Z Gravity	Joint	Point		Me Surface(
	None		2.5				80	
Structure Wi (150 Deg)	None	16		2 5 1			80	
Structure Wi (180 Deg)	None						80	
Structure Wi (210 Deg)	None					141	80	
Structure Wi (240 Deg)	None						80	
Structure Wi (270 Deg)	None						80	I + I S.II FT
Structure Wi (300 Deg)	None						80	
Structure Wi (330 Deg)	None			+=1.011			80	LA LE III Det
Structure Wm (0 Deg)	None						80	
							80	
							80	
			115 - 11				80	- (S.T. PI
							80	
							80	1 1 1 2 1 1 1
							80	
							80	
							80	
							80	
							80	
				£ 100 //		T. IV	80	
						1		
		THE IT Y		ar I	-11	1		
						1		
		1000		HELL PARTY		1		
						114		
		1		BT P P V		76		01/01/19
Antenna En (U Deg)						76		
		-	- 048		FILTER		3	3
		+	040	- 121				
		121		.12.			3	3
Structure Eh (90 Deg)		.121					29	
		-						
	Structure Wm (30 Deg) Structure Wm (60 Deg) Structure Wm (90 Deg) Structure Wm (120 Deg) Structure Wm (150 Deg) Structure Wm (150 Deg) Structure Wm (210 Deg) Structure Wm (240 Deg) Structure Wm (270 Deg) Structure Wm (300 Deg) Structure Wm (330 Deg) Lm1 Lm2 Lv1 Lv2 Antenna Ev Antenna Ev Antenna Eh (0 Deg) Antenna Eh (90 Deg) Structure Eh (90 Deg) Structure Eh (90 Deg) BLC 39 Transient Area L BLC 84 Transient Area L BLC 85 Transient Area L BLC 86 Transient Area L	Structure Wm (60 Deg) None Structure Wm (90 Deg) None Structure Wm (120 Deg) None Structure Wm (150 Deg) None Structure Wm (180 Deg) None Structure Wm (210 Deg) None Structure Wm (240 Deg) None Structure Wm (300 Deg) None Structure Wm (330 Deg) None Lm1 None Lw2 None Lv1 None Lv2 None Antenna Ev None Antenna Eh (0 Deg) None Antenna Eh (90 Deg) None Structure Eh (0 Deg) ELZ Structure Eh (90 Deg) ELX BLC 39 Transient Area L None BLC 40 Transient Area L None BLC 85 Transient Area L None	Structure Wm (60 Deg) Structure Wm (90 Deg) None Structure Wm (120 Deg) Structure Wm (150 Deg) Structure Wm (150 Deg) Structure Wm (180 Deg) Structure Wm (210 Deg) Structure Wm (240 Deg) Structure Wm (270 Deg) Structure Wm (300 Deg) Structure Wm (330 Deg) Structure Wm (330 Deg) None Structure Wm (330 Deg) None Lm1 None Lm2 None Lv1 None Lv2 None Antenna Ev None Antenna Eh (0 Deg) None Structure Ev Structure Eh (0 Deg) Structure Eh (90 Deg)	Structure Wm (60 Deg) None Structure Wm (90 Deg) None Structure Wm (120 Deg) None Structure Wm (150 Deg) None Structure Wm (180 Deg) None Structure Wm (210 Deg) None Structure Wm (240 Deg) None Structure Wm (270 Deg) None Structure Wm (300 Deg) None Structure Wm (330 Deg) None Lm1 None Lm2 None Lv1 None Lv2 None Antenna Ev None Antenna Eh (0 Deg) None Structure Ev ELY Structure Eh (0 Deg) ELZ Structure Eh (90 Deg) ELX Structure Eh (90 Deg) ELX BLC 39 Transient Area L None BLC 84 Transient Area L None BLC 85 Transient Area L None BLC 85 Transient Area L None	Structure Wm (60 Deg) None Structure Wm (90 Deg) None Structure Wm (120 Deg) None Structure Wm (150 Deg) None Structure Wm (180 Deg) None Structure Wm (210 Deg) None Structure Wm (240 Deg) None Structure Wm (270 Deg) None Structure Wm (300 Deg) None Structure Wm (330 Deg) None Lm1 None Lm2 None Lv1 None Lv2 None Antenna Ev None Antenna Eh (0 Deg) None Structure Eb (90 Deg) ELZ Structure Eh (90 Deg) ELX Structure Eh (90 Deg) ELX Structure Eh (90 Deg) ELX BLC 39 Transient Area L None BLC 84 Transient Area L None BLC 85 Transient Area L None	Structure Wm (60 Deg) None Structure Wm (90 Deg) None Structure Wm (120 Deg) None Structure Wm (150 Deg) None Structure Wm (180 Deg) None Structure Wm (180 Deg) None Structure Wm (210 Deg) None Structure Wm (240 Deg) None Structure Wm (270 Deg) None Structure Wm (300 Deg) None Structure Wm (330 Deg) None Lm1 None Lm2 None Lv1 None Lv2 None Antenna Ev None Antenna Ev None Antenna Eh (0 Deg) None Structure Ev ELY048 Structure Eh (0 Deg) ELZ121 Structure Eh (0 Deg) ELX .121 Structure Eh (240 Transient Area L None BLC 48 Transient Area L None BLC 48 Transient Area L None BLC 45 Transient Area L None BLC 45 Transient Area L None	Structure Wm (60 Deg) None	Structure Wm (50 Deg) None 80

Load Combinations

	Description	So	P	S	BLC	Fac.	BLC	Fac.	BLC	Fac.		Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac	BLC	rac
1	1.2D+1.0Wo (0 Deg)	Yes	Y		1	1.2	39	1.2	3	1	41	1_		_		_	_			_				
2	Control of the Contro	Yes	Y	11	1	1.2	39	1.2	4	1_	42	1_				_					-			-
3	1.2D+1.0Wo (60 Deg)		Y		1	1.2	39	1.2	5	1	43	1			\vdash					_	-			
4	1.2D+1.0Wo (90 Deg)			-	1	1.2	39	1.2	6	1	44	1								-	-			-
5	1.2D+1.0Wo (120 Deg)				1	1.2	39	1.2	7	1_	45	1_							\vdash		-			\vdash
6	1.2D+1.0Wo (150 Deg)				1	1.2	39	1.2	8	1	46	1							-	_	-			\vdash
7	1.2D+1.0Wo (180 Deg)				1	1.2	39	1.2	9	1	47	1_												H
8	1.2D+1.0Wo (210 Deg)				1	1.2	39	1.2	10	1	48	1				_	-		-		-			-
9	1.2D+1.0Wo (240 Deg)				1	1.2	39	1.2	11	1	49	1	_			_	-				-			\vdash
10	1.2D+1.0Wo (270 Deg)				1	1.2	39	1.2	12	1	50	1							-	_			_	-
11	1.2D+1.0Wo (300 Deg)				1	1.2	39	1.2	13	1	51	_1_	_				_					-	_	-
12	1.2D+1.0Wo (330 Deg)			P.	1	1.2	39	1.2	14	1	52	1			_	_							-	-
13	1.2D + 1.0Di + 1.0Wi (.				1	1.2	39	1.2	2	1	40	1	15	1_	53	_1_	-		-	_	-		-	-
14	1.2D + 1.0Di + 1.0Wi (.	_			1	1,2	39	1.2	2	1	40	1	16	1	54	1		100		-	_	-	-	-
15	1.2D + 1.0Di + 1.0Wi (.	.Yes	Y		11	1.2	39	1.2	2	1	40	1_	17	1	55	_1_	-		-	_		-	-	-
16	1.2D + 1.0Di + 1.0Wi (.	Yes	Y		1	1.2	39	1.2	2	1	40	1_	18	1	56	1			-		-	_	-	1
17	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y		1	1.2	39	1.2	2	1	40	1_	19	1	57	1		_	1_				_	_

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Load Combinations (Continued)

	a combinations			1911 110	_			_	-	_	_	_		_					_	_	_			
	Description	So.	.P	S E	BLC	Fac.	BLC	Fac.	BLO	Fac.	BLC	Fac	BLC	Fac.	BLC	Fac.	.BLC	Fac	BLO	CFac.	BLC	Fac	BLC	Fac.
18	1.2D + 1.0Di + 1.0Wi (.	res	I Y	1 1	1	1.2	39	1.2	2	11	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (.	Yes	Y		1	1.2	39	1.2	2	1	40	1	21	1	59	1			T		\vdash			
20	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y			1.2					40		22		60	_								
21	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y			1.2					40	_	23	1	61	_	1	-	-	_				
22	1.2D + 1.0Di + 1.0Wi (.	Yes	Y		1					1	40	_	24	1	62		+-		-					
	1.2D + 1.0Di + 1.0Wi (Yes	V	\vdash	1			1.2			40	_	_	_			-		+	-				
24	1.2D + 1.0Di + 1.0Wi (Voe	V		1					-	_	_	25	1	63	_	\vdash	-	+-	-			_	
25	1.2D + 1.5Lm1 + 1.0W.				-			1.2		1	40	_	26		64	1	-	_	-					
	1.2D + 1.5Lm1 + 1.0W.	Voc	Y		1			1.2		1.5	_	1	65		_	_	_		_					
	1.2D + 1.5LIII1 + 1.0VV.	res	Y		1					1.5		1	66	1										
27	1.2D + 1.5Lm1 + 1.0W.	. Yes	Y	-	1					1.5		4	67	1										
28	1.2D + 1.5Lm1 + 1.0W.	.Yes	Y		1			1.2		1.5	30	1	68	1									E	
29	1.2D + 1.5Lm1 + 1.0W.	. Yes	Y		1	1.2	39	1.2	77	1.5	31	1	69	1										
30	1.2D + 1.5Lm1 + 1.0W.	. Yes	Y		1	1.2	39	1.2				1	70	1		1								
31	1.2D + 1.5Lm1 + 1.0W.	.Yes	Y					1.2		1.5		1	71	1										
32	1.2D + 1.5Lm1 + 1.0W.	Yes	Y			1.2				15	3/		72	1	\vdash		1						-	
33	1.2D + 1.5Lm1 + 1.0W.	Yes	Ý			1.2							73	1	_			_	-					_
	1.2D + 1.5Lm1 + 1.0W.			_	1	1.2	30	12	177	1.5	35		_			-		_						-
35	1.2D + 1.5Lm1 + 1.0W.	Yes	V		1	1.2	20	1.2	144	1.5	36	1	74	1	-		-	-	-					
	1.2D + 1.5Lm1 + 1.0W.			_		1.2						1	75	1			_							
	1.2D + 1.5Lm2 + 1.0W.			_		1.2						_	76	1		102	_							
31	1.2D + 1.5Lill2 + 1.0VV.,	res	Y		1	1.2	39	1.2	78	1.5	27	1	65	1										
	1.2D + 1.5Lm2 + 1.0W.				1	1.2	39	1.2	78	1.5	28	1	66	1										
	1.2D + 1.5Lm2 + 1.0W					1.2						_1_	67	1										
40	1.2D + 1.5Lm2 + 1.0W	Yes	Υ		1	1.2	39	1.2	78	1.5	30	1	68	1										
	1.2D + 1.5Lm2 + 1.0W.				1	1.2	39	1.2	78	1.5	31	1	69	1										
42	1.2D + 1.5Lm2 + 1.0W	Yes	Y		1	1.2	39	1.2	78	1.5	32	1	70	1		-64								
	1.2D + 1.5Lm2 + 1.0W					1.2						1	71	1										-
44	1.2D + 1.5Lm2 + 1.0W	Yes	Y		1	1.2	39	12	78	15	34	1	72	1										
45	1.2D + 1.5Lm2 + 1.0W	Yes	Y		1	1.2	39	12	78	1.5	35	1	73	1		_			1	-			-	_
	1.2D + 1.5Lm2 + 1.0W					1.2						1	74	1								-		
47	1.2D + 1.5Lm2 + 1.0W	Yes	Ÿ		1	1.2	30	1.2	70	1.5	27	_			-				-	-	-	-		
	1.2D + 1.5Lm2 + 1.0W				1	1.2	30	1.2	70	1.5	37	1	75	1									_	
49		2.4				1.2					38	1	76	_1_							_			
		Yes			1	1.2	39	1.2	79	1.5	-		\vdash											
50		Yes	_	_		1.2			80	1.5										a large				
51	1.4D	Yes				1.4																		
52	1.2D + 1.0Ev + 1.0Eh	Yes	Y			1.2				1	ELY	1	82	1	83	1/50	ELZ	1	ELX					
53_	1.2D + 1.0Ev + 1.0Eh	Yes	Y			1.2				1	ELY	1	82	.866	83	.5	ELZ	.866	ELX	.5				
54	1.2D + 1.0Ev + 1.0Eh	Yes	Y		1	1.2	39	1.2	81	1	ELY	1	82	.5	83	.866	ELZ	.5	ELX	.866				
55	1.2D + 1.0Ev + 1.0Eh	Yes	Y			1.2					ELY	1	82		83		ELZ	_	ELX	-				
56	1.2D + 1.0Ev + 1.0Eh	Yes	Y			1.2					ELY	1		5							1			
57	1.2D + 1.0Ev + 1.0Eh	Yes	Y			1.2					ELY	1	_	.866	_			.866			-			
58	1.2D + 1.0Ev + 1.0Eh	Yes	Y			1.2					ELY	1	82		83	_	ELZ	_	ELX					
	1.2D + 1.0Ev + 1.0Eh					1.2					ELY	1		.866							-	-	-	
	1.2D + 1.0Ev + 1.0Eh			-		1.2	30	1.2	91	1														
61	1.2D + 1.0Ev + 1.0Eh	Vee	÷		1	1.2	22	1.2	01	1				5						866	_ 4	_		
	1.2D + 1.0Ev + 1.0Eh					1.2					ELY		82			-1			ELX					
						1.2					ELY									866				
03	1.2D + 1.0Ev + 1.0Eh	res	Y			1.2					ELY			.866										
	0.9D - 1.0Ev + 1.0Eh (_		.9					ELY				83		ELZ		ELX					-3
	0.9D - 1.0Ev + 1.0Eh (1			.9		-1			82	.866	83	.5	ELZ	.866	ELX	.5				
	0.9D - 1.0Ev + 1.0Eh (.9	39	.9	81	-1	ELY	-1	82	.5	83	.866	ELZ	.5	ELX	.866				
67	0.9D - 1.0Ev + 1.0Eh (Yes	Y	1			39	.9	81	-1	ELY	-1	82		83		ELZ		ELX					
68	0.9D - 1.0Ev + 1.0Eh (Yes	Y							-1				5										
69	0.9D - 1.0Ev + 1.0Eh (Yes	Y		П		39			-1				.866				.866					-	
	0.9D - 1.0Ev + 1.0Eh (1	_					-1					83			-1						_
	0.9D - 1.0Ev + 1.0Eh (_					-1											-	-	-	- 1
	0.9D - 1.0Ev + 1.0Eh (.866							_	-	-	_
73	0.9D - 1.0Ev + 1.0Eh (Voc	븏					.9	_		ELY									.866	-		-	
74	0.9D - 1.0Ev + 1.0Eh (Voc	. 		Н			.9			ELY		82	_	83	-1		-201	ELX				_	
14	5.50 - 1.0EV T 1.0EN ((62	Y			.9	39	.9	81	-1	ELY	-1	82	.5	83	.866	ELZ	.5	ELX	866				AT

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Load Combinations (Continued)

 Description
 So. P... S... BLCFac. BLCF

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	-1.938981	0	-1.119471	0	
2	N2	-3.626481	0	-2.09375	0	
3	N3	-1.226869	0	-0.708333	0	
4	N5	-3.751481	0.208333	2.019871	0	
5	N6	-0.126481	0.208333	-4.258814	0	
6	N7	-7.126481	0.208333	3.968428	0	
7	N8	-0.126481	0.208333	-8.155928	0	
8	N9	-1.938981	0.208333	-1.119471	0	
9	N10	-3.626481	0.208333	-2.09375	0	
10	N14	3.498519	0.208333	2.019871	0	
11	N19A	6.873519	0.208333	3.968428	0	
12	CENTERPT	-0.126481	0.069444	-0.073024	0	
13	N13	-0.126481	0	2.019871	0	
14	N14A	-0.126481	0	3.968428	0	
15	N15	-0.126481	0	1.197595	0	
16	N16	-0.126481	0.208333	2.019871	0	
17	N17	-0.126481	0.208333	3.968428	0	
18	N19	1.686019	0	-1.119471	0	
19	N20	3.373519	0	-2.09375	0	
20	N21	0.973907	0	-0.708333	0	
21	N22	1.686019	0.208333	-1.119471	0	
22	N23	3.373519	0.208333	-2.09375	0	
23	N35A	5.290185	0.208333	3.968428	0	
24	N36A	5.290185	0.208333	4.218428	0	
25	N37	5.290185	3.666667	4.218428	0	
26	N38	5.290185	-3.333333	4.218428	0	
27	N39	1.748519	0.208333	3.968428	0	
28	N40	1.748519	0.208333	4.218428	0	
29	N41	1.748519	3.708333	4.218428	0	
	N42	1.748519	-2.791667	4.218428	0	
30	N43	-3.584815	0.208333	3.968428	0	
32	N44	-3.584815	0.208333	4.218428	0	
33	N45	-3.584815	3.666667	4.218428	0	
34	N46	-3.584815	-3.333333	4.218428	0	
	N47	-5.459815	0.208333	3.968428	0	
35	N48	-5.459815	0.208333	4.218428	0	
36	N49	-5.459815	3.666667	4.218428	0	
37	N50	-5.459815	-3.333333	4.218428	0	
38	N51	0.665137	0.208333	-6.784701	0	
39	N52	0.881643	0.208333	-6.909701	0	76
40	N53	0.881643	3.666667	-6.909701	0	
41		0.881643	-3.333333	-6.909701	0	
42	N54	2.43597	0.208333	-3.717528	0	
43	N55 N56	2.652476	0.208333	-3.842528	0	
44		2.652476	3.708333	-3.842528	0	
45	N57	2.652476	-2.791667	-3.842528	0	
46	N58	5.102637	0.208333	0.901274	0	
47	N59	5.319143	0.208333	0.776274	0	
48	N60	5.319143	3.666667	0.776274	0	
49	N61		-3.333333	0.776274	0	
50	N62	5.319143	0.208333	2.525072	0	
51	N63	6.040137	0.200333	2.323012		

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	V III	7 (6)	Takes Int	Date of Free Breeze
52	N64	6.256643	Y [ft] 0.208333	Z [ft] 2.400072	Temp [F]	Detach From Diap
53	N65	6.256643	3.666667	2.400072	0	
54	N66	6.256643	-3.333333	2.400072	0	
55	N67	-6.334822	0.208333	2.597273		_
56	N68	-6.551328			0	
57	N69	-6.551328	0.208333	2.472273	0	
58	N70		3.666667	2.472273	0	
59	N71	-6.551328	-3.333333	2.472273	0	
60	N72	-4.563988	0.208333	-0.4699	0	
61		-4.780495	0.208333	-0.5949	0	
	N73	-4.780495	3.708333	-0.5949	0	9)
62	N74	-4.780495	-2.791667	-0.5949	0	
63	N75	-1.897322	0.208333	-5.088702	0	
64	N76	-2.113828	0.208333	-5.213702	0	
65	N77	-2.113828	3.666667	-5.213702	0	
66	N78	-2.113828	-3.333333	-5.213702	0	
67	N79	-0.959822	0.208333	-6.7125	0	
68	N80	-1.176328	0.208333	-6.8375	0	
69	N81	-1.176328	3.666667	-6.8375	0	
70	N82	-1.176328	-3.333333	-6.8375	0	
71	N83	5.873519	2.208333	3.968428	0	
72	N84	-6.126481	2.208333	3.968428	0	
73	N85	5.290234	2.208333	3.968408	0	
74	N86	5.290234	2.208333	4.218408	Ö	
75	N87	1.748567	2.208333	3.968408	0	
76	N88	1.748567	2.208333	4.218408	0	
77	N89	-3.584766	2.208333	3.968408	0	
78	N90	-3.584766	2.208333	4.218408	0	
79	N91	-5.459766	2.208333	3.968408		
80	N92	-5.459766	2.208333	4.218408	0	
81	N93	4.373519			0	
82	N94		2.208333	3.968428	0	
83	N103	-4.626481	2.208333	3.968428	0	
84		4.373519	2.208333	3.801728	00	
	N104	-4.626481	2.208333	3.801728	0	
85	N98	0.373519	2.208333	-7.289902	0	
86	N99	6.373519	2.208333	3.102402	0	
87	N100	0.665144	2.208333	-6.784753	0	
88	N101	0.88165	2.208333	-6.909753	0	
89	N102	2.435977	2.208333	-3.71758	0	
90	N103A	2.652483	2.208333	-3.84258	0	
91	N104A	5.102644	2.208333	0.901222	0	
92	N105	5.31915	2.208333	0.776222	0	
93	N106	6.040144	2.208333	2.52502	0	
94	N107	6.25665	2.208333	2.40002	0	
95	N108	1.123519	2.208333	-5.990864	0	
96	N109	5.623519	2.208333	1.803364	0	
97	N110	0.979152	2.208333	-5.907514	0	
98	N111	5.479152	2.208333	1.886714	Ō	
99	N113	-6.626481	2.208333	3.102402	0	
100	N114	-0.626481	2.208333	-7.289902	0	
101	N115	-6.334822	2.208333	2.597273	0	
102	N116	-6.551328	2.208333	2.472273	0	
103	N117	-4.563988	2.208333	-0.4699	0	
104	N118	-4.780495	2.208333	-0.4699	0	
105	N119	-1.897322				
106	N120	-2.113828	2.208333	-5.088702	0	
107	N121		2.208333	-5.213702	0	
108		-0.959822	2.208333	-6.7125	0	
100	N122	-1.176328	2.208333	-6.8375	0	

5000382994-VZW_MT_LΩ_H

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
109	N123	-5.876481	2.208333	1.803364	0	
110	N124	-1.376481	2.208333	-5.990864	0	
111	N125	-5.732115	2.208333	1.886714	0	
112	N126	-1.232115	2.208333	-5.907514	0	THYS LIFE
113	N125A	-3.626481	2.20833	-2.09375	0	
114	N126A	-1.226869	2,20833	-0.708333	0	
115	N127	-0.126481	2.20833	3.968428	0	
116	N128	-0.126481	2.20833	1.197595	0	أحاق المعافلات أ
117	N129	3.373519	2.20833	-2.09375	0	
118	N130	0.973907	2.20833	-0.708333	0	
119	N119A	-0.126481	0	1.519871	0	
120	N120A	0.123519	0	1.519871	0	
121	N121A	0.123519	5	1.519871	0	
122	N122A	0.123519	-1	1.519871	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R.	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Inner Face Horizont	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
3	Face Horizontal	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
4	Standoff Horizontal	HSS4X4X5	Beam	SquareTube	A500 Gr. B	Typical	4.1	9.14	9.14	15.3
5	Platform Connectio	LL3x3x4x0	Beam	Single Angle	A36 Gr.36	Typical	2.88	4.5	2.46	.063
6	Proposed Support	PIPE 2.5	Beam	Single Angle	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
7	Proposed Support	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
8	Proposed Standoff	HSS3X3X4	Beam	Single Angle	A500 Gr. B		2.44	3.02	3.02	5.08

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1 De	ensity[k/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	3	.65	.49	35	1.5	60	1.2
~	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	3	.65	.49	46	1.4	58	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1 T	M1	N3	N2	13.00		Standoff Horiz	Beam	SquareTube	A500 Gr	Typical
2	M2	N5	N6		270	Inner Face Hor.	Beam	Single Angle	A36 Gr.36	Typical
3	M3	N7	N8			Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
-	M4	N1	N9		60	RIGID	None	None	RIGID	Typical
5	M5	N2	N10		60	RIGID	None	None	RIGID	Typical
6	M7	N14	N6	207		Inner Face Hor	Beam	Single Angle	A36 Gr.36	Typical
7	M9	N14	N5		270	Inner Face Hor.	Beam	Single Angle	A36 Gr.36	Typical
8	M13	N19A	N8		270	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
9	FACE	N19A	N7		2,0	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
	M10	N14	N19A		180	Platform Conn	Beam	Single Angle	A36 Gr.36	Typical
10	M11	N15	N14A		100	Standoff Horiz	Beam	SquareTube	A500 Gr	Typical
	M12	N13	N16		60	RIGID	None	None	RIGID	Typical
12		N14A	N17		60	RIGID	None	None	RIGID	Typical
13	M13A	N21	N20			Standoff Horiz	Beam		A500 Gr	Typical
14	M14 M15	N21 N19	N22		60	RIGID	None	None	RIGID	Typical

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
16	M16	N20	N23		60	RIGID	None	None	RIGID	Typical
17	LIVE2	N35A	N36A			RIGID	None	None	RIGID	Typical
18	MP1A	N37	N38		Parent.	Antenna Pipe	Beam	Pipe	A53 Gr. B	
19	LIVE1	N39	N40			RIGID	None	None	RIGID	Typical
20	MP2A	N41	N42			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
21	M27	N43	N44			RIGID	None	None	RIGID	Typical
22	MP3A	N45	N46			Antenna Pipe	Beam	Pipe	A53 Gr. B	
23	M29	N47	N48		33	RIGID	None	None	RIGID	Typical
24	MP4A	N49	N50			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
25	M31	N51	N52			RIGID	None	None	RIGID	Typical
26	MP1C	N53	N54			Antenna Pipe	Beam	Pipe	A53 Gr. B	
27	M33	N55	N56			RIGID	None	None	RIGID	Typical
28	MP2C	N57	N58			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
29	M35	N59	N60			RIGID	None	None	RIGID	Typical
30	MP3C	N61	N62			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
31	M37	N63	N64			RIGID	None	None	RIGID	Typical
32	MP4C	N65	N66			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
33	M39	N67	N68			RIGID	None	None	RIGID	Typical
34	MP1B	N69	N70	101000	75.7	Antenna Pipe	Beam	Pipe	A53 Gr. B	
35	M41	N71	N72		-	RIGID	None	None	RIGID	Typical
36	MP2B	N73	N74			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
37	M43	N75	N76			RIGID	None	None	RIGID	Typical
38	MP3B	N77	N78			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
39	M45	N79	N80			RIGID	None	None	RIGID	Typical
40	MP4B	N81	N82		100	Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
41	M47	N6	N8		180	Platform Conn	Beam	Single Angle		Typical
42	M48	N5	N7		180	Platform Conn	Beam	Single Angle		
43	M49	N83	N84		100	Proposed Sup	Beam	Single Angle		Typical Typical
44	M50	N85	N86		-	RIGID	None	None	RIGID	Typical
45	M51	N87	N88			RIGID	None	None	RIGID	Typical
46	M52	N89	N90			RIGID	None	None	RIGID	Typical
47	M53	N91	N92			RIGID	None	None	RIGID	
48	M56	N94	N104			RIGID	None	None	RIGID	Typical Typical
49	M57	N93	N103			RIGID	None	None	RIGID	Typical
50	M64	N83	N84		-	Proposed Sup	Beam	Single Angle		
51	M72	N83	N84			Proposed Sup	Beam	Single Angle		Typical
52	M58	N98	N99			Proposed Sup	Beam	Single Angle		Typical
53	M59	N100	N101			RIGID			RIGID	Typical
54	M60	N102	N103A			RIGID	None	None	RIGID	Typical
55	M61	N104A	N105A		1	RIGID	None	None		Typical
56	M62	N104A	N107				None	None	RIGID	Typical
57	M63	N109	N111	-		RIGID	None	None	RIGID	Typical
58	24044					RIGID	None	None	RIGID	Typical
59	M64A M65	N108 N98	N110			RIGID	None	None	RIGID	Typical
60	M66		N99	_		Proposed Sup	Beam	Single Angle		Typical
61	M67	N98	N99			Proposed Sup	Beam	Single Angle		
		N113	N114	W. T.		Proposed Sup	Beam	Single Angle		
62	M68	N115	N116			RIGID	None	None	RIGID	Typical
63	M69	N117	N118		-	RIGID	None	None	RIGID	Typical
64	M70	N119	N120			RIGID	None	None	RIGID	Typical
65	M71	N121	N122	7		RIGID	None	None	RIGID	Typical
66	M72A	N124	N126			RIGID	None	None	RIGID	Typical
67	M73	N123	N125			RIGID	None	None	RIGID	Typical
68	M74	N113	N114			Proposed Sup	Beam	Single Angle		Typical
69	M75	N113	N114			Proposed Sup	Beam	Single Angle		Typical
70	M76	N125	N104			Proposed Sup	Beam	Single Angle		Typical
71	M77	N103	N111			Proposed Sup	Beam	Single Angle		Typical
72	M78	N110	N126		180	Proposed Sup	Beam	Single Angle	A36 Gr.36	Typical

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Primary Data (Continued)

	Turkel	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
70	Label	N126A	N125A	TC BOILE		Proposed Stan	Beam	Single Angle	A500 Gr	Typical
73	M79	-				Proposed Stan		Single Angle		Typical
74 75	M80	N128	N127			Proposed Stan	Beam	Single Angle	A500 Gr	Typical
75	M81	N130	N129				None	None	RIGID	Typical
76	M76A	N119A	N120A			RIGID				-
77	OVP	N121A	N122A			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical

Men	nber Adv	anced Da	ta
	Label	I Release	J Rele
1	M1		

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Yes	Defl RatAnal	ysis Inactive	Seismic None
1	M1						Yes			None
2	M2						Yes			None
3	M3						Yes	** NA **		None
4	M4						Yes	** NA **		None
5	M5						Yes	INA		None
6	M7						Yes	1		None
7	M9						Yes			None
8	M13						Yes			None
9	FACE									None
10	M10						Yes Yes			None
11	M11					-	Yes	** NA **		None
12	M12						Yes	** NA **		None
13	M13A					-		INA		None
14	M14						Yes	** NA **		None
15	M15					-	Yes	** NA **		None
16	M16						Yes	** NA **		None
17	LIVE2						Yes	INA		None
18	MP1A					-	Yes	** NA **		None
19	LIVE1					.	Yes	INA		None
20	MP2A						Yes	** NA **		None
21	M27						Yes	INA		None
22	MP3A						Yes	++ >10 ++		None
23	M29						Yes	** NA **		None
24	MP4A						Yes	** * * * *		None
25	M31					-	Yes	** NA **		None
26	MP1C						Yes	** * * *		None
27	M33			9			Yes	** NA **		None
28	MP2C						Yes	44 314 44		None
29	M35						Yes	** NA **		None
30	MP3C			N. P.			Yes	44 3 1 3 44		
31	M37						Yes	** NA **		None
32	MP4C						Yes	44.514.44		None
33	M39					(4	Yes	** NA **		None
34	MP1B					- 3	Yes	11.11.4		None
35	M41						Yes	** NA **		None
36	MP2B			-5.00			Yes			None
37	M43						Yes	** NA **		None
38	MP3B			Biggs .			Yes			None
39	M45						Yes	** NA **		None
40	MP4B						Yes			None
41	M47						Yes			None
42	M48						Yes			None
43	M49						Yes	17.77.7.1		None
44	M50						Yes	** NA **		None
45	M51						Yes	** NA **		None
46	M52						Yes	** NA **	111111111111111111111111111111111111111	None
47	M53						Yes	** NA **		None

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
48	M56	00000X					Yes	** NA **	mount	None
49	M57	00000X					Yes	** NA **	4	None
50	M64						Yes	1.00		None
51	M72						Yes			None
52	M58						Yes			None
53	M59						Yes	** NA **		None
54	M60						Yes	** NA **		None
55	M61						Yes	** NA **		None
56	M62						Yes	** NA **		None
57	M63	00000X					Yes	** NA **		None
58	M64A	00000X		-				** NA **		None
59	M65						Yes	177.		None
60	M66						Yes			None
61	M67						Yes			None
62	M68							** NA **		None
63	M69						Yes	** NA **		None
64	M70							** NA **		None
65	M71						Yes	** NA **		None
66	M72A	00000X					Yes	** NA **		None
67	M73	00000X						** NA **		None
68	M74						Yes	LIVO		None
69	M75						Yes			None
70	M76						Yes		No. 1	None
71	M77						Yes			None
72	M78						Yes		100	None
73	M79						Yes			
74	M80						Yes			None None
75	M81		-				Yes			
76	M76A						Yes	** NA **	- 1 1150	None
77	OVP						Yes	INA		None None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Y	-34.5	.5
2	MP2A	My	017	.5
3	MP2A	Mz	02	.5
4	MP2A	Y	-34.5	4.5
5	MP2A	My	017	4.5
6	MP2A	Mz	02	4.5
7	MP2B	Y	-34.5	.5
8	MP2B	Mv	.026	.5
9	MP2B	Mz	.004	.5
10	MP2B	Y	-34.5	4.5
11	MP2B	My	.026	4.5
12	MP2B	Mz	.004	4.5
13	MP2C	Y	-34.5	.5
14	MP2C	My	017	.5
15	MP2C	Mz	.02	.5
16	MP2C	Y	-34.5	4.5
17	MP2C	My	017	4.5
18	MP2C	Mz	.02	4.5
19	MP2A	Y	-34.5	.5
20	MP2A	My	017	.5
21	MP2A	Mz	.02	.5
22	MP2A	Y	-34.5	4.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 1 : Antenna D) (Continued)

	ember Label	: Antenna D) (Contin	Magnitude[lb.k-ft]	Location[ft,%]
23	MP2A	Mv	017	4.5
24	MP2A	Mz	.02	4.5
25	MP2B	Y	-34.5	.5
26	MP2B	My	.000278	.5
7	MP2B	Mz	027	.5
28	MP2B	Y	-34.5	4.5
	MP2B	My	.000278	4.5
9	MP2B	Mz	027	4.5
30		Y	-34.5	.5
1	MP2C	My	.023	.5
2	MP2C	Mz	.013	.5
3	MP2C	Y	-34.5	4.5
4	MP2C		.023	4.5
5	MP2C	My	.013	4.5
6	MP2C	Mz	-43.55	.5
7	MP3A	Y		.5
8	MP3A	My	022	.5
9	MP3A	Mz	0	2.5
0	MP3A	Y	-43.55	2.5
1	MP3A	My	022	
2	MP3A	Mz	<u> </u>	2.5
3	MP3B	Y	-43.55	,5
4	MP3B	My	.017	.5
5	MP3B	Mz	014	.5
6	MP3B	Y	-43.55	2.5
7	MP3B	My	.017	2.5
	MP3B	Mz	014	2.5
8	MP3C	Y	-43.55	.5
9	MP3C	Mv	.004	.5
0	MP3C	Mz	.021	.5
51	MP3C	Y	-43.55	2.5
2	MP3C	My	.004	2.5
3	MP3C		.021	2.5
54	MP3C	Mz	-84.4	.5
55	MP2A	Y	.042	.5
6	MP2A	My		.5
57	MP2A	Mz	0	.5
8	MP2B	Y	-84.4	.5
9	MP2B	My	.042	.5
60	MP2B	Mz	0	.5
31	MP2C	Y	-84.4	.5
32	MP2C	My	.042	.5
33	MP2C	Mz	0	.5
64	MP1A	Y	-70.3	.5
55	MP1A	My	.035	.5
	MP1A	Mz	0	.5
66	MP1B	Y	-70.3	.5
57	MP1B	My	.035	.5
88	MP1B	Mz	0	.5
9		Y	-70.3	.5
0	MP1C	My	.035	.5
1	MP1C		0	.5
2	MP1C	Mz	-32	1.5
73	OVP	Y		1.5
74	OVP	My	0	1.5
75	OVP	Mz		.5
76	MP1A	Y	-13.5	.3
77	MP1A	My	007	.5
78	MP1A	Mz	0	.5
79	MP1A	Y	-13.5	4.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
80	MP1A	My	007	4.5
81	MP1A	Mz	0	4.5
82	MP4A	Y	-13.5	.5
83	MP4A	Mv	007	.5
84	MP4A	Mz	0	.5
85	MP4A	Y	-13.5	4.5
86	MP4A	Mv	007	4.5
87	MP4A	Mz	0	4.5
88	MP1B	Y	-10.5	.5
89	MP1B	My	.004	.5
90	MP1B	Mz	003	.5
91	MP1B	Y	-10.5	4.5
92	MP1B	Mv	.004	4.5
93	MP1B	Mz	003	4.5
94	MP4B	Y	-10.5	.5
95	MP4B	Mv	.004	.5
96	MP4B	Mz	003	.5
97	MP4B	Y	-10.5	4.5
98	MP4B	My	.004	4.5
99	MP4B	Mz	003	4.5
100	MP1C	Y	-6	.5
101	MP1C	Mv	.000521	.5
102	MP1C	Mz	.003	.5
103	MP1C	Y	-6	4.5
104	MP1C	My	.000521	4.5
105	MP1C	Mz	.003	4.5
106	MP4C	Y	-6	.5
107	MP4C	Mv	.000521	.5
108	MP4C	Mz	.003	.5
109	MP4C	Y	-6	4.5
110	MP4C	Mv	.000521	
111	MP4C	Mz	.003	4.5
112	MP2A	Y		4.5
113	MP2A	My	-17.6	2.5
114	MP2A	Mz	.009	2.5
	IVIT ZA	IVIZ	0	2.5

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Y	-72.536	.5
2	MP2A	My	036	.5
3	MP2A	Mz	042	.5
4	MP2A	Y	-72.536	4.5
5	MP2A	My	036	4.5
6	MP2A	Mz	042	4.5
7	MP2B	Y	-72.536	.5
8	MP2B	My	.055	.5
9	MP2B	Mz	.009	.5
10	MP2B	Y	-72.536	4.5
11	MP2B	My	.055	4.5
12	MP2B	Mz	.009	4.5
13	MP2C	Y	-72.536	.5
14	MP2C	My	035	.5
15	MP2C	Mz	.043	.5
16	MP2C	Y	-72.536	4.5
17	MP2C	My	035	4.5
18	MP2C	Mz	.043	4.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
19	MP2A	Y	-72.536	.5
20	MP2A	My	036	.5
21	MP2A	Mz	.042	.5
22	MP2A	Υ	-72.536	4.5
23	MP2A	My	036	4.5
24	MP2A	Mz	.042	4.5
25	MP2B	Y	<i>-</i> 72.536	.5
26	MP2B	My	.000585	.5
27	MP2B	Mz	056	.5
28	MP2B	Y	-72.536	4.5
29	MP2B	My	.000585	4.5
30	MP2B	Mz	056	4.5
	MP2C	Y	-72.536	.5
31	MP2C	Mv	.048	.5
32	MP2C	Mz	.028	.5
33	MP2C	Y	-72.536	4.5
34	MP2C	My	.048	4.5
35	MP2C		.028	4.5
36	MP2C	Mz	-35.664	.5
37	MP3A	Y	018	.5
38	MP3A	My		.5
39	MP3A	Mz	0	2.5
40	МРЗА	Y	-35.664	2.5
41	MP3A	My	018	
42	MP3A	Mz	0	2.5
43	MP3B	Y	-35.664	.5
44	MP3B	My	.014	.5
45	MP3B	Mz	011	.5
46	MP3B	Y	-35.664	2.5
47	MP3B	My -	.014	2.5
48	MP3B	Mz	011	2.5
49	MP3C	q Y	-35.664	.5
50	MP3C	My	.003	.5
51	MP3C	Mz	.018	.5
52	MP3C	Y	-35.664	2.5
53	MP3C	My	.003	2.5
	MP3C	Mz	.018	2.5
54	MP2A	Y	-44.965	.5
55	MP2A	My	.022	.5
56		Mz	0	.5
57	MP2A	Y	-44.965	.5
58	MP2B	My	.022	.5
59	MP2B		0	.5
60	MP2B	Mz Y	-44.965	.5
61	MP2C		.022	.5
62	MP2C	My	0	.5
63	MP2C	Mz	-40.438	.5
64	MP1A	Y		.5
65	MP1A	My	.02	.5
66	MP1A	Mz	0	.5
67	MP1B	Y	-40.438	.5
68	MP1B	My	.02	.5
69	MP1B	Mz	0	.5
70	MP1C	Y	-40.438	.5
71	MP1C	My	.02	.5
72	MP1C	Mz	0	.5
73	OVP	Y	-76.057	1.5
74	OVP	My	0	1.5
75	OVP	Mz	0	1,5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
76	MP1A	Y	-88.795	.5
77	MP1A	My	044	.5
78	MP1A	Mz	0	.5
79	MP1A	Y	-88.795	4.5
80	MP1A	Mv	044	4.5
81	MP1A	Mz	0	4.5
82	MP4A	Y	-88.795	.5
83	MP4A	My	044	.5
84	MP4A	Mz	0	.5
85	MP4A	Y	-88.795	4.5
86	MP4A	Mv	044	4.5
87	MP4A	Mz	0	4.5
88	MP1B	Y	-58.56	.5
89	MP1B	Mv	.022	.5
90	MP1B	Mz	019	.5
91	MP1B	Y	-58.56	4.5
92	MP1B	Mv	.022	4.5
93	MP1B	Mz	019	4.5
94	MP4B	Y	-58.56	.5
95	MP4B	My	.022	.5
96	MP4B	Mz	019	.5
97	MP4B	Y	-58.56	4.5
98	MP4B	My	.022	4.5
99	MP4B	Mz	019	4.5
100	MP1C	Y	-40.354	.5
101	MP1C	Mv	.004	.5
102	MP1C	Mz	.02	.5
103	MP1C	Y	-40.354	4.5
104	MP1C	Mv	.004	4.5
105	MP1C	Mz	.02	4.5
106	MP4C	Y	-40.354	.5
107	MP4C	My	.004	.5
108	MP4C	Mz	.02	.5
109	MP4C	Y	-40.354	4.5
110	MP4C	Mv	.004	4.5
111	MP4C	Mz	.02	4.5
112	MP2A	Y	-17.304	2.5
113	MP2A	My	.009	2.5
114	MP2A	Mz	.009	2.5
1 1	IVIFZA	IVIZ	U	2.5

Member Point Loads (BLC 3: Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	.5
2	MP2A	Z	-53.788	.5
3	MP2A	Mx	.031	.5
4	MP2A	X	0	4.5
5	MP2A	Z	-53.788	4.5
6	MP2A	Mx	.031	4.5
7	MP2B	X	0	.5
8	MP2B	Z	-59.54	.5
9	MP2B	Mx	007	.5
10	MP2B	X	0	4.5
11	MP2B	Z	59.54	4.5
12	MP2B	Mx	007	4.5
13	MP2C	X	0	.5
14	MP2C	Z	-67.289	.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 3: Antenna Wo (0 Deg)) (Continued)

Member La	abel Direction	Magnitude[lb,k-ft]	Location[ft,%]
15 MP2C	Mx	04	.5 4.5
16 MP2C	X	0	4.5
17 MP2C	Z	-67.289	4.5
18 MP2C	Mx	04	.5
19 MP2A		0	,5
20 MP2A	Z	-53.788	.5
MP2A	Mx	031	4.5
MP2A	X	0	
MP2A	Z	-53.788	4.5
MP2A	Mx	031	4.5
MP2B	X	0	.5
26 MP2B	Z	-59.54	.5
7 MP2B	Mx	.046	.5
MP2B	X	0	4.5
29 MP2B		-59.54	4.5
30 MP2B		.046	4.5
31 MP2C	X	0	.5
B2 MP2C		-67.289	.5
33 MP2C		026	.5
34 MP2C		0	4.5
34 MP2C 35 MP2C	Z	-67.289	4.5
B6 MP2C	Mx	026	4.5
87 MP3A		0	.5
MP3A		-99.138	.5
		0	.5
		0	2.5
		-99.138	2.5
		0	2.5
MP3A		0	.5
MP3E		-74.213	.5
MP3B		.024	.5
MP3B		0	2.5
MP3E		-74.213	2.5
17 MP3B		.024	2.5
48 MP3E		0	.5
19 MP3C	X	-40.631	.5
50 MP3C		02	.5
51 MP3C	Mx	0	2.5
52 MP3C		-40.631	2.5
53 MP3C		02	2.5
MP3C	Mx	02	,5
MP2A			.5
6 MP2A		-65.389	.5
57 MP2A		0	.5
MP2E			.5
59 MP2E		-65.389	.5
MP2E		0	.5
MP2C		0	.5
S2 MP20	Z	-65,389	.5
MP2C	Mx	0	.5
MP1A	X	0	.5
MP1A	Z	-65.389	.5
MP1A	Mx	0	.5
67 MP1E	X	0	.5
68 MP1E	Z	-65.389	.5
69 MP1E	B Mx	0	.5
70 MP10		0	.5
71 MP10		-65.389	.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
72	MP1C	Mx	0	.5
73	OVP	X	0	1.5
74	OVP	Z	-132.764	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	0	.5
77	MP1A	Z	-202.495	.5
78	MP1A	Mx	0	.5
79	MP1A	X	0	4.5
80	MP1A	Z	-202.495	4.5
81	MP1A	Mx	0	4.5
82	MP4A	X	0	.5
83	MP4A	Z	-202.495	.5
84	MP4A	Mx	0	.5
85	MP4A	X	0	4.5
86	MP4A	Z	-202.495	4.5
87	MP4A	Mx	0	4.5
88	MP1B	X	Ö	.5
89	MP1B	Z	-128.795	.5
90	MP1B	Mx	.041	.5
91	MP1B	X	0	4.5
92	MP1B	Z	-128.795	4.5
93	MP1B	Mx	.041	4.5
94	MP4B	X	0	.5
95	MP4B	Z	-128.795	.5
96	MP4B	Mx	.041	.5
97	MP4B	X	0	4.5
98	MP4B	Z	-128.795	4.5
99	MP4B	Mx	.041	4.5
100	MP1C	X	0	.5
101	MP1C	Z	-112.106	.5
102	MP1C	Mx	055	.5
103	MP1C	X	0	4.5
104	MP1C	Z	-112.106	4.5
105	MP1C	Mx	055	4.5
106	MP4C	X	0	.5
107	MP4C	Z	-112.106	.5
108	MP4C	Mx	055	.5
109	MP4C	X	0	4.5
110	MP4C	Z	-112.106	4.5
111	MP4C	Mx	055	4.5
112	MP2A	X	0	2.5
113	MP2A	Z	-40.221	2.5
114	MP2A	Mx	0	2.5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	28.634	5
2	MP2A	Z	-49.596	.5
3	MP2A	Mx	.015	5
4	MP2A	X	28.634	4.5
5	MP2A	Z	-49.596	4.5
6	MP2A	Mx	.015	4.5
7	MP2B	X	33.04	.5
8	MP2B	Z	-57.228	.5
9	MP2B	Mx	.018	5
10	MP2B	X	33.04	4.5

: Colliers Engineering & Design

5000382994-VZW_MT_I O_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%] 4.5
11	MP2B	Z	-57.228	4.5
12	MP2B	Mx	.018	.5
13	MP2C	X	30.979	.5
14	MP2C	Z	-53.656 047	.5
15	MP2C	Mx		4.5
16	MP2C	X	30.979	4.5
17	MP2C	Z	-53.656	4.5
18	MP2C	Mx	047	.5
19	MP2A	X	28.634	.5
20	MP2A	Z	<u>-49.596</u>	.5
21	MP2A	Mx	043	4.5
22	MP2A	X	28.634	4.5
23	MP2A	Z	-49.596	4.5
24	MP2A	Mx	043	.5
25	MP2B	X	33.04	.5
26	MP2B	Z	-57.228	.5
27	MP2B	Mx	.044	4.5
28	MP2B	X	33.04	4.5
29	MP2B	Z	-57.228	4.5
30	MP2B	Mx	.044	.5
31	MP2C	X	30.979	.5
32	MP2C	Z	-53.656	.5
33	MP2C	Mx	000499	4.5
34	MP2C	X	30.979	4.5
35	MP2C	Z	-53.656	4.5
36	MP2C	Mx	000499	.5
37	MP3A	X	42.028	.5
38	MP3A	Z	-72.795	.5
39	MP3A	Mx	021	2.5
40	MP3A	X	42.028	2.5
41	MP3A	Z	-72.795	2.5
42	MP3A	Mx	021	
43	MP3B	X	22.935	.5
44	MP3B	Z	-39.724	.5
45	MP3B	Mx	.022	2.5
46	MP3B	X	22.935	2.5
47	MP3B	Z	-39.724	
48	MP3B	Mx	.022	2.5
49	MP3C	X	31.869	.5
50	MP3C	Z	-55.198	.5
51	MP3C	Mx	024	.5
52	MP3C	X	31.869	2.5
53	MP3C	Z	-55.198	2.5
54	MP3C	Mx	024	2.5
55	MP2A	X	30.005	.5
56	MP2A	Z	-51.97	.5
57	MP2A	Mx	.015	.5
58	MP2B	X	30.005	.5
59	MP2B	Z	-51.97	.5
60	MP2B	Mx	.015	.5
61	MP2C	X	30.005	.5
62	MP2C	Z	-51.97	.5
63	MP2C	Mx	.015	.5
64	MP1A	X	29.003	.5
65	MP1A	Z	-50.235	.5
66	MP1A	Mx	.015	.5
67	MP1B	X	29.003	.5

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP1B	<u>Z</u>	-50.235	.5
69	MP1B	Mx	.015	.5
70	MP1C	X	29.003	.5
71	MP1C	Z	-50.235	.5
72	MP1C	Mx	.015	.5
73	OVP	X	60.242	1.5
74	OVP	Z	-104.342	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	98.544	.5
77	MP1A	Z	-170.683	.5
78	MP1A	Mx	049	.5
79	MP1A	X	98.544	4.5
80	MP1A	Z	-170.683	4.5
81	MP1A	Mx	049	4.5
82	MP4A	X	98.544	.5
83	MP4A	Z	-170.683	.5
84	MP4A	Mx	049	.5
85	MP4A	X	98.544	4.5
86	MP4A	Z	-170.683	4.5
87	MP4A	Mx	049	
88	MP1B	X	85.697	4.5
89	MP1B	Z	-148.431	.5
90	MP1B	Mx	.081	.5
91	MP1B	X	85.697	.5
92	MP1B	Ž		4.5
93	MP1B	Mx	-148.431	4.5
94	MP4B	X	.081	4.5
95	MP4B	Z	85.697	.5
96	MP4B		-148.431	.5
97	MP4B	Mx	.081	.5
98	MP4B	X	85.697	4.5
99	MP4B	Z	-148.431	4.5
100	MP1C	Mx	.081	4.5
101	MP1C MP1C	X	44.787	.5
102	MP1C	Z	-77.573	.5
103		Mx	034	.5
104	MP1C	X	44.787	4.5
	MP1C	Z	-77.573	4.5
105	MP1C	Mx	034	4.5
06	MP4C	X	44.787	.5
07	MP4C	Z	-77.573	.5
108	MP4C	Mx	034	.5
09	MP4C	X	44.787	4.5
10	MP4C	Z	-77.573	4.5
111	MP4C	Mx	034	4.5
12	MP2A	X	16.608	2.5
13	MP2A	Z	-28.766	2.5
14	MP2A	Mx	.008	2.5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	55.624	5
2	MP2A	Z	-32.114	5
3	MP2A	Mx	009	5
4	MP2A	X	55.624	4.5
5	MP2A	Z	-32.114	4.5
6	MP2A	Mx	009	4.5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
7	MP2B	X	58.274	.5
8	MP2B	Z	-33.645	.5
9	MP2B	Mx	.04	.5
10	MP2B	X	58.274	4.5
11	MP2B	Z	-33.645	4.5
12	MP2B	Mx	.04	4.5
13	MP2C	X	47.992	.5
14	MP2C	Z	-27.708	.5
15	MP2C	Mx	04	.5
16	MP2C	X	47.992	4.5
17	MP2C	Z	-27.708	4.5
18	MP2C	Mx	04	4.5
19	MP2A	X	55.624	.5
20	MP2A	Z	-32.114	.5
21	MP2A	Mx	047	.5
22	MP2A	X	55.624	4.5
23	MP2A	Z	-32.114	4.5
24	MP2A	Mx	047	4.5
25	MP2B	X	58.274	.5
26	MP2B	Z	-33.645	.5
27	MP2B	Mx	.026	.5
28	MP2B	X	58.274	4.5
29	MP2B	Z	-33.645	4.5
30	MP2B	Mx	.026	4.5
31	MP2C	X	47.992	.5
32	MP2C	Z	-27.708	.5
33	MP2C	Mx	.021	.5
34	MP2C	X	47.992	4.5
35	MP2C	Z	-27.708	4.5
36	MP2C	Mx	.021	4.5
37	MP3A	X	46.673	.5
38	MP3A	Z	-26.947	.5
39	MP3A	Mx	023	.5
40	MP3A	X	46.673	2.5
	MP3A	Z	-26.947	2.5
41	MP3A	Mx	023	2.5
	MP3B	X	35.188	.5
43	MP3B	Ž	-20.316	.5
44 45	MP3B	Mx	.02	.5
	MP3B	X	35.188	2.5
46	MP3B	Z	-20.316	2.5
47		Mx	.02	2.5
48	MP3B MP3C		79.745	.5
49		X	-46.041	.5
50	MP3C	Mx	016	.5
51	MP3C	X	79.745	2.5
52	MP3C	Z	-46.041	2.5
53	MP3C	Mx	016	2.5
54	MP3C	X	42.654	.5
55	MP2A	Z	-24.626	.5
56	MP2A	Mx	.021	.5
57	MP2A	X	42.654	.5
58	MP2B	Z	-24.626	.5
59	MP2B		.021	.5
60	MP2B	Mx	42.654	.5
61	MP2C	X	-24.626	.5
62	MP2C	Z	.021	.5
63	MP2C	Mx	.∪∠ I	

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
64	MP1A	X	37.448	.5
65	MP1A	Z	-21.621	.5
66	MP1A	Mx	.019	.5
67	MP1B	X	37.448	.5
68	MP1B	Z	-21.621	.5
69	MP1B	Mx	.019	.5
70	MP1C	X	37.448	.5
71	MP1C	Z	-21.621	.5
72	MP1C	Mx	.019	.5
73	OVP	X	91.296	1.5
74	OVP	Z	-52.71	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	161.319	.5
77	MP1A	Z	-93.138	.5
78	MP1A	Mx	081	.5
79	MP1A	X	161.319	4.5
80	MP1A	Z	-93.138	4.5
81	MP1A	Mx	081	4.5
82	MP4A	X	161.319	.5
83	MP4A	Z	-93.138	.5
84	MP4A	Mx	081	.5
85	MP4A	X	161.319	4.5
86	MP4A	Z	-93.138	4.5
87	MP4A	Mx	081	4.5
88	MP1B	X	155.249	.5
89	MP1B	Z	-89.633	.5
90	MP1B	Mx	.088	.5
91	MP1B	X	155.249	4.5
92	MP1B	Ž	-89.633	4.5
93	MP1B	Mx	.088	4.5
94	MP4B	X	155.249	.5
95	MP4B	Z	-89.633	.5
96	MP4B	Mx	.088	.5
97	MP4B	X	155.249	4.5
98	MP4B	Z	-89.633	4.5
99	MP4B	Mx	.088	4.5
100	MP1C	X	53.637	.5
101	MP1C	Z	-30.967	.5
102	MP1C	Mx	011	.5
103	MP1C	X	53.637	
104	MP1C	Ž	-30.967	4.5
105	MP1C	Mx	-30.967 011	4.5
106	MP4C	X		4.5
107	MP4C	Z	53.637	.5
108	MP4C	Mx	-30.967	.5
109	MP4C	IVIX	011	.55
110	MP4C	X	53.637	4.5
111	MP4C MP4C	Z	-30.967	4.5
112		Mx	011	4.5
113	MP2A	X	16.632	2.5
114	MP2A	Z	-9.602	2.5
1(4)	MP2A	Mx	.008	2.5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[]b.k-ft]	Locationfft %1
1	MP2A	X	67.709	5
2	MP2A	Z	0	5

Colliers Engineering & Design

5000382994-VZW_MT_I O_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	oint Loads (BLC 6 : Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP2A	Mx	034	.5
4	MP2A	X	67.709	4.5
5	MP2A	Z	0	4.5
6	MP2A	Mx	034	4.5
7	MP2B	X	61.957	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	.047	.5 4.5
10	MP2B	X	61.957	
11	MP2B	Z	0	4.5
12	MP2B	Mx	.047	4.5
13	MP2C	X	54.207	.5 .5
14	MP2C	Z	0	.5
15	MP2C	Mx	026	.5 4.5
16	MP2C	X	54.207	
7	MP2C	Z	0	4.5
18	MP2C	Mx	026	4.5
19	MP2A	X	67.709	.5
20	MP2A	Z	0	.5
21	MP2A	Mx	034	.5
22	MP2A	X	67.709	4.5
23	MP2A	Z	0	4.5
24	MP2A	Mx	034	4.5
25	MP2B	X	61.957	.5
26	MP2B	Z	0	.5
27	MP2B	Mx	.0005	.5
28	MP2B	X	61.957	4.5
29	MP2B	Z	0	4.5
30	MP2B	Mx	.0005	4.5
31	MP2C	X	54.207	.5
32	MP2C	Z	0	.5
33	MP2C	Mx	.036	.5
34	MP2C	X	54.207	4.5
35	MP2C	Z	0	4.5
36	MP2C	Mx	.036	4.5
37	MP3A	X	38.812	.5
38	MP3A	Z	0	.5
39	MP3A	Mx	019	.5
40	MP3A	X	38.812	2.5
41	MP3A	Z	0	2.5
42	MP3A	Mx	019	2.5
43	MP3B	X	63.737	.5
44	MP3B	Z	0	.5
45	MP3B	Mx	.024	.5
46	MP3B	X	63.737	2.5
47	MP3B	Z	0	2.5
48	MP3B	Mx	.024	2.5
49	MP3C	X	97.319	.5
50	MP3C	Z	0	.5
51	MP3C	Mx	.008	.5
52	MP3C	X	97.319	2.5
53	MP3C	Z	0	2.5
	MP3C	Mx	.008	2.5
54	MP2A	X	43.874	.5
55	MP2A	Z	0	.5
56	MP2A	Mx	.022	.5
57	MP2B	X	43.874	.5
58 59	MP2B	Z	0	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM ··· Checked By:__

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

60	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP2B	Mx	.022	.5
62	MP2C	X	43.874	.5
63	MP2C MP2C	Z	0	.5
64		Mx	.022	.5
65	MP1A MP1A	X	35.858	.5
66	MP1A	Z	0	.5
67	MP1B	Mx	.018	.5
68	MP1B	X	35.858	.5
69	MP1B	Z	0	.5
70	MP1C	Mx	.018	.5
71	MP1C	X	35.858	.5
72	MP1C	Z	0	.5
73	OVP	Mx	.018	.5
74	OVP	X	102.636	1.5
75	OVP		0	1.5
76	MP1A	Mx	0	1.5
77	MP1A	X	180.869	.5
78	MP1A		0	.5
79	MP1A	Mx	09	.5
80	MP1A	X	180.869	4.5
81	MP1A		0	4.5
82	MP4A	Mx X	09	4.5
83	MP4A	Z	180.869	.5
84	MP4A	Mx	0	.5
85	MP4A	X	09	.5
86	MP4A	Z	180.869	4.5
87	MP4A	Mx	0 09	4.5
88	MP1B	X	09 144.539	4.5
89	MP1B	Z	0	.5
90	MP1B	Mx	.055	.5
91	MP1B	X	144.539	.5
92	MP1B	Ž	0	4.5
93	MP1B	Mx	.055	4.5
94	MP4B	X	144.539	4.5
95	MP4B	Z	0	.5
96	MP4B	Mx	.055	.5
97	MP4B	X	144.539	
98	MP4B	Z	0	4.5
99	MP4B	Mx	.055	4.5
00	MP1C	X	56.827	4.5
01	MP1C	Z	0	.5
02	MP1C	Mx	.005	
03	MP1C	X	56.827	.5 4.5
04	MP1C	Z	0	4.5
05	MP1C	Mx	.005	
06	MP4C	X	56.827	4.5
07	MP4C	Z	0	.5
08	MP4C	Mx	.005	.5
09	MP4C	X	56.827	.5 4.5
10	MP4C	Z	0	4.5
11	MP4C	Mx	.005	
12	MP2A	X	12.199	4.5 2.5
13	MP2A	Z	0	2.5
14	MP2A	Mx	.006	2.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Point Loads (BLC 7 : Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	55.624	.5
2	MP2A	Z	32.114	.5
3	MP2A	Mx	047	.5
4	MP2A	X	55.624	4.5
5	MP2A	Z	32.114	4.5
6	MP2A	Mx	047	4.5
7	MP2B	X	47.992	.5
8	MP2B	Z	27.708	.5
9	MP2B	Mx	.04	.5
0	MP2B	X	47.992	4.5
1	MP2B	Z	27.708	4.5
2	MP2B	Mx	.04	4.5
3	MP2C		51.563	.5
4	MP2C	X	29.77	.5
5	MP2C	Mx	007	.5
6	MP2C	X	51.563	4.5
7	MP2C	Z	29.77	4.5
8	MP2C	Mx	007	4.5
9	MP2A	X	55.624	.5
20	MP2A	Z	32.114	.5
21	MP2A	Mx	009	.5
22	MP2A	X	55.624	4.5
23	MP2A	Z	32.114	4.5
24	MP2A	Mx	009	4.5
25	MP2B	X	47.992	.5
26	MP2B	Z	27.708	.5
27	MP2B	Mx	021	.5
28	MP2B	X	47.992	4.5
	MP2B	Z	27.708	4.5
30	MP2B	Mx	021	4.5
31	MP2C	X	51.563	.5
	MP2C	Ž	29,77	.5
32	MP2C	Mx	.046	.5
33	MP2C	X	51. 5 63	4.5
34	MP2C	, Z	29.77	4.5
35	MP2C	Mx	.046	4.5
36	MP3A	X	46.673	.5
37 38	MP3A	Z	26.947	.5
	MP3A	Mx	023	.5
39	MP3A	X	46.673	2.5
40	MP3A	Z	26.947	2.5
11	MP3A	Mx	023	2.5
12	MP3B	X	79.745	.5
13	MP3B MP3B	Z	46.041	.5
14		Mx	.016	.5
15	MP3B MP3B	X	79.745	2.5
16	MP3B	Z	46.041	2.5
17		Mx	.016	2.5
18	MP3B	X	64.27	.5
19	MP3C	Z	37.106	.5
50	MP3C	Mx	.024	.5
51	MP3C	X	64.27	2.5
52	MP3C	Z	37.106	2.5
53	MP3C	Mx	.024	2.5
54	MP3C	X	42.654	.5
55	MP2A	Ž	24.626	.5
56 57	MP2A MP2A	Mx	.021	.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	42.654	.5
59	MP2B	Z	24.626	.5
60	MP2B	Mx	.021	.5
61	MP2C	X	42.654	.5
62	MP2C	Z	24.626	.5
63	MP2C	Mx	.021	.5
64	MP1A	X	37.448	.5
65	MP1A	Z	21.621	.5
66	MP1A	Mx	.019	.5
67	MP1B	X	37.448	.5
68	MP1B	Z	21.621	.5
69	MP1B	Mx	.019	.5
70	MP1C	X	37.448	.5
71	MP1C	Z	21.621	.5
72	MP1C	Mx	.019	.5
73	OVP	X	99.52	1.5
74	OVP	Z	57.458	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	161.319	.5
7	MP1A	Z	93.138	.5
78	MP1A	Mx	081	.5
79	MP1A	X	161.319	4.5
30	MP1A	Z	93.138	4.5
31	MP1A	Mx	081	4.5
32	MP4A	X	161.319	.5
33	MP4A	Z	93.138	.5
34	MP4A	Mx	081	.5
15	MP4A	X	161.319	4.5
36	MP4A	Z	93.138	4.5
37	MP4A	Mx	081	4.5
88	MP1B	X	88.282	.5
9	MP1B	Z	50.97	.5
90	MP1B	Mx	.017	.5
)1	MP1B	X	88.282	4.5
2	MP1B	Z	50.97	4.5
3	MP1B	Mx	.017	4.5
4	MP4B	X	88.282	.5
5	MP4B	Z	50.97	.5
6	MP4B	Mx	.017	.5
7	MP4B	X	88.282	4.5
8	MP4B	Z	50.97	4.5
9	MP4B	Mx	.017	4.5
00	MP1C		68.727	.5
01	MP1C	X	39.679	.5
02	MP1C	Mx	.026	.5
03	MP1C	X	68.727	4.5
)4	MP1C	Z	39.679	4.5
)5	MP1C	Mx	.026	4.5
)6	MP4C	X	68.727	.5
07	MP4C	Z	39.679	.5
08	MP4C	Mx	.026	.5
9	MP4C	X	68.727	4.5
10	MP4C	Z	39.679	4.5
11	MP4C	Mx	.026	4.5
12	MP2A	X	16.632	2.5
3	MP2A	Z	9.602	2.5
14	MP2A	Mx	.008	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

N	lember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	28.634	.5 .5
2	MP2A		49.596	.5
3	MP2A	Mx	043	4.5
4	MP2A	X	28.634	4.5
5	MP2A	Z	49.596	4.5
6	MP2A	Mx	-,043	.5
7	MP2B	X	27.104	.5
3	MP2B	Z	46.945	.5
9	MP2B	Mx	.026	4.5
0	MP2B	X	27.104	4.5
1	MP2B	Z	46.945 .026	4.5
2	MP2B	Mx		.5
3	MP2C	X	33.04 57.228	.5
4	MP2C	Z	.018	.5
5	MP2C	Mx	33.04	4.5
6	MP2C	X	57.228	4.5
7	MP2C	Z	.018	4.5
8	MP2C	Mx	28.634	.5
9	MP2A	X	49.596	.5
0	MP2A	Z	.015	.5
1	MP2A	Mx		4.5
2	MP2A	X	28.634	4.5
3	MP2A	Z	49.596	4.5
4	MP2A	Mx	.015 27.104	.5
5	MP2B	X	46.945	.5
6	MP2B	Z		.5
7	MP2B	Mx	036	4.5
8	MP2B	X	27.104	4.5
9	MP2B	Z	46.945	4.5
0	MP2B	Mx	036	.5
1	MP2C	X	33.04	.5
2	MP2C	Z	57.228	.5
3	MP2C	Mx	.044	4.5
4	MP2C	X	33.04	4.5
5	MP2C	Z	57.228	4.5
6	MP2C	Mx	.044	.5
7	MP3A	X	42.028	.5
8	MP3A	Z	72.795	.5
9	MP3A	Mx	021	2.5
0	MP3A	X	42.028	2.5
1	MP3A	Z	72.795	2.5
2	MP3A	Mx	021	.5
.3	MP3B	<u>X</u>	48.66	.5
4	MP3B	Z	84.281	.5
.5	MP3B	Mx	008	2.5
6	MP3B	X	48.66	2.5
7	MP3B	Z	84.281	2.5
8	MP3B	Mx	008	
.9	MP3C	X	22.935	.5
50	MP3C	Z	39.724	.5
1	MP3C	Mx	.022	
52	MP3C	X	22.935	2.5
3	MP3C	Z	39.724	2.5
54	MP3C	Mx	.022	2.5
55	MP2A	X	30.005	.5
6	MP2A	Z	51.97	.5
57	MP2A	Mx	.015	.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

58	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
59	MP2B	X	30.005	.5
60	MP2B	Z	51.97	.5
61	MP2B MP2C	Mx	.015	.5
62		X	30.005	.5
63	MP2C	Z	51.97	.5
64	MP2C	Mx	.015	.5
65	MP1A MP1A	X	29.003	.5
66		Z	50.235	.5
67	MP1A MP1B	Mx	.015	.5
68	MP1B MP1B	X	29.003	.5
69	MP1B	Z	50.235	.5
70	MP1C	Mx	.015	.5
71	MP1C	X	29.003	.5
72	MP1C		50.235	.5
73	OVP	Mx	.015	.5
74	OVP	X	64.99	1.5
75	OVP		112.566	1.5
76	MP1A	Mx	0	1.5
77	MP1A	X	98.544	.5
78	MP1A		170.683	.5
79	MP1A	Mx	049	.5
30	MP1A	X	98.544	4.5
81	MP1A		170.683	4.5
32	MP4A	Mx	049	4.5
33	MP4A	X	98.544	.5
34	MP4A	Z	170.683	.5
35		Mx	049	.5
36	MP4A	X	98.544	4.5
37	MP4A MP4A	Z	170.683	4.5
38	MP1B	Mx	049	4.5
39	MP1B	X	47.034	.5
90	MP1B	Z	81.465	,5
91	MP1B	Mx	008	.5
92		X	47.034	4.5
93	MP1B MP1B	Z	81.465	4.5
94	MP1B	Mx	008	4.5
95	MP4B	X	47.034	.5
	MP4B	Z	81.465	.5
96	MP4B	Mx	008	.5
98	MP4B	X	47.034	4.5
99	MP4B MP4B	Z	81.465	4.5
00		Mx	008	4.5
	MP1C	X	53.499	.5
01	MP1C	Z	92.663	.5
02	MP1C	Mx	.05	.5
03	MP1C	X	53.499	4.5
04	MP1C	Z	92.663	4.5
05	MP1C	Mx	.05	4.5
06	MP4C	X	53.499	.5
07	MP4C	Z	92.663	.5
08	MP4C	Mx	.05	.5
09	MP4C	X	53.499	4.5
10	MP4C	Z	92.663	4.5
11	MP4C	Mx	.05	4.5
12	MP2A	X	16.608	2.5
13	MP2A	Z	28.766	2.5
14	MP2A	Mx	.008	2.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

N	lember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	.5
2	MP2A		53.788	.5
3	MP2A	Mx	031 0	4.5
4	MP2A	X		4.5
5	MP2A	Z	53.788	4.5
6	MP2A	Mx	031	.5
7	MP2B	X	0	.5
8	MP2B	Z	59.54	.5
9	MP2B	Mx	.007	4.5
10	MP2B	X	59.54	4.5
11	MP2B	Z	.007	4.5
12	MP2B	Mx	0	.5
13	MP2C	X	67.289	.5
14	MP2C	Z	.04	.5
15	MP2C	Mx	.04	4.5
16	MP2C	X	67.289	4.5
17	MP2C	Z	.04	4.5
18	MP2C	Mx	0	.5
19	MP2A	X		.5
20	MP2A	Z	53.788 .031	.5
21	MP2A	Mx	.031	4.5
22	MP2A	X	53.788	4.5
23	MP2A	Z		4.5
24	MP2A	Mx	.031	.5
25	MP2B	X	0	.5 12
26	MP2B	Z	59.54	.5
27	MP2B	Mx	046	4.5
28	MP2B	X	0	4.5
29	MP2B	Z	59.54	4.5
30	MP2B	Mx	046	.5
31	MP2C	X	0	.5
32	MP2C	Z	67.289	.5
33	MP2C	Mx	.026	4.5
34	MP2C	X	0	4.5
35	MP2C	Z	67.289	4.5
36	MP2C	Mx	.026	.5
37	MP3A	X	0	.5
38	MP3A	Z	99.138	.5
39	MP3A	Mx	0	2.5
40	MP3A	X	0	2.5
41	MP3A	Z	99.138	2.5
42	MP3A	Mx	0	
43	MP3B	X	0	.5
14	MP3B	Z	74.213	.5
45	MP3B	Mx	024	
16	MP3B	X	0	2.5
17	MP3B	Z	74.213	2.5
18	MP3B	Mx	024	2.5
19	MP3C	X	0	.5
50	MP3C	Z	40.631	.5 1100
51	MP3C	Mx	.02	.5
52	MP3C	X	0	2.5
53	MP3C	Z	40.631	2.5
54	MP3C	Mx	.02	2.5
55	MP2A	X	0	.5
56	MP2A	Z	65.389	.5
57	MP2A	Mx	0	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

[50]	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	0	.5
59	MP2B	Z	65.389	.5
60	MP2B	Mx	0	,5
61	MP2C	X	0	.5
62	MP2C	Z	65.389	.5
63	MP2C	Mx	0	.5
64	MP1A	X	0	.5
65	MP1A	Z	65.389	.5
66	MP1A	Mx	0	.5
67 68	MP1B	X	0	.5
69	MP1B	Z	65.389	.5
70	MP1B	Mx	0	.5
71	MP1C	X	0	.5
72	MP1C	Z	65.389	.5
	MP1C	Mx	0	.5 17811
73	OVP	X	0	1.5
74 75	OVP	Z	132.764	1.5
	OVP	Mx	0	1.5
76	MP1A	X	0	.5
77 78	MP1A	Z	202.495	.5
	MP1A	Mx	0	.5
79 80	MP1A	X	0	4.5
	MP1A	Z	202.495	4.5
81	MP1A	Mx	0	4.5
82	MP4A	X	0	.5
83	MP4A	Z	202.495	.5
84	MP4A	Mx	0	.5
85	MP4A	X	0	4.5
86	MP4A	Z	202.495	4.5
87 88	MP4A	Mx	0	4.5
	MP1B	X	0	.5
89	MP1B	Z	128.795	.5
90	MP1B	Mx	041	.5
92	MP1B	X	0	4.5
93	MP1B	Z	128.795	4.5
	MP1B	Mx	041	4.5
94 95	MP4B	X	0	,5
96	MP4B	Z	128.795	.5
97	MP4B	Mx	041	.5
98	MP4B MP4B	X	0	4.5
99	MP4B	Z	128.795	4.5
100	MP1C	Mx	041	4.5
101		X	0	.5
102	MP1C MP1C	Z	112.106	.5
103	MP1C	Mx	.055	.5
104	MP1C MP1C	X	0	4.5
105	MP1C	Z	112.106	4.5
106	MP4C	Mx	.055	4.5
107	MP4C MP4C	X	0	.5
108	MP4C	Z	112.106	.5
109	MP4C	Mx	.055	.5
110	MP4C MP4C	X	0	4.5
111	MP4C MP4C	Z	112.106	4.5
112		Mx	.055	4.5
113	MP2A	X	0	2.5
114	MP2A	Z	40.221	2.5
114	MP2A	Mx	0	2.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-28.634	.5
2	MP2A	Z	49.596	.5
3	MP2A	Mx	015	.5
4	MP2A	X	-28.634	4.5
5	MP2A	Z	49.596	4.5
6	MP2A	Mx	015	4.5
7	MP2B	X	-33.04	.5
8	MP2B	Z	57.228	.5
9	MP2B	Mx	018	.5
10	MP2B	X	-33.04	4.5
11	MP2B	Z	57.228	4.5
12	MP2B	Mx	018	4.5
13	MP2C	X	-30.979	.5
14	MP2C	Z	53.656	.5
15	MP2C	Mx	.047	.5
16	MP2C	X	-30.979	4.5
17	MP2C	Z	53.656	4.5
18	MP2C	Mx	.047	4.5
19	MP2A	X	-28.634	.5
20	MP2A	Z	49.596	.5
21	MP2A	Mx	.043	.5
22	MP2A	X	-28.634	4.5
23	MP2A	Z	49.596	4.5
24	MP2A	Mx	.043	4.5
25	MP2B	X	-33.04	.5
26	MP2B	Z	57.228	.5
27	MP2B	Mx	044	.5
28	MP2B	X	-33.04	4.5
	MP2B	Z	57.228	4.5
30	MP2B	Mx	044	4.5
	MP2C	X	-30.979	.5
31	MP2C	Ž	53.656	.5
32	MP2C	Mx	.000499	.5
33	MP2C	X	-30.979	4.5
34		Z	53.656	4.5
35	MP2C MP2C	Mx	.000499	4.5
36	MP3A	X	-42.028	.5
37	MP3A	Z	72.795	.5
38		Mx	.021	.5
39	MP3A MP3A	X	-42.028	2.5
40		7	72.795	2.5
41	MP3A MP3A	Mx	.021	2.5
42		X	-22.935	.5
43	MP3B	Z	39.724	.5
44	MP3B	Mx	022	.5
45	MP3B	X	-22.935	2.5
46	MP3B	Z	39.724	2.5
47	MP3B	Mx	022	2.5
48	MP3B	X	-31.869	.5
49	MP3C	Ž	55.198	.5
50	MP3C		.024	.5
51	MP3C	Mx	-31.869	2.5
52	MP3C	X	55.198	2.5
53	MP3C		.024	2.5
54	MP3C	Mx	-30.005	.5
55	MP2A	X	51.97	.5
56	MP2A		015	.5
57	MP2A	Mx	010	

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

L co L	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-30.005	.5
59	MP2B	Z	51.97	.5
60	MP2B	Mx	015	.5
	MP2C	X	-30.005	.5
62	MP2C	Z	51.97	.5
63	MP2C	Mx	015	.5
64	MP1A	X	-29.003	.5
65	MP1A	Z	50.235	.5
66	MP1A	Mx	015	.5
67	MP1B	X	-29.003	.5
68	MP1B	Z	50.235	.5
69	MP1B	Mx	015	.5
70	MP1C	X	-29.003	.5
71	MP1C	Z	50.235	.5
72	MP1C	Mx	015	.5
73	OVP	X	-60.242	1.5
74	OVP	Z	104.342	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-98.544	.5
77	MP1A	Z	170.683	.5
78	MP1A	Mx	.049	.5
79	MP1A	X	-98.544	4.5
80	MP1A	Z	170.683	4.5
81	MP1A	Mx	.049	4.5
82	MP4A	X	-98.544	.5
83	MP4A	Z	170.683	.5
84	MP4A	Mx	.049	.5
85	MP4A	X	-98.544	4.5
86	MP4A	Z	170.683	4.5
87	MP4A	Mx	.049	4.5
88	MP1B	X	-85.697	.5
89	MP1B	Z	148.431	.5
90	MP1B	Mx	081	.5
91	MP1B	X	-85.697	4.5
92	MP1B	Z	148.431	4.5
93	MP1B	Mx	081	4.5
94	MP4B	X	-85.697	.5
95	MP4B	Z	148.431	.5
96	MP4B	Mx	081	.5
97	MP4B	X	-85.697	4.5
98	MP4B	Z	148.431	4.5
99	MP4B	Mx	081	4.5
100	MP1C	X	-44.787	.5
101	MP1C	Ž	77.573	.5
102	MP1C	Mx	.034	.5
103	MP1C	X	-44.787	4.5
104	MP1C	Z	77.573	4.5
105	MP1C	Mx	.034	4.5
106	MP4C	X	-44.787	4.5
107	MP4C	Z	77.573	.5
108	MP4C	Mx	.034	.5
109	MP4C	X	-44.787	
110	MP4C	Ž	77.573	4.5
111	MP4C	Mx	.034	
112	MP2A	X	-16.608	4.5
113	MP2A	Z	28.766	2.5
114	MP2A	Mx	008	2.5
	MIL LAT	IVIX	000	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

М	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-55.624	.5
2	MP2A		32.114	.5
3	MP2A	Mx	.009	4.5
4	MP2A	X	-55.624	4.5
5	MP2A	Z	32.114	4.5
6	MP2A	Mx	.009	4.5
7	MP2B	X	-58.274	.5
8	MP2B	Z	33.645	.5
9	MP2B	Mx	04	4.5
10	MP2B	X	-58.274	4.5
11	MP2B	Z	33.645 04	4.5
12	MP2B	Mx	0 4 -47.992	.5
13	MP2C	X		.5
14	MP2C	Z	27.708 .04	.5
15	MP2C	Mx	-47.992	4.5
16	MP2C	X		4.5
17	MP2C	Z	27.708	4.5
18	MP2C	Mx	.04 -55.624	.5
19	MP2A	X	-55.624 32.114	.5
20	MP2A	Z		.5
21	MP2A	Mx	.047	4.5
22	MP2A	X	-55.624	4.5
23	MP2A	Z	32.114	4.5
24	MP2A	Mx	.047	.5
25	MP2B	X	-58.274	.5
26	MP2B	Z	33.645	.5
27	MP2B	Mx	026	4.5
28	MP2B	X	-58.274	4.5
29	MP2B	Z	33.645	4.5
30	MP2B	Mx	026	.5
31	MP2C	X	-47.992	.5
32	MP2C	Z	27.708	.5
33	MP2C	Mx	021	4.5
34	MP2C	X	-47.992	4.5
35	MP2C	Z	27.708	4.5
36	MP2C	Mx	021	4.5
37	MP3A	X	-46.673	.5
38	MP3A	Z	26.947	.5
39	MP3A	Mx	.023	2.5
40	MP3A	X	-46.673	
41	MP3A	Z	26.947	2.5 2.5
42	MP3A	Mx	.023	
43	MP3B	X	-35.188	.5
44	MP3B	Z	20.316	.5
45	MP3B	Mx	02	2.5
46	MP3B	X	-35.188	
47	MP3B	Z	20.316	2.5
48	MP3B	Mx	02	2.5
49	MP3C	X	-79.745	.5
50	MP3C	Z	46.041	.5
51	MP3C	Mx	.016	.5
52	MP3C	X	-79.745	2.5
53	MP3C	Z	46.041	2.5
54	MP3C	Mx	.016	2.5
55	MP2A	X	-42.654	.5
56	MP2A	Z	24.626	.5
57	MP2A	Mx	021	.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

[6 0]	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-42.654	.5
59 60	MP2B	Z	24.626	.5
	MP2B	Mx	021	.5
61	MP2C	X	-42.654	.5
62	MP2C	Z	24.626	.5
63	MP2C	Mx	021	.5
64	MP1A	X	-37.448	.5
65	MP1A	Z	21.621	.5
66	MP1A	Mx	019	.5
67	MP1B	X	-37.448	.5
68	MP1B	Z	21.621	.5
69	MP1B	Mx	019	.5
70	MP1C	X	-37.448	.5
71	MP1C	Z	21.621	.5
72	MP1C	Mx	019	.5
73	OVP	X	-91,296	1.5
74	OVP	Z	52.71	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-161.319	.5
77	MP1A	Z	93.138	.5
78	MP1A	Mx	.081	.5
79	MP1A	X	-161.319	4.5
80	MP1A	Z	93.138	4.5
81	MP1A	Mx	.081	4.5
82	MP4A	X	-161.319	.5
83	MP4A	Z	93.138	.5
84	MP4A	Mx	.081	.5
85	MP4A	X	-161.319	4.5
86	MP4A	Z	93.138	4.5
87	MP4A	Mx	.081	4.5
88	MP1B	X	-155.249	.5
89	MP1B	Z	89.633	.5
90	MP1B	Mx	088	.5
91	MP1B	X	-155.249	4.5
92	MP1B	Z	89.633	4.5
93	MP1B	Mx	088	4.5
94	MP4B	X	-155.249	.5
95	MP4B	Z	89.633	.5
96	MP4B	Mx	088	.5
97	MP4B	X	-155.249	4.5
98	MP4B	Ž	89.633	4.5
99	MP4B	Mx	088	4.5
100	MP1C	X	-53.637	
101	MP1C	Z	30.967	.5
102	MP1C	Mx	.011	1 .5
103	MP1C	X	-53.637	.5
104	MP1C	Z	30.967	4.5
105	MP1C	Mx		4.5
106	MP4C	X	.011	4.5
107	MP4C	Z	-53.637	.5
108	MP4C		30.967	.5
109	MP4C	Mx	.011	.5
110	MP4C	X	-53.637	4.5
111	MP4C		30.967	4.5
112		Mx	.011	4.5
113	MP2A	X	-16.632	2.5
113	MP2A MP2A	Z	9.602	2.5
1.14	IVIPZA	Mx	008	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 12: Antenna Wo (270 Deg))

Member La	s (BLC 12 : Antenna Wo (27)	Magnitude[lb,k-ft]	Location[ft,%]
1 MP2A	X	-67.709	.5
2 MP2A	Z	0	.5
3 MP2A	Mx	.034	.5
4 MP2A	X	-67.709	4.5
5 MP2A		0	4.5
6 MP2A		.034	4.5
7 MP2B		-61.957	.5
8 MP2B		0	.5
9 MP2B		047	.5
		-61.957	4.5
		0	4.5
		047	4.5
MP2E		-54.207	.5
13 MP2C		0	.5
14 MP2C		.026	.5
15 MP2C		-54.207	4.5
16 MP2C		0	4.5
17 MP2C	Z	.026	4.5
18 MP2C	Mx	.020	.5
19 MP2A		-67.709	.5
20 MP2A	Z	0	.5
21 MP2A	Mx	.034	.5
MP2A	X	-67.709	4.5
23 MP2A		0	4.5
24 MP2A	Mx	.034	4.5
25 MP2E		-61.957	.5
26 MP2E		0	.5
		0005	.5
		-61.957	4.5
		0	4.5
		0005	4.5
MP2E		-54.207	.5
31 MP2C		0	.5
32 MP20		036	.5
33 MP20	Mx	-54.207	4.5
34 MP20		0	4.5
35 MP20		036	4.5
36 MP20			.5
37 MP3A		-38.812	.5
38 MP3A	Z	0	.5
39 MP3A	Mx	.019	
40 MP3A	X	-38.812	2.5
41 MP3A		0	2.5
42 MP3/		.019	2.5
43 MP3E	3 X	-63.737	.5
44 MP3E		0	.5
45 MP3E		024	.5
		-63.737	2.5
		0	2.5
MP3E		024	2.5
48 MP3E		-97.319	.5
49 MP30		0	.5
50 MP30		008	.5
51 MP30		-97.319	2.5
52 MP30			2.5
53 MP30		0	
54 MP30	Mx Mx	008	2.5
55 MP2/	X	-43.874	.5
56 MP2/	Z	0	.5
57 MP2/		022	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_____

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-43.874	.5
59	MP2B	Z	0	.5
60	MP2B	Mx	022	.5
61	MP2C	X	-43.874	.5
62	MP2C	Z	0	.5
63	MP2C	Mx	022	.5
64	MP1A	X	-35.858	.5
65	MP1A	Z	0	.5
66	MP1A	Mx	018	.5
67	MP1B	X	-35.858	.5
68	MP1B	Z	0	.5
69	MP1B	Mx	018	.5
70	MP1C	X	-35.858	.5
71	MP1C	Z	0	.5
72	MP1C	Mx	018	.5
73	OVP	X	-102.636	1.5
74	OVP	Z	0	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-180.869	.5
77	MP1A	. Z	0	.5
78	MP1A	Mx	.09	.5
79	MP1A	X	-180.869	4.5
80	MP1A	Z	0	4.5
81	MP1A	Mx	.09	4.5
82	MP4A	X	-180.869	.5
83	MP4A	Z	0	.5
84	MP4A	Mx	.09	.5
85	MP4A	X	-180.869	4.5
86	MP4A	Z	0	4.5
87	MP4A	Mx	.09	4.5
88	MP1B	X	-144.539	.5
89	MP1B	Z	0	.5
90	MP1B	Mx	055	.5
91	MP1B	X	-144.539	4.5
92	MP1B	Z	0	4.5
93	MP1B	Mx	055	4.5
94	MP4B	X	-144.539	.5
95	MP4B	Z	0	.5
96	MP4B	Mx	055	.5
97	MP4B	X	-144.539	4.5
98	MP4B	Z	0	4.5
99	MP4B	Mx	055	4.5
100	MP1C	X	-56.827	.5
101	MP1C	Z	- 0	.5
102	MP1C	Mx	005	.5
103	MP1C	X	-56.827	4.5
104	MP1C	Z	0	4.5
105	MP1C	Mx	005	4.5
106	MP4C	X	-56.827	.5
107	MP4C	Z	0	.5
108	MP4C	Mx	005	.5
109	MP4C	X	-56.827	4.5
110	MP4C	Z	-50.627	4.5
111	MP4C	Mx	005	
112	MP2A	X	005 -12.199	4.5
113	MP2A	Z	-12.199	2.5
114	MP2A	Mx	006	2.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	MP2A	X	-55.624	.5
2	MP2A		-32.114	.5
3	MP2A	Mx	.047	4.5
4	MP2A	X	-55.624	4.5
5	MP2A	Z	-32.114	4.5
3	MP2A	Mx	.047	.5
7	MP2B	X	-47.992	.5
3	MP2B	Z	-27.708	.5
3	MP2B	Mx	04	4.5
0	MP2B	X	-47.992	4.5
1	MP2B	Z	-27.708	4.5
2	MP2B	Mx	04	.5
3	MP2C	X	-51.563	.5
4	MP2C	Z	-29.77	.5
5	MP2C	Mx	.007	4.5
6	MP2C	X	-51.563	4.5
7	MP2C	Z	-29.77	4.5
8	MP2C	Mx	.007	
9	MP2A	X	-55.624	.5
0	MP2A	Z	-32.114	.5
1	MP2A	Mx	.009	
2	MP2A	X	-55.624	4.5
3	MP2A	Z	-32.114	4.5
4	MP2A	Mx	.009	4.5
5	MP2B	X	-47.992	.5
6	MP2B	Z	-27.708	,5
7	MP2B	Mx	.021	.5
8	MP2B	X	-47.992	4.5
9	MP2B	Z	-27.708	4.5
30	MP2B	Mx	.021	4.5
1	MP2C	X	-51.563	.5
2	MP2C	Z	-29.77	.5
3	MP2C	Mx	046	.5
14	MP2C	X	-51.563	4.5
5	MP2C	Z	-29.77	4.5
6	MP2C	Mx	046	4.5
7	MP3A	X	-46.673	.5
8	MP3A	Z	-26.947	.5
9	MP3A	Mx	.023	.5
0	MP3A	X	-46.673	2.5
1	MP3A	Z	-26.947	2.5
2	MP3A	Mx	.023	2.5
3	MP3B	X	-79.745	.5
4	MP3B	Z Z	-46.041	.5
5	MP3B	Mx	016	.5
6	MP3B	X	-79.745	2.5
	MP3B	Z	-46.041	2.5
7	MP3B	Mx	016	2.5
8	MP3C	X	-64.27	.5
9	MP3C	Ž	-37.106	.5
50	MP3C	Mx	024	.5
51		X	-64.27	2.5
52	MP3C	Z	-37.106	2.5
53	MP3C	Mx	024	2.5
54	MP3C	X	-42.654	.5
55	MP2A	7	-24.626	.5
56	MP2A MP2A	Mx	021	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

F0	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-42.654	.5
59 60	MP2B	Z	-24.626	.5
61	MP2B	Mx	021	.5
	MP2C	X	-42.654	.5
62	MP2C	Z	-24,626	.5
63	MP2C	Mx	021	.5
64	MP1A	X	-37.448	.5
65	MP1A	Z	-21.621	.5
66	MP1A	Mx	019	.5
67	MP1B	X	-37.448	.5
68	MP1B	Z	-21.621	.5
69	MP1B	Mx	019	.5
70	MP1C	X	-37.448	.5
71	MP1C	Z	-21.621	.5
72	MP1C	Mx	019	.5
73	OVP	X	-99.52	1.5
74	OVP	Z	-57.458	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-161.319	.5
77	MP1A	Z	-93.138	.5
78	MP1A	Mx	.081	.5
79	MP1A	X	-161.319	4.5
80	MP1A	Z	-93.138	4.5
31	MP1A	Mx	.081	4.5
32	MP4A	X	-161.319	.5
33	MP4A	Z	-93.138	.5
34	MP4A	Mx	.081	.5
35	MP4A	X	-161.319	4.5
86	MP4A	Z	-93.138	4.5
37	MP4A	Mx	.081	4.5
38	MP1B	X	-88.282	.5
39	MP1B	Z	-50.97	.5
90	MP1B	Mx	017	.5
91	MP1B	X	-88.282	4.5
92	MP1B	Ž	-50.97	4.5
93	MP1B	Mx	017	4.5
94	MP4B	X	-88.282	4.5
95	MP4B	Z	-50.202	.5
96	MP4B	Mx	017	.5
97	MP4B	X	-88.282	4.5
98	MP4B	Z	-50.202	4.5
99	MP4B	Mx	017	
00	MP1C	X	-68.727	4.5
01	MP1C	Z	-39.679	.5 .5
02	MP1C	Mx	026	5
03	MP1C	X	-68.727	.5
04	MP1C	Z	-08.727 -39.679	4.5
05	MP1C	Mx	026	4.5
06	MP4C	X	-68.727	4.5
07	MP4C	Z	-08.727 -39.679	.5
08	MP4C	Mx		.5
09	MP4C		026	.5
10	MP4C	X	-68.727	4.5
11	MP4C		-39.679	4.5
12	MP2A	Mx	026	4.5
13		X	-16.632	2.5
14	MP2A	Z	-9.602	2.5
Left	MP2A	Mx	008	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-28.634 -49.596	.5 .5
2	MP2A	Z	.043	.5
3	MP2A	Mx	-28.634	4.5
4	MP2A	X		4.5
5	MP2A	Z	-49.596 .043	4.5
6	MP2A	Mx		.5
7	MP2B	X	-27.104	.5
8	MP2B	Z	-46.945	.5
9	MP2B	Mx	026	4.5
10	MP2B	X	-27.104	4.5
11	MP2B	Z	-46.945	4.5
12	MP2B	Mx	026	
13	MP2C	X	-33.04	.5
14	MP2C	Z	-57,228	,5
15	MP2C	Mx	018	.5
16	MP2C	X	-33.04	4.5
17	MP2C	Z	-57.228	4.5
18	MP2C	Mx	018	4.5
19	MP2A	X	-28.634	.5
20	MP2A	Z	-49.596	.5
21	MP2A	Mx	015	.5
22	MP2A	X	-28.634	4.5
23	MP2A	Z	-49.596	4.5
24	MP2A	Mx	015	4.5
25	MP2B	X	- 27.104	.5
26	MP2B	Z	-46.945	.5
27	MP2B	Mx	.036	.5
28	MP2B	X	-27.104	4.5
29	MP2B	Z	-46.945	4.5
30	MP2B	Mx	.036	4.5
31	MP2C	X	-33.04	.5
32	MP2C	Z	-57.228	.5
33	MP2C	Mx	044	.5
	MP2C	X	-33.04	4.5
34 35	MP2C	Z	-57.228	4.5
	MP2C	Mx	044	4.5
36	MP3A	X	-42.028	.5
37	MP3A	Z	-72.795	.5
38	MP3A	Mx	.021	.5
39	MP3A	X	-42.028	2.5
40	MP3A	Z	-72.795	2.5
41	MP3A	Mx	.021	2.5
42			-48.66	.5
43	MP3B	X	-84.281	.5
44	MP3B	Mx	.008	.5
45	MP3B	X	-48.66	2.5
46	MP3B	Z	-84.281	2.5
47	MP3B	Mx	.008	2.5
48	MP3B	IVIX	-22.935	.5
49	MP3C	X	-39.724	.5
50	MP3C	Z	022	.5
51	MP3C	Mx		2.5
52	MP3C	X	-22.935 20.724	2.5
53	MP3C	Z	-39.724	2.5
54	MP3C	Mx	022	
55	MP2A	X	-30.005	.5
56	MP2A	Z	-51.97	.5
57	MP2A	Mx	015	.5

Page 36

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

C = 0	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-30,005	.5
59	MP2B	Z	-51.97	.5
60	MP2B	Mx	015	.5
61	MP2C	X	-30.005	.5
62	MP2C	Z	-51.97	.5
63	MP2C	Mx	015	.5
64	MP1A	X	-29.003	.5
65	MP1A	Z	-50.235	.5
66	MP1A	Mx	015	.5
67	MP1B	X	-29.003	.5
68	MP1B	Z	-50,235	.5
69	MP1B	Mx	015	.5
70	MP1C	X	-29.003	.5
71	MP1C	Z	-50.235	.5
72	MP1C	Mx	015	.5
73	OVP	X	-64.99	1.5
74	OVP	Z	-112.566	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-98.544	.5
77	MP1A	Z	-170.683	.5
78	MP1A	Mx	.049	.5
79	MP1A	X	-98.544	4.5
80	MP1A	Z	-170.683	4.5
81	MP1A	Mx	.049	4.5
82	MP4A	X	-98.544	
83	MP4A	Z	-170.683	.5 .5
84	MP4A	Mx	.049	.5
85	MP4A	X	-98.544	
86	MP4A	ż		4.5
87	MP4A	Mx	-170.683	4.5
88	MP1B		.049	4.5
89	MP1B	X	-47.034	.5
90	MP1B		-81.465	.5
91	MP1B	Mx	.008	.5
92	MP1B	X	-47.034	4.5
93		Z	-81.465	4.5
	MP1B	Mx	.008	4.5
94	MP4B	X	-47.034	.5
95	MP4B	Z	-81.465	.5
96	MP4B	Mx	.008	.5
97	MP4B	X	-47.034	4.5
98	MP4B	Z	-81.465	4.5
99	MP4B	Mx	.008	4.5
100	MP1C	X	-53.499	.5
101	MP1C	Z	-92.663	.5
102	MP1C	Mx	05	.5
103	MP1C	X	-53.499	4.5
104	MP1C	Z	-92.663	4.5
105	MP1C	Mx	05	4.5
106	MP4C	X	-53.499	.5
107	MP4C	Z	-92.663	.5
108	MP4C	Mx	05	.5
109	MP4C	X	-53.499	4.5
110	MP4C	Z	-92.663	4.5
111	MP4C	Mx	05	4.5
112	MP2A	X	-16.608	2.5
113	MP2A	Z	-28.766	2.5
114	MP2A	Mx	008	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	: Antenna Wi (0 De	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	.5
2	MP2A		-32,893	.5
3	MP2A	Mx	.019	4.5
4	MP2A	X	0	4.5
5	MP2A	Z	-32.893	4.5
6	MP2A	Mix	.019	4.5
7	MP2B	X	0	.5
8	MP2B	Z	-31.624	.5
9	MP2B	Mx	004	4.5
10	MP2B	X	0	4.5
11	MP2B	Z	-31.624	4.5
12	MP2B	Mx	004	.5
13	MP2C	X	0	.5
14	MP2C	Z Z	-29.913	.5
15	MP2C	Mx	018	4.5
16	MP2C	X	0	4.5
17	MP2C	Z	-29.913	4.5
18	MP2C	Mx	018	.5
19	MP2A	X	0	.5
20	MP2A	Z	-32.893	.5
21	MP2A	Mx	019	4.5
22	MP2A	X	0	4.5
23	MP2A	Z	-32.893	
24	MP2A	Mx	019	4.5
25	MP2B	X	0	.5
26	MP2B	Z	-31.624	
27	MP2B	Mx	.024	.5
28	MP2B	X	0	4.5
29	MP2B	Z	-31.624	4.5
30	MP2B	Mx	.024	4.5
31	MP2C	X	0	.5
32	MP2C	Z	-29.913	.5
33	MP2C	Mx	012	.5
34	MP2C	X	0	4.5
35	MP2C	Z	-29.913	4.5
36	MP2C	Mx	012	4.5
37	MP3A	X	0	.5
38	MP3A	Z	-19.447	.5
39	MP3A	Mx	0	.5
40	MP3A	X	0	2.5
41	MP3A	Z	-19.447	2.5
42	MP3A	Mx	0	2.5
43	MP3B	X	0	.5
44	MP3B	Z	-14.835	.5
45	MP3B	Mx	.005	.5
46	MP3B	X	0	2.5
47	MP3B	Z	-14.835	2.5
48	MP3B	Mx	.005	2.5
49	MP3C	X	0	.5
50	MP3C	Z	-8.621	.5
51	MP3C	Mx	004	.5
52	MP3C	X	0	2.5
53	MP3C	Z	-8.621	2.5
54	MP3C	Mx	004	2.5
	MP2A	X	0	.5
55	MP2A	Ž	-16.391	.5
56 57	MP2A	Mx	0	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

F0	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58 59	MP2B	ii X	0	.5
60	MP2B	Z	-16.391	.5
61	MP2B MP2C	Mx	0	.5
62	MP2C	X	0	.5
63		Z	-16.391	.5
64	MP2C	Mx	0	.5
65	MP1A	X	0	.5
66	MP1A	Z	-16.391	.5
67	MP1A	Mx	0	.5
	MP1B	X	0	.5
68 69	MP1B	Z	-16.391	.5
70	MP1B	Mx	0	.5
71	MP1C	X	0	.5
	MP1C	Z	-16.391	.5
72	MP1C	Mx	0	.5
73	OVP	X	0	1.5
74	OVP	Z	-31.252	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	0	.5
77	MP1A	Z	-38.361	.5
78	MP1A	Mx	0	.5
79	MP1A	X	0	4.5
30	MP1A	Z Z	-38.361	4.5
31	MP1A	Mx	0	4.5
32	MP4A	X	0	.5
33	MP4A	Z	-38.361	.5
34	MP4A	Mx	0	.5
35	MP4A	X	0	4.5
36	MP4A	Z	-38.361	4.5
37	MP4A	Mx	0	4.5
38	MP1B	X	0	.5
39	MP1B	Z	-25.265	.5
90	MP1B	Mx	.008	.5
91	MP1B	X	0	4.5
92	MP1B	Z	-25.265	4.5
93	MP1B	Mx	.008	4.5
4	MP4B	X	0	.5
95	MP4B	Z	-25.265	.5
96	MP4B	Mx	.008	.5
7	MP4B	X	0	4.5
98	MP4B	Z	-25.265	4.5
9	MP4B	Mx	.008	4.5
00	MP1C	X	0	.5
01	MP1C	Z	-21.819	.5
02	MP1C	Mx	011	.5
03	MP1C	X	0	4.5
04	MP1C	Z	-21.819	4.5
05	MP1C	Mx	011	4.5
06	MP4C	X	0	.5
07	MP4C	Z	-21.819	.5
08	MP4C	Mix	011	.5
09	MP4C	X	0	4.5
10	MP4C	Z	-21.819	4.5
11	MP4C	Mx	011	4.5
12	MP2A	X	0	2.5
13	MP2A	Z	-8.942	2.5
14	MP2A	Mx	0	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 16: Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	16.063	.5
2	MP2A	Z	-27.821	.5
3	MP2A	Mx	.008	.5
4	MP2A	X	16.063	4.5
5	MP2A	Z	-27.821	4.5
6	MP2A	Mx	.008	4.5
7	MP2B	X	15.09	.5
8	MP2B	Z	-26.137	.5
9	MP2B	Mx	.008	.5
10	MP2B	X	15.09	4.5
11	MP2B	Z	-26.137	4.5
12	MP2B	Mx	.008	4.5
13	MP2C	X	15.545	.5
14	MP2C	Z	-26.925	.5
15	MP2C	Mx	024	.5
16	MP2C	X	15.545	4.5
17	MP2C	Z	-26.925	4.5
18	MP2C	Mx	024	4.5
19	MP2A	X	16.063	.5
20	MP2A	Z	-27.821	.5
21	MP2A	Mx	024	.5
22	MP2A	X	16.063	4.5
23	MP2A	Z	-27.821	4.5
24	MP2A	Mx	024	4.5
25	MP2B	X	15.09	.5
26	MP2B	Z	-26.137	.5
27	MP2B	Mx	.02	.5
28	MP2B	X	15.09	4.5
29	MP2B	Z	-26.137	4.5
30	MP2B	Mx	.02	4.5
31	MP2C	X	15.545	.5
32	MP2C	Z	-26.925	.5
33	MP2C	Mx	000251	.5
34	MP2C	X	15.545	4.5
35	MP2C	Z	-26.925	4.5
36	MP2C	Mx	000251	4.5
37	MP3A	X	8.328	.5
38	MP3A	Z	-14.425	.5
39	MP3A	Mx	004	.5
40	MP3A	X	8.328	2.5
41	MP3A	Z	-14.425	2.5
42	MP3A	Mx	004	2.5
43	MP3B	X	4.795	.5
44	мР3В	Z	-8.305	.5
45	MP3B	Mx	.005	.5
46	MP3B	X	4.795	2.5
47	MP3B	Z	-8.305	2.5
48	MP3B	Mx	.005	2.5
49	MP3C	X	6.448	.5
50	MP3C	Z	-11.169	.5
51	MP3C	Mx	005	.5
52	MP3C	X	6.448	2.5
53	MP3C	Ž	-11.169	2.5
	MP3C	Mx	005	2.5
54	MP2A	X	7.572	.5
55 56	MP2A	7	-13.115	.5
57	MP2A	Mx	.004	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X X	7.572	.5
59	MP2B	Z	-13.115	.5
60	MP2B	Mx	.004	.5
61	MP2C	X	7.572	.5
62	MP2C	Z	-13.115	.5
63	MP2C	Mx	.004	.5
64	MP1A	X	7.335	.5
65	MP1A	Z	-12.704	.5
66	MP1A	Mx	.004	.5
67	MP1B	X	7.335	.5
68	MP1B	Z	-12.704	.5
69	MP1B	Mx	.004	.5
70	MP1C	X	7.335	.5
71	MP1C	Z	-12.704	.5
72	MP1C	Mx	.004	.5
73	OVP	X	13.717	1.5
74	OVP	Z	-23.758	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	18.699	.5
77	MP1A	Ž	-32.388	.5
78	MP1A	Mx	009	.5
79	MP1A	X	18.699	4.5
80	MP1A	Z	-32.388	4.5
81	MP1A	Mx	009	4.5
82	MP4A	X	18.699	.5
83	MP4A	Z	-32.388	
84	MP4A	Mx	009	.5
85	MP4A	X	18.699	4.5
86	MP4A	Ž	-32.388	
87	MP4A	Mx		4.5
88	MP1B	X	009 16.415	4.5
89	MP1B	Z		.5
90	MP1B	Mx	-28.432	.5
91	MP1B	X	.015	.5
92	MP1B	Ž	16.415	4.5
93	MP1B		-28.432	4.5
94	MP4B	Mx X	.015	4.5
95	MP4B	Ž	16.415	.5
96	MP4B		-28.432	.5
97	MP4B	Mx	.015	.5
98	MP4B	X	16.415	4.5
99		Z	-28.432	4.5
100	MP4B MP1C	Mx	.015	4.5
101		X	8.889	.5 .5
102	MP1C MP1C		-15.396	.5
103		Mx	007	.5
104	MP1C	X	8.889	4.5
05	MP1C	Z	-15.396	4.5
06	MP1C	Mx	007	4.5
	MP4C	X	8.889	.5
07	MP4C	Z	-15.396	.5
08	MP4C	Mx	007	.5
09	MP4C	X	8.889	4.5
10	MP4C	Z	-15.396	4.5
111	MP4C	Mx	007	4.5
12	MP2A	X	3.774	2.5
113	MP2A	Z	-6.537	2.5
114	MP2A	Mx	.002	2.5

Colliers Engineering & Design

5000382994-V7W_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	26.491	.5
2	MP2A		-15,294	.5
3	MP2A	Mx	004	.5
4	MP2A	X	26.491	4.5
5	MP2A	Z	-15.294	4.5
5	MP2A	Mx	004	4.5
7	MP2B	X	25.905	.5
8	MP2B	Z	-14.957	.5
9	MP2B	Mx	.018	.5
10	MP2B	X	25.905	4.5
11	MP2B	Z	-14.957	4.5
12	MP2B	Mx	.018	4.5
13	MP2C	X	28.175	.5
14	MP2C	Z	-16.267	.5
15	MP2C	Mx	023	.5
16	MP2C	X	28.175	4.5
7	MP2C	Z	-16.267	4.5
18	MP2C	Mx	023	4.5
19	MP2A	X	26.491	.5
20	MP2A	Z	-15.294	.5
21	MP2A	Mx	022	.5
22	MP2A	X	26.491	4.5
23	MP2A	Z	-15.294	4.5
24	MP2A	Mx	022	4.5
25	MP2B	X	25.905	.5
26	MP2B	Z	-14.957	.5
27	MP2B	Mx	.012	.5
28	MP2B	X	25.905	4.5
29	MP2B	Z	-14.957	4.5
30	MP2B	Mx	.012	4.5
31	MP2C	X	28.175	.5
32	MP2C	Z	-16.267	.5
33	MP2C	Mx	.012	.5
34	MP2C	X	28.175	4.5
35	MP2C	Z	-16.267	4.5
36	MP2C	Mx	.012	4.5
37	MP3A	X	9.591	.5
38	MP3A	Z	-5.537	.5
39	MP3A	Mx	005	.5
40	MP3A	X	9.591	2.5
41	MP3A	Z	-5.537	2.5
42	MP3A	Mx	005	2.5
43	MP3B	X	7.466	.5
44	MP3B	Z	-4.311	.5
45	MP3B	Mx	.004	.5
46	MP3B	X	7.466	2.5
47	MP3B	Z	-4.311	2.5
48	MP3B	Mx	.004	2.5
49	MP3C	X	15.711	.5
50	MP3C	Z	-9.07	.5
51	MP3C	Mx	003	.5
52	MP3C	X	15.711	2.5
53	MP3C	Z	-9.07	2.5
54	MP3C	Mx	003	2.5
55	MP2A	X	10.955	.5
	MP2A	Ž	-6.325	.5
56 57	MP2A	Mx	.005	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

[50]	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	10.955	.5
59	MP2B	Z	-6.325	.5
60	MP2B	Mx	.005	.5
61	MP2C	X	10.955	.5
62	MP2C	Z	-6.325	.5
63	MP2C	Mx	.005	.5
64	MP1A	X	9.723	.5
65	MP1A	Z	-5.614	.5
66	MP1A	Mx	.005	.5
67	MP1B	X	9.723	.5
68	MP1B	Z	-5.614	.5
69	MP1B	Mx	.005	.5
70	MP1C	X	9.723	.5
71	MP1C	Z	-5.614	.5
72	MP1C	Mx	.005	.5
73	OVP	X	19.702	1.5
74	OVP	Z	-11.375	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	30.721	.5
77	MP1A	Z	-17.737	.5
78	MP1A	Mx	015	.5
79	MP1A	X	30.721	4.5
80	MP1A	Z	-17.737	4.5
81	MP1A	Mx	015	4.5
82	MP4A	X	30.721	.5
83	MP4A	Z	-17.737	.5
84	MP4A	Mx	015	.5
85	MP4A	X	30.721	4.5
86	MP4A	Z	-17.737	4.5
87	MP4A	Mx	015	4.5
88	MP1B	X	29.642	.5
89	MP1B	Z	-17.114	.5
90	MP1B	Mx	.017	.5
91	MP1B	X	29.642	4.5
92	MP1B	Z	-17.114	4.5
93	MP1B	Mx	.017	4.5
94	MP4B	X	29.642	.5
95	MP4B	Z	-17.114	.5
96	MP4B	Mx	.017	.5
97	MP4B	X	29.642	4.5
98	MP4B	Z	-17.114	4.5
99	MP4B	Mx	.017	4.5
100	MP1C	X	11.104	
101	MP1C	X	-6.411	.5
102	MP1C	Mx	002	.5
103	MP1C	X	11.104	4.5
104	MP1C	Z	-6.411	4.5
105	MP1C	Mx	-0.471	4.5
106	MP4C	X	11.104	.5
107	MP4C	Z	-6.411	.5
108	MP4C	Mx	002	.5
109	MP4C	X	11.104	4.5
110	MP4C	Ž	-6.411	
111	MP4C	Mx		4.5
112	MP2A	X	002	4.5
113	MP2A	Z	4.123	2.5
114	MP2A	Mx	-2.381	2.5
	IVII ZA	IVIX	.002	2.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

M	ember Label	: Antenna Wi (90 Do	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	29.82	.5
2	MP2A	Z	0	.5
3	MP2A	Mx	015	.5
4	MP2A	X	29.82	4.5
5	MP2A	Z	0	4.5
6	MP2A	Mx	015	4.5
7	MP2B	X	31.09	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	.024	.5 4.5
10	MP2B	X	31.09	
11	MP2B	Z	0	4.5
12	MP2B	Mx	.024	4.5
13	MP2C	X	32.801	.5
14	MP2C	Z	0	.5
15	MP2C	Mx	016	.5
16	MP2C	X	32.801	4.5
17	MP2C	Z	0	4.5
18	MP2C	Mx	016	4.5
19	MP2A	X	29.82	.5
20	MP2A	Z	0	.5
21	MP2A	Mx	015	.5
22	MP2A	X	29.82	4.5
23	MP2A	Z	0	4.5
24	MP2A	Mx	015	4.5
25	MP2B	X	31.09	.5
26	MP2B	Z	0	.5
27	MP2B	Mx	.000251	.5
28	MP2B	X	31.09	4.5
29	MP2B	Z	0	4.5
30	MP2B	Mx	.000251	4.5
31	MP2C	X	32.801	.5
32	MP2C	Z	0	.5
33	MP2C	Mx	.022	.5
34	MP2C	X	32.801	4.5
35	MP2C	Z	0	4.5
36	MP2C	Mx	.022	4.5
37	MP3A	X	8.284	.5
38	MP3A	Z	0	.5
39	MP3A	Mx	004	.5
40	MP3A	X	8.284	2.5
41	MP3A	Z	0	2.5
42	MP3A	Mx	004	2.5
43	MP3B	X	12.896	.5
44	MP3B	Z	0	.5
45	MP3B	Mx	.005	.5
46	MP3B	X	12.896	2.5
47	MP3B	Z	0	2.5
48	MP3B	Mx	.005	2.5
49	MP3C	X	19.11	.5
50	MP3C	Z	0	.5
51	MP3C	Mx	.002	.5
52	MP3C	X	19.11	2.5
	MP3C	Z	0	2.5
53	MP3C	Mx	.002	2.5
54	MP2A	X	11.402	.5
55	MP2A	Z	0	.5
56 57	MP2A	Mx	.006	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	11.402	.5
59	MP2B	Z	0	.5
60	MP2B	Mx	.006	.5
61	MP2C	X	11.402	.5
62	MP2C	Z	0	.5
63	MP2C	Mx	.006	.5
64	MP1A	X	9.506	.5
65	MP1A	Z	0	.5
66	MP1A	Mx	.005	.5
67	MP1B	X	9.506	.5
68	MP1B	Z	0	.5
69	MP1B	Mx	.005	.5
70	MP1C	X	9.506	.5
71	MP1C	Ž	0	.5
72	MP1C	Mx	.005	.5
73	OVP	X	21.884	1.5
74	OVP	Z	0	1.5
75	OVP	Mx	0	
76	MP1A	X	34.511	1.5
77	MP1A	Z	0	.5
78	MP1A	Mx	017	.5
79	MP1A	X	34.511	.5
80	MP1A	Z	0	4.5
81	MP1A	Mx		4.5
82	MP4A	X	017	4.5
83	MP4A	Z	34.511	.5
84	MP4A		0	.5
85	MP4A	Mx	017	.5
86	MP4A	X	34.511	4.5
87			0	4.5
88	MP4A MP1B	Mx	017	4.5
89		X	28.061	.5
	MP1B	Z	0	.5
90	MP1B	Mx	.011	.5
91	MP1B	X	28.061	4.5
92	MP1B	Z	0	4.5
93	MP1B	Mx	.011	4.5
94	MP4B	X	28.061	.5
95	MP4B	Z	0	.5
96	MP4B	Mx	.011	.5
97	MP4B	X	28.061	4.5
98	MP4B	Z	0	4.5
99	MP4B	Mx	.011	4.5
100	MP1C	X	11.905	.5
101	MP1C	Z	0	.5
102	MP1C	Mx	.001	.5
103	MP1C	X	11.905	4.5
104	MP1C	Z	0	4.5
105	MP1C	Mx	.001	4.5
106	MP4C	X	11.905	.5
107	MP4C	Z	0	.5
108	MP4C	Mx	.001	.5
109	MP4C	X	11.905	4.5
110	MP4C	Z	0	4.5
111	MP4C	Mx	.001	4.5
112	MP2A	X	3.368	2.5
113	MP2A	Z	0	2.5
114	MP2A	Mx	.002	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:___

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	nber Label	: Antenna Wi (120 L	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	26.491	.5
2	MP2A		15.294	.5
3	MP2A	Mx	022	.5
4	MP2A	X	26.491	4.5
	MP2A	Z	15.294	4.5
6	MP2A	Mx	022	4.5
	MP2B		28.175	.5
8	MP2B	X	16.267	.5
	MP2B	Mx	.023	.5
	MP2B	X	28.175	4.5
	MP2B	Z	16.267	4.5
		Mx	.023	4.5
	MP2B	X	27.387	.5
	MP2C	Z	15.812	.5
14	MP2C	Mx	004	.5
	MP2C	X	27.387	4.5
	MP2C	Z	15.812	4.5
	MP2C		004	4.5
	MP2C	Mx	26.491	.5
	MP2A	X	15.294	5.5
	MP2A		004	.5
	MP2A	Mx	26.491	4.5
	MP2A	X		4.5
	MP2A	Z	15.294	4.5
24	MP2A	Mx	004	.5
25	MP2B	X	28.175	.5
26	MP2B	Z	16.267	.5
	MP2B	Mx	012	.5
28	MP2B	X	28.175	4.5
	MP2B	Z	16.267	4.5
	MP2B	Mx	012	4.5
	MP2C	X	27.387	.5
	MP2C	Z	15.812	.5
	MP2C	Mx	.024	.5
	MP2C	X	27.387	4.5
35	MP2C	Z	15.812	4.5
	MP2C	Mx	.024	4.5
	MP3A	X	9.591	.5
37	MP3A	Part Z	5.537	.5
38		Mx	005	.5
39	MP3A	X	9.591	2.5
40	MP3A	Z	5.537	2.5
41	MP3A	Mx	005	2.5
42	MP3A		15.711	.5
43	MP3B	X	9.07	.5
44	MP3B		.003	.5
45	MP3B	Mx	15.711	2.5
46	MP3B	X	9.07	2.5
47	MP3B	Z	.003	2.5
48	MP3B	Mx	12.847	.5
	MP3C	X		.5
50	MP3C	Z	7.417	.5
51	MP3C	Mx	.005	2.5
52	MP3C	X	12.847	
53	MP3C	Z	7.417	2.5
54	MP3C	Mx	.005	2.5
55	MP2A	X	10.955	.5
56	MP2A	Z	6.325	.5
57	MP2A	Mx	.005	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	10.955	
59	MP2B	Z	6.325	.5
60	MP2B	Mx	.005	.5
61	MP2C	X	10.955	.5
62	MP2C	Z	6.325	.5
63	MP2C	Mx	.005	.5
64	MP1A	X	9.723	.5
65	MP1A	Z	5.614	.5
66	MP1A	Mx	.005	.5
67	MP1B	X	9.723	.5
68	MP1B	Z	5.614	.5
69	MP1B	Mx	.005	.5
70	MP1C	X	9.723	.5
71	MP1C	Z	5.614	.5
72	MP1C	Mx	.005	.5
73	OVP	X	22.259	1.5
74	OVP	Z	12.851	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	30.721	.5
77	MP1A	Z	17.737	.5
78	MP1A	Mx	015	.5
79	MP1A	X	30.721	4.5
80	MP1A	Z	17.737	4.5
81	MP1A	Mx	015	4.5
82	MP4A	X	30.721	.5
83	MP4A	Z	17.737	.5
84	MP4A	Mx	015	.5
85	MP4A	X	30.721	4.5
86	MP4A	Z	17.737	4.5
87	MP4A	Mx	015	4.5
88	MP1B	X	17.75	.5
89	MP1B	Z	10.248	.5
90	MP1B	Mx	.004	.5
91	MP1B	X	17.75	4.5
92	MP1B	Z	10.248	4.5
93	MP1B	Mx	.004	4.5
94	MP4B	X	17.75	,5
95	MP4B	Ž	10.248	.5
96	MP4B	Mx	.004	.5
97	MP4B	X	17.75	4.5
98	MP4B	Ž	10.248	4.5
99	MP4B	Mx	.004	4.5
00	MP1C	X	13.81	.5
01	MP1C	Z	7.973	.5
02	MP1C	Mx	.005	.5
03	MP1C	X	13.81	4.5
04	MP1C	Z	7.973	4.5
05	MP1C	Mx	.005	
06	MP4C	X	13.81	4.5
07	MP4C	Z	7.973	.5
08	MP4C	Mx	.005	.5
09	MP4C	X	.000	.5
10	MP4C	Z	13.81 7.9 7 3	4.5
11	MP4C	Mx		4.5
12	MP2A	X	.005	4.5
13	MP2A MP2A	Z	4.123	2.5
14	MP2A		2.381	2.5
	IVIF ZP	Mx	.002	2.5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Point Loads (BLC 20 Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	16.063	.5
2	MP2A	Z	27.821	.5
3	MP2A	Mx	024	.5
4	MP2A	X	16.063	4.5
5	MP2A	Z	27.821	4.5
6	MP2A	Mx	024	4.5
7	MP2B	X	16.4	.5
8	MP2B	Z	28.406	.5
9	MP2B	Mx	.016	.5
	MP2B	X	16.4	4.5
10	MP2B	Z	28.406	4.5
11		Mx	.016	4.5
12	MP2B	X	15.09	.5
13	MP2C	Z	26.137	.5
14	MP2C		.008	.5
15	MP2C	Mx	15.09	4.5
16	MP2C	X	26.137	4.5
17	MP2C	Z	.008	4.5
18	MP2C	Mx	16.063	.5
19	MP2A	X		.5
20	MP2A	Z	27.821	.5
21	MP2A	Mx	.008	4.5
22	MP2A	X	16.063	
23	MP2A	Z	27.821	4.5
24	MP2A	Mx	.008	4.5
25	MP2B	X	16.4	.5
26	MP2B	Z	28.406	.5
27	MP2B	Mx	022	.5
28	MP2B	X	16.4	4.5
29	MP2B	Z	28.406	4.5
30	MP2B	Mx	022	4.5
31	MP2C	X	15.09	.5
	MP2C	Z	26.137	.5
32	MP2C	Mx	.02	.5
33	MP2C	X	15.09	4.5
34	MP2C	Z	26.137	4.5
35	MP2C	Mx	.02	4.5
36	MP2C	X	8.328	.5
37	MP3A	Z	14.425	.5
38	MP3A		004	.5
39	MP3A	Mx	8.328	2.5
40	MP3A	X	14.425	2.5
41	MP3A	Z		2.5
42	MP3A	Mx	004	.5
43	MP3B	X	9.555	.5
14	MP3B	Z	16.55	.0
45	MP3B	Mx	002	.5
46	MP3B	X	9.555	2.5
17	MP3B	Z	16.55	2.5
48	MP3B	Mx	002	2.5
49	MP3C	X	4.795	.5
50	MP3C	Z	8.305	.5
51	MP3C	Mx	.005	.5
52	MP3C	X	4.795	2.5
53	MP3C	Ž	8.305	2.5
	MP3C	Mx	.005	2.5
54		X	7.572	.5
55	MP2A	Z	13.115	.5
56 57	MP2A MP2A	Mx	.004	.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	7.572	.5
59	MP2B	Z	13.115	.5
60	MP2B	Mx	.004	.5
61	MP2C	X	7.572	.5
62	MP2C	Z	13.115	.5
63	MP2C	Mx	.004	.5
64	MP1A	X	7.335	.5
65	MP1A	Z	12.704	.5
66	MP1A	Mx	.004	.5
67	MP1B	X	7.335	.5
68	MP1B	Z	12.704	.5
69	MP1B	Mx	.004	.5
70	MP1C	X	7.335	.5
71	MP1C	Z	12.704	.5
72	MP1C	Mx	.004	.5
73	OVP	X	15.193	1.5
74	OVP	Z	26.315	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	18.699	.5
77	MP1A	Z	32.388	.5
78	MP1A	Mx	009	.5
79	MP1A	X	18.699	4.5
80	MP1A	Z	32.388	4.5
81	MP1A	Mx	009	4.5
82	MP4A	X	18.699	.5
83	MP4A	Z	32.388	.5
84	MP4A	Mx	009	.5
85	MP4A	X	18.699	4.5
86	MP4A	Z	32.388	4.5
87	MP4A	Mx	009	4.5
88	MP1B	X	9.549	.5
89	MP1B	Z	16.539	.5
90	MP1B	Mx	002	.5
91	MP1B	X	9.549	4.5
92	MP1B	Z	16.539	4.5
93	MP1B	Mx	002	4.5
94	MP4B	X	9.549	.5
95	MP4B	Ž	16.539	.5
96	MP4B	Mx	002	.5
97	MP4B	X	9.549	4.5
98	MP4B	Z	16.539	4.5
99	MP4B	Mx	002	4.5
100	MP1C	X	10.451	
101	MP1C	Z	18.102	.5
102	MP1C	Mx	.01	.5
103	MP1C	X	10.451	
104	MP1C	Z	18.102	4.5
105	MP1C	Mx	.01	4.5
106	MP4C	X		4.5
107	MP4C	Z	10.451	.5
108	MP4C		18.102	.5
109	MP4C	Mx	.01	.5
110	MP4C	X	10.451	4.5
111	MP4C		18.102	4.5
112		Mx	.01	4.5
113	MP2A	X	3.774	2.5
	MP2A	Z	6.537	2.5
114	MP2A	Mx	.002	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

Member Label	21 : Antenna WI (180	Magnitude[lb,k-ft]	Location[ft,%]
1 MP2A	X	0	.5
2 MP2A	Z	32.893	.5 .5
3 MP2A	Mx	019	4.5
4 MP2A	X	0	4.5
5 MP2A	Z	32.893	4.5
6 MP2A	Mx	019	
7 MP2B	X	0	.5
8 MP2B	Z	31.624	
9 MP2B	Mx	.004	.5
10 MP2B	X	0	4.5
11 MP2B	Z	31.624	4.5
12 MP2B	Mx	.004	4.5
MP2C	X	0	.5
MP2C	Z	29.913	.5
15 MP2C	Mx	.018	.5
16 MP2C	X	0	4.5
17 MP2C	Z	29.913	4.5
18 MP2C	Mx	.018	4.5
19 MP2A	X	0	.5
20 MP2A	Z	32.893	.5
21 MP2A	Mx	.019	.5
22 MP2A	X	0	4.5
23 MP2A	Z	32.893	4.5
	Mx	.019	4.5
	X	0	.5
	Z	31.624	.5
	Mx	024	.5
	X	0	4.5
MP2B	Z	31.624	4.5
29 MP2B	Mx	024	4.5
MP2B	X	0	.5
MP2C	Z	29.913	.5
MP2C	Mx	.012	.5
MP2C	X	0	4.5
MP2C	Z	29.913	4.5
MP2C		.012	4.5
MP2C	Mx	0	.5
MP3A	X	19.447	.5
MP3A	Z	0	.5
MP3A	Mx	0	2.5
MP3A	X	19.447	2.5
MP3A	Z	0	2.5
42 MP3A	Mx	0	.5
13 MP3B	X	14.835	.5
14 MP3B	Z		.5
45 MP3B	Mx	005	2.5
46 MP3B	X	0	2.5
47 MP3B	Z	14.835	2.5
MP3B	Mx	005	
MP3C	X	0	.5
50 MP3C	Z	8.621	.5
MP3C	Mx	.004	.5
MP3C	X	0	2.5
MP3C	Z	8.621	2.5
54 MP3C	Mx	.004	2.5
55 MP2A	X	0	.5
56 MP2A	Z	16.391	.5
57 MP2A	Mx	0	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	0	.5
59	MP2B	Z	16.391	.5
60	MP2B	Mx	0	.5
61	MP2C	X	0	.5
62	MP2C	Z	16.391	.5
63	MP2C	Mx	0	.5
64	MP1A	X	0	.5
65	MP1A	Z	16.391	.5
66	MP1A	Mx	0	.5
67	MP1B	X	0	.5
68	MP1B		16.391	.5
69	MP1B	Mx	0	.5
70	MP1C	X	0	.5
71	MP1C	Z	16.391	.5
72	MP1C	Mx	0	.5
73	OVP	X	0	1.5
74	OVP	Z	31.252	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	0	.5
77	MP1A	Z	38.361	.5
78	MP1A	Mx	0	.5
79	MP1A	X	0	4.5
80	MP1A	Z	38.361	4.5
81	MP1A	Mx	0	4.5
82	MP4A	X	0	.5
83	MP4A	Z	38.361	.5
84	MP4A	Mx	0	.5
85	MP4A	X	0	4.5
86	MP4A	Z	38.361	4.5
87	MP4A	Mx	0	4.5
88	MP1B	X	0	.5
89	MP1B	Z	25.265	.5
90	MP1B	Mx	008	.5
91	MP1B	X	0	4.5
92	MP1B	Z	25.265	4.5
93	MP1B	Mx	008	4.5
94	MP4B	X	0	.5
95	MP4B	Z	25.265	.5
96	MP4B	Mx	008	.5
97	MP4B	X	0	4.5
98	MP4B	Z	25.265	4.5
99	MP4B	Mx	008	4.5
100	MP1C	X	0	.5
101	MP1C	Z	21.819	.5
102	MP1C	Mx	.011	.5
103	MP1C	X	0	4.5
104	MP1C	Z	21.819	4.5
105	MP1C	Mx	.011	4.5
106	MP4C	X	0	.5
107	MP4C	Z	21.819	.5
108	MP4C	Mx	.011	1 15311 4 5
109	MP4C	X	.011	4.5
110	MP4C	Z	21.819	4.5
111	MP4C	Mx	.011	
112	MP2A	X	.011	4.5
113	MP2A	Z	8.942	2.5
114	MP2A	Mx	0.942	2.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

Me	mber Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-16.063	.5
2	MP2A	Z	27.821	.5
3	MP2A	Mx	008	.5
4	MP2A	X	-16.063	4.5
5	MP2A	Z	27.821	4.5
6	MP2A	Mx	008	4.5
7	MP2B	X	-15.09	.5
8	MP2B	Z	26.137	.5
9	MP2B	Mx	008	.5
10	MP2B	X	-15.09	4.5
11	MP2B	Z	26.137	4.5
12	MP2B	Mx	008	4.5
13	MP2C	X	-15.545	.5
	MP2C	Z	26.925	.5
15	MP2C	Mx	.024	.5
16	MP2C	X	-15.545	4.5
17	MP2C	Z	26.925	4.5
18	MP2C	Mx	.024	4.5
19	MP2A	X	-16.063	.5
20	MP2A	Z	27.821	.5
21	MP2A	Mx	.024	.5
22	MP2A	X	-16.063	4.5
23	MP2A	Z	27.821	4.5
24	MP2A	Mx	.024	4.5
25	MP2B	X	-15.09	.5
26	MP2B	Z	26.137	.5
27	MP2B	Mx	02	.5
28	MP2B	X	-15.09	4.5
29	MP2B	Z	26.137	4.5
30	MP2B	Mx	02	4.5
31	MP2C	X	-15.545	.5
32	MP2C	Z	26.925	.5
33	MP2C	Mx	.000251	.5
33	MP2C	X	-15.545	4.5
	MP2C	Z	26.925	4.5
35	MP2C	Mx	.000251	4.5
36		X	-8.328	.5
37	MP3A	Z	14.425	.5
38	MP3A	Mx	.004	.5
39	MP3A	X	-8.328	2.5
40	MP3A	Z	14.425	2.5
41	MP3A	Mx	.004	2.5
42	MP3A	X	-4.795	.5
43	MP3B	Z	8.305	.5
44	MP3B	Mx	005	.5
45	MP3B	X	-4.795	2.5
46	MP3B	Z	8.305	2.5
47	MP3B		005	2.5
48	MP3B	Mx	-6.448	.5
49	MP3C	X	11.169	.5
50	MP3C	Z	.005	.5
51	MP3C	Mx	-6.448	2.5
52	MP3C	X		2.5
53	MP3C	Z	11.169	2.5
54	MP3C	Mx	.005	
55	MP2A	X	-7.572	.5
56	MP2A	Z	13.115	.5
57	MP2A	Mx	004	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

r r	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-7.572	.5
59	MP2B	Z	13,115	.5
60	MP2B	Mx	004	.5
61	MP2C	X	-7.572	.5
62	MP2C	Z	13.115	.5
63	MP2C	Mx	004	.5
64	MP1A	X	-7.335	.5
65	MP1A	Z	12.704	.5
66	MP1A	Mx	004	.5
67	MP1B	X	-7.335	.5
68	MP1B	Z Z	12.704	.5
69	MP1B	Mx	004	.5
70	MP1C	X	-7.335	.5
71	MP1C	Z	12.704	.5
72	MP1C	Mx	004	.5
73	OVP	X	-13.717	1.5
74	OVP	Z	23.758	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-18.699	.5
77	MP1A	Z	32.388	.5
78	MP1A	Mx	.009	.5
79	MP1A	X	-18.699	4.5
80	MP1A	Z	32.388	4.5
81	MP1A	Mx	.009	4.5
82	MP4A	X	-18.699	.5
83	MP4A	Z	32.388	.5
84	MP4A	Mx	.009	.5
85	MP4A	X	-18.699	4.5
86	MP4A	Z	32.388	4.5
87	MP4A	Mx	.009	4.5
88	MP1B	X	-16.415	.5
89	MP1B	Z	28.432	.5
90	MP1B	Mx	015	.5
91	MP1B	X	-16.415	4.5
92	MP1B	Z	28.432	4.5
93	MP1B	Mx	015	4.5
94	MP4B	X	-16.415	.5
95	MP4B	Z	28.432	.5
96	MP4B	Mx	015	.5
97	MP4B	X	-16.415	4.5
98	MP4B	Z	28.432	4.5
99	MP4B	Mx	015	4.5
100	MP1C	X	-8.889	.5
101	MP1C	Z	15.396	.5
102	MP1C	Mx	.007	.5
103	MP1C	X	-8.889	4.5
104	MP1C	Z	15.396	4.5
105	MP1C	Mx	.007	4.5
106	MP4C	X	-8.889	.5
107	MP4C	Ž	15.396	.5
108	MP4C	Mx	.007	.5
109	MP4C	X	-8.889	4.5
110	MP4C	Ž	15.396	4.5
111	MP4C	Mx	.007	4.5
112	MP2A	X	-3.774	2.5
113	MP2A	Z	6.537	2.5
114	MP2A	Mx	002	2.5

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-26.491	.5
2	MP2A	Z	15.294	.5
3	MP2A	Mx	.004 -26.491	4.5
4	MP2A	X		4.5
5	MP2A	Z	15.294	4.5
6	MP2A	Mx	.004	.5
7	MP2B	X	-25.905	.5
8	MP2B	Z	14.957	.5
9	MP2B	Mx	018	4.5
10	MP2B	X	-25.905	4.5
11	MP2B	Z	14.957 018	4.5
12	MP2B	Mx	-28.175	.5
13	MP2C	X	16.267	.5
14	MP2C	Z	.023	.5
15	MP2C	Mx		4.5
16	MP2C	X	-28.175 46.067	4.5
17	MP2C	Z	16.267	4.5
18	MP2C	Mx	.023	.5
19	MP2A	X	-26.491	.5
20	MP2A	Z	15.294	.5
21	MP2A	Mx	.022	4.5
22	MP2A	X	<u>-26.491</u>	4.5
23	MP2A	Z	15.294	4.5
24	MP2A	Mx	.022	
25	MP2B	X	-25.905	.5
26	MP2B	Z	14.957	.5
27	MP2B	Mx	012	.5
28	MP2B	X	-25.905	4.5
29	MP2B	Z	14.957	4.5
30	MP2B	Mx	012	4.5
31	MP2C	X	-28.175	.5
32	MP2C	Z	16.267	.5
33	MP2C	Mx	012	.5
34	MP2C	X	-28.175	4.5
35	MP2C	Z	16.267	4.5
36	MP2C	Mx	012	4.5
37	MP3A	X	-9.591	.5
38	MP3A	Z	5.537	.5
39	MP3A	Mx	.005	.5
40	MP3A	X	-9.591	2.5
41	MP3A	Z	5.537	2.5
12	MP3A	Mx	.005	2.5
43	MP3B	X	-7.466	.5
14	MP3B	Z	4.311	.5
45	MP3B	Mx	004	.5
46	MP3B	X	-7.466	2.5
47	MP3B	Z	4.311	2.5
48	MP3B	Mx	004	2.5
19	MP3C	X	-15.711	.5
50	MP3C	Z	9.07	.5
51	MP3C	Mx	.003	.5
52	MP3C	X	-15.711	2.5
53	MP3C	Z	9.07	2.5
54	MP3C	Mx	.003	2.5
55	MP2A	X	-10.955	.5
56	MP2A	Z	6.325	.5
57	MP2A	Mx	005	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

r r	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-10.955	.5
59	MP2B	Z	6.325	.5
60	MP2B	Mx	005	.5
61	MP2C	X	-10.955	.5
62	MP2C	Z	6.325	.5
63	MP2C	Mx	005	.5
64	MP1A	X	-9.723	.5
65	MP1A	Z	5.614	.5
66	MP1A	Mx	005	.5
67	MP1B	X	-9.723	.5
68	MP1B	Z	5.614	.5
69	MP1B	Mx	005	.5
70	MP1C	X	-9.723	.5
71	MP1C	Z	5.614	.5
72	MP1C	Mx	005	.5
73	OVP	X	-19.702	1.5
74	OVP	Ž	11.375	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-30.721	.5
77	MP1A	Z	17.737	.5
78	MP1A	Mx	.015	.5
79	MP1A MP1A	X	.015 -30.721	.5
80	MP1A MP1A	Ž		4.5
81	MP1A		17.737	4.5
82	MP4A	Mx	.015	4.5
83		X	-30.721	.5
	MP4A	Z	17.737	.5
84	MP4A	Mx	.015	.5
85	MP4A	X	-30.721	4.5
86	MP4A	Z	17.737	4.5
87	MP4A	Mx	.015	4.5
88	MP1B	X	-29.642	.5
89	MP1B	Z	17.114	.5
90	MP1B	Mx	017	.5
91	MP1B	X	-29.642	4.5
92	MP1B	Z	17.114	4.5
93	MP1B	Mx	017	4.5
94	MP4B	X	-29.642	.5
95	MP4B	Z	17.114	.5
96	MP4B	Mx	017	.5
97	MP4B	X	-29.642	4.5
98	MP4B	Z	17.114	4.5
99	MP4B	Mx	017	4.5
100	MP1C		-11.104	.5
101	MP1C	X	6.411	.5
102	MP1C	Mx	.002	.5
103	MP1C	X	-11.104	4.5
104	MP1C	X	6.411	4.5
105	MP1C	Mx	.002	4.5
106	MP4C	X	-11.104	.5
107	MP4C	Z	6.411	.5
108	MP4C	Mx	.002	.5
109	MP4C		-11.104	4.5
110	MP4C	X	6.411	
111	MP4C	Mx	.002	4.5
112	MP2A			4.5
113	MP2A MP2A	X	-4.123	2.5
114	MP2A MP2A		2.381	2.5
Lat. To I	IVII ZM	Mx	002	2.5

: Colliers Engineering & Design

5000382994-V7W_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude(lb,k-ft)	Location[ft,%]
1	MP2A	X	-29.82	.5
2	MP2A	Z	0	.5
3	MP2A	Mx	.015	.5
4	MP2A	X	-29.82	4.5
5	MP2A	Z	0	4.5
6	MP2A	Mx	.015	4.5
7	MP2B	X	- 31.09	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	024	.5
10	MP2B	X	-31.09	4.5
11	MP2B	Z	0	4.5
12	MP2B	Mx	024	4.5
13	MP2C	X	-32.801	.5
	MP2C	Z	0	.5
14		Mx	.016	.5
15	MP2C	X	-32.801	4.5
16	MP2C	Z	0	4.5
17	MP2C		.016	4.5
18	MP2C	Mx	-29.82	.5
19	MP2A	X	-29.62	.5
20	MP2A	Z	.015	.5
21	MP2A	Mx	-29.82	4.5
22	MP2A	X		4.5
23	MP2A	Z	0	4.5
24	MP2A	Mx	.015	
25	MP2B	X	-31.09	.5
26	MP2B	Z	0	.5
27	MP2B	Mx	000251	.5
28	MP2B	X	-31.09	4.5
29	MP2B	Z	0	4.5
30	MP2B	Mx	000251	4.5
31	MP2C	X	-32.801	.5
32	MP2C	Z	0	.5
33	MP2C	Mx	022	.5
34	MP2C	X	-32.801	4.5
35	MP2C	Z	0	4.5
36	MP2C	Mx	022	4.5
37	MP3A	X	-8.284	.5
	MP3A	Ž	0	.5
38		Mx	.004	.5
39	MP3A	X	-8.284	2.5
40	MP3A	Z	0	2.5
41	MP3A	Mx	.004	2.5
42	MP3A		-12.896	.5
43	MP3B	X	0	3-44 .5
44	MP3B		005	.5
45	MP3B	Mx		2.5
46	MP3B	X	-12.896	2.5
47	MP3B	Z	005	2.5
48	MP3B	Mx		
49	MP3C	X	-19.11	.5
50	MP3C	Z	0	.5
51	MP3C	Mx	002	.5
52	MP3C	X	-19.11	2.5
53	MP3C	Z	0	2.5
54	MP3C	Mx	002	2.5
55	MP2A	X	-11.402	.5
56	MP2A	Z	0	.5
57	MP2A	Mx	006	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 24: Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-11.402	.5
59	MP2B	Z	0	.5
60	MP2B	Mx	006	.5
61	MP2C	X	-11.402	.5
62	MP2C	Z	0	.5
63	MP2C	Mx	006	.5
64	MP1A	X	-9.506	.5
65	MP1A	Z	0	.5
66	MP1A	Mx	005	.5
67	MP1B	X	-9.506	.5
68	MP1B	Z	0	.5
69	MP1B	Mx	005	.5
70	MP1C	X	-9.506	.5
71	MP1C	Z	0	.5
72	MP1C	Mx	005	.5
73	OVP	X	-21.884	1.5
74	OVP	Z	0	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-34.511	.5
77	MP1A	Z	0	.5
78	MP1A	Mx	.017	.5
79	MP1A	X	-34.511	4.5
80	MP1A	Z	0	4.5
81	MP1A	Mx	.017	4.5
82	MP4A	X	-34.511	.5
83	MP4A	Z	0	.5
84	MP4A	Mx	.017	.5
85	MP4A	X	-34.511	4.5
86	MP4A	Z	0	4.5
87	MP4A	Mx	.017	4.5
88	MP1B	X	-28.061	.5
89	MP1B	Z	0	.5
90	MP1B	Mx	011	.5
91	MP1B	X	-28.061	4.5
92	MP1B	Z	0	4.5
93	MP1B	Mx	011	4.5
94	MP4B	X	-28.061	.5
95	MP4B	Z	0	.5
96	MP4B	Mx	011	.5
97	MP4B	X	-28.061	4.5
98	MP4B	Z	0	4.5
99	MP4B	Mx	011	4.5
00	MP1C	X	-11.905	.5
101	MP1C	Z	0	.5
102	MP1C	Mx	001	.5
03	MP1C	X	-11.905	4.5
104	MP1C	Z	0	4.5
.05	MP1C	Mx	001	4.5
06	MP4C	X	-11.905	.5
07	MP4C	Z	0	.5
08	MP4C	Mx	001	.5
09	MP4C	X	-11.905	4.5
10	MP4C	Z	0	4.5
11	MP4C	Mx	001	4.5
12	MP2A	X	-3.368	2.5
13	MP2A	Z	0	2.5
14	MP2A	Mx	002	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

Me	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-26.491	.5
2	MP2A	Z	-15.294	.5
3	MP2A	Mx	.022	.5
4	MP2A	X	-26.491	4.5
5	MP2A	Z	-15.294	4.5
6	MP2A	Mx	.022	4.5
7	MP2B	X	-28.175	.5
3	MP2B	Z	-16.267	.5
9	MP2B	Mx	023	.5
0	MP2B	X	-28.175	4.5
1	MP2B	Z	-16.267	4.5
2	MP2B	Mx	023	4.5
3	MP2C	X	-27.387	.5
4	MP2C	Z	-15.812	.5
5	MP2C	Mx	.004	.5
6	MP2C	X	-27.387	4.5
7	MP2C	Z	-15.812	4.5
8	MP2C	Mx	.004	4.5
9	MP2A	X	-26.491	.5
0	MP2A	Z	-15.294	.5
1	MP2A	Mx	.004	.5
2	MP2A	X	-26.491	4.5
23	MP2A	Z	-15.294	4.5
4	MP2A	Mx	.004	4.5
5	MP2B	X	-28.175	.5
26	MP2B	Z	-16.267	,5
7	MP2B	Mx	,012	.5
.8	MP2B	X	-28.175	4.5
29	MP2B	Z	-16.267	4.5
30	MP2B	Mx	.012	4.5
31	MP2C	X	-27.387	.5
32	MP2C	Z	-15.812	.5
33	MP2C	Mx	024	.5
34	MP2C	X	-27.387	4.5
35	MP2C	Z	-15.812	4.5
36	MP2C	Mx	024	4.5
37	MP3A	X	-9.591	.5
38	MP3A	Z	-5.537	.5
9	MP3A	Mx	.005	.5
0	MP3A	X	-9.591	2.5
1	MP3A	Z	-5.537	2.5
2	MP3A	Mx	.005	2.5
3	MP3B	X	-15.711	.5
4	MP3B	Z	-9.07	.5
5	MP3B	Mx	003	.5
6	MP3B	X	-15.711	2.5
7	MP3B	X	-9.07	2.5
8	MP3B	Mx	003	2.5
.9	MP3C	X	-12.847	.5
50	MP3C	Ž	-7.417	.5
51	MP3C	Mx	005	.5
52	MP3C	X	-12.847	2.5
2	MP3C	Z	-7.417	2.5
53	MP3C	Mx	005	2.5
4	MP2A	X	-10.955	.5
55	MP2A	Z	-6.325	.5
56 57	MP2A	Mx	005	.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

c	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-10.955	.5
59	MP2B	Z	-6.325	.5
60	MP2B	Mx	005	.5
61	MP2C	X	-10.955	.5
62	MP2C	Z	-6.325	.5
63	MP2C	Mx	005	.5
64	MP1A	X	-9.723	.5
65	MP1A	Z	-5.614	.5
66	MP1A	Mx	005	.5
67	MP1B	X	-9.723	.5
68	MP1B	Z	-5.614	.5
69	MP1B	Mx	005	.5
70	MP1C	X	-9.723	.5
71	MP1C	Z	-5.614	.5
72	MP1C	Mx	005	.5
73	OVP	X	-22.259	1.5
74	OVP	Z	-12.851	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-30.721	.5
77	MP1A	Z	-17.737	.5
78	MP1A	Mx	.015	.5
79	MP1A	X	-30.721	4.5
80	MP1A	Z	-17.737	4.5
81	MP1A	Mx	.015	4.5
82	MP4A	X	-30.721	.5
83	MP4A	Z	-17.737	.5
84	MP4A	Mx	.015	.5
85	MP4A	X	-30.721	4.5
86	MP4A	Z	-17.737	4.5
87	MP4A	Mx	015	4.5
88	MP1B	X	.015 -17.75	.5
89	MP1B	Z	-10.248	.5
90	MP1B	Mx	004	.5
91	MP1B	X	-17.75	4.5
92	MP1B	Z	-10.248	4.5
93	MP1B	Mx	004	4.5
94	MP4B	X	-17.75	.5
95	MP4B	Ž	-10.248	.5
96	MP4B	Mx	004	.5
97	MP4B	X	-17.75	4.5
98	MP4B	Ž	-10.248	4.5
99	MP4B	Mx	004	4.5
100	MP1C	X	-13.81	
101	MP1C	Z	-7.973	.5
102	MP1C	Mx	005	.5
103	MP1C	X	-13.81	4.5
104	MP1C	Z	-7.973	4.5
105	MP1C	Mx	005	4.5
106	MP4C	X	-13.81	
107	MP4C	Z	-7.973	.5 .5
108	MP4C	Mx	005	.5
109	MP4C			.5
110	MP4C	X	-13.81	4.5
111	MP4C		-7.973	4.5
112	MP2A	Mx	005	4.5
113		X	-4.123	2.5
113	MP2A MP2A	Z	-2.381	2.5
114	IVIPZA	Mx	002	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-16.063	.5
2	MP2A	Z	-27.821	.5
3	MP2A	Mx	.024	.5
4	MP2A	X	-16.063	4.5
5	MP2A	Z	-27.821	4.5
3	MP2A	Mx	.024	4.5
7	MP2B	X	-16.4	.5
8	MP2B	Z	-28.406	.5
	MP2B	Mx	016	.5
9	MP2B	X	-16.4	4.5
0	MP2B	Z	-28.406	4.5
1	MDOD	Mx	016	4.5
2	MP2B	X	-15.09	.5
3	MP2C	Z	-26.137	.5
4	MP2C		008	.5
5	MP2C	Mx	-15.09	4.5
6	MP2C	X	-26.137	4.5
7	MP2C	Z		4.5
8	MP2C	Mx	008 16.063	.5
9	MP2A	X	-16.063	.5
0	MP2A	Z	-27.821	.5
1	MP2A	Mx	008	4.5
2	MP2A	X	-16.063	
23	MP2A	Z	-27.821	4.5
4	MP2A	Mx	008	4.5
25	MP2B	X	-16.4	.5
6	MP2B	Z	-28.406	.5
27	MP2B	Mx	.022	.5
8	MP2B	X	-16.4	4.5
9	MP2B	Z	-28.406	4.5
30	MP2B	Mx	.022	4.5
31	MP2C	X	-15.09	.5
32	MP2C	Z	-26.137	.5
	MP2C	Mx	02	.5
33	MP2C	X	-15.09	4.5
34	MP2C	Z	-26.137	4.5
35	MP2C	Mx	02	4.5
36	MP2C	X	-8.328	.5
37	MP3A	Z	-14.425	.5
38	MP3A		.004	.5
39	MP3A	Mx X	-8.328	2.5
0	MP3A	Z	-0.326 -14.425	2.5
1	MP3A		.004	2.5
2	MP3A	Mx	-9.555	.5
.3	MP3B	X		.5
4	MP3B	Z	-16.55	.5
5	MP3B	Mx	.002	2.5
6	MP3B	X	<u>-9.555</u>	
7	MP3B		-16.55	2.5
8	MP3B	Mx	.002	2.5
9	MP3C	X	-4.795	.5
50	MP3C	Z	-8.305	.5
51	MP3C	Mx	005	.5
52	MP3C	X	-4.795	2.5
53	MP3C	Z	-8.305	2.5
54	MP3C	Mx	005	2.5
	MP2A	X	-7.572	.5
55	MP2A	Z	-13.115	.5
56	MP2A MP2A	Mx	004	.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-7.572	.5
59	MP2B	Z	-13.115	.5
60	MP2B	Mx	004	.5
61	MP2C	X	-7.572	.5
62	MP2C	Z	-13.115	.5
63	MP2C	Mx	004	.5
64	MP1A	X	-7.335	.5
65	MP1A	Z	-12.704	.5
66	MP1A	Mx	004	.5
67	MP1B	X	-7.335	.5
68	MP1B	Z	-12.704	.5
69	MP1B	Mx	004	.5
70	MP1C	X	-7.335	.5
71	MP1C	Z	-12.704	.5
72	MP1C	Mx	004	.5
73	OVP	X	-15.193	1.5
74	OVP	Z	-26.315	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-18.699	.5
77	MP1A	Ž	-32.388	.5
78	MP1A	Mx	.009	.5
79	MP1A	X	-18.699	4.5
80	MP1A	Z	-32.388	4.5
81	MP1A	Mx	.009	4.5
82	MP4A	X	-18.699	4.5
83	MP4A	Z	-32.388	.5
84	MP4A	Mx	.009	.5
85	MP4A	X	-18.699	
86	MP4A	Z	-32.388	4.5
87	MP4A	Mx		4.5
88	MP1B	X	.009	4.5
89	MP1B	Z	<u>-9.549</u>	.5
90	MP1B	Mx	<u>-16.539</u>	.5
91	MP1B	X	.002	.5
92	MP1B	Ž	<u>-9.549</u>	4.5
93	MP1B	Mx	-16.539	4.5
94	MP4B		.002	4.5
95	MP4B	X	-9.549 16.530	.5
96	MP4B	Mx Mx	-16.539	.5
97	MP4B		.002	.5
98	MP4B	X	-9.549 46.530	4.5
99	MP4B MP4B		-16.539	4.5
		Mx	.002	4.5
00 01	MP1C MP1C	X	-10.451	.5
02	MP1C MP1C		-18.102	.5
03		Mx	01	.5
04	MP1C	X	-10.451	4.5
05	MP1C	Z	-18.102	4.5
	MP1C	Mx	01	4.5
06	MP4C	X	-10.451	.5
07	MP4C	Z	-18.102	.5
08	MP4C	Mx	01	.5
09	MP4C	X	-10.451	4.5
10	MP4C	Z	-18.102	4.5
11	MP4C	Mx	01	4.5
12	MP2A	X	-3.774	2.5
13	MP2A	Z	-6.537	2.5
14	MP2A	Mx	002	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Me	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	.5
2	MP2A	Z	-3.362	.5
3	MP2A	Mx	.002	.5
4	MP2A	X	0	4.5
5	MP2A	Z	-3.362	4.5
6	MP2A	Mx	.002	4.5
7	MP2B	X	0	.5
8	MP2B	Z	-3.721	.5
9	MP2B	Mx	000467	.5
10	MP2B	X	0	4.5
11	MP2B	Z	-3.721	4.5
12	MP2B	Mx	000467	4.5
13	MP2C	X	0	.5
14	MP2C	Z	-4.206	.5
15	MP2C	Mx	002	4.5
16	MP2C	X	0	4.5
17	MP2C	Z	-4.206	4.5
18	MP2C	Mx	002	
19	MP2A	X	0	.5
20	MP2A	Z	-3.362	.5
21	MP2A	Mx	002	4.5
22	MP2A	X	0	4.5
23	MP2A	Z	-3.362	4.5
24	MP2A	Mx	002	.5
25	MP2B	X	0	.5
26	MP2B	Z	-3.721	.5
27	MP2B	Mx	.003	4.5
28	MP2B	X	0	
29	MP2B	Z	-3.721	4.5
30	MP2B	Mx	.003	4.5
31	MP2C	X	0	
32	MP2C	Z	-4.206	.5 .5
33	MP2C	Mx	002	4.5
34	MP2C	X	0	
35	MP2C	Z	-4.206	4.5
36	MP2C	Mx	002	4.5
37	MP3A	X	0	.5
38	MP3A	Z	-6.196	
39	MP3A	Mx	0	.5
40	MP3A	X	0	2.5
41	MP3A	Z	-6.196	2.5
42	MP3A	Mx	0	2.5
43	MP3B	X	0	.5
44	MP3B	Z	-4.638	.5
45	MP3B	Mx	.001	.5
46	MP3B	X	0	2.5
47	MP3B	Z	-4.638	2.5
48	MP3B	Mx	.001	2.5
19	MP3C	X	0	.5
50	MP3C	Z	-2.539	.5
51	MP3C	Mx	001	.5
52	MP3C	X	0	2.5
53	MP3C	Z	-2.539	2.5
54	MP3C	Mx	001	2.5
55	MP2A	X	0	.5
56	MP2A	Z	-4.087	.5
57	MP2A	Mx	0	.5

Colliers Engineering & Design

: 5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	0	.5
59	MP2B	Z	-4.087	.5
60	MP2B	Mx	0	.5
61	MP2C	X	0	.5
62	MP2C	Z	-4.087	.5
63	MP2C	Mx	0	.5
64	MP1A	X	0	.5
65	MP1A	Z	-4.087	.5
66	MP1A	Mx	0	.5
67	MP1B	X	0	.5
68	MP1B	Z	-4.087	.5
69	MP1B	Mx	0	.5
70	MP1C	X	0	,5
71	MP1C	Ž	-4.087	.5
72	MP1C	Mx	0	.5
73	OVP	X	0	1.5
74	OVP	Ž	-8.298	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	0	.5
77	MP1A	Z	-12.656	.5
78	MP1A	Mx	0	.5
79	MP1A	X	0	4.5
80	MP1A	Ž	-12.656	
81	MP1A	Mx	0	4.5
82	MP4A	X	0	4.5
83	MP4A	Z	-12.656	.5 .5
84	MP4A	Mx	-12.000	.5
85	MP4A	X	0	.5
86	MP4A	Z		4.5
87	MP4A	Mx	-12.656	4.5
88	MP1B	X	0	4.5
89	MP1B	Z		.5
90	MP1B		-8.05	.5
91	MP1B	Mx	.003	.5
92	MP1B	X	0	4.5
93	MP1B		-8.05	4.5
94	MP4B	Mx	.003	4.5
95	MP4B	X	0	.5
96	MP4B		-8.05	.5
97	MP4B	Mx	.003	.5_
98	MP4B	X	0	4.5
99	MP4B MP4B	Z	-8.05	4.5
100	MP1C	Mx	.003	4.5
		X	0	.5
101	MP1C	Z	-7.007	.5
	MP1C	Mx	003	.5
103	MP1C	X	0	4.5
104	MP1C	Z	-7.007	4.5
105	MP1C	Mx	003	4.5
106	MP4C	X	0	.5
107	MP4C	Z	-7.007	.5
108	MP4C	Mx	003	.5
109	MP4C	X	0	4.5
110	MP4C	Z	-7.007	4.5
111	MP4C	Mx	003	4.5
112	MP2A	X	0	2.5
113	MP2A	Z	-2.514	2.5
114	MP2A	Mx	0	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft] 1.79	Location[ft,%]
1	MP2A	X	-3.1	.5
2	MP2A		.000913	.5
3	MP2A	Mx	1.79	4.5
4	MP2A	X	-3.1	4.5
5	MP2A	Z		4.5
6	MP2A	Mx	.000913	
7	MP2B	X	2.065	.5
8	MP2B	Z	-3.577	.5
9	MP2B	Mx	.001	.5
0	MP2B	X	2.065	4.5
1	MP2B	Z	-3.577	4.5
2	MP2B	Mx	.001	4.5
3	MP2C	X	1.936	.5
4	MP2C	Z	-3,354	.5
5	MP2C	Mx	003	.5
6	MP2C	X	1.936	4.5
7	MP2C	Z	-3.354	4.5
8	MP2C	Mx	003	4.5
9	MP2A	X	1.79	.5
20	MP2A	Z	-3.1	,5
	MP2A	Mx	003	.5
21		X	1.79	4.5
2	MP2A	Z	-3.1	4.5
23	MP2A	Mx	003	4.5
4	MP2A	X	2.065	.5
5	MP2B	Z	-3.577	.5
6	MP2B		.003	.5
7	MP2B	Mx	2.065	4.5
28	MP2B	X		4.5
29	MP2B	Z	-3.577	4.5
30	MP2B	Mx	.003	.5
31	MP2C	X	1.936	.5
32	MP2C	Z	-3.354	.5
33	MP2C	Mx	-3.2e-5	.5
34	MP2C	X	1.936	4.5
35	MP2C	Z	-3.354	4.5
36	MP2C	Mx	-3.2e-5	4.5
37	MP3A	X	2.627	.5
8	MP3A	Z	-4.55	.5
9	MP3A	Mx	001	.5
0	MP3A	X	2.627	2.5
1	MP3A	Z	-4.55	2.5
2	MP3A	Mx	001	2.5
	MP3B	X	1.433	.5
3	MP3B	Z	-2.483	.5
	MP3B	Mx	.001	.5
15		X	1.433	2.5
16	MP3B	Z	-2.483	2.5
7	MP3B	Mx	.001	2.5
8	MP3B	X	1.992	.5
19	MP3C	Z	-3.45	.5
50	MP3C		002	.5
51	MP3C	Mx	1.992	2.5
52	MP3C	X		2.5
53	MP3C	Z	-3.45	2.5
54	MP3C	Mx	002	
55	MP2A	X	1.875	.5
56	MP2A	Z	-3.248	.5
57	MP2A	Mx	.000938	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:___

Member Point Loads (BLC 28: Antenna Wm (30 Deg)) (Continued)

1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	1.875	.5
59	MP2B	Z	-3.248	.5
60	MP2B	Mx	.000938	.5
61	MP2C	X	1.875	.5
62	MP2C	Z	-3.248	.5
63	MP2C	Mx	.000938	.5
64	MP1A	X	1.813	.5
65	MP1A	Z	-3.14	.5
36	MP1A	Mx	.000906	.5
67	MP1B	X	1.813	.5
88	MP1B	WOUL Z	-3.14	.5
69	MP1B	Mx	.000906	.5
70	MP1C	X	1.813	.5
71	MP1C	Z	-3.14	.5
2	MP1C	Mx	.000906	.5
3	OVP	X	3.765	1.5
4	OVP	Z	-6.521	1.5
5	OVP	Mx	0	1.5
6	MP1A	X	6.159	.5
7	MP1A	Z	-10.668	.5
8	MP1A	Mx	003	.5
9	MP1A	X	6.159	4.5
30	MP1A	Z	-10.668	4.5
1	MP1A	Mx	003	4.5
2	MP4A	X	6.159	.5
3	MP4A	Z	-10.668	.5
4	MP4A	Mx	003	.5
5	MP4A	X	6.159	4.5
36	MP4A	Z	-10.668	4.5
37	MP4A	Mx	003	4.5
8	MP1B	X	5.356	.5
9	MP1B	Z	-9.277	.5
0	MP1B	Mx	.005	.5
1	MP1B	X	5.356	4.5
2	MP1B	Z	-9.277	4.5
3	MP1B	Mx	.005	4.5
4	MP4B	X	5.356	.5
5	MP4B	Z	-9.277	.5
6	MP4B	Mx	.005	.5
7	MP4B	X	5.356	4.5
8	MP4B	Z	-9.277	4.5
9	MP4B	Mx	.005	4.5
00	MP1C		2.799	.5
01	MP1C	X	-4.848	.5
)2	MP1C	Mx	002	.5
)3	MP1C	X	2.799	4.5
)4	MP1C	Z	-4.848	4.5
)5	MP1C	Mx	002	4.5
)6	MP4C	X	2.799	.5
)7	MP4C	Z	-4.848	.5
8	MP4C	Mx	002	.5
9	MP4C	X	2.799	4.5
0	MP4C	Ž	-4.848	4.5
1	MP4C	Mx	002	4.5
2	MP2A	X	1.038	2.5
3	MP2A	Z	-1.798	2.5
14	MP2A	Mx	.000519	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

Membe	r Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP		X	3.476	.5
2 MP	2A		-2.007	.5
3 MP	2A	Mx	000567	.5
4 MP		X	3.476	4.5
5 MP		Z	-2.007	4.5
6 MP		Mx	000567	4.5
7 MP	2B	X	3.642	.5
B MP	2B	Z Z	-2.103	.5
9 MP		Mx	.002	.5
0 MP	2B	X	3.642	4.5
		Z	-2.103	4.5
		Mx	.002	4.5
2 MP		X	2.999	.5
3 MP	20	Z	-1.732	.5
4 MP			002	.5
5 MP	2C	Mx	2.999	4.5
6 MP	2C	X	1-1.732	4.5
7 MP		Z		4.5
8 MP		Mx	002	.5
9 MP	2A	X	3.476	
O MP	2A	Z	-2.007	.5
1 MP	2A	Mx	003	.5
	2A	X	3.476	4.5
	2A	Z	-2.007	4.5
	2A	Mx	003	4.5
	2B	X	3.642	.5
	2B	Z	-2.103	.5
	2B	Mx	.002	.5
	2B	X	3.642	4.5
		Z	-2.103	4.5
	2B	Mx	.002	4.5
	2B	X	2.999	.5
31 MP		Ž	-1.732	.5
MP			.001	.5
MP	2C	Mx	2.999	4.5
34 MP		X	-1.732	4.5
S5 MP		Z		4.5
B6 MP	2C	Mx	.001	
87 MF	23A	X	2.917	.5
38 MF	P3A	Z	-1.684	.5
	93A	Mx	001	.5
	23A	X	2.917	2.5
	23A	Z	-1.684	2.5
2 MF	23A	Mx	001	2.5
	93B	X	2.199	.5
	23B	Z	-1.27	.5
	3B	Mx	.001	.5
		X	2.199	2.5
	23B	Ž	-1.27	2.5
	23B		.001	2.5
	23B	Mx	4.984	.5
	23C	X		.5
SO MP	23C	Z	-2.878	.5
51 MP	3C	Mx	000984	0.5
	3C -	X	4.984	2.5
	23C	Z	-2.878	2.5
	23C	Mx	000984	2.5
	P2A	X	2.666	.5
	2A	Z	-1.539	.5
	P2A	Mx	.001	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

58	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
59	MP2B	X	2.666	.5
60	MP2B MP2B	Z	-1.539	.5
61	MP2C	Mx	.001	.5
62		X	2.666	.5
63	MP2C	Z	-1.539	.5
64	MP2C	Mx	.001	.5
	MP1A	X	2.34	.5
65	MP1A	Z	-1.351	.5
66	MP1A	Mx	.001	.5
67	MP1B	X	2.34	.5
68 69	MP1B	Z	-1.351	.5
70	MP1B	Mx	.001	.5
71	MP1C	X	2.34	.5
	MP1C	Z	-1.351	.5
72	MP1C	Mx	.001	.5
73	OVP	X	5.706	1.5
74	OVP	Z	-3.294	1.5
75	OVP	Mx	0	1.5
76 77	MP1A	X	10.082	.5
	MP1A	Z	-5.821	.5
78	MP1A	Mx	005	.5
79	MP1A	X	10.082	4.5
80	MP1A	Z	-5.821	4.5
81	MP1A	Mx	005	4.5
82	MP4A	X	10.082	.5
83	MP4A	Z	-5.821	.5
84	MP4A	Mx	005	.5
85	MP4A	X	10.082	4.5
86	MP4A	Z	-5.821	4.5
87	MP4A	Mx	005	4.5
88	MP1B	X	9.703	.5
89	MP1B	Z	-5.602	.5
90	- MP1B	Mx	.006	.5
91	MP1B	X	9.703	4.5
92	MP1B	Z	-5.602	4.5
93	MP1B	Mx	.006	4.5
94	MP4B	X	9.703	.5
95	MP4B	Z	-5.602	.5
96	MP4B	Mx	.006	.5
97	MP4B	X	9.703	4.5
98	MP4B	Z	-5.602	4.5
99	MP4B	Mx	.006	4.5
100	MP1C	X	3.352	.5
101	MP1C	Z	-1.935	.5
102	MP1C	Mx	000662	.5
103	MP1C	X	3.352	4.5
104	MP1C	Z	-1.935	4.5
105	MP1C	Mx	000662	4.5
106	MP4C	X	3.352	.5
107	MP4C	Z	-1.935	.5
108	MP4C	Mx	000662	.5
109	MP4C	X	3.352	4.5
110	MP4C	Z	-1.935	4.5
111	MP4C	Mx	000662	4.5
112	MP2A	X	1.039	2.5
113	MP2A	Z	6	2.5
114	MP2A	Mx	.00052	2.5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	4.232	.5
2	MP2A	Z	002	.5
3	MP2A	Mx	4.232	4.5
4	MP2A	X		4.5
5	MP2A	Z	002	4.5
6	MP2A	Mx		.5
7	MP2B	X	3.872	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	.003	4.5
10	MP2B	X	3.872	4.5
11	MP2B	Z	0	4.5
12	MP2B	Mx	.003	.5
13	MP2C	X	3.388	.5
14	MP2C	Z	0	.5
15	MP2C	Mx	002	4.5
16	MP2C	X	3.388	4.5
17	MP2C	Z	0	4.5
18	MP2C	Mx	002	.5
19	MP2A	X	4.232	.5
20	MP2A	Z	0	.5
21	MP2A	Mx	002	4.5
22	MP2A	X	4.232	4.5
23	MP2A	Z	0	
24	MP2A	Mx	002	4.5
25	MP2B	X	3.872	.5
26	MP2B	Z	0	.5
27	MP2B	Mx	3.1e-5	.5
28	MP2B	X	3.872	4.5
29	MP2B	Z	0	4.5
30	MP2B	Mx	3.1e-5	4.5
31	MP2C	X	3.388	.5
32	MP2C	Z	0	.5
33	MP2C	Mx	.002	.5
34	MP2C	X	3.388	4.5
35	MP2C	Z	0	4.5
36	MP2C	Mx	.002	4.5
37	MP3A	X	2.426	.5
38	MP3A	Z	0	.5
39	MP3A	Mx	001	.5
40	MP3A	X	2.426	2.5
41	MP3A	Z	0	2.5
12	MP3A	Mx	001	2.5
43	MP3B	X	3.984	.5
14	MP3B	Z	0	.5
45	MP3B	Mx	.002	.5
46	MP3B	X	3.984	2.5
17	MP3B	Z	0	2.5
48	MP3B	Mx	.002	2.5
19	MP3C	X	6.082	.5
50	MP3C	Z	0	.5
51	MP3C	Mx	.000528	.5
52	MP3C	X	6.082	2.5
53	MP3C	Z	0	2.5
54	MP3C	Mx	.000528	2.5
	MP2A	X	2.742	.5
55	MP2A	Z	0	.5
56 57	MP2A	Mx	.001	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:___

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

C	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	2.742	.5
59	MP2B	Z	0	.5
60	MP2B	Mx	.001	.5
61	MP2C	X	2.742	.5
62	MP2C	Z	0	.5
63	MP2C	Mx	.001	.5
64	MP1A	X	2.241	.5
65	MP1A	Z	0	.5
66	MP1A	Mx	.001	.5
67	MP1B	X	2.241	.5
68	MP1B	Z	0	.5
69	MP1B	Mx	.001	.5
70	MP1C	X	2.241	.5
71	MP1C	Z	0	.5
72	MP1C	Mx	.001	.5
73	OVP	X	6.415	1.5
74	OVP	Z	0	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	11.304	.5
77	MP1A	Z	0	.5
78	MP1A	Mx	006	.5
79	MP1A	X	11.304	4.5
80	MP1A	Z	0	4.5
81	MP1A	Mx	006	4.5
82	MP4A	X	11.304	.5
83	MP4A	Z	0	.5
84	MP4A	Mx	006	.5
85	MP4A	X	11.304	4.5
86	MP4A	Z	0	4.5
87	MP4A	Mx	006	4.5
88	MP1B	X	9.034	.5
89	MP1B	Z	0	.5
90	MP1B	Mx	.003	.5
91	MP1B	X	9.034	4.5
92	MP1B	Z	0	4.5
93	MP1B	Mx	.003	4.5
94	MP4B	X	9.034	.5
95	MP4B	Z	0	.5
96	MP4B	Mx	.003	.5
97	MP4B	X	9.034	4.5
98	MP4B	Z	0	4.5
99	MP4B	Mx	.003	4.5
100	MP1C	X	3.552	.5
101	MP1C	Z	0	.5
102	MP1C	Mx	.000308	.5
103	MP1C	X	3.552	4.5
104	MP1C	Z	0	4.5
105	MP1C	Mx	.000308	4.5
106	MP4C	X	3.552	.5
107	MP4C	Z	0	.5
108	MP4C	Mx	.000308	.5
109	MP4C	X	3.552	4.5
110	MP4C	Z	0	4.5
111	MP4C	Mx	.000308	4.5
112	MP2A	X	.762	2.5
113	MP2A	Z	0	2.5
114	MP2A	Mx	.000381	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

Me	mber Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	3.476	.5
2	MP2A	Z	2.007	.5
3	MP2A	Mx	003	.5
4	MP2A	X	3.476	4.5
5	MP2A	Z	2.007	4.5
6	MP2A	Mx	003	4.5
7	MP2B	X	2.999	.5
	MP2B	Z	1.732	.5
8	MPOD	Mx	.002	.5
9	MP2B	X	2.999	4.5
0	MP2B		1.732	4.5
1	MP2B	Z		4.5
2	MP2B	Mx	.002	
3	MP2C	X	3.223	.5
4	MP2C	Z	1.861	.5
5	MP2C	Mx	000467	.5
6	MP2C	X	3.223	4.5
7	MP2C	Z	1.861	4.5
8	MP2C	Mx	000467	4.5
9	MP2A	X	3.476	.5
20	MP2A	Z	2.007	.5
	MP2A	Mx	000567	.5
21	MP2A	X	3.476	4.5
22		Z	2.007	4.5
23	MP2A	Mx	000567	4.5
24	MP2A		2.999	.5
25	MP2B	X	1.732	.5
16	MP2B	Z	1.732	.5
27	MP2B	Mx	001	4.5
28	MP2B	X	2.999	
29	MP2B	Z	1.732	4.5
30	MP2B	Mx	001	4.5
31	MP2C	X	3.223	.5
32	MP2C	Z	1.861	.5
33	MP2C	Mx	.003	.5
34	MP2C	X	3.223	4.5
35	MP2C	Z	1.861	4.5
	MP2C	Mx	.003	4.5
36		X	2.917	.5
87	MP3A	Z	1.684	.5
8	MP3A		001	.5
39	MP3A	Mx	2.917	2.5
0	MP3A	X	1.684	2.5
1	MP3A	Z		2.5
2	MP3A	Mx	001	
3	MP3B	X	4.984	.5
4	MP3B	Z	2.878	.5
15	MP3B	Mx	.000984	.5
6	MP3B	X	4.984	2.5
7	MP3B	Z	2.878	2.5
.8	MP3B	Mx	.000984	2.5
	MP3C	X	4.017	.5
.9		Z	2.319	.5
0	MP3C	Mx	.001	.5
51	MP3C	IVIX	4.017	2.5
52	MP3C	X	2.319	2.5
3	MP3C	Z		
54	MP3C	Mx	.001	2.5
55	MP2A	X	2.666	.5
6	MP2A	Z	1.539	.5 (4)
57	MP2A	Mx	.001	.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	2.666	.5
59	MP2B	Z	1.539	.5
60	MP2B	Mx	.001	.5
61	MP2C	X	2.666	.5
62	MP2C		1.539	.5
63	MP2C	Mx	.001	.5
64	MP1A	X	2.34	.5
65	MP1A	Z	1.351	.5
66	MP1A	Mx	.001	.5
67	MP1B	X	2.34	.5
68	MP1B	Z	1.351	.5
69	MP1B	Mx	.001	.5
70	MP1C	X	2.34	.5
71	MP1C	Z	1.351	,5
72	MP1C	Mx	.001	.5
73	OVP	X	6.22	1.5
74	OVP	Z	3.591	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	10.082	.5
77	MP1A	Z	5.821	.5
78	MP1A	Mx	005	.5
79	MP1A	X	10.082	4.5
80	MP1A	Z	5.821	4.5
81	MP1A	Mx	005	4.5
82	MP4A	X	10.082	.5
83	MP4A	Z	5.821	.5
84	MP4A	Mx	005	.5
85	MP4A	X	10.082	4.5
86	MP4A	Z	5.821	4.5
87 88	MP4A	Mx	005	4.5
	MP1B	X	5.518	.5
89 90	MP1B	Z	3.186	.5
91	MP1B MP1B	Mx	.001	.5
92	MP1B	X	5.518	4.5
93	MP1B		3.186	4.5
94	MP4B	Mx	.001	4.5
95	MP4B	X	5.518 3.186	.5
96	MP4B	Mx	.001	.5
97	MP4B	X	5.518	4.5
98	MP4B	Ž	3.186	4.5
99	MP4B	Mx	.001	4.5
100	MP1C	X	4.295	.5
101	MP1C	Z	2.48	.5
102	MP1C	Mx	.002	.5
103	MP1C	X	4.295	4.5
104	MP1C	Z	2.48	4.5
105	MP1C	Mx	.002	4.5
106	MP4C	X	4.295	.5
107	MP4C	Z	2.48	.5
108	MP4C	Mx	.002	.5
109	MP4C	X	4.295	4.5
110	MP4C	Z Z	2.48	4.5
111	MP4C	Mx	.002	4.5
112	MP2A	X	1.039	2.5
113	MP2A	Z	.6	2.5
114	MP2A	Mx	.00052	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	1.79	.5
2	MP2A	Z	3.1	.5
3	MP2A	Mx	003	4.5
4	MP2A	X	1.79	4.5
5	MP2A	Z	3.1	
6	MP2A	Mx	003	4.5
7	MP2B	X	1.694	.5
8	MP2B	Z	2.934	4014 .5 11
9	MP2B	Mx	.002	.5 4.5
10	MP2B	X	1.694	4.5
1	MP2B	Z	2.934	4.5
2	MP2B	Mx	.002	4.5 .5
3	MP2C	X	2.065	.5
14	MP2C	Z	3.577	.5
5	MP2C	Mx	.001	4.5
6	MP2C	X	2.065	4.5
7	MP2C	Z	3.577	4.5
8	MP2C	Mx	.001	4,5
9	MP2A	X	1.79	.5
20	MP2A	Z	3.1	.5
21	MP2A	Mx	.000913	4.5
22	MP2A	X	1.79	4.5
23	MP2A	Z	3.1	
24	MP2A	Mx	.000913	4.5
25	MP2B	X	1.694	.5
26	MP2B	Z	2.934	
27	MP2B	Mx	002	.5
28	MP2B	X	1.694	4.5
29	MP2B	Z	2.934	4.5
30	MP2B	Mx	002	4.5
31	MP2C	X	2.065	.5
32	MP2C	Z	3.577	.5
33	MP2C	Mx	.003	.5
34	MP2C	X	2.065	4.5
35	MP2C	Z	3.577	4.5
36	MP2C	Mx	.003	4.5
37	MP3A	X	2.627	.5
38	MP3A	Z	4.55	.5
39	MP3A	Mx	001	.5
10	MP3A	X	2.627	2.5
11	MP3A	Z	4.55	2.5
12	MP3A	Mx	001	2.5
13	MP3B	X	3.041	.5
14	MP3B	Z	5.268	.5
15	MP3B	Mx	000528	.5
16	MP3B	X	3.041	2.5
17	MP3B	Z	5.268	2.5
18	MP3B	Mx	000528	2.5
19	MP3C	X	1.433	.5
50	MP3C	Z	2.483	.5
51	MP3C	Mx	.001	.5
52	MP3C	X	1.433	2.5
53	MP3C	Z	2.483	2.5
54	MP3C	Mx	.001	2.5
55	MP2A	X	1.875	.5
56	MP2A	Z	3.248	.5
57	MP2A	Mx	.000938	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

F0	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	1.875	.5
59	MP2B	Z	3.248	.5
60	MP2B	Mx	.000938	.5
61	MP2C	X	1.875	.5
62	MP2C	Z	3.248	.5
63	MP2C	Mx	.000938	.5
64	MP1A	X	1.813	.5
65	MP1A	Z	3.14	.5
66	MP1A	Mx	.000906	.5
67	MP1B	X	1.813	.5
68	MP1B	Z	3.14	.5
69	MP1B	Mx	.000906	.5
70	MP1C	X	1.813	.5
71	MP1C	Z	3.14	.5
72	MP1C	Mx	.000906	.5
73	OVP		4.062	1.5
74	OVP	X	7.035	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	6.159	.5
77	MP1A	Z	10.668	.5
78	MP1A	Mx	003	.5
79	MP1A	X	6.159	4.5
80	MP1A	Ž	10.668	4.5
81	MP1A	Mx	003	
82	MP4A	X	6.159	4.5
83	MP4A	Z		.5
84	MP4A		10.668	-5
85	MP4A	Mx	003	.5
86		X	6.159	4.5
	MP4A	Z	10.668	4.5
87	MP4A	Mx	003	4.5
88	MP1B	X	2.94	.5
89	MP1B	Z	5.092	.5
90	MP1B	Mx	-,00051	.5
91	MP1B	X	2.94	4.5
92	MP1B	Z	5.092	4.5
93	MP1B	Mx	00051	4.5
94	MP4B	X	2.94	.5
95	MP4B	Z	5.092	.5
96	MP4B	Mx	00051	.5
97	MP4B	X	2.94	4.5
98	MP4B	Z	5.092	4.5
99	MP4B	Mx	00051	4.5
00	MP1C	X	3.344	.5
01	MP1C	Z	5.791	.5
02	MP1C	Mx	.003	.5
03	MP1C	X	3.344	4.5
04	MP1C	Z	5.791	4.5
05	MP1C	Mx	.003	4.5
06	MP4C	X	3.344	.5
07	MP4C	Z	5.791	.5
08	MP4C	Mx	.003	.5
09	MP4C	X		
10	MP4C	Ž	3.344	4.5
11	MP4C		5.791	4.5
12	MP2A	Mx	.003	4.5
13	MP2A MP2A	X	1.038	2.5
14			1.798	2.5
141	MP2A	Mx	.000519	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

Membe	r Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MF	P2A	X	0	.5
2 MF	2A	Z	3.362	.5
	2A	Mx	002	.5
4 MF	2A	X	0	4.5
	2A	Z	3.362	4.5
	2A	Mx	002	4.5
	2B	X	0	.5
		Z	3.721	.5
	2B	Mx	.000467	.5
	2B		0	4.5
	2B	X	3.721	4.5
	² 2B	Z	.000467	4.5
	2B	Mx		.5
13 MP	2C	X	0	.5
4 MP		Z	4.206	.5
I5 MP	2C	Mx	.002	.5
	2C	X	0	4.5
7 MP	2C	Z	4.206	4.5
8 MP	2C	Mx	.002	4.5
	2A	X	0	.5
	2A	Z	3.362	.5
	2A	Mx	.002	.5
		X	0	4.5
	2A	Z	3.362	4.5
	2A	Mx	.002	4.5
	2A		0	.5
	2B	X	3.721	.5
	2B	Z		.5
27 MF	2B	Mx	003	4.5
28 MF	2B	X	0	
29 MF	2B	Z	3.721	4.5
	2B	Mx	003	4.5
MP MP	2C	X	0	.5
	2C	Z	4.206	.5
	2C	Mx	.002	.5
	2C	X	0	4.5
	2C	Z	4.206	4.5
	2C	Mx	.002	4.5
		X	0	.5
	23A	Z	6.196	.5
	23A		0	.5
	23A	Mx	0	2.5
	23A	X		2.5
	P3A	Z	6.196	2.5
	23A	Mx	0	
13 MF	23B	X	0	.5
	P3B	Z	4.638	.5
	3B	Mx	001	.5
	93B	X	0	2.5
	23B	Z	4.638	2.5
	23B	Mx	001	2.5
	3C	X	0	.5
		Z	2.539	.5
	23C	Mx	.001	.5
	23C	IVIX	0	2.5
	23C	X	2.539	2.5
	23C	Z		2.5
	93C	Mx	.001	
55 MF	P2A	X	0	.5
	P2A	Z	4.087	.5
	P2A	Mx	0	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction 0	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	0	.5
59	MP2B		4.087	.5
60	MP2B	Mx	0	.5
61	MP2C	X	0	.5
62	MP2C	Z	4.087	,5
63	MP2C	Mx	0	.5
64	MP1A	X	0	.5
65	MP1A	Z	4.087	.5
66	MP1A	Mx	0	.5
67	MP1B	X	0	.5
68	MP1B	Z	4.087	.5
69	MP1B	Mx	0	.5
70	MP1C	X	0	.5
71	MP1C	Z	4.087	.5
72	MP1C	Mx	0	.5
73	OVP	X	0	1.5
74	OVP	Z	8.298	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	0	.5
77	MP1A	Z	12.656	.5
78	MP1A	Mx	0	.5
79	MP1A	X	0	4.5
80	MP1A	Z	12.656	4.5
81	MP1A	Mx	0	4.5
82	MP4A	X	Ō	.5
83	MP4A	Z	12.656	.5
84	MP4A	Mx	0	.5
85	MP4A	X	0	4.5
86	MP4A	Z	12.656	4.5
87	MP4A	Mx	0	4.5
88	MP1B	X	ő	.5
89	MP1B	Ž	8.05	.5
90	MP1B	Mx	003	.5
91	MP1B	X	0	4.5
92	MP1B	Z	8.05	4.5
93	MP1B	Mx	003	4.5
94	MP4B	X	0	.5
95	MP4B	Ž	8.05	.5
96	MP4B	Mx	003	.5
97	MP4B	X	0	4.5
98	MP4B	Z	8.05	4.5
99	MP4B	Mx	003	4.5
100	MP1C	X	003	
101	MP1C	Z	7.007	.5 .5
102	MP1C	Mx	.003	- 5
103	MP1C			.5
04	MP1C	X	0	4.5
105	MP1C MP1C		7.007	4.5
106	MP4C	Mx	.003	4.5
07	MP4C	X	0	.5
108	MP4C	Z	7.007	.5
09		Mx	.003	.5
	MP4C	X	0	4.5
10	MP4C	Z	7.007	4.5
111	MP4C	Mx	.003	4.5
112	MP2A	X	0	2.5
113	MP2A	Z	2.514	2.5
114	MP2A	Mx	0	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

M	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-1.79	.5
2	MP2A	Z	3.1	
3	MP2A	Mx	000913	.5
4	MP2A	X	-1.79	4.5
5	MP2A	Z	3.1	4.5
6	MP2A	Mx	000913	4.5
7	MP2B	X	-2.065	.5
8	MP2B	Z	3.577	.5
	MP2B	Mx	001	.5
9	MP2B	X	-2.065	4.5
10	MP2B	Z	3.577	4.5
11	MP2B	Mx	001	4.5
12		X	-1.936	.5
13	MP2C	Z	3.354	.5
14	MP2C		.003	.5
15	MP2C	Mx	-1.936	4.5
16	MP2C	X	3.354	4.5
17	MP2C	Z		4.5
18	MP2C	Mx	.003 -1.79	.5
19	MP2A	X		.5
20	MP2A	Z	3.1	.5
21	MP2A	Mx	.003	4.5
22	MP2A	X	-1.79	
23	MP2A	Z	3.1	4.5
24	MP2A	Mx	.003	4.5
25	MP2B	X	-2.065	.5
26	MP2B	Z	3.577	.5
27	MP2B	Mx	003	.5
28	MP2B	X	-2.065	4.5
29	MP2B	Z	3.577	4.5
30	MP2B	Mx	003	4.5
31	MP2C	X	-1.936	.5
32	MP2C	Z	3.354	.5
33	MP2C	Mx	3.2e-5	.5
34	MP2C	X	-1.936	4.5
	MP2C	Z	3.354	4.5
35		Mx	3.2e-5	4.5
36	MP2C	X	-2.627	.5
37	MP3A	Z	4.55	.5
38	MP3A	Mx	.001	.5
39	MP3A	X	-2.627	2.5
40	MP3A	Z	4.55	2.5
41	MP3A		.001	2.5
42	MP3A	Mx	-1.433	.5
43	MP3B	X	2.483	.5
44	MP3B	Z		.5
45	MP3B	Mx	001	2.5
46	MP3B	X	-1.433	
47	MP3B	Z	2.483	2.5
48	MP3B	Mx	001	2.5
49	MP3C	X	-1.992	.5
50	MP3C	Z	3.45	.5
51	MP3C	Mx	.002	.5
52	MP3C	X	-1.992	2.5
53	MP3C	Z	3.45	2.5
54	MP3C	Mx	.002	2.5
55	MP2A	X	-1.875	.5
56	MP2A	Ž	3.248	.5
57	MP2A	Mx	000938	.5

Colliers Engineering & Design

: 5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

F F	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-1.875	.5
59	MP2B	Z	3.248	.5
60	MP2B	Mx	000938	.5
61	MP2C	X	-1.875	.5
62	MP2C	Z	3.248	.5
63	MP2C	Mx	000938	.5
64	MP1A	X	-1.813	.5
65	MP1A	Z	3.14	.5
66	MP1A	Mx	000906	.5
67	MP1B	X	-1.813	.5
68	MP1B	Z	3.14	.5
69	MP1B	Mx	000906	.5
70	MP1C	X	-1.813	.5
71	MP1C	Z	3.14	.5
72	MP1C	Mx	000906	.5
73	OVP	X	-3.765	1.5
74	OVP	Z	6.521	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-6.159	.5
77	MP1A	Z	10.668	.5
78	MP1A	Mx	.003	.5
79	MP1A	X	-6.159	4.5
80	MP1A	Ž	10.668	4.5
81	MP1A	Mx	.003	4.5
82	MP4A	X	-6.159	.5
83	MP4A	Z	10.668	.5
84	MP4A	Mx	.003	.5
85	MP4A	X	-6.159	4.5
86	MP4A	Z	10.668	
87	MP4A	Mx	.003	4.5
88	MP1B	X	-5.356	4.5
89	MP1B	Ž		.5
90	MP1B	Mx	9.277	.5
91	MP1B	X	005	.5
92	MP1B	Z	-5.356	4.5
93	MP1B	Mx	9.277	4.5
94	MP4B	X	005	4.5
95	MP4B	Z	-5.356	.5
96	MP4B		9.277	.5
97	MP4B	Mx	005	.5
98		X	-5.356	4.5
99	MP4B	Z	9.277	4.5
100	MP4B	Mx	005	4.5
	MP1C	X	-2.799	.5
101	MP1C	Z	4.848	.5
102	MP1C	Mx	.002	.5
103	MP1C	X	-2.799	4.5
104	MP1C	Z	4.848	4.5
105	MP1C	Mx	.002	4.5
106	MP4C	X	-2.799	.5
107	MP4C	Z	4.848	.5
108	MP4C	Mx	.002	.5
109	MP4C	X	-2.799	4.5
110	MP4C	Z	4.848	4.5
111	MP4C	Mx	.002	4.5
112	MP2A	X	-1.038	2.5
113	MP2A	Z	1.798	2.5
114	MP2A	Mx	000519	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-3.476 2.007	.5
2	MP2A	Z	.000567	.5
3	MP2A	Mx	-3.476	4.5
4	MP2A	X	2.007	4.5
5	MP2A	Z	.000567	4.5
6	MP2A	Mx		.5
7	MP2B	X	-3.642	.5
8	MP2B	Z	2.103	.5
9	MP2B	Mx	002	4.5
10	MP2B	X	-3.642 2.103	4.5
11	MP2B	Z		4.5
12	MP2B	Mx	002	.5
13	MP2C	X	-2.999	.5
14	MP2C	Z	1.732	.5
15	MP2C	Mx	.002	4.5
16	MP2C	X	-2.999	4.5
17	MP2C	Z	1.732	
18	MP2C	Mx	.002	4.5
19	MP2A	X	-3.476	.5
20	MP2A	Z	2.007	.5
21	MP2A	Mx	.003	4.5
22	MP2A	X	-3.476	
23	MP2A	Z	2.007	4.5
24	MP2A	Mx	.003	4.5
25	MP2B	X	-3.642	.5
26	MP2B	Z	2.103	.5
27	MP2B	Mx	002	.5
28	MP2B	X	-3.642	4.5
29	MP2B	Z	2.103	4.5
30	MP2B	Mx	002	4.5
31	MP2C	X	-2.999	.5
32	MP2C	Z	1.732	.5
33	MP2C	Mx	001	.5
34	MP2C	X	-2.999	4.5
35	MP2C	Z	1.732	4.5
36	MP2C	Mx	001	4.5
37	MP3A	X	-2.917	.5
38	MP3A	Z	1.684	.5
39	MP3A	Mx	.001	.5
40	MP3A	X	-2.917	2.5
41	MP3A	Z	1.684	2.5
42	MP3A	Mx	.001	2.5
43	MP3B	X	-2.199	.5
44	MP3B	Z	1.27	03144 .5
45	MP3B	Mx	001	.5
46	MP3B	X	-2.199	2.5
47	MP3B	Z	1.27	2.5
48	MP3B	Mx	001	2.5
49	MP3C	X	-4.984	.5
50	MP3C	Z	2.878	.5
51	MP3C	Mx	.000984	.5
52	MP3C	X	-4.984	2.5
53	MP3C	Z	2.878	2.5
	MP3C	Mx	.000984	2.5
54	MP2A	X	-2.666	.5
55	MP2A	Z	1.539	.5
56	MP2A	Mx	001	.5

: Colliers Engineering & Design

: 5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:___

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

[E0	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-2.666	.5
59	MP2B	Z	1.539	.5
60	MP2B	Mx	001	.5
61	MP2C	X	-2.666	.5
62	MP2C	Z	1.539	.5
63	MP2C	Mx	001	.5
64	MP1A	X	-2.34	.5
65	MP1A	Z	1.351	.5
66	MP1A	Mx	001	.5
67	MP1B	X	-2.34	.5
68	MP1B	Z	1.351	.5
69	MP1B	Mx	001	.5
70	MP1C	X	-2.34	.5
71	MP1C	Z	1.351	.5
72	MP1C	Mx	001	.5
73	OVP	X	-5.706	1.5
74	OVP	Z	3.294	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-10.082	.5
77	MP1A	Z	5.821	.5
78	MP1A	Mx	.005	.5
79	MP1A	X	-10.082	4.5
80	MP1A	Z	5.821	4.5
81	MP1A	Mx	.005	4.5
82	MP4A	X	-10.082	.5
83	MP4A	Z	5.821	.5
84	MP4A	Mx	.005	.5
85	MP4A	X	-10.082	4.5
86	MP4A	Z	5.821	4.5
87	MP4A	Mx	.005	4.5
88	MP1B	X	-9.703	.5
89	MP1B	Ž	5.602	.5
90	MP1B	Mx	006	.5
91	MP1B	X	-9.703	4.5
92	MP1B	Z	5.602	4.5
93	MP1B	Mx	006	4.5
94	MP4B	X	-9.703	.5
95	MP4B	Ž	5.602	.5
96	MP4B	Mx	006	.5
97	MP4B	X	-9.703	4.5
98	MP4B	Z	5.602	4.5
99	MP4B	Mx	006	
100	MP1C	X	-3.352	4.5
101	MP1C	Z	1.935	.5
102	MP1C	Mx	.000662	.5
103	MP1C	X		.5
104	MP1C	Z	-3.352	4.5
105	MP1C		1.935	4.5
106	MP4C	Mx	.000662	4.5
107	MP4C	X	-3.352	.5
108		Z	1.935	.5
	MP4C	Mx	.000662	.5
109	MP4C	X	-3.352	4.5
110	MP4C	Z	1.935	4.5
111	MP4C	Mx	.000662	4.5
112	MP2A	X	-1.039	2.5
113	MP2A	Z	.6	2.5
114	MP2A	Mx	00052	2.5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP2A	X	-4.232	.5
2 MP2A		.002	.5
3 MP2A	Mx	-4.232	4.5
4 MP2A	X	<u>-4.232</u> 0	4.5
5 MP2A	Z	.002	4.5
6 MP2A	Mx	-3.872	.5
7 MP2B	X	-3.872	.5
8 MP2B	Z	003	.5
9 MP2B	Mx	-3.872	4.5
10 MP2B	X	-3.672	4.5
11 MP2B	Z	003	4.5
12 MP2B	Mx	-3.388	.5
13 MP2C	X	-3.360 0	.5
14 MP2C	Z	.002	.5
15 MP2C	Mx	-3.388	4.5
16 MP2C	X	-3.386	4.5
17 MP2C		.002	4.5
18 MP2C	Mx X	-4.232	.5
19 MP2A	Z	0	.5
20 MP2A		.002	.5
21 MP2A	Mx X	-4.232	4.5
22 MP2A	Z	0	4.5
23 MP2A		.002	4.5
24 MP2A	Mx	-3.872	.5
25 MP2B	X	-3.672	.5 1.33
26 MP2B		-3.1e-5	.5
27 MP2B	Mx	-3.872	4.5
28 MP2B	X	-5.672	4.5
29 MP2B		-3.1e-5	4.5
30 MP2B	Mx	-3.388	.5
31 MP2C	X	-5.586	.5
32 MP2C	Z	002	.5
33 MP2C	Mx	-3.388	4.5
34 MP2C	X	-3.386	4.5
35 MP2C	Z	002	4.5
36 MP2C	Mx	-2.426	.5
37 MP3A	X	0	.5
38 MP3A		.001	.5
39 MP3A	Mx	-2.426	2.5
40 MP3A	X	0	2.5
41 MP3A		.001	2.5
42 MP3A	Mx	-3.984	
43 MP3B	X	-3.984	.5
44 MP3B		002	.5
45 MP3B	Mx	-3.984	2.5
46 MP3B	X	-3.984	2.5
47 MP3B	Z	002	2.5
48 MP3B	Mx		.5
49 MP3C	X	-6.082	.5
50 MP3C	Z	0	.5
51 MP3C	Mx	000528	2.5
52 MP3C	X	-6.082	
53 MP3C	Z	0	2.5
54 MP3C	Mx	000528	2.5
55 MP2A	X	-2.742	.5 .5
56 MP2A	Z	0	.5
57 MP2A	Mx	001	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-2.742	.5
59	MP2B	Z	0	.5
60	MP2B	Mx	001	.5
61	MP2C	X	-2.742	.5
62	MP2C	Z	0	.5
63	MP2C	Mx	001	.5
64	MP1A	X	-2.241	.5
65	MP1A	Z	0	.5
66	MP1A	Mx	001	.5
67	MP1B	X	-2.241	.5
68	MP1B	U Z	0	.5
69	MP1B	Mx	001	.5
70	MP1C	X	-2.241	.5
71	MP1C	Z	0	.5
72	MP1C	Mx	001	.5
73	OVP	X	-6.415	1.5
74	OVP	Ž	0	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-11.304	.5
77	MP1A	Ž	0	.5
78	MP1A	Mx	.006	.5
79	MP1A	X	-11.304	4.5
80	MP1A	Z	0	4.5
81	MP1A	Mx	.006	4.5
82	MP4A	X	-11.304	.5
83	MP4A	Z	0	.5
84	MP4A	Mx	.006	.5
85	MP4A	X	-11.304	4.5
86	MP4A	Z	0	4.5
87	MP4A	Mx	.006	4.5
88	MP1B	X	-9.034	.5
89	MP1B	Z	- 9.034 0	.5
90	MP1B	Mx	003	.5
91	MP1B	X	-9.034	4.5
92	MP1B	Ž	-9.034	4.5
93	MP1B	Mx	003	4.5
94	MP4B	X	-9.034	.5
95	MP4B	Z	- 9.034 0	.5
96	MP4B			.5
97	MP4B	Mx X	003	.5
98	MP4B	Z	-9.034	4.5
99			0	4.5
100	MP4B MP1C	Mx	003	4.5
		X	-3.552	.5
01	MP1C	Z	0	.5
102	MP1C	Mx	000308	.5
103	MP1C	X	-3.552	4.5
104	MP1C	Z	0	4.5
05	MP1C	Mx	000308	4.5
106	MP4C	X	-3.552	.5
07	MP4C	Z	0	.5
801	MP4C	Mx	000308	.5
109	MP4C	X	-3.552	4.5
10	MP4C		0	4.5
11	MP4C	Mx	-,000308	4.5
12	MP2A	X	762	2.5
113	MP2A	Z	0	2.5
114	MP2A	Mx	000381	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

Me	mber Label	: Antenna Wm (300	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-3.476	.5
2	MP2A	Z	-2.007	.5
	MP2A	Mx	.003	.5
	MP2A	X	-3.476	4.5
5	MP2A	Z	-2.007	4.5
	MP2A	Mx	.003	4.5
	MP2B	X	-2.999	.5
8	MP2B	Z	-1.732	.5
	MP2B	Mx	002	,5
10	MP2B	X	-2.999	4.5
	MP2B	Z	-1.732	4.5
12	MP2B	Mx	002	4.5
	MP2C	X	-3.223	.5
	MP2C	Z	-1.861	.5
15	MP2C	Mx	.000467	.5
16	MP2C	X	-3.223	4.5
	MP2C	Z	-1.861	4.5
	MP2C	Mx	.000467	4.5
19	MP2A	X	-3.476	.5
	MP2A	Z	-2.007	.5
21	MP2A	Mx	.000567	.5
22	MP2A	X	-3.476	4.5
23	MP2A	Z	-2.007	4.5
24	MP2A	Mx	.000567	4.5
25	MP2B	X	-2.999	.5
26	MP2B	Z	-1.732	.5
	MP2B	Mx	.001	.5
28	MP2B	X	-2.999	4.5
29	MP2B	Z	-1.732	4.5
30	MP2B	Mx	.001	4.5
31	MP2C	X	-3.223	.5
32	MP2C	Z	-1.861	.5
33	MP2C	Mx	003	.5
34	MP2C	X	-3.223	4.5
35	MP2C	Z	-1.861	4.5
36	MP2C	Mx	003	4.5
37	MP3A	X	-2.917	.5
38	MP3A	Z	-1.684	.5
39	MP3A	Mx	.001	.5
40	MP3A	X	-2.917	2.5
41	MP3A	Z	-1.684	2.5
42	MP3A	Mx	.001	2.5
43	MP3B	X	-4.984	.5
44	MP3B	Z	-2.878	.5
45	MP3B	Mx	000984	.5
46	MP3B	X	-4.984	2.5
47	MP3B	Z	-2.878	2.5
48	MP3B	Mx	000984	2.5
49	MP3C	X	-4.017	.5
50	MP3C	Z	-2.319	.5
	MP3C	Mx	001	.5
52	MP3C	X	-4.017	2.5
53	MP3C	Z	-2.319	2.5
54	MP3C	Mx	001	2.5
55	MP2A	X	-2.666	.5
56	MP2A	Z	-1.539	.5
57	MP2A	Mx	001	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Point Loads (BLC 37: Antenna Wm (300 Deg)) (Continued)

-	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-2.666	.5
59	MP2B	Z	-1.539	.5
60	MP2B	Mx	001	.5
61	MP2C	X	-2.666	.5
62	MP2C	Z	-1.539	.5
63	MP2C	Mx	001	.5
64	MP1A	X	-2.34	.5
65	MP1A	Z	-1.351	.5
66	MP1A	Mx	001	.5
67	MP1B	X	-2.34	.5
68	MP1B	Z	-1.351	.5
69	MP1B	Mx	001	.5
70	MP1C	X	-2.34	.5
71	MP1C	Z	-1.351	5
72	MP1C	Mx	001	.5
73	OVP	X	-6.22	1.5
74	OVP	Z	-3.591	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-10.082	.5
77	MP1A	Z	-5.821	.5
78	MP1A	Mx	.005	.5
79	MP1A	X	-10.082	4.5
80	MP1A	Z	-5.821	4.5
81	MP1A	Mx	.005	4.5
82	MP4A	X	-10.082	.5
83	MP4A	Z	-5.821	.5
84	MP4A	Mx	.005	.5
85	MP4A	X	-10.082	4.5
86	MP4A	Z	-5.821	4.5
87	MP4A	Mx	.005	4.5
88	MP1B	X	-5.518	.5
89	MP1B	Z	-3.186	.5
90	MP1B	Mx	001	.5
91	MP1B	X	-5.518	4.5
92	MP1B	Z	-3.186	4.5
93	MP1B	Mx	001	4.5
94	MP4B	X	-5.518	.5
95	MP4B	Z	-3.186	.5
96	MP4B	Mx	001	.5
97	MP4B	X	-5.518	4.5
98	MP4B	Z	-3.186	4.5
99	MP4B	Mx	001	4.5
100	MP1C	X	-4.295	.5
101	MP1C	Z	-2.48	.5
102	MP1C	Mx	002	.5
103	MP1C	X	-4.295	4.5
104	MP1C	Z	-2.48	4.5
105	MP1C	Mx	002	4.5
106	MP4C	X	-4.295	.5
107	MP4C	Z	-2.48	.5
108	MP4C	Mx	002	.5
109	MP4C	X	-4.295	4.5
110	MP4C	Z	-2.48	4.5
111	MP4C	Mx	002	4.5
112	MP2A	X	-1.039	2.5
113	MP2A	Z	6	2.5
114	MP2A	Mx	00052	2.5

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

Memb	er Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 M	P2A	X	-1.79	.5
2 MI	P2A	Z	-3.1	.5
3 MI	P2A	Mx	.003	.5
4 MI	P2A	X	-1.79	4.5
5 MI	P2A	Z	-3.1	4.5
	P2A	Mx	.003	4.5
	P2B	X	-1.694	.5
	P2B	Z	-2.934	.5
	P2B	Mx	002	.5
	P2B	X	-1.694	4.5
11 MI	P2B	Z	-2.934	4.5
	2B	Mx	002	4.5
	P2C	X	-2.065	.5
	P2C	Ž	-3.577	.5
	P2C	Mx	001	.5
		IVIX	-2.065	4.5
	P2C	Z	-3.577	4.5
	P2C		001	4.5
	P2C	Mx	-1.79	.5
	P2A	X	-3.1	.5
	P2A		000913	.5
	P2A	Mx	-1.79	4.5
	P2A	X	-1.79 -3.1	4.5
	P2A			4.5
	P2A	Mx	000913	.5
	P2B	X	-1.694	5 F
	P2B	Z	-2.934	.5
27 M	P2B	Mx	.002	.5
28 M	P2B	X	-1.694	4.5
29 M	P2B	Z	-2.934	4.5
	P2B	Mx	.002	4.5
31 MI	P2C	X	-2.065	.5
	P2C	Z	-3.577	.5
	P2C	Mx	003	.5
34 MI	P2C	X	-2.065	4.5
	P2C	Z	-3.577	4.5
36 MI	P2C	Mx	003	4.5
	P3A	X	-2.627	.5
	P3A	Ž	-4.55	.5
		Mx	.001	.5
	P3A	X	-2.627	2.5
	P3A	Z	-4.55	2.5
	P3A	Mx	.001	2.5
	P3A	X	-3.041	.5
	P3B	Z	-5.268	.5
	P3B		.000528	.5
	P3B	Mx	-3.041	2.5
	P3B	X	-5.268	2.5
	P3B	Z	-5.266 .000528	2.5
	P3B	Mx		.5
	P3C	X	-1.433	.5
	P3C	Z	-2.483	.0
51 M	P3C	Mx	001	.5
52 M	P3C	X	-1.433	2.5
	P3C	Z	-2.483	2.5
	P3C	Mx	001	2.5
	P2A	X	-1.875	.5
56 M	P2A	Z	-3.248	.5
	P2A	Mx	000938	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-1.875	.5
59	MP2B	Z	-3.248	.5
60	MP2B	Mx	000938	.5
61	MP2C	X	-1.875	.5
62	MP2C	Z	-3.248	.5
63	MP2C	Mx	000938	.5
64	MP1A	X	-1.813	.5
65	MP1A	Z	-3.14	.5
66	MP1A	Mx	000906	.5
67	MP1B	X	-1.813	.5
68	MP1B	Z	-3.14	.5
69	MP1B	Mx	000906	.5
70	MP1C	X	-1.813	.5
71	MP1C	Z	-3.14	.5
72	MP1C	Mx	000906	.5
73	OVP	X	-4.062	1.5
74	OVP	Z	-7.035	1.5
75	OVP	Mx	0	1.5
76	MP1A	X	-6.159	.5
77	MP1A	Z	-10.668	.5
78	MP1A	Mx	.003	.5
79	MP1A	X	-6.159	4.5
80	MP1A	Z	-10,668	4.5
81	MP1A	Mx	.003	4.5
82	MP4A	X	-6.159	.5
83	MP4A	Z	-10.668	.5
84	MP4A	Mx	.003	.5
85	MP4A	X	-6.159	4.5
86	MP4A	Z	-10.668	4.5
87	MP4A	Mx	.003	4.5
88	MP1B	X	-2.94	.5
89	MP1B	Z	-5.092	.5
90	MP1B	Mx	.00051	.5
91	MP1B	X	-2.94	4.5
92	MP1B	Z	-5.092	4.5
93	MP1B	Mx	.00051	4.5
94	MP4B	X	-2.94	.5
95	MP4B	Z	-5.092	.5
96	MP4B	Mx	.00051	.5
97	MP4B	X	-2.94	4.5
98	MP4B	Z	-5.092	4.5
99	MP4B	Mx	.00051	4.5
100	MP1C	X	-3.344	.5
101	MP1C	Z	-5.791	.5
102	MP1C	Mx	003	.5
103	MP1C	X	-3.344	4.5
104	MP1C	Turkin Z	-5.791	4.5
105	MP1C	Mx	003	4.5
106	MP4C	X	-3.344	,5
107	MP4C	Z	-5.791	.5
108	MP4C	Mx	003	.5
109	MP4C	X	-3.344	4.5
110	MP4C	Z	-5.791	4.5
111	MP4C	Mx	003	4.5
112	MP2A	X	-1.038	2.5
113	MP2A	Ž	-1.798	
114	MP2A	Mx	000519	2.5

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

	Point Loads (BLC 77 Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	LIVE1	Y	-500	0
mber	r Point Loads (BLC 78			1 15 15 9/1
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	LIVE2	Υ	-500	
mber	Point Loads (BLC 79		2 80m (F Arc	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%] %50
	FACE	Y	-250	7630
	r Point Loads (BLC 80 Member Label FACE	Direction Y	Magnitude[lb.k-ft] -250	Location[ft,%] %100
mber	r Point Loads (BLC 81		SOUTH OF THE SECOND	1 (1 12 0/1
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	MP2A	Y	-1.663 000832	.5
	MP2A	My	00097	.5
	MP2A	Mz	-1.663	4.5
	MP2A	Y	000832	4.5
	MP2A	My	000832	4.5
	MP2A	Mz Y	-1.663	.5
_	MP2B	Mv	.001	.5
	MP2B	Mz	.000209	.5
	MP2B MP2B	Y	-1.663	4.5
	MP2B	Mv	.001	4.5
	MP2B	Mz	.000209	4.5
	MP2C	Y	-1.663	.5
	MP2C	Mv	000811	.5
5	MP2C	Mz	.000988	.5
5	MP2C	Y	-1.663	4.5
7	MP2C	My	000811	4.5
3	MP2C	Mz	.000988	4.5
3	MP2A	Y	-1.663	.5
0	MP2A	Mv	000832	.5
1	MP2A	Mz	.00097	.5
	MP2A	Y	-1.663	4.5
			000000	1 15
3	MP2A	Mv	000832	4.5 4.5

23	MP2A	IVIV	-,000002	
24	MP2A	Mz	.00097	4.5
25	MP2B	Y	-1.663	,5
26	MP2B	Mv	1.3e-5	.5
27	MP2B	Mz	001	.5
28	MP2B	Y	-1.663	4.5
29	MP2B	My	1.3e-5	4.5
30	MP2B	Mz	001	4.5
31	MP2C	Y	-1.663	.5
	MP2C	Mv	.001	.5
32	MP2C	Mz	.000651	.5
33	MP2C	Y	-1.663	4.5
34	MP2C	Mv	.001	4.5
35	MP2C	Mz	.000651	4.5
36	MP3A	Y	-2.1	.5
37	MP3A	Mv	001	.5
38		Mz	0	.5
39	MP3A		0\RISA\5000382994-VZW_MT_	LO_H.r3d] Page 86

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

40	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP3A	TOUR Y	-2.1	2.5
41	MP3A	My	001	2.5
42	MP3A	Mz	0	2.5
43	MP3B	Y	-2.1	.5
44	MP3B	My	.000804	.5
45	MP3B	Mz	000675	.5
46	MP3B	Y	-2.1	2.5
47	MP3B	- My	.000804	2.5
48	MP3B	Mz	000675	2.5
49	MP3C	Y	-2.1	.5
50	MP3C	My	.000182	.5
51	MP3C	Mz	.001	.5
52	MP3C	Y	-2.1	2.5
53	MP3C	My	.000182	2.5
54	MP3C	Mz	.001	2.5
55	MP2A	Y	-4.069	.5
56	MP2A	My	.002	.5
57	MP2A	Mz	0	.5
58	MP2B	Y	-4.069	.5
59	MP2B	My	.002	.5
60	MP2B	Mz	0	.5
61	MP2C	Y	-4.069	.5
62	MP2C	My	.002	.5
63	MP2C	Mz	0	.5
64	MP1A	Y	-3.389	.5
65	MP1A	My	.002	.5
66	MP1A	Mz	0	.5
67	MP1B	Y	-3.389	.5
68	MP1B	My	.002	.5
69	MP1B	Mz	0	.5
70	MP1C	Y	-3.389	.5
71	MP1C	My	.002	.5
72	MP1C	Mz	0	.5
73	OVP	Y	-1.543	1.5
74	OVP	Mv	0	1.5
75	OVP	Mz	0	1.5
76	MP1A	Y	651	.5
77	MP1A	My	000325	.5
78	MP1A	Mz	0	.5
79	MP1A	Y	651	4.5
80	MP1A	My	000325	4.5
81	MP1A	Mz	0	
82	MP4A	Y		4.5
33	MP4A	My	651 000325	.5
34	MP4A	Mz		.5
85	MP4A	Y	0 651	.5
86	MP4A	My	000325	4.5
37	MP4A	Mz		4.5
88	MP1B	WIZ Y	0 506	4.5
39	MP1B	Mv		.5
90	MP1B	Mz	.000194	.5
91	MP1B	Y	000163	.5
92	MP1B		506	4.5
93	MP1B	My	.000194	4.5
94	MP4B	Mz	000163	4.5
95	MP4B MP4B	Y	506	.5
96	MP4B MP4B	My	.000194	.5
00	IVIEND	Mz	000163	.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
07	MP4B	Y	506	4.5
97 98	MP4B	My	.000194	4.5
99	MP4B	Mz	000163	4.5
00	MP1C	Y	289	.5
101	MP1C	Mv	2.5e-5	.5
02	MP1C	Mz	.000142	.5
103	MP1C	Y	289	4.5
104	MP1C	My	2.5e-5	4.5
105	MP1C	Mz	.000142	4.5
106	MP4C	Y	289	.5
107	MP4C	Mv	2.5e-5	.5
108	MP4C	Mz	.000142	.5
109	MP4C	Y	289	4.5
110	MP4C	Mv	2.5e-5	4.5
111	MP4C	Mz	.000142	4.5
112	MP2A	Y	849	2.5
113	MP2A	My	.000424	2.5
114	MP2A	Mz	0	2.5

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Point Loads (BLC 82 Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4 1	MP2A	Z	-4.158	.5
1	MP2A	Mx	.002	.5
2	MP2A	Z	-4.158	4.5
3		Mx	.002	4.5
4	MP2A	Z	-4.158	.5
5	MP2B	Mx	000522	.5
6	MP2B	7	-4.158	4.5
7	MP2B	Mx .	000522	4.5
8	MP2B	Z	-4.158	.5
9	MP2C	Mx	002	.5
10	MP2C	Z	-4.158	4.5
11	MP2C		002	4.5
12	MP2C	Mx Z	-4.158	.5
13	MP2A		002	.5
14	MP2A	Mx	-4.158	4.5
15	MP2A	Z	002	4.5
16	MP2A	Mx		.5
17	MP2B	Z	-4.158 .003	.5
18	MP2B	Mx		4.5
19	MP2B	Z	-4.158	4.5
20	MP2B	Mx	.003	.5
21	MP2C	Z	-4.158	.5
22	MP2C	Mx	002	
23	MP2C	Z	-4.158	4.5
24	MP2C	Mx	002	4.5
25	MP3A	Z	-5.249	.5
26	MP3A	Mx	0	.5
27	MP3A	Z	-5.249	2.5
28	MP3A	Mx	0	2.5
29	MP3B	Z	-5.249	.5
30	MP3B	Mx	.002	.5
31	MP3B	Z	-5.249	2.5
32	MP3B	Mx	.002	2.5
33	MP3C	Z	-5.249	.5
	MP3C	Mx	003	.5
34 35	MP3C MP3C	Z	-5.249	2.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
36	MP3C	Mx	003	2.5
37	MP2A	Z	-10.173	.5
38	MP2A	Mx	0	.5
39	MP2B	Z	-10.173	.5
40	MP2B	Mx	0	.5
41	MP2C	Z	-10.173	.5
42	MP2C	Mx	0	.5
43	MP1A	Z	-8.473	.5
44	MP1A	Mx	0	.5
45	MP1B	Z	-8.473	.5
46	MP1B	Mx	0	.5
47	MP1C	Z	-8.473	.5
48	MP1C	Mx	0	.5
49	OVP	Z	-3.857	1.5
50	OVP	Mx	0	1.5
51	MP1A	Z	-1.627	.5
52	MP1A	Mx	0	.5
53	MP1A	Z	-1.627	4.5
54	MP1A	Mx	0	4.5
55	MP4A	Z	-1.627	.5
56	MP4A	Mx	0	.5
57	MP4A	Z	-1.627	4.5
58	MP4A	Mx	0	4.5
59	MP1B	Z	-1.266	.5
60	MP1B	Mx	.000407	.5
31	MP1B	Z	-1.266	4.5
32	MP1B	Mx	.000407	4.5
63	MP4B	Z	-1.266	.5
64	MP4B	Mx	.000407	.5
35	MP4B	Z	-1.266	4.5
66	MP4B	Mx	.000407	4.5
67	MP1C	Z	723	.5
88	MP1C	Mx	000356	.5
59	MP1C	Z	723	4.5
70	MP1C	Mx	000356	4.5
71	MP4C	Z	723	.5
72	MP4C	Mx	000356	
73	MP4C	Z	723	.5
74	MP4C	Mx	000356	4.5
75	MP2A	Z	-2.121	4.5 2.5
76	MP2A	Mx	-2.121	2.5
	IVII Z.A	IVIX		1 /5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	4.158	.5
2	MP2A	Mx	002	.5
3	MP2A	X	4.158	4.5
4	MP2A	Mx	002	4.5
5	MP2B	X	4.158	.5
6	MP2B	Mx	.003	.5
7	MP2B	X	4.158	4.5
8	MP2B	Mx	.003	4.5
9	MP2C	X	4.158	.5
10	MP2C	Mx	002	.5
11	MP2C	X	4.158	4.5
12	MP2C	Mx	002	4.5

RISA-3D Version 17.0.4

July 6, 2023 2:20 PM Checked By:__

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
13	MP2A	X	4.158	.5
14	MP2A	Mx	002	4.5
15	MP2A	X	4.158 002	4.5
16	MP2A	Mx	4.158	.5
17	MP2B	X	3.4e-5	.5
18	MP2B	Mx		4.5
19	MP2B	X	4.158	4.5
20	MP2B	Mx	3.4e-5	.5
21	MP2C	X	4.158 .003	.5
22	MP2C	Mx	4.158	4.5
23	MP2C	X	.003	4.5
24	MP2C	Mx	5.249	.5
25	MP3A	X	003	.5
26	MP3A	Mx	5.249	2.5
27	MP3A	X	003	2.5
28	MP3A	Mx	5.249	.5
29	MP3B	X	.002	.5
30	MP3B	Mx	5.249	2.5
31	MP3B	X	.002	2.5
32	MP3B	Mx	5.249	.5
33	MP3C	X	.000456	.5
34	MP3C	Mx		2.5
35	MP3C	X	5.249	2.5
36	MP3C	Mx	. <u>000456</u> 10.173	.5
37	MP2A	X	.005	.5
38	MP2A	Mx	10.173	.5
39	MP2B	X	.005	.5
40	MP2B	Mx		.5
41	MP2C	X	10.173 .005	.5
42	MP2C	Mx	8.473	.5
43	MP1A	X	.004	.5
44	MP1A	Mx		.5
45	MP1B	X	8.473	.5
46	MP1B	Mx	.004	.5
47	MP1C	X	8.473	.5
48	MP1C	Mx	.004	1.5
49	OVP	X	3.857	1.5
50	OVP	Mx	0	.5
51	MP1A	X	1.627	.5
52	MP1A	Mx	000814	4.5
53	MP1A	X	1.627	4.5
54	MP1A	Mx	000814	
55	MP4A	X	1.627	.5
56	MP4A	Mx	000814	4.5
57	MP4A	X	1.627	4.5
58	MP4A	Mx	000814	
59	MP1B	X	1.266	.5 .5
60	MP1B	Mx	.000485	
61	MP1B	X	1.266	4.5
62	MP1B	Mx	.000485	4.5
63	MP4B	X	1.266	.5
64	MP4B	Mx	.000485	.5
65	MP4B	X	1.266	4.5
66	MP4B	Mx	.000485	4.5
67	MP1C	X	.723	.5
68	MP1C	Mx	6.3e-5	.5
69	MP1C	X	.723	4.5

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
70	MP1C	Mx	6.3e-5	4.5
71	MP4C	X	.723	.5
72	MP4C	Mx	6.3e-5	.5
72 73 74 75 76	MP4C	X	.723	4.5
74	MP4C	Mx	6.3e-5	4.5
75	MP2A	X	2,121	2.5
76	MP2A	Mx	.001	2.5

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	Y	-9.58	-9.58	0	%100
2	M2	Y	-7.59	-7.59	0	%100
3	M3	Y	-7.59	-7.59	0	%100
4	M7	Y	-7.59	-7.59	0	%100
5	M9	Y	-7.59	-7.59	0	%100
6	M13	Υ	-7.59	-7.59	0	%100
7	FACE	Y	-7.59	-7.59	0	%100
8	M10	Y	-10.063	-10.063	0	%100
9	M11	Υ	-9.58	-9.58	0	%100
10	M14	Y	-9.58	-9.58	0	%100
11	MP1A	Y	-4.962	-4.962	0	%100
12	MP2A	Y	-4.962	-4.962	0	%100
13	MP3A	Y	-4.962	-4.962	0	%100
14	MP4A	Y	-4.962	-4.962	0	%100
15	MP1C	Υ	-4.962	-4.962	0	%100
16	MP2C	Υ	-4.962	-4.962	0	%100
17	MP3C	Y	-4.962	-4.962	0	%100
18	MP4C	Y	-4.962	-4.962	Ö	%100
19	MP1B	Υ	-4.962	-4.962	0	%100
20	MP2B	Y	-4.962	-4.962	0	%100
21	MP3B	Y	-4.962	-4.962	0	%100
22	MP4B	Y	-4.962	-4.962	0	%100
23	M47	Y	-10.063	-10.063	0	%100
24	M48	Υ	-10.063	-10.063	0	%100
25	M49	Y	-5.666	-5.666	0	%100
26	M64	Υ	-5.666	-5.666	0	%100
27	M72	Y	-5.666	-5.666	0	%100
28	M58	Y	-5.666	-5.666	0	%100
29	M65	Y	-5.666	-5.666	0	%100
30	M66	Y	-5.666	-5.666	Ö	%100
31	M67	Y	-5.666	-5.666	0	%100
32	M74	Y	-5.666	-5.666	Ö	%100
33	M75	Y	-5.666	-5.666	0	%100
34	M76	Y	-7.59	-7.59	0	%100 %100
35	M77	Y	-7.59	-7.59	0	%100 %100
36	M78	Ý	-7.59	-7.59	0	%100 %100
37	M79	Y	-7.59	-7.59	0	%100 %100
38	M80	Y	-7.59	-7.59	0	%100 %100
39	M81	Y	-7.59	-7.59	0	%100 %100
40	OVP	Y	-4.962	-4.962	0	%100 %100

Member Distributed Loads (BLC 41: Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
1	M1	X	0	0	0	%100
2	M1	Z	-9.694	-9.694	0	%100

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft.%] %100
3	M2	X	5 007	0	0	%100 %100
4	M2	Z	-5.237	-5.237 0	0	%100 %100
5	M3	<u> </u>	0	-5.237	0	%100 %100
6	M3	Z	-5.237	-5.237	0	%100 %100
7	M7	X	0	-5.237	0	%100 %100
8	M7	Z	-5.237		0	%100 %100
9	M9	X	0	0	0	%100 %100
10	M9	Z	-20.949	-20.949		%100 %100
11	M13	X	0	0	0	%100 %100
12	M13	Z	-5.237	-5.237	0	%100 %100
13	FACE	X	0	0		%100 %100
14	FACE	Z	-20.949	-20.949	0	%100 %100
15	M10	X	0	0	0	%100 %100
16	M10	Z	-13.247	-13.247	0	
17	M11	X	0	0	0	%100 %100
18	M11	Z	0	0	0	
19	M14	X	0	0	0	%100
20	M14	Z	-9.694	-9.694	0	%100
21	MP1A	X	0	0	0	%100
22	MP1A	Z	-9.951	-9.951	0	%100
23	MP2A	X	0	0	0	%100
24	MP2A	Z	-9.951	-9.951	0	%100
25	MP3A	X	0	0	0	%100
26	MP3A	Z	-9.951	-9.951	0	%100
27	MP4A	X	0	0	0	%100
28	MP4A	Z	-9.951	-9.951	0	%100
29	MP1C	X	0	0	0	%100
30	MP1C	Z	-9.951	-9.951	0	%100
31	MP2C	X	0	0	0	%100
32	MP2C	Z	-9.951	-9.951	0	%100
33	MP3C	X	0	0	0	%100
34	MP3C	Z	-9.951	-9.951	0	%100
35	MP4C	X	0	0	0	%100
36	MP4C	Z	-9.951	-9.951	0	%100
37	MP1B	X	0	0	0	%100
38	MP1B	Z	-9.951	-9.951	0	%100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	-9.951	-9.951	0	%100
41	MP3B	X	0	0	0	%100
42	MP3B	Z	-9.951	-9.951	0	%100
43	MP4B	X	0	0	0	%100
44	MP4B	Z	-9.951	-9.951	0	%100
45	M47	X	0	0	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	0	0	0	%100
48	M48	Z	-13.247	-13.247	0	%100
49	M49	X	0	0	0	%100
50	M49	Z	-12.045	-12.045	0	%100
	M64	X	0	0	0	%100
51 52	M64	Ž	-12.045	-12.045	0	%100
	M72	X	0	0	0	%100
53		Ž	-12.045	-12.045	0	%100
54	M72	X	0	0	0	%100
55	M58	Ž	-3.011	-3.011	0	%100
56	M58	X	-3.011	0	0	%100
57	M65	Z	-3.011	-3.011	0	%100
58	M65		-3.011	0	0	%100
59	M66	X	1 0			

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 41: Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft.F	. Start Location[ft.%]	End Location[ft,%]
60	M66	Z	-3.011	-3.011	0	%100
61	M67	X	0	0	0	%100
62	M67	Z	-3.011	-3.011	0	%100
63	M74	X	0	0	0	%100
64	M74	Z	-3.011	-3.011	0	%100
65	M75	X	0	0	0	%100
66	M75	Z	-3.011	-3.011	0	%100
67	M76	X	0	0	0	%100
68	M76	Z	-3.827	-3.827	0	%100
69	M77	X	0	0	0	%100
70	M77	Z	-3.827	-3.827	0	%100
71	M78	X	0	0	0	%100
72	M78	Z	-15.308	-15.308	0	%100
73	M79	X	0	0	0	%100
74	M79	Z	-7.694	-7.694	0	%100
75	M80	X	0	0	Ō	%100
76	M80	Z	0	0	0	%100
77	M81	X	0	0	0	%100
78	M81	Z	-7.694	-7.694	Ö	%100
79	OVP	X	0	0	0	° %100
80	OVP	Z	-9.951	-9.951	Ŏ	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.	Start Location[ft.%]	End Location[ft,%]
1	M1	X	6.463	6.463	0	%100
2	M1	Z	-11.194	-11,194	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	0	0	0	%100
7	M7	X	7.856	7.856	0	%100
8	M7	Z	-13.607	-13.607	0	%100
9	M9	X	7.856	7.856	0	%100
10	M9	Z	-13.607	-13.607	0	%100
11	M13	X	7.856	7.856	Ů Ů	%100
12	M13	Z	-13.607	-13.607	, o	%100
13	FACE	X	7.856	7.856	0	%100
14	FACE	Z	-13.607	-13.607	0	%100
15	M10	X	8.831	8.831	0	%100
16	M10	Z	-15.296	-15.296	0	%100
17	M11	X	1.616	1.616	0	%100
18	M11	Z	-2.798	-2.798	0	%100
19	M14	X	1.616	1.616	0	%100
20	M14	Z	-2.798	-2.798	0	%100
21	MP1A	X	4.975	4.975	0	%100
22	MP1A	Z	-8.617	-8.617	0	%100
23	MP2A	X	4.975	4.975	0	%100
24	MP2A	Z	-8.617	-8.617	0	%100
25	MP3A	X	4.975	4.975	0	%100
26	MP3A	Z	-8.617	-8.617	0	%100
27	MP4A	X	4.975	4.975	0	%100
28	MP4A	Z	-8.617	-8.617	0	%100
29	MP1C	X	4.975	4.975	0	%100
30	MP1C	Z	-8.617	-8.617	0	%100
31	MP2C	X	4.975	4.975	0	%100
32	MP2C	Z	-8.617	-8.617	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

Member Labe	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
33 MP3C	X	4.975	4.975	0	%100
34 MP3C	Z	-8.617	-8.617	0	%100
35 MP4C	X	4.975	4.975	0	%100
36 MP4C	Z	-8.617	-8.617	0	%100
37 MP1B	X	4.975	4.975	0	%100
38 MP1B	Z	-8.617	-8.617	0	%100
39 MP2B	X	4.975	4.975	0	%100
40 MP2B	Z	-8.617	-8.617	0	%100
41 MP3B	X	4.975	4.975	0	%100
42 MP3B	Z	-8.617	-8.617	0	%100
43 MP4B	X	4.975	4.975	0	%100
44 MP4B	Z	-8.617	-8.617	0	%100
45 M47	X	2.208	2.208	0	%100
	Ž	-3.824	-3.824	0	%100
	X	2.208	2.208	0	%100
47 M48 48 M48	Z	-3.824	-3.824	0	%100
	X	4.517	4.517	0	%100
	Z	-7.824	-7.824	0	%100
50 M49	X	4.517	4.517	0	%100
51 M64	Ž	-7.824	-7.824	0	%100
52 M64	X	4.517	4.517	0	%100
53 M72	Z	-7.824	-7.824	0	%100
54 M72	X	4.517	4.517	0	%100
55 M58		-7.824	-7.824	Ö	%100
56 M58	Z	4.517	4.517	Ö	%100
57 M65	X		-7.824	0	%100
58 M65	Z	-7.824	4.517	0	%100
59 M66	X	4.517	-7.824	0	%100
60 M66	Z	-7.824		0	%100
61 M67	X	0	0	0	%100
62 M67	Z	0	0	0	%100 %100
63 M74	X	0	0		%100
64 M74	Z	0	0	0	%100 %100
65 M75	X	0	0	0	%100 %100
66 M75	Z	0	0	0	%100 %100
67 M76	X	5.741	5.741	0	
68 M76	Z	-9.943	-9.943	0	%100
69 M77	X	0	0	0	%100
70 M77	Z	0	0	0	%100
71 M78	X	5.741	5.741	0	%100
72 M78	Z	-9.943	-9.943	0	%100
73 M79	X	5.129	5.129	0	%100
74 M79	Z	-8.884	-8.884	0	%100
75 M80	X	1.282	1.282	0	%100
76 M80	Z	-2.221	-2.221	0	%100
77 M81	X	1.282	1.282	0	%100
78 M81	Z	-2.221	-2.221	0	%100
79 OVP	X	4.975	4.975	0	%100
90 OVP	7	-8.617	-8.617	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft.%]
1	M1	X	8.395	8.395	0	%100
2	M1	7	-4.847	-4.847	0	%100
2	M2	Y	4.536	4.536	0	%100
3		7	-2.619	-2.619	0	%100
4	M2	Y	4.536	4.536	0	%100
5	M3		7.000	1.000		

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F.,		End Location[ft,%]
6	M3	Z	-2.619	-2.619	0	%100
7	M7	X	18.142	18.142	Ö	%100
8	M7	Z	-10,474	-10.474	Ö	%100
9	M9	X	4.536	4.536	0	%100
10	M9	Z	-2.619	-2.619	0	%100
11	M13	X	18.142	18.142	0	%100
12	M13	Z	-10.474	-10.474	0	%100
13	FACE	X	4.536	4.536	0	%100
14	FACE	Z	-2.619	-2.619	O O	%100
15	M10	X	11.472	11.472	0	%100
16	M10	Z	-6.623	-6.623	0	%100
17	M11	X	8.395	8.395	0	%100
18	M11	Z	-4.847	-4.847	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	0	0	Ö	%100
21	MP1A	X	8.617	8.617	Ö	%100
22	MP1A	Z	-4.975	-4.975	Ö	%100
23	MP2A	X	8.617	8.617	Ö	%100
24	MP2A	Z	-4.975	-4.975	Ö	%100
25	MP3A	X	8.617	8.617	0	%100
26	MP3A	Z	-4.975	-4.975	Ö	%100
27	MP4A	X	8.617	8.617	0	%100
28	MP4A	Z	-4.975	-4.975	Ö	%100 %100
29	MP1C	X	8.617	8.617	0	%100 %100
30	MP1C	Z	-4.975	-4.975	Ŏ	%100 %100
31	MP2C	X	8.617	8.617	0	%100 %100
32	MP2C	Z	-4.975	-4.975	Ŏ	%100
33	MP3C	X	8.617	8.617	0	%100 %100
34	MP3C	Z	-4.975	-4.975	0	%100 %100
35	MP4C	X	8.617	8.617	0	%100
36	MP4C	Z	-4.975	-4.975	Ö	%100 %100
37	MP1B	X	8.617	8.617	Ö	%100 %100
38	MP1B	Ž	-4.975	-4.975	0	%100 %100
39	MP2B	X	8.617	8.617	0	%100 %100
40	MP2B	Z	-4.975	-4.975	0	%100 %100
41	MP3B	X	8.617	8.617	Ö	%100 %100
42	MP3B	Z	-4.975	-4.975	0	%100 %100
43	MP4B	X	8.617	8.617	0	%100 %100
44	MP4B	Z	-4.975	-4.975	0	%100
45	M47	X	11.472	11.472	0	%100 %100
46	M47	Ž	-6.623	-6.623	0	%100 %100
47	M48	X	0	0	0	%100 %100
48	M48	7	0	0	0	%100 %100
49	M49	X	2.608	2.608	0	%100
50	M49	Z	-1.506	-1.506	0	%100 %100
51	M64	X	2.608	2.608	0	%100 %100
52	M64	Z	-1.506	-1.506	0	
53	M72	X	2.608	2.608	0	%100 %100
54	M72	Z	-1.506	-1.506	0	
55	M58	X	10.432	10.432	0	%100 %100
56	M58	Ž	-6.023	-6.023	0	%100 %100
57	M65	X	10.432	10.432	0	%100 %100
58	M65	Ž	-6.023	-6.023	0	%100 %100
59	M66	X	10.432	10.432	0	%100 %100
60	M66	Ž	-6.023		0	%100
61	M67	X	2.608	-6.023		%100 %100
62	M67	Ž	-1.506	2.608 -1.506	0	%100 %400
UZ	IVIO		1.000	-1.500	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
63	M74	X	2.608	2.608	0	%100
	M74	7	-1.506	-1.506	0	%100
64	M75	Y	2.608	2.608	0	%100
65		7	-1.506	-1.506	0	%100
66	M75	X	13.257	13.257	0	%100
67	M76	7	-7.654	-7.654	0	%100
68	M76		3,314	3.314	0	%100
69	M77		-1.914	-1.914	Ō	%100
70	M77	- Z	3.314	3.314	0	%100
71	M78		-1.914	-1.914	Ö	%100
72	M78	<u> </u>		6.663	0	%100
73	M79	<u>X</u>	6.663		0	%100
74	M79		-3.847	-3.847	0	%100 %100
75	M80	X	6.663	6.663	0	%100 %100
76	M80	Z	-3.847	-3.847	0	
77	M81	X	0	0	0	%100
78	M81	Z	0	0	0	%100
79	OVP	X	8.617	8.617	0	%100
80	OVP	Z	-4.975	-4.975	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
1	M1	X	3.231	3.231	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	15.711	15,711	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	15.711	15.711	0	%100
6	M3	Z	0	0	0	%100
7	M7	X	15.711	15.711	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M13	X	15.711	15.711	0	%100
12	M13	Z	0	0	0	%100
13	FACE	X	0	0	0	%100
14	FACE	Z	0	0	0	%100
15	M10	X	4.416	4.416	0	%100
16	M10	Z	0	0	0	%100
17	M10	X	12,926	12.926	0	%100
18	M11	Z	0	0	0	%100
19	M14	X	3,231	3.231	0	%100
20	M14	Z	0.20	0	0	%100
21	MP1A	X	9.951	9.951	0	%100
	MP1A	Z	0	0	0	%100
22		X	9.951	9.951	0	%100
23	MP2A	Z	0	0.00	0	%100
24	MP2A	X	9.951	9.951	0	%100
25	MP3A	Z	9.951	0.501	0	%100
26	MP3A	X	9.951	9.951	0	%100
27	MP4A	Ž	9.931	0.551	0	%100
28	MP4A		9.951	9.951	0	%100
29	MP1C	X	9.951	0	0	%100
30	MP1C	Z	9.951	9.951	0	%100
31	MP2C	X		9.951	0	%100
32	MP2C	Z	0 0 0 0 0	9.951	0	%100
33	MP3C	X	9.951	9,951	0	%100
34	MP3C	Z	0		0	%100 %100
35	MP4C	X	9.951	9.951	U	/0100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,9
36	MP4C	Z	0	0	0	%100
37	MP1B	X	9.951	9.951	0	%100
38	MP1B	Z	0	0	0	%100
39	MP2B	X	9.951	9.951	0	%100
40	MP2B	Z	0	0	0	%100
41	MP3B	X	9.951	9.951	0	%100
42	MP3B	Z	0	0	0	%100
43	MP4B	X	9.951	9.951	0	%100
44	MP4B	Z	0	0	0	%100
45	M47	X	17.663	17.663	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	4.416	4.416	0	%100
48	M48	Z	0	0	0	%100
49	M49	X	0	0	Ö	%100
50	M49	Z	Ŏ	Ö	Ö	%100
51	M64	X	0	0	0	%100
52	M64	Z	Ö	0	Ŏ	%100
53	M72	X	Ō	0	Ö	%100
54	M72	Z	Ô	Ö	Ŏ	%100
55	M58	X	9.034	9.034	0	%100
56	M58	Z	0.001	0	Ö	%100
57	M65	X	9.034	9.034	0	%100 %100
58	M65	Z	0.004	0	0	%100
59	M66	X	9.034	9.034	0	%100
60	M66	Z	0.004	0	0	%100
61	M67	X	9.034	9.034	0	%100 %100
62	M67	Z	0.007	0	0	%100
53	M74	X	9.034	9.034	0	%100 %100
64	M74	Z	0.004	0	0	%100 %100
65	M75	X	9.034	9.034	0	%100 %100
36	M75	Z	0.004	0	0	%100 %100
67	M76	X	11.481	11,481	0	%100 %100
88	M76	Z	0	0	0	%100 %100
59	M77	X	11.481	11.481	0	%100 %100
70	M77	Z	0	0	0	%100 %100
71	M78	X	0	0	0	%100 %100
72	M78	Z	Ö	0	0	%100 %100
73	M79	X	2.565	2.565	0	%100 %100
74	M79	Z	2.505	2.565	0	%100 %100
75	M80	X	10.259			
76	M80	Ž	0.259	10.259	0	%100
77	M81	X		0	0	%100
78	M81	Ž	2.565	2.565	0	%100
79	OVP		0	0	0	%100
30	OVP	X	9.951	9.951	0	%100
JU	UVP	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	18.142	18.142	0	%100
4	M2	Z	10.474	10,474	0	%100
5	M3	X	18.142	18.142	0	%100
6	M3	Z	10.474	10.474	0	%100
7	M7	X	4.536	4.536	0	%100
8	M7	Z	2.619	2.619	0	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F		End Location[ft.%] %100
9	M9	X	4.536	4.536	0	
10	M9	Z	2.619	2.619	0	%100 %100
11	M13	X	4.536	4.536	0	%100 %100
12	M13	Z	2.619	2.619	0	
13	FACE	X	4.536	4.536	0	%100 %400
14	FACE	Z	2.619	2.619	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	8.395	8.395	0	%100
18	M11	Z	4.847	4.847	0	%100
19	M14	X	8.395	8.395	0	%100 %400
20	M14	Z	4.847	4.847	0	%100 %100
21	MP1A	X	8.617	8.617	0	%100 %100
22	MP1A	Z	4.975	4.975	0	%100 %100
23	MP2A	X	8.617	8.617	0	
24	MP2A	Z	4.975	4.975	0	%100 %100
25	MP3A	X	8.617	8.617	0	%100
26	MP3A	Z	4.975	4.975	0	%100
27	MP4A	X	8.617	8.617	0	%100
28	MP4A	Z	4.975	4.975	0	%100
29	MP1C	X	8.617	8.617	0	%100
30	MP1C	Z	4.975	4.975	0	%100
31	MP2C	X	8.617	8.617	0	%100
32	MP2C	Z	4.975	4.975	0	%100
33	MP3C	X	8.617	8.617	0	%100
34	MP3C	Z	4.975	4.975	0	%100
35	MP4C	X	8.617	8.617	0	%100
36	MP4C	Z	4.975	4.975	0	%100
37	MP1B	X	8.617	8.617	0	%100
38	MP1B	Z	4.975	4.975	0	%100
39	MP2B	X	8.617	8.617	0	%100
40	MP2B	Z	4.975	4.975	0	%100
41	MP3B	X	8.617	8.617	0	%100
42	MP3B	Z	4.975	4.975	0	%100
43	MP4B	Х	8.617	8.617	0	%100
44	MP4B	Z	4.975	4.975	0	%100
45	M47	X	11.472	11.472	0	%100
46	M47	Z	6.623	6.623	0	%100
47	M48	X	11.472	11.472	0	%100
48	M48	Z	6.623	6.623	0	%100
49	M49	X	2.608	2.608	0	%100
50	M49	Z	1.506	1.506	0	%100
51	M64	X	2.608	2.608	0	%100
52	M64	Z	1.506	1.506	0	%100
53	M72	X	2.608	2.608	0	%100
54	M72	Z	1.506	1.506	0	%100
55	M58	X	2.608	2.608	0	%100
56	M58	Z	1.506	1.506	0	%100
57	M65	X	2.608	2.608	0	%100
58	M65	Z	1.506	1.506	0	%100
59	M66	X	2.608	2.608	0	%100
60	M66	Z	1.506	1.506	0	%100
61	M67	X	10.432	10.432	0	%100
62	M67	Z	6.023	6.023	0	%100
63	M74	X	10.432	10.432	0	%100
	M74	Z	6.023	6.023	0	%100
64 65	M75	X	10.432	10.432	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:

Member Distributed Loads (BLC 45: Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
66	M75	Z	6.023	6.023	0	%100
67	M76	X	3.314	3.314	0	%100
68	M76	Z	1.914	1.914	0	%100
69	M77	X	13.257	13.257	0	%100
70	M77	Z	7.654	7.654	0	%100
71	M78	X	3.314	3.314	0	%100
72	M78	Z	1,914	1.914	0	%100
73	M79	X	0	0	Õ	%100
74	M79	Z	0	Ŏ	Ö	%100
75	M80	X	6.663	6.663	Ô	%100 %100
76	M80	Z	3.847	3.847	Ō	%100
77	M81	X	6.663	6.663	Ö	%100
78	M81	Z	3.847	3.847	Ů.	%100
79	OVP	X	8.617	8.617	0	%100 %100
80	OVP	Z	4.975	4.975	0	%100 %100

Member Distributed Loads (BLC 46: Structure Wo (150 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	1.616	1.616	0	%100
2	M1	Z	2.798	2.798	0	%100
3	M2	X	7.856	7.856	0.	%100
4	M2	Z	13.607	13.607	0	%100
5	M3	X	7.856	7.856	0	%100
6	M3	Z	13.607	13.607	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	7.856	7.856	0	%100
10	M9	Z	13.607	13.607	0	%100
11	M13	X	0	0	0	%100
12	M13	Z	0	0	0	%100
13	FACE	X	7.856	7.856	0	%100
14	FACE	Z	13.607	13.607	0	%100
15	M10	X	2.208	2.208	0	%100
16	M10	Z	3.824	3.824	0	%100
17	M11	X	1.616	1.616	0	%100
18	M11	Z	2.798	2.798	0	%100
19	M14	X	6.463	6.463	0	%100
20	M14	Z	11.194	11.194	0	%100
21	MP1A	X	4.975	4.975	0	%100
22	MP1A	Z	8.617	8.617	0	%100
23	MP2A	X	4.975	4.975	0	%100
24	MP2A	Z	8.617	8.617	Ö	%100
25	MP3A	X	4.975	4.975	0	%100
26	MP3A	Z	8.617	8.617	0	%100
27	MP4A	X	4.975	4.975	Ö	%100
28	MP4A	Z	8.617	8.617	Ö	%100
29	MP1C	X	4.975	4.975	0	%100 %100
30	MP1C	Z	8.617	8.617	Ö	%100
31	MP2C	X	4.975	4.975	0	%100
32	MP2C	Z	8.617	8.617	Ö	%100 %100
33	MP3C	X	4.975	4.975	0	%100 %100
34	MP3C	Z	8.617	8.617	Ö	%100 %100
35	MP4C	X	4.975	4.975	0	%100 %100
36	MP4C	Z	8.617	8.617	Ö	%100 %100
37	MP1B	X	4.975	4.975	0	%100 %100
38	MP1B	7	8.617	8.617	0	%100 %100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
39	MP2B	X	4.975	4.975	0	%100
40	MP2B	Z	8.617	8.617	0	%100
41	MP3B	X	4.975	4.975	0	%100
42	MP3B	Z	8.617	8.617	0	%100
43	MP4B	X	4.975	4.975	0	%100
44	MP4B	Z	8.617	8.617	0	%100
45	M47	X	2.208	2.208	0	%100
46	M47	Z	3.824	3.824	0	%100
47	M48	X	8.831	8.831	0	%100
48	M48	Z	15.296	15.296	0	%100
49	M49	X	4.517	4.517	0	%100
50	M49	Z	7.824	7.824	0	%100
51	M64	X	4.517	4.517	0	%100
52	M64	Z	7.824	7.824	0	%100
53	M72	X	4.517	4.517	0	%100
54	M72	Z	7.824	7.824	0	%100
55	M58	X	0	0	0	%100
56	M58	Z	0	0	0	%100
57	M65	X	Ö	0	0	%100
58	M65	Z	0	0	0	%100
59	M66	X	0	0	0	%100
60	M66	Z	Ö	0	0	%100
61	M67	X	4.517	4.517	0	%100
62	M67	Z	7.824	7.824	0	%100
63	M74	X	4.517	4.517	0	%100
64	M74	Z	7.824	7.824	0	%100
65	M75	X	4.517	4.517	0	%100
	M75	Z	7.824	7.824	0	%100
66	M76	X	0	0	0	%100
67		Z	0	0	0	%100
68	M76	X	5.741	5.741	0	%100
69	M77	Z	9.943	9.943	0	%100
70	M77	X	5.741	5.741	0	%100
71	M78	Ž	9.943	9.943	0	%100
72	M78	X	1.282	1.282	0	%100
73	M79	Z	2.221	2.221	Ö	%100
74	M79		1.282	1.282	0	%100
75	M80	Z	2.221	2.221	Ö	%100
76	M80		5.129	5.129	0	%100
77	M81	X		8.884	0	%100
78	M81	Z	8.884	4.975	0	%100
79 80	OVP OVP	Z	4.975 8.617	8.617	0	%100 %100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
	Y	Otal Magnitude	0	0	%100
	7	9.694	9 694	0	%100
	V	0.004	0.00	0	%100
	7	5 237	5 237	0	%100
	- Z	0.237	0.201	0	%100
		5 237	5 237	0	%100
	V	0.237	0.207	0	%100
		5 237	5 237	0	%100
	- Z	0.237	0.20,	0	%100
		20.040	20 949	0	%100
	- Z	20.943	0	0	%100
	Member Label M1 M1 M2 M2 M3 M3 M7 M7 M9 M9 M13	M1 X M1 Z M2 X M2 X M2 Z M3 X M3 Z M7 X M7 Z M9 X M9 Z	M1 X 0 M1 Z 9.694 M2 X 0 M2 Z 5.237 M3 X 0 M3 Z 5.237 M7 X 0 M7 Z 5.237 M9 X 0 M9 Z 20.949	M1 X 0 0 M1 Z 9.694 9.694 M2 X 0 0 M2 Z 5.237 5.237 M3 X 0 0 M3 Z 5.237 5.237 M7 X 0 0 M7 Z 5.237 5.237 M9 X 0 0 M9 Z 20.949 20.949	M1 X 0 0 0 M1 Z 9.694 9.694 0 M2 X 0 0 0 M2 Z 5.237 5.237 0 M3 X 0 0 0 M3 Z 5.237 5.237 0 M7 X 0 0 0 M7 Z 5.237 5.237 0 M9 X 0 0 0 M9 Z 20.949 20.949 0

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

12	Member Label M13	Direction Z	Start Magnitude[lb/ft 5,237	.End Magnitude[lb/ft,F 5.237	Start Location[ft,%]	End Location[ft,%] %100
13	FACE	X	0.207	0	0	%100
14	FACE	Z	20.949	20.949	0	%100 %100
15	M10	X	0	0	0	%100 %100
16	M10	Z	13.247	13.247	0	%100
17	M11	X	0	0	0	%100 %100
18	M11	7	0	0	0	%100 %100
19	M14	X	0	0	0	%100 %100
20	M14	Z	9.694	9.694	0	%100 %100
21	MP1A	X	0	0	0	%100
22	MP1A	Z	9.951	9.951	0	%100 %100
23	MP2A	X	0	9.931	0	%100 %100
24	MP2A	Z	9.951	9.951	0	
25	MP3A	X	9.931	9.931		%100
26	MP3A	Ž	9.951	9.951	0	%100
27	MP4A	X	9.951	,		%100
28	MP4A	Ž	9.951	9.951	0	%100
29	MP1C	X	9.951		0	%100
30	MP1C	Ž	9.951	0	0	%100
31	MP2C	X	9.951	9.951	0	%100
32	MP2C	Ž	9.951	0	0	%100
33	MP3C	X	9.951	9.951	0	%100
34	MP3C	Ž	9.951	0	0	%100
35	MP4C	X		9.951	0	%100
36	MP4C	Ž	0	0	0	%100
37	MP1B		9.951	9.951	0	%100
38	MP1B	Z	0	0	0	%100
39	MP2B	X	9.951	9.951	0	%100
40	MP2B		0	0	0	%100
41	MP3B	X	9.951	9.951	0	%100
42	MP3B	Ż	0	0	0	%100
43	MP4B		9.951	9.951	0	%100
44	MP4B	X	0	0	0	%100
45	M47		9.951	9.951	0	%100
46	M47	X	0	0	0	%100
47	M48	Z	0	0	0	%100
48	M48	X	0	0	0	<u>%100</u>
49		Z	13.247	13.247	0	%100
50	M49 M49	X	0	0	0	%100
51	M64	Z	12.045	12.045	0	%100
52		X	0	0	0	%100
	M64	Z	12.045	12.045	0	%100
53	M72	X	0	0	0	%100
54	M72	Z	12.045	12.045	0	<u>%100</u>
55	M58	X	0	0	0	%100
56	M58	Z	3.011	3.011	0	%100
57	M65	X	0	0	0	%100
58	M65	Z	3.011	3.011	0	%100
59	M66	X	0	0	0	%100
60	M66	Z	3.011	3.011	0	%100
61	M67	X	0	0	0	%100
62	M67	Z	3.011	3.011	0	%100
63	M74	X	0	0	0	%100
64	M74	Z	3.011	3.011	0	%100
65	M75	X	0	0	0	%100
66	M75	Z	3.011	3.011	0	%100
67	M76	X	0	0	0	%100
68	M76	Z	3.827	3.827	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitudellb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
co T	M77	X	0	0	0	%100
69	M77	7	3.827	3.827	0	%100
70	M78	Y	0.027	0	0	%100
	M78	7	15.308	15.308	0	%100
72	M79	X	0	0	0	%100
73 74	M79	7	7.694	7.694	0	%100
75	M80	X	0	0	0	%100
	M80	7	0	0	0	%100
76	M81	X	0	0	0	%100
77	M81	7	7.694	7.694	0	%100
78	OVP	Y	0	0	0	%100
79	OVP	1 2	9.951	9.951	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

mt	abel Direction Start Magnitude[lb/ftEnd Magnitude[lb/	ft,F Start Location[ft,%]	End Location[ft,%]
Ī	X -6.463 -6.463	0	%100
	Z 11.194 11.194	0	%100
Ī	X 0 0	0	%100
	Z 0 0	0	%100
Ī	X 0 0	0	%100
.,	Z 0 0	0	%100
i	X -7.856 -7.856	0	%100
Ī	Z 13.607 13.607	0	%100
Ī	X -7.856 -7.856	0	%100
	Z 13.607 13.607	0	%100
N	X -7.856 -7.856	0	%100
N	Z 13.607 13.607	0	%100
F	-7.856 -7.856	0	%100
F	Z 13.607 13.607	0	%100
N	0.004	0	%100
N	Z 15.296 15.296	0	%100
N	X -1.616 -1.616	0	%100
٨	Z 2.798 2.798	0	%100
N	X -1.616 -1.616	0	%100
N		0	%100
M	1075	0	%100
M		0	%100
M	4.035	0	%100
M	0.017	0	%100
M	1.075	0	%100
M		0	%100
M	1075	0	%100
M	0.047	0	%100
M	1.075	0	%100
M	0.047	0	%100
M		0	%100
M	0.017	0	%100
M		0	%100
M	A	0	%100
M	1075	0	%100
M	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0	%100
M	4075	0	%100
	N	0	%100
	4.075	0	%100
	2017	0	%100
	1075	0	%100
M M M	B X -4.975 B Z 8.617	8.617 -4.975 8.617 -4.975	-4.975 0 8.617 0

Colliers Engineering & Design

: 5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
42	MP3B	Z	8.617	8.617	0	%100
43	MP4B	X	-4.975	-4.975	0	%100
44	MP4B	Z	8.617	8.617	0	%100
45	M47	X	-2.208	-2.208	0	%100
46	M47	Z	3.824	3.824	0	%100
47	M48	X	-2.208	-2.208	0	%100
48	M48	Z	3.824	3.824	0	%100
49	M49	X	-4.517	-4.517	0	%100
50	M49	Z	7.824	7.824	0	%100
51	M64	X	-4.517	-4.517	0	%100
52	M64	Z	7.824	7.824	0	%100
53	M72	X	-4.517	-4.517	0	%100
54	M72	Z	7.824	7.824	0	%100
55	M58	X	-4.517	-4.517	0	%100
56	M58	Z	7.824	7.824	0	%100
57	M65	X	-4.517	-4.517	0	%100
58	M65	Z	7.824	7.824	0	%100
59	M66	X	-4.517	-4.517	.0	%100
60	M66	Z	7.824	7.824	0	%100
61	M67	X	0	0	0	%100
62	M67	Z	0	0	0	%100
63	M74	X	0	0	0	%100
64	M74	Z	0	0	0	%100
65	M75	X	0	0	0	%100
66	M75	Z	0	Ö	Ö	%100
67	M76	X	-5.741	-5.741	0	%100
68	M76	Z	9.943	9.943	Ō	%100
69	M77	X	0	0	Ö	%100
70	M77	Z	0	Ö	Ŏ	%100
71	M78	X	-5.741	-5.741	Ö	%100
72	M78	Z	9.943	9.943	Ö	%100
73	M79	X	-5.129	-5.129	Ŏ	%100
74	M79	Z	8.884	8.884	Ö	%100
75	M80	X	-1.282	-1.282	Ŏ	%100 %100
76	M80	Z	2.221	2.221	ŏ	%100
77	M81	X	-1.282	-1.282	0	%100 %100
78	M81	Z	2.221	2,221	0	%100 %100
79	OVP	X	-4.975	-4.975	0	%100 %100
80	OVP	7	8.617	8.617	0	%100 %100

Member Distributed Loads (BLC 49: Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-8.395	-8.395	0	%100
2	M1	Z	4.847	4.847	0	%100
3	M2	X	-4.536	-4.536	0	%100
4	M2	Z	2.619	2.619	0	%100
5	M3	X	-4.536	-4.536	0	%100
6	M3	Z	2.619	2.619	0	%100
7	M7	X	-18.142	-18.142	0	%100
8	M7	Z	10.474	10.474	0	%100
9	M9	X	-4.536	-4.536	0	%100
10	M9	Z	2.619	2.619	0	%100
11	M13	X	-18.142	-18.142	0	%100
12	M13	Z	10.474	10.474	0	%100
13	FACE	X	-4.536	-4.536	0	%100
14	FACE	Z	2.619	2.619	0	%100

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F		End Location[ft,%
15	M10	X	-11.472	-11.472	0	%100
16	M10	Z	6.623	6.623	0	%100
17	M11	X	-8.395	-8.395	0	%100
18	M11	Z	4.847	4.847	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	0	0	0	%100
21	MP1A	X	-8.617	-8.617	0	%100
22	MP1A	Z	4.975	4.975	0	%100
23	MP2A	X	-8.617	-8.617	0	%100
24	MP2A	Z	4.975	4.975	0	%100
25	MP3A	X	-8.617	-8.617	0	%100
26	MP3A	Z	4.975	4.975	0	%100
27	MP4A	X	-8.617	-8.617	0	%100
28	MP4A	Z	4.975	4.975	0	%100
	MP1C	X	-8.617	-8.617	0	%100
29	MP1C	Ž	4.975	4.975	0	%100
30		X	-8.617	-8.617	0	%100
31	MP2C	Z	4.975	4.975	0	%100
32	MP2C		-8.617	-8.617	0	%100
33	MP3C	X	4.975	4.975	0	%100
34	MP3C	X	-8.617	-8.617	0	%100
35	MP4C		4.975	4.975	0	%100
36	MP4C	Z	-8.617	-8.617	0	%100
37	MP1B	X	4.975	4.975	0	%100
38	MP1B	Z		-8.617	0	%100
39	MP2B	X	-8.617		0	%100
40	MP2B	Z	4.975	4.975	0	%100 %100
41	MP3B	X	-8.617	-8.617	0	%100 %100
42	MP3B	Z	4.975	4.975	0	%100 %100
43	MP4B	X	-8.617	-8.617		%100
44	MP4B	Z	4.975	4.975	0	%100
45	M47	X	-11.472	-11.472	0	%100
46	M47	Z	6.623	6.623	0	%100 %100
47	M48	X	0	0	0	
48	M48	Z	0	0	0	%100
49	M49	X	-2,608	-2.608	0	%100
50	M49	Z	1.506	1.506	0	%100
51	M64	X	-2.608	-2.608	0	%100
52	M64	Z	1.506	1.506	0	%100
53	M72	X	-2.608	-2.608	0	%100
54	M72	Z	1.506	1.506	0	%100
55	M58	X	-10.432	-10.432	0	%100
56	M58	Z	6.023	6.023	0	%100
57	M65	X	-10.432	-10.432	0	%100
58	M65	Z	6.023	6.023	0	%100
59	M66	X	-10.432	-10.432	0	%100
60	M66	Ž	6.023	6.023	0	%100
61	M67	X	-2.608	-2.608	0	%100
62	M67	Z	1.506	1.506	0	%100
63	M74	X	-2.608	-2.608	0	%100
	M74	Z	1.506	1.506	0	%100
64		X	-2.608	-2.608	0	%100
65	M75	Ž	1.506	1.506	0	%100
66	M75	X	-13.257	-13.257	0	%100
67	M76	Z	7.654	7.654	0	%100
68	M76		-3.314	-3.314	0	%100
69	M77	X		1.914	0	%100 %100
70	M77	Z	1.914 -3.314	-3.314	0	%100 %100

Colliers Engineering & Design

: 5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
72	M78	Z	1.914	1.914	0	%100
73	M79	X	-6.663	-6.663	0	%100
74	M79	Z	3.847	3.847	0	%100
75	M80	X	-6.663	-6.663	0	%100
76	M80	Z	3.847	3.847	0	%100
77	M81	X	0	0	0	%100
78	M81	Z	0	0	0	%100
79	OVP	X	-8.617	-8.617	0	%100
80	OVP	Z	4.975	4.975	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F.		End Location[ft.%]
1	<u>M1</u>	X	-3.231	-3.231	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	-15.711	-15.711	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	-15.711	-15.711	0	%100
6	M3	Z	0	0	0	%100
7	M7	X	-15.711	-15.711	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M13	X	-15.711	-15.711	0	%100
12	M13	Z	0	0	0	%100
13	FACE	X	0	0	0	%100
14	FACE	Z	0	0	0	%100
15	M10	X	-4.416	-4.416	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	-12.926	-12.926	0	%100
18	M11	Z	0	0	0	%100
19	M14	X	-3.231	-3.231	0	%100
20	M14	Z	0	0	0	%100
21	MP1A	X	-9.951	-9.951	0	%100
22	MP1A	Z	0	0	0	%100
23	MP2A	X	-9.951	-9.951	0	%100
24	MP2A	Z	0	0	0	%100
25	MP3A	X	-9.951	-9.951	0	%100
26	MP3A	Z	0	0	0	%100
27	MP4A	X	-9.951	-9.951	0	%100
28	MP4A	Z	0	0	0	%100
29	MP1C	X	-9.951	-9.951	0	%100
30	MP1C	Z	0	0	0	%100
31	MP2C	X	-9.951	-9.951	0	%100
32	MP2C	Z	0	0	0	%100
33	MP3C	X	-9.951	-9.951	0	%100
34	MP3C	Z	0	0	0	%100
35	MP4C	X	-9.951	-9.951	0	%100
36	MP4C	Z	0	0.001	0	%100
37	MP1B	X	-9.951	-9.951	0	%100
38	MP1B	Z	0	0	Ö	%100
39	MP2B	X	-9.951	-9.951	0	%100 %100
40	MP2B	7	0	0	0	%100
41	MP3B	X	-9.951	-9.951	0	%100 %100
42	MP3B	Z	0	0	0	%100
43	MP4B	X	-9.951	-9.951	0	%100 %100
44	MP4B	Ž	0	0	0	%100 %100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
45 M47	X	-17.663	-17.663	0	%100
46 M47	Z	0	0	0	%100
47 M48	X	-4.416	-4.416	0	%100
48 M48'	Z	0	0	0	%100
49 M49	X	0	0	0	%100
50 M49	Z	0	0	0	%100
51 M64	X	0	0	0	%100
52 M64	Z	0	0	0	%100
53 M72	X	0	0	0	%100
54 M72	Z	0	0	0	%100
55 M58	X	-9.034	-9.034	0	%100
56 M58	Z	0	0	0	%100
57 M65	X	-9.034	-9.034	0	%100
58 M65	7	0.00	0	0	%100
59 M66	X	-9.034	-9.034	0	%100
	Z	0.001	0	0	%100
	X	-9.034	-9.034	0	%100
	Z	0	0	0	%100
	X	-9.034	-9.034	0	%100
	Z	0	0	0	%100
64 M74	X	-9.034	-9.034	0	%100
65 M75	Ž	-9.054	0.007	0	%100
66 M75	X	-11.481	-11.481	0	%100
67 M76	Ž	0	0	0	%100
68 M76		-11.481	-11.481	0	%100
69 M77	X	-11.401	0	Ö	%100
70 M77	Z	0	0	0	%100
71 M78	X	0	0	0	%100
72 M78	Z		-2.565	0	%100
73 M79	X	-2.565	-2.505	0	%100 %100
74 M79	Z	0	-10.259	0	%100 %100
75 M80	X	-10.259		0	%100
76 M80	Z	0	0		%100 %100
77 M81	X	-2.565	-2.565	0	%100 %100
78 M81	Z	0	0	0	%100 %100
79 OVP	X	-9.951	-9.951	0	
80 OVP	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
4	M1	X	0	0	0	%100
2	M1	7	0	0	0	%100
3	M2	X	-18.142	-18.142	0	%100
4	M2	7	-10.474	-10.474	0	%100
5	M3	X	-18.142	-18.142	0	%100
6	M3	7	-10.474	-10.474	0	%100
7	M7	X	-4.536	-4.536	0	%100
8	M7	7	-2.619	-2.619	0	%100
9	M9	X	-4.536	-4.536	0	%100
10	M9	7	-2.619	-2.619	0	%100
11	M13	X	-4.536	-4.536	0	%100
12	M13	7	-2.619	-2.619	0	%100
13	FACE	X	-4.536	-4.536	0	%100
14	FACE	7	-2.619	-2.619	0	%100
15	M10	X	0	0	0	%100
16	M10	7	0	0	0	%100
17	M11	X	-8.395	-8.395	0	%100

: Colliers Engineering & Design

: 5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

40	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
18	M11	Z	-4.847	-4.847	0	%100
19	M14	X	-8.395	-8.395	0	%100
20	M14	Z	-4.847	-4.847	.0	%100
21	MP1A	X	-8.617	-8.617	0	%100
22	MP1A	Z	-4.975	-4.975	0	%100
23	MP2A	X	-8.617	-8.617	0	%100
24	MP2A	Z	-4.975	-4.975	0	%100
25	MP3A	X	-8.617	-8.617	0	%100
26	MP3A	Z	-4.975	-4.975	0	%100
27	MP4A	X	-8.617	-8.617	0	%100
28	MP4A	Z	-4.975	-4.975	0	%100
29	MP1C	X	-8.617	-8.617	0	%100
30	MP1C	Z	-4.975	-4.975	0	%100
31	MP2C	X	-8.617	-8.617	0	%100
32	MP2C	Z	-4.975	-4.975	0	%100
33	MP3C	X	-8.617	-8.617	0	%100
34	MP3C	Z	-4.975	-4.975	0	%100
35	MP4C	X	-8.617	-8.617	0	%100
36	MP4C	Z	-4.975	-4.975	0	%100
37	MP1B	X	-8.617	-8.617	0	%100
38	MP1B	Z	-4.975	-4.975	Ö	%100
39	MP2B	X	-8.617	-8.617	0	%100
40	MP2B	Z	-4.975	-4.975	0	%100
41	MP3B	X	-8.617	-8.617	Ö	%100
42	MP3B	Z	-4.975	-4.975	Ö	%100
43	MP4B	X	-8.617	-8.617	0	%100
44	MP4B	Z	-4.975	-4.975	Ö	%100
45	M47	X	-11.472	-11.472	0	%100 %100
46	M47	Z	-6.623	-6.623	Ö	%100
47	M48	X	-11,472	-11.472	0	%100 %100
48	M48	Z	-6.623	-6.623	Ö	%100
49	M49	X	-2.608	-2.608	Ö	%100 %100
50	M49	Z	-1.506	-1.506	0	%100 %100
51	M64	X	-2.608	-2.608	Ö	%100 %100
52	M64	Z	-1.506	-1.506	Ö	%100 %100
53	M72	X	-2.608	-2.608	0	%100 %100
54	M72	Z	-1.506	-1.506	0	%100 %100
55	M58	X	-2.608	-2.608	0	%100 %100
56	M58	Z	-1.506	-1.506	0	%100 %100
57	M65	X	-2.608	-2.608	0	%100 %100
58	M65	Z	-1.506	-1.506	0	%100 %100
59	M66	X	-2.608	-2.608	0	%100 %100
60	M66	Z	-1.506	-1.506	0	%100
61	M67	X	-10.432	-10.432	0	%100 %100
62	M67	Z	-6.023	-6.023	0	%100 %100
63	M74	X	-10.432	-10.432	0	%100 %100
64	M74	Z	-6.023	-6.023	0	
65	M75	X	-10.432	-10.432	0	%100 %100
66	M75	Ž	-6.023	-6.023	0	
67	M76	X	-3.314	-3.314	0	%100 %100
68	M76	Ž	-1.914	-1.914		%100 %100
69	M77	X	-13.257		0	%100 %100
70	M77	Z	-13.257	-13.257	0	%100
71	M78			-7.654	0	%100
72	M78	Z	-3.314	-3.314	0	%100
73	M79	X	-1.914	-1.914	0	%100
144	M79	Z	0	0	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

t,%] End Location[ft,%]
%100
%100
%100
%100
%100
%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

Mem	ber Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.616	-1.616	0	%100
2	M1	Z	-2.798	-2.798	0	%100
3	M2	X	-7.856	-7.856	0	%100
4	M2	Z	-13.607	-13.607	0	%100
5	M3	X	-7.856	-7.856	0	%100
6	M3	Z	-13.607	-13.607	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	-7.856	-7.856	0	%100
10	M9	Z	-13.607	-13.607	0	%100
11	M13	X	0	0	0	%100
	M13	Z	0	0	0	%100
	ACE	X	-7.856	-7.856	0	%100
	ACE	Z	-13.607	-13.607	0	%100
	M10	X	-2.208	-2.208	0	%100
	M10	Z	-3.824	-3.824	0	%100
	M11	X	-1.616	-1.616	0	%100
	M11	Z	-2.798	-2.798	0	%100
	M14	X	-6.463	-6.463	0	%100
	M14	Z	-11.194	-11.194	0	%100
	MP1A	X	-4.975	-4.975	0	%100
	MP1A	Z	-8.617	-8.617	0	%100
23 N	MP2A	X	-4.975	-4.975	0	%100
24 N	MP2A	Z	-8.617	-8.617	0	%100
	MP3A	X	-4.975	-4.975	0	%100
	MP3A	Z	-8.617	-8.617	0	%100
	MP4A	X	-4.975	-4.975	0	%100
	MP4A	Z	-8.617	-8.617	0	%100
	MP1C	X	-4.975	-4.975	0	%100
	MP1C	Z	-8.617	-8.617	0	%100
	MP2C	X	-4.975	-4.975	0	%100
	MP2C	Z	-8.617	-8.617	0	%100
	MP3C	X	-4.975	-4.975	0	%100
	MP3C	Ž	-8.617	-8.617	0	%100
	MP4C	X	-4.975	-4.975	0	%100
	MP4C	Z	-8.617	-8.617	0	%100
	MP1B	X	-4.975	-4.975	0	%100
	MP1B	Z	-8.617	-8.617	0	%100
	MP1B MP2B	X	-4.975	-4.975	0	%100
		Z	-8.617	-8.617	0	%100
	MP2B	X	-4.975	-4.975	0	%100
	MP3B	Z	-8.617	-8.617	0	%100
	MP3B	X	-4.975	-4.975	0	%100
	MP4B	Ž	-8.617	-8.617	Ö	%100
	MP4B		-2.208	-2.208	0	%100
	M47	X Z	-3.824	-3.824	0	%100
	M47	X	-8.831	-8.831	0	%100
47	M48		-0.031	-0.001		

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
48	M48	Z	-15.296	-15.296	0	%100
49	M49	X	-4.517	-4.517	0	%100
50	M49	Z	-7.824	-7.824	0	%100
51	M64	X	-4.517	-4.517	0	%100
52	M64	Z	-7.824	-7.824	0	%100
53	M72	X	-4.517	-4.517	0	%100
54	M72	Z	-7.824	-7.824	0	%100
55	M58	X	0	0	0	%100
56	M58	Z	0	0	0	%100
57	M65	X	0	Ö	Ö	%100
58	M65	Z	0	0	0	%100
59	M66	X	0	Ů.	Ō	%100
60	M66	Z	0	Ö	0	%100
61	M67	X	-4.517	-4.517	0	%100
62	M67	Z	-7.824	-7.824	0	%100
63	M74	X	-4.517	-4.517	Ō	%100
64	M74	Z	-7.824	-7.824	Ö	%100
65	M75	X	-4.517	-4.517	Ō	%100
66	M75	Z	-7.824	-7.824	Ö	%100
67	M76	X	0	0	Ŏ	%100
68	M76	Z	Ŏ	Ŏ	0	%100
69	M77	X	-5.741	-5.741	Ö.	%100
70	M77	Z	-9.943	-9.943	Ŏ -	%100
71	M78	X	-5.741	-5.741	Ö	%100
72	M78	Z	-9.943	-9.943	Ŏ	%100
73	M79	X	-1.282	-1.282	0	%100 %100
74	M79	Z	-2.221	-2.221	Ŏ	%100
75	M80	X	-1.282	-1.282	Ö	%100
76	M80	Z	-2.221	-2.221	Ö	%100
77	M81	X	-5.129	-5.129	Ö	%100 %100
78	M81	Z	-8.884	-8.884	0	%100 %100
79	OVP	X	-4.975	-4.975	0	%100 %100
80	OVP	Z	-8.617	-8.617	0	%100 %100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft.%]
1	M1	X	0	0	0	%100
2	M1	Z	-2.694	-2.694	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-1.328	-1.328	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	-1.328	-1.328	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	-1.328	-1.328	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	-5.312	-5.312	0	%100
11	M13	X	0	0	0	%100
12	M13	Z	-1.328	-1.328	0	%100
13	FACE	X	0	0	0	%100
14	FACE	Z	-5.312	-5.312	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	-3.447	-3.447	0	%100
17	M11	X	0	0	0	%100
18	M11	Z	0	0	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	-2.694	-2.694	0	%100

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%] %100
21	MP1A	X	0	0 100	0	%100 %100
22	MP1A	Z	-3.403	-3.403	0	%100 %100
23	MP2A	X	0	0	0	%100 %100
24	MP2A	Z	-3.403	-3.403	0	%100 %100
25	MP3A	X	0	0	0	%100 %100
26	MP3A	Z	-3.403	-3.403		%100 %100
27	MP4A	X	0	0	0	%100 %100
28	MP4A	Z	-3.403	-3.403	0	
29	MP1C	X	0	0	0	%100 %100
30	MP1C	Z	-3.403	-3.403	0	
31	MP2C	X	0	0	0	%100 %100
32	MP2C	Z	-3.403	-3.403	0	%100
33	MP3C	X	0	0	0	%100
34	MP3C	Z	-3.403	-3.403	0	%100
35	MP4C	X	0	0	0	%100 %100
36	MP4C	Z	-3.403	-3.403	0	%100
37	MP1B	X	0	0	0	%100
38	MP1B	Z	-3.403	-3.403	0	%100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	-3.403	-3.403	0	%100
41	MP3B	X	0	0	0	%100
42	MP3B	Z	-3.403	-3.403	0	%100
43	MP4B	X	0	0	0	%100
44	MP4B	Z	-3.403	-3.403	0	%100
45	M47	X	0	0	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	0	0	0	%100
48	M48	Z	-3.447	-3.447	0	%100
49	M49	X	0	0	0	%100
50	M49	Z	-3.767	-3.767	0	%100
51	M64	X	0	0	0	%100
52	M64	Z	-3.767	-3.767	0	%100
53	M72	X	0	0	0	%100
54	M72	Z	-3.767	-3.767	0	%100
55	M58	X	0	0	0	%100
56	M58	Z	942	942	0	%100
57	M65	X	0	0	0	%100
58	M65	Z	942	942	0	%100
59	M66	X	0	0	0	%100
60	M66	Z	942	942	0	%100
61	M67	X	0	0	0	%100
62	M67	Z	942	942	0	%100
63	M74	X	0	0	0	%100
64	M74	Z	942	942	0	%100
65	M75	X	0	0	0	%100
66	M75	Z	942	942	0	%100
67	M76	X	0	0	0	%100
68	M76	Z	979	979	0	%100
69	M77	X	0	0	0	%100
70	M77	Z	979	979	0	%100
71	M78	X	0	0	0	%100
72	M78	Z	-3.915	-3.915	0	%100
73	M79	X	0	0	0	%100
74	M79	Z	-2.346	-2.346	0	%100
75	M80	X	0	0	0	%100
76	M80	Z	Ö	0	0	%100
77	M81	X	0	0	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude(lb/ft,F.,	Start Location[ft,%]	End Location[ft.%]
78	M81	Z	-2.346	-2.346	0	%100
79	OVP	X	0	0	0	%100
80	OVP	Z	-3.403	-3,403	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

r . r	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	1.796	1.796	0	%100
2	M1	Z	-3.11	-3.11	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	0	0	0	%100
7	M7	X	1.992	1.992	0	%100
8	M7	Z	-3.45	-3.45	0	%100
9	M9	X	1.992	1.992	0	%100
10	M9	Z	-3.45	-3.45	0	%100
11	M13	X	1.992	1.992	0	%100
12	M13	Z	-3.45	-3.45	0	%100
13	FACE	X	1.992	1.992	0	%100
14	FACE	Z	-3.45	-3.45	0	%100
15	M10	X	2.298	2.298	0	%100
16	M10	Z	-3,98	-3.98	0	%100
17	M11	X	.449	.449	0	%100
18	M11	Z	778	778	0	%100
19	M14	X	.449	.449	0	%100
20	M14	Z	778	778	Ö	%100
21	MP1A	X	1.701	1.701	0	%100 %100
22	MP1A	Z	-2.947	-2.947	Ö	%100 %100
23	MP2A	X	1.701	1.701	0	%100 %100
24	MP2A	Z	-2.947	-2.947	0	%100
25	MP3A	X	1.701	1.701	0	%100
26	MP3A	Z	-2.947	-2.947	Ö	%100 %100
27	MP4A	X	1.701	1.701	Ö	%100
28	MP4A	Z	-2.947	-2.947	Ö	%100
29	MP1C	X	1.701	1.701	0	%100 %100
30	MP1C	Z	-2.947	-2.947	0	%100 %100
31	MP2C	X	1.701	1.701	0	%100 %100
32	MP2C	Z	-2.947	-2.947	Ö	%100 %100
33	MP3C	X	1.701	1.701	0	%100 %100
34	MP3C	Z	-2.947	-2.947	0	%100 %100
35	MP4C	X	1.701	1.701	Ö	%100 %100
36	MP4C	Z	-2.947	-2.947	0	%100 %100
37	MP1B	X	1.701	1.701	0	%100 %100
38	MP1B	Z	-2.947	-2.947	0	%100 %100
39	MP2B	X	1.701	1.701	0	%100 %100
40	MP2B	Z	-2.947	-2.947	Ö	%100 %100
41	MP3B	X	1.701	1.701	0	%100 %100
42	MP3B	Z	-2.947	-2.947	0	%100
43	MP4B	X	1.701	1.701	0	%100 %100
44	MP4B	Z	-2.947	-2.947	0	
45	M47	X	.575	.575	0	%100
46	M47	Ž	995	995	0	%100
47	M48	X	.575			%100
48	M48	Ž	995	.575 995	0	%100
49	M49	X	1.413		0	%100
50	M49	Ż	-2.447	1.413 -2.447	0	%100 %100

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

Member Labe	I Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
51 M64	X	1.413	1.413	0	%100
52 M64	Z	-2.447	-2.447	0	%100
53 M72	X	1.413	1.413	0	%100
54 M72	Z	-2.447	-2.447	0	%100
55 M58	X	1.413	1.413	0	%100
56 M58	Z	-2.447	-2.447	0	%100
57 M65	X	1.413	1,413	0	%100
58 M65	Z	-2.447	-2.447	0	%100
	X	1.413	1.413	0	%100
	Ž	-2.447	-2.447	0	%100
	X	0	0	0	%100
· .	Z	0	0	0	%100
	X	0	0	0	%100
	Ž	0	0	0	%100
0 1	X	Ů,	0	0	%100
65 M75 66 M75	7	0	0	0	%100
	X	1.468	1.468	0	%100
67 M76	Ž	-2.543	-2.543	0	%100
68 <u>M76</u>	X	0	0	0	%100
69 M77	Z	0	Ŏ	0	%100
70 M77	X	1.468	1.468	0	%100
71 M78	7	-2.543	-2.543	0	%100
72 M78	X	1.564	1.564	Ō	%100
73 M79	7	-2.709	-2.709	0	%100
74 M79		.391	.391	0	%100
75 M80	X		677	Ŏ	%100
76 M80	Z	677	.391	0	%100
77 M81	X	.391	677	0	%100
78 M81	Z	677	1.701	0	%100
79 OVP	X	1.701	-2.947	0	%100
80 OVP	Z	-2.947	-2.941	U	/0100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitudellb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	2.333	2.333	0	%100
2	M1	7	-1.347	-1.347	0	%100
3	M2	X	1.15	1.15	0	%100
4	M2	7	664	664	0	%100
	M3	X	1.15	1.15	0	%100
5	M3	7	664	664	0	%100
7	M7	X	4.601	4.601	0	%100
	M7	7	-2.656	-2.656	0	%100
8		X	1.15	1.15	0	%100
9	M9 M9	7	664	664	0	%100
10		X	4.601	4,601	0	%100
11	M13	7	-2.656	-2.656	0	%100
12	M13	X	1.15	1.15	0	%100
13	FACE	7	664	664	0	%100
14	FACE	X	2.985	2.985	0	%100
15	M10	7	-1.724	-1.724	0	%100
16	M10		2.333	2.333	0	%100
17	M11	X		-1.347	0	%100
18	M11	Z	-1.347	-1.547	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	0		0	%100
21	MP1A	X	2.947	2.947	0	%100
22	MP1A	Z	-1.701	-1.701	0	%100 %100
23	MP2A	X	2.947	2.947	U	76100

Colliers Engineering & Design

: 5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F.	Start Location[ft.%]	End Location[ft,%]
24	MP2A	Z	-1,701	-1.701	0	%100
25	MP3A	X	2.947	2.947	0	%100
26	MP3A	Z	-1.701	-1.701	0	%100
27	MP4A	X	2.947	2.947	0	%100
28	MP4A	Z	-1.701	-1.701	0	%100
29	MP1C	X	2.947	2.947	0	%100
30	MP1C	Z	-1.701	-1.701	0	%100
31	MP2C	X	2.947	2.947	0	%100
32	MP2C	Z	-1.701	-1.701	0	%100
33	MP3C	X	2.947	2.947	0	%100
34	MP3C	Z	-1.701	-1.701	Ö	%100
35	MP4C	X	2.947	2.947	0	%100 %100
36	MP4C	Z	-1.701	-1.701	0	%100
37	MP1B	X	2.947	2.947	0	%100
38	MP1B	Z	-1.701	-1.701	0	%100 %100
39	MP2B	X	2.947	2.947	0	%100 %100
40	MP2B	Z	-1.701	-1.701	0	%100 %100
41	MP3B	X	2.947	2.947	0	%100 %100
42	MP3B	Z	-1.701	-1.701	0	%100 %100
43	MP4B	X	2.947	2.947	0	%100 %100
44	MP4B	Z	-1.701	-1.701	Ö	%100 %100
45	M47	X	2.985	2.985	0	%100 %100
46	M47	Z	-1.724	-1.724	0	%100 %100
47	M48	X	0	0	0	%100 %100
48	M48	Z	0	0	0	
49	M49	X	.816	.816	0	%100
50	M49	Z	471	471	0	%100
51	M64	X	.816	.816		%100
52	M64	Ž	471	471	0	%100
53	M72	X	.816	.816	0	%100
54	M72	Ž	471		0	%100
55	M58	X	3.262	471	0	%100
56	M58	Z	-1.883	3.262	0	%100
57	M65	X	3.262	-1.883	0	%100
58	M65	Ž	-1.883	3.262	0	%100
59	M66	X	3.262	-1.883	0	%100
60	M66	Z	-1.883	3.262	0	%100
61	M67	X	.816	-1.883	0	%100
62	M67	Z	471	.816	0	%100
63	M74	X	.816	471 .816	0	%100
64	M74	Ž	471	471	0	%100
65	M75	X	.816	.816	0	%100
66	M75	7	471		0	%100
67	M76	X		471	0	%100
68	M76	Ž	3.39	3.39	0	%100
69	M77	X	-1.957	-1.957	0	%100
70	M77	Z	.848	.848	0	%100
71	M78	X	489	489	0	%100
72	M78		.848	.848	0	%100
73	M79	Z	489	489	0	%100
74	M79	X	2.032	2.032	0	%100
75		Z	-1.173	-1.173	0	%100
	M80	X	2.032	2.032	0	%100
76	M80	Z	-1.173	-1.173	0	%100
77 78	M81	X	0	0	0	%100
	M81	Z	0	0	0	%100
79 80	OVP	X	2.947	2.947	0	%100
OU	OVP	Z	-1.701	-1.701	0	%100

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 56: Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%
1	M1	X	.898	.898	0	%100 %100
2	M1	Z	0	0	0	%100
3	M2	X	3.984	3.984	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	3.984	3.984	0	%100
6	M3	Z	0	0	0	%100
7	M7	X	3.984	3.984	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M13	X	3.984	3.984	0	%100
12	M13	Z	0	0	0	%100
13	FACE	X	0	0	0	%100
14	FACE	Z	0	0	0	%100
15	M10	X	1.149	1.149	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	3.592	3.592	0	%100
18	M11	Z	0	0	0	%100
19	M14	X	.898	.898	0	%100
20	M14	Z	0	0	0	%100
21	MP1A	X	3.403	3.403	0	%100
22	MP1A	Z	0	0	0	%100
23	MP2A	X	3.403	3.403	0	%100
	MP2A	Ž	0.100	0	0	%100
24	MP3A	X	3.403	3.403	0	%100
25		Z	0.400	0	0	%100
26	MP3A	X	3.403	3.403	0	%100
27	MP4A	Z	0	0	0	%100
28	MP4A	X	3.403	3.403	0	%100
29	MP1C	Ž	0	0.100	0	%100
30	MP1C	X	3.403	3.403	0	%100
31	MP2C	Z	0	0	Ö	%100
32	MP2C	X	3.403	3.403	0	%100
33	MP3C		0	0	0	%100
34	MP3C	Z		3.403	0	%100
35	MP4C	X	3.403	0	0	%100
36	MP4C	Z		3.403	0	%100
37	MP1B	X	3.403	0	0	%100
38	MP1B	Z	0	3.403	0	%100
39	MP2B	<u> </u>	3.403	0	0	%100
40	MP2B	Z	0	3.403	0	%100
41	MP3B	X	3.403		0	%100
42	MP3B	Z	0	3 403	0	%100
43	MP4B	X	3.403	3.403	0	%100
44	MP4B	Z	0	0	0	%100 %100
45	M47	X	4.596	4.596		%100 %100
46	M47	Z	0	0	0	%100 %100
47	M48	X	1.149	1.149	0	%100 %100
48	M48	Z	0	0	0	
49	M49	X	0	0	0	%100
50	M49	Z	0	0	0	%100
51	M64	X	0	0	0	%100
52	M64	Z	0	0	0	%100
53	M72	X	0	0	0	%100
54	M72	Z	0	0	0	%100
55	M58	X	2.825	2.825	0	%100
56	M58	Z	0	0	0	%100
57	M65	X	2.825	2.825	0	%100

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	M65	Z	0	0	0	%100
59	M66	X	2.825	2.825	0	%100
60	M66	Z	0	0	0	%100
61	M67	X	2.825	2.825	0	%100
62	M67	Z	0	0	0	%100
63	M74	X	2.825	2.825	0	%100
64	M74	Z	0	0	0	%100
65	M75	X	2.825	2.825	0	%100
66	M75	Z	0	0	0	%100
67	M76	X	2.936	2.936	0	%100
68	M76	Z	0	0	0	%100
69	M77	X	2.936	2.936	0	%100
70	M77	Z	0	0	0	%100
71	M78	X	0	0	0	%100
72	M78	Z	0	0	0	%100
73	M79	X	.782	.782	0	%100
74	M79	Z	0	0	0	%100
75	M80	X	3.129	3,129	0	%100
76	M80	Z	0	0	0	%100
77	M81	X	.782	.782	0	%100
78	M81	Z	0	0	0	%100
79	OVP	X	3.403	3.403	0	%100
80	OVP	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	4.601	4.601	0	%100
4	M2	Z	2.656	2.656	0	%100
5	M3	X	4.601	4.601	0	%100
6	M3	Z	2.656	2.656	0	%100
7	M7	X	1.15	1.15	0	%100
8	M7	Z	.664	.664	0	%100
9	M9	X	1.15	1.15	0	%100
10	M9	Z	.664	.664	0	%100
11	M13	X	1.15	1.15	0	%100
12	M13	Z	.664	.664	0	%100
13	FACE	X	1.15	1.15	0	%100
14	FACE	Z	.664	.664	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	Ö	0	%100
17	M11	X	2.333	2.333	0	%100
18	M11	Z	1.347	1.347	0	%100
19	M14	X	2.333	2.333	0	%100
20	M14	Z	1.347	1.347	0	%100
21	MP1A	X	2.947	2.947	0	%100
22	MP1A	Z	1.701	1.701	0	%100
23	MP2A	X	2.947	2.947	0	%100
24	MP2A	Z	1.701	1.701	0	%100
25	MP3A	X	2.947	2.947	0	%100
26	MP3A	Z	1.701	1.701	Ö	%100
27	MP4A	X	2.947	2.947	0	%100
28	MP4A	Z	1.701	1.701	0	%100
29	MP1C	X	2.947	2.947	0	%100
30	MP1C	Z	1.701	1.701	0	%100

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

Me	ember Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F		End Location[ft,%
31	MP2C	X	2.947	2.947	0	%100
32	MP2C	Z	1.701	1.701	0	%100
33	MP3C	X	2.947	2.947	0	%100
34	MP3C	Z	1.701	1.701	0	%100
35	MP4C	X	2.947	2.947	0	%100
36	MP4C	Z	1.701	1.701	0	%100
37	MP1B	X	2.947	2.947	0	%100
38	MP1B	Z	1.701	1.701	0	%100
39	MP2B	X	2.947	2.947	0	%100
40	MP2B	Z	1.701	1.701	0	%100
41	мР3В	X	2.947	2.947	0	%100
42	мР3В	Z	1.701	1.701	0	%100
43	MP4B	X	2.947	2.947	0	%100
44	MP4B	Z	1.701	1.701	0	%100
45	M47	X	2.985	2.985	0	%100
46	M47	Z	1.724	1.724	0	%100
47	M48	X	2.985	2.985	0	%100
48	M48	Z	1.724	1.724	0	%100
49	M49	X	.816	.816	0	%100
50	M49	Z	.471	.471	0	%100
51	M64	X	.816	.816	0	%100
52	M64	Z	.471	.471	0	%100
53	M72	X	.816	.816	0	%100
54	M72	Z	.471	.471	0	%100
55	M58	X	.816	.816	0	%100
56	M58	Z	.471	.471	0	%100
57	M65	X	.816	.816	0	%100
58	M65	Z	.471	.471	0	%100
59	M66	X	.816	.816	0	%100
60	M66	Z	.471	.471	0	%100
61	M67	X	3.262	3.262	0	%100
62	M67	Z	1.883	1.883	0	%100
63	M74	X	3.262	3.262	0	%100
64	M74	Z	1.883	1.883	0	%100
65	M75	X	3.262	3.262	0	%100
66	M75	Ž	1.883	1.883	0	%100
67	M76	X	.848	.848	0	%100
68	M76	Z	.489	.489	0	%100
69	M77	X	3.39	3.39	0	%100
70	M77	Z	1.957	1.957	0	%100
71	M78	X	.848	.848	0	%100
72	M78	Z	.489	.489	0	%100
73	M79	X	0	0	0	%100
74	M79	Z	0	0	0	%100
75	M80	X	2.032	2.032	0	%100
76	M80	Z	1.173	1.173	0	%100
77	M81	X	2.032	2.032	0	%100
78	M81	Z	1.173	1.173	0	%100
79	OVP	X	2.947	2.947	0	%100
80	OVP	Z	1.701	1.701	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.449	.449	0	%100
2	M1	7	.778	.778	0	%100
3	M2	X	1.992	1.992	0	%100

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 58: Structure Wi (150 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F.,		End Location[ft,%]
4	M2	Z	3.45	3.45	0	%100
5	M3	X	1.992	1.992	0	%100
6	M3	Z	3,45	3.45	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	1.992	1.992	0	%100
10	M9	Z	3.45	3.45	0	%100
11	M13	X	0	0	0	%100
12	M13	Z	0	0	0	%100
13	FACE	X	1.992	1.992	0	%100
14	FACE	Z	3.45	3.45	0	%100
15	M10	X	.575	.575	0	%100
16	M10	Z	.995	.995	0	%100
17	M11	X	.449	.449	0	%100
18	M11	Z	.778	.778	0	%100
19	M14	X	1.796	1.796	0	%100
20	M14	Z	3.11	3.11	0	%100
21	MP1A	X	1.701	1.701	0	%100
22	MP1A	Z	2.947	2.947	0	%100
23	MP2A	X	1.701	1.701	0	%100
24	MP2A	Z	2.947	2.947	0	%100
25	MP3A	X	1.701	1.701	0	%100
26	MP3A	Z	2.947	2.947	0	%100
27	MP4A	X	1.701	1.701	0	%100
28	MP4A	Z	2.947	2.947	0	%100
29	MP1C	X	1.701	1.701	0	%100
30	MP1C	Z	2.947	2.947	0	%100
31	MP2C	X	1.701	1.701	0	%100
32	MP2C	Z	2.947	2.947	0	%100
33	MP3C	X	1.701	1.701	0	%100
34	MP3C	Z	2.947	2.947	0	%100
35	MP4C	X	1.701	1.701	0	%100
36	MP4C	Z	2.947	2.947	0	%100
37	MP1B	X	1.701	1.701	0	%100
38	MP1B	Z	2.947	2.947	0	%100
39	MP2B	X	1.701	1.701	0	%100
40	MP2B	Z	2.947	2.947	0	%100
41	MP3B	X	1.701	1.701	0	%100
42	MP3B	Z	2.947	2.947	0	%100
43	MP4B	X	1.701	1.701	0	%100
44	MP4B	Z	2.947	2.947	0	%100
45	M47	X	.575	.575	0	%100
46	M47	Z	.995	.995	0	%100
47	M48	X	2.298	2.298	0	%100
48	M48	Z	3.98	3.98	0	%100
49	M49	X	1.413	1.413	0	%100
50	M49	Z	2.447	2.447	0	%100
51	M64	X	1.413	1.413	0	%100
52	M64	Z	2.447	2.447	0	%100
53	M72	X	1.413	1.413	0	%100
54	M72	Z	2.447	2.447	0	%100
55	M58	X	0	0	0	%100
56	M58	Z	0	0	0	%100
57	M65	X	0	0	0	%100
58	M65	Z	0	Ö	Ö	%100
59	M66	X	0	0	0	%100 %100
60	M66	Z	0	Ö	Ö	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

· · · · · · ·	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F	Start Location[ft,%]	End Location[ft,%]
61	M67	T X	1.413	1.413	0	%100
	M67	7	2.447	2.447	0	%100
62		Y	1.413	1.413	0	%100
63	M74	+ 2	2.447	2.447	0	%100
64	M74	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1.413	1.413	0	%100
65	M75			2.447	Ô	%100
66	M75		2.447	2.447	0	%100
67	M76	X	0	<u> </u>	0	%100 %100
68	M76	Z	0	0	0	%100 %100
69	M77	X	1.468	1.468	0	
70	M77	Z	2.543	2.543	0	%100
71	M78	X	1.468	1.468	0	%100
72	M78	7	2.543	2.543	0	%100
73	M79	X	.391	.391	0	%100
	M79	7	.677	.677	0	%100
74		V	.391	.391	0	%100
75	M80	7	.677	.677	0	%100
76	M80	- -	1.564	1.564	0	%100
77	M81	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2.709	0	%100
78	M81		2.709		0	%100
79	OVP	X	1.701	1.701		%100
80	OVP	Z	2.947	2.947	0	/6100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%
1	Member Label	X	0	0	0	%100
2	M1	Z	2.694	2.694	0	%100
3	M2	X	0	0	0	%100
	M2	Z	1,328	1.328	0	%100
4	M3	X	0	0	0	%100
5	M3	Ž	1.328	1.328	0	%100
6	M7	X	0	0	0	%100
7		Z	1.328	1.328	0	%100
8	M7	X	0	0	0	%100
9	M9	Z	5.312	5.312	0	%100
10	M9	X	0.012	0	0	%100
11	M13	Ž	1.328	1.328	0	%100
12	M13		0	0	0	%100
13	FACE	Z	5.312	5.312	0	%100
14	FACE		0.312	0	0	%100
15	M10	X		3.447	0	%100
16	M10	Z	3.447	0	0	%100
17	M11	X	0		0	%100
18	M11	Z	0	0	0	%100 %100
19	M14	X	0	0	0	%100 %100
20	M14	Z	2.694	2.694		%100 %100
21	MP1A	X	0	0	0	%100 %100
22	MP1A	Z	3.403	3.403	0	
23	MP2A	X	0	0	0	%100
24	MP2A	Z	3.403	3.403	0	%100
25	MP3A	X	0	0	0	%100
26	MP3A	Z	3.403	3.403	0	%100
27	MP4A	X	0	0	0	%100
28	MP4A	Z	3.403	3.403	0	%100
29	MP1C	X	0	0	0	%100
30	MP1C	Z	3.403	3.403	0	%100
31	MP2C	X	0	0	0	%100
	MP2C	Z	3,403	3.403	0	%100
32 33	MP3C	X	0,700	0	0	%100

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Distributed Loads (BLC 59: Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
34	MP3C	Z	3.403	3.403	0	%100
35	MP4C	X	0	0	0	%100
36	MP4C	Z	3.403	3,403	0	%100
37	MP1B	X	0	0	0	%100
38	MP1B	Z	3.403	3.403	0	%100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	3.403	3.403	0	%100
41	MP3B	X	0	0	0	%100
42	MP3B	Z	3,403	3.403	0	%100
43	MP4B	X	0	0	0	%100
44	MP4B	Z	3.403	3.403	0	%100
45	M47	X	0	- 0	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	0	Ö	0	%100 %100
48	M48	Z	3.447	3.447	ů ů	%100 %100
49	M49	X	0	0	0	%100 %100
50	M49	Z	3.767	3.767	Ö	%100 %100
51	M64	X	0	0.707	0	%100 %100
52	M64	Z	3.767	3.767	0	%100 %100
53	M72	X	0	0	0	%100 %100
54	M72	Z	3.767	3.767	0	%100 %100
55	M58	X	0	0.707	0	%100 %100
56	M58	Ž	.942	.942	0	%100 %100
57	M65	X	0	0	0	%100 %100
58	M65	Z	.942	.942	ů o	%100 %100
59	M66	X	0	0	0	%100 %100
60	M66	Z	.942	.942	0	%100 %100
61	M67	X	0	0	0	%100 %100
62	M67	Z	.942	.942	0	%100 %100
63	M74	X	0	0	0	%100 %100
64	M74	Z	.942	.942	0	%100 %100
65	M75	X	0	0	0	%100 %100
66	M75	Z	.942	.942	0	%100 %100
67	M76	X	0	0	0	%100 %100
68	M76	Z	.979	.979	0	%100 %100
69	M77	X	0	0	0	%100 %100
70	M77	Z	.979	.979	0	%100 %100
71	M78	X	0	.979	0	%100 %100
72	M78	Z	3.915	3.915	0	%100 %100
73	M79	X	0	0.915	0	%100 %100
74	M79	Z	2.346	2.346	0	
75	M80	X	2.340	0	0	%100 %100
76	M80	Z	0	0		%100
77	M81	X	0	0	0	%100
78	M81	Z	2.346		0	%100
79	OVP	X		2.346	0	%100
80	OVP	7	0	0	0	%100
00	OVE		3.403	3.403	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1	M1	X	-1.796	-1.796	0	%100
2	M1	Z	3.11	3.11	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	0	0	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:___

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
7	M7	X	-1.992	-1.992	0	%100
8	M7	Z	3.45	3.45	0	%100
9	M9	X	-1.992	-1.992	0	%100
10	M9	Z	3.45	3.45	0	%100
	M13	X	-1.992	-1.992	0	%100
11	M13	Z	3.45	3.45	0	%100
12		X	-1.992	-1.992	0	%100
13	FACE	Ž	3.45	3.45	0	%100
14	FACE	X	-2.298	-2.298	0	%100
15	M10	Ž	3.98	3.98	0	%100
16	M10		449	449	0	%100
17	M11	Z	.778	.778	0	%100
18	M11	X	449	449	0	%100
19	M14		.778	.778	0	%100
20	M14	Z	-1.701	-1.701	0	%100
21	MP1A	X	2.947	2.947	0	%100
22	MP1A	Z		-1.701	0	%100
23	MP2A	X	-1.701	2.947	0	%100
24	MP2A	Z	2.947	-1.701	0	%100 %100
25	MP3A	X	-1.701		0	%100
26	MP3A	Z	2.947	2.947 -1.701	0	%100 %100
27	MP4A	X	-1.701		0	%100
28	MP4A	Z	2.947	2.947	0	%100 %100
29	MP1C	X	-1.701	-1.701	0	%100 %100
30	MP1C	Z	2.947	2.947	0	%100 %100
31	MP2C	X	-1.701	-1.701		%100 %100
32	MP2C	Z	2.947	2.947	0	%100 %100
33	MP3C	X	-1.701	-1.701	0	%100 %100
34	MP3C	Z	2.947	2.947	0	
35	MP4C	X	-1.701	-1.701	0	%100 %100
36	MP4C	Z	2.947	2.947	0	%100
37	MP1B	X	-1.701	-1.701	0	%100
38	MP1B	Z	2.947	2.947	0	%100
39	MP2B	X	-1.701	-1.701	0	%100
40	MP2B	Z	2.947	2.947	0	%100
41	MP3B	X	-1.701	-1.701	0	%100
42	MP3B	Z	2.947	2.947	0	%100
43	MP4B	X	-1.701	-1.701	0	%100
44	MP4B	Z	2.947	2.947	0	%100
45	M47	X	575	575	0	%100
46	M47	Z	.995	.995	0	%100
47	M48	X	575	575	0	%100
48	M48	Z	.995	.995	0	%100
49	M49	X	-1.413	-1.413	0	%100
50	M49	Ž	2.447	2.447	0	%100
51	M64	X	-1.413	-1.413	0	%100
52	M64	Z	2.447	2.447	0	%100
	M72	X	-1.413	-1.413	0	%100
53 54	M72	Z	2.447	2.447	0	%100
	M58	X	-1.413	-1.413	0	%100
55	M58	Z	2.447	2.447	0	%100
56		X	-1.413	-1.413	0	%100
57	M65	Ž	2.447	2.447	0	%100
58	M65	X	-1.413	-1.413	0	%100
59	M66	Z	2.447	2,447	0	%100
60	M66		0	0	0	%100
61	M67	Z	0	0	Ö	%100
62	M67		0	0	0	%100
63	M74	X	U U		aller a service as a	

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
64	M74	Z	0	0	0	%100
65	M75	X	0	0	0	%100
66	M75	Z	0	0	0	%100
67	M76	X	-1.468	-1.468	Ö	%100
68	M76	Z	2.543	2.543	0	%100
69	M77	X	0	0	Ö	%100
70	M77	Z	0	0	0	%100
71	M78	X	-1.468	-1.468	Ö	%100
72	M78	Z	2.543	2.543	Ö	%100
73	M79	X	-1.564	-1.564	Ö	%100
74	M79	Z	2.709	2.709	0	%100
75	M80	X	391	391	Ö	%100
76	M80	Z	.677	.677	Ô	%100
77	M81	X	391	391	Ö	%100
78	M81	Z	.677	.677	Ō	%100
79	OVP	X	-1.701	-1.701	0	%100 %100
80	OVP	Z	2.947	2.947	Ö	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	M1	X	-2.333	-2.333	0	%100
2	M1	Z	1.347	1.347	0	%100
3	M2	X	-1.15	-1.15	0	%100
4	M2	Z	.664	.664	0	%100
5	M3	X	-1.15	-1.15	0	%100
6	M3	Z	.664	.664	0	%100
7	M7	X	-4.601	-4.601	0	%100
8	M7	Z	2.656	2.656	0	%100
9	M9	X	-1.15	-1.15	0	%100
10	M9	Z	.664	.664	0	%100
11	M13	X	-4.601	-4.601	0	%100
12	M13	Z	2.656	2.656	0	%100
13	FACE	X	-1.15	-1.15	0	%100
14	FACE	Z	.664	.664	0	%100
15	M10	X	-2.985	-2.985	0	%100 %100
16	M10	Z	1,724	1.724	Ō	%100
17	M11	X	-2.333	-2.333	0	%100
18	M11	Z	1.347	1.347	Ö	%100
19	M14	X	0	0	0	%100 %100
20	M14	Z	0	o i	0	%100 %100
21	MP1A	X	-2.947	-2.947	Ö	%100 %100
22	MP1A	7	1.701	1.701	0	%100 %100
23	MP2A	X	-2.947	-2.947	0	%100 %100
24	MP2A	Z	1.701	1.701	0	%100 %100
25	MP3A	X	-2.947	-2.947	0	%100 %100
26	MP3A	Z	1.701	1.701	0	%100 %100
27	MP4A	X	-2.947	-2.947	0	%100 %100
28	MP4A	Z	1.701	1.701	0	%100 %100
29	MP1C	X	-2.947	-2.947	0	%100 %100
30	MP1C	Ž	1.701	1.701	0	%100 %100
31	MP2C	X	-2.947	-2.947	0	%100
32	MP2C	7	1.701	1.701	0	%100
33	MP3C	X	-2.947	-2.947	0	%100 %100
34	MP3C	Z	1.701	1.701	0	%100 %100
35	MP4C	X	-2.947	-2.947	0	%100 %100
36	MP4C	7	1.701	1.701	0	%100 %100

July 6, 2023 2:20 PM Checked By:

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude Ib/ft	.End Magnitude[lb/ft,F	O Start Location[11,76]	End Location[ft.9 %100
37	MP1B	X	1.701	1.701	Ö	%100
38	MP1B	Z		-2.947	0	%100
39	MP2B	X	-2.947	1.701	0	%100 %100
40	MP2B	Z	1.701		0	%100 %100
41	MP3B	X	-2.947	-2.947	0	%100 %100
42	MP3B	Z	1.701	1.701		%100 %100
43	MP4B	X	-2.947	-2.947	0	%100 %100
44	MP4B	Z	1.701	1.701	0	
45	M47	X	-2.985	-2.985	0	%100
46	M47	Z	1.724	1.724	0	%100
47	M48	X	0	0	0	%100
48	M48	Z	0	0	0	%100
49	M49	X	816	-,816	0	%100
50	M49	Z	.471	.471	0	%100
51	M64	X	816	816	0	%100
52	M64	Z	.471	.471	0	%100
53	M72	X	816	816	0	%100
54	M72	Z	.471	.471	0	%100
55	M58	X	-3.262	-3.262	0	%100
56	M58	Z	1.883	1.883	0	%100
57	M65	X	-3.262	-3.262	0	%100
58	M65	Z	1.883	1.883	0	%100
59	M66	X	-3.262	-3.262	0	%100
60	M66	Z	1.883	1.883	0	%100
61	M67	X	816	816	0	%100
62	M67	Z	.471	.471	0	%100
	M74	X	816	816	0	%100
63		Z	.47.1	.471	0	%100
64	M74 M75	X	816	816	0	%100
65		Z	.471	.471	0	%100
66	M75 M76	X	-3.39	-3.39	0	%100
67		Z	1.957	1.957	0	%100
68	M76	X	848	848	0	%100
69	M77	Ž	.489	.489	0	%100
70	M77		848	848	0	%100
71	M78	Z	.489	.489	0	%100
72	M78		-2.032	-2.032	0	%100
73	M79	X		1.173	0	%100
74	M79	Z	1.173	-2.032	0	%100 %100
75	M80	X	-2.032	1.173	0	%100
76	M80	Z	1.173		0	%100 %100
77	M81	X	0	0	0	%100 %100
78	M81	Z	0			%100 %100
79	OVP	X	-2.947	-2.947	0	
20	OVP	7	1.701	1.701	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
4	M1	Y	898	898	0	%100
2	M1	7	0	0	0	%100
2	M2	Y	-3.984	-3.984	0	%100
3	M2	7	0.001	0	0	%100
5	M3	Y	-3.984	-3.984	0	%100
6	M3	7	0.001	0	0	%100
7	M7	Y	-3.984	-3.984	0	%100
0	M7	7	0	0	0	%100
9	M9	Y	0	0	0	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:

Member Distributed Loads (BLC 62: Structure Wi (270 Deg)) (Continued)

40	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
10	M9	Z	0	0	0	%100
11	M13	X	-3.984	-3.984	0	%100
12	M13	Z	0	0	0	%100
	FACE	X	0	0	0	%100
14	FACE	Z	0	0	0	%100
15	M10	X	-1.149	-1.149	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	-3.592	-3.592	0	%100
18	M11	Z	0	0	0	%100
19	M14	X	898	898	0	%100
20	M14	Z	0	0	0	%100
21	MP1A	X	-3.403	-3.403	0	%100
22	MP1A	Z	0	0	0	%100
	MP2A	X	-3.403	-3.403	0	%100
24	MP2A	Z	0	0	0	%100
25	MP3A	X	-3,403	-3.403	0	%100
	MP3A	Z	0	0	0	%100
27	MP4A	X	-3.403	-3.403	0	%100
28	MP4A	Z	0	0	0	%100
29	MP1C	X	-3.403	-3.403	0	%100
30	MP1C	Z	0	0	0	%100
31	MP2C	X	-3.403	-3.403	0	%100
32	MP2C	Z	0	0	0	%100
33	MP3C	X	-3.403	-3.403	0	%100
34	MP3C	Z	0	0	0	%100
35	MP4C	X	-3.403	-3.403	0	%100
36	MP4C	Z	0	0	0	%100
37	MP1B	X	-3.403	-3.403	0	%100
38	MP1B	Z	0	0	0	%100
39	MP2B	X	-3.403	-3.403	0	%100
40	MP2B	Z	0	0	0	%100
41	MP3B	X	-3.403	-3.403	0	%100
42	MP3B	Z	0	0	0	%100
43	MP4B	X	-3.403	-3.403	0	%100
44	MP4B	Z	0	0	0	%100
45	M47	X	-4.596	-4.596	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	-1.149	-1.149	0	%100
48	M48	Z	0	0	0	%100
49	M49	X	0	0	0	%100
50	M49	Z	0	0	0	%100
51	M64	X	0	0	0	%100
52	M64	Z	0	0	0	%100
53	M72	X	0	0	0	%100
54	M72	Z	0	0	0	%100
55	M58	X	-2.825	-2.825	0	%100
56	M58	Z	0	0	0	%100
57	M65	X	-2.825	-2.825	0	%100
58	M65	Z	0	0	0	%100
59	M66	X	-2.825	-2.825	0	%100
60	M66	Z	0	0	0	%100
61	M67	X	-2.825	-2.825	0	%100
62	M67	Z	0	0	0	%100
63	M74	X	-2.825	-2.825	0	%100
64	M74	Z	0	0	0	%100
65	M75	X	-2.825	-2.825	0	%100
66	M75	Z	0	0	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
67	M76	X	-2.936	-2.936	0	%100
68	M76	7	0	0	0	%100
69	M77	X	-2.936	-2.936	0	%100
70	M77	7	0	0	0	%100
71	M78	X	0	0	0	%100
72	M78	7	Ö	0	0	%100
73	M79	Y	782	782	0	%100
	M79	7	0	0	0	%100
74	M80	Y	-3.129	-3.129	0	%100
75	M80	7	0.120	0	0	%100
76	M81	Y	782	782	0	%100
77		7	0	0	0	%100
78	M81	V V	-3.403	-3.403	0	%100
79 80	OVP OVP	Ż	0	0	Ō	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	-4.601	-4.601	0	%100
4	M2	Z	-2.656	-2.656	0	%100
5	M3	X	-4.601	-4.601	0	%100
6	M3	Z	-2.656	-2.656	0	%100
7	M7	X	-1.15	-1.15	0	%100
8	M7	Z	664	664	0	%100
9	M9	X	-1.15	-1.15	0	%100
10	M9	Z	664	664	0	%100
11	M13	X	-1.15	-1.15	0	%100
12	M13	Z	664	664	0	%100
13	FACE	X	-1.15	-1.15	0	%100
14	FACE	Z	664	664	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	-2.333	-2.333	0	%100
18	M11	Z	-1.347	-1.347	0	%100
19	M14	X	-2.333	-2.333	0	%100
	M14	Z	-1.347	-1.347	0	%100
20	MP1A	X	-2.947	-2.947	0	%100
21	MP1A	Z	-1.701	-1.701	0	%100
22	MP2A	X	-2.947	-2.947	0	%100
23		Z	-1.701	-1.701	0	%100
24	MP2A	X	-2.947	-2.947	0	%100
25	MP3A	Ž	-1.701	-1.701	0	%100
26	MP3A	X	-2.947	-2.947	0	%100
27	MP4A	Ž	-1.701	-1.701	0	%100
28	MP4A	X	-2.947	-2.947	0	%100
29	MP1C		-1.701	-1.701	0	%100
30	MP1C	Z	-2.947	-2.947	0	%100
31	MP2C	X	-1.701	-1.701	0	%100
32	MP2C	Z		-2.947	0	%100
33	MP3C	X	-2.947	-1.701	0	%100
34	MP3C	Z	-1.701		0	%100 %100
35	MP4C	X	-2.947	-2.947	0	%100 %100
36	MP4C	Z	-1.701	-1.701	0	%100 %100
37	MP1B	X	-2.947	-2.947	0	%100 %100
38	MP1B	Z	-1.701	-1.701		%100 %100
39	MP2B	X	-2.947	-2.947	0	% 100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:___

Member Distributed Loads (BLC 63: Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
40	MP2B	Z	-1.701	-1.701	0	%100
41	MP3B	X	-2.947	-2.947	0	%100
42	MP3B	Z	-1.701	-1.701	0	%100
43	MP4B	X	-2.947	-2.947	0	%100
44	MP4B	Z	-1.701	-1.701	0	%100
45	M47	X	-2.985	-2.985	0	%100
46	M47	Z	-1.724	-1.724	0	%100
47	M48	X	-2.985	-2.985	0	%100
48	M48	Z	-1.724	-1.724	0	%100
49	M49	X	816	816	0	%100
50	M49	Z	471	471	0	%100
51	M64	X	816	816	0	%100
52	M64	Z	471	471	0	%100
53	M72	X	816	816	0	%100
54	M72	Z	471	471	0	%100
55	M58	X	816	816	0	%100
56	M58	Z	471	471	0	%100
57	M65	X	816	816	0	%100
58	M65	Z	471	471	0	%100
59	M66	X	816	816	0	%100
60	M66	Z	471	471	0	%100
61	M67	X	-3.262	-3.262	0	%100
62	M67	Z	-1.883	-1.883	0	%100
63	M74	X	-3.262	-3.262	0	%100
64	M74	Z	-1.883	-1.883	0	%100
65	M75	X	-3.262	-3.262	Ō	%100
66	M75	Z	-1.883	-1.883	0	%100
67	M76	X	848	848	Ö	%100
68	M76	Z	489	489	Ö	%100
69	M77	X	-3.39	-3.39	Ö	%100
70	M77	Z	-1.957	-1.957	Ö	%100
71	M78	X	848	848	0	%100
72	M78	Z	489	489	Ŏ.	%100
73	M79	X	0	0	0	%100
74	M79	Z	0	Ŏ	Ŏ	%100
75	M80	X	-2.032	-2.032	0	%100
76	M80	Z	-1.173	-1.173	0	%100 %100
77	M81	X	-2.032	-2.032	0	%100 %100
78	M81	Z	-1.173	-1.173	Ö	%100 %100
79	OVP	X	-2.947	-2.947	0	%100 %100
80	OVP	7	-1.701	-1.701	0	%100 %100

Member Distributed Loads (BLC 64: Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
1 0	<u>M1</u>	X	449	- 449	. 0	%100
2	M1	Z	778	778	0	%100
3	M2	X	-1.992	-1.992	0	%100
4	M2	Z	-3.45	-3.45	0	%100
5	M3	X	-1.992	-1.992	0	%100
6	M3	Z	-3.45	-3.45	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	-1.992	-1.992	0	%100
10	M9	Z	-3.45	-3.45	0	%100
11	M13	X	0	0	0	%100
12	M13	Z	0	0	0	%100

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 64: Structure Wi (330 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F		End Location[ft,%
13	FACE	X	-1.992	-1.992	0	%100
14	FACE	Z	-3.45	-3.45	0	%100
15	M10	X	575	575	0	%100
16	M10	Z	995	995	0	%100
17	M11	X	449	449	0	%100
18	M11	Z	778	778	0	%100
19	M14	X	-1.796	-1.796	0	%100
20	M14	Z	-3.11	-3.11	0	%100
21	MP1A	X	-1.701	-1.701	0	%100
22	MP1A	Z	-2.947	-2.947	0	%100
23	MP2A	X	-1.701	-1.701	0	%100
24	MP2A	Z	-2.947	-2.947	0	%100
25	MP3A	X	-1.701	-1.701	0	%100
26	MP3A	Z	-2.947	-2.947	0	%100
27	MP4A	X	-1.701	-1.701	0	%100
28	MP4A	Z	-2.947	-2.947	0	%100
29	MP1C	X	-1.701	-1.701	0	%100
30	MP1C	Z	-2.947	-2.947	0	%100
31	MP2C	X	-1.701	-1.701	0	%100
32	MP2C	Z	-2.947	-2.947	0	%100
33	MP3C	X	-1.701	-1.701	0	%100
34	MP3C	Z	-2.947	-2.947	0	%100
35	MP4C	X	-1.701	-1.701	0	%100
36	MP4C	Z	-2.947	-2.947	0	%100
37	MP1B	X	-1.701	-1.701	0	%100
38	MP1B	Z	-2.947	-2.947	0	%100
39	MP2B	X	-1.701	-1.701	0	%100
40	MP2B	Z	-2.947	-2.947	0	%100
41	MP3B	X	-1.701	-1.701	0	%100
42	MP3B	Z	-2.947	-2.947	0	%100
43	MP4B	X	-1.701	-1.701	0	%100
44	MP4B	Z	-2.947	-2.947	0	%100
45	M47	X	575	575	0	%100
46	M47	Z	995	995	0	%100
47	M48	X	-2.298	-2.298	0	%100
48	M48	Z	-3.98	-3.98	0	%100
49	M49	X	-1.413	-1.413	0	%100
50	M49	Z	-2.447	-2.447	0	%100
51	M64	X	-1.413	-1.413	0	%100
52	M64	Z	-2.447	-2.447	0	%100
53	M72	X	-1.413	-1.413	0	%100
54	M72	Z	-2.447	-2.447	0	%100
55	M58	X	0	0	0	%100
56	M58	Z	0	0	0	%100
57	M65	X	0	0	0	%100
58	M65	Z	0	0	0	%100
59	M66	X	0	0	0	%100
60	M66	Z	0	0	0	%100
61	M67	X	-1.413	-1.413	0	%100
62	M67	Z	-2.447	-2.447	0	%100
63	M74	X	-1.413	-1.413	0	%100
64	M74	Z	-2.447	-2.447	0	%100
65	M75	X	-1.413	-1.413	0	%100
66	M75	Z	-2.447	-2.447	0	%100
67	M76	X	0	0	0	%100
68	M76	Z	0	0	0	%100
69	M77	X	-1.468	-1.468	0	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude(lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
70	M77	Z	-2.543	-2.543	0	%100
71	M78	X	-1.468	-1,468	0	%100
72	M78	Z	-2.543	-2.543	0	%100
73	M79	X	391	391	0	%100
74	M79	Z	677	677	0	%100
75	M80	X	391	391	0	%100
76	M80	Z	677	677	0	%100
77	M81	X	-1.564	-1.564	0	%100
78	M81	Z	-2.709	-2.709	0	%100
79	OVP	X	-1.701	-1.701	0	%100
80	OVP	Z	-2.947	-2.947	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

4	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	606	606	0	%100
3	M2	X	0	- 0	0	%100
4	M2	Z	327	327	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	327	327	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	327	327	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	-1.309	-1.309	0	%100
11	M13	X	0	0	0	%100
12	M13	Z	327	327	0	%100
13	FACE	X	0	0	0	%100
14	FACE	Z	-1.309	-1.309	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	828	828	0	%100
17	M11	X	- 0	0	0	%100
18	M11	Z	0	0	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	606	606	0	%100
21	MP1A	X	0	0	0	%100
22	MP1A	Z	622	622	0	%100
23	MP2A	X	0	0	0	%100
24	MP2A	Z	622	622	0	%100
25	MP3A	X	0	0	0	%100
26	MP3A	Z	622	622	0	%100
27	MP4A	X	0	0	0	%100
28	MP4A	Z	622	622	0	%100
29	MP1C	X	0	0	0	%100
30	MP1C	Z	622	622	0	%100
31	MP2C	X	0	0	0	%100
32	MP2C	Z	622	622	0	%100
33	MP3C	X	0	0	0	%100
34	MP3C	Z	622	622	0	%100
35	MP4C	X	0	0	0	%100
36	MP4C	Z	622	622	0	%100
37	MP1B	X	0	0	0	%100
38	MP1B	Z	622	622	0	%100 %100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	622	622	0	%100 %100
41	MP3B	X	0	0	0	%100
42	MP3B	Ž	622	622	0	%100

July 6, 2023 2:20 PM Checked By:_

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 65: Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F		End Location[ft.%]
43	MP4B	X	0	0	0	%100
44	MP4B	Z	622	622	0	%100
45	M47	X	0	0	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	0	0	0	%100
48	M48	Z	828	828	0	%100
49	M49	X	0	0	0	%100
50	M49	Z	753	753	0	%100
51	M64	X	0	0	0	%100
52	M64	Z	753	753	0	%100
53	M72	X	0	0	0	%100
54	M72	Z	753	753	0	%100
55	M58	X	0	0	0	%100
56	M58	7	188	188	0	%100
57	M65	X	0	0	0	%100
58	M65	Z	188	188	0	%100
59	M66	X	0	0	0	%100
60	M66	Z	188	188	0	%100
61	M67	X	0	0	0	%100
62	M67	Z	188	188	0	%100
63	M74	X	0	0	0	%100
64	M74	Z	188	188	0	%100
65	M75	X	0	0	0	%100
66	M75	Z	188	188	0	%100
67	M76	X	0	0	0	%100
68	M76	Z	239	239	0	%100
69	M77	X	0	0	0	%100
70	M77	Z	239	239	0	%100
71	M78	X	0	0	0	%100
72	M78	Z	957	957	0	%100
73	M79	X	0	0	0	%100
74	M79	Z	481	481	0	%100
75	M80	X	0	0	0	%100
76	M80	Z	Ŏ	0	0	%100
77	M81	X	0	0	0	%100
78	M81	Z	481	481	0	%100
79	OVP	X	0	0	0	%100
80	OVP	Z	622	622	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,.	Start Location[ft,%]	End Location[ft.%]
1	M1	X	.404	.404	0	%100
2	M1	7	7	7	0	%100
3	M2	X	0	0	0	%100
4	M2	7	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	7	0	0	0	%100
7	M7	X	.491	.491	0	%100
8	M7	7	85	85	0	%100
9	M9	X	.491	.491	0	%100
10	M9	7	85	85	0	%100
11	M13	X	.491	.491	0	%100
12	M13	7	85	85	0	%100
13	FACE	X	.491	.491	0	%100
14	FACE	7	85	85	0	%100
15	M10	X	.552	.552	0	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

16	Member Label M10	Direction Z	Start Magnitude[lb/ft	End Magnitude[lb/ft,F. 956	Start Location[ft,%]	End Location[ft,%] %100
17	M11	X	.101	.101	0	%100
18	M11	Ž	175	175	0	%100
19	M14	X	.101	.101	Ö	%100
20	M14	Z	175	175	0	%100
21	MP1A	X	.311	.311	Ö	%100
22	MP1A	Z	539	539	Ö	%100
23	MP2A	X	.311	.311	Ö	%100
24	MP2A	Z	539	539	Ö	%100
25	MP3A	X	.311	.311	Ö	%100
26	MP3A	Z	539	539	ŏ	%100
27	MP4A	X	.311	.311	Ö	%100
28	MP4A	Z	539	539	Ŏ	%100
29	MP1C	X	.311	.311	Ö	%100 %100
30	MP1C	Z	539	539	0	%100
31	MP2C	X	.311	.311	0	%100 %100
32	MP2C	Z	539	539	0	%100 %100
33	MP3C	X	.311	.311	0	%100
34	MP3C	Z	539	539	Ö	%100 %100
35	MP4C	X	.311	.311	0	%100 %100
36	MP4C	Z	539	539	0	%100 %100
37	MP1B	X	.311	.311	0	%100 %100
38	MP1B	Ž	539	539	0	%100 %100
39	MP2B	X	.311	.311	0	%100
40	MP2B	Z	539	539	0	%100 %100
41	MP3B	X	.311		0	%100 %100
42	MP3B	Ž	539	.311	0	
43	MP4B					%100
44	MP4B	X	.311	.311	0	%100
45	M47	X	539	539	0	%100
46	M47	Ž	.138	.138	0	%100
47	M48		239	239	0	%100
48	M48	Z	.138	.138	0	%100
49	M49	X	239	239	0	%100
50	M49		.282	.282	0	%100
51	M64	Z	489	489	0	%100
52		X	.282	.282	0	%100
	M64	Z	489	489	0	%100
53	M72	X	.282	.282	0	%100
54	M72	Z	489	489	0	%100
55	M58	X	.282	.282	0	%100
56	M58	Z	489	489	0	%100
57	M65	X	.282	.282	0	%100
58	M65	Z	489	489	0	%100
59	M66	X	.282	.282	0	%100
60	M66	Z	489	489	0	%100
61	M67	X	0	0	0	%100
62	M67	Z	0	0	0	%100
63	M74	X	0	0	0	%100
64	M74	Z	0	0	0	%100
65	M75	X	0	0	0	%100
66	M75	Z	0	0	0	%100
67	M76	X	.359	.359	0	%100
68	M76	Z	621	621	0	%100
69	M77	X	0	0	0	%100
70	M77	Z	0	0	0	%100
71	M78	X	.359	.359	0	%100
72	M78	Z	621	621	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 66: Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitudellb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
73	M79	X	.321	.321	0	%100
		7	555	555	0	%100
74	M79		.08	.08	0	%100
75	M80			139	0	%100
76	M80		139		0	%100
77	M81	X	.08	.08	0	%100 %100
78	M81	Z	139	139	<u> </u>	
79	OVP	X	.311	.311	0	%100
80	OVP	Z	539	539	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
1	M1	X	.525	.525	0	%100
2	M1	Z	303	303	0	%100
3	M2	X	.283	.283	0	%100
4	M2	Z	164	164	0	%100
5	M3	X	.283	.283	0	%100
6	M3	Z	164	164	0	%100
7	M7	X	1.134	1.134	0	%100
8	M7	Z	655	655	0	%100
9	M9	X	.283	.283	0	%100
10	M9	Z	164	164	0	%100
11	M13	X	1.134	1.134	0	%100
12	M13	Z	655	655	0	%100
13	FACE	X	.283	.283	- 0	%100
14	FACE	Z	164	164	0	%100
15	M10	X	.717	.717	0	%100
16	M10	Z	414	414	0	%100
17	M11	X	.525	.525	0	%100
18	M11	Z	303	303	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	0	0	0	%100
21	MP1A	X	.539	.539	0	%100
22	MP1A	Z	311	311	0	%100
23	MP2A	X	.539	.539	0	%100
24	MP2A	Z	311	311	0	%100
25	MP3A	X	.539	.539	0	%100
26	MP3A	Z	311	311	0	%100
27	MP4A	X	.539	.539	0	%100
28	MP4A	Z	311	311	0	%100
29	MP1C	X	.539	.539	0	%100
30	MP1C	Z	311	311	0	%100
31	MP2C	X	.539	.539	0	%100
32	MP2C	Z	311	311	0	%100
33	MP3C	X	.539	.539	0	%100
34	MP3C	Z	311	311	0	%100
35	MP4C	X	.539	.539	0	%100
36	MP4C	Z	311	311	0	%100
37	MP1B	X	.539	.539	0	%100
38	MP1B	Z	311	311	0	%100
39	MP2B	X	.539	.539	0	%100
40	MP2B	Z	311	311	0	%100
41	MP3B	X	.539	.539	0	%100
42	MP3B	Z	311	311	0	%100
43	MP4B	X	.539	.539	0	%100
44	MP4B	Z	311	311	0	%100
45	M47	X	.717	.717	0	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	M47	Z	414	414	Q	%100
47	M48	X	0	0	0	%100
48	M48	Z	0	0 =	0	%100
49	M49	X	.163	.163	0	%100
50	M49	Z	094	094	0	%100
51	M64	X	.163	.163	0	%100
52	M64	Z	094	094	0	%100
53	M72	X	.163	.163	0	%100
54	M72	Z	094	094	0	%100
55	M58	X	.652	.652	0	%100
56	M58	Z	376	376	0	%100
57	M65	X	.652	.652	0	%100
58	M65	Z	376	376	0	%100
59	M66	X	.652	.652	0	%100
60	M66	Z	376	376	0	%100
61	M67	X	.163	.163	0	%100
62	M67	Z	094	094	0	%100
63	M74	X	.163	.163	0	%100
64	M74	Z	094	094	0	%100
65	M75	X	.163	.163	0	%100
66	M75	Z	094	094	0	%100
67	M76	X	.829	.829	0	%100
68	M76	Z	478	478	0	%100
69	M77	X	.207	.207	0	%100
70	M77	Z	12	12	0	%100
71	M78	X	.207	.207	0	%100
72	M78	Z	12	12	0	%100
73	M79	X	.416	.416	0	%100
74	M79	Z	24	24	0	%100
75	M80	X	.416	.416	0	%100
76	M80	Z	24	24	0	%100
77	M81	X	0	0	0	%100
78	M81	Z	0	0	0	%100
79	OVP	X	.539	.539	0	%100
80	OVP	Z	311	311	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.202	.202	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	.982	.982	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	.982	.982	0	%100
6	M3	Z	0	0	0	%100
7	M7	X	.982	.982	0	%100
8	M7	Z	0	0	0	%100
9	M9	. X	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M13	X	.982	.982	0	%100
12	M13	Z	0	0	0	%100
13	FACE	X	0	0	0	%100
14	FACE	Z	0	0	0	%100
15	M10	X	.276	.276	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	.808	.808	0	%100
18	M11	Z	0	0	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
19	M14	X	.202	.202	0	%100 %100
20	M14	Z	0	0	0	
21	MP1A	X	.622	.622	0	%100 %100
22	MP1A	Z	0	0	0	
23	MP2A	X	.622	.622	0	%100
24	MP2A	Z	0	0	0	%100
25	MP3A	X	.622	.622	0	%100
26	MP3A	Z	0	0	0	%100
27	MP4A	X	.622	.622	0	%100
28	MP4A	Z	0	0	0	%100
29	MP1C	X	.622	.622	0	%100
30	MP1C	Z	0	0	0	%100
31	MP2C	X	.622	.622	0	%100
32	MP2C	Z	0	0	0	%100
33	MP3C	X	.622	.622	0	%100
34	MP3C	Z	0	0	0	%100
35	MP4C	X	.622	.622	0	%100
36	MP4C	Z	0	0	0	%100
37	MP1B	X	.622	.622	0	%100
38	MP1B	Z	0	0	0	%100
39	MP2B	X	.622	.622	0	%100
40	MP2B	Z	0	0	0	%100
41	MP3B	X	.622	.622	0	%100
42	MP3B	Z	0	0	0	%100
43	MP4B	X	.622	.622	0	%100
44	MP4B	Z	0	0	0	%100
45	M47	X	1.104	1.104	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	.276	.276	0	%100
48	M48	Z	0	0	0	%100
49	M49	X	0	0	0	%100
50	M49	Z	0	0	0	%100
51	M64	X	0	0	0	%100
52	M64	Z	Ö	0	0	%100
53	M72	X	0	0	0	%100
	M72	Z	0	0	0	%100
54	M58	X	.565	.565	0	%100
55	M58	Z	0	0	0	%100
56 57	M65	X	.565	.565	0	%100
58	M65	Z	0	0	0	%100
	M66	X	.565	.565	0	%100
59	M66	Z	0	0	0	%100
60	M67	X	.565	.565	0	%100
61	M67	Z	0	0	0	%100
62		X	.565	.565	0	%100
63	M74	Ž	0	0	0	%100
64	M74	X	.565	.565	0	%100
65	M75	Z	.303	0	0	%100
66	M75		.718	.718	0	%100
67	M76	Z	0	0	Ö	%100
68	M76		.718	.718	0	%100
69	M77	X	0	0	0	%100
70	M77	Z	0	0	0	%100
71	M78	X	0	0	0	%100
72	M78	Z		.16	0	%100
73	M79	X	.16	0	0	%100
74	M79	Z	0	.641	0	%100 %100
75	M80	X	.641	.041	V	70100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 68: Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude(lb/ft.F	. Start Location[ft.%]	End Location[ft.%]
76	M80	Z	0	0	0	%100
77	M81	X	.16	.16	0	%100
78	M81	Z	0	0	0	%100
79	OVP	X	.622	.622	0	%100
80	OVP	Z	0	0	0	%100

Member Distributed Loads (BLC 69: Structure Wm (120 Deg))

1	BA4	Direction		.End Magnitude[lb/ft,F		End Location[ft,%]
	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	1.134	1.134	0	%100
4	M2	Z	.655	.655	0	%100
5	M3	X	1.134	1.134	0	%100
6	M3	Z	.655	.655	0	%100
7	M7	X	.283	.283	0	%100
8	M7	Z	.164	.164	0	%100
9	M9	X	.283	.283	0	%100
10	M9	Z	.164	.164	0	%100
11	M13	X	.283	.283	0	%100
12	M13	Z	.164	.164	0	%100
13	FACE	X	.283	.283	0	%100
14	FACE	Z	.164	.164	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	.525	.525	0	%100
18	M11	Z	.303	.303	0	%100
19	M14	X	.525	.525	0	%100
20	M14	Z	.303	.303	0	%100
21	MP1A	X	.539	.539	0	%100
22	MP1A	Z	.311	.311	0	%100
23	MP2A	X	.539	.539	0	%100
24	MP2A	Z	.311	.311	0	%100
25	MP3A	X	.539	.539	Ō	%100
26	MP3A	Z	.311	.311	0	%100
27	MP4A	X	.539	.539	0	%100
28	MP4A	Z	.311	.311	0	%100
29	MP1C	X	.539	.539	0	%100 %100
30	MP1C	Z	.311	.311	Ö	%100
31	MP2C	X	.539	.539	0	%100 %100
32	MP2C	Z	.311	.311	0	%100 %100
33	MP3C	X	.539	.539	0	%100 %100
34	MP3C	Z	.311	.311	0	%100
35	MP4C	X	.539	.539	0	%100 %100
36	MP4C	Z	.311	.311	0	%100 %100
37	MP1B	X	.539	.539	. 0	%100 %100
38	MP1B	Z	.311	.311	0	%100 %100
39	MP2B	X	.539	.539	0	%100 %100
40	MP2B	Ž	.311	.311	0	%100 %100
41	MP3B	X	.539	.539		
42	MP3B	Ž	.311		0	%100 %400
43	MP4B	X		.311	0	%100
44	MP4B	Z	.539	.539	0	%100
45	M47	X	.311	.311	0	%100
46	M47	Z	.717	.717	0	%100
47	M48		.414	.414	0	%100
48	M48	Z	.717	.717 .414	0	%100 %100

5000382994-VZW MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 69: Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	Start Location[ft.%]	End Location[ft,%]
49	M49	X	.163	.163	0	%100
50	M49	Z	.094	.094	0	%100
51	M64	X	.163	.163	0	%100
52	M64	Z	.094	.094	0	%100
53	M72	X	.163	.163	0	%100
54	M72	Z	.094	.094	0	%100
55	M58	X	.163	.163	0	%100
56	M58	Z	.094	.094	0	%100
57	M65	X	.163	.163	0	%100
58	M65	Z	.094	.094	0	%100
59	M66	X	.163	.163	0	%100
60	M66	Z	.094	.094	0	%100
61	M67	X	.652	.652	0	%100
62	M67	Z	.376	.376	0	%100
63	M74	X	.652	.652	0	%100
64	M74	7	.376	.376	0	%100
65	M75	X	.652	.652	0	%100
66	M75	7	.376	.376	0	%100
67	M76	X	.207	.207	0	%100
68	M76	Z	.12	.12	0	%100
69	M77	X	.829	.829	0	%100
70	M77	7	.478	.478	0	%100
71	M78	X	.207	.207	0	%100
72	M78	Z	.12	.12	0	%100
	M79	X	0	0	0	%100
73	M79	Z	0	0	0	%100
74		X	.416	.416	0	%100
75	M80	Z	.24	.24	0	%100
76	M80	X	.416	.416	0	%100
77	M81	Z	.24	.24	0	%100
78	M81	X	.539	.539	0	%100
79	OVP OVP	Z	.311	.311	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1	M1	X	.101	.101	0	%100
2	M1	Z	.175	.175	0	%100
3	M2	X	.491	.491	0	%100
4	M2	7	.85	.85	0	%100
5	M3	X	.491	.491	0	%100
6	M3	7	.85	.85	0	%100
7	M7	X	0	0	0	%100
8	M7	7	0	0	0	%100
	M9	X	.491	.491	0	%100
9	M9	Z	.85	.85	0	%100
10		X	0	0	0	%100
11	M13	7	Ŏ	0	0	%100
12	M13	X	.491	.491	0	%100
13	FACE	7	.85	.85	0	%100
14	FACE	X	.138	.138	0	%100
15	M10	7	.239	.239	0	%100
16	M10		101	.101	0	%100
17	M11	X		.175	0	%100
18	M11	Z	.175	.404	0	%100 %100
19	M14	X	.404		0	%100
20	M14	Z	.7	.7	0	%100 %100
21	MP1A	X	.311	.311	U	70 100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

[oo]	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
22	MP1A	Z	.539	.539	0	%100
23	MP2A	X	.311	.311	0	%100
24	MP2A	Z	.539	.539	0	%100
25	MP3A	X	.311	.311	0	%100
26	MP3A	Z	.539	.539	0	%100
27	MP4A	X	.311	.311	0	%100
28	MP4A	Z	.539	.539	0	%100
29	MP1C	X	.311	.311	0	%100
30	MP1C	Z	.539	.539	0	%100
31	MP2C	X	.311	.311	0	%100
32	MP2C	Z	.539	.539	0	%100
33	MP3C	X	.311	.311	0	%100
34	MP3C	Z	.539	.539	0	%100
35	MP4C	X	.311	.311	0	%100
36	MP4C	Z	.539	.539	0	%100
37	MP1B	X	.311	.311	0	%100
38	MP1B	Z	.539	.539	0	%100
39	MP2B	X	.311	.311	0	%100
40	MP2B	Z	.539	.539	0	%100
41	MP3B	X	.311	.311	0	%100
42	MP3B	Z	.539	.539	0	%100
43	MP4B	X	.311	.311	0	%100
44	MP4B	Z	.539	.539	0	%100
45	M47	X	.138	.138	0	%100
46	M47	Z	.239	.239	0	%100
47	M48	X	.552	.552	0	%100
48	M48	Z	.956	.956	0	%100
49	M49	X	.282	.282	0	%100
50	M49	Z	.489	.489	Ö	%100
51	M64	X	.282	.282	Ö	%100 %100
52	M64	Z	.489	.489	Ö	%100 %100
53	M72	X	.282	.282	0	%100 %100
54	M72	Z	.489	.489	ő	%100 %100
55	M58	X	0	0	0	%100 %100
56	M58	Z	0	0	0	%100 %100
57	M65	X	0	0	0	%100 %100
58	M65	Z	0	0	0	%100 %100
59	M66	X	0	0	0	%100 %100
60	M66	Z	0	ů ů	0	%100 %100
61	M67	X	.282	.282	0	%100 %100
62	M67	Z	.489	.489	0	%100 %100
63	M74	X	.282	.282	0	%100 %100
64	M74	Z	.489	.489	0	%100 %100
65	M75	X	.282	.282	0	%100 %100
66	M75	Z	.489	.489	0	
67	M76	X	0	.469	0	%100 %100
68	M76	Z	0	0		%100
69	M77	X	.359	.359	0	%100 %100
70	M77	Ž	.621	.621	0	%100
71	M78	X	.359		0	%100 %100
72	M78	Ž		.359	0	%100
73	M79	X	.621	.621	0	%100
74	M79	Z	.08	.08	0	%100
75	M80		.139	.139	0	%100
76	M80	Z	.08	.08	0	%100
77			.139	.139	0	%100
78	M81 M81	X	.321	.321	0	%100
10	IVIO	Z	.555	.555	0	%100

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
79	OVP	X	.311	.311	0	%100
80	OVP	7	.539	.539	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
1	M1	X	0	0	0	%100 %100
2	M1	Z	.606	.606	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	.327	.327	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	.327	.327	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	.327	.327	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	1.309	1.309	0	%100
11	M13	X	0	0	0	%100
12	M13	Z	.327	.327	0	%100
13	FACE	X	0	0	0	%100
14	FACE	Z	1.309	1.309	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	.828	.828	0	%100
17	M11	X	0	0	0	%100
18	M11	Z	0	0	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	.606	.606	0	%100
21	MP1A	X	0	0	0	%100
22	MP1A	Z	.622	.622	0	%100
23	MP2A	X	0	0	0	%100
24	MP2A	Z	.622	.622	0	%100
25	MP3A	X	0	0	0	%100
26	MP3A	Z	.622	.622	0	%100
27	MP4A	X	0	0	0	%100
28	MP4A	Z	.622	.622	0	%100
29	MP1C	X	0	0	0	%100
30	MP1C	Z	.622	.622	0	%100
31	MP2C	X	0	0	0	%100
32	MP2C	Z	.622	.622	0	%100
33	MP3C	X	0	0	0	%100
34	MP3C	Z	.622	.622	0	%100
35	MP4C	X	0	0	0	%100
36	MP4C	Z	.622	.622	0	%100
37	MP1B	X	0	0	0	%100
38	MP1B	Z	.622	.622	0	%100
39	MP2B	X	0	0	0	%100
40	MP2B	Z	.622	.622	0	%100
41	MP3B	X	0	0	0	%100
42	MP3B	Z	.622	.622	0	%100
43	MP4B	X	0	0	0	%100
44	MP4B	Z	.622	.622	0	%100
45	M47	X	0	0	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	0	0	- 0	%100
48	M48	Z	.828	.828	0	%100
49	M49	X	0	0	0	%100
50	M49	Z	.753	.753	0	%100
51	M64	X	0	0	0	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
52	M64	Z	.753	.753	0	%100
53	M72	X	0	0	0	%100
54	M72	Z	.753	.753	0	%100
55	M58	X	0	0	0	%100
56	M58	Z	.188	.188	0	%100
57	M65	X	0	0	0	%100
58	M65	Z	.188	.188	0	%100
59	M66	X	0	0	0	%100
60	M66	Z	.188	.188	0	%100
61	M67	X	0	0	0	%100
62	M67	Z	.188	.188	0	%100
63	M74	X	0	0	0	%100
64	M74	Z	.188	.188	0	%100
65	M75	X	0	0	0	%100
66	M75	Z	.188	.188	0	%100
67	M76	X	0	0	0	%100
68	M76	Z	.239	.239	0	%100
69	M77	X	0	0	0	%100
70	M77	Z	.239	.239	0	%100
71	M78	X	0	0	0	%100
72	M78	Z	.957	.957	0	%100
73	M79	X	0	0	0	%100
74	M79	Z	.481	.481	0	%100
75	M80	X	0	0	0	%100
76	M80	Z	0	0	0	%100
77	M81	X	0	0	0	%100
78	M81	Z	.481	.481	0	%100
79	OVP	X	0	0	- 0	%100
80	OVP	Z	.622	.622	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	404	404	0	%100
2	M1	Z	.7	.7	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	0	0	0	%100
7	M7	X	491	491	0	%100
8	M7	Z	.85	.85	0	%100
9	M9	X	491	491	0	%100
10	M9	Z	.85	.85	0	%100
11	M13	X	491	491	0	%100
12	M13	Z	.85	.85	0	%100
13	FACE	X	491	491	0	%100
14	FACE	Z	.85	.85	0	%100
15	M10	X	552	552	0	%100
16	M10	Z	.956	.956	0	%100
17	M11	X	101	101	0	%100
18	M11	Z	.175	.175	0	%100
19	M14	X	101	101	0	%100
20	M14	Z	.175	.175	0	%100
21	MP1A	X	311	311	0	%100
22	MP1A	Z	.539	.539	0	%100
23	MP2A	X	311	311	0	%100
24	MP2A	Z	.539	.539	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	lember Label	Direction		.End Magnitude[lb/ft,F		End Location[ft.%] %100
25	MP3A	X	311	311	0	
26	MP3A	Z	.539	.539	0	%100 %100
27	MP4A	X	311	311	0	%100 %100
28	MP4A	Z	.539	.539	0	%100 %100
29	MP1C	X	311	311	0	
30	MP1C	Z	.539	.539	0	%100
31	MP2C	X	311	311	0	%100
32	MP2C	Z	.539	.539	0	%100
33	MP3C	X	311	311	0	%100
34	MP3C	Z	.539	.539	0	%100
35	MP4C	X	311	311	0	%100
36	MP4C	Z	.539	.539	0	%100 %100
37	MP1B	X	311	311	0	%100
38	MP1B	Z	.539	.539	0	%100
39	MP2B	X	311	311	0	%100
40	MP2B	Z	.539	.539	0	%100
41	MP3B	X	311	311	0	%100
42	MP3B	Z	.539	.539	0	%100 %100
43	MP4B	X	311	311	0	%100
44	MP4B	Z	.539	.539	0	%100
45	M47	X	- 138	138	0	%100
46	M47	Z	.239	.239	0	%100
47	M48	X	138	138	0	%100
48	M48	Z	.239	.239	0	%100
49	M49	X	282	282	0	%100
50	M49	Z	.489	.489	0	%100
51	M64	X	282	282	0	%100
52	M64	Z	.489	.489	0	%100
53	M72	X	282	282	0	%100
54	M72	Z	.489	.489	0	%100
55	M58	X	282	282	0	%100
56	M58	Z	.489	.489	0	%100
57	M65	X	282	282	0	%100
58	M65	Z	.489	.489	0	%100
59	M66	X	282	282	0	%100
60	M66	Z	.489	.489	0	%100
61	M67	X	0	0	0	%100
62	M67	Z	0	0	0	%100
63	M74	X	0	0	0	%100 %100
64	M74	Z	0	0	0	%100 %100
65	M75	X	0	0	0	%100 %100
66	M75	Z	0	0	0	%100
67	M76	X	359	359	0	%100 %400
68	M76	Z	.621	.621	0	%100
69	M77	X	0	0	0	%100
70	M77	Z	0	0	0	%100
71	M78	X	359	359	0	%100
72	M78	Z	.621	.621	0	%100
73	M79	X	321	321	0	%100
74	M79	Z	.555	.555	0	%100
75	M80	X	08	08	0	%100
76	M80	Z	.139	.139	0	%100
77	M81	X	08	08	0	%100
78	M81	Z	.139	.139	0	%100
79	OVP	X	311	311	0	%100
80	OVP	Z	.539	.539	0	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:____

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1	M1	X	525	525	0	%100
2	M1	Z	.303	.303	0	%100
3	M2	X	283	283	0	%100
4	M2	Z	.164	.164	0	%100
5	M3	X	283	283	0	%100
6	M3	Z	.164	.164	0	%100
7	M7	X	-1.134	-1.134	0	%100
8	M7	Z	.655	.655	0	%100
9	M9	X	283	283	0	%100
10	M9	Z	.164	.164	0	%100
11	M13	X	-1,134	-1.134	0	%100
12	M13	Z	.655	.655	0	%100
13	FACE	X	283	283	0	%100
14	FACE	Z	.164	.164	0	%100
15	M10	X	717	717	0	%100
16	M10	Z	.414	.414	0	%100
17	M11	X	525	525	0	%100
18	M11	Z	.303	.303	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	0	Ö	0	%100
21	MP1A	X	539	539	0	%100
22	MP1A	Z	.311	.311	Ö	%100
23	MP2A	X	539	539	0	%100
24	MP2A	Z	.311	.311	0	%100
25	MP3A	X	539	539	0	%100
26	MP3A	Z	.311	.311	0	%100
27	MP4A	X	539	539	0	%100
28	MP4A	Z	.311	.311	0	%100
29	MP1C	X	539	539	0	%100 %100
30	MP1C	Z	.311	.311	0	%100
31	MP2C	X	539	539	0	%100
32	MP2C	Z	.311	.311	0	%100 %100
33	MP3C	X	539	539	0	%100 %100
34	MP3C	Ž	.311	.311	0	%100 %100
35	MP4C	X	539	539	0	%100
36	MP4C	Z	.311	.311	0	%100 %100
37	MP1B	X	539	539	0	%100 %100
38	MP1B	Ž	.311	.311	0	%100 %100
39	MP2B	X	539	539	0	%100 %100
40	MP2B	Ž	.311	.311	0	%100 %100
41	MP3B	X	539	539	0	%100 %100
42	MP3B	Ž	.311	.311	0	%100 %100
43	MP4B	X	-,539	539	0	%100 %100
44	MP4B	Z	.311	.311	0	%100 %100
45	M47	X	717	717		
46	M47	Z	.414	/ \/	0	%100 %100
47	M48			.414	0	
48		X	0	0	0	%100
48	M48 M49	Z	0	0	0	%100
		X	163	163	0	%100
50	M49	Z	.094	.094	0	%100
51	M64	Z	163	163	0	%100
52	M64		.094	.094	0	%100
53	M72	X	163	163	0	%100
54	M72	Z	.094	.094	0	%100
55	M58	X	652	652	0	%100
56	M58	Z	.376	.376	0	%100
57	M65	X	652	652	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
58	M65	7	.376	.376	Q	%100
59	M66	X	652	652	0	%100
60	M66	Z	.376	.376	0	%100
61	M67	X	163	163	0	%100
62	M67	7	.094	.094	0	%100
63	M74	X	163	163	0	%100
64	M74	7	.094	.094	0	%100
65	M75	X	-,163	163	0	%100
66	M75	7	.094	.094	0	%100
67	M76	X	829	829	0	%100
68	M76	7	.478	.478	0	%100
69	M77	X	207	207	0	%100
70	M77	7	.12	.12	0	%100
71	M78	X	207	207	0	%100
72	M78	7	.12	.12	0	%100
73	M79	X	416	416	0	%100
74	M79	Z	.24	.24	0	%100
75	M80	X	416	416	0	%100
76	M80	7	.24	.24	0	%100
77	M81	X	0	0	0	%100
78	M81	Z	0	0	0	%100
79	OVP	X	539	539	0	%100
80	OVP	Z	.311	.311	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	202	202	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	982	982	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	982	982	0	%100
6	M3	Z	0	0	0	%100
7	M7	X	982	982	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	0	0	0	%100
10	M9	7	0	0	0	%100
11	M13	X	982	982	0	%100
12	M13	Z	0	0	0	%100
13	FACE	X	Ö	0	0	%100
	FACE	Ž	0	0	0	%100
14	M10	X	276	276	0	%100
15		Z	0	0	0	%100
16	M10 M11	X	808	808	0	%100
17		Z	0	0	0	%100
18	M11	X	202	202	0	%100
19	M14	Ž	202	0	0	%100
20	M14	X	622	622	0	%100
21	MP1A	7	022	0	Ö	%100
22	MP1A	X	622	622	0	%100
23	MP2A	Z	022	0	Ö	%100
24	MP2A		622	622	0	%100
25	MP3A	X	022	022	ŏ	%100
26	MP3A	Z		622	0	%100
27	MP4A	X	622	022	0	%100
28	MP4A	Z	0	622	0	%100 %100
29	MP1C	X	622	622	0	%100 %100
30	MP1C	Z	0	U	0	/6100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:___

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

24	Member Label	Direction		End Magnitude[lb/ft,F.		End Location[ft,%]
31	MP2C	X	622	622	0	%100
32	MP2C	Z	0	0	0	%100
33	MP3C	X	622	-,622	0	%100
34	MP3C	Z	0	0	0	%100
35	MP4C	X	622	622	0	%100
36	MP4C	Z	0	0	0	%100
37	MP1B	X	622	622	0	%100
38	MP1B	Z	0	0	0	%100
39	MP2B	X	622	622	0	%100
40	MP2B	Z	0	0	0	%100
41	MP3B	X	622	622	0	%100
42	MP3B	Z	0	0	0	%100
43	MP4B	X	622	622	0	%100
44	MP4B	Z	0	0	0	%100
45	M47	X	-1.104	-1.104	0	%100
46	M47	Z	0	0	0	%100
47	M48	X	276	276	0	%100
48	M48	Z	0	0	0	%100
49	M49	X	0	0	0	%100
50	M49	Z	0	0	0	%100
51	M64	X	0	0	0	%100
52	M64	Z	0	0	0	%100
53	M72	X	0	0	0	%100
54	M72	Z	0	0	0	%100
55	M58	X	565	565	0	%100
56	M58	Z	0	0	0	%100
57	M65	X	565	565	0	%100
58	M65	Z	0	0	0	%100
59	M66	X	565	565	0	%100
60 61	M66	Z	0	0	0	%100
	M67	X	565	565	0	%100
62	M67	Z	0	0	0	%100
63 64	M74 M74	X	565	565	0	%100
65	M75	Z	0	0	0	%100
66	M75	X	565	565	0	%100
67	M76	Z	0	0	0	%100
68	M76	X	718	718	0	%100
69		Z	0	0	0	%100
70	M77	Z	718	718	0	%100
71	M78		0	0	0	%100
72	M78	Z	0	0	0	%100
73			0	0	0	%100
74	M79 M79	X	16	16	0	%100
75	M80	Z	0	0	0	%100
76		X	641	641	0	%100
77	M80 M81	Z	0	0	0	%100
78	M81	X	16	16	0	%100
		Z	0	0	0	%100
79 80	OVP	X 7	622	622	0	%100
OU I	CVP	1 /	1 0	0	0	%100

Member Distributed Loads (BLC 75: Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude(lb/ft,F	Start Location[ft,%]	End Location(ft.%)
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	-1.134	-1.134	0	%100

: Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:_

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
4	M2	Z	655	-,655	0	%100
5	M3	X	-1.134	-1.134	0	%100
6	M3	Z	-,655	655	0	%100
7	M7	X	283	283	0	%100
8	M7	Z	164	164	0	%100
9	M9	X	283	283	0	%100
10	M9	Z	164	164	0	%100
11	M13	X	283	283	0	%100
12	M13	Z	164	164	0	%100
13	FACE	X	283	283	0	%100
14	FACE	Z	164	164	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	M11	X	525	525	0	%100
18	M11	Z	-,303	303	0	%100
19	M14	X	525	525	0	%100
20	M14	Z	303	303	0	%100
21	MP1A	X	539	539	0	%100
22	MP1A	Z	311	311	0	%100
23	MP2A	X	539	539	0	%100
24	MP2A	Z	-,311	311	0	%100
25	MP3A	X	539	539	0	%100
26	MP3A	Z	311	311	0	%100
27	MP4A	X	539	539	0	%100
28	MP4A	Z	311	311	0	%100
29	MP1C	X	539	539	0	%100
30	MP1C	Z	311	·311	0	%100
31	MP2C	X	539	539	0	%100
32	MP2C	Z	311	311	0	%100
33	MP3C	X	539	539	0	%100
34	MP3C	Z	311	311	0	%100
35	MP4C	X	539	539	0	%100
36	MP4C	Z	311	311	0	%100
37	MP1B	X	539	539	0	%100
38	MP1B	Z	311	311	0	%100
39	MP2B	X	539	539	0	%100
40	MP2B	Z	311	311	0	%100
41	MP3B	X	539	539	0	%100
42	MP3B	Z	311	311	0	%100
43	MP4B	X	539	539	0	%100
44	MP4B	Z	311	311	0	%100
45	M47	X	717	717	0	%100
46	M47	Z	414	414	0	%100
47	M48	X	717	717	0	%100
48	M48	Z	-,414	414	0	%100
49	M49	X	163	163	0	%100
50	M49	Z	094	094	0	%100
51	M64	X	163	163	0	%100
52	M64	Z	094	094	0	%100
53	M72	X	-,163	163	0	%100
	M72	Z	094	094	0	%100
54	M58	X	163	163	0	%100
55	M58	Z	094	094	0	%100
56		X	-,163	163	0	%100
57	M65	Ž	094	094	0	%100
58 59	M65	X	163	163	0	%100
74	M66	Ž	094	094	Ö	%100

5000382994-VZW_MT_LO_H

July 6, 2023 2:20 PM Checked By:__

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
61	M67	X	652	652	0	%100
62	M67	Z	376	376	0	%100
63	M74	X	652	652	0	%100
64	M74	Z	376	376	0	%100
65	M75	X	652	652	0	%100
66	M75	Z	376	376	0	%100
67	M76	X	207	207	0	%100
68	M76	Z	12	12	0	%100
69	M77	X	829	829	0	%100
70	M77	Z	478	478	0	%100
71	M78	X	207	207	0	%100
72	M78	Z	12	12	0	%100
73	M79	X	0	0	0	%100
74	M79	Z	0	0	0	%100
75	M80	X	416	416	0	%100
76	M80	Z	24	24	0	%100
77	M81	X	416	416	0	%100
78	M81	Z	24	24	0	%100
79	OVP	X	539	539	0	%100
80	OVP	Z	311	311	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft.%]
1	M1	X	101	101	0	%100
2	M1	Z	175	175	0	%100
3	M2	X	491	491	0	%100
4	M2	Z	85	85	0	%100
5	M3	X	491	491	0	%100
6	M3	Z	85	85	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	491	491	0	%100
10	M9	Z	85	85	0	%100
11	M13	X	0	0	0	%100
12	M13	Z	0	0	0	%100
13	FACE	X	491	491	0	%100
14	FACE	Z	85	85	0	%100
15	M10	X	138	138	0	%100
16	M10	Z	239	239	0	%100
17	M11	X	101	101	0	%100
18	M11	Z	175	175	0	%100
19	M14	X	404	404	0	%100
20	M14	Z	7	7	0	%100
21	MP1A	X	311	311	0	%100
22	MP1A	Z	539	539	0	%100
23	MP2A	X	311	311	0	%100
24	MP2A	Z	539	539	0	%100
25	MP3A	X	311	311	0	%100
26	МРЗА	Z	539	539	0	%100
27	MP4A	X	311	311	0	%100
28	MP4A	Z	539	539	0	·%100
29	MP1C	X	311	311	0	%100
30	MP1C	Z	539	539	0	%100
31	MP2C	X	311	311	0	%100
32	MP2C	Z	539	539	0	%100
33	MP3C	X	311	311	0	%100

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:21 PM

Checked By:_

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude(lb/ft,F	Start Location[ft,%]	End Location[ft,%]
34	MP3C	Z	539	539	0	%100
35	MP4C	X	311	311	0	%100
36	MP4C	Z	539	539	0	%100
37	MP1B	X	311	311	0	%100
38	MP1B	Z	539	539	0	%100
39	MP2B	X	311	311	0	%100
40	MP2B	Z	539	539	0	%100
41	MP3B	X	311	311	0	%100
42	MP3B	Z	539	539	0	%100
43	MP4B	X	311	311	0	%100
44	MP4B	7	539	539	0	%100
45	M47	X	138	138	0	%100
46	M47	Z	239	239	0	%100
47	M48	X	552	552	0	%100
48	M48	Z	956	956	0	%100
49	M49	X	282	282	0	%100
50	M49	Z	489	489	0	%100
51	M64	X	282	282	0	%100
52	M64	Z	489	489	0	%100
53	M72	X	282	282	0	%100
54	M72	Z	489	489	0	%100
55	M58	X	0	0	0	%100
56	M58	Z	0	0	0	%100
57	M65	X	0	0	0	%100
58	M65	Z	0	0	0	%100
59	M66	X	0	0	0	%100
60	M66	Z	0	0	0	%100
61	M67	X	282	282	0	%100
62	M67	Z	489	489	0	%100
63	M74	X	282	282	0	%100
64	M74	Z	489	489	0	%100
65	M75	X	282	282	0	%100
66	M75	Z	489	489	0	%100
67	M76	X	0	0	0	%100
68	M76	Z	0	0	0	%100
69	M77	X	359	359	0	%100
70	M77	Z	621	621	0	%100
71	M78	X	359	359	0	%100
72	M78	Z	621	621	0	%100
73	M79	X	08	08	0	%100
74	M79	Z	139	139	0	%100
75	M80	X	08	08	0	%100
76	M80	Z	139	-,139	0	%100
77	M81	X	321	321	0	%100
78	M81	Z	555	555	0	%100
79	OVP	X	311	311	0	%100
80	OVP	Z	539	539	0	%100

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1	M9	Y	-5.141	-5.141	.01	7.24
2	FACE	Y	105	-3.081	0	2
2	FACE	Y	-3.081	-5	2	4
1	FACE	Y	-5	-4.686	4	6
5	FACE	Y	-4.686	-4.686	6	8
6	FACE	Ý	-4.686	-5	8	10

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

July 6, 2023 2:21 PM Checked By:_

Member Distributed Loads (BLC 87: BLC 39 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft.F.,	. Start Location[ft.%]	End Location[ft,%]
7	FACE	Υ	-5	-3.081	10	12
8	FACE	Υ	-3.081	105	12	14
9	M10	Y	-8.833	-4.93	0	1.949
10	M10	Υ	-4.93	-1.027	1.949	3.897
11	M48	Υ	-8.833	-4.93	0	1.949
12	M48	Y	-4.93	-1.027	1.949	3.897
13	M7	Y	-5.141	-5.141	.01	7.24
14	M13	Y	105	-3.081	0	2
15	M13	Y	-3.081	-5	2	4
16	M13	Y	-5	-4.686	4	6
17	M13	Y	-4.686	-4.686	6	8
18	M13	Υ	-4.686	-5	8	10
19	M13	Υ	-5	-3.081	10	12
20	M13	Y	-3.081	105	12	14
21	M47	Y	-8.833	-4.93	0	1.949
22	M47	Y	-4.93	-1.027	1.949	3.897
23	M2	Y	-5.141	-5.141	.01	7.24
24	M3	Υ	-1.076	-2.685	0	2.333
25	M3	Υ	-2.685	-4.754	2.333	4.667
26	M3	Y	-4.754	-6.02	4.667	7
27	M3	Υ	-6.02	-4.754	7	9.333
28	M3	Υ	-4.754	-2.685	9.333	11.667
29	M3	Υ	-2.685	-1.076	11.667	14

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,	. Start Location[ft.%]	End Location[ft,%]
1	M9	Υ	-9.927	-9.927	.01	7.24
2	FACE	Y	202	-5.949	0	2
3	FACE	Y	-5.949	-9.654	2	4
4	FACE	Υ	-9.654	-9.048	4	6
5	FACE	Υ	-9.048	-9.048	6	8
6	FACE	Y	-9.048	-9.654	8	10
7	FACE	Y	-9.654	-5.949	10	12
8	FACE	Υ	-5.949	202	12	14
9	M10	Y	-17.057	-9.52	0	1.949
10	M10	Y	-9.52	-1.984	1.949	3.897
11	M48	Y	-17.057	-9.52	0	1.949
12	M48	Y	-9.52	-1.984	1.949	3.897
13	M7	Y	-9.927	-9.927	.01	7.24
14	M13	Y	202	-5.949	0	2
15	M13	Y	-5.949	-9.654	2	4
16	M13	Y	-9.654	-9.048	4	6
17	M13	Y	-9.048	-9.048	6	8
18	M13	Y	-9.048	-9.654	8	10
19	M13	Y	-9.654	-5.949	10	12
20	M13	Y	-5.949	202	12	14
21	M47	Y	-17.057	-9.52	0	1.949
22	M47	Y	-9.52	-1.984	1.949	3.897
23	M2	Y	-9.927	-9.927	.01	7.24
24	M3	Y	-2.078	-5.185	0	2.333
25	M3	Y	-5.185	-9.181	2.333	4.667
26	M3	Ý	-9.181	-11.624	4.667	7
27	M3	Y	-11.624	-9.181	7	9.333
28	M3	Y	-9.181	-5.185	9.333	11.667
29	M3	Y	-5.185	-2.078	11.667	14

Colliers Engineering & Design

5000382994-VZW_MT_LO_H

Member Distributed Loads (BLC 89 : BLC 84 Transient Area Loads)

Men	nber Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%
1	M9	Y	248	248	.01	7.24
2	FACE	Y	005	149	0	2
	FACE	Y	149	-,241	2	4
	FACE	Y	241	226	4	6
	FACE	Y	226	226	6	8
	FACE	Ý	226	241	8	10
	FACE	Y	241	149	10	12
	FACE	Y	149	005	12	14
9	M10	Ý	426	238	0	1.949
10	M10	Y	238	05	1.949	3.897
11	M48	Y	426	238	0	1.949
	M48	Y	238	05	1.949	3.897
13	M7	Y	248	248	.01	7.24
14	M13	Y	005	149	0	2
15	M13	Y	149	241	2	4
16	M13	Y	241	226	4	6
	M13	Y	226	226	6	8
17	M13	Y	226	241	8	10
18	M13	V	241	149	10	12
19		V	149	005	12	14
20	M13	Y	426	238	0	1.949
21	M47	Y	238	05	1.949	3.897
22	M47	-	248	-,248	.01	7.24
23	M2	Y	052	13	0	2.333
24	M3	T V	13	229	2.333	4.667
25	M3	Y	13	291	4.667	7
26	M3	Y	229	229	7	9.333
27	M3			13	9.333	11.667
28	M3	Y	229	052	11.667	14
29	M3	Y	13	U3Z	11.007	17

Member Distributed Loads (BLC 90 : BLC 85 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M9	Z	62	62	.01	7.24
2	FACE	7	013	371	0	2
3	FACE	7	371	603	2	4
4	FACE	7	603	565	4	6
5	FACE	7	565	565	6	8
6	FACE	7	565	603	8	10
7	FACE	7	603	371	10	12
8	FACE	Z	371	013	12	14
9	M10	Z	-1.065	594	0	1.949
10	M10	7	594	124	1.949	3.897
11	M48	7	-1.065	594	0	1.949
12	M48	Z	594	124	1.949	3.897
	M7	7	62	62	.01	7.24
13	M13	Z	013	371	0	2
14		7	371	603	2	4
15	M13 M13	Z	603	565	4	6
16		Z	565	565	6	8
17	M13	7	565	603	8	10
18	M13	7	603	371	10	12
19	M13	7	371	013	12	14
20	M13	7	-1.065	594	0	1.949
21	M47	7	594	124	1.949	3.897
22	M47	7	62	62	.01	7.24
23	M2 M3	7	13	324	0	2.333

5000382994-VZW_MT_LO_H

July 6, 2023 2:21 PM Checked By:__

Member Distributed Loads (BLC 90 : BLC 85 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude(lb/ft.F	Start Location[ft,%]	End Location[ft,%]
25	M3	Z	324	573	2.333	4.667
25 26	M3	Z	573	726	4.667	7
27	M3	Z	726	573	7	9.333
28	M3	Z	573	324	9.333	11.667
29	M3	Z	324	13	11,667	14

Member Distributed Loads (BLC 91 : BLC 86 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
1	M9	X	.62	.62	.01	7.24
2	FACE	X	.013	.371	0	2
3	FACE	X	.371	.603	2	4
4	FACE	X	.603	.565	4	6
5	FACE	X	.565	.565	6	8
6	FACE	X	.565	.603	8	10
7	FACE	X	.603	.371	10	12
8	FACE	X	.371	.013	12	14
9	M10	X	1.065	.594	0	1.949
10	M10	X	.594	.124	1.949	3.897
11	M48	X	1.065	.594	0	1.949
12	M48	X	.594	.124	1.949	3.897
13	M7	X	.62	.62	.01	7.24
14	M13	X	.013	.371	0	2
15	M13	X	.371	.603	2	4
16	M13	X	.603	.565	4	6
17	M13	X	.565	.565	6	8
18	M13	X	.565	.603	8	10
19	M13	X	.603	.371	10	12
20	M13	X	.371	.013	12	14
21	M47	X	1.065	.594	0	1.949
22	M47	X	.594	.124	1.949	3.897
23	M2	X	.62	.62	.01	7.24
24	M3	X	.13	.324	0	2.333
25	M3	X	.324	.573	2.333	4.667
26	M3	X	.573	.726	4.667	7
27	M3	X	.726	.573	7	9.333
28	M3	X	.573	.324	9.333	11.667
29	M3	X	.324	.13	11.667	14

Member Area Loads (BLC 39 : Structure D)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N14	N5	N7	N19A	Y	Two Way	005
2	N19A	N14	N6	N8	Y	Two Way	005
3	N8	N6	N5	N7	Y	Two Way	005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N7	N5	N14	N19A	Y	Two Way	01
2	N19A	N14	N6	N8	Y	Two Way	01
3	N8	N6	N5	N7	Υ	Two Way	01

Member Area Loads (BLC 84 : Structure Ev)

-	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N14	N5	N7	N19A	Y	Two Way	000251
2	N19A	N14	N6	N8	Y	Two Way	000251

5000382994-VZW MT LO H

July 6, 2023 2:21 PM Checked By:_

Member Area Loads (BLC 84 : Structure Ev) (Continued)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
3	N8	N6	N5	N7	Y	Two Way	000251

Member Area Loads (BLC 85 : Structure Eh (0 Deg))

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N14	N5	N7	N19A	Z	Two Way	000627
2	N19A	N14	N6	N8	Z	Two Wav	000627
3	N8	N6	N5	N7	Z	Two Way	000627

Member Area Loads (BLC 86 : Structure Eh (90 Deg))

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N14	N5	N7	N19A	X	Two Way	.000627
2	N19A	N14	N6	N8	X	Two Way	.000627
3	N8	N6	N5	N7	X	Two Way	.000627

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [1b]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
11	N3	max	720.909	9	1690.55	22	1544.929	1	1.877	13	1.235	1	-1.019	67
2		min	-1185.595	3	520.632	68	-1621.99	7	.273	7	-1.134	7	-3.449	21
3	N15	max	1891.404	10	1896.762	18	799.207	11	769	1	1.245	9	1.054	4
4		min	-1930.95		558.909	64	-393.062	7	-4.136	19	-1.268	3	863	10
5	N21	max	1102.367	11	1671.11	14	1293.026	1	2.07	13	1.102	7	3.157	16
6			-568.314		521.887	72	-1705.403	7	.367	7	-1.027	1	.961	73
7	N126A	max		10	1091.326	14	766.189	1	1.104	24	.919	2	578	68
8			-556.009	4	350.034	70	-608.73	7	.338	69	95	8	-1.875	23
9	N128	max		11	1169.562	20	739.125	1	683	64	.861	11	.218	39
10			-606.384	5	368.749	66	-1060.785	7	-2.299	19	953	5	119	50
11	N130		557.209	10	1066.342	16	796.052	1	1.037	14	.816	7	1.851	16
12	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-849.248	4	342.382	74	-548.56	7	.325	71	913	1	.567	73
13	Totals:		5467.418		8464.513	14	5938.529	1						
14		min		4	2704.638	70	-5938.529	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code C	. Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	phi*Mn z		Eqn
1	M1	HSS4X4X5	.222	0	24	.075	0	Z	-	164170.8	169740	19.285	19.285	1	H1-1b
2	M2	L3X3X4	.283	3.625	13	.013	3.625	z	24	14708.743	46656	1.688	0.700	1	H2-1
3	M3	L3X3X4	.847	7	23	.080	7	V	23		46656	1.688	2.866	1	H2-1
4	M7	L3X3X4	.288	3.625	18	.013	3.625			14708.743	46656	1.688	U.L.U.	1	H2-1
5	M9	L3X3X4	.282	3.625	16	.014	3.625	z	17	14708.743	46656	1.688	0.100	1	H2-1
6	M13	L3X3X4	.830	7	15	.077	7	Z	15		46656	1.688	2.859	1	H2-1
7	FACE	L3X3X4	.882	7	19	.081	7	У	19		46656	1.688	2.00	1	H2-1
8	M10	LL3x3x4x0	.093	3.897	44	.017	0	У	39	76393.472	93312	6.48	1.002	_	H1-1b
9	M11	HSS4X4X5	.232	0	18	.106	0	Z	4	164170.8	169740	19.285	19.285	_	H1-1b
10	M14	HSS4X4X5	.207	0	16	.068	0	Z	12	164170.8	169740	19.285	19.285	$\overline{}$	H1-1b
11	MP1A	PIPE 2.0	.317	1.458	20	.090	1.458		7	17855.085	32130	1.872	1.872	_	H1-1b
12	MP2A	PIPE 2.0	.416	1.557	20	.096	3.453		13	19360.206	32130	1.872	1.872	_	H1-1b
13	MP3A	PIPE 2.0	.360	1.458	19	.085	3.427	ji	18	17855.085	32130	1.872	1.872	_	H1-1b
14	MP4A	PIPE 2.0	.267	1.458	18	.082	1.458		4	17855.085	32130	1.872	1.872	2	H1-1b
15	MP1C	PIPE 2.0	.307	1.458	16	.070	1.458		3	17855.085	32130	1.872		_	H1-1b
16	MP2C	PIPE 2.0	.391	1.557	16	.090	3.453		22	19360.206	32130	1.872	1.872	_	H1-1b
17	MP3C	PIPE 2.0	.340	1.458	14	.081	3.427		14	17855.085	32130	1.872	1.872	_	H1-1b
18	MP4C	PIPE 2.0	.274	3.427	37	.065	3.427		-	17855.085	32130	1.872	1.0.2	_	H1-1b
19	MP1B	PIPE 2.0	.308	1.458	24	.089	1.458		3	17855.085	32130	1.872	1.872	_	H1-1b
20	MP2B	PIPE 2.0	.399	1.557	24	.092	3.453		17	19360.206	32130	1.872	1.872	1	H1-1b

5000382994-VZW_MT_LO_H

July 6, 2023 2:21 PM Checked By:_

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code C.	. Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	.phi*Mn zCb	Egn
21	MP3B	PIPE 2.0	.338	1.458	22	.079	3.427		22	17855.085	32130	1.872	1.872 3 H	11-1b
22	MP4B	PIPE 2.0	.250	1.458	21	.083	1.458		9	17855.085	32130	1.872	1.872 3 H	11-1b
23	M47	LL3x3x4x0	.080	3.897	4	.008	0	Z	10	76393.472	93312	6.48	4.362 1 J	11-1b
24	M48	LL3x3x4x0	.089	3.897	12	.011	0	z	6	76393.472	93312	6.48	4.362 1 H	11-1b
25	M49	PIPE 2.5	.129	6	18	.076	6		13	15797.3	50715	3.596	3.596 1 J	11-1b
26	M64	PIPE 2.5	.129	6	18	.076	6		13	15797.3	50715	3.596	3.596 1 H	11-1b
27	M72	PIPE 2.5	.129	6	18	.076	6		13	15797.3	50715	3.596	3.596 1 H	11-1b
28	M58	PIPE 2.5	.118	6	14	.062	6		20	15797.3	50715	3.596	3.596 1 H	11-1b
29	M65	PIPE 2.5	.118	6	14	.062	6		20	15797.3	50715	3.596	3.596 1 H	11-1b
30	M66	PIPE 2.5	.118	6	14	.062	6		20	15797.3	50715	3.596	3.596 1 H	11-1b
31	M67	PIPE 2.5	.118	6	22	.064	6		18	15797.3	50715	3.596	3.596 1 H	11-1b
32	M74	PIPE 2.5	.118	6	22	.064	6		18	15797.3	50715	3.596	3.596 1 H	11-1b
33	M75	PIPE 2.5	.118	6	22	.064	6	i	18	15797.3	50715	3.596	3.596 1 H	11-1b
34	M76	L3X3X4	.195	2.211	1	.021	0	z	6	41866.554	46656	1.688	3.756 2	H2-1
35	M77	L3X3X4	.182	0	1	.024	2.211	z	43	41866.554	46656	1.688	3.756 2 1	H2-1
36	M78	L3X3X4	.152	2.211	5	.017	.253	z	10	41866.554	46656	1.688	3.756 2 1	H2-1
37	M79	HSS3X3X4	.289	0	21	.045	0	ν	14	95125.096	101016	8.556	8.556 2 H	11-1b
38	M80	HSS3X3X4	.302	0	17	.058	0	V	39	95125.096	101016	8.556	8.556 2 H	11-1b
39	M81	HSS3X3X4	.276	0	13	.046	0	V	18	95125.096	101016	8.556	8.556 2 H	11-1b
40	OVP	PIPE 2.0	.317	5	7	.019	5		7	20866.733	32130	1.872	1.872 1 H	11-1b

VzW SMART Tool® Vendor

Client:	Verizon Wireless	Date: 7/6/2023
Site Name:	BETHEL WEST CT	
MDG #:	5000382994	
Fuze ID #:	17123918	Page: 2
		Version 1.01

Tower Connection Weld Checks

Weld Shape:

Weld Stiffener Configuration:

Stiffener Notch Present?

Stiffener Length, I (in):

Stiffener Spacing/Width, s (in):

Weld Size (1/16 in):

W1 (in):

W2 (in):

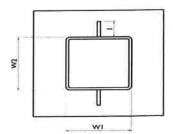
Weld Total Length (in): $Z_x (in^3/in)$:

 Z_y (in³/in):

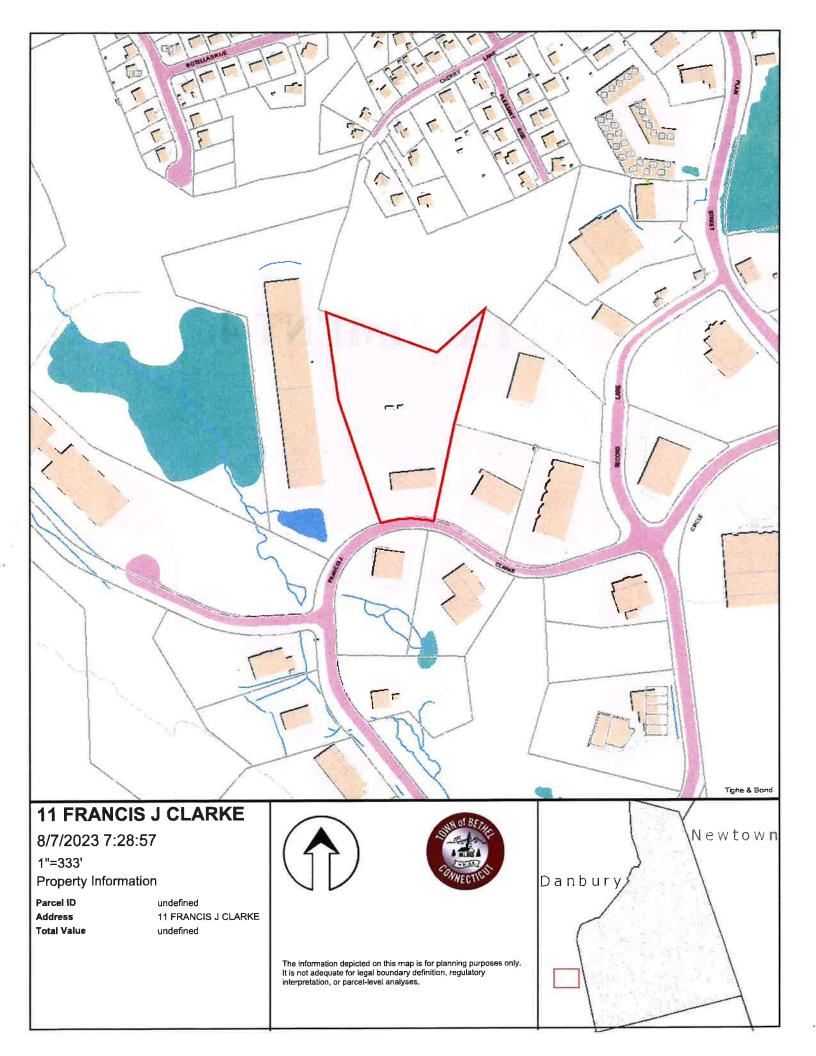
J_p (in⁴/in):

c_x (in)

 c_y (in)


Required combined strength (kip/in):

Weld Capacity (kip/in):


Weld Utilization:

Y	e	S			

Rectangle
(1) Stiffener on top/bottom
No
4
4
4
4
32.00
67.56
21.33
362.67
6
6
0.86
5.57
15.5%

ATTACHMENT 4

Bethel, CT: Assessor Database

Property Search:

Parcel ID: Alternate ID: Owner 1 Name: Street Number: Street Name:

11 FRANCIS J CLARKE CIRCLE

Property Images:

Search Reset

Property Detail:

Owner Information:

Owner 1 Name: STERGUE COSTA ESTATE OF Picture:

Owner 2 Name:

Street 1: PO BOX 76

Street 2:

 City:
 REDDING

 State:
 CT

 Zip:
 06896

 Volume:
 1143

 Page:
 630

 Deed Date:
 0000-00-00

Building Information:

Building Number: 1
Units: 7

Structure Type: MFG/PROCESSING

Grade: C
Identical Units: 1
Year Built: 1992

Valuation:

Appraised Land: \$739,300.00

Appraised Land PA490: \$0.00

Appraised Bidg: \$846,700.00

Appraised Total: \$1,586,000.00

Total Assessment: \$1,110,200.00

iketch:			ID Cod	n Description	Area
			B 044 C 044 D 082 E 0D1 F 0D1		96 19220
	156				
62	А	62;			
	155				
				a	
					_

Out-Buildings:

 Code:
 Description:
 Units:
 Year Built:
 Size1:
 Size2:
 Area:
 Grade:
 Condition:

 PA1
 PAVING ASPHALT PARKING
 1992
 0
 0
 20000
 C
 NORMAL (Comm)

Building Interior/Exterior Information:

Floor From:	Floor To:	Area:	Use Type:	Exterior Walls:	Contruction Type:	Heating:	A/C:	Plumbing:	Functional Utility:
01	01	9610	LIGHT MANUFACTURING	FRAME	WOOD FRAME/JOIST/BEAM	UNIT HEATERS	NONE	BELOW NORMAL	3
02	02	7378	LIGHT MANUFACTURING	FRAME	WOOD FRAME/JOIST/BEAM	UNIT HEATERS	NONE	BELOW NORMAL	3
02	02	2232	MULTI-USE OFFICE	FRAME	WOOD FRAME/JOIST/BEAM	HOT AIR	CENTRAL	NORMAL	3

ATTACHMENT 5

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	Affix Stamp Here Postmark with Date of Receipt. neopost 06/09/2023 US POSTAGE \$003.199 ZIP 06103 041L12203937					
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving)						
USPS® Tracking Number Firm-specific Identifier	(Name Street C	Address ity, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift	
1. 2. 3.	1 School Street Bethel, CT 06801 Beth Cayagna, Direct	fford J. Hurgin - Municipal tor/Town Planner fford J. Hurgin - Municipal	15k p05	T OFFICE S			
4.		-	-				
5.							
6.							
	98/24/07						