PROJECT NARRATIVE # TOTALLY COMMITTED. April 22, 2022 Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051 Re: Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 9 Meyers Road, Bethany, CT 06524 Latitude: 41'24'17.13" / Longitude: -72'59'59.940" Dear Ms. Bachman: Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 9 Meyers Road in Bethany (the "Property"). The existing 340-foot self-support tower is owned by American Tower Corporation ("ATC"). The underlying property is owned by American Towers. DISH requests that the Council find that the proposed shared use of the ATC tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. A copy of this filing is being sent to Paula Cofrancesco, First Selectwoman for the Town of Bethany, Robert Walsh, Town of Bethany Building Official and American Towers as the property owner. #### **Background** This facility was originally permitted by the Town of Bethany but no records are available from the Town per an email from the Bethany Zoning Enforcement Office. A copy is included in this filing. There are several existing carriers on the tower and no known condition exists that would restrict an additional shared use. The existing ATC facility consists of a 340-foot self-support tower located within an existing leased area. U.S. Dept. of Homeland Security currently maintains antennas at the 344-foot level, 315-foot level, 285 foot level and 213 foot level. Ligado Networks LLC currently maintains antennas at the 326-foot level. Sprint/Nextel currently maintains antennas at the 240-foot level and 48-foot level. T-Mobile currently maintains antennas at the 222-foot level. Verizon Wireless currently maintains antennas at the 180-foot level. AT&T Mobility currently maintains antennas at the 158-foot level. Sigfox currently maintains antennas at the 147-foot level. Metro PCS currently maintains antennas at the 100-foot level and the Equipment associated with these antennas are located at various positions within the tower and compound. DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH and ATC have agreed to the proposed shared use of the 9 Meyers Road tower pursuant to mutually acceptable terms and conditions. Likewise, DISH and ATC have agreed to the proposed installation of equipment cabinets on the ground within the existing compound. ATC has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower. (See attached Letter of Authorization) ## TOTALLY COMMITTED. DISH proposes to install three (3) antennas, (1) Tower platform mount, (6) Remote radio units at the 140-foot level along with, (1) over voltage protection device (OVP) and (1) Hybrid cable. DISH will install an equipment cabinet on a 5'x7' equipment platform. DISH's Construction Drawings provide project specifications for all proposed site improvement locations. The construction drawings also include specifications for DISH's proposed antenna and groundwork. - C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria. - A. Technical Feasibility. The existing ATC tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application. - **B.** Legal Feasibility. Under C.G.S. § 16-50aa, the Council has been authorized to issue order approving the shared use of an existing tower such as the ATC tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations. - **C. Environmental Feasibility**. The proposed shared use of the ATC tower would have a minimal environmental effect for the following reasons: - 1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site. - 2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards. - 3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the ATC facility # TOTALLY COMMITTED. other than periodic maintenance. The proposed shared use of the ATC tower, would, therefore, have a minimal environmental effect, and is environmentally feasible. - D. **Economic Feasibility**. As previously mentioned, DISH has entered into an agreement with ATC for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible. - E. **Public Safety Concerns**. As discussed above, the tower is structurally capable of supporting DISH's full array of three (3) antennas, (1) Tower platform mount, (6) Remote radio units, (1) over voltage protection device (OVP) and (1) Hybrid cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing ATC tower. #### Conclusion For the reasons discussed above, the proposed shared use of the existing ATC tower at 9 Meyers Road satisfies the criteria stated in C.G.S. §16-50aa and advances the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the prosed shared use. Sincerely, David Hoogasian **David Hoogasian** *Project Manager* ## LETTER OF AUTHORIZATION #### LETTER OF AUTHORIZATION #### NETWORK BUILDING AND CONSULTING LLC/ DISH WIRELESS L.L.C. I, Margaret Robinson, Senior Counsel, US Tower Division on behalf of American Tower*, owner/operator of the tower facility located at the address identified below (the "Tower Facilities"), do hereby authorize NETWORK BUILDING AND CONSULTING LLC, its successors and assigns, to act as American Tower's non-exclusive agent for the purpose of filing and securing any zoning, land-use, building permit and/or electrical permit application(s) and approvals of the applicable jurisdiction for and to conduct the construction of the installation of antennas and related telecommunications equipment on the Tower Facility located at the above address. This installation shall not affect adjoining lands and will occur only within the area leased by American Tower. American Tower understands that the application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by American Tower of conditions related to American Tower's installation. Any such conditions of approval or modifications will not be effective unless approved in writing by American Tower. The above authorization does not permit NETWORK BUILDING AND CONSULTING LLC to modify or alter any existing permit(s) and/or zoning or land-use conditions or impose any additional conditions unrelated to American Tower's installation of telecommunications equipment without the prior written approval of American Tower. | ATC | | Customer Site | Project | | |---------|-----------------|---------------|----------|---| | Asset # | Site Name | Number | Number | Site Address | | 302484 | Branford CT 6 | BOHVN00142A | 13701211 | 405 Brushy Plain Rd, Branford | | 302516 | Mlfd - Milford | BOHVN00144A | 13702496 | 438 Bridgeport Ave, Milford | | 88008 | BETHANY CT | BOHVN00151A | 13709244 | 93 Old Amity Road, Bethany (9 Meyers Road) | | 302467 | Bilkays Express | BOHVN00140A | 13701206 | 90 North Plains Industrial Rd., Wallingford | Signature: Margaret Robinson, Senior Counsel **US Tower Division** See attached Notary Block ## LETTER OF AUTHORIZATION NETWORK BUILDING AND CONSULTING LLC/ DISH WIRELESS L.L.C #### **NOTARY BLOCK** COMMONWEALTH OF MASSACHUSETTS County of Middlesex This instrument was acknowledged before me by Margaret Robinson, Senior Counsel of American Tower (Tower Facility owner), personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed
to the within instrument and acknowledged to me that he/she executed the same. WITNESS my hand and official seal, this 1st day of December, 2021. NOTARY SEAL MELISSA ANN METZLER Notary Public Commenwealth of Massachusetts My Commission Expires March 14, 2025 My Commission Expires: March 14, 2025 ^{*}American Tower includes all affiliates and subsidiaries of American Tower Corporation. ## ORIGINAL FACILITY APPROVAL #### EJamieson@TranscendWireless.com From: Isabel Kearns <ikearns@bethany-ct.com> **Sent:** Monday, March 23, 2020 9:53 AM **To:** ejamieson@transcendwireless.com **Subject:** 93 Old Amity Road Elizabeth: I am sorry to say, we have nothing in the file about the construction of the tower. I am sorry. #### Isabel Kearns Inland Wetlands & Zoning Enforcement Officer Town of Bethany 40 Peck Road Bethany, CT 06524 (203) 393-2100 X1135 (Office) (203) 410-5909 (Cell) (203) 393-0828 (Fax) A Please consider the environment before printing this e-mail and/or any attachments. The information contained in this email message is confidential and may contain privileged information and material. Any review or use of the information contained in this email message by persons other than the intended recipient(s) is prohibited. If you are not the intended recipient please notify us immediately by telephone or e-mail, and destroy all copies of this message and any attachments. ## **ENGINEERING DRAWINGS** # dish wireless... DISH WIRELESS. L.L.C. SITE ID: ## **BOHVN00151A** DISH WIRELESS, L.L.C. SITE ADDRESS: ## 9 MEYERS ROAD BETHANY, CT 06524 #### CONNECTICUT CODE COMPLIANCE ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES, NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES: CODE TYPE BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL | | SHEET INDEX | | | | | | | | | |-----------|---|--|--|--|--|--|--|--|--| | SHEET NO. | SHEET NO. SHEET TITLE | | | | | | | | | | T-1 | TITLE SHEET | A-0 | PARCEL PLAN | | | | | | | | | | A-1 | OVERALL AND ENLARGED SITE PLAN | | | | | | | | | | A-2 | ELEVATION, ANTENNA LAYOUT AND SCHEDULE | | | | | | | | | | A-3 | EQUIPMENT PLATFORM AND H-FRAME DETAILS | A-4 | EQUIPMENT DETAILS | | | | | | | | | | A-5 | EQUIPMENT DETAILS | | | | | | | | | | A-6 | A-6 EQUIPMENT DETAILS | E-1 | ELECTRICAL/FIBER ROUTE PLAN AND NOTES | | | | | | | | | | E-2 | ELECTRICAL DETAILS | | | | | | | | | | E-3 | ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE | | | | | | | | | | G-1 | GROUNDING PLANS AND NOTES | | | | | | | | | | G-2 | GROUNDING DETAILS | | | | | | | | | | G-3 | GROUNDING DETAILS | RF-1 | RF CABLE COLOR CODE | | | | | | | | | | RF-2 | RF PLUMBING DIAGRAM | GN-1 | LEGEND AND ABBREVIATIONS | | | | | | | | | | GN-2 | GENERAL NOTES | | | | | | | | | | GN-3 | GENERAL NOTES | | | | | | | | | | GN-4 | GENERAL NOTES | #### SCOPE OF WORK THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING: - TOWER SCOPE OF WORK: INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) - INSTALL (3) PROPOSED ANTENNA SECTOR FRAME MOUNTS (1 PER SECTOR) - INSTALL PROPOSED JUMPERS - INSTALL (6) PROPOSED RRUS (2 PER SECTOR) INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) - GROUND SCOPE OF WORK: INSTALL (1) PROPOSED METAL PLATFORM - INSTALL - (1) PROPOSED ICE BRIDGE (1) PROPOSED PPC CABINET - INSTALL - 1) PROPOSED EQUIPMENT CABINET INSTALL (1) PROPOSED POWER CONDUIT - INSTALL (1) PROPOSED TELCO CONDUIT - INSTALL PROPOSED TELCO-FIBER BOX - INSTALL (1) PROPOSED GPS UNIT PROPOSED SAFETY SWITCH (IF REQUIRED) - 1) PROPOSED CIENA BOX (IF REQUIRED) INSTALL - INSTALL (1) PROPOSED METER SOCKET #### SITE PHOTO #### **UNDERGROUND SERVICE ALERT CBYD 811** UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTIO #### **GENERAL NOTES** THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION, A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL PROPERTY. THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED REVIEW UNDER 47 U.S.C. § 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT INVOLVES THE COLLOCATION, REMOVAL, AND/OR REPLACEMENT OF TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR § 1.61000 (B)(7). #### 11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK. #### PROJECT DIRECTORY PROPERTY OWNER: AMERICAN TOWERS DISH WIRELESS, L.L.C. ADDRESS: PO BOX 723597 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 ATLANTA, GA 31139 (303) 706-5008 TOWER TYPE: SELF SUPPORT TOWER TOWER OWNER: AMERICAN TOWER TOWER CO SITE ID: 10 PRESIDENTIAL WAY WOBURN, MA 01801 TOWER APP NUMBER: 13709244 NB+C ENGINEERING SERVICES, LLC. NEW HAVEN ENGINEER: 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 LATITUDE (NAD 83): 41' 24' 17 130" N 41.40475833 LONGITUDE (NAD 83): 72' 59' 59.940" W -72 99998333 ZONING JURISDICTION: CONNECTICUT SITING COUNCIL SITE ACQUISITION: APRIL PARROTT APRIL,PARROTT@DISH.COM ZONING DISTRICT: R-65 CONSTRUCTION MANAGER; JAVIER SOTO JAVIER SOTO@DISH.COM PARCEL NUMBER: 118/51C RF ENGINEER: SYED ZAIDI OCCUPANCY GROUP: SYED.ZAIDI@DISH.COM CONSTRUCTION TYPE: II-B TELEPHONE COMPANY: FRONTIER COMMUNICATIONS SITE INFORMATION #### **DIRECTIONS** FROM NEW HAVEN, CT TAKE RT 34 WEST TO RT 63 NORTH, FOLLOW RT 63 NORTH TO OLD AMITY ROAD. FORK RIGHT ONTO OLD AMITY ROAD AND FOLLOW UP THE HILL TO THE FORK, FORK RIGHT AGAIN TO DEAD END STREET. ACCESS ROAD ENTRANCE WILL BE ON THE LEFT. 5701 SOUTH SANTA FE DRIVE 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 DRAWN BY: CHECKED BY: APPROVED B' BIW RFDS REV #: #### CONSTRUCTION DOCUMENTS | | SUBMITTALS | | | | | | | | | |-----|------------|-------------------------|--|--|--|--|--|--|--| | REV | DATE | DESCRIPTION | | | | | | | | | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | 1 | | | | | | | | | | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 > SHEET TITLE TITLE SHEET T-1 <u>NOTES</u> 1. PARCEL LINES TAKEN FROM TOWN OF BETHANY ONLINE GIS, 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131 | DRAWN BY: | CHECKED BY: | APPROVED BY: | |-----------|-------------|--------------| | AMT | BIW | BIW | RFDS REV #: ## CONSTRUCTION DOCUMENTS | Ш | | | SUBMITTALS | |---|-----|------------|-------------------------| | Ш | REV | DATE | DESCRIPTION | | Ш | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | | Ш | | | | | Ш | | | | | Ш | | | | | Ш | | | | | Ш | | | | | Ш | | | | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE PARCEL PLAN SHEET NUMBER **A-0** - 1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS. - 2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS - 3. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY. #### ANTENNA LAYOUT | | | | | ITENNA | | | | TRANSMISSION CABLE | | | |---------|----------|---|------------------------|------------|---|----------------------------|---------|--------------------|--|--| | SECTOR | POSITION | EXISTING OR PROPOSED | MANUFACTUREI
NUME | | TECHNOLOGY | SIZE (HxW) | AZIMUTH | RAD
CENTER | FEED LINE TYPE
AND LENGTH | | | ALPHA | A1 | PROPOSED | JMA – MX08 | R0665-21 | 5G | 72.0" × 20.0" | 0. | 140'-0" | (4) | | | BETA | B1 | PROPOSED | JMA – MX08 | FRO665-21 | 5G | 72.0" × 20.0" | 120 | 140'-0" | (1) HIGH-CAPACITY
HYBRID CABLE
(167' LONG) | | | GAMMA | G1 | PROPOSED | JMA – MX08 | FRO665-21 | 5G 72.0" × 20.0" | | 240° | 140'-0" | (107 2010) | | | SECTOR | POSITION | RRH MANUFACTURER - MODEL TECHNOLOGY NUMBER | | | NOTES 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR AL | | | | | | | ALPHA - | A1 | FUJITSU - TA08025-B604 | | N29,N71 | DETAILS. 2. ANTENNA AND RRH MODELS MAY CHANGE DUE TO FOUIPMENT | | | | | | | ALPHA | A2 | FUJITSU - " | FUJITSU - TA08025-B605 | | AVAILABIL | BE APPROVED AND DESIGN AND | | | | | | BETA | В1 | FUJITSU - " | TA08025-B604 | N29,N71 | STRUCTU | | | | | | | BEIA | B2 | FUJITSU - 1 | FA08025-B605 | N66,N70 | 3. INSTALL | P | | | | | | GAMMA | G1 | | | N29,N71 | | | | | | | | GANINA | G2 | | | N66,N70 | | | | | | | | | | | OVP | | | | | | | | | SECTOR | POSITION | | RER – MODEL
MBER |
TECHNOLOGY | | | | | | | | ALPHA | _ | RAYCAP - RDI | DC-9181-PF-48 | | | | | | | | 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131 | ı | DRAWN | BY: | CHECKED | BY: | APPROVED | BY: | |---|-------|-----|---------|-----|----------|-----| | | AMT | Г | BIW | | BI₩ | | RFDS REV #: ## CONSTRUCTION DOCUMENTS | | | SUBMITTALS | | | | | | | | | |---|-----|------------|-------------------------|--|--|--|--|--|--|--| | П | REV | DATE | DESCRIPTION | | | | | | | | | | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 ELEVATION, ANTENNA LAYOUT AND SCHEDULE SHEET NUMBE **A-2** 20' 10' 0 20' 4 PROPOSED NORTH ELEVATION ANTENNA SCHEDULE NO SCALE 1/4"=1'-0' DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING ± 24 V AND ± 48 V CONDUCTORS, RED MARKINGS SHALL IDENTIFY ± 24 V AND BLUE MARKINGS SHALL IDENTIFY ± 48 V. - CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE - 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS. - 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION. - 4. CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS, VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED. - 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM. - 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314. - 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS. - 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAYED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM. - 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS. - 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL. - 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT. - 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS. - 13, ALL TRENCHES IN COMPOUND TO BE HAND DUG **ELECTRICAL NOTES** NO SCALE #### **NOTES** . THE SURVEY PROVIDED ON THIS SHEET IS PROVIDED FOR REFERENCE ONLY, THE UTILITY ROUTE AND EXISTING EASEMENTS MUST BE VERIFIED PRIOR TO CONSTRUCTION. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131 | DRAWN | BY: | CHECKED | BY: | APPROVED | BY: | |-------|-----|---------|-----|-----------------|-----| | AMT | ī | BIW | | APPROVED
BIW | | RFDS REV #: #### CONSTRUCTION DOCUMENTS | | SUBMITTALS | | | | | | | | | |--------------|-------------|-------------------------|--|--|--|--|--|--|--| | | SODIVITIALS | | | | | | | | | | REV | DATE | DESCRIPTION | | | | | | | | | 0 09/15/2021 | | ISSUED FOR CONSTRUCTION | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE ELECTRICAL/FIBER ROUTE PLAN AND NOTES SHEET NUMBER E-1 EXISTING SURVEY (BY OTHERS) PPC ONE-LINE DIAGRAM NO SCALE | LOAD SERVED | VOLT AMPS
(WATTS) | | TRIP CH | | P | HAS | E | скт
| TRIP | VOLT
(WA | AMPS
TTS) | LOAD SERVED | |-----------------------|----------------------|------|---------|----|--------|-----|-----------------------|----------|---------|-------------|--------------|-----------------| | | L1 | L2 | | " | L | | | | | L1 | L2 | | | PPC GFCI OUTLET | 180 | | 15A | 1 | 7 | Α | $\vdash \land \vdash$ | 2 | 30A | 2880 | | ABB/GE INFINITY | | CHARLES GFCI OUTLET | | 180 | 15A | 3 | 7 | В | \sim | 4 | JUA | | 2880 | RECTIFIER 1 | | -SPACE- | | | | 5 | ζ | Α | \vdash | 6 | 30A | 2880 | | ABB/GE INFINITY | | -SPACE- | | | | 7 | \sim | В | $\vdash \wedge$ | 8 | JUA | | 2880 | RÉCTIFIER 2 | | -SPACE- | | | | 9 | Σ | Α | 7 | 10 | 30A | 2880 | | ABB/GE INFINITY | | -SPACE- | | | | 11 | 7 | В | $\overline{}$ | 12 | JUA | | 2880 | RÉCTIFIER 3 | | -SPACE- | | | | 13 | 7 | Α | _ | 14 | 30A | 2880 | | ABB/GE INFINITY | | -SPACE- | | | | 15 | 7 | В | $\overline{}$ | 16 | JUA | | 2880 | RÉCTIFIER 4 | | -SPACE- | | | | 17 | ~ | Α | \sim | 18 | | | | -SPACE- | | -SPACE- | | | | 19 | 7 | В | \sim | 20 | | | | -SPACE- | | -SPACE- | | | | 21 | 7 | Α | \sim | 22 | | | | -SPACE- | | -SPACE- | | | | 23 | ~ | В | ~ | 24 | | | | -SPACE- | | VOLTAGE AMPS | 180 | 180 | | | | | | | | 11520 | 11520 | | | 200A MCB, 1φ, 24 SPA | CE, 120/ | 240V | L1 | | | L2 | | | | | | | | MB RATING: 65,000 AIC | | | 11700 |) | 1 | 170 | 0 | VOL | TAGE AM | PS | | | | | | | 98 | | | 98 | | AMF | PS . | | | - | | | | | | 9 | 8 | | | MAX | AMPS | | | | | | | | | 13 | 23 | | | MAX | 125% | | | | 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131 DRAWN BY: CHECKED BY: APPROVED BY AMT BIW BI₩ RFDS REV #: #### CONSTRUCTION DOCUMENTS | | | SUBMITTALS | | | | | | | | | |---|---|------------|------------|-------------------------|--|--|--|--|--|--| | | | REV | DATE | DESCRIPTION | | | | | | | | | | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | П | | | | | | | | | | | _ | 4 | | | | | | | | | | | | П | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER. TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE E-3 PANEL SCHEDULE NO SCALE NOT USED NO SCALE ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER, THIS LAYOUT IS FOR REFERENCE TEST GROUND ROD WITH INSPECTION SLEEVE EXOTHERMIC CONNECTION MECHANICAL CONNECTION ---- #2 AWG STRANDED & INSULATED GROUND BUS BAR GROUND ROD - - - #2 AWG SOLID COPPER TINNED ▲ BUSS BAR INSULATOR #### **GROUNDING LEGEND** - 1, GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY. - 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM, GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS. - 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED, #### **GROUNDING KEY NOTES** - (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING. - TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED ANOUND AN ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS. - INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA, ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN - D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE - (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 5/8" DIAMETER BY EIGHT FEET LONG, GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR. - CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS. - (G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH. - EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION
SLEEVE. - J TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING. - K FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK. - (L) <u>INTERIOR UNIT BONDS:</u> METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING, - M FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS. - (N) EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE - P ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING. - DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR - (R) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH WIRELESS, L.L.C. GROUNDING NOTES. wireless 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131 DRAWN BY: CHECKED BY: APPROVED B' AMT BI₩ RFDS REV # #### CONSTRUCTION **DOCUMENTS** | | SUBMITTALS | | | | | |---|------------|------------|-------------------------|--|--| | | REV | DATE | DESCRIPTION | | | | Ш | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | | | | Ш | | | | | | | Ш | | | | | | | | | | | | | | Ш | | | | | | | Ш | | | | | | | П | | | | | | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE GROUNDING PLANS AND NOTES SHEET NUMBER G-1 **GROUNDING KEY NOTES** NO SCALE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131 DRAWN BY: CHECKED BY: APPROVED BY AMT BIW BI₩ RFDS REV #: #### CONSTRUCTION DOCUMENTS | | | | SUBMITTALS | |---|-----|------------|-------------------------| | | REV | DATE | DESCRIPTION | | | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | Ш | | | | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1 RF CABLE COLOR CODES NOT USED NO SCALE NO SCALE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 | DRAWN | BY: | CHECKED | BY: | APPROVED | BY: | |-------|-----|---------|-----|----------|-----| | AMT | ī | BIW | | BIW | | RFDS REV #: ## CONSTRUCTION DOCUMENTS | | SUBMITTALS | | | | | |-----|------------|-------------------------|--|--|--| | REV | DATE | DESCRIPTION | | | | | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE LEGEND AND ABBREVIATIONS SHEET NUMBER #### SITE ACTIVITY REQUIREMENTS: - 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER, PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, L.L.C. AND TOWER OWNER NOC & THE DISH WIRELESS, L.L.C. AND TOWER CONSTRUCTION MANAGER. - 2. "LOOK UP" DISH WIRELESS, L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT: THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, L.L.C. AND DISH WIRELESS, L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET. - 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS. - 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION). - 5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS." - 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION. - 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS. - 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. - 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION. - 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES. - 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION. - 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY. - 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES. - 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS. - 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS. - 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION. - 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS. - 18. CONTRACTOR SHALL MINIMIZE
DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL. - 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER. - 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. - 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS. - 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT. #### **GENERAL NOTES:** 1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION CARRIER: DISH WIRELESS, L.L.C. TOWER OWNER:TOWER OWNER - 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN. - 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY. - 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD. - 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE. - 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER. - 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS. - 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS. - 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. - 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION - 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS - 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, L.L.C. AND TOWER OWNER - 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. - 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 | DRAWN BY: | CHECKED BY: | APPROVED BY: | | |-----------|-------------|--------------|--| | AMT | BIW | BIW | | RFDS REV #: ## CONSTRUCTION DOCUMENTS | | | SUBMITTALS | |-----|------------|-------------------------| | REV | DATE | DESCRIPTION | | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE GENERAL NOTES SHEET NUMBER #### CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: - 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE. - 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf. - 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (I'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'f AT TIME OF PLACEMENT. - 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. - 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: #4 BARS AND SMALLER 40 ksi #5 BARS AND LARGER 60 ksi - 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS: - CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" - CONCRETE EXPOSED TO EARTH OR WEATHER: - #6 BARS AND LARGER 2" - #5 BARS AND SMALLER 1-1/2" - CONCRETE NOT EXPOSED TO EARTH OR WEATHER: - SLAB AND WALLS 3/4" - BEAMS AND COLUMNS 1-1/2" - 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. #### **ELECTRICAL INSTALLATION NOTES:** - 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. - 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED. - 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. - 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. - 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE. - 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. - 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. - 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). - 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. - 8. TIE WRAPS ARE NOT ALLOWED. - 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. - 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED
INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. - 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED. - 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. - 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75' C (90' C IF AVAILABLE). - 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC. - 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS. - . ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. - 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT. - 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED. - 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED, SET SCREW FITTINGS ARE NOT ACCEPTABLE. - 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC. - 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY). - 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). - 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. - 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. - 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. - 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. - 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. - 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. - 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, L.L.C.". - 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 | DRAWN BY: | CHECKED | BY: | APPROVED | BY: | |-----------|---------|-----|----------|-----| | AMT | BIW | | BI₩ | | ## CONSTRUCTION DOCUMENTS RFDS REV #: | - 1 | | | | |-----|-----|------------|-------------------------| | - 1 | | | SUBMITTALS | | - 1 | REV | DATE | DESCRIPTION | | - 1 | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | | - 1 | | | | | - 1 | | | | | - 1 | | | | | - 1 | | | | | - 1 | | | | | - 1 | | | | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE GENERAL NOTES SHEET NUMBER #### GROUNDING NOTES: - 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC. - 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. - 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS. - 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. - 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS FOLIPMENT. - 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS. - 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED. - 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED. - 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. - 10. USE OF 90' BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED. - 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. - 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. - 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. - 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR. - 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS. - 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. - 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC. - 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR. - 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT. - 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL). - 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES. #### STRUCTURAL STEEL NOTES: - 1. STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS." - 2. STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS: - A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE - B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE. - C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND) - D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS - E. ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE - 3. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695. - 4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES
AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS - 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS. - CONNECTIONS: - A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1. - B. ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY. - C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR. - D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY. - E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE. - F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE. - G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING ½" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS. - . THE CONTRACTOR SHALL PROVIDE ADEQUATE SHORING AND/OR BRACING WHERE REQUIRED DURING CONSTRUCTION UNTIL ALL - I. ANY FIELD CHANGES OR SUBSTITUTIONS SHALL HAVE PRIOR APPROVAL FROM THE ENGINEER, AND DISH WIRELESS L.L.C. PROJECT MANAGER IN WRITING 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 RALEIGH, NC 27615 (919) 657-9131 | DRAWN BY: | CHECKED BY: | APPROVED BY: | |------------|-------------|--------------| | AMT | BIW | BI₩ | | RFDS REV ; | # : | 1 | ## CONSTRUCTION DOCUMENTS | | SUBMITTALS | | |---|------------|-------------------------| | REV | DATE | DESCRIPTION | | 0 | 09/15/2021 | ISSUED FOR CONSTRUCTION | $ldsymbol{ld}}}}}}$ | | | IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER. TO ALTER THIS DOCUMENT. A&E PROJECT NUMBER 88008-13709244 DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00151A 9 MEYERS ROAD BETHANY, CT 06524 SHEET TITLE GENERAL NOTES SHEET NUMBER ## **ENGINEERING:** ## STRUCTURAL ANALYSIS **MOUNT ANALYSIS** ## **Structural Analysis Report** Structure : 337.5 ft Self Supported AT&T TAG Tower ATC Site Name : BETHANY CT, CT ATC Site Number : 88008 Engineering Number : 13709244_C3_03 Proposed Carrier : DISH WIRELESS L.L.C. Carrier Site Name : BOHVN00151A Carrier Site Number : BOHVN00151A Site Location : 9 Meyers Road Bethany, CT 06524-3400 41.4048, -73 County : New Haven Date : October 8, 2021 Max Usage : 75% Result : Pass Prepared By: Reviewed By: Andrew Vargo Airosmith Engineering COA: PEC.0001553 10/8/2021 ### **Table of Contents** | Introduction | | |---------------------------------|---| | Supporting Documents | | | Analysis | | | Conclusion | | | Existing and Reserved Equipment | | | Equipment to be Removed | | | Proposed Equipment | | | Structure Usages | Ţ | | Foundations | | | Standard Conditions | | | CalculationsAtta | | #### Introduction The purpose of this report is to summarize results of a structural analysis performed on the 337.5 ft Self Supported AT&T TAG tower to reflect the change in loading by DISH WIRELESS L.L.C.. #### **Supporting Documents** | Tower Drawings | CSEI Analysis ATC Engineering #73115244, dated November 18, 2002 | |---------------------|--| | Foundation Drawing | Mapping by ETS Project #120302.01, dated June 18, 2012 | | Geotechnical Report | Geotel Report #E12-221, dated June 5, 2012 | | Modifications | ATC Job #OAA712592_C6_13, dated August 13, 2018 | #### **Analysis** The tower was analyzed using Power Line System's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222. | Basic Wind Speed: | 119 mph (3-second gust) | |--|--| | Basic Wind Speed w/ Ice: 50 mph (3-second gust) w/ 1.00" radial ice concurrent | | | Code: | ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code | | Exposure Category: | В | | Risk Category: | II | | Topographic Factor Procedure: | Method 1 | | Topographic Category: | 1 | | Crest Height (H): | 0 ft | | Crest Length (L): | 0 ft | #### Conclusion Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report. If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions. #### **Existing and Reserved Equipment** | Elev.1 (ft) | Qty | Equipment | Mount Type | Lines | Carrier | |-------------|-----|--|--------------|--|---------------------------------| | 344.0 | 1 | Rohde & Schwarz ADD090 | Leg | (2) 7/8" Coax | US DEPT OF
HOMELAND SECURITY | | 326.0 | 1 | Kathrein Scala 750 10074 | Side Arm | (1) 1 5/8" Coax | LIGADO NETWORKS
LLC | | 320.0 | 1 | Sinclair SC281-L | | (1) 7/8" Coax | LIC DEDT OF | | 315.0 | 1 | Sinclair SC381-HL (160") | Sector Frame | (1) 7/8" Coax | US DEPT OF HOMELAND SECURITY | | 300.0 | - | - | | (1) 1/2" Coax | | | 291.0 | 2 | Generic 8' Omni | Side Arm | - | UNKNOWN | | 285.0 | 1 | Sinclair SC281-L | Leg/Flush | (1) 7/8" Coax | US DEPT OF HOMELAND SECURITY | | 266.0 | 1 | Generic 8' Omni | Side Arm | - | UNKNOWN | | 253.0 | 12 | Decibel DB844H90E-XY | Leg | (12) 1 5/8" Coax | | | | 6 | Alcatel-Lucent 800 MHz 2X50W RRH w/ Filter | | | | | | 3 | Commscope NNVV-65B-R4 | | (4) 1 1/4" Hybriflox | SPRINT NEXTEL | | 240.0 | 3 | RFS APXVTM14-ALU-I20 | Sector Frame | (4) 1 1/4" Hybriflex
Cable | SPRINT NEXTEL | | | 3 | Alcatel-Lucent TD-RRH8x20-25 w/ Solar Shield | | | | | | 3 | Alcatel-Lucent 1900 MHz 4X45 RRH | | | | | | 3 | RFS APXVAARR24_43-U-NA20 | | (3) 1 1/4" (1.25"-
31.8mm) Fiber T-N
(6) 1 5/8" Coax | | | 222.0 | 3 | RFS APX16DWV-16DWVS-E-A20 | Sactor Frama | | T-MOBILE | | 222.0 | 3 | Ericsson Radio 4449 B12,B71 | Sector Frame | | 1-WOBILE | | | 3 | Andrew ETT19V2A12UB | | | | | 213.0 | 1 | Andrew DB616E-BC | Side Arm | (1) 1 1/4" Coax | US DEPT OF HOMELAND SECURITY | | | 3 | Samsung Outdoor CBRS 20W RRH –Clip-on | | | | | | 3 | Antenna | | | | | | 6 | JMA Wireless MX06FRO660-03 | | | | | | 3 | Samsung MT6407-77A | | (12) 1 5/8" Coax | | | 180.0 | 1 | Raycap RCMDC-6627-PF-48 | Sector Frame | (2) 1 5/8" Hybriflex | VERIZON WIRELESS | | | 6 | Andrew DB844H90E-XY | | (2) 1 3/8 Hybrinex | | | | 3 | Samsung B5/B13 RRH-BR04C | | | | | | 3 | Samsung B2/B66A RRH-BR049 | | | | | | 3 | Samsung RT4401-48A | | | | | | 2 | Andrew SBNH-1D6565C (60.8 lbs) | | |) AT&T MOBILITY | | | 3 | Raycap DC2-48-60-0-9E | | (1) 0.39" (10mm) | | | 158.0 | 6 | Powerwave Allgon LGP21401 | | Fiber Trunk | | | | 1 | Raycap FC12-PC6-10E | Soctor Framo | (2) 0.78" (19.7mm) | | | | 3 | Ericsson RRUS 11 (Band 12) | Sector Frame | 8 AWG 6 | | | | 3 | Powerwave Allgon 7770.00 | | (6) 1 5/8" Coax | | | | 1 | KMW AM-X-CD-16-65-00T-RET | | (1) 3" conduit | | | | 3 | Powerwave Allgon LGP21901 | | | | | | 1 | Procom CXL 900-3LW | | | | | 147.0 | 1 | Generic 5" x 3" x 2" Cavity Filter | Side Arm | (1) 1/2" Coax | SIGFOX S.A. | | | 1 | Generic Low Noise Amplifier | | | | | 100.0 | 3 | RFS APXV18-206517S-C | Flush | (6) 1 5/8" Coax | METRO PCS INC | | 48.0 | 1 | PCTEL GPS-TMG-HR-26N | Stand-Off | (1) 1/2" Coax | SPRINT NEXTEL | #### **Equipment to be Removed** | Elev.1 (ft) | Qty | Equipment | Mount Type | Lines | Carrier | |--|-----
-----------|------------|-------|---------| | No loading was considered as removed as part of this analysis. | | | | | | #### **Proposed Equipment** | Elev.1 (ft) | Qty | Equipment | Mount Type | Lines | Carrier | | |-------------|-----|----------------------------|--------------|------------------------------|----------------------|--| | 140.0 | 1 | Commscope RDIDC-9181-PF-48 | Sector Frame | | | | | | 3 | Fujitsu TA08025-B604 | | (1) 1.60" (40.6mm)
Hybrid | DISH WIRELESS L.L.C. | | | | 3 | Fujitsu TA08025-B605 | | | | | | | 3 | JMA Wireless MX08FRO665-21 | | | | | ¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations. Install proposed lines on the tower face with the least amount of existing lines. #### **Structure Usages** | Structural Component | Controlling
Usage | Pass/Fail | |----------------------|----------------------|-----------| | Legs | 57% | Pass | | Diagonals | 75% | Pass | | Truss Diagonals | 72% | Pass | | Horizontals | 70% | Pass | | Truss Horizontals | 58% | Pass | | Anchor Bolts | 42% | Pass | #### **Foundations** | Reaction Component | Analysis Reactions | % of Usage | |--------------------|--------------------|------------| | Uplift (Kips) | 290.9 | 52% | | Download (kips) | 419.1 | 3% | The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required. #### **Standard Conditions** All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following: - Information supplied by the client regarding antenna, mounts and feed line loading - Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete. All assets of American Tower Corporation, its affiliates, and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications. Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein. American Tower Corp., Project: "88008- 13709244_C3_03" Tower Version 16.73, 10:18:18 AM Friday, October 8, 2021 Undeformed geometry displayed Project Name: 88008 - Bethany CT Project Notes: Dish Wireless - 13709244 C3 03 Project File: n\1\1\2 - Arc\88008\2011.10.08 - Dish Wireless - 13709244_C3_03\88008- 13709244_C3_03.TOW Date run : 10:13:11 AM Friday, October 8, 2021 by : Tower Version 16.73 Licensed to : American Tower Corp. Successfully performed nonlinear analysis Member check option: ANSI/TIA 222-G-1 Connection rupture check: Not Checked Crossing diagonal check: Fixed Included angle check: None Redundant neshers checked with: Actual Force Loads from file: N:\L2 - ATC\88008\2021.10.08 - Dish Wireless - 13709244_C3_03\88008- 13709244_C3_03.eia Maximum element usage is 75.26% for Angle "D 12X" in load case "W =90" #### Foundation Design Forces For All Load Cases: #### Note: loads are factored. | Load Case | Foundation
Description | Axial
Force
(kips) | | | Foundation
Usage | |-----------------------|---------------------------|--------------------------|----------------|--------------|---------------------| | | | | | | | | w o | 0 P | 300.92 | 47.81 | 4.77 | 0.00 | | W O | 0 X | 294.99 | 46.83 | 4.52 | 0.00 | | W O | | -173.64 | 33.89 | 5.13 | 0.00 | | W 0
W 180 | | -172.34
-168.77 | 34.58 | 5.35
5.41 | 0.00 | | W 180 | | -169.76 | 33.84 | 5.22 | 0.00 | | W 180 | 0XY | 291.11 | 46.77 | 4.60 | 0.00 | | W 180 | 0 Y | 297.36 | 47.66 | 4.84 | 0.00 | | W 45 | OP | 419.08 | 62.92 | 4.18 | 0.00 | | W 45 | 0 X | 60.93 | 22.98 | 5.33 | 0.00 | | W 45 | | -290.90 | 50.53 | 5.63 | 0.00 | | W 45 | 0.7 | 60.82 | 22.93 | 5.32 | 0.00 | | w -45
w -45 | 0 P
0 X | 66.15
413.88 | 24.18
62.49 | 5.59
4.22 | 0.00 | | W -45 | 0XY | 58.80 | 22.24 | 5.15 | 0.00 | | W -45 | | -288.89 | 50.63 | 5.71 | 0.00 | | W 90 | OP | 301.02 | 47.83 | 4.78 | 0.00 | | W 90 | 0 x | -172.33 | 34.60 | 5.36 | 0.00 | | W 90 | 0xy | -173.54 | 33.87 | 5.13 | 0.00 | | W 90 | 0 Y | | 46.80 | 4.51 | 0.00 | | W -90 | | -168.87 | 34.46 | 5.42 | 0.00 | | W -90 | 0 x | 297.56 | 47.69 | 4.84 | 0.00 | | W -90
W -90 | 0xy | 291.01
-169.77 | 46.75 | 4.59
5.21 | 0.00 | | W 0 Ice | OP | | 19.81 | 1.76 | 0.00 | | W 0 Ice | 0 X | 146.68 | 19.34 | 1.66 | 0.00 | | W 0 Ice | 0XY | 31.66 | 3.17 | 3.15 | 0.00 | | W 0 Ice | 0 Y | 35.82 | 3.24 | 3.23 | 0.00 | | W 180 Ice | 0 P | 40.24 | 3.58 | 3.29 | 0.00 | | W 180 Ice | 0 X | 36.51 | 3.46 | 3.24 | 0.00 | | W 180 Ice | | 141.83 | 19.18 | 1.61 | 0.00 | | W 180 Ice
W 45 Ice | 0 Y
0 P | 147.16
181.14 | 19.54 | 1.75 | 0.00 | | W 45 ICe | 0 P | 91.18 | 10.96 | 2.58 | 0.00 | | W 45 Ice | 0XY | 2.36 | 4.22 | 3.46 | 0.00 | | W 45 Ice | OY | 91.07 | 10.95 | 2.58 | 0.00 | | W -45 Ice | 0 P | 95.91 | 11.49 | 2.67 | 0.00 | | W -45 Ice | 0 X | 176.42 | 23.95 | 1.10 | 0.00 | | W -45 Ice | 0XY | 86.74 | 10.84 | 2.51 | 0.00 | | W -45 Ice | 0.7 | 6.69 | 4.08 | 3.54 | 0.00 | | W 90 Ice
W 90 Ice | 0 P
0 X | 151.61
35.91 | 19.82 | 1.76 | 0.00 | | W 90 Ice | 0XY | 31.68 | 3.16 | 3.23 | 0.00 | | W 90 Ice | OY | 146.55 | 19.33 | 1.66 | 0.00 | | W -90 Ice | OP | 40.22 | 3.58 | 3.29 | 0.00 | | W -90 Ice | 0 x | 147.29 | 19.55 | 1.75 | 0.00 | | W -90 Ice | 0XY | | 19.18 | 1.61 | 0.00 | | W -90 Ice | 0.4 | 36.42 | 3.45 | 3.24 | 0.00 | #### Summary of Joint Support Reactions For All Load Cases: | Load Case | Joint | Long. | Tran. | Vert. | Shear | Tran. | Long. | Bending | Vert. | Found. | |--|-------|--------|--------|--------------------|-------|-------|-------|--------------|---------------|--------| | | Label | | | Force | | | | | | Usage | | | | | | (kips) | | | | | | * | | | | | | | | | | | | | | W O | UP. | -43.28 | -20.31 | -300.92
-294.99 | 47.81 | -0.95 | -4.68 | 4.77 | -2.81
2.80 | 0.00 | | W U | 0.00 | -21 50 | -12 20 | 172 64 | 22 00 | 0.00 | -6.40 | 4.32
5.12 | 2.00 | 0.00 | | M 0 | 0.01 | -31.33 | 11 64 | 173.04 | 24 50 | -0.40 | -5 24 | 5 25 | -2.02 | 0.00 | | w 180 | UD | 32.50 | 11 32 | 168 77 | 34 43 | -0.37 | 5 40 | 5.41 | 2 51 | 0.00 | | W 180 | 0x | 31.62 | -12.03 | 169.76 | 33.84 | 0.49 | 5.20 | 5.22 | -2.53 | 0.00 | | W 180 | 0xx | 41.91 | 20.76 | -291.11 | 46.77 | 0.67 | 4.55 | 4.60 | -2.82 | 0.00 | | W 180 | 0 Y | 43.24 | -20.04 | -297.36 | 47.66 | -0.96 | 4.74 | 4.84 | 2.83 | 0.00 | | W 45 | 0P | -44.47 | -44.51 | -419.08 | 62.92 | 2.96 | -2.95 | 4.18 | 0.00 | 0.00 | | W 45 | 0 X | -20.18 | -11.00 | -60.93 | 22.98 | 4.25 | -3.22 | 5.33 | 3.86 | 0.00 | | W 45 | 0xy | -35.75 | -35.71 | 290.90 | 50.53 | 3.98 | -3.99 | 5.63 | -0.00 | 0.00 | | W 45 | 0Y | -10.96 | -20.13 | -60.82 | 22.93 | 3.21 | -4.24 | 5.32 | -3.86 | 0.00 | | W -45 | UP. | -21.29 | 11.45 | -66.15 | 24.18 | -4.46 | -3.37 | 5.59 | -3.86 | 0.00 | | W =45 | 0.00 | 10.24 | 10.00 | -413.00 | 02.49 | -3.10 | -2.79 | 4.22 | -0.01 | 0.00 | | W =45 | OAI | -26 22 | 25.09 | 200.00 | 50 62 | -3.13 | -4.00 | 5.13 | 0.07 |
0.00 | | W 90 | 0P | -20.29 | -43.32 | -301.02 | 47.83 | 4.68 | 0.96 | 4.78 | 2.81 | 0.00 | | W 90 | 0x | 11.62 | -32.59 | 172.33 | 34.60 | 5.34 | 0.37 | 5.36 | 2.49 | 0.00 | | W 90 | 0xx | -12.30 | -31.56 | 173.54 | 33.87 | 5.11 | -0.49 | 5.13 | -2.52 | 0.00 | | W 90 | 04 | 20.97 | -41.84 | -294.78 | 46.80 | 4.46 | -0.68 | 4.51 | -2.80 | 0.00 | | W -90 | 0P | 11.31 | 32.55 | 168.87 | 34.46 | -5.41 | 0.35 | 5.42 | -2.50 | 0.00 | | W -90 | 0X | -20.03 | 43.28 | -297.56 | 47.69 | -4.75 | 0.96 | 4.84 | -2.83 | 0.00 | | W -90 | OXY | 20.78 | 41.88 | -291.01 | 46.75 | -4.54 | -0.66 | 4.59 | 2.82 | 0.00 | | W -90 | 01 | -12.06 | -11 40 | 169.77 | 10 01 | -5.19 | -0.49 | 1 76 | -0.60 | 0.00 | | W U Ice | 02 | -16.20 | 11.40 | -131.39 | 19.01 | 1.00 | 0.50 | 1.70 | 0.60 | 0.00 | | W 0 Ice | OXY | -1.78 | 2.62 | =31.66 | 3.17 | 1.62 | -2.70 | 3.15 | 0.58 | 0.00 | | W 0 Ice | 0 Y | -1.74 | -2.74 | -35.82 | 3.24 | -1.68 | -2.76 | 3.23 | -0.57 | 0.00 | | W 180 Ice | 0P | 1.70 | -3.15 | -40.24 | 3.58 | -1.66 | 2.84 | 3.29 | 0.58 | 0.00 | | W 180 Ice | 0x | 1.82 | 2.94 | -36.51 | 3.46 | 1.63 | 2.80 | 3.24 | -0.60 | 0.00 | | W 180 Ice | 0xx | 15.57 | 11.20 | -141.83 | 19.18 | 1.55 | -0.46 | 1.61 | -0.60 | 0.00 | | W 180 Ice | 04 | 16.16 | -10.99 | -147.16 | 19.54 | -1.70 | -0.42 | 1.75 | 0.61 | 0.00 | | W 45 Ice | 0P | -17.19 | -17.20 | -181.14 | 24.32 | -0.80 | 0.80 | 1.13 | 0.00 | 0.00 | | W 45 Ice | UX | -10.30 | 3.74 | -91.18 | 10.96 | 2.44 | 0.84 | 2.58 | 0.86 | 0.00 | | W 45 ICE | OXY | -2.98 | -2.98 | -2.36 | 10.05 | -0.94 | -2.45 | 3.46 | -0.00 | 0.00 | | W =45 ICe | UD | -10 89 | =3.66 | -95 91 | 11 49 | -2.55 | 0.79 | 2.50 | -0.00 | 0.00 | | W -45 Ice | 0x | -16.59 | 17.27 | -176.42 | 23.95 | 0.69 | 0.86 | 1.10 | -0.01 | 0.00 | | W -45 Ice | 0xx | 3.62 | 10.22 | -86.74 | 10.84 | 0.77 | -2.39 | 2.51 | 0.88 | 0.00 | | W -45 Ice | 0 Y | -2.86 | 2.91 | -6.69 | 4.08 | -2.52 | -2.49 | 3.54 | 0.02 | 0.00 | | W 90 Ice | 0P | -11.40 | -16.21 | -151.61 | 19.82 | -0.49 | 1.69 | 1.76 | 0.60 | 0.00 | | W 90 Ice | 0 X | -2.75 | -1.74 | -35.91 | 3.25 | 2.76 | 1.68 | 3.23 | 0.57 | 0.00 | | W 90 Ice | 0xx | 2.62 | -1.77 | -31.68 | 3.16 | 2.70 | -1.62 | 3.15 | -0.58 | 0.00 | | W 90 Ice | 0 Y | 11.52 | -15.52 | -146.55 | 19.33 | -0.56 | -1.56 | 1.66 | -0.58 | 0.00 | | w -90 Ice | UP. | -3.15 | 1.70 | -40.22 | 3.58 | -2.84 | 1.66 | 3.29 | -0.58 | 0.00 | | W =90 Ice | OVV | -10.99 | 16.17 | -147.29 | 19.55 | 0.42 | _1.70 | 1./5 | -0.61 | 0.00 | | W =90 Ice | 0.71 | 2.93 | 1.82 | =36.42 | 3.45 | -2.80 | -1.63 | 3.24 | 0.60 | 0.00 | | W 0 0 W 10 W 10 0 W 10 0 W 10 0 W 10 | 01 | | | | | | 05 | 3.24 | 00 | 00 | Summary of Joint Support Reactions For All Load Cases in Direction of Leg: | Load Case | | | | | Residual Shear
Perpendicular
To Leg | Horizontal | Residual Shear
Horizontal
To Leg - Long. | Horizontal | Total
Long.
Force | Tran. | Total
Vert.
Force | |-----------|------|-----|-------|----------|---|------------|--|------------|-------------------------|--------|-------------------------| | | | | | (kips) | w o | 0P | 1P | L 1P | 303.741 | 24.136 | 24.189 | 24.160 | 1.196 | -43.28 | -20.31 | -300.92 | | w o | 0x | 1x | L 1x | 297.781 | 23.191 | 23.246 | 23.140 | -2.217 | -41.88 | 20.96 | -294.99 | | w o | 0 XY | 1XY | L 1XY | -175.715 | 20.551 | 20.597 | 20.559 | 1.256 | -31.59 | -12.29 | 173.64 | | w o | 04 | 1Y | L 1Y | -174.445 | 21.575 | 21.621 | 21.609 | -0.694 | -32.56 | 11.64 | 172.34 | | W 180 | 0P | 1P | L 1P | -170.869 | 21.762 | 21.808 | -21.800 | -0.597 | 32.52 | 11.32 | 168.77 | | W 180 | 0x | 1x | L 1X | -171.839 | 20.832 | 20.878 | -20.841 | 1.251 | 31.62 | -12.03 | 169.76 | | W 180 | 0xy | 1XY | L 1XY | | 23.474 | 23.530 | -23.421 | -2.262 | | | -291.11 | | W 180 | 04 | 1Y | L 1Y | | 24.326 | 24.379 | -24.352 | 1.149 | 43.24 | -20.04 | -297.36 | | W 45 | 0P | 1P | L 1P | | 25.169 | 25.270 | 17.848 | | | | -419.08 | | W 45 | 0× | 1x | | 61.270 | 22.068 | 22.068 | 16.305 | | -20.18 | | | | W 45 | 0xx | 1XY | | -294.259 | 24.296 | 24.394 | 17.266 | 17.232 | -35.75 | -35.71 | 290.90 | | W 45 | 04 | 1Y | L 1Y | 61.160 | 22.014 | 22.014 | 14.829 | | -10.96 | | | | W -45 | 0P | 1P | L 1P | 66.505 | 23.173 | 23.173 | 17.091 | -15.650 | | | | | W -45 | 0 X | 1x | | | 25.217 | 25.318 | 17.110 | -18.662 | | | -413.88 | | W -45 | 0xx | 1XY | L 1XY | 59.158 | 21.277 | 21.277 | 14.074 | -15.957 | | 19.69 | -58.80 | | W -45 | 04 | 1Y | | -292.260 | 24.579 | 24.678 | 17.972 | -16.912 | | | | | W 90 | 0P | 1P | L 1P | | 24.168 | 24.221 | 1.170 | | | | -301.02 | | W 90 | 0 X | 1x | | -174.431 | 21.608 | 21.654 | -0.674 | 21.644 | | -32.59 | | | W 90 | 0 XY | 1XY | | -175.619 | 20.525 | 20.571 | 1.275 | | -12.30 | | | | W 90 | 04 | 1Y | | 297.575 | 23.167 | 23.223 | -2.244 | 23.114 | | | -294.78 | | W -90 | 0P | 1P | | -170.965 | 21.788 | 21.834 | -0.578 | -21.827 | 11.31 | | | | W -90 | 0x | 1X | | | 24.351 | 24.404 | 1.123 | -24.378 | | | -297.56 | | W -90 | 0 XY | 1XY | L 1XY | 293.809 | 23.444 | 23.500 | -2.289 | -23.388 | 20.78 | 41.88 | -291.01 | | W | -90 | 0 Y | 1 Y | L 1Y | -171.853 | 20.799 | 20.846 | 1.271 | -20.807 | -12.06 | 31.59 16 | 59.77 | |---------|----------|---------|--------|--------|------------|--------|--------|--------|---------|--------|------------|-------| | w o | Ice | 0P | 1P | L 1P | 152.724 | 6.788 | 6.808 | 6.573 | 1.774 | -16.20 | -11.40 -15 | 51.59 | | w o | Ice | 0 X | 1x | L 1X | 147.807 | 6.569 | 6.591 | 6.211 | -2.204 | -15.53 | 11.52 -14 | 46.68 | | w o | Ice | 0xy | 1XY | L 1XY | 31.589 | 3.832 | 3.838 | 3.789 | -0.608 | -1.78 | 2.62 -3 | 31.66 | | w o | Ice | 0 Y | 1 Y | L 1Y | 35.736 | 4.035 | 4.041 | 4.015 | 0.462 | -1.74 | -2.74 -3 | 35.82 | | W 180 | Ice | 0P | 1P | L 1P | 40.170 | 4.286 | 4.292 | -4.251 | 0.591 | 1.70 | -3.15 -4 | 40.24 | | W 180 | Ice | 0 X | 1x | L 1X | 36.439 | 4.183 | 4.189 | -4.142 | -0.621 | 1.82 | 2.94 -3 | 36.51 | | W 180 | | 0 XY | 1XY | L 1XY | | 6.897 | 6.919 | -6.563 | -2.191 | | 11.20 -14 | | | W 180 | Ice | 0 Y | 1 Y | L 1Y | 148.291 | 6.985 | 7.006 | -6.810 | 1.645 | 16.16 | -10.99 -14 | 47.16 | | W 45 | | 0P | 1P | L 1P | 182.594 | 8.011 | 8.043 | 5.681 | | | -17.20 -18 | | | W 45 | | 0 X | 1 X | L 1X | 91.699 | 4.952 | 4.954 | 4.507 | | -10.30 | 3.74 -9 | | | W 45 | | 0xy | 1XY | L 1XY | 1.974 | 4.410 | 4.428 | 3.133 | | | -2.98 - | | | W 45 | | 0 Y | 1Y | L 1Y | 91.589 | 4.943 | 4.945 | 2.047 | 4.502 | | | 91.07 | | W -45 | | 0P | 1P | L 1P | 96.443 | 5.378 | 5.380 | 4.801 | | | -3.66 -9 | | | W -45 | | 0 X | 1x | L 1X | 177.850 | 8.079 | 8.112 | 5.388 | -6.064 | | 17.27 -17 | | | W -45 | | 0xy | 1XY | L 1XY | 87.269 | 5.068 | 5.071 | 1.890 | -4.706 | | | 86.74 | | W -45 | | 0Y | 1Y | L 1Y | 6.294 | 4.664 | 4.683 | 3.289 | -3.334 | | | -6.69 | | W 90 | | 0P | 1P | L 1P | 152.744 | 6.796 | 6.816 | 1.765 | | | -16.21 -15 | | | W 90 | | 0 X | 1x | L 1X | 35.826 | 4.044 | 4.050 | 0.465 | 4.024 | | -1.74 -3 | | | W 90 | | 0 XY | 1XY | L 1XY | 31.609 | 3.830 | 3.836 | -0.607 | 3.787 | | -1.77 -3 | | | W 90 | | 0 Y | 1Y | L 1Y | 147.678 | 6.569 | 6.590 | -2.212 | 6.208 | | -15.52 -14 | | | W -90 | | 0P | 1P | L 1P | 40.150 | 4.288 | 4.294 | 0.592 | -4.253 | | | | | W -90 | | 0 X | 1X | L 1X | | 6.987 | 7.007 | 1.638 | | -10.99 | | | | W -90 | | 0xy | 1XY | L 1XY | 142.937 | 6.890 | 6.912 | -2.200 | | 11.21 | 15.56 -14 | | | W -90 | Ice | 0 Y | 1Y | L 1Y | 36.348 | 4.174 | 4.179 | -0.619 | -4.133 | 2.93 | 1.82 -3 | 36.42 | | Overtur | rning Mo | oment S | ummary | For Al | .l Load Ca | ses: | | | | | | | | Load Case | Transverse | Longitudinal | Torsional | Resultant | Transverse | Longitudinal | Vertical | |--------------|--------------------|--------------------------|-----------|------------------------|------------|---------------------|--------------------| | | Moment | Moment | Moment | Moment | Force | Force | Force | | | (ft-k) | (ft-k) | (ft-k) | (ft-k) | (kips) | (kips) | (kips) | | W 0
W 180 | 187.604
187.735 | -24432.589
24046.293 | | 24433.309
24047.026 | -0.000 | 149.302
-149.302 | 249.938
249.938 | | W 45 | 18414.263 | -18419.952
-18420.287 | | 26045.724 | 111.358 | 111.358 | 249.938 | | W 90 | 24426.913 | -193.300 | -100.317 | 24427.678 | 149.302 | -0.000 | 249.938 | | W -90 | -24051.988 | -193.433 | 100.384 | 24052.766 | -149.302 | -0.000 | 249.938 | | W 0 Ice | 234.879 | -5986.716 | 22.606 | 5991.322 | -0.000 | 35.250 | 365.748 | | W 180 Ice | 234.907 | 5505.529 | -22.609 | 5510.538 | -0.000 | -35.250 | 365.748 | | W 45 Ice | 4634.792 | -4640.492 | | 6558.618 | 26.732 | 26.732 | 365.748 | | W -45 Ice | -4165.020 | -4640.535 | 32.797 | 6235.540 | -26.732 | 26.732 | 365.748 | | W 90 Ice | 5981.017 | -240.581 | -23.748 | 5985.854 | 35.250 | -0.000 | 365.748 | | W -90 Ice | -5511.233 | -240.609 | 23.751 | 5516.483 | -35.250 | | 365.748 | EIA Sections Information: | Section Top
Label Z
(ft) | | oint Member
ount Count | | Bottom
Width
(ft) | Gross
Area
(ft^2) | Face Af
Adjust
Factor | Face Ar
Adjust
Factor | Dead
Load
Factor | |---|--|--|--|-------------------------
--|--|--|--| | 237.5-250.0 250.000
225.0-237.5 237.500
200.0-225.0 225.000
175.0-200.0 200.000
150.0-175.0 175.000 | 320.334
310.167
300.000
287.500
275.000
262.500
250.000
237.500
225.000
200.000 | 8 16
12 24
16 24
16 24
16 24
16 24
16 24
16 24
16 24
16 24
16 24
20 32
36 76
36 76
36 76
32 68
24 52 | 9.00
10.09
11.18
12.47
13.76
15.35
16.94
18.53
20.12
21.71
23.29
26.47
29.65
32.82
36.00
39.17
42.35 | 45.53 | 81.93
91.29
120.24
133.38
181.98
201.83
221.69
241.54
261.39
261.29
622.04
701.44
7701.44
770.84
622.04
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.49
71.4 | 1.1220
1.1610
1.1970
1.1540
1.2010
1.2080
1.2140
1.2200
1.2320
1.2320
1.2640
1.2750
1.2750
1.2750
1.2330
1.2250
1.2250
1.2380 | 1.1220
1.1610
1.1970
1.1540
1.2010
1.2080
1.2140
1.2200
1.2260
1.2320
1.2640
1.2730
1.2750
1.2300
1.2250
1.2250
1.23300
1.2250
1.23300
1.2250
1.3380 | 1.146
1.193
1.236
1.185
1.242
1.257
1.264
1.278
1.316
1.328
1.330
1.276
1.270
1.270 | | 25.00-50.00 50.000
0.000-25.00 25.000 | 25.000
0.000 | 24 52
20 40 | 45.53
48.70 | | 1177.89
1257.30 | 1.3250 | 1.3250 | 1.390 | Printed capacities do not include the strength factor entered for each load case. The Group Summary reports on the member and load case that resulted in maximum usage which may not necessarily be the same as that which produces maximum force. Group Summary (Compression Portion): | Group
Label | | p Angl
. Typ | | Steel
Strength | | | | Comp.
Control
Member | Comp.
Force | Comp.
Control
Load
Case | L/r
Capacity | Connect.
Shear | Comp.
Connect.
Bearing
Capacity | RLX | RLY | RLZ | L/r | KL/r Length
Comp.
Member | Curve No.
No. Of
Bolts
Comp. | |----------------------|--|-----------------|----------------------------------|-------------------|----------------|------|----------------|----------------------------|----------------------|----------------------------------|--------------------|-------------------|--|---------|---------|---------|------------------|------------------------------------|---------------------------------------| | | | | | (ksi) | * | | Comp. | | (kips) | Case | (kips) | (kips) | (kips) | | | | | (ft) | Comp. | | Leg S1 | L 8" x 8" x 1.125 | | | 36.0 | 56.95 | Comp | 56.95 | L 1P | -368.668 | W 45 | 647.310 | 0.000 | 0.000 | 0.281 | 0.281 | 0.281 | 54.29 | 54.29 25.101 | 1 0 | | Leg S2 | L 8" x 8" x 1.125
L 8" x 8" x 1.125 | " SA | | 36.0 | 55.38
53.49 | Comp | 55.38 | L 2P | -329.464 | W 45
W 45 | 594.930
544.890 | 0.000 | 0.000 | 0.281 | 0.281 | 0.281 | 54.29
54.29 | 54.29 25.101
54.29 25.101 | 1 0 | | Leg S3
Leg S4 | L 8" x 8" x 1.125 | " SA | | | 43.99 | Comp | 53.49
43.99 | | -291.456
-240.577 | W 45 | 544.890 | 0.000 | | 0.281 | 0.281 | 0.281 | 54.29 | 54.29 25.101 | 1 0 | | Leg S5 | L 8" x 8" x 1 | " SA | E 8x8x1 | 36.0 | 41.65 | Comp | 41.65 | L 5P | -204.289 | W 45 | 490.433 | 0.000 | 0.000 | 0.281 | 0.281 | 0.281 | 54.29 | 54.29 25.101 | 1 0 | | Leg S6
Leg S7 | L 8" x 8" x 1
L 8" x 8" x 0.875 | | | | 33.84 | Comp | 33.84 | | -165.949
-156.388 | W 45
W 45 | 490.433
415.358 | 0.000 | 0.000 | 0.281 | 0.281 | 0.281 |
54.29
63.94 | 54.29 25.101
63.94 25.101 | 1 0 | | Leg S8 | L 8" x 8" x 0.75 | " SA | E 8x8x0.75 | 36.0 | 34.84 | Comp | 34.84 | L 8P | -125.211 | W 45 | 359.355 | 0.000 | 0.000 | 0.333 | 0.333 | 0.333 | 63.54 | 63.54 25.101 | 1 0 | | Leg S9
Leg S10 | L 8" x 8" x 0.75
L 6" x 6" x 0.875 | " SA | | | 27.25
27.64 | Comp | 27.25
27.64 | L 9P
L 10P | -97.919
-84.288 | W 45
W 45 | 359.355
304.972 | 0.000 | 0.000 | 0.333 | 0.333 | 0.333 | 63.54
64.36 | 63.54 25.101
64.36 12.550 | 1 0
1 0 | | Leg S11 | L 6" x 6" x 0.75 | " SA | E 6x6x0.75 | 36.0 | 26.65 | Comp | 26.65 | L 11P | -70.501 | W 45 | 264.572 | 0.000 | 0.000 | 0.500 | 0.500 | 0.500 | 64.36 | 64.36 12.550 | 1 0 | | Leg S12
Leg S13 | L 6" x 6" x 0.75
L 6" x 6" x 0.5625 | " SA | | | 22.43 | Comp | 22.43 | L 12P
L 13P | -59.351
-48.197 | W 45
W 45 | 264.572
202.137 | 0.000 | 0.000 | 0.500 | 0.500 | 0.500 | 64.36
63.82 | 64.36 12.550
63.82 12.550 | 1 0
1 0 | | Leg S14 | L 6" x 6" x 0.5625 | " SA | E 6X6X0.56 | 36.0 | 18.50 | Comp | 18.50 | L 14P | -37.386 | W 45 | 202.137 | 0.000 | 0.000 | 0.500 | 0.500 | 0.500 | 63.82 | 63.82 12.550 | 1 0 | | Leg S15
Leg S16 | L 6" x 6" x 0.4375
L 5" x 5" x 0.4375 | " SA | | 36.0 | 16.81 | Comp | 16.81
19.89 | L 15P | -26.759
-26.342 | W 45
W 45 | 159.214 | 0.000 | 0.000 | 0.500 | 0.500 | 0.500 | 63.28
62.12 | 63.28 12.550
62.12 10.208 | 1 0 | | Leg S17 | L 5" x 5" x 0.4375 | " SA | E 5x5x0.44 | 36.0 | 13.56 | Comp | 13.56 | L 17P | -17.957 | W 45 | 132.414 | 0.000 | 0.000 | 0.500 | 0.500 | 0.500 | 62.12 | 62.12 10.208 | 1 0 | | Leg S18
Leg S19 | L 5" x 5" x 0.3125
L 5" x 5" x 0.3125 | " SA | | | 9.97 | Comp | 9.97 | L 18P
L 19P | -9.639
-5.251 | W 45
W 45 | 96.703
96.703 | 0.000 | | 0.500 | 0.500 | 0.500 | 52.02
52.02 | 52.02 8.618
52.02 8.618 | 1 0
1 0 | | Diag S1 | B/B L3"x4"x0.375 | | | | 46.39 | | 46.39 | D 2X | | W -90 | 92.986 | 0.000 | | 0.333 | 0.848 | 0.333 | 118.88 | 118.88 22.664 | 1 0 | | Diag S2
Diag S3 | B/B L3"x4"x0.25
B/B L3"x4"x0.25 | | | | 65.42 | Comp | 65.42
61.28 | D 4X | -41.954
-40.626 | W -90
W -90 | 64.134
66.301 | 0.000 | 0.000 | 0.333 | 0.848 | 0.333 | 117.61
115.20 | 117.61 22.191
115.20 21.737 | 1 0 | | Diag S4 | B/B L3"x3.5"x0.25 | | | | 52.89 | | 52.89 | D 8X | -43.945 | W -90 | 83.084 | 0.000 | 0.000 | 0.333 | 0.333 | 0.333 | 91.27 | 91.27 20.858 | 1 0 | | Diag S5 | B/B L3"x3.5"x0.25 | " DA | | | 50.34 | | 50.34 | D 10X | -42.355
-39.908 | W -90
W -90 | 84.132
53.030 | 0.000 | 0.000 | 0.333 | 0.333 | 0.333 | 89.64 | 89.64 20.484 | 1 0 | | Diag S6
Diag S7 | B/B L2.5"x3.5"x0.25
B/B L3"x3"x0.375 | " DA | S 3.5X2.5X0.25
E 3X3X0.38 | | 75.26
50.68 | | 75.26
50.68 | D 12X | -39.908 | W -90 | 48.805 | 0.000 | 0.000 | 0.300 | 0.600 | 0.300 | 119.11
152.92 | 119.11 20.133
140.25 29.947 | 6 0 | | Diag S8 | B/B L2.5"x3"x0.25 | " DA | S 3x2.5x0.25 | 36.0 | 67.28 | Comp | 67.28 | D 16Y | -21.428 | W 180 | 31.851 | 0.000 | 0.000 | 0.300 | 0.600 | 0.300 | 144.53 | 135.09 29.107 | 6 0 | | Diag S9
Diag S10 | B/B L2.5"x3"x0.25
B/B L2.5"x2.5"x0.25 | | S 3X2.5X0.25
E 2.5X2.5X0.25 | | 58.23
45.71 | | 58.23
45.71 | D 18Y
D 20Y | -19.402 | W 180
W 180 | 33.317
23.965 | 0.000 | 0.000 | 0.300 | 0.600 | 0.300 | 140.68
172.47 | 132.72 28.332 | 6 0 | | Diag S11 | B/B L2.5"x2.5"x0.25 | " DA | E 2.5X2.5X0.25 | 36.0 | 37.85 | Comp | 37.85 | D 22Y | -9.563 | W 180 | 25.265 | 0.000 | 0.000 | 0.500 | 1.000 | 0.500 | 167.12 | 148.98 16.573 | 6 0 | | Diag S12
Diag S13 | B/B L2.5"x2.5"x0.25
B/B L2.5"x2"x0.25 | " DA
" DA | E 2.5X2.5X0.25
L 2.5X2X0.25 | | 34.97
53.27 | Comp | 34.97
53.27 | D 24Y
D 26Y | -9.307
-9.080 | W 180
W 180 | 26.613
17.045 | 0.000 | 0.000 | 0.500 | 1.000 | 0.500 | 161.99
199.95 | 145.82 16.064
169.17 15.579 | 6 0
6 0 | | Diag S14 | B/B L2.5"x2"x0.25 | " DA | L 2.5X2X0.25 | 36.0 | 45.63 | Comp | 45.63 | D 28Y | -8.187 | W 180 | 17.940 | 0.000 | 0.000 | 0.500 | 1.000 | 0.500 | 194.06 | 165.55 15.120 | 6 0 | | Diag S15 | B/B L2.5"x2"x0.25
L 3.5" x 3.5" x 0.25 | " DA | L 2.5x2x0.25
E 3.5x3.5x0.25 | 36.0 | 40.12 | Comp | 40.12 | D 29X | -7.560 | W -90 | 18.844 | 0.000 | 0.000 | 0.500 | 1.000 | 0.500 | 188.54 | 162.15 14.690
17708.96 16.610 | 6 0
6 0 | | Diag S17 | L 3.5" x 3.5" x 0.25 | " SA | E 3.5x3.5x0.25 | 36.0 | 11.49 | Tens | 0.00 | D 34Y | 0.000 | | 0.001 | 0.000 | 0.000 | 100.000 | 100.000 | 100.000 | 26990.64 | 20595.47 15.610 | 5 0 | | Diag S18
Diag S19 | L 3" x 3" x 0.25
L 3" x 3" x 0.25 | " SA | | | 8.92
6.84 | | 0.00 | D 36Y
D 38Y | 0.000 | | 0.001 | 0.000 | | | | | | 21155.35 13.678
19873.90 12.848 | 5 0
5 0 | | Horiz 1 | B/B L4"x3"x0.25 | " DA | L 4X3X0.25 | 36.0 | 55.36 | Comp | 55.36 | H 1P | -36.996 | W -90 | 66.826 | 0.000 | 0.000 | 0.500 | 0.500 | 0.500 | 114.15 | 114.15 24.352 | 1 0 | | Horiz 2
Horiz 3 | B/B L3.5"x2.5"x0.25
B/B L3"x2.5"x0.25 | " DA | L 3.5x2.5x0.25
L 3x2.5x0.25 | 36.0 | 69.58 | Comp | 69.58 | H 3P
H 5P | -34.761
-32.071 | w -90
w -90 | 49.961
51.690 | 0.000 | 0.000 | 0.490 | 0.490 | 0.490 | 122.80 | 121.72 22.764 | 6 0
6 0 | | Horiz 4 | B/B L3.5"x2.5"x0.25 | " DA | L 3.5X2.5X0.25 | 36.0 | 62.79 | Comp | 62.79 | н 7Р | -31.520 | W -90 | 50.198 | 0.000 | 0.000 | 0.900 | 0.900 | 0.900 | 129.38 | 125.77 13.058 | 6 0 | | | B/B L3.5"x2.5"x0.25
B/B L3"x2.5"x0.25 | | L 3.5X2.5X0.25 | | 58.17 | | 58.17 | H 9P | -28.604
-25.096 | W -90
W -90 | 49.171 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 132.10 | 127.44 12.000
129.93 10.941 | 6 0
6 0 | | Horiz 6
Horiz 7 | B/B L3"x2.5"x0.25 | | | 36.0 | 56.36
42.29 | Comp | 56.36
42.29 | H 11P
H 14P | -12.122 | W 180 | 44.528
28.661 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 136.15
188.23 | 161.96 14.823 | 6 0 | | Horiz 8
Horiz 9 | B/B L3"x2.5"x0.25
B/B L2.5"x2.5"x0.25 | | L 3X2.5X0.25
E 2.5X2.5X0.25 | 36.0 | 28.90
29.18 | Comp | 28.90
29.18 | H 16P | -9.714
-7.956 | W 180
W 180 | 33.611 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 168.06
181.74 | 149.56 13.235
157.97 11.647 | 6 0
6 0 | | | B/B L2.5"x2.5"x0.25 | | E 2.5X2.5X0.25 | | 22.41 | | 22.41 | H 20P | -6.744 | W 180 | 30.098 | 0.000 | | 1.000 | 1.000 | 1.000 | 169.35 | 150.35 10.853 | 6 0 | | Horiz 11 | B/B L2.5"x2.5"x0.25 | " DA | E 2.5X2.5X0.25 | | 16.47 | | 16.47 | H 22P
H 24P | -5.499
-5.208 | W 180
W 180 | 33.397
37.270 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 156.96
144.57 | 142.73 10.059 | 6 0
6 0 | | Horiz 13 | B/B L2.5"x2.5"x0.25
B/B L2.5"x2.5"x0.25 | " DA | E 2.5X2.5X0.25
E 2.5X2.5X0.25 | | 13.97
12.58 | | 13.97 | H 26P | -5.265 | W 180 | 41.857 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 132.18 | 135.11 9.264
127.49 8.470 | 6 0 | | Horiz 14 | B/B L2.5"x2.5"x0.25 | " DA | E 2.5X2.5X0.25 | 36.0 | 9.37 | Comp | 9.37 | H 28P | -4.403 | W 180 | 46.973 | 0.000 | 0.000 | 1.000 | 1.200 | 1.000 | 119.79 | 119.79 7.676 | 1 0 | | Horiz 15
Horiz 16 | B/B L2.5"x2.5"x0.25
L 3" x 2.5" x 0.25 | | E 2.5X2.5X0.25
U 3X2.5X0.25 | | 12.23 | Comp | 12.23
29.43 | H 29P
H 31P | -6.670
-6.211 | W -90
W -90 | 54.531
21.106 | 0.000 | 0.000 | 1.000 | 1.070 | 1.000 | 107.39
141.74 | 107.39 6.882
133.37 12.473 | 1 0
6 0 | | Horiz 17 | B/B L3"x2.5"x0.25 | " DA | L 3X2.5X0.25 | 36.0 | 8.67 | Comp | 8.67 | H 33P
H 35P | -4.324
-2.836 | W -90
W -90 | 49.899
17.832 | 0.000 | 0.000 | 0.500 | 1.000 | 0.500 | 118.74 | 118.74 11.181
145.09 10.090 | 1 0 | | Horiz 18 | L 3" x 2.5" x 0.25
C8x11. | | | | 15.91
5.37 | Comp | 5.37 | H 35P | -2.836 | W -90 | 32.845 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 172.80 | 152.47 9.000 | 6 0 | | LD 1 | B/B L3"x2.5"x0.3125 | | L 3x2.5x0.31 | 36.0 | 42.45 | Comp | 42.45 | LD 1X | -18.395 | W -90 | 43.337 | 0.000 | 0.000 | 0.904 | 0.904 | 0.904 | 162.86 | 146.36 14.067 | 6 0 | | LD 2 | B/B L4"x3"x0.3125
B/B L3"x2"x0.25 | " DA | | 36.0
36.0 | 59.45 | Comp | 59.45
60.68 | LD 3X | -47.599
-17.510 | w -90
w -90 | 80.071
28.855 | 0.000 | 0.000 | 0.904 | 0.904 | 0.904 | 120.15
162.97 | 120.09 14.067 | 6 0
6 0 | | LD 5 | B/B L4"x3"x0.25 | " DA | L 4X3X0.25 | 36.0 | 65.86 | Comp | 65.86 | LD 9X | -45.215 | W -90 | 68.657 | 0.000 | 0.000 | 0.904 | 0.904 | 0.904 | 113.44 | 113.44 13.385 | 1 0 | | LD 7
LD 8 | B/B L2.5"x2.5"x0.375
B/B L3.5"x3"x0.25 | | E 2.5X2.5X0.38
L 3.5X3X0.25 | | 41.59 | Comp | 41.59
72.07 | LD 13X | -16.381
-42.619 | W -90
W -90 | 39.383 | 0.000 | 0.000 | 0.904 | 0.904 | 0.904 | 183.21
124.28 | 158.87 12.717
122.63 12.717 | 6 0
6 0 | | LD 10 | B/B L3"x3"x0.25 | " DA | E 3X3X0.25 | 36.0 | 37.88 | Comp | 37.88 | LD 19X | -21.135 | W -45 | 55.790 | 0.000 | 0.000 | 0.830 | 0.830 | 0.830 | 121.89 | 121.16 11.382 | 6 0 | | LD 11
LD 12 | B/B L2.5"x2"x0.25
B/B L3"x2"x0.25 | | | | 57.46
62.52 | | 57.46
62.52 | LD 21X
LD 23P | -28.435
-30.848 | w -90
w -90 | 49.489
49.345 | 0.000 | 0.000 | 0.850 | 0.850 | 0.850 | 106.16
111.25 | 106.16 8.160
111.25 9.605 | 1 0
1 0 | | LD 13 | B/B L2.5"x2"x0.25 | " DA | L 2.5X2X0.25 | 36.0 | 54.46 | Comp | 54.46 | LD 25X | -19.471 | w -90 | 35.750 | 0.000 | 0.000 | 0.830 | 0.830 | 0.830 | 137.13 | 130.53 10.794 | 6 0 | | LD 14
LD 15 | B/B L2.5"x2"x0.25
B/B L3"x3"x0.25 | | | | 54.15
42.44 | Comp | | LD 27X
LD 29P | -27.320
-29.409 | W -90
W -90 | 50.451
69.294 | 0.000 | 0.000 | 0.850 | 0.850 | 0.850 | 104.26 | 104.26 8.014
102.68 9.253 | 1 0
1 0 | | LD 16 | B/B L2.5"x2"x0.25 | " DA | L 2.5X2X0.25 | 36.0 | 46.93 | Comp | 46.93 | LD 31X | -17.972 | W -45 | 38.298 | 0.000 | 0.000 | 0.830 | 0.830 | 0.830 | 129.96 | 126.12 10.229 | 6 0 | | LD 17
LD 18 | B/B L2.5"x2"x0.25
B/B L2.5"x2"x0.25 | " DA | | 36.0
36.0 | 50.32
61.86 | Comp | 50.32
61.86 | LD 33X
LD 35P | -25.835
-26.878 | w -90
w -90 | 51.340
43.450
| 0.000 | 0.000 | 0.850 | 0.850 | 0.850 | 102.47 | 102.47 7.876
117.40 8.919 | 1 0 | | LH 1 | B/B L2.5"x3"x0.25 | " DA | s 3x2.5x0.25 | 36.0 | 10.08 | Tens | 0.00 | LH 2X | 0.000 | 50 | 0.001 | 0.000 | 0.000 | 100.000 | 100.000 | 100.000 | 38807.73 | 23912.96 24.352 | 6 0 | | LH 2
LH 3 | B/B L2.5"x3"x0.25
B/B L2.5"x3"x0.25 | | | | 6.28 | Tens | 0.00 | LH 4X
LH 6X | 0.000 | | 0.002 | 0.000 | | 100.000 | | | | 22356.44 22.764 20799.93 21.176 | 6 0
6 0 | | LH 4 | B/B L3"x3"x0.375 | " DA | E 3X3X0.38 | 36.0 | 46.76 | Comp | 46.76 | LH 7X | -24.004 | W -45 | 51.338 | 0.000 | 0.000 | 0.940 | 1.880 | 0.940 | 170.36 | 150.97 10.648 | 6 0 | | LH 5
LH 6 | B/B L2.5"x3"x0.25
B/B L2.5"x3"x0.25 | | | | 57.83
45.50 | Comp | 57.83
45.50 | LH 9X
LH 11X | -21.255
-18.826 | W -45
W -45 | 36.752
41.375 | 0.000 | 0.000 | 0.940 | 1.880 | 0.940 | 152.80
139.93 | 140.17 9.821
132.25 8.993 | 6 0
6 0 | | | | | | | | | | / | | | | | | | | | | | - 0 | #### Group Summary (Tension Portion): | Group | Group | Angle | Angle | Steel | Max | Usage | Max | Tension | Tension | Tension | Net | Tension | Tension | Tension | Length | No. No. | Hole | |--------------------|--|-------|------------------------------|--------------|----------------|-------|----------------|------------------|--------------------|----------------|--------------------|--------------------|----------|----------|------------------|---------|----------| | Label | Desc. | | | Strength | | | Use | | | Control | Section | Connect. | Connect. | Connect. | Tens. | | Diameter | | | | | | (ksi) | * | 101 | Tens. | member | (kips) | Case | Capacity
(kips) | Capacity
(kips) | | | (ft) | Tens. | (in) | | Leg S1 | L 8" x 8" x 1.125" | SAE | 8x8x1.13 | 36.0 | 56.95 | Comp | 45.59 | L 1XY | 247.105 | w 45 | 542.051 | 0.000 | 0.000 | 0.000 | 25.101 | 0 0.000 | 0 | | Leg S2
Leg S3 | L 8" x 8" x 1.125"
L 8" x 8" x 1.125" | SAE | 8x8x1.13
8x8x1.13 | | 55.38
53.49 | | 41.09
36.12 | | 222.748
195.804 | | 542.051
542.051 | 0.000 | 0.000 | | 25.101 25.101 | 0 0.000 | 0 | | Leg S3 | L 8" x 8" x 1.125" | SAE | 8x8x1.13 | | 43.99 | Comp | 30.29 | | 164.192 | | 542.051 | 0.000 | 0.000 | 0.000 | 25.101 | 0 0.000 | 0 | | Leg S5 | L 8" x 8" x 1" | SAE | 8x8x1 | | 41.65 | | 28.51 | | 138.561 | | 485.999 | 0.000 | 0.000 | | 25.101 | 0 0.000 | | | Leg S6
Leg S7 | L 8" x 8" x 1"
L 8" x 8" x 0.875" | SAE | 8x8x1
8x8x0.88 | | 33.84 | | 23.52 | | 114.297
110.826 | | 485.999
428.651 | 0.000 | 0.000 | | 25.101 25.101 | 0 0.000 | | | Leg S8 | L 8" x 8" x 0.75" | SAE | 8x8x0.75 | 36.0 | 34.84 | Comp | 23.91 | L 8XY | 88.624 | W 45 | 370.655 | 0.000 | 0.000 | 0.000 | 25.101 | 0 0.000 | 0 | | Leg S9
Leg S10 | L 8" x 8" x 0.75"
L 6" x 6" x 0.875" | SAE | 8x8x0.75
6x6x0.88 | | 27.25
27.64 | Comp | 18.13
18.29 | L 9XY
L 10XY | 67.197
57.644 | W 45 | 370.655
315.252 | 0.000 | 0.000 | | 25.101
12.550 | 0 0.000 | | | Leg S10 | L 6" x 6" x 0.75" | SAE | 6x6x0.75 | | 26.65 | | 17.95 | L 11Y | 49.079 | | 273.456 | 0.000 | 0.000 | | 12.550 | 0 0.000 | | | Leg S12 | L 6" x 6" x 0.75" | SAE | 6x6x0.75 | 36.0 | 22.43 | Comp | 14.63 | L 12Y | 40.002 | W -45 | 273.456 | 0.000 | 0.000 | 0.000 | 12.550 | 0 0.000 | 0 | | Leg S13
Leg S14 | L 6" x 6" x 0.5625"
L 6" x 6" x 0.5625" | SAE | 6x6x0.56
6x6x0.56 | | 23.84
18.50 | | 14.84 | L 13Y | 30.907 | | 208.332 | 0.000 | 0.000 | | 12.550 | 0 0.000 | | | Leg S15 | L 6" x 6" x 0.4375" | SAE | 6X6X0.44 | 36.0 | 16.81 | Comp | 8.53 | L 15Y | 13.988 | W -45 | 163.944 | 0.000 | 0.000 | 0.000 | 12.550 | 0 0.000 | 0 | | Leg S16 | L 5" x 5" x 0.4375"
L 5" x 5" x 0.4375" | SAE | 5x5x0.44 | | 19.89 | Comp | 5.61 | L 16Y | 7.598 | W -45 | 135.432 | 0.000 | 0.000 | | 10.208 | 0 0.000 | | | Leg S17
Leg S18 | L 5" x 5" x 0.4375" | SAE | 5x5x0.44
5x5x0.31 | | 13.56 | Comp | 1.52 | L 17Y | 2.058 | W -45
W -45 | 135.432
98.172 | 0.000 | 0.000 | | 10.208 | 0 0.000 | | | Leg S19 | L 5" x 5" x 0.3125" | SAE | 5x5x0.31 | 36.0 | 5.43 | Comp | 0.00 | L 19Y | 0.000 | | 98.172 | 0.000 | 0.000 | 0.000 | 8.618 | 0 0.000 | 0 | | Diag S1
Diag S2 | B/B L3"x4"x0.375"
B/B L3"x4"x0.25" | DAS | 4x3x0.38
4x3x0.25 | | 46.39
65.42 | | 23.02 | D 2P
D 4P | 37.061
36.768 | W -90
W -90 | 161.028
109.512 | 0.000 | 0.000 | | 22.664 22.191 | 0 0.000 | | | Diag S2 | B/B L3"x4"x0.25" | DAS | 4X3X0.25 | | 61.28 | | 33.13 | D 6P | 36.280 | | | 0.000 | 0.000 | | 21.737 | 0 0.000 | | | Diag S4 | B/B L3"x3.5"x0.25" | DAS | 3.5X3X0.25 | | 52.89 | Comp | 36.94 | D 8P | 37.461 | W -90 | 101.412 | 0.000 | 0.000 | | 20.858 | 0 0.000 | | | Diag S5
Diag S6 | B/B L3"x3.5"x0.25"
B/B L2.5"x3.5"x0.25" | DAS | 3.5x3x0.25
3.5x2.5x0.25 | | 50.34
75.26 | | 35.96 | D 10P
D 12P | 36.472 | W -90
W -90 | 101.412
93.312 | 0.000 | 0.000 | | 20.484 | 0 0.000 | | | Diag S7 | B/B L3"x3"x0.375" | DAS | 3X3X0.38 | 36.0 | 50.68 | Comp | 36.25
16.72 | D 13P | 22.866 | | 136.728 | 0.000 | 0.000 | | 29.947 | 0 0.000 | | | Diag S8 | B/B L2.5"x3"x0.25" | DAS | 3x2.5x0.25 | 36.0 | 67.28 | Comp | 23.14 | D 16P | 19.715 | W 180 | 85.212 | 0.000 | 0.000 | 0.000 | 29.107 | 0 0.000 | 0 | | Diag S9 | B/B L2.5"x3"x0.25"
B/B L2.5"x2.5"x0.25" | DAS | 3x2.5x0.25
2.5x2.5x0.25 | 36.0 | 58.23
45.71 | Comp | 21.35
13.02 | D 18P
D 20P | 18.194 | W 180
W 180 | 85.212
77.112 | 0.000 | 0.000 | 0.000 | 28.332 | 0 0.000 | | | iag S11 | B/B L2.5"x2.5"x0.25" | | 2.5x2.5x0.25 | | 37.85 | Comp | 11.33 | D 22P | 8.734 | W 180 | 77.112 | 0.000 | 0.000 | | 16.573 | 0 0.000 | | | iag S12 | B/B L2.5"x2.5"x0.25" | DAE | 2.5x2.5x0.25 | 36.0 | 34.97 | Comp | 11.13 | D 24P | 8.585 | W 180 | 77.112 | 0.000 | 0.000 | 0.000 | 16.064 | 0 0.000 | | | iag S13
iag S14 | B/B L2.5"x2"x0.25"
B/B L2.5"x2"x0.25" | DAL | 2.5x2x0.25
2.5x2x0.25 | | 53.27
45.63 | Comp | 12.25
11.05 | D 26P
D 28P | 8.455
7.627 | W 180
W 180 | 69.012
69.012 | 0.000 | 0.000 | | 15.579 | 0 0.000 | | | iag S15 | B/B L2.5"x2"x0.25" | DAL | 2.5x2x0.25 | 36.0 | 40.12 | Comp | 10.19 | D 29P | 7.034 | W -90 | 69.012 | 0.000 | 0.000 | 0.000 | 14.690 | 0 0.000 | Ö | | iag S16 | L 3.5" x 3.5" x 0.25"
L 3.5" x 3.5" x 0.25" | | 3.5x3.5x0.25 | | 14.90 | | 14.90 | D 32P | 8.159 | W -90 | 54.756
54.756 | 0.000 | 0.000 | | 16.610 | 0 0.000 | 0 | | Diag S17 | L 3.5" X 3.5" X 0.25" | SAE | 3.5x3.5x0.25
3x3x0.25 | | 11.49
8.92 | Tens | 11.49 | D 34P
D 36P | 6.293
4.161 | W -90 | 46.656 | 0.000 | 0.000 | | 15.610
13.678 | 0 0.000 | | | Diag S19 | L 3" x 3" x 0.25" | SAE | 3X3X0.25 | 36.0 | 6.84 | Tens | 6.84 | D 38P | 3.192 | W -90 | 46.656 | 0.000 | 0.000 | 0.000 | 12.848 | 0 0.000 | 0 | | Horiz 1
Horiz 2 | B/B L4"x3"x0.25"
B/B L3.5"x2.5"x0.25" | DAL | 4X3X0.25
3.5X2.5X0.25 | | 55.36
69.58 | Comp | 36.16 | H 1X
H 3X | 39.594
37.015 | W -90
W -90 | 109.512
93.312 | 0.000 | 0.000 | | 24.352 22.764 | 0 0.000 | | | Horiz 3 | B/B L3"x2.5"x0.25" | | 3X2.5X0.25 | | 62.04 | | 40.88 | H 5X | 34.832 | W -90 | 85.212 | 0.000 | 0.000 | | 21.176 | 0 0.000 | | | | B/B L3.5"x2.5"x0.25" | | 3.5x2.5x0.25 | | 62.79 | Comp | 38.11 | н 7х | 35.563 | W -90 | 93.312 | 0.000 | 0.000 | 0.000 | 13.058 | 0 0.000 | | | Horiz 5 | B/B L3.5"x2.5"x0.25"
B/B L3"x2.5"x0.25" | | 3.5x2.5x0.25
3x2.5x0.25 | | 58.17
56.36 | Comp | 34.69
31.72 | H 9X | 32.367 | W -90 | 93.312
85.212 | 0.000 | 0.000 | | 12.000 | 0 0.000 | | | Horiz 7 | B/B L3"x2.5"x0.25" | DAL | 3X2.5X0.25 | 36.0 | 42.29 | Comp | 14.32 | H 14P | 12.199 | w o | 85.212 | 0.000 | 0.000 | 0.000 | 14.823 | 0 0.000 | ō | | Horiz 8 | B/B L3"x2.5"x0.25" | DAL | 3x2.5x0.25 | | 28.90 | Comp | 11.55 | H 16P | 9.841 | W 0 | 85.212 | 0.000 | 0.000 | | 13.235 | 0 0.000 | | | Horiz 10 | B/B L2.5"x2.5"x0.25"
B/B L2.5"x2.5"x0.25" | | 2.5x2.5x0.25
2.5x2.5x0.25 | | 29.18
22.41 | Comp | 10.73 | H 18Y
H 20Y | 6.817 | W 180 | 77.112
77.112 | 0.000 | 0.000 | | 11.647 | 0 0.000 | | | Horiz 11 | B/B L2.5"x2.5"x0.25" | DAE | 2.5X2.5X0.25 | 36.0 | 16.47 | Comp | 7.54 | H 22Y | 5.813 | W 180 | 77.112 | 0.000 | 0.000 | 0.000 | 10.059 | 0 0.000 | | | loriz 12 | B/B L2.5"x2.5"x0.25"
B/B L2.5"x2.5"x0.25" | | 2.5x2.5x0.25
2.5x2.5x0.25 | | 13.97 | Comp | 7.02 | H 24P
H 26P | 5.411 | W O | 77.112
77.112 | 0.000 | 0.000 | | 9.264 | 0 0.000 | | | Horiz 14 | B/B L2.5"x2.5"x0.25" | | 2.5x2.5x0.25 | | 9.37 | Comp | 5.81 | H 28P | 4.484 | w o | 77.112 | 0.000 | 0.000 | | 7.676 | 0 0.000 | | | Horiz 15 | B/B L2.5"x2.5"x0.25" | | 2.5x2.5x0.25 | | 12.23 | Comp | 0.76 | H 29XY | 0.583 | W -90 | 77.112 | 0.000 | 0.000 | | 6.882 | 0 0.000 | | | Horiz 16 | L 3" x 2.5" x 0.25"
B/B L3"x2.5"x0.25" | SAU | 3x2.5x0.25
3x2.5x0.25 | | 29.43
8.67 | Comp | 0.00 | H 32X
H 34X | 0.000 | | 42.444
85.212 | 0.000 | 0.000 | | 12.473 | 0 0.000 | | | oriz 18 | L 3" x 2.5" x 0.25" | SAU | 3X2.5X0.25 | 36.0 | 15.91 | Comp | 0.00 | H 36X | 0.000 | | 42.444 | 0.000 | 0.000 | 0.000 | 10.090 | 0 0.000 | 0 | | oriz 19 | C8x11.5
B/B L3"x2.5"x0.3125" | CHN | C8x11.5
3x2.5x0.31 | | 5.37 | Comp | 0.00 | H 38X
LD 2Y | 0.000 | w -45 | 109.512 | 0.000 | 0.000 | | 9.000 | 0 0.000 | | | LD 1 | B/B L4"x3"x0.3125" | DAL | 4X3X0.31 | | 42.45
59.45 | Comp | 17.64
31.71 | LD 2Y | 42.950 | W -45
W -90 | 135.432 | 0.000 | 0.000 | | 14.067 | 0 0.000 | | | LD 4 | B/B L3"x2"x0.25" | DAL | 3X2X0.25 | 36.0 | 60.68 | Comp | 22.06 | LD 7P | 17.011 | W -90 | 77.112 | 0.000 | 0.000 | 0.000 | 13.385 | 0 0.000 | 0 | | LD 5 | B/B L4"x3"x0.25"
B/B L2.5"x2.5"x0.375" | DAL | 4x3x0.25
2.5x2.5x0.38 | | 65.86
41.59 | Comp | 37.68
14.36 | LD 9P
LD 13P | 41.263 | W -90
W -90 | 109.512 | 0.000 | 0.000 | | 13.385 | 0 0.000 | | | LD 8 | B/B L3.5"x3"x0.25" | DAL | 3.5X3X0.25 | 36.0 | 72.07 | Comp | 39.02 | LD 15P | 39.576 | W -90 | 101.412 | 0.000 | 0.000 | | 12.717 | 0 0.000 | | | LD 10 | B/B L3"x3"x0.25" | DAE |
3x3x0.25 | | 37.88 | Comp | 19.62 | LD 19P | 18.304 | W -90 | 93.312 | 0.000 | 0.000 | | 11.382 | 0 0.000 | | | LD 11
LD 12 | B/B L2.5"x2"x0.25"
B/B L3"x2"x0.25" | DAL | 2.5x2x0.25
3x2x0.25 | 36.0 | 57.46
62.52 | Comp | 36.07
41.18 | LD 21P
LD 23X | 24.894
31.752 | W -90
W -90 | 69.012
77.112 | 0.000 | 0.000 | | 8.160
9.605 | 0 0.000 | 0 | | LD 13 | B/B L2.5"x2"x0.25" | DAL | 2.5X2X0.25 | 36.0 | 54.46 | Comp | 24.51 | LD 25P | 16.914 | W -90 | 69.012 | 0.000 | 0.000 | 0.000 | 10.794 | 0 0.000 | 0 | | LD 14 | B/B L2.5"x2"x0.25" | DAL | 2.5X2X0.25 | | 54.15 | Comp | 35.30 | LD 27P | 24.364 | W -90 | 69.012 | 0.000 | 0.000 | 0.000 | 8.014 | 0 0.000 | | | LD 15 | B/B L3"x3"x0.25"
B/B L2.5"x2"x0.25" | DAE | 3X3X0.25
2.5X2X0.25 | 36.0
36.0 | 42.44 | | 32.26
22.76 | LD 29X
LD 32Y | 30.104
15.709 | W -90
W -45 | 93.312
69.012 | 0.000 | 0.000 | | 9.253 | 0 0.000 | | | LD 17 | B/B L2.5"x2"x0.25" | DAL | 2.5X2X0.25 | 36.0 | 50.32 | Comp | 32.36 | LD 33P | 22.332 | W -90 | 69.012 | 0.000 | 0.000 | 0.000 | 7.876 | 0 0.000 | 0 | | LD 18 | B/B L2.5"x2"x0.25" | DAL | 2.5x2x0.25 | | 61.86 | | 39.87 | LD 35X | 27.514 | W -90 | 69.012 | 0.000 | 0.000 | | 8.919 | 0 0.000 | | | LH 1
LH 2 | B/B L2.5"x3"x0.25"
B/B L2.5"x3"x0.25" | DAS | 3x2.5x0.25
3x2.5x0.25 | | 10.08 | Tens | 10.08 | LH 1Y
LH 3Y | 8.590
5.349 | W O | 85.212
85.212 | 0.000 | 0.000 | | 24.352 22.764 | 0 0.000 | | | LH 3 | B/B L2.5"x3"x0.25" | DAS | 3x2.5x0.25 | 36.0 | 6.49 | Tens | 6.49 | LH 5Y | 5.531 | w o | 85.212 | 0.000 | 0.000 | 0.000 | 21.176 | 0 0.000 | 0 | | LH 4 | B/B L3"x3"x0.375"
B/B L2.5"x3"x0.25" | DAE | 3X3X0.38
3X2.5X0.25 | 36.0 | 46.76
57.83 | Comp | 14.66 | LH 7P
LH 9P | 20.039
17.975 | W -90
W -90 | 136.728
85.212 | 0.000 | 0.000 | | 10.648 9.821 | 0 0.000 | | | | | DAS | 3X2.5XU.25 | 36.0 | 57.83 | Comp | 21.09 | LH 9P | 1/.9/5 | w -90 | 85.212 | 0.000 | 0.000 | 0.000 | 9.821 | U U.000 | C | | LH 5
LH 6 | B/B L2.5"x3"x0.25" | DAS | 3X2.5X0.25 | 36.0 | 45.50 | Comp | 18.76 | LH 12Y | 15.988 | W -45 | 85.212 | 0.000 | 0.000 | 0.000 | 8.993 | 0 0.000 | 0 | ^{***} Maximum Stress Summary for Each Load Case #### Summary of Maximum Usages by Load Case: | Load Case | Maximum
Usage % | Element
Label | Element
Type | |-----------|--------------------|------------------|-----------------| | w o | 73.91 | D 11P | Angle | | W 180 | 75.01 | D 11Y | Angle | | W 45 | 61.42 | D 12P | Angle | | W -45 | 65.60 | D 12X | Angle | | W 90 | 74.21 | D 12P | Angle | | W -90 | 75.26 | D 12X | Angle | | W 0 Ice | 24.40 | D 11P | Angle | | W 180 Ice | 25.56 | D 11Y | Angle | | W 45 Ice | 25.30 | L 1P | Angle | | W -45 Ice | 24.55 | L 1X | Angle | | W 90 Ice | 24.49 | D 12P | Angle | | W -90 Ice | 25.60 | D 12X | Angle | ^{***} Weight of structure (lbs): Weight of Angles*Section DLF: 155444.9 Total: 155444.9 ^{***} End of Report | | 88008 | | | Engineer | | | Windspeed: | | 119 mph | lce: | 50 mph |] | | | Taper: | -0.127052 | | Taper Change: | 337.5 | 1 | |--------------|----------------------------|----------------------------|----------------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|---------------------------|--------|----------------|----------------|------------|-----------|--------------|----------------------------|---------------------------|------------------| | ame | Bethany CT, CT | | ļ | Date | 10/08/21 | J | Carrie | Dish Wire | less | | Drop | | | | FW @ Base: | 51.88 | ft | FW @ Top: | 9 | ft | | oint
abel | Symmetry
Code | X Coord.
(ft) | Y Coord.
(ft) | Z Coord.
(ft) | X Disp.
Rest. | Y Disp.
Rest. | Z Disp.
Rest. | X Rot.
Rest. | Y Rot.
Rest. | Z Rot.
Rest. | Sub-Brace
(Y or Blank) | # Vert | Drop (ft) | Height (ft) | Туре | Count | z-Elev. (ft) | on Last Updated: | 11/12/2014
Sub-Brace | 1 | | ibei | XY-Symmetry | 25.94 | 25.94 | | 0 Fixed | Fixed | Fixed | Fixed | Fixed | Fixed | (1 of bluffk) | 3 | 7.030 | 25 | 1 | 1 | | 51.88 | | | | | XY-Symmetry | 24.35185185 | 24.35185185 | | 5 Free | Free | Free | Free | Free | Free | | 3 | 7.030 | 25 | 1 | 2 | | 48.7037037 | | NOTES | | | XY-Symmetry | 22.7637037 | 22.7637037 | | 0 Free | Free | Free | Free | Free | Free | | 3 | 7.030 | 25 | 1 | 3 | | 45.52740741 | | Types: | | | XY-Symmetry
XY-Symmetry | 21.17555556
19.58740741 | 21.17555556
19.58740741 | | 5 Free
0 Free | Free
Free | Free
Free | Free
Free | Free
Free | Free
Free | | | 7.030
7.030 | 25
25 | 2 | 4 | | 42.35111111
39.17481481 | | 1: Bui
2: Bui | | | XY-Symmetry | 17.99925926 | 17.99925926 | | 5 Free | Free | Free | Free | Free | Free | | | 7.03 | 25 | 2 | 6 | | 35.99851852 | | A: Typ | | | XY-Symmetry | 16.41111111 | 16.41111111 | | 0 Free | Free | Free | Free | Free | Free | | | | 25 | A | 7 | | 32.82222222 | | X: Typ | | | XY-Symmetry | 14.82296296 | 14.82296296 | 175 | 5 Free | Free | Free | Free | Free | Free | | | | 25 | Α | 8 | 175 | 29.64592593 | 2 | | | | XY-Symmetry | 13.23481481 | 13.23481481 | | 0 Free | Free | Free | Free | Free | Free | | | | 25 | Α | 9 | | 26.46962963 | | Drop: Use | | | XY-Symmetry | 11.64666667 | 11.64666667 | | 5 Free | Free | Free | Free | Free | Free | | | | 12.5 | A | 10 | | 23.29333333 | | # C - + | | | XY-Symmetry
XY-Symmetry | 10.85259259
10.05851852 | 10.85259259
10.05851852 | | 5 Free
0 Free | Free
Free | Free
Free | Free
Free | Free
Free | Free
Free | | | | 12.5
12.5 | A
A | 11
12 | | 21.70518519 | 1 | # Sections: | | | XY-Symmetry
XY-Symmetry | 9.26444444 | 9.264444444 | | o Free
5 Free | Free | Free | Free | Free | Free | | | | 12.5 | A | 13 | | 18.52888889 | | | | | XY-Symmetry | 8.47037037 | 8.47037037 | | 5 Free | Free | Free | Free | Free | Free | | | | 12.5 | A | 14 | | 16.94074074 | | | | | XY-Symmetry | 7.676296296 | 7.676296296 | 287.5 | 5 Free | Free | Free | Free | Free | Free | | | | 12.5 | Α | 15 | | 15.35259259 | 1 | | | | XY-Symmetry | 6.88222222 | 6.882222222 | | 0 Free | Free | Free | Free | Free | Free | | | | 10.167 | х | 16 | | 13.7644444 | | | | | XY-Symmetry | 6.236354133 | 6.236354133 | 310.167 | | Free | Free | Free | Free | Free | | 1 | | 10.167 | X | 17 | | 12.47270827 | | | | | XY-Symmetry | 5.590486044 | 5.590486044 | 320.334 | | Free | Free | | Free | Free | | | | 8.583
8.583 | X | 18
19 | | 11.18097209
10.09048604 | | | | | XY-Symmetry
XY-Symmetry | 5.045243022
4.5 | 5.045243022
4.5 | 328.917 | 7 Free
5 Free | Free
Free | Free
Free | Free
Free | Free
Free | Free
Free | | | | 0.383 | х | 19 | | 10.09048604 | | | | | Y-Symmetry | 24.35185185 | 4.5 | | 5 Free | Free | Free | Free | Free | Free | | | | | | 20 | 337.3 | 9 | | | | | X-Symmetry | 0 | 24.35185185 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | | Y-Symmetry | 22.7637037 | 0 | 50 | 0 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | | X-Symmetry | 0 | 22.7637037 | | 0 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | | Y-Symmetry | 21.17555556 | 0 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | | X-Symmetry
XY-Symmetry | 0
19.58740741 | 21.17555556
6.529135802 | | 5 Free
0 Free | Free
Free | Free
Free | Free
Free | Free
Free | Free
Free | | | | | | | | | | | | | XY-Symmetry
XY-Symmetry | 6.529135802 | 19.58740741 | | 0 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | | XY-Symmetry | 17.99925926 | 5.999753086 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 0 | XY-Symmetry | 5.999753086 | 17.99925926 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 1 | XY-Symmetry | 16.41111111 | 5.47037037 | | 0 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 2 | XY-Symmetry | 5.47037037 | 16.41111111 | | 0 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 3 | Y-Symmetry | 14.82296296 | 14 92206206 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 4
5 | X-Symmetry
Y-Symmetry | 0
13.23481481 | 14.82296296
0 | | 5 Free
0 Free | Free
Free | Free
Free | Free
Free | Free
Free | Free
Free | | | | | | | | | | | | 6 | X-Symmetry | 0 | 13.23481481 | | 0 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 7 | Y-Symmetry | 11.64666667 | 0 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 8 | X-Symmetry | 0 | 11.64666667 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 9 | Y-Symmetry | 10.85259259 | 0 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 0 | X-Symmetry | 0 | 10.85259259 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 2 | Y-Symmetry
X-Symmetry | 10.05851852
0 | 10.05851852 | | 0 Free
0 Free | Free
Free | Free
Free | Free
Free | Free
Free | Free
Free | | | | | | | | | | | | 3 | X-Symmetry
Y-Symmetry | 9.26444444 | 10.05851852 | | o Free
5 Free | Free | Free | | Free | Free | | | | | | | | | | | | 4 | X-Symmetry | 0 | 9.26444444 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 5 | Y-Symmetry | 8.47037037 | 0 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 6 | X-Symmetry | 0 | 8.47037037 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 7 | Y-Symmetry | 7.676296296 | 0 | | 5 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 8
9 | X-Symmetry
Y-Symmetry | 0
6.882222222 | 7.676296296 | | 5 Free
0 Free | Free
Free | Free
Free | Free
Free | Free
Free | Free
Free | | | | | | | | | | | | 0 | Y-Symmetry
X-Symmetry | 6.882222222 | 6.882222222 | | 0 Free
0 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | | XY-Symmetry | 24.79843911 | 12.17592593 | | 7 Free | Free | Free | Free | Free | Free | | | | | | | | | |
 | | XY-Symmetry | 12.17592593 | 24.79843911 | | 7 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | | XY-Symmetry | 23.21029096 | 11.38185185 | 42.97 | 7 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | | XY-Symmetry | 11.38185185 | 23.21029096 | | 7 Free | Free | Free | | Free | Free | | | | | | | | | | | | | XY-Symmetry | 21.62214281 | 10.58777778 | 67.97 | 7 Free | Free | Free | Free | Free | Free | | | | | | | | | | | | 0 | XY-Symmetry | 10.58777778 | 21.62214281 | 67.97 | 7 Free | Free | Free | Free | Free | Free | | | | | | | | | | | 20.03399467 10.64770904 20.03399467 0 18.44584652 9.820601481 18.44584652 0 16.85769837 8.993493926 16.85769837 0 10.64770904 20.03399467 0 20.03399467 9.820601481 18.44584652 18.44584652 8.993493926 16.85769837 0 16.85769837 XY-Symmetry XY-Symmetry Y-Symmetry XY-Symmetry XY-Symmetry Y-Symmetry X-Symmetry XY-Symmetry XY-Symmetry XY-Symmetry XY-Symmetry X-Symmetry X-Symmetry H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 92.97 Free 92.97 Free 92.97 Free 92.97 Free 117.97 Free 117.97 Free 117.97 Free 142.97 Free 142.97 Free 142.97 Free 142.97 Free 1: Built up Horizs. w/ A 2: Built up Horizs. w/ M A: Typical A brace X: Typical X brace Drop: Use only for types 1 & 2 Legs | Site No.: | 88008 | |-----------|---------------| | Engineer: | ADV | | Date: | 10/08/2021 | | Carrier: | Dish Wireless | When inputting thickness values, include all decimal places. | | utting thickness valu | | | | r | |------------------|-----------------------|------------|----------------|---------------|----------------| | Tower
Section | Section
Elevations | Type
of | Diameter
or | Thickness [2] | F _Y | | # | Lievations | Shape '-' | Length | | | | | (ft) | | (in) | (in) | (ksi) | | | | | | | | | 1 | 0.000-25.00 | L | 8 | 1.125 | 36 | | 2 | 25.00-50.00 | L | 8 | 1.125 | 36 | | 3 | 50.00-75.00 | L | 8 | 1.125 | 36 | | 4 | 75.00-100.0 | L | 8 | 1.125 | 36 | | 5 | 100.0-125.0 | L | 8 | 1 | 36 | | 6 | 125.0-150.0 | L | 8 | 1 | 36 | | 7 | 150.0-175.0 | L | 8 | 0.875 | 36 | | 8 | 175.0-200.0 | L | 8 | 0.75 | 36 | | 9 | 200.0-225.0 | L | 8 | 0.75 | 36 | | 10 | 225.0-237.5 | L | 6 | 0.875 | 36 | | 11 | 237.5-250.0 | L | 6 | 0.75 | 36 | | 12 | 250.0-262.5 | L | 6 | 0.75 | 36 | | 13 | 262.5-275.0 | L | 6 | 0.5625 | 36 | | 14 | 275.0-287.5 | L | 6 | 0.5625 | 36 | | 15 | 287.5-300.0 | L | 6 | 0.4375 | 36 | | 16 | 300.0-310.2 | L | 5 | 0.4375 | 36 | | 17 | 310.2-320.3 | L | 5 | 0.4375 | 36 | | 18 | 320.3-328.9 | L | 5 | 0.3125 | 36 | | 19 | 328.9-337.5 | L | 5 | 0.3125 | 36 | #### Notes: Type of Leg Shape: \mathbf{R} = Round or \mathbf{P} = Bent Plate or \mathbf{S} = Schifflerized Angle. \mathbf{L} = Even Le_i [2] For Solid Round Leg Shapes Thickness Equals Zero. ^[3] Adjust for Bent Plate Leg Shapes. # Diagonals Site No.: 88008 Engineer: ADV Date: 10/08/2021 Carrier: Dish Wireless When inputting thickness values, include all decimal places. | Tower
Section | Section
Elevations | Type
of | Diameter ^[2] | Web
Length ^[3] | Flange
Length ^[3] | Thickness | F _y | Is Diag.
Tension | |---|--|--|-------------------------|---|---|--|---|-----------------------| | # | (ft) | Shape ^[1] | (in) | (in) | (in) | (in) | (ksi) | Only?
<i>(Y/N)</i> | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 0.000-25.00
25.00-50.00
50.00-75.00
75.00-100.0
100.0-125.0
125.0-150.0
175.0-200.0
200.0-225.0
225.0-237.5
237.5-250.0
250.0-262.5
262.5-275.0
275.0-287.5
287.5-300.0
300.0-310.2
310.2-320.3
320.3-328.9
328.9-337.5 | 2L 2 | (III) | 3 3 3 2.5 3 2.5 2.5 2.5 2.5 2.5 3.5 3.5 3 3 | 4 4 4 3.5 3.5 3.5 3.5 2.5 2.5 2 2 3.5 3.3 3 3 | 0.375
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.2 | 36
36
36
36
36
36
36
36
36
36
36
36
36
3 | Y
Y
Y | # Notes: Type of Diagonal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle or $\mathbf{2L}$ = Double-Angle. ^[2] Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero. ^[3] Applies to Single-Angle and Double-Angle Shapes only. ^[4] Applies to Double-Angle Shapes only. $^{^{\}mbox{\scriptsize [5]}}$ Applies to Single-Angle Shapes only. #### **Horizontals** Site No.: 88008 Engineer: ADV Date: 10/08/2021 Carrier: Dish Wireless When inputting thickness values, include all decimal places. | Tower
Section | Section
Elevations | Type
of | Diameter [2] | Web
Length ^[3] | Flange
Length ^[3] | Thickness | F _y | | |------------------|----------------------------|------------|--------------|------------------------------|---------------------------------|--------------|----------------|-------------| | # | Lievations | Shape [1] | | Length | Length | | | B/B Spacing | | | (ft) | | (in) | (in) | (in) | (in) | (ksi) | (in.) | | | | | | | | | | | | | 0.000.05.00 | 21 | | | 0 | 0.05 | 26 | | | 1 | 0.000-25.00 | 2L | | 4 | 3 | 0.25 | 36 | | | 2 3 | 25.00-50.00
50.00-75.00 | 2L
2L | | 3.5
3 | 2.5
2.5 | 0.25
0.25 | 36
36 | | | 4 | 75.00-100.0 | 2L
2L | | 3.5 | 2.5 | 0.25 | 36 | | | 5 | 100.0-125.0 | 2L | | 3.5 | 2.5 | 0.25 | 36 | | | 6 | 125.0-150.0 | 2L | | 3.3 | 2.5 | 0.25 | 36 | | | 7 | 150.0-175.0 | 2L | | 3 | 2.5 | 0.25 | 36 | | | 8 | 175.0-200.0 | 2L | | 3 | 2.5 | 0.25 | 36 | | | 9 | 200.0-225.0 | 2L | | 2.5 | 2.5 | 0.25 | 36 | | | 10 | 225.0-237.5 | 2L | | 2.5 | 2.5 | 0.25 | 36 | | | 11 | 237.5-250.0 | 2L | | 2.5 | 2.5 | 0.25 | 36 | | | 12 | 250.0-262.5 | 2L | | 2.5 | 2.5 | 0.25 | 36 | | | 13 | 262.5-275.0 | 2L | | 2.5 | 2.5 | 0.25 | 36 | | | 14 | 275.0-287.5 | 2L | | 2.5 | 2.5 | 0.25 | 36 | | | 15 | 287.5-300.0 | 2L | | 2.5 | 2.5 | 0.25 | 36 | | | 16 | 300.0-310.2 | L | | 3 | 2.5 | 0.25 | 36 | | | 17 | 310.2-320.3 | 2L | | 3 | 2.5 | 0.25 | 36 | | | 18 | 320.3-328.9 | L | | 3 | 2.5 | 0.25 | 36 | | | 19 | 328.9-337.5 | С | | 8 | 11.5 | | 36 | 1 | | | | | | l . | l . | | #### <u>Notes</u> $[\]overline{}^{[1]}$ Type of Horizontal Shape: **R** = Round, **L** = Single-Angle, **2L** = Double-Angle, **C** = Channel, **W** = W Shape ^[2] Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero. ^[3] Applies to Single-Angle and Double-Angle Shapes only. ^[4] Applies to Double-Angle Shapes only. ^[5] Applies to Single-Angle Shapes only. # **Built-up Diagonals** | Site No.: | 88008 | |-----------|---------------| | Engineer: | ADV | | Date: | 10/08/2021 | | Carrier: | Dish Wireless | When inputting thickness values, include all decimal places. Input diags. from left to center & from base section upward. | mpat alag | | | | | | | | | | | |-----------|-------------|-----------------|--------------|------------|-----------------------|-----------|----------------|--|--|--| | Tower | Section | Type | Diameter [2] | Web | Flange | Thickness | F _y | | | | | Built-up | Elevations | of
Shape '-' | | Length [3] | Length ^[3] | | | | | | | Diag. # | (64) | Shape | (in) | /:m1 | (in) | (in) | (Irai) | | | | | | (ft) | | (in) | (in) | (in) | (in) | (ksi) | | | | | 1 | 0.000-25.00 | 2L | | 3 | 2.5 | 0.3125 | 36 | | | | | 2 | 0.000-25.00 | 2L | | 4 | 3 | 0.3125 | 36 | | | | | 3 | 25.00-50.00 | 2L | | 3 | 2 | 0.25 | 36 | | | | | 4 | 25.00-50.00 | 2L | | 4 | 3 | 0.25 | 36 | | | | | 5 | 50.00-75.00 | 2L | | 2.5 | 2.5 | 0.375 | 36 | | | | | 6 | 50.00-75.00 | 2L | | 3.5 | 3 | 0.25 | 36 | | | | | 7 | 75.00-100.0 | 2L | | 3 | 3 | 0.25 | 36 | | | | | 8 | 75.00-100.0 | 2L | | 2.5 | 2 | 0.25 | 36 | | | | | 9 | 75.00-100.0 | 2L | | 3 | 2 | 0.25 | 36 | | | | | 10 | 100.0-125.0 | 2L | | 2.5 | 2 | 0.25 | 36 | | | | | 11 | 100.0-125.0 | 2L | | 2.5 | 2 | 0.25 | 36 | | | | | 12 | 100.0-125.0 | 2L | | 3 | 3 | 0.25 | 36 | | | | | 13 | 125.0-150.0 | 2L | | 2.5 | 2 | 0.25 | 36 | | | | | 14 | 125.0-150.0 | 2L | | 2.5 | 2 | 0.25 | 36 | | | | | 15 | 125.0-150.0 | 2L | | 2.5 | 2 | 0.25 | 36 | Notes: [1] Type of Diagonal Shape: **R** = Round, **L** = Single-Angle or **2L** = Double-Angle. $^{^{[2]}}$ Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero. ^[3] Applies to Single-Angle and Double-Angle Shapes only. ^[4] Applies to Double-Angle Shapes
only. $^{^{[5]}}$ Applies to Single-Angle Shapes only. # **Built-up Horizontals** | Site No.: | 88008 | |-----------|---------------| | Engineer: | ADV | | Date: | 10/08/2021 | | Carrier: | Dish Wireless | When inputting thickness values, include all decimal places. | Tower
Section
| Section
Elevations
(ft) | Type
of
Shape '-' | Diameter ^[2] | Web
Length ^[3] | Flange
Length ^[3]
(in) | Thickness | F _y
(ksi) | Is Horiz.
Tension
Only?
(Y/N) | |----------------------------|--|----------------------------------|-------------------------|--------------------------------------|---|---------------------------------------|----------------------------------|--| | 1
2
3
4
5
6 | 0.000-25.00
25.00-50.00
50.00-75.00
75.00-100.0
100.0-125.0
125.0-150.0 | 2L
2L
2L
2L
2L
2L | | 2.5
2.5
3
2.5
2.5
2.5 | 3
3
3
3
3
3 | 0.25
0.25
0.375
0.25
0.25 | 36
36
36
36
36
36 | YYY | ### Notes: Type of Horizontal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle or $\mathbf{2L}$ = Double-Angle. $^{^{[2]} \, \}text{Applies to Pipes and Solid Round Shapes only. } \, \text{For Solid Round Shapes Thickness Equals Zero}.$ ^[3] Applies to Single-Angle and Double-Angle Shapes only. ^[4] Applies to Double-Angle Shapes only. ^[5] Applies to Single-Angle Shapes only. | Coax (p. 1 of 2) | | | Orig by | MED, Improved i | by ABL. Last updat | te 6/25/13 MED | | Site No.:
Engineer:
Date:
Carrier: | 88008
ADV
10/08/2
Dish Wire | Coax (p. 2 of 2) Ke 0.977806 | Site No.:
Engineer:
Date:
Carrier: | 88008
ADV
10/08/21
Dish Wireless | |----------------------------------|--------------|--------------|----------|-----------------|--------------------------------|-------------------|---------------------------|---|--------------------------------------|--|---|---| | Description | From
(ft) | To (ft) | Quantity | Shape | Width or
Diameter**
(in) | Perimeter
(in) | Unit
Weight
(lb/ft) | In Face Zone? | Include in
Wind Load
(Yes/No) | Description From To Quantity Face 8 Date Widt Cost Shape St. Expended Spacing Shape Block Width Block Depth Pe (Bloom/Flat) | Weight Wi | Include in
Wind Load
(Yes/No) | | 1 Climbing Ladder | | 337.5 | 1 | Flat | 2.000 | 8.0 | 6 | No | Yes | | | Yes | | 2 US Dept | | 337.5 | 2 | Round | 1.090 | 3.4 | 0.33 | Yes | Yes | US Dept 0 3375 2 2 1.09 Ind 100 Record 2 1 | 3.4 0.33 Yes | | | 3 US Dept | • | 337.5
319 | 1 | Round | 0.630
1.980 | 2.0
6.2 | 0.15 | Yes | Yes | US Dept 0 337.5 1 2 0.63 Ind 100 Round 1 1 | | | | 4 tigado
5 US Dept | | 319 | 2 | Round | 1.980 | 3.4 | 0.82 | Yes | Yes | Bayes | | | | 6 US Dept | | 275 | 1 | Round | 1.090 | 3.4 | 0.33 | Yes | Yes | US Dept 0 275 1 2 1.09 Ind 100 Round 1 1 | | | | 7 Sprint | | 240 | 3 | Round | 1.540 | 4.8 | 1 | No | Yes | Sprint 0 240 3 8 154 Ind 100 Round 3 1 | | | | 8 TMO | ۰ | 220 | 1 | Flat | 4.838 | 25.8 | 4.92 | Yes | Yes | TMO 0 220 6 1 1.98 Block 50 1 Flat 3 2 | 5.8 4.92 Yes | | | 9 TMO
10 US Dept | • | 220
194 | 3 | Round | 1.250 | 3.9
4.9 | 1.05
0.63 | Yes | Yes | TMO 0 220 3 1 1.25 Ind 100 Round 3 1 | 1.9 1.05 Yes | | | 10 US Dept | | 180 | 1 | Flat | 8.190 | 43.7 | 9.84 | Yes | Yes | US Diget 0 294 1 4 1.55 feet 100 Recent 1 1 Version 0 200 12 4 1.58 Black 50 1 Fia: 6 2 | .9 0.63 Nr.
0.7 9.84 Yes | Yes | | 12 ATT | | 165 | 6 | Round | 1.980 | 6.2 | 0.82 | Yes | Yes | ATT 0 165 6 2 198 Ind 100 Round 6 1 | | Yes | | 13 ATT | | 165 | 1 | Round | 0.390 | 1.2 | 0.17 | Yes | No | ATT 0 165 1 2 0.39 led 100 Round 1 1 | | Yes | | 14 ATT | • | 165 | 2 | Round | 0.780 | 2.5 | 0.59
7.58 | Yes | No | ATT 0 165 2 2 0.78 ind 100 Round 2 1 | | | | 15 ATT
16 Metro | | 165 | 1 | Round | 3.500
1.980 | 11.0
6.2 | 7.58
0.82 | Yes | No
Yes | ATT 0 165 1 2 330 fee 100 Round 1 1 Micro 0 100 6 1 1.98 fee 100 Round 6 1 | | | | 17 Sprint | | 48 | 1 | Round | 0.630 | 2.0 | 0.15 | No | No | Sprint 0 48 1 B 0.63 Ind 100 Round 1 1 | | | | 18 Coax Cage | 12.5 | 32.5 | 2 | Flat | 12.000 | 48.0 | 25 | Yes | Yes | Coax Cage 12.5 12.5 2 1 12.00 Flat 100 Flat 2 1 | 8.0 25 Yes | Yes | | 19 Coax Cage | 12.5 | 32.5 | 2 | Flat | 12.000 | 48.0 | 25 | Yes | Yes | Coax Cage 12.5 32.5 2 3 12.00 Flat 100 Flat 2 1 | | Yes | | 20 Waive Guide | ۰ | 180 | 1 | Flat | 1.500 | 6.0 | 2 | Yes | Yes | Waive Guide 0 180 1 4 150 Flat 100 Flat 1 1 | | Yes | | 21 Walve Guide
22 Walve Guide | ٠ | 165 | 1 | Flat | 1.500 | 6.0 | 2 2 | Yes | Yes | Waine Guide 0 165 1 2 150 Flat 100 Flat 1 1 | u0 2 Yes | Yes | | 22 Walve Guide
23 Siafox | | 100 | 1 | Flat | 0.630 | 2.5 | 0.15 | Yes | Yes | Water Country 0 200 1 1 1:50 File 100 File 1 1 1 5 5uplos 0 147 1 C 0.61 File 100 File 1 1 | | | | 24 Sprint | | 204.8 | 1 | Flat | 1.980 | 25.8 | 4.92 | No | Yes | Sigilize 0 147 1 C 0.63 File 100 File 1 1 Sprint 0 204.8 6 8 108 Block 50 1 File 3 2 | | Yes | | 25 Verizon | | 180 | 1 | Round | 1.980 | 10.2 | 1.64 | Yes | No | Verticon 0 180 2 4 198 Ind 0 Round 1 2 | | No | | 26 Dish | | 140 | 1 | Round | 2.000 | 5.0 | 2.34 | No | Yes | Dish 0 140 1 8 160 Ind 100 Round 1 1 | | | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No. | No. | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No | No | No | No. | | | | | | | | | | | | | No. | No | | | | | | | | | | | | 1 | No | No | | | | | | | | | | | | | No | No | No No | No. | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No No | No. | | | | | | | | | | | | | | No | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No | No | | | | | | | | | | | | | No
No | No
No | | | | | | | | | | | | | No No | No | | | | | | | | | | | | | No | No | | | | | | | | | | | | | *** | | | | | | | | | | | | | ····· | No | | | | | | | | | | | | | | No. | No. | | | | | | | | | | | | | | | | Task: Tower He Gh: Wind Spe Ice Wind: Ice Densit Tower Ty | Speed:
Y: | 337.5
0.85
119
50
56
5 | ft
mph,Vult | | | Ice Thick Topographic Category (1-4): Exposure Category (1-4): Risk Category (1-4): Height of Creat (H) if Topo Cat. Loud Factor; Wind: Loud Factor; Dead: | 1 1 8 2 0 6 1 1 1 2 | n
t | | Rooftep Speed Up Factor (Xs)
Ground Elevation (AMSL)
Topographic Factor Procedure | 1
620
Method 1 | ft | | | Site No. Engineer: Date: Carrier: | |--
--	---	--	---	---
--	---	--	--	
--		No.	Carrier	Elevation
140 140 C ₂ A _c (gt ²) 0.00 20.75 0.00 70.00	(ft ²) 0.00 28.03 0.00 94.50	3 3 1 1 3	Fortra (MA Wireless) Force (M) 0.000 744.097 0.000 2508.997	TAGBO23-8003 MASSW MC055-21 Flat Sector Frames Force (ce) (bb) 0.000 177.341 0.000 597.971
41-977-98 41	0.001 Weight V (Nb) 0 0 105 0 0 24 0 0 180 0 0 96 0 0 96 0 0	0.001 Weight (ice) (ib) 0 9360 0 31 0 234 0 78 0 125		0.0011 60 Ant Mult. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	(h²) 0.00 28.03 0.00 94.50 0.00 2.34 0.00 2.34 0.00 8.10 0.00 8.10 0.00 24.12 0.00 1.24 0.00 1.24 0.00 1.24 0.00 1.24 0.00 1.24 0.00 1.24 0.00 1.24 0.00 1.24	3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fujitas (Marienta Marienta Mar	TAGIOS-6000 TAGIOS TAGI
0.00 0	0.500 0.540 0.001 0.570 F (ice) man 0.00 97.54 0.00 228.88 0.00 228.88 0.00 24.03 0.00 47.75 0.00 68.10 68.10	12.49 17.60 17.60 17.60 17.60 1.0000010 0.0000010 1.0000010 1.0000001 1.0000001 1.0000001 1.0000001 1.0000001 1.00000001 1.00000001 1.00000001 1.00000000	0.06 0.40 5.07 50 Act. 744.0967354 3251.092435 60.99240672 244.3185389 1094.59948 82.0931751 353.4583974 856.9907009	1 0.75 o.75 o. of Forces (No h
(m²) 0.00 0.00 94.50 0.00 94.50 0.00 1.14 0.00 1.12 0.00 1.00	1 1 1 1 3	February 1	TAMICUS-BADD THE Series Faceses Free global glo	0.001 Weight # 689 0 0 108 0 0 24 0 0 0 25 0 0 0 26 0 0 0 260 0 0 36 0 0 0 260 0 0 180 0 0 180 0 0 180 0 0 0 180 0 0 0
17.60 17.60	0.06 0.40 500 Ast 60 Ast 704.0097254 3251.039443 201.93149672 204.3185389 209.3386001 205.3549428 82.0551751 253.4583974 856.9507609 79.98506201 205.8887437	1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75		50 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(100) (100)		100 Mal. Ma	Force means 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.500 0.640 0.001
14.40 14.40	0.06 0.40 5.07 5.07 5.07 5.07 5.07 5.07 5.07 5.0	0.75 or of Favors (Mark 1997 Ave.		30 NS. 1 2 3 4 5 6 6 7 8 9 210 111 12 213 14 14 12 15 16 17 218 19 20 21 22 22
172.69 172	0.06 0.40 10.06 10	1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75		50 Me. 1 2 3 4 4 5 6 7 8 9 100 11 12 12 13 14 15 15 16 17 18 19 20 21 22 23 23 24 25
180 180 180 180 180 180 180 18	(67) 1.000 (67) 1.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Figure And Witterland And Witterland And Witterland And Witterland And Witterland And And And And And And And And And A	7,0002-8009 1008-9009-1009-1009-1009-1009-1009-1009-
7.45,09743 7.45,0	1 0.75 or of France (Visit II) (200 Acr.		50 Man. 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 15 16 17 17 18 19 10 20 21 12 23 24 25 26 27 27	Thousands Thou
0.001 0.001		0.001 100 100 100 100 100 100 100 100 1	F 1 100 100 100 100 100 100 100 100 100	1000 1000
1.00 (67) 1		Figure 2	THE DESIGNATION OF THE PARTY	September Sept
10.744.0017540 10.744.0017540 10.744.0017540 10.744.0017540 10.744.0017540 10.744.0017540 10.744.0017540 10.744.0017540 10.744.0017540 10.744.0017540 10.744.0017	1 OPS		Me. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 20 27 27 28 29 30 31 32 33 34	Theorem
177.00.00 177.00 177.00	Section Sect	0.001 0.001		0.001 100 100 100 100 100 100 10
12490 12490	0.05	1 075 075 075 075 075 075 075 075 075 075		1 2 3 3 4 6 7 7 8 9 100 11 12 13 13 14 13 15 15 15 15 15 15 15 15 15 15 15 15 15
100 100	077 20 20 20 20 20 20 20 20 20 20 20 20 20		Figure And Witness And Witness And Witness And Witness And Witness And And Witness And	TABLES - 2000 1 Title Steller Frames. Frame Stell 1
Figure 1	THE DESIGNATION OF THE PARTY	### Company Co	0.0001 0.0001 0.0001 0.0001 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	
0000 1144 0		Figure 1	THE DESIGNATION OF THE PARTY	### Company Co
1001 1001	12489 12500	0.06 0.06 10.07 10	1 OPS OF THE PROPERTY P	
12480 12480	0.05	1 OPS OF THE PROPERTY P		10 MR. 1 2 3 3 4 5 6 6 7 7 8 9 10 10 11 12 13 13 14 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
12490 12490	0.06	1 OPS	# **Foundation** # Design Loads (Factored)	Compression/L
in this report. This report is an evaluation of the mount structure only and does not determine the adequacy of the supporting structure, other carrier mounts or cable mounting attachments. The analysis of these elements is outside the scope of this analysis, are assumed to be adequate for the purpose of this report and to have been installed per their manufacturer requirements. This document is not for construction purposes.	Infinigy Engineering, PLLC		Rendered	
S ₁ :	0.054	T _L :	6	
----------	-----------		1	Face Horizontal
---------------------|----------------| | 1 | MP1 | X | -62.97 | 0 | | 2 | MP1 | Z | 36.36 | 0 | | 3 | MP1 | X | -62.97 | 72 | | 4 | MP1 | Z | 36.36 | 72 | | 5 | MP1 | X | -39.49 | 12 | | 6 | MP1 | Z | 22.8 | 12 | | 7 | MP1 | X | -36.14 | 12 | | 8 | MP1 | Z | 20.87 | 12 | | 9 | S1 | X | -36.17 | 20 | | 10 | S1 | Z | 20.89 | 20 | #### Member Point Loads (BLC 7: Wind Load AZI 150) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | -56.14 | 0 | | 2 | MP1 | Z | 97.24 | 0 | | 3 | MP1 | X | -56.14 | 72 | | 4 | MP1 | Z | 97.24 | 72 | | 5 | MP1 | X | -29.18 | 12 | | 6 | MP1 | Z | 50.55 | 12 | | 7 | MP1 | X | -28.54 | 12 | | 8 | MP1 | Z | 49.43 | 12 | | 9 | S1 | X | -27.48 | 20 | | 10 | S1 | Z | 47.6 | 20 | #### Member Point Loads (BLC 8: Wind Load AZI 180) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |---|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 0 | 0 | | 2 | MP1 | Z | 132.07 | 0 | | 3 | MP1 | X | 0 | 72 | | 4 | MP1 | Z | 132.07 | 72 | Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B : Infinigy Engineering, PLLC Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Point Loads (BLC 8: Wind Load AZI 180) (Continued) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 5 | MP1 | X | 0 | 12 | | 6 | MP1 | Z | 64.75 | 12 | | 7 | MP1 | X | 0 | 12 | | 8 | MP1 | Z | 64.75 | 12 | | 9 | S1 | X | 0 | 20 | | 10 | S1 | Z | 61.56 | 20 | # Member Point Loads (BLC 9: Wind Load AZI 210) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 56.14 | 0 | | 2 | MP1 | Z | 97.24 | 0 | | 3 | MP1 | X | 56.14 | 72 | | 4 | MP1 | Z | 97.24 | 72 | | 5 | MP1 | X | 29.18 | 12 | | 6 | MP1 | Z | 50.55 | 12 | | 7 | MP1 | X | 28.54 | 12 | | 8 | MP1 | Z | 49.43 | 12 | | 9 | S1 | X | 27.48 | 20 | | 10 | S1 | Z | 47.6 | 20 | # Member Point Loads (BLC 10: Wind Load AZI 240) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 62.97 | 0 | | 2 | MP1 | Z | 36.36 | 0 | | 3 | MP1 | X | 62.97 | 72 | | 4 | MP1 | Z | 36.36 | 72 | | 5 | MP1 | X | 39.49 | 12 | | 6 | MP1 | Z | 22.8 | 12 | | 7 | MP1 | X | 36.14 | 12 | | 8 | MP1 | Z | 20.87 | 12 | | 9 | S1 | X | 36.17 | 20 | | 10 | S1 | Z | 20.89 | 20 | #### Member Point Loads (BLC 11 : Wind Load AZI 270) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |---|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 52.93 | 0 | | 2 | MP1 | Z | 0 | 0 | | 3 | MP1 | X | 52.93 | 72 | | 4 | MP1 | Z | 0 | 72 | | 5 | MP1 | X | 39.21 | 12 | | 6 | MP1 | Z | 0 | 12 | Company : Infinigy Engineer Designer : PSM Job Number : 1197-F0001-B Model Name : BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Point Loads (BLC 11: Wind Load AZI 270) (Continued) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 7 | MP1 | X | 34.06 | 12 | | 8 | MP1 | Z | 0 | 12 | | 9 | S1 | X | 35.17 | 20 | | 10 | S1 | Z | 0 | 20 | # Member Point Loads (BLC 12: Wind Load AZI 300) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 62.97 | 0 | | 2 | MP1 | Z | -36.36 | 0 | | 3 | MP1 | X | 62.97 | 72 | | 4 | MP1 | Z | -36.36 | 72 | | 5 | MP1 | X | 39.49 | 12 | | 6 | MP1 | Z | -22.8 | 12 | | 7 | MP1 | X | 36.14 | 12 | | 8 | MP1 | Z | -20.87 | 12 | | 9 | S1 | X | 36.17 | 20 | | 10 | S1 | Z | -20.89 | 20 | # Member Point Loads (BLC 13: Wind Load AZI 330) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 56.14 | 0 | | 2 | MP1 | Z | -97.24 | 0 | | 3 | MP1 | X | 56.14 | 72 | | 4 | MP1 | Z | -97.24 | 72 | | 5 | MP1 | X | 29.18 | 12 | | 6 | MP1 | Z | -50.55 | 12 | | 7 | MP1 | X | 28.54 | 12 | | 8 | MP1 | Z | -49.43 | 12 | | 9 | S1 | X | 27.48 | 20 | | 10 | S1 | Z | -47.6 | 20 | #### Member Point Loads (BLC 16 : Ice Weight) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |---|--------------|-----------|---------------------|----------------| | 1 | MP1 | Υ | -90.336 | 0 | | 2 | MP1 | Υ | -90.336 | 72 | | 3 | MP1 | Υ | -45.767 | 12 | | 4 | MP1 | Υ | -42.824 | 12 | | 5 | S1 | Υ | -41.727 | 20 | #### Member Point Loads (BLC 17 : Ice Wind Load AZI 0) | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |--------------|-----------|--|----------------| | | | \ \5010000000000000000000000000000000000 | | Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Point Loads (BLC 17 : Ice Wind Load AZI 0) (Continued) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 0 | 0 | | 2 | MP1 | Z | -17.38 | 0 | | 3 | MP1 | X | 0 | 72 | | 4 | MP1 | Z | -17.38 | 72 | | 5 | MP1 | X | 0 | 12 | | 6 | MP1 | Z | -6.46 | 12 | | 7 | MP1 | X | 0 | 12 | | 8 | MP1 | Z | -6.46 | 12 | | 9 | S1 | X | 0 | 20 | | 10 | S1 | Z | -6.36 | 20 | # Member Point Loads (BLC 18: Ice Wind Load AZI 30) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | -7.99 | 0 | | 2 | MP1 | Z | -13.84 | 0 | | 3 | MP1 | X | -7.99 | 72 | | 4 | MP1 | Z | -13.84 | 72 | | 5 | MP1 | X | -3.08 | 12 | | 6 | MP1 | Z | -5.33 | 12 | | 7 | MP1 | X | -3.04 | 12 | | 8 | MP1 | Z | -5.26 | 12 | | 9 | S1 | X | -3.01 | 20 | | 10 | S1 | Z | -5.22 | 20 | #### Member Point Loads (BLC 19 : Ice Wind Load AZI 60) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | -11.43 | 0 | | 2 | MP1 | Z | -6.6 | 0 | | 3 | MP1 | X | -11.43 | 72 | | 4 | MP1 | Z | -6.6 | 72 | | 5 | MP1 | X | -4.79 | 12 | | 6 | MP1 | Z | -2.76 | 12 | | 7 | MP1 | X | -4.6 | 12 | | 8 | MP1 | Z | -2.65 | 12 | | 9 | S1 | X | -4.64 | 20 | | 10 | S1 | Z | -2.68 | 20 | #### Member Point Loads (BLC 20 : Ice Wind Load AZI 90) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |---|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | -11.81 | 0 | | 2 | MP1 | Z | 0 | 0 | Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Point Loads (BLC 20 : Ice Wind Load AZI 90) (Continued) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 3 | MP1 | X | -11.81 | 72 | | 4 | MP1 | Z | 0 | 72 | | 5 | MP1 | X | -5.21 | 12 | | 6 | MP1 | Z | 0 | 12 | | 7 | MP1 | X | -4.92 | 12 | | 8 | MP1 | Z | 0 | 12 | | 9 | S1 | X | -5.02 | 20 | | 10 | S1 | Z | 0 | 20 | #### Member Point Loads (BLC 21 : Ice Wind Load AZI 120) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | -11.43 | 0 | | 2 | MP1 | Z | 6.6 | 0 | | 3 | MP1 | X | -11.43 | 72 | | 4 | MP1 | Z | 6.6 | 72 | | 5 | MP1 | X | -4.79 | 12 | | 6 | MP1 | Z | 2.76 | 12 | | 7 | MP1 | X | -4.6 | 12 | | 8 | MP1 | Z | 2.65 | 12 | | 9 | S1 | X | -4.64 | 20 | | 10 | S1 | Z | 2.68 | 20 | #### Member Point Loads (BLC 22 : Ice Wind Load AZI 150) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | -7.99 | 0 | | 2 | MP1 | Z | 13.84 | 0 | | 3 | MP1 | X | -7.99 | 72 | | 4 | MP1 | Z | 13.84 | 72 | | 5 | MP1 | X | -3.08 | 12 | | 6 | MP1 | Z | 5.33 | 12 | | 7 | MP1 | X | -3.04 | 12 | | 8 | MP1 | Z | 5.26 | 12 | | 9 | S1 | X | -3.01 | 20 | | 10 | S1 | Z | 5.22 | 20 | #### Member Point Loads (BLC 23 : Ice Wind Load AZI 180) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |---|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 0 | 0 | | 2 | MP1 | Z | 17.38 | 0 | | 3 | MP1 | X | 0 | 72 | | 4 | MP1 | Z | 17.38 | 72 | Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B : Infinigy Engineering, PLLC Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Point Loads (BLC 23 : Ice Wind Load AZI 180) (Continued) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 5 | MP1 | X | 0 | 12 | | 6 | MP1 | Z | 6.46 | 12 | | 7 | MP1 | X | 0 | 12 | | 8 | MP1 | Z | 6.46 | 12 | | 9 | S1 | X | 0 | 20 | | 10 | S1 | Z | 6.36 | 20 | #### Member Point Loads (BLC 24 : Ice Wind Load AZI 210) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 7.99 | 0 | | 2 | MP1 | Z | 13.84 | 0 | | 3 | MP1 | X | 7.99 | 72 | | 4 | MP1 | Z | 13.84 | 72 | | 5 | MP1 | X | 3.08 | 12 | | 6 | MP1 | Z | 5.33 | 12 | | 7 | MP1 | X | 3.04 | 12 | | 8 | MP1 | Z | 5.26 | 12 | | 9 | S1 | X | 3.01 | 20 | | 10 | S1 | Z | 5.22 | 20 | # Member Point Loads (BLC 25 : Ice Wind Load AZI 240) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 11.43 | 0 | | 2 | MP1 | Z | 6.6 | 0 | | 3 | MP1 | X | 11.43 | 72 | | 4 | MP1 | Z | 6.6 | 72 | | 5 | MP1 | X | 4.79 | 12 | | 6 | MP1 | Z | 2.76 | 12 | | 7 | MP1 | X | 4.6 | 12 | | 8 | MP1
 Z | 2.65 | 12 | | 9 | S1 | X | 4.64 | 20 | | 10 | S1 | Z | 2.68 | 20 | #### Member Point Loads (BLC 26 : Ice Wind Load AZI 270) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |---|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 11.81 | 0 | | 2 | MP1 | Z | 0 | 0 | | 3 | MP1 | X | 11.81 | 72 | | 4 | MP1 | Z | 0 | 72 | | 5 | MP1 | X | 5.21 | 12 | | 6 | MP1 | Z | 0 | 12 | Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Point Loads (BLC 26 : Ice Wind Load AZI 270) (Continued) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 7 | MP1 | X | 4.92 | 12 | | 8 | MP1 | Z | 0 | 12 | | 9 | S1 | X | 5.02 | 20 | | 10 | S1 | Z | 0 | 20 | # Member Point Loads (BLC 27 : Ice Wind Load AZI 300) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 11.43 | 0 | | 2 | MP1 | Z | -6.6 | 0 | | 3 | MP1 | X | 11.43 | 72 | | 4 | MP1 | Z | -6.6 | 72 | | 5 | MP1 | X | 4.79 | 12 | | 6 | MP1 | Z | -2.76 | 12 | | 7 | MP1 | X | 4.6 | 12 | | 8 | MP1 | Z | -2.65 | 12 | | 9 | S1 | X | 4.64 | 20 | | 10 | S1 | Z | -2.68 | 20 | ### Member Point Loads (BLC 28 : Ice Wind Load AZI 330) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |----|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | 7.99 | 0 | | 2 | MP1 | Z | -13.84 | 0 | | 3 | MP1 | X | 7.99 | 72 | | 4 | MP1 | Z | -13.84 | 72 | | 5 | MP1 | X | 3.08 | 12 | | 6 | MP1 | Z | -5.33 | 12 | | 7 | MP1 | X | 3.04 | 12 | | 8 | MP1 | Z | -5.26 | 12 | | 9 | S1 | X | 3.01 | 20 | | 10 | S1 | Z | -5.22 | 20 | # Member Point Loads (BLC 31 : Seismic Load Z) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |---|--------------|-----------|---------------------|----------------| | 1 | MP1 | Z | -10.32 | 0 | | 2 | MP1 | Z | -10.32 | 72 | | 3 | MP1 | Z | -23.984 | 12 | | 4 | MP1 | Z | -20.458 | 12 | | 5 | S1 | Z | -6.992 | 20 | #### Member Point Loads (BLC 32 : Seismic Load X) | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |--------------|-----------|---------------------|----------------| | | | | | Company : Infinigy Engineering, PLLC Job Number : 1197-F0001-B Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Point Loads (BLC 32 : Seismic Load X) (Continued) | | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] | |---|--------------|-----------|---------------------|----------------| | 1 | MP1 | X | -10.32 | 0 | | 2 | MP1 | X | -10.32 | 72 | | 3 | MP1 | X | -23.984 | 12 | | 4 | MP1 | X | -20.458 | 12 | | 5 | S1 | X | -6.992 | 20 | #### Joint Loads and Enforced Displacements (BLC 33: Service Live Loads) | | Joint Label | L,D,M | Direction | Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)] | |---|-------------|-------|-----------|---| | 1 | N18 | L | Υ | -250 | #### Joint Loads and Enforced Displacements (BLC 34 : Maintenance Load 1) | _ | | Joint Label | L,D,M | Direction | Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)] | |---|---|-------------|-------|-----------|---| | | 1 | N69 | L | Υ | -500 | #### Joint Loads and Enforced Displacements (BLC 35 : Maintenance Load 2) | | Joint Label | L,D,M | Direction | Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)] | |---|-------------|-------|-----------|---| | 1 | N70 | L | Υ | -500 | # Joint Loads and Enforced Displacements (BLC 36 : Maintenance Load 3) | | Joint Label | L,D,M | Direction | Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)] | |---|-------------|-------|-----------|---| | 1 | N74 | L | Υ | -500 | ### Member Distributed Loads (BLC 14 : Distr. Wind Load Z) | | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | .Start Location | End Location[in,%] | |----|--------------|-----------|------------------------|----------|-----------------|--------------------| | 1 | S3 | SZ | -43.968 | -43.968 | 0 | %100 | | 2 | S4 | SZ | -43.968 | -43.968 | 0 | %100 | | 3 | TR6 | SZ | -43.968 | -43.968 | 0 | %100 | | 4 | TR5 | SZ | -43.968 | -43.968 | 0 | %100 | | 5 | TR8 | SZ | -43.968 | -43.968 | 0 | %100 | | 6 | TR7 | SZ | -43.968 | -43.968 | 0 | %100 | | 7 | S1 | SZ | -43.968 | -43.968 | 0 | %100 | | 8 | S2 | SZ | -43.968 | -43.968 | 0 | %100 | | 9 | TR1 | SZ | -43.968 | -43.968 | 0 | %100 | | 10 | TR2 | SZ | -43.968 | -43.968 | 0 | %100 | | 11 | TR3 | SZ | -43.968 | -43.968 | 0 | %100 | | 12 | TR4 | SZ | -43.968 | -43.968 | 0 | %100 | | 13 | H1 | SZ | -43.968 | -43.968 | 0 | %100 | | 14 | H2 | SZ | -43.968 | -43.968 | 0 | %100 | Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B : Infinigy Engineering, PLLC Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Distributed Loads (BLC 14: Distr. Wind Load Z) (Continued) | | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location | End Location[in,%] | |----|--------------|-----------|------------------------|----------|----------------|--------------------| | 15 | MP3 | SZ | -43.968 | -43.968 | 0 | %100 | | 16 | MP1 | SZ | -43.968 | -43.968 | 0 | %100 | | 17 | MP2 | SZ | -43.968 | -43.968 | 0 | %100 | | 18 | T1 | SZ | -43.968 | -43.968 | 0 | %100 | | 19 | M29 | SZ | 0 | 0 | 0 | %100 | | 20 | M30 | SZ | 0 | 0 | 0 | %100 | | 21 | M33 | SZ | 0 | 0 | 0 | %100 | | 22 | M34 | SZ | 0 | 0 | 0 | %100 | | 23 | M35 | SZ | 0 | 0 | 0 | %100 | | 24 | M36 | SZ | 0 | 0 | 0 | %100 | | 25 | M25 | SZ | 0 | 0 | 0 | %100 | | 26 | M26 | SZ | 0 | 0 | 0 | %100 | | 27 | M27 | SZ | 0 | 0 | 0 | %100 | # Member Distributed Loads (BLC 15 : Distr. Wind Load X) | | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location | End Location[in,%] | |----|--------------|-----------|------------------------|----------|----------------|--------------------| | 1 | S3 | SX | -43.968 | -43.968 | 0 | %100 | | 2 | S4 | SX | -43.968 | -43.968 | 0 | %100 | | 3 | TR6 | SX | -43.968 | -43.968 | 0 | %100 | | 4 | TR5 | SX | -43.968 | -43.968 | 0 | %100 | | 5 | TR8 | SX | -43.968 | -43.968 | 0 | %100 | | 6 | TR7 | SX | -43.968 | -43.968 | 0 | %100 | | 7 | S1 | SX | -43.968 | -43.968 | 0 | %100 | | 8 | S2 | SX | -43.968 | -43.968 | 0 | %100 | | 9 | TR1 | SX | -43.968 | -43.968 | 0 | %100 | | 10 | TR2 | SX | -43.968 | -43.968 | 0 | %100 | | 11 | TR3 | SX | -43.968 | -43.968 | 0 | %100 | | 12 | TR4 | SX | -43.968 | -43.968 | 0 | %100 | | 13 | H1 | SX | -43.968 | -43.968 | 0 | %100 | | 14 | H2 | SX | -43.968 | -43.968 | 0 | %100 | | 15 | MP3 | SX | -43.968 | -43.968 | 0 | %100 | | 16 | MP1 | SX | -43.968 | -43.968 | 0 | %100 | | 17 | MP2 | SX | -43.968 | -43.968 | 0 | %100 | | 18 | T1 | SX | -43.968 | -43.968 | 0 | %100 | | 19 | M29 | SX | 0 | 0 | 0 | %100 | | 20 | M30 | SX | 0 | 0 | 0 | %100 | | 21 | M33 | SX | 0 | 0 | 0 | %100 | | 22 | M34 | SX | 0 | 0 | 0 | %100 | | 23 | M35 | SX | 0 | 0 | 0 | %100 | | 24 | M36 | SX | 0 | 0 | 0 | %100 | | 25 | M25 | SX | 0 | 0 | 0 | %100 | | 26 | M26 | SX | 0 | 0 | 0 | %100 | Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B : Infinigy Engineering, PLLC Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Distributed Loads (BLC 15 : Distr. Wind Load X) (Continued) | | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | .Start Location | End Location[in,%] | |----|--------------|-----------|------------------------|----------|-----------------|--------------------| | 27 | M27 | SX | 0 | 0 | 0 | %100 | # Member Distributed Loads (BLC 16 : Ice Weight) | | Member Label | Direction | Start Magnitude[lb/ft, | End Magn. | Start Location | End Location[in,%] | |----|--------------|-----------|------------------------|-----------|----------------|--------------------| | 1 | S3 | Υ | -4.313 | -4.313 | 0 | %100 | | 2 | S4 | Υ | -4.313 | -4.313 | 0 | %100 | | 3 | TR6 | Υ | -2.521 | -2.521 | 0 | %100 | | 4 | TR5 | Υ | -2.521 | -2.521 | 0 | %100 | | 5 | TR8 | Υ | -2.521 | -2.521 | 0 | %100 | | 6 | TR7 | Υ | -2.521 | -2.521 | 0 | %100 | | 7 | S 1 | Υ | -4.313 | -4.313 | 0 | %100 | | 8 | S2 | Υ | -4.313 | -4.313 | 0 | %100 | | 9 | TR1 | Υ | -2.521 | -2.521 | 0 | %100 | | 10 | TR2 | Υ | -2.521 | -2.521 | 0 | %100 | | 11 | TR3 | Υ | -2.521 | -2.521 | 0 | %100 | | 12 | TR4 | Υ | -2.521 | -2.521 | 0 | %100 | | 13 | H1 | Υ | -5.69 | -5.69 | 0 | %100 | | 14 | H2 | Υ | -5.69 | -5.69 | 0 | %100 | | 15 | MP3 | Υ | -5.697 | -5.697 | 0 | %100 | | 16 | MP1 | Υ | -5.697 | -5.697 | 0 | %100 | | 17 | MP2 | Υ | -5.697 | -5.697 | 0 | %100 | | 18 | T1 | Υ | -4.991 | -4.991 | 0 | %100 | | 19 | M29 | Υ | -1.631 | -1.631 | 0 | %100 | | 20 | M30 | Υ | -1.631 | -1.631 | 0 | %100 | | 21 | M33 | Υ | -1.631 | -1.631 | 0 | %100 | | 22 | M34 | Υ | -1.631 | -1.631 | 0 | %100 | | 23 | M35 | Υ | -1.631 | -1.631 | 0 | %100 | | 24 | M36 | Υ | -1.631 | -1.631 | 0 | %100 | | 25 | M25 | Υ | -1.631 | -1.631 | 0 | %100 | | 26 | M26 | Υ | -1.631 | -1.631 | 0 | %100 | | 27 | M27 | Υ | -1.631 | -1.631 | 0 | %100 | # Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) | | Member Label | Direction | Start Magnitude[lb/ft, | . End Magn | Start Location. | .End Location[in,%] | |---|--------------|-----------|------------------------|------------|-----------------|---------------------| | 1 | S3 | SZ | -17.203 | -17.203 | 0 | %100 | | 2 | S4 | SZ | -17.203 | -17.203 | 0 | %100 | | 3 | TR6 | SZ | -36.236 | -36.236 | 0 | %100 | | 4 | TR5 | SZ | -36.236 | -36.236 | 0 | %100 | | 5 | TR8 | SZ | -36.236 | -36.236 | 0 | %100 | | 6 | TR7 | SZ | -36.236 | -36.236 | 0 | %100 | | 7 | S 1 | SZ | -17.203 | -17.203 | 0 | %100 | Company : Infinigy Engined
Designer : PSM Job Number : 1197-F0001-B : Infinigy Engineering, PLLC : PSM Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued) | | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location | End Location[in,%] | |----|--------------|-----------|------------------------|----------|----------------|--------------------| | 8 | S2 | SZ | -17.203 | -17.203 | 0 | %100 | | 9 | TR1 | SZ | -36.236 | -36.236 | 0 | %100 | | 10 | TR2 | SZ | -36.236 | -36.236 | 0 | %100 | | 11 | TR3 | SZ | -36.236 | -36.236 | 0 | %100 | | 12 | TR4 | SZ | -36.236 | -36.236 | 0 | %100 | | 13 | H1 | SZ | -14.002 | -14.002 | 0 | %100 | | 14 | H2 | SZ | -14.002 | -14.002 | 0 | %100 | | 15 | MP3 | SZ | -13.991 | -13.991 | 0 | %100 | | 16 | MP1 | SZ | -13.991 | -13.991 | 0 | %100 | | 17 | MP2 | SZ | -13.991 | -13.991 | 0 | %100 | | 18 | T1 | SZ | -15.299 | -15.299 | 0 | %100 | | 19 | M29 | SZ | 0 | 0 | 0 | %100 | | 20 | M30 | SZ | 0 | 0 | 0 | %100 | | 21 | M33 | SZ | 0 | 0 | 0 | %100 | | 22 | M34 | SZ | 0 | 0 | 0 | %100 | | 23 | M35 | SZ | 0 | 0 | 0 | %100 | | 24 | M36 | SZ | 0 | 0 | 0 | %100 | | 25 | M25 | SZ | 0 | 0 | 0 | %100 | | 26 | M26 | SZ | 0 | 0 | 0 | %100 | | 27 | M27 | SZ | 0 | 0 | 0 | %100 | # Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) | | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location. | End Location[in,%] | |----|--------------|-----------|------------------------|----------|-----------------|--------------------| | 1 | S3 | SX | -17.203 | -17.203 | 0 | %100 | | 2 | S4 | SX | -17.203 | -17.203 | 0 | %100 | | 3 | TR6 | SX | -36.236 | -36.236 | 0 | %100 | | 4 | TR5 | SX | -36.236 | -36.236 | 0 | %100 | | 5 | TR8 | SX | -36.236 | -36.236 | 0 | %100 | | 6 | TR7 | SX | -36.236 | -36.236 | 0 | %100 | | 7 | S 1 | SX | -17.203 | -17.203 | 0 | %100 | | 8 | S2 | SX | -17.203 | -17.203 | 0 | %100 | | 9 | TR1 | SX | -36.236 | -36.236 | 0 | %100 | | 10 | TR2 | SX | -36.236 | -36.236 | 0 | %100 | | 11 | TR3 | SX | -36.236 | -36.236 | 0 | %100 | | 12 | TR4 | SX | -36.236 | -36.236 | 0 | %100 | | 13 | H1 | SX | -14.002 | -14.002 | 0 | %100 | | 14 | H2 | SX | -14.002 | -14.002 | 0 | %100 | | 15 | MP3 | SX | -13.991 | -13.991 | 0 | %100 | | 16 | MP1 | SX | -13.991 | -13.991 | 0 | %100 | | 17 | MP2 | SX | -13.991 | -13.991 | 0 | %100 | | 18 | T1 | SX | -15.299 | -15.299 | 0 | %100 | | 19 | M29 | SX | 0 | 0 | 0 | %100 | Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00151A Sept 20, 2021 10:24 AM Checked By: # Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued) | | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location | End Location[in,%] | |----|--------------|-----------|------------------------|----------|----------------|--------------------| | 20 | M30 | SX | 0 | 0 | 0 | %100 | | 21 | M33 | SX | 0 | 0 | 0 | %100 | | 22 | M34 | SX | 0 | 0 | 0 | %100 | | 23 | M35 | SX | 0 | 0 | 0 | %100 | | 24 | M36 | SX | 0 | 0 | 0 | %100 | | 25 | M25 | SX | 0 | 0 | 0 | %100 | | 26 | M26 | SX | 0 | 0 | 0 | %100 | | 27 | M27 | SX | 0 | 0 | 0 | %100 | #### Member Area Loads |
Joint A | Joint B | Joint C | Joint D | Direction | Distribution | Magnitude[psf] | |------------------|---------|---------|---------|-----------|--------------|----------------| | No Data to Print | | | | | | | # Envelope AISC 15th(360-16): LRFD Steel Code Checks | | Member | Shape | Code Check | Loc[in] | LC | She | .Loc[in] | Dir | LC | phi*P | phi*P | .phi*M | .phi*Mn z-z [lb. | Cb Eqn | |----|--------|--------------|------------|---------|----|------|----------|-----|----|-------|-------|--------|------------------|-----------| | 1 | TR7 | 0.63" SR | .400 | 39.811 | 88 | .026 | 19.905 | | , | | | 147.2 | | 2H1-1a | | 2 | S4 | 1.9" ODx0.1 | .396 | 35.333 | 91 | .134 | 42.4 | | 94 | 2049 | 2777 | 1314 | 1314.45 | 1 H1-1b | | 3 | S3 | 1.9" ODx0.1 | .378 | 35.333 | 94 | .135 | 42.4 | | 88 | 2049 | 2777 | 1314 | 1314.45 | 1 H1-1b | | 4 | TR4 | 0.63" SR | .318 | 39.811 | 87 | .030 | 19.905 | | 00 | | | 147.2 | 147.295 | 2H1-1a | | 5 | S2 | 1.9" ODx0.1 | .308 | 35.333 | 85 | .119 | 42.4 | | 84 | 2049 | 2777 | 1314 | 1314.45 | 1 H1-1b | | 6 | S1 | 1.9" ODx0.1 | .292 | 35.333 | 81 | .118 | 42.4 | | 87 | 2049 | 2777 | 1314 | 1314.45 | 1.79H1-1b | | 7 | MP1 | 2.88"x0.120" | .208 | 33 | 2 | .057 | 33 | | 8 | 2249 | 43056 | 3156 | 3156.75 | 4 H1-1b | | 8 | TR8 | 0.63" SR | .153 | 0 | 94 | .026 | 19.905 | | 81 | 2249 | .1402 | 147.2 | 147.295 | 2 H1-1b | | 9 | TR3 | 0.63" SR | .125 | 0 | 81 | .030 | 19.905 | | 96 | 2249 | .1402 | 147.2 | 147.295 | 2 H1-1b | | 10 | TR5 | 0.63" SR | .119 | 0 | 94 | .033 | 0 | | 95 | 5162 | .1402 | 147.2 | 147.295 | 2 H1-1b | | 11 | H1 | PIPE 2.5 | .111 | 77 | 8 | .069 | 78 | | 2 | 3348 | 66654 | 4726.5 | 4726.5 | 2 H1-1b | | 12 | TR2 | 0.63" SR | .110 | 0 | 81 | .034 | 0 | | 95 | 5162 | 1402 | 147.2 | 147.295 | 2 H1-1b | | 13 | MP3 | 2.88"x0.120" | .109 | 33 | 81 | .022 | 61 | | 87 | 2249 | 43056 | 3156 | 3156.75 | 4 H1-1b | | 14 | T1 | Pipe2.38X0 | .107 | 96.255 | 7 | .008 | 96.255 | | 30 | 1328 | 3527 | 2114 | 2114.85 | 1 H1-1b | | 15 | H2 | PIPE 2.5 | .088 | 93 | 96 | .047 | 78 | | 94 | 3348 | 66654 | 4726.5 | 4726.5 | 2 H1-1b | | 16 | TR6 | 0.63" SR | .076 | 0 | 93 | .016 | 0 | | 96 | 5162 | .1402 | 147.2 | 147.295 | 2H1-1b | | 17 | MP2 | 2.88"x0.120" | .066 | 33 | 8 | .038 | 33 | | 93 | 2249 | 43056 | 3156 | 3156.75 | 4 H1-1b | | 18 | TR1 | 0.63" SR | .053 | 28.3 | 77 | .015 | 28.3 | | 96 | 5162 | 1402 | 147.2 | 147.295 | 2 H1-1b | #### **Bolt Calculation Tool, V1.5.1** | PROJECT DATA | | | | | | |-------------------------|---------------------------|--|--|--|--| | Site Name: | BOHVN00151A | | | | | | Site Number: | BOHVN00151A | | | | | | Connection Description: | Sector Frame to Tower Leg | | | | | | MAXIMUM BOLT LOADS | | | | | | | |--------------------|--------|-----|--|--|--|--| | Bolt Tension: | 973.82 | lbs | | | | | | Bolt Shear: | 849.96 | lbs | | | | | | WORST CASE BOLT LOADS ¹ | | | | | | |------------------------------------|--------|-----|--|--|--| | Bolt Tension: 0.00 lbs | | | | | | | Bolt Shear: | 849.96 | lbs | | | | | BOLT PROPERTIES | | | | | | |---------------------|--------------|----|--|--|--| | Bolt Type: | Threaded Rod | - | | | | | Bolt Diameter: | 0.625 | in | | | | | Bolt Grade: | A449 | - | | | | | # of Threaded Rods: | 2 | - | | | | | Threads Excluded? | No | - | | | | ¹ Worst case bolt loads correspond to Load combination #91 on member M26 in RISA-3D, which causes the maximum demand on the bolts. # Member Information I nodes of M25, M26 | BOLT CHECK | | | | | | |--------------------------------|----------|-------|--|--|--| | Tensile Strength | 20340.15 | | | | | | Shear Strength | 13805.83 | | | | | | Max Tensile Usage | 4.8% | | | | | | Max Shear Usage | 6.2% | | | | | | Interaction Check (Worst Case) | 0.00 | ≤1.05 | | | | | Result | Pass | | | | | #### **Bolt Calculation Tool, V1.5.1** | Doit Calculation 1001, VI.3.1 | | | | | |-------------------------------|----------------------|--|--|--| | PROJECT DATA | | | | | | Site Name: | BOHVN00151A | | | | | Site Number: | BOHVN00151A | | | | | Connection Description: | Tieback to Tower Leg | | | | | MAXIMUM BOLT LOADS | | | | | | |-------------------------|--------|-----|--|--|--| | Bolt Tension: 48.21 lbs | | | | | | | Bolt Shear: | 342.29 | lbs | | | | | WORST CASE BOLT LOADS ¹ | | | | | | |------------------------------------|--------|-----|--|--|--| | Bolt Tension: 44.56 lbs | | | | | | | Bolt Shear: | 342.29 | lbs | | | | | BOLT PROPERTIES | | | | | |---------------------|--------------|----|--|--| | Bolt Type: | Threaded Rod | - | | | | Bolt Diameter: | 0.5 | in | | | | Bolt Grade: | A449 | - | | | | # of Threaded Rods: | 2 | - | | | | Threads Excluded? | No | - | | | $^{^{1}}$ Worst case bolt loads correspond to Load combination #13 on member M27 in RISA-3D, which causes the maximum demand on the bolts. # Member Information I nodes of M27 | BOLT CHECK | | | |--------------------------------|----------|-------| | Tensile Strength | 12770.86 | | | Shear Strength | 8835.73 | | | Max Tensile Usage | 0.4% | | | Max Shear Usage | 3.9% | | | Interaction Check (Worst Case) | 0.00 | ≤1.05 | | Result | Pass | | # **POWER DENSITY STUDY** # RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS Dish Wireless Existing Facility Site ID: BOHVN00151A BOHVN00151A 9 Meyers Road Bethany, Connecticut 06524 **November 10, 2021** EBI Project Number: 6221004017 | Site Compliance Summary | | | | |--|-----------|--|--| | Compliance Status: | COMPLIANT | | | | Site total MPE% of FCC general population allowable limit: | 6.98% | | | November 10, 2021 Dish Wireless Emissions Analysis for Site: BOHVN00151A - BOHVN00151A EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **9 Meyers Road** in **Bethany, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits. All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density. All results were compared to the FCC (Federal Communications Commission) radio
frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below. General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density. Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Additional details can be found in FCC OET 65. #### **CALCULATIONS** Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 9 Meyers Road in Bethany, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. For all calculations, all equipment was calculated using the following assumptions: | 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel. | |---| | 4 n70 channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel. | | 4 n66 channels (AWS Band - 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel. | | All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous. | | For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative | estimate as gain reductions for these particular antennas are typically much higher in this direction. | | The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. | |----|---| | | The antenna mounting height centerline of the proposed antennas is 140 feet above ground level (AGL). | | | Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves. | | 9□ | All calculations were done with respect to uncontrolled / general population threshold limits. | # **Dish Wireless Site Inventory and Power Data** | Sector: | Α | Sector: | В | Sector: | С | |---------------------|--------------------------------------|---------------------|--------------------------------------|---------------------|--------------------------------------| | Antenna #: | I | Antenna #: | I | Antenna #: | I | | Make / Model: | JMA MX08FRO665-
21 | Make / Model: | JMA MX08FRO665-
21 | Make / Model: | JMA MX08FRO665-
21 | | Frequency Bands: | 600 MHz / 1900
MHz / 2190 MHz | Frequency Bands: | 600 MHz / 1900
MHz / 2190 MHz | Frequency Bands: | 600 MHz / 1900
MHz / 2190 MHz | | Gain: | 17.45 dBd / 22.65
dBd / 22.65 dBd | Gain: | 17.45 dBd / 22.65
dBd / 22.65 dBd | Gain: | 17.45 dBd / 22.65
dBd / 22.65 dBd | | Height (AGL): | I 40 feet | Height (AGL): | I 40 feet | Height (AGL): | I 40 feet | | Channel Count: | 12 | Channel Count: | 12 | Channel Count: | 12 | | Total TX Power (W): | 440 Watts | Total TX Power (W): | 440 Watts | Total TX Power (W): | 440 Watts | | ERP (W): | 5,236.31 | ERP (W): | 5,236.31 | ERP (W): | 5,236.31 | | Antenna AI MPE %: | 1.32% | Antenna BI MPE %: | 1.32% | Antenna CI MPE %: | 1.32% | | Site Composite MPE % | | | | | |----------------------------------|-------|--|--|--| | Carrier | MPE % | | | | | Dish Wireless (Max at Sector A): | 1.32% | | | | | AT&T | 1.29% | | | | | Metro PCS | 0.77% | | | | | Verizon | 0.67% | | | | | Sprint | 1.01% | | | | | Ind Comms | 0.16% | | | | | Nextel | 0.16% | | | | | T-Mobile | 1.16% | | | | | Rescue 21 | 0.22% | | | | | DHS | 0.2% | | | | | Lightsquared | 0.02% | | | | | Site Total MPE % : | 6.98% | | | | | Dish Wireless MPE % Per Sector | | | | | |-------------------------------------|-------|--|--|--| | Dish Wireless Sector A Total: | 1.32% | | | | | Dish Wireless Sector B Total: 1.32% | | | | | | Dish Wireless Sector C Total: 1.32% | | | | | | | | | | | | Site Total MPE %: 6.98% | | | | | | Dish Wireless Maximum MPE Power Values (Sector A) | | | | | | | | |--|---------------|-------------------------------|------------------|------------------------------|--------------------|---------------------------|------------------| | Dish Wireless Frequency Band / Technology (Sector A) | #
Channels | Watts ERP
(Per
Channel) | Height
(feet) | Total Power Density (µW/cm²) | Frequency
(MHz) | Allowable MPE
(μW/cm²) | Calculated % MPE | | Dish Wireless 600 MHz n71 | 4 | 223.68 | 140.0 | 1.79 | 600 MHz n71 | 400 | 0.45% | | Dish Wireless 1900 MHz n70 | 4 | 542.70 | 140.0 | 4.35 | 1900 MHz n70 | 1000 | 0.43% | | Dish Wireless 2190 MHz n66 | 4 | 542.70 | 140.0 | 4.35 | 2190 MHz n66 | 1000 | 0.43% | | | | | | | | Total: | 1.32% | [•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations. # **Summary** All calculations performed for this analysis yielded
results that were **within** the allowable limits for general population exposure to RF Emissions. The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here: | Dish Wireless Sector | Power Density Value (%) | |---|-------------------------| | Sector A: | 1.32% | | Sector B: | 1.32% | | Sector C: | 1.32% | | Dish Wireless Maximum MPE % (Sector A): | 1.32% | | , | | | Site Total: | 6.98% | | | | | Site Compliance Status: | COMPLIANT | The anticipated composite MPE value for this site assuming all carriers present is **6.98**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions. FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government. # UNDERLYING PROPERTY INFORMATION The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2018. Information on the Property Records for the Municipality of Bethany was last updated on 4/19/2022. # **Parcel Information** | Location: | 9 MEYERS RD | Property Use: | Industrial | Primary Use: | Light Industrial | |--------------------------|-------------|-------------------|------------|-------------------|------------------| | Unique ID: | 00002800 | Map Block
Lot: | 118/51C | Acres: | 9.20 | | 490 Acres: | 0.00 | Zone: | B&I | Volume /
Page: | 0000/0000 | | Developers
Map / Lot: | | Census: | | | | # **Value Information** | | Appraised Value | Assessed Value | |-----------------------|-----------------|----------------| | Land | 479,000 | 335,300 | | Buildings | 112,419 | 78,690 | | Detached Outbuildings | 14,237 | 9,970 | | | Appraised Value | Assessed Value | |-------|-----------------|----------------| | Total | 605,656 | 423,960 | # **Owner's Information** #### Owner's Data AMERICAN TOWERS RE: SITE # 88008 STE 205 P O BOX 723597 ATLANTA GA 31139 # Building 1 56 1S IND - LGT- 56 | Category: | Industrial | Use: | Light Industrial | Stories: | 1.00 | |----------------|------------|---------------------|------------------|------------------------|-------------------| | Above Grade: | 3,136 | Below Grade: | 0 | Below Grade
Finish: | 0 | | Construction: | Average | Year Built: | 1967 | Heating: | FHA | | Fuel: | Oil | Cooling
Percent: | 0% | Siding: | Pre-Cast Concrete | | Roof Material: | | Beds/Units: | 0 | | | # **Special Features** # **Attached Components** # **Detached Outbuildings** | Туре: | Year Built: | Length: | Width: | Area: | |------------------|-------------|---------|--------|-------| | Fencing | 1967 | | | 216 | | Paving | 1967 | | | 1,100 | | Building Utility | 1967 | | | 360 | # Owner History - Sales | Owner Name | Volume | Page | Sale Date | Deed Type | Sale Price | |-----------------------|--------|------|------------|-----------|-------------| | AMERICAN TOWERS INC | 0124 | 0716 | 02/16/2000 | | \$6,222,480 | | AMERICAN TEL & TEL CO | 0043 | 0554 | 08/10/1966 | | \$0 | # **NOTIFICATIONS** Shipping/Receiving Bethany Town Hall 40 Peck Road Dear Customer, The following is the proof-of-delivery for tracking number: 776705505982 **Delivery Information:** Status: Delivered Signed for by: W.BRINTON Service type: FedEx 2Day Special Handling: Deliver Weekday BETHANY, CT, 06524 **Delivery date:** Apr 29, 2022 12:47 Shipping Information: **Tracking number:** 776705505982 **Ship Date:** Apr 27, 2022 **Weight:** 1.0 LB/0.45 KG Recipient: Paula Cofrancesco, Bethany Town Hall 40 Peck Road BETHANY, CT, US, 06524 Shipper: **Delivered To:** **Delivery Location:** Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824 Reference 100814 Shipping/Receiving Bethany Town Hall 40 Peck Road Dear Customer, The following is the proof-of-delivery for tracking number: 776705479514 **Delivery Information:** Delivered Status: W.BRINTON Signed for by: Service type: FedEx 2Day Special Handling: Deliver Weekday BETHANY, CT, 06524 Delivery date: Apr 29, 2022 12:47 Shipping Information: Tracking number: Ship Date: 776705479514 Apr 27, 2022 > Weight: 1.0 LB/0.45 KG Recipient: Robert Walsh, Bethany Town Hall 40 Peck Road BETHANY, CT, US, 06524 Shipper: **Delivered To:** **Delivery Location:** Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824 Reference 100814 # **USPS Tracking**® # Track Another Package + **Tracking Number:** 9505512322622117685415 Remove X Your item has been delivered and is available at a PO Box at 6:31 pm on April 29, 2022 in ATLANTA, GA 31139. USPS Tracking Plus[®] Available ✓ # **⊘** Delivered, PO Box April 29, 2022 at 6:31 pm ATLANTA, GA 31139 Get Updates ✓ | Text & Email Updates | ~ | |----------------------|---| | Tracking History | ~ | | USPS Tracking Plus® | ~ | | Product Information | ~ | See Less ∧ Feedbac