Crown Castle
3 Corporate Park Drive, Suite 101

July 18, 2019

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification for Verizon Wireless: $\mathbf{8 4 1 2 9 5}$
 Verizon Site ID:104335
 719 Amity Rd. Bethany, CT 06524
 Latitude: $\mathbf{4 1}^{\circ}-26^{\prime} 33.93^{\prime \prime} /$ Longitude: $-72^{\circ}-59^{\prime} 32.86^{\prime \prime}$

Dear Ms. Bachman:
Verizon currently maintains nine (9) antennas at the 95 -foot level of the existing 150 -foot monopole tower at 719 Amity Road, Bethany CT 06524. The tower is owned by Crown Castle and the Town of Bethany is the property owner. Verizon now intends to replace six (6) antennas with new antennas. Verizon also intends to add three (3) new remote radios, replace three (3) remote radios with new, add one (1) hybrid cable and one (1) OVP box as well as a handrail kit for the antenna mount.

This facility was approved by the Connecticut Siting Council in Docket No. 168 on June 6, 1995. This approval included the condition that:

1. The self-supporting monopole tower shall be no taller than necessary to provide the proposed communication service and the tower shall not exceed a total height of 150 feet above ground level (AGL).

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16$50 \mathrm{j}-73$, for construction that constitutes an exempt modification pursuant to R.C.S.A. § $16-50 \mathrm{j}-72$ (b) (2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to First-Selectwoman - Ms. Paula Cofrancesco, Town of Bethany and Land Use Administrator/Zoning Enforcement - Isabel Kearns, Town of Bethany. The property owner is the Town of Bethany and Crown Castle is the tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

Melanie A. Bachman
December 10, 2018
Page 2
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Verizon respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Jeffrey Barbadora
Real Estate Specialist
12 Gill Street, Suite 5800, Woburn, MA 01801
781-729-0053

Jeff.Barbadora@crowncastle.com

Attachments:
Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

First-Selectwoman - Ms. Paula Cofrancesco
Town of Bethany
40 Peck Road
203-393-2100 ext. 1100
Land Use Administrator/Zoning Enforcement - Isabel Kearns
Town of Bethany
40 Peck Road
203-393-2100 ext. 1135
Town of Bethany, Land Owner
Crown Castle, Tower Owner

DOCKET NO. 168 - An application of Springwich Cellular Limited Partnership for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telecommunications facility located on the former site of the Bethany Airport, 719 Amity Road (Route 63) in Bethany, Connecticut.
\} Connecticut
\} Siting
\} Council
\} July 6, 1995

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact, and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications tower and equipment building at the proposed site in Bethany, Connecticut, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes $\boldsymbol{\$} 16-50 \mathrm{k}$, be issued to Springwich Cellular Linited Partnership (Springwich), for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building at the proposed site located at the Bethany Airport, 719 Amity Road, Bethany, Comnecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The self-supporting monopole tower shall be no taller than necessary to provide the proposed communications service and the tower shall not exceed a total height of 150 feet above ground level (AGL).
2. The Certificate Folder shall prepare a Development and Management (D\&M) Plan for this site in compliance with Sections $16-50 \mathrm{j}-75$ through $16-50 \mathrm{j}-77$ of the Regulations of Connecticut State Agencies. The D\&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include detailed plans for the tower location and tower foundation; the placement of all antennas to be attached to this tower; equipment building, access road, utility line, and security fence; site clearing and tree trimming; and water drainage and erosion and sedimentation controls consistent with the Connecticut Guidelines for Soil Erosion and Sedimentation Control, as amended.
3. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
4. The Certificate Holder shall provide the Council a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
6. If the facility does not initially provide, or permanently ceases to provide cellular services following completion of construction, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapplication for any continued or new use shall be made to the Council before any such use is made.
7. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.
8. The Certificate Holder shall notify the Council upon completion of construction and provide the final cost to construct the facility.

Pursuant to General Statutes $\$ 16-50$ p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The New Haven Register and Beth-Wood News.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section $16-50 \mathrm{j}-17$ of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

applicaitt

Springwich Cellular Limited Partnership

INTERVENOR
Metro Mobile CTS of Hartford, Inc.

ITS REPRESEITAÁTIVES

Peter J. Tyrrell, Esq.
Springwich Cellular Limited Partnership
227 Church Street
New Haven, CT 06510

ITS REPRESENTATIVES

Metro Mobile CTS of Hartford, Inc.
20 Alexander Drive
Wallingford, CT 06492
Attn: David S. Malko, P.E., Manager
Engineering \& Regulatory Services
Robinson \& Cole
One Commercial Plaza
Hartford, CT 06103-3597
Attn: Brian C.S. Freeman, Esq.

CERTIFICATION

The Undersigned members of the Connecticut Siting Council (Council) hereby certify that they have heard this case, or read the record thereof, in Docket No. 168 - An application of Springwich Cellular Limited Partnership for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telecommunications facility located on the former site of the Bethany Airport, 719 Amity Road (Route 63) in Bethany, Connecticut, and voted as follows:

Council Members

Hodmen 4 Geom
Vote Cast

YES
Mortimer A. Gelston
Chairman
(0)

Commissioner Regina td J. Smith
Designed. Gerald J. Heffernan

YES
Commissioner Sidney J. Holbrook
Designed: Fred Reese

YES

ABSENT

YES

ABSTAIN
Colin C. Wait

> Edward S. Wilensky

YES

Dated at New Britain, Connecticut, July 6, 1995.

STATE OF CONNECTICUT \}
ss. New Britain, Connecticut \} COUNTY OF HARTFORD
STATE OF CONNECTICUT $\} \quad$ July 7, 1995

I hereby certify that the foregoing is a true and correct copy of the Findings of Fact, Opinion, and Decision and Order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

I certify that a copy of the Findings of Fact, Opinion, and Decision and Order in Docket No. 168 have been forwarded by Certified First Class Return Receipt Requested mail on July 7, 1995, to all parties and intervenors of record as listed on the attached service list, dated April 10, 1995.

ATTEST:

Gloria B. Owens
Administrative Assistant
Connecticut Siting Council

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2013.

Information on the Property Records for the Municipality of Bethany was last updated on 9/20/2017.

Property Summary Information

Parcel Data And Values Building ∇ Outbuildings Google Map

Parcel Information

| Location: | 755 AMITY RD | Property Use: Public Use | Primary Use: | Fire Station - |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Volunteer | | | | |

Value Information

	Appraised Value	70\% Assessed Value
Land	$1,476,000$	$1,033,200$
Buildings	$1,740,164$	$1,218,110$

	Appraised Value	70\% Assessed Value
Detached Outbuildings	159,624	111,740
Total	$3,375,788$	$2,363,050$
	Owner's Information	

Owner's Data
BETHANY TOWN OF 40 PECK RD
BETHANY CT 06524

; Back To Search (JavaScript:window.history.back(1);)
Print View (PrintPage.aspx?towncode $=008 \&$ uniqueid $=00016500$)

Information Published With Permission From The Assessor

Town of Bethany, Connecticut Assessment Parcel Map

Parcel: 00016500 Address: 755 AMITY RD

Map Produced: Aug 2017

Site Name: Bethany North CT

Cumulative Power Density

Operator	Operating Frequency	Number of Trans	ERP Per Trans.		Distance to Farget	$\begin{aligned} & \text { Calculted } \\ & \text { Eower } \\ & \text { Bensity } \end{aligned}$
	(MHz)		(watts)	(watts)	(feet)	$\left(\mathrm{mW} / \mathrm{cm}^{\wedge} 2\right)$
VZW PCS	1970	4	1104	4416.28	110	0.1313
VZW Cellular CDMA	869	2	289	578.16	110	0.0172
VZW Cellular LTE	880	4	463	1853.76	110	0.0551
VZW AWS	2145	4	1225	4898.44	110	0.1456
VZW 700	746	4	492	1968	100	0.0708

Total Percentage of Maximum Permissible Exposure
*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 19
$\mathrm{MHz}=$ Megahertz
$\mathrm{mW} / \mathrm{cm}^{\wedge 2}$ = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

1. closest accessible point is distance from antenna to base of pole;
2. continuous transmission from all available channels at full power for indefinite time period; and, 3. all RF energy is assumed to be directed solely to the base of the pole.

Maximum Permissible Exposure	Fraction of MPE
(mW/cm ${ }^{\wedge}$ 2)	(\%)
1.0	13.13\%
0.579333333	2.97\%
0.586666667	9.39\%
1.0	14.56\%
0.497333333	14.23\%

86 and generally on ANSI/IEEE C95.1-1992

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2018.

Information on the Property Records for the Municipality of Bethany was last updated on 7/18/2019.

Property Summary Information

Value Information

Appraised Value

1,421,200
Assessed Value
Land

	Appraised Value	Assessed Value
Buildings	$1,878,616$	$1,315,030$
Detached Outbuildings	150,924	105,650
Total	$3,450,740$	$2,415,520$
	Owner's Information	
	Owner's Data	
	BETHANY TOWN OF	
40 PECK RD		
BETHANY, CT 06524		

Back To Search (JavaScript:window.history.back(1);)
Print View (PrintPage.aspx?towncode=008\&uniqueid=00016500)

Information Published With Permission From The Assessor

Town of Bethany, Connecticut Assessment Parcel Map

Parcel: 00016500
Address: 755 AMITY RD

ORIGINID:BEDA JEFF BARBADORA CROUN CASTLE 12 GILL STREET SUITE 5800 WOBURN MA O1801 UNITED STATES US	(781) 970-0053	SHIP DATE: 18JUL 19 ACTWGT:0.50 LB CAD: 104924191/IMET4160 BLLL SENDER
To LAND USE/ZONE ENF. ISABEL KEARNS		
TOWN OF BETHANY		
40 PECK ROAD		

```
(203) 393-2100\times1135
                                    REF: 1766.6600
```

$\mathbb{N}:$
$\mathrm{PO}:$

FRI - 19 JUL 10:30A
Trkसt 775777076160
PRIORITY OVERNIGHT
EB EFBA
06524 cт.us BDL

FRI-19 JUL 10:30A
TRK\# 775777051682
PRIORITY OVERNIGHT EB EFBA ${ }^{\text {and }}$

Kevin Morrow
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
(704) 405-6619

Kimley»)Horn
Kimley-Horn and Associates, Inc.
421 Fayetteville Street, Suite 600
Raleigh, NC 27601
(919) 677-2000

CrownMounts@kimley-horn.com

Subject:

Carrier Designation:

Crown Castle Designation:

Mount Modification Report
Verizon Wireless Equipment Change-Out Carrier Site Number: 104335
Carrier Site Name: Bethany North CT

Crown Castle BU Number: 841295
Crown Castle Site Name: BETHANY
Crown Castle JDE Job Number: 574490
Crown Castle Order Number: 492710 , Rev. 0

Engineering Firm Designation: Kimley-Horn Report Designation: 019558041
Site Data:
719 Amity Road, Bethany, New Haven County, CT 06524
Latitude $41^{\circ} 26^{\prime} 33.93^{\prime \prime}$ Longitude $-72^{\circ} 59^{\prime} 32.86^{\prime \prime}$

Structure Information:
Tower Height \& Type:
150 ft Monopole
Mount Elevation: 140 ft
Mount Type:
12.5 ft Low Profile Platform

Dear Charles McGuirt,

Kimley-Horn is pleased to submit this "Mount Modification Report" to determine the structural integrity of Verizon Wireless's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Low Profile Platform

Sufficient

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Greg VanMaaren, E.l. under the supervision of Steven C. Ball, P.E., S.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
4.1) Recommendations
5) APPENDIX A

Wire Frame and Rendered Models
6) APPENDIX B

Software Input Calculations
7) APPENDIX C

Software Analysis Output
8) APPENDIX D

Additional Calculations
9 APPENDIX E
Mount Modification Design Drawings (MDD)

1) INTRODUCTION

The mounting configuration consists of existing 12.5 ft Low Profile Platform.
2) ANALYSIS CRITERIA

Building Code:	$2015 \mathrm{IBC}, 2018$ Connecticut State Building Code
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	125 mph
Exposure Category:	C
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	0.75 in
Wind Speed with Ice:	50 mph
Live Loading Wind Speed:	30 mph
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Elevation (ft)		K, Me, Me, Antennas	
Mount	Centerline	\# \# \%	
140	140	6	CommScope $\mathrm{NHH}-65 \mathrm{C}-\mathrm{R} 2 \mathrm{~B}$
		3	decibel (cci) DB854DG65ESX
		1	rfs celwave DB-T1-6Z-8AB-0Z
		3	samsung telecommunications RFV01U-D1A
		3	samsung telecommunications RFV01U-D2A

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Photos	-	-	CCISites
Mount Analysis	Kimley-Horn	8418942	CCISites

3.1) Analysis Method

RISA-3D (version 16.00), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A proprietary tool internally developed by Kimley-Horn and Associates, Inc. was used to calculate wind loading on all appurtenances, dishes and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision B).

3.2) Assumptions

1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
2) The configuration of antennas, mounts, and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
4) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
HSS (Rectangular)	ASTM A36 (Gr. 36)
Pipe	ASTM A53 (Gr. B-35)
Threaded Rods	ASTM A36 (Gr. 36)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Kimley-Horn should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Component	\% Capacity	Pass $/$ Fail
Connections	87%	Pass
Stand Off Horizontals	53%	Pass
Mount Pipes	39%	Pass
Corner Plates	39%	Pass
Face Horizontals	20%	Pass

4.1) Recommendations

According to our structural analysis, the mounting configuration has been found to PASS PENDING MODIFICATIONS. The mounting configuration considered in this analysis will be capable of supporting the referenced loading pursuant to referenced standards once the referenced modifications are installed.

This analysis incorporates modifications per Kimley-Horn, dated 05/28/19.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

APPENDIX B

SOFTWARE INPUT CALCULATIONS

Exposure Category	C
Topographic Factor， K_{2} ：	1.00
Strucilie Base Elev：（AMSL），$z_{3}(t)$	741.00
Ground Effect Factor， K_{p}	0.97

Whid Direction Probability Factor， $\mathbf{K}_{\mathbf{d}}$	0.95
Gust Efiect Factor， $\mathbf{S}_{\mathbf{n}}$	1
Shielding Factor，$K_{\text {a }}$（antenna）	0.9
Sthielding Factor， $\mathrm{K}_{\mathbf{a}}$（mount）	0.9

Whasimmary	
Basic Wind Speed W／o leo，V（ （riph）	125.09
Velocity Pressure Coeff， $\mathbf{K}_{\mathbf{z}}$ ．	1.36
Velocily Prosscire， \mathbf{q}_{2}（w／o lce） （psf）	50.26

Baslc Wind Speed w／ice， V_{1}（mph）	50，00
Destgn lce Thick．（ASCE 7－10）； $\mathbf{t}_{\text {（in）}}$ ）	0.75
Velocily Pressuife，q_{z}（wllce）（psf）	8.04
Escalated loe Thick，© Mounit tig（ $(\mathrm{n}$ ）	1.73

Spectral Respoise（Short Periods），S_{5}	－
Spectral Response $\{$ i－Sec．Peiod $)$ ， \mathbf{S}_{1}	－
Site Class	－
Seismic Design Calegory	－
Seismic Risk Category	－

Kimley»）Horn

Date	May 28，2019
Client	Crown Castla
Site\＃	841295
Site Name	BETHANY
Project\＃	19558041

Antenna N ainc	ONoy	Shape						Mha							Hent	Side		Wisiod		\square
NHH－65C－R2E	3	Flat	96	11.9	7.1	51.6	N1212B	N12108	N1228B	N12268	N1220日	N12188	0	0	1139	7.66	529．14	${ }^{\text {Sigig }}$	108.6	Sidide
NHH－65C－R2B	3	Flat	96	11.9	7.1	51.6	N2211B	N12098	N12278	N12258	N1219日	N1217B	0	0	11.39	7.68	529.14	355.69	108.62	80．32
D8854DG65ESX	3	Flat	48	12.6	5.7	18.5	N1232日	N1231B	N1240C	N1239C	N1236日	N12358	0	0	5.28	2.75	245.5	12777	525	80.32 32.6
DB－T1－6Z．9AB－0Z	1	Flat	24	24	10	44	N124SE	B	0	0	0	0	0	0	2.4	2	111.51	92.92	23.37	22.91
RFV01U－D1A	2	Flat	15	15	10	94.4	0	0	N1251C	N1250C	0	0	0	0	0,94	1.25	43.56	8	10.56	5.41
RFVV11－D2A	2	Flat	15	15	8.1	70.3	N1245B	N1244C	0	0	0	0	0	0	0.84	1.01	43.56	47.04	10.56	13.23
RFV01U－D1A	1	Flat	15	15	10	84.4	0	0	N1252A	0	0	0	0	0	0.94	1.25	43.56	58，08	10.56	15.41
RFV01U－02A	1	Flat	15	15	8.1	70.3	N1248E	，	0	0	0	0	0	0	0.94	1.01	43．56	47.04	10.56	13.23

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area/Me..	Surface(P..
,	Dead	DL			-1	25				
2	Dead of lce.	T. RL	,	N,	am	25		51	4,	W,
4.	Structure Wind (0)	None	NW ${ }^{\text {a }}$,	$\cdots \times$	W	, ${ }^{2}$,	NTSM	402	\%	
5	Structure Wind (30)	None						102		
6.	Structure Wind (45)	None	\cdots	2	13,		\%	102	W\% ${ }^{\text {a }}$	
7.	Structure Wind (60)	None						102		
8	Structure Wind (90)	None	WVY4.	Fera	12\% 4 ,	34,	\% \% ${ }^{\text {a }}$	102	W,	
9	Structure Wind (120)	None						102		
10	Structure Wind (135)	None.	N-Tさ?	, , ,	- , \times,	Wry	-	102.	3-7	
11	Structüre Wind (150)	None						102		
12	Structure Wind w/ lce .	None	,	*,	4......		V, -	102	, , \%	,
13	Structure Wind w/ lce ...	None						102		
14	Structure Wind w/ lce.	- None.		, , , ,	Nay	\cdots	4*	102	man	\#, \%
15	Structure Wind w/ Ice ...	None						102		
16	Structure Wind w/ Ice.	None.	\% ${ }^{2}$,	W,	M ${ }^{\text {a }}$	4, +, ${ }^{\text {as, }}$	102		,
17	Structure Wind w/ Ice .	None						102		
18	Structure Wind w/lce.	None	, , +	\ldots	$3 \times$			102	\% \times,	\cdots
$\frac{19}{20}$	Structure Wind w/ lce ...	None						102		
20	Antenna Wind (0)	None.,				50	,	102	2,	\%
21	Antenna Wind (30)	None				50				
22.	Antenna Wind (45)	None.	4	\%		50		2, \% ${ }^{\text {a }}$		
23	Antenna Wind (60)	None				50				
24	Antenna Wind (90)	None.				50		\%		
25	Antenna Wind (120)	None				50				
26.	Antenna Wind (135)	None.			.	, 50,	줓	4	4, ${ }^{2}$	
27.	Antenna Wind (150)	None				50				
28.	Antenna Wind w/Ice...	None,	\cdots		,	50			,	
29.	Antenna Wind w/ Ice (...	None				50				
30.	Antenna Wind w/lee?	None	W. ${ }^{\text {a }}$	¢		50	-			
31.	Antenna Wind w/ Ice (.).	None				50				
32.	Antenna Wind w/ Ice,.	None,		\cdots		- 50		\cdots,	,	W,
33.	Antenna Wind w/ Ice (...	None				50				
34	Antenna Wind w/lce..	None.		¢ ${ }^{\text {a }}$	+	50		4,	\cdots	\%
35	Antenria Wind w/ Ice (...	None				50				
36	Maintenance Live Lm.	- OL1.		\wedge	W ${ }^{\text {a }}$	-1.	W\%	, $\times 2$	\%	
37 38	Maintenance Live Lm ..	OL2				1				
-38	Maintenance Live Lm.	$\cdots \mathrm{OL} 3$	\cdots	W,	W\%	1	\% ${ }^{\text {a }}$	W, \%	, \times,	
39	Maintenance Live Lm.r.	OL4				1				

Load Combinations

Load Combinations (Continued)

	Descripti...	PDelta					CFac.										Fa						
14	$12 \mathrm{D}+1$ Yes	Y Y ,				7.			- 1														
15	1.2D $+1 .$. Yes	Y		DL	1.2	8	-1	24	-1														
-16.	12D + / Y Yes			D ${ }^{\text {d }}$	12	9	$\underline{1}$	25	-1		,	,	,	-	*	䜌	,	,	\%		,	,	,
17	1.2D + 1...Yes	Y			1.2	10	-1	26	-1														
$\underline{18}$	120 +1, Yes	, $\mathrm{Y}^{\mathbf{Y}}$,		DL	1.2	11	1	27	-1	洨	\%	,	,	\%	TY	"	, ${ }^{\text {a }}$,	*	+	W	,	,
19	1,2D + 1...Yes	Y		DL	1.2	RL	1	12	1		1												
20	12D +1. Yes	, Y		DL	12	RL	1	13	1	29	1			*	+2\%	,	*	1,	1.		24x		
21	1.2D $+1 . . . Y$ Yes	Y			1.2	RL	1	14	1	30	1												
22	120+1. Ves	Y Y,			1.2	RL	1	15	1	31	1	-	3	,	*	,	+	4	,	"	-		
23	1:2D + 1...Yes	Y			1.2	RL	1	16	1	32	1												
24	$12 \mathrm{D}+1, \mathrm{Yes}$	V V		DL	1.2	RL	1	17	1	33	1		5,	4	,	,				,	\cdots		
25	1.2D $+1 .$. Yes	Y			1.2	RL	1	18	1	34	1												
26.	120 + 1, Yes	Y		DL	1.2	RL	1	19	1	35	1	2		*	1				,	,			
27	1.2D $+1 .$. Yes	Y		DL	1.2	RL	1	12	-1	28	-1												
28.	$1.20+1, \mathrm{Yes}$, Y		DH	1.2	RL	1	13	1	39.	-1	,	\%	4	$\stackrel{\square}{ }$,		4				\%	
29	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y			1.2	RL	1	14	-1	30	-1												
30.	12D $+1 . \mathrm{Yes}$	Y Y		DL	1.2	RL	1	15	-1	31	-1		\cdots	.	,		1,			,		4	
31	1.2D $+1 .$. Yes	Y			1.2	RL	1	16	-1	32	-1												
32.	120 +1., Yes	Y		DL 1	1.2	R	1	17	4	33	-1	,	Y	*	*	\cdots	,					,	,
33.	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y			1.2	RL	1	18	-1	34	-1												
34	$12 \mathrm{D}+1 . \mathrm{Yes}$	Y		DL 1	1.2	RL	1	19.	1	35	-1		L		\%			\%	,	4	,	,	
35	1.2D + $1 .$. Yes	Y			1.2	4	. 058	20	. 058		1.5												
36.	12D $+1 . \mathrm{Yes}$, Y		DL 1	1.2	5	058	21	058		1.5	,		-	,	+					,		
37	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y			1.2	6	. 058	22	. 058	OL1	1.5												
38.	12D +1.Yes	\cdots		DL 1	1.2	7	058	23	058		1.5				\cdots		\cdots		\cdots			*	
39	$1.2 \mathrm{D}+1 \ldots$ Yes	Y			1.2	8	. 058	24	. 058	OL1	1.5												
40	$1.2 \mathrm{D}+1 . \mathrm{Yes}$	Y		DL 1	1.2	9	058	25.	058	OL1	1.5			4	\cdots	,	1*,			,			
41	$1.2 \mathrm{D}+1 \ldots . \mathrm{Yes}$	Y		DL 1	1.2	10	. 058	26	. 058	OL1	1.5												
42	$12 \mathrm{D}+1 \ldots \mathrm{Yes}$	Y \mathbf{Y}		DL1	1.2	11	058	27	058	0 C	1.5				,		,		,				
43	$1.2 \mathrm{D}+1 .$. Yes	Y			1.2		-. 058	20	. 058	OL1	1.5												
44	$12 \mathrm{D}+1 . \mathrm{Yes}$	Y		DL 1	1.2	5	-058	21	058	OL	1.5												
45	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y		DL 1	1.2	6	-. 058	22	. 058	OL1	1.5												
46	12D +1. Yes	Y		DL1	1.2	7.	. 058	23	, 058	OL	1.5					\checkmark		.			.	,	
47	1.2D + 1... Yes-	Y		DL 1	1.2	8	-. 058	24	. 058	OL1	1.5												
48	12D+1. Yes	Y Y		DL 1	1.2	9	058	25	058	OL1	1.5	,					,		,				
49	1.2D + 1...Yes	Y		DL 1	1.2	10.	. 058	26	. 058	OLT 1	1.5												
50	$12 \mathrm{D}+1 . \mathrm{Yes}$	Y		DL 1	1.2	11	-058		.058		1.5								\%				
51	1.2D+1.. Yes	Y		DL 1	1.2	4	. 058	20	. 058	OL2	1.5												
52	$12 \mathrm{D}+1 . \mathrm{Yes}$			DL 1	1.2	5	058	21	058		1.5												
53	1.2D + 1...Yes	Y		DL 1	1.2	6	. 058	22	. 0580	OL2	1.5												
54	$1.2 \mathrm{D}+1 . \mathrm{Yes}$	Q Y		DL 1	1.2	7	058	23	058	OL2	1.5		5										
55	1.2D + 1...Yes	Y		DL 1	1.2	8	. 058	24	. 058	OL2	1.5												
56	12D+1. Yes	, $\mathbf{Y}^{\text {P }}$		DL 1	12	9	058	25	. 058	OL 2	1.5				,			,		,		\%	
57	$1.2 \mathrm{D}+1 \ldots \mathrm{Yes}$	Y		DL 1	1.2	10.	. 058	26	. 058	OL 2	1.5												
58	1.2D +1. Yes	, Y		DL 1	1.2	11.	058	27.	058	OL2	1.5	,	4								4		
-59	1.2D $+1 . . . Y$ Yes	Y		DL 1	1.2	4.	-058	20	. 058	OL2	1.5												
60	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y		DL 1	1.2		058	21.	. 058	OL 2	1.5		$\stackrel{1}{2}$									\times	
61	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y		DL 1	1.2	6.	-. 058	22	. 058	OL2 1	1.5												
62	12D+1. Yes	Y		DL 1	1.2	7 .	058	23.	058	OL2	1.5												
63	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y		DL 1		8.	-058	24	. 0580	OL2	1.5												
64	12D + $1 . \mathrm{Yes}$	Y		DL 1	1.2	9	. 058	25	. 058	OL2	1.5					4							
65	$1.2 \mathrm{D}+1 . . \mathrm{Yes} \mid$	Y		DL. 1	1.2	10.	. 058	26	. 058	OL2	1.5												
66.	12D + 1. Yes	Y		DL 1	1.2	11.	. 0582	27	. 058	0 L 2	1.5												
67	1:2D $+1 \ldots Y$	Y		DL 1	1.2	4	. 058	20	. 058	OL3 1	1.5												
68	$122+1 . Y \mathrm{Yes}$	Y		DL 1	1.2	5	058	21	058	OLS	1.5					,							
69	1.2D + 1...Yes	Y		DL 1	1.2	6	. 058	22	. 058	OL3 1	1.5												
70	122D +1..Yes	Y		DL1	1.2	7	0582	23	058	0L31	1.5												

Load Combinations (Continued)

	Descripti...So	PDel																			
71	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y		DL 1.2	8	[.058	24	. 058	OL3 1.5												
72	12D +1. Yes	Y	2.	DL 1.2	9	058	25	1058	OL3 1.5		,	,	,	12,			**			4	
73	1.2D + 1...Yes	Y		DL 1.2	10	. 058	26	. 058	OL3 1.5												
74	$12 \mathrm{D}+11 \mathrm{Yes}$, Y		B41.2	11	058	27	058	© 41.5		\%		1,	,			,				
75	1.2D $+1 . .$. Yes	Y		DL 1.2	4	-. 058	20	- 058	OL3 1.5												
76	12D + 11, Yes	Y, Y		DL 1.2	5	058	21	. 058	OL31.5				\cdots							a	
77	1.2D + 1...Yes	Y		DL 1.2	6	-. 058	22	-. 058	OL3 1.5												
78.	12D + 1 Yes	U@ Y		DU 1.2	V	0.58	23.	. 058	OL3 1.5				,								
79	$1.2 \mathrm{D}+1 \ldots \mathrm{Yes}$	Y		DL 1.2	8	-. 058	24	. 058	OL3 1.5												
80	$12 \mathrm{D}+14 \mathrm{Yes}$	Y-Y		DL 1.2		. 058	25	-0580	0131.5	,			(a)			,	,				
81.	1.2D + 1...Yes	Y		DL 1.2	10.	-. 058	26	-. 0580	OL3 1.5												
82.	$12 \mathrm{D}+11 \mathrm{Yes}$	W	,	DL 12	11.	.058	27.	0558	OL3 1.5												
83.	1:2D + 1...Yes	Y		DL 1.2	4	. 058	20	. 0580	OL4 1.5												
84	$12 \mathrm{t}+1 . \mathrm{Yes}$	\cdots	,	DL1.2	5	058.	21	. 0580	0.41 .5						4						
85	1.2D + 1...Yes	Y		DL 1.2	6	. 058	22	. 0580	OL4 1.5												
86	12D +1. Yes	\cdots		DL 1.2	7.	058	23.	0580	0 L 41.5											-	
87	1.2D + 1...Yes	Y		DL 1.2	8	. 058	24	. 0580	OL4 1.5												
88.	12D + $1 . \mathrm{Yes}$	\cdots		DL1.2	9	. 058	25	0580	OL4 1.5												
89	1.2D + 1...Yes	Y		DL 1.2	10.	. 058	26	. 0580	OL4 1.5												
90	12D+1.4Vs	Y		DL 1.2	11.	058	27	058	OL4 1.5		,		4	,					*		\%
91.	1.2D + 1...Yes	Y		DL 1.2	4	-. 058	20	-. 0580	OL4 1.5												
92	122D+1. Yes	Y		D 41.2	5.	. 058	21.	-0580	0.41 .5		\%	*	,		W				,		
93	1.2D + 1...Yes	Y		DL 1.2	6.	-. 058	22.	-.0580	OL4 1.5												
94	12D + 1. Yes	, Y		DL 1.2	7.	058	23.	-0580	0.41 .5			\cdots			,						
95	$1.2 \mathrm{D}+1 . . \mathrm{Yes}$	Y		DL 1.2	8	-. 058		-. 0580	OL. 41.5												
96.	1.2D + 1. Yes	, Y		DL 1.2	9 .	. 058	25.	. 0580	01.415	:	,					4		*	4.		\cdots
97	1.2D $+1 . .$. Yes	Y		DL 1.2	10	. 058		-. 0580	OL. 41.5												
98	122+1.. Yes	\% Y		DL 1.2	11.	.058.		. 0580	OL4 1.5			,			\cdots				,		

Hot Rolled Steel Properties

Label		E [ksi]	G [ksi]	Nu	Therm (11E.. Densitylkft.		Yieldiksi]		Fulksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	4. 3	+. 65	. $\quad .49$	50	. 1.1	65	1.1
3	A992	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
4.	A500 Gr, B RND	29000	11154	3	. 6.65	. 527	$\square 42$	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	. 3	. 65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	\square	. 65	. 49	35.	1.6	60	1.2
7	A1085	29000	11154	. 3	.65	. 49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design Rules A [in2]		IWv [in4]	Izz [in4]	J [in4]
1	Platform Horzont.	PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
2	Offsett Tube	HSS $4 \times 4 \times 4$	Beam	SquareTube	A36 Gr. 36	Typical	3.37	7.8	7.8	12.8
3	Offset Side Plate	0.38×6 Pla...	Beam	RECT	A36 Gr. 36	Typical	2.28	027	6.84	. 105
4	Grating Angle	$12 \times 2 \times 3$	Beam	Single Angle	A36 Gr 36	Typical	722	. 271	. 271	009
5	Mount Pipe	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25
6.	Ofset End Plate	0.5×6 Plate	Beam	RECT	A36 Gr 36	Typical	3	. 063	9	237
7	MOD HRK12-3HD	PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
8.	MODHRK12-3H...	0.38×6 Pla.	Beam	RECT	A 36 Gr .36	Typical	2.28	. 027	6.84	105
9	MOD HRK12-3H...	L2.5x2.5x4	Beam	Single Angle	A36 Gr. 36	Typical	1.19	. 692	. 692	. 026
10	MOD HRK12-3H.	PIPE 2.0	Beam.	Pipe,	$A 53 \mathrm{Gr}$ B	Typical	1.02	. 627	. 627	1.25
11	MOD HSRK-35	L3×3×4	Beam	Pipe	A36 Gr. 36	Typical	1.44	1.23	1.23	. 031

			23007	Lbyylin]	Lbzz[in]	Lcomp toplin			Kyy	Kzz	Cb	Function
1	M51	Offseft Tube	63.007									Lateral
2	- M60	Offselt Tube	30,438	, +3.	,	Lbyy	3,		縟	\cdots	\%	Lateral
3	M63	Offsett Tube	30.437			Lbyy						Lateral
4	M69.	Platiorm Ho:	150	,	W+	Libys			4	,	W	Lateral
5	M72	Platform Ho..	150			Lbyy						Lateral
6	M75	Platorm Ho.	150			Lbyy	\%	\%	,	\checkmark	,	Lateral
7	M92	Grating Angle	50.542			Lbviv						Lateral
8	M94	Grating Angle	50.542	-		Liby	2.x.	W24.3		\%		Leieral
9	M98	Grating Angle	50.542			Lbuy						Lateral
10	M100	Grating Angle	50.542		WW.	Lbyy	4	4.	2.	W	\%	Cateral
11	M104	Grating Angle	50.542			Lbvy						Lateral
12	M106	Gratiting Angle	50.542			Lbyy,	s.					Lateral
13	M160	Mount Pipe	84			Lbyv						Lateral
14	M161	Mount Pipe	84	\%	3,	Lbyy	$3 \times$	\cdots	\%	\cdots		Lateral
15	M162	Mount Pipe	84			Lbyy						Lateral
16	M163	Mount Pipe	84	+		Lbyy	${ }^{3}$,	3			Lateral
17	M245A	Offsett Tube	30.438			Lbyy						Lateral
18	M246A	Offsett Tube	30.437	*	\cdots	Lby	$4 \times$		${ }^{3}$		\%	Lateral
19	M279	Offsett Tube	30.438			Lbvy						Lateral
20	M280	Offsett Tưbe	30:437	4	W,	Lbyy	,	\cdots	\%	\cdots		Lateral
21	M242A	Offsett Tube	63.007			Lby	-					Lateral
22	M243A	Offsetr Tube	63.007	\cdots	\cdots	Weray		\cdots	.			Lateral
23	M232A	Mount Pipe	84			Lbyy						Lateral
24	M233A	Mount Pipe	84		+	Lbyy		,		*		Lateral
25.	M234A	Mount Pipe	84			Lbyv						Lateral
26.	M235A	Mount Pipe	84		\cdots	Lbyy						Lateral
27.	M240A	Mount Pipe	84			Lbyv						Lateral
28.	M241A	Mount Pipe	84	,	\cdots	Lbyy	T ${ }^{2}$	\%	4			Lateral
29	M242B	Mount Pipe	84			Lbyy						Lateral
30	M243B	Mount Pripe	84	M,		Lbyy	\% ${ }^{\text {a }}$.	,		Lateral
31	M272A	MOD HRK1..)	150			Lbyy						Lateral
32	M275A	MOD HRK1.	5	-	4	Lbyy.	,		.	\cdots		Lateral
33	M278A	MOD HRK1...	5			Lbyy						Lateral
34	M283A	MOD HRK1,	150			Lbyy			\checkmark			Lateral
35	M286A	MOD HRK1..	5			Lbyy						Lateral
36.	M289A	MOD HRK1.	5			Lbyy					.	Lateral
37.	M294A	MOD HRK1..	150			Lbyy						Lateral
38.	M297A	MOD HRK1.	5	W.	4.	Lbyy				\triangle		Lateral
39	M300B	MOD HRK1..	5			Lbyy						Lateral
40.	M301B	MOD HRK1.	13.155	-		Lbyy			${ }^{4}$.		Lateraial
41	M302B	MOD HRK1.	13.155			Lbyy						Lateral
42	M303B	MOD HRK1.	13.155	4	W, \%	Lbyy	N	,			T	Lateral
43	M310B	MOD HRK1..	56.619			Lbvy						Lateral
44.	M311B	MOD HRK1.	56.619		\cdots	Lbyy		\cdots	\checkmark			Lateral
45	M312B	MOD HRK1..	56.619			Lbiy						Lateral
46	M320.	MOD HSRK.	56.759	27)	\cdots	Lbyy	$4 \times$					Lateral
47	M322	MOD HSRK.	56.759			Lbuy						Lateral
48.	M324	MOD HSRK.	56.759			Lbyy	,	*				Lateral
49	M326	MOD HSRK..	56,759			Lbvy						Lateral
50	M328	MOD HSRK.	56.759		,	Lbyy	\%	\cdots				Lateral
51	M330	MOD HSRK...	56.759			Lbyy						Lateral

	Joint		\times [[b]	LC	Y $[1 \mathrm{lb]}$		Z [ilb]	LC	MX [lib-ft]	LC		LC	MZ [lib-ft].	LC
1	N88	max	2363.215	3	1743.592	15	2895.693	19	2091.225	7	6207.49	3	1496.137	7
2	-	min	-3253.827	17	1745.306	7	-721.06	11	2327.94	15	4303.569	11	-1524.983	15
3	N1203B	max	2233.289	3	2012.2	14	3303.292	30	3419.442	6	2606.576	4	1680.908	18
4	${ }^{1}$	min	-1769.594	11.	-2775.58	6	-485.694	6.	-5675.354	14	-3951.803	12	-1697.422	10
5	N1205B	max	1897.733	3	2874.979	16	2996.068	24	5291.557	8	2625.067	18	1653.475	12
6.	$\stackrel{1}{ }$	min.	-1470.811	11.	2108.08	8	-764.717	16.	-3815.503	16	-3678.112	10	-1657.214	4
7	Totals:	max	6494.237	3	6464.203	15	7944.743	20						
8.	Nax	min	-6494.233	11	-6464.239	7.	2355.688	1.	23N M M			+1.	W,	\%

Envelope AISC 14th(360-10): LRFD Steel Code Checks

1 Member		Shape Code Check		Loc[in]		Shear Che .271	$\frac{\text { Loclin_DirLC }}{2} \frac{\mathrm{z}}{10}$		Cphi*Pnc...phi*Pnt ...phi* ${ }^{\text {Mn }}$...phi* Mn ...Cb Eqn			
		HSS4x4x4	. 532	0	14				99760.9.1 109188	12663	12663 2.	2.. $\mathrm{H} 1-1 \mathrm{~b}$
2	M243A.	HSS $4 \times 4 \times 4$	508	0	8.	278	0	z 12	299760.9.109188	12663	12663	H1-1b
3	M51	HSS4x4x4	. 508	0	3.	. 276	0	z 15	99760.9.1109188	12663	126632	H1-1b
4	M240A	PIPE 2.0	. .391	77,368	12	. 075	28.7.	6	17855.0. 32130	1871.62	1871.6252	. 111 l
5	M160	PIPE 2:0	. 380	77.368	7	. 075	28.7...	16	17855.0.. 32130	1871.62	1871.6252	H1-1b
6.	M161	PIPE 2.0	365	77.368	15	. 062	77.3.	17	17855.0.. 32130	1871.6	1871.6252	1b
7	M232A	PIPE 2.0	. 360	77.368	18	. 075	28.7...		117855.0 .32130	1871.6	1871.625 2	1 b
8.	M241A.	PIPE 20	. 352	77.368	4.	059	77.3.	6	17855.0. 32130	1871.6	1871.6252	-111
9	M233A	PIPE 2.0	. 346	77.368	9	. 058	77.3...	11	177855.0 .132130	1871.6	1871.6252.	H1-1b
10	M243B	PIPE 2.0	. 301	77,368	13	073	77.3.\%	14	178550.32130	1871.6	18716252	H1-1b
11	M163	PIPE 2.0	300	77.368	8	. 075	77.3...	9	17855.0. 32130	1871.6	1871.6252.	H1-1b
12	M162	PIPE 20	290	77,368	14.	075	28.7.	6	17855.0. 32130	187162	1871,6252.	.11-1b
13	M235A	PIPE 2.0	289	77.368	3	. 075	77.3...	3	17855.0.. 32130	1871.62	1871.6252.	$\ldots+1-1 b$
14	M294A.	PIPE 2.5	276	47.368	11	146	55.2	9.	14558.7. 50715	3596.25	3596.252.	H1-1b
15	M245A	HSS $4 \times \times 4 \times 4$. 276	30.438	13	. 100	3.204	z 3	106911... 109188	12663	12663 1..	H1-1b
16	M272A	PIPE 2.5	. 272	47.368	6	151	55.2.	4.	14558.7 .50715	3596.25	3596,252.	. 11.16
17	M242B	PIPE 2.0	267	77.368	3	. 075	28.7...	11	17855.0., 32130	1871.62	1871.6252.	H1-1b
18	M283A.	PIPE 2.5	266	47.368	16	146	55.2	15	14558.7. 50715	3596.25	3596.252	, 1 1-1b
19	M246A	HSS $4 \times 4 \times 4$	264	0	15	. 095	27.2.	z 9	106911... 109188	12663	126631.	H1-1b
20	M60	HSS $4 \times 4 \times 4$	263	30.438	18	. 094	3.204	Z. 8	106911.109188	12663	126631.	H1-1b
21	M279	HSS $4 \times 4 \times 4$	258	30.438	7	. 104	3.204		106911...109188	12663	12663 1..	. $\mathrm{H} 1-1 \mathrm{~b}$
22	M280	HSS $4 \times 4 \times 4$	255	0	9	. 092	27.2.	23	106911.409188	12663	126631.	H1-1b
23	M63	HSS $4 \times 4 \times 4$. 252	0	4	. 095	27.2		106911...109188	12663	126631.	H1-1b
24	M234A	PIPE 2.0	. 248	77,368	8	. 075	28.7.		17855.0. 32130	1871.625	1871.625 2	1-1b
25	M75	PIPE 3.0	. 204	90.789	13	. 086	90.7		28250.5.. 65205	5748.75	5748.75 2.	H1-1b
26	M72	PIPE 3.0	. 191	90.789	3	085	59.2		28250.5.65205	5748.75	5748.752	11-16
27.	M69	PJPE 3.0	. 185	90.789	8	. 089	134...	3	28250.5., 65205	5748.75	5748.75 2...	H1-1b
28	M104	L2 $2 \times 2 \times 3$	158	0	16.	007	0	28	9618,888 233928	557.717	1196.2131.	H 2 l
29	M100	L2x2x3	156	0	11	. 008	0	v 3	9618.956 23392.8	557.717	1178.909 $1 .$.	H2-1
30	M92	L2×2×3	- 152	0	11	. 007	0	23	9618.888823392 .8	557.717	163.9311.	H 21
31.	M98	$12 \times 2 \times 3$. 147	0	6	. 007	0	z 6	9618.888823392 .8	557.717	$1171.4171 .$.	H2-1
32	M106	L2x2×3	141	0	6	. 007	0	y 14	9618.95623392 .8	557.717	146,161.	$\mathrm{H} 2-1$
33	M94	L2x2x	141	0	16	. 007	0	V 8	9618.956 23392.8	557.717	1133.0261 ..	H2-1
34.	M301B	12.5×2.5x4	130	13.155	18.	. 044	0	y 4	37073,2, 38556	1113,554	25373881.	H2-1
35	M289A	0.38×6 PI...	. 130	2.5	18	. 019	1.053	z 18	66218.6.. 73872	584.82	9234 1..	. H 1-1b
36.	M302B	$12.5 \times 2.5 \times 4$	128	0	9	. 043	0	$\bigcirc 7$	37073,2, 38556	1113.554	2537,3881	H2-1
37	M286A	$0.38 \times 6 \mathrm{Pl} .$.	. 126	2.5	9	. 019	1.053	z 9	66218.6 .173872	584.82	9234 1...	H2-1b
38.	M303B	$2.5 \times 2.5 \times 4$	1117	0	4	. 040	0	Y 10	37073.2. 38556	1113.554	2537.3881.	H 21
39	M297A	$0.38 \times 6 \mathrm{Pl} . .$.	. 116	2.5	4	. 018	1.053	$z 4$	66218.6. 73872	584.82	9234 1..	H1-1b
40.	M278A	$0.38 \times 6 \mathrm{Pl}$.	110	2.5	7	017	1.053	27	66218.6. 73872	584.82	9234.1.	H1-1b
41	M275A	0.38×6 Pl...	. 103	2.5	14	. 015	1.053	z 14	66218.6 .173872	584.82	92341.	H1-1b
42	M300B	$0.38 \times 6 \mathrm{P}$.	102	2.5	13	. 016	1.053	z113	66218.6. 73872	584.82	9234, 1.	H1-1b
43	M322	L $3 \times 3 \times 4$. 066	26.886	3	. 009	0	y 15	28423.7.. 46656	1688.138	3426.651 $1 .$.	H2-1

Member		Shape	Code Check Lociin]			$\begin{aligned} & \text { Shear Che } \\ & 0.009 \end{aligned}$	$\frac{\mathrm{Loc} / \mathrm{in}}{} \mathrm{O}$	$\begin{aligned} & \text { DirLC phi*Pnc. } \\ & y 10284237 . \end{aligned}$		$\frac{\text { phi*Pnt }}{46656}$	phi* Mn ...phi* Mn ...Cb Ean 1688.1383426.651 11. H2-1	
44	M326	$43 \times 3 \times 4$	1. 064	26.886	14							
45	M330	L $3 \times 3 \times 4$. 063	26.886	8	. 0.009	-	v 4	4 28423.7..	4	1688.138 3426.6511.	
46	M328	$13 \times 3 \times 4$. 062	28.38	11	. 010	0		228423.7 .	46656	1688.1383426 .6511	-
47.	M324	$13 \times 3 \times 4$. 061	28.38	17	. 010	56.7...	z 18	828423.7.1.	46656	1688.138 3426.6511.	H2-1
$\frac{48}{49}$	M320	L13x3x4	059	28.38	6.	. 010	1, 0		28423.7.	46656	1688.1383426.6511.	$\xrightarrow{\mathrm{H} 2-1}$
49	M310B	PIPE 2.0	036	28.31	22	. 022	0		8124603.0.	32130	1871.6251871.6251.	H1-1b
		PIPE 2.0	035	28.31	32	. 020	56.6.		24603.0.	32130	1871.6251871.6251.	1-1b
5	M311B	PIPE_2.0	. 035	28.31	27	. 022	0		24603.0.,	32130	1871.625/1871.625/1..	H1-1b

Envelope Plate/Shell Principal Stresses

Plate			Sigma1 [ksi] LC			$\frac{\text { Sigma2 [ksi] }}{1.103}$	0	$\frac{\text { Tau Max }[\mathrm{ksi]}}{6.016}$		Angle [rad]	LC Von Mises [ksil LC		
1.	P726	max	T	11.178	10					2.081	74	12.718	18
2.	,	min		-1.339	82	-13.308	18	W. 092	25	2. 367	27	212.718	25
3		max	B	7.395	18	1.542	18	2.926	18	2.297	53	6.757	18
4	\%	min		1,328	10	6. 6.355	10	. 0.097	25	$\underline{4.771}$	52	236.	$\frac{18}{25}$
5	P531	max	T	14.286	14	4.41	14	4.938	14	2.13	19	12.671	14
$\begin{array}{r}6 \\ \hline 7\end{array}$		min		-4.016	6.	-12.974	6	W. 024	50	. 559	28	12,042	50
8		max	B	15.002	6	4.351	6	5.841	14	2.307	55	14.67	14
8	30	min		-4.782	14	16.464	14	038.	19	4.751	53	. 08	53
9	P436	max	T	14.104	3	4.35	3	4.877	3	1.634	24	12.51	3.
10		min		-4.099	11	-13.223	11	02	48	-195	7.	. 034	48
11		max	B	15.42	11	4.468	11	5.68	3	1.642	31	14.287	3
$\frac{12}{13}$		min		-4.681	3	-16.04	3.	075	65	$\cdot 167$	15	. 131	65
$\frac{13}{14}$	P798	max	T	9.64	4	748	4	5.886	13	2.142	9	12.322	13
14		min.		-1.043	12	-12.807	13.	524	18	-4.48	8	951	18
16.		\max	B	6.76	13	1.316	12	2.725	13	1.901	3	6.21	13
17	P627	max	T	$\underline{.963}$	4	-5.105	5	196	69	. 102	18	413	69
18		min		4.255	8	4.037	8	4.76	16	2.298	52	12.216	16
19		max	B	15.83	16	-13.	16	, ,024	87.	4.767	45	044	87
20		min.		4.401	8	$\frac{4.586}{15.258}$	16	5.622	16	2.337	35	14.107	16
21	P515	max	T	13.319	14	4.098	14	1.022 4.61	91	4.686	47.	. 044	91
22.	, + ${ }^{\text {a }}$	min.		-3.732	6	-12.103	6.	4.61	14	2.121	19	11.815	14
23		max	B	12.798	6	3.905	6		54.	-23	28	. 07	54
24.		min		4.295	14	-14.053	14	03	14	2.204	50	12.473	14
25	P655	max	T	10.945	15	. 946	15	5.557	19	-. 591	42.	. 078	19
26		min		-1.218	7	-12.332	7	5.557	7	2.201	63	11.77	7
27.		max	B	6.911	7	1.46	7	2.726	84	-68	82	,066	84
28.		min		-1.179	15	-5.864	15	2.7206	72	2.218	83	6.31	7
29	P526	max	T	13.171	14	4.076	14	4.548	32	-75	93	077	84.
30		min		-3.675	6	-11.877	6		14	2.271	18	11.68	14
31		\max	B	13.972.	6	4.014	6	78	35	. 049	17	0116	35
32		min		-4.463	14	-15.419	14		14	2.163	40	13.742	14
33	P622	max	T	13.072	8	4.041	8	. 07.3	35.	- 556	9	139	35
34		min.		-3.717	16	-11.971	16	4.516	8	2.126	12	11.592	8
35		\max	B	14.251	16	4.096	16	021	81.	-693	80	036	81
36	P \quad,	min		4.382	8	115.052	8		8	2.176	29	13.409	8
37	P420	max	T	12.974	3	3.994	3	4.49	$\frac{90}{3}$	-484	86	066	78.
38	\cdots	min		-3.806	11	-12.355	11		$\frac{3}{54}$	1.6	24	11.509	3
39		max	B	13.096	11	3.998	11		$\frac{54}{3}$	-193	7	007	54.
40		min		-4.173	3	-13.657	3	4.742	3	1.66	31	12.121	3
41	P611	\max	T	12.462	8	3.833	8	4.46	67	-321	15	. 054	67
42	,	min		-3.982	16	-12.903	16	017	$\frac{16}{68}$	2.353	46	11.444	16
43		max	B	13.604	16	-12.903	16	4.727	68	$\frac{-753}{2.31}$	44	12032	$\frac{68}{16}$
44	凹, ,	min	, 1	4.021	8	-13.156	8	. 022	53	$\begin{array}{r}2.31 \\ \hline 753\end{array}$	36	12.076	$\frac{16}{53}$

APPENDIX D

ADDITIONAL CALCUATIONS

$\stackrel{14}{ }$

4. .

APPENDIX E

MOUNT MODIFICATION DESIGN DRAWINGS (MDD) / SUPPLEMENTAL DRAWINGS

MOUNT MODIFICATION
 DRAWINGS

BETHANY
$\begin{gathered}\text { CROWN CASTLE BU\#: } 84295 \\ \text { VERIZON SITE\#: 104335 }\end{gathered}$
STRUCTURE INFORMATION
150' MONOPOLE TOWER
LOW PROFILE PLATFORM

द5नान

$$
\begin{gathered}
\text { SITE ADDRESS } \\
\text { 719 AMITY ROAD } \\
\text { BETHANY, CT O6524 } \\
\text { NEW HAVEN COUNTY } \\
\text { LATITUDE: N } 41^{\circ} 26^{\prime} 33.93^{\prime \prime} \pm \\
\text { LONGITUDE: } 72^{\circ} 59^{\prime} 32.86^{\prime \prime} \pm
\end{gathered}
$$

DJ PAUL J. FORD \& COMPANY

Date: June 06, 2019
Denise Nicholson
Crown Castle
3 Corporate Dr, Suite 101
Clifton Park, NY 12065

Paul J. Ford and Company 250 East Broad St., Suite 600 Columbus, OH 43215 (614) 221-6679

Subject:
Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Dear Denice Nicholson,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity (73.9\%)

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 Analysis Criteria.

Respectfully submitted by:

Aaron E. Pike, E.I.
Structural Designer apike@pauljford.com

06/07/2019

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment
3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 151 ft Monopole tower designed by VALMONT and mapped by FDH in March of 2016.
The tower has been modified per reinforcement drawings prepared by B+T in February of 2012. Reinforcement consist of flat plate reinforcing, post-installed anchor rods, and foundation augmentation.
The tower has been modified per reinforcement drawings prepared by B+T in July of 2012. Reinforcement consist of shaft reinforcing.
2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

TIA-222-H
II
125 mph
B
1
1.5 in

50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	$\left\|\begin{array}{c} \text { Feed } \\ \text { Line } \\ \text { Size }(\text { in) } \end{array}\right\|$
140.0	140.0	6	commscope	NHH-65C-R2B w/ Mount Pipe	13	1-5/8
		3	decibel	DB854DG65ESX w/ Mount Pipe		
		1	rfs celwave	DB-T1-6Z-8AB-0Z		
		3	samsung telecommunications	RFV01U-D1A		
		3	$\begin{array}{\|c\|} \hline \text { samsung } \\ \text { telecommunications } \end{array}$	RFV01U-D2A		
		1	tower mounts	12.5 ft Low Profile Platform		
		1	site pro 1	Handrail Kit [HRK12-3HD]		
		3	site pro 1	Kicker Kit [HSRK-35]		

Table 2-Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{gathered} \begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array} \end{gathered}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	$\begin{aligned} & \text { Feed } \\ & \text { Line } \\ & \text { Size (in) } \end{aligned}$
148.0	160.0	1	dbspectra	DS1F03F36D-N	$\begin{gathered} 12 \\ 2 \\ 2 \\ 2 \\ 2 \end{gathered}$	$\begin{gathered} 1-5 / 8 \\ 7 / 8 \\ 5 / 8 \\ 3 / 8 \\ 2^{\prime \prime} \text { cond. } \end{gathered}$
	149.0	6	adc	CG-1900DD-FULL-DIN		
		6	communication components inc.	DTMABP7819VG12A		
		6	ericsson	RRUS-11		
		3	kathrein	80010121 w/ Mount Pipe		
		3	kathrein	86010025		
		6	$\begin{gathered} \mathrm{kmw} \\ \text { communications } \end{gathered}$	$\begin{aligned} & \text { AM-X-CD-16-65-00T-RET w/ } \\ & \text { Mount Pipe } \end{aligned}$		
		12	powerwave technologies	LGP21901		
		1	raycap	DC6-48-60-18-8F		
	148.0	1	tower mounts	Platform Mount [LP 602-1]		

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
132.0	132.0	1	tower mounts	Pipe Mount [PM 601-3]	--	--
	131.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER		
		3	alcatel lucent	800MHZ RRH		
		3	alcatel lucent	TME-1900MHZ RRH		
130.0	133.0	1	pctel	GPS-TMG-HR-26NCM	$\begin{aligned} & 1 \\ & 3 \\ & 1 \end{aligned}$	$\begin{gathered} 1 / 2 \\ 1-5 / 8 \\ 1-1 / 4 \end{gathered}$
	130.0	3	alcatel lucent	TD-RRH8X20-25		
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe		
		1	tower mounts	T-Arm Mount [TA 602-3]		
122.0	123.0	3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	7	1-5/8
		3	ericsson	RADIO 4449 B12/B71		
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		
	122.0	1	tower mounts	T-Arm Mount [TA 702-3]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH, 15BBNL1600, 2/18/2016	6133952	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	FDH, 16BBMT1500, 2/17/2016 (mapped)	6133920	CCISITES
4-TOWER MANUFACTURER DRAWINGS	FDH, 16BBMW1500, 3/11/2016 (mapped)	6133951	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	B+T, 83154.003A, 2/21/2012	5135907	CCISITES
4-POST-MODIFICATION INSPECTION	B+T, 83154.004, 8/3/2012	5135928	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	B+T, 84427.0002, 7/19/2012	4945157	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.
Selected output from the analysis is included in Appendix A.
tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are presented in Appendix C.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) Tower was modified in accordance with the referenced modification documents.
5) The rebar in the pad portion of the original foundation is unknown. In this analysis, it is assumed that the rebar at the top and bottom of the pad is consistent with the rebar added per PMI document \#5135928 (\#7 spaced 12" O.C.).
6) The monopole manufacturer drawings are not available at the time of this analysis. Therefore, we have assumed the steel yield strength(s) (Fy) as per the following:
a) Anchor rods: ASTM A615 (Fu = $100 \mathrm{ksi}, \mathrm{Fy}=75 \mathrm{ksi}$)
b) Pole Shaft: ASTM A572 Gr 65
c) Base Plate: ASTM A572 Gr 50
7) The existing base plate grout was considered in this analysis. Grout must be maintained and inspected periodically and must be replaced if damaged or cracked. Refer to Crown Castle document ENG-PRC-10012, Base Plate Grout Repair.
This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.
8) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
151-146	Pole	TP18.526×17.59x0.2188	Pole	5.6\%	Pass
146-141	Pole	TP19.461×18.526x0.2188	Pole	11.9\%	Pass
141-136	Pole	TP20.397x19.461x0.2188	Pole	23.1\%	Pass
136-131	Pole	TP21.332×20.397×0.2188	Pole	33.7\%	Pass
131-126	Pole	TP22.268×21.332x0.2188	Pole	45.6\%	Pass
126-125.5	Pole	TP22.361x22.268x0.2188	Pole	46.7\%	Pass
125.5-125.25	Pole + Reinf.	TP22.408×22.361x0.3626	Reinf. 11 Tension Rupture	40.8\%	Pass
125.25-120.25	Pole + Reinf.	TP23.343x22.408x0.3563	Reinf. 11 Tension Rupture	51.2\%	Pass
120.25-118.5	Pole + Reinf.	TP23.671x23.343x0.3563	Reinf. 11 Tension Rupture	54.8\%	Pass
118.5-118.25	Pole + Reinf.	TP23.718x23.671x0.6438	Reinf. 9 Bolt-Shaft Bearing	33.5\%	Pass
118.25-117.5	Pole + Reinf.	TP23.858×23.718x0.6438	Reinf. 9 Tension Rupture	33.7\%	Pass
117.5-117.25	Pole + Reinf.	TP23.905×23.858×0.4938	Reinf. 9 Tension Rupture	42.9\%	Pass
117.25-112.25	Pole + Reinf.	TP24.84×23.905×0.4813	Reinf. 9 Tension Rupture	50.4\%	Pass
112.25-107.25	Pole + Reinf.	TP25.776x24.84x0.4688	Reinf. 9 Tension Rupture	57.4\%	Pass
107.25-102.25	Pole + Reinf.	TP26.711 25.776×0.4563	Reinf. 9 Tension Rupture	63.8\%	Pass
102.25-100.92	Pole + Reinf.	TP27.6x26.711×0.4563	Reinf. 9 Tension Rupture	65.4\%	Pass
100.92-95.92	Pole + Reinf	TP27.459x26.523x0.55	Reinf. 9 Tension Rupture	60.5\%	Pass
95.92-92.5	Pole + Reinf.	TP28.098×27.459x0.55	Reinf. 9 Tension Rupture	63.6\%	Pass
92.5-92.25	Pole + Reinf.	TP28.145x28.098×0.55	Reinf. 8 Tension Rupture	63.8\%	Pass
92.25-87.25	Pole + Reinf.	TP29.08×28.145x0.5375	Reinf. 8 Tension Rupture	67.9\%	Pass
87.25-87	Pole + Reinf.	TP29.127×29.08×0.625	Reinf. 7 Tension Rupture	58.4\%	Pass
87-82	Pole + Reinf.	TP30.063×29.127×0.6125	Reinf. 7 Tension Rupture	61.9\%	Pass
82-77	Pole + Reinf.	TP30.998×30.063×0.6	Reinf. 7 Tension Rupture	65.2\%	Pass
77-72	Pole + Reinf.	TP31.934×30.998×0.5875	Reinf. 7 Tension Rupture	68.2\%	Pass
72-67	Pole + Reinf.	TP32.869×31.934×0.575	Reinf. 7 Tension Rupture	71.1\%	Pass

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
67-63.25	Pole + Reinf	TP33.571×32.869×0.575	Reinf. 7 Tension Rupture	73.1\%	Pass
63.25-63	Pole + Reinf.	TP33.618x33.571x0.575	Reinf. 6 Tension Rupture	73.3\%	Pass
63-58	Pole + Reinf.	TP34.553×33.618×0.5625	Reinf. 6 Tension Rupture	75.8\%	Pass
58-56.75	Pole + Reinf.	TP34.787x34.553x0.5625	Reinf. 6 Tension Rupture	76.4\%	Pass
56.75-56.5	Pole + Reinf.	TP34.834×34.787x0.6375	Reinf. 5 Bolt Shear	66.4\%	Pass
56.5-52	Pole + Reinf.	TP36.518x34.834×0.6375	Reinf. 5 Compression	66.1\%	Pass
52-47	Pole + Reinf.	TP35.987×35.051×0.7	Reinf. 5 Compression	63.6\%	Pass
47-42	Pole + Reinf.	TP36.922x35.987x0.6875	Reinf. 5 Compression	65.4\%	Pass
42-37	Pole + Reinf.	TP37.858×36.922×0.675	Reinf. 5 Compression	67.0\%	Pass
37-34.25	Pole + Reinf.	TP38.372x37.858×0.675	Reinf. 5 Bolt Shear	70.3\%	Pass
34.25-34	Pole + Reinf.	TP38.419×38.372×0.675	Reinf. 4 Bolt Shear	70.4\%	Pass
34-29	Pole + Reinf.	TP39.354×38.419x0.6625	Reinf. 4 Compression	69.4\%	Pass
29-26.75	Pole + Reinf.	TP39.775x39.354×0.6625	Reinf. 4 Bolt Shear	72.6\%	Pass
26.75-26.5	Pole + Reinf.	TP39.822x39.775×0.6625	Reinf. 1 Bolt Shear	72.7\%	Pass
26.5-21.5	Pole + Reinf.	TP40.757x39.822x0.65	Reinf. 1 Compression	71.5\%	Pass
21.5-16.75	Pole + Reinf.	TP41.646x40.757x0.65	Reinf. 1 Compression	72.8\%	Pass
16.75-16.5	Pole + Reinf.	TP41.693x41.646x0.7625	Reinf. 2 Compression	66.9\%	Pass
16.5-14.25	Pole + Reinf.	TP42.114×41.693×0.7625	Reinf. 2 Compression	67.5\%	Pass
14.25-14	Pole + Reinf.	TP42.161×42.114×0.725	Reinf. 2 Compression	67.9\%	Pass
14-9	Pole + Reinf.	TP43.096x42.161×0.7125	Reinf. 2 Compression	69.1\%	Pass
9-4.25	Pole + Reinf.	TP43.985x43.096x0.7125	Reinf. 2 Bolt Shear	72.7\%	Pass
4.25-4	Pole + Reinf.	TP44.032×43.985×0.6	Reinf. 10 Connection	74.0\%	Pass
4-0	Pole + Reinf.	TP44.78×44.032×0.6	Reinf. 10 Connection	74.8\%	Pass
				Summary	
			Pole	64.6\%	Pass
			Reinforcement	76.4\%	Pass
			Overall	76.4\%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail		
1	Anchor Rods	0	60.6	Pass		
1	Base Plate	0	56.6	Pass		
$\mathbf{1}$	Base Foundation Steel	0	47.2	Pass		
$\mathbf{1}$	Base Foundation Soil Interaction	0	32.3	Pass		
Structure Rating (max from all components)						$\mathbf{7 6 . 4 \%}$

Notes:

- All structural ratings are per TIA-222-H Section 15.5

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

 TNXTOWER OUTPUT

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

1) Tower is located in New Haven County, Connecticut.
2) Tower base elevation above sea level: 741.00 ft .
3) Basic wind speed of 125.00 mph .
4) Risk Category II.
5) Exposure Category B.
6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
7) Topographic Category: 1.
8) Crest Height: 0.00 ft .
9) Nominal ice thickness of 1.5000 in .
10) Ice thickness is considered to increase with height.
11) Ice density of 56.00 pcf.
12) A wind speed of 50.00 mph is used in combination with ice.
13) Temperature drop of $50.00^{\circ} \mathrm{F}$.
14) Deflections calculated using a wind speed of 60.00 mph .
15) TIA-222-H Annex S.
16) A non-linear (P-delta) analysis was used.
17) Pressures are calculated at each section.
18) Stress ratio used in pole design is 1.05 .
19) Tower analysis based on target reliabilities in accordance with Annex S.
20) Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95$, $\mathrm{K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg L.oads As Uniform

Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ } \sqrt{ }$ Use Clear Spans For Wind Area
Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC .6D+W Combination
Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL./ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
\checkmark Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist.
Exemption
Use TIA-222-H Tension Splice
Exemption
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No
Appurtenances
Outside and Inside Corner Radii Are
Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade	
L 1	$151.00-146.00$	5.00	0.00	12	17.5900	18.5255	0.2188	0.8752	A572-65 $(65 \mathrm{ksi})$	
L2	$146.00-141.00$	5.00	0.00	12	18.5255	19.4610	0.2188	0.8752	A572-65 $(65 \mathrm{ksi})$	
L3	$141.00-136.00$	5.00	0.00	12	19.4610	20.3965	0.2188	0.8752	A572-65 $(65 \mathrm{ksi})$	
L4	$136.00-131.00$	5.00	0.00	12	20.3965	21.3321	0.2188	0.8752	A572-65	
$(65 \mathrm{ksi})$										

151 Ft Monopole Tower Structural Analysis

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L5	131.00-126.00	5.00	0.00	12	21.3321	22.2676	0.2188	0.8752	$\begin{gathered} \hline \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L6	126.00-125.50	0.50	0.00	12	22.2676	22.3611	0.2188	0.8752	A572-65 (65 ksi)
L7	125.50-125.25	0.25	0.00	12	22.3611	22.4079	0.3625	1.4502	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L8	125.25-120.25	5.00	0.00	12	22.4079	23.3434	0.3563	1.4252	A572-65 (65 ksi)
L9	120.25-118.50	1.75	0.00	12	23.3434	23.6708	0.3563	1.4252	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L10	118.50-118.25	0.25	0.00	12	23.6708	23.7176	0.6438	2.5752	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L11	118.25-117.50	0.75	0.00	12	23.7176	23.8579	0.6438	2.5752	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L12	117.50-117.25	0.25	0.00	12	23.8579	23.9047	0.4938	1.9752	A572-65 (65 ksi)
L13	117.25-112.25	5.00	0.00	12	23.9047	24.8402	0.4813	1.9252	A572-65 (65 ksi)
L14	112.25-107.25	5.00	0.00	12	24.8402	25.7757	0.4688	1.8752	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L15	107.25-102.25	5.00	0.00	12	25.7757	26.7113	0.4563	1.8252	A572-65 (65 ksi)
L16	102.25-97.50	4.75	3.42	12	26.7113	27.6000	0.4563	1.8252	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L17	97.50-95.92	5.00	0.00	12	26.5233	27.4588	0.5500	2.2000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L. 18	95.92-92.50	3.42	0.00	12	27.4588	28.0980	0.5500	2.2000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L19	92.50-92.25	0.25	0.00	12	28.0980	28.1447	0.5500	2.2000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L20	92.25-87.25	5.00	0.00	12	28.1447	29.0803	0.5375	2.1500	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L21	87.25-87.00	0.25	0.00	12	29.0803	29.1271	0.6250	2.5000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L22	87.00-82.00	5.00	0.00	12	29.1271	30.0626	0.6125	2.4500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L23	82.00-77.00	5.00	0.00	12	30.0626	30.9981	0.6000	2.4000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L24	77.00-72.00	5.00	0.00	12	30.9981	31.9337	0.5875	2.3500	A572-65 (65 ksi)
L25	72.00-67.00	5.00	0.00	12	31.9337	32.8692	0.5750	2.3000	A572-65 (65 ksi)
L26	67.00-63.25	3.75	0.00	12	32.8692	33.5709	0.5750	2.3000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L27	63.25-63.00	0.25	0.00	12	33.5709	33.6176	0.5750	2.3000	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L28	63.00-58.00	5.00	0.00	12	33.6176	34.5532	0.5625	2.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L29	58.00-56.75	1.25	0.00	12	34.5532	34.7871	0.5625	2.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L30	56.75-56.50	0.25	0.00	12	34.7871	34.8338	0.6375	2.5500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L31	56.50-47.50	9.00	4.50	12	34.8338	36.5180	0.6375	2.5500	A572-65 (65 ksi)
L32	47.50-47.00	5.00	0.00	12	35.0510	35.9865	0.7000	2.8000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L33	47.00-42.00	5.00	0.00	12	35.9865	36.9220	0.6875	2.7500	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L34	42.00-37.00	5.00	0.00	12	36.9220	37.8575	0.6750	2.7000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L35	37.00-34.25	2.75	0.00	12	37.8575	38.3718	0.6750	2.7000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L36	34.25-34.00	0.25	0.00	12	38.3718	38.4186	0.6750	2.7000	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L37	34.00-29.00	5.00	0.00	12	38.4186	39.3541	0.6625	2.6500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L38	29.00-26.75	2.25	0.00	12	39.3541	39.7751	0.6625	2.6500	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L39	26.75-26.50	0.25	0.00	12	39.7751	39.8219	0.6625	2.6500	A572-65

tnxTower Report - version 8.0.5.0

Section	Elevation $f t$	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L40	26.50-21.50	5.00	0.00	12	39.8219	40.7574	0.6500	2.6000	(65 ksi)
									A572-65
									(65 ksi)
L41	21.50-16.75	4.75	0.00	12	40.7574	41.6461	0.6500	2.6000	A572-65
									(65 ksi)
L. 42	16.75-16.50	0.25	0.00	12	41.6461	41.6929	0.7625	3.0500	A572-65
									(65 ksi)
L43	16.50-14.25	2.25	0.00	12	41.6929	42.1138	0.7625	3.0500	A572-65
									(65 ksi)
L44	14.25-14.00	0.25	0.00	12	42.1138	42.1606	0.7250	2.9000	A572-65
									(65 ksi)
L45	14.00-9.00	5.00	0.00	12	42.1606	43.0961	0.7125	2.8500	A572-65
									(65 ksi)
L46	9.00-4.25	4.75	0.00	12	43.0961	43.9848	0.7125	2.8500	A572-65
									(65 ksi)
L47	4.25-4.00	0.25	0.00	12	43.9848	44.0316	0.6000	2.4000	A572-65
									(65 ksi)
L48	4.00-0.00	4.00		12	44.0316	44.7800	0.6000	2.4000	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	$\frac{1}{i n^{4}}$	$\begin{gathered} r \\ \text { in } \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \text { in } \end{aligned}$	$\frac{1 / C}{i n^{3}}$	$\begin{gathered} J \\ i n^{4} \end{gathered}$	$\begin{aligned} & 1 / / Q \\ & i n^{2} \end{aligned}$	$\begin{aligned} & w \\ & \text { in } \end{aligned}$	w / t
L1	18.1333	12.2386	471.3881	6.2189	9.1116	51.7348	955.1601	6.0235	4.1277	18.865
	19.1018	12.8977	551.7220	6.5538	9.5962	57.4937	1117.9384	6.3479	4.3785	20.011
L2	19.1018	12.8977	551.7220	6.5538	9.5962	57.4937	1117.9384	6.3479	4.3785	20.011
	20.0704	13.5568	640.7007	6.8887	10.0808	63.5565	1298.2334	6.6723	4.6292	21.157
13	20.0704	13.5568	640.7007	6.8887	10.0808	63.5565	1298.2334	6.6723	4.6292	21.157
	21.0389	14.2159	738.7659	7.2236	10.5654	69.9231	1496.9400	6.9967	4.8799	22.303
14	21.0389	14.2159	738.7659	7.2236	10.5654	69.9231	1496.9400	6.9967	4.8799	22.303
	22.0074	14.8750	846.3593	7.5585	11.0500	76.5936	1714.9535	7.3210	5.1306	23.449
15	22.0074	14.8750	846.3593	7.5585	11.0500	76.5936	1714.9535	7.3210	5.1306	23.449
	22.9759	15.5342	963.9228	7.8935	11.5346	83.5679	1953.1689	7.6454	5.3813	24.595
16	22.9759	15.5342	963.9228	7.8935	11.5346	83.5679	1953.1689	7.6454	5.3813	24.595
	23.0728	15.6001	976.2445	7.9270	11.5831	84.2821	1978.1360	7.6779	5.4064	24.709
L7	23.0220	25.6814	1586.3287	7.8755	11.5831	136.9525	3214.3320	12.6396	5.0211	13.85
	23.0705	25.7360	1596.4693	7.8922	11.6073	137.5402	3234.8795	12.6665	5.0337	13.884
L8	23.0727	25.2995	1570.2825	7.8945	11.6073	135.2842	3181.8181	12.4516	5.0504	14.175
	24.0412	26.3728	1778.7333	8.2294	12.0919	147.1014	3604.1959	12.9799	5.3012	14.878
L9	24.0412	26.3728	1778.7333	8.2294	12.0919	147.1014	3604.1959	12.9799	5.3012	14.878
	24.3802	26.7484	1855.8303	8.3466	12.2615	151.3543	3760.4153	13.1648	5.3889	15.125
L. 10	24.2787	47.7359	3230.7786	8.2437	12.2615	263.4898	6546.4334	23.4942	4.6184	7.174
	24.3272	47.8329	3250.5071	8.2604	12.2857	264.5759	6586.4086	23.5419	4.6309	7.193
L11	24.3272	47.8329	3250.5071	8.2604	12.2857	264.5759	6586.4086	23.5419	4.6309	7.193
	24.4725	48.1238	3310.1739	8.3107	12.3584	267.8478	6707.3098	23.6850	4.6685	7.252
L12	24.5254	37.1498	2588.4664	8.3644	12.3584	209.4497	5244.9346	18.2840	5.0705	10.268
	24.5738	37.2242	2604.0441	8.3811	12.3826	210.2979	5276.4993	18.3206	5.0831	10.294
L13	24.5782	36.3013	2542.1934	8.3856	12.3826	205.3029	5151.1730	17.8664	5.1166	10.631
	25.5467	37.7511	2859.1208	8.7205	12.8672	222.2015	5793.3538	18.5800	5.3673	11.152
L14	25.5511	36.7896	2789.1550	8.7250	12.8672	216.7640	5651.5843	18.1067	5.4008	11.52
	26.5196	38.2017	3122.8328	9.0599	13.3518	233.8879	6327.7058	18.8017	5.6515	12.055
L15	26.5241	37.2015	3044.0724	9.0644	13.3518	227.9890	6168.1159	18.3095	5.6850	12.459
	27.4926	38.5760	3394.1142	9.3993	13.8364	245.3027	6877.3957	18.9860	5.9357	13.008
L. 16	27.4926	38.5760	3394.1142	9.3993	13.8364	245.3027	6877.3957	18.9860	5.9357	13.008
	28.4127	39.8819	3750.5886	9.7174	14.2968	262.3376	7599.7094	19.6286	6.1739	13.53
L17	27.9266	45.9986	3960.8075	9.2984	13.7390	288.2884	8025.6699	22.6391	5.6342	10.244
	28.2334	47.6555	4404.4058	9.6333	14.2237	309.6536	8924.5203	23.4546	5.8850	10.7
L18	28.2334	47.6555	4404.4058	9.6333	14.2237	309.6536	8924.5203	23.4546	5.8850	10.7
	28.8951	48.7874	4725.7713	9.8622	14.5547	324.6895	9575.6939	24.0117	6.0563	11.011
L19	28.8951	48.7874	4725.7713	9.8622	14.5547	324.6895	9575.6939	24.0117	6.0563	11.011
	28.9436	48.8703	4749.8856	9.8789	14.5790	325.8039	9624.5559	24.0525	6.0688	11.034
L20	28.9480	47.7812	4648.2446	9.8834	14.5790	318.8321	9418.6039	23.5165	6.1023	11.353
	29.9165	49.4004	5136.9910	10.2183	15.0636	341.0206	$\begin{gathered} 10408.936 \\ 5 \end{gathered}$	24.3134	6.3530	11.82
L21	29.8856	57.2662	5918.4793	10.1870	15.0636	392.8999	$\begin{gathered} 11992.443 \\ 6 \end{gathered}$	28.1847	6.1185	9.79

Section	Tip Dia. in	Area $i n^{2}$	$\begin{gathered} i n^{4} \end{gathered}$	$\begin{gathered} r \\ i n \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \text { in } \end{aligned}$	$\begin{aligned} & I / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{aligned} & I t / Q \\ & i n^{2} \end{aligned}$	$\begin{aligned} & w \\ & i n \end{aligned}$	w / t
L22	29.9341	57.3604	5947.7151	10.2037	15.0878	394.2066	$\begin{gathered} 12051.683 \\ 2 \end{gathered}$	28.2310	6.1310	9.81
	29.9385	56.2378	5836.4330	10.2082	15.0878	386.8310	$\begin{gathered} 11826.195 \\ 6 \end{gathered}$	27.6785	6.1645	10.065
L23	30.9070	58.0829	6429.9530	10.5431	15.5724	412.9064	$\begin{gathered} 13028.827 \\ 9 \end{gathered}$	28.5867	6.4153	10.474
	30.9114	56.9217	6306.7533	10.5476	15.5724	404.9950	$\begin{gathered} 12779.191 \\ 9 \end{gathered}$	28.0151	6.4488	10.748
L24	31.8800	58.7292	6926.8161	10.8825	16.0570	431.3883	$\begin{gathered} 14035.607 \\ 4 \end{gathered}$	28.9047	6.6995	11.166
	31.8844	57.5293	6790.8780	10.8870	16.0570	422.9224	$\begin{gathered} 13760.159 \\ 9 \end{gathered}$	28.3142	6.7330	11.46
L. 25	32.8529	59.2991	7437.0912	11.2219	16.5416	449.5982	$\begin{gathered} 15069.563 \\ 2 \end{gathered}$	29.1852	6.9837	11.887
	32.8573	58.0606	7287.5666	11.2264	16.5416	440.5589	$\begin{gathered} 14766.585 \\ 6 \end{gathered}$	28.5756	7.0172	12.204
L26	33.8259	59.7927	7959.4601	11.5613	17.0263	467.4817	$\begin{gathered} 16128.024 \\ 0 \end{gathered}$	29.4282	7.2679	12.64
	33.8259	59.7927	7959.4601	11.5613	17.0263	467.4817	$\begin{gathered} 16128.024 \\ 0 \end{gathered}$	29.4282	7.2679	12.64
L27	34.5523	61.0918	8489.6181	11.8125	17.3897	488.1979	$\begin{gathered} 17202.267 \\ 9 \end{gathered}$	30.0675	7.4560	12.967
	34.5523	61.0918	8489.6181	11.8125	17.3897	488.1979	$\begin{gathered} 17202.267 \\ 9 \end{gathered}$	30.0675	7.4560	12.967
L28	34.6007	61.1784	8525.7755	11.8293	17.4139	489.5949	$\begin{gathered} 17275.532 \\ 7 \end{gathered}$	30.1102	7.4685	12.989
	34.6051 35.5737	59.8711	8349.9017	11.8337	17.4139	479.4953	$\begin{gathered} 16919.164 \\ 6 \end{gathered}$	29.4667	7.5020	13.337
L29	35.5737 35.5737	61.5656	9079.1230	12.1687	17.8985	507.2547	$\begin{gathered} 18396.764 \\ 7 \end{gathered}$	30.3007	7.7528	13.783
	35.5737	61.5656	9079.1230	12.1687	17.8985	507.2547	$\begin{gathered} 18396.764 \\ 7 \end{gathered}$	30.3007	7.7528	13.783
L30	35.8158	61.9892	9267.8319	12.2524	18.0197	514.3167	$\begin{gathered} 18779.140 \\ 1 \end{gathered}$	30.5092	7.8154	13.894
	35.7893 35.8378	70.1005 70.1065	$\begin{gathered} 10434.641 \\ 4 \end{gathered}$	12.2255	18.0197	579.0686	$\begin{gathered} 21143.412 \\ 5 \end{gathered}$	34.5013	7.6144	11.944
L31	35.8378	70.1965	$\begin{gathered} 10477.579 \\ 3 \end{gathered}$	12.2423	18.0439	580.6706	$\begin{gathered} 21230.416 \\ 2 \end{gathered}$	34.5486	7.6270	11.964
	35.8378	70.1965	$\begin{gathered} 10477.579 \\ 3 \end{gathered}$	12.2423	18.0439	580.6706	$\begin{gathered} 21230.416 \\ 2 \end{gathered}$	34.5486	7.6270	11.964
L32	37.5813	73.6537	$\begin{gathered} 12103.123 \\ 6 \end{gathered}$	12.8452	18.9163	639.8243	$\begin{gathered} 24524.209 \\ 8 \end{gathered}$	36.2501	8.0783	12.672
	36.9122	77.4272	$\begin{gathered} 11661.611 \\ 3 \end{gathered}$	12.2977	18.1564	642.2856	$\begin{gathered} 23629.586 \\ 1 \end{gathered}$	38.1073	7.5177	10.74
L33	37.0090	79.5358	$\begin{gathered} 12640.552 \\ 2 \end{gathered}$	12.6326	18.6410	678.1044	$\begin{gathered} 25613.185 \\ 9 \end{gathered}$	39.1451	7.7684	11.098
	37.0135	78.1432	$\begin{gathered} 12428.026 \\ 4 \end{gathered}$	12.6370	18.6410	666.7034	$\begin{gathered} 25182.550 \\ 8 \end{gathered}$	38.4597	7.8019	11.348
L34	37.9820	80.2141	$\begin{gathered} 13442.550 \\ 4 \end{gathered}$	12.9720	19.1256	702.8564	$\begin{gathered} 27238.251 \\ 5 \end{gathered}$	39.4790	8.0526	11.713
	37.9864	78.7829	$\begin{gathered} 13211.804 \\ 2 \end{gathered}$	12.9764	19.1256	690.7916	$\begin{gathered} 26770.697 \\ 1 \end{gathered}$	38.7745	8.0861	11.979
L35	38.9549	80.8162	$\begin{gathered} 14261.381 \\ 0 \end{gathered}$	13.3113	19.6102	727.2434	$\begin{gathered} 28897.424 \\ 4 \end{gathered}$	39.7753	8.3368	12.351
	38.9549	80.8162	$\begin{gathered} 14261.381 \\ 0 \end{gathered}$	13.3113	19.6102	727.2434	$\begin{gathered} 28897.424 \\ 4 \end{gathered}$	39.7753	8.3368	12.351
L36	39.4873	81.9341	$\begin{gathered} 14861.427 \\ 8 \end{gathered}$	13.4955	19.8766	747.6841	$\begin{gathered} 30113.281 \\ 9 \end{gathered}$	40.3255	8.4747	12.555
	39.4873	81.9341	$\begin{gathered} 14861.427 \\ 8 \end{gathered}$	13.4955	19.8766	747.6841	$\begin{gathered} 30113.281 \\ 9 \end{gathered}$	40.3255	8.4747	12.555
L37	39.5358	82.0358	$\begin{gathered} 14916.817 \\ 4 \end{gathered}$	13.5122	19.9008	749.5570	$\begin{gathered} 30225.516 \\ 2 \end{gathered}$	40.3755	8.4872	12.574
	39.5402	80.5432	$\begin{gathered} 14655.131 \\ 0 \end{gathered}$	13.5167	19.9008	736.4075	$\begin{gathered} 29695.268 \\ 5 \end{gathered}$	39.6409	8.5207	12.861
L38	40.5087	82.5389	$\begin{gathered} 15771.691 \\ 9 \end{gathered}$	13.8516	20.3854	773.6747	$\begin{gathered} 31957.723 \\ 8 \end{gathered}$	40.6231	8.7714	13.24
	40.5087	82.5389	$\begin{gathered} 15771.691 \\ 9 \end{gathered}$	13.8516	20.3854	773.6747	$\begin{gathered} 31957.723 \\ 8 \end{gathered}$	40.6231	8.7714	13.24
	40.9445	83.4369	$\begin{gathered} 16292.112 \\ 5 \end{gathered}$	14.0023	20.6035	790.7450	$\begin{gathered} 33012.236 \\ 9 \end{gathered}$	41.0651	8.8842	13.41

tnxTower Report - version 8.0.5.0

Section	Tip Dia. in	Area $i n^{2}$	1	in	$\begin{aligned} & C \\ & \text { in } \end{aligned}$	$\begin{aligned} & 1 / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{gathered} I t / Q \\ i n^{2} \end{gathered}$	$\begin{aligned} & w \\ & \text { in } \end{aligned}$	W/t
L39	40.9445	83.4369	$\begin{gathered} 16292.112 \\ 5 \end{gathered}$	14.0023	20.6035	790.7450	$\begin{gathered} 33012.236 \\ 9 \end{gathered}$	41.0651	8.8842	13.41
	40.9929	83.5367	$\begin{gathered} 16350.633 \\ 8 \end{gathered}$	14.0191	20.6277	792.6533	$\begin{gathered} 33130.816 \\ 9 \end{gathered}$	41.1142	8.8968	13.429
L40	40.9973	81.9867	$\begin{gathered} 16057.498 \\ 5 \end{gathered}$	14.0235	20.6277	778.4425	$\begin{gathered} 32536.845 \\ 3 \end{gathered}$	40.3514	8.9303	13.739
	41.9658	83.9447	$\begin{gathered} 17235.641 \\ 4 \end{gathered}$	14.3584	21.1123	816.3786	$\begin{gathered} 34924.082 \\ 2 \end{gathered}$	41.3150	9.1810	14.125
L41	41.9658	83.9447	$\begin{gathered} 17235.641 \\ 4 \end{gathered}$	14.3584	21.1123	816.3786	$\begin{gathered} 34924.082 \\ 2 \end{gathered}$	41.3150	9.1810	14.125
	42.8859	85.8048	$\begin{gathered} 18406.969 \\ 6 \end{gathered}$	14.6766	21.5727	853.2541	$\begin{gathered} 37297.510 \\ 8 \end{gathered}$	42.2305	9.4192	14.491
L42	42.8462	100.3794	$\begin{gathered} 21415.516 \\ 1 \end{gathered}$	14.6363	21.5727	992.7151	$\begin{gathered} 43393.641 \\ 7 \end{gathered}$	49.4037	9.1177	11.958
	42.8946	100.4943	$\begin{gathered} 21489.104 \\ 6 \end{gathered}$	14.6531	21.5969	995.0087	$\begin{gathered} 43542.752 \\ 0 \end{gathered}$	49.4602	9.1302	11.974
L43	42.8946	100.4943	$\begin{gathered} 21489.104 \\ 6 \end{gathered}$	14.6531	21.5969	995.0087	$\begin{gathered} 43542.752 \\ 0 \end{gathered}$	49.4602	9.1302	11.974
	43.3305	101.5279	$\begin{gathered} 22159.001 \\ 9 \end{gathered}$	14.8038	21.8150	1015.7707	$\begin{gathered} 44900.145 \\ 6 \end{gathered}$	49.9689	9.2430	12.122
L44	43.3437	96.6222	$\begin{gathered} 21126.587 \\ 6 \end{gathered}$	14.8172	21.8150	968.4447	$\begin{gathered} 42808.194 \\ 3 \end{gathered}$	47.5545	9.3435	12.888
	43.3921	96.7314	$\begin{gathered} 21198.296 \\ 2 \end{gathered}$	14.8339	21.8392	970.6538	$\begin{gathered} 42953.495 \\ 2 \end{gathered}$	47.6083	9.3560	12.905
L45	43.3965	95.0923	$\begin{gathered} 20851.668 \\ 1 \end{gathered}$	14.8384	21.8392	954.7819	$\begin{gathered} 42251.132 \\ 7 \end{gathered}$	46.8015	9.3895	13.178
	44.3650	97.2386	$\begin{gathered} 22295.661 \\ 5 \end{gathered}$	15.1733	22.3238	998.7403	$\begin{gathered} 45177.054 \\ 9 \end{gathered}$	47.8579	9.6403	13.53
L46	44.3650	97.2386	$\begin{gathered} 22295.661 \\ 5 \end{gathered}$	15.1733	22.3238	998.7403	$\begin{gathered} 45177.054 \\ 9 \end{gathered}$	47.8579	9.6403	13.53
	45.2851	99.2775	$\begin{gathered} 23727.798 \\ 7 \end{gathered}$	15.4915	22.7841	1041.4173	$\begin{gathered} 48078.953 \\ 0 \end{gathered}$	48.8614	9.8784	13.864
L47	45.3248	83.8195	$\begin{gathered} 20137.552 \\ 7 \end{gathered}$	15.5318	22.7841	883.8408	$\begin{gathered} 40804.141 \\ 3 \end{gathered}$	41.2534	10.1799	16.967
	45.3732	83.9099	$\begin{gathered} 20202.756 \\ 1 \end{gathered}$	15.5485	22.8084	885.7606	$\begin{gathered} 40936.261 \\ 2 \end{gathered}$	41.2979	10.1925	16.987
L48	45.3732	83.9099	$\begin{gathered} 20202.756 \\ 1 \end{gathered}$	15.5485	22.8084	885.7606	$\begin{gathered} 40936.261 \\ 2 \end{gathered}$	41.2979	10.1925	16.987
	46.1480	85.3558	$\begin{gathered} 21265.236 \\ 0 \\ \hline \end{gathered}$	15.8164	23.1960	916.7615	$\begin{gathered} 43089.133 \\ 4 \end{gathered}$	42.0095	10.3930	17.322

$\left.\begin{array}{cccccc}\hline \begin{array}{c}\text { Tower } \\ \text { Elevation } \\ \text { ft }\end{array} & \begin{array}{c}\text { Gusset } \\ \text { Area } \\ \text { (per face) } \\ f^{2}\end{array} & \begin{array}{c}\text { Gusset } \\ \text { Thickness } \\ \text { in }\end{array} & \text { Gusset GradeAdjust. Factor }\end{array} \begin{array}{c}\text { Adjust. } \\ \text { Factor }\end{array}\right)$

Tower Elevation ft	Gusset Area (perface) f^{2}	Gusset Thickness in	Gusset Grade Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Boit Spacing Diagonals in	Double Angie Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \hline \text { L12 117.50- } \\ 117.25 \end{gathered}$			1	1	0.932549			
$\begin{gathered} \text { L13 117.25- } \\ 112.25 \end{gathered}$			1	1	0.936991			
$\begin{gathered} \text { L14 112.25- } \\ 107.25 \end{gathered}$			1	1	0.943192			
$\begin{gathered} \text { L15 107.25- } \\ 102.25 \end{gathered}$			1	1	0.951126			
$\begin{gathered} \text { L16 102.25- } \\ 97.50 \end{gathered}$			1	1	0.946685			.
$\begin{gathered} \mathrm{L} 1797.50- \\ 95.92 \end{gathered}$			1	1	0.951449			
$\begin{gathered} \text { L18 95.92- } \\ 92.50 \end{gathered}$			1	1	0.942557			
$\begin{gathered} \text { L19 92.50- } \\ 92.25 \end{gathered}$			1	1	0.941922			
$\begin{gathered} \mathrm{L} 2092.25- \\ 87.25 \end{gathered}$			1	1	0.95087			
$\begin{gathered} \text { L21 87.25- } \\ 87.00 \end{gathered}$			1	1	0.931036			
$\begin{gathered} \text { L22 87.00- } \\ 82.00 \end{gathered}$			1	1	0.935662			
$\begin{gathered} \llcorner 2382.00- \\ 77.00 \end{gathered}$			1	1	0.941395			
$\begin{gathered} \text { L24 77.00- } \\ 72.00 \end{gathered}$			1	1	0.948222			
$\begin{gathered} \text { L25 72.00- } \\ 67.00 \end{gathered}$			1	1	0.956139			
$\begin{gathered} \text { L26 } 67.00- \\ 63.25 \end{gathered}$			1	1	0.947363			
$\begin{gathered} \text { L27 63.25- } \\ 63.00 \end{gathered}$			1	1	0.946792			
$\begin{gathered} \mathrm{L} 2863.00- \\ 58.00 \end{gathered}$			1	1	0.956128			
$\begin{gathered} \mathrm{L} 2958.00- \\ 56.75 \end{gathered}$			1	1	0.953391			
$\begin{gathered} \text { L30 } 56.75- \\ 56.50 \end{gathered}$			1	1	0.949588			
$\begin{gathered} \text { L31 } 56.50- \\ 47.50 \end{gathered}$			1	1	0.938546			
$\begin{gathered} \text { L32 } 47.50- \\ 47.00 \end{gathered}$			1	1	0.941986			
$\begin{gathered} \text { L33 } 47.00- \\ 42.00 \end{gathered}$			1	1	0.948102			
$\begin{gathered} \mathrm{L} 3442.00- \\ 37.00 \end{gathered}$			1	1	0.955017			
$\begin{gathered} \text { L35 } 37.00- \\ 34.25 \end{gathered}$			1	1	0.949567			
$\begin{gathered} \text { L36 } 34.25- \\ 34.00 \end{gathered}$			1	1	0.949078			
$\begin{gathered} \mathrm{L} 3734.00- \\ 29.00 \end{gathered}$			1	1	0.956979			
$\begin{gathered} \text { L38 } 29.00- \\ 26.75 \end{gathered}$			1	1	0.952771			
$\begin{gathered} \text { L39 } 26.75- \\ 26.50 \end{gathered}$			1	1	0.952309			
$\begin{gathered} \text { L40 } 26.50- \\ 21.50 \end{gathered}$			1	1	0.961137			
$\begin{gathered} \text { L41 } 21.50- \\ 16.75 \end{gathered}$			1	1	0.952808			
$\begin{gathered} \text { L42 16.75- } \\ 16.50 \end{gathered}$			1	1	1.02585			
$\begin{gathered} \text { L43 16.50- } \\ 14.25 \end{gathered}$			1	1	1.02042			
$\begin{gathered} \text { L44 14.25- } \\ 14.00 \end{gathered}$			1	1	0.961601			

151 Ft Monopole Tower Structural Analysis
CCI BU No 841295
Project Number 37519-2490.001.7805, Order 492710, Revision 0

Tower Elevation ft	Gusset Area (perface) $f{ }^{2}$	Gusset Thickness in	Gusset GradeAdjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \hline \text { L45 14.00- } \\ 9.00 \end{gathered}$			1	1	0.968203			
L46 9.00-4.25			1	1	0.959127			
L47 4.25-4.00			1	1	1.0012			
L48 4.00-0.00			1	1	0.994823			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement $f t$	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	$\begin{gathered} \text { Perimete } \\ r \\ \text { in } \end{gathered}$	Weight plf
MP3-03 (L)	B	No	$\begin{gathered} \text { Surface Af } \\ (\mathrm{CaAa}) \end{gathered}$	$\begin{gathered} 125.00- \\ 115.00 \end{gathered}$	1	1	$\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$	4.0600	11.2600	0.00
MP3-03 (L)	A	No	Surface Af (CaAa)	$\begin{gathered} 125.00- \\ 115.00 \\ \hline \end{gathered}$	1	1	$\begin{aligned} & -0.250 \\ & -0.250 \\ & \hline \end{aligned}$	4.0600	11.2600	0.00

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \hline \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & f^{2} / f t \end{aligned}$	Weight plf
$* * *$$* * * * * * * * * * * * * * * * * * * *$$* * * * * * * * *$									
LDF2-50(3/8)	C	No	No	Inside Pole	148.00-0.00	2	No lce	0.00	0.08
							1/2" Ice	0.00	0.08
							1" Ice	0.00	0.08
							2" Ice	0.00	0.08
9776(5/8)	C	No	No	Inside Pole	148.00-0.00	2	No lce	0.00	0.28
							1/2" Ice	0.00	0.28
							1 ' Ice	0.00	0.28
							2" Ice	0.00	0.28
LDF7-50A(1-5/8)	C	No	No	Inside Pole	148.00-0.00	12	No lce	0.00	0.82
							$1 / 2^{1} \text { Ice }$	0.00	0.82
							$1{ }^{\prime \prime}$ ice	0.00	0.82
							2" Ice	0.00	0.82
2" (Nominal) Conduit	C	No	No	Inside Pole	148.00-0.00	1	No Ice	0.00	0.72
							1/2" Ice	0.00	0.72
							1" Ice	0.00	0.72
							2" Ice	0.00	0.72
810921-001(7/8)	C	No	No	Inside Pole	148.00-0.00	2	No Ice	0.00	0.40
							1/2" Ice	0.00	0.40
							1" lce	0.00	0.40
							2" lce	0.00	0.40

L.DF7-50A(1-5/8)	C	No	No	Inside Pole	140.00-0.00	12		0.00	0.82
							$1 / 2^{\prime \prime} \text { lce }$	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
$\begin{aligned} & \text { HB158-1-08U8- } \\ & \text { S8J18(1-5/8) } \end{aligned}$	C	No	No	Inside Pole	140.00-0.00	1	No lce	0.00	1.30
							1/2" Ice	0.00	1.30
							$1{ }^{\prime \prime}$ Ice	0.00	1.30
							2 ' Ice	0.00	1.30
*** ${ }^{*}$									
LDF4-50A(1/2)	C	No	No	Inside Pole	130.00-0.00	1		0.00	0.15
							$1 / 2^{1 "} \text { Ice }$	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
LDF7-50A(1-5/8)	C	No	No	Inside Pole	130.00-0.00	3	No lce	0.00	0.82
							1/2" Ice	0.00	0.82
							$1{ }^{1 \prime}$ Ice	0.00	0.82
							2" Ice	0.00	0.82
$\begin{aligned} & \text { HB114-21U3M12- } \\ & \text { XXXF(1-1/4) } \end{aligned}$	C	No	No	Inside Pole	130.00-0.00	1	No Ice	0.00	1.22
							1/2" Ice	0.00	1.22
							$1^{\prime \prime}$ Ice	0.00	1.22
							2" ice	0.00	1.22

Feed Line/Linear Appurtenances Section Areas

Tower Sectio n	Tower Elevation ft	Face	$\begin{gathered} \overline{A_{R}} \\ f^{2} \end{gathered}$	$\overline{A_{F}}$	$\begin{gathered} C_{A} A_{A} \\ \text { In } F a c e \\ f f t^{2} \\ \hline \end{gathered}$	$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ \text { ft }^{2} \end{gathered}$	$\begin{gathered} \text { Weight } \\ K \end{gathered}$
L1	151.00-146.00	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00

151 Ft Monopole Tower Structural Analysis
Project Number 37519-2490.001.7805, Order 492710, Revision 0

Tower Sectio n	Tower Elevation ft	Face	$\begin{gathered} A_{R} \\ f^{2} \end{gathered}$	A_{F} f^{2}	$\begin{gathered} C_{A} A_{A} \\ \text { In Face } \\ f^{2} \end{gathered}$	$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ {f t^{2}}^{2} \end{gathered}$	Weight K
L2	146.00-141.00	C	0.000	0.000	0.000	0.000	0.02
		A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
L.3	141.00-136.00	C	0.000	0.000	0.000	0.000	0.06
		A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
L4	136.00-131.00	C	0.000	0.000	0.000	0.000	0.10
		A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
L5	131.00-126.00	C	0.000	0.000	0.000	0.000	0.12
		A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
L6	126.00-125.50	C	0.000	0.000	0.000	0.000	0.13
		A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
L7	125.50-125.25	C	0.000	0.000	0.000	0.000	0.01
		A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
L8	125.25-120.25	C	0.000	0.000	0.000	0.000	0.01
		A	0.000	0.000	3.464	0.000	0.00
		B	0.000	0.000	4.836	0.000	0.01
L9	120.25-118.50	C	0.000	0.000	3.464	0.000	0.14
		A	0.000	0.000	2.934	0.000	0.00
		B	0.000	0.000	4.306	0.000	0.01
L10	118.50-118.25	C	0.000	0.000	2.934	0.000	0.05
		A	0.000	0.000	0.419	0.000	0.00
		B	0.000	0.000	0.615	0.000	0.00
L11	118.25-117.50	C	0.000	0.000	0.419	0.000	0.01
		A	0.000	0.000	1.258	0.000	0.00
		B	0.000	0.000	1.846	0.000	0.00
L12	117.50-117.25	C	0.000	0.000	1.258	0.000	0.02
		A	0.000	0.000	0.419	0.000	0.00
		B	0.000	0.000	0.615	0.000	0.00
1.13	117.25-112.25	C	0.000	0.000	0.419	0.000	0.01
		A	0.000	0.000	6.523	0.000	0.00
		B	0.000	0.000	10.443	0.000	0.02
L14	112.25-107.25	C	0.000	0.000	6.523	0.000	0.14
		A	0.000	0.000	5.000	0.000	0.00
		B	0.000	0.000	8.920	0.000	0.02
L15	107.25-102.25	C	0.000	0.000	5.000	0.000	0.14
		A	0.000	0.000	5.000	0.000	0.00
		B	0.000	0.000	8.920	0.000	0.02
L16	102.25-97.50	C	0.000	0.000	5.000	0.000	0.14
		A	0.000	0.000	5.830	0.000	0.00
		B	0.000	0.000	9.554	0.000	0.02
L17	97.50-95.92	C	0.000	0.000	5.830	0.000	0.13
		A	0.000	0.000	3.168	0.000	0.00
		B	0.000	0.000	4.410	0.000	0.01
L18	95.92-92.50	C	0.000	0.000	3.168	0.000	0.04
		A	0.000	0.000	6.832	0.000	0.00
		B	0.000	0.000	9.510	0.000	0.01
L19	92.50-92.25	C	0.000	0.000	6.832	0.000	0.09
		A	0.000	0.000	0.500	0.000	0.00
		B	0.000	0.000	0.696	0.000	0.00
L20	92.25-87.25	C	0.000	0.000	0.500	0.000	0.01
		A	0.000	0.000	10.271	0.000	0.00
		B	0.000	0.000	14.191	0.000	0.02
L21	87.25-87.00	C	0.000	0.000	10.271	0.000	0.14
		A	0.000	0.000	0.521	0.000	0.00
		B	0.000	0.000	0.717	0.000	0.00
122	87.00-82.00	C	0.000	0.000	0.521	0.000	0.01
		A	0.000	0.000	9.997	0.000	0.00
		B	0.000	0.000	13.917	0.000	0.02
L23	82.00-77.00	C	0.000	0.000	9.997	0.000	0.14
		A	0.000	0.000	5.417	0.000	0.00
		B	0.000	0.000	9.337	0.000	0.02
L24	77.00-72.00	C	0.000	0.000	5.417	0.000	0.14
		A	0.000	0.000	5.417	0.000	0.00
		B	0.000	0.000	9.337	0.000	0.02

[^0]151 Ft Monopole Tower Structural Analysis
CCI BU No 841295
Page 17

Tower Sectio n	Tower Elevation ft	Face	$\begin{gathered} A_{R} \\ f t^{2} \end{gathered}$	$\begin{aligned} & A_{F} \\ & f^{2} \end{aligned}$		$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ f^{2} \end{gathered}$	$\begin{gathered} \text { Weight } \\ K \end{gathered}$
L25	72.00-67.00	C	0.000	0.000	5.417	0.000	0.14
		A	0.000	0.000	8.309	0.000	0.00
		B	0.000	0.000	12.229	0.000	0.02
L26	67.00-63.25	C	0.000	0.000	8.309	0.000	0.14
		A	0.000	0.000	8.125	0.000	0.00
		B	0.000	0.000	11.065	0.000	0.01
L27	63.25-63.00	C	0.000	0.000	8.125	0.000	0.10
		A	0.000	0.000	0.542	0.000	0.00
		B	0.000	0.000	0.738	0.000	0.00
L28	63.00-58.00	C	0.000	0.000	0.542	0.000	0.01
		A	0.000	0.000	11.667	0.000	0.00
		B	0.000	0.000	15.587	0.000	0.02
L29	58.00-56.75	C	0.000	0.000	11.667	0.000	0.14
		A	0.000	0.000	3.125	0.000	0.00
		B	0.000	0.000	4.105	0.000	0.00
L30	56.75-56.50	C	0.000	0.000	3.125	0.000	0.03
		A	0.000	0.000	0.625	0.000	0.00
		B	0.000	0.000	0.821	0.000	0.00
L31	56.50-47.50	C	0.000	0.000	0.625	0.000	0.01
		A	0.000	0.000	18.352	0.000	0.00
		B	0.000	0.000	25.409	0.000	0.03
L32	47.50-47.00	C	0.000	0.000	18.352	0.000	0.24
		A	0.000	0.000	0.708	0.000	0.00
		B	0.000	0.000	1.100	0.000	0.00
L33	47.00-42.00	C	0.000	0.000	0.708	0.000	0.01
		A	0.000	0.000	7.083	0.000	0.00
		B	0.000	0.000	11.003	0.000	0.02
L34	42.00-37.00	C	0.000	0.000	7.083	0.000	0.14
		A	0.000	0.000	11.335	0.000	0.00
		B	0.000	0.000	15.255	0.000	0.02
L35	37.00-34.25	C	0.000	0.000	11.335	0.000	0.14
		A	0.000	0.000	7.789	0.000	0.00
		B	0.000	0.000	9.944	0.000	0.01
L36	34.25-34.00	C	0.000	0.000	7.789	0.000	0.07
		A	0.000	0.000	0.708	0.000	0.00
		B	0.000	0.000	0.904	0.000	0.00
L37	34.00-29.00	C	0.000	0.000	0.708	0.000	0.01
		A	0.000	0.000	14.167	0.000	0.00
		B	0.000	0.000	18.087	0.000	0.02
L38	29.00-26.75	C	0.000	0.000	14.167	0.000	0.14
		A	0.000	0.000	6.375	0.000	0.00
		B	0.000	0.000	8.139	0.000	0.01
L39	26.75-26.50	C	0.000	0.000	6.375	0.000	0.06
		A	0.000	0.000	0.708	0.000	0.00
		B	0.000	0.000	0.904	0.000	0.00
L40	26.50-21.50	C	0.000	0.000	0.708	0.000	0.01
		A	0.000	0.000	14.167	0.000	0.00
		B	0.000	0.000	18.087	0.000	0.02
L41	21.50-16.75	C	0.000	0.000	14.167	0.000	0.14
		A	0.000	0.000	12.750	0.000	0.00
		B	0.000	0.000	16.474	0.000	0.02
L42	16.75-16.50	C	0.000	0.000	7.438	0.000	0.13
		A	0.000	0.000	0.708	0.000	0.00
		B	0.000	0.000	0.904	0.000	0.00
L43	16.50-14.25	C	0.000	0.000	0.354	0.000	0.01
		A	0.000	0.000	6.375	0.000	0.00
		B	0.000	0.000	8.139	0.000	0.01
144	14.25-14.00	C	0.000	0.000	3.188	0.000	0.06
		A	0.000	0.000	0.708	0.000	0.00
		B	0.000	0.000	0.904	0.000	0.00
L45	14.00-9.00	C	0.000	0.000	0.354	0.000	0.01
		A	0.000	0.000	12.042	0.000	0.00
		B	0.000	0.000	18.087	0.000	0.02
L46	$9.00-4.25$	C	0.000	0.000	7.083	0.000	0.14
		A	0.000	0.000	6.729	0.000	0.00
		B	0.000	0.000	17.182	0.000	0.02
L47	4.25-4.00	C	0.000	0.000	6.729	0.000	0.13
		A	0.000	0.000	0.354	0.000	0.00
		B	0.000	0.000	0.904	0.000	0.00

[^1]| Tower
 Sectio | Tower
 Elevation
 n | Face | A_{R}
 f^{2} | A_{F} | $C_{A} A_{A}$
 In Face | $C_{A} A_{A}$
 Out Face
 $f l^{2}$ | Weight
 K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | f^{2} | f^{2} | | |
| | | | C | 0.000 | 0.000 | 0.354 | 0.000 |
| | $4.00-0.00$ | A | 0.000 | 0.000 | 4.958 | 0.000 | 0.01 |
| | | B | 0.000 | 0.000 | 13.053 | 0.000 | 0.01 |
| | | C | 0.000 | 0.000 | 4.958 | 0.000 | 0.11 |

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio n	Tower Elevation ft	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	lce Thickness in	$\begin{gathered} A_{R} \\ f^{2} \end{gathered}$	A_{F} f^{2}		$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ f^{2} \end{gathered}$	Weight K
L1	151.00-146.00	A	1.482	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.02
L2	146.00-141.00	A	1.477	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.06
L3	141.00-136.00	A	1.472	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.10
L4	136.00-131.00	A	1.466	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.12
L5	131.00-126.00	A	1.461	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.13
L6	126.00-125.50	A	1.458	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.01
L7	125.50-125.25	A	1.457	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.01
L8	125.25-120.25	A	1.454	0.000	0.000	4.411	0.000	0.05
		B		0.000	0.000	6.762	0.000	0.08
		C		0.000	0.000	4.411	0.000	0.18
L. 9	120.25-118.50	A	1.450	0.000	0.000	3.763	0.000	0.04
		B		0.000	0.000	6.112	0.000	0.07
		C		0.000	0.000	3.763	0.000	0.08
L10	118.50-118.25	A	1.449	0.000	0.000	0.537	0.000	0.01
		B		0.000	0.000	0.873	0.000	0.01
		C		0.000	0.000	0.537	0.000	0.01
L11	118.25-117.50	A	1.448	0.000	0.000	1.612	0.000	0.02
		B		0.000	0.000	2.619	0.000	0.03
		C		0.000	0.000	1.612	0.000	0.04
L12	117.50-117.25	A	1.447	0.000	0.000	0.537	0.000	0.01
		B		0.000	0.000	0.873	0.000	0.01
		C		0.000	0.000	0.537	0.000	0.01
113	117.25-112.25	A	1.444	0.000	0.000	8.378	0.000	0.08
		B		0.000	0.000	15.084	0.000	0.18
		C		0.000	0.000	8.378	0.000	0.21
L14	112.25-107.25	A	1.438	0.000	0.000	6.438	0.000	0.05
		B		0.000	0.000	13.135	0.000	0.15
		C		0.000	0.000	6.438	0.000	0.19
L15	107.25-102.25	A	1.431	0.000	0.000	6.431	0.000	0.05
		B		0.000	0.000	13.120	0.000	0.15
		C		0.000	0.000	6.431	0.000	0.19
L16	102.25-97.50	A	1.424	0.000	0.000	7.465	0.000	0.06
		B		0.000	0.000	13.812	0.000	0.16
		C		0.000	0.000	7.465	0.000	0.19
L17	97.50-95.92	A	1.420	0.000	0.000	4.034	0.000	0.03
		B		0.000	0.000	6.150	0.000	0.07
		C		0.000	0.000	4.034	0.000	0.08
L. 18	95.92-92.50	A	1.416	0.000	0.000	8.690	0.000	0.07
		B		0.000	0.000	13.247	0.000	0.14
		C		0.000	0.000	8.690	0.000	0.17
L19	92.50-92.25	A	1.413	0.000	0.000	0.636	0.000	0.01
		B		0.000	0.000	0.969	0.000	0.01
		C		0.000	0.000	0.636	0.000	0.01
L20	92.25-87.25	A	1.409	0.000	0.000	12.980	0.000	0.11

tnxTower Report - version 8.0.5.0

Tower Sectio n	Tower Elevation ft	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \\ \hline \end{gathered}$	Ice Thickness in	$\begin{gathered} A_{R} \\ {f t^{2}}^{2} \end{gathered}$	$\begin{aligned} & A_{F} \\ & f^{2} \end{aligned}$	$\mathrm{C}_{A} A_{A}$ \ln Face f^{2}	$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ {f t^{2}}^{2} \end{gathered}$	Weight K
L21	87.25-87.00	B	1.405	0.000	0.000	19.641	0.000	0.21
		C		0.000	0.000	12.980	0.000	0.24
		A		0.000	0.000	0.656	0.000	0.01
		B		0.000	0.000	0.989	0.000	0.01
L22	87.00-82.00	C	1.401	0.000	0.000	0.656	0.000	0.01
		A		0.000	0.000	12.584	0.000	0.10
		B		0.000	0.000	19.235	0.000	0.20
L23	82.00-77.00	C	1.392	0.000	0.000	12.584	0.000	0.24
		A		0.000	0.000	6.809	0.000	0.06
		B		0.000	0.000	13.449	0.000	0.15
L24	77.00-72.00	C	1.383	0.000	0.000	6.809	0.000	0.19
		A		0.000	0.000	6.800	0.000	0.06
		B		0.000	0.000	13.429	0.000	0.15
L25	72.00-67.00	C	1.374	0.000	0.000	6.800	0.000	0.19
		A		0.000	0.000	10.400	0.000	0.08
		B		0.000	0.000	17.017	0.000	0.18
L26	67.00-63.25	C	1.365	0.000	0.000	10.400	0.000	0.22
		A		0.000	0.000	10.150	0.000	0.08
		B		0.000	0.000	15.104	0.000	0.15
L27	63.25-63.00	C	1.360	0.000	0.000	10.150	0.000	0.18
		A		0.000	0.000	0.676	0.000	0.01
		B		0.000	0.000	1.006	0.000	0.01
L28	63.00-58.00	C	1.355	0.000	0.000	0.676	0.000	0.01
		A		0.000	0.000	14.348	0.000	0.11
		B		0.000	0.000	20.941	0.000	0.21
L29	58.00-56.75	C	1.348	0.000	0.000	14.348	0.000	0.25
		A		0.000	0.000	3.792	0.000	0.03
		B		0.000	0.000	5.438	0.000	0.05
L30	56.75-56.50	C	1.346	0.000	0.000	3.792	0.000	0.06
		A		0.000	0.000	0.758	0.000	0.01
		B		0.000	0.000	1.087	0.000	0.01
L31	56.50-47.50	C	1.334	0.000	0.000	0.758	0.000	0.01
		A		0.000	0.000	22.108	0.000	0.17
		B		0.000	0.000	33.931	0.000	0.34
L32	47.50-47.00	C	1.322	0.000	0.000	22.108	0.000	0.41
		A		0.000	0.000	0.842	0.000	0.01
		B		0.000	0.000	1.499	0.000	0.02
L33	47.00-42.00	C	1.314	0.000	0.000	0.842	0.000	0.02
		A		0.000	0.000	8.397	0.000	0.06
		B		0.000	0.000	14.939	0.000	0.15
L34	42.00-37.00	C	1.298	0.000	0.000	8.397	0.000	0.20
		A		0.000	0.000	13.154	0.000	0.10
		B		0.000	0.000	19.677	0.000	0.19
L35	37.00-34.25	C	1.285	0.000	0.000	13.154	0.000	0.23
		A		0.000	0.000	8.969	0.000	0.07
		B		0.000	0.000	12.546	0.000	0.12
L36	34.25-34.00	C	1.279	0.000	0.000	8.969	0.000	0.14
		A		0.000	0.000	0.815	0.000	0.01
		B		0.000	0.000	1.140	0.000	0.01
L37	34.00-29.00	C	1.269	0.000	0.000	0.815	0.000	0.01
		A		0.000	0.000	16.214	0.000	0.12
		B		0.000	0.000	22.776	0.000	0.21
L38	29.00-26.75	C	1.254	0.000	0.000	16.290	0.000	0.26
		A		0.000	0.000	7.210	0.000	0.05
		B		0.000	0.000	10.230	0.000	0.09
L39	26.75-26.50	C	1.248	0.000	0.000	7.320	0.000	0.11
		A		0.000	0.000	0.801	0.000	0.01
		B		0.000	0.000	1.136	0.000	0.01
L40	26.50-21.50	C	1.235	0.000	0.000	0.813	0.000	0.01
		A		0.000	0.000	16.003	0.000	0.12
		B		0.000	0.000	22.682	0.000	0.20
L. 41	21.50-16.75	C	1.207	0.000	0.000	16.238	0.000	0.25
		A		0.000	0.000	14.508	0.000	0.10
		B		0.000	0.000	20.807	0.000	0.18
L42	16.75-16.50	C	1.191	0.000	0.000	8.667	0.000	0.19
		A		0.000	0.000	0.806	0.000	0.01
		B		0.000	0.000	1.136	0.000	0.01
		C		0.000	0.000	0.414	0.000	0.01
143	16.50-14.25	A	1.181	0.000	0.000	7.250	0.000	0.05

tnxTower Report - version 8.0.5.0

Tower Sectio n \qquad	Tower Elevation ft	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Ice Thickness in	$\begin{gathered} A_{R} \\ f^{2} \end{gathered}$	$A F$ f^{2}		\qquad	Weight K
L44	14.25-14.00	B	1.171	0.000	0.000	10.213	0.000	0.09
		C		0.000	0.000	3.719	0.000	0.09
		A		0.000	0.000	0.805	0.000	0.01
		B		0.000	0.000	1.133	0.000	0.01
	14.00-9.00	C	1.147	0.000	0.000	0.413	0.000	0.01
L45		A		0.000	0.000	13.665	0.000	0.09
		B		0.000	0.000	22.603	0.000	0.19
	$9.00-4.25$	C	1.086	0.000	0.000	8.231	0.000	0.19
146		A		0.000	0.000	7.606	0.000	0.05
		B		0.000	0.000	21.311	0.000	0.17
	4.25-4.00	C	1.036	0.000	0.000	7.761	0.000	0.18
L47		A		0.000	0.000	0.399	0.000	0.00
		B		0.000	0.000	1.115	0.000	0.01
	4.00-0.00	C	0.963	0.000	0.000	0.406	0.000	0.01
L48		A		0.000	0.000	5.561	0.000	0.03
		B		0.000	0.000	16.076	${ }^{\prime} 0.000$	0.12
		C		0.000	0.000	5.632	0.000	0.14

Feed Line Center of Pressure

Section	Elevation ft	$\begin{gathered} C P_{X} \\ \text { in } \end{gathered}$	$\begin{gathered} C P_{Z} \\ \text { in } \end{gathered}$	$\begin{gathered} C P_{X} \\ \text { ice } \\ \text { in } \end{gathered}$	$\begin{aligned} & C P_{Z} \\ & \text { ice } \end{aligned}$ in
L1	151.00-146.00	0.0000	0.0000	0.0000	0.0000
L2	146.00-141.00	0.0000	0.0000	0.0000	0.0000
L3	141.00-136.00	0.0000	0.0000	0.0000	0.0000
L4	136.00-131.00	0.0000	0.0000	0.0000	0.0000
L5	131.00-126.00	0.0000	0.0000	0.0000	0.0000
L6	126.00-125.50	0.0000	0.0000	0.0000	0.0000
L7	125.50-125.25	0.0000	0.0000	0.0000	0.0000
L8	125.25-120.25	0.8201	-0.2585	1.0168	-0.3205
L9	120.25-118.50	1.2210	-0.3849	1.5547	-0.4901
L10	118.50-118.25	1.2281	-0.3871	1.5640	-0.4930
L11	118.25-117.50	1.2309	-0.3880	1.5680	-0.4943
L12	117.50-117.25	1.2330	-0.3887	1.5713	-0.4953
L13	117.25-112.25	1.4506	-0.4573	1.8337	-0.5780
L14	112.25-107.25	1.7041	-0.5372	2.1397	-0.6745
L.15	107.25-102.25	1.7340	-0.5466	2.1849	-0.6887
L16	102.25-97.50	1.5879	-0.5005	2.0217	-0.6373
L17	97.50-95.92	1.1925	-0.3759	1.5437	-0.4866
L18	95.92-92.50	1.2047	-0.3798	1.5607	-0.4920
L19	92.50-92.25	1.2137	-0.3826	1.5734	-0.4960
L20	92.25-87.25	1.2053	-0.3799	1.5702	-0.4950
L21	87.25-87.00	1.2070	-0.3805	1.5770	-0.4971
L22	87.00-82.00	1.2519	-0.3946	1.6353	-0.5155
L23	82.00-77.00	1.7937	-0.5654	2.3132	-0.7292
L24	77.00-72.00	1.8193	-0.5735	2.3523	-0.7415
L25	72.00-67.00	1.4749	-0.4649	1.9307	-0.6086
L26	67.00-63.25	1.2744	-0.4017	1.6801	-0.5296
L27	63.25-63.00	1.2830	-0.4044	1.6923	-0.5334
L28	63.00-58.00	1.2344	-0.3891	1.6453	-0.5186
L29	58.00-56.75	1.1924	-0.3759	1.6046	-0.5058
L30	56.75-56.50	1.1957	-0.3769	1.6091	-0.5072
L31	56.50-47.50	1.3803	-0.4351	1.8562	-0.5851
L32	47.50-47.00	1.7003	-0.5360	2.2817	-0.7192
L33	47.00-42.00	1.7124	-0.5398	2.2972	-0.7241
L34	42.00-37.00	1.3295	-0.4191	1.8264	-0.5757
L35	37.00-34.25	1.1648	-0.3672	1.6161	-0.5094
L36	34.25-34.00	1.1702	-0.3689	1.6233	-0.5117
L37	34.00-29.00	1.1796	-0.3718	1.6389	-0.4952
L38	29.00-26.75	1.1925	-0.3759	1.6626	-0.4542
L39	26.75-26.50	1.1969	-0.3773	1.6682	-0.4564
1.40	26.50-21.50	1.2061	-0.3802	1.6797	-0.4612
L41	21.50-16.75	-2.2376	-3.4202	-1.5447	-3.3731
L42	16.75-16.50	-3.4048	-4.4732	-2.4634	-4.1150
L43	16.50-14.25	-3.4203	-4.4922	-2.4769	-4.1323
L44	14.25-14.00	-3.4354	-4.5108	-2.4905	-4.1494
L45	14.00-9.00	-3.5337	-3.7808	-2.5467	-3.4886

tnxTower Report - version 8.0.5.0

Section	Elevation $f t$	$C P_{x}$ in	$C P_{z}$ in	$C P x$ lce in	$C P_{z}$ Ice in
$\mathrm{L46}$	$9.00-4.25$	-3.7736	-1.7841	-2.6823	-1.7114
$\mathrm{L47}$	$4.25-4.00$	-3.8044	-1.7970	-2.7225	-1.7294
L 48	$4.00-0.00$	-3.3723	-1.7824	-2.2882	-1.7233

Note: For pole sections, center of pressure calculations do not consider feed line shielding.
Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No lce } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L8	24	AL7-50(1-5/8)	$\begin{array}{r} 120.25- \\ 122.00 \end{array}$	1.0000	1.0000
L8	46	MS-600 (L)	$\begin{array}{r} 120.25- \\ 120.50 \end{array}$	1.0000	1.0000
L8	47	MS-600 (L)	$120.25-$ 120.50	1.0000	1.0000
L8	48	MS-600 (L)	$120.25-$ 120.50	1.0000	1.0000
L8	50	MP3-03 (L)	$120.25-$ 125.00	1.0000	1.0000
L8	51	MP3-03 (L)	$\begin{array}{r} 120.25- \\ 125.00 \end{array}$	1.0000	1.0000
L8	52	MP3-03 (L)	$\begin{array}{r} 120.25- \\ 12500 \end{array}$	1.0000	1.0000
L9	24	AL.7-50(1-5/8)	$\begin{array}{r} 118.50- \\ 120.25 \end{array}$	1.0000	1.0000
L9	46	MS-600 (L)	$\begin{array}{r} 118.50- \\ 120.25 \end{array}$	1.0000	1.0000
L9	47	MS-600 (L)	$\begin{array}{r} 118.50- \\ 120.25 \end{array}$	1.0000	1.0000
L9	48	MS-600 (L)	$\begin{array}{r} 118.50- \\ 120.25 \end{array}$	1.0000	1.0000
L9	50	MP3-03 (L)	$118.50-$ 120.25	1.0000	1.0000
L9	51	MP3-03 (L)	$118.50-$ 120.25	1.0000	1.0000
L9	52	MP3-03 (L)	$\begin{array}{r} 118.50- \\ 120.25 \end{array}$	1.0000	1.0000
L10	24	AL7-50(1-5/8)	$\begin{array}{r} 118.25- \\ 118.50 \end{array}$	1.0000	1.0000
L. 10	46	MS-600 (L)	$\begin{array}{r} 118.25- \\ 118.50 \end{array}$	1.0000	1.0000
L10	47	MS-600 (L)	$\begin{array}{r} 118.25- \\ 118.50 \end{array}$	1.0000	1.0000
L10	48	MS-600 (L)	$\begin{array}{r} 118.25- \\ 118.50 \end{array}$	1.0000	1.0000
L10	50	MP3-03 (L)	$\begin{array}{r} 118.25- \\ 118.50 \end{array}$	1.0000	1.0000
L10	51	MP3-03 (L)	$\begin{array}{r} 118.25- \\ 118.50 \end{array}$	1.0000	1.0000
L10	52	MP3-03 (L)	$\begin{array}{r} 118.25- \\ 118.50 \end{array}$	1.0000	1.0000
L.11	24	AL7-50(1-5/8)	$\begin{array}{r} 117.50- \\ 118.25 \end{array}$	1.0000	1.0000
L. 11	46	MS-600 (L)	$\begin{array}{r} 117.50- \\ 118.25 \end{array}$	1.0000	1.0000
L11	47	MS-600 (L)	$\begin{array}{r} 117.50= \\ 118.25 \end{array}$	1.0000	1.0000
L11	48	MS-600 (L)	$\begin{array}{r} 117.50- \\ 118.25 \end{array}$	1.0000	1.0000
L11	50	MP3-03 (L)	$\begin{array}{r} 117.50- \\ 118.25 \end{array}$	1.0000	1.0000
L11	51	MP3-03 (L)	$\begin{array}{r} 117.50- \\ 118.25 \end{array}$	1.0000	1.0000
L11	52	MP3-03 (L)	$\begin{array}{r} 117.50- \\ 118.25 \end{array}$	1.0000	1.0000
L12	24	AL7-50(1-5/8)	$\begin{array}{r} 117.25 \\ 117.50 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.0.5.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { lce } \end{aligned}$
L12	46	MS-600 (L)	$\begin{array}{r} \hline 117.25- \\ 117.50 \end{array}$	1.0000	1.0000
L12	47	MS-600 (L)	$\begin{array}{r} 117.25- \\ 117.50 \end{array}$	1.0000	1.0000
L12	48	MS-600 (L)	$117.25-$ 117.50	1.0000	1.0000
L12	50	MP3-03 (L)	$117.25-$ 117.50	1.0000	1.0000
L12	51	MP3-03 (L)	$117.25-$ 117.50	1.0000	1.0000
L12	52	MP3-03 (L)	$\begin{array}{r} 117.25- \\ 117.50 \end{array}$	1.0000	1.0000
L13	24	AL7-50(1-5/8)	$\begin{array}{r} 112.25= \\ 117.25 \end{array}$	1.0000	1.0000
L13	46	MS-600 (L)	$\begin{array}{r} 112.25- \\ 117.25 \end{array}$	1.0000	1.0000
L13	47	MS-600 (L)	$\begin{array}{r} 112.25= \\ 117.25 \end{array}$	1.0000	1.0000
L13	48	MS-600 (L)	$\begin{array}{r} 112.25 \\ 117.25 \end{array}$	1.0000	1.0000
L13	50	MP3-03 (L)	$\begin{array}{r} 115.00- \\ 117.25 \end{array}$	1.0000	1.0000
L13	51	MP3-03 (L)	$\begin{array}{r} 115.00- \\ 117.25 \end{array}$	1.0000	1.0000
L13	52	MP3-03 (L)	$\begin{array}{r} 115.00- \\ 117.25 \end{array}$	1.0000	1.0000
L14	24	AL7-50(1-5/8)	$\begin{array}{r} 107.25- \\ 112.25 \end{array}$	1.0000	1.0000
L14	46	MS-600 (L)	107.25-	1.0000	1.0000
L14	47	MS-600 (L)	$\begin{array}{r} 107.25 \\ 112.25 \end{array}$	1.0000	1.0000
L14	48	MS-600 (L)	$\begin{array}{r} 107.25- \\ 112.25 \end{array}$	1.0000	1.0000
L15	24	AL7-50(1-5/8)	$\begin{array}{r} 102.25- \\ 107.25 \end{array}$	1.0000	1.0000
L15	46	MS-600 (L)	$\begin{array}{r} 102.25- \\ 107.25 \end{array}$	1.0000	1.0000
L15	47	MS-600 (L)	$\begin{array}{r} 102.25- \\ 107.25 \end{array}$	1.0000	1.0000
L15	48	MS-600 (L)	$\begin{array}{r} 102.25- \\ 107.25 \end{array}$	1.0000	1.0000
L16	24	AL7-50(1-5/8)	$\begin{aligned} & 97.50- \\ & 102.25 \end{aligned}$	1.0000	1.0000
L16	43	MS-600 (L)	$\begin{array}{r} 97.50- \\ 98.58 \end{array}$	1.0000	1.0000
L16	44	MS-600 (L)	$\begin{array}{r} 97.50- \\ 98.58 \end{array}$	1.0000	1.0000
L16	45	MS-600 (L)	$\begin{array}{r} 97.50- \\ 98.58 \end{array}$	1.0000	1.0000
L16	46	MS-600 (L)	$\begin{aligned} & 97.50- \\ & 102.25 \end{aligned}$	1.0000	1.0000
L.16	47	MS-600 (L)	$\begin{aligned} & 97.50- \\ & 102.25 \end{aligned}$	1.0000	1.0000
L16	48	MS-600 (L)	$\begin{aligned} & 97.50- \\ & 102.25 \end{aligned}$	1.0000	1.0000
L18	24	AL7-50(1-5/8)	$92.50-$ 95.92	1.0000	1.0000
L18	43	MS-600 (L)	$\begin{array}{r} 92.50- \\ 95.92 \end{array}$	1.0000	1.0000
L18	44	MS-600 (L)	92.50-1	1.0000	1.0000
L18	45	MS-600 (L)	$\begin{array}{r} 92.50- \\ 95.92 \end{array}$	1.0000	1.0000
L18	46	MS-600 (L)	$92.50-$ 95.92	1.0000	1.0000
L18	47	MS-600 (L)	$\begin{array}{r} 92.50- \\ 95.92 \end{array}$	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L18	48	MS-600 (L)	$\begin{array}{r} 92.50 \\ 95.92 \end{array}$	1.0000	1.0000
L19	24	AL7-50(1-5/8)	$\begin{array}{r} 92.25- \\ 92.50 \end{array}$	1.0000	1.0000
L19	43	MS-600 (L)	$92.25-$ 92.50	1.0000	1.0000
L19	44	MS-600 (L)	$92.25-$ 92.50	1.0000	1.0000
L19	45	MS-600 (L)	$\begin{array}{r} 92.25- \\ 92.50 \end{array}$	1.0000	1.0000
L19	46	MS-600 (L)	$\begin{array}{r} 92.25- \\ 92.50 \end{array}$	1.0000	1.0000
L19	47	MS-600 (L)	$\begin{array}{r} 92.25- \\ 92.50 \end{array}$	1.0000	1.0000
L19	48	MS-600 (L)	$\begin{array}{r} 92.25- \\ 92.50 \end{array}$	1.0000	1.0000
L20	24	AL7-50(1-5/8)	$\begin{array}{r} 87.25- \\ 92.25 \end{array}$	1.0000	1.0000
1.20	40	MS-650 (L)	$\begin{array}{r} 87.25 \\ 90.50 \end{array}$	1.0000	1.0000
L20	41	MS-650 (L)	$\begin{array}{r} 87.25- \\ 90.50 \end{array}$	1.0000	1.0000
L20	42	MS-650 (L)	$\begin{array}{r} 87.25- \\ 90.50 \end{array}$	1.0000	1.0000
L20	43	MS-600 (L)	$\begin{array}{r} 87.25- \\ 92.25 \end{array}$	1.0000	1.0000
L20	44	MS-600 (L)	$\begin{array}{r} 87.25- \\ 92.25 \end{array}$	1.0000	1.0000
L20	45	MS-600 (L)	$87.25-$ 92.25	1.0000	1.0000
L20	46	MS-600 (L)	90.50-	1.0000	1.0000
L20	47	MS-600 (L)	$90.50-$ 92.25	1.0000	1.0000
L20	48	MS-600 (L)	$90.50-$ 92.25	1.0000	1.0000
L21	24	AL7-50(1-5/8)	$\begin{array}{r} 87.00- \\ 87.25 \end{array}$	1.0000	1.0000
L21	40	MS-650 (L)	$\begin{array}{r} 87.00- \\ 87.25 \end{array}$	1.0000	1.0000
L21	41	MS-650 (L)	$\begin{array}{r} 87.00- \\ 87.25 \end{array}$	1.0000	1.0000
L21	42	MS-650 (L)	$\begin{array}{r} 87.00- \\ 87.25 \end{array}$	1.0000	1.0000
L21	43	MS-600 (L)	$\begin{array}{r} 87.00- \\ 87.25 \end{array}$	1.0000	1.0000
L21	44	MS-600 (L)	$\begin{array}{r} 87.00- \\ 87.25 \end{array}$	1.0000	1.0000
L21	45	MS-600 (L)	$\begin{array}{r} 87.00- \\ 87.25 \end{array}$	1.0000	1.0000
422	24	AL7-50(1-5/8)	$\begin{array}{r} 82.00- \\ 87.00 \end{array}$	1.0000	1.0000
L22	40	MS-650 (L)	$82.00-$ 87.00	1.0000	1.0000
L22	41	MS-650 (L)	$82.00-$ 87.00	1.0000	1.0000
L22	42	MS-650 (L)	$\begin{array}{r} 82.00- \\ 87.00 \end{array}$	1.0000	1.0000
L22	43	MS-600 (L)	$82.42-$ 87.00	1.0000	1.0000
L22	44	MS-600 (L)	$\begin{array}{r} 82.42- \\ 87.00 \end{array}$	1.0000	1.0000
L22	45	MS-600 (L)	$\begin{array}{r} 82.42- \\ 87.00 \end{array}$	1.0000	1.0000
L23	24	AL7-50(1-5/8)	$\begin{array}{r} 77.00- \\ 82.00 \end{array}$	1.0000	1.0000
123	40	MS-650 (L)	$\begin{array}{r} 77.00- \\ 82.00 \end{array}$	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No lce } \end{gathered}$	$\begin{aligned} & \hline K_{a} \\ & \text { lce } \end{aligned}$
L23	41	MS-650 (L)	$\begin{array}{r} 77.00- \\ 82.00 \end{array}$	1.0000	1.0000
123	42	MS-650 (L)	77.00 82.00	1.0000	1.0000
L. 24	24	AL7-50(1-5/8)	$\begin{array}{r} 72.00- \\ 77.00 \end{array}$	1.0000	1.0000
L24	40	MS-650 (L)	$72.00-$ 77.00	1.0000	1.0000
L24	41	MS-650 (L)	$\begin{array}{r} 72.00- \\ 77.00 \end{array}$	1.0000	1.0000
L24	42	MS-650 (L)	$\begin{array}{r} 72.00- \\ 77.00 \end{array}$	1.0000	1.0000
L25	24	AL7-50(1-5/8)	$\begin{array}{r} 67.00- \\ 72.00 \end{array}$	1.0000	1.0000
L25	37	MS-650 (L)	$\begin{array}{r} 67.00- \\ 69.67 \end{array}$	1.0000	1.0000
L25	38	MS-650 (L)	$\begin{array}{r} 67.00- \\ 69.67 \end{array}$	1.0000	1.0000
L25	39	MS-650 (L)	$\begin{array}{r} 67.00- \\ 69.67 \end{array}$	1.0000	1.0000
L25	40	MS-650 (L)	$\begin{array}{r} 67.00- \\ 72.00 \end{array}$	1.0000	1.0000
L25	41	MS-650 (L)	$\begin{array}{r} 67.00 \\ 72.00 \end{array}$	1.0000	1.0000
L25	42	MS-650 (L)	$\begin{array}{r} 67.00- \\ 72.00 \end{array}$	1.0000	1.0000
L26	24	AL7-50(1-5/8)	$\begin{array}{r} 63.25- \\ 67.00 \end{array}$	1.0000	1.0000
L26	37	MS-650 (L)	$63.25-1$ 67.00	1.0000	1.0000
L26	38	MS-650 (L)	$\begin{array}{r} 63.25- \\ 67.00 \end{array}$	1.0000	1.0000
L26	39	MS-650 (L)	$\begin{array}{r} 63.25- \\ 67.00 \end{array}$	1.0000	1.0000
L26	40	MS-650 (L)	$\begin{array}{r} 63.25- \\ 67.00 \end{array}$	1.0000	1.0000
L26	41	MS-650 (L)	$\begin{array}{r} 63.25- \\ 67.00 \end{array}$	1.0000	1.0000
L26	42	MS-650 (L)	$\begin{array}{r} 63.25- \\ 67.00 \end{array}$	1.0000	1.0000
L27	24	AL7-50(1-5/8)	$\begin{array}{r} 63.00- \\ 63.25 \end{array}$	1.0000	1.0000
L27	37	MS-650 (L)	$\begin{array}{r} 63.00- \\ 63.25 \end{array}$	1.0000	1.0000
L27	38	MS-650 (L)	$\begin{array}{r} 63.00- \\ 63.25 \end{array}$	1.0000	1.0000
L27	39	MS-650 (L)	$\begin{array}{r} 63.00- \\ 63.25 \end{array}$	1.0000	1.0000
L27	40	MS-650 (L)	$\begin{array}{r} 63.00- \\ 63.25 \end{array}$	1.0000	1.0000
L27	41	MS-650 (L)	$\begin{array}{r} 63.00- \\ 63.25 \end{array}$	1.0000	1.0000
L27	42	MS-650 (L)	$63.00-$ 63.25	1.0000	1.0000
L28	24	AL7-50(1-5/8)	58.00 63.00	1.0000	1.0000
L28	34	MS-850 (L)	$\begin{array}{r} 58.00- \\ 60.50 \end{array}$	1.0000	1.0000
1.28	35	MS-850 (L)	$58.00-$ 60.50	1.0000	1.0000
L28	36	MS-850 (L)	$\begin{array}{r} 58.00- \\ 60.50 \end{array}$	1.0000	1.0000
L28	37	MS-650 (L)	$\begin{array}{r} 58.00- \\ 63.00 \end{array}$	1.0000	1.0000
L28	38	MS-650 (L)	58.00-	1.0000	1.0000
L28	39	MS-650 (L)	$\begin{array}{r} 58.00- \\ 63.00 \end{array}$	1.0000	1.0000

㐁

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No lee } \end{gathered}$	K_{B} Ice
128	40	MS-650 (L)	$\begin{array}{r} 60.50- \\ 63.00 \end{array}$	1.0000	1.0000
L28	41	MS-650 (L)	$\begin{array}{r} 60.50 \\ 63.00 \end{array}$	1.0000	1.0000
L28	42	MS-650 (L)	$60.50-$ 63.00	1.0000	1.0000
L29	24	AL7-50(1-5/8)	$\begin{array}{r} 56.75- \\ 58.00 \end{array}$	1.0000	1.0000
L29	34	MS-850 (L)	$\begin{array}{r} 56.75- \\ 58.00 \end{array}$	1.0000	1.0000
L29	35	MS-850 (L)	$\begin{array}{r} 56.75- \\ 58.00 \end{array}$	1.0000	1.0000
L29	36	MS-850 (L)	$56.75-$ 58.00	1.0000	1.0000
L29	37	MS-650 (L)	$56.75-$ 58.00	1.0000	1.0000
L29	38	MS-650 (L)	$56.75-$ 58.00	1.0000	1.0000
L29	39	MS-650 (L)	$\begin{array}{r} 50.00 \\ 56.75 \\ 58.00 \end{array}$	1.0000	1.0000
L30	24	AL7-50(1-5/8)	$\begin{array}{r} 56.50- \\ 56.75 \end{array}$	1.0000	1.0000
L30	34	MS-850 (L)	$\begin{array}{r} 56.50 \\ 56.75 \end{array}$	1.0000	1.0000
L30	35	MS-850 (L)	$\begin{array}{r} 56.50 \\ 56.75 \end{array}$	1.0000	1.0000
L30	36	MS-850 (L)	$\begin{array}{r} 56.50- \\ 56.75 \end{array}$	1.0000	1.0000
L30	37	MS-650 (L)	$\begin{array}{r} 56.50 \\ 56.50 \\ 56.75 \end{array}$	1.0000	1.0000
L30	38	MS-650 (L)	$\begin{array}{r} 56.50- \\ 56.75 \end{array}$	1.0000	1.0000
L30	39	MS-650 (L)	$56.50-$ 56.75	1.0000	1.0000
L. 31	24	AL7-50(1-5/8)	$\begin{array}{r} 50.10 \\ 47.50- \\ 56.50 \end{array}$	1.0000	1.0000
L31	34	MS-850 (L)	$\begin{array}{r} 20.50 \\ 47.50- \\ 56.50 \end{array}$	1.0000	1.0000
L31	35	MS-850 (L)	$\begin{array}{r} 47.50- \\ 56.50 \end{array}$	1.0000	1.0000
L31	36	MS-850 (L)	$\begin{array}{r} 50.00 \\ 47.50- \\ 56.50 \end{array}$	1.0000	1.0000
L31	37	MS-650 (L)	$\begin{array}{r} 51.33- \\ 56.50 \end{array}$	1.0000	1.0000
L31	38	MS-650 (L)	$\begin{array}{r} 50.30 \\ 51.33- \\ 56.50 \end{array}$	1.0000	1.0000
L31	39	MS-650 (L)	$\begin{array}{r} 51.33- \\ 56.50 \end{array}$	1.0000	1.0000
L33	24	AL7-50(1-5/8)	$\begin{array}{r} 42.00- \\ 47.00 \end{array}$	1.0000	1.0000
L33	34	MS-850 (L)	$\begin{array}{r} 47.00 \\ 42.00- \\ 47.00 \end{array}$	1.0000	1.0000
L33	35	MS-850 (L)	$\begin{array}{r} 42.00- \\ 47.00 \end{array}$	1.0000	1.0000
L33	36	MS-850 (L)	$\begin{array}{r} 42.00- \\ 47.00 \end{array}$	1.0000	1.0000
L34	24	AL7-50(1-5/8)	$\begin{array}{r} 47.00 \\ 42.00 \end{array}$	1.0000	1.0000
L34	31	MS-850 (L)	$\begin{array}{r} 42.00 \\ 40.00 \end{array}$	1.0000	1.0000
L34	32	MS-850 (L)	$\begin{array}{r} 37.00- \\ 40.00 \end{array}$	1.0000	1.0000
L34	33	MS-850 (L)	$\begin{array}{r} 37.00- \\ 40.00 \end{array}$	1.0000	1.0000
L34	34	MS-850 (L)	$\begin{array}{r} 37.00 \\ 42.00 \end{array}$	1.0000	1.0000
L34	35	MS-850 (L)	37.00 42.00	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { lce } \end{aligned}$
L34	36	MS-850 (L)	$\begin{array}{r} 37.00- \\ 42.00 \end{array}$	1.0000	1.0000
L35	24	AL7-50(1-5/8)	$\begin{array}{r} 34.25- \\ 37.00 \end{array}$	1.0000	1.0000
L35	31	MS-850 (L)	$\begin{array}{r} 34.25 \\ 37.00 \end{array}$	1.0000	1.0000
L35	32	MS-850 (L)	$\begin{array}{r} 34.25- \\ 37.00 \end{array}$	1.0000	1.0000
L35	33	MS-850 (L)	$34.25-$ 37.00	1.0000	1.0000
135	34	MS-850 (L)	$34.25-$ 37.00	1.0000	1.0000
L35	35	MS-850 (L)	$34.25-$ 37.00	1.0000	1.0000
L35	36	MS-850 (L)	$34.25-$ 37.00	1.0000	1.0000
L36	24	AL7-50(1-5/8)	$\begin{array}{r} 34.00- \\ 34.25 \end{array}$	1.0000	1.0000
136	31	MS-850 (L)	$\begin{array}{r} 34.00- \\ 34.25 \end{array}$	1.0000	1.0000
L36	32	MS-850 (L)	$\begin{array}{r} 34.00- \\ 34.25 \end{array}$	1.0000	1.0000
L36	33	MS-850 (L)	$\begin{array}{r} 34.00 \\ 34.00- \\ 34.25 \end{array}$	1.0000	1.0000
L36	34	MS-850 (L)	$34.00-$ 34.25	1.0000	1.0000
L36	35	MS-850 (L)	$\begin{array}{r} 34.00- \\ 34.25 \end{array}$	1.0000	1.0000
L36	36	MS-850 (L)	34.00-1	1.0000	1.0000
L37	24	AL7-50(1-5/8)	$\begin{array}{r} 29.00- \\ 34.00 \end{array}$	1.0000	1.0000
L37	26	MS-850 (L)	$\begin{array}{r} 29.00- \\ 30.50 \end{array}$	1.0000	1.0000
L37	27	MS-850 (L)	$\begin{array}{r} 29.00- \\ 30.50 \end{array}$	1.0000	1.0000
L37	28	MS-850 (L)	$29.00-$ 30.50	1.0000	1.0000
L37	31	MS-850 (L)	$29.00-$ 34.00	1.0000	1.0000
L37	32	MS-850 (L)	$39.00-$ 34.00	1.0000	1.0000
L37	33	MS-850 (L)	$29.00-$ 34.00	1.0000	1.0000
L37	34	MS-850 (L)	$\begin{array}{r} 30.50- \\ 34.00 \end{array}$	1.0000	1.0000
L37	35	MS-850 (L)	$30.50-$ 34.00	1.0000	1.0000
L37	36	MS-850 (L)	$30.50-$ 34.00	1.0000	1.0000
L38	24	AL7-50(1-5/8)	$26.75-$ 29.00	1.0000	1.0000
L38	26	MS-850 (L)	$\begin{array}{r} 26.75- \\ 29.00 \end{array}$	1.0000	1.0000
L38	27	MS-850 (L)	$26.75-$ 29.00	1.0000	1.0000
L38	28	MS-850 (L)	$\begin{array}{r} 26.75- \\ 29.00 \end{array}$	1.0000	1.0000
L38	31	MS-850 (L)	$\begin{array}{r} 26.75- \\ 29.00 \end{array}$	1.0000	1.0000
L38	32	MS-850 (L)	$\begin{array}{r} 26.75- \\ 29.00 \end{array}$	1.0000	1.0000
L38	33	MS-850 (L)	$\begin{array}{r} 26.75- \\ 29.00 \end{array}$	1.0000	1.0000
L39	24	AL7-50(1-5/8)	$\begin{array}{r} 26.50- \\ 26.75 \end{array}$	1.0000	1.0000
L39	26	MS-850 (L)	$\begin{array}{r} 26.50- \\ 26.75 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.0.5.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} Nolce	$\begin{aligned} & K_{a} \\ & \text { lce } \end{aligned}$
L39	27	MS-850 (L)	$\begin{array}{r} 26.50- \\ 26.75 \end{array}$	1.0000	1.0000
L39	28	MS-850 (L)	$\begin{array}{r} 26.50- \\ 26.75 \end{array}$	1.0000	1.0000
L39	31	MS-850 (L)	$\begin{array}{r} 26.50- \\ 26.75 \end{array}$	1.0000	1.0000
L39	32	MS-850 (L)	$\begin{array}{r} 26.50-1 \\ 26.75 \end{array}$	1.0000	1.0000
L. 39	33	MS-850 (L)	$\begin{array}{r} 26.50- \\ 26.75 \end{array}$	1.0000	1.0000
L40	24	AL7-50(1-5/8)	$\begin{array}{r} 21.50- \\ 26.50 \end{array}$	1.0000	1.0000
L40	26	MS-850 (L)	$\begin{array}{r} 21.50- \\ 26.50 \end{array}$	1.0000	1.0000
L40	27	MS-850 (L)	$21.50-$ 26.50	1.0000	1.0000
L40	28	MS-850 (L)	$\begin{array}{r} 21.50- \\ 26.50 \end{array}$	1.0000	1.0000
L40	31	MS-850 (L)	$\begin{array}{r} 21.50- \\ 26.50 \end{array}$	1.0000	1.0000
L40	32	MS-850 (L)	21.50-1	1.0000	1.0000
L40	33	MS-850 (L)	$21.50-$ 26.50	1.0000	1.0000
L41	24	AL.7-50(1-5/8)	$\begin{array}{r} 16.75 \\ 21.50 \end{array}$	1.0000	1.0000
L41	26	MS-850 (L)	$16.75-$ 21.50	1.0000	1.0000
L41	27	MS-850 (L)	$\begin{array}{r} 16.75- \\ 21.50 \end{array}$	1.0000	1.0000
$\llcorner 41$	28	MS-850 (L)	$\begin{array}{r} 16.75- \\ 21.50 \end{array}$	1.0000	1.0000
L41	29	MS-850 (L)	$16.75-$ 20.50	1.0000	1.0000
$\llcorner 41$	30	MS-850 (L)	$\begin{array}{r} 16.75- \\ 20.50 \end{array}$	1.0000	1.0000
L41	31	MS-850 (L)	$\begin{array}{r} 21.00- \\ 21.50 \end{array}$	1.0000	1.0000
L41	32	MS-850 (L)	$\begin{array}{r} 21.00- \\ 21.50 \end{array}$	1.0000	1.0000
L41	33	MS-850 (L)	$\begin{array}{r} 21.00- \\ 21.50 \end{array}$	1.0000	1.0000
L42	24	AL7-50(1-5/8)	$\begin{array}{r} 16.50- \\ 16.75 \end{array}$	1.0000	1.0000
L42	26	MS-850 (L)	$16.50-$ 16.75	1.0000	1.0000
L42	27	MS-850 (L)	$16.50-$ 16.75	1.0000	1.0000
$\llcorner 42$	28	MS-850 (L)	$\begin{array}{r} 16.50- \\ 16.75 \end{array}$	1.0000	1.0000
L42	29	MS-850 (L)	$\begin{array}{r} 16.50- \\ 16.75 \end{array}$	1.0000	1.0000
L42	30	MS-850 (L)	$\begin{array}{r} 16.50- \\ 16.75 \end{array}$	1.0000	1.0000
L43	24	AL7-50(1-5/8)	$\begin{array}{r} 14.25- \\ 16.50 \end{array}$	1.0000	1.0000
L43	26	MS-850 (L)	$\begin{array}{r} 14.25-5 \\ 16.50 \end{array}$	1.0000	1.0000
L43	27	MS-850 (L)	$\begin{array}{r} 14.25- \\ 16.50 \end{array}$	1.0000	1.0000
L43	28	MS-850 (L)	$\begin{array}{r} 14.25- \\ 16.50 \end{array}$	1.0000	1.0000
L43	29	MS-850 (L)	$\begin{array}{r} 14.25- \\ 16.50 \end{array}$	1.0000	1.0000
L43	30	MS-850 (L)	$14.25-$ 16.50	1.0000	1.0000
144	24	AL7-50(1-5/8)	$\begin{array}{r} 14.00- \\ 14.25 \end{array}$	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{\mathrm{a}} \\ \text { No Ice } \end{gathered}$	$\begin{gathered} K_{a} \\ \text { Ice } \end{gathered}$
L44	26	MS-850 (L)	$14.00-$ 14.25	1.0000	1.0000
L44	27	MS-850 (L)	$14.00-$ 14.25	1.0000	1.0000
L44	28	MS-850 (L)	$14.00-$ 14.25	1.0000	1.0000
L44	29	MS-850 (L)	$14.00-$ 14.25	1.0000	1.0000
L44	30	MS-850 (L)	$14.00-$ 14.25	1.0000	1.0000
$\llcorner 45$	24	AL7-50(1-5/8)	9.00-14.00	1.0000	1.0000
L45	26	MS-850 (L)	$10.50-$ 14.00	1.0000	1.0000
L45	27	MS-850 (L)	9.00-14.00	1.0000	1.0000
L45	28	MS-850 (L)	9.00-14.00	1.0000	1.0000
L45	29.	MS-850 (L)	9.00-14.00	1.0000	1.0000
L45	30	MS-850 (L)	9.00-14.00	1.0000	1.0000
L46	24	AL7-50(1-5/8)	4.25-9.00	1.0000	1.0000
L46	27	MS-850 (L)	4.25-9.00	1.0000	1.0000
L46	28	MS-850 (L)	4.25-9.00	1.0000	1.0000
L46	29	MS-850 (L)	$4.25-9.00$	1.0000	1.0000
L46	30	MS-850 (L)	4.25-9.00	1.0000	1.0000
L47	24	AL7-50(1-5/8)	$4.00-4.25$	1.0000	1.0000
L47	27	MS-850 (L)	4.00-4.25	1.0000	1.0000
L47	28	MS-850 (L)	4.00-4.25	1.0000	1.0000
L47	29	MS-850 (L)	4.00-4.25	1.0000	1.0000
L47	30	MS-850 (L)	4.00-4.25	1.0000	1.0000
L48	24	AL7-50(1-5/8)	0.00-4.00	1.0000	1.0000
L48	27	MS-850 (L)	0.50-4.00	1.0000	1.0000
L48	28	MS-850 (L)	0.50-4.00	1.0000	1.0000
L48	29	MS-850 (L)	0.50-4.00	1.0000	1.0000
L48	30	MS-850 (L)	0.50-4.00	1.0000	1.0000

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement ft		$C_{A} A_{A}$ Front $t t^{2}$	$C_{A} A_{A}$ Side f^{2}	Weight K
(2) AM-X-CD-16-65-00TRET w/ Mount Pipe	A	From Leg	4.00	0.0000	148.00	No lce	4.63	3.27	0.07
			0.00			1/2"	5.06	3.69	0.13
			1.00			Ice	5.51	4.12	0.20
						1 " Ice	6.43	5.00	0.38
(2) AM-X-CD-16-65-00TRET w/ Mount Pipe	B					$2^{\prime \prime}$ Ice			
		From Leg	4.00	0.0000	148.00	No lce	4.63	3.27	0.07
			0.00			1/2"	5.06	3.69	0.13
			1.00			Ice	5.51	4.12	0.20
						$\begin{aligned} & \text { 1" Ice } \\ & 2^{\prime \prime} \text { Ice } \end{aligned}$	6.43	5.00	0.38
(2) AM-X-CD-16-65-00TRET w/ Mount Pipe	C	From Leg	4.00	0.0000	148.00	No Ice	4.63	3.27	0.07
			0.00			1/2"	5.06	3.69	0.13
			1.00			Ice	5.51	4.12	0.20
						$1{ }^{\prime \prime}$ Ice	6.43	5.00	0.38
						2" lce			
80010121 w/ Mount Pipe	A	From Leg	4.00	0.0000	148.00	No Ice	5.74	4.95	0.07
			0.00			1/2"	6.34	6.02	0.12
			1.00			lce	6.86	6.81	0.18
						1 I' Ice	7.91	8.41	0.32
						2 " Ice			
80010121 w/ Mount Pipe	B	From Leg	4.00	0.0000	148.00	No Ice	5.74	4.95	0.07
			0.00			1/2"	6.34	6.02	0.12
			1.00			Ice	6.86	6.81	0.18
						1" Ice	7.91	8.41	0.32
						$2^{\prime \prime} \text { Ice }$			
80010121 w/ Mount Pipe	C	From Leg	4.00	0.0000	148.00	No Ice	5.74	4.95	0.07
tnxTower Report - version 8.0.5.0									

151 Ft Monopole Tower Structural Analysis
CCI BU No 841295
Project Number 37519-2490.001.7805, Order 492710, Revision 0
Page 30

tnxTower Report - version 8.0.5.0

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft $f t$	Azimuth Adjustmen !	Placement $f t$		$C_{A} A_{A}$ Front f^{2}	$C_{A} A_{A}$ Side f^{2}	Weight K
(2) $\mathrm{NHH}-65 \mathrm{C}-\mathrm{R} 2 \mathrm{~B}$ w Mount Pipe	C	From Leg		0.0000	140.00	$\begin{aligned} & \text { 1" Ice } \\ & 2 " \text { Ice } \end{aligned}$	14.44	15.19	0.51
			$\begin{aligned} & 4.00 \\ & 0.00 \end{aligned}$			No lce 1/2" lce	11.63 12.35 13.07	9.79 11.31	0.08 0.17
			0.00			Ice	13.07	12.85	0.27
DB-T1-6Z-8AB-0Z	A	From Leg		0.0000	140.00	$\begin{aligned} & 1^{\prime \prime} \text { Ice } \\ & 2^{\prime \prime} \text { Ice } \end{aligned}$	14.44	15.19	0.51
			4.00			No Ice	4.80	2.00	0.04
			0.00			1/2"	5.07	2.19	0.08
			0.00			Ice	5.35	2.39	0.12
(3) RFV01U-D2A	A	From Leg		0.0000	140.00	$\begin{aligned} & 1 " \text { Ice } \\ & 2 " \text { Ice } \end{aligned}$	5.93	2.81	0.21
			4.00			No Ice	1.88	1.01	0.07
			0.00			1/2"	2.05	1.14	0.09
			0.00			Ice	2.22	1.28	0.11
(3) RFV01U-D1A	B	From Leg		0.0000	140.00	$\begin{aligned} & 1^{\prime \prime} \text { Ice } \\ & 2^{\prime \prime} \text { Ice } \end{aligned}$	2.60	1.59	0.15
			4.00			No Ice	1.88	1.25	0.08
			0.00			1/2"	2.05	1.39	0.10
			0.00			Ice	2.22	1.54	0.12
Platform Mount [LP 303-1]	C	None		0.0000	140.00	1" Ice	2.60	1.86	0.18
						2" Ice			
						No Ice	14.66	14.66	1.25
						1/2"	18.87	18.87	1.48
						Ice	23.08	23.08	1.71
Miscellaneous [NA 507-1]	C	None		0.0000		$1{ }^{\prime \prime}$ Ice	31.50	31.50	2.18
					140.00	2"Ice			
						No Ice	4.80	4.80	0.25
						1/2"	6.70	6.70	0.29
						Ice	8.60	8.60	0.34
(2) Miscellaneous [NA 5093]	C	None		0.0000	140.00	1" Ice	12.40	12.40	0.44
						2"Ice			
						No Ice	11.84	11.84	0.28
						1/2"	16.96	16.96	0.30
						Ice	22.08	22.08	0.32
						1 1'Ice	32.32	32.32	0.36
						2" Ice			
TME-1900MHZ RRH	A	From Leg	4.00	0.0000	132.00	No Ice	2.49	3.26	0.04
			0.00			1/2"	2.70	3.48	0.08
			-1.00			Ice	2.91	3.72	0.11
						$1{ }^{\prime \prime}$ Ice	3.35	4.21	0.19
TME-1900MHZ RRH	B	From Leg		0.0000	132.00	2"Ice			
			4.00			No Ice	2.49	3.26	0.04
			0.00			1/2"	2.70	3.48	0.08
			-1.00			Ice	2.91	3.72	0.11
	C	From Leg		0.0000	132.00	1" Ice	3.35	4.21	0.19
TME-1900MHZ RRH						2" Ice			
			4.00			No Ice	2.49	3.26	0.04
			0.00			1/2"	2.70	3.48	0.08
			-1.00			Ice	2.91	3.72	0.11
						1 I' Ice	3.35	4.21	0.19
800 EXTERNAL NOTCH FILTER						2"Ice			
	A	From Leg	4.00	0.0000	132.00	No Ice	0.66	0.32	0.01
			0.00			1/2"	0.76	0.40	0.02
			-1.00			Ice	0.87	0.48	0.02
						$1^{\prime \prime}$ Ice	1.11	0.67	0.04
						2"Ice			
800 EXTERNAL NOTCH FILTER	B	From Leg	4.00	0.0000	132.00	No Ice	0.66	0.32	0.01
			0.00			1/2"	0.76	0.40	0.02
			-1.00			ice	0.87	0.48	0.02
						1' Ice	1.11	0.67	0.04
						2" Ice			
800 EXTERNAL NOTCH FILTER	C	From Leg	4.00	0.0000	132.00	No Ice	0.66	0.32	0.01
			0.00				0.76	0.40	0.02

tnxTower Report - version 8.0.5.0

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement ft		$C_{A} A_{A}$ Front f^{2}	$C_{A} A_{A}$ Side f^{2}	Weight K
800MHZ RRH	A	From Leg	-1.00	0.0000	132.00	1/2"	0.87	0.48	0.02
						Ice	1.11	0.67	0.04
						$\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \end{aligned}$			
			4.00			No Ice	2.13	1.77	0.05
			0.00			1/2"	2.32	1.95	0.07
			-1.00			Ice	2.51	2.13	0.10
	B	From Leg		0.0000	132.00	$1{ }^{\prime \prime}$ Ice	2.92	2.51	0.16
800MHZ RRH						2" Ice			
			4.00			Nolce	2.13	1.77	0.05
			0.00			1/2'	2.32	1.95	0.07
			-1.00			Ice	2.51	2.13	0.10
	C	From Leg		0.0000	132.00	1 Ice	2.92	2.51	0.16
800MHZ RRH						2 " Ice			
			4.00			No lce	2.13	1.77	0.05
			0.00			1/2"	2.32	1.95	0.07
			-1.00			Ice	2.51	2.13	0.10
	C	None		0.0000	132.00	1 Ice	2.92	2.51	0.16
Pipe Mount [PM 601-3]						2" Ice			
						No Ice	4.39	4.39	0.20
						1/2"	5.48	5.48	0.24
						Ice	6.57	6.57	0.28
						1" Ice	8.75	8.75	0.36
***						2" Ice			
GPS-TMG-HR-26NCM	A	From Leg	4.00	0.0000	130.00	No Ice	0.13	0.13	0.00
			0.00			1/2"	0.18	0.18	0.00
			3.00			Ice	0.24	0.24	0.01
						1" Ice	0.37	0.37	0.01
APXVSPP18-C-A20 w/ Mount Pipe						2" Ice			
	A	From Leg		0.0000	130.00	No Ice	4.60	4.01	0.10
			0.00			$1 / 2^{\prime \prime}$	5.05	4.45	0.16
			0.00			Ice	5.50	4.89	0.23
						1 1" Ice	6.44	5.82	0.42
APXVSPP18-C-A20 wl Mount Pipe					130.00	2" Ice			
	B	From Leg	4.00	0.0000		No lce	4.60	4.01	0.10
			0.00			$1 / 2^{\prime \prime}$	5.05	4.45	0.16
			0.00			Ice	5.50	4.89	0.23
						$1{ }^{1 \prime}$ Ice	6.44	5.82	0.42
APXVSPP18-C-A20 w/ Mount Pipe		From Leg				$2^{\prime \prime}$ Ice			
	C		4.00	0.0000	130.00	No Ice	4.60	4.01	0.10
			0.00			1/2"	5.05	4.45	0.16
			0.00			ice	5.50	4.89	0.23
						1 Ice	6.44	5.82	0.42
						2"Ice			
APXVTM14-C-120 w/ Mount Pipe	A	From Leg	4.00	0.0000	130.00	No Ice	4.09	2.86	0.08
			0.00			1/2"	4.48	3.23	0.13
			0.00			Ice	4.88	3.61	0.19
						$1{ }^{1 \prime}$ lce	5.71	4.40	0.33
						2" Ice			
APXVTM14-C-120 wl Mount Pipe	B	From Leg	4.00	0.0000	130.00	No Ice	4.09	2.86	0.08
			0.00			1/2"	4.48	3.23	0.13
			0.00			Ice	4.88	3.61	0.19
						1 1' Ice	5.71	4.40	0.33
						2" Ice			
APXVTM14-C-120 w/ Mount Pipe	C	From Leg	4.00	0.0000	130.00	No Ice	4.09	2.86	0.08
			0.00			1/2"	4.48	3.23	0.13
			0.00			Ice	4.88	3.61	0.19
						1" Ice	5.71	4.40	0.33
						2" Ice			
TD-RRH8X20-25	A	From Leg	4.00	0.0000	130.00	No Ice	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			0.00			Ice	4.56	1.90	0.13
						1" Ice	5.10	2.30	0.20
						2" Ice			

151 Ft Monopole Tower Structural Analysis
June 06, 2019
Project Number 37519-2490.001.7805, Order 492710, Revision 0
CCI BU No 841295
Page 33

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement ft		$C_{A} A_{A}$ Front f^{2}	$\begin{gathered} \hline C_{A} A_{A} \\ \text { Side } \\ {f t^{2}}^{2} \end{gathered}$	Weight K
TD-RRH8X20-25	B	From Leg	4.00	0.0000	130.00	No Ice	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			0.00			Ice	4.56	1.90	0.13
						$\begin{aligned} & \text { 1" Ice } \\ & 2 " \text { Ice } \end{aligned}$	5.10	2.30	0.20
TD-RRH8X20-25	C	From Leg	4.00	0.0000	130.00	No lce	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			0.00			Ice	4.56	1.90	0.13
						$1^{\prime \prime} \text { Ice }$ $2 " \text { Ice }$	5.10	2.30	0.20
2.375" OD x 6^{\prime} Mount Pipe	A	None		0.0000	130.00	No Ice	1.43	1.43	0.03
						1/2"	1.92	1.92	0.04
						Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
						2" Ice			
2.375" OD x 6 ' Mount Pipe	B	None		0.0000	130.00	Nolce	1.43	1.43	0.03
						1/2"	1.92	1.92	0.04
						Ice	2.29	2.29	0.05
						$1{ }^{\prime \prime}$ Ice	3.06	3.06	0.09
						2" Ice			
2.375" OD x 6 ' Mount Pipe	C	None		0.0000	130.00	No Ice	1.43	1.43	0.03
						1/2"	1.92	1.92	0.04
						Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
						2" Ice			
T-Arm Mount [TA 602-3]	C	None		0.0000	130.00	No Ice	11.59	11.59	0.77
						1/2"	15.44	15.44	0.99
						Ice	19.29	19.29	1.21
						1 " Ice	26.99	26.99	1.64
						2" Ice			
ERICSSON AIR 21 B2A	A	From Leg	4.00	0.0000	122.00	No Ice	6.33	5.64	0.11
B4P w/ Mount Pipe			0.00			1/2"	6.78	6.43	0.17
			1.00			Ice	7.21	7.13	0.23
						$1{ }^{1 \prime}$ Ice	8.12	8.59	0.38
						2"Ice			
ERICSSON AIR 21 B2A	B	From Leg	4.00	0.0000	122.00	No Ice	6.33	5.64	0.11
B4P w/ Mount Pipe			0.00			1/2"	6.78	6.43	0.17
			1.00			Ice	7.21	7.13	0.23
							8.12	8.59	0.38
						$2^{\prime \prime} \text { Ice }$			
ERICSSON AIR 21 B2A	C	From Leg		0.0000	122.00	No Ice	6.33	5.64	0.11
B4P w/ Mount Pipe			0.00			1/2"	6.78	6.43	0.17
			1.00			Ice	7.21	7.13	0.23
						1"Ice	8.12	8.59	0.38
						2"Ice			
APXVAARR24_43-U-NA20	A	From Leg	4.00	0.0000	122.00	No lce	14.69	6.87	0.19
w/ Mount Pipe			0.00			1/2"	15.46	7.55	0.31
			1.00			Ice	16.23	8.25	0.46
						1" Ice	17.82	9.67	0.79
						2" Ice			
APXVAARR24_43-U-NA20	B	From Leg	4.00	0.0000	122.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe			0.00			1/2"	15.46	7.55	0.31
			1.00			Ice	16.23	8.25	0.46
						1"Ice	17.82	9.67	0.79
						2" Ice			
APXVAARR24_43-U-NA20	C	From Leg	4.00	0.0000	122.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe			0.00			1/2"	15.46	7.55	0.31
			1.00			Ice	16.23	8.25	0.46
						1" Ice	17.82	9.67	0.79
(3) RADIO 4449 B12/B71	A					2" Ice			
		From Leg	4.00	0.0000	122.00	$\begin{gathered} \text { No Ice } \\ \text { 1/2" } \\ \text { Ice } \\ \text { 1" Ice } \end{gathered}$	1.65	1.16	0.07
			0.00				1.81	1.30	0.09
			1.00				1.98	1.45	0.11
							2.34	1.76	0.16

tnxTower Report - version 8.0.5.0

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen !	$\begin{gathered} \text { Placement } \\ f t \end{gathered}$		$C_{A} \mathcal{A}_{A}$ Front f^{2}	$\begin{gathered} C_{A} A_{A} \\ \text { Side } \\ f^{2} \end{gathered}$	Weight K
T-Arm Mount [TA 702-3]	C	None		0.0000	122.00	2" Ice			
						No lce	5.64	5.64	0.34
						1/2"	6.55	6.55	0.43
						lce	7.46	7.46	0.52
			.			1" Ice	9.28	9.28	0.70
						2" Ice			

Tower Pressures - No Ice

$G_{H}=1.100$

Section Elevation ft	z	$K z$	$\begin{gathered} q_{z} \\ p s f \end{gathered}$	A_{G} \boldsymbol{H}^{2}	F a c e	$\begin{aligned} & A_{F} \\ & f^{2} \end{aligned}$	$\begin{aligned} & A_{R} \\ & f^{2} \end{aligned}$	$\overline{A_{i e g}}$ f^{2}	$\begin{gathered} \mathrm{Leg} \\ \% \end{gathered}$	$\begin{gathered} C_{A} A_{A} \\ \text { In } \\ \text { Face } \\ f^{2} \\ \hline \end{gathered}$	$C_{A} A_{A}$ Out Face f^{2}
L1 151.00-	148.48	1.106	38.88	7.757	A	0.000	7.757	7.757	100.00	0.000	0.000
146.00					B	0.000	7.757		100.00	0.000	0.000
					C	0.000	7.757		100.00	0.000	0.000
L2 146.00-	143.48	1.096	38.50	8.161	A	0.000	8.161	8.161	100.00	0.000	0.000
141.00					B	0.000	8.161		100.00	0.000	0.000
					C	0.000	8.161		100.00	0.000	0.000
L3 141.00-	138.48	1.085	38.12	8.564	A	0.000	8.564	8.564	100.00	0.000	0.000
136.00					B	0.000	8.564		100.00	0.000	0.000
					C	0.000	8.564		100.00	0.000	0.000
L4 136.00-	133.48	1.073	37.72	8.968	A	0.000	8.968	8.968	100.00	0.000	0.000
131.00					B	0.000	8.968		100.00	0.000	0.000
					C	0.000	8.968		100.00	0.000	0.000
L5 131.00-	128.48	1.062	37.31	9.372	A	0.000	9.372	9.372	100.00	0.000	0.000
126.00					B	0.000	9.372		100.00	0.000	0.000
					C	0.000	9.372		100.00	0.000	0.000
L6 126.00	125.75	1.055	37.08	0.959	A	0.000	0.959	0.959	100.00	0.000	0.000
125.50					B	0.000	0.959		100.00	0.000	0.000
					C	0.000	0.959		100.00	0.000	0.000
L7 125.50-	125.37	1.054	37.05	0.480	A	0.000	0.480	0.480	100.00	0.000	0.000
125.25					B	0.000	0.480		100.00	0.000	0.000
					C	0.000	0.480		100.00	0.000	0.000
L8 125.25-	122.73	1.048	36.82	9.815	A	0.000	9.815	9.815	100.00	3.464	0.000
120.25					B	0.000	9.815		100.00	4.836	0.000
					C	0.000	9.815		100.00	3.464	0.000
L. 120.25-	119.37	1.04	36.53	3.531	A	0.000	3.531	3.531	100.00	2.934	0.000
118.50					B	0.000	3.531		100.00	4.306	0.000
					C	0.000	3.531		100.00	2.934	0.000
L10 118.50-	118.37	1.037	36.45	0.506	A	0.000	0.506	0.506	100.00	0.419	0.000
118.25					B	0.000	0.506		100.00	0.615	0.000
					C	0.000	0.506		100.00	0.419	0.000
L11 118.25-	117.87	1.036	36.40	1.525	A	0.000	1.525	1.525	100.00	1.258	0.000
117.50					B	0.000	1.525		100.00	1.846	0.000
					C	0.000	1.525		100.00	1.258	0.000
L12 117.50-	117.37	1.035	36.36	0.511	A	0.000	0.511	0.511	100.00	0.419	0.000
117.25					B	0.000	0.511		100.00	0.615	0.000
					C	0.000	0.511		100.00	0.419	0.000
L13 117.25-	114.73	1.028	36.12	10.443	A	0.000	10.443	10.443	100.00	6.523	0.000
112.25					B	0.000	10.443		100.00	10.443	0.000
					C	0.000	10.443		100.00	6.523	0.000
L14 112.25-	109.73	1.015	35.67	10.848	A	0.000	10.848	10.848	100.00	5.000	0.000
107.25					B	0.000	10.848		100.00	8.920	0.000
					C	0.000	10.848		100.00	5.000	0.000
L15 107.25-	104.74	1.001	35.19	11.253	A	0.000	11.253	11.253	100.00	5.000	0.000
102.25					B	0.000	11.253		100.00	8.920	0.000
					C	0.000	11.253		100.00	5.000	0.000
L16 102.25-	99.86	0.988	34.72	11.065	A	0.000	11.065	11.065	100.00	5.830	0.000
97.50					B	0.000	11.065		100.00	9.554	0.000
					C	0.000	11.065		100.00	5.830	0.000

[^2]| Section Elevation ft | $\begin{aligned} & \mathbf{z} \\ & f t \end{aligned}$ | K_{z} | $\begin{gathered} q_{z} \\ p s f \end{gathered}$ | $\begin{aligned} & A_{G} \\ & {f t^{2}}^{2} \end{aligned}$ | F a c e | $\begin{aligned} & A_{F} \\ & f^{2} \end{aligned}$ | $\begin{aligned} & A_{R} \\ & f t^{2} \end{aligned}$ | $A_{\log }$ f^{2} | $\begin{gathered} \mathrm{Leg} \\ \% \end{gathered}$ | $\begin{gathered} C_{A} A_{A} \\ \text { In } \\ \text { Face } \\ {f t^{2}}^{2} \end{gathered}$ | $C_{A} A_{A}$ Out Face ft ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L17 97.50- | 96.71 | 0.979 | 34.40 | 3.707 | A | 0.000 | 3.707 | 3.707 | 100.00 | 3.168 | 0.000 |
| 95.92 | | | | | B | 0.000 | 3.707 | | 100.00 | 4.410 | 0.000 |
| | | | | | C | 0.000 | 3.707 | | 100.00 | 3.168 | 0.000 |
| L18 95.92- | 94.20 | 0.972 | 34.14 | 8.131 | A | 0.000 | 8.131 | 8.131 | 100.00 | 6.832 | 0.000 |
| 92.50 | | | | | B | 0.000 | 8.131 | | 100.00 | 9.510 | 0.000 |
| | | | | | C | 0.000 | 8.131 | | 100.00 | 6.832 | 0.000 |
| L19 92.50- | 92.37 | 0.966 | 33.95 | 0.602 | A | 0.000 | 0.602 | 0.602 | 100.00 | 0.500 | 0.000 |
| 92.25 | | | | | B | 0.000 | 0.602 | | 100.00 | 0.696 | 0.000 |
| | | | | | C | 0.000 | 0.602 | | 100.00 | 0.500 | 0.000 |
| L20 92.25- | 89.74 | 0.958 | 33.67 | 12.263 | A | 0.000 | 12.263 | 12.263 | 100.00 | 10.271 | 0.000 |
| 87.25 | | | | | B | 0.000 | 12.263 | | 100.00 | 14.191 | 0.000 |
| | | | | | C | 0.000 | 12.263 | | 100.00 | 10.271 | 0.000 |
| L21 87.25- | 87.12 | 0.95 | 33.39 | 0.623 | A | 0.000 | 0.623 | 0.623 | 100.00 | 0.521 | 0.000 |
| 87.00 | | | | | B | 0.000 | 0.623 | | 100.00 | 0.717 | 0.000 |
| | | | | | C | 0.000 | 0.623 | | 100.00 | 0.521 | 0.000 |
| L22 87.00- | 84.49 | 0.942 | 33.10 | 12.676 | A | 0.000 | 12.676 | 12.676 | 100.00 | 9.997 | 0.000 |
| 82.00 | | | | | B | 0.000 | 12.676 | | 100.00 | 13.917 | 0.000 |
| | | | | | C | 0.000 | 12.676 | | 100.00 | 9.997 | 0.000 |
| L23 82.00- | 79.49 | 0.925 | 32.53 | 13.082 | A | 0.000 | 13.082 | 13.082 | 100.00 | 5.417 | 0.000 |
| 77.00 | | | | | B | 0.000 | 13.082 | | 100.00 | 9.337 | 0.000 |
| | | | | | C | 0.000 | 13.082 | | 100.00 | 5.417 | 0.000 |
| L24 77.00- | 74.49 | 0.908 | 31.93 | 13.487 | A | 0.000 | 13.487 | 13.487 | 100.00 | 5.417 | 0.000 |
| 72.00 | | | | | B | 0.000 | 13.487 | | 100.00 | 9.337 | 0.000 |
| | | | | | C | 0.000 | 13.487 | | 100.00 | 5.417 | 0.000 |
| L25 72.00- | 69.49 | 0.891 | 31.30 | 13.892 | A | 0.000 | 13.892 | 13.892 | 100.00 | 8.309 | 0.000 |
| 67.00 | | | | | B | 0.000 | 13.892 | | 100.00 | 12.229 | 0.000 |
| | | | | | C | 0.000 | 13.892 | | 100.00 | 8.309 | 0.000 |
| L26 67.00- | 65.12 | 0.874 | 30.72 | 10.684 | A | 0.000 | 10.684 | 10.684 | 100.00 | 8.125 | 0.000 |
| 63.25 | | | | | B | 0.000 | 10.684 | | 100.00 | 11.065 | 0.000 |
| | | | | | C | 0.000 | 10.684 | | 100.00 | 8.125 | 0.000 |
| L27 63.25- | 63.12 | 0.867 | 30.45 | 0.720 | A | 0.000 | 0.720 | 0.720 | 100.00 | 0.542 | 0.000 |
| 63.00 | | | | | B | 0.000 | 0.720 | | 100.00 | 0.738 | 0.000 |
| | | | | | C | 0.000 | 0.720 | | 100.00 | 0.542 | 0.000 |
| L28 63.00- | 60.49 | 0.856 | 30.08 | 14.621 | A | 0.000 | 14.621 | 14.621 | 100.00 | 11.667 | 0.000 |
| 58.00 | | | | | B | 0.000 | 14.621 | | 100.00 | 15.587 | 0.000 |
| | | | | | C | 0.000 | 14.621 | | 100.00 | 11.667 | 0.000 |
| L29 58.00- | 57.37 | 0.843 | 29.63 | 3.718 | A | 0.000 | 3.718 | 3.718 | 100.00 | 3.125 | 0.000 |
| 56.75 | | | | | B | 0.000 | 3.718 | | 100.00 | 4.105 | 0.000 |
| | | | | | C | 0.000 | 3.718 | | 100.00 | 3.125 | 0.000 |
| L30 56.75- | 56.62 | 0.84 | 29.52 | 0.746 | A | 0.000 | 0.746 | 0.746 | 100.00 | 0.625 | 0.000 |
| 56.50 | | | | | B | 0.000 | 0.746 | | 100.00 | 0.821 | 0.000 |
| | | | | | C | 0.000 | 0.746 | | 100.00 | 0.625 | 0.000 |
| L31 56.50- | 51.96 | 0.82 | 28.81 | 27.535 | A | 0.000 | 27.535 | 27.535 | 100.00 | 18.352 | 0.000 |
| 47.50 | | | | | B | 0.000 | 27.535 | | 100.00 | 25.409 | 0.000 |
| | | | | | C | 0.000 | 27.535 | | 100.00 | 18.352 | 0.000 |
| L32 47.50- | 47.25 | 0.798 | 28.03 | 1.540 | A | 0.000 | 1.540 | 1.540 | 100.00 | 0.708 | 0.000 |
| 47.00 | | | | | B | 0.000 | 1.540 | | 100.00 | 1.100 | 0.000 |
| | | | | | C | 0.000 | 1.540 | | 100.00 | 0.708 | 0.000 |
| 133 47.00- | 44.49 | 0.784 | 27.56 | 15.624 | A | 0.000 | 15.624 | 15.624 | 100.00 | 7.083 | 0.000 |
| 42.00 | | | | | B | 0.000 | 15.624 | | 100.00 | 11.003 | 0.000 |
| | | | | | C | 0.000 | 15.624 | | 100.00 | 7.083 | 0.000 |
| L34 42.00- | 39.49 | 0.758 | 26.63 | 16.029 | A | 0.000 | 16.029 | 16.029 | 100.00 | 11.335 | 0.000 |
| 37.00 | | | | | B | 0.000 | 16.029 | | 100.00 | 15.255 | 0.000 |
| | | | | | C | 0.000 | 16.029 | | 100.00 | 11.335 | 0.000 |
| L35 37.00- | 35.62 | 0.736 | 25.86 | 8.985 | A | 0.000 | 8.985 | 8.985 | 100.00 | 7.789 | 0.000 |
| 34.25 | | | | | B | 0.000 | 8.985 | | 100.00 | 9.944 | 0.000 |
| | | | | | C | 0.000 | 8.985 | | 100.00 | 7.789 | 0.000 |
| L. $3634.25-$ | 34.12 | 0.727 | 25.55 | 0.823 | A | 0.000 | 0.823 | 0.823 | 100.00 | 0.708 | 0.000 |
| 34.00 | | | | | B | 0.000 | 0.823 | | 100.00 | 0.904 | 0.000 |
| | | | | | C | 0.000 | 0.823 | | 100.00 | 0.708 | 0.000 |
| L37 34.00- | 31.49 | 0.71 | 24.97 | 16.677 | A | 0.000 | 16.677 | 16.677 | 100.00 | 14.167 | 0.000 |
| 29.00 | | | | | B | 0.000 | 16.677 | | 100.00 | 18.087 | 0.000 |
| | | | | | C | 0.000 | 16.677 | | 100.00 | 14.167 | 0.000 |
| L38 29.00- | 27.87 | 0.7 | 24.60 | 7.636 | A | 0.000 | 7.636 | 7.636 | 100.00 | 6.375 | 0.000 |
| 26.75 | | | | | B | 0.000 | 7.636 | | 100.00 | 8.139 | 0.000 |
| | | | | | C | 0.000 | 7.636 | | 100.00 | 6.375 | 0.000 |
| L39 26.75- | 26.62 | 0.7 | 24.60 | 0.854 | A | 0.000 | 0.854 | 0.854 | 100.00 | 0.708 | 0.000 |
| 26.50 | | | | | B | 0.000 | 0.854 | | 100.00 | 0.904 | 0.000 |

Section Elevation ft	$\begin{aligned} & z \\ & f t \end{aligned}$	K_{z}	$\begin{gathered} q_{z} \\ p s f \end{gathered}$	A_{G} f^{2}	F a c e	$\begin{aligned} & A_{F} \\ & f^{2} \end{aligned}$	$\begin{aligned} & A_{R} \\ & f^{2} \end{aligned}$	$A_{\text {leg }}$ f^{2}	$\begin{gathered} \operatorname{Leg} \\ \% \end{gathered}$	$\begin{aligned} & C_{A} A_{A} \\ & \text { In } \\ & \text { Face } \\ & f^{2} \end{aligned}$	$C_{A} A_{A}$ Out Face ff ${ }^{2}$
$\begin{array}{r} \text { L40 } 26.50- \\ 21.50 \end{array}$	23.99	0.7	24.60	17.284	C	0.000	0.854	17.284	100.00	0.708	0.000
					A	0.000	17.284		100.00	14.167	0.000
					B	0.000	17.284		100.00	18.087	0.000
		0.7			C	0.000	17.284	16.794	100.00	14.167	0.000
$\begin{array}{r} \text { L41 } 21.50- \\ 16.75 \end{array}$	19.12		24.60	16.794	A	0.000	16.794		100.00	12.750	0.000
					B	0.000	16.794		100.00	16.474	0.000
	16.62	0.7	24.60	0.893	C	0.000	16.794	0.893	100.00	7.438	0.000
$\begin{array}{r} \text { L42 16.75- } \\ 16.50 \end{array}$					A	0.000	0.893		100.00	0.708	0.000
					B	0.000	0.893		100.00	0.904	0.000
	15.37	0.7	24.60	8.084	C	0.000	0.893	8.084	100.00	0.354	0.000
$\begin{array}{r} \text { L. } 4316.50- \\ 14.25 \end{array}$					A	0.000	8.084		100.00	6.375	0.000
					B	0.000	8.084		100.00	8.139	0.000
	14.12	0.7	24.60	0.903	C	0.000	8.084	0.903	100.00	3.188	0.000
$\begin{array}{r} \text { L44 14.25- } \\ 14.00 \end{array}$					A	0.000	0.903		100.00	0.708	0.000
					B	0.000	0.903		100.00	0.904	0.000
	11.49	0.7	24.60	18.284	C	0.000	0.903	18.284	100.00	0.354	0.000
L45 14.00-					A	0.000	18.284		100.00	12.042	0.000
9.00					B	0.000	18.284		100.00	18.087	0.000
	6.62	0.7	24.60	17.743	C	0.000	18.284	17.743	100.00	7.083	0.000
L46 9.00-4.25					A	0.000	17.743		100.00	6.729	0.000
					B	0.000	17.743		100.00	17.182	0.000
		0.7	24.60	0.945	C	0.000	17.743	0.945	100.00	6.729	0.000
L47 4.25-4.00	4.12				A	0.000	0.945		100.00	0.354	0.000
					B	0.000	0.945		100.00	0.904	0.000
		0.7	24.60	15.254	C	0.000	0.945	15.254	100.00	0.354	0.000
L48 4.00-0.00	1.99				A	0.000	15.254		100.00	4.958	0.000
					B	0.000	15.254		100.00	13.053	0.000
					C	0.000	15.254		100.00	4.958	0.000

Tower Pressure - With Ice
$G_{H}=1.100$

Section Elevation ft	$\begin{aligned} & z \\ & f t \end{aligned}$	$K z$	$\begin{gathered} q_{z} \\ p s f \end{gathered}$	$\begin{aligned} & \overline{t z} \\ & i n \end{aligned}$	$\begin{aligned} & A_{G} \\ & f^{2} \end{aligned}$	F a c e	$\begin{aligned} & A_{F} \\ & f^{2} \end{aligned}$	$\begin{aligned} & A_{R} \\ & f^{2} \end{aligned}$	$A_{\text {leg }}$ f^{2}	$\begin{gathered} \operatorname{Leg} \\ \% \end{gathered}$	$C_{A} A_{A}$ in Face f^{2}	$C_{A} A_{A}$ Out Face f^{2}
$\begin{array}{r} \hline \text { L1 } 151.00- \\ 146.00 \end{array}$	148.48	1.106	6.22	1.4819	8.992	A	0.000	8.992	8.992	100.00	0.000	0.000
						B	0.000	8.992		100.00	0.000	0.000
						C	0.000	8.992		100.00	0.000	0.000
$\begin{array}{r} \text { L2 } 146.00- \\ 141.00 \end{array}$	143.48	1.096	6.16	1.4769	9.392	A	0.000	9.392	9.392	100.00	0.000	0.000
						B	0.000	9.392		100.00	0.000	0.000
						C	0.000	9.392		100.00	0.000	0.000
$\begin{array}{r} \text { L3 } 141.00- \\ 136.00 \end{array}$	138.48	1.085	6.10	1.4716	9.791	A	0.000	9.791	9.791	100.00	0.000	0.000
						B	0.000	9.791		100.00	0.000	0.000
						C	0.000	9.791		100.00	0.000	0.000
$\begin{array}{r} \text { L4 } 136.00- \\ 131.00 \end{array}$	133.48	1.073	6.03	1.4662	10.190	A	0.000	10.190	10.190	100.00	0.000	0.000
						B	0.000	10.190		100.00	0.000	0.000
						C	0.000	10.190		100.00	0.000	0.000
$\begin{array}{r} \text { L5 } 131.00- \\ 126.00 \end{array}$	128.48	1.062	5.97	1.4606	10.589	A	0.000	10.589	10.589	100.00	0.000	0.000
						B	0.000	10.589		100.00	0.000	0.000
						C	0.000	10.589		100.00	0.000	0.000
$\begin{array}{r} \text { L6 } 126.00- \\ 125.50 \end{array}$	125.75	1.055	5.93	1.4575	1.081	A	0.000	1.081	1.081	100.00	0.000	0.000
						B	0.000	1.081		100.00	0.000	0.000
						C	0.000	1.081		100.00	0.000	0.000
$\begin{array}{r} L 7125.50- \\ 125.25 \end{array}$	125.37	1.054	5.93	1.4571	0.541	A	0.000	0.541	0.541	100.00	0.000	0.000
						B	0.000	0.541		100.00	0.000	0.000
						C	0.000	0.541		100.00	0.000	0.000
$\begin{array}{r} \text { L8 } 125.25- \\ 120.25 \end{array}$	122.73	1.048	5.89	1.4540	11.027	A	0.000	11.027	11.027	100.00	4.411	0.000
						B	0.000	11.027		100.00	6.762	0.000
						C	0.000	11.027		100.00	4.411	0.000
$\begin{array}{r} \text { L9 120.25- } \\ 118.50 \end{array}$	119.37	1.04	5.85	1.4499	3.954	A	0.000	3.954	3.954	100.00	3.763	0.000
						B	0.000	3.954		100.00	6.112	0.000
						C	0.000	3.954		100.00	3.763	0.000
$\begin{array}{r} \text { L10 } 118.50- \\ 118.25 \end{array}$	118.37	1.037	5.83	1.4487	0.567	A	0.000	0.567	0.567	100.00	0.537	0.000
						B	0.000	0.567		100.00	0.873	0.000
						C	0.000	0.567		100.00	0.537	0.000

Section Elevation ft	$\begin{aligned} & z \\ & f t \end{aligned}$	K_{z}	$\begin{gathered} q_{z} \\ p s f \end{gathered}$	$\begin{aligned} & \mathrm{tz} \\ & \mathrm{in} \end{aligned}$	$\begin{aligned} & A_{G} \\ & f^{2} \end{aligned}$	F a c e	$\begin{aligned} & A_{F} \\ & {f t^{2}}^{2} \end{aligned}$	$\begin{aligned} & A_{R} \\ & f^{2} \end{aligned}$	$\overline{A_{i e g}}$ πt^{2}	$\begin{gathered} \operatorname{Leg} \\ \% \end{gathered}$	$C_{A} A_{A}$ In Face $f t^{2}$	$C_{A} A_{A}$ Out Face f^{2}
L11 118.25-	117.87	1.036	5.82	1.4481	1.706	A	0.000	1.706	1.706	100.00	1.612	0.000
117.50						B	0.000	1.706		100.00	2.619	0.000
						C	0.000	1.706		100.00	1.612	0.000
L12 117.50-	117.37	1.035	5.82	1.4475	0.572	A	0.000	0.572	0.572	100.00	0.537	0.000
117.25						B	0.000	0.572		100.00	0.873	0.000
						C	0.000	0.572		100.00	0.537	0.000
L13 117.25-	114.73	1.028	5.78	1.4442	11.646	A	0.000	11.646	11.646	100.00	8.378	0.000
112.25						B	0.000	11.646		100.00	15.084	0.000
						C	0.000	11.646		100.00	8.378	0.000
L14 112.25-	109.73	1.015	5.71	1.4378	12.046	A	0.000	12.046	12.046	100.00	6.438	0.000
107.25						B	0.000	12.046		100.00	13.135	0.000
						C	0.000	12.046		100.00	6.438	0.000
L15 107.25-	104.74	1.001	5.63	1.4311	12.446	A	0.000	12.446	12.446	100.00	6.431	0.000
102.25						B	0.000	12.446		100.00	13.120	0.000
						C	0.000	12.446		100.00	6.431	0.000
L16 102.25-	99.86	0.988	5.55	1.4243	12.192	A	0.000	12.192	12.192	100.00	7.465	0.000
97.50						B	0.000	12.192		100.00	13.812	0.000
						C	0.000	12.192		100.00	7.465	0.000
L17 97.50-	96.71	0.979	5.50	1.4197	4.083	A	0.000	4.083	4.083	100.00	4.034	0.000
95.92						B	0.000	4.083		100.00	6.150	0.000
						C	0.000	4.083		100.00	4.034	0.000
L18 95.92-	94.20	0.972	5.46	1.4160	8.937	A	0.000	8.937	8.937	100.00	8.690	0.000
92.50						B	0.000	8.937		100.00	13.247	0.000
						C	0.000	8.937		100.00	8.690	0.000
L19 92.50-	92.37	0.966	5.43	1.4132	0.661	A	0.000	0.661	0.661	100.00	0.636	0.000
92.25						B	0.000	0.661		100.00	0.969	0.000
						C	0.000	0.661		100.00	0.636	0.000
L20 92.25-	89.74	0.958	5.39	1.4091	13.438	A	0.000	13.438	13.438	100.00	12.980	0.000
87.25						B	0.000	13.438		100.00	19.641	0.000
						C	0.000	13.438		100.00	12.980	0.000
L21 87.25-	87.12	0.95	5.34	1.4050	0.682	A	0.000	0.682	0.682	100.00	0.656	0.000
87.00						B	0.000	0.682		100.00	0.989	0.000
						C	0.000	0.682		100.00	0.656	0.000
L22 87.00-	84.49	0.942	5.30	1.4007	13.843	A	0.000	13.843	13.843	100.00	12.584	0.000
82.00						B	0.000	13.843		100.00	19.235	0.000
						C	0.000	13.843		100.00	12.584	0.000
L23 82.00-	79.49	0.925	5.20	1.3922	14.242	A	0.000	14.242	14.242	100.00	6.809	0.000
77.00						B	0.000	14.242		100.00	13.449	0.000
						C	0.000	14.242		100.00	6.809	0.000
L24 77.00-	74.49	0.908	5.11	1.3831	14.640	A	0.000	14.640	14.640	100.00	6.800	0.000
72.00						B	0.000	14.640		100.00	13.429	0.000
						C	0.000	14.640		100.00	6.800	0.000
L25 72.00-	69.49	0.891	5.01	1.3736	15.037	A	0.000	15.037	15.037	100.00	10.400	0.000
67.00						B	0.000	15.037		100.00	17.017	0.000
						C	0.000	15.037		100.00	10.400	0.000
L26 67.00-	65.12	0.874	4.92	1.3647	11.537	A	0.000	11.537	11.537	100.00	10.150	0.000
63.25						B	0.000	11.537		100.00	15.104	0.000
						C	0.000	11.537		100.00	10.150	0.000
L27 63.25-	63.12	0.867	4.87	1.3604	0.777	A	0.000	0.777	0.777	100.00	0.676	0.000
63.00						B	0.000	0.777		100.00	1.006	0.000
-						C	0.000	0.777		100.00	0.676	0.000
L28 63.00-	60.49	0.856	4.81	1.3546	15.749	A	0.000	15.749	15.749	100.00	14.348	0.000
58.00						B	0.000	15.749		100.00	20.941	0.000
						C	0.000	15.749		100.00	14.348	0.000
L29 58.00-	57.37	0.843	4.74	1.3475	3.999	A	0.000	3.999	3.999	100.00	3.792	0.000
56.75						B	0.000	3.999		100.00	5.438	0.000
						C	0.000	3.999		100.00	3.792	0.000
L30 56.75-	56.62	0.84	4.72	1.3457	0.802	A	0.000	0.802	0.802	100.00	0.758	0.000
56.50						B	0.000	0.802		100.00	1.087	0.000
						C	0.000	0.802		100.00	0.758	0.000
L31 56.50-	51.96	0.82	4.61	1.3342	29.537	A	0.000	29.537	29.537	100.00	22.108	0.000
47.50						B	0.000	29.537		100.00	33.931	0.000
						C	0.000	29.537		100.00	22.108	0.000
L32 47.50-	47.25	0.798	4.49	1.3216	1.651	A	0.000	1.651	1.651	100.00	0.842	0.000
47.00						B	0.000	1.651		100.00	1.499	0.000
-						C	0.000	1.651		100.00	0.842	0.000
L33 47.00-	44.49	0.784	4.41	1.3137	16.719	A	0.000	16.719	16.719	100.00	8.397	0.000
42.00						B	0.000	16.719		100.00	14.939	0.000

Section Elevation ft	$\begin{aligned} & z \\ & f t \end{aligned}$	Kz	$\begin{gathered} q_{z} \\ p s f \end{gathered}$	$\begin{aligned} & t_{z} \\ & i n \end{aligned}$	A_{G} t^{2}	F a c e	$\begin{aligned} & A_{F} \\ & f^{2} \end{aligned}$	$\begin{aligned} & A_{R} \\ & f t^{2} \end{aligned}$	$\begin{gathered} A_{l e g} \\ f^{2} \end{gathered}$	$\begin{gathered} \mathrm{Leg} \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{C}_{A} A_{A} \\ & \text { In } \\ & \text { Face } \\ & {f t^{2}}^{2} \end{aligned}$	$C_{A} A_{A}$ Out Face f^{2}
						C	0.000	16.719		100.00	8.397	0.000
L34 42.00-	39.49	0.758	4.26	1.2981	17.111	A	0.000	17.111	17.111	100.00	13.154	0.000
37.00						B	0.000	17.111		100.00	19.677	0.000
						C	0.000	17.111		100.00	13.154	0.000
L35 37.00-	35.62	0.736	4.14	1.2848	9.574	A	0.000	9.574	9.574	100.00	8.969	0.000
34.25						B	0.000	9.574		100.00	12.546	0.000
						C	0.000	9.574		100.00	8.969	0.000
L36 34.25-	34.12	0.727	4.09	1.2793	0.876	A	0.000	0.876	0.876	100.00	0.815	0.000
34.00						B	0.000	0.876		100.00	1.140	0.000
						C	0.000	0.876		100.00	0.815	0.000
L37 34.00-	31.49	0.71	3.99	1.2690	17.734	A	0.000	17.734	17.734	100.00	16.214	0.000
29.00						B	0.000	17.734		100.00	22.776	0.000
						C	0.000	17.734		100.00	16.290	0.000
$L 3829.00-$	27.87	0.7	3.94	1.2537	8.106	A	0.000	8.106	8.106	100.00	7.210	0.000
26.75						B	0.000	8.106		100.00	10.230	0.000
						C	0.000	8.106		100.00	7.320	0.000
L.39 26.75-	26.62	0.7	3.94	1.2479	0.906	A	0.000	0.906	0.906	100.00	0.801	0.000
26.50						B	0.000	0.906		100.00	1.136	0.000
.						C	0.000	0.906		100.00	0.813	0.000
L40 $26.50-$	23.99	0.7	3.94	1.2350	18.313	A	0.000	18.313	18.313	100.00	16.003	0.000
21.50						B	0.000	18.313		100.00	22.682	0.000
- 21.50						C	0.000	18.313		100.00	16.238	0.000
L41 21.50-	19.12	0.7	3.94	1.2073	17.749	A	0.000	17.749	17.749	100.00	14.508	0.000
16.75						B	0.000	17.749		100.00	20.807	0.000
- 10.75						C	0.000	17.749		100.00	8.667	0.000
L42 16.75-\|	16.62	0.7	3.94	1.1905	0.943	A	0.000	0.943	0.943	100.00	0.806	0.000
16.50						B	0.000	0.943		100.00	1.136	0.000
. 10.50						C	0.000	0.943		100.00	0.414	0.000
L43 16.50-	15.37	0.7	3.94	1.1812	8.527	A	0.000	8.527	8.527	100.00	7.250	0.000
14.25						B	0.000	8.527		100.00	10.213	0.000
						C	0.000	8.527		100.00	3.719	0.000
L44 14.25-	14.12	0.7	3.94	1.1713	0.952	A	0.000	0.952	0.952	100.00	0.805	0.000
14.00						B	0.000	0.952		100.00	1.133	0.000
						C	0.000	0.952		100.00	0.413	0.000
L45 14.00-9.00	11.49	0.7	3.94	1.1473	19.240	A	0.000	19.240	19.240	100.00	13.665	0.000
						B	0.000	19.240		100.00	22.603	0.000
						C	0.000	19.240		100.00	8.231	0.000
L46 9.00-4.25	6.62	0.7	3.94	1.0857	18.603	A	0.000	18.603	18.603	100.00	7.606	0.000
						B	0.000	18.603		100.00	21.311	0.000
						C	0.000	18.603		100.00	7.761	0.000
L47 4.25-4.00	4.12	0.7	3.94	1.0356	0.988	A	0.000	0.988	0.988	100.00	0.399	0.000
						B	0.000	0.988		100.00	1.115	0.000
						C	0.000	0.988		100.00	0.406	0.000
L48 4.00-0.00	1.99	0.7	3.94	0.9630	15.896	A	0.000	15.896	15.896	100.00	5.561	0.000
						B	0.000	15.896		100.00	16.076	0.000
						C	0.000	15.896		100.00	5.632	0.000

Tower Pressure - Service

Section Elevation ft	$\begin{aligned} & z \\ & f t \end{aligned}$	$K z$	$\begin{gathered} q_{z} \\ p s f \end{gathered}$	$\begin{aligned} & A_{G} \\ & f^{2} \end{aligned}$	F a c e	$\begin{aligned} & A_{F} \\ & {f t^{2}}^{2} \end{aligned}$	$\begin{aligned} & A_{R} \\ & f^{2} \end{aligned}$	$\begin{gathered} A_{\text {ieg }} \\ f^{2} \end{gathered}$	$\begin{gathered} \text { Leg } \\ \% \end{gathered}$	$\begin{aligned} & C_{A} A_{A} \\ & \text { In } \\ & \text { Face } \\ & f^{2} \\ & \hline \end{aligned}$	$C_{A} A_{A}$ Out Face $f t^{2}$
L1 151.00-	148.48	1.106	8.44	7.757	A	0.000	7.757	7.757	100.00	0.000	0.000
146.00					B	0.000	7.757		100.00	0.000	0.000
					C	0.000	7.757		100.00	0.000	0.000
L2 146.00-	143.48	1.096	8.36	8.161	A	0.000	8.161	8.161	100.00	0.000	0.000
141.00					B	0.000	8.161		100.00	0.000	0.000
					C	0.000	8.161		100.00	0.000	0.000
L3 141.00-	138.48	1.085	8.27	8.564	A	0.000	8.564	8.564	100.00	0.000	0.000
136.00					B	0.000	8.564		100.00	0.000	0.000
					C	0.000	8.564		100.00	0.000	0.000
$L 4$ 136.00-	133.48	1.073	8.18	8.968	A	0.000	8.968	8.968	100.00	0.000	0.000
131.00					B	0.000	8.968		100.00	0.000	0.000
					C	0.000	8.968		100.00	0.000	0.000

Section Elevation ft	$\begin{aligned} & z \\ & f t \end{aligned}$	$K z$	$\begin{gathered} q_{z} \\ p s f \end{gathered}$	$\begin{aligned} & \hline A_{G} \\ & f^{2} \end{aligned}$	F a c e	$\begin{aligned} & A_{F} \\ & f t^{2} \end{aligned}$	$\begin{aligned} & \hline A_{R} \\ & {f t^{2}}^{2} \end{aligned}$	$\overline{A_{i e g}}$ ft^{2}	$\begin{gathered} \operatorname{Leg} \\ \% \end{gathered}$	$C_{A} A_{A}$ In Face ft	$C_{A} A_{A}$ Out Face f^{2}
L5 131.00-	128.48	1.062	8.10	9.372	A	0.000	9.372	9.372	100.00	0.000	0.000
126.00					B	0.000	9.372		100.00	0.000	0.000
					C	0.000	9.372		100.00	0.000	0.000
L6 126.00-	125.75	1.055	8.05	0.959	A	0.000	0.959	0.959	100.00	0.000	0.000
125.50					B	0.000	0.959		100.00	0.000	0.000
					C	0.000	0.959		100.00	0.000	0.000
L7 125.50-	125.37	1.054	8.04	0.480	A	0.000	0.480	0.480	100.00	0.000	0.000
125.25					B	0.000	0.480		100.00	0.000	0.000
					C	0.000	0.480		100.00	0.000	0.000
L8 125.25-	122.73	1.048	7.99	9.815	A	0.000	9.815	9.815	100.00	3.464	0.000
120.25					B	0.000	9.815		100.00	4.836	0.000
					C	0.000	9.815		100.00	3.464	0.000
L9 120.25-	119.37	1.04	7.93	3.531	A	0.000	3.531	3.531	100.00	2.934	0.000
118.50					B	0.000	3.531		100.00	4.306	0.000
					C	0.000	3.531		100.00	2.934	0.000
L10 118.50-	118.37	1.037	7.91	0.506	A	0.000	0.506	0.506	100.00	0.419	0.000
118.25					B	0.000	0.506		100.00	0.615	0.000
					C	0.000	0.506		100.00	0.419	0.000
L11 118.25-	117.87	1.036	7.90	1.525	A	0.000	1.525	1.525	100.00	1.258	0.000
117.50					B	0.000	1.525		100.00	1.846	0.000
					C	0.000	1.525		100.00	1.258	0.000
L12 117.50-	117.37	1.035	7.89	0.511	A	0.000	0.511	0.511	100.00	0.419	0.000
117.25					B	0.000	0.511		100.00	0.615	0.000
					C	0.000	0.511		100.00	0.419	0.000
L13 117.25-	114.73	1.028	7.84	10.443	A	0.000	10.443	10.443	100.00	6.523	0.000
112.25					B	0.000	10.443		100.00	10.443	0.000
					C	0.000	10.443		100.00	6.523	0.000
L14 112.25-	109.73	1.015	7.74	10.848	A	0.000	10.848	10.848	100.00	5.000	0.000
107.25					B	0.000	10.848		100.00	8.920	0.000
					C	0.000	10.848		100.00	5.000	0.000
L15 107.25-	104.74	1.001	7.64	11.253	A	0.000	11.253	11.253	100.00	5.000	0.000
102.25					B	0.000	11.253		100.00	8.920	0.000
					C	0.000	11.253		100.00	5.000	0.000
L16 102.25-	99.86	0.988	7.53	11.065	A	0.000	11.065	11.065	100.00	5.830	0.000
97.50					B	0.000	11.065		100.00	9.554	0.000
					C	0.000	11.065		100.00	5.830	0.000
L17 97.50-	96.71	0.979	7.46	3.707	A	0.000	3.707	3.707	100.00	3.168	0.000
95.92					B	0.000	3.707		100.00	4.410	0.000
					C	0.000	3.707		100.00	3.168	0.000
L18 95.92-	94.20	0.972	7.41	8.131	A	0.000	8.131	8.131	100.00	6.832	0.000
92.50					B	0.000	8.131		100.00	9.510	0.000
					C	0.000	8.131		100.00	6.832	0.000
L19 92.50-	92.37	0.966	7.37	0.602	A	0.000	0.602	0.602	100.00	0.500	0.000
92.25					B	0.000	0.602		100.00	0.696	0.000
					C	0.000	0.602		100.00	0.500	0.000
L20 92.25-	89.74	0.958	7.31	12.263	A	0.000	12.263	12.263	100.00	10.271	0.000
87.25					B	0.000	12.263		100.00	14.191	0.000
					C	0.000	12.263		100.00	10.271	0.000
L21 87.25-	87.12	0.95	7.25	0.623	A	0.000	0.623	0.623	100.00	0.521	0.000
87.00					B	0.000	0.623		100.00	0.717	0.000
					C	0.000	0.623		100.00	0.521	0.000
L22 87.00-	84.49	0.942	7.18	12.676	A	0.000	12.676	12.676	100.00	9.997	0.000
82.00					B	0.000	12.676		100.00	13.917	0.000
					C	0.000	12.676		100.00	9.997	0.000
L23 82.00-	79.49	0.925	7.06	13.082	A	0.000	13.082	13.082	100.00	5.417	0.000
77.00					B	0.000	13.082		100.00	9.337	0.000
					C	0.000	13.082		100.00	5.417	0.000
L24 77.00-	74.49	0.908	6.93	13.487	A	0.000	13.487	13.487	100.00	5.417	0.000
72.00					B	0.000	13.487		100.00	9.337	0.000
					C	0.000	13.487		100.00	5.417	0.000
L25 72.00-	69.49	0.891	6.79	13.892	A	0.000	13.892	13.892	100.00	8.309	0.000
67.00					B	0.000	13.892		100.00	12.229	0.000
					C	0.000	13.892		100.00	8.309	0.000
L26 67.00-	65.12	0.874	6.67	10.684	A	0.000	10.684	10.684	100.00	8.125	0.000
63.25					B	0.000	10.684		100.00	11.065	0.000
					C	0.000	10.684		100.00	8.125	0.000
L27 63.25-	63.12	0.867	6.61	0.720	A	0.000	0.720	0.720	100.00	0.542	0.000
63.00					B	0.000	0.720		100.00	0.738	0.000

Section Elevation ft	$\begin{aligned} & z \\ & f \end{aligned}$	$K z$	$\begin{gathered} q_{2} \\ p s f \end{gathered}$	$\begin{aligned} & A_{G} \\ & f^{2} \end{aligned}$	F a c e	A_{F} $f t^{2}$	A_{R} f^{2}	$\begin{aligned} & A_{\text {leg }} \\ & f^{2} \end{aligned}$	$\begin{gathered} \mathrm{Leg} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{C}_{A} A_{A} \\ \text { in } \\ \text { Face } \\ {f t^{2}}^{2} \end{gathered}$	$C_{A} A_{A}$ Out Face f^{2}
$\begin{array}{r} \mathrm{L} 28 \text { 63.00- } \\ 58.00 \end{array}$	60.49	0.856	6.53	14.621	C	0.000	0.720	14.621	100.00	0.542	0.000
					A	0.000	14.621		100.00	11.667	0.000
					B	0.000	14.621		100.00	15.587	0.000
	57.37				C	0.000	14.621	3.718	100.00	11.667	0.000
L29 58.00-		0.843	6.43	3.718	A	0.000	3.718		100.00	3.125	0.000
56.75					B	0.000	3.718		100.00	4.105	0.000
	56.62	0.84	6.41	0.746	C	0.000	3.718	0.746	100.00	3.125	0.000
L30 56.75-					A	0.000	0.746		100.00	0.625	0.000
56.50					B	0.000	0.746		100.00	0.821	0.000
	51.96	0.82	6.25	27.535	C	0.000	0.746	27.535	100.00	0.625	0.000
L31 56.50-					A	0.000	27.535		100.00	18.352	0.000
47.50					B	0.000	27.535		100.00	25.409	0.000
	47.25	0.798	6.08	1.540	C	0.000	27.535	1.540	100.00	18.352	0.000
L32 47.50-					A	0.000	1.540		100.00	0.708	0.000
47.00					B	0.000	1.540		100.00	1.100	0.000
		0.784	5.98	15.624	C	0.000	1.540	15.624	100.00	0.708	0.000
L33 47.00-	44.49				A	0.000	15.624		100.00	7.083	0.000
42.00					B	0.000	15.624		100.00	11.003	0.000
	39.49	0.758	5.78	16.029	C	0.000	15.624	16.029	100.00	7.083	0.000
L.34 42.00-					A	0.000	16.029		100.00	11.335	0.000
37.00					B	0.000	16.029		100.00	15.255	0.000
	35.62	0.736	5.61	8.985	C	0.000	16.029	8.985	100.00	11.335	0.000
L35 37.00-					A	0.000	8.985		100.00	7.789	0.000
34.25					B	0.000	8.985		100.00	9.944	0.000
	34.12	0.727	5.54	0.823	C	0.000	8.985	0.823	100.00	7.789	0.000
L36 34.25-					A	0.000	0.823		100.00	0.708	0.000
34.00					B	0.000	0.823		100.00	0.904	0.000
	31.49	0.71	5.42	16.677	C	0.000	0.823	16.677	100.00	0.708	0.000
L37 34.00-					A	0.000	16.677		100.00	14.167	0.000
29.00					B	0.000	16.677		100.00	18.087	0.000
	27.87	0.7	5.34	7.636	C	0.000	16.677	7.636	100.00	14.167	0.000
L38 29.00-					A	0.000	7.636		100.00	6.375	0.000
26.75					B	0.000	7.636		100.00	8.139	0.000
	26.62	0.7	5.34	0.854	C	0.000	7.636	0.854	100.00	6.375	0.000
L39 26.75-					A	0.000	0.854		100.00	0.708	0.000
26.50					B	0.000	0.854		100.00	0.904	0.000
	23.99	0.7	5.34	17.284	C	0.000	0.854	17.284	100.00	0.708	0.000
L40 26.50-					A	0.000	17.284		100.00	14.167	0.000
21.50					B	0.000	17.284		100.00	18.087	0.000
	19.12	0.7	5.34	16.794	C	0.000	17.284	16.794	100.00	14.167	0.000
L41 21.50-					A	0.000	16.794		100.00	12.750	0.000
16.75					B	0.000	16.794		100.00	16.474	0.000
	16.62	0.7	5.34	0.893	C	0.000	16.794	0.893	100.00	7.438	0.000
L42 16.75-					A	0.000	0.893		100.00	0.708	0.000
16.50					B	0.000	0.893		100.00	0.904	0.000
	15.37	0.7	5.34	8.084	C	0.000	0.893	8.084	100.00	0.354	0.000
L43 16.50-					A	0.000	8.084		100.00	6.375	0.000
14.25					B	0.000	8.084		100.00	8.139	0.000
	14.12	0.7	5.34		C	0.000	8.084	0.903	100.00	3.188	0.000
L44 14.25-				0.903	A	0.000	0.903		100.00	0.708	0.000
14.00					B	0.000	0.903		100.00	0.904	0.000
	11.49	0.7	5.34		C	0.000	0.903	18.284	100.00	0.354	0.000
L45 14.00-				18.284	A	0.000	18.284		100.00	12.042	0.000
9.00					B	0.000	18.284		100.00	18.087	0.000
	6.62	0.7	5.34		C	0.000	18.284		100.00	7.083	0.000
L46 9.00-4.25				17.743	A	0.000	17.743	17.743	100.00	6.729	0.000
					B	0.000	17.743		100.00	17.182	0.000
	4.12		5.34		C	0.000	17.743		100.00	6.729	0.000
L47 4.25-4.00		0.7		0.945	A	0.000	0.945	0.945	100.00	0.354	0.000
					B	0.000	0.945		100.00	0.904	0.000
	1.99		5.34		C	0.000	0.945	15.254	100.00	0.354	0.000
L.48 4.00-0.00		0.7		15.254	A	0.000	15.254		100.00	4.958	0.000
					B	0.000	15.254		100.00	13.053	0.000
					C	0.000	15.254		100.00	4.958	0.000

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Deadt 1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead +1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice +1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice +1.0 Temp
32	1.2 Dead +1.0 Wind $150 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead +1.0 Wind $240 \mathrm{deg}+1.0$ Ice +1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg +1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
38	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0$ lce+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg-Service

Maximum Member Forces

$\begin{gathered} \hline \text { Sectio } \\ n \\ \text { No. } \\ \hline \end{gathered}$	Elevation ft	Component Type	Condition	Gov. Load Comb	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	151-146	Pole	Max Tension	39	0.00	0.00	0.00
			Max. Compression	26	-8.36	-0.72	2.26
			Max. Mx	8	-3.02	-19.53	0.19
			Max. My	2	-3.02	-0.31	19.53
			Max. Vy	8	5.20	-19.53	0.19
			Max. Vx	2	-5.20	-0.31	19.53
			Max. Torque	10			2.22
L2	146-141	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-8.89	-0.75	2.31

tnxTower Report - version 8.0.5.0

151 Ft Monopole Tower Structural Analysis
CCI BU No 841295
Project Number 37519-2490.001.7805, Order 492710, Revision 0

$\begin{gathered} \text { Sectio } \\ n \\ \text { No. } \\ \hline \end{gathered}$	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L30	56.75-56.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-51.99	-5.05	8.25
			Max. Mx	8	-28.21	-1639.75	0.32
			Max. My	2	-28.21	0.35	1656.91
			Max. Vy	8	24.61	-1639.75	0.32
			Max. Vx	14	24.80	-4.52	-1656.17
			Max. Torque	10			3.52
L31	$\begin{gathered} 56.5- \\ 47.499 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-53.98	-5.20	8.35
			Max. Mx	8	-29.66	-1751.73	0.21
			Max. My	14	-29.64	-4.68	-1768.90
			Max. Vy	8	25.15	-1751.73	0.21
			Max. Vx	14	25.32	-4.68	-1768.90
			Max. Torque	10			3.52
132	$\begin{gathered} 47.499- \\ 46.999 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-57.86	-5.36	8.46
			Max. Mx	8	-32.64	-1879.19	0.10
			Max. My	14	-32.63	-4.86	-1897.09
			Max. Vy	8	25.83	-1879.19	0.10
			Max. Vx	14	25.97	-4.86	-1897.09
			Max. Torque	10			3.52
L33	$\begin{gathered} 46.999 \\ 41.999 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-60.15	-5.52	8.57
			Max. Mx	8	-34.43	-2009.70	-0.02
			Max. My	14	-34.42	-5.05	-2028.16
			Max. Vy	8	26.38	-2009.70	-0.02
			Max. Vx	14	26.48	-5.05	-2028.16
			Max. Torque	10			3.52
L34	$\begin{gathered} 41.999- \\ 36.999 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-62.57	-5.68	8.68
			Max. Mx	8	-36.25	-2142.93	-0.13
			Max. My	14	-36.24	-5.23	-2161.80
			Max. Vy	8	26.93	-2142.93	-0.13
			Max. Vx	14	27.01	-5.23	-2161.80
			Max. Torque	10			3.52
L35	$\begin{gathered} 36.999- \\ 34.25 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-63.96	-5.77	8.74
			Max. Mx	8	-37.26	-2217.34	-0.20
			Max. My	14	-37.25	-5.33	-2236.42
			Max. Vy	8	27.23	-2217.34	-0.20
			Max. Vx	14	27.32	-5.33	-2236.42
			Max. Torque	10			3.52
L36	34.25-34	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-64.08	-5.78	8.75
			Max. Mx	8	-37.36	-2224.15	-0.20
			Max. My	14	-37.36	-5.34	-2243.25
			Max. Vy	8	27.24 .	-2224.15	-0.20
			Max. Vx	14	27.33	-5.34	-2243.25
			Max. Torque	10			3.52
L37	34-29	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-66.61	-5.92	8.83
			Max. Mx	8	-39.22	-2361.68	-0.32
			Max. My	14	-39.22	-5.52	-2381.14
			Max. Vy	8	27.77	-2361.68	-0.32
			Max. Vx	14	27.86	-5.52	-2381.14
			Max. Torque	10			3.52
L38	29-26.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-67.75	-5.98	8.87
			Max. Mx	8	-40.07	-2424.42	-0.37
			Max. My	14	-40.07	-5.60	-2444.04
			Max. Vy	8	28.01	-2424.42	-0.37
			Max. Vx	14	28.09	-5.60	-2444.04
			Max. Torque	10			3.52
L39	26.75-26.5	Pole	Max Tension	1	0.00	0.00	0.00

tnxTower Report - version 8.0.5.0

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, X } \\ K \end{gathered}$	Horizontal, Z K
Pole	Max. Vert	26	81.70	0.00	-0.00
	Max. H_{x}	21	38.40	29.46	0.03
	Max. Hz_{z}	2	51.20	0.03	29.79
	Max. M_{x}	2	3209.26	0.03	29.79
	Max. $\mathrm{M}_{\mathbf{z}}$	8	3209.95	-30.68	-0.03
	Max. Torsion	10	3.51	-25.94	-15.09
	Min. Vert	3	38.40	0.03	29.79
	Min. H_{x}	8	51.20	-30.68	-0.03
	Min. $\mathrm{H}_{\mathbf{z}}$	15	38.40	-0.03	-30.75
	Min. M_{x}	14	-3231.34	-0.03	-30.75
	Min. $\mathrm{M}_{\mathbf{z}}$	20	-3163.87	29.46	0.03
	Min. Torsion	22	-3.51	25.72	14.96

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear K	Shearz K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	42.67	-0.00	0.00	-2.31	-1.92	0.00
1.2 Dead+1.0 Wind 0 deg No lce	51.20	-0.03	-29.79	-3209.26	1.52	1.60
$\begin{aligned} & \text { 0.9 Dead+1.0 Wind } 0 \text { deg - } \\ & \text { No Ice } \end{aligned}$	38.40	-0.03	-29.79	-3169.51	2.13	1.56
1.2 Dead+1.0 Wind 30 deg No lce	51.20	14.70	-25.67	-2767.59	-1582.21	-0.21
0.9 Dead+1.0 Wind 30 deg No lce	38.40	14.70	-25.67	-2733.20	-1562.37	-0.24
1.2 Dead+1.0 Wind 60 deg No Ice	51.20	26.17	-15.19	-1601.24	-2750.31	-1.94
0.9 Dead+1.0 Wind 60 deg No lce	38.40	26.17	-15.19	-1581.10	-2716.43	-1.94
1.2 Dead+1.0 Wind 90 deg No Ice	51.20	30.68	0.03	1.00	-3209.95	-3.15
0.9 Dead +1.0 Wind 90 deg No Ice	38.40	30.68	0.03	1.75	-3170.61	-3.12
1.2 Dead+1.0 Wind 120 deg - No Ice	51.20	25.94	15.09	1591.45	-2735.79	-3.51
0.9 Dead+1.0 Wind 120 deg - No Ice	38.40	25.94	15.09	1572.92	-2702.00	-3.47
1.2 Dead+1.0 Wind 150 deg - No Ice	51.20	15.06	26.24	2770.78	-1592.20	-2.93
0.9 Dead+1.0 Wind 150 deg - No Ice	38.40	15.06	26.24	2737.95	-1572.27	-2.88
1.2 Dead+1.0 Wind 180 deg - No lce	51.20	0.03	30.75	3231.34	-6.54	-1.60
0.9 Dead+1.0 Wind 180 deg - No Ice	38.40	0.03	30.75	3193.07	-5.82	-1.56
1.2 Dead+1.0 Wind 210 deg - No Ice	51.20	-15.32	26.73	2797.04	1597.68	0.22
0.9 Dead+1.0 Wind 210 deg - No Ice	38.40	-15.32	26.73	2764.08	1579.07	0.25
1.2 Dead+1.0 Wind 240 deg - No lce	51.20	-25.85	15.01	1583.93	2725.78	1.95
0.9 Dead+1.0 Wind 240 deg - No Ice	38.40	-25.85	15.01	1565.49	2693.39	1.95
1.2 Dead+1.0 Wind 270 deg	51.20	-29.46	-0.03	-7.06	3163.87	3.15

Load Combination	Vertical K	Shear ${ }_{x}$ K	Shearz K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
0.9 Dead +1.0 Wind 270 deg - No Ice	38.40	-29.46	-0.03	-6.20	3126.12	3.12
1.2 Dead+1.0 Wind 300 deg - No Ice	51.20	-25.72	-14.96	-1605.71	2744.97	3.51
0.9 Dead +1.0 Wind 300 deg - No Ice	38.40	-25.72	-14.96	-1585.49	2712.39	3.46
1.2 Dead+1.0 Wind 330 deg - No lce	51.20	-15.33	-26.69	-2806.17	1604.11	2.93
0.9 Dead+1.0 Wind 330 deg - No ice	38.40	-15.33	-26.69	-2771.53	1585.40	2.88
1.2 Dead+1.0 Ice+1.0 Temp	81.70	-0.00	0.00	-9.83	-6.67	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	81.70	-0.01	-6.77	-835.35	-5.79	0.72
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	81.70	3.33	-5.82	-718.60	-412.05	0.14
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	81.70	5.85	-3.39	-420.11	-712.43	-0.46
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	81.70	6.83	0.01	-8.99	-828.02	-0.94
1.2 Dead +1.0 Wind 120 deg+1.0 Ice+1.0 Temp	81.70	5.81	3.38	399.96	-710.08	-1.17
1.2 Dead +1.0 Wind 150 deg+1.0 lce +1.0 Temp	81.70	3.36	5.85	700.04	-413.93	-1.08
1.2 Dead+1.0 Wind 180 deg+1.0 Ice +1.0 Temp	81.70	0.01	6.87	819.87	-7.71	-0.72
1.2 Dead+1.0 Wind 210 deg+1.0 Ice +1.0 Temp	81.70	-3.41	5.95	706.49	403.05	-0.14
1.2 Dead+1.0 Wind 240 deg+1.0 Ice +1.0 Temp	81.70	-5.79	3.36	398.20	695.45	0.47
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	81.70	-6.68	-0.01	-10.92	805.49	0.95
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	81.70	-5.84	-3.39	-421.65	699.67	1.17
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	81.70	-3.42	-5.95	-727.20	404.62	1.08
Dead+Wind 0 deg - Service	42.67	-0.01	-6.46	-693.42	-1.21	0.35
Dead+Wind 30 deg - Service	42.67	3.19	-5.57	-598.38	-342.56	-0.05
Dead+Wind 60 deg - Service	42.67	5.68	-3.30	-347.00	-594.34	-0.43
Dead+Wind 90 deg - Service	42.67	6.66	0.01	-1.65	-693.35	-0.69
Dead+Wind 120 deg Service	42.67	5.63	3.27	341.13	-591.17	-0.77
Dead+Wind 150 deg Service	42.67	3.27	5.69	595.35	-344.73	-0.64
Dead+Wind 180 deg Service	42.67	0.01	6.67	694.47	-2.95	-0.35
Dead+Wind 210 deg Service	42.67	-3.32	5.80	601.03	342.84	0.05
Dead + Wind 240 deg Service	42.67	-5.61	3.26	339.50	585.93	0.43
Dead+Wind 270 deg Service	42.67	-6.39	-0.01	-3.39	680.31	0.69
Dead+Wind 300 deg Service	42.67	-5.58	-3.25	-347.96	590.11	0.77
Dead+Wind 330 deg Service	42.67	-3.33	-5.79	-606.74	344.22	0.64

Solution Summary

	Sum of Applied Forces			Sum of Reactions			
Load	$P X$	$P Y$	$P Z$	$P X$	$P Y$	$P Z$	\% Error
Comb.	K	K	K	K	K	K	
1	0.00	-4.67	0.00	0.00	42.67	-0.00	0.003%
2	-0.03	-51.20	-29.79	0.03	51.20	29.79	0.001%
3	-0.03	-38.40	-29.79	0.03	38.40	29.79	0.001%
4	14.70	-51.20	-25.67	-14.70	51.20	25.67	0.000%
5	14.70	-38.40	-25.67	-14.70	38.40	25.67	0.000%
6	26.17	-51.20	-15.19	-26.17	51.20	15.19	0.000%

tnxTower Report - version 8.0.5.0

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	PZ	$P X$	PY	PZ	
Comb.	K	K	K	K	K	K	
7	26.17	-38.40	-15.19	-26.17	38.40	15.19	0.000\%
8	30.68	-51.20	0.03	-30.68	51.20	-0.03	0.000\%
9	30.68	-38.40	0.03	-30.68	38.40	-0.03	0.001\%
10	25.94	-51.20	15.09	-25.94	51.20	-15.09	0.000\%
11	25.94	-38.40	15.09	-25.94	38.40	-15.09	0.000\%
12	15.06	-51.20	26.24	-15.06	51.20	-26.24	0.000\%
13	15.06	-38.40	26.24	-15.06	38.40	-26.24	0.000\%
14	0.03	-51.20	30.75	-0.03	51.20	-30.75	0.001\%
15	0.03	-38.40	30.75	-0.03	38.40	-30.75	0.001\%
16	-15.32	-51.20	26.73	15.32	51.20	-26.73	0.000\%
17	-15.32	-38.40	26.73	15.32	38.40	-26.73	0.000\%
18	-25.85	-51.20	15.01	25.85	51.20	-15.01	0.000\%
19	-25.85	-38.40	15.01	25.85	38.40	-15.01	0.000\%
20	-29.46	-51.20	-0.03	29.46	51.20	0.03	0.000\%
21	-29.46	-38.40	-0.03	29.46	38.40	0.03	0.000\%
22	-25.72	-51.20	-14.96	25.72	51.20	14.96	0.000\%
23	-25.72	-38.40	-14.96	25.72	38.40	14.96	0.000\%
24	-15.33	-51.20	-26.69	15.33	51.20	26.69	0.000\%
25	-15.33	-38.40	-26.69	15.33	38.40	26.69	0.000\%
26	0.00	-81.70	0.00	0.00	81.70	-0.00	0.000\%
27	-0.01	-81.70	-6.77	0.01	81.70	6.77	0.000\%
28	3.33	-81.70	-5.82	-3.33	81.70	5.82	0.000\%
29	5.85	-81.70	-3.39	-5.85	81.70	3.39	0.000\%
30	6.83	-81.70	0.01	-6.83	81.70	-0.01	0.000\%
31	5.81	-81.70	3.38	-5.81	81.70	-3.38	0.000\%
32	3.36	-81.70	5.85	-3.36	81.70	-5.85	0.000\%
33	0.01	-81.70	6.87	-0.01	81.70	-6.87	0.000\%
34	-3.41	-81.70	5.95	3.41	81.70	-5.95	0.000\%
35	-5.79	-81.70	3.36	5.79	81.70	-3.36	0.000\%
36	-6.68	-81.70	-0.01	6.68	81.70	0.01	0.000\%
37	-5.84	-81.70	-3.39	5.84	81.70	3.39	0.000\%
38	-3.42	-81.70	-5.95	3.42	81.70	5.95	0.000\%
39	-0.01	-42.67	-6.46	0.01	42.67	6.46	0.004\%
40	3.19	-42.67	-5.57	-3.19	42.67	5.57	0.001\%
41	5.68	-42.67	-3.30	-5.68	42.67	3.30	0.001\%
42	6.66	-42.67	0.01	-6.66	42.67	-0.01	0.002\%
43	5.63	-42.67	3.27	-5.63	42.67	-3.27	0.001\%
44	3.27	-42.67	5.69	-3.27	42.67	-5.69	0.001\%
45	0.01	-42.67	6.67	-0.01	42.67	-6.67	0.004\%
46	-3.32	-42.67	5.80	3.32	42.67	-5.80	0.001\%
47	-5.61	-42.67	3.26	5.61	42.67	-3.26	0.001\%
48	-6.39	-42.67	-0.01	6.39	42.67	0.01	0.002\%
49	-5.58	-42.67	-3.25	5.58	42.67	3.25	0.001\%
50	-3.33	-42.67	-5.79	3.33	42.67	5.79	0.001\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	6	0.00000001	0.00001463
2	Yes	21	0.00000001	0.00009815
3	Yes	20	0.00000001	0.00013660
4	Yes	26	0.00000001	0.00008232
5	Yes	25	0.00000001	0.00011116
6	Yes	26	0.00000001	0.00008416
7	Yes	25	0.00000001	0.00011385
8	Yes	22	0.00000001	0.00010202
9	Yes	21	0.00000001	0.00014525
10	Yes	25	0.00000001	0.00014896
11	Yes	25	0.00000001	0.00010451
12	Yes	26	0.00000001	0.00008642
13	Yes	25	0.00000001	0.00011706
14	Yes	21	0.00000001	0.00011144
15	Yes	21	0.00000001	0.00008209
16	Yes	26	0.00000001	0.00008222
17	Yes	25	0.00000001	0.00011132
18	Yes	25	0.00000001	0.00014993
19	Yes	25	0.00000001	0.00010540
20	Yes	22	0.00000001	0.00010900
21	Yes	22	0.00000001	0.00008142
22	Yes	26	0.00000001	0.00008643
23	Yes	25	0.00000001	0.00011716
24	Yes	26	0.00000001	0.00007981
25	Yes	25	0.00000001	0.00010768
26	Yes	15	0.00000001	0.00014859
27	Yes	23	0.00000001	0.00008508
28	Yes	23	0.00000001	0.00010860
29	Yes	23	0.00000001	0.00010917
30	Yes	23	0.00000001	0.00008402
31	Yes	23	0.00000001	0.00010201
32	Yes	23	0.00000001	0.00010637
33	Yes	22	0.00000001	0.00014614
34	Yes	23	0.00000001	0.00010124
35	Yes	23	0.00000001	0.00009945
36	Yes	22	0.00000001	0.00014562
37	Yes	23	0.00000001	0.00010845
38	Yes	23	0.00000001	0.00010525
39	Yes	16	0.00014670	0.00013332
40	Yes	19	0.00000001	0.00009556
41	Yes	19	0.00000001	0.00010833
42	Yes	17	0.00000001	0.00013208
43	Yes	18	0.00000001	0.00014859
44	Yes	19	0.00000001	0.00011465
45	Yes	16	0.00014645	0.00013443
46	Yes	19	0.00000001	0.00009387
47	Yes	18	0.00000001	0.00014854
48	Yes	17	0.00000001	0.00013168
49	Yes	19	0.00000001	0.00011846
50	Yes	19	0.00000001	0.00008491

Maximum Tower Deflections - Service Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt 0	Twist o
L1	$151-146$	22.3859	39	1.3829	0.0120
L2	$146-141$	20.9386	39	1.3793	0.0114
L3	$141-136$	19.5025	39	1.3619	0.0099
L4	$136-131$	18.0915	39	1.3298	0.0083
L5	$131-126$	16.7238	39	1.2800	0.0069
L6	$126-125.5$	15.4161	39	1.2150	0.0056
L7	$125.5-125.25$	15.2892	39	1.2078	0.0054
L8	$125.25-120.25$	15.2261	39	1.2055	0.0054
L9	$120.25-118.5$	13.9897	39	1.1544	0.0047

Section	Elevation	Horz. Deflection in	Gov. Load Comb.	Tit	
L10	$118.5-118.25$	13.5701	39	1.1348	Twist
L11	$118.25-117.5$	13.5107	39	1.1332	0.0044
L12	$117.5-117.25$	13.3332	39	1.1281	0.0044
L13	$117.25-112.25$	13.2742	39	1.1259	0.0043
L14	$112.25-107.25$	12.1198	39	1.0781	0.0043
L15	$107.25-102.25$	11.0184	39	1.0250	0.0038
L16	$102.25-97.5$	9.9750	39	0.9672	0.0033
L17	$100.916-95.916$	9.7070	39	0.9514	0.0029
L18	$95.916-92.5$	8.7269	39	0.9149	0.0028
L19	$92.5-92.25$	8.0857	39	0.8775	0.0026
L.20	$92.25-87.25$	8.0398	39	0.8748	0.0024
L21	$87.25-87$	7.1553	50	0.8180	0.0024
L22	$87-82$	7.1126	50	0.8155	0.0021
L23	$82-77$	6.2870	50	0.7646	0.0021
L24	$77-72$	5.5149	50	0.7125	0.0019
L25	$72-67$	4.7977	50	0.6591	0.0017
L26	$67-63.25$	4.1364	50	0.6048	0.0015
L27	$63.25-63$	3.6775	50	0.5641	0.0013
L28	$63-58$	3.6480	50	0.5614	0.0012
L29	$58-56.75$	3.0889	50	0.5066	0.0012
L30	$56.75-56.5$	2.9580	50	0.4931	0.0010
L31	$56.5-47.499$	2.9322	50	0.4907	0.0010
L32	$51.999-46.999$	2.4902	50	0.4473	0.0009
L33	$46.999-41.999$	2.0341	50	0.4215	0.0008
L34	$41.999-36.999$	1.6171	50	0.3750	0.0008
L35	$36.999-34.25$	1.2488	50	0.3283	0.0007
L36	$34.25-34$	1.0672	50	0.3029	0.0006
L37	$34-29$	1.0514	50	0.3005	0.0005
L38	$29-26.75$	0.7611	50	0.2539	0.0005
L39	$26.75-26.5$	0.6463	50	0.2332	0.0004
L40	$26.5-21.5$	0.6341	50	0.2309	0.0004
L41	$21.5-16.75$	0.4167	50	0.1844	0.0004
L42	$16.75-16.5$	0.2550	50	0.1409	0.0003
L43	$16.5-14.25$	0.2476	50	0.1389	0.0002
L44	$14.25-14$	0.1863	50	0.1214	0.0002
L45	$14-9$	0.1800	50	0.1194	0.0002
L46	$9-4.25$	0.0765	50	0.0783	0.0002
L47	$4.25-4$	0.0177	50	0.0399	0.0001
L48	$4-0$	0.0157	50	0.0376	0.0001
					0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation f	Appurtenance	Gov. Load Comb.	Deflection in	$\underset{\substack{\text { Tilt }}}{ }$	Twist	Radius of Curvature ft
148.00	(2) AM-X-CD-16-65-00T-RET wf Mount Pipe	39	21.5168	1.3819	0.0117	26203
140.00	DB854DG65ESX w/ Mount Pipe	39	19.2177	1.3568	0.0096	10242
132.00	TME-1900MHZ RRH	39	16.9930	1.2910	0.0071	5215
130.00	GPS-TMG-HR-26NCM	39	16.4569	1.2687	0.0066	4705
122.00	ERICSSON AIR 21 B2A B4P wl Mount Pipe	39	14.4163	1.1749	0.0050	5466

Maximum Tower Deflections - Design Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt 0	Twist 0
L1	$151-146$	103.2916	2	6.3641	0.0551
L2	$146-141$	96.6437	2	6.3487	0.0522
L3	$141-136$	90.0449	2	6.2709	0.0455
L4	$136-131$	83.5713	14	6.1279	0.0381
L5	$131-126$	77.2976	14	5.9029	0.0313
L6	$126-125.5$	71.2913	14	5.6063	0.0254
L7	$125.5-125.25$	70.7083	14	5.5730	0.0248

Section	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
No.		Ct	14		
L8	$125.25-120.25$	70.4179	5.5626	0.0247	
L9	$120.25-118.5$	64.7326	14	5.3294	0.0213
L10	$118.5-118.25$	62.8017	14	5.2402	0.0201
L11	$118.25-117.5$	62.5284	14	5.2325	0.0200
L12	$117.5-117.25$	61.7108	14	5.2094	0.0197
L13	$117.25-112.25$	61.4392	14	5.1994	0.0196
L14	$112.25-107.25$	56.1214	14	4.9811	0.0173
L15	$107.25-102.25$	51.0424	14	4.7376	0.0153
L16	$102.25-97.5$	46.2268	14	4.4722	0.0133
L17	$100.916-95.916$	44.9890	14	4.3993	0.0129
L18	$95.916-92.5$	40.4608	14	4.2316	0.0119
L19	$92.5-92.25$	37.4969	14	4.0605	0.0109
L20	$92.25-87.25$	37.2848	14	4.0479	0.0109
L21	$87.25-87$	33.1851	14	3.7873	0.0096
L22	$87-82$	32.9873	14	3.7759	0.0095
L23	$82-77$	29.1579	14	3.5422	0.0085
L24	$77-72$	25.5763	14	3.3020	0.0076
L25	$72-67$	22.2489	14	3.0561	0.0067
L26	$67-63.25$	19.1813	14	2.8052	0.0059
L27	$63.25-63$	17.0525	14	2.6175	0.0053
L28	$63-58$	16.9159	14	2.6050	0.0053
L29	$58-56.75$	14.3220	14	2.3506	0.0045
L30	$56.75-56.5$	13.7150	14	2.2879	0.0044
L31	$56.5-47.499$	13.5955	14	2.2766	0.0043
L32	$51.999-46.999$	11.5450	14	2.0749	0.0038
L33	$46.999-41.999$	9.4299	14	1.9553	0.0035
L34	$41.999-36.999$	7.4959	14	1.7394	0.0030
L35	$36.999-34.25$	5.7889	24	1.5224	0.0026
L36	$34.25-34$	4.9466	24	1.4042	0.0023
L37	$34-29$	4.8734	24	1.3935	0.0023
L38	$29-26.75$	3.5277	24	1.1774	0.0019
L39	$26.75-26.5$	2.9956	24	1.0811	0.0017
L40	$26.5-21.5$	2.9393	24	1.0704	0.0017
L41	$21.5-16.75$	1.9315	24	0.8549	0.0013
L42	$16.75-16.5$	1.1817	24	0.6530	0.0010
L43	$16.5-14.25$	1.1477	24	0.6440	0.0010
L44	$14.25-14$	0.8634	24	0.5627	0.0008
L45	$14-9$	0.8342	24	0.5533	0.0008
L46	$9-4.25$	0.3546	24	0.3630	0.0005
L47	$4.25-4$	0.0822	24	0.1850	0.0003
L48	$4-0$	0.0728	24	0.1741	0.0002

Critical Deflections and Radius of Curvature - Design Wind

Elevation $f t$	Appurtenance	Gov. Load Comb.	Deflection in	Tilt 0	Twist 0	Radius of Curvature
4						

		Compression Checks Pole Design Data					
Section No.	$\begin{aligned} & \text { Elevation } \\ & \text { ft } \end{aligned}$	Size	$\begin{aligned} & \mathrm{L} \\ & \mathrm{ft} \\ & \hline \end{aligned}$	$\begin{aligned} & L_{u} \\ & f t \end{aligned}$	K/Vr	$\begin{gathered} A \\ i n^{2} \end{gathered}$	$\begin{aligned} & \hline P_{u} \\ & K \\ & \hline \end{aligned}$
L1	151-146 (1)	TP18.5255x17.59x0.2188	5.00	0.00	0.0	$\begin{gathered} 12.897 \\ 7 \end{gathered}$	-3.02
L2	146-141 (2)	TP19.461×18.5255×0.218 8	5.00	0.00	0.0	$\begin{gathered} 13.556 \\ 8 \end{gathered}$	-3.33

Section No.	$\begin{gathered} \text { Elevation } \\ \mathrm{ft} \end{gathered}$	Size	$\begin{aligned} & \mathrm{L} \\ & \mathrm{f} \end{aligned}$	$\begin{aligned} & L_{u} \\ & \mathrm{ft} \\ & \hline \end{aligned}$	KI/r	$\begin{aligned} & \bar{A} \\ & i n^{2} \end{aligned}$	$\begin{aligned} & P_{u} \\ & K \\ & \hline \end{aligned}$
L3	141-136 (3)	TP20.3965 ${ }_{8} 19.461 \times 0.218$	5.00	0.00	0.0	$\frac{14.215}{9}$	-6.93
L4	136-131 (4)	TP21.3321×20.3965×0.21	5.00	0.00	0.0	$\stackrel{14.875}{0}$	-7.88
L5	131-126 (5)	$\begin{gathered} \text { TP22.2676×21.3321×0.21 } \\ 88 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 15.534 \\ 2 \end{gathered}$	-10.11
L6	$126-125.5$ (6)	TP22.3611×22.2676x0.21 88	0.50	0.00	0.0	$\begin{gathered} 15.600 \\ 1 \end{gathered}$	-10.16
L7	$\begin{gathered} 125.5- \\ 125.25(7) \end{gathered}$	TP22.4079×22.3611×0.36	0.25	0.00	0.0	$\underset{0}{25.736}$	-10.20
L. 8	$\begin{gathered} 125.25- \\ 120.25(8) \end{gathered}$	TP23.3434×22.4079×0.35 63	5.00	0.00	0.0	$\begin{gathered} 26.372 \\ 8 \end{gathered}$	-12.41
L. 9	$\begin{aligned} & 120.25- \\ & 118.5 \text { (9) } \end{aligned}$	TP23.6708×23.3434×0.35	1.75	0.00	0.0	$\begin{gathered} 26.748 \\ 4 \end{gathered}$	-12.66
L10	$\begin{gathered} 118.5- \\ 118.25(10) \end{gathered}$	TP23.7176×23.6708×0.64 38	0.25	0.00	0.0	$\begin{gathered} 47.832 \\ 9 \end{gathered}$	-12.72
L11	$\begin{gathered} 118.25- \\ 117.5(11) \end{gathered}$	TP23.8579×23.7176x0.64 38	0.75	0.00	0.0	$\begin{gathered} 48.123 \\ 8 \end{gathered}$	-12.88
L12	$\begin{gathered} 117.5- \\ 117.25(12) \end{gathered}$	$\mathrm{TP} 23.9047 \times 23.8579 \times 0.49$ 38	0.25	0.00	0.0	$\begin{gathered} 37.224 \\ 2 \end{gathered}$	-12.92
L13	$\begin{gathered} 117.25- \\ 112.25(13) \end{gathered}$	TP24.8402×23.9047×0.48	5.00	0.00	0.0	$\begin{gathered} 37.751 \\ 1 \end{gathered}$	-13.82
L14	$\begin{array}{r} 112.25- \\ 107.25(14) \end{array}$	TP25.7757×24.8402×0.46 88	5.00	0.00	0.0	$\underset{7}{38.201}$	-14.76
L15	$\begin{gathered} 107.25- \\ 102.25(15) \end{gathered}$	TP26.7113×25.7757×0.45	5.00	0.00	0.0	$\begin{gathered} 38.576 \\ 0 \end{gathered}$	-15.72
L16	$\begin{gathered} 102.25-97.5 \\ \text { (16) } \end{gathered}$	TP27.6x26.7113x0.4563	4.75	0.00	0.0	$\begin{gathered} 38.942 \\ 8 \end{gathered}$	-15.98
L17	$\begin{gathered} 97.5-95.916 \\ (17) \end{gathered}$	TP27.4588×26.5233×0.55	5.00	0.00	0.0	$\begin{gathered} 47.655 \\ 5 \end{gathered}$	-17.60
L18	$95.916-92.5$	TP28.098x27.4588x0.55	3.42	0.00	0.0	$\begin{gathered} 48.787 \\ 4 \end{gathered}$	-18.40
L19	$\begin{gathered} 92.5-92.25 \\ (19) \end{gathered}$	TP28.1447x28.098×0.55	0.25	0.00	0.0	$\begin{gathered} 48.870 \\ 3 \end{gathered}$	-18.46
L20	$\begin{gathered} 92.25-87.25 \\ \text { (20) } \end{gathered}$	TP29.0803×28.1447×0.53	5.00	0.00	0.0	$\begin{gathered} 49.400 \\ 4 \end{gathered}$	-19.63
L21	$\underset{(21)}{87.25-87}$	TP29.1271 $\times 29.0803 \times 0.62$ 5	0.25	0.00	0.0	$\begin{gathered} 57.360 \\ 4 \end{gathered}$	-19.71
122	87-82 (22)	TP30.0626×29.1271×0.61 25	5.00	0.00	0.0	$\begin{gathered} 58.082 \\ 9 \end{gathered}$	-21.03
L23	82-77 (23)	TP30.9981x30.0626x0.6	5.00	0.00	0.0	$\begin{gathered} 58.729 \\ 2 \end{gathered}$	-22.38
L24	77-72 (24)	$\mathrm{TP} 31.9337 \times 30.9981 \times 0.58$ 75	5.00	0.00	0.0	$\underset{1}{59.299}$	-23.76
L25	72-67 (25)	TP32.8692×31.9337×0.57	5.00	0.00	0.0	$\begin{gathered} 59.792 \\ 7 \end{gathered}$	-25.16
L26	$\begin{gathered} 67-63.25 \\ (26) \end{gathered}$	TP33.5709×32.8692×0.57	3.75	0.00	0.0	$\begin{gathered} 61.091 \\ 8 \end{gathered}$	-26.23
L27	$63.25-63$	TP33.6176×33.5709×0.57 5	0.25	0.00	0.0	$\begin{gathered} 61.178 \\ 4 \end{gathered}$	-26.31
L28	63-58(28)	TP34.5532 25 25.6176×0.56	5.00	0.00	0.0	$\begin{gathered} 61.565 \\ 6 \end{gathered}$	-27.75
L29	$\begin{gathered} 58-56.75 \\ (29) \end{gathered}$	$\underset{25}{\text { TP34.7871 }} \underset{25453 \times 0.56}{ }$	1.25	0.00	0.0	$\begin{gathered} 61.989 \\ 2 \end{gathered}$	-28.11
L30	$\begin{gathered} 56.75-56.5 \\ (30) \end{gathered}$	TP34.8338×34.7871×0.63	0.25	0.00	0.0	$\begin{gathered} 70.196 \\ 5 \end{gathered}$	-28.21
L31	$\begin{gathered} 56.5-47.499 \\ (31) \end{gathered}$	TP36.518×34.8338×0.637	9.00	0.00	0.0	$\begin{gathered} 71.925 \\ 3 \end{gathered}$	-29.64
L32	$\begin{gathered} 47.499- \\ 46.999(32) \end{gathered}$	TP35.9865x35.051x0.7	5.00	0.00	0.0	$\begin{gathered} 79.535 \\ 8 \end{gathered}$	-32.63
L33	$\begin{gathered} 46.999- \\ 41.999(33) \end{gathered}$	TP36.922×35.9865×0.687 5	5.00	0.00	0.0	$\begin{gathered} 80.214 \\ 1 \end{gathered}$	-34.42
L.34	$\begin{gathered} 41.999- \\ 36.999(34) \end{gathered}$	TP37.8575 $\times 36.922 \times 0.675$	5.00	0.00	0.0	$\begin{gathered} 80.816 \\ 2 \end{gathered}$	-36.24
L35	$\begin{gathered} 36.999- \\ 34.25(35) \end{gathered}$	TP38.3718×37.8575×0.67	2.75	0.00	0.0	$\begin{gathered} 81.934 \\ 1 \end{gathered}$	-37.25
L36	$\begin{gathered} 34.25-34 \\ (36) \end{gathered}$	TP $38.4186 \times 38.3718 \times 0.67$	0.25	0.00	0.0	$\begin{gathered} 82.035 \\ 8 \end{gathered}$	-37.36
L37	34-29(37)	TP39.3541×38.4186×0.66 25	5.00	0.00	0.0	$\begin{gathered} 82.538 \\ 9 \end{gathered}$	-39.22

151 Ft Monopole Tower Structural Analysis
Project Number 37519-2490.001.7805, Order 492710, Revision 0

Section No.	Elevation ft	Size	$\begin{aligned} & L \\ & f t \end{aligned}$	$\begin{aligned} & L_{u} \\ & f t \end{aligned}$	KI/r	$\begin{gathered} A \\ i n^{2} \end{gathered}$	$\begin{aligned} & P_{u} \\ & K \end{aligned}$
L38	$\begin{gathered} 29-26.75 \\ (38) \end{gathered}$	$\begin{aligned} & \text { TP39.7751×39.3541×0.66 } \\ & 25 \end{aligned}$	2.25	0.00	0.0	$\begin{gathered} 83.436 \\ 9 \end{gathered}$	-40.07
L39	$\begin{gathered} 26.75-26.5 \\ (39) \end{gathered}$	$\begin{gathered} \text { TP39.8219×39.7751×0.66 } \\ 25 \end{gathered}$	0.25	0.00	0.0	$\begin{gathered} 83.536 \\ 7 \end{gathered}$	-40.17
L40	$\begin{gathered} 26.5-21.5 \\ (40) \end{gathered}$	TP40.7574×39.8219×0.65	5.00	0.00	0.0	$\begin{gathered} 83.944 \\ 7 \end{gathered}$	-42.07
L41	$\begin{gathered} 21.5-16.75 \\ (41) \end{gathered}$	TP41.6461×40.7574×0.65	4.75	0.00	0.0	$\begin{gathered} 85.804 \\ 8 \end{gathered}$	-43.90
L42	$\begin{gathered} 16.75-16.5 \\ (42) \end{gathered}$	$\begin{gathered} \text { TP41.6929x41.6461x0.76 } \\ 25 \end{gathered}$	0.25	0.00	0.0	$\begin{gathered} 100.49 \\ 40 \end{gathered}$	-44.03
L43	$16.5-14.25$ (43)	TP42.1138×41.6929×0.76 25	2.25	0.00	0.0	$\begin{gathered} 101.52 \\ 80 \end{gathered}$	-45.09
L44	$\begin{gathered} 14.25-14 \\ (44) \end{gathered}$	TP42.1606×42.1138×0.72	0.25	0.00	0.0	$\begin{gathered} 96.731 \\ 4 \end{gathered}$	-45.21
L45	14-9 (45)	$\begin{gathered} \text { TP43.0961×42.1606×0.71 } \\ 25 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 97.238 \\ 6 \end{gathered}$	-47.38
L46	9-4.25 (46)	TP43.9848×43.0961×0.71 25	4.75	0.00	0.0	$\begin{gathered} 99.277 \\ 5 \end{gathered}$	-49.47
L47	4.25-4 (47)	TP44.0316x43.9848×0.6	0.25	0.00	0.0	$\begin{gathered} 83.909 \\ 9 \end{gathered}$	-49.58
L48	4-0(48)	TP44.78×44.0316×0.6	4.00	0.00	0.0	$\begin{gathered} 85.355 \\ 8 \end{gathered}$	-51.19

Pole Bending Design Data

Section No.	Elevation ft	Size	$\begin{gathered} M_{u x} \\ \text { kip-ft } \end{gathered}$
L1	151-146 (1)	TP18.5255x17.59x0.2188	19.68
L2	146-141 (2)	TP $19.461 \times 18.5255 \times 0.218$ 8	46.55
L3	141-136 (3)	$\begin{gathered} \text { TP20.3965×19.461×0.218 } \\ 8 \end{gathered}$	97.62
L4	136-131 (4)	$\begin{gathered} \text { TP21.3321×20.3965×0.21 } \\ 88 \end{gathered}$	154.72
L5	131-126 (5)	$\begin{gathered} \text { TP22.2676×21.3321x0.21 } \\ 88 \end{gathered}$	225.05
L6	$\begin{gathered} 126-125.5 \\ \text { (6) } \end{gathered}$	TP22.3611×22.2676×0.21 88	232.36
L7	$\begin{gathered} 125.5- \\ 125.25(7) \end{gathered}$	TP22.4079×22.3611×0.36 26	236.03
L8	$\begin{gathered} 125.25- \\ 120.25(8) \end{gathered}$	$\begin{gathered} \text { TP23.3434×22.4079×0.35 } \\ 63 \end{gathered}$	317.24
L9	$\begin{gathered} 120.25- \\ 118.5(9) \end{gathered}$	$\begin{gathered} \text { TP23.6708×23.3434×0.35 } \\ 63 \end{gathered}$	347.65
L10	$\begin{gathered} 118.5- \\ 118.25(10) \end{gathered}$	$\begin{gathered} \text { TP23.7176×23.6708×0.64 } \\ 38 \end{gathered}$	352.03
L11	$\begin{gathered} 118.25- \\ 117.5(11) \end{gathered}$	$\begin{gathered} \text { TP23.8579×23.7176x0.64 } \\ 38 \end{gathered}$	365.22
L12	$\begin{gathered} 117.5- \\ 117.25(12) \end{gathered}$	$\begin{gathered} \text { TP23.9047×23.8579×0.49 } \\ 38 \end{gathered}$	369.64
L13	$\begin{gathered} 117.25- \\ 112.25(13) \end{gathered}$	$\begin{gathered} \text { TP24.8402x23.9047×0.48 } \\ 13 \end{gathered}$	459.72
L14	$\begin{gathered} 112.25- \\ 107.25(14) \end{gathered}$	$\begin{gathered} \text { TP25.7757×24.8402x0.46 } \\ 88 \end{gathered}$	552.80
L15	$\begin{gathered} 107.25- \\ 102.25(15) \end{gathered}$	TP26.7113 $\times 25.7757 \times 0.45$ 63	648.54
L16	$\begin{gathered} 102.25-97.5 \\ (16) \end{gathered}$	TP27.6x26.7113x0.4563	674.52
L. 17	$\begin{gathered} 97.5-95.916 \\ (17) \end{gathered}$	TP27.4588×26.5233×0.55	773.89
L18	$\begin{gathered} 95.916-92.5 \\ (18) \end{gathered}$	TP28.098x27.4588×0.55	843.48
L19	$92.5-92.25$ (19)	TP28.1447x28.098x0.55	848.63
L20	$\begin{gathered} 92.25-87.25 \\ (20) \end{gathered}$	$\begin{gathered} \text { TP29.0803×28.1447×0.53 } \\ 75 \end{gathered}$	953.05
L21	$\begin{gathered} 87.25-87 \\ (21) \end{gathered}$	$\underset{5}{\mathrm{TP} 29.1271 \times 29.0803 \times 0.62}$	958.34

tnxTower Report - version 8.0.5.0

Section No.	Elevation ft	Size	$\begin{gathered} M u x \\ \text { kip-ft } \end{gathered}$
L22	87-82 (22)	$\begin{gathered} \text { TP30.0626×29.1271x0.61 } \\ 25 \end{gathered}$	1065.79
L23	82-77 (23)	TP30.9981×30.0626x0.6	1176.07
L24	77-72 (24)	$\begin{gathered} \text { TP31.9337×30.9981×0.58 } \\ 75 \end{gathered}$	1289.08
L25	72-67(25)	$\begin{gathered} \text { TP32.8692x31.9337x0.57 } \\ 5 \end{gathered}$	1404.81
L26	$\begin{gathered} 67-63.25 \\ (26) \end{gathered}$	TP33.5709×32.8692×0.57	1493.43
L27	$\begin{gathered} 63.25-63 \\ (27) \end{gathered}$	TP33.6176×33.5709×0.57 5	1499.40
L28	63-58(28)	TP34.5532×33.6176x0.56 25	1620.15
L29	$\begin{gathered} 58-56.75 \\ (29) \end{gathered}$	TP34.7871×34.5532×0.56 25	1650.77
L30	$\begin{gathered} 56.75-56.5 \\ (30) \end{gathered}$	TP34.8338×34.7871×0.63 75	1656.92
L31	$\begin{gathered} 56.5-47.499 \\ (31) \end{gathered}$	TP36.518×34.8338×0.637 5	1768.91
L32	$\begin{gathered} 47.499- \\ 46.999(32) \end{gathered}$	TP35.9865x35.051x0.7	1897.10
L33	$\begin{gathered} 46.999- \\ 41.999(33) \end{gathered}$	TP36.922×35.9865×0.687 5	2028.17
L34	$\begin{gathered} 41.999- \\ 36.999(34) \end{gathered}$	TP37.8575x36.922x0.675	2161.81
L35	$\begin{gathered} 36.999- \\ 34.25(35) \end{gathered}$	TP38.3718×37.8575×0.67 5	2236.43
L36	$\begin{gathered} 34.25-34 \\ (36) \end{gathered}$	TP38.4186×38.3718×0.67 5	2243.25
L37	34-29(37)	$\begin{gathered} \text { TP39.3541×38.4186x0.66 } \\ 25 \end{gathered}$	2381.14
L38	$\begin{gathered} 29-26.75 \\ (38) \end{gathered}$	TP39.7751×39.3541×0.66 25	2444.04
L39	$\begin{gathered} 26.75-26.5 \\ (39) \end{gathered}$	$\begin{gathered} \text { TP39.8219×39.7751×0.66 } \\ 25 \end{gathered}$	2451.07
L40	$\begin{gathered} 26.5-21.5 \\ (40) \end{gathered}$	TP40.7574×39.8219x0.65	2592.81
L41	$\begin{gathered} 21.5-16.75 \\ (41) \end{gathered}$	TP41.6461×40.7574×0.65	2730.09
L42	$\begin{gathered} 16.75-16.5 \\ (42) \end{gathered}$	TP41.6929×41.6461×0.76 25	2737.38
L43	$\begin{gathered} 16.5-14.25 \\ (43) \end{gathered}$	$\begin{gathered} \text { TP42.1138×41.6929×0.76 } \\ 25 \end{gathered}$	2803.30
L44	$\begin{gathered} 14.25-14 \\ (44) \end{gathered}$	$\begin{gathered} \text { TP42.1606×42.1138×0.72 } \\ 5 \end{gathered}$	2810.66
145	14-9(45)	$\begin{gathered} \text { TP43.0961×42.1606x0.71 } \\ 25 \end{gathered}$	2959.05
146	9-4.25 (46)	TP43.9848×43.0961×0.71 25	3102.31
L47	4.25-4 (47)	TP44.0316x43.9848×0.6	3109.91
L48	4-0 (48)	TP44.78×44.0316x0.6	3232.29

Pole Shear Design Data

Section No.	Elevation ft	Size	Actual V_{u} K	Actual T_{s} kip-ft
L1	151-146 (1)	TP18.5255x17.59x0.2188	5.20	1.28
L2	146-141 (2)	TP19.461×18.5255×0.218 8	5.56	1.28
L3	141-136 (3)	TP20.3965×19.461×0.218 8	11.20	0.07
L4	136-131 (4)	TP21.3321×20.3965×0.21 88	12.40	1.58
L5	131-126 (5)	$\begin{gathered} \text { TP22.2676x21.3321×0.21 } \\ 88 \end{gathered}$	14.62	1.58
L6	$126-125.5$ (6)	$\begin{gathered} \text { TP22.3611×22.2676×0.21 } \\ 88 \end{gathered}$	14.65	1.58

tnxTower Report - version 8.0.5.0

Section No.	Elevation $f t$	Size	Actual V_{u} K	Actual T_{u} kip-ft
L7	$\begin{gathered} 125.5- \\ 125.25(7) \end{gathered}$	$\begin{gathered} \text { TP22.4079×22.3611×0.36 } \\ 26 \end{gathered}$	14.67	1.58
L8	$\begin{gathered} 125.25- \\ 120.25(8) \end{gathered}$	TP23.3434×22.4079×0.35 63	17.26	1.58
L9	$\begin{gathered} 120.25- \\ 118.5(9) \end{gathered}$	TP23.6708×23.3434×0.35 63	17.51	1.59
L10	$\begin{gathered} 118.5- \\ 118.25(10) \end{gathered}$	TP23.7176×23.6708×0.64 38	17.53	1.59
L11	$\begin{gathered} 118.25- \\ 117.5(11) \end{gathered}$	$\begin{gathered} \text { TP23.8579x23.7176x0.64 } \\ 38 \end{gathered}$	17.65	1.59
L. 12	$\begin{gathered} 117.5- \\ 117.25(12) \end{gathered}$	$\begin{gathered} \text { TP23.9047×23.8579×0.49 } \\ 38 \end{gathered}$	17.68	1.59
L13	$\begin{gathered} 117.25- \\ 112.25(13) \end{gathered}$	$\begin{gathered} \text { TP24.8402×23.9047×0.48 } \\ 13 \end{gathered}$	18.36	1.62
L14	$\begin{gathered} 112.25- \\ 107.25(14) \end{gathered}$	TP25.7757×24.8402×0.46 88	18.89	1.61
L15	$\begin{gathered} 107.25- \\ 102.25(15) \end{gathered}$	$\begin{gathered} \text { TP26.7113×25.7757×0.45 } \\ 63 \end{gathered}$	19.42	1.61
L16	$\begin{gathered} 102.25-97.5 \\ (16) \end{gathered}$	TP27.6x26.7113×0.4563	19.56	1.61
L17	$\begin{gathered} 97.5-95.916 \\ (17) \end{gathered}$	TP27.4588×26.5233x0.55	20.19	1.61
L18	$\begin{gathered} 95.916-92.5 \\ (18) \end{gathered}$	TP28.098x27.4588×0.55	20.58	1.61
L19	$92.5-92.25$ (19)	TP28.1447x28.098×0.55	20.60	1.61
L20	$\begin{gathered} 92.25-87.25 \\ (20) \end{gathered}$	$\begin{gathered} \text { TP29.0803×28.1447×0.53 } \\ 75 \end{gathered}$	21.18	1.61
L21	$\begin{gathered} 87.25-87 \\ (21) \end{gathered}$	TP29.1271 $\times 29.0803 \times 0.62$ 5	21.20	1.61
L22	87-82 (22)	TP30.0626 25.1271×0.61 25	21.79	1.61
L23	82-77 (23)	TP30.9981×30.0626x0.6	22.34	1.61
L24	77-72 (24)	TP31.9337×30.9981×0.58 75	22.88	1.61
L25	72-67(25)	TP32.8692×31.9337×0.57 5	23.43	1.61
L26	$\begin{gathered} 67-63.25 \\ (26) \end{gathered}$	TP33.5709×32.8692x0.57 5	23.86	1.61
L27	$\begin{gathered} 63.25-63 \\ (27) \end{gathered}$	TP33.6176×33.5709×0.57 5	23.88	1.61
L28	63-58(28)	TP34.5532×33.6176×0.56 25	24.44	1.61
L29	$\begin{gathered} 58-56.75 \\ (29) \end{gathered}$	TP34.7871×34.5532×0.56 25	24.58	1.61
130	$\begin{gathered} 56.75-56.5 \\ (30) \end{gathered}$	TP34.8338×34.7871×0.63 75	24.60	1.61
L31	$\begin{gathered} 56.5-47.499 \\ (31) \end{gathered}$	TP $36.518 \times 34.8338 \times 0.637$ 5	25.32	1.60
L32	$\begin{gathered} 47.499- \\ 46.999(32) \end{gathered}$	TP35.9865x35.051x0.7	25.97	1.60
L33	$\begin{gathered} 46.999- \\ 41.999(33) \end{gathered}$	TP36.922×35.9865×0.687 5	26.48	1.60
L34	$\begin{gathered} 41.999- \\ 36.999(34) \end{gathered}$	TP37.8575x36.922x0.675	27.01	1.60
L35	$\begin{gathered} 36.999- \\ 34.25(35) \end{gathered}$	TP38.3718×37.8575×0.67 5	27.32	1.60
L36	$\begin{gathered} 34.25-34 \\ (36) \end{gathered}$	TP38.4186×38.3718×0.67 5	27.33	1.60
L37	34-29(37)	TP39.3541×38.4186×0.66 25	27.86	1.60
L38	$\begin{gathered} 29-26.75 \\ (38) \end{gathered}$	TP39.7751×39.3541×0.66 25	28.09	1.60
L39	$\begin{gathered} 26.75-26.5 \\ (39) \end{gathered}$	TP39.8219×39.7751x0.66 25	28.11	1.60
L40	$\begin{gathered} 26.5-21.5 \\ (40) \end{gathered}$	TP40.7574×39.8219x0.65	28.62	1.60
L41	$\begin{gathered} 21.5-16.75 \\ (41) \end{gathered}$	TP41.6461×40.7574×0.65	29.18	2.93

Section No.	Elevation ft	Size	Actual V_{u} K	Actual T_{u} kip-ft
L42	$\begin{gathered} 16.75-16.5 \\ (42) \end{gathered}$	$\begin{gathered} \text { TP41.6929×41.6461×0.76 } \\ 25 \end{gathered}$	29.19	2.93
L43	$\begin{gathered} 16.5-14.25 \\ (43) \end{gathered}$	$\begin{gathered} \text { TP42.1138×41.6929×0.76 } \\ 25 \end{gathered}$	29.42	2.93
L44	$\begin{gathered} 14.25-14 \\ (44) \end{gathered}$	TP42.1606×42.1138×0.72 5	29.44	2.93
145	14-9(45)	$\begin{gathered} \text { TP43.0961×42.1606x0.71 } \\ 25 \end{gathered}$	29.94	2.93
L46	9-4.25 (46)	$\begin{gathered} \text { TP } 43.9848 \times 43.0961 \times 0.71 \\ 25 \end{gathered}$	30.41	2.93
L47	4.25-4 (47)	TP44.0316x43.9848x0.6	30.42	2.93
L48	4-0(48)	TP44.78x44.0316x0.6	30.80	2.93

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

$0_{2}=$ an

TNX Geometry Input
Increment (f): 5

	Section	Height (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	151	- 146	5		12	17.590	18.526	0.2188	A572-65	1.000
2	146	- 141	5		12	18.526	19.461	0.2188	A572-65	1.000
3	141	- 136	5		12	19.461	20.397	0.2188	A572-65	1.000
4	136	- 131	5		12	20.397	21.332	0.2188	A572-65	1.000
5	131	- 126	5	.	12	21.332	22.268	0.2188	A572-65	1.000
6	126	- 125.5	0.5		12	22.268	22.361	0.2188	A572-65	1.000
7	125.5	- 125.25	- 0.25		12	22.361	22.408	0.36255	A572-65	0.948
8	125:25	- 120.25	5		12	22.408	23.343	0.3563	A572-65	0.950
9	120,25	- 118.5	1.75		12	23.343	23.671	0.3563	A572-65	0.946
10	118.5	- 118.25	0.25		12	23.671	23.718	0.6438	A572-65	0.906
11	118.25	- 117.5	0.75		12	23.718	23.858	0.6438	A572-65	0.903
12	117.5	- 117.25	0.25		12	23.858	23.905	0.4938	A572-65	0.933
13	117.25	- 112.25	5		12	23.905	24.840	0.4813	A572-65	0.937
14	112.25	- 107.25	5		12	24.840	25.776	0.4688	A572-65	0.943
15	107.25	- 102.25	5		12	25.776	26.711	0.4563	A572-65	0.951
16	102.25	- 100.916	4.75	3.416	12	26.711	27.600	0.4563	A572-65	0.947
17	100.916	- 95.916	5		12	26.523	27.459	0.55	A572-65	0.951
18	95.916	- 92.5	3.416		12	27.459	28.098	0.55	A572-65	0.943
19	92.5	- 92.25	0.25		12	28.098	28.145	0.55	A572-65	0.942
20	92.25	- 87.25	5		12	28.145	29.080	0.5375	A572-65	0.951
21	87.25	- 87	0.25		12	29.080	29.127	0.625	A572-65	0.931
22	87	- 82	5		12	29.127	30.063	0.6125	A572-65	0.936
23	82	- 77	5		12	30.063	30.998	0.6	A572-65	0.941
24	77	- 72	5		12	30.998	31.934	0.5875	AS72-65	0.948
25	72	- 67	5		12	31.934	32.869	0.575	A572-65	0.956
26	67	- 63.25	3.75		12	32.869	33.571	0.575	A572-65	0.947
27	63.25	- 63	0.25		12	33.571	33.618	0.575	A572-65	0.947
28	63	- 58	5		12	33.618	34.553	0.5625	A572-65	0.956
29	58	- 56.75	1.25		12	34.553	34.787	0.5625	A572-65	0.953
30.	56.75	- 56.5	0.25		12	34.787	34.834	0.6375	A572-65	0.950
31	56.5	- 51.999	9.001	4.5	12	34.834	36.518	0.6375	A572-65	0.939
32	51.999	- 46.999	5		12	35.051	35.987	0.7	A572-65	0.942
33	46.999	- 41.999	5		12	35.987	36.922	0.6875	A572-65	0.948
34	41.999	- 36.999	5		12	36.922	37.858	0.675	A572-65	0.955
35	36.999	- 34.25	2.749		12	37.858	38.372	0.675	A572-65	0.950
36	34.25	- 34	0.25		12	38.372	38.419	0.675	A572-65	0.949
37	34	- 29	5		12	38.419	39.354	0.6525	A572-65	0.957
38	29	- 26.75	2.25		12	39.354	39.775	0.6625	A572-65	0.953
39	26.75	- 26.5	0.25		12	39.775	39.822	0.6625	A572-65	0.952
40	26.5	- 21.5	5		12	39.822	40.757	0.65	A572-65	0.961
41	21.5	- 16.75	4.75		12	40.757	41.646	0.65	A572-65	0.953
42	16.75	- 16.5	0.25		12	41.646	41.693	0.7625	A572-65	$1: 026$
43.	16.5	- 14.25	2.25		12	41.693	42.114	0.7625	A572-65	1.020
44	14.25	- 14	0.25		12	42.114	42.161	0.725	A572-65	0.962
45	14	- 9	5		12	42.161	43.096	0.7125	A572-65	0.968
46	9	- 4.25	4.75		12	43.096	43.985	0.7125	A572-65	0.959
47	4.25	- 4	0.25		12	43.985	44.032	0.6	A572-65	1.001
48	4	- 0	4		12	44.032	44.780	0.6	A572-65	0.995

TNX Section Forces

Increment (ft):			5	TNX Output		
	Section Height (ft)			$\mathrm{P}_{\mathrm{u}} \quad$ (K)	$M_{u x} \text { (kip- }$ ft)	$\begin{aligned} & V_{u} \\ & (K) \end{aligned}$
1	151-146			3.02	19.68	5.20
2	146 -		- 141	3.33	46.56	5.56
3	$141-136$			6.93	97.62	11.20
4	136 -		131	7.89	154.77	12.34
5	131 -		126	10.11	225.05	14.62
6	126 -		- 125	10.16	232.36	14.65
7	125.5 -		- 125	10.20	236.03	14.67
8	125.25 -		120.25	12.41	317.24	17.26
9	120.25 -		118.5	12.66	347.65	17.51
10	118.5 -		118.25	12.72	352.03	17.53
11	118.25 -		- 117	12.88	365.22	17.65
12	117.5 -		- 117.2	12.92	369.64	17.68
13	117.25 - 112.25			13.82	459.72	18.36
14	112.25 - 107.25			14.76	552.80	18.89
15	107.25 - 102.25			15.72	648.54	19.42
16	102.25 - 100.916			15.98	674.52	19.56
17	100.916 - 95.916			17.60	773.89	20.19
18	95.916 - 92.5			18.40	843.49	20.58
19	92.5-92.2			18.46	848.63	20.60
20	$92.25-87.25$			19.63	953.05	21.18
21	87.25			19.71	958.34	21.20
22.	$87-82$			21.03	1065.79	21.79
23	82			22.38	1176.07	22.34
24	$77-72$			23.76	1289.07	22.88
25	$72-67$			25.16	1404.81	23.43
26	$67-63.25$			26.23	1493.44	23.86
27	$63.25-63$			26.31	1499.40	23.88
28	$63-58$			27.75	1620.15	24.44
29	$58-56.75$			28.11	1650.77	24.58
30	$56.75-56.5$			28.21	1656.91	24.60
31	56.5 - 51.999			29.64	1768.90	25.32
32	$51.999-46.999$			32.63	1897.10	25.97
33	46.999 - 41.999			34.42	2028.16	26.48
34	41.999 - 36.999			36.24	2161.81	27.01
35	36.999 - 34.25			37.25	2236.42	27.32
36	34.25			37.36	2243.25	27.33
37	34-29			39.22	2381.15	27.86
38	$29-26.7$			40.07	2444.04	28.09
39	$26.75-26.5$			40.17	2451.06	28.11
40	$26.5-21.5$			42.07	2592.81	28.62
41.	$21.5-16.75$			43.90	2730.09	29.18
42	$16.75-16.5$			44.03	2737.39	29.19
43	$16.5-14.25$			45.09	2803.30	29.42
44	$14.25-14$			45.21	2810.66	29.44
45	$14-9$			47.38	2959.05	29.94
46	9-4.25			49.47	3102.30	30.41
47	4.25 -	-	4	49.58	3109.91	30.42
48	$4-0$			51.19	3232.30	30.80

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
151-146	Pole	TP18.526x17.59x0.2188	Pole	5.6\%	Pass
146-141	Pole	TP19.461×18.526x0.2188	Pole	11.9\%	Pass
141-136	Pole	TP20.397×19.461×0.2188	Pole	23.1\%	Pass
136-131	Pole	TP21.332 20.397×0.2188	Pole	33.7\%	Pass
131-126	Pole	TP22.268×21.332 0.2188	Pole	45.6\%	Pass
126-125.5	Pole	TP22.361×22.268×0.2188	Pole	46.7\%	Pass
125.5-125.25	Pole + Reinf.	TP22.408×22.361×0.3626	Reinf. 11 Tension Rupture	40.8\%	Pass
125.25-120.25	Pole + Reinf.	TP23.343×22.408x0.3563	Reinf. 11 Tension Rupture	51.2\%	Pass
120.25-118.5	Pole + Reinf.	TP23.671×23.343×0.3563	Reinf. 11 Tension Rupture	54.8\%	Pass
118.5-118.25	Pole + Reinf.	TP23.718×23.671×0.6438	Reinf. 9 Bolt-Shaft Bearing	33.5\%	Pass
118.25-117.5	Pole + Reinf.	TP23.858×23.718×0.6438	Reinf. 9 Tension Rupture	33.7\%	Pass
117.5-117.25	Pole + Reinf.	TP23.905 23.858×0.4938	Reinf. 9 Tension Rupture	42.9\%	Pass
117.25-112.25	Pole + Reinf.	TP24.84×23.905 0.4813	Reinf. 9 Tension Rupture	50.4\%	Pass
112.25-107.25	Pole + Reinf.	TP25.776x24.84×0.4688	Reinf. 9 Tension Rupture	57.4\%	Pass
107.25-102.25	Pole + Reinf.	TP26.711×25.776x0.4563	Reinf. 9 Tension Rupture	63.8\%	Pass
102.25-100.92	Pole + Reinf.	TP27.6×26.711×0.4563	Reinf. 9 Tension Rupture	65.4\%	Pass
100.92-95.92	Pole + Reinf.	TP27.459x26.523×0.55	Reinf. 9 Tension Rupture	60.5\%	Pass
95.92-92.5	Pole + Reinf.	TP28.098 27.459×0.55	Reinf. 9 Tension Rupture	63.6\%	Pass
92.5-92.25	Pole + Reinf.	TP28.145 28.098×0.55	Reinf. 8 Tension Rupture	63.8\%	Pass
92.25-87.25	Pole + Reinf.	TP29.08×28.145×0.5375	Reinf. 8 Tension Rupture	67.9\%	Pass
87.25-87	Pole + Reinf.	TP29.127×29.08×0.625	Reinf. 7 Tension Rupture	58.4\%	Pass
87-82	Pole + Reinf.	TP30.063×29.127×0.6125	Reinf. 7 Tension Rupture	61.9\%	Pass
82-77	Pole + Reinf.	TP30.998×30.063x0.6	Reinf. 7 Tension Rupture	65.2\%	Pass
77-72	Pole + Reinf.	TP31.934×30.998×0.5875	Reinf. 7 Tension Rupture	68.2\%	Pass
72-67	Pole + Reinf.	TP32.869×31.934×0.575	Reinf. 7 Tension Rupture	71.1\%	Pass
67-63.25	Pole + Reinf.	TP33.571×32.869x0.575	Reinf. 7 Tension Rupture	73.1\%	Pass
63.25-63	Pole + Reinf.	TP33.618×33.571×0.575	Reinf. 6 Tension Rupture	73.3\%	Pass
63-58	Pole + Reinf.	TP34.553×33.618×0.5625	Reinf. 6 Tension Rupture	75.8\%	Pass
58-56.75	Pole + Reinf.	TP34.787×34.553×0.5625	Reinf. 6 Tension Rupture	76.4\%	Pass
56.75-56.5	Pole + Reinf.	TP34.834×34.787×0.6375	Reinf. 5 Bolt Shear	66.4\%	Pass
56.5-52	Pole + Reinf.	TP36.518×34.834×0.6375	Reinf. 5 Compression	66.1\%	Pass
52-47	Pole + Reinf.	TP35.987×35.051×0.7	Reinf. 5 Compression	63.6\%	Pass
47-42	Pole + Reinf.	TP36.922x35.987×0.6875	Reinf. 5 Compression	65.4\%	Pass
42-37	Pole + Reinf.	TP37.858×36.922×0.675	Reinf. 5 Compression	67.0\%	Pass
37-34.25	Pole + Reinf.	TP38.372×37.858×0.675	Reinf. 5 Bolt Shear	70.3\%	Pass
34.25-34	Pole + Reinf.	TP38.419×38.372×0.675	Reinf. 4 Bolt Shear	70.4\%	Pass
34-29	Pole + Reinf.	TP39.354×38.419x0.6625	Reinf. 4 Compression	69.4\%	Pass
29-26.75	Pole + Reinf.	TP39.775 39.354×0.6625	Reinf. 4 Boit Shear	72.6\%	Pass
26.75-26.5	Pole + Reinf.	TP39.822x39.775×0.6625	Reinf. 1 Bolt Shear	72.7\%	Pass
26.5-21.5	Pole + Reinf.	TP40.757×39.822x0.65	Reinf. 1 Compression	71.5\%	Pass
21.5-16.75	Pole + Reinf.	TP41.646x40.757×0.65	Reinf. 1 Compression	72.8\%	Pass
16.75-16.5	Pole + Reinf.	TP41.693x41.646x0.7625	Reinf. 2 Compression	66.9\%	Pass
16.5-14.25	Pole + Reinf.	TP42.114×41.693×0.7625	Reinf. 2 Compression	67.5\%	Pass
14.25-14	Pole + Reinf.	TP $42.161 \times 42.114 \times 0.725$	Reinf. 2 Compression	67.9\%	Pass
14-9	Pole + Reinf.	TP43.096x42.161×0.7125	Reinf. 2 Compression	69.1\%	Pass
9-4.25	Pole + Reinf.	TP43.985×43.096x0.7125	Reinf. 2 Bolt Shear	72.7\%	Pass
4.25-4	Pole + Reinf.	TP44.032 43.985×0.6	Reinf. 10 Connection	74.0\%	Pass
4-0	Pole + Reinf.	TP44.78×44.032 $\times 0.6$	Reinf. 10 Connection	74.8\%	Pass
				Summary	
			Pole	64.6\%	Pass
			Reinforcement	76.4\%	Pass
			Overall	76.4\%	Pass

Additional Calculations

	Moment of Inertia $\left(\mathbf{l n}{ }^{4}\right)$			Area (in^{2})			\% Capacity*											
	Pole	Reinf.	Total	Pole	Reint.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	89	Rg	R10	R11
151-145	552	n/a	552	12.88	n / a	12.88	5.6\%											
146-141	642	n/a	642	13.54	n/a	13.54	11.9\%											
141-135	740	n/a	740	14.20	n/a	14.20	23.1\%											
136-131	848	n/a	848	14.95	n/a	14.85	33.7\%											
131-126	965	n/a	965	15.51	n/a	15.51	45.6\%											
125-125.5	978	n/a	978	15.58	n/a	15.58	46.7\%											
125.5-125.25.	984	612	1596	15,61	8.76	24.37	28.3\%			.						,		40.8\%
125.25-120.25	1114	661	1775	16.27	8.76	25,03	36.1\%											51.2\%
120.25-118.5	1161	679	1840	16.50	8.76	25.26	38.9\%									.		54.8\%
118.5-118.25	1168	2084	3252	16.53	26.76	43.29	22.4\%									33.5\%		31.5\%
118.25-117.5	1190	2107	3297	16.63	26.75	43.39	23.1\%			.						33.7\%		32.4\%
117.5-117.25	1197	1423	2620	16.66	18.00	34.66	29.5\%									42.9\%		
117.25-112.25	1344	1530	2874	17.32	18.00	35.32	35.2\%									50.4\%		
112.25-107.25	1503	1641	3144	17.98	18.00	35.98	40.8\%									57.4\%		
107.25-102.25	1674	1756	3430	18.54	18.00	36.64	46.2\%									63.8\%		
102.25-100.92	1722	1787	3509	18.81	18.00	36.91	47.7\%									65.4\%		
100.92-95.92	2573	1850.	4423	27.28	18.00	45.28	38,5\%									60.5\%		
95.92-92.5	2759	1933	4692	27.92	18.00	45.92	40.8\%									63.6\%		
92.5-92.25	2773	1939.	4712	27.97	18.00	45.97	40.9\%								63.8\%			
92.25-87.25	3052	2064	5126	28.91	18.00	46.91	44.1\%								67,9\%			
$87.25 \cdot 87$	3077	2856	5933	28.95	24.38	53.33	38.4\%							58.4\%				
87-82	3386	3032	6418	29.89	24.38	54.27	41.2\%							61.9\%				
82-77	3716	3213	6929	30.83	24.38	55.21	43.9\%							65.2\%				
77-72	4065	3400	7466	31.77	24.38	56.15	48.6\%							68.2\%				
$72 \cdot 67$	4438	3591	8030	32.71	24.38	57.09.	49.1\%							71.1\%				
67-63.25	4731	3739	8470	33.42	24.38	57.79	51.0\%							73.1\%				
63.25-63	4751	3749	8500	33.47	24.38	57.84	51.1\%						73.3\%					
63-58	51.63	3950	9113	34.41	24.38	58.78	53.6\%						75.8\%					
58.56.75	5270	4001	9271	34.54	24.38	59.02	54.2\%						76.4\%					
56.75-56.5	5291	5286	10577	34.69	31.88	66.56	47.8\%					66.4\%						
56.5-52	5688	5531	11219	35.53	31.88 .	67.41	49.8\%					66.1\%						
52-47	6970	5623	12593	42.94	31.88	74.81	44.7\%					63.6\%						
47-42	7534	5904	13438	44.07	31.88	75.94	46.4\%	.				65.4\%						
42-37	8127	6192	14319	45.20	31.88	77.07	48.1\%					67.0\%						
37-34.25	8456	6353 .	14820	45.82	31.88	77.69	49.0\%					70.3\%						
34.25-34	8498	636B	14856	45.87	31.88	77.75	49.0\%				70.4\%							
34-29	9140	6667	15807	47.00	31.88	78.87	50.6\%				69.4\%							
29-26.75	9440	6804	16244	47.51	31.88	79.38	51.3\%				72.6\%							
26.75-26.5	9473	6819	16292	47.56	31.88	79.44	51.4\%	72.7\%	72.7\%									
26.5-21.5	10163	7129	17292	48.69	31.88	80.57	53.0\%	71.5\%	71.5\%									
21.5-16.75	10849	7430	18279	49.76	31.88	81.64	54.4\%	72.8\%	72.8\%									
16.75-16.5	11070	10638	21707	49.82	53.13	102.94	50.2\%	45.5\%	66.9\%	51.6\%								
16.5-14.25	11409	10846	22255	50.33	53.13	103.45	50.8\%	47,6\%	67.5\%	50.3\%								
14.25-14	11315	9986	21301	50.38	42.50	92.88	52.3\%		67.9\%	60.8\%								
14-9	12090	10417	22507	51.51	42.50	94.01	53.9\%		69.1\%	61.9\%								
9-4.25	12859	10835	23694	52.58	42.50	95.08	55.2\%		72.7\%	65.2\%								
4.25-4	12848	7526	20374	52.64 .	31.25	83.89	63.3\%										74.0\%	
4-0	$135 z 0$	7767	21287	53.54	31.25	84.79	64.6\%										74.8\%	

Rating per TAA-222-H Section 15.5.

Site Info	
	BU \#
Site Name	841295
Order\#	

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{l}_{\text {ar }}$ (in)	0

Applied Loads	
Moment (kip-ft)	3232.30
Axial Force (kips)	51.19
Shear Force (kips)	30.80
${ }^{*}$ TIA-222-H Section 15.5 Applied	

Connection Properties

Analysis Results

Anchor Rod Data

GROUP 1: (12) 2-1/4" \varnothing bolts (A615-75 $\mathrm{N} ; \mathrm{Fy}=75 \mathrm{ksi}$, Fu=100 ksi) on $52.75^{\prime \prime} \mathrm{BC}$ GROUP 2: (6) $2-1 / 4^{\prime \prime} \varnothing$ bolts (Williams $\mathrm{N} ; \mathrm{Fy}=120 \mathrm{ksi}$, Fu=125 ksi) on $52.75^{*} \mathrm{BC}$

Base Plate Data

$58.75^{\prime \prime}$ OD x $3^{\prime \prime}$ Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data
N/A

Pole Data
$44.78^{\prime \prime} \times 0.375^{\prime \prime} 12$-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)
Anchor Rod Summary GROUP 1:

$P_{U_{_} c=154.73}$	$\phi P n_{_}=243.75$	Stress Rating
$V u_{=2.57}$	$\phi V n=73.13$	60.6%
$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi \mathrm{Mn}=\mathrm{n} / \mathrm{a}$	Pass

GROUP 2:

$P u_{-} c=188.89$	$\phi P n_{-} c=489.6$	Stress Rating
$V u_{=0}$	$\phi V n=146.88$	36.7%
$M u=n / a$	$\phi M n=n / a$	Pass

Base Plate Summary		
Max Stress \{ksi):	26.72	(Flexural)
Allowable Stress \{ksi):	45	
Stress Rating:	56.6%	Pass

Pier and Pad Foundation

BU \# : 841295
Site Name: Bethany App. Number: \qquad

Top \& Bot. Pad Rein. Different?:	Γ
Block Foundation?:	Γ

Superstructure Analysis		Reactions
Compression, $\mathrm{P}_{\text {comp }}:$	51.19	kips
Base Shear, Vu_comp:	30.8	kips
Moment, $\mathrm{M}_{\mathrm{u}}:$	3232.3	ft -kips
Tower Height, $\mathrm{H}:$	150	ft
BP Dist. Above Fdn, $\mathrm{bp}_{\text {dist: }}$	3.75	in

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier:	6	ft
Ext. Above Grade, E:	0.4	ft
Pier Rebar Size, Sc:	10	
Pier Rebar Quantity, mc:	40	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:		
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc $\mathrm{cp}_{\text {pler: }}$	2.5	in

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	482.94	30.80	6.1\%	Pass
Bearing Pressure (ksf)	22.50	1.84	7.8\%	Pass
Overtuming (kip*ti)	10947.31	3534.53	32.3\%	Pass
Pier Flexure (Comp.) (kip*ti)	6585.19	3263.10	47.2\%	Pass
Pier Compression (kip)	22913.28	57.67	0.2\%	Pass
Pad Flexure (kip*tit)	7614.39	1351.62	16.9\%	Pass
Pad Shear - 1-way (kips)	3225.07	81.25	2.4\%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.005	2.4\%	Pass
Flexural 2-way (Comp) (kip ${ }^{\text {fif) }}$	15228.77	1957.86	12.2\%	Pass

*Rating per TIA-222-H Section 15.5

Pad Properties		
Depth, D:	9.1	ft
Pad Width, W:	29	ft
Pad Thickness, T:	8.5	ft
Pad Rebar Size (Bottom), Sp:	7	
Pad Rebar Quantity (Bottom), mp:	29	
Pad Clear Cover, $\mathrm{cc}_{\text {pad }}$	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4	ksi
Dry Concrete Density, $\delta \mathrm{c}:$	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma:$	110	pcf
Ultimate Gross Bearing, Qult:	30.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $\varphi:$	30	degrees
SPT Blow Count, $\mathrm{N}_{\text {blows: }}$	69	
Base Friction, $\mu:$	0.5	
Neglected Depth, N:	3.30	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	3.3	ft

<--Toggle between Gross and Net Address:
No Address at This Location

ASCE 7 Hazards Report

Standard:	ASCE/SEI 7-10	Elevation:
Risk Category:	II	ft (NAVD 88)
Soil Class:	D - Stiff Soil	Latitude:

Wind

Results:

Wind Speed:
10-year MRI
25-year MRI
50-year MRI
100-year MRI
Data Source:

122 Vmph
76 Vmph
86 Vmph
93 Vmph
99 Vmph
ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of March 12, 2014

Wed Jun 052019

Date Accessed:
Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Results:

Ice Thickness: $\quad 0.75 \mathrm{in}$.
Concurrent Temperature: 15 F
Gust Speed: $\quad 50 \mathrm{mph}$
Data Source:
Date Accessed:
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Wed Jun 052019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmiess ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

$1 \times \sqrt{4}-1$

BETHANY N(

DO NOT SCALE DRAWINGS
CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE LESSEE/LICENSEE REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

CONSULTANT TEAM

APPLICANT:	VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 CONTACT: JAMES O'DONNELL
APPLICANT'S CONTACT:	JAMES O'DONNELL (413) 575-2626
ARCHITECT:	JACOBS ENGINEERING GROUP, INC. 120 SAINT JAMES AVENUE 5TH FLOOR BOSTON, MA 02116
STRUCTURAL ENGINEĖR:	JACOBS ENGINEERING GROUP, INC. 120 SAINT JAMES AVENUE 5TH FLOOR BOSTON, MA 02116
ELECTRICAL ENGINEER:	JACOBS ENGINEERING GROUP, INC. 120 SAINT JAMES AVENUE 5TH FLOOR BOSTON, MA 02116

PROJECT SUMMARY

VERIZON SITE NAME:
BETHANY NORTH C
CROWN CASTLE SITE NAME: BETHANY
TOWER OWNER:

COORDINATES:

APPLICANT:
 120 SAINT JAMES AVENUE

JACOBS ENGINEERING GROUP, INC. 5TH FLOOR
BOSTON, MA 02116

Kimley»Horn

421 FAYETTEVILLE STREET, SUITE 600
RALEIGH, NC 27601
PHONE: 919-677-2000
WWW.KIMLEY-HORN.COM

MOUNT MODIF DRAWIN

BETHANY

CROWN CASTLE BU\#: 8
VERIZON SITE\#: 1042

STRUCTURE INFORN
 150' MONOPOLE TOW LOW PROFILE PLATF

SITE ADDRES

719 AMITY ROAD BETHANY, CT 0652،
NEW HAVEN COUNT LATITUDE: N $41^{\circ} 26{ }^{\prime} 33$ LONGITUDE: W 72º 59' 3

1.00 GENERAL NOTES

1.01 ALL MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE DRAWINGS AND SPECIFICATIONS. ALL WORK SHALL BE DONE IN ACCORDANCE WTH THE LATEST EDITION OF THE STATE, LOCAL AND NATIONAL CODES, ORDINANCES AND OR REGULATIONS APPLICABLE TO THIS PROJECT.
1.02 THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING WITH WORK OF ALL TRADES AND SHALL CHECK ALL DIMENSIONS. ALL DISCREPANCIES SHALL BE CALLED TO THE ATTENTION OF THE PROJECT MANAGER AND/OR ENGINEER AND BE RESOLVED BEFORE PROCEEDING WITH WORK WHERE THERE IS A CONFLICT BETWEEN DRAWING AND SPECIFICATIONS.
1.03 ALL INFORMATION SHOWN ON THE DRAWNGS RELATIVE TO EXISTING CONDITIONS IS GIVEN AS THE BEST PRESENT KNOWLEDGE, BUT WTHOUT GUARANTEE OF ACCURACY. WHERE ACTUAL CONDITIONS CONFLICT WTH THE DRAWINGS, THEY SHALL BE REPORTED TO THE PROJECT MANAGER AND/OR ENGINEER OF RECORD SO THAT PROPER REVISIONS MAY BE MADE. MODIFICATION OF DETAILS OR CONSTRUCTION SHALL NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE PROJECT MANAGER AND/OR ENGINEER OF RECORD.
1.04 CONTRACTOR SHALL REVIEW AND BE FAMILIAR WITH SITE CONDITIONS AS SHOWN ON THE ATTACHED SITE PLAN AND/OR SURVEY DRAWINGS.
1.05 CONTRACTOR TO PROVIDE DUMPSTER AND PORTABLE TOILET FACILITY DURING CONSTRUCTION.
1.06 CONSTRUCTION WASTE MAY NEITHER BE BURNED NOR BURIED AND MUST BE TAKEN TO AN APPROVED LANDFILL.
1.07 SECuRITY TO THE SITE SHALL BE MAINTAINED AT ALL TIMES.

2.00 STRUCTURAL STEEL NOTES

2.01 STRUCTURAL STEEL SHALL COMPLY WTH THE FOLLOWNG SPECIFICATIONS UNO:
A. STRUCTURAL STEEL SHAPES, PLATES AND BARS.
(EXPECT W-SHAPES) - ASTM A36, Fy= 36 KSI
B. PIPE - ASTM A53, GRADE B, Fy $=35 \mathrm{KSI}$.
C. HSS-SHAPES - ATSM A500, GRADE B,
$F_{y}=42 \mathrm{KSI}$ (ROUND)
$F y=46 \mathrm{KSI}$ (RECTANGLE)
D. ANCHOR RODS - ASTM F1554, GRADE 55
E. ALL THREAD RODS - ASTM F1554, GRADE 105
F. STRUCTURAL BOLTS $1 / 2$ " \varnothing AND LARGER - ASTM A325
G. STRUCTURAL BOLTS SMALLER THAN $1 / 2 \eta$ DIMENSIONS:
ASME B18.2.1
MATERIAL SAE J429 GRADE 5
THREADING: ASME B1.1, UNC, CLASS 2A
FINISH: HOT-DIP GALVANIZED OR ZINC-PLATED
H. NUTS FOR BOLTS/ALL-THREAD - ASTM A563 (THREADING TO MATCH BOLT)
I. WASHERS FOR BOLTS/ALL THREADS - ASTM F436
J. W \& WT SHAPES - ASTM A36 - Fy- 36 KSI.

ALTERNATE SPEC: ASTM (IF OTHER SPEC IS UNAVAILABLE).
2.02 STRUCTURAL BOLTS SHALL CONFORM TO THIS NOTE. ALL BOLT HOLES SHALL BE STANDARD SIZE BOLT HOLES PER AISC 360 , UNLESS OTHERWSE NOTED. ALL HOLES SHALL BE SHOP DRILLED OR SUB-PUNCHED AND REAMED. BURNING OF HOLES IS NOT PERMITTED, WHERE SLOTTED OR OVERSIZE HOLES ARE SPECIFIED ON THE DRAWINGS, EXTRA-THICK ASTM F436 PLATE WASHERS SHALL BE USED ($5 / 16$ " MINIMUM THICKNESS) WTH A DIAMETER SUITABLE TO COVER THE EXTENTS OF THE SLOT OF HOLE. BOLTS SHALL BE HEAVY-HEX WHERE AVAILABLE IN THE SIZE AND GRADE SPECIFIED.
2.03 ALL STEEL HARDWARE, INCLUDING ADHESIVE OR EMBEDDED ANCHOR BOLTS AND THEIR ACCESSORIES, SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE WTH ASTM A153 (EXCEPT BOLTS SMALL THAN $1 / 2^{\prime \prime}$ SHALL CONFIRM TO FE/ZN 3 AS PER ASTM F1941 WHERE HOT-DIP GALVANIZED IN ACCORDANCE WITH ASTM A123. REPAIR DAMAGE TO GALVANIZED COATINGS USING ASTM A7BO PROCEDURES WTH A ZINC RICH PAINT (SUCH AS ZRC GALVILITE) FOR GALVANIZING DAMAGED BY HANDLING, TRANSPORTING, CUTTING, WELDING, OR BOLTING. DO NOT HEAT SURFACES TO WHICH REPAIR PAINT HAS BEEN APPLIED. CALL OUT HOLES REQUIRED FOR HOT-DIP GALVANIZING ON SHOP DRAWINGS.
2.04 WELDING SHALL BE IN ACCORDANCE WITH AWS D1.1 "STRUCTURAL WELDING CODE - STEEL". WELD ELECTRODES SHALL BE E8OXX. UNLESS OTHERWISE NOTED PROVIDE CONTINUOUS FILLET WELDS WITH MINIMUM SIZE OF $3 / 1^{\prime \prime}$ OR OF A SIZE EQUAL TO THE THICKNESS OF THE THINNER WELD LEG SIZE SHALL BE ADJUSTED AS REQUIRED TO MAINTAIN THE EFFECTIVE THROAT OF A $3 / 16^{\prime \prime}$ FHLLET WELD IN A 90° JOINT. ALL WELD SIZES SHOWN IN INCHES. PRIOR TO WELDING, THE CONTRACTOR SHALL SUBMIT CERTFICATION FOR EACH WELDER STATING THE TYPE OF WELDING AND POSITIONS QUALIFIED FOR, THE CODE AND PROCEDURE QUALIFIED UNDER, STATE QUALIFIED, AND THE FIRM AND INDIVIDUAL CERTIFYNG THE QUALIFICATION TESTS. THIS INFORMATION SHALL BE SUBMIT TO THE MODIFICATION INSPECTOR (SEE SHEET $N-3$) AS WELL AS ANY THIRD-PARTY CERTIFIED WELD INSPECTOR (CW).
2.06 MEMBERS SHALL BE SHOP-FABRICATED AND WELDED TO THE EXTENT PRACTICABLE IN ORDER TO REDUCE FIELD INSTALLATION COSTS.
3.00 MODIFICATION NOTES
3.01 THESE MODIFICATIONS HAVE BEEN DESIGNED IN ACCORDANCE WTH GOVERNING PROVISIONS OF TIA/EIA-222, ASCE 7. AWS, ACI, AND, MATERIALS AND SERVICES PROVIDED BY THE CONTRACTOR SHALL (TO THE ABOVE MENTIONED CODES AND CONTRACT SPECIFICATIONS. 3.02 ALL MATERIALS UTILIZED FOR THIS PROJECT MUST BE NEW AND FF ANY DEFECTS.
3.03 ALL PRODUCT OR MATERIAL SUBSTITUTIONS PROPOSED BY THE

CONTRACTOR SHALL BE APPROVED IN WRITING BY THE ENGINEER C RECORD. CONTRACTOR SHALL PROVIDE DOCUMENTATION TO ENGINEI SUITABLE TO DETERMINE IF THE SUBSTITUTE IS ACCEPTABLE FOR L MEETS THE ORIGINAL DESIGN CRITERIA. DIFFERENCES FROM THE OR DESIGN, INCLUDING; MAINTENANCE, REPAIR, AND REPLACEMENT, SH NOTED. ESTIMATES OF COSTS/CREDITS ASSOCIATED WITH THE SUBS (INCLUDING RE-DESIGN COSTS AND COSTS TO SUB-CONTRACTORS) BE PROVIDED TO THE ENGINEER. CONTRACTOR SHALL PROVIDE ADD DOCUMENTATION AND/OR SPECIFICATION TO THE ENGINEER AS REQ
3.04 PROVIDE STRUCTURAL STEEL SHOP DRAWINGS(S) TO THE ENGINEER RECORD FOR APPROVAL PRIOR TO FABRICATION.
3.05 UNLESS NOTED OTHERWSE, ALL NEW MEMBERS AND REINFORCING : MAINTAIN THE EXISTING MEMBER WORK AND NOT INTRODUCE ECCENTRICITIES INTO THE STRUCTURE.
3.06 ANY CONTRACTOR-CAUSED DAMAGE TO PROPERTY OF THE LAND C PROPERTY OF THE CUSTOMER, SITE FENCING OR GATES, ANY AND UTILITY AND/OR SERVICE LINES, SHOWN OR NOT SHOWN ON THE P SHALL BE REPAIRED OR REPLACED AT THE SOLE COST OF THE CONTRACTOR AND SHALL BE ADDRESSED BY THE CONTRACTOR WIT COMPANIES THAT OWN THE DAMAGED ITEMS.
4.00 CONTRACTOR NOTES
4.01 PRIOR TO BEGINNING CONSTRUCTION, ALL CONTRACTORS AND SUBCONTRACTORS MUST ACKNOWLEDGE IN WRITING TO STRUCTURE O THAT THEY HAVE OBTAINED, UNDERSTAND, AND WILL FOLLOW STRUC OWNER STANDARDS OF PRACTICE, CONSTRUCTION GUIDELINES, ALL S! STRUCTURE SAFETY PROCEDURES, ALL PRODUCT LIMITATIONS AND INSTALLATION PROCEDURES USED ON SITE, AND PROPOSED MODIFICA OESCRIBED RECEIPT OF ACKNOWLEDGEMENT MUST OCCUR PRIOR TO BEGINNING CONSTRUCTION OF CLIMBING. IT IS THE RESPONSIBILITY Of GENERAL CONTRACTOR TO PROVIDE THE DOCUMENTATION FOR STRUC OWNER ON COMPANY LETTERHEAD AND THE RESPONSIBILITY OF THE GENERAL CONTRACTOR TO OBTAIN THIS DOCUMENTATION FROM ANY SUBCONTRACTORS (ON SUBCONTRACTOR LETTERHEAD) AND DELIVER THE STRUCTURE OWNER.
4.02 IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT AR REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT WOUI INTERFERE WITH THE INSTALLATION OF THE MODIFICATIONS, THE ENG RECORD SHALL BE CONTACTED IMMEDIATELY TO EVALUATE THE SIGN OF THE DEVATION.
4.03 THE CONTRACTOR SHALL SOLICIT AND HIRE THE SERVICES OF A QUA MODIFICATIONS INSPECTOR PRIOR TO BEGINNING CONSTRUCTION, THE MODIFICATION INSPECTOR MAY BE AN EMPLOYEE OF THE CONTRACTC HOWEVER, THE INSPECTOR'S ONLY DUTIES SHALL BE INSPECTION, TE: AND REPORT CREATION AS REQUIRED ON THE "MODIFICATION INSPEC NOTES" SHEET. IT IS ALSO ACCEPTABLE FOR THE CONTRACTOR TO SUBCONTRACT THE MODIFICATION INSPECTOR DUTIES TO A THIRD PA MEETING THE ABOVE REQUIREMENTS.
4.04 THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD AND TO OWNER OF THE PLANNED CONSTRUCTION \& INSPECTION SCHEDULE, t AS ANY CHANGES TO THE SCHEDULE, WITHIN TWO BUSINESS DAYS C COMPLETION OF THE SCHEDULE REVISION BOTH PRIOR TO BEGINNING CONSTRUCTION AND DURING CONSTRUCTION AS THE SCHEDULE CHAA THE CONTRACTOR SHALL NOTFY THE ENGINEER OF RECORD WHEN PI OF CONSTRUCTION HAVE BEEN MOVED UP AND SHALL GIVE THE ENG ADEQUATE NOTICE SO THE ENGINEER OF RECORD MAY, AT THEIR DIS
INSPECT PORTIONS OF THE WORK DEEMED CRITICAL TO THE INTEGRIT INSPECT PORTIONS OF THE WORK DEEMED CRITICAL TO THE INTEGRIT
THE STRUCTURE. FALLURE TO PROVDE THIS NOTICE MAY RESULT IN REJECTION OF THE CONTRACTOR'S WORK. THE CONTRACTOR SHALL A NOTIFY THE ENGINEER OF RECORD AND THE STRUCTURE OWNER WHE WORK HAS BEEN COMPLETED WITHIN 2 BUSINESS DAYS OF THE COM OF THE WORK AND ASSOCIATED MODIFICATION INSPECTIONS \& TESTII TOWER/BUILDING CONSTRUCTION EXPERIENCE. THIS INCLUDES PROVID NECESSARY CERTFICATIONS TO THE STRUCTURE OWNER AND ENGINE INCLUDING BUT NOT LIMITED TO QUALIFIED WELDER CERTIFICATES, CE WELDING INSPECTOR CREDENTIALS, ET CETERA.

> THESE DRAWNGS DO NOT INDICATE THE METHOD OF CONSTRUCTION, CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL SOLELY RESPONSLLE SUER ALI CONSTRUCTON METHODS, MEANS, TECHNIQUES, SEQUENCES AND PROCEDURES.
07 CONTRACTOR SHALL WORK WITHIN THE LIMITS OF THE STRUCTURE O' PROPERTY OF LEASE AREA AND APPROVED EASEMENT. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY WORK IS WTHIN TH BOLUNDARIES. CONTRACTOR SHALL EMPLOY A SURVEYOR AS REQUIRE WORK OUTSIDE THESE BOUNDARIES SHALL BE APPROVED IN WRITING LAND OWNER PRIOR TO MOBILIZATION. CONSTRUCTION STAKING AND BOUNDARY MARKING IS THE RESPONSIBILITY OF THE CONTRACTOR.
4.08 DO NOT SCALE DRAWINGS. CONTRACTOR SHALL VERIFY ALL PLANS, DIMENSIONS, CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY THE ARCHITECT OR ENGINEER IN WRITING OF ANY DISCREPANCIES BE PROCEEDING WTH THE WORK OR BE RESPONSIBLE FOR THE SAME.

1.00 GENERAL INSPECTION NOTES

1.01 THE POST-MODIFICATION INSPECTION IS A VISUAL EXAMINATION OF STRUCTURE MODIFICATIONS AND A REVEW OF ANY REQUIRED CONSTRUCTION INSPECTIONS, TESTING, AND OTHER DATA TO VERITY THAT THE MODIFICATIONS ARE INSTALLED IN ACCORDANCE WTH THE CONTRACT DOCUMENTS AS DESIGNED BY THE ENGINEER OF RECORD. THE CONTRACTOR DOCUMENTS INCLUDE THESE MODIFICATION DRAWINGS, ANY PROJECT SPECIFICATION REFERENCED TO IN THE PROJECT NOTES OR OTHERWISE PROVIDED WTH THE DRAWNGS, AND OTHER DOCUMENTS OR DRAWINGS PROVIDED WITH THE MODIFICATION DRAWINGS WTH THE INTENT THEY BE USED AS A DESIGN AID OR GUIDELINE FOR CONSTRUCTION.
1.02 THE POST-MODIFICATION INSPECTION SHALL CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A QUALITATIVE REVIEW OF THE ENGINEERING ASPECTS OF THE DESIGN OR THE DESIGN DRAWINGS. THE MODIFICATION INSPECTOR IS NOT TAKING OWNERSHIP OF THE MODIFICATION DESIGN IN THE PERFORMANCE OF THEIR DUTEES. OWNERSHIP OF THE MODIFICATION DESIGN'S EFFECTIVENESS AND INTENT, AS WELL AS ALL ASSOCIATED RISK, LIED WTH THE ENGINEER OF RECORD AT ALL TIMES.
1.03 TO ENSURE THE REQUIREMENTS OF THE POST-MODIFICATION INSPECTION ARE MET, IT IS ESSENTIAL COORDINATION BETWEEN THE PRIME CONTRACTOR AND THE MODIFICATION INSPECTOR BEING AS SOON AS THE PROJECT IS FUNDED AND WORK ENTERS THE PLANNING STAGE. THE PRIME CONTRACTOR AND MODIFICATION INSPECTOR SHALL BE PROACTIVE IN IDENTIFYNG CONSTRUCTION ISSUES AND COMMUNICATE THESE ISSUES TO EACH OTHER AND THE ENGINEER OF RECORD AND STRUCTURE OWNER \& CUSTOMER, AS REQUIRED.
2.00 INSPECTION \& REPORT RECOM'S
2.01 THE FOLLOWNG ARE PROVIDED WITH THE INTENT OF ENHANCING THE EFFECTIVENESS OF THE MODIFICATION INSPECTIONS AND IMPROVING THE EFFICIENCY OF THE PROCESS OF COLLECTING AND COMPILING THE INFORMATION NTO A USEABLE REPORT:
2.01.1 IT IS RECOMMENDED THE PRIME CONTRACTOR

PROVIDE THE MODIFICATION INSPECTOR AT LEAST 5 BUSINESS DAYS NOTICE FOR WHEN THE SITE WLL BE READY FOR THE MODIFICATION INSPECTION.
2.01.2 THE PRIME CONTRACTOR AND THE MODIFICATION INSPECTOR SHALL COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT.
2.01.3 THE PRIME CONTRACTOR AND MODIFICATION INSPECTION SHALL BOTH BE PRESENT DURING THE INITIAL INSPECTIONS IN ORDER TO ALLOW FOR THE REMEDIATION OF DEFICIENCIES DURING THE INSPECTIONS, AS PRACTICABLE. IT MAY BE PREFERABLE TO KEEP WORK CREWS AND THEIR EQUIPMENT ON-SITE TO REMEDIATE DEFICIENCIES DURING INSPECTIONS.
3.00 INSPECTION RESCHEDULE \& CANCEL
3.01 IF THE PRIME CONTRACTOR AND MODIFICATION INSPECTOR HAVE AGREED UPON A TIME AND DATE FOR A GIVEN INSPECTION AND EITHER PARTY RESCHEDULES OR CANCELS THE INSPECTION, THE STRUCTURE OWNER SHALL NOT BE RESPONSIBLE FOR COSTS, FEES, LOST DEPOSITS, OR OTHER EXPENSES INCURRED BY THE PRIME CONTRACTOR, THEIR SUBCONTRACTOR(S), OR THE MODIFICATION INSPECTOR DUE TO THESE SCHEDULING CHANGES. EXCEPTIONS MAY BE MADE IN THE EVENT OF UNCONTROLLABLE SITUATIONS SUCH AS NATURAL DISASTERS, SEVERE WEATHER, OR OTHER CONDITIONS THAT COMPROMISE THE SAFETY OF THE PARTIES INVOLVED.
4.00 REMEDIATION OF FAILING INSPECTION
4.01 IN THE EVENT ANY PORTION OF THE MODIFICATION WORK IS DETERMINED TO BE UNSATISFACTORY BY THE MODIFICATION INSPECTOR, THE PRIME CONTRACTOR SHALL WORK WITH THE MODIFICATION INSPECTOR TO CREATE A PLAN OF ACTION THAT WILL EITHER:
4.01.1 REPAIR THE DEFICIENT WORK TO SATISFACTORY CONDITION AND INCLUDE A SUBSEQUENT RE-INSPECTION OF THE WORK TO VERIFY IT IS SATISFACTORY.
4.01.2 OR, WITH THE PERMISSION OF THE STRUCTURE OWNER AND/OR CUSTOMER, THE PRIME CONTRACTOR MAY WORK WTH THE ENGINEER OF RECORD TO REVIEW THE AS-BUILT CONDITION OF THE MODIFICATION TO DETERMINE IF IT IS STRUCTURALLY ACCEPTABLE, IF THE ACTION US NOT ACCEPTABLE TO ANY PARTY, THE PRIME CONTRACTOR SHALL PROCEED TO REPAIR THE DEFICIENT WORK TO A SATISFACTORY CONDITION.
5.00 OWNER INSPECTIONS
5.01 THE STRUCTURE OWNER MAY CONDUCT INSPECTIONS TO VERIFY THE QUALITY AND COMPLETENESS OF THE PREVIOUSLY COMPLETED MODIFICATION INSPECTIONS REPORTS OR THE MODIFICATION INSTALLATION WORK.
5.02 INSPECTIONS MAY BE COMPLETED BY A 3RD-PARTY FIRM OF THE STRUCTURE OWNER'S CHOOSING AFTER A MODIFICATION PROJECT IS COMPLETED AND A PASSING MODIFICATION INSPECTION REPORT IS ISSUED.
6.00 MOD INSPECTOR'S RESPONSIBILITIE: 6.01 THE MODIFICATION INSPECTOR SHALL CONTACT THE F AS THE HAVE RECEIVED A PURCHASE ORDER OR PA THE MODIFICATION INSPECTOR SHALL REVIEW THE RE INSPECTION CHECKLIST, SHALL WORK WITH THE PRIME SCHEDULE OF NECESSARY ON-SITE INSPECTIONS, AN SITE-SPECIFIC INSPECTION REQUIREMENTS OF OTHER
6.02 THE MODIFICATION INSPECTOR IS RESPONSIBLE FOR (CONTRACTOR INSPECTION AND TEST REPORTS (INCLU SUB-CONTRACTORS), SHALL REVEW THE REPORTS F(CONTRACT DOCUMENTS, SHALL CONDUCT THE NECES: AND SHALL COMPILE AND SUBMIT THE MODIFICATION
7.00 PRIME CONTRACTOR RESPONSIBILIT 7.01 THE PRIME CONTRACTOR SHALL CONTACT THE MODIFI AS THEY HAVE RECEIVED A PURCHASE ORDER OR P) MODIFICATION INSTALLATION. THE PRIME CONTRACTOR REQUIREMENTS OF THE MODIFICATION INSPECTION CH THE MODIFICATION INSPECTOR TO DEVELOP A SCHEDI INSPECTIONS, AND SHALL DISCUSS SPECIFIC INSPECTI REQUIREMENTS WTH THE MODIFICATION INSPECTOR IN UNDERSTANDING OF THE REQUIRED INSPECTION AND
7.02 THE PRIME CONTRACTOR SHALL PERFORM AND RECOI INSPECTION RESULTS IN ACCORDANCE WTH THE REQ MODIFICATION INSPECTION CHECKLIST.
8.00 PHOTOGRAPHY REQUIREMENTS
8.01 THE PRIME CONTRACTOR AND MODIFICATION INSPECT EFFORTS OF BOTH PARTIES AND THEIR EMPLOYED PE PHOTOGRAPHS WITH THE INSPECTION REPORT TO INC A GENERAL SITE PHOTOGRAPHS PRE-CONSTRUCTION B MODIFICATION INSTALLATION PHOTOGRAPHS DURING CONSTRUCTOON/ERECTION OPERATIONS AND INSPECTI B. 1 RAW MATERIALS
B. 2 PHOTOS OF DETAILED WORK REQUIRED ON THE DRAWINGS (CONNECTIONS, WELDMENTS, FIELD/FABRICATED MEMBERS, ETC.)
B. 3 WELD PREPARATION AND COMPLETED WELD INSPECTION (INCLUDING A FILLET WELD SIZE G, B. 4 BOLT INSTALLATION AND TORQUE/PRETENSION.
B. 5 FINAL INSTALLED CONDITION (AFTER DEFICIENT CONDITIONS, IF ANY, ARE REMEDIATED).
B. 6 REPAIR OF SURFACE COATINGS (INCLUDING GALVANIZING AND/OR PAINT COATNG).
C. POST-MODIFICATON PHOTOGRAPHS OF THE SITE d D. PHOTOGRAPHS OF THE FINAL STATE OF THE SITE WORK BY THE PRIME CONTRACTOR, ASSOCIATED SI THE MODIFICATION INSPECTOR.
E. OTHER PHOTOS MAY BE INCLUDED AT PRIME CONINSPECTOR'S DISCRETION.

NOTE: PHOTOS OF MODIFICATIONS INSTALLED ON THE STR ELEVATION OF 20° SHALL REQUIRE PHOTOS TAKE FRt WELL AS OVERALL PHOTOGRAPHS OF THE MODIFICATT GROUND.

INSTALL SITE PRO 1 HRK12-3HD 4'-0"土 ABOVE THE EXISTING PIPE FACE HORIZONTAL ATTACH THE INCLUDED P2.0 STD. $\times 6^{\circ}-0^{\prime \prime}$ AT THIRD POINTS ON THE PROPOSED HANDRALL.
SEE: $1 / \mathrm{s}-2$

INSTALL SITE PRO 1 HSRK-35 TO THE TUBE OFFSET ARMS 6 " \pm OUT FROM THE EXISTING COLLAR. ATTACH KICKER ANGLES PERPENDICULAR TO THE PROPOSED SITE PRO 1 HRK12-3HD.
SEE: 2/S-2

INSTALL SITE PF TUBE OFFSET A EXISTING COLLA PERPENDICULAR PRO 1 HRK 12SEE: $2 / \mathrm{S}-2$

INSTALL SITE PRO 1 HSRK-35 TO THE TUBE OFFSET ARMS 6 " \pm OUT FROM THE EXISTING COLLAR. ATACH KICKER ANGLES PERPENDICULAR TO THE PROPOSED SITE PRO 1 HRK12-3HD.
SEE: 2/S-2

[^0]: tnxTower Report - version 8.0.5.0

[^1]: tnx Tower Report - version 8.0.5.0

[^2]: tnxTower Report - version 8.0.5.0

