Industrial Ave, te 3 hahwah NJ 07430

> ONE: 201.684.0055 x: 201.684.0066

Transcend Wireless

April 8, 2022

Members of the Siting Council Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification 1657 Berlin Turnpike, Berlin, CT

> Latitude: 41.60621666 Longitude: -72.74968611

T-Mobile Site#: CTHA231A - Anchor

Dear Ms. Bachman:

T-Mobile currently maintains nine (9) antennas at the 160-foot level of the existing 175-foot monopole at 1657 Berlin Turnpike, Berlin, CT. The 175-foot monopole and property are owned and operated by the Berlin Volunteer Fire Department. T-Mobile now intends to remove (3) antennas and replace (3) antennas to the 160-foot level of the existing monopole. These antennas will support 5G services.

Planned Modifications:

Tower:

Install New:

- (3) Ericsson AIR 6419 B41 Antennas
- (3) Radio 4460 B25 B66
- (1) 6x24 Hybrid Cables

To Be Removed:

- (3) Ericsson AIR21 Antennas
- (3) Ericsson AIR32 Antennas
- (3) Twin Style 1B AWS TMAs
- (3) Existing Coax cables

To Remain:

- (3) RFS APXVAARR24 Antennas
- (3) Radio 4449 B12 B71

Ground:

Install (1) 6160 Power Enclosure Install (1) B160 Battery Cabinet Install 150A Circuit Breaker Remove (1) 6131 Cabinet

This facility was approved by the Town of Berlin on 9/26/2002. A copy of their approval is attached along with the Council's approval of Sprint's Tower Share on 9/26/2002, with no record of conditions that would restrict exempt modifications. Therefore, this modification complies with the aforementioned approval.

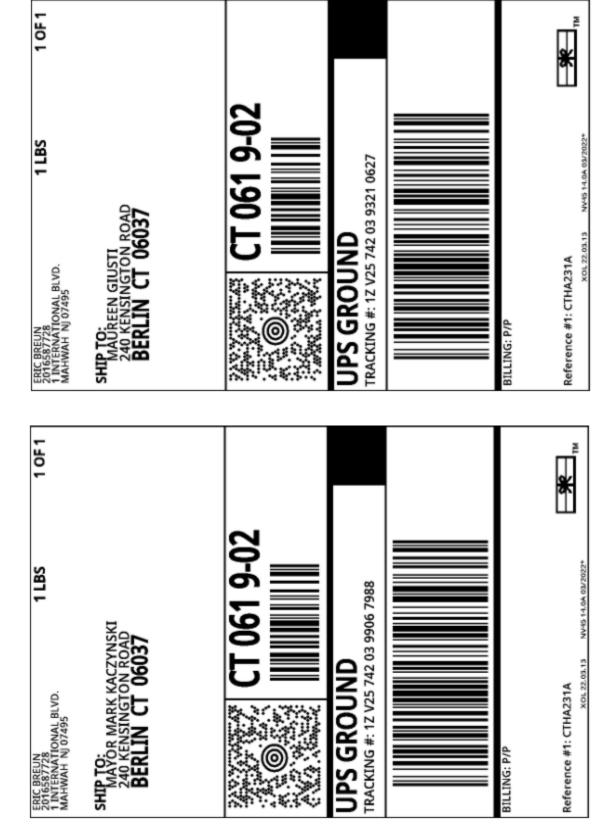
Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to Mayor Mark Kaczynski, Elected Official, and Maureen Giusti, Town Planner, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,


Eric Breun

Transcend Wireless Cell: 201-658-7728

Email: ebreun@transcendwireless.com

Attachments

cc: Mark Kaczynski - Mayor of Berlin Maureen Giusti - Town Planner Berlin Fire Department - Property Owner

Hello, your package has been delivered.

Delivery Date: Wednesday, 03/30/2022

Delivery Time: 12:43 PM Left At: INSIDE DELIV Signed by: BUSH

Ship To:

TRANSCEND WIRELESS

Tracking Number: <u>1ZV257420393210627</u>

MAUREEN GIUSTI

240 KENSINGTON ROAD

BERLIN, CT 06037

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: CTHA231A

Hello, your package has been delivered.

Delivery Date: Wednesday, 03/30/2022

Delivery Time: 12:43 PM Left At: INSIDE DELIV Signed by: BUSH

TRANSCEND WIRELESS

Tracking Number: <u>1ZV257420399067988</u>

MAYOR MARK KACZYNSKI

Ship To: 240 KENSINGTON ROAD

BERLIN, CT 06037

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: CTHA231A

Hello, your package has been delivered.

Delivery Date: Wednesday, 03/30/2022

Delivery Time: 1:06 PM Left At: FRONT DOOR

Experience UPS My Choice® Premium Today

Be in total control of how, when and where your packages are delivered.

Upgrade to Premium Now

Set Delivery Instructions

Manage Preferences

TRANSCEND WIRELESS

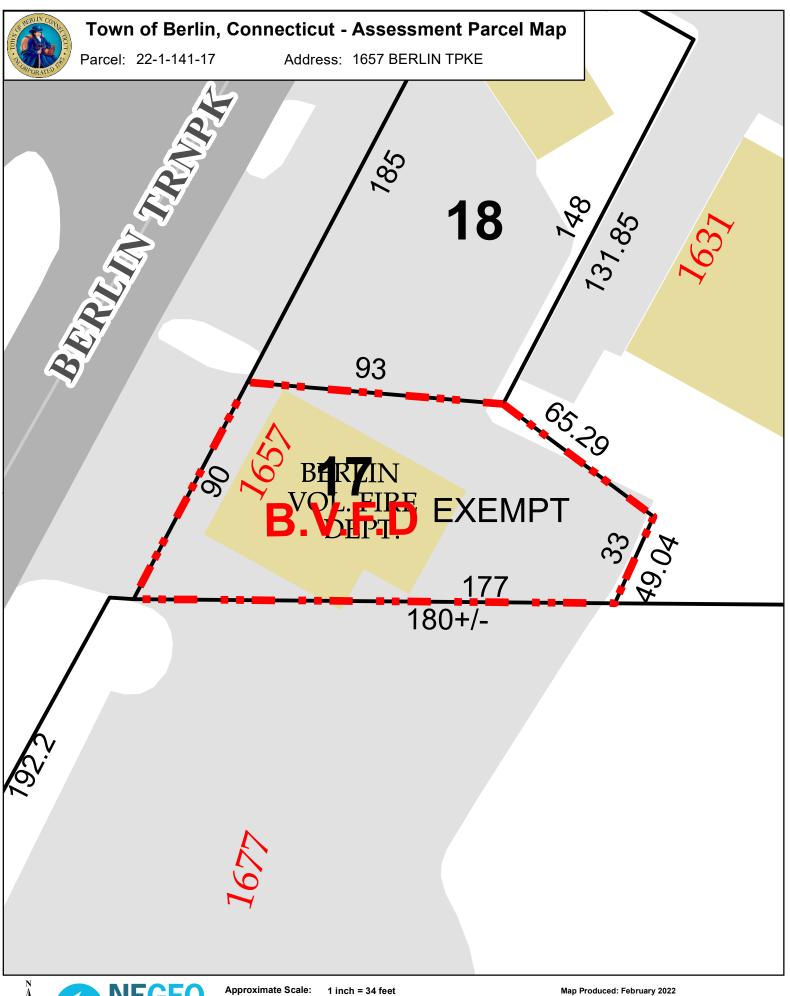
Ship To:

Tracking Number: <u>1ZV257420395057997</u>

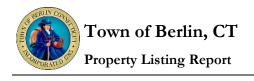
BERLIN VOLUNTEER FIRE DPT

1657 BERLIN TURNPIKE

BERLIN, CT 06037


US

Number of Packages:


UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: CTHA231A

Map Block Lot

22-1-141-17

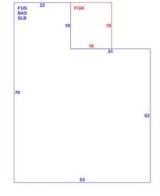
Building #

PID

8039 A

Account 1101290

Property Information


Property Location	1657 BER	LIN TPKE		
Owner	BERLIN V	OLUNTEER	RFIRE	DEPT
Co-Owner	BERLIN F	IREHOUSE		
Mailing Address	1657 BER	LIN TPKE		
Maning Address	BERLIN		СТ	06037
Land Use	9031	Municipa	al MDL	-96
Land Class	E			
Zoning Code	BT-1			
Census Tract	4002			

District	7
Acreage	0.23
Utilities	All Public
Book / Page	0114/0272

Photo

Sketch

Primary Construction Details

Year Built	1946
Building Desc.	Municipal MDL-96
Building Style	Other Municip
Stories	2
Occupancy	1.00
Exterior Walls	Brick Veneer
Exterior Walls 2	
Roof Style	Mansard
Roof Cover	Rolled Compos
Interior Walls	Plaster/Drywal
Interior Walls 2	
Interior Floors 1	Hardwood
Interior Floors 2	Carpet
_	_

Heating Fuel	Oil/Gas
Heating Type	Hot Air-no Duc
AC Type	Central
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	
Bath Style	
Kitchen Style	
Fin BSMT Area	
Fin BSMT Quality	
Fin BSMT Area 2	
Fin BSMT Qual 2	

BSMT Garages	0
Fireplaces	0
Whirlpool Tub	0
Building Use	Ind/Comm
Building Condition	A
•	Commercial Details tial Not Applicable)
Heat / AC	HEAT/AC SPLIT
Frame Type	MASONRY
Baths / Plumbing	AVERAGE
Ceiling / Wall	SUS-CEIL & WL
Rooms / Prtns	AVERAGE
Wall Height	12
First Floor Use	9031
Papart Crasted On	0/00/0000

Map Block Lot 22-1-141-17

Building #

PID

Account

8039

1101290

Valuation Sumr	mary (Assessed va	alue = 70% of Appraised Value)	Sub Areas		
Item	Appraised	Assessed	Subarea Type	Gross Area (sq ft)	Living Area (sq ft
Buildings	1125100	787600	Garage, Attached	288	0
Extras	0	0	Upper Story, Finished	3152	3152
Improvements			First Floor	3152	3152
Outbuildings	21500	15100	Slab	3152	0
Land	78800	55200			
Total	1225400	857900			
Outbuilding ar	nd Extra Featur	es			
Type	Des	scription			
Garage - Good	288	S.F.			
Paving - Asphalt	5000) S.F.			
			Total Area	9744	6304
Sales History			•	I	I
Owner of Record			Book/ Page Sale	Date Sale Pri	ce

PROP NO.

1011290

PERMET NO.

3786

Nicholas G. Chirioo (860) 528-7012

TOWN OF BERLIN 740 Kansington Read

Barilo, CT. AGA17

BUILDING PERMIT

OCA.	HOIT.	
191-11	1 1 10 1 1	

1657 WILBUR CROSS HWY

WNER....

REKLIN VOLUNTEER VIKE DEPT

ERMIT ISSUED TO:

BEID SPRINT POS/M. ROGAN

637 WILBUR CRIUWY

3ERLIN, CT. 06037 150-0336

Build (tain#:

437 AAC NonRes rost Type: COMM Chammedolal

PRIV Priv Owned trop (leas:

lidg limit: 3ldg Frame: 41 Contullower

3 Metal Fr

io. Buildings: io. Knik/Linits:

TENANT

HOME OWNER ADDRESS:

BURLIN VOLUNTEER FIRE DEFI 1657 WILHUR CR HWY

DERLIN, CT. 06037

EST. VALUE:

BLDG PRMT: B

3786

Innue Dute: Application Date: 9/26/2002

9/19/2002

Distance E Side:

Distance W Side: Distunce & Sada:

Distance N Sido:

Commentant

INSTALLATION OF COMMUNICATION TOWER, RAISED STEEL DECK. & RELATED EQUIPMENT, AT BÉRLIN FIRE DEPT. HEADQUARTERS.

Leveipz.

TYTAL RECEIPTS:

TYTAL AMOUNT

Ruilding Inspection Division

inspector:

Nicholas & Chirica

Permission must be obtained from the Engineering Division before Building Muterial can be placed in the nighway. Surface or subsurface drains, roof drains and sump pumps must not be connected with the santtery SEWLT.

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@po.state.ct.us
Web Site: www.state.ct.us/csc/index.htm

September 26, 2002

Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP 185 Asylum Street, CityPlace I Hartford, CT 06103-3402

RE:

TS-SPRINT-007-020821 - Sprint Spectrum L.P. d/b/a Sprint PCS request for an order to approve tower sharing at a proposed telecommunications facility located at 1657 Wilbur Cross Highway, Berlin, Connecticut.

Dear Attorney Regan:

At a public meeting held September 25, 2002, the Connecticut Siting Council (Council) ruled that the shared use of this tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies which will be used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated August 20, 2002.

Thank you for your attention and cooperation.

Very truly yours,

Chairman

MAG/laf

c: Honorable Paul C. Argazzi, Mayor, Town of Berlin Brian J. Miller, Town Planner, Town of Berlin Michael J. Rogan, Assistant Chief, Berlin Fire Department

Sistor / G

- T--Mobile-

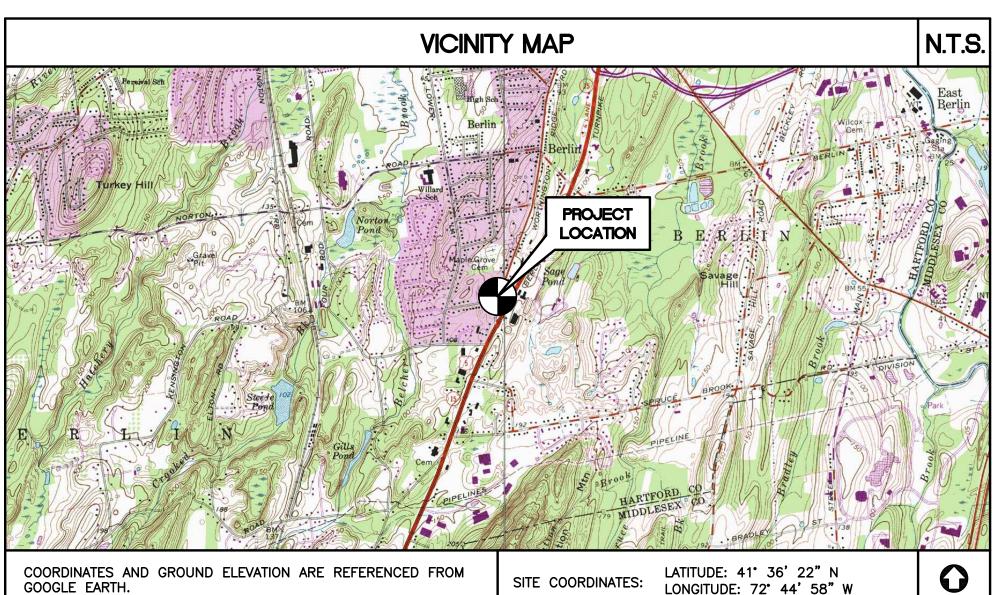
SITE NAME: HA231/BERLIN FD TOWER
SITE ID: CTHA231A
1657 BERLIN TURNPIKE
BERLIN, CT 06525

T-MOBILE A/L TEMPLATE (PROVIDED BY RFDS)

67D5998E_1xAIR+10P

T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS)

67D5D3998E 6160


GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- 3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 4. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 5. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- 6. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- 7. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 8. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 9. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 10. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 11. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 12. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 13. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB—CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS.

 CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

- 14. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 16. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 17. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 18. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 19. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT OF ANY WORK
- 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.
- 26. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.
- 27. PRIOR TO THE SUBMISSION OF BIDS, THE CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.

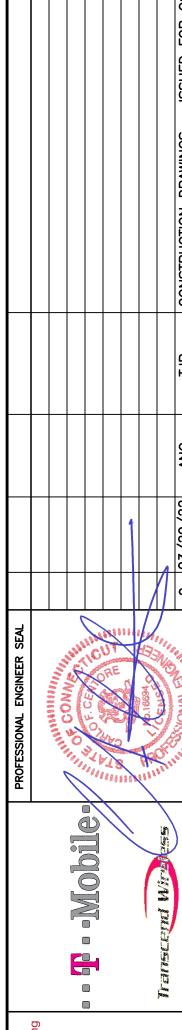
PROJECT SUMMARY

THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:

- 1. REMOVE 6131 CABINET LOCATED ON EXISTING ELEVATED STEEL PLATFORM
- 2. REMOVE (3) ERICSSON AIR21 KRC118023-1_B2A_B4P ANTENNAS
- 3. REMOVE (3) ERICSSON AIR32 KRD901146-1_B66A_B2A ANTENNAS.
- 4. REMOVE (3) EXISTING GENERIC TWIN STYLE 1B AWS TMAs.
- 5. REMOVE (3) EXISTING COAX, RETAIN (3) 6X12 HYBRID CABLES, AND INSTALL (1)
- 6/24 4AWG HYBRID CABLE
- 6. INSTALL (1) 6160 POWER CABINET7. INSTALL (1) B160 BATTERY CABINET
- 8. INSTALL (1) ERICSSON: AIR6419 B41 ANTENNA PER SECTOR, TOTAL OF (3)
- 9. INSTALL (1) RADIO 4460 B25+B66 PER SECTOR, TOTAL OF (3)
- 10. INSTALL 150A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT

	PRO	DJECT INFORMATION	
ĺ	SITE NAME:	HA231/BERLIN FD TOWER	
	SITE ID:	CTHA231A	
	SITE ADDRESS:	1657 BERLIN TURNPIKE BERLIN, CT. 06525	
	APPLICANT:	T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT. 06002	
	CONTACT PERSON:	DAN REID (PROJECT MANAGER) TRANSCEND WIRELESS, LLC (203) 592-8291	
	ENGINEER OF RECORD:	CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD ROAD BRANFORD, CT. 06405	
		CARLO F. CENTORE, PE (203) 488-0580 EXT. 122	
	SITE COORDINATES:	LATITUDE: 41°-36'-22" N LONGITUDE: 72°-44'-58" W	

GROUND ELEVATION: 134'± AMSL


REFERENCED FROM GOOGLE EARTH.

SITE COORDINATES AND GROUND ELEVATION

	SHEET INDEX	
SHEET. NO.	DESCRIPTION	REV
T-1	TITLE SHEET	0
N-1	NOTES, SPECIFICATIONS, AND ANTENNA SCHEDULE	0
C-1	EQUIPMENT PLANS AND COMPOUND ELEVATION	0
C-2	ANTENNA PLANS AND ELEVATIONS	0
C-3	TYPICAL EQUIPMENT DETAILS	0
E-1	ELECTRICAL RISER DIAGRAM AND CONDUIT ROUTING	0
E-2	TYPICAL GROUNDING DETAILS	0
E-3	ELECTRICAL SPECIFICATONS	0

NORTH

GROUND ELEVATION: ±134' AMSL

Centered on Solutions (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405

AE: HA231/BERLIN FD TOWE SITE ID: CTHA231A
657 BERLIN TURNPIKE

DATE: 02/23/22

SCALE: AS NOTED

JOB NO. 20143.15

TITLE SHEET

T-1

SHEET NO. 1

NOTES AND SPECIFICATIONS:

DESIGN BASIS:

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

- 1. DESIGN CRITERIA:
- RISK CATEGORY II (BASED ON IBC TABLE 1604.5)
- NOMINAL DESIGN SPEED: 97 MPH (Vasd)
 (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

SITE NOTES

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

GENERAL NOTES

WORK.

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- 3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 4. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 5. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY
- 6. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- 7. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 8. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE
- 9. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 10. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 11. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 12. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 13. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

- 14. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 16. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 17. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 18. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 19. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT
- 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.
- 26. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.
- 27. PRIOR TO THE SUBMISSION OF BIDS, THE CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.

STRUCTURAL STEEL

(FY = 46 KSI)

DISTORTIONS OR DEFECTS.

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- A. STRUCTURAL STEEL (W SHAPES)---ASTM A992 (FY = 50 KSI)
- B. STRUCTURAL STEEL (OTHER SHAPES) --- ASTM A36 (FY = 36 KSI)
 C. STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B
- D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B,
- (FY = 42 KSI)
- PIPE---ASTM A53 (FY = 35 KSI) CONNECTION BOLTS---ASTM A325-N
- G. U-BOLTS---ASTM A36 H. ANCHOR RODS---ASTM F 1554
- WELDING ELECTRODE——ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS. ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

						ANTENNA SCHEDUL	E	
SECTOR	EXISTING/PROPOSED	ANTENNA	SIZE (INCHES) A	NTENNA (E HEIGHT	AZIMUTH	(E/P) RRU	(E/P) TMA & DIPLEXER (QTY)	(QTY) PROPOSED CABLE(S)
A1	EXISTING	RFS (APXVAARR24_43-U-N-NA20)	95.9 x 24 x 8.7	160'	30°	(E) RADIO 4449 B71+B85 & (P) RADIO 4460 B25+B66		
A2	PROPOSED	ERICSSON (AIR6419 B41)	33.0 x 16.0 x 9.0	160'	30°			
B1	EXISTING	RFS (APXVAARR24_43-U-N-NA20)	95.9 x 24 x 8.7	160'	180°	(E) RADIO 4449 B71+B85 & (P) RADIO 4460 B25+B66		(4) 0.04 10.7707 0.77
B2	PROPOSED	ERICSSON (AIR6419 B41)	33"L x 16"W x 9"D	160'	180°			(1) 6x24 HYBRID CABLE
C1	EXISTING	RFS (APXVAARR24_43-U-N-NA20)	95.9 x 24 x 8.7	160'	290°	(E) RADIO 4449 B71+B85 & (P) RADIO 4460 B25+B66		
C2	PROPOSED	ERICSSON (AIR6419 B41)	33"L x 16"W x 9"D	160'	290°			

NOTE:
ALL HYBRID/COAX LENGTHS TO BE MEASURED
AND VERIFIED IN FIELD BEFORE ORDERING

MEER SEAL

O 03/29/22 ANC TJR CONSTRUCTION DRAWINGS — ISSUED FOR

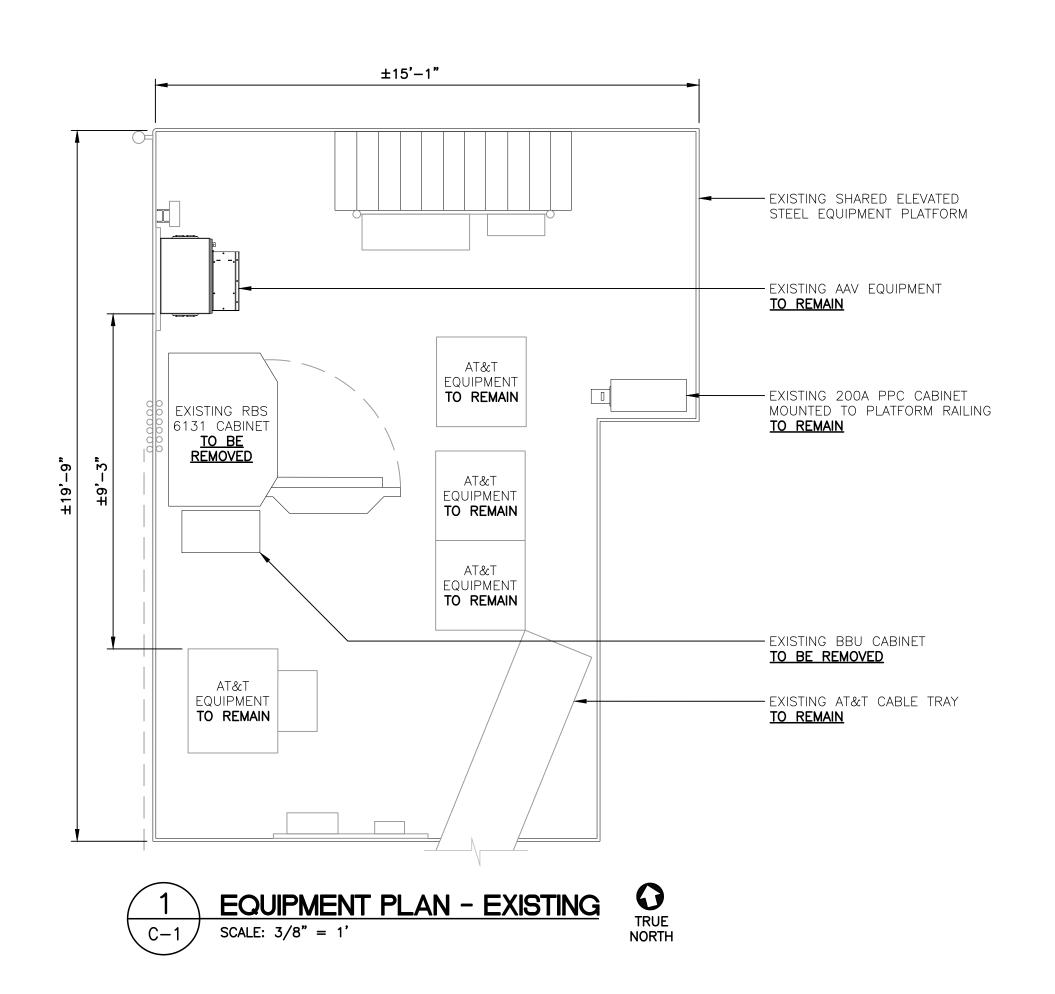
ad Transcend Wire

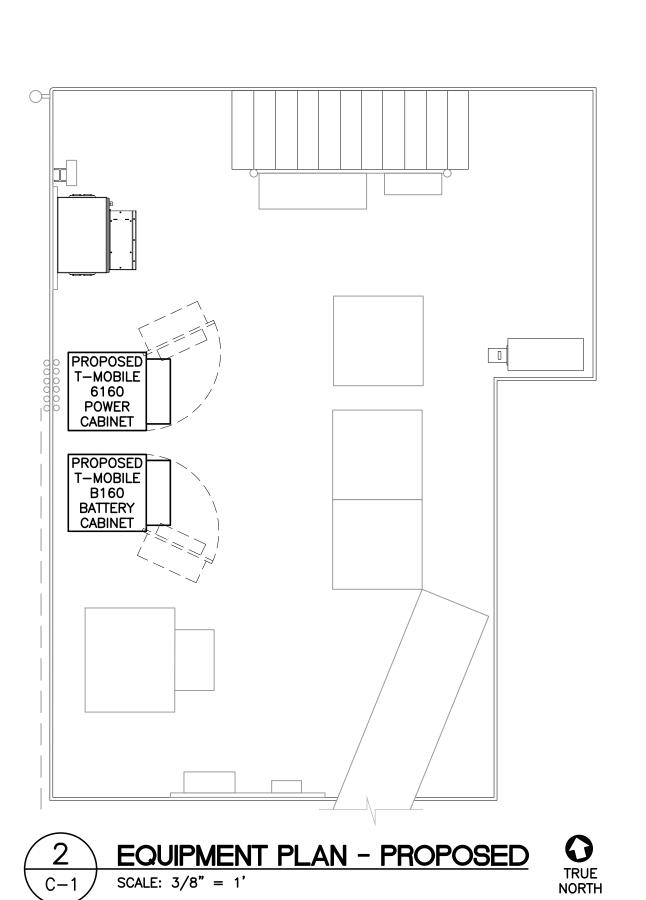
(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Roac Branford, CT 06405

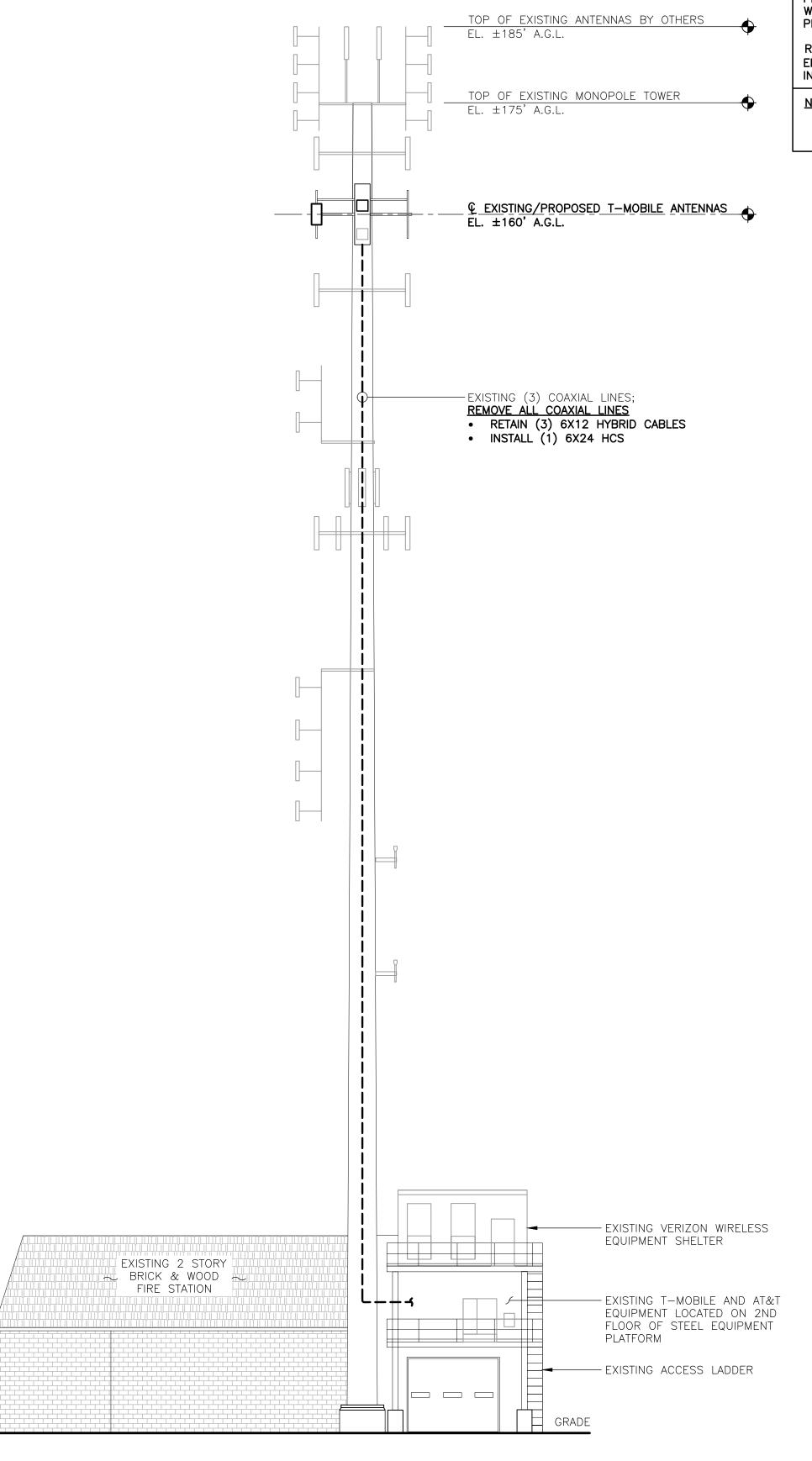
E: HA231/BERLIN FD TOW SITE ID: CTHA231A 57 BERLIN TURNPIKE BERLIN, CT 06525

DATE: 02/23/22

SCALE: AS NOTED


JOB NO. 20143.15


NOTES,


SPECIFICATIONS.

AND ANTENNA SCHEDULE

STRUCTURAL COMPLIANCE

ANTENNA MOUNTS AND EQUIPMENT PLATFORM

A STRUCTURAL ANALYSIS OF THE ANTENNA MOUNTS AND EQUIPMENT PLATFORM WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING.

REFER TO THE ANTENNA MOUNT ANALYSIS AND EQUIPMENT PLATFORM ANALYSIS REPORTS PREPARED BY CENTEK ENGINEERING (PROJECT # 20143.15) DATED 02/23/22 FOR ADDITIONAL INFORMATION AND REQUIREMENTS.

TOWER AND TOWER FOUNDATION

A STRUCTURAL ANALYSIS OF THE TOWER AND TOWER FOUNDATION WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING.

REFER TO THE STRUCTURAL ANALYSIS REPORT PREPARED BY CENTEK ENGINEERING (PROJECT # 20143.15) DATED 02/22/22 FOR ADDITIONAL INFORMATION AND REQUIREMENTS.

NOTE: NO EQUIPMENT SHALL BE INSTALLED ON THE HOSTING STRUCTURE WITHOUT A PASSING STRUCTURAL ANALYSIS REPORT AND CONTRACTOR PRIOR CONFIRMATION THAT ANY AND ALL REQUISITE MODIFICATIONS HAVE BEEN COMPLETED.

3 COMPOUND ELEVATION - PROPOSED

C-1 SCALE: 3/32" = 1'

T-MOBILE NORTHEAST LLC

Centered on Solutions**

E NAME: HA231/BERLIN FD TOWER

SITE ID: CTHA231A

1657 BERLIN TURNPIKE

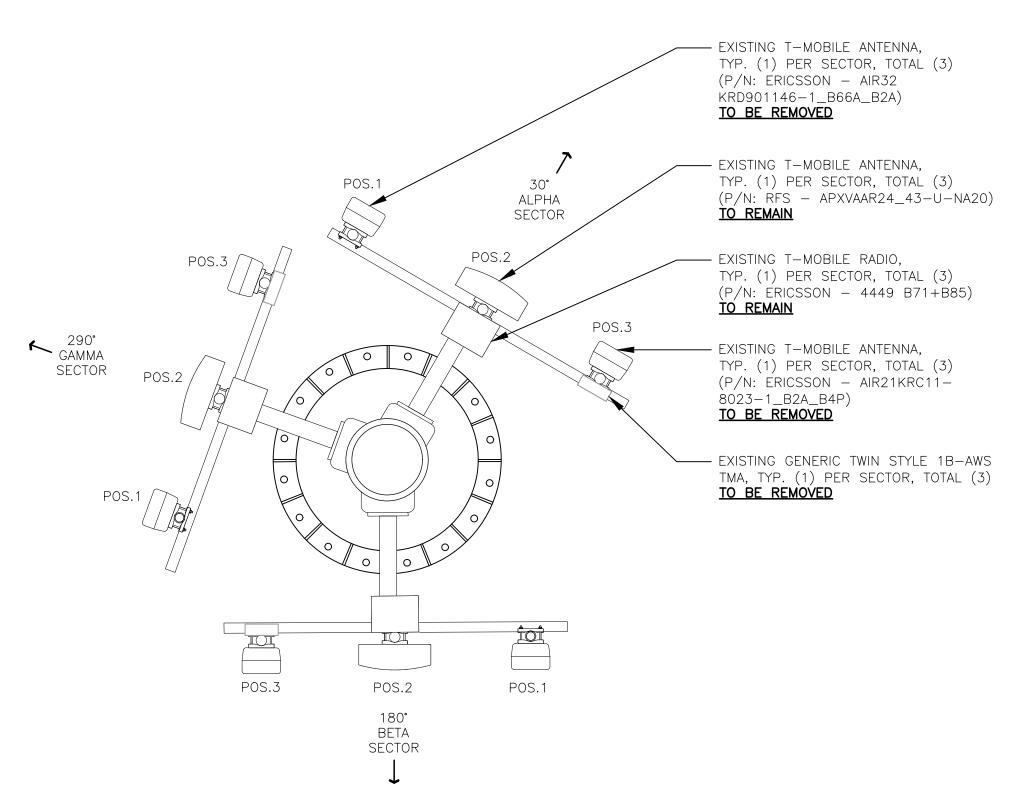
BERLIN, CT 06525

www.CentekEng.com

02/23/22

AS NOTED

JOB NO. 20143.15

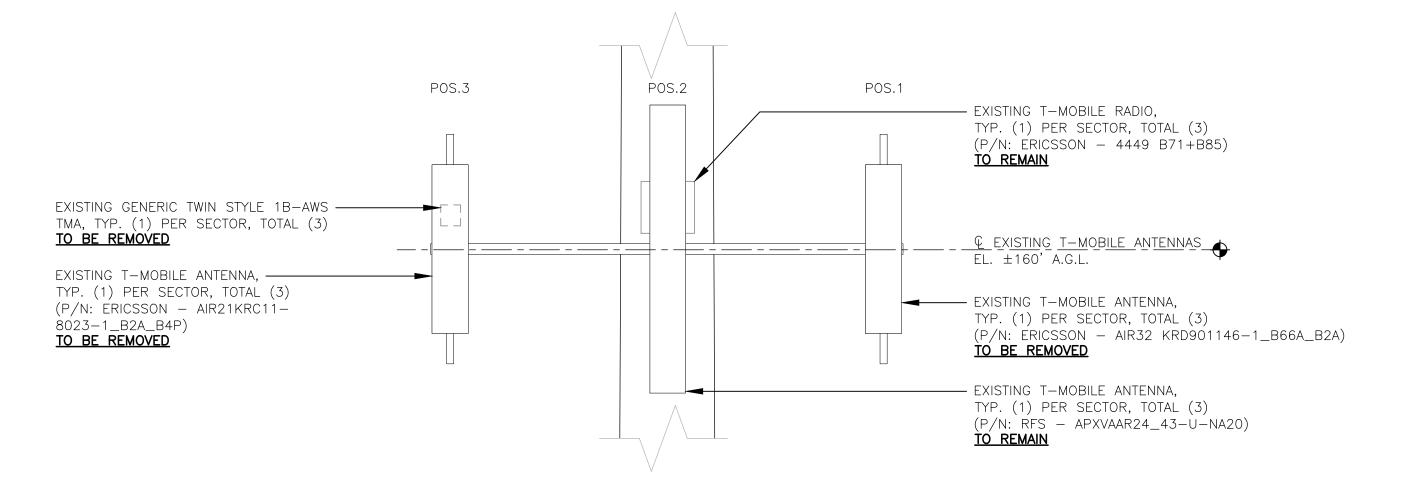

EQUIPMENT PLANS

AND COMPOUND

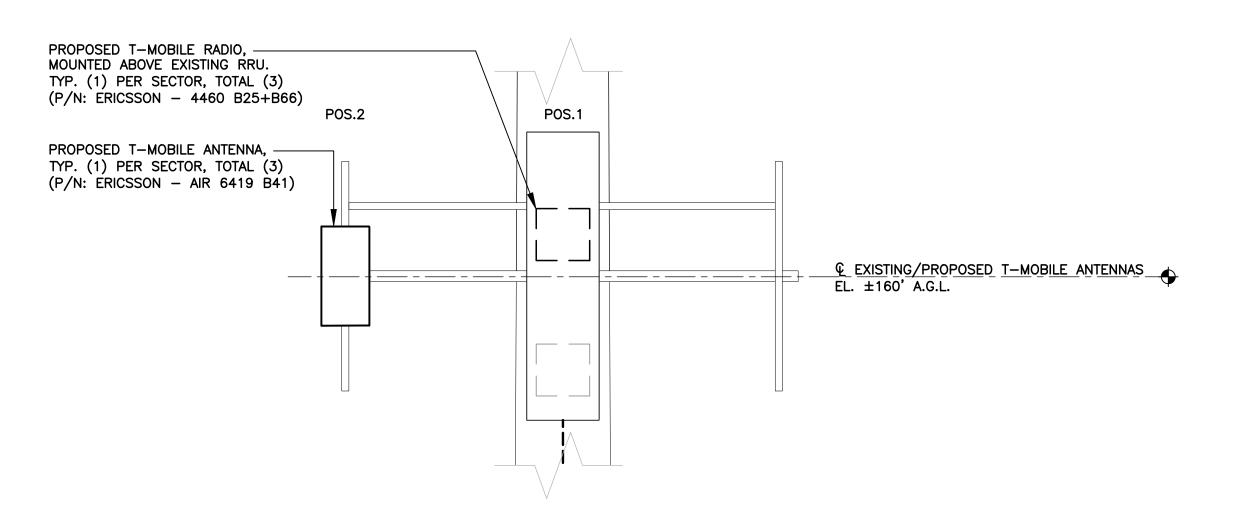
ELEVATION


SHEET NO. <u>3</u> OF <u>8</u>

SCALE:


SCALE: 3/8" = 1'

ANTENNA PLAN - EXISTING
TRUE
NICETIL

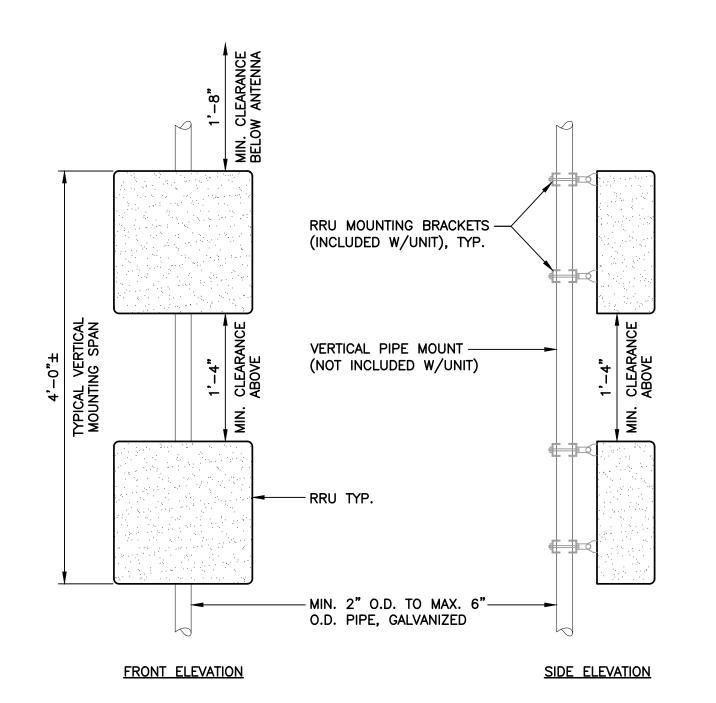


SCALE: 3/8" = 1'

ANTENNA PLAN - PROPOSED
TRUE
NORTH

2A ANTENNA ELEVATION - PROPOSED

C-2 SCALE: 3/8" = 1'

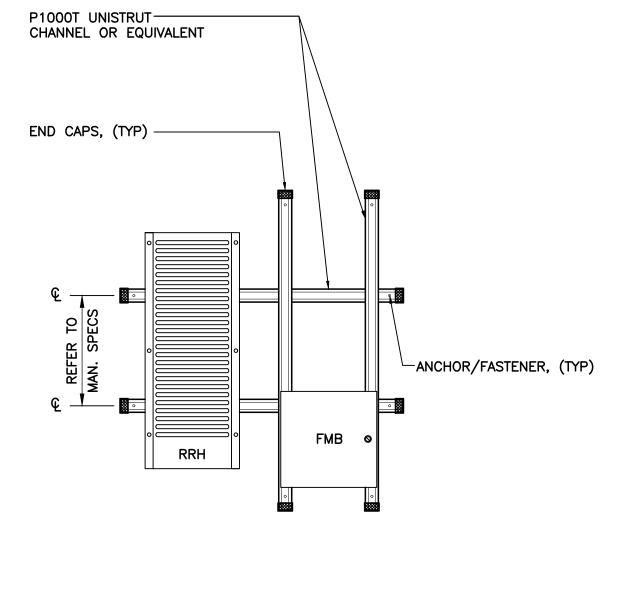

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		PROFESSIONAL ENGINEER SEAL				
JOILE NOTIFICASI LLC	LIV engineering						
	Centered on Solutions***		THE CONTRACTOR				
AE. LASSY/DEDINIED TOW/ED			THE OWNER WAS A STATE OF THE PARTY OF THE PA				
	7203) 488 0580		IN THE SOUTH SOUTH				
SHE ID. CHUADAA	(203) 488-8587 FOX		が一部では、				
AICZALIO: OI I I IIO	63-2 North Branford Road			1			
SA7 DEDI IN TIENBIVE	Branford, CT 06405		11 10 10004 DIT				
		Terretain With Ses	NO.	1			
REBLIN CT 06525			STONAL EN PRINCIPLE	0 03/29/22	ANC	TJR	CONSTRUCTION DRAWINGS — ISSUED FOR CC
	www.CentekEng.com		了我就想到那么也也都的话:	REV. DATE DR	DRAWN BY CHECKED BY DESCRIPTION	KED BY	DESCRIPTION
				-	-		

02/23/22 DATE: SCALE: AS NOTED

JOB NO. 20143.15

ANTENNA PLANS AND ELEVATIONS

SHEET NO. 4 OF


1. T-MOBILE SHALL SUPPLY RRU, AND RRU POLE-MOUNTING BRACKET.

INCLUDING ERICSSON RRU POLE-MOUNTING BRACKET.

2. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.

CONTRACTOR SHALL SUPPLY POLE/PIPE AND INSTALL ALL MOUNTING HARDWARE

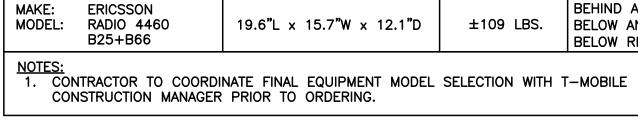
NOTES: (PIPE MOUNTING)

NOTES: (UNISTRUT MOUNTING)

- 1. INSTALL A MINIMUM OF (2) ANCHORS PER UNISTRUT (± 16"o/c MIN).
- 2. MOUNT RRU TO UNISTRUT WITH 3/8" UNISTRUT BOLTING HARDWARE AND SPRING NUTS. TYPICAL FOUR PER BRACKET.

FRONT ELEVATION

3. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.


	ALPHA/BET/	A/GAMMA ANTENNA	
	EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: MODEL:	ERICSSON AIR6419 B41	33"L x 16"W x 9"D	±41 LBS.

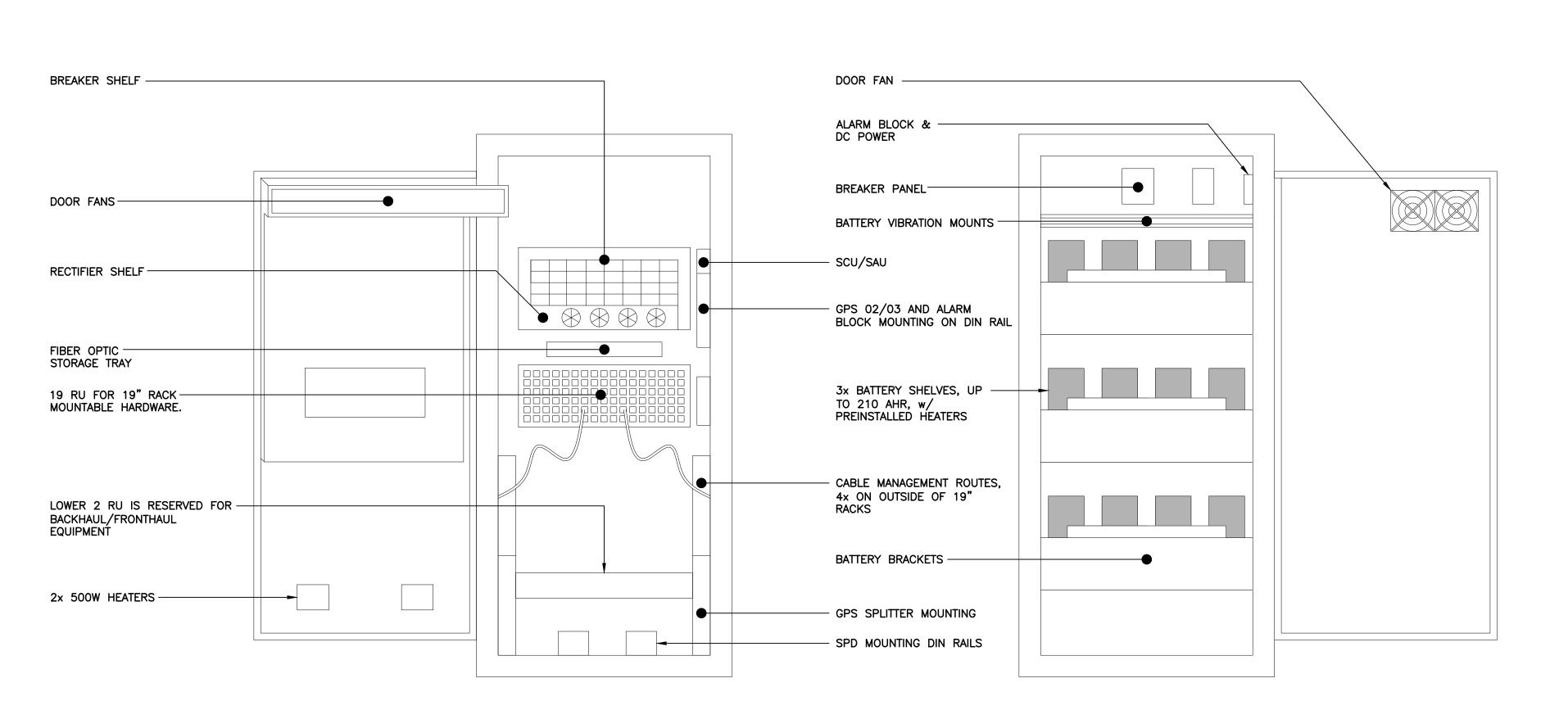
PROPOSED ANTENNA DETAIL

NOTES:

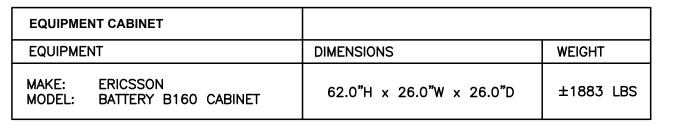
1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH T-MOBILE CONSTRUCTION MANAGER PRIOR TO ORDERING.

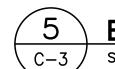
SCALE: NOT TO SCALE

EQUIPMENT



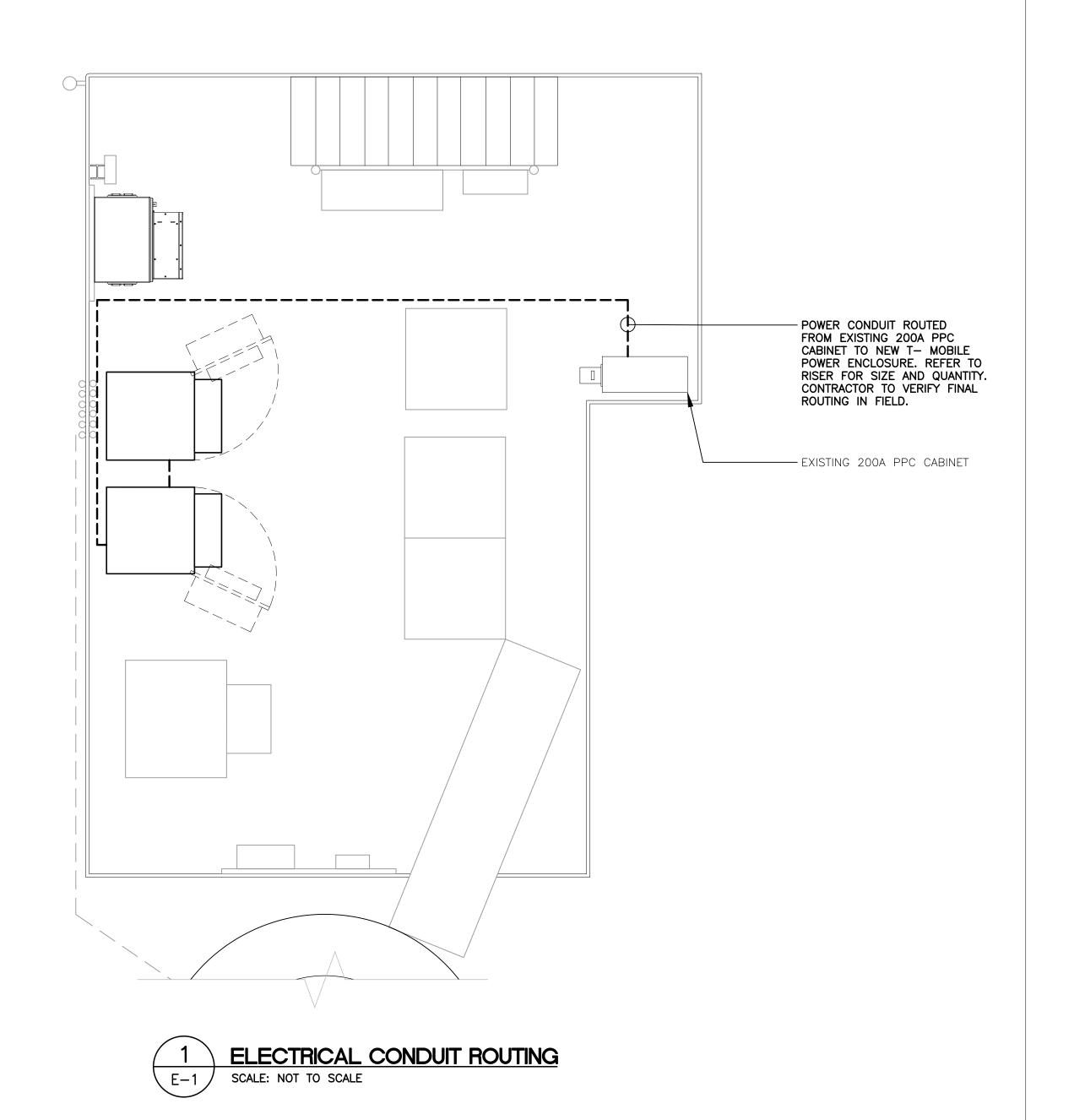
PROPOSED RRU DETAIL SCALE: NOT TO SCALE


RADIO 4460 B25+B66


RRU (REMOTE RADIO UNIT)

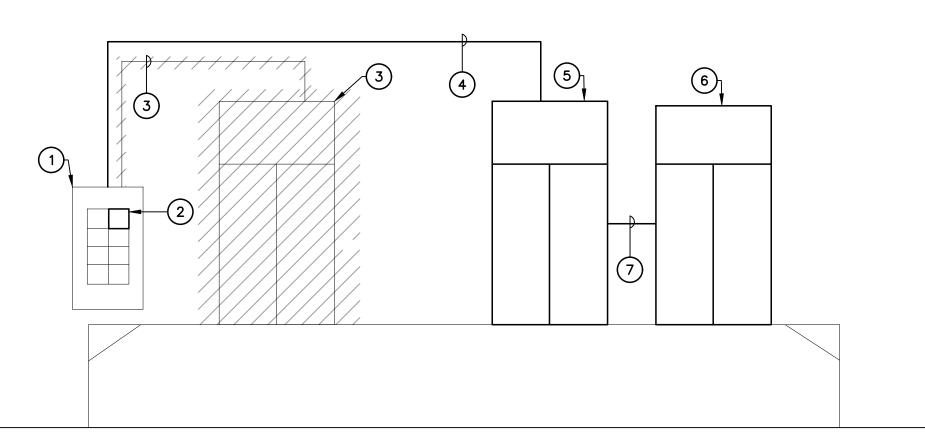
TYPICAL RRU MOUNTING DETAILS SCALE: NOT TO SCALE

EQUIPMENT CABINET		
EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: ERICSSON MODEL: ENCLOSURE 6160 CABINET	62.0"H × 26.0"W × 26.0"D	±1200 LBS


BATTERY B160 CABINET DETAIL SCALE: NOT TO SCALE

CLEARANCES BEHIND ANT.: 8" MIN. BELOW ANT.: 20" MIN. ±109 LBS. BELOW RRU: 16" MIN. -Mobil T-MOBILE NORTHEAST LLC E NAME: HA231/BERLIN FD TO SITE ID: CTHA231A 1657 BERLIN TURNPIKE BERLIN, CT 06525

> 02/23/22 DATE: SCALE: AS NOTED JOB NO. 20143.15 **TYPICAL EQUIPMENT DETAILS**


SHEET NO. <u>5</u> OF <u>8</u>

ENCLOSURE 6160 CABINET DETAIL SCALE: NOT TO SCALE

RISER DIAGRAM NOTES

- 1) EXISTING 200A, PPC CABINET TO REMAIN.
- 2 NEW 150A/2P CIRCUIT BREAKER TO SERVE NEW EQUIPMENT CABINET.
- 3 EXISTING CABINETS AND ASSOCIATED CONDUITS, CONDUCTORS AND CIRCUIT BREAKER TO BE REMOVED.
- (3) 1/0 AWG, (1) #6 AWG GROUND, 1-1/2" CONDUIT.
- 5 NEW T-MOBILE EQUIPMENT CABINET
- 6 NEW T-MOBILE BATTERY CABINET
- DC CONDUIT AND CONDUCTORS FOR BATTERY CABINET CONNECTION PER MANUFACTURERS SPECIFICATIONS.

2 ELECTRICAL POWER RISER DIAGRAM

SCALE: NOT TO SCALE

PROFESSIONAL ENGINEER SEAL

MODILE

CONNECTED

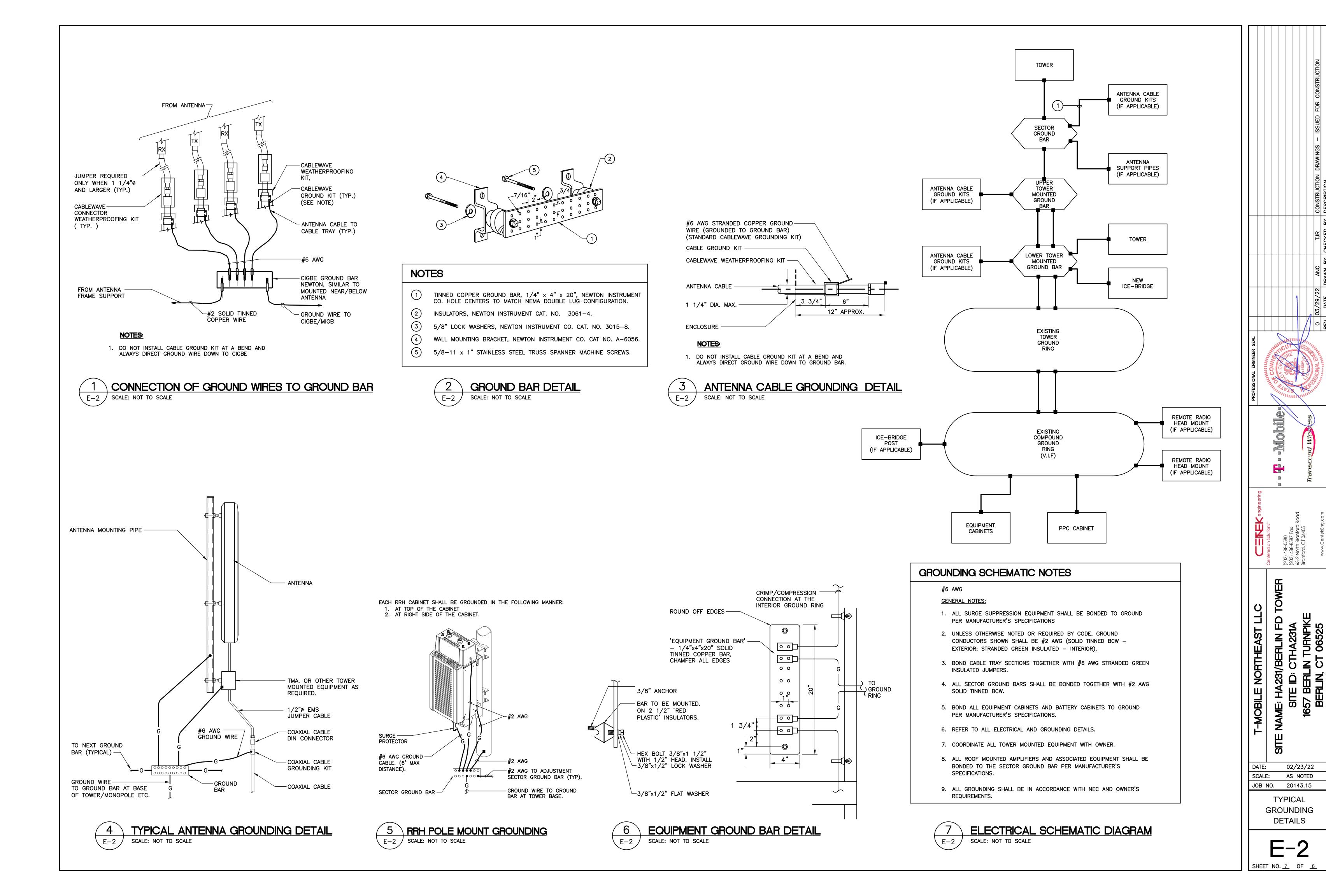
CONNECTE

Centered on Solutions **

(203) 488-0580
(203) 488-8587 Fax
63-2 North Branford Road
Branford, CT 06405

SITE NAME: HA231/BERLIN FD TOWER
SITE ID: CTHA231A
1657 BERLIN TURNPIKE
BERLIN, CT 06525

DATE: 02/23/22


SCALE: AS NOTED

JOB NO. 20143.15

ELECTRICAL RISER
DIAGRAM AND
CONDUIT ROUTING

E-1

SHEET NO. <u>6</u> OF <u>8</u>

ELECTRICAL SPECIFICATIONS

SECTION 16010

1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3—RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
- 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN. OR OMITTED FROM. THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

SECTION 16111

1.01. CONDUITS

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

CONDUIT SCHEDULE SECTION 16111								
CONDUIT TYPE	NEC REFERENCE	APPLICATION	MIN. BURIAL DEPTH (PER NEC TABLE 300.5) ^{2,8}					
EMT	ARTICLE 358	INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS	N/A					
RMC, RIGID GALV. STEEL	ARTICLE 344, 300.5, 300.50	ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.	6 INCHES					
PVC, SCHEDULE 40	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. 1	18 INCHES					
PVC, SCHEDULE 80	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. 1	18 INCHES					
LIQUID TIGHT FLEX. METAL	ARTICLE 350	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A					
FLEX. METAL	ARTICLE 348	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A					

PHYSICAL DAMAGE IS SUBJECT TO THE AUTHORITY HAVING JURISDICTION.

² UNDERGROUND CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24".

³ WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2" OF CONCRETE EXTENDING DOWN TO ROCK.

SECTION 16123

1.01. CONDUCTORS

A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT—BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:

120/208/240V 277/480V

LINE COLOR
A BLACK BROWN
B RED ORANGE
C BLUE YELLOW
N CONTINUOUS WHITE GREY
G CONTINUOUS GREEN GREEN WITH YELLOW STRIPE

B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

SECTION 16130

1.01. BOXES

- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

<u>SECTION 16140</u>

1.01. WIRING DEVICES

- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
- 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
- 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE
- 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
- 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

SECTION 16170

1.01. DISCONNECT SWITCHES

A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

SECTION 16190

1.01. SEISMIC RESTRAINT

A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

SECTION 16195

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT
- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT.
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

SECTION 16450

1.01. GROUNDING

- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- C. GROUNDING OF PANELBOARDS:
- 1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT CORROSION.
- 2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).
- D. EQUIPMENT GROUNDING CONDUCTOR:
- 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
- 3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S).
- E. CELLULAR GROUNDING SYSTEM:

CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

- 1. GROUND BARS
- 2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED).
- 3. ANTENNA GROUND CONNECTIONS AND PLATES.
- F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.
- G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

SECTION 16470

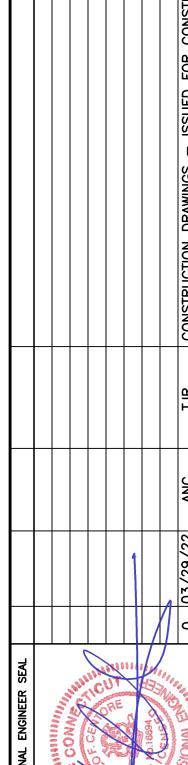
1.01. DISTRIBUTION EQUIPMENT

A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

SECTION 16477

01. FUSES

A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.


SECTION 16960

- 1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM
- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:
- TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.
- TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.
- THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:
- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.

<u>SECTION 16961</u>

1.01. TESTS BY CONTRACTOR

- A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.
- B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.
- C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.

Terend Wireless

103) 488-0580 103) 488-8587 Fax 13-2 North Branford Road 13-2 Tok405

BILE NORTHEAST LLC

E: HA231/BERLIN FD TOWE
SITE ID: CTHA231A

57 BERLIN TURNPIKE
BERLIN, CT 06525

DATE: 02/23/22
SCALE: AS NOTED
JOB NO. 20143.15

ELECTRICAL SPECIFICATIONS

E-3

SHEET NO. 8 OF

Centered on Solutions[™]

Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site #: CTHA231A

1657 Berlin Turnpike Berlin, CT

Centek Project No. 20143.15

Date(Rev 1): February 23, 2022

Max Stress Ratio = 97.0%

OF CONNECTION OF

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002 CENTEK Engineering, Inc.

Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CTHA231A Berlin, CT Rev 1~ February 23, 2022

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

<u>SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)</u>

■ RF DATA SHEET, DATED 10/9/2020

TABLE OF CONTENTS TOC-1

Centered on Solutions[™]

February 23, 2022

Mr. Dan Reid Transcend Wireless 10 Industrial Ave Mahwah, NJ 07430

Re: Structural Letter ~ Antenna Mount T-Mobile — Site Ref: CTHA231A 1657 Berlin Turnpike Berlin, CT 06037

Centek Project No. 20143.15

Dear Mr. Reid,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting of three (3) 12-ft T-Arms with stabilizer kit. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

■ <u>T-Mobile:</u>

<u>T-Arms:</u> Three (3) Ericsson AIR6419 panel antennas, three (3) RFS APXVAARR24_43-U-NA20 panel antennas, three (3) Ericsson 4449 remote radio units, three (3) Ericsson 4460 remote radio heads and three (3) Commscope SDX1926Q-43 diplexers mounted on three (3) T-Arms with a RAD center elevation of 160-ft +/- AGL.

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 97 mph for Berlin as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the **subject antenna mount has sufficient capacity** to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

CENTEK Engineering, Inc. Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CTHA231A Berlin, CT Rev 1 ~ February 23, 2022

Section 2 - Calculations

Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

TIA-222-G Loads

Berlin, CT Location:

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 1: 2/22/22 Job No. 20143.15

Development of Design Heights, Exposure Coefficients, and Velocity Pressures Per TIA-222-G

Wind Speeds

Basic Wind Speed V := 97mph (User Input - 2018 CSBC Appendix N) Basic Wind Speed with Ice (User Input per Annex B of TIA-222-G) $V_i := 50$ mph

Structure Type = Structure_Type := Pole (User Input)

Structure Category = SC := III(User Input)

Exposure Category = $\mathsf{Exp} \coloneqq \mathsf{B}$ (User Input)

Structure Height = h:= 176 (User Input)

Height to Center of Antennas= $z_{Ant} = 160$ (User Input)

Radial Ice Thickness = $t_i := 1.00$ (User Input per Annex B of TIA-222-G)

Radial Ice Density= Id := 56.00pcf (User Input)

Topograpic Factor = $K_{71} := 1.0$ (User Input)

> $K_a := 1.0$ (User Input)

Gust Response Factor = G_H = 1.1 (User Input)

Wind Direction Probability Factor =

 $K_d :=$ 0.95 if Structure_Type = Pole = 0.95 (Per Table 2-2 of TIA-222-G) 0.85 if Structure_Type = Lattice

Importance Factors =

$$I_{Wind} := \begin{cases} 0.87 & \text{if } SC = 1 \\ 1.00 & \text{if } SC = 2 \end{cases}$$
 (Per Table 2-3 of TIA-222-G)

$$I_{Wind_w_lce} := \begin{bmatrix} 0 & \text{if } SC = 1 \\ 1.00 & \text{if } SC = 2 \\ 1.00 & \text{if } SC = 3 \end{bmatrix} = 1$$

$$l_{ice}$$
:= 0 if SC = 1 = 1.25
1.00 if SC = 2
1.25 if SC = 3

$$K_{iz} := \left(\frac{z_{Ant}}{33}\right)^{0.1} = 1.171$$

$$t_{iz} := 2.0 \cdot t_i \cdot I_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 2.928$$

Velocity Pressure Coefficient Antennas =

$$Kz_{Ant} := 2.01 \left(\left(\frac{z_{Ant}}{z_g} \right) \right)^{\frac{2}{\alpha}} = 1.13$$

Velocity Pressure w/o Ice Antennas =

$$qz_{Ant} := 0.00256 \cdot K_{d} \cdot Kz_{Ant} \cdot V^2 \cdot I_{Wind} = 29.743$$

Velocity Pressure with Ice Antennas =

$$qz_{ice.Ant} := 0.00256 \cdot K_{d} \cdot Kz_{Ant} \cdot V_{i}^{2} \cdot I_{Wind} = 7.903$$

 Centered on Solutions
 www.centekeng.com

 63-2 North Branford Road
 P: (203) 488-0580

 Branford, CT 06405
 F: (203) 488-8887

Subject:

TIA-222-G Loads

Berlin, CT

(User Input)

Location:

Rev. 1: 2/22/22

Prepared by: T.J.L. Checked by: C.F.C.

lbs

sf

lbs

Job No. 20143.15

Development of Wind & Ice Load on Antennas

Antenna Data:

Antenna Model = RFSAPXVAARR24-43

Antenna Shape = Flat

Anterna Height = L_{ant} := 95.9 in (User Input)

Antenna Width = W_{ant} := 24 in (User Input)

Antenna Thickness = $T_{ant} := 8.7$ in (User Input)

Antenna Weight = WT_{ant} := 153 lbs (User Input)

Number of Antennas = N_{ant} := 1 (User Input)

Antenna Aspect Ratio = $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.0$

Antenna Force Coefficient = Ca_{ant} = 1.27

Wind Load (without ice)

Surface Area for One Antenna = $SA_{ant}F := \frac{L_{ant}W_{ant}}{144} = 16$ sf

Total Antenna Wind Force = $F_{ant} := qz_{Ant} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ant} = 662$

Surface Area for One Antenna = $SA_{antS} := \frac{L_{ant}T_{ant}}{144} = 5.8$ sf

Total Antenna Wind Force = F_{ant} := qz_{Ant}·G_H·Ca_{ant}·K_a·SA_{antS} = 240 lbs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice = $SA_{ICEantF} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 21.1$

Total Antenna Wind Forcew/Ice = Fi_{ant} := qz_{ice.Ant}·G_H·Ca_{ant}·K_a·SA_{ICEantF} = 232

Surface Area for One Antenna w/ Ice = $SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 10.3$ sf

Total Antenna Wind Forcew/Ice = Fi_{ant} := qz_{ice.Ant}·G_H·Ca_{ant}·K_a·SA_{ICEantS} = 113 lbs

Gravity Load (without ice)

Weight of All Antennas=

Gravity Loads (ice only)

Volume of Each Antenna =

Volume of Ice on EachAntenna =

Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =

 $WT_{ant} \cdot N_{ant} = 153$

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2 \times 10^4$ cu in

 $V_{ice} \coloneqq \left(\mathsf{L}_{ant} + 2 \cdot \mathsf{t}_{iz} \right) \! \left(\mathsf{W}_{ant} + 2 \cdot \mathsf{t}_{iz} \right) \cdot \left(\mathsf{T}_{ant} + 2 \cdot \mathsf{t}_{iz} \right) - \mathsf{V}_{ant} = 2 \times 10^4 \qquad \qquad \mathsf{cu} \, \mathsf{in}$

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 784$ lbs

W_{ICEant}·N_{ant} = 784

 Centered on Solutions
 www.centekeng.com

 63-2 North Branford Road
 P: (203) 488-0580

 Branford, CT 06405
 F: (203) 488-8587

Subject:

TIA-222-G Loads

Location:

Prepared by: T.J.L. Checked by: C.F.C.

sf

lbs

Job No. 20143.15

Berlin, CT

(User Input)

Rev. 1: 2/22/22

Development of Wind & Ice Load on Antennas

Antenna Data:

Antenna Model = Ericsson AI R6419

Antenna Shape = Flat

Anterna Height = Lant := 33.1 in (User Input)

Antenna Width = W_{ant} := 16 in (User Input)

Antenna Thickness = T_{ant} := 9 in (User Input)

Antenna Weight = WT_{ant} := 41 lbs (User Input)

Number of Antennas = N_{ant} := 1 (User Input)

Antenna Aspect Rafo = $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 2.1$

Antenna Force Coefficient = Ca_{ant} = 1.2

Wind Load (without ice)

Surface Area for One Antenna = $SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 3.7$

Total Antenna Wind Force = Fant := qz_{Ant}·G_H·Ca_{ant}·K_a·SA_{antF} = 144

Surface Area for One Antenna = $SA_{antS} := \frac{L_{ant} T_{ant}}{144} = 2.1$ sf

Total Antenna Wind Force = F_{ant} := qz_{Ant}·G_H·Ca_{ant}·K_a·SA_{antS} = 81 lbs

Wind Load (with ice)

SurfaceAr ea for One Antenna w/ Ice = $SA_{ICEantF} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 5.9$

Total Antenna Wind Forcew/Ice = Fi_{ant} := qz_{ice.Ant} G_H·Ca_{ant}·K_a·SA_{ICEantF} = 62

Surface Area for One Antenna w/ Ice = $SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 4$ sf

 $WT_{ant} \cdot N_{ant} = 41$

Total Antenna Wind Forcew/Ice = Fi_{ant} := qz_{ice}.Ant G_H·Ca_{ant}·K_a·SA_{ICEantS} = 42 lbs

Gravity Load (without ice)

Weight of All Antennas=

Gravity Loads (ice only)

Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 4766$ cu in

 $\text{Volume of I ce on Each Antenna} = \\ V_{\text{ice}} \coloneqq \left(L_{\text{ant}} + 2 \cdot t_{\text{iz}} \right) \left(W_{\text{ant}} + 2 \cdot t_{\text{iz}} \right) \cdot \left(T_{\text{ant}} + 2 \cdot t_{\text{iz}} \right) - V_{\text{ant}} = 7881$

V:--

Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 255$ lbs

Weight of Ice on All Antennas = WICEant: Nant = 255

Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

TIA-222-G Loads

Location:

Berlin, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 20143.15

Rev. 1: 2/22/22

Development of Wind & Ice Load on RRUS

RRUS Data:

RRUS Model = Fricsson 4449

RRUS Shape = Flat (User Input)

RRUS Height = L_{RRUS} := 14.9 (User Input)

RRUS Width = W_{RRUS} := 13.2 (User Input)

RRUS Thickness = $T_{RRUS} := 10.4$ (User Input)

RRUS Weight= $WT_{RRUS} = 74$ lbs (User Input)

Number of RRUS's = (User Input) $N_{RRUS} = 1$

 $Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.1$ RRUS Aspect Ratio =

RRUS Force Coefficient = $Ca_{RRUS} = 1.2$

Wind Load (without ice)

Surface Area for One R RUS =

 $SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 1.4$

Total RRUS Wind Force =

F_{RRUS} := qz_{Ant}·G_H·Ca_{RRUS}·K_a·SA_{RRUSF} = 54

Surface Area for One R RUS =

 $SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.1$

Total RRUS Wind Force =

 $F_{RRUS} := qz_{Ant} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSS} = 42$

Wind Load (with ice)

Surface Area for One RRUS w/Ice =

 $SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.7$ sf

Total RRUS Wind Force w/ Ice =

Fi_{RRUS} := qz_{ice.Ant}·G_H·Ca_{RRUS}·K_a·SA_{ICERRUSF} = 29

Surface Area for One RRUS w/Ice =

 $SA_{ICERRUSS} \coloneqq \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.3$ sf

Total RRUS Wind Force w/ Ice =

Fire Price and GH. Carry Rays Ka. SAICERRUSS = 24

Gravity Load (without ice)

Weight of All RRUSs=

WT_{RRUS}·N_{RRUS} = 74

lbs

lbs

sf lbs

sf

lbs

lbs

Gravity Loads (ice only)

Volume of Each RRUS =

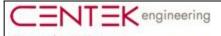
 $V_{RRUS} = L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 2045$

cu in

Volume of Ice on EachRRUS =

 $V_{ice} := (L_{RRUS} + 2 \cdot t_{iz})(W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 2 cu in$

Weight of Ice on Each RRUS =


 $W_{ICERRUS} = \frac{V_{ice}}{1728} \cdot Id = 142$

lbs

Weight of Ice on All RRUSs=

W_{ICERRUS}·N_{RRUS} = 142

lbs

Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

TIA-222-G Loads

Location:

Berlin, CT

Prepared by: T.J.L. Checked by: C.F.C.

sf lbs

lbs

cu in

Job No. 20143.15

Rev. 1: 2/22/22

Development of Wind & Ice Load on RRUS

RRUS Data:

RRUS Model = Ericsson 4460

Flat RRUS Shape = (User Input)

RRUS Height= L_{RRUS} := 19.6 (User Input)

RRUS Width= $W_{RRUS} = 15.7$ in (User Input)

RRUS Thickness = $T_{RRUS} = 12.1$ (User Input)

RRUS Weight= $WT_{RRUS} = 109$ lbs

Number of RRUS's= $N_{RRUS} := 1$ (User Input)

 $Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.2$ RRUS Aspect Ratio =

RRUS Force Coefficient = $Ca_{RRUS} = 1.2$

Wind Load (without ice)

 $SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.1$ Surface Area for One R RUS =

Total RRUS Wind Force = $F_{RRUS} := qz_{Ant} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 84$

 $SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.6$ Surface Area for One R RUS =

Total RRUS Wind Force = $F_{RRUS} := qz_{Ant} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSS} = 65$ lbs

Wind Load (with ice)

Surface Area for One RRUS w/Ice =

Total RRUS Wind Force w/ Ice =

Surface Area for One RRUS w/Ice =

Total RRUS Wind Force w/ Ice =

Gravity Load (without ice)

Weight of All RRUSs=

Gravity Loads (ice only)

Volume of Each RRUS =

Volume of Ice on EachRRUS =

Weight of Ice on Each RRUS =

Weight of Ice on All RRUSs=

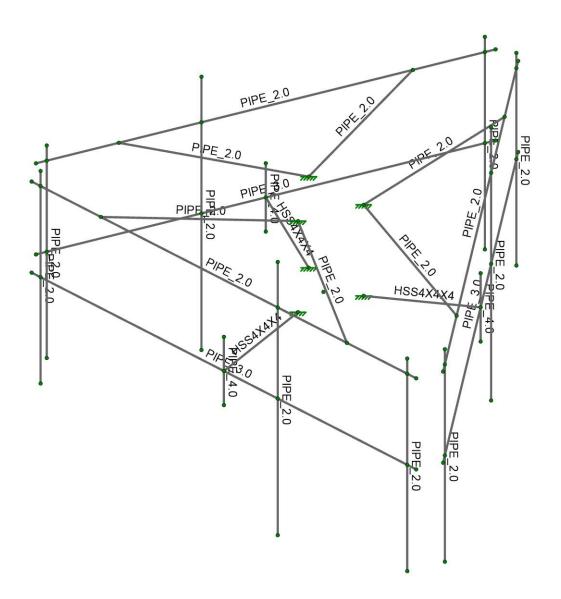
 $SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 3.8$ sf

Fi_{RRUS} := qz_{ice.Ant}·G_H·Ca_{RRUS}·K_a·SA_{ICERRUSF} = 40 lbs

 $SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 3.2$ sf

Fire Property of the Francisco of the Fr lbs

WT_{RRUS}·N_{RRUS} = 109


VRRUS := LRRUS·WRRUS·TRRUS = 3723

 $V_{ice} := (L_{RRUS} + 2 \cdot t_{iz})(W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 6128$ cu in

 $W_{ICERRUS} = \frac{V_{ice}}{1728} \cdot Id = 199$ lbs

lbs WICERRUS - NRRUS = 199

Envelope Only Solution

Centek	CTHA231A - Mount Analysis	SK-1
TJL		Feb 22, 2022
20143.15		CTHA231A_AMA.r3d

2/22/2022 3:09:14 PM Checked By:___

Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	N1	0	0	0	
2	N2	0	0	1.03125	
3	N3	0	0	4.03125	
4	N4	0	1.125	4.03125	
5	N5	0	-1.125	4.03125	
6	N6	6.25	0	4.03125	
7	N7 N8	-6.25	0	4.03125 4.03125	
9	N9	5.958333 -5.958333	0	4.03125	
10	N10	5.958333	-3.5	4.03125	
11	N11	-5.958333	-3.5	4.03125	
12	N12	5.958333	3.5	4.03125	
13	N13	-5.958333	3.5	4.03125	
14	N14	1.75	0	4.03125	
15	N15	1.75	-4.5	4.03125	
16	N16	1.75	4.5	4.03125	
17	N17	-0.893089	0	-0.515625	
18	N18	-3.491165	0	-2.015625	
19	N19	-3.491165	1.125	-2.015625	
20	N20	-3.491165	-1.125	-2.015625	
21	N21	-6.616165	0	3.397034	
22	N22	-0.366165	0	-7.428284	
23	N23	-6.470332	0	3.144443	
24	N24	-0.511998	0	-7.175693	
25 26	N25 N26	-6.470332 -0.511998	-3.5 -3.5	3.144443 -7.175693	
27	N27	-6.470332	3.5	3.144443	
28	N28	-0.511998	3.5	-7.175693	
29	N29	-4.366165	0	-0.500081	
30	N30	-4.366165	-4.5	-0.500081	
31	N31	-4.366165	4.5	-0.500081	
32	N32	0.893089	0	-0.515625	
33	N33	3.491165	0	-2.015625	
34	N34	3.491165	1.125	-2.015625	
35	N35	3.491165	-1.125	-2.015625	
36	N36	0.366165	0	-7.428284	
37	N37	6.616165	0	3.397034	
38	N38	0.511998	0	-7.175693	
39	N39	6.470332	0	3.144443	
40	N40 N41	0.511998	-3.5 -3.5	-7.175693 3.144443	
42	N41 N42	6.470332 0.511998	3.5	-7.175693	
43	N43	6.470332	3.5	3.144443	
44	N44	2.616165	0	-3.531169	
45	N45	2.616165	-4.5	-3.531169	
46	N46	2.616165	4.5	-3.531169	
47	N47	6.25	3	4.03125	
48	N48	-6.25	3	4.03125	
49	N49	5.958333	3	4.03125	
50	N50	-5.958333	3	4.03125	
51	N51	1.75	3	4.03125	
52	N52	-6.616165	3	3.397034	
53	N53	-0.366165	3	-7.428284	
54	N54	-6.470332	3	3.144443	
55	N55	-0.511998	3	-7.175693	
56	N56	-4.366165	3	-0.500081	
57	N57	0.366165	3	-7.428284	
58	N58	6.616165	3	3.397034	

2/22/2022 3:09:14 PM Checked By: __

Node Coordinates (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
59	N59	0.511998	3	-7.175693	
60	N60	6.470332	3	3.144443	
61	N61	2.616165	3	-3.531169	
62	N62	0	3	1.03125	
63	N63	4	3	4.03125	
64	N64	-4	3	4.03125	
65	N65	0.893089	3	-0.515625	
66	N66	1.491165	3	-5.479727	
67	N67	5.491165	3	1.448477	
68	N68	-0.893089	3	-0.515625	
69	N69	-5.491165	3	1.448477	
70	N70	-1.491165	3	-5.479727	

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N2	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N17	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N32	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N62	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
5	N65	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
6	N68	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
3	A992	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	0.3	0.65	0.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	0.3	0.65	0.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	0.3	0.65	0.49	35	1.5	58	1.2

Hot Rolled Steel Design Parameters

	Label	Shape	Length [ft]	Lb y-y [ft]	Lb z-z [ft]	Lcomp top [ft]	Lcomp bot [ft]	L-Torque [ft]	Function
1	M1	(E)Outrigger	3			Lbyy			Lateral
2	M2	Vert	2.25			Lbyy			Lateral
3	M3	(E) Horz	12.5	Segment	Segment	Segment	Segment	Segment	Lateral
4	M4	(E)Antenna Mast	7			Lbyy			Lateral
5	M5	(E)Antenna Mast	7			Lbyy			Lateral
6	M6	(P) Antenna Mast	9			Lbyy			Lateral
7	M7	(E)Outrigger	3			Lbyy			Lateral
8	M8	Vert	2.25			Lbyy			Lateral
9	M9	(E) Horz	12.5	Segment	Segment	Segment	Segment	Segment	Lateral
10	M10	(E)Antenna Mast	7			Lbyy			Lateral
11	M11	(E)Antenna Mast	7			Lbyy			Lateral
12	M12	(P) Antenna Mast	9			Lbyy			Lateral
13	M13	(E)Outrigger	3			Lbyy			Lateral
14	M14	Vert	2.25			Lbyy			Lateral
15	M15	(E) Horz	12.5	Segment	Segment	Segment	Segment	Segment	Lateral
16	M16	(E)Antenna Mast	7			Lbyy			Lateral
17	M17	(E)Antenna Mast	7			Lbyy			Lateral
18	M18	(P) Antenna Mast	9			Lbyy			Lateral
19	M19	(P) Stabilizer	12.5	Segment	Segment	Segment	Segment	Segment	Lateral
20	M20	(P) Stabilizer	12.5	Segment	Segment	Segment	Segment	Segment	Lateral
21	M21	(P) Stabilizer	12.5	Segment	Segment	Segment	Segment	Segment	Lateral
22	M22	(P) Stabilizer	5			Lbyy			Lateral
23	M23	(P) Stabilizer	5			Lbyy			Lateral
24	M24	(P) Stabilizer	5			Lbyy			Lateral

2/22/2022 3:09:14 PM Checked By:___

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length [ft]	Lb y-y [ft]	Lb z-z [ft]	Lcomp top [ft]	Lcomp bot [ft]	L-Torque [ft]	Function
25	M25	(P) Stabilizer	5			Lbyy			Lateral
26	M26	(P) Stabilizer	5			Lbyy			Lateral
27	M27	(P) Stabilizer	5			Lbyy			Lateral

Member Point Loads

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	M6	Υ	-0.077	1	Active
2	M12	Y	-0.077	1	Active
3	M18	Υ	-0.077	1	Active
4	M6	Υ	-0.077	7	Active
5	M12	Υ	-0.077	7	Active
6	M18	Υ	-0.077	7	Active
7	M4	Υ	-0.021	1	Active
8	M10	Υ	-0.021	1	Active
9	M16	Υ	-0.021	1	Active
10	M4	Υ	-0.021	4	Active
11	M10	Υ	-0.021	4	Active
12	M16	Υ	-0.021	4	Active
13	M6	Υ	-0.074	3	Active
14	M12	Υ	-0.074	3	Active
15	M18	Υ	-0.074	3	Active
16	M6	Y	-0.109	8	Active
17	M12	Y	-0.109	8	Active
18	M18	Υ	-0.109	8	Active

Member Point Loads

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	M6	Υ	-0.392	1	Active
2	M12	Υ	-0.392	1	Active
3	M18	Y	-0.392	1	Active
4	M6	Υ	-0.392	7	Active
5	M12	Υ	-0.392	7	Active
6	M18	Υ	-0.392	7	Active
7	M4	Υ	-0.128	1	Active
8	M10	Υ	-0.128	1	Active
9	M16	Υ	-0.128	1	Active
10	M4	Υ	-0.128	4	Active
11	M10	Υ	-0.128	4	Active
12	M16	Υ	-0.128	4	Active
13	M6	Υ	-0.142	3	Active
14	M12	Υ	-0.142	3	Active
15	M18	Υ	-0.142	3	Active
16	M6	Υ	-0.199	8	Active
17	M12	Υ	-0.199	8	Active
18	M18	Υ	-0.199	8	Active

Member Point Loads

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	M6	X	0.057	1	Active
2	M6	X	0.057	7	Active
3	M12	X	0.116	1	Active
4	M18	X	0.116	1	Active
5	M12	X	0.116	7	Active
6	M18	Х	0.116	7	Active
7	M4	X	0.021	1	Active
8	M4	X	0.021	4	Active
9	M10	X	0.031	1	Active

2/22/2022 3:09:14 PM Checked By:___

Member Point Loads (Continued)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s2/ft, k*s2*ft)]
10	M16	Х	0.031	1	Active
11	M10	X	0.031	4	Active
12	M16	X	0.031	4	Active
13	M6	X	0.024	3	Active
14	M6	X	0.033	8	Active
15	M12	X	0.04	8	Active
16	M18	X	0.04	8	Active

Member Point Loads

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	M6	X	0.12	1	Active
2	M6	X	0.12	7	Active
3	M12	Х	0.331	1	Active
4	M18	Χ	0.331	1	Active
5	M12	X	0.331	7	Active
6	M18	Χ	0.331	7	Active
7	M4	X	0.041	1	Active
8	M4	X	0.041	4	Active
9	M10	X	0.072	1	Active
10	M16	X	0.072	1	Active
11	M10	X	0.072	4	Active
12	M16	Χ	0.072	4	Active
13	M6	X	0.042	3	Active
14	M6	X	0.065	8	Active
15	M12	X	0.084	8	Active
16	M18	X	0.084	8	Active

Member Point Loads

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s2/ft, k*s2*ft)]				
1	M6	Z	0.116	1	Active				
2	M6	Z	0.116	7	Active				
3	M12	Z	0.057	1	Active				
4	M18	Z	0.057	1	Active				
5	M12	Z	0.057	7	Active				
6	M18	Z	0.057	7	Active				
7	M4	Z	0.031	1	Active				
8	M4	Z	0.031	4	Active				
9	M10	Z	0.021	1	Active				
10	M16	Z	0.021	1	Active				
11	M10	Z	0.021	4	Active				
12	M16	Z	0.021	4	Active				
13	M12	Z	0.024	3	Active				
14	M18	Z	0.024	3	Active				
15	M12	Z	0.033	8	Active				
16	M18	Z	0.033	8	Active				
17	M6	Z	0.04	8	Active				

Member Point Loads

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s2/ft, k*s2*ft)]
1	M6	Z	0.331	1	Active
2	M6	Z	0.331	7	Active
3	M12	Z	0.12	1	Active
4	M18	Z	0.12	1	Active
5	M12	Z	0.12	7	Active
6	M18	Z	0.12	7	Active
7	M4	Z	0.072	1	Active
8	M4	Z	0.072	4	Active

2/22/2022 3:09:14 PM Checked By:_

Member Point Loads (Continued)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s2/ft, k*s2*ft)]				
9	M10	Z	0.041	1	Active				
10	M16	Z	0.041	1	Active				
11	M10	Z	0.041	4	Active				
12	M16	Z	0.041	4	Active				
13	M12	Z	0.042	3	Active				
14	M18	Z	0.042	3	Active				
15	M12	Z	0.065	8	Active				
16	M18	Z	0.065	8	Active				
17	M6	Z	0.084	8	Active				

Member Distributed Loads

	Member Label	Direction	Start Magnitude [k/ft, F, ksf]	End Magnitude [k/ft, F, ksf]	Start Location [(ft, %)]	End Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	M4	Χ	0.002	0.002	0	%100	Active
2	M5	Χ	0.002	0.002	0	%100	Active
3	M6	Χ	0.002	0.002	0	%100	Active
4	M9	Χ	0.003	0.003	0	%100	Active
5	M15	Χ	0.003	0.003	0	%100	Active
6	M20	Χ	0.002	0.002	0	%100	Active
7	M21	Χ	0.002	0.002	0	%100	Active
8	M1	Χ	0.003	0.003	0	%100	Active
9	M2	Χ	0.003	0.003	0	%100	Active
10	M7	Χ	0.003	0.003	0	%100	Active
11	M8	Χ	0.003	0.003	0	%100	Active
12	M13	Χ	0.003	0.003	0	%100	Active
13	M14	Χ	0.003	0.003	0	%100	Active

Member Distributed Loads

	Member Label Direction Start Magnitude [k/ft, F, ksf] End Magnitude [k/ft, F, ksf] Start Location [(ft, %)] End Location [(ft, %)] Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]													
1	M4	Χ	0.007	0.007	0	%100	Active							
2	M5	Χ	0.007	0.007	0	%100	Active							
3	M6	X	0.008	0.008	0	%100	Active							
4	M9	X	0.008	800.0	0	%100	Active							
5	M15	Χ	0.008	0.008	0	%100	Active							
6	M20	Χ	0.007	0.007	0	%100	Active							
7	M21	Χ	0.007	0.007	0	%100	Active							
8	M1	Χ	0.011	0.011	0	%100	Active							
9	M2	Χ	0.012	0.012	0	%100	Active							
10	M7	Χ	0.011	0.011	0	%100	Active							
11	M8	Χ	0.012	0.012	0	%100	Active							
12	M13	Χ	0.011	0.011	0	%100	Active							
13	M14	Χ	0.012	0.012	0	%100	Active							

Member Distributed Loads

	Member Label	Direction	Start Magnitude [k/ft, F, ksf]	End Magnitude [k/ft, F, ksf]	Start Location [(ft, %)]	End Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	M3	Z	0.003	0.003	0	%100	Active
2	M9	Z	0.003	0.003	0	%100	Active
3	M11	Z	0.002	0.002	0	%100	Active
4	M12	Z	0.002	0.002	0	%100	Active
5	M15	Z	0.002	0.002	0	%100	Active
6	M16	Z	0.002	0.002	0	%100	Active
7	M17	Z	0.002	0.002	0	%100	Active
8	M18	Z	0.002	0.002	0	%100	Active
9	M19	Z	0.002	0.002	0	%100	Active
10	M20	Z	0.002	0.002	0	%100	Active
11	M21	Z	0.002	0.002	0	%100	Active
12	M2	Z	0.003	0.003	0	%100	Active
13	M7	Z	0.003	0.003	0	%100	Active
14	M8	Z	0.003	0.003	0	%100	Active

2/22/2022 3:09:14 PM Checked By:___

Member Distributed Loads (Continued)

	Member Label	Direction	Start Magnitude [k/ft, F, ksf]	End Magnitude [k/ft, F, ksf]	Start Location [(ft, %)]	End Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
14	M8	Z	0.003	0.003	0	%100	Active
15	M13	Z	0.003	0.003	0	%100	Active
16	M14	Z	0.003	0.003	0	%100	Active

Member Distributed Loads

	Member Label	Direction	Start Magnitude [k/ft, F, ksf]	End Magnitude [k/ft, F, ksf]	Start Location [(ft, %)]	End Location [(ft, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	M3	Z	0.009	0.009	0	%100	Active
2	M9	Ζ	0.009	0.009	0	%100	Active
3	M15	Z	0.007	0.007	0	%100	Active
4	M19	Ζ	0.007	0.007	0	%100	Active
5	M20	Z	0.007	0.007	0	%100	Active
6	M21	Z	0.007	0.007	0	%100	Active
7	M16	Z	0.007	0.007	0	%100	Active
8	M17	Ζ	0.007	0.007	0	%100	Active
9	M18	Z	0.003	0.003	0	%100	Active
10	M11	Ζ	0.007	0.007	0	%100	Active
11	M12	Z	0.003	0.003	0	%100	Active
12	M2	Ζ	0.012	0.012	0	%100	Active
13	M7	Ζ	0.012	0.012	0	%100	Active
14	M8	Z	0.012	0.012	0	%100	Active
15	M13	Z	0.012	0.012	0	%100	Active
16	M14	Z	0.012	0.012	0	%100	Active

Member Area Loads

No Data to Print...

Load Combinations

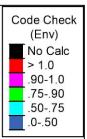
	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
	1.2D + 1.6W (X-direction)	Yes	Υ	1	1.2	2	1.2	5	1.6		
[0.9D + 1.6W (X-direction)	Yes	Υ	1	0.9	2	0.9	5	1.6		
;	1.2D + 1.0Di + 1.0Wi (X-direction)	Yes	Υ	1	1.2	2	1.2	3	1	4	1
ſ	1.2D + 1.6W (Z-direction)	Yes	Υ	1	1.2	2	1.2	7	1.6		
;	0.9D + 1.6W (Z-direction)	Yes	Υ	1	0.9	2	0.9	7	1.6		
	1.2D + 1.0Di + 1.0Wi (Z-direction)	Yes	Υ	1	1.2	2	1.2	3	1	6	1

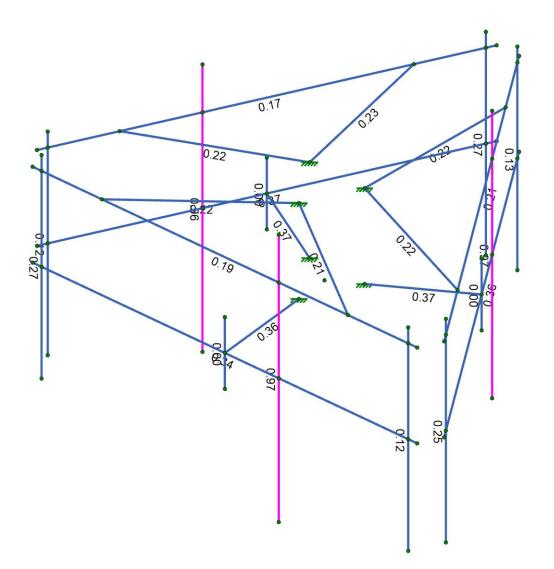
Envelope Node Reactions

Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC	
1	N2	max	0.087	6	1.947	6	0.249	3	-0.393	5	0.6	4	0.645	6
2		min	-0.9	2	0.543	2	-1.121	5	-5.227	3	-2.647	2	0.004	2
3	N17	max	0.013	5	1.942	6	0.135	1	2.149	3	1.856	1	-1.58	5
4		min	-1.406	1	0.493	2	-0.98	5	0.767	5	-2.879	5	-5.019	3
5	N32	max	0.148	6	1.943	3	-0.201	2	3.22	6	2.801	1	4.261	6
6		min	-1.249	2	0.525	5	-1.109	4	0.536	2	0.638	3	0.27	2
7	N62	max	-0.045	5	0.256	3	-0.059	2	-0.057	5	0.127	5	0.009	4
8		min	-0.162	1	0.047	5	-0.69	4	-0.493	3	-0.426	1	-0.024	2
9	N65	max	0.058	5	0.263	6	0.23	3	0.261	6	0.507	2	0.439	6
10		min	-0.576	1	0.061	2	-0.157	5	0.043	2	0.055	3	0.076	2
11	N68	max	0.24	6	0.268	3	0.014	3	0.255	3	0.219	2	-0.152	5
12		min	-0.433	2	0.076	5	-0.24	4	0.05	5	-0.574	4	-0.454	3
13	Totals:	max	0	5	6.598	3	0	1						
14		min	-4.671	1	1.841	5	-4.247	5						

Envelope AISC 14th (360-10): LRFD Steel Code Checks

	Membe	r Shape (Code Check	(Loc[ft]	LC	Shear Check	Loc[ft]	Dir	LC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Eqn
1	M1	HSS4X4X4	0.364	0	3	0.098	0	У	6	134.361	139.518	16.181	16.181	1.797	H1-1b
2	M2	PIPE_4.0	0.001	1.125	1	0	1.125		1	91.742	93.24	10.631	10.631	1.562	H1-1b




2/22/2022 3:09:14 PM Checked By:___

Envelope AISC 14th (360-10): LRFD Steel Code Checks (Continued)

ı	Membe	r Shape C	Code Checl	kLoc[ft]	LC	Shear Check	<pre><loc[ft]< pre=""></loc[ft]<></pre>	Dir	LC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-	ft] Cb Eqn
3	M3	PIPE_3.0	0.337	6.25	6	0.288	6.25		4	53.919	65.205	5.749	5.749	2.745H1-1b
4	M4	PIPE_2.0	0.27	3.5	3	0.062	3.5		3	17.855	32.13	1.872	1.872	1.831H1-1b
5	M5	PIPE_2.0	0.116	0.51	6	0.034	3.5		5	17.855	32.13	1.872	1.872	1.885H1-1b
6	M6	PIPE_2.0	0.966	4.5	4	0.152	4.5		4	12.144	32.13	1.872	1.872	1.859H1-1b
7	M7	HSS4X4X4	0.373	0	6	0.098	0	у	3	134.361	139.518	16.181	16.181	1.773H1-1b
8	M8	PIPE_4.0	0.001	1.125	4	0	1.125		5	91.742	93.24	10.631	10.631	1.316H1-1b
9	M9	PIPE_3.0	0.368	6.25	3	0.2	6.25		2	53.919	65.205	5.749	5.749	2.733H1-1b
10	M10	PIPE_2.0	0.266	3.5	6	0.062	3.5		6	17.855	32.13	1.872	1.872	1.875H1-1b
11	M11	PIPE_2.0	0.124	0.51	1	0.051	3.5		1	17.855	32.13	1.872	1.872	1.603H1-1b
12	M12	PIPE_2.0	0.961	4.5	1	0.134	4.5		2	12.144	32.13	1.872	1.872	1.739H1-1b
13	M13	HSS4X4X4	0.373	0	6	0.1	0	У	3	134.361	139.518	16.181	16.181	1.774H1-1b
14	M14	PIPE_4.0	0.001	1.125	1	0	1.125		1	91.742	93.24	10.631	10.631	1.563H1-1b
15	M15	PIPE_3.0	0.362	6.25	6	0.253	6.25		1	53.919	65.205	5.749	5.749	2.739H1-1b
16	M16	PIPE_2.0	0.251	3.5	3	0.058	0.51		6	17.855	32.13	1.872	1.872	1.806H1-1b
17	M17	PIPE_2.0	0.13	0.51	1	0.039	3.5		6	17.855	32.13	1.872	1.872	1.477H1-1b
18	M18	PIPE_2.0	0.967	4.5	1	0.144	4.5		1	12.144	32.13	1.872	1.872	1.734H1-1b
19	M19	PIPE_2.0	0.194	8.073	4	0.131	10.156		5	30.238	32.13	1.872	1.872	1.577H1-1b
20	M20	PIPE_2.0	0.172	8.073	1	0.133	10.156		1	30.238	32.13	1.872	1.872	1.31 H1-1b
21	M21	PIPE_2.0	0.206	8.073	1	0.112	10.156		2	30.238	32.13	1.872	1.872	1.549H1-1b
22	M22	PIPE_2.0	0.224	5	3	0.031	5		3	23.809	32.13	1.872	1.872	2.224H1-1b
23	M23	PIPE_2.0	0.207	0	3	0.015	0		6	23.809	32.13	1.872	1.872	2.226H1-1b
24	M24	PIPE_2.0	0.221	5	6	0.034	5		6	23.809	32.13	1.872	1.872	2.225H1-1b
25	M25	PIPE_2.0	0.216	0	6	0.021	0		1	23.809	32.13	1.872	1.872	2.219H1-1b
26	M26	PIPE_2.0	0.225	5	3	0.035	5		3	23.809	32.13	1.872	1.872	2.224H1-1b
27	M27	PIPE_2.0	0.217	0	3	0.015	0		6	23.809	32.13	1.872	1.872	2.221H1-1b

Member Code Checks Displayed (Enveloped) Envelope Only Solution

Centek	CTHA231A - Mount Analysis	SK-2
TJL		Feb 22, 2022
20143.15		CTHA231A_AMA.r3d

Centered on Solutions™

Structural Analysis Report

Equipment Platform

Proposed T-Mobile Equipment Upgrade-Anchor

Site Ref: CT11005D

1657 Berlin Turnpike Berlin, CT

CENTEK Project No. 20143.15

Date: February 23, 2022

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

Structural Analysis – Equipment Platform T-Mobile Equipment Upgrade – CTHA231A-Anchor Berlin, CT February 23, 2022

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANTENNA AND EQUIPMENT INSTALLATION SUMMARY
- ANALYSIS
- DESIGN LOADING
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- LOAD CALCULATION
- RISA3D OUTPUT REPORT- EQUIPMENT PLATFORM

SECTION 4 - REFERENCE MATERIAL

RF DATA SHEET

TABLE OF CONTENTS TOC-1

Structural Analysis – Equipment Platform T-Mobile Equipment Upgrade – CTHA231A-Anchor Berlin, CT February 23, 2022

Introduction

The purpose of this structural analysis report (SAR) is to summarize the results, of the impacted structural components, by the modified equipment upgrade proposed by T-Mobile on the existing equipment platform located in Berlin, CT.

The T-Mobile equipment cabinets are mounted on a steel dunnage platform at the exterior of the building. The T-Mobile Equipment shares the same platform as equipment by others, along with a platform above by others.

The existing platform structure geometry and member size information were obtained from previous CDs/structural report and a site visit performed by Centek personnel on February 16, 2022.

The existing platform consists of steel beams and (4) steel columns bearing directly on concrete footings.

Primary Assumptions Used in the Analysis

- The host structure's theoretical capacity not including any assessment of the condition of the host structure.
- The existing elevated steel platform carries the horizontal and vertical loads due to the weight of equipment, and wind and transfers into host structure.
- Proposed reinforcement and support steel will be properly installed and maintained.
- Structure is in plumb condition.
- Loading for equipment and enclosure as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as observed during roof framing mapping.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.

Structural Analysis – Equipment Platform T-Mobile Equipment Upgrade – CTHA231A-Anchor Berlin, CT February 23, 2022

Equipment Summary

Location	Appurtenance	Elevation (AGL)	Mount Type		
	(1) Ericsson B160	1883 lbs.	-		
Equipment	(1) Ericsson 6160	1200 lbs.	-	Steel Platform	
Platform	Existing equipment by others (assumed)	3000 lbs.	-	mounted on steel columns	
	Platform by others above	10,000 per column	-		

Equipment – Indicates equipment to be installed.

Equipment – Indicates equipment to be removed.

Structural Analysis – Equipment Platform T-Mobile Equipment Upgrade – CTHA231A-Anchor Berlin, CT February 23, 2022

Analysis

The antenna frames and equipment platform were analyzed using a comprehensive computer program titled Risa3D. The program analyzes the equipment platform and antenna mounts considering the worst case code prescribed loading condition. The structures were considered to be loaded by concentric forces, and the model assumes that the members are subjected to bending, axial, and shear forces.

Design Loading

Loading was determined per the requirements of the 2015 International Building Code amended by the 2018 CSBC and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed:	V _{ult} = 125 mph	Appendix N of the 2018 CT State Building Code	
Risk Category:	II	2015 IBC; Table 1604.05	
Exposure Category:	Surface Roughness B	ASCE 7-10; Section 26.7.2	
Ground Snow Load	30 psf	Appendix N of the 2018 CT State Building Code	
Dead Load	Equipment and framing self- weight	Identified within SAR design calculations	
Live Load	20 psf	ASCE 7-10; Table 4-1 "Roofs – All Other Construction"	

Reference Standards

2015 International Building Code:

- 1. ACI 318-14, Building Code Requirements for Structural Concrete.
- 2. ACI 530-13, Building Code Requirements for Masonry Structures.
- 3. AISC 360-10, Specification for Structural Steel Buildings
- 4. AWS D1.1 00, Structural Welding Code Steel.
- 5. AF&PA-12, Span Tables for Joists and Rafters.
- 6. ANSI/AWC NDS-2015, National Design Specifications (NDS) for Wood Construction with 2012 Supplement.

Structural Analysis – Equipment Platform T-Mobile Equipment Upgrade – CTHA231A-Anchor Berlin, CT February 23, 2022

Results

Member stresses and design reactions were calculated utilizing the structural analysis software RISA 3D.

The following table provides a summary of structural components impacted by the proposed upgrade along with associated member percent capacity and PASS/FAIL result:

Location	Component	Capacity (%)	Result
	W12X26 Platform Member	41%	PASS
Equipment Platform	W12X16 Platform Member	72%	PASS
	W8X48 Platform Column	34%	PASS

Conclusion

This analysis shows that the subject equipment platform <u>has sufficient capacity</u> to support the proposed modified equipment configuration.

The analysis is based, in part, on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer Luke A. Amiot Engineer

Prepared by:

Structural Analysis – Equipment Platform T-Mobile Equipment Upgrade – CTHA231A-Anchor Berlin, CT February 23, 2022

Standard Conditions for Furnishing of Professional Engineering Services on Existing Structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
 meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
 loads or other relevant parameters are to be different from the minimum values
 recommended by the codes, the client shall specify the exact requirement. In the
 absence of information to the contrary, all work will be performed in accordance with the
 latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance
 with generally accepted engineering principles and practices. Centek Engineering, Inc.
 is not responsible for the conclusions, opinions and recommendations made by others
 based on the information we supply.

Subject:

Wind Load on Equipment per ASCE 7-10

Location:

Berlin, CT

Rev. 0: 02/17/22

Prepared by: L.A.A.; Checked by: T.J.L. Job No. 20143.15

<u>Design Wind Load on Other</u> <u>Structures:</u>

(Based on IBC 2015, CSBC 2018 and ASCE 7-10)

Wind Speed =

 $V\coloneqq 125$

mph

ft

(User Input) (CSBC Appendix-N)

Risk Category =

 $BC\coloneqq II$

(User Input)

(IBC Table 1604.5)

Exposure Category =

 $Exp \coloneqq C$ $Z \coloneqq 12$

(User Input)
(User Input)

Height Above Grade =

Structure Type =

 $Structuretype \coloneqq Square_Chimney$

Structure Height =

 $Height \coloneqq 7$

(User Input) (User Input)

Horizontal Dimension of Structure =

 $Width \coloneqq 4$

(User Input)

Terrain Exposure Constants:

Nominal Height of the Atmospheric Boundary Layer =

$$zg \coloneqq \begin{vmatrix} \text{if } Exp = B \\ 1200 \\ \text{if } Exp = C \\ 900 \\ \text{if } Exp = D \end{vmatrix} = 900$$

700

(Table 26.9-1)

3-Sec Gust Speed Power Law Exponent =

$$\alpha \coloneqq \left| \begin{array}{c} \text{if } Exp = B \\ \\ \\ \\ \\ \\ \end{array} \right| = 9.5$$

$$\text{if } Exp = C \\ \\ \\ \\ \\ \\ \\ \end{array} \right| = 9.5$$

$$\text{if } Exp = D \\ \\ \\ \\ \\ \\ \end{array} \right| 11.5$$

(Table 26.9-1)

Integral Length Scale Factor =

$$l \coloneqq \begin{vmatrix} \text{if } Exp = B \\ 320 \\ \text{if } Exp = C \\ 500 \\ \text{if } Exp = D \\ 650 \end{vmatrix} = 500$$

(Table 26.9-1)

Integral Length Scale Power Law Exponent =

$$E := \left\| \begin{array}{c} \text{if } Exp = B \\ \left\| \frac{1}{3} \right\| \\ \text{if } Exp = C \\ \left\| \frac{1}{5} \right\| \\ \text{if } Exp = D \\ \left\| \frac{1}{8} \right\| \end{array} \right\|$$
 (Table 26.9-1)

Turbulence Intensity Factor =

$$c := \left| \begin{array}{c} \text{if } Exp = B \\ \left\| \begin{array}{c} 0.3 \\ 0.3 \\ \text{if } Exp = C \\ \left\| \begin{array}{c} 0.2 \\ 0.2 \\ \text{if } Exp = D \\ \left\| \begin{array}{c} 0.15 \\ \end{array} \right. \end{array} \right|$$

(Table 26.9-1)

Subject:

ect: Wind Load on Equipment per ASCE 7-10

Location:

Berlin, CT

Rev. 0: 02/17/22

Prepared by: L.A.A.; Checked by: T.J.L. Job No. 20143.15

Exposure Constant =
$$Z_{min} \coloneqq \left\| \begin{array}{c} \text{if } Exp = B \\ \parallel 30 \\ \text{if } Exp = C \\ \parallel 15 \\ \text{if } Exp = D \\ \parallel 7 \end{array} \right\| = 15 \tag{Table 26.9-1}$$

Exposure Coefficient =
$$K_z := \left\| \begin{array}{c} \| & 15 \le Z \le zg \\ & \left\| \begin{array}{c} 15 \le Z \le zg \\ 2.01 \cdot \left(\frac{Z}{zg}\right)^{\left(\frac{2}{\alpha}\right)} \end{array} \right\| = 0.85$$
 (Table 29.3-1)

Topographic Factor = $K_{zt} = 1$ (Eq. 26.8-2)

Wind Directionality Factor = $K_d = 0.9$ (Table 26.6-1)

Velocity Pressure = $q_z = 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 = 30.56$ (Eq. 29.3-1)

Peak Factor for Background Response = $g_Q = 3.4$ (Sec 26.9.4)

Peak Factor for Wind Response = $g_v = 3.4$ (Sec 26.9.4)

Equivalent Height of Structure =
$$z\coloneqq \left\|\begin{array}{l} \text{if } Z_{min}>0.6 \cdot Height \\ \left\|\begin{array}{l} Z_{min} \\ \text{else} \\ \end{array}\right\| = 15 \qquad \text{(Sec 26.9.4)}$$

Intensity of Turbulence =
$$I_z = c \cdot \left(\frac{33}{z}\right)^{\left(\frac{1}{6}\right)} = 0.228$$
 (Eq. 26.9-7)

Integral Length Scale of Turbulence = $L_Z = l \cdot \left(\frac{z}{33}\right)^E = 427.057$ (Eq. 26.9-9)

Background Response Factor =
$$Q \coloneqq \sqrt{\frac{1}{1 + 0.63 \cdot \left(\frac{Width + Height}{L_Z}\right)^{0.63}}} = 0.97 \text{ (Eq. 26.9-8)}$$

Gust Response Factor = $G \coloneqq 0.925 \cdot \left(\frac{\left(1 + 1.7 \cdot g_Q \cdot I_z \cdot Q\right)}{1 + 1.7 \cdot g_v \cdot I_z} \right) = 0.909 \tag{Eq. 26.9-6}$

Force Coefficient = $GC_f := 1.9$ (Section 29.5-1)

Wind Force = $F := q_z \cdot G \cdot C_f = 36$ psf

Subject:

Location:

Wind Load on Equipment per ASCE 7-10

Berlin, CT

Prepared by: L.A.A.; Checked by: T.J.L. Job No. 20143.15

Development of Wind on Equipment

Equipment Data:

Rev. 0: 02/17/22

Equipment Model = Ericsson B160 Battery Cabinet

Equipment Shape = Flat (User Input)

Equipment Height = in $L_{Eq} \coloneqq 63$ (User Input)

Equipment Width = $W_{Eq} = 26$ in (User Input)

Equipment Thickness = (User Input) $T_{Eq} \coloneqq 26$ in

Equipment Weight = $WT_{Eq} \coloneqq 1883$ lbs (User Input)

Equipment Bearing Points = (User Input) $N_{Bp}\coloneqq 4$

Number of Equipment = $N_{Eq} \coloneqq 1$ (User Input)

Gravity Load (without ice)

Weight of All Equipments =

Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Wind Load on Equipment per ASCE 7-10

Berlin, CT

Prepared by: L.A.A.; Checked by: T.J.L. Job No. 20143.15

Development of Wind on Equipment

Equipment Data:

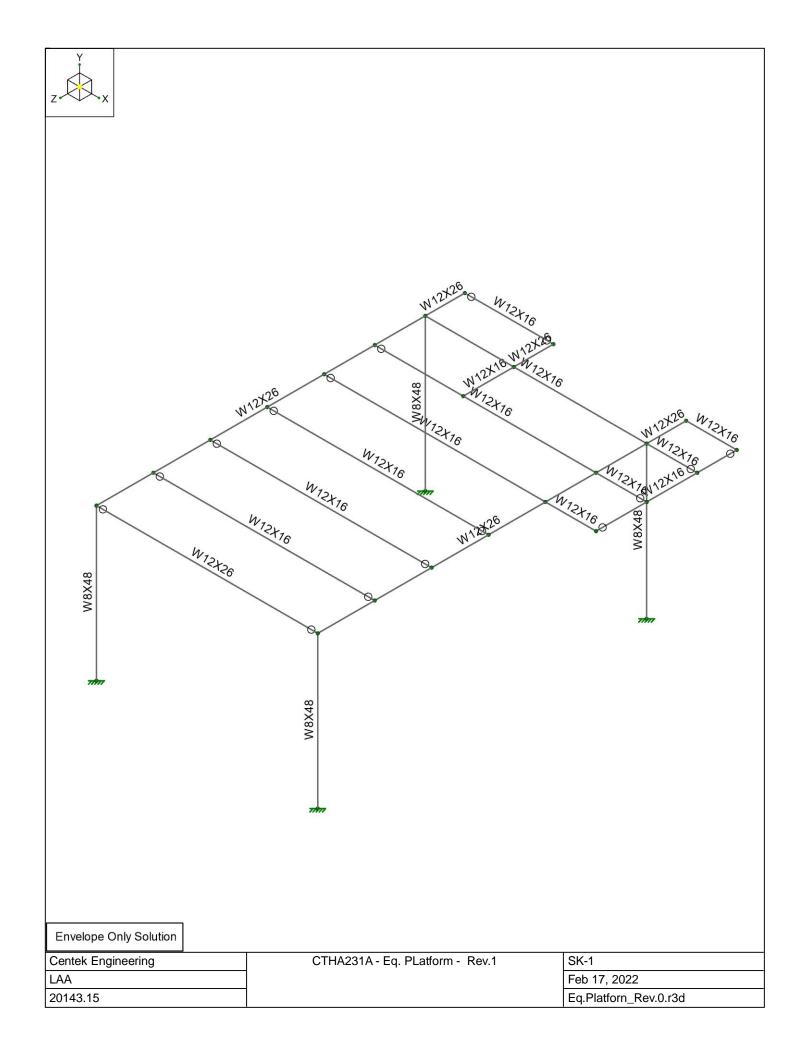
Rev. 0: 02/17/22

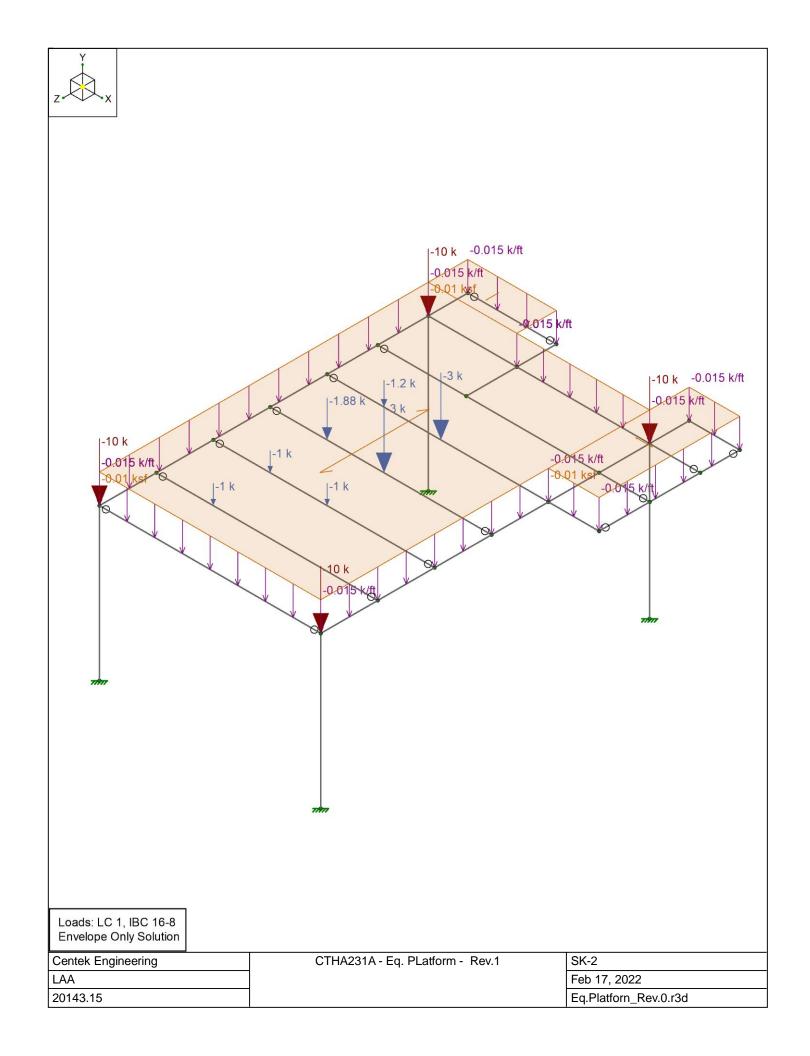
Equipment Model = Ericsson 6160 Cabinet

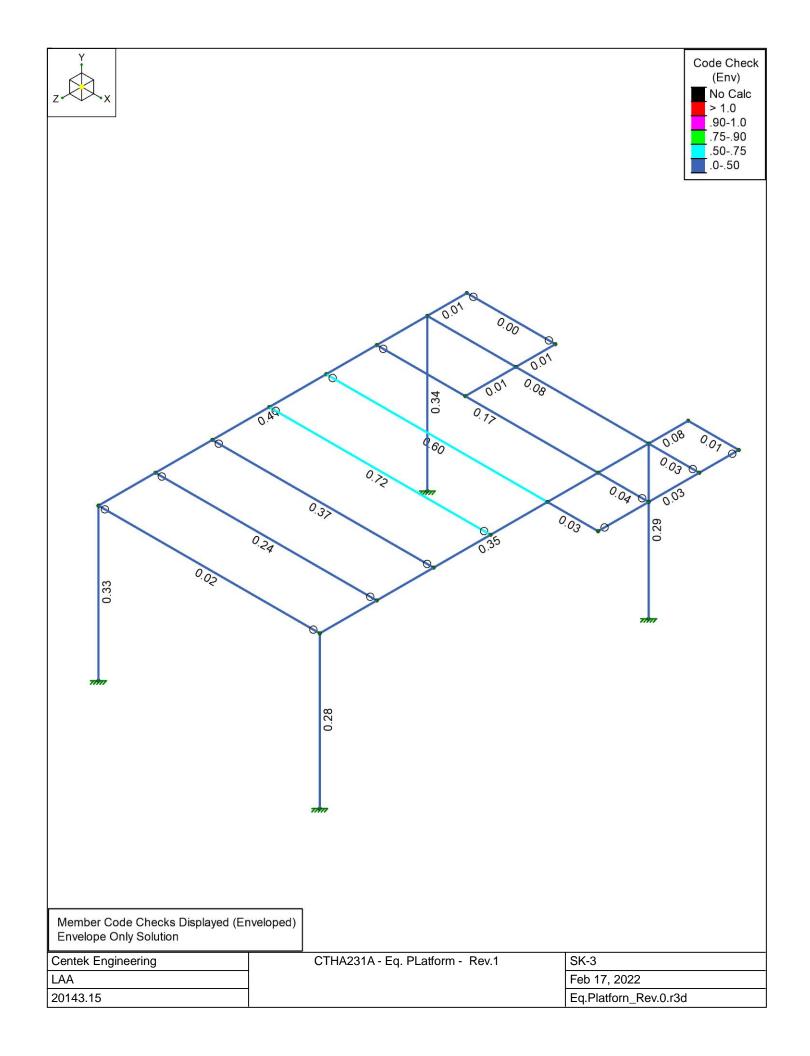
Equipment Shape = Flat (User Input) Equipment Height = $L_{Eq} \coloneqq 63$ in (User Input)

(User Input) Equipment Width = $W_{Eq} \coloneqq 26$ in

Equipment Thickness = $T_{Eq} \coloneqq 26$ in (User Input)


Equipment Weight = $WT_{Eq} \coloneqq 1200$ lbs (User Input)


Equipment Bearing Points = $N_{Bp} := 4$ (User Input)


Number of Equipment = (User Input) $N_{Eq}\coloneqq 1$

Gravity Load (without ice)

Weight of All Equipments = lbs

2/17/2022 3:41:43 PM

Checked By: TJL

Node Coordinates

	Label	X [in]	Y [in]	Z [in]	Detach From Diaphragm
1	N1	0	0	0	
2	N2	140	0	0	
3	N3	0	0	32	
4	N4	0	0	64	
5	N5	0	0	100	
6	N6	140	0	100	
7	N7	140	0	64	
8	N8	140	0	32	
9	N9	140	0	136	
10	N10	0	0	136	
11	N11	140	0	172	
12	N12	0	0	172	
13	N13	140	0	208	
14	N14	0	0	208	
15	N15	172	0	0	
16	N16	172	0	64	
17	N17	172	0	32	
18	N18	0	0	-25	
19	N19	140	0	-25	
20	N20	172	0	-25	
21	N21	56	0	0	
22	N22	56	0	-25	
23	N23	0	-96	0	
24	N24	140	-96	0	
25	N25	140	-96	208	
26	N26	0	-96	208	
27	N27	56	0	32	

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N24	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N23	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N26	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e ⁵ °F ⁻¹]	Density [k/ft³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.4	65	1.3

Hot Rolled Steel Design Parameters

	Label	Shape	Length [in]	Lcomp top [in]	Function
1	M1	W8X48	96	Lbyy	Lateral
2	M2	W8X48	96	Lbyy	Lateral
3	M3	W8X48	96	Lbyy	Lateral
4	M4	W8X48	96	Lbyy	Lateral
5	M5	W12X26	208	Lbyy	Lateral
6	M6	W12X26	25	Lbyy	Lateral
7	M7	W12X26	208	Lbyy	Lateral
8	M8	W12X26	25	Lbyy	Lateral
9	M9	W12X26	140	Lbyy	Lateral
10	M10	W12X16	140	Lbyy	Lateral

2/17/2022 3:41:43 PM

Checked By: TJL

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length [in]	Lcomp top [in]	Function
11	M11	W12X16	140	Lbyy	Lateral
12	M12	W12X16	140	Lbyy	Lateral
13	M13	W12X16	140	Lbyy	Lateral
14	M14	W12X16	140	Lbyy	Lateral
15	M15	W12X16	140	Lbyy	Lateral
16	M16	W12X16	32	Lbyy	Lateral
17	M17	W12X16	32	Lbyy	Lateral
18	M18	W12X16	32	Lbyy	Lateral
19	M19	W12X16	32	Lbyy	Lateral
20	M20	W12X16	89	Lbyy	Lateral
21	M21	W12X26	25	Lbyy	Lateral
22	M22	W12X16	56	Lbyy	Lateral
23	M23	W12X16	32	Lbyy	Lateral

Member Point Loads

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]
1	M13	Υ	-1.2	36	Active
2	M12	Υ	-1.88	36	Active
3	M13	Υ	-3	72	Active
4	M12	Υ	-3	72	Active
5	M11	Υ	-1	72	Active
6	M11	Υ	-1	36	Active
7	M10	Y	-1	36	Active

Member Distributed Loads

1	Member Label Direction Start Magnitude [k/ft, F, ksf] End Magnitude [k/ft, F, ksf] Start Location [(in, %)] End Location [(in, %)] Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]									
1	M5	Υ	-0.015	-0.015	0	%100	Active			
2	M9	Υ	-0.015	-0.015	0	%100	Active			
3	M7	Υ	-0.015	-0.015	0	144	Active			
4	M16	Υ	-0.015	-0.015	0	%100	Active			
5	M20	Υ	-0.015	-0.015	0	%100	Active			
6	M19	Υ	-0.015	-0.015	0	%100	Active			
7	M22	Υ	-0.015	-0.015	0	%100	Active			
8	M6	Υ	-0.015	-0.015	0	%100	Active			
9	M21	Υ	-0.015	-0.015	0	%100	Active			
10	M8	Υ	-0.015	-0.015	0	%100	Active			
11	M15	Υ	-0.015	-0.015	56	140	Active			

Member Distributed Loads

1	Member Label Direction Start Magnitude [k/ft, F, ksf] End Magnitude [k/ft, F, ksf] Start Location [(in, %)] End Location [(in, %)] Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]									
1	M9	Υ	-0.015	-0.015	0	140	Active			
2	M10	Υ	-0.03	-0.03	7.105e-15	140	Active			
3	M11	Υ	-0.03	-0.03	1.243e-14	140	Active			
4	M12	Υ	-0.03	-0.03	7.105e-15	140	Active			
5	M13	Υ	-0.02	-0.031	0	28	Active			
6	M13	Υ	-0.031	-0.028	28	56	Active			
7	M13	Υ	-0.028	-0.028	56	84	Active			
8	M13	Υ	-0.028	-0.031	84	112	Active			
9	M13	Υ	-0.031	-0.02	112	140	Active			
10	M14	Υ	-0.026	-0.026	0	28	Active			
11	M14	Υ	-0.026	-0.029	28	56	Active			
12	M14	Υ	-0.029	-0.029	56	84	Active			
13	M14	Υ	-0.029	-0.026	84	112	Active			
14	M14	Υ	-0.026	-0.026	112	140	Active			
15	M15	Υ	-0.013	-0.013	7.994e-15	140	Active			
16	M7	Υ	-0.013	-0.013	144	208	Active			
17	M8	Υ	-0.013	-0.013	0	25	Active			

2/17/2022 3:41:43 PM

Checked By: TJL

Member Distributed Loads (Continued)

	Member Label Direction Start Magnitude [k/ft, F, ksf] End Magnitude [k/ft, F, ksf] Start Location [(in, %)] End Location [(in, %)] Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]										
18	M20	Υ	-0.015	-0.015	0	29.667	Active				
19	M20	Υ	-0.015	-0.013	29.667	59.333	Active				
20	M20	Υ	-0.013	-0.01	59.333	89	Active				
21	M15	Υ	-0.01	-0.01	0	56	Active				
22	M22	Y	-0.01	-0.01	0	56	Active				

Member Distributed Loads

N	Member Label Direction Start Magnitude [k/ft, F, ksf] End Magnitude [k/ft, F, ksf] Start Location [(in, %)] End Location [(in, %)] Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]											
1	M9	Υ	-0.03	-0.03	0	140	Active					
2	M10	Υ	-0.06	-0.06	7.105e-15	140	Active					
3	M11	Υ	-0.06	-0.06	1.243e-14	140	Active					
4	M12	Υ	-0.06	-0.06	7.105e-15	140	Active					
5	M13	Υ	-0.039	-0.062	0	28	Active					
6	M13	Υ	-0.062	-0.057	28	56	Active					
7	M13	Υ	-0.057	-0.057	56	84	Active					
8	M13	Υ	-0.057	-0.062	84	112	Active					
9	M13	Υ	-0.062	-0.039	112	140	Active					
10	M14	Υ	-0.052	-0.052	0	28	Active					
11	M14	Υ	-0.052	-0.059	28	56	Active					
12	M14	Υ	-0.059	-0.059	56	84	Active					
13	M14	Υ	-0.059	-0.052	84	112	Active					
14	M14	Υ	-0.052	-0.052	112	140	Active					
15	M15	Υ	-0.027	-0.027	7.994e-15	140	Active					
16	M15	Υ	-0.021	-0.021	0	56	Active					
17	M22	Υ	-0.021	-0.021	0	56	Active					
18	M16	Υ	-0.027	-0.027	1.776e-15	32	Active					
19	M17	Υ	-0.053	-0.053	1.776e-15	32	Active					
20	M18	Υ	-0.047	-0.047	0	32	Active					
21	M19	Υ	-0.021	-0.021	0	32	Active					

Member Distributed Loads

	Member Label Direction Start Magnitude [k/ft, F, ksf] End Magnitude [k/ft, F, ksf] Start Location [(in, %)] End Location [(in, %)] Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]											
1	M9	Υ	-0.045	-0.045	0	140	Active					
2	M10	Υ	-0.09	-0.09	7.105e-15	140	Active					
3	M11	Υ	-0.09	-0.09	1.243e-14	140	Active					
4	M12	Υ	-0.09	-0.09	7.105e-15	140	Active					
5	M13	Υ	-0.059	-0.093	0	28	Active					
6	M13	Υ	-0.093	-0.085	28	56	Active					
7	M13	Υ	-0.085	-0.085	56	84	Active					
8	M13	Υ	-0.085	-0.093	84	112	Active					
9	M13	Υ	-0.093	-0.059	112	140	Active					
10	M14	Υ	-0.078	-0.078	0	28	Active					
11	M14	Υ	-0.078	-0.088	28	56	Active					
12	M14	Υ	-0.088	-0.088	56	84	Active					
13	M14	Υ	-0.088	-0.078	84	112	Active					
14	M14	Υ	-0.078	-0.078	112	140	Active					
15	M15	Υ	-0.04	-0.04	7.994e-15	140	Active					
16	M15	Υ	-0.031	-0.031	0	56	Active					
17	M22	Υ	-0.031	-0.031	0	56	Active					
18	M16	Υ	-0.04	-0.04	1.776e-15	32	Active					
19	M17	Υ	-0.08	-0.08	1.776e-15	32	Active					
20	M18	Υ	-0.071	-0.071	0	32	Active					
21	M19	Υ	-0.031	-0.031	0	32	Active					

2/17/2022 3:41:43 PM Checked By: TJL

Member Area Loads

	Node A	Node B	Node C	Node D	Direction	Load Direction	Magnitude [ksf]	Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]
1	N14	N1	N2	N13	Υ	A-B	-0.01	Active
2	N7	N16	N20	N19	Υ	A-B	-0.01	Active
3	N1	N18	N22	N21	Y	A-B	-0.01	Active

Member Area Loads

	Node A	Node B	Node C	Node D	Direction	Load Direction	Magnitude [ksf]	Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]
1	N14	N1	N2	N13	Υ	A-B	-0.02	Active
2	N1	N18	N22	N21	Y	A-B	-0.02	Active
3	N7	N19	N20	N16	Υ	A-B	-0.02	Active

Member Area Loads

	Node A	Node B	Node C	Node D	Direction	Load Direction	Magnitude [ksf]	Inactive [(k, k-ft), (in, rad), (k*s²/in, k*s²*in)]
1	N14	N1	N2	N13	Y	A-B	-0.03	Active
2	N1	N18	N22	N21	Υ	A-B	-0.03	Active
3	N7	N19	N20	N16	Y	A-B	-0.03	Active

Load Combinations

	Description	Solve	PDelta	BLC	Factor										
1	IBC 16-8	Yes	Υ	DL	1										
2	IBC 16-9	Yes	Υ	DL	1	LL	1	LLS	1						
3	IBC 16-10 (b)	Yes	Υ	DL	1	SL	1	SLN	1						
4	IBC 16-11 (b)	Yes	Υ	DL	1	LL		LLS	0.75	SL	0.75	SLN	0.75		
5	IBC 16-12 (a) (a)	Yes	Υ	DL	1	WLX	0.6								
6	IBC 16-12 (a) (b)	Yes	Υ	DL	1	WLZ	0.6								
7	IBC 16-12 (a) (c)	Yes	Υ	DL		WLX									
8	IBC 16-12 (a) (d)	Yes	Υ	DL	1	WLZ	-0.6								
9	IBC 16-13 (a) (a)	Yes	Υ	DL	1	WLX	0.45	LL	0.75	LLS	0.75				
10	IBC 16-13 (a) (b)	Yes	Υ	DL	1	WLZ	0.45	LL	0.75	LLS	0.75				
11	IBC 16-13 (a) (c)	Yes	Υ	DL	1	WLX	-0.45	LL	0.75	LLS	0.75				
12	IBC 16-13 (a) (d)	Yes	Υ	DL	1	WLZ	-0.45	LL	0.75				_		
13	IBC 16-13 (b) (a)	Yes	Υ	DL	1	WLX	0.45	LL	0.75			SL	0.75		
14	IBC 16-13 (b) (b)	Yes	Υ	DL	1	WLZ	0.45	LL	0.75			SL	0.75		
15	IBC 16-13 (b) (c)	Yes	Υ	DL	1	WLX	-0.45	LL	0.75	LLS	0.75	SL	0.75		
16	IBC 16-13 (b) (d)	Yes	Υ	DL			-0.45	LL	0.75	LLS	0.75	SL	0.75	SLN	0.75
17	IBC 16-15 (a)	Yes	Υ	DL	0.6	WLX	0.6								
18	IBC 16-15 (b)	Yes	Υ	DL	0.6	WLZ	0.6								
19	IBC 16-15 (c)	Yes	Υ	DL	0.6	WLX	-0.6								
20	IBC 16-15 (d)	Yes	Υ	DL	0.6	WLZ	-0.6		·						

Envelope Node Reactions

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N24	max	-0.013	20	17.796	16	1.952	16	5.079	16	0	16	0.684	16
2		min	-0.128	4	9.053	17	0.808	17	2.106	17	0	17	0.19	17
3	N23	max	0.129	16	17.764	16	2.287	16	5.993	16	0	16	0.214	8
4		min	0.013	17	9.37	17	1.051	17	2.743	17	0	17	0.073	4
5	N25	max	0	20	15.991	16	-0.809	20	-2.148	20	0.002	16	0.002	8
6		min	-0.002	4	8.415	17	-1.953	4	-5.195	4	0	17	0	4
7	N26	max	0	16	17.045	16	-1.05	20	-2.788	20	0.002	16	-0.001	20
8		min	0	17	9.106	17	-2.286	4	-6.041	4	0	17	-0.005	4
9	Totals:	max	0	3	68.595	16	0	20						
10		min	0	2	35.943	17	0	4						

Envelope AISC 14th (360-10): ASD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	Pnc/om [k]	Pnt/om [k]Mnyy/om [k-ft]	Mnzz/om [k-ft]	Cb	Eqn
1	M1	W8X48	0.329	96	16	0.016	48	Z	16	271.657	303.952	41.138	88.024	1.816	H1-1b
2	M2	W8X48	0.283	96	16	0.014	48	Z	16	271.657	303.952	41.138	88.024	1.749	H1-1b

2/17/2022 3:41:43 PM

Checked By: TJL

Envelope AISC 14th (360-10): ASD Steel Code Checks (Continued)

	Membei	Shape	Code Check	Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	Pnc/om [k]	Pnt/om [k]	Mnyy/om [k-ft]	Mnzz/om [k-f	t] Cb Eqn
3	М3	W8X48	0.292	96	16	0.014	48	Z	16	271.657	303.952	41.138	88.024	2.176H1-1b
4	M4	W8X48	0.343	96	16	0.016	48	Z	16	271.657	303.952	41.138	88.024	1.596H1-1b
5	M5	W12X26	0.408	108.333	16	0.112	208	У	16	60.104	229.042	20.384	60.902	1.329H1-1b
6	M6	W12X26	0.005	0	16	0.005	0	У	16	208.014	229.042	20.384	92.814	1.764H1-1b
7	M7	W12X26	0.351	108.333	16	0.1	177.667	У	16	60.104	229.042	20.384	60.8	1.326H1-1b
8	M8	W12X26	0.077	0	16	0.03	12.5	Z	16	208.014	229.042	20.384	92.814	1.737H1-1b
9	M9	W12X26	0.024	70	16	0.012	140	У	16	121.346	229.042	20.384	79.51	1.136H1-1b
10	M10	W12X16	0.24	51.042	16	0.032	0	У	16	21.626	141.018	5.639	18.338	1.131H1-1b
11	M11	W12X16	0.372	71.458	16	0.041	0	У	16	21.626	141.018	5.639	18.968	1.17 H1-1b
12	M12	W12X16	0.722	71.458	16	0.072	0	У	16	21.626	141.018	5.639	19.588	1.208H1-1b
13	M13	W12X16	0.6	71.458	16	0.058	0	У	16	21.626	141.018	5.639	20.231	1.248H1-1b
14	M14	W12X16	0.167	84.583	16	0.018	0	У	16	21.626	141.018	5.639	18.275	1.127H1-1b
15	M15	W12X16	0.076	140	16	0.017	140	У	16	21.626	141.018	5.639	34.577	2.133H1-1b
16	M16	W12X16	0.034	0	16	0.014	0	У	16	111.782	141.018	5.639	50.15	1.748H1-1b
17	M17	W12X16	0.038	0	8	0.019	32	У	16	111.782	141.018	5.639	50.15	1.653H1-1b
18	M18	W12X16	0.028	0	16	0.016	0	У	16	111.782	141.018	5.639	50.15	1.807H1-1b
19	M19	W12X16	0.013	0	16	0.006	0	У	16	111.782	141.018	5.639	50.15	1.873H1-1b
20	M20	W12X16	0.026	32.448	8	0.015	0	У	16	53.512	141.018	5.639	49.479	1.532H1-1b
21	M21	W12X26	0.005	0	16	0.005	0	у	16	208.014	229.042	20.384	92.814	1.755H1-1b
22	M22	W12X16	0.005	28	16	0.006	56	у	16	91.865	141.018	5.639	48.617	1.136H1-1b
23	M23	W12X16	0.01	32	16	0.005	32	у	16	111.782	141.018	5.639	50.15	1.729H1-1b

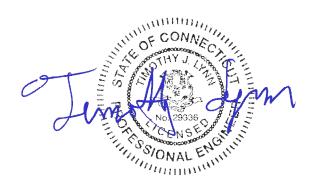
Centered on Solutions[™]

Structural Analysis Report

175-ft Existing EEI Monopole

Proposed T-Mobile Antenna Upgrade

Site Ref: CTHA231A


1657 Berlin Turnpike Berlin, CT

CENTEK Project No. 20143.15

Date: November 4, 2020

Rev 1: February 22, 2022

Max Stress Ratio = 82%

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

Structural Analysis – 175-ft EEI Monopole T-Mobile Antenna Upgrade – CTHA231A Berlin, CT Rev 1 ~ February 22, 2022

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- TOWER LOADING
- TOWER CAPACITY
- FOUNDATION AND ANCHORS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY
- tnxTower DETAILED OUTPUT
- MathCAD CAISSON FOUNDATION ANALYSIS
- L-PILE CAISSON ANALYSIS
- L-PILE LATERAL DEFLECTION vs. DEPTH
- L-PILE BENDING MOMENT vs. DEPTH
- L-PILE SHEAR FORCE vs. DEPTH

SECTION 4 - REFERENCE MATERIAL

RF DATA SHEET

TABLE OF CONTENTS TOC-1

Structural Analysis – 175-ft EEI Monopole T-Mobile Antenna Upgrade – CTHA231A Berlin, CT Rev 1 ~ February 22, 2022

Introduction

The purpose of this report is to summarize the results of the non-linear, P-∆ structural analysis of the antenna upgrade proposed by T-Mobile on the existing monopole (tower) located in Berlin, Connecticut.

The host tower is a 175-ft tall, four-section, eighteen sided, tapered monopole, originally designed and manufactured by Engineered Endeavors Incorporated (EEI); project no. 11129 dated September 16, 2002. The tower geometry, structure member sizes and foundation system information were obtained from a previous structural analysis report prepared by Paul J. Ford & company job no. 4921-0004.003.7805 dated April 22, 2021.

Antenna and appurtenance information were obtained from the aforementioned structural report and a T-Mobile RF sheet.

The tower is made up of four (4) tapered vertical sections consisting of A572-65 pole sections. The vertical tower sections are slip joint connected. The diameter of the pole (flat-flat) is 21.0-in at the top and 60.5-in at the base.

Antenna and Appurtenance Summary

The existing, proposed and future loads considered in this analysis consist of the following:

- TOWN (EXISTING TO REMAIN):
 - Antennas: Two (2) 2'x2' panels, two (2) Kathrein paraflector antennas, one (1) 10-ft omni-directional antenna, two (2) 4-ft omni-directional antennas and two (2) 20-ft dipole antennas mounted on a 13-ft low profile platform with an elevation of 1765-ft above grade level.
 - <u>Coax Cables</u>: Four (4) $7/8"\emptyset$, three (3) 1-1/4" \emptyset and two (2) Cat5e cables running on the inside of the existing tower.
- AT&T (EXISTING):
 - Antennas: Three (3) Kathrein 800-10121 panel antennas, three (3) CCI HPA-65R-BUU-H6 panel antennas, six (6) LGP21401 TMAs, three (3) Ericsson RRUS-11 remote radio heads, three (3) Ericsson RRUS-32 remote radio heads and one (1) Raycap DC6-48-60-18-8F surge arrestor mounted on a platform w/ handrails with a RAD center elevation of 170-ft above grade level.
 - <u>Cables</u>: Six (6) 1-5/8" \varnothing coax cables, one (1) fiber cable and two (2) dc control cables running on the inside of the existing tower.
- TOWN (EXISTING TO REMAIN):
 - Antennas: One (1) 4' grid dish and one (1) 3-ft dipole mounted on a 6-ft sidearm with an elevation of 164-ft above grade level.
 - Coax Cables: Two (2) 7/8"∅ cables running on the inside of the existing tower.

Structural Analysis – 175-ft EEI Monopole T-Mobile Antenna Upgrade – CTHA231A Berlin, CT

Rev 1 ~ February 22, 2022

SPRINT (EXISTING):

Antennas: Three (3) RFS APXVSPP18-C-A20 panel antennas, three (3) RFS APXVTM14 panel antennas, three (3) ALU 1900 MHz RRHs, three (3) ALU 800 MHz RRHs, three (3) ALU TD-RRH-8x20-25 RRHs and five (5) 2-ft microwave dishes mounted on a low profile platform with a RAD center elevation of 150-ft above grade level.

<u>Coax Cables:</u> Four (4) 1-5/8" \varnothing Hybriflex cables and four (4) 1/2" \varnothing coax cable running on the inside of the existing tower.

TOWN (EXISTING TO REMAIN):

Antennas: One (1) 10-ft dipole and one (1) 2'x2' panel antenna mounted on a 6-ft sidearm with an elevation of 136-ft above grade level.

<u>Coax Cables</u>: One (1) 1/2" \varnothing and one (1) Cat5e cables running on the inside of the existing tower.

VERIZON (EXISTING):

Antennas: Three (3) Antel BXA-70063-6CF panel antennas, six (6) Commscope NHH-65B-R2B panel antenna, three (3) Samsung MT6407-77A panel antennas, three (3) Samsung B2/B66A RRHs, three (3) Samsung B5/B13 RRHs and two (2) OVP boxes mounted on a 13-ft low profile platform w_ handrail with a RAD center elevation of 118-ft above grade level.

<u>Coax Cables</u>: Six (6) 1-5/8" \varnothing coax cables and two (2) fiber cables running inside the monopole.

TOWN (EXISTING TO REMAIN):

Antennas: One (1) 4' grid dish, one (1) 10-ft dipole and one (1) 2'x2' panel antenna mounted on a 6-ft sidearm with an elevation of 104-ft above grade level.

Coax Cables: One (1) 1/2" and one (1) Cat5e cables running on the inside of the

existing tower.

UNKNOWN (EXISTING):

Antennas: One (1) GPS antenna mounted on a standoff with an elevation of 78-ft above grade level.

<u>Coax Cables:</u> One (1) 1/2" \varnothing coax cable running on the inside of the existing tower.

UNKNOWN (EXISTING):

Antennas: One (1) GPS antenna mounted on a standoff with an elevation of 35.25-ft above grade level.

Coax Cables: One (1) 1/2" \varnothing coax cable running on the inside of the existing tower.

T-MOBILE (Existing to Remain):

Antennas: Three (3) RFS APXVAARR24_43 panel antennas and three (3) Ericsson 4449 remote radio heads mounted on three (3) existing T-Arms w_ stabilizer kit with a RAD center elevation of 160-ft above grade.

Coax Cables: Three (3) 6x12 fiber cables running on the inside of the existing tower.

Structural Analysis – 175-ft EEI Monopole T-Mobile Antenna Upgrade – CTHA231A Berlin, CT Rev 1 ~ February 22, 2022

T-MOBILE (EXISTING TO REMOVE):

Antennas: Three (3) Ericsson AIR21 panel antennas, three (3) Ericsson AIR32 panel antennas and three (3) TMAs mounted on three (3) existing T-Arms w_stabilizer kit with a RAD center elevation of 160-ft above grade.

Coax Cables: Six (6) 1-5/8" © coax cables running on the inside of the existing tower.

- T-MOBILE (PROPOSED):

Antennas: Three (3) Ericsson AIR6419 panel antennas and three (3) Ericsson 4460 remote radio heads mounted on three (3) existing T-Arms w_ stabilizer kit with a RAD center elevation of 160-ft above grade.

Coax Cables: One (1) 6x24 fiber cable running on the inside of the existing tower.

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents or reinforcement drawings.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables to be installed as indicated in this report.

Structural Analysis – 175-ft EEI Monopole T-Mobile Antenna Upgrade – CTHA231A Berlin, CT Rev 1 ~ February 22, 2022

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower, and the model assumes that the tower members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed (3-second gust) with no ice and the applicable wind and ice combination to determine stresses in members as per guidelines of TIA-222-G-2005 entitled "Structural Standard for Antenna Support Structures and Antennas", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Load and Resistance Factor Design (LRFD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix N of the CSBC¹ and the wind speed data available in the TIA-222-G-2005 Standard.

<u>Tower Loading</u>

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA-222-G-2005, gravity loads of the tower structure and its components, and the application of 1.00" radial ice on the tower structure and its components.

Basic Wind Speed:	Berlin; v = 97 mph	[Appendix N of the 2018 CT Building Code]
Load Cases:	Load Case 1; 97 mph wind speed w/ no ice plus gravity load – used in calculation of tower stresses and rotation.	[Appendix N of the 2018 CT Building Code]
	Load Case 2; 50 mph wind speed w/ 1.00" radial ice plus gravity load – used in calculation of tower stresses.	[Annex B of TIA-222-G-2005]

REPORT SECTION 1-4

_

¹ The 2015 International Building Code as amended by the 2018 Connecticut State Building Code (CSBC).

Structural Analysis – 175-ft EEI Monopole T-Mobile Antenna Upgrade – CTHA231A Berlin, CT Rev 1 ~ February 22, 2022

Tower Capacity

 Calculated stresses were found to be within allowable limits. This tower was found to be at 81.9% of its total capacity.

Tower Section	Elevation	Stress Ratio (percentage of capacity)	Result
Pole Shaft (L2)	86.12'-130.75'	81.9%	PASS

Foundation and Anchors

The existing foundation consists of a 7.5 \oslash x 39.0-ft long reinforced concrete caisson. The subgrade conditions used in the analysis of the existing foundation were obtained from the aforementioned URS structural report. The base of the tower is connected to the foundation by means of (18) 2.25" \oslash , ASTM A615-75 anchor bolts embedded into the concrete foundation structure.

The tower base reactions developed from the governing Load Case were used in the verification of the foundation and its anchors:

Location	Vector	Proposed Reactions
	Shear	39 kips
Base	Compression	59 kips
	Moment	4972 kip-ft

The foundation was found to be within allowable limits.

Foundation	Design Limit	Proposed Loading	Result
Reinforced Concrete	Moment Capacity	62.5%	PASS
Caisson	Lateral Deflection	0.25 in. ⁽¹⁾	PASS

⁽¹⁾ Lateral deflection limited to 0.75 in under service load combination per TIA-222-G section 9.5.

The anchor bolts and base plate were found to be within allowable limits.

Tower Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Tension	82.0%	PASS
Base Plate	Bending	62.0%	PASS

Structural Analysis – 175-ft EEI Monopole T-Mobile Antenna Upgrade – CTHA231A Berlin, CT Rev 1 ~ February 22, 2022

Conclusion

This analysis shows that the subject tower **is adequate** to support the proposed modified antenna configuration.

The analysis is based, in part, on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

CENTEK Engineering, Inc.
Structural Analysis – 175-ft EEI Monopole
T-Mobile Antenna Upgrade – CTHA231A
Berlin, CT
Rev 1 ~ February 22, 2022

Standard Conditions for Furnishing of Professional Engineering Services on Existing Structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
 meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
 loads or other relevant parameters are to be different from the minimum values
 recommended by the codes, the client shall specify the exact requirement. In the
 absence of information to the contrary, all work will be performed in accordance with the
 latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance
 with generally accepted engineering principles and practices. Centek Engineering, Inc.
 is not responsible for the conclusions, opinions and recommendations made by others
 based on the information we supply.

CENTEK Engineering, Inc. Structural Analysis – 175-ft EEI Monopole T-Mobile Antenna Upgrade – CTHA231A Berlin, CT Rev 1 ~ February 22, 2022

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM

tnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, tnxTower, formerly ERITower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

tnxTower Features:

- tnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- tnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

DESIGNED APPURTENANCE LOADING TYPE **ELEVATION ELEVATION** 176.0 ft 2'x2' Panel VHLP800-11-DW1 (Sprint) 176 2'x2' Panel 176 VHLP800-11-DW1 (Sprint) 154 PR-900 VHLP2-11-DW1 (Sprint) 154 176 PR-900 VHLP2-11-DW1 (Sprint) 154 176 10' x 2" Dia Omni 176 VHLP2-11-DW1 (Sprint) 154 4' x 2" Dia Omni 176 FD-RRH 4x45 1900 (Sprint Existing) 150 4' x 2" Dia Omni 176 FD-RRH 2x50 800 (Sprint Existing) 150 FD-RRH 2x50 800 (Sprint Existing) 20' 4-Bay Dipole 176 150 FD-RRH 2x50 800 (Sprint Existing) 20' 4-Bay Dipole 176 150 0000 8000 45.25 0.2500 4.50 EEI 12-ft Low Profile Platform 176 TD-RRH8x20-25 (Sprint Existing) 150 48 3.2 800-10121 (ATI Existing) TD-RRH8x20-25 (Sprint Existing) 8 170 150 HPA-65R-BUU-H6 (ATT Existing) 170 TD-RRH8x20-25 (Sprint Existing) 150 800-10121 (ATT Existing) EEI 12-ft Low Profile Platform (Sprint 170 150 HPA-65R-BUU-H6 (ATI Existing) 170 Existing) APXVSPP18-C-A20 (Sprint Existing) 150 800-10121 (ATT Existing) 170 APXVSPP18-C-A20 (Sprint Existing) 150 HPA-65R-BUU-H6 (ATT Existing) 170 APXVTM14 (Sprint Existing) 150 (2) LGP21401 TMA (ATI Existing) 170 APXVTM14 (Sprint Existing) (2) LGP21401 TMA (ATT Existing) 150 170 APXVTM14 (Sprint Existing) 150 (2) LGP21401 TMA (ATI Existing) 170 130.8 ft RRUS-11 (AT Existing) FD-RRH 4x45 1900 (Sprint Existing) 150 170 FD-RRH 4x45 1900 (Sprint Existing) 150 RRUS-11 (ATI Existing) 170 APXVSPP18-C-A20 (Sprint Existing) 150 RRUS-11 (ATI Existing) 170 10' Dipole 137 RRUS-32 (ATT Existing) 170 RRUS-32 (ATI Existing) 170 2'x2' Panel 137 6' Extension Arm Mount 135.75 RRUS-32 (ATI Existing) 170 B2/B66A RRH (Verizon Existing) 118 DC6-48-60-18-8F Surge Arrestor (ATI 170 B5/B13 RRH (Verizon Existing) Existing) 118 49.13 41.8200 0.3125 Valmont 13' Platform w/Rails (ATI 170 B5/B13 RRH (Verizon Existing) 118 9 5.9 B5/B13 RRH (Verizon Existing) Existing) 118 3' Whip 164.5 (2) RC2DC-3315-PF-48 (Verizon 118 4-ft Grid Dish 164.5 BXA-70063/6CF (Verizon Existing) 6' Extension Arm Mount 164.42 118 Monopole Sector Stabilizer Kit VSK-M (2) NHH-65B-R2B (Verizon Existing) 118 162 (T-Mobile Existing) MT6407-77A (Verizon Existing) 118 AIR6419 (T-Mobile Proposed) 160 B2/B66A RRH (Verizon Existing) 118 APXVAARR24-43 (T-Mobile Existing) 160 B2/B66A RRH (Verizon Existing) 118 A572-65 Radio 4449 B71 B12 (T-Mobile 160 MT6407-77A (Verizon Existing) 118 86.1 ft Existing) BXA-70063/6CF (Verizon Existing) Radio 4449 B71 B12 (T-Mobile 160 (2) NHH-65B-R2B (Verizon Existing) 118 Existing) MT6407-77A (Verizon Existing) 118 Radio 4449 B71 B12 (T-Mobile 160 BXA-70063/6CF (Verizon Existing) 118 (2) NHH-65B-R2B (Verizon Existing) 118 4460 B25+B66 (T-Mobile Proposed) 160 Valmont 13' Platform w/Rails (Verizon Existing) 116 4460 B25+B66 (T-Mobile Proposed) 160 4460 B25+B66 (T-Mobile Proposed) 160 10' Dipole 104.83 Valmont T-Arm (1) (T-Mobile Existing) 160 8 51.3600 2'x2' Panel 104.83 0.3750 39.8381 Valmont T-Arm (1) (T-Mobile Existing) 8 9.0 က 6' Extension Arm Mount 104.83 Valmont T-Arm (1) (T-Mobile Existing) 160 4-ft Grid Dish 104.5 APXVAARR24-43 (T-Mobile Existing) 160 3' GPS Stand-off Mount 78 AIR6419 (T-Mobile Proposed) 160 GPS 78 AIR6419 (T-Mobile Proposed) 160 GPS 35.25 APXVAARR24-43 (T-Mobile Existing) 160 3' GPS Stand-off Mount 35.25 MATERIAL STRENGTH ALL REACTIONS 43.0 ft **GRADE** GRADE Fu Fu ARE FACTORED A572-65 65 ksi AXIAL 125 K **TOWER DESIGN NOTES** 1. Tower designed for Exposure B to the TIA-222-G Standard. SHEAR' MOMI2. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard. 1820 l3. 13 K Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase 49.00 in thickness with height. 60.5000 0.4375 12.6 TORQUE 3 kip-ft Deflections are based upon a 60 mph wind. 4 9 Tower Structure Class III. 50 mph WIND - 1.0000 in ICE 5. 6. Topographic Category 1 with Crest Height of 0.00 ft Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 AXIAL 59 K Standards. Welds are fabricated with ER-70S-6 electrodes. TOWER RATING: 81.9% MOMEIVI SHEAR 4972 kip-ft 1.0 ft 30.6 TORQUE 8 kip-ft Number of Sides REACTIONS - 97 mph WIND Thickness (in) Socket Length Fop Dia (in) Bot Dia (in) € Weight (K) Length (Grade

Centek Engineering Inc.	^{∞:} 20143.15 - CTH	A231A	
63-2 North Branford Rd.	Project: 175' EEI Monopo	le - 1657 Berlin Turn	pike Berlin, C
Branford, CT 06405	Client: T-Mobile	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code: TIA-222-G	Date: 02/22/22	Scale: NTS
FAX: (203) 488-8587	Path:	r Analysia Backup Documentation Rev (1) SRI Filed (11) SRI Monpole Betin, CT a	Dwg No. E-1

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Ţ	Job	Page
	20143.15 - CTHA231A	1 of 25
	Project 175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	Date 09:18:53 02/22/22
	Client T-Mobile	Designed by TJL

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 97 mph.

Structure Class III.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards...

Welds are fabricated with ER-70S-6 electrodes..

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios

√ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

√ Assume Rigid Index Plate
Use Clear Spans For Wind Area
Use Clear Spans For KL/r
Retension Guys To Initial Tension
Bypass Mast Stability Checks
Use Azimuth Dish Coefficients

Project Wind Area of Appurt.
 Autocalc Torque Arm Areas
 Add IBC .6D+W Combination

√ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 √ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Top	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	2 of 25
Project 175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	Date 09:18:53 02/22/22
Client T-Mobile	Designed by

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	176.00-130.75	45.25	4.50	18	21.0000	31.8000	0.2500	1.0000	A572-65
									(65 ksi)
L2	130.75-86.12	49.13	5.75	18	30.2260	41.8200	0.3125	1.2500	A572-65
									(65 ksi)
L3	86.12-43.00	48.87	7.00	18	39.8381	51.3600	0.3750	1.5000	A572-65
									(65 ksi)
L4	43.00-1.00	49.00		18	48.9596	60.5000	0.4375	1.7500	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	w	w/t
	in	in ²	in ⁴	in	in	in^3	in ⁴	in ²	in	
L1	21.2854	16.4651	895.6507	7.3663	10.6680	83.9568	1792.4800	8.2341	3.2560	13.024
	32.2520	25.0349	3148.3461	11.2003	16.1544	194.8909	6300.8349	12.5198	5.1568	20.627
L2	31.7224	29.6704	3354.2440	10.6193	15.3548	218.4493	6712.9015	14.8380	4.7698	15.263
	42.4169	41.1703	8961.3641	14.7352	21.2446	421.8192	17934.5198	20.5890	6.8103	21.793
L3	41.7714	46.9709	9241.6271	14.0094	20.2377	456.6531	18495.4146	23.4899	6.3515	16.937
	52.0945	60.6849	19929.7987	18.0997	26.0909	763.8607	39885.8215	30.3482	8.3794	22.345
L4	51.3215	67.3790	20042.0460	17.2254	24.8715	805.8240	40110.4639	33.6959	7.8469	17.936
	61.3658	83.4043	38013.0437	21.3222	30.7340	1236.8401	76076.1060	41.7101	9.8780	22.578

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade Adjust. Factor	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
Elevation	(per face)	THICKNESS	A_f	A_r		Stuch Bou Spacing	Stuch Bou Spacing	Spacing
						Diagonals	Horizontals	Redundants
ft	ft^2	in				in	in	in
L1			1	1	1			
176.00-130.75								
L2			1	1	1			
130.75-86.12								
L3 86.12-43.00			1	1	1			
L4 43.00-1.00			1	1	1			

Monopole Base Plate Data

Base Plate Data

Base plate is square Base plate is grouted A615-75 Anchor bolt grade 2.2500 inAnchor bolt size Number of bolts 18 Embedment length 48.0000 in f_c 4 ksi 2.0000 in Grout space Base plate grade A572-60 Base plate thickness 2.0000 in Bolt circle diameter 70.0000 in 76.0000 in Outer diameter Inner diameter 60.7500 in Base plate type Stiffened Plate Bolts per stiffener 1

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	3 of 25
Project 175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	Date 09:18:53 02/22/22
Client T-Mobile	Designed by TJL

Base Plate Da	ata
Stiffener thickness	0.5000 in
Stiffener height	12.0000 in

Feed Line/Linear Appurtenances - Entered As Area

Leg	Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
Town Existings				Torque	-1	ft			ft²/ft	plf
Time		A	No	No	Inside Pole	176.00 - 4.00	3			
T/8	(Town Existing)							1/2" Ice	0.00	0.66
Convergence								1" Ice	0.00	0.66
Cat5e A No No Inside Pole 176.00 - 4.00 2 No Lee 0.00 0.06 (Town Existing)	7/8	Α	No	No	Inside Pole	176.00 - 4.00	4	No Ice	0.00	0.54
CatSe	(Town Existing)							1/2" Ice	0.00	0.54
Town Existing								1" Ice	0.00	0.54
15/8	Cat5e	Α	No	No	Inside Pole	176.00 - 4.00	2	No Ice	0.00	0.06
15/8	(Town Existing)							1/2" Ice	0.00	0.06
AT&T Existing RG6-Fiber A								1" Ice	0.00	0.06
The color 10 10 10 10 10 10 10 1	1 5/8	Α	No	No	Inside Pole	171.00 - 4.00	6	No Ice	0.00	1.04
RG6-Fiber A No No Inside Pole 171.00 - 4.00 1 No Ice 0.00 0.00	(AT&T Existing)							1/2" Ice	0.00	1.04
(AT&T Existing) 1/2" Ice 0.00 0.00 #8 AWG Copper Wire A No No No Inside Pole 171.00 - 4.00 2 No Ice 0.00 0.00 (AT&T Existing) 12" Ice 0.00 0.00 7/8 A A No No No Inside Pole 166.00 - 4.00 12" Ice 0.00 0.00 (Town Existing) 112" Ice 0.00 0.00 0.54 (Town Existing) 112" Ice 0.00 0.05 17 BRIFLEX 1-1/4" B No No Inside Pole 161.00 - 4.00 3 No Ice 0.00 1.30 17 Hobile Existing) 112" Ice 0.00 1.30 17 Hobile Proposed) 112" Ice 0.00 1.30 17 Hobile Proposed) 112" Ice 0.00 1.30 18 JERIFLEX 1-1/4" B No No No Inside Pole 151.00 - 7.00 1 No Ice 0.00 1.90 19 BRIFLEX 1-1/4" B No No No Inside Pole 151.00 - 7.00 4 No Ice 0.00 1.30 (Sprint Existing) 12" Ice 0.00 1.30 1/2 Ice 0.00 1.30 1.20 No No Inside Pole 151.00 - 7.00 4 No Ice 0.00 1.30 (Sprint Existing) 112" Ice 0.00 0.25 1.20 0.00 0.25 (Sprint Existing) 112" Ice 0.00 0.25 1.20 0.00 0.25								1" Ice	0.00	1.04
#8 AWG Copper A No No Inside Pole 171.00 - 4.00 2 No Ice 0.00 0.00 #8 AWG Copper A No No Inside Pole 171.00 - 4.00 2 No Ice 0.00 0.00 Wilre	RG6-Fiber	A	No	No	Inside Pole	171.00 - 4.00	1	No Ice	0.00	0.00
#8 AWG Copper Wire Wire (AT&T Existing) (AT&T Existing) (Town	(AT&T Existing)							1/2" Ice	0.00	0.00
Wire								1" Ice	0.00	0.00
AT&T Existing 7.8	#8 AWG Copper	A	No	No	Inside Pole	171.00 - 4.00	2	No Ice	0.00	0.00
7/8 A No No Inside Pole 166.00 - 4.00 2 No Ice 0.00 0.54 (Town Existing)	WIre							1/2" Ice	0.00	0.00
Crown Existing	(AT&T Existing)							1" Ice	0.00	0.00
The color of the	7/8	Α	No	No	Inside Pole	166.00 - 4.00	2	No Ice	0.00	0.54
The color of the	(Town Existing)							1/2" Ice	0.00	0.54
AYBRIFLEX 1-1/4" B	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								0.00	0.54
T-Mobile Existing) IYBRIFLEX 1-5/8" B No No Inside Pole 161.00 - 4.00 1 No Ice 0.00 1.30 IYBRIFLEX 1-5/8" B No No Inside Pole 161.00 - 4.00 1 No Ice 0.00 1.90 IYBRIFLEX 1-1/4" B No No Inside Pole 151.00 - 7.00 4 No Ice 0.00 1.90 IYBRIFLEX 1-1/4" B No No Inside Pole 151.00 - 7.00 4 No Ice 0.00 1.30 (Sprint Existing)	IYBRIFLEX 1-1/4"	В	No	No	Inside Pole	161.00 - 4.00	3	No Ice		
1"	T-Mobile Existing)							1/2" Ice	0.00	1.30
T-Mobile Proposed) If Ice								1" Ice	0.00	1.30
A	HYBRIFLEX 1-5/8"	В	No	No	Inside Pole	161.00 - 4.00	1	No Ice	0.00	1.90
A	T-Mobile Proposed)							1/2" Ice	0.00	1.90
AYBRIFLEX 1-1/4" B	1 ,							1" Ice	0.00	1.90
1 Ice 0.00 1.30 1.72 B No No Inside Pole 151.00 - 7.00 4 No Ice 0.00 0.25 1.72 Ice 0.00 0.06 1.72 Ice 0.00 1.04 1.72 Ice 0.00 1.90 1.72 Ice 0.00 1.90 1.72 Ice 0.00 1.90 1.90 1.72 Ice 0.00 1.90 1.90 1.72 Ice 0.00 1.90 1.90 1.72 Ice 0.00 0.25 1.72	HYBRIFLEX 1-1/4"	В	No	No	Inside Pole	151.00 - 7.00	4	No Ice		
1/2	(Sprint Existing)							1/2" Ice	0.00	1.30
1/2	. 1							1" Ice	0.00	1.30
(Sprint Existing) 1/2" Ice 0.00 0.25 1" Ice 0.00 0.25 1/2" Ice 0.00 0.25 1/2" Ice 0.00 0.25 1/2" Ice 0.00 0.25 1" Ice 0.00 0.06 1/2" Ice 0.00 0.06 1 I'ze 0.00 1.04 1 I'ze 0.00 1.00 1 I'ze 0.00 1.00 1 I'ze 0.00 1.00 1 I'ze 0.00 1.00 1 I'ze 0.00 0.25	1/2	В	No	No	Inside Pole	151.00 - 7.00	4	No Ice	0.00	
1 1 1 1 1 1 1 1 1 1										
1/2	\ 1									
(Town Existing) Cat5e A No No Inside Pole 136.00 - 4.00 1 No Ice 0.00 0.25 (Town Existing) Town Existing) Output Cat5e A No No No Inside Pole 136.00 - 4.00 1 No Ice 0.00 0.06 (Town Existing) Town Existing) Output Cat5e A No No No Inside Pole 115.00 - 7.00 6 No Ice 0.00 1.04 Output Cat5e A No No No Inside Pole 115.00 - 7.00 2 No Ice 0.00 1.04 Output Cat5e A No No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 1.90 Output Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 Cat5e A No No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 Cat5e A No No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 Cat5e A No No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 Cat5e A No No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 Cat5e A No No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 Cat5e A No No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.06 Output Outpu	1/2	Α	No	No	Inside Pole	136.00 - 4.00	1	No Ice		
Cat5e A No No Inside Pole 136.00 - 4.00 1 No Ice 0.00 0.06 (Town Existing)										
Cat5e (Town Existing) A No No No Inside Pole (Town Existing) 136.00 - 4.00 1 No Ice (1/2" Ice 0.00 0.06 1/2" Ice 0.00 0.06 1 II Ice 0.00 0.06 1/2" Ice 0.00 1.04 1/2" Ice 0.00 0.25 1/2" Ice 0.00 0.25 1/2" Ice 0.00 0.25 1/2" Ice 0.00 0.06 1/	8,									
(Town Existing) 1/2" Ice 0.00 0.06 1 "Ice 0.00 0.06 1 "Ice 0.00 0.06 1 "Ice 0.00 0.06 1 "Ice 0.00 1.04 (Verizon Existing) 1/2" Ice 0.00 1.04 1 "Ice 0.00 1.00 1 [Ice 0.00 1.00 1.04 1 "Ice 0.00 1.00 1 [Ice 0.00 1.00 1.00 1 [Ice 0.00 0.05 1 [Ice 0.00 0.06 1 [Ice 0.	Cat5e	Α	No	No	Inside Pole	136.00 - 4.00	1			
1" Ice 0.00 0.06 1.04 1.09 1.0										
1 5/8 C No No Inside Pole 115.00 - 7.00 6 No Ice 0.00 1.04 (Verizon Existing) 1/2" Ice 0.00 1.04 1" Ice 0.00 1.00 1.00 (Verizon Existing) 1/2" Ice 0.00 1.90 1/2" Ice 0.00 1.90 1 1" Ice 0.00 1.90 1" Ice 0.00 1.90 1" Ice 0.00 1.90 1" Ice 0.00 0.25 1" Ice 0.00 0.06 (Town Existing) 1/2" Ice 0.00 0.06										
(Verizon Existing) 1/2" Ice 0.00 1.04 HYBRIFLEX 1-5/8" C No No Inside Pole 115.00 - 7.00 2 No Ice 0.00 1.90 (Verizon Existing) I'Ice 0.00 1.90 1/2" Ice 0.00 1.90 1/2" Ice 0.00 1.90 (Town Existing) I'Ice 0.00 0.25 1/2" Ice 0.00 0.25 1" Ice 0.00 0.25 1" Ice 0.00 0.25 1" Ice 0.00 0.25 1" Ice 0.00 0.05 1" Ice 0.00 0.05 1" Ice 0.00 0.05 1" Ice 0.00 0.25 1" Ice 0.00 0.05 1" Ice 0.00 0.05 1" Ice 0.00 0.06 (Town Existing) 106.00 - 4.00 1 No Ice 0.00 0.06	1 5/8	C	No	No	Inside Pole	115.00 - 7.00	6			
1" Ice 0.00 1.04 1		-				2.00	-			
HYBRIFLEX 1-5/8" C No No Inside Pole 115.00 - 7.00 2 No Ice 0.00 1.90 (Verizon Existing) 1/2" Ice 0.00 1.90 1/2 Ice 0.00 1.90 1/2 Ice 0.00 0.25 (Town Existing) 1/2" Ice 0.00 0.25 Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.06 (Town Existing) 1/2" Ice 0.00 0.06										
(Verizon Existing) 1/2" Ice 0.00 1.90 1/2 A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 (Town Existing) 1/2" Ice 0.00 0.25 Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.05 (Town Existing) 1 No Ice 0.00 0.06 (Town Existing) 1/2" Ice 0.00 0.06	IYBRIFLEX 1-5/8"	C	No	No	Inside Pole	115.00 - 7.00	2			
1"Ice 0.00 1.90		-	-10	-10			_			
1/2 A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 (Town Existing) Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.06 (Town Existing) 1/2" Ice 0.00 0.06										
Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 (Town Existing) 106.00 - 4.00 1 No Ice 0.00 0.06	1/2	А	Nο	No	Inside Pole	106 00 - 4 00	1			
Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.25 (Town Existing) 106.00 - 4.00 1 No Ice 0.00 0.06		А	110	110	marac I of	100.00 - 7.00	1			
Cat5e A No No Inside Pole 106.00 - 4.00 1 No Ice 0.00 0.06 (Town Existing) 1/2" Ice 0.00 0.06	(TOWN EXISTING)									
(Town Existing) 1/2" Ice 0.00 0.06	Cat5e	Δ	No	No	Inside Pole	106 00 - 4 00	1			
		А	110	110	marac I of	100.00 - 7.00	1			
1 ICC 0.00 0.06	(Town Existing)									
								1 Tee	0.00	0.06

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	4 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike	e Berlin, CT 09:18:53 02/22/22
Client T-Mobile	Designed by TJL

Description	Face	Allow	Exclude	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	Туре		Number		22.0	10
	Leg		Torque		ft			ft²/ft	plf
			Calculation						
1/2	A	No	No	Inside Pole	79.00 - 4.00	1	No Ice	0.00	0.25
(Town Existing)							1/2" Ice	0.00	0.25
							1" Ice	0.00	0.25
1/2	A	No	No	Inside Pole	36.00 - 4.00	1	No Ice	0.00	0.25
(Town Existing)							1/2" Ice	0.00	0.25
							1" Ice	0.00	0.25

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft ²	ft^2	K
L1	176.00-130.75	A	0.000	0.000	0.000	0.000	0.48
		В	0.000	0.000	0.000	0.000	0.30
		C	0.000	0.000	0.000	0.000	0.00
L2	130.75-86.12	A	0.000	0.000	0.000	0.000	0.54
		В	0.000	0.000	0.000	0.000	0.54
		C	0.000	0.000	0.000	0.000	0.29
L3	86.12-43.00	A	0.000	0.000	0.000	0.000	0.54
		В	0.000	0.000	0.000	0.000	0.52
		C	0.000	0.000	0.000	0.000	0.43
L4	43.00-1.00	A	0.000	0.000	0.000	0.000	0.49
		В	0.000	0.000	0.000	0.000	0.45
		C	0.000	0.000	0.000	0.000	0.36

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
L1	176.00-130.75	A	2.913	0.000	0.000	0.000	0.000	0.48
		В		0.000	0.000	0.000	0.000	0.30
		C		0.000	0.000	0.000	0.000	0.00
L2	130.75-86.12	A	2.814	0.000	0.000	0.000	0.000	0.54
		В		0.000	0.000	0.000	0.000	0.54
		C		0.000	0.000	0.000	0.000	0.29
L3	86.12-43.00	A	2.672	0.000	0.000	0.000	0.000	0.54
		В		0.000	0.000	0.000	0.000	0.52
		C		0.000	0.000	0.000	0.000	0.43
L4	43.00-1.00	A	2.395	0.000	0.000	0.000	0.000	0.49
		В		0.000	0.000	0.000	0.000	0.45
		C		0.000	0.000	0.000	0.000	0.36

Feed Line Center of Pressure

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	5 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client T-Mobile	Designed by TJL

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	176.00-130.75	0.0000	0.0000	0.0000	0.0000
L2	130.75-86.12	0.0000	0.0000	0.0000	0.0000
L3	86.12-43.00	0.0000	0.0000	0.0000	0.0000
L4	43.00-1.00	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Diagrata	Tavas	
Discrete	rower	Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	٥	ft		ft ²	ft ²	K
2'x2' Panel	В	From Face	3.00	0.0000	176.00	No Ice	4.80	0.72	0.02
Z XZ T diloi	ь	1 Ioin 1 acc	0.00	0.0000	170.00	1/2" Ice	5.07	0.72	0.05
			3.00			1" Ice	5.35	1.03	0.07
2'x2' Panel	C	From Face	3.00	0.0000	176.00	No Ice	4.80	0.72	0.02
2 X2 Tuner	C	1 Iom I acc	0.00	0.0000	170.00	1/2" Ice	5.07	0.87	0.05
			3.00			1" Ice	5.35	1.03	0.03
PR-900	A	From Face	3.00	0.0000	176.00	No Ice	6.35	6.35	0.04
FK-900	А	rioiii race	0.00	0.0000	170.00	1/2" Ice	11.43	11.43	0.04
			0.00			1" Ice	16.51	16.51	0.03
PR-900	С	From Face	3.00	0.0000	176.00	No Ice	6.35	6.35	0.04
FK-900	C	rioiii race	0.00	0.0000	170.00	1/2" Ice	11.43	11.43	0.04
			0.00			1" Ice	16.51	16.51	0.03
101 211 Di - Oi		E E		0.0000	176.00		2.00	2.00	
10' x 2" Dia Omni	A	From Face	3.00	0.0000	170.00	No Ice		3.02	0.02
			0.00			1/2" Ice	3.02		0.03
41 All D' O '		г г	5.00	0.0000	176.00	1" Ice	4.07	4.07	0.05
4' x 2" Dia Omni	A	From Face	3.00	0.0000	176.00	No Ice	0.79	0.79	0.02
			0.00			1/2" Ice	1.03	1.03	0.03
	_		2.00	0.0000	4=400	1" Ice	1.28	1.28	0.04
4' x 2" Dia Omni	В	From Face	3.00	0.0000	176.00	No Ice	0.79	0.79	0.02
			0.00			1/2" Ice	1.03	1.03	0.03
			2.00			1" Ice	1.28	1.28	0.04
20' 4-Bay Dipole	В	From Face	3.00	0.0000	176.00	No Ice	4.00	4.00	0.06
			0.00			1/2" Ice	6.00	6.00	0.10
			10.00			1" Ice	8.00	8.00	0.14
20' 4-Bay Dipole	C	From Face	3.00	0.0000	176.00	No Ice	4.00	4.00	0.06
			0.00			1/2" Ice	6.00	6.00	0.10
			10.00			1" Ice	8.00	8.00	0.14
EEI 12-ft Low Profile	C	None		0.0000	176.00	No Ice	15.00	15.00	1.50
Platform						1/2" Ice	18.40	18.40	1.75
						1" Ice	21.80	21.80	2.00
800-10121	A	From Face	3.00	0.0000	170.00	No Ice	5.16	3.29	0.05
(AT&T Existing)			-5.00			1/2" Ice	5.51	3.64	0.08
			0.00			1" Ice	5.87	3.99	0.12
HPA-65R-BUU-H6	A	From Face	3.00	0.0000	170.00	No Ice	9.66	6.45	0.05
(AT&T Existing)			5.00			1/2" Ice	10.13	6.91	0.11
			0.00			1" Ice	10.61	7.38	0.18
800-10121	В	From Face	3.00	0.0000	170.00	No Ice	5.16	3.29	0.05
(AT&T Existing)			-5.00			1/2" Ice	5.51	3.64	0.08
3,			0.00			1" Ice	5.87	3.99	0.12

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Jo	ob	Page
	20143.15 - CTHA231A	6 of 25
F	Project	Date
	175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
C	Client	Designed by
	T-Mobile	TJL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	208		Vert ft	0	ft		ft²	ft²	K
			ft ft						
HPA-65R-BUU-H6	В	From Face	3.00	0.0000	170.00	No Ice	9.66	6.45	0.05
(AT&T Existing)			5.00			1/2" Ice	10.13	6.91	0.11
			0.00			1" Ice	10.61	7.38	0.18
800-10121	C	From Face	3.00	0.0000	170.00	No Ice	5.16	3.29	0.05
(AT&T Existing)			-5.00			1/2" Ice	5.51	3.64	0.08
IIDA 65D DIJILII6	C	Енот Есс	0.00	0.0000	170.00	1" Ice No Ice	5.87	3.99	0.12 0.05
HPA-65R-BUU-H6 (AT&T Existing)	С	From Face	3.00 5.00	0.0000	170.00	1/2" Ice	9.66 10.13	6.45 6.91	0.03
(AT&T Existing)			0.00			1" Ice	10.13	7.38	0.11
(2) LGP21401 TMA	A	From Face	3.00	0.0000	170.00	No Ice	0.82	0.35	0.02
(AT&T Existing)		11011111100	-2.00	0.0000	170.00	1/2" Ice	0.94	0.44	0.02
(0.00			1" Ice	1.06	0.54	0.03
(2) LGP21401 TMA	В	From Face	3.00	0.0000	170.00	No Ice	0.82	0.35	0.02
(AT&T Existing)			-2.00			1/2" Ice	0.94	0.44	0.02
			0.00			1" Ice	1.06	0.54	0.03
(2) LGP21401 TMA	C	From Face	3.00	0.0000	170.00	No Ice	0.82	0.35	0.02
(AT&T Existing)			-2.00			1/2" Ice	0.94	0.44	0.02
DDII0 11		г г	0.00	0.0000	170.00	1" Ice	1.06	0.54	0.03
RRUS-11 (AT&T Existing)	A	From Face	0.50 3.00	0.0000	170.00	No Ice 1/2" Ice	2.57 2.76	1.07 1.21	0.05 0.07
(AT&T Existing)			0.00			1" Ice	2.76	1.21	0.07
RRUS-11	В	From Face	0.50	0.0000	170.00	No Ice	2.57	1.07	0.05
(AT&T Existing)	В	110m ruce	3.00	0.0000	170.00	1/2" Ice	2.76	1.21	0.07
(0.00			1" Ice	2.97	1.36	0.09
RRUS-11	C	From Face	0.50	0.0000	170.00	No Ice	2.57	1.07	0.05
(AT&T Existing)			3.00			1/2" Ice	2.76	1.21	0.07
			0.00			1" Ice	2.97	1.36	0.09
RRUS-32	Α	From Face	0.50	0.0000	170.00	No Ice	3.31	2.42	0.08
(AT&T Existing)			3.00			1/2" Ice	3.56	2.64	0.10
DD110 00	-		0.00	0.0000	450.00	1" Ice	3.81	2.86	0.14
RRUS-32	В	From Face	0.50	0.0000	170.00	No Ice	3.31	2.42	0.08
(AT&T Existing)			3.00 0.00			1/2" Ice 1" Ice	3.56	2.64	0.10
RRUS-32	С	From Face	0.50	0.0000	170.00	No Ice	3.81 3.31	2.86 2.42	0.14 0.08
(AT&T Existing)	C	rioni race	3.00	0.0000	170.00	1/2" Ice	3.56	2.42	0.08
(TT&T Existing)			0.00			1" Ice	3.81	2.86	0.14
DC6-48-60-18-8F Surge	C	From Face	0.50	0.0000	170.00	No Ice	1.91	1.91	0.02
Arrestor			0.00			1/2" Ice	2.10	2.10	0.04
(AT&T Existing)			0.00			1" Ice	2.29	2.29	0.06
Valmont 13' Platform w/Rails	C	None		0.0000	170.00	No Ice	53.00	53.00	2.00
(AT&T Existing)						1/2" Ice	68.00	68.00	3.00
177 (110			4.00	0.0000	4 50 00	1" Ice	83.00	83.00	4.00
AIR6419	A	From Face	4.00	0.0000	160.00	No Ice	3.66	1.66	0.07
(T-Mobile Proposed)			-6.00			1/2" Ice	3.91	1.85	0.09
APXVAARR24-43	A	From Face	0.00 4.00	0.0000	160.00	1" Ice No Ice	4.16 20.24	2.05 8.89	0.12 0.15
(T-Mobile Existing)	Α	110m race	-2.00	0.0000	100.00	1/2" Ice	20.24	9.49	0.13
(1 Moone Laisung)			0.00			1" Ice	21.54	10.09	0.27
AIR6419	В	From Face	4.00	0.0000	160.00	No Ice	3.66	1.66	0.07
(T-Mobile Proposed)			-6.00	2.2000		1/2" Ice	3.91	1.85	0.09
			0.00			1" Ice	4.16	2.05	0.12
APXVAARR24-43	В	From Face	4.00	0.0000	160.00	No Ice	20.24	8.89	0.15
(T-Mobile Existing)			-2.00			1/2" Ice	20.89	9.49	0.27
			0.00			1" Ice	21.54	10.09	0.39
AIR6419	C	From Face	4.00	0.0000	160.00	No Ice	3.66	1.66	0.07
(T-Mobile Proposed)			-6.00			1/2" Ice	3.91	1.85	0.09
			0.00			1" Ice	4.16	2.05	0.12

Centek Engineering Inc. 63-2 North Branford Rd.

J	Job	Page
	20143.15 - CTHA231A	7 of 25
	Project	Date
	175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
	Client	Designed by
	T-Mobile	TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weigh
	Leg		Lateral Vert	J					
			ft	0	ft		ft^2	ft^2	K
			ft ft		J		y .	3.	
APXVAARR24-43	С	From Face	4.00	0.0000	160.00	No Ice	20.24	8.89	0.15
(T-Mobile Existing)			-2.00			1/2" Ice	20.89	9.49	0.27
Radio 4449 B71 B12	A	From Face	0.00 4.00	0.0000	160.00	1" Ice No Ice	21.54 1.64	10.09 1.29	0.39 0.07
(T-Mobile Existing)	A	rioiii race	-2.00	0.0000	100.00	1/2" Ice	1.80	1.44	0.07
(1 Moone Existing)			0.00			1" Ice	1.97	1.59	0.11
Radio 4449 B71 B12	В	From Face	4.00	0.0000	160.00	No Ice	1.64	1.29	0.07
(T-Mobile Existing)			-2.00			1/2" Ice	1.80	1.44	0.09
			0.00			1" Ice	1.97	1.59	0.11
Radio 4449 B71 B12	C	From Face	4.00	0.0000	160.00	No Ice	1.64	1.29	0.07
(T-Mobile Existing)			-2.00			1/2" Ice	1.80	1.44	0.09
4460 P25 - P66		г г	0.00	0.0000	160.00	1" Ice	1.97	1.59	0.11
4460 B25+B66	A	From Face	4.00	0.0000	160.00	No Ice	2.56	1.98	0.11
(T-Mobile Proposed)			-2.00 0.00			1/2" Ice 1" Ice	2.76 2.97	2.16 2.34	0.13 0.16
4460 B25+B66	В	From Face	4.00	0.0000	160.00	No Ice	2.56	1.98	0.10
(T-Mobile Proposed)	Ь	i ioni i acc	-2.00	0.0000	100.00	1/2" Ice	2.76	2.16	0.13
(1 Moone 1 oposed)			0.00			1" Ice	2.97	2.34	0.16
4460 B25+B66	C	From Face	4.00	0.0000	160.00	No Ice	2.56	1.98	0.11
(T-Mobile Proposed)			-2.00			1/2" Ice	2.76	2.16	0.13
			0.00			1" Ice	2.97	2.34	0.16
Valmont T-Arm (1)	A	None		0.0000	160.00	No Ice	10.54	10.54	0.34
(T-Mobile Existing)						1/2" Ice	14.45	14.45	0.41
	_					1" Ice	18.36	18.36	0.49
Valmont T-Arm (1)	В	None		0.0000	160.00	No Ice	10.54	10.54	0.34
(T-Mobile Existing)						1/2" Ice 1" Ice	14.45 18.36	14.45 18.36	0.41
Valmont T-Arm (1)	С	None		0.0000	160.00	No Ice	10.54	10.54	0.49 0.34
(T-Mobile Existing)	C	None		0.0000	100.00	1/2" Ice	14.45	14.45	0.34
(1-Moone Existing)						1" Ice	18.36	18.36	0.41
Ionopole Sector Stabilizer	C	None		0.0000	162.00	No Ice	9.00	9.00	0.35
Kit VSK-M	Ü	110110		0.0000	102.00	1/2" Ice	11.50	11.50	0.42
(T-Mobile Existing)						1" Ice	14.00	14.00	0.50
APXVSPP18-C-A20	A	From Face	4.00	0.0000	150.00	No Ice	8.02	5.28	0.06
(Sprint Existing)			0.00			1/2" Ice	8.48	5.74	0.11
			0.00			1" Ice	8.94	6.20	0.16
APXVSPP18-C-A20	В	From Face	4.00	0.0000	150.00	No Ice	8.02	5.28	0.06
(Sprint Existing)			0.00			1/2" Ice	8.48	5.74	0.11
1 DVI (CDD10 C 100		Б Б	0.00	0.0000	150.00	1" Ice	8.94	6.20	0.16
APXVSPP18-C-A20	С	From Face	4.00	0.0000	150.00	No Ice	8.02	5.28	0.06
(Sprint Existing)			0.00 0.00			1/2" Ice 1" Ice	8.48 8.94	5.74 6.20	0.11 0.16
APXVTM14	Α	From Face	4.00	0.0000	150.00	No Ice	6.34	3.61	0.16
(Sprint Existing)	А	1 Iom 1 acc	2.00	0.0000	130.00	1/2" Ice	6.72	3.97	0.10
(Sprint Existing)			0.00			1" Ice	7.10	4.33	0.10
APXVTM14	В	From Face	4.00	0.0000	150.00	No Ice	6.34	3.61	0.06
(Sprint Existing)			2.00			1/2" Ice	6.72	3.97	0.10
- -			0.00			1" Ice	7.10	4.33	0.14
APXVTM14	C	From Face	4.00	0.0000	150.00	No Ice	6.34	3.61	0.06
(Sprint Existing)			2.00			1/2" Ice	6.72	3.97	0.10
			0.00			1" Ice	7.10	4.33	0.14
FD-RRH 4x45 1900	A	From Face	4.00	0.0000	150.00	No Ice	2.32	2.38	0.06
(Sprint Existing)			2.00			1/2" Ice	2.52	2.59	0.08
ED DDII 4-45 1000	ъ	E E	0.00	0.0000	150.00	1" Ice	2.74	2.80	0.11
FD-RRH 4x45 1900	В	From Face	4.00	0.0000	150.00	No Ice	2.32	2.38	0.06
(Sprint Existing)			2.00			1/2" Ice	2.52	2.59	0.08

Centek Engineering Inc. 63-2 North Branford Rd.

Ī	Job	Page
	20143.15 - CTHA231A	8 of 25
	Project	Date
	175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
	Client	Designed by
	T-Mobile	TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weig
	Leg	J1	Lateral Vert	,					
			ft	۰	ft		ft^2	ft^2	K
			ft ft		J.		Ji	Ji	11
FD-RRH 4x45 1900	С	From Face	4.00	0.0000	150.00	No Ice	2.32	2.38	0.06
(Sprint Existing)			2.00			1/2" Ice	2.52	2.59	0.08
FD DDII 4 40 000			0.00	0.0000	1.50.00	1" Ice	2.74	2.80	0.1
FD-RRH 2x50 800	A	From Face	4.00	0.0000	150.00	No Ice	2.06	1.93	0.00
(Sprint Existing)			-2.00 0.00			1/2" Ice 1" Ice	2.24 2.43	2.11 2.29	0.09
FD-RRH 2x50 800	В	From Face	4.00	0.0000	150.00	No Ice	2.43	1.93	0.0
(Sprint Existing)	Ь	1 Ioin 1 acc	-2.00	0.0000	130.00	1/2" Ice	2.24	2.11	0.09
(*F***********************************			0.00			1" Ice	2.43	2.29	0.11
FD-RRH 2x50 800	C	From Face	4.00	0.0000	150.00	No Ice	2.06	1.93	0.06
(Sprint Existing)			-2.00			1/2" Ice	2.24	2.11	0.09
			0.00			1" Ice	2.43	2.29	0.11
TD-RRH8x20-25	A	From Face	4.00	0.0000	150.00	No Ice	4.05	1.53	0.07
(Sprint Existing)			2.00			1/2" Ice	4.30	1.71	0.10
TD DD110 20 25	ъ.		0.00	0.0000	150.00	1" Ice	4.56	1.90	0.13
TD-RRH8x20-25	В	From Face	4.00	0.0000	150.00	No Ice 1/2" Ice	4.05 4.30	1.53	0.07
(Sprint Existing)			2.00 0.00			1" Ice	4.56	1.71 1.90	0.10 0.13
TD-RRH8x20-25	C	From Face	4.00	0.0000	150.00	No Ice	4.05	1.53	0.13
(Sprint Existing)	C	1 Tom 1 acc	2.00	0.0000	130.00	1/2" Ice	4.30	1.71	0.10
(oprint Existing)			0.00			1" Ice	4.56	1.90	0.13
EEI 12-ft Low Profile	C	None		0.0000	150.00	No Ice	15.00	15.00	1.50
Platform						1/2" Ice	18.40	18.40	1.75
(Sprint Existing)						1" Ice	21.80	21.80	2.00
BXA-70063/6CF	A	From Face	4.00	0.0000	118.00	No Ice	7.57	4.16	0.0
(Verizon Existing)			-6.00			1/2" Ice	8.02	4.60	0.05
			0.00			1" Ice	8.47	5.04	0.10
(2) NHH-65B-R2B	Α	From Face	4.00	0.0000	118.00	No Ice	11.19	8.69	0.07
(Verizon Existing)			0.00			1/2" Ice	11.69	9.17	0.15
MT6407-77A	A	From Face	0.00 4.00	0.0000	118.00	1" Ice No Ice	12.20 4.71	9.66 1.84	0.24
(Verizon Existing)	А	110III 1 ace	6.00	0.0000	110.00	1/2" Ice	5.00	2.06	0.03
(Verizon Existing)			0.00			1" Ice	5.29	2.29	0.06
BXA-70063/6CF	В	From Face	4.00	0.0000	118.00	No Ice	7.57	4.16	0.01
(Verizon Existing)			-6.00			1/2" Ice	8.02	4.60	0.05
			0.00			1" Ice	8.47	5.04	0.10
(2) NHH-65B-R2B	В	From Face	4.00	0.0000	118.00	No Ice	11.19	8.69	0.07
(Verizon Existing)			0.00			1/2" Ice	11.69	9.17	0.15
			0.00			1" Ice	12.20	9.66	0.24
MT6407-77A	В	From Face	4.00	0.0000	118.00	No Ice	4.71	1.84	0.00
(Verizon Existing)			6.00			1/2" Ice 1" Ice	5.00	2.06	0.03
BXA-70063/6CF	С	From Face	0.00 4.00	0.0000	118.00	No Ice	5.29 7.57	2.29 4.16	0.06
(Verizon Existing)	C	110III 1 ace	-6.00	0.0000	110.00	1/2" Ice	8.02	4.60	0.05
(Verizon Existing)			0.00			1" Ice	8.47	5.04	0.10
(2) NHH-65B-R2B	C	From Face	4.00	0.0000	118.00	No Ice	11.19	8.69	0.07
(Verizon Existing)	-		0.00			1/2" Ice	11.69	9.17	0.15
<i>S</i> ,			0.00			1" Ice	12.20	9.66	0.24
MT6407-77A	C	From Face	4.00	0.0000	118.00	No Ice	4.71	1.84	0.00
(Verizon Existing)			6.00			1/2" Ice	5.00	2.06	0.03
D2/D444 DD11			0.00	0.0000	110.00	1" Ice	5.29	2.29	0.06
B2/B66A RRH	A	From Face	4.00	0.0000	118.00	No Ice	2.54	1.61	0.06
(Verizon Existing)			6.00			1/2" Ice	2.75	1.79	0.08
B2/B66A RRH	D	From Face	0.00	0.0000	118.00	1" Ice No Ice	2.97	1.98	0.10
(Verizon Existing)	В	rioiii race	4.00 6.00	0.0000	118.00	1/2" Ice	2.54 2.75	1.61 1.79	0.06
(v crizon Existing)			0.00			1" Ice	2.73	1.79	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Jo	ob	Page
	20143.15 - CTHA231A	9 of 25
F	Project	Date
	175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
C	Client	Designed by
	T-Mobile	TJL

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Laierai Vert						
			ft ft	0	ft		ft ²	ft ²	K
			ft						
B2/B66A RRH (Verizon Existing)	С	From Face	4.00 6.00	0.0000	118.00	No Ice 1/2" Ice	2.54 2.75	1.61 1.79	0.06
B5/B13 RRH	Δ.	From Face	0.00 4.00	0.0000	110.00	1" Ice	2.97 1.87	1.98 1.02	0.10 0.07
(Verizon Existing)	A	rioiii race	6.00	0.0000	118.00	No Ice 1/2" Ice	2.03	1.02	0.07
(VCHZOH Existing)			0.00			1" Ice	2.21	1.19	0.03
B5/B13 RRH	В	From Face	4.00	0.0000	118.00	No Ice	1.87	1.02	0.07
(Verizon Existing)	_		6.00			1/2" Ice	2.03	1.15	0.09
ζ,			0.00			1" Ice	2.21	1.29	0.11
B5/B13 RRH	C	From Face	4.00	0.0000	118.00	No Ice	1.87	1.02	0.07
(Verizon Existing)			6.00			1/2" Ice	2.03	1.15	0.09
			0.00			1" Ice	2.21	1.29	0.11
(2) RC2DC-3315-PF-48	В	From Face	1.00	0.0000	118.00	No Ice	3.01	1.96	0.03
(Verizon Existing)			1.00			1/2" Ice	3.23	2.15	0.05
V.1 (12) DI (C. /D. 'I		NT	0.00	0.0000	116.00	1" Ice	3.46	2.35	0.08
Valmont 13' Platform w/Rails (Verizon Existing)	C	None		0.0000	116.00	No Ice	53.00	53.00	2.00 3.00
(verizon Existing)						1/2" Ice 1" Ice	68.00 83.00	68.00 83.00	4.00
3' Whip	В	From Face	6.00	0.0000	164.50	No Ice	1.25	1.25	0.01
3 жыр	ь	1 Tom 1 acc	5.00	0.0000	104.50	1/2" Ice	1.56	1.56	0.01
			0.00			1" Ice	1.87	1.87	0.07
6' Extension Arm Mount	В	From Face	3.00	0.0000	164.42	No Ice	5.01	5.01	0.13
			0.00			1/2" Ice	6.77	6.77	0.17
			0.00			1" Ice	8.53	8.53	0.20
10' Dipole	В	From Face	6.00	0.0000	137.00	No Ice	4.00	4.00	0.05
			5.00			1/2" Ice	6.00	6.00	0.07
			0.00			1" Ice	8.00	8.00	0.10
2'x2' Panel	В	From Face	6.00	0.0000	137.00	No Ice	4.80	0.72	0.02
			0.00			1/2" Ice	5.07	0.87	0.05
	D	г г	0.00	0.0000	125 75	1" Ice	5.35	1.03	0.07
6' Extension Arm Mount	В	From Face	3.00	0.0000	135.75	No Ice	5.01	5.01	0.13
			0.00			1/2" Ice 1" Ice	6.77 8.53	6.77 8.53	0.17 0.20
10' Dipole	В	From Face	6.00	0.0000	104.83	No Ice	4.00	4.00	0.20
то Біроїс	ь	1 Iom 1 acc	5.00	0.0000	104.03	1/2" Ice	6.00	6.00	0.03
			0.00			1" Ice	8.00	8.00	0.10
2'x2' Panel	В	From Face	6.00	0.0000	104.83	No Ice	4.80	0.72	0.02
			0.00			1/2" Ice	5.07	0.87	0.05
			0.00			1" Ice	5.35	1.03	0.07
6' Extension Arm Mount	В	From Face	3.00	0.0000	104.83	No Ice	5.01	5.01	0.13
			0.00			1/2" Ice	6.77	6.77	0.17
			0.00			1" Ice	8.53	8.53	0.20
3' GPS Stand-off Mount	В	From Face	1.00	0.0000	78.00	No Ice	2.45	2.45	0.05
			0.00			1/2" Ice	3.98	3.98	0.07
CDC	D	E E	0.00	0.0000	70.00	1" Ice	5.51	5.51	0.10
GPS	В	From Face	2.00	0.0000	78.00	No Ice	1.00	1.00	0.01
			0.00			1/2" Ice 1" Ice	1.50 2.00	1.50 2.00	0.01 0.02
3' GPS Stand-off Mount	В	From Face	1.00	0.0000	35.25	No Ice	2.45	2.00	0.02
Junoral IIO-pinase e 10	D	riom race	0.00	0.0000	33.43	1/2" Ice	3.98	3.98	0.03
			0.00			1" Ice	5.51	5.51	0.10
GPS	В	From Face	2.00	0.0000	35.25	No Ice	1.00	1.00	0.01
- ~	-		0.00			1/2" Ice	1.50	1.50	0.01
			0.00			1" Ice	2.00	2.00	0.02

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	10 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client T-Mobile	Designed by TJL

Dishes													
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight		
				ft	0	0	ft	ft		ft^2	K		
VHLP800-11-DW1 (Sprint)	A	Paraboloid w/Radome	From Face	3.00 0.00 0.00	Worst		154.00	2.50	No Ice 1/2" Ice 1" Ice	4.91 5.24 5.57	0.05 0.08 0.10		
VHLP800-11-DW1 (Sprint)	В	Paraboloid w/Radome	From Face	3.00 0.00 0.00	Worst		154.00	2.50	No Ice 1/2" Ice 1" Ice	4.91 5.24 5.57	0.05 0.08 0.10		
VHLP2-11-DW1 (Sprint)	A	Paraboloid w/Radome	From Face	3.00 0.00 0.00	Worst		154.00	2.00	No Ice 1/2" Ice 1" Ice	3.14 3.41 3.68	0.10 0.04 0.02 0.00		
VHLP2-11-DW1 (Sprint)	В	Paraboloid w/Radome	From Face	3.00 0.00 0.00	Worst		154.00	2.00	No Ice 1/2" Ice 1" Ice	3.14 3.41 3.68	0.00 0.04 0.02 0.00		
VHLP2-11-DW1 (Sprint)	С	Paraboloid w/Radome	From Face	3.00 0.00 0.00	Worst		154.00	2.00	No Ice 1/2" Ice 1" Ice	3.14 3.41 3.68	0.04 0.02 0.00		
4-ft Grid Dish		Grid	None	0.00	Worst		164.50	4.00	No Ice 1/2" Ice 1" Ice	7.50 13.10 18.70	0.05 0.08 0.11		
4-ft Grid Dish		Grid	None		Worst		104.50	4.00	No Ice 1/2" Ice 1" Ice	7.50 13.10 18.70	0.05 0.08 0.11		

Tower Pressures - No Ice

 $G_H = 1.100$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			•		а			Ü	%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	e	ft ²	ft ²	ft^2		ft ²	ft^2
L1	152.07	1.114	29	100.940	A	0.000	100.940	100.940	100.00	0.000	0.000
176.00-130.75					В	0.000	100.940		100.00	0.000	0.000
					C	0.000	100.940		100.00	0.000	0.000
L2	107.69	1.009	27	137.868	Α	0.000	137.868	137.868	100.00	0.000	0.000
130.75-86.12					В	0.000	137.868		100.00	0.000	0.000
					C	0.000	137.868		100.00	0.000	0.000
L3 86.12-43.00	64.29	0.871	23	168.646	Α	0.000	168.646	168.646	100.00	0.000	0.000
					В	0.000	168.646		100.00	0.000	0.000
					C	0.000	168.646		100.00	0.000	0.000
L4 43.00-1.00	21.49	0.7	19	197.203	Α	0.000	197.203	197.203	100.00	0.000	0.000
					В	0.000	197.203		100.00	0.000	0.000
					C	0.000	197.203		100.00	0.000	0.000

Tower Pressure - With Ice

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	20143.15 - CTHA231A	11 of 25
Project		Date
175' EEI Moi	nopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client	T-Mobile	Designed by
Client	T-Mobile	Designed by

Section	z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						a				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	e	ft ²	ft ²	ft^2		ft^2	ft^2
L1	152.07	1.114	7	2.9127	122.907	Α	0.000	122.907	122.907	100.00	0.000	0.000
176.00-130.75						В	0.000	122.907		100.00	0.000	0.000
						C	0.000	122.907		100.00	0.000	0.000
L2 130.75-86.12	107.69	1.009	6	2.8139	159.534	Α	0.000	159.534	159.534	100.00	0.000	0.000
						В	0.000	159.534		100.00	0.000	0.000
						C	0.000	159.534		100.00	0.000	0.000
L3 86.12-43.00	64.29	0.871	5	2.6724	188.868	Α	0.000	188.868	188.868	100.00	0.000	0.000
						В	0.000	188.868		100.00	0.000	0.000
						C	0.000	188.868		100.00	0.000	0.000
L4 43.00-1.00	21.49	0.7	4	2.3951	215.910	Α	0.000	215.910	215.910	100.00	0.000	0.000
						В	0.000	215.910		100.00	0.000	0.000
						C	0.000	215.910		100.00	0.000	0.000

Tower Pressure - Service

 $G_H=1.100$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					a				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
L1	152.07	1.114	9	100.940	A	0.000	100.940	100.940	100.00	0.000	0.000
176.00-130.75					В	0.000	100.940		100.00	0.000	0.000
					C	0.000	100.940		100.00	0.000	0.000
L2	107.69	1.009	8	137.868	A	0.000	137.868	137.868	100.00	0.000	0.000
130.75-86.12					В	0.000	137.868		100.00	0.000	0.000
					C	0.000	137.868		100.00	0.000	0.000
L3 86.12-43.00	64.29	0.871	7	168.646	Α	0.000	168.646	168.646	100.00	0.000	0.000
					В	0.000	168.646		100.00	0.000	0.000
					C	0.000	168.646		100.00	0.000	0.000
L4 43.00-1.00	21.49	0.7	6	197.203	Α	0.000	197.203	197.203	100.00	0.000	0.000
					В	0.000	197.203		100.00	0.000	0.000
					C	0.000	197.203		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			_						Face
			c			psf			_			
ft	K	K	e						ft^2	K	plf	
L1	0.79	3.20	Α	1	0.65	29	1	1	100.940	2.11	46.71	C
176.00-130.75			В	1	0.65		1	1	100.940			
			C	1	0.65		1	1	100.940			
L2	1.36	5.92	Α	1	0.65	27	1	1	137.868	2.61	58.55	C
130.75-86.12			В	1	0.65		1	1	137.868			
			C	1	0.65		1	1	137.868			
L3	1.49	8.95	Α	1	0.65	23	1	1	168.646	2.75	63.76	C
86.12-43.00			В	1	0.65		1	1	168.646			
			C	1	0.65		1	1	168.646			
L4 43.00-1.00	1.31	12.57	Α	1	0.65	19	1	1	197.203	2.63	62.51	C
			В	1	0.65		1	1	197.203			

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	12 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client T-Mobile	Designed by TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft ²	K	plf	
			C	1	0.65		1	1	197.203			
Sum Weight:	4.94	30.64						OTM	825.90	10.10		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf			_			
ft	K	K	e						ft^2	K	plf	
L1	0.79	3.20	A	1	0.65	29	1	1	100.940	2.11	46.71	C
176.00-130.75			В	1	0.65		1	1	100.940			
			C	1	0.65		1	1	100.940			
L2	1.36	5.92	Α	1	0.65	27	1	1	137.868	2.61	58.55	C
130.75-86.12			В	1	0.65		1	1	137.868			
			C	1	0.65		1	1	137.868			
L3	1.49	8.95	Α	1	0.65	23	1	1	168.646	2.75	63.76	C
86.12-43.00			В	1	0.65		1	1	168.646			
			C	1	0.65		1	1	168.646			
L4 43.00-1.00	1.31	12.57	Α	1	0.65	19	1	1	197.203	2.63	62.51	C
			В	1	0.65		1	1	197.203			
			C	1	0.65		1	1	197.203			
Sum Weight:	4.94	30.64						OTM	825.90	10.10		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.79	3.20	Α	1	0.65	29	1	1	100.940	2.11	46.71	C
176.00-130.75			В	1	0.65		1	1	100.940			
			C	1	0.65		1	1	100.940			
L2	1.36	5.92	Α	1	0.65	27	1	1	137.868	2.61	58.55	C
130.75-86.12			В	1	0.65		1	1	137.868			
			C	1	0.65		1	1	137.868			
L3	1.49	8.95	Α	1	0.65	23	1	1	168.646	2.75	63.76	C
86.12-43.00			В	1	0.65		1	1	168.646			
			C	1	0.65		1	1	168.646			
L4 43.00-1.00	1.31	12.57	Α	1	0.65	19	1	1	197.203	2.63	62.51	C
			В	1	0.65		1	1	197.203			
			C	1	0.65		1	1	197.203			
Sum Weight:	4.94	30.64						OTM	825.90	10.10		
									kip-ft			

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	13 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client	Designed by
T-Mobile	TJL

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.79	7.96	Α	1	1.2	7	1	1	122.907	1.10	24.26	C
176.00-130.75			В	1	1.2		1	1	122.907			
			C	1	1.2		1	1	122.907			
L2	1.36	12.02	Α	1	1.2	6	1	1	158.799	1.28	28.77	C
130.75-86.12			В	1	1.2		1	1	158.799			
			C	1	1.2		1	1	158.799			
L3	1.49	15.91	Α	1	1.2	5	1	1	187.851	1.31	30.30	C
86.12-43.00			В	1	1.2		1	1	187.851			
			C	1	1.2		1	1	187.851			
L4 43.00-1.00	1.31	19.77	Α	1	1.2	4	1	1	213.968	1.21	28.93	C
			В	1	1.2		1	1	213.968			
			C	1	1.2		1	1	213.968			
Sum Weight:	4.94	55.67						OTM	410.38	4.90		
									kip-ft			

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.79	7.96	Α	1	1.2	7	1	1	122.907	1.10	24.26	C
176.00-130.75			В	1	1.2		1	1	122.907			
			C	1	1.2		1	1	122.907			
L2	1.36	12.02	Α	1	1.2	6	1	1	158.799	1.28	28.77	C
130.75-86.12			В	1	1.2		1	1	158.799			
			C	1	1.2		1	1	158.799			
L3	1.49	15.91	Α	1	1.2	5	1	1	187.851	1.31	30.30	C
86.12-43.00			В	1	1.2		1	1	187.851			
			C	1	1.2		1	1	187.851			
L4 43.00-1.00	1.31	19.77	Α	1	1.2	4	1	1	213.968	1.21	28.93	C
			В	1	1.2		1	1	213.968			
			C	1	1.2		1	1	213.968			
Sum Weight:	4.94	55.67						OTM	410.38	4.90		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section		Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevatio	ı Weight	Weight	а									Face
			c			psf			_			
ft	K	K	e						ft^2	K	plf	
	L1 0.79	7.96	Α	1	1.2	7	1	1	122.907	1.10	24.26	C
176.00-13).75		В	1	1.2		1	1	122.907			
			C	1	1.2		1	1	122.907			

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	14 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client T-Mobile	Designed by

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	K	e						ft^2	K	plf	
L2	1.36	12.02	Α	1	1.2	6	1	1	158.799	1.28	28.77	C
130.75-86.12			В	1	1.2		1	1	158.799			
			C	1	1.2		1	1	158.799			
L3	1.49	15.91	Α	1	1.2	5	1	1	187.851	1.31	30.30	C
86.12-43.00			В	1	1.2		1	1	187.851			
			C	1	1.2		1	1	187.851			
L4 43.00-1.00	1.31	19.77	Α	1	1.2	4	1	1	213.968	1.21	28.93	C
			В	1	1.2		1	1	213.968			
			C	1	1.2		1	1	213.968			
Sum Weight:	4.94	55.67						OTM	410.38	4.90		
									kip-ft			

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.79	3.20	Α	1	0.65	9	1	1	100.940	0.63	13.90	C
176.00-130.75			В	1	0.65		1	1	100.940			
			C	1	0.65		1	1	100.940			
L2	1.36	5.92	Α	1	0.65	8	1	1	137.868	0.78	17.43	C
130.75-86.12			В	1	0.65		1	1	137.868			
			C	1	0.65		1	1	137.868			
L3	1.49	8.95	Α	1	0.65	7	1	1	168.646	0.82	18.98	C
86.12-43.00			В	1	0.65		1	1	168.646			
			C	1	0.65		1	1	168.646			
L4 43.00-1.00	1.31	12.57	Α	1	0.65	6	1	1	197.203	0.78	18.61	C
			В	1	0.65		1	1	197.203			
			C	1	0.65		1	1	197.203			
Sum Weight:	4.94	30.64						OTM	245.86	3.01		
									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.79	3.20	Α	1	0.65	9	1	1	100.940	0.63	13.90	C
176.00-130.75			В	1	0.65		1	1	100.940			
			C	1	0.65		1	1	100.940			
L2	1.36	5.92	Α	1	0.65	8	1	1	137.868	0.78	17.43	C
130.75-86.12			В	1	0.65		1	1	137.868			
			C	1	0.65		1	1	137.868			
L3	1.49	8.95	Α	1	0.65	7	1	1	168.646	0.82	18.98	C
86.12-43.00			В	1	0.65		1	1	168.646			
			C	1	0.65		1	1	168.646			
L4 43.00-1.00	1.31	12.57	Α	1	0.65	6	1	1	197.203	0.78	18.61	C

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job	Page
	20143.15 - CTHA231A	15 of 25
ſ	Project	Date
	175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
	Client	Designed by
	T-Mobile	TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft^2	K	plf	
			В	1	0.65		1	1	197.203			
			C	1	0.65		1	1	197.203			
Sum Weight:	4.94	30.64						OTM	245.86	3.01		
									kip-ft			

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
L1	0.79	3.20	Α	1	0.65	9	1	1	100.940	0.63	13.90	C
176.00-130.75			В	1	0.65		1	1	100.940			
			C	1	0.65		1	1	100.940			
L2	1.36	5.92	Α	1	0.65	8	1	1	137.868	0.78	17.43	C
130.75-86.12			В	1	0.65		1	1	137.868			
			C	1	0.65		1	1	137.868			
L3	1.49	8.95	Α	1	0.65	7	1	1	168.646	0.82	18.98	C
86.12-43.00			В	1	0.65		1	1	168.646			
			C	1	0.65		1	1	168.646			
L4 43.00-1.00	1.31	12.57	Α	1	0.65	6	1	1	197.203	0.78	18.61	C
			В	1	0.65		1	1	197.203			
			C	1	0.65		1	1	197.203			
Sum Weight:	4.94	30.64						OTM	245.86	3.01		
									kip-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	30.64					
Bracing Weight	0.00					
Total Member Self-Weight	30.64			-1.20	-3.22	
Total Weight	49.06			-1.20	-3.22	
Wind 0 deg - No Ice		0.19	-24.39	-2932.28	-29.26	4.84
Wind 30 deg - No Ice		12.40	-21.22	-2552.61	-1494.07	3.57
Wind 60 deg - No Ice		21.28	-12.36	-1489.29	-2559.41	1.36
Wind 90 deg - No Ice		24.47	-0.19	-27.23	-2939.82	-1.22
Wind 120 deg - No Ice		21.10	12.03	1441.80	-2533.37	-3.48
Wind 150 deg - No Ice		12.07	21.03	2524.18	-1448.97	-4.80
Wind 180 deg - No Ice		-0.19	24.39	2929.89	22.81	-4.84
Wind 210 deg - No Ice		-12.40	21.22	2550.22	1487.62	-3.57
Wind 240 deg - No Ice		-21.28	12.36	1486.89	2552.96	-1.36
Wind 270 deg - No Ice		-24.47	0.19	24.84	2933.37	1.22
Wind 300 deg - No Ice		-21.10	-12.03	-1444.19	2526.92	3.48
Wind 330 deg - No Ice		-12.07	-21.03	-2526.58	1442.53	4.80
Member Ice	25.03					

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	16 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client	Designed by
T-Mobile	TJL

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Total Weight Ice	112.59			-4.07	-16.13	
Wind 0 deg - Ice		0.05	-12.55	-1546.06	-23.18	
Wind 30 deg - Ice		6.33	-10.89	-1342.99	-793.96	2.19
Wind 60 deg - Ice		10.91	-6.32	-781.16	-1356.33	1.02
Wind 90 deg - Ice		12.57	-0.05	-11.11	-1559.59	-0.42
Wind 120 deg - Ice		10.86	6.23	760.83	-1349.28	-1.75
Wind 150 deg - Ice		6.24	10.84	1327.81	-781.76	
Wind 180 deg - Ice		-0.05	12.55	1537.92	-9.09	-2.77
Wind 210 deg - Ice		-6.33	10.89	1334.86	761.70	-2.19
Wind 240 deg - Ice		-10.91	6.32	773.03	1324.06	-1.02
Wind 270 deg - Ice		-12.57	0.05	2.98	1527.32	0.42
Wind 300 deg - Ice		-10.86	-6.23	-768.96	1317.02	1.75
Wind 330 deg - Ice		-6.24	-10.84	-1335.95	749.49	2.61
Total Weight	49.06			-1.20	-3.22	
Wind 0 deg - Service		0.06	-7.26	-873.74	-10.97	1.44
Wind 30 deg - Service		3.69	-6.32	-760.71	-447.03	1.06
Wind 60 deg - Service		6.34	-3.68	-444.18	-764.16	0.40
Wind 90 deg - Service		7.28	-0.06	-8.95	-877.40	-0.36
Wind 120 deg - Service		6.28	3.58	428.36	-756.41	-1.04
Wind 150 deg - Service		3.59	6.26	750.57	-433.60	-1.43
Wind 180 deg - Service		-0.06	7.26	871.34	4.53	-1.44
Wind 210 deg - Service		-3.69	6.32	758.32	440.58	-1.06
Wind 240 deg - Service		-6.34	3.68	441.78	757.71	-0.40
Wind 270 deg - Service		-7.28	0.06	6.55	870.95	0.36
Wind 300 deg - Service		-6.28	-3.58	-430.76	749.96	1.04
Wind 330 deg - Service		-3.59	-6.26	-752.96	427.15	1.43

Load Combinations

Comb.	Description
No.	2 cacrip non
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	17 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin	n, CT 09:18:53 02/22/22
Client T-Mobile	Designed by

Comb.	Description
No.	
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation 4	Component	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
IVO.	ft	Type		Loaa Comb.	K	kip-ft	Momeni kip-ft
L1	176 - 130.75	Pole	Max Tension	1	0.00	0.00	0.00
LI	170 - 130.73	1 OIC	Max. Compression	26	-46.19	-10.37	2.29
			Max. Mx	8	-14.34	-10.37 -546.01	5.50
			Max. My	2	-14.34	-6.62	549.48
			Max. Vy	8	20.72	-546.01	5.50
			Max. Vx	2	-20.72	-6.62	549.48
			Max. Vx Max. Torque	3	-20.73	-0.02	-3.73
L2	130.75 - 86.12	Pole	Max Tension	1	0.00	0.00	0.00
L2	130.73 - 60.12	role		26	-77.31	-18.91	4.39
			Max. Compression Max. Mx	8	-26.30	-1698.38	16.70
					-26.30 -26.31	-1098.38 -18.96	16.70
			Max. My	2 8	-20.51 31.56	-18.96 -1698.38	
			Max. Vy				16.70
			Max. Vx	2	-31.44	-18.96	1698.80
T 2	06.10 42	D 1	Max. Torque	2	0.00	0.00	-7.05
L3	86.12 - 43	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-96.77	-20.60	4.99
			Max. Mx	8	-39.01	-3104.16	30.10
			Max. My	2	-39.02	-32.57	3099.08
			Max. Vy	8	35.40	-3104.16	30.10
			Max. Vx	2	-35.27	-32.57	3099.08
			Max. Torque	2			-7.43
L4	43 - 1	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-125.15	-21.49	5.41
			Max. Mx	8	-58.85	-4936.62	45.33
			Max. My	2	-58.85	-47.90	4925.16
			Max. Vy	8	39.19	-4936.62	45.33
			Max. Vx	2	-39.06	-47.90	4925.16
			Max. Torque	2			-7.76

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	18 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client T-Mobile	Designed by TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	29	125.15	-10.91	6.32
	Max. H _x	21	44.16	39.15	-0.30
	Max. H _z	2	58.88	-0.30	39.02
	Max. M _x	2	4925.16	-0.30	39.02
	Max. Mz	8	4936.62	-39.15	0.30
	Max. Torsion	14	7.70	0.30	-39.02
	Min. Vert	5	44.16	-19.84	33.94
	Min. H _x	8	58.88	-39.15	0.30
	Min. H _z	14	58.88	0.30	-39.02
	Min. M _x	14	-4922.07	0.30	-39.02
	Min. M _z	20	-4928.29	39.15	-0.30
	Min. Torsion	2	-7.75	-0.30	39.02

Tower Mast Reaction Summary

Load	Vertical	$Shear_x$	$Shear_z$	Overturning M	Overturning Manager M.	Torque
Combination	17	77	IV.	Moment, M_x	Moment, M_z	1: 6
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	49.06	0.00	0.00	-1.25	-3.36	0.00
1.2 Dead+1.6 Wind 0 deg - No	58.88	0.30	-39.02	-4925.16	-47.90	7.75
Ice						
0.9 Dead+1.6 Wind 0 deg - No	44.16	0.30	-39.02	-4861.08	-46.22	7.73
Ice						
1.2 Dead+1.6 Wind 30 deg - No	58.88	19.84	-33.94	-4287.30	-2508.19	5.72
Ice						
0.9 Dead+1.6 Wind 30 deg - No	44.16	19.84	-33.94	-4231.46	-2474.76	5.70
Ice						
1.2 Dead+1.6 Wind 60 deg - No	58.88	34.05	-19.77	-2501.22	-4297.54	2.16
Ice						
0.9 Dead+1.6 Wind 60 deg - No	44.16	34.05	-19.77	-2468.47	-4241.01	2.15
Ice						
1.2 Dead+1.6 Wind 90 deg - No	58.88	39.15	-0.30	-45.33	-4936.62	-1.96
Ice						
0.9 Dead+1.6 Wind 90 deg - No	44.16	39.15	-0.30	-44.34	-4871.85	-1.96
Ice						
1.2 Dead+1.6 Wind 120 deg -	58.88	33.75	19.25	2422.46	-4254.03	-5.53
No Ice						
0.9 Dead+1.6 Wind 120 deg -	44.16	33.75	19.25	2391.53	-4198.07	-5.52
No Ice						
1.2 Dead+1.6 Wind 150 deg -	58.88	19.31	33.64	4240.71	-2432.50	-7.63
No Ice						
0.9 Dead+1.6 Wind 150 deg -	44.16	19.31	33.64	4186.26	-2400.07	-7.61
No Ice						
1.2 Dead+1.6 Wind 180 deg -	58.88	-0.30	39.02	4922.07	39.69	-7.70
No Ice	20.00	0.50	27.02	.,22.0,	27.07	,,,,
0.9 Dead+1.6 Wind 180 deg -	44.16	-0.30	39.02	4858.81	40.20	-7.68
No Ice	20	0.50	27.02	.020.01	.0.20	7.00

Centek Engineering Inc. 63-2 North Branford Rd.

-	Job	Page
	20143.15 - CTHA231A	19 of 25
	Project	Date
	175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
	Client	Designed by
	T-Mobile	TJL

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.6 Wind 210 deg -	58.88	-19.84	33.94	4284.16	2499.94	-5.73
No Ice						
0.9 Dead+1.6 Wind 210 deg -	44.16	-19.84	33.94	4229.16	2468.71	-5.71
No Ice						
1.2 Dead+1.6 Wind 240 deg -	58.88	-34.05	19.77	2498.09	4289.23	-2.22
No Ice						
0.9 Dead+1.6 Wind 240 deg -	44.16	-34.05	19.77	2466.17	4234.91	-2.21
No Ice						
1.2 Dead+1.6 Wind 270 deg -	58.88	-39.15	0.30	42.26	4928.29	1.91
No Ice						
0.9 Dead+1.6 Wind 270 deg -	44.16	-39.15	0.30	42.09	4865.72	1.91
No Ice						
1.2 Dead+1.6 Wind 300 deg -	58.88	-33.75	-19.25	-2425.48	4245.73	5.54
No Ice						
0.9 Dead+1.6 Wind 300 deg -	44.16	-33.75	-19.25	-2393.74	4191.98	5.53
No Ice						
1.2 Dead+1.6 Wind 330 deg -	58.88	-19.31	-33.64	-4243.74	2424.26	7.69
No Ice						
0.9 Dead+1.6 Wind 330 deg -	44.16	-19.31	-33.64	-4188.48	2394.02	7.67
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	125.15	0.00	-0.00	-5.41	-21.49	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	125.15	0.05	-12.55	-1795.93	-29.82	2.95
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	125.15	6.33	-10.89	-1560.15	-924.68	2.34
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	125.15	10.91	-6.32	-907.79	-1577.57	1.10
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	125.15	12.57	-0.05	-13.64	-1813.56	-0.43
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	125.15	10.86	6.23	882.70	-1569.39	-1.85
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	125.15	6.24	10.84	1541.07	-910.50	-2.76
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	125.15	-0.05	12.55	1785.04	-13.43	-2.94
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	125.15	-6.33	10.89	1549.25	881.43	-2.34
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	125.15	-10.91	6.32	896.88	1534.31	-1.10
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	125.15	-12.57	0.05	2.75	1770.28	0.43
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	125.15	-10.86	-6.23	-893.59	1526.12	1.85
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	125.15	-6.24	-10.84	-1551.95	867.24	2.77
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	49.06	0.06	-7.26	-911.23	-11.55	1.45
Dead+Wind 30 deg - Service	49.06	3.69	-6.32	-793.36	-466.26	1.08
Dead+Wind 60 deg - Service	49.06	6.34	-3.68	-463.26	-796.96	0.41
Dead+Wind 90 deg - Service	49.06	7.28	-0.06	-9.38	-915.04	-0.36
Dead+Wind 120 deg - Service	49.06	6.28	3.58	446.68	-788.87 452.24	-1.04
Dead+Wind 150 deg - Service	49.06	3.59	6.26	782.70	-452.24	-1.44
Dead+Wind 180 deg - Service	49.06	-0.06	7.26	908.66	4.63	-1.45
Dead+Wind 210 deg - Service	49.06	-3.69	6.32	790.79	459.34	-1.08
Dead+Wind 240 deg - Service	49.06	-6.34 7.38	3.68	460.69	790.04	-0.41
Dead+Wind 270 deg - Service	49.06	-7.28	0.06	6.81	908.12	0.36
Dead+Wind 300 deg - Service	49.06	-6.28	-3.58	-449.25	781.95	1.04
Dead+Wind 330 deg - Service	49.06	-3.59	-6.26	-785.27	445.32	1.44

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	20 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client	Designed by
T-Mobile	TJL

Solution Summary

	Su	m of Applied Forces	7		Sum of Reaction	15	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	, , =
1	0.00	-49.06	0.00	-0.00	49.06	0.00	0.000%
2	0.30	-58.88	-39.02	-0.30	58.88	39.02	0.000%
3	0.30	-44.16	-39.02	-0.30	44.16	39.02	0.000%
4	19.84	-58.88	-33.94	-19.84	58.88	33.94	0.000%
5	19.84	-44.16	-33.94	-19.84	44.16	33.94	0.000%
6	34.05	-58.88	-19.77	-34.05	58.88	19.77	0.000%
7	34.05	-44.16	-19.77	-34.05	44.16	19.77	0.000%
8	39.15	-58.88	-0.30	-39.15	58.88	0.30	0.000%
9	39.15	-44.16	-0.30	-39.15	44.16	0.30	0.000%
10	33.75	-58.88	19.25	-33.75	58.88	-19.25	0.000%
11	33.75	-44.16	19.25	-33.75	44.16	-19.25	0.000%
12	19.31	-58.88	33.64	-19.31	58.88	-33.64	0.000%
13	19.31	-44.16	33.64	-19.31	44.16	-33.64	0.000%
14	-0.30	-58.88	39.02	0.30	58.88	-39.02	0.000%
15	-0.30	-44.16	39.02	0.30	44.16	-39.02	0.000%
16	-19.84	-44.10 -58.88	33.94	19.84	58.88	-33.94	0.000%
17	-19.84	-44.16	33.94	19.84	44.16	-33.94	0.000%
18	-34.05	-44.10 -58.88	19.77	34.05	58.88	-33.94 -19.77	0.000%
19	-34.05 -34.05	-38.88 -44.16	19.77	34.05	36.66 44.16	-19.77 -19.77	0.000%
20	-34.03 -39.15	-44.16 -58.88	0.30	34.03 39.15	58.88	-0.30	0.000%
21	-39.15	-36.66 -44.16	0.30	39.15	44.16	-0.30	0.000%
21	-39.13 -33.75	-44.16 -58.88	-19.25	33.75	58.88	-0.30 19.25	0.000%
22	-33.75 -33.75	-38.88 -44.16	-19.25 -19.25	33.75 33.75	38.88 44.16	19.25	
23 24	-33.73 -19.31	-44.16 -58.88	-19.23 -33.64	19.31	58.88	33.64	0.000% 0.000%
24 25	-19.31 -19.31	-58.88 -44.16	-33.64 -33.64	19.31	38.88 44.16	33.64 33.64	0.000%
25 26	0.00	-44.16 -125.15	0.00	-0.00	125.15	0.00	0.000%
26	0.05	-125.15 -125.15	-12.55	-0.00 -0.05	125.15	12.55	0.000%
28	6.33	-125.15 -125.15	-12.33 -10.89	-0.03 -6.33	125.15	10.89	0.000%
28 29	10.91	-125.15	-6.32	-0.33 -10.91	125.15	6.32	0.000%
30	12.57	-125.15 -125.15	-0.32 -0.05	-10.91 -12.57	125.15	0.05	0.000%
30 31	10.86	-125.15 -125.15	-0.05 6.23	-12.57 -10.86	125.15	-6.23	0.000%
32							
32	6.24 -0.05	-125.15 -125.15	10.84 12.55	-6.24	125.15 125.15	-10.84 -12.55	0.000% 0.000%
				0.05			
34 35	-6.33	-125.15	10.89	6.33	125.15	-10.89	0.000%
35 36	-10.91 -12.57	-125.15 -125.15	6.32 0.05	10.91 12.57	125.15 125.15	-6.32 -0.05	0.000% 0.000%
36 37		-125.15 -125.15	-6.23	12.57		-0.05 6.23	0.000%
	-10.86				125.15		
38 39	-6.24	-125.15	-10.84	6.24	125.15	10.84	0.000%
39 40	0.06	-49.06 -49.06	-7.26	-0.06	49.06 49.06	7.26	0.000%
	3.69		-6.32	-3.69		6.32	0.000%
41	6.34	-49.06	-3.68	-6.34 7.28	49.06	3.68	0.000%
42	7.28	-49.06	-0.06	-7.28	49.06	0.06	0.000%
43	6.28	-49.06	3.58	-6.28	49.06	-3.58	0.000%
44	3.59	-49.06	6.26	-3.59	49.06	-6.26 7.26	0.000%
45	-0.06	-49.06	7.26	0.06	49.06	-7.26	0.000%
46	-3.69	-49.06	6.32	3.69	49.06	-6.32	0.000%
47	-6.34	-49.06	3.68	6.34	49.06	-3.68	0.000%
48	-7.28	-49.06	0.06	7.28	49.06	-0.06	0.000%
49	-6.28	-49.06	-3.58	6.28	49.06	3.58	0.000%
50	-3.59	-49.06	-6.26	3.59	49.06	6.26	0.000%

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	21 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client T-Mobile	Designed by TJL

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00036340
3	Yes	5	0.00000001	0.00016514
4	Yes	6	0.00000001	0.00017202
5	Yes	6	0.00000001	0.00005259
6	Yes	6	0.00000001	0.00016026
7	Yes	6	0.00000001	0.00004840
8	Yes	5	0.00000001	0.00013637
9	Yes	5	0.00000001	0.00015037
10	Yes	6	0.00000001	0.00015107
11	Yes	6	0.0000001	0.00013107
12	Yes	6	0.0000001	0.00016982
13	Yes	6	0.0000001	0.00016982
14	Yes	5	0.00000001	0.00023556
15	Yes	5	0.00000001	0.00010833
16	Yes	6	0.00000001	0.00015532
17	Yes	6	0.0000001	0.00004680
18	Yes	6	0.00000001	0.00016569
19	Yes	6	0.00000001	0.00005050
20	Yes	5	0.00000001	0.00002496
21	Yes	4	0.00000001	0.00039431
22	Yes	6	0.00000001	0.00016561
23	Yes	6	0.00000001	0.00005116
24	Yes	6	0.00000001	0.00014826
25	Yes	6	0.00000001	0.00004495
26	Yes	4	0.00000001	0.00020492
27	Yes	6	0.00000001	0.00036303
28	Yes	6	0.00000001	0.00070632
29	Yes	6	0.00000001	0.00067064
30	Yes	6	0.00000001	0.00035331
31	Yes	6	0.00000001	0.00053531
32	Yes	6	0.0000001	0.00068467
33	Yes	6		
			0.00000001	0.00035686
34	Yes	6	0.00000001	0.00061244
35	Yes	6	0.00000001	0.00064250
36	Yes	6	0.00000001	0.00033855
37	Yes	6	0.00000001	0.00064186
38	Yes	6	0.00000001	0.00060740
39	Yes	4	0.00000001	0.00022243
40	Yes	4	0.00000001	0.00051042
41	Yes	4	0.00000001	0.00040223
42	Yes	4	0.00000001	0.00008960
43	Yes	4	0.00000001	0.00035594
44	Yes	4	0.00000001	0.00051565
45	Yes	4	0.00000001	0.00020623
46	Yes	4	0.00000001	0.00036650
47	Yes	4	0.00000001	0.00043804
48	Yes	4	0.00000001	0.00007926
49	Yes	4	0.00000001	0.00046890
50	Yes	4	0.0000001	0.00046890

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	۰
L1	176 - 130.75	26.175	41	1.3619	0.0052

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	20143.15 - CTHA231A	22 of 25
Project 175' EE	El Monopole - 1657 Berlin Turnpike Berlin, CT	Date 09:18:53 02/22/22
Client	T-Mobile	Designed by TJL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L2	135.25 - 86.12	15.170	41	1.1431	0.0048
L3	91.87 - 43	6.561	41	0.7181	0.0023
L4	50 - 1	1.827	41	0.3436	0.0009

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
176.00	2'x2' Panel	41	26.175	1.3619	0.0052	47849
170.00	800-10121	41	24.473	1.3366	0.0053	39874
164.50	4-ft Grid Dish	41	22.923	1.3127	0.0053	20803
164.42	6' Extension Arm Mount	41	22.900	1.3123	0.0053	20660
162.00	Monopole Sector Stabilizer Kit	41	22.223	1.3013	0.0053	17088
	VSK-M					
160.00	AIR6419	41	21.667	1.2920	0.0052	14952
154.00	VHLP800-11-DW1	41	20.018	1.2622	0.0052	10874
150.00	APXVSPP18-C-A20	41	18.940	1.2405	0.0052	9201
137.00	10' Dipole	41	15.597	1.1563	0.0049	6170
135.75	6' Extension Arm Mount	41	15.292	1.1469	0.0048	6036
118.00	BXA-70063/6CF	41	11.293	0.9885	0.0039	5944
116.00	Valmont 13' Platform w/Rails	41	10.882	0.9685	0.0038	5952
104.83	10' Dipole	41	8.737	0.8529	0.0031	5998
104.50	4-ft Grid Dish	41	8.677	0.8494	0.0031	6000
78.00	3' GPS Stand-off Mount	41	4.602	0.5831	0.0017	5988
35.25	3' GPS Stand-off Mount	41	0.984	0.2331	0.0006	8396

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	176 - 130.75	140.707	4	7.3417	0.0277
L2	135.25 - 86.12	81.674	6	6.1600	0.0256
L3	91.87 - 43	35.373	6	3.8730	0.0125
L4	50 - 1	9.855	6	1.8542	0.0046

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
176.00	2'x2' Panel	4	140.707	7.3417	0.0279	9195
170.00	800-10121	4	131.575	7.2049	0.0279	7663
164.50	4-ft Grid Dish	6	123.262	7.0753	0.0279	3996
164.42	6' Extension Arm Mount	6	123.141	7.0734	0.0279	3969
162.00	Monopole Sector Stabilizer Kit	6	119.511	7.0140	0.0279	3282
	VSK-M					
160.00	AIR6419	6	116.526	6.9635	0.0279	2871

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	23 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client T-Mobile	Designed by
1 WIODIIC	TJL

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
154.00	VHLP800-11-DW1	6	107.684	6.8025	0.0277	2086
150.00	APXVSPP18-C-A20	6	101.903	6.6855	0.0275	1764
137.00	10' Dipole	6	83.968	6.2315	0.0259	1179
135.75	6' Extension Arm Mount	6	82.326	6.1807	0.0257	1153
118.00	BXA-70063/6CF	6	60.839	5.3278	0.0210	1126
116.00	Valmont 13' Platform w/Rails	6	58.631	5.2203	0.0204	1127
104.83	10' Dipole	6	47.090	4.5988	0.0166	1131
104.50	4-ft Grid Dish	6	46.770	4.5802	0.0165	1131
78.00	3' GPS Stand-off Mount	6	24.820	3.1457	0.0091	1119
35.25	3' GPS Stand-off Mount	6	5.310	1.2580	0.0029	1558

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Ratio
Thickness	of Anchor Bolts	Size	Allowable	Allowable	Allowable	Allowable	Condition	
	Dons		Ratio Bolt	Ratio Bolt	Ratio Plate	Ratio Stiffener		
			Tension	Compression	Stress	Stress		
in		in	K	K	ksi	ksi		
2.0000	18	2.2500	183.28	189.82	32.155	33.523	Bolt T	0.82
			223.65	371.27	54.000	54.000		~
			0.82	0.51	0.60	0.62		•

Compression Checks

Pole Design Da	ata
----------------	-----

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	176 - 130.75 (1)	TP31.8x21x0.25	45.25	175.00	194.1	24.1827	-14.31	145.00	0.099
L2	130.75 - 86.12 (2)	TP41.82x30.226x0.3125	49.13	175.00	147.3	39.8244	-26.28	414.47	0.063
L3	86.12 - 43 (3)	TP51.36x39.8381x0.375	48.87	175.00	119.9	58.7205	-38.99	922.68	0.042
L4	43 - 1 (4)	TP60.5x48.9596x0.4375	49.00	175.00	98.5	83.4043	-58.85	1942.46	0.030

Pole Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	176 - 130.75 (1)	TP31.8x21x0.25	553.27	1063.91	0.520	0.00	1063.91	0.000
L2	130.75 - 86.12	TP41.82x30.226x0.3125	1713.03	2268.91	0.755	0.00	2268.91	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
20143.15 - CTHA231A	24 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client	Designed by
T-Mobile	TJL

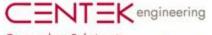
Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
	(2)							
L3	86.12 - 43 (3)	TP51.36x39.8381x0.375	3128.42	4077.31	0.767	0.00	4077.31	0.000
L4	43 - 1 (4)	TP60.5x48.9596x0.4375	4972.42	6942.81	0.716	0.00	6942.81	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	176 - 130.75 (1)	TP31.8x21x0.25	20.90	849.12	0.025	2.72	2133.05	0.001
L2	130.75 - 86.12 (2)	TP41.82x30.226x0.3125	31.74	1373.95	0.023	5.31	4548.70	0.001
L3	86.12 - 43 (3)	TP51.36x39.8381x0.375	35.64	2009.04	0.018	2.16	8173.96	0.000
L4	43 - 1 (4)	TP60.5x48.9596x0.4375	39.42	2809.06	0.014	2.16	13917.92	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_u	Ratio M_{ux}	Ratio M_{uy}	$Ratio$ V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	176 - 130.75 (1)	0.099	0.520	0.000	0.025	0.001	0.619	1.000	4.8.2
L2	130.75 - 86.12 (2)	0.063	0.755	0.000	0.023	0.001	0.819	1.000	4.8.2
L3	86.12 - 43 (3)	0.042	0.767	0.000	0.018	0.000	0.810	1.000	4.8.2
L4	43 - 1 (4)	0.030	0.716	0.000	0.014	0.000	0.747	1.000	4.8.2


Section Capacity Table

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L1	176 - 130.75	Pole	TP31.8x21x0.25	1	-14.31	145.00	61.9	Pass
L2	130.75 - 86.12	Pole	TP41.82x30.226x0.3125	2	-26.28	414.47	81.9	Pass
L3	86.12 - 43	Pole	TP51.36x39.8381x0.375	3	-38.99	922.68	81.0	Pass
L4	43 - 1	Pole	TP60.5x48.9596x0.4375	4	-58.85	1942.46	74.7	Pass
							Summary	
						Pole (L2)	81.9	Pass
						Base Plate	81.9	Pass
						RATING =	81.9	Pass

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
20143.15 - CTHA231A	25 of 25
Project	Date
175' EEI Monopole - 1657 Berlin Turnpike Berlin, CT	09:18:53 02/22/22
Client	Designed by
T-Mobile	TJL

 $Program\ Version\ 8.1.1.0\ -\ 6/3/2021\ File: J:/Jobs/2014300. WI/15_CTHA231A_1657\ Berlin\ Turnpike/05_Structural/Tower\ Analysis/Backup\ Documentation/Rev\\ (1)/ERI\ Files/175'\ EEI\ Monopole\ Berlin,\ CT.eri$

Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 1: 2/22/22

CAISSON FOUNDATION

175-ft EEI Monopole

Berlin, CT

Prepared by: TJL Checked by: C.A.G.

Job No. 20143.15

Caisson Foundation:

Input Data:

Shear Force = S := 39kUSER INPUT-FROM tnxTower

Overturning Moment = USER INPUT-FROM tnxTower $M:=\,4972ft\cdot k$

AppliedAxial Load= USER INPUT-FROM tnxTower A1 := 59k

Bending Moment = Mu := 5281ft·k USER INPUT-FROM LPILE

Moment Capacity = USER INPUT-FROM LPILE $Mn := 9228 ft \cdot k$

Foundation Diameter = $d \coloneqq 7.5 ft$ **USER INPUT**

Overall Length of Caisson = **USER INPUT** $L_{c} := 39.0 \text{ft}$

Depth From Top of Caisson to Grade = **USER INPUT** $L_{pag} := 4.0 ft$

> Number of Rebar = n := 30**USER INPUT**

 $\mathsf{Ar} \coloneqq \mathsf{1.560in}^2$ Area of Rebar = **USER INPUT**

Rebar Yield Strength = fy := 60ksi **USER INPUT**

USER INPUT Concrete Comp Strength = f'c := 4ksi

Check Moment Capacity:

 $FS:=\frac{0.9{\cdot}Mn}{Mu}=1.6$ Factor of Safety =

Factor of Safety Required = $FS_{reqd} := 1$

 $FOSCheck := if\Big(FS \ge FS_{reqd}, "OK", "NO GOOD"\Big)$

FOSCheck = "OK"

LPILE Plus for Windows, Version 5.0 (5.0.47)

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method

> (c) 1985-2010 by Ensoft, Inc. AII Rights Reserved

This program is licensed to:				
TJL Centek Engineering				
Files Used for Analysis				
Path to file locations: J:\Jobs\2014300.WI\15_CTHA231A_1657 Berlin Turnpike\05_Structural\Tower Analysis\Backup Documentation\Rev (1)\Foundation\ Name of input data file: Caisson Analysis.lpd Name of output file: Caisson Analysis.lpo Name of plot output file: Caisson Analysis.lpp Name of runtime file: Caisson Analysis.lpr				
Time and Date of Analysis				
Date: February 22, 2022 Time: 9:25:43				
Problem Title				
20143. 15 - CTHA231A				
Program Options				
Units Used in Computations - US Customary Units: Inches, Pounds Basic Program Options:				

Analysis Type 3:

- Computation of Nonlinear Bending Stiffness and Ultimate Bending Moment Capacity with Pile Response Computed Using Nonlinear El

Computation Options:

- Only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis for fixed-length pile or shaft only
- Analysis includes computation of foundation stiffness matrix elements
- Output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths

Solution Control Parameters:

- Number of pile increments = 100 - Maximum number of iterations allowed = 100
- Deflection tolerance for convergence = 1.0000E-04 in
- Maximum allowable deflection = 1.0000E+02 in

Printing Options:

- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.

- Printing Increment (spacing of output points) = 8

Pile Structural	Properties and	Geometry	

Pile Length = 468.00 in

Depth of ground surface below top of pile = 48.00 in

Slope angle of ground surface = 0.00 deg.

Structural properties of pile defined using 2 points

Poi nt No.	Poi nt Depth i n	Pile Diameter in	Moment of Inertia in**4	Pile Area Sq.in	Modulus of Elasticity Ibs/Sq.in
1	0. 0000	90. 00000000	3220623.	6361. 0000	3600000.
2	468. 0000	90. 00000000	3220623.	6361. 0000	3600000.

Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of moment of inertia and modulus of are not used for any computations other than total stress due to combined axial loading and bending.

Soil and Rock Layering Information

The soil profile is modelled using 4 layers

```
Layer 1 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer
                                                    48.000 in
Distance from top of pile to bottom of layer =
                                                    60.000 in
p-y subgrade modulus k for top of soil layer =
                                                     1.000 lbs/in**3
p-y subgrade modulus k for bottom of layer
                                                     1.000 lbs/in**3
Layer 2 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer
                                                    60.000 in
Distance from top of pile to bottom of layer =
                                                   132.000 in
p-y subgrade modulus k for top of soil layer =
                                                    25.000 lbs/in**3
p-y subgrade modulus k for bottom of layer =
                                                    25.000 lbs/in**3
Layer 3 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer
                                                   132.000 in
Distance from top of pile to bottom of layer =
                                                   192.000 in
p-y subgrade modulus k for top of soil layer =
                                                    35.000 lbs/in**3
p-y subgrade modulus k for bottom of layer =
                                                    35.000 lbs/in**3
Layer 4 is sand, p-y criteria by Reese et al., 1974
Distance from top of pile to top of layer
                                                   192.000 in
                                                   468.000 in
Distance from top of pile to bottom of layer =
p-y subgrade modulus k for top of soil layer =
                                                   120.000 lbs/in**3
p-y subgrade modulus k for bottom of layer =
                                                   120.000 lbs/in**3
```

(Depth of lowest layer extends 0.00 in below pile tip)

Effective Unit Weight of Soil vs. Depth

Effective unit weight of soil with depth defined using 8 points

Poi nt No.	Depth X in	Eff. Unit Weight lbs/in**3
1	48. 00	0. 03600
2	60.00	0.03600
3	60.00	0.03600
4	132.00	0.03600
5	132.00	0.03600
6	192.00	0.03600
7	192.00	0.03600

Shear Strength of Soils

Shear strength parameters with depth defined using 8 points

Poi nt No.	Depth X in	Cohesion c lbs/in**2	Angle of Friction Deg.	E50 or k_rm	RQD %
		103/111 2			
1	48. 000	0.00000	30.00		
2	60.000	0.00000	30.00		
3	60.000	0.00000	32.00		
4	132.000	0.00000	32.00		
5	132.000	0.00000	34.00		
6	192.000	0.00000	34.00		
7	192.000	0.00000	36.00		
8	468. 000	0.00000	36.00		

Notes:

Load Case Number 1

- (1) Cohesion = uniaxial compressive strength for rock materials.
- (2) Values of E50 are reported for clay strata.
- (3) Default values will be generated for E50 when input values are 0.
- (4) RQD and k_rm are reported only for weak rock strata.

Loadi ng Type	
Static loading criteria was used for computation of p-y curves.	
Pile-head Loading and Pile-head Fixity Conditions	
Number of Loads specified = 2	

Pile-head boundary conditions are Shear and Moment (BC Type 1)

Shear force at pile head = 39000.000 lbs Bending moment at pile head = 59664000.000 in-lbs Axial load at pile head = 59000.000 lbs

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Load Case Number 2

Pile-head boundary conditions are Shear and Moment (BC Type 1)

Shear force at pile head = 15000.000 lbs

Bending moment at pile head = 22908000.000 in-lbs

Axial load at pile head = 59000.000 lbs

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Number of sections = 1

Pile Section No. 1

The sectional shape is a circular drilled shaft (bored pile).

Outside Diameter = 90.0000 in

Material Properties:

Compressive Strength of Concrete = 4.000 kip/in**2Yield Stress of Reinforcement = 60. kip/in**2

Modulus of Elasticity of Reinforcement = 29000. kip/in**2 Number of Reinforcing Bars = 30

Area of Single Bar = 1.56000 in**2

Number of Rows of Reinforcing Bars = 15

Area of Steel = 46.800 in**2 Area of Shaft = 6361.725 in**2

Percentage of Steel Reinforcement = 0.736 percent

Cover Thickness (edge to bar center) = 4.000 in

Unfactored Axial Squash Load Capacity = 24278.75 kip

Distribution and Area of Steel Reinforcement

Row Area of Distance to

Number	Reinforcement in**2	Centroidal Axis in
1	3. 120	40. 775
2	3. 120	38. 993
3	3. 120	35. 507
4	3. 120	30. 469
5	3. 120	24. 099
6	3. 120	16. 676
7	3. 120	8. 524
8	3. 120	0.000
9	3. 120	-8. 524
10	3. 120	-16. 676
11	3. 120	-24. 099
12	3. 120	-30. 469
13	3. 120	-35. 507
14	3. 120	-38. 993
15	3. 120	-40. 775

Axial Thrust Force = 59000.00 lbs

Bending Max. Steel	Bendi ng	Bendi ng	Maxi mum	Neutral Axis Ma	ax. Concrete
Moment Stress	Stiffness	Curvature	Strain	Position	Stress
in-lbs psi	l b-i n2	rad/i n	in/in	i nches	psi
8014271. 812. 58853	1. 282283E+13	6. 250000E-07	0.00003066	49. 05707315	108. 91010
15953292. 1554. 77792	1. 276263E+13	0.00000125	0. 00005889	47. 11502776	207. 49863
23818467. 2298. 09732	1. 270318E+13	0.00000188	0.00008717	46. 48846105	304. 72315
31607785.	1. 264311E+13	0.00000250	0. 00011540	46. 15952566	400. 31060
3040. 28194 31607785.	1. 011449E+13	0. 00000313	0. 00007548	24. 15363416	260. 76765
5584. 47232 31607785.	8. 428743E+12	0.00000375	0.00008883	23. 68915334	305. 63291
6751. 87907 31607785.	7. 224636E+12	0. 00000438	0. 00010199	23. 31224129	349. 49503
7925. 01297 31607785.	6. 321557E+12	0.00000500	0. 00011516	23. 03248420	393. 09410
9097. 72246 31607785.	5. 619162E+12	0. 00000563	0.00012835	22. 81751856	436. 42945
10270. 00404 31607785.	5. 057246E+12	0. 00000625	0. 00014155	22. 64791444	479. 50015
11441. 85634 31607785.	4. 597496E+12	0. 00000688	0. 00015477	22. 51132026	522. 30556

12613. 27544	4 04 40745 40	0.0000750	0.0004/000	00 45470450	F// 44F4F
31607785.	4. 214371E+12	0. 00000750	0. 00016839	22. 45172158	566. 14545
13772. 89956	2 000100E.12	0.0000013	0.000101/1	22 25150740	/00 21040
31607785. 14944. 23295	3. 890189E+12	0.00000813	0. 00018161	22. 35159740	608. 31848
31607785.	3. 612318E+12	0. 00000875	0. 00019484	22. 26763889	650. 22863
16115. 09380	3.012310E+12	0.00000673	0.00019464	22. 20/03009	030. 22003
31607785.	3. 371497E+12	0.00000938	0.00020809	22. 19662204	691. 87498
17285. 47963	J. J/147/L+12	0.00000730	0.00020009	22. 17002204	071.07470
31607785.	3. 160778E+12	0. 00001000	0. 00022136	22. 13613287	733. 25669
18455. 38680	0. 1007702112	0.00001000	0.00022100	22. 10010207	700.20007
31607785.	2. 974850E+12	0.00001063	0.00023465	22. 08432600	774. 37297
19624. 81147					
31607785.	2.809581E+12	0.00001125	0.00024795	22. 03976110	815. 22281
20793. 75145					
31607785.	2. 661708E+12	0.00001188	0.00026127	22. 00130895	855. 80550
21962. 20182					
31607785.	2. 528623E+12	0.00001250	0.00027460	21. 96805492	896. 11984
23130. 16176					
32580293.	2. 482308E+12	0. 00001313	0. 00028795	21. 93926945	936. 16511
24297. 62632	0 47/0505 40	0.00004075	0.00000100	04 04 105 114	075 04040
34045690.	2. 476050E+12	0. 00001375	0. 00030132	21. 91435441	975. 94049
25464. 59101	0 470001E.10	0.00001430	0 00021471	21 00200022	1015 44402
35509564. 26631. 05449	2. 470231E+12	0. 00001438	0. 00031471	21. 89280823	1015. 44483
36971907.	2. 464794E+12	0. 00001500	0. 00032811	21. 87421784	1054. 67720
27797. 01324	2. 404/74L+12	0.00001300	0.00032011	21.07421704	1034.07720
38432716.	2. 459694E+12	0. 00001563	0. 00034153	21. 85823992	1093. 63680
28962. 46212	2. 1070712112	0.00001000	0. 00001100	21.00020772	1070.00000
39891980.	2. 454891E+12	0.00001625	0.00035497	21. 84457943	1132. 32262
30127. 39812					
41349687.	2. 450352E+12	0.00001688	0.00036843	21. 83298424	1170. 73359
31291. 81859					
42805838.	2. 446048E+12	0. 00001750	0. 00038191	21. 82324514	1208. 86897
32455. 71743					
44260412.	2. 441954E+12	0. 00001813	0. 00039540	21. 81517169	1246. 72749
33619. 09380	0 4000405 40	0.00001075	0.00040004	24 000/05/4	1004 20022
45713404.	2. 438048E+12	0. 00001875	0. 00040891	21. 80860564	1284. 30823
34781. 94319 47164808.	2. 434313E+12	0. 00001938	0. 00042244	21. 80341020	1321. 61029
35944. 26048	2. 434313E+12	0.00001936	0.00042244	21.00341020	1321.01029
48614620.	2. 430731E+12	0.00002000	0.00043599	21. 79946467	1358. 63272
37106. 04116	2. 430731L+12	0.00002000	0.000+3377	21.77740407	1330. 03272
50062815.	2. 427288E+12	0.00002063	0.00044956	21. 79665640	1395. 37417
38267. 28465					
51509391.	2. 423971E+12	0.00002125	0.00046314	21. 79489419	1431.83376
39427. 98530					
52954346.	2. 420770E+12	0.00002188	0. 00047675	21. 79409757	1468. 01061
40588. 13727					
54397661.	2. 417674E+12	0. 00002250	0. 00049037	21. 79418877	1503. 90342
41747. 73883					

55839329.	2. 414674E+12	0. 00002313	0. 00050401	21. 79510340	1539. 51123
42906. 78487 57279342. 44065. 27125	2. 411762E+12	0.00002375	0.00051767	21. 79678246	1574. 83292
58717685. 45223. 19433	2. 408931E+12	0.00002438	0.00053135	21. 79917231	1609. 86736
61589332. 47537. 33152	2. 403486E+12	0.00002563	0.00055878	21. 80590197	1679. 07017
64454191. 49849. 16003	2. 398295E+12	0.00002688	0.00058628	21. 81496784	1747. 11073
67312175. 52158. 64457	2. 393322E+12	0.00002813	0.00061386	21. 82610169	1813. 97972
70163189. 54465. 74988	2. 388534E+12	0.00002938	0. 00064152	21. 83908090	1879. 66754
73007155. 56770. 43490	2. 383907E+12	0.00003063	0. 00066927	21. 85372576	1944. 16476
75843981. 59072. 65980	2. 379419E+12	0. 00003188	0. 00069710	21. 86988339	2007. 46152
78394465. 60000. 00000	2. 366625E+12	0.00003313	0. 00072410	21. 85949787	2067. 44242
80354245. 60000. 00000	2. 337578E+12	0.00003438	0.00074918	21. 79442480	2121. 85699
82105493. 60000. 00000 83566957.	2. 304716E+12 2. 266223E+12	0. 00003563 0. 00003688	0. 00077360 0. 00079704	21. 71519503	2173. 68092 2222. 32202
60000. 00000 85024818.	2. 230159E+12	0. 00003888	0. 00079704	21. 61458537 21. 52189627	2270. 08460
60000. 00000 86169849.	2. 188441E+12	0. 00003813	0. 00082032	21. 32187027	2314. 41530
60000. 00000 87247421.	2. 147629E+12	0. 00004063	0. 00086490	21. 28974304	2357. 42364
60000. 00000 88322134.	2. 109185E+12	0. 00004188	0. 00088702	21. 18249223	2399. 64631
60000.00000 89385543.	2. 072708E+12	0. 00004313	0. 00090914	21. 08156070	2441. 00473
60000. 00000 90377150.	2. 036668E+12	0. 00004438	0. 00093188	21. 00000009	2482. 63750
60000. 00000 90955555.	1. 993546E+12	0. 00004563	0.00095373	20. 90359345	2521. 71834
60000.00000 91704155. 60000.00000	1. 956355E+12	0. 00004688	0. 00097412	20. 78131154	2557. 31829
92450654. 60000.00000	1. 921053E+12	0. 00004813	0.00099456	20. 66614553	2592. 24688
93195022. 60000.00000	1. 887494E+12	0.00004938	0. 00101503	20. 55755898	2626. 50027
93861466. 60000.00000	1. 854054E+12	0.00005063	0.00103509	20. 44615075	2659. 30849
94361720. 60000. 00000	1. 819021E+12	0.00005188	0. 00105420	20. 32186255	2689. 83325
94860349.	1. 785607E+12	0.00005313	0.00107334	20. 20400897	2719. 76634

60000.00000					
95357307.	1. 753698E+12	0.00005438	0. 00109251	20. 09214476	2749. 10434
60000.00000	1. 733070L+12	0.00003430	0.00107231	20.07214470	2747. 10434
95852599.	1. 723193E+12	0.00005563	0. 00111171	19. 98587295	2777. 84452
60000.00000	1. 723173L112	0.00003303	0.00111171	17. 70307273	2111.04432
96346229.	1. 694000E+12	0.00005688	0. 00113095	19. 88483146	2805. 98412
60000.00000	1.074000L+12	0.00003000	0.00113073	17.00403140	2003. 70412
96838157.	1. 666033E+12	0. 00005813	0. 00115022	19. 78868231	2833. 51969
60000.00000	1.000033L+12	0.00003013	0.00113022	17. 70000231	2033. 31707
97328383.	1. 639215E+12	0.00005938	0. 00116952	19. 69712242	2860. 44835
60000.00000	1. 037213L+12	0.00003730	0.00110932	17.07/12242	2000. 44033
97816883.	1. 613474E+12	0.00006063	0. 00118885	19. 60987017	2886. 76684
60000.00000	1.013474L+12	0.0000003	0.00110003	17.00707017	2000. 70004
98179947.	1. 586747E+12	0. 00006188	0. 00120729	19. 51180860	2911. 20507
60000.00000	1. J00/4/L+12	0.00000100	0.00120729	17. 31100000	2711. 20307
98582359.	1. 561701E+12	0.00006313	0. 00123091	19. 49952140	2941. 97303
60000. 00000	1. J01/01L+12	0.00000313	0.00123071	17. 47732140	2741.77303
98885330.	1. 536083E+12	0.00006438	0. 00124839	19. 39251199	2963. 79462
60000, 00000	1. 550005L+12	0.00000430	0.00124039	17. 37231177	2703. / 7402
99187121.	1. 511423E+12	0.00006563	0. 00126591	19. 28998992	2985. 11786
60000.00000	1. 511423L+12	0.00000303	0.00120391	17. 20770772	2703. 11700
99487688.	1. 487666E+12	0. 00006688	0. 00128344	19. 19170037	3005. 93991
60000.00000	1.407000L+12	0.0000000	0.00120344	17. 17170037	3003. 73771
99787054.	1. 464764E+12	0. 00006813	0. 00130101	19. 09741804	3026. 25878
60000. 00000	1.404/04L+12	0.00000013	0.00130101	17.07/41004	3020. 23070
1. 000852E+08	1. 442670E+12	0.00006938	0. 00131861	19. 00692835	3046. 07201
60000.00000	1. 442070L+12	0.00000730	0.00131001	17.00072033	3040.07201
1. 003821E+08	1. 421340E+12	0.00007063	0. 00133623	18. 92003015	3065. 37694
60000.00000	1. 42 13 40L 1 12	0.00007003	0.00133023	10. 72003013	3003. 37074
1. 006778E+08	1. 400735E+12	0.00007188	0. 00135388	18. 83654103	3084. 17131
60000.00000	1. 100733E112	0.00007100	0.0010000	10. 0000 1100	3001.17131
1. 009723E+08	1. 380817E+12	0.00007313	0. 00137155	18. 75628933	3102. 45266
60000.00000	1. 0000172112	0.00007313	0.00107100	10. 70020700	3102. 10200
1. 012655E+08	1. 361552E+12	0.00007438	0. 00138926	18. 67911145	3120. 21821
60000.00000	1.0010022112	0.00007100	0.00100720	10.07711110	0120.21021
1. 018481E+08	1. 324853E+12	0.00007688	0. 00142475	18. 53339240	3154. 19212
60000.00000	11 02 10002 112	0.00007000	0.001.12.170	10.00007210	0101117212
1. 023021E+08	1. 288845E+12	0.00007938	0.00145900	18. 38113144	3184.82757
60000.00000	112000102112	0.00007700	0.00.10,00	10.00110111	0101102707
1. 026524E+08	1. 253769E+12	0.00008188	0. 00149225	18. 22599515	3212. 57476
60000.00000					
1. 029986E+08	1. 220724E+12	0.00008438	0. 00152560	18. 08123365	3238, 48635
60000.00000					
1. 037583E+08	1. 194341E+12	0.00008688	0. 00156375	18. 00000027	3265. 95599
60000.00000					
1. 037700E+08	1. 161063E+12	0.00008938	0.00160069	17. 90980563	3290. 07914
60000.00000					
1. 040861E+08	1. 132910E+12	0.00009188	0. 00163289	17. 77298078	3309. 01605
60000.00000			· 		
1. 043986E+08	1. 106211E+12	0.00009438	0. 00166520	17. 64445469	3326. 21710
60000.00000					_

1. 047074E+08 60000. 00000	1. 080851E+12	0. 00009688	0.00169760	17. 52359971	3341. 66540
1. 050124E+08 60000. 00000	1. 056729E+12	0.00009938	0.00173010	17. 40985528	3355. 34380
1. 053137E+08 60000. 00000	1. 033754E+12	0.00010188	0. 00176271	17. 30270907	3367. 23441
1. 056111E+08 60000. 00000	1. 011842E+12	0.00010438	0.00179543	17. 20169976	3377. 31909
1. 059021E+08 60000. 00000	9. 908967E+11	0. 00010688	0. 00182820	17. 10599050	3385. 56868
1. 060634E+08 60000. 00000	9. 697226E+11	0. 00010938	0. 00185875	16. 99431136	3391. 56297
1. 062217E+08 60000. 00000	9. 494676E+11	0. 00011188	0. 00188940	16. 88844994	3395. 96966
1. 063769E+08 60000. 00000	9. 300710E+11	0. 00011438	0.00192013	16. 78803340	3398. 77332
1. 065289E+08 60000. 00000	9. 114773E+11	0. 00011688	0. 00195096	16. 69272110	3399. 95821
1. 066719E+08 60000. 00000	8. 935864E+11	0. 00011938	0. 00198189	16. 60220459	3394. 05809
1. 068114E+08 60000. 00000	8. 764016E+11	0. 00012188	0. 00201291	16. 51619419	3386. 35629
1. 068114E+08 60000. 00000 1. 071905E+08	8. 587855E+11 8. 448511E+11	0. 00012438 0. 00012688	0. 00205219 0. 00209098	16. 49999902 16. 48064688	3390. 75123 3395. 97269
60000. 00000 1. 073138E+08	8. 294785E+11	0.00012888	0. 00209098	16. 39240757	3398. 42904
60000. 00000 1. 074358E+08	8. 146793E+11	0. 00012730	0. 00215065	16. 30826399	3399. 75317
60000.00000 1.075557E+08	8. 004146E+11	0. 00013438	0. 00218069	16. 22838780	3397. 76024
60000.00000 1.076729E+08	7. 866513E+11	0. 00013688	0. 00221091	16. 15277097	3391. 26124
60000. 00000 1. 077892E+08	7. 733756E+11	0. 00013938	0. 00224121	16. 08041570	3384. 74203
60000.00000 1.079047E+08	7. 605619E+11	0. 00014188	0. 00227158	16. 01116374	3383. 48610
60000.00000 1.080193E+08	7. 481859E+11	0. 00014438	0. 00230204	15. 94485417	3388. 39650
60000.00000 1.081331E+08 60000.00000	7. 362252E+11	0.00014688	0.00233257	15. 88134751	3392. 45646
1. 082459E+08 60000. 00000	7. 246588E+11	0. 00014938	0. 00236319	15. 82050964	3395. 65619
1. 083578E+08 60000. 00000	7. 134673E+11	0.00015188	0.00239389	15. 76221719	3397. 98577
1. 084689E+08 60000. 00000	7. 026324E+11	0. 00015438	0. 00242467	15. 70635483	3399. 43500
1. 085789E+08 60000. 00000	6. 921367E+11	0. 00015688	0. 00245553	15. 65281257	3399. 99345
1. 086858E+08	6. 819504E+11	0. 00015938	0. 00248664	15. 60244873	3394. 94931

60000.00000					
1. 087919E+08	6. 720733E+11	0. 00016188	0. 00251783	15. 55415019	3389. 18570
60000.00000					
1. 088408E+08	6. 621497E+11	0.00016438	0.00254687	15. 49425915	3383. 98940
60000.00000					
1. 088867E+08	6. 525046E+11	0.00016688	0.00257585	15. 43579772	3378. 80918
60000.00000					
1. 089322E+08	6. 431424E+11	0. 00016938	0.00260488	15. 37935331	3376. 87528
60000.00000					
1. 089775E+08	6. 340506E+11	0. 00017188	0. 00263396	15. 32483742	3381. 41246
60000.00000					
1. 090223E+08	6. 252176E+11	0. 00017438	0. 00266308	15. 27216956	3385. 46646
60000.00000					
1. 091110E+08	6. 082844E+11	0. 00017938	0. 00272149	15. 17208025	3392. 10673
60000.00000					
1. 091983E+08	5. 922619E+11	0. 00018438	0. 00278010	15. 07852480	3396. 75875
60000.00000				.=	
1. 093686E+08	5. 775242E+11	0. 00018938	0. 00284063	15. 00000045	3399. 46480
60000.00000	F //FFF4F 44	0.00040400	0.00004570	45 00000045	0000 04000
1. 101242E+08	5. 665554E+11	0. 00019438	0. 00291563	15. 00000045	3393. 31839
60000.00000	F FF41FFF 11	0.00010000	0.00000073	15 00000045	2200 42715
1. 107360E+08	5. 554155E+11	0. 00019938	0. 00299063	15. 00000045	3380. 43715
60000.00000 1.107360E+08	5. 418273E+11	0. 00020438	0. 00306061	14. 97543946	2240 00224
60000.00000	5. 4182/3E+11	0.00020438	0.00306061	14. 9/343940	3368. 88224
1. 107360E+08	5. 288882E+11	0. 00020938	0. 00312040	14. 90339264	3374. 24226
60000.00000	J. 200002L+11	0.00020730	0.00312040	14. 70337204	3374. 24220
1. 107360E+08	5. 165526E+11	0. 00021438	0. 00318036	14. 83551398	3381. 87191
60000.00000	3. 1000Z0E111	0.00021100	0.00010000	11.00001070	3301.07171
1. 107360E+08	5. 047793E+11	0.00021938	0.00324051	14. 77153793	3388. 20297
60000.00000					
1. 107360E+08	4. 935307E+11	0.00022438	0.00330083	14. 71122310	3393. 20886
60000.00000					
1. 107360E+08	4.827726E+11	0.00022938	0.00336134	14.65435490	3396. 86202
60000.00000					
1. 107360E+08	4.724734E+11	0.00023438	0.00342205	14.60073218	3399. 13345
60000.00000					
1. 107360E+08	4. 626045E+11	0.00023938	0.00348295	14. 55017254	3399. 99299
60000.00000					
1. 107360E+08	4. 531395E+11	0. 00024438	0. 00354535	14. 50781509	3393. 14407
60000.00000					
1. 107360E+08	4. 440540E+11	0. 00024938	0. 00361057	14. 47847441	3384. 82814
60000.00000					
1. 107360E+08	4. 353256E+11	0. 00025438	0. 00367597	14. 45099249	3376. 46480
60000.00000					
1. 107360E+08	4. 269338E+11	0. 00025938	0. 00374156	14. 42528352	3368. 05257
60000.00000	4 4005045 44	0.0000/100	0.00000704	4.4.04.07.000	2252 5227
1. 107360E+08	4. 188594E+11	0. 00026438	0. 00380734	14. 40127239	3359. 58966
60000.00000					

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 110735.95693

Axial Thrust Force = 59000.00 lbs

Bending Max. Steel	Bendi ng	Bendi ng	Maxi mum	Neutral Axis Ma	ax. Concrete
Moment Stress	Stiffness	Curvature	Strain	Posi ti on	Stress
in-lbs psi	l b-i n2	rad/in	i n/i n	i nches	psi
8014271. 812. 58853	1. 282283E+13	6. 250000E-07	0. 00003066	49. 05707315	108. 91010
15953292. 1554. 77792	1. 276263E+13	0.00000125	0.00005889	47. 11502776	207. 49863
23818467. 2298. 09732	1. 270318E+13	0. 00000188	0.00008717	46. 48846105	304. 72315
31607785. 3040. 28194	1. 264311E+13	0.00000250	0. 00011540	46. 15952566	400. 31060
31607785. 5584. 47232	1. 011449E+13	0.00000313	0.00007548	24. 15363416	260. 76765
31607785. 6751. 87907	8. 428743E+12	0.00000375	0.00008883	23. 68915334	305. 63291
31607785. 7925. 01297	7. 224636E+12	0.00000438	0. 00010199	23. 31224129	349. 49503
31607785. 9097. 72246	6. 321557E+12	0.00000500	0. 00011516	23. 03248420	393. 09410
31607785. 10270. 00404	5. 619162E+12	0.00000563	0.00012835	22. 81751856	436. 42945
31607785. 11441. 85634	5. 057246E+12	0.00000625	0.00014155	22. 64791444	479. 50015
31607785. 12613. 27544	4. 597496E+12	0. 00000688	0. 00015477	22. 51132026	522. 30556
31607785. 13772. 89956	4. 214371E+12	0.00000750	0.00016839	22. 45172158	566. 14545
31607785. 14944. 23295	3. 890189E+12	0. 00000813	0. 00018161	22. 35159740	608. 31848
31607785. 16115. 09380	3. 612318E+12	0. 00000875	0. 00019484	22. 26763889	650. 22863
31607785. 17285. 47963	3. 371497E+12	0.00000938	0.00020809	22. 19662204	691. 87498
31607785. 18455. 38680	3. 160778E+12	0.00001000	0.00022136	22. 13613287	733. 25669
31607785. 19624. 81147	2. 974850E+12	0.00001063	0.00023465	22. 08432600	774. 37297
31607785. 20793. 75145	2. 809581E+12	0. 00001125	0. 00024795	22. 03976110	815. 22281

31607785. 21962. 20182	2. 661708E+12	0. 00001188	0. 00026127	22. 00130895	855. 80550	
31607785.	2. 528623E+12	0. 00001250	0.00027460	21. 96805492	896. 11984	
23130. 16176 32580293.	2. 482308E+12	0. 00001313	0.00028795	21. 93926945	936. 16511	
24297. 62632 34045690.	2. 476050E+12	0. 00001375	0. 00030132	21. 91435441	975. 94049	
25464. 59101 35509564.	2. 470231E+12	0. 00001438	0. 00031471	21. 89280823	1015. 44483	
26631. 05449 36971907.	2. 464794E+12	0. 00001500	0. 00032811	21. 87421784	1054. 67720	
27797. 01324 38432716.	2. 459694E+12	0. 00001563	0. 00034153	21. 85823992	1093. 63680	
28962. 46212						
39891980. 30127. 39812	2. 454891E+12	0. 00001625	0. 00035497	21. 84457943	1132. 32262	
41349687. 31291. 81859	2. 450352E+12	0. 00001688	0. 00036843	21. 83298424	1170. 73359	
42805838. 32455. 71743	2. 446048E+12	0. 00001750	0. 00038191	21. 82324514	1208. 86897	
44260412. 33619. 09380	2. 441954E+12	0. 00001813	0.00039540	21. 81517169	1246. 72749	
45713404. 34781. 94319	2. 438048E+12	0. 00001875	0. 00040891	21. 80860564	1284. 30823	
47164808. 35944. 26048	2. 434313E+12	0.00001938	0.00042244	21. 80341020	1321. 61029	
48614620.	2. 430731E+12	0.00002000	0. 00043599	21. 79946467	1358. 63272	
37106. 04116 50062815.	2. 427288E+12	0. 00002063	0. 00044956	21. 79665640	1395. 37417	
38267. 28465 51509391.	2. 423971E+12	0. 00002125	0. 00046314	21. 79489419	1431. 83376	
39427. 98530 52954346.	2. 420770E+12	0. 00002188	0. 00047675	21. 79409757	1468. 01061	
40588. 13727 54397661.	2. 417674E+12	0. 00002250	0. 00049037	21. 79418877	1503. 90342	
41747. 73883 55839329.	2. 414674E+12	0. 00002313	0. 00050401	21. 79510340	1539. 51123	
42906. 78487 57279342.	2. 411762E+12	0. 00002375	0. 00051767	21. 79678246	1574. 83292	
44065. 27125 58717685.	2. 408931E+12	0. 00002438	0. 00053135	21. 79917231	1609. 86736	
45223. 19433	2. 403486E+12	0. 00002438		21. 80590197	1679. 07017	
61589332. 47537. 33152			0.00055878			
64454191. 49849. 16003	2. 398295E+12	0. 00002688	0. 00058628	21. 81496784	1747. 11073	
67312175. 52158. 64457	2. 393322E+12	0. 00002813	0. 00061386	21. 82610169	1813. 97972	
70163189. 54465. 74988	2. 388534E+12	0. 00002938	0. 00064152	21. 83908090	1879. 66754	
73007155.	2. 383907E+12	0. 00003063	0.00066927	21. 85372576	1944. 16476	

56770. 43490					
75843981.	2. 379419E+12	0. 00003188	0.00069710	21. 86988339	2007. 46152
59072. 65980	2. 37 / 41 / 1. 12	0.00003100	0.00007710	21.00700337	2007. 40132
78394465.	2. 366625E+12	0.00003313	0.00072410	21. 85949787	2067. 44242
60000.00000		0.00000.0	0.000,20		20071 11212
80354245.	2. 337578E+12	0.00003438	0.00074918	21. 79442480	2121. 85699
60000.00000					
82105493.	2. 304716E+12	0.00003563	0.00077360	21. 71519503	2173. 68092
60000.00000					
83566957.	2. 266223E+12	0.00003688	0.00079704	21. 61458537	2222. 32202
60000.00000					
85024818.	2. 230159E+12	0. 00003813	0. 00082052	21. 52189627	2270. 08460
60000.00000					
86169849.	2. 188441E+12	0. 00003938	0. 00084282	21. 40487954	2314. 41530
60000.00000	0 147/005 10	0.00004070	0.0000/400	24 20074204	2257 42274
87247421.	2. 147629E+12	0. 00004063	0. 00086490	21. 28974304	2357. 42364
60000. 00000 88322134.	2 10010EF.12	0.00004100	0 00000700	21. 18249223	2399. 64631
60000.00000	2. 109185E+12	0. 00004188	0. 00088702	21. 18249223	2399. 0403 1
89385543.	2. 072708E+12	0. 00004313	0. 00090914	21. 08156070	2441. 00473
60000.00000	2.072700L+12	0.00004313	0.00070714	21.00130070	2441.00473
90377150.	2. 036668E+12	0.00004438	0. 00093188	21. 00000009	2482. 63750
60000.00000					_,_,_,
90955555.	1. 993546E+12	0.00004563	0.00095373	20. 90359345	2521. 71834
60000.00000					
91704155.	1. 956355E+12	0.00004688	0.00097412	20. 78131154	2557. 31829
60000.00000					
92450654.	1. 921053E+12	0. 00004813	0. 00099456	20. 66614553	2592. 24688
60000.00000	1 0074045 10	0.00004000	0 00101500	20 55755000	2/2/ 50027
93195022.	1. 887494E+12	0. 00004938	0. 00101503	20. 55755898	2626. 50027
60000. 00000 93861466.	1. 854054E+12	0. 00005063	0. 00103509	20. 44615075	2659. 30849
60000.00000	1.004004E+12	0.00000003	0.00103309	20. 44013073	2009. 30049
94361720.	1. 819021E+12	0. 00005188	0. 00105420	20. 32186255	2689. 83325
60000. 00000	1.0170212112	0.00003100	0.00103420	20. 32 100233	2007. 03323
94860349.	1. 785607E+12	0.00005313	0.00107334	20. 20400897	2719. 76634
60000.00000					
95357307.	1. 753698E+12	0.00005438	0.00109251	20. 09214476	2749. 10434
60000.00000					
95852599.	1. 723193E+12	0. 00005563	0. 00111171	19. 98587295	2777. 84452
60000.00000					
96346229.	1. 694000E+12	0. 00005688	0. 00113095	19. 88483146	2805. 98412
60000.00000	1 ///0225 12	0.00005010	0 00115000	10 700/0001	2022 510/0
96838157.	1. 666033E+12	0. 00005813	0. 00115022	19. 78868231	2833. 51969
60000.00000 97328383.	1. 639215E+12	0. 00005938	0. 00116952	19. 69712242	2860. 44835
60000.00000	1. US7Z IDE+1Z	0.00003930	0.00110932	17. 07/12242	ZUUU. 44033
97816883.	1. 613474E+12	0. 00006063	0. 00118885	19. 60987017	2886. 76684
60000.00000		3. 0000000	3. 33 / 10000	. , . 33 , 3 , 3 , 7	2000. 70001
98179947.	1. 586747E+12	0.00006188	0.00120729	19. 51180860	2911. 20507
60000.00000					

98582359. 60000.00000	1. 561701E+12	0. 00006313	0. 00123091	19. 49952140	2941. 97303
98885330. 60000.00000	1. 536083E+12	0.00006438	0. 00124839	19. 39251199	2963. 79462
99187121. 60000.00000	1. 511423E+12	0.00006563	0. 00126591	19. 28998992	2985. 11786
99487688. 60000.00000	1. 487666E+12	0.00006688	0. 00128344	19. 19170037	3005. 93991
99787054. 60000.00000	1. 464764E+12	0. 00006813	0. 00130101	19. 09741804	3026. 25878
1. 000852E+08 60000. 00000	1. 442670E+12	0.00006938	0. 00131861	19. 00692835	3046. 07201
1. 003821E+08 60000. 00000	1. 421340E+12	0.00007063	0. 00133623	18. 92003015	3065. 37694
1. 006778E+08 60000. 00000	1. 400735E+12	0. 00007188	0. 00135388	18. 83654103	3084. 17131
1. 009723E+08 60000. 00000	1. 380817E+12	0.00007313	0. 00137155	18. 75628933	3102. 45266
1. 012655E+08 60000. 00000	1. 361552E+12	0. 00007438	0. 00138926	18. 67911145	3120. 21821
1. 018481E+08 60000. 00000	1. 324853E+12	0. 00007688	0. 00142475	18. 53339240	3154. 19212
1. 023021E+08 60000. 00000	1. 288845E+12	0. 00007938	0. 00145900	18. 38113144	3184. 82757
1. 026524E+08 60000. 00000	1. 253769E+12	0. 00008188	0. 00149225	18. 22599515	3212. 57476
1. 029986E+08 60000. 00000	1. 220724E+12	0. 00008438	0. 00152560	18. 08123365	3238. 48635
1. 037583E+08 60000. 00000	1. 194341E+12	0. 00008688	0. 00156375	18. 00000027	3265. 95599
1. 037700E+08 60000. 00000	1. 161063E+12	0.00008938	0.00160069	17. 90980563	3290. 07914
1. 040861E+08 60000. 00000	1. 132910E+12	0.00009188	0.00163289	17. 77298078	3309. 01605
1. 043986E+08 60000. 00000	1. 106211E+12	0.00009438	0.00166520	17. 64445469	3326. 21710 3341. 66540
1. 047074E+08 60000. 00000 1. 050124E+08	1. 080851E+12 1. 056729E+12	0. 00009688 0. 00009938	0. 00169760 0. 00173010	17. 52359971 17. 40985528	3355. 34380
60000. 00000 1. 053137E+08	1. 030729E+12 1. 033754E+12	0.00009938	0. 00173010	17. 40965526	3367. 23441
60000. 00000 1. 056111E+08	1. 011842E+12	0. 00010188	0. 00170271	17. 20169976	3377. 31909
60000.00000 1.059021E+08	9. 908967E+11	0.00010438	0. 00177343	17. 10599050	3385. 56868
60000.00000 1.060634E+08	9. 697226E+11	0. 0001088	0. 00182820	16. 99431136	3391. 56297
60000.00000 1.062217E+08	9. 494676E+11	0. 00010738	0. 00188940	16. 88844994	3395. 96966
60000.00000 1.063769E+08	9. 300710E+11	0. 00011188	0. 00193940	16. 78803340	3398. 77332
1.0007072100	7. 0007 TOE 1 T	5. 00011730	5. 001/2015	10. 70000040	3370.11332

60000.00000					
1. 065289E+08	9. 114773E+11	0. 00011688	0. 00195096	16. 69272110	3399. 95821
60000.00000					
1. 066719E+08	8. 935864E+11	0. 00011938	0. 00198189	16. 60220459	3394. 05809
60000.00000 1.068114E+08	8. 764016E+11	0. 00012188	0. 00201291	16. 51619419	3386. 35629
60000.00000	0. 704010L+11	0.00012100	0.00201271	10. 51017417	3300. 33027
1. 068114E+08	8. 587855E+11	0.00012438	0.00205219	16. 49999902	3390. 75123
60000.00000					
1. 071905E+08	8. 448511E+11	0. 00012688	0. 00209098	16. 48064688	3395. 97269
60000.00000 1.073138E+08	8. 294785E+11	0. 00012938	0. 00212077	14 20240757	2200 42004
60000.00000	8. 294/83E+11	0.00012938	0.00212077	16. 39240757	3398. 42904
1. 074358E+08	8. 146793E+11	0. 00013188	0. 00215065	16. 30826399	3399. 75317
60000.00000					
1. 075557E+08	8. 004146E+11	0.00013438	0.00218069	16. 22838780	3397. 76024
60000.00000	- 0//-10- 11				
1. 076729E+08 60000. 00000	7. 866513E+11	0. 00013688	0. 00221091	16. 15277097	3391. 26124
1. 077892E+08	7. 733756E+11	0. 00013938	0. 00224121	16. 08041570	3384. 74203
60000.00000	7.733730E111	0.00013730	0.00224121	10.000+1370	3304. 74203
1. 079047E+08	7. 605619E+11	0.00014188	0.00227158	16. 01116374	3383. 48610
60000.00000					
1. 080193E+08	7. 481859E+11	0. 00014438	0. 00230204	15. 94485417	3388. 39650
60000.00000 1.081331E+08	7. 362252E+11	0. 00014688	0. 00233257	15. 88134751	3392. 45646
60000.00000	7. 302232L+11	0.00014000	0.00233237	15.00134751	3372. 43040
1. 082459E+08	7. 246588E+11	0. 00014938	0.00236319	15. 82050964	3395. 65619
60000.00000					
1. 083578E+08	7. 134673E+11	0. 00015188	0. 00239389	15. 76221719	3397. 98577
60000.00000	7 00/0045 44	0.00015400	0.000404/7	15 70/25/02	2200 42500
1. 084689E+08 60000. 00000	7. 026324E+11	0. 00015438	0. 00242467	15. 70635483	3399. 43500
1. 085789E+08	6. 921367E+11	0. 00015688	0. 00245553	15. 65281257	3399. 99345
60000.00000	0.72.0072	0.000.000	0.002.0000		
1. 086858E+08	6. 819504E+11	0.00015938	0. 00248664	15. 60244873	3394. 94931
60000.00000	(7007005 44	0.0001/100	0.00054700	45 55 44 50 40	0000 10570
1. 087919E+08 60000. 00000	6. 720733E+11	0. 00016188	0. 00251783	15. 55415019	3389. 18570
1. 088408E+08	6. 621497E+11	0. 00016438	0. 00254687	15. 49425915	3383. 98940
60000.00000	0. 0211772111	0.00010100	0.00201007	10. 17 120710	0000. 707 10
1. 088867E+08	6. 525046E+11	0.00016688	0.00257585	15. 43579772	3378. 80918
60000.00000					
1. 089322E+08	6. 431424E+11	0. 00016938	0. 00260488	15. 37935331	3376. 87528
60000.00000 1.089775E+08	6. 340506E+11	0. 00017188	0. 00263396	15. 32483742	3381. 41246
60000.00000	0. J40JUUL+11	0.0001/100	0.00203370	13. 32403742	3301.41240
1. 090223E+08	6. 252176E+11	0.00017438	0.00266308	15. 27216956	3385. 46646
60000.00000					
1. 091110E+08	6. 082844E+11	0. 00017938	0. 00272149	15. 17208025	3392. 10673
60000.00000					

1. 091983E+08	5. 922619E+11	0.00018438	0.00278010	15. 07852480	3396. 75875
60000.00000 1.093686E+08	5. 775242E+11	0. 00018938	0. 00284063	15. 00000045	3399. 46480
60000.00000		0,000,000			
1. 101242E+08	5. 665554E+11	0. 00019438	0. 00291563	15. 00000045	3393. 31839
60000.00000 1.107360E+08	5. 554155E+11	0. 00019938	0. 00299063	15. 00000045	3380. 43715
60000.00000	5. 554 155E+11	0.00019936	0.00299003	15.0000045	3300. 43713
1. 107360E+08	5. 418273E+11	0.00020438	0. 00306061	14. 97543946	3368. 88224
60000.00000					
1. 107360E+08	5. 288882E+11	0. 00020938	0. 00312040	14. 90339264	3374. 24226
60000.00000	F 1/FF0/F.11	0 00001430	0. 00318036	14 02551200	2201 07101
1. 107360E+08 60000. 00000	5. 165526E+11	0. 00021438	0.00318036	14. 83551398	3381. 87191
1. 107360E+08	5. 047793E+11	0.00021938	0. 00324051	14. 77153793	3388. 20297
60000.00000					
1. 107360E+08	4. 935307E+11	0. 00022438	0.00330083	14. 71122310	3393. 20886
60000.00000	4 00770/F 11	0.0000000	0.0000/104	14 (5405400	220/ 0/202
1. 107360E+08 60000. 00000	4. 827726E+11	0. 00022938	0. 00336134	14. 65435490	3396. 86202
1. 107360E+08	4. 724734E+11	0. 00023438	0. 00342205	14. 60073218	3399. 13345
60000.00000	1. 72 170 12 111	0.00020100	0.00012200	11.00070210	0077. 100 10
1. 107360E+08	4. 626045E+11	0.00023938	0.00348295	14.55017254	3399. 99299
60000.00000					
1. 107360E+08	4. 531395E+11	0. 00024438	0. 00354535	14. 50781509	3393. 14407
60000.00000 1.107360E+08	4. 440540E+11	0. 00024938	0. 00361057	14. 47847441	3384. 82814
60000.00000	4. 440340E+11	0.00024730	0.00301037	14. 47047441	3304. 02014
1. 107360E+08	4. 353256E+11	0.00025438	0.00367597	14. 45099249	3376. 46480
60000.00000					
1. 107360E+08	4. 269338E+11	0. 00025938	0. 00374156	14. 42528352	3368. 05257
60000.00000 1.107360E+08	4. 188594E+11	0. 00026438	0. 00380734	14. 40127239	3359. 58966
60000.00000	4.100074E+11	0.00020436	0.00300734	14.4012/239	3307. 30 7 00
20000.00000					

Unfactored (Nominal) Moment Capacity at Concrete Strain of 0.003 = 110735.95693 in-kip

Computed Values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shear and Moment (Pile-head Condition Type 1)

Specified shear force at pile head - 20000 000 lbs

Specified shear force at pile head = 39000.000 lbs Specified moment at pile head = 59664000.000 in-lbs Specified axial load at pile head = 59000.000 lbs

Depth	Deflect.	Moment	Shear	SI ope	Total	Flx. Rig.	Soil Res.
Es*h X	У	M	V	S	Stress	EI	р
F/L	J		·	J	31 . 333		۲
in	in	lbs-in	Ibs	Rad.	Ibs/in**2	lbs-in**2	lbs/in
0.000	1. 416	5. 97E+07	39000.	-0. 008457	842. 928	2. 41E+12	0.000
0.000							
37. 440	1. 117	6. 11E+07	39000.	-0. 007517	863. 576	2. 40E+12	0.000
0.000	0 052104	/ 2/5 07	22571	0.00/550	000 (04	2 405 12	400 740
74. 880	0. 853104	6. 26E+07	335/1.	-0. 006553	883. 684	2. 40E+12	-488. 743
2681. 174 112. 320	0. 626125	6. 34E+07	1202 701	-0. 005570	894. 597	2. 40E+12	-976, 660
7300. 095	0.020125	0.34E+07	4303. 791	-0.005570	094. 397	Z. 40E+1Z	-970.000
149. 760	0. 436081	6. 28E+07	-40966	-0. 004584	886. 247	2 40F+12	-1451.837
15581.	0. 100001	0. 202 107	10700.	0.001001	000.217	2. 102.12	1101.007
187. 200	0. 282576	6. 02E+07	-93483.	-0.003623	850. 966	2. 41E+12	-1311. 063
21714.							
224.640	0. 164054	5. 52E+07	-1. 85E+05	-0. 002722	780. 556	2. 42E+12	-2747. 760
78386.							
262. 080	0. 077372	4. 65E+07	-2. 76E+05	-0. 001933	658. 437	2. 44E+12	-1829. 370
1. 11E+05							
299. 520	0. 017299	3. 52E+07	-3. 19E+05	-0. 001307	500. 646	2. 47E+12	-486. 749
1. 32E+05	0.00/01/	2 225.07	2 125.05	0 001120	222 242	1 075.10	075 000
336. 960 1. 53E+05	-0. 026816	2. 32E+U7	-3. 12E+05	-0.001128	333. 242	1. 27E+13	875. 002
	-0. 067980	1 25F±07	-2. 51E+05	_0_001076	183. 430	1. 28E+13	2284. 992
1. 57E+05	-0.007900	1. 23L+07	-2. J1L+0J	-0.001070	103. 430	1. 20L+13	2204. 772
	-0. 107747	4. 75F+06	-1. 60E+05	-0.001052	75. 681	1. 28E+13	2505. 998
1. 09E+05	3	,02.00	552.66	2. 00.002	, 0. 001	202. 10	
	-0. 146963	5. 73E+05	-59915.	-0. 001045	17. 275	1. 28E+13	3005.643
95714.							

Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of total stress due to combined axial stress and bending may not be representative of actual conditions.

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection = 1.41569321 in Computed slope at pile head = -0.00845722 Maximum bending moment = 63373273. Ibs-in Maximum shear force = -322422.85342 lbs

Depth of maximum bending moment = 117.00000 inDepth of maximum shear force = 313.56000 inNumber of iterations 23 Number of zero deflection points = 1

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2

Pile-head boundary conditions are Shear and Moment (Pile-head Condition Type 1) Specified shear force at pile head = 15000.000 lbs
Specified moment at pile head = 22908000.000 lbs
Specified axial load at pile head = 59000.000 lbs

Depth Es*h	Deflect.	Moment	Shear	SI ope	Total	Flx. Rig.	Soil Res.
X F/L	У	M	V	S	Stress	EI	р
	i n	lbs-in	l bs	Rad.	lbs/in**2	lbs-in**2	lbs/in
0. 000 0. 000	0. 244194	2. 29E+07	15000.	-0. 001035	329. 356	1. 27E+13	0.000
37. 440 0. 000	0. 206722	2. 35E+07	15000.	-0.000967	337. 234	1. 27E+13	0.000
74. 880 2919. 615	0. 171839	2. 40E+07	13756.	-0. 000897	344. 990	1. 27E+13	-107. 202
112. 320 7300. 095	0. 139607	2. 44E+07	7496. 705	-0. 000825	350. 762	1. 27E+13	-217. 767
149. 760 15581.	0. 110071	2. 45E+07	-3306. 218	-0. 000753	352. 195	1. 27E+13	-366. 457
187. 200 21714.	0. 083239	2. 42E+07	-17579.	-0. 000681	346. 787	1. 27E+13	-386. 203
224. 640 89627.	0. 059067	2. 29E+07	-56273.	-0. 000611	328. 616	1. 27E+13	-1131. 192
262. 080 1. 11E+05	0. 037401	2. 00E+07	-94444.	-0. 000548	288. 795	1. 27E+13	-884. 297
299. 520 1. 32E+05	0. 017927	1. 59E+07	-1. 21E+05	-0. 000495	231. 866	1. 28E+13	-504. 403
336. 960 1. 53E+05	0. 000197	1. 12E+07	-1. 31E+05	-0.000455	165. 245	1. 28E+13	-6. 433
	-0. 016309	6. 40E+06	-1. 20E+05	-0.000429	98. 679	1. 28E+13	605. 428
	-0. 032108	2. 50E+06	-83936.	-0. 000417	44. 161	1. 28E+13	1323. 268
	-0. 047618	3. 02E+05	-31547.	-0. 000413	13. 492	1. 28E+13	1579. 336

Please note that because this analysis makes computations of ultimate moment capacity and pile response using nonlinear bending stiffness that the above values of total stress due to combined axial stress and bending may not be representative of actual conditions.

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 2:

```
Pile-head deflection = 0.24419399 in Computed slope at pile head = -0.00103488

Maximum bending moment = 24557164. Ibs-in Maximum shear force = -130733.38035 Ibs

Depth of maximum bending moment = 140.40000 in Depth of maximum shear force = 336.96000 in Number of iterations = 7

Number of zero deflection points = 1
```

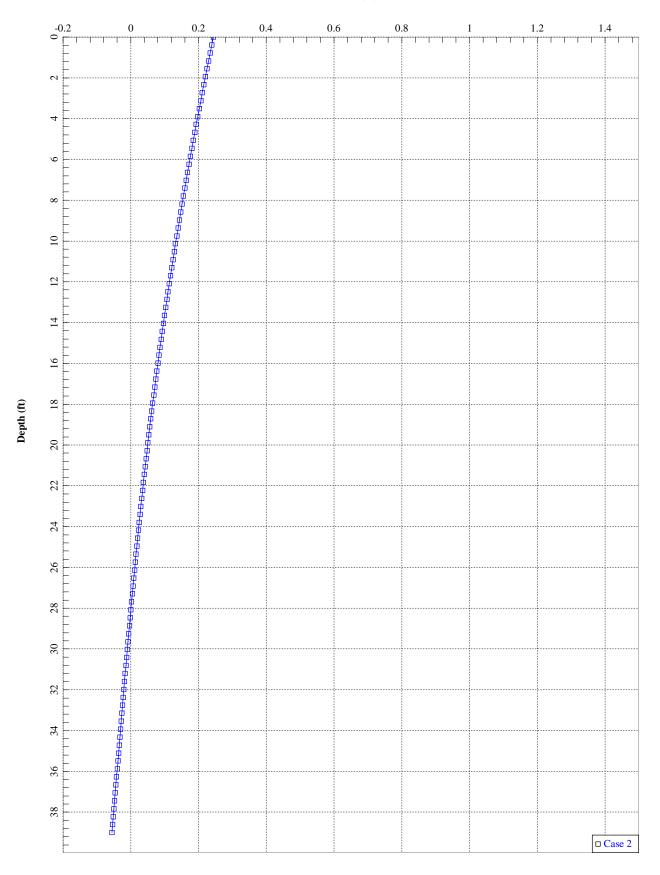
Summary of Pile Response(s)

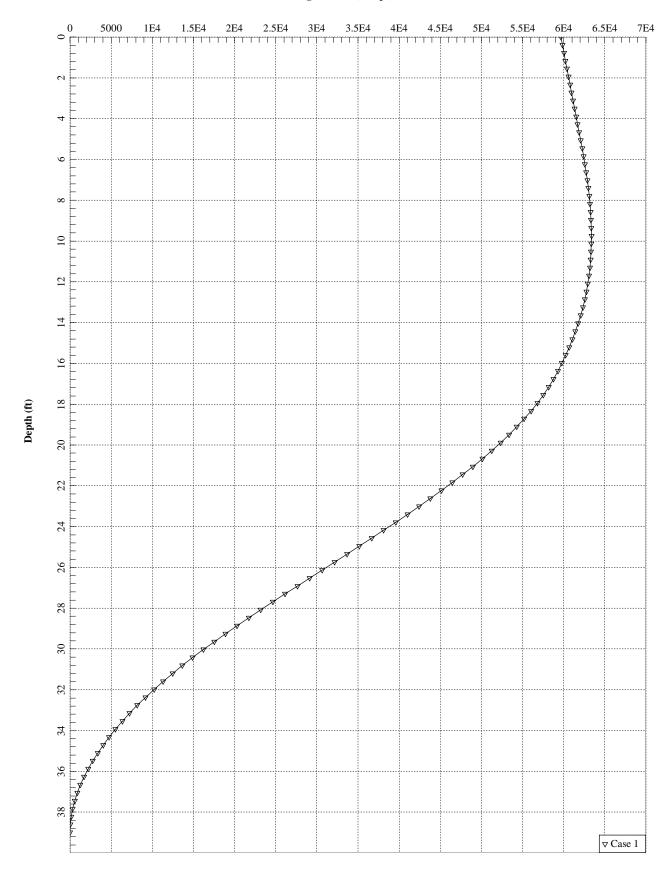
Definition of Symbols for Pile-Head Loading Conditions:

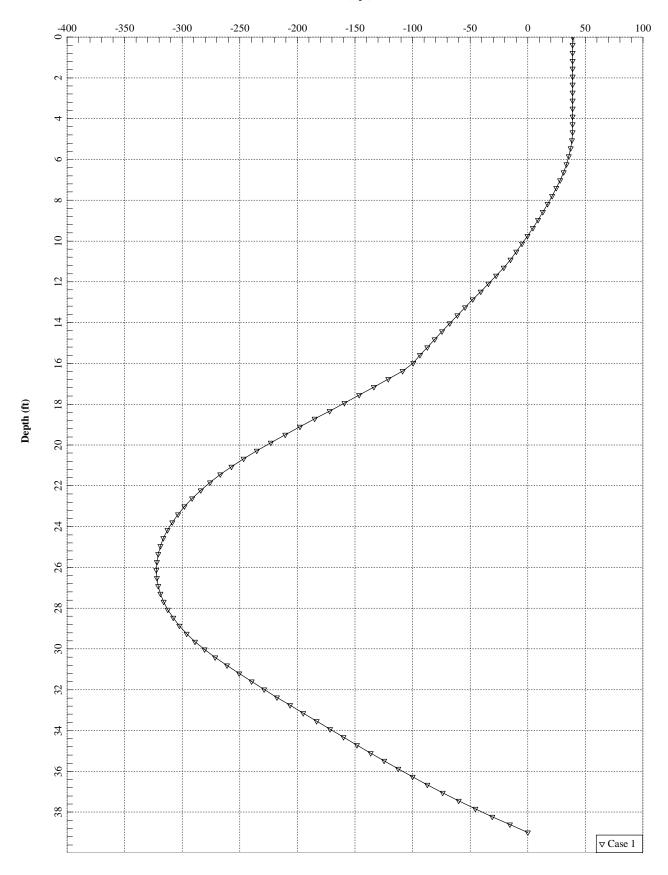
Type 1 = Shear and Moment,	y = pile-head displacment in
Type 2 = Shear and Slope,	M = Pile-head Moment lbs-in
Type 3 = Shear and Rot. Stiffness,	V = Pile-head Shear Force Ibs
Type 4 = Deflection and Moment,	S = Pile-head Slope, radians
Type 5 - Deflection and Slone	R - Rot Stiffness of Pila-head i

Type 5 = Deflection and Slope, R = Rot. Stiffness of Pile-head in-lbs/rad

			Condi ti on		Load Deflect		Pile-Head Deflection	Maxi mum Moment	Maximum Shear
	1			2 	lbs		i n 	i n-l bs	l bs
1	V= 3	39000.	M =	5. 97E+07	59000.00	000	1. 4157	6. 3373E+07	-322423.
1	V= 1	15000.	M =	2. 29E+07	59000.00	000	0. 2441940	2. 4557E+07	-130733.


Computed Pile-head Stiffness Matrix Members K22, K23, K32, K33 for Superstructure


·-----


Top y	Shear React.	Mom. React.	K22	K32
in	Ibs	in-lbs	I bs/i n	in-Ibs/in
0. 00253607 0. 00763432 0. 01210011 0. 01526863 0. 01772634 0. 01973442 0. 02143224 0. 02290295 0. 02420055 0. 02536189	3900. 00006 11740. 16983 18607. 72893 23480. 33966 27259. 83017 30347. 89877 32958. 82356 35220. 50949 37215. 45787 39000. 00000	876657. 85158 2639003. 4182721. 5278006. 6127575. 6821724. 7408618. 7917009. 8365401. 8766427.	1537815. 1537815. 1537815. 1537815. 1537815. 1537815. 1537815. 1537794. 1537740.	3. 456764E+08 3. 456764E+08 3. 456764E+08 3. 456764E+08 3. 456764E+08 3. 456764E+08 3. 456764E+08 3. 456699E+08 3. 456535E+08
Top Rota.	Shear React.	Mom. React.	K23 I bs/rad	K33 in-lbs/rad
0. 00005724	19785. 98354	5966400.	3. 456764E+08	1. 042376E+11
0. 00017283	59575. 17884	17960654.	3. 447014E+08	1. 039202E+11
0. 00027496	94460. 16929	28466963.	3. 435450E+08	1. 035323E+11
0. 00037441	119345. 23405	35921307.	3. 187596E+08	9. 594234E+10
0. 00108097	147135. 88374	41703346.	1. 361148E+08	3. 857960E+10
0. 00138592	170524. 69605	46427616.	1. 230405E+08	3. 349941E+10
0. 00159227	189421. 73541	50421929.	1. 189631E+08	3. 166663E+10
0. 00176995	206284. 57674	53881961.	1. 165483E+08	3. 044266E+10
0. 00192499	221466. 60015	56933925.	1. 150484E+08	2. 957629E+10
0. 00205190	234484. 41246	59664000.	1. 142769E+08	2. 907749E+10

K22 = abs(Shear Reaction/Top y)
K23 = abs(Shear Reaction/Top Rotation)
K32 = abs(Moment Reaction/Top y)
K33 = abs(Moment Reaction/Top Rotation)

The analysis ended normally.

A&L Template: 67D5998E_1xAIR+1OP **RAN Template:** 67D5D3998E 6160

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections) **PORs:** Anchor_Phase 3

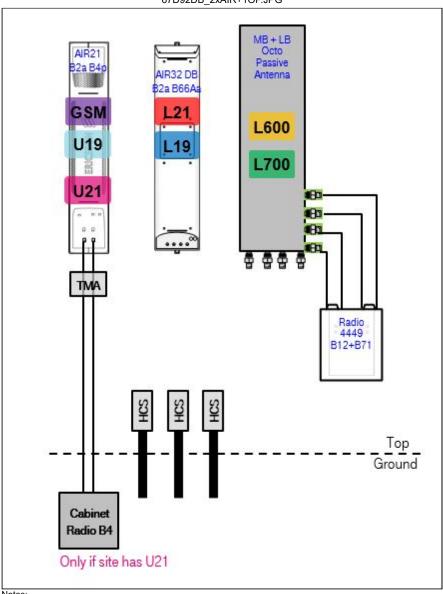
Section 1 - Site Information

Site ID: CTHA231A Status: Final Version: 9

Project Type: Anchor Approved: 2/4/2022 1:18:01 PM Approved By: Michael.Lucey@T-Mobile.com Last Modified: 2/4/2022 1:18:01 PM Last Modified By: Michael.Lucey@T-Mobile.com

Site Name: HA231/Berlin FD Tower Site Class: Monopole Site Type: Structure Non Building Plan Year: 2022
Market: CONNECTICUT CT
Vendor: Ericsson
Landlord: Berlin FD

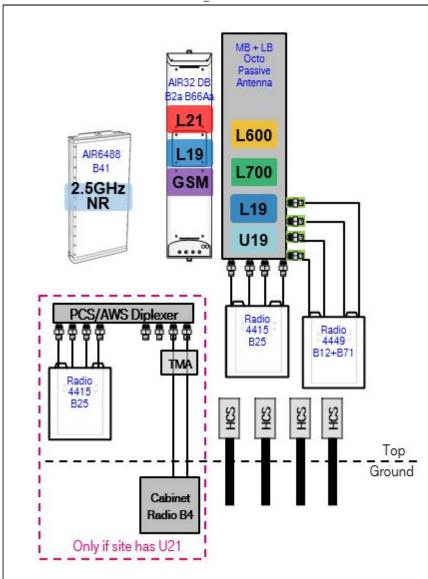
Latitude: 41.60653995 Longitude: -72.75059557 Address: 1657 Berlin Turnpike


City, State: Berlin, CT Region: NORTHEAST

RAN Template: 67D5D3998E 6160 AL Template: 67D5998E_1xAIR+1OP

Sector Count: 3 Antenna Count: 6 Coax Line Count: 0 TMA Count: 0 RRU Count: 6

Section 2 - Existing Template Images


67D92DB 2xAIR+1OP.JPG

Notes:

Section 3 - Proposed Template Images

67D5997DB_2xAIR+1OP.JPG

Notes:

Section 4 - Siteplan Images

---- This section is intentionally blank. ----

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

Section 5 - RAN Equipment

	Existing RAN Equipment							
	Template: 67D92DB Outdoor							
Enclosure	1							
Enclosure Type	(RBS 6131)							
Baseband	DUW30 DUG20 BB 6630 L2100 L700 L600 N600							
Hybrid Cable System	Ericsson 9x18 HCS *Select Length* Ericsson 6x12 HCS *Select Length & AWG* (x 3)							
Radio	RUS01 B4 (x 6) U2100							

	Proposed RAN Equipment									
	Template: 67D5D3998E 6160									
Enclosure	1 2 3									
Enclosure Type	Enclosure 6160 AC V1	B160	(RBS 6601)							
Baseband	RP 6651 DUG20 DUW30 BB 6630 L2100 L1900 BB 6630 L200 L200 L1900		DUG20 (G1900)							
Hybrid Cable System	Ericsson Hybrid Trunk 6/24 4AWG 100m PSU 4813 vR2A (Kit) PSU 4813 vR4A (Kit) Ericsson 6x12 HCS *Select Length & AWG* (x 3)									
Transport System	CSR IXRe V2 (Gen2)									

RAN Scope of Work:

Location of new cabinets to be determined.

Remove all cabinet radios.

Add (1) Enclosure 6160.

Add (1) Battery Cabinet B160.

Add (1) iXRe Router to new Enclosure 6160.

Add (1) BB6648 for L2500/N2500 (MMBB) to new Enclosure 6160.

Add (1) PSU4813 Voltage Booster to new Enclosure 6160.

Existing: (6) Coaxial Lines; (3) 6X12 HCS ([1] per sector)

Remove All Coaxial lines.

Add (1) 6X24 HCS terminating at the Enclosure 6160. Connect DC for the AIR6449 B41 to the PSU4813 Voltage Booster.

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

Section 6 - A&L Equipment

Existing Template: 67D92DB_2xAIR+1OP Proposed Template: 67D5998E_1xAIR+1OP

Sector 1 (Existing) view from behind											
Coverage Type	A - Outdoo	r Macro									
Antenna			1			2	2		3	3	
Antenna Model	Ericsson - A	AIR32 KRD90 2A (Octo))1146-		(RFS - APX	VAARR24_43	-U-NA20 (Oct	(0)	Ericsson - AIR21 KRC11 1_B2A_B4P (Quad)	8023-	
Azimuth	30				30				30		
M. Tilt	2				0				2		
Height	160				160				160		
Ports	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	L2100	L2100	L1900	(L1900)	L700 L600 N600	L700 L600 N600			(U2100)	G1900	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.											
E. Tilt	5	5	5	5	2	2			5	5	
Cables	Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.				1-5/8" Coax - 170 ft. (x2)	Fiber Jumper - 15 ft. (x2)	
TMAs									Generic Twin Style 1B - AWS (AtAntenna)		
Diplexers / Combiners											
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)					
Sector Equipment		İ	İ								

Unconnected Equipment:

Scope of Work:

Add handrail kit.

Replace LB Dual in Position 2 with (1) LB/MB Octo. Replace RRUS11 B12 with (1) Radio 4449 B71+B12 for L600 and L700. Replace AIR21 B2P/B4A in Position 1 with (1) AIR32 DB for L1900 and L2100.

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

Sector 1 (Proposed) view from behind									
Coverage Type A - Outdoor Macro									
Antenna		1			2				
Antenna Model	RFS - APXVAARF	R24_43-U-NA20 (Oct	0)		AIR 6419 B41 (Active Antenna -	Massive MIMO)			
Azimuth	30				30				
M. Tilt	0				2				
Height	(160)				160				
Ports	P1	P2	P3	P4	P5	P6			
Active Tech.	L700 L600 N600	L700 L600 N600	G1900 L2100 L1900 U2100	G1900 (L2100) (L1900) (U2100)	N2500 L2500	N2500 (L2500)			
Dark Tech.									
Restricted Tech.									
Decomm. Tech.									
E. Tilt	2	2	5	5	5	5			
Cables	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft. (x2)	(Fiber Jumper - 15 ft. (x2)			
	Coax Jumper	Coax Jumper	Coax Jumper	Coax Jumper					
TMAs									
Diplexers / Combiners									
Radio	Radio 4449 B71+B85 (At Antenna)	SHARED Radio 4449 B71+B85 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)					
Sector Equipment									
Unconnected Equip	ment:					-			
Cable: Fiber Jumpe	er - 15 ft. Cable: F	Fiber Jumper - 15 ft.	Cable: Fiber Jump	per - 15 ft. Cable:	Fiber Jumper - 15 ft.				
Scope of Work:									
Remove all Coaxial	lines.								
Remove all TMA's.									
Add (1) Radio 4460	B25+B66 for L1900	2nd Carrier and U21	00 to Position 2 near	r antenna,					
Remove AIR21 B2A	VB4P from Position 3	3.							
Install (1) AIR6449	B41 for L2500 and N	2500 in Position 3.							
Move GSM to AIR3	2 Dual Band antenna	a in Position 1. GSM	will share B2 radios	with L1900 1st Carrie	er.				
Ensure RET control	is enabled for all ted	chnology layers accor	rding to the Design D	Oocuments.					
*A dashed border ind	licates shared equipn	nent. Any connected	equipment is denote	ed with the SHARED	keyword.				

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

Sector 2 (Existing) view from behind										
Coverage Type	A - Outdoo	r Macro								
Antenna			1			2	2		3	
Antenna Model	Ericsson - AIR32 KRD901146- 1_B66A_B2A (Octo)				RFS - APX	VAARR24_43	-U-NA20 (Oct	(0)	Ericsson - AIR21 KRC11 1_B2A_B4P (Quad)	8023-
Azimuth	180				180				180	
M. Tilt	2				0				2	
Height	(160)				(160)				160	
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Active Tech.	L2100	L2100	L1900	L1900	L700 L600 N600	L700 L600 N600			U2100	G1900
Dark Tech.										
Restricted Tech.										
Decomm. Tech.										
E. Tilt	2	2	2	2	2	2			2	2
Cables	Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.				1-5/8" Coax - 170 ft. (x2)	Fiber Jumper - 15 ft. (x2)
TMAs									Generic Twin Style 1B - AWS (AtAntenna)	
Diplexers / Combiners										
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)				
Sector Equipment										

Unconnected Equipment:

Scope of Work:

Add handrail kit.

Replace LB Dual in Position 2 with (1) LB/MB Octo.
Replace RRUS11 B12 with (1) Radio 4449 B71+B12 for L600 and L700.
Replace AIR21 B2P/B4A in Position 1 with (1) AIR32 DB for L1900 and L2100.

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

Sector 2 (Proposed) view from behind									
Coverage Type A - Outdoor Macro									
Antenna		1				2			
Antenna Model	RFS - APXVAARF	R24_43-U-NA20 (Oct	0)		AIR 6419 B41 (Active Antenna -	Massive MIMO)			
Azimuth	180				180				
M. Tilt	0				2				
Height	(160)				(160)				
Ports	P1	P2	P3	P4	P5	P6			
Active Tech.	L700 (L600) (N600)	L700 (L600) (N600)	(L2100) (L1900) (G1900) (U2100)	(L2100) (L1900) (G1900) (U2100)	L2500 N2500	L2500 N2500			
Dark Tech.									
Restricted Tech.									
Decomm. Tech.									
E. Tilt	2	2	5	5	5	5			
Cables	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft. (x2)	Fiber Jumper - 15 ft. (x2)			
	Coax Jumper	Coax Jumper	Coax Jumper	Coax Jumper					
TMAs									
Diplexers / Combiners									
Radio	Radio 4449 B71+B85 (At Antenna)	SHARED Radio 4449 B71+B85 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)					
Sector Equipment									
Unconnected Equip	ment:								
Cable: Fiber Jumpe	er - 15 ft. Cable: F	Fiber Jumper - 15 ft.	Cable: Fiber Jum	per - 15 ft. Cable:	Fiber Jumper - 15 ft.				
Scope of Work:									
Remove all Coaxial	lines.								
Remove all TMA's.									
Add (1) Radio 4460	B25+B66 for L1900	2nd Carrier and U21	00 to Position 2 near	r antenna,					
Remove AIR21 B2A	A/B4P from Position 3	3.							
Install (1) AIR6449	B41 for L2500 and N	2500 in Position 3.							
Move GSM to AIR3	2 Dual Band antenna	a in Position 1. GSM	will share B2 radios	with L1900 1st Carrie	er.				
Ensure RET control	is enabled for all ted	chnology layers acco	rding to the Design D	Documents.					
*A dashed border ind	licates shared equipr	nent. Any connected	equipment is denote	ed with the SHARED	keyword.				

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

				Sector	3 (Existin	g) view fro	om behind				
Coverage Type	A - Outdoo	r Macro									
Antenna			1			2	2		3		
Antenna Model	Ericsson - A	AIR32 KRD90 2A (Octo))1146-		RFS - APX	VAARR24_43	-U-NA20 (Oct	0)	Ericsson - AIR21 KRC11 1_B2A_B4P (Quad)	8023-	
Azimuth	290				290				290		
M. Tilt	2				0				2		
Height	160				160				160		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	L2100	L2100	L1900	L1900	L700 L600 N600	L700 L600 N600			U2100	G1900	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.											
E. Tilt	5	5	5	5	2	2			5	5	
Cables	Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.				1-5/8" Coax - 170 ft. (x2)	Fiber Jumper - 15 ft. (x2)	
TMAs									Generic Twin Style 1B - AWS (AtAntenna)		
Diplexers / Combiners											
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)					
Sector Equipment											

Unconnected Equipment:

Scope of Work:

Add handrail kit.

Replace LB Dual in Position 2 with (1) LB/MB Octo.
Replace RRUS11 B12 with (1) Radio 4449 B71+B12 for L600 and L700.
Replace AIR21 B2P/B4A in Position 1 with (1) AIR32 DB for L1900 and L2100.

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

			Sector 3 (Pro	oposed) view fr	om behind				
Coverage Type	A - Outdoor Macro								
Antenna		1				2			
Antenna Model	RFS - APXVAARR	224_43-U-NA20 (Oct	o))		(AIR 6419 B41 (Active Antenna - Massive MIMO)				
Azimuth	290				290				
M. Tilt	0				2				
Height	160				160				
Ports	P1	P2	P3	P4	P5	P6			
Active Tech.	L700 L600 N600	L700 L600 N600	G1900 U2100	G1900 U2100	L2500 N2500	(L2500) (N2500)			
Dark Tech.									
Restricted Tech.									
Decomm. Tech.									
E. Tilt	2	2	5	5	5	5			
Cables	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft. (x2)				
TMAs	Coax Jumper	Coax Jumper	Coax Jumper	Coax Jumper					
Diplexers / Combiners									
Radio	Radio 4449 B71+B85 (At Antenna)	SHARED Radio 4449 B71+B85 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)					
Sector Equipment									
Unconnected Equip	ment:								
Cable: Fiber Jumpe	r - 15 ft. Cable: F	iber Jumper - 15 ft.	Cable: Fiber Jump	per - 15 ft. Cable:	Fiber Jumper - 15 ft.				
Scope of Work:									
Remove all Coaxial	lines.								
Remove all TMA's.									
Add (1) Radio 4460	B25+B66 for L1900	2nd Carrier and U21	00 to Position 2 near	antenna,					
Remove AIR21 B2A	/B4P from Position 3	3.							
Install (1) AIR6449 E	341 for L2500 and N	2500 in Position 3.							
		in Position 1. GSM			er.				
Ensure RET control	is enabled for all tec	hnology layers accor	ding to the Design D	ocuments.					
*A dashed horder indi	actor obered equipp	ant Any connected	aguinment is denote	d with the CHADED	kovuvard				

CTHA231A_Anchor_9

Print Name: Preliminary (RFDS_Corrections)

	PORs: Anchor_Phase 3
	Section 7 - Power Systems Equipment
	Eviating Dawer Systems Environant
	Existing Power Systems Equipment
	This section is intentionally blank
	Proposed Power Systems Equipment
Enclosure	1
Enclosure Type	(Enclosure 6160 AC V1)

RAN Template: A&L Template: 67D5997DB_2xAIR+1OP (U21 Market) 67D5A997DB Outdoor

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections) **PORs:** Anchor_Phase 3

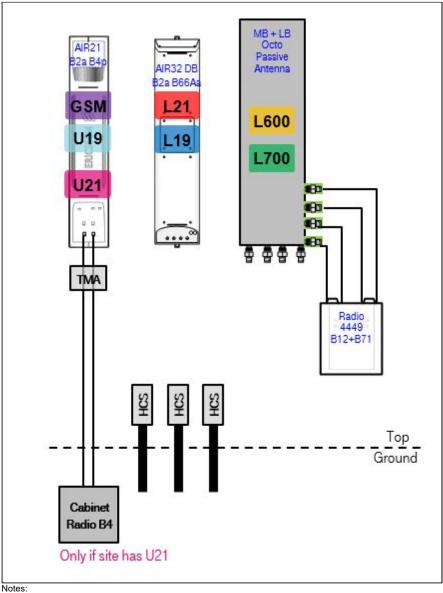
Section 1 - Site Information

Site ID: CTHA231A Status: Draft Version: 9

Project Type: Anchor
Approved: Not Approved
Approved By: Not Approved
Last Modified: 12/9/2021 12:56:19 PM Last Modified By: Pratik.Patil30@T-Mobile.com

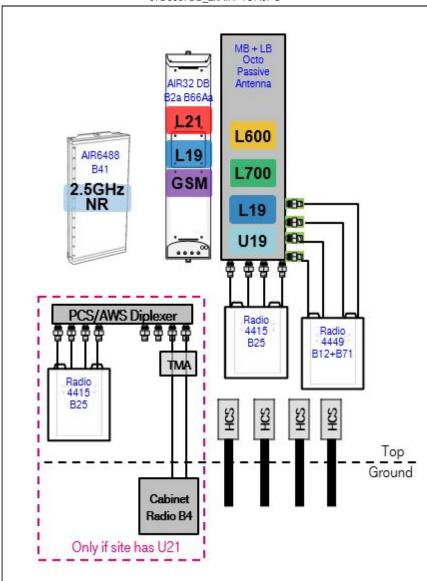
Site Name: HA231/Berlin FD Tower Site Class: Monopole Site Type: Structure Non Building Plan Year: 2022
Market: CONNECTICUT CT
Vendor: Ericsson
Landlord: Berlin FD

Latitude: 41.60653995 Longitude: -72.75059557 Address: 1657 Berlin Turnpike


City, State: Berlin, CT Region: NORTHEAST

RAN Template: 67D5A997DB Outdoor AL Template: 67D5997DB_2xAIR+1OP (U21 Market)

Sector Count: 3 Antenna Count: 9 Coax Line Count: 0 TMA Count: 0 RRU Count: 6


Section 2 - Existing Template Images

67D92DB 2xAIR+1OP.JPG

Section 3 - Proposed Template Images

67D5997DB_2xAIR+1OP.JPG

Notes:

Section 4 - Siteplan Images

---- This section is intentionally blank. ----

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

Section 5 - RAN Equipment

	Existing RAN Equipment									
Template: 67D92DB Outdoor										
Enclosure	1									
Enclosure Type	RBS 6131									
Baseband	DUW30 DUG20 BB 6630 L700 L600 N600									
Hybrid Cable System	Ericsson 9x18 HCS *Select Length*) (Ericsson 6x12 HCS *Select Length & AWG* (x 3))									
Radio	RUS01 B4 (x 6) U2100									

	Proposed RAN Equipment										
Template: 67D5A997DB Outdoor											
Enclosure	1	2	3								
Enclosure Type	(RBS 6131)	Enclosure 6160 AC V1	B160								
Baseband	DUW30 DUG20 BB 6630 L2100 L1900 L600 N600	BB 6648 N2500 L2500									
Hybrid Cable System	Ericsson 6x12 HCS *Select Length & AWG* (x 3	Ericsson Hybrid Trunk 6/24 4AWG 100m) PSU 4813 vR2A (Kit)									
Transport System		CSR IXRe V2 (Gen2)									

RAN Scope of Work:

Location of new cabinets to be determined.

Remove all cabinet radios.

Add (1) Enclosure 6160.

Add (1) Battery Cabinet B160.

Add (1) iXRe Router to new Enclosure 6160.

Add (1) BB6648 for L2500/N2500 (MMBB) to new Enclosure 6160.

Add (1) PSU4813 Voltage Booster to new Enclosure 6160.

Existing: (6) Coaxial Lines; (3) 6X12 HCS ([1] per sector)

Remove All Coaxial lines.

Add (1) 6X24 HCS terminating at the Enclosure 6160. Connect DC for the AIR6449 B41 to the PSU4813 Voltage Booster.

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

Section 6 - A&L Equipment

Existing Template: 67D92DB_2xAIR+1OP
Proposed Template: 67D5997DB_2xAIR+1OP (U21 Market)

				Sector	1 (Existin	g) view fro	om behind				
Coverage Type	A - Outdoo	r Macro									
Antenna			1			2	2		3		
Antenna Model	Ericsson - A	AIR32 KRD90 2A (Octo))1146-		RFS - APX	VAARR24_43	-U-NA20 (Oc	(0)	Ericsson - AIR21 KRC11 1_B2A_B4P (Quad)	8023-	
Azimuth	30				30				30		
M. Tilt	2				0				2		
Height	160				160				160		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	L2100	L2100	L1900	L1900	L700 L600 N600	L700 L600 N600			U2100	G1900	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.											
E. Tilt	5	5	5	5	2	2			5	5	
Cables	Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.				1-5/8" Coax - 170 ft. (x2)	Fiber Jumper - 15 ft. (x2)	
TMAs									Generic Twin Style 1B - AWS (AtAntenna)		
Diplexers / Combiners											
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)					
Sector Equipment											

Unconnected Equipment:

Scope of Work:

Add handrail kit.

Replace LB Dual in Position 2 with (1) LB/MB Octo. Replace RRUS11 B12 with (1) Radio 4449 B71+B12 for L600 and L700. Replace AIR21 B2P/B4A in Position 1 with (1) AIR32 DB for L1900 and L2100.

RAN Template: A&L Template: 67D5A997DB Outdoor 67D5997DB_2xAIR+1OP (U21 Market)

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

				Sector	1 (Propos	ed) view fi	om behin	d			
Coverage Type	A - Outdoo	r Macro									
Antenna			ı				2		3		
Antenna Model	Ericsson - A	AIR32 KRD90 2A (Octo)	1146-		RFS - APX	VAARR24_43	-U-NA20 (Oct	(0)	Ericsson - AIR6449 B41 Massive MIMO)	(Active Antenna -	
Azimuth	30				30				30		
M. Tilt	2				0				2		
Height	160				160				160		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	L2100	L2100	G1900 L1900	L1900	L700 L600 N600	L700 L600 N600	L1900	U2100	N2500 (L2500)	N2500 (L2500)	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.											
E. Tilt	5	5	5	5	2	2	5	5	5	5	
Cables	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. (x2)	Fiber Jumper - 15 ft. (x2)	
TMAs											
Diplexers / Combiners											
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)	Radio 4460 B25+B6 6 (At Antenn a)	SHARED Radio 4460 B25+B6 6 (At Antenn a)			
Sector Equipment											

Unconnected Equipment:

Scope of Work:

Remove all Coaxial lines.

Remove all TMA's.

Add (1) Radio 4460 B25+B66 for L1900 2nd Carrier and U2100 to Position 2 near antenna,

Remove AIR21 B2A/B4P from Position 3.

Install (1) AIR6449 B41 for L2500 and N2500 in Position 3.

Move GSM to AIR32 Dual Band antenna in Position 1. GSM will share B2 radios with L1900 1st Carrier.

Ensure RET control is enabled for all technology layers according to the Design Documents.

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

				Sector	2 (Existin	g) view fro	om behind				
Coverage Type	A - Outdoo	r Macro									
Antenna			1			2	2		3		
Antenna Model	Ericsson - A	AIR32 KRD90 2A (Octo))1146-		RFS - APX	VAARR24_43	-U-NA20 (Oct	o)	Ericsson - AIR21 KRC118 1_B2A_B4P (Quad)	8023-	
Azimuth	180				180				180		
M. Tilt	2				0				2		
Height	160				160				160		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	L2100	L2100	L1900	L1900	L700 L600 N600	L700 L600 N600			U2100	G1900	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.											
E. Tilt	2	2	2	2	2	2			2	2	
Cables	Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.				1-5/8" Coax - 170 ft. (x2)	Fiber Jumper - 15 ft. (x2)	
TMAs									Generic Twin Style 1B - AWS (AtAntenna)		
Diplexers / Combiners											
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)					
Sector Equipment											

Unconnected Equipment:

Scope of Work:

Add handrail kit.

Replace LB Dual in Position 2 with (1) LB/MB Octo.
Replace RRUS11 B12 with (1) Radio 4449 B71+B12 for L600 and L700.
Replace AIR21 B2P/B4A in Position 1 with (1) AIR32 DB for L1900 and L2100.

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

				Sector	2 (Propos	ed) view fi	om behin	d			
Coverage Type	A - Outdoo	r Macro									
Antenna			ı			2	2		3		
Antenna Model	Ericsson - A	AIR32 KRD90 2A (Octo)	1146-		RFS - APX	VAARR24_43	-U-NA20 (Oct	(0)	Ericsson - AIR6449 B41 Massive MIMO)	(Active Antenna -	
Azimuth	180				180				180		
M. Tilt	2				0				2		
Height	160				160				160		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	L2100	L2100	(L1900) (G1900)	L1900	L700 L600 N600	L700 L600 N600	L1900	U2100	L2500 (N2500)	L2500 (N2500)	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.											
E. Tilt	2	2	2	2	2	2	2	2	2	2	
Cables	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. (x2)	Fiber Jumper - 15 ft. (x2)	
TMAs											
Diplexers / Combiners											
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)	Radio 4460 B25+B6 6 (At Antenn a)	SHARED Radio 4460 B25+B6 6 (At Antenn a)			
Sector Equipment											

Unconnected Equipment:

Scope of Work:

Remove all Coaxial lines.

Remove all TMA's.

Add (1) Radio 4460 B25+B66 for L1900 2nd Carrier and U2100 to Position 2 near antenna,

Remove AIR21 B2A/B4P from Position 3.

Install (1) AIR6449 B41 for L2500 and N2500 in Position 3.

Move GSM to AIR32 Dual Band antenna in Position 1. GSM will share B2 radios with L1900 1st Carrier.

Ensure RET control is enabled for all technology layers according to the Design Documents.

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

				Sector	3 (Existin	g) view fro	om behind				
Coverage Type	A - Outdoo	r Macro									
Antenna			1			2	!		3		
Antenna Model	Ericsson - A	AIR32 KRD90 2A (Octo))1146-		RFS - APX	VAARR24_43	-U-NA20 (Oct	(0)	Ericsson - AIR21 KRC118 1_B2A_B4P (Quad)	8023-	
Azimuth	290				290				290		
M. Tilt	2				0				2		
Height	160				160				160		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	L2100	L2100	L1900	L1900	L700 L600 N600	L700 L600 N600			U2100	G1900	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.											
E. Tilt	5	5	5	5	2	2			5	5	
Cables	Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.		Fiber Jumper - 15 ft.				1-5/8" Coax - 170 ft. (x2)	Fiber Jumper - 15 ft. (x2)	
TMAs									Generic Twin Style 1B - AWS (AtAntenna)		
Diplexers / Combiners											
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)					
Sector Equipment											

Unconnected Equipment:

Scope of Work:

Add handrail kit.

Replace LB Dual in Position 2 with (1) LB/MB Octo.
Replace RRUS11 B12 with (1) Radio 4449 B71+B12 for L600 and L700.
Replace AIR21 B2P/B4A in Position 1 with (1) AIR32 DB for L1900 and L2100.

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections)
PORs: Anchor_Phase 3

				Sector	3 (Propos	ed) view f	rom behin	d			
Coverage Type	A - Outdoo	r Macro									
Antenna			1			:	2		3		
Antenna Model	Ericsson - A	AIR32 KRD90 2A (Octo)	1146-		RFS - APX	VAARR24_43	-U-NA20 (Oc	to)	Ericsson - AIR6449 B41 Massive MIMO)	(Active Antenna -	
Azimuth	290)				(290)				(290)		
M. Tilt	2				0				2		
Height	(160)				(160)				(160)		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	L2100	L2100	(L1900) (G1900)	L1900	L700 L600 N600	L700 L600 N600	L1900	(L1900) (U2100)	L2500 N2500	L2500 (N2500)	
Dark Tech.		İ									
Restricted Tech.											
Decomm. Tech.											
E. Tilt	5	5	5	5	2	2	5	5	5	5	
Cables	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft.	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. Coax Jumper	Fiber Jumper - 15 ft. (x2)	Fiber Jumper - 15 ft. (x2)	
TMAs			İ								
Diplexers / Combiners											
Radio					Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)	Radio 4460 B25+B6 6 (At Antenn a)	SHARED Radio 4460 B25+B6 6 (At Antenn a)			
Sector Equipment											

Unconnected Equipment:

Scope of Work:

Remove all Coaxial lines.

Remove all TMA's.

Add (1) Radio 4460 B25+B66 for L1900 2nd Carrier and U2100 to Position 2 near antenna,

Remove AIR21 B2A/B4P from Position 3.

Install (1) AIR6449 B41 for L2500 and N2500 in Position 3.

Move GSM to AIR32 Dual Band antenna in Position 1. GSM will share B2 radios with L1900 1st Carrier.

Ensure RET control is enabled for all technology layers according to the Design Documents.

CTHA231A_Anchor_9_draft

Print Name: Preliminary (RFDS_Corrections) **PORs:** Anchor_Phase 3

Section	7 -	- Power	Systems	Equi	pment
---------	-----	---------	---------	------	-------

Existing Power Systems Equipment				
This section is intentionally blank				

	Proposed Power Systems Equipment				
Enclosure	1				
Enclosure Type	Enclosure 6160 AC V1				

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA231A

HA231/Berlin FD Tower 1657 Berlin Turnpike Berlin, Connecticut 06037

April 7, 2022

EBI Project Number: 6222002440

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of FCC general population allowable limit:	28.61%		

April 7, 2022

T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTHA231A - HA231/Berlin FD Tower

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 1657 Berlin Turnpike in Berlin, Connecticut for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 1657 Berlin Turnpike in Berlin, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 6) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

- 7) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 8) I LTE Traffic channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 60 Watts.
- 9) I LTE Broadcast channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 20 Watts.
- 10) I NR Traffic channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of I20 Watts.
- 11) I NR Broadcast channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 40 Watts.
- 12) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 13) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 14) The antennas used in this modeling are the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector A, the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz / 1900 MHz / 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz channel(s), the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz channel(s), the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the

antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 15) The antenna mounting height centerline of the proposed antennas is 160 feet above ground level (AGL).
- 16) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 17) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	ı	Antenna #:	ı	Antenna #:	I
Make / Model:	RFS APXVAARR24_43- U-NA20	Make / Model:	RFS APXVAARR24_43- U-NA20	Make / Model:	RFS APXVAARR24_43- U-NA20
Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz / 2100 MHz
Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd / 15.65 dBd / 15.65 dBd / 16.35 dBd / 16.35 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd / 15.65 dBd / 15.65 dBd / 16.35 dBd / 16.35 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd / 15.65 dBd / 15.65 dBd / 16.35 dBd / 16.35 dBd
Height (AGL):	160 feet	Height (AGL):	160 feet	Height (AGL):	160 feet
Channel Count:	15	Channel Count:	15	Channel Count:	15
Total TX Power (W):	620.00 Watts	Total TX Power (W):	620.00 Watts	Total TX Power (W):	620.00 Watts
ERP (W):	20,641.14	ERP (W):	20,641.14	ERP (W):	20,641.14
Antenna A1 MPE %:	3.98%	Antenna BI MPE %:	3.98%	Antenna C1 MPE %:	3.98%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR 6419	Make / Model:	Ericsson AIR 6419	Make / Model:	Ericsson AIR 6419
Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz
Gain:	22.05 dBd / 15.55 dBd / 22.05 dBd / 15.55 dBd	Gain:	22.05 dBd / 15.55 dBd / 22.05 dBd / 15.55 dBd	Gain:	22.05 dBd / 15.55 dBd / 22.05 dBd / 15.55 dBd
Height (AGL):	160 feet	Height (AGL):	160 feet	Height (AGL):	160 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	240.00 Watts	Total TX Power (W):	240.00 Watts	Total TX Power (W):	240.00 Watts
ERP (W):	31,011.95	ERP (W):	31,011.95	ERP (W):	31,011.95
Antenna A2 MPE %:	4.70%	Antenna B2 MPE %:	4.70%	Antenna C2 MPE %:	4.70%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
T-Mobile (Max at Sector A):	8.68%			
Various Others	0.28%			
Sprint	2.56%			
Clearwire	0.09%			
AT&T	1.65%			
Verizon	15.35%			
Site Total MPE % :	28.61%			

T-Mobile MPE % Per Sector					
T-Mobile Sector A Total:	8.68%				
T-Mobile Sector B Total:	8.68%				
T-Mobile Sector C Total:	8.68%				
·					
Site Total MPE % :	28.61%				

T-Mobile Maximum MPE Power Values (Sector A)							
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
T-Mobile 600 MHz LTE	2	591.73	160.0	1.79	600 MHz LTE	400	0.45%
T-Mobile 600 MHz NR	I	1577.94	160.0	2.39	600 MHz NR	400	0.60%
T-Mobile 700 MHz LTE	2	648.82	160.0	1.97	700 MHz LTE	467	0.42%
T-Mobile 1900 MHz GSM	4	1101.85	160.0	6.68	1900 MHz GSM	1000	0.67%
T-Mobile 1900 MHz LTE	2	2203.69	160.0	6.68	1900 MHz LTE	1000	0.67%
T-Mobile 2100 MHz UMTS	2	1294.56	160.0	3.92	2100 MHz UMTS	1000	0.39%
T-Mobile 2100 MHz LTE	2	2589.11	160.0	7.85	2100 MHz LTE	1000	0.78%
T-Mobile 2500 MHz LTE IC & 2C Traffic	I	9619.47	160.0	14.58	2500 MHz LTE IC & 2C Traffic	1000	1.46%
T-Mobile 2500 MHz LTE IC & 2C Broadcast	I	717.84	160.0	1.09	2500 MHz LTE IC & 2C Broadcast	1000	0.11%
T-Mobile 2500 MHz NR Traffic	I	19238.94	160.0	29.16	2500 MHz NR Traffic	1000	2.92%
T-Mobile 2500 MHz NR Broadcast	I	1435.69	160.0	2.18	2500 MHz NR Broadcast	1000	0.22%
						Total:	8.68%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	8.68%
Sector B:	8.68%
Sector C:	8.68%
T-Mobile Maximum	8.68%
MPE % (Sector A):	0.00%
Site Total:	28.61%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **28.61%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.