

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

March 17, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application

1684 Chamberlain Hwy, Berlin, CT 06037

Latitude: 41.589722 Longitude: -72.805555 Site #: 876382 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1684 Chamberlain Hwy, Berlin, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 111-foot level of the existing 133-foot monopole, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by B+T Group, dated July 7, 2021, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated February 17, 2022, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Berlin Planning & Zoning Commission on March 23, 2000. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Mark Kaczynski, Arosha Jayawickrema, Town Manager and Maureen Giusti, Town Planner for the Town of Berlin, as well as the tower owner (Crown Castle) and property owner (Ronald & Arlene Laviana).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 133-feet and the Dish Wireless LLC antennas will be located at a centerline height of 111-feet.
- 2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 37.81% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in Berlin. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 111-foot level of the existing 133-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Berlin.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Mayor Mark Kaczynski

Berlin Town Hall 240 Kensington Rd Berlin, CT 06037

Arosha Jayawickrema, Town Manager Berlin Town Hall 240 Kensington Rd Berlin, CT 06037

Maureen Giusti, Town Planner Berlin Town Hall 240 Kensington Rd Berlin, CT 06037

Ronald & Arlene Laviana – Property Owner 1684 Chamberlain Hwy Berlin, CT 06037

Crown Castle - Tower Owner

Exhibit A

Original Facility Approval

Town of Berlin

Department of Development Services

April 11, 2000

NOTICE OF DECISION

BERLIN PLANNING AND ZONING COMMISSION

Application:

Special Permit - #00-02-SP

Applicant:

SPRINT Spectrum L.P. dba SPRINT PCS

Location:

Lot 17, Block 15, Chamberlain Highway

At its Regular Meeting of March 23, 2000, the Berlin Planning and Zoning voted five to two to grant the Special Permit Application of SPRINT Spectrum L.P., d/b/a SPRINT PCS for a telecommunications tower and related equipment at Lot 17, Block 15, Chamberlain Highway.

Brian J. Miller, AICP

Director of Development Services

Lawrence J. & Nellie C. Laviana

Owner of Record

PECEVED AS

Certified Mail (Return Receipt Requested): 7099 3400 0001 5361 6271

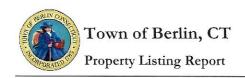
Visit Our Web Site: http://www.edc.ci.berlin.ct.us

Town of Berlin, Connecticut • Planning and Zoning Commission 240 Kensington Road • Berlin, CT 06037 • (860) 828-7060 • Fax (860) 828-7180

RECEIVED May 3 20 00 AT $_{12}$ HR $_{58}$ MIN $_{p.m.}$

AND RECORDED IN BERLIN LAND RECORDS

VOT. 433 PAGE 333


155 TOWNCLERK

Book: 433 Page: 333 File Number: 1210 Seq: 1

001210

Exhibit B

Property Card

Map Block Lot

19-4-15-17

Building #

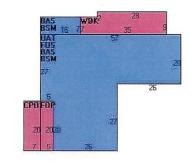
PID

3445

Account

1036200

Property Information


Property Location	1684 CHAN	1684 CHAMBERLAIN HWY				
Owner	LAVIANA RONALD L & ARLENE G					
Co-Owner						
Mailing Address	1684 CHAN	1684 CHAMBERLAIN HWY				
	KENSINGT	ON	СТ	06037		
Land Use	1070	SFR w	//Apt			
Land Class	R					
Zoning Code	MR-1					
Census Tract	4002					

District	0	
Acreage	65.05	
Utilities	Gas,Well,Septic	
Book / Page	0456/0137	

Photo

Sketch

Primary Construction Details

Year Built	1800
Building Desc.	SFR w/Apt
Building Style	Colonial
Stories	2
Occupancy	1.00
Exterior Walls	Vinyl Siding
Exterior Walls 2	
Roof Style	Gable
Roof Cover	Asph/F Gls/Cmp
Interior Walls	Drywall
Interior Walls 2	
Interior Floors 1	Carpet
Interior Floors 2	

Heating Fuel	Gas/Oil
Heating Type	Hot Water
AC Type	None
Bedrooms	6 Bedrooms
Full Bathrooms	3
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	12
Bath Style	Average
Kitchen Style	Average
Fin BSMT Area	2
Fin BSMT Quality	
Fin BSMT Area 2	
Fin BSMT Qual 2	

BSMT Garages	0
Fireplaces	2
Whirlpool Tub	0
Building Use	Residential
Building Condition	Α
	Commercial Details
Heat / AC	NA
Frame Type	NA
Baths / Plumbing	NA
Ceiling / Wall	NA
Rooms / Prtns	NA
Wall Height	NA
First Floor Use	NA

Map Block Lot 19-4-15-17

Building # 1

PID

3445 Account

1036200

Valuation Sumi	mary (As	ssessed value = 70	% of Appraised Value)	Sub Areas			
Item	Appr	raised	Assessed	Subarea Type	(Gross Area (sq ft)	Living Area (sq ft
Buildings	210800		147600	First Floor		1989	1989
Extras	7500		5300	Concrete Patio		140	0
Improvements				Porch, Open, Finish	ed	100	0
Outbuildings	276700		193700	Upper Story, Finishe	ed	1877	1877
Land	1481400		122176	Deck, Wood		301	0
Total	1976400	1	468776	Basement		1989	0
Outbuilding as	nd Extra F	eatures		Attic, Unfinished		1877	0
Туре		Descriptio	n				
Barn 1 Story		638 S.F.					
Barn 1 Sty w/Bsm		2100 S.F.				***************************************	
Garage - Avg		504 S.F.					
Shed Wd Res		420 S.F.					
Cell Tower		150 L.F.					
Generator		22 UNITS					
					+		
=							
				Total Area		8273	3866
Sales History				1			
Owner of Record				Book/ Page	Sale Date	Sale Pr	ice
LAVIANA RONALD	L & ARLENE	3		0456/0137	2001-09-19	0	
LAVIANA,LAWREN	CE,,			0088/0223	1944-04-23	0	

Feet

Disclaimer: This map is for informational purposes only All information is subject to verification by any user. The Town of Berlin and its mapping contractors assume no legal responsibility for the information contained herein.

Exhibit C

Construction Drawings

dish wireless...

DISH Wireless L.L.C. SITE ID:

BOBDL00095A

DISH Wireless L.L.C. SITE ADDRESS:

1684 CHAMBERLAIN HIGHWAY BERLIN, CT 06037

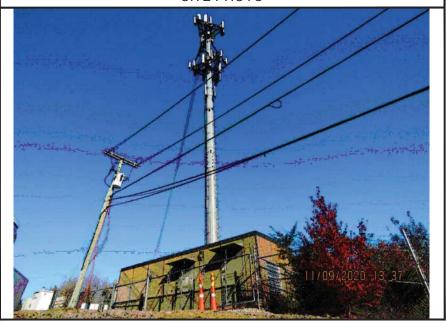
CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-1	ELECTRICAL PETAILS
E-2 E-3	ELECTRICAL DETAILS ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & FANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
DE 4	DE CARIE COLOR CORE
RF-1	RF CABLE COLOR CODE
RF-2	RF PLUMBING DIAGRAM
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES
ļ	

SCOPE OF WORK


THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
 INSTALL (1) PROPOSED TOWER PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUs (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE

- GROUND SCOPE OF WORK:
 INSTALL (1) PROPOSED METAL PLATFORM
-) PROPOSED ICE BRIDGE

) PROPOSED PPC CABINET INSTALL
- INSTALL (1) PROPOSED EQUIPMENT CABINET
- INSTALL PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT
-) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

DIRECTIONS

PROJECT DIRECTORY

TOWER OWNER: CROWN CASTLE

SITE DESIGNER: B+T GROUP

SITE ACQUISITION:

RF ENGINEER:

DISH Wireless L.L.C.

LITTLETON, CO 80120

2000 CORPORATE DRIVE

CANONSBURG, PA 15317

1717 S. BOULDER AVE, SUITE 300

NICHOLAS CURRY

NICHOLAS.CURRY@CROWN

JAVIER.SOTO@DISH.COM

BOSSENER CHARLES

BOSSENER.CHARLES

ODISH.COM

(877) 486-9377

TULSA, OK 74119

(918) 587-4630

CONSTRUCTION MANAGER: JAVIER SOTO

5701 SOUTH SANTA FE DRIVE

DIRECTIONS FROM BRADLEY INTERNATIONAL AIRPORT:

SITE INFORMATION

LAVIANA RONALD & ARLENE

1684 CHAMBERLAIN HWY

KENSINGTON, CT 06037

MONOPOLE

876382

556603

LONGITUDE (NAD 83): 72° 48' 19.20" W

HARTFORD

41° 35' 23.07" N 41.589750 N

72.805333 W

T.B.D.

CT - TOWN OF BERLIN

BERL-000036-000200

CONNECTICUT LIGHT & POWER

PROPERTY OWNER:

TOWER CO SITE ID:

LATITUDE (NAD 83):

ZONING JURISDICTION:

ZONING DISTRICT:

PARCEL NUMBER:

OCCUPANCY GROUP:

POWER COMPANY:

CONSTRUCTION TYPE: II-B

TELEPHONE COMPANY: LIGHTOWER

TOWER APP NUMBER:


ADDRESS:

TOWER TYPE:

COUNTY:

CONTINUE TO BRADLEY INTERNATIONAL AIRPORT CON. TAKE I-91 S TO CT-372 E IN BERLIN. TAKE EXIT 21 FROM CT-9 N. TAKE US-5 S TO ORCHARD RD. SLIGHT RIGHT TO STAY ON ORCHARD RD. DESTINATION WILL BE ON THE RIGHT.

VICINITY MAP

5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

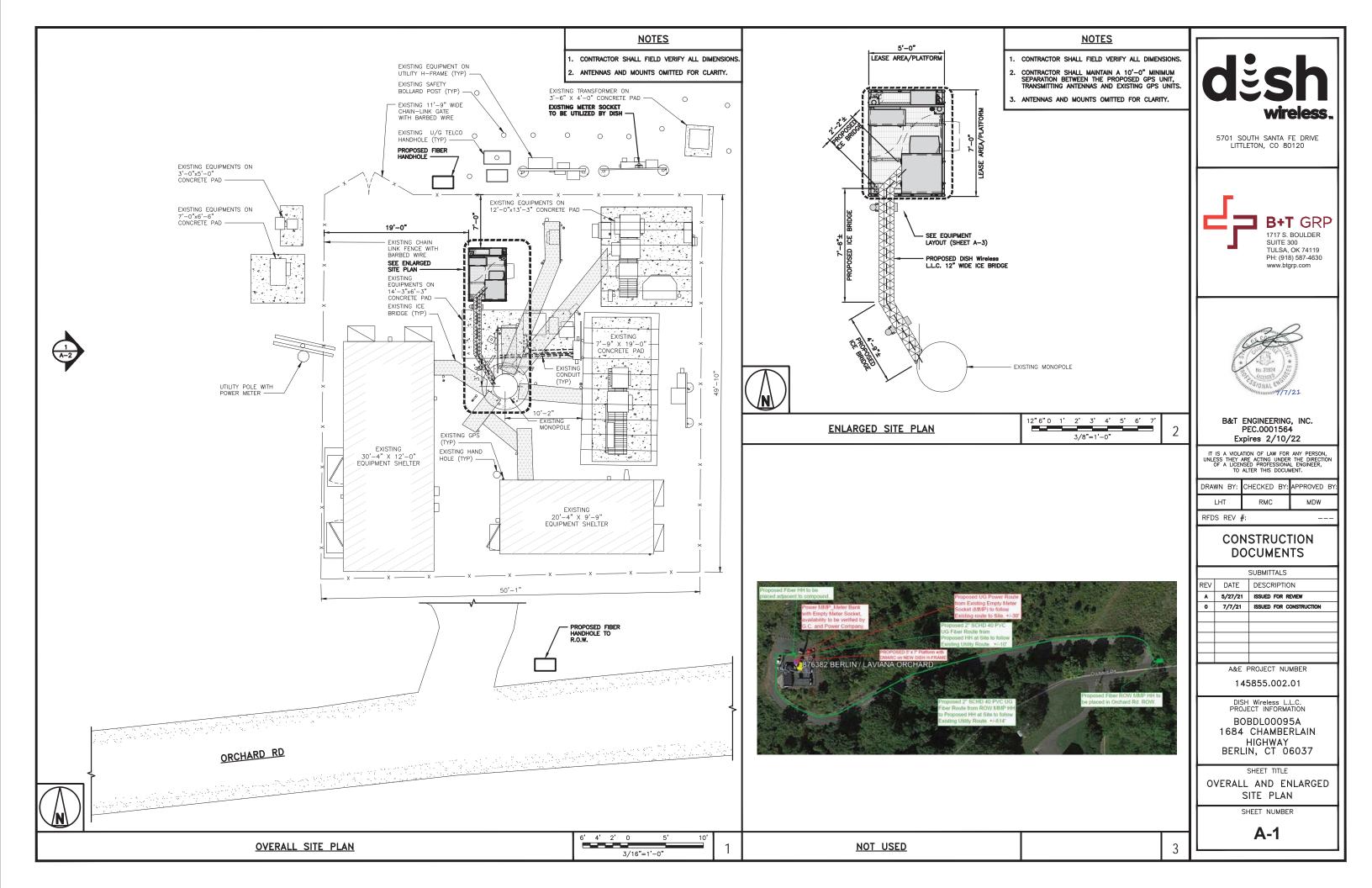
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

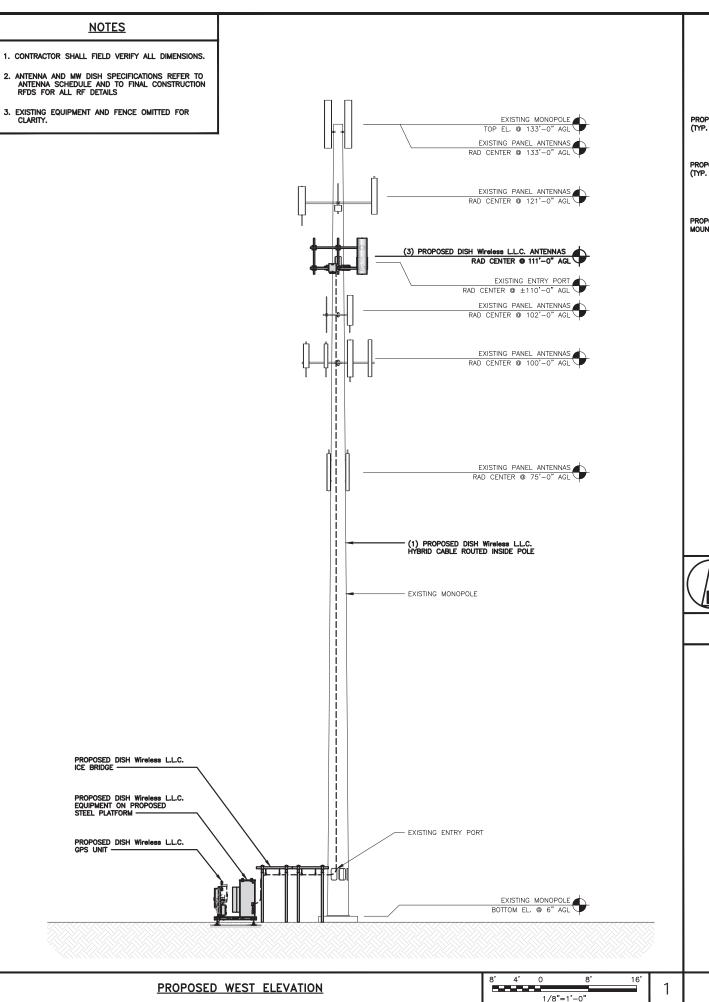
DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
LHT		RMC		MDW	

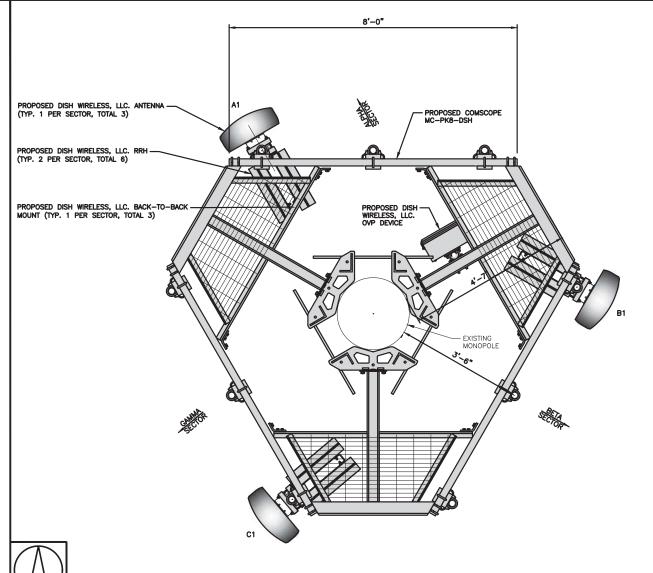
RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	DATE	DESCRIPTION						
A	5/27/21	ISSUED FOR REVIEW						
0	7/7/21	ISSUED FOR CONSTRUCTION						
	A&E F	PROJECT NUMBER						


145855.002.01


BOBDL00095A 1684 CHAMBERLAIN HIGHWAY BERLIN, CT 06037


> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

TRANSMISSION CABLE ANTENNA POSITION FEED LINE TYPE AND LENGTH MANUFACTURER - MODEL EXISTING OR RAD CENTER TECHNOLOGY SIZE (HxW) AZIMUTH A1 JMA WIRELESS - MX08FR0665-21 72.0" x 20.0" 330° (1) HIGH-CAPACITY HYBRID CABLE (150'-0" LONG) В1 PROPOSED JMA WIRELESS - MX08FR0665-21 5G 72.0" x 20.0" 120° 111'-0"

5G

72.0" x 20.0"

		RRH	
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY
ALPHA	A1	FUJITSU - TA08025-B604	n70 n66
	A1	FUJITSU - TA08025-B605	n71 n29
BETA	B1	FUJITSU - TA08025-B604	n70 n66
BEIA	B1	FUJITSU - TA08025-B605	n71 n29
GAMMA	C1	FUJITSU - TA08025-B604	n70 n66
	C1	FUJITSU - TA08025-B605	n71 n29

SECTOR

ALPHA

BETA

GAMMA

C1

PROPOSED

ANTENNA LAYOUT

JMA WIRELESS - MX08FR0665-21

NOTES

1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.

230°

111'-0"

3/4"=1'-0"

 ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

LHT RMC MDW	П	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
		LHT	-	RMC		MDW	

CONSTRUCTION

RFDS REV #:

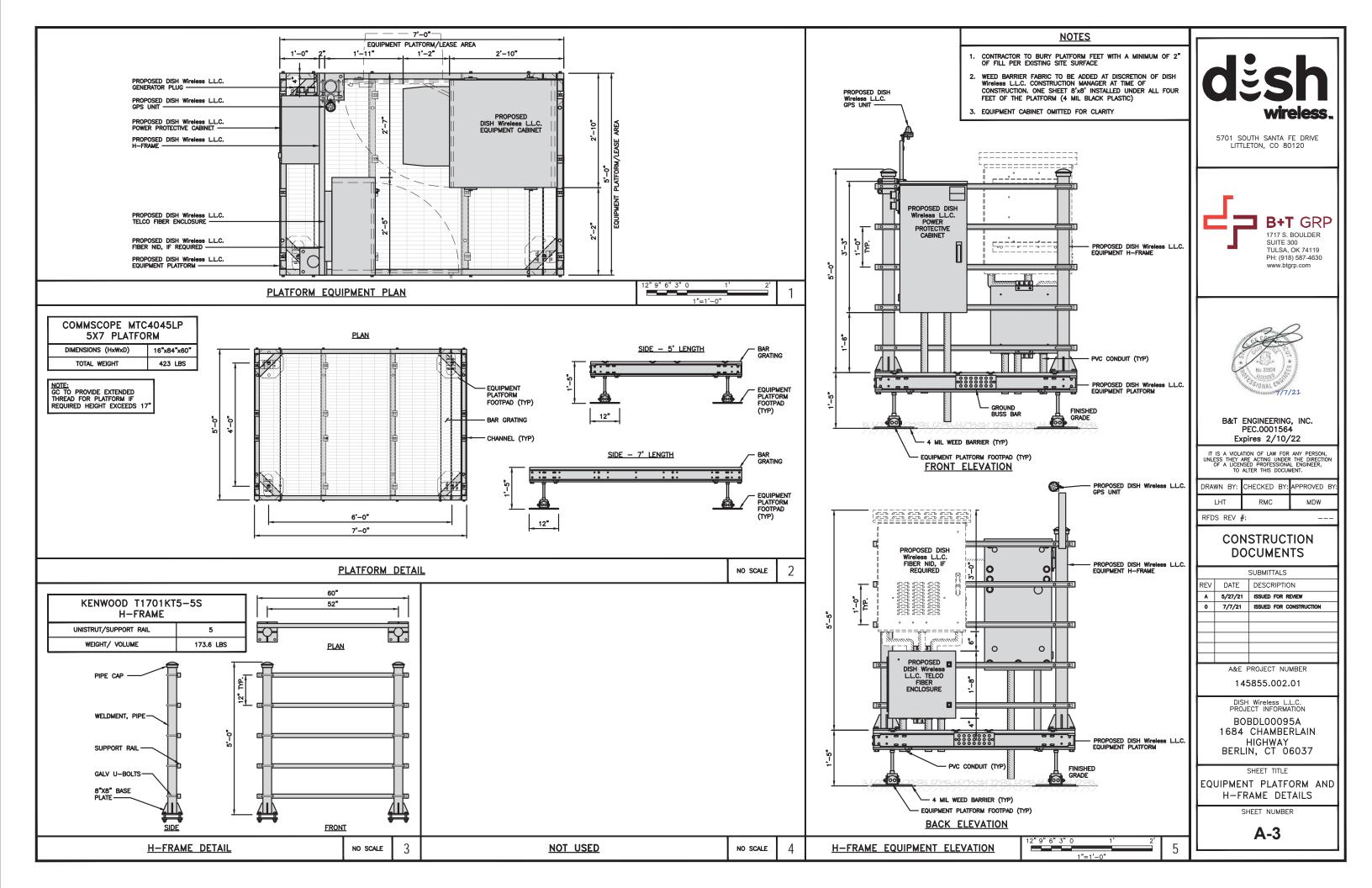
| DOCUMENTS | SUBMITTALS | REV | DATE | DESCRIPTION | A | 5/27/21 | ISSUED FOR REVIEW | O | 7/7/21 | ISSUED FOR CONSTRUCTION |

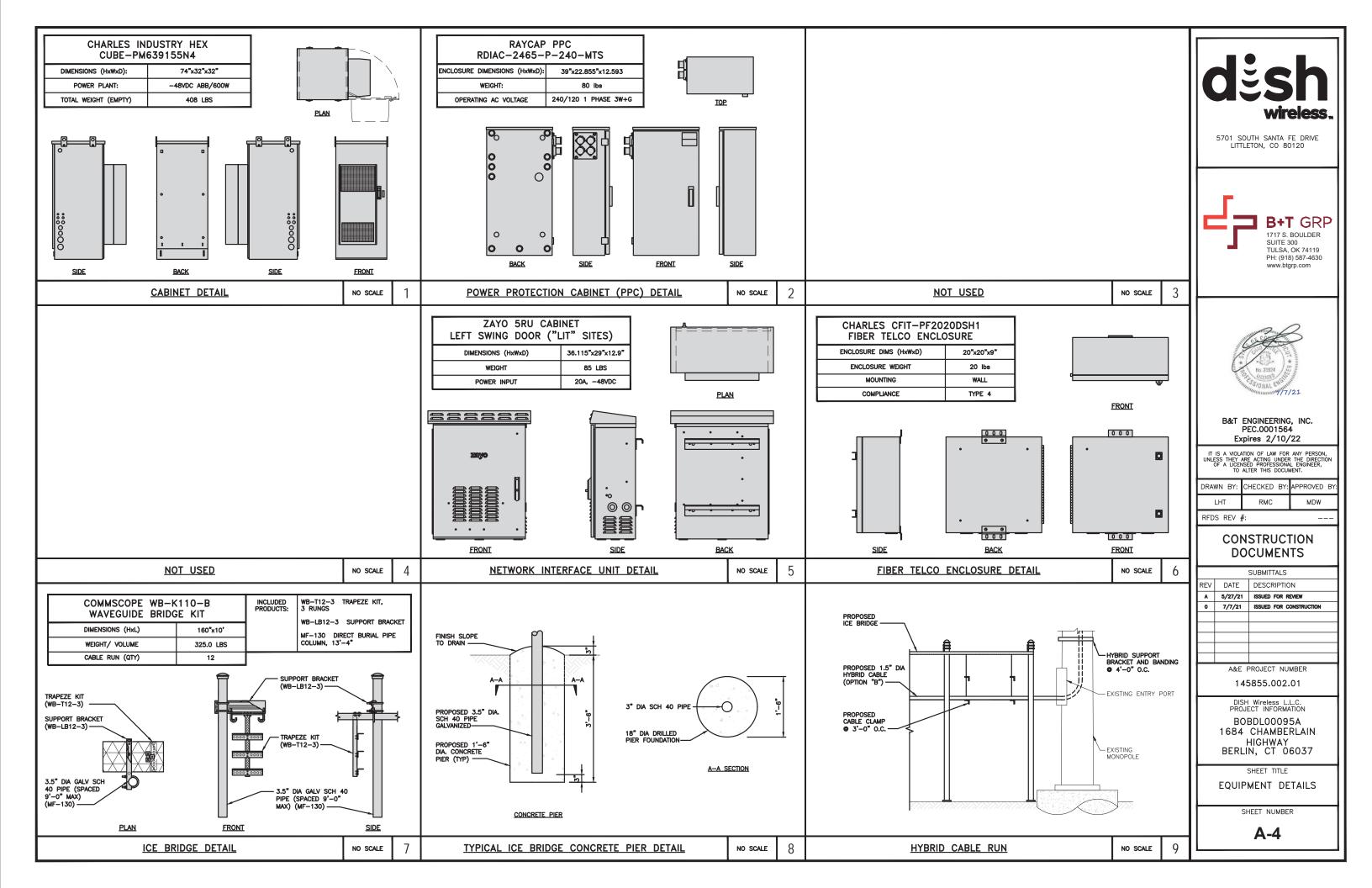
A&E PROJECT NUMBER 145855.002.01

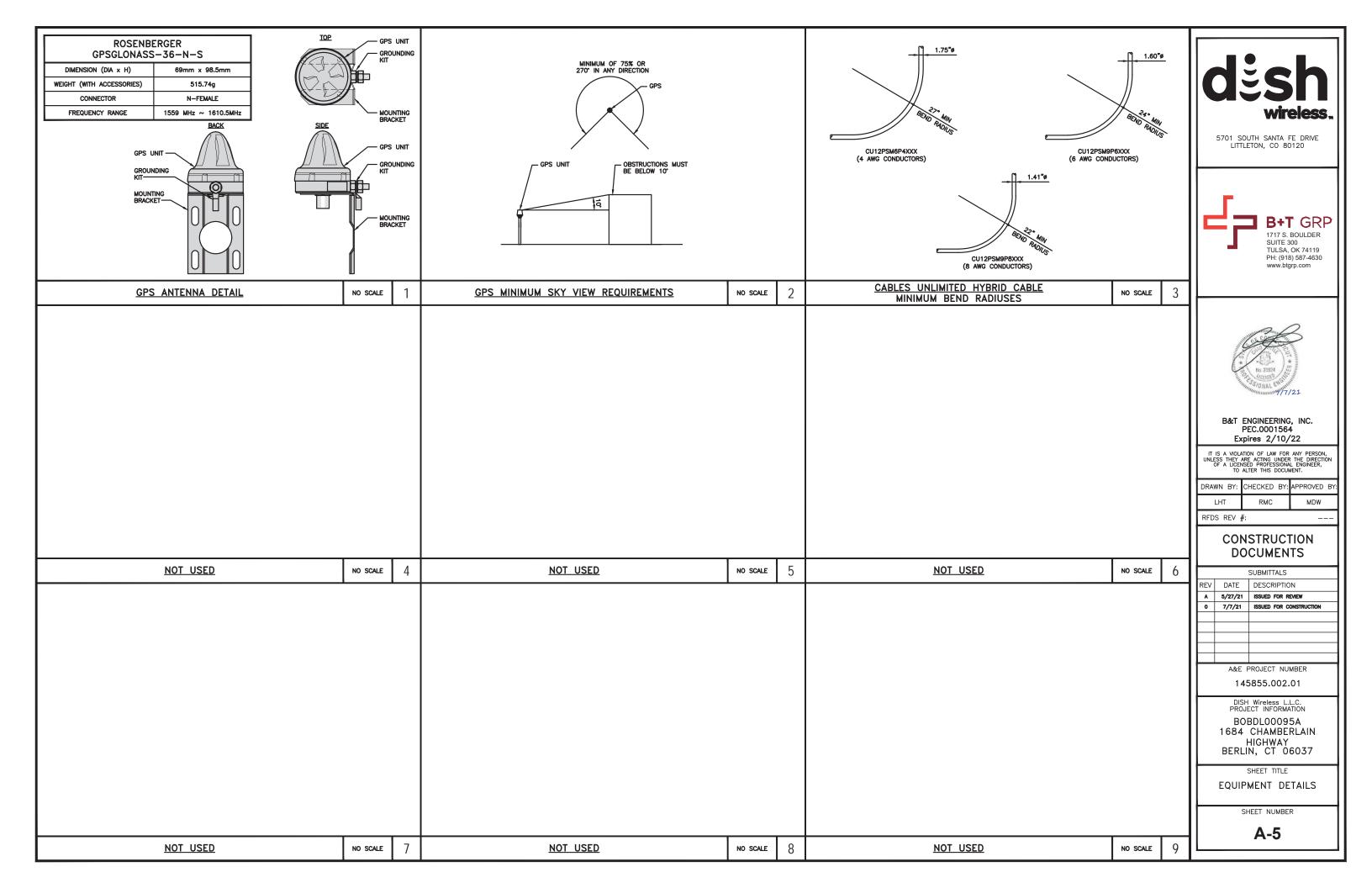
DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00095A 1684 CHAMBERLAIN

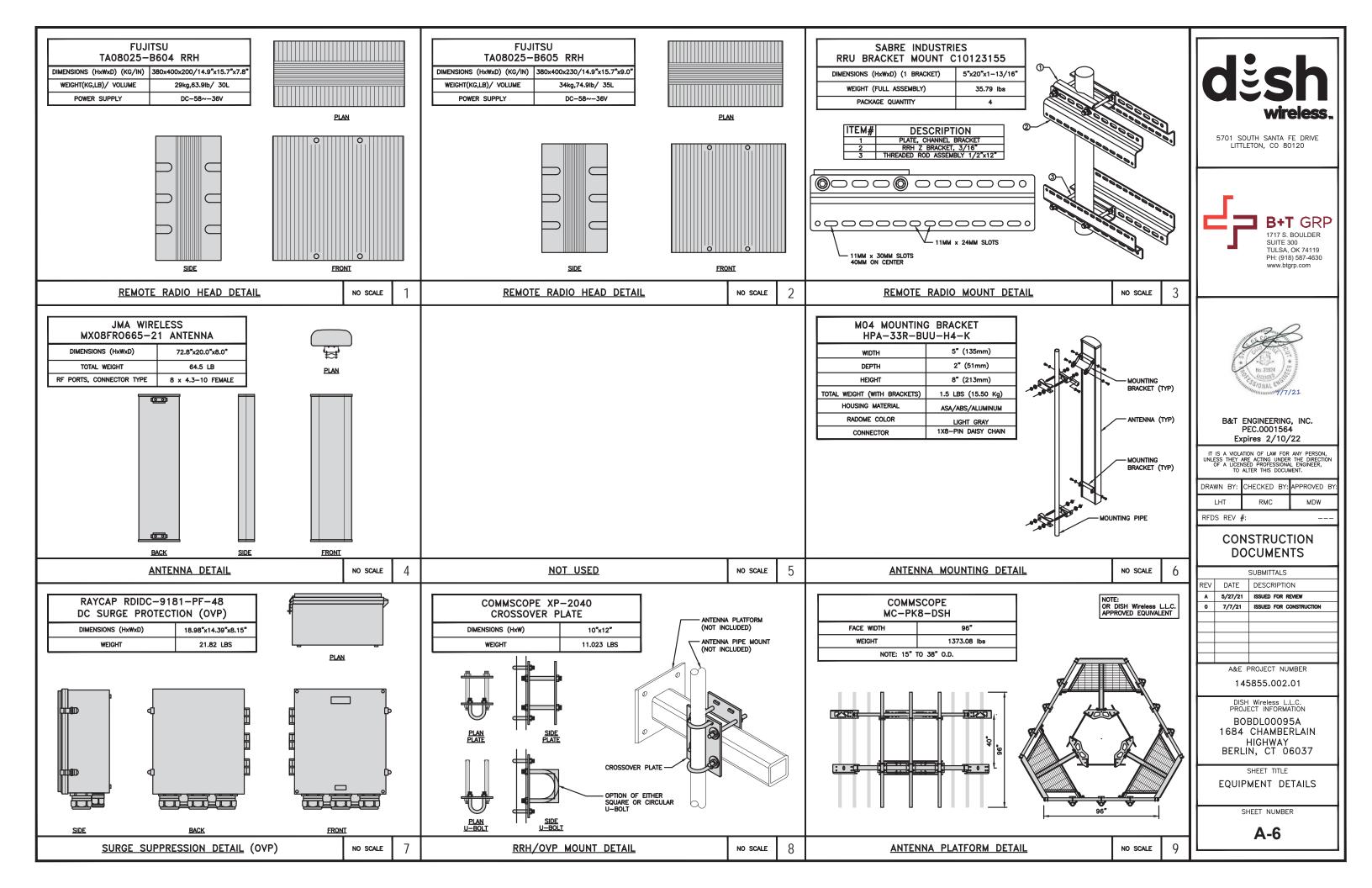
HIGHWAY BERLIN, CT 06037

ELEVATION, ANTENNA LAYOUT AND SCHEDULE

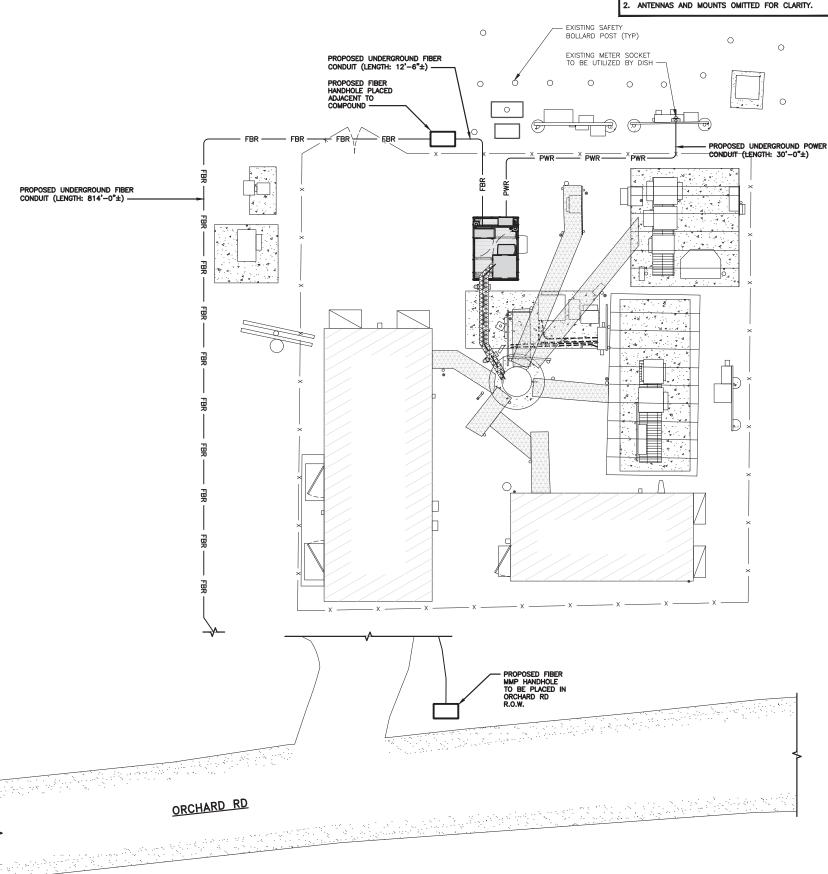

SHEET NUMBER

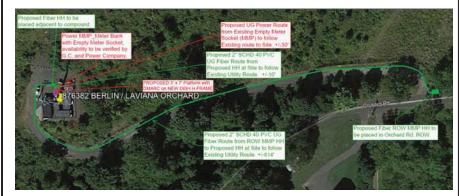

A-2


ANTENNA SCHEDULE


NO SCALE

0 50415




<u>NOTES</u>

- CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING ± 24 V and ± 48 V conductors. RED MARKINGS SHALL IDENTIFY ± 24 V and blue markings shall identify ± 48 V.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
LHT		RMC		MDW	

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

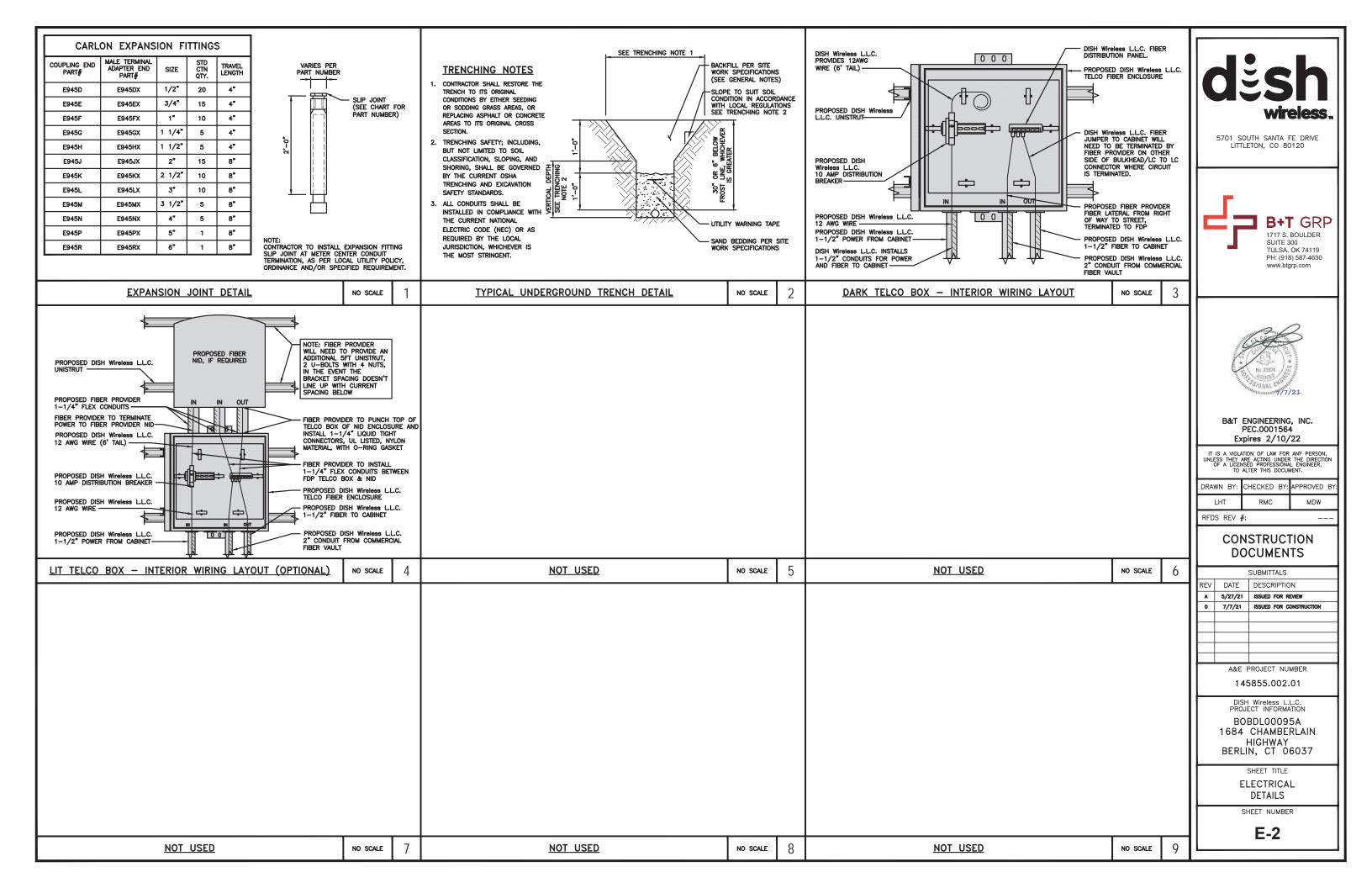
		SUBMITTALS					
REV	DATE	DESCRIPTION					
A	5/27/21	ISSUED FOR REVIEW					
0	7/7/21	ISSUED FOR CONSTRUCTION					
	Δ&F F	PROJECT NUMBER					

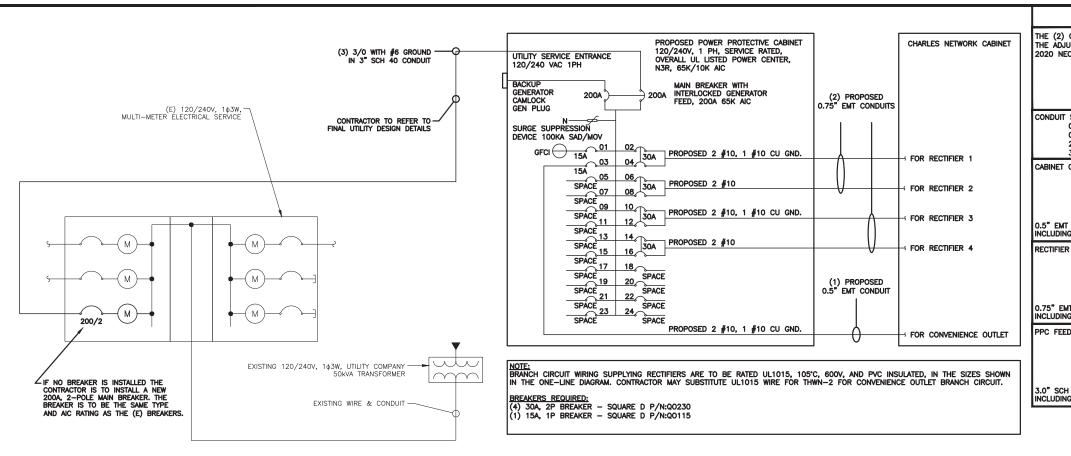
145855.002.01

DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00095A 1684 CHAMBERLAIN HIGHWAY BERLIN, CT 06037

SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES


SHEET NUMBER


E-1

3/16"=1'-0"

ELECTRICAL NOTES

NO SCALE

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(α) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

> #12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA

2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.0633 SQ. IN

O.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND TOTAL = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND TOTAL = 0.8544 SQ. IN

NO SCALE

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PROPOSED CHARLES PANEL SCHEDULE (WATTS) (WATTS) LOAD SERVED ABB/GE INFINITY RECTIFIER 1 30A ABB/GE INFINITY RECTIFIER 2 30A ABB/GE INFINITY 30A ABB/GE INFINIT 30A RECTIFIER 4
-SPACE-SPACE-VOLTAGE AMPS | 180 | 180 200A MCB, 16, 24 SPACE, 120/240V MB RATING: 65,000 AIC 11700 11700 VOLTAGE AMPS 98 98 AMPS

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B+T GRP 1717 S. BOULDER SUITE 300 TULSA. OK 74119 PH: (918) 587-4630 www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

П	DRAWN BY:	CHECKED BY:	APPROVED B	Υ
П	LHT	RMC	MDW	

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

		SUBMITTALS
REV	DATE	DESCRIPTION
Α	5/27/21	ISSUED FOR REVIEW
0	7/7/21	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

145855.002.01

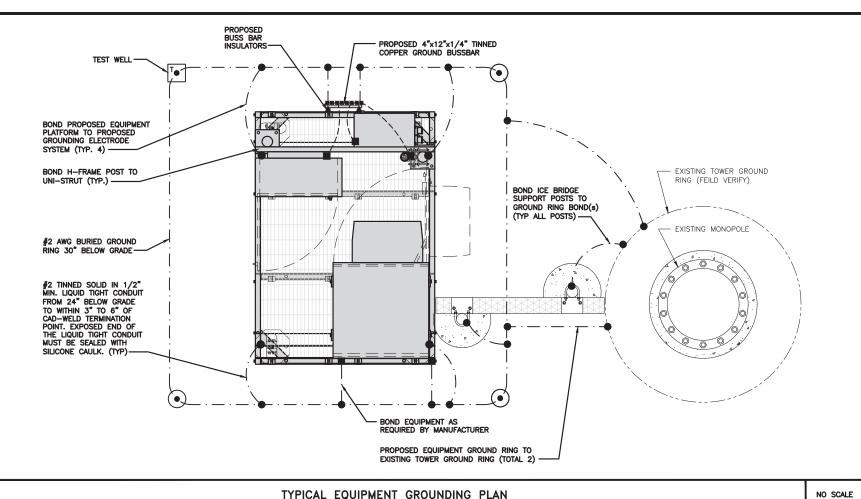
DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00095A 1684 CHAMBERLAIN HIGHWAY BERLIN, CT 06037

SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3

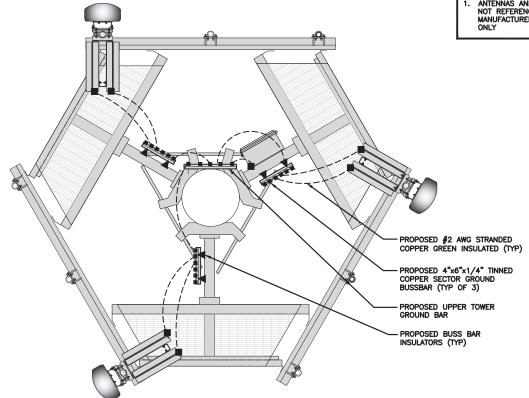

NOT USED

NO SCALE

PANEL SCHEDULE

NO SCALE

PPC ONE-LINE DIAGRAM



TYPICAL EQUIPMENT GROUNDING PLAN

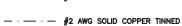
<u>NOTES</u>

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

NO SCALE

TYPICAL ANTENNA GROUNDING PLAN

EXOTHERMIC CONNECTION MECHANICAL CONNECTION


GROUND BUS BAR

GROUND ROD

(•)

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED

▲ BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNERS FOR THE TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
-) Interior unit bonds: Metal frames, cabinets and individual metallic units located with the area of the interior ground ring require a #6 awg stranded green insulated copper bond to the
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH CAST DEPOST AND ACCROSS CAST OFFICE AND ACCROSS CAST OFFI AND
- (M) <u>Exterior unit bonds:</u> Metallic objects, external to or mounted to the building, shall be bonded to the exterior ground ring. Using #2 tinned solid copper wire
- N ICE BRIDGE SUPPORTS; EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE PEFERENCE CROUND BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

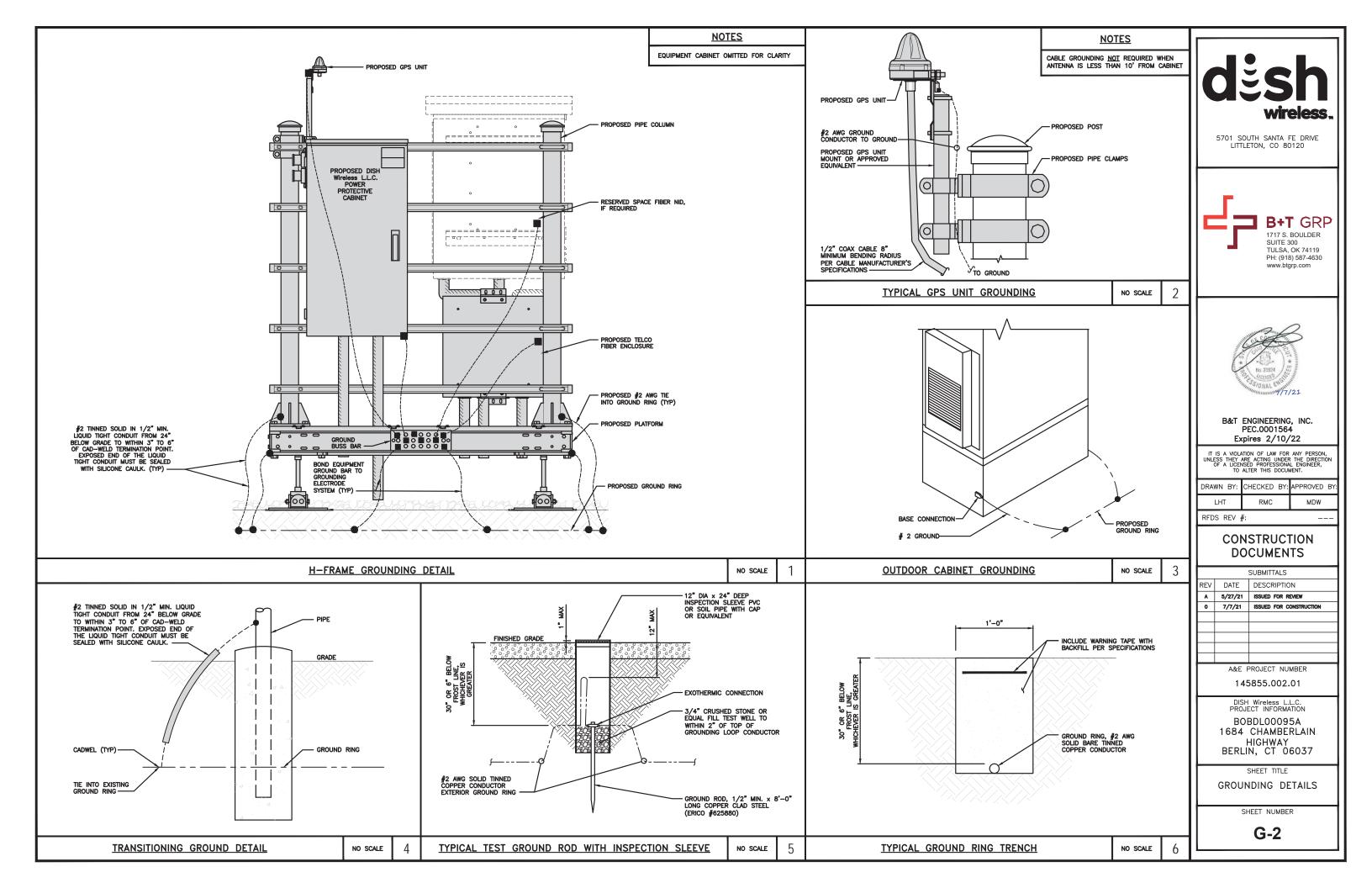
Ш	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
П	LHT		RMC		MDW	

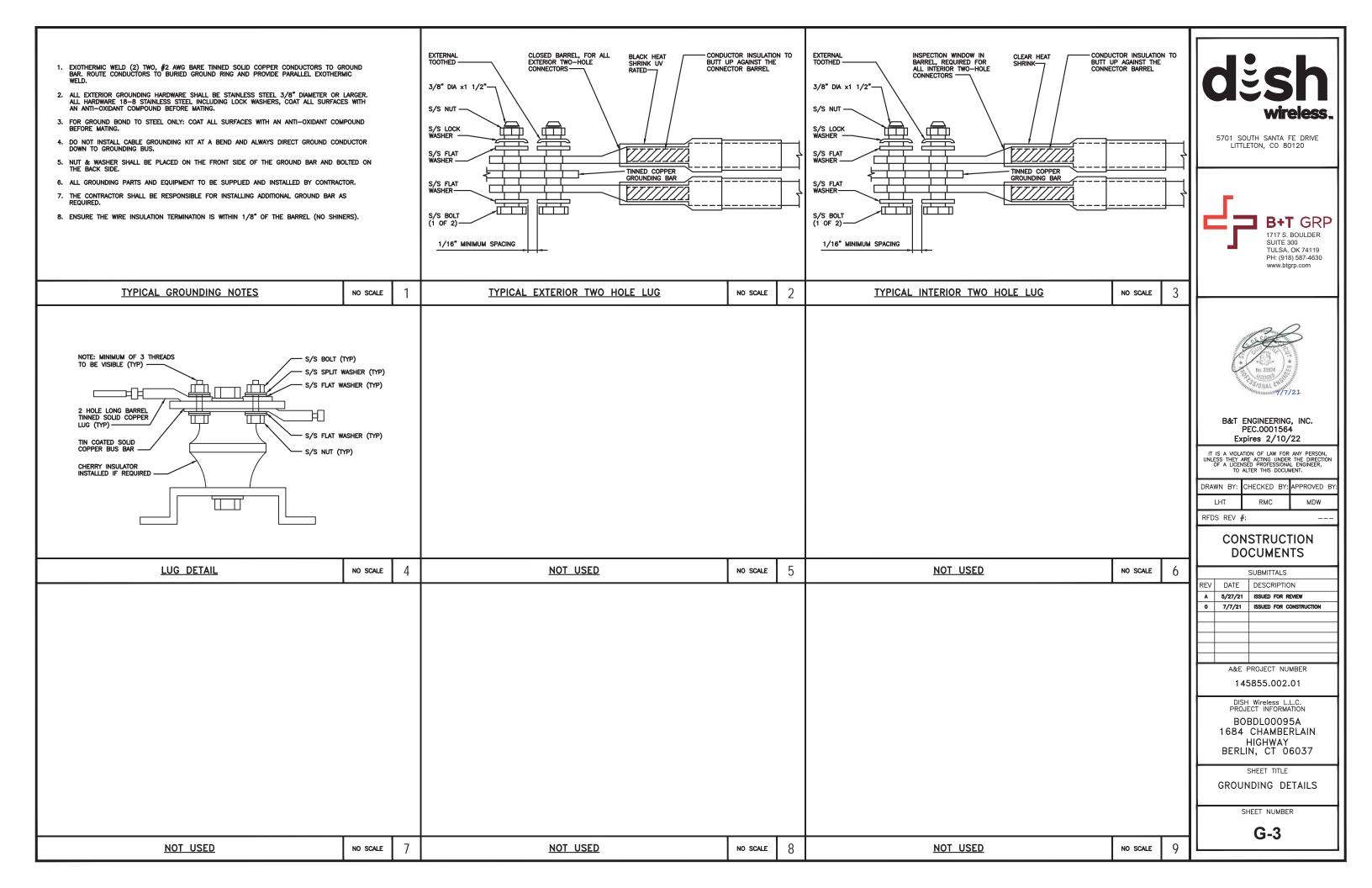
CONSTRUCTION **DOCUMENTS**

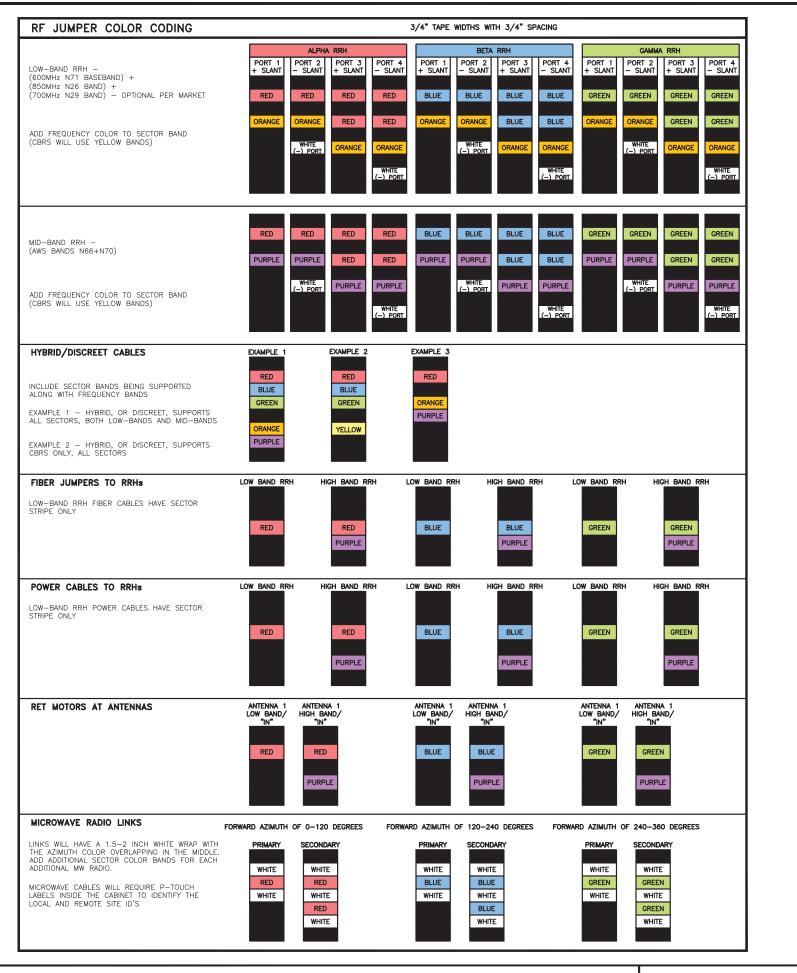
		SUBMITTALS					
REV	DATE	DESCRIPTION					
Α	5/27/21	ISSUED FOR REVIEW					
0	7/7/21	ISSUED FOR CONSTRUCTION					
	A&E F	PROJECT NUMBER					

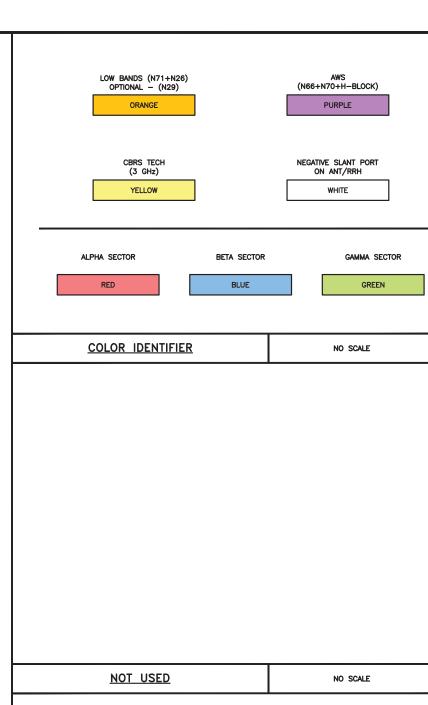
145855.002.01

DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00095A 1684 CHAMBERLAIN HIGHWAY BERLIN, CT 06037


SHEET TITLE GROUNDING PLANS AND NOTES


SHEET NUMBER


GROUNDING KEY NOTES


NO SCALE

G-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

LHT RMC MDW	П	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	Ш	LHT	-	RMC		MDW	

RFDS REV #:

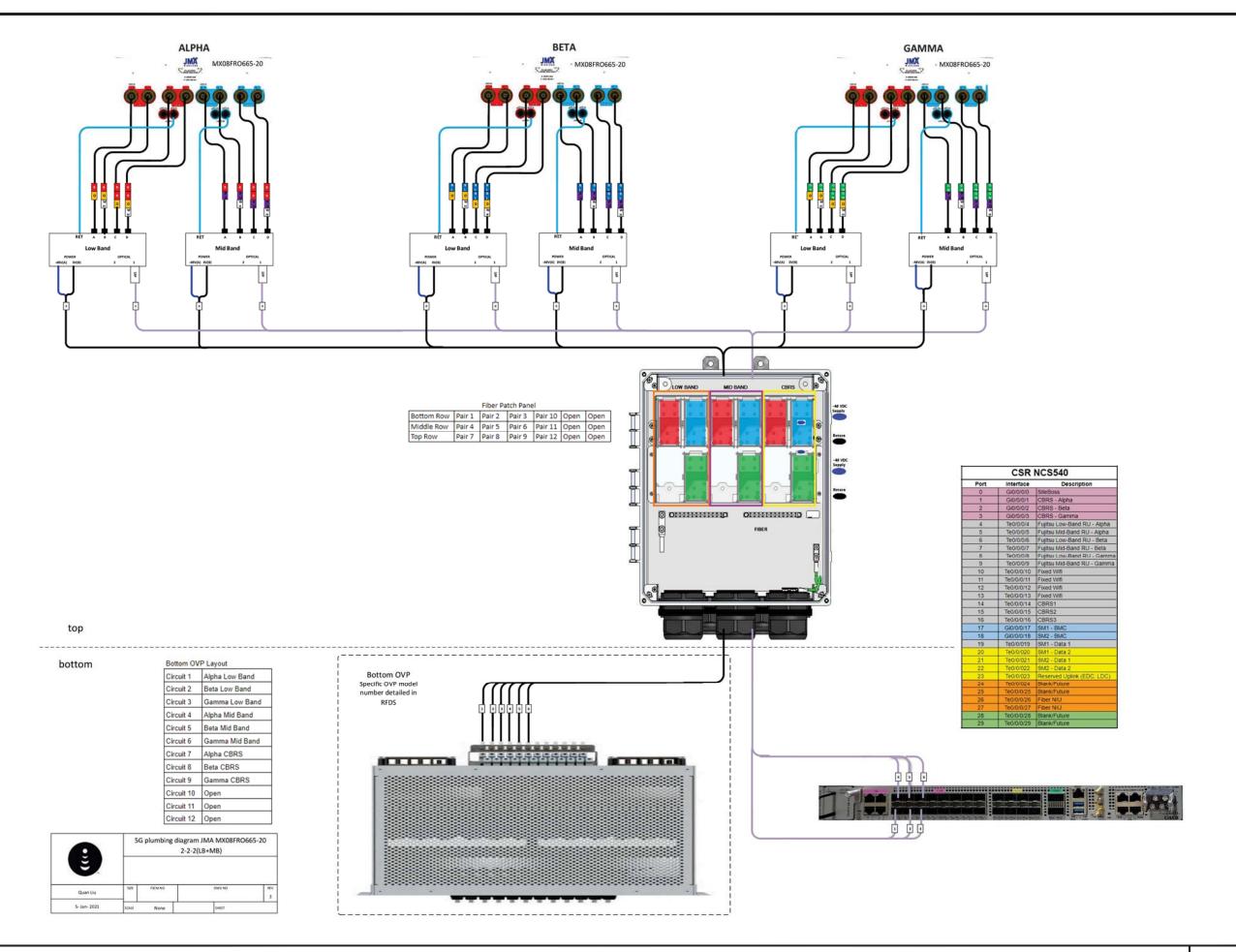
CONSTRUCTION DOCUMENTS

SUBMITTALS						
REV	DATE	DESCRIPTION				
Α	5/27/21	ISSUED FOR REVIEW				
0	7/7/21	ISSUED FOR CONSTRUCTION				
	∧ 9a⊑ [DOLECT NUMBER				

A&E PROJECT NUMBER

145855.002.01

DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00095A 1684 CHAMBERLAIN HIGHWAY BERLIN, CT 06037


SHEET TITLE

RF

CABLE COLOR CODES

SHEET NUMBER

RF-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

Ш	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
П	LHT		RMC		MDW	

RFDS REV #:

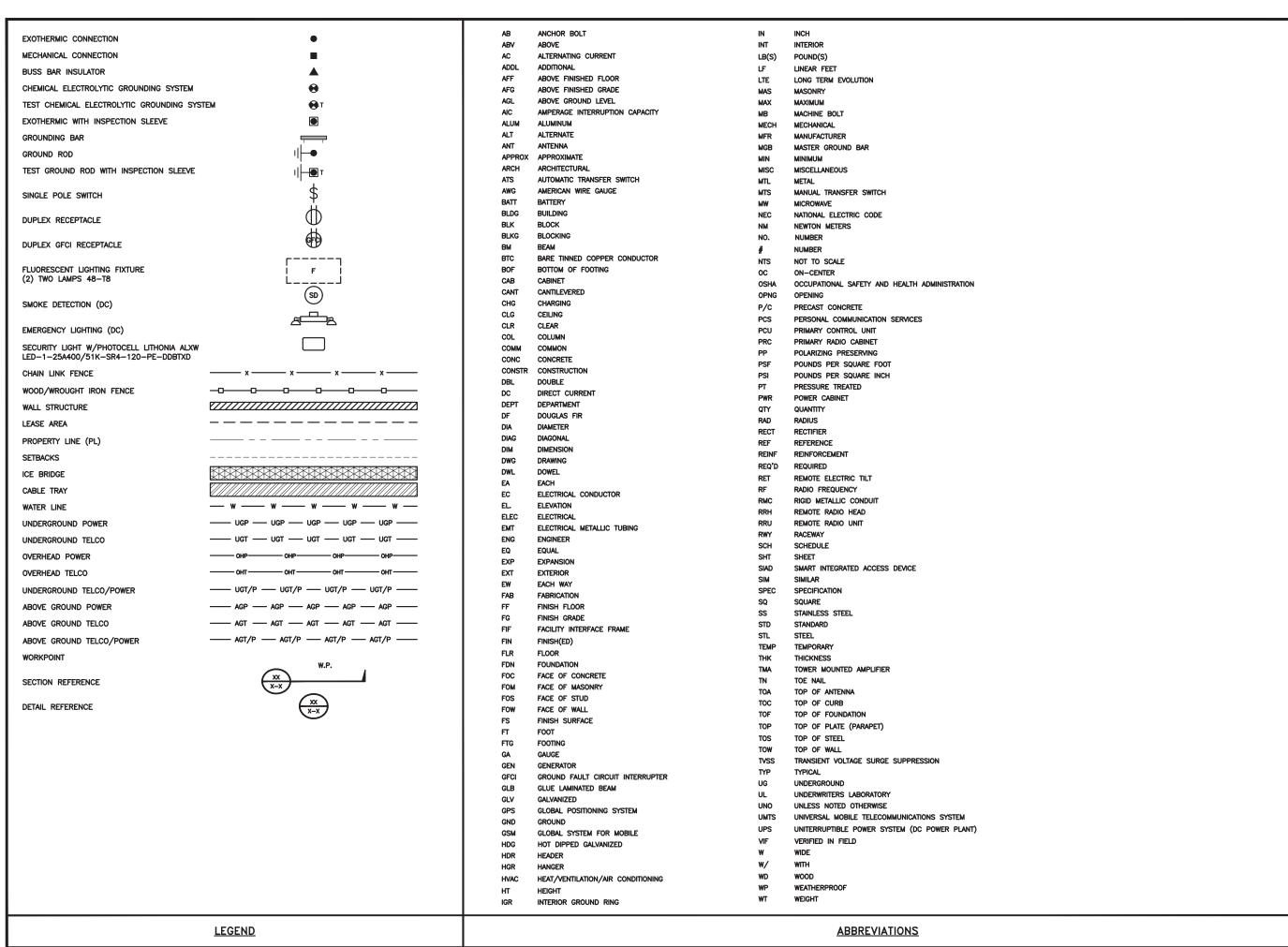
CONSTRUCTION **DOCUMENTS**

SUBMITTALS									
REV	DATE	DESCRIPTION							
Α	5/27/21	ISSUED FOR REVIEW							
0	7/7/21	ISSUED FOR CONSTRUCTION							

A&E PROJECT NUMBER

145855.002.01

BOBDL00095A 1684 CHAMBERLAIN HIGHWAY BERLIN, CT 06037


SHEET TITLE PLUMBING DIAGRAM

SHEET NUMBER

RF-2

PLUMBING DIAGRAM

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

PH: (918) 587-4630

www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

П	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
П	LHT	-	RMC		MDW	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS
DATE	DESCRIPTION
5/27/21	ISSUED FOR REVIEW
7/7/21	ISSUED FOR CONSTRUCTION
	DATE 5/27/21

A&E PROJECT NUMBER

145855.002.01

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDL00095A
1684 CHAMBERLAIN
HIGHWAY
BERLIN, CT 06037

SHEET TITLE

LEGEND AND

ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH WIReless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

Ш								
	LHT		RMC		MDW			
	DRAWN BY	:	CHECKED	BY:	APPROVED	BY:		

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
Α	5/27/21	ISSUED FOR REVIEW
0	7/7/21	ISSUED FOR CONSTRUCTION
	A&E F	PROJECT NUMBER

145855.002.01

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDL00095A
1684 CHAMBERLAIN
HIGHWAY
BERLIN, CT 06037

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'F AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES, AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

LHT RMC MDW	DRAWN BY:	CHECKED BY:	APPROVED BY:
	LHT	RMC	MDW

RFDS REV #

CONSTRUCTION DOCUMENTS

	SUBMITTALS			
REV	DATE	DESCRIPTION		
Α.	5/27/21	ISSUED FOR REVIEW		
0	7/7/21	ISSUED FOR CONSTRUCTION		
	A&E F	PROJECT NUMBER		

145855.002.01

PROJECT INFORMATION
BOBDL00095A
1684 CHAMBERLAIN
HIGHWAY
BERLIN, CT 06037

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE. BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

PH: (918) 587-4630 www.btgrp.com

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	LHT		RMC		MDW	
П	2522 251		,,			

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
Α	5/27/21	ISSUED FOR REVIEW
0	7/7/21	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

145855.002.01

PROJECT INFORMATION
BOBDL00095A
1684 CHAMBERLAIN
HIGHWAY
BERLIN, CT 06037

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: February 17, 2022

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOBDL00095A Site Name: CT-CCI-T-876382

Crown Castle Designation: BU Number: 876382

Site Name: BERLIN / LAVIANA ORCHARD

 JDE Job Number:
 650080

 Work Order Number:
 2077369

 Order Number:
 556603 Rev. 4

Engineering Firm Designation: Crown Castle Project Number: 2077369

Site Data: 1684 Chamberlain Highway, BERLIN, HARTFORD County, CT

Latitude 41° 35' 23.07", Longitude -72° 48' 19.2"

133 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity – 94.6%

This analysis utilizes an ultimate 3-second gust wind speed of 118 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Matthew Schmitt

Respectfully submitted by:

Terry P Styran 2022.02.18 15:05:51 -05'00'

Terry P. Styran, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 133 ft Monopole tower designed by Summit. The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 118 mph

Exposure Category: C
Topographic Factor: 1
Ice Thickness: 1 in
Wind Speed with Ice: 50 mph
Service Wind Speed: 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Floyation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
111.0	111.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
		3	cci antennas	TPA65R-BU8D_CCIV2 w/ Mount Pipe					
		3	ericsson	RRUS 4415 B25	6	1-1/4			
400.0	400.0	3	ericsson	RRUS 4449 B5/B12	4	3/4			
132.0	132.0	3	kaelus	DBC0111F2V62-1	2 2	3/8			
		1	raycap	DC6-48-60-18-8C-EV	2	2 (Conduit		
		1	raycap	DC6-48-60-18-8F		į			
		1	tower mounts	Side Arm Mount [SO 901-3]					
		3	ericsson	AIR6449 B41_T-MOBILE w/ Mount Pipe					
	121.0	3	ericsson	RADIO 4460 B2/B25 B66_TMO					
120.0	121.0	3	ericsson	Radio 4480_TMOV2	3	1-5/8			
		3	rfs celwave	APXVAALL24_43-U-NA20_TMO w/ Mount Pipe					
	120.0	1		SitePro1 RMQP-496-HK					
		3	andrew	ETT19VS12UB					
	101.0	101.0	101.0	101.0	3	ericsson	KRY 112 144/1		
101.0					3	rfs celwave	APX16DWV-16DWVS-C w/ Mount Pipe	6	1-5/8
		1 1	tower mounts	T-Arm Mount [TA 602-3]					

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
		3	alcatel lucent	RRH2X40-AWS			
		3	andrew	LNX-6514DS-A1M w/ Mount Pipe			
		3	antel	BXA-171063-12CF-EDIN-X w/ Mount Pipe	13	1-5/8	
00.0	94.0	2	antel	BXA-171063-8BF-2 w/ Mount Pipe			
93.0		1	antel	BXA-171085-8BF-EDIN-0 w/ Mount Pipe			
		3	antel	BXA-70063-4CF-EDIN-X w/ Mount Pipe			
		1	rfs celwave	DB-T1-6Z-8AB-0Z			
		6	rfs celwave	FD9R6004/2C-3L			
	93.0	1	tower mounts	Platform Mount [LP 1201-1]		•	
75.0	75.0	3	rfs celwave	APXV18-206517S-C	6	1 5/0	
75.0	75.0	1	tower mounts	Pipe Mount [PM 601-3]	6	1-5/8	
50.0	51.0	1	lucent	KS24019-L112A	1	1/2	
0.00	50.0	1	tower mounts	Side Arm Mount [SO 702-1]	'	1/2	

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1629353	CCISITES
4-POST-MODIFICATION INSPECTION	8482047	CCISITES
4-POST-MODIFICATION INSPECTION	5287888	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1629413	CCISITES
4-TOWER MANUFACTURER DRAWINGS	1629384	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	8173364	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2611098	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2339268	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the reinforcing elements. These calculations are presented in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

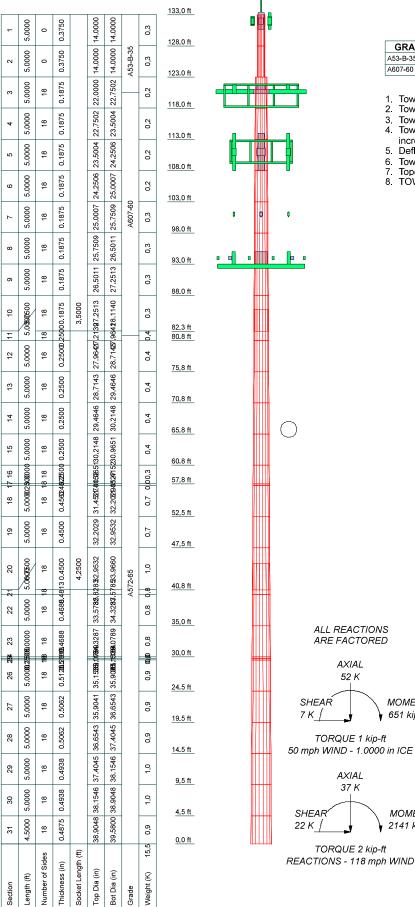
Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
L1	133 - 128	Pole	TP14x14x0.375	Pole	5.5%	Pass
L2	128 - 123	Pole	TP14x14x0.375	Pole	12.4%	Pass
L3	123 - 118	Pole	TP22.75x22x0.1875	Pole	12.3%	Pass
L4	118 - 113	Pole	TP23.5x22.75x0.1875	Pole	19.4%	Pass
L5	113 - 108	Pole	TP24.251x23.5x0.1875	Pole	28.7%	Pass
L6	108 - 103	Pole	TP25.001x24.251x0.1875	Pole	38.4%	Pass
L7	103 - 98	Pole	TP25.751x25.001x0.1875	Pole	48.5%	Pass
L8	98 - 93	Pole	TP26.501x25.751x0.1875	Pole	58.3%	Pass
L9	93 - 88	Pole	TP27.251x26.501x0.1875	Pole	71.1%	Pass
L10	88 - 85.75	Pole	TP28.114x27.251x0.1875	Pole	76.2%	Pass
L11	85.75 - 80.75	Pole	TP27.964x27.214x0.25	Pole	56.9%	Pass
L12	80.75 - 75.75	Pole	TP28.714x27.964x0.25	Pole	63.3%	Pass
L13	75.75 - 70.75	Pole	TP29.465x28.714x0.25	Pole	69.4%	Pass
L14	70.75 - 65.75	Pole	TP30.215x29.465x0.25	Pole	75.2%	Pass
L15	65.75 - 60.75	Pole	TP30.965x30.215x0.25	Pole	80.6%	Pass
L16	60.75 - 57.75	Pole	TP31.415x30.965x0.25	Pole	83.7%	Pass
L17	57.75 - 57.5	Pole + Reinf.	TP31.453x31.415x0.4625	Reinf. 2 Tension Rupture	72.7%	Pass
L18	57.5 - 52.5	Pole + Reinf.	TP32.203x31.453x0.4563	Reinf. 2 Tension Rupture	77.2%	Pass
L19	52.5 - 47.5	Pole + Reinf.	TP32.953x32.203x0.45	Reinf. 2 Tension Rupture	81.4%	Pass
L20	47.5 - 45	Pole + Reinf.	TP33.966x32.953x0.45	Reinf. 2 Tension Rupture	83.4%	Pass
L21	45 - 40	Pole + Reinf.	TP33.578x32.828x0.4813	Reinf. 2 Tension Rupture	83.6%	Pass
L22	40 - 35	Pole + Reinf.	TP34.329x33.578x0.4688	Reinf. 2 Tension Rupture	87.1%	Pass
L23	35 - 30	Pole + Reinf.	TP35.079x34.329x0.4688	Reinf. 2 Tension Rupture	90.3%	Pass
L24	30 - 29.75	Pole	TP35.116x35.079x0.2813	Pole	94.6%	Pass
L25	29.75 - 29.5	Pole + Reinf.	TP35.154x35.116x0.5188	Reinf. 1 Tension Rupture	76.9%	Pass
L26	29.5 - 24.5	Pole + Reinf.	TP35.904x35.154x0.5125	Reinf. 1 Tension Rupture	79.6%	Pass
L27	24.5 - 19.5	Pole + Reinf.	TP36.654x35.904x0.5063	Reinf. 1 Tension Rupture	82.1%	Pass
L28	19.5 - 14.5	Pole + Reinf.	TP37.404x36.654x0.5063	Reinf. 1 Tension Rupture	84.5%	Pass
L29	14.5 - 9.5	Pole + Reinf.	TP38.155x37.404x0.4938	Reinf. 1 Tension Rupture	86.8%	Pass
L30	9.5 - 4.5	Pole + Reinf.	TP38.905x38.155x0.4938	Reinf. 1 Tension Rupture	88.9%	Pass
L31	4.5 - 0	Pole + Reinf.	TP39.58x38.905x0.4875	Reinf. 1 Tension Rupture	90.8%	Pass
					Summary	
				Pole	94.6%	Pass
				Reinforcement	90.8%	Pass
				Overall	94.6%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Flange Bolts	123	16.4	Pass
1	Flange Plate	123	43.9	Pass
1	Anchor Rods	0	73.7	Pass
1	Base Plate	0	49.7	Pass
1	Base Foundation (Structure)	0	71.3	Pass
1	Base Foundation (Soil Interaction)	0	44.3	Pass

Structure Rating (max from all components) = 94.6%
--


Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

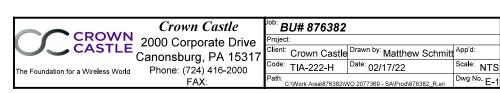
¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-35	35 ksi	60 ksi	A572-65	65 ksi	80 ksi
4607-60	60 kei	75 kei		•	

TOWER DESIGN NOTES


- Tower is located in Hartford County, Connecticut.
- Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 118 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.0000 ft
- TOWER RATING: 94.6%

MOMENT

651 kip-ft

MOMENT

2141 kip-ft

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Hartford County, Connecticut.
- Tower base elevation above sea level: 345.0400 ft.
- Basic wind speed of 118 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.0000 ft.
- Nominal ice thickness of 1.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.00 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: Kes(Fw) = 0.95, Kes(ti) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice

Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	fť	fť	Sides	in	in	in	in	

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grad
	ft	ft	ft	Sides	in	in	in	in	
L1	133.0000-	5.0000	0.00	Round	14.0000	14.0000	0.3750		A53-B-35
	128.0000								(35 ksi)
L2	128.0000-	5.0000	0.00	Round	14.0000	14.0000	0.3750		A53-B-35
	123.0000								(35 ksi)
L3	123,0000-	5.0000	0.00	18	22.0000	22.7502	0.1875	0.7500	À607-60
	118.0000								(60 ksi)
L4	118.0000-	5.0000	0.00	18	22.7502	23.5004	0.1875	0.7500	A607-60
	113.0000	0.0000	0.00	10	22.7002	20.0004	0.1070	0.7000	(60 ksi)
L5	113.0000	5.0000	0.00	18	23.5004	24.2506	0.1875	0.7500	A607-60
LO	108.0000	5.0000	0.00	10	23.5004	24.2300	0.1075	0.7500	
1.0		F 0000	0.00	40	04.0506	25 0007	0.4075	0.7500	(60 ksi)
L6	108.0000-	5.0000	0.00	18	24.2506	25.0007	0.1875	0.7500	A607-60
	103.0000	= 0000		4.0	0= 000=	0= ==00	0.40==	. ==	(60 ksi)
L7	103.0000-	5.0000	0.00	18	25.0007	25.7509	0.1875	0.7500	A607-60
	98.0000								(60 ksi)
L8	98.0000-	5.0000	0.00	18	25.7509	26.5011	0.1875	0.7500	A607-60
	93.0000								(60 ksi)
L9	93.0000-	5.0000	0.00	18	26.5011	27.2513	0.1875	0.7500	A607-60
	88.0000								(60 ksi)
L10	88.0000-	5.7500	3.50	18	27.2513	28.1140	0.1875	0.7500	À607-60
	82.2500								(60 ksi)
L11	82.2500-	5.0000	0.00	18	27,2139	27.9641	0.2500	1,0000	A572-65
	80.7500	0.0000	0.00	10	27.2100	27.0011	0.2000	1.0000	(65 ksi)
L12	80.7500-	5.0000	0.00	18	27.9641	28.7143	0.2500	1.0000	A572-65
LIZ	75.7500	3.0000	0.00	10	27.3041	20.7 143	0.2300	1.0000	(65 ksi)
1.40		F 0000	0.00	10	00 7440	20.4646	0.0500	1 0000	
L13	75.7500-	5.0000	0.00	18	28.7143	29.4646	0.2500	1.0000	A572-65
	70.7500								(65 ksi)
L14	70.7500-	5.0000	0.00	18	29.4646	30.2148	0.2500	1.0000	A572-65
	65.7500								(65 ksi)
L15	65.7500-	5.0000	0.00	18	30.2148	30.9651	0.2500	1.0000	A572-65
	60.7500								(65 ksi)
L16	60.7500-	3.0000	0.00	18	30.9651	31.4152	0.2500	1.0000	A572-65
	57.7500								(65 ksi)
L17	57.7500-	0.2500	0.00	18	31.4152	31.4527	0.4625	1.8500	À572-65
	57.5000								(65 ksi)
L18	57.5000-	5.0000	0.00	18	31.4527	32.2029	0.4562	1.8250	A572-65
	52.5000	0.0000	0.00	.0	0111021	02.2020	011002	110200	(65 ksi)
L19	52,5000	5.0000	0.00	18	32,2029	32,9532	0.4500	1.8000	A572-65
LIS	47.5000	3.0000	0.00	10	32.2029	32.9332	0.4300	1.0000	
1.00		0.7500	4.05	40	20.0520	22.0000	0.4500	4 0000	(65 ksi)
L20	47.5000-	6.7500	4.25	18	32.9532	33.9660	0.4500	1.8000	A572-65
	40.7500								(65 ksi)
L21	40.7500-	5.0000	0.00	18	32.8283	33.5785	0.4813	1.9250	A572-65
	40.0000		_						(65 ksi)
L22	40.0000-	5.0000	0.00	18	33.5785	34.3287	0.4688	1.8750	A572-65
	35.0000								(65 ksi)
L23	35.0000-	5.0000	0.00	18	34.3287	35.0789	0.4688	1.8750	À572-65
	30.0000								(65 ksi)
L24	30.0000-	0.2500	0.00	18	35.0789	35.1164	0.2813	1.1250	À572-65
•	29.7500								(65 ksi)
L25	29.7500-	0.2500	0.00	18	35.1164	35.1539	0.5188	2.0750	A572-65
	29.5000	3.2300	5.00	.0	55.7157	55.1000	2.2.00		(65 ksi)
L26	29.5000-	5.0000	0.00	18	35.1539	35.9041	0.5125	2.0500	A572-65
	24.5000	0.0000	0.00	10	00,1000	00,0041	0.0120	2.0000	(65 ksi)
1.27		5 0000	0.00	10	35 0044	36 6543	0.5062	2.0250	, ,
L27	24.5000-	5.0000	0.00	18	35.9041	36.6543	0.5062	2.0250	A572-65
1.00	19.5000	E 0000	0.00	40	00.0540	07.4045	0.5000	0.0050	(65 ksi)
L28	19.5000-	5.0000	0.00	18	36.6543	37.4045	0.5062	2.0250	A572-65
	14.5000								(65 ksi)
L29	14.5000-	5.0000	0.00	18	37.4045	38.1546	0.4938	1.9750	A572-65
	9.5000								(65 ksi)
L30	9.5000-4.5000	5.0000	0.00	18	38.1546	38.9048	0.4938	1.9750	À572-65
									(65 ksi)
L31	4.5000-0.0000	4.5000		18	38.9048	39.5800	0.4875	1.9500	A572-65
									(65 ksi)

Tapered Pole Properties

	_,									
Section	Tip Dia.	Area	 in4	r	C	I/C	J in4	It/Q in²	W	w/t
	<u>in</u> 14.0000	<i>in</i> ² 16.0516	in⁴ 372.7602	<i>in</i> 4.8190	in 7.0000	<i>in</i> ³ 53.2515	in⁴ 745.5204	in ² 8.0210	<i>in</i> 0.0000	0
LT	14.0000	16.0516	372.7602 372.7602	4.8190	7.0000	53.2515	745.5204 745.5204	8.0210 8.0210	0.0000	0
L2	14.0000	16.0516	372.7602	4.8190	7.0000	53.2515	745.5204	8.0210	0.0000	0
LZ	14.0000	16.0516	372.7602	4.8190	7.0000	53.2515	745.5204	8.0210	0.0000	0
L3	22.3105	12.9812	780.3007	7 7434	11.1760	69.8193	1561.6281	6.4918	3.5420	18.891
	23.0722	13.4276	863.6105	8.0098	11.5571	74.7256	1728.3574	6.7151	3.6740	19.595
L4	23.0722	13.4276	863.6105	8.0098	11.5571	74.7256	1728.3574	6.7151	3.6740	19.595
	23.8340	13.8741	952.6487	8.2761	11.9382	79.7984	1906.5509	6.9384	3.8061	20.299
L5	23.8340	13.8741	952.6487	8.2761	11.9382	79.7984	1906.5509	6.9384	3.8061	20.299
	24.5957	14.3205	1047.6055	8.5424	12.3193	85.0379	2096.5895	7.1616	3.9381	21.003
L6	24.5957	14.3205	1047.6055	8.5424	12,3193	85.0379	2096.5895	7.1616	3.9381	21.003
. 7	25.3575	14.7670	1148.6716	8.8087	12.7004	90.4439	2298.8546	7.3849	4.0701	21.707
L7	25.3575	14.7670 15.2134	1148.6716	8.8087 9.0750	12.7004	90.4439 96.0165	2298.8546	7.3849	4.0701 4.2022	21.707 22.412
L8	26.1192 26.1192	15.2134	1256.0373 1256.0373	9.0750	13.0815 13.0815	96.0165	2513.7272 2513.7272	7.6082 7.6082	4.2022	22.412
LO	26.8810	15.6599	1369.8931	9.3413	13.4626	101.7558	2741.5886	7.8314	4.3342	23.116
L9	26.8810	15.6599	1369.8931	9.3413	13.4626	101.7558	2741.5886	7.8314	4.3342	23.116
	27.6428	16.1063	1490.4294	9.6076	13.8437	107.6616	2982.8200	8.0547	4 4662	23.82
L10	27.6428	16.1063	1490.4294	9.6076	13.8437	107.6616	2982.8200	8.0547	4.4662	23.82
	28.5188	16.6198	1637.5523	9.9139	14.2819	114.6592	3277.2593	8.3115	4.6181	24.63
L11	28.1284	21.3958	1965.3102	9.5722	13.8246	142.1599	3933.2064	10.6999	4.3496	17.399
	28.3569	21.9911	2133.9640	9.8385	14.2058	150.2181	4270.7359	10.9977	4.4817	17.927
L12	28.3569	21.9911	2133.9640	9.8385	14.2058	150.2181	4270.7359	10.9977	4.4817	17.927
	29.1187	22.5865	2312.0005	10.1048	14.5869	158.4986	4627.0433	11.2954	4.6137	18.455
L13	29.1187	22,5865	2312,0005	10.1048	14.5869	158.4986	4627.0433	11,2954	4.6137	18.455
	29.8806	23.1818	2499.6739	10.3712	14.9680	167.0011	5002.6370	11.5931	4.7458	18.983
L14	29.8806	23.1818	2499.6739	10.3712	14.9680	167.0011	5002.6370	11.5931	4.7458	18.983
1.45	30.6424	23.7771	2697.2381	10.6375	15.3491	175.7258	5398.0253	11.8908	4.8778	19.511
L15	30.6424	23.7771	2697.2381	10.6375	15.3491	175.7258	5398.0253	11.8908	4.8778	19.511
L16	31.4042 31.4042	24.3724 24.3724	2904.9471 2904.9471	10.9038 10.9038	15.7302 15.7302	184.6727 184.6727	5813.7166 5813.7166	12.1885 12.1885	5.0098 5.0098	20.039 20.039
LIO	31.8613	24.3724	3034.5476	11.0636	15.7302	190.1474	6073.0882	12.1663	5.0891	20.039
L17	31.8285	45.4378	5499.8589	10.9882	15.9589	344.6260	11006.954	22.7232	4.7151	10.195
L17	31.0203	40.4070	3433.0303	10.3002	13.3303	344.0200	6	22.1202	4.7151	10.133
	31.8666	45.4928	5519.8791	11.0015	15.9780	345.4680	11047.021	22.7507	4.7217	10.209
							4			
L18	31.8675	44.8871	5448.5814	11.0037	15.9780	341.0057	10904.332	22.4478	4.7327	10.373
	00.0000	45.0700	5050 0000	44.0704	40.0504	057.0055	1	00 0040	4.0047	40.000
	32.6293	45.9736	5853.8660	11.2701	16.3591	357.8355	11715.434	22.9912	4.8647	10.662
L19	32.6303	45.3527	5777.0867	11.2723	16.3591	353.1422	6 11561.775	22.6807	4.8757	10.835
LIS	32.0303	40.0027	3777.0007	11.2725	10.5551	333.1422	0	22.0007	4.0757	10.000
	33.3921	46.4243	6196.3290	11.5386	16.7402	370.1463	12400.811	23.2166	5.0078	11.128
			0.00.0200			0,01,100	4	2012.00	0.00.0	20
L20	33.3921	46.4243	6196.3290	11.5386	16.7402	370.1463	12400.811	23.2166	5.0078	11.128
							4			
	34.4206	47.8709	6793.8105	11.8982	17.2547	393.7362	13596.560	23.9400	5.1860	11.524
							6			
L21	33.9080	49.4097	6531.5930	11.4832	16.6768	391.6580	13071.780	24.7096	4.9308	10.246
	24 0222	EO EEEC	COOC CEAC	11 7105	17.0570	440 4745	4	05 0006	E 0000	10.50
	34.0222	50.5556	6996.6536	11.7495	17.0579	410.1715	14002.513 6	25.2826	5.0628	10.52
L22	34.0242	49.2611	6822,6467	11.7540	17.0579	399.9706	13654.270	24.6352	5.0848	10.848
	01.0212	10.2011	0022.0101	1111010	17.0070	000.0700	9	21,0002	0.0010	10.010
	34.7859	50.3772	7296.9892	12.0203	17.4390	418.4301	14603.580	25.1934	5.2168	11.129
							0			
L23	34.7859	50.3772	7296.9892	12.0203	17.4390	418.4301	14603.580	25.1934	5.2168	11.129
							0			
	35.5477	51.4934	7792.8231	12.2866	17.8201	437.3061	15595.900	25.7516	5.3489	11.411
1.04	25 5700	24 0004	4750 0070	10.0500	47.0004	060 0740	2	4E E040	E 0700	20.400
L24	35.5766	31.0634	4752.0979	12.3532	17.8201	266.6712	9510.4487	15.5346	5.6789 5.6855	20.192
L25	35.6147 35.5781	31.0969 56.9654	4767.4817 8614.7238	12.3665 12.2822	17.8391 17.8391	267.2487 482.9120	9541.2367 17240.783	15.5514 28.4881	5.6855 5.2675	20.215 10.154
LZJ	00.0701	JU.3034	0014.7230	14.4044	17.0391	402.3120	11240,103	20.400 I	5,2075	10,134
	35.6162	57.0272	8642.7735	12,2955	17.8582	483.9674	17296.919	28.5190	5.2741	10.167
			,				4			
L26	35.6171	56.3503	8543.2670	12.2977	17.8582	478.3953	17097.775	28.1805	5.2851	10.312
							4			
	36.3789	57.5706	9110.4089	12.5640	18.2393	499.4942	18232.805	28.7908	5.4171	10.57
							6			

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L27	36.3799	56.8786	9004.0749	12.5662	18.2393	493.6642	18019.997 7	28.4447	5.4281	10.722
	37.1416	58.0840	9588.7654	12.8325	18.6204	514.9612	19190.148 0	29.0475	5.5602	10.983
L28	37.1416	58.0840	9588.7654	12.8325	18.6204	514.9612	19190.148 0	29.0475	5.5602	10.983
	37.9034	59.2894	10198.235 0	13.0989	19.0015	536.7079	20409.889 2	29.6503	5.6922	11.244
L29	37.9053	57.8451	9956.5388	13.1033	19.0015	523.9881	19926.178 8	28.9280	5.7142	11.573
	38.6671	59.0207	10576.044 0	13.3696	19.3826	545.6475	21166.004 2	29.5160	5.8462	11.84
L30	38.6671	59.0207	10576.044 0	13.3696	19.3826	545.6475	21166.004 2	29.5160	5.8462	11.84
	39.4288	60.1964	11220.727 9	13.6359	19.7637	567.7456	22456.220 4	30.1039	5.9783	12.108
L31	39.4298	59.4441	11084.102 3	13.6382	19.7637	560.8327	22182.789 3	29.7277	5.9893	12.286
	40.1154	60.4888	11678.829 7	13.8778	20.1066	580.8444	23373.026 8	30.2501	6.1081	12.529

ft ft ^c		Ar	Factor A _r		Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing Redundants
	in				in	in	in
L1 133.0000-		1	1	1			
128.0000							
L2 128 0000-		1	1	1			
123.0000							
L3 123.0000-		1	1	1			
118.0000							
L4 118.0000-		1	1	1			
113.0000							
L5 113.0000-		1	1	1			
108.0000							
L6 108.0000-		1	1	1			
103.0000		_	_				
L7 103.0000-		1	1	1			
98.0000		4	4	4			
L8 98.0000- 93.0000		1	1	1			
L9 93.0000-		1	1	1			
88.0000		ı	1	1			
L10 88.0000-		1	1	1			
82.2500		1	1	ı			
L11 82.2500-		1	1	1			
80.7500		'	'	'			
L12 80.7500		1	1	1			
75.7500		'		'			
L13 75 7500-		1	1	1			
70.7500		·	•	•			
L14 70.7500-		1	1	1			
65.7500							
L15 65.7500-		1	1	1			
60.7500							
L16 60 7500-		1	1	1			
57.7500							
L17 57.7500-		1	1	0.94611			
57.5000							
L18 57.5000-		1	1	0.949166			
52.5000							
L19 52 5000-		1	1	0.952774			
47.5000							
L20 47 5000-		1	1	0.948243			
40.7500							
L21 40.7500-		1	1	0.949567			
40.0000			4	0.000000			
L22 40.0000-		1	1	0.966223			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
35.0000								
L23 35.0000-			1	1	0.958285			
30.0000								
L24 30.0000-			1	1	1			
29.7500								
L25 29.7500-			1	1	0.948669			
29.5000								
L26 29.5000-			1	1	0.951347			
24.5000								
L27 24.5000-			1	1	0.954468			
19.5000				_				
L28 19.5000-			1	1	0.946358			
14.5000			4	à	0.000010			
L29 14.5000-			1	1	0.962012			
9.5000				4	0.054040			
L30 9.5000-			1	1	0.954349			
4.5000			4	4	0.0507			
L31 4.5000-			1	1	0.9597			
0.0000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En		Perimete	Weight
		From	_ t	~	Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	
AVA7-50(1-5/8)	Α	No	Surface Ar	75.0000 -	2	2	0.349	2.0100		0.70
			(CaAa)	0.0000			0.433			

LDF4-50A(1/2)	В	No	Surface Ar	50.0000 -	1	1	0.396	0.6300		0.15
			(CaAa)	0.0000			0.396			

FP 6.125 x 1.25	Α	No	Surface Af	13.5330 -	1	1	0.167	6.1250	14.7500	0.00
Reinforcement			(CaAa)	0.0000			0.167			
FP 6.125 x 1.25	Α	No	Surface Af	29.7500 -	1	1	0.167	6.1250	14.7500	0.00
Reinforcement			(CaAa)	13.5330			0.167			
FP 6.125 x 1.25	С	No	Surface Af	13.5330 -	1	1	0.167	6.1250	14.7500	0.00
Reinforcement			(CaAa)	0.0000			0.167			
FP 6.125 x 1.25	С	No	Surface Af	29.7500 -	1	1	0.167	6.1250	14.7500	0.00
Reinforcement			(CaAa)	13.5330			0.167			
FP 6.125 x 1.25	В	No	Surface Af	13.5330 -	1	1	0.167	6.1250	14.7500	0.00
Reinforcement			(CaAa)	0.0000			0.167			
FP 6.125 x 1.25	В	No	Surface Af	29.7500 -	1	1	0.167	6.1250	14.7500	0.00
Reinforcement			(CaAa)	13.5330			0.167			
FP 4.875 x 1.25	Α	No	Surface Af	59.5000 -	1	1	0.167	4.8750	12.2500	0.00
Reinforcement			(CaAa)	29.7500			0.167			
FP 4.875 x 1.25	С	No	Surface Af	59.5000 -	1	1	0.167	4.8750	12.2500	0.00
Reinforcement			(CaAa)	29.7500			0.167			
FP 4.875 x 1.25	В	No	Surface Af	59.5000 -	1	1	0.167	4.8750	12.2500	0.00
Reinforcement			(CaAa)	29.7500			0.167			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg	Omera	Torque Calculation	Type	ft	rvarriber		ft²/ft	plf
LDF6-50A(1-1/4)	С	No	No	Inside Pole	132.0000 - 0.0000	6	No Ice 1/2" Ice 1" Ice	0.0000 0.0000 0.0000	0.60 0.60 0.60

Description	Face or	Allow Shield	Exclude From	Componen	Placement	Total Number		$C_A A_A$	Weight
	Leg	Siliela	Torque Calculation	Туре	ft	Number		ft²/ft	plf
WR-VG86ST-	С	No	No	Inside Pole	132.0000 -	4	No Ice	0.0000	0.58
BRD(3/4)					0.0000		1/2" Ice	0.0000	0.58
							1" Ice	0.0000	0.58
FB-L98B-034-	С	No	No	Inside Pole	132.0000 -	2	No Ice	0.0000	0.06
XXX(3/8")					0.0000		1/2" Ice	0.0000	0.06
	_					_	1" Ice	0.0000	0.06
2" Flex Conduit	С	No	No	Inside Pole	132.0000 -	2	No Ice	0.0000	0.36
					0.0000		1/2" Ice	0.0000	0.36
***							1" I ce	0.0000	0.36
HB158-21U6S24-	В	No	No	Inside Pole	120.0000 -	3	No Ice	0.0000	2,50
xxM TMO(1-5/8)	_				0.0000		1/2" Ice	0.0000	2.50
_ ` '							1" Ice	0.0000	2.50

CU12PSM9P6XXX	С	No	No	Inside Pole	111.0000 -	1	No Ice	0.0000	2.35
(1-1/2)					0.0000		1/2" Ice	0.0000	2.35
***							1" Ice	0.0000	2.35
LDF7-50A(1-5/8)	С	No	No	Inside Pole	101.0000 -	6	No Ice	0.0000	0.82
LD1 7 007 ((1 070)	Ŭ	110	140	Indiao i dio	0.0000	Ŭ	1/2" Ice	0.0000	0.82
					0.0000		1" Ice	0.0000	0.82
***								3.0000	5.52
LDF7-50A(1-5/8)	С	No	No	Inside Pole	93.0000 -	12	No Ice	0.0000	0.82
					0.0000		1/2" Ice	0.0000	0.82
							1" Ice	0.0000	0.82
HB158-1-08U8-	С	No	No	Inside Pole	93.0000 -	1	No Ice	0.0000	1.30
S8J18(1-5/8)					0.0000		1/2" I ce	0.0000	1.30
***							1" Ice	0.0000	1.30
AVA7-50(1-5/8)	С	No	No	Inside Pole	75.0000 -	4	No Ice	0.0000	0.70
AVAI-50(1-5/0)	C	INU	110	Inside Fule	0.0000	+	1/2" Ice	0.0000	0.70
					0.0000		1" Ice	0.0000	0.70
***							, 100	3.0000	0.70

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	$C_A A_A$	C _A A _A	Weight
Sectio	Elevation	r-au u	AR	AF	In Face	Out Face	weigin
	Elevation ft		ft²	ft²	m race ft²	ft²	K
<u>n</u>	**	Λ					
L1	133.0000-	A	0.000	0.000	0.000	0.000	0.00
	128.0000	В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.03
L2	128.0000-	Α	0.000	0.000	0.000	0.000	0.00
	123.0000	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.03
L3	123.0000-	Α	0.000	0.000	0.000	0.000	0.00
	118.0000	В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.03
L4	118.0000-	Α	0.000	0.000	0.000	0.000	0.00
	113.0000	В	0.000	0.000	0.000	0.000	0.04
		С	0.000	0.000	0.000	0.000	0.03
L5	113.0000-	Α	0.000	0.000	0.000	0.000	0.00
	108.0000	В	0.000	0.000	0.000	0.000	0.04
		С	0.000	0.000	0.000	0.000	0.04
L6	108.0000-	Α	0.000	0.000	0.000	0.000	0.00
	103,0000	В	0.000	0.000	0.000	0.000	0.04
		C	0.000	0.000	0.000	0.000	0.05
L7	103.0000-	Ā	0.000	0.000	0.000	0.000	0.00
	98,0000	В	0.000	0.000	0.000	0.000	0.04
	22.3000	Č	0.000	0.000	0.000	0.000	0.06
L8	98.0000-93.0000	Ä	0.000	0.000	0.000	0.000	0.00
	33,0000 00,0000	В	0.000	0.000	0.000	0.000	0.04
			0.000	0.000	0.000	0.000	0.04

Tower	Tower	Face	A _R	A_F	C _A A _A	C _A A _A	Weight
Sectio n	Elevation ft		ft²	ft²	In Face ft²	Out Face ft²	K
- 11	11	С	0.000	0.000	0.000	0.000	0.07
L9	93.0000-88.0000	A	0.000	0.000	0.000	0.000	0.00
	00.0000 00.0000	В	0.000	0.000	0.000	0.000	0.04
		Č	0.000	0.000	0.000	0.000	0.13
L10	88.0000-82.2500	Ā	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.04
		С	0.000	0.000	0.000	0.000	0.14
L11	82.2500-80.7500	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.04
L12	80.7500-75.7500	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.04
	75 7500 70 7500	C	0.000	0.000	0.000	0.000	0.13
L13	75.7500-70.7500	A	0.000	0.000	1.708	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.04
1.1.1	70 7500 65 7500	C	0.000	0.000	0.000	0.000	0.14
L14	70.7500-65.7500	A	0.000	0.000	2.010 0.000	0.000 0.000	0.01 0.04
		B C	0.000 0.000	0.000 0.000	0.000	0.000	0.04
L15	65.7500-60.7500	A	0.000	0.000	2.010	0.000	0.14
L13	33.7300-00.7300	В	0.000	0.000	0.000	0.000	0.01
		C	0.000	0.000	0.000	0.000	0.14
L16	60.7500-57.7500	Ä	0.000	0.000	2.628	0.000	0.00
		В	0.000	0.000	1.422	0.000	0.02
		Ċ	0.000	0.000	1.422	0.000	0.08
L17	57.7500-57.5000	Α	0.000	0.000	0.304	0.000	0.00
		В	0.000	0.000	0.203	0.000	0.00
		С	0.000	0.000	0.203	0.000	0.01
L18	57.5000-52.5000	Α	0.000	0.000	6.072	0.000	0.01
		В	0.000	0.000	4.063	0.000	0.04
		С	0.000	0.000	4.063	0.000	0.14
L19	52.5000-47.5000	A	0.000	0.000	6.072	0.000	0.01
		В	0.000	0.000	4.220	0.000	0.04
1.00	47 5000 40 7500	C	0.000	0.000	4.063	0.000	0.14
L20	47.5000-40.7500	A	0.000	0.000	8.198	0.000	0.01
		B C	0.000 0.000	0.000 0.000	5.910 5.484	0.000 0.000	0.05 0.19
L21	40.7500-40.0000	A	0.000	0.000	0.911	0.000	0.19
LZI	40.7300-40.0000	B	0.000	0.000	0.657	0.000	0.00
		Č	0.000	0.000	0.609	0.000	0.02
L22	40.0000-35.0000	Ä	0.000	0.000	6.072	0.000	0.01
	1010000 0010000	В	0.000	0.000	4.378	0.000	0.04
		С	0.000	0.000	4.063	0.000	0.14
L23	35.0000-30.0000	Α	0.000	0.000	6.072	0.000	0.01
		В	0.000	0.000	4.378	0.000	0.04
		С	0.000	0.000	4.063	0.000	0.14
L24	30.0000-29.7500	Α	0.000	0.000	0.304	0.000	0.00
		В	0.000	0.000	0.219	0.000	0.00
	00 7500 00 500	C	0.000	0.000	0.203	0.000	0.01
L25	29.7500-29.5000	A	0.000	0.000	0.356	0.000	0.00
		В	0.000	0.000	0.271	0.000	0.00
1.00	20 5000 24 5000	C	0.000	0.000	0.255	0.000	0.01
L26	29.5000-24.5000	A	0.000	0.000	7.114 5.410	0.000	0.01
		B C	0.000 0.000	0.000 0.000	5.419 5.104	0.000 0.000	0.04 0.14
L27	24.5000-19.5000	A	0.000	0.000	7.114	0.000	0.14
LZI	24.5000-18.5000	В	0.000	0.000	7.114 5.419	0.000	0.01
		C	0.000	0.000	5.104	0.000	0.04
L28	19.5000-14.5000	A	0.000	0.000	7.114	0.000	0.14
	.0.0000 1 1.0000	В	0.000	0.000	5.419	0.000	0.04
		Č	0.000	0.000	5.104	0.000	0.14
L29	14.5000-9.5000	Ä	0.000	0.000	7.114	0.000	0.01
		В	0.000	0.000	5.419	0.000	0.04
		C	0.000	0.000	5.104	0.000	0.14
L30	9.5000-4.5000	Α	0.000	0.000	7.114	0.000	0.01
		В	0.000	0.000	5.419	0.000	0.04
		С	0.000	0.000	5.104	0.000	0.14
L31	4.5000-0.0000	Α	0.000	0.000	6.403	0.000	0.01
		В	0.000	0.000	4.877	0.000	0.03

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft ²	K
		С	0.000	0.000	4.594	0.000	0.13

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness	612	6 12	In Face	Out Face	14
	ft	Leg	in	ft²	ft ²	ft²	ft²	K
LI	133.0000- 128.0000	A B	0.975	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.00 0.00
	120.0000	C		0.000	0.000	0.000	0.000	0.00
L2	128.0000-	A	0.971	0.000	0.000	0.000	0.000	0.03
LZ	123.0000	В	0.971	0.000	0.000	0.000	0.000	0.00
	123.0000	C		0.000	0.000	0.000	0.000	0.00
L3	123.0000-	Ä	0.968	0.000	0.000	0.000	0.000	0.00
Lo	118.0000	В	0.500	0.000	0.000	0.000	0.000	0.01
	110.0000	Č		0.000	0.000	0.000	0.000	0.03
L4	118.0000-	Ä	0.963	0.000	0.000	0.000	0.000	0.00
	113.0000	В	3.555	0.000	0.000	0.000	0.000	0.04
		Ċ		0.000	0.000	0.000	0.000	0.03
L5	113,0000-	Α	0.959	0.000	0.000	0.000	0.000	0.00
	108.0000	В		0.000	0.000	0.000	0.000	0.04
		С		0.000	0.000	0.000	0.000	0.04
L6	108.0000-	Α	0.955	0.000	0.000	0.000	0.000	0.00
	103.0000	В		0.000	0.000	0.000	0.000	0.04
		С		0.000	0.000	0.000	0.000	0.05
L7	103.0000-	Α	0.950	0.000	0.000	0.000	0.000	0.00
	98.0000	В		0.000	0.000	0.000	0.000	0.04
		С		0.000	0.000	0.000	0.000	0.06
L8	98.0000-93.0000	Α	0.945	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.04
		C		0.000	0.000	0.000	0.000	0.07
L9	93.0000-88.0000	A	0.940	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.04
1.40	00 0000 00 0500	C	0.004	0.000	0.000	0.000	0.000	0.13
L10	88.0000-82.2500	A	0.934	0.000	0.000	0.000	0.000	0.00
		B C		0.000 0.000	0.000 0.000	0.000	0.000 0.000	0.04
L11	82.2500-80.7500		0.930	0.000	0.000	0.000 0.000	0.000	0.14 0.00
LII	02.2300-00.7300	A B	0.930	0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.01
L12	80.7500-75.7500	A	0.927	0.000	0.000	0.000	0.000	0.04
L12	00.7000 70.7000	В	0.027	0.000	0.000	0.000	0.000	0.04
		Č		0.000	0.000	0.000	0.000	0.13
L13	75.7500-70.7500	Ä	0.921	0.000	0.000	3.114	0.000	0.03
		В	3.32	0.000	0.000	0.000	0.000	0.04
		С		0.000	0.000	0.000	0.000	0.14
L14	70.7500-65.7500	Α	0.914	0.000	0.000	3.655	0.000	0.03
		В		0.000	0.000	0.000	0.000	0.04
		С		0.000	0.000	0.000	0.000	0.14
L15	65.7500-60.7500	Α	0.907	0.000	0.000	3.646	0.000	0.03
		В		0.000	0.000	0.000	0.000	0.04
		С		0.000	0.000	0.000	0.000	0.14
L16	60.7500-57.7500	Α	0.901	0.000	0.000	3.921	0.000	0.03
		В		0.000	0.000	1.737	0.000	0.03
		C		0.000	0.000	1.737	0.000	0.09
L17	57.7500-57.5000	Α	0.899	0.000	0.000	0.430	0.000	0.00
		В		0.000	0.000	0.248	0.000	0.00
1.40	F7 F000 F0 F000	C	0.005	0.000	0.000	0.248	0.000	0.01
L18	57.5000-52.5000	A	0.895	0.000	0.000	8.588	0.000	0.06
		В		0.000	0.000	4.957	0.000	0.06
1.40	52.5000-47.5000	C	0.006	0.000	0.000	4.957	0.000	0.17
L19	32.3000-47.3000	A B	0.886	0.000 0.000	0.000 0.000	8.569 5.549	0.000 0.000	0.06 0.07
		C		0.000	0.000	4.949	0.000	0.07
L20	47.5000-40.7500	A	0.875	0.000	0.000	11.534	0.000	0.08
	.1.0000 TO.1000	В	0.070	0.000	0.000	8.272	0.000	0.10
				0.000	0.000	0.212	3.300	3.10

Tower	Tower	Face	Ice	A_R	A _F	C _A A _A	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft ²	ft²	ft ²	K
		С		0.000	0.000	6.666	0.000	0.22
L21	40.7500-40.0000	Α	0.867	0.000	0.000	1.282	0.000	0.01
		В		0.000	0.000	0.919	0.000	0.01
		С		0.000	0.000	0.741	0.000	0.02
L22	40.0000-35.0000	Α	0.861	0.000	0.000	8.512	0.000	0.06
		В		0.000	0.000	6.099	0.000	0.07
		С		0.000	0.000	4.923	0.000	0.17
L23	35.0000-30.0000	Α	0.849	0.000	0.000	8.485	0.000	0.06
		В		0.000	0.000	6.075	0.000	0.07
		С		0.000	0.000	4.911	0.000	0.17
L24	30.0000-29.7500	Α	0.842	0.000	0.000	0.423	0.000	0.00
		В		0.000	0.000	0.303	0.000	0.00
		С		0.000	0.000	0.245	0.000	0.01
L25	29.7500-29.5000	Α	0.841	0.000	0.000	0.475	0.000	0.00
		В		0.000	0.000	0.355	0.000	0.00
		С		0.000	0.000	0.297	0.000	0.01
L26	29.5000-24.5000	Α	0.833	0.000	0.000	9.488	0.000	0.06
		В		0.000	0.000	7.082	0.000	0.07
		С		0.000	0.000	5.934	0.000	0.17
L27	24.5000-19.5000	Α	0.816	0.000	0.000	9.451	0.000	0.06
		В		0.000	0.000	7.050	0.000	0.07
		С		0.000	0.000	5.919	0.000	0.17
L28	19.5000-14.5000	Α	0.795	0.000	0.000	9.406	0.000	0.06
		В		0.000	0.000	7.010	0.000	0.07
		С		0.000	0.000	5.900	0.000	0.17
L29	14.5000-9.5000	Α	0.768	0.000	0.000	9.126	0.000	0.05
		B C		0.000	0.000	6.736	0.000	0.07
		С		0.000	0.000	5.653	0.000	0.17
L30	9.5000-4.5000	Α	0.728	0.000	0.000	9.002	0.000	0.05
		В		0.000	0.000	6.622	0.000	0.07
		С		0.000	0.000	5.579	0.000	0.16
L31	4.5000-0.0000	Α	0.650	0.000	0.000	7.977	0.000	0.04
		В		0.000	0.000	5.853	0.000	0.06
		С		0.000	0.000	4.985	0.000	0.15

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	<i>CP</i> _X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	133.0000-	0.0000	0.0000	0.0000	0.0000
	128.0000				
L2	128.0000-	0.0000	0.0000	0.0000	0.0000
	123.0000				
L3	123.0000-	0.0000	0.0000	0.0000	0.0000
	118.0000				
L4	118.0000-	0.0000	0.0000	0.0000	0.0000
	113.0000				
L5	113.0000-	0.0000	0.0000	0.0000	0.0000
	108.0000				
L6	108.0000-	0.0000	0.0000	0.0000	0.0000
	103.0000				
L7	103.0000-98.0000	0.0000	0.0000	0.0000	0.0000
L8	98.0000-93.0000	0.0000	0.0000	0.0000	0.0000
L9	93.0000-88.0000	0.0000	0.0000	0.0000	0.0000
L10	88.0000-82.2500	0.0000	0.0000	0.0000	0.0000
L11	82.2500-80.7500	0.0000	0.0000	0.0000	0.0000
L12	80.7500-75.7500	0.0000	0.0000	0.0000	0.0000
L13	75.7500-70.7500	-0.5619	-2.4275	-0.5251	-2.2686
L14	70.7500-65.7500	-0.6436	-2.7807	-0.5939	-2.5661
L15	65.7500-60.7500	-0.6454	-2.7886	-0.5969	-2.5787
L16	60.7500-57.7500	-0.4015	-1.7345	-0.4335	-1.8727
L17	57.7500-57.5000	-0.3173	-1.3710	-0.3635	-1.5703
L18	57.5000-52.5000	-0.3194	-1.3801	-0.3655	-1.5792
L19	52.5000-47.5000	-0.2185	-1.3558	-0.1173	-1.4935

Section	Elevation	<i>CP</i> _X	CPz	CPx	CPz
				Ice	Ice
	ft	in	in	in	in
L20	47.5000-40.7500	-0.1175	-1.3339	0.1238	-1.4129
L21	40.7500-40.0000	-0.1176	-1.3353	0.1240	-1.4146
L22	40.0000-35.0000	-0.1183	-1.3443	0.1213	-1.4214
L23	35.0000-30.0000	-0.1195	-1.3596	0.1198	-1.4354
L24	30.0000-29.7500	-0.1201	-1.3671	0.1187	-1.4419
L25	29.7500-29.5000	-0.1070	-1.2182	0.1102	-1.3399
L26	29.5000-24.5000	-0.1076	-1.2259	0.1090	-1.3464
L27	24.5000-19.5000	-0.1087	-1.2403	0.1062	-1.3583
L28	19.5000-14.5000	-0.1098	-1.2544	0.1022	-1.3690
L29	14.5000-9.5000	-0.1109	-1.2684	0.0977	-1.3991
L30	9.5000-4.5000	-0.1120	-1.2821	0.0879	-1.4087
L31	4.5000-0.0000	-0.1130	-1.2949	0.0662	-1.4027

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.	2000111	Segment	No Ice	lce
			Elev.		
L13	18	AVA7-50(1-5/8)	70.75 -	1.0000	1.0000
			75.00		
L14	18	AVA7-50(1-5/8)	65.75 -	1.0000	1.0000
			70.75		
L15	18	AVA7-50(1-5/8)	60.75 -	1.0000	1.0000
		` ′	65.75		
L16	18	AVA7-50(1-5/8)	57.75 -	1.0000	1.0000
		` ′	60.75		
L16	28	FP 4.875 x 1.25	57.75 -	1.0000	1.0000
		Reinforcement	59.50		
L16	29	FP 4.875 x 1.25	57.75 -	1.0000	1.0000
		Reinforcement	59.50		
L16	30	FP 4.875 x 1.25	57.75 -	1.0000	1.0000
		Reinforcement	59.50		
L17	18	AVA7-50(1-5/8)	57.50 -	1.0000	1.0000
			57.75		
L17	28	FP 4.875 x 1.25	57.50 -	1.0000	1.0000
		Reinforcement	57.75		
L17	29	FP 4.875 x 1.25	57.50 -	1.0000	1.0000
		Reinforcement	57.75		
L17	30	FP 4.875 x 1.25	57.50 -	1.0000	1.0000
		Reinforcement	57.75		
L18	18	AVA7-50(1-5/8)	52.50 -	1.0000	1.0000
			57.50		
L18	28	FP 4.875 x 1.25	52.50 -	1.0000	1.0000
		Reinforcement	57.50		
L18	29	FP 4.875 x 1.25	52.50 -	1.0000	1.0000
		Reinforcement	57.50		4 0000
L18	30	FP 4.875 x 1.25	52.50 -	1.0000	1.0000
	4.0	Reinforcement	57.50	4 0000	4 0000
L19	18	AVA7-50(1-5/8)	47.50 -	1.0000	1.0000
1.40	00	LDE4 50A(4/0)	52.50	4 0000	4 0000
L19	20	LDF4-50A(1/2)	47.50 -	1.0000	1.0000
1.40		ED 4.075 4.05	50.00	4 0000	4 0000
L19	28	FP 4.875 x 1.25	47.50 -	1.0000	1.0000
L19		Reinforcement FP 4,875 x 1,25	52.50	1.0000	1.0000
I L19	29	Reinforcement	47.50 - 52.50	1.0000	1.0000
L19	30	FP 4.875 x 1.25	52.50 47.50 -	1,0000	1.0000
Lig	30	Reinforcement	52.50	1.0000	1.0000
L20	18	AVA7-50(1-5/8)	40.75 -	1.0000	1.0000
	'0	AVA7-50(1-5/6)	40.75		1.0000
ı	ı		47.30		

Tower	ver Feed Line Description		Feed Line	K a	K a
Section	Record No.	Describiion	Segment	∧ _a No Ice	r∖a Ice
			Ĕlev.		
L20	20	LDF4-50A(1/2)	40.75 -	1.0000	1.0000
L20	28	FP 4.875 x 1.25	47.50 40.75 -	1.0000	1.0000
	20	Reinforcement	47.50	1.0000	1.0000
L20	29	FP 4.875 x 1.25	40.75 -	1.0000	1.0000
L20	30	Reinforcement FP 4.875 x 1.25	47.50 40.75 -	1,0000	1.0000
LZU	30	Reinforcement	47.50	1.0000	1.0000
L21	18	AVA7-50(1-5/8)	40.00 -	1.0000	1.0000
104	20	LDE4 50A(4/0)	40.75	1 0000	1 0000
L21	20	LDF4-50A(1/2)	40.00 - 40.75	1.0000	1.0000
L21	28	FP 4.875 x 1.25	40.00 -	1.0000	1.0000
	00	Reinforcement	40.75	4 0000	4 0000
L21	29	FP 4.875 x 1.25 Reinforcement	40.00 - 40.75	1.0000	1.0000
L21	30	FP 4.875 x 1.25	40.00 -	1.0000	1.0000
		Reinforcement	40.75		
L22	18	AVA7-50(1-5/8)	35.00 -	1.0000	1.0000
L22	20	LDF4-50A(1/2)	40.00 35.00 -	1.0000	1.0000
		221 1 007 (112)	40.00	110000	
L22	28	FP 4.875 x 1.25	35.00 -	1.0000	1.0000
L22	29	Reinforcement FP 4.875 x 1.25	40.00 35.00 -	1.0000	1.0000
	29	Reinforcement	40.00	1.0000	1.0000
L22	30	FP 4.875 x 1.25	35.00 -	1.0000	1.0000
1.00	40	Reinforcement	40.00	4 0000	4 0000
L23	18	AVA7-50(1-5/8)	30.00 - 35.00	1.0000	1.0000
L23	20	LDF4-50A(1/2)	30.00 -	1.0000	1.0000
			35.00		
L23	28	FP 4.875 x 1.25 Reinforcement	30.00 - 35.00	1.0000	1.0000
L23	29	FP 4.875 x 1.25	30.00	1.0000	1.0000
		Reinforcement	35.00		
L23	30	FP 4.875 x 1.25	30.00 -	1.0000	1.0000
L24	18	Reinforcement AVA7-50(1-5/8)	35.00 29.75	1.0000	1.0000
	10	71711 00(1 0/0)	30.00	1.0000	1.0000
L24	20	LDF4-50A(1/2)	29.75 -	1.0000	1.0000
L24	28	FP 4.875 x 1.25	30.00 29.75 -	1.0000	1.0000
L24	20	Reinforcement	30.00	1.0000	1.0000
L24	29	FP 4.875 x 1.25	29.75 -	1.0000	1.0000
		Reinforcement	30.00	4 0000	4 0000
L24	30	FP 4.875 x 1.25 Reinforcement	29.75 - 30.00	1.0000	1.0000
L25	18	AVA7-50(1-5/8)	29.50	1.0000	1.0000
		,	29.75		
L25	20	LDF4-50A(1/2)	29.50 - 29.75	1.0000	1.0000
L25	23	FP 6.125 x 1.25	29.75	1.0000	1.0000
		Reinforcement	29.75		
L25	25	FP 6.125 x 1.25	29.50 -	1.0000	1.0000
L25	27	Reinforcement FP 6.125 x 1.25	29.75 29.50 -	1.0000	1.0000
		Reinforcement	29.75		
L26	18	AVA7-50(1-5/8)	24.50 -	1.0000	1.0000
L26	20	LDF4-50A(1/2)	29.50 24.50 -	1.0000	1.0000
		EDI 4-00A(1/2)	29.50	1.0000	1.0000
L26	23	FP 6.125 x 1.25	24.50 -	1.0000	1.0000
L26	25	Reinforcement FP 6.125 x 1.25	29.50 24.50 -	1.0000	1.0000
	20	Reinforcement	29.50	1.0000	1.0000
L26	27	FP 6.125 x 1.25	24.50 -	1.0000	1.0000
L27	18	Reinforcement AVA7-50(1-5/8)	29.50 19.50 -	1.0000	1.0000
L2/	101	MVA/-00(1-0/0)	19.50 -	1.0000	1.0000

T - 1		5			
Tower	Feed Line	Description	Feed Line	K _a	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
			24.50		
L27	20	LDF4-50A(1/2)	19.50 -	1.0000	1.0000
			24.50		
L27	23	FP 6.125 x 1.25	19.50 -	1.0000	1.0000
		Reinforcement	24.50		
L27	25	FP 6.125 x 1.25	19.50 -	1.0000	1.0000
		Reinforcement	24.50		
L27	27	FP 6.125 x 1.25	19.50 -	1.0000	1.0000
		Reinforcement	24.50		
L28	18	AVA7-50(1-5/8)	14.50 -	1.0000	1.0000
			19.50		
L28	20	LDF4-50A(1/2)	14.50 -	1.0000	1.0000
			19.50		
L28	23	FP 6.125 x 1.25	14.50 -	1.0000	1.0000
		Reinforcement	19.50		
L28	25	FP 6.125 x 1.25	14.50 -	1.0000	1.0000
		Reinforcement	19.50		
L28	27	FP 6.125 x 1.25	14.50 -	1.0000	1.0000
		Reinforcement	19.50		
L29	18	AVA7-50(1-5/8)	9.50 - 14.50	1.0000	1.0000
L29	20	LDF4-50A(1/2)	9.50 - 14.50	1.0000	1.0000
L29	22	FP 6.125 x 1.25	9.50 - 13.53	1.0000	1.0000
		Reinforcement			
L29	23	FP 6.125 x 1.25	13.53 -	1.0000	1.0000
		Reinforcement	14.50		
L29	24	FP 6.125 x 1.25	9.50 - 13.53	1.0000	1.0000
		Reinforcement			
L29	25	FP 6.125 x 1.25	13.53 -	1.0000	1.0000
		Reinforcement	14.50		
L29	26	FP 6.125 x 1.25	9.50 - 13.53	1.0000	1.0000
		Reinforcement			
L29	27	FP 6.125 x 1.25	13.53 -	1.0000	1.0000
		Reinforcement	14.50		
L30	18	AVA7-50(1-5/8)	4.50 - 9.50	1.0000	1.0000
L30	20	LDF4-50A(1/2)	4.50 - 9.50	1.0000	1.0000
L30	22	FP 6.125 x 1.25	4.50 - 9.50	1.0000	1.0000
		Reinforcement			
L30	24	FP 6.125 x 1.25	4.50 - 9.50	1.0000	1.0000
		Reinforcement			
L30	26	FP 6.125 x 1.25	4.50 - 9.50	1.0000	1.0000
		Reinforcement			
L31	18	AVA7-50(1-5/8)	0.00 - 4.50	1.0000	1.0000
L31	20	LDF4-50A(1/2)	0.00 - 4.50	1.0000	1.0000
L31	22	FP 6.125 x 1.25	0.00 - 4.50	1.0000	1.0000
		Reinforcement			
L31	24	FP 6.125 x 1.25	0.00 - 4.50	1.0000	1.0000
		Reinforcement			
L31	26	FP 6.125 x 1.25	0.00 - 4.50	1.0000	1.0000
		Reinforcement			

Effective Width of Flat Linear Attachments / Feed Lines

	Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	
				Elev.	n	Ratio
ı					Method	
I	L16	28	FP 4.875 x 1.25	57.75 -	Auto	0.0000
ı			Reinforcement	59.50		
ı	L16	29	FP 4.875 x 1.25	57.75 -	Auto	0.0000
			Reinforcement	59.50		
	L16	30	FP 4.875 x 1.25	57.75 -	Auto	0.0000

Record No. Reinforcement Session Reinforcement Session Reinforcement Session Reinforcement Session Reinforcement Session Session Reinforcement Session Session Session Reinforcement Session Session Session Reinforcement Session Ses	T	A 44 1 4	Description	A 44 I 4	D-4:-	F-65 45
Reinforcement	Tower	Attachment	Description	Attachment	Ratio	Effective Width
Reinforcement	Section	Record No.				
Reinforcement				El€v.		Natio
L17			Reinforcement	59 50	Wictrica	
Reinforcement 57.75	l 17	28			Auto	0.0321
L17					7 1410	0,002
Reinforcement S7.75	L17	29	l l		Auto	0.0321
Reinforcement 57.75			Reinforcement			
L18	L17	30	FP 4.875 x 1.25		Auto	0.0321
Reinforcement 57.50 Auto 0.0157						
L18	L18	28			Auto	0.0157
Reinforcement 57.50						
L18	L18	29			Auto	0.0157
Reinforcement F7.50 Auto 0.0000	Ι 1Ω	30			Auto	0.0157
L19	LIO	30			Auto	0.0137
Reinforcement 52.50 Auto 0.0000	I 19	28			Auto	0,000
L19	2.0				, tato	0.0000
Reinforcement 52.50 Auto 0.0000	L19	29			Auto	0.0000
Reinforcement S2.50 Auto 0.0000				52.50		
L20	L19	30			Auto	0.0000
Reinforcement						
L20	L20	28			Auto	0.0000
Reinforcement						
L20	L20	29			Auto	0.0000
Reinforcement	1.20	30			Auto	0.0000
L21	LZU	30			Auto	0.0000
Reinforcement 40.75 Reinforcement 40.75 Reinforcement 40.75 Auto 0.0000	L21	28			Auto	0.0000
Reinforcement					7 1415	3.3333
L21 30	L21	29	FP 4.875 x 1.25	40.00 -	Auto	0.0000
Reinforcement						
L22	L21	30			Auto	0.0000
Reinforcement						0.000
L22	L22	28				0.0000
Reinforcement	1 22	20				0,0000
L22 30	LZZ	29			Auto	0.0000
Reinforcement	L22	30	l .		Auto	0.0000
L23						
L23	L23	28	FP 4.875 x 1.25	30.00 -	Auto	0.0000
Reinforcement 35.00 Auto 0.0000						
L23 30	L23	29			Auto	0.0000
Reinforcement						
L24	L23	30			Auto	0.0000
Reinforcement 30.00	1 24	20			Auto	0 0000
L24 29	L24	20			Auto	0.0000
Reinforcement 30.00	L24	29			Auto	0.0000
L24 30 FP 4.875 x 1.25 Reinforcement 29.75 Auto 0.0000 L25 23 FP 6.125 x 1.25 PP 6.						
L25 23 FP 6.125 x 1.25 Reinforcement 29.50 - Auto 0.1395 L25 25 FP 6.125 x 1.25 29.50 - Reinforcement 29.75 Auto 0.1395 L25 27 FP 6.125 x 1.25 29.50 - Reinforcement 29.75 Auto 0.1395 L26 23 FP 6.125 x 1.25 29.50 - Reinforcement 29.75 Auto 0.1264 L26 23 FP 6.125 x 1.25 24.50 - Reinforcement 29.50 Auto 0.1264 L26 25 FP 6.125 x 1.25 24.50 - Reinforcement 29.50 Auto 0.1264 L26 27 FP 6.125 x 1.25 24.50 - Reinforcement 29.50 Auto 0.1264 L27 23 FP 6.125 x 1.25 29.50 - Reinforcement 29.50 Auto 0.1030 L27 25 FP 6.125 x 1.25 29.50 - Reinforcement 24.50 29.50 - Auto Auto 0.1030 L27 25 FP 6.125 x 1.25 29.50 - Reinforcement 24.50 29.50 - Auto Auto 0.1030 L27 27 FP 6.125 x 1.25 29.50 - Reinforcement 24.50 29.50 - Auto 0.1030 Reinforcement 24.50 29.50 - Auto 0.1030 Reinforcement	L24	30	i		Auto	0.0000
Reinforcement 29.75 29.50 - Auto 0.1395						
L25 25 FP 6.125 x 1.25 Reinforcement 29.50 - 29.75 Auto 0.1395 L25 27 FP 6.125 x 1.25 Reinforcement 29.75 Auto 0.1395 L26 23 FP 6.125 x 1.25 24.50 - Reinforcement 29.50 Auto 0.1264 L26 25 FP 6.125 x 1.25 24.50 - Reinforcement 29.50 Auto 0.1264 L26 27 FP 6.125 x 1.25 24.50 - Reinforcement 29.50 Auto 0.1264 L27 23 FP 6.125 x 1.25 24.50 - Reinforcement 29.50 Auto 0.1264 L27 23 FP 6.125 x 1.25 24.50 - Reinforcement 24.50 Auto 0.1030 L27 25 FP 6.125 x 1.25 25 24.50 - Reinforcement 24.50 Auto 0.1030 L27 25 FP 6.125 x 1.25 25 24.50 - Reinforcement 24.50 Auto 0.1030 L27 25 FP 6.125 x 1.25 25 24.50 - Reinforcement 24.50 Auto 0.1030 L27 27 FP 6.125 x 1.25 25 24.50 - Reinforcement 24.50 Auto 0.1030 Reinforcement 24.50 Auto 0.1030 Auto 0.1030<	L25	23			Auto	0.1395
Reinforcement 29.75 29.50 - Auto 0.1395	1.05				, ,	0 4005
L25 27 FP 6.125 x 1.25 Reinforcement Reinforcement 29.50 Auto 0.1395 L26 23 FP 6.125 x 1.25 Reinforcement 29.50 Auto 0.1264 L26 25 FP 6.125 x 1.25 PF	L25	25			Auto	0.1395
Reinforcement 29.75 24.50 -	1 25	27			Auto	0 1305
L26 23 FP 6.125 x 1.25 Reinforcement 24.50 - Auto 0.1264 L26 25 FP 6.125 x 1.25 Reinforcement 29.50 Auto 0.1264 L26 27 FP 6.125 x 1.25 Reinforcement 29.50 Auto 0.1264 L27 23 FP 6.125 x 1.25 Pe 6.125 x					7410	0.1000
Reinforcement 29.50	L26	23			Auto	0.1264
L26 25 FP 6.125 x 1.25 Reinforcement 24.50 - Auto 0.1264 L26 27 FP 6.125 x 1.25 Reinforcement 29.50 Reinforcement 29.50 Auto 0.1264 L27 23 FP 6.125 x 1.25 Pe 6.125 x 1.25 Reinforcement 19.50 - Auto 0.1030 Reinforcement L27 25 FP 6.125 x 1.25 Pe 6.125 x 1.25 Pe 6.125 x 1.25 Reinforcement 24.50 Pe 6.125 x 1.25 Pe				29.50		
L26 27 FP 6.125 x 1.25 Reinforcement 24.50 - 29.50 Auto 0.1264 L27 23 FP 6.125 x 1.25 PF 6.125 x 1.25	L26	25	FP 6.125 x 1.25	24.50 -	Auto	0.1264
Reinforcement 29.50						_
L27 23 FP 6.125 x 1.25 19.50 - Auto 0.1030 Reinforcement 24.50 L27 25 FP 6.125 x 1.25 19.50 - Auto 0.1030 Reinforcement 24.50 L27 27 FP 6.125 x 1.25 19.50 - Auto 0.1030 Reinforcement 24.50 Reinforcement 24.50	L26	27			Auto	0.1264
Reinforcement 24.50	1.07				۸	0.4000
L27 25 FP 6.125 x 1.25 19.50 - Auto 0.1030 Reinforcement 24.50 L27 27 FP 6.125 x 1.25 19.50 - Auto 0.1030 Reinforcement 24.50	L2/	23			Auto	0.1030
Reinforcement 24.50 L27 27 FP 6.125 x 1.25 19.50 - Auto 0.1030 Reinforcement 24.50	1 27	25			Auto	0 1030
L27 27 FP 6.125 x 1.25 19.50 - Auto 0.1030 Reinforcement 24.50		25			Auto	0.1000
Reinforcement 24.50	L27	27			Auto	0.1030
L28 23 FP 6.125 x 1.25 14.50 - Auto 0.0814			Reinforcement			
	L28	23	FP 6.125 x 1.25	14.50 -	Auto	0.0814

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	·	Segment	Calculatio	Width
			Ĕlev.	n	Ratio
				Method	
		Reinforcement	19.50		
L28	25	FP 6.125 x 1.25	14.50 -	Auto	0.0814
		Reinforcement	19.50		
L28	27	FP 6.125 x 1.25	14.50 -	Auto	0.0814
		Reinforcement	19.50		
L29	22	FP 6.125 x 1.25	9.50 - 13.53	Auto	0.0542
		Reinforcement			
L29	23	FP 6.125 x 1.25	13.53 -	Auto	0.0650
		Reinforcement	14.50		
L29	24	FP 6.125 x 1.25	9.50 - 13.53	Auto	0.0542
		Reinforcement			
L29	25	FP 6.125 x 1.25	13.53 -	Auto	0.0650
		Reinforcement	14.50		
L29	26	FP 6.125 x 1.25	9.50 - 13.53	Auto	0.0542
		Reinforcement			
L29	27	FP 6.125 x 1.25	13.53 -	Auto	0.0650
		Reinforcement	14.50		
L30	22	FP 6.125 x 1.25	4.50 - 9.50	Auto	0.0347
		Reinforcement			
L30	24	FP 6.125 x 1.25	4.50 - 9.50	Auto	0.0347
		Reinforcement			
L30	26	FP 6.125 x 1.25	4.50 - 9.50	Auto	0.0347
		Reinforcement			
L31	22	FP 6.125 x 1.25	0.00 - 4.50	Auto	0.0125
		Reinforcement			
L31	24	FP 6.125 x 1.25	0.00 - 4.50	Auto	0.0125
		Reinforcement			.
L31	26	FP 6.125 x 1.25	0.00 - 4.50	Auto	0.0125
		Reinforcement			

	Discrete Tower Loads								
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement				
			ft ft ft	o	ft				
5/8" X 5' Lightning Rod	С	None		0.00	135.5000				
TPA65R-BU8D_CCIV2 w/ Mount Pipe	Α	From Leg	1.0000 0.00 0.00	0.00	132.0000				
TPA65R-BU8D_CCIV2 w/ Mount Pipe	В	From Leg	1.0000 0.00 0.00	0.00	132.0000				
TPA65R-BU8D_CCIV2 w/ Mount Pipe	С	From Leg	1.0000 0.00 0.00	0.00	132.0000				
DC6-48-60-18-8F	Α	From Leg	1.0000 0.00 0.00	0.00	132.0000				
DC6-48-60-18-8C-EV	В	From Leg	1.0000 0.00 0.00	0.00	132.0000				
RRUS 4449 B5/B12	Α	From Leg	1.0000 0.00 0.00	0.00	132.0000				
RRUS 4449 B5/B12	В	From Leg	1.0000 0.00	0.00	132.0000				

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement
	Leg		Vert ft ft	۰	ft
			ft		
RRUS 4449 B5/B12	С	From Leg	0.00 1.0000 0.00	0.00	132.0000
RRUS 4415 B25	Α	From Leg	0.00 1.0000 0.00	0.00	132.0000
RRUS 4415 B25	В	From Leg	0.00 1.0000 0.00	0.00	132.0000
RRUS 4415 B25	С	From Leg	0.00 1.0000 0.00	0.00	132.0000
DBC0111F2V62-1	Α	From Leg	0.00 1.0000 0.00	0.00	132.0000
DBC0111F2V62-1	В	From Leg	0.00 1.0000 0.00	0.00	132.0000
DBC0111F2V62-1	С	From Leg	0.00 1.0000 0.00	0.00	132.0000
Side Arm Mount [SO 901-3]	С	None	0.00	0.00	132.0000
*** AIR6449 B41_T-MOBILE w/ Mount Pipe	Α	From Leg	4.0000 0.00	0.00	120.0000
AIR6449 B41_T-MOBILE w/ Mount Pipe	В	From Leg	1.00 4.0000 0.00	0.00	120.0000
AIR6449 B41_T-MOBILE w/ Mount Pipe	С	From Leg	1.00 4.0000 0.00	0.00	120.0000
APXVAALL24_43-U-NA20_TMO w/ Mount Pipe	Α	From Leg	1.00 4.0000 0.00	0.00	120.0000
APXVAALL24_43-U-NA20_TMO w/ Mount Pipe	В	From Leg	1.00 4.0000 0.00	0.00	120.0000
APXVAALL24_43-U-NA20_TMO w/ Mount Pipe	С	From Leg	1.00 4.0000 0.00	0.00	120.0000
RADIO 4460 B2/B25 B66_TMO	Α	From Leg	1.00 4.0000 0.00	0.00	120.0000
RADIO 4460 B2/B25 B66_TMO	В	From Leg	1.00 4.0000 0.00	0.00	120.0000
RADIO 4460 B2/B25 B66_TMO	С	From Leg	1.00 4.0000 0.00	0.00	120.0000
Radio 4480_TMOV2	Α	From Leg	1.00 4.0000 0.00	0.00	120.0000
Radio 4480_TMOV2	Α	From Leg	1.00 4.0000 0.00	0.00	120.0000
Radio 4480_TMOV2	Α	From Leg	1.00 4.0000 0.00	0.00	120.0000
SitePro1 RMQP-496-HK	С	None	1.00	0.00	120.0000
MX08FRO665-21 w/ Mount Pipe	А	From Leg	4.0000 0.00	0.00	111.0000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placeme
	or Leg	туре	Horz Lateral	Adjustment	
	Log		Vert		
			ft	۰	ft
			ft ft		
	_		0.00		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.0000	0.00	111.0000
			0.00 0.00		
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.0000	0.00	111.000
тине и при при при при при при при при при п		· · · · · · · · · · · · · · · · · · ·	0.00		
			0.00		
TA08025-B604	Α	From Leg	4.0000	0.00	111.000
			0.00 0.00		
TA08025-B604	В	From Leg	4.0000	0.00	111.000
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_		0.00		
			0.00		
TA08025-B604	С	From Leg	4.0000	0.00	111.000
			0.00 0.00		
TA08025-B605	Α	From Leg	4.0000	0.00	111.000
	, ,		0.00	0.00	
			0.00		
TA08025-B605	В	From Leg	4,0000	0.00	111,000
			0.00		
TA08025-B605	С	From Leg	0.00 4.0000	0.00	111.000
17.00020-0000	J	r rom Leg	0.00	0.00	111.000
			0.00		
RDIDC-9181-PF-48	Α	From Leg	4.0000	0.00	111.000
			0.00		
Commscope MC-PK8-DSH	С	None	0.00	0.00	111.000
(2) 8' x 2" Mount Pipe	Ä	From Leg	4.0000	0.00	111.000
		Ü	0.00		
	_		0.00		
(2) 8' x 2" Mount Pipe	В	From Leg	4.0000	0.00	111.000
			0.00 0.00		
(2) 8' x 2" Mount Pipe	С	From Leg	4.0000	0.00	111.000
` ,		J	0.00		
***			0.00		
APX16DWV-16DWVS-C w/ Mount Pipe	Α	From Leg	4.0000	0.00	101.000
AT A TODAY V-TODAY VO-C W/ INIOUTIL PIPE	^	r rom Leg	0.00	0.00	101.000
			0.00		
APX16DWV-16DWVS-C w/ Mount Pipe	В	From Leg	4.0000	0.00	101.000
			0.00		
APX16DWV-16DWVS-C w/ Mount Pipe	С	From Leg	0.00 4.0000	0.00	101.000
	Ü	r rom Log	0.00	0.00	131.000
			0.00		
ETT19VS12UB	Α	From Leg	4.0000	0.00	101.000
			0.00 0.00		
ETT19VS12UB	В	From Leg	4.0000	0.00	101.000
	_		0.00	0.00	75.1000
			0.00		
		From Leg	4.0000 0.00	0.00	101.000
ETT19VS12UB	С	•	(1 (10)		
ETT19VS12UB	С				
			0.00	0.00	101 000
ETT19VS12UB KRY 112 144/1	C A	From Leg		0.00	101.000
KRY 112 144/1	Α	From Leg	0.00 4.0000 0.00 0.00		
			0.00 4.0000 0.00 0.00 4.0000	0.00	
KRY 112 144/1	Α	From Leg	0.00 4.0000 0.00 0.00 4.0000 0.00		
KRY 112 144/1	Α	From Leg	0.00 4.0000 0.00 0.00 4.0000		101.000 101.000 101.000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg	Type	Lateral	тајавинени	
	3		Vert		
			ft	٥	ft
			ft ft		
			0.00		
T-Arm Mount [TA 602-3]	Ċ	None		0.00	101.0000
2.375" OD x 6' Mount Pipe	Α	From Leg	4.0000	0.00	101.0000
			0.00 0.00		
2.375" OD x 6' Mount Pipe	В	From Leg	4.0000	0.00	101.0000
·		· ·	0.00		
0.07511.070.01444751			0.00	0.00	404.0000
2.375" OD x 6' Mount Pipe	С	From Leg	4.0000 0.00	0.00	101.0000
			0.00		

BXA-70063-4CF-EDIN-X w/ Mount Pipe	Α	From Leg	4.0000	0.00	93.0000
			0.00 1.00		
BXA-70063-4CF-EDIN-X w/ Mount Pipe	В	From Leg	4.0000	0.00	93.0000
2.5. 10000 for Estimate Minimum ipo	_		0.00	0.00	22.0000
			1.00		
BXA-70063-4CF-EDIN-X w/ Mount Pipe	С	From Leg	4.0000	0.00	93.0000
			0.00 1.00		
LNX-6514DS-A1M w/ Mount Pipe	Α	From Leg	4.0000	0.00	93.0000
Envisor Be / tim w/ Medit i ipe	, ,	1 10111 2 09	0.00	0.00	0010000
			1.00		
LNX-6514DS-A1M w/ Mount Pipe	В	From Leg	4.0000	0.00	93.0000
			0.00 1.00		
LNX-6514DS-A1M w/ Mount Pipe	С	From Leg	4.0000	0.00	93.0000
	_		0.00		33.3333
	_		1.00		
BXA-171063-8BF-2 w/ Mount Pipe	Α	From Leg	4.0000 0.00	0.00	93.0000
			1.00		
BXA-171063-8BF-2 w/ Mount Pipe	В	From Leg	4.0000	0.00	93.0000
·		· ·	0.00		
DVA 474005 ODE EDIN O . /M . / D'			1.00	0.00	00.0000
BXA-171085-8BF-EDIN-0 w/ Mount Pipe	С	From Leg	4.0000 0.00	0.00	93.0000
			1.00		
BXA-171063-12CF-EDIN-X w/ Mount Pipe	Α	From Leg	4.0000	0.00	93.0000
			0.00		
BXA-171063-12CF-EDIN-X w/ Mount Pipe	В	From Leg	1.00 4.0000	0.00	93.0000
BAA-17 1005-12CF-EDIN-A W/ Mount Fipe	ь	From Leg	0.00	0.00	93.0000
			1.00		
BXA-171063-12CF-EDIN-X w/ Mount Pipe	С	From Leg	4.0000	0.00	93.0000
			0.00		
RRH2X40-AWS	Α	From Leg	1.00 4.0000	0.00	93.0000
14412/107/476	, ,	r rom Log	0.00	0.00	00.0000
			1.00		
RRH2X40-AWS	В	From Leg	4.0000	0.00	93.0000
			0.00 1.00		
RRH2X40-AWS	С	From Leg	4.0000	0.00	93.0000
		J	0.00		
(0) EDODOOO (100 0)	Α.	F	1.00	0.00	00.0000
(2) FD9R6004/2C-3L	Α	From Leg	4.0000 0.00	0.00	93.0000
			1.00		
(2) FD9R6004/2C-3L	В	From Leg	4.0000	0.00	93.0000
• •		•	0.00		
(0) EDODOOO (100 0)	_	Fue 1 -	1.00	0.00	00.0000
(2) FD9R6004/2C-3L	С	From Leg	4.0000 0.00	0.00	93.0000
			0.00		

Description	Face	Offset	Offsets:	Azimuth	Placemen
·	or	Туре	Horz	Adjustment	
	Leg		Lateral		
			Vert		
			ft	۰	ft
			ft		
			ft		
			1.00		
DB-T1-6Z-8AB-0Z	Α	From Leg	4.0000	0.00	93.0000
			0.00		
	_		1.00		
Platform Mount [LP 1201-1] ****	С	None		0.00	93.0000
APXV18-206517S-C	Α	From Face	1.0000	0.00	75.0000
			0.00		
			0.00		
APXV18-206517S-C	В	From Face	1.0000	0.00	75.0000
			0.00		
			0.00		
APXV18-206517S-C	С	From Face	1.0000	0.00	75.0000
			0.00		
D. 14 (D.1 00 1 01			0.00		
Pipe Mount [PM 601-3] ****	С	None		0.00	75.0000
KS24019-L112A	Α	From Face	2.0000	0.00	50.0000
			0.00		
			1.00		
Side Arm Mount [SO 702-1]	Α	From Leg	1.0000	0.00	50.0000
			0.00		
			0.00		

Tower Pressures - No Ice

 $G_H = 1.100$

Section	Z	Kz	q_z	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
L1 133.0000-	130.5000	1.339	42.52	5.833	Α	0.000	5.833	5.833	100.00	0.000	0.000
128.0000			7		В	0.000	5.833		100.00	0.000	0.000
					С	0.000	5.833		100.00	0.000	0.000
L2 128.0000-	125.5000	1.328	42.17	5.833	Α	0.000	5.833	5.833	100.00	0.000	0.000
123.0000			9		В	0.000	5.833		100.00	0.000	0.000
					С	0.000	5.833		100.00	0.000	0.000
L3 123.0000-	120.4860	1.316	41.81	9.455	Α	0.000	9.455	9.455	100.00	0.000	0.000
118.0000			9		В	0.000	9.455		100.00	0.000	0.000
					С	0.000	9.455		100.00	0.000	0.000
L4 118.0000-	115.4865	1.305	41.44	9.772	Α	0.000	9.772	9.772	100.00	0.000	0.000
113.0000			7		В	0.000	9.772		100.00	0.000	0.000
					С	0.000	9.772		100.00	0.000	0.000
L5 113.0000-	110.4869	1.292	41.06	10.090	Α	0.000	10.090	10.090	100.00	0.000	0.000
108.0000			3		В	0.000	10.090		100.00	0.000	0.000
					С	0.000	10.090		100.00	0.000	0.000
L6 108.0000-	105.4873	1.28	40.66	10.407	Α	0.000	10.407	10.407	100.00	0.000	0.000
103.0000			4		В	0.000	10.407		100.00	0.000	0.000
					С	0.000	10.407		100.00	0.000	0.000
L7 103.0000-	100.4877	1.267	40.25	10.724	Α	0.000	10.724	10.724	100.00	0.000	0.000
98,0000			1		В	0.000	10.724		100.00	0.000	0.000
					С	0.000	10.724		100.00	0.000	0.000
L8 98.0000-	95.4880	1.253	39.82	11.042	Α	0.000	11.042	11.042	100.00	0.000	0.000
93.0000			1		В	0.000	11.042		100.00	0.000	0.000
					С	0.000	11.042		100.00	0.000	0.000
L9 93.0000-	90.4884	1.239	39.37	11.359	Α	0.000	11.359	11.359	100.00	0.000	0.000
88.0000			2		В	0.000	11.359		100.00	0.000	0.000

Section Elevation	Z	Kz	q_z	A _G	F a	AF	A_R	A_{leg}	Leg %	C _A A _A In	C _A A _A Out
ft	ft		psf	ft²	c e	ft²	ft²	ft²	,,,	Face ft²	Face ft²
			,		С	0.000	11.359		100.00	0.000	0.000
L10 88.0000-	85.1101	1.223	38.86	13.455	Α	0.000	13.455	13.455	100.00	0.000	0.000
82.2500			8		В	0.000	13.455		100.00	0.000	0.000
					С	0.000	13.455		100.00	0.000	0.000
L11 82.2500-	81.4990	1.212	38.51	3.530	Α	0.000	3.530	3.530	100.00	0.000	0.000
80.7500			5		В	0.000	3.530		100.00	0.000	0.000
140.00.7500	70 0000	4 000	20.40	44.074	C	0.000	3.530	44.074	100.00	0.000	0.000
L12 80.7500- 75.7500	78.2390	1.202	38.18 5	11.974	A B	0.000 0.000	11.974 11.974	11.974	100.00 100.00	0.000 0.000	0.000 0.000
75.7500			5		C	0.000	11.974		100.00	0.000	0.000
L13 75.7500-	73.2393	1.185	37.65	12.292	Ā	0.000	12.292	12.292	100.00	1.708	0.000
70.7500	70.2000	1.100	8	12,202	В	0.000	12.292	12.202	100.00	0.000	0.000
			_		C	0.000	12.292		100.00	0.000	0.000
L14 70.7500-	68.2395	1.168	37.10	12.609	Α	0.000	12.609	12.609	100.00	2.010	0.000
65.7500			1		В	0.000	12.609		100.00	0.000	0.000
					С	0.000	12.609		100.00	0.000	0.000
L15 65.7500-	63.2398	1.149	36.51	12.926	Α	0.000	12.926	12.926	100.00	2.010	0.000
60.7500			2		В	0.000	12.926		100.00	0.000	0.000
L16 60.7500-	E0 2464	4 404	36.01	7.908	C	0.000	12.926	7 000	100.00 100.00	0.000	0.000 0.000
57.7500	59.2464	1.134	36.01	7.906	A B	0.000 0.000	7.908 7.908	7.908	100.00	2.628 1.422	0.000
37.7300			4		C	0.000	7.908		100.00	1.422	0.000
L17 57.7500-	57.6250	1.127	35.80	0.663	Ā	0.000	0.663	0.663	100.00	0.304	0.000
57.5000	0.10200		4	0,000	В	0.000	0.663	0,000	100.00	0.203	0.000
					С	0.000	0.663		100.00	0.203	0.000
L18 57 5000-	54.9902	1.116	35.45	13.437	Α	0.000	13.437	13.437	100.00	6.072	0.000
52.5000			3		В	0.000	13.437		100.00	4.063	0.000
					С	0.000	13.437		100.00	4.063	0.000
L19 52.5000-	49.9904	1.094	34.74	13.755	Α	0.000	13.755	13.755	100.00	6.072	0.000
47.5000			9		В	0.000	13.755		100.00	4.220	0.000
L20 47.5000-	44.1080	1.065	33.84	19.072	C A	0.000 0.000	13.755 19.072	19.072	100.00 100.00	4.063 8.198	0.000 0.000
40.7500	44.1000	1.005	55.64	19.072	В	0.000	19.072	19.072	100.00	5.910	0.000
40.7500			,		Č	0.000	19.072		100.00	5.484	0.000
L21 40.7500-	40.3748	1.046	33.22	2.123	Ä	0.000	2.123	2.123	100.00	0.911	0.000
40.0000			0		В	0.000	2.123		100.00	0.657	0.000
					С	0.000	2.123		100.00	0.609	0.000
L22 40.0000-	37.4908	1.029	32.70	14.335	Α	0.000	14.335	14.335	100.00	6.072	0.000
35.0000			6		В	0.000	14.335		100.00	4.378	0.000
100 05 0000	00.4040	0.000	04.70	44.050	C	0.000	14.335	44.050	100.00	4.063	0.000
L23 35.0000-	32.4910	0.999	31.73	14.653	A	0.000	14.653	14.653	100.00	6.072	0.000
30.0000			5		B C	0.000 0.000	14.653 14.653		100.00 100.00	4.378 4.063	0.000 0.000
L24 30.0000-	29.8750	0.981	31.17	0.742	A	0.000	0.742	0.742	100.00	0.304	0.000
29.7500	20.0100	0.001	9	0.7 12	В	0.000	0.742	0.7 12	100.00	0.219	0.000
					С	0.000	0.742		100.00	0.203	0.000
L25 29.7500-	29.6250	0.98	31.12	0.742	Α	0.000	0.742	0.742	100.00	0.356	0.000
29.5000			4		В	0.000	0.742		100.00	0.271	0.000
					C	0.000	0.742		100.00	0.255	0.000
L26 29.5000-	26.9912	0.961	30.52	14.999	A	0.000	14.999	14.999	100.00	7.114	0.000
24.5000			0		В	0.000	14.999		100.00 100.00	5.419	0.000 0.000
L27 24.5000-	21.9914	0.92	29.23	15.317	C A	0.000	14.999 15.317	15.317	100.00	5.104 7.114	0.000
19.5000	21.9914	0.92	29.23	13.317	В	0.000	15.317	13.517	100.00	5.419	0.000
13.3330					C	0.000	15.317		100.00	5.104	0.000
L28 19.5000-	16.9916	0.871	27.68	15.634	Ā	0.000	15.634	15.634	100.00	7.114	0.000
14.5000			7		В	0.000	15.634		100.00	5.419	0.000
					С	0.000	15.634		100.00	5.104	0.000
L29 14.5000-	11.9917	0.85	27.00	15.953	Α	0.000	15.953	15.953	100.00	7.114	0.000
9.5000			5		В	0.000	15.953		100.00	5.419	0.000
100 6 5006	0.0045	0.05	07.00	40.075	C	0.000	15.953	40.075	100.00	5.104	0.000
L30 9.5000-	6.9919	0.85	27.00	16.270	A	0.000	16.270	16.270	100.00	7.114	0.000
4.5000			5		B	0.000	16.270 16.270		100.00 100.00	5.419 5.104	0.000 0.000
L31 4.5000-	2.2435	0.85	27.00	14.915	A	0.000	14.915	14.915	100.00	6.403	0.000
0.0000	2.2.700	5.55	5	1 7.0 10	В	0.000	14.915	17.010	100.00	4.877	0.000
			ا		Č	0.000	14.915		100.00	4.594	0.000

Tower Pressure - With Ice

 $G_H = 1.100$

Section	Z	Kz	q_z	tz	A _G	F	A _F	A_R	A _{leg}	Leg	CAAA	C _A A _A
Elevation						a				%	In East	Out
ft	ft		psf	in	ft²	c e	ft²	ft²	ft ²		Face ft²	Face ft²
L1 133.0000-	130.5000	1.339	7.636	0.9753	6.646	Ā	0.000	6,646	6.646	100.00	0.000	0.000
128.0000	1001000	11000	1.000	010700	0.010	В	0.000	6.646	0.010	100.00		0.000
						С	0.000	6.646		100.00	1	0.000
L2 128.0000-	125.5000	1.328	7.573	0.9715	6.643	Α	0.000	6.643	6.643	100.00	0.000	0.000
123.0000						В	0.000	6.643		100.00	0.000	0.000
						С	0.000	6.643		100.00	0.000	0.000
L3 123.0000-	120.4860	1.316	7.508	0.9675	10.261	Α	0.000	10.261	10.261	100.00	0.000	0.000
118.0000						В	0.000	10.261		100.00	0.000	0.000
L4 118.0000-	115.4865	1.305	7.442	0.9634	10.575	C A	0.000 0.000	10.261 10.575	10.575	100.00 100.00	0.000	0.000 0.000
113.0000	113.4003	1.303	7.442	0.3034	10.575	В	0.000	10.575	10.575	100.00	0.000	0.000
113,0000						C	0.000	10.575		100.00	0.000	0.000
L5 113.0000-	110.4869	1.292	7.373	0.9592	10.889	Ā	0.000	10.889	10.889	100.00	0.000	0.000
108.0000						В	0.000	10.889		100.00	0.000	0.000
						С	0.000	10.889		100.00	0.000	0.000
L6 108.0000-	105.4873	1.28	7.301	0.9547	11.203	Α	0.000	11.203	11.203	100.00	0.000	0.000
103.0000						В	0.000	11.203		100.00	0.000	0.000
174000000	100 1077	4 00-	7 00-	0.0504	44.54	C	0.000	11.203	44.540	100.00	0.000	0.000
L7 103.0000- 98.0000	100.4877	1.267	7.227	0.9501	11.516	A B	0.000 0.000	11.516 11.516	11.516	100.00 100.00	0.000 0.000	0.000 0.000
96.0000						С	0.000	11.516		100.00	0.000	0.000
L8 98.0000-	95.4880	1.253	7.150	0.9453	11.829	Ā	0.000	11.829	11.829	100.00	0.000	0.000
93.0000	00.1000	1,200	7.100	0.0100	11.020	В	0.000	11.829	11.020	100.00	0.000	0.000
						C	0.000	11.829		100.00	0.000	0.000
L9 93.0000-	90.4884	1.239	7.069	0.9402	12.143	Α	0.000	12.143	12.143	100.00	0.000	0.000
88.0000						В	0.000	12.143		100.00	0.000	0.000
						С	0.000	12.143		100.00	0.000	0.000
L10 88.0000-	85.1101	1.223	6.979	0.9345	14.351	Α	0.000	14.351	14.351	100.00	0.000	0.000
82.2500						B C	0.000 0.000	14.351 14.351		100.00 100.00	0.000 0.000	0.000 0.000
L11 82 2500-	81,4990	1.212	6.915	0.9304	3.764	A	0.000	3.764	3.764	100.00	0.000	0.000
80.7500	01.4990	1.212	0.913	0.3304	3.704	В	0.000	3.764	3.704	100.00	0.000	0.000
0017000						C	0.000	3.764		100.00	0.000	0.000
L12 80.7500-	78.2390	1.202	6.856	0.9266	12.746	Α	0.000	12.746	12.746	100.00	0.000	0.000
75.7500						В	0.000	12.746		100.00	0.000	0.000
						С	0.000	12.746		100.00	0.000	0.000
L13 75.7500-	73.2393	1.185	6.761	0.9205	13.059	Α	0.000	13.059	13.059	100.00	3.114	0.000
70.7500						B C	0.000 0.000	13.059		100.00 100.00	0.000	0.000 0.000
L14 70.7500-	68,2395	1.168	6.661	0.9141	13.371	A	0.000	13.059 13.371	13.371	100.00	3.655	0.000
65.7500	00.2393	1.100	0.001	0.3141	13.37 1	В	0.000	13.371	13.37 1	100.00	0.000	0.000
0017000						C	0.000	13.371		100.00	0.000	0.000
L15 65.7500-	63.2398	1.149	6.556	0.9071	13.682	Α	0.000	13.682	13.682	100.00	3.646	0.000
60.7500						В	0.000	13.682		100.00		0.000
						С	0.000	13.682		100.00		0.000
L16 60.7500-	59.2464	1.134	6.466	0.9012	8.359	Α	0.000	8.359	8.359	100.00	3.921	0.000
57.7500						B C	0.000 0.000	8.359 8.359		100.00 100.00	1.737 1.737	0.000 0.000
L17 57.7500-	57.6250	1.127	6.428	0.8987	0.701		0.000	0.701	0.701	100.00	0.430	0.000
57.5000	07.0200	1.127	0.720	0.0007	0.701	В	0.000	0.701	0.701	100.00	0.248	0.000
						Č	0.000	0.701		100.00	0.248	0.000
L18 57.5000-	54.9902	1.116	6.365	0.8945	14.182	Α	0.000	14.182	14.182	100.00	8.588	0.000
52.5000						В	0.000	14.182		100.00	4.957	0.000
						С	0.000	14.182		100.00	4.957	0.000
L19 52.5000-	49.9904	1.094	6.239	0.8860	14.493	Α	0.000	14.493	14.493	100.00	8.569	0.000
47.5000						В	0.000	14.493		100.00	5.549	0.000
L20 47.5000-	44.1080	1.065	6.077	0.8750	20.057	C A	0.000	14.493 20.057	20.057	100.00 100.00	4.949 11.534	0.000 0.000
40.7500	44.1000	1.003	0.077	0.0750	20.007	В	0.000	20.057	20.007	100.00	8.272	0.000
1 40.7500						C	0.000	20.057		100.00		0.000
L21 40.7500-	40.3748	1.046	5.965	0.8673	2.232		0.000	2.232	2.232	100.00		0.000

Section	Z	Kz	q_z	t_Z	A_{G}	F	AF	A_R	A_{leg}	Leg	$C_A A_A$	C _A A _A
Elevation						а				%	ln In	Out
						C	_	_	_		Face	Face
ft	ft		psf	in	ft ²	е	ft ²	ft²	ft²		ft ²	ft ²
40.0000						В	0.000	2.232		100.00		0.000
						С	0.000	2.232		100.00		0.000
L22 40.0000-	37.4908	1.029	5.872	0.8609	15.053	Α	0.000	15.053	15.053	100.00		0.000
35.0000						В	0.000	15.053		100.00		0.000
	ļ					С	0.000	15.053		100.00		0.000
L23 35.0000-	32.4910	0.999	5.698	0.8487	15.360	Α	0.000	15.360	15.360	100.00		0.000
30.0000						В	0.000	15.360		100.00		0.000
						С	0.000	15.360		100.00		0.000
L24 30.0000-	29.8750	0.981	5.598	0.8416	0.777	Α	0.000	0.777	0.777	100.00		0.000
29.7500						В	0.000	0.777		100.00	1	0.000
						С	0.000	0.777		100.00		0.000
L25 29.7500-	29.6250	0.98	5.588	0.8409	0.777	Α	0.000	0.777	0.777	100.00	1	0.000
29.5000						В	0.000	0.777		100.00		0.000
						С	0.000	0.777		100.00	!	0.000
L26 29.5000-	26.9912	0.961	5.480	0.8331	15.693	Α	0.000	15.693	15.693	100.00		0.000
24.5000						В	0.000	15.693		100.00		0.000
						С	0.000	15.693		100.00		0.000
L27 24.5000-	21.9914	0.92	5.248	0.8162	15.997	Α	0.000	15.997	15.997	100.00		0.000
19.5000						В	0.000	15.997		100.00		0.000
						С	0.000	15.997		100.00		0.000
L28 19.5000-	16.9916	0.871	4.971	0.7954	16.297	Α	0.000	16.297	16.297	100.00		0.000
14.5000						В	0.000	16.297		100.00		0.000
						С	0.000	16.297		100,00		0.000
L29 14.5000-	11.9917	0.85	4.849	0.7682	16.593	Α	0.000	16.593	16.593	100.00		0.000
9.5000						В	0.000	16.593		100.00		0.000
						С	0.000	16.593		100.00		0.000
L30 9.5000-	6.9919	0.85	4.849	0.7278	16.876	Α	0.000	16.876	16.876	100.00		0.000
4.5000						В	0.000	16.876		100.00	6.622	0.000
<u> </u>						С	0.000	16.876		100.00	5.579	0.000
L31 4.5000-	2.2435	0.85	4.849	0.6496	15.402	Α	0.000	15.402	15.402	100.00	7.977	0.000
0.0000						В	0.000	15.402		100.00	5.853	0.000
						С	0.000	15.402		100.00	4.985	0.000

Tower Pressure - Service

 $G_H = 1.100$

Section	Z	Kz	q_z	A_{G}	F	AF	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			,-		а			5	%	In	Out
					С					Face	Face
ft	ft		psf	ft ²	е	ft²	ft ²	ft ²		ft ²	ft ²
L1 133.0000-	130.5000	1.339	10.35	5.833	Α	0.000	5.833	5.833	100.00	0.000	0.000
128.0000			6		В	0.000	5.833		100.00	0.000	0.000
					С	0.000	5.833		100.00	0.000	0.000
L2 128.0000-	125.5000	1.328	10.27	5.833	Α	0.000	5.833	5.833	100.00	0.000	0.000
123.0000			1		В	0.000	5.833		100.00	0.000	0.000
					С	0.000	5.833		100.00	0.000	0.000
L3 123.0000-	120.4860	1.316	10.18	9.455	Α	0.000	9.455	9.455	100.00	0.000	0.000
118.0000			3		В	0.000	9.455		100.00	0.000	0.000
					С	0.000	9.455		100.00	0.000	0.000
L4 118.0000-	115.4865	1.305	10.09	9.772	Α	0.000	9.772	9.772	100.00	0.000	0.000
113.0000			3		В	0.000	9.772		100.00	0.000	0.000
					С	0.000	9.772		100.00	0.000	0.000
L5 113.0000-	110.4869	1.292	9.999	10.090	Α	0.000	10.090	10.090	100.00	0.000	0.000
108.0000					В	0.000	10.090		100.00	0.000	0.000
					С	0.000	10.090		100.00	0.000	0.000
L6 108.0000-	105.4873	1.28	9.902	10.407	Α	0.000	10.407	10.407	100.00	0.000	0.000
103.0000					В	0.000	10.407		100.00	0.000	0.000
					С	0.000	10.407		100.00	0.000	0.000
L7 103.0000-	100.4877	1.267	9.801	10.724	Α	0.000	10.724	10.724	100.00	0.000	0.000
98.0000					В	0.000	10.724		100.00	0.000	0.000
					С	0.000	10.724		100.00	0.000	0.000
L8 98.0000-	95.4880	1.253	9.697	11.042	Α	0.000	11.042	11.042	100.00	0.000	0.000

Section	Z	Kz	п	A_{G}	F	A _F	A _R	A_{leg}	Leg	C _A A _A	$C_A A_A$
Elevation	2	Λz	q_z	AG	г a	AF	AR AR	Aleg	Leg %	In	Out
					С					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft ²	400.00	ft ²	ft ²
93.0000					B C	0.000	11.042 11.042		100.00 100.00	0.000	0.000 0.000
L9 93.0000-	90.4884	1.239	9.587	11.359	A	0.000	11.359	11.359	100.00	0.000	0.000
88.0000	00.1001	1.200	0.007	11.000	В	0.000	11.359	11.000	100.00	0.000	0.000
					С	0.000	11.359		100.00	0.000	0.000
L10 88.0000-	85.1101	1.223	9.465	13.455	Α	0.000	13.455	13.455	100.00	0.000	0.000
82.2500					В	0.000	13.455		100.00	0.000	0.000
144 92 2500	04 4000	1 010	9.379	2 520	C	0.000	13.455	2 520	100.00	0.000	0.000
L11 82.2500- 80.7500	81.4990	1.212	9.379	3.530	A B	0.000	3.530 3.530	3.530	100.00 100.00	0.000 0.000	0.000 0.000
00.7000					C	0.000	3.530		100.00	0.000	0.000
L12 80.7500-	78.2390	1.202	9.298	11.974	Α	0.000	11.974	11.974	100.00	0.000	0.000
75.7500					В	0.000	11.974		100.00	0.000	0.000
1.40.75.7500	70.0000	4 405	0.470	40.000	Ç	0.000	11.974	40.000	100.00	0.000	0.000
L13 75.7500- 70.7500	73.2393	1.185	9.170	12.292	A B	0.000	12.292 12.292	12.292	100.00 100.00	1.708 0.000	0.000 0.000
70.7500					C	0.000	12.292		100.00	0.000	0.000
L14 70.7500-	68.2395	1.168	9.034	12.609	Ā	0.000	12.609	12.609	100.00	2.010	0.000
65.7500					В	0.000	12.609		100.00	0.000	0.000
					С	0.000	12.609		100.00	0.000	0.000
L15 65.7500-	63.2398	1.149	8.891	12.926	Α	0.000	12.926	12.926	100.00	2.010	0.000
60.7500					B	0.000	12.926		100.00 100.00	0.000	0.000 0.000
L16 60.7500-	59.2464	1.134	8.770	7.908	A	0.000	12.926 7.908	7.908	100.00	0.000 2.628	0.000
57.7500	33.2404	1.104	0.770	7.500	В	0.000	7.908	7.500	100.00	1.422	0.000
0.11.000					Č	0.000	7 908		100.00	1.422	0.000
L17 57.7500-	57.6250	1.127	8.719	0.663	Α	0.000	0.663	0.663	100.00	0.304	0.000
57.5000					В	0.000	0.663		100.00	0.203	0.000
1 40 57 5000	540000	4 4 4 4 0	0.000	40 407	C	0.000	0.663	40.407	100.00	0.203	0.000
L18 57.5000- 52.5000	54.9902	1.116	8.633	13.437	A B	0.000	13.437 13.437	13.437	100.00 100.00	6.072 4.063	0.000 0.000
32.3000					C	0.000	13.437		100.00	4.063	0.000
L19 52.5000-	49.9904	1.094	8.462	13.755	Ä	0.000	13.755	13.755	100.00	6.072	0.000
47.5000					В	0.000	13.755		100.00	4.220	0.000
					С	0.000	13.755		100.00	4.063	0.000
L20 47.5000-	44.1080	1.065	8.241	19.072	Α	0.000	19.072	19.072	100.00	8.198	0.000
40.7500					B C	0.000	19.072 19.072		100.00 100.00	5.910 5.484	0.000 0.000
L21 40.7500-	40.3748	1.046	8.089	2.123	A	0.000	2.123	2.123	100.00	0.911	0.000
40.0000	40.0740	1.040	0.000	2.120	В	0.000	2.123	2.120	100.00	0.657	0.000
					С	0.000	2.123		100.00	0.609	0.000
L22 40.0000-	37.4908	1.029	7.964	14.335	Α	0.000	14.335	14.335	100.00	6.072	0.000
35.0000					В	0.000	14.335		100.00	4.378	0.000
L23 35.0000-	32.4910	0.999	7.728	14.653	C	0.000	14.335	14.653	100.00 100.00	4.063 6.072	0.000 0.000
30.0000	32.4910	0.999	1.720	14.003	A B	0.000	14.653 14.653	14.055	100.00	4.378	0.000
30.0000					C	0.000	14.653		100.00	4.063	0.000
L24 30.0000-	29.8750	0.981	7.592	0.742	Ā	0.000	0.742	0.742	100.00	0.304	0.000
29.7500					В	0.000	0.742		100.00	0.219	0.000
1 05 00 7500	20.0050	0.00	7 570	0.740	C	0.000	0.742	0.740	100.00	0.203	0.000
L25 29.7500- 29.5000	29.6250	0.98	7.579	0.742	A B	0.000	0.742 0.742	0.742	100.00 100.00	0.356 0.271	0.000 0.000
29.3000					C	0.000	0.742		100.00	0.271	0.000
L26 29.5000-	26.9912	0.961	7.432	14.999	Ā	0.000	14.999	14.999	100.00	7.114	0.000
24.5000					В	0.000	14.999		100.00	5.419	0.000
					C	0.000	14.999		100.00	5.104	0.000
L27 24.5000-	21.9914	0.92	7.118	15.317	Α	0.000	15.317	15.317	100.00	7.114	0.000
19.5000					В	0.000	15.317		100.00	5.419	0.000
L28 19.5000-	16.9916	0.871	6.742	15.634	C A	0.000	15.317 15.634	15.634	100.00 100.00	5.104 7.114	0.000 0.000
14.5000	10.5510	0.071	0.742	10.004	В	0.000	15.634	10.004	100.00	5.419	0.000
					C	0.000	15.634		100.00	5.104	0.000
L29 14.5000-	11.9917	0.85	6.576	15.953	Α	0.000	15.953	15.953	100.00	7.114	0.000
9.5000					В	0.000	15.953		100.00	5.419	0.000
1 20 0 5000	0.0040	0.05	6.570	10.070	C	0.000	15.953	40.070	100.00	5.104	0.000
L30 9.5000- 4.5000	6.9919	0.85	6.576	16.270	A B	0.000	16.270 16.270	16.270	100.00 100.00	7.114 5.419	0.000 0.000
4.5000					С	0.000			100.00	5.419	
		•	•	i i	, –	, 5.555					

Section	Z	Kz	q_z	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft²	ft ²		ft²	ft ²
L31 4.5000-	2.2435	0.85	6.576	14.915	Α	0.000	14.915	14.915	100.00	6.403	0.000
0.0000					В	0.000	14.915		100.00	4.877	0.000
					С	0.000	14.915		100.00	4.594	0.000

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0,9 Dead+1,0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice
32	1,2 Dead+1,0 Wind 150 deg+1,0 Ice
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load	.,	Moment	Moment
<u>No.</u>	400 400	D.I.	N4 - T	Comb.	K	kip-ft	kip-ft
L1	133 - 128	Pole	Max Tension	39	0.00	0.00	-0.00
			Max. Compression Max. Mx	26 8	-3.05 -1.54	-0.10 -9.89	0.06 0.01
			Max. My	2	1.54	-0.04	9.87
			Max. Vy	8	2.52	-9.89	0.01
			Max. Vx	2	-2.53	-0.04	9.87
			Max. Torque	12			0.08
L2	128 - 123	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-3.50	-0.10	0.07
			Max. Mx	8	-1.89	-23.02	0.02
			Max. My	2	-1.88	-0.04	23.01
			Max. Vy	8	2.73	-23.02	0.02
			Max. Vx	2	-2.73	-0.04	23.01
	100 110	Dala	Max. Torque	12	0.00	0.00	0.08
L3	123 - 118	Pole	Max Tension	1 26	0.00 -10.32	0.00 -0.10	0.00 2.20
			Max. Compression Max. Mx	26 8	-10.32 -5.96	-0.10 -46.50	2.20 1.36
			Max. My	2	-5.90 -5.92	-0.04	48.45
			Max. Vy	8	6.57	-46.50	1.36
			Max. Vx	2	-6.75	-0.04	48.45
			Max. Torque	20			-0.96
L4	118 - 113	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-10.82	-0.10	2.24
			Max, Mx	8	-6.30	-80.24	1.39
			Max. My	2	-6.26	-0.04	83.07
			Max. Vy	8	6.93	-80.24	1.39
			Max. Vx	2	-7.10	-0.04	83.07
L5	113 - 108	Pole	Max. Torque	20	0.00	0.00	-0.96
LO	113 - 100	Pole	Max Tension Max. Compression	1 26	-16.23	-0.10	0.00 2.60
			Max. Mx	8	9.55	-0.10 -125.73	1.51
			Max. My	2	9.50	-0.04	129.71
			Max. Vy	8	10.61	-125.73	1.51
			Max. Vx	2	-10.83	-0.04	129.71
			Max. Torque	20			-1.20
L6	108 - 103	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-16.77	-0.10	2.65
			Max. Mx	8	-9.94	-179.63	1.54
			Max. My	2	-9.90 40.00	-0.05	184.71
			Max. Vy	8	10.96	-179.63	1.54
			Max. Vx Max. Torque	2 20	-11.18	-0.05	184.71 -1.20
L7	103 - 98	Pole	Max Tension	1	0.00	0.00	0.00
_,	103 - 30	1 Ole	Max. Compression	26	-19.56	-0.10	2.70
			Max. Mx	8	-11.57	-239.65	1.56
			Max. My	2	-11.52	-0.05	245.83
			Max. Vý	8	12.76	-239.65	1.56
			Max. Vx	2	-12.99	-0.05	245.83
			Max. Torque	20			-1.20
L8	98 - 93	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-20.16	-0.10	2.74
			Max. Mx	8	-12.04	-304.28	1.59
			Max. My	2	-12.00	-0.05	311.58
			Max. Vy Max. Vx	8 2	13.10 -13.32	-304.28 -0.05	1.59 311.58
			Max. Torque	20	-13.32	-0.03	-1.20
L9	93 - 88	Pole	Max Tension	1	0.00	0.00	0.00
20	00 00	1 010	Max. Compression	26	-26.62	-0.10	3.42
			Max. Mx	8	-15.75	387.45	1.83
			Max. My	2	-15.70	-0.05	396.73
			Max. Vy	8	16.42	-387.45	1.83
			Max. Vx	2	-16.75	-0.05	396.73
			Max. Torque	20			-1.58
L10	88 - 82.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26.93	-0.10	3.44
			Max. Mx	8	-16.02	-424.53	1.84
			Max. My	2	-15.97 16.56	-0.05	434.53
			Max. Vy Max. Vx	8 2	16.56 -16.88	-424.53 -0.05	1.84 434.53
			IVICA. VA	4	-10.00	-0.03	707.00

Contin	Floriation	Commonant	Condition	Cau	Avial	Maior Avia	Minor Avio
Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.	IL	rype		Comb.	K	kip-ft	kip-ft
710.			Max. Torque	20		NIP II	-1.58
L11	82.25 -	Pole	Max Tension	1	0.00	0.00	0.00
	80.75						
			Max. Compression	26	-28.08	-0.10	3.49
			Max. Mx	8	-16.93	-508.23	1.87
			Max. My	2	-16.88	-0.05	519.86
			Max. Vy	8	16.93	-508.23	1.87
			Max. Vx	2	-17.26	-0.05	519.86
1.40	00.75	D. I.	Max. Torque	20	0.00	0.00	-1.58
L12	80.75 -	Pole	Max Tension	1	0.00	0.00	0.00
	75.75		Max. Compression	26	-28.90	-0.10	3.53
			Max. Mx	8	-20.50 -17.66	-593.60	1.89
			Max. My	2	-17.61	-0.05	606.85
			Max. Vy	20	-17.24	593.50	1.89
			Max. Vx	2	-17.56	-0.05	606.85
			Max. Torque	20	11100	0.00	-1.58
L13	75.75 -	Pole	Max Tension	1	0.00	0.00	0.00
	70.75						
			Max. Compression	26	-30.35	-0.07	3.58
			Max. Mx	8	-18.73	-682.35	1.92
			Max. My	2	-18.68	-0.04	697.22
			Max. Vy	20	-17.98	682.26	1.92
			Max. Vx	2	-18.30	-0.04	697.22
			Max. Torque	20			-1.57
L14	70.75 -	Pole	Max Tension	1	0.00	0.00	0.00
	65.75		Mary Camanasian	00	04.05	0.00	2.02
			Max. Compression	26	-31.25	-0.03	3.63
			Max. Mx	8	-19.53 10.40	-772.88	1.94
			Max. My	2	-19.49 -18.27	-0.03 772.82	789.38 1.94
			Max. Vy Max. Vx	20 2	-18.59	-0.03	789.38
			Max. Torque	20	-10.59	-0.03	-1.57
L15	65.75 -	Pole	Max Tension	1	0.00	0.00	0.00
210	60.75	1 010	Wax Tonolon		0.00	0.00	0.00
			Max. Compression	26	-32.17	0.01	3.68
			Max Mx	8	-20.35	-864.82	1.96
			Max. My	2	-20.31	-0.02	882.93
			Max. Vy	20	-18.54	864.78	1.96
			Max. Vx	2	-18.86	-0.02	882.93
			Max. Torque	20			-1.57
L16	60.75 -	Pole	Max Tension	1	0.00	0.00	0.00
	57.75			00	00.75	0.04	0.74
			Max. Compression	26	-32.75	0.04	3.71
			Max. Mx	8	-20.85 -20.82	-920.64	1.97 939.71
			Max. My Max. Vy	2 20	-20.62 -18.70	-0.01 920.60	1.97
			Max. Vx	20	-10.70	-0.01	939.71
			Max. Torque	20	10.02	0.01	-1.57
L17	57.75 - 57.5	Pole	Max Tension	1	0.00	0.00	0.00
	0.1.0	. 0.0	Max. Compression	26	-32.82	0.04	3.72
			Max. Mx	8	20.92	925.31	1.97
			Max, My	2	-20.89	-0.01	944.46
			Max. Vý	20	-18.71	925.28	1.97
			Max. Vx	2	-19.03	-0.01	944.46
			Max. Torque	20			-1.57
L18	57.5 - 52.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-34.21	0.08	3.76
			Max. Mx	8	-22.08	-1019.67	1.99
			Max. My	2	-22.05	-0.00	1040.42
			Max. Vy	20	-19.05	1019.66	1.99
			Max. Vx	2	-19.37	-0.00	1040.42
	F0 F '	<u> </u>	Max Torque	20	0.00	0.00	-1.57
L19	52.5 - 47.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-35.69	0.14	3.97
			Max. Mx	20	-23.30	1115.90	2.08
			Max. My	20	-23.27 10.45	0.02 1115.90	1138.22
			Max. Vy Max. Vx	20 2	-19.45 -19.73	0.02	2.08 1138.22
			IVIAA. VX	۷	-13.13	0.02	1130.22

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		. , , , -		Comb.	K	kip-ft	kip-ft
			Max. Torque	20		<u> </u>	-1.71
L20	47.5 - 40.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-36.40	0.16	4.00
			Max. Mx	20	-23.89	1164.70	2.09
			Max. My	2	-23.87	0.03	1187.72
			Max. Vy	20	-19.61	1164.70	2.09
			Max. Vx Max. Torque	2 20	-19.89	0.03	1187.72 -1.71
L21	40.75 - 40	Pole	Max Tension	1	0.00	0.00	0.00
LZI	40.73 - 40	1 016	Max. Compression	26	38.82	0.19	4.03
			Max. Mx	20	-25.90	1263.71	2.11
			Max. My	2	-25.88	0.04	1288.14
			Max. Vý	20	-20.00	1263.71	2.11
			Max. Vx	2	-20.28	0.04	1288.14
			Max. Torque	20			-1.71
L22	40 - 35	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-40.32	0.22	4.06
			Max. Mx	20	-27.19	1364.41	2.12
			Max. My	2	-27.17	0.05	1390.25
			Max. Vy Max. Vx	20 2	-20.30 -20.58	1364.41 0.05	2.12 1390.25
			Max. Torque	20	-20.36	0.03	-1.71
L23	35 - 30	Pole	Max Tension	1	0.00	0.00	0.00
220	00 00	1 010	Max. Compression	26	41.83	0.25	4.09
			Max. Mx	20	-28.49	1466.55	2.14
			Max. My	2	-28.47	0.06	1493.77
			Max. Vy	20	-20.58	1466.55	2.14
			Max. Vx	2	-20.86	0.06	1493.77
			Max. Torque	20			-1.71
L24	30 - 29.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-41.89	0.25	4.09
			Max. Mx	20	-28.55	1471.69	2.14
			Max. My Max. Vy	2 20	-28.53 -20.58	0.06 1471.69	1498.98 2.14
			Max. Vy	20	-20.36	0.06	1498.98
			Max. Torque	20	20.00	0.00	-1.71
L25	29.75 - 29.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	41.97	0.25	4.09
			Max. Mx	20	-28.62	1476.83	2.14
			Max. My	2	-28.60	0.06	1504.20
			Max. Vy	20	-20.59	1476.83	2.14
			Max. Vx	2	-20.87	0.06	1504.20
	00 5 04 5	5.1	Max. Torque	20	0.00	0.00	-1.71
L26	29.5 - 24.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression Max. Mx	26 20	-43.61 -30.02	0.28 1580.46	4.12 2.15
			Max. My	20	-30.02	0.07	1609.21
			Max. Vy	20	-20.87	1580.46	2.15
			Max. Vx	2	-21 15	0.07	1609.21
			Max. Torque	20			-1.71
L27	24.5 - 19.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max Compression	26	-45.25	0.31	4.15
			Max. Mx	20	-31.45	1685.40	2.16
			Max. My	2	-31.43	0.08	1715.52
			Max. Vy	20	-21.12	1685.40	2.16
			Max. Vx	2	-21.40	0.08	1715.52
1.00	40 5 44 5	D.I.	Max. Torque	20	0.00	0.00	-1.71
L28	19.5 - 14.5	Pole	Max Tension	1 26	0.00	0.00	0.00 4.18
			Max. Compression Max. Mx	26 20	-46.90 -32.89	0.35 1791.54	4.18 2.17
			Max. My	20	-32.89 -32.88	0.09	1823.02
			Max. Vy	20	-32.35 -21.35	1791.54	2.17
			Max. Vx	2	-21.63	0.09	1823.02
			Max. Torque	20			-1.70
L29	14.5 - 9.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-48.56	0.38	4.21
			Max. Mx	20	-34.35	1898.77	2.18
			Max. My	2	-34.34	0.10	1931.61
			Max. Vy	20	-21.56	1898.77	2.18

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Vx	2	-21.84	0.10	1931.61
			Max. Torque	20			-1.70
L30	9.5 - 4.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.22	0.41	4.24
			Max. Mx	20	-35.83	2007.04	2.19
			Max. My	2	-35.82	0.11	2041.22
			Max. Vy	20	-21.77	2007.04	2.19
			Max. Vx	2	-22.04	0.11	2041.22
			Max. Torque	20			-1.70
L31	4.5 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-51.70	0.44	4.26
			Max. Mx	20	-37.17	2105.35	2.19
			Max. My	2	-37.17	0.12	2140.73
			Max. Vy	20	-21.95	2105.35	2.19
			Max. Vx	2	-22.22	0.12	2140.73
			Max. Torque	20			-1.70

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	27	51.70	0.00	6.55
	Max. H _x	21	27.89	21.93	0.00
	Max. H _z	2	37.18	0.00	22.20
	$Max. M_x$	2	2140.73	0.00	22.20
	$Max. M_z$	8	2105.11	-21.93	0.00
	Max. Torsion	8	1.70	-21.93	0.00
	Min. Vert	11	27.89	-18.99	-11.10
	Min. H _x	9	27.89	-21.93	0.00
	Min. H _z	14	37.18	0.00	-22.20
	Min. M _x	14	-2136.33	0.00	-22.20
	Min. M _z	20	-2105.35	21.93	0.00
	Min. Torsion	20	-1.70	21.93	0.00

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	30.99	0.00	-0.00	-1.76	0.10	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	37.18	0.00	-22.20	-2140.73	0.12	0.06
0.9 Dead+1.0 Wind 0 deg - No Ice	27.89	0.00	-22.20	-2108.33	0.09	0.06
1.2 Dead+1.0 Wind 30 deg - No Ice	37.18	10.97	-19.22	-1854.25	-1052.44	-0.81
0.9 Dead+1.0 Wind 30 deg - No Ice	27.89	10.97	-19.22	-1826.11	-1036.85	-0.78
1.2 Dead+1.0 Wind 60 deg - No Ice	37.18	18.99	-11.10	-1071.51	-1823.04	-1.45
0.9 Dead+1.0 Wind 60 deg - No Ice	27.89	18.99	-11.10	-1055.02	-1795.99	-1.41
1.2 Dead+1.0 Wind 90 deg - No Ice	37.18	21.93	0.00	-2.19	-2105.11	-1.70
0.9 Dead+1.0 Wind 90 deg - No Ice	27.89	21.93	-0.00	-1.60	-2073.88	-1.65
1.2 Dead+1.0 Wind 120 deg - No Ice	37.18	18.99	11.10	1067.12	-1823.03	-1.50
0.9 Dead+1.0 Wind 120 deg - No Ice	27.89	18.99	11.10	1051.82	-1795.99	-1.45

Load Combination	Vertical	Shearx	Shear _z	Overturning Moment, M _x	Overturning Moment, Mz	Torque
1.2 Dood 11.0 Wind 150 doc	<u>К</u> 37.18	<i>K</i> 10.97	<i>K</i> 19 . 22	kip-ft 1849.85	kip-ft -1052.44	kip-ft -0.90
1.2 Dead+1.0 Wind 150 deg - No Ice	37.10	10.97	19.22	1049.00	-1052.44	-0.90
0.9 Dead+1.0 Wind 150 deg	27.89	10.97	19,22	1822.91	-1036.84	-0.87
- No Ice						
1.2 Dead+1.0 Wind 180 deg	37.18	0.00	22.20	2136.33	0.12	-0.06
- No Ice	07.00	0.00	00.00	0.405.40	0.00	0.00
0.9 Dead+1.0 Wind 180 deg - No Ice	27.89	0.00	22.20	2105.12	0.09	-0.06
1.2 Dead+1.0 Wind 210 deg	37.18	-10.97	19.22	1849.85	1052.68	0.79
- No Ice	07.10	10.07	10.22	1010.00	1002.00	0.70
0.9 Dead+1.0 Wind 210 deg	27.89	-10.97	19.22	1822.91	1037.03	0.77
- No Ice						
1.2 Dead+1.0 Wind 240 deg	37.18	-18.99	11.10	1067.12	1823.27	1.44
- No Ice 0.9 Dead+1.0 Wind 240 deg	27.89	-18.99	11.10	1051.81	1796.17	1.39
- No Ice	27.00	10.55	11.10	1001.01	1730.17	1.00
1.2 Dead+1.0 Wind 270 deg	37.18	-21.93	0.00	-2.19	2105.35	1.70
- No Ice						
0.9 Dead+1.0 Wind 270 deg	27.89	-21.93	-0.00	-1.60	2074.06	1.65
- No Ice	27.10	-18.99	11 10	1071.51	1000 00	1 51
1.2 Dead+1.0 Wind 300 deg - No Ice	37.18	-10.99	-11.10	-1071.51	1823.28	1.51
0.9 Dead+1.0 Wind 300 deg	27.89	-18,99	-11.10	-1055.02	1796.18	1.47
- No Ice						
1.2 Dead+1.0 Wind 330 deg	37.18	-10.97	-19.22	-1854.25	1052.69	0.91
- No Ice	07.00	40.07	10.00	1000 11	4007.00	
0.9 Dead+1.0 Wind 330 deg - No Ice	27.89	-10.97	-19.22	-1826.11	1037.03	0.89
- No ice 1.2 Dead+1.0 Ice	51.70	-0.00	-0.00	-4.26	0.44	0.00
1.2 Dead+1.0 Wind 0	51.70	0.00	-6.55	-651.33	0.44	0.02
deg+1.0 Ice						
1.2 Dead+1.0 Wind 30	51.70	3.25	-5.67	-564.66	-319.22	-0.24
deg+1.0 lce	5.1 TO	5.00	2.22	007.05		0.40
1.2 Dead+1.0 Wind 60 deg+1.0 Ice	51.70	5.63	-3.28	-327.85	-553.22	-0.43
1.2 Dead+1.0 Wind 90	51.70	6.50	-0.00	-4.36	-638.87	-0.51
deg+1.0 Ice	01.10	0.00	0.00	1.00	000.07	0.01
1.2 Dead+1.0 Wind 120	51.70	5.63	3.28	319.14	-553.22	-0.45
deg+1.0 Ice						
1.2 Dead+1.0 Wind 150	51.70	3.25	5.67	555.95	-319.22	-0.27
deg+1.0 Ice 1.2 Dead+1.0 Wind 180	51.70	0.00	6.55	642.62	0.44	-0.02
deg+1.0 lce	31.70	0.00	0.55	042.02	0.44	-0.02
1.2 Dead+1.0 Wind 210	51.70	-3.25	5.67	555.95	320.10	0.23
deg+1.0 Ice						
1.2 Dead+1.0 Wind 240	51.70	-5.63	3.28	319.14	554.11	0.43
deg+1.0 Ice	E4 70	6.50	0.00	4.26	620.75	0.51
1.2 Dead+1.0 Wind 270 deg+1.0 Ice	51.70	-6.50	-0.00	-4.36	639.75	0.51
1.2 Dead+1.0 Wind 300	51.70	-5.63	-3.28	-327.85	554.11	0.45
deg+1.0 Ice		5.55	5.25			51.15
1.2 Dead+1.0 Wind 330	51.70	-3.25	-5.67	-564.66	320.10	0.27
deg+1.0 Ice						
Dead+Wind 0 deg - Service	30.99	0.00	-5.41	-518.69	0.10	0.02
Dead+Wind 30 deg - Service Dead+Wind 60 deg - Service	30.99	2.67	-4.68	-449.44	-254.30 -440.54	-0.19
J	30.99	4.63 5.34	-2.70 0.00	-260.25		-0.35
Dead+Wind 90 deg - Service	30.99			-1.81	-508.71	-0.41
Dead+Wind 120 deg - Service	30.99	4.63	2.70	256.63	-440.54	-0.37
Dead+Wind 150 deg -	30.99	2.67	4.68	445.82	-254.30	-0.22
Service	_ 2.00	2.0.			_3	5. <u></u>
Dead+Wind 180 deg -	30.99	0.00	5.41	515.06	0.10	-0.02
Service	22.22	-			. :	
Dead+Wind 210 deg -	30.99	-2.67	4.68	445.82	254.51	0.19
Service Dead+Wind 240 deg -	30.99	-4.63	2.70	256.63	440.74	0.35
Service	30.33	- 4.03	2.10	230.03	440.74	0.33
Dead+Wind 270 deg -	30.99	-5.34	0.00	-1.81	508.91	0.41

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead+Wind 300 deg - Service	30.99	-4.63	-2.70	-260.25	440.74	0.37
Dead+Wind 330 deg - Service	30.99	-2.67	-4.68	-449.44	254.51	0.22

Sol	ution	Sum	marv
JUI	lution	Julii	ıııaı v

	Sur	n of Applied Force	20		Sum of Reaction	no	
Load	PX	п от Арріїва Рогсе РҮ	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	% E1101
1	0,00	-30,99	0.00	0.00	30.99	0.00	0,000%
2	0.00	-30.99 -37.18		0.00	30.99 37.18	22.20	
3	0.00	-37.16 -27.89	-22.20 -22.20	0.00	27.89	22.20 22.20	0.000% 0.000%
3 4	10.97	-27.69 -37.18	-22.20 -19.22	-10.97	27.69 37.18	22.20 19.22	0.000%
4 5			-19.22 -19.22				
	10.97	-27.89		-10.97	27.89	19.22	0.000%
6	18.99	-37.18	-11.10	-18.99	37.18	11.10	0.000%
7	18.99	-27.89	-11.10	-18.99	27.89	11.10	0.000%
8	21.93	-37.18	0.00	-21.93	37.18	0.00	0.000%
9	21.93	-27.89	0.00	-21.93	27.89	0.00	0.000%
10	18.99	-37.18	11.10	-18.99	37.18	-11.10	0.000%
11	18.99	-27.89	11.10	-18.99	27.89	-11.10	0.000%
12	10.97	-37.18	19.22	-10.97	37.18	-19.22	0.000%
13	10.97	-27.89	19.22	-10.97	27.89	-19.22	0.000%
14	0.00	-37.18	22.20	0.00	37.18	-22.20	0.000%
15	0.00	-27.89	22.20	0.00	27.89	-22.20	0.000%
16	-10.97	-37.18	19.22	10.97	37.18	-19.22	0.000%
17	-10.97	-27.89	19.22	10.97	27.89	-19.22	0.000%
18	-18.99	-37.18	11.10	18.99	37.18	-11.10	0.000%
19	-18.99	-27.89	11.10	18.99	27.89	-11.10	0.000%
20	-21.93	-37.18	0.00	21.93	37.18	0.00	0.000%
21	-21.93	-27.89	0.00	21.93	27.89	0.00	0.000%
22	-18.99	-37.18	-11.10	18.99	37.18	11.10	0.000%
23	-18.99	-27.89	-11.10	18.99	27.89	11.10	0.000%
24	-10.97	-37.18	-19.22	10.97	37.18	19.22	0.000%
25	-10.97	-27.89	-19.22	10.97	27.89	19.22	0.000%
26	0.00	-51.70	0.00	0.00	51.70	0.00	0.000%
27	0.00	-51.70	-6.55	0.00	51.70	6.55	0.000%
28	3.25	-51.70	-5.67	3.25	51.70	5.67	0.000%
29	5.63	-51.70	-3.28	-5.63	51.70	3.28	0.000%
30	6.50	-51.70	0.00	-6.50	51.70	0.00	0.000%
31	5,63	-51,70	3.28	-5.63	51.70	-3.28	0.000%
32	3.25	-51.70	5.67	3.25	51.70	-5.67	0.000%
33	0.00	-51.70 -51.70	6.55	0.00	51.70	-6.55	0.000%
34	-3.25	-51.70 -51.70	5.67	3.25	51.70	-5.67	0.000%
35	-5.63	-51.70 -51.70	3.28	5.63	51.70	-3.28	0.000%
36	-5.63 -6.50	-51.70 -51.70	0.00	6.50	51.70	0.00	0.000%
37	-5.63	-51.70 -51.70	3.28	5.63	51.70	3.28	0.000%
3 <i>1</i> 38	-3.25	-51.70 -51.70	-5.26 -5.67	3.25	51.70 51.70	5.26 5.67	0.000%
39	0.00	-30.99	-5.41	0.00	30.99	5.41	0.000%
40	2.67	-30.99	-4.68	-2.67	30.99	4.68	0.000%
41	4.63	-30.99	-2.70	-4.63	30.99	2.70	0.000%
42	5.34	-30.99	0.00	-5.34	30.99	0.00	0.000%
43	4.63	-30.99	2.70	-4.63	30.99	-2.70	0.000%
44	2.67	-30.99	4.68	-2.67	30.99	-4.68	0.000%
45	0.00	-30.99	5.41	0.00	30.99	-5.41	0.000%
46	-2.67	-30.99	4.68	2.67	30.99	-4.68	0.000%
47	-4.63	-30.99	2.70	4.63	30.99	-2.70	0.000%
48	-5.34	-30.99	0.00	5.34	30.99	0.00	0.000%
49	-4.63	-30.99	-2.70	4.63	30.99	2.70	0.000%
50	-2.67	-30.99	-4.68	2.67	30.99	4.68	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000617
2	Yes	5	0.0000001	0.00027782
3	Yes	5	0.0000001	0.00010100
4	Yes	7	0.0000001	0.00007496
5	Yes	6	0.0000001	0.00034840
6	Yes	7	0.0000001	0.00007923
7	Yes	6	0.0000001	0.00036898
8	Yes	6	0.0000001	0.00008811
9	Yes	5	0.0000001	0.00055479
10	Yes	7	0.00000001	0.00007305
11	Yes	6	0.00000001	0.00034035
12	Yes	7	0.00000001	0.00007791
13	Yes	6	0.00000001	0.00036299
14	Yes	5	0.00000001	0.00037679
15	Yes	5	0.00000001	0.00010074
16	Yes		0.0000001	0.00010074
17	Yes	6	0.0000001	0.00007703
18	Yes	7	0.0000001	0.00030170
19		6	0.0000001	
	Yes			0.00034092
20	Yes	6	0.00000001	0.00008811
21	Yes	5	0.00000001	0.00055479
22	Yes	7	0.0000001	0.00007938
23	Yes	6	0.00000001	0.00036970
24	Yes	7	0.00000001	0.00007474
25	Yes	6	0.0000001	0.00034731
26	Yes	4	0.0000001	0.00004564
27	Yes	5	0.0000001	0.00040679
28	Yes	6	0.0000001	0.00021057
29	Yes	6	0.00000001	0.00023277
30	Yes	5	0.00000001	0.00053442
31	Yes	6	0.0000001	0.00019403
32	Yes	6	0.0000001	0.00021777
33	Yes	5	0.0000001	0.00039584
34	Yes	6	0.0000001	0.00021638
35	Yes	6	0.0000001	0.00019471
36	Yes	5	0.0000001	0.00053459
37	Yes	6	0.0000001	0.00023395
38	Yes	6	0.0000001	0.00020958
39	Yes	4	0.0000001	0.00087814
40	Yes	5	0.00000001	0.00025810
41	Yes	5	0.00000001	0.00029547
42	Yes	5	0.00000001	0.00023347
43	Yes	5	0.0000001	0.00000773
44	Yes	5	0.0000001	0.00024214
44 45	Yes	4	0.0000001	0.00028001
45 46		4 5		
	Yes		0.00000001	0.00027724
47	Yes	5	0.00000001	0.00024282
48	Yes	5	0.00000001	0.00008774
49	Yes	5	0.0000001	0.00029718
50	Yes	5	0.0000001	0.00025628

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
700.	ft	in	Comb.	o	0
L1	133 - 128	24.75	39	1.61	0.01
L2	128 - 123	23.06	39	1.61	0.01
L3	123 - 118	21.38	39	1.59	0.01
L4	118 - 113	19.72	39	1.58	0.01
L5	113 - 108	18.08	39	1.55	0.00
L6	108 - 103	16.47	39	1.52	0.00
L7	103 - 98	14.91	39	1.47	0.00
L8	98 - 93	13.40	39	1.40	0.00
L9	93 - 88	11.97	39	1,33	0.00

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L10	88 - 82.25	10.62	39	1.24	0.00
L11	85.75 - 80.75	10.04	39	1.20	0.00
L12	80.75 - 75.75	8.81	39	1.15	0.00
L13	75.75 - 70.75	7.65	39	1.06	0.00
L14	70.75 - 65.75	6.59	39	0.97	0.00
L15	65.75 - 60.75	5.63	39	0.87	0.00
L16	60.75 - 57.75	4.78	39	0.76	0.00
L17	57.75 - 57.5	4.32	39	0.70	0.00
L18	57.5 - 52.5	4.28	39	0.70	0.00
L19	52.5 - 47.5	3.58	39	0.64	0.00
L20	47.5 - 40.75	2.95	39	0.57	0.00
L21	45 - 40	2.66	39	0.54	0.00
L22	40 - 35	2.10	39	0.51	0.00
L23	35 - 30	1.61	39	0.44	0.00
L24	30 - 29.75	1.18	39	0.38	0.00
L25	29.75 - 29.5	1.16	39	0.37	0.00
L26	29.5 - 24.5	1.14	39	0.37	0.00
L27	24.5 - 19.5	0.79	39	0.31	0.00
L28	19.5 - 14.5	0.50	39	0.24	0.00
L29	14.5 - 9.5	0.28	39	0.18	0.00
L30	9.5 - 4.5	0.12	39	0.12	0.00
L31	4.5 - 0	0.03	39	0.06	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
135.5000	5/8" X 5' Lightning Rod	39	24.75	1.61	0.01	30616
132.0000	TPA65R-BU8D_CCIV2 w/ Mount	39	24.41	1.61	0.01	30616
	Pipe					
120.0000	AIR6449 B41_T-MOBILE w/	39	20.38	1.59	0.01	16281
	Mount Pipe					
111.0000	MX08FRO665-21 w/ Mount Pipe	39	17.43	1.54	0.00	7918
101.0000	APX16DWV-16DWVS-C w/	39	14.30	1.44	0.00	4692
	Mount Pipe					
93.0000	BXA-70063-4CF-EDIN-X w/	39	11.97	1.33	0.00	3597
	Mount Pipe					
75.0000	APXV18-206517S-C	39	7.49	1.04	0.00	3123
50.0000	KS24019-L112A	39	3.26	0.61	0.00	4541

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	0
L1	133 - 128	101.91	2	6.63	0.02
L2	128 - 123	94.98	2	6.62	0.02
L3	123 - 118	88.09	2	6.56	0.02
L4	118 - 113	81.27	2	6.50	0.02
L5	113 - 108	74.53	2	6.40	0.02
L6	108 - 103	67.91	2	6.25	0.02
L7	103 - 98	61.48	2	6.05	0.02
L8	98 - 93	55.29	2	5.79	0.01
L9	93 - 88	49.39	2	5.49	0.01
L10	88 - 82.25	43.82	2	5.14	0.01
L11	85.75 - 80.75	41.45	2	4.96	0.01
L12	80.75 - 75.75	36.36	2	4.73	0.01
L13	75.75 - 70.75	31.59	2	4.37	0.01
L14	70.75 - 65.75	27.22	2	3.99	0.01
L15	65.75 - 60.75	23,26	2	3.58	0.01

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L16	60.75 - 57.75	19.73	2	3.16	0.00
L17	57.75 - 57.5	17.83	2	2.89	0.00
L18	57.5 - 52.5	17.68	2	2.88	0.00
L19	52.5 - 47.5	14.79	2	2.63	0.00
L20	47.5 - 40.75	12.17	2	2.37	0.00
L21	45 - 40	10.97	2	2.24	0.00
L22	40 - 35	8.69	2	2.09	0.00
L23	35 - 30	6.64	2	1.82	0.00
L24	30 - 29.75	4.88	2	1.55	0.00
L25	29.75 - 29.5	4.79	2	1.53	0.00
L26	29.5 - 24.5	4.72	2	1.51	0.00
L27	24.5 - 19.5	3.26	2	1.26	0.00
L28	19.5 - 14.5	2.07	2	1.01	0.00
L29	14.5 - 9.5	1.15	2	0.75	0.00
L30	9.5 - 4.5	0.49	2	0.49	0.00
L31	4.5 - 0	0.11	2	0.24	0.00

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
135.5000	5/8" X 5' Lightning Rod	2	101.91	6.63	0.02	7703
132.0000	TPA65R-BU8D_CCIV2 w/ Mount Pipe	2	100.52	6.63	0.02	7703
120.0000	AIR6449 B41_T-MOBILE w/ Mount Pipe	2	83.99	6.52	0.02	4219
111.0000	MX08FRO665-21 w/ Mount Pipe	2	71.86	6.34	0.02	2026
101.0000	APX16DWV-16DWVS-C w/ Mount Pipe	2	58.97	5.95	0.02	1175
93.0000	BXA-70063-4CF-EDIN-X w/ Mount Pipe	2	49.39	5.49	0.01	893
75,0000	APXV18-206517S-C	2	30.91	4.31	0.01	766
50.0000	KS24019-L112A	2	13.45	2.51	0.00	1103

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	Κ	K	ΦP_n
L1	133 - 132	TP14x14x0.375	5.0000	0.0000	0.0	16.051 6	-0.07	505.63	0.000
	132 - 131	32 - 131			16 . 051 6	-1.34	505.63	0.003	
	131 - 130					16.051 6	-1.40	505.63	0.003
	130 - 129					16.051 6	-1.47	505.63	0.003
	129 - 128					16.051 6	-1.54	505.63	0.003
L2	128 - 127	TP14x14x0.375	5.0000	0.0000	0.0	16.051 6	-1.61	505.63	0.003
	127 - 126					16.051 6	-1.68	505.63	0.003
	126 - 125					16.051 6	-1.75	505.63	0.003

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	К	К	ϕP_n
	125 - 124					16.051 6	-1.82	505.63	0.004
	124 - 123					16.051 6	-1.89	505.63	0.004
L3	123 - 122	TP22.7502x22x0.1875	5.0000	0.0000	0.0	13.070 5	-1.94	705.80	0.003
	122 - 121					13.159 7	-2.00	710.63	0.003
	121 - 120					13.249 0	-2.06	715.45	0.003
	120 - 119					13,338 3	-5.86	720.27	0.008
	119 - 118					13 . 427 6	-5.92	725.09	0.008
L4	118 - 117	TP23.5004x22.7502x0.18 75	5.0000	0.0000	0.0	13.516 9	-5.99	729.91	0.008
	117 - 116	, ,				13.606 2	-6.06	734.74	0.008
	116 - 115					13.695 5	-6.12	739.56	0.008
	115 - 114					13.784 8	-6.19	744.38	0.008
	114 - 113					13.874 1	-6.26	749.20	0.008
L5	113 - 112	TP24.2506x23.5004x0.18 75	5.0000	0.0000	0.0	13.963 4	-6.33	754.02	0.008
	112 - 111	13				14.052	-6.40	758.84	0.008
	111 - 110					7 14.141	-9.35	763.66	0.012
	110 - 109					9 14.231	-9.43	768.49	0.012
	109 - 108					2 14.320 5	-9.50	773.31	0.012
L6	108 - 107	TP25.0007x24.2506x0.18 75	5.0000	0.0000	0.0	14.409 8	-9.58	778.13	0.012
	107 - 106	73				14.499 1	-9.66	782.95	0.012
	106 - 105					14.588 4	-9.74	787.77	0.012
	105 - 104					14.677	-9.82	792.60	0.012
	104 - 103					7 14.767	-9.90	797.42	0.012
L7	103 - 102	TP25.7509x25.0007x0.18	5.0000	0.0000	0.0	0 14.856	-9.98	802.24	0.012
	102 - 101	75				3 14.945	-10.07	807.06	0.012
	101 - 100					6 15.034	-11.34	811.88	0.014
	100 - 99					8 15.124	-11.43	816.70	0.014
	99 - 98					1 15.213	-11.52	821.52	0.014
L8	98 - 97	TP26.5011x25.7509x0.18	5.0000	0.0000	0.0	4 15. <u>3</u> 02	-11.61	826.35	0.014
	97 - 96	75				7 15.392	-11.71	831.17	0.014
	96 - 95					0 15.481	-11.80	835.99	0.014
	95 - 94					3 15.570	-11.90	840.81	0.014
	94 - 93					6 15.659	-12.00	845.63	0.014
L9	93 - 92	TP27.2513x26.5011x0.18	5.0000	0.0000	0.0	9 15.749	-15.23	850.46	0.018
	92 - 91	75				2 15.838	-15.34	855.28	0.018
	91 - 90					5 15.927	-15.46	860.10	0.018

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	К	К	<u></u> φ <i>P</i> _n
	90 - 89					8 16.017	-15.58	864.92	0.018
	89 - 88					0 16.106 3	-15.70	869.74	0.018
L10	88 - 86.875	TP28.114x27.2513x0.187	5.7500	0.0000	0.0	16.206 8	-15.83	875.17	0.018
	86.875 - 85.75	3				16.307 2	-15.97	880.59	0.018
	85.75 - 82.25					16.619 8	-7.24	897.47	0.008
L11	85.75 - 82.25	TP27.9641x27.2139x0.25	5.0000	0.0000	0.0	21.812 6	-9.42	1276.03	0.007
	82.25 - 80.75					21.991 1	-16.88	1286.48	0.013
L12	80.75 - 79.75	TP28.7143x27.9641x0.25	5.0000	0.0000	0.0	22.110 2	-17.02	1293.45	0.013
	79.75 - 78.75					22.229 3	-17.17	1300.41	0.013
	78.75 - 77.75					22.348 3	-17.31	1307.38	0.013
	77.75 - 76.75					22.467 4	-17.46	1314.34	0.013
	76.75 - 75.75					22.586 5	-17.61	1321.31	0.013
L13	75.75 - 74.75	TP29.4646x28.7143x0.25	5.0000	0.0000	0.0	22.705 5	-18.06	1328.27	0.014
	74.75 - 73.75					22.824 6	-18.21	1335.24	0.014
	73.75 - 72.75					22.943 6	-18.37	1342.20	0.014
	72.75 - 71.75					23.062 7	-18.52	1349.17	0.014
	71.75 - 70.75					23.181 8	-18.68	1356.13	0.014
L14	70.75 - 69.75	TP30.2148x29.4646x0.25	5.0000	0.0000	0.0	23.300 8	-18.84	1363.10	0.014
	69.75 - 68.75					23.419 9	-19.00	1370.06	0.014
	68.75 - 67.75					23.539 0	-19.16	1377.03	0.014
	67.75 - 66.75					23.658 0	-19.32	1383.99	0.014
	66.75 - 65.75					23.777 1	-19.49	1390.96	0.014
L15	65.75 - 64.75	TP30.9651x30.2148x0.25	5.0000	0.0000	0.0	23.896	-19.65	1397.92	0.014
	64.75 - 63.75					24.015 2	-19.81	1404.89	0.014
	63.75 - 62.75					24.134 3	-19.98	1411.85	0.014
	62.75 - 61.75					24.253 3	-20.15	1418.82	0.014
	61.75 - 60.75					24.372 4	-20.31	1425.79	0.014
L16	60.75 - 59.75	TP31.4152x30.9651x0.25	3.0000	0.0000	0.0	24.491 5	-20.48	1432.75	0.014
	59.75 - 58.75					24.610 5	-20.65	1439.72	0.014
	58.75 - 57.75					24.729 6	-20.82	1446.68	0.014
L17	57.75 - 57.5 (17)	TP31.4527x31.4152x0.46 25	0.2500	0.0000	0.0	45.492 9	-20.89	2661.33	0.008
L18	57.5 - 56.5	TP32.2029x31.4527x0.45	5.0000	0.0000	0.0	45.104 4	-21.12	2638.61	0.008
	56.5 - 55.5	03				45.321 7	-21.35	2651.32	0.008
	55.5 - 54.5					45.539 0	-21.58	2664.03	0.008

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	K	K	φ <i>P</i> _n
	54.5 - 53.5					45.756 3	-21.81	2676.74	800.0
	53.5 - 52.5					45.973 6	-22.05	2689.45	0.008
L19	52.5 - 51.5	TP32.9532x32.2029x0.45	5.0000	0.0000	0.0	45.567 0	-22.28	2665.67	0.008
	51.5 - 50.5					45.781 4	-22.52	2678.21	0.008
	50.5 - 49.5					45.995 7	-22.79	2690.75	0.008
	49.5 - 48.5					46.210 0	-23.03	2703.28	0.009
	48.5 - 47.5					46.424 3	-23.27	2715.82	0.009
L20	47.5 - 46.25	TP33.966x32.9532x0.45	6.7500	0.0000	0.0	46.692 2	-23.57	2731.49	0.009
	46.25 - 45					46.960	-23.87	2747.16	0.009
	45 - 40.75					1 47.870	-12.56	2800.45	0.004
L21	45 - 40.75	TP33.5785x32.8283x0.48	5.0000	0.0000	0.0	9 50.383	-13.12	2947.45	0.004
	40.75 - 40	13				7 50.555	-25.88	2957.50	0.009
L22	40 - 39	TP34.3287x33.5785x0.46	5.0000	0.0000	0.0	6 49.484	-26.13	2894.83	0.009
	39 - 38	88				3 49.707	-26.39	2907.89	0.009
	38 - 37					5 49.930	-26.65	2920.95	0.009
	37 - 36					8 50.154	-26.91	2934.01	0.009
	36 - 35					0 50.377	-27.17	2947.07	0.009
L23	35 - 34	TP35.0789x34.3287x0.46	5.0000	0.0000	0.0	2 50.600	-27.43	2960.13	0.009
	34 - 33	88				5 50.823	-27.69	2973.19	0.009
	33 - 32					7 51.046	-27.95	2986.24	0.009
	32 - 31					9 51.270	-28.21	2999.30	0.009
	31 - 30					1 51.493	-28.47	3012.36	0.009
L24	30 - 29.75	TP35.1164x35.0789x0.28	0.2500	0.0000	0.0	4 31.096	-28.53	1819.17	0.016
L25	(24) 29.75 - 29.5	13 TP35.1539x35.1164x0.51	0.2500	0.0000	0.0	9 57 . 027	-28.60	3336.09	0.009
L26	(25) 29.5 - 28.5	88 TP35.9041x35.1539x0.51	5.0000	0.0000	0.0	2 56.594	-28.87	3310.77	0.009
	28.5 - 27.5	25				3 56.838	-29.15	3325.05	0.009
	27.5 - 26.5					4 57.082	-29.44	3339.32	0.009
	26.5 - 25.5					5 57.326	-29.72	3353.60	0.009
	25.5 - 24.5					5 57.570	-30.00	3367.88	0.009
L27	24.5 - 23.5	TP36.6543x35.9041x0.50	5.0000	0.0000	0.0	6 57.119	-30.29	3341.50	0.009
	23.5 - 22.5	63				6 57 . 360	-30.57	3355.60	0.009
	22.5 - 21.5					7 57.601	-30.86	3369.71	0.009
	21.5 - 20.5					8 57.842	-31.15	3383.81	0.009
	20.5 - 19.5					9 58.084	-31.43	3397.91	0.009
L28	19.5 - 18.5	TP37.4045x36.6543x0.50	5.0000	0.0000	0.0	0 58.325	-31.72	3412.02	0.009

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	ΦP_n
	18.5 - 17.5	63				1 58.566 2	-32.01	3426.12	0.009
	17.5 - 16.5					58.807 2	-32.30	3440.22	0.009
	16.5 - 15.5					59.048 3	-32.59	3454.33	0.009
	15.5 - 14.5					59.289 4	-32.88	3468.43	0.009
L29	14.5 - 13.5	TP38.1546x37.4045x0.49 38	5.0000	0.0000	0.0	58.080 2	-33.17	3397.69	0.010
	13.5 - 12.5	30				58.315 3	-33.46	3411.45	0.010
	12.5 - 11.5					58.550 5	-33.76	3425.20	0.010
	11.5 - 10.5					58.785 6	-34.05	3438.96	0.010
	10.5 - 9.5					59.020 7	-34.34	3452.71	0.010
L30	9.5 - 8.5	TP38.9048x38.1546x0.49	5.0000	0.0000	0.0	59.255 9	-34.64	3466.47	0.010
	8.5 - 7.5	30				59.491 0	-34.93	3480.22	0.010
	7.5 - 6.5					59.726 1	-35.23	3493.98	0.010
	6.5 - 5.5					59.961 3	-35.53	3507.73	0.010
	5.5 - 4.5					60.196 4	-35.82	3521.49	0.010
L31	4.5 - 3.375	TP39.58x38.9048x0.4875	4.5000	0.0000	0.0	59.705 3	-36.16	3492.76	0.010
	3.375 - 2.25					59.966 4	-36.49	3508.04	0.010
	2.25 - 1.125					60.227 6	-36.83	3523.32	0.010
	1.125 - 0					60.488 8	-37.17	3538.60	0.011

Pole Bending Design Data

Section	Elevation	Size	Mux	φM _{nx}	Ratio	Muy	ϕM_{ny}	Ratio
No.					Mux			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	133 - 132	TP14x14x0.375	0.07	182.79	0.000	0.00	182.79	0.000
	132 - 131		2.50	182.79	0.014	0.00	182.79	0.000
	131 - 130		4.93	182,79	0.027	0.00	182.79	0.000
	130 - 129		7.39	182.79	0.040	0.00	182.79	0.000
	129 - 128		9.90	182.79	0.054	0.00	182.79	0.000
L2	128 - 127	TP14x14x0.375	12.44	182.79	0.068	0.00	182.79	0.000
	127 - 126		15.03	182.79	0.082	0.00	182.79	0.000
	126 - 125		17.65	182.79	0.097	0.00	182.79	0.000
	125 - 124		20.32	182.79	0.111	0.00	182.79	0.000
	124 - 123		23.03	182.79	0.126	0.00	182.79	0.000
L3	123 - 122	TP22.7502x22x0.1875	25.79	386.66	0.067	0.00	386.66	0.000
	122 - 121		28.62	391.19	0.073	0.00	391.19	0.000
	121 - 120		31.53	395.74	0.080	0.00	395.74	0.000
	120 - 119		41.74	400.30	0.104	0.00	400.30	0.000
	119 - 118		48.45	404.88	0.120	0.00	404.88	0.000
L4	118 - 117	TP23,5004x22,7502x0,18	55.23	409.47	0.135	0.00	409.47	0.000
		75						
	117 - 116		62.09	414.08	0.150	0.00	414.08	0.000
	116 - 115		69.01	418.69	0.165	0.00	418.69	0.000
	115 - 114		76.01	423.32	0.180	0.00	423.32	0.000
	114 - 113		83.07	427.97	0.194	0.00	427.97	0.000
L5	113 - 112	TP24.2506x23.5004x0.18	90.21	432.63	0.209	0.00	432.63	0.000

tnxTower Report - version 8.1.1.0

Section	Elevation	Size	Mux	ф М пх	Ratio	Muy	φM _{ny}	Ratio
No.	ft		kip-ft	kip-ft	Mux	kip-ft	kip-ft	Muy
	11	75	κιρ-ιι	κιρ-ιι	φM _{nx}	κιρ-ιι	κιρ-π	ф M ny
	112 - 111	73	97.42	437.30	0.223	0.00	437.30	0.000
	111 - 110		108.19	441.98	0.245	0.00	441.98	0.000
	110 - 109		118.91	446.68	0.266	0.00	446.68	0.000
	109 - 108		129.71	451.39	0.287	0.00	451.39	0.000
L6	108 - 107	TP25.0007x24.2506x0.18	140.57	456.11	0.308	0.00	456.11	0.000
	107 - 106	75	151.50	460.84	0.329	0.00	460.84	0.000
	106 - 105		162.50	465.58	0.349	0.00	465.58	0.000
	105 - 104		173.57	470.33	0.369	0.00	470.33	0.000
	104 - 103		184.71	475.10	0.389	0.00	475.10	0.000
L7	103 - 102	TP25.7509x25.0007x0.18 75	195.91	479.88	0.408	0.00	479.88	0.000
	102 - 101		207.19	484.66	0.427	0.00	484.66	0.000
	101 - 100		220.01	489.46	0.449	0.00	489.46	0.000
	100 - 99		232.89	494.26	0.471	0.00	494.26	0.000
	99 - 98		245.83	499.08	0.493	0.00	499.08	0.000
L8	98 - 97	TP26.5011x25.7509x0.18 75	258.85	503.91	0.514	0.00	503.91	0.000
	97 - 96		271.93	508.75	0.535	0.00	508.75	0.000
	96 - 95		285.08	513.59	0.555	0.00	513.59	0.000
	95 - 94		298.30	518.45	0.575	0.00	518.45	0.000
	94 - 93		311.58	523.31	0.595	0.00	523.31	0.000
L9	93 - 92	TP27.2513x26.5011x0.18 75	330.28	528.18	0.625	0.00	528.18	0.000
	92 - 91		346.80	533.06	0.651	0.00	533.06	0.000
	91 - 90		363.38	537.95	0.675	0.00	537.95	0.000
	90 - 89		380.02	542.85	0.700	0.00	542.85	0.000
1.40	89 - 88	TD00 444 07 0540 0 407	396.73	547.75	0.724	0.00	547.75	0.000
L10	88 - 86.875	TP28.114x27.2513x0.187 5	415.59	553.28	0.751	0.00	553.28	0.000
	86.875 - 85.75		434.53	558.81	0.778	0.00	558.81	0.000
	85.75 - 82.25		217.59	576.09	0.378	0.00	576.09	0.000
L11	85.75 - 82.25	TP27.9641x27.2139x0.25	276.48	880.76	0.314	0.00	880.76	0.000
	82.25 - 80.75	TD00 7440 07 0044 0 05	519.86	893.20	0.582	0.00	893.20	0.000
L12	80.75 - 79.75	TP28.7143x27.9641x0.25	537.13	901.53	0.596	0.00	901.53	0.000
	79.75 - 78.75		554.47 571.87	909.88	0.609	0.00	909.88	0.000
	78.75 - 77.75 77.75 - 76.75			918.25	0.623	0.00	918.25 926.64	0.000
	76.75 - 75.75		589.33 606.85	926.64 935.05	0.636 0.649	0.00 0.00	935.05	0.000 0.000
L13	75.75 - 74.75	TP29.4646x28.7143x0.25	624.54	943.49	0.662	0.00	943.49	0.000
LIJ	74.75 - 73.75	11 29.4040820.7 14380.23	642.62	951.94	0.675	0.00	951.94	0.000
	73.75 - 72.75		660.76	960.42	0.688	0.00	960.42	0.000
	72.75 - 71.75		678.96	968.92	0.701	0.00	968.92	0.000
	71.75 - 70.75		697.22	977.43	0.713	0.00	977.43	0.000
L14	70.75 - 69.75	TP30.2148x29.4646x0.25	715.54	985.97	0.726	0.00	985.97	0.000
	69.75 - 68.75		733.91	994.52	0.738	0.00	994.52	0.000
	68.75 - 67.75		752.34	1003.10	0.750	0.00	1003.10	0.000
	67.75 - 66.75		770.83	1011.70	0.762	0.00	1011.70	0.000
	66.75 - 65.75		789.38	1020.31	0.774	0.00	1020.31	0.000
L15	65.75 - 64.75	TP30.9651x30.2148x0.25	807.98	1028.94	0.785	0.00	1028.94	0.000
	64.75 - 63.75		826.64	1037.59	0.797	0.00	1037.59	0.000
	63.75 - 62.75		845.35	1046.27	0.808	0.00	1046.27	0.000
	62.75 - 61.75		864.11	1054.95	0.819	0.00	1054.95	0.000
1.40	61.75 - 60.75	TD04_4450~00_0054~0_05	882.93	1063.66	0.830	0.00	1063.66	0.000
L16	60.75 - 59.75	TP31.4152x30.9651x0.25	901.80 920.73	1072.38	0.841	0.00	1072.38	0.000
	59.75 - 58.75		920.73 939.71	1081.12	0.852	0.00	1081.12	0.000
L17	58.75 - 57.75 57.75 - 57.5	TP31.4527x31.4152x0.46	939.71	1089.88 2138.88	0.862 0.442	0.00 0.00	1089.88 2138.88	0.000
	(17)	25	344.40				2130.00	
L18	57.5 - 56.5	TP32.2029x31.4527x0.45 63	963.52	2131.89	0.452	0.00	2131.89	0.000
	56.5 - 55.5		982.64	2152.63	0.456	0.00	2152.63	0.000
	55.5 - 54.5		1001.83	2173.47	0.461	0.00	2173.47	0.000
	54.5 - 53.5		1021.09	2194.41	0.465	0.00	2194.41	0.000
1.40	53.5 - 52.5	TD22 0522v22 2020v0 45	1040.42	2215.45	0.470	0.00	2215.45	0.000
L19	52.5 - 51.5 51.5 - 50.5	TP32.9532x32.2029x0.45	1059.82 1079.28	2207.25 2228.21	0.480 0.484	0.00 0.00	2207.25 2228.21	0.000 0.000
	51.5 - 50.5		1013.20	2220,21	0.704	0.00	2220.21	0.000

Section No.	Elevation	Size	Mux	φM _{nx}	Ratio M _{ux}	Muy	ф <i>М</i> _{пу}	Ratio M _{uy}
740.	ft		kip-ft	kip-ft	$\frac{Max}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{ny}}{\phi M_{ny}}$
	50.5 - 49.5		1098.91	2249.26	0.489	0.00	2249.26	0.000
	49.5 - 48.5		1118.53	2270.42	0.493	0.00	2270.42	0.000
	48.5 - 47.5		1138.22	2291.67	0.497	0.00	2291.67	0.000
L20	47.5 - 46.25	TP33.966x32.9532x0.45	1162.93	2318.38	0.502	0.00	2318.38	0.000
LZU	46.25 - 45	11 33.900x32.9332x0.43	1187.72	2345.23	0.502	0.00	2345.23	0.000
								0.000
1.04	45 - 40.75	TD00 5705 00 0000 0 40	630.57	2437.72	0.259	0.00	2437.72	
L21	45 - 40.75	TP33.5785x32.8283x0.48 13	642.39	2522.12	0.255	0.00	2522.12	0.000
	40.75 - 40		1288.14	2539.47	0.507	0.00	2539.47	0.000
L22	40 - 39	TP34.3287x33.5785x0.46 88	1308.45	2498.97	0.524	0.00	2498.97	0.000
	39 - 38		1328.81	2521.72	0.527	0.00	2521.72	0.000
	38 - 37		1349.23	2544.58	0.530	0.00	2544,58	0.000
	37 - 36		1369.71	2567.54	0.533	0.00	2567.54	0.000
	36 - 35		1390.25	2590.61	0.537	0.00	2590.61	0.000
L23	35 - 34	TP35.0789x34.3287x0.46	1410.84	2613.78	0.540	0.00	2613.78	0.000
	04 00	88	4404.40	0007.04	0.540	0.00	0007.04	0.000
	34 - 33		1431.49	2637.04	0.543	0.00	2637.04	0.000
	33 - 32		1452.19	2660.42	0.546	0.00	2660.42	0.000
	32 - 31		1472.96	2683.89	0.549	0.00	2683.89	0.000
	31 - 30		1493.78	2707.47	0.552	0.00	2707.47	0.000
L24	30 - 29.75 (24)	TP35.1164x35.0789x0.28 13	1498.98	1535.13	0.976	0.00	1535.13	0.000
L25	29.75 - 29.5 (25)	TP35.1539x35.1164x0.51	1504.20	2996.37	0.502	0.00	2996.37	0.000
L26	29.5 - 28.5	TP35.9041x35.1539x0.51 25	1525.09	2987.77	0.510	0.00	2987.77	0.000
	28.5 - 27.5	23	1546.04	3013.78	0.513	0.00	3013.78	0.000
			1567.04				3039.90	0.000
	27.5 - 26.5			3039.90	0.515	0.00		
	26.5 - 25.5		1588.10	3066.14	0.518	0.00	3066.14	0.000
	25.5 - 24.5		1609.21	3092.49	0.520	0.00	3092.49	0.000
L27	24.5 - 23.5	TP36.6543x35.9041x0.50 63	1630.37	3082.55	0.529	0.00	3082.55	0.000
	23.5 - 22.5		1651.58	3108.81	0.531	0.00	3108.81	0.000
	22.5 - 21.5		1672.85	3135.18	0.534	0.00	3135.18	0.000
	21.5 - 20.5		1694.16	3161.66	0.536	0.00	3161.66	0.000
	20.5 - 19.5		1715.53	3188.25	0.538	0.00	3188.25	0.000
L28	19.5 - 18.5	TP37.4045x36.6543x0.50	1736.93	3214.96	0.540	0.00	3214.96	0.000
	105 175	63	1750 00	2244 70	0.540	0.00	2244 70	0.000
	18.5 - 17.5		1758.38	3241.78	0.542	0.00	3241.78	0.000
	17.5 - 16.5		1779.88	3268.70	0.545	0.00	3268.70	0.000
	16.5 - 15.5		1801.43	3295.74	0.547	0.00	3295.74	0.000
	15.5 - 14.5		1823.03	3322.89	0.549	0.00	3322.89	0.000
L29	14.5 - 13.5	TP38.1546x37.4045x0.49 38	1844.66	3270.74	0.564	0.00	3270.74	0.000
	13.5 - 12.5	-	1866.33	3297.46	0.566	0.00	3297.46	0.000
	12.5 - 11.5		1888.05	3324.28	0.568	0.00	3324.28	0.000
	11.5 - 10.5		1909.81	3351.20	0.570	0.00	3351.20	0.000
	10.5 - 9.5		1931.61	3378.24	0.572	0.00	3378.24	0.000
1.20		TP38.9048x38.1546x0.49	1953.45					
L30	9.5 - 8.5	38		3405.38	0.574	0.00	3405.38	0.000
	8.5 - 7.5		1975.33	3432.64	0.575	0.00	3432.64	0.000
	7.5 - 6.5		1997.26	3460.00	0.577	0.00	3460.00	0.000
	6.5 - 5.5		2019.22	3487.47	0.579	0.00	3487.47	0.000
	5.5 - 4.5		2041.22	3515.06	0.581	0.00	3515.06	0.000
L31	4.5 - 3.375	TP39.58x38.9048x0.4875	2066.03	3503.03	0.590	0.00	3503.03	0.000
	3.375 - 2.25	00,00,00,00,00,00	2090.88	3533.93	0.592	0.00	3533.93	0.000
	2.25 - 1.125		2115.78	3564.97	0.593	0.00	3564.97	0.000
	1.125 - 0		2140.72	3596.15	0.595	0.00	3596.15	0.000

Section	Elevation	Size	Actual	φVn	Ratio	Actual	ϕT_n	Ratio
No.			V_u	·	V_u	T_u	·	T_u
	ft		K	K	${\Phi V_n}$	kip-ft	kip-ft	${\Phi T_n}$

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.	r.		V_u	14	V_u	T_u		T_u
	ft		K	K	φVn	kip-ft	kip-ft	ϕT_n
L1	133 - 132	TP14x14x0.375	0.06	151.69	0.000	0.00	181.70	0.000
	132 - 131		2.40	151.69	0.016	0.04	181.70	0.000
	131 - 130		2.44	151.69	0.016	0.04	181.70	0.000
	130 - 129 129 - 128		2.48 2.53	151.69 151.69	0.016 0.017	0.04 0.00	181.70 181.70	0.000 0.000
L2	128 - 128	TP14x14x0.375	2.57	151.69	0.017	0.00	181.70	0.000
LZ	127 - 126	11 14×14×0.575	2.61	151.69	0.017	0.00	181.70	0.000
	126 - 125		2.65	151.69	0.017	0.00	181.70	0.000
	125 - 124		2.69	151.69	0.018	0.04	181.70	0.000
	124 - 123		2.73	151.69	0.018	0.04	181.70	0.000
L3	123 - 122	TP22.7502x22x0.1875	2.80	211.74	0.013	0.04	407.26	0.000
	122 - 121		2.87	213.19	0.013	0.04	412.84	0.000
	121 - 120		2.94	214.63	0.014	0.04	418.46	0.000
	120 - 119		6.68	216.08	0.031	0.07	424.12	0.000
	119 - 118		6.75	217.53	0.031	0.07	429.82	0.000
L4	118 - 117	TP23.5004x22.7502x0.18	6.82	218.97	0.031	0.07	435.55	0.000
	117 110	75	0.00	000.40	0.004	0.07	444.00	0.000
	117 - 116		6.89	220.42	0.031	0.07	441.33	0.000
	116 - 115		6.96	221.87	0.031	0.07	447.14	0.000
	115 - 114 114 - 113		7.03	223.31 224.76	0.031 0.032	0.07	452.99	0.000 0.000
L5	114 - 113 113 - 112	TP24.2506x23.5004x0.18	7.10 7.17	224.76 226.21	0.032	0.07 0.07	458.88 464.80	0.000
LJ	113 - 112	75	7.17	220.21	0.032	0.07	404.00	0.000
	112 - 111	7.5	7.25	227.65	0.032	0.07	470.76	0.000
	111 - 110		10.69	229.10	0.047	0.07	476.77	0.000
	110 - 109		10.76	230.55	0.047	0.07	482.81	0.000
	109 - 108		10.83	231.99	0.047	0.07	488.88	0.000
L6	108 - 107	TP25.0007x24.2506x0.18	10.90	233.44	0.047	0.07	495.00	0.000
		75						
	107 - 106		10.97	234.89	0.047	0.07	501.15	0.000
	106 - 105		11.04	236.33	0.047	0.07	507.34	0.000
	105 - 104		11.11	237.78	0.047	0.07	513.57	0.000
	104 - 103	TD05 7500 05 0007 0 40	11.18	239.22	0.047	0.07	519.84	0.000
L7	103 - 102	TP25.7509x25.0007x0.18 75	11.25	240.67	0.047	0.07	526.15	0.000
	102 - 101	75	11.32	242.12	0.047	0.07	532.49	0.000
	101 - 100		12.85	243.57	0.053	0.07	538.87	0.000
	100 - 99		12.92	245,01	0.053	0.07	545.29	0.000
	99 - 98		12.99	246.46	0.053	0.07	551.75	0.000
L8	98 - 97	TP26.5011x25.7509x0.18	13.06	247.90	0.053	0.07	558.24	0.000
		75						
	97 - 96		13.12	249.35	0.053	0.07	564.78	0.000
	96 - 95		13.19	250.80	0.053	0.07	571.35	0.000
	95 - 94		13.26	252.24	0.053	0.07	577.96	0.000
	94 - 93		13.32	253.69	0.053	0.07	584.61	0.000
L9	93 - 92	TP27.2513x26.5011x0.18	16.50	255.14	0.065	0.07	591.29	0.000
	92 - 91	75	16.56	256.58	0.065	0.07	598.02	0.000
	91 - 90		16.62	258.03	0.064	0.07	604.78	0.000
	90 - 89		16.68	259.48	0.064	0.07	611.58	0.000
	89 - 88		16.75	260.92	0.064	0.07	618.42	0.000
L10	88 - 86.875	TP28.114x27.2513x0.187	16.82	262.55	0.064	0.07	626.15	0.000
		5						
	86.875 -		16.88	264.18	0.064	0.07	633.94	0.000
	85.75							
	85.75 - 82.25		7.63	269.24	0.028	0.03	658.47	0.000
L11	85.75 - 82.25	TP27.9641x27.2139x0.25	9.53	382.81	0.025	0.04	921.56	0.000
	82.25 - 80.75	TD00 7445 57 57 57	17.26	385.94	0.045	0.07	936.71	0.000
L12	80.75 - 79.75	TP28.7143x27.9641x0.25	17.32	388.03	0.045	0.07	946.88	0.000
	79.75 - 78.75		17.38	390.12	0.045	0.07	957.11	0.000
	78.75 - 77.75		17.44	392.21	0.044	0.07	967.38	0.000
	77 75 - 76 75		17.50 17.56	394.30	0.044 0.044	0.07	977.73	0.000
L13	76.75 - 75.75 75.75 - 74.75	TP29.4646x28.7143x0.25	17.56 18.06	396.39 398.48	0.044	0.07 0.07	988.12 998.56	0.000 0.000
LIS	74.75 - 74.75 74.75 - 73.75	1 - 23.4040X20.7 143XU.25	18.12	398.48 400.57	0.045 0.045	0.07	1009.06	0.000
	73.75 - 72.75		18.18	402.66	0.045	0.07	1019.61	0.000
	72.75 - 71.75		18.24	404.75	0.045	0.07	1030.22	0.000
	71.75 - 70.75		18.30	406.84	0.045	0.07	1040.88	0.000
L14	70.75 - 69.75	TP30.2148x29.4646x0.25	18.36	408.93	0.045	0.07	1051.61	0.000
•			-					

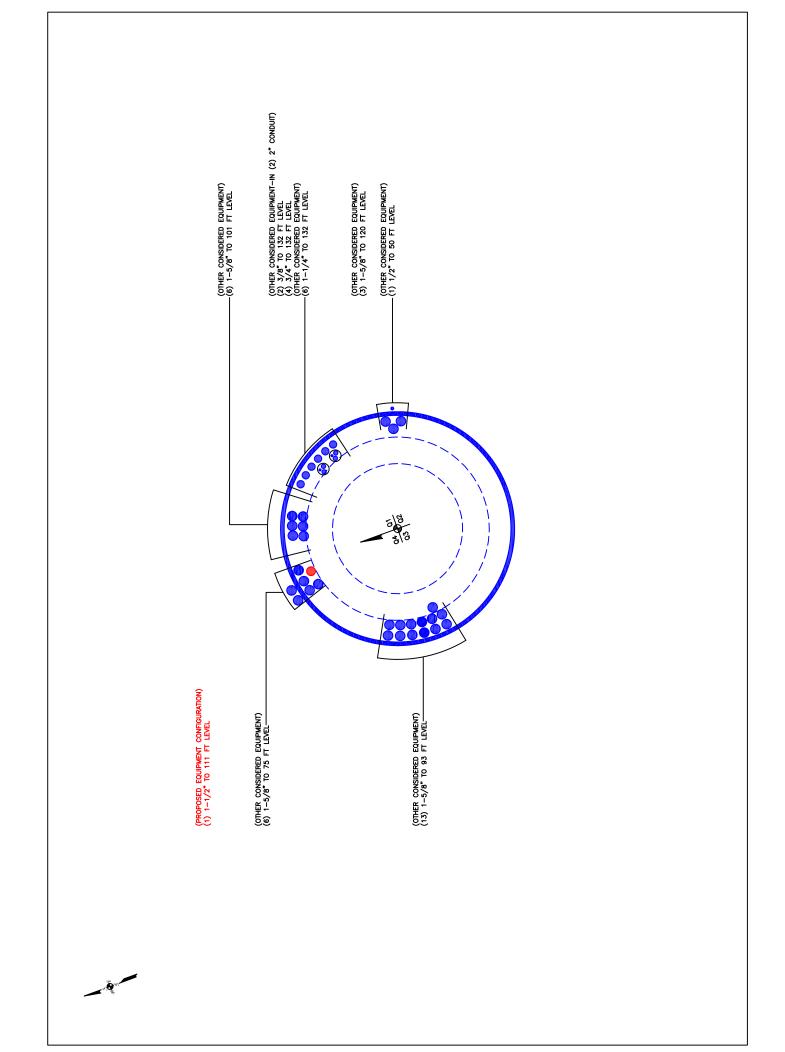
Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u	,	V_u	T_u	,	T_u
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	$\overline{\phi T_n}$
	69.75 - 68.75		18,42	411,02	0.045	0.07	1062.38	0.000
	68.75 - 67.75		18.47	413.11	0.045	0.07	1073.21	0.000
	67.75 - 66.75		18.53	415.20	0.045	0.07	1073.21	0.000
					0.045			
1.45	66.75 - 65.75	TD00 005400 04400 05	18.59	417.29		0.07	1095.03	0.000
L15	65.75 - 64.75	TP30.9651x30.2148x0.25	18.64	419.38	0.044	0.07	1106.03	0.000
	64.75 - 63.75		18.70	421.47	0.044	0.07	1117.08	0.000
	63.75 - 62.75		18.75	423.56	0.044	0.07	1128.18	0.000
	62.75 - 61.75		18.81	425.65	0.044	0.07	1139.34	0.000
	61.75 - 60.75		18.86	427.74	0.044	0.07	1150.55	0.000
L16	60.75 - 59.75	TP31.4152x30.9651x0.25	18.91	427.74	0.044	0.07	1161.83	0.000
	59.75 - 58.75		18.97	429.82	0.044	0.07	1173.14	0.000
	58.75 - 57.75		19.02	431.92	0.044	0.07	1184.53	0.000
L17	57.75 - 57.5	TP31.4527x31.4152x0.46	19.03	797.43	0.024	0.07	2166.83	0.000
	(17)	25						
L18	57.Š - 56.5	TP32.2029x31.4527x0.45	19.10	787.77	0.024	0.07	2159.17	0.000
		63						
	56.5 - 55.5		19.17	791,58	0.024	0.07	2180.02	0.000
	55.5 - 54.5		19.23	795.40	0.024	0.07	2200.97	0.000
	54.5 - 53.5		19.30	799.21	0.024	0.07	2222.03	0.000
	53.5 - 52.5		19.37	803.02	0.024	0.07	2243.18	0.000
L19	52.5 - 51.5	TP32.9532x32.2029x0.45	19.44	795.94	0.024	0.07	2234.29	0.000
LIS	51.5 - 50.5	11 32.3332.32.2023.0.43	19.50	799.70	0.024	0.07	2255.36	0.000
	50.5 - 49.5		19.60	803.46	0.024	0.07	2276.52	0.000
					0.024			
	49.5 - 48.5		19.67	807.22		0.06	2297.78	0.000
1.00	48.5 - 47.5	TD00 000 00 0500 0 45	19.73	810.99	0.024	0.06	2319.15	0.000
L20	47.5 - 46.25	TP33.966x32.9532x0.45	19.81	814.75	0.024	0.06	2345.99	0.000
	46.25 - 45		19.89	819.45	0.024	0.06	2372.98	0.000
	45 - 40.75		10.12	824.15	0.012	0.03	2465.93	0.000
L21	45 - 40.75	TP33.5785x32.8283x0.48	10.14	884.24	0.011	0.03	2554.23	0.000
		13						
	40.75 - 40		20.28	884.24	0.023	0.06	2571.69	0.000
L22	40 - 39	TP34.3287x33.5785x0.46	20.34	864.53	0.024	0.06	2529.55	0.000
		88						
	39 - 38		20.40	868.45	0.023	0.06	2552.43	0.000
	38 - 37		20.46	872.37	0.023	0.06	2575.41	0.000
	37 - 36		20.52	876.28	0.023	0.06	2598.48	0.000
	36 - 35		20.58	880.20	0.023	0.06	2621.67	0.000
L23	35 - 34	TP35.0789x34.3287x0.46	20,63	884.12	0.023	0.06	2644.95	0.000
		88						
	34 - 33		20.69	888.04	0.023	0.06	2668.34	0.000
	33 - 32		20.75	891.96	0.023	0.06	2691.83	0.000
	32 - 31		20.80	899.79	0.023	0.06	2715.43	0.000
	31 - 30		20.86	903.71	0.023	0.06	2739.13	0.000
L24	30 - 29.75	TP35.1164x35.0789x0.28	20.86	545.16	0.038	0.06	1664.91	0.000
LZŦ		40	20.00	343.10	0.000	0.00	1004.51	0.000
L25	(24) 29.75 - 29.5	13 TP35.1539x35.1164x0.51	20.87	999.74	0.021	0.06	3035.68	0.000
LZS		88	20.07	999.14	0.021	0.00	3033.00	0.000
L26	(25) 29.5 - 28.5		20.93	993.23	0.021	0.06	2026.22	0.000
L20	29.5 - 20.5	TP35.9041x35.1539x0.51	20.93	993.23	0.021	0.06	3026.23	0.000
	00 E 07 E	25	20.00	007.54	0.004	0.00	2050 20	0.000
	28.5 - 27.5		20.99	997.51	0.021	0.06	3052.39	0.000
	27.5 - 26.5		21.04	1001.80	0.021	0.06	3078.66	0.000
	26.5 - 25.5		21.10	1006.08	0.021	0.06	3105.04	0.000
	25.5 - 24.5		21.15	1010.36	0.021	0.06	3131.54	0.000
L27	24.5 - 23.5	TP36.6543x35.9041x0.50	21.20	1002.45	0.021	0.06	3120.72	0.000
		63						
	23.5 - 22.5		21.25	1006.68	0.021	0.06	3147.13	0.000
	22.5 - 21.5		21.30	1010.91	0.021	0.06	3173.64	0.000
	21.5 - 20.5		21.35	1015.14	0.021	0.06	3200.26	0.000
	20.5 - 19.5		21.40	1019.37	0.021	0.06	3226.99	0.000
L28	19.5 - 18.5	TP37.4045x36.6543x0.50	21.45	1023.60	0.021	0.06	3253.83	0.000
-		63	-			•		
	18.5 - 17.5	- -	21.49	1027.84	0.021	0.06	3280.79	0.000
	17.5 - 16.5		21.54	1032.07	0.021	0.06	3307.86	0.000
	16.5 - 15.5		21.58	1036.30	0.021	0.06	3335.03	0.000
	15.5 - 14.5		21.63	1040.53	0.021	0.06	3362.32	0.000
L29	14.5 - 13.5	TP38.1546x37.4045x0.49	21.63	1040.33	0.021	0.06	3308.26	0.000
LZ9	14.5 - 15.5		21.07	1019.31	0.0∠ 1	0.00	JJU0.20	0.000
	135 125	38	21 71	1022 42	0.024	0.06	3335 10	0.000
	13.5 - 12.5		21.71	1023.43	0.021	0.06	3335.10	
	12.5 - 11.5		21.75	1027.56	0.021	0.06	3362.05	0.000

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	ϕT_n
	11.5 - 10.5		21.79	1031.69	0.021	0.06	3389.11	0.000
	10.5 - 9.5		21.84	1035.81	0.021	0.06	3416.28	0.000
L30	9.5 - 8.5	TP38.9048x38.1546x0.49	21.88	1039.94	0.021	0.06	3443.54	0.000
		38						
	8.5 - 7.5		21.92	1044.07	0.021	0.06	3470.93	0.000
	7.5 - 6.5		21.96	1048.19	0.021	0.06	3498.42	0.000
	6.5 - 5.5		22.00	1052.32	0.021	0.06	3526.02	0.000
	5.5 - 4.5		22.04	1056.45	0.021	0.06	3553.72	0.000
L31	4.5 - 3.375	TP39.58x38.9048x0.4875	22.09	1047.83	0.021	0.06	3540.80	0.000
	3.375 - 2.25		22.13	1052.41	0.021	0.06	3571.84	0.000
	2.25 - 1.125		22.17	1056.99	0.021	0.06	3603.03	0.000
	1.125 - 0		22.22	1061.58	0.021	0.06	3634.34	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	ΦP_n	φ <i>M</i> _{nx}	φ <i>M</i> _{ny}	φV _n	<u></u> φ <i>T</i> _n	Ratio	Ratio	
L1	133 - 132	0.000	0.000	0.000	0.000	0.000	0.001	1.050	4.8.2
	132 - 131	0.003	0.014	0.000	0.016	0.000	0.017	1.050	4.8.2
	131 - 130	0.003	0.027	0.000	0.016	0.000	0.030	1.050	4.8.2
	130 - 129	0.003	0.040	0.000	0.016	0.000	0.044	1.050	4.8.2
	129 - 128	0.003	0.054	0.000	0.017	0.000	0.057	1.050	4.8.2
L2	128 - 127	0.003	0.068	0.000	0.017	0.000	0.072	1.050	4.8.2
	127 - 126	0.003	0.082	0.000	0.017	0.000	0.086	1.050	4.8.2
	126 - 125	0.003	0.002	0.000	0.017	0.000	0.100	1.050	4.8.2
	125 - 124	0.003	0.111	0.000	0.017	0.000	0.115	1.050	4.8.2
	124 - 123	0.004	0.116	0.000	0.018	0.000	0.113	1.050	4.8.2
L3	123 - 122	0.004	0.120	0.000	0.013	0.000	0.130	1.050	4.8.2
LS	123 - 122 122 - 121	0.003	0.007	0.000	0.013	0.000	0.076	1.050	4.8.2
	121 - 120	0.003	0.073	0.000	0.013	0.000	0.078	1.050	4.8.2
	121 - 120 120 - 119	0.003	0.080	0.000	0.014	0.000	0.063	1.050	
			0.104	0.000	0.031		0.113	1.050	4.8.2
	119 - 118	0.008	0.120	0.000	0.031	0.000	0.129	1.050	4.8.2
L4	118 - 117	0.008	0.135	0.000	0.031	0.000	0.144	1.050	4.8.2
	117 - 116	0.008	0.150	0.000	0.031	0.000	0.159	1.050	4.8.2
	116 - 115	0.008	0.165	0.000	0.031	0.000	0.174	1.050	4.8.2
	115 - 114	0.008	0.180	0.000	0.031	0.000	0.189	1.050	4.8.2
	114 - 113	0.008	0.194	0.000	0.032	0.000	0.203	1.050	4.8.2
L5	113 - 112	0.008	0.209	0.000	0.032	0.000	0.218	1.050	4.8.2
	112 - 111	0.008	0.223	0.000	0.032	0.000	0.232	1.050	4.8.2
	111 - 110	0.012	0.245	0.000	0.047	0.000	0.259	1.050	4.8.2
	110 - 109	0.012	0.266	0.000	0.047	0.000	0.281	1.050	4.8.2
	109 - 108	0.012	0.287	0.000	0.047	0.000	0.302	1.050	4.8.2
L6	108 - 107	0.012	0.308	0.000	0.047	0.000	0.323	1.050	4.8.2
	107 - 106	0.012	0.329	0.000	0.047	0.000	0.343	1.050	4.8.2
	106 - 105	0.012	0.349	0.000	0.047	0.000	0.364	1.050	4.8.2
	105 - 104	0.012	0.369	0.000	0.047	0.000	0.384	1.050	4.8.2
	104 - 103	0.012	0.389	0.000	0.047	0.000	0.403	1.050	4.8.2
L7	103 - 102	0.012	0.408	0.000	0.047	0.000	0.423	1.050	4.8.2
	102 - 101	0.012	0.427	0.000	0.047	0.000	0.442	1.050	4.8.2
	101 - 100	0.014	0.449	0.000	0.053	0.000	0.466	1.050	4.8.2
	100 - 99	0.014	0.471	0.000	0.053	0.000	0.488	1.050	4.8.2
	99 - 98	0.014	0.493	0.000	0.053	0.000	0.509	1.050	4.8.2
L8	98 - 97	0.014	0.514	0.000	0.053	0.000	0.531	1.050	4.8.2
	97 - 96	0.014	0.535	0.000	0.053	0.000	0.551	1.050	4.8.2
	96 - 95	0.014	0.555	0.000	0.053	0.000	0.572	1.050	4.8.2
	95 - 94	0.014	0.575	0.000	0.053	0.000	0.592	1.050	4.8.2
	94 - 93	0.014	0.595	0.000	0.053	0.000	0.612	1.050	4.8.2
L9	93 - 92	0.014	0.625	0.000	0.055	0.000	0.647	1.050	4.8.2
LU	93 - 92 92 - 91	0.018	0.651	0.000	0.065	0.000	0.673	1.050	4.8.2
	92 - 91 91 - 90	0.018	0.675	0.000	0.065	0.000	0.673	1.050	4.8.2
	91 - 90 90 - 89	0.018	0.700	0.000	0.064	0.000	0.696	1.050	4.8.2 4.8.2
	90 - 89 89 - 88	0.018	0.700	0.000	0.064	0.000	0.722	1.050	4.8.2 4.8.2
	09 - 00	0.010	0.724	0.000	0.004	0.000	0.740	1.030	4.0.2

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		Pu	M _{ux}	M _{uy}	V _u	T_u	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L10	88 - 86.875	0.018	0.751	0.000	0.064	0.000	0.773	1.050	4.8.2
	86.875 -	0.018	0.778	0.000	0.064	0.000	0.800	1.050	4.8.2
	85.75								
	85.75 - 82.25	0.008	0.378	0.000	0.028	0.000	0.387	1.050	4.8.2
L11	85.75 - 82.25	0.007	0.314	0.000	0.025	0.000	0.322	1.050	4.8.2
	82.25 - 80.75	0.013	0.582	0.000	0.045	0.000	0.597	1.050	4.8.2
L12	80.75 - 79.75	0.013	0.596	0.000	0.045	0.000	0.611	1.050	4.8.2
	79.75 - 78.75	0.013	0.609	0.000	0.045	0.000	0.625	1.050	4.8.2
	78.75 - 77.75	0.013	0.623	0.000	0.044	0.000	0.638	1.050	4.8.2
	77.75 - 76.75	0.013	0.636	0.000	0.044	0.000	0.651	1.050	4.8.2
1.40	76.75 - 75.75	0.013	0.649	0.000	0.044	0.000	0.664	1.050	4.8.2
L13	75.75 - 74.75	0.014	0.662	0.000	0.045	0.000	0.678	1.050	4.8.2
	74.75 - 73.75	0.014 0.014	0.675 0.688	0.000 0.000	0.045 0.045	0.000 0.000	0.691	1.050 1.050	4.8.2 4.8.2
	73.75 - 72.75 72.75 - 71.75	0.014	0.000	0.000	0.045	0.000	0.704 0.717	1.050	4.8.2
	71.75 - 70.75	0.014	0.713	0.000	0.045	0.000	0.717	1.050	4.8.2
L14	70.75 - 69.75	0.014	0.713	0.000	0.045	0.000	0.742	1.050	4.8.2
L17	69.75 - 68.75	0.014	0.738	0.000	0.045	0.000	0.754	1.050	4.8.2
	68.75 - 67.75	0.014	0.750	0.000	0.045	0.000	0.766	1.050	4.8.2
	67.75 - 66.75	0.014	0.762	0.000	0.045	0.000	0.778	1.050	4.8.2
	66.75 - 65.75	0.014	0.774	0.000	0.045	0.000	0.790	1.050	4.8.2
L15	65.75 - 64.75	0.014	0.785	0.000	0.044	0.000	0.801	1.050	4.8.2
	64.75 - 63.75	0.014	0.797	0.000	0.044	0.000	0.813	1.050	4.8.2
	63.75 - 62.75	0.014	0.808	0.000	0.044	0.000	0.824	1.050	4.8.2
	62.75 - 61.75	0.014	0.819	0.000	0.044	0.000	0.835	1.050	4.8.2
	61.75 - 60.75	0.014	0.830	0.000	0.044	0.000	0.846	1.050	4.8.2
L16	60.75 - 59.75	0.014	0.841	0.000	0.044	0.000	0.857	1.050	4.8.2
	59.75 - 58.75	0.014	0.852	0.000	0.044	0.000	0.868	1.050	4.8.2
	58.75 - 57.75	0.014	0.862	0.000	0.044	0.000	0.879	1.050	4.8.2
L17	57.75 - 57.5	0.008	0.442	0.000	0.024	0.000	0.450	1.050	4.8.2
	(17)								
L18	57.5 - 56.5	0.008	0.452	0.000	0.024	0.000	0.461	1.050	4.8.2
	56.5 - 55.5	0.008	0.456	0.000	0.024	0.000	0.465	1.050	4.8.2
	55.5 - 54.5	0.008	0.461	0.000	0.024	0.000	0.470	1.050	4.8.2
	54.5 - 53.5	0.008	0.465	0.000	0.024	0.000	0.474	1.050	4.8.2
	53.5 - 52.5	0.008	0.470	0.000	0.024	0.000	0.478	1.050	4.8.2
L19	52.5 - 51.5	800.0	0.480	0.000	0.024	0.000	0.489	1.050	4.8.2
	51.5 - 50.5	0.008	0.484	0.000	0.024	0.000	0.493	1.050	4.8.2
	50.5 - 49.5	0.008	0.489	0.000	0.024	0.000	0.498	1.050	4.8.2
	49.5 - 48.5 48.5 - 47.5	0.009 0.009	0.493 0.497	0.000 0.000	0.024 0.024	0.000 0.000	0.502 0.506	1.050 1.050	4.8.2 4.8.2
L20	47.5 - 46.25	0.009	0.497	0.000	0.024	0.000	0.500	1.050	4.8.2
LZU	46.25 - 45	0.009	0.502	0.000	0.024	0.000	0.516	1.050	4.8.2
	45 - 40.75	0.004	0.259	0.000	0.024	0.000	0.263	1.050	4.8.2
L21	45 - 40.75	0.004	0.255	0.000	0.011	0.000	0.259	1.050	4.8.2
	40.75 - 40	0.009	0.507	0.000	0.023	0.000	0.517	1.050	4.8.2
L22	40 - 39	0.009	0.524	0.000	0.024	0.000	0.533	1.050	4.8.2
	39 - 38	0.009	0.527	0.000	0.023	0.000	0.537	1.050	4.8.2
	38 - 37	0.009	0.530	0.000	0.023	0.000	0.540	1.050	4.8.2
	37 - 36	0.009	0.533	0.000	0.023	0.000	0.543	1.050	4.8.2
	36 - 35	0.009	0.537	0.000	0.023	0.000	0.546	1.050	4.8.2
L23	35 - 34	0.009	0.540	0.000	0.023	0.000	0.550	1.050	4.8.2
	34 - 33	0.009	0.543	0.000	0.023	0.000	0.553	1.050	4.8.2
	33 - 32	0.009	0.546	0.000	0.023	0.000	0.556	1.050	4.8.2
	32 - 31	0.009	0.549	0.000	0.023	0.000	0.559	1.050	4.8.2
	31 - 30	0.009	0.552	0.000	0.023	0.000	0.562	1.050	4.8.2
L24	30 - 29.75	0.016	0.976	0.000	0.038	0.000	0.994	1.050	4.8.2
1.05	(24)	0.000	0.500	0.000	0.004	0.000	0.544	4.050	4.0.0
L25	29.75 - 29.5	0.009	0.502	0.000	0.021	0.000	0.511	1.050	4.8.2
1.06	(25) 29.5 - 28.5	0.009	0.510	0.000	0.021	0.000	0.520	1.050	4.8.2
L26	29.5 - 28.5 28.5 - 27.5	0.009	0.510	0.000	0.021	0.000	0.520	1.050	4.8.2 4.8.2
	28.5 - 27.5 27.5 - 26.5	0.009	0.513	0.000	0.021	0.000	0.522	1.050	4.8.2 4.8.2
	26.5 - 25.5 26.5 - 25.5	0.009	0.515	0.000	0.021	0.000	0.525	1.050	4.8.2 4.8.2
	25.5 - 24.5	0.009	0.516	0.000	0.021	0.000	0.527	1.050	4.8.2 4.8.2
L27	24.5 - 23.5	0.009	0.529	0.000	0.021	0.000	0.538	1.050	4.8.2
	23.5 - 22.5	0.009	0.523	0.000	0.021	0.000	0.541	1.050	4.8.2
	22.5 - 21.5	0.009	0.534	0.000	0.021	0.000	0.543	1.050	4.8.2
	21.5 - 20.5	0.009	0.536	0.000	0.021	0.000	0.545	1.050	4.8.2
									- -


Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	Mux	Muy	<i>V</i> u	T _u	Stress	Stress	
	ft	ϕP_n	φM _{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
	20.5 - 19.5	0.009	0.538	0.000	0.021	0.000	0.548	1.050	4.8.2
L28	19.5 - 18.5	0.009	0.540	0.000	0.021	0.000	0.550	1.050	4.8.2
	18.5 - 17.5	0.009	0.542	0.000	0.021	0.000	0.552	1.050	4.8.2
	17.5 - 16.5	0.009	0.545	0.000	0.021	0.000	0.554	1.050	4.8.2
	16.5 - 15.5	0.009	0.547	0.000	0.021	0.000	0.556	1.050	4.8.2
	15.5 - 14.5	0.009	0.549	0.000	0.021	0.000	0.559	1.050	4.8.2
L29	14.5 - 13.5	0.010	0.564	0.000	0.021	0.000	0.574	1.050	4.8.2
	13.5 - 12.5	0.010	0.566	0.000	0.021	0.000	0.576	1.050	4.8.2
	12.5 - 11.5	0.010	0.568	0.000	0.021	0.000	0.578	1.050	4.8.2
	11.5 - 10.5	0.010	0.570	0.000	0.021	0.000	0.580	1.050	4.8.2
	10.5 - 9.5	0.010	0.572	0.000	0.021	0.000	0.582	1.050	4.8.2
L30	9.5 - 8.5	0.010	0.574	0.000	0.021	0.000	0.584	1.050	4.8.2
	8.5 - 7.5	0.010	0.575	0.000	0.021	0.000	0.586	1.050	4.8.2
	7.5 - 6.5	0.010	0.577	0.000	0.021	0.000	0.588	1.050	4.8.2
	6.5 - 5.5	0.010	0.579	0.000	0.021	0.000	0.590	1.050	4.8.2
	5.5 - 4.5	0.010	0.581	0.000	0.021	0.000	0.591	1.050	4.8.2
L31	4.5 - 3.375	0.010	0.590	0.000	0.021	0.000	0.601	1.050	4.8.2
	3.375 - 2.25	0.010	0.592	0.000	0.021	0.000	0.603	1.050	4.8.2
	2.25 - 1.125	0.010	0.593	0.000	0.021	0.000	0.604	1.050	4.8.2
	1.125 - 0	0.011	0.595	0.000	0.021	0.000	0.606	1.050	4.8.2

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L1	133 - 128	Pole	TP14x14x0,375	1	-1.54	530,91	5.5	Pass
L2	128 - 123	Pole	TP14x14x0.375	2	-1.89	530.91	12.4	Pass
L3	123 - 118	Pole	TP22.7502x22x0.1875	3	-5.92	761.35	12.3	Pass
L4	118 - 113	Pole	TP23.5004x22.7502x0.1875	4	-6.26	786.66	19.4	Pass
L5	113 - 108	Pole	TP24.2506x23.5004x0.1875	5	-9.50	811.97	28.7	Pass
L6	108 - 103	Pole	TP25.0007x24.2506x0.1875	6	-9.90	837.29	38.4	Pass
L7	103 - 98	Pole	TP25.7509x25.0007x0.1875	7	-11.52	862.60	48.5	Pass
L8	98 - 93	Pole	TP26.5011x25.7509x0.1875	8	-12.00	887.92	58.3	Pass
L9	93 - 88	Pole	TP27.2513x26.5011x0.1875	9	-15.70	913.23	71.1	Pass
L10	88 - 82.25	Pole	TP28.114x27.2513x0.1875	10	-15.97	924.62	76.2	Pass
L11	82.25 - 80.75	Pole	TP27.9641x27.2139x0.25	11	-16.88	1350.80	56.9	Pass
L12	80.75 - 75.75	Pole	TP28.7143x27.9641x0.25	12	-17.61	1387.38	63.3	Pass
L13	75.75 - 70.75	Pole	TP29.4646x28.7143x0.25	13	-18.68	1423.94	69.4	Pass
L14	70.75 - 65.75	Pole	TP30.2148x29.4646x0.25	14	-19.49	1460.51	75.2	Pass
L15	65.75 - 60.75	Pole	TP30.9651x30.2148x0.25	15	-20.31	1497.08	80.6	Pass
L16	60.75 - 57.75	Pole	TP31.4152x30.9651x0.25	16	-20.82	1519.01	83.7	Pass
L17	57.75 - 57.5	Pole	TP31.4527x31.4152x0.4625	17	-20.89	2794.40	42.9	Pass
L18	57.5 - 52.5	Pole	TP32.2029x31.4527x0.4563	18	-22.05	2823.92	45.6	Pass
L19	52.5 - 47.5	Pole	TP32.9532x32.2029x0.45	19	-23.27	2851.61	48.2	Pass
L20	47.5 - 40.75	Pole	TP33.966x32.9532x0.45	20	-23.87	2884.52	49.1	Pass
L21	40.75 - 40	Pole	TP33.5785x32.8283x0.4813	21	-25.88	3105.37	49.2	Pass
L22	40 - 35	Pole	TP34.3287x33.5785x0.4688	22	-27.17	3094.42	52.0	Pass
L23	35 - 30	Pole	TP35.0789x34.3287x0.4688	23	-28.47	3162.98	53.5	Pass
L24	30 - 29.75	Pole	TP35.1164x35.0789x0.2813	24	-28.53	1910.13	94.6	Pass
L25	29.75 - 29.5	Pole	TP35.1539x35.1164x0.5188	25	-28.60	3502.89	48.7	Pass
L26	29.5 - 24.5	Pole	TP35.9041x35.1539x0.5125	26	-30.00	3536.27	50.4	Pass
L27	24.5 - 19.5	Pole	TP36.6543x35.9041x0.5063	27	-31.43	3567.81	52.2	Pass
L28	19.5 - 14.5	Pole	TP37.4045x36.6543x0.5063	28	-32.88	3641.85	53.2	Pass
L29	14.5 - 9.5	Pole	TP38.1546x37.4045x0.4938	29	-34.34	3625.35	55.4	Pass
L30	9.5 - 4.5	Pole	TP38.9048x38.1546x0.4938	30	-35.82	3697.56	56.3	Pass
L31	4.5 - 0	Pole	TP39.58x38.9048x0.4875	31	-37.17	3715.53	57.7	Pass
							Summary	
						Pole (L24)	94.6	Pass
						RATING =	94.6	Pass

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Site BU: 876382 Work Order: 2077369

Pole Geometry

	7	CROVVI	A
\ #		CASTLI	
		CHOIL	

Po	le Geometry							Copyright @	2019 Crown Castle
	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	133	10	0	0	14	14	0.375		A53-B-35
2	123	40.75	3.5	18	22.00	28.114	0.1875	Auto	A607-60
3	85.75	45	4.25	18	27.21	33.966	0.25	Auto	A572-65
4	45	45	0	18	32.83	39.58	0.28125	Auto	A572-65

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	29.75	plate	Plate 6.125X1.25	3																		
2	29.75	57.75	plate	Plate 4.875X1.25	3																		
3																							
4																							
5																							
6																							
7																							
8																							
9																							
10																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	6.125	1.25	7.65625	0.625	Welded	n/a	PC 8.8 - M20 (100)	27.000	15.000	6.094	1.1875	A572-65
2	4.875	1.25	6.09375	0.625	PC 8.8 - M20 (100)	12	PC 8.8 - M20 (100)	21.000	18.000	4.531	1.1875	A572-65

Connection Details for Custom Reinforcements

Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
Plate 6.125X1.25	Тор	9	N	3	3	-	-	-	-	-	-	-	-	-
Plate 6.125X1.25	Bottom	-	-	-	-	70	CJP Groove	6.125	1.25	45	0.25	-	-	-
Plate 4.875X1.25	Тор	7	N	3	3	-	-	-	-	-	-	-	-	-
Plate 4.8/3X1.23	Bottom	4	N	3	3	70	None	-	-	-	-	9	0.500	-

TNX Geometry Input

	Section Height (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	133 - 128	5		0	14.000	14.000	0.375	A53-B-35	1.000
2	128 - 123	5	0	0	14.000	14.000	0.375	A53-B-35	1.000
3	123 - 118	5		18	22.000	22.750	0.1875	A607-60	1.000
4	118 - 113	5		18	22.750	23.500	0.1875	A607-60	1.000
5	113 - 108	5		18	23.500	24.251	0.1875	A607-60	1.000
6	108 - 103	5		18	24.251	25.001	0.1875	A607-60	1.000
7	103 - 98	5		18	25.001	25.751	0.1875	A607-60	1.000
8	98 - 93	5		18	25.751	26.501	0.1875	A607-60	1.000
9	93 - 88	5		18	26.501	27.251	0.1875	A607-60	1.000
10	88 - 85.75	5.75	3.5	18	27.251	28.114	0.1875	A607-60	1.000
11	85.75 - 80.75	5		18	27.214	27.964	0.25	A572-65	1.000
12	80.75 - 75.75	5		18	27.964	28.714	0.25	A572-65	1.000
13	75.75 - 70.75	5		18	28.714	29.465	0.25	A572-65	1.000
14	70.75 - 65.75	5		18	29.465	30.215	0.25	A572-65	1.000
15	65.75 - 60.75	5		18	30.215	30.965	0.25	A572-65	1.000
16	60.75 - 57.75	3		18	30.965	31.415	0.25	A572-65	1.000
17	57.75 - 57.5	0.25		18	31.415	31.453	0.4625	A572-65	0.946
18	57.5 - 52.5	5		18	31.453	32.203	0.45625	A572-65	0.949
19	52.5 - 47.5	5		18	32.203	32.953	0.45	A572-65	0.953
20	47.5 - 45	6.75	4.25	18	32.953	33.966	0.45	A572-65	0.948
21	45 - 40	5		18	32.828	33.578	0.48125	A572-65	0.950
22	40 - 35	5		18	33.578	34.329	0.46875	A572-65	0.966
23	35 - 30	5		18	34.329	35.079	0.46875	A572-65	0.958
24	30 - 29.75	0.25		18	35.079	35.116	0.28125	A572-65	1.000
25	29.75 - 29.5	0.25		18	35.116	35.154	0.51875	A572-65	0.949
26	29.5 - 24.5	5		18	35.154	35.904	0.5125	A572-65	0.951
27	24.5 - 19.5	5		18	35.904	36.654	0.50625	A572-65	0.954
28	19.5 - 14.5	5		18	36.654	37.404	0.50625	A572-65	0.946
29	14.5 - 9.5	5		18	37.404	38.155	0.49375	A572-65	0.962
30	9.5 - 4.5	5		18	38.155	38.905	0.49375	A572-65	0.954
31	4.5 - 0	4.5		18	38.905	39.580	0.4875	A572-65	0.960

TNX Section Forces

Inc	crement (fi	t):	5		Т	NX Outpu	ıt	
						M _{ux} (kip-		
	Section	He	ight (ft)	Pu	(K)	ft)	Vu	(K)
1	133	-	128		1.54	9.90		2.53
2	128	-	123		1.89	23.03		2.73
3	123	-	118		5.92	48.45		6.75
4	118	-	113		6.26	83.07		7.10
5	113	-	108		9.50	129.71		10.83
6	108	-	103		9.90	184.71		11.18
7	103	-	98		11.52	245.83		12.99
8	98	-	93		12.00	311.58		13.32
9	93	-	88		15.70	396.73		16.75
10	88	-	85.75		15.97	434.53		16.88
11	85.75	-	80.75		16.88	519.86		17.26
12	80.75	-	75.75		17.61	606.85		17.56
13	75.75	-	70.75		18.68	697.22		18.30
14	70.75	-	65.75		19.49	789.38		18.59
15	65.75	-	60.75		20.31	882.93		18.86
16	60.75	-	57.75		20.82	939.71		19.02
17	57.75	-	57.5		20.89	944.46		19.03
18	57.5	-	52.5		22.05	1040.42		19.37
19	52.5	-	47.5		23.27	1138.22		19.73
20	47.5	-	45		23.87	1187.72		19.89
21	45	-	40		25.88	1288.14		20.28
22	40	-	35		27.17	1390.25		20.58
23	35	-	30		28.47	1493.77		20.86
24	30	-	29.75		28.53	1498.98		20.86
25	29.75	-	29.5		28.60	1504.20		20.87
26	29.5	-	24.5		30.00	1609.21		21.15
27	24.5	-	19.5		31.43	1715.52		21.40
28	19.5	-	14.5		32.88	1823.02		21.63
29	14.5	-	9.5		34.34	1931.61		21.84
30	9.5	-	4.5		35.82	2041.22		22.04
31	4.5	-	0		37.17	2140.73		22.22

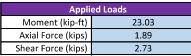
Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
133 - 128	Pole	TP14x14x0.375	Pole	5.5%	Pass
128 - 123	Pole	TP14x14x0.375	Pole	12.4%	Pass
123 - 118	Pole	TP22.75x22x0.1875	Pole	12.3%	Pass
118 - 113	Pole	TP23.5x22.75x0.1875	Pole	19.4%	Pass
113 - 108	Pole	TP24.251x23.5x0.1875	Pole	28.7%	Pass
108 - 103	Pole	TP25.001x24.251x0.1875	Pole	38.4%	Pass
103 - 98	Pole	TP25.751x25.001x0.1875	Pole	48.5%	Pass
98 - 93	Pole	TP26.501x25.751x0.1875	Pole	58.3%	Pass
93 - 88	Pole	TP27.251x26.501x0.1875	Pole	71.1%	Pass
88 - 85.75	Pole	TP28.114x27.251x0.1875	Pole	76.2%	Pass
85.75 - 80.75	Pole	TP27.964x27.214x0.25	Pole	56.9%	Pass
80.75 - 75.75	Pole	TP28.714x27.964x0.25	Pole	63.3%	Pass
75.75 - 70.75	Pole	TP29.465x28.714x0.25	Pole	69.4%	Pass
70.75 - 65.75	Pole	TP30.215x29.465x0.25	Pole	75.2%	Pass
65.75 - 60.75	Pole	TP30.965x30.215x0.25	Pole	80.6%	Pass
60.75 - 57.75	Pole	TP31.415x30.965x0.25	Pole	83.7%	Pass
57.75 - 57.5	Pole + Reinf.	TP31.453x31.415x0.4625	Reinf. 2 Tension Rupture	72.7%	Pass
57.5 - 52.5	Pole + Reinf.	TP32,203x31,453x0,4563	Reinf. 2 Tension Rupture	77.2%	Pass
52.5 - 47.5	Pole + Reinf.	TP32.953x32.203x0.45	Reinf, 2 Tension Rupture	81.4%	Pass
47.5 - 45	Pole + Reinf.	TP33.966x32.953x0.45	Reinf. 2 Tension Rupture	83.4%	Pass
45 - 40	Pole + Reinf.	TP33.578x32.828x0.4813	Reinf. 2 Tension Rupture	83.6%	Pass
40 - 35	Pole + Reinf.	TP34.329x33.578x0.4688	Reinf. 2 Tension Rupture	87.1%	Pass
35 - 30	Pole + Reinf.	TP35.079x34.329x0.4688	Reinf. 2 Tension Rupture	90.3%	Pass
30 - 29.75	Pole	TP35.116x35.079x0.2813	Pole	94.6%	Pass
29.75 - 29.5	Pole + Reinf.	TP35.154x35.116x0.5188	Reinf. 1 Tension Rupture	76.9%	Pass
29.5 - 24.5	Pole + Reinf.	TP35.904x35.154x0.5125	Reinf. 1 Tension Rupture	79.6%	Pass
24.5 - 19.5	Pole + Reinf.	TP36.654x35.904x0.5063	Reinf. 1 Tension Rupture	82.1%	Pass
19.5 - 14.5	Pole + Reinf.	TP37.404x36.654x0.5063	Reinf. 1 Tension Rupture	84.5%	Pass
14.5 - 9.5	Pole + Reinf.	TP38.155x37.404x0.4938	Reinf. 1 Tension Rupture	86.8%	Pass
9.5 - 4.5	Pole + Reinf.	TP38.905x38.155x0.4938	Reinf. 1 Tension Rupture	88.9%	Pass
4.5 - 0	Pole + Reinf.	TP39.58x38.905x0.4875	Reinf. 1 Tension Rupture	90.8%	Pass
				Summary	
			Pole	94.6%	Pass
			Reinforcement	90.8%	Pass
			Overall	94.6%	Pass

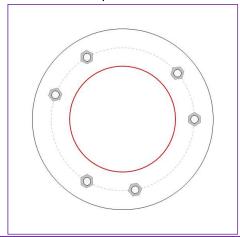
Additional Calculations

Section	Mom	ent of Inertia	a (in ⁴)		Area (in²)		% Ca _l	pacity*	
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2
133 - 128	373	n/a	373	16.05	n/a	16.05	5.5%		
128 - 123	373	n/a	373	16.05	n/a	16.05	12.4%		
123 - 118	863	n/a	863	13.43	n/a	13.43	12.3%		
118 - 113	952	n/a	952	13.87	n/a	13.87	19.4%		
113 - 108	1047	n/a	1047	14.32	n/a	14.32	28.7%		
108 - 103	1148	n/a	1148	14.77	n/a	14.77	38.4%		
103 - 98	1256	n/a	1256	15.21	n/a	15.21	48.5%		
98 - 93	1369	n/a	1369	15.66	n/a	15.66	58.3%		
93 - 88	1490	n/a	1490	16.11	n/a	16.11	71.1%		
88 - 85.75	1546	n/a	1546	16.31	n/a	16.31	76.2%		
85.75 - 80.75	2133	n/a	2133	21.99	n/a	21.99	56.9%		
80.75 - 75.75	2311	n/a	2311	22.59	n/a	22.59	63.3%		
75.75 - 70.75	2499	n/a	2499	23.18	n/a	23.18	69.4%		
70.75 - 65.75	2696	n/a	2696	23.78	n/a	23.78	75.2%		
65.75 - 60.75	2904	n/a	2904	24.37	n/a	24.37	80.6%		
60.75 - 57.75	3033	n/a	3033	24.73	n/a	24.73	83.7%		
57.75 - 57.5	3044	2463	5508	24.76	18.28	43.04	45.7%		72.7%
57.5 - 52.5	3269	2577	5846	25.35	18.28	43.63	49.0%		77.2%
52.5 - 47.5	3505	2693	6198	25.95	18.28	44.23	52.1%		81.4%
47.5 - 45	3627	2752	6379	26.25	18.28	44.53	53.6%		83.4%
45 - 40	4162	2791	6953	29.72	18.28	48.00	51.8%		83.6%
40 - 35	4450	2912	7362	30.39	18.28	48.67	54.4%		87.1%
35 - 30	4750	3035	7786	31.06	18.28	49.34	56.8%		90.3%
30 - 29.75	4766	n/a	4766	31.10	n/a	31.10	94.6%		
29.75 - 29.5	4781	3842	8623	31.13	22.97	54.10	51.8%	76.9%	
29.5 - 24.5	5096	4001	9097	31.80	22.97	54.77	54.0%	79.6%	
24.5 - 19.5	5425	4162	9588	32.47	22.97	55.44	56.2%	82.1%	
19.5 - 14.5	5768	4327	10095	33.14	22.97	56.11	58.3%	84.5%	
14.5 - 9.5	6125	4495	10620	33.81	22.97	56.78	60.4%	86.8%	
9.5 - 4.5	6496	4667	11163	34.48	22.97	57.45	62.3%	88.9%	
4.5 - 0	6843	4824	11666	35.08	22.97	58.05	64.1%	90.8%	

Note: Section capacity checked using 5 degree increments.
Rating per TIA-222-H Section 15.5.


Monopole Flange Plate Connection

Elevation = 123 ft.


BU#	876382
Site Name	LIN / LAVIANA ORCHA
Order #	556603 Rev 4

TIA-222 Revision	Н

^{*}TIA-222-H Section 15.5 Applied

Top Plate - External

Connection Properties

Bolt Data

(6) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 19" BC

Top Plate Data

24" OD x 1.5" Plate (A572-65; Fy=65 ksi, Fu=80 ksi)

Top Stiffener Data

N/A

Top Pole Data

14" x 0.375" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Plate Data

16" ID x 0.75" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

22" x 0.1875" 18-sided pole (A607-60; Fy=60 ksi, Fu=75 ksi)

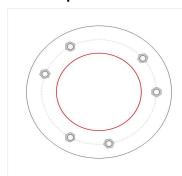
Analysis Results									
Bolt Capacity									
Max Load (kips) 9.3	.37								
Allowable (kips) 54.	1.54								
Stress Rating: 16.	5.4% Pass								

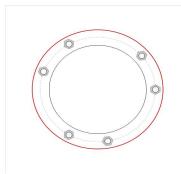
Top Plate Capacity

Max Stress (ksi):	5.02	(Flexural)
Allowable Stress (ksi):	58.50	
Stress Rating:	8.2%	Pass
Tension Side Stress Rating:	5.1%	Pass

Bottom Plate Capacity

Max Stress (ksi):	14.93	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	43.9%	Pass
Tension Side Stress Rating:	N/A	


CCIplate

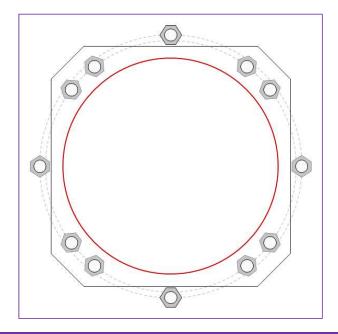

Elevation (ft) 123 (Flange)

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	
1	Yes	Yes	Yes	

Custom	Custom Bolt Connection											
Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	Material	Bolt Circle (in)	<u>Eta Factor, η:</u>	I _{ar} (in):	Thread Type	Area Override, in^2	Tension Only		
1	1	0	1	A325	19	0.5	0	N-Included		No		
2	1	40	1	A325	19	0.5	0	N-Included		No		
3	1	120	1	A325	19	0.5	0	N-Included		No		
4	1	160	1	A325	19	0.5	0	N-Included		No		
5	1	240	1	A325	19	0.5	0	N-Included		No		
6	1	280	1	A325	19	0.5	0	N-Included		No		

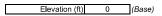
Plot Graphic

Monopole Base Plate Connection



Site Info		
	BU#	876382
	Site Name	RLIN / LAVIANA ORCHA
	Order#	556603 Rev 4

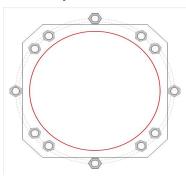
Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	See Custom Sheet
I _{ar} (in)	See Custom Sheet


Applied Loads						
Moment (kip-ft)	2140.73					
Axial Force (kips)	37.17					
Shear Force (kips)	22.22					

^{*}TIA-222-H Section 15.5 Applied

Analysis Results					
Anchor Rod Summary	(u.	nits of kips, kip-in)			
GROUP 1:					
Pu_t = 175.59	$\phi Pn_t = 243.75$	Stress Rating			
Vu = 2.78	φVn = 149.1	68.6%			
Mu = n/a	φMn = n/a	Pass			
GROUP 2:					
Pu_t = 188.57	φPn_t = 243.75	Stress Rating			
Vu = 0	φVn = 149.1	73.7%			
Mu = n/a	φMn = n/a	Pass			
Base Plate Summary					
Max Stress (ksi):	25.83	(Flexural)			
Allowable Stress (ksi):	49.5				
Stress Rating:	49.7%	Pass			
	Anchor Rod Summary GROUP 1: Pu_t = 175.59 Vu = 2.78 Mu = n/a GROUP 2: Pu_t = 188.57 Vu = 0 Mu = n/a Base Plate Summary Max Stress (ksi): Allowable Stress (ksi):	Anchor Rod Summary (u GROUP 1: Pu_t = 175.59 φPn_t = 243.75 Vu = 2.78 φVn = 149.1 φMn = n/a Mu = n/a φMn = n/a φPn_t = 243.75 Vu = 0 φVn = 149.1 φMn = n/a Base Plate Summary Max Stress (ksi): 25.83 Allowable Stress (ksi): 49.5			

CCIplate



note: Bending interaction not considered when Grout Considered = "Yes"

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	Grout Considered	Apply at BARB Elevation	BARB CL Elevation (ft)
1	Yes	Yes	Yes	No	No	
2	No	No	No	No		

Custon	ı Bolt Coı	nection								
Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	<u>Material</u>	Bolt Circle (in)	Eta Factor, η:	l _{ar} (in):	Thread Type	Area Override, in^2	Tension Only
1	1	37.505283	2.25	A615-75	46	0.5	1.75	N-Included		No
2	1	52.494717	2.25	A615-75	46	0.5	1.75	N-Included		No
3	1	127.50528	2.25	A615-75	46	0.5	1.75	N-Included		No
4	1	142.49472	2.25	A615-75	46	0.5	1.75	N-Included		No
5	1	217.50528	2.25	A615-75	46	0.5	1.75	N-Included		No
6	1	232.49472	2.25	A615-75	46	0.5	1.75	N-Included		No
7	1	307.50528	2.25	A615-75	46	0.5	1.75	N-Included		No
8	1	322.49472	2.25	A615-75	46	0.5	1.75	N-Included		No
9	2	0	2.25	A615-75	48.08	0.5	1.75	N-Included		No
10	2	90	2.25	A615-75	48.08	0.5	1.75	N-Included		No
11	2	180	2.25	A615-75	48.08	0.5	1.75	N-Included		No
12	2	270	2.25	A615-75	48.08	0.5	1.75	N-Included		No

Plot Graphic

Drilled Pier Foundation

BU#: 876382	Site Name: Berlin/Laviana Orchard	556603 Rev 4	H	Monopole
BU#:	Site Name:	Order Number: 556603 Rev 4	TIA-222 Revison: H	Tower Type: Monopole

	Uplift			
Applied Loads	Comp.	2140.73	37.18	22.2
Applie		Moment (kip-ft)	Axial Force (kips)	Shear Force (kips)

				Rebar & Pier Options		Embedded Pole Inputs	Belled Pier Inputs	9						
ırties	3 ksi	60 ksi	40 ksi	Jata	20 ft	0.5 ft	11	0' below grad	1 9	16	11	4 in	2	18 in
ıl Prope				Pier Design Data			Pier Section 1	rade to 2						
Material Properties	Concrete Strength, f'c:	Rebar Strength, Fy:	Tie Yield Strength, Fyt:	Pier D	Depth	Ext. Above Grade	Pier	From 0.5' above grade to 20' below grade	Pier Diameter	Rebar Quantity	Rebar Size	Clear Cover to Ties	Tie Size	Tie Spacing

Soil Lateral Check	Compression	Uplift
D _{v=0} (ft from TOC)	c) 5.37	-
Soil Safety Factor	or 2.86	-
Max Moment (kip-ft)	t) 2245.69	-
Rating*	3* 44.3%	-
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	s) 127.23	-
End Bearing (kips)	s) 848.23	-
Weight of Concrete (kips)	s) 93.74	-
Total Capacity (kips)	s) 975.46	-
Axial (kips)	s) 130 <u>.</u> 92	-
Rating*	3* 12.8%	-
Reinforced Concrete Flexure	Compression	Uplift
S Critical Depth (ft from TOC)	c) 2.09	-
Critical Moment (kip-ft)	t) 2245.06	=
Critical Moment Capacity	ty 3351.69	-
Rating*	5* 63.8%	-
Reinforced Concrete Shear	Compression	Upliff
Critical Depth (ft from TOC)	c) 14.86	-
Critical Shear (kip)	p) 320.62	=
Critical Shear Capacity	ty 427.97	=
Rating*	3* 71.3%	-

71.3%	44.3%	on 15 E
Structural Foundation Rating*	Soil Interaction Rating*	*Dating nor TIA 222 H Coction 15 5

*Rating per TIA-222-H Section 15.5

Soil Profile

of Layers

Groundwater Depth

Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Ult. Gross Bearing SPT Blow Capacity Count (ksf)				
Ult. Gross Bearing Capacity (ksf)				40
Ultimate Skin Friction Uplift Override (ksf)	00'0	00'0	09'0	09'0
Ultimate Skin Friction Comp Override (ksf)	00'0	00'0	09'0	09'0
Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Priction Comp Friction Uplift Override (ksf) (ksf) (ksf)	0000	0000	0000	0000
Calculated Ultimate Skin Friction Comp (ksf)	000'0	000'0	000'0	000'0
Angle of Friction (degrees)	0	38	38	38
Cohesion (ksf)	0	0	0	0
Y _{concrete} (pcf)	150	150	150	9.78
Y _{soil} (pcf)	135	135	135	75
Thickness (ft)	3.33	1.67	10	2
Bottom (ft)	3,33	5	15	20
Top (ft)	0	3.33	2	15
Layer	1	2	3	4

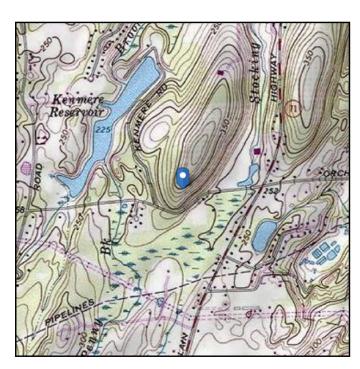
Check Limitation	Apply TIA-222-H Section 15.5:	N/A	Additional Longitudinal Rebar	Input Effective Depths (else Actual):	Shear Design Options	Check Shear along Depth of Pier:	Utilize Shear-Friction Methodology:	Override Critical Depth:	Go to Soil Calculations
.	Apply TIA		Addition	Input Effective	She	Check Shear	Utilize Shear-F	^O	

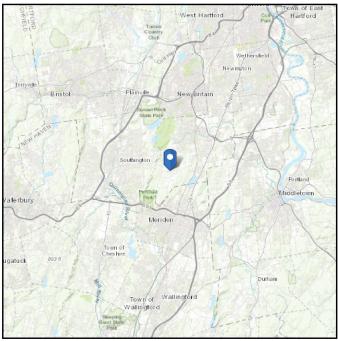
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16 Elevation


Risk Category: ||


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 345.04 ft (NAVD 88)

Latitude: 41.589742 **Longitude:** -72.805333

Wind

Results:

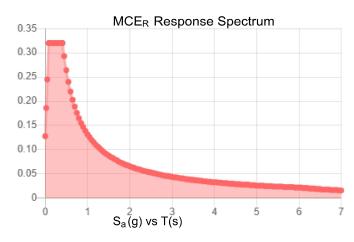
Wind Speed 118 Vmph
10-year MRI 75 Vmph
25-year MRI 84 Vmph
50-year MRI 90 Vmph
100-year MRI 98 Vmph

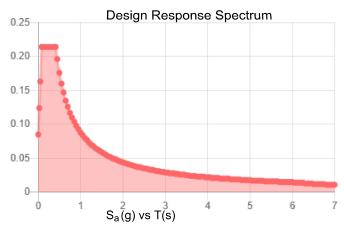
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

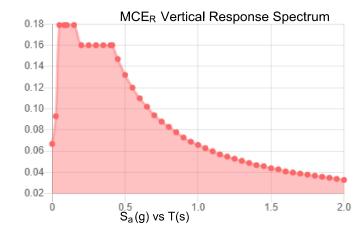
Date Accessed: Thu Feb 17 2022

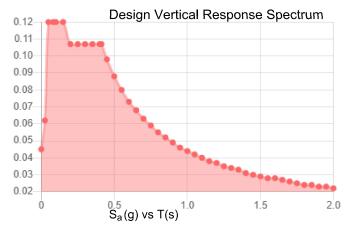
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


S _s :	0.2	S _{D1} :	0.088
S ₁ :	0.055	T _L :	6
F _a :	1.6	PGA:	0.11
F _v :	2.4	PGA _M :	0.174
S _{MS} :	0.32	F _{PGA} :	1.579
S _{M1} :	0.132	l _e :	1
S _{DS} :	0.214	C _v :	0.7

Seismic Design Category B

Data Accessed: Thu Feb 17 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Thu Feb 17 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: August 2, 2021

Darch Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 704-405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Equipment Change Out

Carrier Site Number: BOBDL00095A
Carrier Site Name: CT-CCI-T-876382

Crown Castle Designation: Crown Castle BU Number: 876382

Crown Castle Site Name: BERLIN / LAVIANA ORCHARD

Crown Castle JDE Job Number: 650080

Crown Castle Order Number: 556603 Rev. 0

Engineering Firm Designation: Trylon Report Designation: 189195

Site Data: 1684 Chamberlain Highway, Berlin, Hartford County, CT, 06037

Latitude 41°35'23.07" Longitude -72°48'19.20"

Structure Information: Tower Height & Type: 133.0 ft Monopole

Mount Elevation: 111.0 ft
Mount Type: 8.0 ft Platform

Dear Darch Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient*

*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Steve Mustaro, P.E.

Respectfully Submitted by: Cliff Abernathy, P.E.

No. 31022

No. 31022

ENSEMBLE Rightally signed by Cliff Abernathy Abernathy Date: 2021.08.02 16:29:56-04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed three sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC / 2018 CTSBC

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 125 mph

Exposure Category: Topographic Factor at Base: 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.183 Seismic S₁: 0.063 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

	Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
	444.0	111.0	3	JMA WIRELESS	MX08FRO665-21	O O # Dlotform
			3	FUJITSU	TA08025-B604	8.0 ft Platform [Commscope MC-
111.0	111.0		3	FUJITSU	TA08025-B605	PK8-DSH1
ĺ			1	RAYCAP	RDIDC-9181-PF-48	FK0-D3H]

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source	
Crown Application	Dish Network Application	556603 Rev. 0	CCI Sites	
Mount Manufacturer Drawings	Commscope	MC-PK8-DSH	Trylon	

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

ASTM A36 (GR 36)

HSS (Rectangular)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

e may be affected if any assumptions are not valid or have been made in error. Trylo

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

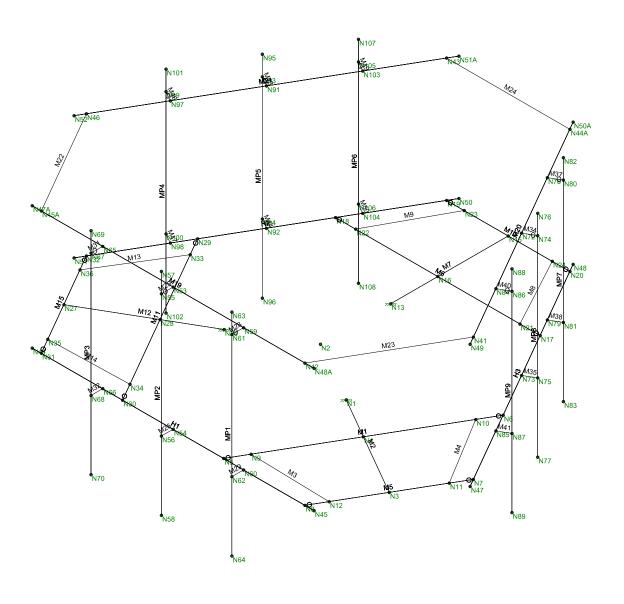
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP5		38.1	Pass
	Horizontal(s)	H2		11.9	Pass
1, 2	Standoff(s)	M2	111.0	46.1	Pass
1, 2	Bracing(s)	M1	111.0	38.3	Pass
	Handrail(s)	M19		13.8	Pass
	Mount Connection(s)	-		16.6	Pass

Structure Rating (max from all components) =	46.1%
Consider the contract of the c	

Notes:

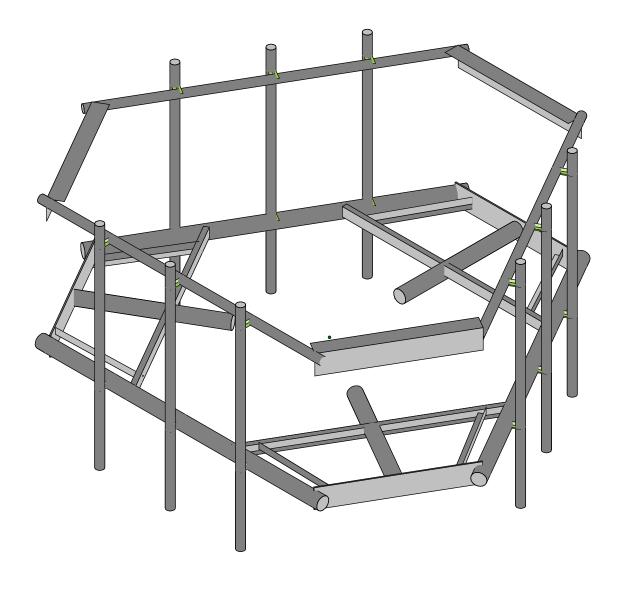
- 1) See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity consumed
- 2) Rating per TIA-222-H, Section 15.5

4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

Commscope MC-PK8-DSH.

No structural modifications are required at this time, provided that the above-listed changes are implemented.


APPENDIX A WIRE FRAME AND RENDERED MODELS

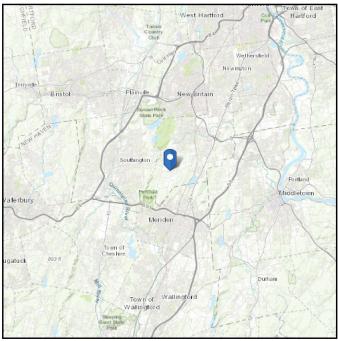
Trylon		Wireframe
SMM	876382	Aug 2, 2021 at 10:52 AM
189195		876382_loaded.r3d

Trylon		Render
SMM	876382	Aug 2, 2021 at 10:52 AM
189195		876382_loaded.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 345.04 ft (NAVD 88)

Risk Category: || Latitude: 41.589742

Soil Class: D - Stiff Soil Longitude: -72.805333

Ice

Results:

Ice Thickness:0.75 in.Concurrent Temperature:5 FGust Speed:50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Aug 02 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

CONNECTICUT DESIGN CRITERIA - STATE

7/30/2021

R-400

Revison:

CT is NOT a Home Rule State; Tab added only for Design Criteria (APPENDIX N) MUNICIPALITY - SPECIFIC STRUCTURAL DESIGN PARAMETERS

		ırricane- Regions	H Prone	Yes
		Wind-Borne Debris Regions¹	Risk Cat. II Risk Cat III & III except Occup I-2 & Occup I-2	
		Nominal Design Wind Speeds, V_{asd} (mph)	Risk Cat. II & III except Occup I-2	
			Risk Cat. III-IV	105
			Risk Cat.	6
: I ERS			Risk Cat.	89
FIC STRUCTURAL DESIGN PARAMETERS	Wind Design Parameters		Risk Cat III- Risk Cat. Risk Cat. III Risk Cat III III-IV & III except Occup I-2 & Risk Cat. IV Occup I-2 Risk Cat. IV	135
AAL DEGI				125
RUCIO		Ultii Sp	S ₁ Risk Risk Cat.I Cat.II	.063 115
		MCE Spectral Accelerations (%g)	လ	0.063
- III 2FI		M Spe Accelerat	တိ	0.183
MICIPAL		won2 b		30
(AFFENDIA N) MUNICIPALII I - SPECI		ipality	oinuM	Berlin

1. Wind-Borne Debris Regions: Ty

Type A: Full Municipality.

Type B: Areas south of Interstate 95.

Exception: Areas that are more than one mile from the coastal mean high-water line as certified by a registered design professional may be classified as being outside a windborne debris region. Areas south of Metro North/Amtrak Railroad to the west of the Quinnipiac River and areas south Exception: Areas that are more than one mile from the coastal mean high-water line as of Interstate 95 to the east of the Quinnipiac River.

Type C:

Exception: Areas that are more than one mile from the coastal mean high-water line as certified by a registered design professional may be classified as being outside a windborne debris region.

TIA LOAD CALCULATOR 2.0

PROJECT DATA	
Job Code:	189195
Carrier Site ID:	BU# 876382
Carrier Site Name:	ERLIN / LAVIANA ORCHAF

CODES AND S	TANDARDS
Building Code:	2015 IBC
Local Building Code:	2018 CTSBC
Design Standard:	TIA-222-H

STRUCTURE DETAILS		
Mount Type:	Platform	
Mount Elevation:	111.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	
Structure Height:	133.0	ft.

ANALYSIS (CRITERIA	
Structure Risk Category:	=	
Exposure Category:	С	
Site Class:	D - Default	
Ground Elevation:	345.04	ft.

TOPOGRAP	HIC DATA	
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAM	ETERS	
Design Wind Speed:	125	mph
Wind Escalation Factor (K _s):	1.00	
Velocity Coefficient (Kz):	1.29	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (qz):	48.55	psf

ICE PARAME	TERS	
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	-
Ice Velocity Pressure (qzi):	48.55	psf
Mount Ice Thickness (t _{iz}):	1.69	in

WIND STRUCTURE C	ALCULATIONS	
Flat Member Pressure:	87.39	psf
Round Member Pressure:	52.44	psf
Ice Wind Pressure:	7.32	psf

SEISMIC PARAMETERS		
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.18	g
1 Second Accel (S ₁):	0.06	g
Short Period Des. (S_{DS}) :	0.20	g
1 Second Des. (S _{D1}):	0.10	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.10	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI 0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 300 AZI 0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI 1.2DL + 1DLi + 1WLi 0 AZI
	1.2DL + 1DLi + 1WLi 30 AZI
35	
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	111	No Ice	12.49	5.87	82.50
MP2/MP5/MP8, 330/120/230			w/ Ice	13.69	6.97	277.27
TA08025-B604	3	111	No Ice	1.96	0.98	63.90
MP2/MP5/MP8, 330/120/230			w/ Ice	2.38	1.30	67.99
TA08025-B605	3	111	No Ice	1.96	1.13	75.00
MP2/MP5/MP8, 330/120/230			w/ Ice	2.38	1.46	72.44
RDIDC-9181-PF-48	1	111	No Ice	2.01	1.17	21.85
MP2, 330/0/0			w/ Ice	2.43	1.52	71.40
			No Ice			
	-		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	\boldsymbol{t}_d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	111	1.00	1.29	0.95	1.69	48.55	7.77
TA08025-B604	3	111	1.00	1.29	0.95	1.69	48.55	7.77
TA08025-B605	3	111	1.00	1.29	0.95	1.69	48.55	7.77
RDIDC-9181-PF-48	1	111	1.00	1.29	0.95	1.69	48.55	7.77

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	545.72	328.69	473.38	256.35	473.38	328.69
MP2/MP5/MP8, 330/120/230		w/ Ice	95.70	60.46	83.95	48.71	83.95	60.46
TA08025-B604	3	No Ice	85.80	53.60	75.07	42.87	75.07	53.60
MP2/MP5/MP8, 330/120/230		w/ Ice	16.62	10.99	14.74	9.11	14.74	10.99
TA08025-B605	3	No Ice	85.80	58.47	76.69	49.35	76.69	58.47
MP2/MP5/MP8, 330/120/230		w/ Ice	16.62	11.84	15.03	10.24	15.03	11.84
RDIDC-9181-PF-48	1	No Ice	87.91	60.26	78.70	51.05	78.70	60.26
MP2, 330/0/0		w/ Ice	17.00	12.21	15.40	10.61	15.40	12.21
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		w/ ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F p [lbs]
MX08FRO665-21	3	111	82.5	9.66
TA08025-B604	3	111	63.9	7.48
TA08025-B605	3	111	75	8.78
RDIDC-9181-PF-48	1	111	21.85	2.56

APPENDIX C SOFTWARE ANALYSIS OUTPUT

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include S hear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AIS I S 100-16: LRF D
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	AC I 318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM 1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Aug 2, 2021 11:09 AM Checked By:___

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
O m Z	1
O m X	1
C d Z	1
CdX	1
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 G r.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft ^3]	Yie l d[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single An	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	L6 5/8x4 7/16x3/16	Beam	Single An	A36 Gr.36	Typical	2.039	3.593	9.575	.023
7	Horizontals	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

Company Designer Job Number : Trylon : SMM : 189195 : 876382

Aug 2, 2021 11:09 AM Checked By:__

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
8	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Cold Formed Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	CF1A	8C U1.25X 0	Beam	None	A653 S S G r33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	A rea (Me	Surface(P
1	Self Weight	DL		-1			13		3	
2	Structure Wind Z	WLZ						33		
3	Structure Wind X	WLX						33		
4	Wind Load 0 AZI	WLZ					13			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLX					13			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	Ice Weight	OL1					13	33	3	
13	Ice Structure Wind Z	OL2						33		
14	Ice Structure Wind X	OL3						33		
15	Ice Wind Load 0 AZ I	OL2					13			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					13			
20	Ice Wind Load 120 AZ I	None					26			
21	Ice Wind Load 135 AZI	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load Z	ELZ			117		13			
24	Seismic Load X	ELX	117				13			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			

Aug 2, 2021 11:09 AM Checked By:___

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	P oint	Distributed	A rea (Me	Surface(P
34	Maintenance Load 1 (None					1			
35	Maintenance Load 2 (None					1			
36	Maintenance Load 3 (None					1			
37	Maintenance Load 4 (None					1			
38	Maintenance Load 5 (None					1			
39	Maintenance Load 6 (None					1			
40	Maintenance Load 7 (None					1			
41	Maintenance Load 8 (None					1			
42	Maintenance Load 9 (None					1			
43	BLC 1 Transient Area	None						9		
44	BLC 12 Transient Are	None						9		

Load Combinations

	Des cription	SoF	· (S BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1	1.4DL	Yes		DL	1.4																		
2	1.2DL + 1WL 0 AZI			DL	1.2	2	1	3		4	1												
3	1.2DL + 1WL 30 AZI			DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI	Yes	Υ	DL	1.2	2	.707	3	.707	6	1												
5	1.2DL + 1WL 60 AZI			DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI			DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZ		-	DL	1.2	2	5	3	.866		1												
8	1.2DL + 1WL 135 AZ		•	DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1WL 150 AZ		-	DL		2	866	3	.5	11	1												
10	1.2DL + 1WL 180 AZ		•	DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1WL 210 AZ			DL	1.2	_	866	3	5	5	-1												
	1.2DL + 1WL 225 AZ			DL	1.2		707	3	707	6	-1												
	1.2DL + 1WL 240 AZ			DL	1.2	2	5	3	866	7	-1												
14	1.2DL + 1WL 270 AZ			DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1WL 300 AZ			DL	1.2	2	.5	3	866	9	-1												
16	1.2DL + 1WL 315 AZ			DL	1.2	2	.707	3	707	10	-1												
17	1.2DL + 1WL 330 AZ			DL	1.2	2	.866	3	5	11	-1												
18	0.9DL + 1WL 0 AZI			DL	.9	2	1	3		4	1												
19	0.9DL + 1WL 30 AZI	Yes	Υ	DL	.9	2	.866	3	.5	5	1												
20	0.9DL + 1WL 45 AZI			DL	.9	2	.707	3	.707	6	1												
21	0.9DL + 1WL 60 AZI			DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1WL 90 AZI			DL	.9	2		3	1	8	1												
	0.9DL + 1WL 120 AZ		_	DL	.9	2	5	3	.866		1												
	0.9DL + 1WL 135 AZ		-	DL	.9	2	707	3	.707	10	1												
	0.9DL + 1WL 150 AZ		•	DL	_	2	866	3	.5	11	1												
	0.9DL + 1WL 180 AZ			DL	_	2	-1	3		4	-1												
	0.9DL + 1WL 210 AZ		-	DL	_	_	866	3	5	5	-1												
	0.9DL + 1WL 225 AZ			DL		2	707	3	707		-1												
	0.9DL + 1WL 240 AZ		-	DL	.9	2	5	3	866	_	-1												
	0.9DL + 1WL 270 AZ			DL		2		3	-1	8	-1												
	0.9DL + 1WL 300 AZ			DL		2	.5	3	866	_	-1												
	0.9DL + 1WL 315 AZ		•	DL		2	.707	3	707	10	-1												
	0.9DL + 1WL 330 AZ		-	DL		2	.866	3	5	11	-1												
	1.2DL + 1DLi + 1W L.		-	DL				13		14		15	1										
	1.2DL + 1DLi + 1W L.		-	DL		_			.866		.5	16	1										
36	1.2DL + 1DLi + 1W L.	. Y es	Υ	DL	1.2	OL1	1	13	.707	14	.707	17	1										

Aug 2, 2021 11:09 AM Checked By:___

Load Combinations (Continued)

	Description SoF	> S	BLCFac	BLC	Eac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
37		Y	DL 1.			13			.866				1 40		1 40		1 40		1 40		1 40
38	1.2DL + 1DLi + 1W L Yes		DL 1.			13		14	1	19											
39	1.2DL + 1DLi + 1W L Yes		DL 1.				5														
40	1.2DL + 1DLi + 1W L Yes		DL 1.				707														
41	1.2DL + 1DLi + 1W L Y es		DL 1.				866			22	_										
42	1.2DL + 1DLi + 1W L Y es		DL 1.			13		14		15											
43	1.2DL + 1DLi + 1W L Yes		DL 1.				866		- 5												
44	1.2DL + 1DLi + 1W L Yes		DL 1.				707														
45	1.2DL + 1DLi + 1W L Yes		DL 1.			13			866												
46	1.2DL + 1DLi + 1W L Yes		DL 1.			13		14		19											
47	1.2DL + 1DLi + 1W L Yes		DL 1.			13			866												
48	1.2DL + 1DLi + 1W L Yes		DL 1.				.707														
49	1.2DL + 1DLi + 1W LYes		DL 1.				.866														
50	(1.2+0.2Sds)DL + 1 Yes		DL 1.2			24	.000	14	5	22											
	(1.2+0.2Sds)DL + 1 Yes	-	DL 1.2				.5														
51	(1.2+0.2Sds)DL + 1 Yes		DL 1.2				.707														
	(1.2+0.2Sds)DL + 1 Yes		DL 1.2				.866														
53 54			DL 1.2			24															
	(1.2+0.2Sds)DL + 1 Yes		DL 1.2																		
55 56	· · · · · · · · · · · · · · · · · · ·		DL 1.2		5 - 707		.866														
	(1.2+0.25 ds)DL + 1 Yes	-	DL 1.2																		
57	(1.2+0.2Sds)DL + 1 Yes																				
58	(1.2+0.2Sds)DL + 1 Yes	•	DL 1.2			24															
59	(1.2+0.2Sds)DL + 1 Yes		DL 1.2																		
60	(1.2+0.25 ds)DL + 1 Yes		DL 1.2			_															
61	(1.2+0.2Sds)DL + 1 Yes		DL 1.2	_	5	_	866														
62	(1.2+0.25 ds)DL + 1 Yes		DL 1.2			24															
63	1	-	DL 1.2				866														
64	(1.2+0.2S ds)DL + 1 Yes		DL 1.2				707														
65	(1.2+0.2Sds)DL + 1 Yes		DL 1.2		.866		5														
66	(0.9-0.2Sds)DL + 1EYes	-	DL .86			24	_														
67	(0.9-0.2Sds)DL + 1EYes		DL .86																		
68	(0.9-0.2Sds)DL + 1EYes (0.9-0.2Sds)DL + 1EYes	-	DL .86				.707														
69	1	-	DL .86			_	.866														
70	(0.9-0.2Sds)DL + 1EYes (0.9-0.2Sds)DL + 1EYes	-	DL .86			24	1													\vdash	
71		-	DL .86				.866														
72	(0.9-0.2Sds)DL + 1EYes	-			707																
73	(0.9-0.2Sds)DL + 1EYes (0.9-0.2Sds)DL + 1EYes				866																
	(0.9-0.2Sds)DL + 1EYes		DL .86																		
	(0.9-0.2Sds)DL + 1EYes		DL .86																		
			DL .86																		
	(0.9-0.2Sds)DL + 1EYes		DL .86																		
	(0.9-0.2Sds)DL + 1EYes		DL .86				-1														
	(0.9-0.2Sds)DL + 1EYes		DL .86																		
80			DL .86																		
81	(0.9-0.2Sds)DL + 1EYes		DL .86	_		24	5														
82	1.2DL + 1Lv1 Yes		DL 1.																		
83	1.2DL + 1Lv2 Yes	_	DL 1.																		
84	1.2DL + 1Lv3 Yes		DL 1.	_																	
85	1.2DL + 1Lv4 Yes		DL 1.																		
86	1.2DL + 1Lv5 Yes		DL 1.																		
87	1.2DL + 1Lv6 Yes		DL 1.																		
88	1.2DL + 1Lv7 Yes	Υ	DL 1.	<u> 2 31</u>	1.5																

Aug 2, 2021 11:09 AM Checked By:____

Load Combinations (Continued)

Description So	P S	BLC Fac	BLC Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
89 1.2DL + 1Lv8 Ye	s Y	DL 1.2	32 1.5																
90 1.2DL + 1Lv9 Ye	s Y	DL 1.2	33 1.5																
91 1.2DL + 1.5Lm +1 Ye	s Y	DL 1.2	34 1.5	2	.058	3		4	.058										
92 1.2DL + 1.5Lm + 1 Ye	s Y		34 1.5	2	.05	3	.029	5	.058										
93 1.2DL + 1.5Lm + 1 Ye	s Y	DL 1.2		2	.041		.041	6	.058										
94 1.2DL + 1.5Lm + 1 Ye	s Y		34 1.5	2	.029	3	.05	7	.058										
95 1.2DL + 1.5Lm + 1 Ye	s Y	DL 1.2		2		3	.058	8	.058										
96 1.2DL + 1.5Lm + 1 Ye	s Y	_	34 1.5		029		.05		.058										
97 1.2DL + 1.5Lm + 1 Ye	s Y	DL 1.2		_	041		.041		.058									П	
98 1.2DL + 1.5Lm + 1 Ye			34 1.5		05		.029		.058										
99 1.2DL + 1.5Lm + 1 Ye	s Y	DL 1.2			058				058									П	
100 1.2DL + 1.5Lm +1 Ye			34 1.5		05	_	029	_	058										
101 1.2DL + 1.5Lm +1 Ye		DL 1.2			041		041												
102 1.2DL + 1.5Lm +1 Ye			34 1.5	_	029	_	05	_	058										
103 1.2DL + 1.5Lm +1 Ye		DL 1.2		2			058		058										
104 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.029	_	05	_											
105 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.041	_	041	_											
106 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.05		029												
107 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.058			4	.058										
108 1.2DL + 1.5Lm +1 Ye			35 1.5	2	.05	3	.029	_	.058										
109 1.2DL + 1.5Lm +1 Ye			35 1.5	2	.041	3	.041		.058										
110 1.2DL + 1.5Lm +1 Ye			35 1.5	2	.029		.05	_	.058										
111 1.2DL + 1.5Lm +1 Ye			35 1.5	2	1020	3	.058	_	.058										
112 1.2DL + 1.5Lm +1 Ye			35 1.5	_	029	_	.05	9	.058										
113 1.2DL + 1.5Lm +1 Ye		DL 1.2		_	041		.041	_	.058										
114 1.2DL + 1.5Lm +1 Ye		_	35 1.5		05		.029												
115 1.2DL + 1.5Lm +1 Ye		DL 1.2			058		.020		058										
116 1.2DL + 1.5Lm +1 Ye			35 1.5	2	05		029	<u> </u>	058										
117 1.2DL + 1.5Lm +1 Ye			35 1.5		041		041	_	058										
118 1.2DL + 1.5Lm +1 Ye			35 1.5		029		05	_	058										
119 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.020		058		058										
120 1.2DL + 1.5Lm +1 Ye			35 1.5	_	.029		05	_	058										
121 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.041	_	03	_											
122 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.05	_	029	_											
123 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.058		023	4	.058										
124 1.2DL + 1.5Lm +1 Ye		DL 1.2	36 1.5	2	.05	3	.029	_	.058										
125 1.2DL + 1.5Lm +1 Ye		DL 1.2		2	.041		.023		.058										
126 1.2DL + 1.5Lm +1 Ye							.05												
127 1.2DL + 1.5Lm +1 Ye			36 1.5		.023	3	.058												
128 1.2DL + 1.5Lm +1 Ye			36 1.5 36 1.5	_	029	_	.05												
				_															
129 1.2DL + 1.5Lm + 1 Ye			36 1.5		041				.058										
	s Y		36 1.5		05		.029		.058										
131 1.2DL + 1.5Lm +1 Ye			36 1.5		058		0.20	_	058										
	s Y		36 1.5	_			029												
	s Y		36 1.5		041	_	041	_											
134 1.2DL + 1.5Lm +1 Ye			36 1.5	_	029		05		058										
135 1.2DL + 1.5Lm +1 Ye		_	36 1.5	2	020		058												
136 1.2DL + 1.5Lm +1 Ye			36 1.5	_		_	05	_											
137 1.2DL + 1.5Lm +1 Ye			36 1.5	2	.041		041												
	s Y		36 1.5	2	.05	_	029												
	s Y		37 1.5	2	.058	-	000	4	.058										
140 1.2DL + 1.5Lm +1 Ye	s Y	UL 1.2	37 1.5	2	.05	3	.029	5	.058										

Aug 2, 2021 11:09 AM Checked By:___

Load Combinations (Continued)

Description SoP S	BLC FacBLC FacI	BLC Fac.	.BLC Fac	BLCFa	acBLC Fac	BLCFac	cBLC Fac	BLC	FacF	BLC F	ac.
141 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 37 1.5	2 .041			058						
142 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 37 1.5	2 .029			58						
143 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 37 1.5	2	3 .058	8 .0	58					\neg	
144 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 37 1.5	2029		_	58						
145 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	2041		10 .0	58						
146 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 37 1.5	205	-		058						
147 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	2058	-)58						
148 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	205)58						
149 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	2041)58						
150 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	2029		_)58						
151 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	2	3058	_)58						
152 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	2 .029									
153 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	2 .041		100							
154 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 37 1.5	2 .05		110							
155 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2 .058			058						
156 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2 .05			058						
157 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2 .041			58						
158 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2 .029		_	058						
159 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 38 1.5	2 .023	3 .058	_	58						
160 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 38 1.5	2029		_	158						
161 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2041									
162 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	205			058						
163 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2058)58						
164 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	205)58						
165 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2041		_)58						
166 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2029		_)58						
167 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2	3058)58						
168 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2 .029		_							
169 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2 .041		100							
170 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 38 1.5	2 .05		110							
171 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2 .058)58						
172 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2 .05			58						
173 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2 .041			58						
174 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2 .029		_)58						
175 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2	3 .058	-)58						
176 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2029)58						
177 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2041		10 .0							
178 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5		3 .029								
179 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2058		40							
180 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5		3029								
181 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2041									
182 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2029		70							
183 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2		80							
184 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2 .029		90							
185 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2 .041		100							
186 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 39 1.5	2 .05		110							
187 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5	2 .058			58						
188 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5	2 .05			58						
189 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5	2 .041)58						
190 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 40 1.5	2 .029		_)58						
191 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5	2	3 .058)58						
192 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5										
102 11222 1132111 1 1111 1 30 1	DL 1.2 40 1.3	2 .020	0 1.00	J .0							

Aug 2, 2021 11:09 AM Checked By:___

Load Combinations (Continued)

Description SoPS	. BLC FacBLC FacBLC FacE	BLC FacB	LC FacBL0	FacBLCI	acBLC Fac.	.BLC Fac	BLC Fac
193 1.2DL + 1.5Lm +1 Yes Y		3 .041 1					
194 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5 205						
195 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5 2058		4058				
196 1.2DL + 1.5Lm +1 Yes Y		3029	5058				
197 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5 2041		6058				
198 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5 2029	305					
199 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5 2	3058	8058				
200 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5 2 .029	305	9058				
201 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5 2 .041	3041 1	10058				
202 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 40 1.5 2 .05	3029 1	11058				
203 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2 .058	3	4 .058				
204 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2 .05	3 .029	5 .058				
205 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2 041	3 .041	6 .058				
206 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2 .029		7 .058				
207 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2	3 .058					
208 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2029	3 .05	9 .058				
209 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2041	3 .041 1	10 .058				
210 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 205	3 .029 1	11 .058				
211 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2058		4058				
212 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 205	3029	5058				
213 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2041		6058				
214 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2029		7058				
215 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2	3058	8058				
216 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2 .029		9058				
217 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2 041		10058				
218 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 41 1.5 2 .05	3029 1					
219 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 42 1.5 2 .058		4 .058				
220 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 42 1.5 2 .05	3 .029					
221 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2 .041		6 .058				
222 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2 .029		7 .058				
223 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2		8 .058				
224 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 42 1.5 2029		9 .058				
225 1.2DL + 1.5Lm +1 Yes Y	DL 1.2 42 1.5 2041	3 .041 1					
226 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 205	3 .029 1					
227 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2058		4058				
228 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 205	3029					
229 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2041		6058				
230 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2029		7058				
231 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2	3058					
232 1.2DL + 1.5Lm + 1 Yes Y			9058				
233 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2 .041		10058				
234 1.2DL + 1.5Lm + 1 Yes Y	DL 1.2 42 1.5 2 .05	3029 1	11058				

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1183.31	20	1883.849	39	2024.913	3	376.201	18	2280.038	3	210.835	30
2		min	- 1190.227	12	25.072	31	-2020.47	27	-2040.759	42	-2279.453	27	-3282.05	38
3	N1	max	1155.352	8	1887.266	45	1859.367	17	396.445	19	2102.953	25	3289.147	45
4		min	-1148.527	32	4.333	21	-1855	25	- 2043.206	43	-2103.636	17	-261.542	21
5	N13	max	1899.39	22	1818.908	34	481.556	18	3701.663	34	1796.805	14	688.938	167

Aug 2, 2021 11:09 AM Checked By:__

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [b]	LC	Z [l b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
6		min	-1899.265	30	-41.654	26	-490.754	10	-414.325	26	- 1796.878	6	-688.983	223
7	Totals:	max	3525.32	22	5294.964	42	3952.596	18						
8		min	-3525.32	30	1345.794	66	-3952.597	10						

Envelope AISC 15th (360-16): LRFD Steel Code Checks

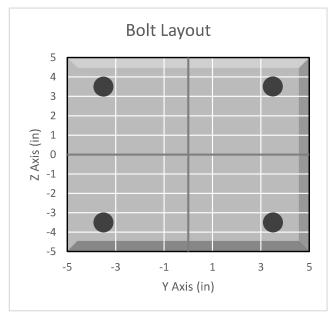
	Member	Shape	Code Check	Loc[in]	LC	S hea	Loc	L	ph	i*Pn	.phi*Pn	phi*	Mn	ohi*Mn		Eqn	
1	M2	PPE_3.5	.484	40	45	.187	40				7875						
2	M12	PIPE_3.5	.483	40	39	.200	40	1	1 75	262	7875	ე 7953	3.75	7953.7	5 2	.H1-1I	b
3	M7	PPE_3.5	.466	40	34	.166	40		3 75	262	7875	ე 7953	3.75	7953.7	5 2	.H1-1I	b
4	M1	C3X5	.402	34.856	45	.138	6.536	уЗ	4 11	202	4762	981.	263	4104	1	.H1-1I	b
5	M11	C3X5	.402	34.856	41	.138	63	y 3	4 11	202	4762	981.	263	4104	1	.H1-1I	b
6	MP5	P P E _ 2.0	.400	48	10	.063	48				3213						
7	MP4	PPE_2.0	.388	48	10	.032	48	4	4 20	866	3213) 187 [,]	1.6	1871.6	1	.H1-1I	b
8	M6	C3X5	.384	34.856	34	.131	63	y 4	5 37	027	4762	981.	263	4020.2	1	H1-11	b
9	MP2	PIPE_2.0	.368	48	4	.057	48	1	5 20	866	3213	ე 187 ⁻	1.6	1871.6	1	.H1-1I	b
10	MP3	PIPE_2.0	.360	48	4	.043	48				3213						
11	MP8	PPE_2.0	.356	48	4	.051	48				3213						
12	MP1	PPE_2.0	.353	48	15	.055	48	1	0 20	866	3213	ე 187 [,]	1.6	1871.6	2	.H1-1I	b
13	MP6	PIPE_2.0	.338	48	2	.047	48				3213						
14	MP9	PIPE_2.0	.338	48	10	.035	48	1	4 20	866	3213	ງ 187 [,]	1.6	1871.6	1	.H1-1I	b
15	MP7	PIPE_2.0	.337	48	4	.044	48	1	5 20	866	3213	ງ 187 [,]	1.6	1871.6	2	.H1-1I	b
16	M10	6.5"x0.37	.277	21	2	.085	21	уЗ	35	13.8	.75757.	5 583.	963	6164.3	1	.H1-1I	b
17	M5	6.5"x0.37	.275	21	12	.088	21				.75757.						
18	M15	6.5"x0.37	.261	21	8	.088	21				75757.						
19	M4	L2x2x3	.195	0	13	.029	0				23392.						
20	M9	L2x2x3	.184	0	2	.028	0	y 4	6 18	051	23392.	8 557.	717	1239.2	9 2	H2-1	1
21	M13	L2x2x3	.171	0	7	.029	0				23392.						_
22	М3	L2x2x3	.165	0	12	.029	0				23392.						
23	M8	L2x2x3	.161	0	2	.028	0				23392.						
24	M14	L2x2x3	.160	0	8	.029	0				23392.						
25	M19	PIPE_2.0	.145	24	10	.136	24				3213						
26	M21	PIPE_2.0	.138	72	4	.127	24	1	2 14	916	3213	ე 187 [,]	1 . 6′	1871.6	1	.H1-1I	b
27	M20	PIPE_2.0	.132	24	16	.116	24				3213						
28	M23	L6 5/8x4	.129	42	33	.035	42	y 1	7 15	453	.66065.	1040) . 5	3031.0	2	H2-1	1
29	M24	L6 5/8x4	.126	24.063	18	.031	42				.66065.						
30	H2	PIPE_3.5	.125	65	26	.087	72				7875						
31	M22	L6 5/8x4	.122	0	21	.038	0				.66065.						
32	H1	PIPE_3.5	.120	48	92	.097	24		_		7875	-					_
33	Н3	P P E _3.5	<u>.</u> 117	48	146	.083	24	1	6 60	666	7875	ე 795	3.75	7953.7	5 1	.H1-11	b

Envelope AISIS 100-16: LRFD Cold Formed Steel Code Checks

Mem Shape	Code Check	Loc[in]	LC	SheLo phi* phi*Tphi* phi* phiphi Cb	Eqn
		No Data to) Pri	nt	

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 8/2/2021



BOLT TOOL 1.5.2

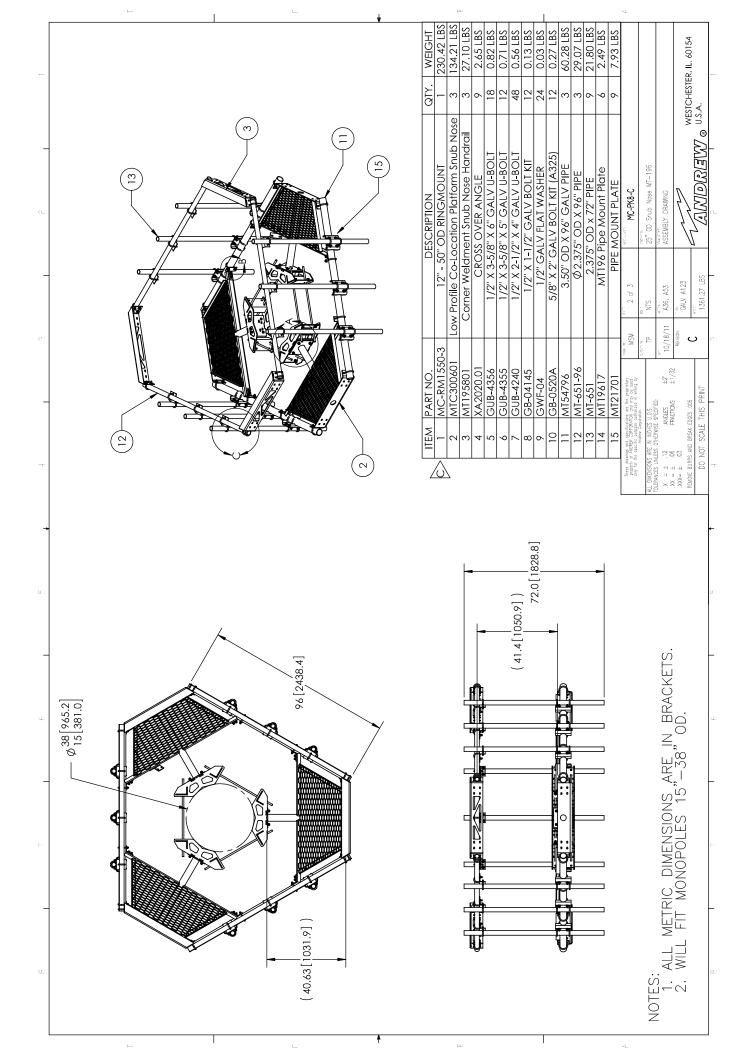
Project Data					
Job Code:	189195				
Carrier Site ID:	BU# 876382				
Carrier Site Name:	RLIN / LAVIANA ORCHAF				

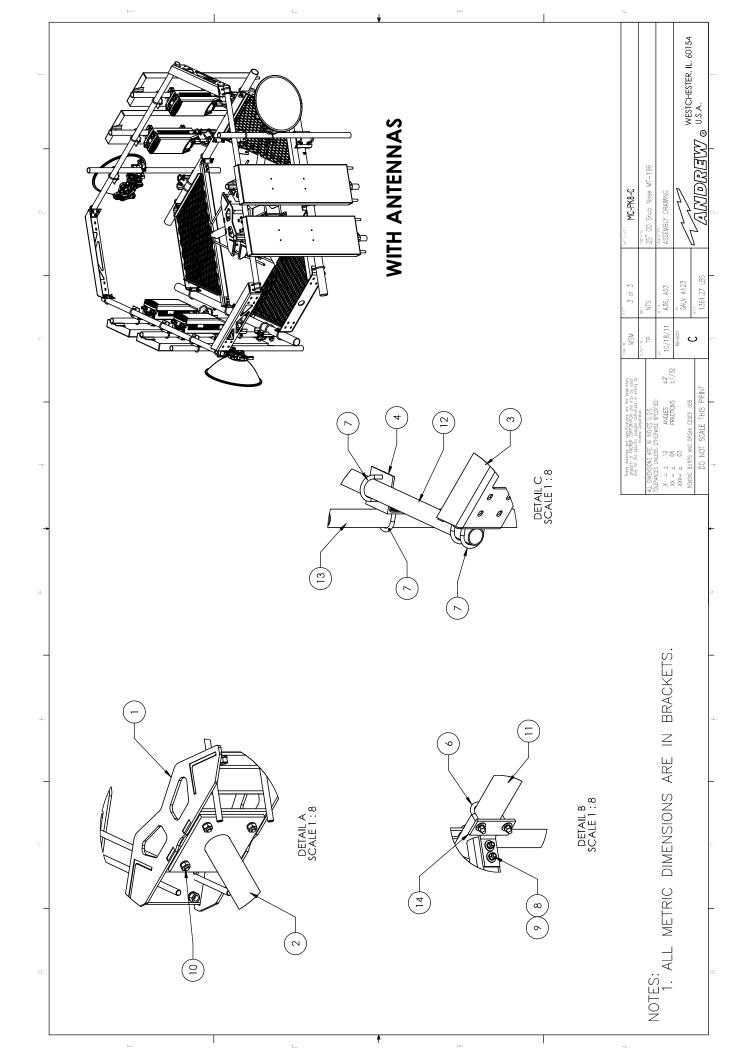
Code					
Design Standard:	TIA-222-H				
Slip Check:	No				
Pretension Standard:	TIA-222-H				

Bolt Properties					
Connection Type:	Bolt				
Diameter:	0.625	in			
Grade:	A325				
Yield Strength (Fy):	92	ksi			
Ultimate Strength (Fu):	120	ksi			
Number of Bolts:	4				
Threads Included:	Yes				
Double Shear:	No				
Connection Pipe Size:	-	in			

Connection Description	
Standoff to Collar Connection	

Bolt Check*					
Tensile Capacity (ϕT_n):		lbs			
Shear Capacity (ϕV_n) :	13805.8	lbs			
Tension Force (T _u):	3544.4	lbs			
Shear Force (V _u):	581.5	lbs			
Tension Usage:	16.6%				
Shear Usage:	4.0%				
Interaction:	16.6%	Pass			
Controlling Member:	M12				
Controlling LC:	42				


^{*}Rating per TIA-222-H Section 15.5


APPENDIX E SUPPLEMENTAL DRAWINGS

WESTCHESTER, IL. 60154

MESTCHESTER, IL. 60154

U.S.A. BY DRR MSM DESCRIPTION
INITIAL RELEASE
CHANGE NOSE CORNER BRKT, ADD GUB-4240 LOW PROFILE PLATFORM KIT 8' FACE MC-PK8-C REVISIONS ASSEMBLY DRAWING 1410.14 LBS GALV A123 1 of 3 A36, A500 10/18/11 MSM DO NOT SCALE THIS PRINT \triangle NOTE NO. 464.27 LBS 543.22 LBS FOR BOM ENTRY ONLY 402.64 LBS WEIGHT QIY. NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C DESCRIPTION 2 MCPK8CSB 3 MCPK8CHWK MTC3006SB ITEM PART NO.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 876382

BOBDL00095A 1684 Chamberlain Highway Berlin, Connecticut 06037

June 24, 2021

EBI Project Number: 6221003210

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general population allowable limit:	37.81%				

June 24, 2021

Dish Wireless

Emissions Analysis for Site: 876382 - BOBDL00095A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **1684 Chamberlain Highway** in **Berlin, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 1684 Chamberlain Highway in Berlin, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 5G channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 5G channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is III feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	III feet	Height (AGL):	III feet	Height (AGL):	III feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	36,123.20	ERP (W):	36,123.20	ERP (W):	36,123.20
Antenna A1 MPE %:	15.04%	Antenna B1 MPE %:	15.04%	Antenna C1 MPE %:	15.04%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	15.04%				
Town	0.01%				
Metro PCS	1.43%				
Clearwire	0.14%				
Sprint	4.02%				
T-Mobile	4.08%				
Verizon	7.2%				
AT&T	5.89%				
Site Total MPE % :	37.81%				

Dish Wireless MPE % Per Sector					
Dish Wireless Sector A Total:	15.04%				
Dish Wireless Sector B Total:	15.04%				
Dish Wireless Sector C Total:	15.04%				
Site Total MPE % :	37.81%				

Dish Wireless Maximum MPE Power Values (Sector A)								
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE	
Dish Wireless 600 MHz 5G	4	1667.71	111.0	21.75	600 MHz 5G	400	5.44%	
Dish Wireless 1900 MHz 5G	4	7363.09	111.0	96.04	1900 MHz 5G	1000	9.60%	
						Total:	15.04%	

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	15.04%
Sector B:	15.04%
Sector C:	15.04%
Dish Wireless Maximum MPE % (Sector A):	15.04%
Site Total:	37.81%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **37.81%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

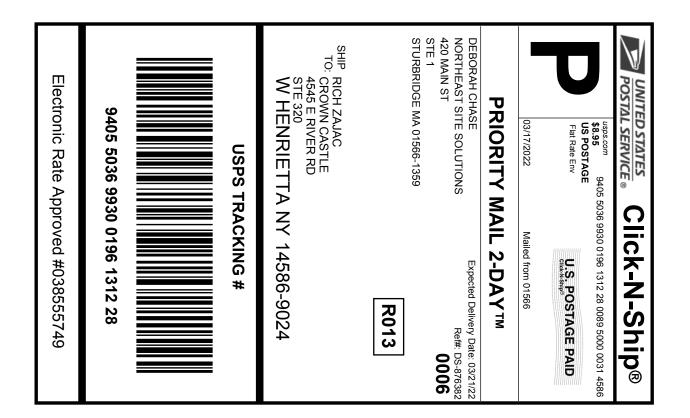
Re: Tower Share Application

Site Acquisition Specialist

Crown Castle telecommunications site at:

1684 CHAMBERLAIN HIGHWAY, BERLIN, CT 6037

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:


Crown Site ID/Name: 876382/BERLIN / LAVIANA ORCHARD

Customer Site ID: BOBDL00095A/CT-CCI-T-876382

Site Address: 1684 Chamberlain Highway, BERLIN, CT 6037

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0196 1312 28

559097886 03/17/2022 Trans. #: Print Date: Ship Date: 03/17/2022 03/21/2022 Delivery Date:

Priority Mail® Postage: \$8.95 \$8.95 Total:

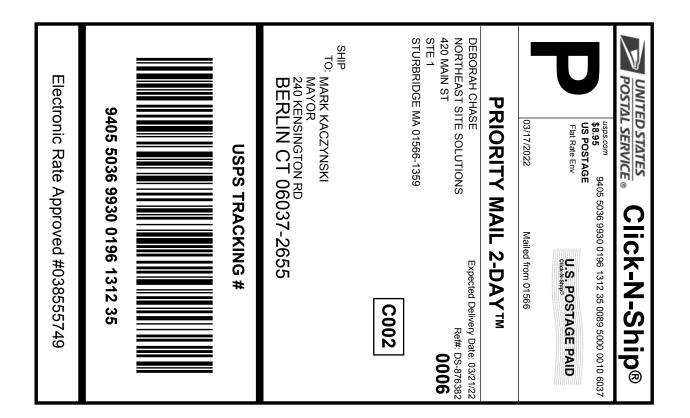
Ref#: DS-876382

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0196 1312 35

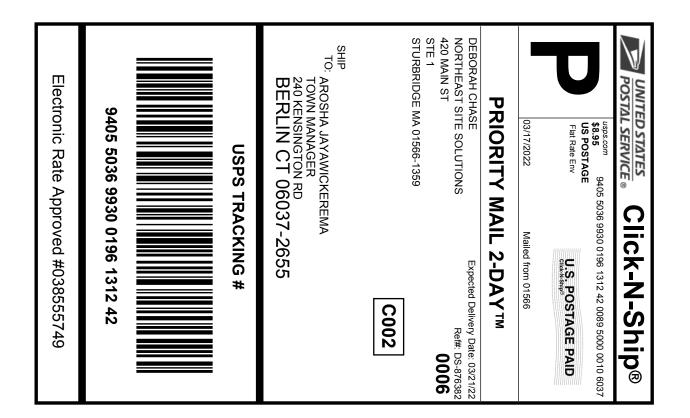
559097886 03/17/2022 Trans. #: Print Date: Ship Date: 03/17/2022 03/21/2022 Delivery Date:

Priority Mail® Postage: \$8.95 \$8.95 Total:

Ref#: DS-876382 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST


STE 1

STURBRIDGE MA 01566-1359

MARK KACZYNSKI

MAYOR

240 KENSINGTON RD BERLIN CT 06037-2655

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0196 1312 42

559097886 03/17/2022 Trans. #: Print Date: Ship Date: 03/17/2022 03/21/2022 Delivery Date:

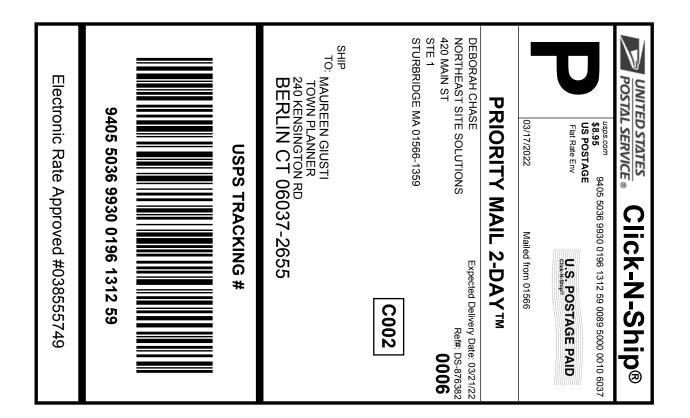
Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-876382

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS


420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

AROSHA JAYAWICKEREMA

TOWN MANAGER 240 KENSINGTON RD BERLIN CT 06037-2655

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0196 1312 59

559097886 03/17/2022 Trans. #: Print Date: Ship Date: 03/17/2022 03/21/2022 Delivery Date:

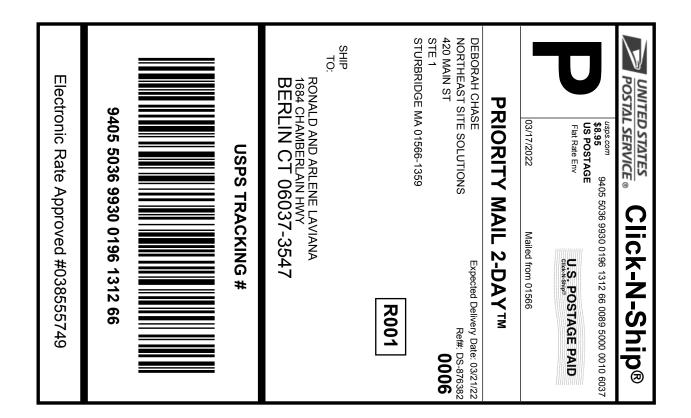
Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-876382

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS


420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

MAUREEN GIUSTI

TOWN PLANNER 240 KENSINGTON RD BERLIN CT 06037-2655

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0196 1312 66

559097886 03/17/2022 Trans. #: Print Date: Ship Date: 03/17/2022 03/21/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-876382

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

RONALD AND ARLENE LAVIANA

1684 CHAMBERLAIN HWY BERLIN CT 06037-3547

876387 CNUN DISL

UNITED STATES POSTAL SERVICE.

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

00/10/0000	(800)275-8	3777	
03/18/2022			03:23 PM
Product	Qty	Unit Price	Price
West Henriet Weight: 0 lb Acceptance D Fri 03/1 Tracking #; 9405 503	ta, NY 1456 1.90 oz ate: 8/2022 6 9930 0196	86	\$0.00
Prepaid Mail Berlin, CT Op Weight: O lb Acceptance Da Fri O3/18 Tracking #: 9405 5036	5037 8.30 oz ate: 5/2022 9930 0196	1312 66	\$0.00
Prepaid Mail Berlin, CT 06 Weight: O 1b Acceptance Da Fri 03/18, Tracking #: 9405 5036	037 8.30 oz te: /2022 9930 0196	1312 59	\$0.00
Prepaid Mail Berlin, CT 060 Weight: 0 lb Acceptance Dat Fri 03/18/ Tracking #: 9405 5036	037 8.30 oz e: 2022 9930 0196 1	1312 42	\$0.00
Prepaid Mail Berlin, CT 0600 Weight: 0 lb 8 Acceptance Date Fri 03/18/2 Tracking #: 9405 5036 9	37 3.30 oz 3: 2022		\$0.00
Grand Total:			\$0.00