

Filed by: G. Scott Shepherd, Site Development Specialist II - SBA Communications 134 Flanders Rd., Suite 125, Westborough, MA 01581 508.251.0720 x 3807 - gshepherd@sbasite.com

December 4, 2020

Melanie A. Bachman Acting Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification 277 Huckleberry Hill Road, Avon, CT 06013 Latitude: 41.788055 Longitude: -72.918166 T-Mobile Site #: CTHA510A_L600

Dear Ms. Bachman:

T-Mobile currently maintains three (3) antennas at the 80-foot level of the existing 100-foot Guyed Laminated Wood Pole at 277 Huckleberry Hill Rd., Avon, CT. The 100-foot tower is owned by SBA 2012 TC Assets, LLC. The property is owned by the Town of Avon. T-Mobile now intends to remove (3) three L2100/L1900 MHz antennas and replace with three (3) new L700/L600/L2100/L1900 MHz antennas. The new antennas support 5G services and would be installed at the 80-foot level of the tower.

Please note: Per the Connecticut Siting Council Website: CSC COVID 19 Guidelines. In order to prevent the spread of Coronavirus and protect the health and safety of our members and staff, as of March 18, 2020, the Connecticut Siting Council shall convert to full remote operations until March 30, 2020. Please be advised that during this time period, all hard copy filing requirements will be waived in lieu of an electronic filing. Please also be advised that the March 26, 2020 regular meeting shall be held via teleconference. The Council's website is not equipped with an on-line filing fee receipt service. Therefore, filing fees and/or direct cost charges associated with matters received electronically during the above-mentioned time period will be directly invoiced at a later date.

Planned Modifications:

TOWER

Remove:

• N/A

Remove and Replace:

• (3) RFS APXV16DWV-16DWVS-C antenna (remove) – (3) RFS APXVAR18_43-C-NA20 ANTENNA (replace)

Install New:

• N/A

Existing Equipment to Remain:

- (3) Flush Mounts
- (12) 7/8" coax

Entitlements:

• N/A

GROUND

Install New:

• Equipment inside existing RBS 6201 equipment cabinet

This facility was approved by Council on January 24, 2005 under Docket 297. Approval was given for a laminated wood monopole with flush mounted antennas no taller than 100' above ground level to provide telecommunications services to both public and private entities. A recalculated EME report was to be provided when circumstances in operation would cause a change in power density levels. Upon the establishment of any new State or Federal radio frequency standards applicable to the facility, the facility was to be brought into compliance. Public and/or private entities were to be permitted to share space on the tower for fair consideration, or to be provided with specific legal, technical, environmental, or economic reasons precluding such sharing. The Certificate Holder was to provide reasonable space on the tower for no compensation for any municipal antennas, provide they were compatible with the structural integrity of the tower. Any antenna that became obsolete and ceased to function was to be removed within 60 days. There were no further post construction stipulations set. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16.50j-72(b)(2). In accordance with R.C.S.A. § 16.50j-73, a copy of this letter is being sent to the Town of Avon's Town Manager, Brandon Robertson, and Director of Planning and Community Development, Hiram Peck. (Separate notice is not being sent to tower owner, as it belongs to SBA.)

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. §16.50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modification will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunication facility constitute an exempt modifications under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

G. Scott Shepherd Site Development Specialist II SBA COMMUNICATIONS CORPORATION 134 Flanders Rd., Suite 125 Westborough, MA 01581 508.251.0720 x3807 + T 508.366.2610 + F 508.868.6000 + C gshepherd@sbasite.com

Attachments

 cc: Brandon Robertson, Town Manager / with attachments Avon Town Hall: 60 West Main Street (Route 44) Avon, CT 06001
 Hiram Peck III, Director of Planning and Community Development / with attachments Avon Town Hall: 60 West Main Street (Route 44) Avon, CT 06001

EXHIBIT LIST

Exhibit 1	Check Copy	To be invoiced at a later date per Covid guidelines
Exhibit 2	Notification Receipts	X
Exhibit 3	Property Card	X
Exhibit 4	Property Map	X
Exhibit 5	Original Zoning Approval	CSC 1/24/05
Exhibit 6	Construction Drawings	Chappell Engineering 12/3/20
Exhibit 7	Structural Analysis	TES 10/16/20
Exhibit 8	Mount Analysis	TES 8/19/19
Exhibit 9	EME Report	Transcom Engineering 6/16/19

EXHIBIT 1 Normally, Exhibit 1 would contain a copy of the check for the filing fee.

EXHIBIT 2

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

EXHIBIT 3

Card 01 of 01 card

Town of Avon Residential Property Card

Property at 00277 HUCKLEBERRY HILL RD

Prop ID 2810277

Printed 14-Feb-2019 6:30 PM Design and Layout (C) Right/Angles

BAAX	Owner nam Second na Address: City/stat	e: AVO me: 60 V	I TOWN VEST MA: I CT		г	Zij	p: 060	01]
Map: 016	5	Cle	erk map		.ii oi ma c	1011			
Lot: 281			Neigh.:		ne: R40	Vo	L: 80	Page:	20
	Assessme					IS		Last s	
Assmt cat	egory	Qty	Amount	Exempt	Cat	Amount	Sale	date: 1	9-Dec-1972
Resident	Excess 7	3.40 3	885,350				Sale	price:	
Resident	Outbldg	3.00	28,460				Sale	valid:	
								Value	s
							Mkt v	alue :	
							Cost	value:	591,157
	Summa	ry		U	tilitie	s		Sales r	atios
Total ass	sessments	4	13,810	Water None			Cost/sale :		
Total exe	-			Sewer	None		- /	sale :	
Net asses	ssment	4	13,810	Gas	None		Assmt	/sale:	
			Lano	d Informa	ation				
Туре (Jse Acres/	SaFt I	Rate	Total	Infl	Fact	v	alue	70% Value
		400 7		550,500			550	,500	385,350
Residual	3,197,	304							
	73.	400 acre	s	Total	land v	alue	550	,500	385,350

Description	Wid	Len	Area	Rate	Year	Cnd	RCN	Depr	Value
C18 1 story frame	16	28	448	80.75	1957	C	36,176	50	18,090
RG1 Frame or Con Block Detach Garage	30	40	1,200	28.85		С	34,620	50	17,310
C84 Canopy	16	42	672	15.63	1992	C	10,503	50	5,250
Value at 70%	:	28,45	5			Val	ue at 100%		40,650

Outbuilding Information

No sketch for this property

AVON LANDFILL

EXHIBIT 4

277 Huckleberry Hill	
Search Results	Ve D
Parcel Details	
AVON TOWN OF	About
60 WEST MAIN STREET	
AVON, 06001	MH
Parcel ID: 2810277 Sale Price: \$	
Links	
Parcel Details Add Parcel	
Google Map Remove Parcel	Bo no la
Bing Bird's Eye Print Labels Abutter Distance: Export List	
Abutter Distance: Export List	
Adjacent	Identify
50 ft Parcel Number 2810:	
100 ft Property Type PARCI	
200 ft	
300 ft	
400 ft	
500 ft BERRY HILL RD	
Find Abutters	
Clear Abutters	NEW ROAD
Zone R40	ð
Volume 80	
Page 20	
Owner AVON TOWN OF	WESE PASS
Owner Address 60 WEST MAIN STREET	MOUTENESS PART V V V
City AVON	
State CT	
ZIP 06001	
GISPin 2810277	
RecordCard http://www.avonassessor.com/prop	· MONTANIKER

Email Map Link

lat:41.7917, long:-72.9075

Tighe&Bond

5/1	6/	20	1	9

Avon CT, Web GIS

--->

 $\overline{}$

EXHIBIT 5

Connecticut Siting Council

Decisions

DOCKET NO. 297 – Sprint Spectrum, L.P. application for a Certificate of Environmental Compatibility and	}	Connecticut
Public Need for the construction, maintenance and operation of a telecommunications facility in Avon,	}	Siting
Connecticut.	}	Council
		January 24, 2005

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes **§** 16-50k, be issued to Sprint Spectrum, L.P. for the construction, maintenance and operation of a wireless telecommunications facility at 277 Huckleberry Hill Road, Avon, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be designed as a laminated wood monopole and shall be constructed no taller than 100 feet above ground level to provide telecommunications services to both public and private entities. The location of the tower and equipment compound shall be adjusted to avoid cutting down an existing 33" dbh tree.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on all parties and intervenors, as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a. a final site plan(s) of site development to include specifications for the tower, tower foundation, flush-mounted antennas, equipment building, access road, utility line, and landscaping; and

b) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil</u> <u>Erosion and Sediment Control</u>, as amended.

3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council in the event other carriers locate at this facility or if circumstances in operation cause a change in power density

above the levels calculated and provided pursuant to this Decision and Order.

4.Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.

5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.

6.The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.

7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.

8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.

9.Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extensions of the period shall be filed with the Council not later than sixty days prior to expiration date of the Certificate and shall be served on all parties and intervenors, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served. 10.In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with notice in writing two weeks prior to the shall provide the Council with notice of the construction.

Pursuant to General Statutes **§** 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Hartford Courant</u>, <u>Valley News</u>, and the <u>Farmington Valley Post</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant	Its Representative
Sprint Spectrum, L.P. d/b/a Sprint PCS	Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP CityPlace I, 38 th Floor 185 Asylum Street Hartford, CT 06103-3402 (860) 509-6522 (860) 509-6501 – fax

Content Last Modified on 1/28/2005 4:44:58 PM

EXHIBIT 6

 SECTOR E: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR D: ACCESS BY CERTIFIED CLIMBER ORDERAL MORESTRICTED PPC DISCONNECT: UNRESTRICTED MAIN CIRCUIT D/C: UNRESTRICTED ME COMMERCIN S-MUL dAIL MORES AND COMPLY MH ALL MAY RELEAR AND MOST AND MORE WARD ON THE MAIN AND MAIN AND MORE WARD ON THE MAIN AND M					ЪА
PROJECT MANAGER DATE: ZONING/SITE ACO. DATE: CONSTRUCTION: DATE: OPERALONS: DATE: CONSTRUCTION: DATE: OPERALONS: DATE: T-MOBBLE TECHNICIAN SITE SAFETY NOTES DATE: OPERALONS: DATE: LOCATION SPECIAL RESTRICTIONS SECON A ACCESS BY CERTIFIED CUMBER SECON B SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SECON B: ACCESS BY CERTIFIED CUMBER SEC	APPROVALS]
RE ENGINEERING: DATE: TOWER OWNER: DATE: T-MODBILE TECHNICIAN SITE SAFETY NOTES LOCATION SECTOR A. ACCESS BY CERTIFIED CLIMERER SECTOR A. ACCESS BY CERTIFIED CLIMERER SECTOR B. ACCESS BY CERTIFIED CLIMERER SECTOR B. ACCESS BY CERTIFIED CLIMERER SECTOR B. ACCESS BY CERTIFIED CLIMERER SECTOR C. ACCESS BY CERIFIED CLIMERER SECTO		DATE:	ZONING/SITE ACQ.:	DATE:	
<section-header> Temporale and severe and sever</section-header>	CONSTRUCTION:	DATE:	<u>OPERATIONS:</u>	DATE:	
 LOCATION SPECIAL RESTRICTIONS SECTOR A: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER RADIO CABINTS: UNRESTRICTED PPC DISCONNECT: UNRESTRICTED NUL/T DEMARC: UNRESTRICTED OTHER SPECIAL: NONE SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER RADIO CABINTS: UNRESTRICTED OTHER SPECIAL: NONE SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED C: ACC	RF ENGINEERING:	DATE:	TOWER OWNER:	DATE:	
 LOCATION SPECIAL RESTRICTIONS SECTOR A: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER RADIO CABINTS: UNRESTRICTED PPC DISCONNECT: UNRESTRICTED NUL/T DEMARC: UNRESTRICTED OTHER SPECIAL: NONE SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED CLIMBER RADIO CABINTS: UNRESTRICTED OTHER SPECIAL: NONE SECTOR C: ACCESS BY CERTIFIED CLIMBER SECTOR C: ACCESS BY CERTIFIED C: ACC		LAN SITE	SAFETY NOTES		
 THE CONTRACTOR SHUL GVE ALL NOTES: AND COMPLY WITH ALL LANG, ROBINANCS, REULES, REGULTORIS AND COMPLY WITH ALL CAN PERSON AND COMPLY AND ULTIP COMPANY SECTIONATIONS, AND LEAD, AND STIEL LIREDUCTION. LOCES BERGENER ON CAN DETERMINE AND ULTIP COMPANY SECTIONATIONS, AND LEAD, AND STIEL LIREDUCTION. LOCES BERGENER ON CAN DEPENDENT AND ULTIP COMPANY SECTIONATIONS, AND LEAD, AND STIEL LIREDUCTION. LOCES BERGENER ON CAN DEPENDENT AND ULTIP COMPANY SECTIONATIONS, AND LEAD, AND STIEL LIREDUCTION. LOCES BERGENER ON CAN DEPENDENT AND LIREDUCTION. BELOW BERGENER ON CONTRACTOR BOUNDES CONTRACTOR DEPENDENT NO CONTRACTOR SHUL WERE AND CONTRACTOR BOUNDES TO SET FORM THE ADDITION OF AD	LOCATIONSPECIASECTOR A:ACCESSSECTOR B:ACCESSSECTOR C:ACCESSSECTOR D:ACCESSGPS/LMU:UNRESTRRADIO CABINETS:UNRESTRPPC DISCONNECT:UNRESTRMAIN CIRCUIT D/C:UNRESTRNIU/T DEMARC:UNRESTR	L RESTRICTIO BY CERTIFIED O BY CERTIFIED O BY CERTIFIED O BY CERTIFIED O RICTED RICTED RICTED	<u>ONS</u> CLIMBER CLIMBER CLIMBER		SITE
CONSTRUCTION CONTROL SURVEYS, ESTABLISHING AND MAINTAINING ALL LINES AND GRADES REQUIRED TO CONSTRUCT ALL IMPROVEMENTS AS SHOWN HEREIN	 LAWS, ORDINANCES, RULES, REGULATIONS AND ANY PUBLIC AUTHORITY, MUNICIPAL AND UTILIT SPECIFICATIONS, AND LOCAL AND STATE JURISI BEARING ON THE PERFORMANCE OF THE WORK PERFORMED ON THE PROJECT AND THE WATER BE IN STRICT ACCORDANCE WITH ALL APPLICAE REGULATIONS, AND ORDINANCES. THE ARCHITECT/ENGINEER HAVE MADE EVERY I IN THE CONSTRUCTION AND CONTRACT DOCUMI SCOPE OF WORK. THE CONTRACTOR BIDDING T NEVERTHELESS CAUTIONED THAT MINOR OMISSI THE DRAWINGS AND OR SPECIFICATIONS SHALL CONTRACTOR FROM COMPLETING THE PROJECT ACCORDANCE WITH THE INTENT OF THESE DOC THE CONTRACTOR OR BIDDER SHALL BEAR THE NOTIFYING (IN WRITING) THE OMNIPOINT REPRE CONFLICTS, ERRORS, OR OMISSIONS PRIOR TO CONTRACTOR'S PROPOSAL OR PERFORMANCE C OF DISCREPANCIES THE CONTRACTOR SHALL PO OR EXTENSIVE WORK, UNLESS DIRECTED IN WE THE SCOPE OF WORK SHALL INCLUDE FURNISI EQUIPMENT, LABOR AND ALL OTHER MATERIALS NECESSARY TO COMPLETE THE WORK/PROJECT HEREIN. THE CONTRACTOR SHALL VISIT THE JOB SITE F SUBMISSION OF BIDS OR PERFORMING WORK T WITH THE FIELD CONDITIONS AND TO VERIFY T BE CONSTRUCTED IN ACCORDANCE WITH THE C THE CONTRACTOR SHALL OBTAIN AUTHORIZATIO CONSTRUCTION PRIOR TO STARTING WORK ON DEFINED BY THE CONSTRUCTION DRAWINGS/CO THE CONTRACTOR SHALL OBTAIN AUTHORIZATIO CONSTRUCTION PRIOR TO STARTING WORK ON DEFINED BY THE CONSTRUCTION DRAWINGS/CO THE CONTRACTOR SHALL PROVIDE A FULL SET DOCUMENTS AT THE SITE UPDATED WITH THE I ADDENDUMS OR CLARIFICATIONS AVAILABLE FOF PERSONNEL INVOLVED WITH THE PROJECT. THE CONTRACTOR SHALL PROVIDE A FULL SET DOCUMENTS AT THE SITE UPDATED WITH THE I ADDENDUMS OR CLARIFICATIONS AVAILABLE FOF PERSONNEL INVOLVED WITH THE PROJECT. THE CONTRACTOR SHALL SUPERVISE AND DIREI DESCRIBED HEREIN. THE CONTRACTOR SHALL EQUIPME ACCORDING TO THE MANUFACTUREN'S/VENDOR' UNLESS NOTED OTHERWISE OR WHERE LOCAL TAKE PRECEDENCE. 	LAWFUL ORDERS OF Y COMPANY DICTIONAL CODES C. THE WORK BALS INSTALLED SHALL BLE CODES, EFFORT TO SET FORTH ENTS THE COMPLETE HE JOB IS DNS OR ERRORS IN NOT EXCUSE SAID AND IMPROVEMENTS IN UMENTS. E RESPONSIBILITY OF SENTATIVE OF ANY THE SUBMISSION OF DF WORK. IN THE EVENT RICE THE MORE COSTLY RITING OTHERWISE. HING ALL MATERIALS, AND LABOR DEEMED AS DESCRIBED PRIOR TO THE TO FAMILIARIZE HIMSELF HAT THE PROJECT CAN CONTRACT DOCUMENTS. IN TO PROCEED WITH ANY ITEM NOT CLEARLY NTRACT DOCUMENTS. INT AND MATERIALS S SPECIFICATIONS CODES OR ORDINANCES OF CONSTRUCTION ATEST REVISIONS AND R THE USE BY ALL CT THE PROJECT BE SOLELY METHODS, ND FOR COORDINATING	 PERMITS AND INSPECTIONS WHICH MAY BE REBY THE ARCHITECT/ENGINEER, THE STATE, COGOVERNMENT AUTHORITY. 12. THE CONTRACTOR SHALL MAKE NECESSARY PEXISTING IMPROVEMENTS, EASEMENTS, PAVING, CONSTRUCTION. UPON COMPLETION OF WORK, SHALL REPAIR ANY DAMAGE THAT MAY HAVE CONSTRUCTION ON OR ABOUT THE PROPERTY 13. THE CONTRACTOR SHALL KEEP THE GENERAL HAZARD FREE DURING CONSTRUCTION AND DIDEBRIS, RUBBISH AND REMOVE EQUIPMENT NREMAINING ON THE PROPERTY. PREMISES SHACONDITION AND FREE FROM PAINT SPOTS, DUANY NATURE. 14. THE CONTRACTOR SHALL COMPLY WITH ALL CONTRACT DOCUMENTS. THE CONTRACT OR SHALL NOTIFY THE PROJECT. 15. THE CONTRACTOR SHALL NOTIFY THE PROJECT CONTRACT DOCUMENTS. THE CONTRACTOR IS MATERIAL OR CONSTRUCT ANY PORTION OF THE CONFLICT UNTIL CONFLICT IS RESOLVED BY TREPRESENTATIVE. 16. THE CONTRACTOR SHALL VERIFY ALL DIMENSION PROPERTY LINES, ETC. ON THE JOB. 17. ALL UNDERGROUND UTILITY INFORMATION WAS SURFACE INVESTIGATIONS AND EXISTING PLANS CONTRACTOR SHALL LOCATE ALL UNDERGROUNFIELD PRIOR TO ANY SITE WORK. 	EQUIRED FOR THE WORK DUNTY OR LOCAL PROVISIONS TO PROTECT , CURBING, ETC. DURING , THE CONTRACTOR OCCURRED DUE TO '. WORK AREA CLEAN AND ISPOSE OF ALL DIRT, OT SPECIFIED AS ALL BE LEFT IN CLEAN JST, OR SMUDGES OF OSHA REQUIREMENTS AS ON ANY OF THE NOT TO ORDER HE WORK THAT IS IN THE LESSEE/LICENSEE ONS, ELEVATIONS, G DETERMINED FROM S OF RECORD. THE ND UTILITIES IN THE	VICINITY MAF
• •	CONSTRUCTION CONTROL SURVEYS, ESTABLISHI ALL LINES AND GRADES REQUIRED TO CONSTR	NG AND MAINTAINING	Williamantie		CONDITIONS (PROJECT OWNER'

SBA AVON MONOPOLE

277 HUCKLEBERRY HILL ROAD AVON, CT 06001 HARTFORD COUNTY

SITE NO.: CTHA510A

E TYPE: $100' \pm$ GUYED LAMINATED WOOD POLE

RF DESIGN GUIDELINE: CUSTOM

SITE NOTES

THIS IS AN UNMANNED AND RESTRICTED ACCESS TELECOMMUNICATION FACILITY, AND IS NOT FOR HUMAN HABITATION. IT WILL BE USED FOR THE TRANSMISSION OF RADIO SIGNAL FOR THE PURPOSE OF PROVIDING PUBLIC CELLULAR SERVICE. ADA COMPLIANCE NOT REQUIRED.

POTABLE WATER OR SANITARY SERVICE IS NOT REQUIRED. NO OUTDOOR STORAGE OR ANY SOLID WASTE RECEPTACLES REQUIRED.

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON JOB SITE. CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK. FAILURE TO NOTIFY THE ARCHITECT/ENGINEER PLACE THE RESPONSIBILITY ON THE CONTRACTOR TO CORRECT THE DISCREPANCIES AT THE CONTRACTOR'S EXPENSE.

NEW CONSTRUCTION WILL CONFORM TO ALL APPLICABLE CODES AND ORDINANCES. BUILDING CODE: 2018 CONNECTICUT STATE BUILDING CODE ELECTRICAL CODE: 2017 NATIONAL ELECTRICAL CODE STRUCTURAL CODE: TIA/EIA-222-G STRUCTURAL STANDARDS FOR ANTENNA SUPPORTING STRUCTURES AND ANTENNAS.

PROJECT SUMMARY

SITE NUMBER:	CTHA510A
SBA SITE NUMBER:	CT46143
SBA SITE NAME:	BURLINGTON-AVON LANDFILL
SITE ADDRESS:	277 HUCKLEBERRY HILL ROAD AVON, CT 06001
PROPERTY OWNER:	TOWN OF AVON 60 WEST MAIN STREET AVON, CT 06001
TOWER OWNER:	SBA 2012 TC ASSETS, LLC 8501 CONGRESS AVENUE BOCA RATON, FL 33487 PHONE: 561–226–9523
COUNTY:	HARTFORD COUNTY
ZONING DISTRICT:	R-40 (RESIDENTIAL)
STRUCTURE TYPE:	GUYED LAMINATED WOOD POLE
STRUCTURE HEIGHT:	100 ' ±
APPLICANT:	T-MOBILE NORTHEAST LLC 15 COMMERCE WAY, SUITE B NORTON, MA 02766
SBA RSM:	STEPHEN ROTH PHONE: 860—539—4920 EMAIL: SRoth@sbasite.com
ARCHITECT:	CHAPPELL ENGINEERING ASSOCIATES, LLC. 201 BOSTON POST ROAD WEST, SUITE 101 MARLBOROUGH, MA 01752
STRUCTURAL ENGINEER:	CHAPPELL ENGINEERING ASSOCIATES, LLC. 201 BOSTON POST ROAD WEST, SUITE 101 MARLBOROUGH, MA 01752
SITE CONTROL POINT:	LATITUDE: N.41.788200° LONGITUDE W.72.918200°

GENERAL NOTES:	
 FOR THE PURPOSE OF CONSTRUCTION DRAWINGS, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR – T-MOBILE SUBCONTRACTOR – GENERAL CONTRACTOR (CONSTRUCTION) 	
OWNER — T—MOBILE OEM — ORIGINAL EQUIPMENT MANUFACTURER	
2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.	
3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.	
4. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL, STATE AND FEDERAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.	
5. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.	
6. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.	
7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.	
8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CONTRACTOR.	
9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER, T1 CABLES AND GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR AND/OR LANDLORD PRIOR TO CONSTRUCTION.	
10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.	
11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY.	
12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION AND RETURN DISTURBED AREAS TO ORIGINAL CONDITIONS.	
13. THE SUBCONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.	
14. SUBCONTRACTOR SHALL NOTIFY CHAPPELL ENGINEERING ASSOCIATES, LLC 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING TRENCHES, SEALING ROOF AND WALL PENETRATIONS AND POST DOWNS, FINISHING NEW WALLS OR FINAL ELECTRICAL CONNECTIONS FOR ENGINEERING REVIEW.	
15. CONSTRUCTION SHALL COMPLY WITH ALL T-MOBILE STANDARDS AND SPECIFICATIONS.	
16. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.	
17. THE EXISTING CELL SITES ARE IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN	
APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.	
18. IF THE EXISTING CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.	
SITE WORK GENERAL NOTES:	
1. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.	
2. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY ENGINEERS. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION.	
3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.	
4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.	
5. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS. 6. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT	
BE PLACED IN ANY FILL OR EMBANKMENT. 7. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE	
APPLICATION. 8. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE	
WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF ENGINEERING, OWNER AND/OR LOCAL UTILITIES.	
9. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION AS SPECIFIED IN THE PROJECT SPECIFICATIONS.	
10. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.	
11. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE T—MOBILE SPECIFICATION FOR SITE SIGNAGE.	

ETE AND REINFORCING STEEL NOTES:

NCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE ND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

NCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 3000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE. A FRENGTH (400PSI) MAY BE USED. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 381 CODE ENTS

RCING STEEL SHALL CONFORM TO ASTM A 615. GRADE 60. DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE IALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS ALL HOOKS SHALL BE STANDARD, UNO.

DLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON

CRETE EXPOSED TO EARTH OR WEATHER: #6 AND LARGER2 IN. ≸5 AND SMALLER & WWF1½ IN.

CRETE NOT EXPOSED TO EARTH OR WEATHER NOT CAST AGAINST THE GROUND:

SLAB AND WALL%/ IN.

MFER 3/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION

ATION OF CONCRETE EXPANSION/WEDGE ANCHORS SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED E. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO THE MANUFACTURERS RECOMMENDATION FOR EMBEDMENT AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN URER'S MAXIMUM ALLOWABLE LOADS. ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED D. EXPANSION BOLTS SHALL BE PROVIDED BY SIMPSON OR APPROVED EQUAL.

ETE CYLINDER TIES ARE NOT REQUIRED FOR SLAB ON GRADE WHEN CONCRETE IS LESS THAN 50 CUBIC YARDS 3.2.3) IN THAT EVENT THE FOLLOWING RECORDS SHALL BE PROVIDED BY THE CONCRETE SUPPLIER; SULTS OF CONCRETE CYLINDER TEST PERFORMED AT THE SUPPLIERS PLANT. RTIFICATION OF MINIMUM COMPRESSIVE STRENGTH FOR THE CONCRETE GRADE SUPPLIED. TER THAN 50 CUBIC YARDS THE GC SHALL PERFORM THE CONCRETE CYLINDER TEST.

ALTERNATIVE TO ITEM 7. TEST CYLINDERS SHALL BE TAKEN INITIALLY AND THEREAFTER FOR EVERY 50 YARDS OF FROM EACH DIFFERENT BATCH PLANT.

IENT SHALL NOT BE PLACED ON NEW PADS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED.

<u>TURAL STEEL NOTES:</u>

EEL WORK SHALL BE PAINTED OR GALVANIZED IN ACCORDANCE WITH THE DRAWINGS AND T-MOBILE SPECIFICATIONS THERWISE NOTED. STRUCTURAL STEEL SHALL BE ASTM-A-36 UNLESS OTHERWISE NOTED ON THE SITE SPECIFIC STEEL DESIGN, INSTALLATION AND BOLTING SHALL BE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL TION (AISC) "MANUAL OF STEEL CONSTRUCTION".

LDING SHALL BE PERFORMED USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND AWS D1.1. LET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL TION", 9TH EDITION. PAINTED SURFACES SHALL BE TOUCHED UP.

CONNECTIONS SHALL USE BEARING TYPE ASTM A325 BOLTS $(\frac{3}{4})^{\circ}$ and shall have minimum of two bolts OTED OTHERWISE. ALL BOLTS SHALL BE GALVANIZED OR STAINLESS STEEL.

TRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE $\frac{5}{6}$ " DIA. ASTM A 307 BOLTS (GALV) UNLESS NOTED

ACTOR SHALL SUBMIT SHOP DRAWINGS FOR ENGINEER REVIEW & APPROVAL ON PROJECTS REQUIRING STRUCTURAL

RUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATIONS.

COMPACTION NOTES FOR SLAB ON GRADE:

TE AS REQUIRED TO REMOVE VEGETATION AND TOPSOIL TO EXPOSE NATURAL SUBGRADE AND PLACE CRUSHED STONE

CTION CERTIFICATION: AN INSPECTION AND WRITTEN CERTIFICATION BY A QUALIFIED GEOTECHNICAL TECHNICIAN OR IS ACCEPTABLE.

ALTERNATE TO INSPECTION AND WRITTEN CERTIFICATION. THE "UNDISTURBED SOIL" BASE SHALL BE COMPACTED WITH ON EQUIPMENT". LISTED BELOW, TO AT LEAST 90% MODIFIED PROCTOR MAXIMUM DENSITY PER ASTM D 1557

CTED SUBBASE SHALL BE UNIFORM AND LEVELED. PROVIDE 6" MINIMUM CRUSHED STONE OR GRAVEL COMPACTED IN ABOVE COMPACTED SOIL. GRAVEL SHALL BE NATURAL OR CRUSHED WITH 100% PASSING #1 SIEVE.

ALTERNATE TO ITEMS 2 AND 3, THE SUBGRADE SOILS WITH 5 PASSES OR A MEDIUM SIZED VIBRATORY PLATE R (SUCH AS BOMAG BPR 30/38) OR HAND-OPERATED SINGLE DRUM VIBRATORY ROLLER (SUCH AS BOMAG BW 55E). AREAS THAT ARE ENCOUNTERED SHOULD BE REMOVED AND REPLACED WITH A WELL-GRADED GRANULAR FILL AND D AS STATED ABOVE.

CTION EQUIPMENT:

DPERATED DOUBLE DRUN, VIBRATORY ROLLER, VIBRATORY PLATE COMPACTOR OR JUMPING JACK COMPACTOR.

RUCTION NOTES:

/ERIFICATION: ACTOR SHALL FIELD VERIFY SCOPE OF WORK, T-MOBILE ANTENNA PLATFORM LOCATION AND UTILITY TRENCHWORK.

INATION OF WORK:

ACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH CONTRACTOR.

LADDER RACK:

ACTOR SHALL FURNISH AND INSTALL CABLE LADDER RACK, CABLE TRAY AND/OR ICE BRIDGE, AND CONDUIT AS TO SUPPORT CABLES TO THE NEW BTS LOCATION.

ELECTRICAL INSTALLATION NOTES:

1. WIRING, RACEWAY, AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC AND TELCORDIA.

2. SUBCONTRACTOR SHALL MODIFY OR INSTALL CABLE TRAY SYSTEM AS REQUIRED TO SUPPORT RF AND TRANSPORT CABLING TO THE NEW BTS EQUIPMENT. SUBCONTRACTOR SHALL SUBMIT MODIFICATIONS TO CONTRACTOR FOR APPROVAL.

3. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC AND TELCORDIA.

4. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS.

5. EACH END OF EVERY POWER, GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA, AND MATCH INSTALLATION REQUIREMENTS.

6. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, ½ INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC AND OSHA.

7. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANELBOARD AND CIRCUIT ID'S).

8. PANELBOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS.

9. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.

10. POWER, CONTROL, AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (#34 AWG OR LARGER), 600 V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.

11. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (#6 AWG OR LARGER), 600 V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.

12. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED OUTDOORS, OR BELOW GRADE, SHALL BE SINGLE CONDUCTOR #2 AWG SOLID TINNED COPPER CABLE, UNLESS OTHERWISE SPECIFIED.

13. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#34 AWG OR LARGER), 600 V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED, UNLESS OTHERWISE SPECIFIED.

14. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRENUTS BY HARGER (OR EQUAL). LUGS AND WIRENUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75°C (90°C IF AVAILABLE).

15. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

16. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.

17. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

18. ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.

19. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE GRADF.

20. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND; DIRECT BURIED, IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAVY VEHICLE TRAFFIC.

21. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.

22. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SETSCREW FITTINGS ARE NOT ACCEPTABLE.

23. CABINETS. BOXES AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA. UL, ANSI/IEEE AND NEC.

24. CABINETS, BOXES AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.

25. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.

26. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.

27. METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED, OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.

28. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.

29. THE SUBCONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTOR BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.

30. THE SUBCONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS. CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY. 31. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL

NOT BLOCKED.

APPLICABLE LOCAL CODES.

32. CONDUIT ROUTINGS ARE SCHEMATIC. SUBCONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS

RAD CENTER NOTE: T-MOBILE RAD CENTER SHOWN IN RED TEXT BASED ON SBA-PROVIDED CO-LOCATION APPLICATION, EQUIPMENT DATABASE, AND STRUCTURAL ANALYSIS. THE SBA-PROVIDED ANTENNA RAD CENTER SHALL SUPERSEDE ANY CONFLICTING INFORMATION DERIVED FROM THE T-MOBILE RFDS.

PROP. T-MOBILE RFS APXVAR18_43-C-NA20

<u>NOTE:</u> VERIFY PROPOSED AZIMUTHS WITH RF ENGINEER PRIOR TO INSTALLATION. ANTENNA STATUS LEGEND: EMPTY – EMPTY PIPE

> (E) – EXISTING (P) – INSTALL (F) – FUTURE

			F	FINAL ANTEN	NA CONFIGU	RATION		
SECTOR	SECTOR ANTENNA		AZIMUTH (TRUE NORTH)	MECHANICAL DOWNTILT	ELECTRICAL DOWNTILT	BAND	RADIOS/TMAS	CAI
ALPHA APXV	RFS	80'± AGL	180*	0*		L600/L700	RADIO 4449 B71+B12 (AT CABINET)	(2) ⁷ /8"ø (
	APXVAR18_43-C-NA20			0*	2* -	U2100/L2100/L1900	(2) RADIO 4415 (AT CABINET) AWS/PCS DIPLEXER (AT CABINET)	(2) ⁷ /8"ø (
BETA	RFS APXVAR18_43-C-NA20	80'± AGL	270°	0*	2°	L600/L700	RADIO 4449 B71+B12 (AT CABINET)	(2) ⁷ / ₈ "ø (
						U2100/L2100/L1900	(2) RADIO 4415 (AT CABINET) AWS/PCS DIPLEXER (AT CABINET)	(2) ⁷ /8"ø (
GAMMA	RFS APXVAR18_43-C-NA20				0.	L600/L700	RADIO 4449 B71+B12 (AT CABINET)	(2) ⁷ / ₈ "ø (
			350*	0*	2*	U2100/L2100/L1900	(2) RADIO 4415 (AT CABINET) AWS/PCS DIPLEXER (AT CABINET)	(2) ⁷ /8"ø (

COAX CABLES

COAX CABLES

Ø COAX CABLES

COAX CABLES

COAX CABLES

COAX CABLES

- 12" ICE BRIDGE (1 PER SIDE, TOTAL OF 2)

<u>RRH NOTE:</u>

PROP. ERICSSON RRH'S

(3 PER SECTOR, TOTAL OF 9) TO BE MOUNTED TO PROP H-FRAME PER MANUFACTURES REQUIREMENTS. (NOT SHOWN FOR CLARITY)

<u>UNISTRUT NOTE:</u> 1–5/8" X 1–5/8" GALVANIZED STEEL STRUTS W/RUBBER CAPS. FASTEN STRUT TO POST

W/GALVANIZED BOLTS, WASHERS AND NUTS (TYP). CONTRACTOR TO VERIFY QUANTITY OF STRUTS NEEDED AND TRIM STRUTS TO CORRECT LENGTH IN FIELD.

– UNISTRUT P1000 (GALV)

3"ø SCH.40 PIPE (GALV) OR 3"ø RGS CONDUIT (GALV) (TYP)

– UNISTRUT P1000 (GALV)

- 12"ø Plain Concrete Or Sakrete Pier

≺___8"± ___► 0 0-1]"±— └── PL 8" x 8" x 3/8"

T-MOBILE NORTHEAST LLC
15 COMMERCE WAY, SUITE B NORTON, MA 02766 (508) 286–2700
SBA
SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 (508) 251–0720
CHAPPELL ENGINEERING ASSOCIATES, LLC Civil Structural ·Land Surveying
R.K. EXECUTIVE CENTRE 201 BOSTON POST ROAD WEST, SUITE 101 MARLBOROUGH, MA 01752 (508) 481-7400 www.chappellengineering.com
No. 25997
AL CMILENSING
CHECKED BY: JMT
CHECKED BY: JMT
APPROVED BY: JMT
APPROVED BY: JMT
APPROVED BY: JMT
APPROVED BY: JMT
APPROVED BY: JMT
APPROVED BY: JMT SUBMITTALS REV. DATE DATE DESCRIPTION BY I I I I 1 12/02/20 ISSUED FOR CONSTRUCTION
APPROVED BY: JMT SUBMITTALS REV. DATE DESCRIPTION DESCRIPTION BY DESCRIPTION DESCRIPTION
APPROVED BY: JMT SUBMITTALS REV. DATE DESCRIPTION BY
APPROVED BY: JMT SUBMITTALS REV. DATE DESCRIPTION BY DESCRIPTION BY DESCRIPTION DESCRIPTIO
APPROVED BY: JMT

5. ELECTRICAL AND TELCO WIRING OUTSIDE A BUILDING AND EXPOSED TO WEATHER SHALL BE IN WATER TIGHT GALVANIZED RIGID STEEL CONDUITS OR SCHEDULE 80 PVC (AS PERMITTED BY CODE) AND WHERE REQUIRED IN LIQUID TIGHT FLEXIBLE METAL OR NONMETALLIC CONDUITS.

8. RUN ELECTRICAL CONDUIT OR CABLE BETWEEN ELECTRICAL UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE PPC AS INDICATED ON

CABINET AS INDICATED ON THIS DRAWING PROVIDE FULL LENGTH PULL ROPE IN INSTALLED TELCO CONDUIT. PROVIDE GREENLEE CONDUIT

CABINET ARE UNDERGROUND USE PVC, SCHEDULE 40 CONDUIT. ABOVE THE GROUND PORTION OF THESE CONDUITS SHALL BE PVC CONDUIT.

LEADS SHOULD NEVER BE BENT AT RIGHT ANGLE. ALWAYS MAKE AT LEAST 12" RADIUS BENDS. #6 WIRE CAN BE BENT AT 6" RADIUS WHEN NECESSARY. BOND ANY METAL OBJECTS WITHIN 6 FEET OF PROJECT OWNER EQUIPMENT OR CABINET TO MASTER GROUND BAR OR GROUNDING

18. CONNECTIONS TO GROUND BARS SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO

21. CONTRACTOR SHALL TEST COMPLETED GROUND SYSTEM AND RECORD RESULTS FOR PROJECT CLOSE-OUT DOCUMENTATION. 5 OHMNS MINIMUM

EXHIBIT 7

Tower Engineering Solutions

Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 100 ft Guyed Laminated Wood Pole Customer Name: SBA Communications Corp Customer Site Number: CT46143-A Customer Site Name: Burlington - Avon Landfill Carrier Name: T-Mobile (App#: 116800, v2) Carrier Site ID / Name: CTHA510A / Burlington-Avon Landfill Site Location: 277 Huckleberry Hill Road Avon, Connecticut Hartford County Latitude: 41.788055 Longitude: -72.918166

Analysis Result: Max Structural Usage: 86.1% [Pass] Max Foundation Usage: 82.0% [Pass] Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By: Sital Shrestha

Introduction

The purpose of this report is to summarize the analysis results on the 100 ft Guyed Laminated Wood Pole to support the proposed antennas and transmission lines in addition to those currently installed. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Tower Drawings	Laminated Wood Systems, Inc. (DWG No. SPSM-0079) original design drawings
	dated April 7, 2005
Foundation Drawing	Laminated Wood Systems, Inc. (DWG No. SPSM-0079) original design drawings
	dated April 7, 2005
Geotechnical Report	Dr. Clarence Welti, P.E., P.C. Geotechnical Engineering (Project Name Avon Landfill
	Sprint Site) geotechnical report dated March 25, 2005
Modification Drawings	FDH, Project # 1309511400, Dated 6/28/2013
	FDH, Project # 146EW81400, Dated 10/23/2014
	TES Job # 36667, Dated 3/19/18

Analysis Criteria

The rigorous analysis was performed in accordance with the requirements and stipulations of the ANSI/TIA/EIA 222-G. In accordance with this standard, the structure was analyzed using **tnxTower**. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis:	Ultimate Design Wind Speed V _{ult} = 125.0 mph (3-Sec. Gust)/ Nominal Design Wind Speed V _{asd} = 97.0 mph (3-Sec. Gust)
Wind Speed with Ice:	50 mph (3-Sec. Gust) with 1" radial ice concurrent
Operational Wind Speed:	60 mph + 0" Radial ice
Standard/Codes:	ANSI/TIA/EIA 222-G / 2015 IBC / 2018 Connecticut State
	Building Code
Exposure Category:	C
Structure Class:	II
Topographic Category:	1
Crest Height:	0 ft

This structural analysis is based upon the tower being classified as a Structure Class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner	
1		3	Andrew DHHTT65B-3XR - Panel				
2		4	RFS ACU-A20-N RET				
3	99.0	3	ALU 1900MHz RRH	(2) Fluch Mounts	(A) = 1 = 1 / A''	Sprint	
4	99.0	3 ALU 800 MHz RRH		(3) Flush Mounts	(4) 1-1/4"	Nextel	
5	5 3		ALU TD-RRH8x20-25				
6		3	ALU 800 MHz Filter				
7		3	Andrew SBNHH-1D65C				
8	00.0	3	Powerwave LGP21401 TMA	(2) Elucia Macunto	(1) 7/16" Fiber*	AT0 T	
9	90.0		Cci TMABPD7823VG12A	(3) Flush Mounts	(2) 3/4" DC* (6) 1 5/8"	AT&T	
10		3	Andrew APTDC-BDFDM-DBW		(0) 1 5/8		
-	00.0	3	RFS APXV16DWV-16DWVS-C - Panel	(2) Eluch Maurata	(12) 7/07	TMahila	
-	80.0	6	RFS ATMAA1412D-1A20 - TMA	(3) Flush Mounts	(12) 7/8"	T-Mobile	

*(1) 3" Conduit housing (2) 3/4" DC and (1) 7/16" fiber cables.

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner	
11	80.0	3	RFS APXVAR18_43-C-NA20	(2) Eluch Maurata	(12) 7/0" Casu	TMahila	
12	12 80.0 6		RFS ATMAA1412D-A1A20	(3) Flush Mounts	(12) 7/8" Coax	T-Mobile	

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Guy Wires
Max. Usage:	72.7%	86.1%
Pass/Fail	Pass	Pass

Foundations

		Base Reactions	Anchors				
	Moment (Kip-Ft)	Shear (Kips)	ar (Kips) Axial (Kips) Uplift (Kips) Shear (Ki				
Analysis Reactions	154	5.9	91.9	38.2	15.9		

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Conclusions

Based on the analysis results, the existing structure and its foundation were found to be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the ANSI/TIA-222-G standards and the 2015 IBC under the design basic wind speed specified in the Analysis Criteria.

Standard Conditions

- 1. This analysis was performed based on the information supplied to **(TES) Tower Engineering Solutions**, **LLC.** Verification of the information provided was not included in the Scope of Work for **TES**. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of **TES**. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the EIA/TIA-222 standard or other codes, **TES** should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. **TES** has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, **TES** should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

Tower Engineering Solutions	^{Job:} CT46143-A		
1320 Greenway Drive, Ste. 600	Project: 98772		
Irving, TX 75038	Client: T-Mobile	^{Drawn by:} sital.shrestha	App'd:
Phone: (972) 483-0807	Code: TIA-222-G	^{Date:} 10/16/20	Scale: NTS
FAX:	Path: R:\CT46143-A-SBA\Miscellaneous\9877	2\tnx\CT46143-A-SBA 78523 Guyed Wood Pole (26.25).e	Dwg No. E-1

tnxTower	Job C
	Project

Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:

Job		Page
	CT46143-A	1 of 13
Project	98772	Date 10:08:42 10/16/20
	90772	10.06.42 10/10/20
Client	T-Mobile	Designed by sital.shrestha

Guy-Tensioning Information

									Tempe	rature At T	ime Of Tensi	oning					
				0	F	20	0 F	40) F	60) F	80	0 F	10	0 F	12	0 F
Guy Elevation	1	Н	V	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept
ft	-	ft	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft
76.15	Α	38.91	76.15	2404	0.78	2320	0.81	2236	0.84	2152	0.87	2068	0.90	1985	0.94	1901	0.98
	В	38.91	76.15	2404	0.78	2320	0.81	2236	0.84	2152	0.87	2068	0.90	1985	0.94	1901	0.98
	С	23.91	66.15	2293	0.55	2246	0.56	2199	0.58	2152	0.59	2105	0.60	2058	0.62	2011	0.63
	D	38.91	76.15	2404	0.78	2320	0.81	2236	0.84	2152	0.87	2068	0.90	1985	0.94	1901	0.98
54.95	Α	38.91	54.95	1978	0.45	1873	0.48	1768	0.51	1664	0.54	1560	0.58	1456	0.62	1352	0.66
	В	38.91	54.95	1978	0.45	1873	0.48	1768	0.51	1664	0.54	1560	0.58	1456	0.62	1352	0.66
	С	23.91	44.95	1872	0.27	1803	0.29	1733	0.30	1664	0.31	1595	0.32	1525	0.34	1456	0.35
	D	38.91	54.95	1978	0.45	1873	0.48	1768	0.51	1664	0.54	1560	0.58	1456	0.62	1352	0.66
76.15	Α	38.91	76.15	3127	0.78	3018	0.81	2909	0.84	2800	0.87	2691	0.90	2583	0.94	2475	0.98
	В	38.91	76.15	3127	0.78	3018	0.81	2909	0.84	2800	0.87	2691	0.90	2583	0.94	2475	0.98
	С	23.91	66.15	2983	0.55	2922	0.56	2861	0.58	2800	0.59	2739	0.60	2678	0.61	2617	0.63
	D	38.91	76.15	3127	0.78	3018	0.81	2909	0.84	2800	0.87	2691	0.90	2583	0.94	2475	0.98

Tower Pressures - No Ice

$G_{H} = 1.100$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1	74.01	1.188	27	115.938	А	0.000	193.268	193.268	100.00	39.204	0.000
100.00-47.00					В	0.000	193.268		100.00	0.000	0.000
					С	0.000	193.268		100.00	51.084	0.000
					D	0.000	193.268		100.00	26.000	0.000
L2 47.00-0.00	24.55	0.942	21	102.813	Α	0.000	171.388	171.388	100.00	55.836	0.000
					В	0.000	171.388		100.00	0.000	0.000
					С	0.000	171.388		100.00	55.836	0.000
					D	0.000	171.388		100.00	23.500	0.000

Tower Pressure - With Ice

$G_H = 1$.100
-----------	------

Section	z	K _Z	q_z	tz	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 100.00-47.00	74.01	1.188	7	2.1682	135.090	Α	0.000	225.195	225.195	100.00	66.893	0.000
						В	0.000	225.195		100.00	0.000	0.000
						С	0.000	225.195		100.00	147.441	0.000
						D	0.000	225.195		100.00	60.687	0.000
L2 47.00-0.00	24.55	0.942	6	1.9417	118.022	Α	0.000	196.743	196.743	100.00	92.610	0.000
						В	0.000	196.743		100.00	0.000	0.000
						С	0.000	196.743		100.00	147.365	0.000
						D	0.000	196.743		100.00	52.190	0.000

Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:

	Job		Page
ower		CT46143-A	2 of 13
ring Solutions	Project		Date
Drive, Ste. 600		98772	10:08:42 10/16/20
X 75038 2) 483-0807 X:	Client	T-Mobile	Designed by sital.shrestha

Tower Pressure - Service

$G_H = 1$	1.100
-----------	-------

Section Elevation	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg %	$C_A A_A$	$C_A A_A$ Out
Elevation					a c				70	In Face	Face
ft	ft		psf	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
L1	74.01	1.188	9	115.938	А	0.000	193.268	193.268	100.00	39.204	0.000
100.00-47.00					В	0.000	193.268		100.00	0.000	0.000
					С	0.000	193.268		100.00	51.084	0.000
					D	0.000	193.268		100.00	26.000	0.000
L2 47.00-0.00	24.55	0.942	7	102.813	Α	0.000	171.388	171.388	100.00	55.836	0.000
					В	0.000	171.388		100.00	0.000	0.000
					С	0.000	171.388		100.00	55.836	0.000
					D	0.000	171.388		100.00	23.500	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	875.11	7967.50	А	1	0.6	27	1	1	193.268	7952.09	150.04	D
100.00-47.00			В	1	1.2		1	1	193.268			
			С	1	0.6		1	1	193.268			
			D	1	1.2		1	1	193.268			
L2 47.00-0.00	1064.55	7065.52	А	1	0.6	21	1	1	171.388	5923.25	126.03	D
			В	1	1.2		1	1	171.388			
			С	1	0.6		1	1	171.388			
			D	1	1.2		1	1	171.388			
Sum Weight:	1939.66	15033.01								13875.34		

			Γον	ver Fo	orces	s - N	o Ice	e - W	ind 45	To Face	•	
Section Elevation	Add Weight	Self Weight	F a c	е	C_F	qz psf	D_F	D_R	A_E	F	W	Ctrl. Face
ft	lb	lb	е						ft^2	lb	plf	
L1	875.11	7967.50	Α	1	0.6	27	1	1	193.268	3452.81	65.15	D
100.00-47.00			В	1	0.6		1	1	193.268			
			С	1	0.6		1	1	193.268			
			D	1	0.6		1	1	193.268			
L2 47.00-0.00	1064.55	7065.52	А	1	0.6	21	1	1	171.388	2415.21	51.39	D
			В	1	0.6		1	1	171.388			
			С	1	0.6		1	1	171.388			
			D	1	0.6		1	1	171.388			
Sum Weight:	1939.66	15033.01								5868.02		

<i>tnxTower</i>

Tower Eng 1320 Gree Irv Phon

ıxTower	Јо ь СТ46143	3-A Page 3 of 13
ngineering Solutions reenway Drive, Ste. 600	Project 98772	2 Date 10:08:42 10/16/20
Irving, TX 75038 one: (972) 483-0807 FAX:	Client T-Mobi	ile Designed by sital.shrestha

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	5555.86	11957.33	Α	1	1.2	7	1	1	225.195	2877.02	54.28	D
100.00-47.00			В	1	1.2		1	1	225.195			
			С	1	1.2		1	1	225.195			
			D	1	1.2		1	1	225.195			
L2 47.00-0.00	5807.83	10208.71	Α	1	1.2	6	1	1	196.743	2119.63	45.10	D
			В	1	1.2		1	1	196.743			
			С	1	1.2		1	1	196.743			
			D	1	1.2		1	1	196.743			
Sum Weight:	11363.68	22166.04								4996.66		

	Tower Forces - With Ice - Wind 45 To Face												
Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face	
ft	lb	lb	с е			psf			ft^2	lb	plf	Tucc	
L1	5555.86	11957.33	А	1	1.2	7	1	1	225.195	2137.96	40.34	D	
100.00-47.00			В	1	1.2		1	1	225.195				
			С	1	1.2		1	1	225.195				
			D	1	1.2		1	1	225.195				
L2 47.00-0.00	5807.83	10208.71	Α	1	1.2	6	1	1	196.743	1473.33	31.35	D	
			В	1	1.2		1	1	196.743				
			С	1	1.2		1	1	196.743				
			D	1	1.2		1	1	196.743				
Sum Weight:	11363.68	22166.04								3611.29			

	Tower Forces - Service - Wind Normal To Face											
					1			r				
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
	ũ	~	с			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	875.11	7967.50	Α	1	0.6	9	1	1	193.268	2722.30	51.36	D
100.00-47.00			В	1	1.2		1	1	193.268			
			С	1	0.6		1	1	193.268			
			D	1	1.2		1	1	193.268			
L2 47.00-0.00	1064.55	7065.52	А	1	0.6	7	1	1	171.388	2027.75	43.14	D
			В	1	1.2		1	1	171.388			
			С	1	0.6		1	1	171.388			
			D	1	1.2		1	1	171.388			
Sum Weight:	1939.66	15033.01								4750.05		

tnxT

Tower Engine 1320 Greenway Irving, T Phone: (972 FA

D	Job	Page	
Tower		CT46143-A	4 of 13
eering Solutions	Project		Date
ay Drive, Ste. 600		98772	10:08:42 10/16/20
TX 75038 972) 483-0807 FAX:	Client	T-Mobile	Designed by sital.shrestha

Tower Forces - Service - Wind 45 To Face

Section Elevation	Add Weight	Self Weight	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
Elevation	Weight	Weight	a c			psf						гасе
ft	lb	lb	e			psj			ft^2	lb	plf	
L1	875.11	7967.50	Α	1	0.6	9	1	1	193.268	1182.03	22.30	D
100.00-47.00			В	1	0.6		1	1	193.268			
			С	1	0.6		1	1	193.268			
			D	1	0.6		1	1	193.268			
L2 47.00-0.00	1064.55	7065.52	Α	1	0.6	7	1	1	171.388	826.82	17.59	D
			В	1	0.6		1	1	171.388			
			С	1	0.6		1	1	171.388			
			D	1	0.6		1	1	171.388			
Sum Weight:	1939.66	15033.01								2008.84		

Force Totals (Does not include forces on guys)

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	
		X	Ζ	
	lb	lb	lb	kip-ft
Leg Weight	15033.01			
Bracing Weight	0.00			
Total Member Self-Weight	15033.01			
Guy Weight	488.90			
Total Weight	18811.23			
Wind 0 deg - No Ice		0.00	-16843.59	-0.01
Wind 45 deg - No Ice		6574.04	-6248.19	-1.24
Wind 90 deg - No Ice		9297.10	0.00	-1.75
Wind 135 deg - No Ice		6574.04	6248.19	-1.23
Wind 180 deg - No Ice		0.00	16843.59	0.01
Wind 225 deg - No Ice		-6574.04	6248.19	1.24
Wind 270 deg - No Ice		-9297.10	0.00	1.75
Wind 315 deg - No Ice		-6574.04	-6248.19	1.23
Member Ice	7133.03			
Guy Ice	5630.45			
Total Weight Ice	42774.70			
Wind 0 deg - Ice		0.00	-6015.77	-0.00
Wind 45 deg - Ice		3360.30	-3274.19	-0.44
Wind 90 deg - Ice		4752.18	0.00	-0.62
Wind 135 deg - Ice		3360.30	3274.19	-0.44
Wind 180 deg - Ice		0.00	6015.77	0.00
Wind 225 deg - Ice		-3360.30	3274.19	0.44
Wind 270 deg - Ice		-4752.18	0.00	0.62
Wind 315 deg - Ice		-3360.30	-3274.19	0.44
Total Weight	18811.23			
Wind 0 deg - Service		0.00	-5766.19	-0.00
Wind 45 deg - Service		2250.54	-2138.99	-0.42
Wind 90 deg - Service		3182.75	0.00	-0.60
Wind 135 deg - Service		2250.54	2138.99	-0.42
Wind 180 deg - Service		0.00	5766.19	0.00
Wind 225 deg - Service		-2250.54	2138.99	0.42
Wind 270 deg - Service		-3182.75	0.00	0.60
Wind 315 deg - Service		-2250.54	-2138.99	0.42

Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:

	Page		Job		
3	5 of 13	CT46143-A	°	'ower	
	Date		Project	ering Solutions y Drive, Ste. 600	
16/20	10:08:42 10/16/	98772			
stha	Designed by sital.shrestha	T-Mobile	07 Client	TX 75038 72) 483-0807 AX:	
	Designed by		e. 600 Client	y Drive, Ste. 600 TX 75038 72) 483-0807	

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy
3	1.2 Dead+1.6 Wind 45 deg - No Ice+1.0 Guy
4	1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy
5	1.2 Dead+1.6 Wind 135 deg - No Ice+1.0 Guy
6	1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
7	1.2 Dead+1.6 Wind 225 deg - No Ice+1.0 Guy
8	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
9	1.2 Dead+1.6 Wind 315 deg - No Ice+1.0 Guy
10	1.2 Dead+1.0 Ice+1.0 Temp+Guy
11	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
12	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp+1.0 Guy
13	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
14	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp+1.0 Guy
15	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
16	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp+1.0 Guy
17	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
18	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp+1.0 Guy
19	Dead+Wind 0 deg - Service+Guy
20	Dead+Wind 45 deg - Service+Guy
21	Dead+Wind 90 deg - Service+Guy
22	Dead+Wind 135 deg - Service+Guy
23	Dead+Wind 180 deg - Service+Guy
24	Dead+Wind 225 deg - Service+Guy
25	Dead+Wind 270 deg - Service+Guy
26	Dead+Wind 315 deg - Service+Guy

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial lb	Major Axis Moment kip-ft	Minor Axi Moment kip-ft
L1	100 - 47	Pole	Max Tension	14	0.13	0.00	0.00
			Max. Compression	2	-82202.33	9.51	60.38
			Max. Mx	8	-6252.45	116.83	1.29
			Max. My	2	-6150.95	0.23	147.45
			Max. Vy	8	-8161.93	116.83	1.29
			Max. Vx	2	-10798.23	0.23	147.45
			Max. Torque	4			2.80
		Guy A	Bottom Tension	6	10834.38		
		•	Top Tension	6	10872.37		
			Top Cable Vert	6	9685.26		
			Top Cable Norm	6	4940.06		
			Top Cable Tan	6	4.35		
			Bot Cable Vert	6	-9592.87		
			Bot Cable Norm	6	5034.42		
			Bot Cable Tan	6	123.34		
		Guy A	Bottom Tension	6	7494.08		
		-	Top Tension	6	7515.44		
			Top Cable Vert	6	6141.50		
			Top Cable Norm	6	4331.71		
			Top Cable Tan	6	6.33		
			Bot Cable Vert	6	-6079.87		

	Job		Page
tnxTower		CT46143-A	6 of 13
Tower Engineering Solutions	Project		Date
1320 Greenway Drive, Ste. 600		98772	10:08:42 10/16/20
Irving, TX 75038 Phone: (972) 483-0807 FAX:	Client	T-Mobile	Designed by sital.shrestha

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	lb	kip-ft	kip-ft
			Bot Cable Norm	6	4380.85		
			Bot Cable Tan	6	67.44		
		Guy A	Bottom Tension	6	14059.06		
		•	Top Tension	6	14108.58		
			Top Cable Vert	6	12563.96		
			Top Cable Norm	6	6418.64		
			Top Cable Tan	6	15.93		
			Bot Cable Vert	6	-12452.38		
			Bot Cable Norm	6	6524.79		
			Bot Cable Tan	6	149.78		
		Guy B	Bottom Tension	6	10967.79		
		•	Top Tension	6	11005.78		
			Top Cable Vert	6	9803.32		
			Top Cable Norm	6	5002.20		
			Top Cable Tan	6	4.07		
			Bot Cable Vert	6	-9710.94		
			Bot Cable Norm	6	5096.56		
			Bot Cable Tan	6	123.05		
		Guy B	Bottom Tension	6	7598.75		
			Top Tension	6	7620.12		
			Top Cable Vert	6	6226.47		
			Top Cable Norm	6	4392.86		
			Top Cable Tan	6	6.50		
			Bot Cable Vert	6	-6164.83		
			Bot Cable Norm	6	4442.00		
			Bot Cable Tan	6	67.27		
		Guy B	Bottom Tension	6	14232.45		
		Ouy D	Top Tension	6	14281.98		
			Top Cable Vert	6	12717.40		
			Top Cable Norm	6	6499.41		
			Top Cable Tan	6	15.56		
			Bot Cable Vert	6	-12605.83		
			Bot Cable Norm	6	6605.55		
				6	149.41		
		Curr C	Bot Cable Tan				
		Guy C	Bottom Tension	2 2	13427.09		
			Top Tension		13459.50		
			Top Cable Vert	2	12633.99		
			Top Cable Norm	2	4640.95		
			Top Cable Tan Bot Cable Vert	2 2	45.13		
					-12564.74		
			Bot Cable Norm	2	4732.03		
		Curr C	Bot Cable Tan	2	148.10		
		Guy C	Bottom Tension	2	10723.35		
			Top Tension	2	10740.54		
			Top Cable Vert	2	9464.01		
			Top Cable Norm	2	5078.48		
			Top Cable Tan	2	27.83		
			Bot Cable Vert	2	-9418.95		
			Bot Cable Norm	2	5125.03		
		0 0	Bot Cable Tan	2	87.54		
		Guy C	Bottom Tension	2	17429.12		
			Top Tension	2	17471.47		
			Top Cable Vert	2	16396.97		
			Top Cable Norm	2	6032.17		
			Top Cable Tan	2	67.49		
			Bot Cable Vert	2	-16312.78		
			Bot Cable Norm	2	6134.63		
		_	Bot Cable Tan	2	183.34		
		Guy D	Bottom Tension	2	10979.21		
			Top Tension	2	11016.91		
			Top Cable Vert	2	9812.96		

tran Torn or	Job		Page
tnxTower		CT46143-A	7 of 13
Tower Engineering Solutions	Project		Date
1320 Greenway Drive, Ste. 600		98772	10:08:42 10/16/20
Irving, TX 75038 Phone: (972) 483-0807 FAX:	Client	T-Mobile	Designed by sital.shrestha

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi. Moment
	5			Comb.	lb	kip-ft	kip-ft
			Top Cable Norm	2	5007.71	1.5	1.7
			Top Cable Tan	2	30.45		
			Bot Cable Vert	2	-9720.58		
			Bot Cable Norm	2	5102.06		
			Bot Cable Tan	2	149.43		
		Guy D	Bottom Tension	2	7572.81		
			Top Tension	2	7594.05		
			Top Cable Vert	2	6205.21		
			Top Cable Norm	2	4377.78		
			Top Cable Tan	2	6.45		
			Bot Cable Vert	2	-6143.57		
			Bot Cable Norm	2	4426.92		
			Bot Cable Tan	2	80.22		
		Guy D	Bottom Tension	2	14247.26		
			Top Tension	2	14296.46		
			Top Cable Vert	2	12729.93		
			Top Cable Norm	2	6506.56		
			Top Cable Tan	2	49.79		
			Bot Cable Vert	2	-12618.36		
			Bot Cable Norm	2	6612.70		
			Bot Cable Tan	2	183.65		
L2	47 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	2	-91915.20	16.18	153.57
			Max. Mx	8	-62775.90	65.65	7.02
			Max. My	2	-91915.20	16.18	153.57
			Max. Vy	4	-2159.79	-58.56	0.67
			Max. Vx	6	5994.46	0.97	-138.32
			Max. Torque	4			2.80

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical lb	Horizontal, X lb	Horizontal, Z lb
Mast	Max. Vert	2	91918.95	34.26	5853.99
	Max. H _x	8	72514.52	1380.54	22.82
	Max. Hz	2	91918.95	34.26	5853.99
	Max. M _x	2	153.57	34.26	5853.99
	Max. Mz	4	44.05	-1358.92	1.61
	Max. Torsion	4	2.80	-1358.92	1.61
	Min. Vert	1	42200.79	28.40	13.89
	Min. H _x	4	65890.52	-1358.92	1.61
	Min. Hz	6	82066.60	12.68	-5947.60
	Min. M _x	6	-138.32	12.68	-5947.60
	Min. M _z	8	-55.99	1380.54	22.82
	Min. Torsion	8	-2.80	1380.54	22.82
Guy D @ 40 ft Elev 0 ft Azimuth 225 deg	Max. Vert	7	-1313.17	-382.99	384.06
e	Max. H _x	7	-1313.17	-382.99	384.06
	Max. H _z	2	-28482.50	-11121.65	11706.15
	Min. Vert	2	-28482.50	-11121.65	11706.15
	Min. H _x	2	-28482.50	-11121.65	11706.15
	Min. Hz	6	-1484.50	-606.73	365.35
Guy C @ 25 ft Elev 10 ft Azimuth 135 deg	Max. Vert	14	-1123.15	322.86	322.99

ter a T a su a su	Job		Page
tnxTower		CT46143-A	8 of 13
Tower Engineering Solutions	Project		Date
1320 Greenway Drive, Ste. 600		98772	10:08:42 10/16/20
Irving, TX 75038 Phone: (972) 483-0807 FAX:	Client	T-Mobile	Designed by sital.shrestha

Location	Condition	Gov. Load	Vertical lb	Horizontal, X lb	Horizontal, Z lb
		Comb.			
	Max. H _x	2	-38296.47	11011.56	11604.10
	Max. Hz	2	-38296.47	11011.56	11604.10
	Min. Vert	2	-38296.47	11011.56	11604.10
	Min. H _x	5	-1414.25	271.09	271.47
	Min. Hz	6	-1457.18	421.90	211.73
Guy B @ 40 ft	Max. Vert	3	-1311.30	383.06	-382.69
Elev 0 ft					
Azimuth 45 deg					
-	Max. H _x	6	-28481.60	11175.38	-11655.84
	Max. Hz	2	-1478.20	607.05	-360.38
	Min. Vert	6	-28481.60	11175.38	-11655.84
	Min. H _x	3	-1311.30	383.06	-382.69
	Min. Hz	6	-28481.60	11175.38	-11655.84
Guy A @ 40 ft Elev 0 ft Azimuth -45 deg	Max. Vert	18	-777.69	-424.80	-424.85
izinium 15 deg	Max. H _x	9	-1073.71	-288.11	-288.35
	Max. H _z	2	-1228.62	-504.06	-265.18
	Min. Vert	6	-28125.13	-11030.51	-11512.13
	Min. H _x	6	-28125.13	-11030.51	-11512.13
	Min. H _z	6	-28125.13	-11030.51	-11512.13

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning $Moment, M_x$	Overturning Moment, M _z	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead Only	42200.79	-28.40	-13.89	-1.59	1.90	0.00
1.2 Dead+1.6 Wind 0 deg - No	91918.95	-34.26	-5853.99	-153.57	16.18	-0.06
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 45 deg - No	63523.96	959.71	-1169.00	-38.13	-30.41	-2.01
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 90 deg - No	65890.52	1358.92	-1.61	-0.97	-44.05	-2.80
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 135 deg -	63338.24	990.69	1161.74	35.26	-33.01	-1.96
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 180 deg -	82066.60	-12.68	5947.60	138.32	0.97	0.04
No Ice+1.0 Guy		1000 50	1100.01	22.20		2.02
1.2 Dead+1.6 Wind 225 deg -	63793.02	-1032.50	1133.04	32.39	36.92	2.02
No Ice+1.0 Guy	72514.52	1290 54	-22.82	10.72	55.00	2.90
1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy	72514.52	-1380.54	-22.82	-10.73	55.99	2.80
1.2 Dead+1.6 Wind 315 deg -	71933.19	-1014.94	-1150.95	-49.48	47.97	1.95
No Ice+1.0 Guy	/1955.19	-1014.94	-1150.95	-49.40	47.97	1.95
1.2 Dead+1.0 Ice+1.0	70324.66	-82.08	-40.87	-6.10	6.96	-0.00
Temp+Guy	70324.00	-02.00	-40.87	-0.10	0.90	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0	76837.41	-90.33	-1423.97	-40.07	10.34	-0.05
Ice $+1.0$ Temp $+1.0$ Guy	/005/111	70.55	1123.97	10.07	10.51	0.02
1.2 Dead+1.0 Wind 45 deg+1.0	72564.76	506.54	-670.43	-19.17	-4.09	-0.51
Ice+1.0 Temp+1.0 Guy				-,,	,	
1.2 Dead+1.0 Wind 90 deg+1.0	73266.77	749.60	-31.98	-4.33	-14.20	-0.66
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 135	71860.42	508.85	576.08	8.67	-7.67	-0.44
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 180	73687.44	-71.60	1352.52	26.48	4.97	0.04
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 225	72629.00	-686.35	574.38	5.01	19.94	0.52

	Job		Page
tnxTower		CT46143-A	9 of 13
Tower Fraincering Solutions	Project		Date
Tower Engineering Solutions 1320 Greenway Drive, Ste. 600		98772	10:08:42 10/16/20
Irving, TX 75038	Client		Designed by
Phone: (972) 483-0807 FAX:		T-Mobile	sital.shrestha

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M _z	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 270	75732.17	-910.64	-49.78	-9.20	29.47	0.67
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 315	75269.53	-681.37	-665.54	-22.35	23.06	0.43
deg+1.0 Ice+1.0 Temp+1.0 Guy						
Dead+Wind 0 deg -	42802.51	-28.73	-1308.03	-25.51	2.85	-0.01
Service+Guy						
Dead+Wind 45 deg -	42375.06	198.91	-273.14	-6.69	-2.60	-0.43
Service+Guy						
Dead+Wind 90 deg -	42370.02	292.88	-14.61	-1.17	-5.03	-0.60
Service+Guy						
Dead+Wind 135 deg -	42365.19	198.97	243.81	4.07	-3.30	-0.42
Service+Guy						
Dead+Wind 180 deg -	42402.92	-26.75	1282.33	22.07	1.23	0.01
Service+Guy						
Dead+Wind 225 deg -	42388.37	-256.95	244.12	3.33	6.60	0.43
Service+Guy						
Dead+Wind 270 deg -	42508.20	-349.09	-12.59	-2.12	8.97	0.60
Service+Guy						
Dead+Wind 315 deg -	42447.24	-255.05	-270.68	-7.26	7.13	0.42
Service+Guy						

Solution Summary

	Sur	n of Applied Force.	5		Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-18811.22	0.00	-0.26	18811.26	-0.32	0.002%
2	-27.24	-22433.15	-28538.89	27.17	22433.15	28538.68	0.001%
3	11620.10	-22475.68	-11098.72	-11619.92	22475.68	11098.55	0.001%
4	16464.51	-22518.21	27.24	-16464.35	22518.21	-27.26	0.001%
5	11677.80	-22527.32	11156.43	-11677.67	22527.32	-11156.30	0.001%
6	27.24	-22518.21	28538.89	-27.27	22518.20	-28538.50	0.001%
7	-11620.10	-22475.68	11098.72	11619.92	22475.68	-11098.56	0.001%
8	-16464.51	-22433.15	-27.24	16464.42	22433.15	27.20	0.000%
9	-11677.80	-22424.04	-11156.43	11677.66	22424.04	11156.29	0.001%
10	0.00	-46438.98	0.00	-1.39	46438.96	-1.45	0.004%
11	-40.37	-46377.47	-8376.47	40.19	46377.46	8376.15	0.001%
12	4997.25	-46438.98	-4911.14	-4997.08	46438.97	4910.40	0.002%
13	7112.88	-46500.50	40.37	-7112.30	46500.48	-40.45	0.001%
14	5082.74	-46513.22	4996.63	-5080.97	46513.14	-4995.05	0.005%
15	40.37	-46500.50	8376.47	-40.39	46500.48	-8375.70	0.002%
16	-4997.25	-46438.98	4911.14	4996.51	46438.97	-4911.04	0.002%
17	-7112.88	-46377.47	-40.37	7112.61	46377.46	40.20	0.001%
18	-5082.74	-46364.74	-4996.63	5082.27	46364.72	4996.16	0.001%
19	-5.83	-18802.12	-6106.21	4.90	18802.10	6104.84	0.008%
20	2486.25	-18811.22	-2374.69	-2486.20	18811.22	2374.58	0.001%
21	3522.76	-18820.32	5.83	-3522.54	18820.32	-5.83	0.001%
22	2498.59	-18822.27	2387.04	-2498.46	18822.27	-2386.93	0.001%
23	5.83	-18820.32	6106.21	-5.87	18820.32	-6105.86	0.002%
24	-2486.25	-18811.22	2374.69	2486.11	18811.22	-2374.68	0.001%
25	-3522.76	-18802.12	-5.83	3522.27	18802.11	5.57	0.003%
26	-2498.59	-18800.17	-2387.04	2498.35	18800.17	2386.80	0.002%

<i>tnxTower</i>	

Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:

	Job		Page
er		CT46143-A	10 of 13
Solutions	Project		Date
Ste. 600		98772	10:08:42 10/16/20
38 0807	Client	T-Mobile	Designed by sital.shrestha

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.00000001	0.00001104
2	Yes	10	0.00000001	0.00006507
3	Yes	9	0.00000001	0.00006966
4	Yes	9	0.00000001	0.00005854
5	Yes	9	0.00000001	0.00005208
6	Yes	9	0.00000001	0.00011103
7	Yes	9	0.00000001	0.00006917
8	Yes	10	0.00000001	0.00003683
9	Yes	10	0.00000001	0.00005937
10	Yes	7	0.00000001	0.00014509
11	Yes	9	0.00000001	0.00008028
12	Yes	8	0.00000001	0.00009052
13	Yes	8	0.00000001	0.00005450
14	Yes	7	0.00000001	0.00010491
15	Yes	8	0.00000001	0.00008395
16	Yes	8	0.00000001	0.00009005
17	Yes	9	0.00000001	0.00006561
18	Yes	9	0.00000001	0.00014264
19	Yes	6	0.00000001	0.00010720
20	Yes	6	0.00000001	0.00000824
21	Yes	6	0.00000001	0.00001269
22	Yes	6	0.00000001	0.00000984
23	Yes	6	0.00000001	0.00001797
24	Yes	6	0.00000001	0.00000873
25	Yes	6	0.00000001	0.00002802
26	Yes	6	0.00000001	0.00001766

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	100 - 47	2.534	19	0.2466	0.0052
L2	47 - 0	0.584	19	0.0890	0.0026

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
99.00	DHHTT65B-3XR	19	2.491	0.2434	0.0051	174047
90.00	SBNHH-1D65C	19	2.104	0.2141	0.0047	87023
80.00	APXVAR18_43-C-NA20	19	1.688	0.1822	0.0042	43512
76.15	Guy	19	1.534	0.1702	0.0041	36488
76.15	Guy	19	1.534	0.1702	0.0041	36488
54.95	Guy	19	0.796	0.1090	0.0030	19317

	Job		Page
tnxTower		CT46143-A	11 of 13
Tower Engineering Solutions	Project		Date
1320 Greenway Drive, Ste. 600		98772	10:08:42 10/16/20
Irving, TX 75038 Phone: (972) 483-0807 FAX:	Client	T-Mobile	Designed by sital.shrestha

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	100 - 47	17.718	2	1.5424	0.0250
L2	47 - 0	4.371	2	0.7312	0.0123

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
99.00	DHHTT65B-3XR	2	17.424	1.5271	0.0248	26718
90.00	SBNHH-1D65C	2	14.793	1.3900	0.0227	13359
80.00	APXVAR18_43-C-NA20	2	11.959	1.2374	0.0203	6679
76.15	Guy	2	10.911	1.1786	0.0194	5600
76.15	Guy	2	10.911	1.1786	0.0194	5600
54.95	Guy	2	5.846	0.8537	0.0143	2964

Guy Design Data

Section No.	Elevation	Size	Initial Tension	Breaking Load	Actual T_{μ}	Allowable ϕT_n	Required S.F.	Actual S.F.
	ft		lb	lb	lb	lb		
L1	76.15 (A) (6)	1/2 EHS	2152.00	26900.04	10872.40	16140.00	1.000	1.484 🗸
	76.15 (B) (5)	1/2 EHS	2152.00	26900.04	11005.80	16140.00	1.000	1.467 🖌
	76.15 (C) (4)	1/2 EHS	2152.00	26900.04	13459.50	16140.00	1.000	1.199
	76.15 (D) (3)	1/2 EHS	2152.00	26900.04	11016.90	16140.00	1.000	1.465
	54.95 (A) (10)	7/16 EHS	1664.00	20800.02	7515.44	12480.00	1.000	1.661
	54.95 (B) (9)	7/16 EHS	1664.00	20800.02	7620.12	12480.00	1.000	1.638
	54.95 (C) (8)	7/16 EHS	1664.00	20800.02	10740.50	12480.00	1.000	1.162
	54.95 (D) (7)	7/16 EHS	1664.00	20800.02	7594.05	12480.00	1.000	1.643
	76.15 (A) (14)	9/16 EHS	2800.00	35000.04	14108.60	21000.00	1.000	1.488
	76.15 (B) (13)	9/16 EHS	2800.00	35000.04	14282.00	21000.00	1.000	1.470
	76.15 (C) (12)	9/16 EHS	2800.00	35000.04	17471.50	21000.00	1.000	1.202
	76.15 (D) (11)	9/16 EHS	2800.00	35000.04	14296.50	21000.00	1.000	1.469

Compression Checks

Pole Design Data

tnxTower	Job	CT46143-A	Page 12 of 13
Tower Engineering Solutions 1320 Greenway Drive, Ste. 600	Project	98772	Date 10:08:42 10/16/20
Irving, TX 75038 Phone: (972) 483-0807 FAX:	Client	T-Mobile	Designed by sital.shrestha

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1	100 - 47 (1)	TP26.25x26.25x13.125	53.00	0.00	0.0	541.188 0	-6150.95	584484.00	0.011
L2	47 - 0 (2)	TP26.25x26.25x13.125	47.00	0.00	0.0	541.188 0	-91915.20	584484.00	0.157

		Po	ole Ben	ding De	sign [Data		
Section No.	Elevation	Size	M _{ux}	ϕM_{nx}	Ratio M _{ux}	M _{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1 L2	100 - 47 (1) 47 - 0 (2)	TP26.25x26.25x13.125 TP26.25x26.25x13.125	147.45 154.42	271.32 271.32	0.543 0.569	0.00 0.00	271.32 271.32	0.000 0.000

	Pole Shear Design Data								
Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T_u	ϕT_n	Ratio T _u	
	ft		lb	lb	ϕV_n	kip-ft	kip-ft	ϕT_n	
L1 L2	100 - 47 (1) 47 - 0 (2)	TP26.25x26.25x13.125 TP26.25x26.25x13.125	10798.20 5912.62	292242.00 292242.00	0.037 0.020	0.01 0.06	319.64 319.64	$0.000 \\ 0.000$	

	Pole Interaction Design Data								
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	100 - 47 (1)	0.011	0.543	0.000	0.037	0.000	0.555	1.000	4.8.2 🖌
L2	47 - 0 (2)	0.157	0.569	0.000	0.020	0.000	0.727	1.000	4.8.2 🗸

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{\phi P_{allow}}_{lb}$	% Capacity	Pass Fail
L1	100 - 47	Pole	TP26.25x26.25x13.125	1	-6150.95	584484.00	55.5	Pass
		Guy A@76.15	1/2	6	10872.40	16140.00	67.4	Pass
		Guy A@54.95	7/16	10	7515.44	12480.00	60.2	Pass

tnxTower	Job	CT46143-A	Page
		13 of 13	
Tower Engineering Solutions	Project		Date
Tower Engineering Solutions 1320 Greenway Drive, Ste. 600		98772	10:08:42 10/16/20
Irving, TX 75038 Phone: (972) 483-0807 FAX:	Client	T-Mobile	Designed by sital.shrestha

Section	Elevation	Component Turn a	Size	Critical	P	ϕP_{allow}	% Canazita	Pass Eail
No.	ft	Туре		Element	lb	lb	Capacity	Fail
		Guy A@76.15	9/16	14	14108.60	21000.00	67.2	Pass
		Guy B@76.15	1/2	5	11005.80	16140.00	68.2	Pass
		Guy B@54.95	7/16	9	7620.12	12480.00	61.1	Pass
		Guy B@76.15	9/16	13	14282.00	21000.00	68.0	Pass
		Guy C@76.15	1/2	4	13459.50	16140.00	83.4	Pass
		Guy C@54.95	7/16	8	10740.50	12480.00	86.1	Pass
		Guy C@76.15	9/16	12	17471.50	21000.00	83.2	Pass
		Guy D@76.15	1/2	3	11016.90	16140.00	68.3	Pass
		Guy D@54.95	7/16	7	7594.05	12480.00	60.8	Pass
		Guy D@76.15	9/16	11	14296.50	21000.00	68.1	Pass
L2	47 - 0	Pole	TP26.25x26.25x13.125	2	-91915.20	584484.00	72.7	Pass
							Summary	
						Pole (L2)	72.7	Pass
						Guy A (L1)	67.4	Pass
						Guy B (L1)	68.2	Pass
						Guy C (L1)	86.1	Pass
						Guy D (L1)	68.3	Pass
						RATING =	86.1	Pass

Program Version 8.0.5.0 - 11/28/2018 File:R:/CT46143-A-SBA/Miscellaneous/98772/tnx/CT46143-A-SBA_78523_Guyed Wood Pole (26.25).eri

Coax Layout CT46143-A

	$\mathbf{\bar{n}}$		(((井)))				Pier Foundation For Guy Anchors								
		~										6/201			
		1		Customer Name:	SBA C	ommu	nications C	Jorp	EIA/TIA Standar		EIA	-222-	G		
				Site Name:					Structure Heigh	t (Ft.):		100			
			_	Site Number:	CT4614	43-A-S	BA		Engineer Name:		J.	Cher	1		
Tower	Engineerii	ng Solutic	ons	Engr. Number:	98772				Manager Login	Req'd:					
Foundation In	fo Obtained	from:	Dra	wings/Calculations											
Structure Type	<u>e:</u>			Guy Anchor					4 ft	\rightarrow					
Analysis or De	esign?			Analysis			9.0	00 ft.			1				
Base Reaction	s (Factored	<u>):</u>						_//	7			<u> </u>	· · ·		
Axial Load (Kip	os):		0.0	Shear Force (Kips):	16.0			_			-	-			
Uplift Force (K	ips):		38.3	Moment (Kips-ft):	0.0		99	.0 ft.		(6) #9 ret	bar			
Foundation Ge	eometries:									(1	.2) #4 ti	es			
			4.0	Depth of Base B. G. S. :	11.0	f+	<u> </u>	_			,	11.0	£+		
Diameter of Pi	. ,		4.0 9.00	Depth of base b. G. S	11.0	11.						11.0	n.		
Pier Height A.	G. (IL.):		9.00												
													<u>/</u>		
Material Prop		ceabr Into:			20000				< 4.0	tt.					
Concrete Strer			3000	Steel Elastic Modulus:		ksi	()								
Vertical bar yie			60	Tie steel yield strength:		ksi	(6)	#9 rebar	-//0	dt	-4 ft. φ				
Vertical Rebar			9	Tie / Stirrup Size #:	4				(d	(12) #	4 ties			
Qty. of Vertica			6	Tie Spacing:	12.0	in.			le	9/					
Concrete Cove Consider ties in		shear stren	3 øth?	Concrete unit weight: Yes	150.0	pcf			e	/					
Soil Design Pa		Shear Stren	5	165					Guy An	chor					
			00.0	Linit weight of water	C2 4	nof									
Water Table B			99.0	Unit weight of water:	62.4	psf									
Ratio of Uplift, Skin Frictions a	-		1.00	Pullout failure Angle: Calculations	30 Bloaco F	(°) Intor III	timate End B	loaring Pro	scuro (ncf):	5000					
				Calculations				-		5000					
Kc =	1.15	For Sand			Kt =		For Sand an	a Silt	Friction δ Between Pier & Soil =	0.95					
Kc =	1.0	Silt/Clay			Kt =	0.85	For Clay				,				
Depth of La	ayers (ft)	γ_{soil}	¢	Cohesion				Soil	Ultimate Uplift	Ultimate Axial	Kc	Kt	α		
Тор	Bottom	(pcf)	(°)	(psf)				Types	Skin Friction (psf)	Skin Friction (psf)	1.0		u		
0.0	3.0	100	0	0				Sand	(201)	(1-0.)	1.15	0.70			
3.0	15.0	100	34	0				Sand	331.9	545.2	1.15	0.70			
15.0	20.0	100	34	0				Sand	442.5	727.0	1.15	0.70			
											┝─┤				
											┝─┤				

Foundation Analysis and Design:

Uplift Strength Reduction Factor:	
-----------------------------------	--

- Total Dry Soil Volume from Conical Failure (cu. Ft.): Total Buoyant Soil Volume from Conical Failure (cu. Ft.):
- Total Dry Concrete Volume (cu. Ft.):
- Total Buoyant Concrete Volume (cu. Ft.):
- Total Effective Concrete Weight (Kips):

Total Effective Vertical Load on Base (Kips):

0.75 Soil Bearing Strength Reduction Factor: 0.75 790 Dry Soil Weight from Conical Failure: 79 Kips 0 Buoyant Soil Weight from Conical Failure (Kips): 0 Kips 251 Total Dry Concrete Weight: 37.70 Kips 0 Total Buoyant Concrete Weight: 0.00 Kips 37.7 Total Effective Soil Weight: 79 Kips 24

	TES Engr. Number:	98772		Page 2/2	Date:	7/16/2019		
Check Soil C	apacities:							
							Usage	
Calculated F	oundation Uplift Capacity (Kips):	58.95	>	Design Factored Upli	ift Load (Kips):	38	0.65	OK!
Allowable O	verturning Moment Resistance (Kips-ft.):	315.5	>	Design Factored Mo	mont (kips-ft):	257	0.82	OK!
Check the ca	apacities of Reinforceing Concrete:							
Strength rec	luction factor (Flexure and axial tension):	0.90	Stren	gth reduction factor (S	Shear):	0.75		
Strength rec	luction factor (Axial compression):	0.65	Wind	Load Factor on Concr	ete Design:	1.00		
Reinforcing	Concrete Pier:						Usage	
	Vertical Steel Rebar Area (sq. in./each):	1.00		Tie / Stirrup Area (sq		0.20		
	Maximum Moment Location Below Grade Surface (tt.):	3.98		Max. Shear force Loo		4.76		
	Calculated Moment Capacity (Mn,Kips-Ft):	505	>	Design Factored Mo	ment (Mu <i>,</i> K-Ft):	207.3	0.41	OK!
	Calculated Shear Capacity (Kips):	169.4	>	Design Factored She	ar (Kips):	16.0	0.09	OK!
	Calculated Tension Capacity (Tn, Kips):	324.0	>	Design Factored Ten	sion (Tu Kips):	38.3	0.12	OK!
	Calculated Compression Capacity (Pn, Kips):	2392	>	Design Factored Axia	al Load (Pu Kips):	0.0	0.00	OK!
	Moment & Axial Strength Combination(Tu/Tn+Mu/Mn):	0.41	OK!	Max. Allowable Tie/	Stirrup Spacing:	12.00	in.	
	Pier Reinforcement Ratio:	0.003		Reinforcement Rati	o is too small			

Reinforce Pier Foundation by Adding Concrete Block (Yes/No ?)

No

EXHIBIT 8

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Antenna Mount Analysis Report

Existing 100.0 FT Guyed laminated wood pole Customer Name: SBA Communications Corp Customer Site Number: CT46143-A-SBA Customer Site Name: Burlington - Avon Landfill Carrier Name: T-Mobile (Application #: 116800, v1) Carrier Site ID / Name: CTHA510A / Burlington-Avon Landfill Site Location: 277 Huckleberry Hill Road Avon, Connecticut Hartford County Latitude: 41.788055 Longitude: -72.918166

Analysis Result:

Max Structural Usage: 55.6% [Pass] Report Prepared By: Saurav Devkota

Introduction

The purpose of this report is to summarize the analysis results on the (3) Flush Mount at 80.00' elevation to support the proposed antenna configuration. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Mount Drawings	Full Metal Services, Dated 4/28/2019
Antenna Loading	SBA, Application #: 116800, v1
Modification Drawings	N/A

Analysis Criteria

Wind Speed Used in the Analysis: 116 mph (3-Sec. Gust) (Ultimate Wind Speed) Wind Speed with Ice: 50 mph (3-Sec. Gust) with 1.5" radial ice concurrent Service Load Wind Speed: 60 mph +0" Radial ice Standard/Codes: ANSI/TIA/EIA 222-H / 2015 IBC / 2018 CBSC Exposure Category: C Risk Category: II Topographic Category: 1 Crest Height (Ft): 0

The site is a Risk Category II structure per table 1604.5 of the IBC. This site does not support emergency communication equipment for first responders such as fire departments, police, hospitals, ambulance services or any of the facilities listed for Risk Categories III and IV. The scope of work detailed in this structural analysis does not include items that are a part of emergency service as the 911 or essential facility service of an emergency response system.

Mount Information

(3) Flush Mount at 80.00' elevation.

Final Antenna Configuration

- 3 RFS APXVAR18_43-C-NA20
- 6 RFS ATMAA1412D-A1A20

Any proposed antennas not currently installed should be mounted such that the centers of the antennas do not exceed 0.5 ft vertically from the center of the Flush Mount.

In addition to the proposed equipment loading, a 500 lb serviceability load was also considered in this analysis in accordance with TIA requirements.

Analysis Results

Our calculations have determined that under design wind load the existing mounts will be structurally adequate to support the proposed antenna configuration. The maximum structural usage is 55.6%, which occurs in the plate. The proposed equipment must be installed as stipulated in the Final Antenna Configuration section of this report. The analysis results are void if the proposed equipment is not installed in accordance with this report.

Attachments

- 1. Mount Photos
- 2. Antenna Placement Diagram
- 3. Mount Mapping Information
- 4. Analysis Calculations

Standard Conditions

- 1. The loading configuration as analyzed in this report is as provided from the customer. Any deviation from this design shall be communicated to TES to verify deviation will not adversely impact the analysis.
- 2. The analysis is based on the presumption that the antenna mount members and components along with any existing reinforcement items have been correctly and properly designed, manufactured, installed and maintained.
- 3. All the existing structural members were assumed to be in good condition with no physical damage or deterioration associated with corrosion. The mount analysis is not a condition assessment of the mount.
- 4. The mount analysis was performed in accordance with the loading provided, and if applicable the modification required to support the additional loading.
- 5. If the mount is modified, installation must adhere to the configuration communicated in the modification drawings.
- 6. The modification drawings are not intended to convey means or methods. These are the responsibility of the installing contractor.
- 7. Rigging plan review is available if the contractor requires for a construction class IV or other if required. Review fee would apply.
- 8. The mount modification package was created based upon information provided for the mount loading. The underlying tower is assumed to provide support and sufficient rigidity to support the mount loads as a tower analysis was not part of the mount analysis.
- 9. TES is not responsible for modifications to climbing facilities unless communicated to TES in writing.

Ref #	Model	Height (in)	Width (in)	H Dist From Left	Pipe #	Pipe Pos V	Antenna Pos	Center Ant From Top	Antenna H Offset
A1	RFS APXVAR18_43-C-NA20	68.00	16.00	0.50	1	а	Front	31.20	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	а	Behind	24.00	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	b	Behind	48.00	0.00

Copyright © 2019 by Tower Engineering Solutions, LLC. All rights reserved.

Ref #	Model	Height (in)	Width (in)	H Dist From Left	Pipe #	Pipe Pos V	Antenna Pos	Center Ant From Top	Antenna H Offset
A1	RFS APXVAR18_43-C-NA20	68.00	16.00	0.50	1	а	Front	31.20	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	а	Behind	24.00	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	b	Behind	48.00	0.00

Copyright © 2019 by Tower Engineering Solutions, LLC. All rights reserved.

Ref #	Model	Height (in)	Width (in)	H Dist From Left	Pipe #	Pipe Pos V	Antenna Pos	Center Ant From Top	Antenna H Offset
A1	RFS APXVAR18_43-C-NA20	68.00	16.00	0.50	1	а	Front	31.20	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	а	Behind	24.00	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	b	Behind	48.00	0.00

Copyright © 2019 by Tower Engineering Solutions, LLC. All rights reserved.

((H)) Towe Solution

Antenna Mount Type "Other" Mapping Form (PATENT PENDING)

Tower Owner:	SBA Communications	Mapping Date:	4/28/	/19				
Site Name:	Burlington - Avon Landfill	Structure Type:	Mono	pole				
Site Number or ID:	CT46143-A-SBA	Structure Height (Ft.):	10	D				
Mapping Contractor:	Full Metal Tower Services	Mount Height (Ft.):	77.	6				

FCC #

Mapping This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

					Geometrie	s (Unit: incl	nes)			
	а	N/A	е	N/A	j	N/A	0	N/A	S	7
	b	N/A	f	N/A	k	N/A	р	N/A	t	15 & 22
	С	N/A	g	N/A	m	N/A	q	N/A	u *	66
	d	N/A	h	N/A	n	N/A	r	N/A	v *	72
				Memb	ers (Unit: i	inches)	* - See Ant. Layout fo	or "u", "v" a	and member "	K" (pipe)
	Items	Member	Lx (O.D.)	Ly (I.D.)	Т	F	Member	Lx (O.D.)	Ly (I.D.)	Т
	Α					F				
Please insert the sketches of the antenna mount on the Sheet "Sketch" with	В					G				
dimemsions and members and insert one sketch here.	С					Н				
dimensions and members and inservoire sketch here.	D					J				
	E						2.375 OD x 0.154 Pipe		2.067	0.154
	Distance f	rom top of main platfo	rm memb	er to lowe	st tip of a	nt./eqpt. o	f Carrier above. (N/A if	ⁱ > 10 ft.)		3'
	Distance f	rom top of main platfo	rm memb	er to highe	est tip of a	nt./eqpt. o	of Carrier below. (N/A i	f > 10 ft.)		N/A
		Please ente	r the infon	nation bel	ow if men	nbers can't	be found from the dro	op down lis	sts	
	plate 3/8"x	4								
				-				-		
		square laminate wood p		-						
	Mount is a	mast pipe mounted dire	ctly to colla	r.						

Climbing ladder is Located at Section B, at 90° Degree Azimuth

Antenna Layout

	Enter antenna model. antenna at specified lo the locations are the s one sector.	ocation, er	nter "N/A"	. If antenn	as and	Mounting Locat	ions (Unit:	inches)	Photos of antennas
Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (In.)	Horiz. offset (Use "-" if Ant. is inside)		Photo Numbers
				Se	ctor A				
Ant _{1a}									
Ant _{1b}	Antenna A	13	3.5	56	1/2" (4)	+36"	6	0	
Ant _{1c}	TMA A	6.5	3	8	1/2" (2)	+21"	N/A	0	
Ant _{2a}									
Ant _{2b}									
Ant _{2c}									
Ant _{3a}									
Ant _{3b}									
Ant _{3c}									
Ant _{4a}									
Ant _{4b}									
Ant _{4c}									
Ant _{5a}									
Ant _{5b}									
Ant _{5c}									
Are Ant sa	ame as sector A?	Yes			Antennas o	on Sector B are the sa	me as Sec	tor A	

	Azimuth (Degr	ee) of E	ach S	ector and Climbing Information
Sector A:	10°		Deg	
Sector B:	190°	Ň	Deg	
Sector C:	280°	N	Deg	
Climbing	90°		Deg	Located at Section B
	Corrosic	on Type:		Minor corrosion observed
Climbing Facility	Acc	ess:		Climbing path was unobstructed.
raciiity	Cond	ition:		N/A

Are Ant same as sector A/B?

Same As A

Antennas on Sector C are the same as Sector A

: Tower Engineering Solutions, LLC

. : TES Project No. 78338 : CT46143-A-SBA_MT_LOT_Loads Only_Sector A_H

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None		_			4			
2	Antenna Di	None					4			
3	Antenna W Front	None					4			
4	Antenna Wi Front	None					4			
5	Antenna W Side	None					4			
6	Antenna Wi Side	None					4			
7	Service Lm1	None					1			
8	Service Lm2	None					1			
9	Structure D	None		-1						
10	Structure Di	None						7		
11	Structure W Front	None						7		
12	Structure Wi Front	None						7		
13	Structure W Side	None						7		
14	Structure Wi Side	None						7		
15	Antenna Wm Front	None					4			
16	Antenna Wm Side	None					4			
17	Structure Wm Front	None						7		
18	Structure Wm Side	None						7		
19	Service Lv1	None					1			
20	Service Lv2	None					1			

Load Combinations

	Description	So	P	S	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac												
1	1.2D+1.0W (Front)	Yes	Υ		1	1.2	9	1.2	3	1	11	1												
2	1.2D+1.0W (Back)	Yes	Υ		1	1.2	9	1.2	3	-1	11	-1												
3	1.2D+1.0W (Left)	Yes	Υ		1	1.2	9	1.2	5	1	13	1												
4	1.2D+1.0W (Right)	Yes	Υ		1	1.2	9	1.2	5	-1	13	-1												
5	1.2D+1.0Di+1.0Wi (Fr	Yes	Υ		1	1.2	9	1.2	2	1	10	1	4	1	12	1								
6	1.2D+1.0Di+1.0Wi (B	Yes	Υ		1	1.2	9	1.2	2	1	10	1	4	-1	12	-1								
7	1.2D+1.0Di+1.0Wi (L	Yes	Υ		1	1.2	9	1.2	2	1	10	1	6	1	14	1								
8	1.2D+1.0Di+1.0Wi (Ri	Yes	Υ		1	1.2	9	1.2	2	1	10	1	6	-1	14	-1								
9	1.2D+1.5Lm1+1.0Wm	Yes	Υ		1	1.2	9	1.2	7	1.5	15	1	17	1										
10	1.2D+1.5LmL2+1.0W	Yes	Υ		1	1.2	9	1.2	8	1.5	15	1	17	1										
11	1.2D+1.5Lv1 (Mainte	Yes	Υ		1	1.2	9	1.2	19	1.5														
12	1.2D+1.5Lv2 (Mainte	Yes	Y		1	1.2	9	1.2	20	1.5														
13	1.4D	Yes	Υ		1	1.4	9	1.4																

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	4	0	0	0	•
2	N3	4	-6	0	0	
3	N3A	4	42	0	0	
4	N4	4	42	5	0	
5	N5	4	-5.27	0	0	
6	N6	4	-5.27	5	0	
7	N7	4	42	.25	0	
8	N8	4	-5.27	.25	0	
9	N11	4	42	21	0	
10	N12	4	-5.27	21	0	
11	N13	3.5	42	5	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
12	N14	3.5	-5.27	5	0	
13	N15	3.33	42	5	0	
14	N16	3.33	-5.27	5	0	
15	N15A	3.665	42	5	0	
16	N16A	3.665	-5.27	5	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
2	All-Threaded Ro	SR 0.5	Beam	BAR	A36 Gr.36	Typical	.196	.003	.003	.006
3	Plate Connection	PL1/4x3	Beam	RECT	A36 Gr.36	Typical	.75	.004	.563	.015
4	New Tube Braci	HSS3x3x4	Beam	SquareTube	A500 Gr.B Rect	Typical	2.44	3.02	3.02	5.08
5	New Bent Plate	PL3/8x7	Beam	RECT	A36 Gr.36	Typical	2.625	.031	10.719	.119

Cold Formed Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	CF1A	1.5CU1.25X035	Beam	ČU	A570 Gr.33	Typical	.131	.022	.052	5.4e-5

Aluminum Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	AL1A	AACS14X13.9	Beam	AA Channel	3003-H14	Typical	11.8	44.7	401	1.19

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5 F)	Density[k/ft^	. Yield[ksi]	Fu[ksi]
1	A570 Gr.33	29500	11346	.3	.65	.49	33	52
2	A607 C1 Gr.55	29500	11346	.3	.65	.49	55	70

Aluminum Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (Density[Table B.4	kt	Ftu[ksi]	Fty[ksi]	Fcy[ksi]	Fsu[ksi]	Ct
1	3003-H14	10100	3787.5	.33	1.3	.173	Table B	1	19	16	13	12	141
2	6061-T6	10100	3787.5	.33	1.3	.173	Table B	1	38	35	35	24	141
3	6063-T5	10100	3787.5	.33	1.3	.173	Table B	1	22	16	16	13	141
4	6063-T6	10100	3787.5	.33	1.3	.173	Table B	1	30	25	25	19	141
5	5052-H34	10200	3787.5	.33	1.3	.173	Table B	1	34	26	24	20	141
6	6061-T6 W	10100	3787.5	.33	1.3	.173	Table B	1	24	15	15	15	141

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Ru
1	MP1A	N1	N3			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
2	M2	N7	N4			PL3/8x4	Beam	RECT	A36 Gr.36	Typical
3	M3	N8	N6			PL3/8x4	Beam	RECT	A36 Gr.36	Typical
4	M4	N11	N13		90	PL3/8x4	Beam	Wide Flange	A36 Gr.36	Typical
5	M5	N12	N14		90	PL3/8x4	Beam	Wide Flange	A36 Gr.36	Typical
6	M6	N15	N4			PL3/8x4	Beam	RECT	A36 Gr.36	Typical
7	M7	N16	N6			PL3/8x4	Beam	RECT	A36 Gr.36	

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Analysis	Inactive	Seismic Design
1	MP1A					-	Yes	-		None
2	M2						Yes			None
3	M3						Yes			None
4	M4						Yes			None
5	M5						Yes			None
6	M6						Yes			None
7	M7						Yes			None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torq	Куу	Kzz	Cb	Function
1	MP1A	Mount Pipes	6			Lbyy			2.1	2.1		Lateral
2	M2	PL3/8x4	.75			Lbyy						Lateral
3	M3	PL3/8x4	.75			Lbyy						Lateral
4	M4	PL3/8x4	.578									Lateral
5	M5	PL3/8x4	.578									Lateral
6	M6	PL3/8x4	.67			Lbyy						Lateral
7	M7	PL3/8x4	.67			Lbyy						Lateral

Cold Formed Steel Design Parameters

Label Shape Lengt... Lbyy[ft] Lbzz[ft] Lcomp t...Lcomp ... L-torque... Kyy Kzz Cm-...Cm-... Cb R a[ft] y sw..z sw... No Data to Print ...

Aluminum Design Parameters

Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft] Lcomp bot[ft] L-torg	Kyy	Kzz	Cb	Function
	•			No Data	to Print				

Joint Loads and Enforced Displacements

Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2
	No Data to Print .		

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-22.7	0
2	MP1A	Y	-22.7	5.2
3	MP1A	Y	-13	2
4	MP1A	Y	-13	4

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-114.7	0
2	MP1A	Y	-114.7	5.2
3	MP1A	Y	-32.289	2
4	MP1A	Y	-32.289	4

Member Point Loads (BLC 3 : Antenna W Front)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Z	-168.719	0
2	MP1A	Z	-168.719	5.2
3	MP1A	Z	-30.684	2
4	MP1A	Z	-30.684	4

Member Point Loads (BLC 4 : Antenna Wi Front)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Z	-35.447	0
2	MP1A	Z	-35.447	5.2
3	MP1A	Z	-6.835	2
4	MP1A	Z	-6.835	4

Member Point Loads (BLC 5 : Antenna W Side)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	105.405	0
2	MP1A	Х	105.405	5.2
3	MP1A	Х	14.246	2
4	MP1A	Х	14.246	4

Member Point Loads (BLC 6 : Antenna Wi Side)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	23.186	0
2	MP1A	Х	23.186	5.2
3	MP1A	Х	4.594	2
4	MP1A	Х	4.594	4

Member Point Loads (BLC 7 : Service Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7	Y	-500	%50

Member Point Loads (BLC 8 : Service Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7	Y	-500	0

Member Point Loads (BLC 15 : Antenna Wm Front)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Z	-11.285	0
2	MP1A	Z	-11.285	5.2
3	MP1A	Z	-2.052	2
4	MP1A	Z	-2.052	4

Member Point Loads (BLC 16 : Antenna Wm Side)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	7.05	0
2	MP1A	Х	7.05	5.2
3	MP1A	Х	.953	2

Member Point Loads (BLC 16 : Antenna Wm Side) (Continued)

Mer	mber Label Dire	ction Magnitude[lb	,k-ft] Location[ft,%]
4	MP1A	X .953	4

Member Point Loads (BLC 19 : Service Lv1)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	M3	Y	-250	0

Member Point Loads (BLC 20 : Service Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M3	Y	-250	%50

Member Distributed Loads (BLC 10 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud	Start Location[ft,%]	End Location[ft,%]
1	MP1A	Y	-8.037	-8.037	0	%100
2	M2	Y	-11.326	-11.326	0	%100
3	M3	Y	-11.326	-11.326	0	%100
4	M4	Y	-11.326	-11.326	0	%100
5	M5	Y	-11.326	-11.326	0	%100
6	M6	Y	-11.326	-11.326	0	%100
7	M7	Y	-11.326	-11.326	0	%100

Member Distributed Loads (BLC 11 : Structure W Front)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud	Start Location[ft,%]	End Location[ft,%]
1	MP1A	PZ	-8.305	-8.305	0	%100
2	M2	PZ	-13.987	-13.987	0	%100
3	M3	PZ	-13.987	-13.987	0	%100
4	M4	PZ	-13.987	-13.987	0	%100
5	M5	PZ	-13.987	-13.987	0	%100
6	M6	PZ	-13.987	-13.987	0	%100
7	M7	PZ	-13.987	-13.987	0	%100

Member Distributed Loads (BLC 12 : Structure Wi Front)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud	Start Location[ft,%]	End Location[ft,%]
1	MP1A	PZ	-3.672	-3.672	0	%100
2	M2	PZ	-4.728	-4.728	0	%100
3	M3	PZ	-4.728	-4.728	0	%100
4	M4	PZ	-4.728	-4.728	0	%100
5	M5	PZ	-4.728	-4.728	0	%100
6	M6	PZ	-4.728	-4.728	0	%100
7	M7	PZ	-4.728	-4.728	0	%100

Member Distributed Loads (BLC 13 : Structure W Side)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud	Start Location[ft,%]	End Location[ft,%]
1	MP1A	PX	8.305	8.305	0	%100
2	M2	PX	13.987	13.987	0	%100
3	M3	PX	13.987	13.987	0	%100
4	M4	PX	13.987	13.987	0	%100
5	M5	PX	13.987	13.987	0	%100
6	M6	PX	13.987	13.987	0	%100
7	M7	PX	13.987	13.987	0	%100

Member Distributed Loads (BLC 14 : Structure Wi Side)

Member Label Direction Start M

Start Magnitude[lb/ft,F,ksf]

End Magnitud... Start Location[ft,%]

End Location[ft,%]

Member Distributed Loads (BLC 14 : Structure Wi Side) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud	Start Location[ft,%]	End Location[ft,%]
1	MP1A	PX	3.672	3.672	0	%100
2	M2	PX	4.728	4.728	0	%100
3	M3	PX	4.728	4.728	0	%100
4	M4	PX	4.728	4.728	0	%100
5	M5	PX	4.728	4.728	0	%100
6	M6	PX	4.728	4.728	0	%100
7	M7	PX	4.728	4.728	0	%100

Member Distributed Loads (BLC 17 : Structure Wm Front)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud	Start Location[ft,%]	End Location[ft,%]
1	MP1A	PZ	555	555	0	%100
2	M2	PZ	936	936	0	%100
3	M3	PZ	936	936	0	%100
4	M4	PZ	936	936	0	%100
5	M5	PZ	936	936	0	%100
6	M6	PZ	936	936	0	%100
7	M7	PZ	936	936	0	%100

Member Distributed Loads (BLC 18 : Structure Wm Side)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud	Start Location[ft,%]	End Location[ft,%]
1	MP1A	PX	.555	.555	0	%100
2	M2	PX	.936	.936	0	%100
3	M3	PX	.936	.936	0	%100
4	M4	PX	.936	.936	0	%100
5	M5	PX	.936	.936	0	%100
6	M6	PX	.936	.936	0	%100
7	M7	PX	.936	.936	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]				
	No Data to Print									

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N4						
2	N6						
3	N13						
4	N14						
5	N15						
6	N16						
7	N15A	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
8	N16A	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N15A	max	157	4	349.397	6	237.221	1	015	1	.076	4	.094	6
2		min	-157.252	3	142.684	1	-238.042	2	135	6	076	3	.018	4
3	N16A	max	161.224	4	907.558	10	244.143	1	.006	1	.078	4	.143	12
4		min	-160.971	3	144.357	2	-243.322	2	276	11	078	3	217	10
5	Totals:	max	318.223	4	1056.475	9	481.364	1						
6		min	-318.223	3	306.475	2	-481.364	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shea	LC			у-у Мо	LC	z-z Mo	LC
1	MP1A	1	max	141.94	5	105.407	4	168.722		0	1	0	1	0	1
2			min	27.24	3	-105.407	3	-168.7	2	0	1	0	1	0	1
3		2	max	-11.294	1	24.843	3	40.501	2	0	3	0	2	0	8
4			min	-111.576	11	-24.591	4	-39.68	1	0	4	002	5	0	3
5		3	max	10.554	1	2.112	4		1	0	3	.021	2	.014	4
6		Ť	min	-89.729	11	-1.86	3	-2.64	2	0	4		1		3
7		4	max	72.512	5	28.815	4	46.602	1	0	3	.009	1		3
		4							-				-		
8		-	min	-67.881	11	-28.563	3		2	0	4	008	2		4
9		5	max	0	1	0	7	0	6	0	1	0	1	0	1
10			min	0	1	0	1	0	1	0	1	0	1	0	1
11	M2	1	max	0	1	0	1	0	1	0	1	0	1	0	1
12			min	0	1	0	1	0	1	0	1	0	1	0	1
13		2	max	0	1	-9.187	2	2.623	3	0	1	0	3	.001	6
14			min	0	1	-11.311	6	-2.623		0	1	0	4	0	2
15		2		220.856	1	-63.156	1	147.951	2	.014	3	.019	3	.	2
		5		-221.677	2				4		4		4		1
16		· .				-251.486									
17		4		191.632	1	-46.906	4	32.869	2	.01	8	.007	3	.042	6
18			min	-192.147	2	-180.663		-32.768	1	003	4		4		1
19		5	max	191.632	1	-56.094	4	32.869	2	.01	8	.008	2	.077	6
20			min	-192.147	2	-191.975	6	-32.768	1	003	4	008	1	.008	1
21	M3	1	max	0	1	0	1	0	1	0	1	0	1	0	1
22		<u> </u>	min	0	1	-375	11	0	1	0	1	0	1	0	1
23		2	max	0	1	-9.187		-	3	0	1	0	3	.071	11
		- 2			· ·						-				
24			min	0	1	-384.187		-2.623		0	1	0	4	0	12
25		3		227.778	1	-64.825	2		3	.035	3		3		11
26				-226.957	2	-358.981			4		4		4		1
27		4	max	197.405	1	-27.686			2	.019	11	.007	3	.116	11
28			min	-196.888	2	-290.861	12	-33.752	1	012	4	007	4	021	1
29		5		197.405	1	-36.874		33.651	2		11		2	.158	11
30				-196.888	2	-300.048	12	-33.752	1		4		1		1
31	M4	1		195.788	4	41.771	1	82.256	7	0	1	.000	3	.023	4
	1014			-196.072		-41.959	2		· ·	03	6		_		
32					3				3				4		3
33		2		196.665		43.284	1	90.974	7	0	1	.018	8		4
34				-196.949	3	-43.472	2		3	03	6		4		3
35		3	max	197.543	4	44.796	1		7	0	1	.032	6	.019	4
36			min	-197.827	3	-44.984	2	22.094	3	03	6	.004	1	019	3
37		4	max	198.42	4	46.308	1	108.408	7	0	1	.047	6	.018	2
38			min	-198.704	3	-46.497	2		3	03	6	.008	1		1
39		5		199.297	4	47.821	1			0	1	.063	6		2
40		5							3	03	6				<u> </u>
	N 4 -			-199.581	3	-48.009	2					.013	1		
41	M5	1		201.222	4	43.158		148.737			1				4
42				-200.938	3	-42.97	2	-12.467			11		4		3
43		2		202.099	4	44.67	1	155.818			1	.04	11	.021	4
44			min	-201.816	3	-44.483	2	-5.387	3	071	11	011	4	021	3
45		3		202.976	4	46.183	1	162.899	11	.008	1	.063	11	.019	4
46				-202.693	3	-45.995	2	1.694			11		4		3
47		4		203.854	4	47.695		169.979			1	.087	11		2
48				-203.57	3								1		1
		-				-47.507	2	8.775			11				
49		5		204.731	4	49.207	1	177.06		.008	1	.112	11		2
50				-204.447	3	-49.02	2	15.855			11		1		1
51	M6	1	max	0		0	1	0	1	0	1	0	1	0	1
52			min	0	1	0	1	0	1	0	1	0	1	0	1
53		2	max	0	1	-8.207	1	2.343	2	0	1	0	2	0	5
54			min	0	1	-10.105	5	-2.343		0	1	0	1	0	4
55		2		165.406	3	212.185	-	196.318		008	1	.057	2	.077	6
55		1													
56			min	-165.253	4	-78.065	<u> </u>	-196.8	2	077	6	057	1	.018	4

Envelope Member Section Forces (Continued)

	Member	Sec	:	Axial[lb]	LC	y Shear[lb]	LC	z Shea	LC	Torqu	LC	y-y Mo	.LC	z-z Mo	LC
57		4	max	32.769	1	202.08	6	193.975	1	008	1	.024	2	.042	8
58			min	-32.868	2	64.302	4	-194.4	2	077	6	024	1	.007	4
59		5	max	32.769	1	191.976	6	191.632		008	1	.008	1	.01	8
60			min	-32.868	2	56.095	4	-192.1	2	077	6	008	2	003	4
61	M7	1	max	0	1	0	1	0	1	0	1	0	1	0	1
62			min	0	1	-750	10	0	1	0	1	0	1	0	1
63		2	max	0	1	-8.207	4	2.343	2	0	1	0	2	.126	10
64			min	0	1	-758.208	10	-2.343	1	0	1	0	1	0	4
65		3	max	169.507	3	316.463	12	202.091	1	.022	10	.058	2	.226	10
66			min	-169.657	4	-854.269	10	-201.5	2	158	11	059	1	.006	4
67		4	max	33.753	1	308.256	12	199.748	1	.004	1	.025	2	.063	12
68			min	-33.65	2	45.081	10	-199.23	2	158	11	025	1	004	4
69		5	max	33.753	1	300.048	12	197.405	1	.004	1	.008	1	.019	11
70			min	-33.65	2	36.874	10	-196.8	2	158	11	008	2	012	4

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear Ch	Loc[ft]	Dir phi*P phi*P phi*Mphi*M Eqn
1	M7	PL3/8x4	.007	.335	10	.556	.335	y 11 3870 388800 24.3 32.4 H1-1b
2	M6	PL3/8x4	.003	.335	2	.271	.335	y 6 3870 388800 24.3 32.4 H1-1b
3	M5	PL3/8x4	.005	.578	11	.250	0	y 11 3874 388800 24.3 32.4 H1-1b
4	M3	PL3/8x4	.005	.453	11	.124	.453	y 4 3865 388800 24.3 32.4 H1-1b
5	M4	PL3/8x4	.003	.578	6	.105	.578	y 6 3874 388800 24.3 32.4 H1-1b
6	M2	PL3/8x4	.003	.75	6	.051	.453	y 4 3865 388800 24.3 32.4 H1-1b
7	MP1A	PIPE_2.0	.036	.375	2	.023	5.25	1 6195 32130 1.872 1.872 H1-1b

Envelope AISI S100-10: LRFD Cold Formed Steel Code Checks

Memb Shape	Code Check	Loc[SheLoc phi*Pphi*Tphi* phi* Cb CmCm	. Egn
		No Data to Print	

Envelope AA ADM1-10: ASD - Building Aluminum Code Checks

Member Shape Code C... Loc[ft] LC Shear ... Loc[ft] Dir LC Pnc/O... Pnt/Om...Mny/O... Mnz/O... Vny/O... Vnz/O... Cb Eqn No Data to Print ...

EXHIBIT 9

Wireless Network Design and Deployment

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CTHA510A

SBA Avon Monopole 277 Huckleberry Hill Rd Avon, CT 06001

June 16, 2019

Transcom Engineering Project Number: 737001-0137

Site Compliance	Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	22.19 %

Wireless Network Design and Deployment

June 16, 2019

T-MOBILE Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 6009

Emissions Analysis for Site: CTHA510A - SBA Avon Monopole

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at **277 Huckleberry Hill Rd, Avon, CT**, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Wireless Network Design and Deployment

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Wireless Network Design and Deployment

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at **277 Huckleberry Hill Rd, Avon, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
LTE	2100 MHz (AWS)	2	60
UMTS	2100 MHz (AWS)	1	40
LTE / 5G NR	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Wireless Network Design and Deployment

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600 MHz, 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	RFS APXVAR18_43-C-NA20	80
В	1	RFS APXVAR18_43-C-NA20	80
С	1	RFS APXVAR18_43-C-NA20	80

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all proposed radios are ground mounted the following cable loss values were used. For each ground mounted **600 MHz** radio there was **1.05 dB** of cable loss calculated into the system gains / losses for this site. For each ground mounted **700 MHz** radio there was **1.14 dB** of cable loss calculated into the system gains / losses for this site. For each ground mounted **1900 MHz** (PCS) radio there was **2.02 dB** of cable loss calculated into the system gains / losses for this site. For each ground mounted **2100 MHz** (AWS) radio there was **2.08 dB** of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for **120 feet** of **7/8**" coax.

Wireless Network Design and Deployment

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna			Antenna Gain	Channel	Power		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
		1900 MHz (PCS) /					
Antenna	RFS	2100 MHz (AWS) /	15.85 / 17.15 /				
A1	APXVAR18_43-C-NA20	600 MHz / 700 MHz	12.85 / 13.55	11	440	10,932.05	8.90
Sector A Composite MPE%						8.90	
		1900 MHz (PCS) /					
Antenna	RFS	2100 MHz (AWS) /	15.85 / 17.15 /				
B1	APXVAR18_43-C-NA20	600 MHz / 700 MHz	12.85 / 13.55	11	440	10,932.05	8.90
Sector B Composite MPE%						8.90	
		1900 MHz (PCS) /					
Antenna	RFS	2100 MHz (AWS) /	15.85 / 17.15 /				
C1	APXVAR18_43-C-NA20	600 MHz / 700 MHz	12.85 / 13.55	11	440	10,932.05	8.90
Sector C Composite MPE%						8.90	

Table 3: T-MOBILE Emissions Levels

Wireless Network Design and Deployment

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
T-MOBILE – Max Per Sector Value	8.90 %			
Sprint	5.31 %			
AT&T	7.98 %			
Site Total MPE %:	22.19 %			

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	8.90 %
T-MOBILE Sector B Total:	8.90 %
T-MOBILE Sector C Total:	8.90 %
Site Total:	22.19 %

Table 5: Site MPE Summary

Wireless Network Design and Deployment

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
T-Mobile 1900 MHz (PCS) LTE	4	966.18	80	25.37	1900 MHz (PCS)	1000	2.54%
T-Mobile 2100 MHz (AWS) LTE	2	1,928.20	80	25.32	2100 MHz (AWS)	1000	2.53%
T-Mobile 2100 MHz (AWS) UMTS	1	1,303.35	80	8.56	2100 MHz (AWS)	1000	0.86%
T-Mobile 600 MHz LTE / 5G NR	2	605.42	80	7.95	600 MHz	400	1.99%
T-Mobile 700 MHz LTE	2	348.36	80	4.57	700 MHz	467	0.98%
						Total:	8.90%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Wireless Network Design and Deployment

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (%)			
Sector A:	8.90 %			
Sector B:	8.90 %			
Sector C:	8.90 %			
T-MOBILE Maximum Total (per sector):	8.90 %			
Site Total:	22.19 %			
Site Compliance Status:	COMPLIANT			

The anticipated composite MPE value for this site assuming all carriers present is **22.19 %** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

/A Alf_

Scott Heffernan RF Engineering Director Transcom Engineering, Inc PO Box 1048 Sterling, MA 01564