Filed by:
G. Scott Shepherd, Site Development Specialist II - SBA Communications 134 Flanders Rd., Suite 125, Westborough, MA 01581 508.251.0720 x 3807-gshepherd@sbasite.com

December 4, 2020
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
 277 Huckleberry Hill Road, Avon, CT 06013
 Latitude: 41.788055
 Longitude: -72.918166
 T-Mobile Site \#: CTHA510A_L600

Dear Ms. Bachman:
T-Mobile currently maintains three (3) antennas at the 80 -foot level of the existing 100 -foot Guyed Laminated Wood Pole at 277 Huckleberry Hill Rd., Avon, CT. The 100-foot tower is owned by SBA 2012 TC Assets, LLC. The property is owned by the Town of Avon. T-Mobile now intends to remove (3) three L2100/L1900 MHz antennas and replace with three (3) new L700/L600/L2100/L1900 MHz antennas. The new antennas support 5 G services and would be installed at the 80 -foot level of the tower.

Please note: Per the Connecticut Siting Council Website: CSC COVID 19 Guidelines. In order to prevent the spread of Coronavirus and protect the health and safety of our members and staff, as of March 18, 2020, the Connecticut Siting Council shall convert to full remote operations until March 30, 2020. Please be advised that during this time period, all hard copy filing requirements will be waived in lieu of an electronic filing. Please also be advised that the March 26, 2020 regular meeting shall be held via teleconference. The Council's website is not equipped with an on-line filing fee receipt service. Therefore, filing fees and/or direct cost charges associated with matters received electronically during the above-mentioned time period will be directly invoiced at a later date.

Planned Modifications:

TOWER

Remove:

- N/A

Remove and Replace:

- (3) RFS APXV16DWV-16DWVS-C antenna (remove) - (3) RFS APXVAR18_43-C-NA20 ANTENNA (replace)

Install New:

- N/A

Existing Equipment to Remain:

- (3) Flush Mounts
- (12) $7 / 8^{\prime \prime}$ coax

Entitlements:

- N/A

GROUND

Install New:

- Equipment inside existing RBS 6201 equipment cabinet

This facility was approved by Council on January 24, 2005 under Docket 297. Approval was given for a laminated wood monopole with flush mounted antennas no taller than 100' above ground level to provide telecommunications services to both public and private entities. A recalculated EME report was to be provided when circumstances in operation would cause a change in power density levels. Upon the establishment of any new State or Federal radio frequency standards applicable to the facility, the facility was to be brought into compliance. Public and/or private entities were to be permitted to share space on the tower for fair consideration, or to be provided with specific legal, technical, environmental, or economic reasons precluding such sharing. The Certificate Holder was to provide reasonable space on the tower for no compensation for any municipal antennas, provide they were compatible with the structural integrity of the tower. Any antenna that became obsolete and ceased to function was to be removed within 60 days. There were no further post construction stipulations set. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16.50j-72(b)(2). In accordance with R.C.S.A. § $16.50 \mathrm{j}-73$, a copy of this letter is being sent to the Town of Avon's Town Manager, Brandon Robertson, and Director of Planning and Community Development, Hiram Peck. (Separate notice is not being sent to tower owner, as it belongs to SBA.)

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. §16.50j72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modification will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunication facility constitute an exempt modifications under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,
G. Scott Shepherd

Site Development Specialist II
SBA COMMUNICATIONS CORPORATION
134 Flanders Rd., Suite 125
Westborough, MA 01581
508.251.0720 x3807 + T
$508.366 .2610+F$
$508.868 .6000+C$
gshepherd@sbasite.com

Attachments
cc: Brandon Robertson, Town Manager / with attachments
Avon Town Hall: 60 West Main Street (Route 44) Avon, CT 06001
Hiram Peck III, Director of Planning and Community Development / with attachments
Avon Town Hall: 60 West Main Street (Route 44) Avon, CT 06001

EXHIBIT LIST

Exhibit 1	Check Copy	To be invoiced at a later date per Covid guidelines
Exhibit 2	Notification Receipts	X
Exhibit 3	Property Card	X
Exhibit 4	Property Map	X
Exhibit 5	Original Zoning Approval	CSC $1 / 24 / 05$
Exhibit 6	Construction Drawings	Chappell Engineering 12/3/20
Exhibit 7	Structural Analysis	TES 10/16/20
Exhibit 8	Mount Analysis	TES 8/19/19
Exhibit 9	EME Report	Transcom Engineering 6/16/19

EXHIBIT 1

Normally, Exhibit 1 would contain a copy of the check for the filing fee.

EXHIBIT 2

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

EXHIBIT 3

EXHIBIT 4

Search Results

Parcel Details

AVON TOWN OF

60 WEST MAIN STREET AVON, 06001
Parcel ID: 2810277 Sale Price: \$

Links	Abutters
Parcel Details	Add Parcel
Google Map	Remove Parcel
Bing Bird's Eye	Print Labels
Abutter Distance:	Export List
Adjacent	
Adjacent 50 ft	Parcel Number 2810،
100 ft	Property Type PARC\|
200 ft	
300 ft	
400 ft	
500 ft	ERRY HILI RD
Find Abutters	

Clear Abutters
Zone R40
Volume 80
Page 20
Owner AVON TOWN OF
Owner Address 60 WEST MAIN STREET
City AVON
State CT
ZIP 06001
GISPin 2810277
RecordCard http://www.avonassessor.com/prop

vishes:one

Copy ar \quad aste the following string into an email to link to the current map view:

EXHIBIT 5

Connecticut Siting Council

Decisions

DOCKET NO. 297 - Sprint Spectrum, L.P. application	\}	Connecticut
for a Certificate of Environmental Compatibility and		
Public Need for the construction, maintenance and		
operation of a telecommunications facility in Avon,	$\}$	Siting
Connecticut.	$\}$	Council
		January 24, 2005

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 1650 k , be issued to Sprint Spectrum, L.P. for the construction, maintenance and operation of a wireless telecommunications facility at 277 Huckleberry Hill Road, Avon, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower shall be designed as a laminated wood monopole and shall be constructed no taller than 100 feet above ground level to provide telecommunications services to both public and private entities. The location of the tower and equipment compound shall be adjusted to avoid cutting down an existing 33" dbh tree.
2. The Certificate Holder shall prepare a Development and Management (D\&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D\&M Plan shall be served on all parties and intervenors, as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
a. a final site plan(s) of site development to include specifications for the tower, tower foundation, flush-mounted antennas, equipment building, access road, utility line, and landscaping; and
b) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
3.The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base,
consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council in the event other carriers locate at this facility or if circumstances in operation cause a change in power density
above the levels calculated and provided pursuant to this Decision and Order.
4.Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
5.The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
3. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
4. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
5. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
9.Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extensions of the period shall be filed with the Council not later than sixty days prior to expiration date of the Certificate and shall be served on all parties and intervenors, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served. 10.In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with notice in writing two weeks prior to the commencement of construction activities at the approved site. In addition, the Certificate Holder shall provide the Council with written notice of the completion of construction.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the Hartford Courant, Valley News, and the Farmington Valley Post.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant	$\underline{1}$Its Representative Sprint Spectrum, L.P.
d/b/a Sprint PCS	Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP CityPlace I, 38th Floor 185 Asylum Street Hartford, CT 06103-3402 (860) 509-6522 (860) 509-6501-fax

EXHIBIT 6

GENERAL NOTES:

 T in

隹

 15. Construction shall cower wit All T-woelle standeros Avo specifations.

SITE WORK GENERAL NOTES:

THE Subconractor stall conract utur locatinc seevices pror to the star of consinution

CONCRETE AND REINFORCING STEEL NOTES:

 STRUCTURAL STEEL NOTES:

 6. ALL structural stel work stall be done in accoroance wit asc specifatrons.

SOIL COMPACTION NOTES FOR SLAB ON GRADE:

 COWPACICD A S STAED ABOVE.
COMPACTON EQUPMENT:
man CONSTRUCTION NOTES:
 Cuoornantion Of worf:

ELECTRICAL INSTALATION NOTES:

 4. cables shall not be pouted throueh haode-sme cabie tray rungs

 6. New receivar or calle tray wul mich the exsing nsialution where possie

T-MOBILE

 AVON, CT 06001

> CoMPOUND \& EQUPMENTPLAN

FINAL ANTENNA CONFIGURATION								
SECTOR	ANTENNA	$\begin{gathered} \text { RAD } \\ \text { CENTER } \end{gathered}$	AZIMUTH （TRUE NORTH）	MECHANICAL DOWNTLT	ELECTRICAL DOWNTLLT	band	Radios／TMAS	CABLES
ALPHA	APXVAR18-43-C-Na20	80＇土 AGL	180	0	${ }^{2}$	L600／700	$\underset{\text {（AT CABNET）}}{\text { RADO }}$	
						U2100／L2100／L1900	（2）RADIO 4415 （AT CABINET） AWS／PCS DIPLEXER（AT CABINET）	（2）／ist coan cants
Beta	APXVAR18-43-C-Na20	80＇土 AGL	270°	0	2	L600／700	RADIO 4449 B71＋B12 （AT CABINET）	（2）7ab coax cates
						U2100／L2100／L1900	（2）RADIO 4415 （AT CABINET） AWS／PCS DIPLEXER（AT CABINET）	
GAMMA	APXVAR18-43-C-Na20	80＇土 AGL	350	0	2	L600／700	RADO （AT CABINET） 449 B71	
						U2100／L2100／L1900	（2）RADIO 4415 （AT CABINET） AWS／PCS DIPLEXER（AT CABINET）	

EXHIBIT 7

Tower Engineering Solutions
Phone (972) 483-0607, Fax (972) 975-9615

Structural Analysis Report

Existing 100 ft Guyed Laminated Wood Pole
Customer Name: SBA Communications Corp
Customer Site Number: CT46143-A
Customer Site Name: Burlington - Avon Landfill
Carrier Name: T-Mobile (App\#: 116800, v2)
Carrier Site ID / Name: CTHA510A / Burlington-Avon Landfill
Site Location: 277 Huckleberry Hill Road
Avon, Connecticut
Hartford County
Latitude: 41.788055
Longitude: -72.918166

Analysis Result:

Max Structural Usage: 86.1\% [Pass]
Max Foundation Usage: 82.0\% [Pass]

Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By: Sital Shrestha

Introduction

The purpose of this report is to summarize the analysis results on the 100 ft Guyed Laminated Wood Pole to support the proposed antennas and transmission lines in addition to those currently installed. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Tower Drawings	Laminated Wood Systems, Inc. (DWG No. SPSM-0079) original design drawings dated April 7, 2005
Foundation Drawing	Laminated Wood Systems, Inc. (DWG No. SPSM-0079) original design drawings dated April 7, 2005
Geotechnical Report	Dr. Clarence Welti, P.E., P.C. Geotechnical Engineering (Project Name Avon Landfill Sprint Site) geotechnical report dated March 25, 2005
Modification Drawings	FDH, Project \# 1309511400, Dated 6/28/2013 FDH, Project \# 146EW81400, Dated 10/23/2014 TES Job \# 36667, Dated 3/19/18

Analysis Criteria

The rigorous analysis was performed in accordance with the requirements and stipulations of the ANSI/TIA/EIA 222-G. In accordance with this standard, the structure was analyzed using tnxTower. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis:

Wind Speed with Ice:
Operational Wind Speed:
Standard/Codes:

Exposure Category:

Structure Class:
Topographic Category:
Crest Height:

Ultimate Design Wind Speed $\mathrm{V}_{\text {ult }}=125.0 \mathrm{mph}(3-\mathrm{Sec}$. Gust)/
Nominal Design Wind Speed $V_{\text {asd }}=97.0 \mathrm{mph}$ (3-Sec. Gust)
$50 \mathrm{mph}\left(3-\mathrm{Sec}\right.$. Gust) with $1^{\prime \prime}$ radial ice concurrent $60 \mathrm{mph}+0$ " Radial ice
ANSI/TIA/EIA 222-G / 2015 IBC / 2018 Connecticut State Building Code

C
II
1
0 ft

This structural analysis is based upon the tower being classified as a Structure Class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type \& Qty.	Transmission Lines	Owner
1	99.0	3	Andrew DHHTT65B-3XR - Panel	(3) Flush Mounts	(4) 1-1/4"	Sprint Nextel
2		4	RFS ACU-A20-N RET			
3		3	ALU 1900MHz RRH			
4		3	ALU 800 MHz RRH			
5		3	ALU TD-RRH8x20-25			
6		3	ALU 800 MHz Filter			
7	90.0	3	Andrew SBNHH-1D65C	(3) Flush Mounts	(1) $7 / 16^{\prime \prime}$ Fiber* (2) $3 / 4$ " DC* (6) $15 / 8^{\prime \prime}$	AT\&T
8		3	Powerwave LGP21401 TMA			
9		3	Cci TMABPD7823VG12A			
10		3	Andrew APTDC-BDFDM-DBW			
-	80.0	3	RFS APXV16DWV-16DWVS-C - Panel	(3) Flush Mounts	(12) $7 / 8^{\prime \prime}$	T-Mobile
-		6	RFS ATMAA1412D-1A20 - TMA			

*(1) 3" Conduit housing (2) 3/4" DC and (1) 7/16" fiber cables.

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type \& Qty.	Transmission Lines	Owner
11	80.0	3	RFS APXVAR18_43-C-NA20	(3) Flush Mounts	(12) 7/8" Coax	T-Mobile
12		6	RFS ATMAA1412D-A1A20			

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Guy Wires
Max. Usage:	$\mathbf{7 2 . 7 \%}$	$\mathbf{8 6 . 1 \%}$
Pass/Fail	Pass	Pass

Foundations

	Base Reactions		Anchors		
	Moment (Kip-Ft)	Shear (Kips)	Axial (Kips)	Uplift (Kips)	Shear (Kips)
Analysis Reactions	154	5.9	91.9	38.2	15.9

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Conclusions

Based on the analysis results, the existing structure and its foundation were found to be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the ANSI/TIA-222-G standards and the 2015 IBC under the design basic wind speed specified in the Analysis Criteria.

Standard Conditions

1. This analysis was performed based on the information supplied to (TES) Tower Engineering Solutions, LLC. Verification of the information provided was not included in the Scope of Work for TES. The accuracy of the analysis is dependent on the accuracy of the information provided.
2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of TES. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the EIA/TIA-222 standard or other codes, TES should be notified in writing and the applicable minimum values provided by the client.
4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. TES has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, TES should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

47.0 ft

TYPE	ELEVATION	TYPE	ELEVATION
DHHTT65B-3XR (Sprint)	99	SBNHH-1D65C (ATI)	90
DHHTT65B-3XR (Sprint)	99	SBNHH-1D65C (ATI)	90
DHHTT65B-3XR (Sprint)	99	SBNHH-1D65C (ATI)	90
(2) ACU-A20-N (Sprint)	99	APTDC-BDFDM-DBW (ATI)	90
ACU-A20-N (Sprint)	99	APTDC-BDFDM-DBW (ATI)	90
ACU-A20-N (Sprint)	99	APTDC-BDFDM-DBW (ATI)	90
1900MHz RRH (Sprint)	99	LGP21401 (ATI)	90
1900MHz RRH (Sprint)	99	LGP21401 (ATI)	90
1900MHz RRH (Sprint)	99	LGP21401 (ATI)	90
$800 ~ M H z ~ R R H ~(S p r i n t) ~$	99	TMABPD7823VG12A (ATI)	90
$800 ~ M H z ~ R R H ~(S p r i n t) ~$	99	TMABPD7823VG12A (ATI)	90
$800 ~ M H z ~ R R H ~(S p r i n t) ~$	99	TMABPD7823VG12A (ATI)	90
TD-RRH8x20-25 (Sprint)	99	APXVAR18_43-C-NA20 (T-Mobile)	80
TD-RRH8x20-25 (Sprint)	99	APXVAR18_43-C-NA20 (T-Mobile)	80
TD-RRH8x20-25 (Sprint)	99	APXVAR18_43-C-NA20 (T-Mobile)	80
$800 ~ M H z ~ F i l t e r ~(S p r i n t) ~$	99	(2) ATMAA1412D-1A20 (T-Mobile)	80
$800 ~ M H z ~ F i l t e r ~(S p r i n t) ~$	99	(2) ATMAA1412D-1A20 (T-Mobile)	80
$800 ~ M H z ~ F i l t e r ~(S p r i n t) ~$	99	(2) ATMAA1412D-1A20 (T-Mobile)	80

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
Wood Grade	1 ksi	2 ksi			

TOWER DESIGN NOTES

1. Tower is located in Hartford County, Connecticut.
2. Tower designed for Exposure C to the TIA-222-G Standard.
3. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 86.1%

Tower Engineering Solutions	${ }^{\text {Job: }}$ CT46143-A		
1320 Greenway Drive, Ste. 600	Project: 98772		
	Client: T-Mobile	Drawn by: sital.shrestha	App'd:
Phone: (972) 483-0807	Code: TIA-222-G	Date: 10/16/20	Scale: NTS
FAX:	Path: ${ }_{\text {RICT46143-A-SBAMM }}$		Dwg No. E-1

tnxTower	CT46143-A		$\begin{aligned} & \text { Page } \\ & \\ & 1 \text { of } 13 \end{aligned}$
Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Project	98772	Date 10:08:42 10/16/20
	Client	T-Mobile	Designed by sital.shrestha

Guy-Tensioning Information

$\begin{aligned} & \text { Guy } \\ & \text { Elevation } \\ & f t \end{aligned}$		H	V	Temperature At Time Of Tensioning													
				0 F		20 F		40 F		60 F		80 F		100 F		120 F	
				Initial Tension lb	Intercept ft	$\begin{gathered} \text { Initial } \\ \text { Tension } \end{gathered}$ lb	Intercept ft	Initial Tension lb	Intercept ft	Initial Tension lb	Intercept ft	Initial Tension lb	Intercept ft	Initial Tension lb	Intercept ft	Initial Tension lb	Intercept ft
76.15	A	38.91	76.15	2404	0.78	2320	0.81	2236	0.84	2152	0.87	2068	0.90	1985	0.94	1901	0.98
	B	38.91	76.15	2404	0.78	2320	0.81	2236	0.84	2152	0.87	2068	0.90	1985	0.94	1901	0.98
	C	23.91	66.15	2293	0.55	2246	0.56	2199	0.58	2152	0.59	2105	0.60	2058	0.62	2011	0.63
	D	38.91	76.15	2404	0.78	2320	0.81	2236	0.84	2152	0.87	2068	0.90	1985	0.94	1901	0.98
54.95	A	38.91	54.95	1978	0.45	1873	0.48	1768	0.51	1664	0.54	1560	0.58	1456	0.62	1352	0.66
	B	38.91	54.95	1978	0.45	1873	0.48	1768	0.51	1664	0.54	1560	0.58	1456	0.62	1352	0.66
	C	23.91	44.95	1872	0.27	1803	0.29	1733	0.30	1664	0.31	1595	0.32	1525	0.34	1456	0.35
	D	38.91	54.95	1978	0.45	1873	0.48	1768	0.51	1664	0.54	1560	0.58	1456	0.62	1352	0.66
76.15	A	38.91	76.15	3127	0.78	3018	0.81	2909	0.84	2800	0.87	2691	0.90	2583	0.94	2475	0.98
	B	38.91	76.15	3127	0.78	3018	0.81	2909	0.84	2800	0.87	2691	0.90	2583	0.94	2475	0.98
	C	23.91	66.15	2983	0.55	2922	0.56	2861	0.58	2800	0.59	2739	0.60	2678	0.61	2617	0.63
	D	38.91	76.15	3127	0.78	3018	0.81	2909	0.84	2800	0.87	2691	0.90	2583	0.94	2475	0.98

Tower Pressures - No Ice

$$
G_{H}=1.100
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad \& z
$f t$ \& K_{Z} \& q_{z}
$$
p s f
$$ \& A_{G}

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{\text {leg }}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\mathrm{Leg} \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline L1 \& \multirow[t]{4}{*}{74.01} \& \multirow[t]{4}{*}{1.188} \& \multirow[t]{5}{*}{27} \& \multirow[t]{4}{*}{115.938} \& A \& 0.000 \& 193.268 \& \multirow[t]{4}{*}{193.268} \& 100.00 \& 39.204 \& 0.000

\hline 100.00-47.00 \& \& \& \& \& B \& 0.000 \& 193.268 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 193.268 \& \& 100.00 \& 51.084 \& 0.000

\hline \& \& \& \& \& D \& 0.000 \& 193.268 \& \& 100.00 \& 26.000 \& 0.000

\hline \multirow[t]{4}{*}{L2 47.00-0.00} \& \multirow[t]{4}{*}{24.55} \& \multirow[t]{4}{*}{0.942} \& \& \multirow[t]{4}{*}{102.813} \& A \& 0.000 \& 171.388 \& \multirow[t]{4}{*}{171.388} \& 100.00 \& 55.836 \& 0.000

\hline \& \& \& \multirow{3}{*}{21} \& \& B \& 0.000 \& 171.388 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 171.388 \& \& 100.00 \& 55.836 \& 0.000

\hline \& \& \& \& \& D \& 0.000 \& 171.388 \& \& 100.00 \& 23.500 \& 0.000

\hline
\end{tabular}

Tower Pressure - With Ice

$$
G_{H}=1.100
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& \(z\)
\(f t\) \& \(K_{Z}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(t_{Z}\)
in \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& Leg

$\%$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{4}{*}{L1 100.00-47.00} \& \multirow[t]{4}{*}{74.01} \& \multirow[t]{4}{*}{1.188} \& \multirow[t]{4}{*}{7

6} \& \multirow[t]{4}{*}{2.1682} \& \multirow[t]{4}{*}{135.090} \& A \& 0.000 \& 225.195 \& \multirow[t]{5}{*}{225.195} \& 100.00 \& 66.893 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 225.195 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 225.195 \& \& 100.00 \& 147.441 \& 0.000

\hline \& \& \& \& \& \& D \& 0.000 \& 225.195 \& \& 100.00 \& 60.687 \& 0.000

\hline \multirow[t]{4}{*}{L2 47.00-0.00} \& \multirow[t]{4}{*}{24.55} \& \multirow[t]{4}{*}{0.942} \& \multirow[t]{4}{*}{6} \& \multirow[t]{4}{*}{1.9417} \& \multirow[t]{4}{*}{118.022} \& A \& 0.000 \& 196.743 \& \& 100.00 \& 92.610 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 196.743 \& \multirow{3}{*}{196.743} \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 196.743 \& \& 100.00 \& 147.365 \& 0.000

\hline \& \& \& \& \& \& D \& 0.000 \& 196.743 \& \& 100.00 \& 52.190 \& 0.000

\hline
\end{tabular}

tnXTOWer	Job	Page	
	Project	Client	98772

Tower Pressure - Service

$$
G_{H}=1.100
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad \& z

$f t$ \& $K_{\text {z }}$ \& q_{z}

$$
p s f
$$ \& A_{G}

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\mathrm{Leg} \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline L1 \& \multirow[t]{4}{*}{74.01} \& \multirow[t]{4}{*}{1.188} \& \multirow[t]{4}{*}{9
7} \& \multirow[t]{4}{*}{115.938} \& A \& 0.000 \& 193.268 \& \multirow[t]{4}{*}{193.268} \& 100.00 \& 39.204 \& 0.000

\hline 100.00-47.00 \& \& \& \& \& B \& 0.000 \& 193.268 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 193.268 \& \& 100.00 \& 51.084 \& 0.000

\hline \& \& \& \& \& D \& 0.000 \& 193.268 \& \& 100.00 \& 26.000 \& 0.000

\hline \multirow[t]{4}{*}{L2 47.00-0.00} \& \multirow[t]{4}{*}{24.55} \& \multirow[t]{4}{*}{0.942} \& \multirow[t]{4}{*}{7} \& \multirow[t]{4}{*}{102.813} \& A \& 0.000 \& 171.388 \& \multirow[t]{4}{*}{171.388} \& 100.00 \& 55.836 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 171.388 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 171.388 \& \& 100.00 \& 55.836 \& 0.000

\hline \& \& \& \& \& D \& 0.000 \& 171.388 \& \& 100.00 \& 23.500 \& 0.000

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight lb \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(q_{z}\) \(p s f\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

plf \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& \multirow[t]{4}{*}{875.11} \& \multirow[t]{4}{*}{7967.50} \& A \& 1 \& 0.6 \& \multirow[t]{4}{*}{27} \& 1 \& - 1 \& 193.268 \& \multirow[t]{4}{*}{7952.09} \& \multirow[t]{4}{*}{150.04} \& \multirow[t]{4}{*}{D}

\hline 100.00-47.00 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline \& \& \& C \& 1 \& 0.6 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline \& \& \& D \& 1 \& 1.2 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline L2 47.00-0.00 \& \multirow[t]{4}{*}{1064.55} \& \multirow[t]{4}{*}{7065.52} \& A \& 1 \& 0.6 \& \multirow[t]{5}{*}{21} \& 1 \& 1 \& 171.388 \& \multirow[t]{4}{*}{5923.25} \& \multirow[t]{4}{*}{126.03} \& \multirow[t]{5}{*}{D}

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline \& \& \& C \& 1 \& 0.6 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline \& \& \& D \& 1 \& 1.2 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline Sum Weight: \& 1939.66 \& 15033.01 \& \& \& \& \& \& \& \& 13875.34 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& Add Weight
\[
l b
\] \& Self Weight
\[
l b
\] \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F

$l b$ \& w
plf \& Ctrl. Face

\hline L1 \& 875.11 \& 7967.50 \& A \& 1 \& 0.6 \& 27 \& 1 \& 1 \& 193.268 \& 3452.81 \& 65.15 \& D

\hline 100.00-47.00 \& \& \& B \& 1 \& 0.6 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline \& \& \& C \& 1 \& 0.6 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline \& \& \& D \& 1 \& 0.6 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline L2 47.00-0.00 \& 1064.55 \& 7065.52 \& A \& 1 \& 0.6 \& 21 \& 1 \& 1 \& 171.388 \& 2415.21 \& 51.39 \& D

\hline \& \& \& B \& 1 \& 0.6 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline \& \& \& C \& 1 \& 0.6 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline \& \& \& D \& 1 \& 0.6 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline Sum Weight: \& 1939.66 \& 15033.01 \& \& \& \& \& \& \& \& 5868.02 \& \&

\hline
\end{tabular}

tnxTower	CT46143-A		$\begin{aligned} & \text { Page } \\ & \\ & 3 \text { of } 13 \end{aligned}$
Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Project	98772	$\begin{aligned} & \text { Date } \\ & \text { 10:08:42 10/16/20 } \end{aligned}$
	Client	T-Mobile	Designed by sital.shrestha

Tower Forces - With Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
ft
\end{tabular} \& Add Weight
\(\qquad\) lb \& Self Weight lb
\(\qquad\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F

$l b$ \& w

plf \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 5555.86 \& 11957.33 \& A \& 1 \& 1.2 \& 7 \& 1 \& 1 \& 225.195 \& 2877.02 \& 54.28 \& D

\hline 100.00-47.00 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 225.195 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 225.195 \& \& \&

\hline \& \& \& D \& 1 \& 1.2 \& \& 1 \& 1 \& 225.195 \& \& \&

\hline L2 47.00-0.00 \& 5807.83 \& 10208.71 \& A \& 1 \& 1.2 \& 6 \& 1 \& 1 \& 196.743 \& 2119.63 \& 45.10 \& D

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 196.743 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 196.743 \& \& \&

\hline \& \& \& D \& 1 \& 1.2 \& \& 1 \& 1 \& 196.743 \& \& \&

\hline Sum Weight: \& 11363.68 \& 22166.04 \& \& \& \& \& \& \& \& 4996.66 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 45 To Face

Section Elevation \qquad	Add Weight $l b$	Self Weight lb	F a c e	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\begin{gathered} A_{E} \\ {f t^{2}}^{2} \end{gathered}$	F $l b$	w plf	Ctrl. Face
L1	5555.86	11957.33	A	1	1.2	7	1	1	225.195	2137.96	40.34	D
100.00-47.00			B	1	1.2		1	1	225.195			
			C	1	1.2		1	1	225.195			
			D	1	1.2		1	1	225.195			
L2 47.00-0.00	5807.83	10208.71	A	1	1.2	6	1	1	196.743	1473.33	31.35	D
			B	1	1.2		1	1	196.743			
			C	1	1.2		1	1	196.743			
			D	1	1.2		1	1	196.743			
Sum Weight:	11363.68	22166.04								3611.29		

Tower Forces - Service - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\) lb \& \begin{tabular}{l}
Self Weight
\(\qquad\) \\
lb
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

plf \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 875.11 \& 7967.50 \& A \& 1 \& 0.6 \& 9 \& 1 \& 1 \& 193.268 \& 2722.30 \& 51.36 \& D

\hline 100.00-47.00 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline \& \& \& C \& 1 \& 0.6 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline \& \& \& D \& 1 \& 1.2 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline L2 47.00-0.00 \& 1064.55 \& 7065.52 \& A \& 1 \& 0.6 \& 7 \& 1 \& 1 \& 171.388 \& 2027.75 \& 43.14 \& D

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline \& \& \& C \& 1 \& 0.6 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline \& \& \& D \& 1 \& 1.2 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline Sum Weight: \& 1939.66 \& 15033.01 \& \& \& \& \& \& \& \& 4750.05 \& \&

\hline
\end{tabular}

tnxTower Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Job	CT46143-A	$\text { Page } 4 \text { of } 13$
	Project	98772	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:08:42 10/16/20 } \end{array}$
	Client	T-Mobile	Designed by sital.shrestha

Tower Forces - Service - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\) lb \& Self Weight
\(\qquad\) lb \& \begin{tabular}{l}
F \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F

$l b$ \& w
plf \& Ctrl. Face

\hline L1 \& 875.11 \& 7967.50 \& A \& 1 \& 0.6 \& 9 \& 1 \& 1 \& 193.268 \& 1182.03 \& 22.30 \& D

\hline 100.00-47.00 \& \& \& B \& 1 \& 0.6 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline \& \& \& C \& 1 \& 0.6 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline \& \& \& D \& 1 \& 0.6 \& \& 1 \& 1 \& 193.268 \& \& \&

\hline L2 47.00-0.00 \& 1064.55 \& 7065.52 \& A \& 1 \& 0.6 \& 7 \& 1 \& 1 \& 171.388 \& 826.82 \& 17.59 \& D

\hline \& \& \& B \& 1 \& 0.6 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline \& \& \& C \& 1 \& 0.6 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline \& \& \& D \& 1 \& 0.6 \& \& 1 \& 1 \& 171.388 \& \& \&

\hline Sum Weight: \& 1939.66 \& 15033.01 \& \& \& \& \& \& \& \& 2008.84 \& \&

\hline
\end{tabular}

Force Totals (Does not include forces on guys)

Load Case	Vertical Forces $l b$	Sum of Forces X $l b$	Sum of Forces Z lb	Sum of Torques kip-ft
Leg Weight	15033.01			
Bracing Weight	0.00			
Total Member Self-Weight	15033.01			
Guy Weight	488.90			
Total Weight	18811.23			
Wind 0 deg - No Ice		0.00	-16843.59	-0.01
Wind 45 deg - No Ice		6574.04	-6248.19	-1.24
Wind 90 deg - No Ice		9297.10	0.00	-1.75
Wind 135 deg - No Ice		6574.04	6248.19	-1.23
Wind 180 deg - No Ice		0.00	16843.59	0.01
Wind 225 deg - No Ice		-6574.04	6248.19	1.24
Wind 270 deg - No Ice		-9297.10	0.00	1.75
Wind 315 deg - No Ice		-6574.04	-6248.19	1.23
Member Ice	7133.03			
Guy Ice	5630.45			
Total Weight Ice	42774.70			
Wind 0 deg - Ice		0.00	-6015.77	-0.00
Wind 45 deg - Ice		3360.30	-3274.19	-0.44
Wind 90 deg - Ice		4752.18	0.00	-0.62
Wind 135 deg - Ice		3360.30	3274.19	-0.44
Wind 180 deg - Ice		0.00	6015.77	0.00
Wind 225 deg - Ice		-3360.30	3274.19	0.44
Wind 270 deg - Ice		-4752.18	0.00	0.62
Wind 315 deg - Ice		-3360.30	-3274.19	0.44
Total Weight	18811.23			
Wind 0 deg - Service		0.00	-5766.19	-0.00
Wind 45 deg - Service		2250.54	-2138.99	-0.42
Wind 90 deg - Service		3182.75	0.00	-0.60
Wind 135 deg - Service		2250.54	2138.99	-0.42
Wind 180 deg - Service		0.00	5766.19	0.00
Wind 225 deg - Service		-2250.54	2138.99	0.42
Wind 270 deg - Service		-3182.75	0.00	0.60
Wind 315 deg - Service		-2250.54	-2138.99	0.42

tnxTower Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Job		$\begin{aligned} & \text { Page } \\ & 5 \text { of } 13 \end{aligned}$
	Project	98772	Date 10:08:42 10/16/20
	Client	T-Mobile	Designed by sital.shrestha

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy
3	1.2 Dead+1.6 Wind 45 deg - No Ice+1.0 Guy
4	1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy
5	1.2 Dead+1.6 Wind 135 deg - No Ice+1.0 Guy
6	1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
7	1.2 Dead+1.6 Wind 225 deg - No Ice+1.0 Guy
8	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
9	1.2 Dead+1.6 Wind 315 deg - No Ice+1.0 Guy
10	1.2 Dead+1.0 Ice+1.0 Temp+Guy
11	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
12	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp+1.0 Guy
13	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
14	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp+1.0 Guy
15	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
16	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp+1.0 Guy
17	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
18	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp+1.0 Guy
19	Dead+Wind 0 deg - Service+Guy
20	Dead+Wind 45 deg - Service+Guy
21	Dead+Wind 90 deg - Service+Guy
22	Dead+Wind 135 deg - Service+Guy
23	Dead+Wind 180 deg - Service+Guy
24	Dead+Wind 225 deg - Service+Guy
25	Dead+Wind 270 deg - Service+Guy
26	Dead+Wind 315 deg - Service+Guy

Maximum Member Forces

Section	Elevation			
No.	$f t$	Component		
Type			\quad Condition \quad	Gov.
:---:				
L1				

tnXTOWer Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (T72) $483-0807$ FAX:	Project	CT46143-A	Page
	Client	98772	6 of 13

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb	Axial $l b$	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
		Guy A	Bot Cable Norm	6	4380.85		
		Bot Cable Tan	6	67.44			
		Bottom Tension	6	14059.06			
		Top Tension	6	14108.58			
		Top Cable Vert	6	12563.96			
		Top Cable Norm	6	6418.64			
		Top Cable Tan	6	15.93			
		Bot Cable Vert	6	-12452.38			
		Guy B	Bot Cable Norm	6	6524.79		
		Bot Cable Tan	6	149.78			
		Bottom Tension	6	10967.79			
		Top Tension	6	11005.78			
		Top Cable Vert	6	9803.32			
		Top Cable Norm	6	5002.20			
		Guy B	Top Cable Tan	6	4.07		
		Bot Cable Vert	6	-9710.94			
		Bot Cable Norm	6	5096.56			
		Bot Cable Tan	6	123.05			
		Bottom Tension	6	7598.75			
		Top Tension	6	7620.12			
		Top Cable Vert	6	6226.47			
		Top Cable Norm	6	4392.86			
		Guy B	Top Cable Tan	6	6.50		
		Bot Cable Vert	6	-6164.83			
		Bot Cable Norm	6	4442.00			
		Bot Cable Tan	6	67.27			
		Bottom Tension	6	14232.45			
		Top Tension	6	14281.98			
		Top Cable Vert	6	12717.40			
		Guy C	Top Cable Norm	6	6499.41		
		Top Cable Tan	6	15.56			
		Bot Cable Vert	6	-12605.83			
		Bot Cable Norm	6	6605.55			
		Bot Cable Tan	6	149.41			
		Bottom Tension	2	13427.09			
		Top Tension	2	13459.50			
		Top Cable Vert	2	12633.99			
		Top Cable Norm	2	4640.95			
		Guy C	Top Cable Tan	2	45.13		
		Bot Cable Vert	2	-12564.74			
		Bot Cable Norm	2	4732.03			
		Bot Cable Tan	2	148.10			
		Bottom Tension	2	10723.35			
		Top Tension	2	10740.54			
		Top Cable Vert	2	9464.01			
		Guy C	Top Cable Norm	2	5078.48		
		Top Cable Tan	2	27.83			
		Bot Cable Vert	2	-9418.95			
		Bot Cable Norm	2	5125.03			
		Bot Cable Tan	2	87.54			
		Bottom Tension	2	17429.12			
		Top Tension	2	17471.47			
		Top Cable Vert	2	16396.97			
		Top Cable Norm	2	6032.17			
		Top Cable Tan	2	67.49			
		Bot Cable Vert	2	-16312.78			
		Guy D	Bot Cable Norm	2	6134.63		
		Bot Cable Tan	2	183.34			
		Bottom Tension	2	10979.21			
		Top Tension	2	11016.91			
		Top Cable Vert	2	9812.96			

tnxTower	Job	CT46143-A	$\begin{aligned} & \text { Page } \\ & 7 \text { of } 13 \end{aligned}$
Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Project	98772	$\begin{aligned} & \text { Date } \\ & \text { 10:08:42 10/16/20 } \end{aligned}$
	Client	T-Mobile	Designed by sital.shrestha

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	$\begin{gathered} \text { Horizontal, Z } \\ l b \end{gathered}$
Mast	Max. Vert	2	91918.95	34.26	5853.99
	Max. H_{x}	8	72514.52	1380.54	22.82
	Max. H_{z}	2	91918.95	34.26	5853.99
	Max. M_{x}	2	153.57	34.26	5853.99
	Max. $\mathrm{M}_{\text {z }}$	4	44.05	-1358.92	1.61
	Max. Torsion	4	2.80	-1358.92	1.61
	Min. Vert	1	42200.79	28.40	13.89
	Min. H_{x}	4	65890.52	-1358.92	1.61
	Min. H_{z}	6	82066.60	12.68	-5947.60
	Min. M_{x}	6	-138.32	12.68	-5947.60
	Min. M_{z}	8	-55.99	1380.54	22.82
	Min. Torsion	8	-2.80	1380.54	22.82
Guy D @ 40 ft Elev 0 ft Azimuth 225 deg	Max. Vert	7	-1313.17	-382.99	384.06
	Max. H_{x}	7	-1313.17	-382.99	384.06
	Max. H_{z}	2	-28482.50	-11121.65	11706.15
	Min. Vert	2	-28482.50	-11121.65	11706.15
	Min. H_{x}	2	-28482.50	-11121.65	11706.15
	Min. H_{z}	6	-1484.50	-606.73	365.35
Guy C @ 25 ft Elev 10 ft	Max. Vert	14	-1123.15	322.86	322.99
Azimuth 135 deg					

tnxTower	CT46143-A		$\begin{aligned} & \text { Page } \\ & 8 \text { of } 13 \end{aligned}$
Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Project	98772	$\begin{aligned} & \text { Date } \\ & \text { 10:08:42 10/16/20 } \end{aligned}$
	Client	T-Mobile	Designed by sital.shrestha

Location	Condition	Gov. Load Comb.	Vertical lb	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	$\begin{gathered} \text { Horizontal, Z } \\ l b \end{gathered}$
	Max. H_{x}	2	-38296.47	11011.56	11604.10
	Max. H_{z}	2	-38296.47	11011.56	11604.10
	Min. Vert	2	-38296.47	11011.56	11604.10
	Min. H_{x}	5	-1414.25	271.09	271.47
	Min. H_{z}	6	-1457.18	421.90	211.73
Guy B @ 40 ft Elev 0 ft Azimuth 45 deg	Max. Vert	3	-1311.30	383.06	-382.69
	Max. H_{x}	6	-28481.60	11175.38	-11655.84
	Max. H_{z}	2	-1478.20	607.05	-360.38
	Min. Vert	6	-28481.60	11175.38	-11655.84
	Min. H_{x}	3	-1311.30	383.06	-382.69
	Min. H_{z}	6	-28481.60	11175.38	-11655.84
Guy A @ 40 ft Elev 0 ft Azimuth -45 deg	Max. Vert	18	-777.69	-424.80	-424.85
	Max. H_{x}	9	-1073.71	-288.11	-288.35
	Max. H_{z}	2	-1228.62	-504.06	-265.18
	Min. Vert	6	-28125.13	-11030.51	-11512.13
	Min. H_{x}	6	-28125.13	-11030.51	-11512.13
	Min. H_{z}	6	-28125.13	-11030.51	-11512.13

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear $_{z}$ lb	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	42200.79	-28.40	-13.89	-1.59	1.90	0.00
1.2 Dead+1.6 Wind 0 deg - No	91918.95	-34.26	-5853.99	-153.57	16.18	-0.06
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 45 deg - No	63523.96	959.71	-1169.00	-38.13	-30.41	-2.01
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 90 deg - No	65890.52	1358.92	-1.61	-0.97	-44.05	-2.80
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 135 deg -	63338.24	990.69	1161.74	35.26	-33.01	-1.96
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 180 deg -	82066.60	-12.68	5947.60	138.32	0.97	0.04
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 225 deg -	63793.02	-1032.50	1133.04	32.39	36.92	2.02
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 270 deg -	72514.52	-1380.54	-22.82	-10.73	55.99	2.80
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 315 deg -	71933.19	-1014.94	-1150.95	-49.48	47.97	1.95
No Ice+1.0 Guy						
1.2 Dead+1.0 Ice+1.0	70324.66	-82.08	-40.87	-6.10	6.96	-0.00
Temp+Guy						
1.2 Dead+1.0 Wind 0 deg+1.0	76837.41	-90.33	-1423.97	-40.07	10.34	-0.05
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 45 deg+1.0	72564.76	506.54	-670.43	-19.17	-4.09	-0.51
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 90 deg+1.0	73266.77	749.60	-31.98	-4.33	-14.20	-0.66
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 135	71860.42	508.85	576.08	8.67	-7.67	-0.44
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 180	73687.44	-71.60	1352.52	26.48	4.97	0.04
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 225	72629.00	-686.35	574.38	5.01	19.94	0.52

tnxTower Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Job	CT46143-A	$\begin{aligned} & \text { Page } \\ & \\ & 9 \text { of } 13 \end{aligned}$
	Project	98772	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:08:42 10/16/20 } \end{array}$
	Client	T-Mobile	Designed by sital.shrestha

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear ${ }_{z}$ lb	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy	75732.17	-910.64	-49.78	-9.20	29.47	0.67
1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp+1.0 Guy	75269.53	-681.37	-665.54	-22.35	23.06	0.43
Dead+Wind 0 deg Service+Guy	42802.51	-28.73	-1308.03	-25.51	2.85	-0.01
Dead+Wind 45 deg Service+Guy	42375.06	198.91	-273.14	-6.69	-2.60	-0.43
Dead+Wind 90 deg Service+Guy	42370.02	292.88	-14.61	-1.17	-5.03	-0.60
Dead+Wind 135 deg Service+Guy	42365.19	198.97	243.81	4.07	-3.30	-0.42
Dead+Wind 180 deg Service+Guy	42402.92	-26.75	1282.33	22.07	1.23	0.01
Dead+Wind 225 deg Service+Guy	42388.37	-256.95	244.12	3.33	6.60	0.43
Dead+Wind 270 deg Service+Guy	42508.20	-349.09	-12.59	-2.12	8.97	0.60
Dead+Wind 315 deg Service+Guy	42447.24	-255.05	-270.68	-7.26	7.13	0.42

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	$l b$	lb					
1	0.00	-18811.22	0.00	-0.26	18811.26	-0.32	0.002\%
2	-27.24	-22433.15	-28538.89	27.17	22433.15	28538.68	0.001\%
3	11620.10	-22475.68	-11098.72	-11619.92	22475.68	11098.55	0.001\%
4	16464.51	-22518.21	27.24	-16464.35	22518.21	-27.26	0.001\%
5	11677.80	-22527.32	11156.43	-11677.67	22527.32	-11156.30	0.001\%
6	27.24	-22518.21	28538.89	-27.27	22518.20	-28538.50	0.001\%
7	-11620.10	-22475.68	11098.72	11619.92	22475.68	-11098.56	0.001\%
8	-16464.51	-22433.15	-27.24	16464.42	22433.15	27.20	0.000\%
9	-11677.80	-22424.04	-11156.43	11677.66	22424.04	11156.29	0.001\%
10	0.00	-46438.98	0.00	-1.39	46438.96	-1.45	0.004\%
11	-40.37	-46377.47	-8376.47	40.19	46377.46	8376.15	0.001\%
12	4997.25	-46438.98	-4911.14	-4997.08	46438.97	4910.40	0.002\%
13	7112.88	-46500.50	40.37	-7112.30	46500.48	-40.45	0.001\%
14	5082.74	-46513.22	4996.63	-5080.97	46513.14	-4995.05	0.005\%
15	40.37	-46500.50	8376.47	-40.39	46500.48	-8375.70	0.002\%
16	-4997.25	-46438.98	4911.14	4996.51	46438.97	-4911.04	0.002\%
17	-7112.88	-46377.47	-40.37	7112.61	46377.46	40.20	0.001\%
18	-5082.74	-46364.74	-4996.63	5082.27	46364.72	4996.16	0.001\%
19	-5.83	-18802.12	-6106.21	4.90	18802.10	6104.84	0.008\%
20	2486.25	-18811.22	-2374.69	-2486.20	18811.22	2374.58	0.001\%
21	3522.76	-18820.32	5.83	-3522.54	18820.32	-5.83	0.001\%
22	2498.59	-18822.27	2387.04	-2498.46	18822.27	-2386.93	0.001\%
23	5.83	-18820.32	6106.21	-5.87	18820.32	-6105.86	0.002\%
24	-2486.25	-18811.22	2374.69	2486.11	18811.22	-2374.68	0.001\%
25	-3522.76	-18802.12	-5.83	3522.27	18802.11	5.57	0.003\%
26	-2498.59	-18800.17	-2387.04	2498.35	18800.17	2386.80	0.002\%

tnxTower Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Job	CT46143-A	Page 10 of 13
	Project	98772	Date 10:08:42 10/16/20
	Client	T-Mobile	Designed by sital.shrestha

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	6	0.00000001	0.00001104
2	Yes	10	0.00000001	0.00006507
3	Yes	9	0.00000001	0.00006966
4	Yes	9	0.00000001	0.00005854
5	Yes	9	0.00000001	0.00005208
6	Yes	9	0.00000001	0.00011103
7	Yes	9	0.00000001	0.00006917
8	Yes	10	0.00000001	0.00003683
9	Yes	10	0.00000001	0.00005937
10	Yes	7	0.00000001	0.00014509
11	Yes	9	0.00000001	0.00008028
12	Yes	8	0.00000001	0.00009052
13	Yes	8	0.00000001	0.00005450
14	Yes	7	0.00000001	0.00010491
15	Yes	8	0.00000001	0.00008395
16	Yes	8	0.00000001	0.00009005
17	Yes	9	0.00000001	0.00006561
18	Yes	9	0.00000001	0.00014264
19	Yes	6	0.00000001	0.00010720
20	Yes	6	0.00000001	0.00000824
21	Yes	6	0.00000001	0.00001269
22	Yes	6	0.00000001	0.00000984
23	Yes	Yes	6	0.00000001
24	Yes	6	0.00000001	0.00001797
25	Yes	6	0.00000001	0.00002873
26		0.00000001	0.00001766	

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	$f t$	in	Comb.	\circ	\circ
L1	$100-47$	2.534	19	0.2466	0.0052
L2	$47-0$	0.584	19	0.0890	0.0026

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
99.00	DHHTT65B-3XR	19	2.491	0.2434	0.0051	174047
90.00	SBNHH-1D65C	19	2.104	0.2141	0.0047	87023
80.00	APXVAR18_43-C-NA20	19	1.688	0.1822	0.0042	43512
76.15	Guy	19	1.534	0.1702	0.0041	36488
76.15	Guy	19	1.534	0.1702	0.0041	36488
54.95	Guy	19	0.796	0.1090	0.0030	19317

tnxTower Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Job	CT46143-A	Page 11 of 13
	Project	98772	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:08:42 10/16/20 } \\ \hline \end{array}$
	Client	T-Mobile	Designed by sital.shrestha

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
	$f t$	17.718	2	\circ	\circ
L1	$100-47$	4.371	2	1.5424	0.0250
L2	$47-0$			0.7312	0.0123

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
99.00	DHHTT65B-3XR	2	17.424	1.5271	0.0248	26718
90.00	SBNHH-1D65C	2	14.793	1.3900	0.0227	13359
80.00	APXVAR18_43-C-NA20	2	11.959	1.2374	0.0203	6679
76.15	Guy	2	10.911	1.1786	0.0194	5600
76.15	Guy	2	10.911	1.1786	0.0194	5600
54.95	Guy	2	5.846	0.8537	0.0143	2964

Guy Design Data

Section No.	Elevation ft	Size	Initial Tension $l b$	Breaking Load lb	Actual T_{u} $l b$	Allowable ϕT_{n} $l b$	Required S.F.	Actual S.F.
L1	76.15 (A) (6)	1/2 EHS	2152.00	26900.04	10872.40	16140.00	1.000	1.484
	76.15 (B) (5)	1/2 EHS	2152.00	26900.04	11005.80	16140.00	1.000	1.467
	76.15 (C) (4)	1/2 EHS	2152.00	26900.04	13459.50	16140.00	1.000	1.199
	76.15 (D) (3)	1/2 EHS	2152.00	26900.04	11016.90	16140.00	1.000	1.465
	54.95 (A) (10)	7/16 EHS	1664.00	20800.02	7515.44	12480.00	1.000	1.661
	54.95 (B) (9)	7/16 EHS	1664.00	20800.02	7620.12	12480.00	1.000	1.638
	54.95 (C) (8)	7/16 EHS	1664.00	20800.02	10740.50	12480.00	1.000	1.162
	54.95 (D) (7)	7/16 EHS	1664.00	20800.02	7594.05	12480.00	1.000	1.643
	76.15 (A) (14)	9/16 EHS	2800.00	35000.04	14108.60	21000.00	1.000	1.488
	76.15 (B) (13)	9/16 EHS	2800.00	35000.04	14282.00	21000.00	1.000	1.470
	76.15 (C) (12)	9/16 EHS	2800.00	35000.04	17471.50	21000.00	1.000	1.202
	76.15 (D) (11)	9/16 EHS	2800.00	35000.04	14296.50	21000.00	1.000	1.469

Compression Checks

Pole Design Data

tnxTower Tower Engineering Solutions 1320 Greenway Drive, Ste. 600 Irving, TX 75038 Phone: (972) 483-0807 FAX:	Job	CT46143-A	$\begin{aligned} & \text { Page } 12 \text { of } 13 \end{aligned}$
	Project	98772	$\begin{aligned} & \text { Date } \\ & \text { 10:08:42 10/16/20 } \end{aligned}$
	Client	T-Mobile	Designed by sital.shrestha

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		ft	$f t$		$i n^{2}$	lb	$l b$	ϕP_{n}
L1	100-47 (1)	TP26.25x26.25x13.125	53.00	0.00	0.0	$\begin{gathered} 541.188 \\ 0 \end{gathered}$	-6150.95	584484.00	0.011
L2	47-0(2)	TP26.25x26.25x13.125	47.00	0.00	0.0	$\begin{gathered} 541.188 \\ 0 \end{gathered}$	-91915.20	584484.00	0.157

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio $M_{u x}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
$f t$			kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	100-47 (1)	TP26.25x26.25x13.125	147.45	271.32	0.543	0.00	271.32	0.000
L2	47-0 (2)	TP26.25x26.25x13.125	154.42	271.32	0.569	0.00	271.32	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	Ratio T_{u}
$f t$			$l b$	$l b$	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	100-47 (1)	TP26.25x26.25x13.125	10798.20	292242.00	0.037	0.01	319.64	0.000
L2	47-0 (2)	TP26.25x26.25x13.125	5912.62	292242.00	0.020	0.06	319.64	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_{u}	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio V_{u}	$\begin{aligned} & \text { Ratio } \\ & T_{u} \end{aligned}$	Comb. Stress	Allow. Stress	Criteria
$f t$		ϕP_{n}	$\phi M_{n X}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	100-47 (1)	0.011	0.543	0.000	0.037	0.000	0.555	1.000	4.8.2
L2	47-0 (2)	0.157	0.569	0.000	0.020	0.000	0.727	1.000	4.8.2

Section Capacity Table

Section	Elevation ft	Component Type	Size	Critical Element	P $l b$	$ø P_{\text {allow }}$ $l b$	$\%$ Capacity	Pass Fail
No.	$f t$			10	-6150.95	584484.00	55.5	Pass
	$100-47$	Pole	TP26.25x26.25x13.125	1	6	10872.40	1610.00	67.4
Puy A@76.15	$1 / 2$	10	7515.44	12480.00	60.2	Pass		

tnxTower	Job		$\begin{aligned} & \text { Page } 13 \text { of } 13 \end{aligned}$
		CT46143-A	
Tower Engineering Solutions 1320 Greenway Drive, Ste. 600	Project	98772	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:08:42 10/16/20 } \end{array}$
Irving, TX 75038 Phone: (972) 483-0807 FAX:	Client	T-Mobile	Designed by sital.shrestha

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} ø P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L2	47-0	Guy A@76.15	9/16	14	14108.60	21000.00	67.2	Pass
		Guy B@76.15	1/2	5	11005.80	16140.00	68.2	Pass
		Guy B@54.95	7/16	9	7620.12	12480.00	61.1	Pass
		Guy B@76.15	9/16	13	14282.00	21000.00	68.0	Pass
		Guy C@76.15	1/2	4	13459.50	16140.00	83.4	Pass
		Guy C@54.95	7/16	8	10740.50	12480.00	86.1	Pass
		Guy C@76.15	9/16	12	17471.50	21000.00	83.2	Pass
		Guy D@76.15	1/2	3	11016.90	16140.00	68.3	Pass
		Guy D@54.95	7/16	7	7594.05	12480.00	60.8	Pass
		Guy D@76.15	9/16	11	14296.50	21000.00	68.1	Pass
		Pole	TP26.25x26.25x13.125	2	-91915.20	584484.00	72.7	Pass
						Summary		
						Pole (L2)	72.7	Pass
						Guy A (L1)	67.4	Pass
						Guy B (L1)	68.2	Pass
						Guy C (L1)	86.1	Pass
						Guy D (L1)	68.3	Pass
						RATING =	86.1	Pass

[^0]Coax Layout
CT46143-A

					Usage	
Calculated Foundation Uplift Capacity (Kips):	58.95	>	Design Factored Uplift Load (Kips):	38	0.65	OK!
Allowable Overturning Moment Resistance (Kips-ft.):	315.5		Design Factored Momont (kips-ft):	257	0.82	OK!
Check the capacities of Reinforceing Concrete:						
Strength reduction factor (Flexure and axial tension):	0.90	Stren	gth reduction factor (Shear):	0.75		
Strength reduction factor (Axial compression):	0.65	Wind	Load Factor on Concrete Design:	1.00		
Reinforcing Concrete Pier:					Usage	
Vertical Steel Rebar Area (sq. in./each):	1.00		Tie / Stirrup Area (sq. in./each):	0.20		
Maximum Moment Location Below Grade Surtace (tt.):	3.98		Max. Shear torce Location B. G. S. (tt.):	4.76		
Calculated Moment Capacity (Mn,Kips-Ft):	505	>	Design Factored Moment (Mu, K-Ft):	207.3	0.41	OK!
Calculated Shear Capacity (Kips):	169.4	>	Design Factored Shear (Kips):	16.0	0.09	OK!
Calculated Tension Capacity (Tn, Kips):	324.0		Design Factored Tension (Tu Kips):	38.3	0.12	OK!
Calculated Compression Capacity (Pn, Kips):	2392		Design Factored Axial Load (Pu Kips):	0.0	0.00	OK!
Moment \& Axial Strength Combination($\mathrm{Tu} / \mathrm{Tn}+\mathrm{Mu} / \mathrm{Mn}$):	0.41	OK!	Max. Allowable Tie/Stirrup Spacing:	12.00	in.	
Pier Reinforcement Ratio:	0.003		Reinforcement Ratio is too small			

EXHIBIT 8

("州川) ES

Tower Engineering Solutions
Phone (972) 483-0607, Fax (972) 975-9615
1320 Greenway Drive, Suite 600, Irving, Texas 75038

Antenna Mount Analysis Report

Existing 100.0 FT Guyed laminated wood pole
Customer Name: SBA Communications Corp
Customer Site Number: CT46143-A-SBA
Customer Site Name: Burlington - Avon Landfill
Carrier Name: T-Mobile (Application \#: 116800, v1)
Carrier Site ID / Name: CTHA510A / Burlington-Avon Landfill
Site Location: 277 Huckleberry Hill Road
Avon, Connecticut
Hartford County
Latitude: 41.788055
Longitude: -72.918166

Analysis Result:
Max Structural Usage: 55.6\% [Pass]

Report Prepared By: Saurav Devkota

Introduction

The purpose of this report is to summarize the analysis results on the (3) Flush Mount at 80.00' elevation to support the proposed antenna configuration. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Mount Drawings	Full Metal Services, Dated 4/28/2019
Antenna Loading	SBA, Application \#: 116800, v1
Modification Drawings	N/A

Analysis Criteria

Wind Speed Used in the Analysis: 116 mph (3-Sec. Gust) (Ultimate Wind Speed)
Wind Speed with Ice: 50 mph (3-Sec. Gust) with $1.5^{\prime \prime}$ radial ice concurrent
Service Load Wind Speed: $60 \mathrm{mph}+0^{\prime \prime}$ Radial ice
Standard/Codes: ANSI/TIA/EIA 222-H / 2015 IBC / 2018 CBSC
Exposure Category: C
Risk Category: II
Topographic Category: 1
Crest Height (Ft): 0

The site is a Risk Category II structure per table 1604.5 of the IBC. This site does not support emergency communication equipment for first responders such as fire departments, police, hospitals, ambulance services or any of the facilities listed for Risk Categories III and IV. The scope of work detailed in this structural analysis does not include items that are a part of emergency service as the 911 or essential facility service of an emergency response system.

Mount Information

(3) Flush Mount at 80.00' elevation.

Final Antenna Configuration

3 RFS APXVAR18_43-C-NA20
6 RFS ATMAA1412D-A1A20

Any proposed antennas not currently installed should be mounted such that the centers of the antennas do not exceed 0.5 ft vertically from the center of the Flush Mount.

In addition to the proposed equipment loading, a 500 lb serviceability load was also considered in this analysis in accordance with TIA requirements.

Analysis Results

Our calculations have determined that under design wind load the existing mounts will be structurally adequate to support the proposed antenna configuration. The maximum structural usage is 55.6%, which occurs in the plate. The proposed equipment must be installed as stipulated in the Final Antenna Configuration section of this report. The analysis results are void if the proposed equipment is not installed in accordance with this report.

Attachments

1. Mount Photos
2. Antenna Placement Diagram
3. Mount Mapping Information
4. Analysis Calculations

Standard Conditions

1. The loading configuration as analyzed in this report is as provided from the customer. Any deviation from this design shall be communicated to TES to verify deviation will not adversely impact the analysis.
2. The analysis is based on the presumption that the antenna mount members and components along with any existing reinforcement items have been correctly and properly designed, manufactured, installed and maintained.
3. All the existing structural members were assumed to be in good condition with no physical damage or deterioration associated with corrosion. The mount analysis is not a condition assessment of the mount.
4. The mount analysis was performed in accordance with the loading provided, and if applicable the modification required to support the additional loading.
5. If the mount is modified, installation must adhere to the configuration communicated in the modification drawings.
6. The modification drawings are not intended to convey means or methods. These are the responsibility of the installing contractor.
7. Rigging plan review is available if the contractor requires for a construction class IV or other if required. Review fee would apply.
8. The mount modification package was created based upon information provided for the mount loading. The underlying tower is assumed to provide support and sufficient rigidity to support the mount loads as a tower analysis was not part of the mount analysis.
9. TES is not responsible for modifications to climbing facilities unless communicated to TES in writing.

Sector: A

Structure Type: Monopole
Mount Elev: 80.00

6/26/2019

Page: 1

| Ref \# | Moight | Width | H Dist | Pipe | Pipe | Antenna Center Ant | | Antenna |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (in) | (in) | From Left | $\#$ | Pos V | Pos | From Top | H Offset | |

Copyright © 2019 by Tower Engineering Solutions, LLC. All rights reserved.

Sector: B	$6 / 26 / 2019$	
Structure Type:	Monopole	
Mount Elev:	80.00	

Ref \#	Model	Height (in)	Width (in)	H Dist From Left	$\begin{gathered} \text { Pipe } \\ \# \end{gathered}$	Pipe $\text { Pos } V$	Antenna Pos	Center Ant From Top	Antenna H Offset
A1	RFS APXVAR18_43-C-NA20	68.00	16.00	0.50	1	a	Front	31.20	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	a	Behind	24.00	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	b	Behind	48.00	0.00

Copyright © 2019 by Tower Engineering Solutions, LLC. All rights reserved.

Structure: CT46143-A-SBA - Burlington - Avon Landfill

Sector: C
Structure Type: Monopole
Mount Elev: 80.00
6/26/2019

Page: 3

Ref \#	Model	Height (in)	Width (in)	H Dist From Left	$\begin{gathered} \text { Pipe } \\ \# \end{gathered}$	Pipe Pos V	Antenna Pos	Center Ant From Top	Antenna H Offset
A1	RFS APXVAR18_43-C-NA20	68.00	16.00	0.50	1	a	Front	31.20	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	a	Behind	24.00	0.00
A2	RFS ATMAA1412D-A1A20	12.00	10.00	0.50	1	b	Behind	48.00	0.00

Copyright © 2019 by Tower Engineering Solutions, LLC. All rights reserved.

Antenna Mount Type "Other" Mapping Form (PATENT PENDING)
FCC \#

Tower Owner:	SBA Communications	Mapping Date:	4/28/19
Site Name:	Burlington - Avon Landfill	Structure Type:	Monopole
Site Number or ID:	CT46143-A-SBA	Structure Height (Ft.):	100
Mapping Contractor:	Full Metal Tower Services	Mount Height (Ft.):	77.6

 requirements.
 dimemsions and members and insert one sketch here

Geometries (Unit: inches)									
a	N/A	e	N/A	j	N/A	0	N/A	s	7
b	N/A	f	N/A	k	N/A	p	N/A	t	15 \& 22
c	N/A	g	N/A	m	N/A	q	N/A	\mathbf{u}^{*}	66
d	N/A	h	N/A	n	N/A	r	N/A	v*	72
Members (Unit: inches) * - See Ant. Layout for "u", "v" and member "K" (pipe)									
Items	Member	Lx (O.D.)	Ly (I.D.)	T	F	Member	Lx (O.D.)	Ly (I.D.)	T
A					F				
B					G				
C					H				
D					J				
E					K* (pipe)	2.375 OD x 0.154 Pipe	2.375	2.067	0.154
Distance from top of main platform member to lowest tip of ant./eqpt. of Carrier above. (N/A if > 10 ft .)									3'
Distance from top of main platform member to highest tip of ant./eqpt. of Carrier below. (N/A if > 10 ft .)									N/A
Please enter the infomation below if members can't be found from the drop down lists									
plate 3/8"x4									
Structure is square laminate wood pole (15"x22").									
Mount is a mast pipe mounted directly to collar.									

Climbing ladder is Located at Section B, at 90° Degree Azimuth

Antenna Layout

	Enter antenna model. If not labled, enter "Unknown". It no antenna at specified location, enter "N/A". If antennas and the locations are the same on all three sectors, only enter one sector.					Mounting Locations (Unit: inches)			Photos of antennas
	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	$\begin{gathered} \text { Vertical } \\ \text { Distances" } \mathrm{b}_{1 \mathrm{a}}, \mathrm{~b}_{2 \mathrm{a}} \\ \mathrm{~b}_{3 \mathrm{a}}, \mathrm{~b}_{1 \mathrm{~b}} \ldots . . \text { (} \ln . \text {.) } \end{gathered}$	Horiz. offset (Use "-" if Ant. is inside)	Horiz. offset $\begin{aligned} & " C_{1}, C_{2}, C_{3} \\ & C_{4}, C_{5} \text { " (in.) } \end{aligned}$	Photo Numbers
Sector A									
$\mathrm{Ant}_{1 \mathrm{a}}$									
Ant ${ }_{1 \mathrm{~b}}$	Antenna A	13	3.5	56	1/2" (4)	+36"	6	0	
Ant $_{1 \mathrm{c}}$	TMA A	6.5	3	8	1/2" (2)	+21"	N/A	0	
Ant $_{2 \mathrm{a}}$									
Ant $_{2 b}$									
Ant $_{2 \mathrm{c}}$									
Ant $_{3 \mathrm{a}}$									
$\mathrm{Ant}_{3 \mathrm{~b}}$									
$\mathrm{Ant}_{3 \mathrm{c}}$									
Ant $_{4 \mathrm{a}}$									
$\mathrm{Ant}_{4 \mathrm{~b}}$									
Ant $_{4 \mathrm{c}}$									
Ant $_{5}$									
Ant $_{5}$									
Ant $_{5 c}$									
Are Ant	me as sector A ?	Yes			tenna	Sector B are the	e as Se	A	

Sector A:	10°	\mathbb{M}	Deg	
Sector B:	190°		Deg	
Sector C:	280°		Deg	
Climbing	90°		Deg	Located at Section B
Climbing Facility	Corrosion Type:			Minor corrosion observed
	Access:			Climbing path was unobstructed.
	Condition:			N/A

Member Code Checks Displayed (Enveloped)
Results for LC 1, 1.2D+1.0W (Front)

Tower Engineering Solutio...	CT46143-A-SBA_MT_LOT_Loads Only_Sector A_H	SK-4
		June 26, 2019 at 12:47 PM
TES Project No. 78338		CT46143-A-SBA_78338_H_RISA_L.

Member Shear Checks Displayed (Enveloped)
Results for LC 1, 1.2D+1.0W (Front)

Tower Engineering Solutio...	CT46143-A-SBA_MT_LOT_Loads Only_Sector A_H	SK - 5
		June 26, 2019 at 12:47 PM
		CT46143-A-SBA_78338_H_RISA_L....
TES Project No. 78338		Page 2

Tower Engineering Solutio...	CT46143-A-SBA_MT_LOT_Loads Only_Sector A_H	SK - 6
		June 26, 2019 at 12:47 PM
	CT46143-A-SBA_78338_H_RISA_L...	

\qquad
\qquad

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me...	Surface(P.
1	Antenna D	None					4			
2	Antenna Di	None					4			
3	Antenna W Front	None					4			
4	Antenna Wi Front	None					4			
5	Antenna W Side	None					4			
6	Antenna Wi Side	None					4			
7	Service Lm1	None					1			
8	Service Lm2	None					1			
9	Structure D	None		-1						
10	Structure Di	None						7		
11	Structure W Front	None						7		
12	Structure Wi Front	None						7		
13	Structure W Side	None						7		
14	Structure Wi Side	None						7		
15	Antenna Wm Front	None					4			
16	Antenna Wm Side	None					4			
17	Structure Wm Front	None						7		
18	Structure Wm Side	None						7		
19	Service Lv1	None					1			
20	Service Lv2	None					1			

Load Combinations

	Description	So...		.	LC	1.		ac.	L	ac	BLC				BLC	ac.	LC	ac.	BLC	Fac.	BLCF	Fac.	BLCF	Fac..
1	1.2D+1.0W (Front)	Yes	Y		1	1.2	9	1.2	3	1	11	1												
2	1.2D+1.0W (Back)	Yes	Y		1	1.2	9	1.2	3	-1	11	-1												
3	1.2D+1.0W (Left)	Yes	Y		1	1.2	9	1.2	5	1	13	1												
4	1.2D+1.0W (Right)	Yes	Y		1	1.2	9	1.2	5	-1	13	-1												
5	1.2D+1.0Di+1.0Wi (Fr...	Yes	Y		1	1.2	9	1.2	2	1	10	1	4	1	12	1								
6	1.2D+1.0Di+1.0Wi (B...	Yes	Y		1	1.2	9	1.2	2	1	10	1	4	-1	12	-1								
7	1.2D+1.0Di+1.0Wi (L...	Yes	Y		1	1.2	9	1.2	2	1	10	1	6	1	14	1								
8	1.2D+1.0Di+1.0Wi (Ri...	Yes	Y		1	1.2	9	1.2	2	1	10	1	6	-1	14	-1								
9	1.2D+1.5Lm1+1.0Wm...	Yes	Y		1	1.2	9	1.2	7	1.5	15	1	17	1										
10	1.2D+1.5LmL2+1.0W...	Yes	Y		1	1.2	9	1.2	8	1.5	15	1	17	1										
11	1.2D+1.5Lv1 (Mainte...	Yes	Y		1	1.2	9	1.2	19	1.5														
12	1.2D+1.5Lv2 (Mainte..	Yes	Y		1	1.2	9	1.2	20	1.5														
13	1.4D	Yes	Y		1	1.4	9	1.4																

Joint Coordinates and Temperatures

$\mathrm{X}[\mathrm{ft}]$									$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From Diap...
1	N1	4	0	0	0							
2	N3	4	-6	0	0							
3	N3A	4	-.42	0	0							
4	N4	4	-.42	-.5	0							
5	N5	4	-5.27	0	0							
6	N6	4	-5.27	-.5	0							
7	N7	4	-.42	.25	0							
8	N8	4	-5.27	.25	0							
9	N11	4	-.42	-.21	0							
10	N12	4	-5.27	-.21	0							
11	N13	3.5	-.42	-.5	0							

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap...
12	N14	3.5	-5.27	-. 5	0	
13	N15	3.33	-. 42	-. 5	0	
14	N16	3.33	-5.27	-. 5	0	
15	N15A	3.665	-. 42	-. 5	0	
16	N16A	3.665	-5.27	-. 5	0	

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design	A [in2]	lyy [in4] Izz [in4]		J [in4]
1	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25
2	All-Threaded Ro...	SR_0.5	Beam	BAR	A36 Gr. 36	Typical	196	003	. 003	. 006
3	Plate Connection	PL1/4×3	Beam	RECT	A36 Gr. 36	Typical	75	004	. 563	015
4	New Tube Braci..	HSS $3 \times 3 \times 4$	Beam	SquareTube	A500 Gr.B Rect	Typical	2.44	3.02	3.02	5.08
5	New Bent Plate	PL3/8x7	Beam	RECT	A36 Gr. 36	Typical	2.625	. 031	10.719	119

Cold Formed Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R...	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	CF1A	1.5CU1.25X035	Beam	CU	A570 Gr. 33	Typical	131	022	052	5.4e-5

Aluminum Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	Iyy [in4]	Izz [in	J [in4]
1	AL1A	AACS14X13.9	Beam	AA Channel	3003-H14	Typical	11.8	44.7	401	1.19

Hot Rolled Steel Properties

1 Label		E [ksi]	G [ksi]	Nu	Therm (11E...Density[k/ft... Yield[ksi]			Ry	Fu[ksi] Rt	
		29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	65	. 49	50	1.1	65	1.1
3	A992	29000	11154	. 3	65	. 49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	. 3	. 65	. 527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	. 3	65	. 527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	. 3	. 65	. 49	35	1.6	60	1.2
7	A1085	29000	11154	. 3	. 65	. 49	50	1.4	65	1.3

Cold Formed Steel Properties

Label		$\mathrm{E}[\mathrm{ksi}]$	$\mathrm{G}[\mathrm{ksi}]$	Nu	Therm (l1E5 F)		Density[k/ft^... Yield[ksi]		Fu[ksi]
1	A570 Gr.33	29500	11346	.3	.65	.49	33	52	
2	A607 C1 Gr.55	29500	11346	.3	.65	.49	55	70	

Aluminum Properties

Label		E [ksi]	G [ksi]	Nu	Therm (...Density[...Table B. 4			kt	Ftu[ks	Fty[ks	cy[ks	Fsu[ksi] Ct	
1	3003-H14	10100	3787.5	. 33	1.3	. 173	Table B...	1	19	16	13	12	141
2	6061-T6	10100	3787.5	. 33	1.3	. 173	Table B..	1	38	35	35	24	141
3	6063-T5	10100	3787.5	. 33	1.3	. 173	Table B...	1	22	16	16	13	141
4	6063-T6	10100	3787.5	. 33	1.3	. 173	Table B...	1	30	25	25	19	141
5	5052-H34	10200	3787.5	. 33	1.3	. 173	Table B...	1	34	26	24	20	141
6	6061-T6 W	10100	3787.5	. 33	1.3	. 173	Table B....	1	24	15	15	15	141

\qquad

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d..	Section/Shape	Type	Design List	Material	Design R
1	MP1A	N1	N3			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
2	M2	N7	N4			PL3/8x4	Beam	RECT	A36 Gr. 36	Typical
3	M3	N8	N6			PL3/8x4	Beam	RECT	A36 Gr. 36	Typical
4	M4	N11	N13		90	PL3/8x4	Beam	Wide Flange	A36 Gr. 36	Typical
5	M5	N12	N14		90	PL3/8x4	Beam	Wide Flange	A36 Gr. 36	Typical
6	M6	N15	N4			PL3/8x4	Beam	RECT	A36 Gr. 36	Typical
7	M7	N16	N6			PL3/8x4	Beam	RECT	A36 Gr. 36	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Analysis .	Inactive	Seismic Design ..
1	MP1A						Yes			None
2	M2						Yes			None
3	M3						Yes			None
4	M4						Yes			None
5	M5						Yes			None
6	M6						Yes			None
7	M7						Yes			None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torq...	Kyy	Kzz	Cb	Function
1	MP1A	Mount Pipes	6			Lbyy			2.1	2.1		Lateral
2	M2	PL3/8x4	75			Lbyy						Lateral
3	M3	PL3/8x4	75			Lbyy						Lateral
4	M4	PL3/8x4	. 578									Lateral
5	M5	PL3/8x4	. 578									Lateral
6	M6	PL3/8x4	. 67			Lbyy						Lateral
7	M7	PL3/8x4	. 67			Lbyy						Lateral

Cold Formed Steel Design Parameters

Label Shape Lengt... Lbyy[ft] Lbzz[ft] Lcomp t...Lcomp ... L-torque... Kyy Kzz Cm-...Cm-... Cb R a[ft] y sw..z sw.. No Data to Print ...

Aluminum Design Parameters

Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft] Lcomp bot[ft] L-torq.	Kyy	Kzz	Cb	Function
No Data to Print ...									

Joint Loads and Enforced Displacements
Joint Label
L,D,M No Data to Print . Direction Magnitude[(lb,k-ft), (in,rad), (lb*s^2... \square Jointabe \qquad路 Mag

Member Point Loads (BLC 1 : Antenna D)

Member Label				Magnitude [lb,k-ft]		Location[ft,\%]
1	MP1A	Y	-22.7	0		
2	MP1A	Y	-22.7	5.2		
3	MP1A	Y	-13	2		
4	MP1A	Y	-13	4		

Member Point Loads (BLC 2 : Antenna Di)

Member Label				Magnitude[lb,k-ft]		Location[ft, $\%]$
1	MP1A	Y	-114.7	0		
2	MP1A	Y	-114.7	5.2		
3	MP1A	Y	-32.289	2		
4	MP1A	Y	-32.289	4		

Member Point Loads (BLC 3 : Antenna W Front)

Member Label								Magnitude[lb,k-ft]		Location[ft,\%]
1	MP1A	Z	-168.719	0						
2	MP1A	Z	-168.719	5.2						
3	MP1A	Z	-30.684	2						
4	MP1A	Z	-30.684	4						

Member Point Loads (BLC 4 : Antenna Wi Front)

Member Label							Magnitude[lb,k-ft]		Location[ft,\%]
1	MP1A	Z	-35.447	0					
2	MP1A	Z	-35.447	5.2					
3	MP1A	Z	-6.835	2					
4	MP1A	Z	-6.835	4					

Member Point Loads (BLC 5 : Antenna W Side)									
Member Label							Direction	Magnitude[lb,k-ft]	Location[ft,\%]
1									

Member Point Loads (BLC 6 : Antenna Wi Side)

Member Label			Magnitude $[\mathrm{lb}, \mathrm{k}-\mathrm{ft}]$	Location[ft, $\%]$
1	MP1A	X	23.186	0
2	MP1A	X	23.186	5.2
3	MP1A	X	4.594	2
4	MP1A	X	4.594	4

Member Point Loads (BLC 7 : Service Lm1)

Member Label				Magnitude[lb,k-ft]		Location[ft,\%]
1	M 7	Y	-500	$\% 50$		

Member Point Loads (BLC 8 : Service Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,\%]
1	M7	Y	-500	0

Member Point Loads (BLC 15 : Antenna Wm Front)

Member Label						Direction	Magnitude[lb,k-ft]	Location[ft,\%]
1	MP1A	Z	-11.285	0				
2	MP1A	Z	-11.285	5.2				
3	MP1A	Z	-2.052	2				
4	MP1A	Z	-2.052	4				

Member Point Loads (BLC 16 : Antenna Wm Side)

Member Label				Direction		Lognitude[lb,k-ft]	0
1	MP1A	X	7.05	0			
2	MP1A	X	7.05	5.2			
3	MP1A	X	.953	2			

Member Point Loads (BLC 16 : Antenna Wm Side) (Continued)

	Direction	Magnitude[lb,k-ft]	.953	Location[ft, $\%]$
4	Member Label	X	4	

Member Point Loads (BLC 19: Service Lv1)									
Member Label							Direction	Magnitude[lb,k-ft]	Location[ft,\%]
1									

Member Distributed Loads (BLC 10 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud..	Start Location[ft,\%]	End Location[ft,\%]
1	MP1A	Y	-8.037	-8.037	0	\%100
2	M2	Y	-11.326	-11.326	0	\%100
3	M3	Y	-11.326	-11.326	0	\%100
4	M4	Y	-11.326	-11.326	0	\%100
5	M5	Y	-11.326	-11.326	0	\%100
6	M6	Y	-11.326	-11.326	0	\%100
7	M7	Y	-11.326	-11.326	0	\%100

Member Distributed Loads (BLC 11 : Structure W Front)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud..	Start Location[ft,\%]	End Location[ft,\%]
1	MP1A	PZ	-8.305	-8.305	0	\%100
2	M2	PZ	-13.987	-13.987	0	\%100
3	M3	PZ	-13.987	-13.987	0	\%100
4	M4	PZ	-13.987	-13.987	0	\%100
5	M5	PZ	-13.987	-13.987	0	\%100
6	M6	PZ	-13.987	-13.987	0	\%100
7	M7	PZ	-13.987	-13.987	0	\%100

Member Distributed Loads (BLC 12 : Structure Wi Front)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud..	Start Location[ft,\%]	End Location[ft,\%]
1	MP1A	PZ	-3.672	-3.672	0	\%100
2	M2	PZ	-4.728	-4.728	0	\%100
3	M3	PZ	-4.728	-4.728	0	\%100
4	M4	PZ	-4.728	-4.728	0	\%100
5	M5	PZ	-4.728	-4.728	0	\%100
6	M6	PZ	-4.728	-4.728	0	\%100
7	M7	PZ	-4.728	-4.728	0	\%100

Member Distributed Loads (BLC 13 : Structure W Side)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud..	Start Location[ft,\%]	End Location[ft,\%]
1	MP1A	PX	8.305	8.305	0	\%100
2	M2	PX	13.987	13.987	0	\%100
3	M3	PX	13.987	13.987	0	\%100
4	M4	PX	13.987	13.987	0	\%100
5	M5	PX	13.987	13.987	0	\%100
6	M6	PX	13.987	13.987	0	\%100
7	M7	PX	13.987	13.987	0	\%100

Member Distributed Loads (BLC 14 : Structure Wi Side)

\qquad

Member Distributed Loads (BLC 14 : Structure Wi Side) (Continued)

	Member Label	Direction	Start Magnitude[lb/tt,F,ksf]	End Magnitud..	Start Location[ft,\%]	End Location[ft,\%]
1	MP1A	PX	3.672	3.672	0	\%100
2	M2	PX	4.728	4.728	0	\%100
3	M3	PX	4.728	4.728	0	\%100
4	M4	PX	4.728	4.728	0	\%100
5	M5	PX	4.728	4.728	0	\%100
6	M6	PX	4.728	4.728	0	\%100
7	M7	PX	4.728	4.728	0	\%100

Member Distributed Loads (BLC 17 : Structure Wm Front)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud...	Start Location[ft,\%]	End Location[ft,\%]
1	MP1A	PZ	-. 555	-. 555	0	\%100
2	M2	PZ	-. 936	-. 936	0	\%100
3	M3	PZ	-. 936	-. 936	0	\%100
4	M4	PZ	-. 936	-. 936	0	\%100
5	M5	PZ	-. 936	-. 936	0	\%100
6	M6	PZ	-. 936	-. 936	0	\%100
7	M7	PZ	-. 936	-. 936	0	\%100

Member Distributed Loads (BLC 18 : Structure Wm Side)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitud.	Start Location[ft,\%]	End Location[ft,\%]
1	MP1A	PX	. 555	. 555	0	\%100
2	M2	PX	. 936	. 936	0	\%100
3	M3	PX	. 936	936	0	\%100
4	M4	PX	. 936	936	0	\%100
5	M5	PX	. 936	. 936	0	\%100
6	M6	PX	. 936	. 936	0	\%100
7	M7	PX	. 936	. 936	0	\%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		No Data to Print \ldots				

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N4						
2	N6						
3	N13						
4	N14						
5	N15						
6	N16						
7	N15A	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
8	N16A	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Envelope Joint Reactions

Joint			X [Ib]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft] LC		MY [k-ft]	LC	MZ [k-ft] LC	
1	N15A	max	157	4	349.397	6	237.221	1	-. 015	1	. 076	4	. 094	6
2		min	-157.252	3	142.684	1	-238.042	2	-. 135	6	-. 076	3	018	4
3	N16A	max	161.224	4	907.558	10	244.143	1	. 006	1	. 078	4	. 143	12
4		min	-160.971	3	144.357	2	-243.322	2	-. 276	11	-. 078	3	-. 217	10
5	Totals:	max	318.223	4	1056.475	9	481.364	1						
6		min	-318.223	3	306.475	2	-481.364	2						

\qquad

Envelope Member Section Forces

Member Sec			Axial[lb]	$\begin{gathered} \text { LC } \\ \hline 5 \\ \hline \end{gathered}$	y Shear[lb] LC z Shea...LC Torqu... LC y-y Mo...LC z-z Mo... LC									
1	MP1A	1 max			105.407	4	168.722	1	0	1	0	1	0	1
2		min	27.24	3	-105.407	3	-168.7...	2	0	1	0	1	0	1
3		2 max	-11.294	1	24.843	3	40.501	2	0	3	0	2	0	8
4		min	-111.576	11	-24.591	4	-39.68	1	0	4	-. 002	5	0	3
5		3 max	10.554	1	2.112	4	3.461	1	0	3	. 021	2	. 014	4
6		min	-89.729	11	-1.86	3	-2.64	2	0	4	-. 021	1	-. 014	3
7		4 max	72.512	5	28.815	4	46.602	1	0	3	. 009	1	. 005	3
8		min	-67.881	11	-28.563	3	-45.781	2	0	4	-. 008	2	-. 006	4
9		5 max	0	1	0	7	0	6	0	1	0	1	0	1
10		min	0	1	0	1	0	1	0	1	0	1	0	1
11	M2	1 max	0	1	0	1	0	1	0	1	0	1	0	1
12		min	0	1	0	1	0	1	0	1	0	1	0	1
13		2 max	0	1	-9.187	2	2.623	3	0	1	0	3	. 001	6
14		min	0	1	-11.311	6	-2.623	4	0	1	0	4	0	2
15		3 max	220.856	1	-63.156	1	147.951	3	. 014	3	. 019	3	. 035	2
16		min	-221.677	2	-251.486	6	-147.6...	4	-. 014	4	-. 019	4	-. 016	1
17		4 max	191.632	1	-46.906	4	32.869	2	. 01	8	. 007	3	. 042	6
18		min	-192.147	2	-180.663	6	-32.768	1	-. 003	4	-. 007	4	-. 004	1
19		5 max	191.632	1	-56.094	4	32.869	2	. 01	8	. 008	2	. 077	6
20		min	-192.147	2	-191.975	6	-32.768	1	-. 003	4	-. 008	1	. 008	1
21	M3	1 max	0	1	0	1	0	1	0	1	0	1	0	1
22		min	0	1	-375	11	0	1	0	1	0	1	0	1
23		2 max	0	1	-9.187	12	2.623	3	0	1	0	3	. 071	11
24		min	0	1	-384.187	11	-2.623	4	0	1	0	4	0	12
25		3 max	227.778	1	-64.825	2	151.67	3	. 035	3	. 019	3	. 134	11
26		min	-226.957	2	-358.981	11	-151.9..	4	-. 035	4	-. 019	4	-. 045	1
27		4 max	197.405	1	-27.686	10	33.651	2	. 019	11	. 007	3	. 116	11
28		min	-196.888	2	-290.861	12	-33.752	1	-. 012	4	-. 007	4	-. 021	1
29		5 max	197.405	1	-36.874	10	33.651	2	. 019	11	. 008	2	. 158	11
30		min	-196.888	2	-300.048	12	-33.752	1	-. 012	4	-. 008	1	-. 004	1
31	M4	1 max	195.788	4	41.771	1	82.256	7	0	1	. 011	3	. 023	4
32		min	-196.072	3	-41.959	2	7.933	3	-. 03	6	-. 007	4	-. 023	3
33		2 max	196.665	4	43.284	1	90.974	7	0	1	. 018	8	. 021	4
34		min	-196.949	3	-43.472	2	15.014	3	-. 03	6	-. 001	4	-. 021	3
35		3 max	197.543	4	44.796	1	99.691	7	0	1	. 032	6	. 019	4
36		min	-197.827	3	-44.984	2	22.094	3	-. 03	6	. 004	1	-. 019	3
37		4 max	198.42	4	46.308	1	108.408	7	0	1	. 047	6	. 018	2
38		min	-198.704	3	-46.497	2	29.175	3	-. 03	6	. 008	1	-. 018	1
39		5 max	199.297	4	47.821	1	117.125	7	0	1	. 063	6	. 025	2
40		min	-199.581	3	-48.009	2	36.256	3	-. 03	6	. 013	1	-. 025	1
41	M5	1 max	201.222	4	43.158	1	148.737	11	. 008	1	. 023	3	. 024	4
42		min	-200.938	3	-42.97	2	-12.467	3	-. 071	11	-. 019	4	-. 024	3
43		2 max	202.099	4	44.67	1	155.818	11	. 008	1	. 04	11	. 021	4
44		min	-201.816	3	-44.483	2	-5.387	3	-. 071	11	-. 011	4	-. 021	3
45		3 max	202.976	4	46.183	1	162.899	11	. 008	1	. 063	11	. 019	4
46		min	-202.693	3	-45.995	2	1.694	3	-. 071	11	-. 001	4	-. 019	3
47		4 max	203.854	4	47.695	1	169.979	11	. 008	1	. 087	11	. 018	2
48		min	-203.57	3	-47.507	2	8.775	3	-. 071	11	. 004	1	-. 018	1
49		5 max	204.731	4	49.207	1	177.06	11	. 008	1	. 112	11	. 025	2
50		min	-204.447	3	-49.02	2	15.855	3	-. 071	11	. 008	1	-. 025	1
51	M6	1 max	0	1	0	1	0	1	0	1	0	1	0	1
52		min	0	1	0	1	0	1	0	1	0	1	0	1
53		2 max	0	1	-8.207	1	2.343	2	0	1	0	2	0	5
54		min	0	1	-10.105	5	-2.343	1	0	1	0	1	0	4
55		3 max	165.406	3	212.185	6	196.318	1	-. 008	1	. 057	2	. 077	6
56		min	-165.253	4	-78.065	4	-196.8...	2	-. 077	6	-. 057	1	. 018	4

\qquad

Envelope Member Section Forces (Continued)

Member Sec			Axial[[b]	1	y Shear[lb] LC z Shea...LC Torqu... LC y-y Mo...LC z-z Mo... LC									
57		4 max	32.769		202.08	6	193.975	1	-. 008	1	. 024	2	. 042	8
58		min	-32.868	2	64.302	4	-194.4...	2	-. 077	6	-. 024	1	. 007	4
59		5 max	32.769	1	191.976	6	191.632	1	-. 008	1	. 008	1	. 01	8
60		min	-32.868	2	56.095	4	-192.1...	2	-. 077	6	-. 008	2	-. 000	4
61	M7	1 max	0	1	0	1	0	1	0	1	0	1	0	1
62		min	0	1	-750	10	0	1	0	1	0	1	0	1
63		2 max	0	1	-8.207	4	2.343	2	0	1	0	2	126	10
64		min	0	1	-758.208	10	-2.343	1	0	1	0	1	0	4
65		3 max	169.507	3	316.463	12	202.091	1	. 022	10	. 058	2	. 226	10
66		min	-169.657	4	-854.269	10	-201.5...	2	-. 158	11	-. 059	1	. 006	4
67		4 max	33.753	1	308.256	12	199.748	1	. 004	1	. 025	2	. 063	12
68		min	-33.65	2	45.081	10	-199.23	2	-. 158	11	-. 025	1	-. 004	4
69		5 max	33.753	1	300.048	12	197.405	1	. 004	1	. 008	1	. 019	11
70		min	-33.65	2	36.874	10	-196.8...	2	-. 158	11	-. 008	2	-. 012	4

Envelope AISC 14th(360-10): LRFD Steel Code Checks

Member		Shape	Code Check	Loc[ft] LC Shear Ch			Loc[ft]	ph		phi*P...phi*M...phi*M			Eqn
1	M7	PL3/8x4	. 007	. 335	10	. 556	335	y	113870..	388800	24.3	32.4	... $\mathrm{H} 1-1 \mathrm{~b}$
2	M6	PL3/8x4	. 003	. 335	2	. 271	. 335	y	6 3870...	388800	24.3	32.4	... H1-1b
3	M5	PL3/8x4	. 005	. 578	11	. 250	0	y	113874...	388800	24.3	32.4	... H1-1b
4	M3	PL3/8x4	. 005	. 453	11	. 124	453	y	4 3865...	388800	24.3	32.4	... H1-1b
5	M4	PL3/8x4	. 003	. 578	6	. 105	. 578	y	$63874 .$.	388800	24.3	32.4	... H1-1b
6	M2	PL3/8x4	. 003	75	6	. 051	453	y	4 3865...	388800	24.3	32.4	... H1-1b
7	MP1A	PIPE_2.0	. 036	. 375	2	. 023	5.25		16195....	32130	1.872	1.872	... H1-1b

Envelope AISI S100-10: LRFD Cold Formed Steel Code Checks

Memb... Shape	Code Check	Loc[..... She...Loc..... ... phi*P...phi*T...phi*... phi*... Cb Cm...Cm... EqnNo Data to Print ...	

Envelope AA ADM1-10: ASD - Building Aluminum Code Checks
Member Shape Code C... Loc[ft] LC Shear ... Loc[ft] Dir LC Pnc/O... Pnt/Om...Mny/O... Mnz/O... Vny/O... Vnz/O... Cb Eqn No Data to Print ...

EXHIBIT 9

Transcom Engineering, Inc.

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CTHA510A

SBA Avon Monopole
277 Huckleberry Hill Rd
Avon, CT 06001

June 16, 2019

Transcom Engineering Project Number: 737001-0137

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{2 2 . 1 9} \%$

Transcom Engineering, Inc.

June 16, 2019
T-MOBILE
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 6009

Emissions Analysis for Site: CTHA510A - SBA Avon Monopole

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at 277 Huckleberry Hill Rd, Avon, CT, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(\mathrm{~b})(1)-(\mathrm{b})(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the $600 \mathrm{MHz} \& 700 \mathrm{MHz}$ bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Transcom Engineering, Inc.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Transcom Engineering, Inc.

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at 277 Huckleberry Hill Rd, Avon, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
LTE	2100 MHz (AWS)	2	60
UMTS	$2100 \mathrm{MHz}($ AWS $)$	1	40
LTE $/ 5 \mathrm{G}$ NR	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Transcom Engineering, Inc.

The following antennas listed in Table 2 were used in the modeling for transmission in the $600 \mathrm{MHz}, 700$ $\mathrm{MHz}, 1900 \mathrm{MHz}(\mathrm{PCS})$ and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	RFS APXVAR18_43-C-NA20	80
B	1	RFS APXVAR18_43-C-NA20	80
C	1	RFS APXVAR18_43-C-NA20	80

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all proposed radios are ground mounted the following cable loss values were used. For each ground mounted $\mathbf{6 0 0} \mathbf{~ M H z}$ radio there was $\mathbf{1 . 0 5} \mathbf{~ d B}$ of cable loss calculated into the system gains / losses for this site. For each ground mounted $\mathbf{7 0 0} \mathbf{~ M H z}$ radio there was $\mathbf{1 . 1 4} \mathbf{~ d B}$ of cable loss calculated into the system gains / losses for this site. For each ground mounted $1900 \mathrm{MHz}(\mathbf{P C S})$ radio there was $\mathbf{2 . 0 2 ~ d B}$ of cable loss calculated into the system gains / losses for this site. For each ground mounted $\mathbf{2 1 0 0} \mathbf{~ M H z}$ (AWS) radio there was $\mathbf{2 . 0 8} \mathbf{~ d B}$ of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for $\mathbf{1 2 0}$ feet of $\mathbf{7 / 8}$ " coax.

Transcom Engineering, Inc.

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

$\begin{gathered} \text { Antenna } \\ \text { ID } \\ \hline \end{gathered}$	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	$\begin{gathered} \text { RFS } \\ \text { APXVAR18_43-C-NA20 } \end{gathered}$	1900 MHz (PCS) / 2100 MHz (AWS) / $600 \mathrm{MHz} / 700 \mathrm{MHz}$	$\begin{gathered} 15.85 / 17.15 / \\ 12.85 / 13.55 \\ \hline \end{gathered}$	11	440	10,932.05	8.90
Sector A Composite MPE\%							8.90
Antenna B1	$\begin{gathered} \text { RFS } \\ \text { APXVAR18_43-C-NA20 } \end{gathered}$	$\begin{gathered} 1900 \mathrm{MHz}(\mathrm{PCS}) \text { / } \\ 2100 \mathrm{MHz} \text { (AWS) / } \\ 600 \mathrm{MHz} / 700 \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 15.85 / 17.15 / \\ 12.85 / 13.55 \\ \hline \end{gathered}$	11	440	10,932.05	8.90
Sector B Composite MPE\%							8.90
Antenna \qquad $\mathrm{C} 1$	$\begin{gathered} \text { RFS } \\ \text { APXVAR18_43-C-NA20 } \\ \hline \end{gathered}$	1900 MHz (PCS) / 2100 MHz (AWS) / $600 \mathrm{MHz} / 700 \mathrm{MHz}$	$\begin{gathered} 15.85 / 17.15 / \\ 12.85 / 13.55 \\ \hline \end{gathered}$	11	440	10,932.05	8.90
Sector C Composite MPE\%							8.90

Table 3: T-MOBILE Emissions Levels

Transcom Engineering, Inc.

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE\%	
Carrier	MPE \%
T-MOBILE - Max Per Sector Value	$\mathbf{8 . 9 0} \%$
Sprint	5.31%
AT\&T	7.98%
Site Total MPE \%:	$\mathbf{2 2 . 1 9 \%}$

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	8.90%
T-MOBILE Sector B Total:	8.90%
T-MOBILE Sector C Total:	8.90%
Site Total:	

Table 5: Site MPE Summary

Transcom Engineering, Inc.

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
T-Mobile 1900 MHz (PCS) LTE	4	966.18	80	25.37	1900 MHz (PCS)	1000	2.54\%
T-Mobile 2100 MHz (AWS) LTE	2	1,928.20	80	25.32	2100 MHz (AWS)	1000	2.53\%
T-Mobile 2100 MHz (AWS) UMTS	1	1,303.35	80	8.56	2100 MHz (AWS)	1000	0.86\%
T-Mobile 600 MHz LTE / 5G NR	2	605.42	80	7.95	600 MHz	400	1.99\%
T-Mobile 700 MHz LTE	2	348.36	80	4.57	700 MHz	467	0.98\%
						Total:	8.90\%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Transcom Engineering, Inc.

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (\%)
Sector A:	8.90%
Sector B:	8.90%
Sector C:	8.90%
T-MOBILE Maximum	8.90%
Total (per sector):	
Site Total:	22.19%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 2 . 1 9} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Transcom Engineering, Inc
PO Box 1048
Sterling, MA 01564

[^0]: Program Version 8.0.5.0-11/28/2018 File:R:/CT46143-A-SBA/Miscellaneous/98772/tnx/CT46143-A-SBA_78523_Guyed Wood Pole (26.25).eri

