10 Industrial Ave, Suite 3 Mahwah NJ 07430

PHONE: 201.684.0055 FAX: 201.684.0066

December 3, 2021

Members of the Siting Council Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification
 20 Seles Road, Ashford, Connecticut 06278
 Latitude: 41.514815
 Longitude: -72.105805
 T-Mobile Site#: CTHA820A - Sprint Keep Project

Dear Ms. Bachman:

T-Mobile/Sprint currently maintains six (6) antennas at the 170-foot level of the existing 190-foot Monopole at 20 Seles Road, Ashford, Connecticut. The 190-foot Monopole is owned and operated by Everest Infrastructure. The ground space is owned by Raymond and Kathleen Baker. T-Mobile/Sprint now intends to remove all Sprint equipment including antennas, cables, and ground equipment. T-mobile will be adding nine (9) antennas. The new antennas will be installed at the same 170-foot level. The new antennas support 5G services.

Planned Modifications:

Tower: <u>Remove</u> (6) Sprint Antennas (12) Sprint RRHs (1) Sprint Hybrid Cables

Install New:

(3) Commscope VV 65A R1 Antennas
(3) APXVAALL24 43-U-NA20 Antennas
(3) AIR6449 Antennas
(3) Ericsson Radio 4460 B25+B66
(3) Ericsson 4480 B71+B85
(3) 6/24 Hybrid Cables

Ground:

Install New: (1) 6160 Cabinet and (1) B160 Battery Cabinet

<u>To Be Removed:</u> All Sprint Ground Equipment

This facility was not originally approved by the Connecticut Siting Council. The Town of Ashford does not have the original zoning permit on file. The Connecticut Siting Council ruled that shared use of the existing tower site is feasible.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman - Cathryn Silver-Smith, Elected Official, and Michael D'Amato, Zoning Enforcement Officer, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Eric Breun Transcend Wireless Cell: 201-658-7728 Email: <u>ebreun@transcendwireless.com</u> Attachments

cc: Cathryn Silver-Smith – as First Selectman of Ashford Michael D'Amato - Zoning Enforcement Officer Everest Infrastructure - Tower Owner Raymond and Kathleen Baker - Land Owner

ERC BREUN 2015587728 10 INDUSTRIAL AVE MAHWAH NJ 07430	1 OF 1
SHIP TO: MICHAEL D'AMATO 5 TOWN HALL ROAD ASHFORD CT 06278	
CT 063 0-01	
UPS GROUND TRACKING #: 12 V25 742 03 9087 1491	
BILLING: P/P	
Reference #1: CTHA820A X045-49.0A 11/2021*	*

1 OF 1				*
1 LBS	INFRASTRUCTURE PARTNERS 33 OWER 2 HENY CENTER HENY PA 15212	PA 152 9-42) 2 03 9447 3502	24 NV45-49.0A 11/2021*
ERIC BREUN 2016587728 10 INDUSTRIAL AVE MAHWAH NJ 07430	SHIP TO: EVEREST INFRASTR SUITE 703 NOVA TOWER 2 2 ALLEGHENY CEN ALLEGHENY P		UPS GROUND TRACKING #: 12 V25 742 03 9447 3502	BILLING: P/P Reference #1: CTHA820A xol 21.11.24

Your shipment 1ZV257420394473502

Estimated delivery

Friday, December 03 by 9:00 P.M.

Label Created
 On the Way
 Out for Delivery
 Delivery

Ship To ALLEGHENY, PA US

Hello, your package has been delivered. Delivery Date: Wednesday, 12/01/2021 Delivery Time: 10:54 AM Left At: FRONT DOOR

Experience UPS My Choice® Premium Today

Be in total control of how, when and where your packages are delivered.

Upgrade to Premium Now

Set Delivery Instructions

Manage Preferences

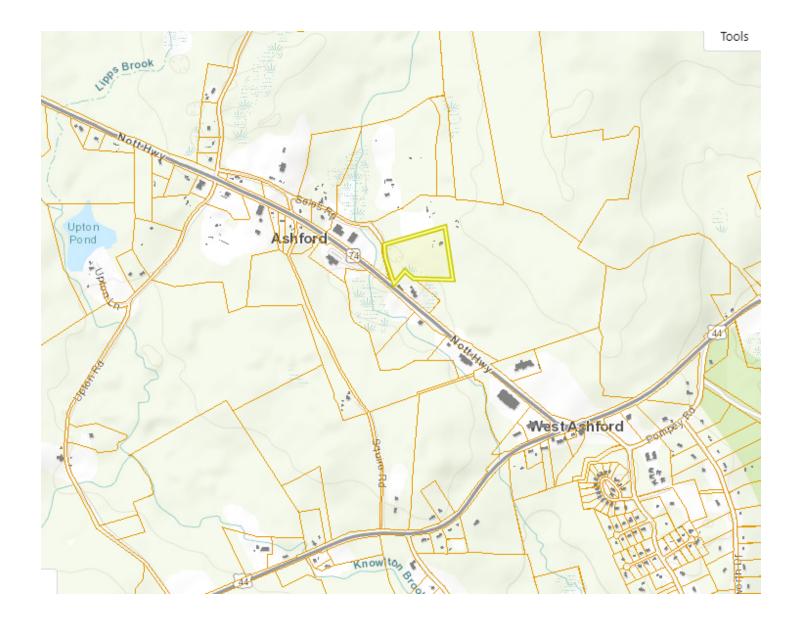
TRANSCEND WIRELESS

Tracking Number:1ZV257420396306742Ship To:RAYMOND AND KATHLEEN BAKER
20 SELES ROAD
ASHFORD, CT 06278
USNumber of Packages:1UPS Service:UPS GroundPackage Weight:1.0 LBSReference Number:CTHA820A

Hello, your package has been delivered.

Delivery Date: Wednesday, 12/01/2021 Delivery Time: 10:28 AM Left At: MET CUST MAN

TRANSCEND WIRELESS


Tracking Number:	1ZV257420391473482
Ship To:	CATHRYN SILVER-SMITH 5 TOWN HALL ROAD ASHFORD, CT 06278 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CTHA820A

Hello, your package has been delivered.

Delivery Date: Wednesday, 12/01/2021 Delivery Time: 10:28 AM Left At: MET CUST MAN

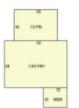
TRANSCEND WIRELESS

Tracking Number:	1ZV257420390871491
Ship To:	MICHAEL D'AMATO 5 TOWN HALL ROAD ASHFORD, CT 06278 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CTHA820A

Parcel Information

Location:	20 SELES RD	Property Use:	Residential	Primary Use:	Residential
Unique ID:	00016400	Map Block Lot:	34 B 8	Acres:	10.00
490 Acres:	9.00	Zone:	RA	Volume / Page:	0058/0245
Developers Map / Lot:		Census:	8301000		
Location:	20 SELES RD	Property Use:	Residential	Primary Use:	Residential
Unique ID:	00016400	Map Block Lot:	34 B 8	Acres:	10.00
490 Acres:	9.00	Zone:	RA	Volume / Page:	0058/0245
Developers Map / Lot:		Census:	8301000		

Value Information


Owner's Information

	Appraised Value	Assessed Value	Owner's Data
Land	65,200	32,070	BAKER RAYMOND C & KATHLEEN P
Buildings	111,000	77,700	20 SELES RD ASHFORD CT 06278
Detached Outbuildings	1,800	1,400	

Total	178,000	111,170

Building 1

Building Use:	Single Family	Style:	Cape	Living Area:	1,581
Stories:	1.50	Construction:	Wood Frame	Year Built:	1968
Total Rooms:	6	Bedrooms:	3	Full Baths:	1
Half Baths:	1	Fireplaces:	1	Heating:	Forced Hot Air
Fuel:	Oil	Cooling Percent:	0	Basement Area:	0
Basement Finished Area:	0	Basement Garages:	1	Roof Material:	Asphalt
Siding:	Clapboards/Vinyl Siding	Units:			

Special Features

Attached Components

Fireplace 1.5 Story	1	Туре:	Year Built:	Area:
Unfinished Basement	768	Wood Deck	1968	120

Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
Canopy	1970	15.00	12.00	180
Generator	2017	0.00	0.00	1

Owner History - Sales

Owner Name	Volume	Page	Sale Date	Deed Type	Sale Price
BAKER RAYMOND C & KATHLEEN P	0058	0245	07/15/1968		\$0

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square New Britain, Connecticut 06051 Phone: (860) 827-2935 Fax: (860) 827-2950

April 7, 1999

Peter van Wilgen SNET Mobility Inc. 500 Enterprise Drive Rocky Hill, CT 06067-3900

TS-SCLP-003-990317 - Springwich Cellular Limited Partnership request for an order to approve RE: tower sharing at an existing telecommunications facility located off 20 Seles Road in Ashford, Connecticut.

Dear Mr. van Wilgen:

At a public meeting held April 6,1999, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures.

This facility has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequency now used on this tower. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated March 17, 1999, and additional information provided on April 16, 1999. Please notify the Council when all work is complete.

Very truly yours,

truly yours, tur & Gelila for

Mortimer A. Gelston Chairman

MAG/RKE/ki

c: Honorable John M. Zulick, First Selectman, Town of Ashford

T-MOBILE A+L TEMPLATE (PROVIDED BY RFDS)

67E5998E_1xAIR+10P+1QP

T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS)

67D5A998E 6160

GENERAL NOTES

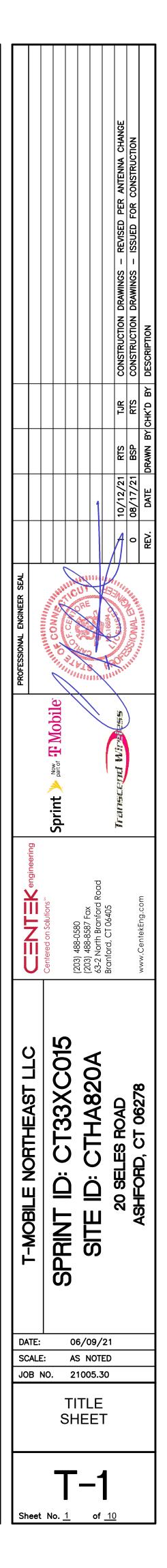
1.	ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
2.	CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
3.	CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
4.	CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
5.	CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
6.	CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
7.	LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
8.	THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
9.	DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.

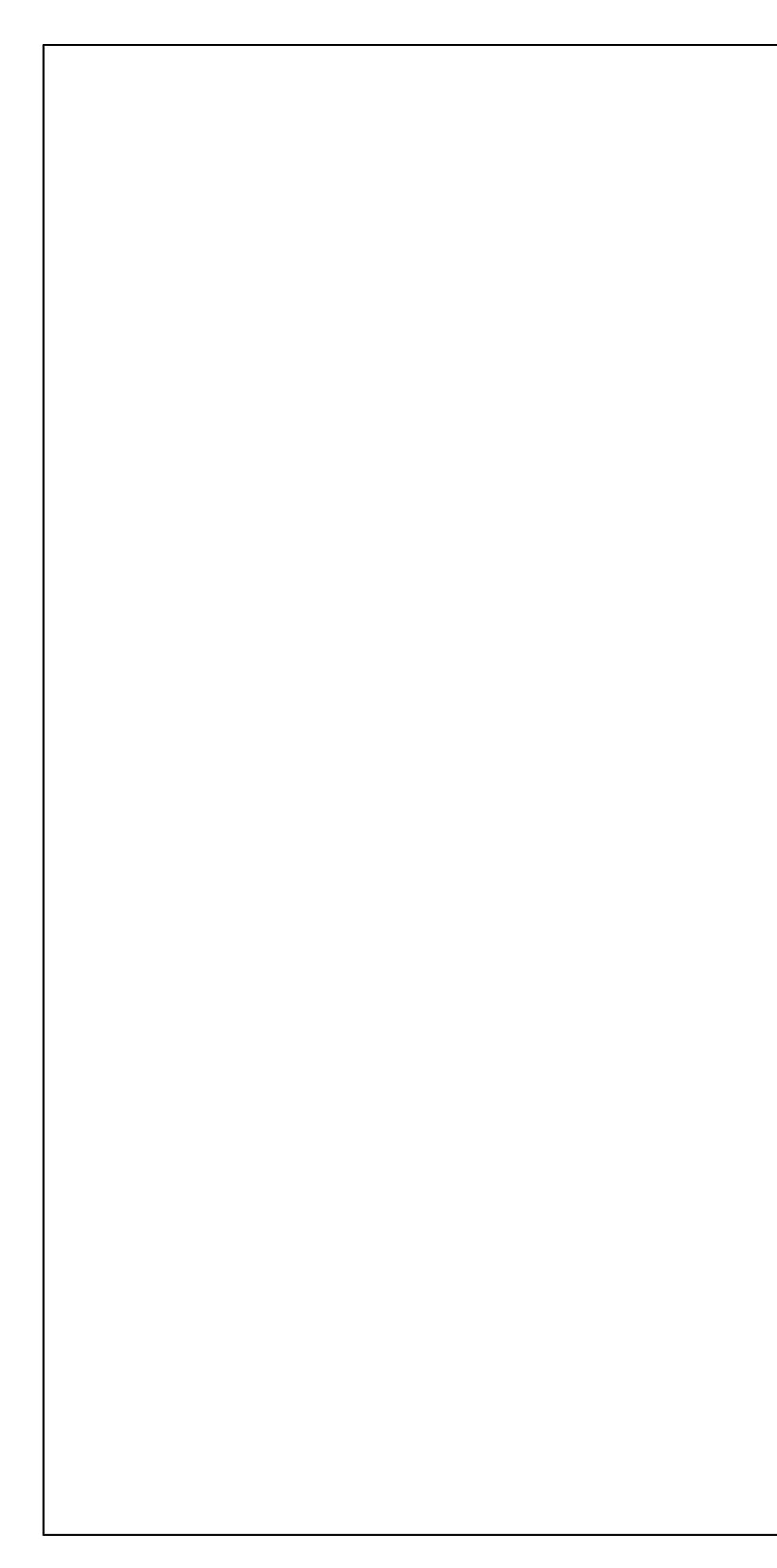
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

SITE DIRECTIONS **FROM:** 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 TO: 24 SELES ROAD ASHFORD, CT 06278 HEAD NORTH ON GRIFFIN ROAD S. TOWARD HARTMAN RD. 0.30 MI. 2. TAKE THE 2ND RIGHT ONTO DAY HILL RD. 3. TAKE THE 1ST RIGHT ONTO BLUE HILLS AVENUE EXT/CT-187. CONTINUE TO FOLLOW CT-187. 0.14 MI. 4. STAY STRAIGHT TO GO ONTO BLUE HILLS AVE/CT-187. 0.64 MI. 3.62 MI. 5. TURN LEFT ONTO PINE GROVE RD. 6. TURN RIGHT ONTO PACKARD ST. 0.29 MI. TURN LEFT ONTO COTTAGE GROVE RD/CT-218. CONTINUE TO FOLLOW CT-218 0.44 MI 0.75 MI MERGE ONTO I-291 E TOWARD SOUTH WINDSOR. 8 9. MERGE ONTO I-84 E VIA THE EXIT ON THE LEFT TOWARD BOSTON. 6.15 MI 15.35 MI. 10. TAKE THE CT-74 EXIT, EXIT 69, TOWARD WILLINGTON/US-44 0.32 MI 11. TURN RIGHT ONTO TOLLAND STAGE RD/CT-74. CONTINUE TO FOLLOW CT-74. 12. TURN LEFT ONTO SELES RD. 7.04 MI. 13. 24 SELES RD, ASHFORD, CT 06278-1324, 24 SELES RD, IS ON THE RIGHT. 0.11 MI. SITE COORDINATES: LATITUDE: 41°-51'-48.15" N COORDINATES AND GROUND ELEVATION ARE REFERENCED FROM GOOGLE EARTH LONGITUDE: 72°-10'-58.05" W GROUND ELEVATION: 550'± AMSL Perry Hill PROJECT LOCATION Warrenville n Snow Cem Philip Cem 0 VICINITY MAP

PROJECT SUMMARY

HE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:


- REMOVE ALL EXISTING SPRINT EQUIPMENT
- 2. EXISTING 100A CIRCUIT BREAKER TO BE REMOVED
- 3. INSTALL 150A/2P CIRCUIT BREAKER TO SERVE NEW EQUIPMENT
- 4. REMOVE ALL EXISTING COAX CABLES.
- 5. INSTALL (1) ENCLOSURE 6160 CABINET & (1) BATTERY B160 CABINET.
- 6. INSTALL (3) 6/24 4AWG HYBRID CABLES.
- 7. INSTALL (1) COMMSCOPE W-65A-R1 ANTENNA PER SECTOR, TOTAL OF (3).
- 8. INSTALL (1) RFS APXVAALL24_43-U-NA20 ANTENNA PER SECTOR TOTAL OF (3).
- 9. INSTALL (1) ERICSSON AIR6449 B41 ANTENNA PER SECTOR, TOTAL OF (3).
- 10. INSTALL (1) RADIO 4460 B25+B66 PER SECTOR, TOTAL OF (3).
- 11. INSTALL (1) RADIO 4480 B71+B85 PER SECTOR, TOTAL OF (3).


PROJECT INFORMATION

SPRINT ID:	CT33XC015
SITE ID:	CTHA820A
SITE ADDRESS:	20 SELES ROAD ASHFORD, CT 06278
APPLICANT:	T—MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002
CONTACT PERSON:	KYLE RICHERS TRANSCEND WIRELESS, LLC (908) 447–4716
ENGINEER OF RECORD:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD RD. BRANFORD, CT 06405
	CARLO F. CENTORE, PE (203) 488–0580 EXT. 122
PROJECT COORDINATES:	LATITUDE: 41°–51'–48.15" N LONGITUDE: 72°–10'–58.05" W GROUND ELEVATION: 550'± AMSL
	SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

SHEE	SHEET INDEX			
SHT. NO.	DESCRIPTION	REV.		
T-1	TITLE SHEET	1		
N-1	GENERAL NOTES AND SPECIFICATIONS	1		
C-1	SITE LOCATION PLAN	1		
C-2	COMPOUND PLAN AND ELEVATION	1		
C-3	EQUIPMENT PLANS	1		
C-4	ANTENNA PLANS AND ELEVATION	1		
C-5	TYPICAL EQUIPMENT DETAILS	1		
E-1	ELECTRICAL RISER DIAGRAM AND CONDUIT ROUTING	1		
E-2	TYPICAL ELECTRICAL DETAILS	1		
E-3	ELECTRICAL SPECIFICATIONS	1		

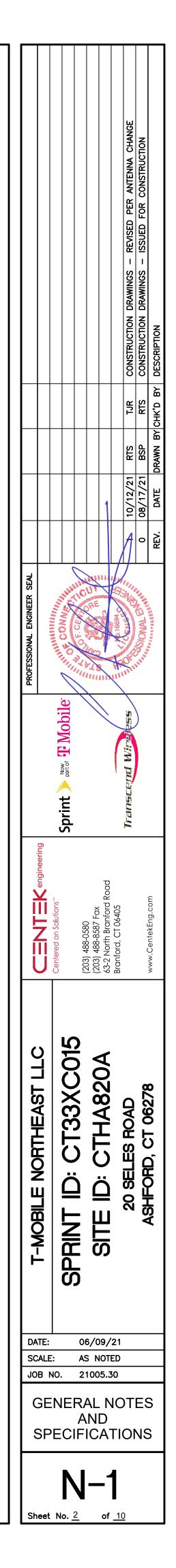
NORTH

NOTES AND SPECIFICATIONS

DESIGN BASIS:

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

- 1. DESIGN CRITERIA:
- RISK CATEGORY II (BASED ON IBC TABLE 1604.5)
- NOMINAL DESIGN SPEED (OTHER STRUCTURE): 126 MPH (Vasd) ٠ (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

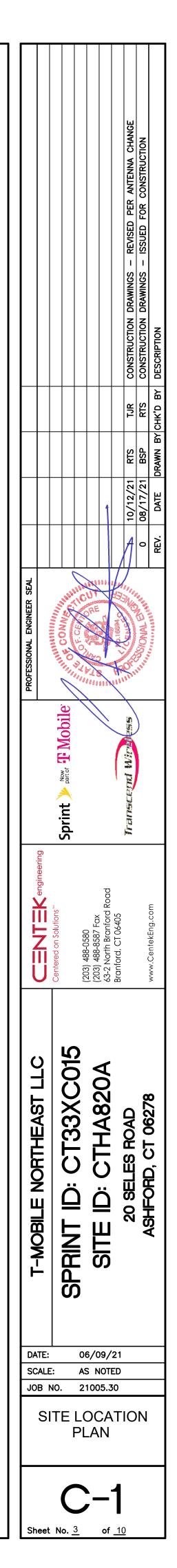

SITE NOTES

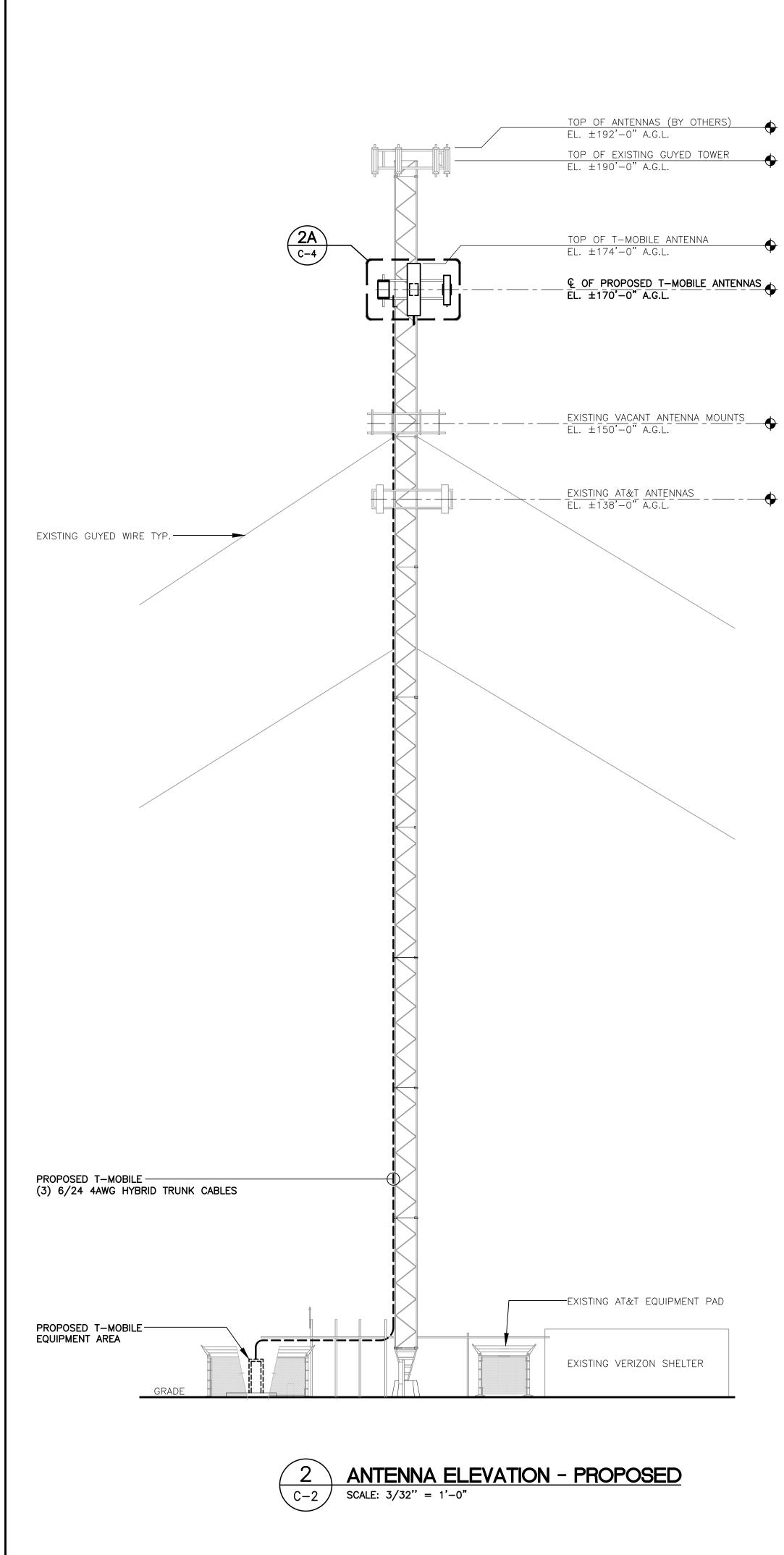
- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES. SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

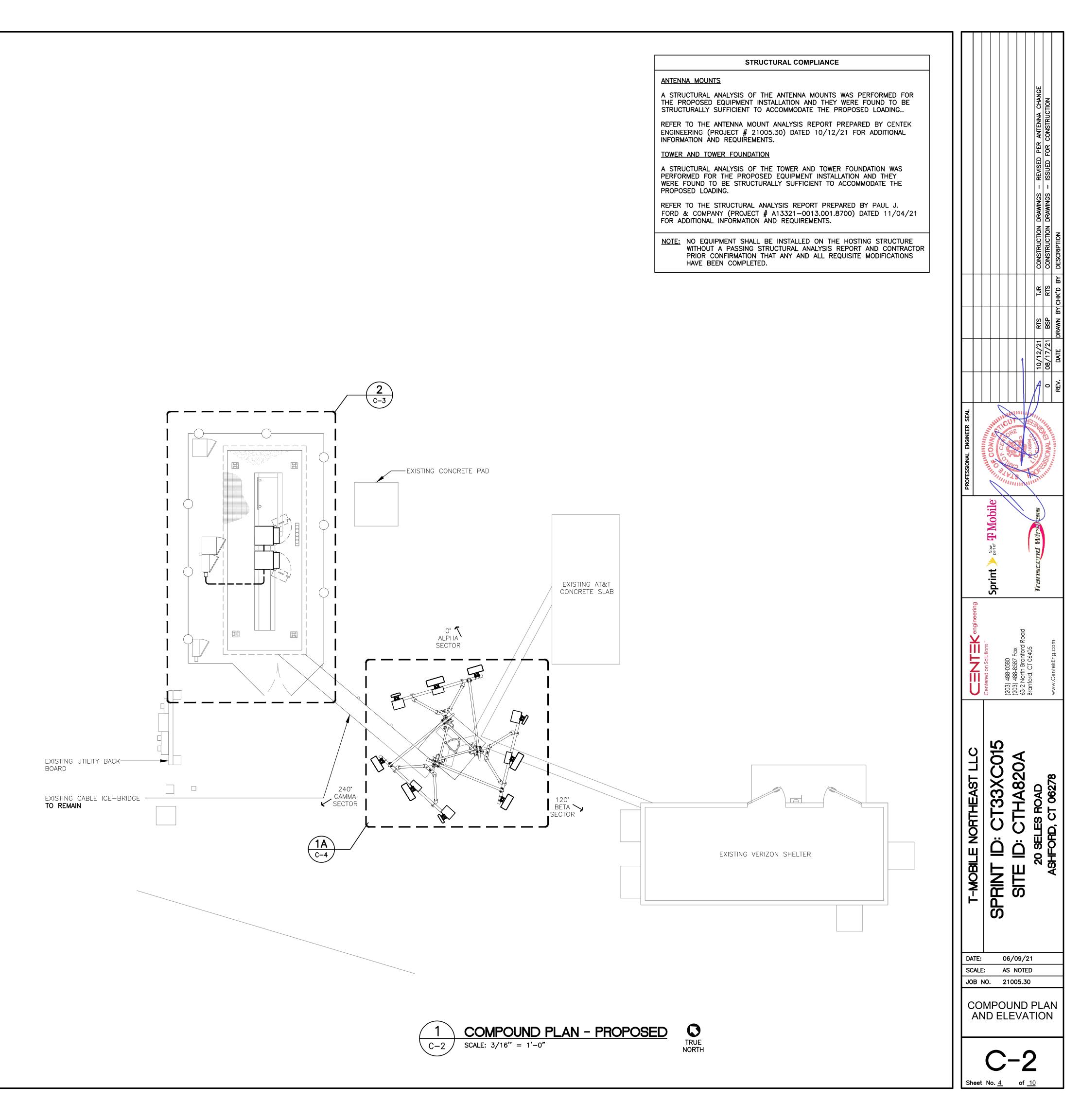
GENERAL NOTES

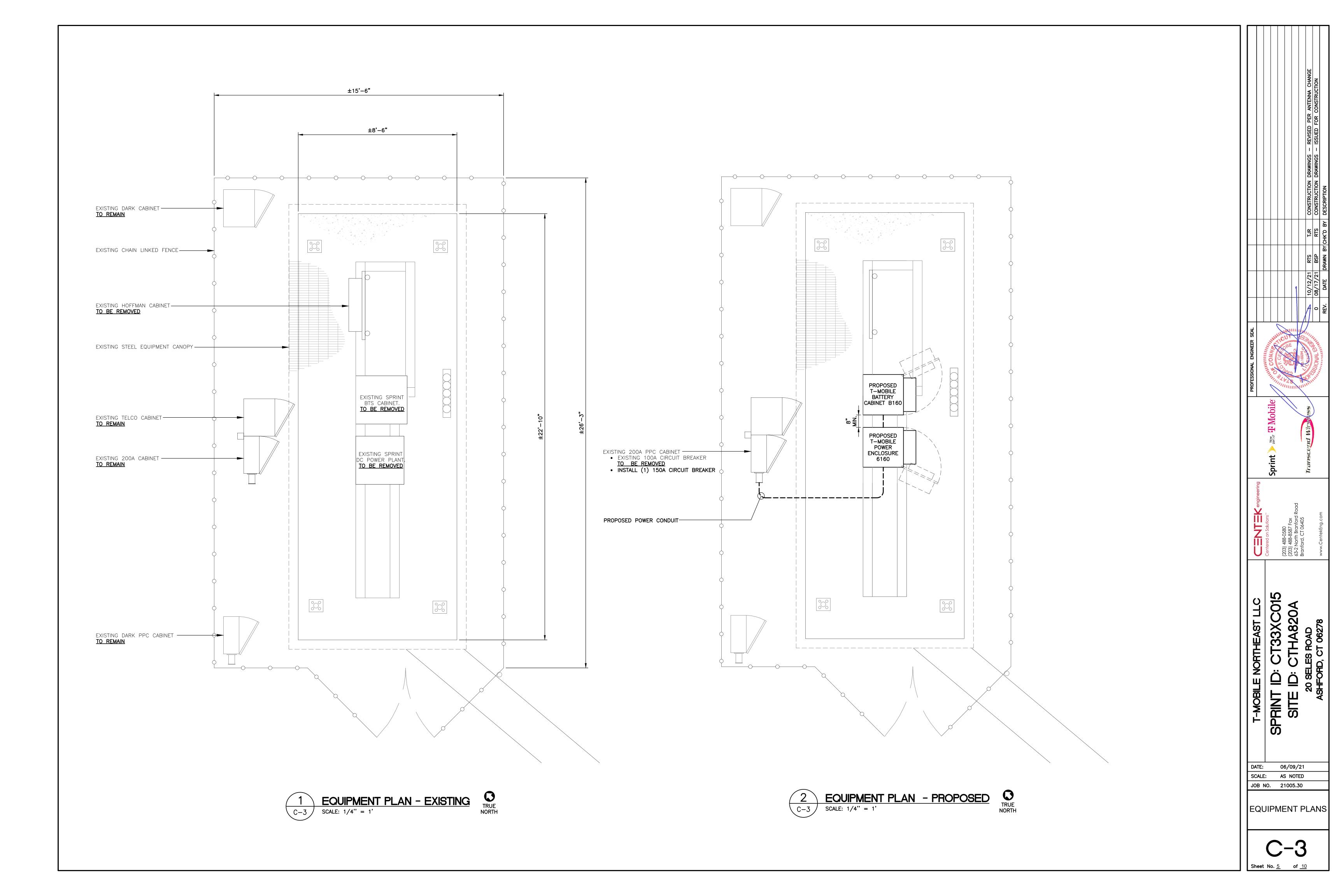
- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND IT'S COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING. BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES. LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 18. CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 19. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS.
- 20. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.

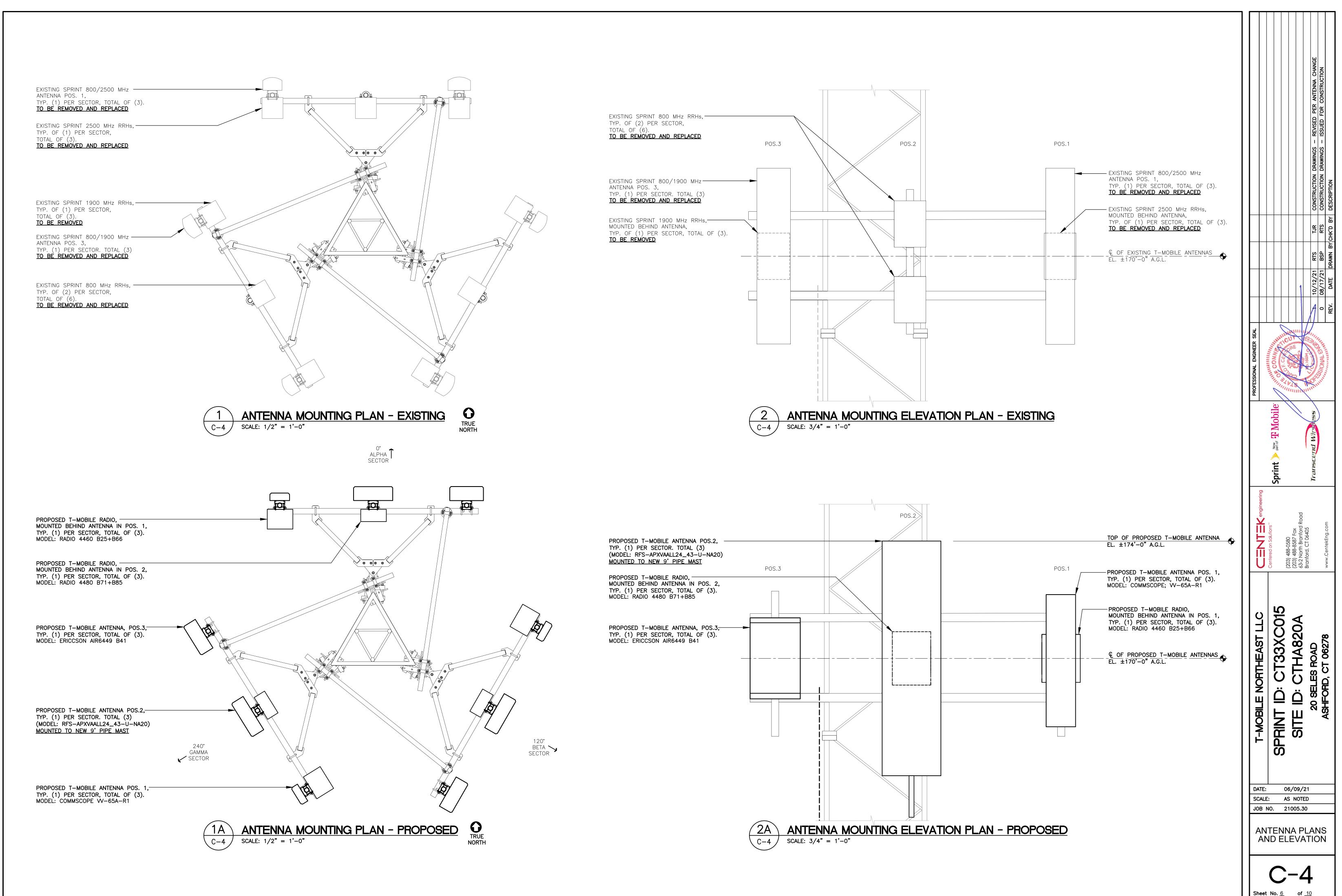
STRUCTURAL STEEL 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD) A. STRUCTURAL STEEL (W SHAPES) -- ASTM A992 (FY = 50 KSI) STRUCTURAL STEEL (OTHER SHAPES) -- ASTM A36 (FY = 36 KSI) B. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B, (FY = 46 KSI)STRUCTURAL HSS (ROUND SHAPES) --- ASTM A500 GRADE B, D (FY = 42 KSI)PIPE - - ASTM A53 (FY = 35 KSI)CONNECTION BOLTS---ASTM A325-N U-BOLTS---ASTM A36 ANCHOR RODS---ASTM F 1554 WELDING ELECTRODE---ASTM E 70XX 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN 3 ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE. 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE. 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS. 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780. 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS. 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE". 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW. 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES. 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS. 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES. 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED. 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION. 16. FABRICATE BEAMS WITH MILL CAMBER UP. 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN. 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK. 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY. 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

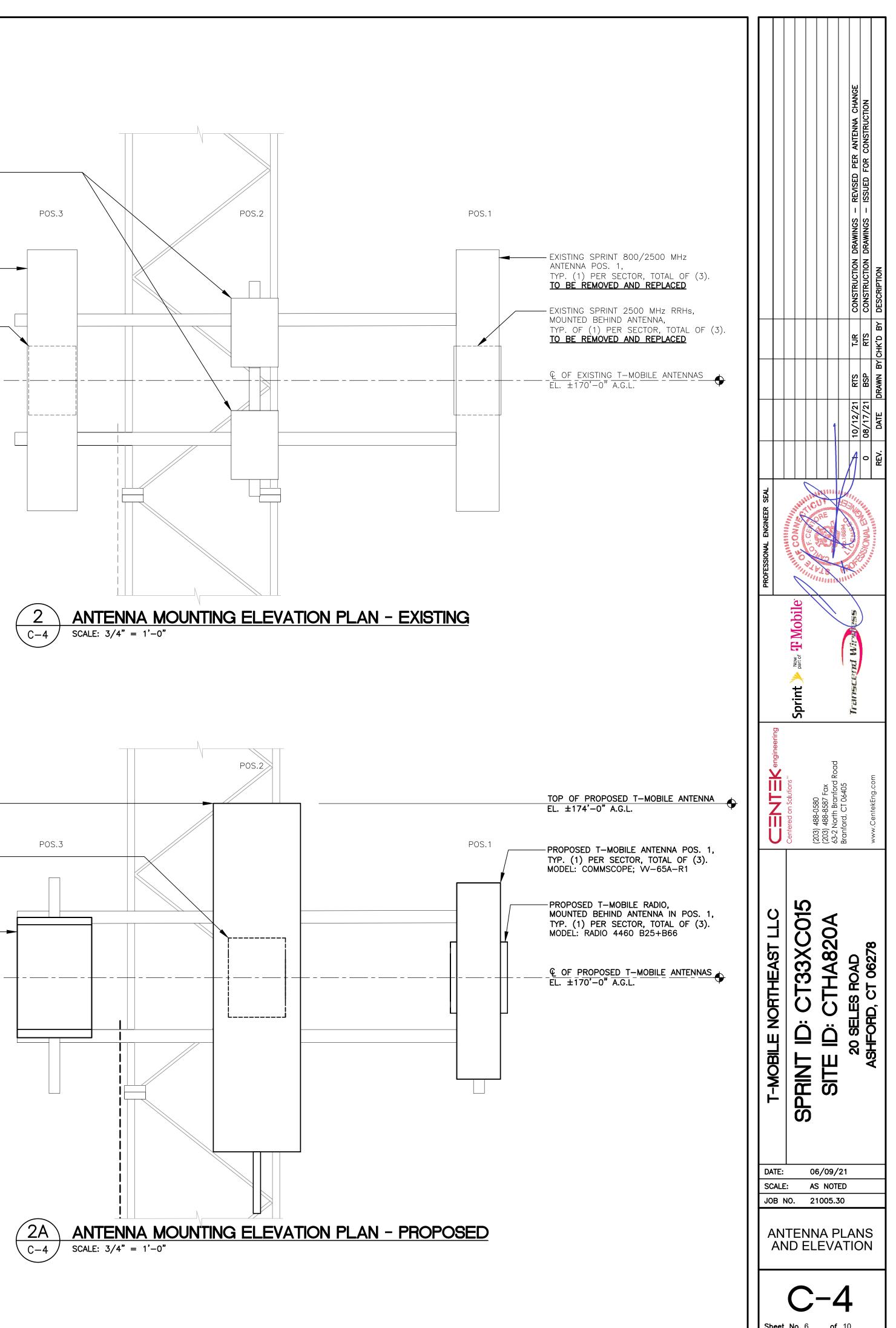


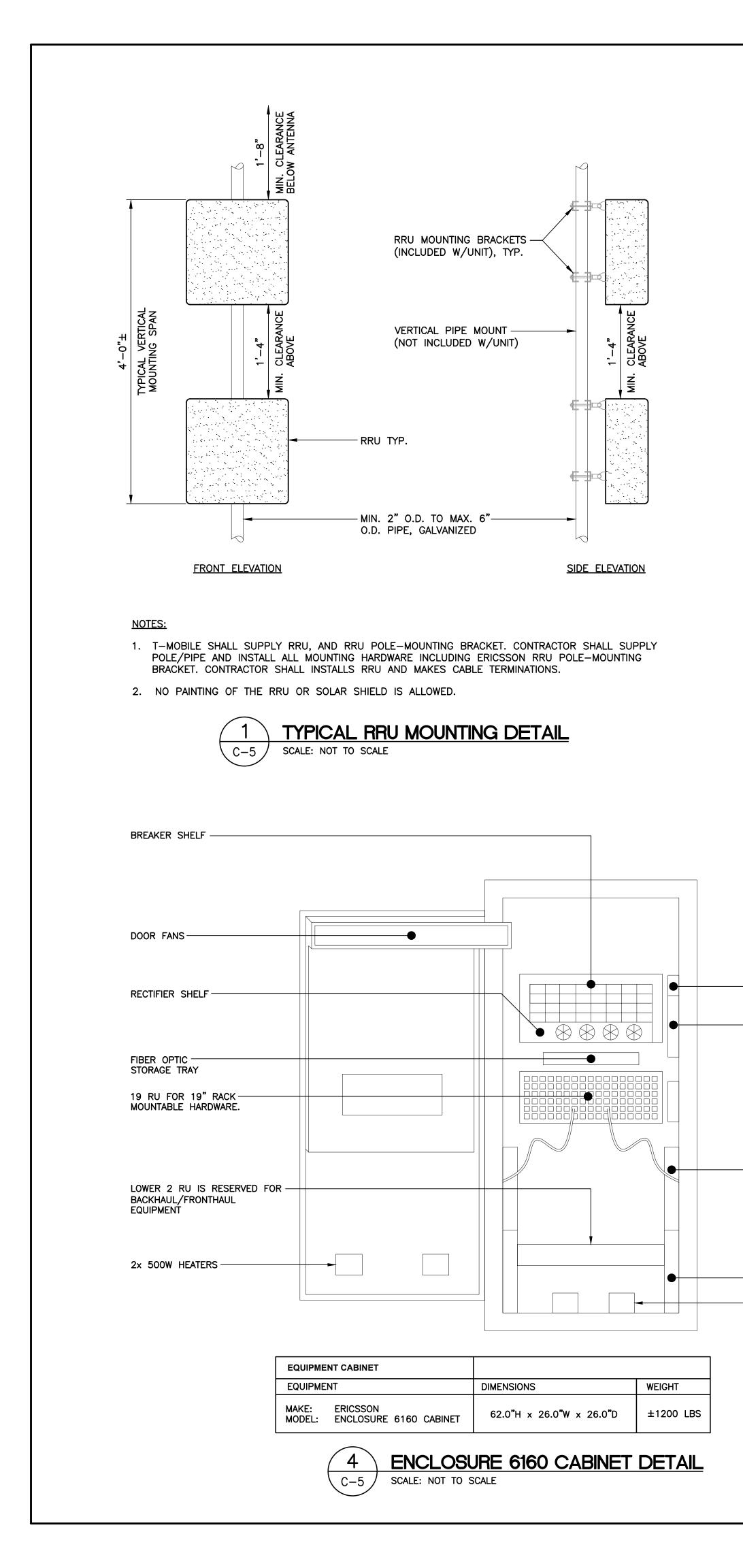

	ANTENNA SCHEDULE								
SECTOR	EXISTING/PROPOSED	ANTENNA	SIZE (INCHES) (L x W x D)	ANTENNA & AZI HEIGHT	MUTH	(E/P) RRU (QTY)	(E/P) TMA (QTY)	(QTY) PROPOSED COAX (LENGTH)	
A1	PROPOSED	COMMSCOPE VV-65A-R1	54.7 x 12.08 x 4.6	170'	0*	(P) RADIO 4460 B25+B66 (1)		(1) 6x24 HYBRID CABLE (±230')	
A2	PROPOSED	RFS (APXVAALL24_43-U-NA20)	95.9 x 24 x 8.5	170'	0.	(P) RADIO 4480 B71+B85 (1)			
A3	PROPOSED	ERICSSON (AIR6449 B41)	33.1 x 20.6 x 8.6	170'	0•				
B1	PROPOSED	COMMSCOPE VV-65A-R1	54.7 x 12.08 x 4.6	170' 1	20*	(P) RADIO 4460 B25+B66 (1)		(1) 6x24 HYBRID CABLE (±230')	
B2	PROPOSED	RFS (APXVAALL24_43-U-NA20)	95.9 x 24 x 8.5	170' 1	20*	(P) RADIO 4480 B71+B85 (1)			
B3	PROPOSED	ERICSSON (AIR6449 B41)	33.1 x 20.6 x 8.6	170' 1	20*				
C1	PROPOSED	COMMSCOPE VV-65A-R1	54.7 x 12.08 x 4.6	170' 2	240*	(P) RADIO 4460 B25+B66 (1)		(1) 6x24 HYBRID CABLE (±230')	
C2	PROPOSED	RFS (APXVAALL24_43-U-NA20)	95.9 x 24 x 8.5	170' 2	240°	(P) RADIO 4480 B71+B85 (1)			
C3	PROPOSED	ERICSSON (AIR6449 B41)	33.1 x 20.6 x 8.6	170' 2	240°				




NOTE: ALL COAX LENGTHS TO BE MEASURED AND VERIFIED IN FIELD BEFORE ORDERING







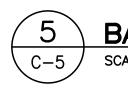
 $-\Phi$

APXVAALL24_43-U-NA20

<u>VV-65A-R1</u>

	ALPHA/BETA/GAMMA ANTENNA					
	EQUIPMENT	DIMENSIONS	WEIGHT			
MAKE: MODEL:	ERICSSON AIR6449 B41	33.1"L x 20.6"W x 8.6"D	±104 LBS.			
MAKE: MODEL:	RFS APXVAALL24_43-U-NA20	95.9"L x 24.0"W x 8.5"D	±150 LBS.			
MAKE: MODEL:	COMMSCOPE VV-65A-R1	54.7"L x 12.08"W x 4.6"D	±23 LBS.			
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH T-MOBILE CONSTRUCTION MANAGER PRIOR TO ORDERING.						

RRU (REMOTE RADIO UNIT)					
	EQUIPMENT	DIMENSIONS	WEIGHT	CLEARANCES	
MAKE: MODEL:	ERICSSON RADIO 4460 B25+B66	19.6"L x 15.7"W x 12.1"D	±109 LBS.	BEHIND ANT.: 8" MIN. BELOW ANT.: 20" MIN. BELOW RRU: 16" MIN.	
MAKE: MODEL:	ERICSSON RADIO 4480 B71+B85	21.8"L x 15.7"W x 7.5"D	±84 LBS.	BEHIND ANT.: 8" MIN. BELOW ANT.: 20" MIN. BELOW RRU: 16" MIN.	
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH T-MOBILE CONSTRUCTION MANAGER PRIOR TO ORDERING.					



AIR6449 B41

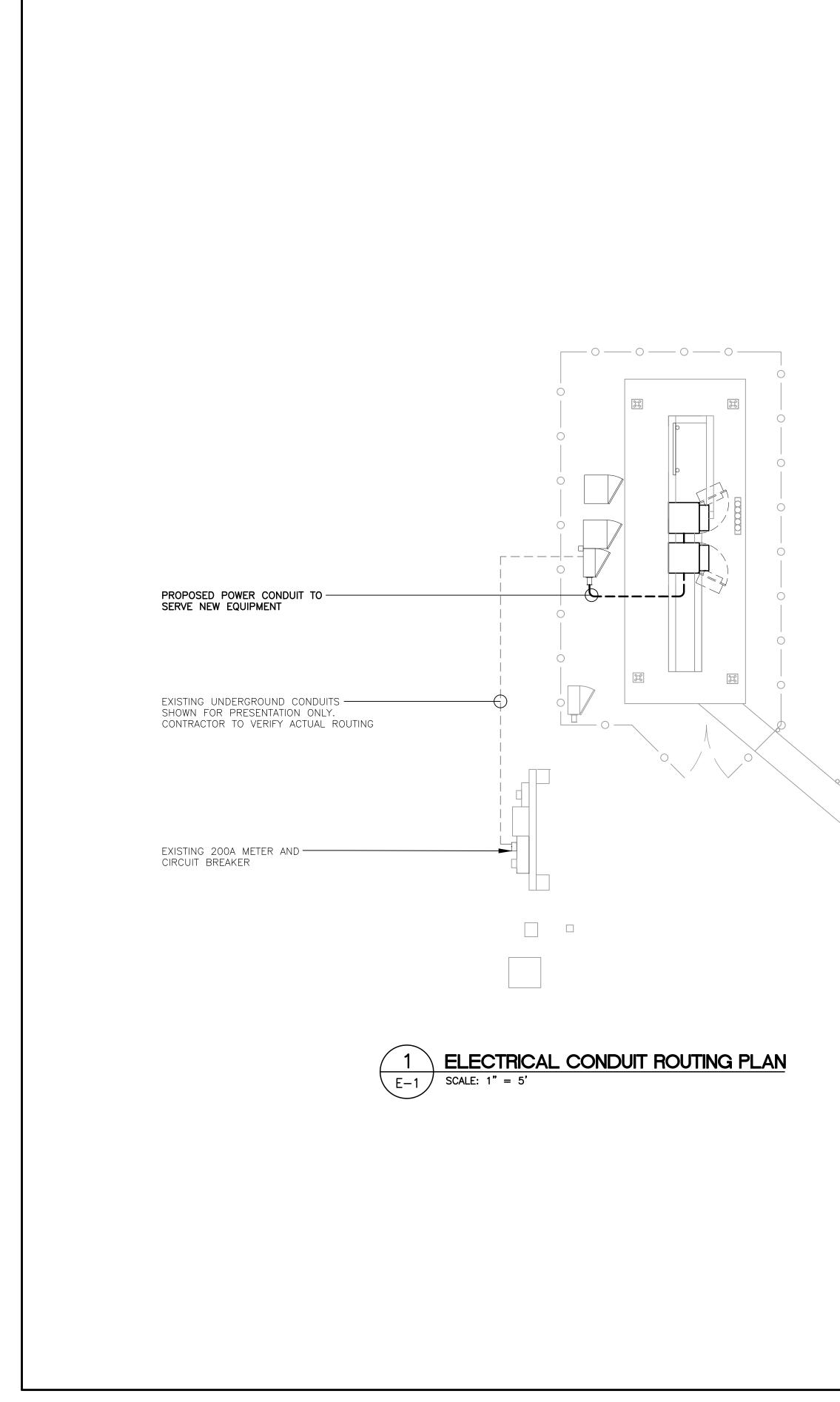
PROPOSED ANTENNA DETAIL SCALE: NOT TO SCALE

DOOR FAN		
ALARM BLOCK & DC POWER		
BREAKER PANEL		
BATTERY VIBRATION MOUNTS	•	
SCU/SAU		
GPS 02/03 AND ALARM BLOCK MOUNTING ON DIN RAIL		
3x BATTERY SHELVES, UP TO 210 AHR, w/ PREINSTALLED HEATERS		
CABLE MANAGEMENT ROUTES, 4x ON OUTSIDE OF 19" RACKS		
BATTERY BRACKETS	• • • • • • • • • • • • • • • • • • •	
GPS SPLITTER MOUNTING		
SPD MOUNTING DIN RAILS		

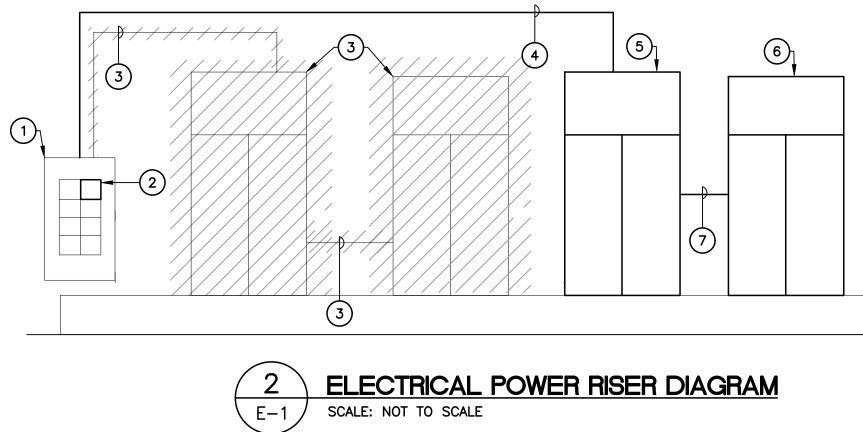
EQUIPMENT CABINET		
EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: ERICSSON MODEL: BATTERY B160 CABINET	62.0"H x 26.0"W x 26.0"D	±1883 LBS

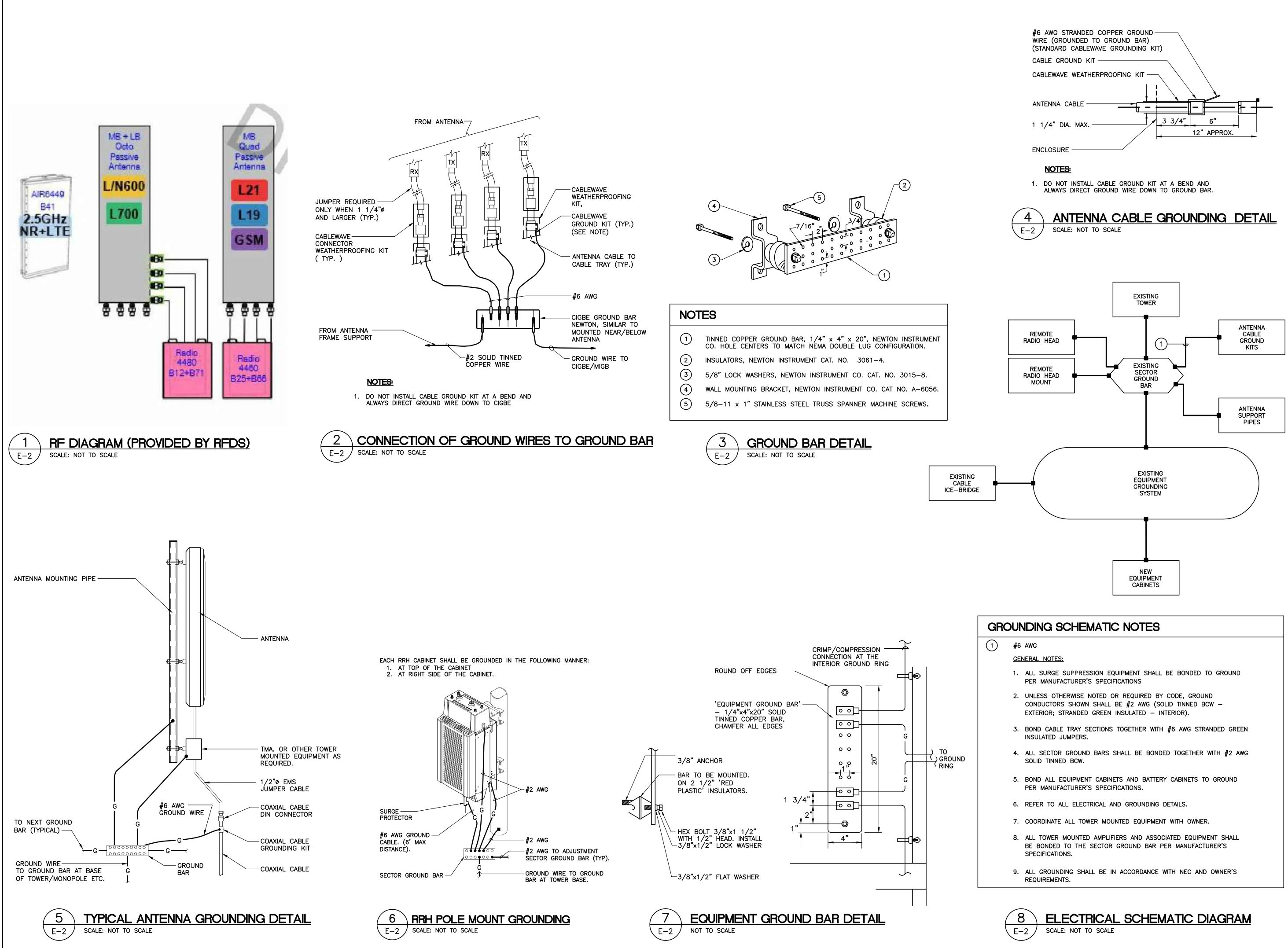
BATTERY BIGO CABINET DETAIL SCALE: NOT TO SCALE

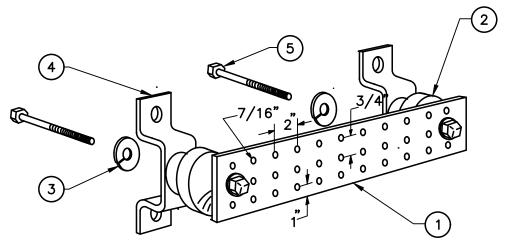


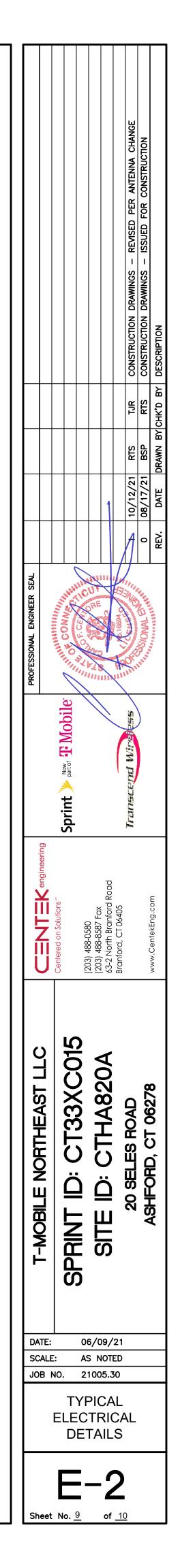

<u>RADIO 4460 B25+B66</u>

<u>RADIO 4480 B71+B85</u>


PROPOSED RRU DETAIL SCALE: NOT TO SCALE


RISER DIAGRAM NOTES


- 1) EXISTING 200A, PPC CABINET TO REMAIN.
- 2 NEW 150A/2P CIRCUIT BREAKER TO SERVE NEW EQUIPMENT CABINET.
- 3 EXISTING CABINETS AND ASSOCIATED CONDUITS AND CONDUCTORS TO BE REMOVED.
- (3) 1/0 AWG, (1) #6 AWG GROUND, 1-1/2" CONDUIT.
- 5 NEW T-MOBILE EQUIPMENT CABINET
- 6 NEW T-MOBILE BATTERY CABINET
- DC CONDUIT AND CONDUCTORS FOR BATTERY CABINET CONNECTION PER MANUFACTURERS SPECIFICATIONS.



PROFESSIONAL ENGINEER SEAL		OF CONVENTION	OF. CENDIN				10/12/21 RTS 1JR CONSTRUCTION DRAWINGS - REVISED PER ANTENNA CHANGE	WONALE 0 08/17/21 BSP RTS CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
		Centered on Solutions ² Sprint Jy Mobile 7	(203) 488-0580	[203] 488-8587 Fax	63-2 North Branford Road	Branford, CT 06405	Transcend Wirzhess		www.CentekEng.com
							20 SELES ROAD		
sc Jo E	D		AS 21 RI(BR	00 CA	от 5.3 \L	ED 50 R Al	NE)	

ELECTRICAL SPECIFICATIONS

SECTION 16010

1.1. SCOPE OF WORK

- A. WORK SHALL INCLUDE ALL LABOR, EQUIPMENT AND SERVICES REQUIRED TO COMPLETE (MAKE READY FOR OPERATION) ALL THE ELECTRICAL WORK INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING:
- 1. INSTALL 150A/2P CIRCUIT BREAKER TO SERVE NEW EQUIPMENT
- 2. EXISTING 100A CIRCUIT BREAKER TO BE REMOVED
- 3. FEEDERS AND BRANCH CIRCUIT WIRING TO PANELS AND EQUIPMENTS AS INDICATED OR NOTED ON PLANS.
- 4. FIELD MEASURE EXISTING ELECTRICAL SERVICES TO CONFIRM AVAILABLE EXISTING POWER.

1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL. WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
- 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

SECTION 16111

1.01. CONDUIT

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION. INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

CONDUIT SCHEDULE SECTION 16111						
CONDUIT TYPE	CONDUIT TYPE NEC REFERENCE APPLICATION					
ЕМТ	ARTICLE 358	INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS	N/A			
RMC, RIGID GALV. STEEL	ARTICLE 344, 300.5, 300.50	ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.	6 INCHES			
PVC, SCHEDULE 40	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES			
PVC, SCHEDULE 80	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES			
LIQUID TIGHT FLEX. METAL	ARTICLE 350	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A			
FLEX. METAL	FLEX. METAL ARTICLE 348 SHORT LENGTHS (MAX. 3FT.) WIRING TO N/A					
¹ PHYSICAL DAMAGE IS SUBJECT TO THE AUTHORITY HAVING JURISDICTION.						
² UNDERGROUND CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24".						
³ WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2" OF CONCRETE EXTENDING DOWN TO ROCK.						

SECTION 16123

- 1.01. CONDUCTORS
- A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:
 - 120/208/240V 277/480V <u>COLOR</u> BLACK RFD BLUF CONTINUOUS WHITE CONTINUOUS GREEN
 - COLOR BROWN ORANGE YELLOW GREY GREEN WITH YELLOW STRIPE
- B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

SECTION 16130

1.01. BOXES

- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

SECTION 16140

- 1.01. WIRING DEVICES
- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
- 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
- 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE
- 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
- 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

SECTION 16170

1.01. DISCONNECT SWITCHES

A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

SECTION 16190

- 1.01. SEISMIC RESTRAINT
- A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

SECTION 16195

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT
- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT.
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

SECTION 16450 1.01. GROUNDING

- GROUNDING SOURCES.
- C. GROUNDING OF PANELBOARDS:
- - RACEWAY(S).
- E. GROUNDING SYSTEM:
- SECTION 16960).
- 1. GROUND BARS

- SPECIFICATIONS.
- **SECTION 16477**
- 1.01. FUSES

SECTION 16960

SECTION 16961

- 1.01. TESTS BY CONTRACTOR

A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT

B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.

1. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).

D. EQUIPMENT GROUNDING CONDUCTOR:

1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.

3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME

CONTRACTOR SHALL PROVIDE A GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO

PROVIDE THE GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED).

3. ANTENNA GROUND CONNECTIONS AND PLATES.

F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.

G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S

A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER

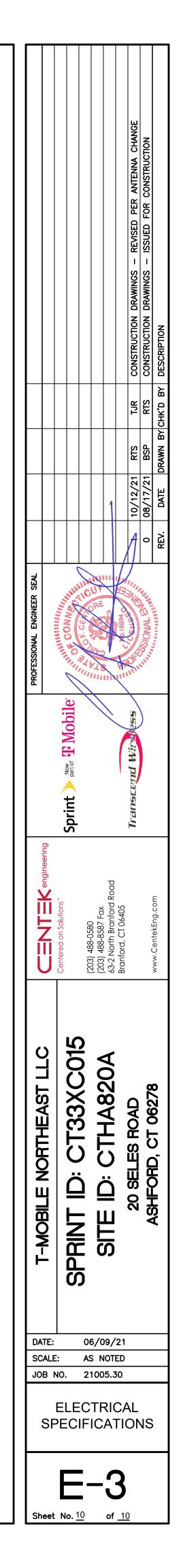
THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:

1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.

2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.

3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.

B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.


C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.

D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS **REQUIRING WITNESSING.**

A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.

B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE SO CONNECTED TO THE PANELBOARDS SUCH THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.

C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.

Report Date:	November 4, 2021
Client:	Everest Infrastructure Partners Two Allegheny Center Pittsburgh, PA 15212 Attn: Thomas Rigg (603) 498-7462 tom.rigg@everestinfrastructure.com
Structure: Site Name: Site Reference #: Site Address: City, County, State: Latitude, Longitude:	Existing 190-ft Guyed Tower Ashford, CT 702506 20 Seles Road Ashford, Litchfield County, CT 41.5148°, -72.1057°

PJF Project: A13321-0013.002.8300

Paul J. Ford and Company is pleased to submit this "**Structural Opinion Letter**" to determine the structural integrity of the aforementioned tower.

The purpose of this opinion letter is to determine the suitability of the tower structure to support the proposed equipment configuration listed in Table 1.

Based on a comparison of the previous analysis loads (Previous Structural Analysis: PJF# 13321-0013.001.8700 dated July 28, 2021), with the addition of the proposed equipment, we have determined that the tower structure and foundation are **SUFFICIENT**. The addition of the proposed equipment configuration listed in Table 1 is acceptable.

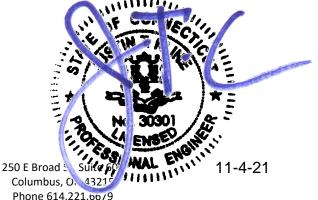

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)							
		3	commscope	VV-65A-R1_TMO w/ Mount Pipe									
170.0	170.0	170.0							3	ericsson	AIR6449 B41 w/ Mount Pipe		
			3	ericsson	RADIO 4460 B2/B25 B66_TMO	3	1 5/8						
			170.0	170.0	170.0	170.0	170.0	170.0	3	ericsson	RADIO 4480 B71_TMO	0	10/0
		3	rfs celwave	APXVAALL24_43-U-NA20 w/ Mount Pipe									

Table 1 - Proposed Antenna and Cable Information

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Everest Infrastructure Partners. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

Christina Hedges, PE Project Manager chedges@pauljford.com

www.PaulJFord.com

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- 1) Paul J. Ford and Company has not made a field inspection to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these drawings, we should be contacted immediately to evaluate the significance of the deviation.
- 2) No allowance was made for any damaged, missing, or rusted members. The analysis of this tower assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the tower members have the same load carrying capacity as the day the tower was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing tower. The structural analysis by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.
- 4) This tower has been analyzed according to the minimum design wind loads recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-G. If the owner or local or state agencies require a higher design wind load, Paul J. Ford and Company should be made aware of this requirement.
- 5) The enclosed sketches are a schematic representation of the tower that we have analyzed. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions and for the proper fit and clearance in the field.
- 6) Miscellaneous items such as antenna mounts etc. have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Report Date:	July 28, 2021
Client:	Everest Infrastructure Partners Two Allegheny Center Pittsburgh, PA 15212 Attn: Thomas Rigg (603) 498-7462 tom.rigg@everestinfrastructure.com
Structure: Site Name: Site Reference #: Site Address: City, County, State: Latitude, Longitude:	Existing 190-ft Guyed Tower Ashford, CT 702506 20 Seles Road Ashford, Litchfield County, CT 41.5148°, -72.1057°

PJF Project: A13321-0013.001.8700

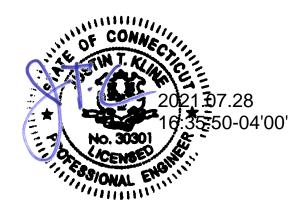
Paul J. Ford and Company is pleased to submit this "**Structural Analysis Report**" to determine the tower stress level.

Analysis Criteria:

This analysis utilizes an ultimate 3-second gust wind speed of 126 mph (converted to an equivalent 98 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222 G) as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Proposed Appurtenance Loads:

The structure was analyzed with the addition of the proposed appurtenance loads shown in Table 1 combined with the existing and reserved loads shown in Table 2 of this report.


Summary of Analysis Results:

Existing Structure:	Pass – 104.6%
Existing Foundation:	Pass – 102.1%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Everest Infrastructure Partners. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

Project Manager chedges@pauljford.com

250 E Broad St, Suite 600 Columbus, OH 43215 Phone 614.221.6679

www.PaulJFord.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 190 ft Guyed tower designed by Nudd in June of 1998.

2) ANALYSIS CRITERIA

TIA-222 Revision: Risk Category:	TIA-222-G II
Wind Speed:	97.6 mph
Exposure Category:	С
Topographic Factor:	1
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	ericsson	AIR6449 B41 w/ Mount Pipe		
		3	ericsson	RADIO 4460 B2/B25 B66_TMO		
		3	ericsson	RADIO 4480 B71_TMO		
170.0	170.0	3	rfs celwave	APX16DWV-16DWVS-E-A20 w/ Mount Pipe	3	1 5/8
		3	rfs celwave	APXVAALL24_43-U-NA20 w/ Mount Pipe		

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	alcatel lucent	B13 RRH 4X30			
		3	alcatel lucent	B5 RRH 4T4R 160W			
		3	alcatel lucent	B66A RRH4X45			
		4	antel	LPA-80063/4CF w/ Mount Pipe		4 5/0	
190.0	190.0	2	antel	LPA-80080/4CF w/ Mount Pipe	6 2	1 5/8 1 5/8 fiber	1
		6	commscope	JAHH-65B-R3B w/ Mount Pipe	2	1 0/0 1001	
		2	rfs celwave	DB-C1-12C-24AB-0Z			
		1	tower mounts	Sector Mount [SM 802-3]			
		1	tower mounts	Side Arm Mount [SO 601-3]			
178.0	178.0	1	tower mounts	Sector Mount [SM 803-3]			1
		6	alcatel lucent	RRH2X50-800			
		3	alcatel lucent	RRH4x45-AWS			
		3	alcatel lucent	TD-RRH8x20-25	4	1 1/4	2
170.0	170.0	3	commscope	DT465B-2XR w/ Mount Pipe	-	1 1/4	2
		3	rfs celwave	APXV9ERR18-C-A20 w/ Mount Pipe			
		1	tower mounts	Sector Mount [SM 803-3]			1
150.0	150.0	1	tower mounts	Sector Mount [SM 803-3]			1

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		6	ericsson	RRUS 11			
		6	generic	Dixplexor			
		6	generic	ТМА			
138.0	138.0	3	kmw communications	AM-X-CD-17-65-00T-RET w/ Mount Pipe	12 2	1 5/8 3/4	1
		6	powerwave technologies	7770 w/ Mount Pipe	1	3/8	
		1	raycap	DC6-48-60-18-8F	-		
		1	tower mounts	Sector Mount [SM 404-3]			

Notes:

1) Existing Equipment

2) Equipment To Be Removed

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference
Original Tower and Foundation Drawings	Nudd, 6/19/98	98-6111-1
Extension Design	Nudd, 7/1/02	02-9109-1
Geotechnical Report	TEP, 9/22/09	090004.13
Structural Analysis/Past Loading	Nudd, 7/8/18	118-23068

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	190 - 180	Leg	P2.875"x0.203" (2.5 STD)	1	-15.12	73.86	20.5	Pass
T2	180 - 160	Leg	P2.875"x0.203" (2.5 STD)	34	-38.13	73.73	51.7	Pass
Т3	160 - 140	Leg	P2.875"x0.203" (2.5 STD)	94	-41.51	73.73	56.3	Pass
T4	140 - 120	Leg	P2.875"x0.203" (2.5 STD)	156	-51.76	73.73	70.2	Pass
T5	120 - 100	Leg	P2.875"x0.203" (2.5 STD)	216	-63.08	73.73	85.6	Pass
Т6	100 - 80	Leg	P2.875"x0.203" (2.5 STD)	276	-62.18	73.73	84.3	Pass

Table 4 - Section Capacity (Summary)

Page 5

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T7	80 - 60	Leg	P2.875"x0.203" (2.5 STD)	335	-64.13	73.73	87.0	Pass
Т8	60 - 40	Leg	P2.875"x0.203" (2.5 STD)	395	-73.34	73.73	99.5	Pass
Т9	40 - 20	Leg	P2.875"x0.203" (2.5 STD)	455	-77.11	73.73	104.6	Okay
T10	20 - 0	Leg	P2.875"x0.203" (2.5 STD)	515	-76.92	73.73	104.3	Okay
T1	190 - 180	Diagonal	5/8" solid	32	0.71	9.94	7.1	Pass
T2	180 - 160	Diagonal	5/8" solid	56	7.07	9.94	71.2	Pass
Т3	160 - 140	Diagonal	5/8" solid	142	4.02	9.94	40.4	Pass
T4	140 - 120	Diagonal	5/8" solid	166	5.35	9.94	53.9	Pass
T5	120 - 100	Diagonal	5/8" solid	261	4.65	9.94	46.7	Pass
Т6	100 - 80	Diagonal	5/8" solid	331	3.51	9.94	35.3	Pass
T7	80 - 60	Diagonal	5/8" solid	347	2.38	9.94	23.9	Pass
Т8	60 - 40	Diagonal	5/8" solid	441	3.52	9.94	35.4	Pass
Т9	40 - 20	Diagonal	5/8" solid	510	1.76	9.94	17.7	Pass
T10	20 - 0	Diagonal	5/8" solid	525	1.90	9.94	19.1	Pass
T1	190 - 180	Horizontal	L 1.5 x 1.5 x 3/16	26	-0.34	7.19	4.8	Pass
T2	180 - 160	Horizontal	L 1.5 x 1.5 x 3/16	51	-5.25	7.19	73.0	Pass
Т3	160 - 140	Horizontal	L 1.5 x 1.5 x 3/16	146	-2.90	7.19	40.3	Pass
T4	140 - 120	Horizontal	L 1.5 x 1.5 x 3/16	170	-3.60	7.19	50.1	Pass
T5	120 - 100	Horizontal	L 1.5 x 1.5 x 3/16	257	-3.38	7.19	47.1	Pass
T6	100 - 80	Horizontal	L 1.5 x 1.5 x 3/16	326	-2.33	7.19	32.5	Pass
T7	80 - 60	Horizontal	L 1.5 x 1.5 x 3/16	351	-1.66	7.19	23.1	Pass
Т8	60 - 40	Horizontal	L 1.5 x 1.5 x 3/16	446	-2.44	7.19	34.0	Pass
Т9	40 - 20	Horizontal	L 1.5 x 1.5 x 3/16	506	-1.11	7.19	15.4	Pass
T10	20 - 0	Horizontal	L 1.5 x 1.5 x 3/16	530	-1.35	7.19	18.8	Pass
T1	190 - 180	Top Girt	L 1.5 x 1.5 x 3/16	6	4.93	17.09	28.8	Pass
T2	180 - 160	Top Girt	L 1.5 x 1.5 x 3/16	39	-0.50	7.19	7.0	Pass
Т3	160 - 140	Top Girt	L 1.5 x 1.5 x 3/16	97	-2.20	7.19	30.5	Pass
T4	140 - 120	Top Girt	L 1.5 x 1.5 x 3/16	159	-0.58	7.19	8.1	Pass
T5	120 - 100	Top Girt	L 1.5 x 1.5 x 3/16	217	-2.05	7.19	28.5	Pass
T6	100 - 80	Top Girt	L 1.5 x 1.5 x 3/16	278	-1.34	7.19	18.6	Pass
T7	80 - 60	Top Girt	L 1.5 x 1.5 x 3/16	339	-0.52	7.19	7.2	Pass
Т8	60 - 40	Top Girt	L 1.5 x 1.5 x 3/16	397	3.98	17.09	23.3	Pass
Т9	40 - 20	Top Girt	L 1.5 x 1.5 x 3/16	458	-0.72	7.19	10.0	Pass
T10	20 - 0	Top Girt	L 1.5 x 1.5 x 3/16	519	-0.51	7.19	7.0	Pass
T1	190 - 180	Bottom Girt	L 1.5 x 1.5 x 3/16	9	-0.32	7.19	4.4	Pass
T2	180 - 160	Bottom Girt	L 1.5 x 1.5 x 3/16	40	-0.57	7.19	7.9	Pass
Т3	160 - 140	Bottom Girt	L 1.5 x 1.5 x 3/16	101	-0.61	7.19	8.4	Pass
T4	140 - 120	Bottom Girt	L 1.5 x 1.5 x 3/16	161	-1.92	7.19	26.7	Pass
T5	120 - 100	Bottom Girt	L 1.5 x 1.5 x 3/16	221	-1.61	7.19	22.4	Pass
T6	100 - 80	Bottom Girt	L 1.5 x 1.5 x 3/16	281	-0.53	7.19	7.4	Pass
T7	80 - 60	Bottom Girt	L 1.5 x 1.5 x 3/16	342	-0.59	7.19	8.3	Pass
Т8	60 - 40	Bottom Girt	L 1.5 x 1.5 x 3/16	401	-0.87	7.19	12.1	Pass
Т9	40 - 20	Bottom Girt	L 1.5 x 1.5 x 3/16	462	-0.38	7.19	5.3	Pass
T10	20 - 0	Bottom Girt	L 1.5 x 1.5 x 3/16	522	1.05	17.09	6.2	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	190 - 180	Guy A@189.625	9/16	576	12.61	21.00	60.0	Pass
Т3	160 - 140	Guy A@159.75	5/8	590	13.65	25.44	53.7	Pass
T5	120 - 100	Guy A@116.521	9/16	607	9.38	21.00	44.7	Pass
T8	60 - 40	Guy A@59.75	9/16	615	8.93	21.00	42.5	Pass
T1	190 - 180	Guy B@189.625	9/16	575	12.58	21.00	59.9	Pass
Т3	160 - 140	Guy B@159.75	5/8	583	13.64	25.44	53.6	Pass
T5	120 - 100	Guy B@116.521	9/16	602	9.16	21.00	43.6	Pass
Т8	60 - 40	Guy B@59.75	9/16	614	8.92	21.00	42.5	Pass
T1	190 - 180	Guy C@189.625	9/16	574	12.66	21.00	60.3	Pass
Т3	160 - 140	Guy C@159.75	5/8	578	13.45	25.44	52.9	Pass
T5	120 - 100	Guy C@116.521	9/16	596	9.16	21.00	43.6	Pass
T8	60 - 40	Guy C@59.75	9/16	613	8.78	21.00	41.8	Pass
Т3	160 - 140	Torque Arm Top@159.75	L 3 x 3 x 1/4	586	12.19	46.58	26.2 36.4 (b)	Pass
Т5	120 - 100	Torque Arm Top@116.521	L 3 x 3 x 1/4	598	9.07	46.58	19.5 27.1 (b)	Pass
Т3	160 - 140	Torque Arm Bottom@159.75	L 3 x 3 x 1/4	593	-8.04	30.52	26.4	Pass
T5	120 - 100	Torque Arm Bottom@116.521	L 3 x 3 x 1/4	612	-5.80	30.52	19.0	Pass
						1	Summary	
						Leg (T9)	104.6	Okay
						Diagonal (T2)	71.2	Pass
						Horizontal (T2)	73.0	Pass
						Top Girt (T3)	30.5	Pass
						Bottom Girt (T4)	26.7	Pass
						Guy A (T1)	60.0	Pass
						Guy B (T1)	59.9	Pass
						Guy C (T1)	60.3	Pass
						Torque Arm Top (T3)	36.4	Pass
						Torque Arm Bottom (T3)	26.4	Pass
						Bolt Checks	36.4	Pass
						Rating =	104.6	Okay

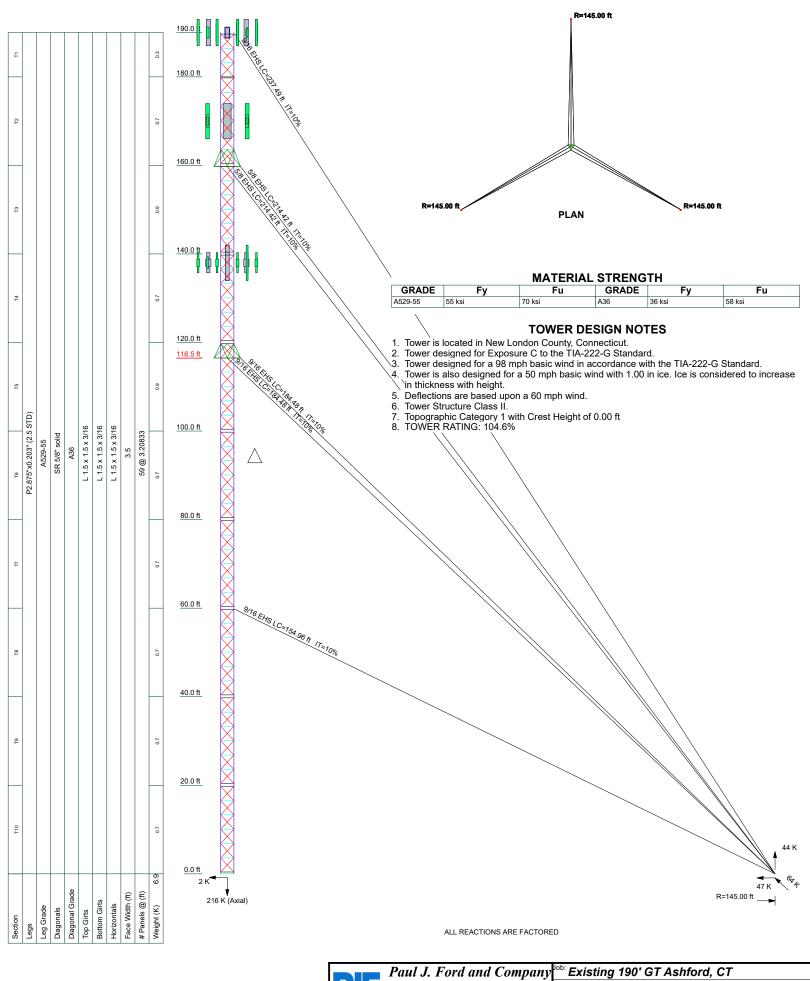
Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
	Base Foundation (Structure)		65.3	Pass
2	Base Foundation (Soil Interaction)		102.1	Okay
	Guy Anchor Shaft		69.7	Pass
	Guy Anchor Foundation Structural		55.3	Pass
	Guy Anchor Foundation Soil Interaction		99.8	Pass

Structure Rating (max from all components) =	104.6%
--	--------

Notes:

- 1) See additional documentation in "Appendix C Additional Calculations" for calculations supporting the % capacity consumed.
- 2) Capacities up to 105% are considered acceptable based on analysis methods used.


4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

Page 8

APPENDIX A

TNXTOWER OUTPUT

250 E. Broad St., Ste 600 Columbus, OH 43215 Phone: 614-221-6679 FAX:

 Disc
 Existing 190' GT Ashford, CT

 Project:
 702506 (PJF# 13321-0013)

 Client:
 Everest
 Drawn by: Chrissy Hedges
 App'd:

 Code:
 TIA-222-G
 Date: 07/28/21
 Scale: NTS

 Path:
 Orderential Everet Manuage Present/District Of Anter Christer of Manual Christer of Chri

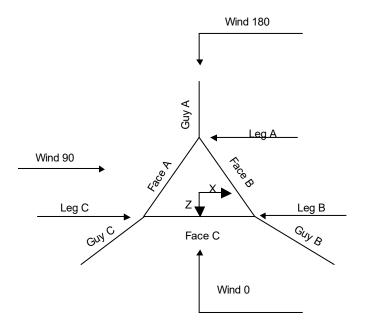
July 28, 2021

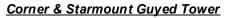
The main tower is a 3x guyed tower with an overall height of 190.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.50 ft at the top and 3.50 ft at the base.

This tower is designed using the TIA-222-G standard.


The following design criteria apply:


- Tower is located in New London County, Connecticut.
- ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).
- Basic wind speed of 98 mph.
- Structure Class II.
- Exposure Category C.
- Topographic Category 1.
- Crest Height 0.00 ft.
- Nominal ice thickness of 1.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 30 °F.
- Deflections calculated using a wind speed of 60 mph.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.
- Safety factor used in guy design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces **Consider Moments - Horizontals** Assume Legs Pinned Assume Rigid Index Plate Ignore Redundant Members in FEA Consider Moments - Diagonals Use Moment Magnification Use Clear Spans For Wind Area \sqrt{SR} Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Retension Guys To Initial Tension Offset Girt At Foundation Use Code Safety Factors - Guys Escalate Ice Bypass Mast Stability Checks Consider Feed Line Torque Always Use Max Kz Use Azimuth Dish Coefficients Include Angle Block Shear Check Use Special Wind Profile Project Wind Area of Appurt. Use TIA-222-G Bracing Resist. Exemption $\sqrt{}$ Include Bolts In Member Capacity $\sqrt{}$ Autocalc Torque Arm Areas Use TIA-222-G Tension Splice Exemption Leg Bolts Are At Top Of Section Add IBC .6D+W Combination Poles Sort Capacity Reports By Component Secondary Horizontal Braces Leg Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder Use Top Mounted Sockets SR Members Are Concentric Ignore KL/ry For 60 Deg. Angle Legs **Pole Without Linear Attachments** Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are

Known

Tower Section Geometry							
Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length	
	ft			ft		ft	
T1	190.00-180.00			3.50	1	10.00	
T2-T10	180.00-0.00			3.50	9	20.00	

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
T1	190.00-180.00	3.21	TX Brace	No	Yes	4.5000	0.0000
T2-T10	180.00-0.00	3.21	TX Brace	No	Yes	3.0000	4.5000

. .

Tower Section Geometry (cont'd)								
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade		
T1 190.00- 180.00	Pipe	P2.875"x0.203" (2.5 STD)	A529-55 (55 ksi)	Solid Round	5/8" solid	A36 (36 ksi)		
T2-T10	Pipe	P2.875"x0.203" (2.5 STD)	A529-55	Solid Round	5/8" solid	A36		

.....

tnxTower Report - version 8.1.1.0

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
180.00-0.00			(55 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 190.00- 180.00	Single Angle	L 1.5 x 1.5 x 3/16	A36 (36 ksi)	Single Angle	L 1.5 x 1.5 x 3/16	A36 (36 ksi)
T2-T10 180.00-0.00	Single Angle	L 1.5 x 1.5 x 3/16	`A36 ´ (36 ksi)	Single Angle	L 1.5 x 1.5 x 3/16	À36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
ft	Girts						
T1 190.00-	None	Solid Round		A36	Single Angle	L 1.5 x 1.5 x 3/16	A36
180.00				(36 ksi)			(36 ksi)
T2-T10	None	Solid Round		`A36 ´	Single Angle	L 1.5 x 1.5 x 3/16	`A36 ´
180.00-0.00				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		Af	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				Ar		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft²	in					in	in	in
T1 190.00-	0.00	0.0000	A36	1	1	1.02	36.0000	36.0000	36.0000
180.00			(36 ksi)						
T2-T10	0.00	0.0000	A36	1	1	1.02	36.0000	36.0000	36.0000
180.00-0.00			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1 190.00-	Yes	Yes	1	1	1	1	1	1	0.85	1
180.00				1	1	1	1	1	0.85	1
T2-T10	Yes	Yes	1	1	1	1	1	1	0.85	1
180.00-0.00				1	1	1	1	1	0.85	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

			Т	ow	er Sec	tio	n Geo	meti	'y (cor	nťď)				
Tower Elevation ft	Leg		Diago	nal	Top G	irt	Bottom	n Girt	Mid (Girt	Long Ho	rizontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 190.00- 180.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T2-T10 180.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1

Tower Elevation ft	Reduno Horizoi		Redun Diago		Redundan Diagoi		Redunda Horiz		Redur Vert		Redunda	ant Hip	Redunda Diago	,
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 190.00- 180.00 T2-T10 180.00-0.00	0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Shor Horizor	
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 190.00-	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00	•	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2-T10	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00-0.00	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Guv D	ata
	αια

Guy Elevation	Guy Grade		Guy Size	Initial Tension	%	Guy Modulus	Guy Weight	Lu	Anchor Radius	Anchor Azimuth Adj.	Anchor Elevation	End Fitting Efficiency
ft				К		ksi	plf	ft	ft	ໍ້	ft	%
189.625	EHS	А	9/16	3.50	10%	23000	0.671	237.31	145.00	0.0000	0.00	100%
		В	9/16	3.50	10%	23000	0.671	237.31	145.00	0.0000	0.00	100%
		С	9/16	3.50	10%	23000	0.671	237.31	145.00	0.0000	0.00	100%
159.75	EHS	Α	5/8	4.24	10%	23000	0.813	214.26	145.00	0.0000	0.00	100%
		В	5/8	4.24	10%	23000	0.813	214.26	145.00	0.0000	0.00	100%
		С	5/8	4.24	10%	23000	0.813	214.26	145.00	0.0000	0.00	100%
116.521	EHS	Α	9/16	3.50	10%	23000	0.671	184.34	145.00	0.0000	0.00	100%
		В	9/16	3.50	10%	23000	0.671	184.34	145.00	0.0000	0.00	100%
		С	9/16	3.50	10%	23000	0.671	184.34	145.00	0.0000	0.00	100%
59.75	EHS	А	9/16	3.50	10%	23000	0.671	154.84	145.00	0.0000	0.00	100%
		В	9/16	3.50	10%	23000	0.671	154.84	145.00	0.0000	0.00	100%
		С	9/16	3.50	10%	23000	0.671	154.84	145.00	0.0000	0.00	100%

			Guy	Data(co	onťd)		
Guy Elevation ft	Mount Type	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
		ft	0				
189.625	Corner						
159.75	Torque Arm	7.00	15.0000	Dog Ear	A36 (36 ksi)	Single Angle	L 3 x 3 x 1/4
116.521	Torque Arm	7.00	15.0000	Dog Ear	A36 (36 ksi)	Single Angle	L 3 x 3 x 1/4
59.75	Corner				· /		

	Guy Data (cont'd)												
Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	ls Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size					
189.63	A36 (36 ksi)	Solid Round				A36 (36 ksi)	Single Angle						
159.75	A36 (36 ksi)	Solid Round				A36 (36 ksi)	Single Angle						
116.52	`A36´ (36 ksi)	Solid Round				`A36 (36 ksi)	Single Angle						
59.75	`A36 (36 ksi)	Solid Round				`A36 (36 ksi)	Single Angle						

Guy Elevation	Cable Weight	Cable Weight	Cable Weight	Cable Weight	Tower Intercept	Tower Intercept	Tower Intercept	Tower Intercept
	Ă	B	Ċ	D	A	В	C	D
ft	K	K	κ	ĸ	ft	ft	ft	ft
189.625	0.16	0.16	0.16		5.31	5.31	5.31	
					4.0	4.0	4.0 sec/pulse	
					sec/pulse	sec/pulse		
159.75	0.17	0.17	0.17		4.34	4.34	4.34	
					3.6	3.6	3.6 sec/pulse	
					sec/pulse	sec/pulse		
116.521	0.12	0.12	0.12		3.22	3.22	3.22	
					3.1	3.1	3.1 sec/pulse	
					sec/pulse	sec/pulse		
59.75	0.10	0.10	0.10		2.29	2.29	2.29	
					2.6	2.6	2.6 sec/pulse	
					sec/pulse	sec/pulse		

Guy Data (cont'd)

			Torqu	e Arm	Pul	l Off	Diag	gonal
Guy Elevation ft	Calc K Single Angles	Calc K Solid Rounds	Kx	Ky	Kx	Ky	Kx	Ky
189.625	Yes	Yes			1	1	1	1
159.75	Yes	Yes	1	1	1	1	1	1
116.521	Yes	Yes	1	1	1	1	1	1
59.75	Yes	Yes			1	1	1	1

	Guy Data (cont'd)											
Torque-Arm Pull Off Diagonal												
Guy Elevation ft	<i>Bolt Size</i> in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U
189.625	0.7500 A325N	2	0.0000	1	0.0000 A325N	0	0.0000	1	0.0000 A325N	0	0.0000	1
159.75	0.7500 A325N	2	0.0000	1	0.0000 A325N	0	0.0000	1	0.0000 A325N	0	0.0000	1
116.521	0.7500 A325N	2	0.0000	1	0.0000 A325N	0	0.0000	1	0.0000 A325N	0	0.0000	1
59.75	0.7500 A325N	2	0.0000	1	0.0000 A325N	0	0.0000	1	0.0000 A325N	0	0.0000	1

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacin	Width or Diameter	Perimete r	Weight
	Leg		Torque	Туре	ft	in	(Frac FW)		Row	'g	in		plf
			Calculation							in		in	
Safety Line 3/8	A	No	No	Ar (CaAa)	190.00 - 5.00	0.0000	-0.45	1	1	0.3750	0.3750		0.22
5/8" ladder rung (12" long 16" oc)	A	No	No	Ar (CaAa)	190.00 - 0.00	0.0000	-0.4	1	1	0.4690	0.4690		0.78
LDF7-50A(1- 5/8") (includes 2 hybrid)	С	No	No	Ar (CaAa)	190.00 - 5.00	0.0000	0.25	8	4	0.5000	1.9800		0.82
LDF7-50Á(1- 5/8")	В	No	No	Ar (CaAa)	138.00 - 5.00	0.0000	0.5	12	2	1.0000 0.5200	1.9800		0.82
FB-L98-002- XXX(3/8)	С	No	No	Ar (CaAa)	138.00 - 5.00	0.0000	-0.46	1	1	0.3937	0.3937		0.06
WR- VG86ST- BRD(3/4)	С	No	No	Ar (CaAa)	138.00 - 5.00	0.0000	-0.45	2	1	0.7950	0.7950		0.58
HCS 6X12 4AWG(1-5/8) ***	A	No	No	Ar (CaAa)	170.00 - 5.00	0.0000	0.25	3	3	0.5000	1.6600		2.40

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
2) LPA-80080/4CF w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	190.00	No Ice 1/2" Ice 1" Ice	2.86 3.22 3.59	6.57 7.19 7.84	0.03 0.08 0.13
2) LPA-80063/4CF w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	190.00	No Ice 1/2" Ice 1" Ice	6.38 6.78 7.19	6.60 7.23 7.88	0.04 0.10 0.18
2) LPA-80063/4CF w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	190.00	No Ice 1/2" Ice	6.38 6.78 7.19	6.60 7.23 7.88	0.04 0.10 0.18

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weigh
			ft ft	۰	ft		ft²	ft²	K
			ft			1" Ice			
(2) JAHH-65B-R3B TIA w/	А	From Leg	4.00	0.0000	190.00	No Ice	9.35	7.65	0.09
Mount Pipe		5	0.00			1/2"	9.92	8.83	0.17
			0.00			lce 1" lce	10.46	9.73	0.25
(2) JAHH-65B-R3B_TIA w/	В	From Leg	4.00	0.0000	190.00	No Ice	9.35	7.65	0.09
Mount Pipe		-	0.00			1/2"	9.92	8.83	0.17
			0.00			lce 1" lce	10.46	9.73	0.25
(2) JAHH-65B-R3B_TIA w/	С	From Leg	4.00	0.0000	190.00	No Ice	9.35	7.65	0.09
Mount Pipe			0.00			1/2"	9.92	8.83	0.17
			0.00			lce 1" lce	10.46	9.73	0.25
B66A RRH4X45	А	From Leg	4.00	0.0000	190.00	No Ice	2.58	1.63	0.07
			0.00			1/2"	2.79	1.81	0.09
	-		0.00			Ice 1" Ice	3.01	2.00	0.11
B66A RRH4X45	В	From Leg	4.00	0.0000	190.00	No Ice	2.58	1.63	0.07
			0.00 0.00			1/2" Ice	2.79 3.01	1.81 2.00	0.09 0.11
B66A RRH4X45	С	From Leg	4.00	0.0000	190.00	1" Ice No Ice	2.58	1.63	0.07
D00A 1(1114743	U	T IOIII Leg	0.00	0.0000	130.00	1/2"	2.30	1.81	0.07
			0.00			lce 1" lce	3.01	2.00	0.11
B13 RRH 4X30	А	From Leg	4.00	0.0000	190.00	No Ice	2.06	1.32	0.06
21011111000			0.00	0.0000		1/2"	2.24	1.48	0.07
			0.00			lce 1" lce	2.43	1.64	0.09
B13 RRH 4X30	В	From Leg	4.00	0.0000	190.00	No Ice	2.06	1.32	0.06
		5	0.00			1/2"	2.24	1.48	0.07
			0.00			lce 1" lce	2.43	1.64	0.09
B13 RRH 4X30	С	From Leg	4.00	0.0000	190.00	No Ice	2.06	1.32	0.06
			0.00 0.00			1/2" Ice	2.24 2.43	1.48 1.64	0.07 0.09
						1" Ice			
B5 RRH 4T4R 160W	Α	From Leg	4.00	0.0000	190.00	No Ice	1.79	1.15	0.04
			0.00 0.00			1/2" Ice	1.96 2.14	1.29 1.44	0.05 0.07
	_					1" Ice			
B5 RRH 4T4R 160W	В	From Leg	4.00	0.0000	190.00	No Ice 1/2"	1.79	1.15	0.04
			0.00 0.00			Ice	1.96 2.14	1.29 1.44	0.05 0.07
B5 RRH 4T4R 160W	С	From Leg	4.00	0.0000	190.00	1" Ice No Ice	1.79	1.15	0.04
DO 1111 4 1411 10000	C	i ioni Leg	4.00	0.0000	190.00	1/2"	1.96	1.15	0.04
			0.00			lce 1" lce	2.14	1.44	0.07
DB-C1-12C-24AB-0Z	А	From Leg	4.00	0.0000	190.00	No Ice	4.06	3.10	0.03
	-	3	0.00			1/2"	4.32	3.34	0.07
			0.00			lce 1" lce	4.58	3.58	0.11
DB-C1-12C-24AB-0Z	С	From Leg	4.00	0.0000	190.00	No Ice	4.06	3.10	0.03
		-	0.00			1/2"	4.32	3.34	0.07
			0.00			lce 1" lce	4.58	3.58	0.11
Sector Mount [SM 802-3]	С	None		0.0000	190.00	No Ice	25.34	25.34	0.93
						1/2"	33.44	33.44	1.39
***						lce 1" lce	41.56	41.56	1.98
Sector Mount [SM 803-3]	С	None		0.0000	178.00	No Ice	40.01	40.01	0.98
						1/2"	50.70	50.70	1.69
						Ice	61.54	61.54	2.58

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert #		ft		ft²	ft²	к
			ft ft	٥	п		11-	11-	n
			ft						
***						1" Ice			
APX16DWV-16DWVS-E-	А	From Leg	4.00	0.0000	170.00	No Ice	6.82	3.49	0.06
A20_TIA w/ Mount Pipe		-	0.00			1/2"	7.28	4.26	0.11
			0.00			lce 1" lce	7.72	4.96	0.16
APX16DWV-16DWVS-E-	В	From Leg	4.00	0.0000	170.00	No Ice	6.82	3.49	0.06
A20 TIA w/ Mount Pipe	-		0.00	0.0000		1/2"	7.28	4.26	0.11
			0.00			Ice	7.72	4.96	0.16
	-					1" Ice			
APX16DWV-16DWVS-E-	С	From Leg	4.00	0.0000	170.00	No Ice	6.82	3.49	0.06
A20_TIA w/ Mount Pipe			0.00			1/2"	7.28	4.26	0.11
			0.00			lce 1" lce	7.72	4.96	0.16
APXVAALL24 43-U-	А	From Leg	4.00	0.0000	170.00	No Ice	20.48	10.87	0.18
NA20 TIA w/ Mount Pipe			0.00	0.0000		1/2"	21.23	12.39	0.32
			0.00			Ice	21.99	13.94	0.46
						1" Ice			
APXVAALL24_43-U-	В	From Leg	4.00	0.0000	170.00	No Ice	20.48	10.87	0.18
NA20_TIA w/ Mount Pipe			0.00			1/2"	21.23	12.39	0.32
			0.00			lce 1" lce	21.99	13.94	0.46
APXVAALL24 43-U-	С	From Leg	4.00	0.0000	170.00	No Ice	20.48	10.87	0.18
NA20 TIA w/ Mount Pipe	0	Tiom Log	0.00	0.0000	170.00	1/2"	21.23	12.39	0.32
			0.00			lce	21.99	13.94	0.46
						1" Ice			
AIR6449 B41_TIA w/	Α	From Leg	4.00	0.0000	170.00	No Ice	5.89	3.28	0.12
Mount Pipe			0.00			1/2"	6.26	3.74	0.17
			0.00			lce 1" lce	6.63	4.22	0.22
AIR6449 B41_TIA w/	В	From Leg	4.00	0.0000	170.00	No Ice	5.89	3.28	0.12
Mount Pipe	D	1 Iom Log	0.00	0.0000	170.00	1/2"	6.26	3.74	0.12
·			0.00			Ice	6.63	4.22	0.22
						1" Ice			
AIR6449 B41_TIA w/	С	From Leg	4.00	0.0000	170.00	No Ice	5.89	3.28	0.12
Mount Pipe			0.00			1/2"	6.26	3.74	0.17
			0.00			lce 1" lce	6.63	4.22	0.22
RADIO 4460 B2/B25	А	From Leg	4.00	0.0000	170.00	No Ice	2.14	1.69	0.11
B66 TMO			0.00	0.0000		1/2"	2.32	1.85	0.13
			0.00			Ice	2.51	2.02	0.16
						1" Ice			
RADIO 4460 B2/B25	В	From Leg	4.00	0.0000	170.00	No Ice	2.14	1.69	0.11
B66_TMO			0.00			1/2"	2.32	1.85	0.13
			0.00			lce 1" lce	2.51	2.02	0.16
RADIO 4460 B2/B25	С	From Leg	4.00	0.0000	170.00	No Ice	2.14	1.69	0.11
B66 TMO		5	0.00			1/2"	2.32	1.85	0.13
—			0.00			Ice	2.51	2.02	0.16
						1" Ice			
RADIO 4480 B71_TMO	A	From Leg	4.00	0.0000	170.00	No Ice	2.85	1.38	0.09
			0.00			1/2"	3.06	1.54	0.11
			0.00			lce 1" lce	3.28	1.71	0.14
RADIO 4480 B71 TMO	В	From Leg	4.00	0.0000	170.00	No Ice	2.85	1.38	0.09
	_		0.00			1/2"	3.06	1.54	0.11
			0.00			Ice	3.28	1.71	0.14
	_					1" Ice			_
RADIO 4480 B71_TMO	С	From Leg	4.00	0.0000	170.00	No Ice	2.85	1.38	0.09
			0.00 0.00			1/2"	3.06 3.28	1.54 1.71	0.11 0.14
			0.00			lce 1" lce	3.20	1./1	0.14
Sector Mount [SM 803-3]	С	None		0.0000	170.00	No Ice	40.01	40.01	0.98
	-					1/2"	50.70	50.70	1.69
						lce	61.54	61.54	2.58

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
***						1" Ice			
Sector Mount [SM 803-3]	С	None		0.0000	150.00	No Ice 1/2" Ice 1" Ice	40.01 50.70 61.54	40.01 50.70 61.54	0.98 1.69 2.58
(2) 7770_TIA w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
(2) 7770_TIA w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
(2) 7770_TIA w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
(2) TMA (LGP 17201)	A	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	1.67 1.83 2.00	0.47 0.57 0.68	0.03 0.04 0.06
(2) TMA (LGP 17201)	В	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice	1.67 1.83 2.00	0.47 0.57 0.68	0.03 0.04 0.06
(2) TMA (LGP 17201)	С	From Leg	4.00 0.00 0.00	0.0000	138.00	1" Ice No Ice 1/2" Ice	1.67 1.83 2.00	0.47 0.57 0.68	0.03 0.04 0.06
(2) Dixplexor (CBC7821-DF)	A	From Leg	4.00 0.00 0.00	0.0000	138.00	1" Ice No Ice 1/2" Ice	0.45 0.54 0.63	0.19 0.25 0.32	0.01 0.01 0.02
(2) Dixplexor (CBC7821-DF)	В	From Leg	4.00 0.00 0.00	0.0000	138.00	1" Ice No Ice 1/2" Ice 1" Ice	0.45 0.54 0.63	0.19 0.25 0.32	0.01 0.01 0.02
(2) Dixplexor (CBC7821-DF)	С	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	0.45 0.54 0.63	0.19 0.25 0.32	0.01 0.01 0.02
AM-X-CD-17-65-00T- RET_TIA w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	11.55 12.27 13.00	8.94 10.45 11.99	0.09 0.18 0.27
AM-X-CD-17-65-00T- RET_TIA w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice	11.55 12.27 13.00	8.94 10.45 11.99	0.09 0.18 0.27
AM-X-CD-17-65-00T- RET_TIA w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	138.00	1" Ice No Ice 1/2" Ice 1" Ice	11.55 12.27 13.00	8.94 10.45 11.99	0.09 0.18 0.27
(2) RRUS 11	A	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.10
(2) RRUS 11	В	From Leg	4.00 0.00 0.00	0.0000	138.00	1" Ice No Ice 1/2" Ice 1" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.10
(2) RRUS 11	С	From Leg	4.00 0.00	0.0000	138.00	No Ice 1/2"	2.79 3.00	1.19 1.34	0.05 0.07

190 Ft Guyed Tower Structural Analysis Project Number 13321-0013.001.8700

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			0.00			lce 1" lce	3.21	1.50	0.10
DC6-48-60-18-8F	С	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	1.21 1.89 2.11	1.21 1.89 2.11	0.03 0.05 0.08
Sector Mount [SM 404-3]	С	None		0.0000	138.00	No Ice 1/2" Ice 1" Ice	20.43 28.68 36.80	20.43 28.68 36.80	0.92 1.31 1.84

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy
3	1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy
4	1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy
5	1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy
6	1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy
7	1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy
8	1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
9	1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy
10	1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy
11	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
12	1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy
13	1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy
14	1.2 Dead+1.0 Ice+1.0 Temp+Guy
15	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
16	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy
17	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
18	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
19	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy
20	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy
21	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
22	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
23	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
24	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
25	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy
26	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy
27	Dead+Wind 0 deg - Service+Guy
28	Dead+Wind 30 deg - Service+Guy
29	Dead+Wind 60 deg - Service+Guy
30	Dead+Wind 90 deg - Service+Guy
31	Dead+Wind 120 deg - Service+Guy
32	Dead+Wind 150 deg - Service+Guy
33	Dead+Wind 180 deg - Service+Guy
34	Dead+Wind 210 deg - Service+Guy
35	Dead+Wind 240 deg - Service+Guy
36	Dead+Wind 270 deg - Service+Guy
37	Dead+Wind 300 deg - Service+Guy
38	Dead+Wind 330 deg - Service+Guy

Maximum Reactions

190 Ft Guyed Tower Structural Analysis Project Number 13321-0013.001.8700

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load Comb.	K	К	K
Guy C @ 145 ft Elev 0 ft	Max. Vert	10	-2.27	-1.95	1.13
Azimuth 240 deg					
•	Max. H _x	10	-2.27	-1.95	1.13
	Max. H _z	3	-41.24	-37.90	22.49
	Min. Vert	4	-41.64	-38.63	22.29
	Min. H _x	4	-41.64	-38.63	22.29
	Min. H _z	10	-2.27	-1.95	1.13
Guy B @ 145 ft Elev 0 ft	Max. Vert	6	-2.02	1.52	0.88
Azimuth 120 deg					
	Max. H _x	12	-42.92	40.38	23.32
	Max. H _z	13	-43.04	40.26	23.91
	Min. Vert	13	-43.04	40.26	23.91
	Min. H _x	6	-2.02	1.52	0.88
	Min. H _z	6	-2.02	1.52	0.88
Guy A @ 145 ft Elev 0 ft Azimuth 0 deg	Max. Vert	2	-1.97	0.00	-1.68
	Max. H _x	24	-24.74	1.56	-32.58
	Max. H ₂	2	-1.97	0.00	-1.68
	Min. Vert	8	-43.56	-0.02	-47.46
	Min. H _x	18	-24.74	-1.56	-32.58
	Min. H _z	8	-43.56	-0.02	-47.46
Mast	Max. Vert	19	215.72	-0.13	-0.04
	Max. H _x	12	89.66	1.40	0.81
	Max. H _z	2	100.32	-0.02	1.64
	Max. M _x	1	0.00	0.02	0.01
	Max. M _z	1	0.00	0.02	0.01
	Max. Torsion	1	0.00	0.02	0.01
	Min. Vert	1	66.50	0.02	0.01
	Min. H _x	6	99.05	-1.35	-0.78
	Min. H _z	8	90.07	0.00	-1.67
	Min. M _x	1	0.00	0.02	0.01
	Min. M _z	1	0.00	0.02	0.01
	Min. Torsion	1	0.00	0.02	0.01

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	۰
T1	190 - 180	1.686	29	0.0724	0.1050
T2	180 - 160	1.538	33	0.0798	0.0689
Т3	160 - 140	1.153	33	0.0731	0.0142
T4	140 - 120	1.018	33	0.0647	0.1352
T5	120 - 100	0.679	33	0.0515	0.0599
T6	100 - 80	0.727	32	0.0230	0.2634
T7	80 - 60	0.702	32	0.0215	0.7192
Т8	60 - 40	0.501	32	0.0183	0.9783
Т9	40 - 20	0.599	38	0.0255	1.1900
T10	20 - 0	0.432	32	0.0552	1.5904

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	۰	ft
190.00	(2) LPA-80080/4CF w/ Mount Pipe	29	1.686	0.0724	0.1050	22580

190 Ft Guyed Tower Structural Analysis Project Number 13321-0013.001.8700

Page 20

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	0	ft
189.63	Guy	29	1.681	0.0727	0.1036	22580
178.00	Sector Mount [SM 803-3]	33	1.500	0.0803	0.0619	16007
170.00	APX16DWV-16DWVS-E- A20 TIA w/ Mount Pipe	33	1.331	0.0788	0.0354	37027
159.75	Guy	33	1.150	0.0730	0.0152	8539
150.00	Sector Mount [SM 803-3]	33	1.086	0.0684	0.0842	221081
138.00	(2) 7770 TIA w/ Mount Pipe	33	0.991	0.0640	0.1313	9141
116.52	Guy	32	0.656	0.0466	0.0665	7795
59.75	Guy	32	0.501	0.0183	0.9805	8394

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	٥
T1	190 - 180	15.234	2	0.8498	0.2913
T2	180 - 160	13.618	2	0.8754	0.2121
Т3	160 - 140	10.136	2	0.7964	0.0775
T4	140 - 120	7.693	2	0.6785	0.3863
T5	120 - 100	5.015	2	0.4979	0.3858
T6	100 - 80	4.007	2	0.2449	1.0414
T7	80 - 60	3.438	13	0.1660	1.9350
Т8	60 - 40	2.636	13	0.1247	2.5248
Т9	40 - 20	2.491	13	0.1465	2.9928
T10	20 - 0	1.640	13	0.2751	3.6616

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	0	ft
190.00	(2) LPA-80080/4CF w/ Mount Pipe	2	15.234	0.8498	0.2913	7344
189.63	Guy	2	15.175	0.8512	0.2884	7344
178.00	Sector Mount [SM 803-3]	2	13.268	0.8748	0.1919	5261
170.00	APX16DWV-16DWVS-E- A20 TIA w/ Mount Pipe	2	11.813	0.8512	0.1091	8605
159.75	Guy	2	10.100	0.7949	0.0796	2406
150.00	Sector Mount [SM 803-3]	2	8.875	0.7396	0.2594	11539
138.00	(2) 7770 TIA w/ Mount Pipe	2	7.424	0.6648	0.3709	3681
116.52	Guy	2	4.713	0.4532	0.4415	1999
59.75	Guy	13	2.631	0.1243	2.5306	2794

	Bolt Design Data										
Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria	
T1	190	Leg	A325N	0.7500	4	1.26	29.82	0.042 🖌	1	Bolt Tension	
T2	180	Leg	A325N	0.7500	4	3.19	29.82	0.107 🖌	1	Bolt Tension	
Т3	160	Leg	A325N	0.7500	4	3.47	29.82	0.116 🖌	1	Bolt Tension	
		Torque Arm Top@159.75	A325N	0.7500	2	6.09	16.75	0.364 🖌	1	Member Bearing	

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
		Torque Arm Bottom@159.7 5	A325N	0.7500	2	4.02	17.89	0.225 🖌	1	Bolt Shear
T4	140	Leg	A325N	0.7500	4	4.33	29.82	0.145 🖌	1	Bolt Tension
T5	120	Leg	A325N	0.7500	4	4.93	29.82	0.165 🖌	1	Bolt Tension
		Torque Arm Top@116.521	A325N	0.7500	2	4.54	16.75	0.271 🖌	1	Member Bearing
		Torque Arm Bottom@116.5 21	A325N	0.7500	2	2.90	17.89	0.162 🖌	1	Bolt Shear
T6	100	Leg	A325N	0.7500	4	5.17	29.82	0.174 🖌	1	Bolt Tension
T7	80	Leg	A325N	0.7500	4	5.36	29.82	0.180 🖌	1	Bolt Tension
Т8	60	Leg	A325N	0.7500	4	6.13	29.82	0.206 🗸	1	Bolt Tension
Т9	40	Leg	A325N	0.7500	4	6.39	29.82	0.214	1	Bolt Tension
T10	20	Leg	A325N	0.7500	4	6.03	29.82	0.202 🗸	1	Bolt Tension

				Guy Desi	gn Data			
Section No.	Elevation ft	Size	Initial Tension K	Breaking Load K	Actual T _u K	Allowable ¢Tn K	Required S.F.	Actual S.F.
T1	189.63 (A) (576)	9/16 EHS	3.50	35.00	12.61	21.00	1.000	1.666 🖌
	189.63 (B) (575)	9/16 EHS	3.50	35.00	12.58	21.00	1.000	1.669 🖌
	(575) 189.63 (C) (574)	9/16 EHS	3.50	35.00	12.66	21.00	1.000	1.658 🖌
Т3	(574) 159.75 (A) (589)	5/8 EHS	4.24	42.40	13.46	25.44	1.000	1.890 🖌
	(505) 159.75 (A) (590)	5/8 EHS	4.24	42.40	13.65	25.44	1.000	1.863 🖌
	(550) 159.75 (B) (583)	5/8 EHS	4.24	42.40	13.64	25.44	1.000	1.865 🖌
	(555) 159.75 (B) (584)	5/8 EHS	4.24	42.40	13.38	25.44	1.000	1.901 🖌
	(504) 159.75 (C) (577)	5/8 EHS	4.24	42.40	13.38	25.44	1.000	1.901 🖌
	(577) 159.75 (C) (578)	5/8 EHS	4.24	42.40	13.45	25.44	1.000	1.892 🖌
T5	(378) 116.52 (A) (607)	9/16 EHS	3.50	35.00	9.38	21.00	1.000	2.238 🗸
	(607) 116.52 (A) (608)	9/16 EHS	3.50	35.00	9.19	21.00	1.000	2.286 🗸
	(600) 116.52 (B) (601)	9/16 EHS	3.50	35.00	9.11	21.00	1.000	2.305 🗸
	116.52 (B) (602)	9/16 EHS	3.50	35.00	9.16	21.00	1.000	2.294 🗸
	(002) 116.52 (C) (595)	9/16 EHS	3.50	35.00	9.15	21.00	1.000	2.294 🗸
	(595) 116.52 (C) (596)	9/16 EHS	3.50	35.00	9.16	21.00	1.000	2.293 🗸
Т8	(390) 59.75 (A) (615)	9/16 EHS	3.50	35.00	8.93	21.00	1.000	2.352 🗸
	(013) 59.75 (B) (614)	9/16 EHS	3.50	35.00	8.92	21.00	1.000	2.353 🖌
	(614) 59.75 (C) (613)	9/16 EHS	3.50	35.00	8.78	21.00	1.000	2.391 🗸

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	ϕP_n
T1	190 - 180	P2.875"x0.203" (2.5 STD)	10.00	3.21	40.6 K=1.00	1.7040	-15.12	73.86	0.205 1
T2	180 - 160	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-38.13	73.73	0.517 1
Т3	160 - 140	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-41.51	73.73	0.563 1
T4	140 - 120	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-51.76	73.73	0.702 1
T5	120 - 100	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-63.08	73.73	0.856 ¹
Т6	100 - 80	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-62.18	73.73	0.843 1
T7	80 - 60	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-64.13	73.73	0.870 ¹
Т8	60 - 40	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-73.34	73.73	0.995 1
Т9	40 - 20	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-77.11	73.73	1.046 ¹
T10	20 - 0	4.8.1 (1.05 CR) - 455 P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9 K=1.00	1.7040	-76.92	73.73	1.043 ¹
		4.8.1 (1.04 CR) - 515/6							

¹ P_u / ϕP_n controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	Lu	KI/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	ĸ	K	ϕP_n
T1	190 - 180	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.34	7.19	0.048 ¹
T2	180 - 160	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-5.25	7.19	0.730 ¹
Т3	160 - 140	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-2.90	7.19	0.403 ¹
T4	140 - 120	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-3.60	7.19	0.501 1
T5	120 - 100	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-3.38	7.19	0.471 ¹
T6	100 - 80	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-2.33	7.19	0.325 1
T7	80 - 60	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-1.66	7.19	0.231 1
Т8	60 - 40	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-2.44	7.19	0.340 ¹
Т9	40 - 20	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-1.11	7.19	0.154 ¹
T10	20 - 0	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2	0.5273	-1.35	7.19	0.188 ¹

Section No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φ P n	Ratio P.,
110.	ft		ft	ft		in²	К	К	$\frac{1}{\phi P_n}$
					K=0.96				~

		Top Girt	Desig	n Dat	a (Coi	mpres	sion)		
Section No.	Elevation	Size	L	Lu	KI/r	A	Pu	φ P n	Ratio Pu
	ft		ft	ft		in ²	K	К	φ P _n
T1	190 - 180	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.46	7.19	0.064 ¹
T2	180 - 160	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.50	7.19	0.070 ¹
Т3	160 - 140	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-2.20	7.19	0.305 ¹
T4	140 - 120	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.58	7.19	0.081 1
Т5	120 - 100	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-2.05	7.19	0.285 ¹
Т6	100 - 80	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-1.34	7.19	0.186 ¹
T7	80 - 60	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.52	7.19	0.072 1
Т9	40 - 20	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.72	7.19	0.100 ¹
T10	20 - 0	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.51	7.19	0.070 ¹

¹ P_u / ϕP_n controls

		Bottom Gi	rt Desi	ign D	ata (C	ompre	ession)		
Section No.	Elevation	Size	L	Lu	KI/r	A	Pu	φPn	Ratio Pu
	ft		ft	ft		in ²	ĸ	K	φ P _n
T1	190 - 180	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.32	7.19	0.044
T2	180 - 160	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.57	7.19	0.079 1
Т3	160 - 140	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.61	7.19	0.084 1
T4	140 - 120	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-1.92	7.19	0.267 1
Т5	120 - 100	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-1.61	7.19	0.224 1
Т6	100 - 80	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.53	7.19	0.074 1
T7	80 - 60	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.59	7.19	0.083 1
Т8	60 - 40	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.87	7.19	0.121 1
Т9	40 - 20	L 1.5 x 1.5 x 3/16	3.50	3.26	128.2 K=0.96	0.5273	-0.38	7.19	0.053 1

		Torqu	e-Arm	Botto	om Des	sign D	ata		
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P n	Ratio Pu
	ft		ft	ft		in²	K	К	φ P n
Т3	160 - 140 (581)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-7.66	30.52	0.251 ¹
Т3	160 - 140 (582)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-7.65	30.52	0.251 ¹
Т3	160 - 140 (587)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-7.56	30.52	0.248 ¹
Т3	160 - 140 (588)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-7.56	30.52	0.248 ¹
Т3	160 - 140 (593)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-8.04	30.52	0.264 ¹
Т3	160 - 140 (594)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-8.03	30.52	0.263 ¹
T5	120 - 100 (599)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-4.41	30.52	0.144 ¹
T5	120 - 100 (600)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-4.64	30.52	0.152 ¹
T5	120 - 100 (605)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-4.87	30.52	0.160 ¹
T5	120 - 100 (606)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-4.87	30.52	0.160 ¹
Т5	120 - 100 (611)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-5.77	30.52	0.189 ¹
T5	120 - 100 (612)	L 3 x 3 x 1/4	3.50	2.92	89.6 K=1.51	1.4375	-5.80	30.52	0.190 ¹

¹ P_u / ϕP_n controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	Lu	KI/r	A	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	ĸ	φ P _n
T1	190 - 180	P2.875"x0.203" (2.5 STD)	10.00	0.38	4.7	1.7040	0.00	84.35	0.000 1
T2	180 - 160	P2.875"x0.203" (2.5 STD)	20.00	3.23	40.9	1.7040	1.73	84.35	0.020 1
Τ4	140 - 120	P2.875"x0.203" (2.5 STD)	20.00	0.38	4.7	1.7040	0.68	84.35	0.008 1
T5	120 - 100	P2.875"x0.203" (2.5 STD)	20.00	0.25	3.2	1.7040	0.68	84.35	0.008 1

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	Lu	KI/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	φPn
T1	190 - 180	5/8" solid	4.75	4.42	339.7	0.3068	0.71	9.94	0.071 ¹
T2	180 - 160	5/8" solid	4.76	4.44	340.7	0.3068	7.07	9.94	0.712 1
Т3	160 - 140	5/8" solid	4.76	4.44	340.7	0.3068	4.02	9.94	0.404 1
T4	140 - 120	5/8" solid	4.76	4.44	340.7	0.3068	5.35	9.94	0.539 ¹
T5	120 - 100	5/8" solid	4.76	4.44	340.7	0.3068	4.65	9.94	0.467 1
Т6	100 - 80	5/8" solid	4.76	4.44	340.7	0.3068	3.51	9.94	0.353 1
Τ7	80 - 60	5/8" solid	4.76	4.44	340.7	0.3068	2.38	9.94	0.239 1
Т8	60 - 40	5/8" solid	4.76	4.44	340.7	0.3068	3.52	9.94	0.354 1
Т9	40 - 20	5/8" solid	4.76	4.44	340.7	0.3068	1.76	9.94	0.177 1
T10	20 - 0	5/8" solid	4.76	4.44	340.7	0.3068	1.90	9.94	0.191 1

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		in²	К	K	ϕP_n
T1	190 - 180	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.07	17.09	0.004 1
T2	180 - 160	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	4.17	17.09	0.244 1
Т3	160 - 140	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.31	17.09	0.018 1
T4	140 - 120	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.31	17.09	0.018 1
T5	120 - 100	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	2.09	17.09	0.122 1
Т6	100 - 80	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.08	17.09	0.005 ¹
Τ7	80 - 60	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.06	17.09	0.004 ¹
Т8	60 - 40	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.01	17.09	0.001*1
Т9	40 - 20	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.08	17.09	0.005 1
T10	20 - 0	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.07	17.09	0.004 ¹

^{*} DL controls ¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	φ P n	Ratio Pu
	ft		ft	ft		in²	K	ĸ	φ P n
T1	190 - 180	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	4.93	17.09	0.288 1
T2	180 - 160	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.10	17.09	0.006 1
Т3	160 - 140	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	1.93	17.09	0.113 1
T4	140 - 120	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.14	17.09	0.008 1
Т5	120 - 100	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	2.01	17.09	0.118 1
Т6	100 - 80	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.22	17.09	0.013 1
Τ7	80 - 60	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.06	17.09	0.003 1
Т8	60 - 40	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	3.98	17.09	0.233 1
Т9	40 - 20	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.14	17.09	0.008 1
T10	20 - 0	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.11	17.09	0.006 1

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		in²	ĸ	K	ϕP_n
T1	190 - 180	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.06	17.09	0.003 1
T2	180 - 160	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.67	17.09	0.039 1
Т3	160 - 140	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.12	17.09	0.007 1
T4	140 - 120	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.99	17.09	0.058 1
Т5	120 - 100	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.33	17.09	0.020 1
Т6	100 - 80	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.05	17.09	0.003 1
Τ7	80 - 60	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.42	17.09	0.024 1
Т8	60 - 40	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.21	17.09	0.012 1
Т9	40 - 20	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	0.07	17.09	0.004 1
T10	20 - 0	L 1.5 x 1.5 x 3/16	3.50	3.26	85.7	0.5273	1.05	17.09	0.062 1

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		in²	К	K	φ P _n
Т3	160 - 140 (579)	L 3 x 3 x 1/4	5.21	4.75	67.2	1.4375	11.88	46.58	0.255 1
Т3	160 - 140 (580)	L 3 x 3 x 1/4	5.21	4.75	67.2	1.4375	11.64	46.58	0.250 1
Т3	160 - 140 (585)	L 3 x 3 x 1/4	5.21	4.75	67.2	1.4375	11.61	46.58	0.249 1
Т3	160 - 140 (586)	L 3 x 3 x 1/4	5.21	4.75	67.2	1.4375	12.19	46.58	0.262 1
Т3	160 - 140 (591)	L 3 x 3 x 1/4	5.21	4.75	67.2	1.4375	11.56	46.58	0.248 1
Т3	160 - 140 (592)	L 3 x 3 x 1/4	5.21	4.75	67.2	1.4375	11.75	46.58	0.252 1
Т5	120 - 100 (597)	L 3 x 3 x 1/4	4.76	4.14	59.3	1.4375	8.63	46.58	0.185 1
Т5	120 - 100 (598)	L 3 x 3 x 1/4	4.76	4.14	59.3	1.4375	9.07	46.58	0.195 1
Т5	120 - 100 (603)	L 3 x 3 x 1/4	4.76	4.14	59.3	1.4375	8.78	46.58	0.189 1
T5	120 - 100 (604)	L 3 x 3 x 1/4	4.76	4.14	59.3	1.4375	8.70	46.58	0.187 1
T5	120 - 100 (609)	L 3 x 3 x 1/4	4.76	4.14	59.3	1.4375	8.60	46.58	0.185 1
T5	120 - 100 (610)	L 3 x 3 x 1/4	4.76	4.14	59.3	1.4375	9.00	46.58	0.193 1

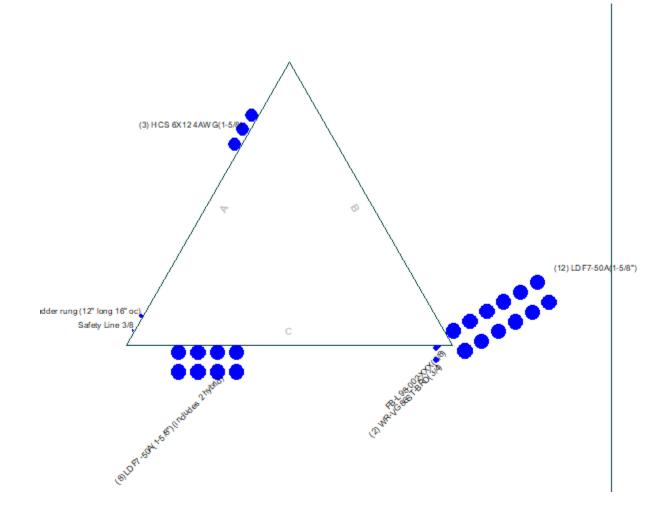
		Torqu	e-Arm	Botto	m De	sign D	ata		
Section No.	Elevation	Size	L	Lu	Kl/r	Α	Pu	φ P n	Ratio Pu
	ft		ft	ft		in²	K	ĸ	ϕP_n
Т3	160 - 140 (581)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	3.21	46.58	0.069
Т3	160 - 140 (582)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	3.21	46.58	0.069
Т3	160 - 140 (587)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	3.18	46.58	0.068
Т3	160 - 140 (588)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	3.18	46.58	0.068
Т3	160 - 140 (593)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	3.52	46.58	0.076
Т3	160 - 140 (594)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	3.53	46.58	0.076
T5	120 - 100 (599)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	2.08	46.58	0.045
T5	120 - 100 (600)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	2.37	46.58	0.051
Т5	120 - 100 (605)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	2.64	46.58	0.057
Т5	120 - 100 (606)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	2.45	46.58	0.053
Т5	120 - 100 (611)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	3.07	46.58	0.066

raus Arm Ton Design Det

Section No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φ P n	Ratio Pu
	ft		ft	ft		in²	К	K	ϕP_n
T5	120 - 100 (612)	L 3 x 3 x 1/4	3.50	2.92	43.6	1.4375	3.05	46.58	0.065 1

¹ P_u / ϕP_n controls

Section Capacity Table

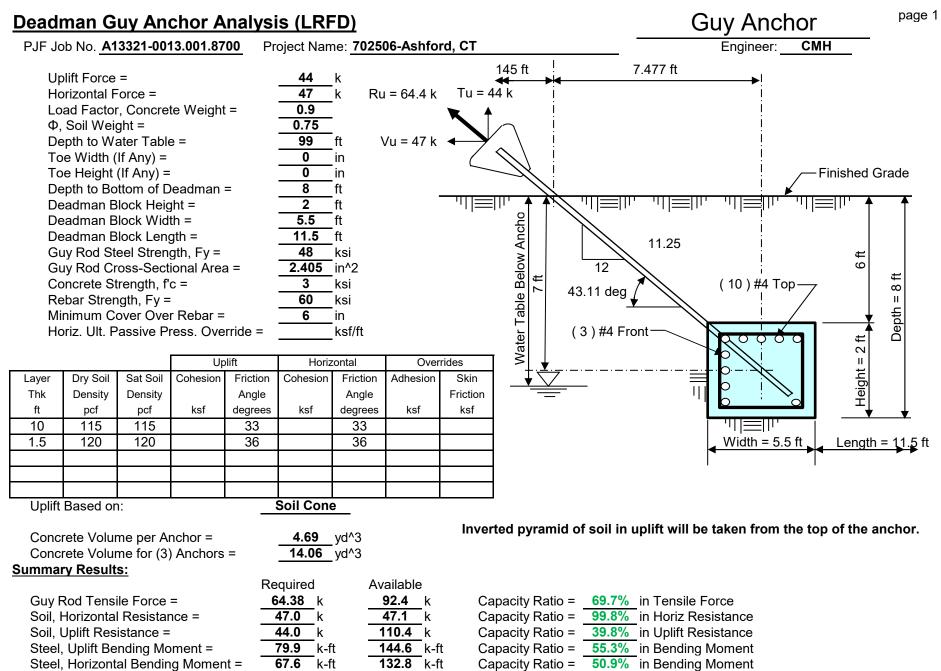

				0.111			•	
Section	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
No.								
T1	190 - 180	Leg	P2.875"x0.203" (2.5 STD)	1	-15.12	73.86	20.5	Pass
T2	180 - 160	Leg	P2.875"x0.203" (2.5 STD)	34	-38.13	73.73	51.7	Pass
T3	160 - 140	Leg	P2.875"x0.203" (2.5 STD)	94	-41.51	73.73	56.3	Pass
T4	140 - 120	Leg	P2.875"x0.203" (2.5 STD)	156	-51.76	73.73	70.2	Pass
T5	120 - 100	Leg	P2.875"x0.203" (2.5 STD)	216	-63.08	73.73	85.6	Pass
T6	100 - 80	Leg	P2.875"x0.203" (2.5 STD)	276	-62.18	73.73	84.3	Pass
T7	80 - 60	Leg	P2.875"x0.203" (2.5 STD)	335	-64.13	73.73	87.0	Pass
T8	60 - 40	Leg	P2.875"x0.203" (2.5 STD)	395	-73.34	73.73	99.5	Pass
T9	40 - 20	Leg	P2.875"x0.203" (2.5 STD)	455	-77.11	73.73	104.6	Okay
T10	20 - 0	Leg	P2.875"x0.203" (2.5 STD)	515	-76.92	73.73	104.3	Okay
T1	190 - 180	Diagonal	5/8" solid	32	0.71	9.94	7.1	Pass
T2	180 - 160	Diagonal	5/8" solid	56	7.07	9.94	71.2	Pass
Т3	160 - 140	Diagonal	5/8" solid	142	4.02	9.94	40.4	Pass
T4	140 - 120	Diagonal	5/8" solid	166	5.35	9.94	53.9	Pass
T5	120 - 100	Diagonal	5/8" solid	261	4.65	9.94	46.7	Pass
T6	100 - 80	Diagonal	5/8" solid	331	3.51	9.94	35.3	Pass
Τ7	80 - 60	Diagonal	5/8" solid	347	2.38	9.94	23.9	Pass
T8	60 - 40	Diagonal	5/8" solid	441	3.52	9.94	35.4	Pass
Т9	40 - 20	Diagonal	5/8" solid	510	1.76	9.94	17.7	Pass
T10	20 - 0	Diagonal	5/8" solid	525	1.90	9.94	19.1	Pass
T1	190 - 180	Horizontal	L 1.5 x 1.5 x 3/16	26	-0.34	7.19	4.8	Pass
T2	180 - 160	Horizontal	L 1.5 x 1.5 x 3/16	51	-5.25	7.19	73.0	Pass
Т3	160 - 140	Horizontal	L 1.5 x 1.5 x 3/16	146	-2.90	7.19	40.3	Pass
T4	140 - 120	Horizontal	L 1.5 x 1.5 x 3/16	170	-3.60	7.19	50.1	Pass
T5	120 - 100	Horizontal	L 1.5 x 1.5 x 3/16	257	-3.38	7.19	47.1	Pass
T6	100 - 80	Horizontal	L 1.5 x 1.5 x 3/16	326	-2.33	7.19	32.5	Pass
T7	80 - 60	Horizontal	L 1.5 x 1.5 x 3/16	351	-1.66	7.19	23.1	Pass
T8	60 - 40	Horizontal	L 1.5 x 1.5 x 3/16	446	-2.44	7.19	34.0	Pass
Т9	40 - 20	Horizontal	L 1.5 x 1.5 x 3/16	506	-1.11	7.19	15.4	Pass
T10	20 - 0	Horizontal	L 1.5 x 1.5 x 3/16	530	-1.35	7.19	18.8	Pass
T1	190 - 180	Top Girt	L 1.5 x 1.5 x 3/16	6	4.93	17.09	28.8	Pass
T2	180 - 160	Top Girt	L 1.5 x 1.5 x 3/16	39	-0.50	7.19	7.0	Pass
Т3	160 - 140	Top Girt	L 1.5 x 1.5 x 3/16	97	-2.20	7.19	30.5	Pass
T4	140 - 120	Top Girt	L 1.5 x 1.5 x 3/16	159	-0.58	7.19	8.1	Pass
T5	120 - 100	Top Girt	L 1.5 x 1.5 x 3/16	217	-2.05	7.19	28.5	Pass
T6	100 - 80	Top Girt	L 1.5 x 1.5 x 3/16	278	-1.34	7.19	18.6	Pass
T7	80 - 60	Top Girt	L 1.5 x 1.5 x 3/16	339	-0.52	7.19	7.2	Pass
T8	60 - 40	Top Girt	L 1.5 x 1.5 x 3/16	397	3.98	17.09	23.3	Pass
Т9	40 - 20	Top Girt	L 1.5 x 1.5 x 3/16	458	-0.72	7.19	10.0	Pass
T10	20 - 0	Top Girt	L 1.5 x 1.5 x 3/16	519	-0.51	7.19	7.0	Pass
T1	190 - 180	Bottom Girt	L 1.5 x 1.5 x 3/16	9	-0.32	7.19	4.4	Pass
T2	180 - 160	Bottom Girt	L 1.5 x 1.5 x 3/16	40	-0.57	7.19	7.9	Pass
Т3	160 - 140	Bottom Girt	L 1.5 x 1.5 x 3/16	101	-0.61	7.19	8.4	Pass
T4	140 - 120	Bottom Girt	L 1.5 x 1.5 x 3/16	161	-1.92	7.19	26.7	Pass
T5	120 - 100	Bottom Girt	L 1.5 x 1.5 x 3/16	221	-1.61	7.19	22.4	Pass
T6	100 - 80	Bottom Girt	L 1.5 x 1.5 x 3/16	281	-0.53	7.19	7.4	Pass
T7	80 - 60	Bottom Girt	L 1.5 x 1.5 x 3/16	342	-0.59	7.19	8.3	Pass
T8	60 - 40	Bottom Girt	L 1.5 x 1.5 x 3/16	401	-0.87	7.19	12.1	Pass
T9	40 - 20	Bottom Girt	L 1.5 x 1.5 x 3/16	462	-0.38	7.19	5.3	Pass
T10	20 - 0	Bottom Girt	L 1.5 x 1.5 x 3/16	522	1.05	17.09	6.2	Pass
T1	190 - 180	Guy A@189.625	9/16	576	12.61	21.00	60.0	Pass
T3	160 - 140	Guy A@159.75	5/8	590	13.65	25.44	53.7	Pass
								Pass
								Pass
								Pass
T5 T8 T1	120 - 100 60 - 40 190 - 180	Guy A@116.521 Guy A@59.75 Guy B@189.625	9/16 9/16 9/16	607 615 575	9.38 8.93 12.58	21.00 21.00 21.00	44.7 42.5 59.9	Pa

tnxTower Report - version 8.1.1.0

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
Т3	160 - 140	Guy B@159.75	5/8	583	13.64	25.44	53.6	Pass
T5	120 - 100	Guy B@116.521	9/16	602	9.16	21.00	43.6	Pass
T8	60 - 40	Guy B@59.75	9/16	614	8.92	21.00	42.5	Pass
T1	190 - 180	Guy C@189.625	9/16	574	12.66	21.00	60.3	Pass
Т3	160 - 140	Guy C@159.75	5/8	578	13.45	25.44	52.9	Pass
T5	120 - 100	Guy C@116.521	9/16	596	9.16	21.00	43.6	Pass
T8	60 - 40	Guy C@59.75	9/16	613	8.78	21.00	41.8	Pass
Т3	160 - 140	Torque Arm	L 3 x 3 x 1/4	586	12.19	46.58	26.2	Pass
		Top@159.75					36.4 (b)	
T5	120 - 100	Torque Arm	L 3 x 3 x 1/4	598	9.07	46.58	19.5	Pass
		Top@116.521					27.1 (b)	
Т3	160 - 140	Torque Arm	L 3 x 3 x 1/4	593	-8.04	30.52	26.4	Pass
		Bottom@159.75						
T5	120 - 100	Torque Arm	L 3 x 3 x 1/4	612	-5.80	30.52	19.0	Pase
		Bottom@116.521					O	
							Summary	
						Leg (T9)	104.6 71.2	Oka
						Diagonal (T2)	11.2	Pase
						(12) Horizontal	73.0	Pass
						(T2)	73.0	Fas
						Top Girt	30.5	Pass
						(T3)	30.5	Fas
						Bottom Girt	26.7	Pass
						(T4)	20.7	ras
						Guy A (T1)	60.0	Pas
						Guy B (T1)	59.9	Pas
						Guy C (T1)	60.3	Pas
						Torque	36.4	Pas
						Arm Top	50.4	1 453
						(T3)		
						Torque	26.4	Pas
						Arm	20.7	1 43
						Bottom		
						(T3)		
						Bolt	36.4	Pass
						Checks	00.7	1 430
						RATING =	104.6	Okay

APPENDIX B

BASE LEVEL DRAWING



APPENDIX C

ADDITIONAL CALCULATIONS

PJF Job No. <u>A13321-0013.001.8700</u>	Project Name: 702506 - A s	shford, CT	Engineer: <u>CMH</u> page ²
Factored Foundation Loads:	LC1		
Factored Axial Load (+Comp, -Ten) =		2 ft Square	9
Factored Horiz. Load at Top of Pier =	2 kips	Concrete Vol =	£.
Factored OTM at Top of Pier =	0 k-ft	2.27 yd^3	₩
LRFD Resistance and Load Factors:		}	
Φ	Dead Load Factors		
Soil Bearing = 0.6			
Soil Weight = 0.75	1.2	(8) #5 Vert Bars	Table Below 3 ft 5 ft 5.5 ft
Concrete Weight = 0.75	1.2	#4 Ties	
Soil Properties:			
Depth to Water Table =	99 ft		2 ft 3 3
Uplift Cone from	Top of footing	(5) #5 Rebar	5. <u>5</u>
Depth to Ignore for Uplift and PP =	3.333 ft	Bottom Only 7	Mater 1
	<u></u> n		
Passive Pressure has been included	on the nier and nad		
Layer Soil Cohesion Friction	Ult Depth		22 H
Thk Density Angle	Bearing		
ft pcf ksf degrees	ksf ft		
5 120 0 34	12 5.00	(5) #5 Rebar	
5 120 0 54	12 5.00		
		Bottom Only	
			7.353 ksf
Dimensions:		0.041 ft	238.4 kips
Pier Shape =	Square		230.4 Kips
Pier Width =	2 ft Square		5.417 ft
Pier Height above Grade =	$\underline{1}$ ft	▲	<u></u>
-	4.5 ft		
Depth to Bottom of Footing =	<u>4.5</u> ft	5.5 ft x 5.5 f	¥
Footing Thickness =		■ 5.5 IT X 5.5 I	<u>└</u> ▶
Footing Width, B =		I	
Footing Length, L =	5.5 ft		
Concrete:	0 b c i	Total Pad Reinf Stl	
Concrete Strength =	<u>3</u> ksi	Total Pier Reinf Stl	
Rebar Strength =	<u>60</u> ksi	Footing Thickness	=ft >= 1.05 ft = Min Ftg Thk, OK
Summary Results:			
-	uired Available		
	353 ksf 7.200 ksf	Stress Ratio =	102.1% in Soil Bearing
· · · · · · · · · · · · · · · · · · ·	. 0 _kips 21.5 _kips	Stress Ratio =	0.0% in Uplift
	069 ksi 0.164 ksi	Stress Ratio =	41.9% in Punching Shear
Bending Shear Stress = 23	3.8 kips 76.3 kips	Stress Ratio =	31.3% in Bending Shear
Bending Moment = 62.	824 k-ft 96.2 k-ft	Stress Ratio =	65.3% in Bending Moment
Conc Pier Reinforcing Steel = 21	8.9 kips 837.9 kips	Stress Ratio =	26.1% in Pier Rebar
	·		

1

k/ft

Capacity Ratio =

in Shear

k/ft

v1.4, Effective 01/06/16

Toe Shear =

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- 1) Paul J. Ford and Company has not made a field inspection to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these drawings, we should be contacted immediately to evaluate the significance of the deviation.
- 2) No allowance was made for any damaged, missing, or rusted members. The analysis of this tower assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the tower members have the same load carrying capacity as the day the tower was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing tower. The structural analysis by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.
- 4) This tower has been analyzed according to the minimum design wind loads recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-G. If the owner or local or state agencies require a higher design wind load, Paul J. Ford and Company should be made aware of this requirement.
- 5) The enclosed sketches are a schematic representation of the tower that we have analyzed. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions and for the proper fit and clearance in the field.
- 6) Miscellaneous items such as antenna mounts etc. have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

DEPARTMENT OF ADMINISTRATIVE SERVICES

August 23, 2021

Kyle Richers Transcend Wireless 10 Industrial Ave., Suite 3 Mahwah, New Jersey 07430

Re: Structural Analysis Report for Site #CTHA820A 702506 20 Seles Road, Ashford, CT

Mr. Richers,

Based on the Structural Analysis Report by Paul J. Ford & Company, dated July 28, 2021, the proposed additions to this tower comply with the structural requirements of the 2018 Connecticut State Building Code.

If you have any questions you may contact me as 860-713-5900.

Sincerely,

Darren Hobbs

Darren Hobbs Deputy State Building Inspector

Centered on Solutions"

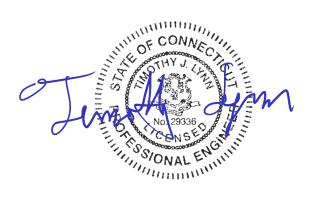
Structural Analysis Report

Antenna Mount Analysis

Site Ref: CTHA820A

20 Seles Road Ashford, CT

Centek Project No. 21005.30


Date: June 7, 2021

Rev.1: October 12, 2021

Max Stress Ratio = 92.1%

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

CENTEK Engineering, Inc. Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CTHA820A Ashford, CT Rev 1~ October 12, 2021 Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

• RF DATA SHEET, DATED 10/06/2021

October 12, 2021

Mr. Kyle Richers Transcend Wireless 10 Industrial Ave Mahwah, NJ 07430

Re: Structural Letter ~ Antenna Mount T-Mobile – Site Ref: CTHA820A 20 Seles Road Ashford, CT 06278

Centek Project No. 21005.30

Dear Mr. Richers,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting of three (3) 12-ft gate booms to support the equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G *Structural Standards for Steel Antenna Towers and Supporting Structures*.

The loads considered in this analysis consist of the following:

T-Mobile:

<u>Gate Booms:</u> Three (3) Commscope_VV-65A-R1 panel antennas, three (3) RFS APXVAALL24_43-U-NA20 panel antennas, three (3) Ericsson AIR6449 B41 panel antennas, three (3) Ericsson 4460 B25+B66 remote radio units and three (3) Ericsson 4480 B71+B85 remote radio units mounted on three (3) gate booms with a RAD center elevation of 170-ft +/- AGL.

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 101 mph for Ashford as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the **subject antenna mount have sufficient capacity** to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by: PHOTESSIONAL E Timothy J. Lynn, PE Structural Engineer

Prepared by:

Fernando J. Palacios Engineer CENTEK Engineering, Inc. Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CTHA820A Ashford, CT Rev 1~ October 12, 2021

<u>Section 2 - Calculations</u>

<u>Figure 1</u> Antenna Mount

Centered on Solutions[™] <u>www.centekeng.com</u> 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587

Development of Design Heights, Exposure Coefficients, and Velocity Pressures Per TIA-222-G

Loads on Equipment

Ashford, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 21005.30

Wind Speeds **Basic Wind Speed** V := 101 mph (User Input - 2018 CSBC Appendix N) Basic Wind Speed with Ice $V_i := 50$ mph (User Input per Annex B of TIA-222-G) Input Structure Type = (User Input) Structure_Type := Lattice SC := IIStructure Category = (User Input) Exposure Category = $Exp \coloneqq B$ (User Input) Structure Height = h := 190 ft (User Input) Height to Center of Antennas = z ≔ 170 ft (User Input) Radial Ice Thickness = $t_i := 1.00$ in (User Input per Annex B of TIA-222-G) Radial Ice Density = Id := 56.00pcf (User Input) Topographic Factor = $K_{7t} := 1.0$ (User Input) $K_a := 1.0$ (User Input) Gust Response Factor = $G_{H} = 1.11$ (User Input) Output Wind Direction Probability Factor = (Per Table 2-2 of $K_d := \|$ if Structure_Type = Pole 0.95 if Structure_Type = Lattice 0.85 TIA-222-G) (Per Table 2-3 of TIA-222-G) $I_{Wind} \coloneqq ||$ if SC = 1| = 1 0.87 Importance Factors = if "SC = 2 1.00 if SC = 3 1.15 $I_{Wind_w_Ice} := \parallel if SC = 1 \mid = 1$ 0 if SC = 2 1.00 if SC = 3 1.00 if SC = 1 = 1 0 if SC = 2 1.00 $K_{iz} := \left(\frac{z}{33}\right)^{0.1} = 1.178$ if SC = 3 1.25 $t_{iz} := 2.0 \cdot t_i \cdot I_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 2.356$ Velocity Pressure Coefficient Antennas = $Kz := 2.01 \cdot \left(\left(\frac{z}{zg} \right) \right)^{\frac{\alpha}{\alpha}} = 1.15$ $qz := 0.00256 \cdot K_d \cdot Kz \cdot V^2 \cdot I_{Wind} = 26$ Velocity Pressure w/o Ice Antennas = <mark>psf</mark> $qz_{ice} \coloneqq 0.00256 \cdot K_d \cdot Kz \cdot V_i^2 \cdot I_{Wind} = 6$ Velocity Pressure with Ice Antennas = psf

Subject:

Location:

Rev. 1: 10/12/2021

Centered on Solutions⁵⁵⁴ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 1: 10/12/2021

Ashford, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 21005.30

Development of Wind & Ice Load on Antennas

Antenna Data:				
Antenna Model =	Commscope - VV-	65A-R1		
Antenna Shape =	Flat		(User Input)	
Antenna Height =	L _{ant} ≔ 54.7	in	(User Input)	
Antenna Width =	W _{ant} := 12.1	in	(User Input)	
Antenna Thickness =	$T_{ant} := 4.6$	in	(User Input)	
Antenna Weight =	WT _{ant} := 24.0	lbs	(User Input)	
Number of Antennas =	N _{ant} := 1		(User Input)	
Antenna Aspect Ratio =	$Ar_{ant} \coloneqq \frac{L_{ant}}{W_{ant}} = 4.5$			
Antenna Force Coefficient =	Ca _{ant} = 1.29			
Wind Load (without ice)				
Surface Area for One Antenna =	$SA_{antF} \coloneqq \frac{L_{ant} \cdot W_{ant}}{144}$	= 4.6		sf
Total Antenna Wind Force Front =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant}$	• K _a • SA _{ar}	_{ntF} = 168	<mark>lbs</mark>
Surface Area for One Antenna =	$SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144}$	= 1.7		sf
Total Antenna Wind Force Side =	I44 F _{ant} ≔qz•G _H •Ca _{ant}		6.4	lbs
		• R _a • 3R _{ar}	hts = 04	103
Wind Load (with ice)				
Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} := \frac{(L_{ant} + 2)}{(L_{ant} + 2)}$	$\frac{2 \cdot t_{iz} \cdot (W)}{144}$	$\frac{1}{1} + 2 \cdot t_{iz}$ = 6.9	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca$	_{ant} ∙ K _a • S	A _{ICEantF} = 62	lbs
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} \coloneqq \frac{(L_{ant} + 2)}{(L_{ant} + 2)}$	$\frac{2 \cdot t_{iz} \cdot (T_a)}{144}$	$\frac{1}{1} + 2 \cdot t_{iz} = 3.8$	sf
Total Antenna Wind Force w/ Ice Side =	Fi _{ant} ≔ qz _{ice} • G _H • Ca	ant ∙ Ka • S	A _{ICEantS} = 34	<mark>lbs</mark>
Gravity Load (without ice)				
Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 24$			lbs
Gravity Loads (ice only)				
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \boldsymbol{\cdot} W_{ant} \boldsymbol{\cdot} T_{a}$	_{int} = 3045		cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq (L_{ant} + 2 \cdot t_{iz}) \cdot$	$(W_{ant} + 2$	$\cdot t_{iz} \cdot (T_{ant} + 2 \cdot t_{iz})$	- V _{ant} = 6257
				cu in
Weight of Ice on Each Antenna =	$W_{ICEant} \coloneqq \frac{V_{ice}}{1728} \cdot Id$	= 203		lbs
Weight of Ice on All Antennas =	W _{ICEant} • N _{ant} = 203			<mark>lbs</mark>

Centered on Solutions⁵⁵ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject: Location:

Rev. 1: 10/12/2021

Ashford, CT

cu in

lbs

Prepared by: F.J.P Checked by: T.J.L. Job No. 21005.30

Development of Wind & Ice Load on Antennas

Antenna Data:			
Antenna Model =	RFS APXVAALL24_4	3-U-NA	20
Antenna Shape =	Flat		(User Input)
Antenna Height =	L _{ant} := 95.9	in	(User Input)
Antenna Width =	W _{ant} := 24.0	in	(User Input)
Antenna Thickness =	T _{ant} := 8.5	in	(User Input)
Antenna Weight =	WT _{ant} := 149.	lbs	(User Input)
Number of Antennas =	$N_{ant} \coloneqq 1$		(User Input)
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.0$		

 $Ca_{ant} = 1.27$

Antenna Force Coefficient =

Wind Load (without ice)

Surface Area for One Antenna =

Total Antenna Wind Force Front =

Surface Area for One Antenna =

Total Antenna Wind Force Side =

$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 16$		
$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 574$	<mark>lbs</mark>	

$$SA_{antS} \coloneqq \frac{L_{ant} \cdot T_{ant}}{144} = 5.7$$

$$F_{ant} \coloneqq qz \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{antS} = 203$$
Ibs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 20.1$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{ICEantF} = 176$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 9.2$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 81$	<mark>lbs</mark>
Gravity Load (without ice)		
Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 149$	lbs
Gravity Loads (ice only)		
Volume of Each Antenna =	$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2 \cdot 10^4$	cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(W_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(T_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) -$	$V_{ant} = 2 \cdot 10^4$

Weight of Ice on Each Antenna =

$$W_{ICEant} := \frac{V_{Ice}}{1728} \cdot 1d = 603$$
 Ibs

Weight of Ice on All Antennas =

 $W_{ICEant} \cdot N_{ant} = 603$

63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Rev. 1: 10/12/2021

Ashford, CT

lbs

Prepared by: F.J.P Checked by: T.J.L. Job No. 21005.30

Development of Wind & Ice Load on Antennas

Antenna Data:			
Antenna Model =	Ericsson AIR6449 B4	11	
Antenna Shape =	Flat		(User Input)
Antenna Height =	L _{ant} ≔ 33.1	in	(User Input)
Antenna Width =	W _{ant} := 20.5	in	(User Input)
Antenna Thickness =	T _{ant} ≔ 8.3	in	(User Input)
Antenna Weight =	$WT_{ant} = 103$	lbs	(User Input)
Number of Antennas =	$N_{ant} \coloneqq 1$		(User Input)
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 1.6$		

 $Ca_{ant} = 1.2$

Antenna Force Coefficient =

Wind Load (without ice)

Surface Area for One Antenna =	SA

Total Antenna Wind Force Front =

Surface Area for One Antenna =

Total Antenna Wind Force Side =

$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 4.7$	
$F_{ant} \coloneqq qz \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{ant} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{antF} = 160$	<mark>lbs</mark>

$$SA_{antS} \coloneqq \frac{L_{ant} \cdot T_{ant}}{144} = 1.9$$

$$F_{ant} \coloneqq qz \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{antS} = 65$$
Ibs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 6.6$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{1CEantF} = 55$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 3.4$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 28$	<mark>lbs</mark>

Gravity Load (without ice)

Weight of All Antennas =

<mark>ennas =</mark>	$WT_{ant} \cdot N_{ant} = 103$

Gravity Loads (ice only)			
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \bullet W_{ant} \bullet T_{ant} \Rightarrow$	= 5632	cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(W\right)$	$V_{ant} + 2 \cdot t_{iz} angle \cdot (T_{ant} + 2 \cdot t_{iz}) -$	V _{ant} = 6774
Weight of Ice on Each Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 2$	20	cu in Ibs
Weight of Ice on All Antennas =	$W_{ICEant} \cdot N_{ant} = 220$		<mark>lbs</mark>

K engineering

Subject:

Location:

Rev. 1: 10/12/2021

Loads on Equipment

lbs

lbs

lbs

Ashford, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 21005.30

Centered on Solutions⁵⁴ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Development of Wind & Ice Load on RRUS's

RRUS Data:

RRUS Model =	Ericsson 4480 B71+	B85	
RRUS Shape =	Flat		(User Input)
RRUS Height =	L _{RRUS} ≔ 21.8	in	(User Input)
RRUS Width =	W _{RRUS} := 15.7	in	(User Input)
RRUS Thickness =	T _{RRUS} ≔ 7.8	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 84$	lbs	(User Input)
Number of RRUS's =	N _{RRUS} := 1		
RRUS Aspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} = \frac{1}{2}$	1.4	
RRUS Force Coefficient =	Ca _{RRUS} = 1.2		

Wind Load (without ice)

Surface Area for One RRUS =	$SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.4$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSF} = 81$	lbs
Surface Area for One RRUS =	$SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.2$	sf

 $W_{ICERRUS} \coloneqq \frac{V_{ice}}{1728} \cdot Id = 133$

W_{ICERRUS} • N_{RRUS} = 133

 $\mathsf{F}_{\mathsf{RRUS}} \coloneqq \mathsf{qz} \cdot \mathsf{G}_{\mathsf{H}} \cdot \mathsf{Ca}_{\mathsf{RRUS}} \cdot \mathsf{K}_{\mathsf{a}} \cdot \mathsf{SA}_{\mathsf{RRUSS}} = 40$

Total RRUS Wind Force =

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} =$	3.8 sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSF} = 31$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2$.3 sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{ICERRUSS} = 19$	lbs
Gravity Load (without ice)		
Weight of All RRUSs =	WT _{RRUS} • N _{RRUS} = 84	lbs
Gravity Loads (ice only)		
Volume of Each RRUS =	$V_{RRUS} \coloneqq L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 2670$	cu in
Volume of Ice on Each RRUS =	$V_{ice} := \left(L_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(T_{RUS} + 2 \cdot t_{iz} \right) \cdot \left(T_{RUS} + 2 \cdot t_{iz} $	$2 \cdot t_{iz}$ - $V_{RRUS} = 4102$
		cu in

Weight of Ice on Each RRUS =

Weight of Ice on All RRUSs =

CTHA820A_TIA RevG Load Calculations.mcdx

Subject:

Loads on Equipment

Location:

Centered on Solutions⁵⁰ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Rev. 1: 10/12/2021

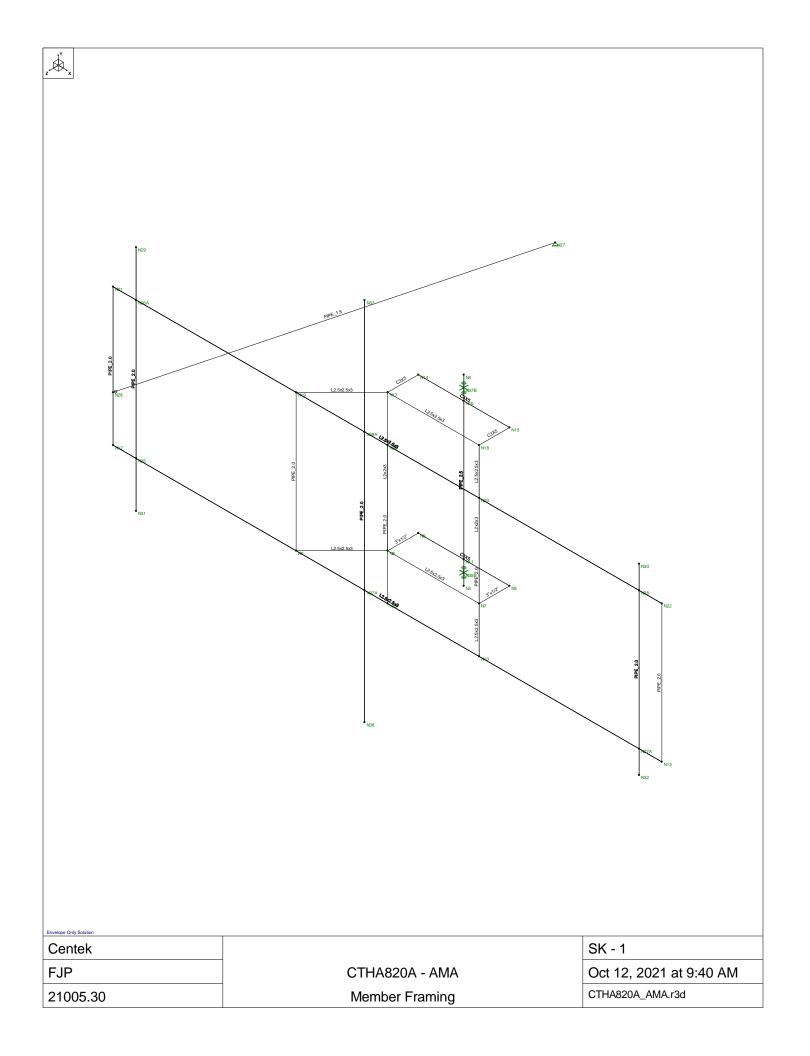
Ashford, CT

Prepared by: F.J.P Checked by: T.J.L. Job No. 21005.30

Development of Wind & Ice Load on RRUS's

RRUS Data:

RRUS Model =	Ericsson 4460 B25+	B66	
RRUS Shape =	Flat		(User Input)
RRUS Height =	L _{RRUS} := 19.6	in	(User Input)
RRUS Width =	W _{RRUS} ≔ 15.7	in	(User Input)
RRUS Thickness =	T _{RRUS} := 12.1	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 109$	lbs	(User Input)
Number of RRUS's =	N _{RRUS} := 1		
RRUS Aspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} = 7$	1.2	
RRUS Force Coefficient =	Ca _{RRUS} = 1.2		


Wind Load (without ice)

Surface Area for One RRUS =	$SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.1$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSF} = 73$	lbs
Surface Area for One RRUS =	$SA_{RRUSS} \coloneqq \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.6$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSS} = 56$	lbs

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} =$	= 3.4 sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{iCERRUSF} = 29$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} =$	2.8 sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{iCERRUSS} = 24$	lbs
Gravity Load (without ice)		
Weight of All RRUSs =	WT _{RRUS} • N _{RRUS} = 109	<mark>lbs</mark>
Gravity Loads (ice only)		
Volume of Each RRUS =	$V_{RRUS} \coloneqq L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 3723$	cu in
Volume of Ice on Each RRUS =	$V_{ice} \coloneqq \left(L_{RRUS} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(W_{RRUS} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(T_{RRUS} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(T_{RUS} + 2 \boldsymbol{\cdot} t_{iz}\right) \boldsymbol{\cdot} \left(T_{RUS$,
Weight of Ice on Each RRUS =	$W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 150$	cu in Ibs
Weight of Ice on All RRUSs =	W _{ICERRUS} • N _{RRUS} = 150	<mark>lbs</mark>

CTHA820A_TIA RevG Load Calculations.mcdx

${\scriptsize \square}{\scriptsize \square}{\scriptsize \square}{\scriptsize \square}{\scriptsize H}{\scriptsize H}{\scriptsize H}{\scriptsize H}{\scriptsize H}{\scriptsize H}{\scriptsize H}{\scriptsize H$	Ô[{]æ}^ Ö^∙ãt}^¦	KÔ^}♂^\ KØRÚ
Centered on Solutions** www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	R[àÁÞ [°] {à^¦ T[å^∣ÁÞæ{{^	KGF€€ÍÈH€ KÔVPOÈG€02ÁÄÁCEFOE

fţ`cVUŁAcXY`GYHŋb[g

Öã•] æ ÂJ^&dā[}•Á[¦ÁT ^{ à^¦ÁÔæ}&•	ÍÁ
Tæ¢ÁQ,c^¦}æ¦ÁÚ^&cąį}•Áį¦ÁT^{{ à^¦ÁÔæ}&•	JÏÁ
Q& å^ÁU@ æ AÖ^~{ ¦{ æ a } N	Ϋ́∧∙
Qk ¼^æ^Ápæaja] *Á Özaj zasač Á[¦ÁYā] å Ñ	Ϋ́∧∙
Q&ĭå^Áræ]jð;*Ñ	Ϋ́∧∙
V¦æ}∙ÁŠ[æåÁÓc;}ÁQ;c^\•^&cā}*ÁY[[åÁYæ∦Ñ	Ϋ́∧∙
Œ^æĥŠ[æåÅT^•@ÁÇ#jâŒD	FII
T^¦*^Á⁄[^¦æ}&^Á͡ᠿD	ÈEG
ÚËÖ^ cæ405;æf•ã;Á/[^¦æ;&^	€É€Ã
Ql& ĭå^ÁÚËÖ^ œxÁ[¦ÁYæ‡ ●Ñ	Ϋ́∧∙
Œ ([{ æaã&æa ^Â@A\'æeA\'uã-}^••Â[¦ÂY æ •Ñ	Ϋ́∧∙
Tæ¢ÁQt\¦æqã[}∙Á[¦ÁYæ‡ÁUcã}^∙∙	Н
Ő¦æçãĉÁOB&&^ ^¦æaāį}ÁÇdÐ^&âCD	HCHÈG
YæļÁT^•@ÈÜã^ÁÇāD	FG
Ôā*^}•[` cā[} ÁÔ[} ç^¦*^} & Á/[ÊAÇFÊÔÊD	1
X^¦ca&aelAOEcã	Ϋ́
Ő[[àæ‡ÁT^{ à^¦ÁU¦ã^}cææã[] ÁÚ æ}^	ÝΖ
Úcæa&ÁU[ç^¦	Ù]æ∲•^ ÁŒ& &^ ^¦æ^å
Ö^}æ{ 8&ÅÜ[ç^¦	088&^ ^¦æe^åÂÛ[ç^¦
	· · · · · · · · · · · · · · · · · · ·
P[XÂÜ[^åÂÛc^^ ÂÔ[å^	OEDÙÔÁFIc@ÇH΀ËF€DKAŜÜØÖ
CEâbĕ•CAÛcã-}^••Ň	Ÿ^∙ (@ \¦æäc,^D
ÜQÜQEÔ[}}^&&a[}ÁÔ[å^	OEDUŐÁFI c@ÇHÎ €ËF€DAÍOEÙŐ
Ô[å ÁØ[¦ {` ^ å ÁŪc^^ ÂÔ[å^	CEDICÁUF€€ÉF€KÁCEÚŐ
Y [[å ÂÔ[å^	OEY ŐÁÞÖÙÉFGKÁDEÙŐ
Y[[åÁV^{{}] ^{aeč ^	ŁÁF€€Ø
Ô[}&¦^c^ÅÔ[å^	OBÔCÁHFÌËFF

O[} & AU[an	UEUGHTIEF
Tæ•[}¦^ÂÔ[å^	ŒÔŒŰ H€ËFFKÆÐŪÖ
OĘ̃`{ā}`{ ÁÔ[å^	OEDFAOEÖT FÉF€KÁQEÙÖÁÉÃÓČ ąåãj*
Úœ∄, ^••ÂĴơ^^ ÂÔ[å^	OEDÛÔÁFI c@ÇHÎ €ËË €DKAÛEÙÔ
CEåbĕ•cÁJcã-}^••Ň	Ÿ^∙Ç@\¦æŧŧj⊂^D

Þ`{ à^¦Áį,~ÂĴ@\æÂÜ^*ãį}•	1
Ü^*ā[}ÁÛ]æ&a]*Á0,&\^{ ^}oá@jD	
Óãæe¢ãæ¢ÁÔ[`{}ÁT^cQĮå	Ò¢æ\$cÁQ;c^*¦æaāį}
Úæl{ ^ÁÔ^œeÁØæ&q[¦ÁÇÜÔŒĐ	ÊÍ
Ô[}&\^&\ÂJd^•• ÁÔ [&\	Ü^&ca}*` æ
W•^ÁÔ¦æ&∖^åÁÙ^&œį }•Ñ	Ϋ́^∙
W•^ÁÔ¦æ&∖^åÂÛ^&cąį}•ÂÛ æàÑ	Ϋ́^∙
ÓæåÁ2læ{ā]*Á∕æ}}ãj*•Ñ	Þ[
W}ĭ•^åÁØ[¦&^ÁYæł}∄;*•Ñ	Ϋ́^∙
Tā; ÁFÁÓæi ÁÖãæ; ÉÁÚ] æstā; * Ñ	Þ[
Ô[}&\^&\AÜ^àæ\ÂÜ^c	ÜÒӌܴÙÒV´ŒÙVTŒÊFÍ
T ą, Áà ÁÙơ^^ Á[¦ÁÔ[˘ { }	F
Tæ¢ÆÃ ÂU&^^ Æ[¦ÆÕ[`{}	Ì

fł, `cVUŁAcXY` GYłłjb[gź7 cbłjbi YX

Ù^ã-{ ã& ÁÔ[å^	ŒÙÔÒÄËF€
Ù^ã { ã& ÁÔæ•^ÁÔ ^çæaãį }ÁĢaD	Þ[🕉 e^¦^å
O£ååÁÓæ≉^ÁY^ãť@®Ñ	Ÿ∧∙
ÔcÁÝ	È€G
ÔœZ	È€G
VÁÝÁÇ∮^&D	Þ[🕉 🖓 🖒 å
VÁZÁÇI^&D	Þ[🕉 🖓 🖒 å
ÜŔ	Н
ÜÁZ	Н
ÔcĐ¢] ÈÝ	ËÍ
ÔơÔ¢] ĦŻ	ĔÍ
ÙÖF	F
ÙÖÙ	F
ÙF	F
VŠÁĢ^&D	Í
Üã∖ÁÔæ	CÁN HÁQQ
Ö¦ão⁄Ôæc	U c@\{
U{ÁZ	F
UĮÄ	F
ÔåÁZ	1
ÔåÁÝ	
ÜQÁZ	F
Ü@Ä	F

<chFc``YX`GhYY`DfcdYfh]Yg

	Šæà^	Ò/ÃŽ•ãa	ÕÅŽ•ãã	Þĭ	V@∾¦{Áçeprè	ÈÖ^}∙ãĉŽĐcâHá	Ÿð⊁∣åŽ∙ãá	Ü^	ØŽ∙ãa	Üc
F	OH ÍÁÖ HÍ	GJ€€€	FFFÍ I	ÈH	ÊÍ	ÈJ	HÎ	FĚ	ÍÌ	FÈG
G	OÉÍGÃÕ¦Ě€	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€	FÈ	ÎÌ	FÈG
Н	ŒJG	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€	FÈ	ÍÌ	FÈG
	OÉL€€ÃÕ¦ÈLG	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	١G	FÈH	ÎÌ	FÈ
Í	OÉL€€ÃÕ¦ÈLÎ	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	l Î	FÈG	ÍÌ	FÈF
Î	OÉ HÁÕ¦æå^ÁÓ	GJ€€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	HÍ	FĚ	ÍÌ	FÈG

<chiFc``YX`GhYY`GYWFjcb`GYhg

	Šæè^	Ù@#}^	V^]^	Ö^∙ã}}ÁŠãa c		Ö^• ã} ÁÜ≚ÈÈ	È05-243)Gá	Q^Ãã)lá	Q:ÁŽajlá	RÁŽájlá
F	(Č)DÍOĘ (C^}} }ǽ(T æ;c	ÚQÚÒ′ GÈ€	Ô[゙{}	Úą ^	OÉ HÁÕ¦æå⊞	V^] 3&aa‡	FÈ€G	ÊĠ	ÊĠ	FÈGÍ
G	ÇÒDP ÙÙI¢I¢FÐ	PÙÙI ÝHÝI	Ó^æ	V°à^	CÍ£€€ÃÕ¦ÈLÎ	V^] ã&æ	GÈIF	HÈF	ÎÈÉÍ	ΪÈÎ
H	œ ÚDÚ	HÄ¢F£05Ä	Ó^æ	ÜÒÔV	ŒHÎÃÕ¦ÈHÎ	V^] ã&æ	FĚ	ÆHF	FÈEGÍ	ÈFG
1	HÔĐỚ	ÔHÝÍ	Ó^æ	Ô@;}}^	ŒHÎÁÕ¦ÈHÎ	V^] ã&æ	FÈÏ	ÈGIF	FÈÍ	ÈEIH
Í	(ÒDĚČĚ ¢GĚ ¢HĐÎ	ŠGĒĽ¢GĒĽ¢H	Ó^æ	Ùậ* ^ÁQĘ*È	Èofh Áõ¦ Èh	V^] ã&æ	È€F	ĚHÍ	ĚΗ	È€FF
Î	c)/^XC	ÚQÚÒ' GĚ	Ó^æ	Úą ^	ŒHÃÕ¦æå⊞	V^]ã&æ	FÊF	FÈÍ	FÈÍ	GÈLJ
Ï	(ÔĽŠG¢G¢HÐFÎ	ŠG¢G¢H	Ô[゙{ }		Èoff Áõ¦ Èf	V^] ã&æ	ĒGG	Ē	ÈGÏF	È€€J
Ì	(CÓDÁÙcæà∣ã^¦ÁCE{	ÚQÚÓ FĚ	Ó^æ	Úą ^	ŒÍHÃÕ¦æå⊞	• • • • • • • • • • • • • • • • • • • •	ËIJ	È	ÈGJH	ĚÌÎ
J	ÇÚD00,≣c^}}æÁTæscúðja^ÁGBEAÚVÖ	ÚQÚÒ́′ GÈ€	Ô[[°] { }	Úą ^	ŒÍHÃÕ¦æå⊞	V^]ã&æ	FÈ€G	ÊĠ	ÊĠ	FÈGÍ

< chiFc``YX'GhYY`8 Yg][b`DUfUa YhYfg

	Šæà^	Ù@#}^	Š^}*c@Žca	á Šà^^Žoá	Šà∷Žoá	Š&[{]Át[]ŽÊ	ੀËŠ&[{]Áa[cŽi	ĦŜËq¦`Ĥ	È S^^	S:: Ôà	
F	ТН	ÇÒDX^¦c				Šà^^					Šæe^¦æ⊧
G	TI	HÔĐÔN	G			Šà^^					Šæc^¦æ⊧
H	ТÍ	QDÚ æc	G Èï			Šà^^					Šæe^¦æ⊧
1	ΤÎ	∭ (ÚDÚ)æ	ÊÏ			Šà^^					Šæc^¦æ⊧
Í	ΤÏ	ÇÔDŠGĚ ¢ŒĤ				Šà^^					Šæe^¦æ⊧
Î	ΤÌ	ÇÖDĞGĚ ¢GÌÌÌ	[‡] FÈ FI			Šà^^					Šæc^¦æ⊧
Ï	ТJ	ÇÖDĞGĚ ¢GÌÌÌ	[‡] FÈ FI			Šà^^					Šæe^¦æ⊧
Ì	T F€	ÇÖDĞGĚ ¢GÌÌÌ		I				1			Šæc^¦æ⊧
J	T FF	HÔĐÔŲ	G Èï			Šà^^ Šà^^ Šà^^ Šà^^ Šà^^ Šà^^ Šà^^					Šæe^¦æ⊧
F€	T FG	HÔĐÔN	ÊÏ			Šà^^					Šæc^¦æ⊧
FF	T FH	RÔDÔH	ÊÏ			Šà^^					Šæe^¦æ⊧
FG	T FI	ÇÖDĞGĚ¢Œ				Šà^^					Šæc^¦æ⊧
FH	T FÍ	ÇÖDĞGĚ ¢ŒÌÌÌ	[‡] FÈ FI			Šà^^					Šæe^¦æ⊧
FI	T FÎ	ÇÖDĞGĚ ¢GÌÌÌ				Šà^^					Šæc^¦æ≑
FÍ	ΤFΪ	ÇÖDĞGĚ ¢GÌÌÌ	‡ FG	I							Šæe^¦æ≑
FÎ	T FÌ	ÇÔDŠG¢G¢HĐÌ				Šà^^					Šæe^¦æ⊧
FÎ FÏ	T FJ	ÇÔDŠG¢G¢HĐÌ				Šà^^					Šæe^¦æ⊧
FÌ	TG€	ÇÒDÁ0E; c^}}È				Šà^^					Šæc^¦æ⊧
FJ	TGF	ÇÒDÁ05; c^}}È				Šà^^					Šæe^¦æ⊧
G€	ΤGG	(CÓDÁ0E; c^}}È				Šà^^					Šæc^¦æ⊧
GF	ТGH	ÇÒDÁ0E; c^}}È				Šà^^					Šæe^¦æ⊧
GG	ΤĠ	ÇÖDÂÛ cæà ã ÈÈ				Šà^^ Šà^^					Šæc^¦æ⊧
GH	ÚÙÈF	ÇÚD00Ęc^}}æ				Šà^^					Šæe^¦æ⊧
G	ÚÙÈH	ÇÚD00Ęc^}}æ				Šà^^					Šæc^¦æ⊧
G G G	ТĠ	ÇÚD00Ęc^}}æ				Šà^^					Šæe^¦æ⊧
Ĝ	ÚÙÈG	ÇÚD07,c^}}æi	ÈÌ			Šà^^					Šæc^¦æ⊧

A Ya VYf Df Ja Ufm8 UfU

	Šæà^	ØÂR[ậic	RÁR[ã}c	SÁR[ậ]cÜ	[œæ¢¢∰	ÈÙ^&cã[}ÐÙ@æ]^	V^]^	Ö^∙ã}}ÁŠãic Taac^¦ãa¢ Ö^•ã}A⊞È
F	TH	ÞΗ	ÞI			QÒDX^¦c	Ó^æ	Úą]∧ O£ÍHÁÕ¦ÈÈĖV^]ã&aa)
G	TI	ÞÎ	ÞÍ			(ÔDÔH	Ó^æ	Ô@; }^ 0.HÎ ÁÕ \ HEV^] 38; and
Н	ТÍ	ÞÎ	ÞÌ			۵۵ (ÚD)	Ó^æ	ÜÒÔV ŒĤ ÃÕ¦\₩€V^] ã&æ
1	ΤÎ	ÞÍ	ÞÏ			۵۵ (ÚÚ)	Ó^æ	
Í	ТΪ	ÞÌ	ÞÏ			ÇÒLŽŠŒĚ¢ŒĚ¢HEPÎ	Ó^æ	Ùã;* ^ÁOĘ ∰ OEHÎ ÁÕ¦ ∰ V^]ã&æe
Î	ΤÌ	ÞÏ	ÞF€			ÇÒDŠGĂ ¢GĂ ¢HBFÎ	Ó^æ	Ùã;* ^ÁOĘ ∰ OEHÎ ÁÕ¦ ∰ V^]ã&æe
Ï	ТJ	ÞÌ	ÞJ		Ğ€	(Ĉ)DŠGĂ ¢GĂ ¢HBFÎ	Ó^æ	
ì	TF€	ÞFG	ÞFH			ÇÒDŠGĂ ¢GĂ ¢HBFÎ	Ó^æ	Ùã;* ^ÁOĘ ∰ OEHÎ ÁÕ¦ ∰ V^]ã&æ¢
J	T FF	ÞFI	ÞŔ			(ÔDÔH	Ó^æ	Ô@ee}}^ 0EHÎ ÁÕ¦ ÈË\\^] ãⅇ}
F€	T FG	ÞFÍ	ÞŔ		FÌ€	ÇÒDÔH	Ó^æŧ	Ô@ee}}^ 00HÎ ÁÕ¦ 🗮 \^] ãⅇ}
FF	T FH	ÞFI	ÞÄ			(ÔDÔH	Ó^æŧ	Ô@;}}^ 0.HÎ ÁÕ; HÊV^] 3&;
FG	T FI	ÞFÏ	ÞŔ		J€	ÇÒLŠŒĽ¢ŒĽ¢HEFÎ	Ó^æŧ	
FH	T FÍ	ÞFÌ	ÞŒ		J€	ÇÒDŠGĂ ¢GĂ ¢HBFÎ	Ó^æ	Ùã;* ^ÁOĘ ⅲ OEHÎ ÁÕ¦ ⅲ V^] ã&æe
FI	T FÎ	ÞFÏ	ÞFJ		FÌ€	ÇÒDŠGĂ ¢GĂ ¢HBFÎ	Ó^æ	Ùã;* ^ÁOĘ ∰ OEHÎ ÁÕ¦ ∰ V^]ã&æ¢
FÍ	ΤFΪ	ÞÆ	₽G		J€	ÇÒDŠGĂ ¢GĂ ¢HBFÎ		
FÎ	T FÌ	ÞÌ	ÞFÏ		J€	<u>(</u> ÒDŠG¢G¢HÐFÎ		Ùã;* ^ÁO⋤ ⅲ OEĤ ÁÕ¦ ⅲ √^] ã&æ
FΪ	T FJ	ÞFÌ	ÞÏ		Ğ€	(ČDĽŠG¢G¢HÐFÎ		Ùã;* ^ÁO5; ⅲOEĤ ÁÕ¦ ⅲ \/^] ã&æ
FÌ	TG€	ÞÆ	ÞFG			ÇÒDÁOE; c^} } æÁT æ•c	Ô[ĭ ⅲ	
FJ	TGF	ÞFJ	ÞJ			QÒDÁOE; c^} } æ X æ c	Ô[ĭ ⊞	
G€	TGG	ÞŒ	ÞF€			(COD405; c^} } æ4T æ• c	Ô[ĭ ⅲ	
GF	T GH	ÞŒ	ÞFH			ÇÒDÁOE;c^}}æÁTæ∙c	Ô[˘ ₩	Ú∄]^ ŒÍHÁÕ¦⊞ÈV^]ã&æ

ÜQÜQEËHÖÁX^¦∙ā[}Árī ÈEÈL Á¥¥¥¥¥ÄRKAEÌÈEÌÈEÌÉEÓæ&\`]ÁÖ[&`{ ^}œæã[}aÜ^çÈEaÜãræÁHÖaÔVPOÈGECECETOEÈHåaÁ Úæ*^ÁH

A Ya VYf Df]a Ufm8 UfU fl7 cbl]bi YXŁ

	Šæè^	OÁR[ậ]c	RÁR[ã}c	SÁR[ậ]cÜ[œæ¢0∰È		V^]^	Ö^∙ã}}Ášão	c Tæc^¦ãæ;Ö^∙ã}}Á⊞È
GG	ТĠ	ÞĜ	ÞĠ		ÇÒDÁÙcæà ã^¦ÁCE{	Ó^æ	Úą ^	ŒHHŐ¦₩ĖV^]ã&æ
GH	ÚÙÈF	ÞGJ	ÞÆ		ÇÚD005;c^}}æÁTæcćÚā]^ÁGÈEÁÛVÖ	Ô[˘ ⅲ	Úą^	ŒÍHÁÕ¦₩ĖV^]ã&æ¢
G	ÚÙÈH	ÞH€	ÞHG		(ÚD00≣;c^}}æÁTæ;cíÚā]^ÁGÈEAÛVÖ	Ô[ĔĤ	Úą^	ŒÍH/ĨÕ¦ÈÈÈV^]ã&æ
GÍ	ТĠÏ	ÞĤ	ÞH		(ÚD00≣;c^}}æÁTæ;cíÚā]^ÁGÈEAÛVÖ	Ô[˘ ⅲ	Úā ^	ŒHHŐ¦₩ĖV^]ã&æ
Ĝ	ÚÙÈG	ÞH	ÞĤ		ÇÚDQ5;c^}}æÁTæcćÚā]^ÁGÈ≦ÁÙVÖ	Ô[ĭ ⅲ	Úą ^	ŒHÃÕ¦₩ĖV^]ã&æ

>c]bh6cibXUfm7cbX]hjcbg

	R[ð] oÁŠæà∧∣	ÝÄŽtB)já	ΫÁĨXĐājá	ZÁŽiÐajá	Ý ÁÜ[dĚŽ ËeĐæåá	ŸÁÜ[dĚŽËeĐæåá	ZÁÜ[deŽËe®aæåá
F	ÞĞ	Ü^æ\$cā[}	Ü^æ\$kaį́}	Ü^æ\$kaį́}			
G	ÞН̈́Ó	Ü^æ\$cā[}	Ü^æ\$kaį́}	Ü^æ\$kaį́}		Ü^æ\$cā[}	
Н	ÞĤÓ	Ü^æ\$cā[}	Ü^æ\$kaįį }	Ü^æ\$kaįį }		Ü^æ\$cā[}	

A Ya VYf Dc]bh@cUXg f6 @r &. 9ei]da YbhK Y][\ hL

	T^{ à^¦ÁŠæà^	Öãi^&cã∦}	Tæ*}ãĉå^ŽÊËcá	ŠĮ & actilį) ŽeĐÃ á
F	ÚÙÈ	Ϋ́	Ë€FG	ÈÈ
G	ÚÙÈF	Ϋ́	Ë€FG	I Ë JG
Н	ÚÙÈF	Ϋ́	Ë₽€J	GĚ
1	ÚÙÈG	Ϋ́	ÉÉÍ	ÉÌH
Í	ÚÙÈG	Ϋ́	ÉÉÉÍ	ΪĚ
Î	ÚÙÈH	Ϋ́	ÉÉÉ G	ÊÎÏ
Ï	ÚÙÈH	Ϋ́	ÉÉÉ G	HÈFÏ
Ì	ÚÙÈG	Ϋ́	E I	

A Ya VYf Dc]bh'@cUXg f6 @ '' . ₩ K Y[\ kŁ

	T^{à^¦ÁŠææà^	Öåi^&ca∦i}	Tæ*}ãĩå^ŽÊЁcá	ŠĮ & aectąį) ŽebŽA á
F	ÚÙÈ	Ϋ́	ËEG	ÈÈ
G	ÚÙÈF	Ϋ́	Ë₽€G	I Ĕ JG
Н	ÚÙÈF	Ϋ́	Ê	GĚ
	ÚÙÈG	Ϋ́	ËĤ€G	ÉÌH
Í	ÚÙÈG	Ϋ́	ËĤ€G	ΪĚ
Î	ÚÙÈH	Ϋ́		ÊÎÏ
Ï	ÚÙÈH	Ϋ́	ËF	HÈFÏ
Ì	ÚÙÈG	Ϋ́		

A Ya VYf Dc]bh@cUXg f6 @7 (`. K]bX k #=WYL ff dg2/Ł

	T^{à^¦ÁŠæà^ ÚÙÈF	Öãi^&cã[i}	Tať}ãčå^ŽÊËcá Ř€FÏ	ŠĮ &æđį } ŽeÉA á
F	ÚÙÈF	Ý	È€FÏ	È€Ì
G	ÚÙÈF	Ý	È€FÏ	I Ë JG
Н	ÚÙÈ	Ý	Ì€G	GĚ
	ÚÙÈG	Ý	È F	ÉÌH
Í	ÚÙÈG	Ý	È F	ΪĚ
Î	ÚÙÈH	Ý	È€FI	ÊÎÏ
Ï	ÚÙÈH	Ý	È€FI	HÈFÏ
ì	ÚÙÈG	Ý	È€FJ	

A Ya VYf Dc]bh@cUXg f6 @) . K]bX L fl \$ dg2tŁ

T^{à^¦ÁŠæàà^∣

Tæ*}ãčå^ŽÊËcá

ÜQÜQEEHÖÁX^¦∙ã[}ÁFÏÈEÈ Á¥¥¥¥ÃRVAEHEAHEADEASA`]ÁÖ[&`{ ^} cæaã[}aÜ^çÈFaÜãræÁHÖaÔVPOÈIG€OE OEFOEÈHåáÁ Úæ*^Á

A Ya VYf Dc]bh@cUXg f6 @) . K]bX L fl \$ dgZt fl cbljbi YXL

	T^{à^¦ÁŠææà^∣	Öãi^&cãįį}	Tæ*}ãõ å^ŽÊËcá	ŠĮ & ætāj } ŽeÉÃ á
F	ÚÙÈ	Ý	Ì€HG	ÈÈ
G	ÚÙÈ	Ý	Ì€HG	IËJG
Н	ÚÙÈ	Ý	Ì Î	GĚ
1	ÚÙÈG	Ý	ÈF€G	ÉÌH
Í	ÚÙÈG	Ý	ÈF€G	ΪĚ
Î	ÚÙÈH	Ý	ÈEHH	ÊÎÏ
Ï	ÚÙÈH	Ý	ÈEHH	HÈFÏ
Ì	ÚÙÈG	Ý	È	

A Ya VYf Dc]bh@cUXg f6 @7 * . K]bX k #=VW Nff dg2Ł

	T^{à^¦ÁŠæèà^∣	Öãå^&cã∦}	Tæ*}ãçã^ŽÊЁcá	Š[&æaā]}ŽaĐÃá ÈĐ€Ì
F	UUEF	Z	È	ÊGÊÌ
G	ÚÙÈ	Z	È	I Ë JG
Н	ÚÙÈ	Z	Ì€GJ	GĚ
	ÚÙÈG	Z	E Ì	ÉÌH
Í	ÚÙÈG	Z	E Ì	ΪĚ
Î	ÚÙÈH	Z	É €GÌ	ÊÎÏ
Ï	ÚÙÈH	Z	ÈECÌ	HÈFÏ
Ì	ÚÙÈG	Z	È	

A Ya VYf Dc]bh@cUXg f6 @7 + K lbX Nfl \$ dg2t

	T^{ à^¦ÁŠæè^ ÚÙÈF	Öãi^&cã∦}	Tæ*}ãã å^ŽÊËcá	ŠĮ&æaa∰}ŽeĐÃá ÈG€
F	ÚÙÈ	Z	E I	ÈEÌ
G	ÚÙÈF	Z	E I	I Ĕ JG
Н	ÚÙÈF	Z	È H	GĚ
1	ÚÙÈG	Z	ÈÈÌÏ	ÉÌH
Í	ÚÙÈG	Z	ÈÈÌÏ	ΪĚ
Î	ÚÙÈH	Z	È	ÊÎÏ
Ï	ÚÙÈH	Z	È	HÈFÏ
Ì	ÚÙÈG	Z	È F	

A Ya VYf 8]glf]Vi hYX @ UXg f6 @ ('. 'K]bX k #+WY L ff 'dgZŁ

	T^{à^¦ÁŠææà^∣	Öãå^&ca∰a}}	Ùcæ¦cÁTæ*}ãĩå^ŽĐeÊ2Ê∙-á	Ò}åÁTæt}ãčå^ŽĐo£2Ê∙~á	Ù cæ ká (& & & & & & & & & & & & & & & & & & &	ÊÒ}åÆS[&æa€ī[}ŽdÈÈ
F	T FÎ	Ý	Ì€€F	È€€F	€	€
G	ТJ	Ý	È€€F	È€€F	€	€
Н	T FÍ	Ý	Ì€€F	Ì€€F	€	€
	ΤÌ	Ý	Ì€€F	È€€F	€	€
Í	T FÌ	Ý	Ì€€F	Ì€€F	€	€
Î	T FJ	Ý	Ì€€F	È€€F	€	€
Ï	ΤН	Ý	Ì€€F	Ì€€F	€	€

A Ya VYf 8]ghf]Vi hYX @ UXg f6 @) . K]bX L f1 \$ dg2L

	T^{à^¦ÁŠææà^∣	Öãå^&cã[}	ÙcæloÁTæt}ãc°å^ŽÐe£B2Ê∙-á	Ò}åÁTæt}ãčå^ŽĐœÊ2Ê∙~á	ÚcæloÁŠ[&æetā]}ŽÈÈ	ÈÒ}åÁŠ[&æa€[}ŽdÈÈ
F	T FÎ	Ý	Ì€€Î	Ì€€Î	€	€
G	ТJ	Ý	Ì€€Î	Ì€€Î	€	€
Н	T FÍ	Ý	Ì€€Î	Ì€€Î	€	€
	ΤÌ	Ý	Ì€€Î	Ì€€Î	€	€
Í	T FÌ	Ý	Ì€€Î	Ì€€Î	€	€
Î	T FJ	Ý	È€Ê	Ì€€Î	€	€

A Ya VYf 8]glf]Vi hYX @ UXg f6 @ ') . K]bX L fl \$ dgZŁ fl cbl]bi YXŁ

	T^{à^¦ÁŠææà^∣	Öãå^&ca∦{}	ÙcælcÁTæt}ãčå^ŽĐeB2DÊ∙-á	Ò}åÁTæ≛}ãčå^ŽīĐdÊ2Ê∙~á	Ùcæ¦c∕Ê[&æaāj[}ŽÈÈ	ÈÒ}åÆŠ[&ææã[}ŽdÈÈ	2
Ï	TH	Ý	Ì€€Î	Ì€€Î	€	€	

A Ya VYf 8]ghf] Vi hYX @ UXg f6 @7 * . K]bX k #=WY N ff dg ZłŁ

	T^{à^¦ÁŠææà^∣	Öãi^&ca∦i}	Ùcæ¦cÁTæ*}ããå^ŽĐeÊĐÊ∙-á	Ò}åÁTæt}ãčå^ŽÐo£Đ£€∙-á	Ù cæ ko 4 š[& æ a a } Ž = =	ÈÒ}åÆĞ[&ææã[}Žd⊞È
F	ΤFΪ	Z	Ì€€F	Ì€€F	€	€
G	T F€	Z	Ì€€F	Ì€€F	€	€
Н	T FÎ	Z	Ì€€F	Ì€€F	€	€
	ТJ	Z	Ì€€F	Ì€€F	€	€
Í	T FÍ	Z	È€€F	È€€F	€	€
Î	ΤÌ	Z	Ì€€F	Ì€€F	€	€
Ï	ΤI	Z	Ì€€F	Ì€€F	€	€
ì	T FF	Z	Ì€€F	Ì€€F	€	€
J	T FÌ	Z	È€€F	Ì€€F	€	€
F€	T FJ	Z	Ì€€F	Ì€€F	€	€
FF	ТН	Z	Ì€€F	È€€F	€	€

A Ya VYf 8]ghf]Vi hYX @ UXg f6 @7 + . K]bX Nfl \$ dg24

	T^{à^¦AŠæèà^∣	Öãi^&ca∦i}	Ùcæ¦cÁTæ*}ããå^ŽĐe£ĐÊ∙-á	Ò}åÁTæ*}ãčå^ŽÐdÊ2Ê∙~á	Ùcælo/Ã [&æa [] } ŽÈ	ÈÒ}åÆĞ[&ææã[}ŽdÈÈ
F	ΤFΪ	Z	Ì€€Î	Ì€€Î	€	€
G	T F€	Z	Ì€€Î	Ì€€Î	€	€
Н	T FÎ	Z	Ì€€Î	Ì€€Î	€	€
	ΤJ	Z	Ì€€Ê	Ì€€Î	€	€
Í	T FÍ	Z	Ì€€Î	Ì€€Î	€	€
Î	ΤÌ	Z	Ì€€Î	Ì€€Î	€	€
Ï	TI	Z	Ì€€Î	Ì€€Î	€	€
ì	T FF	Z	Ì€€Ê	Ì€€Î	€	€
J	T FÌ	Z	Ì€€Î	Ì€€Î	€	€
F€	T FJ	Z	Ì€€Î	Ì€€Î	€	€
FF	TH	Z	Ì€€Î	Ì€€Î	€	€

6 Ug]W@ UX 7 UgYg

	ÓŠÔ/ÄÖ^∙&¦ājcāį}	Ôæe^*[¦^	ÝÁÕ¦æçãcî	ŸÁÕ¦æçãcî	ZÁÕ¦æçãĉ	RÈÈ	È Ú[ậ]c	Öãa dãaĭÈË	ÈCE^æÇT ÈÈÈ	Ù`¦æ&∧⊞
F	Ù^ -ÁY ^ã@c	ÖŠ		Ë						
G	Ò˘˘ą]{^}ơÁY^ã*@c	ÖŠ					ì			
Н	Q3.^ÁY^ã @c	ŠŠ					ì			
	YājåÁ,ÐÁQ3∧ÁÝÁQîÁ,∙-Ð	Y ŠÝ					Ì	Ï		
Í	Y∄åÁÝÁQH€ÁÍ•~Ð	Y ŠÝ					Ì	Ï		
Î	YājåÁ,ÐÁQ2AÂÇÁÇÍ,●D	Y ŠZ					Ì	FF		
Ï	Y∄åÁZÁQH€Á • ~D	Y ŠZ					Ì	FF		

@UX7ca V]bUhjcbg

Ö^∙ &¦ã		Ù[ç^	ÚÖ^∣œ	ÈÈÓ	ÊØæ	ÓŠÔ	Øæ	ÓÈ	Øæ	ÓÈ	Øæ	ÓÈ	Øæ	ÓÈÈ	Øæ	ÓÈÈ	Øæ	ÓÈÈ	Øæ	ÓÌÌÌ	Øæ	Ð	Øæ
F FÊGÖÆÆÆŤĚY			Ÿ	F	FÈG	G	FÈG	Í	FÊ														
G €ÈÖÆÉÆŤÈY	ÁÇÝËåã^8	câÈŸ^∙	Ÿ	F	È	G	È	Í	FÊ														
H FÉGÖÆÆÆÖã			Ÿ	F	FÈG	G	FÈG	Η	F	Ι	F												
FÊGÖÆÆÆTÊ Y			Ÿ	F	FÈG	G	FÈG	Ï	FÊ														
Í€ÐÖÆÆTÈÌY			Ÿ	F	Ē	G	È	Ï	FÊ														
Î FÊGÖÆÆFÊEÖã	ÆÆFÈ€Y å	ÂĴĦŸ^∧∙	Ϋ́	F	FÈG	G	FÈG	Η	F	Î	F												

$\textbf{CENTEK}^{\text{engineering}}$	Ô[{]æ}^ Ö^∙ãt}^¦	KÔ^}♂∿\ KØRÚ
Centered on Solutions** www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	R[àÁÞ [°] {à^¦ T[å^∣ÁÞæ{{^	K GF€€ÍÈH€ KÔVPOÈG€04ÄÄOETOE

9bj YcdY>c]bhFYUMjcbg

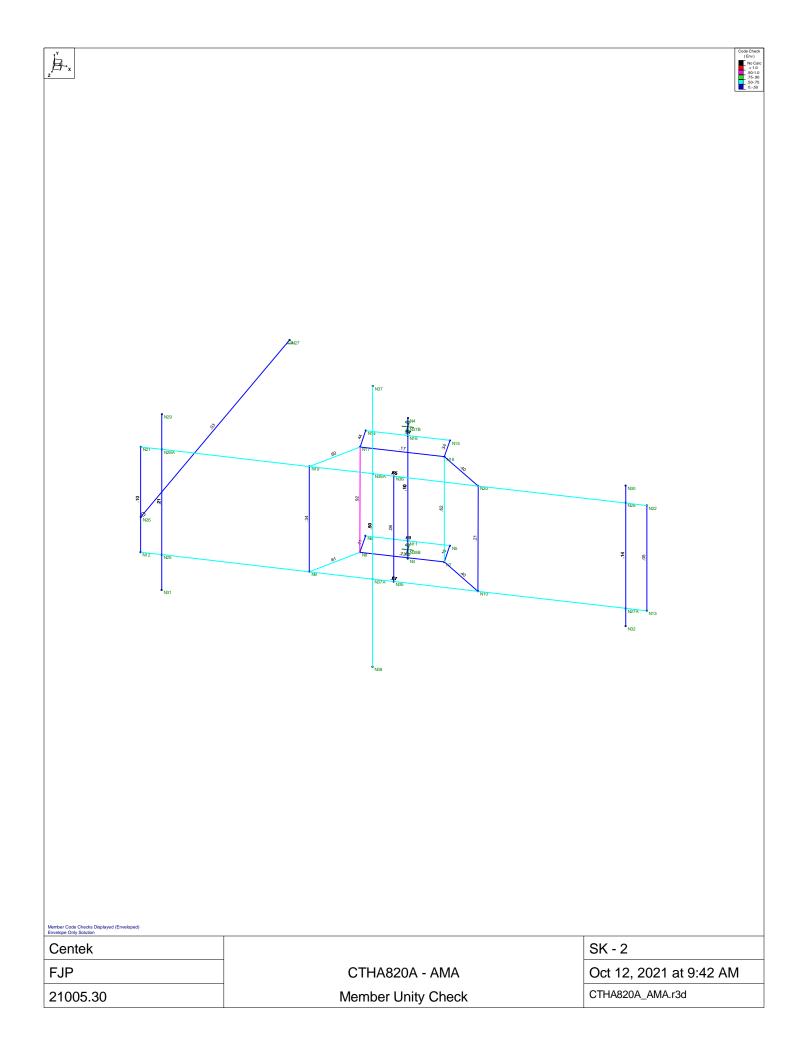
	RĮą̃c		ÝÁŽÍá	ŠÔ	ŸÁŽá	ŠÔ	ZÁŽIÁ	ŠÔ	ΤÝÂŽËcá	ŠÔ	ΤΫÁŽËcá	ŠÔ	TZÁŽË-cá	ŠÔ
F	ÞĠ	{ 38¢	Ē	Í	È€FH		Ë€€Ì	Н	€	Î	€	Î	€	Î
G		{ a}	È€€G	Η	È€€J	G	ËGÎÏ	Í	€	F	€	F	€	F
Н	ÞÄÓ	{ 88¢	ÈHÌ	Î	FÈIÍ	Î	ËGÎÍ	G	€	Î	Ĥ	Í	€	Î
		{ a}	⊞H	G	ΕΗ	G	ËFÈHIJ	1	€	F	Ë₩JÍ	F	€	F
Í	ÞĤÓ	{ 88¢	ËEHJ	Í	FÈ€J	Н	FÈ€GÎ	Н	€	Î	ÈIÎ	Í	€	Î
Î		{ a}	ËĬÏ	F	È	Í	ËĨ€J	Í	€	F	ËĤI	F	€	F
Ï	V[cæ∳K	{ 88¢	€	Î	CHE G	Î	€	Н						
Ì		{ a}	ÌI⊞	F	ĒIJÌ	G	ËGÈEGÎ							

9bjY`cdY`>c]bh8]gd`UWYaYbhg

	RĮą̃c		ÝÃã)á	ŠÔ	ΫÃãβjá	ŠÔ	ZÄŽājá	ŠÔ	Ý ÁÜ[cæcā]} Á ÊÊÊŠ) ŸÁÜ[cæaā]}ÁÄB	ÈŠÔ		ÈŠÔ
F	ÞH	{ æ¢	€		€	Í	È€€F	H	FÈEGG^ËH Í	€	Î	FÈHÌÏ^Ë	
G		{ a	Ë€€€G	G	€	F	Ë€€I	Í	ËÈ€Ì^Ë ⊦		F	ËÈÌ^Ë	G
Н	ÞI	{ æ¢	€	Í	€	Í	€	G	ËËÉÉÍF^ËÍ (Î	ÎĚÌÏ^Ë	F
		{ a	Ë€€€G	F	€	F	Ë€€Í		ËFËH^ËH I	€	F	Ë≜Ê€Ì∧Ë	Í
Í	ÞÍ	{ æ¢	È€€G	G	€	Í	È€HG	Í	ÏĚÍF^ËH Î	<u>ÎÈÍF^ËH</u>	Н	ËFÊH^É	Í
Î		{ a	€	Î	Ë€€Ì	F	ÊÉÉÍÎ	H	FÈÌH^ËH (Í	Ë DJÏ ^Ë	F
Ï	ÞÎ	{ æ¢	È€€G	G	È€€H	G	È€FÍ	Í	FÈ€GG^ËG ⊦		G	FÈFJH^ËH	Î
Ì		{ a	€		Ë€FG	Î	ËEHF	Î	GÈGFH^ËHÍ	ËGËI^ËH	Î	Ë₽ĚÏ^Ë	G
J	ÞÏ	{ æ¢	ÈEIÏ	F	ÊEFÌ	Í	È€HG	Í	ÏÈËÏI∧ËH Î	<u>GÈĴÌ^ËH</u>	F	FĚ€J^ËH	Î
F€		{ a	Ë€€H	Í	ΪÊÊÎ Ι	H	Ë€ÍÏ	H	FÈHIH^ËH (Í	ÏḖÌ`^Ĕ́	G
FF	ÞÌ	{ æ¢	<u>È</u> l Ï	F	Ë€GG	Í	È€FÍ	Í	JËH+^ËH		F	IÈGFÌ^Ë	Í
FG		{ a	Ë€€H	Í	Ë€JF	H	ËEHF	Î	GÈ€GJ^ËH Í	<u>Ë</u> Ë HG ^ Ë	Í	Ë Dîî ^ Ë	F
FH	ÞJ	{ æ¢	È€JF	F	<u>⊞</u> €ÉÍG	Í	<u>È</u> ÍÍ	G	HÈÈÏÍ^ËH H		F	HÊÊ GJ^ËH	Î
FI		{ a	Ë€GG	Í	ËGGF	Н	Ë€GG	Î	ÏÈ€Ì^Ë Í	<u>Ë</u> ËÍI^ËH	Í	ÌÈ~Ë	G
FÍ	ÞF€	{ æ¢	È€JF	F	<u> </u>	Í	<u>È</u> ÉÍ H	Í	HÈII^ËH H		F	ËFËFH^Ë	G
FÎ		{ a	Ë€G	Í	i r∰	Î	Ë€JG	F	ĔĔÎI^Ĕ Í	ËHÈ€Í J^ËH	Í	ËÈĤI^Ë	
FΪ	ÞFF	{ æ¢	È€€G	G	€	Í	È€€	Í	FÈHIF^ËH Í	IÈTÍ^Ë	F	FÈHF^Ë	Î
FÌ		{ 3}	€		€	H	Ë€€F	H	ËGËËH∧Ë⊟ ⊦		Í	ËËÎJ^Ë	G
FJ	ÞFG	{ æ¢	È€JG	F	ÊEFÏ Î	Í	ËEFÌ	G	ÏËÍI^ËH Î	FÈFI^ËH	Î	GÈ€J^ËH	Н
G€		{ 3}	Ë€GG	Í	⊞ FI	H	Ë€J	Î	HÈGIÎ^ËH (G	GÈGÏ J^Ë	Í
GF	ÞFH	{ æ¢	È€JF	F	Ë€JI	G	ĚHF	Í	ÌÈ€GÍ∧ËH ⊦	-	F	ΪĚ́FJ^Ë	Н
GG		{]	Ë€G	Í	ËH€Ì	Î	ËĤ€F	F	FÈHIÍ ^ËH Í	ËFÈHIÏ^ËG	Í	ËÈÈIH∧Ë	Í
GH	ÞFI	{ æ¢	È€€G	F	€	Í	È€HÏ	F	JËÌJ^ËH Î	HÐÈFÌ^ËH	F	FÈHUÌ ^ËH	Н
G		{ 3}	€	Í	Ë€FI	H	È€G	Í	GÈEï∧ËH (-	Í	FÈFH^Ë	Í
GÍ	ÞFÍ	{ æ¢	È€€G	F	Ì€€Í	G	ÈEIF		ÏËÌG^ËH H		G	HÈÌÎ^Ë	G
Ĝ		{ 3}	€	Í	Ë€€Í		Ë€GF	G	FËFÌ^ËH Í	ËGËÉFÎ^ËH		ËÊH`^Ë	
GÏ	ÞĤ	{ æ¢	È€€G	F	€	G	Ì€€Í		Ë₽₽₽Ĕ		F	ÎÈJÌ^Ë	F
Ĝ		{ a	€	Í	€	Î	€	G	ËFĚĺÌ^ËH I	ËÈFÍ ^Ë	Í	ËFĚ FÍ ^Ë	Í
GJ	ÞFÏ	{ æ¢	È€H	G	Ê€GG	Í	È€HÏ	F	JÈHGG^ËH∣Î	HÈ€ÏÍ∧ËH	G	ÎÈJI^Ë	G
H€		{ a	Ë€€J		<u> </u>	Н	È€G	Í	GÈEÎÎ^ËH (ËHÈ (Ì^Ë	
HF	ÞFÌ	{ æ¢	È€H	G	<u>i ter</u> ì	Í	<u>È</u> F		ÏĚI^ËH ŀ		F	FĚÍ^ËH	Н
HG		{ a	Ë€€J			Н	Ê€GF	G	FÊFF^ËH Í	<u>Ë</u> Ë I F^Ë	Í	HĚH∧Ë	Í
HH	ÞFJ	{ æ¢	ÈEÏG	G	Ë€ÍG	Í	ÈÏÌ	F	HÈHHYËHÎ	GĚ JÍ ^ËH	G	HËÎF^ËH	Н
H		{ 3}	Ë€GÎ		ËGGF	H	È€È	Í	ĺÈEÎÌ∧Ë (ÌÈGÍÎ^Ë	Í
ΗÍ	ÞŒ	{ æ¢	ÈG	G	Ê	Í	ÈÎ		HÈ)∧ËH Î	HĒ ÍI^ËH	F	<u>ËÈïì^Ë</u>	G
HÎ		{ a	Ë€GÏ		i ⊓∰	Н	Ë€ÎH	G	FÈEÏI^ËH (Í	ËHÈG€F^Ë	
ΗÏ	ÞŒ	{ æ¢	ÈEÏG	G	<u> </u>	Í	ÊJÌ	Î	ÌÈGEÏ∧ËHÎ	FĚ JÌ ^ËH		GÈ€JÏ ^ËH	Н
HÌ		{ 🧿	Ë€€Ĝ		ËÊFI	Н	ÈFÎ	G	IÈE€Î^ËH (; ËËÊII∧ËH	G	HÈ€G^Ë	Í
													-

9bjY`cdY`>c]bh8]gd`UWYa Ybhg`f17cbh]bi YXŁ

	R[ậc		ÝÃã)á	ŠÔ	ΫÁĞβjá	ŠÔ	ZÁZÁjá	ŠÔ	Ý ÁÜ[cæeā]} Á2000	ŠÔ	ŸÁÜ[cæcā]}Á260 ≣Ž		ÈŠÔ
HJ	ÞGG	{ 28¢	È€ÏH	G	Ë€JI	G	<u>Ě J</u>			H		ÏĚ€F^Ë	Н
∣€		{ a	Ë€GÏ		ËĤ€Ì	Î	ËÊG€F	G	FÈH ^Ë	Í		ËĚÏI^Ë	Í
IF	ÞĜ	{ æ¢	ÈÌÍ	F	ËÈÏÎ	Í	È€GH	F	ÏÈ€^ËH	Î	FĚǴ^ËHÎ	FÈ€JÍ ^ËH	Н
IG		{ a	Ë€GG	Í	ËÊFI	H	Ë€€I	Í	HĖH+∿ËH	G	ËFËFÍ^ËH G	ËÈ€₽ſĔ	Í
ΙH	ÞĠ	{ æ¢	€	Î	€	Î	€	Î	ÏËÍÍ^ËH	Н		FÈEÎ F^ËH	Н
11		{ a	€	F	€	F	€	F	HÈ€ÏH^ËH	G		ËÈ€€G^Ë	Í
ΙÍ	ÞÁ	{ 28¢	È€JG	F	ËΕΪΗ	Í	Ë€€Î	G	ΪÈΗΛΗ	Î		HÈGÌÎ^ËH	Н
Î		{ a	Ë€GG	Í	ËĽJÌ	Η	Ë€JJ	Î	HÈĖÍI^ËH	G		ÏĚIÍ^Ë	Í
ΠÏ	ÞĜΩE	{ æ¢	ÈEÏG	G	ËΕΪΗ	Í	ÈJF	Î	ÌÈGÍJ∧ËH	Î		HÈGIJ^ËH	Н
1Ì		{ a	Ë€GÎ		ËĽJÌ	H	ÈĜ	G		G		ÎÈÍÏ^Ë	Í
IJ	ÞĠïŒ	{ æ¢	È€JF	F	Ë€JÍ	G	ÈÍF	Í	ÌÈ€H∧ËH	Н		FÈFH^É	G
Í€		{ a	Ë€G	Í	ËF	Î	ËÈÌ	F	FĚÎÏ^ËH	ĺ		ËHÈ))^Ë	
ÍF	ÞĠ	{ æ¢	ÈΪΗ	G	Ë€JÍ	G	ĚFF		ÌÈ€H∧ËH	Н	-	HÈHU^Ë	G
ÍG		{ a	Ë€GÏ		⊞F	Î	ÊÈÌ	G	FÈEHG∧ËH	ĺ		ËÈ€G^Ë	
ÍН	ÞGJ	{ æ¢	È€ÎG	G	ËΕΪΗ	Í	ÈGJF	Î	ÌÈHÌ\ËH	Î		HÈÈ JÏ ^ËH	Н
ÍI		{ a	Ë€ÉÍH	Î	ËĽJÌ	H	ÈÏ	G	HÈÏG^ËH	G		ÎĖ́ÍÏ^Ë	Í
ÍÍ	ÞH€	{ æ¢	ÈEÏG	G	Ë€JÍ	G	ĚGH		ÌÈ€H∧ËH	Н		HÈ HJ^Ë	G
ÍÎ		{ a	Ë€G		⊞F	Î	ËÊÎÏ	G	FÈFHG^ËH	Í		ËÈ€G^Ë	
ÍΪ	ÞHF	{ æ¢	ÈF	F	ËΕΪΗ	Í	ΪΞΞΞ	G	ÏËI^ËH	Î	FÈGJF^ËH Î	HÈHÌ^ËH	Н
í ì		{ a	Ë€FH	Í	ËĽJÌ	Η	ËÊFJG	Î	HĒĖ ÍI ^ ËH	G	ËFÈĴF^ËH G	ÏĚIÍ^Ë	Í
ÍJ	ÞHG	{ æ¢	È€JF	F	Ë€JÍ	G	ÈIF	Í	ÌÈ€H∧ËH	Н		FÈFH^É	G
΀		{ a	Ë€€Ĝ	Í	⊞F	Î	ËGIJ	F	FĚÎÏ^ËH	Í		ËHÈ))/ÄË	
ÎF	ÞH	{ æ¢	È€JF	F	Ê	Í	È€HÍ	Í		Н		FÈÈ€J^ËH	Н
ÎG		{ 3	Ë€GH	Í	ËËFJF	H	Ê€ÊÎ	H	FÈFHÍ∧Ë	ĺ		GÈÈĞI∧Ë	Í
ÎН	ÞĤ	{ æ¢	ÈEÏG	G	Ê	Í	È€ÍÎ	Î		Н		FÈ GJ^ËH	Н
ÎI		{ 3	Ë€GÎ		ËÊFJG	H	È€FÌ	G	ΪÈFΪ^Ë	ĺ		GËÌÎ∧Ë	Í
ÎÍ	ÞHÏ	{ æ¢	ÈIÏ	G	ÊEEIÌ	Í	ÊĆ		GÈF^ËG		GÈE∿ËHG	FÈ€J^ËH	Î
ÎÎ		{ 3	ËEEIÏ	Î	ËG€F	H	È€ÎF	G	ÌÈÌÍ^Ë	G		ËHÈGFI^ËH	G
ÎÏ	ÞĤ	{ æ¢	ÈG	F	ËEIÏ	Í	ĚJF	Í	HÈ€GI^ËH	Н		IÈÎF^ËH	F
ÎÌ		{ a	ËÊ€G	Í	ËE€€G	H	i ⊓⊞	H	ËGÈ€JÎ^ËG	ĺ		JÈHÍ J^É	Í
ĴJ	ÞHÏŒ	{ æ¢	È€JF	F	ËEIÏ	Í	È€HG	Í		Н		FÈHHMËH	Н
Ï€		{ a	Ë€GH	Í	ËG€F	H	Ë€ÉÍÏ	H	ËFÈÌ J^ËG	ĺ	ËÈÉÍJ^ËH Í	JÈHÏ^Ë	Í
ΪF	ÞĤŒ	{ æ¢	È€ÏG	G	<u>i</u> £en Ì	Í	È I	Î	FÈGÌH^ËG			FÈÈÌH^ËH	Î
ΪG		{ a	Ë€GÎ		ËC€F	Н	ÈEH	G	ÌËÏÍ^Ë	G		ËGË HJ^Ë	G
ΪΗ	ÞĦÓ	{ æ¢	€	Î	€	Î	€	Î		G		ÎĚÌÌ^Ë	F
ΪΙ		{ a	€	F	€	F	€	F	ËFË H`^ËH	1		ËĒÊ€Ì∧Ë	Í
ΪÍ	ÞĤÓ	{ æ¢	€	Î	€	Î	€	Î	FÈ CG^ËH	Í		FÈHÌÏ^Ë	1
ΪÎ		{ ĝ	€	F	€	F	€	F	Ë^È€Ì^Ë	Н	€ F	ËÈÌG^Ë	G


9bjYcdY5=G7 % h fl * \$!%\$L @F: 8 GhYY 7 cXY7 \ YWg

			Ĵ[å^ÆĴ	Èğ⊞≣	ŠÔ	Ù@æ∰	EŠ[8∄	ÈÖãi	ŠÔ]@3EÚ}&-ÁŽá]@3EÚ}oÁŽá]@aET}ÁÈ	BÈE BÉET}ÈÈÈ	È Ôà	Ò~}
F		ÚQÚ∰È	ÈÈ€€	HĚ	Î	ÈÎÎ	Ð		F	IIÈJF	Í€ËFÍ	HĚJÎ	HĚJÎ	GÈ€H	PFËFà
G	ΤI	ÔHÈÈ	ÊJG	F	Н	ÈGHÍ	F	^	Н	HJĚÌÍ	ΙΪĖ̈́Ĝ	ÈÌF	IÈ€	FÈFG	PFËFà
Н		HÄ¢⊞È	ÈFF	€	Н	ÈÈÌG	€	^	Н	IFÈGÏÎ	ΠÌĒ	Ě€Î	HÈ€HÌ	FÈÍÍ	PFËFà
		HÄ¢⊞È	ÈÌÌ	ÊΪ	F	ÌL€	€	^	Н	i fègï î	ΞÍΙ	Ě€Î	HÈ€HÌ	FÈH	PFËFà
Í		ŠGĦĦ	ÈGHF	€	F	Ì€GÏ	€	:	F	gí Ègî f	GIÈIG	ÈΪΗ	FÈÏG	GÈGÎG	PGËF
Î		ŠGĦĦ	ÈIJJ	FÈÈ		ÌÊ€ÎÍ	€	^	Î	GÊÈHÏ	GIÈIG	ÈΪΗ	FÈÏG	GÈÍH	PGË
Ï		ŠGĦĦ	ÊFF	FÈÈ	ÈΗ	ÈFF	€	:	Н	GÎ È HÏ	GIÈIG	ÈΪΗ	FÈÏG	GÈEÎÌ	PGËF
Ì		ŠGĦĦ			Н	ÈGFF	ÍĚ	:		FÏÈÌÍ	GIÈIG	ÈΪΗ	FË€G	F	PGË
J	TFF	ÔHÈÈÈ	ĚÎÏ	F	Н	ÈCHÌ	F	:	Î	HJĚÌÍ	ΙΪĖ̈́Ġ	ÈÌF	IÈ€	FÈG	P FËFà

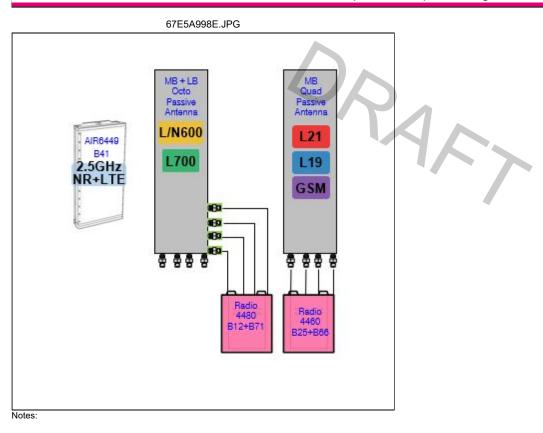
ÜQÜCEEHÖÁX^¦∙ā[}ÁrīèeÈ AMMMÄRKEEBÈAÈÈÈÈÈÈÈÈÈÈÈÈÉEÜãræáHÖaÔVPCÈGECETCEÈHåáÁ Úæ*^Å

9bjYcdY5=G7 % h fl * \$!%\$L @F: 8 GhYY 7cXY7 \ YWg fl cbhjbi YXL

	Т^₩	Ù@#ĤĔ)[å^Æ0)⊞	Èğ ÈÈ	ŠÔ	Ù@æ∰	ÈŠĮ &∄	ÈÖãi	ŠÔ]@3EÚ}&ÁŘ(á]@3EÚ}oÁŽá]@3ET}ÁÈ	∰E@aET}ÈÈÈ	ÈÔà	Ò~}
F€	TFG	ÔHÈÈÈ	ÈHÏ	€	1	ÌL€	ÈHÍ	:	Î	ΙÎĚÎΗ	ΙΪ̈́ÊĠÌ	ÈÌF	IÈ€€	FÈÍÎ	PFËFà
FF		ÔHÈÈ	ÈHÍ	€	Î	È€JG	ÈΗ	:	Î	ΙÎĔĬΗ	ΙΪ̈́ÊĠÌ	ÈÌF	IÈ€€	FÈIÍ	PFËFà
FG		ŠG	ÈÎÏ	G	G	È€FÌ	€	^	G	gí Ègî f	GJÈJG	ÈΪΗ	FÈÏG	GÈCH	PGË
FH		ŠG∰	ÈUÎ	FÈÈ		Ì€ÎÍ	€	:	Н	GÊÈHÏ	GIÈIG	ÈΪΗ	FÈÏG	GÈÊÎ	PGËF
FI		ŠG∰		FÈÈ	ÈH	È€Ï	€	^	Î	GÊÈHÏ	GIÈIG	ÈΪΗ	FÈÏG	GÈÊÎI	PGËF
FÍ		ŠG∰	Êlï	Ě	Î	ÈG€J	ÍĚ	^		FÏÈÌÍ	GIÈIG	ÈΪΗ	FË€G	F	PGËF
FÎ	TFÌ	ŠG¢⊞	È∃GF	€	Н	È€ÎI	€	^	Н	FI ÈJ€H	GHÈHUH	ĚÍÌ	FÈGHU	Ē	PGËF
FÏ	TFJ	ŠG¢⊞	ÊFÏ	€	Н	È€HÌ	€	^	Î	FI ÈJ€H	GHÈHUH	ĚÍÌ	FÈGHU	GÊGÎÌ	PGËF
FÌ	TG€	ÚQÌÈÈ	ÌL€	G	Í	È€HÏ	G		Í	ĠÈIH	HOÈFH	FÈÏG	FÈÏG	GËĽÍG	PFËFà
FJ	TGF	ÚQÍÈÈ	ÈHÏ	H	Н	ÈÈÌÌ	€		Н	ĠÈIH	HOÈFH	FÈÏG	FÈÏG	CHÉI Ì	PFËFà
G€	TGG	ÚQÌÈÈ	ÈGFH	€	Î	È€HF	€		Н	ĠÈIH	HOÈFH	FÈÏG	FÈÏG	GÊGÎ Î	PFËFà
GF	TGH	ÚQÍÈÈ	È€ÍG	H	Î	Ì€FÏ	€		Î	ĠÈIH	HOÈFH	FÈÏG	FÈÏG	ЭЩ Э	PFËFà
GG	ΤGÍ	ÚQÌÈÈ	È€GÌ	HÈÈÈ		È€€G	ΪÈĤ	<u>`</u>	Î	ΪÈΗFÎ	GHĘ́IH	FÈE€Í	FÈE€Í	FÈEHÎ	PFËFà
GH	ÚÙÈ	ÚQÌÈÈ	Ì€€Ì	ΗÈÈÈÈ	ÈΗ	ÈEII	GĚ			GHÌ€J	HGÈFH	FÈÏG	FÈÏG	FÊIÎ	PFËFà
G	ÚÙÈH	ÚQÈÈ	ÈHÌ	Ě	Н	Ì€GÍ	Ě		Н	ĠĔŒ	HGÈFH	FÈÏG	FÈÏG	FÈH	PFËFà
GÍ	ΤGΪ	ÚQ́⊞È		€	Н	Ì€FÍ	€		Н	ĠÈIH	HGÈFH	FÈÏG	FÈÏG	Ē	PFËFà
Ĝ	ÚÙÈG	ÚQÚÈÈ	Ě€€	ÍĚ		ÌÈ€ÍÍ	GĚ			FI ÈIFÎ	HGÈFH	FÈÏG	FÈÏG	HĚÏJ	PFËFà

10/6/21, 1	0:49	AM
------------	------	----

RAN Template:


A&L Template:

CTHA820A_Sprint Retain_1_draft

67D5A998E 6160	67E5998E_1xAIR+10P+1QP			Print Name: Standard PORs: New Build_Sprint Keep
		Section 1 - Site Informat	tion	
	rint Retain pproved	Site Name: mohonk_lake_cdt Site Class: Guyed Tower Site Type: Structure Non Building Plan Year: 2021 Market: CONNECTICUT CT Vendor: Ericsson Landlord: Not Specified	Latitude: 41.863366 Longitude: -72.1827 Address: 20 Seles R City, State: Ashford, Region: NORTHEAS	8611 d CT
RAN Template: 6	7D5A998E 6160	AL Template	67E5998E_1xAIR+1OP+1QP	
Sector Count: 3	Antenna Count: 9	Coax Line Count: 0	TMA Count: 0	RRU Count: 6
		Section 2 - Existing Template	Images	

----- This section is intentionally blank. -----

Section 3 - Proposed Template Images

Section 4 - Siteplan Images

----- This section is intentionally blank. -----

DRAFT

CTHA820A_Sprint Retain_1_draft

RAN Template:	A&L Template:
67D5A998E 6160	67E5998E_1xAIR+10P+1QP

Print Name: Standard PORs: New Build_Sprint Keep

Section 5 - RAN Equipment

Existing RAN Equipment

----- This section is intentionally blank. -----

		Proposed RAN Equip	ment						
		Template: 67D5A998E	6160						
Enclosure	1	2	3	4					
Enclosure Type	Ancillary Equipment (Ericsson)	Enclosure 6160	B160	(RBS 6601)					
Baseband		BB 6648 BB 6648 BB 6648 L2500 L2100 L700 N2500 L1900 L600 N600 N600		DUG20 (G1900)					
Hybrid Cable System	(PSU 4813 vR2A (Kit))								
Transport System		CSR IXRe V2 (Gen2)							
Functionality Groups									
RAN Scope of Work CT33XC015 Existing/Planned Az 200A service at site	imuth 0/120/240								

CTHA820A_Sprint Retain_1_draft

RAN Template:	A&L Template:
67D5A998E 6160	67E5998E_1xAIR+10P+1QP

Print Name: Standard PORs: New Build_Sprint Keep

Section 6 - A&L Equipment

Existing Template: Custom Proposed Template: 67E5998E_1xAIR+10P+1QP

		Sector	1 (Propos	ed) view f	om behin	d		
Coverage Type	A - Outdoor Macro							
Antenna	1		:	2		3		
Antenna Model	Commscope_VV-65A-R1	(Quad)	RFS - APX	VAALL24_43-	U-NA20 (Oct	0)	Ericsson - AIR6449 B41 Massive MIMO)	(Active Antenna -
Azimuth	0		0				0	
M. Tilt	0		0				0	
Height	170		170				170	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	L2100 L1900 G1900	L2100 L1900 G1900	L700 L600 N600	L700 L600 N600			L2500 (N2500)	(L2500) (N2500)
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	2	2	2	2	2	2	2	2
Cables	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)				
TMAs						İ		
Diplexers / Combiners								
Radio	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)	Radio 4480 B71+B8 5 (At Antenn a)	SHARED Radio 4480 B71+B8 5 (At Antenn a)				
Sector Equipment								
Unconnected Equip	ment:							
Scope of Work:	Scope of Work:							
*A dashed border ind	licates shared equipment. A	ny connected equipment is	denoted with	the SHARED	keyword.			

10/6/21, 10:49 AM

CTHA820A	Sprint Retain	1	draft	2021-10-06

CTHA820A_Sprint Retain_1_draft

RAN Template:	A&L Template:
67D5A998E 6160	A&L Template: 67E5998E_1xAIR+1OP+1QP

Print Name: Standard PORs: New Build_Sprint Keep

Sector 2	(Proposed) view from	behind
		,	

Coverage Type	(A - Outdoor Macro)							
Antenna	1	2				3		
Antenna Model	Commscope_VV-65A-R1 (Quad)		RFS - APX	VAALL24_43-	U-NA20 (Oct	(o)	Ericsson - AIR6449 B41 Massive MIMO)	1 (Active Antenna -
Azimuth	120		120				120	
M. Tilt	0		0				0	
Height	170		170				170	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	L2100 L1900 G1900	(L2100) (L1900) (G1900)	L700 L600 N600	L700 L600 N600			(L2500) (N2500)	L2500 (N2500)
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	2	2	2	2	2	2	2	2
Cables	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)				
TMAs								
Diplexers / Combiners								
Radio	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)	Radio 4480 B71+B8 5 (At Antenn a)	SHARED Radio 4480 B71+B8 5 (At Antenn a)				
Sector Equipment								
Unconnected Equip	ment:							
Scope of Work:								

10/6/21, 10:49 AM

RAN Template: 67D5A998E 6160 A&L Template: 67E5998E_1xAIR+10P+1QP CTHA820A_Sprint Retain_1_draft

<pre>Opinit i</pre>	(ctain_	
	Print Nar	ne: Standa

Print Name: Standard PORs: New Build_Sprint Keep

Sector 3 (Proposed) view from behind								
Coverage Type	A - Outdoor Macro							
Antenna	1		2	2		\$	3	
Antenna Model	Commscope_VV-65A-R1	(Quad)	RFS - APX	VAALL24_43-	U-NA20 (Octo	0)	Ericsson - AIR6449 B41 Massive MIMO)	(Active Antenna -
Azimuth	240		240				240	
M. Tilt	0		0				0	
Height	170		170				170	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	L2100 L1900 G1900	(L2100) (L1900) (G1900)	L700 L600 N600	L700 L600 N600			L2500 N2500	L2500 N2500
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	2	2	2	2	2	2	2	2
Cables	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)				
TMAs								
Diplexers / Combiners								
Radio	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)	Radio 4480 B71+B8 5 (At Antenn a)	SHARED Radio 4480 B71+B8 5 (At Antenn a)				
Sector Equipment								
Unconnected Equipment: Scope of Work:								
A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.								

RAN Template: 67D5A998E 6160 A&L Template: 67E5998E_1xAIR+10P+1QP

CTHA820A_Sprint Retain_1_draft

Print Name: Standard PORs: New Build_Sprint Keep

			PORS. New Dulid_Ophint Reep				
Section 7 - Power Systems Equipment							
	Existing Power Systems Equipment						
This section is intentionally blank							
	Propose	ed Power Systems Equipment					
Enclosure							
Enclosure Type	Enclosure 6160						

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA820A

20 Seles Road Ashford, Connecticut 06278

November 29, 2021

EBI Project Number: 6221007356

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general population allowable limit:	I 2.60%				

November 29, 2021

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTHA820A

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **20 Seles Road** in **Ashford, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 20 Seles Road in Ashford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. For power density calculations, the broadcast footprint of the AIR6449 antenna has been considered. Due to the beamforming nature of this antenna, the actual beam locations vary depending on demand and are narrow in nature. Using the broadcast footprint accounts for the potential location of beams at any given time.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 6) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 7) I LTE Traffic channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 60 Watts.
- 8) I LTE Broadcast channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 20 Watts.
- 9) I NR Traffic channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of I20 Watts.
- 10) I NR Broadcast channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 40 Watts.
- 11) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 12) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 13) The antennas used in this modeling are the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector A, the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 200 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 2500 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz / 2100 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 200 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 200 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz /

are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 14) The antenna mounting height centerline of the proposed antennas is 170 feet above ground level (AGL).
- 15) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 16) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	Commscope VV- 65A-R1	Make / Model:	Commscope VV- 65A-R1	Make / Model:	Commscope VV- 65A-R1
Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz
Gain:	15.15 dBd / 15.15 dBd / 15.8 dBd	Gain:	15.15 dBd / 15.15 dBd / 15.8 dBd	Gain:	15.15 dBd / 15.15 dBd / 15.8 dBd
Height (AGL):	170 feet	Height (AGL):	170 feet	Height (AGL):	170 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	360 Watts	Total TX Power (W):	360 Watts	Total TX Power (W):	360 Watts
ERP (VV):	12,418.45	ERP (W):	12,418.45	ERP (VV):	12,418.45
Antenna AI MPE %:	l.66%	Antenna BI MPE %:	I.66%	Antenna CI MPE %:	I.66%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVAALL24_43-U- NA20	Make / Model:	RFS APXVAALL24_43-U- NA20	Make / Model:	RFS APXVAALL24_43-U- NA20
Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz
Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd
Height (AGL):	170 feet	Height (AGL):	170 feet	Height (AGL):	170 feet
Channel Count:	5	Channel Count:	5	Channel Count:	5
Total TX Power (W):	200 Watts	Total TX Power (W):	200 Watts	Total TX Power (W):	200 Watts
ERP (W):	4,151.83	ERP (W):	4,151.83	ERP (W):	4,151.83
Antenna A2 MPE %:	1.32%	Antenna B2 MPE %:	1.32%	Antenna C2 MPE %:	1.32%
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449
Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz
Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd	Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd	Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd
Height (AGL):	170 feet	Height (AGL):	170 feet	Height (AGL):	170 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts
ERP (W):	36,356.09	ERP (W):	36,356.09	ERP (W):	36,356.09
Antenna A3 MPE %:	4.86%	Antenna B3 MPE %:	4.86%	Antenna C3 MPE %:	4.86%

Site Composite MPE %					
Carrier	MPE %				
T-Mobile (Max at Sector A):	7.84%				
Verizon	2.72%				
AT&T	2.04%				
Site Total MPE % :	12.60%				

T-Mobile MPE % Per Sector					
T-Mobile Sector A Total:	7.84%				
T-Mobile Sector B Total:	7.84%				
T-Mobile Sector C Total:	7.84%				
Site Total MPE % :	12.60%				

T-Mobile Maximum MPE Power Values (Sector A)

T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile 1900 MHz GSM	4	982.02	170.0	5.25	1900 MHz GSM	1000	0.53%
T-Mobile 1900 MHz LTE	2	1964.04	170.0	5.25	1900 MHz LTE	1000	0.53%
T-Mobile 2100 MHz LTE	2	2281.14	170.0	6.10	2100 MHz LTE	1000	0.61%
T-Mobile 600 MHz LTE	2	591.73	170.0	1.58	600 MHz LTE	400	0.40%
T-Mobile 600 MHz NR	I	1577.94	170.0	2.11	600 MHz NR	400	0.53%
T-Mobile 700 MHz LTE	2	695.22	170.0	1.86	700 MHz LTE	467	0.40%
T-Mobile 2500 MHz LTE IC & 2C Traffic	I	11044.63	170.0	14.76	2500 MHz LTE IC & 2C Traffic	1000	1.48%
T-Mobile 2500 MHz LTE IC & 2C Broadcast	I	1074.06	170.0	1.44	2500 MHz LTE IC & 2C Broadcast	1000	0.14%
T-Mobile 2500 MHz NR Traffic	I	22089.26	170.0	29.53	2500 MHz NR Traffic	1000	2.95%
T-Mobile 2500 MHz NR Broadcast	I	2148.13	170.0	2.87	2500 MHz NR Broadcast	1000	0.29%
						Total:	7.84%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)			
Sector A:	7.84%			
Sector B:	7.84%			
Sector C:	7.84%			
T-Mobile Maximum MPE % (Sector A):	7.84%			
Site Total:	12.60%			
Site Compliance Status:	COMPLIANT			

The anticipated composite MPE value for this site assuming all carriers present is **12.60%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.