

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

June 15, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 33 Janoski Road, Ashford, CT 06278 Latitude: 41.952150 Longitude: -72.195527 Site #: 876345_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 33 Janoski Road, Ashford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 130-foot level of the existing 192foot self-support tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the fenced compound. Included are plans by NB+C, dated June 8, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated September 10, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council, Docket No. 157 on March 16, 1993. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Cathryn Silver-Smith, First Selectman and Michael D'Amato, Zoning Enforcement Officer for the Town of Ashford as well as the tower owner (Crown Castle) and property owner (Carolyn Martin, Martin Living Trust).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 192-feet and the Dish Wireless LLC antennas will be located at a center line height of 130-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 15.83% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Ashford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 130-foot level of the existing 192-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Ashford.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Cathryn Silver-Smith, First Selectman Ashford Town Hall 5 Town Hall Rd., Warrenville, CT 06278

Michael D'Amato, Zoning Enforcement Officer Ashford Town Hall 5 Town Hall Rd., Warrenville, CT 06278

Carloyn Martin-Martin Family Living Trust - Property Owner c/o Sprint Spectrum PO. Box 8430 Kansas City, MO 64114

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

FILE SITE # 204 SKY HILL ZONING RECEIVED

- ---- -- ---

- -----

MINUTES - ASHFORD PLANNING AND ZONING COMMISSION

Annual Meeting - November 12, 1996

Members present: Organ, Lawrence, Nagy, Levaur, Rossman, McCarthy & White.

Alternates present: Bartok & Specyalski.

The meeting was called to order at 9:55 p.m. after the public hearing (Sprint Spectrum, tower & Moratorium, Lake Chaffee).

Specyalski is the voting alternate for this meeting.

At the Annual Town meeting, Alex Hastillo and Kevin McCarthy were elected to 4 year terms on the Commission ending in the year 2000 and Bartok was elected to a 3 year term as Alternate ending in 1999.

Moved and seconded to consider Old and New Business first. Passed without dissent.

The Commission considered the Sprint Spectrum application for a communications tower to be located on Sky Hill. There were no objections at tonights public hearing. The tower will be able to hold three sets of antennas. Sprint Spectrum will operate a PCS digital system. It is regulated by the FCC. There will be no lights on the tower. Access will be off Frontage Road to Janowski Road to avoid the wetlands on the east end of Janowski Road. Moved and seconded to approve with conditions the application for a Special Exception under Section 5.2.3 by Sprint Sprectum L.P., Meriden, CT for a 200° communications tower to be located on land leased from David H. Martin off Janowski Road on Sky Hill.

The conditions are:

1. Utilities to the site which is approximately 2500' from Canowski Road will be located indetycound in the tight of way. 2. Space and installation of fire, emergency and municipal communications equipment to meet present and future needs will be provided at no cost.

3. A copy of the liability insurance will be submitted to the Commission.

4. A site plan including driveway design and sedimentation and erosion control measures will be submitted to the Commission before the construction begins.

5. A copy of the lease will be part of the land records.

Mction passed without dissent.

The Commission considered the proposed Moratorium at Lake Chaffee. Tim Backus, Chairman of the Water Pollution Control Authority was the only person to speak at the public hearing. Moved and seconded to approve the following:

Minutes - AP&ZC - 11/12/96 - page 2

.....

- .

· ____. . . .

Moratorium at Lake Chaffee

WHEREAS, the Department of Environmental Protection has cited the Town of Ashford and the Lake Chaffee Improvement Association, Inc. to study and report upon potential pollution at Lake Chaffee resulting from construction around the lake; and

WHEREAS, the Department of Environmental Protection has found pollution in the tributaries leading to the lake, and

WHEREAS, there is a reasonable expectation that the recommendation of the study may be to limit new construction in that area, or as an alterative to require that homes in the area be connected to an alternative type of sewage disposal system, and

WHEREAS, this Commission does not want to allow any deterioration of the water in the lake or tributaries;

The Planning and Zoning Commission of the Town of Ashford, pursuant to the authority vested in it by Section 8-2 of Connecticut General Statutes, hereby amends the zoning regulations of the Town of Ashford by adoption of the following Moratorium:

"Until December 31, 1997, there shall be no new house construction allowed within the area of Lake Chaffee Improvement Association, Inc. nor any enclosed addition to any existing house in that area. The Zoning Enforcement Officer may not in that period certify that any new construction is in conformity with the zoning regulations of the town."

Motion passed without dissent.

The reasons for reinstating the moratorium include: 1. There is need for more testing of the water and septic systems in the area. 2. There have been minimal applications for construction since the

last moralorium was lifted.

3. The MPCA is seeking on-site solutions.

4. There are several sets of vacant lots that may be valuable for sewage disposal systems.

Specyalski stepped down for the next item of business.

Brialee Campground - Brian Specyalski submitted a plan for a six additional campsites at the campground. It was noted that three of these butt onto adjoining property that is owned by the State of Connecticut. The others have a 100' setback that has been the minimum acceptable to the Commission. Moved and seconded to receive the plan and hold a public hearing on December 9th. Passed without dissent. A new map showing only the three sites that meet the setback requirements will be submitted. The Commission will walk the site a 7 a.m. on Saturday November 16th.

Minutes - APSZC - 11/12/96 - page 3

The Commission returned to the top of the agenda.

Moved and seconded to approve the minutes of the October 15th meeting. Passed without dissent.

Moved and seconded to send a letter of appreciation to George Quirk Sr., ratiring member for his many years of service to the Commission. Passed without dissent.

There were no bills.

A copy of the revised Small Cities Housing Plan was received from the Office of the Selectmen. It will go to a public hearing in December. Copies will be distributed to the Commission members for review.

The revised fee schedule was approved by Town Meeting in October.

Noved and seconded to add to the agenda the election of officers and reappointment of employees. Passed without dissent.

Moved and seconded to reelect the following officers to serve until the next annual meeting of the Commission: Sidney E. Organ, Chairman, Alex Hastillo, Vice Chairman and John Bartok, Secretary. Passed without dissent. The Secretary will cast one ballot for each.

Moved and seconded to reappoint Rudolph Makray, Zoning Enforcement Officer and John Bartok, Recording Secretary for one year or until the next annual meeting. Passed without dissent.

The Commission agreed to hold a Special Meeting on Monday, December 16th at 7 p.m. to review the draft of the revised Plan of Development.

₹.

The mesting adjourned at 10:55 p.m.

Respectfully submitted.

John W. Bartok, Jr. Recording Secretary

LEGAL NOTICE

Town of Ashford

The Ashford Planning and Zoning Commission at its meeting on November 12, 1996 took the following actions:

APPROVED with conditions the application of Sprint Spectrum, L.P., Meriden, CT for a 200' communications tower to be built on the David Matin property located off Route 89 on Sky Hill.

APPROVED a request by the Ashford Water Pollution Control Authority to reenstate the moratorium at Lake Chaffee until December 31, 1997 that prohibits construction of new houses or enclosed additions to any existing house.

Dated in Ashford, Connectiout this 14th day of November, 1996.

John W. Bartok, Jr., Seo. Ashford Planning and, Zoning Commission

Ę

•

.....

Exhibit B

Property Card

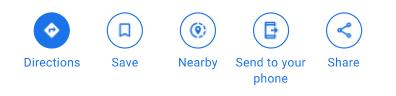
Unique ID:	0000741	0			As	hford				с	ard No:	1 Of 1	
Location:)			Map Id:	02 F 1	.1	Zone	e:	Date	Printed:	6/16/2022
		-				Neighborhood: C3			La			Update:	6/16/2022
		Own	er Of Record			V	olume/Page	Date		Sales T	уре	Valid	Sale Price
MARTIN CAROLY	N M L/U					0:	200/0736	12/4/2020	Quit Claim			No	0
MARTIN STEVEN	REMAINDER	/AN, C/O SPRI	NT SPECTRUM	/ CT-03XC04, P	O BOX 8430, KAN	ISAS CITY,			Exempt				
					Prior C	wner History							
MARTIN FAMILY	LIV TR DTD 6/	20/05	MART	FIN CAROLYN M	I TRUSTEE	0	197/0876	1/31/2020				No (
MARTIN FAMILY		20/05			CAROLYN M TRUS		94/0885	10/15/2018				No (
MARTIN DAVID H			C/O S	PRINT SPECT	RUM CT-03XC204	0	109/0811	9/30/1996				No ()
Permit Number	Date		Permit Descr	iption				1	•				
20-39B	4/21/2020			ISTING ANTEN	NAS								
20-16B	2/26/2020	ADD 3 ANTEN											
<u>19-129B</u> 19-13B	12/30/2019 3/8/2019		EXISTING AN ISTING T-MOB		PLACE 2 RRUS. A	ADD 6 RRUS.							
18-54E	11/19/2018			DIESEL GENEI	RATOR								
18-76	9/12/2018	SPRINT TO R	EPLACE 6 ANT	ENNAS + ADD	12 REMOTE RADI	IO HEADS.							
				Supplen	nental Data						Appra	aised Value	
Census/Tract					VisionPID	65				Tota	I Land Value		401,400
Dev Map ID					Incr Reason								0
					Conc Fdnt St					Iota	I Building Value		0
					TC Map#					Tota	I Outbldg Value		111,600
					PA490 Info					Tota	I Market Value		513,000
Utilities													,
			Acres						State Ite	m Code	s		
Land Type		Acres	; 4	490 _	Total Value		Code				Quantity	Value)
Commercial Ex	cess	0.47	(0.00	1,400								
Commercial Pr	imary Vacant	0.23	(0.00	400,000								
Total		0.700	2	0.00	401,400								
Total			-	rior Years as o	f Oct 1)				4	90 Appra	aised Totals		
		2021	2020	201		018		Туре	Acres	Value		Acre	s Value
Land		280,980	124,000	124,00									
				,0									
Building		0	0		0	0							
Outbuilding		78,120	128,200	128,20	00 128,2	200							
											Totals	0.00	0
Total	:	359,100	252,200	252,20	0 252,2	200	ŀ	Application Da	te:		Expiration Date		
					Co	omments							
				Informati	on may be deeme	ed reliable, bu	t not quara	inteed.			Revaluation	Date: 10/1	2016

Unique ID: 00007410	Ashford		
Location: 33 JANOSKI R	Unit		
Commercial Building Description	Description Area/Qty	-	
Building Use Class			
Overall Condition			
Construction Quality			
Stories			
Year Built			
Remodel			
Percent Complete			
GLA			
Basement			
Basement Area			
HVAC			
Heating Type	Attached Component Computations		
Fuel Type	Type Yr Blt Area/Qt		
Cooling Type			
Interior Floors	-		
Walls			
Wall Height			
Exterior			
Exterior Walls	1		
Boof Tupo			
Roof Type Roof Cover			
Special Features	1		
]		
		Detached Component Computations	
	Type Year Condition	Area/Qty Type	Year Condition Area/Qty

Google Maps

41°57'07.7"N 72°11'43.9"W

Crown Castle - tower location



Imagery ©2020 CNES / Airbus, MassGIS, Commonwealth of Massachusetts EOEA, Maxar Technologies, U.S. Geological Survey, USDA 1000 ft 🗆 Farm Service Agency, Map data ©2020

41°57'07.7"N 72°11'43.9"W

41.952139, -72.195528

Ashford School District, Ashford, CT 06278

XR23+VQ Ashford, Connecticut

Exhibit C

Construction Drawings

DISH Wireless L.L.C. SITE ID: BOBOS00874A

DISH Wireless L.L.C. SITE ADDRESS:

33 JANOWSKI ROAD ASHFORD, CT 06278

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES CODE TYPE <u>CODE</u> 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS BUILDING MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS

ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX	
SHEET NO.	SHEET TITLE	
T-1	TITLE SHEET	
A-1	OVERALL AND ENLARGED SITE PLAN	
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE	
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS	
A-4	EQUIPMENT DETAILS	and the second se
A-5	EQUIPMENT DETAILS	
A-6	EQUIPMENT DETAILS	
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	
E-2	ELECTRICAL DETAILS	
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	
G-1	GROUNDING PLANS AND NOTES	
G-2	GROUNDING DETAILS	
G-3	GROUNDING DETAILS	
RF-1	RF CABLE COLOR CODE	
GN-1	LEGEND AND ABBREVIATIONS	
GN-2	GENERAL NOTES	
GN-3	GENERAL NOTES	
GN-4	GENERAL NOTES	THE FACILITY IS UNMAN FOR ROUTINE MAINTENA DRAINAGE. NO SANITARY SIGNAGE IS PROPOSED.
		11"x17" PL
		CONTRA
		THE JOB SITE, AND

THIS IS NOT APPROVED E THE PROJEC	Equivalent
INSTALLINSTALLINSTALLINSTALLINSTALL	(3) PROPO(3) PROPOPROPOSED(6) PROPO(1) PROPO
 INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL REMOVE 	 PROPC

SCOPE OF WORK

INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER . CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. ALLY CONSISTS OF THE FOLLOWING:

POSED PANEL ANTENNAS (1 PER SECTOR) POSED SECTOR FRAMES ED JUMPERS POSED RRUS (2 PER SECTOR) POSED OVER VOLTAGE PROTECTION DEVICE (OVP) POSED HYBRID CABLE BLE Z-BRACKETS (1 PER SECTOR) /ORK: POSED METAL PLATFORM POSED PPC CABINET

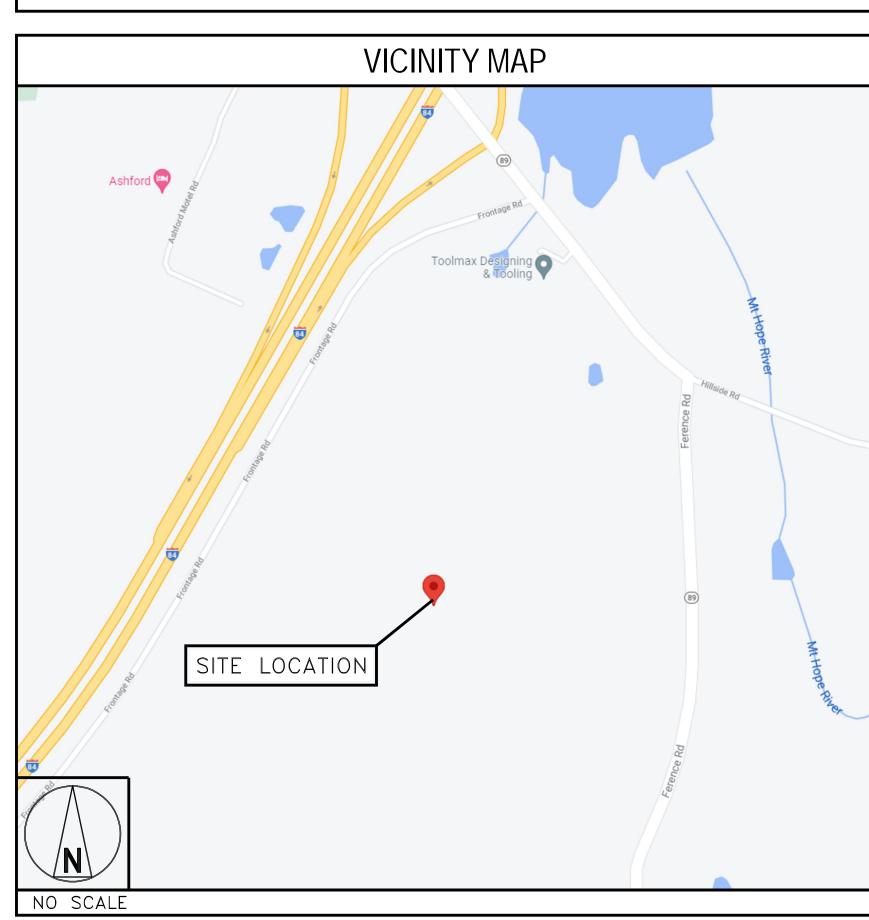
- POSED EQUIPMENT CABINET POSED POWER CONDUIT
- POSED TELCO CONDUIT
- POSED TELCO-FIBER BOX OSED GPS UNIT
- OSED FIBER NID (IF REQUIRED) ABANDONED EQUIPMENT
- ABANDONED COAX

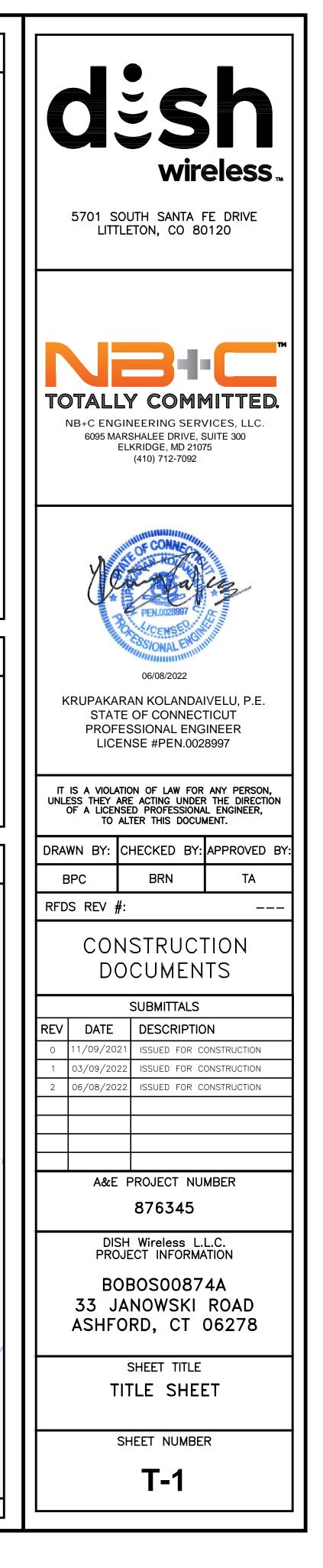
SITE PHOTO

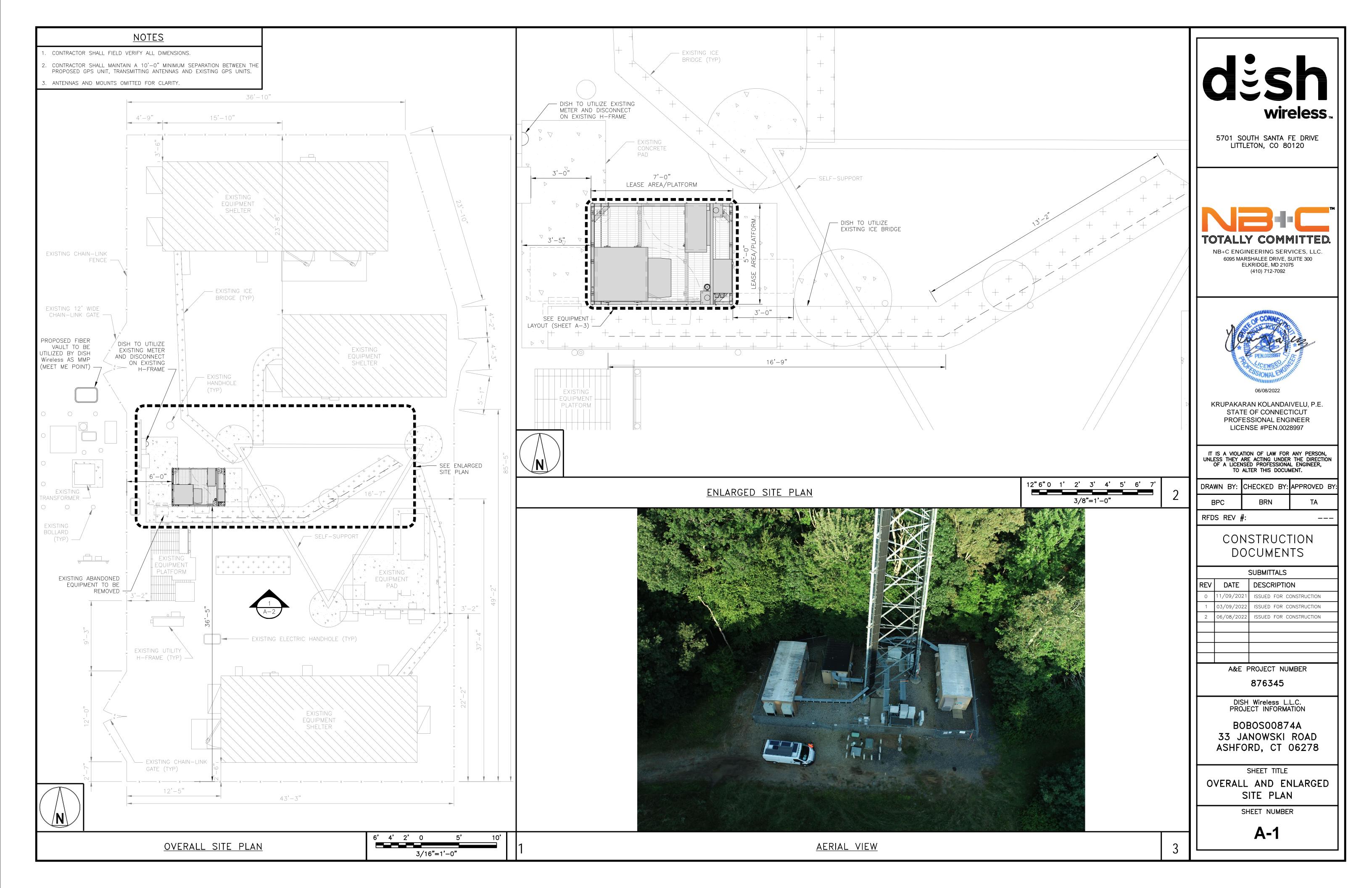
JILI	1010
	10/14/2021 12:57

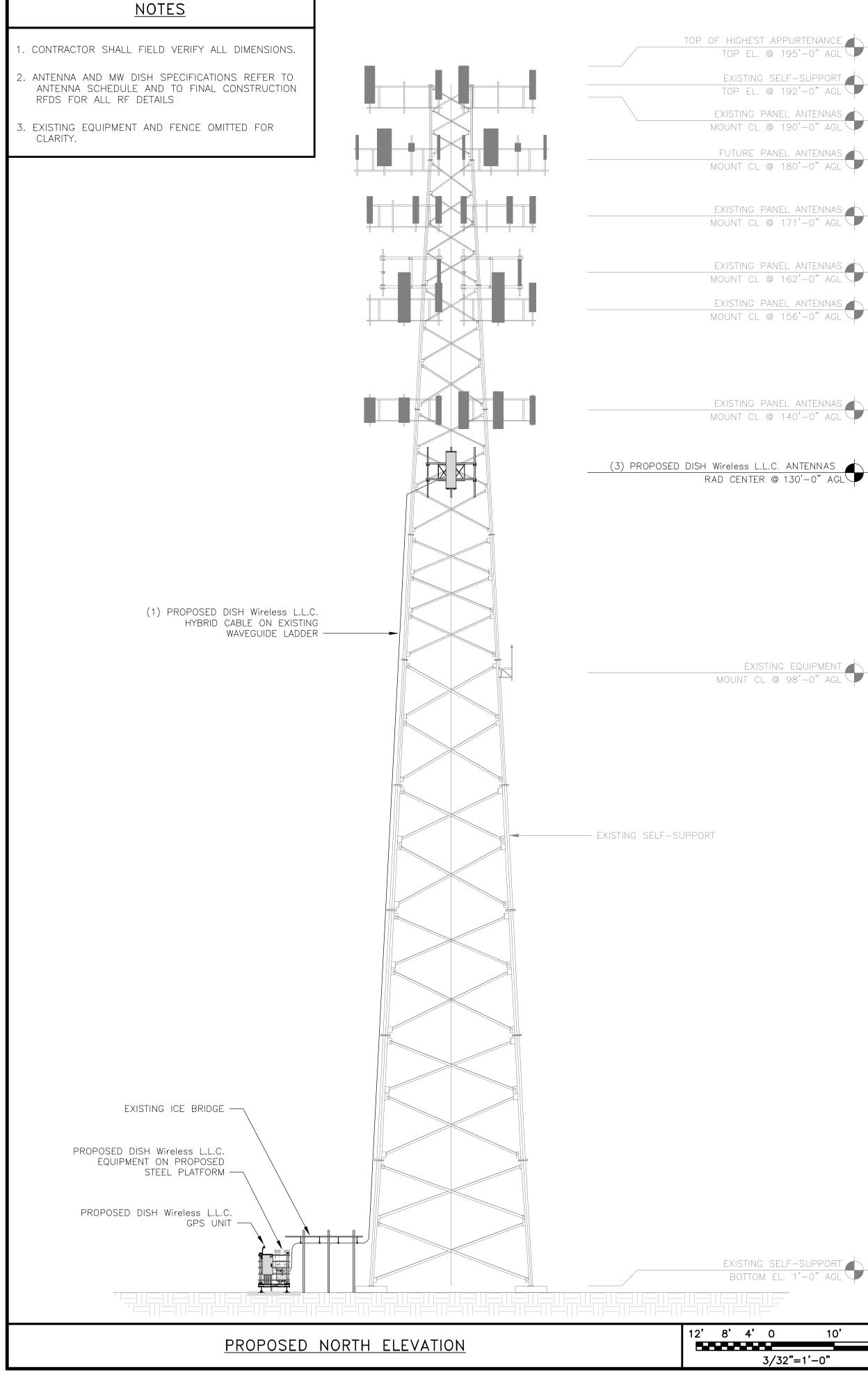
GENERAL NOTES

UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED AINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON ANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL

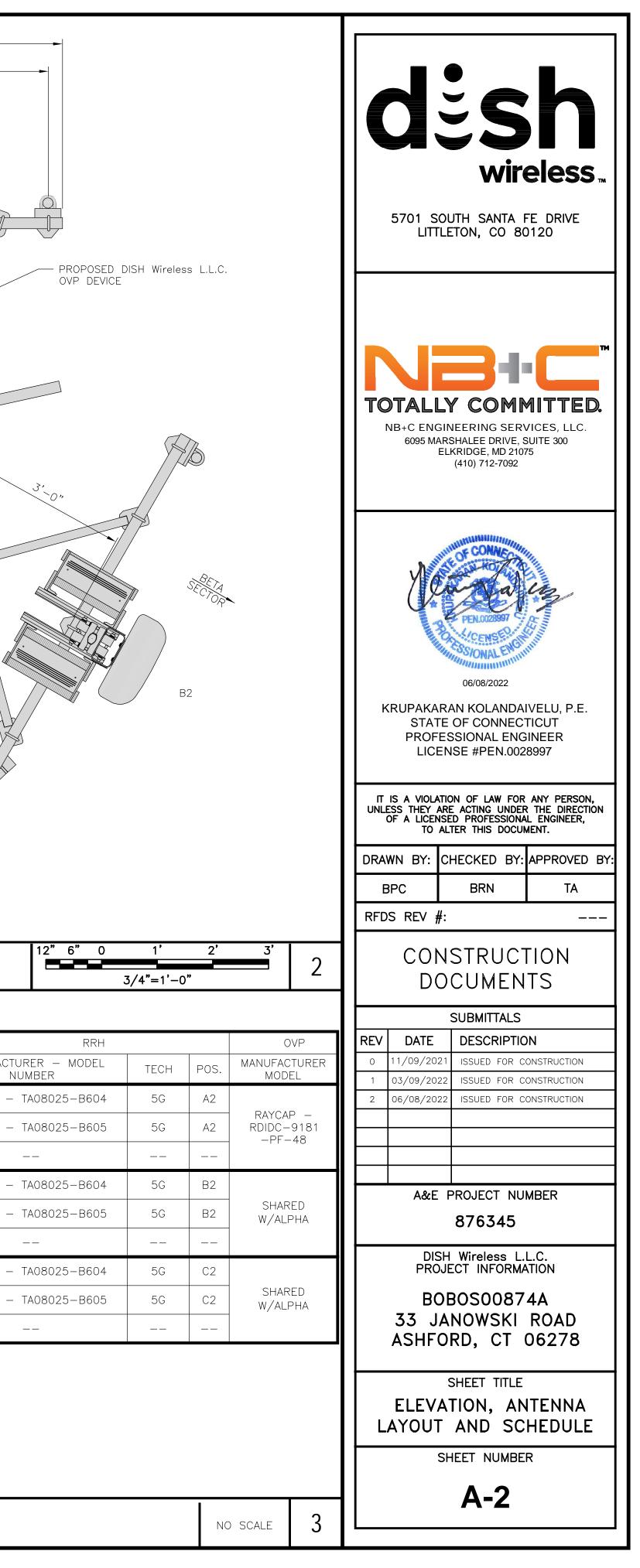

7" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

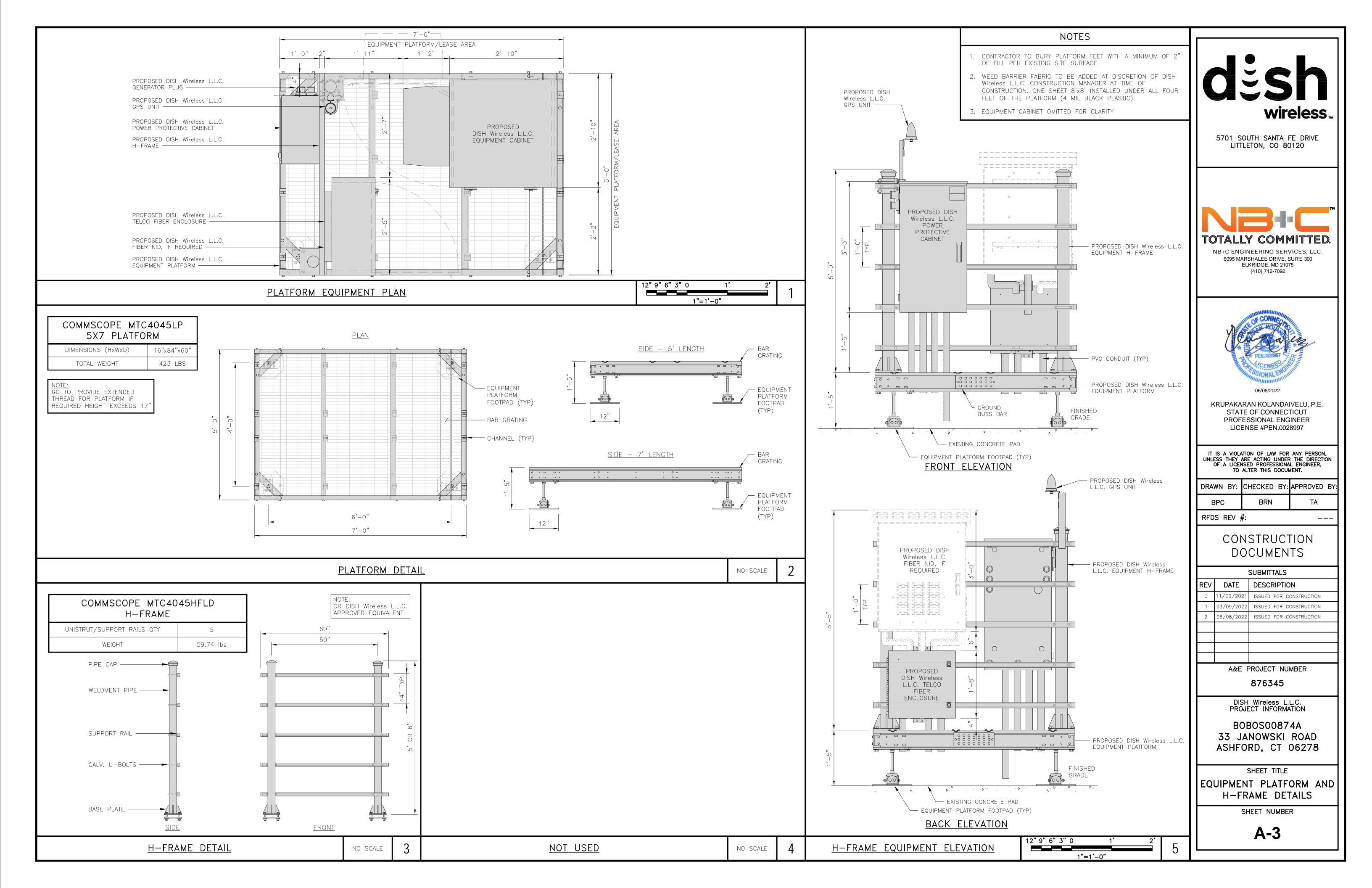

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON , AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

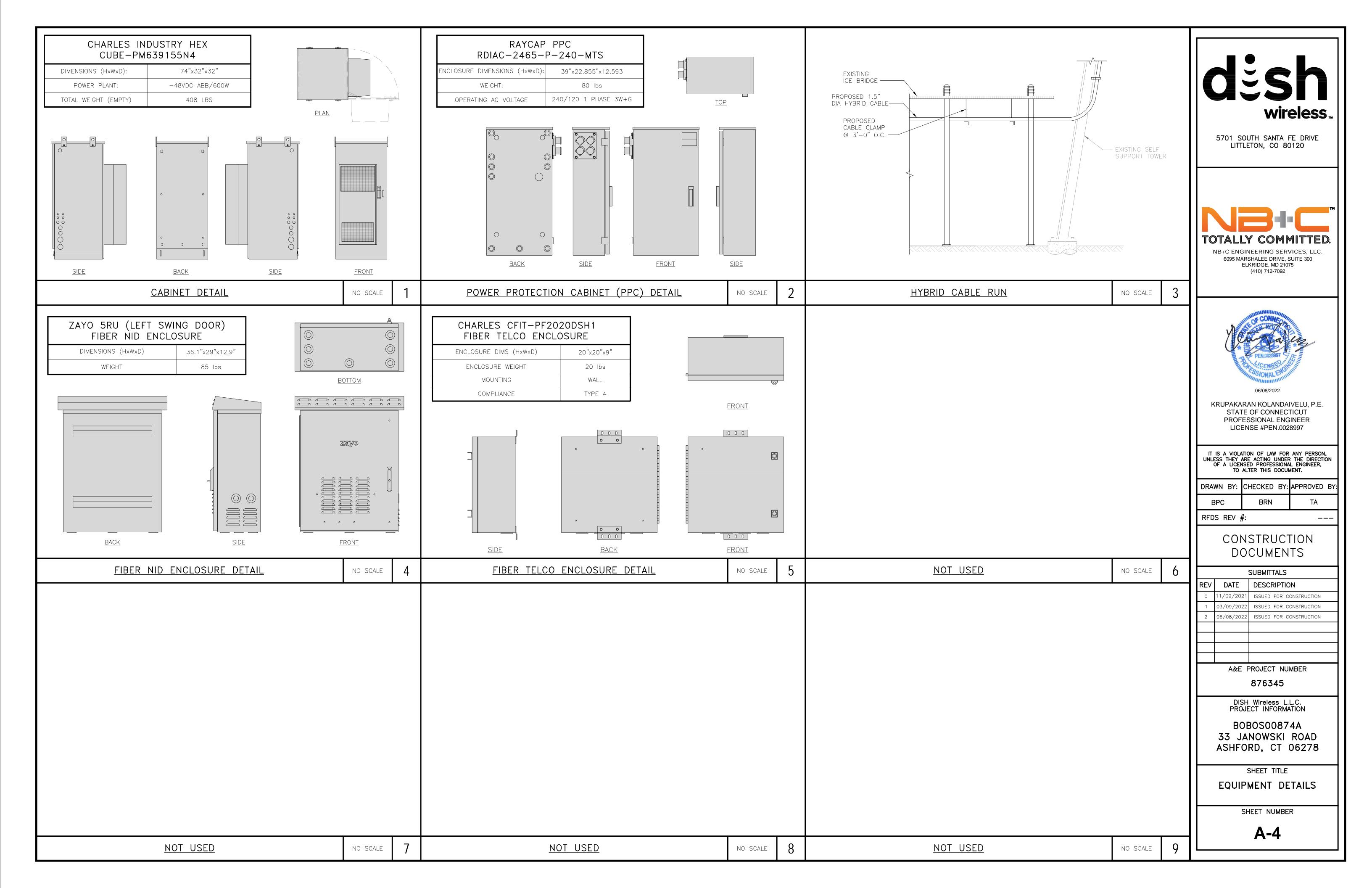

SITE IN	FORMATION	PROJECT DIRECTORY					
PROPERTY OWNER: ADDRESS:	GLOBAL SIGNAL ACQUISITION PO BOX 277445 ATLANTA, GA 30384–7455	APPLICANT:	DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120	-			
TOWER TYPE:	SELF-SUPPORT	TOWER OWNER:	CROWN CASTLE USA INC. 2000 CORPORATE DR.				
TOWER CO SITE ID:	876345		CANONSBURG, PA 15317 (877) 486–9377				
TOWER APP NUMBER:	572903		、 <i>,</i>				
COUNTY:	WINDHAM	SITE DESIGNER:	NB+C ENGINEERING SERVICES 6095 MARSHALEE DRIVE, SUIT ELKRIDGE, MD 21075				
LATITUDE (NAD 83):	41°57'7.70"N 41.952139N		(410) 712-7092				
LONGITUDE (NAD 83):							
ZONING JURISDICTION:		SITE ACQUISITION	VICTOR NUNEZ VICTOR.NUNEZ@CROWN	CASTLE.CC			
ZONING DISTRICT:	RA						
PARCEL NUMBER:	ASHF-007410-000000	CONSTRUCTION M	ANAGER: AARON CHANDLER AARON.CHANDLER@DISI	H.COM			
OCCUPANCY GROUP:	U	RF ENGINEER:	ARVIN SEBASTIAN ARVIN.SEBASTIAN@DISH	COM			
CONSTRUCTION TYPE:	II-B		ARVIN.SEDASTAREDIST				
POWER COMPANY:	EVERSOURCE						
TELEPHONE COMPANY:	T.B.D.						


DIRECTIONS

DIRECTIONS FROM SOUTHBRIDGE MUNICIPAL AIRPORT: START OUT GOING SOUTHEAST ON CLEMENCE HILL RD. TAKE THE 1ST RIGHT ONTO AIRPORT ACCESS RD. TURN LEFT ONTO PLEASANT ST. TURN LEFT ONTO MAIN ST. TAKE THE 1ST RIGHT ONTO WEST ST. TURN RIGHT ONTO SOUTH ST. SOUTH ST BECOMES MASHAPAUG RD. TURN RIGHT TO STAY ON MASHAPAUG RD. MERGE ONTO I-84 W TOWARD HARTFORD CT. TAKE THE CT-89 EXIT, EXIT 72. TURN LEFT ONTO FISH POINT RD. TURN RIGHT ONTO FRONTAGE RD. TAKE THE 1ST LEFT ONTO JANOSKI RD. DRIVE TO END OF ROAD TO REACH SITE.

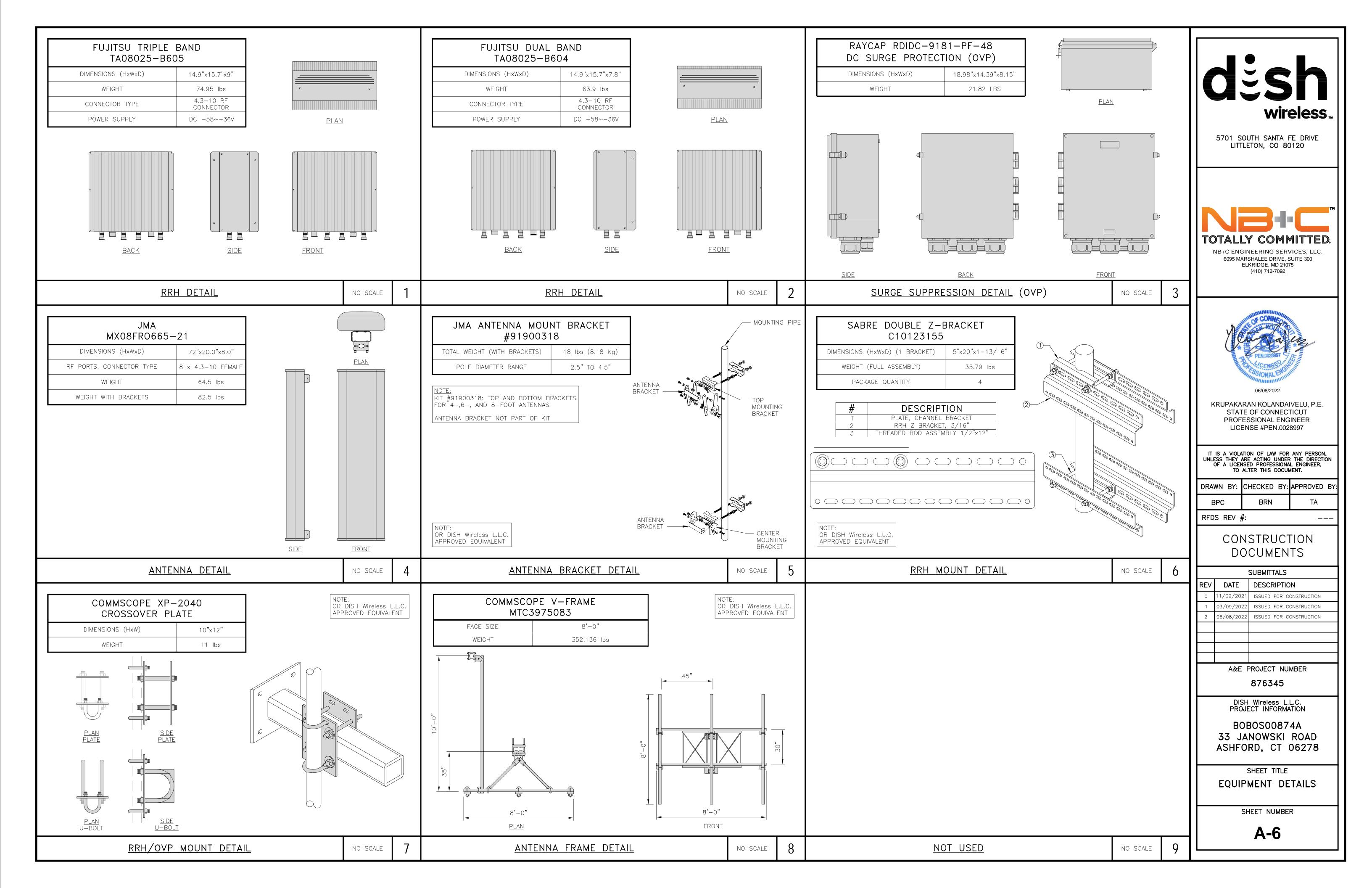


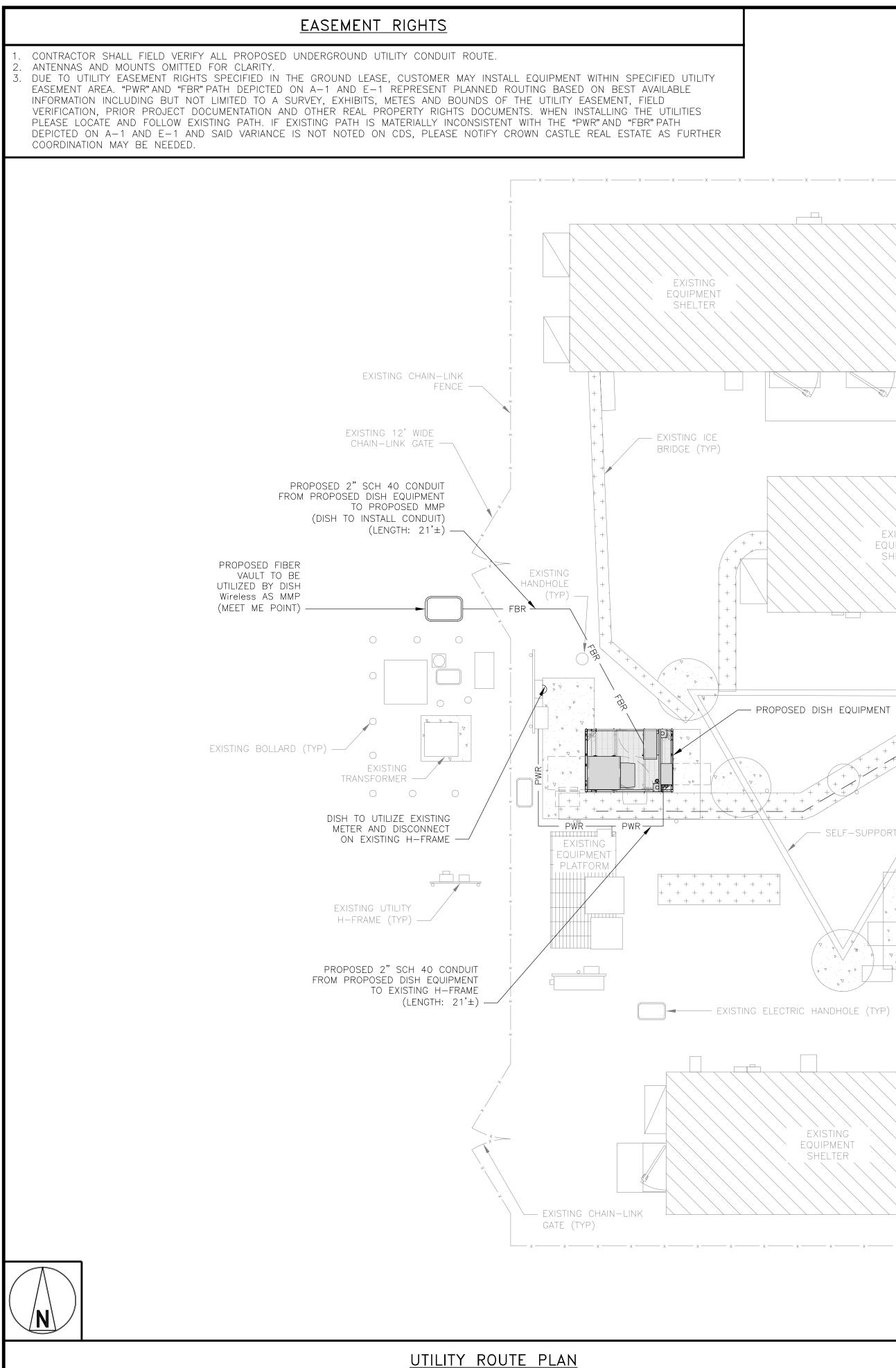

F-SUPPORT 1'-0" AGL	2. AN EQ	EXISTING OR PROPOSED PROPOSED PROPOSED PROPOSED PROPOSED PROPOSED NTRACTOR TO REF	ANTENNA MANUFACTURER – MODEL NUMBER —— JMA – MX08FR0665–21 —— JMA – MX08FR0665–21 —— JMA – MX08FR0665–21 —— JMA – MX08FR0665–21 —— FER TO FINAL CONSTRUCTION R MODELS MAY CHANGE DUE TO S MUST BE APPROVED AND REM IGN AND STRUCTURAL ANALYSES	EQUIPMENT 1AIN IN COI	AZIMUTH 0' 120' 240' LL RF DETA	Y. ALL	TRANSMISSION CABLE FEED LINE TYPE AND LENGTH (1) HIGH-CAPACITY 1.5" DIA. HYBRID CABLE (191' LONG) SHARED W/ALPHA SHARED W/ALPHA	MANUFAC FUJITSU - FUJITSU - FUJITSU - FUJITSU - FUJITSU -
	POS. A1 A2 A3 B1 B2 B3 C1 C2	EXISTING OR PROPOSED PROPOSED PROPOSED PROPOSED PROPOSED	ANTENNA MANUFACTURER – MODEL NUMBER JMA – MX08FR0665–21 JMA – MX08FR0665–21 	TECH 5G 5G 5G 5G	AZIMUTH 0° 120° 120° 240°	CENTER 130'-0" 130'-0" 130'-0"	FEED LINE TYPE AND LENGTH (1) HIGH-CAPACITY 1.5" DIA. HYBRID CABLE (191' LONG) SHARED W/ALPHA	FUJITSU - FUJITSU - FUJITSU - FUJITSU -
	POS. A1 A2 A3 B1 B2 B3	EXISTING OR PROPOSED PROPOSED PROPOSED PROPOSED 	ANTENNA MANUFACTURER – MODEL NUMBER JMA – MX08FR0665–21 JMA – MX08FR0665–21 	TECH 5G 5G 	AZIMUTH 0' 120'	CENTER 130'-0" 130'-0" 	FEED LINE TYPE AND LENGTH (1) HIGH-CAPACITY 1.5" DIA. HYBRID CABLE (191' LONG)	FUJITSU - FUJITSU - FUJITSU - FUJITSU -
	POS. A1 A2 A3 B1 B2	EXISTING OR PROPOSED PROPOSED PROPOSED PROPOSED	ANTENNA MANUFACTURER – MODEL NUMBER JMA – MX08FR0665–21 	TECH 5G 5G	AZIMUTH 0 [.] 120 [.]	CENTER 130'-0" 130'-0"	FEED LINE TYPE AND LENGTH (1) HIGH-CAPACITY 1.5" DIA. HYBRID CABLE (191' LONG)	FUJITSU - FUJITSU - FUJITSU -
	POS. A1 A2 A3 B1	EXISTING OR PROPOSED PROPOSED PROPOSED 	ANTENNA MANUFACTURER – MODEL NUMBER JMA – MX08FR0665–21 	TECH 5G 	AZIMUTH 0 [.] 	CENTER 130'-0" 	FEED LINE TYPE AND LENGTH (1) HIGH-CAPACITY 1.5" DIA. HYBRID CABLE (191' LONG)	FUJITSU - FUJITSU - FUJITSU -
	POS. A1 A2	EXISTING OR PROPOSED	ANTENNA MANUFACTURER – MODEL NUMBER ––	TECH 5G	AZIMUTH 0	CENTER 130'-0"	FEED LINE TYPE AND LENGTH (1) HIGH-CAPACITY 1.5" DIA. HYBRID CABLE	FUJITSU -
	POS.	EXISTING OR PROPOSED	ANTENNA MANUFACTURER – MODEL NUMBER ––	TECH	AZIMUTH	CENTER	FEED LINE TYPE AND LENGTH (1) HIGH-CAPACITY 1.5" DIA. HYBRID	FUJITSU -
	POS.	EXISTING OR PROPOSED	ANTENNA MANUFACTURER – MODEL NUMBER	TECH	AZIMUTH	CENTER	FEED LINE TYPE AND LENGTH	
	SECTOR			NNA LA	AYOUT		TRANSMISSION CABLE	
			<u>ANTE</u>	NNA LA	<u>AYOUT</u>			
	N		۵NTF	NNA 14	Δ ΥΟIJΤ			
								E B
EQUIPMENT 98'-0" AGL			CAMMA SECTOR					
			C2	·				
ANTENNAS 130'-0" AGL	ANTENNA S) DISH Wireless L.L SECTOR FRAME PE — MTC3975083						
_ ANTENNAS 40'-0" AGL			QT / AA					
_ ANTENNAS 56'-0" AGL		EX	ISTING SELF-SUPPORT TOWER					
ANTENNAS			(TYP 1 PER SECTOR, TOTAL 3)					
ANTENNAS			PROPOSED DISH Wireless L.L.C. DOUBLE Z-BRACKETS					
_ ANTENNAS			H Wireless L.L.C. RRH					
80'-0" AGL								
			SH Wireless L.L.C. PER SECTOR, TOTAL 3)		ALPHA			


8'-0"

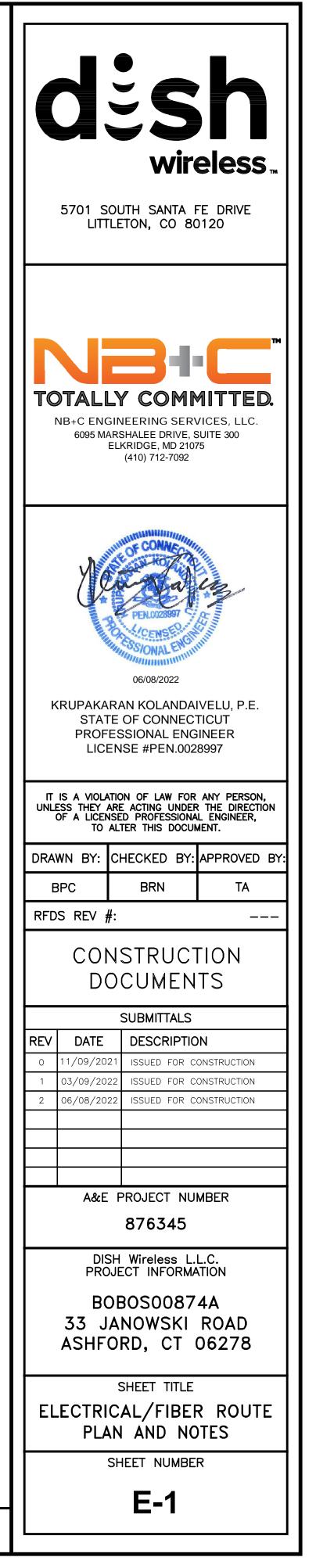
7'-6"

TYP. ANTENNA SEPARATION



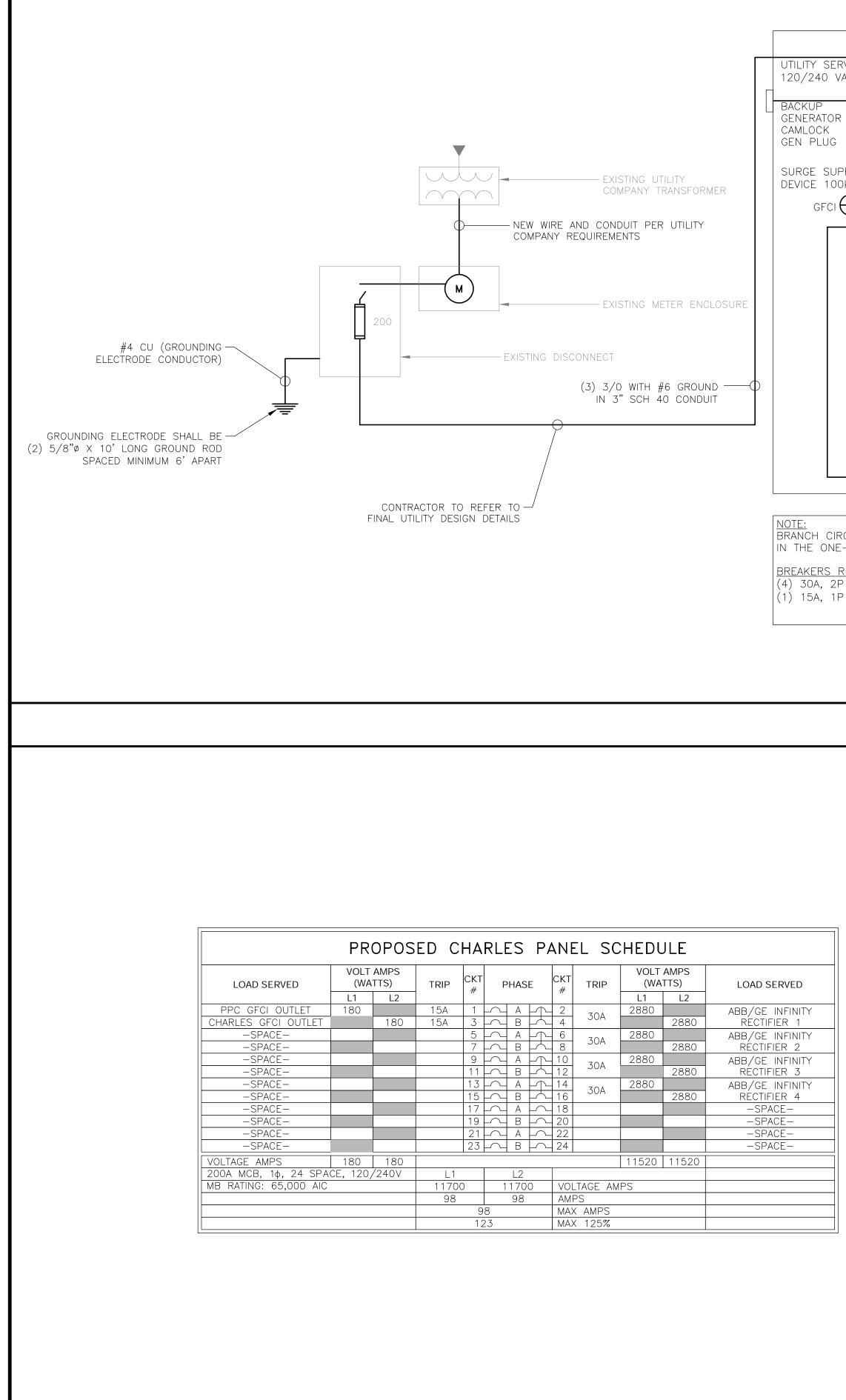


					PCTEL GPSGL-TMG-SPI-40NCB		
		\bigcirc					
				DIMENSIONS (DIAXIT) MM/ INCH3.2"x7.25"WEIGHT W/ACCESSORIES075 lbs			
		TOP		CONNECTOR N-FEMALE			
				Ηz	FREQUENCY RANGE 1590 ± 30Mł		
		<u>SIDE</u>			BACK		
<u>GPS MII</u>	1	NO SCALE			<u>GPS DETAIL</u>		
			-	QTY BOBOS00874A	DESC SITE ID #:		
			1	SELF-SUPPORT	TWR TYPE:		
	rs.	he antennas on towe	The preparer must deternThis is the RAD center for	30"	HYBRID BEND RADIUS		
	al		For a rooftop, this is the to sections of t	130.0	RAD CENTER (ft)		
		ne bridge coverings.	This is the height of t	10.0	ICE BRIDGE HEIGHT (ft)		
		used or total horizor	This is the length of the tot more than one ice bridge is lengths of hybrid if this	30.0	ICE BRIDGE LENGTH (ft)		
		nside a radio room.	This is the length from the up the ice bridge or in	6.0	LENGTH ACROSS PLATFORM (ft)		
		or the total horizonta building or large self	This is the horizontal leng OVP at the antenna level lengths of hybrid on a supporting	6.0	LENGTH FROM TOWER TOP TO OVP (ft)		
		ginning of the first b	This is the vertical length of the tower top OVP to the be that is going into th	3.0	VERTICAL LENGTH OF HYBRID INTO TOWER TOP OVP (ft)		
			-	LENGTH (ft) O	Additional Excess Hybrid to be added (To be determined by preparer)		
				191	Fotal Hybrid Length to Order Rounded up to nearest whole number)		
	4	NO SCALE		ULATOR	<u>HYBRID CABLE CALC</u>		
<u> </u>							


NIMUM SKY VIEW REQUIREMENTS VE VAL 2 CABLES UNLIMITES MYSRID CABLE MINIMUM 3FND RADIUSES VE VAL 3 NOT USED VE DAL 5 NOT USED VE DAL 6 NOT USED VE DAL 5 NOT USED VE DAL 6 NOT USED VE DAL 5 NOT USED VE DAL 6 NOT USED VE DAL 5 NOT USED VE DAL 6 NOT USED VE DAL 5 NOT USED VE DAL 6 NOT USED VE DAL 5 NOT USED VE DAL 6 NOT USED VE DAL 5 NOT USED 4-5	MINIMUM OF 75% OR 270' IN ANY DIRECTION GPS UNIT BE BELOW 10'			CU12PSM6P4XXX (4 AWG CONDUCTORS) CU12PSM6P4XXX (4 AWG CONDUCTORS) CU12PSM6P4XXX (4 AWG CONDUCTORS) CU12PSM6P4XXX (8 AWG CONDUCTORS)		_	<section-header><text><text><text><text></text></text></text></text></section-header>
NOT_USED <> 201. 5 NOT_USED <> 201. 6 WILL 5 NOT_USED <	INIMUM SKY VIEW REQUIREMENTS	NO SCALE	2		NO SCALE	3	
NOT_USED NOT_USED NOT_USED NOT_USED NOT_USED NOT_USED NOT_USED SUBMITIALS NOT_USED VIEWER AND ADDRESS OF ADDR							KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: BPC BRN TA RFDS REV #: CONSTRUCTION
Image: Sector	<u>NOT USED</u>	NO SCALE	5	<u>NOT USED</u>	NO SCALE	6	
							0 11/09/2021 ISSUED FOR CONSTRUCTION 1 03/09/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 6 5 5 6 5 5 7
	NOT USED	NO SCALE	8	NOT USED	NO SCALE	9	

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V. 1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED. 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS. 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION. 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED. 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM. 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314. 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS. 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM. 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS. 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL. 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT. EXISTING 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS. EQUIPMEN[®] SHELTER 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG - PROPOSED DISH EQUIPMENT SELF-SUPPORT drz 72. EXISTING EQUIPMENT PAD EXISTING EQUIPMENT SHELTER

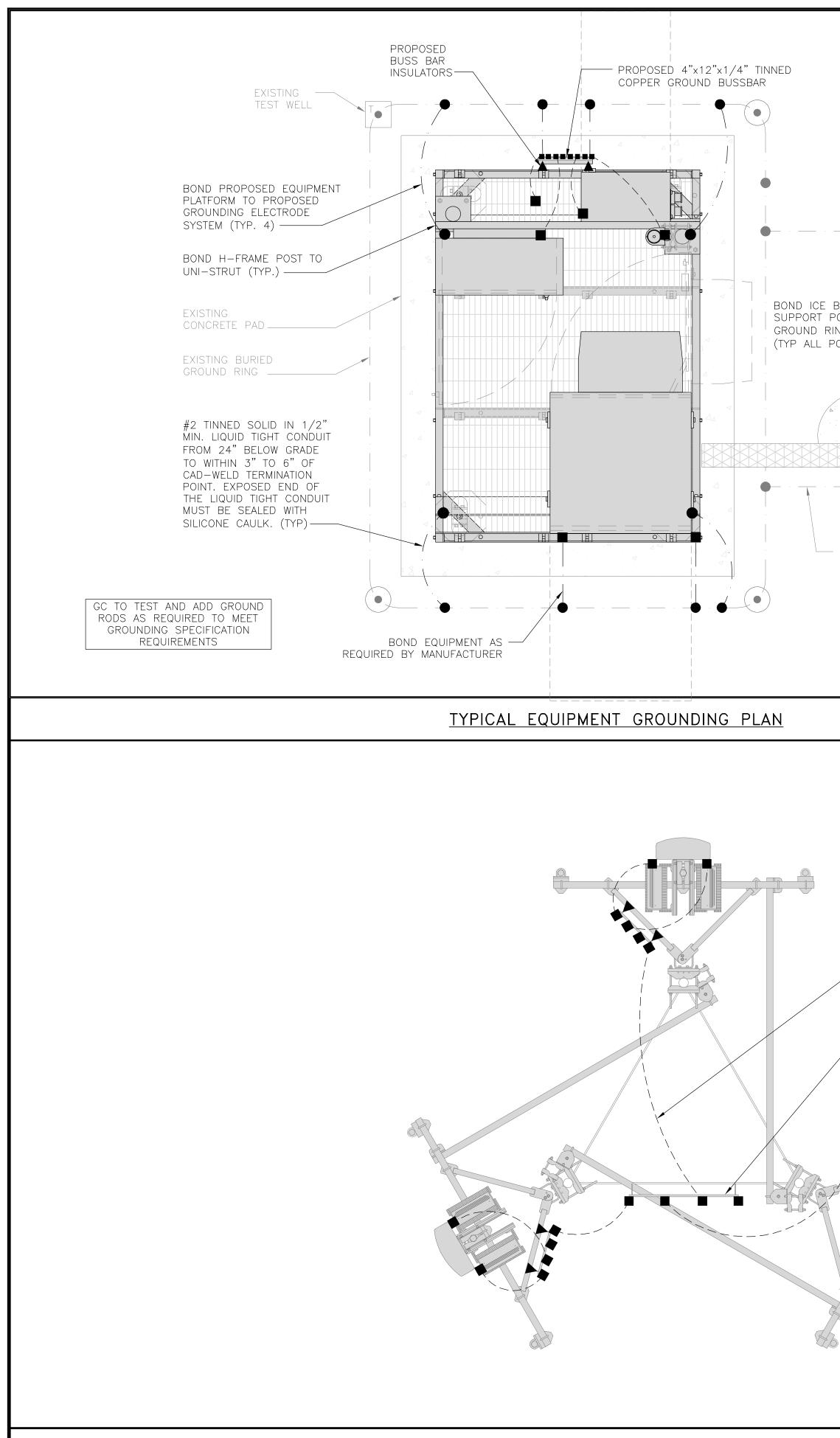
6' 4' 2' 0 5' 10' 3/16"=1'-0"	1	<u>ELECTRICAL NOTES</u>



NO SCALE 2	

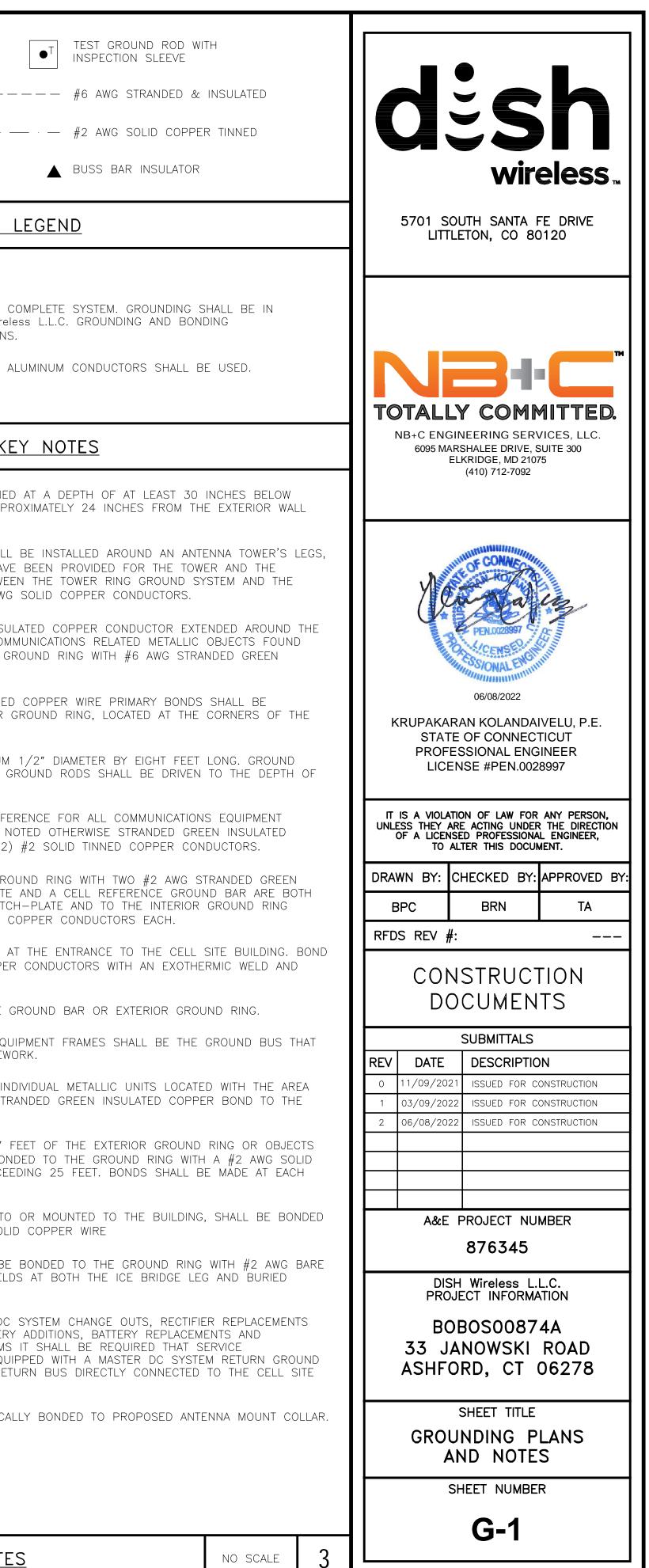
NOTES RESTORE THE NAL R SEEDING AREAS, OR DR CONCRETE AL CROSS INCLUDING, O SOIL PING, AND GOVERNED SHA CAVATION L BE JANCE WITH NAL C) OR AS CCAL	KFILL PER SITE K SPECIFICATION GENERAL NOTES PE TO SUIT SOIL DITION IN ACCOR LOCAL REGULAT TRENCHING NOT	S) DANCE IONS E 2 E SITE	DISH Wireless L.L.C. PROVIDES 12AWG WIRE (6' TAIL) PROPOSED DISH Wireless L.L.C. UNISTRUT PROPOSED DISH Wireless L.L.C. 10 AMP DISTRIBUTION BREAKER PROPOSED DISH Wireless L.L.C. 12 AWG WIRE PROPOSED DISH Wireless L.L.C. 1-1/2" POWER FROM CABINET DISH Wireless L.L.C. INSTALLS 1-1/2" CONDUITS FOR POWER AND FIBER TO CABINET
L UNDERGROUND TRENCH DETAIL	NO SCALE	2	DARK TELCO BOX – INTERIOR WI
NOT USED	NO SCALE	5	<u>NOT USED</u>
<u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>

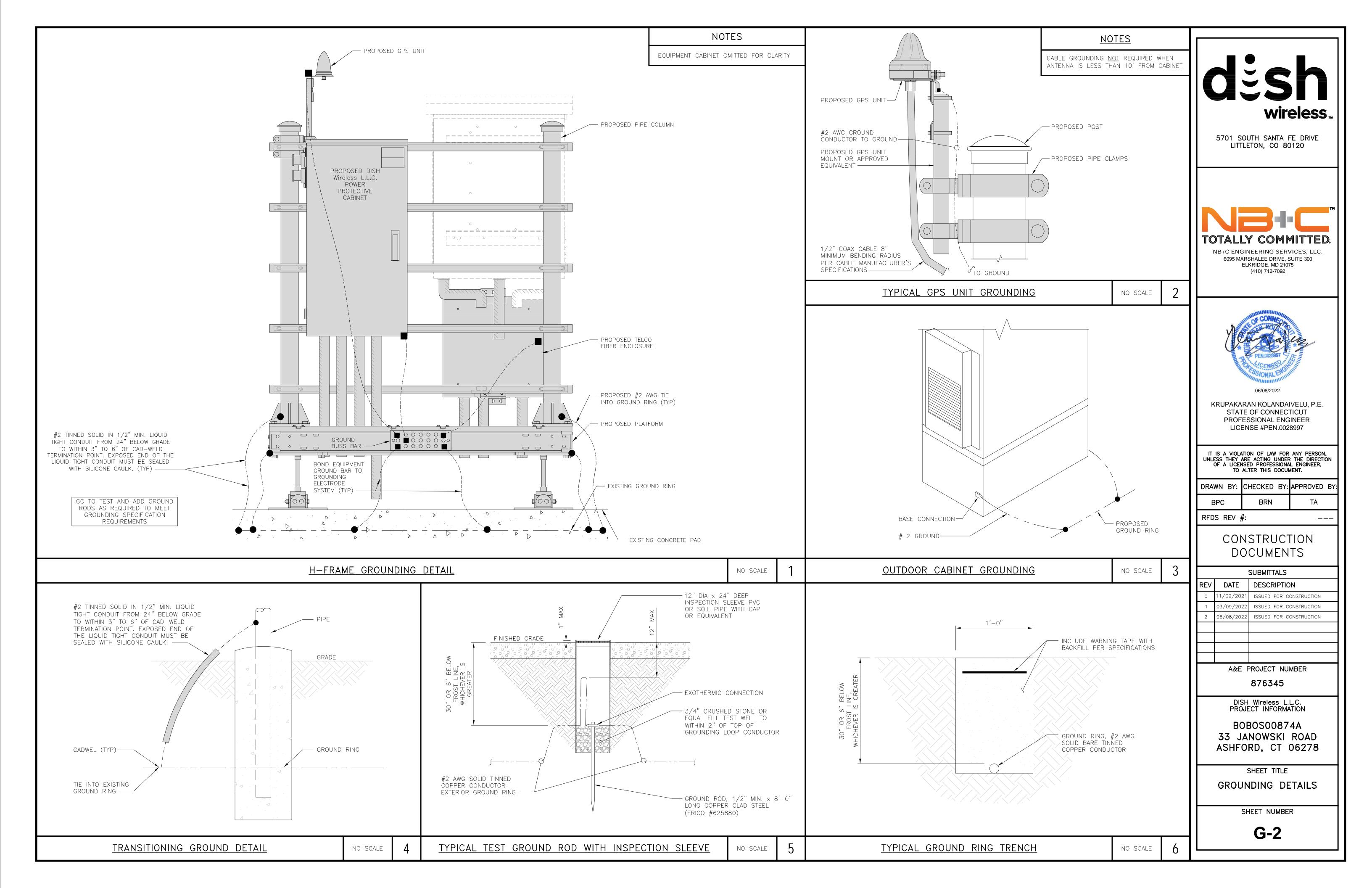
PANEL SCHEDULE


RVICE ENTRANCE VAC 1PH		CHARLES NETWORK CABINET	THE ENGINEER OF RECORD HAT CALCULATIONS AND THE AIC RA EQUIPMENT AND THE ELECTRICA
N3R, 65K/10K AIC MAIN BREAKER WITH 200A 200A 1NTERLOCKED GENERATOR FEED, 200A 65K AIC	(2) PROPOSED		THE ENGINEER OF RECORD HAS CALCULATIONS AND ALL BRANC (LISTED ON T-1) ARTICLE 210.
	0.75" EMT CONDUITS		THE (2) CONDUITS WITH (4) C THE ADJUSTMENT FACTOR OF & 2020 NEC TABLE 310.15(C)(1)
OKA SAD/MOV 01 02 15A 03 04 15A 03 04 15A 03 04 02 15A 03 04 02 15A 03 04 04 05 05 05 05 05 05 05 05 05 05			#12 FOR #10 FOR #8 FOR #6 FOR
SPACE 07 08 30A PROPOSED 2 #10 SPACE 07 08 10		FOR RECTIFIER 2	CONDUIT SIZING: AT 40% FILL 0.5" CONDUIT – 0.1 0.75" CONDUIT – 0.2
SPACE 11 12 30A THORESED 2 # 10, 1 # 10 00 010.		FOR RECTIFIER 3	2.0" CONDUIT – 1.3 3.0" CONDUIT – 2.9 CABINET CONVENIENCE OUTLET
SPACE 13 14 SPACE 15 16 SPACE 17 18 SPACE 18 SPACE 17 18 SPACE 18 SPAC 18 S		FOR RECTIFIER 4	#10 - 0.0 #10 - 0.0
SPACE 19 20 SPACE SPACE 21 22 SPACE SPACE 23 24 SPACE	(1) PROPOSED 0.5" EMT CONDUIT		0.5" EMT CONDUIT IS ADEQUAT INCLUDING GROUND WIRE, AS I
SPACE SPACE PROPOSED 2 #10, 1 #10 CU GND.		FOR CONVENIENCE OUTLET	RECTIFIER CONDUCTORS (2 CON #10 - 0.0 #10 - 0.0
RCUIT WIRING SUPPLYING RECTIFIERS ARE TO BE RATED UL1015, 105 E-LINE DIAGRAM. CONTRACTOR MAY SUBSTITUTE UL1015 WIRE FOR TH <u>REQUIRED:</u> P BREAKER – SQUARE D P/N:Q0230 P BREAKER – SQUARE D P/N:Q0115		SULATED, IN THE SIZES SHOWN CE OUTLET BRANCH CIRCUIT.	TOTAL 0.75" EMT CONDUIT IS ADEQUA INCLUDING GROUND WIRE, AS I PPC FEED CONDUCTORS (1 CC 3/0 - C #6 - C
			3.0" SCH 40 PVC CONDUIT IS INCLUDING GROUND WIRE, AS I
PPC ONE-LINE DIAGRAM			, , , , , , , , , , , , , , , , , , ,

<u>NOT USED</u>

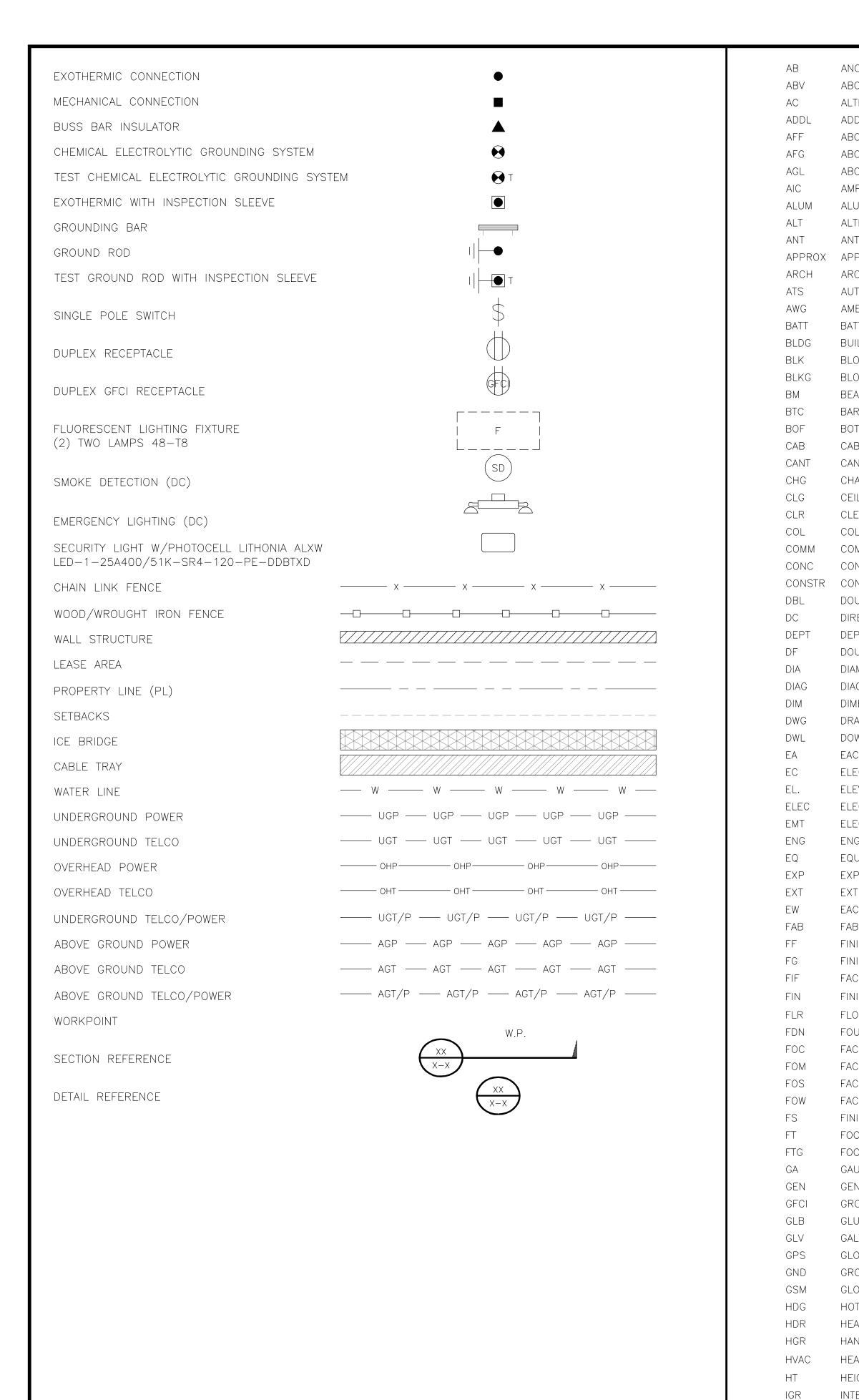
2


NO SCALE

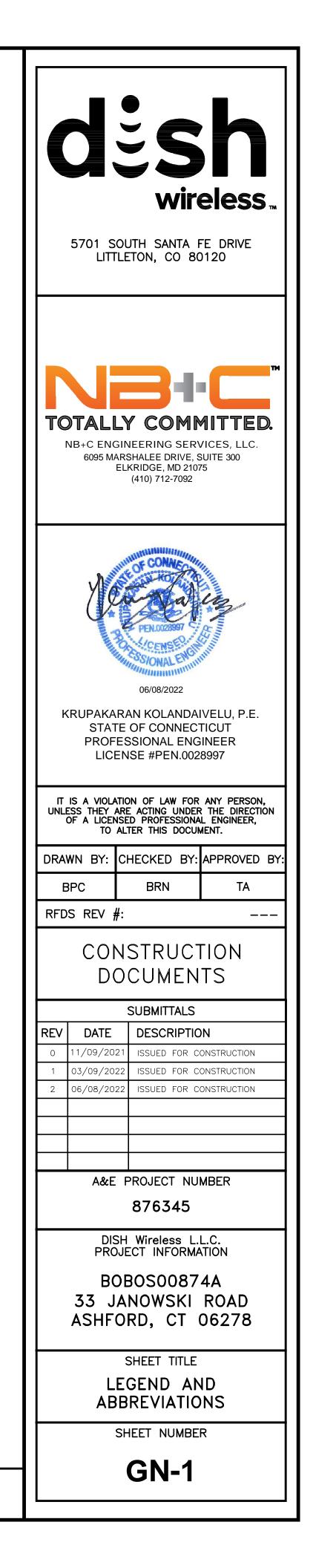

HAS PERFORMED ALL REQUIRED SHO RATINGS FOR EACH DEVICE IS ADEQ ICAL SYSTEM.		ECT THE	
HAS PERFORMED ALL REQUIRED VOL NCH CIRCUIT AND FEEDERS COMPLY 10.19(A)(1) FPN NO. 4.			disn
CURRENT CARRYING CONDUCTORS E 80% PER 2014/17 NEC TABLE 31 1) FOR UL1015 WIRE.	•		wireless
R 15A–20A/1P BREAKER: 0.8 x 30, R 25A–30A/2P BREAKER: 0.8 x 40, R 35A–40A/2P BREAKER: 0.8 x 55, R 45A–60A/2P BREAKER: 0.8 x 75,	A = 32.0A A = 44.0A		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
L PER NEC CHAPTER 9, TABLE 4, A 0.122 SQ. IN AREA 0.213 SQ. IN AREA 0.316 SQ. IN AREA 0.907 SQ. IN AREA	RTICLE 358.		ТМ
T CONDUCTORS (1 CONDUIT): USING 0.0211 SQ. IN X 2 = 0.0422 SQ. I 0.0211 SQ. IN X 1 = 0.0211 SQ. I = 0.0633 SQ.	IN IN <ground IN</ground 		TOTALLY COMMITTED. NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075
ATE TO HANDLE THE TOTAL OF (3) INDICATED ABOVE. CONDUITS): USING UL1015, CU.	WIRES,		(410) 712-7092
$\begin{array}{rcrcrcrcrcrcrcrcl} 0.0266 & \text{SQ. IN X 4} &=& 0.1064 & \text{SQ. I}\\ 0.0082 & \text{SQ. IN X 1} &=& 0.0082 & \text{SQ. I}\\ &=& 0.1146 & \text{SQ. }\end{array}$	IN <bare grou<="" td=""><td>DND</td><td>AND OF COMAS AND AND AND AND AND AND AND AND AND AND</td></bare>	DND	AND OF COMAS AND
UATE TO HANDLE THE TOTAL OF (5) INDICATED ABOVE.			Ven al uz
CONDUIT): USING THWN, CU. 0.2679 SQ. IN X 3 = 0.8037 SQ. 0.0507 SQ. IN X 1 = 0.0507 SQ.	IN <ground< td=""><td></td><td>06/08/2022</td></ground<>		06/08/2022
= 0.8544 SQ. S ADEQUATE TO HANDLE THE TOTAL INDICATED ABOVE.		,	KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER
			LICENSE #PEN.0028997
	NO SCALE	1	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY:
			BPC BRN TA
			RFDS REV #:
			CONSTRUCTION DOCUMENTS
			SUBMITTALS
			REV DATE DESCRIPTION
			011/09/2021ISSUED FOR CONSTRUCTION103/09/2022ISSUED FOR CONSTRUCTION206/08/2022ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER 876345
			DISH Wireless L.L.C. PROJECT INFORMATION
			BOBOSO0874A 33 JANOWSKI ROAD ASHFORD, CT 06278
			SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
			SHEET NUMBER
	NO SCALE	3	E-3
	INU SUALE	ა	

TYPICAL ANTENNA GROUNDING PLAN

EXISTING TOWER GROUND RING (FEILD VERIFY)			EXOTHERMIC CONNECTION MECHANICAL CONNECTION GROUND BUS BAR GROUND ROD
EXISTING SST/GUY TOWER			GROUNDING
			1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
BRIDGE			2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A C COMPLIANCE WITH NEC SECTION 250 AND DISH Wirel REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS
POSTS TO NG BOND(s) POSTS)			3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO A
			<u>GROUNDING KE</u>
			A <u>Exterior ground ring:</u> #2 awg solid copper, buried grade, or 6 inches below the frost line and appe or footing.
EXISTING EQUIPMENT GROUND RING TO EXISTING TOWER GROUND RING (TOTAL 2)			B <u>TOWER GROUND RING:</u> THE GROUND RING SYSTEM SHALL AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG
			C INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSU PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOM WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR G INSULATED CONDUCTOR.
			D <u>BOND TO INTERIOR GROUND RING:</u> #2 AWG SOLID TINNED PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR BUILDING.
	NO SCALE	1	E <u>GROUND ROD:</u> UL LISTED COPPER CLAD STEEL. MINIMUM RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. G GROUND RING CONDUCTOR.
NOT	<u>ES</u>		(\mathbf{F}) <u>Cell reference ground bar:</u> point of ground refe frames. All bonds are made with #2 awg unless n
ANTENNAS AND OVP SHOWN REFERENCING TO A SPECIFIC LAYOUT IS FOR REFERENCE	C MANUFACTURER	. THIS	COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GRO INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE PRESENT, THE CRGB MUST BE CONNECTED TO THE HATC USING (2) TWO #2 AWG STRANDED GREEN INSULATED C
			H Exterior cable entry port ground bars: Located a TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER INSPECTION SLEEVE.
			1 <u>TELCO GROUND BAR:</u> BOND TO BOTH CELL REFERENCE (
PROPOSED #2 AWG STRANDED COPPER GREEN INSULATED (TYP)			J <u>FRAME BONDING:</u> THE BONDING POINT FOR TELECOM EQU IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEW
PROPOSED UPPER TOWER			(K) <u>INTERIOR UNIT BONDS:</u> METAL FRAMES, CABINETS AND IN OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STR INTERIOR GROUND RING.
GROUND BAR			L <u>FENCE AND GATE GROUNDING:</u> METAL FENCES WITHIN 7 F BONDED TO THE EXTERIOR GROUND RING SHALL BE BON TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEP GATE POST AND ACROSS GATE OPENINGS.
The second se			M <u>Exterior unit bonds:</u> Metallic objects, external to to the exterior ground ring. Using #2 tinned soli
			N <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELL GROUND RING.
PROPOSED #2 AWG STRANDED COPPER GREEN INSULATED (TYP)			O DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTER' INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQU CONDUCTOR FROM THE DC POWER SYSTEM COMMON RET REFERENCE GROUND BAR
PROPOSED 4"x6"x1/4" COPPER SECTOR GROUND BUSSBAR			P TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICA
PROPOSED BUSS BAR (TYP.)			REFER TO DISH Wireless L.L.C. GROUNDING NOTES.
	NO SCALE	2	GROUNDING KEY NOTE



 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO G BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERI WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR CROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRAC 7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	MIC LARGER. ES WITH IPOUND DUCTOR DUCTOR DLTED ON TOR. S	TOOTHED EXTERIOR TWO-HOLE SHRINK UV 3/8" DIA x1 1/2" S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER	CTOR INSULATION JP AGAINST THE CTOR BARREL		TOOTHED BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTORS 3/8" DIA x1 1/2" S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER	UCTOR INSULATION UP AGAINST THE ECTOR BARREL		<section-header><section-header><text><text><text></text></text></text></section-header></section-header>
TYPICAL GROUNDING NOTES	NO SCALE	1 TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HOLE LUG	NO SCALE	3	
NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) 2 HOLE LONG BARREL TINNED SOLID COPPER LUG (TYP) TIN COATED SOLID COPPER BUS BAR COPPER BUS BAR S/S FLAT W S/S FLAT W S/S FLAT W S/S FLAT W S/S FLAT W	WASHER (TYP) 'ASHER (TYP) 'ASHER (TYP)							OGONECTICAL CONSTRUCTION DOCUMENTS
<u>LUG DETAIL</u>	NO SCALE	4 <u>NOT USED</u>	NO SCALE	5	<u>NOT USED</u>	NO SCALE	6	SUBMITTALS
								REV DATE DESCRIPTION 0 11/09/2021 ISSUED FOR CONSTRUCTION 1 03/09/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 1000000000000000000000000000000000000
<u>NOT USED</u>	NO SCALE	7 <u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>	NO SCALE	9	


AWS (N66+N70+H-BLOCK) PURPLE		dissinguish wireless.
NEGATIVE SLANT PORT ON ANT/RRH WHITE		S701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
OR GAMMA SECTOR GREEN	_	TOTALLY COMMITTED. NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092
	2	
		View Constant of C
		IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY:
		BPC BRN TA RFDS REV #:
		CONSTRUCTION DOCUMENTS
	3	SUBMITTALS REV DATE DESCRIPTION
		REVDATEDESCRIPTION011/09/2021ISSUED FOR CONSTRUCTION103/09/2022ISSUED FOR CONSTRUCTION206/08/2022ISSUED FOR CONSTRUCTION
		A&E PROJECT NUMBER 876345
		DISH Wireless L.L.C. PROJECT INFORMATION
		BOBOS00874A 33 JANOWSKI ROAD ASHFORD, CT 06278
		SHEET TITLE RF
		CABLE COLOR CODES SHEET NUMBER
		RF-1
	4	

<u>LEGEND</u>

ABBREVIATIONS

	ANCHOR BOLT	IN	INCH
	ABOVE	INT	INTERIOR
	ALTERNATING CURRENT	LB(S)	POUND(S)
	ADDITIONAL	LF	LINEAR FEET
	ABOVE FINISHED FLOOR		
	ABOVE FINISHED GRADE	LTE	LONG TERM EVOLUTION
		MAS	MASONRY
	ABOVE GROUND LEVEL	MAX	MAXIMUM
	AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
1	ALUMINUM	MECH	MECHANICAL
	ALTERNATE	MFR	MANUFACTURER
	ANTENNA	MGB	MASTER GROUND BAR
XOX	APPROXIMATE		
.0^		MIN	MINIMUM
1	ARCHITECTURAL	MISC	MISCELLANEOUS
	AUTOMATIC TRANSFER SWITCH	MTL	METAL
	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
	BATTERY	MW	MICROWAVE
	BUILDING	NEC	NATIONAL ELECTRIC CODE
	BLOCK		
		NM	NEWTON METERS
	BLOCKING	NO.	NUMBER
	BEAM	#	NUMBER
	BARE TINNED COPPER CONDUCTOR	NTS	NOT TO SCALE
	BOTTOM OF FOOTING	OC	ON-CENTER
	CABINET		
	CANTILEVERED	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
		OPNG	OPENING
	CHARGING	P/C	PRECAST CONCRETE
	CEILING	PCS	PERSONAL COMMUNICATION SERVICES
	CLEAR	PCU	PRIMARY CONTROL UNIT
	COLUMN		
Л	СОММОЛ	PRC	PRIMARY RADIO CABINET
		PP	POLARIZING PRESERVING
, 	CONCRETE	PSF	POUNDS PER SQUARE FOOT
STR	CONSTRUCTION	PSI	POUNDS PER SQUARE INCH
	DOUBLE	PT	PRESSURE TREATED
	DIRECT CURRENT		POWER CABINET
	DEPARTMENT	PWR	
	DOUGLAS FIR	QTY	QUANTITY
	DIAMETER	RAD	RADIUS
		RECT	RECTIFIER
	DIAGONAL	REF	REFERENCE
	DIMENSION	REINF	REINFORCEMENT
	DRAWING		
	DOWEL	REQ'D	REQUIRED
	EACH	RET	REMOTE ELECTRIC TILT
		RF	RADIO FREQUENCY
	ELECTRICAL CONDUCTOR	RMC	RIGID METALLIC CONDUIT
	ELEVATION	RRH	REMOTE RADIO HEAD
	ELECTRICAL		
	ELECTRICAL METALLIC TUBING	RRU	REMOTE RADIO UNIT
	ENGINEER	RWY	RACEWAY
		SCH	SCHEDULE
	EQUAL		SCHEDULE SHEET
	EQUAL EXPANSION	SCH SHT	SHEET
	EQUAL	SCH SHT SIAD	SHEET SMART INTEGRATED ACCESS DEVICE
	EQUAL EXPANSION	SCH SHT SIAD SIM	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR
	EQUAL EXPANSION EXTERIOR	SCH SHT SIAD SIM SPEC	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION	SCH SHT SIAD SIM	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR	SCH SHT SIAD SIM SPEC	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE	SCH SHT SIAD SIM SPEC SQ	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME	SCH SHT SIAD SIM SPEC SQ SS	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE	SCH SHT SIAD SIM SPEC SQ SS STD STL	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED)	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION
	EQUAL EXPANSION EXTERIOR EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF WALL
	EQUAL EXPANSION EXTERIOR EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOP TOS TOW	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOP TOS TOW TVSS TYP	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOP TOS TOW TVSS TYP	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT GOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOF TOF TOF TOF TOS TOW TVSS TYP UG UL UNO	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT GOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOF TOF TOF TOP TOS TOW TVSS TVP UG UL UNO UMTS	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOF TOF TOF TOF TOF UG UL UL UNO UMTS UPS	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERGROUND UNDERWRITERS LABORATORY UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOF TOF TOF TOP TOS TOW TVSS TVP UG UL UNO UMTS	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOF TOF TOF TOF TOF UG UL UL UNO UMTS UPS	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERGROUND UNDERWRITERS LABORATORY UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOF TOF TOF TOF TOF TOF TOS TOV TVSS TYP UG UL UNO UL UNO UNTS UPS VIF	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOWER MOUNTED AMPLIFIER TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GAUGE GENERATOR GLUE LAMINATED BEAM GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOF TOF TOF TOF TOF TOS TOV TVSS TYP UG UL UNO UL UNO UL UNO UNTS UPS VIF W	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WITH
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH (ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOS TOV TVSS TVP UG UL UNO UL UNO UL UNO UL UNO UNTS UPS VIF W	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GAUGE GENERATOR GLUE LAMINATED BEAM GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TN TOA TOC TOF TOP TOS TOV TVSS TVP UG UL UNO UL UNO UL UNO UL UNO UNTS VIF W W/ WD WP	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL UNDERGROUND UNDERGROUND UNDERGROUND UNDERGROUND UNDERGROUND UNDERWRITERS LABORATORY UNIESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM VERIFIED IN FIELD WIDE WITH WOOD
	EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER	SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOS TOV TVSS TVP UG UL UNO UL UNO UL UNO UL UNO UNTS UPS VIF W	SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS L.L.C. AND DISH WIRELESS L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY

DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

<u>GENERAL NOTES:</u>

BASIS.

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

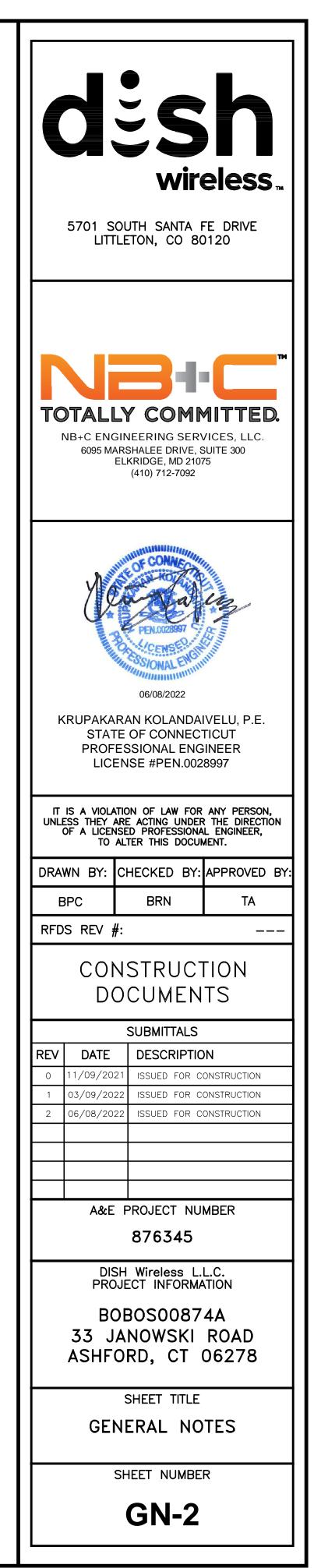
4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.


9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET wireless SCREW FITTINGS ARE NOT ACCEPTABLE. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. 5701 SOUTH SANTA FE DRIVE CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. LITTLETON, CO 80120 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY). 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR TOTALLY COMMITTED. OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT NB+C ENGINEERING SERVICES, LLC. FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED 6095 MARSHALEE DRIVE, SUITE 300 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. ELKRIDGE, MD 21075 • CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" (410) 712-7092 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. • SLAB AND WALLS 3/4" 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. ● BEAMS AND COLUMNS 1-1/2" 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 06/08/2022 THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28. KRUPAKARAN KOLANDAIVELU, P.E. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. STATE OF CONNECTICUT **PROFESSIONAL ENGINEER** INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 29. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LICENSE #PEN.0028997 ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED TO ALTER THIS DOCUMENT. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. DRAWN BY: CHECKED BY: APPROVED BY: ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. BRN RPC TA RFDS REV #: ___ CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 11/09/2021 ISSUED FOR CONSTRUCTION ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE 1 03/09/2022 ISSUED FOR CONSTRUCTION 2 06/08/2022 ISSUED FOR CONSTRUCTION PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. A&E PROJECT NUMBER ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) 876345 DISH Wireless L.L.C. PROJECT INFORMATION BOBOS00874A **33 JANOWSKI ROAD** ASHFORD, CT 06278 SHEET TITLE GENERAL NOTES RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND SHEET NUMBER GN-3

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT. #5 BARS AND LARGER 60 ksi 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS: THE NATIONAL ELECTRICAL CODE. 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED. 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR

AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. psf. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: #4 BARS AND SMALLER 40 ksi IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. ELECTRICAL INSTALLATION NOTES: FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. AND TRIP HAZARDS ARE ELIMINATED. 3. 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. 6. CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). 8. 9. WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED. BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE). 14. NEC. EXPOSED INDOOR LOCATIONS.

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

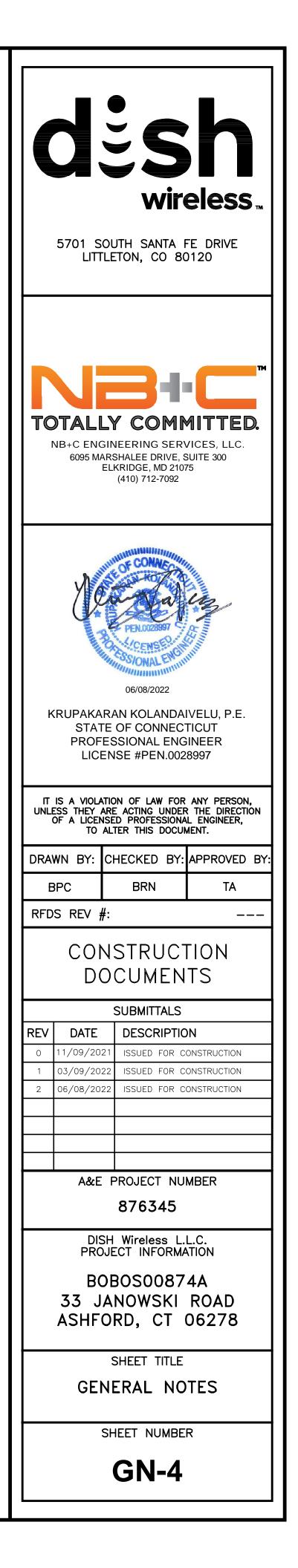
EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND 15. CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. 16.


17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. All grounds that transition from below grade to above grade must be #2 bare solid tinned copper in 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Date: September 10, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject:	Structural Analysis Report	
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number:	BOBOS00874A
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	876345 SKY HILL 671530 2013123 572903 Rev. 0
Engineering Firm Designation:	Crown Castle Project Number:	2013123
Site Data:	33 Janowski Road, Ashford, WIN Latitude <i>41° 57' 7.7"</i> , Longitude <i>-</i> 192 Foot - Self Support Tower	

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity-85.3%

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Melanie Atiles

Respectfully submitted by:

Bradley E. Byrom, P.E., S.E. Senior Project Engineer

Digitally signed by Bradley E Byrom Date: 2021.09.12 09:51:45 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC5 4.1) Recommendations

4.1) Recommendatio

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 192 ft Self Support tower designed by ROHN.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	130 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	2 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
130.0	130.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MTC3975083 (3)		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	alcatel lucent	PCS 1900MHz 4x45W-65MHz		
		6	alcatel lucent	RRH2X50-800]	1-1/4 1/2
	192.0	3	commscope	NNVV-65B-R4 w/ Mount Pipe	4	
190.0	102.0	3	nokia	FZHN	1	
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe		
	190.0	1	tower mounts	Sector Mount [SM 506-3]		
	184.0	2	antel	LPA-80080/4CF		
	104.0	1	symmetricom	58532A		
	.0 181.0	3		FDJ85020Q7-S1]	
		4	antel	LPA-80080/4CF]	
		6	commscope	JAHH-65B-R3B]	
		2	raycap	RC3DC-3315-PF-48		
180.0		3	samsung telecommunications	20W CBRS	8 1	1-5/8 1/2
		3	samsung telecommunications	CBRS w/ Mount Pipe		
		3	samsung telecommunications	RFV01U-D1A		
		3	samsung telecommunications	RFV01U-D2A		
	180.0	1	tower mounts	Sector Mount [SM 304-3]		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
171.0	172.0	9	allgon	7130.16.33.00 w/ Mount Pipe	9	1-5/8
	171.0	1	tower mounts	Sector Mount [SM 502-3]		
162.0	162.0	3	andrew	HBX-6516DS-VTM w/ Mount Pipe	6	1-5/8
		1	tower mounts	Sector Mount [SM 104-3]		
	159.0	3	ericsson	RADIO 4449 B12/B71	- 3	1-5/8
156.0		3	ericsson	RRUS 4415 B25		
	158.0	3	rfs celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe		
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		
	156.0	3	ericsson	RADIO 4415 B66A		
		1	tower mounts	Sector Mount [SM 502-3]		
	140.0	4	cci antennas	TPA65R-BU4D w/ Mount Pipe	14 2 2 1	7/8 3/8 3/4 Conduit
140.0		2	commscope	NNHH-65B-R4 w/ Mount Pipe		
		3	ericsson	RRUS 4449 B5/B12		
		3	ericsson	RRUS 4478 B14		
		3	ericsson	RRUS 8843 B2/B66A		
		3	powerwave technologies	7770.00 w/ Mount Pipe		
		3	powerwave technologies	TT19-08BP111-001		
		1	raycap	DC6-48-60-0-8C-EV		
		1	raycap	DC6-48-60-18-8F		
		1	tower mounts	Sector Mount [SM 504-3]		
98.0	102.0	1	symmetricom	58532A	4	1/2
	98.0	1	tower mounts	Side Arm Mount [SO 301-1]	1	

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source	
4-GEOTECHNICAL REPORTS	2189896	CCISITES	
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1631622	CCISITES	
4-TOWER MANUFACTURER DRAWINGS	1631630	CCISITES	

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	192 - 180	Leg	ROHN 2.5 STD	1	-6.556	66.738	9.8	Pass
T2	180 - 160	Leg	ROHN 2.5 STD	27	-34.204	59.996	57.0	Pass
Т3	160 - 140	Leg	ROHN 3 EH	56	-67.809	99.054	68.5	Pass
T4	140 - 120	Leg	ROHN 4 EH	77	-108.692	167.894	64.7	Pass
T5	120 - 100	Leg	ROHN 5 EH	98	-148.307	251.347	59.0	Pass
T6	100 - 80	Leg	ROHN 6 EHS	119	-182.558	256.249	71.2	Pass
T7	80 - 60	Leg	ROHN 6 EH	134	-219.771	318.945	68.9	Pass
Т8	60 - 40	Leg	ROHN 8 EHS	148	-254.910	405.672	62.8	Pass
Т9	40 - 20	Leg	ROHN 8 EHS	163	-290.165	405.729	71.5	Pass
T10	20 - 0	Leg	ROHN 8 EHS	178	-325.361	405.717	80.2	Pass
T1	192 - 180	Diagonal	L1 3/4x1 3/4x3/16	7	-1.441	11.895	12.1	Pass
T2	180 - 160	Diagonal	L2x2x3/16	36	-3.906	10.392	37.6	Pass
Т3	160 - 140	Diagonal	L2 1/2x2 1/2x1/4	63	-5.885	16.480	35.7	Pass
T4	140 - 120	Diagonal	L2 1/2x2 1/2x1/4	81	-7.768	12.587	61.7	Pass
T5	120 - 100	Diagonal	L3x3x1/4	102	-8.182	17.432	46.9	Pass
T6	100 - 80	Diagonal	L3 1/2x3 1/2x1/4	123	-9.566	19.016	50.3	Pass
T7	80 - 60	Diagonal	L4x4x1/4	138	-10.499	24.136	43.5	Pass
Т8	60 - 40	Diagonal	L4x4x5/16	153	-10.093	24.922	40.5	Pass
Т9	40 - 20	Diagonal	L4x4x5/16	168	-11.952	21.484	55.6	Pass
T10	20 - 0	Diagonal	L4x4x3/8	183	-12.588	21.926	57.4	Pass
T1	192 - 180	Top Girt	L1 3/4x1 3/4x3/16	4	-0.080	4.122	1.9	Pass
T2	180 - 160	Top Girt	L2x2x3/16	28	-0.719	6.245	11.5	Pass
							Summary	
						Leg (T10)	80.2	Pass
						Diagonal (T4)	61.7	Pass
						Top Girt (T2)	11.5	Pass
						Bolt Checks	85.3	Pass
						Rating =	85.3	Pass

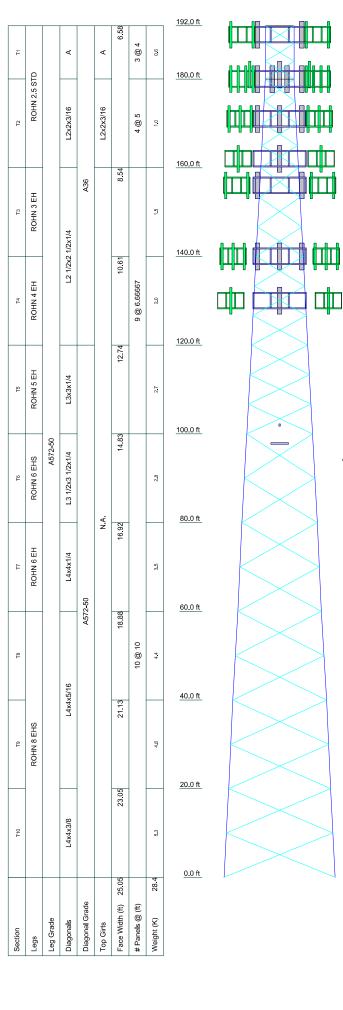
Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	46.7	Pass
1	Base Foundation (Structure)	0	14.9	Pass
1	Base Foundation (Soil Interaction)	0	45.5	Pass

Structure Rating (max from all components) =	85.3%
Structure Rating (max nom an components) –	05.570

Notes:


1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

	Fy	Fu	GRADE	Fy	Fu
A572 - 50	50 ksi	65 ksi	A36	36 ksi	58 ksi
 Tower de Tower de Tower is in thickney Deflectic Tower Rights Topograp 	esigned for Expose esigned for a 130 r also designed for ess with height. ons are based upon isk Category II.	TOWER DE am County, Connec ure B to the TIA-22 mph basic wind in a a 50 mph basic wi n a 60 mph wind. ith Crest Height of	cticut. 22-H Standar accordance v ind with 2.00	d. with the TIA-222-I	

SYMBOL LIST

MARK

SIZE

SIZE

	Crown Castle	^{Job:} BU 876345		
		Project:		
	Canonsburg, PA 15317	^{Client:} Crown Castle	Drawn by: MAtiles	App'd:
The Pathway to Possible		^{Code:} TIA-222-H	Date: 09/10/21	^{Scale:} NTS
	FAX:	Path: C:\Users\matiles\Desktop\Working from	Home\876345\WO 2013123 - SA\Prod\876345.er	Dwg No. E-1

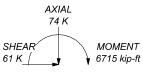
ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE: DOWN: 334 K SHEAR: 38 K

UPLIFT: -278 K SHEAR: 33 K

 \triangle

MARK


А

L1 3/4x1 3/4x3/16

AXIAL 218 K

TORQUE 12 kip-ft 50 mph WIND - 2.000 in ICE

TORQUE 54 kip-ft REACTIONS - 130 mph WIND

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 192.000 ft above the ground line. The base of the tower is set at an elevation of 0.000 ft above the ground line. The face width of the tower is 6.580 ft at the top and 25.050 ft at the base. This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in Windham County, Connecticut. Tower base elevation above sea level: 1068.000 ft. • • Basic wind speed of 130 mph. **Risk Category II.** • Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. • Topographic Category: 1. • Crest Height: 0.000 ft. • Nominal ice thickness of 2.000 in. • Ice thickness is considered to increase with height. Ice density of 56.000 pcf. • A wind speed of 50 mph is used in combination with ice. • Temperature drop of 50.000 °F. Deflections calculated using a wind speed of 60 mph. . Pressures are calculated at each section. • Stress ratio used in tower member design is 1. • • Tower analysis based on target reliabilities in accordance with Annex S. Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$. Maximum demand-capacity ratio is: 1.05. • Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not • considered.

Options

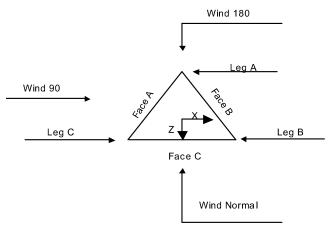
Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

 √ Use Code Stress Ratios
 √ Use Code Safety Factors - Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section √ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- $\sqrt{}$ Bypass Mast Stability Checks $\sqrt{}$ Use Azimuth Dish Coefficients
- $\sqrt{}$ Use Azimuth Dish Coefficients $\sqrt{}$ Project Wind Area of Appurt.


Autocalc Torque Arm Areas

Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- ✓ SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- $\sqrt{\text{Consider Feed Line Torque}}$
- ✓ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice
 Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

<u>Triangular Tower</u>

	Tower Section Geometry									
Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length				
	ft			ft		ft				
T1	192.000- 180.000			6.580	1	12.000				
T2	180.000- 160.000			6.580	1	20.000				
Т3	160.000- 140.000			8.540	1	20.000				
T4	140.000- 120.000			10.610	1	20.000				
T5	120.000- 100.000			12.740	1	20.000				
T6	100.000-80.000			14.830	1	20.000				
Τ7	80.000-60.000			16.920	1	20.000				
Т8	60.000-40.000			18.880	1	20.000				
Т9	40.000-20.000			21.130	1	20.000				
T10	20.000-0.000			23.050	1	20.000				

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
T1	192.000- 180.000	4.000	X Brace	No	No	0.000	0.000
T2	180.000- 160.000	5.000	X Brace	No	No	0.000	0.000
Т3	160.000- 140.000	6.667	X Brace	No	No	0.000	0.000
T4	140.000- 120.000	6.667	X Brace	No	No	0.000	0.000

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T5	120.000-	6.667	X Brace	No	No	0.000	0.000
	100.000						
T6	100.000-80.000	10.000	X Brace	No	No	0.000	0.000
T7	80.000-60.000	10.000	X Brace	No	No	0.000	0.000
T8	60.000-40.000	10.000	X Brace	No	No	0.000	0.000
Т9	40.000-20.000	10.000	X Brace	No	No	0.000	0.000
T10	20.000-0.000	10.000	X Brace	No	No	0.000	0.000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
T1 192.000-	Pipe	ROHN 2.5 STD	A572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
180.000			(50 ksi)			(36 ksi)
T2 180.000-	Pipe	ROHN 2.5 STD	À572-50	Equal Angle	L2x2x3/16	`A36 ´
160.000	,		(50 ksi)	1 0		(36 ksi)
T3 160.000-	Pipe	ROHN 3 EH	À572-50	Egual Angle	L2 1/2x2 1/2x1/4	`A36 ´
140.000	1. ·		(50 ksi)	1. 3.		(36 ksi)
T4 140.000-	Pipe	ROHN 4 EH	À572-50	Egual Angle	L2 1/2x2 1/2x1/4	`A36 ´
120.000	1		(50 ksi)	1. 3.		(36 ksi)
T5 120.000-	Pipe	ROHN 5 EH	A572-50	Equal Angle	L3x3x1/4	A572-50
100.000			(50 ksi)	-1		(50 ksi)
T6 100.000-	Pipe	ROHN 6 EHS	A572-50	Equal Angle	L3 1/2x3 1/2x1/4	A572-50
80.000			(50 ksi)	-1		(50 ksi)
T7 80.000-	Pipe	ROHN 6 EH	A572-50	Equal Angle	L4x4x1/4	A572-50
60.000			(50 ksi)	-1		(50 ksi)
T8 60.000-	Pipe	ROHN 8 EHS	A572-50	Equal Angle	L4x4x5/16	A572-50
40.000	1 -		(50 ksi)	1		(50 ksi)
T9 40.000-	Pipe	ROHN 8 EHS	A572-50	Equal Angle	L4x4x5/16	A572-50
20.000			(50 ksi)			(50 ksi)
T10 20.000-	Pipe	ROHN 8 EHS	A572-50	Equal Angle	L4x4x3/8	A572-50
0.000			(50 ksi)	- 1000 0 000		(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 192.000- 180.000	Equal Angle	L1 3/4x1 3/4x3/16	A36 (36 ksi)	Single Angle		A36 (36 ksi)
T2 180.000- 160.000	Equal Angle	L2x2x3/16	`A36 [´] (36 ksi)	Single Angle		`A36 ´ (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor Ar	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
T1 192.000- 180.000	0.000	0.250	A36 (36 ksi)	1.05	1	1.05	0.000	0.000	36.000
T2 180.000- 160.000	0.000	0.250	A36 (36 ksi)	1.05	1	1.05	0.000	0.000	36.000
T3 160.000-	0.000	0.250	`A36 ´	1.05	1	1.05	0.000	0.000	36.000

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
140.000			(36 ksi)						
T4 140.000-	0.000	0.250	A36	1.05	1	1.05	0.000	0.000	36.000
120.000			(36 ksi)						
T5 120.000-	0.000	0.250	A36	1.05	1	1.05	0.000	0.000	36.000
100.000			(36 ksi)						
T6 100.000-	0.000	0.250	A36	1.05	1	1.05	0.000	0.000	36.000
80.000			(36 ksi)						
T7 80.000-	0.000	0.250	A36	1.05	1	1.05	0.000	0.000	36.000
60.000			(36 ksi)						
T8 60.000-	0.000	0.250	A36	1.05	1	1.05	0.000	0.000	36.000
40.000			(36 ksi)						
T9 40.000-	0.000	0.250	A36	1.05	1	1.05	0.000	0.000	36.000
20.000			(36 ksi)						
T10 20.000-	0.000	0.250	A36	1.05	1	1.05	0.000	0.000	36.000
0.000			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1 192.000-	Yes	No	1	1	1	1	1	1	1	1
180.000				1	1	1	1	1	1	1
T2 180.000-	Yes	No	1	1	1	1	1	1	1	1
160.000				1	1	1	1	1	1	1
T3 160.000-	Yes	No	1	1	1	1	1	1	1	1
140.000				1	1	1	1	1	1	1
T4 140.000-	Yes	No	1	1	1	1	1	1	1	1
120.000				1	1	1	1	1	1	1
T5 120.000-	Yes	No	1	1	1	1	1	1	1	1
100.000				1	1	1	1	1	1	1
T6 100.000-	Yes	No	1	1	1	1	1	1	1	1
80.000				1	1	1	1	1	1	1
T7 80.000-	Yes	No	1	1	1	1	1	1	1	1
60.000				1	1	1	1	1	1	1
T8 60.000-	Yes	No	1	1	1	1	1	1	1	1
40.000				1	1	1	1	1	1	1
T9 40.000-	Yes	No	1	1	1	1	1	1	1	1
20.000				1	1	1	1	1	1	1
T10 20.000-	Yes	No	1	1	1	1	1	1	1	1
0.000				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	onal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	orizontal	Short Ho	orizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 192.000- 180.000 T2 180.000- 160.000	0.000 0.000	1 1	0.000 0.000	0.75 0.75	0.000 0.000	0.75 0.75	0.000 0.000	0.75 0.75	0.000 0.000	0.75 0.75	0.000 0.000	0.75 0.75	0.000 0.000	0.75 0.75

Tower Elevation ft	Leg		Diago	onal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T3 160.000- 140.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T4 140.000- 120.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T5 120.000- 100.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T6 100.000- 80.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T7 80.000- 60.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T8 60.000- 40.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T9 40.000- 20.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T10 20.000- 0.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Tower Elevation ft	Reduno Horizo		Redun Diago		Redundar Diagoi		Redunda Horizo		Redur Vert		Redund	ant Hip	Redund Diago	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 192.000- 180.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T2 180.000- 160.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T3 160.000- 140.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T4 140.000- 120.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T5 120.000- 100.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T6 100.000- 80.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T7 80.000- 60.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T8 60.000- 40.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T9 40.000- 20.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T10 20.000- 0.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Tower Elevation ft	Leg Connection Type	•	Leg		Diagonal		Top Girt		Bottom Girt		irt	Long Horii	zontal	Shor Horizor	
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1 192.000-	Flange	0.625	4	0.625	1	0.625	1	0.625	0	0.625	0	0.625	0	0.625	0
180.000		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T2 180.000-	Flange	0.625	4	0.625	1	0.625	1	0.625	0	0.625	0	0.625	0	0.625	0
160.000		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T3 160.000-	Flange	0.875	4	0.625	1	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
140.000		A325N		A325N		A325N		A325N		A325X		A325N		A325X	

Tower Elevation	Leg Connection	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Shor Horizor	-
ft	Type													110/120/	nai
	.) /	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T4 140.000-	Flange	1.000	4	0.625	1	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
120.000		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T5 120.000-	Flange	1.000	6	0.750	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
100.000		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T6 100.000-	Flange	1.000	6	0.750	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
80.000		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T7 80.000-	Flange	1.000	8	0.750	1	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
60.000		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T8 60.000-	Flange	1.000	8	0.750	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
40.000		A325N		A325X		A325N		A325N		A325X		A325N		A325X	
T9 40.000-	Flange	1.000	8	0.750	1	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
20.000		A325N		A325X		A325N		A325N		A325X		A325N		A325X	
T10 20.000-	Flange	1.000	10	0.750	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
0.000		A354-BC		A325X		A325N		A325N		A325X		A325N		A325X	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque	Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacin g	Width or Diameter in	Perimete r	Weight klf
			Calculation				, ,			in		in	
Thin Flat Bar Climbing Ladder	A	No	No	Af (CaAa)	192.000 - 0.000	-6.000	0.45	1	1	2.000	2.000		0.004
Safety Line 3/8	A	No	No	Ar (CaAa)	192.000 - 0.000	-6.000	0.45	1	1	0.375	0.375		0.000
LDF4- 50A(1/2)	А	No	No	Ar (CaAa)	- 190.000 0.000	0.000	-0.4	1	1	0.630	0.630		0.000
HB114-1- 0813U4- M5J(1-1/4)	A	No	No	Ar (CaAa)	190.000 - 0.000	0.000	-0.45	4	4	0.850	1.540		0.001
Feedline Ladder (Af)	A	No	No	Af (CaAa)	190.000 - 0.000	0.000	-0.45	1	1	3.000	3.000		0.008
LDF4- 50A(1/2)	А	No	No	Ar (CaAa)	180.000 - 98.000	0.000	0.48	1	1	0.630	0.630		0.000
LDF7-50A(1- 5/8)	А	No	No	Ar (CaAa)	180.000 - 0.000	0.000	0.4	8	8	0.850	1.980		0.001
LDF [´] 4- 50A(1/2)	А	No	No	Ar (CaAa)	- 98.000 0.000	0.000	0.48	2	2	0.630	0.630		0.000
Feedline Ladder (Af)	A	No	No	Af (CaAa)	180.000 - 0.000	0.000	0.4	1	1	3.000	3.000		0.008
LDF7-50A(1- 5/8)	В	No	No	Ar (CaAa)	171.000 - 0.000	0.000	-0.4	9	9	0.850	1.980		0.001
Feedline Ladder (Af)	В	No	No	Af (CaAa)	170.000 - 0.000	0.000	-0.4	1	1	3.000	3.000		0.008
FXL 1873 PE(1-5/8)	В	No	No	Ar (CaAa)	162.000 - 0.000	-2.000	0.45	6	3	0.850 0.750	1.980		0.001
Feedline Ladder (Af)	В	No	No	Af (CaAa)	160.000 - 0.000	-0.500	0.45	1	1	3.000	3.000		0.008
FLC 78- 50J(7/8)	С	No	No	Ar (CaAa)	140.000 - 0.000	0.000	-0.4	14	12	0.850 0.750	1.112		0.000
FB-L98É- 002- 75000(3/8)	С	No	No	Ar (CaAa)	140.000 - 0.000	1.500	-0.42	1	1	0.394	0.394		0.000
FB-L98B- 034- XXX(3/8)	С	No	No	Ar (CaAa)	140.000 - 0.000	0.000	-0.32	1	1	0.394	0.000		0.000
WR-	С	No	No	Ar (CaAa)	140.000 -	0.000	-0.32	2	2	0.795	0.000		0.001

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacin g in	Width or Diameter in	Perimete r in	Weight klf
VG86ST-					0.000								
BRD(3/4) 2" Flex Conduit	С	No	No	Ar (CaAa)	140.000 - 0.000	0.000	-0.32	1	1	2.000	2.000		0.000
Feedline Ladder (Af)	С	No	No	Af (CaAa)	140.000 - 0.000	0.000	-0.4	1	1	3.000	3.000		0.008
HCS 6X12 4AWG(1-5/8)	С	No	No	Ar (CaAa)	156.000 - 0.000	0.000	0.4	3	3	0.850	1.660		0.002
Feedline Ladder (Af)	С	No	No	Af (CaAa)	150.000 - 0.000	0.000	0.4	1	1	3.000	3.000		0.008
CU12PSM9P 6XXX(1-1/2) ***	С	No	No	Ar (CaAa)	130.000 - 0.000	0.000	0.48	1	1	1.600	1.600		0.002

Feed Line/Linear Appurtenances - Entered As Area

Description		Allow	Exclude	Componen	Placement	Total	C _A A _A	Weight
	or Leg	Shield	From Torque	t Type	ft	Number	ft²/ft	klf
	-		Calculation					

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	C _A A _A	C _A A _A	Weight
Sectio	Elevation				In Face	Out Face	
п	ft		ft²	ft²	ft²	ft²	ĸ
T1	192.000-180.000	А	0.000	0.000	16.240	0.000	0.184
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.000
T2	180.000-160.000	А	0.000	0.000	73.937	0.000	0.654
		В	0.000	0.000	26.978	0.000	0.173
		С	0.000	0.000	0.000	0.000	0.000
Т3	160.000-140.000	А	0.000	0.000	73.937	0.000	0.654
		В	0.000	0.000	79.400	0.000	0.564
		С	0.000	0.000	12.968	0.000	0.199
T4	140.000-120.000	А	0.000	0.000	73.937	0.000	0.654
		В	0.000	0.000	79.400	0.000	0.564
		С	0.000	0.000	67.484	0.000	0.648
T5	120.000-100.000	А	0.000	0.000	73.937	0.000	0.654
		В	0.000	0.000	79.400	0.000	0.564
		С	0.000	0.000	69.084	0.000	0.672
T6	100.000-80.000	А	0.000	0.000	75.071	0.000	0.656
		В	0.000	0.000	79.400	0.000	0.564
		С	0.000	0.000	69.084	0.000	0.672
T7	80.000-60.000	А	0.000	0.000	75.197	0.000	0.657
		В	0.000	0.000	79.400	0.000	0.564
		С	0.000	0.000	69.084	0.000	0.672
T8	60.000-40.000	А	0.000	0.000	75.197	0.000	0.657
		В	0.000	0.000	79.400	0.000	0.564
		С	0.000	0.000	69.084	0.000	0.672
Т9	40.000-20.000	А	0.000	0.000	75.197	0.000	0.657
		В	0.000	0.000	79.400	0.000	0.564
		С	0.000	0.000	69.084	0.000	0.672
T10	20.000-0.000	А	0.000	0.000	75.197	0.000	0.657
		В	0.000	0.000	79.400	0.000	0.564

Tower	Tower	Face	A _R	AF	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
п	ft		ft²	ft²	ft ²	ft²	ĸ
		С	0.000	0.000	69.084	0.000	0.672

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A _R	AF	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft²	ft²	ft²	K
T1	192.000-180.000	А	2.021	0.000	0.000	45.264	0.000	0.844
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.000
T2	180.000-160.000	А	2.003	0.000	0.000	178.888	0.000	3.269
		В		0.000	0.000	52.854	0.000	0.966
		С		0.000	0.000	0.000	0.000	0.000
Т3	160.000-140.000	А	1.978	0.000	0.000	177.977	0.000	3.228
		В		0.000	0.000	144.978	0.000	2.788
		С		0.000	0.000	33.011	0.000	0.638
T4	140.000-120.000	А	1.950	0.000	0.000	176.949	0.000	3.183
		В		0.000	0.000	144.391	0.000	2.754
		С		0.000	0.000	183.089	0.000	3.164
T5	120.000-100.000	А	1.918	0.000	0.000	175.768	0.000	3.131
		В		0.000	0.000	143.716	0.000	2.716
		С		0.000	0.000	187.171	0.000	3.218
T6	100.000-80.000	А	1.879	0.000	0.000	182.571	0.000	3.109
		В		0.000	0.000	142.920	0.000	2.671
		С		0.000	0.000	185.500	0.000	3.154
T7	80.000-60.000	А	1.833	0.000	0.000	181.638	0.000	3.039
		В		0.000	0.000	141.946	0.000	2.617
		С		0.000	0.000	183.455	0.000	3.077
T8	60.000-40.000	А	1.772	0.000	0.000	179.242	0.000	2.944
		В		0.000	0.000	140.680	0.000	2.547
		С		0.000	0.000	180.797	0.000	2.978
Т9	40.000-20.000	А	1.684	0.000	0.000	175.758	0.000	2.808
		В		0.000	0.000	138.840	0.000	2.446
		С		0.000	0.000	176.932	0.000	2.837
T10	20.000-0.000	А	1.509	0.000	0.000	168.855	0.000	2.548
		В		0.000	0.000	135.193	0.000	2.252
		С		0.000	0.000	169.268	0.000	2.568

Feed Line Center of Pressure

Section	Elevation	CPx	CPz	CP _X	CPz
				Ice	lce
	ft	in	in	in	in
T1	192.000-180.000	-5.049	1.075	-5.835	-0.371
T2	180.000-160.000	-4.744	-15.872	-6.205	-15.537
Т3	160.000-140.000	-1.685	-15.245	-4.063	-14.853
T4	140.000-120.000	5.593	-11.877	6.132	-7.909
T5	120.000-100.000	5.503	-12.425	6.044	-8.381
T6	100.000-80.000	6.295	-14.596	6.929	-10.430
Τ7	80.000-60.000	6.527	-15.335	7.480	-11.499
T8	60.000-40.000	6.933	-16.332	8.026	-12.476
Т9	40.000-20.000	7.359	-17.415	8.689	-13.710
T10	20.000-0.000	7.740	-18.389	9.398	-15.168

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T1	1	Thin Flat Bar Climbing Ladder	180.00 - 192.00	0.6000	0.5487
T1	2	Safety Line 3/8	180.00 - 192.00	0.6000	0.5487
T1	4	LDF4-50A(1/2)	180.00 - 190.00	0.6000	0.5487
T1	5	HB114-1-0813U4-M5J(1-	180.00 -	0.6000	0.5487
T1	7	1/4) Feedline Ladder (Af)	190.00 - 180.00 190.00	0.6000	0.5487
Т2	1	Thin Flat Bar Climbing Ladder	160.00 160.00 180.00	0.6000	0.6000
Т2	2	Safety Line 3/8	160.00 - 180.00	0.6000	0.6000
Т2	4	LDF4-50A(1/2)	160.00 - 180.00 - 180.00	0.6000	0.6000
Т2	5	HB114-1-0813U4-M5J(1-	160.00 - 180.00 - 180.00	0.6000	0.6000
Т2	7	1/4) Feedline Ladder (Af)	160.00 - 180.00 - 180.00	0.6000	0.6000
Т2	9	LDF4-50A(1/2)	160.00 160.00 - 180.00	0.6000	0.6000
Т2	10	LDF7-50A(1-5/8)	160.00 - 180.00 - 180.00	0.6000	0.6000
Т2	13	Feedline Ladder (Af)	160.00 - 180.00	0.6000	0.6000
Т2	15	LDF7-50A(1-5/8)	160.00 - 171.00	0.6000	0.6000
Т2	16	Feedline Ladder (Af)	160.00 - 170.00	0.6000	0.6000
Т2	18	FXL 1873 PE(1-5/8)	160.00 - 162.00	0.6000	0.6000
тз	1	Thin Flat Bar Climbing Ladder	140.00 - 160.00	0.6000	0.6000
тз	2	Safety Line 3/8	140.00 - 160.00	0.6000	0.6000
тз	4	LDF4-50A(1/2)	140.00 - 160.00	0.6000	0.6000
тз	5	HB114-1-0813U4-M5J(1- 1/4)	140.00 - 160.00	0.6000	0.6000
тз	7	Feedline Ladder (Af)	140.00 - 160.00	0.6000	0.6000
тз	9	LDF4-50A(1/2)	140.00 - 160.00	0.6000	0.6000
тз	10	LDF7-50A(1-5/8)	140.00 - 160.00	0.6000	0.6000
тз	13	Feedline Ladder (Af)	140.00 - 160.00	0.6000	0.6000
тз	15	LDF7-50A(1-5/8)	140.00 - 160.00	0.6000	0.6000
тз	16	Feedline Ladder (Af)	140.00 - 160.00	0.6000	0.6000
тз	18	FXL 1873 PE(1-5/8)	140.00 - 160.00	0.6000	0.6000
ТЗ	19	Feedline Ladder (Af)	140.00 - 160.00	0.6000	0.6000
тз	29	HCS 6X12 4AWG(1-5/8)	140.00 - 140.00 - 156.00	0.6000	0.6000
тз	30	Feedline Ladder (Af)	140.00 - 150.00	0.6000	0.6000
Т4	1	Thin Flat Bar Climbing Ladder	120.00 120.00 - 140.00	0.6000	0.6000
Т4	2	Safety Line 3/8	120.00 - 120.00 - 140.00	0.6000	0.6000
Т4	4	LDF4-50A(1/2)	120.00 - 120.00 - 140.00	0.6000	0.6000
Т4	5	HB114-1-0813U4-M5J(1-	140.00 120.00 - 140.00	0.6000	0.6000
Т4	7	1/4) Feedline Ladder (Af)		0.6000	0.6000

Tower	Foodling	Departmen	Food Line	K	K
Tower Section	Feed Line Record No.	Description	Feed Line Segment	Ka No Ice	Ka Ice
			Ĕlev.		
T4	9	LDF4-50A(1/2)	140.00 120.00 -	0.6000	0.6000
Т4	10	LDF7-50A(1-5/8)	140.00 120.00 -	0.6000	0.6000
T4	13	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.6000
Т4	15	LDF7-50A(1-5/8)	140.00 120.00 -	0.6000	0.6000
Т4	16	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.6000
T4	18	FXL 1873 PE(1-5/8)	140.00 120.00 - 140.00	0.6000	0.6000
Т4	19	Feedline Ladder (Af)	140.00 120.00 - 140.00	0.6000	0.6000
Т4	21	FLC 78-50J(7/8)	120.00 - 140.00	0.6000	0.6000
Т4	22	FB-L98B-002-75000(3/8)	120.00 - 120.00 - 140.00	0.6000	0.6000
T4	23	FB-L98B-034-XXX(3/8)	120.00 - 120.00 - 140.00	0.6000	0.6000
Т4	25	WR-VG86ST-BRD(3/4)	120.00 - 120.00 - 140.00	0.6000	0.6000
T4	26	2" Flex Conduit	120.00 - 140.00	0.6000	0.6000
T4	27	Feedline Ladder (Af)	120.00 - 140.00	0.6000	0.6000
Т4	29	HCS 6X12 4AWG(1-5/8)	120.00 - 140.00	0.6000	0.6000
T4	30	Feedline Ladder (Af)	120.00 - 140.00	0.6000	0.6000
Т4	32	CU12PSM9P6XXX(1-1/2)	120.00 - 130.00	0.6000	0.6000
T5	1	Thin Flat Bar Climbing Ladder	100.00 - 120.00	0.6000	0.6000
T 5	2	Safety Line 3/8	100.00 - 120.00	0.6000	0.6000
T5	4	LDF4-50A(1/2)	100.00 - 120.00	0.6000	0.6000
Т5	5	HB114-1-0813U4-M5J(1- 1/4)	100.00 - 120.00	0.6000	0.6000
T5	7	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
Т5	9	LDF4-50A(1/2)	100.00 - 120.00	0.6000	0.6000
Т5	10	LDF7-50A(1-5/8)	100.00 - 120.00	0.6000	0.6000
Т5	13	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
Т5	15	LDF7-50A(1-5/8)	100.00 - 120.00	0.6000	0.6000
T5	16	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
Т5	18	FXL 1873 PE(1-5/8)	100.00 - 120.00	0.6000	0.6000
T5	19	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
T5	21	FLC 78-50J(7/8)	100.00 - 120.00	0.6000	0.6000
Τ5	22	FB-L98B-002-75000(3/8)	100.00 - 120.00	0.6000	0.6000
Т5	23	FB-L98B-034-XXX(3/8)	100.00 - 120.00	0.6000	0.6000
Т5	25	WR-VG86ST-BRD(3/4)	100.00 - 120.00	0.6000	0.6000
T5	26	2" Flex Conduit	100.00 - 120.00	0.6000	0.6000
Т5	27	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	lce
T5	29	HCS 6X12 4AWG(1-5/8)	<i>Elev.</i> 100.00 -	0.6000	0.6000
Т5	30	Feedline Ladder (Af)	120.00 100.00 - 120.00	0.6000	0.6000
Т5	32	CU12PSM9P6XXX(1-1/2)	100.00 -	0.6000	0.6000
Т6	1	Thin Flat Bar Climbing	120.00 80.00 -	0.6000	0.6000
Т6	2	Ladder Safety Line 3/8	100.00 80.00 - 100.00	0.6000	0.6000
Т6	4	LDF4-50A(1/2)	80.00 - 100.00	0.6000	0.6000
Т6	5	HB114-1-0813U4-M5J(1-	80.00 -	0.6000	0.6000
Т6	7	1/4) Feedline Ladder (Af)	100.00 80.00 -	0.6000	0.6000
Т6	9	LDF4-50A(1/2)	100.00 98.00 - 100.00	0.6000	0.6000
Т6	10	LDF7-50A(1-5/8)	80.00 -	0.6000	0.6000
Т6	12	LDF4-50A(1/2)	100.00 80.00 -	0.6000	0.6000
Т6	13	Feedline Ladder (Af)	98.00 - 80.00 100.00	0.6000	0.6000
Т6	15	LDF7-50A(1-5/8)	80.00 - 100.00	0.6000	0.6000
Т6	16	Feedline Ladder (Af)	80.00 -	0.6000	0.6000
Т6	18	FXL 1873 PE(1-5/8)	100.00 80.00 - 100.00	0.6000	0.6000
Т6	19	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
Т6	21	FLC 78-50J(7/8)	80.00 -	0.6000	0.6000
Т6	22	FB-L98B-002-75000(3/8)	100.00 80.00 - 100.00	0.6000	0.6000
Т6	23	FB-L98B-034-XXX(3/8)	80.00 - 100.00	0.6000	0.6000
Т6	25	WR-VG86ST-BRD(3/4)	80.00 - 100.00	0.6000	0.6000
Т6	26	2" Flex Conduit	80.00 - 100.00	0.6000	0.6000
Т6	27	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
Т6	29	HCS 6X12 4AWG(1-5/8)	80.00 -	0.6000	0.6000
Т6	30	Feedline Ladder (Af)	100.00 80.00 -	0.6000	0.6000
Т6	32	CU12PSM9P6XXX(1-1/2)	100.00 80.00 - 100.00	0.6000	0.6000
Т7	1	Thin Flat Bar Climbing	100.00 60.00 -	0.6000	0.6000
Τ7	2	Ladder Safety Line 3/8	80.00 60.00 -	0.6000	0.6000
Τ7	4	LDF4-50A(1/2)	80.00 60.00 - 80.00	0.6000	0.6000
Τ7	5	HB114-1-0813U4-M5J(1-	80.00 60.00 - 80.00	0.6000	0.6000
Τ7	7	1/4) Feedline Ladder (Af)	80.00 60.00 -	0.6000	0.6000
Τ7	10	LDF7-50A(1-5/8)	80.00 - 60.00 80.00	0.6000	0.6000
Τ7	12	LDF4-50A(1/2)	60.00 80.00	0.6000	0.6000
Τ7	13	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Τ7	15	LDF7-50A(1-5/8)	60.00 - 80.00	0.6000	0.6000
Т7	16	Feedline Ladder (Af)		0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			Elev.		
Т7	18	FXL 1873 PE(1-5/8)	80.00 - 60.00 80.00	0.6000	0.6000
Т7	19	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Τ7	21	FLC 78-50J(7/8)	60.00 - 80.00	0.6000	0.6000
Т7	22	FB-L98B-002-75000(3/8)	- 60.00 80.00	0.6000	0.6000
Т7	23	FB-L98B-034-XXX(3/8)	60.00 - 80.00	0.6000	0.6000
Т7	25	WR-VG86ST-BRD(3/4)	60.00 - 80.00	0.6000	0.6000
Τ7	26	2" Flex Conduit	60.00 - 80.00	0.6000	0.6000
T7	27	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T7	29	HCS 6X12 4AWG(1-5/8)	60.00 - 80.00	0.6000	0.6000
Т7 Т7	30 32	Feedline Ladder (Af)	60.00 - 80.00 60.00 -	0.6000 0.6000	0.6000 0.6000
т8	52 1	CU12PSM9P6XXX(1-1/2) Thin Flat Bar Climbing	80.00 - 80.00 40.00 -	0.6000	0.6000
T8	2	Ladder Safety Line 3/8	40.00 - 60.00 40.00 -	0.6000	0.6000
тв	4	LDF4-50A(1/2)	40.00 - 60.00 40.00 -	0.6000	0.6000
тв	5	HB114-1-0813U4-M5J(1-	60.00 40.00 -	0.6000	0.6000
тв	7	1/4) Feedline Ladder (Af)	60.00 40.00 -	0.6000	0.6000
тв	10	LDF7-50A(1-5/8)	60.00 40.00 -	0.6000	0.6000
Т8	12	LDF4-50A(1/2)	60.00 40.00 -	0.6000	0.6000
тв	13	Feedline Ladder (Af)	60.00 40.00 -	0.6000	0.6000
тв	15	LDF7-50A(1-5/8)	60.00 40.00 -	0.6000	0.6000
тв	16	Feedline Ladder (Af)	60.00 40.00 -	0.6000	0.6000
тв	18	FXL 1873 PE(1-5/8)	60.00 40.00 -	0.6000	0.6000
тв	19	Feedline Ladder (Af)	60.00 40.00 -	0.6000	0.6000
тв	21	FLC 78-50J(7/8)	60.00 40.00 - 60.00	0.6000	0.6000
Т8	22	FB-L98B-002-75000(3/8)	40.00 - 60.00	0.6000	0.6000
тв	23	FB-L98B-034-XXX(3/8)	40.00 - 60.00	0.6000	0.6000
Т8	25	WR-VG86ST-BRD(3/4)	40.00 - 60.00	0.6000	0.6000
Т8	26	2" Flex Conduit	40.00 - 60.00	0.6000	0.6000
Т8	27	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т8	29	HCS 6X12 4AWG(1-5/8)	40.00 - 60.00	0.6000	0.6000
Т8	30	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т8	32	CU12PSM9P6XXX(1-1/2)	40.00 - 60.00	0.6000	0.6000
Т9	1	Thin Flat Bar Climbing Ladder	20.00 - 40.00	0.6000	0.6000
Т9	2	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	lce
Т9	4	LDF4-50A(1/2)	20.00 -	0.6000	0.6000
Т9	5	HB114-1-0813U4-M5J(1-	40.00 20.00 -	0.6000	0.6000
		1/4)	40.00		
Т9	7	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	10	LDF7-50A(1-5/8)	20.00 -	0.6000	0.6000
т9	12	LDF4-50A(1/2)	40.00 20.00 -	0.6000	0.6000
Т9	13	Feedline Ladder (Af)	40.00 20.00 - 40.00	0.6000	0.6000
Т9	15	LDF7-50A(1-5/8)	20.00 - 40.00	0.6000	0.6000
Т9	16	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	18	FXL 1873 PE(1-5/8)	20.00 - 40.00	0.6000	0.6000
Т9	19	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	21	FLC 78-50J(7/8)	20.00 - 40.00	0.6000	0.6000
Т9	22	FB-L98B-002-75000(3/8)	20.00 - 40.00	0.6000	0.6000
Т9	23	FB-L98B-034-XXX(3/8)	20.00 - 40.00	0.6000	0.6000
Т9	25	WR-VG86ST-BRD(3/4)	20.00 - 40.00	0.6000	0.6000
Т9	26	2" Flex Conduit	20.00 - 40.00	0.6000	0.6000
Т9	27	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	29	HCS 6X12 4AWG(1-5/8)	20.00 - 40.00	0.6000	0.6000
Т9	30	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	32	CU12PSM9P6XXX(1-1/2)	20.00 - 40.00	0.6000	0.6000
T10	1	Thin Flat Bar Climbing Ladder	0.00 - 20.00	0.6000	0.6000
T10 T10	2 4	Safety Line 3/8 LDF4-50A(1/2)	0.00 - 20.00 0.00 - 20.00	0.6000 0.6000	$0.6000 \\ 0.6000$
T10	5	HB114-1-0813U4-M5J(1- 1/4)	0.00 - 20.00	0.6000	0.6000
T10	7	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T10	10	LDF7-50A(1-5/8) LDF4-50A(1/2)	0.00 - 20.00 0.00 - 20.00	0.6000	0.6000
T10 T10	12 13	Feedline Ladder (Af)	0.00 - 20.00	$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
T10	15	LDF7-50A(1-5/8)	0.00 - 20.00	0.6000	0.6000
T10	16	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T10	18	FXL 1873 PE(1-5/8)	0.00 - 20.00	0.6000	0.6000
T10 T10	19	Feedline Ladder (Af) FLC 78-50J(7/8)	0.00 - 20.00 0.00 - 20.00	$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
T10	21 22	FB-L98B-002-75000(3/8)	0.00 - 20.00	0.6000	0.6000
T10	23	FB-L98B-034-XXX(3/8)	0.00 - 20.00	0.6000	0.6000
T10	25	WR-VG86ST-BRD(3/4)	0.00 - 20.00	0.6000	0.6000
T10	26	2" Flex Conduit	0.00 - 20.00	0.6000	0.6000
T10	27	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T10 T10	29 30	HCS 6X12 4AWG(1-5/8) Feedline Ladder (Af)	0.00 - 20.00 0.00 - 20.00	$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
T10	32	CU12PSM9P6XXX(1-1/2)	0.00 - 20.00	0.6000	0.6000
1.0	52		5100 20.00	0.0000	0.0000

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemer
	Leg		Lateral		
			Vert ft	۰	ft
			ft		п
	۸	Energy Law	ft	0.000	400.000
APXVTM14-ALU-I20 w/ Mount Pipe	A	From Leg	4.000 0.000 2.000	0.000	190.000
APXVTM14-ALU-I20 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	190.000
APXVTM14-ALU-I20 w/ Mount Pipe	С	From Leg	2.000 4.000 0.000	0.000	190.000
NNVV-65B-R4 w/ Mount Pipe	А	From Leg	2.000 4.000 0.000	0.000	190.000
NNVV-65B-R4 w/ Mount Pipe	В	From Leg	2.000 4.000 0.000	0.000	190.000
NNVV-65B-R4 w/ Mount Pipe	С	From Leg	2.000 4.000 0.000	0.000	190.000
FZHN	А	From Leg	2.000 4.000 0.000	0.000	190.000
FZHN	В	From Leg	2.000 4.000 0.000	0.000	190.000
FZHN	С	From Leg	2.000 4.000 0.000	0.000	190.000
PCS 1900MHz 4x45W-65MHz	А	From Leg	2.000 4.000 0.000	0.000	190.000
PCS 1900MHz 4x45W-65MHz	В	From Leg	2.000 4.000 0.000	0.000	190.000
PCS 1900MHz 4x45W-65MHz	С	From Leg	2.000 4.000 0.000	0.000	190.000
(2) RRH2X50-800	А	From Leg	2.000 4.000 0.000	0.000	190.000
(2) RRH2X50-800	В	From Leg	2.000 4.000 0.000	0.000	190.000
(2) RRH2X50-800	С	From Leg	2.000 4.000 0.000	0.000	190.000
Sector Mount [SM 506-3]	С	None	2.000	0.000	190.000
(2) LPA-80080/4CF	А	From Leg	4.000 0.000 1.000	0.000	180.000
(2) LPA-80080/4CF	В	From Leg	1.000 4.000 0.000 1.000	0.000	180.000
(2) LPA-80080/4CF	С	From Leg	1.000 4.000 0.000 4.000	0.000	180.000
(2) JAHH-65B-R3B	А	From Leg	4.000 4.000 0.000 1.000	0.000	180.000
(2) JAHH-65B-R3B	В	From Leg	1.000 4.000 0.000 1.000	0.000	180.000
(2) JAHH-65B-R3B	С	From Leg	4.000 0.000	0.000	180.000

Description	Face	Offset	Offsets:	Azimuth	Placement
	or Leg	Туре	Horz Lateral	Adjustment	
	Leg		Vert		
			ft	0	ft
			ft ft		
			1.000		
CBRS w/ Mount Pipe	А	From Leg	4.000	0.000	180.000
			0.000		
CBRS w/ Mount Pipe	В	From Leg	1.000 4.000	0.000	180.000
	_		0.000		
	0		1.000	0.000	100.000
CBRS w/ Mount Pipe	С	From Leg	4.000 0.000	0.000	180.000
			1.000		
58532A	С	From Leg	4.000	0.000	180.000
			0.000		
20W CBRS	А	From Leg	4.000 4.000	0.000	180.000
		1 Tom Log	0.000	0.000	100.000
			1.000		
20W CBRS	В	From Leg	4.000 0.000	0.000	180.000
			1.000		
20W CBRS	С	From Leg	4.000	0.000	180.000
		-	0.000		
FDJ85020Q7-S1	А	From Log	1.000 4.000	0.000	180.000
FD385020Q7-51	A	From Leg	0.000	0.000	180.000
			1.000		
FDJ85020Q7-S1	В	From Leg	4.000	0.000	180.000
			0.000 1.000		
FDJ85020Q7-S1	С	From Leg	4.000	0.000	180.000
	•		0.000		
			1.000		100.000
RFV01U-D1A	A	From Leg	4.000 0.000	0.000	180.000
			1.000		
RFV01U-D1A	В	From Leg	4.000	0.000	180.000
			0.000		
RFV01U-D1A	С	From Leg	1.000 4.000	0.000	180.000
	Ũ	1 Iom Log	0.000	0.000	100.000
	_	_ .	1.000		
RFV01U-D2A	A	From Leg	4.000	0.000	180.000
			0.000 1.000		
RFV01U-D2A	В	From Leg	4.000	0.000	180.000
			0.000		
RFV01U-D2A	С	From Leg	1.000 4.000	0.000	180.000
	C	r tom Ley	0.000	0.000	100.000
		_	1.000	_	
(2) RC3DC-3315-PF-48	A	From Leg	4.000	0.000	180.000
			0.000 1.000		
Sector Mount [SM 304-3]	С	None		0.000	180.000
	•	Energy 1	4.000	0.000	474.000
(3) 7130.16.33.00 w/ Mount Pipe	A	From Leg	4.000 0.000	0.000	171.000
			1.000		
(3) 7130.16.33.00 w/ Mount Pipe	В	From Leg	4.000	0.000	171.000
			0.000		
(3) 7130.16.33.00 w/ Mount Pipe	С	From Leg	1.000 4.000	0.000	171.000
	0	rion Leg		0.000	111.000
.,			0.000		
Sector Mount [SM 502-3]	С	None	1.000	0.000	171.000

Description	Face	Offset	Offsets:	Azimuth	Placemen
	or Leg	Туре	Horz Lateral	Adjustment	
	5		Vert		
			ft ft	0	ft
			π ft		
HBX-6516DS-VTM w/ Mount Pipe	А	From Leg	4.000	0.000	162.000
			0.000		
HBX-6516DS-VTM w/ Mount Pipe	В	From Leg	0.000 4.000	0.000	162.000
	D	Trom Log	0.000	0.000	102.000
			0.000		
HBX-6516DS-VTM w/ Mount Pipe	С	From Leg	4.000	0.000	162.000
			0.000 0.000		
6' x 2" Mount Pipe	А	From Leg	4.000	0.000	162.000
		-	0.000		
	P	Ensue La s	0.000	0.000	100.000
6' x 2" Mount Pipe	В	From Leg	4.000 0.000	0.000	162.000
			0.000		
6' x 2" Mount Pipe	С	From Leg	4.000	0.000	162.000
			0.000		
Sector Mount [SM 104-3]	С	None	0.000	0.000	162.000
***	5	NONE		0.000	102.000
PX16DWV-16DWV-S-E-A20 w/ Mount Pipe	А	From Leg	4.000	0.000	156.000
			0.000		
PX16DWV-16DWV-S-E-A20 w/ Mount Pipe	В	From Leg	2.000 4.000	0.000	156.000
	D	rion Log	0.000	0.000	100.000
			2.000		
PX16DWV-16DWV-S-E-A20 w/ Mount Pipe	С	From Leg	4.000	0.000	156.000
			0.000 2.000		
APXVAARR24 43-U-NA20 w/ Mount Pipe	А	From Leg	4.000	0.000	156.000
			0.000		
	-	- .	2.000	0.000	450.000
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	156.000
			2.000		
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.000	0.000	156.000
			0.000		
RADIO 4415 B66A	А	From Leg	2.000 4.000	0.000	156.000
	7	r tom Leg	0.000	0.000	130.000
			0.000		
RADIO 4415 B66A	В	From Leg	4.000	0.000	156.000
			0.000 0.000		
RADIO 4415 B66A	С	From Leg	4.000	0.000	156.000
		5	0.000		
	^	From	0.000	0.000	150 000
RRUS 4415 B25	A	From Leg	4.000 0.000	0.000	156.000
			3.000		
RRUS 4415 B25	В	From Leg	4.000	0.000	156.000
			0.000		
RRUS 4415 B25	С	From Leg	3.000 4.000	0.000	156.000
	5	. Ion Log	0.000	0.000	100.000
			3.000		
RADIO 4449 B12/B71	В	From Leg	4.000	0.000	156.000
			0.000 3.000		
RADIO 4449 B12/B71	С	From Leg	4.000	0.000	156.000
	-	···· — - 3	0.000		
		<u> </u>	3.000	0.000	4
0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 7 1	А	From Log	4.000	0.000	156.000
RADIO 4449 B12/B71	А	From Leg	0.000	01000	

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemen
	Leg		Lateral Vert ft ft	°	ft
			ft		
8' x 2" Mount Pipe	A	From Leg	4.000 0.000 2.000	0.000	156.000
8' x 2" Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	156.000
8' x 2" Mount Pipe	С	From Leg	4.000 0.000	0.000	156.000
Sector Mount [SM 502-3]	С	None	2.000	0.000	156.000
7770.00 w/ Mount Pipe	А	From Leg	4.000 0.000	0.000	140.000
7770.00 w/ Mount Pipe	В	From Leg	0.000 4.000 0.000	0.000	140.000
7770.00 w/ Mount Pipe	С	From Leg	0.000 4.000 0.000	0.000	140.000
(2) NNHH-65B-R4 w/ Mount Pipe	A	From Leg	0.000 4.000 0.000	0.000	140.000
(2) TPA65R-BU4D w/ Mount Pipe	В	From Leg	0.000 4.000 0.000	0.000	140.000
(2) TPA65R-BU4D w/ Mount Pipe	С	From Leg	0.000 4.000 0.000	0.000	140.000
TT19-08BP111-001	А	From Leg	0.000 4.000 0.000 0.000	0.000	140.000
TT19-08BP111-001	В	From Leg	4.000 0.000 0.000	0.000	140.000
TT19-08BP111-001	С	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 4478 B14	А	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 4478 B14	В	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 4478 B14	С	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 4449 B5/B12	А	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 4449 B5/B12	В	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 4449 B5/B12	С	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 8843 B2/B66A	А	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 8843 B2/B66A	В	From Leg	4.000 0.000 0.000	0.000	140.000
RRUS 8843 B2/B66A	С	From Leg	4.000 0.000 0.000	0.000	140.000

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement
			Vert ft ft ft	٥	ft
DC6-48-60-18-8F	A	From Leg	4.000 0.000 0.000	0.000	140.000
DC6-48-60-0-8C-EV	В	From Leg	4.000 0.000 0.000	0.000	140.000
Sector Mount [SM 504-3]	С	None	0.000	0.000	140.000
58532A	A	From Leg	3.000 0.000 4.000	0.000	98.000
Side Arm Mount [SO 301-1]	A	From Leg	4.000 1.500 0.000 0.000	0.000	98.000
****** MX08FRO665-21 w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	130.000
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	130.000
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	130.000
TA08025-B604	A	From Leg	4.000 0.000 0.000	0.000	130.000
TA08025-B604	В	From Leg	4.000 0.000 0.000	0.000	130.000
TA08025-B604	С	From Leg	4.000 0.000 0.000	0.000	130.000
TA08025-B605	A	From Leg	4.000 0.000 0.000	0.000	130.000
TA08025-B605	В	From Leg	4.000 0.000 0.000	0.000	130.000
TA08025-B605	С	From Leg	4.000 0.000 0.000	0.000	130.000
RDIDC-9181-PF-48	В	From Leg	4.000 0.000 0.000	0.000	130.000
(2) 8' x 2" Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	130.000
(2) 8' x 2" Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	130.000
(2) 8' x 2" Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	130.000
Commscope MTC3975083 (3)	С	None	0.000	0.000	130.000

Load Combinations

Comb.	Description
<u>No.</u> 1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No lee
24	1.2 Dead+1.0 Wind 330 deg - No lee
25	0,9 Dead+1,0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
T1	192 - 180	Leg	Max Tension	23	3.985	-0.060	-0.044
			Max. Compression	18	-6.556	0.025	-0.037
			Max. Mx	20	-1.229	-0.723	0.002
			Max. My	2	-0.886	-0.023	-0.723
			Max. Vy	20	-0.536	0.349	-0.030
			Max. Vx	2	-0.542	-0.006	0.368
		Diagonal	Max Tension	21	1.389	0.000	0.000
			Max. Compression	20	-1.441	0.000	0.000
			Max. Mx	36	0.149	0.026	0.000
			Max. My	16	1.370	0.005	-0.002
			Max. Vy	36	-0.029	0.026	0.000

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
			Max. Vx	16	-0.000	0.004	-0.002
		Top Girt	Max Tension	14	0.091	0.000	0.000
		I	Max, Compression	3	-0.080	0.000	0.000
			Max. Mx	26	0.000	-0.074	0.000
			Max. Vy	26	0.045	0.000	0.000
T2	180 - 160	Leg	Max Tension	23	25.922	-0.016	-0.017
12	100 100	Log	Max. Compression	20	-34.204	0.589	0.010
				2 14	23.471		
			Max. Mx			-0.647	-0.010
			Max. My	20	-5.032	-0.032	-0.644
			Max. Vy	14	-1.156	-0.010	-0.007
			Max. Vx	8	1.187	0.013	-0.033
		Diagonal	Max Tension	16	3.970	0.000	0.000
			Max. Compression	16	-3.977	0.000	0.000
			Max. Mx	27	1.166	0.048	-0.005
			Max. My	28	-1.373	0.024	0.006
			Max. Vý	27	-0.040	0.048	-0.005
			Max. Vx	28	-0.002	0.000	0.000
		Top Girt	Max Tension	3	0.691	0.000	0.000
		TOP GIT		14		0.000	0.000
			Max. Compression		-0.719		
			Max. Mx	26	-0.053	-0.081	0.000
			Max. My	26	-0.050	0.000	0.002
			Max. Vy	26	0.049	0.000	0.000
			Max. Vx	26	-0.001	0.000	0.000
Т3	160 - 140	Leg	Max Tension	23	55.045	0.013	-0.035
		Ŭ	Max, Compression	10	-67.809	0.176	0.031
			Max. Mx	14	31.265	0.907	-0.010
			Max. My	8	-5.026	-0.032	-0.934
			Max. Vy	14	0.583	-0.603	-0.005
				20	0.607	-0.048	
		D'	Max. Vx				-0.584
		Diagonal	Max Tension	16	5.929	0.000	0.000
			Max. Compression	18	-5.885	0.000	0.000
			Max. Mx	27	1.303	0.093	-0.011
			Max. My	36	1.258	0.076	-0.012
			Max. Vy	27	-0.061	0.093	-0.011
			Max. Vx	36	0.004	0.000	0.000
T4	140 - 120	Leg	Max Tension	23	88.420	-0.561	-0.022
• •		9	Max. Compression	10	-108.692	0.244	0.026
			Max. Mx	22	74.016	0.591	-0.023
			Max. My	20	-9.575	-0.022	-0.622
				20 14	-0.967	-0.166	-0.022
			Max. Vy				
		_ .	Max. Vx	20	-0.924	-0.002	-0.093
		Diagonal	Max Tension	12	7.677	0.000	0.000
			Max. Compression	12	-7.768	0.000	0.000
			Max. Mx	27	1.790	0.111	-0.014
			Max. My	30	-1.813	0.092	0.015
			Max. Vy	37	0.072	0.105	0.013
			Max. Vx	30	-0.004	0.000	0.000
T5	120 - 100	Leg	Max Tension	23	123.440	-0.326	-0.010
		3	Max. Compression	10	148.307	0.779	0.052
			Max. Complession Max. Mx	10	-148.307	0.779	0.052
				20	-12,903	0.006	0.683
			Max. My				
			Max. Vy	11	-0.125	0.777	0.052
			Max. Vx	20	0.152	0.006	-0.683
		Diagonal	Max Tension	12	8.219	0.000	0.000
			Max. Compression	12	-8.182	0.000	0.000
			Max. Mx	27	2.275	0.156	-0.019
			Max. My	30	-1.440	0.142	0.021
			Max. Vy	37	0.095	0.152	-0.020
			Max. Vx	30	-0.005	0.000	0.000
Т6	100 - 80	Leg	Max Tension	23	153.372	-0.632	-0.046
10	100 00	Ley	Max Compression	10	-182.558	0.941	0.050
			•				
			Max. Mx	10	-182.558	0.941	0.050
			Max. My	20	-14.357	-0.065	-1.119
			Max. Vy	10	-0.134	0.941	0.050
			Max. Vx	20	-0.197	-0.065	-1.119
		Diagonal	Max Tension	12	9.524	0.000	0.000
		-				0.000	
			Max. Compression	12	-9.566	0.000	0.000
			Max. Compression Max. Mx	12 27	2.443	0.000 0.253	0.000 -0.033

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Vy	37	0.121	0.243	0.032
			Max. Vx	36	0.007	0.000	0.000
T7	80 - 60	Leg	Max Tension	23	185.383	-0.600	-0.035
			Max. Compression	10	-219.771	1.262	0.060
			Max. Mx	10	-219.771	1.262	0.060
			Max. My	20	-16.734	0.039	-1.111
			Max. Vy	10	-0.166	1.262	0.060
			Max. Vx	20	0.168	-0.068	-0.888
		Diagonal	Max Tension	12	10.355	0.000	0.000
			Max. Compression	12	-10.499	0.000	0.000
			Max. Mx	27	2.597	0.326	-0.040
			Max. My	36	2.491	0.313	-0.041
			Max. Vy	29	0.148	0.316	-0.038
			Max. Vx	36	0.008	0.000	0.000
T8	60 - 40	Leg	Max Tension	23	214.332	-1.361	-0.029
			Max. Compression	18	-254.910	1.172	-0.011
			Max. Mx	37	9.122	-2.012	-0.023
			Max. My	20	-17.914	-0.072	-1.332
			Max. Vy	33	0.304	-1.996	0.013
			Max. Vx	20	0.169	-0.072	-1.332
		Diagonal	Max Tension	12	10.101	0.000	0.000
		-	Max. Compression	12	-10.093	0.000	0.000
			Max. Mx	29	2.504	0.390	0.056
			Max. My	30	-1.330	0.367	0.058
			Max. Vy	29	0.172	0.390	0.056
			Max. Vx	30	-0.010	0.000	0.000
Т9	40 - 20	Leg	Max Tension	23	243.302	-1.221	-0.024
		Ū	Max. Compression	18	-290.165	1.988	-0.027
			Max. Mx	37	11.015	-4.017	-0.015
			Max. My	20	-21.274	-0.124	-1.644
			Max. Vý	33	0.656	-3.993	0.012
			Max. Vx	20	-0.232	-0.124	-1.644
		Diagonal	Max Tension	12	11.659	0.000	0.000
		0	Max. Compression	12	-11,952	0.000	0.000
			Max. Mx	27	2.229	0.461	-0.050
			Max. My	30	3.873	0.412	0.055
			Max. Vy	29	0.179	0.414	-0.053
			Max. Vx	30	-0.009	0.000	0.000
T10	20 - 0	Leg	Max Tension	23	271,480	-1.281	-0.033
110	20 0	209	Max. Compression	18	325 361	0.000	0.000
			Max. Mx	35	-156,226	4.055	0.017
			Max. My	20	-23.231	-0.211	2.983
			Max. Vy	33	-0.780	-3.993	0.012
			Max. Vy Max. Vx	20	-0.428	-0.211	-2.983
		Diagonal	Max Tension	12	12.082	0.000	0.000
		Diagonal	Max. Compression	12	-12.588	0.000	0.000
			Max. Compression Max. Mx	29	-0.280	0.589	0.000
			Max. My	29 30	5.329	0.418	0.059
			Max. Wy Max. Vy	30 29	0.198	0.589	0.059
			Max. Vy Max. Vx	29 30	-0.010	0.000	0.059
			IVIAA. VA	30	-0.010	0.000	0.000

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Leg C	Max. Vert	18	334.122	32.913	-19.496
	Max, H _x	18	334,122	32,913	-19,496
	Max. H _z	7	-277 935	-28.177	16.742
	Min. Vert	7	277 935	-28,177	16.742
	Min. H _x	7	-277.935	-28.177	16.742
	Min. H _z	18	334.122	32.913	-19.496
Leg B	Max. Vert	10	333.522	-32.689	-19.644
5	Max. H _x	23	-278.375	27.964	16.909
	Max. H _z	23	-278.375	27.964	16,909

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	ĸ	K
		Comb.			
	Min. Vert	23	-278.375	27.964	16.909
	Min. H _x	10	333.522	-32.689	-19.644
	Min. H _z	10	333,522	-32,689	-19.644
Leg A	Max. Vert	2	327.635	0.391	37.436
	Max. H _x	21	18.850	5.595	1.565
	Max. H _z	2	327.635	0.391	37.436
	Min. Vert	15	-270.847	-0.402	-31.946
	Min. H _x	8	24.956	-5.606	2.071
	Min. H _z	15	-270.847	-0.402	-31.946

Tower Mast Reaction Summary

Load Combination	Vertical	Shearx	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	ĸ	ĸ	ĸ	kip-ft	kip-ft	kip-ft
Dead Only	61.513	0.000	0.000	-7.718	6.204	0.000
1.2 Dead+1.0 Wind 0 deg -	73.816	-0.011	-59.699	-6573.896	9.089	17.214
No Ice						
0.9 Dead+1.0 Wind 0 deg -	55.362	-0.011	-59.699	-6571.581	7.228	17 <u>.</u> 214
No Ice						
1.2 Dead+1.0 Wind 30 deg -	73,816	28,708	-49,741	-5510,883	-3165.657	18,230
No Ice						
0.9 Dead+1.0 Wind 30 deg -	55.362	28,708	-49,741	-5508.567	-3167.519	18.230
No Ice						
1.2 Dead+1.0 Wind 60 deg -	73.816	50.107	-28,926	-3225,887	-5561.557	-18,192
No Ice						
0.9 Dead+1.0 Wind 60 deg -	55.362	50.107	-28.926	-3223.572	-5563.418	-18,192
No Ice						
1.2 Dead+1.0 Wind 90 deg -	73.816	59.459	0.011	-7.616	-6611.639	-54.029
No Ice						
0.9 Dead+1.0 Wind 90 deg -	55.362	59.459	0.011	-5.301	-6613.500	-54.029
No Ice						
1.2 Dead+1.0 Wind 120 deg	73.816	52,716	30,445	3349,534	-5804,513	-28.868
- No Ice						
0.9 Dead+1.0 Wind 120 deg	55.362	52.716	30.445	3351.850	-5806.374	-28.868
- No Ice	001002	021/ 10	001110	000110000		201000
1.2 Dead+1.0 Wind 150 deg	73.816	28,916	50.079	5553.048	-3202,595	-11.407
- No Ice	10.010	20.010	00.070	0000.010	0202.000	11.101
0.9 Dead+1.0 Wind 150 deg	55.362	28,916	50.079	5555.363	-3204.456	-11,407
- No Ice	00.002	20.010	00.070	0000.000	0204.400	11.407
1.2 Dead+1.0 Wind 180 deg	73.816	0.011	56.462	6273.757	5.800	-17.214
- No Ice	70.010	0.011	00.402	0210.101	0.000	17.214
0.9 Dead+1.0 Wind 180 deg	55.362	0.011	56.462	6276.072	3,938	-17.214
- No Ice	00.002	0.011	50.402	0210.012	0.000	-17.214
1.2 Dead+1.0 Wind 210 deg	73.816	-28.708	49.741	5492.360	3180.547	-18.230
- No Ice	75.010	-20.700	43.741	3432.300	5100.547	-10.230
0.9 Dead+1.0 Wind 210 deg	55.362	-28.708	49.741	5494.675	3178.685	-18.230
- No Ice	JJ.JUZ	-20.700	43.741	5454.075	5170.005	-10.230
1.2 Dead+1.0 Wind 240 deg	73,816	-52.910	30,545	3348,173	5820,333	18.192
- No Ice	13.010	-52,910	30.343	3340.173	0020.000	10,192
0.9 Dead+1.0 Wind 240 deg	55,362	-52,910	30,545	3350,488	5818,472	18.192
- No Ice	00 <u>.</u> 00Z	-52,910	30.343	3330.400	3010.472	10,192
	73,816	-59,459	-0.011	-10,906	6626,528	54.029
1.2 Dead+1.0 Wind 270 deg	13.010	-59.459	-0.011	-10.906	0020.020	54.029
- No Ice	FF 202	E0 4E0	0.011	0 501	6604 667	F4 000
0.9 Dead+1.0 Wind 270 deg	55.362	-59.459	-0.011	-8.591	6624.667	54.029
	70.040	40.040	00.007	2007.040		00.000
1.2 Dead+1.0 Wind 300 deg	73.816	-49.913	-28.827	-3227.249	5575.515	28.868
		10.010	~~~~			~~~~~
0.9 Dead+1.0 Wind 300 deg	55.362	-49.913	-28.827	-3224.934	5573.654	28.868
					aa /= /a ·	=
1.2 Dead+1.0 Wind 330 deg	73.816	-28.916	-50.079	-5571.571	3217.484	11.407
- No Ice	_	_				
0.9 Dead+1.0 Wind 330 deg	55.362	-28.916	-50.079	-5569.255	3215.623	11.407
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	218.451	0.000	0.000	-71.508	-28.929	0.000

Load Combination	Vertical	Shearx	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	ĸ	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 0	218.451	-0.002	-16.832	-1953.500	-28.655	5.112
deg+1.0 Ice+1.0 Temp						
1 2 Dead+1 0 Wind 30	218.451	8.264	-14.314	-1680.859	-957.718	3.627
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	218.451	14.383	-8.302	-1009.564	-1653 595	-6.382
deg+1.0 Ice+1.0 Temp						
1 2 Dead+1 0 Wind 90	218.451	16.885	0.002	-71.235	-1938 115	-12.055
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	218.451	14.886	8.594	895.291	-1702.834	-6.945
deg+1.0 lce+1.0 Temp						
1 2 Dead+1 0 Wind 150	218.451	8.352	14.462	1557.301	-969.268	-2.600
deg+1.0 ce+1.0 Temp						
1 2 Dead+1 0 Wind 180	218.451	0.002	16.422	1776.094	-29.202	-5.112
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	218.451	-8.264	14.315	1537.842	899.861	-3.627
deg+1.0 ce+1.0 Temp						
1 2 Dead+1 0 Wind 240	218,451	-14.738	8.507	883.741	1625.519	6.382
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	218,451	-16.885	-0.002	-71.782	1880.258	12.055
dea+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 300	218,451	-14,531	-8,389	-1021.113	1615,196	6.945
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	218,451	-8.352	-14.462	-1700.317	911.411	2.600
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	61.513	-0.002	-13,686	-1496 792	6.573	3.872
Dead+Wind 30 deg - Service	61.513	6.587	-11.413	-1256.143	-713.844	4.095
Dead+Wind 60 deg - Service	61,513	11.496	-6.636	-737 525	-1257.331	-4.078
Dead+Wind 90 deg - Service	61.513	13.633	0.002	-7.349	-1495.079	-12.120
Dead+Wind 120 deg -	61.513	12.080	6.977	753.968	-1311.808	-6.483
Service						
Dead+Wind 150 deg -	61.513	6.634	11.489	1254.316	-722 126	-2.570
Service						
Dead+Wind 180 deg -	61.513	0.002	12.961	1418.210	5.835	-3.872
Service						
Dead+Wind 210 deg -	61.513	-6.587	11.413	1240.708	726.252	-4.095
Service	0.1.0.10	01001		12.00.00	0 0 _	
Dead+Wind 240 deg -	61,513	-12,124	6,999	753,663	1324,425	4.078
Service	01.010		0.000	100.000	10211120	1.01 0
Dead+Wind 270 deg -	61,513	-13,633	-0.002	-8,087	1507.487	12,120
Service	01.010	10.000	0.002	0.007	10071107	12.120
Dead+Wind 300 deg -	61,513	-11.452	-6.614	-737.830	1269.529	6.483
Service	51.010		0.014	/0/.000	.200.020	0.700
Dead+Wind 330 deg -	61,513	-6.634	-11,489	-1269,751	734,534	2.570
Service	01.010	0.004	11.100	12001/01	101.004	2.070

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	ĸ	K	K	ĸ	K	K	
1	0.000	-61.513	0.000	0.000	61.513	-0.000	0.000%
2	-0.011	-73.816	-59.699	0.011	73.816	59.699	0.000%
3	-0.011	-55.362	-59.699	0.011	55.362	59.699	0.000%
4	28.708	-73.816	-49.741	-28.708	73.816	49.741	0.000%
5	28.708	-55.362	-49.741	-28.708	55.362	49.741	0.000%
6	50.107	-73.816	-28.926	-50.107	73.816	28.926	0.000%
7	50.107	-55.362	-28.926	-50.107	55.362	28.926	0.000%
8	59.459	-73.816	0.011	-59.459	73.816	-0.011	0.000%
9	59.459	-55.362	0.011	-59.459	55.362	-0.011	0.000%
10	52.716	-73.816	30.445	-52.716	73.816	-30.445	0.000%
11	52.716	-55.362	30.445	-52.716	55.362	-30,445	0.000%
12	28.916	-73.816	50.079	-28.916	73.816	-50.079	0.000%
13	28.916	-55.362	50.079	-28.916	55.362	-50.079	0.000%
14	0.011	-73.816	56.462	-0.011	73.816	-56.462	0.000%
15	0.011	-55.362	56.462	-0.011	55.362	-56.462	0.000%
16	-28.708	-73.816	49.741	28.708	73.816	-49.741	0.000%

		n of Applied Force			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	ĸ	ĸ	ĸ	
17	-28.708	-55.362	49.741	28.708	55.362	-49.741	0.000%
18	-52.910	-73.816	30.545	52.910	73.816	-30.545	0.000%
19	-52,910	-55.362	30.545	52.910	55.362	-30.545	0.000%
20	-59.459	-73.816	-0.011	59.459	73.816	0.011	0.000%
21	-59,459	-55.362	-0.011	59.459	55.362	0.011	0.000%
22	-49.913	-73.816	-28.827	49.913	73.816	28.827	0.000%
23	-49.913	-55.362	-28.827	49.913	55.362	28.827	0.000%
24	-28.916	-73.816	-50.079	28.916	73.816	50.079	0.000%
25	-28.916	-55.362	-50.079	28.916	55.362	50.079	0.000%
26	0.000	-218.451	0.000	-0.000	218.451	-0.000	0.000%
27	-0.002	-218.451	-16.832	0.002	218.451	16.832	0.000%
28	8.264	-218.451	-14.315	-8.264	218.451	14.314	0.000%
29	14.383	-218.451	-8.302	-14.383	218.451	8.302	0.000%
30	16.885	-218.451	0.002	-16.885	218.451	-0.002	0.000%
31	14.886	-218.451	8.594	-14.886	218.451	-8.594	0.000%
32	8.352	-218.451	14.462	-8.352	218.451	-14.462	0.000%
33	0.002	-218.451	16.422	-0.002	218.451	-16.422	0.000%
34	-8.264	-218.451	14.315	8.264	218.451	-14.315	0.000%
35	-14.738	-218.451	8.507	14.738	218.451	-8.507	0.000%
36	-16.885	-218.451	-0.002	16.885	218.451	0.002	0.000%
37	-14.531	-218.451	-8.389	14.531	218.451	8.389	0.000%
38	-8.352	-218.451	-14.462	8.352	218.451	14.462	0.000%
39	-0.002	-61.513	-13.686	0.002	61.513	13.686	0.000%
40	6.587	-61.513	-11.413	-6.587	61.513	11.413	0.000%
41	11.496	-61.513	-6.636	-11.496	61.513	6.636	0.000%
42	13.633	-61.513	0.002	-13.633	61.513	-0.002	0.000%
43	12.080	-61.513	6.977	-12.080	61.513	-6.977	0.000%
44	6.634	-61.513	11.489	-6.634	61.513	-11.489	0.000%
45	0.002	-61.513	12.961	-0.002	61.513	-12.961	0.000%
46	-6.587	-61.513	11.413	6.587	61.513	-11.413	0.000%
47	-12.124	-61.513	6.999	12.124	61.513	-6.999	0.000%
48	-13.633	-61.513	-0.002	13.633	61.513	0.002	0.000%
49	-11.452	-61.513	-6.614	11.452	61.513	6.614	0.000%
50	-6.634	-61.513	-11.489	6.634	61.513	11.489	0.000%

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	192 - 180	4.085	48	0.193	0.025
T2	180 - 160	3.598	48	0.190	0.025
Т3	160 - 140	2.822	47	0.169	0.021
T4	140 - 120	2.150	47	0.143	0.018
Т5	120 - 100	1.575	47	0.118	0.014
T6	100 - 80	1.096	47	0.097	0.011
T7	80 - 60	0.713	47	0.074	0.008
Т8	60 - 40	0.418	47	0.055	0.006
Т9	40 - 20	0.204	47	0.037	0.004
T10	20 - 0	0.061	47	0.019	0.002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Elevation Appurtenance		Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
190.000	APXVTM14-ALU-I20 w/ Mount Pipe	48	4.003	0.193	0.025	618588
180.000	(2) LPA-80080/4CF	48	3.598	0.190	0.025	217578
171.000	(3) 7130 16.33.00 w/ Mount Pipe	47	3.240	0.183	0.024	68845
162.000	HBX-6516DS-VTM w/ Mount	47	2.896	0.171	0.022	40191

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
	Pipe					
156.000	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	47	2.679	0.164	0.021	38723
140.000	7770.00 w/ Mount Pipe	47	2.150	0.143	0.018	51489
130.000	MX08FRO665-21 w/ Mount Pipe	47	1.851	0.130	0.016	50269
98.000	58532A	47	1.053	0.095	0.010	49204

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	٥
T1	192 - 180	18.120	11	0.851	0.110
T2	180 - 160	15.970	11	0.841	0.110
Т3	160 - 140	12.518	11	0.747	0.095
T4	140 - 120	9.524	11	0.634	0.080
T5	120 - 100	6.965	18	0.526	0.063
Т6	100 - 80	4.842	18	0.429	0.047
T7	80 - 60	3.147	18	0.330	0.035
Т8	60 - 40	1.841	18	0.244	0.025
Т9	40 - 20	0.897	18	0.165	0.016
T10	20 - 0	0.269	18	0.084	0.007

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
190.000	APXVTM14-ALU-I20 w/ Mount Pipe	11	17.761	0.851	0.110	156116
180.000	(2) LPA-80080/4CF	11	15.970	0.841	0.110	53635
171.000	(3) 7130 16.33.00 w/ Mount Pipe	11	14.379	0.808	0.105	16068
162.000	HBX-6516DS-VTM w/ Mount Pipe	11	12.846	0.759	0.097	9274
156.000	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	11	11.879	0.724	0.092	8920
140.000	7770.00 w/ Mount Pipe	11	9.524	0.634	0.080	11697
130.000	MX08FRO665-21 w/ Mount Pipe	11	8.192	0.579	0.072	11375
98.000	58532A	18	4.653	0.420	0.046	11087

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
T1	192	Leg	A325N	0.625	4	0.996	20.340	0.049	1.05	Bolt Tension
		Diagonal	A325N	0.625	1	1.389	7.116	0.195	1.05	Member Block Shear
		Top Girt	A325N	0.625	1	0.091	7.116	0.013	1.05	Member Block Shear
T2	180	Leg	A325N	0.625	4	6.481	20.340	0.319	1.05	Bolt Tension
		Diagonal	A325N	0.625	1	3.970	8.135	0.488	1.05	Member Block Shear
		Top Girt	A325N	0.625	1	0.691	8.135	0.085	1.05	Member Block Shear

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.		Туре	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt	per Bolt	Allowable		
						K	<u> </u>	/		
Т3	160	Leg	A325N	0.875	4	13.761	41.556	0.331	1.05	Bolt Tension
		Diagonal	A325N	0.625	1	5.929	11.310	0.524	1.05	Member
										Bearing
Τ4	140	Leg	A325N	1.000	4	22.105	54.517	0.405	1.05	Bolt Tension
		Diagonal	A325N	0.625	1	7.677	11.310	0.679	1.05	Member
		0								Bearing
T5	120	Leq	A325N	1.000	6	20.573	54.517	0.377	1.05	Bolt Tension
		Diagonal	A325N	0.750	1	8,219	13,485	0.610	1.05	Gusset Bearing
Т6	100	Leg	A325N	1,000	6	25,562	54,517	0.469	1.05	Bolt Tension
		Diagonal	A325N	0.750	1	9.524	13.485	0.706	1.05	Gusset Bearing
T7	80	Leg	A325N	1,000	8	23,173	54,517	0.425	1.05	Bolt Tension
••		Diagonal	A325N	0.750	1	10.355	13.485	0.768	1.05	Gusset Bearing
Т8	60	Leg	A325N	1.000	8	26,791	54,517	0.491	1.05	Bolt Tension
10	00	Diagonal	A325X	0.750	1	10.101	13.485	0.749	1.05	Gusset Bearing
Т9	40	U	A325N	1.000	8	30.413	54.517	0.558	1.05	Bolt Tension
19	40	Leg			0					
		Diagonal	A325X	0.750	1	11.659	13.485	0.865	1.05	Gusset Bearing
T10	20	Leg	A354-BC	1.000	10	27.148	56.788	0.478	1.05	Bolt Tension
		Diagonal	A325X	0.750	1	12.082	13.485	0.896	1.05	Gusset Bearing

Compression Checks

	Leg Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu		
	ft		ft	ft		in²	К	ĸ	ϕP_n		
T1	192 - 180	ROHN 2.5 STD	12.000	4.000	50.7 K=1.00	1.704	-6.556	63.560	0.103 ¹		
T2	180 - 160	ROHN 2.5 STD	20.032	5.008	63.4 K=1.00	1.704	-34.204	57.139	0.599 ¹		
Т3	160 - 140	ROHN 3 EH	20.036	6.679	70.5 K=1.00	3.016	-67.809	94.337	0.719 ¹		
T4	140 - 120	ROHN 4 EH	20.038	6.679	54.3 K=1.00	4.407	-108.692	159.899	0.680 ¹		
T5	120 - 100	ROHN 5 EH	20.036	6.679	43.6 K=1.00	6.112	-148.307	239.378	0.620 1		
Т6	100 - 80	ROHN 6 EHS	20.036	10.018	54.0 K=1.00	6.713	-182.558	244.047	0.748 ¹		
Т7	80 - 60	ROHN 6 EH	20.032	10.016	54.8 K=1.00	8.405	-219.771	303.757	0.724 ¹		
Т8	60 - 40	ROHN 8 EHS	20.042	10.021	41.2 K=1.00	9.719	-254.910	386.354	0.660 1		
Т9	40 - 20	ROHN 8 EHS	20.031	10.015	41.2 K=1.00	9.719	-290.165	386.409	0.751 ¹		
T10	20 - 0	ROHN 8 EHS	20.033	10.017	41.2 K=1.00	9.719	-325.361	386.397	0.842 ¹		

¹ P_u / ϕP_n controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T1	192 - 180	L1 3/4x1 3/4x3/16	7.700	3.585	125.3 K=1.00	0.621	-1.441	11.328	0.127 ¹
Т2	180 - 160	L2x2x3/16	9.686	4.721	143.8	0.715	-3.906	9.897	0.395 ¹

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	К	ĸ	ϕP_n
					K=1.00				
Т3	160 - 140	L2 1/2x2 1/2x1/4	12.241	6.028	147.3 K=1.00	1.190	-5.885	15.695	0.375 ¹
T4	140 - 120	L2 1/2x2 1/2x1/4	14.067	6.897	168.6 K=1.00	1.190	-7.768	11.987	0.648 ¹
T5	120 - 100	L3x3x1/4	15.944	7.773	157.6 K=1.00	1.440	-8.182	16.602	0.493 ¹
Т6	100 - 80	L3 1/2x3 1/2x1/4	19.209	9.452	163.4 K=1.00	1.690	-9.566	18.110	0.528 ¹
T7	80 - 60	L4x4x1/4	20.935	10.297	155.4 K=1.00	1.940	-10.499	22.986	0.457 ¹
T8	60 - 40	L4x4x5/16	22.872	11.214	170.1 K=1.00	2.400	-10.093	23.735	0.425 ¹
Т9	40 - 20	L4x4x5/16	24.688	12.078	183.2 K=1.00	2.400	-11.952	20.461	0.584 ¹
T10	20 - 0	L4x4x3/8	26.510	13.002	198.0 K=1.00	2.860	-12.588	20.882	0.603 ¹

¹ P_u / ϕP_n controls

	Top Girt Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ P n	Ratio Pu		
	ft		ft	ft		in²	к	K	ϕP_n		
T1	192 - 180	L1 3/4x1 3/4x3/16	6.580	6.090	212.8 K=1.00	0.621	-0.080	3.926	0.020 ¹		
T2	180 - 160	KL/R > 200 (C) - 4 L2x2x3/16	6.580	6.090	185.5 K=1.00	0.715	-0.719	5.948	0.121 ¹		

¹ P_u / ϕP_n controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	К	K	ϕP_n
T1	192 - 180	ROHN 2.5 STD	12.000	4.000	50.7	1.704	3.985	76.682	0.052 ¹
T2	180 - 160	ROHN 2.5 STD	20.032	5.008	63.4	1.704	25.922	76.682	0.338 ¹
Т3	160 - 140	ROHN 3 EH	20.036	6.679	70.5	3.016	55.045	135.717	0.406 ¹
Τ4	140 - 120	ROHN 4 EH	20.038	6.679	54.3	4.407	88.420	198.335	0.446 ¹
T5	120 - 100	ROHN 5 EH	20.036	6.679	43.6	6.112	123.440	275.039	0.449 ¹
T6	100 - 80	ROHN 6 EHS	20.036	10.018	54.0	6.713	153.372	302.097	0.508 ¹
T7	80 - 60	ROHN 6 EH	20.032	10.016	54.8	8.405	185.383	378.222	0.490 ¹
T8	60 - 40	ROHN 8 EHS	20.042	10.021	41.2	9.719	214.332	437.369	0.490 ¹
Т9	40 - 20	ROHN 8 EHS	20.031	10.015	41.2	9.719	243.302	437.369	0.556 ¹
T10	20 - 0	ROHN 8 EHS	20.033	10.017	41.2	9.719	271.480	437.369	0.621 ¹

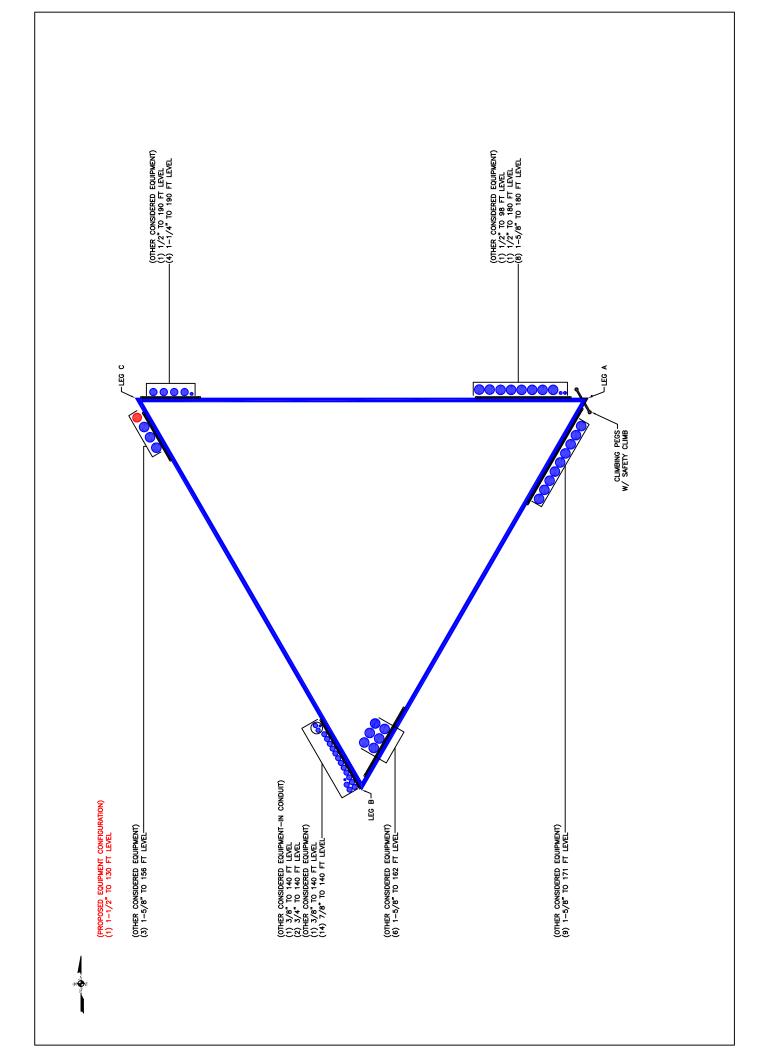
¹ P_u / ϕP_n controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	к	ĸ	ϕP_n
T1	192 - 180	L1 3/4x1 3/4x3/16	7.700	3.585	82.9	0.360	1.389	15.675	0.089 1
T2	180 - 160	L2x2x3/16	9.686	4.721	94.3	0.431	3.970	18.739	0.212 ¹
Т3	160 - 140	L2 1/2x2 1/2x1/4	11.669	5.746	91.6	0.752	5.929	32.707	0.181 ¹
Τ4	140 - 120	L2 1/2x2 1/2x1/4	14.067	6.897	109.6	0.752	7.677	32.707	0.235 ¹
T5	120 - 100	L3x3x1/4	15.944	7.773	102.0	0.916	8.219	44.652	0.184 ¹
Т6	100 - 80	L3 1/2x3 1/2x1/4	19.209	9.452	105.5	1.103	9.524	53.793	0.177 ¹
T7	80 - 60	L4x4x1/4	20.935	10.297	100.1	1.291	10.355	62.933	0.165 ¹
Т8	60 - 40	L4x4x5/16	22.872	11.214	109.8	1.595	10.101	77.752	0.130 ¹
Т9	40 - 20	L4x4x5/16	24.688	12.078	118.2	1.595	11.659	77.752	0.150 ¹
T10	20 - 0	L4x4x3/8	26.510	13.002	128.2	1.899	12.082	92.572	0.131 ¹

¹ P_u / ϕP_n controls

Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	К	K	ϕP_n
T1 T2	192 - 180 180 - 160	L1 3/4x1 3/4x3/16 L2x2x3/16	6.580 6.580	6.090 6.090	141.7 123.3	0.360 0.431	0.091 0.691	15.675 18.739	0.006 ¹ 0.037 ¹


¹ P_u / ϕP_n controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	K	ĸ	Capacity	Fail
T1	192 - 180	Leg	ROHN 2.5 STD	1	-6.556	66.738	9.8	Pass
T2	180 - 160	Leg	ROHN 2.5 STD	27	-34,204	59.996	57.0	Pass
Т3	160 - 140	Leg	ROHN 3 EH	56	-67.809	99.054	68.5	Pass
T4	140 - 120	Leg	ROHN 4 EH	77	-108.692	167.894	64.7	Pass
T 5	120 - 100	Leg	ROHN 5 EH	98	-148.307	251.347	59.0	Pass
T6	100 - 80	Leg	ROHN 6 EHS	119	-182.558	256.249	71.2	Pass
T 7	80 - 60	Leg	ROHN 6 EH	134	-219.771	318.945	68.9	Pass
T8	60 - 40	Leg	ROHN 8 EHS	148	254.910	405.672	62.8	Pass
Т9	40 - 20	Leg	ROHN 8 EHS	163	-290.165	405.729	71.5	Pass
T10	20 - 0	Leg	ROHN 8 EHS	178	-325.361	405.717	80.2	Pass
T1	192 - 180	Diagonal	L1 3/4x1 3/4x3/16	7	-1.441	11.895	12.1	Pass
T2	180 - 160	Diagonal	L2x2x3/16	36	-3.906	10.392	37.6	Pass
Т3	160 - 140	Diagonal	L2 1/2x2 1/2x1/4	63	-5.885	16.480	35.7	Pass
T4	140 - 120	Diagonal	L2 1/2x2 1/2x1/4	81	-7.768	12.587	61.7	Pass
T5	120 - 100	Diagonal	L3x3x1/4	102	-8.182	17.432	46.9	Pass
T6	100 - 80	Diagonal	L3 1/2x3 1/2x1/4	123	-9.566	19.016	50.3	Pass
T 7	80 - 60	Diagonal	L4x4x1/4	138	-10.499	24.136	43.5	Pass
T8	60 - 40	Diagonal	L4x4x5/16	153	-10.093	24.922	40.5	Pass
Т9	40 - 20	Diagonal	L4x4x5/16	168	-11.952	21.484	55.6	Pass
T10	20 - 0	Diagonal	L4x4x3/8	183	-12.588	21.926	57.4	Pass
T1	192 - 180	Top Girt	L1 3/4x1 3/4x3/16	4	-0.080	4.122	1.9	Pass
T2	180 - 160	Top Girt	L2x2x3/16	28	-0.719	6.245	11.5	Pass
							Summary	
						Leg (T10)	80.2	Pass
						Diagonal	61.7	Pass
						(T4)		
						Top Girt	11.5	Pass
						(T2)		
						Bolt	85.3	Pass
						Checks		
						RATING =	85.3	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Self Support Anchor Rod Capacity

876345
SKY HILL
572903, Rev. 0

Analysis Considerations				
TIA-222 Revision	Н			
Grout Considered:	Yes			
l _{ar} (in)	1.5			

Applied Loads				
	Comp.	Uplift		
Axial Force (kips)	334.12	278.38		
Shear Force (kips) 38.25 32.68				
*TIA-222-H Section 15.5 Applied				

Considered Eccentricity				
Leg Mod Eccentricity (in)	0.000			
Anchor Rod N.A Shift (in)	0.000			
Total Eccentricity (in)	0.000			

*Anchor Rod Eccentricity Applied

Connection Properties

Anchor Rod Data

(10) 1" ø bolts (A354-BC N; Fy=109 k

l_{ar} (in): 1.5

0 0	
0	

Analysis Results

	Anchor Rod Summary	(units of kips, kip-in)
ksi, Fu=125 ksi)	Pu_t = 27.84	φPn_t = 56.81	Stress Rating
	Vu = 3.27	φVn = 36.82	46.7%
	Mu = n/a	φMn = n/a	Pass

_
0
U
-
0
<u> </u>
$\overline{\mathbf{a}}$
_
_
\sim
0
ш.
_
<u> </u>
a \
Ψ
_
~
נם
_
$\overline{\mathbf{a}}$
-
_
-
1 1

CROWN

Check Limitation Apply TIA-222-H Section 15.5: NIA Additional Longitudinal Rebar

Input Effective Depths (else Actual): Shear Design Options

Analysis Results

Check Shear along Depth of Pier: Utilize Shear-Friction Methodology: Override Critical Depth:

Go to

	I ower I ype: Self Support	TIA-222 Revison: H	Site Name: SKY HILL	BU # : 876345	BU #: 876345 Site Name: SKY HILL Order Number: 572903, Rev. 0 A-222 Revison: H Tower Type: Self Support
A-222 Revison: H Tower Type: Self Support	A-222 Revison: H			Site Name: SKY HILL	- Number: 572903, Rev. 0

Appli	Applied Loads	
	Comp.	Uplift
Moment (kip-ft)	0	0
Axial Force (kips)	334.12	278.38
Shear Force (kips)	38.25	32.68
Materia	Material Properties	

S	3 ksi	60 ksi	40 ksi	
Material Properties	i, f'c:	, Fy:	Fyt:	
Ma	Concrete Strength, fc:	Rebar Strength, F	Tie Yield Strength, Fyt:	

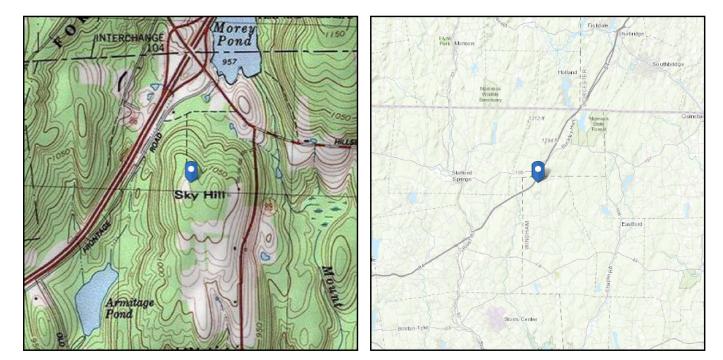
ບັ		
imbedded Pole Inputs	Belled Pier Inputs	

Soil Lateral Check	Compression	Ualift
D _{v=0} (ft from TOC)	11.53	11.53
Soil Safety Factor	36.76	43.03
Max Moment (kip-ft)	304.91	260.51
Rating*	3.4%	2.9%
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	519.54	519.54
End Bearing (kips)	375.00	1
Weight of Concrete (kips)	93.66	70.24
Total Capacity (kips)	894.54	589.78
Axial (kips)	427.78	278.38
Rating*	45.5%	45.0%
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	11.83	10.75
Critical Moment (kip-ft)	304.66	259.09
Critical Moment Capacity	2427.04	1681.47
Rating*	12.0%	14.7%
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	19.01	0.00
Critical Shear (kip)	40.73	32.68
Critical Shear Capacity	424.80	209.46
Rating*	9.1%	14.9%

	14.9%	45.5%	n 15 <u>.</u> 5
-	Structural Foundation Rating*	Soil Interaction Rating*	*Rating per TIA-222-H Section 15.5

Soil Profile

	Soil Type	Cohesionless	Cohesionless	Cohesive	Cohesive
	Jlt. Gross Bearing SPT Blow Capacity Count (ksf)				
	-				2.10 25.46479
	Ultimate Sk Friction Upl Override (ks			00'0	2.10
	Ultimate Skin Friction Comp Override (ksf)			00'0	2.10
	Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp Friction Comp Friction Uplift Override (ksf) (ksf)	000'0	000'0	1.650	2.321
	Calculated Ultimate Skin Friction Comp (ksf)	000'0	000'0	1.650	2.321
4	Angle of Friction (degrees)				
# of Layers	Cohesion (ksf)			3	5
_	Y _{concrete} (pcf)	150	150	150	150
	Y _{soil} (pcf)	120	130	130	135
	Thickness (ft)	2	1.33	1.67	21
N/A	Bottom (ft)	2	3.33	5	26
Groundwater Depth	Top (ft)	0	2	3.33	5
Groundwa	Layer	-	2	3	4


Location

ASCE 7 Hazards Report

Standard: No Address at This **Risk Category:** Soil Class:

ASCE/SEI 7-10 D - Stiff Soil

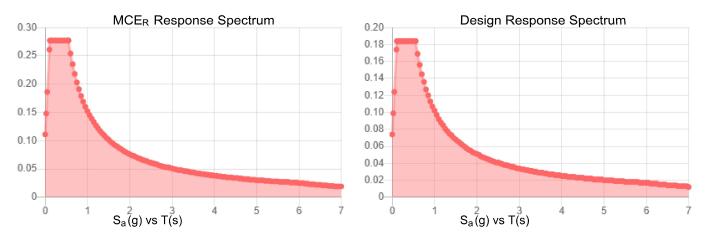
Elevation: 1068.03 ft (NAVD 88) Latitude: 41.952139 Longitude: -72.195528

Wind

Results:

Wind Speed: 10-year MRI 25-year MRI 50-year MRI 100-year MRI	125 Vmph 77 Vmph 87 Vmph 94 Vmph 101 Vmph	130 mph per jurisdiction
Data Source:	ASCE/SEI 7-10 March 12, 2014	, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of
Date Accessed:	Mon Aug 31 202	20

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	0.173	S _{DS} :	0.184	
S ₁ :	0.064	S _{D1} :	0.102	
F _a :	1.6	Τ∟ :	6	
F _v :	2.4	PGA :	0.085	
S _{MS} :	0.277	PGA M :	0.136	
S _{M1} :	0.152	F _{PGA} :	1.6	
			1	

Seismic Design Category B

Data Accessed: Date Source:

Mon Aug 31 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

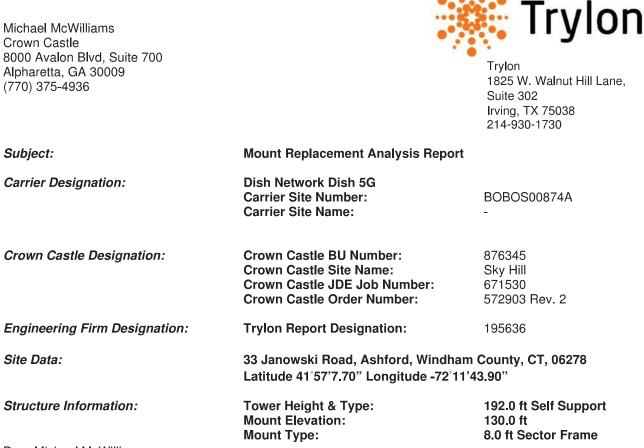
Ice

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Mon Aug 31 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.


The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Dear Michael McWilliams,

Trylon is pleased to submit this "**Mount Replacement Analysis Report**" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sufficient* Sufficient the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Aura Baltoiu

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity Table 4 - Tieback End Reactions 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Sector Frame, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	130 mph
Exposure Category:	В
Topographic Factor at Base:	1.00
Topographic Factor at Mount:	1.00
Ice Thickness:	2.0 in
Wind Speed with Ice:	50 mph
Seismic S _s :	0.173
Seismic S ₁ :	0.063
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA Wireless	MX08FRO665-21	
		3	Fujitsu	TA08025-B604	8.0 ft Sector Frame
130.0 130	130.0	3	Fujitsu	TA08025-B605	[Commscope,
		1	Raycap	RDIDC-9181- PF-48	MTC3975083]

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	572903, Rev.2	CCI Sites
Mount Manufacturer Drawings	Commscope	MTC3975083	Trylon
Exposure Category Determination	Crown Castle	5969262	CCI Sites

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.6) Steel grades have been assumed as follows, unless noted otherwise:

Steel grades have been assumed as follows, unless noted otherwise:				
Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)			
HSS (Rectangular)	ASTM A500 (GR B-46)			
Pipe	ASTM A53 (GR 35)			
Connection Bolts	ASTM A325			

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP1		23.4	Pass
	Horizontal(s)	H1		38.2	Pass
1.0	Standoff(s)	M4	130.0	23.2	Pass
1,2	Bracing(s)	M29	130.0	25.1	Pass
	Tieback(s)	M31A		18.2	Pass
	Mount Connection(s)	_		37.7	Pass

Structure Rating (max from all components) =	38.2%	

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H, Section 15.5

Table 4 - Tieback Connection Data Table

	nection de No.	Existing / Proposed	End Reaction (lb)	Member Type	Connected Member Size	Compressive Capacity (lb) ³	Notes
N	47B	Proposed	616.79	Leg	ROHN 4 EH	7,994.95	1

Notes:

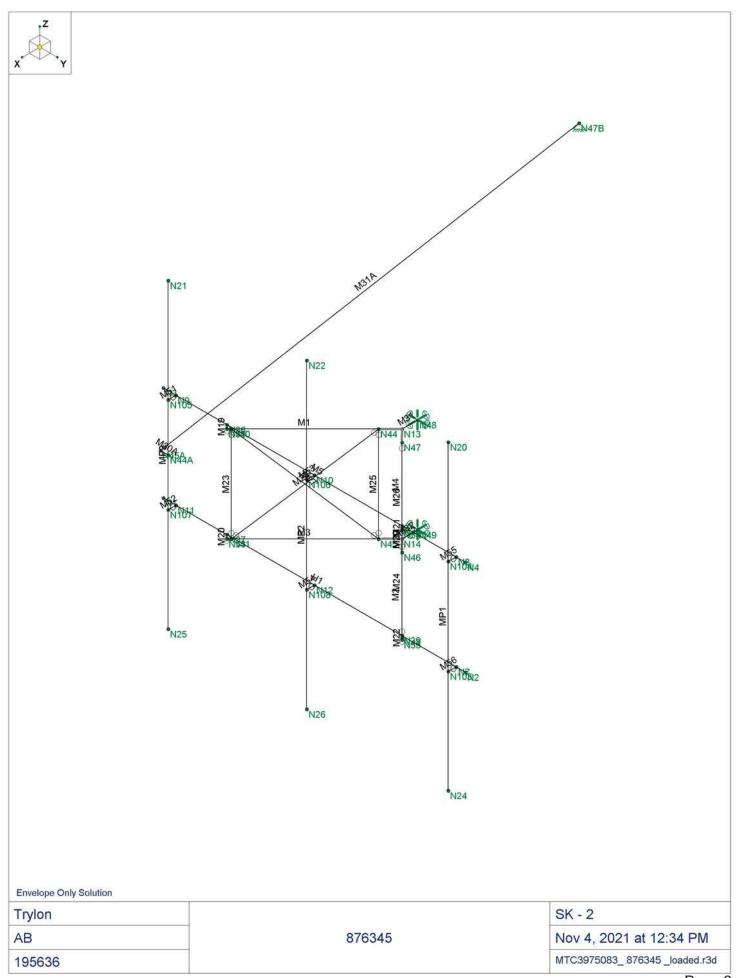
1) Tieback connection point is within 25% of either end of the connected tower member

2) Tieback connection point is NOT within 25% of either end of the connected tower member

3) Reduced member compressive capacity according to CED-STD-10294 *Standard for Installation of Mounts and Appurtenances*

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.


- 1. Commscope, MTC3975083.
- 2. Replace the proposed MT-654-96 pipe tieback in the manufacturer's drawings with new Commscope MT-537-160 pipe an install it as recommended. Tieback connection point needs to be within 25% ends of tower leg.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

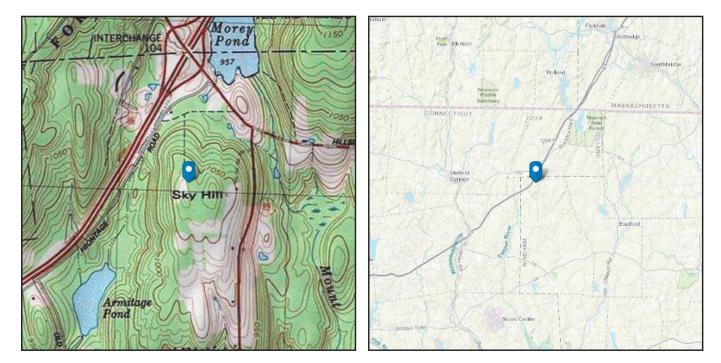
APPENDIX A

WIRE FRAME AND RENDERED MODELS

x		
Envelope Only Solution Trylon		SK - 1
AB		
	876345	Nov 4, 2021 at 12:34 PM

APPENDIX B

SOFTWARE INPUT CALCULATIONS


No Address at This

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 1068.03 ft (NAVD 88) Latitude: 41.952139 Longitude: -72.195528

lce

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Thu Nov 04 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.1

PROJECT DATA			
Job Code:	195636		
Carrier Site ID:	BOBOS00874A		
Carrier Site Name:	-		

CODES AND STANDARDS		
Building Code:	2015 IBC	
Local Building Code:	-	
Design Standard:	TIA-222-H	

STRUCTURE DETAILS					
Mount Type: Sector Frame					
Mount Elevation:	130.0	ft.			
Number of Sectors:	3				
Structure Type:	Self Support Tower				
Structure Height:	192.0	ft.			

ANALYSIS CRITERIA						
Structure Risk Category: II						
Exposure Category:	В					
Site Class:	D - Stiff Soil					
Ground Elevation:	1068.03	ft.				

TOPOGRAPHIC DATA						
Topographic Category:	1.00					
Topographic Feature:	N/A					
Crest Point Elevation:	0.00	ft.				
Base Point Elevation:	0.00	ft.				
Crest to Mid-Height (L/2):	0.00	ft.				
Distance from Crest (x):	0.00	ft.				
Base Topo Factor (K _{zt}):	1.00					
Mount Topo Factor (K _{zt}):	1.00					

WIND PARAMETERS						
Design Wind Speed:	130	mph				
Wind Escalation Factor (K _s):	1.00					
Velocity Coefficient (Kz):	1.07					
Directionality Factor (K _d):	0.95					
Gust Effect Factor (Gh):	1.00					
Shielding Factor (K _a):	0.90					
Velocity Pressure (q _z):	42.12	psf				
Ground Elevation Factor (K _e):	0.96					

ICE PARAMETERS						
Design Ice Wind Speed:	50	mph				
Design Ice Thickness (t _i):	2.00	in				
Importance Factor (I _i):	1.00					
Ice Velocity Pressure (q _{zi}):	42.12	psf				
Mount Ice Thickness (t _{iz}):	2.29	in				

WIND STRUCTURE CALCULATIONS					
Flat Member Pressure:	75.81	psf			
Round Member Pressure:	45.49	psf			
Ice Wind Pressure:	7.25	psf			

SEISMIC PARAMETERS					
Importance Factor (I _e):	1.00				
Short Period Accel .(S _s):	0.173	g			
1 Second Accel (S ₁):	0.063	g			
Short Period Des. (S _{DS}):	0.18	g			
1 Second Des. (S _{D1}):	0.10	g			
Short Period Coeff. (F _a):	1.60				
1 Second Coeff. (F _v):	2.40				
Response Coefficient (Cs):	0.09				
Amplification Factor (A _S):	1.20				

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28 29	0.9DL + 1WL 225 AZI 0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
30	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49 50	1.2DL + 1DLi + 1WLi 330 AZI (1.2+0.2Sds) + 1.0E 0 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI (1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.23ds) + 1.0E 30 AZI (1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.23ds) + 1.0E 43 AZI (1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 00 AZI
55	(1.2+0.2Sds) + 1.0E 30 AZI
56	(1.2+0.2Sds) + 1.0E 125 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description	#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1	121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1	122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1	123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1	124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1	125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1	126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1	127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1	128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1	129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1	130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1	131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1	132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1	133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1	134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1	135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1	136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2	137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2	138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2	139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2	140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2	141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2	142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2	143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2	144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2	145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2	146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2	147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2	148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2	149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2	150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2	151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2	152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

*This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA ₇ (ft2)	Weight (lbs)
MX08FRO665-21	1	130	No Ice	8.01	3.21	82.50
			w/ Ice	10.18	5.12	394.86
TA08025-B604	1	130	No Ice	1.96	0.98	63.90
			w/ Ice	2.54	1.44	100.41
TA08025-B605	1	130	No Ice	1.92	1.10	75.00
			w/ Ice	2.49	1.57	105.08
RDIDC-9181-PF-48	1	130	No Ice	2.01	1.17	21.85
			w/ Ice	2.60	1.66	105.20
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

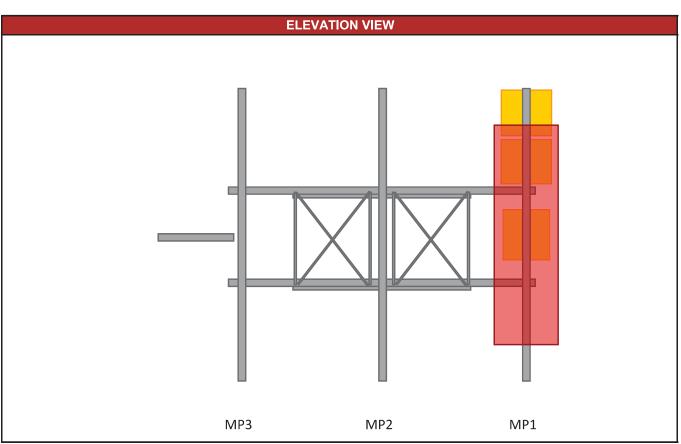
EQUIPMENT LOADING [CONT.]

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA ₇ (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

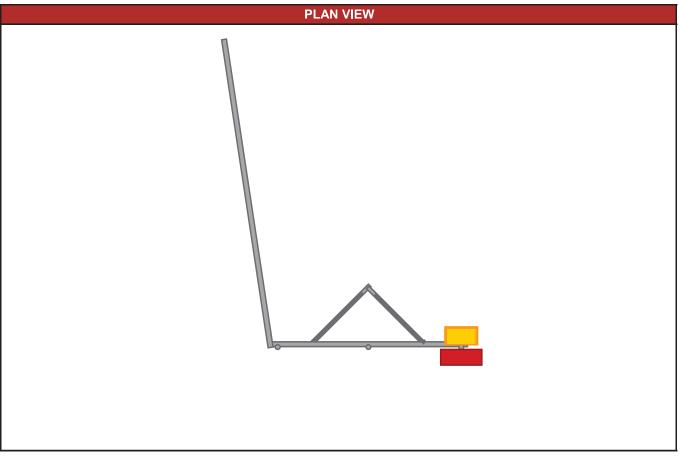
EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	1	130	1.00	1.07	0.95	2.29	42.12	6.23
TA08025-B604	1	130	1.00	1.07	0.95	2.29	42.12	6.23
TA08025-B605	1	130	1.00	1.07	0.95	2.29	42.12	6.23
RDIDC-9181-PF-48	1	130	1.00	1.07	0.95	2.29	42.12	6.23

EQUIPMENT LATERAL WIND FORCE CALCULATIONS


Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	1	No Ice	303.63	167.17	258.14	121.68	258.14	167.17
		w/ Ice	57.10	35.80	50.00	28.70	50.00	35.80
TA08025-B604	1	No Ice	74.43	46.50	65.12	37.19	65.12	46.50
		w/ Ice	14.27	9.61	12.71	8.05	12.71	9.61
TA08025-B605	1	No Ice	72.64	49.50	64.93	41.78	64.93	49.50
		w/ Ice	13.97	10.10	12.68	8.80	12.68	10.10
RDIDC-9181-PF-48	1	No Ice	76.26	52.28	68.27	44.28	68.27	52.28
		w/ Ice	14.58	10.63	13.27	9.31	13.27	10.63
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		w/ice						

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]


Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	1	130	82.5	9.13
TA08025-B604	1	130	63.9	7.08
TA08025-B605	1	130	75	8.30
RDIDC-9181-PF-48	1	130	21.85	2.42

*Elevation View Shows Alpha Sector Only

Equipment Name	Total Quantity	Antenna Centerline	Mount Pipe Positions	Equipment Azimuths
MX08FRO665-21	1	130	MP1	0
TA08025-B604	1	130	MP1	0
TA08025-B605	1	130	MP1	0
RDIDC-9181-PF-48	1	130	MP1	0

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Nov 4, 2021 12:38 PM Checked By: CA

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
	1

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): LRFD
Cold Formed Steel Code	AISI S100-07: LRFD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	lorll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	A500 Gr. C - 46	29000	11154	.3	.65	.49	46	1.3	62	1.4
9	A529 Gr. 50	29000	11154	.3	.65	.49	50	1.3	65	1.4

Cold Formed Steel Properties

	Label	E[ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[ksi]	Fu[ksi]
1	A653 SS Gr33	29500	11346	.3	.65	.49	33	45
2	A653 SS Gr50/1	29500	11346	.3	.65	.49	50	65

Hot Rolled Steel Section Sets

	Labe	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Standoffs	PIPE 1.5	Beam	None	A500 Gr. C	Typical	.749	.293	.293	.586
2	Tie Backs	Plpe 2.375x0.120	Beam	None	A500 Gr. C	Typical	.85	.542	.542	1.084
3	Plpe 2.375x0.120	Plpe 2.375x0.120	Beam	None	A500 Gr. C	Typical	.85	.542	.542	1.084
4	Standoff Bracing (Vert)	SR 5/8	Beam	None	A529 Gr. 50	Typical	.307	.007	.007	.015
5	Vertical pipes	PIPE_3.0	Beam	None	A500 Gr. C	Typical	2.07	2.85	2.85	5.69

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
6	Standoff Bracing (Diag)	SR 1/2"	Beam	None	A529 Gr. 50	Typical	.196	.003	.003	.006

Cold Formed Steel Section Sets

	Label	Shape	Туре	Design List	Materia	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 SS Gr33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N13						
2	N14						
3	N48	Reaction	Reaction	Reaction	Reaction	Reaction	
4	N49	Reaction	Reaction	Reaction	Reaction	Reaction	
5	N47B	Reaction	Reaction	Reaction			

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribu.	.Area(M	.Surface
1	Self Weight	DL			-1		5			
2	Structure Wind X	WLX						31		
3	Structure Wind Y	WLY						31		
4	Wind Load 0 AZI	WLX					10			
5	Wind Load 30 AZI	None					10			
6	Wind Load 45 AZI	None					10			
7	Wind Load 60 AZI	None					10			
8	Wind Load 90 AZI	WLY					10			
9	Wind Load 120 AZI	None					10			
10	Wind Load 135 AZI	None					10			
11	Wind Load 150 AZI	None					10			
12	Ice Weight	OL1					5	31		
13	Ice Structure Wind X	OL2						31		
14	Ice Structure Wind Y	OL3						31		
15	Ice Wind Load 0 AZI	OL2					10			
16	Ice Wind Load 30 AZI	None					10			
17	Ice Wind Load 45 AZI	None					10			
18	Ice Wind Load 60 AZI	None					10			
19	Ice Wind Load 90 AZI	OL3					10			
20	Ice Wind Load 120 AZI	None					10			
21	Ice Wind Load 135 AZI	None					10			
22	Ice Wind Load 150 AZI	None					10			
23	Seismic Load X	ELX	111				5			
24	Seismic Load Y	ELY		111			5			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Maintenance Load 1 (Lm)	None					1			
29	Maintenance Load 2 (Lm)	None					1			
30	Maintenance Load 3 (Lm)	None					1			

Nov 4, 2021 12:38 PM Checked By: CA

Load Combinations

	Description	Solve	PD	SRB	Factor	BLC	Factor	В	.Fa	.B	Fa	BLC	Fa	B	Fa	.B	Fa	.B	Fa	.B	Fa	В	Fa
1	1.4DL	Yes	Y	DL	1.4																		
2	1.2DL + 1WL 0 AZI	Yes	Y	DL	1.2	2	1	3		4	1												
3	1.2DL + 1WL 30 AZI	Yes	Y	DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI	Yes	Y	DL	1.2	2	.707	3	.707	6	1												
5	1.2DL + 1WL 60 AZI	Yes	Y	DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI	Yes	Y	DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZI	Yes	Y	DL	1.2	2	5		.866		1												
8	1.2DL + 1WL 135 AZI	Yes	Y	DL	1.2	2	707		.707		1												
9	1.2DL + 1WL 150 AZI	Yes	Y	DL	1.2	2	866	3	.5	11													
10	1.2DL + 1WL 180 AZI	Yes	Y	DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1WL 210 AZI	Yes	Y	DL	1.2	2	866	3	5		-1												
12	1.2DL + 1WL 225 AZI	Yes	Y	DL	1.2	2	707	3	7.		-1												
13	1.2DL + 1WL 240 AZI	Yes	Ý	DL	1.2	2	5	3	8.		-1												
	1.2DL + 1WL 270 AZI	Yes	Y	DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1WL 300 AZI	Yes	Ý	DL	1.2	2	.5	-	8.									-				_	
16	1.2DL + 1WL 315 AZI	Yes	Y	DL	1.2	2	.707		7.														
17	1.2DL + 1WL 330 AZI	Yes	Y	DL	1.2	2	.866	3	5														
18	0.9DL + 1WL 0 AZI	Yes	Y	DL	.9	2	1	3	0	4	1												
19	0.9DL + 1WL 30 AZI	Yes	Y	DL	.9	2	.866	3	.5	5	1							-					
20	0.9DL + 1WL 45 AZI	Yes	Y	DL	.9	2	.707		.707		1												
21	0.9DL + 1WL 60 AZI	Yes	Y	DL	.9	2	.5	3	.866		1							-				_	
22	0,9DL + 1WL 90 AZI	Yes	Y	DL	.9	2	.0	3	1	8	1												
23	0.9DL + 1WL 120 AZI	Yes	Y	DL	.9	2	5		.866		1			-		_		-				_	
24	0.9DL + 1WL 135 AZI	Yes	Y	DL	.9	2	707		.707		-												
	0.9DL + 1WL 150 AZI	Yes	Y	DL	.9	2	866	3										-				_	
	0.9DL + 1WL 180 AZI	Yes	Y	DL	.9	2	-1	3		4	-1												
	0.9DL + 1WL 210 AZ	Yes	Y	DL	.9	2	866	3	5		-1			-									
	0.9DL + 1WL 225 AZI	Yes	Y	DL	.9	2	707		7.		-1			-									
	0.9DL + 1WL 240 AZI	Yes	Y	DL	.9	2	5	3	8.		-1			-									_
	0.9DL + 1WL 270 AZI	Yes	Y	DL	.9	2	5	3	-1	8	-1			-									
	0.9DL + 1WL 300 AZI	Yes	Y	DL	.9	2	.5	_	8.	-				-				-				_	
	0.9DL + 1WL 315 AZI	Yes	Y	DL	.9	2	.707		7.	-				-									
	0.9DL + 1WL 330 AZI	Yes	Y	DL	.9	2	.866	_	5	-				-				-				_	
34	1.2DL + 1DLi + 1WL	Yes	Y	DL	1.2	OL1	<u>.000</u> 1	13		14		15	1	-									
35	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1		.866			16	1	-				-				_	_
36	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1					17	1	-									
37	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1					18	1										
	1.2DL + 1DLi + 1W L		Y	DL		OL1				14				_									
38 39	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	<u>1</u> 1					19 20	1	_				-				-	
40	1.2DL + 1DLi + 1W L	Yes Yes	Y	DL	1.2	OL1	1	-				20		-									
-	1.2DL + 1DLi + 1W L		Y	DL		OL1			<i>1</i> .				1	-				-				-	
41	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2		1					22	1	-								_	
42		Yes			1.2	OL1	1		-1			15		_				-					
43	1.2DL + 1DLi + 1WL	Yes	Y	DL DL	1.2	OL1	1					16 · 17											
44	1.2DL + 1DLi + 1WL 1.2DL + 1DLi + 1WL	Yes			1.2	OL1	1							_								_	
45	1.2DL + 1DLi + 1W L	Yes	Y	DL DL	1.2	OL1	1					. 18											
46	1.2DL + 1DLI + 1W L	Yes	Y	DL	1.2	OL1	1	13			-1 °	19											
47	1.2DL + 1DLi + 1W L	Yes			1.2	OL1	1					. 20											
48	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1					. 21										-	
49		Yes	Y	DL	1.2	OL1	1			114	5	22	-1										
50 51	(1.2+0.2Sds)DL + 1 (1.2+0.2Sds)DL + 1	Yes	Y		1.237	23	1	24															
51	(1.2.0.2005)DL + 1	Yes	ľ		1.237	23	.866	₁ 24	.5														

	Company	:	Trylon
	Designer	:	AB
	Job Number	:	195636
A NEMETSCHEK COMPANY	Model Name	:	876345

Nov 4, 2021 12:38 PM Checked By: CA

Load Combinations (Continued)

	Description	Salva	DD	SRB	Factor	PLC	Factor	BFa	D	Fo	PLC.	Fa	D	Ea	Б	Fa	D	Fo	D	Fo	D	Fa
52	(1.2+0.2Sds)DL + 1	Solve Yes	PD		1.237	23	.707	24.707		.га	BLC	га	D	-a	.D	га		.га	.D	га	D	<u>га</u>
53	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	.5	24.866					_				-					_
54	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	.0	24 1	1													
	(1.2+0.2Sds)DL + 1		Y	DL		23	5	24 1					_									_
55	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237			24.707					_									
56	· · · · · · · · · · · · · · · · · · ·	Yes			1.237	23	707										-					_
57	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	866	24 .5					_								_	_
58	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	-1	24														
59	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	866	245					_								_	_
60	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	707	247														
61	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	5	248	•												_	_
62	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23		24 -1														
63	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	.5	248														
64	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	.707	247														
65	(1.2+0.2Sds)DL + 1	Yes	Y	DL	1.237	23	.866	245														
66	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	1	24														
67	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	.866	24 .5														
68	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	.707	24.707														
69	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	.5	24.866	i													
70	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23		24 1														
71	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	5	24.866	i													
72	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	707	24.707	1													
73	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	866	24 .5														
74	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	-1	24														
75	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	866	245														
76	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	707	247														
77	(0.9-0.2Sds)DL + 1	Yes	Ý	DL	.863	23	5	248														
78	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23		24 -1														
79	(0.9-0.2Sds)DL + 1	Yes	Ý	DL	.863	23	.5	248														
80	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	.707	247														
81	(0.9-0.2Sds)DL + 1	Yes	Y	DL	.863	23	.866	245									-					_
82	1.2DL + 1Lv1	Yes	Y	DL	1.2	25	1.5	24 .0														
83	1.2DL + 1Lv1	Yes	Y	DL	1.2	26	1.5										-					_
84	1.2DL + 1Lv2	Yes	Y	DL	1.2	27	1.5															
85	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	2.053	2		4	.053					-					_
86	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	2.046		.027		.053										
87	1.2DL + 1.5Lm + 1		Y	DL	1.2	28		2 .040		.027		.053					-				_	_
	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5			.030		.053										
88	1.2DL + 1.5Lm + 1	Yes					1.5					.053	-									
00		Yes	Y	DL	1.2	28	1.5	2		.053												
90	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	20				.053										
91	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	20														
92	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	20		.027		.053										
93	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	20			4	0										
94	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	20				0										
95	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	20				0										
	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	20				0										
97	1.2DL + 1.5Lm + 1	Yes	Υ	DL	1.2	28	1.5	2	-	0		0										
98		Yes	Y	DL	1.2	28	1.5	2 .027		0		0										
99	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	2 .038	3	0	. 10	0										
	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	28	1.5	2.046	3	0	. 11	0										
101	1.2DL + 1.5Lm + 1	Yes	Υ	DL	1.2	29	1.5	2.053			4	.053										
102	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2 .046	3	.027	5	.053										
103	1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2 .038	3	.038	6	.053										
·	·																					

Load Combinations (Continued)

Description	Solve	PD	SRB	Factor	BLC	Factor	BFaBFaBLC FaBFaBFaBFaBFaBFaB.
104 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2 .027 3 .046 7 .053
105 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2 3.053 8.053
106 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	203 .046 9 .053
107 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	203 .038 10 .053
108 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	203 .027 11 .053
109 1.2DL + 1.5Lm + 1	Yes	Υ	DL	1.2	29	1.5	203 40
110 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2030 50
111 1.2DL + 1.5Lm + 1	Yes	Υ	DL	1.2	29	1.5	2030 60
112 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2030 70
113 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2 30 80
114 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2 .027 30 90
115 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2 .038 30 100
116 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	29	1.5	2 .046 30 110
117 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 .053 3 4 .053
118 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 .046 3 .027 5 .053
119 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 .038 3 .038 6 .053
120 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 .027 3 .046 7 .053
121 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 3 053 8 053
122 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	203 .046 9 .053
123 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	203 .038 10 .053
124 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	203 .027 11 .053
125 1.2DL + 1.5Lm + 1	Yes	Υ	DL	1.2	30	1.5	203 40
126 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2030 50
127 1.2DL + 1.5Lm + 1	Yes	Υ	DL	1.2	30	1.5	2030 60
128 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2030 70
129 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 30 80
130 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 .027 30 90
131 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 .038 30 100
132 1.2DL + 1.5Lm + 1	Yes	Y	DL	1.2	30	1.5	2 .046 30 110

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [I b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N48	max	605.01	18	569.61	88	1105.87	41	390.63	132	-63.35	18	0	132
2		min	-2133.06	42	-1226.84	128	124.68	18	-181.54	92	-578.88	41	0	1
3	N49	max	2039.97	49	1217.96	121	1100.41	49	402.28	132	-29.37	25	0	132
4		min	-163.82	25	-560.45	97	125.51	26	-186.65	92	-586.24	49	0	1
5	N47B	max	593.04	9	127.37	8	109.22	38	0	132	0	132	0	132
6		min	-598.93	17	-128.92	16	16.46	80	0	1	0	1	0	1
7	Totals:	max	1007.74	18	657.58	22	2274.18	49						
8		min	-1007.75	10	-657.59	14	385.99	72						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Lo	phi*Pphi*Pphi* phi* Eqn
1	H1	Plpe 2.375x0.120	.402	76	34	.119	76	2539351921072107H1
2	M5	Plpe 2.375x0.120	.402	76	42	.120	76	2539351921072107H1
3	M29	SR 1/2"	.264	22.43	36	.016	0	3389.4883573.6373.63 1 H1
4	MP1	Plpe 2.375x0.120	.246	33	2	.155	33	2 1328351921072107H1
5	M4	PIPE 1.5	.244	1.09	42	.190	34	2377310014521452H1
6	M2	PIPE_1.5	.237	1.09	41	.193	34	2377310014521452H1

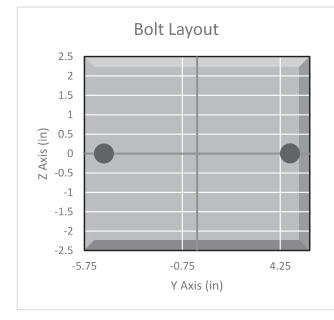
Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Lo ph	i*Pphi*P.	phi*	phi*	Eqn
7	M28	SR 1/2"	.206	22.43	48	.023	033	89.4 8835	73.63	73.63	1 H1
8	M3	PIPE 1.5	.195	34.81	121	.125	34 23	773100	.1452	.1452	.1 H1
9	M31A	Plpe 2.375x0.120	.192	79.15	39	.011	15 48	843519	.2107	.2107	H1
10	MP3	Plpe 2.375x0.120	.175	48	17	.144	63 13	283519	.2107	.2107	H1
11	M1	PIPE_1.5	.173	34.81	130	.124	34 23	773100	.1452	.1452	1 H1
12	MP2	Plpe 2.375x0.120	.029	33	109	.178	63 13	283519	.2107	.2107	H1
13	M24	SR 5/8	.020	15.76	42	.045	040	9013815	134.4	134.4	1 H1
14	M23	SR 5/8	.020	15.76	42	.045	040	9013815	134.4	134.4	1 H1
15	M25	SR 5/8	.019	15.76	42	.071	040	9013815	134.4	134.4	1 H1
16	M26	SR 5/8	.019	15.76	42	.071	040	9013815	134.4	134.4	1 H1
17	M27	SR 1/2"	.002	44.85	25	.024	44 338	89.4 8835	. 73.63	73.63	1 H1
18	M30	SR 1/2"	.000	0	132	.014	44 338	89 . 4 8835	. 73.63	73.63	1 H1

Envelope AISI S100-07: LRFD Cold Formed Steel Code Checks

Member Shape Code Check Loc[in]LC Shea...Loc[i..DirLC phi*Pn[...phi*Tn[...phi*Mn...phi*Mn... Cb Cmyy Cmzz Eqn No Data to Print ... APPENDIX D

ADDITIONAL CALCUATIONS



BOLT TOOL 1.5.2

Project Data							
Job Code:	195636						
Carrier Site ID:	BOBOS00874A						
Carrier Site Name:	-						

Code							
Design Standard:	TIA-222-H						
Slip Check:	Yes						
Pretension Standard:	TIA-222-H						

Bolt Properties								
Connection Type:	Thread	ed Rod						
Diameter:	0.75	in						
Grade:	A307							
Yield Strength (Fy):	36	ksi						
Ultimate Strength (Fu):	60	ksi						
Number of Bolts:	2							
Threads Included:	Yes							
Double Shear:	No							
Connection Pipe Size:	9.5	in						

Connection Description

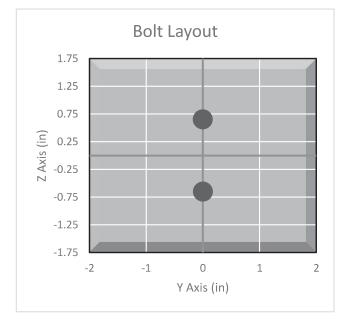
Standoff to Tower

Bolt Check*								
Tensile Capacity (φT _n):	15050.7	lbs						
Shear Capacity (φV _n):		lbs						
Tension Force (T _u):	0.0	lbs						
Shear Force (V _u):	1140.4	lbs						
Tension Usage:	0.0%							
Shear Usage:	10.9%							
Interaction:	10.9%	Pass						
Controlling Member:	M32							
Controlling LC:	34							
*Rating per TIA_222_H Section 15.5								

*Rating per TIA-222-H Section 15.5

Slip Check*							
Sliding Capacity (ϕR_{ns}):		lbs					
Torsion Capacity (φR _{nr}):		lb-ft					
Sliding Force (V _{us}):		lbs					
Torsional Force (T _{ur}):	0.0	lb-ft					
Sliding Usage:	11.3%						
Torsion Usage:	0.0%						
Interaction:	11.3%	Pass					
Controlling Member:	M31						
Controlling LC:	41						

*Rating per TIA-222-H Section 15.5



BOLT TOOL 1.5.2

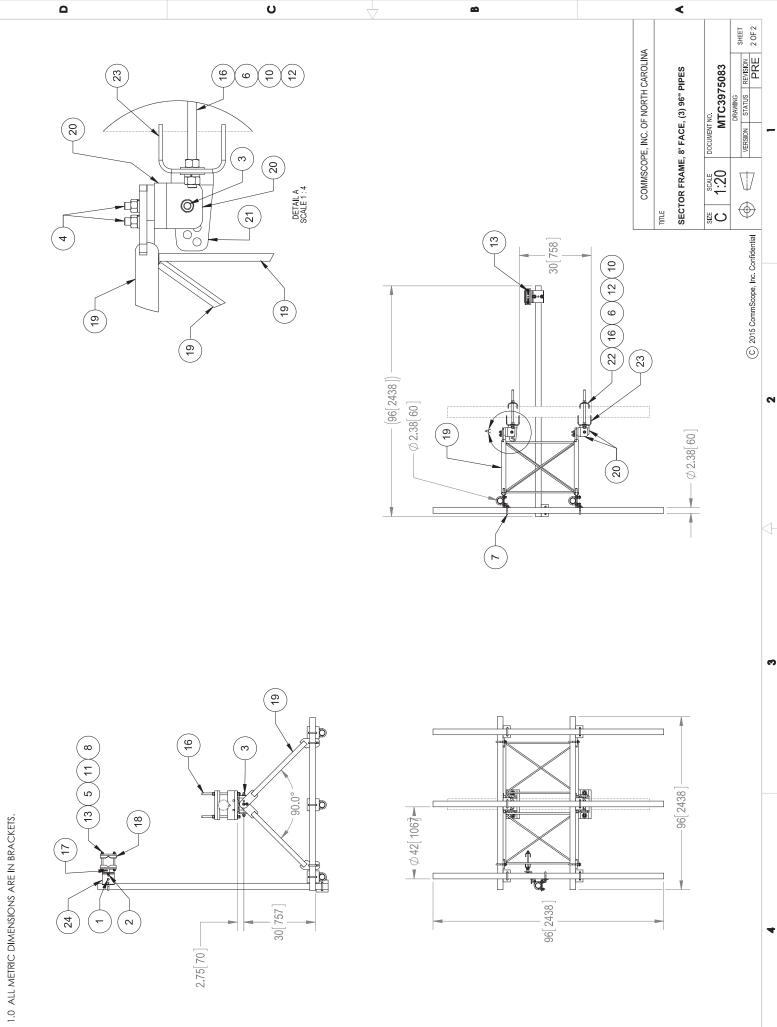
Project Data							
Job Code:	195636						
Carrier Site ID:	BOBOS00874A						
Carrier Site Name:	-						

Code							
Design Standard:	TIA-222-H						
Slip Check:	No						
Pretension Standard:	AISC						

Bolt Properties								
Connection Type:	B	olt						
Diameter:	Diameter: 0.625 in							
Grade:	A325							
Yield Strength (Fy):	92	ksi						
Ultimate Strength (Fu):	120	ksi						
Number of Bolts:	2							
Threads Included:	Yes							
Double Shear:	No							
Connection Pipe Size:	9.5	in						

Connection Description

Standoff arm to Tower connection kit


Bolt Check*								
Tensile Capacity (φT _n):		lbs						
Shear Capacity (φV _n):		lbs						
Tension Force (T _u):		lbs						
Shear Force (V _u):	5460.6	lbs						
Tension Usage:	0.0%							
Shear Usage:	37.7%							
Interaction:	37.7%	Pass						
Controlling Member:	M31							
Controlling LC:	45							

*Rating per TIA-222-H Section 15.5

APPENDIX E

SUPPLEMENTAL DRAWINGS

	۵	U	\bigtriangledown		6												<				
REVISIONS BY DATE DESCRIPTION BY DATE REVIEW DRH 01/28/21											OF NORTH CAROLINA	SAP MATERIAL MASTER	MTC3975083	MATERIAL	A1011/A1018, A500, A529		SECTOR FRAME. 8' FACE. (3) 96" PIPES		DOCUMENT NO. MTC3975083	DRAWING	REVISION VERSION STATUS REVISION 1 OF 2
REV. ECN PRE	(19)										COMMSCOPE, INC. C	TOLERANCES	2 PLACE XX ± 06 ANGLES ± 2°	1		ME DATE TITLE	~		7/14/17 SCALE	MODEL .	
		2 22	(11)								CO		0 PLACE X± 25 1 PLACE X± 12	FINISH	GALV A123		SORACIUA SORACIUA SUNVARO SUNVARO SUNON (S	RE IN MIC	TOWER J 8 NOBOOK 18 ERPRET PE LESS OTHE LESS OTHE	NI	
N				24)									-	DENSITY 0.28 MASS 400.64	VOLUME 1421.66	BURFACE AKEA HEIGHT	al LENGTH MIDTH
			3)																C 2015 CommScope, Inc. Confidential
	0)	ON																	© 2015
0	7079	54		NOTE NO.																	e7
	800.949.7079			WEIGHT	0.12 LBS	0.28 LBS	0.35 LBS	0.04 LBS	0.56 LBS	0.03 LBS	0.10 LBS	0.01 LBS	0.44 LBS	17.29 LBS 23.05 LBS	1.99 LBS	0.14 LBS 1.35 LBS	36.81 LBS	6.70 LBS 7.49 LBS	6.96 LBS	2.65 LBS	
				QTY.		- ∞	4	4 5	19	4 4	~ ∞	4 00	5 0	7	1 4	- ~	5	е –	~ ~	6	
NOTES: 1.0 ALL METRIC DIMENSIONS ARE IN BRACKETS.	1.com Sales@Talleycom.com			DESCRIPTION	1/2" X 1-1/4" GALV BOLT KIT 1/2" V 2 3/4" CALV BOLT KIT	5/8" X 2-1/4" GALV BOLT KIT	5/8" X 3" GALV BOLT KIT	1/2" GALV HEX NUT 3/4" GALV HEX NIIT	1/2" X 2-1/2" X 4" GALV U-BOLT	1/2" GALV FLAT WASHER 5/8" GAI V FI AT WASHER	3/4" GALV FLAT WASHER	1/2" GALV LOCK WASHER 3/4" GALV LOCK WASHER	1/2" X 8" GALV THREADED ROD	2.375" OD x 96" PIPE Ø 2.375" OD x 96" PIPF	Threaded Rod Galv 3/4" x 16"	3/4" X 1-1/2" OFFSET COLLAR FORMED CLAMP	Weldment, SF-V STANDOFF ARM	SFV AZIMUTH BRACKET SFV TAPER BRACKET	CLAMP PLATE	ANTENNA MOUNT ANGLE	
ES: ALL METRIC DIMEN	www.Talleycom.com			M PART NO.	GB-04125							1 GWL-04		4 MT-651-96 5 MT-651-96		7 OS15034 B SAB01		0 SFV02			4
NOT 1.0	۵	U		ITEM		N (C)	4	0 4		∞ σ	10	11	10	14	91	17	1		22	4 (4	

 \square

•

◄

υ

NOTES:

4

2

ര

۵

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 876345

BOBOS00874A 33 Janowski Road Ashford, Connecticut 06278

May 22, 2022

EBI Project Number: 6222003235

Site Compliance Summary							
Compliance Status:	COMPLIANT						
Site total MPE% of FCC general population allowable limit:	15.83%						

environmental | engineering | due diligence

May 22, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 876345 - BOBOS00874A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **33 Janowski Road** in **Ashford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 33 Janowski Road in Ashford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

environmental | engineering | due diligence

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 130 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd
Height (AGL):	130 feet	Height (AGL):	130 feet	Height (AGL):	130 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts
ERP (VV):	1,424.17	ERP (W):	1,424.17	ERP (VV):	1,424.17
Antenna AI MPE %:	0.49%	Antenna BI MPE %:	0.49%	Antenna CI MPE %:	0.49%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	0.49%			
AT&T	5.19%			
Verizon	5.58%			
T-Mobile	2.77%			
Nextel	0.21%			
Sprint	I.59%			
Site Total MPE % :	١5.83%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	0.49%			
Dish Wireless Sector B Total:	0.49%			
Dish Wireless Sector C Total:	0.49%			
Site Total MPE % :	15.83%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	110.82	130.0	1.04	600 MHz n71	400	0.26%
Dish Wireless 1900 MHz n70	4	245.22	130.0	2.29	1900 MHz n70	1000	0.23%
				•		Total:	0.49%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	0.49%		
Sector B:	0.49%		
Sector C:	0.49%		
Dish Wireless			
Maximum MPE %	0.49%		
(Sector A):			
Site Total:	15.83%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **15.83%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

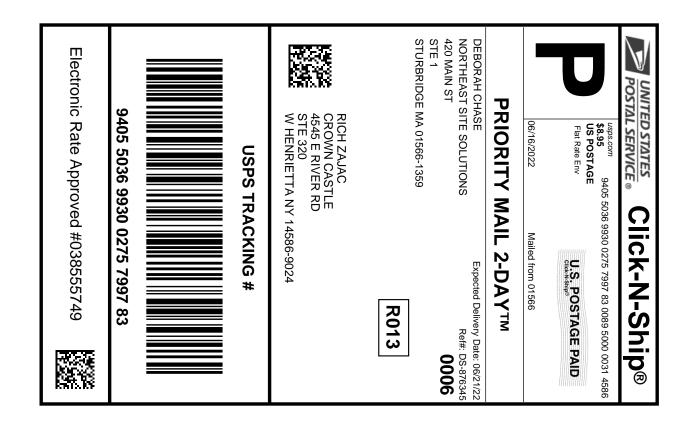
Re: Tower Share Application Crown Castle telecommunications site at: 33 JANOWSKI ROAD, ASHFORD, CT 06278

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name:876345/SKY HILLCustomer Site ID:BOBOS00874A/Site Address:33 Janowski Road, Ashford, CT 06278

Crown Castle

By:

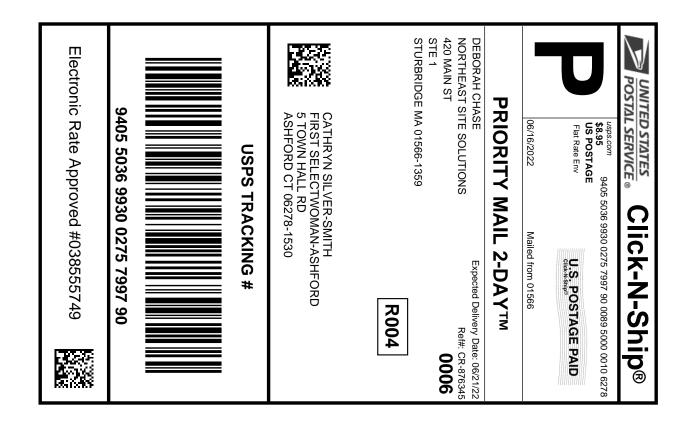

6/6/2022

Date:

Richard Zajac Site Acquisition Specialist

Exhibit H

Recipient Mailings

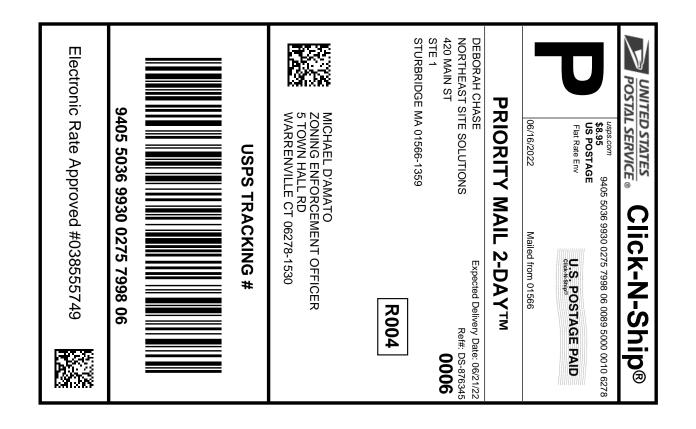


Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

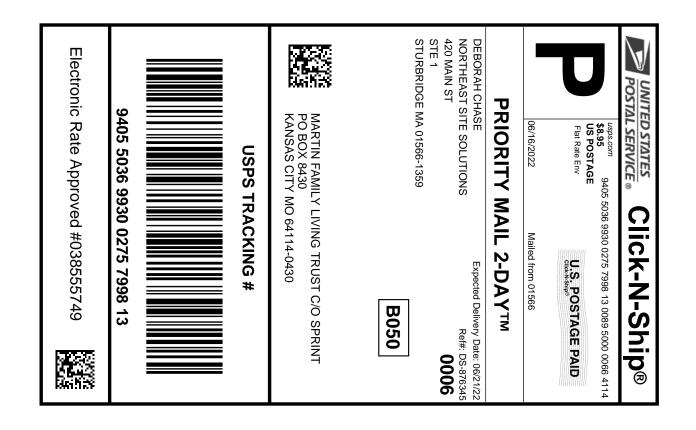
USPS TRACKING #: 9405 5036 9930 0275 7997 83 Priority Mail® Postage: \$8.95 565814562 06/16/2022 06/16/2022 Trans. #: Total. \$8.95 Print Date: Ship Date: Expected 06/21/2022 Delivery Date: From: DEBORAH CHASE Ref#: DS-876345 NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359 To: **RICH ZAJAC CROWN CASTLE** 4545 E RIVER RD **STE 320** W HENRIETTA NY 14586-9024 * Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

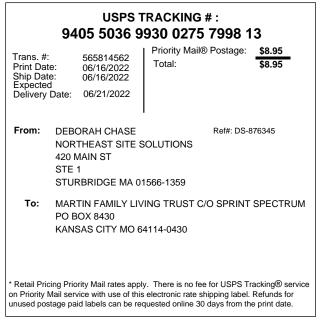
Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

FARMINGTON (80 06/21/2022	0)275-8	3777	
Product	Qty	Unit Price	09:30 AM Price
Prepaid Mail West Henrietta, Weight: 0 lb 1 Acceptance Date Tue 06/21/2 Tracking #: 9405 5036 9	1 NY 145 .90 oz :	586	\$0.00
Prepaid Mail Ashford, CT 062 Weight: O lb 8 Acceptance Date Tue 06/21/20 Tracking #: 9405 5036 99	1 78 .40 oz : 022		\$0.00
Prepaid Mail Kansas City, MO Weight: 1 lb O Acceptance Date Tue 06/21/20 Tracking #: 9405 5036 99	: 122	5 7998	\$0.00
Prepaid Mail Ashford, CT 0627 Weight: 0 lb 8. Acceptance Date: Tue 06/21/20 Tracking #: 9405 5036 99	1 78 .30 oz .22 930 027	5 7997	\$0.00 90
Grand Total:			ቀብ ስብ

Preview your Mail Track your Packages Sign up for FREE @ https://informeddelivery.usps.com

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code with your mobile device,

