April 7, 2015

Melanie A. Bachman Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: T-Mobile-Exempt Modification - Crown Site BU: 842856

T-Mobile Site ID: CT11501E

Located at: 122 Jonathan Trumbull Highway (Route 6), Andover, CT 06232

Dear Ms. Bachman:

This letter and exhibits are submitted on behalf of T-Mobile. T-Mobile is making modifications to certain existing sites in its Connecticut system in order to implement their 700MHz technology. Please accept this letter and exhibits as notification, pursuant to § 16-50j-73 of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Robert Burbank, First Selectman for the Town of Andover, and ASC Real Estate, Inc., Property Owner.

T-Mobile plans to modify the existing wireless communications facility owned by Crown Castle and located at **122 Jonathan Trumbull Highway (Route 6), Andover, CT 06232**. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to T-Mobile's operations at the site (Exhibit-3).

The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. T-Mobile's replacement antennas will be located at the same elevation on the existing tower.
- 2. There will be no proposed modifications to the ground and no extension of boundaries.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more.

- 4. The operation of the replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for T-Mobile's modified facility is included as Exhibit-3.
- 5. A Structural Modification Report confirming that the tower and foundation can support T-Mobile's proposed modifications is included as Exhibit-2.

For the foregoing reasons, T-Mobile respectfully submits the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

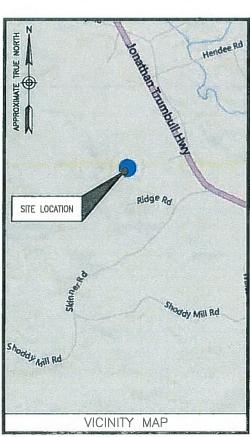
Sincerely,

Jerry Feathers Real Estate Specialist

Enclosure

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report


Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: The Honorable Robert Burbank, First Selectman Andover Town Office 17 School Road Andover, CT 06232

> ASC Real Estate Inc. P.O. Box 122 Andover, CT 06232

T-MOBILE NORTHEAST LLC

T-MOBILE SITE #: CT11501E CROWN CASTLE BU #: 842856 SITE NAME: ANDOVER NORTH 122 JONATHAN TRUMBULL HIGHWAY (ROUTE 6) ANDOVER, CT 06232 TOLLAND COUNTY

ROM PARSIPPANY, N

TAKE I—80 EAST. TAKE RAMP LEFT FOR I—95 NORTH TOWARD G WASHINGTON B/NEW YORK. AT EXIT 1C, TAKE RAMP RIGHT FOR I—87 NORTH TOWARD ALBANY. AT EXIT 4. TAKE RAMP RIGHT FOR CENTRAL PARK AVE. TOWARD CROSS COUNTY PKWY. TAKE RAMP RIGHT FOR CROSS COUNTY PKWY. EAST TOWARD HUTCHINSON PKWY. KEEP STRAIGHT ONTO HUTCHINSON RIVER PKWY. ROAD NAME CHANGES TO CT—15N/MERRITT PKWY. AT EXIT 68 N—E, TAKE RAMP RIGHT FOR I—91 NORTH TOWARD HARTFORD/MIDDLETOWN. AT EXIT 29, TAKE RAMP RIGHT FOR US—5 NORTH/CT—15 NORTH TOWARD E. HARTFORD/MIDDLETOWN. AT EXIT 29, TAKE RAMP RIGHT FOR US—5 TRAIGHT ONTO CT—15 N. KEEP STRAIGHT ONTO I—84 E/US—6 E. TAKE RAMP RIGHT FOR I—38 E. ROAD NAME CHANGES TO US—6 E/US—44 E. TURN RIGHT ONTO BURNAP BROOK ROAD. SITE WILL

ENGINEER

DEWBERRY ENGINEERS INC. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054

CONTACT: BRYAN HUFF PHONE #: (973) 576-0147

CONSTRUCTION
CROWN CASTLE
500 WEST CUMMINGS PARK, SUITE 3600
WOBURN, MA 01801

CONTACT: WARREN KELLEHER PHONE #: (781) 970-0055

CONSULTANT TEAM

SITE NAME:

SITE NUMBER:

TOWER OWNER:

CROWN CASTLE 500 WEST CUMMINGS PARK, SUITE 3600 WOBURN, MA 01801

> APPLICANT/DEVELOPER: T-MOBILE NORTHEAST LLC 4 SYLVAN WAY PARSIPPANY, NJ 07054

> > COORDINATES:

LATITUDE: 41'-45'-00.46" N (NAD83) LONGITUDE: 72'-24'-09.63" W (NAD83) (PER CROWN CASTLE)

CONFIGURATION 704G

PROJECT SUMMARY

SITE ADDRESS:

122 JONATHAN TRUMBULL HIGHWAY (ROUTE 6)
ANDOVER, CT 06232
TOLLAND COUNTY

PROJECT DIRECTORY

- REMOVE AND REPLACE EXISTING ANTENNA MOUNT WITH (1) NEW ANTENNA MOUNT.
- INSTALL (3) NEW ANTENNAS.
- INSTALL (3) NEW BIAS TEES.
- INSTALL (3) NEW LINES OF COAX.
- INSTALL (1) NEW BBU CABINET AT GRADE.
- INSTALL (3) NEW RRU'S ON A UNISTRUT RACK AT

SCOPE OF WORK

THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER.

A.D.A. COMPLIANCE:
FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION.

SHT. NO.	DESCRIPTION
T-1	TITLE SHEET
G-1	GENERAL NOTES
C-1	COMPOUND PLAN & EQUIPMENT PLANS
C-2	ANTENNA LAYOUTS & ELEVATIONS
C-3	CONSTRUCTION DETAILS
E-1	GROUNDING NOTES & DETAILS
_	
<u> </u>	
_	
	SHEET INDEX

	·Mobile
--	---------

T-MOBILE NORTHEAST LLC 4 SYLVAN WAY PARSIPPANY, NJ 07054

CROWN CASTLE 500 WEST CUMMINGS PARK, SUITE 3600 WOBURN, MA 01801

CT11501E ANDOVER NORTH

C	CONSTR	RUCTION DRAWINGS
\vdash		
H		
	. 04 /02 /15	ICCI IED AC CINIAI
U		ISSUED AS FINAL ISSUED FOR REVIEW

Dewberry

Dewberry Engineers Inc.
600 PARSIPPANY ROAD
SUITE 301

SUITE 301
PARSIPPANY, NJ 07054
PHONE: 973, 739, 9400
FAX: 973, 739, 9710

CONNECTICUT LICENSE NO. 0023222

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLES
THEY ARE ACTING UNDER THE DIRECTION OF A
LICENSED PROFESSIONAL ENGINEER TO ALTER THIS

DRAWN BY:	1C
REVIEWED BY:	BSH
CHECKED BY:	GHN

PROJECT NUMBER: 50066258

50071485

JOB NUMBER:
SITE ADDRESS:

122 JONATHAN TRUMBULI
HIGHWAY (ROUTE 6)
ANDOVER, CT 06232
TOLLAND COUNTY

SHEET TITLE

TITLE SHEET

SHEET NUMBER

T-1

GENERAL NOTES

- 1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: PROJECT MANAGEMENT — CROWN CASTLE
 CONTRACTOR — GENERAL CONTRACTOR (CONSTRUCTION) OWNER - T-MOBILE
 - OEM ORIGINAL EQUIPMENT MANUFACTURER
- PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF PROJECT
- ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE
- 4. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- DRAWINGS PROVIDED HERE ARE NOT TO SCALE UNLESS OTHERWISE NOTED AND ARE INTENDED TO SHOW
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- B. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY PROJECT MANAGEMENT.
- CONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. CONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. CONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING
- 10. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND TURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF
- 11. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE
- 12. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 13. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN, THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- CONTRACTOR SHALL NOTIFY DEWBERRY 48 HOURS IN ADVANCE OF POURING CONCRETE, OR BACKFILLING TRENCHES, SEALING ROOF AND WALL PENETRATIONS & POST DOWNS, FINISHING NEW WALLS OR FINAL ELECTRICAL CONNECTIONS FOR ENGINEER REVIEW.
- 15. CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. CONTRACTOR SHALL NOTIFY PROJECT MANAGEMENT OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING
- THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY CONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT
- 17. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

SITE WORK GENERAL NOTES:

- THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO:
- A) FALL PROTECTION B) CONFINED SPACE
- C) ELECTRICAL SAFETY
- D) TRENCHING & EXCAVATION.
- 3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, TOP SOIL AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, OWNER AND/OR LOCAL UTILITIES.
- 6 CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION.
- THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE T-MOBILE SPECIFICATION FOR SITE SIGNAGE.
- THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE TRANSMISSION EQUIPMENT
- NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 10. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION, SEE SOIL COMPACTION NOTES.
- THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER
- 12. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL JURISDICTION'S GUIDELINES FOR EROSION AND SEDIMENT CONTROL

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LOCAL CODES.

- CONTRACTOR SHALL MODIFY EXISTING CARLET TRAY SYSTEM AS REQUIRED TO SUPPORT RE AND TRANSPORT CABLING TO THE NEW BTS EQUIPMENT. CONTRACTOR SHALL SUBMIT MODIFICATIONS TO PROJECT MANAGEMENT
- 3. CONDUIT ROUTINGS ARE SCHEMATIC, CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE
- 5. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC
- 6. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS.
- EACH END OF EVERY POWER, POWER PHASE CONDUCTOR (I.E., HOTS), GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL), THE IDENTIFICATION METHOD SHALL CONFORM
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANELBOARD AND CIRCUIT ID'S).
- PANELBOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS.
- 10. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.
- POWER, CONTROL, AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM
- 12. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL.) PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC & OSHA AND MATCH EXISTING INSTALLATION REQUIREMENTS.
- 13. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (SIZE 6 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90'C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM
- 14. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED OUTDOORS, OR BELOW GRADE, SHALL BE SINGLE CONDUCTOR #2 AWG SOLIO TINNED COPPER CABLE, UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TO CABLE (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS 8 STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED, UNLESS OTHERWISE SPECIFIED.
- 16. ALL POWER AND POWER GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRENUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRENUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75'C (90'C IF AVAILABLE).
- 17. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.
- 18. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.
- 19. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40, OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.
- 20. FLECTRICAL METALLIC TUBING (FMT), FLECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 21. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE
- 22. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND; DIRECT BURIED, IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAVY VEHICLE TRAFFIC.
- LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 24. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED, SETSCREW FITTINGS ARE NOT ACCEPTABLE.
- 25. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.
- 26. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.
- 27. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.
- 28. EQUIPMENT CABINETS, TERMINAL BOXES. JUNCTION BOXES. AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.
- METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED, OR NON-CORRODING;
 SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS
- 30. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 31. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM PROJECT MANAGEMENT BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 32. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY.

CONCRETE AND REINFORCING STEEL NOTES:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.
- 2. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE, A HIGHER STRENGTH (4000 PSI) MAY BE USED. ALL CONCRETING WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
- REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE (UNO). SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO.
- 4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN

#6 AND LARGER2 IN. #5 AND SMALLER & WWF.......1 1/2 IN. CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND: SLAB AND WALL BEAMS AND COLUMNS......

- 5. A CHAMFER 3/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH
- 6. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS, ALL EXPANSION /WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED, EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL.
- CONCRETE CYLINDER TEST IS NOT REQUIRED FOR SLAB ON GRADE WHEN CONCRETE IS LESS THAN 50 CUBIC YARDS (BC 1905.6.2.3) IN THAT EVENT THE FOLLOWING RECORDS SHALL BE PROVIDED BY THE CONCRETE SUPPLIER;
 - (A) RESULTS OF CONCRETE CYLINDER TESTS PERFORMED AT THE SUPPLIER'S PLANT.

 - (8) CERTIFICATION OF MINIMUM COMPRESSIVE STRENGTH FOR
 THE CONCRETE GRADE SUPPLIED.
 FOR GREATER THAN 50 CUBIC YAROS THE GC SHALL PERFORM THE CONCRETE CYLINDER TEST.
- 8. AS AN ALTERNATIVE TO ITEM 7, TEST CYLINDERS SHALL BE TAKEN INITIALLY AND THEREAFTER FOR EVERY 50 YARDS OF CONCRETE FROM EACH DIFFERENT BATCH PLANT.
- EQUIPMENT SHALL NOT BE PLACED ON NEW PADS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY CYLINDER TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED.

STRUCTURAL STEEL NOTES:

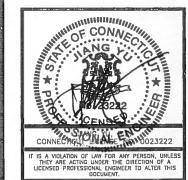
- ALL STEEL WORK SHALL BE PAINTED OR GALVANIZED IN ACCORDANCE WITH THE DRAWINGS UNLESS NOTED OTHERWISE, STRUCTURAL STEEL SHALL BE ASTM-A-36 UNLESS OTHERWISE NOTED ON THE SITE SPECIFIC DRAWINGS. STEEL OESIGN, INSTALLATION AND BOLTING SHALL BE PERFORMED IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) "MANUAL OF STEEL CONSTRUCTION".
- ALL WELDING SHALL BE PERFORMED USING ETOXX ELECTRODES AND WELDING SHALL CONFORM TO AISC. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUCHED UP.
- 3. BOLTED CONNECTIONS SHALL BE ASTM A325 BEARING TYPE (3/4"Ø) CONNECTIONS AND SHALL HAVE MINIMUM
- NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. ASTM A 307 BOLTS UNLESS NOTED
- 5. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS, ALL EXPANSION/MEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL.
- 6. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR ENGINEER REVIEW & APPROVAL ON PROJECTS REQUIRING
- 7. ALL STRUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATIONS.

CONSTRUCTION NOTES:

- FIELD VERIFICATION FIRED VERIFICATION: CONTRACTOR SHALL FIELD VERIFY SCOPE OF WORK, T-MOBILE ANTENNA PLATFORM LOCATION AND ANTENNAS TO BE REPLACED.
- CONTRACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH PROJECT MANAGEMENT.
- CABLE LADDER RACK: CONTRACTOR SHALL FURNISH AND INSTALL CABLE LADDER RACK, CABLE TRAY, AND CONDUIT AS REQUIRED TO SUPPORT CABLES TO THE NEW BTS LOCATION.
- 4. GROUNDING OF ALL EQUIPMENT AND ANTENNAS IS NOT CONSIDERED PART OF THE SCOPE OF THIS PROJECT AND IS THE RESPONSIBILITY OF THE OWNER AND CONTRACTOR AT THE TIME OF CONSTRUCTION. ALL EQUIPMENT AND ANTENNAS TO BE INSTALLED AND GROUNDED IN ACCORDANCE WITH GOVERNING BUILDING CODE. MANUFACTURER RECOMMENDATIONS AND OWNER SPECIFICATIONS.

T-MOBILE NORTHEAST LLC 4 SYLVAN WAY PARSIPPANY, NJ 07054

CROWN CASTLE 500 WEST CUMMINGS PARK, SUITE 3600 WOBURN, MA 01801


CT11501E ANDOVER NORTH

(CONSTR	RUCTION	DRAWING:
L			
L			
L			
	D4 /02 /15	ISSUED AS FINAL	
U		ISSUED FOR REV	

Dewberry Engineers Inc

600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973,739,9400 FAX: 973,739,9710

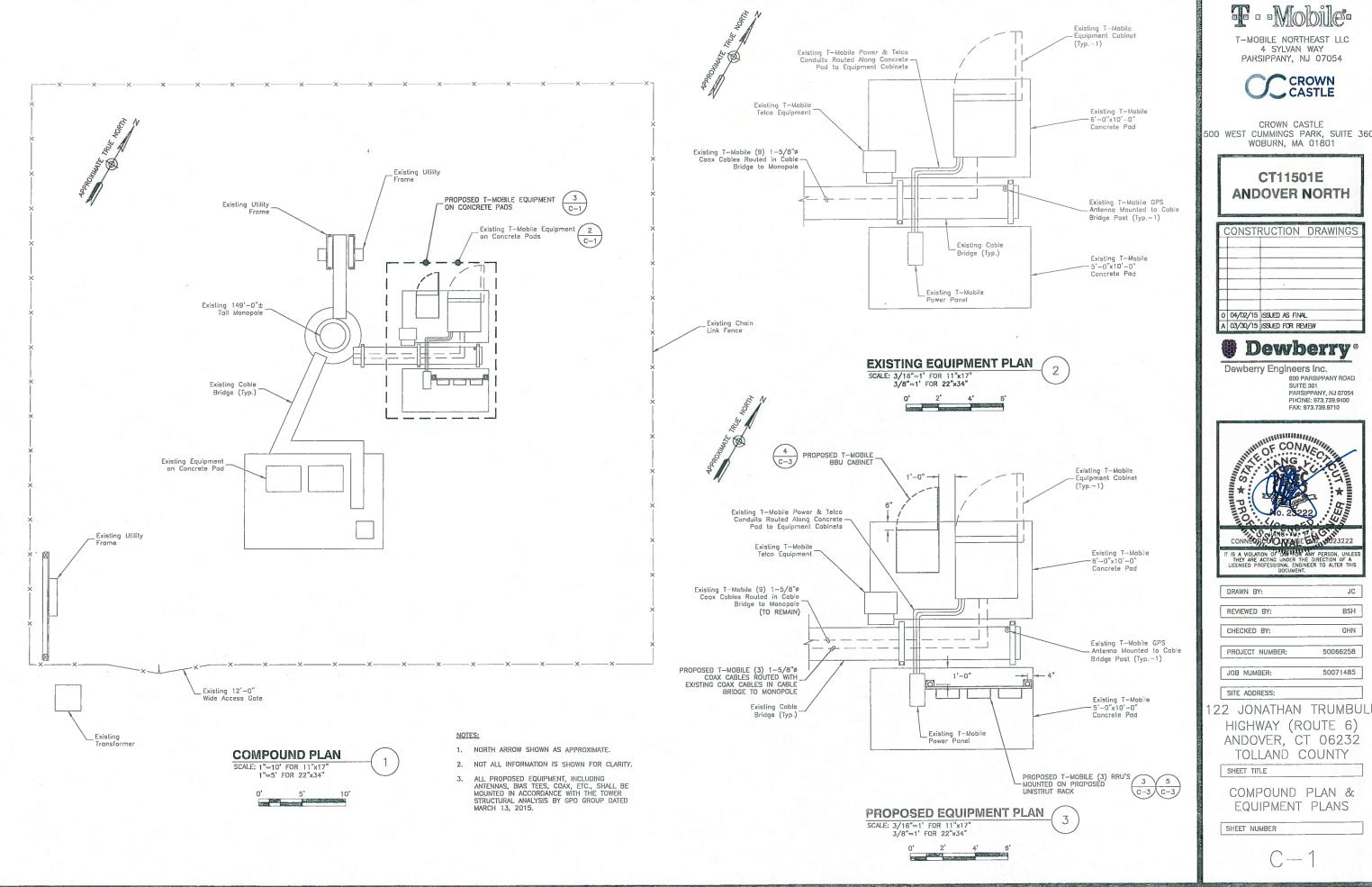
DRAWN BY:	JC
REVIEWED BY:	RSH

GHN

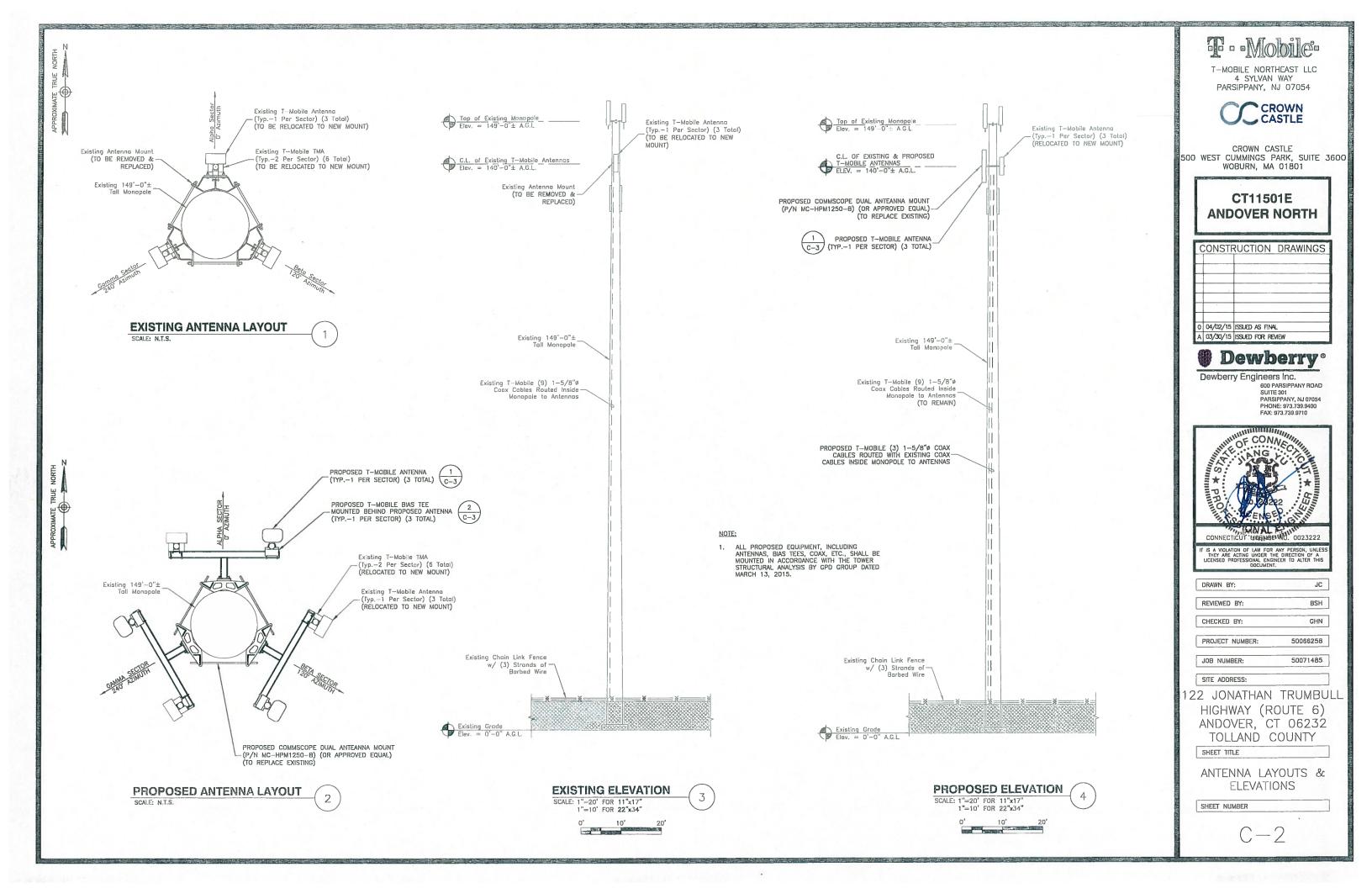
50071485

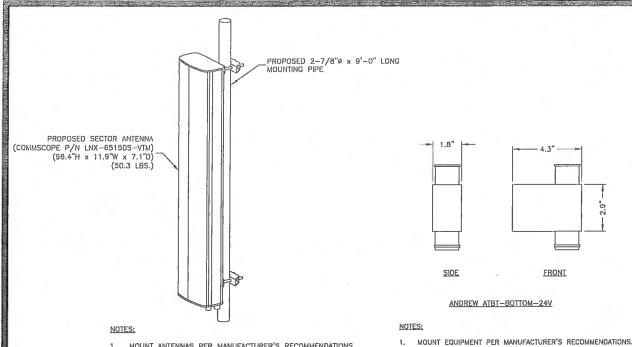
PROJECT NUMBER: 50066258

JOB NUMBER: SITE ADDRESS:

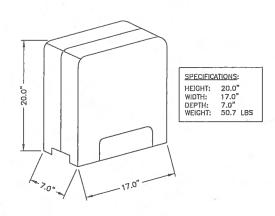

CHECKED BY:

122 JONATHAN TRUMBUL HIGHWAY (ROUTE 6) ANDOVER, CT 06232 TOLLAND COUNTY

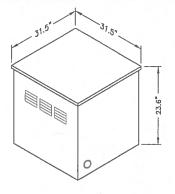

SHEET TITLE


GENERAL NOTES

SHEET NUMBER


500 WEST CUMMINGS PARK, SUITE 3600

- MOUNT ANTENNAS PER MANUFACTURER'S RECOMMENDATIONS.
- GROUND ANTENNAS AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.
- 3. CONFIRM REQUIRED ANTENNAS WITH THE LATEST RFDS.


ISOMETRIC ANTENNA DETAIL

ERICSSON RRUS-11 B12

RRU NOTES:

- 1. MOUNT EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS.
- GROUND EQUIPMENT AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.
- 3. CONFIRM REQUIRED EQUIPMENT WITH THE LATEST RFDS.

ALCATEL-LUCENT EZBFo BATTERY BACKUP SYSTEM

MATERIAL:	ANCHOR:
CONCRETE	3/8"ø HILTI KWIK BOLT 3 W/2-1/2" MIN. EMBED.
STRUCTURAL STEEL	1/2"ø STRUCTURAL BOLTS

CONTRACTOR SHALL ANCHOR CABINET IN ACCORDANCE WITH MANUFACTURER RECOMMENDATIONS.

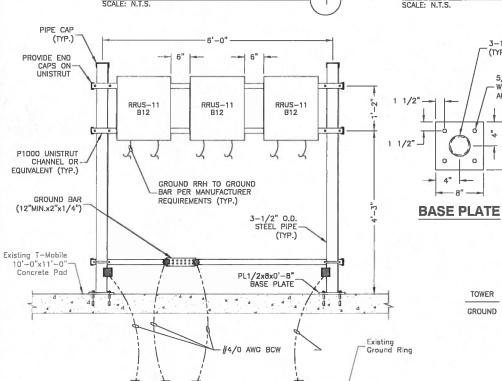
BIAS TEE DETAIL

TOWER

GROUND

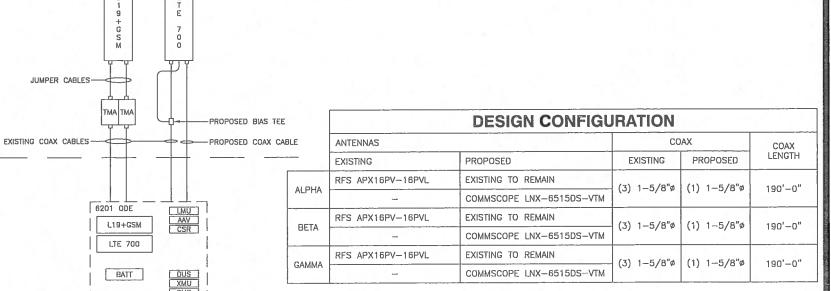
3-1/2" O.D. POST

5/8"ø HOLE FOR 1/2"ø HAS ROD -W/ HILTI HIT HY 150 EPOXY ADHESIVE W/ 3 1/2" MIN. EMBED.


GROUND EQUIPMENT AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.

3. CONFIRM REQUIRED EQUIPMENT WITH THE LATEST RFDS.

ANDREW ATBT-BOTTOM-24V


FRONT

- 1. CONTRACTOR SHALL SUPPLY AND INSTALL UNISTRUT (OR EQUIVALENT) MOUNTING CHANNELS.
- 2. CONTRACTOR SHALL SUPPLY (BUT NOT INSTALL) 3/8"\(\text{UNISTRUT BOLTING HARDWARE AND} \) SPRING NUTS. TYPICAL FOUR PER RRU. CONTRACTOR SHALL BAG THE BOLTING HARDWARE AND HANG FROM INSTALLED UNISTRUT FRAME.
- 3. SPACING MAY VARY BASED ON SELECTED EQUIPMENT. ADJUSTMENTS TO SPACING WILL BE
- 4. NO PAINTING OF THE RRU OR SOLAR SHIELD IS ALLOWED.

RRU RACK DETAIL 5

SITE CONFIGURATION 704G SCALE: N.T.S.

04/02/15 ISSUED AS FINAL 03/30/15 ISSUED FOR REVIEW Dewberry Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, N.I.07054

T Mobile

4 SYLVAN WAY PARSIPPANY, NJ 07054

CROWN CASTLE

500 WEST CUMMINGS PARK, SUITE 3600

WOBURN, MA 01801

CT11501E

ANDOVER NORTH

CONSTRUCTION DRAWINGS

CROWN

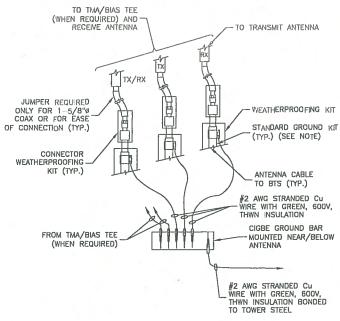
CASTLE

IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

DRAWN BY: JC REVIEWED BY: BSH CHECKED BY: GHN 50066258 PROJECT NUMBER: JOB NUMBER: 50071485

22 JONATHAN TRUMBUL HIGHWAY (ROUTE 6) ANDOVER, CT 06232 TOLLAND COUNTY

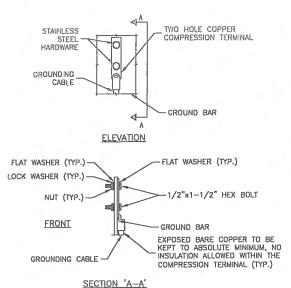
SHEET TITLE


SITE ADDRESS:

CONSTRUCTION DETAILS

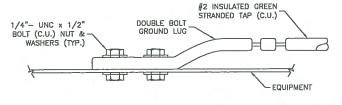
SHEET NUMBER

GROUNDING NOTES:


- THE CONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLANCE WITH THE NEC (AS ADDPTED BY THE AHJ). THE SITE—SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE CONTRACTOR SHALL REPORT ANY WOLATIONS OR ADVERSE FINDINGS TO THE ENGINEER FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS, ALL AWALGABLE GROUNDING ELECTRODES SHALL BE CONNECTED TOGETHER IN ACCORDANCE WITH THE NEC.
- THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND B1) FOR GROUND ELECTRODE SYSTEMS. USE OF OTHER METHODS MUST BE PRE-APPROVED BY THE ENGINEER IN WRITING.
- THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS ON TOWER SITES AND 10 OHMS OR LESS ON ROOFTOP SITES. WHEN ADDING ELECTRODES, CONTRACTOR SHALL MAINTAIN A MINIMUM DISTANCE BETWEEN THE ADDED ELECTRODE AND ANY OTHER EXISTING ELECTRODE EQUAL TO THE BURIED LENGTH OF THE ROD. IDEALLY, CONTRACTOR SHALL STRIVE TO KEEP THE SEPARATION DISTANCE EQUAL TO THE BURIED LENGTH OF THE ROD. TO TWICE THE BURIED LENGTH OF THE RODS.
- THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWG COPPER WIRE AND UL APPROVED NDING TYPE CONDUIT CLAMPS.
- METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO TRANSMISSION EQUIPMENT.
- CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK—TO—BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED. IN ALL CASES, BENDS SHALL BE MADE WITH A MINIMUM BEND RADIUS OF B
- 11. EACH INTERIOR TRANSMISSION CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH 6 AWG STRANDED, GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRE UNLESS NOTED OTHERWISE IN THE DETAILS, EACH OUTDOOR CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE BURIED GROUND RING WITH 2 AWG SOLID TIN-PLATED COPPER WIRE UNLESS NOTED OTHERWISE IN THE
- ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE 2 AWG SOLID TIN-PLATED COPPER UNLESS OTHERWISE INDICATED.
- 13. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELLOW GRADE. CONNECTIONS TO ABOVE GRADE UNITS SHALL BE MADE WITH EXOTHERMIC WELDS WHERE PRACTICAL OR WITH 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STAINLESS STEEL HAROWARE, INCLUDING SET SCREWS. HICH PRESSURE CRIMP CONNECTORS MAY ONLY BE USED WITH WRITTEN PERMISSION FROM T-MOBILE MARKET PEPBFESNTATIVE.
- 14. EXOTHERMIC WELDS SHALL BE PERMITTED ON TOWERS ONLY WITH THE EXPRESS APPROVAL OF THE TOWER MANUFACTURER OR THE CONTRACTORS STRUCTURAL ENGINEER.
- ALL WIRE TO WIRE GROUND CONNECTIONS TO THE INTERIOR GROUND RING SHALL BE FORMED USING HIGH PRESS CRIMPS OR SPLIT BOLT CONNECTORS WHERE INDICATED IN THE DETAILS.
- 16. ON RODETOP SITES WHERE EXOTHERMIC WELDS ARE A FIRE HAZARD OFFICE COMPRESSION CAP CONNECTORS MAY BE USED FOR WIRE TO WIRE CONNECTORS, 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STAINLESS STEEL HAROWARE, INCLUDING SET SCREWS SHALL BE USED FOR CONNECTION TO ALL ROOFTOP TRANSMISSION EQUIPMENT AND STRUCTURAL STEEL
- COAX BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR USING TWO-HOLE MECHANICAL TYPE BRASS CONNECTORS AND STAINLESS STEEL HARDWARE.
- APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 19. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 20. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES. FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 21. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF THE BURIED GROUND RING WITH 2 AWG SOLID TIM-PLATED COPPER GROUND CONDUCTOR. DURING EXCAVATION FOR NEW GROUND CONDUCTORS, IF EXISTING GROUND CONDUCTORS, ARE ENCOUNTERED, BOND EXISTING GROUND CONDUCTORS
- GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC
 MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE
 OF METAL CONDUIT IS UNAVOIDABLE (E.G., NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT WITH LISTED BONDING

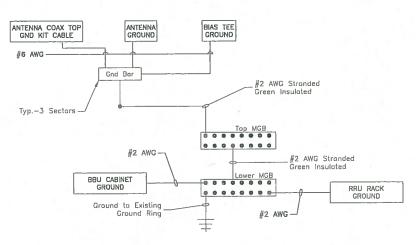
NOTE:

DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE.


CONNECTION OF GROUND WIRES TO GROUNDING BAR (CIGBE)

NOTES:

- 1. DOUBLING UP OR STACKING OF CONNECTIONS IS NOT PERMITTED.
- 2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATIONS.


TYPICAL GROUND BAR MECHANICAL CONNECTION DETAIL

CONNECTION TO EQUIPMENT DETAIL

ANTFNNA ANTENNA GROUND WIRE 1/2"ø COAXIAL #6 AWG TO NEXT WIRE GROUND BAR (TYP.) BIAS TEE #2 AWG BARE COPPER GROUND ANTENNA WIRE TO EQUIPMENT GROUND BAR TYPICAL ANTENNA

GROUNDING DETAIL SCALE: N.T.S

NOTES:

- ROND ANTENNA GROUNDING KIT CABLE TO TOP CIGBE
- 2. BOND ANTENNA GROUNDING KIT CABLE TO BOTTOM CIGBE.
- 3. SCHEMATIC GROUNDING DIAGRAM IS TYPICAL FOR EACH SECTOR.
- 4. VERIFY EXISTING GROUND SYSTEM IS INSTALLED PER T-MOBILE

SCHEMATIC GROUNDING DIAGRAM

T-MOBILE NORTHEAST LLC 4 SYLVAN WAY PARSIPPANY, NJ 07054

CROWN CASTLE 500 WEST CUMMINGS PARK, SUITE 3600 WOBURN, MA 01801

CT11501E ANDOVER NORTH

(CONSTR	RUCTION	DRAWINGS
_			
0	04/02/15	ISSUED AS FINA	Ł
Α	03/30/15	ISSUED FOR RE	MEW

Dewberry Engineers Inc. SUITE 301

PARSIPPANY, NJ 07054 PHONE: 973.739,9400 FAX: 973.739.9710

JC
BSH
GHN
50066258
50071485

122 JONATHAN TRUMBUL HIGHWAY (ROUTE 6) ANDOVER, CT 06232 TOLLAND COUNTY

SHEET TITLE

GROUNDING NOTES & DETAILS

SHEET NUMBER

Date: March 13, 2015

Charlotte, NC 28277

(704) 405-6580

Marianne Dunst GPD

Crown Castle 520 South Main Street, Suite 2531 3530 Toringdon Way Suite 300 Akron, OH 44311

Akron, OH 44311 (614) 859-1607

dpalkovic@gpdgroup.com

Subject: Structural Analysis Report

Carrier Designation: T-Mobile Co-Locate

Carrier Site Number: CT11501E

Carrier Site Name: CT501/ATT Andover - Prime

Crown Castle Designation: Crown Castle BU Number: 842856

Crown Castle Site Name: ANDOVER NORTH

Crown Castle JDE Job Number:325627Crown Castle Work Order Number:1022391Crown Castle Application Number:282530 Rev. 1

Engineering Firm Designation: GPD Group Project Number: 2015777.842856.01

Site Data: 122 Jonathan Trumbull Hwy (Rte 6), Andover, CT 06232, Tolland County

Latitude 41° 45′ 0.46″, Longitude -72° 24′ 9.63″ 149 Foot – Modified EEI Monopole Tower

Dear Marianne Dunst,

GPD is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 764705, in accordance with application 282530, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 CT State Building Code based upon a wind speed of 85 mph fastest mile.

We at *GPD* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Elizabeth Boaz, El

Respectfully submitted by:

John N. Kabak, P.E.

Connecticut #: PEN.0028336

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Components vs. Capacity

4.1) Recommendations

5) DISCLAIMER OF WARRANTIES

6) APPENDIX A

tnxTower Output

7) APPENDIX B

Base Level Drawing

8) APPENDIX C

Additional Calculations

1) INTRODUCTION

The existing tower consists of four major sections connected by slip joints. It has an 18-sided cross section and is evenly tapered from 47.5" (flat-flat) at the base to 21.5" (flat-flat) at the top. It is galvanized and doesn't have aviation lighting.

This tower is a 149 ft Monopole tower designed by EEI in November of 2003. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.

The modifications designed by GPD (Project #: 2009260.48, dated 01/29/2009), consisting of adding base plate stiffeners, have been considered in this analysis.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 38 mph with 1.25 inch ice thickness (in accordance with ASCE-7 ice conditions) and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		1	Andrew	MC-HPM1250-B Mount			
140.0	140.0	3	Commscope	ATBT-BOTTOM-24V			
		3	Commscope	LNX-6515DS-VTM			

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note							
		3	Ericsson	RRUS-11										
		3	KMW Communications	AM-X-CD-16-65-00T-RET		1-1/4 7/8 1/2								
	151.0	3	Powerwave Technologies	7770.00	6									
149.0	151.0	6	Powerwave Technologies	LGP17201	2 1									
									6	Powerwave Technologies	1 172091411			
			1	Raycap	DC6-48-60-18-8F			ĺ						
	149.0	1		T-Arm Mount [TA 702-3]										
140.0	140.0	1		Side Arm Mount [SO 102-3]			1							
		140.0	140.0	140.0	3	RFS Celwave	APX16PV-16PVL	12	1-5/8	2				
		6	RFS Celwave	ATMAA1412D-1A20	12	1-5/6								
130.0	130.0	1		Pipe Mount [PM 602-3]	6	1-5/8	3							
130.0	130.0	3	Kathrein	742 213	0	1-3/6	3							

Notes:

- Existing equipment to be removed; not considered in this analysis.
- 2) Existing equipment to be relocated to the proposed mount and reused. Coax to remain.
- 3) Abandoned equipment.

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Tower Drawings	EEI Project #: 12026, dated 11/29/2003	4713188	CCISITES
Foundation Drawings	EEI Project #: 12026, dated 12/02/2003	4529267	CCISITES
Geotechnical Report	VN Engineers Project #: 23-120G, dated 10/17/2003	4713186	CCISITES
Modification Drawings	GPD Job #: 2009260.48, dated 01/29/2009	4713190	CCISITES
Post Modification Inspection	GPD Job #: 2009513.00, dated 03/18/2009	4713189	CCISITES

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element P (K)		SF*P_allow (K)	% Capacity	Pass / Fail
L1	149 - 123.612	Pole	TP26.2021x21.5x0.1875	1	-2.99	783.22	31.2	Pass
L2	123.612 - 79.128	Pole	TP33.9598x25.1277x0.1875	2	-6.66	943.73	87.4	Pass
L3	79.128 - 43.243	Pole	TP40.1211x32.7164x0.25	3	-11.28	1578.47	80.2	Pass
L4	43.243 - 0	Pole	TP47.5x38.6156x0.3125	4	-20.15	2426.74	76.0	Pass
						Summary	ELC:	LC5
						Pole (L2)	87.4	Pass
						Rating =	87.4	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	64.1	Pass
1	Base Plate	0	82.4	Pass
1	Base Foundation	0	29.7	Pass
1	Base Foundation Soil Interaction	0	61.5	Pass

Structure Rating (max from all components) =	87.4%
--	-------

Notes:

4.1) Recommendations

The existing tower and its foundation are sufficient for the proposed loading and do not require modifications.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

5) DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

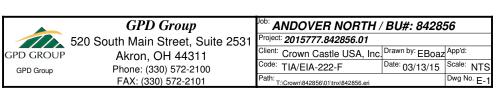
Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

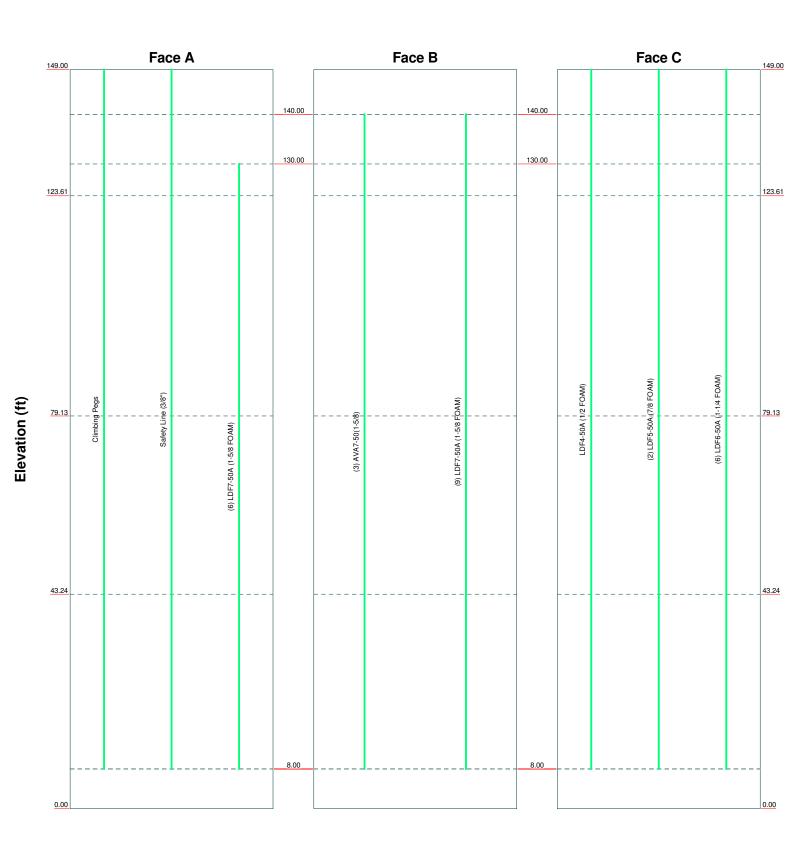
GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

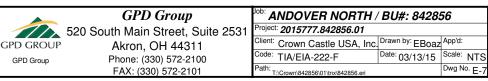
APPENDIX A TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION
T-Arm Mount [TA 702-3]	149	DC6-48-60-18-8F Surge Suppression	149
7770.00 w/ Mount Pipe	149	Unit	
7770.00 w/ Mount Pipe	149	Commscope MC-HPM1250-B	140
7770.00 w/ Mount Pipe	149	APX16PV-16PVL w/ Mount Pipe	140
AM-X-CD-16-65-00T-RET w/ Mount	149	APX16PV-16PVL w/ Mount Pipe	140
Pipe		APX16PV-16PVL w/ Mount Pipe	140
AM-X-CD-16-65-00T-RET w/ Mount	149	LNX-6515DS-VTM w/ Mount Pipe	140
Pipe		LNX-6515DS-VTM w/ Mount Pipe	140
AM-X-CD-16-65-00T-RET w/ Mount	149	LNX-6515DS-VTM w/ Mount Pipe	140
Pipe		(2) ATMAA1412D-1A20	140
(2) LGP17201	149	(2) ATMAA1412D-1A20	140
(2) LGP17201	149	(2) ATMAA1412D-1A20	140
(2) LGP17201	149	ATBT-BOTTOM-24V	140
(2) LGP21901	149	ATBT-BOTTOM-24V	140
(2) LGP21901	149	ATBT-BOTTOM-24V	140
(2) LGP21901	149	Pipe Mount [PM 602-3]	130
RRUS-11	149	742 213	130
RRUS-11	149	742 213	130
RRUS-11	149	742 213	130

MATERIAL STRENGTH


GRADE	Fy	Fu	GRADE	Fy	Fu		
A572-65	65 ksi	80 ksi			•		


TOWER DESIGN NOTES

- 1. Tower is located in Tolland County, Connecticut.
- Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- Tower is also designed for a 38 mph basic wind with 1.25 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 50 mph wind.5. TOWER RATING: 87.4%

Round _____ Flat ____ App In Face ____ App Out Face ____ Truss Leg

GPD Group

520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	ANDOVER NORTH / BU#: 842856	1 of 8
Project		Date
	2015777.842856.01	14:26:19 03/13/15
Client		Designed by
	Crown Castle USA, Inc.	EBoaz

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in Tolland County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 1.2500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 38 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys
 - Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
 Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feedline Torque
Include Angle Block Shear Check

Poles

√ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	149.00-123.61	25.39	3.78	18	21.5000	26.2021	0.1875	0.7500	A572-65
									(65 ksi)
L2	123.61-79.13	48.26	4.75	18	25.1277	33.9598	0.1875	0.7500	A572-65
									(65 ksi)
L3	79.13-43.24	40.63	5.52	18	32.7164	40.1211	0.2500	1.0000	A572-65
									(65 ksi)
L4	43.24-0.00	48.76		18	38.6156	47.5000	0.3125	1.2500	A572-65
									(65 ksi)

tnx7	ower

GPD Group 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	ANDOVER NORTH / BU#: 842856	2 of 8
Project		Date
	2015777.842856.01	14:26:19 03/13/15
Client	Crown Castle USA, Inc.	Designed by EBoaz

	Tapered Pole Properties									
Section	Tip Dia. in	Area in²	I in ⁴	r in	C in	I/C in ³	J in ⁴	It/Q in ²	w in	w/t
L1	21.8317	12.6836	727.8616	7.5659	10.9220	66.6418	1456.6810	6.3430	3.4540	18.421
	26.6063	15.4819	1323.7230	9.2352	13.3107	99.4483	2649.1877	7.7424	4.2816	22.835
L2	26.2171	14.8426	1166.4013	8.8538	12.7649	91.3757	2334.3374	7.4227	4.0925	21.827
	34.4837	20.0987	2896.1934	11.9892	17.2516	167.8799	5796.1977	10.0513	5.6469	30.117
L3	34.0992	25.7621	3430.7380	11.5256	16.6199	206.4230	6865.9902	12.8835	5.3181	21.272
	40.7400	31.6377	6354.1730	14.1542	20.3815	311.7615	12716.7070	15.8219	6.6213	26.485
L4	40.2321	37.9919	7042.0272	13.5976	19.6167	358.9804	14093.3205	18.9996	6.2464	19.988
	48.2328	46.8041	13166.6503	16.7516	24.1300	545.6548	26350.6256	23.4065	7.8100	24.992

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
Cl. 1. D	Leg	N.T.	C A (O + OCE)	ft	1	NT T	ft²/ft	plf
Climbing Pegs	A	No	CaAa (Out Of Face)	149.00 - 8.00	1	No Ice 1/2" Ice	0.01	0.31
							0.12	0.71 1.71
						1" Ice 2" Ice	0.22	
							0.41	5.56
C-f-t-1: (2/9!)		NT-	C-A-(O-+ Of E)	149.00 - 8.00	1	4" Ice	0.82 0.04	20.59
Safety Line (3/8")	A	No	CaAa (Out Of Face)	149.00 - 8.00	1	No Ice		0.22
						1/2" Ice	0.14	0.75
						1" Ice	0.24	1.28
						2" Ice	0.44	2.34
1.054.504.41/0.5043.6			1 :1 5 1	1.40.00 0.00		4" Ice	0.84	4.46
LDF4-50A (1/2 FOAM)	C	No	Inside Pole	149.00 - 8.00	1	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
						1" Ice	0.00	0.15
						2" Ice	0.00	0.15
1 DEC 504 (7/0 E0 1) 0			1 :1 5 1	1.40.00 0.00	2	4" Ice	0.00	0.15
LDF5-50A (7/8 FOAM)	C	No	Inside Pole	149.00 - 8.00	2	No Ice	0.00	0.33
						1/2" Ice	0.00	0.33
						1" Ice	0.00	0.33
						2" Ice	0.00	0.33
X D T C 50 1 /4 4 14 T 0 13 D				1 10 00 000	,	4" Ice	0.00	0.33
LDF6-50A (1-1/4 FOAM)	C	No	Inside Pole	149.00 - 8.00	6	No Ice	0.00	0.66
						1/2" Ice	0.00	0.66
						1" Ice	0.00	0.66
						2" Ice	0.00	0.66
	_					4" Ice	0.00	0.66
AVA7-50(1-5/8)	В	No	Inside Pole	140.00 - 8.00	3	No Ice	0.00	0.70
						1/2" Ice	0.00	0.70
						1" Ice	0.00	0.70
						2" Ice	0.00	0.70
						4" Ice	0.00	0.70
LDF7-50A (1-5/8 FOAM)	В	No	Inside Pole	140.00 - 8.00	9	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82
LDF7-50A (1-5/8 FOAM)	A	No	Inside Pole	130.00 - 8.00	6	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82

GPD Group 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	ANDOVER NORTH / BU#: 842856	3 of 8
Project		Date
	2015777.842856.01	14:26:19 03/13/15
Client	Output October 110A Inc.	Designed by
	Crown Castle USA, Inc.	EBoaz

						Discrete Tower Loads						
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weig			
			ft ft ft	٥	ft		ft ²	ft ²	K			
T-Arm Mount [TA 702-3]	С	None		0.0000	149.00	No Ice	5.64	5.64	0.3			
						1/2" Ice	6.55	6.55	0.4			
						1" Ice	7.46	7.46	0.5			
						2" Ice	9.28	9.28	0.7			
7770 00 (M P.		Б. Т	2.00	0.0000	1.40.00	4" Ice	12.92	12.92	1.0			
7770.00 w/ Mount Pipe	A	From Leg	3.00	0.0000	149.00	No Ice	6.22	4.35	0.0			
			0.00			1/2" Ice	6.77	5.20	0.1			
			2.00			1" Ice	7.30	5.92	0.1			
						2" Ice 4" Ice	8.38	7.41	0.2 0.6			
7770 00 w/ Mount Ding	В	Enom Loo	3.00	0.0000	149.00	No Ice	10.69 6.22	10.76 4.35	0.0			
7770.00 w/ Mount Pipe	D	From Leg	0.00	0.0000	149.00	1/2" Ice	6.22	5.20	0.0			
			2.00			1" Ice	7.30	5.92	0.1			
			2.00			2" Ice	8.38	7.41	0.1			
						4" Ice	10.69	10.76	0.2			
7770.00 w/ Mount Pipe	C	From Leg	3.00	0.0000	149.00	No Ice	6.22	4.35	0.0			
7770.00 w/ Would Tipe	C	Trom Leg	0.00	0.0000	147.00	1/2" Ice	6.77	5.20	0.1			
			2.00			1" Ice	7.30	5.92	0.1			
			2.00			2" Ice	8.38	7.41	0.2			
						4" Ice	10.69	10.76	0.6			
AM-X-CD-16-65-00T-RET w/ Mount Pipe	A	From Leg	3.00	0.0000	149.00	No Ice	8.50	6.30	0.0			
1		Č	0.00			1/2" Ice	9.15	7.48	0.1			
			2.00			1" Ice	9.77	8.37	0.2			
						2" Ice	11.03	10.18	0.3			
						4" Ice	13.68	14.02	0.8			
AM-X-CD-16-65-00T-RET w/ Mount Pipe	В	From Leg	3.00	0.0000	149.00	No Ice	8.50	6.30	0.0			
			0.00			1/2" Ice	9.15	7.48	0.1			
			2.00			1" Ice	9.77	8.37	0.2			
						2" Ice	11.03	10.18	0.3			
						4" Ice	13.68	14.02	0.8			
AM-X-CD-16-65-00T-RET w/ Mount Pipe	C	From Leg	3.00	0.0000	149.00	No Ice	8.50	6.30	0.0			
			0.00			1/2" Ice	9.15	7.48	0.1			
			2.00			1" Ice	9.77	8.37	0.2			
						2" Ice	11.03	10.18	0.3			
(2) I CD17201		Б. Т	2.00	0.0000	1.40.00	4" Ice	13.68	14.02	0.6			
(2) LGP17201	A	From Leg	3.00	0.0000	149.00	No Ice	1.95	0.52	0.0			
			0.00			1/2" Ice	2.13	0.64	0.0			
			2.00			1" Ice 2" Ice	2.33	0.77	0.0			
						4" Ice	2.75	1.06	0.0			
(2) LGP17201	В	From Leg	3.00	0.0000	149.00	No Ice	3.69 1.95	1.73 0.52	0.0			
(2) LOF1/201	ь	From Leg	0.00	0.0000	149.00	1/2" Ice	2.13	0.52	0.0			
			2.00			1" Ice	2.33	0.77	0.0			
			2.00			2" Ice	2.75	1.06	0.0			
						4" Ice	3.69	1.73	0.1			
(2) LGP17201	C	From Leg	3.00	0.0000	149.00	No Ice	1.95	0.52	0.0			
(2) 201 1/201	C	200	0.00	0.0000	1.7.00	1/2" Ice	2.13	0.64	0.0			
			2.00			1" Ice	2.33	0.77	0.0			
						2" Ice	2.75	1.06	0.0			
						4" Ice	3.69	1.73	0.1			
(2) LGP21901	A	From Leg	3.00	0.0000	149.00	No Ice	0.27	0.18	0.0			
		Č	0.00			1/2" Ice	0.34	0.25	0.0			
			2.00			1" Ice	0.43	0.32	0.0			
						2" Ice	0.62	0.49	0.0			

GPD Group 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	ANDOVER NORTH / BU#: 842856	4 of 8
Project		Date
	2015777.842856.01	14:26:19 03/13/15
Client		Designed by
	Crown Castle USA, Inc.	EBoaz

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft^2	ft ²	K
(2) LGP21901	В	From Leg	3.00 0.00 2.00	0.0000	149.00	4" Ice No Ice 1/2" Ice 1" Ice	1.10 0.27 0.34 0.43	0.94 0.18 0.25 0.32	0.07 0.01 0.01 0.01
(2) LGP21901	С	From Leg	3.00 0.00 2.00	0.0000	149.00	2" Ice 4" Ice No Ice 1/2" Ice 1" Ice	0.62 1.10 0.27 0.34 0.43	0.49 0.94 0.18 0.25 0.32	0.02 0.07 0.01 0.01 0.01
RRUS-11	A	From Leg	3.00 0.00 2.00	0.0000	149.00	2" Ice 4" Ice No Ice 1/2" Ice 1" Ice	0.62 1.10 3.25 3.49 3.74	0.49 0.94 1.37 1.55 1.74	0.02 0.07 0.05 0.07 0.09
RRUS-11	В	From Leg	3.00 0.00 2.00	0.0000	149.00	2" Ice 4" Ice No Ice 1/2" Ice 1" Ice	4.27 5.43 3.25 3.49 3.74	2.14 3.04 1.37 1.55 1.74	0.15 0.31 0.05 0.07 0.09
RRUS-11	С	From Leg	3.00 0.00	0.0000	149.00	2" Ice 4" Ice No Ice 1/2" Ice	4.27 5.43 3.25 3.49	2.14 3.04 1.37 1.55	0.15 0.31 0.05 0.07
DC6-48-60-18-8F Surge Suppression Unit	В	From Leg	3.00 0.00	0.0000	149.00	1" Ice 2" Ice 4" Ice No Ice 1/2" Ice	3.74 4.27 5.43 1.47 1.67	1.74 2.14 3.04 1.47 1.67	0.09 0.15 0.31 0.02 0.04
Commscope MC-HPM1250-B	С	None	2.00	0.0000	140.00	1" Ice 2" Ice 4" Ice No Ice 1/2" Ice	1.88 2.33 3.38 3.80 4.50	1.88 2.33 3.38 3.80 4.50	0.06 0.11 0.24 0.53 0.69
APX16PV-16PVL w/ Mount Pipe	A	From Leg	2.00 0.00	0.0000	140.00	1" Ice 2" Ice 4" Ice No Ice 1/2" Ice	5.20 6.60 9.40 6.79 7.23	5.20 6.60 9.40 3.05 3.65	0.85 1.18 1.82 0.06 0.11
APX16PV-16PVL w/ Mount Pipe	В	From Leg	2.00 0.00	0.0000	140.00	1" Ice 2" Ice 4" Ice No Ice 1/2" Ice	7.68 8.60 10.54 6.79 7.23	4.27 5.55 8.43 3.05 3.65	0.16 0.28 0.63 0.06 0.11
APX16PV-16PVL w/ Mount Pipe	C	From Leg	0.00 2.00 0.00	0.0000	140.00	1" Ice 2" Ice 4" Ice No Ice 1/2" Ice	7.68 8.60 10.54 6.79 7.23	4.27 5.55 8.43 3.05 3.65	0.16 0.28 0.63 0.06 0.11
LNX-6515DS-VTM w/ Mount Pipe	A	From Leg	2.00 0.00	0.0000	140.00	1" Ice 2" Ice 4" Ice No Ice 1/2" Ice	7.68 8.60 10.54 11.64 12.34	4.27 5.55 8.43 9.79 11.30	0.16 0.28 0.63 0.08 0.17
LNX-6515DS-VTM w/ Mount Pipe	A	From Leg	2.00	0.0000	140.00	1" Ice 2" Ice 4" Ice No Ice	13.04 14.48 17.71 11.64	12.80 15.12 19.94 9.79	0.27 0.50 1.14 0.08

GPD Group 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	ANDOVER NORTH / BU#: 842856	5 of 8
Project		Date
	2015777.842856.01	14:26:19 03/13/15
Client	Crown Cookle LICA Inc	Designed by
	Crown Castle USA, Inc.	EBoaz

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weigh
			ft ft ft	۰	ft		ft ²	ft ²	K
			0.00			1/2" Ice	12.34	11.30	0.17
			0.00			1" Ice	13.04	12.80	0.27
						2" Ice	14.48	15.12	0.50
LNX-6515DS-VTM w/ Mount Pipe	A	From Leg	2.00	0.0000	140.00	4" Ice No Ice	17.71 11.64	19.94 9.79	1.14 0.08
LNA-0313D3-V TW W/ Would Fipe	А	From Leg	0.00	0.0000	140.00	1/2" Ice	12.34	11.30	0.08
			0.00			1" Ice	13.04	12.80	0.17
			0.00			2" Ice	14.48	15.12	0.50
						4" Ice	17.71	19.94	1.14
(2) ATMAA1412D-1A20	A	From Leg	2.00	0.0000	140.00	No Ice	1.17	0.47	0.01
			0.00			1/2" Ice	1.31	0.57	0.02
			0.00			1" Ice	1.47	0.69	0.03
						2" Ice	1.81	0.95	0.06
						4" Ice	2.58	1.57	0.14
(2) ATMAA1412D-1A20	В	From Leg	2.00	0.0000	140.00	No Ice	1.17	0.47	0.01
			0.00			1/2" Ice	1.31	0.57	0.02
			0.00			1" Ice	1.47	0.69	0.03
						2" Ice	1.81	0.95	0.06
(2) ATMAA1412D-1A20	С	From Log	2.00	0.0000	140.00	4" Ice No Ice	2.58 1.17	1.57 0.47	0.14 0.01
(2) ATMAA1412D-1A20	C	From Leg	2.00 0.00	0.0000	140.00	1/2" Ice	1.17	0.47	0.01
			0.00			1" Ice	1.31	0.57	0.02
			0.00			2" Ice	1.81	0.09	0.03
						4" Ice	2.58	1.57	0.14
ATBT-BOTTOM-24V	A	From Leg	2.00	0.0000	140.00	No Ice	0.12	0.08	0.00
			0.00			1/2" Ice	0.17	0.12	0.00
			0.00			1" Ice	0.23	0.17	0.01
						2" Ice	0.38	0.30	0.01
						4" Ice	0.77	0.67	0.04
ATBT-BOTTOM-24V	В	From Leg	2.00	0.0000	140.00	No Ice	0.12	0.08	0.00
			0.00			1/2" Ice	0.17	0.12	0.00
			0.00			1" Ice	0.23	0.17	0.01
						2" Ice	0.38	0.30	0.01
ATBT-BOTTOM-24V	С	From Leg	2.00	0.0000	140.00	4" Ice No Ice	0.77 0.12	0.67 0.08	0.04 0.00
ATBT-BOTTOWI-24V	C	From Leg	2.00 0.00	0.0000	140.00	1/2" Ice	0.12	0.08	0.00
			0.00			1" Ice	0.17	0.12	0.00
			0.00			2" Ice	0.38	0.30	0.01
						4" Ice	0.77	0.67	0.04
Pipe Mount [PM 602-3]	C	None		0.0000	130.00	No Ice	7.68	7.68	0.28
• -						1/2" Ice	9.50	9.50	0.35
						1" Ice	11.32	11.32	0.43
						2" Ice	14.96	14.96	0.58
						4" Ice	22.24	22.24	0.87
742 213	A	From Leg	1.00	0.0000	130.00	No Ice	5.14	2.87	0.02
			0.00			1/2" Ice	5.61	3.48	0.05
			0.00			1" Ice	6.09	3.95	0.08
						2" Ice 4" Ice	7.07 9.13	4.89 6.88	0.16 0.39
742 213	В	From Leg	1.00	0.0000	130.00	No Ice	9.13 5.14	2.87	0.39
172 213	В	110m Leg	0.00	0.0000	130.00	1/2" Ice	5.61	3.48	0.02
			0.00			1" Ice	6.09	3.46	0.03
			0.00			2" Ice	7.07	4.89	0.16
						4" Ice	9.13	6.88	0.39
742 213	C	From Leg	1.00	0.0000	130.00	No Ice	5.14	2.87	0.02
		3	0.00			1/2" Ice	5.61	3.48	0.05
			0.00			1" Ice	6.09	3.95	0.08

GPD Group

520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	ANDOVER NORTH / BU#: 842856	6 of 8
Project		Date
	2015777.842856.01	14:26:19 03/13/15
Client	Crown Castle USA, Inc.	Designed by EBoaz

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft ²	ft ²	K
						2" Ice 4" Ice	7.07 9.13	4.89 6.88	0.16 0.39

Maximum Tower Deflections - Service Wind						
Section	Elevation	Horz.	Gov.	Tilt	Twist	
No.		Deflection	Load			
	ft	in	Comb.	0	٥	
L1	149 - 123.612	33.592	27	2.0139	0.0239	
L2	127.388 - 79.128	24.653	27	1.9008	0.0180	
L3	83.873 - 43.243	10.191	27	1.1851	0.0062	
L4	48.76 - 0	3.372	27	0.6356	0.0025	

	Critical Deflections	and Rad	ius of Cur	vature - S	ervice Wi	ind
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
		Load		0	0	ft
ft		Comb.	in		0	
149.00	T-Arm Mount [TA 702-3]	27	33.592	2.0139	0.0239	20904
140.00	Commscope MC-HPM1250-B	27	29.803	1.9822	0.0215	11613
130.00	Pipe Mount [PM 602-3]	27	25.695	1.9234	0.0188	5520

Maximum Tower Deflections - Design Wind						
Section	Elevation	Horz.	Gov.	Tilt	Twist	
No.		Deflection	Load			
	ft	in	Comb.	0	0	
L1	149 - 123.612	96.575	2	5.7862	0.0685	
L2	127.388 - 79.128	70.926	2	5.4648	0.0517	
L3	83.873 - 43.243	29.355	2	3.4127	0.0177	
L4	48.76 - 0	9.718	2	1.8317	0.0070	

Critical Deflections and Radius of Curvature - Design Wind							
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature	
		Load				ft	
ft		Comb.	in	0	0		
149.00	T-Arm Mount [TA 702-3]	2	96.575	5.7862	0.0685	7460	
140.00	Commscope MC-HPM1250-B	2	85.705	5.6967	0.0617	4144	
130.00	Pipe Mount [PM 602-3]	2	73.916	5.5294	0.0538	1968	

GPD Group

520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	ANDOVER NORTH / BU#: 842856	7 of 8
Project		Date
	2015777.842856.01	14:26:19 03/13/15
Client	0 0 1 1104 1	Designed by
	Crown Castle USA, Inc.	EBoaz

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. P_a	Ratio P
1,0.	ft		ft	ft		ksi	in^2	K	K	$\overline{P_a}$
L1	149 - 123.612 (1)	TP26.2021x21.5x0.1875	25.39	0.00	0.0	39.000	15.0657	-2.99	587.56	0.005
L2	123.612 - 79.128 (2)	TP33.9598x25.1277x0.1875	48.26	0.00	0.0	36.155	19.5819	-6.66	707.98	0.009
L3	79.128 - 43.243 (3)	TP40.1211x32.7164x0.25	40.63	0.00	0.0	38.397	30.8399	-11.28	1184.15	0.010
L4	43.243 - 0 (4)	TP47.5x38.6156x0.3125	48.76	0.00	0.0	38.896	46.8041	-20.15	1820.51	0.011

	Pole Bending Design Data									
Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			M_{x}	f_{bx}	F_{bx}	f_{bx}	M_{y}	f_{by}	F_{by}	f_{by}
	ft		kip-ft	ksi	ksi	F_{bx}	kip-ft	ksi	ksi	F_{by}
L1	149 - 123.612 (1)	TP26.2021x21.5x0.1875	125.38	15.980	39.000	0.410	0.00	0.000	39.000	0.000
L2	123.612 - 79.128 (2)	TP33.9598x25.1277x0.1875	554.60	41.768	36.155	1.155	0.00	0.000	36.155	0.000
L3	79.128 - 43.243 (3)	TP40.1211x32.7164x0.25	1003.86	40.671	38.397	1.059	0.00	0.000	38.397	0.000
L4	43.243 - 0 (4)	TP47.5x38.6156x0.3125	1771.83	38.966	38.896	1.002	0.00	0.000	38.896	0.000

Pole Shear Design Data									
Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
		V	f_{v}	F_{v}	f_{v}	T	f_{vt}	F_{vt}	f_{vt}
ft		K	ksi	ksi	F_v	kip-ft	ksi	ksi	F_{vt}
149 - 123.612 (1)	TP26.2021x21.5x0.1875	8.28	0.550	26.000	0.042	0.24	0.015	26.000	0.001
123.612 - 79.128 (2)	TP33.9598x25.1277x0.1875	11.46	0.585	26.000	0.045	0.24	0.009	26.000	0.000
79.128 - 43.243 (3)	TP40.1211x32.7164x0.25	14.08	0.457	26.000	0.035	0.24	0.005	26.000	0.000
43.243 - 0 (4)	TP47.5x38.6156x0.3125	17.40	0.372	26.000	0.029	0.24	0.003	26.000	0.000
	ft 149 - 123.612 (1) 123.612 - 79.128 (2) 79.128 - 43.243 (3)	Elevation Size ft 149 - 123.612 (1) TP26.2021x21.5x0.1875 123.612 - 79.128 (2) TP33.9598x25.1277x0.1875 79.128 - 43.243 (3) TP40.1211x32.7164x0.25	Elevation Size Actual V ft K 149 - 123.612 (1) TP26.2021x21.5x0.1875 8.28 123.612 - 79.128 (2) TP33.9598x25.1277x0.1875 11.46 79.128 - 43.243 (3) TP40.1211x32.7164x0.25 14.08	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Pole Interaction Design Data

Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f_{by}	Ratio f _v	Ratio f_{vt}	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	ft	P_a	F_{bx}	$\overline{F_{by}}$	$\overline{F_v}$	$\overline{F_{vt}}$			
L1	149 - 123.612 (1)	0.005	0.410	0.000	0.042	0.001	0.415	1.333	H1-3+VT 🗸
L2	123.612 - 79.128 (2)	0.009	1.155	0.000	0.045	0.000	1.165	1.333	H1-3+VT 🗸
L3	79.128 - 43.243 (3)	0.010	1.059	0.000	0.035	0.000	1.069	1.333	H1-3+VT 🗸
L4	43.243 - 0 (4)	0.011	1.002	0.000	0.029	0.000	1.013	1.333	H1-3+VT

GPD Group 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	ANDOVER NORTH / BU#: 842856	8 of 8
Project		Date
	2015777.842856.01	14:26:19 03/13/15
Client		Designed by
	Crown Castle USA, Inc.	EBoaz

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$SF*P_{allow} \ K$	% Capacity	Pass Fail
L1	149 - 123.612	Pole	TP26.2021x21.5x0.1875	1	-2.99	783.22	31.2	Pass
L2	123.612 - 79.128	Pole	TP33.9598x25.1277x0.1875	2	-6.66	943.73	87.4	Pass
L3	79.128 - 43.243	Pole	TP40.1211x32.7164x0.25	3	-11.28	1578.47	80.2	Pass
L4	43.243 - 0	Pole	TP47.5x38.6156x0.3125	4	-20.15	2426.74	76.0	Pass
						Summary	ELC:	LC5
						Pole (L2) Rating =	87.4 87.4	Pass Pass

APPENDIX B BASE LEVEL DRAWING

(INSTALLED)
(INSTALLED)
(INSTALLED)
(INSTALLED)
(INSTALLED)
(IV) 7/27 TO 149 FT LEVEL

BUSINESS UNIT: 842856 TOWER ID: C_BASELEVEL

SHEET TITLE

BASE LEVEL

122 JONATHAN TRUMBULL HIGHWAY (ROUTE 6) ANDOVER, CT 06232 TOLLAND COUNTY USA

CROWN REGION ADDRESS

USA

홍 불

DRAWN BY: VJL
CHECKED BY:
DRAWING DATE: 11/08/14

SITE NUMBER:
SITE NAME:

SITE NAME

ANDOVER NORTH

BUSINESS UNIT NUMBER

842856 SITE ADDRESS

SHEET NUMBER

A1-0

1-1-0- 1

APPENDIX C ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F

Site Data

BU#: 842856

Site Name: ANDOVER NORTH

App #: 282530 Rev. 1

Pole Manufacturer: Other

Anchor Rod Data						
Qty:	12					
Diam:	2.25	in				
Rod Material:	A615-J					
Strength (Fu):	100	ksi				
Yield (Fy):	75	ksi				
Bolt Circle:	56	in				

Plate Data					
Diam: 62 in					
Thick:	1.5	in			
Grade:	60	ksi			
Single-Rod B-eff:	12.56	in			

Stiffener Da	ata (Welding a	at both sides)
Config:	1	*
Weld Type:	Both	
Groove Depth:	0.5625	in **
Groove Angle:	45	degrees
Fillet H. Weld:	0.375	in
Fillet V. Weld:	0.1875	in
Width:	7	in
Height:	26	in
Thick:	1.5	in
Notch:	0.75	in
Grade:	50	ksi
Weld str.:	70	ksi

Pole Data							
Diam:	47.5	in					
Thick:	0.3125	in					
Grade:	65	ksi					
# of Sides:	18	"0" IF Round					
Fu	80	ksi					
Reinf. Fillet Weld	0	"0" if None					

Stress Increase Factor						
ASIF:	1.333					

Reactions		
Moment:	1772	ft-kips
Axial:	20	kips
Shear:	17	kips

AISC ASD <-Only Applicable to Unstiffened Cases If No stiffeners, Criteria:

Anchor Rod Results

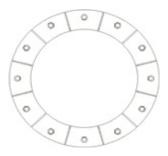
Maximum Rod Tension: 124.9 Kips Allowable Tension: 195.0 Kips Anchor Rod Stress Ratio: 64.1% Pass

Base Plate Results	Flexural Check
Base Plate Stress:	49.4 ksi
Allowable Plate Stress:	60.0 ksi
Base Plate Stress Ratio:	82.4% Pass

Stiffened
Service, ASD
0.75*Fy*ASIF
Y.L. Length:
N/A, Roark

Stiffened

Service, ASD


Fty*ASIF

Stiffener Results

Horizontal Weld: 55.1% Pass Vertical Weld: 57.6% Pass Plate Flex+Shear, fb/Fb+(fv/Fv)^2: 3.8% Pass Plate Tension+Shear, ft/Ft+(fv/Fv)^2: 27.2% Pass Plate Comp. (AISC Bracket): 26.7% Pass

Pole Results

7.9% Pass Pole Punching Shear Check:

Analysis Date: 3/13/2015

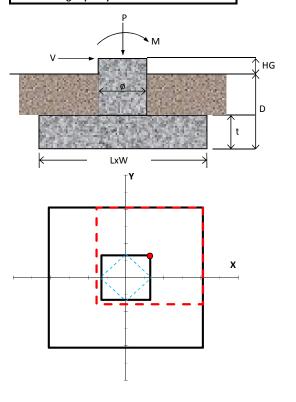
^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Mat Foundation Analysis ANDOVER NORTH / BU#: 842856 2015777.842856.01

General Info		
Code	TIA/EIA-222-F (LRFD)	
Bearing On	Soil	
Foundation Type	Mono Pad	
Pier Type	Square	
Reinforcing Known	Yes	
Max Capacity	1	

Tower Reactions			
Moment, M	1772	k-ft	
Axial, P	20	k	
Shear, V	17	k	


Pad & Pier Geometry			
Pier Width, ø	6.5	ft	
Pad Length, L	20.5	ft	
Pad Width, W	20.5	ft	
Pad Thickness, t	3	ft	
Depth, D	6.5	ft	
Height Above Grade, HG	1	ft	

Pad & Pier Reinforcing			
Rebar Fy	60	ksi	
Concrete Fc'	4	ksi	
Clear Cover	3	in	
Reinforced Top & Bottom?	Yes		
Pad Reinforcing Size	# 8		
Pad Quantity Per Layer	21		
Pier Rebar Size	# 8		
Pier Quantity of Rebar	40		

Soil Properties			
Soil Type	Granular		
Soil Unit Weight	115	pcf	
Angle of Friction, ø	30	0	
Bearing Type	Gross		
Ultimate Bearing	12	ksf	
Water Table Depth	10	ft	
Frost Depth	3	ft	

Bearing S	ummary		Load Case
Qxmax	2.17	ksf	0.9D+1.6W
Qymax	2.17	ksf	0.9D+1.6W
Qmax @ 45°	2.41	ksf	0.9D+1.6W
Q _{(all) Gross}	9.00	ksf	
Controlling Capacity	26.8%	Pass	

Overturning Summary (Required FS=1.0)			Load Case
FS(ot)x	1.63	≥1.0	0.9D+1.6W
FS(ot)y	1.63	≥1.0	0.9D+1.6W
Controlling Capacity	61.5%	Pass	

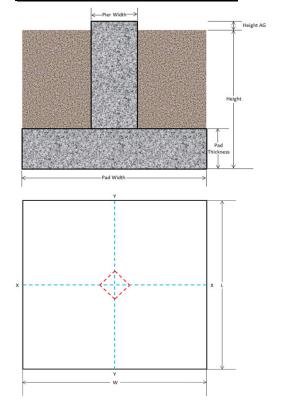
GPD Mat Foundation Analysis - V1.02

Base Foundation Reinforcement Check ANDOVER NORTH / BU#: 842856 2015777.842856.01

Code TIA-222-G

Tower Reactions			
Moment	1772	k-ft	
Axial	20	k	
Shear	17	k	

Pad & Pier Geometry				
Height	6.5	ft		
Height above Grade	1	ft		
Pad Length, L	20.5	ft		
Pad Width, W	20.5	ft		
Pad Thickness	3	ft		
Pier Shape	Square			
Square Pier Width	6.5	ft		


Pad & Pier Reinforcing			
Reinforcing Known	Yes		
f _c '	4	ksi	
Clear Cover	3	in	
Rebar Fy	60	ksi	
Reinforced Top & Bottom?	Yes		
Pad Rebar Size	# 8		
Pad Rebar Quantity	21		
Pier Rebar Size	# 8		
Pier Rebar Quantity	40		

Unit Weights		
Concrete Unit Weight	150	pcf
Soil Unit Weight	115	pcf

Orthogonal Bearing		
Q _{max}	2.89	ksf
Q_{min}	0.00	ksf
Bearing Length	13.38	ft

Pad Moment Capacity			
M _u =	33.39	k-ft	
φM _n =	112.55	k-ft	
Moment Capacity	29.7%	ОК	
One-Way (Wide-Be	One-Way (Wide-Beam) Shear		
V _u =	125.07	kips	
φV _n =	735.13	kips	
Shear Capacity	17.0%	ОК	
Two-Way (Punching) Shear			
V _u =	254.20	kips	
φV _n =	2617.80	kips	
Shear Capacity	9.7%	ОК	
Pier Compres	sion		
P _u =	20.00	kips	
$\Phi P_n =$	11686.56	kips	
Compression Capacity	0.2%	ОК	

Overall Capacities			
Reinforcement Capacity	29.7%	OK	
As Min Met?	Yes		
Controlling Capacity	29.7%	ОК	

Base Foundation Reinforcement - V1.09

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11501E

CT501/ ATT Andover- Prime 122 Route 6 Andover, CT

March 24, 2015

EBI Project Number: 6215001738

Site Compliance Summary		
Compliance Status:	COMPLIANT	
Site total MPE% of		
FCC general public	25.77 %	
allowable limit:		

March 24, 2015

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11501E - CT501/ ATT Andover- Prime

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **122 Route 6**, **Andover**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is 467 μ W/cm², and the general population exposure limit for the PCS and AWS bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **122 Route 6**, **Andover, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
- 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antennas used in this modeling are the **RFS APX16PV-16PVL-C** for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the **Commscope LNX-6515DS-VTM** for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The **RFS APX16PV-16PVL-C** has a maximum gain of **16.3 dBd** at its main lobe. The **Commscope LNX-6515DS-VTM** has a maximum gain of **14.6 dBd** at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antenna mounting height centerline of the proposed antennas is **140 feet** above ground level (AGL).
- 9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	RFS APX16PV- 16PVL-C	Make / Model:	RFS APX16PV- 16PVL-C	Make / Model:	RFS APX16PV- 16PVL-C
Gain:	16.3 dBd	Gain:	16.3 dBd	Gain:	16.3 dBd
Height (AGL):	140	Height (AGL):	140	Height (AGL):	140
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	6	Channel Count	6	# PCS Channels:	6
Total TX Power:	240	Total TX Power:	240	# AWS Channels:	240
ERP (W):	10,237.91	ERP (W):	10,237.91	ERP (W):	10,237.91
Antenna A1 MPE%	2.05	Antenna B1 MPE%	2.05	Antenna C1 MPE%	2.05
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	140	Height (AGL):	140	Height (AGL):	140
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A2 MPE%	0.37	Antenna B2 MPE%	0.37	Antenna C2 MPE%	0.37

Site Composite MPE%		
Carrier	MPE%	
T-Mobile	7.26	
AT&T	14.48 %	
MetroPCS	4.03 %	
Site Total MPE %:	25.77 %	

T-Mobile Sector 1 Total:	2.42 %
T-Mobile Sector 2 Total:	2.42 %
T-Mobile Sector 3 Total:	2.42 %
Site Total:	25.77 %

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector 1:	2.42 %
Sector 2:	2.42 %
Sector 3:	2.42 %
T-Mobile Total:	7.26 %
Site Total:	25.77 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **25.77%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803