STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

PETITION OF MONTVILLE POWER LLC FOR A DECLARATORY RULING TO APPROVE THE RETROFIT AND OPERATION OF A 40 MW BIOMASS-FUELED GENERATION UNIT AT MONTVILLE STATION IN UNCASVILLE, CONNECTICUT

MONTVILLE POWER LLC
PETITION FOR DECLARATORY RULING

TABLE OF CONTENTS
I. INTRODUCTION 1
A. Statutory Authority 1
B. Project Overview 2
C. Applicant Information 3
II. DESCRIPTION OF THE PROJECT 3
A. Site Description 3
B. Station Redevelopment 4

1. Retrofit of Existing Unit 5 4.
2. New Fuel 6
3. Electrical Interconnection 7
4. Site Aesthetics 7
5. Sound Attenuation 8
6. Traffic Impacts 8
C. Construction Plan 9
III. NEED FOR THE PROJECT 10
IV. ENVIRONMENTAL IMPACTS 11
A. Air Emissions 11
B. Natural Diversity 12
C. Coastal Zone Consistency Review 13
D. Subsurface Environmental Conditions 13
E. Water Resources 14
7. Cooling Water Diversion 14
8. Water Discharges 14
9. Site Storm Water Runoff 15
F. Sound 15
V. STATE AND MUNICIPAL CONSULTATIONS 16
VI. CONCLUSION 18
ATTACHMENTS 20
A. Site Location Map 20
B. General Arrangement Plan 20
C. Noise Study 20
D. Traffic Study 20
E. Construction Schedule 20

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

PETITION OF MONTVILLE POWER LLC FOR A DECLARATORY RULING TO APPROVE THE RETROFIT AND OPERATION OF A 40 MW BIOMASSFUELED GENERATION UNIT AT MONTVILLE STATION IN UNCASVILLE, CONNECTICUT

PETITION NO. 907

June 22, 2009

PETITION FOR DECLARATORY RULING

I. INTRODUCTION

A. Statutory Authority

Pursuant to § $16-50 \mathrm{k}$ of the Connecticut General Statutes ("C.G.S.") and $\S \S 16-$ $50 \mathrm{j}-38$ to $16-50 \mathrm{j}-40$ of the Regulations of Connecticut State Agencies ("R.C.S.A."), Montville Power LLC ("Montville Power"), hereby submits to the Connecticut Siting Council (the "Council") this Petition for a Declaratory Ruling ("Petition") approving Montville Power's proposal to retrofit Montville Station (the "Station") Unit 5 to enable the unit to use clean wood biomass to produce up to 40 MW of renewable energy (the "Project"). The Project is eligible to be approved by declaratory ruling because it is an electric generating facility that will be located at a site where an electric generating facility existed prior to July 1, 2004. C.G.S. § 16-50k(a).

B. Project Overview

Originally placed in service in the 1950s, Unit 5 is an 82 MW steam generation unit presently fueled by natural gas and No. 6 oil. Montville Power proposes to retrofit Unit 5 to use clean wood biomass to produce up to 40 MW of renewable energy. In addition, the Project will be designed to maintain Unit 5's ability to operate on liquid fuel or natural gas at its full 82 MW capacity, when needed, in order to continue to provide power during peak periods. In addition, Unit 5's liquid fuel will be switched form No. 6 fuel oil to ultra-low sulfur distillate fuel oil ("ULSD fuel"). The Project will utilize a stoker technology with a vibrating grate feed system that will allow the biomass to be evenly combusted with increased efficiency and lower ash discharge. To control emissions, retrofitted Unit 5 will be equipped with enhanced pollution control systems, and will be among the cleanest biomass-fueled projects in the country.

Montville Power plans to procure the biomass fuel supply to power Unit 5 from local Connecticut sources, including foresters. The Station's location on the estuarine portion of the Thames River also affords Montville Power the option to transport sustainable biomass by barge from the northern states in the event that Connecticut's indigenous supply becomes depleted. The biomass fuel source will consist exclusively of untreated wood, clean urban wood wastes and forest residues, all of which qualify as sustainable biomass under Connecticut law as further discussed in Section II below.

Due to its location, configuration, fuel source and anticipated emission reductions, the Project will not have substantial adverse environmental effects.

C. Applicant Information

Montville Power is a wholly-owned subsidiary of NRG Energy, Inc. ("NRG"). NRG is a competitive power generation company with an approximately $25,000 \mathrm{MW}$ portfolio distinguished by its range in geography, fuel source and dispatch level. Headquartered in Princeton, New Jersey, NRG owns and operates a diverse portfolio of power-generating facilities in the Northeast and throughout the United States. NRG and its subsidiaries own and operate almost $2,000 \mathrm{MW}$ of generation capacity within Connecticut. NRG is a Member of the New England Power Pool.

II. DESCRIPTION OF THE PROJECT

A. Site Description

Montville Power has owned and operated the Station since purchasing it from The Connecticut Light \& Power Company ("CL\&P") in December 1999. Located in Uncasville, Connecticut, six miles north of New London, Connecticut, on the Thames River, the Station has a nominal, aggregate generating capacity of 500 MW , and currently consists of four units: two steam boilers, Units 5 and 6, and two diesel-fired internal combustion turbines, Units 10 and 11. Unit 5 currently has a nominal rating of 82 MW. (A Site Location Map is included as Attachment A to this Petition.) Montville Power owns approximately 50 acres comprising the Station site, of which the Project will utilize no more than 20%.

As part of the Project, Montville Power will construct a fuel storage shed capable of storing enough wood to fuel Unit 5 for 14 days. The fuel storage shed also will be equipped with automated stacking and a reclaim process integrated into the unit's fuel
management system. As stated above, once retrofitted as a biomass unit, Unit 5 will remain able to operate up to 82 MW of capacity, using natural gas or ULSD fuel. The Station is connected to the Algonquin Gas Transmission ("Algonquin") pipeline by a pipeline spur, owned by Yankee Gas Services Company ("Yankee Gas"), and, in order to accommodate Unit 5's full load capacity, one of the existing fuel oil storage tanks will be converted to suitable storage for ULSD fuel. (A General Arrangement Plan illustrating the general layout of the existing Station and the retrofit of Unit 5 is included as Attachment B to this Petition.)

B. Station Redevelopment

1. Retrofit of Existing Unit 5

Upon completion of the Project, Unit 5 is expected to run as a biomass-fueled, base load resource for the majority of the year. The Project consists of retrofitting Unit 5 to be fueled by biomass to produce up to 40 MW , or to be fueled by either natural gas or ULSD fuel to retain the ability to provide up to 82 MW for a limited period of time. The operational flexibility of the retrofitted Unit 5 - its ability to operate at a nominal rating of 40 MW when fueled by biomass, while retaining the ability to operate up to 82 MW on either natural gas or ULSD fuel - will provide both economic and system reliability benefits to the state of Connecticut.

Converting Unit 5 to a base load, biomass-fueled generator will increase its operating efficiency and will produce cleaner energy, as compared with many of the oilfired, steam units currently in operation in Connecticut. When the Project is completed, Unit 5 will be equipped with regenerative selective catalytic reduction ("RSCR")
technology to reduce nitrous oxide ("NOx" emissions, and with an oxidation catalyst to reduce carbon monoxide ("CO") and volatile organic compound ("VOC") emissions, which will reduce the Station's overall NOx rates up to 75\% at Unit 5's full load, as compared to current allowable rates for the Station. (A more detailed description of the emissions profile for the Station following completion of the Project is provided in Section IV of this Petition.) Unit 5's base load, biomass-fueled operations also will enhance its operational flexibility by allowing Unit 5 to respond more quickly to the needs of the system on high energy demand days. In other words, because Unit 5 will be operating as a base load resource, the unit will effectively provide spinning reserve capacity at times of system peak - with the added benefit that, as a biomass-fueled generator, Unit 5 will provide much cleaner spinning reserve capacity than would be provided by a ULSD fuel or natural gas-fired unit.

Furthermore, because Unit 5 is expected to operate as a base load resource when fueled by biomass, completion of the Project will help to moderate the market price of energy and of renewable energy credits ("RECs"). Simply put, Unit 5 will provide more flexible, lower cost, lower emitting, Class 1 renewable energy with the ability to provide additional power on demand. When Unit 5 operates on biomass fuel, which should be the majority of the hours in the year, it will generate approximately 40 MWs of RECs to contribute towards the state's renewable portfolio requirements, which are escalating at a rate of one percent per year over the next several years. As a result, Connecticut's consumers will benefit from lower cost power, even as the state moves closer to meeting its renewable energy goals.

2. New Fuel

For base load operations, retrofitted Unit 5 primarily will use biomass fuel obtained from three source streams:
(1) untreated, recycled wood from manufacturing residues, which includes sawdust, shavings, and unused wood from wood manufacturing and milling businesses (e.g. saw mills or flooring mills);
(2) urban wood wastes, which includes land-clearing debris from home and business development, residential yard wastes from arborists and landscaping activities and untreated, recycled pallets; and
(3) forest residues, which includes logging residues, land-clearing debris from timber stand improvements and commercial development removals. Forest residues are typically whole tree chips and un-merchantable byproducts of normal timbering practices, including trunks, limbs, stumps, leaves and tree tops. Un-merchantable biomass products are traditionally left on the forest floor while high-value saw timber is sold to lumber markets.

Each of these sources is an unadulterated, qualifying sustainable biomass fuels within the meaning of C.G.S. § 16-1(a)(45). Montville Power will not accept painted, stained, pressure-treated or engineered material or any other construction or demolition waste for use as a biomass fuel for Unit 5. All biomass fuel is expected to be processed by the supplier, prior to delivery to the Station. Montville Power will specify to its suppliers that it will only accept wood chips that are no greater than two inches in size. Although Montville Power will install a wood hogger to provide limited processing
capability on site, the wood hogger will be used solely to process the limited amount of pre-processed biomass that may be larger than specified.

In addition, the Project scope includes new biomass fuel handling equipment and the retrofit of an existing fuel oil tank with storage capacity for a minimum of 50,000 gallons of ULSD fuel, which equates to enough ULSD fuel to operate Unit 5 continuously, at full output, for approximately eight hours. The Station is connected to the Algonquin pipeline by a pipeline spur owned by Yankee Gas, with sufficient capacity for plant operations.

3. Electrical Interconnection

The existing interconnection for Unit 5 will not require any modifications to accommodate the Project. Unit 5 will continue to be electrically connected to the Station's 138 kV substation, which is shared with the Station's Unit 6.

4. Site Aesthetics

The Station has been operated as electrical generation station for over 90 years, and is a fixture in the surrounding community. Visual impacts of the Project will be limited to the construction of covered fuel receiving and storage facilities. The fuel receiving facility will be located near the entrance to the Station on Lathrop Road and will receive fuel delivery vehicles, which will then convey the biomass a distance of approximately 300 yards to the nearby fuel storage facility. As designed, the storage facility will be approximately 90 feet tall. Montville Power will landscape around the wood yard receiving area to minimize its visual effects. Grass will be planted on areas
not subject to vehicle or foot traffic, and walkways and driveways will be comprised of crushed stone, asphalt or concrete.

5. Sound Attenuation

The Station is bounded by the Thames River on one side and by an upwardsloping topography of forested land on the other. This location will minimize the impact of sound emissions of Unit 5. In addition, retrofitted Unit 5 will feature highperformance silencers and noise-attenuating enclosures for the fuel processing equipment, as well as installation of acoustical barriers around the fuel unloading and handling equipment, noise emissions are expected to comply with the standards established by the state of Connecticut. A complete Noise Level Evaluation (the "Noise Study") evidencing this conclusion was conducted by Shaw Group and is discussed in detail below in Section IV. (A copy of the Noise Study is included as Attachment C to this Petition.)

6. Traffic Impacts

A complete study of the impact that construction and operation of the Project will have on local traffic (the "Traffic Study") was conducted by Shaw Environmental. Based on an analysis of the expected traffic levels during the 12-month construction period, the Project will result in very minimal impacts on roadway operations. Montville Power estimates that approximately 100 craft employees will work on the Project, of which 80 will work on the site during the heaviest work days. Existing traffic volumes along Lathrop Road and Depot Road are very light and the additional construction traffic will have only minimal and temporary impact on roadway operations. All drivers of
construction vehicles will be warned to stay off of the local residential streets. The Project's permanent impact on traffic is expected to increase slightly with the addition of 40 fuel truck deliveries each day. Despite the additional fuel deliveries, the Project will have no appreciable effect on local traffic volumes or delays. (A copy of the Traffic ; included as Attachment D to this Petition.)

C. Construction Plan

NRG Construction LLC, NRG's development, engineering, procurement and stion subsidiary, will directly manage and execute the construction activities for ect. (A Construction Schedule is included as Attachment E to this Petition.) onstruction activities associated with the Project include the following:

- installation of new maintenance warehouse/garage;
- installation of new waste water transfer pump house interconnection to city sewer;
Wsitor c
demolition of existing maintenance garage and waste water treatment 106 b bol facility;
- site mobilization for construction activities;
- civil work including foundations for the new wood yard material handling equipment, electro-static precipitators, regenerative select catalytic and $2 \operatorname{mog} \lambda!$ booster fan;
JSAG Lc installation of biomass material handling equipment;
+0 4T6I
brolecef:
covatifs
- installation of emission controls equipment including dust collector and electrostatic precipitator ("ESP") for particulate controls, oxidation catalyst and RSCR for NOx, CO and VOC emissions control;
- removal of lower furnace bottom and installation of new stoker grate firing system including fuel metering system and distribution air systems;
- installation of new ash material handling systems;
- construction of a new electrical distribution system for power supply to the new equipment;
* retrofit of the No. 6 oil supply system day tank to hold ULSD fuel; and - retrofit of Unit 5 to install low NOx burners on the boiler.

Landscaping around the wood yard receiving area also is planned in order to minimize visual effects of the operation. Grass will be planted on areas not subject to vehicle or foot traffic and walkways and driveways will be of crushed stone, asphalt or concrete. Erosion and sedimentation control procedures will be implemented to preçlude any run-off into the Thames River.

III. NEED FOR THE PROJECT

In 1998, the state legislature adopted a state-wide requirement for the procurement of renewable energy, C.G.S § 16-245a, and established Connecticut's renewable portfolio standards ("RPS"). Revised several times since then, Connecticut's current RPS require that, by $2020,20 \%$ of energy sold in the state must be produced by "Class I" renewable resources (as defined by C.G.S. § 16-245a). On March 25, 2009, NRG filed with the DPUC a Petition for a Declaratory Ruling with respect to
qualification of the Project as a Class I renewable energy source pursuant to C.G.S $\S 6-1(\mathrm{a})(26)$. A determination on the petition is expected soon, and Montville Power will provide a copy of such determination to the Council as soon as it is received.

Opinions differ regarding the amount of available renewable generation in NEPOOL. However, there is agreement that existing resources are only sufficient through 2010 and the absence of additional capacity may cause a shortfall in RECs, requiring Connecticut electrical delivery companies to procure RECs at the penalty rate of $\$ 55$ per megawatt hour. The Project is uniquely situated to take advantage of existing infrastructure to satisfy a portion of the growing renewable requirements without constructing additional capacity in Connecticut. The modification of existing, in-state equipment allows Connecticut to benefit directly from the reinvestment in an aging facility by improving its emissions profile, while also ensuring that Connecticut customers' REC costs inure to the benefit of the Connecticut economy, by supporting local fuel supply and generation.

IV. ENVIRONMENTAL IMPACTS

A. Air Emissions

The Project is designed to meet all applicable state and federal air quality requirements, as well as the expected terms of the Air Permit to be issued by DEP under R.C.S.A. § 22a-174-3a. Overall, the Project is designed to fall within the allowable stack concentrations of hazardous air pollutants as allowed by R.C.S.A. § 22a-174-29, as well as to meet Best Available Control Technology standards for sulfur dioxide (" $\mathrm{SO}_{2}{ }^{2}$ "), NOx , CO, VOC, PM_{10}, and $\mathrm{PM}_{2.5}$. As designed, the Project also will meet Lowest Available

Control Technology for NOx. Unit 5 will use good combustion practices when fueled by biomass, and will use ULSD fuel and natural gas up to 82 MW for the control of SO_{2}. The Project will be equipped with a catalytic oxidation system for the control of CO and some VOC emissions, and equipped with a new ESP for the control of PM_{10}, and $\mathrm{PM}_{2.5}$. In addition, Unit 5 will be equipped with RSCR technology for the control of NOx.

Because the nameplate capacity of Unit 5 is greater than 25 MW , the Project also is subject to the requirements of the Federal Acid Rain Program (40 C.F.R. § 72). The Station has an Acid Rain permit issued by DEP for its existing units including Unit 5. No modification to the Acid Rain Permit is needed. Additionally, the Station has a Title V Operating Permit (Permit No. 107-0043-TV) issued by DEP on November 15, 2007. Under R.C.S.A. § 22a-174-33(f)(4), Montville Power is required to submit a request to revise the Title V Permit within 12 months of the commencement of biomass operations.

Based on the foregoing, the air emissions will meet all applicable state and federal requirements and will not have a substantial adverse environmental effect on Connecticut's air resources.

B. Natural Diversity

As defined in the DEP data base, the Station, and, therefore the Project, is not located within an area defined as requiring a review of the Natural Diversity Database ("NDD") to determine the presence of endangered or threatened species. However, Montville Power will submit a NDDB review form to DEP to solicit a response that either (1) confirms that this review is not needed, or (2) provides information regarding species of concern. Montville Power will provide a copy of such review form to the

Council upon filing, and will provide a copy of DEP's response to the Council upon receipt.

C. Coastal Zone Consistency Review

The Station is located with the Coastal Zone as identified by DEP. A Coastal Consistency Review form will be filed with DEP's Office of Long Island Sound Programs with copies to the Town of Montville, DEP's Air Bureau and the Council. No impact on the Coastal Zone is expected from the Project.

D. Subsurface Environmental Conditions

Phase I and Phase II studies of the Station's site, which were conducted by CL\&P in 1999, indicated historic site contamination, including oil, solvent and coal ash deposits, from industrial activities that occurred prior to Montville Power's ownership of the Station. As a condition of Montville Power's 1999 purchase of the Station from CL\&P, with the concurrence of DEP, Montville Power accepted responsibility for compliance with the requirements of the Connecticut Transfer Act, C.G.S. § 22a-134 (the "Transfer Act"). Pursuant to the Transfer Act, Montville Power must remediate and/or implement controls to address the site pollution. Montville Power has conducted extensive studies since it assumed ownership of the Station and has been working with a Licensed Environmental Professional from Shaw E\&I, and with DEP, to remediate the contamination issues at the Station. The locations chosen for several of the facilities comprising the Project are within areas identified for remediation. Accordingly, remediation will be completed prior to or in conjunction with the completion of the Project.

E. Water Resources

1. Cooling Water Diversion

Montville Power holds water well registrations (Registration Nos. 4000-094-PWR-RI and 4000-095-PWR-RI) and diversions to divert 354.4 million gallons per day ("mgd") of water from the Connecticut River for once-through cooling and other uses associated with the production of electricity. Since there will be no changes to the existing once-through cooling, no changes to Montville Power's diversion registration will be needed. Moreover, no construction activities at the shoreline will be associated with obtaining this water, because the water intake infrastructure is currently in place via existing intake structures, tunnel and pump systems to the existing power plant.

2. Water Discharges

Montville Power holds a current National Pollutant Discharge Elimination System ('NPDES') water discharge permit issued by the DEP (Permit No. CT0003115). This NPDES permit authorizes discharge of 354.4 mgd of once-through cooling water from the existing Station units. Since the cooling water needs for the Project will not change as a result of changing the fuel source, Montville Power will not seek a permit modification for this discharge.

However, the existing NPDES permit also encompasses the operation of a waste water treatment facility ("WWTF") for processing the low volume industrial waters used at the Station. Changing to biomass fuel will change inputs to the WWTF. Due to very low use of the WWTF and to the improvement of publicly-owned treatment facilities ("POTW") in the Town of Montville associated with the Project, all the low volume
waste discharges will be routed to the local POTW. Initial engineering discussions with the Town of Montville have been initiated. If the plan to re-route discharged water to the POTW is approved by the Town, a new, pre-treatment discharge permit will be obtained from DEP and Montville Power's existing NPDES permit will be modified to remove the WWTF discharge.

3. Site Storm Water Runoff

Montville Power holds a registration under the General Permit for the Discharge of Stormwater Associated with Industrial Activities. The Project will alter the potential inputs to the storm water discharge and a modification to the registration will be submitted to DEP by Montville Power, once an evaluation of such changes is completed and confirmed. Furthermore, if necessary to accommodate the Project, Montville Power will submit a registration under the General Permit for the Discharge of Stormwater Associated with Construction Activities.

F. Sound

The Noise Study conducted by Shaw Group assessed the potential noise impact of the Project. (A copy of the Noise Study is included with this Petition as Attachment C.) According to the Noise Study, the acoustical design of Unit 5 and all related equipment will yield full compliance with the performance standards established by the Connecticut DEP. Noise emissions between industrial Zone Class C sites and residential Zone Class A sites are limited to 61 dba in the daytime and 51 dba at night. Modeling results show mitigated noise levels to be in compliance with daytime noise emissions limits. Evening noise levels are marginal, with only slight exceedances of state criteria along adjacent
properties, under worst case scenario conditions. However, the point at which such exceedances were measured is at the southern end of the Station's property line, more than 500 feet from the nearest residential homes, which are separated from the Station site by woods. Moreover, the measured exceedances are so slight that they fall within the $\pm 2 \mathrm{dba}$ margin of error.

Noise attenuation controls planned for the Project include:

- enclosure of $48^{\prime \prime}$ feeder conveyor from truck dumper to fuel shed;
- enclosure of fuel hogger (processing) equipment;
- silencers for filters on hogger and truck dumpers; and
- berm or sound barrier around truck unloading facilities

Additionally, enclosure of the 30 " conveyor from fuel storage to the boiler house may be required if observed noise levels during operations continue to exceed state limits.

As stated above, the results of the Noise Study indicate that, given the proposed acoustical design of the Project, noise emissions are expected to comply with the . standards established by the state of Connecticut.

V. STATE AND MUNICIPAL CONSULTATIONS

NRG has been in contact with a number of state and local officials as part of NRG's coordinated effort to inform and involve stakeholders in Montville Power's plan to improve the Station by adding renewable biomass generation capability. Specifically, NRG has discussed the Project with:

- Council staff;
- DPUC Chairman Donald Downes, DPUC Commissioners Kevin DelGobbo, Jack Betkowski and Tony Palermino and DPUC staff;
- DEP staff (Gary Rose, Ric Pirolli, Ernie Bouffard and Jim Grillo);
- Town of Montville Mayor Joseph Jaskiewicz;
- Town of Montville Police officials (regarding the Traffic Study) - Police Lieutenant Bunnell and Resident State Trooper Collins; and
- the Montville legislative delegation - Senator Edith Prague, Representative Betsy Ritter, Representative Kevin Ryan and Representative Tom Reynolds.

Conversations with all of these stakeholders regarding the Project were positive. All stakeholders recognize the benefits of developing new, environmentally-beneficial, renewable generation at the current Station site. Project-specific issues raised by these stakeholders and addressed with them by NRG (and in this Petition) included (1) environmental and public policy benefits of adding a renewable energy component to the Station; (2) staffing levels or increasing employment at the Station; and (3) maintaining a facility on the tax roll and increasing as additional equipment is added. Going forward, stakeholders' issues will be addressed in the overall Project plan.

The Traffic Study results have been presented to the Mayor and police officials. NRG also will present the results of the Noise Study to the Town of Montville in the near future. NRG has held several meetings with the Mayor and is presently working with the Mayor to schedule meetings with key department heads, community meetings, plant tours
and informational sessions. NRG will notify the Council of these events and invites the Council to participate.

VI. CONCLUSION

Based on the foregoing and the attached exhibits, Montville Power respectfully requests that the Council approve the Project by Declaratory Ruling as allowed under C.G.S. § 16-50k. The Project will provide much needed renewable energy, electric generation capacity and reliability in Connecticut and it will do so without substantial adverse environmental effects.

Finally, in accordance with R.C.S.A. § 16-50j-39, the names addresses and telephone numbers of the persons to whom correspondence or communications in regard to this Petition are to be directed are:

Andrew W. Lord, Esq.
Murtha Cullina LLP
CityPlace I, $29^{\text {th }}$ Floor
185 Asylum Street
Hartford, CT 06103
Telephone: (860) 240-6180
Facsimile: (860) 240-6150
Judith Lagano
Director -- Asset Management
NRG Energy, Inc.
c/o Montville Power LLC
74 Lathrop Road
Uncasville, CT 06382
Telephone: (203) 854-3625
Facsimile: (203) 854-3658
Julie L. Friedberg, Esq.
Senior Counsel
NRG Energy, Inc.
211 Carnegie Center
Princeton, NJ 08540
Telephone: (609) 524-5232
Facsimile: (609) 524-4941
Jonathan Baylor
Senior Analyst, Development \&
Asset Management
NRG Energy, Inc.
211 Carnegie Center
Princeton, NJ 08540
Telephone: (609) 524-4958
Facsimile: (203) 524-4941

Respectfully submitted,

MONTVILLE POWER LLC

Andrew W. Lord, Esq. Murtha Cullina LLP CityPlace I, $29^{\text {th }}$ Floor 185 Asylum Street, Hartford, CT 06103
Telephone: (860) 240-6180
Facsimile: (860)240-6150
Its Attorneys

ATTACHMENTS

A. Site Location Map
B. General Arrangement Plan
C. Noise Study
D. Traffic Study
E. Construction Schedule

Noise Assessment Unit \#5 Biomass Conversion Project NRG Montville Power LLC

Prepared for
Montville Power LLC
74 Lathrop Road
Montville, Connecticut 06382

Prepared by Shaw Environmental, Inc. 88C Elm Street Hopkinton, Massachusetts 01748

June 2009

MONTVILLE POWER LLC

Noise Assessment of Unit 5 Biomass Conversion

June 2009

Introduction

Montville Station (Montville) is located in Montville, CT. Montville operates two steam-electric generating units, Units 5 and 6, as required to supply electricity to the ISO New England system. Unit 5 has a rated capacity of 88 MW . Unit 6 has a rated capacity of 417 MW . Both units burn either oil or natural gas.

This report addresses ambient sound levels and noise issues at Montville in support of a project to add biomass (woodchips) as a primary fuel to Unit 5.

New Equipment

Wood chips will be conveyed to the site in trucks, which will enter the plant from Lathrop Road. Trucks will back into a dumper, and will discharge their loads onto a 48 -inch-wide receiving conveyor. The dumper will be equipped with an air blower and filter for dust control.

The conveyor will transport the wood chips to a hogging machine to ensure they are ground to an appropriate maximum size, before another 48 -inch-wide wide conveyor transports the chips across the railway line to a Processed Fuel Storage Building on the north side of Unit 5. The hogger will also be equipped with an air blower and filter for dust control.

The aforementioned new plant items will be run only in the daytime.
Fuel will be conveyed continuously from the storage building to Unit 5 along a 30 -inch-wide conveyor when Unit 5 is utilizing biomass.

Additional plant equipment considered during this assessment was a Combustion Air (CA) Fan, an electrostatic precipitator, an Induced Draft (ID) fan, and fan filters at metering bins. We also included an approximation for the RSCR fan unit and ducting; the overfire air fan is assumed to draw air from within the building. Appendix C includes a list of inputs into the model.

Unit 5 will use the existing boiler and turbine-generator, which are both located indoors, and no further noise assessments are necessary for this equipment.

Regulations

The Connecticut Department of Environmental Protection (CTDEP) has Regulations for the Control of Noise, Section 22a-69, the relevant parts of which may be summarized as follows:

- Land use classified into zones; A is residential, B is commercial, C is industrial;
- A general prohibition of "excessive noise" beyond zone boundaries;
- The noise emission limit from Zone Class C to Zone Class A is $61 d B A$ in the daytime, 51 dBA at night (10 pm to 7 am);
- The limits are reduced by 5 dBA if tones are present;
- There is an allowance of 5 dBA if sources of noise were present between 1 Jan 1960 and 15 Jun 1978 (the date of the Regulations), and an allowance of 10 dBA if the sources existed before 1960 . Montville was in operation prior to 1960.

The town of Montville, in which the plant is sited, has no local noise ordinance. Receptors to the south of the plant, particularly the residents along Lower Bartlett Road, are located within the jurisdiction of the Town of Waterford. Waterford does have a noise ordinance, which is less detailed than the CTDEP regulations, but uses the same criterion of Zone Class C to Zone Class A emissions as the State, which is 61 dBA in the daytime and 51 dBA at night.

Ambient Noise

Sound level measurements were undertaken without any generating units running on Monday April 13, 2009 during the daytime and into the following night. These measurements were obtained at locations around the station boundary shown in Figure 1 and described in Table 1, below.

Table 1 Location Description for Ambient Measurements June 2008

Location	Description (see also Figure 1)
1	Bottom of Lower Bartlett Road, below last house on this road, with a clear line of sight to the power station
2	Opposite \#31 Lower Bartlett Road, on the power station side of the road
3	The most southerly boundary on Lathrop Road, outside the boundary fence near houses
4	At the main site entrance on Lathrop Road
5	The northern end of the boundary on Lathrop Road, outside the boundary fence opposite houses
6	The north boundary fence in a clearing on a hill within the site, behind trees
7	The most northwest boundary fence within the site, overlooked by a large house
8	At the southern boundary within the site and among trees, with a direct view of the plant
9	On the bridge of the railway track with a direct view of the plant

The measurements were undertaken using Rion model NA-29E integrating octave band sound level meters (serial numbers 10790058 and 10810374), with the microphones at 1.5 m above ground level. These instruments meet the American National Standards Institute (ANSI) and the International Electrotechnical Commission (IEC) requirements for Type 1 accuracy and have calibration traceable to National Institute of Standards Technology (NIST). The meters were also field calibrated (B\&K 4230 no. 782537) before and after each set of measurements. The measurements were conducted in compliance with Sec. 22a-69-4, Measurement Procedures of the Connecticut Regulations for the Control of Noise.

The environmental sound level data consisted of A-weighted statistical samples, which provided the simultaneous measurement of $L_{e q}$, the equivalent continuous level, and L_{10}, L_{50} and L_{90}, which are the levels exceeded for $10 \%, 50 \%$ and 90% of the time. The L_{90} value is used to estimate the background sound level because it is least affected by short-term variations in sound. The measurements were for periods of 15 minutes in the daytime and 5 minutes at night. Octave band frequency measurements were also obtained.

This ambient data is presented in Appendix A (Tables A1 and A2). The west side of the site, especially at positions along Lathrop Road, was subjected to a strong hum (a tonal component) at times from the electric switchyard. The switchyard is owned by Northeast Utilities (NU), not NRG, and hence does not originate from NRG's power plant. However, since the presence of this tone complicates the study, we have "corrected out" this hum at 120 Hz from the octave band data of Table A2 in order to arrive at corrected background levels without the hum.

A summary of the L_{90} ambient values, after this hum correction has been applied at locations 3 and 4 on Lathrop Road, is given in Table 2, below.

Table 2 Ambient Noise Levels Summary Lig dBA

Location	Ambient Laytime
1 Lwr Bartett (lwr)	42.9
2 \#31LwrBartlett	43.1
3 Lathrop (south)	43.8^{*}
4 Entrance	42.9^{*}
5 Lathrop (north)	43.4
6 Mid north bdry	43.6
7 Far N corner	43.0
8 S boundary	42.7
9 Railway bridge	44.9
Night-time	
1 Lwr Bartett (lwr)	39.6
2 31Lwr Bartlett (31)	39.5
4 Entrance	47.3^{*}
5 Lathrop (north)	

Overall, the ambient daytime noise level was determined to be approximately 43 dBA , reducing to 40 dBA at night. Hum from the switchyard does add considerably to levels along Lathrop Road at times (by about 6 dBA), but this switchyard is not part of the Power Plant.

On the south side of the plant, measured ambient levels have included residual transformer noise at locations $1,2,8$ and 9 which was clearly audible at these sites, and is likely to remain as a significant contributor to the total noise level on the south side when Units 5 and 6 are running.
Fig 1 Measurement Positions
(P)

Operational Plant Noise

Noise readings with Unit 5 and also with Units 5 and 6 running together, had been taken in June 2008 for the earlier study. These results are included in Appendix B and are summarized in Table 3, below. (The level of noise from the plant itself is independent of day or night.) It has been concluded that the plant meets the Connecticut Regulations boundary conditions by day and night.

Table $3 \quad$ Plant Noise Levels June 2008 L $_{90}$ dBA

Location	Unit 5	Unit $\mathbf{5 , 6}$
1 Lwr Bartett (lwr)		
2 \#31 LwrBartlett	44	47
3 Lathrop (south)	44	47
4 Entrance	49	47
5 Lathrop (north)	45	47
6 Mid north bdry	47	50
7 Far N corner	50	51
8 S boundary	47	50
9 Railway bridge	-	58

Computer Modeling

Our SoundPlan computer modeling program has been used to predict noise levels resulting from the installation of biomass equipment to feed wood chips to Unit 5 . The likely sound power levels of Units 5 and 6 had been determined from the previous measurements taken last year, and these values were used as the basis for the model for Unit 5, and Units 5 and 6 together, under present conditions.

We understand that Unit 6 runs very infrequently and, even when it does run at night, it operates under minimum load. Hence the consideration of Units 5 and 6 together does represent a worst case that occurs on only a few days (or nights) in the year.

There are differences between the plots for predicted and measured values because the measured noise is also affected by extraneous sounds from the switchyard along Lathrop Road in particular (locations 3,4 and 5) and the shipyard and steam generation plant to the north (location 7). The model over-predicts by about 3 dBA at locations 8 and 9 , because the existing plant buildings screen the noise to a greater extent than we have been able to model at present.

The noise contours produced by the model should not be regarded as plots of precise levels, but rather as indications of how the sound levels increase at the Plant boundaries with the introduction of the biomass equipment, and how and where they reduce with subsequent mitigation (broadly treated as a reduction of 15 dB in some plant items at this stage of design - see later discussion).

The SoundPlan figures represent a downwind situation in all cases, and hence present a slightly pessimistic overall picture, compared with what will likely be experienced most times in practice, with a bias of about +2 dB at the boundary lines.

Ten cases have been considered:

Unit 5

1) Unit 5 running alone, before conversion (Figure 2). This is the current situation. Predicted levels on the south side of the computer model shown are slightly pessimistic for most circumstances because they represent approximations in the sound power, and downwind conditions. The plant's output sound levels are very directional, and in practice, more sound tends to be generated to the north and west, than to the south. The large brick building, currently used for administrative offices, presents a noise barrier to much of the sound emanating westwards.
2) Unit 5 with biomass running alone in the daytime (Figure 3). The following assumptions have been made for the present model, which may be modified when more defined details of plant items become available:

- CA and ID fans, 84 dBA sound pressure level, from data supplied by Babcock Power;
- Electrostatic precipitator, 84 dBA sound power level (sound power is a measure of the total sound generated in all directions), from Shaw file data;
- Truck dumper (down), 100 dBA sound power level, from Zachary Engineering Corporation and using SoundPlan library for hydraulic lift spectrums;
- Truck Dumper (idle), 90 dBA sound power level, from Zachary Engineering Corp.;
- Filters at Dumpers and at hogger, 114 dBA sound power level, from Zachary Engineering Corp. and spectrum from measured 100 HP fan;
- Hogger, 111 dBA sound power level, from quoted level of 85 dBA at 25 ft ., from Zachary Engineering Corp.
- Conveyors, 90 dBA per meter sound power, from UE\&C coal handling manual;
- Unit 5, with an overall sound power level of 103 dBA , and Unit 6 with 118 dBA , from previous field measurements.

3) Unit 5 running with biomass at night (Figure 4), without the unloading operations and wood hogging, but assuming the transfer conveyor from the storage shed would be running;
4) Daytime Unit 5 biomass case, but with 15 dB noise reduction applied to the 48 -inch wide conveyor, hogger, and filter fan silencers for hogger and dumpers (Figure 5). This is a generalized assumption of mitigation without specific details on noise reduction methods, since more detailed vendor and design information will, in time, dictate the method of noise reduction. For example:

- If the conveyor is quieter than predicted from coal handling, it may only be necessary to treat sections of it, rather than all, by enclosure. (There is every indication that the conveyor is quieter than for coal handling because the wood chip conveyors will run at half the speed of coal conveyors. Also, with a 6-inch idler, the rpm on the equipment will be quite low and thus will have less noise, and the conveyor will be covered on top and sides to confine dust and noise further.)
- Treatment of the hogger by enclosure will depend on design details of this machine, and how the feed inlet (through which much noise is likely to escape) can be treated. At present, either enclosures or barriers, or a combination of both, are envisioned for this machine (see later);
- Silencers for the filters on the hogger and dumpers are available that reduce the noise by 15 dBA if this is necessary;
- Six-inch lagging applied to RSCR booster fan and ducts to reduce output by 7 dBA .

5) Night-time Unit 5 biomass situation (Figure 6), with mitigation of RSCR fan and ducting, and an assumed reduction of 10 dBA on the transfer conveyor to allow for the "quieter than coal" conveying condition and partial enclosure (as described above).

Units 5 and 6

6) Unit 6 added to the current situation before Unit 5 is converted to biomass (Figure 7);
7) Unit 6 added to the daytime Unit 5 biomass case (Figure 8);
8) Unit 6 added to the night-time Unit 5 biomass case (Figure 9);
9) Unit 6 added to the daytime Unit 5 biomass case with 15 dB mitigation applied (Figure 10), as described for (4);
10) Unit 6 added to the night-time Unit 5 biomass case (Figure 11) with mitigation of RSCR fan and ducting.

The computer model results are summarized in Table 4, below. The model over-predicts the current situation by up to 2 dBA at locations 8 and 9 , because the existing buildings further screen the sound directed southwards, and downwind effects contribute to the increase.

Table 4 Summary of Predicted Noise Levels, $L_{\text {eq }}(d B A)$

Figure	Unit 5 condition	Period	Locations in computer generated images								
			1	2	3	4	5	6	7	8*	9*
Unit 5 alone											
Fig. 2	Current	Day/night	46	41	41	37	34	38	32	49	52
Fig. 3	Biomass unmitigated	Day	50	43	60	65	68	71	52	57	58
Fig. 4		Night	49	42	52	52	44	46	48	54	57
Fig. 5	Biomass Mitigated	Day	47	38	50	54	59	61	46	51	54
Fig. 6		Night	47	38	47	48	39	42	45	50	53
Unit 5 plus Unit 6 running in current condition**											
Fig. 7	Current	Day/night	51	41	45	41	44	49	38	53	56
Fig. 8	Biomass unmitigated	Day	54	43	60	65	68	73	56	58	60
Fig. 9		Night	52	43	52	52	45	46	50	56	58
Fig. 10	Biomass Mitigated	Day	51	41	51	54	59	61	47	54	58
Fig. 11		Night	51	41	48	49	41	43	46	53	58

*Locations 8 and 9, although technically on plant boundaries are nowhere near residential property, the closest being on the other side of Lower Bartlett Road, about 150 meters away.
${ }^{* *}$ These are worst case: it is unusual for Unit 6 to run at all, and at night it would run on reduced load.

Noise Control

The results show that, if the Unit 5 Biomass plant were operated without noise reduction applied to the components, then the State daytime criterion of 61 dBA would be exceeded at some locations around the property line of the Plant.

For daytime conditions, it is believed that the main contributors already described above will have to be reduced by a minimum of 15 dBA to avoid daytime exceedances of the 61 dBA criterion.

At night, the situation would be marginal even without mitigation applied because so much of the noise-producing equipment does not operate. Table 4 above and Figure 4 show that the 51 dBA criterion is barely exceeded at locations 3 and 4, and refinement of the model, once more detail of the proposed plant becomes available is likely to result in a further decrease in predicted noise. Indeed, although the 30 -inch transfer conveyor could have been the highest contributor to the new plant noise at night, recent information indicates lower noise levels will be emitted by this conveyor. Since the conveyor will run at half the speed of coal conveyors and will be enclosed on its top and sides, the noise level is likely to be at least 10 dBA less than the "unmitigated" condition assumed in Figure 4. We have allowed for this in our mitigated condition for night-time operation of Unit 5 alone, and thus Table 4 and Figure 6 demonstrate the plant can achieve noise levels at night which do not exceed the 51 dBA criterion.

The model also introduces about a 2 dB increase at the boundaries to allow for a downwind situation, which may over-estimate the noise for most occasions.

Vehicles

The noise from vehicles delivering wood chips on the west side of the Plant has not been considered in this study. In order to avoid complaints of excessive noise from idling engines and from reverse warning alarms, a barrier may be required between the vehicles and the fence line on Lathrop Road. The barrier should be high enough to shield residents from the tall exhaust stacks on the tractor trailers.

Additionally, a berm, or berm and barrier combination, is likely to be required on the north and east sides of the dumper zone to restrict line of sight to the houses along Lathrop Road and to the northwest near Location 6. For better shielding of this noise, line of sight plus 1 meter should be allowed for the barrier wall height.

Wood Hogger

Noise reduction of the wood hogger is achieved in part by enclosing the machine in sound resisting material, internally lined with sound absorptive material. However, this only achieves noise reduction for sound radiated by the body of the machine; significant noise will be emitted through the feed intake of the machine. It is necessary to protect dwellings to the west along Lathrop Road, to the south close to Location 3, and to the north close to Location 6. A three-sided barrier is envisioned, that provides at least line of sight plus 1 meter to these dwellings. Calculations indicate that such a barrier would achieve at least the required 15 dBA reduction in total noise from the inlet, if it was constructed within a distance of 2 meters from the edge of the hopper. Alternatively, the barrier could be a combination of berm and barrier for the last few meters of height.

The barrier is penetrated by the conveyor on the west side, and this would, if left untreated, allow sound to be directed toward residents along Lathrop Road. In order to mitigate this effect, the conveyor should feed through the barrier through a sound-reducing tunnel, lined internally with sound absorptive material, and about 3 meters long (but depending on the construction, shape and sound absorption applied).

48-Inch Conveyor

In the absence of other information, we have made use of published data for coal conveyors in our computer model and have concluded that 15 dB noise reduction would be required. At present, it is envisioned that the conveyor will have to be enclosed to achieve this noise reduction. We are presently advised that the conveyor is quieter than for coal handling because the wood chip conveyors will run at half the speed of coal conveyors. Also, with a 6 -inch idler, the rpm on the equipment will be quite low and thus will have less noise, and the conveyor will be covered on top and sides to confine dust and noise further. The 15 dB assumption for mitigation therefore seems reasonable in the light of this information.

30-Inch Conveyor

We have similarly used coal industry data for this conveyor. We have already discussed the benefit of reducing the noise from this conveyor, as it dominates the night-time total levels from the new plant. We are similarly advised that the new woodchip conveyor would be quieter for the reasons described above and we have allowed for a conservative 10 dB noise reduction in the mitigated level, which brings the total noise levels at the important boundaries and receptors to 51 dBA or less.

Conclusions and Recommendations

On-site noise measurements have shown that the ambient daytime noise in the absence of Units 5 and 6 is 43 dBA in the daytime and 40 dBA at night. There is tonal hum from the switchyard which is especially noticeable along Lathrop Road, but this switchyard is not part of the Power Plant.

Measurements have shown that Units 5 and 6 currently run without exceeding the State criteria of 61 dBA in the daytime and 51 dBA at night.

Noise modeling of the proposed biomass conversion of Unit 5 indicates that, without mitigation to the new plant, the daytime criterion would be exceeded along Lathrop Road in particular, where there are dwellings. This applies to Unit 5 running alone, or in conjunction with Unit 6. Recommendations have been made for controlling the noise as follows:

- Enclosure of part or all of the 48 -inch feeder conveyor (the proposed quieter conveyor system will have top and side covers to control dust and thus further control noise);
- Enclosure of the 30-inch transfer conveyor (for which the same comments apply as for the 48" conveyor);
- Treatment of the hogger by enclosure and the hogger feed inlet. At present, either enclosures or barriers, or a combination of both, are envisioned for this machine;
- Silencers for the filters on the hogger and dumpers are available that reduce the noise by 15 dBA if this is necessary;
- Six-inch lagging applied to RSCR booster fan and ducts to reduce output by 7 dBA ;
- A berm, or berm and barrier combination, is likely to be required on the north and east sides of the vehicle dumper zone to restrict line of sight to the houses along Lathrop Road and to the northwest near Location 6;
- A barrier may be required between the delivery vehicles and the fence line on Lathrop Road.

At night, it is believed that the new plant can be operated without exceedances of the 51 dBA State criterion.

Once all noise controls have been applied to the plant, the following noise levels are predicted (Table 5).

Table $5 \quad$ Summary of Final Noise Levels, $\mathbf{L}_{\mathrm{eq}}(\mathrm{dBA})$

Figure	Unit 5 condition	Period		Locations in computer generated images								
				1	2	3	4	5	6	7	8^{*}	9*
Unit 5 alone												
Fig. 5	Biomass Mitigated	Day		47	38	50	54	59	61	46	51	54
Fig. 6	Night			47	38	47	48	39	42	45	50	53

Unit 5 plus Unit 6 running in current condition**

Fig. 10	Biomass	Day	51	41	51	54	59	61	47	54	58
Fig. 11	Mitigated		Night	51	41	48	49	41	43	46	53

*Locations 8 and 9 , although technically on plant boundaries, are nowhere near residential property, the closest being on the other side of Lower Bartlett Road, about 150 meters away.
** These are worst case: it is unusual for Unit 6 to run at all, and at night it would run on reduced load.
Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

APPENDIX A
AMBIENT NOISE MEASUREMENTS
Appendix A - Ambient Noise Measurements
Table A1 Daytime and Night-time Ambient Noise Measurements for the Montville Station April $13^{\text {th }} / 14^{\text {th }} 2009$

Location	Time	Sound levels dBA				Notes
		Leq	L10	L50	L90	
1 Lwr Bartett	12.20	44.8	46.4	44.4	42.9	Plant (xfmrs?) clearly heard, wind, birds
2 \#31LwrBartlett	11.40	48.7	47.7	44.2	43.1	Wind chimes, xfmrs?, birds, far train
3 Lathrop (south)	15.15	61.8	63.9	50.4	48.2	Strong hum, many vehicles
4 Entrance	14.50	59.8	57.2	50.8	49.0	Strong hum, some traffic
5 Lathrop (north)	14.30	59.8	59.9	46.2	43.4	Slight hum, traffic
6 Mid north bdry	14.10	46.1	48.2	44.9	43.6	Slight transmission hum, birds, traffic
7 Far N corner	13.40	45.4	47.4	44.7	43.0	Nearby plant clear, shipyard activity
8 S boundary	16.30	44.0	45.0	43.9	42.7	Buzz from xfmrs? clearly audible
9 Railway bridge	16.05	46.3	48.1	45.8	44.9	Buzz from xfmrs? clearly audible
	Night of 14th					
1 Lwr Bartett	00.00	41.0	42.3	40.7	39.6	
231 Lwr Bartlett	00.15	41.1	42.7	40.7	39.5	
4 Entrance	00.40	55.7	55.7	55.6	55.6	Strong hum
5 Lathrop (north)	01.00	46.2	46.7	46.1	45.6	Slight hum

Table A2 Daytime and Night-time Ambient Octave Band Levels L ${ }_{90}$ A-weighted dB April $13^{\text {th }} / 14^{\text {th }} 2009$

Freq:	31.5	63	125	250	500	1k	2k	4K	8k
Daytime A-wtd dB									
1 Lwr Bartett	17	30	36	35	38	35	25	21	16
2 \#31LwrBartlett	17	27	33	35	39	36	30	24	17
3 Lathrop (south)	15	27	32	35	38	37	29	19	14
4 Entrance	15	31	47	37	36	35	28	24	17
5 Lathrop (north)	17	28	37	34	36	37	30	24	18
6 Mid north bdry	17	28	37	35	37	36	25	19	15
7 Far N comer	15	27	32	35	38	37	29	19	14
8 S boundary	15	28	33	35	40	37	27	18	13
9 Railway bridge	15	29	35	36	41	37	27	18	13

APPENDIX B

Appendix B
Table B1 Summary of Noise Readings for Continuous Plant Operation_

$5 \text { Jun } 08 \text { - }$ $\text { Unit } 5 \text { only }$		Leq dBA	L90 dBA	Notes
Daytime conditions: Wind from North 5 mph , occasional gusts to $10 \mathrm{mph} ; 75-80 \% \mathrm{RH}$; temperature from 65 in morning, rising to 69 during day, then falling to 65 evening time.				
Lower Bartlett Rd (2)	1530	45.6	44.1	Plant clearly audible
Lathrop south (3)	1530	54.0	44.4	Plant scarcely audible, some hum
Entrance (4)	1545	49.0*	48.7*	Strong hum
Lathrop north (5)	1610	54.3	44.6	Plane/ traffic/ some hum and plant
Mid north bndry (6)	1620	48.5	47.4	Distant traffic, some hum and plant
Far N corner (7)	1700	52.0	50.3	Distant coal plant, boatyard + plant
S Boundary (8)	1330	48	47	Plant strongly audible
		* after hum correction		
$\begin{aligned} & 10 \text { Jun } 08 \text { - Units } \\ & 5+6 \end{aligned}$				
Early morning conditions: Wind from East, less than 2 mph ; 70 F ; later in day wind rising to $5 \mathrm{mph} \mathrm{E}, 90 \mathrm{~F}$				
Lower Bartlett Rd (2)	0115	48.5	47.4	Plant clearly audible
Lathrop south (3)	0300	48.9	47.3	Plant audible slightly, also hum
4 in Fig 1 (entrance)	0315	49.1	47.3	Plant audible, distant traffic, plus hum
Lathrop north (5)	0330	48.9	47.0	Plant audible slightly, also hum
Mid north bndry (6)	1300	51.0	50.3	Distant traffic, some hum and plant
Far N corner (7)	0730	53.9	51.5	Distant coal plant, boatyard + plant
S Boundary (8)	0630	51.5	50.0	Plant strongly audible
Upper Bartlett Rd	0340	48.2	43.6	Distant traffic and nearby main road

APPENDIX C

INPUT SOUND LEVELS ASSUMED FOR SOUNDPLAN MODEL
Appendix C
Table C1 Input Sound Levels Assumed for SoundPlan Model

Montville Biomass Noise Control												
3 Jun-09	Run	31										Assumptions Applied
Equipment Noise Inputs												Regular ground absorption, except water
												Downwind conditions, 3 m per sec
												5% ventilation on all building walls
												Inside to Outside - 3dBA
												Used Soundplan wall directivity, 3 dB
												Grey area not running at night.
frequency Hz :	31.5	63	125	250	500	1k	2k	4k	8k	A	Notes	Comments
Sound source												
CA Fan, SPL	90.0	90.0	86.0	84.0	84.0	77.0	72.0	63.0	58.0	83.8	from Babcock power	Added 25 dB area factor for point source Lw
RSCR Booster Fan \& Ducts, Lw	111.8	109.8	112.8	106.8	105.8	101.8	94.8	88.8	80.8	107.0	From EEI guide.	Unmitigated levels. Used 7 dBA mitigation for insul.
$48^{\prime \prime}$ wide receiving conveyor, Lw	96.0	94.0	94.0	90.0	88.0	84.0	81.0	78.0	76.0	90.2	from UE\&C coal handling pg D-8	Line source, Lw per meter; mitigation assumes 15 dB less (new conveyor condition)
$30 "$ wide transfer conveyor, Lw	96.0	94.0	94.0	90.0	88.0	84.0	81.0	78.0	76.0	90.2	from UE\&C coal handling pg D-8	Line source, Lw per meter; mitigation assumes 10 dB less (new conveyor condition)
Electrostatic Precipitator, Lw	96.0	92.0	89.0	80.0	80.0	81.0	75.0	68.0	61.0	84.2	From Tilbury Job	Point source, added 23 dB for area factor; $7 \times 15 \times 3$ meters
Filters at Dumpers, Lw	111.0	114.0	109.0	104.0	101.7	106.0	110.9	104.9	95.9	114.1	from Zachary Engr Corp	Spectrum from Air blower and 100 HP fan from Brayton pt

Montville Biomass Noise Control												
3 Jun-09	Run	31										Assumptions Applied
Filters at Hogger, Lw	111.0	114.0	109.0	104.0	101.7	106.0	110.9	104.9	95.9	114.1	from Zachary Engr Corp	Spectrum from Air blower and 100 HP fan from Brayton pt
Filters at Metering Bins. Lw	111.0	114.0	109.0	104.0	101.7	106.0	110.9	104.9	95.9	114.1	from Zachary Engr Corp	Spectrum from 25 HP fan from Brayton pt
ID fan, SPL	104.0	104.0	93.0	90.0	77.0	63.0	49.0	41.0	35.0	84.4	from Babcock power	Added 26 dB area factor for point source Lw
Truck Dumper, (Down), Lw	106.0	93.2	93.1	92.6	93.2	93.0	92.8	93.0	93.1	100.0	From Zachary Engr Corp	Used SoundPlan system library for hydraulic lift and added 8 dB area factor for point source Lw
Truck Dumper, (idling), Lw	96.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0	90.0	From Zachary Engr Corp	Assumed Idling truckLw was 10 dBA less than during dumping.
Hogger, Lw	77.5	77.5	87.5	94.5	100.5	103.5	104.5	104.5	102.5	110.6	From Zachary Engr Corp	Spectrum from Soundplan system library and total Lw based on 85 dBA at 25 ft .
Transformers-Aux; Lw	98.8	98.8	100.8	95.8	95.8	89.8	84.8	79.8	72.8	96.2		Std transformers-in house data
Transformers-main; Lw	102.1	108.1	110.1	105.1	105.1	99.1	94.1	89.1	82.1	105.5		Std transformers-in house data
Unit 5 bldg, Lw	117.1	113.1	112.1	103.1	100.1	95.1	93.1	90.1	83.1	102.9		Lws based on Graham Custard's field measurements at the job site
Unit 6 bldg, Lw	132.0	129.0	124.0	118.0	114.0	111.0	112.0	109.0	103.0	118.7		Lws based on Graham Custard's field measurements at the job site

Traffic Report

NRG Montville Power Biomass Project Montville, Connecticut

Shaw Environmental, Inc. May 22, 2009

TABLE OF CONTENTS

Page
PROJECT DESCRIPTION 2
EXISTING ROAD CONDITIONS 3
TRIP GENERATION (During Construction) 4
TRIP GENERATION (During Operation) 7
TRIP DISTRIBUTION AND ASSIGNMENT 8
LEVEL OF SERVICE (LOS) ANALYSIS
Level of Service Defined 9
Existing Level of Service 10
No Build Level of Service 11
Future Level of Service During Construction 12
Future level of Service After Project Completion 12
ACCIDENT DATA 14
RECOMMENDATIONS 16
LIST OF FIGURES
C-1 Civil Site Plan 6
VM-1 Vicinity Map and Trip Distribution 8
LIST OF TABLES

1. Manpower Loading Estimate 4
2. Trip Generation Table - Traffic During Construction Vehicle Trips 5
3. Trip Generation Table - During Operation Traffic Vehicular Trips 7
4. Level of Service Defined 9
5. Level of Service Summary 13
6. Accident Summary 14
7. Turn Radius Table 16
APPENDIX
A. Traffic Flow Maps
B. Highway Capacity Software (HCS+) Level of Service Calculations
C. Photographs
D. CDOT Accident Experience Report
E. Manual Traffic Counts
F. ConnDOT Maximum Vehicle Loads
G. Minimum Turning Radius (WB-62) Semi-trailer Truck with Aerial Photos

PROJECT DESCRIPTION

This traffic study has been prepared by Shaw Environmental, Inc. (Shaw) for NRG Montville Power. The Montville Power generating station (Montville) is located in Montville, CT, east of Lathrop Road, approximately 0.25 miles east of State Route 32, just south of Power House Road, and west of the Thames River (Figure VM-1). Montville plans to convert an existing steam boiler to be capable of firing biomass (woodchips), in addition to its existing fuel capabilities.

The Biomass project includes construction of material handling facilities, emission controls and other modifications. Located just north of the substation, the civil site plan (Figure $\mathrm{C}-1$ on pg 6) shows a truck loop road with weigh scales, truck dumpers, receiving hoppers, fuel hog, disc screens, dust collector, and belt conveyors. The biomass (wood chips) will be conveyed to an area just east of the rail spur. At this location the biomass is directed to the rotary screw reclaimer, live storage pile, auxillairy reclaimer, inactive storage pile, and the boiler feed conveyor. The biomass is then conveyed to Unit \#5 for combustion. Mechanical dust collectors and a Regenerative Selective Catalyst Reactor will be added to the back end of the boiler.

EXISTING ROAD CONDITIONS

Lathrop Road - The posted speed limit on Lathrop Road is 25 mph . The road is asphalt paved and is generally 24 feet wide, with 2 -ft wide gravel and grass shoulders. There is a single yellow centerline. The pavement is in fair condition, and some joint and crack seal repairs have occurred. In the section between Route 32 and the NRG Site Entrance, Lathrop Road is posted "No Thru Traffic Residents Only". For this study, no vehicles will be assigned to the segment of Lathrop Road between Route 32 and the NRG Site driveway.

NRG Site Entrance - The road is asphalt paved and varies in width from 24 to 28 feet. A stop sign is located on the NRG Site Drive at Lathrop Road, however the white stop line is faded.

Power House Road - This local residential street connects Route 32 with Lathrop Road. The posted speed limit is 25 mph . Power House Road is asphalt paved and is approximately 20 feet wide with no shoulders. There is no yellow centerline, and the pavement is in fair condition. The road has a steep profile grade, and has several large trees with low canopies.

Route 32 (Norwich New London Turnpike) - The section of Route 32 from Lathrop Road to Route 163 is posted 40 mph . The road is asphalt paved and is approximately 24 feet wide, with 3 to 6 ft wide paved shoulders. There is a double yellow centerline and the pavement is in very good condition. There is a yellow flashing beacon at Power House Road, a traffic signal at Maple Avenue Extension, and a traffic signal at Route 163. The Rte 163/Rte 32 signal is fully actuated, with variable signal timing.

Route 163 - Palmertown Road - The posted speed limit on Route 163 west of Route 32 is 30 mph . The road is asphalt paved and is generally 24 feet wide with $1-2$ foot wide paved shoulders. There is a double yellow centerline, and the pavement is in very good condition.

Depot Road - The posted speed limit on Depot Road east of Route 32 is 25 mph . The road is asphalt paved and is approximately 24 feet wide with no shoulders. There is a single yellow centerline and the pavement is in fair condition, and some crack sealing is evident. Metal w-beam guardrail follows most of the north shoulder. Three structures are located within 5 feet of the road way edge.

I-395 Southbound off ramp at Route 163 - This off ramp meets at a tee-intersection with Route 163. The ramp widens to provide one left-, and one right-turn lane. The ramp is stop sign controlled, and the white stop line is in good condition. The pavement on both roads is in very good condition.

I-395 Northbound off ramp at Route 163 - This off ramp meets at a tee-intersection with Route 163. The ramp widens to provide one left-, and one right-turn lane. The ramp is signal controlled, and the signal cycle varies from 32 to 45 seconds. The pavement markings and white stop lines are in good condition. The pavement on both roads is in very good condition.

TRIP GENERATION (During Construction)

This section estimates the "temporary" traffic related to the additional construction traffic entering and exiting the project site. The plant construction period is estimated to be 21 months, beginning in Early 2010 and ending in Fall 2011. The projected commercial operation date (COD) is November 2011.

The NRG Design Engineer has prepared a "Manpower Loading Estimate" that describes by construction phase the following topics:

- The demolition of various structures, and facilities
- The excavation and construction of new buildings and facilities
- The on-site equipment and manpower needs during construction
- The estimated heavy vehicles arriving at the site that will import and export soil, haul away construction debris, and deliver new materials and equipment.

According to the "Manpower Loading Estimate," the heaviest period for construction traffic will occur in the second quarter of 2011, and the following craft employees are projected.

Table 1- Manpower Loading Estimate (During construction)

(A) Quarter, Year	(B) Dayshift Employees	(C) Evening Shift Employees	(C) Total Employees
Q12010	10	0	10
Q2 2010	20	0	20
Q3 2010	50	0	50
Q42010	50	0	50
Q12011	80	0	80
Q2 2011	80	20	100
Q3 2011	40	0	40

During construction, numerous trades and crafts will be required. The peak quarter (Q2 2011) will have approximately 80 craft employees working the dayshift, and 20 employees working the evening shift. Also, in this quarter about 18 tons of material will be delivered daily, and using a 6 ton truck capacity, then 3 trucks per day will enter the site.

Using the above manpower loading chart, we have developed the "Trip Generation Table - Traffic During Construction".

Table 2
Trip Generation Table - Montville Station Traffic During Construction (Vehicle Trips)

QTY	Trip	Daily Trips (in+out)	AM Peak Hour 7:15 to 8:15 AM			PM Peak Hour 4:00 to 5:00 PM		
			In	Out	Total	In	Out	Total
18	18 ton delivery at 6 tons/truck= 3 trucks in/3 trucks out Dayshift 7AM to 4PM Construction Traffic Truck Trips	6	1	0	1	0	1	\dagger
80	Employees Dayshift 7AM to 4PM: Construction Craft Employee Auto Trips	240	40	0	40	0	80	80
20	Employees Evening Shift 4PM to 12Mid Construction Craft Employee Auto Trips	40	0	0	0	20	0	20
	TOTAL		41	0	41	20	81	101

It is important to note that the above "site trips" are during construction only. This trip generation table includes a number of conservative trip generation assumptions:

- The typical daytime construction work shift is Monday to Friday 7 AM to 4 PM.
- The construction traffic (generator) will arrive prior to the start of the 7:00 dayshift. The peak hour of the adjacent street traffic is 7:15 AM to 8:15 AM. We conservatively assume that half of the Contractors will arrive on-site prior to 7:15 AM, and half will arrive after 7:15 AM.
- The PM peak hour for the construction traffic (generator) is 4:00 to 5:00 PM, and generally coincides with the PM peak hour of the adjacent street traffic.
- The vehicle occupancy will be 1.0 for all drivers, craft labor, engineers, and inspectors. No employees will carpool.
- For material deliveries, 3 trucks/day will enter, and 3 trucks/day wiil exit the site. We assume that 15% (rounded up to one truck) will enter during the AM peak hour.
- For material deliveries, 3 trucks/day will enter, and 3 trucks/day will exit the site. We assume that 15% (rounded up to one truck) will exit during the PM peak hour.
- Half of the day workers (40) will exit the site for their lunch break and then return at 1 pm . The vehicle occupancy is 1.0 . Daily trips by craft labor are estimated to be $80+40+40+80=$ 240 daily trips.
- It is conservatively assumed that all craft site trips entering and exiting the study area are new trips, and that these site trips are not captured or diverted from trips that may already occur on the adjacent street system (i.e. No trips are intercepted or diverted).

Figure C-1 Civil Site Plan

TRIP GENERATION (During Operation)

This section estimates the "site trips" related to operating the NRG Montville facility. After project completion in 2011, during biomass operations we expect the following vehicle trips.

Table 3
Trip Generation Table
Project Completed - Traffic During Biomass Operations (Vehicle Trips)

Employee	Daily Trips	AM Peak Hour			PM Peak Hour			
		Out	Total	In	Out	Total		
Trucker (woodchips)		6	6	12	6	6	12	

The above trip generation table includes the following assumptions:

- The typical daytime work shift is Monday to Friday 8 AM to 5 PM .
- For woodchip deliveries, 40 trucks/day will enter the site. We assume that 15% (6 trucks) will enter during the AM peak hour.
- We assume that $15 \% \times 40=6$ trucks will exit during the PM peak hour.
- NRG proposes to reassign current employees to operate and maintain the biomass conveyors and the facility.

The woodchip truck and trailer length is approximately $69-70$ feet. The truck is $8^{\prime}-6^{\prime \prime}$ wide and $13^{\prime}-0^{\prime \prime}$ high. The empty weight of a truck and 2 axle trailer is around $34,000 \mathrm{lbs}$. They carry a payload of $46,000 \mathrm{lbs}$ of woodchips, and the maximum gross vehicle weight (GVW) is $80,000 \mathrm{lbs}$. The State of Connecticut maximum GVW is $80,000 \mathrm{lbs}$ for a 4 -, 5 - or 6 - axle semi-trailer. (See details in Appendix F)

TRIP DISTRIBUTION AND ASSIGNMENT

Since the segment of Lathrop Road, between Route 32 and the NRG Plant Entrance is posted "No Thru Traffic - Residents Only", no vehicles will be distributed and assigned to this road segment.

Trip Distribution:

The trip distribution is shown on Figure VM-1. All vehicles leaving the NRG plant will be assigned to travel north on Lathrop Road, west on Depot Road to Route 163, and northwest to the 1-395 interchange. This is the shortest route to/from l-395 and Exit \#79.

FIGURE VM-1

Vicinity Map \&
 Trip Distribution

LEVEL OF SERVICE (LOS) ANALYSIS

Levels of Service Defined:

The Highway Capacity Manual (HCM) is published by the National Science Foundation's Transportation Research Board (TRB). The HCM's analyses are based on determining the capacity of a facility compared to the demand to use the facility. Capacity is determined by such factors as the number of lanes, the type of control (signal or stop sign), the length of a signal cycle, and the amount of green time provided for each movement. The traffic demand on the facility is based on either traffic data collected or a projection of traffic anticipated to use the facility due to anticipated developments. These traffic volumes are adjusted for many factors including the types of vehicles in the traffic stream, the grade of the roadway, and the characteristics of the traffic flow during peak times.

The methodology, in its simplest form, compares the demand to the capacity and identifies the operational conditions as a level of service. Level of service is a letter designation assigned to a specified range of traffic delay values. Delay as calculated using the methodologies of the HCM is the average amount of time required to complete a movement through the intersection. Weighted averages of the movement delays are also reported for each approach to the intersection, and for all intersection approaches.

Table 4 shows the level of service assignments and their associated range of delays in seconds, for both unsignalized (stop controlled) and signalized intersections. The level of service designations and the number of seconds of delay associated with unsignalized intersections varies from signalized intersections because driver perception differs. Longer delays are accepted at signalized intersections since the driving task is simplified through the assignment of the right of way by the traffic signal.
The HCM also calculates queue lengths for movements at the intersection. These queue lengths report the number of vehicles stored while waiting to make each particular movement.

Table 4 - Level of Service Defined

LOS	Unsignalized Intersection		Signalized Intersection	
	Control Delay Per Vehicle (sec)	Expected Delay to Minor Street Traffic	Control Delay Per Vehicle (sec)	Expected Delay At Intersection
A	0-10	little or no delay	0-10	very low delay
B	10-15	short traffic delays	10-20	short traffic delays
C	15-25	average traffic delays	20-35	Average delays, fair progression, number of vehicles stopping is significant though many pass without stopping
D	$25-35$	long traffic delays	35-55	Longer delays, poor progression, influence of congestion becomes more noticeable
E	$35-50$	very long traffic delays	55-80	High delays, long cycles, limit of acceptable delay
F	$50+$	extreme delays	80+	over-saturated, arrivals exceed capacity

Source: Highway Capacity Manual - Special Report 209, TRB, National Research Council, Washington, D.C. 2000.

One great benefit of the HCM is that it provides a standard analysis method for each facility type regardless of where the facility is located.

EXISTING LEVEL OF SERVICE

The study area includes the following intersections:

1. Route 163 at I-395 SB Ramp
2. Route 163 at I-395 NB Ramp
3. Route 163 at Route 32
4. Lathrop Road at Route 163
5. Lathrop Road at NRG Montville Site Entrance

AM and PM peak hour manual traffic counts were conducted from April 6, 2009 through April 8, 2009. The two-hour AM, and two-hour PM counts, with 15 -minute summaries are shown in Appendix E.

Route 163 at I-395 SB Ramp: The AM/PM peak hour volume is $854 / 803 \mathrm{vph}$ at this location. The AM peak hour occurred from 7:15 to 8:15 AM and the PM peak hour occurred from 4:15 to 5:15 PM. The existing AM/PM level of service is LOS C/B. The vehicle delay and LOS calculations are shown in Appendix B.

Route 163 at I-395 NB Ramp: The AM/PM peak hour volume is $750 / 847 \mathrm{vph}$ at this location. The AM peak hour occurred from 7:15 to 8:15 AM and the PM peak hour occurred from 4:30 to 5:30 PM. The existing AM/PM level of service is LOS A/A. The vehicle delay and LOS calculations are shown in Appendix B.

Route 163 at Route 32: The AM/PM peak hour volume is 1190/1496 vph at this location. The AM peak hour occurred from 7:15 to 8:15 AM and the PM peak hour occurred from 4:00 to 5:00 PM. The existing AM/PM level of service is LOS B/B. The vehicle delay and LOS calculations are shown in Appendix B.

Lathrop Road at Route 163 (Depot Road and Pink Row): The AM/PM peak hour volume is 100/145 vph at this location. The AM peak hour occurred from 7:15 to 8:15 AM and the PM peak hour occurred from 5:00 to 6:00 PM. The existing AM/PM level of service is LOS A/A. The vehicle delay. and LOS calculations are shown in Appendix B.

Lathrop Road at NRG Montville Site Entrance: The AM/PM peak hour volume is $36 / 78 \mathrm{vph}$ at this location. The AM peak hour occurred from 7:15 to 8:15 AM and the PM peak hour occurred from 5:00 to 6:00 PM. The existing AM/PM level of service is LOS A/A. The vehicle delay and LOS calculations are shown in Appendix B.

NO BUILD LEVEL OF SERVICE

Based on discussion with the Town of Montville Public Works Department, Mr. Don Bourdeau, there are no roadway or signal improvements planned for Rte 163, Depot Road or Lathrop Road. We have contacted the Connecticut Department of Transportation (ConnDOT) and the Traffic Forecasting Section (Mr. Mike Connors) suggested that we apply a 1% per year annual traffic growth rate to account for normal traffic growth.

Traffic volumes were projected that should exist in the year 2011, without construction of the NRG project. The existing 2009 volumes were increased by a 1% per year annual growth rate. This No Build condition is used as the baseline to understand what the future LOS would be in 2011 without the proposed NRG project (Table 7.2). The HCS+ level of service worksheets are shown in Appendix B.

FUTURE LEVEL OF SERVICE DURING CONSTRUCTION (Qtr 12010 to Qtr 3 2011)

The "During construction" traffic shown in Trip Generation Table 2 was added to the "2011 No Build" traffic volumes, and the LOS calculations were performed. Table 5 shows the LOS summary.

Route 163 at I-395 SB Ramp: The AM/PM peak hour volume will increase by $21 / 51 \mathrm{vph}$ at this location. The AM/PM level of service during construction is projected to be LOS C/B.

Route 163 at I-395 NB Ramp: The AM/PM peak hour volume will increase by $41 / 101 \mathrm{vph}$ at this location. The AM/PM level of service during construction is projected to be LOS A/A.

Route 163 at Route 32: The AM/PM peak hour volume will increase by $41 / 101 \mathrm{vph}$ at this location. The AM/PM level of service during construction is projected to be LOS B/B.

Lathrop Road at Depot Road and Pink Row: The AM/PM peak hour volume will increase by 41/101 vph at this location. The AM/PM level of service during construction is projected to be LOS A/A.

Lathrop Road at NRG Montville Site Entrance: The AM/PM peak hour volume will increase by $41 / 101 \mathrm{vph}$ at this location. The AM/PM level of service during construction is projected to be LOS A/A.

FUTURE LEVEL OF SERVICE AFTER PROJECT COMPLETION

The permanent traffic shown in the Trip Generation Table 3 was added to the 2011 No Build traffic volumes, and the LOS calculations were performed. Table 5 shows the LOS summary.

Route 163 at I-395 SB Ramp: The AM/PM peak hour volume will increase by $3 / 3 \mathrm{vph}$ at this location. The AM/PM level of service during construction is projected to be LOS C/B.

Route 163 at I-395 NB Ramp: The AM/PM peak hour volume will increase by $6 / 6 \mathrm{vph}$ at this location. The AM/PM level of service during construction is projected to be LOS A/A.

Route 163 at Route 32: The AM/PM peak hour volume will increase by $6 / 6 \mathrm{vph}$ at this location. The AM/PM level of service during construction is projected to be LOS B/B.

Lathrop Road at Depot Road and Pink Row: The AM/PM peak hour volume will increase by $6 / 6 \mathrm{vph}$ at this location. The AM/PM level of service during construction is projected to be LOS A/A.

Lathrop Road at NRG Montville Site Entrance: The AM/PM peak hour volume will increase by $6 / 6$ vph at this location. The AM/PM level of service during construction is projected to be LOS A/A.

TABLE 5
LOS SUMMARY TABLE

Level of Service 2009 Existing, 2011 No Build, 2011 During Construction and 2011 Project Complete Conditions																
	AM Peak Hour								PM Peak Hour							
	$\begin{aligned} & 2009 \\ & \text { Exist } \end{aligned}$		$\begin{gathered} 2011 \\ \text { No-Build } \end{gathered}$		2011DuringConstruction		2011 Project Complete		$\begin{aligned} & 2009 \\ & \text { Exist } \end{aligned}$		$\begin{gathered} 2011 \\ \text { No-Build } \end{gathered}$		2011DuringConstruction		$\overline{2011}$ Project Complete	
Intersection	LOS	Delay														
Route 163 at I-395 SB Ramp	C	18.5	C	19.1	C	21.9	C	19.8	B	13.1	B	13.3	B	13.9	B	13.4
Route 163 at I-395 NB Ramp (signal)	A	6.1	A	6.2	A	7.0	A	6.2	A	8.2	A	8.2	A	8.2	A	8.3
Route 163 Depot Rd at Route 32 (signal)	B	12.6	B	12.8	B	12.8	B	12.8	B	17.1	B	18.5	B	18.7	B	18.5
Lathrop Rd Depot Rd Pink Row	A	7.4	A	7.4	A	7.3	A	7.5	A	7.5	A	7.5	A	8.2	A	7.8
Lathrop Rd at NRG Site Entrance	A	8.6	A	8.6	A	8.9	A	9.4	A	8.7	A	8.7	A	9.0	A	8.9

ACCIDENT DATA

The Connecticut Department of Transportation (ConnDOT) uses historical accident data as an important component in its ongoing evaluation of Connecticut's public highways, streets and roads. Accident data plays an integral part in ConnDOT's responsibilities for maintaining the state highway system, and is a key factor in the decision making process for roadway improvements and modifications.

Shaw contacted ConnDOT (Mr. Angelo Asaro and Mr. Craig Mandell) and requested and received accident data for the most recent 3-year period (July 1, 2005 to June 30, 2008) for the following locations:

TABLE 6 ACCIDENT SUMMARY TABLE

Intersection	Total Acc.	Fatal	Inj A	Inj B	Inj C	PDO	Day/ night	Wet/ dry	Cars,Vans, Truck ST	Truck DT, Combin.
I-395 SB Ramp near Rte 163	4	0	1	0	2	1	$3 / 1$	$1 / 3$	4	0
I-395 NB Ramp near Rte 163	ND									
Rte 32 near Rte 163	15	0	0	1	0	14	$12 / 3$	$2 / 13$	14	1
Rte 163 near Rte 32	6	0	0	1	0	5	$4 / 2$	$1 / 5$	6	0
Depot Rd at Pink Row at Lathrop Rd	ND									
Lathrop Rd at Site Entry	ND									
Lathrop Rd near Dock Rd	1	0	0	0	0	1	$0 / 1$	$0 / 1$	0	1
Rte 32 near Powerhouse Rd	6	0	0	0	2	4	$5 / 1$	$0 / 6$	6	0
Total	32	0	1	2	4	25	$24 / 8$	$4 / 28$	30	2

Footnotes:

ND $=$ No ConnDOT accident data provided.
Inj A = Incapacitating Injury
Inj $B=$ Non-incapacitating Injury
Inj $C=$ Possible Injury
PDO = Property damage only
Truck ST = Truck Single Unit Single Tires
Truck DT, Combin. = Truck Dual Tires, truck trailer combination
The above data is shown in Appendix D. The ConnDOT Accident Records and Statistics Section of the Office of Inventory and Forecasting is responsible for the codification, maintenance and compilation of motor vehicle traffic accident data. Each police department investigates and documents the reportable motor vehicle accidents, and forwards a copy of the police accident report to ConnDOT. A reportable motor vehicle accident is defined as one in which any person is killed or injured, or in which damage to the property of any one individual is in excess of one thousand dollars.

At the above locations, the contributing factors to each accident were:

- 9 by following too close,
- 8 by failure to grant right of way,
- 3 by an improper passing maneuver,
- 3 by speeding or too fast for conditions
- 3 by lost control,
- 2 by mechanical failure
- 1 by driving wrong way on ramp
- 1 by driver being inattentive,
- 1 by using the wrong turn signal, and
- 1 by unknown or conflicting stories.

Most accidents occurred during the day (24 of 32), and most accidents occurred on a dry road surface (28 of 32).

At the above locations, the types of accidents were:

- Zero fatality type accidents
- 1 Injury Type A accidents (Incapacitating)
- 2 Injury Type B accidents (non-incapacitating)
- 4 injury Type C accidents (possible injury)
- 25 Property damage only accidents

There were 2 accidents involving a truck (with dual tires or trailer combination).

- A truck was on Lathrop Road near Dock Road turning right and struck a fire hydrant. This was a single vehicle, property damage only type accident.
- A truck heading north on Rte 32 passed a NB car on the right side, and had a sideswipe accident. Two vehicles were involved, and was a property damage only type accident.

Shaw requested that ConnDOT provide us with the "Suggested List of Surveillance Study Sites" (SLOSSS). The SLOSSS list provides locations that experienced abnormally high accident rates for the corresponding 3 -year period. The objective in developing SLOSSS is to define those locations which have the greatest promise of accident reduction and thus to give a broad measure of overall needs of highway safety improvements. Unfortunately, Mr. Craig Mandell (ConnDOT) stated that due to an ongoing State Court case, ConnDOT cannot provide us with a copy of the SLOSSS list.

RECOMMENDATIONS

Roadway Operations During Construction (Qtr 12010 to Qtr 3 2011):
The construction-related traffic will arrive on-site just prior to the start of the 7:00 AM dayshift. The peak hour of adjacent street traffic is $7: 15$ to $8: 15 \mathrm{AM}$. To be conservative, we have assigned half of these AM construction worker trips to occur in the 7:15 to 8:15 AM peak hour window. The construction traffic will depart after 4:00 PM, which coincides with the PM peak hour of adjacent street traffic. The existing traffic volumes are very light along Lathrop Road. The contractor traffic can be easily accommodated on the existing road network. The additional construction traffic will have a minimal and temporary impact on intersection delays and operations. The AM and PM intersection delays will increase, but the level of service (LOS) at the 5 intersections will remain unchanged. All locations will operate at LOS C (or better) levels. No capacity-related improvements are required.

Roadway Operations after Project Completion:

The Biomass project will generate 6 inbound and 6 outbound truck trips during the AM and PM peak hours. The completed project will generate fewer trips than the "During Construction" scenario. The AM and PM intersection delays will increase slightly as compared to 2009 Existing conditions, but the level of service (LOS) at the 5 intersections will remain unchanged. No capacity-related improvements are required.

Turning Geometry:

The Biomass woodchip trucks will be conducting left- and right-turn moves at 4 of the study area intersections. The minimum turning template for the woodchip semi-trailer (WB-62) is shown in Appendix G. The minimum turn radius of the inside tire for the woodchip semi-trailer is 45 feet.

TABLE 7: Turn Radius Table

Location	Movement	Measured Radius* (inside tire)	Acceptable?
Route 163 at l-395 SB Ramp	WB to NB right turn	90 ft	Yes
Route 163 at I-395 NB Ramp (signal)	WB to NB right turn	90 ft	Yes
Route 163 at Route 32 (signal)	EB thru, and WB thru	Straight movement	Yes
Depot Road at Pink Row at Lathrop Road	EB to SB right turn	110 ft	Yes
Lathrop Road at NRG Site Entrance	WB to NB right turn	60 ft	Yes

* See Appendix G for aerial photo and measured radius at each intersection.

We have measured the actual curb (fillet) radius for the above intersections. All curb (fillet) radii exceed 45 feet and are acceptable, and the swept path of the wood chip truck tires will stay on the pavement surface.

Parking:
It is expected that the contractor vehicles and equipment will be located on the NRG property about 100 yards east of Lathrop Road in the temporary staging and parking area. No NRG or Contractor vehicles will be parking along Lathrop Road. All visitors will be directed to park at the Visitor parking lot, inside the property fence.

Pavement markings:

During our site visit we noted the following roadway pavement marking issues.
A white stop line should be re-applied at the following locations:
NRG Site Drive at Lathrop Road (WB approach)
Lathrop Road at Depot Road (NB and EB approaches)
A yellow centerline should be re-applied on:
Route 163 from Route 32 to Lathrop Road (1,200 ft)
Lathrop Road from Route 163 to Route 32 ($4,500 \mathrm{ft}$).
Re-applying the above pavement markings are routine maintenance tasks, typically scheduled every 2 or 3 years, and the markings are not required for conditional approval of this project.

APPENDIX A

TRAFFIC FLOW MAPS

APPENDIX B

Level of Service Calculations HCS+ Software for Intersections

\qquad
Analyst:
Agency/Co.: The Shaw Group
Date Performed: 4/22/2009
Analysis Time Period: AM Exist
Intersection: 1
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2009
Project ID:
East/West Street: Route 163
North/South Street: Route 395 S Ramps
Intersection orientation: EW Study period (hrs): 1.00
Vehicle Volumes and Adjustments

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	1 Eastbound					Westbound	
				1	4	5	6
	L	T	R	1	L	T	R
Volume	179	290				102	84
Peak-Hour Factor, PHE	0.95	0.9				0.95	0.95
Hourly flow Rate, HFR	188	305				107	88
Percent Heavy Vehicles	4	--	--			--	--
Median Type/Storage	Undivided				1		
RT Channelized?							
Lanes	01					1	
Configuration	LT						
Upstream Signal?		No				No	

\qquad
Analyst:
Agency/Co.: The Shaw Group
Date Performed: 4/22/2009
Analysis Time Period: AM No Build 2011
Intersection: 1
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Route 163
North/South Street: Route 395 S Ramps
Intersection Orientation: EW Study period (hrs): 1.00

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Eastbound					Westbound	
	1	2	3	1	4	5	6
	L	T	R	1	L	T	R
Volume	183	296				104	86
Peak-Hour Factor, PHF	0.95	0.9				0.95	0.95
Hourly Flow Rate, HFR	192	311				109	90
Percent Heavy Vehicles	4	--	--			--	--
Median Type/Storage	Undivided				1		
RT Channelized?							
Lanes	$0 \quad 1$					1	
Configuration	LT					TR	
Upstream Signal?	No			No			

Approach	EB	WB		hb				hbou	
Movement	1	4	7	8	9	1	10	11	12
Lane Config	LT					1	L		R
v (vph)	192						118		94
C (m) (vph)	1361						283		887
v / c	0.14						0.42		0.11
95\% queue length	0.49						2.09		0.36
Control Delay.	8.1						26.7		9.5
LOS	A						D		A
Approach Delay						19.1			
Approach LOS						c			

\qquad
Analyst:
Agency/Co.: The Shaw Group
Date Performed: 4/22/2009
Analysis Time Period: AM During Construction
Intersection: $\quad 1$
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Route 163
North/South Street: Route 395 S Ramps
Intersection Orientation: EW Study period (hrs): 1.00

Major Street: Approach	$1 \begin{gathered}\text { Eastbound } \\ 2\end{gathered}$			Westbound				
Movement				I	4	5	6	
	L	T	R	1	L	T	R	
Volume	183	296				104	86	
Peak-Hour Factor, PHF	0.95	0.95				0.95	0.95	
Hourly Flow Rate, HFR	192	311				109	90	
Percent Heavy Vehicles	4	--	--			--	--	
Median Type/Storage	Undiv	ded			/			
RT Channelized?								
Lanes	0	1				1		
Configuration								
Upstream Signal?		No				No		
Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	7 Northbound			Southbound				
				1	10	11	12	
	L	T	R	1	L	T	R	
Volume				134			90	
Peak Hour Factor, PHF				0.95			0.95	
Hourly Flow Rate, HFR				141			94	
Percent Heavy Vehicles				4			4	
Percent Grade (\%)		0				0		
Flared Approach: Exists?/Storage				1				/
Lanes				1				

Approach LOS
\qquad

Analyst:
Agency/Co.: Shaw Group
Date Performed: 5/22/2009
Analysis Time Period: AM Build 2011
Intersection: 1
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West street: Rte 163
North/South Street: Route 395 SB Ramp
Intersection Orientation: EW
Study period (hrs): 1.00

Vehicle Volumes and Adjustments

Approach LOS
C
\qquad
Analyst:
Agency/Co.: The Shaw Group
Date Performed: 4/6/2009
Analysis Time Period: PM Exist
Intersection: 1
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2009
Project ID:
East/West Street: Route 163
North/South Street: Route 395 S Ramps
Intersection Orientation: EW Study period (hrs): 1.00

\qquad

Analyst:
Agency/Co.:
Date Performed:
Analysis Time Period:
Intersection:
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Route 163
North/South Street: Route 395 S Ramps
Intersection Orientation: EW

Study period (hrs): 1.00

Vehicle Volumes and Adjustments

Major Street: Approach		bou				boun	
, Movement	1	2	3	1	4	5	6
	L	T	R	1	1	T	R
Volume	66	208				284	64
Peak-Hour Factor, PHF	0.95	0.9				0.95	0.95
Hourly flow Rate, HFR	69	218				298	67
Pexcent Heavy Vehicles	4	--	--			--	--
Median Type/Storage	Undi	ded			/		
RT Channelized?							
Lanes	0	1				1	
Configuration							
Upstream Signal?		No				No	

\qquad
Analyst:
Agency/Co.: The Shaw Group
Date Performed: 4/6/2009
Analysis Time Period: PM During Construction
Intersection: . 1
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Route 163
North/South Street: Route 395 S Ramps
Intersection Orientation: EW Study period (hrs): 1.00
Vehicle Volumes and Adjustments

Major Street: Approach	Eastbound			Westbound			
	1	, 2	3	1	4	5	6
	L	T	R	1	L	T	R
Volume	66	208				284	105
Peak-Hour Factor, PHF	0.95	0.				0.95	0.95
Hourly flow Rate, HFR	69	218				298	110
Percent Heavy Vehicles	4	--	--			--	--
Median Type/Storage	Undivided			1			
RT Channelized?							
Lanes	01					1	
Configuration	LT						
Upstream Signal?	No			No			

\qquad

Analyst:
Agency/Co.: The Shaw Group
Date Performed: 4/6/2009
Analysis Time Period: PM Build 2011
Intersection: 1
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Route 163
North/South Street: Route 395 S Ramps
Intersection Orientation: EW Study period (hrs): 1.00

Vehicle Volumes and Adjustments

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	1 Eastbound					Westbound	
				1	4	5	6
	L	T	R	1	L	T	R
Volume	66	208				284	67
Peak-Hour Factor, PHF	0.95	0.95				0.95	0.95
Hourly Flow Rate, HFR	69	218				298	70
Percent Heavy Vehicles	4	--	--			--	--
Median Type/Storage	Undivided		7				
RT Channelized?							
Lanes	01						
Configuration	LT			No			
Upstream Signal?	No						

HCS2000: Signalized Intersections Release 4.ld

Analyst:
Agency: The Shaw Group
Date: 4/8/2009
Period: AM Exist
Project ID: Route 395 N Ramps/Route 163
E/W St: Route 163

Inter.: 2
Area Type: All other areas
Jurisd:
Year : 2009
N/S St: Route 395 N Ramps

SIGNALIZED INTERSECTION SUMMARY

	1 Eastbound			Westbound			1	Northbound					Southbound			
	1 L	T	R	L	T	R	1	L		T	R		L	T	R	
	1															
No. Lanes	1	1	0		1	0	I		0	0	0		1	0	1	
LGConfig	1	LT			TR		1						L		R	
Volume	1165	220			156	76	1						96		37	
Lane Width	1	12.0			12. 0		1						12.0		12.0	
RTOR Vol	1					0	1								0	

EB	Left	A		NB	Left
	Thru	A	I		Thru
	Right		I		Right
	Peds		1		Peds
WB	Left			SB	Left
	Thru	A	I		Thru
	Right	A	I		Right
	Peds		I		Peds
NB	Right			EB	Right
SB	Right		1	WB	Right

Green	33.9	6.1
Yellow	3.0	3.0
All Red	1.0	1.0

Intersection Performance Summary
Cycle Length: 48.0 secs
\qquad

Appr/	Lane	Adj Sat		s	Lane Group	Approach
Lane	Group	Flow Rate				
Grp	Capacity	(s)	v/c	g/C	Delay LoS	Delay LOS

Eastbound

LT	994	1408	0.43	0.71	3.3	A	3.3	A

Westbound
TR
1245
1763
0.21
0.71
2.5
A
2.5
A

Northbound

Southbound

L	218	1719	0.49	0.13	21.2	C	20.7	
								C
R	195	1538	0.21	0.13	19.3	B		
	Int	on De	6.1	(sec			tion	

Analyst: Keith Malloy
Agency: The Shaw Group
Date: 4/8/2009
Period: AM No Build 2011
Project ID: Route 395 N Ramps/Route 163
E/W St: Route 163

Inter.: 2
Area Type: All other areas
Jurisd:
Year :

N/S St: Route 395 N Ramps

EB	Left	A
Thru	A	

Right

Peds
WB Left Thru Right Peds
NB Right
SB Right Green
Yellow
All Red
33.9
3.0
1.0

4

NB	Left
	Thru
	Right
	Peds
SB	Left
	Thru
	Right
	Reds
EB	Right
WB	Right

6.1
3.0
1.0

Cycle Length: 48.0 secs

Intersection Performance Summary

Appr/	Lane	Adj Sat	Ratios		Lane Group	Approach
Lane	Group	Flow Rate				
Grp	Capacity	(s)	v/c	g / C	Delay LOS	Delay LOS

Eastbound

$L T$	989	1401	0.44	0.71	3.3	A	3.3	A

Westbound
TR
1245
1763
0.21
0.71
2.5
A $\quad 2.5$
A

Northbound

Southbound								
L	218	1719	0.50	0.13	21.3	C	20.8	C
R	195	1538	0.22	0.13	19.4	B		
	Int	on D	- 6.2	(sec		e	tion	S

Analyst:
Agency: The Shaw Group
Date: 4/8/2009
Period: AM During Construction
Project ID: Route 395 N Ramps/Route 163
E/W St: Route 163

Inter.: 2
Area Type: All other areas
Jurisd:
Year :
N/S St: Route 395 N Ramps

SIGNALIZED INTERSECTION SUMMARY

| Duration $0.25 \quad$ Area Type: All other areas |
| ---: | ---: | ---: |
| Signal operations |

Intersection Performance Summary

Appr/	Iane	Adj Sat	Ratios		Lane Group	Approach
Lane	Group	Flow Rate				
Grp	Capacity	(s)	$\overline{\mathrm{v} / \mathrm{C}}$	$\overline{\mathrm{g} / \mathrm{C}}$		$\overline{\text { Delay LoS }}$
		$\overline{\text { Delay LoS }}$				

Eastbound
LTT
992
1404
0.46
0.71
3.4
A
3.4
A

Westbound

TR	1245	1763	0.21	0.71	2.5	A	2.5	A

Northbound

Southbound

L	216	1703	0.61	0.13	24.6 C		23.4	C
R	194	1524	0.22	0.13	19.4	B		
	Intersection Delay $=7.0$			(sec/veh)		Intersection		S

Analyst:
Agency: The Shaw Group
Date: 4/8/2009
Period: AM Build 2011
Project ID: Route 395 N Ramps/Route 163
E / W St: Route $163 \mathrm{~N} / \mathrm{S}$ St: Route 395 N Ramps

SIGNALIZED INTERSECTION SUMMARY

	\| Eastbound			Westbound					Northbound					Southbound			1
	1 L	T	R	L		T	R		L		T	R		1 L	T	R	1
	1																
No. Lanes	1	1	0		0	1	0	1		0	0	0		11	0	1	I
LGConfig	1	LT				TR		1						1 L		R	1
Volume	1168	227				162	81	1						1101		38	1
Lane Width	1	12.0				12.0		1						112.0		12.0	1
RTOR Vol	I						0	1						I		0	1

Intersection Performance Summary

Appr/	Lane	Adj Sat	Ratios	Lane Group	Approach
Lane	Group	Flow Rate			
Grp	Capacity	(s)	\bar{v} / c	g / C	$\overline{\text { Delay LOS }}$

Eastbound
LT
988
1399
0.44
0.71
3.3
A
3.3
A

Westbound
TR
1244
1762
0.22
0.71
2.5
A $\quad 2.5$
A

Northbound

Southbound

L	218	1719	0.51	0.13	21.7	C	
R	195	1538	0.22	0.13	19.4	B	
	Intersection Delay	$=6.2$	(sec/veh)	Intersection $\operatorname{LOS}=\mathrm{A}$			

Analyst:
Agency: The Shaw Group
Date: 4/6/2009
Period: PM Exist
Project ID: Route 395 N Ramps/Route 163
E/W St: Route 163

Inter.: 2
Area Type: All other areas
Jurisd:
Year : 2009
N/S St: Route 395 N Ramps

SIGNALIZED INTERSECTION SUMMARY

| Duration | 0.25 | Area Type: All other areas | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Signal operations | | | |
| Phase Combination 1 | 2 | 3 | 4 | | | |

EB	Left	A	1 NB	Left
	Thru	A	1	Thru
	Right		1	Right
	Peds		1	Peds
WB	Left		1 SB	Left
	Thru	A	1	Thru
	Right	A	1	Right
	Peds		1	Peds
NB	Right		1 EB	Right
SB	Right		1 WB	Right

Green	33.1	8.9
Yellow	3.0	3.0
All Red	1.0	1.0

Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate | | | |
| Grp | Capacity | (s) | $\overline{\mathrm{V} / \mathrm{C}} \quad \mathrm{g} / \mathrm{C}$ | Delay LOS | $\overline{\text { Delay LoS }}$ |

Eastbound

LT	877	1325	0.36	0.66	4.0	A	4.0	A

Westbound

TR	1196	1806	0.33	0.66	3.8	A	3.8	A

Northbound

Southbound

L	312	1752	0.42	0.18	19.2	B		
R	279	1568	0.49	0.18	19.9	B		
	Intersection Delay	$=8.2$	$(\mathrm{sec} / \mathrm{veh})$	Intersection LOS = A				

Analyst:
Agency: The Shaw Group
Date: 4/6/2009
Period: PM No Build 2011
Project ID: Route 395 N Ramps/Route 163
E/W St: Route 163

Inter.: 2
Area Type: All other areas
Jurisd:
Year :
N/S St: Route 395 N Ramps

EB	Left	A
	Thru	A
	Right	
	Peds	
WB	Left	A
	Thru	A
	Right	
	Reds	
NB	Right	
SB	Right	

NB	Left		
	Thru		
	Right		
	Peds		
SB	Left	A	
	Thru		
	Right		
	Peds		
EB	Right		
WB			
	Right		

Green	33.1
Yellow	3.0

$$
3.0
$$

$$
1.0
$$

$$
\begin{aligned}
& 8.9 \\
& 3.0 \\
& 1.0
\end{aligned}
$$

Cycle Length: 50.0 secs
Intersection Performance Summary

Appr/	Lane	Adj Sat	Ratios		Lane Group	Approach
Lane	Group	Flow Rate				
Grp	Capacity	(s)	v / c	g/C	Delay LOS	Delay Los

Eastbound
LT
874
1320
$0.36 \quad 0.66$
4.0

A $\quad 4.0 \quad A$

Westbound
TR
1172
1771
$0.34 \quad 0.66$
3.9

A
3.9

A
Northbound

Southbound

L	318	1787	0.42	0.18	19.1	B	19.5	B
R	285	1599	0.49	0.18	19.8	B		
	Intersection Delay $=8.2$			(sec/veh)) Intersection			S

Analyst:
Agency: The Shaw Group
Date: 4/6/2009
Period: PM During Construction
Project ID: Route 395 N Ramps/Route 163
E/W St: Route 163

Inter.: 2
Area Type: All other areas
Jurisd:
Year :
N/S St: Route 395 N Ramps

Eastbound

LT
843
1273
0.39
0.66
4.2
A
4.2
A

Westbound
TR
1166
1762
0.42
0.66
4.2
A
4.2
A

Northbound

Southbound

L	318	1787	0.46	0.18	19.4	B	
R	285	1599	0.49	0.18	19.8	B	19.6

HCS2000: Signalized Intersections Release 4.1d

Analyst: Keith Malloy
Agency: The Shaw Group
Date: 4/6/2009
Period: PM Build 2011
Project ID: Route 395 N Ramps/Route 163
E/W St: Route 163

Inter.: 2
Area Type: All other areas
Jurisd:
Year :

N/S St: Route 395 N Ramps
SIGNALIZED INTERSECTION SUMMARY

	I Eastbound			Westbound				1	Northbound					Southbound			\|	
	\\| L	T	R	I		T	R	I	L		T	R		L.	T	R	1	
	1							1										
No. Lanes	10	1	0		0	1	0	1		0	0	0		1	0	1	1	
LGConfig	I	LT				TR		I						1 L		R	1	
Volume	1121	160				247	105	1						1119		122	1	
Lane Width	1	12.0				12.0		1						\| 12.0		12.0	1	
RTOR Vol	1						0	1						1		0	1	

| Duration $0.25 \quad$ Area Type: All other areas |
| ---: | ---: |
| Signal Operations |

Green	33.1
Yellow	3.0
All Red	1.0

$$
\begin{aligned}
& 8.9 \\
& 3.0 \\
& 1.0
\end{aligned}
$$

Cycle Length: 50.0 secs

Intersection Performance Summary \qquad

Appr/	Lane	Adj Sat	Ratios	Lane Group	Approach
Lane	Group	Flow Rate			
Grp	Capacity	(s)	$\overline{v / c} \quad \mathrm{~g} / \mathrm{C}$	Delay LoS	Delay LoS

Eastbound

LT	873	1319	0.37	0.66	4.0	A	4.0	A

Westbound
TR
1172
1770
0.35
0.66
3.9

A
3.9

A
Northbound

Southbound

L	318	1787	0.43	0.18	19.2	B	19.5	B
R	285	1599	0.49	0.18	19.8	B		
R	Intersection Delay	$=8.3$	$(\sec /$ veh $)$	Intersection LOS $=A$				

HCS2000: Signalized Intersections Release 4.1d

```
Analyst:
Agency: The Shaw Group
Date: 4/7/2009
Period: AM Exist Year : 2009
Project ID: Route 163/Route 32 Intersection
E/W St: Route 163 N/S St: Route 32
```


Eastbound								
L	551	1394	0.38	0.40	13.4	B		
TR	643	1629	0.22	0.40	12.2	B	12.9	B

Westbound
LTR 68
1727
0.04
0.40
11.2 B
11.2 B

Northbound

LT	745	1579	0.52	0.47	11.7	B	11.7	B
R	754	1599	0.00	0.47	8.4	A		
Southbound								
LTR	853	1809	0.62	0.47	13.2	B	13.2	B

Intersection Delay $=12.6$ (sec/veh) Intersection LOS $=B$

```
Analyst:
Agency: The Shaw Group
Date: 4/7/2009
Period: AM No Build 2011 Year :
Inter.: 3
Area Type: All other areas
Jurisd:
Project ID: Route 163/Route 32 Intersection
E/W St: Route 163
N/S St: Route 32
```

SIGNALIZED INTERSECTION SUMMARY

Intersection Performance Summary

| Appr | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate | | | |
| Grp | Capacity | (s) | $\overline{\mathrm{v} / \mathrm{C}} \quad \mathrm{g} / \mathrm{C}$ | $\overline{\text { Delay LOS }}$ | $\overline{\text { Delay LOS }}$ |

Eastbound									
L	551	1394	0.39	0.40	13.4	B			
TR	643	1629	0.22	0.40	12.2	B	13.0	B	

Westbound

LTR	682	1726	0.04	0.40	11.2	B	11.2	B

Northbound

HCS2000: Signalized Intersections Release 4.1d

Analyst:
Agency: The Shaw Group
Date: 4/7/2009
Period: AM During Construction
Project ID: Route 163/Route
E/W St: Route $163 \quad \mathrm{~N} / \mathrm{S}$ st: Route 32
Inter.: 3
Area Type: All other areas
Jurisd:
Year :

SIGNALIZED INTERSECTION SUMMARY \qquad

	Eastbound			Westbound					Northbound			Southbound			
	1 L	T	R	1 L		T	R	1 L		T	R	L		T	R
	1							1							
No. Lanes	11	1	0		0	1	0	1	0	1	1		0	1	0
LGConfig	1 I	TR				LT		1		LT	R			LT	
Volume	1198	55	118	13		14	6	174		286	3	7		366	122
Lane Width	112.0	12.0				12.0		1		12.0	12.0			12.0	
RTOR Vol	1		0	1			0	1			0				0

Duration 1.00 Area Type: All other areas Signal Operations

Phase Combination		1	2	3	4			5	6	7	8
EB	Left	A				NB	Left	A			
	Thru	A					Thru	A			
	Right	A					Right	A			
	Peds						Peds				
WB	Left	A				SB	Left	A			
	Thru	A					Thru	A			
	Right	A					Right	A			
	Peds						Peds				
NB	Right					EB	Right				
SB	Right					WB	Right				

Green $23.7 \quad 28.3$
Yellow 3.0
All Red
1.0
3.0
1.0

Intersection Performance Summary

Westbound

LTR	674	1706	0.04	0.40	11.2	B	11.2	B

Northbound

LT	744	1578	0.53	0.47	11.8	B	11.8	B
R	754	1599	0.00	0.47	8.4	A		
Southbound								
L'TR	853	1808	0.63	0.47	13.5	B	13.5	B
	Intersection Delay $=12.8$			Intersection LOS $=\mathrm{B}$				

HCS2000: Signalized Intersections Release 4.1d

```
Analyst:
Agency: The Shaw Group
Date: 4/7/2009
Period: AM Build 2011
Project ID: Route 163/Route 32 Intersection
E/W St: Route 163 N/S St: Route 32
```


| Duration $1.00 \quad$ Area Type: All other areas |
| ---: | ---: | ---: |
| Signal operations |

Phase Combination	1.2	34	1		5	6	7	8
EB Left	A		1 NB	Left	A			
Thru	A		1	Thru	A			
Right	A		1	Right	A			
Peds			1	Peds				
WB Left	A		$15 B$	Left	A			
Thru	A		,	Thru	A			
Right	A		1	Right	A			
Peds			1	Peds				
NB Right			1 EB	Right				
SB Right			1 WB	Right				
Green	23.7				28.3			
Yellow	3.0				3.0			
All Red	1.0				1.0			

Intersection Performance Summary
Cycle Length: 60.0 secs

Appr/	Lane	Adj Sat	Ratios	Lane Group	Approach
Lane	Group	Flow Rate			
Grp	Capacity	(s)	$\overline{v / c} \quad \mathrm{~g} / \mathrm{C}$	Delay LOS	Delay Los

Eastbound

L	547	1385	0.39	0.40	13.5	B		
TR	648	1640	0.23	0.40	12.3	B	13.0	B

Westbound

LTR 690
1747
0.05
0.40
11.2 B
11.2 B

Northbound

LT	744	1578	0.53	0.47	11.8	B	11.8	B
R	754	1599	0.00	0.47	8.4	A		
Southbound								
LTR	853	1808	0.63	0.47	13.5	B	13.5	B
Intersection Delay $=12.8$				(sec/veh)		Intersection LOS $=\mathrm{B}$		

Analyst:	Inter.: 3
Agency: The Shaw Group	Area Type: All other areas
Date: $4 / 7 / 2009$	Jurisd:
Period: PM Exist	Year : 2009
Project ID: Route $163 /$ Route 32	Intersection
E/W St: Route 163	$\mathrm{~N} / \mathrm{S}$ St: Route 32

SIGNALIZED INTERSECTION SUMMARY

Intersection Performance Summary

Eastbound

L	379	1364	0.51	0.28	21.8	C		
TR	454	1634	0.34	0.28	$20.0+$	C	21.0	C

Westbound
LTR
434
1562
0.09
0.28
18.3
B 18.3
B

Northbound

LT	795	1316	0.87	0.60	22.5	C	22.3	C
R	966	1599	0.01	0.60	5.3	A		
Southbound								
LTR	1086	1797	0.57	0.60	8.9	A	8.9	A

Analyst: Keith Malloy	Inter.: 3
Agency: The Shaw Group	Area Type: All other areas
Date: $4 / 7 / 2009$	Jurisd:
Period: PM No Build 2011	Year :
Project ID: Route 163/Route 32 Intexsection	
E/W St: Route 163	$\mathrm{~N} / \mathrm{S}$ St: Route 32

Cycle Length: 68.0 secs
Intersection Performance Summary

Appr/	Lane	Adj Sat	Ratios	Lane Group	Approach
Lane	Group	Flow Rate			
Grp	Capacity	(s)	$\overline{v / c} \quad \mathrm{~g} / \mathrm{C}$	Delay Los	Delay LOS

Eastbound

L	379	1364	0.52	0.28	22.0	C		
TR	454	1634	0.34	0.28	$20.0+$	C	21.1	C

Westbound
ITR

$$
434
$$

1561
0.09
0.28
18.3

B $\quad 18.3$ B

Northbound

LT	789	1306	0.89	0.60	25.7	C	25.6	C
R	966	1599	0.01	0.60	5.3	A		
Southbound								
LTR	1086	1797	0.58	0.60	9.0	A	9.0	A
	Intersection Delay $=18.5$			(sec/veh) Intersection LOS $=\mathrm{B}$				

HCS2000: Signalized Intersections Release 4.1d

Analyst:	Inter.: 3
Agency: The Shaw Group	Area Type: All other areas
Date: $4 / 7 / 2009$	Jurisd:
Period: PM During Contruction	
Project ID: Route	163/Route 32
E/W St:	Intersection
Route 163	N/S St: Route 32

Eastbound SIGNALIZED INTERSECTION SUMMARY															
	1. Eastbound			1	L	T	R	L	T	R	L	L	T	R	1
				1							1				1
No. Lanes	1	1	0	1		1	0	1	1	1			1	0	1
LGConfig	1 L			I		LTR		1	LT	R	1		LT		1
Volume	1170	45	110	14		103	7	1172	446	5	I 5		386	164	1
Eane-Width	112.0	12.		1		12.0		1	- 12.0	12.0	1		$12 \% 0$		I
RTOR Vol	1		0	1			0	1		0	1			0	I

Green	18.9	41.1
Yellow	3.0	3.0
All Red	1.0	1.0

Cycle Length: 68.0 secs
Intersection Performance Summary

Westbound

LTR	447	1610	0.29	0.28	19.6	B	19.6	B

Northbound

LTP	789	1306	0.89	0.60	25.7	C	25.6	C
R	966	1599	0.01	0.60	5.3	A		
Southbound								
	1086	1797	0.58	0.60	9.0	A	9.0	A

Intersection Delay $=18.7$ (sec/veh) Intersection LoS $=B$

Analyst:	Inter.: 3
Agency: The Shaw Group	Area Type: All other areas
Date: $4 / 7 / 2009$	Jurisd:
Period: PM Build 2011	Year :
Project ID: Route $163 /$ Route 32 Intersection	
E/W St: Route 163	$\mathrm{~N} / \mathrm{S}$ St: Route 32

SIGNALIZED INTERSECTION SUMMARY

	I Eastbound				Westbound) Northbound				\|	Southbound			I
	1 L	T	R			T		R	1	I	T	R	1	L	T	R	1
	1												,				I
No. Lanes	1	1	0		0			0		0	1	1	1		1	0	I
JGConfig	1 L	TR							1		LT	R	1		LTR		1
Volume	1173	31	112	4		28				172	446	5	15		386	164	1
Lane Width	112.0	12.0				12					12.0	12.0	\|		12.0		1
RTOR Vol	1		0									0	I			0	1

| Duration $1.00 \quad$ Area Type: All other areas | |
| ---: | ---: | ---: |
| | |

Green	18.9	41.1
Yellow	3.0	3.0
All Red	1.0	1.0

Intersection Pexformance Summary

Appr/	Lane	Adj Sat	Ratios		I, ane Group	Approach
Lane	Group	Flow Rate				
Grp	Capacity	(s)	v/c	g/C	Delay Los	Delay LOS

Eastbound

| L | 377 | 1356 | 0.52 | 0.28 | 22.1 | C | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TR | 457 | 1644 | 0.35 | 0.28 | 20.1 | C | 21.2 | C |

Westbound

LTR
437
1574
0.10
0.28
18.4

B
18.4 B

Northbound

LT	789	1306	0.89	0.60	25.7	C	25.6	C
R	966	1599	0.01	0.60	5.3	A		
Southbound								
LTR	1086	1797	0.58	0.60	9.0	A	9.0	A
Intersection Delay $=18.5$				Intersection LOS $=\mathrm{B}$				

Keith Malloy
The Shaw Group
100 Technology Center Drive
stoughton, MA 02072
Phone: 617-589-5134 Fax: 617-589-2160
E-Mail: keith.malloy@shawgrp.com
ALL-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.:
Date Performed:
Keith Malloy
The Shaw Group
4/8/2009
Analysis time Period: AM Exist
Intersection:
4
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2009
Project ID:
East/West Street: Depot Road
North/South street: Pink Row/Lathrop Rd
Worksheet 2 - Volume Adjustments and Site Characteristics

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad

Eastbound	Westbound	Northbound	Southbound			
L1 L2	L1	L2	L1	L2	L1	L2

Flow Rates:
Total in Lane 3
Left-Turn 0
Right-Turn 14
Prop. Left-Turns 0.0
9
7
Prop. Right-Turns 0.4
0.4
0.3
0.3

Geometry Group 1
Adjustments Exhibit 17-33:

$$
\text { hLT-adj } 0.2
$$

. 1
$33 \quad 14$
$16 \quad 7$
40
$0.5 \quad 0.5$
$0.1 \quad 0.0$
$0.2 \quad 0.0$
1
1
$\begin{array}{lll}0.2 & 0.2 & 0.2\end{array}$

hRT-adj	-0.6	-0.6	-0.6	-0.6	
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	-0.1	0.5		0.3	0.1

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

Eastbound		Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2	L1	L2
33		24		33		14	
3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
0.03		0.02		0.03		0.01	
3.95		4.50		4.39		4.16	
0.04		0.03		0.04		0.02	
	2.0		2.0		2.0		2.0
1.9		2.5		2.4		2.2	

Norksheet 5-Capacity and Level of service

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow Rate	33		24		33		14	
Service Time	1.9		2.5		2.4		2.2	
Utilization, x	0.04		0.03		0.04		0.02	
Dep. headway, hd	3.95		4.50		4.39		4.16	
Capacity	283		274		283		264	
Delay	7.10		7.64		7.57		7.23	
LoS	A		A		A		A	
Approach:								
Delay						57		7.23
LoS								A
Intersection Delay	7.39		In	sect	LOS			

HCS2000: Unsignalized Intersections Release 4.1d
Keith Malloy
The Shaw Group
100 Technology Center Drive
Stoughton, MA 02072
Phone: 617-589-5134
Fax: 617-589-2160
E-Mail: keith.malloy@shawgrp.com
ALI-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.:
Keith Malloy

Date Performed:
The Shaw Group
4/8/2009
Analysis Time Period: AM No Build 2011
Intersection:
4
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Depot Road
North/South Street: Pink Row/Lathrop Rd

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2.
Configuration	LTR		LTR		LTR		LTR	
PHF	0.92		0.92		0.92		0.92	
Flow Rate	33		24		33		14	
\% Heavy Veh	10		33		19		0	
No. Lanes						1		1
Opposing-Lanes						1		1
Conflicting-lanes						1		1
Geometry group						1		1

Duration, T 1.00 hrs.
\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
Eastbound
L1 12
Westbound
L1 L2
Northbound
L1 I2

Southbound
L1 L2

Flow Rates:
Total in Lane
Left-Turn 0 0 14
Right-Turn
Prop. Left-Turns 0.0
. 4
24
9
33
14

Prop. Right-Turns 0.4
0.3

1
7

Prop. Heavy Vehicle0.1
Geometry Group 1
Adjustments Exhibit 17-33:
hLT-adj 0.2
1
1
1
0.2
0.2
0.2

hRT-adj	-0.6	-0.6	-0.6	-0.6	
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	-0.1	0.5		0.3	0.1

Worksheet 4 - Departure Headway and Service Time

	Eastbound		Westbound		Northbound		Southbound	
	L1	L2	L1	L2	L1	L2	L1	L2
Flow rate	33		24		33		14	
hd, initial value	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
x , initial	0.03		0.02		0.03		0.01	
hd, final value	3.95		4.50		4.39		4.16	
x, final value	0.04		0.03		0.04		0.02	
Move-up time, m								
Service Time	1.9		2.5		2.4		2.2	

\qquad Worksheet 5 - Capacity and Level of Service \qquad

Eastbound	Westbound	Northbound	Southbound			
L1	L2	L1	L2	L1	L2	L1

Flow Rate
Service Time 33
1.9
0.04
3.95 283
7.10

A
$-\mathrm{A}$
Approach:

24
2.5
0.03
4.50

274
7.64

A

33
2.4
0.04
4.39 283
7.57

A

14
2.2
0.02
4.16

264
7.23

A

Delay
LOS
7.10

A
7.64

A
7.57

A
7.23

A

Keith Malloy
The Shaw Group
100 Technology Center Drive
Stoughton, MA 02072
Phone: $\quad 617-589-5134$
E-Mail: keith.malloy@shawgrp.com
Fax: 617-589-2160

ALI-WAY STOP CONTROL(AWSC) ANALYSIS \qquad
Analyst:
Agency/Co.:
Date Performed:
Keith Malloy
The Shaw Group
4/8/2009
Analysis Time Period: AM During Construction
Intersection:
4
Jurisdiction:
Units: u. S. Customary
Analysis Year:
Project ID:
East/West Street: Depot Road
North/South Street: Pink Row/Lathrop Rd
Worksheet 2 - Volume Adjustments and Site Characteristics

\% Thrus Left Lane

	Eastbound		Westbound		Northbound		Southbound		
	L1	L2	L1	L2	L1	L2	L1		L2
Configuration	LTR		LTR		LTR		LTR		
PHE	0.92		0.92		0.92		0.92		
Flow Rate	77		24		33		14		
\% Heavy Veh	6		33		19		0		
No. Lanes						1		1	
Opposing-Lanes						1		1	
Conflicting-lanes						1		1	
Geometry group						1		1	
Duration, T 1.00	hrs								

\qquad Worksheet 3 - Saturation Headway Adjustment Worksheet \qquad
Eastbound
L1 I2
Westbound
L1 12
Northbound
L1 2
Southbound
I1 L2

Flow Rates:
$\begin{array}{ll}\text { Total in Lane } & 7 \\ \text { Left-Turn } & 0\end{array}$
Right-Turn 58
Prop. Left-Turns 0.0
Prop. Right-Turns 0.8
Prop. Heavy Vehicle0.1
Geometry Group 1
Adjustments Exhibit 17-33:
hLT-adj 0.2

33
16
4
0.5
0.1
0.2

1
0.2
0.2
0.2

hRT-adj	-0.6	-0.6	-0.6	-0.6	
hHV-adj	1.7	1.7	1.7	1.7	
hadj, computed	-0.3	0.5		0.3	0.1

Worksheet 4 - Departure Headway and Service Time \qquad
\qquad

Eastbound		Westbound		Northbound		Southbound	
L1	L2	L1	L2	L1	L2	L1	L2
77		24		33		14	
3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
0.07		0.02		0.03		0.01	
3.69		4.54		4.47		4.25	
0.08		0.03		0.04		0.02	
	2.0		2.0		2.0		2.0
1.7		2.5		2.5		2.2	

Worksheet $5^{\prime \prime}$ - Capacity and Level of Serviice \qquad

Eastbound	Westbound	Northbound		Southbound			
L1	L2	L1	L2	L1	L2	L1	L2

Flow Rate	77	24	33	14
Service Time	1.7	2.5	2.5	2.2
Utilization, x	0.08	0.03	0.04	0.02
Dep. headway, hd	3.69	4.54	4.47	4.25
Capacity	327	274	283	264
Delay	7.00	7.68	7.66	7.32
LOS	A	A.	A	

Approach:

Delay
LOS
7.00

A

A
Intersection LOS A

Keith Malloy
The Shaw Group
100 Technology Center Drive
stoughton, MA 02072
Phone: 617-589-5134 Fax: 617-589-2160
E-Mail: keith.malloy@shawgrp.com
ALL-WAY STOP CONTROL (AWSC) ANALYSIS \qquad

```
Analyst: Keith Malloy
Agency/Co.: The Shaw Group
Date Performed: 4/8/2009
Analysis Time Period: AM Build 2011
Intersection: 4
Jurisdiction:
Units: U. S. Customary
Analysis Year:
project ID:
East/West Street: Depot Road
North/South Street: Pink Row/Lathrop Rd
``` Worksheet 2 - Volume Adjustments and Site Characteristics \(\qquad\)
\(\qquad\)

Volume \% Thrus Left Lane

Duration, T 1.00 hrs.
Worksheet 3 - Saturation Headway Adjustment Worksheet \(\qquad\)
\(\qquad\)
Eastbound
L1 1 2
Westbound
\(\mathrm{LI} \quad \mathrm{L} 2\)
Northbound
L1 2

Southbound \(\begin{array}{llllllll}\mathrm{L} 1 & \mathrm{~L} 2 & \mathrm{~L} 1 & \mathrm{~L} 2 & \mathrm{~L} 1 & \mathrm{~L} 2 & \mathrm{~L} 1 & \mathrm{~L} 2\end{array}\)

Flow Rates:
Total in Lane 3
Left-Turn 0
Right-Turn 20
Prop. Left-Turns 0.0
Prop. Right-Turns 0.5
Prop. Heavy Vehicle0. 2
Geometry Group
1
Adjustments Exhibit 17-33:
hLT-adj 0.2
\begin{tabular}{lll}
24 & 39 & 14 \\
9 & 22 & 7 \\
7 & 4 & 0 \\
0.4 & 0.6 & 0.5 \\
0.3 & 0.1 & 0.0 \\
0.3 & 0.2 & 0.0
\end{tabular}

1
1
0.2
0.2
0.2
\begin{tabular}{crrrr}
hRT-adj & -0.6 & -0.6 & -0.6 & -0.6 \\
hHV-adj & 1.7 & 1.7 & 1.7 & 1.7 \\
hadj, computed & -0.0 & 0.5 & & 0.5
\end{tabular}

Worksheet 4 - Departure Headway and Sexvice Time \(\qquad\)
\(\qquad\)
\begin{tabular}{llllllll}
\multicolumn{2}{c}{ Eastbound } & \multicolumn{2}{c}{ Westbound } & \multicolumn{2}{c}{ Northbound } & \multicolumn{2}{c}{ Southbound } \\
L1 & L2 & L1 & L2 & L1 & L2 & L1 & L2 \\
39 & & 24 & & 39 & & 14 & \\
3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 \\
0.03 & & 0.02 & & 0.03 & & 0.01 & \\
4.02 & & 4.52 & & 4.52 & & 4.18 & \\
0.04 & & 0.03 & & 0.05 & & 0.02 & \\
& 2.0 & & 2.0 & & 2.0 & & 2.0 \\
2.0 & & 2.5 & & 2.5 & & 2.2 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Eastbound} & \multicolumn{2}{|l|}{Westbound} & \multicolumn{2}{|l|}{Northbound} & \multicolumn{3}{|l|}{Southbound} \\
\hline & LI & L2 & L1 & L2 & L1 & L2 & L1 & & L2 \\
\hline Flow Rate & 39 & & 24 & & 39 & & 14 & & \\
\hline Service Time & 2.0 & & 2.5 & & 2.5 & & 2.2 & & \\
\hline Utilization, x & 0.04 & & 0.03 & & 0.05 & & 0.02 & & \\
\hline Dep. headway, hd & 4.02 & & 4.52 & & 4.52 & & 4.18 & & \\
\hline Capacity & 289 & & 274 & & 289 & & 264 & & \\
\hline Delay & 7.20 & & 7.67 & & 7.75 & & 7.25 & & \\
\hline LOS & A & & A & & A & & A & & \\
\hline Approach: & & & & & & & & & \\
\hline Delay & & 7.20 & & & & & & 7.2 & \\
\hline LOS & & A & & & & & & A & \\
\hline Intersection Dela & 7.49 & & & sec & LOS & & & & \\
\hline
\end{tabular}

HCS2000: Unsignalized Intersections Release 4.1d
```

Keith Mailoy
The Shaw Group
100 Technology Center Drive
stoughton, MA 02072

```
Phone: 617-589-5134
Fax: 617-589-2160
E-Mail: keith.malloy@shawgrp.com
ALI-WAY STOP CONTROL (AWSC) ANALYSIS
\(\qquad\)
Analyst:
Agency/Co.:
Keith Malloy
The Shaw Group
Date Performed:
Analysis Time Period: PM exist
Intersection: 4
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2009
Project ID:
East/West Street: Depot Road
North/South Street: Pink Row/Lathrop Rd

\% Thrus Left Lane

Duration, T 1.00 hrs.
\(\qquad\) Worksheet 3 - Saturation Headway Adjustment Worksheet \(\qquad\)
\begin{tabular}{lrlrlrrr}
Eastbound & Westbound & \multicolumn{2}{c}{ Northbound } & \multicolumn{2}{c}{ Southbound } \\
L1 & L2 & L 1 & L 2 & L 1 & L 2 & L 1 & L 2
\end{tabular}

Flow Rates:
\begin{tabular}{lllll}
Total in Lane & 34 & 64 & 69 & 35 \\
Left-Turn & 0 & 22 & 25 & 14 \\
Right-Turn & 12 & 20 & 24 & 0 \\
rop. Left-Turns & 0.0 & 0.3 & 0.4 & 0.4 \\
Rop. Right-Turns & 0.4 & 0.3 & 0.3 & 0.0 \\
rop. Heavy Vehicle0.2 & 0.1 & 0.0 & 0.0
\end{tabular}

1
0.2

1
0.2
0.2
\begin{tabular}{crrrrr}
hRT-adj & -0.6 & -0.6 & -0.6 & -0.6 \\
hHV-adj & 1.7 & 1.7 & 1.7 & 1.7 \\
hadj, computed & 0.1 & & 0.1 & & -0.1
\end{tabular}

Worksheet 4 - Departure Headway and Service Time \(\qquad\)
\(\qquad\)
\begin{tabular}{llllllll}
\multicolumn{2}{c}{ Eastbound } & \multicolumn{2}{c}{ Westbound } & \multicolumn{2}{c}{ Northbound } & \multicolumn{2}{c}{ Southbound } \\
L1 & L2 & L1 & L2 & L1 & L2 & L1 & L2 \\
34 & & 64 & & 69 & & 35 & \\
3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 \\
0.03 & & 0.06 & & 0.06 & & 0.03 & \\
4.32 & & 4.23 & & 4.09 & & 4.27 & \\
0.04 & & 0.08 & & 0.08 & & 0.04 & \\
& 2.0 & & 2.0 & & 2.0 & & 2.0 \\
2.3 & & 2.2 & & 2.1 & & 2.3 &
\end{tabular}

Worksheet 5 - Capacity and Level of Service \(\qquad\)
\begin{tabular}{llllll}
Eastbound & \multicolumn{2}{r}{ Westbound } & \multicolumn{2}{c}{ Northbound } & \multicolumn{2}{c}{ Southbound } \\
L1 & L2 & L1 & L2 & L1 & L2
\end{tabular}
\begin{tabular}{lll}
Flow Rate & 34 \\
Service Time & 2.3 & \\
Utilization, x & 0.04 & \\
Dep. headway, hd & 4.32 & \\
Capacity & 284 & \\
Delay & 7.51 & \\
LOS & A & \\
Approach: & & 7.51 \\
\(\quad\) Delay & & A \\
\(\quad\) LoS & & \\
Intersection Delay & 7.50
\end{tabular}
```

Keith Malloy
The Shaw Group
100 Technology Center Drive
Stoughton, MA 02072

```
Phone: 617-589-5134
Fax: 617-589-2160
E-Mail: keith.malloy@shawgrp.com

ALL-WAY STOP CONTROL(AWSC) ANALYSIS \(\qquad\)
Analyst:
Agency/Co.:
Date Performed:
Keith Malloy
The Shaw Group
4/7/2009
Analysis Time Period: EM No Build 2011
Intersection: 4
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Depot Road
North/South Street: Pink Row/Lathrop Rd
\(\qquad\) Worksheet 2 - Volume Adjustments and Site Characteristics \(\qquad\)

Volume
\% Thrus Left Lane

Duration, T 1.00 hrs.
Worksheet 3 - Saturation Headway Adjustment Worksheet \(\qquad\)
\begin{tabular}{rrrrrrr}
Eastbound & Westbound & Northbound & \multicolumn{2}{c}{ Southbound } \\
L1 & L2 & L1 & L2 & L1 & L2 & L1
\end{tabular}

Flow Rates:
\begin{tabular}{lllll}
Total in Lane & 34 & 64 & 69 & 35 \\
Left-Turn & 0 & 22 & 25 & 14 \\
Right-Turn & 12 & 20 & 24 & 0 \\
Prop. Left-Turns & 0.0 & 0.3 & 0.4 & 0.4 \\
Prop. Right-Turns & 0.4 & 0.3 & 0.3 & 0.0 \\
Prop. Heavy Vehicle0.2 & 0.1 & 0.0 & 0.0
\end{tabular}
Adjustments Exhibit 17-33:
hLT-adj 0.2
1
1
1.
0.2
0.2
0.2
\begin{tabular}{crrrrr}
hRT-adj & -0.6 & & -0.6 & -0.6 & -0.6 \\
hHV-adj & 1.7 & 1.7 & 1.7 & 1.7 \\
hadj, computed & 0.1 & & 0.1 & & -0.1
\end{tabular}
\(\qquad\) Worksheet 4 - Departure Headway and Service Time \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Eastbound} & \multicolumn{2}{|l|}{Westbound} & \multicolumn{2}{|l|}{Northbound} & \multicolumn{2}{|l|}{Southbound} \\
\hline & L1 & L2 & L1 & L2 & L1 & L2 & L1 & L2 \\
\hline Flow rate & 34 & & 64 & & 69 & & 35 & \\
\hline hd, initial value & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 \\
\hline x , initial & 0.03 & & 0.06 & & 0.06 & & 0.03 & \\
\hline hd, final value & 4.32 & & 4.23 & & 4.09 & & 4.27 & \\
\hline x , final value & 0.04 & & 0.08 & & 0.08 & & 0.04 & \\
\hline Move-up time, m & & & & & & & & \\
\hline Service Time & 2.3 & & 2.2 & & 2.1 & & 2.3 & \\
\hline
\end{tabular}
\(\qquad\) Worksheet 5-Gapacity and Level of Service \(\qquad\)
\begin{tabular}{rrrrrrr}
Eastbound & Westbound & Northbound & \multicolumn{2}{c}{ Southbound } \\
L1 L2 & L1 L2 & L1 12
\end{tabular}
\begin{tabular}{lllll}
Flow Rate & 34 & 64 & 69 & 35 \\
Service Time & 2.3 & 2.2 & 2.1 & 2.3 \\
Utilization, x & 0.04 & 0.08 & 0.08 & 0.04 \\
Dep. headway, hd & 4.32 & 4.23 & 4.09 & 4.27 \\
Capacity & 284 & 314 & 319 & 285 \\
Delay & 7.51 & 7.58 & 7.44 & 7.46 \\
LOS & A & A &.. & A
\end{tabular}
\begin{tabular}{cl}
Approach: & \\
Delay & 7.51 \\
Los & A
\end{tabular}

LOS A
\[
7.58
\]

A

7.46

A
Intersection Delay 7.50
Intersection LOS A

Keith Malloy
The Shaw Group
100 Technology Center Drive
Stoughton, MA 02072
Phone: 617-589-5134 Fax: 617-589-2160
E-Mail: keith.malloy@shawgrp.com
ALI-WAY STOP CONTROL (AWSC) ANALYSIS \(\qquad\)
Analyst:
Agency/Co.:
Keith Malloy
Date Performed:
The Shaw Group
4/7/2009
Analysis Time Period: PM During Construction
Intersection: 4
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Depot Road
North/South Street: Pink Row/Lathrop Rd
\(\qquad\) Worksheet 2 - Volume Adjustments and Site Characteristics

\% Thrus Left Lane
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Eastbound} & \multicolumn{2}{|l|}{Westbound} & \multicolumn{2}{|l|}{Northbound} & \multicolumn{3}{|l|}{Southbound} \\
\hline & L1 & L2 & L1 & L2 & L1 & L2 & L1 & & L2 \\
\hline Configuration & LTR & & LTR & & LTR & & LTR & & \\
\hline PHF & 0.70 & & 0.70 & & 0.70 & & 0.70 & & \\
\hline Flow Rate & 63 & & 64 & & - 185 & & 35 & & \\
\hline \% Heavy Veh & 13 & & 11 & & 3 & & 0 & & \\
\hline No. Lanes & & 1 & & 1 & & 1 & & 1 & \\
\hline Opposing-Lanes & & 1 & & 1 & & 1 & & 1 & \\
\hline Conflicting-lanes & & 1 & & 1 & & 1 & & 1 & \\
\hline Geometry group & & 1 & & 1 & & 1 & & 1 & \\
\hline Duration, T 1.00 & hrs & & & & & & & & \\
\hline
\end{tabular}
\(\qquad\) Worksheet 3 - Saturation Headway Adjustment Worksheet \(\qquad\)
\begin{tabular}{lrrrrrr}
Eastbound & Westbound & Northbound & \multicolumn{2}{c}{ Southbound } \\
L1 L2 & L1 & L2 & L1 & L2 & L1 & L2
\end{tabular}

Flow Rates:
Total in Lane 63
Left-Turn 0
Right-Turn 41
Prop. Left-Turns 0.0
Prop. Right-Turns 0.7
Prop. Heavy Vehicle0.1
Geometry Group
1
Adjustments Exhibit 17-33:
hLT-adj 0.2

64
22
20
0.3
0.3
0.1
1
0.2
0.2

35
14
0
0.4
0.0
0.0

1
1
0.2
\begin{tabular}{crrrrr}
hRT-adj & -0.6 & & -0.6 & -0.6 & -0.6 \\
hHV-adj & 1.7 & 1.7 & 1.7 & 1.7 \\
hadj, computed & -0.2 & 0.1 & & 0.1 & 0.1
\end{tabular}

Worksheet 4 - Departure Headway and Service Time \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Eastbound} & \multicolumn{2}{|l|}{Westbound} & \multicolumn{2}{|l|}{Northbound} & \multicolumn{2}{|l|}{Southbound} \\
\hline & L1 & L2 & L1 & L2 & L1 & L2 & LI & L2 \\
\hline Elow rate & 63 & & 64 & & 185 & & 35 & \\
\hline hd, initial value & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 \\
\hline x , initial & 0.06 & & 0.06 & & 0.16 & & 0.03 & \\
\hline hd, final value & 4.32 & & 4.55 & & 4.36 & & 4.48 & \\
\hline \(x\), final value & 0.08 & & 0.08 & & 0.22 & & 0.04 & \\
\hline Move-up time, m & & & & & & 0 & & \\
\hline Service Time & 2.3 & & 2.6 & & 2.4 & & 2.5 & \\
\hline
\end{tabular}

Worksheet 5 - Capacity and Level of Service \(\qquad\)
\begin{tabular}{rrrrrrr}
Eastbound & Westbound & Northbound & \multicolumn{2}{c}{ Southbound } \\
L1 & L2 & L1 & L2 & L1 & L2 & L1
\end{tabular}

Flow Rate
Service Time
63
2.3
0.08
4.32
313
7.67
A

64
2.6
0.08

Dep. headway, hd
4.32

314
Capacity
Delay
LOS
7.95

A

Delay
LOS
7.67

A
2.4

35
0.22
2.5
\(4.36 \quad 4.48\)
435
285
8.62

A
7.69

A
Northbound
L1 L2

185
0.04
7.95

A
Intersection LOS A
7.69

A

Intersection Delay 8.23

Keith Malloy
The Shaw Group
100 Technology Center Drive
stoughton, MA 02072
Phone: 617-589-5134
Fax: 617-589-2160
E-Mail: keith.malloy@shawgrp.com
ALL-WAY STOP CONTROL (AWSC) ANALYSIS \(\qquad\)

\% Thrus Left Lane
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Eastbound} & \multicolumn{2}{|l|}{Westbound} & \multicolumn{2}{|l|}{Northbound} & \multicolumn{2}{|l|}{Southbound} \\
\hline & L1 & L2 & L1 & L2 & L1 & L2 & L1 & L2 \\
\hline Configuration & LTR & & LTR & & LTR & & LTR & \\
\hline PHF & 0.70 & & 0.70 & & 0.70 & & 0.70 & \\
\hline Flow Rate & 43 & & 64 & & 78 & & 35 & \\
\hline \% Heavy Veh & 52 & & 11 & & 15 & & 0 & \\
\hline No. Lanes & & & & 1 & & 1 & & 1 \\
\hline Opposing-Lanes & & & & 1 & & 1 & & 1 \\
\hline Conflicting-lanes & & & & 1 & & 1 & & 1 \\
\hline Geometry group & & & & 1 & & 1 & & 1 \\
\hline
\end{tabular}

Duration, T 1.00 hrs.
\(\qquad\) Worksheet 3 - Saturation Headway Adjustment Worksheet \(\qquad\)
\begin{tabular}{lrrrrrr}
Eastbound & Westbound & Northbound & Southbound \\
L1 & L2 & L1 & L2 & L1 & L2 & L1
\end{tabular}

Flow Rates:
Total in Lane
Left-Turn
Right-Turn 21
Prop. Left-Turns 0.
Prop. Right-Turns 0.5
Prop. Heavy Vehicle0.5
Geometry Group
1
\begin{tabular}{lll}
64 & 78 & 35 \\
22 & 34 & 14 \\
20 & 24 & 0 \\
0.3 & 0.4 & 0.4 \\
0.3 & 0.3 & 0.0 \\
0.1 & 0.1 & 0.0
\end{tabular}

Adjustments Exhibit 17-33:
hLT-adj 0.2
1
1
1
0.2
0.2
0.2
```

        hRT-adj -0.6 -0.6
    hHV-adj 1.7
    hadj, computed 0.6
0.1
0.2
0.1

```

Worksheet 4 - Departure Headway and Service Time \(\qquad\)
\(\qquad\)
\begin{tabular}{lllllllll}
\multicolumn{2}{c}{ Eastbound } & \multicolumn{2}{c}{ Westbound } & \multicolumn{2}{c}{ Northbound } & \multicolumn{2}{c}{ Southbound } \\
L1 & L2 & L1 & L2 & L1 & L2 & L1 & L2 \\
43 & & 64 & & 78 & & 35 & \\
3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 & 3.20 \\
0.04 & & 0.06 & & 0.07 & & 0.03 & \\
4.82 & & 4.28 & & 4.35 & & 4.32 & \\
0.06 & & 0.08 & & 0.09 & & 0.04 & \\
& 2.0 & & 2.0 & & 2.0 & & 2.0 \\
2.8 & & 2.3 & & 2.4. & & 2.3 &
\end{tabular}

Worksheet 5 - Capacity and Level of Service
\begin{tabular}{lrlrrrr}
Eastbound & Westbound & Northbound & \multicolumn{2}{c}{ Southbound } \\
L1 & L2 & L1 & L.2 & L1 & L2 & L1
\end{tabular}
\begin{tabular}{lllll}
Flow Rate & 43 & 64 & 78 & 35 \\
Service Time & 2.8 & 2.3 & 2.4 & 2.3 \\
Utilization, x & 0.06 & 0.08 & 0.09 & 0.04 \\
Dep. headway, hd & 4.82 & 4.28 & 4.35 & 4.32 \\
Capacity. & 293 & 314 & 328 & 285 \\
Delay & 8.12 & 7.63 & 7.80 & 7.51 \\
LOS & A & A & A & A
\end{tabular}

Approach:

Delay
LOS
Intersection Delay 7.77
7.63
A

Intersection LOS A
7.51

A
\(\qquad\)
Analyst:
Agency/Co.: The Shaw Group
Date Performed: 4/22/2009
Analysis Time Period: AM Exist
Intersection: 5
Jurisdiction:
Units: U. S. Customary
Analysis Year: 2009
Project ID:
East/West Street: Site Entrance
North/South Street: Lathrop Rd
Intersection Orientation: NS
Study period (hrs): 1.00
Vehicle Volumes and Adjustments
Major Street: Approach Northbound
Southbound Movement 1

1
L
\begin{tabular}{ll|l}
2 & 3 & 1 \\
\(T\) & R & 1 \\
& \(L\)
\end{tabular}
\begin{tabular}{ll}
5 & 6 \\
\(T\) &
\end{tabular}
\begin{tabular}{lllllll}
\hline Volume & 19 & 1 & 4 & 13 \\
Peak-Hour Factor, PHF & 0.84 & 0.84 & 0.84 & 0.84 & \\
Hourly Flow Rate, HFR & 22 & 1 & 4 & 15 & \\
Percent Heavy Vehicles & -- & -- & 0 & -- & -- \\
Median Type/Storage & Undivided & & \(/\) &
\end{tabular}

RT Channelized?
\begin{tabular}{lcccc}
Lanes & 1 & 0 & 0 & 1 \\
Configuration & & \(T R\) & LT & \\
Upstream Signal? & No & & & No
\end{tabular}

\(\qquad\)
```

Analyst:
Agency/Co.: The Shaw Group
Date Performed: 4/22/2009
Analysis Time Period: AM No Build 2011
Intersection: 5
Jurisdiction:
Units: U. S. Customary
Analysis Year:
project ID:
East/West Street: Site Entrance
North/South Street: Lathrop Rd

```
Intersection Orientation: NS Study period (hrs): 1.00

Vehicle Volumes and Adjustments

\begin{tabular}{llll}
Volume & 1 & 1 & \\
Peak Hour Factor, PHF & 0.84 & 0.84 & \\
Hourly Flow Rate, HFR & 1 & 1 & \\
Percent Heavy Vehicles & 0 & 0 & \\
Percent Grade (\%) & & & \\
Flared Approach: Exists?/Storage & & &
\end{tabular}
Iaxed Approach: Exists?/storage
Configuration
 L R

Delay, Queue Length, and Level of Service
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Approach & NB & SB & W & bo & & & bou & \\
\hline Movement & 1 & 4 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline Lane Config & & LT & L & & R & & & \\
\hline v (vph) & & 4 & 1 & & 1 & & & \\
\hline \(\mathrm{C}(\mathrm{m})(\mathrm{vph})\) & & 1605 & 968 & & 1061 & & & \\
\hline v/c & & 0.00 & 0.00 & & 0.00 & & & \\
\hline 95\% queue length & & 0.01 & 0.00 & & 0.00 & & & \\
\hline Control Delay & & 7.2 & 8.7 & & 8.4 & & & \\
\hline Los & & A & A & & A & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Approach Delay Approach LOS & & & \multicolumn{3}{|c|}{8.6} & & & \\
\hline
\end{tabular}

HCS2000: Unsignalized Intersections Release 4.1d
TWO-WAY STOP CONTROL SUMMARY \(\qquad\)

Analyst:
Agency/Co.: The Shaw Group
Datè Performed: 4/22/2009
Analysis Time Period: AM During Construction
Intersection: 5
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Site Entrance
North/South Street: Lathrop Rd
Intersection Orientation: NS Study period (hrs): 1.00
Vehicle Volumes and Adjustments
Major Street: Approach Northbound Southbound
\begin{tabular}{cccccccc}
Movement & 1 & 2 & 3 & I & 4 & 5 & 6 \\
& L & T & R & I & L & T & R
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Volume & & 19 & 1 & & 45 & 13 & & \\
\hline Peak-Hour Factor, PHF & & 0.84 & 0.84 & & 0.84 & 0.8 & & \\
\hline Hourly flow Rate, HFR & & 22 & 1 & & 53 & 15 & & \\
\hline Percent Heavy Vehicles & & -- & -- & & 2 & -- & -- & \\
\hline Median Type/Storage & Undiv & ded & & & / & & & \\
\hline RT Channelized? & & & & & & & & \\
\hline Lanes & & 1 & & & 0 & 1 & & \\
\hline Configuration & & & & & & & & \\
\hline Upstream Signal? & & No & & & & No & & \\
\hline Minor Street: Approach & & boun & & & & bou & & \\
\hline Movement & 7 & 8 & 9 & I & 10 & 11 & 12 & \\
\hline & I & T & R & & L & T & R & \\
\hline Volume & 1 & & 1 & & & & & \\
\hline Peak Hour Factor, PHF & 0.84 & & 0.84 & & & & & \\
\hline Hourly Flow Rate, HFR & 1 & & 1 & & & & & \\
\hline Percent Heavy Vehicles & 0 & & 0 & & & & & \\
\hline Percent Grade (\%) & & 0 & & & & 0 & & \\
\hline Flared Approach: Exists & Exists?/Storage & & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{/}} & & & \multirow[t]{3}{*}{/} \\
\hline Lanes & 1 & 1 & & & & \multicolumn{2}{|l|}{} & \\
\hline Configuration & I & R & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Approach & NB & SB & We & bo & & & bou & \\
\hline Movement & 1 & 4 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline Lane Config & & LT & L & & R & & & \\
\hline \(v\) (vph) & & 53 & 1 & & 1 & & & \\
\hline \(C\) (m) (vph) & & 1592 & 826 & & 1061 & & & \\
\hline v/c & & 0.03 & 0.00 & & 0.00 & & & \\
\hline 95\% queue length & & 0.10 & 0.00 & & 0.00 & & & \\
\hline Control Delay & & 7.3 & 9.4 & & 8.4 & & & \\
\hline LOS & & A & A & & A & & & \\
\hline Approach Delay & & & \multicolumn{3}{|c|}{8.9} & & & \\
\hline Approach LOS & & & \multicolumn{3}{|c|}{A} & \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

Approach LOS
\(\qquad\)

Analyst:
\begin{tabular}{lll}
Agency/Co.: & The Shaw Group \\
Date Performed: & \(4 / 22 / 2009\) \\
Analysis Time Period: & AM Build 2011 \\
Intersection: & 5 \\
Jurisdiction: & & \\
Units: U. S. Customary & \\
Analysis Year: & \\
Project ID: & & \\
East/West Street: & Site Entrance & \\
North/South Street: Lathrop Rd & \\
Intersection Orientation: NS & Study period (hrs): 1.00
\end{tabular}

\begin{tabular}{lllll}
\hline Volume & 19 & 0 & 10 & 13 \\
Peak-Hour Factor, PHF & 0.84 & 0.84 & 0.84 & 0.84 \\
Hourly Flow Rate, HFR & 22 & 0 & 11 & 15 \\
Percent Heavy Vehicles & -- & -- & 60 & -- \\
Median Type/Storage & Undivided & & \(/\) &
\end{tabular}

Median Type/Storage
RT Channelized?
\begin{tabular}{lcccc}
Lanes & 1 & 0 & 0 & 1 \\
Configuration & & TR & LT & \\
Upstream Signal? & No & & & No
\end{tabular}
\begin{tabular}{lllclllll}
\hline Minor Street: & Approach & & Westbound & & \multicolumn{3}{c}{ Eastbound } \\
& Movement & 7 & 8 & 9 & 10 & 11 & 12 \\
& & L & T & R & L & L & T & R
\end{tabular}
\begin{tabular}{lllll}
\hline Volume & 0 & 6 & & \\
Peak Hour Factor, PHF & 0.84 & 0.84 & \\
Hourly Flow Rate, HFR & 0 & 7 & & \\
Percent Heavy Vehicles & 0 & & 100 & \\
Percent Grade (\%) & & 0 & & \\
Flared Approach: Exists?/Storage & & & \\
Lanes & 1 & 1 & & \\
Configuration & L & R & & \\
\hline
\end{tabular}

\(\qquad\)
Analyst:
\begin{tabular}{ll}
Agency/Co.: & The Shaw Group \\
Date Performed: & \(4 / 22 / 2009\) \\
Analysis Time Period: & PM Exist \\
Intersection: & 5 \\
Jurisdiction: & \\
Units: U. S. Customary \\
Analysis Year: & 2009 \\
Project ID: & \\
East/West Street: & Site Entrance \\
North/South Street: Iathrop Rd \\
Intersection Orientation: NS
\end{tabular} Study period (hrs): 1.00
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Major Street: Approa} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(1 \begin{gathered}\text { Northbound } \\ \\ 2\end{gathered}\)}} & \multicolumn{3}{|c|}{Southbound} \\
\hline & & & & 4 & 5 & 6 \\
\hline & L & T & R & \(\pm\) & T & R \\
\hline Volume & & 21 & 1 & 8 & 24 & \\
\hline Peak-Hour Factor, PHF & & 0.70 & 0.70 & 0.70 & 0. & \\
\hline Hourly flow Rate, HER & & 30 & 1 & 11 & 34 & \\
\hline Percent Heavy Vehicles & & -- & -- & 0 & -- & -- \\
\hline Median Type/Storage & & ed & & / & & \\
\hline RT Channelized? & & & & & & \\
\hline Lanes & & 1 & & 0 & 1 & \\
\hline Configuration & & & & & & \\
\hline Upstream Signal? & & No & & & No & \\
\hline
\end{tabular}
\begin{tabular}{lllclllll}
\hline Minor Street: & Approach & \multicolumn{3}{c}{ Westbound } & & \multicolumn{3}{c}{ Eastbound } \\
& Movement & 7 & 8 & 9 & 10 & 11 & 12 \\
& & L & T & R & I & L & T & R
\end{tabular}
\begin{tabular}{llll}
\hline Volume & 8 & 16 & \\
Peak Hour Eactor, PHF & 0.70 & 0.70 & \\
Hourly Elow Rate, HFR & 11 & 22 & \\
Percent Heavy Vehicles & 0 & 0 & \\
Percent Grade (\%) & & 0 & \\
Flared Approach: Exists?/Storage & & & \\
\hline
\end{tabular}
Lanes - 1
Configuration \(\quad\) L R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Approach & NB & SB & W & bo & & & bou & \\
\hline Movement & 1 & 4 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline Lane Config & & LT & L & & R & & & \\
\hline \(v\) (vph) & & 11 & 11 & & 22 & & & \\
\hline C (m) (vph) & & 1595 & 914 & & 1050 & & & \\
\hline v/c & & 0.01 & 0.01 & & 0.02 & & & \\
\hline 95\% queue length & & 0.02 & 0.04 & & 0.06 & & & \\
\hline Control Delay & & 7.3 & 9.0 & & 8.5 & & & \\
\hline LoS & & A & A & & A & & & \\
\hline Approach Delay & & & \multicolumn{3}{|c|}{8.7} & & & \\
\hline Approach IoS & & & \multicolumn{3}{|c|}{A} & & & \\
\hline
\end{tabular}

HCS2000: Unsignalized Intersections Release 4.1d
TWO-WAY STOP CONTROL SUMMARY \(\qquad\)

Analyst:
Keith Malloy
Agency/Co.:
The Shaw Group
Date Performed:
4/22/2009
Analysis Time Period: PM No Build 2011
Intersection: 5
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Site Entrance
North/South Street: Lathrop Rd
Intersection Orientation: NS
Study period (hrs): 1.00

HCS2000: Unsignalized Intersections Release 4.1d
TWO-WAY STOP CONTROL SUMMARY \(\qquad\)
Analyst:
\begin{tabular}{ll}
Agency/Co.: & The Shaw Group \\
Date Performed: & \(4 / 22 / 2009\) \\
Analysis Time Period: & PM During Construction \\
Intersection: & 5 \\
Jurisdiction: & \\
Units: U. S. Customary \\
Analysis Year: & \\
Project ID: & \\
East/West Street: & Site Entrance \\
North/South Street: Lathrop Rd \\
Intersection Orientation: NS
\end{tabular}

Study period (hrs): 1.00
Vehicle Volumes and Adjustments
Major Street: Approach Northbound Southbound
\begin{tabular}{llllllll}
Movement & 1 & 2 & 3 & 1 & 4 & 5 & 6
\end{tabular}
\begin{tabular}{llllll}
\hline Volume & 21 & 1 & 28 & 24 \\
Peak - Hour Factor, PHF & 0.70 & 0.70 & 0.70 & 0.70 & \\
Hourly Flow Rate, HFR & 30 & 1 & 40 & 34 & \\
Percent Heavy Vehicles & -- & -- & 0 & -- & -- \\
Median Type/Storage & Undivided & & \(/\) &
\end{tabular}

RT. Channelized?
\begin{tabular}{lcccc}
Lanes & 1 & 0 & 0 & 1 \\
Configuration & & \(T R\) & LT & \\
Upstream Signal? & No & & & No
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Approach & NB & SB & \multicolumn{3}{|c|}{Westbound} & \multicolumn{3}{|c|}{Eastbound} \\
\hline Movement & 1 & 4 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline Lane Config & & LT & L & & R & & & \\
\hline \(v\) (vph) & & 40 & 11 & & 138 & & & \\
\hline C (m) (vph) & & 1595 & 832 & & 1044 & & & \\
\hline v/c & & 0.03 & 0.01 & & 0.13 & & & \\
\hline 95\% queue length & & 0.08 & 0.04 & & 0.46 & & & \\
\hline Control Delay & & 7.3 & 9.4 & & 9.0 & & & \\
\hline LOS & & A & A & & A & & & \\
\hline Approach Delay & & & & 9.0 & & & & \\
\hline Approach LOS & & & & A & & & & \\
\hline
\end{tabular}
\(\qquad\)

Analyst:
Agency/Co.:
The Shaw Group
Date Performed:
4/22/2009
Analysis Time Period: PM Build 2011
Intersection:
5
Jurisdiction:
Units: U. S. Customary
Analysis Year:
Project ID:
East/West Street: Site Entrance
North/South Street: Lathrop Rd
Intersection Orientation: NS
Study period (hrs): 1.00
Vehicle Volumes and Adjustments
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Major Street:} & Approach & \multicolumn{3}{|c|}{Northbound} & & & \multicolumn{2}{|l|}{Southbound} \\
\hline & Movement & 1 & 2 & 3 & 1 & 4 & 5 & \\
\hline & & I. & T & R & & L & T & \\
\hline
\end{tabular}

\begin{tabular}{lllll}
\hline Volume & 8 & 22 & \\
Peak Hour Factor, PHF & 0.70 & 0.70 & \\
Hourly Flow Rate, HFR & 11 & 31 & \\
Percent Heavy Vehicles & 0 & 30 & 0 \\
Percent Grade (\%) & & 0 & & \\
Flared Approach: Exists?/Storage & & & \\
Lanes & 1 & 1 &
\end{tabular}
Configuration \(\mathrm{L} \quad \mathrm{R}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Approach & NB & SB & W & bo & & & bo & \\
\hline Movement & 1 & 4 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline Lane Config & & LT & L & & R & & & \\
\hline v (vph) & & 20 & 11 & & 31 & & & \\
\hline \(C\) (m) (vph) & & 1353 & 886 & & 970 & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) & & 0.01 & 0.01 & & 0.03 & & & \\
\hline 95\% queue length & & 0.05 & 0.04 & & 0.10 & & & \\
\hline Control Delay & & 7.7 & 9.1 & & 8.8 & & & \\
\hline LOS & & A & A & & A & & & \\
\hline Approach Delay & & & \multicolumn{3}{|c|}{8.9} & & & \\
\hline Approach LoS & & & \multicolumn{3}{|c|}{A} & & & \\
\hline
\end{tabular}

\section*{APPENDIX C Photographs}

Site Name:
Site Location: Route 163
Uncasville,
CT
Photographer Peter
Rancourt
Date 4/8/09

Direction
SB
Comments
Side street is Hidden Acres
Road
Good
Pavement
Condition

\section*{Photographer}

Peter
Rancourt
Date
4/8/09
Direction
SB
Comments
I-395 S Exit
Ramp
Good
Pavement Condition

Site Name:
Uncasville, CT

Photographer
Peter
Rancourt
Date
4/8/09
Direction
NB
Comments
Good
pavement condition

\section*{Photographer}

Peter
Rancourt
Date
4/8/09
Direction
NB Ramps
Comments
Good
pavement
condition
.

Site Location: Route 163 and I-395 NB Ramps

\begin{tabular}{|c|c|}
\hline Site Name: Uncasville, CT & Site Location: Route 163 \\
\hline \begin{tabular}{l}
Photographer \\
Peter \\
Rancourt \\
Date \\
4/8/09 \\
Direction SB \\
Comments \\
Approaching \\
Route 32
\end{tabular} & \\
\hline \begin{tabular}{l}
Photographer \\
Peter \\
Rancourt \\
Date \\
4/8/09 \\
Direction \\
NB \\
Comments \\
Approaching Route 32
\end{tabular} & \\
\hline
\end{tabular}

\section*{Site Name:} Uncasville, CT Peter Rancourt Date 4/8/09 Direction NB

Comments
No thru traffic residents only sign

\section*{Photographer}

Peter
Rancourt
Date
4/8/09
Direction
NB
Comments
Approaching Site on right

Site Name: Uncasville, CT

Photographer Peter Rancourt

Date 4/8/09

Direction
NB
Comments Site Entrance

Site Location: Lathrop Rd

Site Name: Uncasville, CT

Photographer
Peter Rancourt

Date 4/8/09

Direction EB

Comments

Photographer
Peter
Rancourt
Date
4/8/09
Direction
EB
Comments

Site Location: Powerhouse Rd

\section*{APPENDIX D \\ CDOT Accident Experience Report}

\title{
STATE OF CONNECTICUT \\ DEPARTMENT OF TRANSPORTATION
}

2800 BERLIN TURNPIKE, P.O. BOX 317546
NEWINGTON, CONNECTICUT 06131-7546
Phone:
```

April 22, 2009

```

\section*{RESPONSE TO DATA REQUEST}

TO: Mr. Jim Barrqck, P.E.
Lead Civil Engineer
Shaw Environmental \& Infrastructure Group 100 Technology Center Drive
Stoughton MA 02072

Re: Response to your request of April 21, 2009.

Enclosed is the Accident Data that you requested.

\section*{COMMENTS :}

Direct questions to: Craig Mandell

Telephone number: (860) 594-2097

Shaw Environmental \& Infrastructure, Inc.
100 Technology Center Drive
Stoughton, MA 02072
617-589-2761
Fax: 617-589-2160
\begin{tabular}{|c|c|c|c|}
\hline To: & \begin{tabular}{l}
Mr. Angelo Asaro, \\
Transportation Asst Planning Director
\end{tabular} & \multicolumn{2}{|l|}{Facsimile No. 860-594-2056} \\
\hline Location: & \begin{tabular}{l}
ConnDOT Division of Systems Information PO Box 317546 \\
Newington CT 06131
\end{tabular} & \# of Sheets: & 1 of 2 \\
\hline From: & Jemes Barrack, P.E. \(\quad\) Telephone No. & (617) 589-2761 & Date:April 21, 2009 \\
\hline
\end{tabular}

RE: Request for Accident Experience Report.
Mr. Asaro:

We are requesting an "Accident Experience Report" for the latest 3-year time period, for the following six (6) intersections located in Montville, CT.
1. I-395 Exit 79 SB off ramp at Rte 163 (unsig)
2. I-395 Exit 79 NB off ramp at Rte 163 (signal)
3. Rte 163 at Rte 32 at Depot Rd (signal)
4. Lathrop Rd at Depot Rd at Pink Row (unsig, non-State owned)
5. Lathrop Rd at NRG Plant Entrance (unsig, non-State owned)
6. Power House Rd at Rte 32 (unsig)

A map is attached on page 2.
Also, can you provide me with the average accident rates for signalized and unsignalized intersections (Statewide rates are fine).

This will be supporting data for a "Traffic Impact Study" for the NRG Power plant proposed conversion to wood chip fuel source. The trip generation is 6 new inbound/ 6 new outbound vehicle trips per peak hour.

Thank you. The Information can be faxed, emailed, or mailed directly to me

Jim Barrack, P.E.
Lead Civil Engineer
Shaw Environmental \& Infrastructure Group
100 Technology Center Drive
Stoughton, MA 02072
617-589-2761
617-589-2160 fax
lames.barrack@shawarp.com

```

TRANSMISSION VERIFICATION REPORT

```

TIME : 04/21/2009 14:00

DATE, TIME
FAX NO. NAME
DURATION
PAGE(S)
RESULT
MODE

04/21 13:57
918605942056
00: 02:11
ロ2
OK
STANDARD
ECM

Division of Systems Information
Standard Accident.Experience Abbreviations

\section*{Table Title - Special Features (RDWY. FACT.)}

\author{
Abbreviation \\ PENTRTD M B \\ CNST ACT,DEV \\ AT PVT DRIVE \\ AT COMM DRVE \\ OPN MED DVDR \\ AT RR.XING
}

Definition
Median Barrier Penetration
Construction Activity or Device
At a Private Drive
At a Commercial Drive
At an Opening in Median Divider
At a Railroad Crossing

Table Title - Light Condition (LIGHT COND)
\begin{tabular}{ll}
Abbreviation & \\
\begin{tabular}{ll}
DAYLT & Definition \\
DARK/WO & \\
DARK/W & \\
& \\
& \\
& \\
& Darlight \\
Darkness, Wo Highway Illumination Highway Illumination
\end{tabular} \\
\end{tabular}

Table Title - Road Surface Condition (SURF COND)
\begin{tabular}{ll}
Abbreviation & Definition \\
SAND & Loose Sand \\
UNKN & Unknown
\end{tabular}

Table Title - Weather Condition (WEATH)

\section*{Abbreviation UNKN.}

Table Title - Type of Collision (COLLISION TYPE)

Abbreviation
ANGLE
FIXED OBJ
MOVING OBJ
SIDESWP-SM
SIDESWP-OP
TURN-SAME
HD-ON TRN
TURN-INTS
NON-COLL
Table Title - Pedestrian Maneuver
Abbreviation
EMERG PERS (NOT REL TO MTR VEH ACC)

Definition
Angle (involving no turms)
Fixed Object
Moving Object
Sideswipe (same direction)
Sideswipe (opposite direction)
Turning Movement (same direction)
Turning Movement (opposite direction)
Turning Movement (intersecting paths)
Miscellaneous - Non-Collision

\section*{Definition}

Emergency Personnel (not related to a motor vehicle accident)

Table Title - Injury Severity (INJURIES)

\section*{Abbreviation \\ K}

A

B

C
\begin{tabular}{l}
Abbreviation \\
\hline ON \\
OFF \\
SERV \\
CON \\
CDRD \\
HOV \\
TRWT
\end{tabular}

\section*{Table Title - Contributing Factors}

\author{
Abbreviation \\ DRVR ENTERED DIVD HWY IN WRONG DIRECTION \\ DRVR UNABLE TO COPE W/COND, DRVR LOST CONT \\ VEH TURNING DISPLAYING WRONG DIR SIGNAL
}

\section*{Table Title - Vehicle Direction}

\section*{Table Title - Roadway Type (RAMP TYPE)}

Abbreviation
ON
OFF
SERV
CON
HOV
TRWT

\section*{Definition}

Fatal Injury
Incapacitating Injury (i.e., severe lacerations, broken or distorted limbs, skull or chest injuries, abdominal injuries, unconsciousness at or when taken from the accident scene, unable to leave the accident scene without assistance) Nonincapacitating Evident Injury (i.e., lump on head, abrasions, bruises, minor lacerations)
Possible Injury (i.e., momentary unconsciousness, claim of injuries not evident, limping, complaint of pain, nausea, hysteria)

\section*{Definition}

On-Ramp
Off-Ramp
Service Area or Rest Area
Connector
Collector-Distributor Roadway
High-Occupancy Vehicle Lane
Truck Weighing Station

\section*{Definition}

Driver entered a divided highway in wrong direction
Driver unable to cope with conditions, driver lost control
Vehicle turning displaying wrong directional signal

\section*{Definition}

Northbound
Southbound
Eastbound
Westbound
Unknown

\section*{Table Title - Object Location}

\author{
Abbreviation \\ OFF RD AHEAD \\ SHLDR RIGHT \\ SHLDR LEFT \\ OFF RD RIGHT \\ OFF RD LEFT
}

\section*{Definition}

Off road and shoulder ahead
On shoulder - near side (right)
On shoulder - far side (left)
Off road \& shoulder - near side (right)
Off road \& shoulder - far side (left)

\section*{Table Title - Vehicle Type}
\begin{tabular}{l}
Abbreviation \\
\hline COMM BUS \\
SCHL BUS \\
TRUCK ST \\
TRUCK DT \\
MTRCYCLE \\
EMRGNCY \\
TR TRAIL \\
CNSTRTN \\
SNOWMOBL \\
NON CONT \\
TANDEM \\
VAN \\
AUTO PAS \\
TRK-COMB \\
CAR-COMB \\
VEHICLE \\
PDSTRIAN
\end{tabular}

Table Title - Vehicle Maneuver
Abbreviation
VEH CHANGING FROM ENT. RAMP TO LEFT LANE VEH MANEUV TO EXIT FR PRKNG SP(NOT ANGLE)

Table Title - Object Involved

\author{
Abbreviation \\ CONST BARR \\ CATCH BASN \\ CLVRT HEDR \\ FRGN OBJ \\ ILLUM POLE \\ UTLTY POLE \\ BRDGE RAIL \\ HGHWY SIGN \\ OH SGN SPT \\ U.P.CEILING \\ VEH OFFRD. \\ R.R.APURTN \\ IMPCT DEVC \\ CHANNELIZTN \\ FIRE HYD \\ JERSEY BARR. \\ TR-CNTRL DEV
}

\section*{Definition}

Commercial Bus
School Bus
Truck (single unit-single tires)
Truck (single unit-dual tires)
Motorcycle
Emergency Vehicle
Tractor-trailer (1 trailer)
Construction or farm equipment
Snowmobile, Go-Kart, ATV's, etc.
Non-contact vehicle
Tractor-trailer (2 trailers)
Passenger Van
Passenger Car
Truck-trailer combination (not tractor)
Car-trailer combination
Unknown vehicle
Pedestrian

\section*{Definition}

Vehicle changing from entrance ramp to left lane
Vehicle maneuvering to exit from parking space (other than angle parking)

\section*{Definition}

Construction Barricade or Barrels
Catch basin or manhole cover
Culvert Endwall (header)
Foreign object on pavement
Illumination Pole
Utility Pole
Bridge parapet wall or rail (on bridge)
Highway Sign
Overhead sign support
Underpass Ceiling
Vehicle (off road and shoulder)
Railroad appurtenance or tracks
Impact Attenuator
Channelization
Fire Hydrant
New Jersey Barrier
Traffic Control Device
1. Identification
2. Total Number of Sections
4. Number of Accidents (Sections)
5. Rate - Sections - Accidents Per Million Vehicle Miles
6. Rate - Sections - Accidents Per Mile
...
7. Required Minimum - Accidents Per Mile
8. Total Number of Spots
10. Number of Accidents (Spots)
11. Rate - Spots - Accidents Per Million Vehicles Entering .
12. Rate - Spots - Accidents Per Spot
13. Required Minimura - Accident Per Spot

COMPARITIVE ACCIDENT STATISTICS BY ROADWAY GROUP AND INTERSECTION TYPES DESCRIPTION OF ROW GEADING ABBREVIATIONS FOR TABLE III - PAGE 2

\footnotetext{
\(R=\) RURAL
\(U=\) URBAN
}

\(2004-2006\) TRAFFTC ACCIDENT SURVEITIANCE REPORT

\title{
STATE OF CONNECTICUT \\ DEPARTMENT OF TRANSPORTATION \\ BUREAU OF POLICY AND PLANNING \\ DIVISION OF SYSTEMS INFORMATION
}

\section*{ACCIDENT DATA CONTIENT}

Data in the enclosed report reflects that which was contained in the Department of Transportation's accident file on the date that this report was generated and represents accidents occurring during the period July 1, 2005 through June 30, 2008.

\section*{REPORTING LEVEL}

Investigating police authorities have been required to file an accident report within five days of the completion of such investigation for any accident that resulted in death, injury or a prescribed dollar amount of damage to the property of any one individual. The prescribed dollar amounts and their effective periods are as follows: \(\$ 1,000\), from October 1, 1988 to present; \(\$ 600\), from October 1, 1984 to September 30, 1988; and \(\$ 400\), from January 1, 1974 to September 30, 1984.

Effective with accidents occurring on October 1, 1990 and thereafter, (in accordance with Public Act 90-143) the requirement of involved operators to complete an Operator Accident Report was rescinded by the State Legislature. Also, investigating police authorities are required to file accident reports with the Department of Transportation instead of the Department of Motor Vehicles as formerly required.

Effective with accidents occurring on January 1, 1995 and thereafter, investigating police authorities are required to report accidents with a revised accident report form which differs significantly from the form used to report accidents prior to 1995. Data recorded from this form is then converted to the pre-1995 format for the production of various reports. Since some information is lost in the conversion process, the data in the enclosed report may not necessarily reflect the data recorded from the police accident report form.

\section*{DIFFERENCES IN CODING CRITERIA CONCERNING LOCAL ROAD PROPERTY DAMAGE ONLY ACCDENTS}

Property damage only accidents which occurred on locally maintained roadways before August 1, 1990, from January 1, 1992 to March 31, 1992 and from January 1, 2007 to the present were coded for inclusion in the Department of Transportation's accident file. Property damage only accidents which occurred on locally maintained roadways from August 1, 1990 to December 31, 1991 and from April 1, 1992 to December 31, 2006 were not coded for inclusion in the accident file. Data users should be aware of the differences in the accident coding criteria among the various time periods.

\section*{LIMITATIONS}

The Department of Transportation devotes considerable resources to the analysis of each accident received and to the codification of the location of each accident. Each accident entered into the Department's computerized system is reviewed for accuracy and completeness. Quality control routines are included in the system that validate the data and generate reports containing exceptional data for review. The user of the data contained in the enclosed report should be aware of certain limitations.

All accidents which actually occurred within the area covered by the report:
- May not have been received by the Department of Transportation;
- May not have contained sufficient information to have been located in the physical area covered by this report; or
- May not have been appropriately located by the Department of Transportation during codification, data entry, file maintenance or data retrieval activities.

Accidents contained within the enclosed report may not have actually occurred within the physical area covered by the report, but have been placed there due to, either, insufficient or misleading information contained in the accident report or to misallocation of the accident during codification, data entry, file maintenance or data retrieval activities.

\section*{Contributing Factors}

The contributing factors indicated on the accident experience and/or accident summary have been determined by the Department of Transportation's Accident Records Section and are used by the Department in its ongoing engineering evaluation of Connecticut's roads and highways. Each contributing factor has been determined subjectively and is not meant to assign legal responsibility.
```

log A.M.

```
VEHICLE TYPE

RWY. FACT. CASE \# DAY TH TE

0000
00000000
OFF RD RIGHT TURNING RIGHT FROM PRORER LANE

\footnotetext{
\[
\begin{aligned}
& 131766 \text { SAT JUN } 10062215 \text { DARK/W DRY CLEAR HEAD-ON } \\
& \text { GOING STRAIGHT } \\
& \text { GOING STRAIGHT }
\end{aligned}
\]
}

 K A B ©

\section*{TOWN OF MONTVILLE
042209 PREPARED 042209}
\(\begin{array}{llllllll} & \text { ROUTE } & \text { NUMBER } & 32 \\ \text { PERIOD } & & \\ \text { FROM } & 07 & 01 & 05 & \text { TO } & 06 & 30 & 08\end{array}\)
PORTATION ACCIDENT EXPERIENCE
LOCATION 005.56005 .60
ane
\({ }^{\text {caumacem }}\)
UNKNOWN IO0591 THU JAN 10 O8 2110 DARK/W DRY CLEAR HD-ON TRN
VEH TURNING LEFT FROM PROPER LANE
VEHICIE GOING STRAIGHT
UNKNOWN IO0591 THU JAN 10 O8 2110 DARK/W DRY CLEAR HD-ON TRN
VEH TURNING LEFT FROM PROPER LANE
VEHICIE GOING STRAIGHT
UNKNOWN 11.9047 THU EES 15071641 DAYLT UNKN CLEAR SIDESWP-OP
STOPPED FOR TRAFFIC SIGNALS IN HIGHWAY MAINTENANCE
COLLISION
O00.00 AT DEPOT RD
DRIVER FAIIED TO GRANT RIGHT OF WAY SB AUTO PAS
NB AUTO PAS
000.00 AT RTE 32
DRIVER INATTENTIVE
NB VEHICLE
SB AUTO PAS
000.00 INT OF DEPOT RD UNKNOWN 147186 SUN AUG 14 O5 1512 DAYLT DRY CLEAR FTXED OBJ
VEH TURNING LEFT FROM PROPER LANE
AVOIDING VIEH TURNING LEFT EROM PROPER LANE
UNKNOWN 153822 THU JUL 26070730 DAYIT
STOPPED VEHICLE
TRAFEIC SIGN
UNKNOWN CLEAR REAR END
VEH IURNING LEFT FROM PROPER LANE
VEHICLIE GOING STRAIGFT: 157348 MON OCT 02061628 DAYIT

号
品
WET

\section*{APPENDIX E Manual Traffic Counts}

Manual Counts -Lathrop_NRG_Site.xls

\section*{APPENDIX F \\ ConnDOT Maximum Vehicle Loads}

\title{
STATE OF CONNECTICUT \\ DEPARTMENT OF TRANSPORTATION 2800 BERLIN TURNPIKE, P. O. BOX 317546 NEWINGTON, CONNECTICUT 06131-7546
}

Telephone (860) 594-2880
Fax (860) 594-2949
Connecticut DOT Web Page www.ctgog/dot
On-line Permits www. Cvisn.ctgoy
Connecticut Bridge Formula
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
L■ DSTAANGE \(\operatorname{Na}\) FEET B \\
\(\mathrm{N}=\mathrm{NUMBER}\) OF AXLES \\
W = MAXIMUM WEIGHT \\
poundis.
\end{tabular} & \begin{tabular}{l}
NEEN THE EXTREMES OF ANY GROUP OF TWO OR MORE CONSECUTIVE AXLES. NY GROUJ UNDER CONSIDERATION. \\
OUNDS CARRIED ON ANY GROUP OF TWO OR MORE AXLES COMPUTED TO THE NEAREST 500
\end{tabular} \\
\hline DISTANCE IN FEET BE. & \\
\hline TUEEN THE EXTREMES OF ANYGROUP OF2OR & UUP OF 2 OR MORE CONSECUTIVE AXLES. \\
\hline
\end{tabular} OF-ANY GROUP OFTOR OFANY GROYP OF 20 O
MORE CONSECUTNE
AXLES

\title{
APPENDIX G \\ Minimum Turning Radius (WB-62) Semi-trailer Truck with Aerial Photos
}

THIS TURNING TEMPLATE SHOWS THE TURNING PATHS OF THE AASHTO DESIGN VEHICLES. THE PATHS SHOWN ARE FOR THE LEFT FRONT OVERHANG AND THE OUTSIDE REAR WHEEL. THE LEFT FRONT WHEEL FOLLOWS THE CIRCULAR CURVE, HOWEVER, ITS PATH IS NOT SHOWN.

*Design vehicle with \(48^{\prime}\) trailer as adopted in 1982 Surface Transportation Assistance Act (STAA)
Source: Texas State Department of Highways and Public Transportation
Figure II-8. Minimum turning path for WB-62 (Interstate Semitrailer)*

I-395 SB at Rte 163

I-395 NB at Rte 163 (signal)

Route 163 at Route 32 (signal)

\section*{Lathrop Road at NRG Site Entrance}

Depot Road at Pink Row at Lathrop Poad
```

