STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

IN RE:

APPLICATION OF HOMELAND TOWERS, LLC AND DOCKET NO. 487 NEW CINGULAR WIRELESS PCS, LLC d/b/a AT&T FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, MAINTENANCE, AND OPERATION **OF A TELECOMMUNICATIONS FACILITY AT 183** SOUNDVIEW LANE, TOWN OF NEW CANAAN, CONNECTICUT

December 18, 2020

HOMELAND TOWERS, LLC AND NEW CINGULAR WIRELESS PCS, LLC d/b/a AT&T **DEVELOPMENT & MANAGEMENT PLAN**

Homeland Towers, LLC, the Certificate Holder in the above-referenced Docket, respectfully submits the following Development & Management Plan ("D&M Plan") documents and materials:

Homeland Towers, LLC cover letter dated December 9, 2020;

Geotechnical Investigation Report by Delta Oaks Group dated October 16, 2020;

Structural Calculations by Valmont Structures dated November 9, 2020;

Structural Drawings by Valmont Structures;

Polar Power, Inc Emergency Generator Specifications;

CCI Antenna Specifications; and

D&M Plan Drawings prepared by All-Points Technology Corporation dated December 15, 2020 and signed and sealed by Robert Charles Burns, CT P.E. license no. 20071.

CERTIFICATE OF SERVICE

I hereby certify that on this day the foregoing was sent electronically to the Connecticut Siting Council and the service list below with one hard copy sent to the Connecticut Siting Council, in accordance with Connecticut Siting Council directives.

December 18, 2020

Lucie Chrécchio

Lucia Chiocchio Cuddy & Feder LLP 445 Hamilton Ave,14th Floor White Plains, NY 10601 (914)-761-1300 Attorneys for the Applicants

Soundview Neighbors Group

Hugh C. Wiley Judith R. Wiley 173 Soundview Lane New Canaan, CT 06840 (203) 984-5156 wileyhugh@gmail.com

Joseph E. Sweeney Kathleen A. Sweeney 155 Soundview Lane New Canaan, CT 06840 (203) 858-3148 JoeNewCanaan@gmail.com John W. Cannavino, Esq. Cummings & Lockwood LLC 6 Landmark Square Stamford, CT 06901 (203) 351-4447 jcannavino@cl-law.com

Steven Sosnick Miriam H. Sosnick 144 Soundview Lane New Canaan, CT 06840 (203) 972-6993 mssosnick@att.net

St. Luke's School/St. Luke's Foundation, Inc.

Christopher Rosow, Member, St. Luke's Board of Trustees Julia Gabriele, Associate Head of School and Chief Financial Officer St. Luke's School/St. Luke's Foundation, Inc. 377 North Wilton Road New Canaan, CT 06820 gabrielej@stlukesct.org Christopher.rosow@gmail.com

cc: Raymond Vergati; Manuel Vicente; Harry Carey; Brian Leyden

December 9, 2020

<u>Via Federal Express</u> Honorable Robert Silvestri, Presiding Officer And Members of the Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Re: Docket No. 487 – Homeland Towers LLC (HT) and New Cingular Wireless PCS, LLC d/b/a AT&T Development & Management Plan- Tower Facility at 183 Sound View Lane, New Canaan, CT (CT027).

Dear Presiding Officer Silvestri and Members of the Siting Council,

Homeland Towers ("HT"), the Certificate holder in Docket No. 487, respectfully requests that you please accept for review and Council approval this Development & Management Plan ("D&M Plan") filing for the Facility as approved in Docket No. 487.

Tower, Compound & Other Equipment

Enclosed are fifteen (15) sets of 11"x17" Development & Management Plans ("D&M Plans") dated 12/15/2020 prepared by All Points Technology Corporation. These plans are being filed in accordance with the Council's Decision & Order dated September 24, 2020 ("Decision & Order"). Two full-sized sets of the D &M Plans are also enclosed. The D&M Plan incorporates an 85' stealth "tree" monopole with a 5' faux branch top for an overall height of 90' as provided for in the Siting Council's Decision & Order in this Docket. AT&T will mount six (6) panel antennas and (9) RRU's at a centerline of 81'. Per (2b) of the Council's Decision & Order, Homeland has increased the landscape planting heights from 8' to 12' and is also proposing an additional twelve (12) lower growth plantings in front of the taller plantings. All plantings will be warranted for three years. As shown in Sheet A-1 of the enclosed D&M Plans, the monopole is designed with a yield point at 52' AGL to ensure that the monopole setback radius remains with the property boundaries in accordance with condition 2(c) of the Decision & Order.

Attached please also find a geotechnical study dated October 16, 2020 prepared by Delta Oaks Group as well as a structural design report for the tower and foundation dated November 9, 2020 prepared by Valmont Structures. Specifications for AT&T's antennas and generator are also provided.

The proposed D&M Plan also includes construction plans for the site clearing, drainage, and erosion and sedimentation control measures consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control as amended.

Per 2(a) of the Decision and Order, attached is a letter dated November 13, 2020 from AT&T stating their firm commitment to install their associated wireless equipment at the facility upon completion of construction.

Required Notifications

In accordance with the provisions of RCSA Section 16-50j-77, Homeland Towers hereby notifies the Council of its intention to begin site work immediately after Council approval of the D&M Plan. Construction of the tower and other site improvements will commence upon issuance of a local building permit. The supervisor for all construction related matters on this project is Christian Carmody, located at InSite Towers, 1199 North Fairfax Street, Suite 700, Alexandria,

HOMELAND TOWERS

VA 22314 who can be reached by telephone at 617-595-7254. The anticipated hours and days of the week for construction activities is Monday through Friday, 8:00am to 5:00pm.

We respectfully request that this matter be included on the Council's next available agenda for review and approval. Thank you for your consideration of the enclosed.

Sincerely,

Raymond Vergati K++ rv@homelandtowers.us

Enclosures

 cc: Honorable Kevin Moynihan, First Selectman, Town of New Canaan Keith S. and Marina O. Richey Manny Vicente, Homeland Towers LLC Brian Leyden, AT&T Scott Chasse, P.E., APT John W. Cannavino, Esq., Cummings & Lockwood LLC Christopher Rosow, St. Luke's School Julia Gabriele, St. Luke's School Lucia Chiocchio, Esq., Cuddy & Feder LLP

GEOTECHNICAL INVESTIGATION REPORT

October 16, 2020

Prepared For:

InSite Wireless Group, LLC

New Canaan CT027 Proposed 85-Foot Monopole Tower 183 Soundview Lane, New Canaan (Fairfield County), Connecticut 06840 Latitude N 41° 11' 26.4" Longitude W 73°29'42.2"

> Delta Oaks Group Project GEO20-07085-08 Revision 0 <u>geotech@deltaoaksgroup.com</u>

Performed By:

lai

Justin Brosseau, E.I.

Reviewed By:

Joseph V. Borrelli, Jr., P.E.

INTRODUCTION

This geotechnical investigation report has been completed for the proposed 85-foot monopole tower located at 183 Soundview Lane in New Canaan (Fairfield County), Connecticut. The purpose of this investigation was to provide engineering recommendations and subsurface condition data at the proposed tower location. A geotechnical engineering interpretation of the collected information was completed and utilized to suggest design parameters regarding the adequacy of the structure's proposed foundation capacity under various loading conditions. This report provides the scope of the geotechnical investigation; geologic material identification; results of the geotechnical laboratory testing; and design parameter recommendations for use in the design of the telecommunication facility's foundation and site development.

SITE CONDITION SUMMARY

The proposed tower and compound are located on a wooded hill exhibiting a generally flat topography across the tower compound and subject property.

<u>REFERENCES</u>

- Survey Drawings, prepared by All-Points Technology Corporation, dated May 26, 2020
- TIA Standard (TIA-222-G), dated August 2005

SUBSURFACE FIELD INVESTIGATION SUMMARY

The subsurface field investigation was conducted through the advancement of three mechanical soil test borings to the auger refusal depth of 43.0 feet bgs in boring B-1 and to the termination depth of 11.5 feet bgs in borings B-2 and B-3. Samples were obtained at selected intervals in accordance with ASTM D 1586. The sampling was conducted at the centerline of the proposed tower. Upon encountering auger refusal 5.0 feet of rock coring was conducted in accordance with ASTM D 2113. Soil and rock samples were transported to our laboratory and classified by a geotechnical engineer in accordance with ASTM D 2487. A detailed breakdown of the material encountered in our subsurface field investigation can be found in the boring logs presented in the Appendix of this report.

A boring plan portraying the spatial location of the boring in relation to the proposed tower, tower compound and immediate surrounding area can be found in the Appendix.

SUBSURFACE CONDITION SUMMARY

The following provides a general overview of the site's subsurface conditions based on the data obtained during our field investigation.

FILL

Topsoil was encountered during the subsurface field investigation from the existing ground surface to a depth of 0.5 feet bgs in boring B-1 and 0.7 feet bgs in borings B-2 and B-3.

SOIL

The residual soil encountered in the subsurface field investigation began at a depth of 0.5 feet bgs in boring B-1 and 0.7 feet bgs in borings B-2 and B-3 in the boring and consisted of sandy silt and silty sand. The materials ranged from a very loose to very dense relative density.

Auger advancement refusal was encountered during the subsurface field investigation at a depth of 38.0 feet bgs in boring B-1. Auger advancement refusal was not encountered during the subsurface field investigation in borings B-2 or B-3.

ROCK

Rock was encountered during the subsurface investigation at a depth of 38.0 feet bgs in boring B-1. The rock can be described as intensely fractured, highly weathered, soft micaceous schist.

SUBSURFACE WATER

At the time of drilling, subsurface water was not encountered during the subsurface investigation. However, subsurface water elevations can fluctuate throughout the year due to variations in climate, hydraulic parameters, nearby construction activity and other factors.

FROST PENETRATION

The frost penetration depth for Fairfield County, Connecticut is 40 inches (3.4 feet).

CORROSIVITY

Soil resistivity was performed in accordance with ASTM G187 with a test result of 432,500 ohmscm.

FOUNDATION DESIGN SUMMARY

In consideration of the provided tower parameters and the determined soil characteristics, Delta Oaks Group recommends utilizing a shallow foundation and/or drilled shaft foundation for the proposed structure. The strength parameters presented in the following sections can be utilized for design of the foundation.

Boring	Depth (bgs)	USCS	Moist/Buoyant Unit Weight (pcf)	Phi Angle (degrees)	Cohesion (psf)
	0.0 – 0.5	TOPSOIL	105	0	0
	0.5 – 2.0	ML	105	29	0
	2.0 - 4.0	ML	130	39	0
B-1	4.0 - 10.0	ML	130	40	0
	10.0 – 15.0	SM	125	37	0
	15.0 - 38.0	SM	130	40	0
	38.0 - 43.0	SCHIST	135	42	0

GENERAL SUBSURFACE STRENGTH PARAMETERS

Boring	Depth (bgs)	USCS	Moist/Buoyant Unit Weight (pcf)	Phi Angle (degrees)	Cohesion (psf)
	0.0 - 0.7	TOPSOIL	105	0	0
	0.7 – 2.0	SM	105	29	0
B-2	2.0 - 4.0	ML	120	34	0
	4.0 - 10.0	ML	130	40	0
	10.0 - 11.5	SM	130	40	0

Boring	Depth (bgs)	USCS	Moist/Buoyant Unit Weight (pcf)	Phi Angle (degrees)	Cohesion (psf)
	0.0 - 0.7	TOPSOIL	105	0	0
	0.7 – 2.0	SM	105	29	0
В-З	2.0 - 4.0	ML	130	34	0
	4.0 - 10.0	ML	130	40	0
	10.0 - 11.5	SM	130	40	0

- The unit weight provided assumes overburden soil was compacted to a minimum of 95% of the maximum dry density as obtained by the standard Proctor method (ASTM D 698) and maintained a moisture content within 3 percent of optimum
- The values provided for phi angle and cohesion should be considered ultimate.

SUBSURFACE STRENGTH PARAMETERS – SHALLOW FOUNDATION

Boring	Dimensions (feet)	Depth (feet bgs)	Net Ultimate Bearing Capacity (psf)
B-1	Greater than 5.0 x 5.0	Greater than 3.4	30,000

- Delta Oaks Group recommends the foundation bear a minimum of 3.0 feet bgs.
- A sliding friction factor of 0.35 can be utilized along the base of the proposed foundation.
- The bearing capacity can be increased by 1/3 for transient loading.
- An Ultimate Passive Pressure Table with a reduction due to frost penetration to a depth of 3.4 feet bgs is presented on the following page.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

	ULTIVIATE PASSIVE PRESSURE VS. DEPTH - TOWER FOUNDATION													
Soil La	yers (feet)	Moist Unit Weight	Phi Angle	Cohesion	PV	КР	Ph							
Тор	0.0	105	0	0	0.00	1.00	0.00							
Bottom	0.5	105	0	0	52.50	1.00	26.25							
Тор	0.5	105	29	0	52.50	2.88	75.65							
Bottom	2.0	105	29	0	210.00	2.88	302.62							
Тор	2.0	130	39	0	210.00	4.40	461.53							
Bottom	3.4	130	39	0	392.00	4.40	861.52							
Тор	3.4	130	39	0	392.00	4.40	1723.03							
Bottom	4.0	130	39	0	470.00	4.40	2065.88							
Тор	4.0	130	40	0	470.00	4.60	2161.49							
Bottom	10.0	130	40	0	1250.00	4.60	5748.64							

	<u>3555000 AC</u>		AMETERS - DRIELED SHAFT OUNDATION							
Boring	Depth (bgs)	Net Ultimate Bearing Capacity (psf)	Ultimate Skin Friction - Compression (psf)	Ultimate Skin Friction - Uplift (psf)						
	0.0 - 3.4	_	_	_						
	3.4 - 4.0	14,970	180	130						
	4.0 - 6.0	15,460	260	200						
	6.0 - 8.0	15,500	370	280						
	8.0 – 10.0	16,490	480	360						
	10.0 – 15.0	23,140	600	450						
B-1	15.0 - 20.0	36,470	940	700						
	20.0 – 25.0	45,440	1,210	900						
	25.0 - 30.0	53,200	1,480	1,110						
	30.0 - 35.0	53,740	1,750	1,310						
	35.0 - 38.0	58,750	1,970	1,480						
	38.0 - 43.0	59,140	2,350	1,760						

SUBSURFACE STRENGTH PARAMETERS - DRILLED SHAFT FOUNDATION

• The top 3.4 feet of soil should be ignored due to the frost penetration and the potential soil disturbance during construction.

- The bearing capacity can be increased by 1/3 for transient loading.
- The values presented assume the concrete is cast-in-place against earth walls and any casing utilized during construction of the foundation was removed.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

SUBSURFACE STRENGTH PARAMETERS – SUPPORT STRUCTURE FOUNDATION

Boring	Depth (bgs)	Net Ultimate Bearing Capacity (psf)	Minimum Design Footing Width (ft)	Modulus of Subgrade Reaction (pci)
B-2	3.5	15,000	2.0	90

- Delta Oaks Group recommends utilizing a slab on grade in conjunction with continuous perimeter footings that bear on residual soil or properly compacted structural fill placed in accordance with the recommendations provided in the CONSTRUCTION section of this report.
- The slab on grade should be properly reinforced to prevent concrete cracking and shrinkage.
- The foundation should bear a minimum of 3.5 feet bgs.
- A sliding friction factor of 0.35 can be utilized along the base of the proposed foundation.
- An Ultimate Passive Pressure Table is presented on the following page. An appropriate reduction should be considered in accordance with local building code frost penetration depth.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

deminiate radiue radiue vo. ber m = 3011 OKT SIKOCTOKET CONDATION												
Soil La	yers (feet)	Moist Unit Weight Phi Angle		Cohesion	PV	КР	Ph					
Тор	0.0	105	0	0	0.00	1.00	0.00					
Bottom	0.7	105	0	0	73.50	1.00 36.75						
Тор	0.7	105	29	0	73.50	2.88	105.92					
Bottom	2.0	105	29	0	210.00	2.88	302.62					
Тор	2.0	120	34	0	210.00	3.54	371.40					
Bottom	3.4	120	34	0	378.00	3.54	668.52					
Тор	3.4	120	34	0	378.00	3.54	1337.04					
Bottom	4.0	120	34	0	450.00	3.54	1591.71					
Тор	4.0	130	40	0	450.00	4.60	2069.51					
Bottom	10.0	10.0 130		0	1230.00	4.60	5656.66					

ULTIMATE PASSIVE PRESSURE VS. DEPTH – SUPPORT STRUCTURE FOUNDATION

CONSTRUCTION

SITE DEVELOPMENT

The proposed access road and tower compound should be evaluated by a Geotechnical Engineer, or their representative, after the removal or "cutting" of the areas to design elevation but prior to the placement of any structural fill material to verify the presence of unsuitable or weak material. Unsuitable or weak materials should be undercut to a suitable base material as determined by a Geotechnical Engineer, or their representative. Backfill of any undercut area(s) should be conducted in accordance with the recommendations provided in the *STRUCTURAL FILL PLACEMENT* section of this report.

Excavations should be sloped or shored in accordance and compliance with OSHA 29 CFR Part 1926, Excavation Trench Safety Standards as well as any additional local, state and federal regulations.

STRUCTURAL FILL PLACEMENT

Structural fill materials should be verified, prior to utilization, to have a minimum unit weight of 110 pcf (pounds per cubic foot) when compacted to a minimum of 95% of its maximum dry density and within plus or minus 3 percentage points of optimum moisture. Materials utilized should not contain more than 5 percent by weight of organic matter, waste, debris or any otherwise deleterious materials. The Liquid Limit should be no greater than 40 with a Plasticity Index no greater than 20. Structural fill material should contain a maximum particle size of 4 inches with 20 percent or less of the material having a particle size between 2 and 4 inches. Backfill should be placed in thin horizontal lifts not to exceed 8 inches (loose) in large grading areas and 4 inches (loose) where small handheld or walk-behind compaction equipment will be utilized. The potential suitability of on-site materials to be utilized as fill should be evaluated by a Geotechnical Engineer, or their representative just prior to construction.

During construction structural fill placement should be monitored and tested. This should include at minimum, visual observation as well as a sufficient amount of in-place field density tests by a Geotechnical Engineer, or their representative. Materials should be compacted to a minimum of 95% of the maximum dry density as determined by ASTM D 698 (standard Proctor method). Moisture contents should be maintained to within plus or minus 3 percentage points of the optimum moisture content.

SHALLOW FOUNDATIONS

Foundation excavation(s) should be evaluated by a Geotechnical Engineer, or their representative, prior to reinforcing steel and concrete placement. This evaluation should include visual observation to verify a level bearing surface; vertical side-walls with no protrusions, sloughing or caving; and the exposed bearing surface is free of deleterious material, loose soil and standing water. Excavation dimensions should be verified and testing performed on the exposed bearing surface to verify compliance with design recommendations. Bearing testing should be conducted in accordance with ASTM STP399 (Dynamic Cone Penetrometer). A 6-inch layer of compacted crushed stone should be installed prior to reinforcing steel and concrete placement. If subsurface water is encountered during excavation dewatering methods such as sump pumps or well points may be required.

DRILLED SHAFT FOUNDATIONS

Drilled shaft foundations (caissons) are typically installed utilizing an earth auger to reach the design depth of the foundation. Specialized roller bits or core bits can be utilized to penetrate boulders or rock. The equipment utilized should have cutting teeth to result in an excavation with little or no soil smeared or caked on the excavation sides with spiral-like corrugated walls. The drilled shaft design diameter should be maintained throughout the excavation with a plumbness tolerance of 2 percent of the length and an eccentricity tolerance of 3 inches from plan location. A removable steel casing can be installed in the shaft to prevent caving of the excavation sides due to soil relaxation. Upon completion of the drilling and casing placement, loose soils and subsurface water greater than 3-inches in depth should be removed from the bottom of the excavation for the "dry" installation method. The drilled shaft installation should be evaluated by a Geotechnical Engineer, or their representative, to verify suitable end bearing conditions, design diameter and bottom cleanliness. The evaluation should be conducted immediately prior to as well as during concrete placement operations.

The drilled shaft should be concreted as soon as reasonably practical after excavation to reduce the deterioration of the supporting soils to prevent potential caving and water intrusion. A concrete mix design with a slump of 6 to 8 inches employed in conjunction with the design concrete compressive strength should be utilized for placement. Super plasticizer may be required to obtain the recommended slump range. During placement, the concrete may fall freely through the open area in the reinforcing steel cage provided it does not strike the reinforcing steel and/or the casing prior to reaching the bottom of the excavation. The removable steel casing should be extracted as concrete is placed. During steel casing removal a head of concrete should be maintained above the bottom of the casing to prevent soil and water intrusion into the concrete below the bottom of the casing.

If subsurface water is anticipated and/or weak soil layers are encountered drilled shafts are typically installed utilizing the "wet" method by excavating beneath a drilling mud slurry. The drilling mud slurry is added to the drilled shaft excavation after groundwater has been encountered and/or the sides of the excavation are observed to be caving or sloughing. Additional inspection by a Geotechnical Engineer, or their representative, during the "wet" method should consist of verifying maintenance of sufficient slurry head, monitoring the specific gravity, pH and sand content of the drilling slurry, and monitoring any changes in the depth of the excavation between initial approval and just prior to concreting.

Concrete placement utilizing the "wet" method is conducted through a tremie pipe at the bottom of the excavation with the drilling mud slurry level maintained at a minimum of 5 feet or one shaft diameter, whichever is greater, above the ground water elevation. The bottom of the tremie should be set one tremie pipe diameter above the excavation. A closure flap at the bottom of the tremie or a sliding plug introduced into the tremie before the concrete is recommended to reduce the potential contamination of the concrete by the drilling mud slurry. The bottom of the tremie must be maintained in the concrete during placement. Additional concrete should be placed through the tremie causing the slurry to overflow from the excavation in order to reduce the potential for the development of "slurry pockets" remaining in the drilled shaft.

QUALIFICATIONS

The design parameters and conclusions provided in this report have been determined in accordance with generally accepted geotechnical engineering practices and are considered applicable to a rational degree of engineering certainty based on the data available at the time of report preparation and our practice in this geographic region. All recommendations and supporting calculations were prepared based on the data available at the time of report preparation and knowledge of typical geotechnical parameters in the applicable geographic region.

The subsurface conditions used in the determination of the design recommendations contained in this report are based on interpretation of subsurface data obtained at specific boring locations. Irrespective of the thoroughness of the subsurface investigation, the potential exists that conditions between borings will differ from those at the specific boring locations, that conditions are not as anticipated during the original analysis, or that the construction process has altered the soil conditions. That potential is significantly increased in locations where existing fill materials are encountered. Additionally, the nature and extent of these variations may not be evident until the commencement of construction practices to confirm that the site conditions do not differ from those conditions anticipated in design. If such variations are encountered, Delta Oaks Group should be contacted immediately in order to provide revisions and/or additional site exploration as necessary

Samples obtained during our subsurface field investigation will be retained by Delta Oaks Group for a period of 30 days unless otherwise instructed by InSite Wireless Group, LLC. No warranty, expressed or implied, is presented.

Delta Oaks Group appreciates the opportunity to be of service for this Geotechnical Investigation Report. Please do not hesitate to contact Delta Oaks Group with any questions or should you require additional service on this project.

<u>APPENDIX</u>

	PROJECT NAME New Canaan (GEO20-07085	-08)						CLIE	NT	Insite	Wire	less				
	PROJECT NUMBER CT027							B	orir	na N	lo.:	B-1		PAGE	1 OF	1
	PROJECT LOCATION 183 Soundview Lane, N	lew C	Cana	aan, CT (06840					U						
	E DRILLED · 10/12/2020		GR				FI S.									
	LING METHOD: Hollow Stem Auger					E OF DRILLING : Not Encountered										
GRC			Ť	AT FN		DRII			- Not	Enco	ountei	red				
BOR	RING DEPTH (ft): 48		Ţ	AFTE	R DRII		G: -	No	t Enc	ounte	ered					
				Z	eter											
		LYPE		ATIC	trome	1st	2nd	3rd	Щ							
(ft)	MATERIAL DESCRIPTION	Ц		TER SIFIC	^D ene (tsf)	SWC	SWC	SWC	VALI		4	SPT	N VAL	UE 🔺		
		SAMI		ASS	cket I	BLO	BLO	BLO	z							
0				ŭ	Poc					10	20 3	<u>30 40</u>	<u>50 6</u>	0 70	80 9	0
	-TOPSOIL			ML		2	3	4	7		\downarrow					
	Dense					12	14	31	45			\vdash				
														\vdash		
5	Very dense	\mathbb{X}				28	41	48	89				_	\vdash		\mathbf{H}
+ +		\bigtriangledown				53	54	52	100							
[]		\vdash		· ·											\square	
	SILTY SAND (ML), dense, gray and brown, trace gravel, moist	\searrow		SM		17	20	19	39		+		ſ	\vdash	+	
[]		\square											\searrow			
														\mathbb{N}		
15				· . . ·											\mathbb{N}	
	Very dense, gray					43	59	78	100							
20	-					13	100/3"		100					\vdash		
		\square				43	100/3									Ī
[]				· ·												
	- Trace clay and gravel	\square		•		58	94	100/4'	100						++	
30	-															
						100/5			100							
35	Brown and gray, micaceous					39	100/4"		100					\vdash	+	
		\square		· · .												
+ +	MICACEOUS SCHIST soft intenssely fractured highly															
+ 40 +	weathered, with hard feldspar and quartz inclusions		Ň			REC	RQD									
	-		\otimes													
+ -			Ŵ													
45	-										_	$\left \right $	_	\vdash	+	
+ -																
		_												\square	\parallel	
	Refusal at 43.0 feet. Bottom of borehole at 48.0 feet.															
			1		i	i	i					i – I –		- L-		

	PROJECT NAME New Canaan (GEO20-07085	PROJECT NAME New Canaan (GEO20-07085-08)												CLIENT Insite Wireless							
	PROJECT NUMBER CT027	Boring No.: B-2								PAGE	1 OF	: 1									
/	DELTA OAKS PROJECT LOCATION 183 Soundview Lane, N	ew C	Cana	an, CT (06840			_		.9			_	THEE	1 01						
			0.00																		
	E DRILLED : 10/12/2020						ELS:	. .	No	+ F n		harad									
	LLING METHOD: Hollow Stem Auger		Ť			ישס		• · ·	NO		coun	lerea									
BOE	DING DEDTH (ft) · 115		Ī		יוסט טוי וופח פ		2 ·	No	- NOL t Enc		torod	erea									
			<u> </u>	7	ja ja			110		ourn	lorcu										
DEPTH (ft)	MATERIAL DESCRIPTION	SAMPLE TYPE		MATERIAL CLASSIFICATION	Pocket Penetromet (tsf)	BLOWS 1st	BLOWS 2nd	BLOWS 3rd	N VALUE	1(n 20	▲ SF	PT N VA	LUE ▲	80 C	20					
	TOPSOIL	\mathbf{N}	<u>, , , ,</u> ,	•		2	2	2	4							Ĭ					
F]	SILTY SAND (SM), very loose, dark brown, trace gravel and	\vdash		SM							\checkmark										
	SANDY SILT (ML), medium dense, brown, trace gravel, moist	\mid		ML		5	11	14	25				\square								
5	Very dense	\bigtriangledown				27	38	43	81					\uparrow							
	-	\square																			
		X				43	39	40	79						1						
														И							
10														44							
	SILTY SAND (SM), dense, brown, trace gravel, moist	\mid		SM		55	51	47	48												
	Bottom of borehole at 11.5 feet.																				
[]																					
15	-																				
F 1																					
_ 20	-																				
25																					
	-																				
30	_																				
F 1																					
35	-																				
F 1																					
[]																					
40	-																				
[]																					
+ +																					
45																					
	-																				
+ -																					
50																					

	PROJECT NAME New Canaan (GEO20-0708	CLIENT Insite Wireless																
	PROJECT NUMBER CT027							B	orir	ŋg	Nc).:	B-3	5	PA	GE 1	OF	1
	DELTA OAKS PROJECT LOCATION 183 Soundview Lane, N	lew (Cana	an, CT (06840					U								
DAT	E DRILLED : 10/12/2020		GR		/ATER		ELS:											+
DRII	LLING METHOD: Hollow Stem Auger		$\overline{\Delta}$	AT TI	ME OF	DRI	LLING	G: -	No	t Er	ncou	intei	red					
GRC	DUND ELEVATION : 507		Ţ	AT E	ND OF	DRIL	LING	i:	- Not	En	coui	nter	ed					
BOF	RING DEPTH (ft): 11.5		Ţ	AFTE		LLING	G: -	No	t Enc	oun	itere	d						
o DEPTH (ft)	MATERIAL DESCRIPTION	SAMPLE TYPE		MATERIAL CLASSIFICATION	Pocket Penetrometer (tsf)	BLOWS 1st	BLOWS 2nd	BLOWS 3rd	N VALUE	1	0 2	0 3	SP ⁻	ΓΝV. 0 50	ALUE	▲ 70 8	<u>0 90</u>)
	TOPSOIL	-		- em		1	2	3	5									
+ +	organics, moist					6	11	13	24									
	SANDY SILT (ML), medium dense, brown, trace gravel, moist	\square												\rightarrow	+			
5	Very dense					34	41	39	80								\vdash	_
		\mathbf{X}				44	42	40	82								\mathbf{A}	
				•													N	
10														\square	\perp	\square	`	À
	SILTY SAND (SM), very dense, brown, trace gravel, moist			SM		61	54	48	100					\square			\rightarrow	
	Bottom of borehole at 11.5 feet.																	
	-																	
_ 20	-																	
25																		
	_																	
30	-																	
35	-																	
	-																	
45	-																	
E -																		
50																		

Г

Valmont Microflect 3575 25th St. SE Salem, Oregon 97302 USA 1-800-547-2151

Communication Structure Calculations for Insite Wireless Group CT027, New Canaan Northeast, CT

498211-P1

Monday, 09 November 2020

Prepared By: Aishwarya Mahapatra

> Reviewed By: James Ahlgren

Proprietary Information

These documents, drawings and/or calculations and all information related to them are the exclusive property and the proprietary information of Valmont Industries, Inc. and are furnished solely upon the conditions that they will be retained in strictest confidence and shall not be duplicated, used or disclosed in whole or in part for any purpose, in any way, without the prior written permission of Valmont Industries, Inc.

Table Of Contents

Proprietary Information

These documents, drawings and/or calculations and all information related to them are the exclusive property and the proprietary information of Valmont Industries, Inc. and are furnished solely upon the conditions that they will be retained in strictest confidence and shall not be duplicated, used or disclosed in whole or in part for any purpose, in any way, without the prior written permission of Valmont Industries, Inc.

Valmont Industries, Inc. Project Summary Insite Wireless Group 498211

				Anchor Bol	ts	Sh	aft Diame	weight (lb)								Global	Global Base Reactions For Pole Shaft					
																		Governing l	Load Case			
Structure Identifier	Pole	Emb.	Max	Anchor	Qty	Base	Ground	Тор	Sect A	Sect B	Sect C	Sect D	Sect E	Sect F	Base	Anchor	Load	Moment	Shear	Axial	Max	
	Height	Length	Bolt	Bolt			Line								Plate	Bolts	Case				Defl	
			Circle	Length													Identifier					
	(ft)	(ft)	(in)	(in)		(in)	(in)	(in)										(in-kip)	(kips)	(kips)	(in)	
498211-P1RevH	84.00)	- 54.50) 66	5 28	48.00	48.00	19.00	10559	2580					- 1556	5 () WIND	60542	90.2	52.3	50	
498211-P1RevG	84.00)	- 54.50) 66	5 28	48.00	48.00	19.00	10559	2580					- 1556	5 () WIND	59658	88.9	52.3	49	

Valmont Industries, Inc. Project Summary Insite Wireless Group 498211

										Leng	th (ft)					Thickn	ess (in)		-
Structure Identifier	Shaft	Shaft	Shaft	Anchor	Base Plate	Base Plate	Camber	Sect A	Sect B	Sect C	Sect D	Sect E	Sect F	Sect A	Sect B	Sect C	Sect D	Sect E	Sect F
	Yield	Taper	Shape	Bolt	Width/	Thickness													í !
	Stress	-		Diameter	Length														1 !
	(ksi)	(in/ft)		(in)	(in)	(in)	(in)												
498211-P1RevH	65	0.351	18	1.75	5 59.78	2.75	0.0	51.00	37.83					0.500	0.250)			
498211-P1RevG	65	0.351	18	1.75	5 59.78	2.75	0.0	51.00	37.83					0.500	0.250)			

Valmont Industries, Inc. Project Summary Insite Wireless Group 498211

									Section Da	ata							
Structure Identifier	"A"	"A"	"В"	"В"	"С"	"С"	"D"	"D"	"Е"	"Е"	"F"	"F"	"A"-"B"	"В"-"С"	"C"-"D"	"D"-"E"	"E"-"F"
	Base	Тор	Base	Тор	Base	Тор	Base	Тор	Base	Тор	Base	Тор	Joint	Joint	Joint	Joint	Joint
	Diameter	Diameter	Diameter	Diameter	Туре	Туре	Туре	Туре	Туре								
	(in)	(in)	(in)	(in)													
498211-P1RevH	48.00	30.09	32.29	19.00									Slip Joint				
498211-P1RevG	48.00	30.09	32.29	19.00									Slip Joint				

Valmont Industries, Inc. Engineering Data

*** OVERVIEW ***
1. Structure design conforms to TIA-222-H including:
 125 mph Wind Speed (3 second gust, 700 year mean recurrence interval)
 50 mph Ice Wind (500 year mean recurrence interval)
 1.00 in ice thickness
 60.0 mph Basic Wind Speed with no ice for twist and sway
 Exposure Category C
 Risk Category II
 Topographic Category 1
 Site Elevation = 502 ft above mean sea level
 Spectral response acceleration at short periods and 1 sec.: Ss = 0.25 & S1 = 0.06
 Site class = D
2. Feedlines are assumed to be placed interior to the pole
3. All microwave assumed to be 2 GHz unless otherwise noted
4. Total pole height is 85.0 ft agl

- 5. Elevations are measured from top of base plate (approximately 1.0 ft agl) $% \left(\left({{{\left({{{\left({{{\left({{{\left({{{}}} \right)}} \right)}} \right.}} \right)}} \right)} \right)$
- 6. Pole needs to be painted with "Thunder Gray" (Sherwin Williams SW7645)
- 7. Pole is designed to a the rotical breakpoint at 52 ft \mbox{AGL}
- 8. Pole Design complies to TIA/EIA-222-G and TIA/EIA-222-H
- 9. An ultimate wind speed of 125mph used as per County Requirement.
- 10. Pole design limited to 98.9% capacity.

*** Structure Anchorage Information ***

Pole Height (ft):	84.0	Number of Anchor Bolts:	28
Bolt Circle (in):	54.50	Diameter of Anchor Bolts (in):	1.75
Base Shear (lbs):	90156	Length of Anchor Bolts (in):	66.00
Base Vertical (lbs):	53814	Projection Length (in):	9.75
Base Moment (in-kips):	60542	Template OD (in):	58.00

*** Loading Data***

				Without 1	Ice	With Ice	
Qty	Description		ABP Height (ft)	EPA (ft^2)	Weight (lbs)	EPA (ft^2)	Weight (lbs)
1	CARRIER 1 - 200	SQ.FT	80.00	200.00	4000	400.00	8000
1	CARRIER 2 - 200	SQ.FT	70.00	200.00	4000	400.00	8000
1	CARRIER 3 - 150	SQ.FT	60.00	150.00	3000	300.00	6000
1	CARRIER 4 - 150	SQ.FT	50.00	150.00	3000	300.00	6000
18	BRACH TIPS		80.00	4.50	90	9.00	180
18	BRACH TIPS		70.00	4.50	90	9.00	180
18	BRACH TIPS		60.00	4.50	90	9.00	180
18	BRACH TIPS		50.00	4.50	90	9.00	180
1	5' TOP BRANCHES		84.00	2.25	33	4.50	65
3	6' TOP BRANCHES		84.00	7.50	120	15.00	240

*** Linearly Distributed Loading Data ***

		ABP Bottom	ABP Top	Without	: Ice	With 3	Ice
Qty	Description	Height	Height	EPA	Weight	EPA	Weight
		(ft)	(ft)	(ft^2)	(lb)	(ft^2)	(lb)
61	8 FT BRANCHES	71.50	83.50	219.60	3050	439.20	6100
70	10 FT BRANCHES	41.00	68.00	357.00	4620	714.00	9240
41	12 FT BRANCHES	19.00	45.50	266.50	3690	533.00	7380
36	14 FT BRANCHES	19.50	36.00	288.00	4320	576.00	8640

BY VALMONT INDUSTRIES F Design Id: 498211-P1RevH	FOR: INS	ITE WIRELESS GF	ROUP 84.0' POLE,	SITE: CT(027, NEW CAN	AAN NORTHEAST, C	DATE 11/09/2020 IMPAX 23.2.39.3
		* * *	SUMMARY ***				
Design Code: TIA-222-H		DEGTON					
		DESIGN	SUMMARI				
Height Above Base Plate	84'- 0.00"	Dia. at Top of	Baseplate (in)	48.000	Pole Shaft	Weight (lbs)	13139
		Top Diameter ((in)	19.000			
		Pole Taper (ir	n/ft)	0.35119	Shape:	18 Sides	
Connections Between Sections	/First/						
Height Above Ground	51'- 0.00"						
Туре	Slip Joint						
Overlap Length (in)	58						
Maximum Axial Force (lbs)	45480						
Section Characteristics	/First/	/Second/					
Base Diameter (in)	48.000	32.287					
Top Diameter (in)	30.089	19.000					
Thickness (in)	0.50000	0.25000					
Length	51'- 0.00"	37'-10.00"					
Weight (lbs)	10559	2580					
Yield Strength (ksi)	65.00	65.00					
Section Shape	18 Side:	s 18 Sides	3				
	i	ANALYSIS SUMMAF	RY				
	Pt. of	Governing	Governing	Pole			
	Fixity	Level Sec.1	Level Sec.2	Тор			
Governing Load Case	WIND	WIND	WIND	WIND			
Height (ft)	0.00	0.00	51.00	84.	.00		
Resultant Moment (in-kips)	60542	60542	12003		13		
Shear Force (lbs)	90279	90279	52876	I.	506		
Axial Force (lbs)	52046	52046	20674	-	139		
Effective Yield Strength (ksi)	82.55	82.55	78.10	82	.55		
Combined Interaction Value	0.94	0.94	0.98	0	.00		
Total Deflection (in)	0.00	0.00	18.56	49	.98		
Note: Diameters are	outside, measu:	red across the	flats				

Forces and moments are reported in the local element coordinate system

INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 IMPAX 23.2.39.3

BY VALMONT INDUSTRIES FOR: Design Id: 498211-P1RevH

*** POLE SHAFT POINT OF FIXITY REACTIONS ***

Loading Case Identifier	Moments About X-Axis (in-kips)	Moments About Y-Axis (in-kips)	Moments Resultant (X & Y) (in-kips)	Moments Torsional (in-kips)	Vertical Force (lbs)	Shear In X-Direction (lbs)	Shear In Y-Direction (lbs)	Shear Resultant (X & Y) (lbs)	Notes
WIND	46378	-38915	60542	0	52258	57951	69063	90156	
ICE + WIND	15112	-12681	19728	0	91689	18514	22064	28802	
T+S	10664	-8948	13921	0	43346	13354	15915	20775	
Seismic	1032	-866	1348	0	54309	1126	1342	1752	
Seismic 2	1025	-860	1339	0	36688	1126	1342	1752	

Note: Positive vertical force is downward.

Reactions are considered in the global coordinate system.

BY VALMONT INDUSTRIES FOR: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 Design Id: 498211-P1RevH IMPAX 23.2.39.3

*** INPUT LOADS ***

Design Code TIA-222-H Loading Case WIND (1.2 D + 1.0 Wo)

Basic Wind Velocity is 125.00 mph Ice Thickness 0.00 Wind Orientation is 50.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.200 Exposure C, Gust Factor 1.10 Risk Category II, Topographic Category 1, Crest Height 0.00 ft(Longitudinal) * * (Vertical)Orientations are Measured Clockwise From +X Axis+Y-Axis * * +Z-Axis Positive Y Axis is 90 Degrees Clockwise From +X Axis Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Orientation of System +***** +X-Axis * * (Transverse) * * * *

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	6389	7614	4800	200.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	6214	7406	4800	200.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	4514	5379	3600	150.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	4347	5180	3600	150.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	144	171	108	4.50	18-Brach Tips
6	70.00	70.00	0.00	50.00	140	167	108	4.50	18-Brach Tips
7	60.00	60.00	0.00	50.00	135	161	108	4.50	18-Brach Tips
8	50.00	50.00	0.00	50.00	130	155	108	4.50	18-Brach Tips
9	84.00	86.50	0.00	50.00	73	87	40	2.25	1-5' Top Bran
10	84.00	86.00	0.00	50.00	243	290	144	7.50	3-6' Top Bran
11	81.50	81.50	0.00	90.00	2347	2797	1220	73.20	8 ft branch
12	77.50	77.50	0.00	90.00	2323	2768	1220	73.20	8 ft branch
13	73.50	73.50	0.00	90.00	2297	2738	1220	73.20	8 ft branch
14	65.75	65.75	0.00	90.00	1825	2175	924	59.50	10 ft branc
15	61.25	61.25	0.00	90.00	1798	2143	924	59.50	10 ft branc
16	56.75	56.75	0.00	90.00	1770	2109	924	59.50	10 ft branc
17	52.25	52.25	0.00	90.00	1740	2074	924	59.50	10 ft branc

BY VALMONT INDUSTRIES FOR: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 Design Id: 498211-P1RevH IMPAX 23.2.39.3

*** INPUT LOADS ***

Loading	Case	WIND -	· Continued

							Orient	ation of Syste	em
Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
18	47.75	47.75	0.00	90.00	1708	2035	924	59.50	10 ft branc
19	43.25	43.25	0.00	90.00	1674	1994	924	59.50	10 ft branc
20	43.29	43.29	0.00	90.00	1249	1489	738	44.42	12 ft branc
21	38.88	38.88	0.00	90.00	1222	1457	738	44.42	12 ft branc
22	34.46	34.46	0.00	90.00	1192	1421	738	44.42	12 ft branc
23	30.04	30.04	0.00	90.00	1158	1380	738	44.42	12 ft branc
24	25.63	25.63	0.00	90.00	1123	1338	738	44.42	12 ft branc
25	21.21	21.21	0.00	90.00	1081	1288	738	44.42	12 ft branc
26	33.94	33.94	0.00	90.00	1927	2296	1296	72.00	14 ft branc
27	29.81	29.81	0.00	90.00	1877	2236	1296	72.00	14 ft branc
28	25.69	25.69	0.00	90.00	1820	2169	1296	72.00	14 ft branc
29	21.56	21.56	0.00	90.00	1757	2094	1296	72.00	14 ft branc

BY VALMONT INDUSTRIES FOR: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 Design Id: 498211-P1RevH IMPAX 23.2.39.3

*** INPUT LOADS ***

Design Code TIA-222-H Loading Case ICE + WIND (1.2 D + 1.0 Wi + 1.0 Di)

Basic Wind Velocity is 50.00 mph Ice Thickness 1.00 Wind Orientation is 50.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.200 Exposure C, Gust Factor 1.10 Risk Category II, Topographic Category 1, Crest Height 0.00 ft(Longitudinal) * * (Vertical)Orientations are Measured Clockwise From +X Axis+Y-Axis * * +Z-Axis Positive Y Axis is 90 Degrees Clockwise From +X Axis Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Orientation of System +***** +X-Axis * * (Transverse) * * * *

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	2044	2436	9600	400.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	1988	2370	9600	400.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	1444	1721	7200	300.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	1391	1658	7200	300.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	46	55	216	9.00	18-Brach Tips
6	70.00	70.00	0.00	50.00	45	53	216	9.00	18-Brach Tips
7	60.00	60.00	0.00	50.00	43	52	216	9.00	18-Brach Tips
8	50.00	50.00	0.00	50.00	42	50	216	9.00	18-Brach Tips
9	84.00	86.50	0.00	50.00	23	28	78	4.50	1-5' Top Bran
10	84.00	86.00	0.00	50.00	78	93	288	15.00	3-6' Top Bran
11	81.50	81.50	0.00	90.00	751	895	2440	146.40	8 ft branch
12	77.50	77.50	0.00	90.00	743	886	2440	146.40	8 ft branch
13	73.50	73.50	0.00	90.00	735	876	2440	146.40	8 ft branch
14	65.75	65.75	0.00	90.00	584	696	1848	119.00	10 ft branc
15	61.25	61.25	0.00	90.00	575	686	1848	119.00	10 ft branc
16	56.75	56.75	0.00	90.00	566	675	1848	119.00	10 ft branc
17	52.25	52.25	0.00	90.00	557	664	1848	119.00	10 ft branc

BY VALMONT INDUSTRIES FOR: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 Design Id: 498211-P1RevH IMPAX 23.2.39.3

*** INPUT LOADS ***

Loading C	lase ICE	+ WIND	- Continued
-----------	----------	--------	-------------

T 1	Mounting Height	Load Height Ec	Load Eccentricity	Orientation in XY Plane (Degrees)		Orientation of System			
Load Number					Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
18	47.75	47.75	0.00	90.00	547	651	1848	119.00	10 ft branc
19	43.25	43.25	0.00	90.00	536	638	1848	119.00	10 ft branc
20	43.29	43.29	0.00	90.00	400	476	1476	88.83	12 ft branc
21	38.88	38.88	0.00	90.00	391	466	1476	88.83	12 ft branc
22	34.46	34.46	0.00	90.00	382	455	1476	88.83	12 ft branc
23	30.04	30.04	0.00	90.00	370	441	1476	88.83	12 ft branc
24	25.63	25.63	0.00	90.00	359	428	1476	88.83	12 ft branc
25	21.21	21.21	0.00	90.00	346	412	1476	88.83	12 ft branc
26	33.94	33.94	0.00	90.00	617	735	2592	144.00	14 ft branc
27	29.81	29.81	0.00	90.00	600	716	2592	144.00	14 ft branc
28	25.69	25.69	0.00	90.00	582	694	2592	144.00	14 ft branc
29	21.56	21.56	0.00	90.00	562	670	2592	144.00	14 ft branc

BY VALMONT INDUSTRIES FOR: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 Design Id: 498211-P1RevH IMPAX 23.2.39.3

*** INPUT LOADS ***

Design Code TIA-222-H Loading Case T+S (1.0 D + 1.0 Wo)

Basic Wind Velocity is 60.00 mph Ice Thickness 0.00 Wind Orientation is 50.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.000 Exposure C, Gust Factor 1.10 Risk Category II, Topographic Category 1, Crest Height 0.00 ft(Longitudinal) * * (Vertical)Orientations are Measured Clockwise From +X Axis+Y-Axis * * +Z-Axis Positive Y Axis is 90 Degrees Clockwise From +X Axis Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Orientation of System +***** +X-Axis * * (Transverse) * * * *

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	1472	1754	4000	200.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	1432	1706	4000	200.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	1040	1239	3000	150.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	1002	1194	3000	150.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	33	39	90	4.50	18-Brach Tips
6	70.00	70.00	0.00	50.00	32	38	90	4.50	18-Brach Tips
7	60.00	60.00	0.00	50.00	31	37	90	4.50	18-Brach Tips
8	50.00	50.00	0.00	50.00	30	36	90	4.50	18-Brach Tips
9	84.00	86.50	0.00	50.00	17	20	33	2.25	1-5' Top Bran
10	84.00	86.00	0.00	50.00	56	67	120	7.50	3-6' Top Bran
11	81.50	81.50	0.00	90.00	541	645	1017	73.20	8 ft branch
12	77.50	77.50	0.00	90.00	535	638	1017	73.20	8 ft branch
13	73.50	73.50	0.00	90.00	529	631	1017	73.20	8 ft branch
14	65.75	65.75	0.00	90.00	420	501	770	59.50	10 ft branc
15	61.25	61.25	0.00	90.00	414	494	770	59.50	10 ft branc
16	56.75	56.75	0.00	90.00	408	486	770	59.50	10 ft branc
17	52.25	52.25	0.00	90.00	401	478	770	59.50	10 ft branc

BY VALMONT INDUSTRIES FOR: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 Design Id: 498211-P1RevH IMPAX 23.2.39.3

*** INPUT LOADS ***

Loading	Case	T+S	-	Continued

							em		
Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
18	47.75	47.75	0.00	90.00	394	469	770	59.50	10 ft branc
19	43.25	43.25	0.00	90.00	386	460	770	59.50	10 ft branc
20	43.29	43.29	0.00	90.00	288	343	615	44.42	12 ft branc
21	38.88	38.88	0.00	90.00	282	336	615	44.42	12 ft branc
22	34.46	34.46	0.00	90.00	275	327	615	44.42	12 ft branc
23	30.04	30.04	0.00	90.00	267	318	615	44.42	12 ft branc
24	25.63	25.63	0.00	90.00	259	308	615	44.42	12 ft branc
25	21.21	21.21	0.00	90.00	249	297	615	44.42	12 ft branc
26	33.94	33.94	0.00	90.00	444	529	1080	72.00	14 ft branc
27	29.81	29.81	0.00	90.00	432	515	1080	72.00	14 ft branc
28	25.69	25.69	0.00	90.00	419	500	1080	72.00	14 ft branc
29	21.56	21.56	0.00	90.00	405	483	1080	72.00	14 ft branc
```
*** INPUT LOADS ***
```

Design Code TIA-222-H Loading Case Seismic (1.2 D + 1.0 Ev + 1.0 Eh) Seismic analysis following the Equivalent Lateral Force Procedure Risk Category: II Site Class: D Response Acceleration at short periods: 0.25 Response Acceleration at one second: 0.06 The above are used to obtain the acceleration and velocity based site coefficients Fa and Fv Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	0	0	4800	200.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	0	0	4800	200.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	0	0	3600	150.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	0	0	3600	150.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	0	0	108	4.50	18-Brach Tips
6	70.00	70.00	0.00	50.00	0	0	108	4.50	18-Brach Tips
7	60.00	60.00	0.00	50.00	0	0	108	4.50	18-Brach Tips
8	50.00	50.00	0.00	50.00	0	0	108	4.50	18-Brach Tips
9	84.00	86.50	0.00	50.00	0	0	40	2.25	1-5' Top Bran
10	84.00	86.00	0.00	50.00	0	0	144	7.50	3-6' Top Bran
11	81.50	81.50	0.00	90.00	0	0	1220	73.20	8 ft branch
12	77.50	77.50	0.00	90.00	0	0	1220	73.20	8 ft branch
13	73.50	73.50	0.00	90.00	0	0	1220	73.20	8 ft branch
14	65.75	65.75	0.00	90.00	0	0	924	59.50	10 ft branc
15	61.25	61.25	0.00	90.00	0	0	924	59.50	10 ft branc
16	56.75	56.75	0.00	90.00	0	0	924	59.50	10 ft branc
17	52.25	52.25	0.00	90.00	0	0	924	59.50	10 ft branc
18	47.75	47.75	0.00	90.00	0	0	924	59.50	10 ft branc

*** INPUT LOADS ***

Loa	ding Case	Seismic - C	Continued				Orion	tation of Creat	~~~
Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	em
19	43.25	43.25	0.00	90.00	0	0	924	59.50	10 ft branc
20	43.29	43.29	0.00	90.00	0	0	738	44.42	12 ft branc
21	38.88	38.88	0.00	90.00	0	0	738	44.42	12 ft branc
22	34.46	34.46	0.00	90.00	0	0	738	44.42	12 ft branc
23	30.04	30.04	0.00	90.00	0	0	738	44.42	12 ft branc
24	25.63	25.63	0.00	90.00	0	0	738	44.42	12 ft branc
25	21.21	21.21	0.00	90.00	0	0	738	44.42	12 ft branc
26	33.94	33.94	0.00	90.00	0	0	1296	72.00	14 ft branc
27	29.81	29.81	0.00	90.00	0	0	1296	72.00	14 ft branc
28	25.69	25.69	0.00	90.00	0	0	1296	72.00	14 ft branc
29	21.56	21.56	0.00	90.00	0	0	1296	72.00	14 ft branc

```
*** INPUT LOADS ***
```

Design Code TIA-222-H Loading Case Seismic 2 (0.9 D - 1.0 Ev + 1.0 Eh) Seismic analysis following the Equivalent Lateral Force Procedure Risk Category: II Site Class: D Response Acceleration at short periods: 0.25 Response Acceleration at one second: 0.06 The above are used to obtain the acceleration and velocity based site coefficients Fa and Fv Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	0	0	3600	200.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	0	0	3600	200.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	0	0	2700	150.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	0	0	2700	150.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	0	0	81	4.50	18-Brach Tips
6	70.00	70.00	0.00	50.00	0	0	81	4.50	18-Brach Tips
7	60.00	60.00	0.00	50.00	0	0	81	4.50	18-Brach Tips
8	50.00	50.00	0.00	50.00	0	0	81	4.50	18-Brach Tips
9	84.00	86.50	0.00	50.00	0	0	30	2.25	1-5' Top Bran
10	84.00	86.00	0.00	50.00	0	0	108	7.50	3-6' Top Bran
11	81.50	81.50	0.00	90.00	0	0	915	73.20	8 ft branch
12	77.50	77.50	0.00	90.00	0	0	915	73.20	8 ft branch
13	73.50	73.50	0.00	90.00	0	0	915	73.20	8 ft branch
14	65.75	65.75	0.00	90.00	0	0	693	59.50	10 ft branc
15	61.25	61.25	0.00	90.00	0	0	693	59.50	10 ft branc
16	56.75	56.75	0.00	90.00	0	0	693	59.50	10 ft branc
17	52.25	52.25	0.00	90.00	0	0	693	59.50	10 ft branc
18	47.75	47.75	0.00	90.00	0	0	693	59.50	10 ft branc

*** INPUT LOADS ***

							Orient	ation of Syst	em
Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
19	43.25	43.25	0.00	90.00	0	0	693	59.50	10 ft branc
20	43.29	43.29	0.00	90.00	0	0	554	44.42	12 ft branc
21	38.88	38.88	0.00	90.00	0	0	554	44.42	12 ft branc
22	34.46	34.46	0.00	90.00	0	0	554	44.42	12 ft branc
23	30.04	30.04	0.00	90.00	0	0	554	44.42	12 ft branc
24	25.63	25.63	0.00	90.00	0	0	554	44.42	12 ft branc
25	21.21	21.21	0.00	90.00	0	0	554	44.42	12 ft branc
26	33.94	33.94	0.00	90.00	0	0	972	72.00	14 ft branc
27	29.81	29.81	0.00	90.00	0	0	972	72.00	14 ft branc
28	25.69	25.69	0.00	90.00	0	0	972	72.00	14 ft branc
29	21.56	21.56	0.00	90.00	0	0	972	72.00	14 ft branc

Loading Case Seismic 2 - Continued

Equivalent Lateral Force Values for Pole

W	=	43,332 lbs
Cs	=	0.04
Vs	=	1,752 lbs
Sds	=	0.27
Εv	=	2,311 lbs
Fa	=	1.60
Fv	=	2.40
k	=	1.54
f1	=	0.63 Hz

Distance				Load	Lateral
From Fixity	Weight			Distribution	Seismic Force
Н	Wx	H^k	H^k * Wx	Factor	Fx
(ft)	(lbs)				(lbs)
84.00	153	925.46	141,595	0.0075	13
82.75	129	904.31	116,278	0.0062	11
81.50	1,017	883.34	898,063	0.0475	83
80.75	80	870.84	69 , 662	0.0037	6
80.00	4,090	858.40	3,510,872	0.1857	325
79.50	55	850.15	46,345	0.0025	4
78.25	84	829.63	69 , 315	0.0037	6
77.50	1,017	817.40	831 , 027	0.0440	77
75.75	203	789.13	160,386	0.0085	15
73.75	30	757.24	22,704	0.0012	2
73.50	1,017	753.28	765,839	0.0405	71
71.75	217	725.82	157,154	0.0083	15
70.00	4,090	698.71	2,857,709	0.1512	265
69.50	64	691.03	44,223	0.0023	4
67.38	215	658.73	141,322	0.0075	13
65.75	770	634.40	488,486	0.0258	45
64.88	120	621.43	74,366	0.0039	7
62.63	194	588.52	114,124	0.0060	11
61.25	770	568.72	437,914	0.0232	41
60.63	91	559.80	50,670	0.0027	5
60.00	3,090	550.93	1,702,362	0.0901	158
59.50	. 73	543.86	39,962	0.0021	4
57.88	169	521.14	87,965	0.0047	8
56.75	770	505.60	389,315	0.0206	36
55.38	213	486.84	103,612	0.0055	10
53.13	1.39	456.69	63,556	0.0034	6
52.25	770	445.14	342,761	0.0181	32
51.63	101	436.96	44.213	0.0023	4
50.50	242	422.37	102.065	0.0054	9
50.00	3.090	415.94	1.285.259	0.0680	119
49.50	2.4.4	409.55	100,131	0.0053	9
48.38			100/101	0.0000	~
	310	395.29	122,387	0.0065	11

BY VALMONT INDUSTRIES FOR: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 Design Id: 498211-P1RevH Equivalent Lateral Force Values for Pole

Distance				Load	Lateral
From Fixity	Weight			Distribution	Seismic Force
Н	Wx	H^k	H^k * Wx	Factor	Fx
(ft)	(lbs)				(lbs)
46.96	399	377.58	150,490	0.0080	14
45.08	368	354.60	130,538	0.0069	12
43.63	130	337.07	43,652	0.0023	4
43.25	1,385	332.61	460,670	0.0244	43
41.06	777	307.04	238,478	0.0126	22
38.88	615	282.19	173,547	0.0092	16
36.67	821	257.86	211,685	0.0112	20
34.46	615	234.32	144,105	0.0076	13
34.20	99	231.59	22,984	0.0012	2
33.94	1,080	228.88	247,189	0.0131	23
31.88	804	207.79	167,106	0.0088	15
29.81	1,695	187.43	317,699	0.0168	29
29.41	162	183.51	29,766	0.0016	3
27.31	687	163.76	112,533	0.0060	10
25.63	1,695	148.43	251,584	0.0133	23
24.81	339	141.23	47,818	0.0025	4
22.78	517	123.81	64,041	0.0034	6
21.56	1,080	113.75	122,850	0.0065	11
21.39	76	112.31	8,546	0.0005	1
21.21	615	110.88	68,193	0.0036	6
20.10	480	102.11	48,995	0.0026	5
16.50	1,121	75.30	84,380	0.0045	8
11.50	1,168	43.16	50,413	0.0027	5
6.50	1,215	17.91	21,770	0.0012	2
2.00	1,006	2.91	2,930	0.0002	0

INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 IMPAX 23.2.39.3

BY VALMONT INDUSTRIES FOR: Design Id: 498211-P1RevH

*** Properties ***

	Distance	Diameter					
	From	Across	Wall	D/t	w/t	Moments of	
Connection	Base	Flats	Thickness	Across	Across	Inertia	Area
Locations	(ft)	(in)	(in)	Flats	Flats	(in^4)	(in^2)
Top of Sect 2	84.00	19.000	0.2500	76.00	11.64	661	14.88
	81.50	19.878	0.2500	79.51	12.26	758	15.57
	80.00	20.405	0.2500	81.62	12.63	820	15.99
	79.00	20.756	0.2500	83.02	12.88	864	16.27
	77.50	21.283	0.2500	85.13	13.25	932	16.69
	74.00	22.512	0.2500	90.05	14.11	1106	17.66
	73.50	22.688	0.2500	90.75	14.24	1132	17.80
	70.00	23.917	0.2500	95.67	15.11	1328	18.78
	69.00	24.268	0.2500	97.07	15.35	1388	19.06
	65.75	25.409	0.2500	101.64	16.16	1596	19.96
	64.00	26.024	0.2500	104.10	16.59	1716	20.45
	61.25	26.990	0.2500	107.96	17.27	1916	21.22
	60.00	27.429	0.2500	109.71	17.58	2012	21.57
	59.00	27.780	0.2500	111.12	17.83	2091	21.84
	56.75	28.570	0.2500	114.28	18.39	2276	22.47
	54.00	29.536	0.2500	118.14	19.07	2517	23.24
	52.25	30.150	0.2500	120.60	19.50	2679	23.73
	51.00	30.589	0.2500	122.36	19.81	2799	24.07
Top of Sect 1	51.00	30.089	0.5000	60.18	8.85	5193	46.96
	50.00	30.440	0.5000	60.88	8.97	5380	47.51
	49.00	30.792	0.5000	61.58	9.10	5571	48.07
	47.75	31.231	0.5000	62.46	9.25	5817	48.77
Base of Sect 2	46.17	31.787	0.5000	63.57	9.45	6139	49.65
	44.00	32.548	0.5000	65.10	9.71	6597	50.86
	43.25	32.811	0.5000	65.62	9.81	6761	51.28
	38.88	34.347	0.5000	68.69	10.35	7772	53.71
	34.46	35.899	0.5000	71.80	10.90	8891	56.18
	33.94	36.081	0.5000	72.16	10.96	9029	56.47
	29.81	37.530	0.5000	75.06	11.47	10177	58.76
	29.00	37.815	0.5000	75.63	11.57	10415	59.22
	25.63	39.001	0.5000	78.00	11.99	11439	61.10
	24.00	39.571	0.5000	79.14	12.19	11955	62.00
	21.56	40.427	0.5000	80.85	12.49	12758	63.36
	21.21	40.552	0.5000	81.10	12.54	12878	63.56
	19.00	41.327	0.5000	82.65	12.81	13640	64.79
	14.00	43.083	0.5000	86.17	13.43	15477	67.58
	9.00	44.839	0.5000	89.68	14.05	17472	70.36
	4.00	46.595	0.5000	93.19	14.67	19631	73.15
Pt of Fixity	0.00	48.000	0.5000	96.00	15.16	21481	75.38

IMPAX 23.2.39.3

Forces and Moments for Pole in the Local Element Coordinate System

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
84.00	10	-8	13	0	325	388	506	139
81.50	23	-19	30	0	401	478	625	293
81.50	23	-19	30	0	2809	3348	4370	1184
80.00	84	-70	109	0	2857	3405	4444	1280
80.00	84	-70	109	0	9643	11492	15002	5268
79.00	222	-186	289	0	9675	11530	15052	5337
77.50	430	-361	561	0	9725	11590	15130	5436
77.50	430	-361	561	0	12105	14426	18832	6348
74.00	1039	-872	1356	0	12224	14568	19018	6606
73.50	1126	-945	1470	0	12243	14590	19046	6642
73.50	1126	-945	1470	0	14593	17391	22703	7576
70.00	1860	-1561	2428	0	14725	17548	22908	7835
70.00	1860	-1561	2428	0	21313	25400	33158	11931
69.00	2165	-1817	2826	0	21337	25428	33194	12073
65.75	3160	-2651	4125	0	21468	25584	33398	12330
65.75	3160	-2651	4125	0	23313	27784	36269	13110
64.00	3744	-3142	4888	0	23363	27843	36347	13352
61.25	4665	-3915	6090	0	23481	27983	36530	13584
61.25	4665	-3915	6090	0	25296	30146	39353	14391
60.00	5118	-4295	6681	0	25350	30211	39438	14499
60.00	5118	-4295	6681	0	30146	35927	46899	17733
59.00	5549	-4657	7244	0	30163	35947	46926	17933
56.75	6522	-5472	8513	0	30265	36068	47083	18135
56.75	6522	-5472	8513	0	32025	38165	49821	19057
54.00	.7.7.84	-6531	10161	0	32106	38262	49947	19497
52.25	8588	-7206	11211	0	32188	38360	50076	19664
52.25	8588	-7206	11211	0	33928	40434	52783	20553
51.00	9195	-//16	12003	0	33988	40505	52876	20674
51.00	9195	-7716	12003	0	33967	40480	52843	20757
50.00	9681	-8124	12638	0	34022	40545	52928	21047
50.00	9681	-8124	12638	0	38616	46020	60075	24399
49.00	10234	-8587	13360	0	38653	46065	60134	24759
47.75	10926	-9168	14262	0	38723	46148	60242	25130
47.75	10926	-9168	14262	0	40437	48191	62909	25993
46.17	11842	-9937	15459	0	40493	48258	62996	26595
44.00	13099	-10991	17099	0	40579	48361	63130	27134
43.25	13534	-11357	17668	0	40619	48408	63192	27289
43.25	13534	-11357	17668	0	43541	51890	67737	28906
38.88	16266	-13649	21233	0	43775	52170	68103	29837
38.88	16266	-13649	21233	0	44922	53536	69886	30828

Forces and Moments for Pole in the Local Element Coordinate System

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
34.46	19111	-16036	24947	0	45164	53824	70262	31812
34.46	19111	-16036	24947	0	46316	55198	72056	32673
33.94	19456	-16325	25398	0	46345	55232	72100	32792
33.94	19456	-16325	25398	0	48245	57496	75056	34169
29.81	22309	-18719	29122	0	48474	57769	75413	35133
29.81	22309	-18719	29122	0	51487	61360	80099	37218
29.00	22907	-19221	29903	0	51472	61342	80076	37612
25.63	25396	-21310	33152	0	51661	61567	80371	38437
25.63	25396	-21310	33152	0	54567	65031	84891	40574
24.00	26665	-22375	34809	0	54594	65062	84932	41188
21.56	28571	-23974	37296	0	54730	65225	85145	41808
21.56	28571	-23974	37296	0	56463	67290	87840	43177
21.21	28857	-24214	37670	0	56482	67313	87871	43268
21.21	28857	-24214	37670	0	57531	68563	89502	44102
19.00	30676	-25740	40044	0	57528	68559	89497	45070
14.00	34799	-29200	45427	0	57619	68668	89639	46958
9.00	38929	-32665	50818	0	57702	68767	89769	48899
4.00	43065	-36135	56217	0	57805	68890	89929	50838
0.00	46378	-38915	60542	0	58030	69157	90279	52046

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	Χ & Υ	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
84.00	32.1	38.3	50.0	1.7	5.09
81.50	30.4	36.2	47.3	1.5	5.09
81.50	30.4	36.2	47.3	1.5	5.09
80.00	29.4	35.0	45.7	1.5	5.09
80.00	29.4	35.0	45.7	1.5	5.09
79.00	28.7	34.2	44.7	1.4	5.08
77.50	27.7	33.0	43.1	1.4	5.06
77.50	27.7	33.0	43.1	1.4	5.06
74.00	25.3	30.2	39.4	1.2	4.99
73.50	25.0	29.8	38.9	1.2	4.97
73.50	25.0	29.8	38.9	1.2	4.97
70.00	22.7	27.0	35.3	1.0	4.84
70.00	22.7	27.0	35.3	1.0	4.84
69.00	22.0	26.2	34.3	1.0	4.79
65.75	20.0	23.8	31.1	0.8	4.61
65.75	20.0	23.8	31.1	0.8	4.61
64.00	18.9	22.5	29.4	0.8	4.50
61.25	17.3	20.6	26.9	0.7	4.30
61.25	17.3	20.6	26.9	0.7	4.30
60.00	16.5	19.7	25.7	0.6	4.21
60.00	16.5	19.7	25.7	0.6	4.21
59.00	16.0	19.1	24.9	0.6	4.13
56.75	14.8	17.6	23.0	0.5	3.93
56.75	14.8	17.6	23.0	0.5	3.93
54.00	13.4	15.9	20.8	0.5	3.68
52.25	12.5	14.9	19.5	0.4	3.51
52.25	12.5	14.9	19.5	0.4	3.51
51.00	11.9	14.2	18.6	0.4	3.38
51.00	11.9	14.2	18.6	0.4	3.38
50.00	11.5	13.7	17.9	0.4	3.33
50.00	11.5	13.7	17.9	0.4	3.33
49.00	11.0	13.1	17.2	0.3	3.27
47.75	10.5	12.5	16.3	0.3	3.20
47.75	10.5	12.5	16.3	0.3	3.20
46.17	9.8	11.7	15.3	0.3	3.11
44.00	8.9	10.6	13.9	0.3	2.98
43.25	8.6	10.3	13.4	0.2	2.93
43.25	8.6	10.3	13.4	0.2	2.93
38.88	7.0	8.3	10.9	0.2	2.65
38.88	7.0	8.3	10.9	0.2	2.65
34.46	5.5	6.5	8.5	0.1	2.36

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	Χ & Υ	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
34.46	5.5	6.5	8.5	0.1	2.36
33.94	5.3	6.4	8.3	0.1	2.33
33.94	5.3	6.4	8.3	0.1	2.33
29.81	4.1	4.9	6.4	0.1	2.05
29.81	4.1	4.9	6.4	0.1	2.05
29.00	3.9	4.6	6.1	0.1	1.99
25.63	3.0	3.6	4.7	0.1	1.76
25.63	3.0	3.6	4.7	0.1	1.76
24.00	2.7	3.2	4.1	0.0	1.65
21.56	2.1	2.6	3.3	0.0	1.48
21.56	2.1	2.6	3.3	0.0	1.48
21.21	2.1	2.5	3.2	0.0	1.46
21.21	2.1	2.5	3.2	0.0	1.46
19.00	1.7	2.0	2.6	0.0	1.31
14.00	0.9	1.1	1.4	0.0	0.96
9.00	0.4	0.4	0.6	0.0	0.61
4.00	0.1	0.1	0.1	0.0	0.27
0.00	0.0	0.0	0.0	0.0	0.00

Distance	Nominal	Nominal	Nominal	Nominal	Axial	Flexural	Shear	Torsion	Combined
From	Axial	Flexural	Shear	Torsional	Interaction	Interaction	Interaction	Interaction	Stress
Base	Strength	Strength	Strength	Strength	Term	Term	Term	Term	Interaction
(ft)	(lbs)	(in-kips)	(lbs)	(in-kips)					
84.00	967 , 043	5,653	290,113	5,416	0.00	0.00	0.00	0.00	0.01
81.50	1,012,326	6,199	303,698	5,935	0.00	0.01	0.02	0.00	0.01
80.00	1,039,495	6,538	311,848	6,258	0.01	0.02	0.05	0.00	0.03
79.00	1,057,608	6,769	317,282	6,478	0.01	0.05	0.05	0.00	0.06
77.50	1,084,777	7,124	325,433	6,815	0.01	0.09	0.06	0.00	0.10
74.00	1,148,172	7,986	344,452	7,635	0.01	0.19	0.06	0.00	0.20
73.50	1,157,229	8,113	347,169	7,756	0.01	0.20	0.07	0.00	0.21
70.00	1,220,624	9,031	366 , 187	8,629	0.01	0.30	0.10	0.00	0.32
69.00	1,238,736	9,303	371 , 621	8,886	0.01	0.34	0.10	0.00	0.36
65.75	1,297,603	10,193	389,281	9,751	0.01	0.45	0.10	0.00	0.47
64.00	1,329,301	10,634	398 , 790	10,233	0.01	0.51	0.10	0.00	0.53
61.25	1,379,111	11,338	413,733	11,015	0.01	0.60	0.11	0.00	0.62
60.00	1,401,752	11,662	420,526	11,379	0.01	0.64	0.12	0.00	0.67
59.00	1,419,865	11,924	425,960	11,675	0.01	0.68	0.12	0.00	0.70
56.75	1,460,619	12,518	438,186	12,355	0.01	0.76	0.13	0.00	0.79
54.00	1,510,430	13,256	453,129	13,212	0.01	0.85	0.12	0.00	0.88
52.25	1,542,127	13,731	462,638	13,772	0.01	0.91	0.13	0.00	0.94
51.00	1,564,768	14,073	469,430	14,180	0.01	0.95	0.13	0.00	0.98
51.00	3,052,173	28,060	915,652	26,975	0.01	0.48	0.06	0.00	0.49
50.00	3,088,399	28,735	926,520	27,619	0.01	0.49	0.07	0.00	0.50
49.00	3,124,624	29,419	937,387	28,271	0.01	0.50	0.07	0.00	0.52
47.75	3,169,906	30,284	950,972	29,096	0.01	0.52	0.07	0.00	0.54
46.17	3,227,264	31,399	968,179	30,159	0.01	0.55	0.07	0.00	0.56
44.00	3,305,753	32,957	991,726	31,643	0.01	0.58	0.07	0.00	0.59
43.25	3,332,922	33,505	999,877	32,166	0.01	0.59	0.08	0.00	0.60
38.88	3,491,410	36,793	1,047,423	35,298	0.01	0.64	0.07	0.00	0.66
34.46	3,651,407	40,268	1,095,422	38,607	0.01	0.69	0.07	0.00	0.70
33.94	3,670,275	40,688	1,101,082	39,007	0.01	0.69	0.08	0.00	0.71
29.81	3,819,706	44,092	1,145,912	42,248	0.01	0.73	0.08	0.00	0.75
29.00	3,849,139	44,779	1,154,742	42,901	0.01	0.74	0.08	0.00	0.76
25.63	3,971,401	47,688	1,191,420	45,670	0.01	0.77	0.08	0.00	0.79
24.00	4,030,268	49,121	1,209,080	47,034	0.01	0.79	0.08	0.00	0.80
21.56	4,118,568	51,311	1,235,570	49,117	0.01	0.81	0.08	0.00	0.83
21.21	4,131,398	51,633	1,239,419	49,424	0.01	0.81	0.08	0.00	0.83
19.00	4,211,397	53,664	1,263,419	51,356	0.01	0.83	0.08	0.00	0.85
14.00	4,392,525	58,409	1,317,758	55,869	0.01	0.86	0.08	0.00	0.88
9.00	4,573,654	63,354	1,372,096	60,572	0.01	0.89	0.07	0.00	0.91
4.00	4,754,783	68,500	1,426,435	65,464	0.01	0.91	0.07	0.00	0.93
0.00	4,899,686	72,762	1,469,906	69,515	0.01	0.92	0.07	0.00	0.94
0.00	1,000,000	, 2, , 02	-, 100, 000	0,010	0.01	0.52	0.07	0.00	0.94

Forces and Moments for Pole in the Local Element Coordinate System

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
84.00	3	-3	4	0	108	129	168	361
81.50	8	-6	10	0	138	164	214	580
81.50	8	-6	10	0	935	1114	1454	2985
80.00	28	-23	36	0	953	1136	1482	3120
80.00	28	-23	36	0	3227	3846	5021	12837
79.00	74	-62	97	0	3239	3860	5039	12930
77.50	144	-121	188	0	3258	3883	5068	13072
77.50	144	-121	188	0	4044	4820	6291	15479
74.00	347	-291	453	0	4087	4870	6358	15825
73.50	377	-316	492	0	4093	4878	6368	15876
73.50	377	-316	492	0	4868	5802	7574	18285
70.00	622	-522	811	0	4916	5858	7648	18652
70.00	622	-522	811	0	7117	8482	11072	28380
69.00	723	-607	944	0	7119	8484	11075	28496
65.75	1055	-886	1378	0	7165	8539	11147	28858
65.75	1055	-886	1378	0	7764	9253	12079	30692
64.00	1250	-1049	1632	0	7771	9262	12090	30905
61.25	1556	-1306	2032	0	7812	9310	12153	31232
61.25	1556	-1306	2032	0	8399	10009	13066	33068
60.00	1707	-1432	2228	0	8418	10032	13095	33220
60.00	1707	-1432	2228	0	10008	11927	15570	40585
59.00	1850	-1552	2415	0	10002	11920	15561	40721
56.75	2172	-1823	2836	0	10037	11961	15614	41005
56.75	2172	-1823	2836	0	10595	12626	16482	42854
54.00	2590	-21/3	3381	0	10603	12636	16495	43232
52.25	2855	-2396	3728	0	10630	12668	1653/	43466
52.25	2855	-2396	3728	0	11186	13331	17402	45310
51.00	3056	-2564	3989	0	11205	13354	1/433	45480
51.00	3056	-2564	3989	0	11190	13336	17409	45489
50.00	3216	-2698	4198	0	11208	13358	17437	45837
50.00	3216	-2698	4198	0	12722	15161	19791	53215
49.00	3398	-2851	4436	0	12727	15168	19800	53574
47.75	3626	-3042	4733	0	12750	15195	19836	54019
47.75	3626	-3042	4733	0	13302	15852	20694	55861
46.17	3927	-3295	5126	0	13307	15859	20702	56447
44.00	4340	-3642	5665	0	13325	15880	20731	56986
43.25	4483	-3762	5852	0	13338	15896	20750	57172
43.25	4483	-3762	5852	0	14273	17010	22205	60491
38.88	5378	-4513	7021	0	14348	17099	22322	61605
38.88	5378	-4513	7021	0	14688	17504	22850	63108

Forces and Moments for Pole in the Local Element Coordinate System

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
34.46	6308	-5293	8235	0	14764	17595	22969	64283
34.46	6308	-5293	8235	0	15120	18019	23522	65772
33.94	6421	-5388	8382	0	15129	18030	23536	65914
33.94	6421	-5388	8382	0	15728	18744	24468	68515
29.81	7351	-6168	9596	0	15799	18829	24579	69663
29.81	7351	-6168	9596	0	16757	19971	26070	73737
29.00	7546	-6332	9850	0	16732	19941	26031	73990
25.63	8355	-7011	10906	0	16790	20010	26121	74968
25.63	8355	-7011	10906	0	17710	21106	27551	79047
24.00	8767	-7356	11444	0	17696	21090	27531	79551
21.56	9384	-7874	12250	0	17737	21139	27595	80286
21.56	9384	-7874	12250	0	18285	21792	28447	82886
21.21	9477	-7952	12371	0	18291	21799	28456	82994
21.21	9477	-7952	12371	0	18617	22187	28963	84480
19.00	10066	-8446	13140	0	18575	22137	28898	85201
14.00	11397	-9563	14877	0	18546	22102	28853	86842
9.00	12726	-10678	16612	0	18514	22065	28803	88541
4.00	14052	-11791	18344	0	18494	22040	28772	90286
0.00	15112	-12681	19728	0	18559	22118	28873	91667

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	Χ & Υ	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
84.00	10.6	12.6	16.5	0.2	1.68
81.50	10.0	11.9	15.6	0.2	1.68
81.50	10.0	11.9	15.6	0.2	1.68
80.00	9.7	11.5	15.1	0.2	1.68
80.00	9.7	11.5	15.1	0.2	1.68
79.00	9.5	11.3	14.7	0.2	1.68
77.50	9.1	10.9	14.2	0.2	1.67
77.50	9.1	10.9	14.2	0.2	1.67
74.00	8.3	9.9	13.0	0.2	1.65
73.50	8.2	9.8	12.8	0.2	1.64
73.50	8.2	9.8	12.8	0.2	1.64
70.00	7.5	8.9	11.6	0.1	1.60
70.00	7.5	8.9	11.6	0.1	1.60
69.00	7.2	8.6	11.3	0.1	1.58
65.75	6.6	7.8	10.2	0.1	1.52
65.75	6.6	7.8	10.2	0.1	1.52
64.00	6.2	7.4	9.7	0.1	1.49
61.25	5.7	6.8	8.8	0.1	1.42
61.25	5.7	6.8	8.8	0.1	1.42
60.00	5.4	6.5	8.5	0.1	1.39
60.00	5.4	6.5	8.5	0.1	1.39
59.00	5.2	6.3	8.2	0.1	1.36
56.75	4.8	5.8	7.5	0.1	1.30
56.75	4.8	5.8	7.5	0.1	1.30
54.00	4.4	5.2	6.8	0.1	1.21
52.25	4.1	4.9	6.4	0.1	1.15
52.25	4.1	4.9	6.4	0.1	1.15
51.00	3.9	4.7	6.1	0.1	1.11
51.00	3.9	4.7	6.1	0.1	1.11
50.00	3.8	4.5	5.9	0.1	1.09
50.00	3.8	4.5	5.9	0.1	1.09
49.00	3.6	4.3	5.6	0.1	1.08
47.75	3.4	4.1	5.3	0.1	1.05
47.75	3.4	4.1	5.3	0.1	1.05
46.17	3.2	3.8	5.0	0.1	1.02
44.00	2.9	3.5	4.6	0.0	0.98
43.25	2.8	3.4	4.4	0.0	0.96
43.25	2.8	3.4	4.4	0.0	0.96
38.88	2.3	2.7	3.6	0.0	0.87
38.88	2.3	2.7	3.6	0.0	0.87
34.46	1.8	2.1	2.8	0.0	0.77

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	X & Y	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
34.46	1.8	2.1	2.8	0.0	0.77
33.94	1.7	2.1	2.7	0.0	0.76
33.94	1.7	2.1	2.7	0.0	0.76
29.81	1.3	1.6	2.1	0.0	0.67
29.81	1.3	1.6	2.1	0.0	0.67
29.00	1.3	1.5	2.0	0.0	0.65
25.63	1.0	1.2	1.5	0.0	0.58
25.63	1.0	1.2	1.5	0.0	0.58
24.00	0.9	1.0	1.4	0.0	0.54
21.56	0.7	0.8	1.1	0.0	0.49
21.56	0.7	0.8	1.1	0.0	0.49
21.21	0.7	0.8	1.1	0.0	0.48
21.21	0.7	0.8	1.1	0.0	0.48
19.00	0.5	0.6	0.8	0.0	0.43
14.00	0.3	0.4	0.5	0.0	0.31
9.00	0.1	0.1	0.2	0.0	0.20
4.00	0.0	0.0	0.0	0.0	0.09
0.00	0.0	0.0	0.0	0.0	0.00

Distance	Nominal	Nominal	Nominal	Nominal	Axial	Flexural	Shear	Torsion	Combined
From	Axial	Flexural	Shear	Torsional	Interaction	Interaction	Interaction	Interaction	Stress
Base	Strength	Strength	Strength	Strength	Term	Term	Term	Term	Interaction
(ft)	(lbs)	(in-kips)	(lbs)	(in-kips)					
84.00	967,043	5 , 653	290,113	5,416	0.00	0.00	0.00	0.00	0.01
81.50	1,012,326	6,199	303,698	5,935	0.00	0.00	0.01	0.00	0.01
80.00	1,039,495	6,538	311,848	6,258	0.01	0.01	0.02	0.00	0.02
79.00	1,057,608	6,769	317,282	6,478	0.01	0.02	0.02	0.00	0.03
77.50	1,084,777	7,124	325,433	6,815	0.02	0.03	0.02	0.00	0.05
74.00	1,148,172	7,986	344,452	7,635	0.02	0.06	0.02	0.00	0.08
73.50	1,157,229	8,113	347,169	7,756	0.02	0.07	0.02	0.00	0.09
70.00	1,220,624	9,031	366 , 187	8,629	0.03	0.10	0.03	0.00	0.13
69.00	1,238,736	9,303	371 , 621	8,886	0.03	0.11	0.03	0.00	0.14
65.75	1,297,603	10,193	389,281	9,751	0.03	0.15	0.03	0.00	0.18
64.00	1,329,301	10,634	398 , 790	10,233	0.03	0.17	0.03	0.00	0.20
61.25	1,379,111	11,338	413,733	11,015	0.03	0.20	0.04	0.00	0.23
60.00	1,401,752	11,662	420,526	11,379	0.03	0.21	0.04	0.00	0.25
59.00	1,419,865	11,924	425,960	11,675	0.03	0.23	0.04	0.00	0.26
56.75	1,460,619	12,518	438,186	12,355	0.03	0.25	0.04	0.00	0.29
54.00	1,510,430	13,256	453,129	13,212	0.03	0.28	0.04	0.00	0.32
52.25	1,542,127	13,731	462,638	13,772	0.03	0.30	0.04	0.00	0.34
51.00	1,564,768	14,073	469,430	14,180	0.03	0.31	0.04	0.00	0.35
51.00	3,052,173	28,060	915,652	26,975	0.02	0.16	0.02	0.00	0.17
50.00	3,088,399	28,735	926,520	27,619	0.02	0.16	0.02	0.00	0.18
49.00	3,124,624	29,419	937,387	28,271	0.02	0.17	0.02	0.00	0.19
47.75	3,169,906	30,284	950,972	29,096	0.02	0.17	0.02	0.00	0.19
46.17	3,227,264	31,399	968,179	30,159	0.02	0.18	0.02	0.00	0.20
44.00	3,305,753	32,957	991,726	31,643	0.02	0.19	0.02	0.00	0.21
43.25	3,332,922	33,505	999,877	32,166	0.02	0.19	0.02	0.00	0.21
38.88	3,491,410	36,793	1,047,423	35,298	0.02	0.21	0.02	0.00	0.23
34.46	3,651,407	40,268	1,095,422	38,607	0.02	0.23	0.02	0.00	0.25
33.94	3,670,275	40,688	1,101,082	39,007	0.02	0.23	0.02	0.00	0.25
29.81	3,819,706	44,092	1,145,912	42,248	0.02	0.24	0.03	0.00	0.26
29.00	3,849,139	44,779	1,154,742	42,901	0.02	0.24	0.03	0.00	0.27
25.63	3,971,401	47,688	1.191.420	45,670	0.02	0.25	0.03	0.00	0.28
24.00	4,030,268	49,121	1,209,080	47,034	0.02	0.26	0.03	0.00	0.28
21.56	4,118,568	51,311	1,235,570	49,117	0.02	0.27	0.03	0.00	0.29
21.21	4,131,398	51,633	1,239,419	49,424	0.02	0.27	0.03	0.00	0.29
19.00	4,211,397	53,664	1,263,419	51,356	0.02	0.27	0.03	0.00	0.30
14 00	4.392.525	58,409	1,317,758	55,869	0.02	0.28	0.02	0.00	0 31
9 00	4,573,654	63,354	1,372,096	60,572	0.02	0.20	0.02	0.00	0.31
4 00	4 754 783	68 500	1 426 435	65 461	0.02	0.20	0.02	0.00	0.37
00	4 899 686	72 762	1 469 906	69 515	0.02	0.30	0.02	0.00	0.32
0.00	-,055,000	12,102	±, =0,,,,,00	UJ, JIJ	0.02	0.30	0.02	0.00	0.52

IMPAX 23.2.39.3

Forces and Moments for Pole in the Local Element Coordinate System

Tooling	0	m i o
LOAGTUG	Lase	T+5

Loading Cas	se T+S							
Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
84.00	2	-2	3	0	75	89	116	151
81.50	5	-4	7	0	92	110	143	279
81.50	5	-4	7	0	646	770	1005	1278
80.00	19	-16	25	0	657	783	1022	1358
80.00	19	-16	25	0	2215	2640	3446	5400
79.00	51	-43	67	0	2223	2649	3458	5455
77.50	99	-83	129	0	2234	2662	3475	5538
77.50	99	-83	129	0	2782	3315	4327	6538
74.00	239	-200	312	0	2809	3347	4369	6742
73.50	259	-217	338	0	2813	3352	4376	6772
73.50	259	-217	338	0	3353	3997	5217	7774
70.00	427	-359	558	0	3383	4032	5264	7990
70.00	427	-359	558	0	4896	5835	7617	12038
69.00	497	-417	649	0	4901	5841	7625	12105
65.75	726	-609	948	0	4931	5876	7671	12320
65.75	726	-609	948	0	5356	6383	8332	13082
64.00	860	-722	1123	0	5367	6396	8349	13207
61.25	1072	-899	1399	0	5394	6428	8391	13401
61.25	1072	-899	1399	0	5811	6926	9041	14164
60.00	1176	-987	1535	0	5824	6940	9060	14255
60.00	1176	-987	1535	0	6925	8253	10773	17320
59.00	1275	-1070	1664	0	6929	8257	10779	17399
56.75	1498	-1257	1956	0	6952	8285	10815	17568
56.75	1498	-1257	1956	0	7357	8768	11445	18338
54.00	1788	-1500	2334	0	7376	8790	11475	18561
52.25	1973	-1655	2575	0	7395	8813	11504	18700
52.25	1973	-1655	2575	0	7795	9290	12127	19468
51.00	2112	-1773	2758	0	7809	9306	12148	19569
51.00	2112	-1773	2758	0	7804	9301	12141	19573
50.00	2224	-1866	2903	0	7816	9315	12160	19815
50.00	2224	-1866	2903	0	8871	10572	13801	22886
49.00	2351	-1973	3069	0	8880	10583	13815	23134
47.75	2510	-2106	3276	0	8895	10601	13839	23444
47.75	2510	-2106	3276	0	9290	11072	14453	24211
46.17	2721	-2283	3551	0	9303	11087	14473	24616
44.00	3009	-2525	3928	0	9323	11110	14504	24989
43.25	3109	-2609	4059	0	9332	11121	14518	25118
43.25	3109	-2609	4059	0	10005	11923	15564	26501
38.88	3737	-3136	4878	0	10058	11986	15647	27278
38.88	3737	-3136	4878	0	10323	12303	16060	27906

Forces and Moments for Pole in the Local Element Coordinate System

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
34.46	4391	-3684	5732	0	10378	12368	16145	28727
34.46	4391	-3684	5732	0	10644	12685	16560	29348
33.94	4470	-3751	5835	0	10651	12693	16570	29448
33.94	4470	-3751	5835	0	11089	13215	17251	30532
29.81	5126	-4301	6691	0	11141	13277	17332	31336
29.81	5126	-4301	6691	0	11835	14105	18413	33034
29.00	5263	-4416	6871	0	11833	14103	18410	33206
25.63	5835	-4896	7618	0	11876	14154	18476	33894
25.63	5835	-4896	7618	0	12547	14953	19519	35594
24.00	6127	-5141	7998	0	12554	14962	19531	35944
21.56	6565	-5509	8570	0	12585	14999	19580	36461
21.56	6565	-5509	8570	0	12985	15475	20202	37545
21.21	6631	-5564	8656	0	12990	15481	20209	37621
21.21	6631	-5564	8656	0	13232	15770	20586	38241
19.00	7049	-5915	9202	0	13235	15773	20591	38741
14.00	7998	-6711	10441	0	13262	15805	20632	39891
9.00	8949	-7509	11682	0	13288	15835	20672	41087
4.00	9901	-8308	12925	0	13318	15871	20718	42328
0.00	10664	-8948	13921	0	13369	15933	20799	43335

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	Χ & Υ	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
84.00	7.4	8.8	11.5	0.1	1.17
81.50	7.0	8.3	10.9	0.1	1.17
81.50	7.0	8.3	10.9	0.1	1.17
80.00	6.8	8.1	10.5	0.1	1.17
80.00	6.8	8.1	10.5	0.1	1.17
79.00	6.6	7.9	10.3	0.1	1.17
77.50	6.4	7.6	9.9	0.1	1.16
77.50	6.4	7.6	9.9	0.1	1.16
74.00	5.8	6.9	9.1	0.1	1.15
73.50	5.7	6.8	8.9	0.1	1.14
73.50	5.7	6.8	8.9	0.1	1.14
70.00	5.2	6.2	8.1	0.1	1.11
70.00	5.2	6.2	8.1	0.1	1.11
69.00	5.1	6.0	7.9	0.1	1.10
65.75	4.6	5.5	7.1	0.1	1.06
65.75	4.6	5.5	7.1	0.1	1.06
64.00	4.3	5.2	6.8	0.1	1.03
61.25	4.0	4.7	6.2	0.0	0.99
61.25	4.0	4.7	6.2	0.0	0.99
60.00	3.8	4.5	5.9	0.0	0.97
60.00	3.8	4.5	5.9	0.0	0.97
59.00	3.7	4.4	5.7	0.0	0.95
56.75	3.4	4.0	5.3	0.0	0.90
56.75	3.4	4.0	5.3	0.0	0.90
54.00	3.1	3.7	4.8	0.0	0.85
52.25	2.9	3.4	4.5	0.0	0.81
52.25	2.9	3.4	4.5	0.0	0.81
51.00	2.7	3.3	4.3	0.0	0.78
51.00	2.7	3.3	4.3	0.0	0.78
50.00	2.6	3.1	4.1	0.0	0.77
50.00	2.6	3.1	4.1	0.0	0.77
49.00	2.5	3.0	3.9	0.0	0.75
47.75	2.4	2.9	3.8	0.0	0.74
47.75	2.4	2.9	3.8	0.0	0.74
46.17	2.3	2.7	3.5	0.0	0.71
44.00	2.1	2.4	3.2	0.0	0.68
43.25	2.0	2.4	3.1	0.0	0.67
43.25	2.0	2.4	3.1	0.0	0.67
38.88	1.6	1.9	2.5	0.0	0.61
38.88	1.6	1.9	2.5	0.0	0.61
34.46	1.3	1.5	2.0	0.0	0.54

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	X & Y	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
34.46	1.3	1.5	2.0	0.0	0.54
33.94	1.2	1.5	1.9	0.0	0.53
33.94	1.2	1.5	1.9	0.0	0.53
29.81	0.9	1.1	1.5	0.0	0.47
29.81	0.9	1.1	1.5	0.0	0.47
29.00	0.9	1.1	1.4	0.0	0.46
25.63	0.7	0.8	1.1	0.0	0.41
25.63	0.7	0.8	1.1	0.0	0.41
24.00	0.6	0.7	1.0	0.0	0.38
21.56	0.5	0.6	0.8	0.0	0.34
21.56	0.5	0.6	0.8	0.0	0.34
21.21	0.5	0.6	0.7	0.0	0.34
21.21	0.5	0.6	0.7	0.0	0.34
19.00	0.4	0.5	0.6	0.0	0.30
14.00	0.2	0.2	0.3	0.0	0.22
9.00	0.1	0.1	0.1	0.0	0.14
4.00	0.0	0.0	0.0	0.0	0.06
0.00	0.0	0.0	0.0	0.0	0.00

Distance	Nominal	Nominal	Nominal	Nominal	Axial	Flexural	Shear	Torsion	Combined
From	Axial	Flexural	Shear	Torsional	Interaction	Interaction	Interaction	Interaction	Stress
Base	Strength	Strength	Strength	Strength	Term	Term	Term	Term	Interaction
(ft)	(lbs)	(in-kips)	(lbs)	(in-kips)					
84.00	967,043	5 , 653	290,113	5,416	0.00	0.00	0.00	0.00	0.01
81.50	1,012,326	6,199	303,698	5,935	0.00	0.00	0.00	0.00	0.01
80.00	1,039,495	6,538	311,848	6,258	0.01	0.00	0.01	0.00	0.01
79.00	1,057,608	6,769	317 , 282	6,478	0.01	0.01	0.01	0.00	0.02
77.50	1,084,777	7,124	325 , 433	6,815	0.01	0.02	0.01	0.00	0.03
74.00	1,148,172	7,986	344,452	7,635	0.01	0.04	0.01	0.00	0.05
73.50	1,157,229	8,113	347 , 169	7,756	0.01	0.05	0.02	0.00	0.05
70.00	1,220,624	9,031	366 , 187	8,629	0.01	0.07	0.02	0.00	0.08
69.00	1,238,736	9,303	371 , 621	8,886	0.01	0.08	0.02	0.00	0.09
65.75	1,297,603	10,193	389,281	9,751	0.01	0.10	0.02	0.00	0.12
64.00	1,329,301	10,634	398 , 790	10,233	0.01	0.12	0.02	0.00	0.13
61.25	1,379,111	11,338	413,733	11,015	0.01	0.14	0.02	0.00	0.15
60.00	1,401,752	11,662	420,526	11,379	0.01	0.15	0.03	0.00	0.16
59.00	1,419,865	11,924	425,960	11,675	0.01	0.16	0.03	0.00	0.17
56.75	1,460,619	12,518	438,186	12,355	0.01	0.17	0.03	0.00	0.19
54.00	1,510,430	13,256	453,129	13,212	0.01	0.20	0.03	0.00	0.21
52.25	1,542,127	13,731	462,638	13,772	0.01	0.21	0.03	0.00	0.22
51.00	1,564,768	14,073	469,430	14,180	0.01	0.22	0.03	0.00	0.23
51.00	3,052,173	28,060	915,652	26,975	0.01	0.11	0.01	0.00	0.12
50.00	3,088,399	28,735	926,520	27,619	0.01	0.11	0.02	0.00	0.12
49.00	3,124,624	29,419	937,387	28,271	0.01	0.12	0.02	0.00	0.12
47.75	3,169,906	30,284	950,972	29,096	0.01	0.12	0.02	0.00	0.13
46.17	3,227,264	31,399	968,179	30,159	0.01	0.13	0.02	0.00	0.13
44.00	3,305,753	32,957	991,726	31,643	0.01	0.13	0.02	0.00	0.14
43.25	3,332,922	33,505	999,877	32,166	0.01	0.13	0.02	0.00	0.14
38.88	3,491,410	36,793	1,047,423	35,298	0.01	0.15	0.02	0.00	0.16
34.46	3,651,407	40,268	1,095,422	38,607	0.01	0.16	0.02	0.00	0.17
33.94	3,670,275	40,688	1,101,082	39,007	0.01	0.16	0.02	0.00	0.17
29.81	3,819,706	44,092	1,145,912	42,248	0.01	0.17	0.02	0.00	0.18
29.00	3,849,139	44,779	1,154,742	42,901	0.01	0.17	0.02	0.00	0.18
25.63	3,971,401	47,688	1.191.420	45,670	0.01	0.18	0.02	0.00	0.19
24.00	4,030,268	49,121	1,209,080	47,034	0.01	0.18	0.02	0.00	0.19
21.56	4,118,568	51,311	1,235,570	49,117	0.01	0.19	0.02	0.00	0.20
21.21	4,131,398	51,633	1,239,419	49,424	0.01	0.19	0.02	0.00	0.20
19.00	4,211,397	53,664	1,263,419	51,356	0.01	0.19	0.02	0.00	0.20
14 00	4.392.525	58,409	1,317,758	55,869	0 01	0 20	0.02	0.00	0.20
9 00	4,573,654	63,354	1,372,096	60,572	0.01	0.20	0.02	0.00	0.21
4 00	4 754 783	68 500	1 426 435	65 461	0.01	0.20	0.02	0.00	0.22
00	4 899 686	72 762	1 469 906	69 515	0.01	0.21	0.02	0.00	0.22
0.00	-,055,000	12,102	1,100,000	UJ, JIJ	0.01	0.21	0.02	0.00	0.22

IMPAX 23.2.39.3

Forces and Moments for Pole in the Local Element Coordinate System

Loading	Case	Seismic

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	Му	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
84.00	0	0	0	0	9	11	14	192
81.50	1	-1	1	0	16	19	25	353
81.50	1	-1	1	0	72	85	111	1627
80.00	2	-2	3	0	76	90	118	1727
80.00	2	-2	3	0	292	349	455	6853
79.00	7	-5	8	0	295	352	459	6921
77.50	13	-11	17	0	300	357	466	7026
77.50	13	-11	17	0	351	418	546	8300
74.00	31	-26	40	0	361	430	561	8554
73.50	33	-28	43	0	362	431	563	8592
73.50	33	-28	43	0	409	488	637	9866
70.00	54	-45	71	0	419	499	652	10137
70.00	54	-45	71	0	596	710	927	15263
69.00	63	-52	82	0	598	713	931	15343
65.75	91	-76	118	0	607	723	944	15612
65.75	91	-76	118	0	637	759	990	16577
64.00	107	-89	139	0	640	763	996	16727
61.25	132	-111	172	0	647	772	1007	16970
61.25	132	-111	172	0	674	803	1048	17935
60.00	144	-121	188	0	677	807	1053	18049
60.00	144	-121	188	0	782	932	1217	21921
59.00	155	-130	203	0	784	934	1220	22013
56.75	180	-151	236	0	789	941	1228	22225
56.75	180	-151	236	0	812	968	1263	23190
54.00	213	-178	277	0	817	974	1271	23457
52.25	233	-196	304	0	821	978	1277	23631
52.25	233	-196	304	0	841	1003	1309	24596
51.00	248	-208	324	0	844	1006	1313	24723
51.00	248	-208	324	0	843	1005	1312	24723
50.00	260	-218	340	0	850	1013	1322	25026
50.00	260	-218	340	0	929	1108	1446	28899
49.00	274	-230	357	0	935	1114	1455	29205
47.75	290	-244	379	0	943	1123	1466	29593
47.75	290	-244	379	0	961	1145	1494	30558
46.17	312	-262	408	0	969	1155	1507	31058
44.00	342	-287	447	0	976	1163	1519	31519
43.25	353	-296	461	0	979	1167	1523	31682
43.25	353	-296	461	0	1006	1199	1565	33418
38.88	416	-349	543	0	1021	1217	1589	34391
38.88	416	-349	543	0	1029	1227	1601	35162

Forces and Moments for Pole in the Local Element Coordinate System

Loading Cas	e Seismic		Pogultant		Shoor	Shoor	Pocultant	
DISC. FIOM	M	M	Mu C Mu	Terrior	SHEat	Silear V Dim	Chear	7
Dase	MX (in line)	My (in hime)	MX & My	iorsion (in line)	A-DIL.	(lbs)	(lba)	AXIdi (lba)
(IC)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(IDS)	(adl)	(adl)	(lds)
34.46	482	-404	629	0	1042	1242	1622	36191
34.46	482	-404	629	0	1050	1251	1633	36962
33.94	489	-411	639	0	1051	1253	1636	37086
33.94	489	-411	639	0	1065	1269	1657	38440
29.81	553	-464	721	0	1076	1282	1674	39448
29.81	553	-464	721	0	1094	1304	1702	41572
29.00	565	-474	738	0	1094	1304	1702	41776
25.63	618	-519	807	0	1101	1312	1713	42637
25.63	618	-519	807	0	1115	1329	1735	44761
24.00	644	-541	841	0	1117	1331	1737	45186
21.56	683	-573	892	0	1121	1335	1743	45834
21.56	683	-573	892	0	1127	1343	1754	47188
21.21	689	-578	899	0	1128	1344	1755	47283
21.21	689	-578	899	0	1131	1348	1760	48054
19.00	725	-608	946	0	1131	1348	1759	48656
14.00	806	-676	1052	0	1132	1349	1761	50060
9.00	887	-744	1158	0	1131	1347	1759	51524
4.00	968	-812	1263	0	1128	1344	1755	53048
0.00	1032	-866	1348	0	1128	1345	1755	54309

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	Χ & Υ	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
84.00	0.8	0.9	1.2	0.0	0.13
81.50	0.7	0.9	1.2	0.0	0.13
81.50	0.7	0.9	1.2	0.0	0.13
80.00	0.7	0.9	1.1	0.0	0.13
80.00	0.7	0.9	1.1	0.0	0.13
79.00	0.7	0.8	1.1	0.0	0.13
77.50	0.7	0.8	1.1	0.0	0.13
77.50	0.7	0.8	1.1	0.0	0.13
74.00	0.6	0.7	1.0	0.0	0.13
73.50	0.6	0.7	0.9	0.0	0.13
73.50	0.6	0.7	0.9	0.0	0.13
70.00	0.5	0.7	0.9	0.0	0.12
70.00	0.5	0.7	0.9	0.0	0.12
69.00	0.5	0.6	0.8	0.0	0.12
65.75	0.5	0.6	0.7	0.0	0.12
65.75	0.5	0.6	0.7	0.0	0.12
64.00	0.5	0.5	0.7	0.0	0.11
61.25	0.4	0.5	0.6	0.0	0.11
61.25	0.4	0.5	0.6	0.0	0.11
60.00	0.4	0.5	0.6	0.0	0.10
60.00	0.4	0.5	0.6	0.0	0.10
59.00	0.4	0.5	0.6	0.0	0.10
56.75	0.4	0.4	0.5	0.0	0.10
56.75	0.4	0.4	0.5	0.0	0.10
54.00	0.3	0.4	0.5	0.0	0.09
52.25	0.3	0.4	0.5	0.0	0.09
52.25	0.3	0.4	0.5	0.0	0.09
51.00	0.3	0.3	0.4	0.0	0.08
51.00	0.3	0.3	0.4	0.0	0.08
50.00	0.3	0.3	0.4	0.0	0.08
50.00	0.3	0.3	0.4	0.0	0.08
49.00	0.3	0.3	0.4	0.0	0.08
47.75	0.2	0.3	0.4	0.0	0.08
47.75	0.2	0.3	0.4	0.0	0.08
46.17	0.2	0.3	0.4	0.0	0.07
44.00	0.2	0.2	0.3	0.0	0.07
43.25	0.2	0.2	0.3	0.0	0.07
43.25	0.2	0.2	0.3	0.0	0.07
38.88	0.2	0.2	0.3	0.0	0.06
38.88	0.2	0.2	0.3	0.0	0.06
34.46	0.1	0.2	0.2	0.0	0.06

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	X & Y	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
34.46	0.1	0.2	0.2	0.0	0.06
33.94	0.1	0.1	0.2	0.0	0.05
33.94	0.1	0.1	0.2	0.0	0.05
29.81	0.1	0.1	0.1	0.0	0.05
29.81	0.1	0.1	0.1	0.0	0.05
29.00	0.1	0.1	0.1	0.0	0.05
25.63	0.1	0.1	0.1	0.0	0.04
25.63	0.1	0.1	0.1	0.0	0.04
24.00	0.1	0.1	0.1	0.0	0.04
21.56	0.0	0.1	0.1	0.0	0.03
21.56	0.0	0.1	0.1	0.0	0.03
21.21	0.0	0.1	0.1	0.0	0.03
21.21	0.0	0.1	0.1	0.0	0.03
19.00	0.0	0.0	0.1	0.0	0.03
14.00	0.0	0.0	0.0	0.0	0.02
9.00	0.0	0.0	0.0	0.0	0.01
4.00	0.0	0.0	0.0	0.0	0.01
0.00	0.0	0.0	0.0	0.0	0.00

Distance	Nominal	Nominal	Nominal	Nominal	Axial	Flexural	Shear	Torsion	Combined
From	Axial	Flexural	Shear	Torsional	Interaction	Interaction	Interaction	Interaction	Stress
Base	Strength	Strength	Strength	Strength	Term	Term	Term	Term	Interaction
(ft)	(lbs)	(in-kips)	(lbs)	(in-kips)					
84.00	967 , 043	5,653	290,113	5,416	0.00	0.00	0.00	0.00	0.01
81.50	1,012,326	6,199	303,698	5,935	0.00	0.00	0.00	0.00	0.01
80.00	1,039,495	6,538	311,848	6,258	0.01	0.00	0.00	0.00	0.01
79.00	1,057,608	6,769	317,282	6,478	0.01	0.00	0.00	0.00	0.01
77.50	1,084,777	7,124	325,433	6,815	0.01	0.00	0.00	0.00	0.01
74.00	1,148,172	7,986	344,452	7,635	0.01	0.01	0.00	0.00	0.01
73.50	1,157,229	8,113	347,169	7,756	0.01	0.01	0.00	0.00	0.02
70.00	1,220,624	9,031	366 , 187	8,629	0.01	0.01	0.00	0.00	0.02
69.00	1,238,736	9,303	371 , 621	8,886	0.01	0.01	0.00	0.00	0.02
65.75	1,297,603	10,193	389,281	9,751	0.01	0.01	0.00	0.00	0.03
64.00	1,329,301	10,634	398 , 790	10,233	0.01	0.01	0.00	0.00	0.03
61.25	1,379,111	11,338	413,733	11,015	0.01	0.02	0.00	0.00	0.03
60.00	1,401,752	11,662	420,526	11,379	0.02	0.02	0.00	0.00	0.04
59.00	1,419,865	11,924	425,960	11,675	0.02	0.02	0.00	0.00	0.04
56.75	1,460,619	12,518	438,186	12,355	0.02	0.02	0.00	0.00	0.04
54.00	1,510,430	13,256	453,129	13,212	0.02	0.02	0.00	0.00	0.04
52.25	1,542,127	13,731	462,638	13,772	0.02	0.02	0.00	0.00	0.04
51.00	1,564,768	14,073	469,430	14,180	0.02	0.03	0.00	0.00	0.04
51.00	3,052,173	28,060	915,652	26,975	0.01	0.01	0.00	0.00	0.02
50.00	3,088,399	28,735	926,520	27,619	0.01	0.01	0.00	0.00	0.02
49.00	3,124,624	29,419	937,387	28,271	0.01	0.01	0.00	0.00	0.02
47.75	3,169,906	30,284	950,972	29,096	0.01	0.01	0.00	0.00	0.02
46.17	3,227,264	31,399	968,179	30,159	0.01	0.01	0.00	0.00	0.03
44.00	3,305,753	32,957	991,726	31,643	0.01	0.02	0.00	0.00	0.03
43.25	3,332,922	33,505	999,877	32,166	0.01	0.02	0.00	0.00	0.03
38.88	3,491,410	36,793	1,047,423	35,298	0.01	0.02	0.00	0.00	0.03
34.46	3,651,407	40,268	1,095,422	38,607	0.01	0.02	0.00	0.00	0.03
33.94	3,670,275	40,688	1,101,082	39,007	0.01	0.02	0.00	0.00	0.03
29.81	3,819,706	44,092	1,145,912	42,248	0.01	0.02	0.00	0.00	0.03
29.00	3,849,139	44,779	1,154,742	42,901	0.01	0.02	0.00	0.00	0.03
25.63	3,971,401	47,688	1,191,420	45,670	0.01	0.02	0.00	0.00	0.03
24.00	4,030,268	49,121	1,209,080	47,034	0.01	0.02	0.00	0.00	0.03
21.56	4,118,568	51,311	1,235,570	49,117	0.01	0.02	0.00	0.00	0.03
21.21	4,131,398	51,633	1,239,419	49,424	0.01	0.02	0.00	0.00	0.03
19.00	4,211,397	53,664	1,263,419	51 , 356	0.01	0.02	0.00	0.00	0.03
14.00	4,392,525	58,409	1,317,758	55,869	0.01	0.02	0.00	0.00	0.03
9.00	4,573,654	63,354	1,372,096	60,572	0.01	0.02	0.00	0.00	0.03
4.00	4,754,783	68,500	1,426,435	65,464	0.01	0.02	0.00	0.00	0.03
0.00	4,899,686	72,762	1,469,906	69,515	0.01	0.02	0.00	0.00	0.03

Forces and Moments for Pole in the Local Element Coordinate System

Loading	Case	Seismic	2

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
84.00	0	0	0	0	9	11	14	130
81.50	1	-1	1	0	16	19	25	238
81.50	1	-1	1	0	71	84	110	1099
80.00	2	-2	3	0	75	89	117	1167
80.00	2	-2	3	0	289	345	450	4629
79.00	6	-5	8	0	292	348	454	4675
77.50	13	-11	17	0	296	353	461	4746
77.50	13	-11	17	0	347	413	540	5606
74.00	30	-25	40	0	357	425	555	5778
73.50	33	-28	43	0	358	427	557	5804
73.50	33	-28	43	0	405	482	630	6664
70.00	53	-45	70	0	414	494	645	6848
70.00	53	-45	70	0	589	702	916	10310
69.00	62	-52	81	0	591	705	920	10364
65.75	90	-75	117	0	600	715	933	10546
65.75	90	-75	117	0	629	750	979	11198
64.00	105	-88	138	0	633	755	985	11299
61.25	130	-109	170	0	640	763	996	11463
61.25	130	-109	170	0	667	795	1037	12115
60.00	142	-119	186	0	670	798	1042	12192
60.00	142	-119	186	0	774	922	1204	14808
59.00	153	-129	200	0	.7.76	925	1207	14870
56.75	178	-150	233	0	781	931	1215	15013
56.75	178	-150	233	0	804	958	1251	15665
54.00	210	-176	274	0	809	965	1259	15845
52.25	231	-193	301	0	813	969	1265	15963
52.25	231	-193	301	0	834	993	1297	16615
51.00	245	-206	320	U	836	997	1301	16/01
51.00	245	-206	320	0	836	996	1300	16701
50.00	257	-216	336	0	842	1004	1310	16905
50.00	257	-216	336	0	921	1097	1432	19521
49.00	271	-227	353	0	927	1104	1441	19728
47.75	287	-241	375	0	934	1113	1453	19991
47.75	287	-241	375	0	952	1134	1481	20643
46.17	309	-259	403	0	960	1145	1494	20980
44.00	339	-284	442	0	968	1154	1506	21292
43.25	349	-293	456	0	971	1157	1510	21401
43.25	349	-293	456	0	998	1189	1553	22574
38.88	412	-346	538	0	1013	1207	1575	23232
38.88	412	-346	538	0	1021	1217	1589	23753

Forces and Moments for Pole in the Local Element Coordinate System

Loading Cas	e Seismic 2							
Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
34.46	477	-400	623	0	1035	1233	1609	24448
34.46	477	-400	623	0	1042	1242	1622	24968
33.94	485	-407	633	0	1044	1244	1624	25052
33.94	485	-407	633	0	1058	1261	1646	25967
29.81	548	-459	715	0	1068	1273	1662	26648
29.81	548	-459	715	0	1087	1295	1691	28083
29.00	560	-470	731	0	1087	1296	1692	28220
25.63	613	-514	800	0	1094	1304	1703	28802
25.63	613	-514	800	0	1109	1321	1725	30237
24.00	639	-536	834	0	1111	1323	1728	30524
21.56	677	-568	884	0	1114	1328	1734	30962
21.56	677	-568	884	0	1121	1336	1745	31877
21.21	683	-573	892	0	1122	1337	1745	31941
21.21	683	-573	892	0	1125	1341	1751	32462
19.00	719	-603	938	0	1126	1342	1752	32868
14.00	799	-671	1044	0	1129	1345	1756	33817
9.00	880	-739	1149	0	1129	1345	1756	34806
4.00	961	-806	1254	0	1127	1344	1754	35836
0.00	1025	-860	1339	0	1128	1344	1754	36688

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	Χ & Υ	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
84.00	0.8	0.9	1.2	0.0	0.13
81.50	0.7	0.9	1.2	0.0	0.13
81.50	0.7	0.9	1.2	0.0	0.13
80.00	0.7	0.9	1.1	0.0	0.13
80.00	0.7	0.9	1.1	0.0	0.13
79.00	0.7	0.8	1.1	0.0	0.13
77.50	0.7	0.8	1.0	0.0	0.13
77.50	0.7	0.8	1.0	0.0	0.13
74.00	0.6	0.7	1.0	0.0	0.13
73.50	0.6	0.7	0.9	0.0	0.13
73.50	0.6	0.7	0.9	0.0	0.13
70.00	0.5	0.6	0.8	0.0	0.12
70.00	0.5	0.6	0.8	0.0	0.12
69.00	0.5	0.6	0.8	0.0	0.12
65.75	0.5	0.6	0.7	0.0	0.12
65.75	0.5	0.6	0.7	0.0	0.12
64.00	0.4	0.5	0.7	0.0	0.11
61.25	0.4	0.5	0.6	0.0	0.11
61.25	0.4	0.5	0.6	0.0	0.11
60.00	0.4	0.5	0.6	0.0	0.10
60.00	0.4	0.5	0.6	0.0	0.10
59.00	0.4	0.5	0.6	0.0	0.10
56.75	0.3	0.4	0.5	0.0	0.10
56.75	0.3	0.4	0.5	0.0	0.10
54.00	0.3	0.4	0.5	0.0	0.09
52.25	0.3	0.3	0.5	0.0	0.08
52.25	0.3	0.3	0.5	0.0	0.08
51.00	0.3	0.3	0.4	0.0	0.08
51.00	0.3	0.3	0.4	0.0	0.08
50.00	0.3	0.3	0.4	0.0	0.08
50.00	0.3	0.3	0.4	0.0	0.08
49.00	0.3	0.3	0.4	0.0	0.08
47.75	0.2	0.3	0.4	0.0	0.08
47.75	0.2	0.3	0.4	0.0	0.08
46.17	0.2	0.3	0.4	0.0	0.07
44.00	0.2	0.2	0.3	0.0	0.07
43.25	0.2	0.2	0.3	0.0	0.07
43.25	0.2	0.2	0.3	0.0	0.07
38.88	0.2	0.2	0.3	0.0	0.06
38.88	0.2	0.2	0.3	0.0	0.06
34.46	0.1	0.1	0.2	0.0	0.06

Design Id: 498211-P1RevH Deflections for Pole

Distance			Defl.		
From	Defl.	Defl.	Resultant	Defl.	
Base	X-Dir	Y-Dir	X & Y	Z-Dir	Rotation
(ft)	(in)	(in)	(in)	(in)	(deg.)
34.46	0.1	0.1	0.2	0.0	0.06
33.94	0.1	0.1	0.2	0.0	0.05
33.94	0.1	0.1	0.2	0.0	0.05
29.81	0.1	0.1	0.1	0.0	0.05
29.81	0.1	0.1	0.1	0.0	0.05
29.00	0.1	0.1	0.1	0.0	0.05
25.63	0.1	0.1	0.1	0.0	0.04
25.63	0.1	0.1	0.1	0.0	0.04
24.00	0.1	0.1	0.1	0.0	0.04
21.56	0.0	0.1	0.1	0.0	0.03
21.56	0.0	0.1	0.1	0.0	0.03
21.21	0.0	0.1	0.1	0.0	0.03
21.21	0.0	0.1	0.1	0.0	0.03
19.00	0.0	0.0	0.1	0.0	0.03
14.00	0.0	0.0	0.0	0.0	0.02
9.00	0.0	0.0	0.0	0.0	0.01
4.00	0.0	0.0	0.0	0.0	0.01
0.00	0.0	0.0	0.0	0.0	0.00

Loading Case Seismic 2

	TOTSTOIL COMDITIED
From Axial Flexural Shear Torsional Interaction Interaction Interact	ion Interaction Stress
Base Strength Strength Strength Term Term Term	Term Interaction
(ft) (lbs) (in-kips) (lbs) (in-kips)	
84.00 967,043 5,653 290,113 5,416 0.00 0.00 0	.00 0.00 0.01
81.50 1,012,326 6,199 303,698 5,935 0.00 0.00 0	.00 0.00 0.01
80.00 1,039,495 6,538 311,848 6,258 0.00 0.00 0	.00 0.00 0.01
79.00 1,057,608 6,769 317,282 6,478 0.00 0.00 0	.00 0.00 0.01
77.50 1,084,777 7,124 325,433 6,815 0.01 0.00 0	.00 0.00 0.01
74.00 1,148,172 7,986 344,452 7,635 0.01 0.01 0	.00 0.00 0.01
73.50 1,157,229 8,113 347,169 7,756 0.01 0.01 0	.00 0.00 0.01
70.00 1,220,624 9,031 366,187 8,629 0.01 0.01 0	.00 0.00 0.02
69.00 1,238,736 9,303 371,621 8,886 0.01 0.01 0	.00 0.00 0.02
65.75 1,297,603 10,193 389,281 9,751 0.01 0.01 0	.00 0.00 0.02
64.00 1,329,301 10,634 398,790 10,233 0.01 0.01 0	.00 0.00 0.02
61.25 1,379,111 11,338 413,733 11,015 0.01 0.02 0	.00 0.00 0.03
60.00 1,401,752 11,662 420,526 11,379 0.01 0.02 0	.00 0.00 0.03
59.00 1,419,865 11,924 425,960 11,675 0.01 0.02 0	.00 0.00 0.03
56.75 1,460,619 12,518 438,186 12,355 0.01 0.02 0	.00 0.00 0.03
54.00 1,510,430 13,256 453,129 13,212 0.01 0.02 0	.00 0.00 0.03
52.25 1,542,127 13,731 462,638 13,772 0.01 0.02 0	.00 0.00 0.04
51.00 1.564.768 14.073 469.430 14.180 0.01 0.03 0	.00 0.00 0.04
51.00 3,052,173 28,060 915,652 26,975 0.01 0.01 0	.00 0.00 0.02
50.00 3,088,399 28,735 926,520 27,619 0.01 0.01 0	.00 0.00 0.02
49.00 3,124,624 29,419 937,387 28,271 0.01 0.01 0	.00 0.00 0.02
47.75 3,169,906 30,284 950,972 29,096 0.01 0.01 0	.00 0.00 0.02
46.17 3.227.264 31.399 968.179 30.159 0.01 0.01 0	.00 0.00 0.02
44.00 3,305,753 32,957 991,726 31,643 0.01 0.01 0	.00 0.00 0.02
43.25 3.332.922 33.505 999.877 32.166 0.01 0.02 0	.00 0.00 0.02
38.88 3,491,410 36,793 1,047,423 35,298 0.01 0.02 0	.00 0.00 0.02
34.46 3.651.407 40.268 1.095.422 38.607 0.01 0.02 0	.00 0.00 0.02
33.94 3,670,275 40,688 1,101,082 39,007 0.01 0.02 0	.00 0.00 0.03
29.81 3.819.706 44.092 1.145.912 42.248 0.01 0.02 0	.00 0.00 0.03
29.00 3.849.139 44.779 1.154.742 42.901 0.01 0.02 0	.00 0.00 0.03
25.63 3.971.401 47.688 1.191.420 45.670 0.01 0.02 0	.00 0.00 0.03
24.00 4.030.268 49.121 1.209.080 47.034 0.01 0.02 0	.00 0.00 0.03
21.56 4.118.568 51.311 1.235.570 49.117 0.01 0.02 0	.00 0.00 0.03
21.21 4.131.398 51.633 1.239.419 49.424 0.01 0.02 0	.00 0.00 0.03
19.00 4.211.397 53.664 1.263.419 51.356 0.01 0.02 0	.00 0.00 0.03
14.00 4.392.525 58.409 1.317.758 55.869 0.01 0.02 0	.00 0.00 0.03
9.00 4.573.654 63.354 1.372.096 60.572 0.01 0.02 0	.00 0.00 0.03
4.00 4.754.783 68.500 1.426.435 65.464 0.01 0.02 0	.00 0.00 0.03
0.00 4.899,686 72,762 1.469,906 69,515 0.01 0.02 0	.00 0.00 0.03

MINIMUM DEFLECTION RATIO // DEFLECTION LIMIT / DEFLECTION // IS

NUMBER OF BOLTS	DIAMETER (IN.)	LENGTH (IN.)	WEIGHT (KIPS)	SHIPPEI AS) PF	ROJECTION LENGTH (IN.)	GALVANIZED LENGTH (IN.)	THREAD SIZE	
28	1.750	66.00	1.72	BOLTS, TEMPI	LATES	9.75	66.00	5-UNC-2A	
STEEL SPEC. VALMONT	STEEL SPECIF.	MAXIMUM BOLT FORCE (KIPS)	MAXIMUM BOLT SHEAR FORCE (KIPS)	NOMINAL STRENGTH (KIPS)	STRESS AREA (SQ. IN.	INT V	ERACTION C ALUE	CONFIGURATION O BOTTOM END	F
S23	A615	126.55	3.22	142.50	1.90		0.89 THREADEI	O WITH HEAVY HE	X HEAD NUT

*** BOLT COORDINATES (IN.) ***

BOLT NO.	X-COORD	Y-COORD	*	BOLT NO.	X-COORD	Y-COORD
1	27.250	0.000	*	2	26.567	6.064
3	24.551	11.823	*	4	21.305	16.990
5	16.990	21.305	*	6	11.823	24.551
7	6.064	26.567	*	8	0.000	27.250

MAX. BOLT CIRCLE = 54.50 IN.

*** BASE PLATE CHARACTERISTICS GOVERNED BY LOADING CASE WIND ***

TEMPLATE DIAMETER = 58.00 IN.

BASE PLATE DIAMETER (IN.)	BASE PLATE THICKNESS (IN.)	ACTUAL WEIGHT (KIPS)	RAW MATERIAL WEIGHT (KIPS)	POLE DIAM. (MAJOR DIAM.) (IN.)
59.78	2.75	1.56	2.75	48.00
EFFECTIVE PLATE WIDTH (IN.)	PLASTIC SECTION MOD. (CU. IN.)	MOMENT IN BASE PLATE (INK)	PLASTIC MOMENT (INK)	FACTORED RESISTING MOM. (INK)
5.39	10.18	411.29	509.11	458.20
STEEL SPECIF. VALMONT	STEEL SPECIF. OTHER	EFFECTIVE YIELD STRESS (KSI)	STRESS RATIO	
S56	A572	50	0.90	

** LOADS AT POLE BASE IN THE	E GLOBAL CO	ORDINATE SYS	STEM ******	* * * * * * * * * *	* * * * * * * * * *	LOADING CASES *************	********
LOADING CASE IDENTIFICATION	WIND I	CE + WIND	T+S	Seismic	Seismic 2]MAX CRITERION-	LOAD CASE
MOMENT ABT. X-AXIS (IN-KIP)	46377	15112	10664	1032	1025]MOMENT ABT. X	WIND
MOMENT ABT. Y-AXIS (IN-KIP)	-38915	-12680	-8948	-866	-860]MOMENT ABT. Y	WIND
SHEAR FORCE (LB.)	90155	28802	20775	1752	1752]RES. MOMENT	WIND
VERTICAL FORCE (LB.)	52257	91689	43345	54309	36687]SHEAR FORCE	WIND
]BOLT FORCE	WIND
]BOLT TENSION	WIND

- Structure design conforms to TIA-222-G Addendum 2 including: 97 mph Wind Speed (3 second gust, 50 year return period) 50 mph Ice Wind (50 year return period) 0.75 in ice thickness 60.0 mph Basic Wind Speed with no ice for twist and sway Exposure Category C Structure Classification II Topographic Category 1 Spectral response acceleration at short periods and 1 sec.: Ss = 0.24 & S1 = 0.07 Site class = D
 Feedlines are assumed to be placed interior to the pole
 All microwave assumed to be 2 GHz unless otherwise noted
- 4. Total pole height is 85.0 ft agl
- 5. Elevations are measured from top of base plate (approximately 1.0 ft aql)
- 6. Pole needs to be painted with "Thunder Gray" (Sherwin Williams SW7645)
- 7. Pole is designed to a therotical breakpoint at 52 ft AGL
- 8. Pole Design complies to TIA/EIA-222-G and TIA/EIA-222-H
- 9. An ultimate wind speed of 125mph used as per County Requirement.
- 10. Pole design limited to 98.9% capacity.

*** Structure Anchorage Information ***

Pole Height (ft):	84.0	Number of Anchor Bolts:	28
Bolt Circle (in):	54.50	Diameter of Anchor Bolts (in):	1.75
Base Shear (lbs):	88867	Length of Anchor Bolts (in):	66.00
Base Vertical (lbs):	53829	Projection Length (in):	9.75
Base Moment (in-kips):	59658	Template OD (in):	58.00

*** Loading Data***

				Without I	ce	With Ice		
Qty	Description		ABP Height (ft)	EPA (ft^2)	Weight (lbs)	EPA (ft^2)	Weight (lbs)	
1	CARRIER 1 - 200	SQ.FT	80.00	200.00	4000	400.00	8000	
1	CARRIER 2 - 200	SQ.FT	70.00	200.00	4000	400.00	8000	
1	CARRIER 3 - 150	SQ.FT	60.00	150.00	3000	300.00	6000	
1	CARRIER 4 - 150	SQ.FT	50.00	150.00	3000	300.00	6000	
18	BRACH TIPS		80.00	4.50	90	9.00	180	
18	BRACH TIPS		70.00	4.50	90	9.00	180	
18	BRACH TIPS		60.00	4.50	90	9.00	180	
18	BRACH TIPS		50.00	4.50	90	9.00	180	
1	5' TOP BRANCHES		84.00	2.25	33	4.50	65	
3	6' TOP BRANCHES		84.00	7.50	120	15.00	240	

*** Linearly Distributed Loading Data ***

		ABP Bottom	ABP Top	Without	: Ice	With Ice	
Qty	Description	Height	Height	EPA	Weight	EPA	Weight
		(ft)	(ft)	(ft^2)	(lb)	(ft^2)	(lb)
61	8 FT BRANCHES	71.50	83.50	219.60	3050	439.20	6100
70	10 FT BRANCHES	41.00	68.00	357.00	4620	714.00	9240
41	12 FT BRANCHES	19.00	45.50	266.50	3690	533.00	7380
36	14 FT BRANCHES	19.50	36.00	288.00	4320	576.00	8640

BY VALMONT INDUSTRIES F Design Id: 498211-P1RevG	OR: INS	ITE WIRELESS GF	COUP 84.0' POLE,	SITE: CTO	027, NEW CAN	AAN NORTHEAST, C	DATE 11/09/2020 IMPAX 23.2.39.3
		* * *	SUMMARY ***				
Design Code: TIA-222-G Addendum	2	DEGTON					
		DESIGN	I SUMMARY				
Height Above Base Plate	84'- 0.00"	Dia. at Top of	Baseplate (in)	48.000	Pole Shaft	Weight (lbs)	13139
		Top Diameter (in)	19.000			
		Pole Taper (in	/ft)	0.35119	Shape:	18 Sides	
Connections Between Sections	/First/						
Height Above Ground	51'- 0.00"						
Type	Slip Joint						
Overlap Length (in)	- 58						
Maximum Axial Force (lbs)	45999						
Section Characteristics	/First/	/Second/					
Base Diameter (in)	48.000	32.287					
Top Diameter (in)	30.089	19.000					
Thickness (in)	0.50000	0.25000					
Length	51'- 0.00"	37'-10.00"					
Weight (lbs)	10559	2580					
Yield Strength (ksi)	65.00	65.00					
Section Shape	18 Side	s 18 Sides	5				
	;	ANALYSIS SUMMAR	Y				
	Pt. of	Governing	Governing	Pole			
	Fixity	Level Sec.1	Level Sec.2	Тор			
Governing Load Case	WIND	WIND	WIND	WIND			
Height (ft)	0.00	0.00	51.00	84.	.00		
Resultant Moment (in-kips)	59658	59658	11828		13		
Shear Force (lbs)	88987	88987	52111	2	497		
Axial Force (lbs)	52068	52068	20778	-	141		
Effective Yield Strength (ksi)	82.55	82.55	78.10	82	.55		
Combined Interaction Value	0.93	0.93	0.97	0 .	.00		
Total Deflection (in)	0.00	0.00	18.29	49	.25		
Note: Diameters are	outside, measu	red across the	flats				

Forces and moments are reported in the local element coordinate system

: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 IMPAX 23.2.39.3

BY VALMONT INDUSTRIES FOR: Design Id: 498211-P1RevG

*** POLE SHAFT POINT OF FIXITY REACTIONS ***

Loading Case Identifier	Moments About X-Axis (in-kips)	Moments About Y-Axis (in-kips)	Moments Resultant (X & Y) (in-kips)	Moments Torsional (in-kips)	Vertical Force (lbs)	Shear In X-Direction (lbs)	Shear In Y-Direction (lbs)	Shear Resultant (X & Y) (lbs)	Notes
WIND	45701	-38347	59658	0	52274	57122	68076	88867	
ICE + WIND	15484	-12993	20213	0	93411	18999	22642	29557	
T+S	9759	-8189	12739	0	43345	12224	14568	19017	
Seismic	1507	-1264	1967	0	51998	1553	1851	2417	

Note: Positive vertical force is downward.

Reactions are considered in the global coordinate system.
*** INPUT LOADS ***

Design Code TIA-222-G Addendum 2 Loading Case WIND

Basic Wind Velocity is 97.00 mph Ice Thickness 0.00 Wind Orientation is 50.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.200 Exposure C, Gust Factor 1.10 Structure Category 2, Topographic Category 1, Crest Height 0.00 ft(Longitudinal) * * (Vertical)Orientations are Measured Clockwise From +X Axis+Y-Axis * * +Z-Axis Positive Y Axis is 90 Degrees Clockwise From +X Axis Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Orientation of System +***** +X-Axis * * (Transverse) * * * *

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	6268	7470	4800	200.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	6097	7266	4800	200.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	4429	5278	3600	150.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	4265	5083	3600	150.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	141	168	108	4.50	18-Brach Tips
6	70.00	70.00	0.00	50.00	137	163	108	4.50	18-Brach Tips
7	60.00	60.00	0.00	50.00	133	158	108	4.50	18-Brach Tips
8	50.00	50.00	0.00	50.00	128	152	108	4.50	18-Brach Tips
9	84.00	86.50	0.00	50.00	72	85	40	2.25	1-5' Top Bran
10	84.00	86.00	0.00	50.00	239	284	144	7.50	3-6' Top Bran
11	81.50	81.50	0.00	90.00	2303	2745	1220	73.20	8 ft branch
12	77.50	77.50	0.00	90.00	2279	2716	1220	73.20	8 ft branch
13	73.50	73.50	0.00	90.00	2254	2686	1220	73.20	8 ft branch
14	65.75	65.75	0.00	90.00	1790	2134	924	59.50	10 ft branc
15	61.25	61.25	0.00	90.00	1764	2103	924	59.50	10 ft branc
16	56.75	56.75	0.00	90.00	1737	2070	924	59.50	10 ft branc
17	52.25	52.25	0.00	90.00	1707	2035	924	59.50	10 ft branc

*** INPUT LOADS ***

Loading Case WIND - Continued

Loa	aring cube	1111D 00110	sinaca				Orient	ation of Syste	m
Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
18	47.75	47.75	0.00	90.00	1676	1997	924	59.50	10 ft branc
19	43.25	43.25	0.00	90.00	1642	1957	924	59.50	10 ft branc
20	43.29	43.29	0.00	90.00	1226	1461	738	44.42	12 ft branc
21	38.88	38.88	0.00	90.00	1199	1429	738	44.42	12 ft branc
22	34.46	34.46	0.00	90.00	1170	1394	738	44.42	12 ft branc
23	30.04	30.04	0.00	90.00	1136	1354	738	44.42	12 ft branc
24	25.63	25.63	0.00	90.00	1101	1313	738	44.42	12 ft branc
25	21.21	21.21	0.00	90.00	1060	1264	738	44.42	12 ft branc
26	33.94	33.94	0.00	90.00	1890	2253	1296	72.00	14 ft branc
27	29.81	29.81	0.00	90.00	1841	2194	1296	72.00	14 ft branc
28	25.69	25.69	0.00	90.00	1785	2128	1296	72.00	14 ft branc
29	21.56	21.56	0.00	90.00	1724	2055	1296	72.00	14 ft branc

*** INPUT LOADS ***

Design Code TIA-222-G Addendum 2 Loading Case ICE + WIND

Basic Wind Velocity is 50.00 mph Ice Thickness 0.75 Wind Orientation is 50.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.200 Exposure C, Gust Factor 1.10 Structure Category 2, Topographic Category 1, Crest Height 0.00 ft(Longitudinal) * * (Vertical)Orientations are Measured Clockwise From +X Axis+Y-Axis * * +Z-Axis Positive Y Axis is 90 Degrees Clockwise From +X Axis Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Orientation of System +***** +X-Axis * * (Transverse) * * * *

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	2082	2481	9600	400.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	2025	2413	9600	400.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	1471	1753	7200	300.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	1417	1688	7200	300.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	47	56	216	9.00	18-Brach Tips
6	70.00	70.00	0.00	50.00	46	54	216	9.00	18-Brach Tips
7	60.00	60.00	0.00	50.00	44	53	216	9.00	18-Brach Tips
8	50.00	50.00	0.00	50.00	42	51	216	9.00	18-Brach Tips
9	84.00	86.50	0.00	50.00	24	28	78	4.50	1-5' Top Bran
10	84.00	86.00	0.00	50.00	79	94	288	15.00	3-6' Top Bran
11	81.50	81.50	0.00	90.00	765	912	2440	146.40	8 ft branch
12	77.50	77.50	0.00	90.00	757	902	2440	146.40	8 ft branch
13	73.50	73.50	0.00	90.00	749	892	2440	146.40	8 ft branch
14	65.75	65.75	0.00	90.00	595	709	1848	119.00	10 ft branc
15	61.25	61.25	0.00	90.00	586	698	1848	119.00	10 ft branc
16	56.75	56.75	0.00	90.00	577	687	1848	119.00	10 ft branc
17	52.25	52.25	0.00	90.00	567	676	1848	119.00	10 ft branc

*** INPUT LOADS ***

Loading	Case	ICE	+	WIND	-	Continued
---------	------	-----	---	------	---	-----------

T 1		T 1	Teel				Orient	ation of Syste	em
Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
18	47.75	47.75	0.00	90.00	557	663	1848	119.00	10 ft branc
19	43.25	43.25	0.00	90.00	545	650	1848	119.00	10 ft branc
20	43.29	43.29	0.00	90.00	407	485	1476	88.83	12 ft branc
21	38.88	38.88	0.00	90.00	398	475	1476	88.83	12 ft branc
22	34.46	34.46	0.00	90.00	389	463	1476	88.83	12 ft branc
23	30.04	30.04	0.00	90.00	377	450	1476	88.83	12 ft branc
24	25.63	25.63	0.00	90.00	366	436	1476	88.83	12 ft branc
25	21.21	21.21	0.00	90.00	352	420	1476	88.83	12 ft branc
26	33.94	33.94	0.00	90.00	628	748	2592	144.00	14 ft branc
27	29.81	29.81	0.00	90.00	611	729	2592	144.00	14 ft branc
28	25.69	25.69	0.00	90.00	593	707	2592	144.00	14 ft branc
29	21.56	21.56	0.00	90.00	573	682	2592	144.00	14 ft branc

*** INPUT LOADS ***

Design Code TIA-222-G Addendum 2 Loading Case T+S

Basic Wind Velocity is 60.00 mph Ice Thickness 0.00 Wind Orientation is 50.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.000 Exposure C, Gust Factor 1.10 Structure Category 2, Topographic Category 1, Crest Height 0.00 ft(Longitudinal) * * (Vertical)Orientations are Measured Clockwise From +X Axis+Y-Axis * * +Z-Axis Positive Y Axis is 90 Degrees Clockwise From +X Axis Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Orientation of System +***** +X-Axis * * (Transverse) * * * *

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	1341	1598	4000	200.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	1304	1555	4000	200.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	948	1129	3000	150.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	913	1088	3000	150.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	30	36	90	4.50	18-Brach Tips
6	70.00	70.00	0.00	50.00	29	35	90	4.50	18-Brach Tips
7	60.00	60.00	0.00	50.00	28	34	90	4.50	18-Brach Tips
8	50.00	50.00	0.00	50.00	27	33	90	4.50	18-Brach Tips
9	84.00	86.50	0.00	50.00	15	18	33	2.25	1-5' Top Bran
10	84.00	86.00	0.00	50.00	51	61	120	7.50	3-6' Top Bran
11	81.50	81.50	0.00	90.00	493	587	1017	73.20	8 ft branch
12	77.50	77.50	0.00	90.00	488	581	1017	73.20	8 ft branch
13	73.50	73.50	0.00	90.00	482	575	1017	73.20	8 ft branch
14	65.75	65.75	0.00	90.00	383	457	770	59.50	10 ft branc
15	61.25	61.25	0.00	90.00	377	450	770	59.50	10 ft branc
16	56.75	56.75	0.00	90.00	372	443	770	59.50	10 ft branc
17	52.25	52.25	0.00	90.00	365	435	770	59.50	10 ft branc

*** INPUT LOADS ***

Loading	Case	T+S	-	Continued

		unting Tood	- 1				Orientation of System			
Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)		
18	47.75	47.75	0.00	90.00	359	427	770	59.50	10 ft branc	
19	43.25	43.25	0.00	90.00	351	419	770	59.50	10 ft branc	
20	43.29	43.29	0.00	90.00	262	313	615	44.42	12 ft branc	
21	38.88	38.88	0.00	90.00	257	306	615	44.42	12 ft branc	
22	34.46	34.46	0.00	90.00	250	298	615	44.42	12 ft branc	
23	30.04	30.04	0.00	90.00	243	290	615	44.42	12 ft branc	
24	25.63	25.63	0.00	90.00	236	281	615	44.42	12 ft branc	
25	21.21	21.21	0.00	90.00	227	270	615	44.42	12 ft branc	
26	33.94	33.94	0.00	90.00	404	482	1080	72.00	14 ft branc	
27	29.81	29.81	0.00	90.00	394	469	1080	72.00	14 ft branc	
28	25.69	25.69	0.00	90.00	382	455	1080	72.00	14 ft branc	
29	21.56	21.56	0.00	90.00	369	440	1080	72.00	14 ft branc	

```
*** INPUT LOADS ***
```

Design Code TIA-222-G Addendum 2 Loading Case Seismic Seismic analysis following the Equivalent Modal Analysis Procedure Structure Category: 2 Site Class: D Response Acceleration at short periods: 0.24 Response Acceleration at one second: 0.07 The above are used to obtain the acceleration and velocity based site coefficients Fa and Fv Foundation Rotation of 0.00 Degrees Elevation of structure base above surrounding terrain = 1.00 ft

Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Force-Z (lbs)	EPA (ft^2)	
1	80.00	80.00	0.00	50.00	0	0	4800	200.00	1-Carrier 1 -
2	70.00	70.00	0.00	50.00	0	0	4800	200.00	1-Carrier 2 -
3	60.00	60.00	0.00	50.00	0	0	3600	150.00	1-Carrier 3 -
4	50.00	50.00	0.00	50.00	0	0	3600	150.00	1-Carrier 4 -
5	80.00	80.00	0.00	50.00	0	0	108	4.50	18-Brach Tips
6	70.00	70.00	0.00	50.00	0	0	108	4.50	18-Brach Tips
7	60.00	60.00	0.00	50.00	0	0	108	4.50	18-Brach Tips
8	50.00	50.00	0.00	50.00	0	0	108	4.50	18-Brach Tips
9	84.00	86.50	0.00	50.00	0	0	40	2.25	1-5' Top Bran
10	84.00	86.00	0.00	50.00	0	0	144	7.50	3-6' Top Bran
11	81.50	81.50	0.00	90.00	0	0	1220	73.20	8 ft branch
12	77.50	77.50	0.00	90.00	0	0	1220	73.20	8 ft branch
13	73.50	73.50	0.00	90.00	0	0	1220	73.20	8 ft branch
14	65.75	65.75	0.00	90.00	0	0	924	59.50	10 ft branc
15	61.25	61.25	0.00	90.00	0	0	924	59.50	10 ft branc
16	56.75	56.75	0.00	90.00	0	0	924	59.50	10 ft branc
17	52.25	52.25	0.00	90.00	0	0	924	59.50	10 ft branc
18	47.75	47.75	0.00	90.00	0	0	924	59.50	10 ft branc

*** INPUT LOADS ***

Loa	ding Case	Seismic - C	Continued						
Load Number	Mounting Height	Load Height	Load Eccentricity	Orientation in XY Plane (Degrees)	Force-X (lbs)	Force-Y (lbs)	Orien Force-Z (lbs)	EPA (ft^2)	em
19	43.25	43.25	0.00	90.00	0	0	924	59.50	10 ft branc
20	43.29	43.29	0.00	90.00	0	0	738	44.42	12 ft branc
21	38.88	38.88	0.00	90.00	0	0	738	44.42	12 ft branc
22	34.46	34.46	0.00	90.00	0	0	738	44.42	12 ft branc
23	30.04	30.04	0.00	90.00	0	0	738	44.42	12 ft branc
24	25.63	25.63	0.00	90.00	0	0	738	44.42	12 ft branc
25	21.21	21.21	0.00	90.00	0	0	738	44.42	12 ft branc
26	33.94	33.94	0.00	90.00	0	0	1296	72.00	14 ft branc
27	29.81	29.81	0.00	90.00	0	0	1296	72.00	14 ft branc
28	25.69	25.69	0.00	90.00	0	0	1296	72.00	14 ft branc
29	21.56	21.56	0.00	90.00	0	0	1296	72.00	14 ft branc

53

*** Properties ***

	Distance	Diameter					
	From	Across	Wall	D/t	w/t	Moments of	
Connection	Base	Flats	Thickness	Across	Across	Inertia	Area
Locations	(ft)	(in)	(in)	Flats	Flats	(in^4)	(in^2)
Top of Sect 2	84.00	19.000	0.2500	76.00	11.64	661	14.88
	81.50	19.878	0.2500	79.51	12.26	758	15.57
	80.00	20.405	0.2500	81.62	12.63	820	15.99
	79.00	20.756	0.2500	83.02	12.88	864	16.27
	77.50	21.283	0.2500	85.13	13.25	932	16.69
	74.00	22.512	0.2500	90.05	14.11	1106	17.66
	73.50	22.688	0.2500	90.75	14.24	1132	17.80
	70.00	23.917	0.2500	95.67	15.11	1328	18.78
	69.00	24.268	0.2500	97.07	15.35	1388	19.06
	65.75	25.409	0.2500	101.64	16.16	1596	19.96
	64.00	26.024	0.2500	104.10	16.59	1716	20.45
	61.25	26.990	0.2500	107.96	17.27	1916	21.22
	60.00	27.429	0.2500	109.71	17.58	2012	21.57
	59.00	27.780	0.2500	111.12	17.83	2091	21.84
	56.75	28.570	0.2500	114.28	18.39	2276	22.47
	54.00	29.536	0.2500	118.14	19.07	2517	23.24
	52.25	30.150	0.2500	120.60	19.50	2679	23.73
	51.00	30.589	0.2500	122.36	19.81	2799	24.07
Top of Sect 1	51.00	30.089	0.5000	60.18	8.85	5193	46.96
	50.00	30.440	0.5000	60.88	8.97	5380	47.51
	49.00	30.792	0.5000	61.58	9.10	5571	48.07
	47.75	31.231	0.5000	62.46	9.25	5817	48.77
Base of Sect 2	46.17	31.787	0.5000	63.57	9.45	6139	49.65
	44.00	32.548	0.5000	65.10	9.71	6597	50.86
	43.25	32.811	0.5000	65.62	9.81	6761	51.28
	38.88	34.347	0.5000	68.69	10.35	7772	53.71
	34.46	35.899	0.5000	71.80	10.90	8891	56.18
	33.94	36.081	0.5000	72.16	10.96	9029	56.47
	29.81	37.530	0.5000	75.06	11.47	10177	58.76
	29.00	37.815	0.5000	75.63	11.57	10415	59.22
	25.63	39.001	0.5000	78.00	11.99	11439	61.10
	24.00	39.571	0.5000	79.14	12.19	11955	62.00
	21.56	40.427	0.5000	80.85	12.49	12758	63.36
	21.21	40.552	0.5000	81.10	12.54	12878	63.56
	19.00	41.327	0.5000	82.65	12.81	13640	64.79
	14.00	43.083	0.5000	86.17	13.43	15477	67.58
	9.00	44.839	0.5000	89.68	14.05	17472	70.36
	4.00	46.595	0.5000	93.19	14.67	19631	73.15
Pt of Fixity	0.00	48.000	0.5000	96.00	15.16	21481	75.38

IMPAX 23.2.39.3

Forces and Moments for Pole in the Local Element Coordinate System

Loading Case WIND

Dist. From	. From Resultant				Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
84.00	10	-8	13	0	319	381	497	141
81.50	23	-19	30	0	407	485	634	294
81.50	23	-19	30	0	2770	3301	4310	1197
80.00	83	-69	108	0	2825	3366	4394	1292
80.00	83	-69	108	0	9485	11304	14756	5311
79.00	219	-183	285	0	9521	11347	14813	5379
77.50	423	-355	553	0	9578	11415	14901	5479
77.50	423	-355	553	0	11914	14198	18534	6401
74.00	1023	-859	1336	0	12048	14358	18743	6659
73.50	1109	-931	1448	0	12068	14382	18775	6695
73.50	1109	-931	1448	0	14375	17131	22363	7638
70.00	1833	-1538	2392	0	14520	17305	22589	7897
70.00	1833	-1538	2392	0	20986	25010	32649	12021
69.00	2133	-1790	2784	0	21014	25043	32692	12160
65.75	3113	-2612	4064	0	21156	25213	32913	12417
65.75	3113	-2612	4064	0	22967	27371	35731	13203
64.00	3689	-3095	4815	0	23023	27438	35818	13441
61.25	4597	-3857	6001	0	23150	27589	36014	13673
61.25	4597	-3857	6001	0	24930	29711	38785	14485
60.00	5043	-4231	6583	0	24989	29781	38876	14593
60.00	5043	-4231	6583	0	29695	35389	46198	17843
59.00	5468	-4588	7138	0	29716	35414	46229	18039
56.75	6426	-5392	8388	0	29824	35542	46397	18241
56.75	6426	-5392	8388	0	31550	37600	49083	19165
54.00	7669	-6435	10012	0	31639	37706	49222	19599
52.25	8462	-7101	11047	0	31726	37810	49357	19766
52.25	8462	-7101	11047	0	33433	39844	52013	20657
51.00	9060	-7603	11828	0	33496	39919	52111	20778
51 00	90.60	-7603	11828	0	33475	39894	52078	20859
50.00	9540	-8005	12453	0	33533	39963	52168	21148
50.00	9540	-8005	12453	0	38041	45335	59181	24513
49 00	10084	-8461	13164	0	38081	45383	59244	24871
47 75	10765	-9033	14053	0	38154	45470	59357	25242
47 75	10765	-9033	14053	0	39836	47475	61975	26107
46 17	11668	-9791	15232	0	39896	47547	62068	26705
40.17	12907	-10830	16848	0	39988	47656	62211	20703
12 25	12226	_11100	17/09	0	20030	17706	60075	27296
12.20	12226	_11100	17/00	0	10050 10050	51100	66735	27590
-2.23 20 00	16027	_13//Q	2000	0	<u>4</u> 2000 ∆21/11	51/12	67115	20010
30.00	16027	-13//9	20022	0	1/265	52753	68861	20031
20.00	T002/	-13440	20922	0	44200	JZ / J J	00004	20221

Forces and Moments for Pole in the Local Element Coordinate System

Loading	Case	WIND	

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	Му	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
34.46	18831	-15801	24582	0	44515	53051	69254	31915
34.46	18831	-15801	24582	0	45646	54399	71013	32772
33.94	19171	-16086	25026	0	45676	54434	71059	32891
33.94	19171	-16086	25026	0	47539	56655	73958	34266
29.81	21983	-18446	28696	0	47775	56937	74325	35231
29.81	21983	-18446	28696	0	50731	60459	78924	37315
29.00	22572	-18940	29466	0	50718	60444	78904	37704
25.63	25025	-20998	32668	0	50912	60674	79204	38528
25.63	25025	-20998	32668	0	53762	64072	83640	40662
24.00	26275	-22048	34300	0	53791	64106	83685	41271
21.56	28153	-23623	36751	0	53930	64271	83900	41891
21.56	28153	-23623	36751	0	55630	66297	86545	43258
21.21	28435	-23860	37119	0	55650	66321	86576	43349
21.21	28435	-23860	37119	0	56679	67547	88176	44180
19.00	30227	-25363	39458	0	56678	67547	88176	45137
14.00	34289	-28772	44762	0	56775	67662	88327	47009
9.00	38359	-32187	50074	0	56864	67768	88465	48935
4.00	42435	-35607	55395	0	56973	67897	88634	50860
0.00	45701	-38347	59658	0	57200	68168	88987	52068

Design Id: 498211-P1RevG Deflections and Stresses for Pole

Loading Case WIND

*** Deflections and Stresses ***

Distance			Defl.			Axial	Flexural	Shear	Torsion	Combined	Effective
From	Defl.	Defl.	Resultant	Defl.		Interaction	Interaction	Interaction	Interaction	Stress	Yield
Base	X-Dir	Y-Dir	X & Y	Z-Dir	Rotation	Term	Term	Term	Term	Interaction	Strength
(ft)	(in)	(in)	(in)	(in)	(deg.)						(ksi)
84.00	31.7	37.7	49.3	1.6	5.02	0.00	0.00	0.00	0.00	0.01	82.55
81.50	30.0	35.7	46.6	1.5	5.01	0.00	0.01	0.00	0.00	0.01	82.55
81.50	30.0	35.7	46.6	1.5	5.01	0.00	0.01	0.02	0.00	0.01	82.55
80.00	29.0	34.5	45.1	1.4	5.01	0.00	0.02	0.02	0.00	0.02	82.55
80.00	29.0	34.5	45.1	1.4	5.01	0.00	0.02	0.06	0.00	0.03	82.55
79.00	28.3	33.7	44.0	1.4	5.01	0.00	0.05	0.06	0.00	0.06	82.55
77.50	27.3	32.5	42.4	1.3	4.99	0.00	0.09	0.06	0.00	0.09	82.55
77.50	27.3	32.5	42.4	1.3	4.99	0.01	0.09	0.08	0.00	0.10	82.55
74.00	24.9	29.7	38.8	1.2	4.91	0.01	0.19	0.07	0.00	0.20	82.55
73.50	24.6	29.3	38.3	1.1	4.90	0.01	0.20	0.07	0.00	0.21	82.55
73.50	24.6	29.3	38.3	1.1	4.90	0.01	0.20	0.09	0.00	0.21	82.55
70.00	22.3	26.6	34.8	1.0	4.77	0.01	0.29	0.08	0.00	0.31	82.55
70.00	22.3	26.6	34.8	1.0	4.77	0.01	0.29	0.12	0.00	0.32	82.55
69.00	21.7	25.9	33.8	0.9	4.72	0.01	0.33	0.12	0.00	0.36	82.55
65.75	19.7	23.4	30.6	0.8	4.55	0.01	0.44	0.11	0.00	0.46	82.40
65.75	19.7	23.4	30.6	0.8	4.55	0.01	0.44	0.12	0.00	0.47	82.40
64.00	18.6	22.2	29.0	0.7	4.44	0.01	0.50	0.12	0.00	0.53	81.89
61.25	17.0	20.3	26.5	0.7	4.24	0.01	0.59	0.12	0.00	0.61	81.08
61.25	17.0	20.3	26.5	0.7	4.24	0.01	0.59	0.13	0.00	0.61	81.08
60.00	16.3	19.4	25.4	0.6	4.15	0.01	0.63	0.12	0.00	0.65	80.72
60.00	16.3	19.4	25.4	0.6	4.15	0.01	0.63	0.15	0.00	0.66	80.72
59.00	15.8	18.8	24.5	0.6	4.07	0.01	0.67	0.15	0.00	0.70	80.43
56.75	14.6	17.3	22.6	0.5	3.88	0.01	0.74	0.14	0.00	0.78	79.77
56.75	14.6	17.3	22.6	0.5	3.88	0.01	0.74	0.15	0.00	0.78	79.77
54.00	13.2	15.7	20.5	0.4	3.63	0.01	0.84	0.15	0.00	0.87	78.97
52.25	12.3	14.7	19.2	0.4	3.46	0.01	0.89	0.14	0.00	0.93	78.46
52.25	12.3	14.7	19.2	0.4	3.46	0.01	0.89	0.15	0.00	0.93	78.46
51.00	11.8	14.0	18.3	0.4	3.33	0.01	0.93	0.15	0.00	0.97	78.10
51.00	11.8	14.0	18.3	0.4	3.33	0.01	0.47	0.08	0.00	0.48	82.55
50.00	11.3	13.5	17.6	0.4	3.28	0.01	0.48	0.08	0.00	0.49	82.55
50.00	11.3	13.5	17.6	0.4	3.28	0.01	0.48	0.09	0.00	0.50	82.55
49.00	10.9	13.0	16.9	0.3	3.23	0.01	0.50	0.08	0.00	0.51	82.55
47.75	10.3	12.3	16.1	0.3	3.15	0.01	0.52	0.08	0.00	0.53	82.55
47.75	10.3	12.3	16.1	0.3	3.15	0.01	0.52	0.09	0.00	0.53	82.55
46.17	9.7	11.5	15.0	0.3	3.06	0.01	0.54	0.09	0.00	0.55	82.55
44.00	8.8	10.5	13.7	0.2	2.93	0.01	0.57	0.08	0.00	0.58	82.55
43.25	8.5	10.1	13.2	0.2	2.89	0.01	0.58	0.08	0.00	0.59	82.55
43.25	8.5	10.1	13.2	0.2	2.89	0.01	0.58	0.09	0.00	0.59	82.55
38.88	6.9	8.2	10.7	0.2	2.61	0.01	0.63	0.09	0.00	0.65	82.55

INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 BY VALMONT INDUSTRIES FOR: IMPAX 23.2.39.3

Design Id: 498211-P1RevG Deflections and Stresses for Pole

Loading Case WIND

*** Deflections and Stresses ***

Distance			Defl.			Axial	Flexural	Shear	Torsion	Combined	Effective
From	Defl.	Defl.	Resultant	Defl.		Interaction	Interaction	Interaction	Interaction	Stress	Yield
Base	X-Dir	Y-Dir	Χ & Υ	Z-Dir	Rotation	Term	Term	Term	Term	Interaction	Strength
(ft)	(in)	(in)	(in)	(in)	(deg.)						(ksi)
34.46	5.4	6.5	8.4	0.1	2.33	0.01	0.68	0.08	0.00	0.69	82.55
34.46	5.4	6.5	8.4	0.1	2.33	0.01	0.68	0.09	0.00	0.69	82.55
33.94	5.3	6.3	8.2	0.1	2.29	0.01	0.68	0.09	0.00	0.70	82.55
29.81	4.1	4.8	6.3	0.1	2.02	0.01	0.72	0.09	0.00	0.74	82.55
29.00	3.8	4.6	6.0	0.1	1.97	0.01	0.73	0.09	0.00	0.75	82.55
25.63	3.0	3.6	4.7	0.1	1.74	0.01	0.76	0.09	0.00	0.78	82.55
24.00	2.6	3.1	4.1	0.0	1.63	0.01	0.78	0.09	0.00	0.79	82.55
21.56	2.1	2.5	3.3	0.0	1.46	0.01	0.80	0.09	0.00	0.81	82.55
21.21	2.0	2.4	3.2	0.0	1.44	0.01	0.80	0.09	0.00	0.82	82.55
21.21	2.0	2.4	3.2	0.0	1.44	0.01	0.80	0.10	0.00	0.82	82.55
19.00	1.6	2.0	2.6	0.0	1.29	0.01	0.82	0.09	0.00	0.84	82.55
14.00	0.9	1.1	1.4	0.0	0.94	0.01	0.85	0.09	0.00	0.87	82.55
9.00	0.4	0.4	0.6	0.0	0.60	0.01	0.88	0.09	0.00	0.90	82.55
4.00	0.1	0.1	0.1	0.0	0.27	0.01	0.90	0.08	0.00	0.92	82.55
0.00	0.0	0.0	0.0	0.0	0.00	0.01	0.91	0.08	0.00	0.93	82.55

Forces and Moments for Pole in the Local Element Coordinate System

Loading Case ICE + WIND

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
84.00	3	-3	4	0	110	131	171	361
81.50	8	-7	10	0	145	172	225	612
81.50	8	-7	10	0	956	1140	1488	3015
80.00	29	-24	37	0	978	1165	1521	3171
80.00	29	-24	37	0	3295	3927	5126	12883
79.00	76	-64	99	0	3309	3943	5147	12990
77.50	147	-123	192	0	3331	3969	5182	13152
77.50	147	-123	192	0	4131	4924	6427	15558
74.00	355	-298	464	0	4181	4983	6505	15955
73.50	385	-323	503	0	4189	4992	6517	16013
73.50	385	-323	503	0	4978	5933	7745	18421
70.00	636	-533	830	0	5033	5999	7831	18841
70.00	636	-533	830	0	7276	8671	11319	28566
69.00	740	-621	966	0	7292	8690	11344	28690
65.75	1079	-906	1409	0	7333	8739	11408	29113
65.75	1079	-906	1409	0	7943	9466	12357	30945
64.00	1279	-1073	1669	0	7972	9501	12402	31177
61.25	1592	-1336	2079	0	8000	9534	12446	31562
61.25	1592	-1336	2079	0	8598	10247	13376	33398
60.00	1746	-1465	2279	0	8620	10272	13410	33572
60.00	1746	-1465	2279	0	10240	12203	15930	40935
59.00	1893	-1588	2471	0	10257	12224	15957	41077
56.75	2223	-1865	2902	0	10275	12245	15985	41415
56.75	2223	-1865	2902	0	10843	12922	16868	43263
54.00	2650	-2224	3459	0	10891	12980	16944	43672
52.25	2922	-2452	3815	0	10887	12975	16937	43961
52.25	2922	-2452	3815	0	11453	13650	17818	45805
51.00	3127	-2624	4082	0	11476	13676	17853	45999
51.00	3127	-2624	4082	0	11460	13657	17828	46009
50.00	3291	-2762	4296	0	11481	13682	17861	46385
50.00	3291	-2762	4296	0	13022	15519	20259	53762
49.00	3478	-2918	4540	0	13030	15528	20271	54150
47.75	3711	-3114	4844	0	13056	15559	20311	54632
47.75	3711	-3114	4844	0	13617	16228	21185	56473
46.17	4019	-3373	5247	0	13626	16239	21198	57107
44.00	4442	-3728	5799	0	13648	16266	21233	57690
43.25	4589	-3850	5990	0	13663	16283	21256	57891
43.25	4589	-3850	5990	0	14615	17417	22736	61211
38.88	5506	-4620	7187	0	14700	17519	22869	62415
38.88	5506	-4620	7187	0	15045	17930	23406	63920

Forces and Moments for Pole in the Local Element Coordinate System

Loading Case ICE + WIND

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
34.46	6459	-5420	8431	0	15131	18033	23540	65189
34.46	6459	-5420	8431	0	15493	18464	24103	66679
33.94	6574	-5516	8582	0	15503	18476	24119	66833
33.94	6574	-5516	8582	0	16113	19202	25067	69434
29.81	7527	-6316	9826	0	16194	19299	25193	70674
29.81	7527	-6316	9826	0	17169	20461	26710	74748
29.00	7727	-6483	10087	0	17144	20431	26671	75020
25.63	8556	-7179	11169	0	17210	20510	26773	76076
25.63	8556	-7179	11169	0	18145	21625	28229	80156
24.00	8978	-7533	11720	0	18134	21611	28211	80698
21.56	9611	-8064	12546	0	18181	21667	28284	81490
21.56	9611	-8064	12546	0	18738	22331	29151	84090
21.21	9706	-8144	12670	0	18745	22339	29162	84206
21.21	9706	-8144	12670	0	19076	22734	29677	85693
19.00	10309	-8650	13457	0	19036	22686	29615	86469
14.00	11673	-9795	15238	0	19013	22659	29579	88232
9.00	13036	-10939	17017	0	18987	22628	29539	90054
4.00	14397	-12080	18794	0	18973	22611	29516	91919
0.00	15484	-12993	20213	0	19046	22698	29630	93388

Design Id: 498211-P1RevG Deflections and Stresses for Pole

Loading Case ICE + WIND

*** Deflections and Stresses ***

Distance			Defl.			Axial	Flexural	Shear	Torsion	Combined	Effective
From	Defl.	Defl.	Resultant	Defl.		Interaction	Interaction	Interaction	Interaction	Stress	Yield
Base	X-Dir	Y-Dir	Χ & Υ	Z-Dir	Rotation	Term	Term	Term	Term	Interaction	Strength
(ft)	(in)	(in)	(in)	(in)	(deg.)						(ksi)
84.00	10.8	12.9	16.9	0.2	1.72	0.00	0.00	0.00	0.00	0.01	82.55
81.50	10.3	12.2	16.0	0.2	1.72	0.00	0.00	0.00	0.00	0.01	82.55
81.50	10.3	12.2	16.0	0.2	1.72	0.00	0.00	0.01	0.00	0.01	82.55
80.00	9.9	11.8	15.4	0.2	1.72	0.00	0.01	0.01	0.00	0.01	82.55
80.00	9.9	11.8	15.4	0.2	1.72	0.01	0.01	0.02	0.00	0.02	82.55
79.00	9.7	11.5	15.1	0.2	1.72	0.01	0.02	0.02	0.00	0.03	82.55
77.50	9.3	11.1	14.5	0.2	1.71	0.01	0.03	0.02	0.00	0.04	82.55
77.50	9.3	11.1	14.5	0.2	1.71	0.01	0.03	0.03	0.00	0.04	82.55
74.00	8.5	10.2	13.3	0.2	1.69	0.01	0.06	0.03	0.00	0.08	82.55
73.50	8.4	10.0	13.1	0.2	1.68	0.01	0.07	0.03	0.00	0.08	82.55
70.00	7.6	9.1	11.9	0.2	1.64	0.01	0.10	0.03	0.00	0.12	82.55
70.00	7.6	9.1	11.9	0.2	1.64	0.02	0.10	0.04	0.00	0.13	82.55
69.00	7.4	8.8	11.5	0.1	1.62	0.02	0.12	0.04	0.00	0.14	82.55
65.75	6.7	8.0	10.5	0.1	1.56	0.02	0.15	0.04	0.00	0.18	82.40
64.00	6.4	7.6	9.9	0.1	1.52	0.02	0.17	0.04	0.00	0.20	81.89
61.25	5.8	6.9	9.0	0.1	1.45	0.02	0.20	0.04	0.00	0.23	81.08
60.00	5.6	6.6	8.7	0.1	1.42	0.02	0.22	0.04	0.00	0.24	80.72
60.00	5.6	6.6	8.7	0.1	1.42	0.03	0.22	0.05	0.00	0.25	80.72
59.00	5.4	6.4	8.4	0.1	1.39	0.03	0.23	0.05	0.00	0.26	80.43
56.75	5.0	5.9	7.7	0.1	1.33	0.03	0.26	0.05	0.00	0.29	79.77
54.00	4.5	5.3	7.0	0.1	1.24	0.03	0.29	0.05	0.00	0.32	78.97
52.25	4.2	5.0	6.5	0.1	1.18	0.03	0.31	0.05	0.00	0.34	78.46
51.00	4.0	4.8	6.2	0.1	1.14	0.03	0.32	0.05	0.00	0.35	78.10
51.00	4.0	4.8	6.2	0.1	1.14	0.01	0.16	0.03	0.00	0.18	82.55
50.00	3.9	4.6	6.0	0.1	1.12	0.01	0.17	0.03	0.00	0.18	82.55
50.00	3.9	4.6	6.0	0.1	1.12	0.02	0.17	0.03	0.00	0.18	82.55
49.00	3.7	4.4	5.8	0.1	1.10	0.02	0.17	0.03	0.00	0.19	82.55
47.75	3.5	4.2	5.5	0.1	1.08	0.02	0.18	0.03	0.00	0.19	82.55
47.75	3.5	4.2	5.5	0.1	1.08	0.02	0.18	0.03	0.00	0.20	82.55
46.17	3.3	3.9	5.1	0.1	1.05	0.02	0.19	0.03	0.00	0.20	82.55
44.00	3.0	3.6	4.7	0.1	1.00	0.02	0.20	0.03	0.00	0.21	82.55
43.25	2.9	3.5	4.5	0.0	0.99	0.02	0.20	0.03	0.00	0.22	82.55
38.88	2.3	2.8	3.6	0.0	0.89	0.02	0.22	0.03	0.00	0.23	82.55
34.46	1.8	2.2	2.9	0.0	0.79	0.02	0.23	0.03	0.00	0.25	82.55
33.94	1.8	2.1	2.8	0.0	0.78	0.02	0.23	0.03	0.00	0.25	82.55
29.81	1.4	1.6	2.1	0.0	0.69	0.02	0.25	0.03	0.00	0.27	82.55
29.00	1.3	1.6	2.0	0.0	0.67	0.02	0.25	0.03	0.00	0.27	82.55
25.63	1.0	1.2	1.6	0.0	0.59	0.02	0.26	0.03	0.00	0.28	82.55
24.00	0.9	1.1	1.4	0.0	0.55	0.02	0.27	0.03	0.00	0.28	82.55

Deflections and Stresses for Pole

Loading Case ICE + WIND

*** Deflections and Stresses ***

Distance			Defl.			Axial	Flexural	Shear	Torsion	Combined	Effective
From	Defl.	Defl.	Resultant	Defl.		Interaction	Interaction	Interaction	Interaction	Stress	Yield
Base	X-Dir	Y-Dir	X & Y	Z-Dir	Rotation	Term	Term	Term	Term	Interaction	Strength
(ft)	(in)	(in)	(in)	(in)	(deg.)						(ksi)
21.56	0.7	0.9	1.1	0.0	0.50	0.02	0.27	0.03	0.00	0.29	82.55
21.21	0.7	0.8	1.1	0.0	0.49	0.02	0.27	0.03	0.00	0.29	82.55
19.00	0.6	0.7	0.9	0.0	0.44	0.02	0.28	0.03	0.00	0.30	82.55
14.00	0.3	0.4	0.5	0.0	0.32	0.02	0.29	0.03	0.00	0.31	82.55
9.00	0.1	0.1	0.2	0.0	0.20	0.02	0.30	0.03	0.00	0.32	82.55
4.00	0.0	0.0	0.0	0.0	0.09	0.02	0.30	0.03	0.00	0.32	82.55
0.00	0.0	0.0	0.0	0.0	0.00	0.02	0.31	0.03	0.00	0.33	82.55

IMPAX 23.2.39.3

Forces and Moments for Pole in the Local Element Coordinate System

Tooling	0	m i o
LOAGTUG	Lase	T+5

Loading Cas	e T+S							
Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
84.00	2	-2	3	0	68	81	106	151
81.50	5	-4	6	0	87	103	135	280
81.50	5	-4	6	0	592	705	920	1282
80.00	18	-15	23	0	603	719	938	1362
80.00	18	-15	23	0	2023	2411	3148	5411
79.00	47	-39	61	0	2031	2420	3160	5466
77.50	90	-76	118	0	2043	2435	3178	5549
77.50	90	-76	118	0	2542	3029	3955	6553
74.00	218	-183	285	0	2570	3063	3999	6756
73.50	237	-199	309	0	2575	3068	4005	6786
73.50	237	-199	309	0	3067	3656	4772	7790
70.00	391	-328	510	0	3098	3692	4820	8007
70.00	391	-328	510	0	4477	5335	6964	12061
69.00	455	-382	594	0	4482	5342	6973	12128
65.75	664	-557	867	0	4512	5378	7020	12343
65.75	664	-557	867	0	4899	5839	7622	13106
64.00	787	-660	1027	0	4911	5853	7640	13230
61.25	981	-823	1280	0	4938	5885	7682	13424
61.25	981	-823	1280	0	5318	6338	8274	14189
60.00	1076	-903	1404	0	5331	6353	8293	14280
60.00	1076	-903	1404	0	6334	7549	9854	17349
59.00	1166	-979	1523	0	6339	7554	9861	17427
56.75	1371	-1150	1789	0	6361	7581	9897	17596
56.75	1371	-1150	1789	0	6731	8021	10471	18366
54.00	1636	-1373	2136	0	6750	8044	10501	18587
52.25	1805	-1515	2357	0	6768	8066	10529	18726
52.25	1805	-1515	2357	0	7133	8501	11097	19494
51.00	1933	-1622	2523	0	7146	8517	11118	19596
51.00	1933	-1622	2523	0	7142	8512	11111	19599
50.00	2035	-1708	2657	0	7154	8526	11130	19841
50.00	2035	-1708	2657	0	8116	9672	12626	22915
49.00	2151	-1805	2808	0	8124	9682	12639	23163
47.75	2297	-1927	2998	0	8139	9700	12662	23472
47.75	2297	-1927	2998	0	8499	10129	13222	24240
46.17	2489	-2089	3249	0	8512	10144	13242	24644
44.00	2753	-2310	3594	0	8531	10167	13272	25016
43.25	2845	-2387	3714	0	8540	10178	13286	25145
43.25	2845	-2387	3714	0	9153	10908	14240	26529
38.88	3419	-2869	4463	0	9204	10969	14320	27305
38.88	3419	-2869	4463	0	9446	11258	14696	27931

Forces and Moments for Pole in the Local Element Coordinate System

Loading	Case	T+S	

Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	Му	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
34.46	4018	-3371	5244	0	9499	11320	14778	28752
34.46	4018	-3371	5244	0	9742	11610	15155	29373
33.94	4090	-3432	5339	0	9748	11617	15165	29472
33.94	4090	-3432	5339	0	10147	12093	15786	30556
29.81	4690	-3936	6123	0	10197	12152	15863	31360
29.81	4690	-3936	6123	0	10830	12906	16848	33057
29.00	4816	-4041	6287	0	10828	12905	16846	33228
25.63	5340	-4481	6970	0	10869	12953	16909	33915
25.63	5340	-4481	6970	0	11480	13681	17859	35615
24.00	5607	-4705	7319	0	11487	13690	17871	35963
21.56	6008	-5041	7842	0	11517	13725	17917	36480
21.56	6008	-5041	7842	0	11881	14159	18484	37563
21.21	6068	-5091	7921	0	11885	14165	18490	37639
21.21	6068	-5091	7921	0	12106	14428	18834	38258
19.00	6451	-5413	8421	0	12110	14432	18839	38755
14.00	7319	-6141	9554	0	12135	14462	18879	39900
9.00	8188	-6871	10689	0	12160	14492	18918	41092
4.00	9060	-7602	11827	0	12189	14527	18963	42329
0.00	9759	-8189	12739	0	12238	14585	19039	43335

Design Id: 498211-P1RevG Deflections and Stresses for Pole

Loading Case T+S

*** Deflections and Stresses ***

Distance			Defl.			Axial	Flexural	Shear	Torsion	Combined	Effective
From	Defl.	Defl.	Resultant	Defl.		Interaction	Interaction	Interaction	Interaction	Stress	Yield
Base	X-Dir	Y-Dir	X & Y	Z-Dir	Rotation	Term	Term	Term	Term	Interaction	Strength
(ft)	(in)	(in)	(in)	(in)	(deg.)						(ksi)
84.00	6.8	8.1	10.5	0.1	1.07	0.00	0.00	0.00	0.00	0.01	82.55
81.50	6.4	7.6	10.0	0.1	1.07	0.00	0.00	0.00	0.00	0.01	82.55
80.00	6.2	7.4	9.6	0.1	1.07	0.00	0.00	0.00	0.00	0.01	82.55
80.00	6.2	7.4	9.6	0.1	1.07	0.00	0.00	0.01	0.00	0.01	82.55
79.00	6.0	7.2	9.4	0.1	1.07	0.00	0.01	0.01	0.00	0.01	82.55
77.50	5.8	6.9	9.1	0.1	1.06	0.00	0.02	0.01	0.00	0.02	82.55
77.50	5.8	6.9	9.1	0.1	1.06	0.01	0.02	0.02	0.00	0.02	82.55
74.00	5.3	6.3	8.3	0.1	1.05	0.01	0.04	0.02	0.00	0.05	82.55
73.50	5.3	6.3	8.2	0.1	1.05	0.01	0.04	0.02	0.00	0.05	82.55
70.00	4.8	5.7	7.4	0.1	1.02	0.01	0.06	0.02	0.00	0.07	82.55
70.00	4.8	5.7	7.4	0.1	1.02	0.01	0.06	0.03	0.00	0.07	82.55
69.00	4.6	5.5	7.2	0.1	1.01	0.01	0.07	0.03	0.00	0.08	82.55
65.75	4.2	5.0	6.5	0.1	0.97	0.01	0.09	0.02	0.00	0.10	82.40
65.75	4.2	5.0	6.5	0.1	0.97	0.01	0.09	0.03	0.00	0.10	82.40
64.00	4.0	4.7	6.2	0.0	0.95	0.01	0.11	0.03	0.00	0.12	81.89
61.25	3.6	4.3	5.7	0.0	0.90	0.01	0.13	0.02	0.00	0.14	81.08
61.25	3.6	4.3	5.7	0.0	0.90	0.01	0.13	0.03	0.00	0.14	81.08
60.00	3.5	4.1	5.4	0.0	0.88	0.01	0.13	0.03	0.00	0.14	80.72
60.00	3.5	4.1	5.4	0.0	0.88	0.01	0.13	0.03	0.00	0.15	80.72
59.00	3.4	4.0	5.2	0.0	0.87	0.01	0.14	0.03	0.00	0.15	80.43
56.75	3.1	3.7	4.8	0.0	0.83	0.01	0.16	0.03	0.00	0.17	79.77
54.00	2.8	3.3	4.4	0.0	0.77	0.01	0.18	0.03	0.00	0.19	78.97
52.25	2.6	3.1	4.1	0.0	0.74	0.01	0.19	0.03	0.00	0.20	78.46
51.00	2.5	3.0	3.9	0.0	0.71	0.01	0.20	0.03	0.00	0.21	78.10
51.00	2.5	3.0	3.9	0.0	0.71	0.01	0.10	0.02	0.00	0.11	82.55
50.00	2.4	2.9	3.8	0.0	0.70	0.01	0.10	0.02	0.00	0.11	82.55
49.00	2.3	2.8	3.6	0.0	0.69	0.01	0.11	0.02	0.00	0.11	82.55
47.75	2.2	2.6	3.4	0.0	0.67	0.01	0.11	0.02	0.00	0.12	82.55
46.17	2.1	2.5	3.2	0.0	0.65	0.01	0.11	0.02	0.00	0.12	82.55
44.00	1.9	2.2	2.9	0.0	0.63	0.01	0.12	0.02	0.00	0.13	82.55
43.25	1.8	2.2	2.8	0.0	0.62	0.01	0.12	0.02	0.00	0.13	82.55
38.88	1.5	1.8	2.3	0.0	0.56	0.01	0.13	0.02	0.00	0.14	82.55
34.46	1.2	1.4	1.8	0.0	0.50	0.01	0.14	0.02	0.00	0.15	82.55
33.94	1.1	1.3	1.7	0.0	0.49	0.01	0.15	0.02	0.00	0.15	82.55
29.81	0.9	1.0	1.3	0.0	0.43	0.01	0.15	0.02	0.00	0.16	82.55
29.00	0.8	1.0	1.3	0.0	0.42	0.01	0.16	0.02	0.00	0.16	82.55
25.63	0.6	0.8	1.0	0.0	0.37	0.01	0.16	0.02	0.00	0.17	82.55
24.00	0.6	0.7	0.9	0.0	0.35	0.01	0.17	0.02	0.00	0.17	82.55
21.56	0.5	0.5	0.7	0.0	0.31	0.01	0.17	0.02	0.00	0.18	82.55

BY VALMONT INDUSTRIES FOR: INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C DATE 11/09/2020 Design Id: 498211-P1RevG IMPAX 23.2.39.3 Deflections and Stresses for Pole

Loading Case T+S *** Deflections and Stresses *** Distance Defl. Axial Flexural Shear Torsion Combined Effective Defl. Resultant Defl. Interaction Interaction Interaction Stress From Defl. Yield Base X-Dir Y-Dir X & Y Z-Dir Rotation Term Term Term Term Interaction Strength (ft) (in) (in) (in) (in) (deg.) (ksi) 0.01 0.17 0.02 0.01 0.17 0.02 21.21 0.4 0.5 0.7 0.0 0.31 0.00 0.18 82.55 0.17 0.18 0.19 0.19 19.00 0.4 0.4 0.5 0.27 0.02 0.00 0.18 82.55 0.0 14.00 0.2 0.2 0.3 0.0 0.20 0.01 0.02 0.00 0.19 82.55 9.00 0.1 0.1 0.1 0.0 0.13 0.01 0.02 0.00 0.20 82.55 0.0 0.0 0.0 0.0 0.06 0.01 0.20 4.00 0.02 0.00 82.55 0.00 0.0 0.0 0.0 0.0 0.00 0.01 0.19 0.02 0.00 0.20 82.55

IMPAX 23.2.39.3

Forces and Moments for Pole in the Local Element Coordinate System

Loading Cas	e Seismic							
Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	Му	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
04.00	1	1	-	0	2.0	4.5	5.0	1.0.0
84.00	1	-1	Ţ	0	38	45	59	183
81.50	3	-2	4	0	63	/ 5	98	337
81.50	3	-2	4	0	239	285	372	1556
80.00	8	- /	11	0	252	301	392	1652
80.00	8	- /	11	0	8/3	1041	1359	6556
79.00	21	-17	27	0	188	1050	13/1	6621
//.50	40	-33	52	0	892	1063	1388	6722
77.50	40	-33	52	0	1013	1207	1575	/941
74.00	91	- / 6	119	0	1032	1230	1606	8185
/3.50	98	-83	128	0	1034	1233	1609	8221
/3.50	98	-83	128	0	1109	1322	1725	9441
70.00	154	-129	201	0	1121	1337	1/45	9700
70.00	154	-129	201	0	1294	1542	2013	14607
69.00	173	-145	225	0	1295	1543	2015	14685
65.75	233	-196	304	0	1300	1549	2022	14942
65.75	233	-196	304	0	1308	1559	2036	15866
64.00	266	-223	347	0	1308	1558	2034	16010
61.25	317	-266	414	0	1307	1558	2034	16243
61.25	317	-266	414	0	1301	1550	2024	17167
60.00	340	-286	444	0	1300	1550	2023	17276
60.00	340	-286	444	0	1271	1514	1977	20984
59.00	359	-301	468	0	1268	1511	1972	21073
56.75	399	-335	521	0	1266	1508	1969	21275
56.75	399	-335	521	0	1251	1491	1947	22200
54.00	449	-376	585	0	1245	1484	1937	22456
52.25	480	-402	626	0	1243	1482	1935	22623
52.25	480	-402	626	0	1232	1468	1917	23547
51.00	502	-421	655	0	1231	1467	1915	23668
E1 00	FOO	4.0.1	C E E	0	1000	1465	1010	22660
51.00	5UZ 510	-421	633	0	1230	1403	1913	23009
50.00	519	-436	6/8	0	1227	1403	1910	23939
50.00	519	-436	6/8	0	1202	1432	1869	27667
49.00	536	-450	700	0	1199	1429	1865	27960
47.75	558	-468	728	0	1198	1427	1863	28332
47.75	558	-468	/28	0	1194	1423	1858	29256
46.17	585	-491	763	0	1192	1421	1854	29734
44.00	622	-522	812	0	1192	1421	1855	30176
43.25	635	-533	828	0	1193	1422	1856	30332
43.25	635	-533	828	0	1203	1434	1872	31994
38.88	710	-596	927	0	1215	1448	1890	32926
38.88	710	-596	927	0	1222	1456	1901	33664

Forces and Moments for Pole in the Local Element Coordinate System

Loading Cas	e Seismic							
Dist. From			Resultant		Shear	Shear	Resultant	
Base	Mx	My	Mx & My	Torsion	X-Dir.	Y-Dir.	Shear	Axial
(ft)	(in-kips)	(in-kips)	(in-kips)	(in-kips)	(lbs)	(lbs)	(lbs)	(lbs)
34.46	788	-661	1029	0	1240	1478	1930	34649
34.46	788	-661	1029	0	1253	1494	1950	35388
33.94	797	-669	1041	0	1256	1497	1954	35507
33.94	797	-669	1041	0	1281	1527	1993	36803
29.81	874	-733	1140	0	1303	1553	2027	37768
29.81	874	-733	1140	0	1347	1606	2096	39802
29.00	889	-746	1161	0	1349	1608	2099	39997
25.63	955	-801	1246	0	1368	1631	2129	40821
25.63	955	-801	1246	0	1413	1684	2198	42856
24.00	988	-829	1289	0	1419	1692	2208	43262
21.56	1038	-871	1354	0	1434	1708	2230	43883
21.56	1038	-871	1354	0	1461	1741	2273	45179
21.21	1045	-877	1364	0	1463	1743	2276	45270
21.21	1045	-877	1364	0	1478	1761	2299	46008
19.00	1092	-916	1425	0	1486	1771	2312	46584
14.00	1199	-1006	1565	0	1508	1797	2346	47930
9.00	1308	-1097	1707	0	1529	1822	2378	49332
4.00	1418	-1190	1851	0	1547	1843	2406	50790
0.00	1507	-1264	1967	0	1556	1854	2421	51998

Design Id: 498211-P1RevG Deflections and Stresses for Pole

Loading Case Seismic

*** Deflections and Stresses ***

Distance			Defl.			Axial	Flexural	Shear	Torsion	Combined	Effective
From	Defl.	Defl.	Resultant	Defl.		Interaction	Interaction	Interaction	Interaction	Stress	Yield
Base	X-Dir	Y-Dir	Х&Ү	Z-Dir	Rotation	Term	Term	Term	Term	Interaction	Strength
(ft)	(in)	(in)	(in)	(in)	(deg.)						(ksi)
84.00	1.4	1.6	2.1	0.0	0.25	0.00	0.00	0.00	0.00	0.01	82.55
81.50	1.3	1.5	2.0	0.0	0.25	0.00	0.00	0.00	0.00	0.01	82.55
80.00	1.2	1.5	1.9	0.0	0.25	0.00	0.00	0.00	0.00	0.01	82.55
80.00	1.2	1.5	1.9	0.0	0.25	0.01	0.00	0.01	0.00	0.01	82.55
79.00	1.2	1.4	1.8	0.0	0.25	0.01	0.00	0.01	0.00	0.01	82.55
77.50	1.1	1.4	1.8	0.0	0.25	0.01	0.01	0.01	0.00	0.01	82.55
74.00	1.0	1.2	1.6	0.0	0.24	0.01	0.02	0.01	0.00	0.02	82.55
73.50	1.0	1.2	1.6	0.0	0.24	0.01	0.02	0.01	0.00	0.02	82.55
73.50	1.0	1.2	1.6	0.0	0.24	0.01	0.02	0.01	0.00	0.03	82.55
70.00	0.9	1.1	1.4	0.0	0.23	0.01	0.02	0.01	0.00	0.03	82.55
70.00	0.9	1.1	1.4	0.0	0.23	0.01	0.02	0.01	0.00	0.04	82.55
69.00	0.9	1.0	1.3	0.0	0.22	0.01	0.03	0.01	0.00	0.04	82.55
65.75	0.8	0.9	1.2	0.0	0.21	0.01	0.03	0.01	0.00	0.04	82.40
64.00	0.7	0.9	1.1	0.0	0.20	0.01	0.04	0.01	0.00	0.05	81.89
61.25	0.7	0.8	1.0	0.0	0.19	0.01	0.04	0.01	0.00	0.05	81.08
60.00	0.6	0.7	1.0	0.0	0.18	0.01	0.04	0.01	0.00	0.05	80.72
60.00	0.6	0.7	1.0	0.0	0.18	0.01	0.04	0.01	0.00	0.06	80.72
59.00	0.6	0.7	0.9	0.0	0.18	0.01	0.04	0.01	0.00	0.06	80.43
56.75	0.5	0.6	0.8	0.0	0.16	0.01	0.05	0.01	0.00	0.06	79.77
54.00	0.5	0.6	0.8	0.0	0.15	0.01	0.05	0.01	0.00	0.06	78.97
52.25	0.5	0.5	0.7	0.0	0.14	0.01	0.05	0.01	0.00	0.06	78.46
52.25	0.5	0.5	0.7	0.0	0.14	0.01	0.05	0.01	0.00	0.07	78.46
51.00	0.4	0.5	0.7	0.0	0.13	0.01	0.05	0.01	0.00	0.07	78.10
51.00	0.4	0.5	0.7	0.0	0.13	0.01	0.03	0.00	0.00	0.03	82.55
50.00	0.4	0.5	0.6	0.0	0.13	0.01	0.03	0.00	0.00	0.03	82.55
49.00	0.4	0.5	0.6	0.0	0.13	0.01	0.03	0.00	0.00	0.03	82.55
47.75	0.4	0.4	0.6	0.0	0.12	0.01	0.03	0.00	0.00	0.04	82.55
46.17	0.3	0.4	0.5	0.0	0.12	0.01	0.03	0.00	0.00	0.04	82.55
44.00	0.3	0.4	0.5	0.0	0.11	0.01	0.03	0.00	0.00	0.04	82.55
43.25	0.3	0.4	0.5	0.0	0.11	0.01	0.03	0.00	0.00	0.04	82.55
38.88	0.2	0.3	0.4	0.0	0.10	0.01	0.03	0.00	0.00	0.04	82.55
34.46	0.2	0.2	0.3	0.0	0.08	0.01	0.03	0.00	0.00	0.04	82.55
33.94	0.2	0.2	0.3	0.0	0.08	0.01	0.03	0.00	0.00	0.04	82.55
29.81	0.1	0.2	0.2	0.0	0.07	0.01	0.03	0.00	0.00	0.04	82.55
29.00	0.1	0.2	0.2	0.0	0.07	0.01	0.03	0.00	0.00	0.04	82.55
25.63	0.1	0.1	0.2	0.0	0.06	0.01	0.03	0.00	0.00	0.04	82.55
24.00	0.1	0.1	0.1	0.0	0.06	0.01	0.03	0.00	0.00	0.04	82.55
21.56	0.1	0.1	0.1	0.0	0.05	0.01	0.03	0.00	0.00	0.04	82.55
21.21	0.1	0.1	0.1	0.0	0.05	0.01	0.03	0.00	0.00	0.04	82.55

 BY VALMONT INDUSTRIES
 FOR:
 INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, C
 DATE 11/09/2020

 Design Id: 498211-P1RevG
 IMPAX 23.2.39.3

 Deflections and Stresses for Pole
 IMPAX 23.2.39.3

Loading C	ase Seisr	nic		*** Deflections and Stresses ***							
Distance From Base (ft)	Defl. X-Dir (in)	Defl. Y-Dir (in)	Defl. Resultant X & Y (in)	Defl. Z-Dir (in)	Rotation (deg.)	Axial Interaction Term	Flexural Interaction Term	Shear Interaction Term	Torsion Interaction Term	Combined Stress Interaction	Effective Yield Strength (ksi)
19.00	0.1	0.1	0.1	0.0	0.04	0.01	0.03	0.00	0.00	0.04	82.55
14.00	0.0	0.0	0.0	0.0	0.03	0.01	0.03	0.00	0.00	0.04	82.55
9.00	0.0	0.0	0.0	0.0	0.02	0.01	0.03	0.00	0.00	0.04	82.55
4.00	0.0	0.0	0.0	0.0	0.01	0.01	0.03	0.00	0.00	0.04	82.55
0.00	0.0	0.0	0.0	0.0	0.00	0.01	0.03	0.00	0.00	0.04	82.55

MINIMUM DEFLECTION RATIO // DEFLECTION LIMIT / DEFLECTION // IS

NUMBER OF BOLTS	DIAMETER (IN.)	LENGTH (IN.)	WEIGHT (KIPS)	SHIPPED AS	PROJECT LENGT (IN.)	ION GALVANIZED H LENGTH (IN.)	THREAD SIZE	
28	1.750	66.00	1.72	BOLTS, TEMPLAT	TES 9.75	66.00	5-UNC-2A	
STEEL SPEC. VALMONT	STEEL SPECIF.	MAXIMUM BOLT FORCE (KIPS)	MAXIMUM BOLT SHEAR FORCE (KIPS)	FACTORED NOMINAL TENS. STRENGTH (KIPS)	STRESS AREA (SQ. IN.)	INTERACTION C VALUE	CONFIGURATION OF BOTTOM END	
S23	A615	124.73	3.18	152.00	1.90	0.86 THREADED	WITH HEAVY HEX H	EAD NUT

NOTE: BOLT INTERACTION VALUE WAS CALCULATED BY DIVIDING SHEAR FORCE BY FACTOR RELATED TO DETAIL TYPE d) IN EIA-G SPECS.

*** BOLT COORDINATES (IN.) ***

BOLT NO.	X-COORD	Y-COORD	*	BOLT NO.	X-COORD	Y-COORD
1	27.250	0.000	*	2	26.567	6.064
3	24.551	11.823	*	4	21.305	16.990
5	16.990	21.305	*	6	11.823	24.551
7	6.064	26.567	*	8	0.000	27.250

MAX. BOLT CIRCLE = 54.50 IN.

TEMPLATE DIAMETER = 58.00 IN.

*** BASE PLATE CHARACTERISTICS GOVERNED BY LOADING CASE WIND ***

BASE PLATE	BASE PLATE	ACTUAL	RAW MATERIAL	POLE DIAM.	
DIAMETER	THICKNESS	WEIGHT	WEIGHT	(MAJOR DIAM.)	
(IN.)	(IN.)	(KIPS)	(KIPS)	(IN.)	
59.78	2.75	1.56	2.75	48.00	
EFFECTIVE	PLASTIC	MOMENT IN	PLASTIC	FACTORED	
PLATE WIDTH	SECTION MOD.	BASE PLATE	MOMENT	RESISTING MOM.	
(IN.)	(CU. IN.)	(INK)	(INK)	(INK)	
5.39	10.18	405.38	509.11	458.20	
STEEL	STEEL	EFFECTIVE	STRESS		
SPECIF.	SPECIF.	YIELD STRESS	RATIO		
VALMONT	OTHER	(KSI)			
S56	A572	50	0.88		

** LOADS AT POLE BASE IN TH	E GLOBAL COOP	RDINATE SYSTE	M ******	******	LOADING CASES ***********************************			
LOADING CASE IDENTIFICATION	WIND ICH	E + WIND	T+S	Seismic]]MAX CRITERION- LOAD CA		
MOMENT ABT. X-AXIS (IN-KIP)	45700	15484	9758	1506]	MOMENT ABT. X	WIND	
MOMENT ABT. Y-AXIS (IN-KIP)	-38347	-12992	-8188	-1264]	MOMENT ABT. Y	WIND	
SHEAR FORCE (LB.)	88866	29557	19017	2416]	RES. MOMENT	WIND	
VERTICAL FORCE (LB.)	52273	93410	43344	51998]	SHEAR FORCE	WIND	
]	BOLT FORCE	WIND	
]	BOLT TENSION	WIND	

External Flange Design (Sized for Shaft Moment Capacity):

Customer:	INSITE WIRELESS GROUP
Site:	CT027, NEW CANAAN NORTHEAST, CT
Valmont Order Number:	498211-P1
Engineered by:	AM
Flange Height:	84' ABP
Design Code:	EIA-G

Reactions at Flange Location:

in-k	5741	moment = M =
k	0	shear = V =
in	19	pole diameter = d _{pole} =

Flange Bolts:

number of flange bolts = n _{bolts} =	14	
flange bolt diameter = d _{bolt} =	1.50	in
flange bolt circle diameter = d_{bc} =	23.54	in
f _{y-bolt} =	92	ksi
f _{u-bolt} =	120	ksi
net area of bolt = Abolt =	1.410	in ²
max bolt force = $(4*M)/(n_{bolts}*d_{bc}) = T_{bolt} =$	69.7	k
max bolt stress = T_{bolt}/A_{bolt} =	49.4	ksi<=0.75*Fu, OK
CSR =	0.55	ОК

Flange Plate:

flange plate thickness = t _{plate} =	2.00 in
flange plate ultimate stress = $F_{u-plate}$ =	65 ksi
flange plate yield stress = $F_{y-plate}$ =	50 ksi
moment arm between bolts & pipe = $M_{arm} = 1/2*(d_{bc}-d_{pole}) =$	2.27 in
moment in flange = $M_{flange} = T_{bolt} * M_{arm} =$	158.2 in-k
effective plate width = $b_{eff} = p^* d_{pole} / n_{bolts} =$	4.26 in
$S_{flange} = b_{eff} * t_{plate}^2/6 =$	2.842 in ³
$Z_{flange} = b_{eff} * t_{plate}^2/4 =$	4.264 in ³
EIA-G flange plate stress = fplate = Mflange/Zflange =	37.1 ksi<= 0.9*50ksi, OK
CSR =	0.82 OK

(14) 1.5" dia. bolts on 23.54" b.c.

Valmont/Microflect 3575 25th Street SE – P.O. Box 12985 Salem, OR 97302-1190 Phone: 1-800-547-2151 Engineer: AM Reviewed by: JVA

Drilled Pier Foundation Design Calculations

Valmont Order Number: 498211-P1 Customer: Insite Wireless Group Site: CT027, New Canaan Northeast, CT Pole Height: 84 ft (85 ft agl)

Valimont V STRUCTURES Monopole Pier Design Lateral Pressure

 CUSTOMER:
 Insite Wireless Group

 SITE:
 CT027, New Canaon Northeast, CT

 S.O.#
 498211-P1

 DWG NO.
 CT498211FP

 FS
 1.0

 EIA-F = 2 (Default), TIA-H = 1

 Ø FACTOR
 0.75

 GW DEPTH (FT)
 BGS

ultimate lateral pressure = γztan² (45+(φ/2))+2ctan(45+(φ/2)) allow. Lat. Pressure = (ult. Lat. Pressure)/FS

(ref. Bowles, eq. 2-41)

Group	Soil Type	Depth start (ft)	Depth end (ft)	c (psf)	φ (degrees)	γ (pcf)	lateral pressure start (psf)	lateral pressure end (psf)	slope (psf/ft)
		0.5	2.0	0.0	29.0	105.0	0.00	340.44	226.96
		2.0	4.0	0.0	39.0	130.0	519.22	1376.34	428.56
		4.0	10.0	0.0	40.0	130.0	1440.03	4130.40	448.39
		10.0	15.0	0.0	37.0	125.0	3612.97	5498.65	377.14
		15.0	38.0	0.0	40.0	130.0	6286.14	16599.19	448.39
		38.0	43.0	0.0	42.0	135.0	18208.15	20762.02	510.77

valmont 34				
	Mananala Dian Dagig			
Customer:	Insite Wireless Group			
Site:	CT027, New Canaan Northea 498211-P1	st, CT		
Drawing No.	CT498211FP Delta Oaks Group Project	GE020-07085-08 10/16/2020		
Geotechnical Report Water Depth	ft			
Version:	2.10			
Engineer:	AM Chec	ker:JVA		
Pole Geometry Pole Height =	84 ft			
Bolt Circle = Number of Bolts =	54.50 in 28			
Bolt Diameter = Bolt Projection =	1.75 in 9.75 in			
Bolt Length = Bottom Template Diameter =	66.0 in 58.0 in			
Pole Loads				
Factored Moment = Factored Shear =	5367.2 ft-kips 95.91 kips			
Factored Weight = Shear Height =	57.24 kips 56.0 ft			
e (col offset) =	1125.1 in			
Anchor Bolt Load Factored Moment =	64406.10 in-kips	Anchor bolt load divided by 0.94 to match tower rating of 94% leaving the fall zone controlling CSR		
Factored Shear = Factored Weight =	95.91 kips 57.24 kips	Moment: 60541.73/0.94 = 64406.10 in-kips Shear: 90.16/0.94 = 95.91 Kips		
Anchor Bolt Allowship	JALA KIPS	Weight: 53.81/0.94 = 57.24 Kips		
$F_{u} = $	100.0 ksi			
F _y = Area tensile =	75.0 ksi 1.90 in ²			
Soil Properties				
	Ø Ultimate Ø Ultima Pas Pressure Pas Press S	e ZERO = GROUND LINE ope Depth Start Depth End Max Moment Depth		
Level #	psf Start psf/ft	(ft) (ft) End Prss (ft) (Depth_Mmax) Passive Pressure in the rest		
2	519 428.56	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4	1440 448.39 3613 377.14	4 10 4130 (in-kips) (it-kips) 10 15 5499 75282 6274		
5	6286 448.39 18208 510.77	15 38 16599 38 43 20762		
7				
9				
		Radial clearance Rbar-AB db = 2.77		
Footing Concrete Geometry		30		
Cap Height (Above Ground Line) =	0.5 ft	20		
Diameter Pier =	6.5 ft 💌			
Length (below ground) =	31.5 ft 💌			
Concrete Volume =	39.3 yd³	O 20 40 60		
		Inside Rad Vert RB Outside Rad BC or Template		
Summation of shear and passive press	ure forces to find LID: Σ	T _x = 0		
Summation of moments about LID: ΣM_{LTD} OTM =	<u>= RM_{total} - OTM >= 0</u> 7663.3 ft-kips	ResistingSoil FS above allowableRMtotal =79961.04 = RMtotal/OTM		
Shear _{applied} = Weicht =	95.9 kips 57.2 kips	Shear _{resisting} = 97.09 1.01 = resisting V/applied V		
Foundation	n Load Properties	About Load Inflection Point		
Tettel #	Passive Pressure Pas Press Sl	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	0 227	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
3	1440 448	4.0 6.7 5.6 136 112 4.0 10.0 56.2 52.5 923 810 10.0 15.0 117.4 20.6 105 210		
4	3613 377 6286 448	10.0 15.0 117.4 30.6 1285 310 15.0 23.4 344.9 103.8 1455 292 22.4 20.0 20.0 20.0 20.0		
67	10071 448 18208 511	23.4 38.0 -527.6 -94.7 2126 509 38.0 43.0 0.0 0.0 0 0		
Footing Reinforcement	<u>Requirements</u>			
Tie Bar #	5 Ties OF 1 ft =	Seismic Ties? No		
Number of Ties	34 -			
Area_Ties MP_Tc	0.6 in ⁻ 4 in	AREA OF TIE CUT BY VERTICAL SECTION (2*Area of the tie) THICKNESS OF CONCRETE COVER		
MP_Rin MP Asteel	33.7 in 84.3 in ²	RADIUS OF VERT. REBAR TOTAL AREA OF VERT. BARS		
MP_Esteel	29000 ksi	YOUNG'S MODULUS		
EI	1385740180 in ² *lbf	E*I		
S M	1419.2 in ³ 75282 in-kips	REBAR SECTION MODULUS APPLIED MAXIMUM MOMENT @ AT DEPTH ZERO SHEAR ON PIER		
Bars Per Bundle	2			
Vertical Bar #	11	<pre>12 = Min # based on 200*bw*d/ty per ACI 318</pre>		
Bar Count	54 >=	16 = Min # based on area		
¢shear ¢s	0.85 0.9	Strength Reduction Factor for Capacity Of Steel Shear Strength Reduction Factor for Capacity Of Steel Flexure		
MP_Fty_T&V MD_Fty_T&V	60 ksi	Rebar Fty Grade 60 Rebar Fty Allowable Pier Design includes PHI Steel		
FTYDESIGN	53.7 ksi 207 0 liina	calculated Rebar Allowable Pier Design ACT 218		
φVs	5.02 in	Vertical Rebar Horiz Spacing Dignotor of boons		
	5.83 IT 67.375 in	Diameter of vertical rebar circle		
Footing Concrete f _c '	e Requirements 4500 psi	Concrete compression properties		
¢ _{concrete}	0.85 542 kips	Strength Reduction Factor for Capacity Of Concrete Shear Capacity of Concrete ACI 318		
d	5.07 ft	Distance from extreme com fiber to cent of tension reaction group		
1				

valmont V STRUCTURES

Valmont Structures 28800 Ida Street Valley, NE 68084 Phone: 1-402-359-2201 Engineer:Nathan Ross Reviewed by:NAR

Slab Foundation Design Calculations

Valmont Order Number: 498211-P1 Customer: InSite Wireless Group Site: CT027 New Canaan Northeast, CT Pole Height: 84 ft (85 ft agl)

PAD AND PIER DATA ENTRY & CALCULATIONS

SOIL INFORMATION

SOIL PARAMETERS BASED ON: Geotechnical Report GEOTECHINCAL REPORT INFORMATION: Delta Oaks Group Project No. GEO20-07085-08 Rev O, dated 10/16/2020

	REACTIONS				
STRUCTURE TYPE	Pole				
AXIAL:	53.814	KIPS			
GLOBAL SHEAR	91.159	KIPS			
MOMENT	5101.281	FT*KIPS			
TORSION	0.000	FT*KIPS			
BOLT CIRCLE	54.5	IN			
BOLT LENGTH	66	IN			
BOLT PROJECTION	9.75	IN			
ENTE	R FOUNDATIC		· · 、		
CONCRETE SLAB ONLY?	N	(Enter "Y" if the second se	nere is no pier)		
PEDESTAL DIAMETER	6.00	FT			
PEDESTAL SHAPE	CIRCULAR				
PEDESTAL EXT. ABOVE GRADE	0.50	FI			
	5.00				
	28 50	FT			
	3.00	ET			
ENTER REBAR SIZE & QUAN	TITY		REBAR	SPACING	MIN. REBAR
PAD REBAR SIZE (TOP)	7 🗸	•		3 ≤ 13.1 ≤ 17.1	19
PAD REBAR QUANTITY (TOP)	25		TOP	✓	1
PAD REBAR SIZE (BOTTOM)	8 •			3≤8.1≤17	15
PAD REBAR QUANTITY (BOTTOM)	38		BOTTOM	✓	✓
PEDESTAL VERT REBAR SIZE	11			3 ≤ 6 ≤ 16.6	14
	27		VERTICAL	Image: A state of the state	✓
PEDESTAL TIE REBAR SIZE	<u>د م</u>			3 < 8 3 < 22 56	5
	-		TIES	5 2 0.5 2 22.50	, ,
		FIIONS			
ECCENTRICITY LISING WORKING LOADS?		(FOR REV G O		N N	
WORKING LOAD CONVERSION FACTOR	1.35)	
TOP AND BOTTOM REBAR SAME?					
CHECK IF ECCENTRICITY IS WITHIN KERN?					
CHECK DIAGONAL BEARING PRESSURE?	- -	(REQUIRED FO	OR TIA-H. OPTI	ONAL FOR OTH	ER CODES)

SITE INFORMATION					
CUSTOMER: InSi	te Wireless Gro	oup	SITE	CT027 New Canaan	
PROJECT NUMBER:	498211-P1		GITE.	Northeast, CT	
SOIL &	CONCRETE P	ROPERTIES			
ULTIMATE NET SOIL BEARING CAPACITY	30.00	KSF			
WATER DEPTH	0.00	FT			
DEPTH OF FILI	5.00	FT			
BACKFILL WT. ABOVE WATEF	R 110.00	PCF			
BACKFILL WT. BELOW WATEF	47.60	PCF			
CONCRETE WT. ABOVE WATER	۲ 150.00	PCF			
CONCRETE WT. BELOW WATER	87.60	PCF			
COHESION	0.00	KSF			
INTERNAL FRICTION ANGLE	0.00	DEG			
PASSIVE PRESSURE	0.00	KSF			

valmont 🏹

STRUCTURES

SLIDING FRICTION	0.35		
FROST DEPTH	3.40	FT	
CONCRETE DESIGN STRENGTH	4500.00	PSI	

	FOUNDATION CALCULATIONS						
Structural Code:	TIA-222-H		Concrete Code:	ACI 318-14			
Concrete & Soil Weight							
	PEDESTAL VOLUME	155.509	FT^3				
	PEDESTAL WEIGHT	14.505	KIPS				
	SLAB VOLUME	2436.750	FT^3				
	SLAB WEIGHT	213.459	KIPS				
٢	OTAL CONCRETE WEIGHT	227.964	KIPS				
SOIL	WEIGHT ABOVE FOOTING	186.586	KIPS				
Т	OTAL CONCRETE VOLUME	96.01	CU.YDS				

Sliding Resistance			
PASSIVE PRESSURE COEFF	1.00		
PASSIVE PRESSURE TOP	0.24	KSF	
PASSIVE PRESSURE BOTTOM	0.38	KSF	
AVERAGE PASSIVE PRESSURE	0.31	KSF	
SHEAR DEPTH	5.00	FT	
SHEAR AREA	142.50	FT^2	
RESISTING WEIGHT (FACTORED)	413.46	KIPS	
ULT. SHEAR RESISTANCE	188.80	KIPS	
NOMINAL SHEAR RESISTANCE	141.60	KIPS	
SHEAR DEMAND	91.16	KIPS	
CHECK FOR SLIDING	\checkmark		
STRESS RATIO	64.38%		

valmont

STRUCTURES

Overturning Resistance				
FROM WEIGHT	5891.74	FT*KIPS		
FROM PASSIVE PRESSURE	73.48	FT*KIPS		
FROM SOIL WEDGE	0.00	FT*KIPS		
TOTAL RESISTING MOMENT (FACTORED)	5946.86	FT*KIPS		
MOMENT RESISTANCE DEMAND	5876.13010	FT*KIPS		
CHECK FOR OVERTURNING RESISTANCE	\checkmark			
STRESS RATIO	98.81%			

Bearing Resistance (Parallel Direction)		
SLAB AREA	812.2500	FT^2
SECTION MODULUS OF SLAB	3858.1875	FT^3
KERN LIMIT	4.7500	FT
TOTAL WEIGHT (LC 0.9D)	413.4557	KIPS
ECCENTRICITY (LC 0.9D)	10.5276	FT
MAX. TOE PRESSURE (LC 0.9D)	2.2102	KSF
MIN. TOE PRESSURE (LC 0.9D)	-0.8358	KSF
ADJUSTED TOE PRESSURE (IF E > KERN) (LC 0.9D)	3.5075	KSF
TOTAL WEIGHT (LC 1.2D)	551.2743	KIPS
ECCENTRICITY (LC 1.2D)	7.8957	FT
MAX. TOE PRESSURE (LC 1.2D)	2.4393	KSF
MIN. TOE PRESSURE (LC 1.2D)	-0.6068	KSF
ADJUSTED TOE PRESSURE (IF E > KERN) (LC 1.2D)	2.7397	KSF

KERN LIMIT	4.7500	FT	
MOMENT OF INERTIA OF MAT	54979.1719	FT^4	
TOTAL WEIGHT (LC 0.9D)	413.4557	KIPS	
ECCENTRICITY (LC 0.9D)	10.5276	FT	
BEARING AT A	2.1045	KSF	
BEARING AT B	0.5090	KSF	
BEARING AT C	-1.0864	KSF	
BEARING AT D	0.5090	KSE	
	13 7230	FT	
	21 0551	FT	
	38 4999	FT	
	0.000	гт ГТ	
	0.0000	<u>гт</u>	
	38 / 999		
	10 2/00	ст	
	19.2499		
HEIGHT FOR EBG & HDJ	0.0000	FI	
MOI FOR EAJ	22885.8361	F1/4	
MOI FOR EBG & HDJ	0.0000	F1^4	
MOI FOR ABGHDA	22885.8361	F1^4	
DISTANCE TO POINT LOAD FROM EJ	9.6250	FT	
EFFECTIVE LENGTH IN BEARING ALONG AB & AD	27.2235	FT	
VOLUME OF PRESSURE ENV FOR ABD	413.4562	KIPS	
VOLUME OF PRESSURE ENV. FOR GIKH	0.0000	KIPS	
VOLUME OF PRESSURE ENV. FOR BIG & DKH	0.00000000	KIPS	
TOTAL VOL. OF PRESSURE ENVELOPE	413.4562	KIPS	
DIFFERENCE IN WEIGHT	0.0000	KIPS	OK
ADJUSTED BEARING AT A	3.3473	KSF	
ADJUSTED BEARING AT B & D	0.0000	KSF	
MAX. DIAGONAL BEARING PRESSURE (LC 0.9D)	4.5188	KSF	
TOTAL WEIGHT (LC 1.2D)	551.2743	KIPS	
ECCENTRICITY (LC 1.2D)	7.8957	FT	
BEARING AT A	2.2742	KSF	
BEARING AT B	0.6787	KSF	
BEARING AT C	-0.9168	KSF	
BEARING AT D	0.6787	KSF	
INITIAL LOCATION OF NA FROM C	11.5798	FT	
CALCULATED LOCATION OF NA FROM C	15.5257	FT	
LENGTH OF LINE GH	31.0515	FT	
	9 2536	FT	
LENGTH OF BG & HD	6 5433	FT	
LENGTH OF EL	49 5587	FT	
HEIGHT FOR FAI	24 7793	FT	
	4 6268	FT	
	62825 0249	FTA4	
	76 2707	ETA4	
	62682 4742	ETA4	
	12 525	ET	
	12.3223		
EFFECTIVE LENGTH IN BEAKING ALONG AB & AD	20.0000		
VOLUME OF PRESSURE ENV FOR ABD	201.3942	KIPS	
VOLUME OF PRESSURE ENV. FOR GIGH	30.0034	KIPS	
VOLUME OF PRESSURE ENV. FOR BIG & DKH	3.6360	KIPS	
	551.2696	KIPS	01
DIFFERENCE IN WEIGHT	0.0000	KIPS	ОК
ADJUSTED BEARING AT A	2.7290	KSF	
ADJUSTED BEARING AT B & D	0.5096	KSF	
MAX. DIAGONAL BEARING PRESSURE (LC 1.2D)	3.6841	KSF	

valmont

IS ECCENTRICITY WITHIN 45% OF FOUNDATION WIDTH	YES		
MAXIMUM BEARING PRESSURE	4.5188		
ULTIMATE GROSS BEARING PRESSURE	30.3808	KSF	
FACTORED BEARING PRESSURE	22.7856	KSF	
CHECK BEARING CAPACITY	\checkmark		
STRESS RATIO	19.83%		
oncrete One Way Shear Strength			
PAD REBAR SIZE (TOP)	7		
PAD REBAR DIAMETER (TOP)	0.875	IN	
PAD SINGLE REBAR AREA (TOP)	0.601	IN^2	
PAD REBAR SIZE (BOTTOM)	8		
PAD REBAR DIAMETER (BOTTOM)	1.000	IN	
PAD SINGLE REBAR AREA (BOTTOM)	0.785	IN^2	
EFFECTIVE DEPTH (dc)	32.5000	IN	
DISTANCE FROM EDGE OF PAD TO COLUMN FACE	135.0000	IN	
DISTANCE FROM EDGE OF PAD TO DC	102.5000	IN	
BEARING SLOPE (LC 0.9D)	0.3141	KCF	
SHEAR DEMAND (LC 0.9D)	527.3104	KIPS	
BEARING SLOPE (LC 1.2D)	0.1437	KCF	
SHEAR DEMAND (LC 1.2D)	517.5167	KIPS	
SHEAR RESISTANCE (PER ACI 318-14 22.5.5.1)	1118.4253	KIPS	
CHECK ONE WAY SHEAR	✓		
STRESS RATIO	47.15%		

valmont

SIROCIORES				
Concrete Two Way Shear Strength				
ENT COLUMN WIDTH (PER ACI 318-14 8.10.1.3 & 22.6.4.1.2)	63.8083	IN		
MAT EFFECTIVE WIDTH IN BEARING (LC 0.9D)	11.1673	FT		
MAT EFFECTIVE WIDTH IN BEARING (LC 1.2D)	19.0629	FT		
Critical Section Properties				
CRITICAL SECTION LENGTH (b1)	96.3083	IN		
CRITICAL SECTION LENGTH (b2)	96.3083	IN		
CRITICAL SECTION PERIMETER (b0)	385.2334	IN		
CENTROID OF CRITICAL SECTION (c)	48.1542	IN		
SLAB MOMENT (Msc)	5602.6539	FT*KIPS		
POLAR MOI OF CRITICAL SECTION (Jc)	19905595.1779	IN^4		
FRACTION OF MOMENT TRANSFERRED BY FLEXURE	0.6000			
FRACTION OF MOMENT TRANSFERRED BY ECC. OF SHEAR	0.4000			
BEARING SLOPE (LC 0.9D)	0.3141	KCF		
AVG. BEARING PRESSURE AT CENTROID (LC 0.9D)	0.0000	KSF		
BEARING SLOPE (LC 1.2D)	0.1437	KCF		
AVG. BEARING PRESSURE AT CENTROID (LC 1.2D)	0.6917	KSF		
SHEAR FORCE AT CENTROID	71.2197	KIPS		
SHEAR STRESS AT CENTROID	70.7454	PSI		
	004 0464	DCI		
AVAILABLE SHEAR (PER ACI 318-14 22.6.5.2)	201.2461	P5I		
	1			
CHECK TWO WAT SHEAR FOR INTERIOR COLUMN	25.15%			
STRESS RATIO	33.13%			
Critical Section Reinforcement Design				
EFFECTIVE BEAM WIDTH FOR RESISTING FLEXURE	15.0000	FT		
MOMENT TRANSFERRED BY FLEXURE	3361,5923	FT*KIPS		
ACI FACTOR PER TABLE 22.2.2.4.3 (B ₁)	0.8250	-	ß	
AREA OF STEEL REQUIRED	22.9852	IN^2		
DEPTH OF STRESS BLOCK	2.0031	IN		
AREA OF STEEL REQUIRED IN EFFECTIVE WIDTH	21.3445	IN^2		
AREA OF STEEL REQUIRED IN ENTIRE MAT (ONE WAY)	40.5545	IN^2		
AREA OF REBAR STEEL PROVIDED IN BOTTOM	44.8781	IN^2		
CHECK TWO WAY SHEAR REINFORCEMENT	\checkmark			
STRESS RATIO	90.37%			

ad Flexure / Reinforcement Design			
ottom Rebar			
BEARING PRESSURE AT CRIT. SECTION (LC 0.9D)	0.0000	KSF	
FACTORED BEARING MOMENT (LC 0.9D)	4201.6344	FT*KIPS	
BEARING PRESSURE AT CRIT. SECTION (LC 1.2D)	1.1228	KSF	
FACTORED BEARING MOMENT (LC 1.2D)	3969.0390	FT*KIPS	
AREA OF REBAR STEEL PROVIDED IN BOTTOM	29.8451	IN^2	
DEPTH OF STRESS BLOCK	1.3689	IN^2	
NOMINAL FLEXURAL STENGTH	4747.6972	FT*KIPS	
DEPTH TO NEUTRAL AXIS	1.6593	IN	
STEEL STRAIN	0.0558	IN/IN	
STRENGTH REDUCTION FACTOR PER ACI 21.2.2	0.90		
FACTORED FLEXURAL STRENGTH	4272.9275	FT*KIPS	
CHECK BOTTOM REBAR FLEXURAL STRENGTH	\checkmark		
STRESS RATIO	98.33%		
Rebar			
FACTORED MOMENT FROM DEAD WT (LC 0.9D)	1623.1641	FT*KIPS	
FACTORED MOMENT FROM DEAD WT (LC 1.2D)	2164.2188	FT*KIPS	
AREA OF REBAR STEEL PROVIDED IN TOP	15.0330	IN^2	
DEPTH OF STRESS BLOCK	0.6895	IN^2	
NOMINAL FLEXURAL STENGTH	2416.9509	FT*KIPS	
DEPTH TO NEUTRAL AXIS	0.8358	IN	
STEEL STRAIN	0.1137	IN/IN	
STRENGTH REDUCTION FACTOR PER ACI 21.2.2	0.90		
FACTORED FLEXURAL STRENGTH	2175.2558	FT*KIPS	
CHECK TOP REBAR FLEXURAL STRENGTH	\checkmark		
STRESS RATIO	99.49%		

valmont 🏹

0.0018		PER ACI 318-14 (7.6.1.1, 24.4.3.2)
0.0034		PER ACI 318-14 (9.6.1.2)
11.0808	IN^2	
15.0330	IN^2	
✓		
73.71%		
29.8451	IN^2	
✓		
37.13%		
3.0000	IN	MIN. CLEAR SPACING PER ACI 318-14 (25.2.1) IS SMALLER OF 1 IN, 1 REBAR DIA. OR 4/3 * MAX. COARSE AGG. DIA.
		USING 3IN HERE AS MIN.
18.0000	IN	PER ACI 318-14 (8.7.2)
13.0885	IN	
\checkmark		
8.0541	IN	
\checkmark		
	0.0018 0.0034 11.0808 15.0330 ✓ 73.71% 29.8451 ✓ 37.13% 3.0000 18.0000 13.0885 ✓ 8.0541 ✓	0.0018 0.0034 11.0808 IN^2 15.0330 IN^2 ✓ 73.71% 29.8451 IN^2 ✓ 37.13% 3.0000 IN 18.0000 IN 13.0885 IN ✓ 8.0541 IN ✓

Pad Rebar Development Length Requirements per ACI 31	18-14 25.4.2		
Modification Factors per ACI 318-14 Table 25.4.2.4			
NORMAL VS LIGHT WEIGHT	1		
EPOXY COATING	1.0		Adjust per ACI for epoxy coated rebar if used.
SIZE (TOP)	0.8		
SIZE (BOTTOM)	1.0		
CASTING POSITION (TOP)	1.3		
CASTING POSITION (BOTTOM)	1.0		
SPACING / COVER (TOP)	2.5		
SPACING / COVER (BOTTOM)	2.5		
EXCESS REINFORCEMENT RATIO (TOP)	0.737		PER ACI 318-14 25 4 10 1
EXCESS REINFORCEMENT RATIO (BOTTOM)	0.371		FERACISIO 14 25.4.10.1
DEVELOPMENT LENGTH DEMAND (TOP)	17.9984	IN	
DEVELOPMENT LENGTH DEMAND (BOTTOM)	12.0000	IN	
LENGTH AVAILABLE (TOP & BOTTOM)	132.0000		
CHECK LENGTH (TOP)	\checkmark		
CHECK LENGTH (BOTTOM)	\checkmark		

Pedestal Design			
Pedestal Min. Rebar & Spacing Requirements			
PEDESTAL VERT. REBAR SIZE	11		
PEDESTAL VERT. REBAR DIAMETER	1.410	IN	
PEDESTAL VERT. SINGLE REBAR AREA	1.561	IN^2	
PEDESTAL VERT. TOTAL REBAR AREA PROVIDED	42.159	IN^2	
MIN. REBAR RATIO FOR PEDESTALS	0.005		PER ACI 318-14 16.3.4
PEDESTAL VERT. TOTAL REBAR AREA REQUIRED	20.358	IN^2	
CHECK PIER VERT. REBAR AREA	\checkmark		
REBAR CAGE DIAMETER (TO CENTER OF VERT. BARS)	63.590	IN	
PEDESTAL VERT. REBAR CLEAR SPACING	5.989	IN	
CHECK PIER VERT. REBAR SPACING	\checkmark		
PEDESTAL TIE REBAR SIZE	4	IN	
PEDESTAL TIE REBAR DIAMETER	0.500	IN	
PEDESTAL TIE REBAR AREA	0.196	IN^2	
PEDESTAL TIE QUANTITY PROVIDED	10		
MAX. TIE SPACING	22.560		PER ACI 318-14 25.7.2
MIN. TIE QUANTITY REQUIRED	5.000		INCLUDES 1 ADDITION AT THE TOP BELOW THE FIRST TIE
CHECK THE SPACING & QUANTITY	•		
Pedestal Compression Capacity			
MAX. AXIAL COMPRESSIVE STRENGTH	11144.508	KIPS	PER ACI 318-14 Table 21.2.1 & 22.4.2.2
		_	
CHECK PEDESTAL COMPRESSION CAPACITY	v		
STRESS RATIO	0.48%		
Pedestal Shear Capacity			
CROSS SECTION DIA. Bw	72.000	IN	
I EXTREME COMP. FIBER TO CENTROID OF LONG. REINF.	57.600	IN	PER ACI 318-14 22.5.2.2
FACTOREDCONCRETE SHEAR CAPACITY Vc	419.602	KIPS	PER ACI 318-14 22.5.6.1 - PHI = 0.75
CHECK CROSS SECTION DIMENSIONS	OK		PER ACI 318-14 22.5.1.2
SHEAR REINFORCEMENT REQUIRED	0.000	KIPS	PER ACI 318-14 22.5.10.1
SPACING OF SHEAR REINFORCEMENT REQUIRED	NA	IN	PER ACI 318-14 22.5.10.5.3
CHECK PEDESTAL SHEAR CAPACITY	\checkmark		
STRESS RATIO	21.73%		

Pedestal Moment Capacity			
PEDESTAL APPLIED MOMENT	5602.654	FT*KIPS	
PEDESTAL FACTORED MOMENT CAPACITY	5605.626	FT*KIPS	
CHECK PEDESTAL CAPACITY	\checkmark		
STRESS RATIO	99.95%		
Pedestal Vertical Rebar Development Length Requirement	ts		
NORMAL VS LIGHT WEIGHT	1		
EPOXY COATING	1.0		
CASTING POSITION	1.0		
SIZE	1.0		
SPACING COVER	2.5		
CONFINING REINFORCEMENT (COMPRESSION)	1.0		PER ACI 318-14 TABLE 25.4.9.3
CONFINING REINFORCEMENT (HOOKS)	1.0		PER ACI 318-14 TABLE 25.4.3.2
BAR SIZE & CLEAR COVER	0.7		PER ACI 318-14 TABLE 25.4.3.2
EXCESS REINFORCEMENT RATIO	0.4829		PER ACI 318-14 25.4.10.1
DEVELOPMENT LENGTH DEMAND (TENSION)	18.27	IN	PER ACI 318-14 25.4.2
DEVELOPMENT LENGTH DEMAND (COMPRESSION)	12.26	IN	PER ACI 318-14 25.4.9.2
DEVELOPMENT LENGTH DEMAND (HOOK)	11.28	IN	
LENGTH AVAILABLE IN PEDESTAL	63.00	IN	
CHECK VERT BAR IN PEDESTAL (TENSION)	✓		
CHECK VERT BAR IN PEDESTAL (COMPRESSION)	\checkmark		
LENGTH AVAILABLE IN PAD	33.00	IN	
CHECK VERT BAR IN PAD (TENSION)	✓		
CHECK VERT BAR IN PAD (COMPRESSION)	✓		
CHECK HOOK	\checkmark		

4071.504	IN^2	Аср
226.195	IN	
313.508	FT*KIPS	PER ACI 318-14 22.7.4
N		
72.000	IN	
57.600	IN	
205.774	IN	
3369.554	IN^2	
2864.121	IN^2	
8.250	IN	
681.659	FT*KIPS	
511.244	FT*KIPS	
ОК		PER ACI 318-14 22.7.7.1
✓		PER ACI 318-14 22.7.6
0.00%		
56.250	IN	
49.568	IN	NOTE: ASSUMES EMBEDMENT PLATE IS 2IN ABOVE
18.269	IN	BOTTOM OF AB.
✓		
9.090	IN	
✓		
	4071.504 226.195 313.508 N 72.000 57.600 205.774 3369.554 2864.121 8.250 681.659 511.244 OK ✓ 0.00% 56.250 49.568 18.269 ✓ 9.090 ✓	4071.504 IN^2 226.195 IN 313.508 FT*KIPS N 72.000 IN 57.600 IN 205.774 IN 3369.554 IN^2 2864.121 IN^2 8.250 IN 681.659 FT*KIPS 511.244 FT*KIPS 511.244 FT*KIPS 511.244 FT*KIPS 511.244 IN 56.250 IN 49.568 IN 18.269 IN ✓ 9.090 IN ✓

MAXIMUM FACTOR		NT OF A	CIRCULAR SECTION
	-53 814	KIPS	
	551014		
LIMITING COMPRESSIVE STRAIN	0.003	IN/IN	
REINFORCEMENT YIELD STRAIN	0.00207	IN/IN	
PIER DIAMETER	6.00	FT	
VERTICAL REBAR DIAMETER	1.410	IN	
VERTICAL REBAR QUANTITY	27		
VERTICAL REBAR AREA	1.5615	IN^2	35
TIE REBAR DIAMETER	0.500	IN	
CONCRETE CLEAR COVER	3.000	IN	0.9 0
REBAR CAGE DIAMETER (TO CENTER OF VERT. BARS)	63.590	IN	0 0 23 0 0
CONCRETE COMPRESSIVE STRENGTH	4500	PSI	
DISTANCE FROM EXTREME EDGE TO NA	13.0491	IN	
ACI FACTOR PER TABLE 22.2.2.4.3 (B ₁)	0.8250		
DEPTH OF EQUIVALENT STRESS BLOCK	10.7655	IN	0.5 0
DISTANCE FROM CENTROID TO NA	22.9509	IN	
ANGLE FROM CENTROID TO COMPRESSION ZONE	45.4960	DEG	
AREA OF CONCRETE IN COMPRESSION	381.1935	IN ²	
DISTANCE FROM CENTROID OF CONCRETE IN COMP TO	20 6012	INI	0 -1.5
	1422 2209		0 .2 0 V
	-1268 /16	KIPS	
	-1308.410	KIDS	
	-1/22 220	KIDS	Series1
SUM OF AXIAL FORGES	-1422.230	KIF J	
SUM OF FORCES IN CONCRETE	0.000	KIPS	ОК
MOMENT OF CONCRETE IN COMPRESSION	3508.303	FT*KIPS	
TOTAL REINFORCEMENT MOMENT	2720.171	FT*KIPS	
NOMINAL STRENGTH OF COLUMN	6228.474	FT*KIPS	
TENSILE STRAIN IN EXTREME LAYER OF REINFORCEMENT	-0.0126	IN/IN	
ACI STRENGTH REDUCTION FACTOR PER ACI 318-14 21.2.2.	0.900		
FACTORED MOMENT STRENGTH OF COLUMN	5605.626	FT*KIPS	

Valmont W **STRUCTURES** ASSOCIATE DRAFTER: VINOD KUMAR

COMMUNICATION POLE RECORD DRAMMGS

INDEX OF DRAWINGS							
DESCRIPTION DRAWING # DESCRIPTION DRAWIN							
POLE ASSEMBLY	DD7501Z	ANCHOR BOLT CAGE ASSEMBLY	CC16924				
SECTION ASSEMBLY	DD7501A	CAGE PLATE	BD38523				
SECTION ASSEMBLY	DD7501B	SAFETY CLIMB ASSEMBLY	ABLD080				

Valmont Industries, Inc. 7002 North 288th Street P.O. Box 358 Valley, NE 68064-0358 USA Ph: 402-359-2201 Fax: 402-359-4025

INSITE WIRELESS GROUP VALMONT ORDER# 498211-P1 SITE: CT027, NEW CANAAN NORTHEAST, CT POLE HEIGHT: 84'-0"

SEE FABRICATION DRAWINGS FOR ADDITIONAL DETAILS

ORDER NO. 498211

NOTES:

- COMPONENT IDENTIFICATION: TAG LOCATIONS ARE INDICATED BY CALLOUTS ON DRAWING. SUBSEQUENT DIGITS WILL INDCATE SEQUENCE MANUFACTURED 1.
- ASSEMBLY AND ERECTION GUIDELINES: SEE VALMONT COMMUNICATION POLE INSTALLATION GUIDELINE 1012. 2.
- <u>SLIP JOINT JACKING FORCE:</u> MINIMUM = 52,322# MAXIMUM = 90,000# З.
- 4. <u>FINISH:</u> GALVANIZED PER ASTM A-123

PROPRIETARY INFORMATION

THESE DOCUMENTS, DRAWINGS, AND/OR CALCULATIONS AND ALL INFORMATION RELATED TO THEM ARE THE EXCLUSIVE PROPERTY AND THE PROPRIETARY INFOR-MATION OF VALMONT INDUSTRIES, INC. AND ARE FURNISHED SOLELY UPON THE CONDITIONS THAT THEY WILL BE RETAINED IN STRICTEST CONFIDENCE AND SHALL NOT BE DUPLICATED, USED, OR DISCLOSED IN WHOLE OR IN PART FOR ANY PURPOSE, IN ANY WAY, WITHOUT THE PRIOR WRITTEN PERMISSION OF VALMONT INDUSTRIES, INC.

				E	ЗI sн		OF NG SE	MAT Q.=1	ERIAL For all	_)		
		VALMC PART NU	INT IMBER					UNIT WEIGHT (LBS)	QTY PER STR			
		DD750	SEC	TIC	ON AS	SEMB	LY			12231	1	
		DD750	1B	SEC	ΤIC	ON AS	SEMB	LY			2868	1
		AC142	22	HAN[ЭΗС	OLE C	OVER	(9 X	24 HV)		9	4
		AC141	98	HAN	ЭНС	OLE C	OVER	(6 X	18)		6	12
		J4277	84	POLE	Ξ (CAP					110	1
							DES	CRIPT	ION			
		PART	НАВГ	JWAR	F	ST7F	(TN)				ASTM	QTY
		NUMBER	B			0120	(11)	GEN	FRAI	FINISH		STR
			DIA	LON	IG	NUT	WSHR				SPEC	
		161647	0.38	1.0	00			SCREW		PL		18
		164035	0.25	1.5	50			SCREW		SS	A410	28
		1003927	1.50	5.0	00					HDGV	A307	4
		133022				1.50		DH,LO	ICK	HDGV	A563	4
		141182					1.50	CS,FL	AT	HDGV	F436	4
		2136A						STEP	KIT	HDGV	-	61
		* PER A	STM /	4325	-9	1C, E	EXCLL	DE SE	CTIONS	6.3 8	9.2	
NG	DISTRIBUTIO	N PED	<u>4982</u>	11_	<u>C</u> T	027	NE	W_CA	NAAN_	NORTH	HEAST,	_ <u>C</u>
		DWG S	IZE <u>C</u>)	С	LASS	CODE	E (1)	<u>1</u> C	LASS I	NO. (3)	<u>450</u>
		1		DR	AWN	N ENG	3	DATE	SCALE			
					<u>'K7</u>	' JA7	0 11	/18/20) NONE	4		
					Р	.A. UI	<u>1K</u>	<u>SH0</u>	<u>P CHK</u>		_	-
						OTHEF	SPEC	IFICATI	ONS	 vai	mont	Ţ
										4		
СНК ХУ	REVISION	DESCRIPTI	ON	№	ATE	ERIAL	THICK	(NESS	<u>WEIGHT</u> 15.393#			
	CUSTOMER	3						DESCRIF	PTION		DWG	<u>NO.</u>
INSITE WIRELESS GROUP					84.0' POLE					י/ טט ן	5U1∠	

								.		
LOCATION SYMBOL KEY		SHAFT INF	O (MEASU	RED ACF	ROSS FL	ATS)			REV	
LOCATION	SHAPE	LENGTH	BASE OD	TOP OD	TAPER	ТНК	ASTM			
V REFERENCE	18-SIDED	51'-0.00	" 48.00"	30.09	0.351	0.500"	A572		498	211

PAGE 1 OF 2

FROM									RIFNT	ATIO	NS								
SMALL																			MOUNT
END	10°	30°	50*	70°	90°	110°	130°	150°	170°	190°	210°	530 .	250*	270°	290°	310°	330.	350°	
5'-0"									4015004							AC15304			90
6'-0"			AC15304			AC15304			AC15304										90
6'-6*														AC15304					90
7'-0*					4015004					AC15304					4015004			AC15304	90
8'-0"					AC13304			AC15304							AC13304				90
8'-6"		AC15304									AC15304								90
9'-0"				AC15304			AC15204										AC15204		90
10'-0"	AC15304						HC13304						AC15304				HC13304		90
10'-6*																AC15304			90
11'-0"			AC15304			4015004			AC15304										90
12'-0"						AC15304								AC15304					90
12'-6"										AC15304								AC15304	90
13'-0"					AC15304										AC15304				90
13'-6"		4015204						AC15304			4015004								90
14'-6"		AC13304		AC15304							AC13304								90
15'-0"							AC15304										AC15304		90
15'-6"	AC15304												AC15304						90
16'-0"			AC15304						AC15304							AC15304			90
17'-0"			HCIDDOT			AC15304			HCI5504										90
17'-6*														AC15304					90
18'-0'					4015004					AC15304					4015004			AC15304	90
19'-0"					AC15304			AC15304							AC15304				90
19'-6"		AC15304									AC15304								90
20'-0"				AC15304															90
20'-6"	AC15204						AC15304						AC15204				AC15304		90
21'-6*	HCIUU												HCIUU			AC15304			90
22'-0 '			AC15304						AC15304										90
22'-6"						AC15304								4015001					90
23'-0"	-			-					+	AC15304	-			HU15304				AC15304	90
24'-0"					AC15304										AC15304				90
24'-6"								AC15304											90
25'-0'		AC15304		AC15204							AC15304								90
26'-0"				nc13304			AC15304										AC15304		90
26'-6'	AC15304												AC15304						90
27'-0"			101500						101500							AC15304			90
28'-0"			AC15304			AC15304			AC15304										90
28'-6'														AC15304					90
29'-0"										AC15304								AC15304	90
29'-6*					AC15304			4015004							AC15304				90
30'-6"		AC15304						MU10304			AC15304								90
31'-6"				AC15304					AC15304								AC15304		90
32'-0"	AC15304						AC15304						AC15304						90

valmont 🂎

	RRANCH MOUNT LAYOUT																		
FROM												_ ! !							
SMALL	10*	30+	50*	70*	900	110*	130*	150*	1700	1900	210*	230.	2500	270*	290.0	310*	330.	3500	MOUNT
	10	50	50	AC15311	70	110	150	150	170	AC15311	210	230	230	270	L 70	AC15311	550	550	60
1'-0"						AC15311								AC15311				AC15311	60
2'-0"		AC15312			AC15312				AC15312						AC15312				70
2'-6"								AC15313											80
3'-0"	AC15304		AC15313					AC15304			AC15313					AC15304	AC15313		90
5'-6"				AC15304															90
6'-0"						AC15304								AC15304					90
7'-0"			AC15304							AC15304				HC13304				AC15304	90
7'-6"					AC15304			AC15204					AC15204		AC15304				90
8'-6"		AC15304						HC15504			AC15304		HC13304						90
9'-0"				AC15304			4015004							4015004			4015004		90
10'-0"	AC15304						AC15304							AC15304			AC15304		90
10'-6"									AC15304										90
11'-0"			AC15304			AC15304										AC15304			90
12'-6*					AC15304					AC15304			AC15304					AC15304	90
13'-0"		AC15304					AC15304								AC15304				90
14'-0"		HC10004						AC15304											90
14'-6"														AC15304			AC15204		90
15'-6"				AC15304							AC15304						HC13304		90
16'-0"	1015001					AC15304										AC15304			90
16'-6"	AC15304		AC15304				AC15304												90
17'-6"														AC15304					90
18'-0"					AC15304					AC15304			AC15304		AC15304			AC15304	90
19'-0"								AC15304											90
19'-6"		AC15304		AC15304							AC15304								90
20'-6"				11010001			AC15304										AC15304		90
21'-0"	AC15304												AC15304			AC15204			90
25,-0,			AC15304						AC15304							HC13304			90
22'-6"						AC15304								4015004				4015004	90
23'-6"					AC15304									AC15304				AC15304	90
24'-0"																AC15304			90
24'-6"		AC15304						AC15304		AC15304									90
25'-6"				AC15304							AC15304						101505		90
26'-0*					AC15304												AC15304		90
27'-0"	AC15304						AC15304						AC15304		AC15304				90
27'-6"			AC15304			AC15304			AC15304							AC15304			90
28'-6"														AC15304					90
29'-0"					AC15204					AC15304					AC15204			AC15304	90
30'-0"					HC15504			AC15304							HC15504				90
30'-6"		AC15304		AC15201							AC15304								90
31'-6"				HC13304			AC15304										AC15304		90
32'-0"	AC15304												AC15304			101505			90
32'-6'			AC15304			AC15304			AC15304							HU10304			90
33'-6"											AC15304								90
34'-0"					AC15304													AC15304	90
35'-0"										AC15304									90
35'-6"		AC15304						AC15304									AC15304		90
36'-6"				AC15304							AC15304								90
37'-0"	AC1520.4						AC15304						AC1520.4		AC15304				90
376"	LAC12304				I	L			L		I		AC15304	L	I	L	L	I	1 30

valmont	₹

Γ

HOLE COORDINATES (INCHES)						
HOLE NQ	X-COORD	Y-COORD				
1	27.25	0.00				
2	26.57	6.06				
3	24.55	11.82				
4	21.31	16.99				
СJ	16.99	21.31				
6	11.82	24.55				
7	6.06	26.57				
8	0.00	27.25				

DU	PLICATE	DRAW	BCP9948	002725				
					DWG SIZE <u>E</u>	CLAS		
					•	DRAWN E		
						VK / J.		
						— P.A.		
						<u>OTH</u>		
REV		REV	СНК			MATERIA		
ID	DATE	BY	BY	REVISION DE	SCRIPTION	S-70		
OR	DER NO.	CUSTOMER						
498	3211 INSITE WIRELESS GROUP							

NOTES: 1. BOLT CIRCLE DIAMETER = 54.50" (EQUALLY SPACED). Ø58.00"

-ø1.81" (28 REQD)

-Ø48.00"

HOLE COORDINATES (INCHES)							
HOLE NUMBER	X-COORD	Y-COORD					
1	27.25	0.00					
2	26.57	6.06					
3	24.55	11.82					
4 21.31 16.99							
5	21.31						
6	11.82	24.55					
7	6.06	26.57					
8	0.00	27.25					
HOLE &	SLOT SIZES (INCHES)					
TEMPLATE	= Ø1.81						
BOLT CIRCLE (INCHES)							
	54.50						

INSTALLATION GUIDELINES

- 1. UPON ARRIVAL AT THE JOB SITE, THE TEMPLATES AND ANCHOR BOLTS SHOULD BE CHECKED FOR BENDING AND ANY DAMAGE THAT MIGHT DISTURB THE BOLT PATTERN. THE ANCHOR BOLT THREADS SHOULD BE CHECKED FOR DAMAGE AND WITH A NUT TO ENSURE THAT THEY CAN BE TURNED UP AND DOWN THE FULL LENGTH OF THE ANCHOR BOLT THREADS.
- 2. THE BOLT CIRCLE AND ANCHOR BOLT DIMENSIONS MUST BE CHECKED TO VERIFY THEY MATCH THE FOUNDATION DESIGN AND THE ANCHOR BOLT CAGE ASSEMBLY DRAWING PRIOR TO INSTALLATION.
- 3. THE ORIENTATION OF THE ANCHOR BOLTS, IN RELATION TO THE DESIRED ANTENNA AND BASE PORT AZIMUTHS, MUST BE CHECKED CAREFULLY USING DATA FROM THE VALMONT DRAWINGS AND THE OWNER'S PLANS.
- CARE MUST BE TAKEN TO PLACE THE ANCHOR BOLTS VERTICALLY AND TO NOT 4. DISTURB THEIR POSITION WHILE POURING CONCRETE.
- IF WASHERS ARE INCLUDED IN THE BILL OF MATERIAL, USE ONE ABOVE AND ONE 5. BELOW THE BASE PLATE ON EACH ANCHOR BOLT.

84.0'	POLE.	SITE
04.0	I OLL,	JTIL

DU	PLICATE	C	DRAW	ΙI
		_		
				\vdash
REV ID	DATE		REV BY	C
0 <u>R</u> 498	<u>DER NO.</u> B211			

DATE	DRAWN	CHECKED	SCALE						
11/18/20	VK7		CNC						
SHIP FLAG (1) CLASS CODE (1) CLASS NO (3) 35 36									
		valmo	nt 🍞						
		PART	NO.						
WEIGHT(7)	108	J427	783						

BILL OF MATERIAL (ship seq=0)									
VALMONT Part no	QTY PER ASSY								
J427783	1								
AC15877	45° BRANCH MOUNT	Э							
AC15304	1.25" NUT (BLACK)	1							
I <u>CH_CAP_36.09"_OD_PLATE</u> code (1) <u>9</u> 99 class no. (3) <u>4</u>									
DATE 07/14/	20 NONE								
		1 R/2							
SPECIFIC	Vaimon								
<u>,</u> W-24,									
0.375"	DI WEIGHI I								
	110#								
DESC	110# RIPTION	G <u>NO</u> .							

ITEM ID LENGTH BASE OD TOP OD THK MATL 1 51'-0.00" 48.00" 30.09" 0.500" A572 65 KSI 2 37'-10.00" 32.29" 19.00" 0.250" A572 65 KSI	498211 498211-P1RevH NONE 12/14/20 JA70 DESCRIPTION INSITE WIRELESS GROUP 84.0' POLE, SITE: CT027, NEW CANAAN NORTHEAST, CT	lmont 🏹
SECTION INFORMATION	ORDER PROJECT FILE ID SCALE DATE ENGR	
0'- 0.00" (TOP OF BASE PLATE)		
3'- 0.00"		
7'- 0.00"		

GENERAL NOTES: DRILLED PIER

1. Prior to excavation, check the area for underground facilities. 2.All reinforcing shall be deformed bars conforming to ASTM A615 Grade 60 (60,000 psi min. yield) and shall be provided by the foundation contractor. 3.All concrete shall have a minimum compressive strength of 4500 psi @ 28 days. The requirement for the concrete shall be as given in the ACI "Building Code Requirements for Reinforced Concrete", ACI 318, the latest edition. 4. Trowel top of pedestal smooth. 5.Steel reinforcement and concrete should be placed immediately upon completion of the pier excavations. Contractor shall not allow a cold joint to form in the pier. Portion above grade should be formed. Temporary casing may be required to prevent caving prior to concrete placement. 6.Ground water was not encountered below grade during boring. 7.Concrete is assumed to weigh 150 pcf. 8.Estimated concrete volume = 39.4 cubic yards total. 9.Design Based on the following loads from installation drawing for order No: 498211-P1. Factored Moment = 60542 in-kips Factored Shear = 90.16 kips Factored Download = 53.81 kips

10. Reference: Delta Oaks Group, Project GE020-07085-08, 10/16/2020

11. Concrete shall be placed using a tremie to the depth indicated on the 12. Anchor bolts to be ASTM A615, Gr. 75 ksi.

13. Ref Soils Report for installation recommendations.

14. Foundation is designed to account the fall zone radius.

eel S	chedule	Total	Total	
ebar	Rebar	Bar Weight	Weight	BAR
size	Spacing	lb/ft	(lb)	Qty
#11	EQUAL	5.31	9032	54
#5	12"	1.04	701	34
FOR (COMPLETE FOU	NDATION INSTALI	LATION =	9733#

TOTAL STEEL WEIGHT FOR COMPLETE FOUNDATION INSTALLATION =

TABL	E Ref. ACI 318
NCRETE	REBAR
RENGTH	OVERLAP
PSI	INCHES
1500	54
1500	18

NOTES: Where vertical bars are to be spliced, splices should be staggered.

IES	HOOK GEOMETRY***									
	6db* **	4db*								
	Min Length	Nominal Diameter								
: Reqd	N/A	N/A								

1	SIZE - B	Drawing No.C	T498211FP	Sheet 1 of 1		
	Date:	09/11/20	Site: CT027, New Ca	naan Northeast, CT		
1/16"	Check:	JVA	Customer: Insite Wireless Group			
1/8"	By:	AM	DRILLED PIER FOUNDA	TION LAYOUT		
NOTED INCHES	valm		3575 25TH STREET SE SALEM, OR 97302 MAIN (503) 363-9267 (800) 547-2151			

General Notes: Slab Foundation

- 1. Prior to excavation, check the area for underground facilities.
- 2.All reinforcing shall be deformed bars conforming to ASTM A615 Grade 60 (60,000 psi min. yield) and shall be provided by the foundation contractor.
- 3.All concrete shall have a minimum compressive strength of 4500 psi @ 28 days. The requirement for
 - the concrete shall be as given in the ACI "Building Code Requirements for Reinforced Concrete", ACI 318, the latest edition.
- 5.Concrete shall be placed against undisturbed soil to the depth indicated
 - on the foundation drawing. The portion above grade shall be formed. If
 - an area is excavated beyond the limits shown, this volume shall be
 - filled with concrete or formed. After the forms are removed, the excess
 - excavation shall be replaced and compacted.
- 6.Ground water was not considered in design.
- 7.Foundation design based on Ultimate vert. bearing pressure of 30000 psf.
- 8.Concrete is assumed to weigh 150 pcf.
 - 96.01 cubic yards total.
- 10.Design Based on the following loads from installation drawing for order No: 498211-P1.

Overturning Safety Factor = 1.01 Max. Toe Bearing Pressure = 4.52 ksf

- 11. Backfill should be compacted to a density of 110 pcf.
- 12. Anchor bolts to be ASTM A615 Gr75
- 13. Reference: geotechnical report Delta Oaks Group Project No. GEO20-07085-08 Rev O,

	Reinforcem	Reinforcement Steel Schedule										
	Sym	Туре	Rebar	Rebar	Weight	Qty						
			Size	Spacing	(lbs)							
Cap Ties	1	С	#4	Equal	124	10						
ap Vertical Rebar	2	В	#11		1410	27						
Slab Top Steel	3	Α	#7	13.96 in	2862	50						
lab Bottom Steel	4	Α	#8	9.05 in	5682	76						

Total Steel Weight for Complete Foundation Installation = 10078

Grade 60 Rebar										
Size	Wt/ft	6db (in)	d* (in)	d** (in)						
#3	0.38	2.25	2.25	1.50						
#4	0.67	3.00	3.00	2.00						
#5	1.04	3.75	3.75	2.50						
#6	1.50	4.50	4.50	4.50						
#7	2.04	5.25	5.25	4.25						
#8	2.67	6.00	6.00	6.00						
#9	3.40	6.77	9.50	-						
#10	4.30	7.62	10.75	-						
#11	5.31	8.46	12.00	-						

* Refers to ACI standard hook detail chart

** Refers to ACI stirrup hook detail chart

Rebar Lap	Rebar Lap Splice										
Rebar	Rebar	Specified	0	verlap (inche	es)						
Size	Grade	Concrete	Vert &	Bottom	Тор						
		Strength	Ties	Horiz	Horiz						
#3	60	4500 psi	13	15	21						
#4	60	4500 psi	18	20	29						
#5	60	4500 psi	22	26	36						
#6	60	4500 psi	26	33	46						
#7	60	4500 psi	38	45	62						
#8	60	4500 psi	43	59	82						
#9	60	4500 psi	49	74	104						
#10	60	4500 psi	58	95	132						
#11	60	4500 psi	71	116	163						

Splicing is an alternative to specified material listed in rebar schedule. Lap Splice may be used on ties when Seismic Hook not required.

Date	By/Ck		mon		8800 Ida Sti	reet			
		vall		IL 🚺 va	ally, NE 680	64			
			0	STRUCTURES 1-	-402-359-22	201			
		By:	By: Nathan RoseSlab Foundation Layout						
		Check:	NAR	Customer: InSite	e Wireles	s Group			
		Date:	11/24/20	Site: CT027 New	v Canaan	Northeast, CT			
S.O. 498211	-P1	SIZE - B	Dwg No. O	CT498211FS		Sheet 1 of 1			

Top Plate: three 6' branches and one 5' top branch

									10								10	29'	90
				10										10				29'-6"	90
							10											30'	90
	10									10								30'-6"	90
			10															31'	90
						10										10		31'-6"	90
10												10						32'	90
															10			32'-6"	90
		10			10			10										33'	90
										10								33'-6"	90
																	10	34'	90
				10														34'-6"	90
									10									35'	90
							10											35'-6"	90
	10															10		36'	90
			10							10								36'-6"	90
						10								10				37'	90
10												10						37'-6"	90
10												10			10			38'	90
								12										38'-6"	90
		12			12			12										39'	90
		.~			.~								12					30'-6"	90
									10				12				12	40'	90
				10					10					10			12	40'-6"	90
				10			12							10				40-0	90
	10						12			12								41'-6"	90
	10		12							12								42'	90
			12			10										10		42'-6"	90
10						10						10				10		43'	90
10												10			12			43'-6"	90
		12						12							12			44'	90
		12			12			12										44'-6"	90
					12								12					45'	90
									12								12	45'-6"	90
				12										12				46'	90
							12											46'-6"	90
	12						12			12								47'	90
			12															47'-6"	90
						14										12		48'	90
12												12						48'-6"	90
															14			49'	90
		12						12										49'-6"	90
					12		1			1			1					50'	90
									1				14					50'-6"	90
									14								12	51'	90
				14										12				51'-6"	90
							12		1				1	_				52'	90
	12									12			1					52'-6"	90
			12		1	İ	l i		1				1					53'	90
						12										12		53'-6"	90
12												12						54'	90
															14			54'-6"	90
		14						14										55'	90
					14													55'-6"	90
													14					56'	90
									12								14	56'-6"	90
				14										14				57'	90
							14											57'-6"	90
	14									14								58'	90
			14															58'-6"	90
					1				1										

						14									14		59'	90
14											14						59'-6"	90
														14			60'	90
		14						14									60'-6"	90
					14												61'	90
												14					61'-6"	90
									14							14	62'	90
				14									14				62'-6"	90
							14										63'	90
	14									14							63'-6"	90
																	64'	90
			14					14							14		64'-6"	90
12						12					12						65'	90

www.cciproducts.com extending wireless performance

SPECIFICATIONS

Multi-Band Twelve-Port Antenna

Electrical

Ports	4 × Low Band Ports for 698-896 MHz					
Frequency Range	698-806 MHz	824-896 MHz				
Gain ¹	15.6 dBi	16.4 dBi				
Gain (Average) ²	14.6 dBi	15.5 dBi				
Azimuth Beamwidth (-3dB)	73°	64°				
Elevation Beamwidth (-3dB)	9.5°	7.9°				
Electrical Downtilt	2° to 12°	2° to 12°				
Elevation Sidelobes (1st Upper)	<-18 dB	<-17 dB				
Front-to-Back Ratio @180°	> 35 dB	> 35 dB				
Front-to-Back Ratio <u>+</u> 20°	> 32 dB	> 32 dB				
Cross-Polar Discrimination at Peak	> 25 dB	> 25 dB				
Cross-Polar Discrimination at Sector ²	13.2 dB	9.7 dB				
Cross-Polar Port-to-Port Isolation	> 25 dB	> 25 dB				
Voltage Standing Wave Ratio (VSWR)	< 1.5:1	< 1.5:1				
Passive Intermodulation (2×20W)	≤ -153 dBc	≤ -153 dBc				
Input Power Continuous Wave (CW)	500 watts	500 watts				
Polarization	Dual Linear 45°	Dual Linear 45°				
Input Impedance	50 ohms	50 ohms				
Lightning Protection	DC Ground	DC Ground				
Peak gain across sub-bands						

¹Peak gain across sub-bands. ²Electrical specifications follow document "Recommendation on Base Station Antenna Standards" (BASTA) V9.6.

Ports		$8 \times High Band Ports$	for 1695-2400 MHz	
Frequency Range	1695-1880 MHz	1850-1990 MHz	1920-2180 MHz	2300-2400 MHz
Gain	18.0 dBi	18.1 dBi	18.3 dBi	18.2 dBi
Gain (Average) ²	16.7 dBi	17.1 dBi	17.4 dBi	16.8 dBi
Azimuth Beamwidth (-3dB)	70°	66°	66°	60°
Elevation Beamwidth (-3dB)	5.7°	5.1°	4.8°	4.1°
Electrical Downtilt	0° to 8°	0° to 8°	0° to 8°	0° to 8°
Elevation Sidelobes (1st Upper)	<-17 dB	<-17 dB	<-17 dB	<-16 dB
Front-to-Back Ratio @180°	> 35 dB	> 35 dB	> 35 dB	> 35 dB
Front-to-Back Ratio <u>+</u> 20°	> 32 dB	> 32 dB	> 32 dB	> 32 dB
Cross-Polar Discrimination at Peak	> 19 dB	> 18 dB	> 19 dB	> 20 dB
Cross-Polar Discrimination at Sector ²	11.6 dB	9.8 dB	10.5 dB	8.6 dB
Cross-Polar Port-to-Port Isolation	> 25 dB	> 25 dB	> 25 dB	> 25 dB
Voltage Standing Wave Ratio (VSWR)	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1
Passive Intermodulation (2×20W)	≤ -153 dBc	≤ -153 dBc	≤ -153 dBc	≤ -153 dBc
Input Power Continuous Wave (CW)	300 watts	300 watts	300 watts	300 watts
Polarization	Dual Linear 45°	Dual Linear 45°	Dual Linear 45°	Dual Linear 45°
Input Impedance	50 ohms	50 ohms	50 ohms	50 ohms
Lightning Protection	DC Ground	DC Ground	DC Ground	DC Ground

¹Peak gain across sub-bands.

²Electrical specifications follow document "Recommendation on Base Station Antenna Standards" (BASTA) V9.6.

www.cciproducts.com extending wireless performance

TPA65R-BU8D

Multi-Band Twelve-Port Antenna

SPECIFICATIONS

Mechanical	
Dimensions (L×W×D)	96.0×21.0×7.8 in (2438×534×198 mm)
Survival Wind Speed	> 150 mph (> 241 kph)
Front Wind Load	463 lbs (2061 N) @ 100 mph (161 kph)
Side Wind Load	210 lbs (933 N) @ 100 mph (161 kph)
Equivalent Flat Plate Area	18.1 ft ² (1.7 m ²)
Weight *	87.5 lbs (39.7 kg)
Connector	12 × 4.3-10 female
Mounting Pole	2 to 5 in (5 to 12 cm)

* Weight excludes mounting and RET

Connector Spacing

www.cciproducts.com extending wireless performance

Multi-Band Twelve-Port Antenna

SPECIFICATIONS

RET to Element Configuration

TPA65R-BU8D

Mechanical

TPA65R-BU8DA Element and RET configuration (Type 1 External RET)

Top of antenna Viewed from rear

Mechanical

RET placement

Array	Ports	Freq (MHz)	Ports controlled by common RET	
RL1	1, 2	698-896	1 2 2 /	
RR1	3, 4	698-896	1, 2, 3, 4	
YL	5, 6	1695-2400	E C 7 9	
YCL	7, 8	1695-2400	5, 0, 7, 8	
YCR	9,10	1695-2400	0 10 11 12	
YR	11,12	1695-2400	5, 10, 11, 12	

www.cciproducts.com extending wireless performance

Multi-Band Twelve-Port Antenna

TPA65R-BU8D

80

90

100

SPECIFICATIONS

Typical Antenna Patterns

For detailed information on additional antenna patterns, contact customer support at support@cciproducts.com

734 MHz Azimuth with Elevation 7°

880 MHz Azimuth with Elevation 7°

2155 MHz Azimuth with Elevation 4°

www.cciproducts.com E X T E N D I N G WIRELESS PERFORMANCE

1720 MHz Azimuth with Elevation 4°

ORDERING

Multi-Band Twelve-Port Antenna

TPA65R-BU8D

Parts & Accessories	
TPA65R-BU8DA-K	Eight foot (2.4 m) antenna with 65° azimuth beamwidth, 4.3-10 female connectors, 3 factory installed BSA-RET200 RET actuators (Type 1 external)and MBK-01 mounting bracket
TPA65R-BU8DB-K	Eight foot (2.4 m) antenna with 65° azimuth beamwidth, 4.3-10 female connectors, 3 factory installed BSA-RET400 RET actuators (Type 17 internal) and MBK-01 mounting bracket
MBK-01	Mounting bracket kit (top and bottom) with 0° to 10° mechanical tilt adjustment
BSA-RET200	Type 1 Remote electrical tilt actuator
BSA-RET400	Type 17 Remote electrical tilt actuator
DPA-CBK-AG-RRU	Antenna with 3 RET to RRU AISG cable kit
DPA-CBK-RA-AG-RRU	Antenna with 3 RET to RRU AISG right angle cable kit

www.cciproducts.com extending wireless performance

ACCESSORIES

Mounting Bracket Kit

MBK-01

Mechanica	al
1 1001101110	210

Weight	12.6 lbs (5.7 kg)
Hinge Pitch	47.25 in (1200 mm)
Mounting Pole Dimension	2 to 5 in (5 to 12 cm)
Fastener Size	M12
Installation Torque	40 ft·lb (54 Nm)
Mechanical Tilt Adjustment	0° - 10°

MBK-01 Top Adjustable Bracket

MBK-01 Bottom Fixed Bracket

MBK-01 Top Adjustable Bracket Side View

www.cciproducts.com extending wireless performance

BSA-RET200

ACCESSORIES

Remote Electrical Tilt Actuator (RET)

General Specifications		
1		
Part Number	BSA-RET200	
Protocols	AISG 2.0	
RET Type	Туре 1	
Adjustment Cycles	>10,000 cycles	
Tilt Accuracy	±0.1°	
Temperature Range	-40° C to 70° C	

Electrical

Data Interface Signal	DC
Input Voltage	10-30 Vdc
Current Consumption Tilt	120 mA at V _{in} =24
Current Consumption Idle	55 mA at V _{in} =24
Hardware Interface	AISG-RS 485 A/B
Input Connector	Male 1 × 8 pin Daisy Chain
Output Connector	Female 1 × 8 pin Daisy Chain

Mechanical

Dimensions (L×W×D)8.0×5.0×2.0 in. (213×135×51 mm)HousingASA/ABS/AluminumWeight1.7 lbs (0.75 kg)

ASA= Acrylic Styrene Acrylonitrile ABS=Acrylanitrile Butadiene Styrene

www.cciproducts.com extending wireless performance

ACCESSORIES

BSA-RET400

General Specifications	
Part Number	BSA-RET400
Protocols	AISG 2.0
RET Type	Туре 17
Adjustment Cycles	>10,000 cycles
Tilt Accuracy	±0.1°
Temperature Range	-40° C to 70° C
Electrical	
Data Interface Signal	DC
Input Voltage	10-30 Vdc
input voltage	100 mA at M = 34
Current Consumption Tilt	100 MA at V _{in} =24

Mechanical

Dimensions (L×W×D)	8.0×5.0×2.0 in. (213×135×51 mm)
Housing	ASA/ABS/Aluminum
Weight	1.4 lbs (0.64 kg)

ASA= Acrylic Styrene Acrylonitrile ABS=Acrylanitrile Butadiene Styrene

www.cciproducts.com extending wireless performance

9

AISG Cable Kit

DPA-CBK-AG-RRU

ACCESSORIES

Electrical/Mechanical/Environmental Specifications

	RET to RET Cables	RRU to Antenna Cables	
Individual Cable Part Number	AISGC-M-F-27	AISGC-M-F-10FT	
Cable style	UL2464		
Protocol	AISG 1.1 ar	nd AISG 2.0	
Maximum voltage	30	0 V	
Rated current	5 A at 104	° F (40° C)	
Temperature Range	-40° to	» 80° С	
Flammability	UL 158	1 VW-1	
Ingress Protection	IEC 60529	:2001, IP67	
Tightening torque	Hand tighten only ≈ 1.84 ft-lbs (2.5 Nm)		
Construction	Shielded (Tinned Copper Braid)		
Braid coverage	85%		
Jacket Material	Matte Polyurethane (Black)		
Conductors	1 twisted pair - 24 AWG 3 conductors - 19 AWG AWM style 2464		
Cable Diameter	0.307 in (7.8 mm)		
Minimum bend radius	3.9 in (100 mm)		
Connectors	2 x 8 pin IEC 60130-9 Stra	aight male/straight female	
Length	27 in (686 mm)	120 in (3048 mm)	
Weight	0.33 lbs (0.15 kg)	0.69 lbs (0.31 kg)	
Cables per kit	2	2	

Mechanical Specifications

AISG-Male to AISG-Female Jumper Cable

www.cciproducts.com extending wireless performance

AISG Cable Kit

DPA-CBK-RA-AG-RRU

ACCESSORIES

Electrical/Mechanical/Environmental Specifications

	RET to RET Cables	RRU to Antenna Cables	
Individual Cable Part Number	AISGC-MRA-FRA-36 AISGC-M-FRA-10FT		
Cable style	UL2464		
Protocol	AISG 1.1 and AISG 2.0		
Maximum voltage	30	O V	
Rated current	5 A at 104	° F (40° C)	
Temperature Range	-40° tc	» 80° C	
Flammability	UL 158	1 VW-1	
Ingress Protection	IEC 60529	2001, IP67	
Tightening torque	Hand tighten only ≈ 1.84 ft-lbs (2.5& Nm)		
Construction	Shielded (Tinned Copper Braid)		
Braid coverage	85%		
Jacket Material	Matte Polyurethane (Black)		
Conductors	1 twisted pair - 24 AWG 3 conductors - 19 AWG AWM style 2464		
Cable Diameter	0.307 in (7.8 mm)		
Minimum bend radius	3.9 in (100 mm)		
Connectors	2 x 8 pin IEC 60130-9 Right angle male/right angle female	2 x 8 pin IEC 60130-9 Straight male/right angle female	
Length	36 in (914 mm)	120 in (3048 mm)	
Weight	0.23 lbs (0.10 kg)	0.77 lbs (0.35 kg)	
Cables per kit	2	2	

Mechanical Specifications

Right Angle to Right Angle and Right Angle to Straight Jumper Cable

www.cciproducts.com extending wireless performance

11

STANDARDS & CERTIFICATIONS

TPA65R-BU8D

Standards & Compliance

Safety	EN 60950-1, UL 60950-1
Emission	EN 55022
Immunity	EN 55024
Environmental	IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-5, IEC 60068-2-6, IEC-60068-2-11, IEC 60068-2-14, IEC 60068-2-18, IEC 60068-2-27, IEC 60068-2-29, IEC 60068-02-30, IEC 60068-2-52, IEC 60068-2-64, GR-63-CORE 4.3.1, EN 60529, IP 24

Certifications

Antenna Interface Standards Group (AISG), Federal Communication Commission (FCC) Part 15 Class B, CE, CSA US, ISO 9001:2008

NEW CANAAN, CT 06840

2ND FLOOR

DANBURY, CT 06810

RAY VERGATI (203) 297-6345 MORRISTOWN, NJ 07960

14TH FLOOR WHITE PLAINS, NY 10601

(914) 761-1300

TE INFORMATION

SITE NAME	NEW CANAAN NORTHEAST	DESIGN PROFESSIONALS OF RECORD
DJECT LOCATION:	183 SOUNDVIEW LANE NEW CANAAN, CT 06840	PROF: ROBERT C. BURNS P.E. COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET
IG JURISDICTION:	CONNECTICUT SITING COUNCIL	EXTENSION - SUITE 311 WATERFORD, CT 06385
COUNTY:	FAIRFIELD	DEVELOPER: HOMELAND TOWERS, LLC ADDRESS: 9 HARMONY STREET
CT DESCRIPTION:	RAWLAND SITE W/ GROUND EQUIPMENT WITHIN 2,310 SF TELECOMMUNICATIONS LEASE AREA W/ NEW 90'± AGL MONOPINE.	CONFURY OF DEBID
RTY DEVELOPER:	HOMELAND TOWERS, LLC 9 HARMONY STREET 2ND FLOOR DANBURY, CT 06810	AG 20071
OPER CONTACT:	RAY VERGATI (203) 297-6345	CENSED.
INEER CONTACT:	ROBERT C. BURNS, P.E. (860) 663-1697 x206	HOMELAND TOWERS
LATITUDE: LONGITUDE: FLEVATION:	41° 11' 26.43"N 73° 29' 42.16"W 502 3'+ AMSI	NEW CANAAN NORTHEAST SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840
ELE VICTION.	002.0 2 / 0002	APT FILING NUMBER: CT283450
MAP: BLOCK:	40 105	DATE: 12/09/20 DRAWN BY: CSH
LOT: ZONE:	74 4 ACRE RESIDENCE ZONE	CHECKED BY: RCB
		SHEET IIILE:
		TITLE SHEET & INDEX
GOV	ERNING CODES:	
NECTICUT STATE NATION	BUILDING CODE, LATEST EDITION AL ELECTRIC CODE TIA-222-H	

HOMELAND TOWERS, LLC 9 HARMONY STREET 2nd FLOOR DANBURY, CT 06810 (203) 297-6345

340 MOUNT KEMBLE AVENUE MORRISTOWN, NEW JERSEY 0796

ALL-POINTS TECHNOLOGY CORPORATIO

D&M DOCUMENTS

 NO
 DATE
 REVISION

 0
 12/09/20
 FOR REVIEW: RCB

 1
 12/15/20
 FINAL: RCB

at&t

1 11 -		
1 Jan o		
a la		
and the second	-	100 mm
PROJECT L SCALE: 1"=1000"	OCATIO	ON MAP

LEGEND INOT SHOWN TO SCALE

		BOLLARD
12		MAILBOX
	-	SIGN
		SHRUB
6	_	TREE
=0=0		CATCH BASIN
(20)		ELECTRIC BOX
123		COMMUNICATIONS BOX
0	-	LIGHT POLE
ØØ		MANHOLE (TYPE AS LABELED
X 262.3	_	SPOT ELEVATION
BIT		BITUMINOUS
CONC		CONCRETE
LSA	_	LANDSCAPED AREA
BW	_	BOTTOM OF WALL
EP	_	EDGE OF PAVEMENT
BC		BITUMINOUS CURB
		CHAINLINK FENCE
		TREE LINE
	-	EASEMENT LINE
		PROPERTY LINE
		RIGHT-OF-WAY LINE
		CONTOUR LINE
		CONTRACT TOTAL SO TOTAL

Drawing No

VB101

Sheet 1 of 2 alapostinski Sole Table: Langaristic Lang

olect No.

awn By

140205701

MAY 24, 2019

JJS necked By AGI

	0	5	10	20
-				
SCALE: 1	INCH	- 2	O FFF	T

NOTES

1. THIS SURVEY HAS BEEN PREPARED PURSUANT TO THE REGULATIONS OF CONNECTICUT STATE AGENCIES SECTIONS 20-300b-1 THROUGH 20-300b-20 AND THE "STANDARDS FOR SURVEYS AND MAPS IN

20-300b-20 AND THE "STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS ADOPTED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS, INC. ON SEPTEMBER 26, 1996. d.THIS SURVEY IS A PROPERTY SURVEY CONFORMING TO A HORIZONTAL ACCURACY OF A-2 AND A TOPOGRAPHIC SURVEY CONFORMING TO A T-2 ACCURACY. THE BOUNDARY DETERMINATION IS A RESURVEY. THE PURPOSE OF THIS SURVEY IS TO PROVIDE A BOUNDARY OPINION AND DEPICT SITE FEATURES FOR FUTURE SITE DEVELOPMENT.

2. THIS SURVEY IS BASED UPON EXISTING PHYSICAL CONDITIONS FOUND AT THE SUBJECT SITE, DEED INFORMATION AND THE FOLLOWING REFERENCES:

A.COMMITMENT FOR TITLE INSURANCE ISSUED BY SOUND TITLE, LLC. FILE NUMBER: ST25031, EFFECTIVE: DATE JULY 24, 2017, EXCEPT AS HEREINAFTER SET FORTH:

1. NOT SURVEY RELATED.

2. SURVEY PROVIDED.

3-5. NOT SURVEY RELATED.

6. RIGHTS MAY EXIST.

JUNE 27, 1969

7-8. NOT SURVEY RELATED.

9. SURVEY PROVIDED. 10-14. NOT SURVEY RELATED.

15. DRAINAGE EASEMENT AS DEFINED IN VOL 203 PAGE 267. DEPICTED ON SURVEY. 16. ELECTRIC EASEMENT AS DEFINED IN VOL 203 PAGE 308 AND VOL 206 PAGE 662, DEPICTED ON SURVEY.

17. MAP REFERENCED IN NOTE 2B OF SURVEY.

B. MAP TITLED "RE-SUBDIVISION MAP #5336 PREPARED FOR JOHN P. CRETELLA NEW CANAAN, CONNECTICUT FOUR ACRE RESIDENCE ZONE TOTAL AREA (NEW LOTS ONLY) = 47.361 ACRES (EXCLUDING ROADWAY)", SCALE: 1"=100', DATED:

C. MAP TITLED "MAP #6815 SHOWING EXCHANCE OF PROPERTY BETWEEN KENNETH G. TROPIN & KATHLEEN O. TROPIN AND JOHN E. COX & NANCY E. COX NEW CANAAN, CONNECTICUT, SCALE: 1°=100', DATED: JULY 13, 1993, BY: MOODY & O'BRIEN, SURVEYORS

D. MAP TITLED "COMPILATION PLAN DEPICTING CONSOLIDATION OF PROPERTY AT ST. LUKE'S SCHOOL IN NEW CANAAN, CONNECTICUT PREPARED FOR ST. LUKE'S FOUNDATION INC.", SCALE: 1"=100', DATED: DECEMBER 14, 2010, BY: ROCCO V. D'ANDREA, INC., MAP #7522

E. MAP TITLED "ZONING LOCATION SURVEY DEPICTING ST. LUKE'S SCHOOL LOCATED AT 377 NORTH WILTON ROAD IN NEW CANAAN, CONNECTICUT PREPARED FOR ST. LUKE'S FOUNDATION, INC." SCALE: 1"=100', DATED: JULY 1, 2010, LAST REVISED: AUGUST 9, 2017, BY: ROCCO V. D'ANDREA, INC., MAP #726

3. THE MERIDIAN OF THIS SURVEY IS REFERENCED TO CONNECTICUT STATE PLANE COORDINATE SYSTEM NAD 83 AS ESTABLISHED THROUGH GPS METHODS.

4. ELEVATIONS SHOWN ARE REFERENCED TO NAVD 88 ESTABLISHED HROUGH GPS METHODS.

5. PLANIMETRIC AND TOPOGRAPHIC INFORMATION SHOWN HEREON HAS BEEN OBTAINED FROM GROUND SURVEYS BY LANGAN CT, INC. FIELD WORK COMPLETED DURING THE MONTH OF MAY 2019.

6.AS PER THE NATIONAL FLOOD INSURANCE PROGRAM FIRM MAP ENTITLED "FAIRFIELD COUNTY, CONNECTICUT, PANEL 378 OF 626, MAP NUMBER: 09001C0378F, EFFECTIVE DATE: JUNE 18, 2010" THE PROJECT AREA IS IN ZONE X (UNSHADED).

7. UNLESS SPECIFICALLY NOTED HEREON, STORM AND SANITARY SEWER 7. UNLESS SPECIFICALLY NOTED HEREON, STORM AND SANITARY SEWER INFORMATION (INCLUDING PIPE INVERT, PIPE MATERIAL, AND PIPE SIZE) WAS OBSERVED AND MEASURED AT FIELD LOCATED STRUCTURES (MANHOLES/CATCH BASINS, ETC.). CONDITIONS CAN VARY FROM THOSE ENCOUNTERED AT THE TIMES WHEN AND LOCATIONS WHERE DATA IS OBTAINED. DESPITE MEETING THE REQUIRED STANDARD OF CARE, THE SURVEYOR CANNOT, AND DOES NOT WARRANT THAT PIPE MATERIAL AND/OR PIPE SIZE THROUGHOUT THE PIPE RUN ARE THE SAME AS THOSE OBSERVED AT EACH STRUCTURE, OR THAT THE PIPE RUN IS STRAIGHT BETWEEN THE LOCATED STRUCTURES.

8. ADDITIONAL UTILITY (WATER, GAS, ELECTRIC ETC.) DATA MAY BE SHOWN FROM FIELD LOCATED SURFACE MARKINGS (BY OTHERS), EXISTING STRUCTURES, AND/OR FROM EXISTING DRAWINGS.

9.UNLESS SPECIFICALLY NOTED HEREON, THE SURVEYOR HAS NOT EXCAVATED TO PHYSICALLY LOCATE THE UNDERGROUND UTILITES. THE SURVEYOR MAKES NO GUARANTEES THAT THE SHOWN UNDERGROUND UTILITES ARE EITHER IN SERVICE, ABANDONED OR SUITABLE FOR USE, NOR ARE IN THE EXACT LOCATION OR CONFIGURATION INDICATED HEREON.

10. ALL BUILDINGS AND STRUCTURES WERE LOCATED AND MEASURED 0. ALL BUILDINGS AND STRUCTURES WERE LOCATED AND MEASURED AT GROUND LEVEL. THE SURVEYOR MAKES NO DETERMINATIONS OR GUARANTEES AS TO THE ABSENCE, EXISTENCE OR LOCATION OF UNDERGROUND STRUCTURES, FOUNDATIONS, FOOTINGS, PROJECTIONS, WALLS, TANKS, SEPTIC SYSTEMS, ETC. NO TEST PITS, EXCAVATIONS OR GROUND PENETRATING RADAR WERE PERFORMED AS PART OF THIS SURVEY.

11. WETLANDS WERE DELINEATED IN JUNE 2019 BY ALL-POINTS TECHNOLOGY CORP., P.C.

12, PRIOR TO ANY DESIGN OR CONSTRUCTION, THE PROPER UTILITY AGENCIES MUST BE CONTACTED FOR VERIFICATION OF UTILITY TYPE AND FOR FIELD LOCATIONS.

13. THIS SURVEY IS NOT VALID WITHOUT THE EMBOSSED OR INKED SEAL OF THE PROFESSIONAL.

LEGEND

0
——— E/T ———

PROPERTY LINE

NEW ELEC./TELCO LINE

LEGEND

PROPERTY LINE 8' HIGH WOOD SHADOWBOX FENCE FILTER SOCK EXIST. TREE TO REMAIN EXIST. TREE TO BE REMOVED

NEW 12' HIGH EASTERN HEMLOCK

NEW 12' HIGH NORWAY SPRUCE

NEW 24" HIGH RHODODENDRON

LANDSCAPE NOTE: ALL NEW LANDSCAPING WILL BE FULLY WARRANTED FOR 3 YEARS

9 HARMONY STREET 2nd FLOOR DANBURY, CT 06810 (203) 297-6345 at&t 340 MOUNT KEMBLE AVENUE MORRISTOWN, NEW JERSEY 07960 ۶, ALL-POINTS TECHNOLOGY CORPORATIO 567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 PH: (860)-663-16 WWW.ALLPOINTSTECH.COM FAX: (860)-663-09 D&M DOCUMENTS NO DATE REVISION 0 12/09/20 FOR REVIEW: RCB 1 12/15/20 FINAL: RCB 2 3 5 6 7 DESIGN PROFESSIONALS OF RECORD PROF: ROBERT C. BURNS P.E. COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 DEVELOPER: HOMELAND TOWERS, LLC ADDRESS: 9 HARMONY STREET TE OF CONBURY Y/CT 06810 2007 CENSEO SONAL ENGINE HOMELAND TOWERS NEW CANAAN NORTHEAST SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840 APT FILING NUMBER: CT283450 DATE: 12/09/20 DRAWN BY: CSH CHECKED BY: RCB SHEET TITLE: **GRADING &**

LANDSCAPING PLAN

SHEET NUMBER:

GR-1

HOMELAND TOWERS, LLC

HOMELAND TOWERS, LLC 9 HARMOTY STREET 2nd FLOOR DANBURY, CT 06810 (203) 297-6345					
	ALL-POINTS TECHNOLOGY CORPORATION				
	567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 PH: (860)-663-1697 WWW.ALLPOINTSTECH.COM FAX: (860)-663-0935				
	D&M DOCUMENTS				
	NO DATE REVISION 0 12/09/20 FOR REVIEW: RCB				
	1 12/15/20 FINAL: RCB				
	3				
	5				
	7				
	DESIGN PROFESSIONALS OF RECORD				
	PROF: ROBERT C. BURNS P.E. COMP: ALL-POINTS TECHNOLOGY				
	CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 DEVELOPER: HOMELAND TOWERS, LLC ADDRESS: 9 HARMONY STREET 2ND FLOOR 2ND FLOOR				
1111	A CHARLES DA				
à	18 AT ST				
1	H A A A A A A A A A A A A A A A A A A A				
1	Ng. 20071				
4	CENSEO.				
	SIONAL ENGININ				
	HOMELAND TOWERS				
	NEW CANAAN NORTHEAST				
	ADDRESS: NEW CANAAN, CT 06840				
	APT FILING NUMBER: CT283450 DATE: 12/09/20 DRAWN BY: CSH				
	CHECKED BY: RCB				
	SHEET TITLE:				
	TOWER ELEVATION				
	SHEET NUMBER:				
	A-1				

1. ALL EXISTING EXCAVATED MATERIAL THAT IS NOT TO BE REUSED IN THE WORK IS TO BE IMMEDIATELY REMOVED FROM THE SITE AND PROPERLY DISPOSED OF.

2. SOIL/AGGREGATE STOCKPILE SITES TO BE WHERE SHOWN ON THE DRAWINGS.

3. RESTORE STOCKPILE SITES TO PRE-EXISTING PROJECT CONDITION AND RESEED AS REQUIRED.

4. STOCKPILE HEIGHTS MUST NOT EXCEED 35'. STOCKPILE SLOPES MUST BE 2:1 OR FLATTER.

5. ANY SOIL IN STOCKPILES IN EXCESS OF SEVEN (7) DAYS SHALL BE SEEDED AND MULCHED OR COVERED.

<u>5 TEMPORARY STOCKPILE DETAIL</u> C-2 SCALE : N.T.S.

1. BEGIN AT THE LOCATION WHERE THE SOCK IS TO BE INSTALLED BY EXCAVATING A 2-3" (5-7.5 CM) DEEP X 9" (22.9 CM) WIDE TRENCH ALONG THE CONTOUR OF THE SLOPE. EXCAVATED SOIL SHOULD BE PLACED UP SLOPE FROM THE ANCHOR TRENCH

2. PLACE THE SOCK IN THE TRENCH SO THAT IT CONTOURS TO THE SOIL SURFACE. COMPACT SOIL FROM THE EXCAVATED TRENCH AGAINST THE SOCK ON THE UPHILL SIDE. SOCKS SHALL BE INSTALLED IN 60 FT CONTINUOUS LENGTHS WITH ADJACENT SOCKS TIGHTLY ABUT. EVERY 60 FT THE SOCK ROW SHALL BE SPACED 12 INCHES CLEAR, END TO END, FOR AMPHIBAN AND REPTILE TRAVEL. THE OPEN SPACES SHALL BE

STAGGERED MID LENGTH OF THE NEXT DOWN GRADIENT SOCK. 3. SECURE THE SOCK WITH 18-24" (45.7-61 CM) STAKES EVERY 3-4' (0.9 -1.2 M) AND WITH A STAKE ON EACH END. STAKES SHOULD BE DRIVEN THROUGH THE MIDDLE OF THE SOCK LEAVING AT LEAST 2-3" (5-7.5 CM) OF

STAKE EXTENDING ABOVE THE SOCK. STAKES SHOULD BE DRIVEN PERPENDICULAR TO THE SLOPE FACE.

7 DEWATERING STRAW BALE BASIN SCALE : N.T.S. C-2/

COMPACTED GRAVEL BASE

3 GENERATOR PAD S-1 SCALE : N.T.S.

4,000 PSI CONC. SLAB (SEE PLAN FOR PAD DIMENSIONS)

EROSION CONTROL NOTES

EBOSION AND SEDIMENT CONTROL PLAN NOTES

- THE CONTRACTOR SHALL CONSTRUCT ALL SEDIMENT AND EROSION CONTROLS IN THE CONTRACTOR SHALL SOLVISTICATE ALL SEDIMENT AND ENGSION CONTRACTOR IN ACCORDANCE WITH THE 2002 CONNECTICUT GUIDELINES FOR SOIL EROSION AND SEDIMENT CONTROL, LATEST EDITION, IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, AND AS DIRECTED BY THE TOWN OF WATERTOWN, PERMITTEE, AND/OR SWPCP MONITOR, ALL PERIMETER SEDIMENTATION AND EROSION CONTROL MEASURES SHALL BE INSTALLED PRIOR TO THE START OF CLEARING AND GRUBBING AND DEMOLITION OPERATIONS
- THESE DRAWINGS ARE ONLY INTENDED TO DESCRIBE THE SEDIMENT AND EROSION CONTROL MEASURES FOR THIS SITE. SEE CONSTRUCTION SEQUENCE FOR ADDITIONAL INFORMATION. ALL TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES SHOWN ON THE EROSION & SEDIMENT CONTROL PLAN ARE SHOWN AS REQUIRED BY THE ENGINEER. THE CONTRACTOR SEDIMENT CONTROL PLAN ARE SHOWN AS REQUIRED BY THE ENGINEER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ENSUING THAT ALL EROSION CONTROL MEASURES ARE CONFIGURED AND CONSTRUCTED IN A MANNER THAT WILL MINIMIZE EROSION OF SOILS AND PREVENT THE TRANSPORT OF SEDIMENTS AND OTHER POLLUTANTS TO STORM DRAINAGE SYSTEMS AND/OR WATERCOURSES. ACTUAL SITE CONDITIONS OR SEASONAL AND CLIMATIC CONDITIONS MAY WARRANT ADDITIONAL CONTROLS OR CONFIGURATIONS, AS REQUIRED, AND AS DIRECTED BY THE PERMITTEE AND/OR SWPCP MONITOR, REFER TO SITE PLAN FOR GENERAL INFORMATION AND OTHER CONTRACT PLANS FOR APPROPRIATE INFORMATION
- A BOND OR LETTER OF CREDIT MAY BE REQUIRED TO BE POSTED WITH THE GOVERNING AUTHORITY FOR THE EROSION CONTROL INSTALLATION AND MAINTENANCE
- 4. THE CONTRACTOR SHALL APPLY THE MINIMUM EROSION & SEDIMENT CONTROL MEASURES SHOWN ON THE PLAN IN CONJUNCTION WITH CONSTRUCTION SEQUENCING, SUCH THAT ALL ACTIVE WORK ZONES ARE PROTECTED, ADDITIONAL AND/OR ALTERNATIVE SEDIMENT AND ACTIVE WORK ZONES ARE PHOTECTED. ADDITIONAL AND/OR ALTERNATIVE SEDIMENT AND EROSION CONTROL MESURES MAY BE INSTALLED DURING THE CONSTRUCTION PERIOD IF FOUND NECESSARY BY THE CONTRACTOR, OWNER, SITE ENGINEER, MUNICIPAL OFFICIALS, OR ANY GOVERNING AGENCY. THE CONTRACTOR SHALL CONTRACT THE OWNER AND APPROPRIATE GOVERNING AGENCIES FOR APPROVAL IF ALTERNATIVE CONTROLS OTHER THAN THOSE SHOWN ON THE PLANS ARE PROPOSED BY THE CONTRACTOR.
- THE CONTRACTOR SHALL TAKE EXTREME CARE DURING CONSTRUCTION SO AS NOT TO DISTURB UNPROTECTED WETLAND AREAS OR INSTALLED SEDIMENTATION AND EROSION CONTROL MEASURES. THE CONTRACTOR SHALL INSPECT ALL SEDIMENT AND EROSION CONTROLS WEEKLY AND WITHIN 24 HOURS OF A STORM WITH A BAINFALL AMOUNT OF 0.25 INCHES OR GREATER TO VERIFY THAT THE CONTROLS ARE OPERATING PROPERLY AND MAKE REPAIRS AS NECESSARY IN A TIMELY MANOR.
- 5. THE CONTRACTOR SHALL KEEP A SUPPLY OF EROSION CONTROL MATERIAL (SILT FENCE, COMPOST FILTER SOCK, EROSION CONTROL BLANKET, ETC.) ON-SITE FOR PERIODIC MAINTENANCE AND EMERGENCY REPAIRS
- ALL FILL MATERIAL PLACED ADJACENT TO ANY WETLAND AREA SHALL BE GOOD QUALITY. WITH LESS THAN 5% FINES PASSING THROUGH A #200 SIEVE (BANK RUN), SHALL BE PLACED IN MAXIMUM ONE FOOT LIFTS, AND SHALL BE COMPACTED TO 95% MAX. DRY DENSITY MODIFIED PROCTOR OR AS SPECIFIED IN THE CONTRACT SPECIFICATIONS
- PROTECT EXISTING TREES THAT ARE TO BE SAVED BY FENCING. ORANGE SAFETY FENCE ACTIVITY OF A CONSTRUCTION TAPE OF A CONSTRUCTION OF A CONSTRUCTION WITH AN ARE OF A CONSTRUCTION TAPE, ANY LIMB TRIMINING SHOULD BE DONE AFTER CONSULTATION WITH AN ARBORIST AND BEFORE CONSTRUCTION BEGINS IN THAT AREA; FENCING SHALL BE MAINTAINED AND REPAIRED DURING CONSTRUCTION.
- CONSTRUCTION ENTRANCES (ANTI-TRACKING PADS) SHALL BE INSTALLED PRIOR TO ANY SITE CONSTRUCTION OR CONSTRUCTION ACTIVITY AND SHALL BE INSTALLED FRIUGHOUT THE EXCAVATION OR CONSTRUCTION ACTIVITY AND SHALL BE MAINTAINED THROUGHOUT THE DURATION OF ALL CONSTRUCTION IF REQUIRED. THE LOCATION OF THE TRACKING PADS MAY CHANGE AS VARIOUS PHASES OF CONSTRUCTION ARE COMPLETED. CONTRACTOR SHALL ENSURE THAT ALL VEHICLES EXITING THE SITE ARE PASSING OVER THE ANTI-TRACKING PADS PRIOR TO EXISTING
- 10. ALL CONSTRUCTION SHALL BE CONTAINED WITHIN THE LIMIT OF DISTURBANCE, WHICH SHALL BE MARKED WITH SILT FENCE, SAFETY FENCE, HAY BALES, RIBBONS, OR OTHER MEANS PRIOR TO CLEARING, CONSTRUCTION ACTIVITY SHALL REMAIN ON THE UPHILL SIDE OF THE SEDIMENT BARRIER UNLESS WORK IS SPECIFICALLY CALLED FOR ON THE DOWNHILL SIDE OF THE
- 11 NO CUT OR FILL SLOPES SHALL EXCEED 2:1 EXCEPT WHERE STABILIZED BY BOCK FACED EMBANKMENTS OR EROSION CONTROL BLANKETS, ALL SLOPES SHALL BE SEEDED AND BANKS WILL BE STABILIZED IMMEDIATELY UPON COMPLETION OF FINAL GRADING UNTIL TURF IS
- 12. DIRECT ALL DEWATERING PUMP DISCHARGE TO A SEDIMENT CONTROL DEVICE CONFORMING TO THE GUIDELINES WITHIN THE APPROVED LIMIT OF DISTURBANCE IF REQUIRED. DISCHARGE TO STORM DRAINS OR SUPPONENCE OF A DRAW SEMINENT CONTROLS SHALL BE CLEAR AND APPROVED BY THE PERMITTEE OR MUNICIPALITY.
- 13. THE CONTRACTOR SHALL MAINTAIN A CLEAN CONSTRUCTION SITE AND SHALL NOT ALLOW THE ACOMMACTOR SHALL MAINTAIN A CLEAN CONSTITUCTION STIL AND SHALL NOT ALLOW THE ACOUNDLATION OF RUBBISH OR CONSTRUCTION DEBRIS ON THE STIE. PROPER SANITAR DEVICES SHALL BE MAINTAINED ON-SITE AT ALL TIMES AND SECURED APPROPRIATELY. THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO AVOID THE SPILLAGE OF FUEL OR OTHER POLLUTANTS ON THE CONSTRUCTION SITE AND SHALL ADHERE TO ALL APPLICABLE POLICIES AND REGULATIONS RELATED TO SPILL PREVENTION AND RESPONSE/CONTAINMENT
- 14. MINIMIZE LAND DISTURBANCES. SEED AND MULCH DISTURBED AREAS WITH TEMPORARY MIX AS SOON AS PRACTICABLE (2 WEEK MAXIMUM UNSTABILIZED PERIOD) USING PERENNIAL RYEGRASS AT 40 LBS PER ACRE. MULCH ALL CUT AND FILL SLOPES AND SWALES WITH LOOSE HAY AT A RATE OF 2 TONS PER ACRE. IF NECESSARY, REPLACE LOOSE HAY ON SLOPES WITH EROSION CONTROL BLANKETS OR JUTE CLOTH. MODERATELY GRADED AREAS, ISLANDS, AND TEMPORARY CONSTRUCTION STAGING AREAS MAY BE HYDROSEEDED WITH TACKIFIER.
- 15 SWEEP AFFECTED PORTIONS OF OFE SITE BOADS ONE OR MORE TIMES A DAY (OR LESS SWEEP AFFECTED PORTIONS OF OFF STIE ROADS ONE OF MORE TIMES A DAY (ON LESS FREQUENTLY IF TRACKING IS NOT A PROBLEM) DURING CONSTRUCTION. FOR DUST CONTROL, PERIODICALLY MOISTEN EXPOSED SOIL SURFACES WITH WATER ON UNPAVED TRAVELWAYS TO KEEP THE TRAVELWAYS DAMP. CALCIUM CHLORIDE MAY ALSO BE APPLIED TO ACCESS ROADS. DUMP TRUCK LOADS EXITING THE SITE SHALL BE COVERED.
- 16. VEGETATIVE ESTABLISHMENT SHALL OCCUR ON ALL DISTURBED SOIL, UNLESS THE AREA IS UNDER ACTIVE CONSTRUCTION, IT IS COVERED IN STONE OR SCHEDULED FOR PAVING WITHIN 30 DAYS. TEMPORARY SEEDING OR NON-LIVING SOIL PROTECTION OF ALL EXPOSED SOILS AND SLOPES SHALL BE INITIATED WITHIN THE FIRST 7 DAYS OF SUSPENDING WORK IN AREAS TO BE LEFT LONGER THAN 30 DAYS
- 17. MAINTAIN ALL PERMANENT AND TEMPORARY SEDIMENT CONTROL DEVICES IN EFFECTIVE CONDITION THROUGHOUT THE CONSTRUCTION PERIOD. UPON COMPLETION OF WORK SWEEP CONCRETE PADS, CLEAN THE STORMWATER MANAGEMENT SYSTEMS AND REMOVE ALL TEMPORARY SEDIMENT CONTROLS ONCE THE SITE IS FULLY STABILIZED AND APPROVAL HAS BEEN RECEIVED FROM PERMITTEE OR THE MUNICIPALITY.
- 18 SEEDING MIXTURES SHALL BE NEW ENGLAND SEMI-SHADE GRASS AND EORBS MIX (SEE SITE DETIALS SHEET DN-1), OR APPROVED EQUAL BY OWNER

SEDIMENT & EBOSION CONTROL NARBATIVE

- . THE PROJECT INCLUDES THE INSTALLATION OF A 90 ± AGL MONOPINE WITH ASSOCIATED GROUND MOUNTED EQUIPMENT. ALL DISTURBED AREAS ARE TO BE SEEDED AND STABILIZED PRIOR TO THE INSTALLATION OF THE PROPOSED EQUIPMENT
- THE PROPOSED PROJECT INVOLVES THE FOLLOWING CONSTRUCTION:
- A. CONSTRUCTION OF 90[±] AGL MONOPINE.
 A. CONSTRUCTION OF 90[±] AGL MONOPINE.
 C. CONSTRUCTION OF 20⁻-6x75 (1,763[±] SF) FENCED EQUIPMENT COMPOUND W/ GRAVEL SURFACE TREATMENT AND ASSOCIATED UTILITIES.
 D. CONSTRUCTION OF 140[±] 12 WIDE GRAVEL ACCESS DRIVE.
- E. CONSTRUCTION OF 8-8"x8"-8" (75± SF) CONCRETE EQUIPMENT PAD & 7'x9' (63± SF) CONCRETE PAD WITH
- A DIESEL GENERATOR F. THE STABILIZATION OF PERVIOUS DISTURBED AREAS WITH PERMANENT GRASS TREATMENTS.
- 2. FOR THIS PROJECT, THERE ARE APPROXIMATELY 8,700± SF OF THE SITE BEING DISTURBED.
- 3. A GEOTECHNICAL ENGINEERING REPORT HAS BEEN COMPLETED FOR THIS PROJECT AND WILL BE AVAILABLE UNDER SEPARATE COVER.
- 4. IT IS ANTICIPATED THAT CONSTRUCTION WILL BE COMPLETED IN APPROXIMATELY 12 WEEKS.
- 5. REFER TO THE CONSTRUCTION SEQUENCING AND EROSION AND SEDIMENTATION NOTES FOR INFORMATION REGARDING SEQUENCING OF MAJOR OPERATIONS IN THE ON-SITE CONSTRUCTION PHASES.
- 6 EBOSION AND SEDIMENTATION MEASURES ARE BASED UPON ENGINEERING PRACTICE JUDGEMENT AND THE APPLICABLE SECTIONS OF THE 2002 CONNECTICUT GUIDELINES FOR SOIL EROSION AND SEDIMENT CONTROL
- DETAILS FOR THE TYPICAL EROSION AND SEDIMENTATION MEASURES ARE SHOWN ON PLAN SHEET C-2 OR PROVIDED AS SEPARATE SUPPORT DOCUMENTATION FOR REVIEW IN THIS PLAN.
- 8. CONSERVATION PRACTICES TO BE USED DURING CONSTRUCTION AREA

 - A STAGED CONSTRUCTION; B. MINIMIZE THE DISTURBED AREAS DURING CONSTRUCTION; C. STABILIZE DISTURBED AREAS AS SOON AS POSSIBLE WITH TEMPORARY OR PERMANENT MEASURES;
- D. MINIMIZE IMPERVIOUS AREAS; E. UTILIZE APPROPRIATE CONSTRUCTION EROSION AND SEDIMENTATION MEASURES.

SUGGESTED CONSTRUCTION SEQUENCE

THE FOLLOWING SUGGESTED SEQUENCE OF CONSTRUCTION ACTIVITIES IS PROJECTED BASED UPON INGINEERING JUDGEMENT AND BEST MANAGEMENT PRACTICES. THE CONTRACTOR MAY ELECT TO ALTER THE SEQUENCING TO BEST MEET THE CONSTRUCTION SCHEDULE, THE EXISTING SITE ACTIVITIES AND WEATHER CONDITIONS. CONTRACTOR TO HIE SURVEYOR FOR PROJECT STAKEOUT AS NEEDED THROUGHOUT CONSTRUCTION ACTIVITIES

- 1. CONTACT THE OWNER TO SCHEDULE A PRE-CONSTRUCTION MEETING. PHYSICALLY FLAG THE TREES TO BE REMOVED IN THE FIELD AS NECESSARY TO FACILITATE THE PRE-CONSTRUCTION MEETING
- CONDUCT A PRE-CONSTRUCTION MEETING TO DISCUSS THE PROPOSED WORK, LIMITS OF DISTURBANCE AND EROSION AND SEDIMENTATION CONTROL MEASURES. THE MEETING SHOULD BE ATTENDED BY THE OWNER, THE OWNER REPRESENTATIVE(S), THE GENERAL CONTRACTOR, DESIGNATED SUB-CONTRACTORS AND THE PERSON, OR PERSONS, RESPONSIBLE FOR THE IMPLEMENTATION, OPERATION, MONITORING AND MAINTENANCE OF THE EROSION AND SEDIMENTATION MEASURES. THE CONSTRUCTION PROCEDURES FOR THE ENTIRE PROJECT SHALL BE REVIEWED AT THIS MEETING.
- NOTIFY THE OWNER AT LEAST FORTY-EIGHT (48) HOURS PRIOR TO COMMENCEMENT OF ANY DEMOLITION, з CONSTRUCTION OR REGULATED ACTIVITY ON THIS PROJECT. NOTIFY CALL BEFORE YOU DIG CONNECTICUT AT (800) 922-4455.
- 4. CLEAR AND GRUB AS REQUIRED, TO INSTALL THE PERIMETER EROSION AND SEDIMENTATION CONTROL MEASURES AND, IF APPLICABLE, TREE PROTECTION
- 5 INSTALL CONSTRUCTION ENTRANCE
- 6. PERFORM THE REMAINING CLEARING AND GRUBBING AS NECESSARY, REMOVE CUT WOOD AND STUMPS. CHIP BRUSH AND STOCKPILE FOR FUTURE USE OR REMOVE OFF-SITE. REMOVE AND DISPOSE OF DEMOLITION DEBRIS OFF-SITE.
- 7. TEMPORARILY SEED DISTURBED AREAS NOT UNDER CONSTRUCTION FOR THIRTY (30) DAYS OR MORE.
- 8 EXCAVATE AND GRADE NEW ACCESS DRIVE
- 9. EXCAVATE AND ROUGH GRADE EQUIPMENT COMPOUND.
- 10 EXCAVATE FOR TOWER FOUNDATION & FOUIPMENT PADS
- 11. FINALIZE ACCESS ROAD GRADES.
- 12. PREPARE SUBGRADE AND INSTALL FORMS, STEEL REINFORCING, & CONCRETE FOR TOWER FOUNDATION & FOUIPMENT PADS
- 13. INSTALL BURIED GROUND RINGS, GROUND RODS, GROUND LEADS, UTILITY CONDUITS & UTILITY EQUIPMENT.
- 14. BACKFILL TOWER FOUNDATION.
- 15. ERECT MONOPINE
- 16. INSTALL TELECOMMUNICATIONS EQUIPMENT ON TOWER & IN COMPOUND.
- 17. INSTALL COMPOUND GRAVEL SURFACES.
- 18. FINALIZE GRADES. INSTALL GRAVEL SURFACES.
- 19. INSTALL FENCING.
- 20. CONNECT GROUNDING LEADS & LIGHTNING PROTECTION
- 21. FINAL GRADE AROUND COMPOUND.
- 22. LOAM & SEED DISTURBED AREAS OUTSIDE COMPOUND, AS REQUIRED & INSTALL LANDSCAPING.
- 23. TEST ALL NEW EQUIPMENT
- 24. AFTER THE SITE IS STABILIZED AND WITH THE APPROVAL OF THE OWNER, REMOVE PERIMETER EROSION AND SEDIMENTATION CONTROLS.
- 25. PERFORM FINAL PROJECT CLEANUP

THE ESTIMATED TIME FOR THE COMPLETION OF THE WORK IS APPROXIMATELY TWELVE (12) WEEKS. THE EXACT PROCESS MAY VARY DEPENDING ON THE CONTRACTOR'S & SUBCONTRACTOR'S AVAILABILITY TO COMPLETE WORK & WEATHER DELAYS.

CONSTRUCTION OPERATION AND MAINTENANCE PLAN - BY CONTRACTOR				
E&S MEASURE	INSPECTION SCHEDULE	MAINTEN		
CONSTRUCTION ENTRANCE	DAILY	PLACE A REPLACE		
HAY BALES	WEEKLY & WITHIN 24 HOURS OF RAINFALL > 0.2"	REPAIR/F OBSERVI		
SILT FENCE	WEEKLY & WITHIN 24 HOURS OF RAINFALL > 0.2"	REPAIR/F OBSERVI		
SILT SACKS	WEEKLY & WITHIN 24 HOURS OF RAINFALL > 0.2"	REPAIR/F OBSERVE		
TOPSOIL/BORROW STOCKPILES	DAILY	REPAIR/F		
WATER BARS	DAILY	REPAIR/F HEIGHT (
TEMPORARY DIVERSION DITCHES	DAILY & WITHIN 24 HOURS OF RAINFALL > 0.2"	REPAIR/F FAILURES		
TEMPORARY SEDIMENT TRAPS/BASINS	WEEKLY & WITHIN 24 HOURS OF RAINFALL > 0.2"	REMOVE STORAGI		
TEMPORARY SOIL PROTECTION	WEEKLY & WITHIN 24 HOURS OF RAINFALL > 0.2"	REPAIR E		

NANCE REQUIRED

ADDITIONAL STONE, EXTEND THE LENGTH OR REMOVE AND E THE STONE. CLEAN PAVED SURFACES OF TRACKED SEDIMENT REPLACE WHEN FAILURE. OR OBSERVED DETERIORATION. IS

ED. REMOVE SILT WHEN IT REACHES 1/2 THE HEIGHT OF THE BALE.

REPLACE WHEN FAILURE, OR OBSERVED DETERIORATION, IS /ED. REMOVE SILT WHEN IT REACHES 1/2 THE HEIGHT OF THE FENCE. REPLACE WHEN FAILURE, OR OBSERVED DETERIORATION, IS ED. REMOVE SILT WHEN IT REACHES 1/2 THE HEIGHT OF THE SACK.

REPLACE SEDIMENT BARRIERS AS NECESSARY

RESHAPE AS NECESSARY. REMOVE SILT WHEN IT REACHES 1/2 THE OF THE WATER BAR

RESHAPE AS NECESSARY. REVIEW CONDITIONS IF REPETITIVE S OCCUF

SEDIMENT WHEN IT REACHES 1/2 OF THE MINIMUM REQUIRED WET GE VOLUME

ERODED OR BARE AREAS IMMEDIATELY RESEED AND MULCH

	APPROVED SAFE MANNER.	
GOVERNING CODES/DESIGN STANDARDS:	ALL SURPLUS MATERIAL SHALL BE REMOVED FROM THE SITE PRO	
CONNECTICUT STATE BUILDING CODE, LATEST EDITION NATIONAL ELECTRIC CODE TIA-222-H	EVERY CONTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECT HIS WORK AND NEWLY INSTALLED OR EXISTING WORK, INCLUDIN PROTECTION OF THE SITE, ALL STRUCTURES, AND ALL OCCUPAN	
DESIGN CRITERIA:	PURNISH, INSTALL, MAINTAIN, AND REMOVE AS APPROPRIATE, AL APPROPRIATE BARRIERS, SAFETY GUARDS, SIGNAGE, AND SECUR BEOLINED	
RISK CATEGORY/: II (2015 IBC TABLE 1604.5) STRUCT. OCCUPANCY	HEQUIRED. EVERY CONTRACTOR SHALL BE RESPONSIBLE FOR THEIR RESPEC FEES, PERMITS, INSPECTIONS, TESTING, CERTIFICATES, AND ALL MANAGEMENT OF SAME REQUIRED FOR COMPLETION OF AND LE	
SNOW LOAD: GROUND, P.g. 30 PSF (2018 CSBC APPENDIX N)	OCCUPANCY OF THE FINISHED PROJECT. ALL CONTRACTORS SHALL PROVIDE ALL NECESSARY TOOLS, FIX SERVICES, MATERIALS, JOB AIDS, AND PERSONNEL REQUIRED FC	
MINIMUM FLAT	EXECUTION OF THEIR WORK. EACH CONTRACTOR SHALL GUARANTEE ALL MATERIALS AND	
ROOF, P _{fmin} : 30 PSF (2018 CSBC SECT. 1608.1.1) <u>WIND LOADS:</u>	WORKMANSHIP BY THEM TO BE FREE OF DEFECTS AND MAINTAIN A PERIOD OF ONE YEAR AFTER ACCEPTANCE OF THE INSTALLATION THE OWNER AND ENGINEER.	
ULTIMATE BASIC WIND SPEED, V _{LLT} : 125 MPH (2018 CSBC APPENDIX N) (3-SECOND GUST)	TRADE HAVING JURISDICTION. ANY DEVIATION, MODIFICATION, ADDITION, OR CHANGE IN DESIG SHALL NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE OWN	
NOMINAL BASIC WIND SPEED, V _{ASD} : 97 MPH (2018 CSBC APPENDIX N) (3-SECOND GUST)	ENGINEER. ALL CONTRACTORS SHALL SUBMIT SHOP DRAWINGS OF ALL EQU AND MATERIALS TO THE ENGINEER FOR APPROVAL PRIOR TO	
EXPOSURE CATEGORY C (2015 IBC SECT. 1609.4) WIND IMPORTANCE	FABRICATION AND INSTALLATION, AND SPALL NOT PHOCED UN ENGINEER APPROVAL IN WRITING IS RETURNED. EACH CONTRAC SHALL MAINTAIN ON JOB SITE A COMPLETE SET OF SHOP DRAWII WITH ANY DEVIATIONS FROM THE ORIGINAL DESIGN SHALL BE NO	
FACTOR, I _w : 1.0 (TIA-222G, TABLE 2-3) ICE LOADS:	ALC MATERIALS AND EQUIPMENT SHALL BE NEW, WITHOUT BLEN DEFECT, AND SUITABLE AND LISTED FOR THE INSTALLATION AND BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS RECOMMENDATIONS OR SPECIFICATIONS. ALL ITEMS OF EQUIPM	
ICE THICKNESS, t: 0.75 (TIA-222G, ANNEX B)	MATERIAL THAT ARE OF ONE GENERIC TYPE SHALL BE ONE MANUFACTURER THROUGHOUT. ALL MATERIALS, EQUIPMENT, TOOLS, AND ITEMS UNDER THE	
IMPORTANCE FACTOR, I: 1.0 (TIA-222G, TABLE 2-3) NOMINAL BASIC	CONTRACTOR'S RESPONSIBILITY ON THE JOBSITE SHALL BE ADEQUATELY SECURED, MAINTAINED, AND PROTECTED, SO AS N BECOME DAMAGED OR CREATE ANY HAZARD TO PERSONNEL OF DEODEDTY	
WIND SPEED W/ ICE, VI 50 MPH (TIA-222G, ANNEX B) (3-SECOND GUST)	THE CONTRACTORS HOURS OF WORK SHALL BE IN ACCORDANCI LOCAL CODES AND ORDINANCES AND BE APPROVED BY THE OW	
SEISMIC LOAD: REFER TO SECTION 1613 OF THE 2015 IBC/2018 CONNECTICUT FTATE RUIL DIAR CODE FOR SEISMIC OLASSIE CATION AND	CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR ALL OF HIS AND INSURE THAT EVERY CREW MEMBER FOLLOWS SAVE WORK PRACTICES. SAFETY TRAINING SHALL INCLUDE, BUT NOT BE LIMI FALL PROTECTION, CONFINED SPACE ENTRY, ELECTRICAL SAFET	
LOADING DETERMINATION.	TRENCHING/EXCAVATION SAFETY WHERE SUCH WORK IS EXECUT ENCOUNTERED. ALL TEMPORARY WORK REQUIRED OR SPECIFIED AS A PART OF T	
	WORK, SHALL MEET ALL OF THE SAME REQUIREMENTS AS PERM. INSTALLATIONS, SHALL MEET ALL APPLICABLE CODE REQUIREME AND SHALL BE COMPLETELY REMOVED AFTER ITS PURPOSES HA DEEN SECURD.	
	ANY EXISTING UTILITY, SERVICE, STRUCTURE, EQUIPMENT, OR FIX OBSTRUCTING THE WORK SHALL BE REMOVED AND/OR RELOCAT DIRECTED BY THE CONSTRUCTION MANAGER	
	IF ASBESTOS IS ENCOUNTERED DURING WORK EXECUTION, CONTRACTOR SHALL IMMEDIATELY NOTIFY THE CONSTRUCTION MANAGER AND CEASE ALL ACTIVITIES IN AFFECTED AREAS UNTIL	
	NOTIFIED BY THE CONSTRUCTION TO RESUME OPERATIONS. EXIST. ELECTRICAL AND MECHANICAL FIXTURES, PIPING, WIL AND EQUIPMENT OBSTRUCTING THE WORK SHALL BE REMC	
	AND/OR RELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGER. TEMPORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.	
	04 CONCRETE: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL	
01 GENERAL: ARREVIATIONS LISED IN THESE SPECIFICATIONS INCLUDE THE	SPECIFICATIONS HEREIN. ALL CONCRETE CONSTRUCTION SHALL BE DONE IN ACCOR	
FOLLOWING: ACI AMERICAN CONCRETE INSTITUTE	WITH THE AMERICAN CONCRETE INSTITUTE (ACI) CODES 301 LATEST REVISION.	
ANSI AMERICAN NATIONAL STANDARDS INSTITUTE AWS AMERICAN WELDING SOCIETY	ALL CONCRETE USED SHALL BE 4000 PSI (28 DAY COMP STRENGTH) THE CONCRETE MIX SHALL BE BASED ON USING	
AISC AMERICAN INSTITUTE OF STEEL CONSTRUCTION ASCE AMERICAN SOCIETY OF CIVIL ENGINEERS	FOLLOWING MATERIALS AND PARAMETERS:	
ASTM AMERICAN STANDARDS AND TESTING METHODS CRSI CONCRETE REINFORCING STEEL INSTITUTE	AGGREGATE: ASTM C150, 11 AGGREGATE: ASTM C33, 1 INCH MAX	
ICC-ES INTERNATIONAL CODE COUNCIL EVALUATION SERVICE TIA TELECOMMUNICATIONS INDUSTRY ASSOCIATION	ADMIXTURE: POTABLE ADMIXTURE: NON-CHLORIDE	
UL UNDERWIRTERS LABORATORIES NEC NATIONAL ELECTRICAL CODE	AIR: 6%* SLUMP: 4 INCH	
NFPA NATIONAL FIRE PROTECTION ASSOCIATION OSHA OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION	*ALL CONCRETE EXPOSED TO FREEZING WEATHER SHALL	
EVERY INDIVIDUAL TRADE, DISCIPLINE, AND CONTRACTOR SHALL INCLUDE THESE GENERAL SPECIFICATIONS.	ALL REINFORCING STEEL SHALL BE ASTM A615, GR 60	
THE ENGINEER IS NOT RESPONSIBLE FOR NOR A GUARANTOR OF THE INSTALLING CONTRACTORS WORK, ADEQUACY OF ANY SITE COMPONENT, SUPERVISION OF ANY WORK, AND SAFETY IN, ON, OR ABOUT THE WORK SITE.	(DEFORMED), WELDED WIRE FABRIC SHALL CONFORM TO A A185 WELDED STEEL WIRE FABRIC. SPLICES SHALL BE CLAS AND ALL HOOKS SHALL BE ACI STANDARD UNO. REINFORC BARS SHALL BE COLD BENT WHERE REQUIRED AND TIED (N	
ANY REFERENCE HEREIN TO AN OR EQUAL ITEM, THAT EQUAL ITEM SHALL BE PRE-APPROVED BY THE CONSTRUCTION MANAGER BEFORE	WELDED).	
INSTALLATION ALL TRADES SHALL COORDINATE THEIR WORK WITH ALL OTHER TRADES	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE	
AND OTHER WORK AND CONDITIONS AS APPROPRIATE OR REQUIRED TO AVOID CONFLICTS. RESOLVE AND COORDINATE ALL CONFLICTS WITH	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STELL: CONCRETE CAST AGAINST FARTH = 3 IN	
ALL AFFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL: CONCRETE CAST AGAINST EARTH = 3 IN. CONCRETE EXPOSED TO EARTH OR WEATHER: # #6 ADD L APREF = 2 IN	
ALL AFFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE SITE SHALL BE WITH THE OWNER, OR OWNERS SPECIFIED REPRESENTATIVE, FOR EVERYTHING RELATED TO THE INSTALLATION OF	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORCING STEEL: • CONCRETE CAST AGAINST EARTH = 3 IN. • CONCRETE EXPOSED TO EARTH OR WEATHER: • #6 AND DAGEE = 2 IN. • #5 AND DAGLER = 11/2 IN.	
ALL AFFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE SITE SHALL BE WITH THE OWNER, OR OWNERS SPECIFIED REPRESENTATIVE, FOR EVERYTHING RELATED TO THE INSTALLATION OF THIS PROJECT. ALL WORK SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PONDEDE FOR BRINFORCING STEEL: • CONCRETE CAST AGAINST EARTH = 3 N. • 00 AND LARGER = 2 N. • #6 AND LARGER = 2 N. • #6 AND LARGER = 1 12 N. • CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR N. • CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR N. • SI AG AND WALL = 340 N.	
ALL AFFECTED WORK AND SITE OFERATIONS. COORDINATION WITH THE BERNESSHITTING FOR EVENTIMES RELEASED TO THE BERTALLATON OF THIS PROJECT. ALL WORK SHALL BE IN STRET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO ALL AUTHORIES HAVING JURGEDTON (AH), WHERE A CONFLICT	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BRINFORGINOS STEEL: • CONCRETE CAST AGAINST EARTH = 3 N. • 00 AND EXPOSED TO EARTH OR WEATHER: • #6 AND LARGER = 2 N. • #6 AND LARGER = 1 N2 N. • CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR N CAST AGAINST THE GROUDE • BEAMS AND COLUMPS = 1 1/2 IN.	
ALL AFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE SUBJECT AND A STREED AN	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BRINFORGINOS STEEL: • CONCRETE CAST AGAINST EARTH = 3 N. • CONCRETE EXPOSED TO EARTH OR WEATHER: • #6 AND EXAGLER = 2 N. • #6 AND SMALLER = 1 12 N. • CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR N CAST AGAINST THE GROUND • SLAB AND WALL = 34 N. • BEAMS AND COLLIMES = 1 12 N. • BEAMS AND COLLIMES = 1 12 N. • A 34 NI CHAMERS SHALL BE PROVIDED AT ALL EXPOSED E1 C CONCRETE, IN ACCORDANCE WITH ACI 30 SECTION 4.2	
ALL AFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE BETHERSELLENT HT ECONCERT OF OWNERS SECTORE BETHERSELLENT HT THE OWNERS DECORDED THIS PROJECT. ALL WORK SHALL BE IN STRUCT ACOORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO ALL AUTHORIES HAVING J. HEISDOTTOM (HALL APPL). WHERE A CONFLICT MORE STRUCEDT AUTHORY SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLANS AND SECONDANS, PLAN SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLAN SHEETS, CONSTRUCTION MANAGER SHALL BE CONSULTED PRIOR TO COMMENCING ANY WORK.	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BRINFORCING STEEL: • CONCRETE CAST AGAINST EARTH - 9 N. • CONCRETE EXPOSED TO EARTH OR WEATHER: • #6 AND EXAGLER = 2 N. • #6 AND SMALLER = 1 12 N. • CONCRETE INOT EXPOSED TO EARTH OR WEATHER OR N CAST AGAINST THE GROUND • SLAB AND WALL = 34 N. • BEAMS AND COLLINES = 1 12 N. • BEAMS AND COLLINES = 1 12 N. • A 34 NI CHAMERS SHALL BE PROVIDED AT ALL EXPOSED EI OF CONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE SHALL BE PLACED IN A UNFORM MANNER AND CONSOLIETE IN PLACE.	
ALL AFECTED WORK AND SITE OPERATIONS. COOPDINATION WITH THE REPRESENTATION. CORE NOT ACCORDANCE WITH ALL APPLICABLE DEPRESENTATION. CORE NOT ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO ALL WORK SHALL BE IN STRET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE STRET AND A DEPARTMENT ACCORDANCE WITH ALL APPLICABLE BETWEEN PLANED AND SECONCIDENCE. NANOGR MULT MORE STRINGENT AND SECONCIDENCE, PLAN SHALL APPL, WHERE EDITIONS AND SECONCIDENCE, PLAN SHALL APPL, WHERE EDITIONED AND SECONCIDENCE, PLAN SHALL, NOVEMBER SHALL BE CONSULTED PRIOR TO COMMENCING ANY WORK. EDITIONED, STRALL APPL, ONE ALL ADRON, MATERIAL, INSURANCE, EDITIONED, TAILL APPLO, CONSTRUCTION TOOLS, TRANSPORTION, SYSTEM THEORIGOUT AND AS INDICATED ON THE ENVIRONG AND AS	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BRINFORMON STEEL: • CONCRETE CAST AGAINST EXFTH = 3 N. • CONCRETE EXPOSED TO ENATH OR WEATHER: • # 6 AND LARGEN = 2 N. • CONCRETE CONCRETE ON CONCRETE INTO TEXPOSED TO ENATH OR WEATHER OR N • CONCRETE NOT EXPOSED TO ENATH OR WEATHER OR N • CAST AGAINST THE GROUND: • SLAB AND WALL = 3 N N. • BEAMS AND COLLIMINS = 1 12 N. • 3 NIN CHMANERS SHALL BE PROVED AT ALL EXPOSED EI OCNORETE IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE FORTINGS SHALL BE CAST AGAINST LEVEL CONCRETE FORTINGS SHALL BE CAST AGAINST LEVEL.	
ALL AFECTED WORK AND SITE OFERATIONS. COORDINATION WITH THE STEE SHALL BE UNTIT THE OWNERS, SECONED 2017 THIS PROJECT. ALL WORK SHALL BE IN STRETA CACOPCINE DI TO THE INSTALLATION OF THIS PROJECT. ALL WORK SHALL BE IN STRETA CACOPCINATE, WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ALL AUTHORITES HAVING JURISOFTOM (ALL), MERGE A CONFLICT EXISTS BETWEEN COCES, PLANS, SPECIFICATIONS, ANGLOR ANL, THE SETWEEN LOCAS, PLANS, SPECIFICATIONS, ANGLOR ANL, THE SETWEEN LOCAS, PLANS, SPECIFICATIONS, ANGLOR ANL, THE SETWEEN LOCAS, PLANS, SPECIFICATIONS, ANGLOR ANL, THE STRETABLE AND SPECIFICATIONS, PLANS THALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLAN SHEETS, CONSTRUCTION MANAGER SHALL BE CONSULTE PRIOR TO COMMENCING ANY WORK. CONTRACTOR SHALL RADY REVENT CONSTRUCTION MANAGER SHALL BE CONSTRUCTION AND SPECIFICATIONS, PLANS THALL, SINJANONE, CONTRACTOR SHALL AND PROFERENCE THE THAN THE AND LISABLE SPECIFICE INFERSION AND SPECIFICATION THROUGH AND AND AND SPECIFICID FIELD AND PROFERENCE TO THE THE AND LISABLE CONTRACTOR SHALL REPORT ON THE FIELD PROFILE FOR THE AND LISABLE CONTRACTOR SHALL REPORT OF THE THE AND LISABLE CONTRACTOR SHALL DENOTING THE END FOR THE AND LISABLE CONTRACTOR SHALL DENOTING TO BE CONTRACTORS, MAN AS	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BRINFORGIND STEEL: • CONCRETE CAST AGAINST EARTH = 3 N. • CONCRETE EXPOSED TO EARTH OR WEATHER: • #6 AND SMALLER = 2 IN. • #6 AND SMALLER = 1 1/2 IN. • CONCRETE INOT EXPOSED TO EARTH OR WEATHER OR N CAST AGAINST THE GROUND: • SLAB AND WALL = 3/4 IN. • BEAMS AND COLLIMNS = 1 1/2 IN. • BEAMS AND COLLIMNS = 1 1/2 IN. • BEAMS AND COLLIMNS = 1 1/2 IN. • A 3/4 IN CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EI OC CONCRETE IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE GHALL BE PLACED IN A UNFORM MAINER AND CONCRETE IN PLACE CONCRETE FORTING SHALL BE CAST AGAINST LEVEL, COMPACTED, NON-FROZEN BASE SOL FREE OF STANDING WITER. <u>OG ANCHORES</u> :	
ALL AFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE STEESVALL BE WITH THE OWNERS, SECONDERING THE AND OPEN THIS PROJECT. ALL WORK SHALL BE IN STRETA CAOCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COORDS AND SHALL BE ACCEPTABLE TO ALL AUTHORIES HAVING JURISOTOM (AU), WHERE A CONFLICT ENSIST BETWEEN COORS PLANS, SPECIFICATIONS, AND/CRI ANL, THE STRETABLE WORK DESCRIPTIONS, PLANS SHALL BE ACCEPTABLE TO ALL AUTHORIES AND SPECIFICATIONS, PLANS SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLANS SHEED CONSTITUCTION MANAGER SHALL BE CONSTILLED PRIOR TO COMMENDING ANY WORK. CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, INJURANCE, EQUIPMENT, INSTILLATION, CONSTITUCTION MANAGER SYSTEM THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SYSTEM THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SYSTEM THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SYSTEM THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SYSTEM THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SYSTEM THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SYSTEM THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS CONTRACTOR SHALL VERTY ALL DISTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT, INSTALLATION, CONTROL TO DIS AND AND AND AS INSTALLATION, OF ANY WORK.	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BRINFORGINO STEEL: • CONCRETE CAST AGAINST EARTH - 9 N. • CONCRETE EXPOSED TO EARTH OR WEATHER: • #6 AND SMALLER = 2 IN. • #6 AND SMALLER = 1 1/2 IN. • CONCRETE INOT EXPOSED TO EARTH OR WEATHER OR N CAST AGAINST THE GROUND: • SLAB AND WALLE = 3/4 IN. • BEAMS AND COLLIMNS = 1 1/2 IN. • CONCRETE SHALL BE CAST AGAINST LEVEL CONCRETE FORTINGS SHALL BE CAST AGAINST LEVEL COMPACTED, NON-FROZEN BASE SOL, FREE OF STANDING WATER • BEAMS AND COLLIMNS = 1 1/2 IN. • BEAMS AND COLLIMNS = 1 1/2 IN. • DEAMS AND COLLIMNS = 1 1/2 IN. • DEAMS AND COLLIMNS = 1 1/2 IN. • DEAMS AND COLLIMNS = 1 1/2 IN. • BEAMS AND COLLIMNS = 1 1/2 IN. • CONCRETE SHALL BE PROVIDED AT ALL EXPOSED IN THE OF TANDING WATER • AND COLLIMNS = 1 1/2 IN. • CONCRETE SHALL BE PROVIDED AND AND AND AND AND AND AND AND AND AN	
ALL AFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE STEE SHALL BE UNIT THE OWNERS, SECONE CONCENT THIS PROJECT. ALL WORK SHALL BE IN STRETA CACOREANCE SWITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ALL AUTHORIES HAVING JURISOTTOM (ALL), MENERAL ACCEPTABLE EDITIONS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ALL AUTHORIES HAVING JURISOTTOM (ALL), MENERAL CONFLICT EXISTS BETWEEN COCES, PLANS, SPECIFICATIONS, ANACICA ANL, THE SETWEEN LOCAS, PLANS, SPECIFICATIONS, ANACICA ANL, THE SETWEEN LOCAS, PLANS, SPECIFICATIONS, ANACICA ANL, THE SETWEEN LANS AND SPECIFICATIONS, PLANS SHALL APPLY, WHERE CONFLICT EXISTS BETWEEN PLANS SHEED CONSTILLT, SINGHTANDRO, CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, INSURANCE, CONTRACTOR SHALL ROPOUTE ALL LABOR, MATERIALS, INSURANCE, CONTRACTOR SHALL NOT PORTERIC TO THE INTER AND LOSABLE SPECIFICIE HOREN AND/OR OTHERWISE REQUIRED. CONTRACTOR SHALL VERTY ALL DISTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT, INTO THE PIELD PRIOT TO DE 7, REPORTATION, AND INSTALLATION OF ANY WORK. CONTRACTOR SHALL VERTY ALL DISTING CONDITIONS, INTELL. FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND ADD CONTRACTORS, AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND TO CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR AND CONDITIONS IN THE FIELD PICH TO FARENCIATION AND ERECTIONS FOR THE TO TH	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINO STEEL: • CONCRETE CAST AGAINST EARTH - B N. • CONCRETE EVOCED TO EARTH OR WEATHER: • # AND SMALLER - 1, 12 N. • # AND SMALLER - 1, 12 N. • CONCRETE FOR DOWNED AT ALL EXPOSED EI • BLAB AND WALL - 34 N. • CONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE FULL EF ACED IN A UNIFORM MANNER AND CONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE FULL EF ACED IN A UNIFORM MANNER AND CONCRETE IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE SHALL BE PACED IN A UNIFORM MANNER AND CONSIDIATED IN PLACE. COMPACTED, NON-FROZEN BASE SOL FREE OF STANDING WATER. • THESE SPECIMONATIONS SHALL BL USED WHERE ATLACHING TO CONCIDETE ENDERSTICATIONS SHALL BUSED WHERE ATLACHING TO CONCIDETE. MACONTS SHALL BUSED WHERE ATLACHING TO CONCIDENTE. MACONTS SHALL BUSED	
ALL AFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE STEE SHALL BE UNTIT THE OWNERS, SECONED 2010 THIS PROJECT. ALL WORK SHALL BE IN STRET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ALL AUTHORIES HAVING JURISOFTOM (ALL), MARINER A CONFLICT ENSISTE WINES AND SECONED TO ALL APPLICABLE EDITIONS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ALL AUTHORIES HAVING JURISOFTOM (ALL), MARINER A CONFLICT ENSISTE BETWEEN COCES, PLANS, SPECIFICATIONS, ANACICH ANL, THE SETURISON AND SECONFORTONS, PLANS SHALL APPLY, WHERE CONFLICT EXISTS BETWEEN PLANS SHEED CONSTITUCTION MANAGER SHALL BE CONSTILLED PRIOR TO COMMENDING ANY WORK. CONTRACTOR SHALL REPORT ON COMMENDING ANY WORK. CONTRACTOR SHALL REPORT OF COMMENDING ANY WORK. CONTRACTOR SHALL REPORT OF COMMENDING ANY WORK. CONTRACTOR SHALL REPORT OF AND AS INCIDATED ON THE CROWNADLE SPECIFIED HEREN AND AS INCIDENT ON THE CROWNADLE SPECIFIED HEREN AND AND SECONFORMED REQUIRED. CONTRACTOR SHALL VERIFY ALL DISTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT, INT IN THE FILE DIPRICATION ON AD ERECTION OF ANY MATERIAL. THE FIELD PRICATION AND GE AND THEORY AND AS INFORMED ON THE FIELD REAL CONTRACTOR SHALL VERIFY ALL DISTING CONDITIONS, INTER- FIELD FIELD AND AND AND AND AND AND AND AS INFORMED ON THE ADMINISTER TOOLING. INSTALLATION OF ANY WORK. CONTRACTOR SHALL VERIFY ALL DISTING CONDITIONS, INTER- FIELD FIELD FIELD FIELD TO THE ADMINISTER TOOLING. INSTALLATION OF ANY WORK. CONTRACTOR SHALL VERIFY ALL DISTING CONDITIONS, INTER- FIELD FIELD FIELD FIELD TO THE ADMINISTER TOOLING. INSTALLATION OF ANY WORK. CONTRACTOR SHALL VERIFY ALL DISTING CONDITIONS, INTER- FIELD FIELD FIELD FIELD FOR TO BE ADMINISTEND, ADD EXCENTIONS, ADD CONDITIONS IN THE FIELD FIELD	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINO STEEL. • CONCRETE CAST AGAINST EXATTH 6 M WEATHER. • OR AND SMORTH 6 M WEATHER. • WE AND SMORTH 6 M WEATHER. • WE AND SMORTH 7 M CONCRETE NOT EXATT 6 M WEATHER. • WEATHER SHALL BE IN CAST MANY CONCRETE NOT EXATT 6 M WEATHER OR NO. • SLAB AND WOLL = 34 IN. • BLAB AND WALL = 34 IN. • DONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONVORTED IN PLACE. • CONVERTES IN LE CAST AGAINST EVEL COMPACTED. NON-FROZEN BASE SOL FREE OF STANDING WATER. • THESE SPECINCATIONS SHALL BE CAST AGAINST EVEL EXPANSION ANO-DORS SHALL BE LIED WHERE ATTACHING TO CONCRETE, MACKING SHALL BE LIED WHERE ATTACHING TO CONVERTE. MACKING SHALL BE LIED WHERE ATTACHING TO BALL MINIE MEEDIN ADDRESS ANCHORING IN MACKING WITH VOIDS SHAL	
ALL AFECTED WORK AND SITE OFERATIONS. COOPDINATION WITH THE ALL AFECTED WORK AND SITE OFERATIONS. COOPDINATION WITH THE BERNESENTATINE, CPG PLEATING SITE ACCEPTANCE INFORMATION OF ALL APPLICABLE COOPS AND SHALL BE ACCEPTABLE TO THIS PROJECT. ALL WORK SHALL BE IN STREET ACCOOPDINCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COOPS AND SHALL BE ACCEPTABLE TO SITE SITE WITH A APPLICABLE COOPS AND SHALL BE ACCEPTABLE TO SITE SITE WITH A APPLICABLE COOPS AND SHALL BE ACCEPTABLE TO THE PROJECT. SITE SITE WITH A APPLICABLE COOPS AND SHALL BE ACCEPTABLE TO SITE SITE WITH A APPLICABLE COOPS AND SHALL BE ACCEPTABLE TO SITE SITE WITH A APPLICABLE COOPS AND SHALL APPLY. WHERE CONTRACTOR SHALD SECONDARY SHALL APPLY. WHERE CONTRACTOR SHALD SECONDARY SHALL APPLY. WHERE CONTRACTOR SHALD SECONDARY SHALL APPLY. WHERE CONTRACTOR SHALL SHOP CONTRACTORS FOR WHERE SHALL BE CONSULTED PRIOR TO COMMENCING ANY WORK. CONTRACTOR SHALL PROVIDE LLADOR, MATERIAL, INSURANCE, EQUIPMENT, INSTALLATION, CONSTITUCTION TOOLS, TRANSPORTATION, SPECIFIED HEREIN AND/OR OTHERWISE RECUIRED. CONTRACTOR SHALL VERIFY ALL ADSTINUC CONDITIONS, INSTALLATIONS, AND EQUIPMENT IN THE FIELD PRIOR TO DER FABRICATION, AND SPECIFIED HEREIN AND/OR OTHERWISE RECUIRED. CONTRACTOR SHALL VERIFY ALL DISTINUC CONDITIONS, INSTALLATIONS, AND EQUIPMENT IN THE SHELD PRIOR TO BE RECTION OF ANY WORK IN FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THOR SHALL APPLY OF ANY CONSTITUNE DE STALE AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO F	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINO STEEL: • CONCRETE CAST AGAINST EXETL: • CONCRETE EXPOSED TO EARTH OR WEATHER: • WE AND LANCER = 2 NI • CONCRETE EXPOSED TO EARTH OR WEATHER: • WE AND LANCER = 2 NI • CONCRETE INTO TEXPOSED TO EARTH OR WEATHER OR N CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR N CAST AGAINST THE GROUND: • SLEB AND WALL = 3 VI • SLEB AND WALL = 5 VI • SLEB AND	
ALL AFECTED WORK AND SITE OFERATIONS. COOPDINATION WITH THE REPRESENTATIONE, CPG PLEATING SELECTED TO THE INSTALLATION OF THE SPROJECT. ALL WORK SHALL BE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO THE SPROJECT. ALL WORK SHALL BE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO STREET BETWEEN TAUTION TO ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE SCREET AND SHALL BE ACCEPTABLE TO STREET BETWEEN TAUTION TO ACCORD AND SHALL BE ACCEPTABLE TO STREET BETWEEN ADDRESS OF AND SECONCTONS, PLAN SHALL APPLY. WHERE EDITIONED AND SECONCOMS, PLAN SHALL APPLY. WHERE EDITIONED AND SECONCOMPLY SHALL APPLY. WHERE EDITIONED AND ADDRESS AND SECONCOMS, PLAN SHALL NEWS SHALL ECONSULTED PRICE TO COMMENCING ANY WORK TO FOR ACCOMPLET AND PROCEENTLY OFENATIVE AND USABLE CONTRACTOR SHALL SHALL APPLY ALL BOREN MACTINEL, INSURANCE EDITIONED AND ADDRESS AND ADDRESS AND ADDRESS SECONFED HEREIN AND/OR OTHERWISE RECURRED. CONTRACTOR SHALL VERIFY ALL BOREN AND/OR AND ADD SECONFED HEREIN AND/OR OTHERWISE RECURRED. CONTRACTOR SHALL VERIFY ALL BOREN AND/OR AND CONSTRIANT IN THE THELD PRICE TO IN BREFERING SHORD TO CLOSING PRIVE THATONS AND OF ANY CONSTRIANT AND OR AND ADDRESS AND PRIVE THATONS AND OF ANY CONSTRIANT AND ADDRESS AND ADDRESS AND FORTACTOR SHALL VERIFY ALL DRENDER AND ADDRESS AND CONSTRALTIONS FOR THATACTOR SHALL SHALT PLAN ENTRY ADDRESS AND ADDRESS AND ADDRESS AND PRIVE THATACTOR SHALL SHALT PLAN ENTRY ADDRESS AND ADDRESS AND ADDRESS AND FOR THATACTOR SHALL SHALT PLAN ENTRY ADDRESS AND ADDRESS AND ADDRESS AND FOR THATACTOR SHALL SHALT PLAN ENTRY ADDRESS AND ADDRESS AND ADDRESS AND FOR THA	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINO STEEL: • CONCRETE CAST AGAINST EXERT. • 00 MORE TE CAST AGAINST EXERT. • 01 AND LARGER 2 NI. • 02 AND LARGER 2 NI. • 02 AND LARGER 2 NI. • 02 AND MALE 200 I DI CANTH OR WEATHER OR NO. • 02 AND MALE 200 I DI CANTH OR WEATHER OR NO. • 02 AND MALE 200 I DI CANTH OR WEATHER OR NO. • 02 AND WALL 30 AND DO EANTH OR WEATHER OR NO. • 02 AND WALL 30 AND I DE ANTH OR WEATHER OR NO. • 02 AND WALL 30 AND I DE ANTH OR WEATHER OR NO. • 02 AND WALL 30 AND I DE ANTH OR WEATHER OR NO. • 02 AND WALL 30 AND I DE ANTH OR WEATHER OR NO. • 02 AND WALL 30 AND I DE ANTH OR NO. • 02 AND WALL 30 AND I DE ANTH OR NO. • 02 AND AND WALL 30 AND I DE ANTH OR NO. • 00 AND HER SHALL BE PLOYED AT ALL EXPOSED EI OC CONCRETE IN ACCOORDANCE WITH ACI 30 SECTION 4.2 CONCRETE FORTICE DI PLACE. • 00 ANDERTE FOOTINGS SHALL INCLUDE THE GENERAL SPECIFICA TERMINETIC IN SPACED BASE SOL FREE OF STANDING WALCHORS: • 02 ANDHORS SHALL BE USED WHERE ATTACHING TO CONCRETE. MACONT SHALL INCLUDE THE GENERAL SPECIFICA TERMINETICS STANLE INCLUDE THE GENERAL SPECIFICA ACCOUNTS: • 02 ANDHORS STANLE INCLUDE THE GENERAL SPECIFICA ACCOUNTS I SHALL INCLUDE SHALL INCLUDE SHALL INCLUDES SHALL ACCOUNTS AND ACCOUNTS SHALL INCLUDES SHAL	
ALL AFECTED WORK AND SITE OFERATIONS. COOPEINATION WITH THE REPRESENTATIONE, CPG PLEETTINKS BELATED TO THE INSTALLATION OF THE SPROJECT. ALL WORK SHALL BE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO THE SPROJECT. ALL WORK SHALL BE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO STREET BETWEEN TAUTIONTY SHALL EACLY. WHERE CONFLICT EXSTS BETWEEN PLANS AND SPECIFICATIONS, PLAN SHALL APPLY. WHERE EDITIONS AND SECONDONS, PLAN SHALL APPLY. WHERE EDITIONS AND SECONDONS, PLAN SHALL APPLY. WHERE EDITIONED AND SECONDON SHALL APPLY AND SHALL ECONTRACTOR SHALL PRICE TO COMMENCING AND YOOK SECONDE HEREIN AND/OR OTHERWISE RECURRED. CONTRACTOR SHALL VERIFY ALL BOREING AND AND AS SECONDE HEREIN AND/OR OTHERWISE RECURRED. CONTRACTOR SHALL VERIFY ALL BOREINGNS AND CONSTITUTIONS IN THE INSTALLATION OF ANY WORK CONTRACTOR SHALL VERIFY ALL BOREINGNS AND CONSTITUTIONS IN THE ENTRIES AND OF ANY CONDITIONS IN THE CONTRACT ON CONTRACTOR SHALL VERIFY ALL BOREINGNS AND CONSTITUTIONS IN THE ENTRIES AND OF ANY CONDITIONS WHICH PRECLUCED EDITION OF WORK AREA AND WORK STORAGE, ROPER INSTALLATION DESIDENTING THE STE TO MANAGE AND GAN APROVAL DESIDENTING SHALL PROVING THE STE TO MANAGE AND CAN APROVAL DESIDENTION OF WORK AREA AND WORK STORAGE, ROPER INSTALLED AND CORES. NOES AND CONCERNACE WITH THE CONTRACT DOWNED THE WORK AREA AND WORK STORAGE, ROPER INSTALLED AND CORES. NOES AND CONCERNACE WITH THE CONTRACT DOWNED THE ONDER INTER STE TO MANAGE AND GAN APROVAL ED	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR ENERGY CARAN ST EXEL: • CONCRETE CAST AGAINST EXEL: • CONCRETE EXPOSED TO EXATH OR WEATHER: • WE AND LARGER = 2 N. • WE AND LARGER = 2 N. • WE AND LARGER = 1 N. • CAST AGAINST THE GROUND • SLAB AND WALL BS IN TO EARTH OR WEATHER OR N. • SLAB AND WALL BS IN TO EARTH OR WEATHER OR N. • SLAB AND WALL BS IN TO EARTH OR WEATHER OR N. • SLAB AND WALL BS IN TO EARTH OR WEATHER OR N. • SLAB AND WALL BS IN TO EARTH OR WEATHER OR N. • SLAB AND WALL BS IN TO EARTH OR WEATHER OR N. • SLAB AND WALL BS IN THE CAST AGAINST LEVEL OC CONCRETE SHALL BE CAST AGAINST LEVEL CONCRETE FOR SHALL BS CAST AGAINST LEVEL CONCRETE FOR SHALL BS CAST AGAINST LEVEL CONCRETE FOR SHALL BE CAST AGAINST LEVEL CONCRETE FOR SHALL BS CAST AGAINST LEVEL CONCRETE FOR SHALL BS CAST AGAINST LEVEL CONCRETE FOR SHALL BE CAST AGAINST LEVEL CONCRETE FOR SHALL BS CAST AGAINST LEVEL CONCRETE FOR SHALL BE CAST AGAINST LEVEL CONCRETE FOR SHALL BE USED WHERE ATTACHING TO CONFRONTERS SHALL BE USED WHERE ATTACHING TO CONCRETE FOR SHALL BE USED WHERE ATTACHING TO CONCRETE FOR SHALL BE USED WHERE ATTACHING TO CONCRETE FOR SHALL BE USED WHERE ATTACHING TO CONCRETE MACKES WITH HOLES SHALL LIVE CONCRETE AGAINST WITH WORDS SHALL MACHINE SHALL BASE EXPANSION AND SHALL BE USED WHERE ATTACHING TO CONCRETE MACKES WITH HOLES SHALL LIVE AND CONCRETE AGAINST WITH WORDS SHALL MACHINE SHALL BASE COMULE THE BROCKS APARTY MANUNING SHALL MANTAN 2 COMUL AND BEDWENT AND AND SHALL BE USED WHERE ATTACHING TO CONCRETE MACKES WITH HOLES SHALL LIVE AND CONCRETE AND AND AND CONCRETE MACKES WITH HOLES SHALL MACHING SHALL MANTAN 2 COMUL EXPANSION AND CAST SHALL WITH THERADED FOR AND SCREED THAN SHOW BEDWENT AND AND CONCRETE SHALL MACHING SHALL MANTAN 2 COMUL EXPANSION AND CAST APARTY MANUNUNG SHALL MANTAN 2 COMUL AND EXPANSION AND CAST APARTY MANUNUNG SHALL MANTAN 2 COMUL AND CONCRETE SHALL MANTAN 2 COMUL THE SHALL MANTAN 2 COMUL THAN AND AND AND AND AND AND AND AND AND A	
ALL AFECTED WORK AND SITE OFERATIONS. COORDINATION WITH THE BERNESSENTATICE, CPG PLEETINGS BELATED TO THE INSTALLATION OF THIS PROJECT. ALL WORK SHALL BE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCORDING STATUS TERVISED AND SECTION OF A STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCORDING STREETINGENT AUTHORY SHALL APPLY. WHERE CODENLITIE BOTTO THE DOES DETING AND SECTION OF A STREET AND SHALL APPLY AND AND SECTION OF ANY AND AND AND AND AND AND AND AND AND AND SECTION OF ANY AND AND AND AND AND AND AND AND AND AND AND SECTION OF ANY AND AND AND AND AND CONTRACTOR SHALL APPLY AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINOUS STELL: • CONCRETE CAST AGAINST EXEL: • ORIGINE EXPOSED TO SARTH OR WEATHER: • # 84 AND LARGER = 2 IN. • # 84 AND LARGER = 2 IN. • # 84 AND LARGER = 2 IN. • CAST AGE SMALLER = 1 IZ IN. • CAST AGE SMALLER = 1 IZ IN. • CAST AGE SMALL IN CLEAR TO DRIVE THE RONG IN • SLAB AND VALL = 34 IN. • BEAMS AND CALL SARTH OR WEATHER OR IN. • SLAB AND VALL = 34 IN. • BEAMS AND CALL SARTH OR IN. • SLAB AND VALL = 34 IN. • CAST AGE SMALL IN CLEAR TO A SARTH OR IN A • SLAB AND VALL = 34 IN. • CAST AGE SMALL IN CLEAR TO AGAINST LEVEL, OONCRETE SHALL BE PLACED IN A UNFORM MANNER AND ONSCILLATED IN PLACE. • CONCRETE FRANLE BE ALCED IN A UNFORM MANNER AND ONSCILLATED IN PLACE. • CONCRETE FOR SMALL INCLUDE THE GENERAL SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATION AD HER. • ACHORING SHALL BE USED WHERE ATTACHING TO CONCRETE. MACHINE SHALL INCLUDE THE GENERAL SPECIFICATION AD HER. • ACHORING SHALL INCLUDE THE GENERAL SPECIFICATION AD HERE • ACHORING SHALL INCLUDE THE MENT AND AND AND HERE AND AD HERE • ACHORING AND AND HERE SHALL INCLUDE SPECIFICATION AD HERE • ACHORING SPECIFICATION AD HERE SHALL INCLUDES SPECIFICATION AD HERE • ACHORING AND AND HERE SHALL INCLUDE SPECIFICATION AD HERE • ACHORING AND AND HERE SHALL INCLUDES SPECIFICATION AD HERE • ACHORING AND AND AND HERE AND	
ALL AFECTED WORK AND SITE OFERATIONS. COORDINATION WITH THE BERNESSINTATICS, COR DEVITYING BELATED TO THE INSTALLATION OF THIS PROJECT. ALL WORK SHALL BE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCIVICATE BENDESSINTATICS AND SECTION (AM), WHE RECEIVER ACCIVICATION AND AND AND AND SECTION (AM), WHE RECEIVER ACCIVICATION INSTALLATION OF ALL APPLICABLE CODES AND SHALL BE ACCIVICATION INSTALLATION AND SECTION (AM), WHE RECEIVER ACCIVICATION MORE STRINGENT AUTHORY SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN LAVAS AND SECTIONS, PLAN SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN FLAN SHEETS, CONSTITUCTION MANAGER CONFLICT EXISTS BETWEEN FLAN SHEETS, CONSTITUCTION, MANAGER EQUIPMENT, INSTALLATION, CONSTITUCTION TOOLS, TRANSPORTATION, CONTRACTOR SHALL VERY ALL ABORT, MATERIAL, INSURANCE EQUIPMENT, INSTALLATION, CONSTITUCTION TOOLS, TRANSPORTATION, STATLATION CANNEL FAND PROFEND ON THE CONTINUES, INSTALLATIONS, AND EQUIPMENT, INSTALLATION, CONSTITUCTION TOOLS, TRANSPORTATION, STATLATION CAN AND AND AND DEPENDING AND CONDITIONS IN THE EQUIPMENT, INSTALLATION, CONSTITUCTION MATERIAL, THE EQUIPMENT, INSTALLATION, CONSTITUCTION TOOLS, TRANSPORTATION, AND EQUIPMENT IN THE FIELD PRIOR TO BEO, FABRICATION, AND INSTALLATION CAN WORK CONTRACTORS SHALL VERIFY ALL DERING TOOLS, INTALLATIONS, INTE ELED PRIOR TO ANY WORK CONTRACTORS SHALL VERIFY ALL DERING ON AND CONDITIONS IN THE EVENT AND ACT ANY CONDITIONS WITCH PRECLUCE, CONTRACTORS SHALL VERIFY ALL DERING TOOLS, AND ACCIDANTIONS INTO THE CONTRACTORS, AND OCANDING AND ACCIDANCE INTERATIONS AND OF ANY CONDITIONS WITCH PRECLUCE, CONTRACTORS SHALL VERIFY ALL DERING ON AND ACCIDANCE INTERACTORS SHALL VERIFY ALL DERING ON AND ACCIDANCE INTERACTORS AND ACCIDENT AND WORK STORAGE. MORAL APPROVAL DOCUMENTS. CONTRACTORS SHALL VERIFY ALL DERING AND CONDITIONS WITCH THE BULLION GRITE MANAGEMENT PRIOR TO ALL WORK, AND ACCIDANCES, DERING AND ACCESS, NOISE AND CONDERNA SECOURTER. THE CONTRACTORS SHALL SET IN STREET MANAGER AND AND AN AND ACCESS, DERING	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINOUS STEEL: • CONCRETE CAST AGAINST EXEL: • OR CONCRETE CAST AGAINST EXEL • # 84 AND LARGER = 2 N. • # 84 AND LARGER = 2 N. • # 84 AND LARGER = 1 12 N. • CAST AND A A	
ALL AFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE BERNESSENTATINE, CPG PLEETING SELEXTED TO THE INFOLMATION OF THIS PROJECT. ALL WORK SHALL BE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COORS AND SHALL BE ACCIVITION ALL APPLICABLE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COORS AND SHALL BE ACCIVITION INFORMATION OF ALL APPLICABLE COORS AND SHALL BE ACCIVITION INFORMATION OF ALL APPLICABLE COORS AND SHALL BE ACCIVITION INFORMATION OF ALL APPLICABLE COORSENCE INFORMATION AND SECTION (AND, WHETE A CONFLICT INFORMATION AND SECTION AND, WHETE A CONFLICT INFORMATION AND SECTION AND AND AND AND AND ADDITION AND AND SECTION AND AND AND AND AND CONTRACTOR SHALL SECTION AND AND AND AND AND INFORMATION AND AS INCOMENT ON AND AND AND AND ADDITION AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR ENERGY CARACITY STELL: • CONCRETE CAST AGAINST EXEL: • 00 MORE TE EXPOSED TO EARTH OR WEATHER: • #8 AND LARGER = 2 N. • #8 AND LARGER = 2 N. • #8 AND MALLER = 1 12 N. • CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR N. • SLAB MALLER = 1 12 N. • SLAB NAU WALL = 34 N. • SLAB NAU WALL = 51 N. • SLAB NAU PARAMENTIAL STATUS • SLAB NAU • SLAB NAU WALL = 51 N. • SLAB NAU WALL = NAU WALL = 100 N. • SLAB NAU WALL = 100 NAU WALL = 100 NAU WALL = 100 NAU NAU NAU WAL	
ALL AFECTED WORK AND SITE OPERATIONS. COORDINATION WITH THE BERNESSENTATINE, CRI & NEETTINKS BELWINS SOUTHACTA DEPRESENTATINE, CRI & NEETING ADDITIONE BUT ALLATON OF THIS PROJECT. ALL WORK SHALL BE IN STRET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COORS AND SHALL BE ACCEPTABLE TO ALL AUTHORITIS HAVING JURISOLTON (AHJ, MYREE A CONFLICT MORE STRINGENT AUTHORITY SHALL APPLY. WHERE CONFLICT EXISTS BUTWEIN LPANS AND SECOTOONS, PLAN SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLAN SHETS, CONSTITUCTION MANAGER SCIENCES AND SECOTOONS, PLAN SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLAN SHETS, CONSTITUCTION MANAGER SCIENCES AND SECOTOONS, PLAN SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLAN SHETS, CONSTITUCTION, MANAGER SCIENCES AND SECOTOONS, PLAN SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLAN SHETS, CONSTITUCTION, MANAGER SCIENCES AND SECOTOONS, PLAN SHALL APPLY. WHERE CONFLICT EXISTS BETWEEN PLAN SHETS, CONSTITUCTION, MANAGER SCIENCES AND SECOTOONS, PLAN SHALL RADY. MANAGER SCIENCES AND SECOTOONS FOR THE CONFLICT EXISTS BETWEEN PLANS AND SCIENCES AND SANDARSE INSTITUCTION SCIENCES AND SECOTOONS FOR THE CONFLICT EXISTS STEM THROUGH-CUT AND AS INDICATED ON THE DRAWINGS AND AS SCIENCES AND SECOTOONS FOR THE CONFLICT EXISTS STEM THROUGH-CUT AND AS INDICATED ON THE DRAWINGS AND CONDITIONS IN THE EXISTEM THAT AND AND AND CONCERNING AND CONDITIONS IN THE EXISTEM SHALL BE NOTIFIED FOR INSECTIONS FOR THE CONTRACT DOCUMENTS. CONTRACTOR SHALL VSIT THE STE TO MANAGE AND GAIN APPROVAL FOR ALL TENANT DESIGNED NO CLEANNINGS AND CONDITIONS IN THE EXISTEM SHALL BE NOTIFIED FOR INSECTIONS FOR THE CONTRACT DOCUMENTS. CONTRACTOR SHALL VSIT THE STE TO MANAGE AND GAIN APPROVAL FOR ALL TENANT DESIGNED AND AND MAND AND AS AND AS SUBLEDINGSTE MANAGEMENT PRICE TO ALL WORK. AND SHALES MANDAL BE RECTOR OF AND ANY METERIAL. THE ENDELEDINGSTE MANAGEMENT PRICE TO ALL WORK. AND SHALES AND ANY METERIAL DRAWNING AND CONDITIONS IN THE EXISTEMENT DESIGNED AND ANY MATERIAL. THE ENDELEDINGSTE MANAGEMENT PRICE TO ALL WORK. AND SHALES AND	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINOUS STEEL: • CONCRETE CAST AGAINST EXEL • 0 CONCRETE EXPOSED TO EARTH OR WEATHER • # 0 AND LARGER 2 N. • # 0 AND LARGER 2 N. • # 0 AND LARGER 2 N. • STAR SHALL BE I TO IN • STAR SHALL BE I TO IN • STAR SHALL BE INTO ALL DEPONDER • STAR SHALL BE PROVIDED TO EARTH OR WEATHER OR N. • STAR SHAN WALL = 34 N. • STAR SHALL BE PROVIDED TO EARTH OR WEATHER OR N. • STAR SHALL BE PROVIDED TO EARTH OR WEATHER OR N. • STAR SHALL BE PLACED NA LINFORM MANNER AND ONSOLDENTE IN ALCOREDNACE WITH ACI SID SECTION 4.2 CONCRETE IN ALCOREDNATION SHALL INCLUE THE GENERAL SPECIFIC MINIMUM SIDENT AND ALCORED IN ALCOREDNAL INVITION SHALL INVIT WOULD SHALL INTENT IN OR REQUINE WITH HERE ACID ACID AND SECTION ADDESITY ALL BE INSECTION SHALL BE LEED WHERE ATTACHING TO CONCHER IN INVITION SHALL HERE ATTACHING TO CONCLUMING TO CONCHER INFORMATION SHALL INVIT WOULD SHALL INVIT WOULD SHALL INTENT IN ALCORES SHALL INVITION AND AND AND SHALL INVIT WOULD SHALL BE INTENDED AND ALCORES AND FREE EDES MINIMUM. AND	
ALL AFECTED WORK AND SITE OFERATIONS. COORDINATION WITH THE BETHEREDET. FOR EXEMPTINES DELIVERS SECTION THE SITE ALLATON OF THE PROJECT. ALL WORK SHALL EIN STRET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ALL AUTHORITES HAVING JURISOFTON (MIL), WHERE A CONFLICT EDITIONS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ALL AUTHORITES HAVING JURISOFTON (MIL), WHERE A CONFLICT STREET ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ADDRESS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ADDRESS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ADDRESS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ADDRESS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ADDRESS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ADDRESS OF ALL APPLICABLE COCES AND SHALL BE ACCEPTABLE TO ADDRESS OF ALL APPLICABLE ADDRESS OF ADD CONTINGES IN THE ENDRESS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE ENDRESS SHALL SENTING OF AN INFORMATION ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS ADD CONTINGES IN THE ENDRESS SHALL SENTING ADDRESS OF ADD CONTINGES IN THE ENDRESS SHALL SENTING ADDRESS OF ADDRESS AND CONTINGES IN THE EDITADATION OF ANY YORK. IN THE ADDRESS OF ADDRESS ADD CONTINGES ADD CONTINGES OF ADDRESS OF ADDRESS OF ADDRESS ADD CONTINGES AND OF ADDRESS OF ADDRESS OF ADDRESS ADD CONTINGES ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS O	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINO STEEL: • CONCRETE CAST AGAINST EARTH - B N. • CONCRETE EVOCED TO EARTH OR WEATHER: • # AND SMALLER - 1 1/2 N. • # AND SMALLER - 1 1/2 N. • CONCRETE CONCRETE AND SMALLER - 1 1/2 N. • BLAB AND WALL = 3 H N. • CONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE SHALL BE PLACED NO AND THE SHALL BWALE WALL WARE AND CONSIDIATED IN PLACE. • CONCRETE, MACORDANS SHALL BE CAST AGAINT LEVEL. COMPACTED, NON-FROZEN BASE SOLF FREE OF STANDING WATER. • THESE SPRCINCATIONS SHALL BE USED WHERE ATTACHING TO CONCRETE MACONGY MOUNTS SHALL BUE AND AND SOLES IN U. HERE IN MEDICATIONS SHALL BE USED WHERE ATTACHING TO CONCRETE MACONGY MOUNTS SHALL BUE AND AND SOLES IN HERE SPRCINCATIONS SHALL BUE BOD AND SOLES IN M. HERE THE MACONGY MOUNTS SHALL BUE BOD AND SOLES IN HERE SPRCINCATIONS SHALL BUE BOD AND SOLES IN M. HERE THE MACONGY MOUNTS SHALL BUE BOD AND SOLES IN HERE SPRCINCATIONS SHALL BUE BOD AND SOLES IN M. HERE THE MACONGY MACHING IN MACONGY WITH VOIDS SHALL BUAD SOLES ANOTHON MARK BUE AND AND SOLES IN HERE SPRCINCATIONS SHALL BUE BOD AND SOLES IN M. HERE THE MACONGY MACHING IN MACONGY WITH VOIDS SHALL BUAD SOLES ANOTHON MARK BUE AND AND SOLES IN M. HERE THE MACONG SHALL BE BOD SOLES IN MIN WOND SOLES IN MOUND BUT AND	
ALL AFECTED WORK AND SITE OFERATIONS. COOPDINATION WITH THE ALL AFECTED WORK AND SITE OFERATIONS. COOPDINATION WITH THE REPRESENTATIONE. CPG PLEETITING BELATED TO THE INSTALLATION OF THIS PROLECT. ALL WORK SHALLE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTING STREETING THE APPLICABLE CODES AND SHALL BE ACCEPTING THE DITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTING STREETING TO ALL APPLICABLE CODES AND SHALL BE ACCEPTING STREETING AND SECONDATIONS, PLAN SHALL APPL, WHERE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTING THE THIOLESS AND SECONDATIONS, PLAN SHALL APPL, WHERE EDITIONS AND SECONDATIONS, PLAN SHALL APPL, WHERE EDITIONS AND SECONDATIONS, PLAN SHALL APPL, WHERE EDITIONS, PLAN SHALL APPL, WHERE CONTRACTOR SHALL APPLICABLE, MARKING, INSTALLATIONS, SHALLE E CONSULTED PRIOR TO COMMENCING ANY WORK. CONTRACTOR SHALL PROVIDE ALL ADROR, MATERIAL, INSURANCE, EDITIONED AND AND AND SECONDATION TO ALL STRANSPORT TOOL, STEED THEOLOGICUT AND AS INDICATED ON THE DRAWING AND AS SECONDED HEREIN AND/OR OTHERWISE REQUIRED. CONTRACTOR SHALL VERIFY ALL DRISTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT IN THE ERLD PRIOR TO BE APARICATION, AND SECONDED HEREIN AND/OR OTHERWISE REQUIRED. CONTRACTOR SHALL VERIFY ALL DRISTING CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD REAL SHALL PRIFT ON AMOUND AND SHALL ER FIELD TO SHALL SHALT HE SITTE TO MANAGE AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE FIELD PRIOR TO ARBIEL SHALL SHALT AND CONDITIONS IN THE FIELD PRIOR TO ARBIEL SHALT AND CONDITIONS IN THE FIELD PR	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINO STEEL: • CONCRETE CAST AGAINST EARTH - B N. • CONCRETE EXPOSED TO EARTH OR WEATHER: • # AND SMALLER 1 A • # AND SMALLER 1 A • # AND SMALLER 1 A • CONCRETE IN CONCRETE OF EARTH OR WEATHER OR N CONCRETE ON THOSE OF EARTH OR WEATHER OR N CONCRETE IN FOR CONCRETE AND IN • BLABS AND VOLL - 34 IN. • BLABS AND COLLIMINS - 1 12 IN. A 34 IN CHMANERS HALL BE PROVIDED AT ALL EXPOSED EI OF CONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE IN PLACE. CONCRETE IN PLACE. CONCRETE IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE IN PLACE. CONCRETE IN PLACE. CONCRETE IN PLACE. CONCRETE IN ACCORDANCE WITH ACI 301 SECTION 4.2 FREE SPREIDRATIONS SHALL BE CAST AGAINT LEVEL. CONFORTED IN PLACE. CONCRETE IN ACCORDANCE THE GENERAL SPECIFICA HEREIN. ESPANBION ANDHORS SHALL BE USED WHERE ATTACHING TO CONCRETE. MACORY MOUNTS SHALL BE LOCAT OR EQUAL. MINI EMEED REPORTIONS SHALL BE LISED WHERE ATTACHING TO CONCRETE. MACORDY MOUNTS SHALL BE DOD AND SCREEN IN LISETION ADHERES AND CONTROL IN PLACE AND AND AND AND SHALL MANY BULCTON ADHERES AND AND AND AND AND HAND MANDAR SHALL MANY BULCTON ADHERE INFOLONDER AND AND AND AND HAND MARCHING WITH VOIDS SHALL BERKED MANDARY AND AND AND HAND MARCHING WITH VOIDS SHALL BERKED AND AND AND AND HAND MARCHING WITH VOIDS SHALL BERKED AND AND AND AND HAND MARCHING WITH VOIDS SHALL BERKED AND AND AND AND HAND MARCHING WITH VOIDS SHALL BERKED AND AND AND AND HAND MARCHING WITH VOIDS SHALL BERKED AND AND AND AND HAND MARCHING WITH VOID SHALL MARTAN 12 SHALL BE LEVED WHERE BEDGES AND SHALL BE LEVED THROUGH FALLE BERKED AND AND AND AND AND AND AND AND AND AN	
ALL AFECTED LWORK AND SITE OFERATIONS. COOPDINATION WITH THE ALL AFECTED LWORK AND SITE OFERATIONS. COOPDINATION WITH THE REPRESENTATIONE. CPG PLEATED TO THE INSTALLATION OF THIS PROLECT. ALL WORK SHALLE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COORS AND SHALL BE ACCEPTABLE TO THIS PROLECT. ALL WORK SHALLE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COORS AND SHALL BE ACCEPTABLE TO THIS PROLECT. SITS DETIVES AND SECONDATIONS, PLAN SHALL APPL, WHERE EDITIONS OF ALL APPLICABLE COORS AND SHALL BE ACCEPTABLE TO THE STRUEDENT AUTHORY SHALL APPLY. WHERE CONFLICT EXISTS ETIVES IN LANG AND SECONDATIONS, PLAN SHALL APPL, WHERE EDITIONES AND SECONDATIONS, PLAN SHALL, APPL, WHERE EDITIONES AND SECONDATIONS, PLAN SHALL, APPL, WHERE EDITIONES AND SECONDATIONS, PLAN SHALL, SINUFARMORE, EDITIONES AND SECONDATIONS, PLAN SHALL, SINUFARMORE, EDITIONES AND AND AND AND AS SECONDER TA AND SECONDATION TO CAS. TRANSPORTATION, AND EQUIPMENT, INSTALLATION, CONSTITUCTION FAND VARIAL, INSU- BERDED AND ADD ANY CONSTITUCTION OF ANY MATERIAL. THOUSAND AND AS SECONDER AND ADD ANY CONSTITUCTION OF ANY MATERIAL. THOUSAND AND ADD ANY CONSTITUCTION OF ANY MATERIAL. THOUSAND AND ADD ANY CONSTITUCTION OF ANY MATERIAL. THOUSAND ENDITION SHALL WEIT TO ADMINISTRATION OF AND AS ENDITION OF WORK AREA AND WORK STORAGE, PROPER CONTRACTOR SHALL SECONDER OUTCOMES, WORK SCHOOLESS, DERIVITION OF WORK AREA AND WORK STORAGE, PROPER INDER SHALL SECONDARIS CONSTINUES IN THE EDIDENTION OF WORK AREA AND WORK STORAGE, PROPER INDER SHALL SECONDARIS CONSTINUES, AND PREADULESS, DERIVITION OF WORK AREA AND WORK STORAGE, P	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINO STEEL: • CONCRETE CAST AGAINST EXET: • OR AND LARGED STEEL: • OR AND LARGED 2 N. • OR AND WALL 3 V. • OR AND CONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 42 ON CONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 42 ON CONCRETE NON-PROZEN BASE SOL FREE OF STANDING WATER. • OR AND CONCRETE AND WALL 4 V. • THESE SPRCINCTIONS SHALL BE USED WHERE ATTACHING TO CONCRETE. MACONGY MICH SHALL INCLUDE THE GENERAL SPECIFICA HEREIN. • DEFENSION AND CONS SHALL INCLUDE THE GENERAL SPECIFICA HEREIN. • MEEDING AND CONS SHALL INCLUDE THE GENERAL SPECIFICAL MINING MEEDING AND CONS SHALL INCLUDE THE GENERAL SPECIFICAL MINING MEEDING AND CONS SHALL INCLUDE THE GENERAL MINING AND CONS SHALL BE MEEDING AND CONS SHALL DE LISED WHERE AND CONS SHALL DE MEEDING MACH AND CONS SHALL INTO THE REAL MINING AND CONS SHALL DE MEEDING MACH AND AND CONS SHALL DE DESTING AND AND AND AND AND CONS SHALL SECON THE AND CONS SHALL DE MEEDING AND AND AND AND CONS SHALL SECON THE AND CONS SHALL DE MEEDING AND AND AND AND AND AND CONS SHALL SE INTALLED PER M	
ALL AFECTED LWORK AND SITE OFERATIONS. COOPDINATION WITH THE ALL AFECTED LWORK AND SITE OFERATIONS. COOPDINATION WITH THE DEPRESENTATIONE, CPG NEETTINGS BELATED TO THE INSTALLATION OF THE SPRAJECT. ALL WORK SHALL BE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCEPTABLE TO THE SPRAJECT. STREET ALT APPLICABLE CODES AND SHALL BE ACCEPTABLE TO STREET SETTINGENT AUTORNY SHALL APPLY. WHERE CONFLICT EXSTS DETIVED IN LARGE AND SECONDATIONS, PLAN SHALL APPL, WHERE CONTRACTOR SHALL SHALL APPLY. WHERE CONFLICT EXSTS DETIVED IN LARGE AND SECONDATIONS, PLAN SHALL APPLY, WHERE CONTRACTOR SHALL SHALL APPLY. WHERE CONFLICT EXSTS DETIVED IN LARGE AND SECONDATIONS, PLAN SHALL APPLY, WHERE CONTRACTOR SHALL SHORE AND SECONDATIONS, PLAN SHALL APPLY, WHERE CONTRACTOR SHALL SHORE AND SECONDATIONS, PLAN SHALL APPLY, WHERE CONTRACTOR SHALL PROVIDE LL ADROR, MATERIAL, INSURANCE, EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, CONTRACTOR SHALL PROVIDE LL ADROR, MATERIAL, INSURANCE, EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, AND EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, AND EQUIPMENT IN THE TELD PRICE TO DEPARTMENT, AND SECTION SHALL SHALL WERKY ALL DISTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT IN THE DISTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT IN THE STRE TO MANAGE AND CONDITIONS IN THE ENTRALE DATE OF ANY CONSTITUTION OF ANY MATERIAL. THE ENDINEERS SHALL BE NOTIFIED TO INSTREMONS PROVIDED TO CLOSING PENETRATION SHALL SHOT THE STRE TO MANAGE AND CONSTRUCT CONTRACTOR SHALL SHOT IN THE STRE TO MANAGE AND CONST SOCENDED STREET WARK AND UNDER STRETCONS PROVIDED TO CLOSING PENETRATIONS AND AND CONTROL STRACE, PROPER THE OLICING SHALL SHEET TO A MINIMUM AND SHALL BE ENDINCES SHALL SHEET TO A MINIMUM AND SHALL BE ENDINCES ANALL SHEET TO A MINIMUM AND SH	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINO STEEL: • CONCRETE CAST AGAINST EXATL 9 MINIMUM • CONCRETE CAST AGAINST EXATL 9 MINIMUM • MAND LANGER 2 MI • MINIMUM CONCRETE 2 MI • CONCRETE COVER SHALL 9 MINIMUM • CONCRETE CONCRETE 0 MINIMUM • CONCRETE NOT EXPOSED TO BATH OR WEATHER OR N • SUBBAND TO EXPOSED TO BATH OR WEATHER OR N • SUBBAND WALL = 3 MI • SUBBAND WALL = 3 MI • SUBBAND WALL = 3 MINI • SUBBAND WALL = 3 MINIMUM • SUBBAND WALL = 3 MINI • SUBBAND WALL = 3 MINI • SUBBAND WALL = 3 MINIMUM • SUBBAND WALL = 3 MINIMUM • SUBBAND WALL = 3 MINIMUM • SUBBAND WALL = 5 MINIMUM • SUBBAND • SUBBAND WALL = 5 MINIMUM • SUBBAND • SUBBAND WALL = 5 MINIMUM • SUBBAND • SUBAAD • SUBBAND • SUBBAND • SUBBAND • SUBAAD • SUBBAND • SUBBAND •	
ALL AFECTED LWORK AND SITE OFERATIONS. COOPENIATION WITH THE REPRESENTATIONE, CPG PLEETYTINKS BELATED TO THE INSTALLATION OF THE SPRUECT. ALL WORK SHALLE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALLE & ACCEPTABLE TO THE SPRUECT. ALL WORK SHALLE IN STREET ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALLE & ACCEPTABLE TO STREET ENTREMENT AUTHORY SHALLE POLY. WHERE CONFLICTE DSTS ENTREMENT AUTHORY SHALL BAPLY. WHERE CONFLICTE DSTS ENTREMENT AUTHORY SHALL APPLY. WHERE CONFLICTE DSTS ENTREMENT AUTHORY TO COMMENCING ANY WORK SHALLE CONSULTED PRICE TO COMMENCING ANY WORK SHALLE CONSULTED PRICE TO EXTEND CONTONS, INSTALLATIONS, AND EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, AND EQUIPMENT, INTERLED PRICE TO BENETIONS AND CONSTRUCTIONS AND AS PEOFTED HEREIN AND/OR OTHERWISE RECUIRED CONTRACTOR SHALL SERVICE TO INSTRUCTIONS AND CONSTRUCTIONS AND AS PEOFTED HEREIN AND/OR OTHER THE DISTRED CONSTRUCTIONS IN THE EDITAL TRANS AND OF ANY CONSTRUCTIONS AND CONSTRUCTIONS INSTALLATION OF WORK AREA AND WORK STORAGE, PROPER ENTREMENTION OF WORK AREA AND WORK STORAGE, PROPER EDITALTIONS SHALL SERVICE TO INSTREMENT THE CONTRACT CONTRACTOR SHALL SERVICE TO INSTREMENT AND AND SHALL BE ENTREMENTED OR ENTREMENT AND WORK STORAGE, PROPER THE DOLARDE STREET STORAGE, MORE AND ANY HAZADD AFFECTION SHALL SERVICE TO DENTIFY ANY W	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINOS STELL: • CONCRETE CAST AGAINST EXATL 9 AN IN- • CONCRETE PORGED TO SARTH OR WEATHER: • W & AND LANGER = 2 N. • W & AND DEPOSITION DE ANTH OR WEATHER OR N. • SLAB AND VILL = 3 N. • SLAB AND WILL = SLAB AND WILL SLAB AND WILL SLAB AND WILL = 3 N. • SLAB AND WILL = SLAB AND WILL SLAB AND WILL SLAB AND WILL SLAB AND WILL = SLAB AND WILL = SLAB AND WILL = SLAB AND WILL = SLAB AND WILL SLAB AND WILL = SLAB AND WILL = SLAB AND WILL SLAB AND	
ALL AFECTED LWORK AND SITE OFERATIONS. COOPENIAADN WITH THE BERNESENTATURE, CPG PLEETTINKS BELATED TO THE INSTALLATION OF THE SPENJECT. LL WORK SHALL BE IN STREIT ACCORDANCE WITH ALL APPLICABLE BERNESENTATURE, CPG PLEETTINKS BELATED TO THE INSTALLATION OF THE SPENJECT. LL WORK SHALL BE IN STREIT ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODES AND SHALL BE ACCURATE STREIT BETWEEN CODES PLANS SECONDAY. WERKE CONFLICTORS INSTITE BETWEEN ALMOST ACCORDANCE WITH ALL APPLICABLE DETIONS OF ALL APPLICABLE CODES AND SHALL BE ACCURATE STREIT BETWEEN ALMOST ADDRESS SECONDAY. WE AND GRAVEL THE MORE STRINGENT AUTHORY SHALL APPLY. WHERE CONFLICTORS INSTITE BETWEEN ALMOST ADDRESS AND SECONDAY. STREIT BETWEEN ALMOST ADDRESS AND ADDRESS AND ADDRESS SECONDER AND SECONDARY SHALL APPLY. WHERE CONTRACTOR SHALL SHOR ADDRESS AND ADDRESS AND ADDRESS SECONDER AND SECONDARY SHALL APPLY. WHERE CONTRACTOR SHALL SHOR ADDRESS AND ADDRESS AND ADDRESS SECONDER AND ADDRESS AND ADDRESS AND ADDRESS SECONDER AND ADDRESS AND ADDRESS AND ADDRESS AND ADD SECONDER AND ADDRESS AND ADDRESS AND ADDRESS AND ADD SECONDER AND ADDRESS AND CONDITIONS, INTELLATIONS, IN THE EDIDERIN AND/ADDR THE STRE TO MANGE AND ADD ADDRESS SECONDER AND ADDRESS AND CONDITIONS, IN THE STALLATION OF ANY WORK CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND ADDRESS AND ADDRESS SECONDER AND ADDRESS AND CONDITIONS, IN THE STALLATION ADDRESS AND CONDITIONS, INTEL CONTRACTOR SHALL SERVICE ADDRESS AND CONDITIONS, IN THE STALLATION OF WORK AREA AND WORK STORAGE, PROPER LIDENGER AND ADDRESS AND CONDITIONS IN THE SECONTRACTOR SHALL SECONDER OWNER OUTCAGE, ROPER LIDENGER ADDRESS, MORE AND CONDITIONS AND ADD SECONTRACTOR SHALL SECONDER ADDRESS AND CONDITIONS IN THE SECONTRACTOR SHALL SECONDER AND ADDRESS AND CONDITIONS IN THE SECONTRACTOR SHALL SECOND	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR ENDRORMON STELL: • CONCRETE CAST AGAINST EXATL 9 a NN. • CONCRETE PROVED TO EXATL 9 AN WEATHER: • # 44 AND LANGEM = 2 NI. • # 44 AND LANGEM = 2 NI. • # 44 AND LANGEM = 2 NI. • BARD MALLER & 1 NI. • CAST AGAINST THE GROUND. • SLAB AND WALL 9 A 1 NI. • SLAB AND WALL 9 A 1	
ALL AFECTED LWORK AND SITE OFERATIONS. COOPENIATION WITH THE ALL AFECTED LWORK AND SITE OFERATIONS. COOPENIATION WITH THE BERNESSENTATICE, COR STREPTINESS BELATED TO THE INSTALLATION OF THIS PROJECT. ALL WORK SHALL BE IN STREPT ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COORS AND SHALL BE ACCEPTABLE TO ALL WORK SHALL BE IN STREPT ACCORDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE COORS AND SHALL BE ACCEPTABLE TO ADDRESS TERMINESS AND SECONDARY SHALL BARD AND AND AND ADDRESS TERMINESS AND SECONDARY SHALL APPLY. WHERE COMPLICE DOSTS BETWEENED AN SHEETS, CONSTITUCTION MORE STRINGENT AUTHORY SHALL APPLY. WHERE CONTACT EXIST BETWEEN PLANS AND SECONDARY, LABOR, MATERIAL, APPLY. WHERE COMPLICE DOSTS BETWEENED AN SHEETS, CONSTITUCTION MORE STRINGENT AUTHORY SHALL APPLY. WHERE CONTACT EXIST BETWEEN PLANS AND SECONDARY, LABOR, MATERIAL, APPLY. WHERE COMPLICE DOSTS BETWEENED AN SHEETS, CONSTITUCTION CONTRACTOR SHALL PROVIDE LLABOR, MATERIAL, NSURANCE EQUIPMENT, INSTALLATION, CONSTITUCTION TOCLS, TRANSPORTATION, CONTRACTOR SHALL PROVIDE LLABOR, MATERIAL, NSURANCE ESTERMENT MEDIZIEV, AND AND SHEETS, CONSTITUCTIONS, ND AD STRELLATION CARE AND DOROTON TOCLS, TRANSPORTATION, AND EQUIPMENT, INSTALLATION, CONSTITUCTION THROUGH AND AS STRELATION AND AND AND AND DESISTING AND CONDITIONS, IN THE STRELATION AND OF ANY CONDITIONS IN THE STRELATION AND OF ANY CONDITIONS IN THE STRELD PROCT ID APPLICABLE. CONTRACTOR SHALL VERITY ALL DREITS ON OFTEN AND CONDITIONS IN THE STRELD PROCT ID ARREATION AND EDITION OF ANY MATERIAL. THE CONTRACTOR SHALL VERITY ALL DREITS ON OFTEN AND ADD STRELATION OF WORK AREA. AND WORK STORAGE, PROPER BENETITIANS AND OF ANY CONDITIONS WITH THE CONTRACT DOCAMENTS CONTRACTOR SHALL SAFEGUARD AGAINST GRAIN MAY HAZADD AFFECTION TENDER IN AND ADD ANY ON ONE STORAGE, PROPER THE CONTRACTOR SHALL SAFEGUARD AGAINST GRAIN ANY HAZADD AFFECTION STREMA AND WORK STORAGE, RODER IN A READWORD ON AND ADD ANY CONDITIONS AND CONDITIONS IN THE STREED WARK AND ONE STREMA AND WORK STORAGE. STORAGE EDIDINGSTACT	THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR BEINFORGINOUS STELL: • CONCRETE CAST AGAINST EXATLE 9 IN. • CONCRETE PROVED TO EXATLE OR WEATHER • # 64 AND LARGER = 2 IN. • # 64 AND LARGER = 2 IN. • CAST ACTION SHALL BE 1 TO AN • CAST ACTION SHALL BE 1 TO AN • CAST ACTION TO A CONCRETE COVER SHALL BE • BARS AND COLLUMNS = 1 TO AN • SLAB AND WALL = 34 IN. • BEAMS AND COLLUMNS = 1 Y2 IN. • A SIN IN. CHMANER SHALL BE PROVIDED AT ALL EXPOSED E OF CONCRETE IN ACCORDANCE WITH ACI 301 SECTION 4.2 CONCRETE SHALL BE PLACED IN A UNFORM MANNER AND CONCRETE FOR THE SHALL BE PLACED IN A UNFORM MANNER AND CONCRETE FOR THE SHALL BE CAST AGAINST LEVEL. CONCRETE FOR THE SHALL BE CAST AGAINST LEVEL. CONCRETE FOR THE SHALL BE CAST AGAINST LEVEL. CONCRETE FOR SHALL BE LEVED WHERE ATTACHNOT TO CONCRETE. MASCRYMING SHALL INCLUDE THE GENERAL SPECIFICATION MATERIAL BERDING TO SHALL BE LEVED WHERE ATTACHNOT TO CONCRETE. MASCRYMING SHALL INCLUDE THE GENERAL SPECIFICATION ADVEST ANCHORING. NUMERING FOR SHALL BE USED WHERE ATTACHNOT TO CONCRETE. MASCRYMIN MOUNTS SHALL INCLUDE THE GENERAL SPECIFICATION ADVEST MANDORING IN CONCRESS AND ALL BE USED WHERE ATTACHNOT TO CONCRETE. MASCRYMIN MOUNTS SHALL INCLUDE THE GENERAL SPECIFICATION ADVEST MANDORING IN CONCRESS AND	

NOTES THIS SHEET SHALL APPLY UNLARED A LEARNINGS ON LEARNINGS AND LEARNING AND LEAR NOTES THIS SHEE THE WORDS "PROVIDE" OR "INSTALL" SHALL MEAN FURNISH AND

DIFICATIONS, (LURE TO BRING TENTION OF TH SPONSIBILITY C ANGES IN QUA

ll RITY AS CTIVE EGAL TURES, OR THE VED FC ON BY IN THE N JER OR JIPMEN TIL TOR NGS DTED. IENT OF от то E WITH NER. CREW TED TO TY, AND TED OR 'HIS ANEN ENTS, VE TURE ED AS DANCE 1 & 318. 3 THE 18-05 STM SS 'B' ING OT TOF ATIONS VE MUM LL BE BES. CED 2 ETE AND OLLO /N IN SHAL DDED

2210 Control Transported Photoparts with a Cualition Weight OF Control Control Control Control Control Control Control Control Earliefs Rivel Be GAU XINEED IN ACCORDANCE WITH ASTM A153 INC CONTROL (FOR SIGN AND INSCIDENT) ACCORDANCE WITH ASTM A153 INC CONTROL (FOR CONTROL CONTROL CONTROL CONTROL ALL DAVAGED GAU XINNEED STEEL HARDWARE): ALL DAVAGED GAU XINNEED STEEL WITH CONTROL CONTROL ALL DAVAGED GAU XINNEED STEEL WITH CONTROL CONTROL ALL DAVAGED GAU XINNEED STEEL WITH CONTROL CONTROL INC CONTROL (FOR CONTROL CONTROL CONTROL CONTROL INC CONTROL (FOR CONTROL CONTROL CONTROL CONTROL INC CONTROL (FOR CONTROL CONTROL CONTROL CONTROL INC CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL INC CONTROL CONTROL CONTROL CONTROL CONTROL INC CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL INC CONTROL CONTROL CONTROL CONTROL CONTROL INC CONTROL CONTROL CONTROL CONTROL CONTROL INC CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL INC CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL INC CONTROL NSTRUCTION. IUUTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM AS26. BOLTS SHALL BE MINIMUM 34" DUAMETER AND EACH CONNECTION VIL HAVE MINIMUM TWO BOLTS. LOCK WASHERS ARE NOT MITTED FOR AS28 STEEL ASSEMBLES. IF TENSION CONTROL BOLTS USED, CONNECTIONS SHALL BE DESIGNED FOR SUP CHITCAL BOLT GWARDEL CARE VALUES. BING CONNECTIONS AT EBAM ENDS FOR 10 KIPS (MIN). U-BOLTED CONNECTIONS SHALL BE COMPLETED WITH DOUBLE IS OR ALCOCK WASHER.

JT DED DGES

JOINTS R 1/4

05 POST-INSTALLED ANCHORS: ICATED ON THE DRAWINGS, POST-INSTALLED DNSIST OF THE FOLLOWING ANCHOR TYPES AND IRDANCE WITH THEIR RESPECTIVE ICC-ES REPOR PUBLISHED INSTALLATION INSTRUC ND MANUFACTURERS FUELSHED INSTALLTION INSTALCTIONS: APPLICATION APPLICATION APPLICATION STEPLING SOLID APPLICATION SYSTEM SOLID APPLICATION
MAGIOWY IN SCREED THEE SCHEDENT THE SCHEDUNE AND ADDRESS AND ADDRESS AND ADDRESS NECKS CARACTLY USED IN DESIGN SMALL BE BASED ON THE SCHNEDRACH, DATA POELSHED BY HILT OR SUCH OTHER METHOD AS SPROVED BY THE STRUCTURAL ENDERSH OF RECORD SUBSTITUTION FOR STRUCTURAL ENDERSH OF RECORD SMORT DUE SUBSTITUTION THE STRUCTURAL ENDERSH OF RECORD SMORT DUE SMIRT THE RESULT SCHEDUNGS OF THE SPROVED IN WRITING ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS RECOMMANCE VALUES OF THE SPROVED IN WRITING ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS AN

HORS SHALL BE INSTALLED PER MANUFACTURERS DMMENDATIONS AND SHALL NOT TO BE INSTALLED IN MORTAR

LINE INFORMATIONS AND SMALL NOT TO BE INSTALLED IN MARTHAN DER OSHA 20 CF 1982 1153 SLICE DUST CONTROL REQULATIONS, LIED HOLES FOR POST INSTALLED ANCHORS IN CONCRETE AND SONTS SMALL BE INSTALLED SMALL STALLS TO SMALL AND VACUUM. ALTERNATE INSTALLATION METHODS ARE ALSO AND VACUUM. ALTERNATE INSTALLATION METHODS ARE ALSO CAUSE WITH AN APPROVED DUSTESS SYSTEM THAT MARTANIS CA DUST EMISSION BELOW THE PERMISSIBLE LEVELS. WITHATOR SHALL ARRIADE AN ANCHORING PRODUCTS SPECIFIED INSTACTOR SHALL SUBMIT DOCUMENTE CONFIRMATION THAT ALL THATOTOR SHALL SUBMIT DOCUMENTE CONFIRMATION THAT ALL THE CONTRACTORS PERSONNEL INSTALLING ANCHORS HAVE THE CONTRACTORS PERSONNEL INSTALLING ANCHORS HAVE THE TO THAT AND THE THAT AND THAT ALL AND THAT AND THAT THE TO THAT AND THAT ANCHORING PRODUCTS SPECIFIED INSTACTOR SHALL SUBMIT DOCUMENTS ON THAT ALL AND THAT AND THAT THE CONTRACTORS PERSONNEL INSTALLING ANCHORS HAVE ON THE TO THAT AND THAT AND THAT ALL AND THAT AND THAT AND THAT THE TO CHINE TANKING POINT THAT ALL ANCHORS HAVE ON THE TO THAT AND THAT AND THAT ALL AND THAT AN

TINUOUS OR PERIODIC SPECIAL INSPECTION FOR POST INSTALLED CHORS SHALL BE PERFORMED IN ACCORDANCE WITH SECTION 44 OF THE ICC:SE REPORT FOR THE INDIVIDUAL ANCHOR, SPECIAL PECTOR SHALL BE NOTIFIED PRIOR TO COMMENCEMENT OF WORK COORDINATE INSPECTION EFFORTS.

15 STEEL: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS ASTM A992 GB 50 ASTM A500, GR B ASTM A53, GR B

OLTS	ASTM A325
RATING	TYPE GW-2 (1-1/4*x3/16* BARS)
XISTING METALS	ASTM A36
OVIDE CERTIFICATIO	IN THAT WELDERS TO BE USED IN WO

ADVISED SET AND A SET

TRACTOR TO REMOVE AND RE-INSTALL ALL FIRE PROOFING AS

SAGURED LORING VOIRS INDUCTION. IN ESTELE, STRUCTURE SHALL BE DESIGNED TO BE SELF-SUPPORTING ND STABLE AFTER COMPLETION. IT IS THE CONTRACTORS SOLE (SPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE ND TO INSURE THE SAFETY OF THE BUILDING AND ITS COMPONENT RTS DURING ERECTION. L STEEL ELEMENTS SHALL BE INSTALLED PLUMB AND LEVEL.

ER MANURACTURERS DESIGNS SHALL PREVAL FOR TOWER. NEGTONS SHALL BE DESIGNED BY THE FABILITATION AND STRUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AISC *UNL OF STELL CONSTRUCTION*. CONNECTIONS SHALL BE VIDED TO CONFORM TO THE REQUIREMENTS OF TYPE 2 STRUCTION.

IS OR A LOCK WASHER. INTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES, INTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEEDING PROCESSES ALL BE QUALIFIED ON ACCORDANCE WITH AWS STANDARD AUFLICATION PROCEDURES. ALL WELDING SHALL BE PERFORMED FOR A STANDARD AND A STANDARD AND A STANDARD FILLET OR NINIMA STZE PER TABLE J2.4 IN THE ASIC TAANUAL OF FILLET OR NINIMA STZE PER TABLE J2.4 IN THE ASIC TAANUAL AGGE TO AQLIVANZED CATING SHALL BE REPARED SEE NOTE EL CONSTRUCTION, AT THE COMPLETION OF WELDING, ALL AGGE TO AQLIVANZED CONTING SHALL BE REPARED. SEE NOTE MADING DUALWAGE OLIVANZED BARDERS

ARC AND GAS WELDING SHALL BE DONE BY A LICENSED AND TIFIED WELDER IN ACCORDANCE WITH AWS ALL PENETRATIONS AND SEAMS BETWEEN MASONRY AND STEEL H DOW CORNING 790 SILICONE BUILDING SEALANT OR EQUAL.

17 THERMAL & MOISTURE PROTECTION: HESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

L PENETRATIONS INTO OR THROUGH BUILDING, SHELTER, EQUIPMENT, BINET, AND SIMILAR ENCLOSURE EXTERIOR WALLS, SHALL BE SEALED TH SILICONE SEALER.

26 ELECTRICAL: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

CTRICAL CONDUCTORS: JLATION SHALL BE MINIMUM 600V TYPE THHN, THWN-2, OR

EFERN. 4.L. ELECTRICAL CONDUCTORS: • INSULATION SHALL BE MINIMUM 600 YTYPE THEN, THEN, 2, GR WHW, • INMAUM CONDUCTIVATY PROFERLY REPRED COPPER. • INFORMATION CONDUCTIVATY PROFERLY REPRED COPPER. • IFEDER GROUT CONDUCTORS SHALL BE STEP REPORTED OF REAL BEFORE AND THE CONTROL TO A CONDUCTIVATION OF REAL SPECIFICALITY LABLE. OF ALL STEP THEN FOR STEP AND A SPECIFICALITY AND ALL CONDUCTIVATION INFO. SINCES, SNL DES, AND VISIBLE AS PASS-THFOROUGH ALL CONDUCTORS WITH THEIR BAD SUTTABLE FOR THE APPLICATION. ONLY THE FOLLOWING CONDUITS AS APPROVED AND LISTED FOR THE APPLICATION SHALL BE INFORMATION OF THE APPLICATION ONLY THE FOLLOWING CONDUITS AS APPROVED AND LISTED FOR THE APPLICATION SHALL BE INFORMATION OF THE APPLICATION ONLY THE FOLLOWING CONDUITS AS APPROVED AND LISTED FOR THE APPLICATION SHALL BE INFORMATION OF THE APPLICATION ONLY THE FOLLOWING CONDUITS AS APPROVED AND LISTED FOR THE APPLICATION SHALL BE INFORMATION OF THE APPLICATION ONLY THE FOLLOWING CONDUITS AS APPROVED AND LISTED FOR THE APPLICATION SHALL BE INFORMATION ON THE APPLICATION ONLY THE FOLLOWING CONDUITS AS APPLICATION ON THE APPLICATION SHALL BE INFORMATION ON THE APPLICATION ON THE APPLICATION ONLY THE FOLLOWING CONDUITS ADDITION ON THE APPLICATION ON THE APPLICATION SHALL BE INFORMATION ON THE APPLICATION ON AND AND ADDITION ON WHERE EQUIPMENT IS FLACED UPON SLAB ON GRAPHAEL INFORMATION ON ADDITION ON AND ADDITION SHALL BE THERADED BADE UP WIENCH THET. • READED DAVE THE APPLICATION ON ADDITION SHALL BE THERADED AND DEVENTION TO ADDITION SHALL BE THERADED ADDITION ON CONCEPTES AND ON CONDUCTIONS SHALL BE THERADED FOR STRUCTURES. • ALL INTING CONSECTORS, AND COUPLINGS SHALL BE THERADED FOR STRUCTURES. • ALL INTING STRUCTURES. • ALL INTING STRUCTURES. • ALL INTING FOR STRUCTURES. • ALL INTING STRUCTURES. • ALL INTING STRUCTURES. • ALL INTING STRUCTURES.

SHALL NOT BE USED IN CONCRETE SLABS NOR EXPOSED WITHIN A
 BUILDING OR STRUCTURE

SHALL NOT BE USED IN CONCRETE SLABS NOR EXPOSED WITHIN A BULLDING OR STRUCTURE META-CLAD CARLE (MG) META-CLAD CARLE (MG) MONTAL-CLAD CARLE (MG) M

LECULYMENE APPLICABLE. LECULYMENT, ENCLOSURES, ETC. SHALL BE SUITABLE FOR THE STALLED ENVIRONMENT, MINIMUM NEMA 3R FOR ALL EXTERIOR STALLATIONS.

TALLATIONS. RING DEVICES SHALL BE SPECIFICATION GRADE AND WIRING DEVICE WER PLATES SHALL BE PLASTIC WITH ENGRAVING AS SPECIFIED. LOR SHALL BE IVORY, ALL DEVICES AND COVER PLATES SHALL BE THE SAME MANUFACTURER. THE SAME MANUPAO TOHER. L FIRE-RATED PENETRATIONS SHALL BE SEALED USING A SUITABLE D LISTED FIRE SEALING DEVICE OR GROUT THAT WILL MAINTAIN TH RE RATING OF THE STRUCTURE PENETRATED.

DVIDE PERMANENTLY AFFICED ENGRAVED NAMEPLATES FOR ALL DE REGUIRED LABELING AND ON ALL PANELS, METERNIS, DONNECTS, AND DE LECTRICAL SQUIMENT THAT DENTIFIES UPMENT SERVED, ELECTRICAL SQUIMENT THAT DENTIFIES UPMENT SERVED, ELECTRICAL SQUIMENT THAT DENTIFIES UPMENT SERVED, ELECTRICAL SQUIMENT THAT

CTRICAL CONTRACTOR IS RESPONSIBLE FOR ALL FINAL MINATIONS TO ALL EQUIPMENT.

MAINATIONS TO ALL SOUPMENT. ELECTRICAL APPLUTEINANCES THAT ARE DISCONNECTED SHALL BE BEDETRICAL APPLUTEINANCES THAT ARE DISCONNECTED SHALL BE ARRED, FINISHED, FILLED, PARITED, ETC. ALL PAREL SCHEDUES, DIPMENT LABELING, AND CODE-REQUIRED LABELING, SHALL BE RIFED AND PROPERLY COMPLETED TO MATCH THE INSTALLATION. 6 GROUNDING: MESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

USTRY PRACTICE, THE REQUIREMENT IN ACCORDANCE WITH BEST USTRY PRACTICE, THE REQUIREMENTS OF THE NIFA 70 NATIONAL ISTRICAL CODE (NEC), AND ALL OTHER APPLICABLE CODES AND JULATIONS. ALL SYSTEMS AND EQUIPMENT IN ACCORDANCE WITH BEST

GROUNDING ELECTRODES PRESENT AT EACH SERVICE LOCATION LL BE BONDED TOGETHER TO FORM THE GROUNDING ELECTRODE

VICE MAIN BONDING JUMPERS AND GROUNDING ELECTRODE IDUCTORS SHALL BE SIZED AND INSTALLED PER THE MINIMUM OF APPLICABLE CODES AND REGULATIONS.

ALL APPLICABLE CODES AND REGULATIONS. 26 LIGHTINING PROTECTION: THESE SPECIFICATIONS SHILL INCLUED THE GENERAL SPECIFICATIONS AND THE GROUPING SPECIFICATIONS HEREIN. THE LIGHTINING PROTECTION GROUPING SYSTEM LPGS SHALL CONSIST OF SPONDING ALL EQUIPMENT AND CONNECTIONS (THRCALL) CONSIST OF SPONDING ALL EQUIPMENT AND CONNECTIONS (THRCALL) SYSTEM: IF THE LIGSE SOLA ADEDICATED COMMUNICATION STEF AUDITION, AND ADDITION AND ADDITIONS SHOP AND ADDITIONS SYSTEM: IF THE LIGSE SOLA ADEDICATED COMMUNICATION STEF AUDITIONAL THE GROUP SELECTIONS SATEM DE REFUGIERED OF ADDITIONAL THE CASE SOLA ADEDICATED COMMUNICATION STEF AUDITIONAL THE LIGSE SOLA ADEDICATED COMMUNICATION STEF AUDITIONAL ADDITIONAL ADDI

Ims in a Awa CoPPER GREIN STRANDED ON ALL EQUIPMENT EXCURNO.
 IDENTIFICIENT AND ADDREEN STRANDED ON ALL EQUIPMENT PARKE OR IN A DOWNWARD DRECTION WAY FROM THE TOWER AND EQUIPMENT AREAS.
 AVIDE LONG RUNS. MAKE DIRECT RUNS AS MUCH AS POSSIBLE PARCE THEOLOGIN INNI METALLIS CELEVISS WHEN PARSING THEOLOGIN RUNS. LIST SERVICE WHEN PARSING THEOLOGIN, MALES, CELEVISS, WHEN PARSING THEOLOGIN, INFORMATION SERVICE AND ADDRESSION CONNECTORS, OLISTED COMPRESSION TWO-OLE LUSS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID TO MARSE EDUID INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID TO MARSE EDUID RADIUS INSTALL ALL CONDUCTORS PROVIDED RADIUS TO MARSE EDUID RADIUS INSTALL ALL CONDUCTORS PROVIDED RADIUS TO MARSE EDUID RADIUS INSTALL ALL CONDUCTORS PROVIDED RADIUS TO MARSE EDUID RADIUS INSTALL ALL CONDUCTORS PROVIDED RADIUS TO MARSE EDUID RADIUS INSTALL ALL CONDUCTORS WITH A MINIMUM 18 RUNCH EDUID RADIUS INSTALL RADIUS RADIUS RUNCH RADIUS RADIUS RUNCH PROVIDER ADDRESSION INSTALL RADIUS RUNCH RA

ENDS. IF 2 OR MORE IN-GROUND CONDUCTOS ARE IN THE SAME PATH (2 CONTRACTOR ANOTHER BING OR

RINGS OVERLAPPING, BONDING FOLLOWING ANOTHER R RADIAL, OR SIMILAR), COMBINE WITH A SHARED SINGLE CONDUCTOR. MENT AND TOWER GROUND RINGS SHALL BE:

 BONDED TO ANY CONDUCTIVE OBJECT OR STRUCTURE WITHIN 5
 FEET OF EQUIPMENT GROUND RINGS AND WITHIN 20 FEET OF TOWER GROUND RINGS. • INSTALLED MINIMUM 18 INCHES FROM FOUNDATIONS, FOOTINGS AND SIMILAR.

LL ALL IN-GROUND RINGS, RADIALS, BONDS CONNECTING THEM,

ND ALL SIMILAR GROUNDING: MIN 30 NO-HES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE, WHICHEVER IS GREATER DEPTH. MIN 2 FEET FROM POUNDATIONS, FOOTINGS, GOTINER GROUNDING SYSTEMS, AND SIMILAR STRUCTURES, EXCEPT WHEN MARKIG A BOND TO ANY OF THESE STRUCTURES, DO NOT BOND TO FOUNDATION INTERNAL REINFORCEMENT.

LL EQUIPMENT GROUPED IN A COMMON AREA, COMPOUND, TRUCTURE, OR SIMILAR SHALL BE BONDED TO A SINGLE-POINT ROUND, PREFERALY AN ISOLATED GROUND BAR. BOND THE AR TO THE SYSTEM WITH MINIMUM SINGLE BONDING CONDUC INDING TO AN IN-GROUND RING, INSTALL 2 BONDING CONDUC INDIMUM WITH EACH CONDUCTOR INSTALLED DIRECTIONALLY /

 • EACH TOWER LEG SHALL BE BONDED TO ITS RING. SINGLE-LEGGED TOWERS, OR MONOPOLES, SHALL HAVE 2 BONDS ON OPPOSITE SIDES. SIDES. • BOND TO TOWER BASE, NOT TO VERTICAL TOWER STRUCTURE, AWAY FROM TOWER MOUNTING HARDWARE. • EACH BOND SHALL HAVE A CORRESPONDING GROUND ROD ON THE

EACH BOND SHALL HAVE A CORRESPONDING GROUND ROD ON THE RING.
 EACH BOND SHALL CONSIST OF 2 CONDUCTORS FROM THE TOWER TO TIS RING WITH EACH CONDUCTION BRETCE ID A PROPERTE DEPOSITIE SALES OF THE CALL LANGED TO IN THE RING ON OURSELF RESPONDED TO A SINGLE-POINT GROUND RING.
 EDIND ALL EQUIPMENT TO A SINGLE-POINT GROUND TO THE EQUIPMENT ARE CONSUMERET TO A SINGLE-POINT GROUND TO THE EQUIPMENT GROUND RING WITH ININUMLE-POINT GROUND TO THE EQUIPMENT GROUND RING THE CONSUMERATION OF THE FIRST UP TO SITE DEPOSITION FROM THE FORMER BOND ALL EQUIPMENT TO A SINGLE-POINT GROUND TO THE EQUIPMENT GROUND RING THE CONSUMERATION OF THE FIRST UP THE SILE TO CONSUME TO THE EQUIPMENT GROUND RING THE CONSUMERATION OF HIP ATO SYSTEM FRE RIS CONSUMERATION OF HIP ATO SYSTEM FRE RIS CONSUMERATION OF HIP ATO UD THE SILE DOWN OF HIP ATOLE TO THE SINGLE-POINT GROUND RING THE BOND ALL EXCED CONDUCTIVE BUILDING COMPONENTS TOGETHER TO THE HALD GROUND.
 BOND ALL EXCELLONG AND GROUND AT THE CONSUMERATION SYSTEM FRE RIS CONSUMERATION OF HIPP ATOL BOND ALL EXCELLONG AND GROUND AT THE CONSUMERTION SYSTEM FRE RIS CONSUMERATION OF HIPP ATOL BOND ALL EXCELLONG AND GROUND AT THE CONSUMERTION SYSTEM HER ALLONG RING GROUND AT THE CONSUMERTION TO THE THE HALD GROUND.
 BOND ALL EXCELLONG AND GROUND AT THE CONSUMERTION SYSTEM HER ALLONG RING GROUND AT THE CONSUMERTION TO THE HALD GROUND.
 BOND ALL EXCELLONG RING GROUND AT THE CONSUMERTION STATUMER AND CONSUMERTION AT THE CONSUMERTION OF HIP ATOL CONSUMERT RING GROUND.
 PLACE GROUND HOURD AT THE EXCELL-POINT OR INTERIOR CONSUMENT RING GROUND.
 PLACE GROUND HOURD AT THE EXCELL-POINT OR INTERIOR CONSUMERT RING GROUND.
 PLACE GROUND HOURD AT THE EXCELL-POINT OR RECONSUMERT TO THE EXCELLONG CONSUMERT AND GROUND.
 PLACE GROUND HOURD AT THE EXCELLONG ROUND RODOR RESPONDED AND TO HE STATEMENT.

FUNCE VERSION
 FUNCE
 SUPERVISED ANY 2 GROUND RODS SHALL BE NO
 SUPARATION SPACE BETWEEN ANY 2 GROUND RODS SHALL BE NO
 CONSETTE SYSTEM
 CONSETTE SYSTEM
 FUNCE
 SUPERVISED AND A SUPERVISED SOL WITH THE TOP AT SAME
 DEPK VERTICALLY N LUDGTURED SOL WITH THE TOP AT SAME
 DEPK VERTICALLY N. LUDGTURED SOL WITH THE TOP AT SAME
 DEPK NO
 STAR UNCENTRY AND A SUPERVISED AND A SUPERVISED
 SUPERVISED AND A SUPERVISED AND A SUPERVISED
 SUPERVISED AND A SUPERVISED
 SUPERVISED
 STAR UNCENTRY

CURULCIIVE LEAMENT (IOWER, ELGIPHENT, EIC). UNERFERSIBLE WITH ENOUGH SPACE AVAILABLE, INSTALL A MINIMUM CF, AWANIMUM TO INNO RADIALS. EACH HADRIAS LENGTH SHALL BE MIN 20 FT, MAX 80 FT. EACH HADRIAS LENGTH SHALL BE MIN 20 FT, MAX 80 FT. LINE AR POSSIBLE, AWAY FROM OTHER MING GROUNDS, RADRALS, BOOS, AVA SDALLAR. EACH READ STATUS CONTINUES AND SEARCH THE STANLARS. SUNDS, AND SIMILAH. A COMMON PRACTICE IS TO PLACE 4 RADIALS FROM THE TOWER RING TO THE 4 CORNERS OF THE AVAILABLE AREA.

MINIMUM, BOND ALL COMPOUND CONDUCTIVE FENCE CORNER IS AND GATE POSTS TO THE LPGS. PREFERABLY, INSTALL A UND RING THAT FOLLOWS THE FENCE LINE, BONDING ALL POSTS TO

7 ANTENNAS & CABLES: ESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

win to submit I ING BID AND ORDERING MATERIALS TER NSTALLATON THE TRANSMISSION LINE SYSTEM SHALL BE PM / TER STSTED FOR PROPER INSTALLATION AND DAMAGE WITH TENNAS CONNECTED. CONTRACTOR SHALL DERINA IND USE LATEST ITMOS PROCEDURES FROM OWNER OR MANUFACTURER PRIOR TO DING.

UTINA CABLES SHALL BE UNIQUELY COLOR-CODED AT THE VTENNAS, BOTH SIDES OF EQUIPMENT SHELTER WALL, AND JUMPER BALES AT THE EQUIPMENT. IE CONTRACTOR SHALL FURNISH AND INSTALL ALL CONVECTORS, SOCIATED CABLE MOUNTING AND GROUNDING HARDWARE, WALL NTS, STANDOFFS, AND ALL ASSOCIATED HARDWARE TO INSTALL CABLES AND ANTENNAS TO THE MANUFACTURER'S AND OWNERS

 >ULOWS:

 • ARSE STATION ANTENNAS:

 • 787 DAWETER FOR CABLE LEINGTHS UP TO 100 FT.

 • 1-587 DUAWETER FOR CABLE LEINGTHS GREATER THAN 100 FT.

 • 787 DUAWETER FOR CABLE LEINGTHS UP TO 200 FT.

 • 1-587 DUAWETER FOR CABLE LEINGTHS UP TO 200 FT.

 • 1-587 DUAWETER FOR CABLE LEINGTHS UP TO 200 FT.

1-8° DAMETER FOR CABLE LENGTHS GREATER THAN 200 FT IMMUM BENDING RADUIS FOR COMAL CABLES SHALL BE: 116 FT FOR 78° COAVAL CABLES. 25 FT FOR 1-8° COAVAL CABLES. 26 FT FOR 1-8° COAVAL CABLES. AREL SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS WHERE POSSIBLE. CABLE SHALL NOT BE LEFT UNTERNATED AND HALL BE SEALED IMMEDIATELY AFTER BEING INSTALLED. LI EXTERIOR CABLE CONNECTIONS SHALL BE COVERED WITH A WITERPROOF SPLICING KIT. CONTRACTOR SHALL VERIFY EXACT LENGTH AND DIRECTION OF TRAX.

RACTOR SHALL VERIFY EXACT LENGTH AND DIRECTION OF TRAVEL BLE SHALL BE FURNISHED AND INSTALLED WITHOUT SPLICES AND TH CONNECTORS AT EACH END.

27 CABLE TRAY: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS ABLE TRAY SHALL BE MADE OF EITHER CORROSION RESISTANT METAL B WITH A COBROSION RESISTANT FINISH

BLE TRAY SHALL BE OF LADDER TRAY TYPE WITH FLAT COVER AMPED TO SIDE RAILS.

CABLE LADDER SHALL BE SIZED TO FIT ALL CABLES IN ACCORDANCE MITH NEC AND NEMA 11-15-84.

TH NEC AND NEMA 11-15-84. MEL LADDER TRAYS SHALL BE NEMA CLASS 12A BY PW INDUSTRIES, C. OR EQUAL. ABLE LADDER TRAY SHALL BE SUPPORTED IN ACCORDANCE WITH ANUFACTURERS SPECIFICATIONS.

L WORKMANSHIP SHALL CONFORM TO THESE REQUIREMENTS AND L LOCAL CODES AND STANDARDS TO ENSURE SAFE AND ADEQUAT

L INCLUDE THE GENERAL SPECIFICATIONS REIN. NITRACTOR SHALL GRADE ONLY AREAS SHOWN TO BE MODIFIE AT OF THIS WORK AND ONLY TO THE EXTENT REQUIRED TO SHE RELAND WATER LOW AWAY FORM SITE. ALL ANDE SLOPES SI T BE STEEPER THAN 3.1 (HORIZONTAL-VERTICAL). SEDIMENTATI DO ERDSING CONTROLS SHOWN AND SPECIFICS SHALL BE TABLISHED BEFORE STRIPPING EXISTING VEGETATION. NIC MATERIAL AND DEBRIS SHALL BE STRIPPED AND STOCKPILED

31 EXCAVATION & FILL

-25% WITH PASS #40 -10% WITH PASS #100 -5% WITH PASS #200

ANK GHAVEL DRSE GIVING... IESH SEVES 100% WITH PASS 5' 100% WITH PASS 5' 100% WITH PASS 2-1/4' 95-100% WITH PASS 2-1/4' 195-100% WITH PASS 1-1/2' 25-60% WITH PASS 1-1/2' 15-45% WITH PASS 4'40 0-5% WITH PASS 4'20 0-5% WITH PASS 4'20

 MESH SIEVES:

 90-100%
 WITH PASS 3-1/2"

 55-95%
 WITH PASS 1-1/2"

 50-75%
 WITH PASS 3/4"

 25-45%
 WITH PASS 3/4"

 25-45%
 WITH PASS 4/4"

 5-20%
 WITH PASS 4/4"

 2-12%
 WITH PASS 4/4"

SEDIMENTATION & EROSION CONTROL

FIL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN UND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED I FILL OR EMBANKMENT.

VT FILL ON EMBANKMENT. L FILL SHALL BE PLACED IN ONE FOOT LIFTS AND COMPACTED IN ACE. STRUCTURAL FILL SHALL BE COMPACTED TO 95% OF ITS AXIMUM DRY UNIT WEIGHT TESTED IN ACCORDANCE WITH ASTM

AVATIONS FOR FOOTINGS SHALL BE CUT LEVEL TO THE REQUIRED TH AND TO UNDISTURBED SOIL. REPORT UNSUITABLE SOIL IDITIONS TO THE CONSTRUCTION MANAGER. ENCH EXCAVATIONS SHALL BE BACKFILLED AT THE END OF EACH

VER FOUNDATION EXCAVATION, BACKFILL AND COMPACTION SH N ACCORDANCE WITH TOWER MANUFACTURERS DESIGNS AND CIFICATIONS.

CORDATIONS. TWE GRAVEL MATERIAL MAY BE USED FOR TRENCH BACKFILL WHERE LEOT MATERIAL IS NOT SPECIFIED. GRAVEL MATERIAL FOR GONDUIT SWATERIAL CONT CONTRACT MATERIAL FOR GONDUIT SWATERIAL CONT CONTRACT OF TAUGAL PARAMETERIAL SWATERIAL CONTRACT SPECIFIED OF TAUGAL DURABLE RTICLES OF CHUSHED OR NUNCHENDE GRAVEL FREE OF SOFT, THIN, SWATED OR LANINATED DECES AND MEET THE SPECIFIED DATATON.

IEGATES COMBINED AND MIXED SO THAT THE RESULTING RIAL CONFORMS TO THE GRADATION. COURSE AGGREGATE SHAI HER GRAVEL OR BROKEN STONE AND FINE AGGREGATE SHALL

EITHER GRAVEL ON BROKEN STONE AND FINE AGGREGATE SHALL INISTOF SANVEL FILL SHALL PASS WITH THE FOLLOWING SIZE SQUARE SH SIEVES: -60% WITH PASS 1/4* -64% WITH PASS #10

GRAVEL BASE SHALL PASS WITH THE FOLLOWING SIZE SQUARE

CESSED AGG BASE SHALL PASS WITH THE FOLLOWING SIZE SQUARE H SIEVES:

L SHALL BE FREE OF ORGANIC MATERIAL, ICE, TRASH AND ER TO GEOTECHNICAL ENGINEERING AS APPLICABLE FOR

CONTRACTOR SHALL CONSTRUCT ALL SEDIMENT AND EROSION TROLS IN ACCORDANCE WITH THE 2002 CONNECTICUT GUIDELINES

IESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

EIN. TITACTOR SHALL MINIMIZE DISTURBANCE TO EXIST. SITE DURING NISTRUCTION. EROSION CONTROL MEASURES, IF REQUIEED DURING SISTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL DELINES FOR EROSION AND SEDIMENTATION CONTROL. TS OF CLEARING AND GRUBBING SHALL BE CLEARLY MARKED ORE COMMENCING WITH SUCH WORK.

MENTATION AND EROSION CONTROL (SEC) MEASURES SHOWN .L BE INSTALLED PRIOR TO LAND CLEARING, EXCAVATION OR

HALL BE INSTALLED FHORT ID LAND CLEARING, EXCAVATION OF ADING OPERATIONS, REQUIREMENTS OF LOCAL WETLAND AGENCY HALL BE MET PRIOR TO EARTHWORK OPERATIONS. IS THE CONTRACTORS RESPONSIBILITY TO MAINTAIN SEO MEASURES HROUGHOUT DURATION OF PROJECT UNTIL DISTURBED LAND IS IOROUGHLY VEGETATED.

HOROUGHLY VEGETATED. INSUEN WITH DISTURBED LAND IS NULRE OF THE SEC SYSTEMS SHALL BE CORRECTED IMMEDIATELY NO SUPPLEMENTED WITH ADDITIONAL MEASURES AS NEEDED. IPONS DIALOUES ARE ESTABLED TO FINISH GAADES AND SEEDED AS SOON I TONISH DIALOUES ARE ESTABLED TO THINK HOROUS AND SEEDED AS SOON I TONISH DIALOUES ARE ESTABLED TO THINK HOROUS AND SEEDED AS SOON I TONISH DIALOUES ARE ESTABLED TO THINK HOROUS AND SEEDED AS A NET TO THE SEEDING.

SETATIVE SEEDING: APEA TO BE SEEDER SHALL BE LOOSE AND FRIABLE TO A DEPTH OF 3° TOPPOL SHALL BE LOOSENED BY RAKING OR DISKING BEFORE BEEDING APPLY 50 Lbb OF DOLOMITO LIMESTORE AND 25 Lbb. OF 10-10-10 FEITILIZER PER 1000 SF. HARROW LIME AND FEITILIZER INTO LOOSE SOIL APPLY COMMON BERMUDA AND RYE GRASS AT 50 LBS PER ACRE

APPET COMMON BEHNUDA AND ATE GHASS AT 50 LES PER ACHE. USE CYCLONE SEED DRILL CULTIPACKER SEEDER OR HYDROSEED (SEED & FERTILIZER SLURRY) FOR STEEP SLOPES. IRRIGATE UNTIL VEGETATION IS COMPLETELY ESTABLISHED.

