$\begin{array}{c} CUDDY\&\\ FEDER \end{array}^{LLP} \end{array}$

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 Tel 914.761.1300 Fax 914.761.5372 www.cuddyfeder.com

November 24, 2014

VIA EMAIL & FEDEX

Hon. Robert Stein, Chairman and Members of the Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Connecticut Siting Council Docket No. 442 Application of New Cingular Wireless PCS, LLC (AT&T) Norwalk Armory Proposed Tower Facility

Dear Chairman Stein and Members of the Siting Council:

On behalf of New Cingular Wireless PCS, LLC ("AT&T"), please accept for review and Council approval this Development Management Plan ("D&M Plan") filing for the captioned Facility as approved in Docket No. 442.

Tower, Compound & Other Equipment

Enclosed are an original and fifteen (15) sets of 11" x 17" sized construction drawings filed in accordance with the Siting Council's ("Council") Decision and Order dated May 29, 2014 ("Decision and Order"). Full sized sets will follow under separate cover. As per Order Number 1, the D&M Plan incorporates two monopole towers not exceeding 140' above ground level ("AGL"). All panel antennas will be in a flush mounted configuration concealed within radio frequency transparent casing providing a uniform appearance. Neither tower exceeds 56 inches in diameter.

Also included in the D&M Plan are the details of the associated compound, equipment/antennas, utility run and other components of the Facility. The D&M Plan includes site clearing, drainage, and erosion and sedimentation control measures consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u> as amended. Disturbance in the City of Norwalk upland review area has been limited to the maximum extent practicable and includes utility routing, telephone cabinets and a small portion of the northeast portion of the compound.

Included with this letter as Attachment 1 is a geotechnical report prepared by the project's civil engineers Dewberry dated April of 2014. Tower and foundation drawings for the tower that will support AT&T's equipment and antennas prepared by the Nello Corporation stamped and signed on July 22, 2014 are included as Attachment 2. Tower and foundation drawings for the tower that will support Verizon's equipment and antennas prepared by Engineered Endeavors stamped and signed on October 31, 2014 are included as Attachment 3. Attachment 4 includes the specification sheet for AT&T's back-up generator as well as the specifications for the model to be deployed within

CUDDY& FEDER

Verizon's shelter. Antenna and equipment information for AT&T and Verizon is included in Attachments 5 and 6 respectively.

Required Notifications

In accordance with RCSA Section 16-50i-61(d) and the Council's Decision and Order in this Docket copies of this filing are being provided to the Town of New Canaan and the City of Norwalk. In accordance with the provisions of RCSA Section 16-50j-77, AT&T hereby notifies the Council of its intention to begin site work immediately after Council approval of the D&M Plan. Construction of the tower and other site improvements will commence upon issuance of a local building permit. The supervisor for construction related matters for the AT&T Tower is Bryon Morawski of SAI. Mr. Morawski is located at 500 Enterprise Drive, Suite 3A, Rocky Hill, CT 06067 and can be reached by telephone at (860) 513-7223. Mark Gauger will be the supervisor for the tower hosting Verizon's antennas and equipment and can be reached at (203) 494-0023.

We respectfully request that this matter be included on the Council's next available agenda for review and approval.

Thank you for your consideration of the enclosed.

Very truly yours. ć

Daniel M. Laub

Enclosures

Melanie A. Bachman, Staff Attorney/Acting Executive Director CC: Michael Perrone, Siting Analyst Mayor Harry W. Rilling, Norwalk First Selectman Robert E. Mallozzi III, New Canaan Major General Thaddeus Martin, Connecticut Military Department Kenneth Baldwin, Esq. Sandy Carter, Verizon Wireless Michele Briggs, AT&T David Vivian, SAI Christopher B. Fisher, Esq.

CERTIFICATE OF SERVICE

I hereby certify that on this day, an original and fifteen copies of the foregoing was sent electronically and by overnight delivery to the Connecticut Siting Council with copy to:

Service List:

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597 (860) 275-8200 kbaldwin@rc.com

Municipalities:

Mayor Harry W. Rilling, Norwalk 125 East Ave. P.O. Box 5125 Norwalk, CT 06856-5125

First Selectman Robert E. Mallozzi III, New Canaan Police Station, 2nd Floor 174 South Ave New Canaan, CT 06840

Property Owner:

Major General Thaddeus Martin Adjutant General of the Connecticut Military Department Governor William A. O'Neill State Armory 360 Broad Street Hartford, CT 06105-3706

Dated: November 24, 2014

Daniel M. Laub

November ___, 2014

VIA EMAIL & FEDEX

Hon. Robert Stein, Chairman and Members of the Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Connecticut Siting Council Docket No. 442 Application of New Cingular Wireless PCS, LLC (AT&T) Norwalk Armory Proposed Tower Facility

Dear Chairman Stein and Members of the Siting Council:

On behalf of New Cingular Wireless PCS, LLC ("AT&T"), please accept for review and Council approval this Development Management Plan ("D&M Plan") filing for the captioned Facility as approved in Docket No. 442.

Tower, Compound & Other Equipment

Enclosed are an original and fifteen (15) sets of 11" x 17" sized construction drawings filed in accordance with the Siting Council's ("Council") Decision and Order dated May 29, 2014 ("Decision and Order"). Full sized sets will follow under separate cover. As per Order Number 1, the D&M Plan incorporates two monopole towers not exceeding 140' above ground level ("AGL"). All panel antennas will be in a flush mounted configuration concealed within radio frequency transparent casing providing a uniform appearance. Neither tower exceeds 56 inches in diameter.

Also included in the D&M Plan are the details of the associated compound, equipment/antennas, utility run and other components of the Facility. The D&M Plan includes site clearing, drainage, and erosion and sedimentation control measures consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u> as amended. Disturbance in the City of Norwalk upland review area has been limited to the maximum extent practicable and includes utility routing, telephone cabinets and a small portion of the northeast portion of the compound.

Included with this letter as Attachment 1 is a geotechnical report prepared by the project's civil engineers Dewberry dated April of 2014. Tower and foundation drawings for the tower that will support AT&T's equipment and antennas prepared by the Nello Corporation stamped and signed on July 22, 2014 are included as Attachment 2. Tower and foundation drawings for the tower that will support Verizon's equipment and antennas prepared by Engineered Endeavors stamped and signed on October 31, 2014 are included as Attachment 3. Attachment 4 includes the specification sheet for AT&T's back-up generator which is the same model to be deployed within Verizon's shelter.

Antenna and equipment information for AT&T and Verizon is included in Attachments 5 and 6 respectively.

Required Notifications

In accordance with RCSA Section 16-50j-61(d) and the Council's Decision and Order in this Docket copies of this filing are being provided to the Town of New Canaan and the City of Norwalk. In accordance with the provisions of RCSA Section 16-50j-77, AT&T hereby notifies the Council of its intention to begin site work immediately after Council approval of the D&M Plan. Construction of the tower and other site improvements will commence upon issuance of a local building permit. The supervisor for construction related matters for the AT&T Tower is Bryon Morawski of SAI. Mr. Morawski is located at 500 Enterprise Drive, Suite 3A, Rocky Hill, CT 06067 and can be reached by telephone at (860) 513-7223. Mark Gauger will be the supervisor for the tower hosting Verizon's antennas and equipment and can be reached at (203) 494-0023.

We respectfully request that this matter be included on the Council's next available agenda for review and approval.

Thank you for your consideration of the enclosed.

Very truly yours,

Daniel M. Laub

Enclosures

 Melanie A. Bachman, Staff Attorney/Acting Executive Director Michael Perrone, Siting Analyst Mayor Harry W. Rilling, Norwalk First Selectman Robert E. Mallozzi III, New Canaan Major General Thaddeus Martin, Connecticut Military Department Kenneth Baldwin, Esq. Sandy Carter, Verizon Wireless Michele Briggs, AT&T David Vivian, SAI Christopher B. Fisher, Esq.

CERTIFICATE OF SERVICE

I hereby certify that on this day, an original and fifteen copies of the foregoing was sent electronically and by overnight delivery to the Connecticut Siting Council with copy to:

Service List:

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597 (860) 275-8200 kbaldwin@rc.com

Municipalities:

Mayor Harry W. Rilling, Norwalk 125 East Ave. P.O. Box 5125 Norwalk, CT 06856-5125

First Selectman Robert E. Mallozzi III, New Canaan Police Station, 2nd Floor 174 South Ave New Canaan, CT 06840 <u>Robert.Mallozzi@newcanaanct.gov</u>

Property Owner:

Major General Thaddeus Martin Adjutant General of the Connecticut Military Department Governor William A. O'Neill State Armory 360 Broad Street Hartford, CT 06105-3706

Dated: November 7, 2014

Daniel M. Laub

ATTACHMENT 1

Dewberry

Î

Ĵ

Geotechnical Report

New Cingular Wireless PCS, LLC

National Guard Armory – SR1038 Telecommunications Facility

284 New Canaan Avenue Norwalk, CT

April, 2014

SUBMITTED BY:

Dewberry

200 Broadacres Drive, Suite 410 Bloomfield, NJ 07003-3154 973.338.9100

SUBMITTED TO:

Dewberry

600 Parsippany Road, Suite 301 Parsippany, NJ 07054 973.739.9400

Geotechnical Report

New Cingular Wireless PCS, LLC

National Guard Armory – SR1038 Telecommunications Facility

284 New Canaan Avenue Norwalk, CT

April, 2014

SUBMITTED BY:

Dewberry

200 Broadacres Drive, Suite 410 Bloomfield, NJ 07003-3154 973.338.9100

SUBMITTED TO:

Dewberry

600 Parsippany Road, Suite 301 Parsippany, NJ 07054 973.739.9400

4-7-Eugene J. Schwarzrock, Professional Engineer Date

Connecticut License No. PEN.0022516

TABLE OF CONTENTS

NTRODUCTION	1
SUBSURFACE INVESTIGATION	1
SUBSURFACE CONDITIONS	1
DESIGN RECOMMENDATIONS	1
CONSTRUCTION RECOMMENDATIONS	3
APPENDIX	
Boring Location Plan	

Boring Log

INTRODUCTION

This project consists of the construction of a monopole tower and associated equipment shelter within a proposed 50 ft. x 80ft. fenced compound for telecommunications use at the National Guard Armory located at 284 New Canaan Avenue, Norwalk, Connecticut. This report presents the findings of a subsurface investigation conducted at this site, and presents recommendations for the design and construction of the proposed tower and shelter.

The project site is located approximately due north of the intersection of Route 15 (Merritt Parkway) and Route 123 (New Canaan Ave.). A new 140 ft. tall monopole and 11.5 ft. x 20 ft. equipment shelter will be located ± 25 ft north of the northern edge of pavement at the rear parking lot of the National Guard Armory. The site is currently a lawn area that slopes gently down to the northeast, with ground elevations ranging from El. 197 in the southwest area of the lease site, to El. 195.5 in the northeast area. Access to the site is direct from the rear parking lot and generally unimpeded. There is a small bridge along the access roadway to the rear parking lot with unknown capacity.

SUBSURFACE INVESTIGATION

On March 7, 2014, one boring was drilled by Soiltesting, Inc. of Oxford, CT at the location of the proposed 140 ft. monopole. Soil sampling at boring B-1 was performed using a 2 in. diameter split spoon sampler driven by a 140 lb. safety hammer with a 30 in. drop, in accordance with provisions of the Standard Penetration Test (SPT), ASTM D 1586. The boring was sampled continuously from the ground surface to a depth of 16 ft., then at 5 ft. intervals to the bottom of the boring at 40 ft. A 4 in. inner diameter hollow stem auger was used to advance and maintain the hole. Bedrock was not encountered; however, at a depth of approximately 36 ft. the in situ material became very dense and spoon refusal was encountered. Boring B-1 was terminated at a depth of 40.1 ft. An experienced boring inspector was present during drilling and all soil samples were identified according to the Burmister Field Classification System (ASTM, 1958). The Boring Location Plan and boring log are included in the Appendix.

SUBSURFACE CONDITIONS

Boring B-1 encountered approximately 3 in. of topsoil underlain by brown medium dense to very dense granular material with varying amounts of silt and gravel to a depth of 10 ft. (EL. \pm 187.0) Standard penetration test N-values ranged from 11 to 71. Brown and gray, loose to medium dense silty sands with N-values ranging from 8 to 11 are present beneath this layer of dense sand and continued to a depth of \pm 28 ft. (El. \pm 169.0). Dense to very dense, silty sand with pockets of clayey silt are present below El. \pm 169 and continued to the completion of the boring at a depth of 40 ft. (El. \pm 157.0), with spoon refusal encountered at the 35 ft. and 40 ft. sample depths.

Groundwater was encountered during drilling at a depth of ±6 ft. (El. 190.5.)

DESIGN RECOMMENDATIONS

Based on the subsurface data obtained from the borings, the following foundation alternatives and design criteria are recommended:

Monopole

Considering the favorable relative density of the in situ soils, the use of either a large spread footing or a drilled shaft is considered suitable for support of the proposed monopole.

1

For the spread footing alternative, a net allowable bearing capacity of 3 TSF (tons per square foot) may be utilized if founded in the granular soils present at depths ranging from 5 to 10 ft. beneath existing ground (El. ± 191.5 to ± 186.5). The subgrade at the bottom of the excavation should be thoroughly compacted prior to footing construction. A minimum embedment depth of 4 ft. is recommended to protect against frost heave and limit settlement to <1 in. It is further recommended that the footing be founded even lower than this so the footing is entirely below grade and not visible. The size of the footing will likely be governed by overturning, however a base friction factor of 0.45 is recommended for a cast-in-place footing founded within the sand present at the recommended elevations.

For the drilled shaft alternative, the design should use Brom's method of analysis or a p-y analysis method as used by modern computer programs which mobilizes lateral soil resistance for support. Commonly accepted factors of safety and design methods should be used in accordance with TIA standards. The top 2 ft. of soil should be neglected in developing the allowable lateral resistance to account for disturbance, etc. at this site. Otherwise, the following criteria are recommended for analysis, assuming the concrete is placed in direct contact with the soil sides, and a permanent steel casing is not used:

Brown & gray Silty Sand with Gravel (<u>2 ft. to 1</u>	<u>o ft.)</u>
Moist unit weight of soil,	$\gamma_t =$	125 pcf
Angle of internal friction,	φ =	37 ⁰
Lateral earth pressure coefficients:		
	$K_a =$	0.25
	$K_p =$	4.02
Wall friction angle	δ =	29° (mass concrete on sand)
	=	17° (steel on sand)
Brown & gray Silty Sand (10 ft to 28 f	¥)	
Moist unit weight of soil	<u></u> ,	115 pof
Angle of internal friction	γt —	
Angle of Internal Inction,	φ =	30°
Lateral earth pressure coefficients.	K. –	0.22
	$K_n =$	3.00
Wall friction angle	δ=	19 ^o (mass concrete on sand)
5	=	17 ^o (steel on sand)
<u>Gray Silty Sand (28 ft. to 40 ft.)</u>		
Moist unit weight of soil,	$\gamma_{t} =$	125 pcf
Angle of internal friction.	φ =	380
Active Earth Pressure Coefficient.	$\mathbf{K}_{2} =$	0.24
Passive Earth Pressure Coefficient	K. =	4.20
Wall friction angle	$\delta =$	20 ⁰ (mass concrete on sand)
than motion ungio	=	17° (steel on sand)
		,,

Based on the relative density of the in-situ soils, a seismic site class of D is recommended.

Liquefaction analysis indicates the lowest factor of safety against liquefaction is >3, which is above the recommended factor of safety of 1.0.

Equipment Shelter

The proposed 11.5 ft. by 20 ft. equipment shelter is proposed to be set on existing grade after grading the site. It is recommended that the existing soil be removed to a minimum depth of 12 in. below the proposed bottom of slab, the subgrade be thoroughly compacted using at least four passes of a vibratory roller and until no further settlement is observed, and a minimum of 12 in. of 3⁄4 in. clean, crushed stone be placed with compaction to the elevation of the bottom of slab. This will provide uniform support for the equipment shelter and help minimize post construction settlement. Settlement/movement will be dependent on seasonal frost heave action, and provision for a minimum of 2 in. of vertical movement should be provided by means of flexible connections. A modulus of subgrade reaction equal to 300 pci may be used for design of this slab following such construction.

CONSTRUCTION RECOMMENDATIONS

Spread footings should not be constructed on saturated or frozen subgrade materials. For wet excavations, all standing water shall be removed by pumping before placing concrete. In wet weather conditions, a 4 in. thick layer of ³/₄ in. clean crushed stone may be placed below the bottom of footing to protect the excavation from softening prior to concrete placement. Frozen subgrade shall be removed and replaced with either compacted structural backfill placed in 8 in. thick loose lifts and compacted to 95% maximum dry density at optimum moisture (ASTM D 1557); or with clean, ³/₄ in. crushed stone, or with additional concrete.

Structural backfill should consist of well-graded, free-draining granular soil with a maximum of 10% non-plastic fines. Structural fill should be compacted to 95% maximum dry density at optimum moisture content (ASTM D 1557). The majority of the on-site sand is suitable for use as structural fill. Compaction tests should be performed according to the following recommended schedule:

For the drilled shaft alternate, construction methods used to install drilled shafts should be in accordance with the procedures outlined in FWHA publication IF-99-025, "Drilled Shafts: Construction Procedures and Design Methods". The method of construction must include full support of the sidewalls during the entire construction period. The construction period is defined as the initial excavation to the final concrete placement. Methods that are considered acceptable and satisfy the above requirement include, but are not limited to:

- 1. Use of mud slurry (bentonite, etc.) to support the shaft walls prior to concrete placement.
- 2. Use of steel casing as a temporary form. The casing is installed as the shaft is augered, and then removed as the concrete is placed in order to develop full concrete-soil contact.
- 3. Use of steel casing as a permanent form. The casing is installed as the shaft is augered; however, it remains part of the drilled shaft. Steel casing significantly reduces shaft friction and is therefore a less efficient design, which would need to be considered prior to construction.

For construction of the equipment shelter slab-on-grade, all loose soil should be proof rolled and compacted until no further subsidence is visible. A double-drum walk-behind vibratory roller should be used for this compaction, with a minimum of 4 passes over the area to receive the slab-on-grade. All water and/or ice must be removed prior to construction of the slab.

An experienced geotechnical engineer should be retained during foundation excavation and construction to verify that the monopole or drilled shaft bear in/on material consistent with these findings and recommendations. Additionally, a licensed professional engineer and/or materials testing firm should be present during construction

of the foundation to ensure that reinforcing steel and concrete are placed and constructed according to this report and the designer's specification(s).

APPENDIX

Boring Log

ROUTE		L	CAL NA	AME: N	ew Cingu	ılar Wirel	ess PCS,	LLC Com	munications Facility BORING NO. B-1	
SECTION	٨:			N	ational G	uard Arn	nory, 284	New Can	aan Ave, Norwalk, CT FIELD BORING NO.	
STATION	1:	OF	FSET:		REF	ERENCI	E LINE:		GROUND ELEVATION: ±196.5	
BORING	BY: Soilte	esting, Inc	:	DA	TE STAF	RTED:	3-7-20 ⁻	14	GROUND WATER ELEVATION 0 Hr. ±190.5 (6 ft. deep) Date: 3-7-2014	
INSPECTOR: C. Baldwin				DA	TE COM	PLETED	: 3-7-20 ⁻	14		
DEPTH (ft)	BLOWS	NO.	= DEF	PTH	0/6	ws on Sp 6 / 12	12 / 18	REC. (in)	SOIL DESCRIPTION AND STRATIFICATION	(ft)
	Auger	S-1	0	2	4	3		6"	Brown and black m-f SAND, and Silt	
	↓ ↓			<u> </u>	8	12				
		S-2	2	4	28	22		15"	Brown and gray m-f(+) SAND, and Silt	-
					26	26				2
5		S-3	4	6	26	35		14"	Brown c-f SAND, little m-f Gravel, little Silt	
					36	35			1 1	
		S-4	6	8	33	16		8"	Brown & gray c-f SAND, trace f Gravel, trace Silt	
					14	10] [
		S-5	8	10	16	11		22"	Brown c(+)-f SAND, little m-f(+) Gravel, trace(-) Silt	
10					15	22]	
		S-6	10	12	4	5		16"	Brown c(+)-f SAND, trace Silt	
					3	6				
		S-7	12	14	3	5		16"	Brown & gray c-f SAND, some Silt	
					6	5				
15		S-8	14	16	5	5		12"	Brown c-f(+) SAND, little Silt, trace(-) f Gravel	
					5	5			4	
									4	
									4 4	
00							-		4	
20		8.0		00				00"		
		3-9	20	22	5	3		20	Brown m-r SAND, little Slit	
					5					
									-	-
25									4	-
		S-10	25	27	3	3		24"	Grav SILT, and f Sand	
					5	10			1 ····· , ···· , ···· F	
									1 1	
									1 1	
30									1 7	
		S-11	30	32	16	21		24"	Gray c-f SAND, some Silt; clayey silt pockets	
					20	20			1	
] [
35										
		S-12	35	36.3	29	57	100/4	16"	Gray m-f SAND, some Silt; clayey silt pockets	
] [
									4	
									4	
40										

Dewberry

Nominal I.D. of Hollow Stem Auger	4 in.	
Nominal I.D. of Split Barrel Sampler	2 in.	
Weight/type of Hammer on Drive Pipe	N/A	
Weight/type of Hammer on Split Barrel	140 lb.	Safety
Drop of Hammer on Drive Pipe	N/A.	
Drop of Hammer on Split Barrel	30 in.	
Core Size	N/A	

The subsurface information shown hereon was obtained for the Owner's design and estimate purposes. It is made available to authorized users only that they may have access to the same information available to the Owner. It is presented in good faith, but is not intended as a substitute for investigations, interpretation or judgment of such authorized users.

Approximate Change in Strata

Inferred Change in Strata

Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted.

								Dewben	y	Page 2 of 2
ROUTE		LC	DCAL NA	ME: N	ew Cingu	lar Wirel	ess PCS,	LLC Com	munications Facility BORING NO. B-1	
SECTION	1:		_	N	ational G	uard Arm	nory , 284	New Cana	aan Ave, Norwalk, CT FIELD BORING NO.	
STATION	:	OF	FSET:		REF	ERENCE	E LINE:		GROUND ELEVATION: ±196.5	
BORING	BY: Soilte	esting, Inc		DA	TE STAF	RTED:	3-7-201	4	GROUND WATER ELEVATION 0 Hr. ±190.5 (6 ft. deep) Date: 3-7-2014	
INSPECT	OR: C. Ba	ldwin		DA	TE COM	PLETED	: 3-7-201	4		
DEPTH (ft)	CASING BLOWS	SAMPLE NO.	E DEF	РТН	Blo	ws on Sp	000n	REC. (in)	SOIL DESCRIPTION AND STRATIFICATION	(ft)
	Auger	S-13	40	40.1	100/1	0/12	12/18	-1 77	Crowf CAND and City weathered reals pieces presible till	
	Auger	3-13	40	40.1	100/1			-	Gray I SAND, and Silt; weathered rock pieces, possible till	
	- V									
									4	
45									-	
									•	
									1	
50										
55										
			_							
60										
									5. · · · ·	
65										
70			·							
10										
1.14										
75										
13										
80										

Daushann

Nominal I.D. of Hollow Stem Auger4 in.Nominal I.D. of Split Barrel Sampler2 in.Weight/type of Hammer on Drive PipeN/AWeight/type of Hammer on Split Barrel140 lb.Drop of Hammer on Drive PipeN/A.Drop of Hammer on Split Barrel30 in.Core SizeN/A

The subsurface information shown hereon was obtained for the Owner's design and estimate purposes. It is made available to authorized users only that they may have access to the same information available to the Owner. It is presented in good faith, but is not intended as a substitute for investigations, interpretation or judgment of such authorized users.

Approximate Change in Strata

Inferred Change in Strata

Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted.

ATTACHMENT 2

21. Foundation des 22. Groundwater wa	encountered at 6 feet bgs during the geotechnical investigation. Dewatering techniques should be anticipated belo	w this depth. t be used.		
21. Foundation des	a standard at 0 feet has during the gentechnical investigation. Downtaring techniques should be entipingted hele	w this depth		
	n assumes an ultimate bearing capacity value of 12,000 psf.			
20. A concrete mat	ay be used to level the bearing surface. The concrete in the leveling mat is to have a minimum compressive streng	th of 2000 psi at 28 days and can	not exceed 12" thick.	
19. It is permissible suitable for cold join	o utilize a cold joint during construction of a pier and pad type foundation. The cold joint must be located at the inte	erface of the piers with the pad, and	d contractor shall use a	bonding
18. It shall be the confoundation.	tractor's responsibility to locate and prevent damage to any existing underground utilities, foundations or other buring	ed objects that might be damaged	or interfered with during	g constru
17. Overexcavation elevation.	f unsuitable soils for compacted backfill placement below footings should extend laterally beyond all edges of the fo	otings at least 12 inches per foot o	of overexcavation depth	below fo
16. The sub-grade, i	practical, should be proof-rolled with vibratory compaction prior to casting foundation or placing structural fill.			
15. Positive drainag	shall be maintained during construction and throughout the life of the facility to minimize the potential for surface wa	ater infiltration.		
14. Concrete contra	or shall be responsible for properly aligning anchor bolts and materials before and after placing concrete, regardles	s of whether an anchor bolt templa	ate is provided.	
13. Concrete shall b	placed as soon as practical after excavating to avoid disturbance of bearing and side wall surfaces.			
12. Concrete shall d	velop a minimum compressive strength of 4000 psi in 28 days.			
11. Concrete and re	forcement installation must conform to ACI 318, "Building Code Requirements for Structual Concrete."			
10. Concrete cover	om exposed surface of concrete to surface of reinforcement shall not be less than 3".			
9. Loose material sh	Il be removed from bottom of excavation prior to concrete placement.			
8. Foundation desig	s assume level ground at tower site.			
7. Backfill above for	ndation should be compacted to 95% of maximum dry density at water content within 2 percent of optimum. Backfil	I must be clean and free of organic	c and frozen soils and fo	oreign m
 6. Structural backfil organic and frozen s 	placed below pad must be compacted in 8" loose lifts to a 95% of maximum dry density at optimum moisture conter ils and foreign materials.	t in accordance with ASTM D1557	7. Backfill must be clear	n and fre
5. Welding is prohib	ed on reinforcing steel and anchorage.			
penetration and gro	ndwater depth. Local frost depth must be no deeper than the bottom of the base foundation.	rcement shall not be allowed unles	ss otherwise noted.	
2. Foundation desig	is based on the Geotechnical Report dated 04/07/2014, by Dewberry Engineers, Project. National Guard Amory-S	s and that the depth of standard fo	oundations are adequate	e based
1. This foundation h Shear: Moment: 1 Weight:	s been designed for the following reactions. 18.0 kips 6.4 kips	P1029		

on the frost

ee of

naterials.

Nut (in)	Part Number	
	112544	(8) 1" x 5-3/4"
	112548	(8) 1" x 5-3/4"
	112550	(8) 1" x 5-3/4"
	112549	(8) 1" x 4-1/2"
6 5/8		
	6 5/8	112544 112548 112550 112549 6 5/8

Portholes

Elevation (ft)	Qty	Size (in)	Azimuth (deg)
7.5	1	10 x 30	0
7.5	1	10 x 30	90
7.5	1	10 x 30	180
7.5	1	10 x 30	270

Antenna Loading

Height	Qty.	Description
140'	1	6' Lightning Rod
128' - 140'	1	12' x 18'
120' - 140'	1	42" x 20' Radome w/ 8.625" OD Spine
110' - 120'	1	42" x 10' Radome w/ 10.75" OD Spine
90' - 110'	1	42" x 20' Radome w/ 12.75" OD Spine
80' - 90'	1	42" x 10' Radome w/ 12.75" OD Spine

Feedline Loading

Height	Qty.	Description	No
0' - 135'	8	LDF7-50A (1-5/8 FOAM)	Th
0' - 125'	8	LDF7-50A (1-5/8 FOAM)	fea
0' - 115'	8	LDF7-50A (1-5/8 FOAM)	wh
0' - 105'	8	LDF7-50A (1-5/8 FOAM)	
0' - 95'	8	LDF7-50A (1-5/8 FOAM)	

ote:

				COPYRIGHT NOTICE: This drawing is the property of	ORIG. DATE:	7/18/2014	DWG NO:	į
REV	BY	DATE	DESCRIPTION	Nello Inc. It is not to be reproduced, copied or traced in whole or in part		0.05		_
				without our written consent.	DWG. PROG:	V2.05	SHEET:	2

Tower Notes:

1. Tower is designed per TIA-222-G, "Structural Standard for Antenna Supporting Structures and Antennas," for the following loading conditions: 105 mph 3-second gust basic wind speed with no ice (Equivalent to 135 mph 3-second gust ultimate design wind speed) 50 mph 3-second gust basic wind speed with 3/4 inch basic ice thickness

Structure Class: II

Exposure Category: C

Topographic Category: 1

- 2. Tower design loading is assumed to be based on site-specific data and must be verified by others prior to installation.
- 3. Tower design includes the antennas, dishes, and/or lines listed in the appurtenance loading tables on sheet 2.
- 4. Antenna mounting pipes may need to be field cut to match the lengths listed in the appurtenance loading tables on sheet 2.
- 5. Tower member design does not include stresses due to erection since erection equipment and procedures are unknown. Tower installation shall be performed by competent and qualified erectors in

accordance with TIA-222-G and OSHA standards and all applicable building codes.

- 6. Field connections shall be bolted. No field welds shall be allowed unless otherwise noted.
- 7. Structural bolts shall conform to ASTM A325, except for 1/2 inch diameter and smaller bolts, which shall conform to ASTM A449 or SAE J429 Grade 5.
- 8. Structural steel and connection bolts shall be galvanized after fabrication in accordance with TIA-222-G.
- 9. All high strength bolts shall be tightened to a "snug tight" condition as defined in the November 13, 1985, AISC "Specification for Structural Joints Using ASTM A325 or A490 Bolts."
- 10. Tower shall be marked and lighted in conformance with local building codes, FAA regulations, and TIA-222-G.
- 11. Tower shall be grounded in conformance with local building codes and TIA-222-G.
- 12. Allowable tolerance on as-built tower steel height is plus 1% or minus 1/2%.
- 13. Maintenance and inspection shall be performed over the life of the structure in accordance with TIA-222-G.
- 14. Material specifications:

NTP 18-Sided Pole - ASTM A572 Grade 65

NTP Round Pole - ASTM A53 Grade B or ASTM A500 Grade 50

Pole Flange - ASTM A572 Grade 50

Pole Porthole Rim - ASTM A572 Grade 65

15. A jacking nut is placed near the top of each section which will have another section placed on top. The distance from this top jacking nut to the bottom of the next section must not exceed the value given in the column labeled "Maximum Distance to Top Jacking Nut." Jacking may be required to achieve the proper overlap.

16. The horizontal distance between the vertical centerlines at any two elevations shall not exceed 0.25 percent of the vertical distance between the two elevations. Measure early in the morning before the sunward side of the pole expands.

- 17. Sections must be erected with the 0 degree azimuth lined up to ensure proper fit.
- 18. Remove anchor bolt template before erecting pole. Non-shrink grout may be placed under base flange after leveling pole. Drain holes must be provided if grouting.
- 19. Concrete contractor shall be responsible for properly aligning anchor bolts and materials before and after placing concrete, regardless of whether an anchor bolt template is provided.

				COPYRIGHT NOTICE: This drawing is the property of	ORIG. DATE:	7/18/2014	DWG NO:
REV	BY	DATE	DESCRIPTION	copied or traced in whole or in part		0.05	
				without our written consent.	DWG. PROG:	V2.05	SHEET:

ATTACHMENT 3

					BIL	L OF MATERIALS	
	Item	Part Number	Qty	Description	N		
140° DIS	SGUISED PULE		1	17340-E01-GS-01	1	SHAFT ASSY. (TOP SECTION)	
SVI CO	MALINICATIONS		2	17340-E01-GS-02	1	SHAFT ASSY. (BOTTOM SECTION)	
			3	K12040	1	36" X 10'-0" LIGHT DUTY AMS SYSTEM II	
FAIRFIELD COUNTY				K12164	1	36" DIA x 20'-0" LG HEAVY DUTY AMS SYSTEM 2.5	
NEW CANAAN/SR-1038, CT				K1	1	36" DIA x 20'-0" LG SUPER HEAVY DUTY II AMS SYSTEM 2.5	
				K12165	5	36" DIA x 10'-0" LG PANEL ENCLOSURE FOR AMS SYSTEM 2.5	
	SYMBOL LEGEND		7	K12314	1	36"Ø AMS COVER PLATE	
TABLE OF CONTENTS	AGL = ABOVE GROUND EVE	I I W = LOCK WASHER	8	K10062	1	BUSS BAR	
T1 - BILL OF MATERIAL & NOTES	BC = BOLT CIRCLE	OC = ON CENTER	9	K10333	1	7'-0" LIGHTNING ROD	1
ADT ANCHOR BOLTS & TEMPLATES		OD = OUTSIDE DIAMETER					
ABT - ANOTOR BOETS & TEMP BATES	ELEV = ELEVATION	(P) = PROPOSED				PAINT FINISH	
	(E) = EXISTING	TBD = TO BE DETERMINED			1	STRUCTURE ASSEMBLY AND ERECTION	
	FV = FIELD VERIFY	TOS = TOP OF STEEL		HD-INS-MUNOPULE		PROCEDURE	
	FW = FLAT WASHER	TYP = TYPICAL			1		
	HN = HEX NUT	NTS = NOT TO SCALE					+
				1/11/07	5	10" × 30" ACCESS PORT COVER PLATE & BOLTS	+
D	ESIGN NOTES		30	K11497	3	6" × 12" HANDHOLE COVER PLATE & BOLTS	+
	20 MPH 3 SECOND GUST WIND SPEED.			KTIU97			+
1. MONOPOLE IS DESIGNED IN ACCORDANCE WITH TIA-2228 FOR TA RISK CATEGORY - II			32				+
EXPOSURE - C			33				+
TOPOGRAPHIC CATEGORY - 1	DATING NOTES		34				+
	SAMONOTES		- 35				+
1. ALL APPLICABLE MATERIALS SHALL BE HOT DIPPED GALVANIZE	D PER ASTM A123. ALL HARDWARE SHALL BE H	IOT DIPPED GALVANIZED PER ASTM A153,				FOR ANCHOR BOLTS REFER TO DWG.	+
UNLESS OTHERWISE NOTED.			40	ANCHORBOLT	1	17340-E01-ABT	
STE	VUCTURE NOTES						
1. EE WILL NOT HONOR ANY BACKCHARGES WHICH HAVE NOT REC	CEIVED PRIOR WRITTEN AUTHORIZATION. CON	TACT EE AT (440) 564.5484				STRUCTUR	E BL
2 THE INSTALLER SHALL THOROUGHLY REVIEW EE'S STRUCTURA	AL ASSEMBLY & ERECTION PROCEDURES PRIO	R TO INITIATING THE INSTALLATION OF THE				STRUCTUR	RE G
MONOPOLE.							
3. THE ORIENTATION OF THE MONOPOLE SHALL BE VERIFIED PRIO	IR TO INSTALLATION.						
 4. FOR MULTIPLE SECTION MONOPOLES: 4.1. FOR PROPER SECTION TO SECTION ALIGNMENT A SPLICE. THE 2" HORIZONTAL WELD BEAD ARE ON " WITH WELD BEADS SHALL BE ALIGNED FROM TOP THE DISTANCE BETWEEN TWO WELD BEADS SHOL 4.2. ALL SECTIONS OF THE MONOPOLE SHALL BE JACH MAXIMUM RECOMMENDED JACKING FORCE, SPLICI ASSEMBLY & ERECTION PROCEDURES. 4.3. 1" FIELD ASSEMBLY JACKING NUTS FOR JACKING SPLICES. ALL JACKING EQUIPMENT SHALL BE SUP 4.4. ALL LONGITUDINAL SEAM WELDS WITHIN THE SLIF 	. 2" HORIZONTAL WELD BEAD AND A MARK ARE THE MATCHING CORNERS. THE MARK NUMBER TO BOTTOM OF THE MONOPOLE/ MARK NUMBI JLD BE 18" (±4"). (ED TOGETHER WITH A MINIMUM JACKING FOF E LENGTH TOLERANCE AND AIR GAP BETWEEN SECTIONS TOGETHER ARE LOCATED ON OPPO PLIED BY THE INSTALLER. P-JOINT AREA IN THE FEMALE SECTION SHALL (POSITIONED ON EACH SECTION AT EACH RIS ON THE ADJACENT FLAT. THE CORNERS ERS SHALL BE MATCHED FOR EACH SIDE & RCE OF 10,000 Ibf APPLIED TO EACH SIDE. FOR N SECTIONS REFER TO EE'S STRUCTURE DSING SECTION FLATS ABOVE AND BELOW THE BE 100% PENETRATION.					
5. ALL BOLTED CONNECTIONS WITH A325 HIGH-STRENGTH BOLTS USING A325 OR A490 BOLTS. HIGH STRENGTH BOLTS SHALL BE REQUIRED. TURN-OF-NUT METHOD IS RECOMMENDED BUT IS NO	3 SHALL BE ASSEMBLED IN ACCORDANCE WITH INSTALLED TO SNUG-TIGHT CONDITION PER A OT LIMITED TO.	I SPECIFICATIONS FOR STRUCTURAL JOINTS STM A325/A490 AND THEN PRE-TENSION AS					
6. SHIMS WILL BE SUPPLIED BY EE, IF REQUIRED.							
7. MONOPOLE BASE PLATE SHALL HAVE FULL PENETRATION WELL	D TO SHAFT.						
8. ANCHOR RODS SHALL BE TIGHTENED AFTER THE MONOPOLE IS PLUMB. BOTH TOP & BOTTOM NUT SHALL BE TIGHTENED. FOR DETAIL OF ANCHOR ROD INSTALLATION INSTRUCTIONS, REFER TO EE'S STRUCTURE ASSEMBLY & ERECTION PROCEDURES.							
9. MATERIALS 9.1. STRUCTURAL STEEL - REFER TO DRAWING. 9.2. BOLTS 9.2.1. STRUCTURAL STEEL: A325 HIGH STRENGTH BC 9.2.2. ANCHOR RODS: A615-GR75 UNLESS OTHERWIS	DLTS UNLESS OTHERWISE NOTED. SE NOTED.						
10. WELDING 10.1. ALL WELDING SHALL MEET AWS LATEST D.1.1 ED	ITION						
11. ASSEMBLY MARKING PROCEDURE 11.1. EACH INDIVIDUAL ASSEMBLY SHALL HAVE A MET SHOWN IN THE MATERIAL BLOCK. (MINIMUM OF	FAL TAG WELDED TO IT WHICH WILL BE ENGRA 5/8" HIGH LETTERS).	VED WITH THE ASSEMBLY MARK NO. AS					

17340)-E01					
Weight Per 1	Wt Per Row					
3,491.34	3,491.34					
7,577.20	7,577.20					
582.00	582.00					
2,604.13	2,604.13					
3,087.13	3,087.13					
178.72	893.60					
64.45	64.45					
7.50	7.50					
28.60	28.60					
31.39 7.25	156.95 21.75	STAMP STAMP OF CONVECTOR				
		No. 29864				
		Blouperan				
BLACK WEIGHT	18,514.65	4				
GALV WEIGHT	19,625.53	-				
		ENGINEERED ENDEAVORS <i>The Experienced Point of View</i> 10975 Kinsman Road * Newbury, OH 44065-9787 Ph: (440) 564-5484 * Ph: (888) 270-3855 Fx: (440) 564-5489 * www.engend.com				
		FOR APPROVAL				
		THIS DRAWING IS CONFIDENTIAL AND MAY NOT BE LOANED, REPRODUCED, COPIED EITHER WHOLLY OR IN PART, OR MADE PUBLIC IN ANY MANNER WITHOUT THE WRITEN CONSENT OF ENGINEERED ENDEAVORS ALL RIGHTS OF DESIGN OR INVENTION ARE RESERVED.				
		REVISION HISTORY				
		REV. # DATE BY DESCRIPTION				
		0 10/31/14 RPH ISSUED FOR REVIEW				
		NEW CANAAN/SR-1038, CT				
		BILL OF MATERIALS & NOTES				
		DRAWN BY CREATED PROJECT NUMBER RPH 10/31/14 17340				
		1/340-E01-11				

AND ERECTION PROCEDURES".

NOTE: FOR REQUIRED TOLERANCES AT SLIP JOINTS AND REQD. JACKING FORCES SEE "STRUCTURE ASSEMBLY

		and the second se			
	17340-E01-RPH				
	Weight Per 1	Wt Per Row			
ROD w/(4) HEX HERS (F436)	95.00	760.00			
PLATES	105.73	211.46			
& TEMPLATE	WEIGHT	971.46			

The Experienced Point of View

STAMP		
ENGINI	ΞE	RED ENDEAVORS
10975 Kin: Ph: (4 Fx: (4	π sman 40) 5 440) :	e <i>Experienced Point of View</i> Noad * Newbury, OH 44065-9787 i64-5484 * Ph: (888) 270-3855 564-5489 * www.engend.com
F	OF	RAPPROVAL
THIS DRAWING IS CO COPIED EITHER W WITHOUT THE V ALL RIGHT	ONFIDE HOLLY WRITTE	ENTIAL AND MAY NOT BE LOANED, REPRODUCED, OR IN PART, OR MADE PUBLIC IN ANY MANNER IN CONSENT OF ENGINEERED ENDEAVORS DESIGN OR INVENTION ARE RESERVED.
	F	REVISION HISTORY
REV. # DATE	BY	
14	0' E	DISGUISED POLE
SALC	20	MMUNICATIONS
FAI	IRF	FIELD COUNTY
NEWC	CAI	NAAN/SR-1038, C1
	cai R e	NAAN/SR-1038, CT BOLTS & TEMPLATES
		NAAN/SR-1038 , C I BOLTS & TEMPLATES

									140.0	<u>) fi</u>	n
2 1 0 E0 0 E0	00.0 T		Versu Versu		4.5000 4.5000	6.0000 4.5000	A53-B-35	8,8 133.9	<u>130</u> .	<u>5 ft</u>	A
3	19.50	-	3.0000		6.0000	6.0000	0	1876.1			
5	9.50 0.50	-	0000 3.0000		0000 6.0000	0000 8.0000	A572-5	335.3 64 1	<u>_11(</u>	<u>).5 ft</u>	
=10	0.50 15	÷	4.0000 4.0		8.0000 8.	35.5000 8.	8	379.5 3.		1 <u>0.5 ft</u>	
4	41.84	18	0.1875	5.67 5.67	0001.10	0000.65	41.3800	A572-65 3240.8	222-20		
	/									48.2	<u>ft</u>
	8	52.84	18	0.2500		40.2078	47.5000		6220.7		
	Section	Length (ft)	Number of Sides	Thickness (In)	Socket Length (ft)	Ton Dia (in)	Bot Dia (in)	Grade	Weight (Ib) 15258.8	_1	.0 ft

 \bigcirc

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
36" x 10' LIGHT DUTY AMS	135	36" x 20' SUPER DUTY II-2 AMS	100
36" x 20' HEAVY DUTY AMS	120		

MATERIAL STRENGTH

CRADE	Fv	Fu	GRADE	Fy	Fu
A53-B-35	35000 psi	63000 psi	A572-65	65000 psi	80000 psi
A572-50	50000 psi	65000 psi			

TOWER DESIGN NOTES

- TOWER DESIGN NOTES
 1. Tower is located in Fairfield County, Connecticut.
 2. Tower designed for Exposure C to the TIA-222-G Standard.
 3. Tower designed for a 120 mph basic wind in accordance with the TIA-222-G Standard.
 4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 5. Deflections are based upon a 60 mph wind.
 6. Tower Risk Category II.
 7. Topographic Category 1 with Crest Height of 0.00 ft
 8. TOWER RATING: 46.3%

ALL REACTIONS ARE FACTORED
AXIAL 42105 lb
SHEAR 6391 lb 608 kip-ft
50 mph WIND - 0.7500 in ICE AXIAL 29406 lb
SHEAR 12614 lb 948 kip-ft

REACTIONS - 120 mph WIND

	Engineered Endeavor
	10975 Kinsman Rd
EARUNO	Newbury, OH 44065
	Phone: (440) 564-5484
	FAX: (440) 564-5489

ors	^{Job:} FEI Job #17340/N	ew Canaan/SR-1038					
54 2	Project: 140' Disguised Pole						
165	Client: SAI Communications	Drawn by: Aleksandar Mrkajid	App u.				
t 100	Code: TIA-222-G	Date: 10/31/14	Scale: N				
	Path:						

			Page
ENGINEERED ENDEAVORS	Job	EEI Job #17340/New Canaan/SR-1038	1 of 13
Engineered Endeavors	Project	140' Disguised Pole	Date 15:17:23 10/31/14
10975 Kinsman Rd Newbury, OH 44065 Phone: (440) 564-5484 FAX: (440) 564-5489	Client	SAI Communications	Designed by Aleksandar Mrkajic
Phone: (440)		O/ T Communication	Mrkajic

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard. The following design criteria apply: Tower is located in Fairfield County, Connecticut.

ASCE 7-10 Wind Data is used. Basic wind speed of 120 mph. Risk Category II. Exposure Category C. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56.00 pcf. is used in combination with ice. A wind speed of 50 mph Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice

Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- ✓ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- ✓ Bypass Mast Stability Checks
- ✓ Bypass Wast Stability Checks
 ✓ Use Azimuth Dish Coefficients
- V Ose Azimum Disin Oceanization
 Project Wind Area of Appurt. Autocalc Torque Arm Areas
 SR Members Have Cut Ends
 Sort Capacity Reports By Component Triangulate Diamond Inner Bracing
 Use TIA-222-G Tension Splice Capacity
 Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- √ Consider Feedline Torque Include Angle Block Shear Check Poles Include Shear-Torsion Interaction
 - Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry Bend Pole Grade Wall Bottom Тор Numbe Splice Section Elevation Thickness Radius Diameter Length Diameter Length r Section in in in of in ft ft ft Sides A53-B-35 0.3150 4.5000 4.5000 9.50 0.00 Round 140.00-130.50 L1 (35000 psi) A53-B-35 6.0000 0.3150 4.5000 0.00 Round 130.50-130.00 0.50 1.2 (35000 psi)

E ENG	Јо р EEI Job #17340/New Canaan/SR-1038						Page 2 of 13		
Engineered	Project	Project 140' Disguised Pole						Date 15:17:23 10/31/14	
10975 Ki Newbury, Phone: (44 FAX: (44)	Client	Client SAI Communications				Designed by Aleksandar Mrkajic			
Section	Elevation ft	Section Length ft	Splice Length ft	Numbe r of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L3	130.00-110.50	19.50	0.00	Round	6.0000	6.0000	3.0000		A572-50 (50000 psi)
L4	110.50-110.00	0.50	0.00	Round	6.0000	8.0000	3.0000		A572-50 (50000 psi)
L5	110.00-90.50	19.50	0.00	Round	8.0000	8.0000	4.0000		A572-65 (65000 psi)
I 6	90.50-90.00	0.50	0.00	Round	8.0000	35.5000	4.0000		A572-65 (65000 psi)
L7	90.00-48.16	41.84	5.67	18	35.5000	41.3800	0.1875	0.7500) A572-65 (65000 psi)
L8	48.16-1.00	52.84		18	40.2078	47.5000	0.2500	1.0000) A572-65 (65000 psi)

	Tip Dia	Area	I	r	С	I/C	J	It/Q	W	w/t
Contion	in in	in ²	in ⁴	in	in	in ³	in ⁴	111-		0
TI	4 5000	4 1415	9.0738	1.4815	2.2500	4.0328	18.1229	2.0695	0.0000	0
LI	4.5000	4 1415	9.0738	1.4815	2.2500	4.0328	18.1229	2.0695	0.0000	0
1.2	4.5000	4 1415	9.0738	1.4815	2.2500	4.0328	18.1229	2.0695	0.0000	0
L2	4.3000	5 6259	22.7454	2.0125	3.0000	7.5818	45.4289	2.8113	0.0000	0
T 2	6.0000	28 2743	31.8330	1.0620	3.0000	10.6110	63.5793	14.1287	0.0000	0
LS	6.0000	28 2743	31.8330	1.0620	3.0000	10.6110	63.5793	14.1287	0.0000	0
т 4	6.0000	28.27.13	31.8330	1.0620	3.0000	10.6110	63.5793	14.1287	0.0000	0
L/4	0.0000 8.0000	47 1239	147 3750	1.7700	4.0000	36.8438	294.3485	23.5479	0.0000	0
T. C.	8.0000 8.0000	50 2655	100 6080	1,4160	4.0000	25.1520	200.9419	25.1177	0.0000	0
LS	8.0000	50.2655	100.6080	1.4160	4.0000	25.1520	200.9419	25.1177	0.0000	0
* /	8.0000	50.2655	100 6080	1.4160	4.0000	25.1520	200.9419	25.1177	0.0000	0
L6	8.0000	305 8407	49134 23	11.1510	17.7500	2768.125	98134.61	197.8022	0.0000	0
	35.5000	395.0407	55			9	54		5 0100	21 563
	26.0476	21.0154	3310 785	12.5359	18.0340	183.5858	6625.927	10.5097	5.9180	51.505
L7	36.0476	21.0154	5				4		6.0520	27 001
	42.0194	24 5147	5255 331	14.6233	21.0210	250.0034	10517.57	12.2597	6.9529	57.062
	42.0184	24.5147	3				76		6.6266	2654
τo	41 6720	31 7065	6395 718	14.1850	20.4256	313.1232	12799.85	15.8563	6.6366	20.54
L8	41.6230	51.7005	1				19		7.0000	21.0
	40.0000	27 4020	10575 23	16.7738	24.1300	438.2607	21164.37	18.7500	7.9200	31.08
	48.2328	51.4929	00	10.7700			51			*****

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor Af	Adjust. Factor Ar	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals
ft	ft²	in					in	in
				1	0	1		
Ll								
140.00-130.								
50				1	0	1		
L2								
130.50-130.								
00				1	0	1		
L3				1				
130.00-110.								
50								

ŧ

ENGIN ENDEA	EERED VORS	Job	EEI Job #	±17340/New	' Canaan/SR	₹-1038		Page 3 of 13	
Engineered End	leavors	Project		140' Disgu	ised Pole			Date 15:17:23 10/31/14	
10975 Kinsman Ка Newbury, ОН 44065 Phone: (440) 564-5484 FAX: (440) 564-5489		Client	Client SAI Communications					Designed by Aleksandar Mrkajic	
Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor Ar	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double 1 Angle Stitch Bolt Spacing Horizontals	
ft	ft^2	111				1.	in	<u>in</u>	
L4				1	0	1			
110.50-110. 00 L5				1	0	1			
110.00-90.5 0				1	0	1			
L6 90.50-90.00 1.7				1	1	1			
90.00-48.16 L8 48.16.1.00				1	1	1	*****		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustme nt	Placement		C _A A _A Front	C _A A _A Side	Weight
	- 0		Vert ft ft	o	ft		ft²	ft²	lb
66" x 10' LIGHT DUTY AMS	С	None	JL	0.00	135.00	No Ice 1/2" Ice 1"	18.00 37.00 56.00	18.00 37.00 56.00	600.00 858.00 1116.0
6" x 20' HEAVY DUTY AMS	С	None		0.00	120.00	Ice No Ice 1/2" Ice 1"	36.00 74.00 112.00	36.00 74.00 112.00	3332.0 3813.0 4294.0
36" x 20' SUPER DUTY II-2 AMS	С	None		0.00	100.00	Ice No Ice 1/2" Ice 1"	36.00 74.00 112.00	36.00 74.00 112.00	5314.0 5795.0 6276.0

Load Combinations

		Description
Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	

 1.2 Dead+1.0 Wind 0 deg - No Ice

 3
 0.9 Dead+1.0 Wind 0 deg - No Ice

			Page
ENGINEERED ENDE AVORS	Job	EEI Job #17340/New Canaan/SR-1038	4 of 13
Engineered Endeavors	Project	140' Disguised Pole	Date 15:17:23 10/31/14
10975 Kinsman Rd Newbury, OH 44065 Phone: (440) 564-5484 FAX: (440) 564-5489	Client	SAI Communications	Designed by Aleksandar Mrkajic
Comb.		Description	

No.	
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9 9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 lce+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

			Waximum we	IIIDEI	1 01000	ga (ing) Antagas digatan		
Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb	Axial Ib	Major Axis Moment kip-ft	Minor Axis Moment kip-ft	
Ll	140 - 130.5	Pole	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx	8 26 8 2 8 2 8 2	0.10 -1896.59 -684.55 -684.55 1086.61 -1086.61	0.00 0.00 -4.91 0.00 -4.91 0.00	0.00 0.00 4.91 0.00 4.91	
ENG	INEERED EAVORS		EEI Job #17340/New	v Canaa	n/SR-1038			
---	---------------------------------------	-----------	----------------------------	--------------	-----------------------	------------------	-------------------------	--
Engineered	Endeavors	Project	140' Disgu	ised Pol	e		Date 15:17:23 10/31/	
10975 Kir Newbury, (Phone: (440, FAX: (440,	OH 44065)) 564-5484) 564-5489	Client	Client SAI Communications					
	<u> </u>	Component	Condition	Gov.	Axial	Major Axis	Minor Axis	
Section No.	Lievation ft	Туре		Load Comb	lb	мотепt kip-ft	kip-ft	
	-		May Torque	4		d	-0.00	
	100 5 100	Dole	Max Tension	1	0.00	0.00	0.00	
L2	130.5 - 130	roie	Max. Compression	26	-1913.89	0.00	0.00 0.00	
			Max. Mx	8	-696.03	-5.45	5.00	
			Max. My	2	-696.03	U.UU 5 15	0.00	
			Max. Vy	8	108/.40	0.00	5.45	
			Max. Vx	2	-108/.40	0.00	-0.00	
			Max. Torque	4	0.00	0.00	0.00	
L3	130 - 110.5	Pole	Max Tension	26	-10118.92	0.00	0.00	
			Max. Compression	8	-6736.76	-52.67	0.00	
			Max Mv	2	-6736.76	0.00	52.67	
			Max. Vv	8	3775.77	-22.17	0.00	
			Max. Vx	2	-3775.77	0.00	22.17	
			Max. Torque	4	0.00	0.00	-0.00	
ти	1105-110	Pole	Max Tension	1	0.00	0.00	0.00	
L4	110.5 - 110	-	Max. Compression	26	-10204.88	-54 48	0.00	
			Max. Mx	8	-0829.33	0.00	54.48	
			Max. My	2	-0627.33	-54.48	0.00	
			Max. Vy	0 2	-3612.97	0.00	54.48	
			jviax. v x May Torque	4			-0.00	
		D-la	Max Tension	1	0.00	0.00	0.00	
L5	110 - 90.5	Pole	Max. Compression	26	-22582.69	0.00	0.00	
			Max. Mx	8	-17433.63	-142.61	0.00	
			Max. My	2	-17433.63	0.00	0.00	
			Max. Vy	8	5850.71	-91.99	91.99	
			Max. Vx	2	-2820./1	0.00	-0.00	
			Max. Torque	4	0.00	0.00	0.00	
L6	90.5 - 90	Pole	Max Tension	26	-23061.81	0.00	0.00	
			Max. Compression Max Mr	8	-17906.92	-145.14	0.00	
			Max Mv	2	-17906.92	0.00	145.14	
			Max. Vv	8	5060.57	-145.14	0.00	
			Max. Vx	2	-5060.57	0.00	145.14	
			Max. Torque	4	c	0.00	-0.00	
τ 7	90 - 48 164	Pole	Max Tension	1	0.00	0.00	0.00	
上/	JU - TO.IO		Max. Compression	26	-29213.28 21218 78	-387 58	0.00	
			Max. Mx	8	-21210.70	0.00	387.58	
			Max. My	∠ &	8355.14	-387.58	0.00	
			Max. Vy May Vy	2	-8355.14	0.00	387.58	
			Max Torque	4	- · · ·		-0.00	
		Dele	Max Tension	1	0.00	0.00	0.00	
L8	48.164 - 1	Pole	Max. Compression	26	-42105.37	0.00	0.00	
			Max. Mx	8	-29398.77	-947.52	0.00	
			Max. My	2	-29398.77	0.00	947.32	
			Max. Vy	8	12630.05	-94/.52	947 52	
			Max. Vx	2	-12630.05	0.00	-0.00	
			Max Torque	4			-0.00	

			Maximum	Reactions		
Location	Condition	Gov. Load	Vertical lb	Horizontal, X lb	Horizontal, Z lb	
Pole	Max. Vert	<u>Comb.</u> 27	42105.37	0.00	6390.88	

ENGINEERED ENDEAVORS	Jop	EEL	Job #17340/Ne	ew Canaan/SR-1	038	Page 6 of 13
Engineered Endeavors	Project		140' Disg	uised Pole		Date 15:17:23 10/31/14
Newbury, OH 44065 Phone: (440) 564-5484 FAX: (440) 564-5489	Client		SAI Com	munications		Designed by Aleksandar Mrkajic
Location Cond Max Max Max Max.' Min Min Min Min Min Min	lition c. H _x c. H _z c. M _x c. M _z Torsion . Vert h. H _x h. H _z h. M _z Torsion	Gov. Load Comb. 20 2 8 12 5 8 14 14 20 4	Vertical lb 29405.74 947.52 947.52 0.00 22054.31 29405.74 -947.52 -947.52 -947.52 -947.52 -0.00	Horizontal, X lb 12613.82 0.00 0.00 -12613.82 -6306.91 -12613.82 0.00 0.00 12613.82 -6306.91	Horizontal, Z <i>lb</i> 0.00 12613.82 12613.82 0.00 -10923.89 0.00 -12613.82 -12613.82 0.00 10923.89	

Tower Mast Reaction Summary

Load	Vertical	Shearx	Shearz	Overturning Moment M.	Overturning Moment, M-	Torque
Combination		11	16	kin-ft	kip-ft	kip-ft
	16	10	0.00	0.00	0.00	0.00
Dead Only	24504.78	0.00	12613.82	-947.52	0.00	0.00
1.2 Dead+1.0 Wind 0 deg -	29405.74	0.00	-12015.02			
No Ice		0.00	12613 82	-929.86	0.00	0.00
0.9 Dead+1.0 Wind 0 deg -	22054.31	0.00	-12015.02			
No Ice		(20(01	10023.89	-820.58	-473.76	0.00
1.2 Dead+1.0 Wind 30 deg -	29405.74	6306.91	-10925.07	0,2010-0		
No Ice		(20(01	10023 80	-805 29	-464.93	0.00
0.9 Dead+1.0 Wind 30 deg -	22054.31	6306.91	-10923.07	000127		
No Ice			6206.01	-473 76	-820.58	-0.00
1.2 Dead+1.0 Wind 60 deg -	29405.74	10923.89	-0500.91	115.10		
No Ice			(206.01	-464.93	-805.29	-0.00
0.9 Dead+1.0 Wind 60 deg -	22054.31	10923.89	-0300.91			
No Ice			0.00	0.00	-947.52	0.00
1.2 Dead+1.0 Wind 90 deg -	29405.74	12613.82	0.00	0.00	,	
No Ice			0.00	0.00	-929.86	0.00
0.9 Dead+1.0 Wind 90 deg -	22054.31	12613.82	0.00	0.00	,	
No Ice			(20(01	173 76	-820.58	0.00
1.2 Dead+1.0 Wind 120 deg -	29405.74	10923.89	6306.91	475.70		
No Ice			(20(01	464.93	-805.29	0.00
0.9 Dead+1.0 Wind 120 deg -	22054.31	10923.89	6306.91	404.75	0.00.00	
No Ice			10022.80	820.58	-473.76	-0.00
1.2 Dead+1.0 Wind 150 deg -	29405.74	6306.91	10923.89	820.58	115110	
No Ice			10000 00	805 20	-464 93	-0.00
0.9 Dead+1.0 Wind 150 deg -	22054.31	6306.91	10923.89	005.29	101.00	
No Ice			10(10.00	047 57	0.00	0.00
1 2 Dead+1.0 Wind 180 deg -	29405.74	0.00	12613.82	947.52	0.00	
No Ice			10(12.82	020.86	0.00	0.00
0.9 Dead+1.0 Wind 180 deg -	22054.31	0.00	12613.82	929.80	0100	
No Ice			10000 00	820.58	473 76	0.00
1.2 Dead+1.0 Wind 210 deg -	29405.74	-6306.91	10923.89	620.06	1,51,6	
No Ice			10000 00	805 20	464 93	0.00
0.9 Dead+1.0 Wind 210 deg -	22054.31	-6306.91	10923.89	805.29	101.00	
No Ice			(20) (0)	172 76	820.58	-0.00
1 2 Dead+1.0 Wind 240 deg -	29405.74	-10923.89	6306.91	475.70	020.50	
No Ice			(00) (01	161 02	805 29	-0.00
0.9 Dead+1.0 Wind 240 deg -	22054.31	-10923.89	6306.91	404.95	000.25	
No Ice			0.00	0.00	947 52	0.00
1 2 Dead+1.0 Wind 270 deg -	29405.74	-12613.82	0.00	0.00	271.22	,
No Ice			0.00	0.00	929 86	0.00
0.9 Dead+1.0 Wind 270 deg -	22054.31	-12613.82	0.00	0.00	,2,.00	

ENGINEERED ENDEAVORS	D Job EEI Job #17340/New Canaan/SR-1038						Page 7 of 13	
Engineered Endeavors 10975 Kinsman Rd	Project	140' [Disguised Pc	le		Date 15:1	7:23 10/31/14	
Newbury, OH 44065 Phone: (440) 564-5484 FAX: (440) 564-5489	Client	SAI C	ommunicatio	ons		Desi	gned by Aleksandar Mrkajic	
Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturnir Moment, M	ıg Iz	Torque	
Contraction	lb	lb	lb	kip-ft	kip-ft		kip-ft	
No Ice 1.2 Dead+1.0 Wind 300 deg - No Ice	29405.74	-10923.89	-6306.91	-473.76	820).58	0.00	
0.9 Dead+1.0 Wind 300 deg -	22054.31	-10923.89	-6306.91	-464.93	805	5.29	0.00	
1.2 Dead+1.0 Wind 330 deg -	29405.74	-6306.91	-10923.89	-820.58	473	3.76	-0.00	
No Ice 0.9 Dead+1.0 Wind 330 deg -	22054.31	-6306.91	-10923.89	-805.29	464	4.93	-0.00	
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	42105.37 42105.37	0.00 0.00	0.00 -6390.88	0.00 -607.69	(0.00 0.00	0.00 0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	42105.37	3195.44	-5534.66	-526.27	-30	3.84	0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	42105.37	5534.66	-3195.44	-303.84	-52	6.27	-0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	42105.37	6390.88	0.00	0.00	-60	7.69	0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	42105.37	5534.66	3195.44	303.84	-52	6.27	0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	42105.37	3195.44	5534.66	526.27	-30	3.84	-0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	42105.37	0.00	6390.88	607.69		0.00	0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210	42105.37	-3195.44	5534.66	526.27	30	3.84	0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240	42105.37	-5534.66	3195.44	303.84	52	.6.27	-0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	42105.37	-6390.88	0.00	0.00	60)7.69	0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	42105.37	-5534.66	-3195.44	-303.84	52	26.27	0.00	
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330	42105.37	-3195.44	-5534.66	-526.27	30)3.84	-0.00	
Dead+Wind 0 deg - Service	24504.78	0.00	-2821.51	-209.51		0.00	0.00	
Dead+Wind 30 deg - Service	24504.78	1410.76	-2443.50	-181.44	-1()4.75	0.00	
Dead+Wind 60 deg - Service	24504.78	2443.50	-1410.76	-104.75	-18	51.44 30.51	-0.00	
Dead+Wind 90 deg - Service	24504.78 24504 78	2821.51 2443 50	0.00 1410.76	0.00 104.75	-18	31.44	0.00	
Dead+ Wind 120 deg - Service Dead+Wind 150 deg -	24504.78	1410.76	2443.50	181.44	-10	04.75	-0.00	
Service Dead+Wind 180 deg -	24504 78	0.00	2821.51	209.51		0.00	0.00	
Service Dead+Wind 210 deg	24504 78	-1410.76	2443.50	181.44	10	04.75	0.00	
Service	24504 78	-2443.50	1410.76	104.75	1	81.44	-0.00	
Service	24504.78	-2821.51	0.00	0.00	2	09.51	0.00	
Service Dead+Wind 300 deg -	24504.78	-2443.50	-1410.76	-104.75	1	81.44	0.00	
Service	24504.78	-1410.76	-2443.50	-181.44	1	04.75	-0.00	
Service	2.001.00	• • • •						

Solution Summary

1 2 2 2 2 4

		Job					Page
ENG	MEEKED	FF	El Job #1734	40/New Cana	an/SR-1038		8 of 13
ENDE	AVORS						
		Project					Date
Engineered l	Endeavors	rioject	4.4.0	Disquised D	ole		 15·17·23 10/31/14
- 10975 Kins	man Rd		140	Disguised P			10.11.20 10/01/14
Newbury, O	DH 44065	Client	_ · ·	.	·		Designed by
Phone: (440)	564-5484		SAI	Communicati	ions		Aleksandar
FAX: (440) .	JU4-J48Y						Mrkajic
							-
					Come of Decesi		
T = = -7	Sun DV	n of Applied Forces pv	P7	PY	sum of Keactions PV	P7	% Error
Loaa Comh	lb lb	lb	lb	lb	lb	Ib	
1	0.00	-24504.78	0.00	0.00	24504.78	0.00	0.000%
2	0.00	-29405.74	-12613.82	0.00	29405.74	12613.82	0.000%
3	0.00	-22054.31	-12613.82	0.00	22054.31	12613.82	0.000%
4	6306.91	-29405.74	-10923.89	-6306.91	29405.74	10923.89	0.000%
5	6306.91	-22054.31	-10923.89	-6306.91	22054.31	10923.89 6306 01	0.000%
6	10923.89	-29405.74	-0300.91	-10923.89 _10973.89	29403.74 22054 31	6306.91	0.000%
/ Q	10923.89	-22034.31	0.00	-12613.82	29405.74	0.00	0.000%
o 9	12613.82	-22054.31	0.00	-12613.82	22054.31	0.00	0.000%
10	10923.89	-29405.74	6306.91	-10923.89	29405.74	-6306.91	0.000%
11	10923.89	-22054.31	6306.91	-10923.89	22054.31	-6306.91	0.000%
12	6306.91	-29405.74	10923.89	-6306.91	29405.74	-10923.89	0.000%
13	6306.91	-22054.31	10923.89	-6306.91	22054.31	-10923.89	0.000%
14	0.00	-29405.74	12613.82	0.00	29405.74	-12613.82	0.000%
15	0.00	-22054.31	12613.82	0.00	22054.31	-12613.82	0.000%
16	-6306.91	-29405.74	10923.89	6306.91	29405.74	10022 80	0.000%
17	-6306.91	-22054.31	10923.89	0300.91	22034.31 29405 74	-10923.89	0.000%
18	-10923.89	-29403.74	6306.91	10923.89	22054 31	-6306.91	0.000%
19	-10725.07	-2.9405 74	0.00	12613.82	29405.74	0.00	0.000%
20	-12613.82	-22054.31	0.00	12613.82	22054.31	0.00	0.000%
22	-10923.89	-29405.74	-6306.91	10923.89	29405.74	6306.91	0.000%
23	-10923.89	-22054.31	-6306.91	10923.89	22054.31	6306.91	0.000%
24	-6306.91	-29405.74	-10923.89	6306.91	29405.74	10923.89	0.000%
25	-6306.91	-22054.31	-10923.89	6306.91	22054.31	10923.89	0.000%
26	0.00	-42105.37	0.00	0.00	42105.37	0.00	0.000%
27	0.00	-42105.37	-6390.87	0.00	42105.37	0390.88 5524.66	0.000%
28	3195.44	-42105.37	-5534.66	-5195.44	42103.31	2105 11	0.000%
29	5534.66	-42105.37	-3195.44	-3334.00	42103.37 20105 37	0 00	0.000%
30	0390.87 5527 66	-42103.37	3105 //	-0370.00 -5534 66	42105.37	-3195 44	0.000%
16	3334.00	-42105.37	5534 66	-3195 44	42105.37	-5534.66	0.000%
32	0.00	-42105 37	6390.87	0.00	42105.37	-6390.88	0.000%
34	-3195.44	-42105.37	5534.66	3195.44	42105.37	-5534.66	0.000%
35	-5534.66	-42105.37	3195.44	5534.66	42105.37	-3195.44	0.000%
36	-6390.87	-42105.37	0.00	6390.88	42105.37	0.00	0.000%
37	-5534.66	-42105.37	-3195.44	5534.66	42105.37	3195.44	0.000%
38	-3195.44	-42105.37	-5534.66	3195.44	42105.37	5534.66	0.000%
39	0.00	-24504.78	-2821.51	0.00	24504.78	2821.51	0.000%
40	1410.76	-24504.78	-2443.50	-1410.76	24304./8 24504.79	2443.50 1110 74	0.000% 0.000%
41	2443.50	-24504.78	-1410.76	-2443.30	24304.78 72502 78	1410.76 0.00	0.000%
42	2821.31	-24304.78 _74504.78	0.00	-2021.31 -7443 50	27307.70	-1410.76	0.000%
43	2443.30 1⊿10.76	-24304.78 -24504.78	2443 50	-1410 76	24504.78	-2443.50	0.000%
44 15	0.00	-24504 78	2821.51	0.00	24504.78	-2821.51	0.000%
45	-1410 76	-24504.78	2443.50	1410.76	24504.78	-2443.50	0.000%
47	-2443.50	-24504.78	1410.76	2443.50	24504.78	-1410.76	0.000%
48	-2821.51	-24504.78	0.00	2821.51	24504.78	0.00	0.000%
49	-2443.50	-24504.78	-1410.76	2443.50	24504.78	1410.76	0.000%
50	-1410.76	-24504.78	-2443.50	1410.76	24504.78	2443.50	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001

	Job				Page
ENGINEERED	505	EEI J	ob #17340/New Cana	an/SR-1038	9 of 13
EINDEWAOUZ					Date
Engineered Endeavors	Project		140' Disguised P	ole	15:17:23 10/31/14
Newbury, OH 44065 Phone: (440) 564-5484 FAX: (440) 564-5489	Client		SAI Communicati	ions	Designed by Aleksandar Mrkajic
	1	6	0.00003047	0.00043816	
3 Yes		6	0.00000001	0.00005031	
4 Yes		8	0.0000001	0.00049723	
5 Yes		7	0.0000001	0.00074047	
6 Yes		8	0.0000001	0.00049722	
7 Yes		7	0.0000001	0.00074047	
8 Yes		6	0.00003047	0.00043816	
9 Yes		6	0.00000001	0.00005032	
10 Yes		8	0.00000001	0.00049722	
11 Yes		7	0.0000001	0.00074047	
12 Yes		8	0.0000001	0.00049723	
13 Yes		1	0.0000001	0.00043816	
14 Yes		0	0.00003047	0.00005031	
15 Yes	5	0 8	0.0000001	0.00049723	
16 Yes	5	0 7	0.00000001	0.00074047	
1/ Yes	,	8	0.00000001	0.00049722	
)	7	0.00000001	0.00074047	
19 105 20 Vec	2	6	0.00003047	0.00043816	
20 IE 21 Vec	2	6	0.00000001	0.00005032	
21 IC: 22 Yes	3	8	0.00000001	0.00049722	
22 1C. 23 Yes	3	7	0.00000001	0.00074047	
24 Yes	3	8	0.00000001	0.00049723	
25 Yes	3	7	0.00000001	0.00074047	
26 Ye	3	4	0.00000001	0.00000001	
27 Ye	s	9	0.0000001	0.00070892	
28 Ye	s	10	0.00000001	0.00033196	
29 Ye	s	10	0.00000001	0.00033196	
30 Ye	s	9	0.00000001	0.00070892	
31 Ye	S	10	0.00000001	0.00033196	
32 Ye	s	10	0.00000001	0.00033196	
33 Ye	S	9	0.00000001	0.00070892 0.00022104	
34 Ye	S	10	0.0000001	0.00033106	
35 Ye	S	10	0.0000001	0.00033190	
36 Ye	S	9	0.0000001	0.00033196	
37 Ye	S	10	0.0000001	0.00033196	
38 Ye	s	10	0.0000001	0.00037968	
39 Ye	s	2	0.0000001	0.00088779	
40 Ye	28 15	ר ב	0.0000001	0.00088779	
41 Ye	-5	ر ۲	0.00000001	0.00037968	
42 Ye	~S	5	0.00000001	0.00088779	
43 Ye		5	0.00000001	0.00088779	
44 YC		5	0.00000001	0.00037968	
45 IC 16 V2		5	0.00000001	0.00088779	
40 10 17 V2		5	0.00000001	0.00088779	
47 10 48 Vz		5	0.00000001	0.00037968	
49 Ve	≳S	5	0.00000001	0.00088779	
50 Ye	es	5	0.0000001	0.00088779	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
140.	ft	in	Comb.	0	0
T 1	140 - 130 5	21.93	39	2.46	0.00
L2	130.5 - 130	17.07	39	2.38	0.00
13	130 - 110 5	16.82	39	2.37	0.00
LJ L4	110.5 - 110	8.29	39	1.51	0.00
L5	110 - 90.5	8.13	39	1.50	0.00

ENGIN ENDE	ENGINEERED ENDEAVORS		ob #17340/N	ew Canaan/Sl	२-1038	Page 10 of 13
Engineered En	a deavors an Rd	Project	140' Dis	guised Pole		Date 15:17:23 10/31/14
Newbury, OH Phone: (440) 56 FAX: (440) 56-	44065 54-5484 4-5489	Client	SAI Com	nmunications		Designed by Aleksandar Mrkajic
Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	rilt °	Twist °	
L6 L7 L8	90.5 - 90 90 - 48.164 53.836 - 1	3.93 3.89 1.48	39 39 39	0.38 0.38 0.24	0.00 0.00 0.00	

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
4		Load Comb.	in	o	0	ft
	2011 1011 ICUT DUTY AMS	39	19 35	2.43	0.00	5355
135.00	36" X 10 LIGHT DUTT AMS	30	12.00	1.94	0.00	1279
120.00	36" X 20' HEAVY DUTY AMS	30	5 42	0.87	0.00	1007
100.00	36" x 20' SUPER DUTY II-2 AMS	39	5.12			

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	0	0
τ 1	140 130.5	100.71	2	11.36	0.00
	130 5 - 130	78.38	2	11.00	0.00
13	130 - 110 5	77.24	2	10.97	0.00
14	110.5 - 110	37.95	2	6.99	0.00
15	110 - 90 5	37.22	2	6.93	0.00
LS	90.5 - 90	17.88	2	1.74	0.00
17	90 - 48 164	17.70	2	1.74	0.00
L8	53.836 - 1	6.73	2	1.10	0.00

Critical Deflect	ions and Radius o	f Curvature - Desig	n Wind

Elevation	Appurienance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
ft		Load Comb.	in	0	0	ft
135.00	36" x 10' LIGHT DUTY AMS	2	88.85	11.21	0.00	1252
120.00	36" x 20' HEAVY DUTY AMS 36" x 20' SUPER DUTY II-2 AMS	2 2	55.09 24.70	8.99 4.00	0.00	219

Compression Checks

Pole Design Data

E	NG ND	INEERED EAVORS	Job EEI Jo	b #1734()/New C	anaan/S	SR-1038		Page 11 c	of 13	
Engin	ieered	Endeavors	Project	Project 140' Disguised Pole							
10975 Kinsman Rd Newbury, OH 44065 Phone: (440) 564-5484 FAX: (440) 564-5489			Client	Client SAI Communications					Designed Aleks Mrl	Designed by Aleksandar Mrkajic	
Sec	ction	Elevation	Size	L	Lu	Kl/r	A	Pu	ф <i>Р</i> "	Ratio P _u	
Ν	Vo.	ft		ft	ft		im ²	lb	lb	φ <i>P</i> _n	
1	L1	140 - 130.5	TP4.5x4.5x0.315	9.50	0.00	0.0	4.1415	-1735.09	130457.00	0.013	
]	L2	(1) 130.5 - 130	TP6x4.5x0.315	0.50	0.00	0.0	4.1415	-1745.16	130457.00	0.013	
]	L3	(2) 130 - 110.5	TP6x6x3	19.50	0.00	0.0	28.274	-6737.06	1272350.00	0.005	
	L4	(3) 110.5 - 110	TP8x6x3	0.50	0.00	0.0	28.274	-6791.33	1272350.00	0.005	
	L5	(4) 110 - 90.5 (5)	TP8x8x4	19.50	0.00	0.0	50.265 5	-17433.60	2940530.00	0.006	
	L6	90.5 - 90 (6)	TP35.5x8x4	0.50	0.00	0.0	50.265 5	-17679.30	2940530.00	0.006	
	L7	90 - 48.164	TP41.38x35.5x0.1875	41.84	0.00	0.0	24.040 3	-21218.80	1269320.00	0.017	
	L8	(7) 48.164 - 1 (8)	TP47.5x40.2078x0.25	52.84	0.00	0.0	37.492 9	-29398.80	2164300.00	0.014	

Pole Bending Design Data

Section	Elevation	Size	M _{ux}	φ <i>M_{nx}</i>	Ratio Mus	Muy	φ <i>M_{ny}</i>	Ratio M _{uy}
No.	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
TI	140 - 130.5	TP4.5x4.5x0.315	4.87	14.51	0.336	0.00	14.51	0.000
L2	(1) 130.5 - 130	TP6x4.5x0.315	4.87	14.51	0.336	0.00	14.51	0.000
L3	(2) 130 - 110.5	TP6x6x3	52.68	135.00	0.390	0.00	135.00	0.000
L4	(3) 110.5 - 110	TP8x6x3	52.67	135.00	0.390	0.00	135.00	0.000
L5 L6 L7	(4) 110 - 90.5 (5) 90.5 - 90 (6) 90 - 48.164	TP8x8x4 TP35.5x8x4 TP41.38x35.5x0.1875	142.62 142.61 387.59	416.00 416.00 1057.75	0.343 0.343 0.366	0.00 0.00 0.00	416.00 416.00 1057.75	0.000 0.000 0.000
L8	(7) 48.164 - 1 (8)	TP47.5x40.2078x0.25	947.53	2108.24	0.449	0.00	2108.24	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual V.	φV _n	Ratio Vu	Actual T _u	ф <i>Т</i> л	Ratio Tu
<i>No</i> .	ft		lb	lb	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	140 - 130.5	TP4.5x4.5x0.315	1075.34	65228.40	0.016	0.00	21.14	0.000
L2	(1) 130.5 - 130	TP6x4.5x0.315	1075.73	88607.70	0.012	0.00	21.14	0.000
L3	(2) 130 - 110.5	TP6x6x3	3634.77	636173.00	0.006	0.00	79.47	0.000
L4	(3) 110.5 - 110	TP8x6x3	3612.97	1060290.00	0.003	0.00	79.47	0.000
L5 L6	(4) 110 - 90.5 (5) 90.5 - 90 (6) 90 - 48 164	TP8x8x4 TP35.5x8x4 TP41.38x35.5x0.1875	5107.14 5060.57 8355.07	1470270.00 11578300.00 634658.00	0.003 0.000 0.013	0.00 0.00 0.00	244.90 244.90 2118.08	0.000 0.000 0.000

ENGINEERED ENDE AVORS	Job EE	I Job #17340/N	Page 1	2 of 13			
Engineered Endeavors	Project	140' Dis	Date 15:17:	23 10/31/14			
10975 Kinsman Ka Newbury, OH 44065 Phone: (440) 564-5484 FAX: (440) 564-5489	Client	SAI Communications					ed by eksandar Mrkajic
Section Elevation No.	Size	Actual V _u lb	фVn lb	$\frac{Ratio}{V_u}}{\phi V_n}$	Actual T _u kip-ft	φT _n kip-ft	$\frac{Ratio}{T_u} \\ \phi T_n$
$\frac{f^{\prime}}{(7)}$ L8 48.164 - 1 (8)	TP47.5x40.2078x0.2	12630.10	1082150.00	0.012	0.00	4221.64	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio Muy	Ratio Vu	Ratio Tu	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	0.240	1 000	
L1	140 - 130.5	0.013	0.336	0.000	0.016	0.000	0.349	1.000	4.8.2 *
L2	130.5 - 130	0.013	0.336	0.000	0.012	0.000	0.349	1.000	4.8.2
L3	(2) 130 - 110.5	0.005	0.390	0.000	0.006	0.000	0.396	1.000	4.8.2
L4	(3) 110.5 - 110	0.005	0.390	0.000	0.003	0.000	0.396	1.000	4.8.2 🖌
L5	(4) 110 - 90.5 (5)	0.006	0.343	0.000	0.003	0.000	0.349	1.000	4.8.2 🖌
L6	90.5 - 90 (6)	0.006	0.343	0.000	0.000	0.000	0.349	1.000	4.8.2 🖌
L7	90 - 48.164	0.017	0.366	0.000	0.013	0.000	0.383	1.000	4.8.2 🖌
L8	(7) 48.164 - 1 (8)	0.014	0.449	0.000	0.012	0.000	0.463	1.000	4.8.2

Section Capacity Table

Section	Elevation ft	Component Type	Size	Critical Element	P lb	øPallow lb	% Capaci tv	Pass Fail
	140 - 130 5	Pole	TP4.5x4.5x0.315	1	-1735.09	130457.0	34.9	Pass
	130 5 - 130	Pole	TP6x4.5x0.315	2	-1745.16	130457.0	34.9	Pass
1.2	120 110 5	Pole	TP6x6x3	3	-6737.06	1272350.	39.6	Pass
	110.5 110.5	Pole	TP8x6x3	4	-6791.33	1272350.	39.6	Pass
14	110.005	Pole	TP8x8x4	5	-17433.6	00 2940530.	34.9	Pass
LS	110 - 90.5	Pole	TP35.5x8x4	6	0 -17679.3	00 2940530.	34.9	Pass
L6	90.5 - 90	T Dic	TP41 38x35 5x0 1875	7	0 -21218.8	00 1269320.	38.3	Pass
L7	90 - 48.164	Pole	TP47 5x40.2078x0.25	8	0 -29398.8	00 2164300.	46.3	Pass
L8	48.164 - 1	Fole	11 17.0.110.201 0.001		0	00		

ENGINEERED ENDEAVORS	Job	EEI Job #17340/New	Canaan/SR-1	038		Раде 13 с	of 13
Engineered Endeavors	Project	140' Disguis		Date 15:17:23 10/31/14			
10975 Kinsman Rd Newbury, OH 44065 Phone: (440) 564-5484 FAX: (440) 564-5489	Client	SAI Communications			Designed by Aleksandar Mrkajic		
Section Elevation No. ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capaci ty	Pass Fail
					Pole (L8) RATING =	Summa ry 46.3 46.3	Pass Pass

Anchor Rod and Base Plate Design

Designed per:TIA-222-G

EEI Job #:	17340
Site Name:	New Canaan
Structure:	140' Disguised Pole

Pole Properties at Base

Pole Diameter = 47.5 in Pole Thickness = 0.25 in Yield Strength = 65 ksi Monopole Shape = 18-Sided

Base Reactions			
	$M_u = 948$ ft-kip		
	$V_u = 13 \text{ kip}$		
	P _u = 29.4 kip		<u>.</u>

Anchor Rod Properties

Anchor Material = A615GR75		
Anchor Diameter = 2.25 in		
Anchor Length = 6 ft		
No. of Anchors $= 8$		
Weight = 714 lbs	 	

Bolt Circle Diameter & Spacing

1		
	Minimum Bolt Circle Ø =	54.73 in
	Actual Bolt Circle \emptyset =	54.75 in
	Spacing =	21.50 in

Anchor Rod Inter. Eq. 1 (4	4.9.9)
P _{ub} =	108 kip
V _{ub} =	1.63 kip
η =	0.5
$\Phi_t =$	0.80
$\Phi_t R_{nt} =$	260 kip
Inter. Eq. 1 =	0.43

Anchor Rod Inter. Eq. 2 (4.9.9)				
L _{ar} = 2.25 in				
V _{ub} = 1.63 kip				
P _{ub} = 108 kip				
M _{ub} = 2.38 kip-in				
$\Phi_{\rm v}R_{\rm nv}$ = 134 kip				
$\Phi_t R_{nt} = 260 \text{ kip}$				
Φ _f R _{nm} = 95 kip-in				
Inter. Eq. 2 = 0.43				

Client:	SAI Communications	
Site #:	SR1038	
 Location:	Fairfield County, CT	

Base Plate Properties

Base Plate Mate	erial =	A572GR50
Outside Diam	eter =	60.75 in
Inside Diam	eter =	37.5 in
We	eight =	910 lbf

Effective Base Plate Bend Line Desantis' Bend Line = 37.87 in % Reduction = 65 %

Reduced Bend Line = 24.62 in

Brinker's Bend Line = 24.33 in Effective Bend Line = 24.33 in

Base Plate Thickness

Section Modulus: Plastic $\Phi_b = 0.9$ Minimum Thickness = 1.19 in Actual Thickness = 1.75 in $M_{ub} = 390$ in-k $\Phi M_n = 838$ in-kip Capacity Usage = 46.5%

Setting Template Properties

Outside Diameter = 60.75 in Inside Diameter = 48.75 in Thickness = 0.375 in Template Hole Ø = 2.375 in Template Weight = 106.0 lbs *Bottom Template Must Be Bolted*

	MATERIAL LIST						
N	QTY.	DESCRIPTION					
	8	2 1/4"Ø x 6"-0" (A615-GR75) ANCHOR BOLTS					
	20	#11 REBAR x 20'-6" (ASTM A615-GR.60)					
	28	#5 REBAR x 19'-3" (ASTM A615-GR.60)					
	2	#5 REBAR x 7'-0" (ASTM A615-GR.60)					
	4	#5 REBAR x 5'-10" (ASTM A615-GR.60)					
			26 vd ³				

VOL. CONCRETE @ 4000 psi (TYPE II CEMENT)	26 yd ³
STEEL (ASTM A615-GR.60)	2782 lbs

2. FOUNDATION EMBEDMENT IS SHOWN FROM THE GROUND LEVEL AT THE TIME OF SOIL INVESTIGATION AS DEPICTED IN THE SOIL REPORT. SHOULD THE ACTUAL SOIL CONDITIONS DIFFER FROM THOSE IN THE REPORT, THE GEOTECHNICAL ENGINEER AND

3. SOIL REPORT SHOULD BE CONSULTED PRIOR TO CONSTRUCTION. STEEL CASING OR SLURRY METHOD MAY BE REQUIRED TO PREVENT SOIL FROM CAVING DURING CONSTRUCTION. THE CASING SHOULD BE REMOVED AFTER COMPLETION OF CONCRETING OR, IF LEFT

4. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES.

5.2.a. VERIFY GRADE, LENGTH, DIAMETER, AND QUANTITY OF REBARS AND COMPLIANCE WITH THE DRAWINGS. 5.2.b. VERIFY GRADE, LENGTH, DIAMETER, AND QUANTITY OF ANCHOR BOLTS AND BOLT PATTERN ON THE TEMPLATES.

6.3. MINIMUM SPLICE LENGTH FOR LONGITUDINAL BARS: No. 6 BARS AND SMALLER - 44 x Øbar;No. 7 BARS AND LARGER

6.4. HORIZONTAL STIRRUPS SHALL BE STAGGERED ALONG THE REBAR CAGE WITH NO MORE THAN 50% OF SPLICES IN ONE PLACE.

7.2. MINIMUM COMPRESSIVE STRENGTH - 4000 psi AT 28 DAYS AND TYPE II CEMENT SHALL BE USED UNLESS STATED OTHERWISE.

7.4. CONCRETE SHALL BE DEPOSITED AS NEARLY AS PRACTICAL IN ITS FINAL POSITION TO AVOID SEGREGATION DUE TO

7.5. CONCRETE SHALL BE THOROUGHLY CONSOLIDATED BY ALL SUITABLE MEANS DURING PLACEMENT AND SHALL BE THOROUGHLY

8. ANCHOR BOLT INSTALLATION. ANCHOR BOLT ORIENTATION SHALL BE VERIFIED WITH THE SITE PLANS AND MONOPOLE DRAWING FOR PROPER ACCESS PORT ORIENTATION AND ANCHOR BOLT ALIGNMENT PRIOR TO CONCRETE PLACEMENT.

ENGINEERED ENDEAVORS

The Experienced Point of View

10975 Kinsman Road * Newbury, OH 44065-9787 Ph: (440) 564-5484 * Ph: (888) 270-3855 Fx: (440) 564-5489 * www.engend.com

SAI COMMUNICATIONS

				140'-0"	DISGUIS				
-					NEW CANAAN/SR-1038				
				FAIRFIELD COUNTY, CT					
				SCALE: <u>N.T.S.</u>	PROJECT NO.	17340			
	10/13/2014	AM	-	SHEET 1 of 1	DRAWING NO.	17340D-140.0			
	DATE	DWN	СНК						

Analysis Checks						
	Capacity	Demand	Check	Rating		
Rebar Area (in ²):	31.20	15.93	ок	N/A		
Pier Moment Capacity (k-ft):	4372.90	1010.73	ок	23.1%		
Pier-Soil Interaction (FOS):	4.17	1.33	ок	31.9%		

Monopole Drilled Pier Checks capacity of a single drilled shaft

foundation for a monopole

EEI #: 17340

Site Name: NEW CANAAN

Site #: SR1038

TIA Revision:	G
Base Reactions	
Moment (k-ft):	948
Axial (K):	29.41
Shear (k):	12.61

G

Foundation Dimensions	
Caisson Diameter (ft):	6.5
Extension Above Grade (ft):	1
Depth Below Existing Grade (ft):	20
Volume (yd^3):	26
Rebar Properties	
Rebar Size:	11
Rebar Quantity:	20
Tie Size:	5
Tie Quantity:	28
Material Properpies	
Rebar Tensile (ksi):	60
Concrete Strength (psi):	3000
Clear cover (in):	5.5
Rebar Weight (Ibs):	2782
Soil Properties	
Neglect Top Layer	Y
Groundwater Depth Below Grade (ft):	999
# of Layers	4

Input the data in the "shaded" columns. If soil layer is submerged, enter the buoyant unit weight

Louver	From (ft)	To (ft)	Layer Thickness (ft)	Unit Weight of Soil (pcf)	Cohesion (psf)	Internal Friction Angle (deg)
Layer.	0	3.5	3.5	125	0	0
1	2.5	6	2.5	125	0	38
2	3.5	10	4	62,6	0	38
3	6	10				30
4	10	20	10	52.6	0	

Calculation Notes:

1- Sand Resistance = 3 * Kp * Overburden ---> (Per equations used in PLS-Caisson Software)

2- Cohesion Resistance = 8 * C -------> (Per equations used in PLS-Caisson Software, Full 8CD approach)

ATTACHMENT 4

Industrial Diesel Generator Set

EPA Emissions Certification: Tier III

SD050

CUSTOM MODEL

Standby Power Rating 50KW 60 Hz

Ħ	0	0	
			0
		l	18
	0	Û	Ľ

				_	_
Te	a 1	[U	r	e	S

. Engine

.

.

. **Controls**

<u>Alternator</u>

e	a	tu	ľ	e	S	

Generator Set

benefits

PROTOTYPE & TORSIONALLY TESTED	►	PROVIDES A PROVEN UNIT
UL2200 TESTED	►	ENSURES A QUALITY PRODUCT
RHINOCOAT PAINT SYSTEM	►	IMPROVES RESISTANCE TO ELEMENTS
SOUND LEVEL 2 ENCLOSURE	•	71dbA @ 7 METERS (23FT)
EPA TIER CERTIFIED	►	ENVIRONMENTALLY FRIENDLY
INDUSTRIAL TESTED, GENERAC APPROVED	►	ENSURES INDUSTRIAL STANDARDS
POWER-MATCHED OUTPUT	►	ENGINEERED FOR PERFORMANCE
INDUSTRIAL GRADE	►	IMPROVES LONGEVITY AND RELIABILITY
tor		
TWO-THIRDS PITCH	►	ELIMINATES HARMFUL 3RD HARMONIC
LAYER WOUND ROTOR & STATOR	►	IMPROVES COOLING
CLASS H MATERIALS	►	HEAT TOLERANT DESIGN
DIGITAL 3-PHASE VOLTAGE CONTROL	•	FAST AND ACCURATE RESPONSE
<u>s</u>		
ENCAPSULATED BOARD W/ SEALED HARNESS	►	EASY, AFFORDABLE REPLACEMENT
4-20mA VOLTAGE-TO-CURRENT SENSORS	►	NOISE RESISTANT 24/7 MONITORING
SURFACE-MOUNT TECHNOLOGY	►	PROVIDES VIBRATION RESISTANCE
ADVANCED DIAGNOSTICS & COMMUNICATIONS	►	HARDENED RELIABILITY

primary codes and standards

€₽

1 of 5

application and engineering data

2 of 5

ENGINE SPECIFICATIONS

General			
Make	lveco	/ FPT	
EPA Emissions Compliance Tier III			
EPA Emissions Reference See Emissions Data Sh			
Cylinder # 4			
Туре	Diesel		
Displacement - L (cu. in.)	4.5	(274)	
Bore - mm (in.)	105	(4.1)	
Stroke - mm (in.)	132	(5.2)	
Compression Ratio	17.5:1		
Intake Air Method	Turbocharged		
Cylinder Head Type	2 Valve		
Piston Type	Aluminum		
Crankshaft Type Forged Steel			
Engine Block Type	Cast Iron /	Wet Sleeve	

Engine Governing			
Governor	Electronic Isochronous		
Frequency Regulation (Steady State)	+/- 0.25%		

Lubrication System

Oil Pump Type	Gear
Oil Filter Type	Full Flow
Crankcase Capacity - L (gal)(qts)	13.6 (3.6) (14.4)

Cooling System

Cooling System Type	Closed	
Water Pump	Belt Driven Centrifugal	
Fan Type	Pusher	
Fan Blade Number	2538 (10)	
Fan Diameter (in.)	26	
Coolant Heater Wattage	1500	
Coolant Heater Standard Voltage	120	

Fuel System

Fuel Type	Ultra Low Sulfur Diesel Fuel	
Fuel Specifications	ASTM	
Fuel Filtering (microns)	5	
Fuel Inject Pump Make	Standyne	
Fuel Pump Type	Engine Driven Gear	
Injector Type	Mechanical	
Engine Type	Direct Injection	
Fuel Supply Line - mm (in.)	1/4 inch Npt	
Fuel Return Line - mm (in.)	1/4 inch Npt	

Engine Electrical System

System Voltage	12VDC	
Battery Charging Alternator	90 Amp	
Battery Size (at 0 oC)	Optima Redtop	
Battery Group	34	
Battery Voltage	12VC	
Ground Polarity	Negative	

ALTERNATOR SPECIFICATIONS

Standard Model	390	
Poles	4	
Field Type	Revolving	
Insulation Class - Rotor	Н	
Insulation Class - Stator	н	
Total Harmonic Distortion	< 3.5%	
Telephone Interference Factor (TIF)	< 50	
Standard Excitation	PMG	
Bearings	Single Sealed Cartridge	
Coupling	Direct, Flexible Disc	
Load Capacity - Standby	100%	
Load Capacity - Prime	100%	
Prototype Short Circuit Test	Y	

CODES AND STANDARDS COMPLIANCE (WHERE APPLICABLE)

NFPA 99 NFPA 110 ISO 8528-5 ISO 1708A.5 ISO 3046 BS5514 SAE J1349 DIN6271 IEEE C62.41 TESTING NEMA ICS 1

Rating Definitions:

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability. (Max. load factor = 70%)

Prime – Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. (Max. load factor = 80%) A 10% overload capacity is available for 1 out of every 12 hours.

Voltage Regulator Type	Digital
Number of Sensed Phases	All
Regulation Accuracy (Steady State)	+/- 0.25%

SD050

operating data (60Hz)

POWER RATINGS (kW)

Single-Phase 120/240VAC @1.0pf
Three-Phase 120/208VAC @0.8pf
Three-Phase 120/240VAC @0.8pf
Three-Phase 277/480VAC @0.8pf
Three-Phase 346/600VAC @0.8pf

STARTING CAPABILITIES (sKVA)

	STANDBY			
50	Amps:	208		
-	Amps:	-		
-	Amps:	-		
-	Amps:	-		
-	Amps:	-		
NOTE: Generator output limited to 200A.				

NOTE. Generator of

							sKVA vs. V	oltage Dip				<u> </u>	
				48	OVAC					208/2	40VAC		
Alternator*	<u>kW</u>	10%	15%	20%	25%	30%	35%	10%	15%	20%	25%	30%	35%
Standard	50	-	-	· ·	-	-	-	26	39	52	65	77	90
Upsize 1		-	-	-	-	-	-	-	-	-	-	-	-
Upsize 2		-	-	-	-	-	-	-	-	-	-	-	-
	*All Generac temperature	industrial alterr rise. Upsize 2 p	nators utilize C rovides less th	lass H insulatio an or equal	n materials. Sta	ndard alternate	or provides less	than or equal to	o Class B temp	erature rise. U	psize 1 provide	s less than or e	qual to Cla
JEL													
					Fuel C	onsumptio	n Rates						
Fuel Pump Lift	- in (m)	_			<u>STA</u>	NDBY							
36(.9)				Perce	nt Load	gph	lph	_					
		-		2	5%	1.52	5.75						
				5	0%	2.33	8.82						
				7.	5%	3.08	11.65						
				10	0%	4.15	15.71						
OOLING													
Coolant System	Capacity	- Gal (L)	-							STA	NDBY	-	
4.5	(17.44)		Coolant Flow per Minute						gpm (lpm)	32.7(123.8)		
				Heat rejection to Coolant				BTU/min	123	8,000			
Maximum Radia	ator Backp	oressure	ure Inlet Air			cfm	(m3/min)	6,360	(180.0)				
1.5" H ₂ (O Column		Max. Operating Radiator Air Temp				F ^o (C ^o)	122	2(50)				
		Max. Operating Ambient Temperature F° (C°) 122(50)											
OMBUSTION AIR	REOUIR	EMENTS		P								4	
						STANDBY							
Intake Flow at Rat	ed Power		cfm	(m3/min)	247		(7.00)	1					
				(-, ,			()	1					
XHAUST													
Exhaust Outle	t Size (Ope	n Set)								STA	NDBY		
3	.0"			Exhaust F	low (Rate	d Output)		cfr	n (m3/hr)	534(906.7)	Ĩ	
Maximum Backpre	ssure (Post	t-Silencer)		Maximun	n Backpres	sure		i	nHg (Kpa)	1.5	(5.1)	1	
1.5	" Hg			Exhaust T	emp (Rate	ed Output)			°F (°C)	9	30(498.8)	1	
								8	. ,			4	
										STA	NDRY		
				Rated En	pine Sneer	1		1	rnm	15	300	T	
				Horsepoy	ver at Rate	ed kW			hn		93	1	
				Тапарала	Lune Devet					Concult	Fastan	1	
				Tempera	lure Derai	ion				CONSUM	LFACLORV		

* CA units include aftertreatment

standard features and options

4 of 5

GENERATOR SET	
Genset Vibration Isolation	

Genset Vibration Isolation	Std
Factory Testing	Std
Extended warranty	Std
Padlockable Doors	Std
Steel Enclosure (Enclosed Models)	Std
Remote Emergency Shutdown	Opt

-	14C) 74 -

CONTROL SYSTEM

ENGINE SYSTEM

SD050

deneral	
Oil Drain Extension	Std
Air Cleaner	Std
Industrial Exhaust Silencer (Open Sets, ship loose)	Std
 Critical Exhaust Silencer (Enclosed Sets) 	Std
Stainless steel flexible exhaust connection	Std
Fuel System	
Primary Fuel Filter with Water Separator	Std
Flexible Fuel Lines	Std
UL142 Fuel Tank, 48 Hr Runtime	Std
2 Gal Overflow Containment with Alarm	Std

Cooling System	
 120VAC Coolant Heater (3-wire connection cord) 	Std
50%/50% Coolant	Std
Level 1 Guarding (Open Sets)	Std
Closed Coolant Recovery System	Std
UV/Ozone resistant hoses	Std
Factory-Installed Radiator	Std
Radiator Drain Extension	Std
Fan guard	Std
 Radiator duct adapter (Open Sets) 	Std

Engine Electrical System

Battery charging alternator	Std
Battery cables	Std
Battery tray	Std
75W 120VAC Battery heater	Std
Solenoid activated starter motor	Std
10A UL float/equalize battery charger	Std
Weather Resistant electrical connections	Std
Duplex GFCI Convenience Outlet	Std

ALTERNATOR SYSTEM

	UL2200 GENprotect [™]	Std
0	100% Rated 200A Main Line Circuit Breaker	Std

_	Control Panel	C 1
ž	Digital H Control Pariel - Dual 4x20 Display	Sta
ž	7 Day Programmable Eversion (requires H Transfer Switch)	Stu
ž	Special Applications Programmable DLC	Stu
ž		Stu
ž		Stu Std
ž	All-Phase Sensing DVR	Std
ž	Full System Status	Std
ž	Litility Monitoring (Bog. H. Transfor Switch)	Ct d
ž		Stu
2	2-Wire Start Compatible	Std
2	Power Output (kW)	Std
2	Power Factor	Std
2	Reactive Power	Std
2	All phase AC Voltage	Std
2	All phase Currents	Std
2	Oil Pressure	Std
2	Coolant Temperature	Std
2	Coolant Level	Std
2	Low Fuel Pressure Indication	Std
2	Engine Speed	Std
2	Battery Voltage	Std
2	Frequency	Std
2	Date/Time Fault History (Event Log)	Std
	UL2200 GENprotect™	Std
õ	Low-Speed Exercise	Opt
2	Isochronous Governor Control	Std
2	-40deg C - 70deg C Operation	Std
	Weather Resistant Electrical Connections	Std
	Audible Alarms and Shutdowns	Std
2	Not in Auto (Flashing Light)	Std
	On/Off/Manual Switch	Std
	E-Stop (Red Mushroom-Type)	Std
õ	Remote E-Stop (Break Glass-Type, Surface Mount)	-
õ	Remote E-Stop (Red Mushroom-Type, Surface Mount)	-
õ	Remote E-Stop (Red Mushroom-Type, Flush Mount)	-
	NFPA 110 Level I and II (Programmable)	Std
	Remote Communication - RS232	Std

Alarms (Programmable Tolerances, Pre-Alarms and Shutdowns) Low Fuel Std Oil Pressure (Pre-programmed Low Pressure Shutdown) Std Coolant Temperature (Pre-programmed High Temp Shutdov Std Coolant Level (Pre-programmed Low Level Shutdown) Std Engine Speed (Pre-programmed Overspeed Shutdown) Std

Voltage (Pre-programmed Overvoltage Shutdown)
 Battery Voltage
 Std

Other Options

- je

0

dimensions, weights and sound levels

	OPEN SET							
		TANK	SIZE					
	RUNTIME	CAPACITY	TANK					
	HOURS	(GAL)	VOLUME	L	W	Н	WT	dBA*
0	-	-	-	-	-	-	-	
0	-	-	-	-	-	-	-	
0	-	-	-	-	-	-	-	
0	-	-	-	-	-	-	-	84
0	-	-	-	-	-	-	-	04
	48	210	210	76	38	87	3400	
0	-	-	-	-	-	-	-	
0	-	-	-	-	-	-	-	

	LEVEL 2 S	OUND ENG	LOSURE					
		TANK	SIZE					
	RUNTIME	CAPACITY	TANK					
	HOURS	(GAL)	VOLUME	L	W	Н	WT	dBA*
0	-	-	-	-	-	-	-	
0	-	-	-	-	-	-	-	
0	-	-	-	-	-	-	-	
0	-	-	-	-	-	-	-	71
0	-	-	-	-	-	-	-	/1
	48	210	210	94.8	38	99	3935	
0	-	-	-	-	-	-	-	
0	-	-	-	-	-	-	-	

*Required gallons based on 100% of standby rating. Weights consider steel enclosure and are without fuel in tank. Sound levels measured at 23ft (7m) and does not account for ambient site conditions.

YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER		

Specification characteristics may change without notice. Dimensions and weights are for preliminary purposes only. Please consult a Generac Power Systems Industrial Dealer for detailed installation drawings.

SD050

EPA Certified Stationary Emergency

5.4L

SG035

*EPA Certified Prime ratings are not available in the U.S. or its Territories

Codes and Standards

Generac products are designed to the following standards:

UL2200, UL508, UL142, UL498

NFPA70, 99, 110, 37

NEC700, 701, 702, 708

ISO9001, 8528, 3046, 7637, Pluses #2b, 4

NEMA ICS10, MG1, 250, ICS6, AB1

ANSI C62.41 NSI American National Standards Institute

os Dpd IBC 2009, CBC 2010, IBC 2012, ASCE 7-05, ASCE 7-10, ICC-ES AC-156 (2012)

Powering Ahead

For over 50 years, Generac has led the industry with innovative design and superior manufacturing.

Image used for illustration purposes only

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac's gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial application under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

SG035

Standard Features

ENGINE SYSTEM

General

- Oil Drain Extension
- Air Cleaner
- Fan Guard
- Stainless Steel flexible exhaust connection
- Critical Exhaust Silencer (enclosed only)
- Factory Filled Oil
- Radiator duct adapter (open set only)

Fuel System

- Primary and Secondary Fuel Shutoff
- Flexible Fuel Line NPT Connection

Cooling System

- Closed Coolant Recovery System
- UV/Ozone resistant hoses
- Factory-installed Radiator
- Radiator drain extension
- 50/50 Ethylene glycol antifreeze

Engine Electrical System

- Battery charging alternator
- Battery Cables
- Battery Tray
- Solenoid activated starter motor
- Rubber-booted engine electrical connections

CONTROL SYSTEM

Control Panel

- Digital H Control Panel Dual 4x20 Display
- Programmable Crank Limiter
- 7-Day Programmable Exerciser
- Special Applications Programmable PLC
- RS-232/485
- All-Phase Sensing DVR
- Full System Status
- Utility Monitoring
- Low Fuel Pressure Indication
- 2-Wire Start Compatible
- Power Output (kW)
- Power Factor
- kW Hours, Total & Last Run

ALTERNATOR SYSTEM

- UL2200 GENprotect[™]
- Class H insulation material
- 2/3 Pitch
- Skewed Stator
- Brushless Excitation
- Sealed Bearings
- Amortisseur winding
- Full load capacity alternator

GENERATOR SET

- Internal Genset Vibration Isolation
- Separation of circuits high/low voltage
- Separation of circuits multiple breakers
- Wrapped Exhaust Piping
- Standard Factory Testing
- 2 Year Limited Warranty (Standby rated Units)
- 1 Year Warranty (Prime rated units)
- Silencer mounted in the discharge hood (enclosed only)

ENCLOSURE (if selected)

GENERAC

- Rust-proof fasteners with nylon washers to protect finish
- High performance sound-absorbing material

INDUSTRIAL

- Gasketed doors
- Stamped air-intake louvers
- Air discharge hoods for radiator-upward pointing
- Stainless steel lift off door hinges
- Stainless steel lockable handles
- Rhino Coat[™] Textured polyester powder coat

- Real/Reactive/Apparent Power
- All Phase AC Voltage
- All Phase Currents
- Oil Pressure
- Coolant Temperature
- Coolant Level
- Engine Speed
- Battery Voltage
- Frequency
- Date/Time Fault History (Event Log)
- Isochronous Governor Control
- Waterproof/sealed Connectors
- Audible Alarms and Shutdowns
- Not in Auto (Flashing Light)
- Auto/Off/Manual Switch
- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)
- Customizable Alarms, Warnings, and Events
- Modbus protocol
- Predictive Maintenance algorithm
- Sealed Boards
- Password parameter adjustment protection

- Single point ground
- 15 channel data logging
- 0.2 msec high speed data logging

Low Fuel Pressure Alarm

Battery Voltage Warning

during alarms & warnings

Shutdown)

state conditions

codes)

• Alarm information automatically comes up on the display

Alarms

- Oil Pressure (Pre-programmable Low Pressure Shutdown)
- Coolant Temperature (Pre-programmed High Temp Shutdown)
- Coolant Level (Pre-programmed Low Level Shutdown)

Engine Speed (Pre-programmed Over speed

Alarms & warnings time and date stamped

Alarms & warnings for transient and steady

Alarms and warnings spelled out (no alarm

Snap shots of key operation parameters

SG035

Configurable Options

ENGINE SYSTEM

General

- Engine Block Heater
- Oil Heater
- O Air Filter Restriction Indicator
- Stone Guard (Open Set Only)
- Critical Exhaust Silencer (Open Set Only / Standard on Ultra Low Emissions Option)

Engine Electrical System

- 10A UL battery charger
- 2.5A UL battery charger
- Battery Warmer

ALTERNATOR SYSTEM

- Alternator Upsizing
- Anti-Condensation Heater
- Tropical coating
- Permanent Magnet Excitation

CONTROL SYSTEM

- 21-Light Remote Annunciator
- Remote Relay Panel (8 or 16)
- Oil Temperature Sender with Indication Alarm

- **GENERATOR SET**
- Gen-Link Communications Software (English Only)
- Extended Factory Testing (3 Phase Only) Ο
- **IBC Seismic Certification** \bigcirc
- Ο 8 Position Load Center
- 2 Year Extended Warranty
- 5 Year Warranty
- 5 Year Extended Warranty

CIRCUIT BREAKER OPTIONS

- Main Line Circuit Breaker
- 2nd Main Line Circuit Breaker
- Ο Shunt Trip and Auxiliary Contact
- Ο Electronic Trip Breakers

ENCLOSURE

- Standard Enclosure
- Level 1 Sound Attenuation
- Level 2 Sound Attenuation
- Steel Enclosure \bigcirc
- \bigcirc Aluminum Enclosure
- 150 MPH Wind Kit
- 12 VDC Enclosure Lighting Kit
- 120 VAC Enclosure Lighting Kit Ο
- AC/DC Enclosure Lighting Kit Ο
- O Door Alarm Switch

Remote E-Stop (Break Glass-Type, Surface

Remote E-Stop (Red Mushroom-Type,

Remote E-Stop (Red Mushroom-Type,

- O Remote Communication Modem
- Remote Communication Ethernet \bigcirc
- Ο 10A Run Relay
- Ο Ground fault indication and protection functions

Engineered Options

ENGINE SYSTEM

- O Coolant heater ball valves
- Fluid containment pans

ALTERNATOR SYSTEM

O 3rd Breaker Systems

GENERATOR SET

Ο

 \bigcirc

 \bigcirc

Mount)

Surface Mount)

Flush Mount)

 Special Testing Battery Box

ENCLOSURE

- Motorized Dampers
- **Enclosure Ambient Heaters** \bigcirc

CONTROL SYSTEM

- Spare inputs (x4) / outputs (x4) H Panel Only
- Battery Disconnect Switch

Rating Definitions

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability. Prime – Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. A 10% overload capacity is available for 1 out of every 12 hours. The Prime Power option is only available on International applications.

Power ratings in accordance with ISO 8528-1, Second Edition dated 2005-06-01, definitions for Prime Power (PRP) and Emergency Standby Power (ESP).

SG035

GENERAC INDUSTRIAL

application and engineering data

ENGINE SPECIFICATIONS

<u>General</u>

Make	Generac	
Cylinder #	8	
Туре	V	
Displacement - L (Cu In)	5.4 (329.53)	
Bore - mm (in)	90.17 (3.55)	
Stroke - mm (in)	105.92 (4.17)	
Compression Ratio	9:1	
Intake Air Method	Naturally Aspirated	
Number of Main Bearings	4	
Connecting Rods	Forged	
Cylinder Head	Aluminum	
Cylinder Liners	No	
Ignition	Single Fire	
Pistons	Aluminum Alloy	
Crankshaft	Nodular Iron	
Lifter Type	Hydraulic	
Intake Valve Material	Steel Alloy	
Exhaust Valve Material	Hardened Steel	
Hardened Valve Seats	Yes	

Engine Governing

Governor	Electronic
Frequency Regulation (Steady State)	+/- 0.25%

Lubrication System

Oil Pump Type	Gear	
Oil Filter Type	Full-flow spin-on cartridge	
Crankcase Capacity - L (qts)	5.7 (6)	

<u>Cooling System</u>

Cooling System Type	Pressurized Closed Recovery	
Water Pump Flow - gpm (lpm)	38 (144)	
Fan Type	Pusher	
Fan Speed (rpm)	2143	
Fan Diameter mm (in)	508 (20)	
Coolant Heater Wattage	1500	
Coolant Heater Standard Voltage	120 V	

Fuel System

Fuel Type	Natural Gas, Propane Vapor		
Carburetor	Down Draft		
Secondary Fuel Regulator	Standard		
Fuel Shut Off Solenoid	Standard		
Operating Fuel Pressure	8" - 14" H20		

Engine Electrical System

System Voltage	12 VDC	
Battery Charging Alternator	Standard	
Battery Size	See Battery Index 0161970SBY	
Battery Voltage	12 VDC	
Ground Polarity	Negative	

ALTERNATOR SPECIFICATIONS

Standard Model	390	
Poles	4	
Field Type	Revolving	
Insulation Class - Rotor	Н	
Insulation Class - Stator	Н	
Total Harmonic Distortion	<5%	
Telephone Interference Factor (TIF)	<50	
Standard Excitation	Brushless	
Bearings	Sealed Ball	
Coupling	Flexibile Disc	
Prototype Short Circuit Test	Yes	

Voltage Regulator Type	Full Digital	
Number of Sensed Phases	All	
Regulation Accuracy (Steady State)	+/- 0.25%	

<u>SG035</u>

operating data

POWER RATINGS

	Natural Gas		Propane Vapor	
Single-Phase 120/240 VAC @1.0pf	35 kW	Amps: 146	35 kW	Amps: 146
Three-Phase 120/208 VAC @0.8pf	35 kW	Amps: 121	35 kW	Amps: 121
Three-Phase 120/240 VAC @0.8pf	35 kW	Amps: 105	35 kW	Amps: 105
Three-Phase 277/480 VAC @0.8pf	35 kW	Amps: 53	35 kW	Amps: 53
Three-Phase 346/600 VAC @0.8pf	35 kW	Amps: 42	35 kW	Amps: 42

STARTING CAPABILITIES (sKVA)

			sKVA vs. Voltage Dip										
		480 VAC				208/240 VAC							
<u>Alternator</u>	<u>kW</u>	10%	15%	20%	25%	30%	35%	10%	15%	20%	25%	30%	35%
Standard	35	24	36	48	60	72	84	18	27	36	45	54	63
Upsize 1	40	27	41	54	68	81	95	20	31	41	51	61	71
Upsize 2	50	34	52	69	86	103	120	26	39	52	65	77	90
Upsize 3	60	42	63	83	104	125	146	32	47	62	78	94	110

FUEL CONSUMPTION RATES*

Natural Gas – ft ³ /hr (m ³ /hr)			
Percent Load	Standby		
25%	239 (6.8)		
50%	409 (11.6)		
75%	553 (15.7)		
100%	682 (19.3)		

Propane Vapor – ft³/hr (m³/hr)		
Percent Load	Standby	
25%	69.8 (2.0)	
50%	119.7 (3.4)	
75%	161.6 (4.6)	
100%	219.8 (6.2)	

*Fuel supply installation must accommodate fuel consumption rates at 100% load.

COOLING

		Standby
Air Flow (inlet air combustion and radiator)	ft³/min (m³/min)	2460 (69.7)
Coolant Flow per Minute	gpm (lpm)	38 (144)
Coolant System Capacity	gal (L)	3 (11.36)
Heat Rejection to Coolant	BTU/hr	144,000
Max. Operating Air Temp on Radiator	°F (°C)	122 (50)
Max. Operating Ambient Temperature (before derate)	°F (°C)	110 (43.3)
Maximum Radiator Backpressure	in H ₂ 0	0.5

cfm (m3/min)

COMBUSTION AIR REQUIREMENTS

Flow at Rated Power

87 (2.5)

EXHAUST

Standby

ENGINE

		Standby
Rated Engine Speed	rpm	1800
Horsepower at Rated kW**	hp	54
Piston Speed	ft/min (m/min)	1251 (381)
BMEP	psi	72

		Standby
Exhaust Flow (Rated Output)	cfm (m³/min)	260 (7.4)
Maximum Recommended Back Pressure	inHg	1.5
Exhaust Temp (Rated Output)	°F (°C)	900 (482)
Exhaust Outlet Size (Open Set)	in	2.5" I.D. Flex (No muffler)

** Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.

Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions. Please consult a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528 and DIN6271 standards.

GENERAC INDUSTRIAL

dimensions and weights

OPEN SET (Includes Exhaust Flex)

L x W x H in (mm)	76 (1930) x 37.4 (949.9) x 47 (1193.8)
Weight lbs (kg)	1575 (714)

STANDARD ENCLOSURE					
L x W x H in (mm)	94.8 (2408.9) x 38 (965.1) x 49.5 (1258.1)				
Weight Ibs (kg)	Steel: 2100 (952) Aluminum: 1754 (795)				

LEVEL 1 ACOUSTIC ENCLOSURE

L x W x H in (mm)	112.5 (2857.1) x 38 (965.1) x 49.5 (1258.1)
Weight Ibs (kg)	Steel: 2140 (970) Aluminum: 1767 (801)

LEVEL 2 ACOUSTIC ENCLOSURE

L x W x H in (mm)	94.8 (2407) x 38 (965.1) x 62 (1573.9)
Weight Ibs (kg)	Steel: 2328 (1056) Aluminum: 1831 (830)

YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER		

Specification characteristics may change without notice. Please consult a Generac Power Systems Industrial Dealer for detailed installation drawings.

Generac Power Systems, Inc. • S45 W29290 HWY. 59, Waukesha, WI 53189 • generac.com ©2013 Generac Power Systems, Inc. All rights reserved. All specifications are subject to change without notice. Part No. 0K4265-B / Printed in U.S.A. 10/22/13

SG035

ATTACHMENT 5

65° OctoPort Multi-Band Antenna

Model OPA-65R-LCUU-H8

The CCI Octoport Multi-Band Antenna Array is an industry first 8-port antenna with full WCS Band Coverage. With four high band ports covering PCS, AWS and WCS bands, two 700 MHZ ports, and two 850 MHz ports our octoport antenna is ready for 4X4 high band MIMO.

Modern networks demand high performance, consequently CCI has incorporated several new and innovative design techniques to provide an antenna with excellent side-lobe performance, sharp elevation beams, and high front to back ratio.

Multiple networks can now be connected to a single antenna, reducing tower loading and leasing expense, while decreasing deployment time and installation cost.

Full band capability for 700 MHz , Cellular 850 MHz, PCS 1900 MHz, AWS 1710/2155 MHz and WCS 2300 MHz coverage in a single enclosure.

All CCI antennas are manufactured under ISO 9001.

Octoport Multi-Band Antenna Array

Benefits

- RET System allows Independent Tilt of each band specific paired port
- Reduces tower loading
- Frees up space for tower mounted Remote Radio Heads
- Single radome with eight ports
- All Band design simplifies radio assignments
- Sharp elevation beam eases network planning

Features

- High Band Ports include WCS Band
- Four High Band ports with four Low Band ports in one antenna
- Sharp elevation beam
- Excellent elevation side-lobe performance
- Excellent MIMO performance due to array spacing
- Excellent PIM Performance
- A multi-network solution in one radome

Applications

- ♦ 4x4 MIMO on High Band and Dual 2x2 MIMO on 700 & 850 Low Bands
- Adding additional capacity without adding additional antennas
- Adding WCS Band without increasing antenna count

ISO 9001:2008 Quality Management Systems Système de Qualité www.ca.sgs.com

65° OCTOPORT MULTI-BAND ANTENNA

Model OPA-65R-LCUU-H8

OPA-65R Multi-Band Antenna Electrical Specifications

	2 X Low Band Ports (L) which	2 X Low Band Ports (C) which	4 X High Band Ports (H1 & H2) which cover the full range from 1710-2360 MHz			
Frequency Range	cover the rangecover the rangefrom 698-787 MHzfrom 824-894 MHz		1850-1990 MHz	1710-1755/21	10-2170 MHz	2305-2360 MHz
Gain	14.7 dBi	15.5 dBi	17.0 dBi	16.5 dBi	17.2 dBi	17.1 dBi
Azimuth Beamwidth (-3dB)	65°	61°	62°	67°	64°	61°
Elevation Beamwidth (-3dB)	10.1°	8.5°	5.6°	6.2°	5.0°	4.5°
Electrical Downtilt	2° to 10°	2° to 10°	0° to 8°	0° to 8°	0° to 8°	0° to 8°
Elevation Sidelobes (1st Upper)	< -17 dB	< -17 dB	< -19 dB	< -18 dB	< -18 dB	< -17 dB
Front-to-Back Ratio @180°	> 28 dB	> 28 dB	> 35 dB	> 35 dB	> 35 dB	> 35 dB
Front-to-Back Ratio over ± 20°	> 28 dB	> 27 dB	> 28 dB	> 27 dB	> 27 dB	> 28 dB
Cross-Polar Discrimination (at Peak)	> 24 dB	> 20 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB
Cross-Polar Discrimination (at ± 60°)	> 16 dB	> 14 dB	> 18 dB	> 18 dB	> 18 dB	> 18 dB
Cross-Polar Port-to-Port Isolation	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB
VSWR	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1
Passive Intermodulation (2x20W)	≤ -150 dBc	≤ -150 dBc	≤ -150 dBc	≤ -150 dBc	≤ -150 dBc	≤ -150 dBc
Input Power	500 Watts CW	500 Watts CW	300 Watts CW	300 Watts CW	300 Watts CW	300 Watts CW
Polarization	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°	Dual Pol 45°
Input Impedance	50 Ohms	50 Ohms	50 Ohms	50 Ohms	50 Ohms	50 Ohms
Lightning Protection	DC Ground	DC Ground	DC Ground	DC Ground	DC Ground	DC Ground

Mechanical Specifications

*Typical antenna patterns. For detail information on antenna pattern, please contact us at info@cciproducts.com. All specifications are subject to change without notice.

USA HQ: 89 Leuning Street, South Hackensack, NJ 07606 Telephone: 201-342-3338, Canada: 411 Legget Drive, Suite 104, Ottawa, ON, Canada K2K 3C9 Telephone: 613-591-6696

www.cciproducts.com

65° OCTOPORT MULTI-BAND ANTENNA

Bracket

Model OPA-65R-LCUU-H8

Ordering Information:

OPA-65R-LCUU-H8	8 Foot Octoport Antenna with 65° Azimuth Beamwidth and factory installed RET Actuators (4)	MBK-01 Top	
OPA-65R-LCUU-H8-K	Complete Kit with Antenna, Factory Installed Actuators (4) and MBK-01 Mounting Bracket	Bracket	
BSA-RET200	RET Actuator		-0
MBK-01	Mounting Bracket (Top & Bottom) with 0° through 10° Mechanical tilt Adjustment: See Installation Guide 50-000036-01 for Details: Weight 13.6 Lbs. (6.2 kg)	MBK-01 Bottom Mounting	

RET [Remote Electrical Tilt] System

General Specification		Electrical Specification	
Part Number	BSA-RET200	Interface Signal	Data dc
Protocols	AISG 2.0	Input Voltage Range	10-30 Vdc
RET Type (Reference AISG 1.1)	Туре 1	Current consumption during tilting	120mA at Vin = 24V
Adjustment Cycles	>10,000 cycles	Current consumption idle	55mA at Vin=24V
Tilt Accuracy	±0.1°	Hardware Interface	AISG - RS 485 A/B
Temperature Range	-40°C to +70°C	Input Connector	1x8-pin Daisy Chain In Male
		Output Connector	1x8-pin Daisy Chain Out Female

Mechanical Specification and Dimensions

Standards Compliance

Safety	EN 60950-1, UL 60950-1
Emission	EN 55022
Immunity	EN 55024
Environmental	IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-5, IEC 60068-2-6, IEC 60068-2-11, IEC 60068-2-14, IEC 60068-2-18, IEC 60068-2-27, IEC 60068-2-29, IEC 60068-2-30, IEC 60068-2-52, IEC 60068-2-64, GR-63-CORE 4.3.1, EN60529 IP24

Regulatory Certification

AISG, FCC Part 15 Class B, CE, CSA US

14/14/14/	ccinro	tucts com
		10010.00111

USA HQ: 89 Leuning Street, South Hackensack, NJ 07606 Telephone: 201-342-3338, Canada: 411 Legget Drive, Suite 104, Ottawa, ON, Canada K2K 3C9 Telephone: 613-591-6696

© Ericsson Inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 10

RRUS A2 A2 Building practice

PRELIMINARY DATA

	No solar shield	With solar shield
Height (H)	12.8" (325.5mm)	12.8" (325.5mm)
Width (W)	14.7" (374mm)	15.0" (380mm)
Depth (D)	3.2" (81mm)	3.5" (88mm)
Weight		15 lbs

© Ericsson Inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 8

RRUS A2 Module

> RRUS A2 Module

> 2 Rx expansion module for RRUS
> Works with RRUS 01, 11 and 12

> Eases deployment for 4Rx diversity

© Ericsson Inc. 2012 | Commercial in Confidence | 2012-10-04 | Rev A | Page 6

ATTACHMENT 6

WBX065X19x050

X-Pol | VET Panel | 65° | 19.0 dBi

WBA065A 19R 150 - Remote Electrical Th	Antenna (aka 514200)			
Electrical Characteristics		1710-21	70 MHz		
Frequency bands	1710-1880 MH	z 1850-19	90 MHz	190	0-2170 MHz
Polarization	± 45°	± 4	l5°		± 45°
Horizontal beamwidth	69°	60	5°		63°
Vertical beamwidth	4.9°	4.	6°		4.3°
Gain	15.9 dBd / 18.0	dBi 16.4 dBd	/ 18.5 dBi	16.9 (dBd / 19.0 dBi
Electrical downtilt		2°-10° Variable	e Electrical Til	t	
Impedance		50	Ω		
VSWR		< 1	.4:1		
Upper sidelobe suppression		< -18	8 dB		
Front-to-Back ratio		> 25	5 dB		
First null		> -20 dE	3 typical		
Inter-port isolation		> 30) dB		
IM3 (2x20W carrier)		< -15	3 dBc		
Input power		2 x 1	60 W		
Connector(s)		2 Ports / 7/16 DIN	/ Female / Bo	ottom	
Operating temperature		-40° to +60° C (-40° to +140°	F)	
Mechanical Characteristics					
Dimensions HxWxD	1950	x 157 x 69 mm		76.8	x 6.2 x 2.7 in
Weight without brackets		9.5 kg			20.9 lbs
Survival wind speed		241 km/hr			150 mph
Wind load @ 161 km/hr (100 mph)	Front: 405 N	Side: 176 N	Front:	91 lbf	Side: 40 lbf
RET type / Part number		Internal / R	ETU-CA01		
Mounting Options	Part Number	Fits Pipe D	iameter	Weight	:
Pole mounting bracket kit	MKS05P01	40-115 mn	n 1.6-4.5 in	2.9 kg	6.5 lbs
Scissor tilt bracket kit	MKS05T03	40-115 mn	n 1.6-4.5 in	4.1 kg	9.1 lbs
Bar tilt bracket kit	MKS05T04	40-115 mn	n 1.6-4.5 in	4.0 kg	8.8 lbs
Concealment Options					
UNICELL module	UNX14-19		UNX20-19		
Azimuth swivel	± 30°		± 30°		
Elevation tilt	Fixed		Fixed		
Required mounting kit	UNX14-WBX-AZ		UNX20-WB	X-AZ	
EP mounting configuration		N	one		

1710-1880 MHz

Model Number Options: WBX065X19M150 - Manual Electrical Tilt Antenna (aka 5142100)

Horizontal

Quoted performance parameters are provided to offer typical or range values only and may vary as a result of normal manufacturing and operational conditions. Extreme operational conditions and/or stress on structural supports is beyond our control. Such conditions may result in damage to this product. Improvements to product may be made without notice.

1710-2170 MHz

WBX065X19x050

X-Pol | VET Panel | 65° | 19.0 dBi

Quoted performance parameters are provided to offer typical or range values only and may vary as a result of normal manufacturing and operational conditions. Extreme operational conditions and/or stress on structural supports is beyond our control. Such conditions may result in damage to this product. Improvements to product may be made without notice.

X7C-FRO-660-V

X-Pol Antenna, 698-896MHz, Fast-Roll-Off 60° H-Beam RET/ MET

- Designed to improve SNR
- Greatly increases LTE data rates
- Broadband radiator
- Macro Cell, high gain antenna
- Suitable for LTE/ CDM A/ UM TS/ GSM
- AISG 2.0 RET or manual MET tilt control

Electrical Specifications

Frequency Band, MHz	698-824	824-896
Horizontal Beamwidth, 3dB points	62	58
Gain, dBi	15.9	16.0
Vertical Beamwidth, 3dB points	12.0	10.5
Front-to-Back at 180°, dB	>	28
Upper Sdelobe Suppression, Typical, dB	~	18
Polarization	+/-	·45°
Electrical Downtilt0-10° or 4-14		or 4-14°
VSWR/Return Loss, dB, Maximum	1.5:1	/14.0
Isolation Between Ports, dB, Mimimum	-2	28

X7C-FRO-660-V

X-Pol Antenna, 698-896MHz, Fast-Roll-Off 60° H-Beam RET/ MET

Mechanical Specifications

Dimensions, Length/Width/Depth	72.0/14.6/8.0 in (1829/372/204 mm)
Connector (Quantity) Type	(2) 7-16 DIN Female
Connector Torque	220-265 lbf-in (25-30 N-m)
Connector Location	Back
Antenna Weight	35.0 lbs
Bracket Weight	13.2 lbs (6.0 kg)
Standard Bracket Kit	CSSP/N 919011
Mechanical Downtilt Pange	0-12°
Radome Material	Ultra High Strength Luran, UV Stabilized, ASTM D1925
Wind Survival	150 mph (241 km/h)
Front Wind Load	205.39 lbf (913.65 N) @100mph
Equivalent Hat Plate	4.09 sq-ft (c=2) @ 100mph

RET Information

Model	CSS-RET-200
Mounting Location	Rear of Antenna
Weight	1.2 lb (0.54 kg)
Communication Standard	AISG 2.0
Control System	CSS-PCU-220

Order Information

Model	Description
X7C-FRO-660-VR0	Antenna with manual RET adjust electrical downtilt 0-10°
X7C-FRO-660-VR4	Antenna with manual RET adjust electrical downtilt 4-14°
X7C-FRO-660-VM0	Antenna with remote MET adjust electrical downtilt 0-10 $^{\circ}$
X7C-FRO-660-VM4	Antenna with remote MET adjust electrical downtilt 4-14 $^{\circ}$

X-Pol Antenna, 698-896MHz, Fast-Poll-Off 60° H-Beam RET/ MET

X-Pol Antenna, 698-896MHz, Fast-Roll-Off 60° H-Beam RET/ MET

X-Pol Antenna, 698-896MHz, Fast-Roll-Off 60° H-Beam RET/ MET

X7C-FRO-660-VR

X-Pol Antenna, 698-896MHz, Fast-Roll-Off 60° H-Beam RET/ MET

X7C-FRO-660-VM

16.5 in [419 mm]

X-Pol Antenna, 698-896MHz, Fast-Poll-Off 60° H-Beam RET/ MET

Standard Bracket Kit

72.0 in [1829 mm] 33.8 in [860 mm]

Alcatel-Lucent RRH2x40-07-L REMOTE RADIO HEAD

The Alcatel-Lucent RRH2x40-07-L is a high-power, small form-factor Remote Radio Head (RRH) operating in the North American Digital Dividend / 700MHz frequency band (3GPP Bands 12 and 17). The Alcatel-Lucent RRH2x40-07-L is designed with an eco-efficient approach, providing operators with the means to achieve high quality and capacity coverage with minimum site requirements.

A distributed eNodeB expands deployment options by using two components, a Base Band Unit (BBU) containing the digital assets and a separate RRH containing the radiofrequency (RF) elements. This modular design optimizes available space and allows the main components of an eNodeB to be installed separately, within the same site or several kilometres apart.

The Alcatel-Lucent RRH2x40-07-L is linked to the BBU by an optical-fiber connection carrying downlink and uplink digital radio signals along with operations, administration and maintenance (OA&M) information. The Alcatel-Lucent RRH2x40-07-L has two transmit RF paths, 40 W RF output power per transmit path, and is designed to manage up to two-way receive diversity. The device is ideally suited to support macro coverage, with multiple-input multiple-output (MIMO) 2x2 operation in up to 15 MHz of bandwidth.

The Alcatel-Lucent RRH2x40-07-L is designed to make available all the benefits of a distributed eNodeB, with excellent RF characteristics, with low capital expenditures (CAPEX) and low operating expenditures (OPEX). The limited space available in some sites may prevent the installation of traditional single-cabinet BTS equipment or require costly cranes to be employed, leaving coverage holes. However, many of these sites can host an Alcatel-Lucent RRH2x40-07-L installation, providing more flexible site selection and improved network quality along with greatly reduced installation time and costs.

Fast, low-cost installation and deployment

The Alcatel-Lucent RRH2x40-07-L is a zero-footprint solution and operates noise-free, simplifying negotiations with site property owners and minimizing environmental impacts. Installation can easily be done by a single person because the Alcatel-Lucent RRH2x40-07-L is compact and weights less than 27 kg (60 lb), eliminating the need for a crane to hoist the BTS cabinet to the rooftop. A site can be in operation in less than one day — a fraction of the time required for a traditional BTS.

Excellent RF performance

Because of its small size and weight, the Alcatel-Lucent RRH2x40-07-L can be installed close to the antenna. Operators can therefore locate the Alcatel-Lucent RRH2x40-07-L where RF engineering is deemed ideal, minimizing trade-offs between available sites and RF optimum sites. The RF feeder cost and installation costs are reduced or eliminated, and there is no need for a Tower Mounted Amplifier (TMA) because losses introduced by the RF feeder are greatly reduced. The Alcatel-Lucent RRH2x40-07-L provides more RF power while at the same time consuming less electricity.

Macro

Technical specifications

Physical dimensions

- Height: 520 mm (20.5 in.)
- Width: 270 mm (10.63 in.)
- Depth: 226m (8.9 in.)
- Weight (without mounting kit): less than 27 kg (60 lb)

Power

• Power supply: -48V

Operating environment

- Outdoor temperature range:
 ¬ With solar load: -40°C to +50°C (-40°F to +122°F)
- ¬ Without solar load: -40°C to +55°C (-40°F to +131°F)
- Passive convection cooling (no fans)

Features

- Zero-footprint deployment
- Easy installation, with a lightweight unit can be carried and set up by one person
- Optimized RF power, with flexible site selection and elimination of a TMA
- Convection-cooled (fanless), noise-free, and heaterless unit
- Best-in-class power efficiency, with significantly reduced energy consumption

Benefits

- Leverages existing real estate with lower site costs
- Reduces installation costs, with fewer installation materials and simplified logistics
- Decreases power costs and minimizes environmental impacts, with the potential for eco-sustainable power options
- Improves RF performance and adds flexibility to network planning

RRH for space-constrained cell sites

 Enclosure protection
 ¬ IP65 (International Protection rating)

RF characteristics

- Frequency band: 700 MHz; 3GPP Band 12 (incl Band 17)
- Bandwidth: up to 15 MHz
- RF output power at antenna port:
 40 W nominal RF power for each Tx port
- Rx diversity: 2-way or 4-way
- Noise figure: below 2.5 dB typical
- ALD features
 - ⊐ TMA
 - ¬ Remote electrical tilt (RET) support (AISG v2.0)

Optical characteristics

Type/number of fibers

- Up to 3.12 Gb/s line bit rate
- Single-mode variant
- ¬ One SM fiber (9/125 μm) per RRH2x, carrying UL and DL using CWDM (at 1550/1310 nm)
- Multi-mode variant
 - ¬ Two MM fibers (50/125 μm) per RRH2x: one carrying UL, the other carrying DL (at 850 nm)

Optical fiber length

• Up to 500 m (0.31 mi), using MM fiber

Distributed

• Up to 20 km (12.43 mi), using SM fiber

Alarms and ports

- Six external alarms
- Two optical ports to support daisy-chaining

www.alcatel-lucent.com Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent. All other trademarks are the property of their respective owners. The information presented is subject to change without notice. Alcatel-Lucent assumes no responsibility for inaccuracies contained herein. Copyright © 2010 Alcatel-Lucent. All rights reserved. CPG2809100914 (09)

FEATURES

- RRH2x60-1900 integrates two power amplifiers of 60W each at antenna connector
- RRH2x60-1900 can operate WCDMA, LTE or a mix of WCDMA and LTE
- RRH2x60-1900 offers the possibility for WCDMA (non MIMO) to operate the two radio chains independently (2 blocks of 20MHz anywhere in the band)
- RRH2x60-1900 is a very compact and lightweight product
- Advanced power management techniques are embedded to provide

TECHNICAL SPECIFICATIONS

Specifications listed are hardware capabilities. Some capabilities depend on support in a specific software release or future release.

Dimensions and weights

- HxWxD : 510x285x183mm (26.6l)
- Weight : 19.5kg (43lbs)

Electrical Data

- Power Supply : -48V DC (-40.5 to -57V)
- Power Consumption (ETSI average traffic load reference) : 110W for @1x20W; 250W @2x60W

RF Characteristics

- Frequency band: 1900 (3GPP band 2)
- Output power: 2x60W at antenna connectors
- Technologies supported: W-CDMA and

RRH for space-constrained cell sites

power savings, such as PA bias control or second PA path switch-off

BENEFITS

- MIMO deployment and/or WCDMA and LTE simultaneous operation with only one single unit per sector
- possibility to operate the radio-chains independently (2x20MHz anywhere in the band) addresses nearly all operators' spectrum configurations, which is especially useful in case of disaggregated spectrum or RAN sharing

LTE

- Instantaneous bandwidth: 20MHz (MIMO) or 2x20MHz (non MIMO)
- Rx diversity: 2-way uplink reception
- Typical sensitivity without Rx diversity (3GPP 25.104): -125.7 dBm for W-CDMA and -105 dBm for LTE

Connectivity

- Two CPRI optical ports for daisychaining and up to six RRHs per fiber
- Type of optical fiber: Single-Mode (SM) and Multi-Mode (MM) SFPs
- Optical fiber length: up to 500m using MM fiber, up to 20km using SM fiber
- TMA/RETA : AISG 2.0 (RS485 connector and internal Bias-Tee)
- 6 external alarms
- Surge protection for all external ports (DC and RF)

.

Distributed

- RRH can be mounted close to the antenna, eliminating nearly all losses in RF cables and thus reducing power consumption by 50% compared to conventional solutions
- Distributed configurations provide easily deployable and cost-effective solutions, near zero footprint and silent solutions, with minimum impact on the neighborhood, which ease the deployment
- RETA and TMA support without additional hardware thanks to the AISG v2.0 port and the integrated Bias-T

Environmental specifications

- Operating temperature: -40°C to 55°C including solar load
- Operating relative humidity: 8% to 100%
- Environmental Conditions : ETS 300 019-1-4 class 4.1E
- Ingress Protection : IEC 60529 IP65
- Acoustic Noise : Noiseless (natural convection cooling)

Safety and Regulatory Data

- EMC : 3GPP 25113, EN 301 489-1, EN 301 489-23, GR 1089
- Safety : IEC60950-1, EN 60825-1
- Regulatory : CE Mark European Directive : 2002/95/EC (ROHS); 2002/96/EC (WEEE); 1999/5/EC (R&TTE)
- Health : EN 50385

ALCATEL-LUCENT WIRELESS PRODUCT DATASHEET RRH2X60-1900 (BAND 2)

The Alcatel-Lucent RRH2x60-1900 is a high power, small form factor Remote Radio Head operating in the 1900MHz frequency band (3GPP Band 2) for WCDMA and LTE technologies. It is designed with an eco-efficient approach, providing operators with the means to achieve high quality and high capacity coverage with minimum site requirements and efficient operation.

A distributed Node B expands the deployment options by using two components, a Base Band Unit (BBU) containing the digital assets and a separate RRH containing the radio-frequency (RF) elements. This modular design optimizes available space and allows the main components of a Node B to be installed separately, within the same site or several kilometers apart.

The Alcatel-Lucent RRH2x60-1900 is linked to the BBU by an optical-fiber connection carrying downlink and uplink digital radio signals along with operations, administration and maintenance (OA&M) information.

SUPERIOR RF PERFORMANCES

The Alcatel-Lucent RRH2x60-1900 integrates all the latest technologies. This allows to offer best-in-class characteristics.

It delivers an outstanding 120 watts of total RF power thanks to its two transmit RF paths of 60 W each.

It is ideally suited to support multiple-input multiple-output (MIMO) 2x2 operation for LTE.

For non-MIMO transmission the two RF chains can operate independently to provide access to two blocks of 20MHz each, anywhere in the band, which makes its perfect for RAN sharing.

The latest generation power amplifiers (PA) used in this product achieve high efficiency (>40%), resulting in improved power consumption figures.

OPTIMIZED TCO

The Alcatel-Lucent RRH2x60-1900 is designed to make available all the benefits of a distributed Node B, with excellent RF characteristics, with low capital expenditures

(CAPEX) and low operating expenditures (OPEX).

The Alcatel-Lucent RRH2x60-1900 is a very cost-effective solution to deploy LTE MIMO.

EASY INSTALLATION

The limited space available in some sites may prevent the installation of single-cabinet traditional BTS equipment. However, many of these sites can host an Alcatel-Lucent RRH2x60-1900 installation, providing more flexible site selection and improved network quality along with greatly reduced installation time and costs.

The Alcatel-Lucent RRH2x60-1900 is a zero-footprint solution and is convection cooled for silent operation, simplifying negotiations with site property owners and minimizing environmental impacts. Installation can easily be done by a single person as the Alcatel-Lucent RRH2x60-1900 is compact and weighs less than 20 kg, eliminating the need for a crane to host the BTS cabinet to the rooftop. A site can be in operation in less than one day.

