$\begin{array}{c} CUDDY\&\\ FEDER \end{array}^{\text{\tiny{ILP}}}\end{array}$

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 Tel 914.761.1300 Fax 914.761.5372 www.cuddyfeder.com

April 11, 2014

VIA ELECTRONIC & OVERNIGHT DELIVERY

Hon. Robert Stein, Chairman and Members of the Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Connecticut Siting Council Docket No. 436 Certificate Holder Message Center Management, Inc. (MCM) Telecommunications Facility in East Hartford, Connecticut

Dear Chairman Stein and Members of the Siting Council:

This letter and its enclosures are respectfully submitted on behalf of Message Center Management ("MCM") the Certificate holder for the facility approved in Docket 436 ("Facility") located at 465 Hills Street in East Hartford. As noted in MCM's March 17, 2014 notification letter to the Siting Council, construction activity is proceeding for this Facility.

MCM is currently finalizing its order for the approved tower which includes camouflage branching in accordance with Condition One of the Siting Council's Decision and Order and approved Development and Management Plan in Docket 436. The specifications provided in the final/pending order with MCM's tower vendor included more camouflage branching than depicted in the materials previously provided to MCM and submitted to and approved by the Siting Council in its review of the Development and Management Plan. As more branching will only serve to better camouflage the Facility, MCM plans to proceed with that order. However, analysis of the tower loading with this additional branching indicates a need for an expansion of the tower foundation from the 27' x 27' (as per the September 17, 2013 D&M submission on file with the Siting Council) to a new dimension of 32' x 32' (as per the revised Sheet A1 attached).

An enlargement of the foundation and the associated branching are the only deviations from the approved Development and Management Plan. No changes or modifications to the approved tower location, equipment, compound, fencing, access drive or other features of the approved Facility are proposed. While we do not believe this enlarged foundation is a change of any significance to the approved Facility, we submit this letter and enclosures by way of update and notification to the Siting Council in keeping with R.C.S.A. Sec. 16-50j-77(2). Given the minor nature of this change we respectfully request a staff approved amendment to the D&M Plan for the Facility.

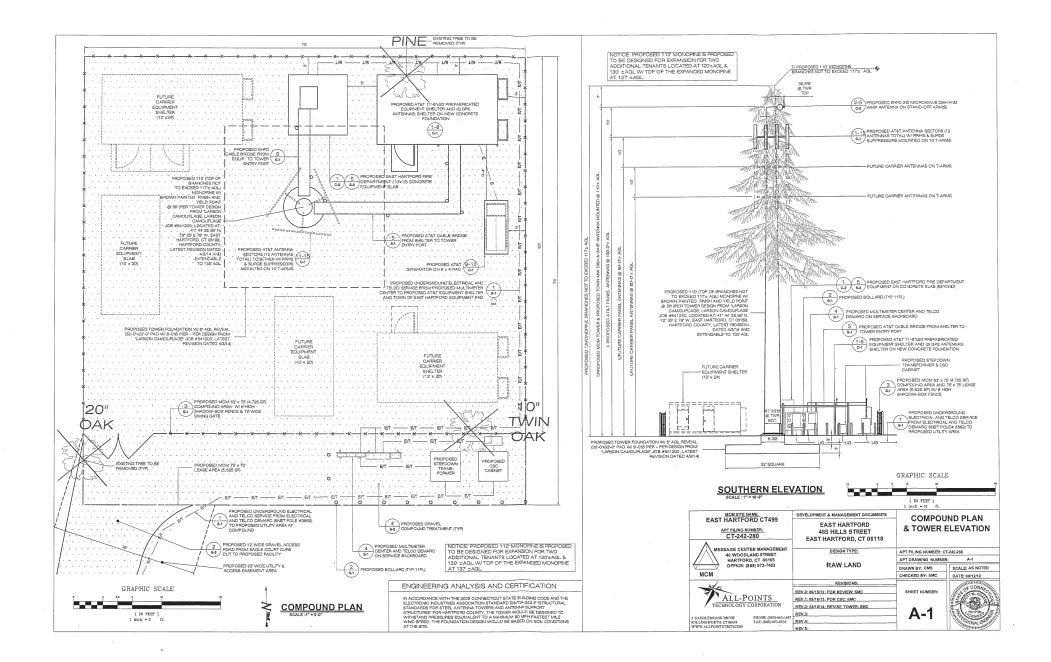
In furtherance of the foregoing please find an original and fifteen (15) copies of this letter with the following attachments:

1. Revised Development and Management Plan Sheet A1 prepared by All Points Technology Corporation dated September 12, 2012 and last revised April 10, 2014;

$\begin{array}{c} CUDDY\&\\ FEDER^{ILP} \end{array}$

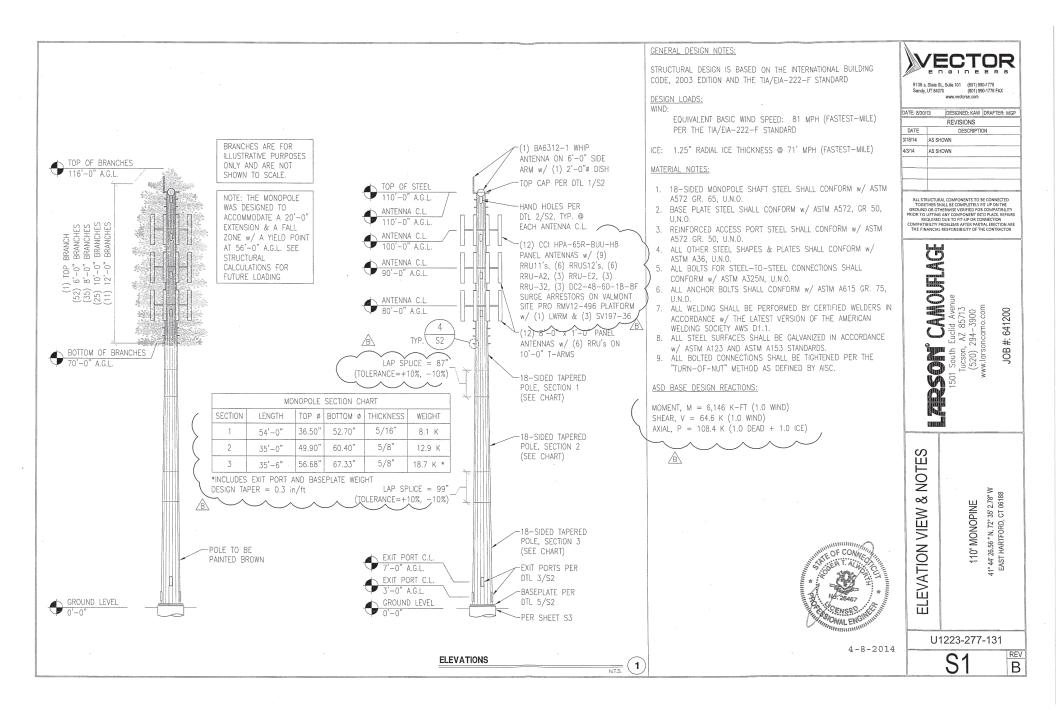
- Structural/Camouflage Drawings Prepared by Larson Camouflage and Vector Engineering including Sheets T-1 and S1-S4 dated August 30, 2013 and last revised April 3, 2014; and
- 3. Revised Structural Calculations prepared by Vector Engineering dated March 18, 2014.

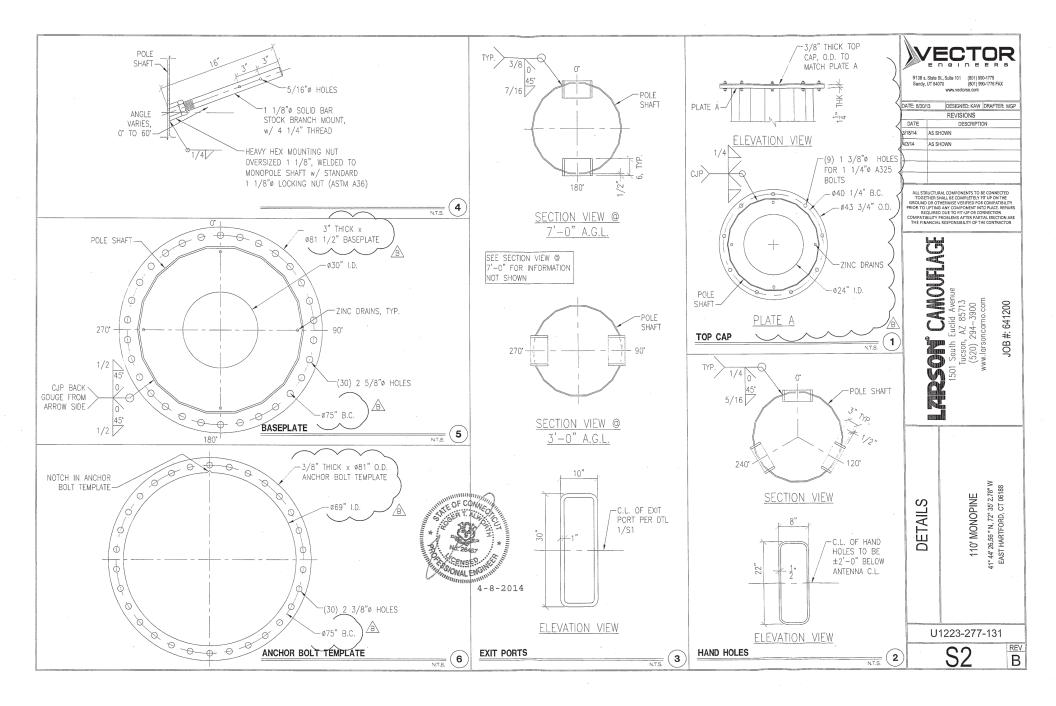
Two full sized copies of Sheet A1 are also included for the Siting Council's files. Should the Siting Council or Staff have any questions regarding the foregoing, please do not hesitate to contact me.

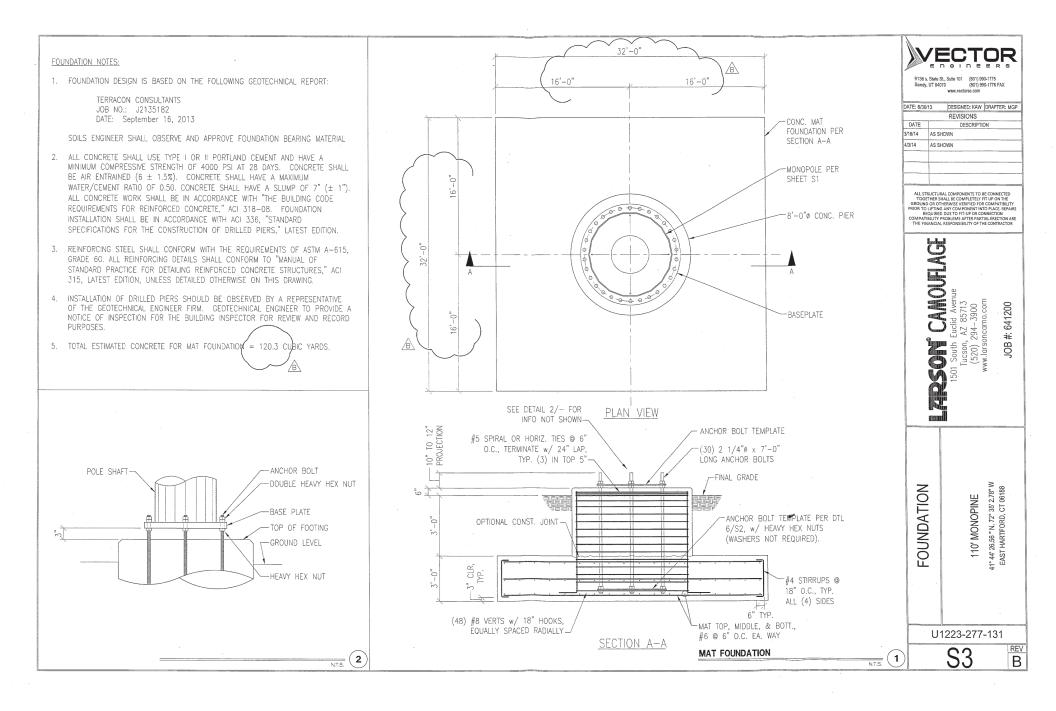

Very truly yours,

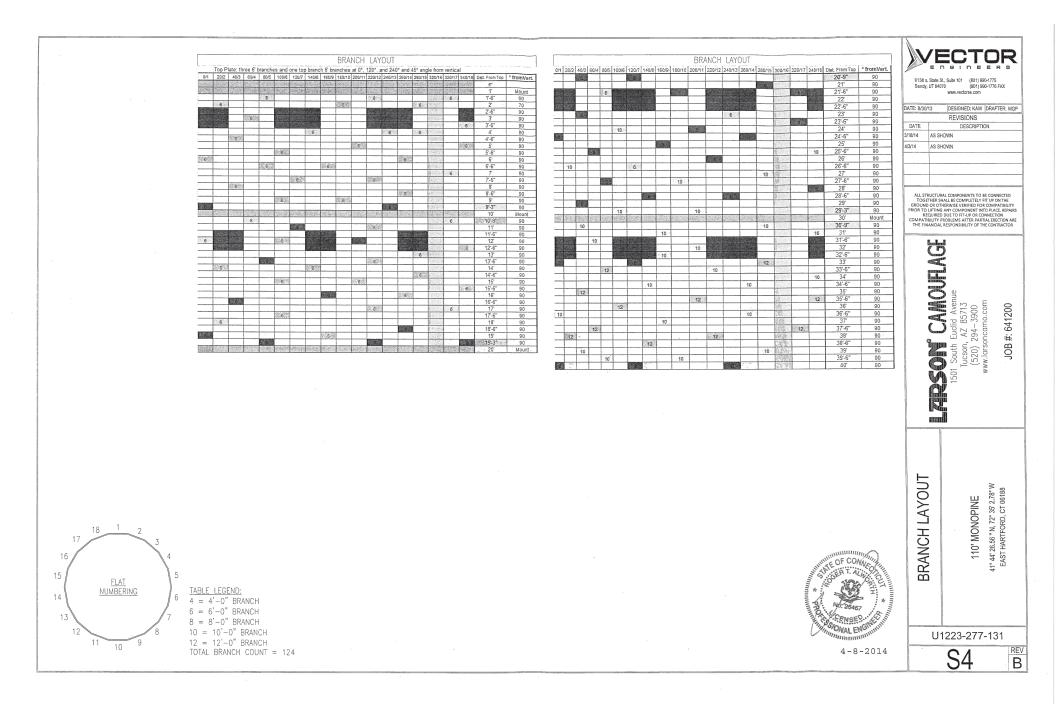
ALC: NO Daniel M. Laub

Damei M. Laub


cc: Maria Scotti, MCM Virginia King, MCM Christopher Gelinas, MCM Tom Flynn, MCM Michele Briggs, AT&T Christopher B. Fisher, Esq.


ATTACHMENT 1




ATTACHMENT 2

ATTACHMENT 3

STRUCTURAL CALCULATIONS for 110' MONOPINE at 41° 44' 26.56 " N, 72° 35' 2.78" W EAST HARTFORD, CT 06188 for LARSON CAMOUFLAGE (641200)

BY:

ROGER T. ALWORTH, S.E. PRINCIPAL

PROJECT #:

U1223-277-131

DATE: Marc

March 18, 2014

NOTE:

The calculations presented in this package are intended for a single use at the location indicated above, for the client listed above. These calculations shall not be reproduced, reused, "card filed", sold to a third party, or altered in any way without the written authorization of Vector Structural Engineers, PC.

Vector Engineers | 9138 S. State St., Suite 101, Sandy, UT 84070 - Ph: 801.990.1775 Fax: 801.990.1776

JOB NO.: U1223-277-131 DATE: 03/17/14 DESIGNED: KAW CHECKED: MEG

SHEET

OF

PROJECT: 110' MONOPINE

Design Criteria:

Code: Structural design is based on the International Building Code, 2003 Edition

- *Wind:* Basic wind speed = 81 mph (fastest mile) per the TIA/EIA-222-F standard Equivalent 3-second gust = 96 mph
- Ice: 1.25" radial ice @ 71 mph basic wind speed (fastest mile) per the TIA/EIA-222-F standard

General Notes:

- 1 The contractor shall verify dimensions, conditions and elevations before starting work. The engineer shall be notified immediately if any discrepancies are found.
- 2 The typical notes and details shall apply in all cases unless specifically detailed elsewhere. Where no detail is shown, the construction shall be as shown for other similar work and as required by the building code.
- 3 These calculations are limited to the structural members shown in these calculations only. The connection of the members shown in these calculations to the existing structure shall be by others.
- 4 The contractor shall be responsible for compliance with local construction safety orders. Approval of shop drawings by the architect or structural engineer shall not be construed as accepting this responsibility.
- 5 All structural framing members shall be adequately shored and braced during erection and until full lateral and vertical support is provided by adjoining members.

Structural Steel:

- 1 All structural steel code checks based on the AISC-ASD, 9th Edition per the TIA/EIA-222-F standard
- 2 All 18-sided, tapered shaft steel to be per ASTM A572 GR. 65, U.N.O.
- 3 The design length of slip splices is equal to 1.67 times the inside width of the base of the upper section. Slip splice length tolerance is equal to \pm 10% of the design slip splice length.
- 4 All other structural steel shapes & plates shall be per ASTM A36, U.N.O.
- 5 All anchor bolts shall be per ASTM A615 GR. 75, U.N.O.
- 6 All bolts for steel-to-steel connections shall be per ASTM A325N, U.N.O.
- 7 All bolted connections shall be tightened per the "turn-of-nut" method as defined by AISC.
- 8 All welding shall be performed by certified welders in accordance with the latest edition of the American Welding Society (AWS) D1.1
- 9 All steel surfaces shall be galvanized in accordance with the ASTM A123 and ASTM A153 standards, U.N.O.

Foundation / Concrete:

- 1 All concrete mixing, placement, forming, and reinforcing installation shall be performed in accordance with the requirements of "Building Code Requirements for Reinforced Concrete", ACI 318-08. Foundation installation shall be in accordance with the requirements of "Standard Specifications for the Construction of Drilled Piers", ACI 336, latest edition
- 2 All concrete shall have a minimum compressive strength of 4000 psi at 28 days.
- 3 Cement for all concrete shall be Type I or II with a minimum of 6% entrained air. Maximum aggregate size shall be $\frac{3}{4}^{"}$.
- 4 Reinforcing steel shall be per ASTM A615 Gr. 60, U.N.O.
- 5 Foundation design is based upon the project soils report prepared by:

Geotech: Terracon Consultants Report No: J2135182 Date: 16-Sep-13

6 Approximate concrete volume for mat foundation = 101.8 cubic yards

JOB NO.: U1223-277-131 DATE: 03/18/14

DESIGNED: KAW CHECKED: MEG

SHEET

OF

PROJECT: 110' Monopine

Monopine Branch Layout

Eff. Area Factor:	0.85	
Top Crown Radius:	5	ft
C _A Factor:	0.6	
Bott. Branch Elev. (ft):		ft
Top of Steel Elev. (ft):	130.0	ft

Branch Layout Along Pole:

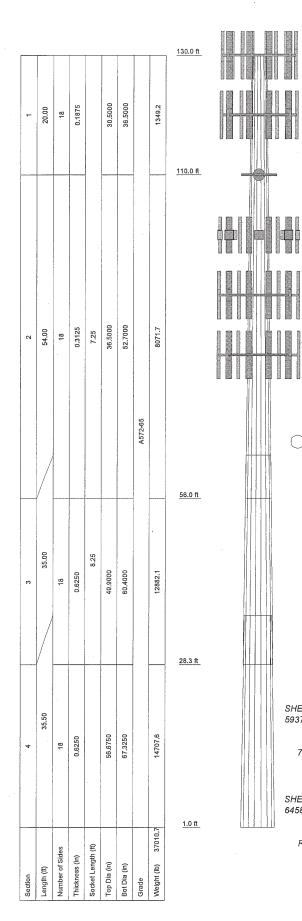
		Eleva	ation	Branch	Total Wt.		Wind Area	1
Branch Length (ft)	Qty	Start (ft)	Stop (ft)	Wt. (lbs)	(lbs)	Gross (ft ²)	Eff. (ft ²)	$C_A A_E (ft^2)$
6	18	124.1	130.0	40.0	720	86.7	73.7	44.2
6	40	110,9	124.1	40.0	1600	194.9	165.7	99.4
6	18	104.9	110.9	40.0	720	88.1	74.9	45.0
8	47	89.5	104.9	50.0	2350	295.1	250.9	150.5
10	41	75.9	89.5	66.0	2706	313.8	266.7	160.0
12	18	70.0	75.9	77.0	1386	162.0	137.7	82.6
· · ·				Total (lbs):	9482	1		

Top Crown:

Branch Length (ft)	Qty	Total Wt.	Total Wt.
6	3	120	
6	1	40	1
			160
Gross Area (ft2):	39.3		
Eff. Area (ft2):	33.4		
C _A A _E (ft ²):	20.0		

Random Branch Distribution:

Total C _A A _E (ft ²):	581.8
C _A A _E per ft (ft²/ft):	9.70
Wt. per ft (lbs/ft):	158.0


JOB NO.: U1223-277-131 DATE: 08/30/13

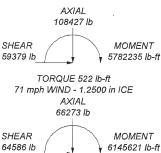
SHEET

DESIGNED: KAW CHECKED: MEG

OF

Structural design based on TIA/EIA-222-F.

DES	SIGNED APPUI	RTENANCE LOADING	
TYPE	ELEVATION	TYPE	ELEVATION
Top Hat with (3) 6 ft, and (1) 6 ft branches	132.5	(4) CCI HPA-65R-BUU-H8-K w/ Mount Pipe	100
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	130	(4) CCI HPA-65R-BUU-H8-K w/ Mount Pipe	100
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	130	(4) CCI HPA-65R-BUU-H8-K w/ Mount Pipe	100
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	130	(2) Ericsson RRUS A2 Module (2) Ericsson RRUS-12	100
(2) Generic RRU (24x12x12) 100#	130	(3) Ericsson RRU-11	100
(2) Generic RRU (24x12x12) 100#	130	(2) Generic RRU (36"x12"x12")	100
(2) Generic RRU (24x12x12) 100#	130	(2) Ericsson RRUS A2 Module	100
10'-0" T-Arm	130	(2) Ericsson RRUS-12	100
10'-0" T-Arm	130	(47) 8 ft branches	97.2
10'-0" T-Arm	130	(4) 96" x 12" x 6" Panel Antenna w/	90
(18) 6 ft branches	127	Mount Pipe	190
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	120	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	90
(4) 96" x 12" x 6" Panel Antenna w/	120	10'-0" T-Arm	90
Mount Pipe		10'-0" T-Arm	90 .
(4) 96" x 12" x 6" Panel Antenna w/	120	10'-0" T-Arm	90
Mount Pipe		(2) Generic RRU (24x12x12) 100#	90
(2) Generic RRU (24x12x12) 100#	120	(2) Generic RRU (24x12x12) 100#	90
(2) Generic RRU (24x12x12) 100#	120	(4) 96" x 12" x 6" Panel Antenna w/	90
(2) Generic RRU (24x12x12) 100#	120	Mount Pipe	
10'-0" T-Ann	120	(2) Generic RRU (24x12x12) 100#	90
10'-0" T-Arm	120	(41) 10 ft branches	82.7
10'-0" T-Arm	120	(2) Generic RRU (24x12x12) 100#	80
(40) 6 ft branches	117.5	(4) 96" x 12" x 6" Panel Antenna w/	80
6'-0" Standoff Arm	110	Mount Pipe	
2'-0" Standard	110	10'-0" T-Arm	80 .
BA6312	110	(2) Generic RRU (24x12x12) 100#	80
(18) 6 ft branches	107.9	(4) 96" x 12" x 6" Panel Antenna w/	80
(3) Ericsson RRU-11	100	Mount Pipe	
(2) Generic RRU (36"x12"x12")	100	10'-0" T-Arm	80
(2) Ericsson RRUS A2 Module	100	10'-0" T-Arm	80
2) Ericsson RRUS-12	100	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	80
3) Ericsson RRU-11	100		80
(2) Generic RRU (36"x12"x12")	100	(2) Generic RRU (24x12x12) 100# (18) 12 ft branches	80
RMV12-496 w/ (1) LWRM _& (3) SV197-36	100		13
(3) DC6-48-60-18-8F Surge Suppressor (Enclosed)	100		


Page 4 of 40

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

Tower is located in Hartford County, Connecticut.
 Tower designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 71 mph basic wind with 1.25 in ice.
 Deflections are based upon a 60 mph wind.
 TOWER RATING: 88.9%

TORQUE 387 lb-ft REACTIONS - 80 mph WIND

С

Vector Engineering	^{Job:} 641200		
9138 S. State St. Ste 101	Project: U1223-277-131		
Sandy UT 84070	^{Client:} Larson Camouflage	Drawn by: kwilson	App'd:
Phone: (801) 990-1775	Code: TIA/EIA-222-F	Date: 04/04/14	Scale: NTS
FAX: (801) 990-1776	Path: N1/2013 Projects/U1223 Larson Computere/U1223-277-131 641	200 East Hartford CTVENDIREV 3 year (nading/Towar/64120	Dwg No. E-1

.

Page 5 of 40

<i>tnxTower</i>	dol.	641200	Page 3 of 18
	Project		Date
Pector Engineering 9138 S. State St. Ste 101		U1223-277-131	16:07:58 04/04/14
Sandy UT 84070	Client		Designed by
Phone: (801) 990-1775 FAX: (801) 990-1776		arson Camouflage	kwilson

				c		į		
				ļ		l		
			1	l				
				ŝ	1	ĺ		
				c				
			ļ	ſ				
				į				
						i		
		i		ì				
			ļ					
			i			ĺ		
			į	Ì	5		į	
			i	Ì				
			i	Ì		ŀ		
		•	Ì	l				
	ļ	1				ļ	i	
			i					
				i	1	ľ		
			1	5				
	ļ							
		Ì	ł	1	í	i		
						Ľ	1	

Тонег	Face	A_R	A_F	CAA	C.A.	Weight
Elevation				In Face	Out Face	
Jt		Jr ²	Jr ²	ft ²	Jt ²	ft ft ft ft ft ft ft
30.00-110.00	۷	0.000	0.000	0.000	0.000	0.00
	В	0.000	0.000	0.000	0.000	0.00
	ບ	0:000	0.000	0.000	0.000	518.40
10.00-56.00	۷	0.000	0.000	0.000	0:000	0.00
	в	0.000	0.000	0.000	0.000	0.00
	U	0.000	0.000	0.000	0.000	3677.40
56.00-28.25	۷	0.000	0.000	0.000	0.000	0.00
	В	0.000	0.000	0.000	0.000	0.00
	υ	0.000	0.000	0.000	0.000	2422.57
28.25-1.00	۷	0.000	0.000	0.000	0.000	0.00
	ф	0.000	0.000	0.000	0.000	0.00
	c	0.000	0000	0.000	0.000	2378 03

	Fee	a Lĩ	reed Line/Linear Appurtenances Section Areas	Appur	cenance	SS Section	on Area	S - WITH ICE	:
Tower	Tower	Face	Ice	A_R	A_F	C.A.	СлАн	Weight	
Section	Elevation	or'	Thickness			In Face	Out Face		
	ĥ	Leg	in	Jr ²	JI,	μ2	ft ²		
LI	130.00-110.00	A	1.250	0.000	0.000	0.000	0.000	0.00	
		д		0.000	0.000	0.000	0.000		
		U		0.000	0.000	0.000	0.000		
L2	110.00-56.00	A	1.250	0.000	0.000	0.000	0.000		
		в		0.000	0.000	· 0.000	0.000		
		U		0.000	0.000	0.000	0.000		
L3	56.00-28.25	۷	1.250	0.000	0.000	0.000	0.000		
		В		0.000	0.000	0.000	0.000		
		U		0.000	0.000	0.000	0.000		
L4	28.25-1.00	A	1.250	0.000	0.000	0.000	0.000		
		в		0.000	0.000	0.000	0.000		
		ບ		0.000	0.000	0.000	0.000		

Description Elevation	Elevation		Azimuth Angle	*****	Offset Azimuth Weight F ₄ F; WindForce From Angle Gentroid	$F_{\rm z}$	F_z	Wind Force	C_{AC}
	11	ų			11	<i>q1</i>	q_l	11	ų
(18) 12 ft branches	73.00	0.00	0.0000	No Icc	1386.00	0.00	00.0	2869.48	82.60
				Ice	1524.60	00'0	0.00	_	
				Service	1386.00	0.00	0.00		
(41) 10 ft branches	82.70	0.00	0.0000	No Ice	2706.00	0.00	0.00		
				Ice	2976.60	0.00	0.00		
				Service	2706.00	0.00	0.00		
(47) 8 ft branches	97.20	0.00	0.0000		2350.00	0.00	0.00		
				lce	2585.00	0.00	0.00		
				Service	2350.00	0.00	0.00		
18) 6 ft branches	107.90	0.00	0.0000		720.00	0.00	0.00		
				Ice	792.00	0.00	0.00		
				Service	720.00	0.00	0.00		

tour Tourse	Job	Page
INT OF CO	641200	4 of 18
Varian Environment	Project	Date
9138 S. State St. Ste 101	U1223-277-131	16:07:58 04/04/14
Sandy UT 84070	Client	Designed by
Phone: (801) 990-1775	l arson Camouflade	
F.4.Y: (801) 990-1776		KWIISOU

CAC		ft ²	99.40	109.30	99.40	44.20	48.70	44.20	20.00	22.00	
Vind Force (11	3956.14	3426.43	2225.33	1798.68	1560.98	1011.76	823.80	713.76	
F ₅ Wind Force		q_{I}	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
F_{\star}		<i>ql</i>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Weight		lb	1600.00	1760.00	1600.00	720.00	792.00	720.00	160.00	176.00	
			No Ice	Ice	Service	No Ice	Ice	Service	No Ice	Ice	
Azimuth	Angle	o	0.0000			0.0000			0.0000		
	From Centroid	ĥ	00.0			00'0			0.00		
Elevation		ψ	117.50			127.00			132.50		
Description			(40) 6 ft branches	•		(18) 6 ft branches	,		Top Hat with (3) 6 ft, and (1) 6 ft	branches	

	Weight	<i>lb</i>	3.00 7.00	19.00 70.00 218.55 374.77	710.80 97.20 296.65	538.90 97.20 296.65	238.90 97.20 296.65 296.65	54.42 54.42 56.96	42.19 68.57 68.57	51.00 51.00 92.56 146.56	100.00
	C44A Side	<i>ft</i> ²	0.45 1.09 1.73	3.01 1.40 1.83 2.26	3.17 9.42 10.82 12.07	14.24 9.42 10.82 12.07	14.24 9.42 10.82 12.07	0.50 0.50 0.75 0.75	1.47 1.65 1.85 2.96	1.25 1.41 1.59	4.20
	C ₄ 4 ₄ Front	сIJ	0.45 1.09 1.73	3.01 1.40 1.83 2.26	3.17 13.37 14.10 14.83	16.31 13.37 14.10 14.83	16.31 13.37 14.10 14.83	10.01 1.87 2.05 2.24	3.95 3.95 4.21	3.17 3.17 3.61	4.20
oaus			No Icc 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice I' Ice	2" loe No loe 1/2" loe 1" loe	Z" loc No Ice 1/2" lce 1" Ice	Z ICE No Ice 1/2" Ice 1" Ice	2 lice No lice 1/2" lice 7" lice	2 ICe No Ice 1/2" Ice 1" Ice 2" Ice	No Ice
OWELL	Placement	ĥ	110.00	110.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
DISCRETE I OWER LOADS	Azimuth Adjustment	۰	0.0000	0.0000	0.0000	00000	0.0000	0.0000	0.0000	0.0000	0.0000
ã	Offsets: Horz Lateral Fert	d d d d d		2.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00
	Offset Type		None	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face
	Face or Leg		υ	U	<	в	C	۲	<	< .	<
	Description		BA6312	6'-0" Standoff Arm	(4) CCI HPA-65R-BUU-H8-K w/ Mount Pipe	(4) CCI HPA-65R-BUU-H8-K w/ Mount Pipe	(4) CCI HPA-65R-BUU-H8-K w/ Mount Pipe	(2) Ericsson RRUS A2 Module	(2) Ericsson RRUS-12	(3) Ericsson RRU-11	(2) Generic RRU(36"x12"x12")

Page 6 of 40

Page 5 of 18	Date 16:07:58 04/04/14	Designed by kwilson		Weight	lb	44.09 54.42 66.96	99.48 19.00 42.19 68.57	51.00 70.32 92.56	146.26 100.00 173.37	263.85 54.42 56.96	99.48 19.00 42.19 68.57	131.73 51.00 70.32 92.56	146.56 100.00 134.64 173.37	263.85 400.00 800.00 1200.00	2000.00 20.00 20.00 20.00	20.00 79.20 162.36 255.18	473.82 79.20 162.36 255.18	473.82 79.20 162.36 255.18	473.82 100.00 124.92 153.15	220.30 100.00
	-			C.A. Side	JI ₂	0.50 0.62 0.75	1.04 1.65 1.85	1.25 1.41 1.59	1.96 4.52 4.84	0.50	1.65	125 141 159	1.96 4.20 4.84	14.00 18.00 20.00	24.00 0.00 0.00	8.70 8.70 11.38	8.70 8.70 11.38	8.70 8.70 11.38	13.58 2.80 3.04 3.28	2.80
				CaAa Front	Jf2	1.87 2.05 2.24	2.06 3.95 4.21	4.7 2.94 3.17	4.52 4.52 4.84	1.87 2.05 2.24	2.66 3.69 4.21	4.77 2.94 3.17 3.41	3.91 4.20 4.84	14.00 18.00 20.00	24.00 0.00 0.00	0.00 11.47 12.08 12.71	14.07 11.47 12.08 12.71	11.47 12.08 12.71	14.07 3.04 3.28	3.80 2.80
	31	lage				No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice 1" Ice	No Ice 1/2" Ice 1" Ice	Z ⁻ Ice No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice I " Ice	2" loe No Ice 1/2" loe 1" Ice	2" loe No Ice 1/2" loe I "Ice	2" Ice No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice 1" Ice	2" lce No lce 1/2" lce 1" lce	2" Ice No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice I "Ice	2" lcc No lcc 1/2" lcc I' lcc	2" Ice No Ice
641200	U1223-277-131	Larson Camouflage		Placement	ų	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.001	100.00	100.00	90.06	90.00	90.00	90.00	00.06
	U1	Lars	,	Azimuth Adjustment	٥	0.0000	0.0000	0:0000	0.0000	0.0000	0.0000	00000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000
				Offsets: Horz Lateral	h h h	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00			3.00 0.00 0.00	3.00 0.00 0,00	3.00	3.00 0.00 0.00	3.00
doL	Project	Client		Offset Type		From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	None	None	From Face	From Face	From Face	From Face	From Face
2	ing 101	75 76		Face or Leg		в	œ.	д	В	υ	C	C	υ	U	C	×	д	U	۲	д
tuxTower	Vector Engineering 9138 S. State St. Ste 101	Sandy UT 84070 Phone: (801) 990-1775 FAX: (801) 990-1776		Description		(2) Ericsson RRUS A2 Module	(2) Ericsson RRUS-12	(3) Ericsson RRU-11	(2) Generic RRU (36"x12"x12")	(2) Ericsson RRUS A2 Module	(2) Ericsson RRUS-12	(3) Eriusson RRU-11	(2) Generic RRU (36"x12"x12")	RMV12-496 w/ (1) LWRM & (3) SV197-36	(3) DC6-48-60-18-8F Surge Suppressor (Enclosed)	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12)

Page 7 of 40

8 of 18	Date 16:07:58 04/04/14	ed by kwilson								žht	0.00							
Page 80	Date 16:07:58	Designed by kwils	Weight	lb	220.30 105.00 499.12 905.79 1757.39	105.00 499.12 905.79 1757.39	499.12 499.12 905.79 1757.39			Aperture Weight Area	f ² lb 3.14 25.00 3.41 42.00 4.69 50.00			Cada Out	Face f^2 f^2 0.000	00010	00000	0.000
			C.M. Side	Jf2	3.80 2.33 3.02 3.73 5.17	2.33 3.02 3.73 5.17	2.33 3.02 5.17 5.17			, 4	No Ice 1/2" Ice			Cuda In	Face ft ² 0.000	000.0	000000000000000000000000000000000000000	0.000
			CaA4 Front	ett.	3.80 2.33 3.02 3.73 5.17	2.33 3.02 3.17 5.17	2.33 3.02 3.17 5.17			Outside Diameter	/r 2.00 P	- (4		leg %		00.001	00 00 00 00	00.00
		age			2" Ice No Ice 1/2" Icc 1" Icc 2" Ice 2" Ice	No Ice 1/2" Ice 1" Ice 2" Ice	No Ice 1/2" Ice 1" Ice 2" Ice			Elevation C D	f 110.00		- No Ice	Atop	f ² 55.833	200.700	130.049	
641200	U1223-277-131	Larson Camouflage	Placement	ų	130.00	130.00	00100 ·		Dishes	3 dB Elev Beam Width	ه 11	· ·	sures - I	_		55.833 55.833 200.700 200.700 200.700		
	5	Lars	Azimuth Adjustment	٥	0.0000	0.0000	0,000		Dis	Azimuth Adjustment	0.0000		Tower Pressures	A_F A_R A_R	f ² 0.000	0.000	000000000000000000000000000000000000000	0.000
			Offsets: Horz Lateral	hert ft ft	3.00 0.00 0.00	3.00 0.00 0.00	0.00			Offsets: Horz Lateral Vari	ft 2.00 0.00	5.5	Tow	<i>H</i> 0		0 2 8		
dol	Project	Client	Offset Type		From Face	From Face	From Face			Offset Type	o From Face			ak.	psf ft ² 24 55.833	21 200.700	18 130.049 16 143.602	
	×0	5	Face C or 1 Leg				е Ч			Dish Type	Paraboloid w/o Radome			Kz qr	1.445	1.297	1.07	
ower	igineerin e St. Ste 10	IT 84070 1) 990-177.) 990-1776	1							Face or Leg	C Pa			N	ft 119.70	82.00	41.78	
tnxTower	Vector Engineering 9138 S. State St. Ste 101	Sandy UT 84070 Phone: (801) 990-1775 F4X: (801) 990-1776	Description		10'-0" T-Arm	10'-0" T-Arm	10-0-1 - Arm			Description	2'-0" Standard			Section Flevation		110.00-56.00	L3 56.00-28.25 L4 28.25-1.00	
										D	2'4			Sec	1000	110.0	L3 56.0 L4 28	
Page 7 of 18	Date 16:07:58 04/04/14	Designed by kwilson	Weight	16	255.18 253.18 79.20 102.36 255.18	473.82 79.20 162.36 255.18	4/3.82 100.00 124.92 153.15	220.30 124.92 153.15	124.92 124.92 153.15	220.30 105.00 499.12 905.79	1157.39 105.00 499.12 905.79	105.00 499.12 905.79	79.20 162.36 255.18	473.82 79.20 162.36 255.18	473.82 79.20 162.36 255.18	473.82 100.00 124.92 153.15	220.30 100.00 124.92 153.15	220.40 100.00 124.92 153.15
			C.A. Side	Jł,	11.38 13.58 8.70 10.11 11.38	13.58 8.70 10.11 11.38	3.04 3.280 3.28	3.80 3.04 3.28	3.28	3.80 3.02 3.73	2.33 3.02 3.73	2.33 3.02 3.73	8.70 10.11 11.38	8.20 8.70 11.11	13.58 8.70 10.11 11.38	13.58 2.80 3.04 3.28	3.80 3.04 3.28	3.80 3.04 3.28
			C _A A _A Firont	JF.	12.71 14.07 11.47 12.08 12.71	14.07 11.47 12.08 12.71	14.0/ 2.80 3.04 3.28	3.80 3.04 3.28 9.28	3.28 3.04	3.80 3.73 3.73	2.33 3.02 3.73	2.33 3.02 3.73	11.47 12.08 12.71	14.07 11.47 12.08 12.71	14.07 11.47 12.08 12.71	14.07 2.80 3.04 3.28	3.80 3.04 3.28	3.80 3.04 3.28
	.	age			1" Ice 2" Ice No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice 1" Ice	2 loe No loe 1/2" loe 1" loe	Z" loc No loc 1/2" loc 1" loc	No Ice 1/2" Ice 1" Ice	2" loc No loc 1/2" loc 1" loc	2 ICC No Icc 1/2" Icc 1" Icc	Z lice No Ice 1/2" Ice 1" Ice	2 ICE No Ipe 1/2" Ice 1" Ice	2" toe No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice 1" Ice	2" Ice No Ice 1/2" Ice 1" Ice	2" loc No loc 1/2" loc 1" loc	2" Ice No Ice 1/2" Ice 1" Ice
641200	U1223-277-131	Larson Camouflage	Расетен	ų	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	130.00	130.00	130.00	130.00	130.00	130.00
	10	Lars	Azimuth Adjustment	٥	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
			Offsets: Horz Lateral	Vert Ji A	0.00 3.00 0.00 0.00	3.00 0.00 0.00	3,00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00	3.00 0.00 0.00
dot	Project	Client	Offset Type		From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face
*	ing 101	775 76	Face or Leg		в	с 0	۲ ا	8	5	۲ ا		· IJ	A	a	5	۲ ۲	е Д	ບ
taxTower	Vector Engineering 9138 S. State St. Ste 101	Sandy UT 84070 Phone: (801) 990-1775 FAY: (801) 990-1776	Description		(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipc	(4) 96" × 12" × 6" Panel Antenna w/ Mount Pipe	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12) 100#	10'-0" T-Arm	10'-0" T-Arm	10-0" T-Arm	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" × 12" × 6" Panel Antenna w/ Mount Pipe	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12) 100#

Page 8 of 40

Page 9 of 40

10 of 18	Jate 16:07:58 04/04/14	Designed by kwilson	Cirl	,ace	U	U				Ctrt. Face				<u>ບ</u>	0		1		Ctrt. Face		υ	U				
	Date 16:	Des	*	- L	90.23	94.84				-	<i>plf</i>	86.33		90.23	94.84				*	plf	72.60	86.33	90.23	94.84		
			Ŀ		2503.85	2584.52	11202.22		o Face	ц	<i>dl</i> 1457 10	4661.75		2503.85	2584.52	11202.22		o Face	F	11	1452.10	4661.75	2503.85	2584.52	11202.22	
	31	flage	AB .	h2	200.700 130.049 130.049	130.049 143.602 143.602	143.602 686514.38 lb-ft		- No Ice - Wind 60 To Face	Ås	ft ² 55 833	55.833 55.833 200.700	200.700 200.700	130.049	143.602 143.602 143.602	143.602 686514.38 1b-ft		Tower Forces - No Ice - Wind 90 To Face	AB	J ²	55.833 55.833	200.700 200.700	200.700 130.049 130.049	130.049 143.602 143.602	143.602 686514.38 lb-ft	
641200	U1223-277-131	Larson Camouflage	$D_{\rm K}$				OTM		- Wi	D^{k}	-	4 prot prot pro				1 MTO		- Wi	D_R						1 MTO	
64	U1223	arson (D_{F}				-		o Ice	D_{F}	-					-		o Ice	D_F							
		د.	Ra						N - 8	$R_{\rm R}$								N - S	Ra							
			Ċ		0.65 0.65 0.65	0.65	0.65		orce	СĽ	0.65	0.65	0.65	0.65	0.65	0.65		orce	CF		0.65 0.65	0.65	0.65 0.65 0.65	0.65 0.65 0.65	0.65	
	Project	ŧ	. 10				-		Tower Forces	e.	-					-		er Fo	n.			·			- .	
	Pro	Client	<i>2</i> ,	<i>a u e</i>	υ∢r	U∢¤	U U		Tow	<i>u</i> , 13	0 0 0	:mu∢		A B A		U		Tow	u, u	c e	< B 2	рАБ	n⊳c			
61	e 101	70 1775 1776	Self	Weight Ih	.12882.08	14707.61	37010.65			Self Weight	10 0121	8071.74		12882.08	14707.61	37010.65			Self Weight	11	1349.21	8071.74	12882.08	14707.61	37010.65	
tax I ower	Vector Engineering 9138 S. State St. Ste 101	Sandy UT 84070 Phone: (801) 990-1775 FAX: (801) 990-1776	Add	Weight Ih	2422.57	2378.93	8997.30			Add Weight	1b 518.40	3677.40		2422.57	2378.93	8997.30			Add Weight	lb	518.40	3677.40	2422.57	2378.93	8997.30	
ťn.	Vect. 9138.	Sc Phon FAX	Section	Elevation A	L3 56.00-28.25	L4 28.25-1.00	Sum Weight:			Section Elevation	Å 11	130.00-110.00	110.00-56.00	L3 56.00-28.25	L4 28.25-1.00	Sum Weight:			Section Elevation	ĥ	L1 130.00-110.00	L2 110.00-56.00	L3 56.00-28.25	L4 28.25-1.00	Sum Weight:	
	(•					<u></u>		-					•									
													1								["					
	te 5:07:58 04/04/14	Ę			[0000	0.000	0000	3888																
9 of 18	58 04	signed by kwilson				CaAA Out Face	9 0 0 0	666	000	6666	5			-			000.000.000.000.000.000.0000.0000.0000.0000					i r	Lace Face			

ω	/04/14	E				000	000	000	000000000000000000000000000000000000000													
9 of 18	Jate 16:07:58 04/04/14	Designed by kwilson			CAAA Out Face							Г	10 0				00		7 8			_
Page	Date 16:0	Desig			CAAA In Face	0.000	000.0	000.0	0.000 0.000 0.000			C.M. Out Face	0.00	0.000	0.000	0.00	0.00		Ctrl. Face	5	3 19	_
					Leg 9%	100.00 100.00	100.00	100.00 100.00	100.00 100.00 100.00 100.00			C.A. In Face	0.000	0.000	000.0	0.000.0	0.000	Face	#	Jid U		
					Ales A	60.000	211.950	135.830	149.279			Leg %	100.00	100.00	100.00	100.00	100.00	al To	H	91		
	31	llage	- With Ice		AR ft2	60.000 60.000 60.000		11.950 35.830 35.830	135.830 149.279 149.279 149.279	Service		Aive	55.833	200.700	130.049	143.602		Norm	A_B	ft ² 55 011	55.833 55.833 55.833 200.700	200.700
641200	U1223-277-131	Larson Camouflage	ure - M	<i>069</i>	Ar 1	0.000				1	.690	Au 62	55.833 55.833		200.700 130.049		143.602	- Wind Normal To Face	DR			_
	U12	Larso	Tower Pressure	$G_H = 1.690$		ح در ت	B A G	ບ< ¤	C B P C	Tower Pressure	$G_H = 1.690$		000	0.000				- No Ice				-
			ower		Ac N ²	60.000	211.950	135.830	149.279	ower		F 4F								270	0.65 0.65 0.65 0.65	0.65 {
	Project	ent	Ĕ		tz in	1.2500	1.2500	1.2500	1.2500			Ao 62	55.833	200.700	130,049	143.602		Tower Forces	υ	-		1
dol	Pr	Client			4z 26	19	17	14	13			-16 -16	13	12	10	0		Wer	íz, a		ເຫບ∢	
5	ring 101) 775 776			Kz	I.445	1.297	1.07	1			K_2	1.445	1.297	1.07	-		Ĕ	Self Weight	91	8071.74	
tuxTower	Vector Engineering 9138 S. State St. Ste 101	Sandy UT 84070 Phore: (801) 990-1775 FAX: (801) 990-1776			z 4	119.70	82.00	41.78	14.33			N C	119.70	82.00	41.78	14.33			Add Weight	16	3677.40	
tux	Vector 9138 S. 1	Sana Phore: (FAY: (i			Section Elevation A	L1 130.00-110.00	L2 110.00-56.00	L3 56.00-28.25	L4 28.25-1.00			Section Elevation 4	L1 L1	L2 L2	L3 56.00-28.25	L4 28.25-1.00			Section Elevation	<i>h</i>	130.00-110.00 L2	110.00-56.00

tnxTower/04/14 = , 11 of 18 Page 641200 dot taxTower

Votes Environmino	Project	Date
9138 S. State St. Ste 101	U1223-277-131	16:07:58 04/0
Sandy UT 84070	Client	Designed by
Phone: (801) 990-1775	Larson Camouflage	
FAX: (801) 990-1776		KWIISUU
		-

	Ctrl.	Face			U			υ			υ			υ				
ace	м			fid	61.46			71.81			74.23			77.66				
Tower Forces - With Ice - Wind Normal To Face	F			<i>qp</i>	1229.11			3877.68			2059.85			2116.19			9282.83	
d Norm	A_{E}			Jt ²	60.000	60.000	60.000	211.950	211.950	211.950	135.830	135.830	135.830	149.279	149.279	149.279	572188.00	lb-ft
Win	D [#]				1	-	-	-		-	~			-		-	MTO	
- eo	D_F						-	-	-	-	-	-	-	-	-			
Vith	Re						poort	-				-	-					
s - V	ڻ				0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65		
Force	υ				-	-	-	1	1	-	1		-	1	1	-		
/er	14	а	U	8	V	В	υ	A	в	U	۷	щ	U	A	В	υ		
Том	Self	Weight		<i>q1</i>	2421.54			11891.85			15343.46			17418.96			47075.81	
	Add	Weight		11	518.40			3677.40			2422.57			2378.93			8997.30	
	Section	Elevation		Ψ	EI	130.00-110.00		1.2	110.00-56.00		L3	56.00-28.25		L4 28.25-1.00			Sum Weight:	

Section	Add	Self	Н	9	Ċ	Re	Dr	Di	An	F	M	Curl.
Elevation	Weight	Weight	a									Face
ų	41	41	0 10						5	ų	nt	
E1	518.40	2421.54	V	-	0.65	-	-	-	60.000	1229.11	6146	0
130.00-110.00			g		0.65			-	60.000			
			υ	-	0.65		-	-	60.000			
L2	3677.40	11891.85	<	-	0.65			-	211.950	3877.68	71.81	υ
110.00-56.00			В	-	0.65		-	-	211.950			
			υ	-	0.65	-		-	211.950			
L3	2422.57	15343.46	<	-	0.65	-		-	135.830	2059.85	74.23	U
56.00-28.25			В	-	0.65	-	-	-	135.830			
			υ	-	0.65	-		-	135.830			
L4 28.25-1.00	2378.93	17418.96	<		0.65	-		-	149.279	2116.19	77.66	ບ
			д	-	0.65	-		-	149.279			
			U	-	0.65	-		-	149.279			
Sum Weight:	8997.30	47075.81						MITO	572188.00	9282.83		
							-		4-41			

	Ctrl. Face	ບ
8	ve Dtf	61.46 C
Fower Forces - With Ice - Wind 90 To Face	B F	1229.11
/ind 90	A_E R^2	60.000 60.000 60.000
	D_R	
th Ic	D_{F}	
- Wi	Ra	
rces	ڻ	0.65 0.65 0.65
er Fo	<i>.</i>	
8	4000	≺ na ∪
F	Self Weight Ib	2421.54
	.4dd Weight 1b.	518.40
	Section Elevation ft	L1 130.00-110.00

4/04/14	uo															
Date 16:07:58 04/04/14	Designed by kwilson	Chrl.	Face			0			U U			U				-
<u>ö</u>		м			fid	71.81			74.23			77.66				
		F			97	3877.68			2059.85			2116.19			9282.83	
31	flage	AB			Jt ²	211.950	211.950	211.950	135.830	135.830	135.830	149.279	149.279	149.279	572188.00	4 1
U1223-277-131	Larson Camouflage	D_R				-	1	-	-	-			-	-	MILO	
U1223	Irson (D_{F}				I	-	-	-	-			-	,		
	Ľ	RR				-	-	-	-	-	-		1			-
		Ľ,				0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65		
Project	Client	2				-	-	1	-		-	-				_
Ë ,	σ	н	а	0	в	×	щ	U	<	щ	υ	×	щ	U		
ring 101	0 1775 776	Self	Weight		<i>lb</i>	11891.85			15343.46			17418.96			47075.81	
Vector Engineering 9138.S. State St. Ste 101	Sandy UT 84070 Phone: (801) 990-1775 F4X: (801) 990-1776	Add	Weight		11	3677.40			2422.57			2378.93			8997.30	
Vectu 9138.	Sc Phon FAX	Section	Elevation		ĴĮ,	L2	110.00-56.00		L3	56.00-28.25		L4 28.25-1.00			Sum Weight:	

12 of 18

641200

doL

Page

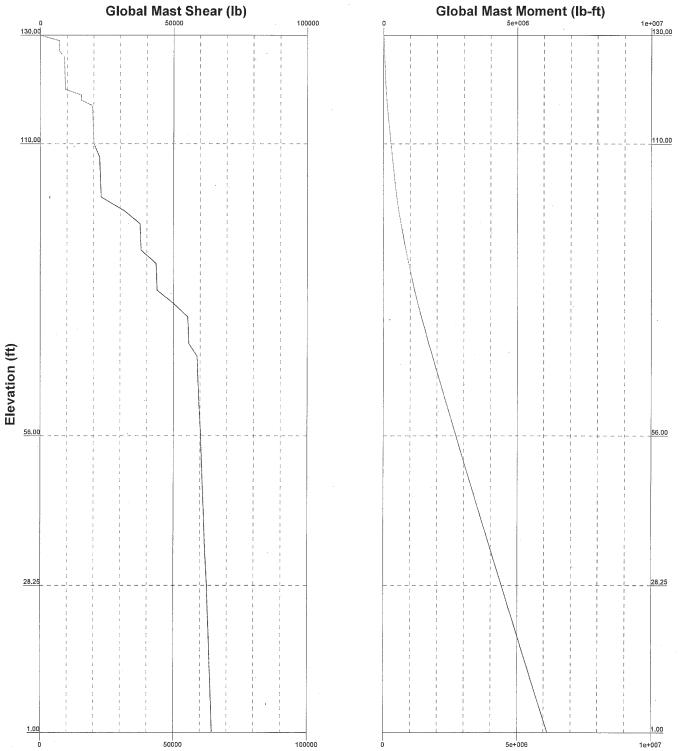
Ctrl. Face		ບ	-	_	U			- 		-	ບ				
2012	fid	40.84			48.56			50.75			53.35				
4	1 41	816.80			2622.24			1408.42			1453.79			6301.25	
BF	ft2	55.833	55.833	55.833	200.700	200.700	200.700	130.049	130.049	130.049	143.602	143.602	143.602		1b-ft
D_R		-	-				-	-	-	-				MITO	
D_{F}		-	-		-	-	-	-	-	-					
Ra		-	-	-	-	-	-	-	-	-	-		-		
ڻ		0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65		
э			-				-	-	~		-	-	-		
ц, в	ບ່າ	A	щ	с О	A	щ	υ	A	щ	U	<	щ	U		
Self Weight	<i>q</i> 1	1349.21			8071.74			12882.08			14707.61			37010.65	
.4dd Weight	<i>q1</i>	518.40			3677.40			2422.57			2378.93			8997.30	
Section Elevation	ų	L1	130.00-110.00		12	110.00-56.00		L3	56.00-28.25		L4 28.25-1.00			Sum Weight:	

	7. 8.		
	Ctrl. Face	υ υ υ	0 0
	w plf	40.84 48.56	50.75 53.35
Tower Forces - Service - Wind 60 To Face	F . lb	816.80 2622.24	1408.42 1453.79
ind 60	Au fi ²	55.833 55.833 55.833 55.833 200.700 200.700 200.700	130.049 130.049 130.049 143.602 143.602
N-	$D_{\mathbf{R}}$		
rvice	D_F		
- Se	Ru		
rces	Ů.	0.65 0.65 0.65 0.65 0.65 0.65 0.65	0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
er Fo	e	and and and and and and	
No	4000	<pre>cm>cm></pre>	< m U < m U
	Self Weight Ib	1349.21 8071.74	12882.08
	Add Weight Ib	518.40 3677.40	2422.57 2378.93
	Section Elevation ft	L1 130.00-110.00 12 110.00-56.00	L3 56.00-28.25 L4 28.25-1.00

Page 10 of 40

Page 14 of 18	Date 16:07:58 04/04/14	Designed by kwilson						Mimor Axis Moment H-A	.00 1.01 1.6.94 1.6.94	274016.94 0.12 0.00 -1853-01 405.67	2275171.67 -405.67	2275171.67 0.222.34 0.00 -1825.05 -448.31	3895550.89 -448.31		6145621.17 -500.48	6145621.17 -521.86	
641200	U1223-277-131	Larson Camouflage					nber Forces	Force Major Axis Mament Ib lb-ft	0.00 0.00 0.00 0 -21855.51 0.00 0 -7166.61 -274005.78 - -7164.08 -0.00 2744 -274005.78 -2	0.00 0.00 0.00 -2268492.4	6 0.00 -2268492.4 6	7.3	1 0.00 -3888862.7 I	5.0	0 0.00 -6129642.0	-64605.66 0.00 6145 -52	eactions
Job Gv	Project U122	Client Larson	Description			*****	Maximum Member Forces	Condition Gov. Load Condi.	Max Tension 1 Max Compression 5 Max Mx 3 Max Wy 2 Max Vy 3	Max Vx 2 Max Vx 2 Max Torque 7 Max Torque 1 Max Compression 5 Max Mx 3	Max My 2 Max Vy 3	Max Vx 2 Max Torque 7 Max Tension 1 Max Compression 5 Max Mx 3	Max My 2 Max Vy 3	Max. Vx 2. Max. Torque 7 Max. Tension 1 Max. Compression 5 Max. Mx 3	Max My 2 Max Vy 3	Max. Vx 2 Max. Torque 7	Maximum Reactions
tuxTower		Sandy UT 84070 Phone: (801) 990-1775 F4X: (801) 990-1776	Cont. Vories	Dead Only Dead+Wind 0 deg - No Ice Dead+Wind 90 deg - No Ice Dead+Wind 180 deg - No Ice	 5 Dead+lce+Temp 6 Dead+Wind 0 deg+lce+Temp 7 Dead+Wind 90 deg+lce+Temp 8 Dead+Wind 180 deg+lce+Temp 9 Dead+Wind 10 dear-Service 	0 Dead+Wind 90 deg - Service 1 Dead+Wind 180 deg - Service		Section Elevation Component No. ft Type	L.1 130 - 110 Pole	L2 110 - 56 Pole		L3 56 - 28,25 Pole		L4 28.25 - 1 Pole			
rage 13 of 18	Date 16:07:58 04/04/14	Designed by ƙwilson	w Ctri. Face	py .		w Ctrl. Face	<i>pff</i> 40.84 C	48.56 C	50.75 C 53.35 C			Sum of Torques 11-ft		00 000 01 333.14 0 0.00 00	0 0.00 77 442.17 00 0.00		
		age	As F	ft ² lb-ft 6301.25 b-ft 6301.25	nd 90 To Fac	AB F	ft ² 1b 55.833 816.80 55.833	55.833 200.700 200.700 2622.24 200.700	130.049 130.049 130.049 130.049 143.602 143.602 143.602	386164.34 6301.25 Ib-ft 6301.25		of Sum of iing Overturning , M _x Moments, M ₅	334.48 0.00 334.48 0.00		-562572	334.48 0.00 -3417915.91 0.00 422.60 -3409174.32 3414854.57 0.00	
641200	U1223-277-131	Larson Camouflage	R_{tt} D_{F} D_{R}	MTO	s - Service - Wi	R _k D _F D _R	1 1			T MIO	Force Totals	Sum of Sum of Sum of Forces Overturning Is Moments, Ma		-64587.51 1.44 64526.67	-59378.61 1.37 59320.43	-36330.47 0.81 36296.25	
	Project	Smy 78 4070 Client Client Larson Camouf Phome: (801) 990-1775 F4.X: (801) 990-1776	Dr.	MIO	Tower Forces - Service - Wind 90 To Face	Dr			0.65 0 0.65 1 0.65 0 0.5	0.65 0.65 0.65	Force Totals	Sum of Sum of Forces Forces X Ib			0.00		

Page 11 of 40


Page 16 of 18	Date 16:07:58 04/04/14	Designed by kwilson				Vind					Curvature ft	21012				5190 181	3384 Aindersteinen sterken sindersteinen sind
	- 	ge		101 137 135 100 104 100 100	331	- Service Wind	Twixt o	0.0005 0.0005 0.0001 0.0000				0.0005				0.0003	maches 9 6947 0.8884 0.0002 Maximum Tower Deflections - Design Wind
641200	U1223-277-131	Larson Camouflage	Force Tolerance	0.00005037 0.00055037 0.000053237 0.000053237 0.000053037 0.000033037 0.000033037 0.000033037 0.000033037 0.000033037 0.000033765	0.00003		i <i>lt</i> •	863 725 132				1.5863	1.5748 1.5748	1.5297 1.4725 1.4514 1.3524	1.1951	1.0682	0.8984 ctions -
	U12	Larso	Displacement Tolerance		0.0000000	Maximum Tower Deflections	Gov. Tilt Load Comb. °	9 1.5863 9 1.4725 9 0.7432 9 0.4294				23.074	22.078 22.078 19.772	18.960 16.584 15.939 13.610	12.822 10.893	9.089 8.462	6.947 wer Defle
q	Project	Client	Number of Cycles	0 6 6 6 9 <u>7 7 7 6</u> 6 6	66	mum To			ctione o		Load Comb.)6ft 9		6 6 6 /M X	9 nna w/ 9	9 nna w/ 9	° mum To
tuxTower Job			ćpa	Υся Үся Үся Үса Үса Үса	Yes Yes	Maxii	Ľ	130 - 110 23.074 110 - 56 16.584 63.25 - 28.25 5.111 36.5 - 1 1.748	Cuttori Dofloctions and Badins of Cumisting Control Mind			Top Hat with (3) 6 ft, and (1) 6 ft branches	 (4) 96" x 12" x 6" Panel Antenna w/ 	Mount Pipe (40) 6 ft branches 2'-0" Standard (18) 6 ft branches (4) CCI HPA-65RBUU-H8-K w/	Mount Pipe (47) 8 ft branches (4) 96" x 12" x 6" Panel Antenna w/	(41) 10 ft branches (41) 10 ft branches (4) 96" x 12" x 6" Panel Antenna w/	(18) 12.ft himoches (18) A himoches Maxfir
tuxT	Vector En 9138 S. Stat	Sandy U Phone: (80) FAX: (801)	Load Combination	- 0 1 4 9 9 9 7 8 8 5	0 11		Section El No.	L1 13 L2 13 L3 63.2 L4 3		Flevation				117.50 110.00 107.90 100.00 (4)		82.70 80.00 (4) 9	73.00
Page 15 of 18	Date 16:07:58 04/04/14	Designed by kwilson					in the state of th	-q1	0.00 0.00 0.00 521.79		N99001000000000000000000000000000000000		ok Brann	0.002% 0.0022% 0.0022%	8/2000.0 %0000.0 %0000.0	0.000% 0.001% 0.001%	0001%
1		Design	Horizonal, X Horizonal, Z		0.00 4.2525.24 0.00 5.2525.25 0.00 -1.3525.45 7.5237.04 -1.37	eaction Summary	erturning	Monter, Als Acounter, Als Acounter, Als Acounter, Als Acounter, Als 48 0.00 -6145621.17 0.00 -61456200 -500.45 -6129642.00	6139596.76 0.00 1853.12 0.00 -5782234.55 0.00 2106.25 -5768344.47	5/19625.93 0.00 -3457496.89 0.00 431.39 -3448652.03	3454405.28 0.00	o Summarv	clions p7	16 16 16 16 16 16 16 17 16 17 16 16 17 16 16 16 16 16 16 16 16 16 16	108427.42 -0.00 108427.42 -0.00 108427.42 59378.61 108427.42 -1.37	108427.42 -59320.42 66273.48 36329.65 66273.48 -0.81	5.43
641200 Page	D1223-277-131	Larson Camouflage	Vertical Horizontal, X Ib	108427.42 0.00 66273.48 0.00 66273.45 0.00 61236420 0.00 61236420 0.00 61236420 0.00 60273.45 0.00 62273.45 0.00 62273.45 0.00 62273.45 0.00	-61395967 0.00 -613959676 0.00 0.00 0.00 -521.79 -59237.04	Tower Mast Reaction Summary	erturning	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00 64525.24 6139596.76 0.00 0.00 53378.01 2.782324.55 0.00 0.00 53378.01 2.782324.55 0.00 59237.04 1.137 2.106.25 5768344.47	0.00 - 5522.42 2/1962.59 0.00 0.00 -5522.65 -5457496.89 0.00 36246.39 0.81 -3431.39 -3448652.03	0.00 36295,43 3454405.28 0.00	Solution Summary	py py py py py py py	Ib Ib Ib Ib Ib 00 0.00	-5978.61 0.00 108427.42 -0.00 -5978.61 0.00 108427.42 -0.00 -5978.61 0.00 108427.42 5978.61 1.37 -59237.04 108427.42 -1.37	59320.43 0.00 108477.42 -59320.42 -65330.47 0.00 66273.48 56329.65 0.81 -36246.39 66273.48 -0.81	36296.25 0.00 66273.48 -36295.43 Von-Linear Convergence Results
Page	Project U1223-277-131	Client Larson Camouflage Design	Horizontal, X lb	108427.42 0.00 66273.48 0.00 66273.45 0.00 61236420 0.00 61236420 0.00 61236420 0.00 60273.45 0.00 62273.45 0.00 62273.45 0.00 62273.45 0.00	4 002.13.45 0.000 4 - 619356.76 0.00 11 0.000 7 -521.79 -52237.04	Tower Mast Reaction Summary	erturning	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 66273.45 0.00 6455.24 6139596.76 0.00 p 108427.42 0.00 59778.61 57823.5 0.00 p 108427.42 0.00 59778.61 57823.5 0.00 mp 108427.42 0.00 59778.61 57823.5 0.00 mp 108427.42 59237.04 1.137 2106.25 576834.47	108421.42 0.00 99520.42 57/96.53 99 108721.48 0.00 -36529.65 -345796.89 0.00 66273.48 362246.39 0.81 431.39 -3448652.03	66273.48 0.00 36295.43 3454405.28 0.00 .	Solution Summary	Sum of Applied Forces p7 Sum of Applied Forces p7 Sum of Applied Forces p7 Sum of Versions p7	Ib Ib Ib Ib Ib 00 0.00	- 108477.42 0.00 0.00 108477.42 0.00 - 108477.42 - 55737.86 0.00 108477.42 0.01 - 1084477.42 - 15377.861 0.00 108477.42 - 137 - 148477.42 1.37 - 59237.04 108427.42 - 1.37	-108427.42 59320.43 0.00 108427.42 -59320.42 -66273.49 -3633.04 -3632.46 -66273.49 0.81 -366246.39 66273.48 -0.81	-66273.49 36296.25 0.00 66273.48 -36295.43 Non-Linear Convergence Results

Page 12 of 40

Compression Checks Pole Design Data L L Klh F. p A bi 2000 0.00 34.19
PC

Page 13 of 40

Maximum Values Мx – Mz Page 14 of 40

Vector Engineering	^{Job:} 641200		
9138 S. State St. Ste 101	Project: U1223-277-131		
Sandy UT 84070	^{Client:} Larson Camouflage	Drawn by: kwilson	App'd:
	Code: TIA/EIA-222-F	Date: 04/03/14	Scale: NTS
FAX: (801) 990-1776	Path: N:12013 ProjectsW1223 Lawsen GameutageW1223-277-131 6412	0 Cast Hattlard CTIENG/REV 3 new loading/Towerld41200 REV	Dwg No. E-4

- Vx

- Vz

TIA/EIA-222-F - Service - 60 mph

Maximum Values Page 15 of 40

0 130.00	 Deflection (in)	Tilt (deg)	Twist (deg)
<u>110.00</u>			
56.00			
28.25			

Vector Engineering	^{Job:} 641200		
	Project: U1223-277-131		
9138 S. State St. Ste 101 Sandy UT 84070	^{Client:} Larson Camouflage	Drawn by: kwilson	App'd:
	Code: TIA/EIA-222-F	Date: 04/03/14	Scale: NTS
FAX: (801) 990-1776	Path: N10213 ProjectalU1223 Larsen CamouflegelU1223-277-131 (41)	200 East Hartford CTVENG/REV 3 new loading/Tewer/641200 RB	Dwg No. E-5

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F			
Site Data	Reactions		
BU#:	Moment: 6146 ft-ki	ps	
Site Name:	Axial: 108.4 kips	5	
App #:	Shear: 64.6 kips	5	
Pole Manufacturer: Other			
· · · · · · · · · · · · · · · · · · ·			
Anchor Rod Data	If No stiffeners, Criteria: AISC ASD <-Or	ly Applcable to Unstiffened Cases	
Qty: 30			
Diam: 2.25 in			
Rod Material: A615-J	Anchor Rod Results	Rigid	
Strength (Fu): 100 ksi	Maximum Rod Tension:	126.6 Kips Service, ASD	
Yield (Fy): 75 ksi	Allowable Tension:	195.0 Kips Fty*ASIF	
Bolt Circle: 75.5 in	Anchor Rod Stress Ratio:	65.0% Pass	
Plate Data			
Diam: 81.5 lin	Base Plate Results Flex	kural Check Rigid	
Thick: 3 in	Base Plate Stress:	31.3 ksi Service ASD	
Grade: 50 ksi	Allowable Plate Stress:	50.0 ksi 0.75*Fy*ASIF	
Single-Rod B-eff: 7.12 in	Base Plate Stress Ratio:	62.6% Pass Y.L. Length:	_
		34.17	
Stiffener Data (Welding at both sides)	n/a		
Config: 0 *	Stiffener Results		
Weld Type: Both	Horizontal Weld : n/a		
Groove Depth: 0.25 in **	Vertical Weld: n/a		
Groove Angle: 45 degrees	Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a		
Fillet H. Weld: 0.3125 in	Plate Tension+Shear, ft/Ft+(ft/Fv)^2: n/a		
Fillet V. Weld: 0.3125 in	Plate Comp. (AISC Bracket): n/a		
Width: 5 in			
Height: 18 in	Pole Results		
Thick: 0.75 in	Pole Punching Shear Check:	n/a	
	Pole Punching Shear Check:	11/a	
Grade: 50 ksi			
Weld str.: 70 ksi			
Pole Data			
Diam: 67.325 in			
Thick: 5/8 in	and the second		
Grade: 65 ksi			
# of Sides: 18 "0" IF Round			
Ful 80 ksi	$\langle \gamma \rangle$	and the second	
Reinf. Fillet Weld 0 "0" if None		100 000	
Stress Increase Factor			
Stress Increase Factor			

* 0 = none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

1.333

ASIF:

** Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

 \diamond

JOB NO.: U1223-277-131 DATE: 03/18/14

SHEET

DESIGNED: KAW CHECKED: MEG

OF

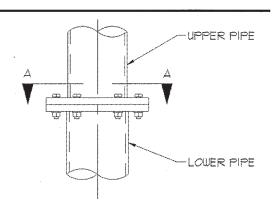
PROJECT: 110' MONOPINE

Mast Splice Design

Plate Fy (ksi) 36

Lower Pole Diameter D (in)	36.5
Lower Pole Thickness t_2 (in)	0.3125
Upper Pole Thickness t_1 (in)	0.1875
Upper Pole Diameter d (in)	36.5
Moment @ Splice M (kip-ft)	274.0
Axial @ Splice P (kips)	21.9
Shear @ Splice V (kips)	20.1

Bolt Design


Bolt Circle Diameter BC (in)	40.25
Number of Bolts	9
T/Bolt (kips)	36.3
V/Bolt (kips)	2.2
Bolt Designation	A325
Bolt Diameter (in)	1.250
Allowable Tension (kips)	54.1
Allowable Shear (kips)	20.9
Combined Tension and Shear	0.78

Use (9) 1.25" Diameter A325 Bolts

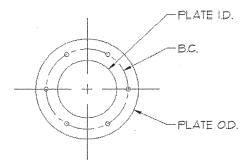
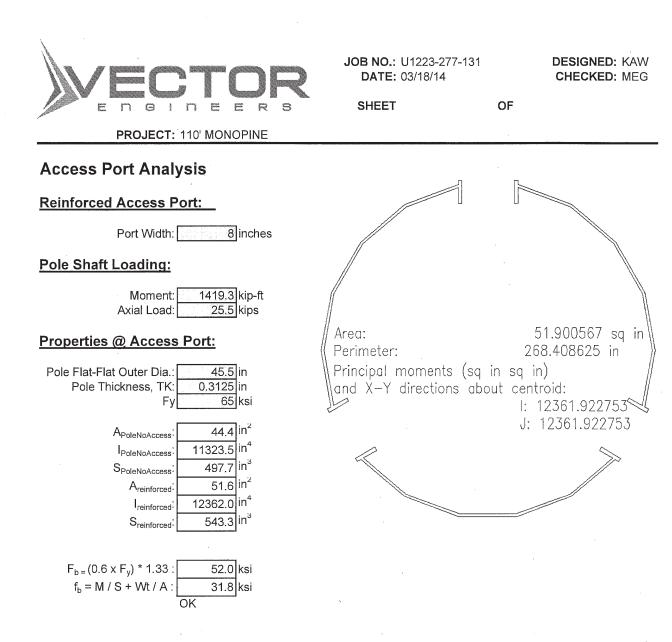

Upper & Lower Plate Design

Plate Hole Radius, r _p (in)	18.3125
Bolt Circle Radius, r _b (in)	20.125
Plate OD (in)	43.75
ϕ_{plate}	
Required Plate Thickness, t (in)	1.00

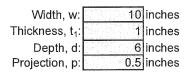
Use 1.25" Thick Plate



ELEVATION VIEW

SECTION A-A

$$t = \sqrt{\frac{1.6 M (r_b - r_p)}{\phi F_y r_p r_b}}$$

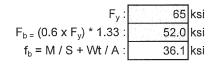

JOB NO.: U1223-277-131 DATE: 03/18/14 DESIGNED: CHECKED:

SHEET

OF

Reinforced Access Port Analysis

Reinforced Access Port:


Pole Shaft Loading:

Moment:	6146	kip-ft
Axial Load:	108.4	kips

Properties @ Access Port:

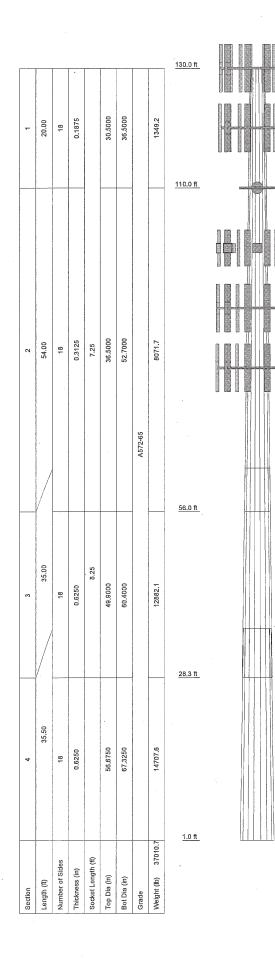
Flat-Flat Dia.:	65.8 in
Pole Thickness, t_2 :	0.625 in

A _{PoleNoAccess} :	128.0	in
I _{PoleNoAccess} :	68032.9	
S _{PoleNoAccess} :	2067.1	in
A _{reinforced} :	140.8	in
Ireinforced:	69749.0	inʻ
S _{reinforced} :	2087.5	in

69%

Area: 140.786248 sq in Perimeter: 427.215995 in Principal moments (sq in sq in) and X-Y directions about centroid: I: 78342.393484 J: 69749.108172

JOB NO.: U1223-277-131 DATE: 08/30/13


SHEET

DESIGNED: KAW CHECKED: MEG

OF

PROJECT:

Structural design based on TIA-222-G. This analysis was performed to ensure that the structure would be code compliant if the TIA-222-G. standard is adopted prior to the addition of the 20' extension.

TYPE	ELEVATION	TYPE	ELEVATION		
Top Hat with (3) 6 ft, and (1) 6 ft branches	132.5		100		
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	130	(4) CCI HPA-65R-BUU-H8-K w/ Mount Pipe	100		
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	130	(4) CCI HPA-65R-BUU-H8-K w/ Mount Pipe	100		
(4) 96" x 12" x 6" Panel Antenna w/	130	(2) Ericsson RRUS A2 Module	100		
Mount Pipe		(2) Ericsson RRUS-12	100		
(2) Generic RRU (24x12x12) 100#	130	(3) Ericsson RRU-11	100		
(2) Generic RRU (24x12x12) 100#	130	(2) Generic RRU (36"x12"x12")	100		
(2) Generic RRU (24x12x12) 100#	130	(2) Ericsson RRUS A2 Module	100		
10'-0" T-Arm	130	(2) Ericsson RRUS-12	100		
10'-0" T-Arm	130	(47) 8 ft branches	97.2		
10'-0" T-Arm	130	(4) 96" x 12" x 6" Panel Antenna w/	90		
(18) 6 ft branches	127	Mount Pipe			
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	120	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	90		
(4) 96" x 12" x 6" Panel Antenna w/	120	10'-0" T-Arm	90		
Mount Pipe		10'-0" T-Arm	90		
(4) 96" x 12" x 6" Panel Antenna w/	120	10'-0" T-Arm	90		
Mount Pipe		(2) Generic RRU (24x12x12) 100#	90		
(2) Generic RRU (24x12x12) 100#	120	(2) Generic RRU (24x12x12) 100#	90		
(2) Generic RRU (24x12x12) 100#	120	(4) 96" x 12" x 6" Panel Antenna w/	90		
(2) Generic RRU (24x12x12) 100#	120	Mount Pipe			
10'-0" T-Arm	120	(2) Generic RRU (24x12x12) 100#	90		
10'-0" T-Arm	120	(41) 10 ft branches	82.7		
10'-0" T-Arm	120	(2) Generic RRU (24x12x12) 100#	80		
(40) 6 ft branches	117.5	(4) 96" x 12" x 6" Panel Antenna w/	80		
6'-0" Standoff Arm	110	Mount Pipe			
2'-0" Standard	110	10'-0" T-Arm	80		
BA6312	110	(2) Generic RRU (24x12x12) 100#	80		
(18) 6 ft branches	107.9	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	80		
(3) Ericsson RRU-11	100	10'-0" T-Arm			
(2) Generic RRU (36"x12"x12")	100	10-0" T-Am	80		
(2) Ericsson RRUS A2 Module	100				
(2) Ericsson RRUS-12	100	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	80		
(3) Ericsson RRU-11	100	(2) Generic RRU (24x12x12) 100#	80		
(2) Generic RRU (36"x12"x12")	100	(18) 12 ft branches	73		
RMV12-496 w/ (1) LWRM _(3) SV197-36	100		10		
(3) DC6-48-60-18-8F Surge Suppressor (Enclosed)	100				

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
	65 ksi	80 ksi			

TOWER DESIGN NOTES

 Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 105 mph basic wind in accordance with the TIA-222-G Standard. A. Tower is also designed for a 105 mph basic wind in accordance with the TA-222-0 Standard A. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
 ALL REACTIOI5. Deflections are based upon a 60 mph wind.
 ARE FACTORI6. Tower Structure Class II.
 T. Topographic Category 1 with Crest Height of 0.00 ft

AXIAL

160347 lb

TORQUE 202 lb-ft 50 mph WIND - 1.0000 in ICE

AXIAL 79528 lb

TORQUE 605 lb-ft REACTIONS - 105 mph WIND

(

SHEAR

18689 lb

SHEAR

92508 lb

8. TOWER RATING: 99.4%

MOMENT

1760048 lb-ft

MOMENT

8710518 lb-ft

Vector Engineering	^{Job:} 641200		
	Project: U1223-277-131		
Sandy UT 84070	Client: Larson Camouflage	^{Drawn by:} kwilson	App'd:
Phone: (801) 990-1775	Code: TIA-222-G	Date: 04/04/14	Scale: NTS
	Path: N:12013 Projects/U1223 Larcon Gameutage/U1223-277-131 5412	50 East Hartlord CTIENGIREV 3 new loading/Towork84120	Dwg No. E-1

Page 21 of 40

<i>tuxTower</i> Job 641200 7 2 of 18	Vector Engineering Project U1223-277-131 Date 9138.5. State 55. Set (0) 16:06:58 04/04/14 16:06:58 04/04/14	Sundy UT 84070 Client Larson Carnouflage Designed by Phone: (80) 990-175 Larson Carnouflage kwilson	ction Splice Number Top Bottom Wall Bend I mgh Longt Onmeter Thochess Radius I Sob 8.25 18 49:9000 60.4000 0.6250 2.5000	L4 28.25-1.00 35.50 18 56.676 67.3250 0.6250 2.5000 (57.24) (65.68) Tapered Pole Properties	14 2382 239 239	h, , , , , , , , , , , , , , , , , , , ,	tenances - Entered As Ai Tatal C.44 h Number 024	C No Inside Pole 110.00-1.00 3 No Ite 0.00 1.72° les 0.00 C No Inside Pole 100.00-1.00 24 No Ite 0.00 1.12° les 0.00 1° les 0.00 1° les 0.00	AVA7-30 (1-5% 10W C No. Inside Pole 90.00 1.12 no 0.72 DBNSI: POAM) N Inside Pole 90.00 1.07 0.72 DBNSI: POAM) N Inside Pole 80.00 1.00 0.72 AVA7-50 (1-5% LOW No Inside Pole 80.00 1.00 24 No DBNSI: FOAM) No Inside Pole 80.00 1.00 24 No 0.72 DBNSI: FOAM) No Intel text 0.00 0.72 0.72 DBNSI: FOAM) No Intel text 0.00 0.72 0.72 DBNSI: FOAM) No Intel text 0.00 0.72 0.72 DBNSI: FOAM) Intel text 12.000 - 1.00 24 No.100 0.72 DBNSI: FOAM) Intel text 1.2000 - 1.00 24 No.100 0.72 DBNSI: FOAM) Intel text 1.2000 - 1.00 24 No 0.00 0.72	Page
Page 1 of 18	Date 16:06:58 04/04/14	Designed by kwilson			are not considered.	Cylinder Cylinder Rules an PEA Allowable Allowable	Check and the second		Pule Grade A572-65 (65 ks) A572-65 (65 ks)	
641200	U1223-277-131	Larson Camouflage	Tower Input Data	mecticut	th height. oination with ice. I of 60 mph. ads, feed line supports, and appurtenance mounts	AffOITS Treat Feedline Bundler As Use ASCB 10: S-Brace Ly. Inform Treat Feedline Bundler As Use ASCB 10: S-Brace Ly. Area Value Beals Resident Brace Same Compton Tension Value Beals Resident Compution Catedor F-Antuk Towns Catedor F-Antuk Towns	Connactor Angle Book Shear Include Angle Book Shear Include Shear-Torsion Inte Always Use Sub-Critical F Use Top Mounted Sockets Capacity	Bampton Tapered Pole Section Geometry	Top Datum Walt Bend Diameter Diameter Thickness Radius in in in in 30,500 36,500 0,1875 0,7500 36,500 0,3125 1,2500	
taxTower Job	10) Bu	Sandy UT 84070 Client Phone: (801) 990-1775 FAX: (801) 990-1776		There is a pole section. This tower is designed using the TIA-222-G standard. The following adesign criteria apply: The following section in Hartford County, Connecticut. Basic wind speed of 105 mph.	Exposure Category C. Topographic Category I. Crest Height 0.00 ft. Norminal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pp. A wind speed of 50 mph is used in combination with ice Temperature drop of 50 mph is used in combination with ice Temperature drop of 50 mph. Deflections calculated using a wind speed of 60 mph. A norlinear (P-delta) analysis was used. Pressures are calculated at a a soft section. Rress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line su		ofile V wher Capacity V Of Section I Braces Leg transing (4 Stided) V	Examption	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

22 of 40

fuxTower lector Engineering 9138 S. State St. Ste 101 Samp UT 84070 Phone 501) 990-1775 Filon 801) 990-1775	Job 641200. Project U1223-277-131 Client Larson Camouflage	Page 3 of 18 Date 16:06:58 04/04/14 Designed by Designed by
--	--	---

Weight		fil	0.72	0.72	1" Ice 0.00 0.72
C_{AA}		ft2ff	00.0	0.00	0.00
*****			No Icc	1/2" Ice	1" Ice
Total	Number		24		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Placement		Ji Bili pil	130.00 - 1.00		
Component	Type		Inside Pole		
Allow	Shield		γ		
Face	01.	Leg	ບ		andronamo
Description Face Allow Component Placement Total		Leg	AVA7-50 (1-5/8 LOW	DENSI. FOAM)	***************************************

-	Weight			0	0	40	0	0	.40	0	0	.57	0	0	93
~~~~~	Weig		<i>qI</i>	0.00	0.0	518.	0.0	0.0	3677	0.0	0.0	2422	0.0	0.0	2378
~~~~~~~~~~~~~~~~~~~~~~~	$C.d_A$	Out Face	ft ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Cada	In Face	- Jt-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0:000
~~~~~	$A_F$		Jt ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	$A_R$		ft2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Face			A	в	с	۷	В	υ	A	в	U	¥	д	ບ
	Tower	Elevation	ft i	130.00-110.00			110.00-56.00			56.00-28.25			28.25-1.00		
	Tower	Section		L1			L2			E			L4		

- With Ice	Weight	,	41	0.00	0.00	518.40	0.00	0.00	3677.40	0.00	0.00	2422.57	0.00	0.00	2378.93
Section Areas - M	CAA	Out Face	ft ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
s Sectio	Cuda	In Face	Jt ₂	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feed Line/Linear Appurtenances	de.		Jt.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Appurt	$A_R$		ft²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
e/Linear	Ice	Thickness	in	2.275			2.190			2.048			1.840		
d Line	Face	01.	Leg	۷	8	U	۷	В	U	A	ш	ပ	<	в	ບ
Fee		Elevation	ft	130.00-110.00			110.00-56.00			56.00-28.25			28.25-1.00		
	Tower	Section		ΓI			L2			E3			L4		

or Ka	<i>K</i> _a	Ice	oads
Shielding Factor Ka	K.	No Ice	Iser Defined L
Shieldi	Feed Line	Segment Elev.	User D
	Description		
	Feed Line	Record No.	
	Tower	Section	

	Job	Page
mxIower	641200	4 of 18
Varian Funitarian	Project	Date
9138 S. State St. Ste 101	U1223-277-131	16:06:58 04/04/14
Sandy UT 84070	Client	Designed by
Phone: (801) 990-1775 F4Y- (801) 990-1776	Larson Camouflage	kwilson

Description	Elevation	Offset From	Azimuth Angle	Weight	$F_{x}$	F.	Wind Force	CAC
•		Centroid	,					
	ĥ	IJ	o	IP	$q_l$	$q_l$	$q_l$	ft,
18) 12 ft branches	73.00	00.0	0.0000 No Ice	1386.00	0.00	00.0	2885.65	82.60
			Ice	1524.60	0.00	0.00	720.09	90.90
			Service	1386.00	0.00	00.0	843.07	82.60
(41) 10 ft branches	82.70	0.00	0.0000 No Ice	2706.00	0.00	0.00	5738.40	160.00
			Ice	2976.60	0.00	0.00	1432.16	176.10
			Service	2706.00	0.00	00.0	1676.52	160.00
(47) 8 ft branches	97.20	0.00	0.0000 No Ice	2350.00	0.00	0.00	5584.41	150.50
			Ice	2585.00	0.00	0.00	1393.36	165.60
			Service	2350.00	0.00	0.00	1631.54	150.50
[18] 6 ft branches	107.90	0.00	0.0000 No Ice	720.00	0.00	0.00	1706.88	45.00
			Ice	792.00	00.0	00.00	425.75	49.50
			Service	720.00	0.00	0.00	498.68	45.00
(40) 6 ft branches	117.50	0.00	0.0000 No Ice	1600.00	0.00	0.00	3838.57	99.40
			Ice	1760.00	0.00	0.00	957.12	109.30
			Service	1600.00	0.00	0.00	1121.47	99.40
18) 6 ft branches	127.00	0.00	0.0000 No Ice	720.00	0.00	0.00	1735.06	44.20
			. Ice	792.00	0.00	0.00	433.49	48.70
			Service	720.00	0.00	00.0	506.91	44.20
Top Hat with (3) 6 ft, and (1) 6 ft	132.50	00'0	0.0000 No Ice	160.00	0.00	0.00	792.13	20.00
branches			Ice	176.00	0.00	0.00	197.58	. 22.00
			Service	160.00	0.00	0.00	231.43	20.00

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C ₄ 4, Front	C.A. Side	Weight
			n n n	ø	Ы		th	Jf ₂	<i>lb</i>
BA6312	υ	None		0.0000	110.00	No Ice	0.45	0.45	3.00
						1/2" Ice	1.09	1.09	7.00
1 All Ch. 1 AC 4	ζ	ţ	00 0	00000	110.00	1 Icc	571	1.73	11.00
0-0-0	ر	From Pace	00.2	0.000	00.011	No Icc	1 00	1.40	00.01
			0.00			1" Ice	2.00	co.1 92.6	CC.017
(4) CCI	۷	From Face	3.00	0.0000	100.00	No Ice	13.37	9.42	97.20
HPA-65R-BUU-H8-K w/			0.00			1/2" Ice	14.10	10.82	192.07
Mount Pipe			0.00			1" Ice	14.83	12.07	296.65
(4) CCI	В	From Face	3.00	0.0000	100.00	No Ice	13.37	9.42	97.20
HPA-65R-BUU-H8-K w/			0.00			1/2" Ice	14.10	10.82	192.07
Mount Pipe			0.00			1" Ice	14.83	12.07	296.65
(4) CCI	υ	From Face	3.00	0.0000	100.00	No Ice	13.37	9.42	97.20
HPA-65R-BUU-H8-K w/			00.00			1/2" Ice	14.10	10.82	192.07
Mount Pipe			0.00			1" Ice	14.83	12.07	296.65
(2) Ericsson RRUS A2	۷	From Face	3.00	0.0000	100.00	No Ice	1.87	0.50	44.09
Module			0.00			1/2" Ice	2.05	0.62	54,42
			0.00			1" Ice	2.24	0.75	66.96
(2) Ericsson RRUS-12	۷	From Face	3.00	0.0000	100.00	No Ice	3.69	1.47	19.00
			0.00			1/2" Ice	3.95	1.65	42.19
			0.00			1" Ice	4.21	1.85	68.57
(3) Ericsson RRU-11	۷	From Face	3.00	0.0000	100.00	No Ice	2.94	1.25	51.00
			0.00			1/2" Ice	3.17	1.41	70.32
			0000						11 00

Page 23 of 40

Page 6 of 18	Date 16:06:58 04/04/14	Designed by kwilson		Weight .	$q_I$	105.00 499.12	905.79 79.20 162.36	255.18 79.20 162.36	255.18 79.20 162.36	255.18 100.00 124.92	124.92 124.92	153.15 100.00 124.92	153.15 105.00 499.12	905.79 105.00 499.12	905.79 105.00 499.12	905.79 79.20 162.36	79.20 79.20 162.36	79.20 162.36	124.92 124.92	153.15 100.00 124.92	cl. 851 100.00 124.92	105.00 499.12	905.79 105.00 499.12	905.79 105.00 499.12 905.79
		-		C.A.s Side	JI,	2.33 3.02	8.70 8.70	8.70 8.70 10.11	8.70 8.70 10.11	11.38 2.80 3.04	3.28 3.04	3.28 2.80 3.04	3.28 2.33 3.02	3.73 2.33 3.02	3.73 2.33 3.02	3.73 8.70 10.11	8.70 8.70	8.70 8.70	2.80 3.04	3.28 3.04	2.80 3.04	2.33	3.73 2.33 3.02	3./3 2.33 3.02 3.73
				CAA Front	Jt5	2.33 3.02	11.47 11.47 12.08	12.08	12.71 11.47 12.08	2.80 3.04	3.04 3.04	3.28 3.04	3.28 2.33 3.02	3.73 2.33 3.02	3.73 2.33 3.02	3.73 11.47 12.08	12./1 11.47 12.08	11.47	2.80 3.04	3.28 3.04	2.80	2.33 3.02	3.73 2.33 3.02	3./3 3.02 3.73
	31	flage				No Ice 1/2" Ice	I  Ice No Ice I/2" Ice	1  Ice No Ice 1/2  Ice	I" Ice No Ice 1/2" Ice	1" Ice No Ice 1/2" Ice	No Ice 1/2" Ice	1"-Ice No Ice 1/2" Ice	1" Ice No Ice 1/2" Ice	1" Ice No Ice 1/2" Ice	1" Ice No Ice 1/2" Ice	I" Ice No Ice I/2" Ice	No Ice No Ice 1/2" Ice	No lee 1/2" lee	I Ice No Ice 1/2" Ice	I" Ice No Ice 1/2" Ice	I" Ice No Ice 1/2" Ice	No Ice No Ice 1/2" Ice	I" Ice No Ice 1/2" Ice	1" Ice No Ice 1/2" Ice 1" Ice
641200	U1223-277-131	Larson Camouflage		Placement	ĥ	90.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00
	U1	Larso	- - -	Azimuth Adjustment		0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000
				Offsets: Horz Lateral	19 19 19	3.00 0.00	00.6 00.00 00.00 00.00	00.0 00.0	0.00 9.00	0.00 0.00 0.00	0.00 0.00	0.00	0.00 3.00 0.0	0.00 3.00 0.00	0.00	0.00	0.00	000 000 000 000 000 000 000 000 000 00	000 0000 0000 0000	0.00	000 000 000 000 000 000 000 000 000 00	000	0.00 0.00 0.00	0.00 0.00 0.00
dol	Project	Client		Offset Type	• •	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face
	10 10	22		Face or Leg		U	۷	в	υ	۷	В	с	۷	В	υ	<	В	υ	<	в	U	A	щ	0
tuxTower	Vector Engineering 9138 S. State St. Ste 101	Sandy UT 84070 Phone: (801) 990-1775 FAX: (801) 990-1776		Description		10'-0" T-Arm	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12) 100#	10'-0" T-Arm	10:-0" T-Arm	10'-0" T-Arm	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12) 100#	(2) Generic RRU (24x12x12) 100#	10'-0" T-Arm	10'-0" T-Arm	10'-0" T-Arm

Page 5 of 18	Date 16:06:58 04/04/14	Designed by kwilson		4. C.A. Weight m Side	, jt ² lb	4.20 4.52	4.84 0.50 0.62	0.70 1.47 1.65	1.85	1 1.59 92.56 0 4.20 100.00 22 4.52 134.64	4.84 0.50 0.62	0.75 1.47 1.65	1.85 1.25 1.41	1.59 4.20 4.52	4.84 16.00 18.00	20.00 0.00 0.00	0.00 8.70 10.11	8.70 8.70 10.11	8.70 8.70 10.11	11.38 2.80 3.04	3.28 2.80 3.04	3.28	3.28 3.02	3./3 3.02
641200	U1223-277-131	Larson Camouflage		Placement CAA Front	Я Д		1" Ice 4.84 100.00 No Ice 1.87 1/2" Ice 2.05			1" Ice 3.41 100.00 No Ice 4.20 1/2" Ice 4.52						1" Ice 20.1 100.00 No Ice 0.0 1/2" Ice 0.0				1" lcc 12. 90.00 No Icc 2.8 1/2" lcc 3.0	90.00 No Ice 3.28 1/2" Ice 3.04		90.00 No Ice 3.2 1/2" Ice 2.3	
Q	U122	Larson		Offsets: Azimuth P Horz Adjustment Lateral	fert fi fi	3.00 0.0000 0.00	0.00 3.00 0.00 0.00	3.00 0.00 0.00	0.00 3.00 0.0000 0.00	0.00 3.00 0.00 0.00	0.00 3.00 0.00	0.00 3.00 0.0000 0.00	0.00 3.00 0.00	0.00 3.00 0.0000	0.00	0.0000	3.00 0.0000	3.00 0.0000 0.00	0.00 0.00 0.00	0.00 3.00 0.00 0.00	0.00 3.00 0.0000	0.00 0.00 0.00	0.00 0.00 0.00 0.00	3.00 0.00 0.00
doL	Project	. Client	с С.	Offset O Type L		From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face	None	None	From Face	From Face	From Face	From Face	From Face	From Face	From Face	From Face
tuxTower	Vector Engineering 9138 S. State St. Ste 101	Sanch UT 84070 Phone: (801) 990-1775 FAX: (801) 990-1776	· · · ·	Description Face or Leg	2	(2) Generic RRU A (36"x12"x12")	(2) Ericsson RRUS A2 B Module	(2) Ericsson RRUS-12 B	(3) Ericsson RRU-11 B	(2) Generic RRU (36"x12"x12")	(2) Ericsson RRUS A2 Module	(2) Ericsson RRUS-12 C	(3) Ericsson RRU-11 C	(2) Generic RRU (36"x12"x12")	RMV12-496 w/ (1) LWRM C & (3) SV197-36	(3) DC6-48-60-18-8F Surge C Suppressor (Enclosed)	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	(4) 96" x 12" x 6" Panel C Antenna w/ Mount Pipe	(2) Generic RRU (24x12x12) A 100#	(2) Generic RRU (24x12x12) B 100#	(2) Generic RRU (24x12x12) 100#	10-0" T-Arm A	10'-0" T-Arm B

Page 24 of 40

 Inscription
 Job
 541200
 Page
 8 of 18
 Page
 8 of 104/14
 Page
 Page

				•											
Cada	Out	Face	<i>ft</i> 2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C.44	In	Face	ft2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Leg	%			100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Aug			Jt ²	56.695			203.796			132.055			145.817		
AR			ft²	56.695	56.695	56.695	203.796	203.796	203.796	132.055	132.055	132.055	145.817	145.817	145.817
$A_F$			Jt ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
<u>ل</u> بر	a	U	c	A	m	υ	×	с С	υ	<	ш	υ	<	щ	с U
Ao			ft2	56.695			203.796			132.055			145.817		
q:			psf	35			32			28			23		
$K_Z$				1.314			1.213			1.053			0.85		
N.			ſt	119.70			81.83			41.78			14.33		
Section	Elevation		ft	D	130.00-110.00		1.2	110.00-56.00		L3 56.00-28.25			L4 28.25-1.00		

**Tower Pressure - With Ice** 

Cada	Out	Face f ²	0.000	0.000										
Cada	In	Face fi ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Leg	%		100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Aire		ft2	64.278			223.507			142.185			155.117		
AR		15	64.278	64.278	64.278	223.507	223.507	223.507	142.185	142.185	142.185	155.117	155.117	155.117
$A_F$		ft ² .	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ĺ2,	а	<i>د</i> م	4	щ	IJ	×	щ	υ	A	д	с U	V	щ	с
$A_{0}$		U ₂	64.278			223.507			142.185			155.117		
<i>z</i> 1		in	2.2750			2.1901			2.0478			1.8400		
<i>qz</i>		psf	8			7			0			5		
$K_2$			1.314			1.213			1.053			0.85		
2		ų	119.70			81.83			41.78			14.33		
Section	Elevation	ų	[1]	130.00-110.00		L2 110.00-56.00			L3 56.00-28.25			L4 28.25-1.00		

	Cada	Face	ft ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Cida	Face	ft ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Leg	2		100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	Ateg		ft	56.695			203.796			132.055			145.817
$G_{H} = 1.100$	$A_R$		ff.	56.695	56.695	56.695	203.796	203.796	203.796	132.055	132.055	132.055	145.817
G	$A_F$		ft ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ί <b>τ</b> , τ	30	ъ	A	m	υ	4	8	υ	4	ш	U	A
	Ao		ft ²	569.95			203.796			132.055			145.817
	<i>q</i> 2		psf	10			6			90			7
	$K_Z$			1.314			1.213			1.053			0.85
	ы		ų	119.70			81.83			41.78			14.33
	Section	HOIMABIT	Jf.	П	130.00-110.00		L2	110.00-56.00		L3 56.00-28.25			L4 28.25-1.00

**Tower Pressure - Service** 

INN TYN					641200					7 of 18
Vector Engineering 9138 S. State St. Ste 101	10 10	Project			U1223-277-131	131			Date 16:06	late 16:06:58 04/04/14
Sandy UT 84070 Phone: (801) 990-1775 FAX: (801) 990-1776	5.5	Client		Lars	Larson Camouflage	uflage			Designed by kwils	ed by kwilson
Description	Face or Leg	Offset Type	Offsets: Harz Lateral	Azimuth Adjustment	Placement		CaAs Front	C.A. Side	Weight	7
			hert A A	c	ų		Jf,	z ^y f	41	
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	A	From Face	3.00 0.00	0.0000	130.00	No Ice 1/2" Ice	11.47 12.08	8.70 10.11		2
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	в	From Face	3.00 0.00	0.0000	130.00	I" Ice No Ice I/2" Ice		8.70		× ~ ×
(4) 96" x 12" x 6" Panel Antenna w/ Mount Pipe	с С	From Face	0.00 0.00 0.00	0.0000	130.00	I" Ice No Ice 1/2" Ice	12.71 11.47 12.08	8.70 8.70 10.11		<b>8</b> - V3
(2) Generic RRU (24x12x12) 100#	۲. ۲	From Face	3.00 0.00 0.00	0.0000	130.00	No Ice No Ice 1/2" Ice		11.38 2.80 3.04		
(2) Generic RRU (24x12x12) 100#	в	From Face	3.00	0.0000	130.00	1" Ice No Ice 1/2" Ice		3.28 2.80 3.04		007
(2) Generic RRU (24x12x12) 100#	с	From Face	0.00 0.00 0.00	0.0000	130.00	l" Ice No Ice 1/2" Ice		3.28 2.80 3.04		0.0
10'-0" T-Arm	V	From Face	0.00 0.00	0.0000	130.00	1" Ice No Ice 1/2" Ice		3.28 2.33 3.02	153.15 105.00 499.12	
10'-0" T-Arm	В	From Face	0.00 0.00 0.00 0.00	0.0000	130.00	l" Ice No Ice 1/2" Ice	•	3.73 3.02 3.02 3.02		900
10'-0" T-Arm	Г Ю	From Face	000 000 000 000	0.000	130.00	l' loc No loc 1/2" loc I "loc	3.73 3.02 3.73	3.73 3.02 3.73		
				D	Dishes					• • • • • • • • • • • • • • • • • • •
Description Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment		Elevation	Outside Diameter		Aperture Area	Weight
2'-0" Standard C Pa	Paraboloid w/o	w/o From	Рен Л 2.00	00000	0	Å 110.00	Л 2.00	No Ice	ft ² 3.14	1b 25.00

		C.44 Out	Face ft ²
		CuA. In	Face $ft^2$
ce		Leg %	
		Alex	ft
ower Pressures - No I	$G_{H} = 1.100$	AR	ĥ
er Pre	Ga	$A_F$	μ2
No.		Ц	υw
F		AG	ft ²
		4z	ps/
		Kz	
		ы	Ĥ
		Section Elevation	ų

Page 25 of 40

641200 Page 9 of 18	ct Date	U1223-277-131 16:06:58 04/04/14		Larson Camouflage kwilson
er Per	Project		Client	
nxTower	Tarrito a contract	9138 S. State St. Ste 101	Sandy UT 84070	Phone: (801) 990-1775 FAX: (801) 990-1776

Face face $fr^2$ 0.000	Face $ft^2$ 0.000	100.00	Jf2	ft ² 145.817	ft ² 0.000	. • Ш	μ2		psf	bsl
	0.000	100.00		145.817	0.000	ш				
Jr2	$ft^2$		ft ²	$ft^2$	$ft^2$	υ		c ² l/	_	_
Face	Face					,				
5	11					ç				
\$		%								

	2																		
		Ctrl.	Face			ບ			υ			υ			υ				
ce		M			plf	71.43			87.48			96.08			87.20				
Tower Forces - No Ice - Wind Normal To Face		F			11	1428.68			4724.09			2666.35		•	2376.16			11195.28	
I Norm		AE			$ft^2$	56.695	56.695	56.695	203.796	203.796	203.796	132.055	132.055	132.055	145.817	145.817	145.817	691848.48	44
Vino		$D_R$				-	1	1	1	1	1	-	-	-	-		-	MITO	
		$D_{F}$										-					-		
No I		<i>:b</i>		psl		35			32			28			23				
es -		ڻ				0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65		
r Forc		e				1	-	-	1	-	1	1	1	1	-	-	-		
wei		Ц	a	с	ы	A	щ	ບ	A	ш	υ	۷	д	ပ	V	щ	ပ		
To		Self	Weight		$q_l$	1349.21			8071.74			12882.08			14707.61			37010.65	
		Add	· Weight		lb	518.40			3677.40			2422.57			2378.93			8997.30	
		Section	Elevation		Jf.	L1	130.00-110.00		L2	110.00-56.00		L3	56.00-28.25		L4 28.25-1.00			Sum Weight:	

	Ctrl. Eare	22	υ			υ			υ			υ				
	#	ptf	71.43			87.48			96.08			87.20				
Tower Forces - No Ice - Wind 60 To Face	F	lb	1428.68			4724.09			2666.35	-		2376.16			11195.28	
ind 60	aŀ.	^z l/	56.695	56.695	56.695	203.796	203.796	203.796	132.055	132.055	132.055	145.817	145.817	145.817	691848.48	4-41
<u> </u>	$D_R$		-		-	-	-1	-	1	-	-	-	4		OTM	
o Ice	$D_{F}$		-	1	I	1	1	1	1	1	1	1	-	-		
Ž	-ib	þsd	35			32			28			23				
rces	ĊĽ		0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65		
ver Fo	в		-	-	-	1	-	-	-	-	-	I	1	-		
Q	F A	ပေၿ	۷	д	υ	۷	д	υ	<	д	U	۷	щ	υ		
	Self Weiaht	lh	1349.21			8071.74			12882.08			14707.61			37010.65	
	Add Weicht	<i>hb</i>	518.40			3677.40			2422.57			2378.93			8997.30	
	Section	ų	L1	130.00-110.00		1.2	110.00-56.00		5	56.00-28.25		L4 28.25-1.00			Sum Weight:	

Tower Forces - No Ice - Wind 90 To Face

	Job	Page
INXIOWER	641200	10 of 18
Vertes Facin amine	Project	Date
9138 S. State St. Ste 101	U1223-277-131	16:06:58 04/04/14
Sandy UT 84070	Client	Designed by
Phone: (801) 990-1775	Larson Camouflage	kwilson

Ctrl.	Face			ပ			υ			ņ			υ				
à			fid	71.43			87.48			96.08			87.20				
F			q1	1428.68			4724.09			2666.35			2376.16			11195.28	
AB			jt ²	56.695	56.695	56.695	203.796	203.796	203.796	132.055	132.055	132.055	145.817	145.817	145.817	691848.48	1h-ft
ã				-					-		1	-				MILO	
D"				-	-	-	-								-		
<i>-b</i>		fsd		35			32			28			23				
ບໍ່				0.65	0.65	0.65	0.65	0.65	0.65	0.65	0:65	0.65	0.65	0.65	0.65		
в				-	-		-	-	-	-	-	1	-	1	-		
Ĺł,	a	U	в	A	ш	υ	۷	д	U	۷	д	U	×	щ	υ		
Self	Weight		$q_l$	1349.21			8071.74			12882.08			14707.61			37010.65	
Add	Weight		lb	518.40			3677.40			2422.57			2378.93			8997.30	
Section	Elevation		Ji I	EI	30.00-110.00		L2	.00-56.00		EJ	.00-28.25		L4 28.25-1.00			Sum Weight:	

Section	Add	Self	F	в	ů	<i>4</i> :	$D_{F}$	$D_R$	$A_B$	F	*	Chrl.	
Elevation	Weight	Weight	a									Face	
ų	<i>q1</i>	11	00			psł			μ,	<i>qj</i>	plf		
CI I	518.40	3358.45	V	-	. 1.2	~			64.278	678.09	33.90	U	
30.00-110.00			щ		1.2		_	-	64.278				
			υ		1.2		_	-	64.278				
L2	3677.40	14902.20	A		1.2	~	-	-	223.507	2168.92	40.17	υ	
10.00-56.00			щ	-	1.2		-	-	223.507				
			υ		1.2		_		223.507				
L3	2422.57	16970.28	4		1.2	9	-	-	142.185	1201.83	43.31	U	
56.00-28.25			щ		1.2		_	-	142.185				
			υ		1.2		_	-	142.185				
L4 28.25-1.00	2378.93	18735.13	<		1.2	S			155.117	1058.17	38.83	ບ	
			ш	-	1.2		_	-	155.117				
			υ		1.2		_	-	155.117				
Sum Weight:	8997.30	53966.06						MILO	318922.28	5107.01			
1									1h_A				

				•						
	Chd	Face			U			U		
e	3			þl	33.90			40.17		
Wind 60 To Face	E			11	678.09			2168.92		
/ind 60	4	1		ft ²	64.278	64.278	64.278	223.507	223.507	223.507
e - V		i								
Nith Ice - \	$D_{\mu}$	i			-			-	-	
- Wi	<i>a.</i>	÷	psf		8			7		
rces	ů	1			1.2	1.2	1.2	1.2	1.2	1.2
wer Forces - V	a				1	-	-	-	-	1
No.	it.	a	с	ø	A	m	υ	۷	щ	υ
F	Self	Weight		91	3358.45			14902.20		
	Add	Weight		<i>q</i> 1	518.40			3677.40		
	Section	Elevation		Jf .	E1	130.00-110.00		L2	110.00-56.00	
لـــــا	-									

Page 26 of 40

twyTowor	Job	Page
PLANE UNIVER	641200	11 01 18
Vanton Fusinganing	Project	Date
9138 S. State St. Ste 101	U1223-277-131	16:06:58 04/04/14
Sandy UT 84070	Client	Designed by
Phone: (801) 990-1775 FAX: (801) 990-1776	Larson Camouflage	kwilson

				•							
Ctrl.	Face			υ			υ				
14			JId	43.31			38.83				
Ŀ,			<i>q1</i>	1201.83			1058.17			5107.01	
$A_B$			112	142.185	142.185	142.185	155.117	155.117	155.117	318922.28	Ib-fl
$D_R$				-				-		MTO	
$D_{F}$				-	-	-					
- <i>a</i> -		psf		9			'n				
ບໍ່				1.2	1.2	1.2	1.2	1.2	1.2		
2						1	1	1	1		
12,	a	u	อ	A	щ	J	A	щ	υ υ		
Self	Weight		IP	16970.28			18735.13			53966.06	
Add	Weight		91	2422.57			2378.93			8997.30	
Section	Elevation		ĥ	L3	56.00-28.25		L4 28.25-1.00			Sum Weight:	

	_																	
	Ctrl.	Face			ບ			U			U			U				
ŝ	W			þl	33.90			40.17			43.31			38.83				
	F			11	678.09			2168.92			1201.83			1058.17			5107.01	
	$A_E$			Jr ²	64.278	64.278	64.278	223.507	223.507	223.507	142.185	142.185	142.185	155.117	155.117	155.117	318922.28	1b-ft
	Dĸ						-			1		1	1	1	1		MTO	
	$D_F$				-	ered	*****	y		~		-		-		had		
	42		psl		20			7			9			5				
	చి				1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
	Ð					1	1	I	1	1		-	-	-	1	-		
	F	a	c	9	A	щ	υ	۷	щ	ບ	۷	В	U	۷	ш	J		
	 Self	Weight		$q_l$	3358.45			14902.20			16970.28			18735.13			53966.06	
	Add	Weight		<i>d1</i>	518.40			3677.40			2422.57			2378.93			8997.30	
	Section	Elevation		J,	L1	130.00-110.00		L2	110.00-56.00		L3	56.00-28.25		L4 28.25-1.00			Sum Weight:	

	Ctrl.	Face			ပ			υ	_		υ			υ			
ace				plf	20.87			25.56			28.07			25.48			
Tower Forces - Service - Wind Normal To Face	F			<i>q1</i>	417.40			1380.18			00.677			694.22			3270.80
d Norm	48			Jr ²	56.695	56.695	56.695	203.796	203.796	203.796	132.055	132.055	132.055	145.817	145.817	145.817	202129.74
Win	$D_R$				-		1	-	1	1	-		1	1	1	1	OTM
- e -	$D_{F}$				-			-	-	-	-		1		-		
Servi	<i>q</i> :		psł		10			6			×			7			
 - Se	ů				0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
Force	e				-	-			-	-	-				-	-	
ver	Ч	a	S	e	V	മ	υ	۷	ш	ပ	۲	m	υ	۷	m	ບ	
Tov	Self	Weight		<i>q</i> 1	1349.21			8071.74			12882.08			14707.61			37010.65
	ppF.	Weight	:	<i>d1</i>	518,40			3677.40			2422.57			2378.93			8997.30
	Section	Elevation		11	T1	130.00-110.00		L2	110.00-56.00		L3	56.00-28.25		L4 28.25-1.00			Sum Weight:

tnxTower	Job 641200	Page 12 of 18
Vector Engineering 9138 S. State St. Ste 101	Project U1223-277-131	Date 16:06:58 04/04/14
Sandy UT 84070 Phone: (801) 990-1775	Client Larson Camouflage	Designed by kwilson

Ctrl.	Face				
A			plf		
F			$q_I$		
$A_B$			Jr2	Ib-ft	
$D_{R}$					
$D_F$					
q:		psf			
C,					
ы					
2	а	v	e		
Self	Weight		<i>lb</i>		
 Add	Weight		11		
Section	Elevation		ĥ		

		Ctrl.	Face			υ			υ			υ			υ				
		**			fid	20.87			25.56			28.07			25.48				
Fower Forces - Service - Wind 60 To Face		F			$q_I$	417.40			1380.18			779.00			694.22			3270.80	
ind 60		As			ft ²	56.695	56.695	56.695	203.796	203.796	203.796	132.055	132.055	132.055	145.817	145.817	145.817	202129.74	Ib-fl
N - 6		DR				-	-	-		-	-			-		-		MTO	
rvice	4	$D_{F}$				-	-	-	-					****					
- Se		4:		psł		10			6			30			2				
rces		Ů				0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65		
er Fo		8				1	-	-	-	-	1	-	-	-	-	-	-		
NO		Ŀ	a	IJ	э	¥	m	υ	<	щ	υ	A	щ	U	A	щ	с		
		Self	Weight		$q_l$	1349.21			8071.74			12882.08			14707.61			37010.65	
		Add	Weight		11	518.40			3677.40			2422.57			2378.93			8997.30	
		Section	Elevation		ų	LI	130.00-110.00		1.2	110.00-56.00		LJ	56.00-28.25		L4 28.25-1.00			Sum Weight:	

		Ctrl.	Face			ບ			U			υ			υ				
		M			pt	20.87			25.56			28.07			25.48				
Tower Forces - Service - Wind 90 To Face		it.			11	417.40			1380.18			779.00			694.22			3270.80	
ind 90		AE			ft2	56.695	56.695	56.695	203.796	203.796	203.796	132.055	132.055	132.055	145.817	145.817	145.817	202129.74	Ib-fl
N - ¢		$D_R$				-	-	-	,		-	-	-1				-	MILO	
rvice	:	$D_{F}$					yani			-	1		-						
- Se		<i>q</i> =		psf		10			6			90			2				
rces		Ľ,				0.65	. 0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65		
rer Foi		e				-	-	-	-	-	-	-	-	-	1	-	-		
No No		Ы	а	S	в	¥	В	U	<	ш	ပ	۷	ш	U	<	щ	U		
L		Self	Weight		$q_I$	1349.21			8071.74			12882.08			14707.61			37010.65	
		Add	Weight		11	518.40			3677.40			2422.57			2378.93			8997.30	
		Section	Elevation		ĥ	L1	130.00-110.00		L2	110.00-56.00		L3	56.00-28.25		L4 28.25-1.00			Sum Weight:	

Page 27 of 40

taxTower	Job 641200	Page 13 of 18
Vector Engineering 9138 S. State St. Ste 101	Project U1223-277-131	Date 16:06:58 04/04/14
Sandy UT 84070 Phone: (801) 990-1775 FAX: (801) 990-1776	Client Larson Camouflage	Designed by kwilson

	Sum of Torques Ib-ft 0.00 363.85 0.00 0.00 159.14 0.00 159.14 0.00 0.00 0.00 0.00
	Sim of Duerturing Anneurl, Ji, Alb, Al Alb, Al (1000) 000 000 0100 0100 0100 0100 0100
Itals	Sum of Contraring Montana, Ma, Donertarning Monwara, Ma, Bard, Bard, Sarad, Sar
<b>Force Totals</b>	Sum of Forest 2 5775918.46 5775911 1.40 5775911 1.867087 1.867087 1.867087 1.6870.218 1.6870.218
	Sum of Forest X Barea 16 5167411 000 18844.18 18844.18 000 18844.18 000 1685001 000 000 00000000000000000000000000
	Formal         Forcas           Forces         1b           7010.65         37010.65           37010.65         66273.49           16955.41         164804.65           16955.43         164804.65           66273.49         66273.49
	Load Leg Weight Brauig Weight Total Member Stelf-Weight Total Member Stelf-Weight Wind 0 deg - No les Wind 180 deg - No les Wind 180 deg - No les Wind 180 deg - les Wind 180 deg - les Wind 00 deg - les Wind 0 deg - les Wind 0 deg - Service Wind 0 deg - Service Wind 0 deg - Service Wind 0 deg - Service

Cont.         Description           No.         In Dard Only         Description           2         12 DeartH (6 Wind) dags. No lee         3           3         0.9 DeartH (6 Wind) dags. No lee         4           4         12 DeartH (6 Wind) dags. No lee         6           5         12 DeartH (6 Wind) dags. No lee         6           6         12 DeartH (6 Wind) dags. No lee         6           7         12 DeartH (6 Wind) dags. No lee         6           8         12 DeartH (6 Wind) dags. No lee         6           9         12 DeartH (10 Wind) dags. No lee         6           9         12 DeartH (10 Wind) dags. No lee         6           11         12 DeartH (10 Wind) dags. No lee         6           12         12 DeartH (10 Wind) dags. No lee         6           12         12 DeartH (10 Wind) dags. No lee         6           12         12 DeartH (10 Wind) dags. Second         6           13         DeartH (10 Ker) (10 Tern)         7           14         DeartH (10 Ags. Second         6           13         DeartH (10 Ags. Second         6           14         DeartH (10 Ags. Second         6
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

							2		7			
	Minor Axi	Moment	h-h	-0.06	10:0-	-10.92	369356.57	-10.92	369356.5	0.07	0.00	-3274.89
ses	Major Axis	Moment	$i f - q_I$	0.00	0.00	-369336.98	0.00	-369336.98	0.00		0.00	00.0
<b>Tember Forces</b>	Axial		qq	0.00	-36754.19	-7954.80	-7949.28	27534.55	-27536.14		0.00	-108058.32
Mem	Gov.	Load	Comb.	12	30	4	٢١	4	5	4	-	8
Maximum	roomenenemenenemenenemenenemenenemenenemenenemenenemenenemenenemenenemenenemenemenemenemenemenemenemenemenemene Section Elevation Conporent Condition Gov. Axial Minor Axis			Max Tension	Max. Compression	Max. Mx	Max My	Max. Vv	Max. Vx	Max. Torque	Max Tension	Max. Compression
	Сопронен	Type		Pale							Pole	
	Elevation	ĥ		130 - 110							110 - 56	
	Section	No.		Ы							L2	

		Job	Page
	mx1 ower	641200	14 of 18
	Vortas Rasinamine	Project	Date
	9138 S. State St. Ste 101	U1223-277-131	16:06:58 04/04/14
	Sandy UT 84070	Client	Designed by
_	Phone: (801) 990-1775	Larson Camouflage	
	F.4X: (801) 990-1776	- 0	KWISOT

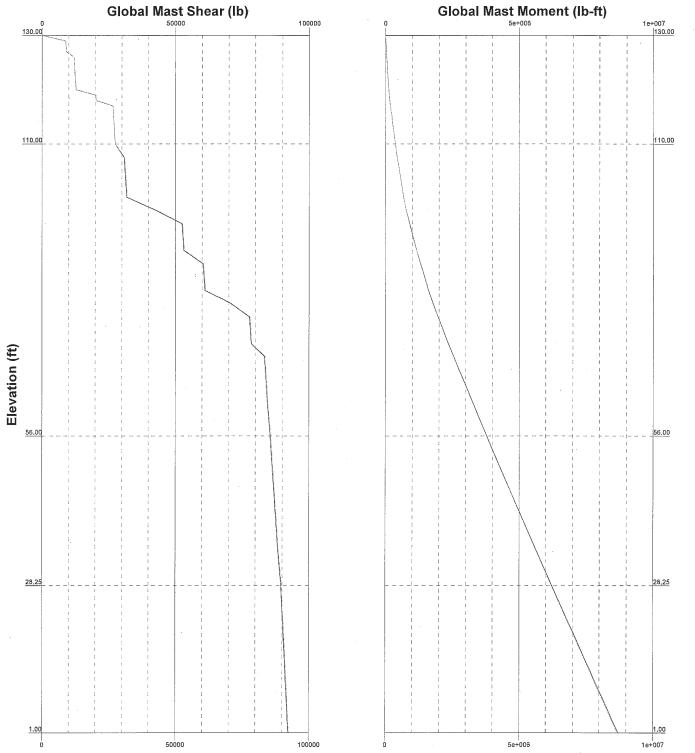
Major Axis Minor Axis Moment Moment Ib-ft Ib-fl	-510.18	010/0616	51/8081.UZ	-510.18		3178681.02	-606.38	0.00	-3274.96	-578.20		5492973.51	-578.20		5492973.51	-605.10	0.00	-3275.10	-659.54		8710517.53	-659.54		8710517.53	-604.72
	-3168123.8	5 20	0.00	-3168123.8	ĉ	0.00		0.00	0.00	-5476148.3	6	00.0	-5476148.3	6	0.00		0.00	0.00	-8685426.6	£	0.00	-8685426.6	'n	0.00	
Axial	-35745.50	10 00030	-55/22/05	84329.03		-84563.52		0.00	-128604.46	-52574.63		-52565.22	88163.46		-88397.35		0.00	-160346.78	-79489.53		-79489.33	92309.38		-92540.42	
Gov. Load Comb.	4	ŗ	ч ·	4		7	4		~	4		۲٦	4		2	4		80	4		1	4		2	4
0	Max Mx		<ul> <li>Max My</li> </ul>	Max. Vy		Max. Vx	Max. Torque	Max Tension	Max. Compression	Max. Mx		Max, My	Max. Vy		Max. Vx	Max. Torque	Max Tension	Max. Compression	Max. Mx		Max. My	Max. Vy		Max Vx	Max. Torque
Component Type								Pole			·						Pole								
Elevation Jt								56 - 28.25									28.25 - 1								
Section No.								L3									Ľ4								

$ \begin{array}{cccc} Lacetor & Conv. I entical Intervential, X. Horizontal, Z. \\ Lacetor Local Intervential, B. Intervential, X. Horizontal, Z. \\ Current Intervential, B. Intervential, Marx. Vert. B. Intervential, A. Intervential, Z. \\ Nanx. Hi. 13 S05(6,07 0,000 -0.000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,0$	Condition         Gost         Farted         Horizontal, X           Load         b         b         b         b           Load         b         b         b         b           Max Vat         8         163347         0.00           Max Max Max         14         3         8764607         0.00           Max	Location Condition Pole Max Vett Max Ha Max Ada Max Max Ma Max Vett Man Ha Min Ha Min Ma Min Ma Min Ma	Gov. Comb. 8 8 14 2 2 2 2 2 2 2 4 4 4	1 fertical 1 fertical 160346.77 56273.47 56273.47 58646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 50646.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.07 50666.000000000000000000000000000000000	Horizond 1 1 1 1 1 1 1 1 1 1 1 1 1		zznal, Z 16 0.00 507.78 507.78 507.71 507.11 507.11 507.11 2.24 412.19 412.15 872.03	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lood         B         Lood         B         B           Pole         Max. Vert         8         6073-47         0.00         -0.00           Max. H         14         66273-47         0.00         -9.00         -0.00           Max. H         2         87016517.33         0.00         92507.11         -0.00           Max. MA         2         87016517.33         0.00         92507.11         -0.00           Max. MA         2         87016517.33         0.00         92507.11         -0.00           Max. Tension         2         9000         0.00         92507.11         -0.00         -0.01           Max. Tension         2         8646.07         0.00         92307.12         -0.00         -0.01         92307.13           Min. M4         6         -9026.03         -0.00         92307.13         -0.00         -0.01         -0.02           Min. M4         6         -9026.03         -0.00         -2.24         -2.24         -2.24           Min. M4         6         -0.00         -9.276.17         -2.24         -2.24           Min. M4         6         -9.000         -9.2276.17         -2.24         -2.24	Pole Max Vert Max Hs Max Hs Max Ms Max Crosson Max Torsson Man Hs Min Hs Min Ms Min Ms Min Ms Min Ms	Load Comb. 8 14 2 2 2 2 2 2 2 4 4 4 4	<i>lb</i> 160346,78 160346,78 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 50646,07 50646,07 50646,07 50646,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 50666,07 506666,07 5066666667 50666667 50666667 5066667 50666667 5066667 5066667 50666667 50666667 50666667 50666667 5066667 5066667 5066667 506667 506667 506667 5066667 5066667 506667 50667 506667 506667 506667 50667 506667 506667 506667 50667 506667 506667 506667 50667 50667 506667 50667 50667 506667 50667 50667 50667 50667 50667 50667 50667 5067 50	41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		<i>lb</i> 0.00 507.78 507.78 507.11 2.2.4 2.2.4 412.85 412.19 8712.19 8712.19	
Pole         Max. Vert         8         16/14/c.78         0.00         -6.00           Max. H.         14         6.6273.47         0.00         -16372.28           Max. H.         2         5596/6.07         0.00         -16372.28           Max. H.         2         8710517.33         0.00         92307.11           Max. M.         2         8710517.33         0.00         92307.11           Max. M.         2         8710517.33         0.00         92307.11           Max. Tersion         2         9646.07         0.00         92307.11           Max. Tersion         2         9546.07         0.00         92307.11           Min. H.         5         5946.07         0.00         92307.12           Min. M.         6         -90088.88         0.00         -92412.19           Min. M.         16         -90088.88         0.00         -93412.96           Min. M.         16         -604.55         -92276.17         -2.24           Min. M.         16         -90088.88         0.00         -93412.96           Min. M.         16         -9206.15         -92276.17         -2.24           Min. M.         16         -90088	Pole         Max. Vert         8         163346.78         0.00         -0.00           Max. Ht         14         66273.47         0.00         -16872.38           Max. Ht         3         5594617         0.00         -2597.11           Max. Ma.         2         870517.33         0.00         -2597.11           Max. Ma.         2         870517.33         0.00         -2597.11           Max. Ma.         2         870517.33         0.00         92507.11           Max. Max. Tension         2         0.00         9207.11         9257.11           Max. Wat         5566.607         0.00         9237.11         8257.13           Max. Tension         2         5566.607         0.00         9237.13           Min. Ma.         1         6         9006.83         0.00         9237.13           Min. Ma.         1         0.00         9237.13         9247.13           Min. Ma.         1         0.00         9237.63         9247.13           Min. Ma.         1         0.00         9237.63         9247.126           Min. Ma.         1         0.00         9207.63         9247.126           Min. Ma.         1         <	Pole Max Vort Max Ha Max Ma Max Ma Max Crosson Max Torsion Man Ha Min Ha Min Ma Min Ma Min Ma	82 m n 4 0 m v P v 7 4	160346,78 66273,47 59646,07 8710517,53 8688426,63 0.00 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 59646,07 50666,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 5067,07 5067,07 5075,07 5075,07 5067,07 5067,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 5067,07 50667,07 50667,07 50667,07 50667,07 50667,07 50667,07 5067,07 5067,07 5067,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 50675,07 5075,07 50675,07 50675,07 50675,07 50675,07 50675,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 5075,07 50	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00 507.78 507.11 507.11 507.11 507.11 507.12 507.78 507.78 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.11 507.12 507.11 507.11 507.12 507.11 507.12 507.11 507.12 507.11 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.12 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 500.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 507.20 500.20 500.20 500.20 500.20 500.20 500.20 500.20 500.20 500.20 5000	
Marx Ha         14         66273,47         0.00         -16872.38           Marx Ha         3         \$59646.07         0.00         92507.78           Marx Ma         2         87105.15         92.207         92507.11           Marx Max         4         86545.63         92.507         92.507.11           Marx Max         7         95646.07         0.00         92.507.11           Marx Max         7         95646.07         0.00         92.507.18           Marx Transion         3         95646.07         0.00         92.507.18           Marx Transion         4         95646.07         0.00         92.507.18           Main Ha         7         59646.07         0.00         92.412.19           Min Ha         7         59646.07         0.00         -92412.19           Min Ha         16         0.00         -92412.19         -92412.19           Min Trasion         4         -664.55         -92276.17         -224	Max. H.         14         6(273.47)         0.00         -1687.28           Max. H.         3         \$59667         0.00         92307.78           Max. H.         2         \$71051733         0.00         92307.78           Max. Ma.         2         \$71051733         0.00         92307.17           Max. Torsin.         4         88245.63         92207.18         92307.11           Max. Torsin.         2         8706.07         9200         92307.11           Max. Torsin.         2         8646.07         0.00         92307.18           Min. Vett         3         \$5946.07         0.00         92307.18           Min. H.         7         \$5946.07         0.00         92307.18           Min. M.         4         -87068         0.00         92307.18           Min. M.         1         7         \$5946.07         0.00         92307.18           Min. M.         1         6.00         92206.12         2.24         92412.56           Min. M.         1         0.00         92376.13         2.24         92412.56           Min. M.         4         -604.55         -9217.61         -2.24           Min. M.         <	Mars: He Mars: He Mars: Ma Mars: Ters Ma Mars: Ters Mars: Mars: He Mars: He Mars: Mars: Mars: He Mars: Mars:	4	66273.47 59646.07 8710517.53 868845.07 0.00 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 500658.88	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		872.98 507.78 507.11 507.11 507.11 507.11 507.78 507.78 412.86 412.19 412.19	
Max. Hi         3         58/46.07         0.00         92/307.78           Max. Max. Max. Max. Max. Max. Max. Max.	Max. H.         3         \$\$646.07         0.00         92507.78           Max. M.         2         87105173         0.00         92507.11           Max. M.         4         86854563         922617         92507.11           Max. Venton         3         86854563         922617         92507.11           Max. Venton         3         86854563         922617         9237.11           Max. Venton         3         856607         0.00         92377.13           Man. H.         7         5866607         0.00         92377.13           Man. M.         6         5706838         0.00         92371.23           Man. M.         14         0.000         92371.23           Min. M.         6         5706858         0.00         92311.23           Min. Torsion         4         -604.55         -92276.17         -224           Min. Torsion         4         -604.55         -92276.17         -224           Min. Torsion         4         -604.55         -92276.17         -224	Mars. H ₄ Mars. M ₄ Mars. M ₅ Mars. Torsion Mar. H ₄ Min. H ₄ Min. M ₆ Min. M ₆ Min. M ₆	ろこみこうらて 9 1 4	59646.07 8710517.53 8685426.63 0.00 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 5007 500646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50646.07 50666.07 50666.07 506666.07 5066666.07 5066667 50666667 50666667 5066667 50666667 5066667 50666667 50666667 50666667 50666667 5066667 5066667 5066667 506667 506667 506667 506667 506667 50667 506667 506667 50667 50667 506667 50667 50667 50667 50667 50667 50667 50667 50667 50667 50667 5067 50	0.00 00.00 0.00 0.00 0.00 0.00 0.00 0.		507.78 507.11 2.2.24 507.78 507.78 412.86 412.19 412.19 412.19	
Max         Max         Res         8710517.33         0.00         92507.11           Max         Max         Max         868542663         -92176         17         -2.24           Max         Testion         2         0.00         92507.11         -2.24           Max         Testion         2         0.00         92507.11         -2.24           Max         Testion         2         0.00         92507.12         -2.24           Min         Vert         3         59646.07         0.00         92507.38         -2.24           Min         H         7         59646.07         0.00         92472.86         -2.24           Min         Ma         6         -3700838         0.00         -16872.38         -0.01         -2.2412.12           Min.         Testion         4         -604.55         -92276.17         -2.24	Max. Ma.         2         8710517.33         0.00         92507.11           Max. Torsion         4         8685406.63         -9216.17         -2.24           Max. Torsion         4         8685406.63         -9207.11         -2.24           Mar. Vert         5         5964.07         -0.00         92507.18           Mar. Vert         5         5964.07         -0.00         92507.18           Min. Ha         5         59646.07         -0.00         92507.18           Min. Ha         6         59646.07         -9226.83         -2.24           Min. Ma         1         -9000         -9217.61         -2.24           Min. Ma         1         -9006         0.00         -9247.126           Min. Torsion         4         -604.55         -9276.17         -2.24           Min. Torsion         4         -604.55         -9276.17         -2.24           Min. Torsion         4         -604.55         -9276.17         -2.24	Marx Mc Marx Mc Marx Torston Min Hc Min Hc Min Mc Min Mc Min Mc Min Mc		8710517.53 8685426.63 0.00 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 59646.07 6.00	0.00 -92276 0.00 -00 -02276 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		507.11 2.24 507.11 507.78 2.2.4 412.86 412.86 412.19 872.09	
Max Mer 4 8053426(3) -9224 Max Terston 2 000 000 92307.11 Min Vert 3 5964607 0.00 92307.78 Min Hi, 7 5964607 -92776.83 -224 Min Me 14 7 5944607 -92176.83 -9212.86 Min Me 16 -9706858.89 0.00 -92412.86 Min Terston 4 -664.55 -92276.17 -2.24	Max. Max. Max. Max. Max. Max. Max. Max.	Max Ma Max Torsian Man H, Man H, Min H, Min Mk Min Mk Min Mk	オこうらてられま	8685426.63 0.00 59646.07 59646.07 59646.07 59646.07 59646.07 -8700858.88 0.00	-92276 0.00 0.200 0.00 0.00 0.00 0.00 0.00		2.24 507.11 2.24 4.12.86 4.12.19 872.98	
Max. Tersion         2         0.00         0.2307.11           Min. Vert         3         59646.07         0.00         92507.18           Min. H.         5         59646.07         0.00         92507.18           Min. H.         5         59646.07         -0.214         92507.18           Min. H.         7         59646.07         -0.214         9212.19           Min. M.         6         -87008.88         0.00         -92412.86           Min. M.         14         0.00         -92412.19         Min. Max. 14         -604.55           Min. Torsion         4         -604.55         -97276.17         -2.24	Mix. Tension         2         0.00         9.2471.11           Mix. Vert         3         5866.07         0.00         92377.13           Mix. Vert         3         5866.07         0.00         92377.13           Mix. Hi         5         5866.07         0.00         92377.83           Mix. Hi         7         59646.07         0.00         92377.83           Mix. Mix. Hi         7         59646.07         0.00         92371.36           Mix. Mix. Hi         7         59646.07         0.00         92312.86           Mix. Mix.         14         0.00         0.00         92471.26           Mix. Torston         4         -664.55         -9226.17         -224           Mix. Torston         4         -664.55         -9226.17         -224	Max Tersion Man Vert Man Hs Man Hs Man Mc Min Mc Min Mc Min Torsion	こうらてなれる	0.00 59646.07 59646.07 59646.07 59646.07 -8700858.88 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		507.11 507.78 2.24 412.86 412.19 872.98	
Min. Var.t         3         \$\$646.07         0.00         9230778           Min. H         5         \$\$586.67         -9216.63         -224           Min. H         7         \$\$586.677         -9216.63         -224           Min. Mi.         6         \$\$700838.88         0.00         -92412.19           Min. Mi.         14         0.00         -92412.19         Min. Torsion           Min. Torsion         4         -664.55         -92276.17         -2.24	Min. Vert         3         \$\$646.07         0.00         9.2307.78           Min. H.         5         \$\$566.07         -0.06         9.2317.8           Min. H.         7         \$\$566.07         -0.06         9.212.66           Min. M.         6         \$700838.86         0.00         -9.212.56           Min. M.         6         \$700838.86         0.00         -9.212.56           Min. M.         1         0.00         -9.217.61         -9.212.56           Min. Torston         4         -604.55         -9.276.17         -2.24           Min. Torston         4         -604.55         -9.2776.17         -2.24	Min. Vert Min. R. Min. H. Min. Mr. Min. Mr.	е 2007 4	59646.07 59646.07 59646.07 -8700858.88 -8700858.88 0.00	0.00 -92276 0.00 0.00 0.00 0.00		507,78 2,24 412,86 872,98	
Min. H, 5 59646.07 -92276.83 2.24 Min. H, 7 59646.07 0.00 92412.86 Min. M, 6 -87008.88 0.00 -92412.98 Min. M, 14 0.000 0.00 -16872.98 Min. Torsion 4 -604.55 -92276.17 -2.24	Min. H. 5 5846.07 -9226.83 -2.24 Min. H. 7 5864.607 -0.00 -92112.86 Min. M. 6 -87086.87 0.00 -92112.18 Min. Torsion 4 -664.55 -92276.17 -2.24 Tower Mast Reaction Summary	Min Ha Min Ha Min Ma Min Ma Min Torsion	2 L Q Z 4	59646.07 59646.07 -8700858.88 0.00	-92276 0.00 0.00 0.00 0.00		2.24 412.86 412.19 872.98	
Min H, 7 5666.07 0.00 -9.2412.66 Min Me 6 -8700838.88 0.00 -9.2412.19 Min Me 14 -0.00 -16872.38 Min Tasion 4 -664.55 -9.2276.17 -2.24	Min.H. 7 5846.07 0.00 9241266 Min.M. 6 -30088.88 0.00 -9241219 Min.M. 14 -0.008 88 0.00 -168712.9 Min.Toration 4 -604.55 -92276.17 -2.24 Tower Mast Reaction Summary	Min. H _s Min. Ms Min. Ms Min. Torsion	7 6 14	59646.07 -8700858.88 0.00	0.00 0.00 0.00 0.00		412.86 412.19 872.98	
Min. M _k 6 -3700838.88 0.20 -92412.19 Min. M _s 14 0.00 0.00 -16872.38 Min. Torsion 4 -664.55 -92276.17 -2.24	Min. Ma 6 -37008388 0.00 -22112.9 Min. Ma 14 0.00 0.00 -16872.98 Min. Torstoin 4 -664.55 -92276.17 -2.24 Tower Mast Reaction Summary	Min. Mr. Min. Mr. Min. Torsion	4 14 4	-8700858.88 0.00 604 55	0.00 0.00 -92276		412.19 872.98	
Min. Ma 14 0.00 0.00 -16872.38 Min. Tarsian 4 -664.55 -57276.17 -2.24	Min. Ma 14 000 000 -16672-98 Min. Trasion 4 -664.55 -92276.17 -2.24 Tower Mast Reaction Summary 17	Min. Mz Min. Torsion	14	0.00	0.00	,	872.98	
Min. Torsion 4 -604.55 -92276.17 -2.24	Min Torsion 4 -604.55 -92276.17 -224 Tower Mast Reaction Summary	Min. Torsion	4	604 55	-92276			
	Tower Mast Reaction Summary	***************************************					2.24	
	Tower Mast Reaction Summary		*****		*****	*****	ALL CONTRACTOR OF CONTRACTOR	
		****	tical	Shears	Shcar:	Overturning	Overturning	Torque
Fertical Shear Shear Overturning Overturning	l'ertical Shear _x Shear _: Overturning Overturning			т	77	Moment, Mz	Moment, M _z	11. 12
Fürtical Shear, Shear, Overturning Overturning I fürtical Shear, Shear, Manen, Ma Monen, Mi II II	Vertical Shear, Shear, Overturning Overturning 1, 1, Monted M. Monted M.		OF CLUD	1		1-01	1	
l'ériteal Shear, Shear, Shear, Oorner, Maner, H. Moner, M. M. Moner, M.	l'értical Shear, Shear, Orecturning Overturning Torque bound, M. Moment, M. Moment, M. b-ft bb b-ft bb-ft bb-ft	5 Wind 0 deg - No	002/3.49 79528.09	00.00	0.00 -92507.11	534.48 -8710517.53	0.00	00.0
Icritical         Shear.         Shear.         Overnming         Overnming         Overnming         Torque           lb         lb         lb         lb         Moment Md.         Moment Md.         lp-fg         lp-fg <th>Firstead         Shear,         Owerturning         Overturning         Torque           1b         1b         1b         Moment, M.         Mo         Mo</th> <td>10e 0.9 Dead+1 6 Wind 0 dea - No 50</td> <td>29646.07</td> <td>0.00</td> <td>-47507 78</td> <td>-R680347 40</td> <td>000</td> <td>000</td>	Firstead         Shear,         Owerturning         Overturning         Torque           1b         1b         1b         Moment, M.         Mo         Mo	10e 0.9 Dead+1 6 Wind 0 dea - No 50	29646.07	0.00	-47507 78	-R680347 40	000	000

Page 28 of 40

tnxTower	doL		641	641200		Page 15 of 18	tnxTower	doL		641200	Page 16 of 18	
Vector Engineering 9138 S. State St. Ste 101	Project	ct	U1223	U1223-277-131		Date 16:06:58 04/04/14	Vector Engineering 9138 S. State St. Ste 101	Project	U1	U1223-277-131	Date 16:06:58 04/04/14	4/14
Sandy UT 84070 Phone: (801) 990-1775 FAX: (801) 990-1776	Client		Larson C	Larson Camouflage	, i	Designed by kwilson	Sandy UT 84070 Phone: (801) 990-1775 FAX: (801) 990-1776	Client	Larso	Larson Camouflage	Designed by kwilson	
Load Combination	l'ertical Ib	Shears	Shear: Ib	Overturning Moment, M4, Ib-ft	Overturning Afoment, Af Ib-ft	Torque 15-ft	10 11 Yes 12 Yes	==∞	1000000000 100000000000000000000000000	0.00007365 0.00007365 0.00007416 0.00008996		
Ice 1.2 Dead+1.6 Wind 90 deg - No	79528.09	92276.17	2.24	659.47	-8685426.63	604.55		× ×	0.00000001 0.00000001	0.00008990 0.00008994		
Lee 0.9 Dead+1.6 Wind 90 deg - No	59646.07	92276.83	2.24	553.54	-8655247.00	598.12						
1.2 Dead+1.6 Wind 180 deg - No Ice	79528.09	00.00	92412.19	8700858.88	0.00	0.00						
0.9 Dead+1.6 Wind 180 deg - No fee	59646.07	0.00	92412.86	8670518.01	0.00	0.00		Maximum Tower Deflections	ower Defle	ctions - Service Wind	VIDa	
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0	160346.78 160346.78	0.00	0.00 -18689.48	3275.10 -1755028.38	0.00	0.00	Section Elevation No. No.	Horz. Deflection	Gov. T Load	T		
1.2 Dead+1.0 Wind 90 deg+1.0	160346.78	18644.17	0.44	3620.65	-1753438.24	201.65		in 10.470				
10571.0 1 cmp 1.2 Dead+1.0 Wind 180 deat1 0 Teet1 0 Term	160346.78	0.00	18670.86	1760048.14	00.0	0.00	L2 110 - 56 L3 63.25 - 28.25	7.544 2.338	12 0.6	0.6655 0.0002 0.3393 0.0000		
Dend+Wind 0 deg - Service Dend+Wind 90 deg - Service Dead+Wind 180 deg - Service	66273.47 66273.47 66273.47	0.00 16848.15 0.00	-16890.31 0.41 16872.98	-1587319.92 387.39 1586091.68	0.00 -1583008.59 0.00	0.00 110.16 0.00		0.801		966 0.0000		
							Critical D	Deflections	and Radiu	Critical Deflections and Radius of Curvature - S	- Service Wind	
		Soli	Solution Summary	mmary			annananananananananananananananananana	******	D. M	41-14	D - J C	
Con of the	Ambied Forecas	~~~~	********	C	*******	******	тречини причение		Load Depression		Curvature	
Load PX Load It	oun of Applieu Forces PY	ЪZ Zd	TH Xd	PY PY "	n Zd	% Error	<u>Jt</u> 132.30 Top Hat with (3) 6 ft, and (1) 6 ft		omb. in 12 10.470	17 0.0	<u>/1</u> 47955	
0.00	-66273.49	0.00	0.00	66273.49	-0.00	0.000%	130.00 (4) $96^{\circ} \times 12^{\circ} \times 6^{\circ}$ Panel Antenna w/	ss nel Antenna w/	12 10.470	0.7147 0.0002	47955	
0.00	-59646.14	-92509.53 -92509.53 2.24	0.00 0.00 -92276.17	59646.07 79528.09	92507.78 -2.24	0.002% 0.002% 0.002%	Mount Pape 127.00 (18) 6 th branches 120.00 (A) 06 ⁽¹ > 17 ⁽² × 1 ⁽²⁾ × 1 ⁽²⁾ )	ipe inches real Antanno vol	12 10.021	0.0002 0.0002	47955 97055	
92278.58 0.00	-59646.14 -79528.19	2.24	-92276.83 0.00	59646.07 79578.09	-2.24	0.002%		ipe				
0.00	-59646.14	92414.61 0.00	000	59646.07 59646.07 160346.78	-92412.86	0.002%	117.50 (40) 6 H biratolas 110.00 2-0° Standard 110.00 2-0° Standard 107 c0 /187.6 H birarohas	dard mehar	12 8.616 12 7.544 12 7.553	0.6655 0.0002 0.6655 0.0002 0.6551 0.0002	19182 12363	
0.00 18644.18	-160346.78 -160346.78	-18689.49 0.44	0.00 -18644.17	160346.78 160346.78	18689.48 -0.44	0.000%	(4) CCI	BUU-H8-K w/				
	-160346.78 -66273.49	18670.87 -16892.18	0.00	160346.78 66273.47	-18670.86 16890.31	0.000%	97.20 (47) 81 binarches 90.00 (4) 96" x 12" x 6" Panel Antenna w	nches nel Antenna w/	12 5.842 12 4.968	0.5939 0.0002 0.5420 0.0002	10205 9417	
0.00	-66273.49	0.41 16874.85	c1.84801- 0.00	66273.47 66273.47	-0.41 -16872.98	0.003% 0.003%	82.70 (41) 10.11 branches	ipc anches	12 4.149	0.4852 0.0001		
								net Antenna w/ ipe anches			cuca 5005	
	ž	on-Linear	Conver	Non-Linear Convergence Results	ults							
Load Converged?	Number	er Dia	Displacement	Force				Mavimum Tower Deflections	ower Defle	ctione - Decian Wind		
Combination I Yes	of Cycles 6		Tolerance 0.00000001	Tolerance 0.00000001								
	991	000	0.0000001	0.00006106			Section Elevation No.	Horz. Deflection	Gov. T Load	T		
	6 6	0.0	0.00000001	0.00006975 0.00005787			11 110 110 110	in 73, 457				
6 Yes 7 Yes 8 Yes 9 Yes	999 1000	2223	0.0000001 0.0000000 0.00000000 0.00000000	0.00006105 0.00005169 0.00000001 0.0000000000000000000000000			L2 110 - 56 L2 110 - 56 L3 63.25 - 28.25 L4 36.5 - 1	(139) 12,833 4,398	1.0 1.0 1.0 1.0	2.5220 3.6531 0.0013 1.8623 0.0001 1.0793 0.0001		
								·				F
												Pa

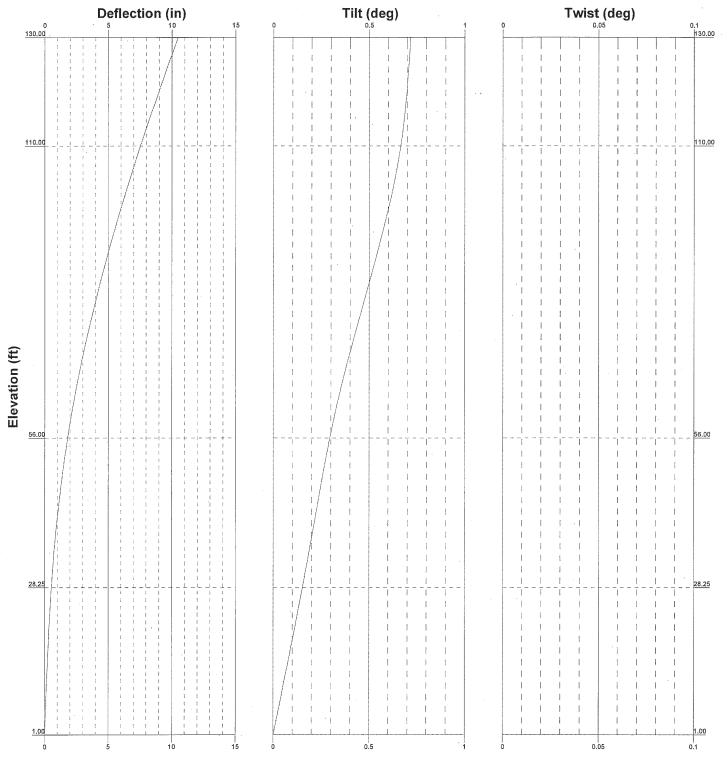
Page 29 of 40


18 of 18 Date 16:06:58 04/04/14 Designed by kwilson		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Allow Criteria Stress Stress Action 1.000 4.8.2 V 1.000 4.8.2 V 1.000 4.8.2 V 1.000 4.8.2 V	attract         State         Fast           attract         State         State           attract         State         Fast           attract         State         Fast           attract         State         Fast           attract         State         Fast           attract         Fast         Fast           attract         Past         Fast           attract         Past         Fast           block         State         Past           Pole (L2)         99.4         Past           MATING         99.4         Past	Page 30 of 40
641200 U1223-277-131 Larson Camouflage	Pole Shear Design Data	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pole Interaction Design Data           Ratio         Ratio         Ratio         Comb.         All           Ratio         Ratio         Comb.         All         All           Ratio         Ratio         Comb.         All         All           Ratio         Ratio         Comb.         All         All           0000         0145         0000         0.410         11           0000         0.024         0.000         0.994         11           0.000         0.021         0.000         0.994         11           0.000         0.021         0.000         0.994         11	Section Capacity Table Size Critical P o TP36.5601560125 1 - 799028 122 TP36.560156025 4 - 799930 303 TP01.3256607580025 4 - 79489 30 960 P00	Program Varsion 6.1.3.1 - 7/2/2013 File-N/2013 Projects/U1223 Larson Camouflage/U1223-277-131 641200 East Hartford CIVENG/REV 3 new lucking/Tower/611200 REV G.ari
ItaX LOWET Vector Engineering 9138 S. State St. Ste 101 Sandy 11940 Phone: [801) 990-1776 FAX: [801] 990-1776		Elevation Size <i>f</i> <i>f</i> 130 - 110 (1) TP36 5x0 5x0 187 130 - 56 (2) TP36 5x0 312 10 - 56 (2) TP60 4x9 5x0 67 28 25 - 1 (4) TP67 325x56 675x01	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Section         Elevation         Component           No.         1         7         7           L1         130 - 10         Pole         1           L3         56 - 28.25         Pole         1           L4         28.25 - 1         Pole         1	rum Varsion 6 I.3 I - 7725/2013 File.N/2013 Projed
		Section No. 1.2 1.3 1.4	Section No. L1 L2 L2 L3 L4		Prop
	gn Wind	Rodius of Curvature         Sector           Additis of A         M           8833         L           8833         L           1         L           8833         L           1         L           8833         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           1         L           L         L		Rate 12 12 12 12 12 12 12 12 12 12 12 12 12	Ratio 1.000 0.000 0.000 0.000
17 ( 36:58 kwi	Critical Deflections and Radius of Curvature - Design Wind		34.021     3.3610     0.0012     1937       32.063     3.2644     0.0011     1873       32.013     2.9738     0.0009     11726       22.770     2.6640     0.0006     1559       21.208     2.5663     0.0006     1556       17.424     2.2448     0.0005     1456	le Design Data $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

٧z

٧x

**Maximum Values** - Mz Мx .....


Page 31 of 40



Vector Engineering	^{Job:} 641200		
9138 S. State St. Ste 101	Project: U1223-277-131		
Sandy UT 84070	Client: Larson Camouflage	Drawn by: kwilson	App'd:
	Code: TIA-222-G	Date: 04/03/14	Scale: NTS
FAX: (801) 990-1776	Path: N/12013 Projects/U/1223 Larson Computage/U/1223-277-131 6413	200 East Hartford CTIENGAREV 3 new loading/Town/841200 RE	Dwg No. E-4

# TIA-222-G - Service - 60 mph

Maximum Values Page 32 of 40



Vector Engineering	^{Job:} 641200		
9138 S. State St. Ste 101	Project: U1223-277-131		
Sandy UT 84070	^{Client:} Larson Camouflage	Drawn by: kwilson	App'd:
	Code: TIA-222-G	Date: 04/03/14	Scale: NTS
FAX: (801) 990-1776	Path: N/12013 Projects/U/1223 Larson Camelrflage/L/1223-277-131 041	200 East Hartford CTVENG/REV 3 new leading/Tower/641200 REV	Dwg No. E-5

Rigid

AISC LRFD

φ*Tn

Rigid

AISC LRFD

φ*Fy

Y.L. Length: 34.17

# Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material TIA Rev G

Reactions Mu:

Axial, Pu:

Shear, Vu:

If No stiffeners, Criteria:

Anchor Rod Results

Max Rod (Cu+ Vu/ή):

**Base Plate Results** 

Allowable Plate Stress:

Base Plate Stress Ratio:

Plate Flex+Shear, fb/Fb+(fv/Fv)^2:

Plate Comp. (AISC Bracket):

Pole Punching Shear Check:

Plate Tension+Shear, ft/Ft+(fv/Fv)^2:

Base Plate Stress:

Stiffener Results Horizontal Weld :

Vertical Weld:

Pole Results

<u>n/a</u>

Allowable Axial, Φ*Fu*Anet:

Anchor Rod Stress Ratio:

8711

160.4

92.5

ft-kips

kips

kips

AISC LRFD <- Only Applcable to Unstiffened Cases

196.1 Kips

260.0 Kips

75.4% Pass

29.6 ksi

45.0 ksi

65.8% Pass

n/a

Flexural Check

n/a

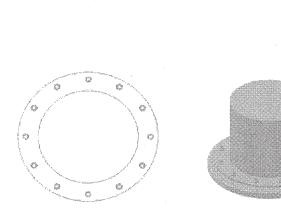
n/a

n/a

n/a

n/a

#### Site Data


Project #: U1223-277-131
Site Name: 110' Monopine
Date: 03/18/14
Pole Manufacturer: Other

An	chor Rod D	ata
Qty:	30	
Diam:	2.25	lin
Rod Material:	A615-J	
Strength (Fu):	100	ksi
Yield (Fy):	75	ksi
Bolt Circle:	75.5	lin

	Plate Data	-
Diam:	81.5	in
Thick:	3	in
Grade:	50	ksi
Single-Rod B-eff:	7.12	in

Stiffener Da	a <b>ta</b> (Welding a	at both sides)
Config:	0	*
Weld Type:	Fillet	
Groove Depth:	0.25	< Disregard
Groove Angle:	45	< Disregard
Fillet H. Weld:	0.25	in
Fillet V. Weld:	0.3125	in
Width:	5	in
Height:	18	in
Thick:	0.75	in
Notch:	0.5	in
Grade:	36	ksi
Weld str.:	70	ksi

Pole Data		
Diam:	67.325	in .
Thick:	0.625	in
Grade:	65	ksi
# of Sides:	18	"0" IF Round
Fu	80	ksi
Reinf. Fillet Weld	0.5	"0" if None



* 0 = none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

** Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

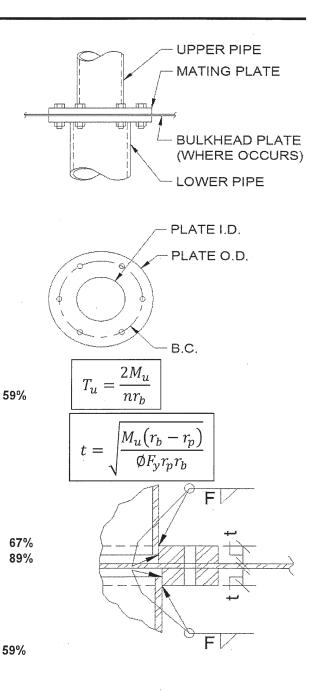


DESIGNED: KAW CHECKED: MEG

#### PROJECT: 110' MONOPINE

# **Bolted Annular Plates**

Plate F _y (ksi)	36
Upper Pipe Outer Diameter (in)	
Upper Pipe Thickness $t_1$ (in)	0.1875
Lower Pipe Thickness $t_2$ (in)	0.3125
Lower Pipe Outer Diameter (in)	36.5
Moment @ Splice M _u (kip-ft)	369.4
Axial @ Splice P _u (kips)	367.5
Shear @ Splice $V_u$ (kips)	27.5
Bolt Design	


Bolt Circle Diameter BC (in)	40.25
Number of Bolts, n	9
T _u / Bolt (kips)	48.9
V _u / Bolt (kips)	3.1
Bolt Designation	A325
Bolt Diameter (in)	1 1/4
φT _n (kips)	82.8
φV _n (kips)	44.2
Combined Tension and Shear	0.59

# Plate Design

Upper Plate Hole Radius, r _p (in)	18.3125
Lower Plate Hole Radius, r _p (in)	18.3125
Bolt Circle Radius, r _b (in)	20.125
Plate OD (in)	43.75
ф _{рlate}	0.9
Req'd Upper Plate Thickness, t (in)	1.00
Req'd Lower Plate Thickness, t (in)	1.00

#### <u>Welds</u>

Fillet Weld Size F (in)		
Weld Strength, $\phi R_n$ (k/in)	6.3	
Weld Stress, R _u (k/in)	3.7	59%

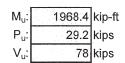




SHEET

OF

DESIGNED: KAW CHECKED: MEG


PROJECT: 110' MONOPINE

# **Access Port Analysis**

# **Reinforced Access Port:**

Port Width: 8 inches

# Pole Shaft Loading:



# Properties @ Access Port:

44.0	lin
0.375	in /
	. ((
51.4	in ²
12227.2	in⁴
555.8	in ³
52.0	in ²
12362.0	in⁴
561.9	in ³
	1
1	
150	ft
15.42	in
	ksi
79.1	ksi
116.7	
1.9	
18.4	ksi
3705.8	kip-ft
957.7	kip
2057.7	kip
0.63	
OK	
	0.375 51.4 12227.2 555.8 52.0 12362.0 561.9 1 15.42 65 79.1 116.7 1.9 18.4 3705.8 957.7 2057.7

Area: Perimeter:	51.900567 sq in 268.408625 in
Principal moments (sq in and X-Y directions about	

Applicable Section of TIA-222-G Code: 4.7.3 59.0% 4.5.4.2 4.8.2 4.8.2 62.6%

3.4%

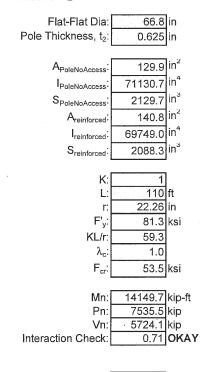
4.2%



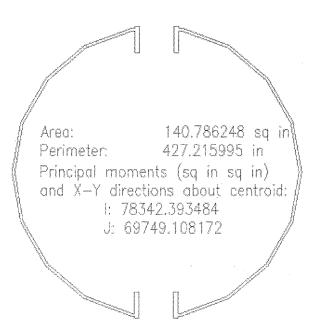
DESIGNED: KAW CHECKED: MEG

PROJECT: 110' MONOPINE

# **Reinforced Access Port Analysis**


#### **Reinforced Access Port:**

Width, w:	10	inches
Height	30	inches
Thickness, t ₁ :	1	inches
Depth, d:	6	inches
Projection, p:	1	inches


#### Pole Shaft Loading:

8711	kip-ft
160.4	kips
92.5	kips
	160.4

#### Properties @ Access Port:







OF

E:	29000	ksi
Rim F _y :	65	ksi
Pole F _y :	65	ksi



DESIGNED: KAW CHECKED: MEG

THE RAMAINING CALCULATIONS WILL BE PERFORMED USING THE WORST CASE LRFD LOADS

LOADS FROM TIA REV G ANALYSIS: AXIAL= 160.4 KIPS SHEAR= 92.5 KIPS MOMENT= 8254.7 KIP-FT

LOADS FROM TIA REV F ANALYSIS: AXIAL= 108.4(1.2)=130.1 KIPS SHEAR= 64.6(1.6)=103 KIPS MOMENT= 6146(1.6)= 9833.6 KIP-FT

LOADS USED:

AXIAL= 160.4 KIPS SHEAR= 103 KIPS MOMENT= 9833.6 KIP-FT



SHEET

DESIGNED: KAW CHECKED: MEG

OF

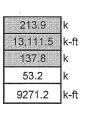
**PROJECT:** 

# **Foundation Design**



DESIGNED: KAW CHECKED: MEG

SHEET


OF

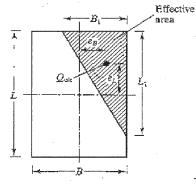
PROJECT: 110' MONOPINE

## Square Mat Foundation Design (Resultant Lies Outside Footing Kern)

#### Design Loads (Factored / $\phi_s$ ):

Max. Base Shear,  $V_u$  / 0.75: Max. Overturning Moment,  $M_u$  / 0.75: Max. Down,  $P_{u-down}$  / 0.75: Structure Weight: Moment Components,  $M_v = M_x$ :




#### Mat Properties:

Mat Width, L = B:
Mat Thickness, t:
Pier Diameter, b:
Height of Pier:
Depth of Soil Above Mat:
Unit Weight of Soil:
Number of Legs:

#### 3.0 ft 8.0 ft 3.5 ft 3.0 ft 120.0 pcf 1

32.0

ft



Volume of Concrete:	3248
Volume of Concrete:	120.3
Weight of Concrete:	487.2
Weight of Soil:	350.5

ft³

#### Soil Properties:

Allow. Bearing Pressure: Factor of Safety: 1/3 increase for short term loads?

Passive Pressure: Factor of Safety: Max. Passive Pressure (opt'l): 1/3 increase for short term loads? Top Depth to Ignore:

#### **Check Bearing:**

Total Moment, M _y = M _x :
Total Axial Load, Q:
Load eccentricity, $e_L = e_B$ :
Effective Mat Brg Width, B ₁ = L ₁ :
Effective Area, $A' = 1/2(B_1)(L_1)$ :
Allowable axial load:

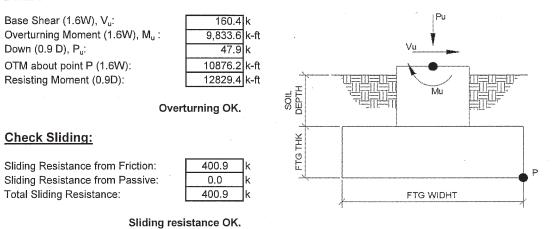
4,000	psf
2	
no	
0	pcf
2	
0	psf
No	

0.0

10,254.2 k-ft 1,478.2 k 6.94 ft 27.19 ft 369.62 tt⁻ 2957 k

ft

Eff. Bearing Pressure:	8000	psf
Coefficient of Friction: Factor of Safety:	0.33 1.5	
% Passive for Sliding: % Friction for Sliding:	0.00 100.00	


Bearing Capacity OK.



PROJECT: 110' MONOPINE

# Square Mat Foundation Design (cont.)

#### Check Overturning:

