

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 Tel 914.761.1300 Fax 914.761.5372 www.cuddyfeder.com

November 21, 2012

BY EMAIL & FEDEX

Ms. Linda Roberts
Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, Connecticut 06051

Re:

Message Center Management, Inc.

Application for Certificate of Environmental Compatibility and Public Need

Docket # 425

4 Dittmar Road, Redding, Connecticut

Dear Ms. Roberts:

On behalf of Message Center Management, Inc. ("MCM"), please accept for review and Council approval this Development Management Plan ("D&M Plan") filing for the captioned Facility as approved in Docket No. 425.

Tower, Compound & Other Equipment

Enclosed are an original and fifteen (15) sets of 11"x 17" sized construction drawings being filed in accordance with the Siting Council's ("Council") Decision and Order dated June 21, 2012 ("Decision and Order"). Two full sized sets are being filed under separate cover. As per order number 1, the D&M Plan incorporates a 120' monopole tower (with camouflaging extending up to 127' AGL), as well as the details of the associated compound and T-Mobile equipment as well as the equipment of others. The D&M Plan also includes construction sequencing and site clearing, drainage, and erosion and sedimentation control measures consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control as amended. Also enclosed is a geotechnical report and tower and foundation drawings including information pertinent to the designed camouflaging.

Required Notifications

In accordance with RCSA Section 16-50j-61(d) copies of this filing are being provided to the Service list and the property owner of record. It should be noted that the landscaping plan was previously provided by MCM to the Town of Redding by email on August 23, 2012. No comments have been received to date and MCM knows of no objection to the planned landscaping.

In accordance with the provisions of RCSA Section 16-50j-77, MCM hereby notifies the Council of its intention to begin site work immediately after Council approval of the D&M Plan. Construction of the tower and other site improvements will commence upon issuance of a local building permit. The supervisor for all construction related matters on this project is supervisor

for all construction related matters on this project is Mr. Jim Maher. Mr. Maher is located at MCM's office in Hartford, Connecticut and can be reached by telephone at (203) 223-4665.

We respectfully request that this matter be included on the Council's next available agenda for review and approval.

Thank you for your consideration of the enclosed.

Very truly yours,

Daniel M. Laub

Enclosures

cc: Brad Mondschein, Esq., Town of Redding

Natalie Ketcham, Town of Redding

Julie D. Kohler, Esq. Robert. S. Paradise Maria Scotti, MCM Virginia King, MCM Scott Chasse, P.E., APT

Hans Fiedler, T-Mobile

Christopher B. Fisher, Esq.

CERTIFICATE OF SERVICE

I hereby certify that on this day, an original and 15 copies of the foregoing was sent electronically and by first class mail to the Connecticut Siting Council with a copy by email and first class mail to:

T-Mobile Northeast LLC
Julie D. Kohler, Esq.
Cohen and Wolf, P.C.
1115 Broad Street
Bridgeport, CT
jkohler@cohenandwolf.com

Town of Redding Brad N. Mondschein, Esq. Pullman & Comley, LLC 90 State House Square Hartford, CT 06103 bmondscein@pullcom.com

Natalie Ketcham, First Selectman Town of Redding Town Hall, P.O. Box 1028 Redding, Connecticut 06875-1028

Owner: Robert. S. Paradise 4 Dittmar Road W. Redding, CT 06896-1509

Dated: November 21, 2012

Daniel M. Laub, Esq.

ATTACHMENT A

Proposed Telecommunications Tower
MCM Dittmar Road (North Alternate)
4 Dittmar Road
Redding, Connecticut

November 7, 2011 Terracon Project No. J2115185

Prepared for:

All-Points Technology Corporation, P.C. Killingworth, Connecticut

Prepared by:

Terracon Consultants, Inc. Rocky Hill, Connecticut

Offices Nationwide Employee-Owned Established in 1965 terracon.com

November 7, 2011

Terracon

All-Points Technology Corporation, P.C. 3 Saddlebrook Drive Killingworth, CT 06419

Attn:

Mr. Scott Chasse, P.E., Principal

P:

[860] 663 1697

F:

[860] 663 0935

E

schasse@allpointstech.com

Re:

Geotechnical Engineering Report

Proposed Telecommunications Tower MCM Dittmar Road (North Alternate)

4 Dittmar Road

Redding, Connecticut

Terracon Project No. J2115185

Dear Mr. Chasse:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. This study was performed in general accordance with our Proposal for Geotechnical Engineering Services, dated October 11, 2011. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design of foundations for the proposed telecommunications tower and accompanying equipment cabinets.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or if we may be of further service, please contact us.

Sincerely.

Terracon Consultants, Inc.

Stephen C. Lanne, P.E.

Senior Staff Geotechnical Engineer

/scl/J2115185

Attachment

Richard W.M. McLaren, P.E.

Senior Associate

Geotechnical Department Manager

Terracon Consultants, Inc. 201 Hammer Mili Road Rocky Hill, CT 06067 P [860] 721 1900 F [860] 721 1939 terracon.com

TABLE OF CONTENTS

					Page
1.0	INTRO	DUCTI	ON		1
2.0	PROJ	ECT IN	FORMAT	ION	1
	2.1	Projec	t Descrip	otion	1
	2.2			nd Description	
3.0	SUBS	URFAC	E EXPLO	DRATIONS AND CONDITIONS	3
	3.1	Typica	al Profile		3
	3.2	Groun	dwater		4
4.0	RECO	MMENI	DATIONS	FOR DESIGN AND CONSTRUCTION	4
	4.1	Geote	chnical (Considerations	4
	4.2	Earthy	work		4
		4.2.1		tion Requirements	
		4.2.2		and Drainage	
		4.2.3		ction Considerations	
	4.3	Found 4.3.1		commendationsoundations	
		4.5.1	4.3.1.1	Mat/Pad Foundation Design Recommendations	
			4.3.1.2	Mat/Pad Foundation Construction Consideration s	
			4.3.1.3	Drilled Shaft Foundation Design Recommendations	9
			4.3.1.4	Drilled Shaft Foundation Construction Considerations	
		4.3.2	1000 AS	ent Cabinet Foundations	
			4.3.2.1	Slab-on-Grade Design Recommendations	
			4.3.2.2 4.3.2.3	Concrete Pier Design Recommendations	
			4.3.2.4	Concrete Pier Construction Considerations	
	4.4	Seism		derations	
5.0	555 51			'S	
5.0	OLINE	IVAL O			
APPE	NDIX A	- FIEL	D EXPLO	PRATION	
				ation Map	
	Exhibi		75	ion Location Di agram	
	Exhibi			ploration Description , B-2, P-1, and P <i>-</i> 2	
ADDE					
APPE	Exhibi			RY TESTING bry Testing	
ADDE				B DOCUMENTS	
AFFE	Exhibi		General		
	Exhibi			Soil Classification System	
	Exhibi	t C-3	Descript	ion of Rock Properties	

GEOTECHNICAL ENGINEERING REPORT PROPOSED TELECOMMUNICATIONS TOWER MCM DITTMAR ROAD (NORTH ALTERNATE) 4 DITTMAR ROAD REDDING, CONNECTICUT

Terracon Project No. J2115185 November 7, 2011

1.0 INTRODUCTION

A geotechnical engineering report has been completed for the proposed steel "Monopine" telecommunications tower to be located in the northeast corner of the property at 4 Dittmar Road, in Redding, Connecticut. Two test borings, B-1 and B-2, were advanced to depths of approximately 16 and 15 feet below existing ground surface, respectively. B-1 was advanced near center of the proposed north alternate tower location. B-2 was advanced at the south alternate tower location, about 45 feet to the south. Two test probes, P-1 and P-2, were advanced within the proposed compound area each to a depth of approximately 10 feet. Logs of the test borings and probes, along with a Site Location Map (Exhibit A-1) and an Exploration Location Diagram (Exhibit A-2), are included in Appendix A of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

subsurface soil conditions

foundation design and construction

groundwater conditions

seismic considerations

earthwork

slab design and construction

2.0 PROJECT INFORMATION

2.1 Project Description

The project consists of constructing a 120-foot high steel "Monopine" telecommunications tower within an expanded fenced compound area. An existing 110-foot guyed tower within the northern portion of the proposed compound area will be removed, along with its foundation. The existing equipment shelter and slabs will remain; the existing shed will be removed. New equipment cabinets and various electrical appurtenances will be located within the south half of the expanded compound area. The proposed tower will be located about 4½ feet northwest of the guyed tower. The site is generally level at around Elevation (EI) 809 feet within the northern portion of the proposed compound area, but grades moderately downward to EI 801 in the south corner. A summary of the project is presented below:

Proposed Telecommunications Tower MCM Dittmar Road (N. Alt.) ■ Redding, Connecticut November 7, 2011 ■ Terracon Project No. J2115185

Item	Description	
Site layout	Appendix A, Exhibit A-2, Exploration Location Diagram	
Tower	120-foot high "Monopine"	
Tower: Maximum dead load	20 kips (assumed)	
Tower: Total Settlement: 1 inch (assumed)		
Maximum allowable settlement	Differential Settlement: ½ inch (assumed)	
Equipment Pad: Maximum load	150 pounds/square foot (psf) (assumed)	
Equipment Pad:	Total Settlement: 1 inch (assumed)	
Maximum allowable settlement	Differential Settlement: ½ inch (assumed)	
Grading	Based on the plans provided, up to about 3 feet of fill will be required to achieve finished grade.	
Cut and fill slopes	An approximately 4-foot high, 2H:1V soil slope is proposed around the south corner of the compound area.	
Retaining walls	None expected.	

2.2 Site Location and Description

Item	Description	
Location	4 Dittmar Road, Redding, Connecticut	
Existing improvements	The site is occupied by a 110-foot high guyed tower and associated equipment shelter, slabs, and shed.	
Current ground cover	Gravel or topsoil in the vicinity of the proposed compound.	
Existing topography	Generally level within the northern portion of the proposed compound area. However, to the south, the ground slopes moderately downward.	

Ground surface elevations at the exploration locations were based on the elevation contours shown on the drawings titled "Compound Plan & Tower Elevation Alternate 2" Sheet No. SP-3. We consider our estimates of ground surface elevations to be accurate to about ½ foot.

3.0 SUBSURFACE EXPLORATIONS AND CONDITIONS

3.1 Typical Profile

Based on the results of the explorations and observations at the time of drilling, subsurface conditions on the project site can be generalized as follows:

Description	Approximate Depth to Bottom of Stratum (feet)	Material Encountered ¹	Consistency / Relative Density
Fill ²	8	Fill, Silt, with sand, wood pieces, brown	Very loose
Glacial Till	8.5	Silty sand, with gravel, grey to brown	Dense to very dense
Bedrock	>15	Schist, highly weathered, highly fractured, grey	N/A

^{1.} Topsoil and subsoil to a depth of 2.5 feet was encountered at the surface of B-2, P-1, and P-2. About 10 inches of crushed gravel was encountered at the surface of B-1.

Highly weathered bedrock was cored in B-1 and B-2 and augered through in P-1 and P-2. Based on review of the core samples and on the *Bedrock Geological Map of Connecticut* (1985), the bedrock underlying the site consists of gray Schist with mica.

Conditions encountered at the individual exploration locations are indicated on the boring or probe logs in Appendix A of this report. Stratification boundaries on the exploration logs represent the approximate location of changes in soil/rock types; *in situ*, the transition between materials may be gradual. Further details of the explorations can be found on the boring and probe logs.

On November 5, 2011, *in-situ* soil resistivity testing was completed by a Terracon field engineer. Resistivity testing was performed in general accordance with ASTM G57 by the Wenner Four Probe Method using a Megger DET5/4R Digital Earth Tester. Two resistivity lines were completed with electrodes spaced at approximately 5, 10, 20, 30, and 40 feet. The location and orientation of resistivity lines are shown on Figure 2. The resistivity test results are tabulated below:

	Resistivity	(ohm-cm)
Electrode Spacing (ft)	Line 1	Line 2
5	221,185	180,010
10	182,115	167,370
20	104,940	124,860

^{2.} Associated with the backfill placed around the foundation of the guyed tower.

Proposed Telecommunications Tower MCM Dittmar Road (N. Alt.) ■ Redding, Connecticut November 7, 2011 ■ Terracon Project No. J2115185

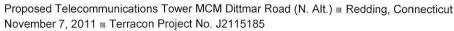
30	86,920	113,175
40	84,950	101,420

3.2 Groundwater

Groundwater was not encountered in the explorations. However, fluctuations in groundwater level may occur because of seasonal variations in the amount of rainfall, runoff and other factors. In addition, water is likely to become temporarily perched on top of the bedrock surface during and after rainfall events. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 Geotechnical Considerations


Based on the subsurface conditions encountered in the borings, we recommend the proposed telecommunications tower be supported on either a monolithic mat or a pier and pad foundation bearing directly on the glacial till or highly weathered bedrock, or on compacted structural fill or minus ¾-inch crushed stone placed on the glacial till or highly weathered bedrock. We have also provided recommendations for a drilled shaft option. The proposed equipment cabinets and other ancillary structures may derive support from the inorganic subsoil (subsoil without visible roots), the glacial till, or structural fill placed to backfill the excavation to remove the guyed tower foundation. Design recommendations are presented in the following sections.

As part of the site development, the existing guyed tower will be demolished. Demolition of the existing tower should include removal of foundation systems within the proposed construction area. This should include removal of loose backfill found adjacent to existing foundations.

We recommend that the exposed subgrades be thoroughly evaluated after excavation to proposed grade. We recommend that the geotechnical engineer be retained to evaluate the bearing material for the foundation subgrade soils. Subsurface conditions in the explorations have been reviewed and evaluated with respect to the proposed construction plans known to us at this time.

4.2 Earthwork

As part of the site preparation, the existing guyed tower will be demolished and its foundation removed. Areas disturbed during demolition of the existing tower and the removal of foundation elements should be evaluated by the geotechnical engineer or his representative prior to placement of fill. Disturbed soils should be undercut prior to placement of fill. Excavations for the removal of foundation elements and utilities should be backfilled in compacted lifts with structural fill.

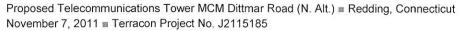
Prior to placing fill, existing fill, buried concrete, topsoil, subsoil, and any otherwise unsuitable materials should be removed. The subgrade should be proofrolled with a vibratory roller or heavy plate compactor. Unstable subgrades should be removed and replaced with compacted structural fill or minus ¾-inch crushed stone, as necessary. Structural fill may then be placed within the compound area to attain the required grade.

Fill should meet the following material property requirements:

Fill Type ¹	USCS Classification	Acceptable Location for Placement
Structural Fill	GW ²	All locations and elevations. The existing fill is not suitable for re-use as structural fill. The glacial till, if excavated, may be selectively re-used as structural fill, provided it meets the gradation requirements in Note 2, below.
Common fill	Varies ³	Common fill may be used for site grading to within 12 inches of finished grade. Common fill should not be used under settlement sensitive structures. The existing fill and glacial till, if excavated, may be reused as common fill provided they are free of organics and can be adequately compacted.

- 1. Compacted fill should consist of approved materials that are free of organic matter and debris. Frozen material should not be used. Fill should not be placed on a frozen subgrade.
- 2. Imported structural fill should meet the following gradation:

Percent Passing by Weight


Sieve Size	Structural Fill
6"	100
3"	70 – 100
2"	(100)*
3/4"	45 – 95
No. 4	30 – 90
No. 10	25 – 80
No. 40	10 – 50
No. 200	0 - 12

^{*} Maximum 2-inch particle size within 12 inches of the underside of footings or slabs

3. Common fill should have a maximum particle size of 6 inches and no more than 25 percent by weight passing the US No. 200 sieve.

4.2.1 Compaction Requirements

Item	Description
Fill Lift Thickness	8 inches or less in loose thickness
Compaction Requirements ¹	95% maximum modified Proctor dry density (ASTM D1557,

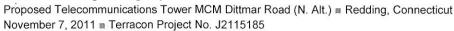
	Method C)
Moisture Content – Granular Material	Workable moisture levels

 We recommend that structural fill be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested, as required, until the specified moisture and compaction requirements are achieved.

4.2.2 Grading and Drainage

The compound area currently slopes downward to the south with a total elevation change of about 3 feet. We understand that fill will be placed over the existing slope, grading the compound area to slope slightly downward from the guyed tower location. A permanent earth slope will be required outside of the proposed compound area. Design of permanent cut slopes in soil and weathered bedrock should be based on a grade no steeper than 2H:1V.

We recommend that permanent soil slope surfaces be vegetated or covered with riprap stone underlain by a geotextile separation fabric (Mirafi 140N, or equivalent) to reduce erosion. Vegetated slopes should be protected with erosion mats until the vegetation is established. Temporary sedimentation and erosion control methods should be implemented during construction and left in place until the slope surfaces have become stabilized.


Provision should be made in the design of the slope and the compound area to collect and divert stormwater run-off away from the slope.

4.2.3 Construction Considerations

Although the exposed subgrade is anticipated to be relatively stable upon initial exposure, unstable subgrade conditions could develop during general construction operations, particularly if the soils are wetted and/or subjected to repetitive construction traffic. Should unstable subgrade conditions develop, stabilization measures will need to be employed.

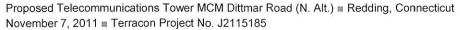
Construction traffic over the completed subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become frozen, wet, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted.

As a minimum, temporary excavations should be sloped or braced as required by Occupational Health and Safety Administration (OSHA) regulations to provide stability and safe working conditions. Temporary excavations will probably be required during grading operations. The contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations, as required, to maintain stability of both the excavation sides and bottom. All excavations should

comply with applicable local, State and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation; proofrolling; placement and compaction of controlled compacted fills; backfilling of excavations into the completed subgrade, and just prior to construction of foundations.

4.3 Foundation Recommendations


4.3.1 Tower Foundations

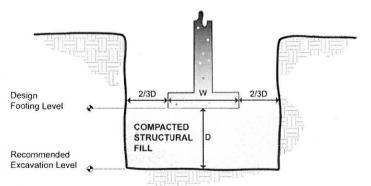
The tower may be supported by either a monolithic mat or a pier and pad foundation bearing directly on the glacial till or highly weathered bedrock, or on compacted structural fill or minus ¾-inch crushed stone placed on the glacial till or highly weathered bedrock. Alternatively, a drilled shaft could be used to support the tower. Design recommendations and construction considerations for the recommended foundation systems are presented in the following paragraphs and tables.

4.3.1.1 Mat/Pad Foundation Design Recommendations

Description	Value
Net allowable bearing pressure ¹	6,000 psf
Minimum depth of underside of mat/pad ²	8 feet
Minimum embedment below finished grade for frost protection	3.5 feet
Approximate total settlement ³	<1 inch
Estimated differential settlement ³	<1/2 inch
Total unit weight (γ)	125 pcf
Passive earth pressure coefficient, K _p ⁴	3.0 (ultimate)
Coefficient of sliding friction ⁵	0.5 (ultimate)

- 1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation.
- 2. Represents the depth expected to provide adequate overturning resistance and to place the underside of the mat/pad below the existing fill.
- Foundation settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the mat/pad, the thickness of compacted fill, and the quality of the earthwork operations.
- 4. Passive pressure calculated with these parameters should be reduced by at least a factor of safety of 3, to reflect the amount of movement required to mobilize the passive resistance.
- 5. A factor of safety of at least 1.5 should be applied to the sliding resistance.

Uplift resistance for spread footings may be computed as the sum of the weight of the foundation element and the weight of the soil overlying the foundation. We recommend using a soil unit weight of 100 pounds per cubic foot (pcf) for engineered fill overlying the footing placed as described in this section of this report. A unit weight of 150 pcf could be used for reinforced footing concrete. A factor of safety of 1.0 may be applied to calculations of dead load; a higher factor of safety may be appropriate for loadings resisted by dead load.


The base of the foundation excavation should be free of water and loose soil prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Should the soils at bearing level become excessively wet, disturbed or frozen, the affected soil should be removed prior to placing concrete. The geotechnical engineer should be retained to observe and test the soil foundation bearing materials.

4.3.1.2 Mat/Pad Foundation Construction Considerations

The base of foundation excavations should be free of water and loose soil prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Should the soils at bearing level become wet, disturbed or frozen, the affected soil should be removed prior to placing concrete. The geotechnical engineer should be retained to observe and test the soil foundation bearing materials.

If unsuitable bearing soils are encountered in footing excavations, the excavations should be extended deeper to suitable soils and the footings could bear directly on these soils at the lower level. The footings could also bear on properly compacted structural fill extending down to the

suitable soils. Overexcavation for compacted structural fill placement below footings should extend laterally beyond the edges of the footings at least inches per foot overexcavation depth below footing base elevation. The overexcavation should then be backfilled up to the footing base elevation with well-graded granular material placed in lifts of 8 inches or less in loose thickness and compacted to at least 95 percent of the modified Proctor maximum dry density (ASTM D1557, Method C). overexcavation and backfill procedure is described in the adjacent figure.

Overexcavation / Backfill

NOTE: Excavations in sketches shown vertical for convenience. Excavations should be sloped as necessary for safety.

As groundwater was not encountered during our explorations, we do not expect that significant temporary dewatering will be required during foundation construction. However, groundwater

Proposed Telecommunications Tower MCM Dittmar Road (N. Alt.) ■ Redding, Connecticut November 7, 2011 ■ Terracon Project No. J2115185

may become perched over relatively impermeable layers of glacial till and highly weathered bedrock. The contractor should be required to maintain a stable subgrade during construction. The contractor should prevent groundwater, if encountered, and surface water runoff from collecting in the excavation. Subgrade soils that become unstable because of water and/or reworking by construction activity should be replaced with compacted structural fill or minus ¾-inch crushed stone, as necessary.

The predominant soil type at the recommended subgrade levels will be the glacial till, portions of which may have an elevated silt content, or the highly weathered bedrock. Soil with a higher silt content and highly weathered bedrock will be sensitive to excess moisture and lose strength quickly during seasonally wet periods. Contractors experienced in earthwork construction in this area should be aware of the silty soil and highly weathered bedrock behavior, and the effect that moisture and inclement weather can have on their workability. If a contractor bids construction knowing that earthwork must begin during the winter or wet months, the contractor should include a contingency in his bid to use off-site suitable fill, and to remove and dispose of on-site soils that become unsuitable.

4.3.1.3 Drilled Shaft Foundation Design Recommendations

Description	Value
Net Allowable Bearing Capacity	
Bedrock (>10 feet)	20 ksf
Ultimate Side Friction ²	
Structural Fill (3.5 to 8 feet)	1.0 ksf
Glacial Till/Bedrock (>8 feet)	4.5 ksf
Coefficient Lateral Subgrade Reaction	
Structural Fill (0 to 8 feet)	30 (z/D) kcf ³
Glacial Till/Bedrock (>8 feet)	80 (z/D) kcf ³
Angle of Internal Friction	
Structural Fill (0 to 8 feet)	35 degrees
Glacial Till/Bedrock (>8 feet)	45 degrees
Estimated In-situ Soil Unit Weight	
Structural Fill (0 to 8 feet)	125 pcf
Glacial Till/Bedrock (>8 feet)	135 pcf
Approximate groundwater depth	Not encountered ⁴
Concrete minimum 28-day unconfined compressive strength	4,000 psi
Minimum drilled shaft diameter	Diameter of monopole base
Allowable deflection at top of shaft	0.5 inch

^{1.} The allowable end bearing capacity assumes that the bedrock at the base of the shaft has not been made unstable by drilling methods.

Proposed Telecommunications Tower MCM Dittmar Road (N. Alt.) ■ Redding, Connecticut November 7, 2011 ■ Terracon Project No. J2115185

- 2. The uplift capacity of the shaft will be based on side friction and the dead weight of the shaft.
- 3. z is depth below the ground surface and D is diameter of shaft, both in feet. Contribution to shaft frictional capacity above the frost depth of 3.5 feet should be ignored.
- 4. Groundwater was not encountered during the explorations. However, the possibility of encountering perched groundwater conditions should be anticipated.

We anticipate that the design length of the shaft will be primarily dependent on the embedment/lateral capacity required to resist live loading, such as the combination of wind and ice loads. However, the base of the drilled shaft should be in the bedrock, at least 10 feet below ground surface. The drilled shaft will be designed to resist tension loads and therefore should have reinforcing steel installed throughout the entire length of the shaft. Technical specifications should be prepared that require material and installation detail submittals, proof of experience in drilled shaft installation, concrete placement methods, and the use and removal of temporary steel casing.

4.3.1.4 Drilled Shaft Foundation Construction Considerations


The drilled shaft should be aligned vertically. The drilling method or combination of methods selected by the contractor should be submitted for review by the geotechnical engineer, prior to mobilization of drilling equipment. Bedrock is likely to become less weathered with depth. Groundwater was not encountered in the explorations. However, water may become perched over relatively impermeable soil layers and bedrock. The contractor should take these aspects into account in his proposed drilling method(s).

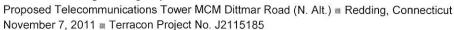
A section of temporary casing will likely be required to maintain the sidewall of the drill hole through the structural fill above bedrock. Concrete should be placed by tremie methods.

4.3.2 Equipment Cabinet Foundations

The proposed equipment cabinets and other ancillary structures may derive support from the inorganic subsoil (subsoil without visible roots), the glacial till, or structural fill placed to backfill the excavation to remove the guyed tower foundation. The topsoil and organic subsoil, i.e., subsoil with visible roots, are not suitable for slab-on-grade support. The proposed equipment cabinets may be supported on a slab-on-grade only if these unsuitable materials are removed. We expect the topsoil and subsoil will be stripped during site preparation.

Alternatively, the equipment cabinets may be supported on concrete pier foundations deriving support from the glacial till or highly weathered bedrock. Design recommendations and construction considerations for the recommended equipment cabinet foundation systems are presented in the following paragraphs and tables.

4.3.2.1 Slab-on-Grade Design Recommendations


Description	Value					
Slab support (compacted structural fill or minus ¾-inch crushed stone)	12-inch thick layer					
Modulus of subgrade reaction	150 pounds per square inch per in (psi/in)					
Minimum embedment below finished grade for frost protection ^{1,2}	3.5 feet					
Approximate total settlement ³	<1 inch					
Estimated differential settlement	<1/2 inch					
Coefficient of sliding friction	0.5					

- 1. Consideration should be given to using dense insulation boards (Dow Styrofoam Highload, or similar) under and adjacent to lightly loaded slabs-on-grade, to provide the equivalent of 3.5 feet of earth cover, thus reducing frost penetration.
- 2. Air entraining admixtures should be used for concrete exposed to freezing.
- 3. Settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the thickness of compacted fill, and the quality of the earthwork operations.

4.3.2.2 Slab-on-Grade Construction Considerations

On most tower sites, the site grading is generally accomplished early in the construction phase. However as construction proceeds, the subgrade may be disturbed by foundation excavations, construction traffic, rainfall, etc. As a result, the slab subgrade may not be suitable for placement of structural fill or minus ¾-inch crushed stone, and corrective action will be required.

We recommend the area underlying the slabs be rough graded and then thoroughly proofrolled with a vibratory roller or heavy plate compactor prior to final grading and placement of structural fill or minus ¾-inch crushed stone. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas previously filled or backfilled. Areas where unsuitable or unstable conditions are located should be repaired by removing and replacing the affected material with properly compacted structural fill or minus ¾-inch crushed stone, as necessary.

4.3.2.3 Concrete Pier Design Recommendations

Description	Value
Net Allowable Bearing Capacity	
Glacial Till/Weathered Bedrock	4 ksf ¹
Minimum depth of pier	3.5 feet
Approximate groundwater depth	Not encountered
Minimum embedment below finished grade for frost protection	3.5 feet
Concrete minimum 28-day unconfined compressive strength	4,000 psi
Minimum pier diameter	12 inches
Approximate total settlement ²	1 inch

- 1. The allowable end bearing capacity assumes that the soil/bedrock at the base of the pier has not been made unstable by excavation or other construction activities.
- 2. Settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, and the quality of the pier installation.

The concrete piers should be designed to extend through any fill layers and bear in the native glacial till or weathered bedrock. The bottom of the piers should be a minimum of 3.5 feet below finished grade to provide frost protection.

4.3.2.4 Concrete Pier Construction Considerations

The concrete piers may be constructed in drilled holes or in expendable forms (such as *Sonotubes*) placed in excavated holes. The outside of forms used for pier construction should be backfilled with structural fill, crushed stone, or flowable fill, prior to placing concrete. The piers should be aligned vertically. Cobbles and boulders may be encountered within the glacial till. Temporary casing may be required, if the piers are drilled, to reduce the likelihood of caving soils. Provided there are no more than 3 inches of water in the bottom of the pier excavation, concrete may be placed by directing it down the center of the pier using an "elephant trunk", or similar device. Otherwise, concrete should be placed by tremie methods.

Proposed Telecommunications Tower MCM Dittmar Road (N. Alt.) ■ Redding, Connecticut November 7, 2011 ■ Terracon Project No. J2115185

4.4 Seismic Considerations

Description	Value					
Code Used	Connecticut State Building Code (CBC) 1					
Site Class	B ²					
Maximum considered earthquake ground	0.066g (1.0 second spectral response acceleration, S ₁					
motions (5 percent damping)	0.288g (0.2 second spectral response acceleration, S _s)					
Liquefaction potential in event of an earthquake	Not susceptible					

- 1. The CBC incorporates the Seismic Design Category approach from the 2003 International Building Code.
- 2. The CBC requires a site soil profile determination extending a depth of 100 feet for seismic site classification. The current scope requested does not include the required 100 foot soil profile determination; the borings performed for this report extended to a maximum depth of 16 feet. However, bedrock will extend to a depth of 100 feet.

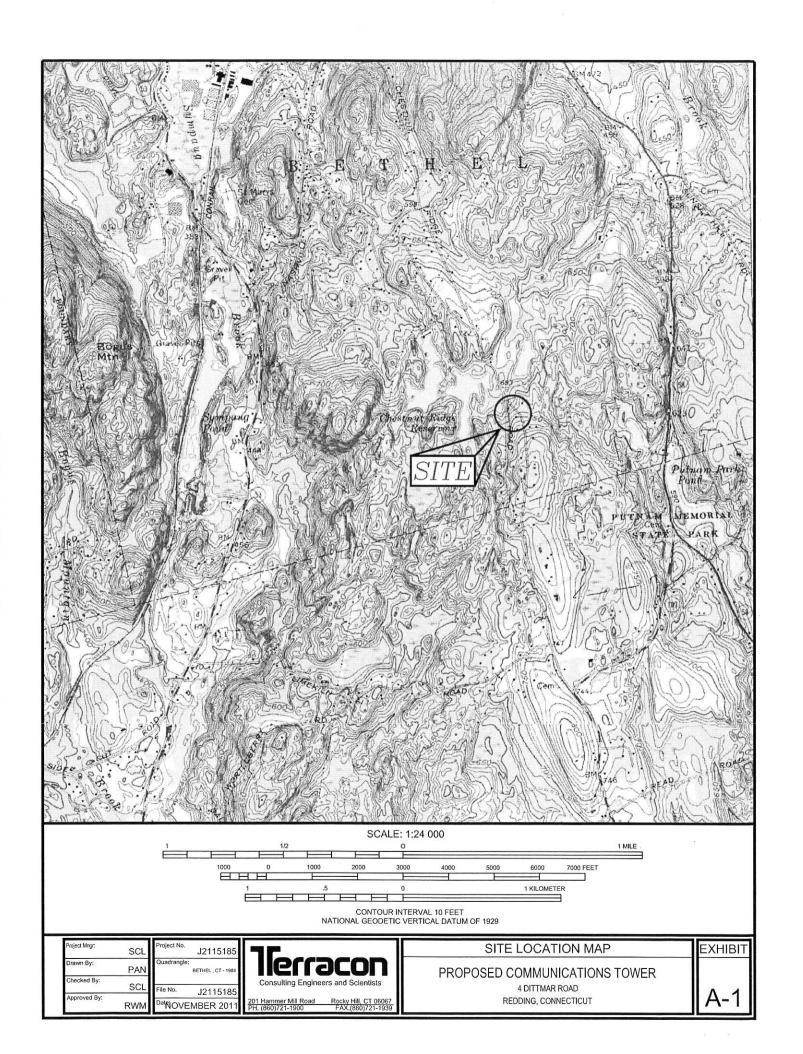
5.0 GENERAL COMMENTS

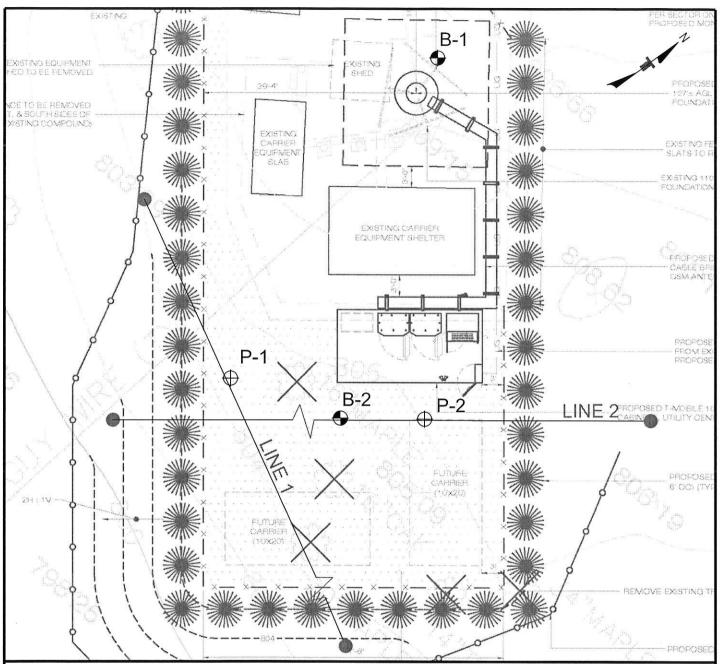
Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

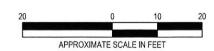
The analysis and recommendations presented in this report are based upon the data obtained from the explorations performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between explorations, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

Resistivity testing may be influenced by the presence of boulders or other anomalies within the test area. Resistivity results will also fluctuate depending on the degree of compaction, moisture content, soil constituent solubility, and temperature. Field resistivity values may vary depending upon season, precipitation, and other conditions, which may be different from those at the time of testing.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or




Proposed Telecommunications Tower MCM Dittmar Road (N. Alt.) ■ Redding, Connecticut November 7, 2011 ■ Terracon Project No. J2115185


prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

LEGEND

B-1 TEST BORII

TEST BORING LOCATION (TYP)

₱ P-1

TEST PROBE LOCATION (TYP)

LINE 1

RESISTIVITY TEST LOCATION (TYP)

NOTES:

- 1. THIS DIAGRAM WAS PREPARED BASED ON A PLAN BY ALL-POINTS TECHNOLOGY, P.C. OF KILLINGWORTH, CONNECTICUT, SITE No. CTFF632, SHEET No. SP-3, TITLED "COMPOUND PLAN & TOWER ELEVATION ALTERNATE 2", REVISED: JULY 21, 2011.
- 2. TEST BORINGS, B-1 AND B-2, AND PROBES, P-1 AND P-2, WERE ADVANCED ON OCTOBER 21, 2011 UNDER THE DIRECTION OF TERRACON WITH EQUIPMENT OWNED AND OPERATED BY NEW ENGLAND BORING CONTRACTORS OF GLASTONBURY, CONNECTICUT.
- 3. RESISTIVITY TESTING WAS CONDUCTED ON NOVEMBER 5, 2011 BY A TERRACON FIELD ENGINEER.
- 4. THE APPROXIMATE LOCATIONS OF THE EXPLORATIONS AND RESISTIVITY TESTS WERE TAPED FROM SITE FEATURES. THE LOCATIONS SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED.
- 5. USE OF THIS DIAGRAM IS LIMITED TO THE ILLUSTRATION OF THE APPROXIMATE LOCATIONS OF THE EXPLORATIONS, RESISTIVITY TESTS, AND OTHER PERTINENT SITE FEATURES. ANY OTHER USE OF THIS DIAGRAM WITHOUT PERMISSION FROM TERRACON IS PROHIBITED.

Project Mngr.	SCL	Project No.	J2115185
Drawn By:	PAN	Scale:	1" = 20
Checked By:	SCL	File No.	
Approved By:	RWM		J2115185 OBER 201
-	and a second second		

2115185	75	
1" = 20'	Consulting Engine	ECON Scientists
2115185		cro and ocientists
BER 2011	201 Hammer Mill Road PH. (860)721-1900	Rocky Hill, CT 06067 FAX.(860)721-1939

EXPLORATION LOCATION DIAGRAM
PROPOSED COMMUNICATIONS TOWER
NORTH ALTERNATE

NORTH ALTERNATE 4 DITTMAR ROAD REDDING, CONNECTICUT EXHIBIT

A-2

Proposed Telecommunications Tower MCM Dittmar Road (N. Alt.) ■ Redding, Connecticut November 7, 2011 ■ Terracon Project No. J2115185

Field Exploration Description

The proposed tower compound area was occupied by the existing guyed tower and associated fencing and equipment. Surrounding the existing compound area, the site was lightly wooded.

Terracon monitored the advancement of two test borings (B-1 and B-2) and two test probes (P-1 and P-4) within the proposed tower compound area on October 21, 2011. The explorations were advanced using an all terrain vehicle (ATV) mounted Mobile B-53 rotary drill rig, owned and operated by New England Boring Contractors Inc. of Glastonbury, Connecticut. B-1 and B-2 were advanced using 3½-inch I.D. continuous flight hollow-stem augers (HSA) to depths of 11 and 10 feet below existing ground surface, respectively and terminated in the weathered bedrock. Bedrock was then cored to depths of 16 and 15 feet, respectively, with an NQ2-sized core barrel.

In the split-barrel sampling procedure utilized in B-1 and B-2, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler typically the middle 12 inches of the total 24-inch penetration by means of a 140-pound safety hammer with a free fall of 30 inches is the Standard Penetration Test (SPT) resistance value "N". This "N" value is used to estimate the *in-situ* relative density of cohesionless soils and consistency of cohesive soils.

The soil samples were placed in labeled glass jars and taken, along with the rock core in a core box, to our Rocky Hill (Hartford), Connecticut office for further review by a Terracon geotechnical engineer. Information provided on the boring log attached to this report includes soil descriptions, relative density and/or consistency evaluations, boring depths, sampling intervals, and groundwater conditions. The boring was backfilled with auger cuttings prior to the drill crew leaving the site.

P-1 and P-2 were advanced with 4-inch diameter solid stem augers (SSA) to further evaluate the subsurface conditions at the site. Both probes were terminated in the highly weathered bedrock at a depth of approximately 10 feet. The probes were backfilled with auger cuttings prior to the drill crew leaving the site.

Field logs of the boring and probes were prepared by a Terracon field engineer. These logs included visual classifications of the materials encountered during drilling as well as interpretation by our field engineer of the subsurface conditions between samples. Final exploration logs included with this report represent further interpretation by the geotechnical engineer of the field logs and incorporate, where appropriate, modifications based on laboratory classification of the samples.

The approximate exploration locations, which are shown on Exhibit A-2, were measured by taping from existing features in the field and by estimating right angles. The ground elevations at the exploration locations were estimated by interpolating between contour elevations of existing grade shown on the plans provided. Ground surface elevations rounded to the nearest ½ foot are shown on the individual boring and probe logs in Appendix A. The locations and elevations of the explorations should be considered accurate only to the degree implied by the method used to define them.

\bigcap	BORING	No.	B-	1						Pa	age 1 of 1
CLI	CLIENT All-Points Technology Corporation, P.C.										
SIT	SITE 4 Dittmar Road			Т							
	Redding, Connecticut				CAN	M MPLES	CM Di	ttmar	Road	TESTS	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 809 ft	DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - Blows per 6"	WATER CONTENT, %	Н	RESISTIVITY (ohm-cm)	OTHER TESTS
***	0.8 TRAP ROCK GRAVEL 808	=									
	<u>FILL, SILT</u> with sand, trace deleterious materials, brown, very loose.	5—		2 3	SS SS SS	0 0 10	2-1 0-1 1-0 1-1 1-1 1-3				
	8 (FILL) 801	_		4	SS	10	20-58				
	8.5 SILTY SAND with gravel, gray to brown, very dense. (GLACIAL TILL)	=									Coring Rate
	SCHIST with mica, highly weathered, gray. (BEDROCK) 794	10—		1 NQ2	С	63%	RQD 38%				(min/ft) 3 4.5 4 3
(///)	15 (BEDROCK) 794 BORING TERMINATED AT 15.0 ft	15—									5
	statification lines represent the approximate boundary lines.						2 Floor				
betv	stratification lines represent the approximate boundary lines veen soil and rock types: in situ, the transition may be gradual.						3 1/4" IE) HSA, 2	2" OD 8		nearest 0.5 ft. winch & cable
WA	TER LEVEL OBSERVATIONS, ft				- 1		NG ST				10-21-11
WL	i i i i i i i i i i i i i i i i i i i	ar		7	1	BORI RIG	NG CO				10-21-11
WL	Not Encountered				•	LOGO		bile B-	33 F	OREMA	N TC

\cap	BORING	No.	B-	2						Pa	age 1 of 1
CLI	ENT										
SIT	All-Points Technology Corporation, P.C. 4 Dittmar Road	PRO	JEC	Γ		(9)					
	Redding, Connecticut						CM Di	ttmar	Road		
					SAI	MPLES	9			TESTS	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 805 ft	ОЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - Blows per 6	WATER CONTENT, %	Hd	RESISTIVITY (ohm-cm)	OTHER TESTS
	0.3 \rangle TOPSOIL \rangle \text{804.5}	A		1	SS	16	1-1 1-9				
	1.8 SILT with sand, brown, very loose. (SUBSOIL) / 803	=					781 8000				
	SILTY SAND with gravel, gray to brown, dense.	5-	SM	2	SS	20	9-16 21-29				**
	6.5 (GLACIAL TILL) 798.5	-	SM	3	SS	20	16-24 19-22				
		_		4	SS	4	62/6"				
	SCHIST weathered to a silty sand with gravel, gray, very dense.	10—									
	11 (WEATHERED BEDROCK) 794			5	SS,	2 90%	50/4" RQD				Coring Rate (min/ft)
	SCHIST with mica, highly weathered, gray. 16 (BEDROCK) 789 BORING TERMINATED AT 16.0 ft	15—		NQ2			48%			1	3.5 3 5 4 4.5
A M M M M M M M M M M M M M M M M M M M				20							
The betw	stratification lines represent the approximate boundary lines veen soil and rock types: in situ, the transition may be gradual.										nearest 0.5 ft. winch & cable
W.A	TER LEVEL OBSERVATIONS, ft					BOR	ING S		-		10-21-11
WL					_	BOR	ING C	OMPL	ETED		10-21-11
WL	i iiGli	a		Jľ		RIG	Мо	bile B	-53 F	OREMA	AN TC
X WL								J2115185			

	PROBE	No.	P-1	I						Pa	age 1 of 1
CL	ENT All-Points Technology Corporation, P.C.									13	
SIT		PRO	JEC	Γ							
	Redding, Connecticut		MCM Dittmar Road								
					SAN	MPLES	3			TESTS	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 804.5 ft	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - Blows per 6"	WATER CONTENT, %	Hd	RESISTIVITY (ohm-cm)	OTHER TESTS
64.44. 68.65.35	0.7 TOPSOIL 804	_									
V///	2 SILT with sand, brown. (SUBSOIL) 802.5 SILTY SAND with gravel, gray to brown. 4.5 (GLACIAL TILL) 800	=									
	SCHIST with mica, highly weathered.	5—									
	10 (BEDROCK) 794.5 PROBE TERMINATED AT 10.0 ft	10-									
	stratification lines represent the approximate boundary lines			5		7	Eleva	ations ar	e round	ded to the	nearest 0.5 ft.
betv	reen soil and rock types: in situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					PROI		ARTE			4" Dia. SSA 10-21-11
WL	Ţ Ţ			_		PRO	BE CO	MPLE	TED	San	10-21-11
WL	▼ ▼ Not Encountered ▼ Not Encountered	ال	_[Jľ		RIG LOG		bile B-		OREMA OB#	N TC J2115185

	PROBE	No.	P-2	2						P	age 1 of 1
CLI	ENT Comment of the Co										.g
SIT	All-Points Technology Corporation, P.C. E 4 Dittmar Road	PRO	IFC.	Т							
	Redding, Connecticut	1110	ULO			М	CM Di	ttmar	Road		
					SAN	MPLES				TESTS	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 806 ft	DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - Blows per 6"	WATER CONTENT, %	Hd	RESISTIVITY (ohm-cm)	OTHER TESTS
। কুল কুল ক জন জন ক	1 TOPSOIL 805	-									
	SILT with sand, brown. 2.5 (SUBSOIL) 803.5 3.5 SILTY SAND with gravel, gray to brown. (GLACIAL TILL)										
	SCHIST with mica, highly weathered.	5									
	10 (BEDROCK) 796 PROBE TERMINATED AT 10.0 ft	10—									
The	stratification lines represent the approximate boundary lines						Eleva	itions ar	e round	led to the	nearest 0.5 ft.
betw	reen soil and rock types: in situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					PROE	BE STA				4" Dia. SSA
WL				_			BE CO				10-21-11
WL WL	Y Y Not Encountered	عات		J	1	RIG LOGO		oile B-		OREMA OB#	N TC J2115185

APPENDIX B LABORATORY TESTING

Proposed Telecommunications Tower MCM Dittmar Road (N. Alt.) Redding, Connecticut November 7, 2011 Terracon Project No. J2115185

Laboratory Testing

Descriptive classifications of the soils indicated on the boring logs are in accordance with the enclosed General Notes and the Unified Soil Classification System (USCS). USCS symbols are also shown. A brief description of the USCS is attached to this report. Classification was by visual/manual procedures.

APPENDIX C SUPPORTING DOCUMENTS

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:

SS:	Split Spoon – 1-3/8" I.D., 2" O.D., unless otherwise noted	HS:	Hollow Stem Auger
ST:	Thin-Walled Tube - 2" O.D., unless otherwise noted	PA:	Power Auger
RS:	Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted	HA:	Hand Auger
DB:	Diamond Bit Coring - 4", N, B	RB:	Rock Bit
BS:	Bulk Sample or Auger Sample	WB:	Wash Boring or Mud Rotary

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) typically the middle 12 inches of the total 24-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value".

WATER LEVEL MEASUREMENT SYMBOLS:

WL:	Water Level	WS:	While Sampling	N/E:	Not Encountered
WCI:	Wet Cave in	WD:	While Drilling		
DCI:	Dry Cave in	BCR:	Before Casing Removal		
AB:	After Boring	ACR:	After Casing Removal		

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

RELATIVE DENSITY OF COARSE-GRAINED SOILS

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-value (SS) Blows/Ft.	Consistency	Standard Penetration or N-value (SS) Blows/Ft.	Ring Sampler (RS) Blows/Ft.	Relative Density
< 500	<2	Very Soft	0 - 3	0-6	Very Loose
500 - 1,000	2-3	Soft	4 – 9	7-18	Loose
1,001 - 2,000	4-6	Medium Stiff	10 – 29	19-58	Medium Dense
2,001 - 4,000	7-12	Stiff	30 - 49	59-98	Dense
4,001 - 8,000	13-26	Very Stiff	50+	99+	Very Dense
8,000+	26+	Hard			

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other	Percent of Dry Weight	Major Component of Sample	Particle Size
<u>Constituents</u>			
Trace	< 15	Boulders	Over 12 in. (300mm)
With	15 - 29	Cobbles	12 in. to 3 in. (300mm to 75 mm)
Modifier	> 30	Gravel	3 in. to #4 sieve (75mm to 4.75 mm)
		Sand	#4 to #200 sieve (4.75mm to 0.075mm)
		Silt or Clay	Passing #200 Sieve (0.075mm)

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other	Percent of	Term	<u>Plasticity</u>	
Constituents	Dry Weight	<u>101111</u>	<u>Index</u>	
Trace	< 5	Non-plastic	0	
With	5 – 12	Low	1-10	
Modifiers	> 12	Medium	11-30	
		High	30+	

UNIFIED SOIL CLASSIFICATION SYSTEM

				Soil Classification		
Criteria for Assign	ning Group Symbols	s and Group Names	s Using Laboratory T	ests ^A	Group Symbol	Group Name ^B
Coarse Grained Soils: More than 50% retained on No. 200 sieve coarse fraction ret No. 4 sieve Sands: 50% or mo fraction pa	More than 50% of coarse fraction retained on More than 50% of Less that the coarse fraction retained on More than 50% of Less	Clean Gravels: Less than 5% fines ^c	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E		GW	Well-graded gravel F
			Cu < 4 and/or 1 > Cc > 3 E		GP	Poorly graded gravel F
		Gravels with Fines: More than 12% fines ^c	Fines classify as ML or MI	Н	GM	Silty gravel F,G, H
			Fines classify as CL or Ch	+	GC	Clayey gravel F,G,H
		Ola and Canada.	Cu ≥ 6 and 1 ≤ Cc ≤ 3 E		SW	Well-graded sand I
	50% or more of coarse	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3 E		SP	Poorly graded sand I
	fraction passes		Fines classify as ML or MH		SM	Silty sand ^{G,H,I}
			Fines Classify as CL or CH		SC	Clayey sand ^{G,H,I}
		Inorganic:	PI > 7 and plots on or abo	ve "A" line ^J	CL	Lean clay ^{K,L,M}
	Silts and Clays:		PI < 4 or plots below "A" line J		ML	Silt K,L,M
Fine-Grained Soils: 50% or more passes the No. 200 sieve	Liquid limit less than 50	Organic:	Liquid limit - oven dried	< 0.75 OL	Organic clay K,L,M,N	
			Liquid limit - not dried		Organic silt K,L,M,O	
	Silts and Clays: Liquid limit 50 or more Organic:	Inorganic:	PI plots on or above "A" lir	ne	СН	Fat clay ^{K,L,M}
			PI plots below "A" line		МН	Elastic Silt K,L,M
		0	Liquid limit - oven dried	< 0.75 OH	ΟU	Organic clay K,L,M,P
		Organic:	Liquid limit - not dried		UH	Organic silt K,L,M,Q
Highly organic soils:	Primarily organic matter, dark in color, and organic odor			PT	Peat	

^A Based on the material passing the 3-in. (75-mm) sieve

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with clay

E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

^F If soil contains ≥ 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

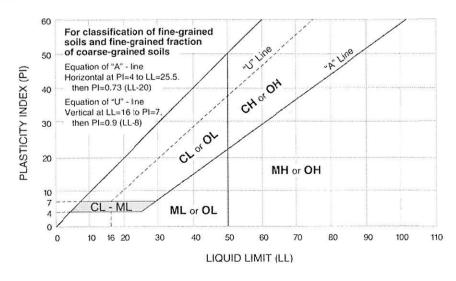
^H If fines are organic, add "with organic fines" to group name.

¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.

If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.


M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^N PI ≥ 4 and plots on or above "A" line.

O PI < 4 or plots below "A" line.

P PI plots on or above "A" line.

^Q PI plots below "A" line.

GENERAL NOTES

Description of Rock Properties

WEATHERING

Fresh Rock fresh, crystals bright, few joints may show slight staining. Rock rings under hammer if crystalline.

Very slight Rock generally fresh, joints stained, some joints may show thin clay coatings, crystals in broken face show

bright. Rock rings under hammer if crystalline.

Slight Rock generally fresh, joints stained, and discoloration extends into rock up to 1 in. Joints may contain clay.

In granitoid rocks some occasional feldspar crystals are dull and discolored. Crystalline rocks ring under

hammer.

Moderate Significant portions of rock show discoloration and weathering effects. In granitoid rocks, most feldspars are

dull and discolored; some show clayey. Rock has dull sound under hammer and shows significant loss of

strength as compared with fresh rock.

Moderately severe All rock except quartz discolored or stained. In granitoid rocks, all feldspars dull and discolored and majority

show kaolinization. Rock shows severe loss of strength and can be excavated with geologist's pick.

Severe All rock except quartz discolored or stained. Rock "fabric" clear and evident, but reduced in strength to

strong soil. In granitoid rocks, all feldspars kaolinized to some extent. Some fragments of strong rock

usually left.

Very severe All rock except quartz discolored or stained. Rock "fabric" discernible, but mass effectively reduced to "soil"

with only fragments of strong rock remaining.

Complete Rock reduced to "soil". Rock "fabric" not discernible or discernible only in small, scattered locations. Quartz

may be present as dikes or stringers.

HARDNESS (for engineering description of rock - not to be confused with Moh's scale for minerals)

Very hard Cannot be scratched with knife or sharp pick. Breaking of hand specimens requires several hard blows of

geologist's pick.

Hard Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand

specimen.

Moderately hard Can be scratched with knife or pick. Gouges or grooves to 1/4 in. deep can be excavated by hard blow of

point of a geologist's pick. Hand specimens can be detached by moderate blow.

Medium Can be grooved or gouged 1/16 in. deep by firm pressure on knife or pick point. Can be excavated in small

chips to pieces about 1-in. maximum size by hard blows of the point of a geologist's pick.

Soft Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several

inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure.

Very soft Can be carved with knife. Can be excavated readily with point of pick. Pieces 1-in, or more in thickness can

be broken with finger pressure. Can be scratched readily by fingernail.

Joint, Bedding and Foliation Spacing in Rock^a

Spacing	Joints	Bedding/Foliation	
Less than 2 in.	Very close	Very thin	
2 in. – 1 ft.	Close	Thin	
1 ft. – 3 ft.	Moderately close	Medium	
3 ft. – 10 ft.	Wide	Thick	
More than 10 ft.	Very wide	Very thick	
Rock Quality Designator (RQD) ^b	Joint	Openness Descriptors	

Rock Quality Designator (RQD) ^D		Joint Openness Descriptors	
RQD, as a percentage	Diagnostic description	Openness	Descriptor
Exceeding 90	Excellent	No Visible Separation	Tight
90 – 75	Good	Less than 1/32 in.	Slightly Open
75 – 50	Fair	1/32 to 1/8 in.	Moderately Open
50 – 25	Poor	1/8 to 3/8 in.	Open
Less than 25	Very poor	3/8 in. to 0.1 ft.	Moderately Wide
		Greater than 0.1 ft.	Wide

a. Spacing refers to the distance normal to the planes, of the described feature, which are parallel to each other or nearly so.

RQD (given as a percentage) = length of core in pieces 4 in. and longer/length of run.

References: American Society of Civil Engineers. Manuals and Reports on Engineering Practice - No. 56. <u>Subsurface Investigation for Design and Construction of Foundations of Buildings.</u> New York: American Society of Civil Engineers, 1976.

U.S. Department of the Interior, Bureau of Reclamation, Engineering Geology Field Manual.

ATTACHMENT B

LARSON° CAMOUFLAGE

Larson Camouflage, LLC

1624 South Euclid Avenue Tucson, AZ 85713 (520) 294-3900www.larsoncamo.com

DATE:

October 4, 2012

PROJECT:

MCM Dittmar Road (North Alternate)

Mat Foundation

LOCATION:

4 Dittmar Road

Redding, CT

ISE JOB NO.

5195-R2

LARSON JOB NO.

612800

DESIGN CRITERIA:

DESIGN SATISFIES ALL CRITERIA FOR:

- CBC (IBC 2003)
- ANSI/TIA/EIA-222-F W/ WIND 85 MPH (Fastest Mile), & 74 MPH w/0.75" Ice
- SEISMIC DATA: Ss=0.285, S₁=0.066, S_{DS}=0.190, S_{D1}=0.044
- Seismic Site Class B
- Seismic Design Class B, Cs=0.036
- WELDING PER AWS D1.1 LATEST EDITION

MATERIALS:

SOILS

- Terracon Project # J2115185, November 7, 2011

TAPERED SHAFT STEEL

- A572-65 (Fy=65 KSI) - A615-75 (Fy=75 KSI)

ANCHOR BOLTS

- A572-50 (Fy=50 KSI)

BASE PLATE STEEL

CONCRETE

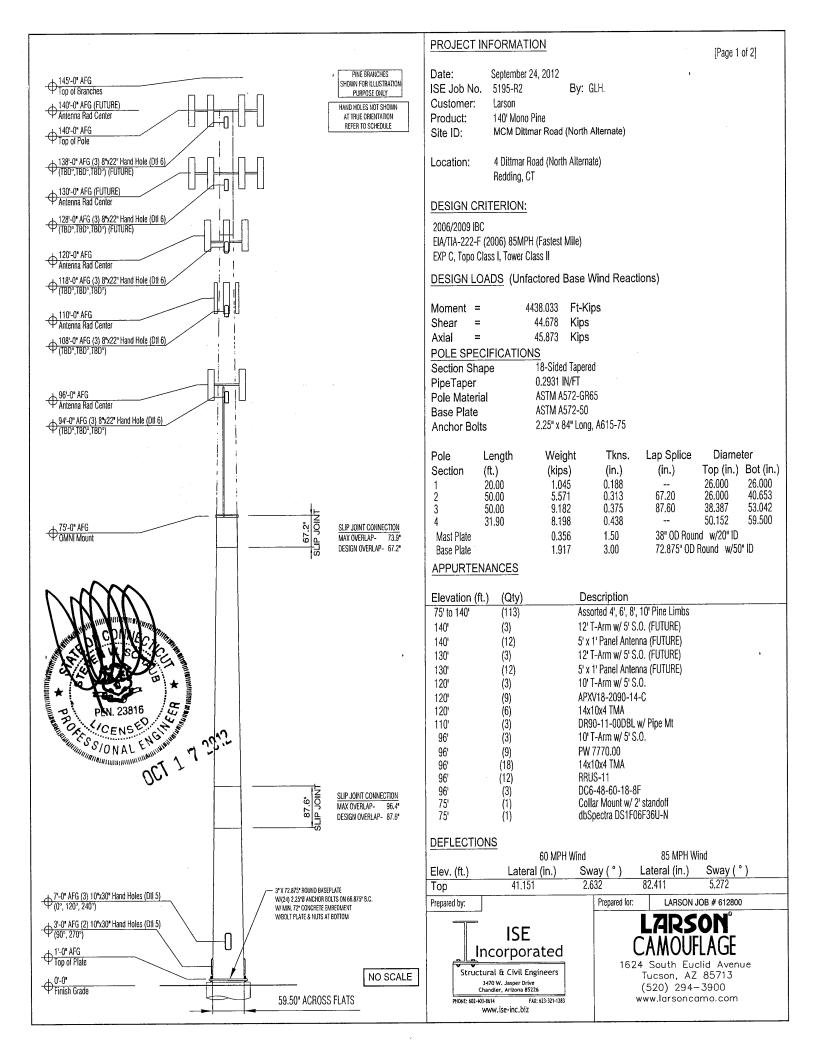
- F'c = 4000 PSI AT 28 Days

REINFORCING STEEL

- ASTM A615 BARS (Fy=60 KSI) DEFORMED

CONTENTS

Pole Detail


Foundation Detail

Pole Geometry

Calculations - Sheets 1-29

PREPARED BY: Glen L. Hunt III

APPROVED BY: Steven Schaub, PE

PROJECT INFORMATION

Date:

October 04, 2012

ISE Job No.

Site ID:

Location:

5195 Customer: Larson By: GLH

Product:

140' Mono Pine

MCM Dittmar Road (North Alternate)

4 Dittmar Road (North Alternate)

2006/2009 IBC

DESIGN CRITERION:

EIA/TIA-222-F (2006) 85MPH (Fastest Mile)

EXP C, Topo Class I, Tower Class II

DESIGN LOADS (Unfactored Base Wind Reactions)

Moment =

4438.033 Ft-Kips

Shear = 44.678

Kips

Redding, CT

Axial

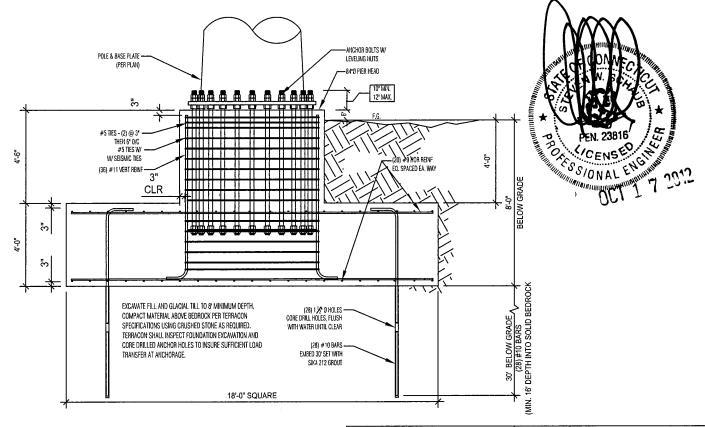
45.873 Kips

NOTES:

SEE POLE DESIGN PAGE (PAGE 1) FOR POLE, BASEPLATE, AND ANCHOR BOLT 1. DESIGN DATA.

- 2. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS. ALL CONCRETE WORK SHALL CONFORM TO LATEST EDITION ACI 318, "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE". FOUNDATION CONSTRUCTION SHALL CONFORM TO ACI 336, "STANDARD SPECIFICATIONS FOR THE CONSTRUCTION OF DRILLED PIERS.
- REINFORCING STEEL SHALL CONFORM TO: 3. #5 BARS AND LARGER - ASTM A-615, GRADE 60

FOUNDATION DESIGN PER GEOTECHNICAL REPORT:


PREPARED BY: Terracon PROJECT NO.: J2115185 DATE:

November 7, 2011

CONTRACTOR SHALL READ THE GEOTECHNICAL REPORT AND CONSULT WITH GEOTECHNICAL ENGINEER PRIOR TO CONSTRUCTION FOR HAZARDS AND SPECIAL CIRCUMSTANCES.

ESTIMATED CONCRETE VOLUME: 54.5 CY 6.

7. SPECIAL INSPECTION REQUIRED F'c > 2500 PSI: CONCRETE, REINFORCING STEEL, ANCHOR BOLTS

Prepared for:

LARSON JOB # 612800

[Page 2 of 3]

1624 South Euclid Avenue Tucson, AZ 85713 (520) 294-3900 www.larsoncamo.com

PROJECT INFORMATION

Date:

Product:

Site ID:

October 04, 2012

ISE Job No. 5195 Customer:

Larson

140' Mono Pine

Location: Redding, CT

MCM Dittmar Road (North Alternate)

By: GLH

4 Dittmar Road (North Alternate)

DESIGN LOADS (Unfactored Base Wind Reactions)

EIA/TIA-222-F (2006) 85MPH (Fastest Mile)

EXP C, Topo Class I, Tower Class II

Moment = Shear

2006/2009 IBC

DESIGN CRITERION:

4438.033 Ft-Kips 44.678 Kips

Axial

45.873 Kips

NOTES:

SEE POLE DESIGN PAGE (PAGE 1) FOR POLE, BASEPLATE, AND ANCHOR BOLT 1. DESIGN DATA.

- 2. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS. ALL CONCRETE WORK SHALL CONFORM TO LATEST EDITION ACI 318, "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE". FOUNDATION CONSTRUCTION SHALL CONFORM TO ACI 336, "STANDARD SPECIFICATIONS FOR THE CONSTRUCTION OF DRILLED PIERS.
- REINFORCING STEEL SHALL CONFORM TO: 3. #5 BARS AND LARGER - ASTM A-615, GRADE 60

FOUNDATION DESIGN PER GEOTECHNICAL REPORT:

PREPARED BY: Terracon PROJECT NO.: J2115185 November 7, 2011 DATE:

- CONTRACTOR SHALL READ THE GEOTECHNICAL REPORT AND CONSULT WITH GEOTECHNICAL ENGINEER PRIOR TO CONSTRUCTION FOR HAZARDS AND SPECIAL CIRCUMSTANCES.
- ESTIMATED CONCRETE VOLUME: 54.5 CY 6.
- SPECIAL INSPECTION REQUIRED Fig > 2500 PSI; 7. CONCRETE, REINFORCING STEEL, ANCHOR BOLTS

(24) 2 1 0 A.B. ON 68 BC OK CENSENG NOT SHOWN FOR CLARITY: (20) #9 HOR REINF FO SPACED FA WAY (36) #11 VERT REINF #5 TIES W W/ SEISMIC TIES (28) #10 BARS EMBED 30' SET WITH SIKA 212 GROUT 2'-0" 2'-0" 18'-0" Prepared for: Prepared by:

ISE Incorporated Structural & Civil Engineers 3470 W. Jasper Drive Chandler, Arizona 85226 www.ise-inc.biz

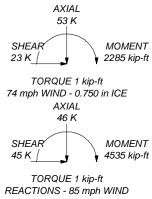
LARSON JOB # 612800

[Page 3 of 3]

1624 South Euclid Avenue Tucson, AZ 85713 (520) 294-3900 www.larsoncamo.com

Section	4	8	2	-
Length (ft)	31.900	50.000	20.000	20.000
Number of Sides	18	18	18	18
Thickness (in)	0.438	0.375	0.313	0.188
Socket Length (ft)		7.300	5.600	
Top Dia (in)	50.152	38.387	26.000	26.000
Bot Dia (in)	59.500	53.042	40.653	26.000
Grade			A572-65	
Weight (K) 24.0	8.2	9.2	5.6	1.0
	1.0 ft	<u>25.6 ft</u>	70.0 ft	140.0 ft
TORQ REACTIONS	SHEAR 23 K TORQ 74 mph WIN A SHEAR 45 K	A	\bigcirc	

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION
Pine Branches	140	(2) 14x10x4 TMA (Proposed)	120
Pine Branches	140 - 131	DR90-11-00DBL w/ Pipe Mt	110
12' T-Arm w/ 5' S.O. + (4) Mnt Pipes	140	(Proposed)	
(Future)		DR90-11-00DBL w/ Pipe Mt	110
(4) 5' x 1' Panel Antenna (Future)	140	(Proposed)	440
12' T-Arm w/ 5' S.O. + (4) Mnt Pipes (Future)	140	DR90-11-00DBL w/ Pipe Mt (Proposed)	110
(4) 5' x 1' Panel Antenna (Future)	140	Pine Branches	109 - 103
12' T-Arm w/ 5' S.O. + (4) Mnt Pipes	140	Pine Branches	103 - 97
(Future)		Pine Branches	97 - 87
(4) 5' x 1' Panel Antenna (Future)	140	10' T-Arm w/ 5' S.O. + (3) Mnt Pipes	96
Pine Branches	131 - 120	(Proposed)	
12' T-Arm w/ 5' S.O. + (4) Mnt Pipes	130	(3) PW 7770.00	96
(Future)		(6) 14x10x4 TMA	96
(4) 5' x 1' Panel Antenna (Future)	130	(4) RRUS-11 (Proposed)	96
12' T-Arm w/ 5' S.O. + (4) Mnt Pipes	130	DC6-48-60-18-8F	96
(Future)		10' T-Arm w/ 5' S.O. + (3) Mnt Pipes	96
(4) 5' x 1' Panel Antenna (Future)	130	(Proposed)	
12' T-Arm w/ 5' S.O. + (4) Mnt Pipes (Future)	130	(3) 7770.00	96
· ,		(6) 14x10x4 TMA	96
(4) 5' x 1' Panel Antenna (Future)	130	(4) RRUS-11 (Proposed)	96
Pine Branches	120 - 109	DC6-48-60-18-8F	96
10' T-Arm w/ 5' S.O. + (3) Mnt Pipes (Proposed)	120	10' T-Arm w/ 5' S.O. + (3) Mnt Pipes (Proposed)	96
(3) APXV18-2090-14-C (Proposed)	120	(3) 7770.00	96
(2) 14x10x4 TMA (Proposed)	120	(6) 14x10x4 TMA	96
10' T-Arm w/ 5' S.O. + (3) Mnt Pipes	120	(4) RRUS-11 (Proposed)	96
(Proposed)		DC6-48-60-18-8F	96
(3) APXV18-2090-14-C (Proposed)	120	Pine Branches	87 - 81
(2) 14x10x4 TMA (Proposed)	120	Pine Branches	81 - 75
10' T-Arm w/ 5' S.O. + (3) Mnt Pipes (Proposed)	120	Collar Mount w/ 2' standoff	75
,	120	dbSpectra DS1F06F36U-N	75
(3) APXV18-2090-14-C (Proposed)	120		-

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower is located in Fairfield County, Connecticut.
 Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 74 mph basic wind with 0.75 in ice.
 Deflections are based upon a 60 mph wind.
 TOWER RATING: 97.9%

ISE Incorporated
3470 W. Jasper Drive
Chandler, AZ
Phone:

FAX:

b: MCM Dittmar Road (North Alternate)				
Project: ISE # 5195-R2				
Client: Larson	Drawn by: Matt G	App'd:		
Code: TIA/EIA-222-F	Date: 09/24/12	Scale: NTS		
Path:		Dwg No = 4		

tnxTower	Jo

Job		Page
	MCM Dittmar Road (North Alternate)	1 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Tower Input Data

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- Tower is located in Fairfield County, Connecticut.
- Basic wind speed of 85 mph.
- Nominal ice thickness of 0.750 in.
- Ice density of 56 pcf.
- A wind speed of 74 mph is used in combination with ice.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.333.
- · Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	140.000-120.00	20.000	0.000	18	26.000	26.000	0.188	0.750	A572-65
	0								(65 ksi)
L2	120.000-70.000	50.000	5.600	18	26.000	40.653	0.313	1.250	A572-65
									(65 ksi)
L3	70.000-25.600	50.000	7.300	18	38.387	53.042	0.375	1.500	A572-65
									(65 ksi)
L4	25.600-1.000	31.900		18	50.152	59.500	0.438	1.750	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in ⁴	in	in	in^3	in ⁴	in^2	in	
L1	26.401	15.362	1293.111	9.163	13.208	97.904	2587.924	7.682	4.246	22.645
	26.401	15.362	1293.111	9.163	13.208	97.904	2587.924	7.682	4.246	22.645
L2	26.401	25.479	2124.026	9.119	13.208	160.814	4250.848	12.742	4.026	12.883
	41.280	40.013	8226.559	14.321	20.652	398.347	16463.943	20.010	6.605	21.136
L3	40.646	45.244	8259.108	13.494	19.501	423.533	16529.083	22.626	6.096	16.256
	53.860	62.687	21967.919	18.697	26.945	815.279	43964.743	31.349	8.675	23.134
L4	53.098	69.035	21556.518	17.649	25.477	846.105	43141.400	34.524	8.057	18.416
	60.418	82.016	36145.806	20.967	30.226	1195.851	72339.173	41.016	9.702	22.176

Monopole Base Plate Data

Base Plate Da	ta
Base plate is square	
Base plate is grouted	
Anchor bolt grade	A615-75
Anchor bolt size	2.250 in
Number of bolts	24
Embedment length	72.000 in
f_c	4.000 ksi
Grout space	3.000 in
Base plate grade	A572-50

4	1 h		
tnx'	I N	142	or
ulua 1	LU		

Job		Page
	MCM Dittmar Road (North Alternate)	2 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Base Plate Da	ata
Base plate thickness	3.000 in
Bolt circle diameter	66.875 in
Outer diameter	72.875 in
Inner diameter	50.000 in
Base plate type	Plain Plate

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	Туре		Number		_	
	Leg			ft			ft²/ft	klf
HJ7-50A (1-5/8 AIR)	C	No	Inside Pole	139.000 - 1.000	18	No Ice	0.000	0.001
(Future)						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
HJ7-50A (1-5/8 AIR)	C	No	Inside Pole	129.000 - 1.000	18	No Ice	0.000	0.001
(Future)						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
HJ7-50A (1-5/8 AIR)	C	No	Inside Pole	119.000 - 1.000	18	No Ice	0.000	0.001
(Proposed)						1/2" Ice	0.000	0.001
\ 1 /						1" Ice	0.000	0.001
HJ7-50A (1-5/8 AIR)	C	No	Inside Pole	109.000 - 1.000	18	No Ice	0.000	0.001
(Proposed)						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
HJ7-50A (1-5/8 AIR)	C	No	Inside Pole	95.000 - 1.000	18	No Ice	0.000	0.001
(Proposed)						1/2" Ice	0.000	0.001
****						1" Ice	0.000	0.001
3/8" DC Cables	C	No	Inside Pole	95.000 - 1.000	6	No Ice	0.000	0.000
(Proposed)						1/2" Ice	0.000	0.000
(<u>r</u> -ssea)						1" Ice	0.000	0.000
Fiber Optic Cables	С	No	Inside Pole	95.000 - 1.000	3	No Ice	0.000	0.000
(Proposed)	Č	0		20.000		1/2" Ice	0.000	0.000
(110p3564)						1" Ice	0.000	0.000

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
L1	140.000-120.000	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.524
L2	120.000-70.000	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	3.999
L3	70.000-25.600	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	4.177
L4	25.600-1.000	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	2.314

<i>tnxTower</i>

Job		Page
	MCM Dittmar Road (North Alternate)	3 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
L1	140.000-120.000	A	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.524
L2	120.000-70.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	3.999
L3	70.000-25.600	A	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	4.177
L4	25.600-1.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	2.314

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft ft	0	ft		ft ²	ft²	K
Pine Branches	С	None		0.000	140.000	No Ice	10.000	0.000	0.500
						1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000
Pine Branches	C	None		0.000	140.000 -	No Ice	48.000	0.000	0.425
					131.000	1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000
Pine Branches	C	None		0.000	131.000 -	No Ice	48.000	0.000	0.425
					120.000	1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000
Pine Branches	C	None		0.000	120.000 -	No Ice	55.000	0.000	0.532
					109.000	1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000
Pine Branches	C	None		0.000	109.000 -	No Ice	39.000	0.000	0.320
					103.000	1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000
Pine Branches	C	None		0.000	103.000 -	No Ice	39.000	0.000	0.320
					97.000	1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000
Pine Branches	C	None		0.000	97.000 - 87.000	No Ice	80.000	0.000	0.621
						1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000
Pine Branches	C	None		0.000	87.000 - 81.000	No Ice	37.000	0.000	0.296
						1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000
Pine Branches	C	None		0.000	81.000 - 75.000	No Ice	37.000	0.000	0.296
						1/2" Ice	0.000	0.000	0.000
						1" Ice	0.000	0.000	0.000

12' T-Arm w/ 5' S.O. + (4)	Α	From Leg	5.000	0.000	140.000	No Ice	10.255	3.239	0.369
Mnt Pipes			0.000			1/2" Ice	11.800	3.702	0.471
(Future)			0.000			1" Ice	13.345	4.165	0.574
(4) 5' x 1' Panel Antenna	Α	From Leg	5.500	0.000	140.000	No Ice	7.000	2.778	0.035
(Future)			0.000	~~~~		1/2" Ice	7.471	3.146	0.070
			0.000			1" Ice	7.951	3.521	0.110

ISE Incorporated 3470 W. Jasper Drive Chandler, AZ Phone: FAX:

Job		Page
	MCM Dittmar Road (North Alternate)	4 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral						
			Vert ft	0	ft		ft^2	ft ²	K
			ft		Ji		Ji	Ji	K
12' T-Arm w/ 5' S.O. + (4)	В	From Leg		0.000	140.000	No Ice	10.255	3.239	0.369
Mnt Pipes			0.000			1/2" Ice	11.800	3.702	0.471
(Future)			0.000			1" Ice	13.345	4.165	0.574
(4) 5' x 1' Panel Antenna	В	From Leg	5.500	0.000	140.000	No Ice	7.000	2.778	0.035
(Future)			0.000			1/2" Ice	7.471	3.146	0.070
			0.000			1" Ice	7.951	3.521	0.110
2' T-Arm w/ 5' S.O. + (4)	C	From Leg	5.000	0.000	140.000	No Ice	10.255	3.239	0.369
Mnt Pipes			0.000			1/2" Ice	11.800	3.702	0.471
(Future)			0.000			1" Ice	13.345	4.165	0.574
(4) 5' x 1' Panel Antenna	C	From Leg	5.500	0.000	140.000	No Ice	7.000	2.778	0.035
(Future)			0.000			1/2" Ice	7.471	3.146	0.070
****			0.000			1" Ice	7.951	3.521	0.110
2' T-Arm w/ 5' S.O. + (4)	A	From Leg	5.000	0.000	130.000	No Ice	10.255	3.239	0.369
Mnt Pipes			0.000			1/2" Ice	11.800	3.702	0.471
(Future)			0.000			1" Ice	13.345	4.165	0.574
(4) 5' x 1' Panel Antenna	A	From Leg	5.500	0.000	130.000	No Ice	7.000	2.778	0.035
(Future)			0.000			1/2" Ice	7.471	3.146	0.070
			0.000			1" Ice	7.951	3.521	0.110
2' T-Arm w/ 5' S.O. + (4)	В	From Leg	5.000	0.000	130.000	No Ice	10.255	3.239	0.369
Mnt Pipes			0.000			1/2" Ice	11.800	3.702	0.471
(Future)			0.000			1" Ice	13.345	4.165	0.574
(4) 5' x 1' Panel Antenna	В	From Leg	5.500	0.000	130.000	No Ice	7.000	2.778	0.035
(Future)			0.000			1/2" Ice	7.471	3.146	0.070
2171	~		0.000	0.000	120 000	1" Ice	7.951	3.521	0.110
2' T-Arm w/ 5' S.O. + (4)	C	From Leg	5.000	0.000	130.000	No Ice	10.255	3.239	0.369
Mnt Pipes			0.000			1/2" Ice	11.800	3.702	0.471
(Future)	C	F I	0.000	0.000	120,000	1" Ice	13.345	4.165	0.574
(4) 5' x 1' Panel Antenna (Future)	C	From Leg	5.500 0.000	0.000	130.000	No Ice 1/2" Ice	7.000 7.471	2.778 3.146	0.035
(Puture)			0.000			1" Ice	7.471	3.521	0.070
****							,,,,,		
0' T-Arm w/ 5' S.O. + (3)	A	From Leg	5.000	0.000	120.000	No Ice	8.033	3.239	0.301
Mnt Pipes			0.000			1/2" Ice	9.230	3.702	0.381
(Proposed)			0.000			1" Ice	10.428	4.165	0.461
(3) APXV18-2090-14-C	A	From Leg	5.500	0.000	120.000	No Ice	3.506	2.003	0.019
(Proposed)			0.000			1/2" Ice	3.848	2.326	0.038
(C) 11 10 1 TO 1			0.000	0.000	120 000	1" Ice	4.217	2.657	0.062
(2) 14x10x4 TMA	A	From Leg	0.000	0.000	120.000	No Ice	1.361	0.544	0.021
(Proposed)			0.000			1/2" Ice	1.521	0.665	0.030
0' T-Arm w/ 5' S.O. + (3)	В	F I	0.000	0.000	120,000	1" Ice	1.690	0.795	0.040
Mnt Pipes	Б	From Leg	5.000 0.000	0.000	120.000	No Ice 1/2" Ice	8.033 9.230	3.239 3.702	0.301
(Proposed)			0.000			1" Ice	10.428	4.165	0.361
(3) APXV18-2090-14-C	В	From Leg	5.500	0.000	120.000	No Ice	3.506	2.003	0.019
(Proposed)	ь	Trom Ecg	0.000	0.000	120.000	1/2" Ice	3.848	2.326	0.038
(Toposea)			0.000			1" Ice	4.217	2.657	0.062
(2) 14x10x4 TMA	В	From Leg	0.000	0.000	120.000	No Ice	1.361	0.544	0.021
(Proposed)		- 8	0.000			1/2" Ice	1.521	0.665	0.030
/			0.000			1" Ice	1.690	0.795	0.040
0' T-Arm w/ 5' S.O. + (3)	C	From Leg	5.000	0.000	120.000	No Ice	8.033	3.239	0.30
Mnt Pipes		9	0.000			1/2" Ice	9.230	3.702	0.38
(Proposed)			0.000			1" Ice	10.428	4.165	0.461
(3) APXV18-2090-14-C	C	From Leg	5.500	0.000	120.000	No Ice	3.506	2.003	0.019
(Proposed)			0.000			1/2" Ice	3.848	2.326	0.038
			0.000			1" Ice	4.217	2.657	0.062
(2) 14x10x4 TMA	C	From Leg	0.000	0.000	120.000	No Ice	1.361	0.544	0.021

ISE Incorporated 3470 W. Jasper Drive Chandler, AZ Phone: FAX:

Job		Page
	MCM Dittmar Road (North Alternate)	5 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	208		Vert						
			ft ft	0	ft		ft^2	ft^2	K
			ft						
(Proposed)			0.000 0.000			1/2" Ice 1" Ice	1.521 1.690	0.665 0.795	0.030 0.040

DR90-11-00DBL w/ Pipe Mt	A	From Leg	0.000	0.000	110.000	No Ice	11.610	10.022	0.083
(Proposed)			0.000			1/2" Ice	12.279	11.493	0.172
DD00 11 00DDL w/ Dino Mt	D	Enom Loo	0.000	0.000	110,000	1" Ice	12.939	12.703	0.274
DR90-11-00DBL w/ Pipe Mt (Proposed)	В	From Leg	0.000	0.000	110.000	No Ice 1/2" Ice	11.610 12.279	10.022 11.493	0.083 0.172
(1 Toposed)			0.000			1" Ice	12.939	12.703	0.274
DR90-11-00DBL w/ Pipe Mt	C	From Leg	0.000	0.000	110.000	No Ice	11.610	10.022	0.083
(Proposed)			0.000			1/2" Ice	12.279	11.493	0.172
. 1			0.000			1" Ice	12.939	12.703	0.274

10' T-Arm w/ 5' S.O. + (3)	A	From Leg	5.000	0.000	96.000	No Ice	8.033	3.239	0.301
Mnt Pipes			0.000			1/2" Ice	9.230	3.702	0.381
(Proposed) (3) PW 7770.00	A	From Leg	0.000 5.500	0.000	96.000	1" Ice No Ice	10.428 5.935	4.165 2.961	0.461 0.039
(3) F W 7770.00	А	From Leg	0.000	0.000	90.000	1/2" Ice	6.371	3.309	0.039
			0.000			1" Ice	6.815	3.664	0.072
(6) 14x10x4 TMA	A	None	0.000	0.000	96.000	No Ice	1.361	0.544	0.021
(0)						1/2" Ice	1.521	0.665	0.030
						1" Ice	1.690	0.795	0.040
(4) RRUS-11	A	From Leg	5.000	0.000	96.000	No Ice	3.671	1.619	0.055
(Proposed)			0.000			1/2" Ice	3.936	1.829	0.077
			0.000			1" Ice	4.209	2.047	0.103
DC6-48-60-18-8F	A	From Leg	0.000	0.000	96.000	No Ice	1.760	1.760	0.033
			0.000			1/2" Ice	1.972	1.972	0.055
10' T Arm 11/5' S O + (2)	D	From Log	0.000 5.000	0.000	06 000	1" Ice No Ice	2.196 8.033	2.196 3.239	0.079 0.301
10' T-Arm w/ 5' S.O. + (3) Mnt Pipes	В	From Leg	0.000	0.000	96.000	1/2" Ice	9.230	3.702	0.301
(Proposed)			0.000			1" Ice	10.428	4.165	0.461
(3) 7770.00	В	From Leg	5.500	0.000	96.000	No Ice	5.935	2.961	0.039
. ,		Č	0.000			1/2" Ice	6.371	3.309	0.072
			0.000			1" Ice	6.815	3.664	0.110
(6) 14x10x4 TMA	В	None		0.000	96.000	No Ice	1.361	0.544	0.021
						1/2" Ice	1.521	0.665	0.030
(1) PPTIG 11	-		7 000	0.000	0.5.000	1" Ice	1.690	0.795	0.040
(4) RRUS-11	В	From Leg	5.000	0.000	96.000	No Ice	3.671	1.619	0.055
(Proposed)			0.000			1/2" Ice 1" Ice	3.936 4.209	1.829 2.047	0.077 0.103
DC6-48-60-18-8F	В	From Leg	0.000	0.000	96.000	No Ice	1.760	1.760	0.103
Dec 40 00 10 01	ь	Trom Leg	0.000	0.000	70.000	1/2" Ice	1.972	1.972	0.055
			0.000			1" Ice	2.196	2.196	0.079
10' T-Arm w/ 5' S.O. + (3)	C	From Leg	5.000	0.000	96.000	No Ice	8.033	3.239	0.301
Mnt Pipes			0.000			1/2" Ice	9.230	3.702	0.381
(Proposed)			0.000			1" Ice	10.428	4.165	0.461
(3) 7770.00	C	From Leg	5.500	0.000	96.000	No Ice	5.935	2.961	0.039
			0.000			1/2" Ice	6.371	3.309	0.072
(C) 14-10, 4 TD 4A	C	NI.	0.000	0.000	06.000	1" Ice	6.815	3.664	0.110
(6) 14x10x4 TMA	C	None		0.000	96.000	No Ice 1/2" Ice	1.361 1.521	0.544	0.021
						1/2" Ice 1" Ice	1.521	0.665 0.795	0.030 0.040
(4) RRUS-11	С	From Leg	5.000	0.000	96.000	No Ice	3.671	1.619	0.040
(Proposed)		110m Leg	0.000	0.000	70.000	1/2" Ice	3.936	1.829	0.033
(2.20posod)			0.000			1" Ice	4.209	2.047	0.103
DC6-48-60-18-8F	C	From Leg	0.000	0.000	96.000	No Ice	1.760	1.760	0.033
		ū	0.000			1/2" Ice	1.972	1.972	0.055

ISE Incorporated 3470 W. Jasper Drive Chandler, AZ Phone: FAX:

Job		Page
	MCM Dittmar Road (North Alternate)	6 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	0		Vert ft ft ft	o	ft		ft²	ft²	K
****			0.000			1" Ice	2.196	2.196	0.079
Collar Mount w/ 2' standoff	С	From Leg	2.000 0.000 0.000	0.000	75.000	No Ice 1/2" Ice 1" Ice	2.000 0.000 0.000	2.000 0.000 0.000	0.175 0.195 0.240
dbSpectra DS1F06F36U-N	С	From Leg	2.500 0.000 0.000	0.000	75.000	No Ice 1/2" Ice 1" Ice	7.008 9.233 11.475	7.008 9.233 11.475	0.060 0.110 0.174

Tower Pressures - No Ice

 $G_H = 1.690$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation					a				%	In	Out
					c					Face	Face
ft	ft		ksf	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
L1	130.000	1.48	0.027	43.333	A	0.000	43.333	43.333	100.00	0.000	0.000
140.000-120.0					В	0.000	43.333		100.00	0.000	0.000
00					C	0.000	43.333		100.00	0.000	0.000
L2	93.635	1.347	0.025	138.860	Α	0.000	138.860	138.860	100.00	0.000	0.000
120.000-70.00					В	0.000	138.860		100.00	0.000	0.000
0					C	0.000	138.860		100.00	0.000	0.000
L3	47.516	1.11	0.020	172.180	Α	0.000	172.180	172.180	100.00	0.000	0.000
70.000-25.600					В	0.000	172.180		100.00	0.000	0.000
					C	0.000	172.180		100.00	0.000	0.000
L4	13.036	1	0.018	114.586	Α	0.000	114.586	114.586	100.00	0.000	0.000
25.600-1.000					В	0.000	114.586		100.00	0.000	0.000
					C	0.000	114.586		100.00	0.000	0.000

Tower Pressure - With Ice

 $G_H=1.690$

Section	Z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		ksf	in	ft^2	e	ft^2	ft^2	ft^2		ft ²	ft^2
L1	130.000	1.48	0.021	0.750	45.833	A	0.000	45.833	45.833	100.00	0.000	0.000
140.000-120.000						В	0.000	45.833		100.00	0.000	0.000
						C	0.000	45.833		100.00	0.000	0.000
L2	93.635	1.347	0.019	0.750	145.110	Α	0.000	145.110	145.110	100.00	0.000	0.000
120.000-70.000						В	0.000	145.110		100.00	0.000	0.000
						C	0.000	145.110		100.00	0.000	0.000
L3	47.516	1.11	0.015	0.750	177.730	Α	0.000	177.730	177.730	100.00	0.000	0.000
70.000-25.600						В	0.000	177.730		100.00	0.000	0.000
						C	0.000	177.730		100.00	0.000	0.000
L4 25.600-1.000	13.036	1	0.014	0.750	117.661	Α	0.000	117.661	117.661	100.00	0.000	0.000
						В	0.000	117.661		100.00	0.000	0.000
						C	0.000	117.661		100.00	0.000	0.000

ISE Incorporated 3470 W. Jasper Drive Chandler, AZ Phone: FAX:

Job		Page
	MCM Dittmar Road (North Alternate)	7 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Tower Pressure - Service

 $G_H=1.690$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			_		а			Ü	%	In	Out
					С					Face	Face
ft	ft		ksf	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
L1	130.000	1.48	0.014	43.333	Α	0.000	43.333	43.333	100.00	0.000	0.000
140.000-120.0					В	0.000	43.333		100.00	0.000	0.000
00					C	0.000	43.333		100.00	0.000	0.000
L2	93.635	1.347	0.012	138.860	Α	0.000	138.860	138.860	100.00	0.000	0.000
120.000-70.00					В	0.000	138.860		100.00	0.000	0.000
0					C	0.000	138.860		100.00	0.000	0.000
L3	47.516	1.11	0.010	172.180	Α	0.000	172.180	172.180	100.00	0.000	0.000
70.000-25.600					В	0.000	172.180		100.00	0.000	0.000
					C	0.000	172.180		100.00	0.000	0.000
L4	13.036	1	0.009	114.586	Α	0.000	114.586	114.586	100.00	0.000	0.000
25.600-1.000					В	0.000	114.586		100.00	0.000	0.000
					C	0.000	114.586		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.045	Α	1	0.65	1	1	1	43.333	1.303	0.065	C
140.000-120.0			В	1	0.65	1	1	1	43.333			
00			C	1	0.65	1	1	1	43.333			
L2	3.999	5.571	Α	1	0.65	1	1	1	138.860	3.789	0.076	C
120.000-70.00			В	1	0.65	1	1	1	138.860			
0			C	1	0.65	1	1	1	138.860			
L3	4.177	9.182	Α	1	0.65	1	1	1	172.180	3.843	0.087	C
70.000-25.600			В	1	0.65	1	1	1	172.180			
			C	1	0.65	1	1	1	172.180			
L4	2.314	8.198	Α	1	0.65	1	1	1	114.586	2.328	0.095	C
25.600-1.000			В	1	0.65	1	1	1	114.586			
			C	1	0.65	1	1	1	114.586			
Sum Weight:	11.015	23.997						OTM	725.753	11.262		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.045	Α	1	0.65	1	1	1	43.333	1.303	0.065	C
140.000-120.0			В	1	0.65	1	1	1	43.333			
00			C	1	0.65	1	1	1	43.333			
L2	3.999	5.571	Α	1	0.65	1	1	1	138.860	3.789	0.076	C
120.000-70.00			В	1	0.65	1	1	1	138.860			
0			C	1	0.65	1	1	1	138.860			
L3	4.177	9.182	Α	1	0.65	1	1	1	172.180	3.843	0.087	C
70.000-25.600			В	1	0.65	1	1	1	172.180			
			C	1	0.65	1	1	1	172.180			
L4	2.314	8.198	Α	1	0.65	1	1	1	114.586	2.328	0.095	C
25.600-1.000			В	1	0.65	1	1	1	114.586			

Job		Page
	MCM Dittmar Road (North Alternate)	8 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	e						ft^2	K	klf	
			C	1	0.65	1	1	1	114.586			
Sum Weight:	11.015	23.997						OTM	725.753	11.262		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			С						_			
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.045	Α	1	0.65	1	1	1	43.333	1.303	0.065	C
140.000-120.0			В	1	0.65	1	1	1	43.333			
00			C	1	0.65	1	1	1	43.333			
L2	3.999	5.571	Α	1	0.65	1	1	1	138.860	3.789	0.076	C
120.000-70.00			В	1	0.65	1	1	1	138.860			
0			C	1	0.65	1	1	1	138.860			
L3	4.177	9.182	Α	1	0.65	1	1	1	172.180	3.843	0.087	C
70.000-25.600			В	1	0.65	1	1	1	172.180			
			C	1	0.65	1	1	1	172.180			
L4	2.314	8.198	Α	1	0.65	1	1	1	114.586	2.328	0.095	C
25.600-1.000			В	1	0.65	1	1	1	114.586			
			C	1	0.65	1	1	1	114.586			
Sum Weight:	11.015	23.997						OTM	725.753	11.262		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c						_			
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.541	Α	1	0.65	1	1	1	45.833	1.033	0.052	C
140.000-120.0			В	1	0.65	1	1	1	45.833			
00			C	1	0.65	1	1	1	45.833			
L2	3.999	7.149	Α	1	0.65	1	1	1	145.110	2.969	0.059	C
120.000-70.00			В	1	0.65	1	1	1	145.110			
0			C	1	0.65	1	1	1	145.110			
L3	4.177	11.125	Α	1	0.65	1	1	1	177.730	2.975	0.067	C
70.000-25.600			В	1	0.65	1	1	1	177.730			
			C	1	0.65	1	1	1	177.730			
L4	2.314	9.488	Α	1	0.65	1	1	1	117.661	1.793	0.073	C
25.600-1.000			В	1	0.65	1	1	1	117.661			
			C	1	0.65	1	1	1	117.661			
Sum Weight:	11.015	29.303						OTM	568.319	8.770		
									kip-ft			

tnx _T	<i>ower</i>

Job		Page
	MCM Dittmar Road (North Alternate)	9 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c									
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.541	Α	1	0.65	1	1	1	45.833	1.033	0.052	C
140.000-120.0			В	1	0.65	1	1	1	45.833			
00			C	1	0.65	1	1	1	45.833			
L2	3.999	7.149	Α	1	0.65	1	1	1	145.110	2.969	0.059	C
120.000-70.00			В	1	0.65	1	1	1	145.110			
0			C	1	0.65	1	1	1	145.110			
L3	4.177	11.125	Α	1	0.65	1	1	1	177.730	2.975	0.067	C
70.000-25.600			В	1	0.65	1	1	1	177.730			
			C	1	0.65	1	1	1	177.730			
L4	2.314	9.488	Α	1	0.65	1	1	1	117.661	1.793	0.073	C
25.600-1.000			В	1	0.65	1	1	1	117.661			
			C	1	0.65	1	1	1	117.661			
Sum Weight:	11.015	29.303						OTM	568.319	8.770		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c						_			
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.541	Α	1	0.65	1	1	1	45.833	1.033	0.052	C
140.000-120.0			В	1	0.65	1	1	1	45.833			
00			C	1	0.65	1	1	1	45.833			
L2	3.999	7.149	Α	1	0.65	1	1	1	145.110	2.969	0.059	C
120.000-70.00			В	1	0.65	1	1	1	145.110			
0			C	1	0.65	1	1	1	145.110			
L3	4.177	11.125	Α	1	0.65	1	1	1	177.730	2.975	0.067	C
70.000-25.600			В	1	0.65	1	1	1	177.730			
			C	1	0.65	1	1	1	177.730			
L4	2.314	9.488	Α	1	0.65	1	1	1	117.661	1.793	0.073	C
25.600-1.000			В	1	0.65	1	1	1	117.661			
			C	1	0.65	1	1	1	117.661			
Sum Weight:	11.015	29.303						OTM	568.319	8.770		
									kip-ft			

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С						_			
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.045	Α	1	0.65	1	1	1	43.333	0.649	0.032	C
140.000-120.0			В	1	0.65	1	1	1	43.333			
00			C	1	0.65	1	1	1	43.333			
L2	3.999	5.571	Α	1	0.65	1	1	1	138.860	1.888	0.038	C
120.000-70.00			В	1	0.65	1	1	1	138.860			
0			C	1	0.65	1	1	1	138.860			
L3	4.177	9.182	Α	1	0.65	1	1	1	172.180	1.915	0.043	C
70.000-25.600			В	1	0.65	1	1	1	172.180			
			C	1	0.65	1	1	1	172.180			
L4	2.314	8.198	Α	1	0.65	1	1	1	114.586	1.160	0.047	C
25.600-1.000			В	1	0.65	1	1	1	114.586			

trans Towners	Job		Page
tnxTower		MCM Dittmar Road (North Alternate)	10 of 15
ISE Incorporated 3470 W. Jasper Drive	Project	ISE # 5195-R2	Date 04:07:52 09/24/12
Chandler, AZ Phone: FAX:	Client	Larson	Designed by Matt G

Section Elevation	Add Weight	Self Weight	F a	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	e						ft^2	K	klf	
Sum Weight:	11.015	23.997	С	1	0.65	1	1	1 OTM	114.586 361.621	5.611		
Č									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c						_			
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.045	Α	1	0.65	1	1	1	43.333	0.649	0.032	C
140.000-120.0			В	1	0.65	1	1	1	43.333			
00			C	1	0.65	1	1	1	43.333			
L2	3.999	5.571	Α	1	0.65	1	1	1	138.860	1.888	0.038	C
120.000-70.00			В	1	0.65	1	1	1	138.860			
0			C	1	0.65	1	1	1	138.860			
L3	4.177	9.182	Α	1	0.65	1	1	1	172.180	1.915	0.043	C
70.000-25.600			В	1	0.65	1	1	1	172.180			
			C	1	0.65	1	1	1	172.180			
L4	2.314	8.198	Α	1	0.65	1	1	1	114.586	1.160	0.047	C
25.600-1.000			В	1	0.65	1	1	1	114.586			
			C	1	0.65	1	1	1	114.586			
Sum Weight:	11.015	23.997						OTM	361.621	5.611		
									kip-ft			

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c						_			
ft	K	K	e						ft^2	K	klf	
L1	0.524	1.045	Α	1	0.65	1	1	1	43.333	0.649	0.032	C
140.000-120.0			В	1	0.65	1	1	1	43.333			
00			C	1	0.65	1	1	1	43.333			
L2	3.999	5.571	Α	1	0.65	1	1	1	138.860	1.888	0.038	C
120.000-70.00			В	1	0.65	1	1	1	138.860			
0			C	1	0.65	1	1	1	138.860			
L3	4.177	9.182	Α	1	0.65	1	1	1	172.180	1.915	0.043	C
70.000-25.600			В	1	0.65	1	1	1	172.180			
			C	1	0.65	1	1	1	172.180			
L4	2.314	8.198	Α	1	0.65	1	1	1	114.586	1.160	0.047	C
25.600-1.000			В	1	0.65	1	1	1	114.586			
			C	1	0.65	1	1	1	114.586			
Sum Weight:	11.015	23.997						OTM	361.621	5.611		
									kip-ft			

ISE Incorporated 3470 W. Jasper Drive Chandler, AZ Phone: FAX:

Job		Page
	MCM Dittmar Road (North Alternate)	11 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	23.997					
Bracing Weight	0.000					
Total Member Self-Weight	23.997			0.442	0.765	
Total Weight	45.873			0.442	0.765	
Wind 0 deg - No Ice		0.000	-44.678	-4437.149	0.765	-1.240
Wind 90 deg - No Ice		44.678	0.000	0.442	-4436.826	0.716
Wind 180 deg - No Ice		0.000	44.678	4438.033	0.765	1.240
Member Ice	5.306					
Total Weight Ice	52.565			0.688	1.192	
Wind 0 deg - Ice		0.000	-22.982	-2224.035	1.192	-1.098
Wind 90 deg - Ice		22.982	0.000	0.688	-2223.531	0.634
Wind 180 deg - Ice		0.000	22.982	2225.411	1.192	1.098
Total Weight	45.873			0.442	0.765	
Wind 0 deg - Service		0.000	-22.261	-2210.676	0.765	-0.618
Wind 90 deg - Service		22.261	0.000	0.442	-2210.353	0.357
Wind 180 deg - Service		0.000	22.261	2211.560	0.765	0.618

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 90 deg - No Ice
4	Dead+Wind 180 deg - No Ice
5	Dead+Ice
6	Dead+Wind 0 deg+Ice
7	Dead+Wind 90 deg+Ice
8	Dead+Wind 180 deg+Ice
9	Dead+Wind 0 deg - Service
10	Dead+Wind 90 deg - Service
11	Dead+Wind 180 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	140 - 120	Pole	Max Tension	8	0.002	-0.005	0.001
2.	1.0 120	1 0.0	Max. Compression	5	-7.368	0.000	-0.000
			Max. Mx	3	-4.772	-186.871	-0.005
			Max. My	4	-4.772	0.009	-186.873
			Max. Vy	3	14.060	-186.871	-0.005
			Max. Vx	4	14.060	0.009	-186.873
			Max. Torque	2			-0.000
L2	120 - 70	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	5	-23.695	0.000	-0.000
			Max. Mx	3	-18.483	-1404.760	-0.033
			Max. My	4	-18.482	0.057	-1404.775
			Max. Vy	3	38.569	-1404.760	-0.033

ISE Incorporated 3470 W. Jasper Drive Chandler, AZ Phone: FAX:

Job		Page
	MCM Dittmar Road (North Alternate)	12 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vx	4	38.570	0.057	-1404.775
			Max. Torque	2			0.653
L3	70 - 25.6	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	5	-38.193	1.192	-0.688
			Max. Mx	3	-32.313	-3144.760	-0.453
			Max. My	4	-32.313	0.785	-3145.996
			Max. Vy	3	42.344	-3144.760	-0.453
			Max. Vx	4	42.344	0.785	-3145.996
			Max. Torque	2			1.254
L4	25.6 - 1	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	5	-52.565	1.192	-0.688
			Max. Mx	3	-45.854	-4533.452	-0.454
			Max. My	4	-45.854	0.786	-4534.692
			Max. Vy	3	44.691	-4533.452	-0.454
			Max. Vx	4	44.691	0.786	-4534.692
			Max. Torque	2			1.251

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	5	52.565	0.000	0.000
	Max. H _x	4	45.872	0.000	-44.673
	Max. H _z	2	45.872	0.000	44.673
	Max. M _x	2	4533.784	0.000	44.673
	Max. M _z	3	4533.452	-44.673	-0.000
	Max. Torsion	2	1.251	0.000	44.673
	Min. Vert	4	45.872	0.000	-44.673
	Min. H _x	3	45.872	-44.673	-0.000
	Min. Hz	4	45.872	0.000	-44.673
	Min. M _x	4	-4534.692	0.000	-44.673
	Min. M _z	6	-1.234	0.000	22.970
	Min. Torsion	4	-1.251	0.000	-44.673

Tower Mast Reaction Summary

Load	Vertical	$Shear_x$	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	45.873	0.000	0.000	0.442	0.765	0.000
Dead+Wind 0 deg - No Ice	45.872	-0.000	-44.673	-4533.784	0.785	-1.251
Dead+Wind 90 deg - No Ice	45.872	44.673	0.000	0.453	-4533.452	0.722
Dead+Wind 180 deg - No Ice	45.872	-0.000	44.673	4534.692	0.785	1.251
Dead+Ice	52.565	0.000	0.000	0.688	1.192	0.000
Dead+Wind 0 deg+Ice	52.564	-0.000	-22.970	-2283.149	1.234	-1.111
Dead+Wind 90 deg+Ice	52.564	22.970	0.000	0.712	-2282.628	0.641
Dead+Wind 180 deg+Ice	52.564	-0.000	22.970	2284.573	1.234	1.111
Dead+Wind 0 deg - Service	45.872	-0.000	-22.252	-2259.831	0.788	-0.626
Dead+Wind 90 deg - Service	45.872	22.252	0.000	0.455	-2259.498	0.361
Dead+Wind 180 deg - Service	45.872	-0.000	22.252	2260.740	0.788	0.626

tnxTow

Job		Page
	MCM Dittmar Road (North Alternate)	13 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	140 - 120	41.229	11	2.634	0.001
L2	120 - 70	30.399	11	2.471	0.001
L3	75.6 - 25.6	11.363	11	1.516	0.001
L4	32.9 - 1	1.948	11	0.544	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
c.		Load		۰	0	Curvature
ft		Comb.	in			ft
140.000	Pine Branches	11	41.229	2.634	0.001	13716
135.500	Pine Branches	11	38.742	2.606	0.001	13716
131.000	Pine Branches	11	36.271	2.576	0.001	7620
130.000	12' T-Arm w/ 5' S.O. + (4) Mnt	11	35.726	2.568	0.001	6857
	Pipes					
125.500	Pine Branches	11	33.296	2.530	0.001	4729
120.000	Pine Branches	11	30.399	2.471	0.001	3546
114.500	Pine Branches	11	27.603	2.393	0.001	3249
110.000	DR90-11-00DBL w/ Pipe Mt	11	25.398	2.316	0.001	3117
109.000	Pine Branches	11	24.919	2.298	0.001	3089
106.000	Pine Branches	11	23.505	2.240	0.001	3007
103.000	Pine Branches	11	22.126	2.179	0.001	2930
100.000	Pine Branches	11	20.784	2.114	0.001	2857
97.000	Pine Branches	11	19.481	2.046	0.001	2787
96.000	10' T-Arm w/ 5' S.O. + (3) Mnt	11	19.055	2.023	0.001	2764
	Pipes					
92.000	Pine Branches	11	17.394	1.928	0.001	2678
87.000	Pine Branches	11	15.420	1.804	0.001	2577
84.000	Pine Branches	11	14.292	1.729	0.001	2520
81.000	Pine Branches	11	13.206	1.653	0.001	2465
78.000	Pine Branches	11	12.164	1.577	0.001	2415
75.000	Pine Branches	11	11.167	1.501	0.001	2384

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	140 - 120	82.565	4	5.276	0.002
L2	120 - 70	60.890	4	4.950	0.002
L3	75.6 - 25.6	22.773	4	3.038	0.002
L4	32.9 - 1	3.906	4	1.090	0.000

47	·
inx i	'ower

Job		Page
	MCM Dittmar Road (North Alternate)	14 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
140.000	Pine Branches	4	82.565	5.276	0.002	6940
135.500	Pine Branches	4	77.588	5.221	0.002	6940
131.000	Pine Branches	4	72.643	5.160	0.002	3855
130.000	12' T-Arm w/ 5' S.O. + (4) Mnt	4	71.552	5.145	0.002	3469
	Pipes					
125.500	Pine Branches	4	66.690	5.069	0.002	2392
120.000	Pine Branches	4	60.890	4.950	0.002	1792
114.500	Pine Branches	4	55.294	4.794	0.002	1641
110.000	DR90-11-00DBL w/ Pipe Mt	4	50.881	4.641	0.002	1572
109.000	Pine Branches	4	49.921	4.604	0.002	1558
106.000	Pine Branches	4	47.089	4.489	0.002	1516
103.000	Pine Branches	4	44.329	4.365	0.002	1476
100.000	Pine Branches	4	41.643	4.235	0.002	1438
97.000	Pine Branches	4	39.032	4.099	0.002	1403
96.000	10' T-Arm w/ 5' S.O. + (3) Mnt	4	38.179	4.053	0.002	1391
	Pipes					
92.000	Pine Branches	4	34.854	3.863	0.002	1347
87.000	Pine Branches	4	30.901	3.616	0.002	1295
84.000	Pine Branches	4	28.640	3.465	0.002	1265
81.000	Pine Branches	4	26.465	3.313	0.002	1238
78.000	Pine Branches	4	24.378	3.160	0.002	1212
75.000	Pine Branches	4	22.381	3.008	0.002	1195

Base Plate Design Data

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Ratio
Thickness	of Anchor	Size	Allowable	Allowable	Allowable	Allowable	Condition	
	Bolts		Ratio	Ratio	Ratio	Ratio		
			Bolt	Bolt	Plate	Stiffener		
			Tension	Compression	Stress	Stress		
in		in	K	K	ksi	ksi		
3.000	24	2.250	133.706	137.528	43.409		Plate	1.16
			131.211	217.810	37.500			1
			1.02	0.63	1.16			

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	$Allow.$ P_a	Ratio P
	ft		ft	ft		ksi	in^2	K	K	P_a
L1	140 - 120 (1)	TP26x26x0.188	20.000	0.000	0.0	39.000	15.362	-4.772	599.105	0.008
L2	120 - 70 (2)	TP40.653x26x0.313	50.000	0.000	0.0	39.000	38.385	-18.482	1497.010	0.012
L3	70 - 25.6 (3)	TP53.042x38.387x0.375	50.000	0.000	0.0	39.000	60.140	-32.313	2345.460	0.014
L4	25.6 - 1 (4)	TP59.5x50.152x0.438	31.900	0.000	0.0	39.000	80.962	-44.857	3157.520	0.014

4	'ower
Thy	awer

Job		Page
	MCM Dittmar Road (North Alternate)	15 of 15
Project		Date
	ISE # 5195-R2	04:07:52 09/24/12
Client		Designed by
	Larson	Matt G

Pole Bending Design Data										
Section No.	Elevation	Size	Actual M _x	Actual f_{bx}	Allow. F_{bx}	Ratio f _{bx}	Actual M _y	$Actual f_{by}$	$Allow.$ F_{by}	Ratio f _{by}
	ft		kip-ft	ksi	ksi	F_{bx}	kip-ft	ksi	ksi	F_{by}
L1	140 - 120 (1)	TP26x26x0.188	186.873	22.905	39.000	0.587	0.000	0.000	39.000	0.000
L2	120 - 70 (2)	TP40.653x26x0.313	1404.77 5	45.998	39.000	1.179	0.000	0.000	39.000	0.000
L3	70 - 25.6 (3)	TP53.042x38.387x0.375	3146.00 0	50.325	39.000	1.290	0.000	0.000	39.000	0.000
L4	25.6 - 1 (4)	TP59.5x50.152x0.438	4419.25 8	45.512	39.000	1.167	0.000	0.000	39.000	0.000

	Pole Shear Design Data									
Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			V	f_{v}	F_{v}	f_v	T	f_{vt}	F_{vt}	f_{vt}
	ft		K	ksi	ksi	F_{v}	kip-ft	ksi	ksi	F_{vt}
L1	140 - 120 (1)	TP26x26x0.188	14.060	0.915	26.000	0.070	0.000	0.000	26.000	0.000
L2	120 - 70 (2)	TP40.653x26x0.313	38.570	1.005	26.000	0.077	0.001	0.000	26.000	0.000
L3	70 - 25.6 (3)	TP53.042x38.387x0.375	42.344	0.704	26.000	0.054	1.252	0.010	26.000	0.000
L4	25.6 - 1 (4)	TP59.5x50.152x0.438	44.598	0.551	26.000	0.042	1.251	0.006	26.000	0.000

Pole Interaction Design Data									
Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f _{by}	Ratio f_v	Ratio f _{vt}	Comb. Stress	Allow. Stress	Criteria
	ft	P_a	F_{bx}	F_{by}	F_v	F_{vt}	Ratio	Ratio	
L1	140 - 120 (1)	0.008	0.587	0.000	0.070	0.000	0.597	1.333	H1-3+VT 🗸
L2	120 - 70 (2)	0.012	1.179	0.000	0.077	0.000	1.193	1.333	H1-3+VT 🗸
L3	70 - 25.6 (3)	0.014	1.290	0.000	0.054	0.000	1.305	1.333	H1-3+VT 🗸
L4	25.6 - 1 (4)	0.014	1.167	0.000	0.042	0.000	1.182	1.333	H1-3+VT 🗸

Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	140 - 120	Pole	TP26x26x0.188	1	-4.772	798.607	44.7	Pass
L2	120 - 70	Pole	TP40.653x26x0.313	2	-18.482	1995.514	89.5	Pass
L3	70 - 25.6	Pole	TP53.042x38.387x0.375	3	-32.313	3126.498	97.9	Pass
L4	25.6 - 1	Pole	TP59.5x50.152x0.438	4	-44.857	4208.974	88.6	Pass
							Summary	
						Pole (L3)	97.9	Pass
						Base Plate	86.8	Pass
						RATING =	97.9	Pass

ISE Incorporated

3470 W. Jasper Drive Chandler, Arizona Phone: 602-403-8614 FAX: 623-321-1283

Job: MCM Dittmar Rd (North Alternate)

Project: ISE Job No. 5195 Client: Larson Camouflage Date: October 4, 2012 Designed by: Glen Hunt

SEISMIC DATA

Conterminous 48 States

2005 ASCE 7 Standard

Latitude = 41.34673

Longitude = -73.393013

Spectral Response Accelerations Ss and S1

Ss and S1 = Mapped Spectral Acceleration Values

Site Class B - Fa = 1.0, Fv = 1.0

Data are based on a 0.05 deg grid spacing

Period Sa

(sec) (g)

0.2 0.285 (Ss, Site Class B)

1.0 0.066 (S1, Site Class B)

Conterminous 48 States

2005 ASCE 7 Standard

Latitude = 41.34673

Longitude = -73.393013

Spectral Response Accelerations SMs and SM1

 $SMs = Fa \times Ss \text{ and } SM1 = Fv \times S1$

Site Class B - Fa = 1.0, Fv = 1.0

Period Sa

(sec) (g)

0.2 0.285 (SMs, Site Class B)

1.0 0.066 (SM1, Site Class B)

Conterminous 48 States

2005 ASCE 7 Standard

Latitude = 41.34673

Longitude = -73.393013

Design Spectral Response Accelerations SDs and SD1

 $SDs = 2/3 \times SMs$ and $SD1 = 2/3 \times SM1$

Site Class B - Fa = 1.0, Fv = 1.0

Period Sa

(sec) (g)

0.2 0.190 (SDs, Site Class B)

1.0 0.044 (SD1, Site Class B)

3470 W. Jasper Drive Project: ISE Job No. 5195
Chandler, Arizona Client: Larson Camouflage
Phone: 602-403-8614 Date: October 4, 2012
FAX: 623-321-1283 Designed by: Glen Hunt

SEISMIC CALCULATIONS

ASCE 7-05 Seismic Design Requirements for Non-Building Structures Not Similar to Buildings

IBC/CBC Section 1613 Earthquake Loads

Importance Factor		
I =	1	ASCE 7-05 Table 11.5-1

Site Classification

B IBC/CBC Table 1613.5.2/1613A.5.2

Site Coefficients

SS =	0.285	Mapped Spectral Accelerations: Short Period	
S1 =	0.066	Mapped Sectral Accelerations: 1 sec Period	
Fa =	1.000	Site Coefficient	ASCE 7-05 Table 11.4-1;
			IBC/CBC Table 1613.5.3(1)/1613A.5.3(1)
Fv =	1.000	Site Coefficient	ASCE 7-05 Table 11.4-2;
			IBC/CBC Table 1613.5.3(2)/1613A.5.3(2)
SMS =	0.285	Max Spectral Accelerations: Short Periods	ASCE 7-05 Eqn. 11.4-1;
			IBC/CBC Eqn. 16-37/16A-37
SM1 =	0.066	Max Spectral Accelerations: 1sec Period	ASCE 7-05 Eqn. 11.4-2;
			IBC/CBC Eqn. 16-38/16A-38

Design Spectral Response Acceleration Parameters

ASCE 7-05 11.4.4; IBC/CBC 1613.5.4/1613A.5.4

SDS = SD1 =	0.190 0.044	5% Damped Spectral Acceleration: Short Period 5% Damped Spectral Acceleration: 1 sec Period	ASCE 7-05 Eqn. 11.4-3; IBC/CBC Eqn. 16-39/16A-39 ASCE 7-05 Eqn. 11.4-4;
SDC =	В	Seismic Design Category	ASCE 7-05 Tables 11 6-1 & 11 6-2

SDC = B Seismic Design Category ASCE 7-05 Tables 11.6-1 & 11.6-2

IBC/CBC Table 1613.5.6(1) & 1613A.5.6(2)

if S1>0.75 then E

REFERENCE

Equivalent Lateral Force Procedure

T =	Ct hn ^x =	0.814	Fundamental Period	ASCE 7-05 Eqn. 12.8-7
	Ct =	0.020	Period Parameter	ASCE 7-05 Table 12.8-2
	x =	0.750	Period Parameter	ASCE 7-05 Table 12.8-2
	hn =	140.000	Structure Height (ft)	
R =		1.500	Response Modification Factor	ASCE 7-05 Table 15.4-2
TL =		8.000	Long-Period Transition Period	ASCE 7-05 Figure 22-15
		0.000	Long Follow Transition Follow	7.002 7 00 1 igure 22 10
Cs = S	DS/[R/I] =	0.127	Seismic Response Coefficient	ASCE 7-05 Eqn. 12.8-2
where:	<i>D</i> 0/[[(/] =	0.121	Colonia response Colindant	7.002 7 00 Eqn. 12.0 2
Cs >		0.030	Lower Limit	ASCE 7-05 Egn. 15.4-1
	0.455.00			
Cs > 8	S1/[R/I] =	0.035	Lower Limit for S1 > 0.6g	ASCE 7-05 Eqn. 15.4-2
Cs < D	1/T[R/I] =	0.036	Upper Limit for T \leq TL	ASCE 7-05 Eqn. 12.8-3
Cs < I	$L/T^2[R/I] =$	0.354	Upper Limit for T > TL	ASCE 7-05 Egn. 12.8-4
				,
Design V	alue Cs =	0.036		
J				
W =		45.873	Pole Dead Weight + Appurtenances Weigh	nt (kips)
V =	CsW =	1.653	Equivalent Seismic Base Shear (kips)	ASCE 7-05 Eqn. 12.8-1
v –	- VOVV		Equivalent Scientic Base Shoat (htps)	7.002 7 00 Eqn. 12.0 1
	Fwind =	44.673	Wind Base Shear (kips): 1.6W	
	i wiiiu –	77.073	vvilla base offical (Nips). 1.0vv	

Lateral Wind Shear > Seismic Base Shear: Wind Controls Design

3470 W. Jasper Drive Project: ISE Job No. 5195 Chandler, Arizona Client: Larson Camouflage Phone: 602-403-8614 Date: October 4, 2012 FAX: 623-321-1283 Designed by: Glen Hunt

ANCHOR BOLT & BASE PLATE DESIGN

Calculated Wind Force Reactions from Force Totals Table: M = 4438.033 k-Ft, V = 44.678 kip, A = 45.87 kip

(Round or Square Plate)

Geometry

Plate Square/Round Plate = Round

Plate Width/Diameter: OD = 74 inch Pole Diameter: Dp = 60.2 inch Bolt Circle Diameter: BC = 68 inch

No. Bolts: N = 24

Bolt Moment of Inertia: $I = 13872 \text{ inch}^2 (1/8)(N BC^2)$

Anchor Bolt Diameter: Dbolt = 2.25 inch Nominal Anchor Bolt Area: An = 3.98 inch²

Materials

Loads

Anchor Bolt Material: Fu = 100 KSI A615 GR 75 Base Plate Material: Fy = 50 KSI A572 GR50

Unfactored Base Reactions

M = 4438.033 V = 44.678A = 45.873

Factored Moment: Mu = 4533.8 Kip-Ft 1.2D + 1.6WFactored Base Shear: V = 44.673 Kips 1.2D + 1.6WAxial Dead Load: A = 55.0476 Kips 1.2DL

Analysis

ANCHOR BOLTS

Anchor Bolt Tension: T = Pu = 131.053 Kips [(Mu BC/2) / I] - A/N Anchor Bolt Compression: C = 135.641 Kips [(Mu BC/2) / I] + A/N

Anchor Bolt Shear: Vu = 1.861 Kips/bolt V / N

AB Design Strength - $\phi R_{nt} = \phi Fu A_n = 298.206 \text{ Kips}$ $\phi = 0.75 \text{ for Rupture Strength}$

INTERACTION PER TIA-222-G Section 4.9.9

 $[P_u + V_u/\eta] / \phi R_{nt} \le 1.0$ $\eta = 0.4$ For Detail Type D

Anchor Bolt Stress Ratio = 0.46 < 1.0 OK!!

UN-GROUTED BASEPLATE

Plate Bending: Mpb = 529.00 Kip-Inch Mpb = C(1/2)(BC-Dp)Required Plastic Modulus: Z = 11.76 inch^3 Z = Mpb / (0.9)Fy Square Plate Bend Line Length: L = 44.45 inch L = $[2^{1/2}(OD) - Dp]$ Round Plate Bend Line Length: L = 10.95 inch L = .75BC SIN(360/N)

Required Plate Thickness: Tpl = 2.07 inch Tpl = $[4Z/L]^{1/2}$

Plate Stress Ratio = 0.48 < 1.0 OK!!

Design Summary

(24) 2.25 Diameter A615 GR 75 Bolts on 68" BC Diameter

3" X 74" Round A572 GR50 Base Plate

3470 W. Jasper Drive Project: ISE Job No. 5195
Chandler, Arizona Client: Larson Camouflage
Phone: 602-403-8614 Date: October 4, 2012
FAX: 623-321-1283 Designed by: Glen Hunt

Flange Ring Assembly

Dp = 60.2 inch

Factored Moment: Mu = 4533.8 Kip-Ft Factored Moment Factored Base Shear: V = 44.673 Kips Factored Shear

Weld Thickness: Tw = 0.876 inch Groove + Filet Weld Thickness

Weld Material Yield: Fyw = 70 ksi

llowable Weld Force: Fallow = 20.810 kip/inch Fallow = (.707)Tw (.48)Fyw

Weld Force: Fw = 14.336 kip/inch Fw = (3/4)Sqrt [$\{Mu/\pi(Dp^2/4)\}^2 + \{V/\pi Dp\}^2$]

Base Weld Stress Ratio = 68.890 %

DESIGN: APPLY GROOVE WELD AND APPLY 7/16" FILET CAP WELD TO POLE AT TOP OF PLATE

3470 W. Jasper Drive Project: ISE Job No. 5195 Chandler, Arizona Client: Larson Camouflage Phone: 602-403-8614 Date: October 4, 2012 FAX: 623-321-1283 Designed by: Glen Hunt

Anchor Bolt Development (ACI 318-05)

Anchor bolts are mechanically anchored with nuts and load plates at bottom of bolts.

Failure cones emanate at 35 degrees from top of nut.

The failure cones from the 4 bolts overlap and exit the sides of the caisson.

Concrete is assumed to crack and carry no load so, vertical reinforcing steel must be developed to transfer bolt loads.

Calculations presented below determine the required length of anchor bolt embedment

and reinforcing development necessary to transfer the design loads.

Minimum Development Length per ACI 318-05 12.2.2, Eq 12-1.

$$l_d = d_b[f_v/\sqrt{(f_c)}](3/40)(\phi_t\phi_e\lambda/2.5)$$
:

where; $f_v = 60,000 \text{psi}$, $f_c = 4000 \text{ psi}$, and $\phi_t \phi_e \lambda = 1.0$,

$$l_d = 28.46 \ d_b$$
 For # 11 Bar $l_d = 39.13 \ in$.

Anchor Bolts are 2-1/4" X 84" with 72" Embedment on 68" Bolt Circle

Reinforcing Cage Diameter = 78.00 in.

Minimum Required AB Depth

```
cover = 3.00 \text{ in.} bottom \ grip = 3.00 \text{ in.} \frac{1}{2}(Cage\text{-BC}) = 5.00 \text{ in.} l_{min} = l_d + cover + bottom \ grip + \frac{1}{2}(Cage\text{-BC})/tan65 = 47.46 \text{ in.}
```

Bolt Embedment Provided = 72.00 in.

Anchor bolts are restrained by fully developed reinforcement satisfying the requirements of 318-05 Appendix D.

3470 W. Jasper Drive Project: ISE Job No. 5195
Chandler, Arizona Client: Larson Camouflage
Phone: 602-403-8614 Date: October 4, 2012
FAX: 623-321-1283 Designed by: Glen Hunt

Foundation Design - Mat Foundation Design

Calculated Wind Force Reactions from Force Totals Table: M = 4438.033 k-Ft, V = 44.678 kip, A = 45.87 kip

Soils – Terracon, Project No. J2115185, November 7, 2011 Site has 8-9' Fill & Glacial Till Overburden above Highly Weathered Schist Bedrock

Design Features:

Pier Head > 84" diameter x 4'-6" pier head (Includes 6" Above grade) w/ (36) #11 verticals

Mat >> 18'-0" x 18'-0" x 48" deep mat foundation with (20) #9 bars each way at top and bottom of mat.

Bottom of Mat at 8' Below grade on compacted 3/4" crushed stone placed
on glacial till or bedrock per Terracon specificaitons

Rock Anchors: Matt Foundation will be secured with (28) #10 Rebars embedded 30' in 1-1/2"

Diameter core drilled holes below mat. Bars to be set with Sikka 212 grout.

Minimum 16' embedment into suitable bedrock required.

Per EnerCalc Matt Foundation Analysis:

Mu = 0.6D + W = 4914 k-ft: Use 0.9D + W = 3276 k-ft

Mn = 2162 k-ft

Anchorage Capacity Required = 3276- 2162 = 1114 k-ft : Use1500 k-ft

Per Anchor Analysis for , Next Page;

Maximum Anchor Force Compression = 13 kips

Maximum Anchor Tension = 10 kips

Anchors set using Sikka 212 Grout: 50 psi /2 = 25 psi bond strength.

Required Anchor Embedment in Bedrock I_d = (13,000/25 psi)/(3.93" Circumf) = 132 Inches

Use Total 30' Depth to provide Min 10' Unbonded length + 20' Bonded length of Anchors Bars

ISE Incorporated

Job: MCM Dittmar Rd (North Alternate)

3470 W. Jasper Drive Chandler, Arizona Phone: 602-403-8614

Z xz

0.000

Project: ISE Job No. 5195 Client: Larson Camouflage Date: October 4, 2012

FAX: 623-3	321-1283			Designed b	y: Glen Hur	ıt			
	3	-DIMENSI	ONAL WE	IGHTED F	ASTENER	PATTERN	ANALYSI	S	
		Equa	ıl Count - E	Bolts Abov	e and Bel	ow Neutra	l Axis		
	F	orces (kip	o)	Mom	ents (kip-	inch)	Loa	ds Coordi	nate
Load #	Fx	Fy	Fz	Mx	Му	Mz	ΧI	ΥI	ZI
1	-44.68		0.00		18000.0	0.0			
2									
3									
	Section	onal Prop	erties			Resultant	loads abo	ut centroid	t
X xz	1.000		Ιx	#######					
X xy	1.000		lу	#######		F'x	-44.7		
			Ιz	#######		F'y	0.0		
Y xy	0.000					F'z	0.0		
Y yz	0.000					M'x	0.0		

0.00

0.00

М'у

M'z

18000.0

0.0

Тxy

l yz

lotes: FOUNDATION ANCHOR RODS ANCHORS ON 14' SQUARE F

(28) #10 Anchor Rods

Rebar Diameter = 1.230sq. in.

MCM Dittmar Rd (North Alternate)

1500 K-Ft Base Overturning =

Z	0.000		1 92	0.00		IVI Z	0.0							
Z yz	0.000		l xz	0.00										
				Sum A x	Sum A _y	Sum A z	Sum P _x	Sum P _y	Sum P _z		Bolt L	oads and S	tresses	
				28	28	28	-44.7	0.0	0.0			LOAD		STRESS
Fastener	Χ	Υ	Z	Αx	Αv	Α,	P _x	P_{v}	P₂	Theta	Pz'	KIPS		KSI
1	1.00	12.00	84.00	1.00	1.00	1.00	9.768	0.000	0.000	8	0	9.768	Т	7.94
2	1.00	36.00	84.00	1.00	1.00	1.00	9.768	0.000	0.000	23	0	9.768	Т	7.94
3	1.00	60.00	84.00		1.00	1.00	9.768	0.000	0.000	36	0	9.768	Т	7.94
4	1.00	84.00	84.00			1.00	9.768	0.000	0.000	45	0	9.768	Т	7.94
5	1.00	84.00	60.00		1.00	1.00	6.521	0.000	0.000	54	0	6.521	Т	5.30
6	1.00	84.00	36.00		1.00	1.00	3.274	0.000	0.000	67	0	3.274	Т	2.66
7	1.00	84.00	12.00		1.00		0.028	0.000	0.000	82	0	0.028	Т	0.02
8	1.00	84.00	-12.00	1.00	1.00	1.00	-3.219	0.000	0.000	98	0	3.219	С	2.62
9	1.00	84.00	-36.00		1.00	1.00	-6.466	0.000	0.000	113	0	6.466	С	5.26
10	1.00	84.00	-60.00	1.00	1.00	1.00	-9.713	0.000	0.000	126	0	9.713	С	7.90
11	1.00	84.00	-84.00	1.00	1.00	1.00	-12.959	0.000	0.000	135	0	12.959	С	10.54
12	1.00	60.00	-84.00	1.00	1.00	1.00	-12.959	0.000	0.000	144	0	12.959	С	10.54
13	1.00	36.00	-84.00	1.00	1.00	1.00	-12.959	0.000	0.000	157	0	12.959	С	10.54
14	1.00	12.00	-84.00	1.00	1.00	1.00	-12.959	0.000	0.000	172	0	12.959	С	10.54
15	1.00	-12.00	-84.00	1.00	1.00	1.00	-12.959	0.000	0.000	188	0	12.959	С	10.54
16	1.00	-36.00	-84.00	1.00	1.00	1.00	-12.959	0.000	0.000	203	0	12.959	С	10.54
17	1.00	-60.00	-84.00	1.00	1.00	1.00	-12.959	0.000	0.000	216	0	12.959	С	10.54
18	1.00	-84.00	-84.00	1.00	1.00	1.00	-12.959	0.000	0.000	225	0	12.959	С	10.54
19	1.00	-84.00	-60.00	1.00	1.00	1.00	-9.713	0.000	0.000	234	0	9.713	С	7.90
20	1.00	-84.00	-36.00	1.00	1.00	1.00	-6.466	0.000	0.000	247	0	6.466	С	5.26
21	1.00	-84.00	-12.00		1.00	1.00	-3.219	0.000	0.000	262	0	3.219	С	2.62
22	1.00	-84.00	12.00	1.00	1.00	1.00	0.028	0.000	0.000	278	0	0.028	Т	0.02
23	1.00	-84.00	36.00	1.00	1.00	1.00	3.274	0.000	0.000	293	0	3.274	Т	2.66
24	1.00	-84.00	60.00	1.00	1.00	1.00	6.521	0.000	0.000	306	0	6.521	Т	5.30
25	1.00	-84.00	84.00	1.00	1.00	1.00	9.768	0.000	0.000	315	0	9.768	Т	7.94
26	1.00	-60.00	84.00	1.00	1.00	1.00	9.768	0.000	0.000	324	0	9.768	T	7.94
27	1.00	-36.00	84.00	1.00	1.00	1.00	9.768	0.000	0.000	337	0	9.768	Т	7.94
28	1.00	-12.00	84.00	1.00	1.00	1.00	9.768	0.000	0.000	352	0	9.768	Т	7.94

ISE Inc

3470 W. Jasper Dr Chandler, AZ 85226 PH: (602) 403-8614 FAX: (623) 321-1283 www.ISE-INC.biz Title: MCM Dittmar Rd (North Alternate)

Engineer: GLH Project Desc.:

File: C:\Documents and Settings\Glen Hunt PE\Desktop\5195 MCM Dittmar\5195 foudation design.ec6 ENERCALC, INC. 1983-2012, Build:6.12.9.26, Ver:6.12.9.26

Job#

Licensee : ISE, INC

Concrete Column
Lic. #: KW-06004631

Description: 140' Mono-Pine Mat Foundation Concrete Pier Head-R2

Code References

Calculations per ACI 318-08, IBC 2009, CBC 2010, ASCE 7-05

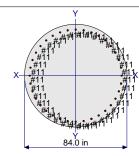
Load Combinations Used: ASCE 7-05

General Information

f'c : Concrete 28 day strength 4.0 ksi 3.605.0 ksi F = Density 145.0 pcf 0.850 fy - Main Rebar 60.0 ksi 29,000.0 ksi É - Main Rebar Allow. Reinforcing Limits ASTM A615 Bars Used Min. Reinf. 0.50 % Max. Reinf. 2.0 % Overall Column Height = 4.50 ft End Fixity Top Free, Bottom Fixed

Brace condition for deflection (buckling) along columns:

X-X (width) axis: Fully braced against buckling along X-X Axis


Y-Y (depth) axis: Fully braced against buckling along Y-Y Axis

Load Combination : ASCE 7-05

Column Cross Section

Column Dimensions 84.0in Diameter, Column Edge to Rebar Edge Cover = 3.625in

Column Reinforcing: 36.0 - #11 bars

Entered loads are factored per load combinations specified by user.

Applied Loads

Column self weight included: 25,111.1 lbs * Dead Load Factor

AXIAL LOADS . . .

Axial Load at 4.50 ft above base, D = 45.873 k

BENDING LOADS . . .

Lat. Point Load at 4.50 ft creating Mx-x, W = 44.678 k Moment acting about X-X axis, W = 4,533.80 k-ft

DESIGN SUMMARY

Load Combination +0.90D+1.60W+1.60H Location of max.above base 4.470 ft 0.875:1 Maximum Stress Ratio Ratio = $(Pu^2+Mu^2)^5.5 / (PhiPn^2+PhiMn^2)^5.5$ 63.886 k φ * Pn = 43.776 k Pu = -7,575.76 k-ft Φ * Mn-x = 8,759.29 k-ft Mu-x =Φ * Mn-y = Mu-y = 0.0 k-ft 0.0 k-ft Mu Angle = 180.0 deg Mu at Angle = 7,575.76 k-ft φMn at Angle = 8,656.49 k-ft

Pn & Mn values located at Pu-Mu vector intersection with capacity curve

Column Capacities . . .

Pnmax : Nominal Max. Compressive Axial Capacity
Pnmin : Nominal Min. Tension Axial Capacity

φ Pn, max : Usable Compressive Axial Capacity
φ Pn, min : Usable Tension Axial Capacity
22,020.7 k
-3,369.60 k
14,038.2 k
-2,527.20 k

Maximum SERVICE Load Reactions . .

Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k Top along X-X 0.0 k Bottom along X-X 44.678 k

Maximum SERVICE Load Deflections . . .

Along Y-Y 0.009239 in at 4.50 ft above base

for load combination : W Only

Along X-X 0.0 in at 0.0 ft above base

for load combination :

Reinforcing Area 56.160 in^2 Concrete Area 5,541.77 in^2 3470 W. Jasper Dr Chandler, AZ 85226 PH: (602) 403-8614 FAX: (623) 321-1283 www.ISE-INC.biz Title: MCM Dittmar Rd (North Alternate)

Engineer: GLH Project Desc.:

File: C:\Documents and Settings\Glen Hunt PE\Desktop\5195 MCM Dittmar\5195 foudation design.ec6 ENERCALC, INC. 1983-2012, Build:6.12.9.26, Ver:6.12.9.26

Job#

Note: Only non-zero reactions are listed.

Licensee : ISE, INC

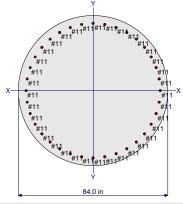
Concrete Column

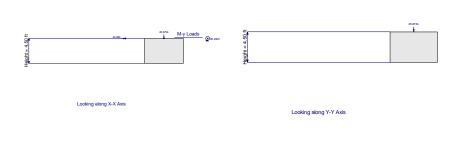
Lic. # : KW-06004631

140' Mono-Pine Mat Foundation Concrete Pier Head-R2

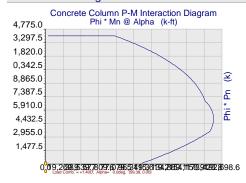
Governing Load Combination Results

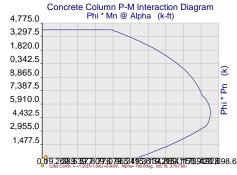
Governing Factored	Moment S	Source	Dist. from	Axial L	oad k				Beno	ding Analysis	k-ft	l	Jtilization
Load Combination	X-X	Y-Y	base ft	Pu	φ * Pn	δ^{χ}	$\delta^{x^{\star}Mux}$	δУ	δy * Muy	Alpha (deg)	δ Mu	φMn	Ratio
+1.40D			4.47	99.3	314,038.18					0.000			0.007
+1.20D+1.60Lr+0.80W	Actual		4.47	85.18	3 225.54	1.000	-3,787.88			180.000	3,787.88	9,077.72	0.417
+1.20D+1.60S+0.80W	Actual		4.47	85.18	3 225.54	1.000	-3,787.88			180.000	3,787.88	9,077.72	0.417
+1.20D+0.50Lr+0.50L+1.60W	Actual		4.47	85.18	3 133.67	1.000	-7,575.76			180.000	7,575.76	8,865.91	0.854
+1.20D+0.50L+0.50S+1.60W	Actual		4.47	85.18	3 133.67	1.000	-7,575.76			180.000	7,575.76	8,865.91	0.854
+0.90D+1.60W+1.60H	Actual		4.47	63.89	9 43.78	1.000	-7,575.76			180.000	7,575.76	8,656.49	0.875

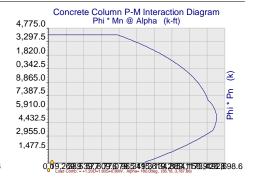

Maximum Reactions - Unfactored


	Reaction alor	ng X-X Axis	Reaction along	y Y-Y Axis	Axial Reaction
Load Combination	@ Base	@ Top	@ Base	@ Top	@ Base
D Only		k		k	70.984 k
W Only	44.678	k		k	k
D+W	44.678	k		k	70.984 k

Maximum Deflections for Load Combinations - Unfactored Loads


Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance	
D Only	0.0000 in	0.000 ft	0.000 in	0.000	ft
W Only	0.0000 in	0.000 ft	0.009 in	4.500	ft
D+W	0.0000 in	0.000 ft	0.009 in	4.470	ft


Sketches



Interaction Diagrams

ISE Inc 3470 W. Jasper Dr Chandler, AZ 85226 PH: (602) 403-8614 FAX: (623) 321-1283

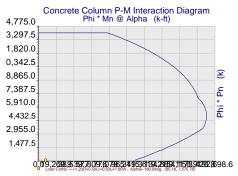
www.ISE-INC.biz

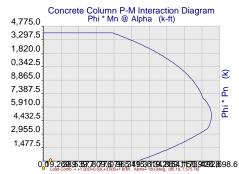
Title: MCM Dittmar Rd (North Alternate)

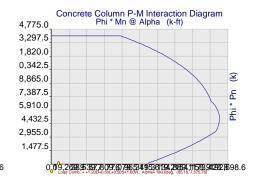
Engineer: GLH Project Desc.:

Job#

Licensee: ISE, INC.


GLH


Concrete Column


File: C:\Documents and Settings\Glen Hunt PE\Desktop\5195 MCM Dittmar\5195 foudation design.ec6 ENERCALC, INC. 1983-2012, Build:6.12.9.26, Ver:6.12.9.26

Lic. # : KW-06004631

Description: 140' Mono-Pine Mat Foundation Concrete Pier Head-R2

FAX: (623) 321-1283 www.ISE-INC.biz

Title: MCM Dittmar Rd (North Alternate)

Engineer: GLH Project Desc.:

Job#

Licensee : ISE, INC

General Footing

File: C:\Documents and Settings\Glen Hunt PE\Desktop\5195 MCM Dittmar\5195 foudation design.ec6 ENERCALC, INC. 1983-2012, Build:6.12.9.26, Ver:6.12.9.26

Lic. # : KW-06004631

Description: 140' Mono-Pine Foundation Mat

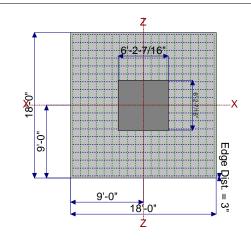
Code References

Calculations per ACI 318-08, IBC 2009, CBC 2010, ASCE 7-05

Load Combinations Used: ASCE 7-05

General Information

Material Properties		
f'c : Concrete 28 day strength	=	4.0 ksi
fy : Rebar Yield	=	60.0 ksi
Éc : Concrete Elastic Modulus	=	3,605.0 ksi
Concrete Density	=	145.0 pcf
φ Values Flexure	=	0.90
Shear	=	0.750
Analysis Settings		
Min Steel % Bending Reinf.	=	0.00140
Min Allow % Temp Řeinf.	=	0.00180
Min. Overturning Safety Factor	=	1.50 : 1
Min. Sliding Safety Factor	=	1.50 : 1
Add Ftg Wt for Soil Pressure	:	Yes
Use ftg wt for stability, moments & shears	:	Yes
Add Pedestal Wt for Soil Pressure	:	Yes
Use Pedestal wt for stability, mom & shear	:	Yes
Pharmatana		

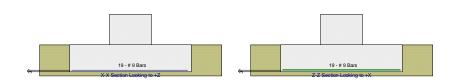

Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = = =	6.0 ksf Yes 250.0 pcf 0.30
Increases based on footing Depth Footing base depth below soil surface Allowable pressure increase per foot of when footing base is below	= deptl= =	ft ksf ft
Increases based on footing plan dimension Allowable pressure increase per foot of when maximum length or width is gr	dept =	ksf ft

Dimensions

Width parallel to X-X Axis	=	18.0 ft
Length parallel to Z-Z Axis	=	18.0 ft
Footing Thicknes	=	48.0 in

Pedestal dimensions...

px : parallel to X-X Axis	=	74.440 in
pz : parallel to Z-Z Axis	=	74.440 in
	_	
Height	_	54.0 in
Rebar Centerline to Edge of (Concrete	
at Bottom of footing	=	3.0 in



Reinforcing

Bars parallel to X-X Axis Number of Bars	=	19.0
Reinforcing Bar Size	=	# 9
Bars parallel to Z-Z Axis		
Number of Bars	=	19.0
Reinforcing Bar Size	=	# 9

Direction Requiring Closer Separation	n/a
# Bars required within zone	n/a
# Bars required on each side of zone	n/a

Applied Loads

		D	Lr	L	S	W	Е	Н
P : Column Load OB : Overburden	= =	45.873 0.4950						k ksf
M-xx M-zz	= =					4,534.0		k-ft k-ft
V-x V-z	= =					44.670		k k

ISE Inc 3470 W. Jasper Dr Chandler, AZ 85226

Title: MCM Dittmar Rd (North Alternate) Engineer: GLH Project Desc.:

General Footing

File: C:\Documents and Settings\Glen Hunt PE\Desktop\5195 MCM Dittmar\5195 foudation design.ec6 ENERCALC, INC. 1983-2012, Build:6.12.9.26, Ver:6.12.9.26 Licensee: ISE, INC.

Lic. # : KW-06004631

PH: (602) 403-8614 FAX: (623) 321-1283 www.ISE-INC.biz

Job#

140' Mono-Pine Foundation Mat Description:

DESIGN SU	IMMARY								Desig	n N.G.
	Min. Ratio	Item	Ap	plied		C	apacity		Governing Loa	ad Combination
FAIL	Ecc>L/2	Soil Bearing			0.0 ksf		6.580 k	sf Ecc>l	_/2	
PASS	n/a	Overturning - X-X			0.0 k-ft		0.0 k	t-ft No Ov	erturning/	
FAIL	0.4398	Overturning - Z-Z		4,91	3.70 k-ft		2,161.26 k	-ft 0.6D+	·W	
PASS	1.613	Sliding - X-X		44	1.670 k		72.042 k	0.6D+	·W	
PASS		Sliding - Z-Z			0.0 k		0.0 k		•	
PASS		Uplift			0.0 k		0.0 k			
PASS		Z Flexure (+X)			2.509 k-ft		210.063 k		D+E+1.60H	
PASS PASS		Z Flexure (-X)			2.509 k-ft		210.063 k		D+E+1.60H	
PASS		X Flexure (+Z)			3.904 k-ft		210.063 k		D D+E+1.60H	
PASS		X Flexure (-Z) 1-way Shear (+X)	١		2.509 k-ft 5.143 psi		210.063 k 94.868 p		D+E+1.60H D+0.50Lr+0.50L-	1 60W
PASS		1-way Shear (+X)	'		5.143 psi		94.868 p		D+0.50Lr+0.50L-	
PASS		1-way Shear (+Z))		8946 psi		94.868 p			11.0000
PASS		1-way Shear (-Z)			8946 psi		94.868 p			
PASS		2-way Punching			3.456 psi		189.737 p		D+0.50Lr+0.50L-	+1.60W
Detailed Re		, ,			· .					
Soil Bearing										
Rotation Axis	s & mbination	Gross Allowal	ole :	Kecc	Zecc	+Z	Actual So +Z	oil Bearing Stre -X	ess A -X	ctual / Allowable Ratio
X-X, +D	THE HUMBER	6.58		n/a	0.0	1.235		n/a	n/a	0.188
X-X, +D X-X, +D+W+F	1	6.58		n/a	0.0	1.235	1.235	n/a	n/a	0.188
X-X, +0.90D+	W+H	6.58		n/a	0.0	1.11,2		n/a	n/a	0.169
Z-Z, +D Z-Z, +D+W+F	İ	6.58 6.58		0.0 > L/2	n/a n/a	n/a 0.0		1.235 0.0	1.235 0.0	0.188 0.000
Z-Z, +0.90D+		6.58		> L/2	n/a	0.0	0.0	0.0	0.0	0.000
Overturning	_									
	& mbination		Over	turninç	g Moment	İ	Resisting Mo	ment St	ability Ratio	Status
X-X, D					None			0 k-ft	Infinity	OK
X-X, 0.6D+W Z-Z, D					None None			0 k-ft 0 k-ft	Infinity Infinity	OK OK
Z-Z, 0.6D+W				4,91	13.70 k-ft		2,161.2		0.4398	No Good!
Sliding Stabi	lity									All units k
Force Applica Load Co	ation Axis mbination		S	liding	Force		Resisting Fo	orce Slidi	ng SafetyRatio	Status
X-X, D					0.0 k			070 k	No Sliding	OK
X-X, 0.6D+W Z-Z, D					44.670 k 0.0 k			042 k 070 k	1.613 No Sliding	OK OK
Z-Z, 0.6D+W					0.0 k		72.0	042 k	No Sliding	OK OK
Footing Flex	ure									
Flexure Axis	& Load Combination	n Mu k-ft	Which Side?		n @ Bot. Гор ?	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D		3.904	+Z	Bot		1.0368	Min Temp %	1.056		
X-X, +1.40D	0.50Lr+1.60L+1.60H	3.904 3.346	-Z	Bot Bot		1.0368 1.0368	Min Temp % Min Temp %	1.056 1.056		
	0.50Lr+1.60L+1.60H 0.50Lr+1.60L+1.60H	3.346	+Z -Z	Bot		1.0368	Min Temp %	1.056		
X-X, +1.20D+	1.60L+0.50S+1.60H	3.346	+Z	Bot	tom	1.0368	Min Temp %	1.056	5 210.06	OK
X-X, +1.20D+ X-X, +1.20D+	1.60L+0.50S+1.60H	3.346	-Z	Bot		1.0368 1.0368	Min Temp %	1.050		
X-X, +1.20D+ X-X, +1.20D+		3.346 3.346	+Z -Z	Bot Bot		1.0368	Min Temp % Min Temp %	1.056 1.056		
X-X, +1.20D+	1.60Lr+0.80W	3.346	+Z	Bot	tom	1.0368	Min Temp %	1.056	5 210.06	OK
	1.60Lr+0.80W	3.346	-Z	Bot		1.0368 1.0368	Min Temp %	1.050		
X-X, +1.20D+ X-X, +1.20D+		3.346 3.346	+Z -Z	Bot Bot		1.0368	Min Temp % Min Temp %	1.056 1.056		
X-X, +1.20D+	1.60S+0.80W	3.346	+Z	Bot	tom	1.0368	Min Temp %	1.056	5 210.06	OK
X-X, +1.20D+	1.60S+0.80W	3.346	-Z	Bot	tom	1.0368	Min Temp %	1.05	5 210.06	OK OK

ISE Inc 3470 W. Jasper Dr Chandler, AZ 85226

PH: (602) 403-8614 FAX: (623) 321-1283 www.ISE-INC.biz

Title: MCM Dittmar Rd (North Alternate)

Engineer: GLH Project Desc.:

File: C:\Documents and Settings\Glen Hunt PE\Desktop\5195 MCM Dittmar\5195 foudation design.ec6 ENERCALC, INC. 1983-2012, Build:6.12.9.26, Ver:6.12.9.26

General Footing Lic. # : KW-06004631

Licensee : ISE, INC.

Job#

Description: 140' Mono-Pine Four	ndation Mat								
Footing Flexure									
Flexure Axis & Load Combination		/hich Te Side ?	ension @ Bot. or Top ?	As Req'd in^2	Gvrn. As in^2	Actual As in^2	s Phi*		Status
X-X, +1.20D+0.50Lr+0.50L+1.60W X-X, +1.20D+0.50Lr+0.50L+1.60W X-X, +1.20D+0.50L+0.50S+1.60W X-X, +1.20D+0.50L+0.50S+1.60W X-X, +1.20D+0.50L+0.20S+E X-X, +1.20D+0.50L+0.20S+E X-X, +0.90D+1.60W+1.60H X-X, +0.90D+1.60W+1.60H X-X, +0.90D+E+1.60H Z-Z, +1.40D Z-Z, +1.40D Z-Z, +1.20D+0.50Lr+1.60L+1.60H Z-Z, +1.20D+0.50Lr+1.60L+1.60H Z-Z, +1.20D+1.60L+0.50S+1.60H Z-Z, +1.20D+1.60L+0.50S+1.60H Z-Z, +1.20D+1.60L+0.50S+1.60H Z-Z, +1.20D+1.60Lr+0.50S Z-Z, +1.20D+1.60Lr+0.50L Z-Z, +1.20D+1.60Lr+0.50L Z-Z, +1.20D+1.60Lr+0.50L Z-Z, +1.20D+1.60Lr+0.50L Z-Z, +1.20D+1.60Lr+0.80W Z-Z, +1.20D+1.60S Z-Z, +1.20D+1.60S+0.80W Z-Z, +1.20D+1.60S+0.80W Z-Z, +1.20D+1.60S+0.80W Z-Z, +1.20D+0.50L+1.60S Z-Z, +1.20D+0.50L+1.60S Z-Z, +1.20D+0.50L+0.50S+1.60W Z-Z, +1.20D+0.50L+0.50S+1.60W Z-Z, +1.20D+0.50L+0.50S+1.60W Z-Z, +1.20D+0.50L+0.50S+1.60W Z-Z, +1.20D+0.50L+0.50S+1.60W Z-Z, +1.20D+0.50L+0.50S+1.60W Z-Z, +1.20D+0.50L+0.20S+E Z-Z, +0.90D+1.60W+1.60H Z-Z, +0.90D+E+1.60H One Way Shear	3.346 3.346 3.346 3.346 3.346 3.346 2.509 2.509 2.509 2.509 3.904 3.346 3.346 3.346 3.346 3.346 3.346 22.439 113.180 22.439 22.439 22.439 22.439 22.439 22.439 22.439 22.439 22.439 22.439 22.439 22.509 2.509 2.509	+Z -Z +Z -Z +Z -Z +Z -Z +Z -Z +Z -Z -X +X -X -X +X -X -X +X -X	Bottom Top Bottom Top Top Top Top Top Top Top Top Top Bottom Bott	in^2 1.0368	Min Temp % Min Temp %	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	056 21 056 21	0.063 0.063	OK OK OK OK OK OK OK OK OK OK OK OK OK O
Load Combination	Vu @ -X	Vu @ +>	Vu @	-Z Vu @	2 +Z Vu	ı:Max P	hi Vn V	u / Phi*Vn	Status
+1.40D +1.20D+0.50Lr+1.60L+1.60H +1.20D+1.60L+0.50S+1.60H +1.20D+1.60Lr+0.50L +1.20D+1.60Lr+0.80W +1.20D+0.50L+1.60S +1.20D+0.50Lr+0.50S +1.20D+0.50Lr+0.50L+1.60W +1.20D+0.50L+0.50S+1.60W +1.20D+0.50L+0.20S+E +0.90D+1.60W+1.60H +0.90D+E+1.60H Punching Shear	0.8946 ps 0.7668 ps 0.7668 ps 0.7668 ps 0.7668 ps 0.7668 ps 5.143 ps 5.143 ps 0.7668 ps 3.857 ps 0.5751 ps	i 0.7 i 0.7 i 0.7 i 0.7 i 0.7 i 0.7 i 0.7 i 0.7 i 0.7 i 0.7 i 3	7668 psi	0.8946 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.5751 psi	0.8946 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7551 psi	0.8946 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 0.7668 psi 5.143 psi 5.143 psi 0.7668 psi 3.857 psi 0.5751 psi	94.868 psi 94.868 psi	0.00943 0.008083 0.008083 0.008083 0.008083 0.008083 0.05421 0.05421 0.008083 0.04066 0.006062 All units	OK OK OK OK OK OK OK OK OK OK
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D +1.20D+0.50Lr+1.60L+1.60H +1.20D+1.60L+0.50S+1.60H +1.20D+1.60Lr+0.50L +1.20D+1.60Lr+0.80W +1.20D+0.50L+1.60S +1.20D+0.50Lr+0.50U +1.20D+0.50Lr+0.50S+1.60W +1.20D+0.50L+0.50S+1.60W +1.20D+0.50L+0.20S+E +0.90D+1.60W+1.60H		2.341 2.006 2.006 2.006 8.883 2.006 8.883 13.456 13.456 2.006 10.092	psi psi psi psi psi psi psi psi psi	189.737 p: 189.737 p: 189.737 p: 189.737 p: 189.737 p: 189.737 p: 189.737 p: 189.737 p: 189.737 p:	si si si si si si si	0.01234 0.01058 0.01058 0.01058 0.04682 0.01058 0.04682 0.07092 0.07092 0.07092 0.01058 0.05319			OK OK OK OK OK OK OK OK OK

ISE Inc 3470 W. Jasper Dr Chandler, AZ 85226 PH: (602) 403-8614 FAX: (623) 321-1283 www.ISE-INC.biz Title: MCM Dittmar Rd (North Alternate)

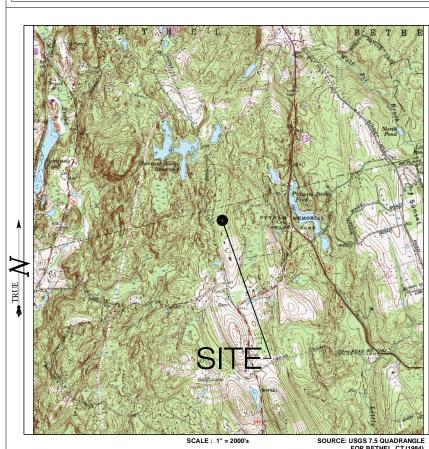
Engineer: GLH Project Desc.:

Job#

File: C:\Documents and Settings\Glen Hunt PE\Desktop\5195 MCM Dittmar\5195 foudation design.ec6
ENERCALC, INC. 1983-2012, Build:6.12.9.26, Ver:6.12.9.26

Licensee: ISE, INC.

General Footing
Lic. #: KW-06004631


Description: 140' Mono-Pine Foundation Mat

Punching Shear				All units k
Load Combination	Vu	Phi*Vn	Vu / Phi*Vn	Status
+0.90D+E+1.60H	1.505 psi	189.737 psi	0.007931	OK

LOCATION MAP

USGS TOPOGRAPHIC MAP

T-Mobile-

35 GRIFFIN ROAD BLOOMFIELD, CT 06002 OFFICE: (860)-692-7100 FAX: (860)-692-7159

MESSAGE CENTER MANAGEMENT **40 WOODLAND STREET** HARTFORD, CT 06105 OFFICE: (888) 973-7483

DEVELOPMENT & MANAGEMENT PLAN DRAWING INDEX

T-1 TITLE SHEET & INDEX

R-1 ABUTTERS MAP & CONSTRUCTION SEQUENCE

SP-1 SITE PLAN

SP-2 DECOMMISSION & COW PLAN

SP-3 GRADING & SED/EROSION CONTROL PLAN

LS-1 LANDSCAPING PLAN

A-1 COMPOUND PLAN & TOWER ELEVATION

C-1 T-MOBILE EQUIPMENT PLAN & DETAILS

C-1A T-MOBILE EQUIPMENT DETAILS

C-2 SPRINT/NEXTEL EQUIPMENT DETAILS

C-3 AT&T EQUIPMENT DETAILS

C-4 TEMPORARY CELL ON WHEELS DEPLOYMENT

S-1 COMPOUND DETAILS

N-1 NOTES & SPECIFICATIONS

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBILE NORTHEAST, LLC ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS

SPECIFICALLY ALLOWED.

3 SADDLEBROOK DRIVE KILLINGWORTH, CT 06419 WWW.ALLPOINTSTECH.COM PHONE: (860)-663-1697 FAX: (860)-663-0935

CONTACT PERSONNEL

MESSAGE CENTER MANAGEMENT 40 WOODLAND STREET HARTFORD, CT 06105

INTERVENER

T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD BLOOMFIELD, CT 06002

LANDLORD

MESSAGE CENTER MANAGEMENT 40 WOODI AND STREET HARTFORD, CT 06105

MCM PROJECT MANAGER:

VIRGINIA KING (860) 727-5790

MCM PROJECT ATTORNEY:

CHRISTOPHER B. FISHER, ESQ. CUDDY & FEDER LLP 445 HAMILTON AVE, 14TH FLOOR WHITE PLAINS, NY 10601 914-761-1300

POWER PROVIDER:

CL&P (203) 845-3487 MATTHEW RICHARDS - CASE #1638732

TELCO PROVIDER:

AT&T: (800)-727-8368

CALL BEFORE YOU DIG:

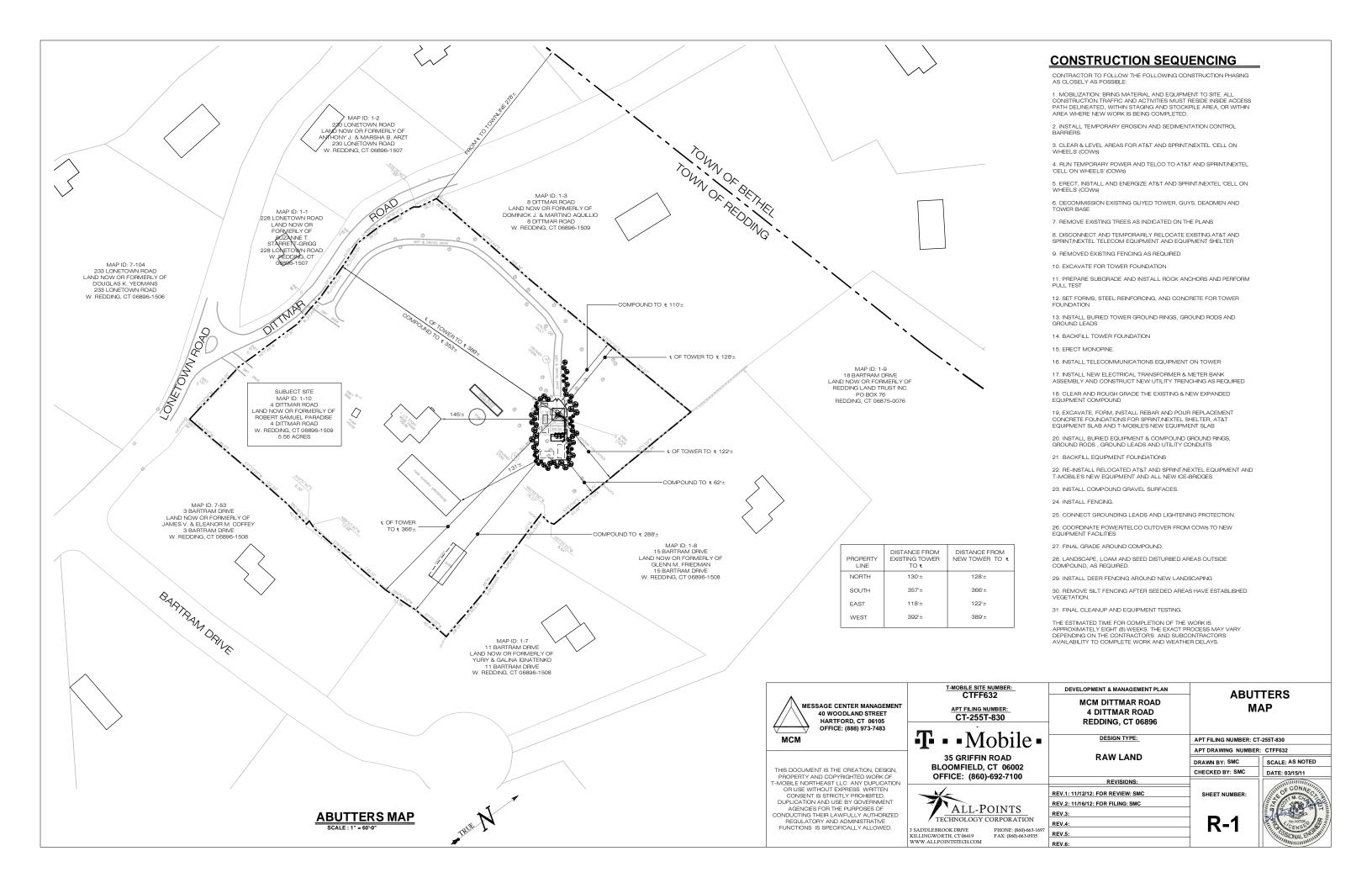
(800) 922-4455

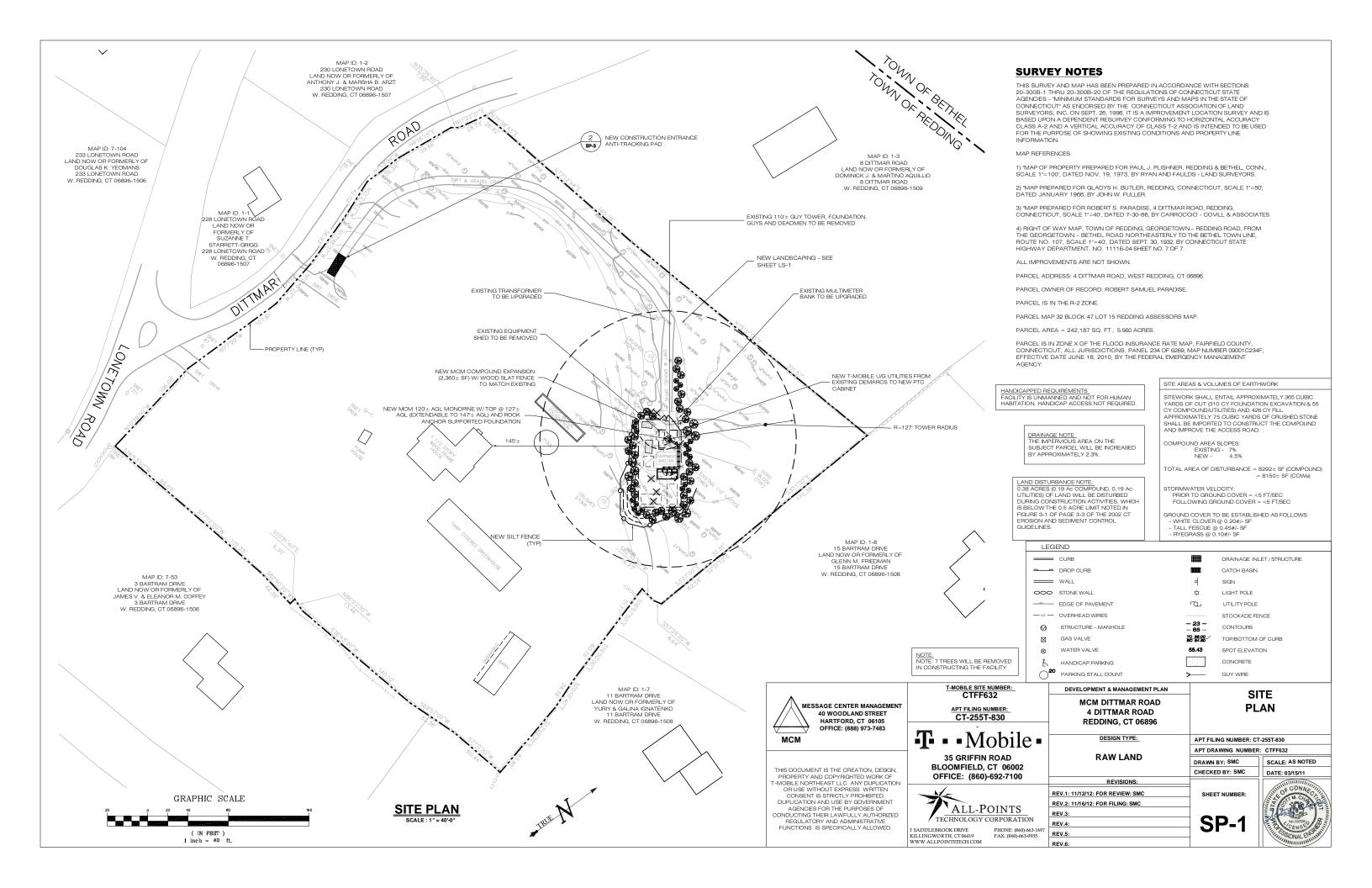
GOVERNING CODEs:

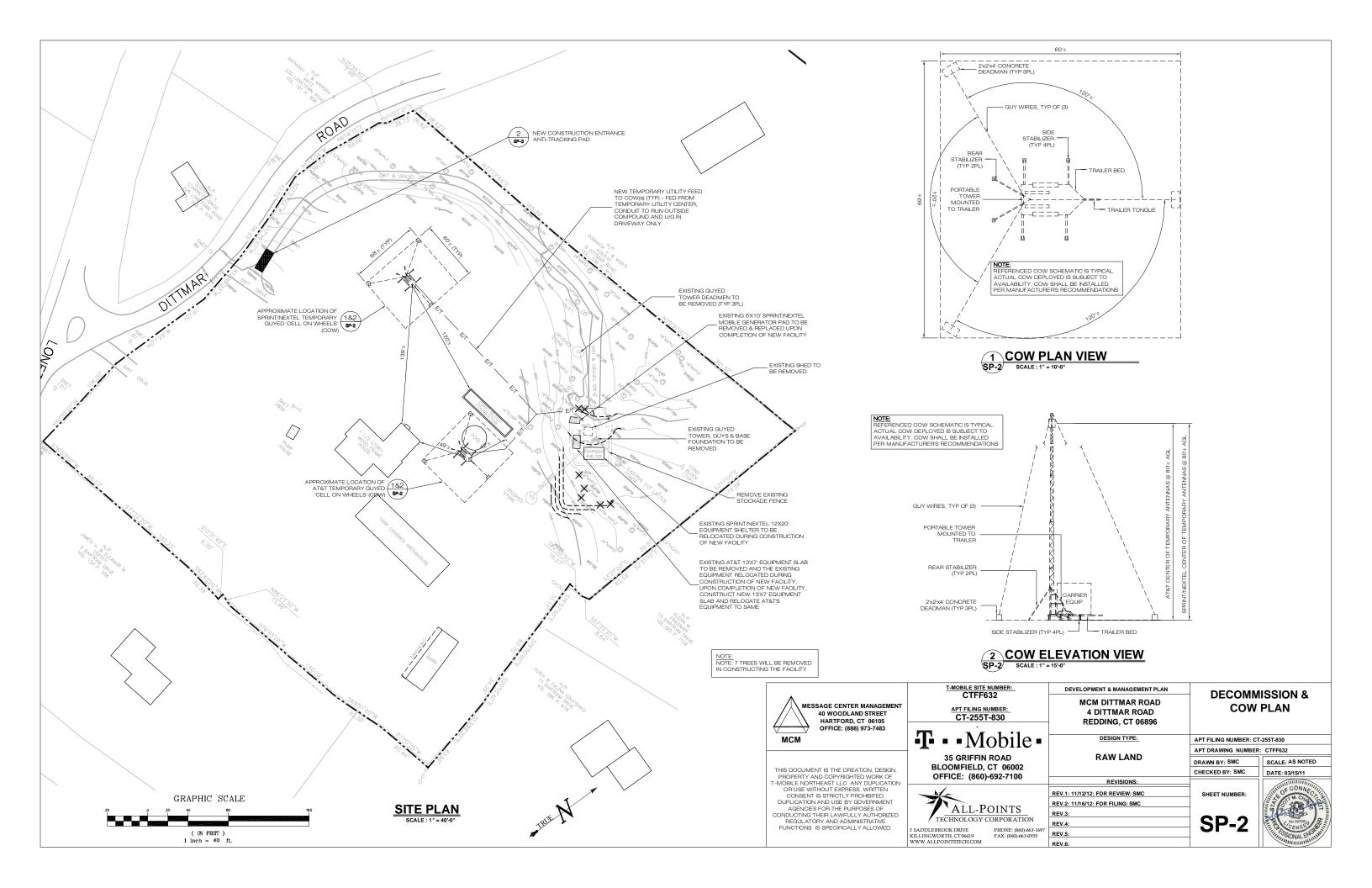
2005 CONNECTICUT BUILDING CODE (2003 IBC BASIS) NATIONAL ELECTRIC CODE EIA/TIA 222F

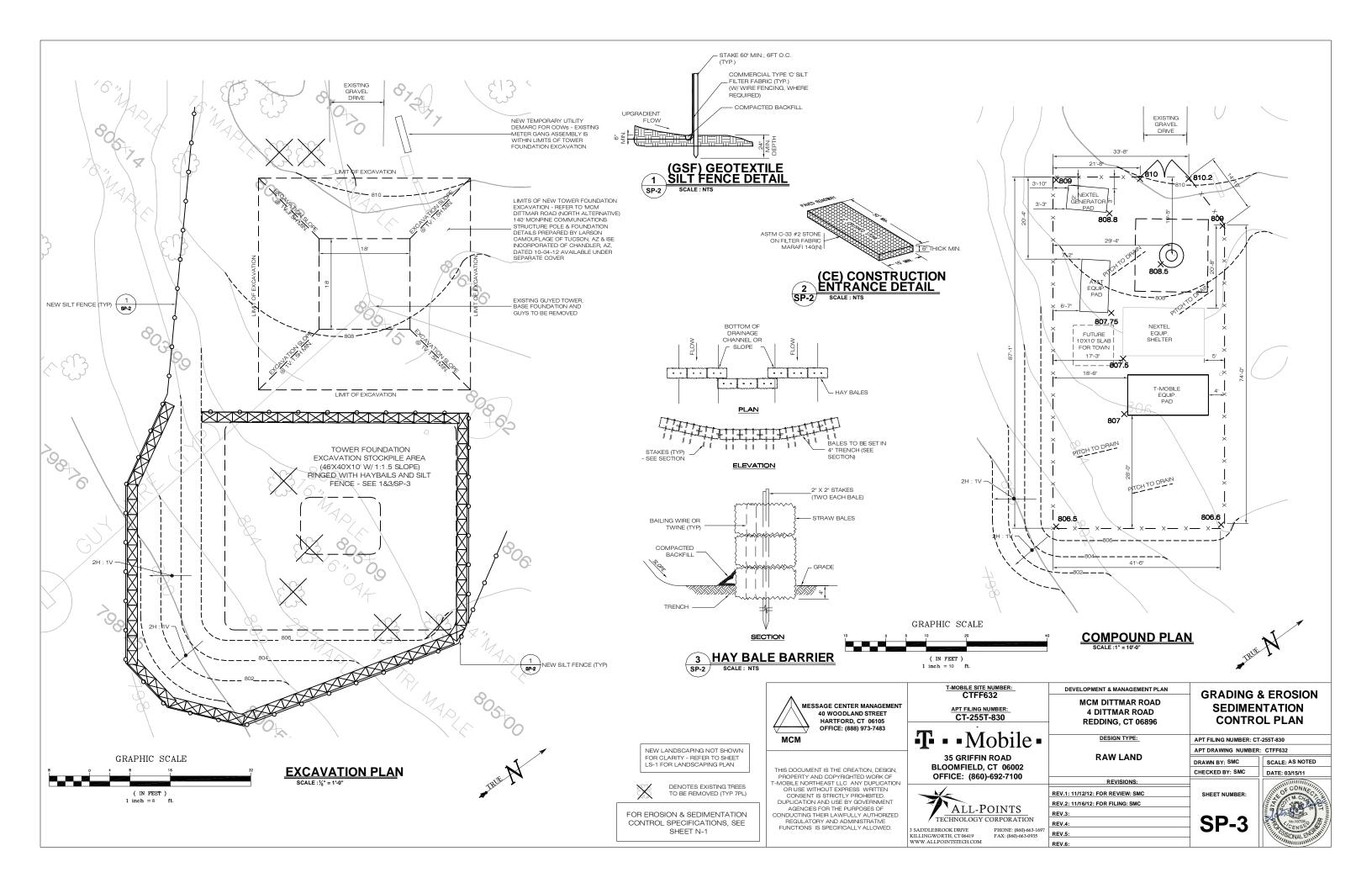
SITE INFORMATION

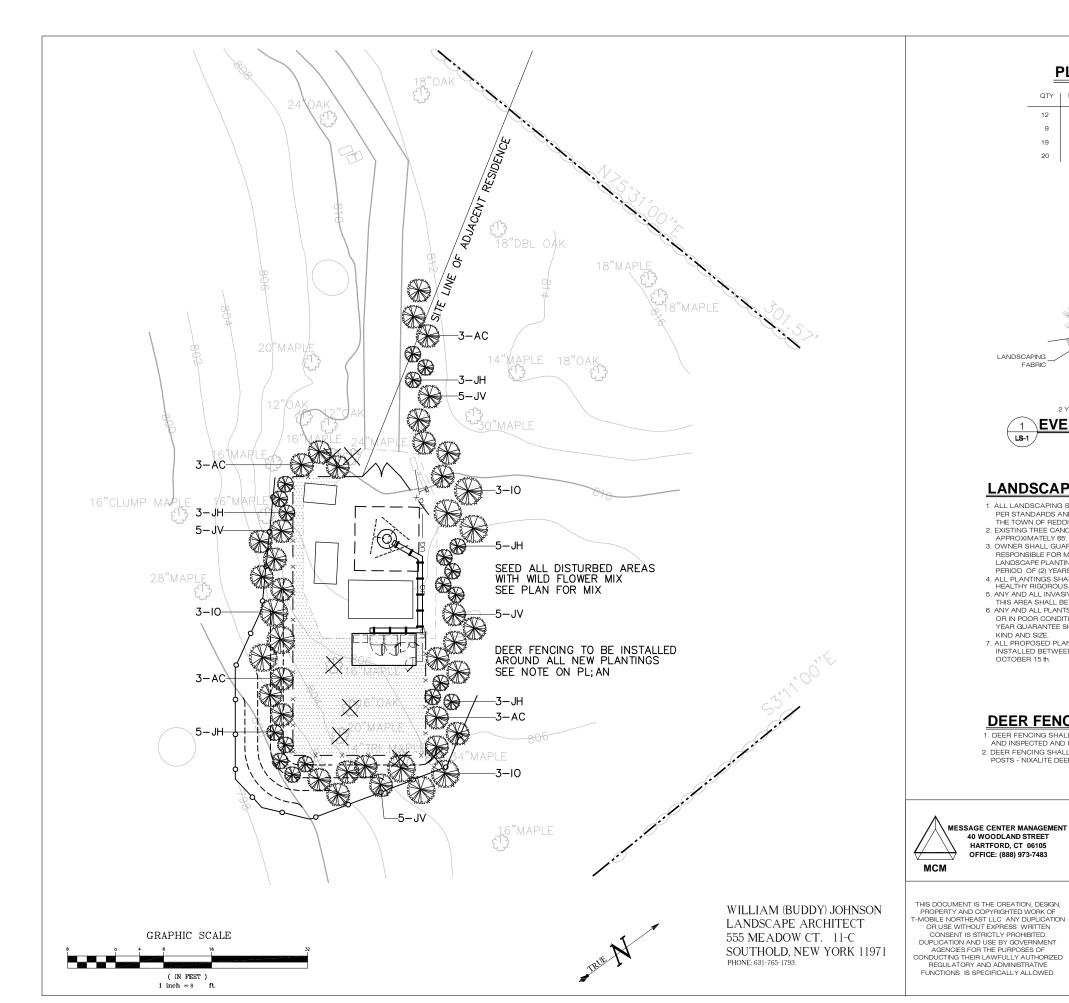
CTFF632A MCM DITTMAR ROAD **4 DITTMAR ROAD** REDDING, CT 06896

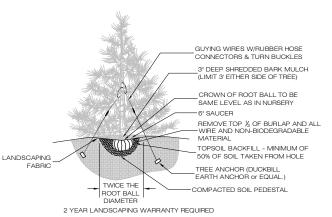

DEVELOPMENT & MANAGEMENT PLAN					
MCM DITTMAR ROAD 4 DITTMAR ROAD REDDING, CT 06896	TITLE SHEET AND INDEX				
DESIGN TYPE:	APT FILING NUMBER: CT-	-255T-830			
	APT DRAWING NUMBER: CTFF632 T-1.DWG				
RAW LAND	DRAWN BY: SMC	SCALE: AS NOTED			
	CHECKED BY: SMC	DATE: 03/15/11			
REVISIONS:		THE PROPERTY OF THE PARTY OF TH			
REV.1: 11/12/12: FOR REVIEW: SMC	SHEET NUMBER:	THE OF CONNECTIFIE			
REV.2: 11/16/12: FOR FILING: SMC		EZ O SON			
REV.3:		19 my 2 " "			
REV.4:	T-1	No.19728			
REV.5:		SONAL ENGINE			
REV.6:		WHITH HARRING			


*SITE INFORMATION


-SITE NAME: MCM DITTMAR ROAD -SITE ID NUMBER:. CTFF632A -SITE ADDRESS: 4 DITTMAR ROAD


-MAP ID -MAP -BLOCK -LATITUDE: 41° 20' 23.42" N -LONGITUDE: 73° 23' 30 62" W 806'± AMSI -FLEVATION: -FEMA/FIRM DESIGNATION PANEL #09001C0234F - ZONE 'X' 5.58 Ac


REDDING, CT 06896 -ACREAGE:



PLANT LIST

QTY	KEY	BOTANICAL NAME	COMMON NAME	SIZE	REMARKS
12	AC	ABIES CONCOLOR	WHITE FIR	12-14' HT.	FULL AND DENSE TO GROUND
9	Ю	ILEX OPACA	AMERICAN HOLLY	8-10' HT.	FULL AND DENSE TO GROUND
19	JH	JUNIPERUS 'HETZI COLUMNARIS'	GREEN COLUMNA R JUNIPER	7-8' HT.	FULL AND DENSE TO GROUND
20	JV	JUNIPERUS VIRGINIANA	EASTERN RED CEDAR	12-14' HT.	FULL AND DENSE TO GROUND

EVERGREEN TREE PLANTING DETAIL

LANDSCAPING NOTES

- ALL LANDSCAPING SHALL BE INSTALLED
 PER STANDARDS AND SPECIFICATIONS OF
- PER STANDARDS AND SPECIFICATIONS OF THE TOWN OF REDDING.

 2. EXISTING TREE CANOPY HEIGHT IS APPROXIMATELY 65.

 3. OWNER SHALL GUARANTEE AND BE RESPONSIBLE FOR MAINTAINING THE LANDSCAPE PLANTINGS SPECIFIED FOR A PERIOD OF (2) YEARS.

- PEHIOD OF (2) YEARS.

 4. ALL PLANTINGS SHALL BE MAINTAINED IN A HEALTHY RIGOROUS CONDITION.

 5. ANY AND ALL INVASIVE SPECIES FOUND IN THIS AREA SHALL BE REMOVED.

 6. ANY AND ALL PLANTS FOUND TO BE DEAD OR IN POOR CONDITION AFTER THE (2) YEAR GUARANTEE SHALL BE REPLACED IN KIND AND SIZE.
- KIND AND SIZE.

 7. ALL PROPOSED PLANTINGS SHALL BE INSTALLED BETWEEN APRIL 15 th AND OCTOBER 15 th.

SEED MIX

ANY EXPOSED SOIL AREAS ASSOCIATED WITH THE WIRELESS TELECOMMUNICATIONS FACILITY, ANY EXPOSED SOIL AREAS ASSOCIATED WITH THE WIRELESS TELECOMMUNICATIONS FACILITY, ACCESS ROAD AND STORMWATER MANAGEMENT AREAS SHALL BE SOWN WITH NEW ENGLAND EROSION CONSERVATION/WILDLIFE MIX SUPPLIED BY NEW ENGLAND WETLAND PLANTS, INC. (413,548,800) OR APPROPRIATE SUBSTITUTE. THE NEW ENGLAND CONSERVATION/WILDLIFE MIX PROVIDES A PERMANENT COVER OF GRASSES, FORBS, WILDFLOWERS, LEGUMES AND GRASSES TO PROVIDE BOTH GOOD EROSION CONTROL AND WILDLIFE HABITAT VALUE AND INCLUDES THE FOLLOWING SPECIES. BIG BLUESTEM (ANDROPOGON GERARDII), SWITCHGRASS (PANICUM VIRGATUM), LITTLE BLUESTEM (SCHIZACH/RIUM) SCOPARIUM), VIRGINIA WILD BYE (ELYMUS VIRGINICUS), PARTHOIGE PEA (CHAMAECRISTA FASCICULATA), COMMON MILKWEED (ASCLEPIAS SYRIACA), SHOWY TICK-TREFOIL (DESMODIUM CANADENISS), NEW ENGLAND ASTER (ASTER NOVAE-ANGLIAE), SPOTTED JOE PYE WEED (EUPATORIUM MACULATUM), GRASS LEAVED GOLDENROD (EUTHAMIA GRAMINFOLIA) CREEPING RED FESCUE (FESTUCA RUBRA), XX EYE SUNFLOWER (HELIOPSIS) HELIANTHODES), DEER TONGUE (PANICUM CLANDESTINUM), TALLICAREEN HEADED GHAMINI-OLIA) OFFICE HED FESCUE (FESTUCA HUBRA), OX EYE SUNFLOWER (HELIOPSIS HELIANTHOIDES), DEER TONIQUE (PANICUM CLANDESTINUM), TALL/GREEN HEADED CONEFLOWER (RUDBECKIA LACINIATA), EARLY GOLDENROD (SOLIDAGO JUNCEA), INDIAN GRASS (SORGHASTRUM NUTANS). THE SEED MIX WILL BE APPLIED AT A RATE OF 1LB/1,500 SQUARE FEET. SOIL COODITIONING ACTIVITIES, INCLUDING RAKING, WILL BE COMBINED WITH THE SEED APPLICATION PROCESS.

DEER FENCING NOTES

- 1. DEER FENCING SHALL BE INSTALLED AROUND ALL NEW PLANTINGS AND INSPECTED AND REPAIRED AS NECESSARY
- DEER FENCING SHALL BE 8' HIGH MOUNTED TO ANGLE STEEL LINE POSTS NIXALITE DEER BLOCKER DEER FENCING, OR EQUAL.

DENOTES EXISTING TREES TO REMAIN

DEVELOPMENT & MANAGEMENT PLAN

DENOTES EXISTING TREES TO BE REMOVED (TYP 7PL)

THIS DOCUMENT IS THE CREATION, DESIGN,

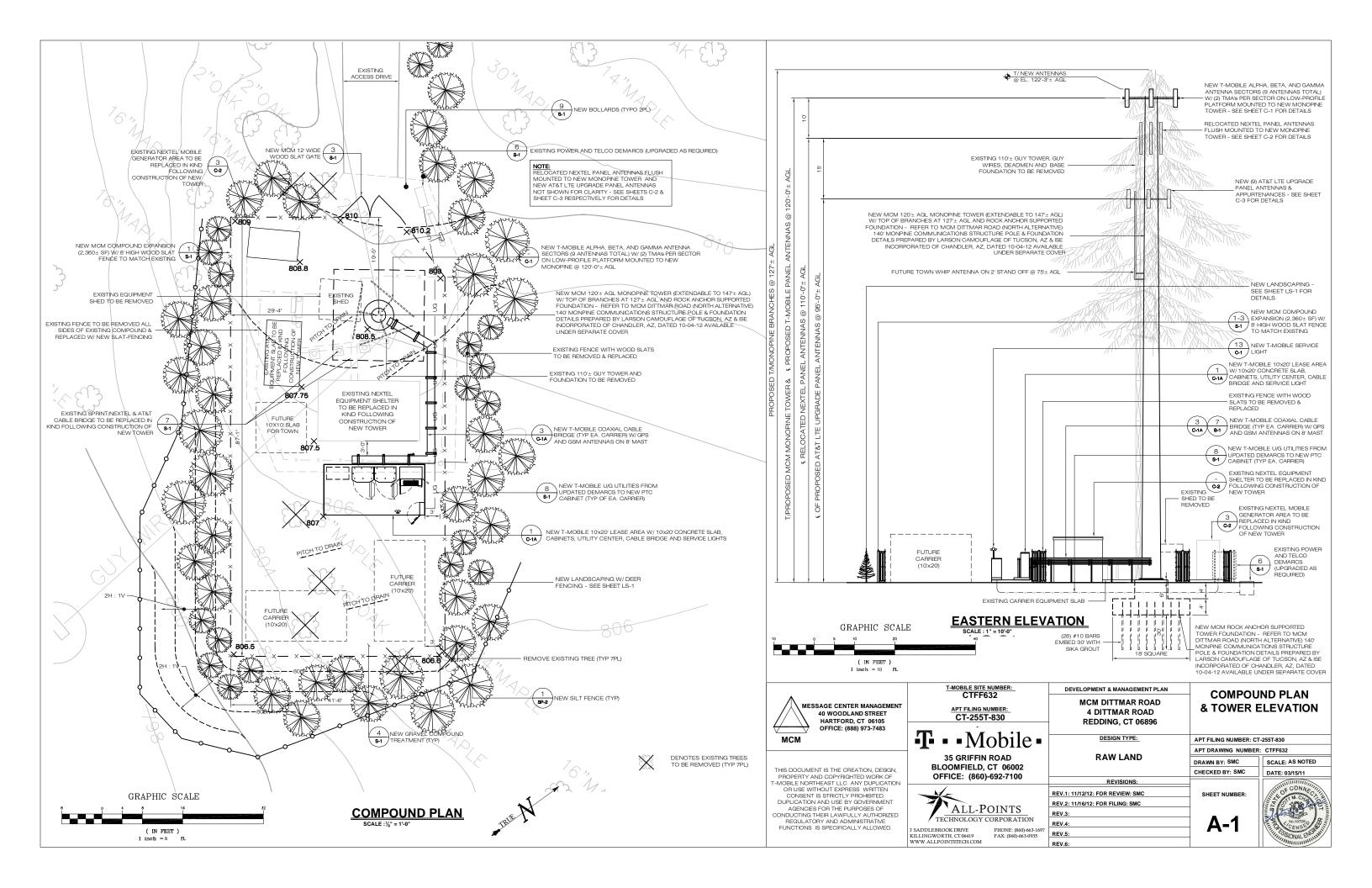
REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED

APT FILING NUMBER CT-255T-830

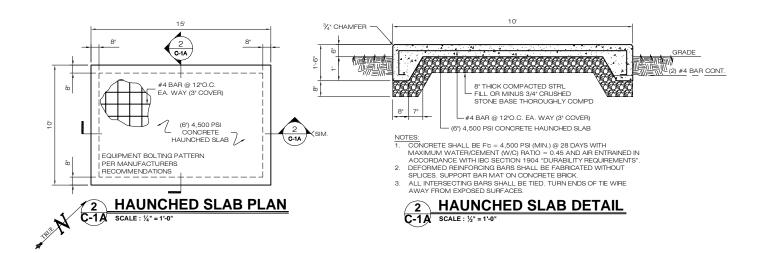
T · · Mobile 35 GRIFFIN ROAD BLOOMFIELD, CT 06002 OFFICE: (860)-692-7100

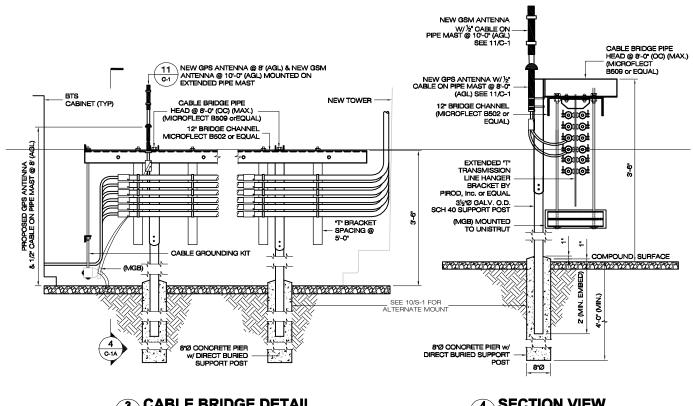
T-MOBILE SITE NUMBER:

ALL-POINTS


ALL-POINTS TECHNOLOGY CORPORATION

REV.5:


REV.6:


SADDLEBROOK DRIVE PHONE: (860)-663-1697 KILLINGWORTH, CT 06419 FAX: (860)-663-0935 WWW.ALLPOINTSTECH.COM

	DEVELOPMENT & MANAGEMENT FEAR			
	MCM DITTMAR ROAD 4 DITTMAR ROAD REDDING, CT 06896	LANDSCAPE PLAN		
•	DESIGN TYPE:	APT FILING NUMBER: CT-255T-830 APT DRAWING NUMBER: CTFF632		
	RAW LAND	DRAWN BY: WWJ	SCALE: 1/8" = 1	
		CHECKED BY: SMC	DATE: 08/22/12	
	REVISIONS:		THITINITY OF THE PARTY OF THE P	
)N	REV.1:	SHEET NUMBER:	THILL CONN	
	REV.2:		EZ 8 SE	
	REV.3:		7000	
	REV.4:	I S-1	No.19728	

THIS DOCUMENT IS THE CREATION, DESIGN, I HIS DUCUMENT IS THE CHEATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBILE NORTHEAST LLC ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED BEGUIL ATTORY AND ADMINISTRATIVE. REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

T-MOBILE SITE NUMBER: CTFF632 APT FILING NUMBER: CT-255T-830

T • • Mobile • 35 GRIFFIN ROAD

BLOOMFIELD, CT 06002 OFFICE: (860)-692-7100

ALL-POTECHNOLOGY OF	
ADDLEBROOK DRIVE	PHONE: (860)-663-169

KILLINGWORTH, CT 06419 WWW.ALLPOINTSTECH.COM

REV.4: REV.5: FAX: (860)-663-0935

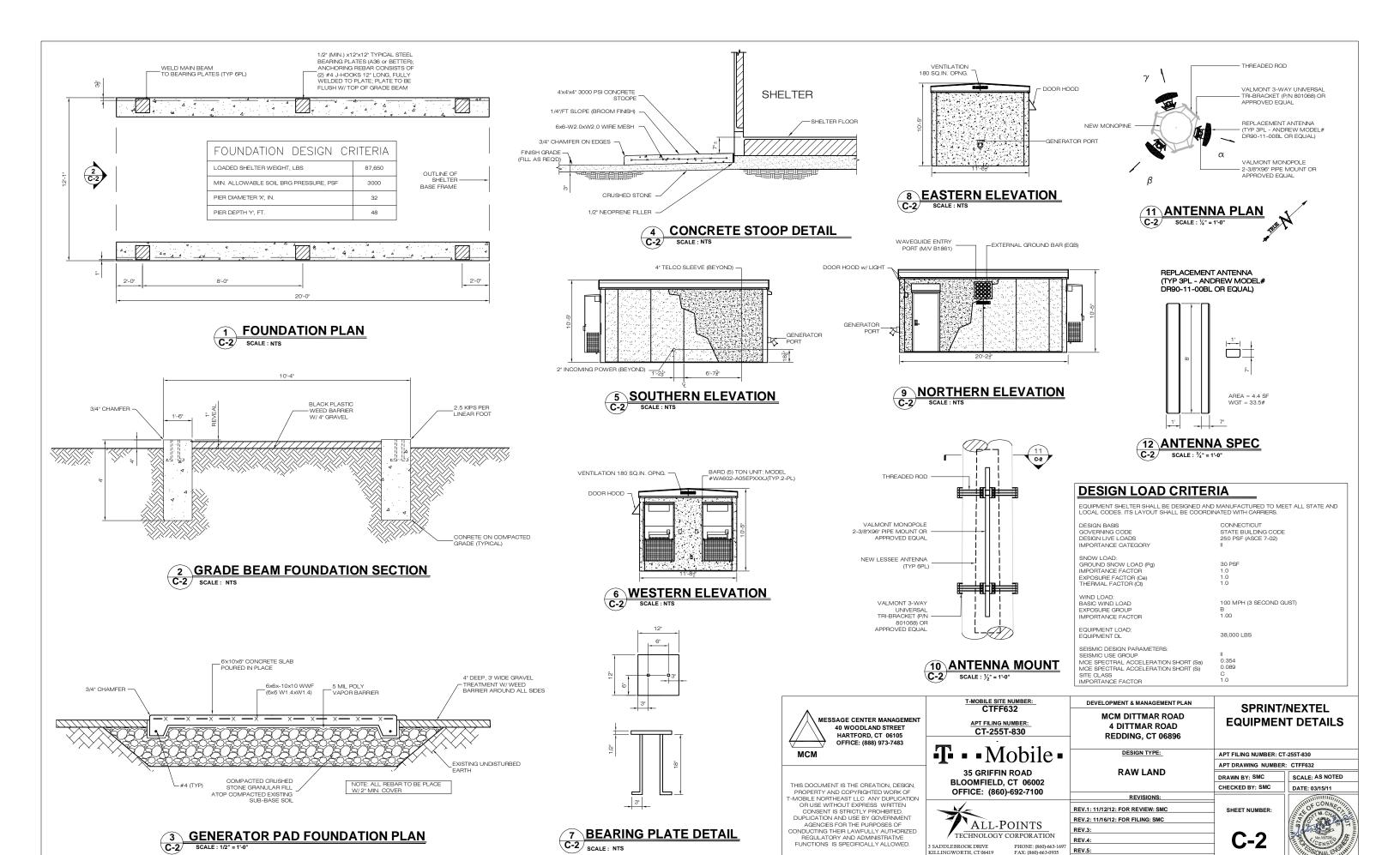
REV.6:

DEVELOPMENT & MANAGEMENT PLAN **T-MOBILE EQUIPMENT** MCM DITTMAR ROAD **DETAILS** 4 DITTMAR ROAD REDDING, CT 06896

DESIGN TYPE:

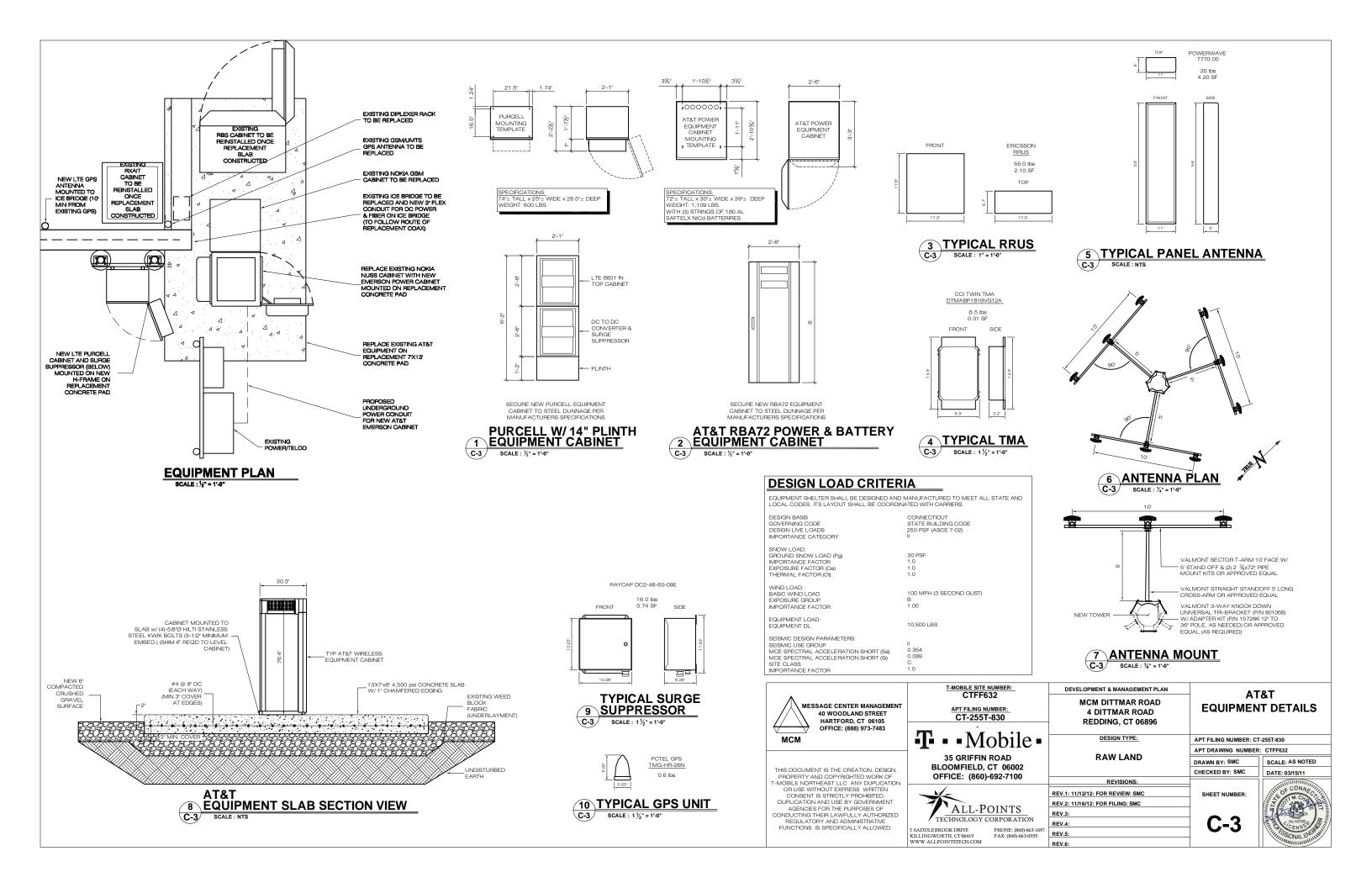
APT DRAWING NUMBER: CTFF632 RAW LAND DRAWN BY: SMC

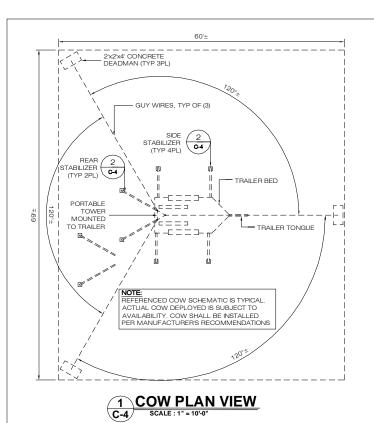
REVISIONS: REV.1: 11/12/12: FOR REVIEW: SMC SHEET NUMBER REV.2: 11/16/12: FOR FILING: SMC

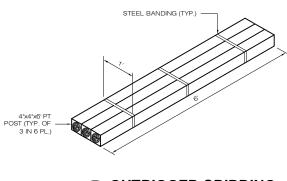

C-1A

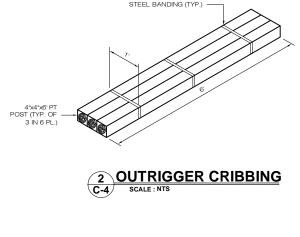
CHECKED BY: SMC

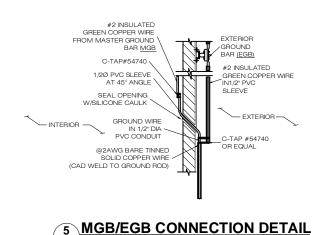
APT FILING NUMBER: CT-255T-830

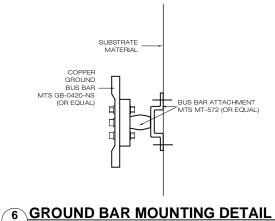

SCALE: AS NOTED

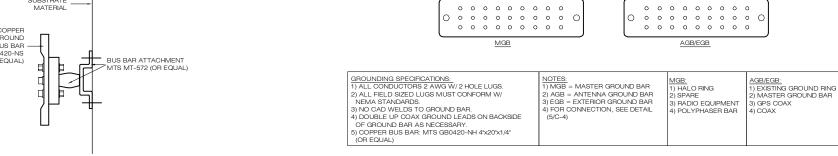



KILLINGWORTH, CT 06419 WWW.ALLPOINTSTECH.COM


FAX: (860)-663-0935


REV.6:





SCALE: NTS

MGB/FGB GROUND TIE-IN TO HALO (TYP 2PL)

MGB/EGB 5

MGB (6&7)

1) GROUND GPS/BMR ANTENNAS TO EXTERIOR GROUND BAR

3 GROUNDING PLAN
C-4 SCALE : NTS

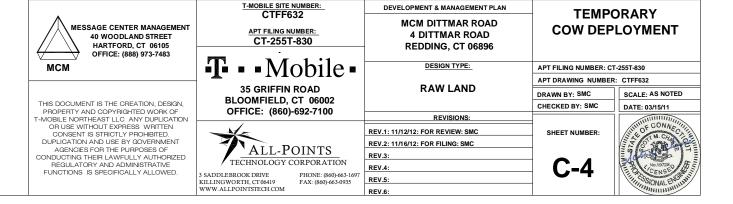
GROUND ROD 4 & GROUND RING C4

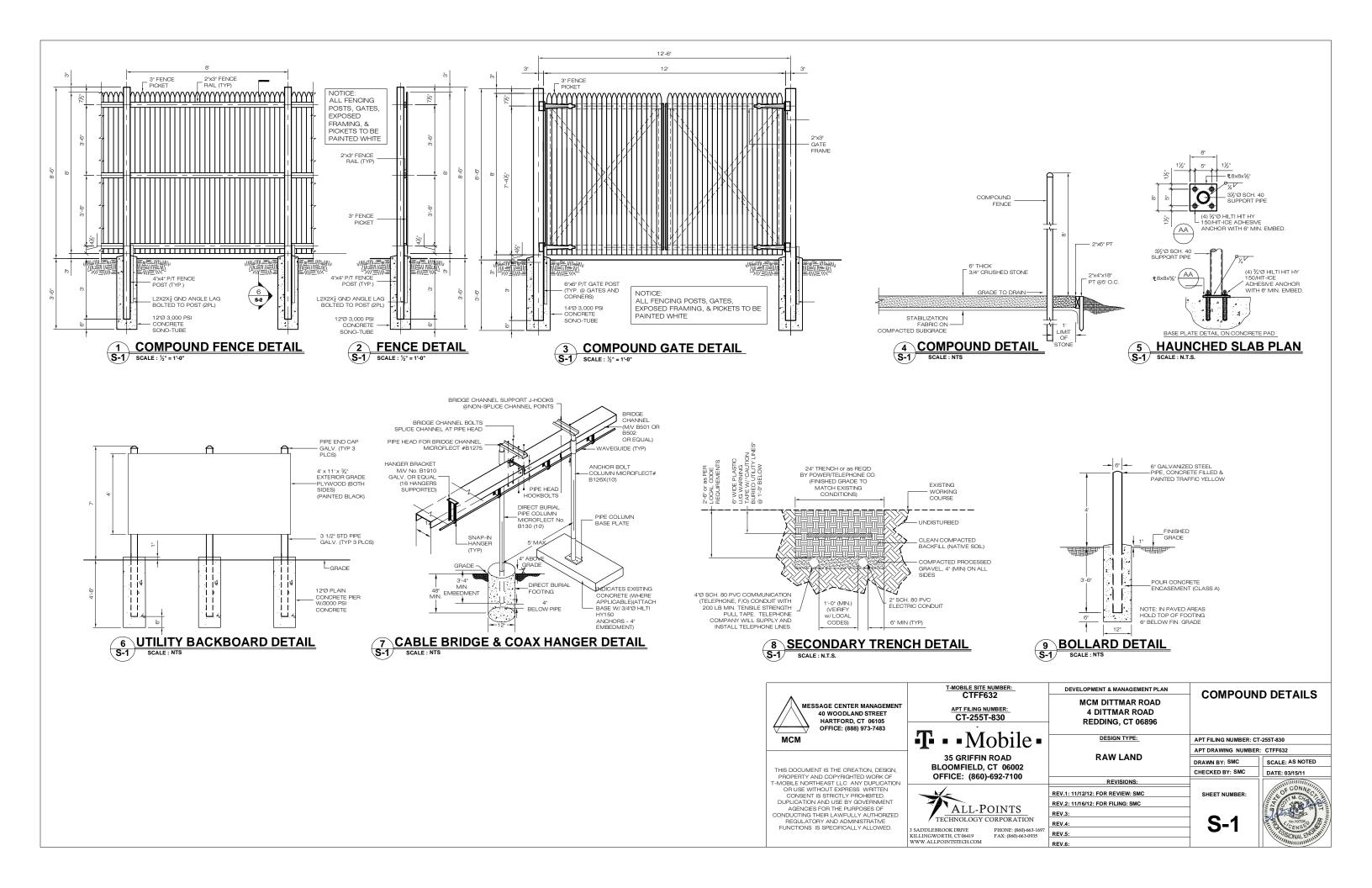
GROUND ROD 4

ANTENNA GROUND BAR (AGB) (TOP & BOTTOM)

GRADE -

4 GROUND ROD DETAIL
C-4 SCALE: NTS


- CADWELD


GROUND ROD COPPERWELD

2'x2'x4' CONCRETE

DEADMAN (TYP 3PL)

6&7 C-4 EGB

GENERAL NOTES:

- 1. ALL MATERIALS AND METHODS OF CONSTRUCTION SHALL COMPLY WITH THE STANDARDS AND SPECIFICATIONS OF THE TOWN OF OLD LYME, AND OTHER GOVERNMENTAL AGENCIES, AS APPLICABLE.
- 2. THE CONTRACTOR SHALL BE RESPONSIBLE FOR SECURING ALL NECESSARY PERMITS BEFORE COMMENCING WORK. THE CONTRACTOR SHALL FOLLOW CONDITIONS OF ALL APPLICABLE PERMITS AND WORK IN ACCORD WITH OSHA REGULATIONS
- 3. UTILITY INFORMATION SHOWN ON THE PLAN IS BASED ON VISIBLE FIELD EVIDENCE AND AVAILABLE RECORDS. THE CONTRACTOR SHALL 3. DILLIY INFORMATION SHOWN ON THE PLAN IS BASED ON VISIBLE FIELD EVIDENCE AND AVAILABLE RECORDS. THE CONTRACTOR SHALL FIELD VERIFY THE LOCATION OF ALL UTILITIES PRIOR TO COMMENCING WORK. THE CONTRACTOR IS ADVISED THAT THESE DRAWINGS MAY NOT ACCURATELY DEPICT AS-BUILT LOCATIONS AND OTHER UNKNOWN STRUCTURES. THE CONTRACTOR SHALL THEREFORE DETERMINE THE EXACT LOCATION OF EXISTING UNDERGROUND ELEMENTS AND EXCAVATE WITH CARE AFTER CALLING MARKOUT SERVICE AT 1-800-922-4455 (72) HOURS BEFORE DIGGING, DRILLING OR BLASTING. CARE SHALL BE TAKEN NOT TO DISTURB EXISTING UTILITIES AND SERVICE CONNECTIONS (OR PORTIONS THERE OF) TO REMAIN. CONTRACTOR IS RESPONSIBLE FOR REPAIRING OR REPLACING STRUCTURES OR UTILITIES DAMAGED BY HIS OPERATIONS.
- THE CONTRACTOR IS RESPONSIBLE FOR THE INSTALLATION OF NEW SERVICE CONNECTIONS AND SHALL COORDINATE WORK WITH THE
- PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE ENGINEER. 5. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE
- EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE, BUT NOT BE LIMITED TO:

 A) FALL PROTECTION,
 B) CONFINED SPACE ENTRY,

 OUT OF THE WORKING CREW.

 B) CONFINED SPACE ENTRY,

 OUT OF THE WORKING CREW.

 B) CONFINED SPACE ENTRY,

 OUT OF THE WORKING CREW.

 CONFINED SPACE ENTRY,

 CONFINED SPACE
- D) TRENCHING & EXCAVATION.
- 7. ELECTRIC SERVICE SHALL BE COORDINATED WITH CONNECTICUT LIGHT & POWER (CL & P).
- 8 ALL FLEVATIONS SHOWN ARE IN N.G.V. DATUM 1929.
- 9. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF
- 10. CONTRACTOR SHALL PROTECT EXISTING PAVED AND GRAVEL SURFACES, CURBS, LANDSCAPE AND STRUCTURES AND RESTORE SITE TO PRECONSTRUCTION CONDITION WITH AS GOOD, OR BETTER, MATERIALS. NEW MATERIALS SHALL MATCH EXISTING THICKNESS AND TYPE.
- THE CONTRACTOR SHALL SHORE ALL TRENCH EXCAVATION GREATER THAN 5 FEET IN DEPTH OR LESS WHERE SOIL CONDITIONS ARE

DEEMED UNSTABLE. ALL SHEETING AND/OR SHORING METHODS SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER.

12 THE CONTRACTOR IS RESPONSIBLE FOR MANAGING GROUNDWATER LEVELS IN THE VICINITY OF EXCAVATIONS TO PROTECT ADJACENT PROPERTIES AND NEW WORK. GROUNDWATER SHALL BE DRAINED IN ACCORDANCE WITH LOCAL SEDIMENTATION & EROSION CONTROL

13. EXCAVATION CONTRACTOR SHALL GRADE ONLY AREAS SHOWN TO BE MODIFIED HEREIN AND ONLY TO THE EXTENT REQUIRED TO SHED OVERLAND WATER FLOW AWAY FROM SITE. ALL SLOPES SHALL NOT BE STEEPER THAN 3:1 (HORIZ-VERT), UON.

BEDROCK SUBGRADE SHOULD NOT BE STEEPER THAN 4H:1V. HIGH SPOTS IN BEDROCK SUBGRADES MAY NEED TO BE REMOVED AND LOW SPOTS MAY BE FILLED WITH LEAN CONCRETE OR MINUS % CRUSHED STONE TO PROVIDE A LEVEL SURFACE. BEDROCK SUBGRADES DO NOT REQUIRE PROOFROLLING.

SEDIMENTATION AND EROSION CONTROLS SHOWN AND SPECIFIED SHALL BE ESTABLISHED BEFORE STRIPPING EXISTING VEGETATION.

ORGANIC MATERIAL AND DEBRIS SHALL BE STRIPPED AND STOCKPILED BEFORE ADDING FILL MATERIAL

NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN

ALL FILL SHALL BE PLACED IN EIGHT INCH LIFTS AND COMPACTED IN PLACE. STRUCTURAL FILL SHALL BE COMPACTED TO 95% MAXIMUM MODIFIED PROCTOR DRY DENSITY TESTED IN ACCORDANCE WITH ASTM D1557, METHOD C.

EXCAVATIONS FOR FOOTINGS SHALL BE CUT LEVEL TO THE REQUIRED DEPTH AND TO UNDISTURBED SOIL. REPORT UNSUITABLE SOIL CONDITIONS TO THE ENGINEER.

STRUCTURAL FILL BE TESTED FOR MOISTURE CONTENT AND COMPACTION DURING PLACEMENT. SHOULD THE RESULTS OF THE IN-PLACE DENSITY TESTS INDICATE THE SPECIFIED MOISTURE OR COMPACTION LIMITS HAVE NOT BEEN MET, THE AREA REPRESENTED BY THE TEST SHOULD BE REWORKED AND RETESTED, AS REQUIRED, UNTIL THE SPECIFIED MOISTURE AND COMPACTION REQUIREMENTS ARE ACHIEVED.

EQUIPMENT CABINETS MAY BE SUPPORTED ON SLABS-ON-GRADE UNDERLAIN BY AT LEAST A 12-INCH THICKNESS OF COMPACTED STRUCTURAL FILL OR MINUS $\frac{3}{2}$ -INCH CRUSHED STONE PLACED ON THE EXISTING FILL, THE SURFACE OF WHICH SHOULD BE THOROUGHLY COMPACTED AND CLEAR OF ORGANIC MATTER.

THE AREA UNDERLYING THE SLABS SHOULD BE ROUGH GRADED AND THEN THOROUGHLY PROOFROLLED WITH A VIBRATORY ROLLER OR HEAVY PLATE COMPACTOR PRIOR TO FINAL GRADING AND PLACEMENT OF STRUCTURAL FILL OR MINUS $\frac{3}{4}$ -INCH CRUSHED STONE.

A SOIL UNIT WEIGHT OF 100 LBS PER CUBIC FOOT (PCF) SHOULD BE USED FOR ENGINEERED FILL OVERLYING THE FOOTINGS

TRENCH EXCAVATIONS SHALL BE BACKFILLED AT THE END OF EACH DAY

SURPLUS MATERIAL SHALL BE REMOVED FROM THE SITE.

TOWER FOUNDATION EXCAVATION, BACKFILL AND COMPACTION SHALL BE IN ACCORD WITH TOWER MANUFACTURERS DESIGNS AND SPECIFICATIONS

14. MATERIALS
NATIVE GRAVEL MATERIAL MAY BE USED FOR TRENCH BACKFILL WHERE SELECT MATERIAL IS NOT SPECIFIED. GRAVEL MATERIAL FOR CONDUIT TRENCH BACKFILL SHALL NOT CONTAIN ROCK GREATER THAN 2 INCHES IN DIAMET

BANK OR CRUSHED GRAVEL SHALL CONSIST OF TOUGH, DURABLE PARTICLES OF CRUSHED OR UNCRUSHED GRAVEL FREE OF SOFT, THIN, ELONGATED OR LAMINATED PIECES AND MEET THE GRADATION.

FILL SHOULD MEET THE FOLLOWING MATERIAL PROPERTY REQUIREMENTS:

FILL TYPE (1)	USCS CLASSIFICATION	ACCEPTABLE LOCATION FOR PLACEMENT	
STRUCTURAL FILL	GW (2)	ALL LOCATIONS AND ELEVATIONS. THE WEATHERED BEDROCK MAY BE SELECTIVELY RE-USED AS STRUCTURAL FILL, PROVIDED IT MEET THE GRADATION REQUIREMENTS IN NOTE 2, BELOW.	
COMMON FILL	VARIES (3)	COMMON FILL MAY BE USED FOR SITE GRADING TO WITHIN 12 INCHES OF FINISHED GRADE. COMMON FILL SHOULD NOT BE USED UNDER SETTLEMENT SENSITIVE STRUCTURES. THE WEATHERED BEDROCK MAY BE RE-USED AS COMMON FILL PROVIDED IT IS FREE OF ORGANICS AND CAN BE ADEQUATELY COMPACTED.	

- 1. COMPACTED STRUCTURAL FILL SHOULD CONSIST OF APPROVED MATERIALS THAT ARE FREE OF ORGANIC MATTER AND DEBRIS. FROZEN MATERIAL SHOULD NOT BE USED. FILL SHOULD NOT BE PLACED ON A FROZEN SUBGRADE.
- 2. IMPORTED STRUCTURAL FILL SHOULD MEET THE FOLLOWING GRADATION:

PERCENT PASSING BY WEIGHT STRUCTURAL FILL SIEVE SIZE

70-100 (100)* 45-95 30-90 25-80 10-50

* MAXIMUM 2-INCH PARTICLE SIZE WITHIN 12 INCHES OF THE UNDERSIDE OF FOOTINGS OR SLABS

3. COMMON FILL SHOULD HAVE A MAXIMUM PARTICLE SIZE OF 6 INCHES AND NO MORE THAN 25 PERCENT BY WEIGHT PASSING THE US NO. 200 SIEVE.

SEDIMENTATION/EROSION

- THE CONTRACTOR SHALL MINIMIZE DISTURBANCE TO THE EXISTING SITE DURING CONTROL. THE REGISION CONTROL. MEASURES SHALL BE IN CONFORMANCE WITH THE 2002 CONNECTICUT GUIDLINES FOR SOIL BROSION AND SEDIMENT CONTROL.
- CONTRACTOR SHALL PERFORM CONSTRUCTION SEQUENCING SUCH THAT EARTH MATERIALS ARE EXPOSED FOR A MINIMUM OF TIME BEFORE THEY ARE COVERED, SEEDED, OR OTHERWISE STRABILIZED TO PREVENT EROSION. THE FOLLOWING GENERAL CONDITIONS SHALL BE OBSERVED:
- A. LIMITS OF CLEARING AND GRUBBING SHALL BE CLEARLY MARKED BEFORE
- B. EXISTING VEGETATION TO REMAIN SHALL BE PROTECTED AND REMAIN
- C. CLEARING AND GRADING SHALL BE SCHEDULED SO AS TO MINIMIZE THE SIZE OF EXPOSED AREAS AND THE LENGTH OF TIME THAT AREAS ARE EXPOSED.
- D. TOPSOIL SHALL BE SPREAD TO FINISH GRADES AND SEEDED AS SOON AS FINISHED GRADES ARE ESTABLISHED. STRAW MULCH, JUTE NETTING OR MATS SHALL BE USED WHERE THE NEW SEED IS PLACED.
- E. THE LENGTH AND STEEPNESS OF CLEARED SLOPES SHALL BE MINIMIZED TO REDUCE RUNOFF VELOCITIES.
- F. RUNOFF SHALL BE DIVERTED AWAY FROM CLEARED SLOPES.
- G. ALL SEDIMENT SHALL BE TRAPPED ON THE SITE.
- SEDIMENTATION AND EROSION CONTROL (SEC) MEASURES SHOWN SHALL BE INSTALLED PRIOR TO LAND CLEARING, EXCAVATION OR GRADING OPERATIONS REQUIREMENTS SPECIFIED SHALL BE MET PRIOR TO COMMENCING EARTHWORK
- . IT IS THE CONTRACTOR'S RESPONSIBILITY TO MAINTAIN SEC MEASURES HROUGHOUT DURATION OF PROJECT UNTIL DISTURBED LAND IS THOROUGHLY
- 5. FAILURE OF THE SEC SYSTEMS SHALL BE CORRECTED IMMEDIATELY AND SUPPLEMENTED WITH ADDITIONAL MEASURES AS NEEDED
- 6. VEGETATIVE SEEDING: UON, AREA TO BE SEEDED SHALL BE LOOSE AND FRIABLE 6. Vege IAI IVE SEEDING: UON, AREA TO BE SEEDED SHALL BE LOOSE AND FRIAB. TO A DEPTH OF 3*. TOPSOIL SHALL BE LOOSENED BY RAKING OR DISKING BEFORE SEEDING. APPLY 50 Lbs. OF DOLOMITIC LIMESTONE AND 25 Lbs. OF 10-10-10 FERTILIZER PER 1000 SF. HARROW LIME AND FERTILIZER INTO LOOSE SOIL. APPLY COMMON BERMUDA AND RYE GRASS AT 50 Lbs/ACRE. USE CYCLONE SEED DRILL OULTIPACKER SEEDER OR HYDROSEEDER (SEED & FERTILIZER SILVIPRY) FOR STEEP SLOPES. IRRIGATE UNTIL VEGETATION IS COMPLETELY ESTABLISHED.
- PRIOR TO STARTING ANY OTHER WORK ON THE SITE. THE CONTRACTOR SHALL NOTIFY APPROPRIATE AGENCIES AND SHALL INSTALL EROSION CONTROL MEASURES AS SHOWN ON THE PLANS AND AS IDENTIFIED IN FEDERAL, STATE, AND LOCAL APPROVAL DOCUMENTS PERTAINING TO THIS PROJECT
- 8. INSPECT AND MAINTAIN EROSION CONTROL MEASURES. AND REMOVE I ISIPECT AND INVANIVAIN ENGOSION CONTINOU MEASONES, AIND HEMOVE SEDIMENT THEREFROM ON A WEEKLY BASIS AND WITHIN TWELVE HOURS AFTER EACH STORM EVENT AND DISPOSE OF SEDIMENTS IN AN UPLAND AREA SUCH THAT THEY DO NOT ENCUMBER OTHER DRAINAGE STRUCTURES AND PROTECTED AREAS.
- CONTRACTOR SHALL BE FULLY RESPONSIBLE TO CONTROL CONSTRUCTION SUCH THAT SEDIMENTATION SHALL NOT AFFECT REGULATORY PROTECTED AREAS WHETHER SLICH SEDIMENTATION IS CAUSED BY WATER WIND OR DIRECT DEPOS.
- 10. UPON COMPLETION OF CONSTRUCTION AND ESTABLISHMENT OF PERMANENT GROUND COVER, CONTRACTOR SHALL REMOVE AND DISPOSE OF EROSION CONTROL MEASURES AND CLEAN SEDIMENT AND DEBRIS FROM ENTIRE DRAINAGE SYSTEMS LOCATED ON SITE
- 11. APPROPRIATE MEANS SHALL BE USED TO CONTROL DUST DURING CONSTRUCTION.
- 12. A STABILIZED CONSTRUCTION ENTRANCE SHALL BE MAINTAINED TO PREVENT SOIL AND LOOSE DEBRIS FORM BEING TRACKED ONTO LOCAL ROADS. THE CONSTRUCTION ENTRANCE SHALL BE MAINTAINED UNTIL THE SITE IS PERMANENTLY STABILIZED.
- 13. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES SHALL BE IN CONFORMACE WITH THE STATE OF CONNECTICUT GUIDELINES FOR EROSION AND SEDIMENT CONTROL, AS
- 14. TEMPORARY SILT FENCE EROSION CONTROL BARRIER SHALL BE MAINTAINED THROUGHOUT SITE CONSTRUCTION. STOCKPILE ON SITE 100 FT. OF SILT FENCE FOR EMERGENCY USE TEMPORARY FROSION BARRIERS SHALL REMAIN IN PLACE UNTIL PERMANENT VEGETATIVE GROUND COVER IS ESTABLISHED
- 15. ALL DISTURBED AREAS OUTSIDE THE LIMITS OF THE EQUIPMENT LEASE AREA SHALL BE PERMANENTLY ESTABLISHED WITH A VEGETATIVE GROUND COVER.
- 16. STILLING BASIN SHALL BE UTILIZED FOR ANY DE-WATERING DISCHARGE WHICH MAY OCCUR DURING CONSTRUCTION OPERATIONS.
- 17. PROPOSED CONSTRUCTION IMPACTS AND PERMANENT IMPROVEMENTS SHALL NOT SIGNIFICANTLY IMPACT STORM WATER RUNOFF PATTERNS, VOLUME OR PEAK FLOW RATES. THE FLAT GRADE OF THE EQUIPMENT COMPOUND AND STONE SURFACE WILL PROMOTE STORM WATER INFILTRATION
- 18. CONTRACTOR SHALL INSTALL ALL EROSION AND SEDIMENTATION CONTROL MEASURES PRIOR TO ANY GRADING ACTIVITIES IN LOCATIONS SHOWN ON THESE
- 19. SILT FENCES SHALL BE INSPECTED IMMEDIATELY AFTER EACH RAINFALL AND AT LEAST DAILY DURING PROLONGED RAINFALL. ANY REPAIRS THAT ARE REQUIRED SHALL BE MADE IMMEDIATELY.
- 20. IF THE FABRIC ON A SILT FENCE SHOULD DECOMPOSE OR BECOME INEFFECTIVE DURING THE EXPECTED LIFE OF THE FENCE, THE FABRIC SHALL BE REPLACED PROMPTLY. 21 SEDIMENT DEPOSITS SHOULD BE INSPECTED AFTER EVERY STORM EVENT. THE DEPOSITS
- SHOULD BE REMOVED WHEN THEY REACH APPROXIMATELY ONE-HALF THE HEIGHT OF THE BARRIER. 22. SEDIMENT DEPOSITS THAT ARE REMOVED OR LEFT IN PLACE AFTER THE FABRIC HAS BEEN REMOVED SHALL BE GRADED TO CONFORM WITH THE EXISTING TOPOGRAPHY AND
- VEGETATION 23. NO GREATER THAN 80,000 SQUARE FEET OF LAND SHALL BE EXPOSED AT ANY ONE TIME DURING DEVELOPMENT. WHEN LAND IS EXPOSED DURING DEVELOPMENT, THE EXPOSURE SHOULD BE KEPT TO THE SHORTEST PRACTICAL PERIOD OF TIME AND SHALL NOT EXCEED 10

DAYS. LAND SHOULD NOT BE LEFT EXPOSED DURING THE WINTER MONTHS.

24 ANY DISTURBED AREAS WHICH ARE TO BE LIFET TEMPORARILY AND WHICH WILL BE 24. AIN US I ONDED ANEAS WINCH ARE I'VE BE LEFT I EINFOMMANIE, AND WINCHED AND SEEDED MITH RYE GRASS TO PREVENT EROSION, HAY OR STRAW MULCH SHALL BE APPLIED TO ALL FRESHLY SEEDED AREAS AT A RATE OF 2 TONS PER ACRES. BALES SHALL BE UNSPOILED, AIR-DRIED, AND FREE FROM WEED, SEEDS, AND ANY COARSE MATERIAL.

STEEL NOTES & SPECIFICATIONS

- CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE ENGINEER SHALL BE NOTIFIED OF ANY CONDITIONS WHICH PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS
- DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO LATEST EDITION OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION 'SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS"
- STRUCTURAL AND MISCELLANEOUS STEEL SHALL CONFORM TO ASTM A992 (FY-50 KSI), UNLESS OTHERWISE NOTED
- STEEL PIPE SHALL CONFORM TO ASTM A500, GRADE B. STEEL PIPE DIAMETERS NOTED ON THE DRAWINGS ARE NOMINA
- STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE MINIMUM OF TWO BOLTS. UNLESS NOTED OTHERWISE ON THE DRAWINGS. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIAMETER GALVANIZED ASTM A 307 BOLTS UNLESS OTHERWISE NOTED
- ALL STEEL MATERIAL EXPOSED TO WEATHER SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT-DIPPED GALVANIZED) COATINGS" ON IRON AND STEEL PRODUCTS
- ALL BOLTS ANCHORS AND MISCELLANEOUS HARDWARE EXPOSED TO WEATHER SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM. A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE.
- DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED BY UP ALL DAMAGED GALVANIZED STEEL WITH COLD ZINC, "GALVANOX", "DRY GALV". "ZINC IT". OR APPROVED EQUIVALENT. IN ACCORDANCE WITH MANUFACTURERS GUIDELINES. TOUCH UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.
- CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES. APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES." ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND D1.1. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION" 9TH EDITION. AT THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED. SEE NOTE 9.
- THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.

APPLICATIONS DIRECTIONS.

APPLY A QUALITY CONCRETE SEALER SUCH AS THEROSEAL TO

EXPOSED CONCRETE IN ACCORDANCE WITH MANUFACTURERS

SITE NOTES

I ALL DIMENSIONS FLEVATIONS AND EXISTING CONDITIONS SHOWN ON THE DRAWINGS SHALL BE VERIFIED BY THE T. ALL DIMENSIONS, ELEVATIONS AND LASTING CONTINUOUS STOWN ON THE DRAWNINGS SHALL BE VERIFIED IT HE CONTRACTOR AND THE TESTING AGENCY PRIOR TO BEGINNING ANY MATERIAL ORDERING, FABRICATION OR CONSTRUCTION WORK ON THIS PROJECT. ANY DISCREPANCIES SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION OF THE OWNERS AND THE OWNERS ENGINEER. THE DISCREPANCIES MUST BE RESOLVED BEFORE THE CONTRACTOR IS TO PROCEED WITH THE WORK. THE CONTRACT DOCUMENTS DO NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES. OBSERVATION VISITS TO THE SITE BY THE OWNER AND/OR THE ENGINEER SHALL NOT INCLUDE INSPECTION OF THE PROTECTIVE MEASURES OR THE CONSTRUCTION PROCEDURES.

2. DAMAGE BY THE CONTRACTOR TO UTILITIES OR PROPERTY OF OTHERS, INCLUDING EXISTING PAVEMENT AND OTHER SURFACES DISTURBED BY THE CONTRACTOR DURING CONSTRUCTION SHALL BE REPAIRED TO PRE-CONSTRUCTION CONDITIONS BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE CLIENT. FOR GRASSED AREAS, SEED AND MULCH SHALL BE ACCEPTABLE.

3. THE CONTRACTOR SHALL REWORK (DRY, SCARIFY, ETC.) ALL MATERIAL NOT SUITABLE FOR SUBGRADE IN ITS PRESENT STATE. IF THE MATERIAL, AFTER REWORKING, REMAINS UNSUITABLE THEN THE CONTRACTOR SHALL UNDERCUT THIS MATERIAL AND REPLACED WITH APPROVED MATERIAL AT HIS EXPENSE. ALL SUBGRADES SHALL BE PROOF ROLLED WITH A FULLY LOADED TANDEM AXLE DUMP TRUCK PRIOR TO PAVING. ANY SOFT MATERIAL SHALL BE REWORKED AND REPLACED.

4. THE CONTRACTOR IS REQUIRED TO MAINTAIN ALL DITCHES, PIPES, AND OTHER DRAINAGE STRUCTURES FREE FROM OBSTRUCTION UNTIL WORK IS ACCEPTABLE BY THE OWNER. THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGES CAUSED BY FAILURE TO MAINTAIN DRAINAGE STRUCTURES IN OPERABLE CONDITION.

5. ALL DIMENSIONS SHALL BE VERIEID WITH THE PLANS (LATEST REVISION) PRIOR TO COMMENCING CONSTRUCTION 9. ALE DIMENSIONS SHALL BE VENIFIED WITH THE FLANS (LATEST REVISION) FROM TO COMMINICATION OF MANUAL HAVE A SET OF APPROVED PLANS AVAILABLE AT THE SITE AT ALL TIMES WHEN WORK IS BEING PERFORMED. A DESIGNATED RESPONSIBLE EMPLOYEE SHALL BE AVAILABLE FOR CONTACT BY GOVERNING AGENCY INSPECTORS.

6. CONTRACTOR SHALL SECURE ALL NECESSARY PERMITS FOR THIS PROJECT FROM ALL APPLICABLE GOVERNMENTAL AGENCIES (NOT SUPPLIED BY OWNER).

7. ANY PERMITS WHICH MUST BE OBTAINED SHALL BE THE CONTRACTORS RESPONSIBILTY. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ABIDING BY ALL CONDITIONS AND REQUIREMENTS OF THE PERMITS (NOT SUPPLIED BY OWNER).

8. ALL WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND THE LATEST APPLICABLE CODES AND STANDARDS

9. THE CONTRACTOR SHALL NOTIFY THE APPLICABLE JURISDICTIONAL (STATE, COUNTY, OR CITY) ENGINEER 24 HOURS

PRIOR TO BEGINNING OF CONSTRUCTION

10. CONTRACTOR RESPONSIBLE FOR CLOSING AND FILING ALL PERMITS ASSOCIATED WITH THE SITE.

11. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE EQUIPMENT AND TOWER

12. ALL EXISTING AREAS DISTURBED BY CONSTRUCTION ACTIVITIES SHALL BE RESTORED TO MATCH PRECONSTRUCTION CONDITIONS

13. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO CONSTRUCTION ACTIVITIES COMMENCING.

CONCRETE NOTES & SPECIFICATIONS

CONCRETE

ALL CONCRETE CONSTRUCTION SHALL BE DONE IN ACCORD WITH AMERICAN CONCRETE INSTITUTE (ACI) CODES 301 & 318, LATEST REVISION.

TOWER FOUNDATION WORK SHALL BE IN ACCORDANCE WITH TOWER MANUFACTURER'S DESIGNS AND

ALL CONCRETE USED SHALL BE 4500 PSI (28 DAY COMP STRENGTH). THE CONCRETE MIX SHALL BE BASED ON USING THE FOLLOWING MATERIALS AND PARAMETERS: PORTLAND CEMENT: AND
AGGREGATE: ASTM C33, 1 INCH MAX POTABLE NON-CHLORIDE 6%* 4 INCH ADMIXTURE: AIH:
SLUMP: 4 INCH
UNLESS NOTED OTHERWISE

*CONCRETE SUBJECT TO EBEEZING AND THAWING SHALL HAVE A MAXIMUM WATER/CEMENT (W/C) BATIO OF 0.45 AND SHALL BE AIR ENTRAINED IN ACCORDANCE WITH IBC 2003 SECTION 1904 DURABILITY REQUIREMENTS.

ALL REINFORCING STEEL SHALL BE ASTM A615, GR 60 (DEFORMED) UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS B' AND ALL HOOKS SHALL BE ACI STANDARD UNO. REINFORCING BARS SHALL BE COLD BENT WHERE REQUIRED AND TIED (NOT WELDED).

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN

THERWISE ON DRAWINGS:

CONCRETE CAST AGAINST EARTH = 3 IN.

CONCRETE EXPOSED TO EARTH OR WEATHER: #6 AND LARGER = 2 IN. #5 AND SMALLER = 1 1/2 IN. CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND: SLAB AND WALL = 3/4 IN.
BEAMS AND COLUMNS = 1 1/2 IN.

A 3/4 IN. CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OR CONCRETE, UON, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

CONCRETE SHALL BE PLACED IN A UNIFORM MANNER AND CONSOLIDATED IN PLACE

CONCRETE FOOTINGS SHALL BE CAST AGAINST LEVEL, COMPACTED, NON-FROZEN BASE SOIL FREE OF

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF -MOBILE NORTHEAST LLC ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN ON USE WITHOUT EAPTHESS WHITTEN
CONSENT IS STRICTLY PROHIBITED.
DUPLICATION AND USE BY GOVERNMENT
AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

APT FILING NUMBER: CT-255T-830 **T** • • Mobile •

35 GRIFFIN ROAD BLOOMFIELD, CT 06002 OFFICE: (860)-692-7100

T-MOBILE SITE NUMBER:

ALL-POINTS TECHNOLOGY CORPORATION SADDLEBROOK DRIVE

PHONE: (860)-663-169 REV.5: KILLINGWORTH, CT 06419 FAX: (860)-663-0935 WWW.ALLPOINTSTECH.COM REV.6:

DEVELOPMENT & MANAGEMENT PLAN MCM DITTMAR ROAD 4 DITTMAR ROAD REDDING, CT 06896

SPECIFICATIONS DESIGN TYPE: APT FILING NUMBER: CT-255T-830

RAW LAND

DRAWN BY: SMC CHECKED BY: SMC REVISIONS: REV.1: 11/12/12: FOR REVIEW: SMC SHEET NUMBER REV.2: 11/16/12: FOR FILING: SMC REV.3: REV.4:

NOTES &

APT DRAWING NUMBER: CTFF632