

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for State of Connecticut

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/ state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	7
Soil Map (CL&P Thompson Sta 1853+50 and 1858+50)	8
Legend	9
Map Unit Legend (CL&P Thompson Sta 1853+50 and 1858+50)	
Map Unit Descriptions (CL&P Thompson Sta 1853+50 and 1858+50)	10
State of Connecticut	13
3—Ridgebury, Leicester, and Whitman soils, extremely stony	13
15—Scarboro muck	15
17—Timakwa and Natchaug soils	17
18—Catden and Freetown soils	19
23A—Sudbury sandy loam, 0 to 5 percent slopes	21
34A—Merrimac sandy loam, 0 to 3 percent slopes	23
38C—Hinckley gravelly sandy loam, 3 to 15 percent slopes	24
47C—Woodbridge fine sandy loam, 2 to 15 percent slopes, extremely	
stony	26
52C—Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony	28
61B—Canton and Charlton soils, 3 to 8 percent slopes, very stony	29
73C—Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky	31
305—Udorthents-Pits complex, gravelly	33
W—Water	35
References	36

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

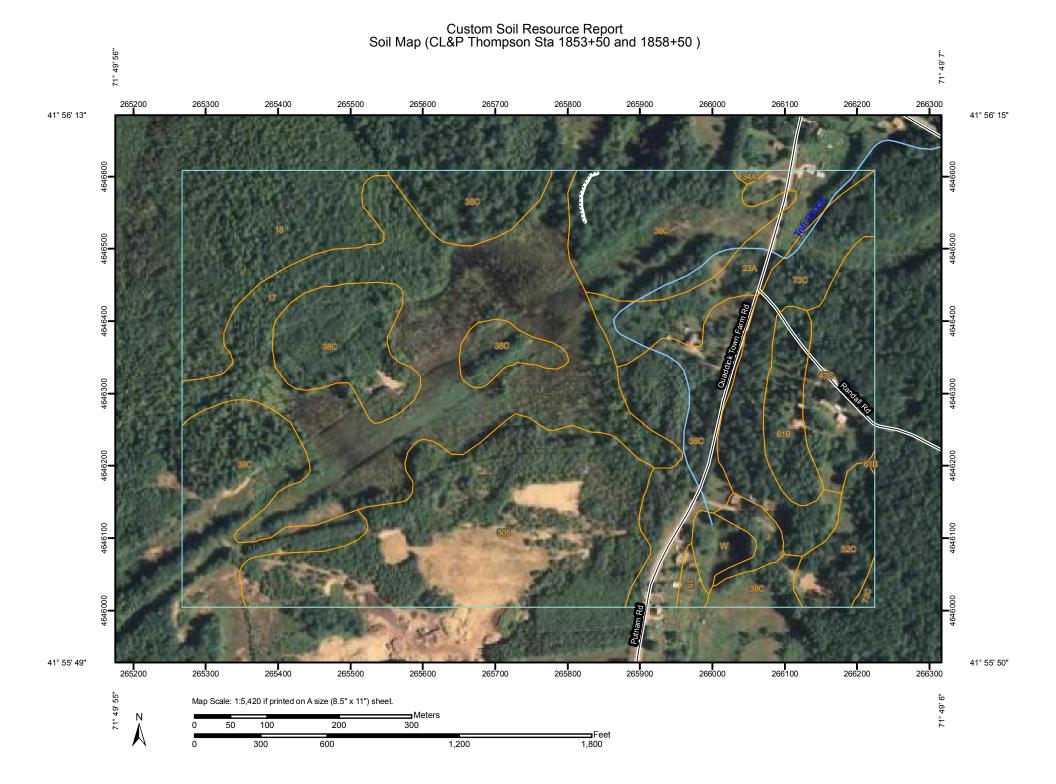
Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soillandscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.


While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND			MAP INFORMATION		
Area of Interest (AOI)		a	Very Stony Spot	Map Scale: 1:5,420 if printed on A size (8.5" × 11") sheet.		
	Area of Interest (AOI)		Wet Spot			
Soils			Other	The soil surveys that comprise your AOI were mapped at 1:12,000.		
	Soil Map Units		Line Features	Warning: Soil Map may not be valid at this scale.		
•	Point Features	\sim	Gully	than may may not be take at the board.		
•	Blowout	1.0.0	Short Steep Slope	Enlargement of maps beyond the scale of mapping can cause		
\boxtimes	Borrow Pit	11	Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting		
*	Clay Spot	Political F	eatures	soils that could have been shown at a more detailed scale.		
•	Closed Depression	•	Cities			
×	Gravel Pit	Water Fea	itures	Please rely on the bar scale on each map sheet for accurate map measurements.		
~	Gravelly Spot	\sim	Streams and Canals	incudicinento.		
۵	Landfill	Transport		Source of Map: Natural Resources Conservation Service		
٨	Lava Flow	+++	Rails	Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83		
علد	Marsh or swamp	~	Interstate Highways			
*	Mine or Quarry	\sim	US Routes	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.		
0	Miscellaneous Water	~~	Major Roads			
۲	Perennial Water	\sim	Local Roads	Soil Survey Area: State of Connecticut		
~	Rock Outcrop			Survey Area Data: Version 10, Mar 31, 2011		
+	Saline Spot			Date(s) aerial images were photographed: 8/16/2006		
	Sandy Spot			The orthophote or other have man on which the soil lines were		
=	Severely Eroded Spot		The orthophoto or other base map on which the soil compiled and digitized probably differs from the bac			
\$	Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		
3	Slide or Slip			or map unit boundaries may be evident.		
ø	Sodic Spot					
	Spoil Area					
õ	Stony Spot					
0	- /					

Map Unit Legend (CL&P Thompson Sta 1853+50 and 1858+50)

State of Connecticut (CT600)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
3	Ridgebury, Leicester, and Whitman soils, extremely stony	1.3	0.9%			
15	Scarboro muck	0.6	0.4%			
17	Timakwa and Natchaug soils	32.0	22.4%			
18	Catden and Freetown soils	11.1	7.8%			
23A	Sudbury sandy loam, 0 to 5 percent slopes	6.4	4.5%			
34A	Merrimac sandy loam, 0 to 3 percent slopes	0.1	0.1%			
38C	Hinckley gravelly sandy loam, 3 to 15 percent slopes	43.4	30.4%			
47C	Woodbridge fine sandy loam, 2 to 15 percent slopes, extremely stony	6.5	4.6%			
52C	Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony	3.3	2.3%			
61B	Canton and Charlton soils, 3 to 8 percent slopes, very stony	3.6	2.5%			
73C	Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky	8.7	6.1%			
305	Udorthents-Pits complex, gravelly	24.3	17.0%			
W	Water	1.5	1.0%			
Totals for Area of Interes	st	142.9	100.0%			

Map Unit Descriptions (CL&P Thompson Sta 1853+50 and 1858+50)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be

made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

State of Connecticut

3—Ridgebury, Leicester, and Whitman soils, extremely stony

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 37 to 56 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Ridgebury and similar soils: 40 percent *Leicester and similar soils:* 35 percent *Whitman and similar soils:* 15 percent *Minor components:* 10 percent

Description of Ridgebury

Setting

Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave Parent material: Coarse-loamy lodgment till derived from granite and/or schist and/ or gneiss

Properties and qualities

Slope: 0 to 5 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 20 to 30 inches to dense material
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.6 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 5 inches: Fine sandy loam 5 to 14 inches: Fine sandy loam 14 to 21 inches: Fine sandy loam 21 to 60 inches: Sandy loam

Description of Leicester

Setting

Landform: Depressions, drainageways Down-slope shape: Linear Across-slope shape: Concave Parent material: Coarse-loamy melt-out till derived from granite and/or schist and/or gneiss

Properties and qualities

Slope: 0 to 5 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 6.9 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 1 inches: Moderately decomposed plant material
1 to 7 inches: Fine sandy loam
7 to 10 inches: Fine sandy loam
10 to 18 inches: Fine sandy loam
18 to 24 inches: Fine sandy loam
24 to 43 inches: Gravelly fine sandy loam
43 to 65 inches: Gravelly fine sandy loam

Description of Whitman

Setting

Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave Parent material: Coarse-loamy lodgment till derived from granite and/or schist and/ or gneiss

Properties and qualities

Slope: 0 to 2 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 12 to 20 inches to dense material
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: Occasional
Available water capacity: Very low (about 1.9 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 1 inches: Slightly decomposed plant material

1 to 9 inches: Fine sandy loam

9 to 16 inches: Fine sandy loam

16 to 22 inches: Fine sandy loam

22 to 60 inches: Fine sandy loam

Minor Components

Sutton

Percent of map unit: 2 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Linear

Woodbridge

Percent of map unit: 2 percent Landform: Drumlins, hills Down-slope shape: Concave Across-slope shape: Linear

Unnamed, frequently flooded Percent of map unit: 2 percent Landform: Drainageways

Unnamed, steep slopes Percent of map unit: 2 percent

Unnamed, silt loam surface Percent of map unit: 1 percent

Unnamed, nonstony Percent of map unit: 1 percent

15—Scarboro muck

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 56 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Scarboro and similar soils: 80 percent Minor components: 20 percent

Description of Scarboro

Setting

Landform: Depressions, drainageways, terraces Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy and gravelly glaciofluvial deposits derived from granite and/ or schist and/or gneiss

Properties and qualities

Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Drainage class: Very poorly drained Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr) Depth to water table: About 0 to 6 inches Frequency of flooding: None Frequency of ponding: Occasional Available water capacity: Low (about 4.2 inches)

Interpretive groups

Land capability (nonirrigated): 5w

Typical profile

0 to 12 inches: Muck 12 to 17 inches: Loamy sand 17 to 31 inches: Stratified sand to loamy fine sand 31 to 72 inches: Stratified very gravelly coarse sand to loamy fine sand

Minor Components

Walpole

Percent of map unit: 3 percent Landform: Depressions on terraces, drainageways on terraces Down-slope shape: Concave Across-slope shape: Concave

Raypol

Percent of map unit: 3 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave

Natchaug

Percent of map unit: 3 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Catden

Percent of map unit: 3 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Windsor

Percent of map unit: 2 percent Landform: Kames, outwash plains, terraces Down-slope shape: Convex Across-slope shape: Convex

Sudbury

Percent of map unit: 2 percent Landform: Outwash plains, terraces Down-slope shape: Concave Across-slope shape: Linear

Timakwa

Percent of map unit: 2 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Unnamed, silt loam surface Percent of map unit: 1 percent

Unnamed, sandy loam surface Percent of map unit: 1 percent

17—Timakwa and Natchaug soils

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 56 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Timakwa and similar soils: 45 percent *Natchaug and similar soils:* 40 percent *Minor components:* 15 percent

Description of Timakwa

Setting

Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Parent material: Woody organic material over sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (0.57 to 99.62 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water capacity: Very high (about 16.2 inches)

Interpretive groups

Land capability (nonirrigated): 5w

Typical profile

0 to 10 inches: Muck 10 to 21 inches: Muck 21 to 24 inches: Muck
24 to 37 inches: Muck
37 to 47 inches: Very gravelly loamy coarse sand
47 to 60 inches: Gravelly loamy very fine sand

Description of Natchaug

Setting

Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Parent material: Woody organic material over loamy alluvium and/or loamy glaciofluvial deposits and/or loamy till

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water capacity: Very high (about 13.6 inches)

Interpretive groups

Land capability (nonirrigated): 5w

Typical profile

0 to 2 inches: Peat 2 to 4 inches: Peat 4 to 6 inches: Muck 6 to 11 inches: Muck 11 to 18 inches: Muck 18 to 24 inches: Muck 24 to 33 inches: Fine sandy loam 33 to 36 inches: Fine sandy loam 36 to 80 inches: Loam

Minor Components

Catden

Percent of map unit: 3 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Maybid

Percent of map unit: 3 percent Landform: Depressions, drainageways, terraces Down-slope shape: Concave Across-slope shape: Concave

Saco

Percent of map unit: 3 percent Landform: Flood plains Down-slope shape: Concave Across-slope shape: Concave

Whitman

Percent of map unit: 2 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave

Menlo

Percent of map unit: 2 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave

Scarboro

Percent of map unit: 2 percent Landform: Depressions, drainageways, terraces Down-slope shape: Concave Across-slope shape: Concave

18—Catden and Freetown soils

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 56 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Catden and similar soils: 40 percent *Freetown and similar soils:* 40 percent *Minor components:* 20 percent

Description of Catden

Setting

Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Parent material: Woody organic material

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water capacity: Very high (about 23.9 inches)

Interpretive groups

Land capability (nonirrigated): 5w

Typical profile

0 to 2 inches: Muck 2 to 18 inches: Muck 18 to 47 inches: Muck 47 to 49 inches: Muck 49 to 61 inches: Muck

Description of Freetown

Setting

Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Parent material: Woody organic material

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water capacity: Very high (about 23.9 inches)

Interpretive groups

Land capability (nonirrigated): 5w

Typical profile

0 to 4 inches: Peat 4 to 10 inches: Peat 10 to 22 inches: Muck 22 to 35 inches: Muck 35 to 41 inches: Muck 41 to 55 inches: Muck 55 to 71 inches: Muck 71 to 91 inches: Muck

Minor Components

Timakwa

Percent of map unit: 5 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Natchaug

Percent of map unit: 5 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Whitman

Percent of map unit: 3 percent

Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave

Scarboro

Percent of map unit: 2 percent Landform: Depressions, drainageways, terraces Down-slope shape: Concave Across-slope shape: Concave

Maybid

Percent of map unit: 2 percent Landform: Depressions, drainageways, terraces Down-slope shape: Concave Across-slope shape: Concave

Saco

Percent of map unit: 2 percent Landform: Flood plains Down-slope shape: Concave Across-slope shape: Concave

Menlo

Percent of map unit: 1 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave

23A—Sudbury sandy loam, 0 to 5 percent slopes

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 54 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Sudbury and similar soils: 80 percent Minor components: 20 percent

Description of Sudbury

Setting

Landform: Outwash plains, terraces Down-slope shape: Concave Across-slope shape: Linear Parent material: Sandy and gravelly glaciofluvial deposits derived from granite and/ or schist and/or gneiss

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr) Depth to water table: About 18 to 36 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 4.2 inches)

Interpretive groups

Land capability (nonirrigated): 2w

Typical profile

0 to 1 inches: Moderately decomposed plant material
1 to 5 inches: Sandy loam
5 to 17 inches: Gravelly sandy loam
17 to 25 inches: Sandy loam
25 to 60 inches: Stratified gravel to sand

Minor Components

Merrimac

Percent of map unit: 5 percent Landform: Kames, outwash plains, terraces Down-slope shape: Linear Across-slope shape: Linear

Agawam

Percent of map unit: 5 percent Landform: Outwash plains, terraces Down-slope shape: Linear Across-slope shape: Linear

Ninigret

Percent of map unit: 5 percent Landform: Outwash plains, terraces Down-slope shape: Linear Across-slope shape: Concave

Tisbury

Percent of map unit: 3 percent Landform: Outwash plains, terraces Down-slope shape: Concave Across-slope shape: Linear

Walpole

Percent of map unit: 2 percent Landform: Depressions on terraces, drainageways on terraces Down-slope shape: Concave Across-slope shape: Concave

34A—Merrimac sandy loam, 0 to 3 percent slopes

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 54 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Merrimac and similar soils: 80 percent *Minor components:* 20 percent

Description of Merrimac

Setting

Landform: Kames, outwash plains, terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy and gravelly glaciofluvial deposits derived from granite and/ or schist and/or gneiss

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 4.0 inches)

Interpretive groups

Land capability (nonirrigated): 1

Typical profile

0 to 9 inches: Sandy loam 9 to 16 inches: Sandy loam 16 to 24 inches: Gravelly sandy loam 24 to 60 inches: Stratified very gravelly coarse sand to gravelly sand

Minor Components

Windsor

Percent of map unit: 5 percent Landform: Kames, outwash plains, terraces Down-slope shape: Convex Across-slope shape: Convex

Hinckley

Percent of map unit: 3 percent *Landform:* Eskers, kames, outwash plains, terraces *Down-slope shape:* Convex *Across-slope shape:* Convex

Agawam

Percent of map unit: 3 percent Landform: Outwash plains, terraces Down-slope shape: Linear Across-slope shape: Linear

Ninigret

Percent of map unit: 2 percent Landform: Outwash plains, terraces Down-slope shape: Linear Across-slope shape: Concave

Sudbury

Percent of map unit: 2 percent Landform: Outwash plains, terraces Down-slope shape: Concave Across-slope shape: Linear

Walpole

Percent of map unit: 2 percent Landform: Depressions on terraces, drainageways on terraces Down-slope shape: Concave Across-slope shape: Concave

Scarboro

Percent of map unit: 2 percent Landform: Depressions, drainageways, terraces Down-slope shape: Concave Across-slope shape: Concave

Unnamed, red parent material

Percent of map unit: 1 percent

38C—Hinckley gravelly sandy loam, 3 to 15 percent slopes

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 54 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Hinckley and similar soils: 80 percent *Minor components:* 20 percent

Description of Hinckley

Setting

Landform: Eskers, kames, outwash plains, terraces

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Sandy and gravelly glaciofluvial deposits derived from granite and/ or schist and/or gneiss

Properties and qualities

Slope: 3 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.3 inches)

Interpretive groups

Land capability (nonirrigated): 4e

Typical profile

0 to 8 inches: Gravelly sandy loam 8 to 20 inches: Very gravelly loamy sand 20 to 27 inches: Very gravelly sand 27 to 42 inches: Stratified cobbly coarse sand to extremely gravelly sand 42 to 60 inches: Stratified cobbly coarse sand to extremely gravelly sand

Minor Components

Windsor

Percent of map unit: 5 percent Landform: Kames, outwash plains, terraces Down-slope shape: Convex Across-slope shape: Convex

Merrimac

Percent of map unit: 5 percent Landform: Kames, outwash plains, terraces Down-slope shape: Linear Across-slope shape: Linear

Agawam

Percent of map unit: 3 percent Landform: Outwash plains, terraces Down-slope shape: Linear Across-slope shape: Linear

Sudbury

Percent of map unit: 2 percent Landform: Outwash plains, terraces Down-slope shape: Concave Across-slope shape: Linear

Walpole

Percent of map unit: 1 percent Landform: Depressions on terraces, drainageways on terraces Down-slope shape: Concave Across-slope shape: Concave

Scarboro

Percent of map unit: 1 percent Landform: Depressions, drainageways, terraces Down-slope shape: Concave Across-slope shape: Concave

Unnamed, red parent material Percent of map unit: 1 percent

Unnamed, gravelly silt loam solum Percent of map unit: 1 percent

Unnamed, gravelly loamy sand surface Percent of map unit: 1 percent

47C—Woodbridge fine sandy loam, 2 to 15 percent slopes, extremely stony

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 56 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Woodbridge and similar soils: 80 percent *Minor components:* 20 percent

Description of Woodbridge

Setting

Landform: Drumlins, hills Down-slope shape: Concave Across-slope shape: Linear Parent material: Coarse-loamy lodgment till derived from granite and/or schist and/ or gneiss

Properties and qualities

Slope: 2 to 15 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 20 to 40 inches to dense material
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.9 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 7 inches: Fine sandy loam 7 to 18 inches: Fine sandy loam 18 to 26 inches: Fine sandy loam 26 to 30 inches: Fine sandy loam 30 to 43 inches: Gravelly fine sandy loam 43 to 65 inches: Gravelly fine sandy loam

Minor Components

Paxton

Percent of map unit: 5 percent Landform: Drumlins, hills, till plains Down-slope shape: Linear Across-slope shape: Convex

Montauk

Percent of map unit: 3 percent Landform: Drumlins, hills Down-slope shape: Convex Across-slope shape: Linear

Ridgebury

Percent of map unit: 3 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave

Sutton

Percent of map unit: 2 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Linear

Leicester

Percent of map unit: 2 percent Landform: Depressions, drainageways Down-slope shape: Linear Across-slope shape: Concave

Unnamed, loamy substratum Percent of map unit: 2 percent

Whitman

Percent of map unit: 1 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave

Stockbridge

Percent of map unit: 1 percent Landform: Hills Down-slope shape: Concave Across-slope shape: Linear

Georgia

Percent of map unit: 1 percent Landform: Hills *Down-slope shape:* Linear *Across-slope shape:* Linear

52C—Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 56 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Sutton and similar soils: 80 percent *Minor components:* 20 percent

Description of Sutton

Setting

Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Linear Parent material: Coarse-loamy melt-out till derived from granite and/or schist and/or gneiss

Properties and qualities

Slope: 2 to 15 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 6.9 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 6 inches: Fine sandy loam 6 to 12 inches: Fine sandy loam 12 to 24 inches: Fine sandy loam 24 to 28 inches: Fine sandy loam 28 to 36 inches: Gravelly fine sandy loam 36 to 65 inches: Gravelly sandy loam

Minor Components

Charlton

Percent of map unit: 5 percent

Landform: Hills Down-slope shape: Linear Across-slope shape: Linear

Canton

Percent of map unit: 4 percent Landform: Hills Down-slope shape: Linear Across-slope shape: Convex

Paxton

Percent of map unit: 3 percent Landform: Drumlins, hills, till plains Down-slope shape: Linear Across-slope shape: Convex

Leicester

Percent of map unit: 3 percent Landform: Depressions, drainageways Down-slope shape: Linear Across-slope shape: Concave

Woodbridge

Percent of map unit: 2 percent Landform: Drumlins, hills Down-slope shape: Concave Across-slope shape: Linear

Rainbow

Percent of map unit: 2 percent Landform: Drumlins, hills Down-slope shape: Linear Across-slope shape: Concave

Narragansett

Percent of map unit: 1 percent Landform: Hills, till plains Down-slope shape: Linear Across-slope shape: Convex

61B—Canton and Charlton soils, 3 to 8 percent slopes, very stony

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 54 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Canton and similar soils: 45 percent *Charlton and similar soils:* 35 percent *Minor components:* 20 percent

Description of Canton

Setting

Landform: Hills Down-slope shape: Linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss

Properties and qualities

Slope: 3 to 8 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 5.6 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 1 inches: Moderately decomposed plant material 1 to 3 inches: Gravelly fine sandy loam 3 to 15 inches: Gravelly loam 15 to 24 inches: Gravelly loam 24 to 30 inches: Gravelly loam 30 to 60 inches: Very gravelly loamy sand

Description of Charlton

Setting

Landform: Hills Down-slope shape: Linear Across-slope shape: Linear Parent material: Coarse-loamy melt-out till derived from granite and/or schist and/or gneiss

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 5.9 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 4 inches: Fine sandy loam

4 to 7 inches: Fine sandy loam *7 to 19 inches:* Fine sandy loam *19 to 27 inches:* Gravelly fine sandy loam *27 to 65 inches:* Gravelly fine sandy loam

Minor Components

Sutton

Percent of map unit: 5 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Linear

Leicester

Percent of map unit: 5 percent Landform: Depressions, drainageways Down-slope shape: Linear Across-slope shape: Concave

Chatfield

Percent of map unit: 5 percent Landform: Hills, ridges Down-slope shape: Convex Across-slope shape: Linear

Hollis

Percent of map unit: 5 percent Landform: Hills, ridges Down-slope shape: Convex Across-slope shape: Convex

73C—Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky

Map Unit Setting

Elevation: 0 to 1,200 feet *Mean annual precipitation:* 43 to 56 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 140 to 185 days

Map Unit Composition

Charlton and similar soils: 45 percent *Chatfield and similar soils:* 30 percent *Minor components:* 25 percent

Description of Charlton

Setting

Landform: Hills Down-slope shape: Linear Across-slope shape: Linear Parent material: Coarse-loamy melt-out till derived from granite and/or schist and/or gneiss

Properties and qualities

Slope: 3 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 5.9 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 4 inches: Fine sandy loam 4 to 7 inches: Fine sandy loam 7 to 19 inches: Fine sandy loam 19 to 27 inches: Gravelly fine sandy loam 27 to 65 inches: Gravelly fine sandy loam

Description of Chatfield

Setting

Landform: Hills, ridges Down-slope shape: Convex Across-slope shape: Linear Parent material: Coarse-loamy melt-out till derived from granite and/or schist and/or gneiss

Properties and qualities

Slope: 3 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.3 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 1 inches: Highly decomposed plant material 1 to 6 inches: Gravelly fine sandy loam 6 to 15 inches: Gravelly fine sandy loam

15 to 29 inches: Gravelly fine sandy loam

29 to 80 inches: Unweathered bedrock

Minor Components

Rock outcrop

Percent of map unit: 6 percent

Sutton

Percent of map unit: 5 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Linear

Leicester

Percent of map unit: 5 percent Landform: Depressions, drainageways Down-slope shape: Linear Across-slope shape: Concave

Hollis

Percent of map unit: 5 percent Landform: Hills, ridges Down-slope shape: Convex Across-slope shape: Convex

Unnamed, red parent material Percent of map unit: 2 percent

Unnamed, sandy subsoil Percent of map unit: 2 percent

305—Udorthents-Pits complex, gravelly

Map Unit Setting

Elevation: 0 to 2,000 feet *Mean annual precipitation:* 43 to 54 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 120 to 185 days

Map Unit Composition

Udorthents and similar soils: 65 percent Pits: 25 percent Minor components: 10 percent

Description of Udorthents

Setting

Down-slope shape: Convex Across-slope shape: Linear Parent material: Gravelly outwash

Properties and qualities Slope: 0 to 35 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 1.98 in/hr) Depth to water table: About 24 to 54 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Moderate (about 6.8 inches)

Interpretive groups

Land capability (nonirrigated): 4e

Typical profile

0 to 5 inches: Loam 5 to 21 inches: Gravelly loam 21 to 80 inches: Very gravelly sandy loam

Description of Pits

Interpretive groups Land capability (nonirrigated): 8

Typical profile

0 to 65 inches: Very gravelly sand

Minor Components

Hinckley

Percent of map unit: 2 percent Landform: Eskers, kames, outwash plains, terraces Down-slope shape: Convex Across-slope shape: Convex

Windsor

Percent of map unit: 2 percent Landform: Kames, outwash plains, terraces Down-slope shape: Convex Across-slope shape: Convex

Merrimac

Percent of map unit: 2 percent Landform: Kames, outwash plains, terraces Down-slope shape: Linear Across-slope shape: Linear

Gloucester

Percent of map unit: 2 percent Landform: Hills Down-slope shape: Convex Across-slope shape: Convex

Ninigret

Percent of map unit: 1 percent Landform: Outwash plains, terraces Down-slope shape: Linear Across-slope shape: Concave

Sudbury

Percent of map unit: 1 percent

Landform: Outwash plains, terraces Down-slope shape: Concave Across-slope shape: Linear

W—Water

Map Unit Composition Water: 100 percent

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://soils.usda.gov/

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti.nrcs.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://soils.usda.gov/ United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.