ATTACHMENT 4

February 6, 2012

Mr. Dan Shriver Florida Tower Partners 1001 3rd Avenue West, Suite 420 Bradenton, FL 34205

Subject: North Atlantic Towers- Woodstock CT1182 – Generator Performance Route 198, Woodstock, CT 06282 Proposed Telecommunications Tower Facility

Dear Mr. Shriver:

At the request of the Connecticut Siting Council (*CSC*), Infinigy Engineering, PLLC (*Infinigy*) is providing data regarding the performance of the proposed generator at the above referenced site.

The specified generator is a Generac, 50 KW, diesel powered in a level 2A enclosure, and is EPA emissions compliant as a Tier III.

1. In regard to whether the generator needs an Air permit, we offer the following:

As per RCSA (Regulations of Connecticut State Agencies) Section 22a-174-42 (a), the proposed generator installation is designated as an "emergency generator." As such, under RCSA Section 22a-174-42 (b) (3) (D), the proposed generator is exempt from the new source review general permitting requirement. Moreover, air permitting is not required because, under RCSA Section 22a-174-42 (b) (1) (D), use of the generator is less than (300) hours per 12-month period; the use of diesel fuel that does exceed the sulfur content of federal motor vehicle diesel fuel; and, an annual potential emissions discharge of less than 15 tons.

As such, North Atlantic Towers is only subject to the compliance plan of RCSA Section 22a-174-42 (h), which includes record keeping, maintenance and reporting requirements.

- 2. In regard to the run time of the generator, we offer the following:
 - a. The tank capacity is 210 gallons.
 - b. The fuel consumption rate at a 100% load is 4.15 gallons/minute.
 - c. The generator has a remotely monitored "low-fuel level alarm".
 - d. Assume the following scenario:
 - i. Weekly exercise of (15) minutes at a 25% percent load (exercise is never done with a load on the generator. Rather, the exercise is simply to run the engine and assure no mechanical problems.) Load at 25% is 1.52 gallons per hour. Running the exercise for (6) months without refueling consumes:
 - (4 exercises/month x 6 month x 15 minutes) = 6 hours
 - (6 hours x 1.52 gph) = 9.12 gallons of diesel
 - ii. Month 7 experiences a commercial power outage. The generator commences operation at 100% load and can run without re-fueling for:
 - (210 9.12 gallons) = 200 gallons remaining
 - (200 gallons)/4.15 gph = 48 hours or 2 days.

The backup generator is designed to run for two (2) days without re-fueling. During those (2) days, the fuel level is remotely monitored. In an emergency situation, AT&T has local re-fueling resources under contract. Further, North Atlantic Tower is contractually obligated to ensure access is available to the site, whether that involves snowplowing or continual road maintenance.

Should you have any questions, comments or concerns regarding this issue, please feel free to contact me at 518-690-0790 at your convenience.

Sincerely,

JSMM Engineering

Infinigy Engineering and Surveying, PLLC John S. Stevens, P.E. Principal

February 6, 2012

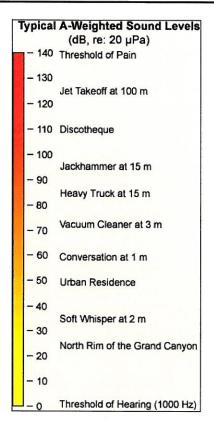
Mr. Dan Shriver Florida Tower Partners 1001 3rd Avenue West, Suite 420 Bradenton, FL 34205

Subject: North Atlantic Towers- Woodstock CT1182 – Noise Study Route 198, Woodstock, CT 06282 Proposed Telecommunications Tower Facility

Dear Mr. Shriver:

At the request of the Connecticut Siting Council (CSC), Infinigy Engineering, PLLC (Infinigy) has completed a noise study to determine the noise generated by the proposed facility. The noise generating devices are the emergency backup generator and the HVAC units. The generator operates approximately fifteen minutes per week and then continually during emergency situations where commercial power is interrupted. The HVAC units operate during the summer hours when the interior building thermostat demands cooling.

The proposed facility is located within one hundred fifty feet (150 feet) of the eastern and southern property lines. It should be noted that the property line to the south is lands of Farley through which the proposed access and utility runs.


The closest residence is approximately one thousand eight hundred (1800) feet to the east. The distance consists of approximately one thousand one hundred (1100) feet of heavy woods and seven hundred (700) feet of field.

The specified generator is a Generac, 50 KW, diesel powered in a level 2A enclosure. Sound levels at a distance of twenty three (23) feet equals seventy one (71) dB. The generator produces comparatively more noise than the HVAC units so in calculating worst case sound levels, only the generator is considered.

Sound pressure level (L) is measured in decibels (dB) and is what is heard by the human ear. The following OSHA table compares known, everyday objects and is a good comparison to varying sound levels.

infinig gy

New York Office 11 Herbert Drive Latham, NY 12110 Phone: (518) 690-0790 Fax: (518) 690-0793 www.infinigy.com

Sound level (L) decreases approximately six (-6) db for every doubling of distance. For example, at a distance of (2 x 23 feet = 46 feet), the dB level of the generator would decrease to (71 - 6 = 65 dB). This does not consider any additional sound attenuation such as the heavy woods surrounding the proposed site. The actual engineering calculation for sound level versus distance is:

 $L2 = L1 - 20\log(R2/R1)$

L2 = Sound level at location 2 L1 = Sound level at original location R2 = distance from generator at location 2 R1 = distance from generator at original location.

Per the engineering guidelines stated above, the following worst case decibel levels are calculated as follows. Again, it should be noted that no consideration was given to the heavy woods intervening between the proposed site and the calculated points of reference:

150-feet south and east to the closest property lines:	54.71 dB
1800-feet east to the closest residence:	33.13 dB

Infinigy acknowledges the generator noise will be audible from both the property lines and closest residence. But the noise levels will only be in emergency situations and not considered significant when compared to existing ambient noise levels.

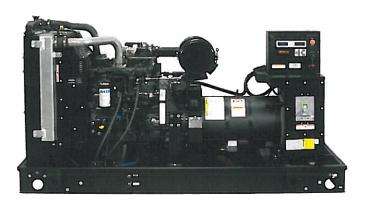
Should you have any questions, comments or concerns regarding this issue, please feel free to contact me at 518-690-0790 at your convenience.

Sincerely,

John live

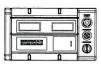
Infinigy Engineering and Surveying, PLLC John S. Stevens, P.E. Principal

1 of 5


Industrial Diesel Generator Set

EPA Emissions Certification: Tier III

CUSTOM MODEL


Standby Power Rating 50KW 60 Hz

features

Genera	tor Set		
٠	PROTOTYPE & TORSIONALLY TESTED	•	PROVIDES A PRO
٠	UL2200 TESTED		ENSURES A QUAL
٠	RHINOCOAT PAINT SYSTEM	•	IMPROVES RESIST
•	SOUND LEVEL 2 ENCLOSURE	•	71dbA @ 7 METE
Engine			
•	EPA TIER CERTIFIED	۲	ENVIRONMENTA
•	INDUSTRIAL TESTED, GENERAC APPROVED	•	ENSURES INDUST
•	POWER-MATCHED OUTPUT	•	ENGINEERED FOR
•	INDUSTRIAL GRADE	•	IMPROVES LONG
Alterna	itor		
•	TWO-THIRDS PITCH	•	ELIMINATES HAR
•	LAYER WOUND ROTOR & STATOR	Þ	IMPROVES COOLI
٠	CLASS H MATERIALS	►	HEAT TOLERANT
•	DIGITAL 3-PHASE VOLTAGE CONTROL	Þ	FAST AND ACCUR
<u>Contro</u>	l <u>s</u>		
	ENCAPSULATED BOARD W/ SEALED HARNESS	•	EASY, AFFORDAB
•	4-20mA VOLTAGE-TO-CURRENT SENSORS	•	NOISE RESISTANT
	SURFACE-MOUNT TECHNOLOGY	•	PROVIDES VIBRAT
•	ADVANCED DIAGNOSTICS & COMMUNICATIONS	•	HARDENED RELIA

benefits

	•	PROVIDES A PROVEN UNIT
	Þ	ENSURES A QUALITY PRODUCT
	Þ	IMPROVES RESISTANCE TO ELEMENTS
	•	71dbA @ 7 METERS (23FT)
	•	ENVIRONMENTALLY FRIENDLY
	•	ENSURES INDUSTRIAL STANDARDS
	•	ENGINEERED FOR PERFORMANCE
	•	IMPROVES LONGEVITY AND RELIABILITY
	•	ELIMINATES HARMFUL 3RD HARMONIC
		IMPROVES COOLING
	•	HEAT TOLERANT DESIGN
	•	FAST AND ACCURATE RESPONSE
	•	EASY, AFFORDABLE REPLACEMENT
	•	NOISE RESISTANT 24/7 MONITORING
	•	PROVIDES VIBRATION RESISTANCE
	•	HARDENED RELIABILITY
~		

primary codes and standards

MELLA

ISO

application and engineering data

SD050

ENGINE SPECIFICATIONS

<u>General</u> Make	lveco	/ FPT
EPA Emissions Compliance	Tier III	
EPA Emissions Reference	See Emission	ns Data Sheet
Cylinder #	4	
Туре	Diesel	
Displacement - L (cu. in.)	4.5	(274)
Bore - mm (in.)	105	(4.1)
Stroke - mm (in.)	132	(5.2)
Compression Ratio	17	.5:1
Intake Air Method	Turbocharged	
Cylinder Head Type	2 Valve	
Piston Type	Aluminum	
Crankshaft Type	Forged Steel	
Engine Block Type	Cast Iron /	Wet Sleeve

Engine Governing	
Governor	Electronic Isochronous
Frequency Regulation (Steady State)	+/- 0.25%

Lubrication System

Oil Pump Type	Gear		
Oil Filter Type	Full Flow		
Crankcase Capacity - L (gal)(qts)	13.6 (3.6) (14.4)		

Cooling System	F
Cooling System Type	Closed
Water Pump	Belt Driven Centrifugal
Fan Type	Pusher
Fan Blade Number	2538 (10)
Fan Diameter (in.)	26
Coolant Heater Wattage	1500
Coolant Heater Standard Voltage	120

Fuel System

Fuel Type	Ultra Low Sulfur Diesel Fue	
Fuel Specifications	ASTM	
Fuel Filtering (microns)	5	
Fuel Inject Pump Make	Standyne	
Fuel Pump Type	Engine Driven Gear	
Injector Type	Mechanical	
Engine Type	Direct Injection	
Fuel Supply Line - mm (in.)	1/4 inch Npt	
Fuel Return Line - mm (in.)	1/4 inch Npt	

Engine Electrical System

System Voltage	12VDC
Battery Charging Alternator	90 Amp
Battery Size (at 0 oC)	Optima Redtop
Battery Group	34
Battery Voltage	12VC
Ground Polarity	Negative

ALTERNATOR SPECIFICATIONS

Standard Model	390
Poles	4
Field Type	Revolving
Insulation Class - Rotor	Н
Insulation Class - Stator	н
Total Harmonic Distortion	< 3.5%
Telephone Interference Factor (TIF)	< 50
Standard Excitation	PMG
Bearings	Single Sealed Cartridge
Coupling	Direct, Flexible Disc
Load Capacity - Standby	100%
Load Capacity - Prime	100%
Prototype Short Circuit Test	Y

CODES AND STANDARDS COMPLIANCE (WHERE APPLICABLE)

NFPA 99 NFPA 110 ISO 8528-5 ISO 1708A.5 ISO 3046 BS5514 SAE J1349 DIN6271 IEEE C62.41 TESTING NEMA ICS 1

Rating Definitions:

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability. (Max. load factor = 70%) Prime - Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. (Max. load factor = 80%) A 10% overload capacity is available for 1 out of every 12 hours.

Voltage Regulator Type	Digital
Number of Sensed Phases	All
Regulation Accuracy (Steady State)	+/- 0.25%

50 kW Diesel

Consult Factory

SD050

operating data (60Hz)

POWER RATINGS (kW)

Single-Phase 120/240VAC @1.0pf Three-Phase 120/208VAC @0.8pf Three-Phase 120/240VAC @0.8pf Three-Phase 277/480VAC @0.8pf Three-Phase 346/600VAC @0.8pf

STARTING CAPABILITIES (sKVA)

	1					:	sKVA vs. Vo	oltage Dip					
				480	OVAC					208/2	40VAC		
Alternator*	<u>kW</u>	10%	15%	20%	25%	30%	35%	10%	15%	20%	25%	30%	35%
Standard	50	-	-	-	-		191 Sta-191 St	26	39	52	65	77	90
Upsize 1		-		-		-	12/21-22	-	-	-		-	-
Upsize 2		-	-	-	-	•	1773) - CAR	-	-	-	-	-	-
L		rise. Upsize 2 pr		lass H insulation an or equal									
					Fuel Co	onsumptio	<u>n Rates</u>						
Fuel Pump Lift -	· in (m)	-			STAN	NDBY							
36(.9)				Percer	nt Load	gph	lph	1					
				25	5%	1.52	5.75						
				and a second sec)%	2.33	8.82						
					5%	3.08	11.65						
				10	0%	4.15	15.71						
Maximum Radia	(17.44) itor Backp			THE PRIME REPORT AND	low per M ction to Co	and a below the second second second		11143	pm (lpm) BTU/min (m3/min)	32.7(: 123 6,360	NDBY 123.8) ,000 (180.0)		
1.5" H ₂ C) Column			Max. Ope	rating Rad	liator Air T	emp	and the second	F° (C°)	122	(50)		
				Max. Ope	rating Am	bient Tem	perature		F° (C°)	122	(50)	1	
MBUSTION AIR	REQUIR	EMENTS								•		-	
						STANDBY							
	ad Dower		cfm	(m3/min)	247		(7.00)						
ntake Flow at Rate	eu rower						2	0					
ntake Flow at Rate	eu rower								-				
AUST Exhaust Outlet	Size (Oper	n Set)								STAN	NDBY		
IAUST Exhaust Outlet 3.	Size (Oper			Exhaust F	and the Property Street	A Division and an analysis and		and second and the second second	n (m3/hr)		NDBY 906.7)]	
IAUST Exhaust Outlet	Size (Oper			An International Advances	low (Rateo Backpres	A Division and an analysis and		and second and the second second	Hg (Kpa)		906.7)]	
IAUST Exhaust Outlet 3.	Size (Oper .0" ssure (Post			Maximum	Backpres	A Division and an analysis and		and second and the second second	Company of all other sales and	534(9 1.5	906.7)		
Exhaust Outlet 3. Maximum Backpres	Size (Oper .0" ssure (Post			Maximum	Backpres	sure		and second and the second second	Hg (Kpa)	534(9 1.5	906.7) (5.1)]	
Exhaust Outlet 3. Maximum Backpres 1.5'	Size (Oper .0" ssure (Post			Maximum	Backpres	sure		and second and the second second	Hg (Kpa)	534(9 1.5 (93	906.7) (5.1)]	
AUST Exhaust Outlet 3. Maximum Backpres 1.5'	Size (Oper .0" ssure (Post			Maximum Exhaust T	Backpres	sure d Output)		and second and the second second	Hg (Kpa)	534(s 1.5 93 STAN	906.7) (5.1) 30(498.8)]	
Exhaust Outlet 3. Maximum Backpres 1.5'	Size (Oper .0" ssure (Post			Maximum Exhaust T Rated Eng	n Backpres emp (Rate	sure d Output)		and second and the second second	°F (°C)	534(5 1.5 93 STAN 18	906.7) (5.1) 30(498.8) NDBY]	

STANDBY

Amps:

Amps:

Amps:

Amps:

- Amps: -NOTE: Generator output limited to 200A.

208

-

-

50

.

* CA units include aftertreatment

Altitude Deration

Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions. Please consult a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528 and DIN6271 standards.

SD050

standard features and options

4 of 5

GENERATOR SET	
Genset Vibration Isolation	Std
Factory Testing	Std
Extended warranty	Std
Padlockable Doors	Std
Steel Enclosure (Enclosed Models)	Std
O Remote Emergency Shutdown	Opt
ENGINE SYSTEM	
Oil Drain Extension	Std
Air Cleaner	Std
Industrial Exhaust Silencer (Open Sets, ship loose)	Std
Critical Exhaust Silencer (Enclosed Sets)	Std
Stainless steel flexible exhaust connection	Std
<u>Fuel System</u>	
Primary Fuel Filter with Water Separator	Std
Flexible Fuel Lines	Std
UL142 Fuel Tank, 48 Hr Runtime	Std
2 Gal Overflow Containment with Alarm	Std

Cooling System	
120VAC Coolant Heater (3-wire connection cord)	Std
50%/50% Coolant	Std
Level 1 Guarding (Open Sets)	Std
Closed Coolant Recovery System	Std
UV/Ozone resistant hoses	Std
Factory-Installed Radiator	Std
Radiator Drain Extension	Std
Fan guard	Std
Radiator duct adapter (Open Sets)	Std

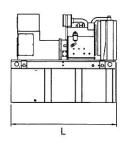
Engine Electrical System

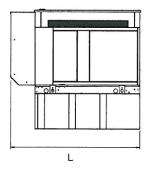
Battery charging alternator	Std
Battery cables	Std
Battery tray	Std
75W 120VAC Battery heater	Std
Solenoid activated starter motor	Std
10A UL float/equalize battery charger	Std
Weather Resistant electrical connections	Std
Duplex GFCI Convenience Outlet	Std

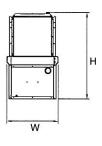
ALTERNATOR SYSTEM

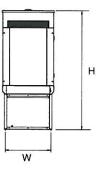
● UL2200 GENprotect [™]	Std
100% Rated 200A Main Line Circuit Breaker	Std

	Control Panel	
0	Digital H Control Panel - Dual 4x20 Display	Std
-	Programmable Crank Limiter	Std
-	7-Day Programmable Exerciser (requires H-Transfer Switch)	Std
-	Special Applications Programmable PLC	Std
-	RS-232	Std
ŏ	RS-485	Std
ŏ	All-Phase Sensing DVR	Std
-	Full System Status	Std
Õ	Utility Monitoring (Req. H-Transfer Switch)	Std
-	2-Wire Start Compatible	Std
-	Power Output (kW)	Std
-	Power Factor	Std
Ő	Reactive Power	Std
Ō	All phase AC Voltage	Std
0	All phase Currents	Std
•	Oil Pressure	Std
•	Coolant Temperature	Std
0	Coolant Level	Std
0	Low Fuel Pressure Indication	Std
0	Engine Speed	Std
0	Battery Voltage	Std
0	Frequency	Std
0	Date/Time Fault History (Event Log)	Std
0	UL2200 GENprotect™	Std
0	Low-Speed Exercise	Opt
0	Isochronous Governor Control	Std
0	-40deg C - 70deg C Operation	Std
0	Weather Resistant Electrical Connections	Std
-	Audible Alarms and Shutdowns	Std
	Not in Auto (Flashing Light)	Std
-	On/Off/Manual Switch	Std
-	E-Stop (Red Mushroom-Type)	Std
-	Remote E-Stop (Break Glass-Type, Surface Mount)	-
	Remote E-Stop (Red Mushroom-Type, Surface Mount)	•
-	Remote E-Stop (Red Mushroom-Type, Flush Mount)	
-	NFPA 110 Level I and II (Programmable)	Std
0	Remote Communication - RS232	Std

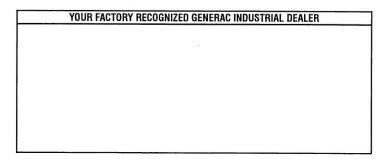

CONTROL SYSTEM


	Alarms (Programmable Tolerances, Pre-Alarms and Shutdow	wns)
0	Low Fuel	Std
0	Oil Pressure (Pre-programmed Low Pressure Shutdown)	Std
•	Coolant Temperature (Pre-programmed High Temp Shutdo	Std
•	Coolant Level (Pre-programmed Low Level Shutdown)	Std
0	Engine Speed (Pre-programmed Overspeed Shutdown)	Std
•	Voltage (Pre-programmed Overvoltage Shutdown)	Std
0	Battery Voltage	Std

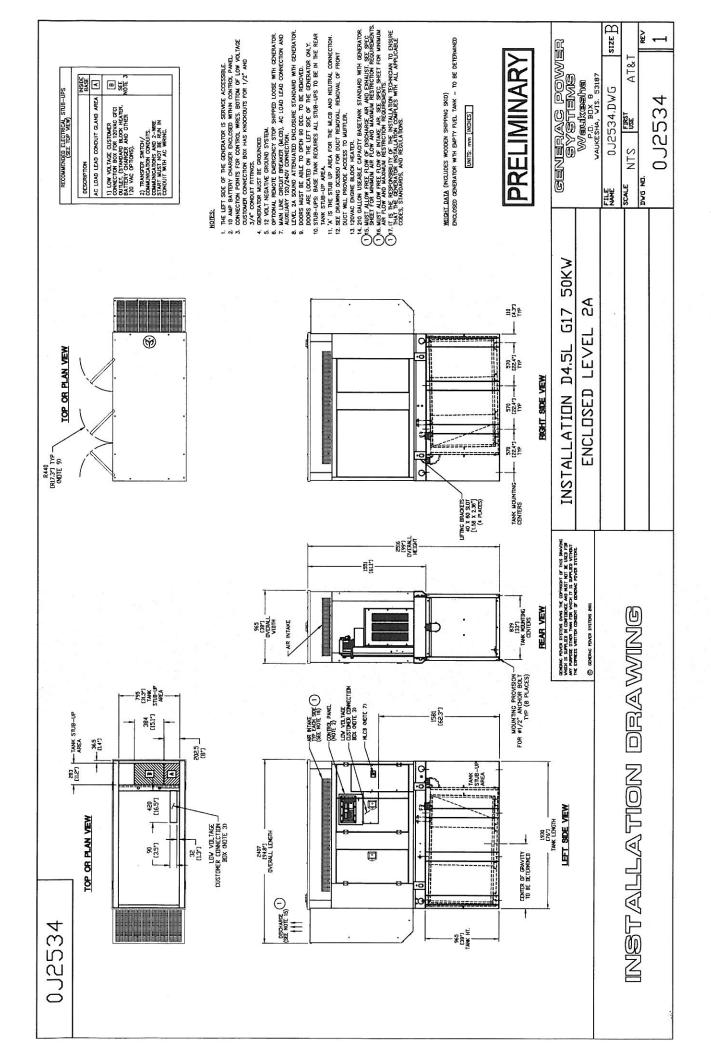

Other Options


dimensions, weights and sound levels

50 kW Diesel



	TANK	SIZE					
RUNTIME HOURS	CAPACITY (GAL)	TANK VOLUME	L	w	н	WT	dBA*
		-	-	-	-	-	
-		-	-	-	-	-	
-	-	-	-	-	17	-	E 7
-	-	-				-	84
-		-	-	-	97	•	04
48	210	210	76	38	87	3400	E AL
-			-	-	-	-	22 . 1)
-		-	-	-	-		-12.78


LEVEL 2	SOUND EN	CLOSURE (SIZE					
RUNTIM	E CAPACITY (GAL)	TANK VOLUME	L	w	н	wт	dBA*
-	-	-	-	-	-	-	DIPASS
	•	-	-	•	82	-	
-	-	•	•	-		-	
-	-	-	ц.	-	-		71
		-	-	-		-	1 11
48	210	210	94.8	38	99	3935	3.0.5
-		-	-	-	-	-	The second
-		-				-	

Required gallons based on 100% of standby rating. Weights consider steel enclosure and are without fuel in tank. Sound levels measured at 23ft (7m) and does not account for ambient site conditions.

Specification characteristics may change without notice. Dimensions and weights are for preliminary purposes only. Please consult a Generac Power Systems Industrial Dealer for detailed installation drawings

Generac Power Systems, Inc. • S45 W29290 HWY. 59, Waukesha, WI 53189 • generac.com @2010 Generac Power Systems, Inc. All rights reserved. All specifications are subject to change without notice. Bulletin 0190340SBY-A / Printed in U.S.A. 11/04/10

