

Table of C

Introduction

Preface

Section 1

Summaries

1.1 Summer Peak Capabilities and Load Forecast

- 1.2 Winter Peak Capabilities and Load Forecast
- 1.3 Summary Summer Capability by Fuel/Unit Type
- 1.4 Summary Winter Capability by Fuel/Unit Type
- 1.5 Actual and Estimated Energy and Peak Loads
- 1.6 Seasonal Peak Load Forecast Distributions

Section 2

Control Area Capability

2.1 Generator List with Existing and Expected Seasonal Claimed Capability (SCC)2.1 Endnotes2.2 Net of Imports and Exports

Section 3

Solar Forecast

3.1 Forecast of Solar Photovoltaic (PV) Resources by State

- 3.1.1 Nameplate Rating
- 3.1.2 Estimated Summer Seasonal Peak Load Reductions BTM PV
- 3.1.3 Estimated Annual Energy BTM PV

Section 4

FCM Capacity Supply Obligations

4.1 Summary of Capacity Supply Obligations (CSO)

Section 5

Forward Capacity Market Resource Capabilities

5.1 Network Resource Capability (NRC) and Capacity NetworkResource Capability (CNRC) List5.2 Summary of Demand Resource Capacity (MW) Used in SystemPlanning Studies

Contents

Section 6 Transmission Information

6.1 Transmission Project Links

Appendix A

A.1 DefinitionsA.2 Company AbbreviationsA.3 Column Abbreviations - Prime Mover (Unit Type)A.4 Column Abbreviations Energy Source (Fuel)

Appendix B

B.1 Federal Information Processing Standard (FIPS) Codes B.2 Regional System Plan (RSP) Subarea Descriptions

Appendix C

C.1 CSO and Load Graphs

Appendix D

2015-2016 through 2019-2020 Capacity Supply Obligations by Load Zone

Appendix E

List of FCA 10 Qualified and Cleared Capacity for All Resources

Appendix F

New England Geographic Transmission Map

Preface

This 2016 edition of the "Forecast Report of Capacity, Energy, Loads, and Transmission" (CELT) reflects a load forecast based upon demographic, economic, and market information available through winter 2015-16 for publication in May 2016. Accordingly, this CELT edition supersedes prior CELT publications.

This report presents the ISO-NE Reliability Coordinator area 2016 - 2025 forecast of:

- Electric energy demand and peak load;
- Existing ISO-NE Control Area electrical capacity and proposed changes;
- Scheduled and proposed transmission changes; with listings of existing and summaries of proposed generation projects.

Generating asset details are represented in Section 2.1 of this report for three different periods: a snapshot of January 1, 2016, a snapshot of the winter peak on February 15, 2016, and a projection for the summer of 2016.

This report represents the efforts of Market Participants' staffs, jointly with ISO-NE, under the review of the Load Forecasting and Reliability Committees.

Additional information regarding the documentation of the electric energy demand and peak load forecasts presented in this report may be found on ISO-NE's web site at:

http://www.iso-ne.com/system-planning/system-plans-studies/celt

Introduction

2016 ISO New England (ISO-NE) Reliability Coordinator Area Forecast

The "2016-2025 Forecast Report of Capacity, Energy, Loads, and Transmission" (CELT Report) is a source of assumptions for use in electric planning and operations reliability studies. This report provides assumptions for the ISO New England Reliability Coordinator area.

In previous CELT Reports, total New England Load and Total New England Capacity, which included northern Maine, were included in the Section 1 summaries for reference purposes. However, in this year's report those lines have been removed since they are no longer used by ISO New England System Planning.

In this edition of the CELT Report, there have been some changes to the reporting of behind-the-meter (BTM) PV in Section 3.1, "Forecast of Solar Photovoltaic (PV) Resources by State". Section 3.1 consists of total state-by-state solar PV forecasts based on nameplate rating, as well as the estimated summer seasonal peak load reductions and estimated energy production from behind-the-meter (BTM) PV. In contrast to the 2015 CELT, for which BTM PV was further subdivided into two categories, behind-the-meter PV embedded in load (BTMEL) and behind-the-meter PV not embedded in load (BTMNEL), full PV reconstitution allowed ISO to combine these two categories into one (BTM) category. The forecast methodology and assumptions are available at http://www.iso-ne.com/system-planning/system-forecasting/distributed-generation-forecast.

In Section 1, the ISO New England Reliability Coordinator area reference load forecast may be characterized as having a fifty percent chance of being exceeded. The load forecast distributions for the years 2016 through 2025 are included in Section 1.6 of this report. Additional information on the load forecast, including the forecast bandwidths, is available on the ISO New England web site (see links below).

The capacity values in Section 1 are based on the Capacity Supply Obligations (CSO) for the Forward Capacity Market's (FCM) 2015-2016, 2016-2017, 2017-2018, 2018-2019 and 2019-2020 Capacity Commitment Periods as of March 18, 2016. These include new and existing generating resources, demand resources, and imports.

The CSOs for each of the commitment periods are based on the following FCM auction results:

2015-2016 Annual Reconfiguration Auction 3
2016-2017 Annual Reconfiguration Auction 3
2017-2018 Annual Reconfiguration Auction 1
2018-2019 Forward Capacity Auction
2019-2020 Forward Capacity Auction

The generating resource and demand resource CSO totals for the 2019-2020 Capacity Commitment Period are assumed to remain in place for the remainder of the CELT reporting period. Imports beyond the 2019-2020 Capacity Commitment Period reflect only known, long-term contracts.

The annual generating capacity totals based on Seasonal Claimed Capability (SCC)² are included as a line item in Sections 1.1 and 1.2. Those values are based on the SCCs of existing assets plus the expected capability of future FCM and non-FCM resources. The non-FCM resources are those that do not have FCM obligations, but are part of the ISO New England Generator Interconnection Queue³ and are expected to become commercial in 2016 or 2017.

Section 2.1 of the CELT Report lists details for all generating assets as of January 1, 2016. It also includes SCC values for the winter 2015/16 peak, which occurred on February 15, 2016, and projected summer SCC values for August 1, 2016.

Section 4.1 summarizes the results of the 2015-2016, 2016-2017, 2017-2018, 2018-2019, and 2019-2020 Forward Capacity Market Capacity Supply Obligations (CSOs) by Load Zone as of March 18, 2016. In the case of 2015-16, monthly auction results are not taken into consideration; the results shown are for the third Annual Reconfiguration Auction (ARA3).

The October 31, 2008 Forward Capacity Market (FCM)/Queue Amendments filing (FERC Docket ER09237 http://www.iso-ne.com/staticassets/documents/regulatory/ferc/filings/2008/oct/er09_237_000_10_8_31_fcm_queue.pdf) established the Network Resource Capability (NRC) and Capacity Network Resource Capability (CNRC) values for each generating resource. Section 5.1, "Network Resource Capability (NRC) & Capacity Network Resource Capability (CNRC) List", lists the NRC & CNRC values calculated consistent with Schedules 22 and 23 of the Open Access Transmission Tariff (the Large and Small Generator Interconnection Procedures).

Section 6 lists links associated with transmission related documents available on the ISO New England website at: http://www.iso-ne.com.

The appendices in the report are as follows:

- Appendix A defines the commonly used terms and abbreviations used in this report;
- Appendix B provides a list of the Federal Information Processing Standard (FIPS) Codes and the list of Regional System Plan (RSP) Subareas;
- Appendix C includes two graphs that illustrate the summer Capacity Supply Obligations and load forecast;
- Appendix D tracks the CSOs for each Commitment Period, by Load Zone, from the Forward Capacity Auction (FCA) results through the subsequent proration, bilaterals, and Annual Reconfiguration Auctions;

- Appendix E lists the Qualified and Cleared Capacity for all Resources that qualified to participate in the tenth Forward Capacity Auction (FCA 10);

- Appendix F is the most recent update of the New England geographic transmission map.

CELT Reports and related documents are available on the ISO New England website at:

http://www.iso-ne.com/system-planning/system-plans-studies/celt http://www.iso-ne.com/isoexpress/web/reports/operations/-/tree/seasonal-claimed-capability http://www.iso-ne.com/system-planning/system-plans-studies/rsp http://www.iso-ne.com/participate/applications-status-changes/new-modified-interconnections http://www.iso-ne.com/system-planning/transmission-planning/interconnection-request-queue

Please do not hesitate to contact ISO New England at custserv@iso-ne.com with any questions or comments regarding the information contained herein.

² For more information on generating assets, refer to the Seasonal Claimed Capability Report at: http://www.iso-ne.com/isoexpress/web/reports/operations/-/tree/seasonal-claimed-capability.

³ The Generator Interconnection Queue is posted on the ISO New England website at http://www.iso-ne.com/system-planning/transmission-planning/interconnection-request-queue.

¹ ISO New England is the Reliability Coordinator (RC), Balancing Authority (BA) and Transmission Operator (TOP) for New England. Throughout this document, the ISO is referred to as the RC since the RC has responsibility for overseeing the other two functions.

1.1 Summer Peak Capabilities and Load Forecast (MW)

	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>	<u>2024</u>	<u>2025</u>
ISO-NE RELIABILITY COORDINATOR AREA											
1. LOAD (1, 2, 3)											
1.1 REFERENCE - Without reductions	28660	28966	29307	29652	29975	30276	30578	30883	31190	31493	31794
1.1.1 Behind-the-Meter (BTM) PV (4)	314	423	520	582	632	676	714	746	775	802	828
1.2 REFERENCE - With reduction for BTM PV	28346	28543	28788	29070	29344	29601	29863	30137	30415	30691	30966
1.2.1 Passive DR (PDR) used in System Planning (5)	1685	1839	2089	2306	2561	2812	3047	3267	3473	3665	3844
1.3 REFERENCE - With reduction for BTM PV and PDR	26661	26704	26698	26765	26783	26789	26816	26870	26942	27026	27122
2. CAPACITY BASED ON FCM OBLIGATIONS											
2.1 GENERATING RESOURCES (6)	29726	29888	29547	30393	31341	31441	31441	31441	31441	31441	31441
2.2 DEMAND RESOURCES (6, 7)	2326	2441	2798	2751	2746	2746	2746	2746	2746	2746	2746
2.2.1 ACTIVE DR	638	556	841	597	378	378	378	378	378	378	378
2.2.2 PASSIVE DR	1687	1885	1957	2154	2369	2369	2369	2369	2369	2369	2369
2.3 IMPORTS (8)	1337	1162	1406	1479	1480	96	90	90	90	90	90
2.4 TOTAL (9)	33389	33492	33750	34623	35567	34283	34277	34277	34277	34277	34277
3. CAPACITY BASED ON SEASONAL CLAIMED CAPABIL	ITY (SCC)(10)	(11)									
3.1 GENERATION CLAIMED FOR CAPABILITY	30580	30581	29908	30968	32118	32111	32121	32127	32133	32138	32144
4. RESERVES - Based on Reference Load with reduction for	Passive DR										
4.1 INSTALLED RESERVES - Based on CSOs of Generatir	ng Resources ((line 2.1), Ac	tive DR (line	e 2.2.1), and	Imports (lin	e 2.3)					
4.1.1 MW	5040	4903	5096	5704	6415	5125	5092	5038	4966	4882	4786
4.1.2 % OF LOAD	19	18	19	21	24	19	19	19	18	18	18
4.2 INSTALLED RESERVES - Based on Generation SCC (I	ine 3.1), Active	e DR (line 2.	2.1), Imports	s (line 2.3), a	and Exports	(see footnot	te 12)				
4.2.1 MW	5794	5496	5357	6179	7093	5796	5773	5725	5659	5580	5490
4.2.2 % OF LOAD	22	21	20	23	26	22	22	21	21	21	20
KEY:											
4.1.1 = 2.1 + 2.2.1 + 2.3 - 1.3	4.2.2 = (4.2.1 /	1.3) x 100									
4.1.2 = (4.1.1 / 1.3) x 100	2.4 = 2.1 + 2.2 ·	+ 2.3									

FOOTNOTES:

See Section 1.1 Footnotes on following sheet

4.2.1 = (3.1 + 2.2.1 + 2.3) - 1.3

1.1 Footnotes

- (1) Represents MW load level associated with a reference forecast having a 50% chance of being exceeded. More information on the April 2016 CELT forecast, including the high and low bandwidths, is available on the ISO-NE Website located at http://www.iso-ne.com/system-planning/system-plans-studies/celt.
- (2) Three versions of the seasonal peak load forecast are shown. The first forecast does not reflect the peak and energy savings of Passive Demand Resources (PDR) or Behind-the-Meter (BTM) PV. The second forecast shown reflects a reduction for BTM PV. The third forecast shown reflects the reductions of BTM PV and PDR. Detailed forecast documentation on the ISO-NE website includes all three versions of the forecast.
- (3) The 2015 summer peak load shown reflects weather normalization. Prior to weather normalization, the actual metered 2015 summer peak of 24,437 MW occurred on July 20, 2015 at hour ending 17:00. See Section 1.5 for actual and estimated peaks and energies. The reconstituted (for the load reducing action of FCM Passive Demand Resources) peak of 26,472 MW occurred on July 20, 2015 at hour ending 17:00.
- (4) Line 1.1.1 consists of Behind-the-Meter PV estimated summer peak load reductions as of July 1 of that year, including an 8% transmission and distribution loss gross up. Refer to Section 3.1 for more details on these values.
- (5) The passive DR shown on line 1.2.1 consists of the Qualified Capacity (QC) of existing resources and primary auction (FCA) results for new resources. These values are used by ISO-NE System Planning in their long-term Needs Assessments and Solutions Studies (see Sec. 5.2 of this report for a breakdown by Load Zone and DR type), and are different from the Capacity Supply Obligations shown on line 2.2.2. Beginning in 2020-2021, passive DR includes an ISO-NE forecast of incremental EE beyond the FCM.
- (6) The 2016 through 2019 capacity for generating and demand resources consists of the current Forward Capacity Market CSOs as of March 18, 2016, and the 2015 CSOs are based on the 2015-2016 ARA 3 results. The 2019 FCM CSO is assumed to remain in place through the end of the CELT reporting period. It is assumed that the 211 MW of Static De-List Bids that were cleared to leave the 2019-2020 Forward Capacity Auction will remain de-listed through the reporting period. The Citizens Block Load CSO is treated as an import rather than a generating resource.
- (7) The demand resource values are based on DR with FCM CSOs, including an 8% transmission and distribution loss gross-up. A passive DR forecast is included with the QC-based DR values on line 1.2.1, beginning in 2020.
- (8) The 2015 through 2019 imports are based on FCM import CSOs. An Administrative Export De-List of 100 MW, which expires on May 31, 2020, is taken into account in the generation capability values from 2015 through 2019. The purchases beyond the 2019-2020 Capacity Commitment Period reflect only known, long-term contracts. Note that one of those long-term contracts is a 6 MW contract that ends October 2020. The FCA #11 qualification process will take this into account in determining its qualified capacity for the upcoming auction.
- (9) May not equal sum due to rounding.
- (10) The generating capability based on SCC values includes all existing ISO New England generating assets as well as projected additions and retirements. Future generating assets consist of non-FCM resources that are expected to go commercial in 2016 or 2017, and all new resources with FCM CSOs. The capabilities of the FCM resources are based on their Qualified Capacity. Also included is a forecast of non-FCM PV capacity, which is based on the nameplate PV forecast shown in Section 3.1.1, together with the assumed percentage of annual growth (37% in service by July 1), and estimated summer seasonal peak load reduction (in % of nameplate) for each year, as shown in Section 3.2.2.
- (11) The 2016 SCC value of 30,581 MW is consistent with the total capacity projected for August 1 in the Section 2.1 Generator List.
- (12) Exports consist of a 100 MW Administrative Export De-List through 2019.

1.2 Winter Peak Capabilities and Load Forecast (MW)

	<u>15/16</u>	<u>16/17</u>	<u>17/18</u>	<u>18/19</u>	<u>19/20</u>	<u>20/21</u>	<u>21/22</u>	<u>22/23</u>	<u>23/24</u>	<u>24/25</u>	<u>25/26</u>
ISO-NE RELIABILITY COORDINATOR AREA											
1. LOAD (1, 2, 3)											
1.1 REFERENCE - Without reductions	22860	22992	23170	23353	23507	23633	23758	23890	24022	24151	24276
1.1.1 Behind-the-Meter (BTM) PV (4)	0	0	0	0	0	0	0	0	0	0	0
1.2 REFERENCE - With reduction for BTM PV	22860	22992	23170	23353	23507	23633	23758	23890	24022	24151	24276
1.2.1 Passive DR (PDR) used in System Planning (5)	1663	1652	1832	2171	2371	2604	2821	3025	3215	3393	3559
1.3 REFERENCE - With reduction for BTM PV and PDR	21197	21340	21338	21183	21136	21029	20937	20865	20807	20758	20717
2. CAPACITY BASED ON FCM OBLIGATIONS											
2.1 GENERATING RESOURCES (6)	30070	30178	29872	31108	31990	32090	32090	32090	32090	32090	32090
2.2 DEMAND RESOURCES (6, 7)	2285	2427	2799	2752	2746	2746	2746	2746	2746	2746	2746
2.2.1 ACTIVE DR	600	543	843	598	378	378	378	378	378	378	378
2.2.2 PASSIVE DR	1685	1884	1956	2154	2369	2369	2369	2369	2369	2369	2369
2.3 IMPORTS (8)	1326	1137	1406	1017	1069	89	89	89	89	89	89
2.4 TOTAL (9)	33682	33742	34076	34877	35805	34925	34925	34925	34925	34925	34925
3. CAPACITY BASED ON SEASONAL CLAIMED CAPABILI	TY (SCC)(10)										
3.1 GENERATION CLAIMED FOR CAPABILITY	33068	33045	32309	33414	34690	34690	34690	34690	34690	34690	34690
4. RESERVES - Based on Reference Load with reduction for I	Passive DR										
4.1 INSTALLED RESERVES - Based on CSOs of Generatin	g Resources	(line 2.1), Ac	tive DR (line	e 2.2.1), and	I Imports (lin	ie 2.3)					
4.1.1 MW	10799	10518	10782	11540	12301	11528	11620	11692	11750	11799	11840
4.1.2 % OF LOAD	51	49	51	54	58	55	55	56	56	57	57
4.2 INSTALLED RESERVES - Based on Generation SCC (li	ne 3.1), Active	e DR (line 2.	2.1), Import	s (line 2.3), a	and Exports	(see footno	te 11)				
4.2.1 MW	13697	13285	13120	13746	14901	14128	14220	14292	14350	14399	14440
4.2.2 % OF LOAD	65	62	61	65	70	67	68	68	69	69	70
KEY:											
	4.2.2 = (4.2.1 /	1.3) x 100									
	2.4 = 2.1 + 2.2	,									
4.2.1 = (3.1 + 2.2.1 + 2.3) - 1.3											

FOOTNOTES:

See Section 1.2 Footnotes on following sheet

1.2 Footnotes

- (1) Represents MW load level associated with a reference forecast having a 50% chance of being exceeded. More information on the April 2016 CELT forecast, including the high and low bandwidths, is available on the ISO-NE Website located at http://www.iso-ne.com/system-planning/system-plans-studies/celt.
- (2) Two versions of the seasonal peak load forecast are shown. The first forecast does not reflect the peak and energy savings of the passive demand resources. The second forecast shown reflects a reduction for that passive DR. Detailed forecast documentation on the ISO-NE website includes both the original CELT forecast and the forecast minus passive demand resources.
- (3) The 2015/16 winter peak load shown reflects weather normalization. Prior to weather normalization, the actual metered 2015/16 winter peak of 19,524 MW occurred on February 15, 2016 at hour ending 18:00. See Section 1.5 for actual and estimated peaks and energies. The reconstituted (for the load reducing action of FCM Passive Demand Resources) peak of 21,860 MW occurred on February 15, 2016 at hour ending 18:00.
- (4) Behing-the-Meter PV is assumed to be zero during the winter peak.
- (5) The passive DR shown on line 1.2.1 consists of the Qualified Capacity (QC) of existing resources and primary auction (FCA) results for new resources. These values are used by ISO-NE System Planning in their long-term Needs Assessments and Solutions Studies (see Sec. 5.2 of this report for a breakdown by Load Zone and DR type), and are different from the Capacity Supply Obligations shown on line 2.2.2. Beginning in 2020-2021, passive DR includes an ISO-NE forecast of incremental EE beyond the FCM.
- (6) The 2016/17 through 2019/20 capacity for generating and demand resources consists of the Forward Capacity Market CSOs current as of March 18, 2016, and the 2015/16 CSOs are based on the ARA 3 results. The 2019/20 FCM CSO is assumed to remain in place through the end of the CELT reporting period. It is assumed that the 211 MW of Static De-List Bids that were cleared to leave the 2019-2020 Forward Capacity Auction will remain de-listed through the reporting period. The Citizens Block Load CSO is treated as an import rather than a generating resource.
- (7) The demand resource values are based on DR with FCM CSOs, including an 8% transmission and distribution loss gross-up. A passive DR forecast is included with the QC-based DR values on line 1.2.1, beginning in 2019/20.
- (8) The 2015/16 through 2019/20 imports are based on FCM import CSOs. An Administrative Export De-List of 100 MW, which expires on May 31, 2020, is taken into account in the generation capability values from 2015/16 through 2019/20. The purchases beyond the 2019-2020 Capacity Commitment Period reflect only known, long-term contracts. Note that one of those long-term contracts is a 6 MW contract that ends October 2020. The FCA #11 qualification process will take this into account in determining its qualified capacity for the upcoming auction.
- (9) May not equal sum due to rounding.
- (10) The generating capability based on SCC values includes all existing ISO New England generating assets as well as projected additions and retirements. Future generating assets consist of non-FCM resources that are expected to go commercial in 2016 or 2017, and all new resources with FCM CSOs. The capabilities of the FCM resources are based on their Qualified Capacity.
- (11) Exports consist of a 100 MW Administrative Export De-List through 2019/20.

1.3 - Summary Summer Capability by Fuel/Unit Type (MW)⁽¹⁾

NUCLEAR STEAM	<u>2015</u> 3877	<u>2016</u> 4010	<u>2017</u> 4023	<u>2018</u> 4024	<u>2019</u> 3347	<u>2020</u> 3347	<u>2021</u> 3347	<u>2022</u> 3347	<u>2023</u> 3347	<u>2024</u> 3347	<u>2025</u> 3347
	327	338	339	338	340	340	340	340	340	340	340
HYDRO (DAILY CYCLE - RUN OF RIVER)	300	261	292	274	239	239	239	239	239	239	239
HYDRO (WEEKLY CYCLE)	859	868	844	841	872	872	872	872	872	872	872
HYDRO (PUMPED STORAGE)	1624	1677	1679	1643	1665	1765	1765	1765	1765	1765	1765
GAS COMBINED CYCLE	8857	8283	8999	9729	10362	10362	10362	10362	10362	10362	10362
GAS/OIL COMBINED CYCLE	3202	3957	4018	4020	4005	4005	4005	4005	4005	4005	4005
GAS COMBUSTION (GAS) TURBINE	345	219	232	517	1335	1335	1335	1335	1335	1335	1335
GAS/OIL COMBUSTION (GAS) TURBINE	629	542	554	552	549	549	549	549	549	549	549
OIL COMBUSTION (GAS) TURBINE	1613	1695	1680	1694	1710	1710	1710	1710	1710	1710	1710
COAL STEAM	1981	1947	927	922	917	917	917	917	917	917	917
GAS/OIL STEAM	2777	2831	2481	2497	2490	2490	2490	2490	2490	2490	2490
OIL STEAM	2184	2128	2201	2148	2192	2192	2192	2192	2192	2192	2192
GAS INTERNAL COMBUSTION	3	5	5	5	5	5	5	5	5	5	5
GAS/OIL INTERNAL COMBUSTION	9	9	9	9	9	9	9	9	9	9	9
OIL INTERNAL COMBUSTION	111	116	118	112	110	110	110	110	110	110	110
BIO/REFUSE	908	897	1001	923	977	977	977	977	977	977	977
WIND TURBINE	102	79	123	109	135	135	135	135	135	135	135
GAS FUEL CELL	16	21	16	16	21	21	21	21	21	21	21
PHOTOVOLTAIC	2	5	4	20	62	62	62	62	62	62	62
SUBTOTAL ISO-NE RELIABILITY COORDINATOR AREA CAPACITY (2) (4)	29726	29888	29547	30393	31341	31441	31441	31441	31441	31441	31441
DEMAND RESOURCES (2)	2326	2441	2798	2751	2746	2746	2746	2746	2746	2746	2746
IMPORTS (3)	1337	1162	1406	1479	1480	96	90	90	90	90	90
TOTAL ISO-NE RELIABILITY COORDINATOR AREA CAPACITY (4)	33389	33492	33750	34623	35567	34283	34277	34277	34277	34277	34277

FOOTNOTES:

(1) Gas/oil units are not necessarily fully operable on both fuels.

(2) The 2015 through 2019 capacity values consist of the Forward Capacity Market CSOs current as of March 18, 2016. The 2019 FCM CSO is assumed to remain in place through the end of the CELT reporting period. It is assumed that the 211 MW of Static De-List Bids that were cleared to leave the 2019/20 Forward Capacity Auction will remain de-listed through the reporting period.

(3) Imports are from entities outside the ISO-NE Reliability Coordinator area boundary. The 2015 through 2019 imports are based on FCM import CSOs. An Export De-List of 100 MW is taken into account in the generation capability values through 2019. The imports beyond the 2019/20 Capacity Commitment Period reflect only known, long-term contracts.

(4) May not equal sum due to rounding.

1.4 - Summary Winter Capability by Fuel/Unit Type (MW)⁽¹⁾

	<u>15/16</u>	<u>16/17</u>	<u>17/18</u>	<u>18/19</u>	<u>19/20</u>	<u>20/21</u>	<u>21/22</u>	<u>22/23</u>	<u>23/24</u>	<u>24/25</u>	<u>25/26</u>
NUCLEAR STEAM	3877	4010	4023	4024	3347	3347	3347	3347	3347	3347	3347
HYDRO (DAILY CYCLE - PONDAGE)	327	339	340	339	340	340	340	340	340	340	340
HYDRO (DAILY CYCLE - RUN OF RIVER)	405	384	458	434	411	411	411	411	411	411	411
HYDRO (WEEKLY CYCLE)	860	860	843	839	854	854	854	854	854	854	854
HYDRO (PUMPED STORAGE)	1623	1677	1657	1643	1655	1755	1755	1755	1755	1755	1755
GAS COMBINED CYCLE	8898	8285	9022	10146	10640	10640	10640	10640	10640	10640	10640
GAS/OIL COMBINED CYCLE	3290	3983	4020	4027	4090	4090	4090	4090	4090	4090	4090
GAS COMBUSTION (GAS) TURBINE	374	221	239	523	1335	1335	1335	1335	1335	1335	1335
GAS/OIL COMBUSTION (GAS) TURBINE	629	542	554	552	549	549	549	549	549	549	549
OIL COMBUSTION (GAS) TURBINE	1613	1719	1702	1736	1770	1770	1770	1770	1770	1770	1770
COAL STEAM	1981	1947	927	922	917	917	917	917	917	917	917
GAS/OIL STEAM	2777	2831	2481	2481	2479	2479	2479	2479	2479	2479	2479
OIL STEAM	2185	2128	2201	2148	2192	2192	2192	2192	2192	2192	2192
GAS INTERNAL COMBUSTION	3	5	5	5	5	5	5	5	5	5	5
GAS/OIL INTERNAL COMBUSTION	9	9	9	9	9	9	9	9	9	9	9
OIL INTERNAL COMBUSTION	111	116	118	112	110	110	110	110	110	110	110
BIO/REFUSE	913	902	1011	934	988	988	988	988	988	988	988
WIND TURBINE	178	200	247	218	280	280	280	280	280	280	280
GAS FUEL CELL	16	21	16	16	21	21	21	21	21	21	21
PHOTOVOLTAIC	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL ISO-NE RELIABILITY COORDINATOR AREA CAPACITY (2) (4	30070	30178	29872	31108	31990	32090	32090	32090	32090	32090	32090
DEMAND RESOURCES (2)	2285	2427	2799	2752	2746	2746	2746	2746	2746	2746	2746
IMPORTS (3)	1326	1137	1406	1017	1069	89	89	89	89	89	89
TOTAL ISO-NE RELIABILITY COORDINATOR AREA CAPACITY (4)	33682	33742	34076	34877	35805	34925	34925	34925	34925	34925	34925

FOOTNOTES:

(1) Gas/oil units are not necessarily fully operable on both fuels.

(2) The 2015/16 through 2019/20 capacity values consist of the Forward Capacity Market CSOs as of March 18, 2016. The 2019/20 FCM CSO is assumed to remain in place through the end of the CELT reporting period. It is assumed that the 211 MW of Static De-List Bids that were cleared to leave the 2019/20 Forward Capacity Auction will remain de-listed through the reporting period.

(3) Imports are from entities outside the ISO-NE Reliability Coordinator Area boundary. The 2015/16 through 2019/20 imports are based on FCM import CSOs. An Export De-List of 100 MW is taken into account in the generation capability values through 2019/20. The imports beyond the 2019/20 Capacity Commitment Period reflect only known, long-term contracts.

(4) May not equal sum due to rounding.

1.5 - Actual and Forecasted Energy and Peak Loads (Forecast is Reference with reduction for BTM PV)⁽¹⁾

						2015 AC	TUAL					
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
MONTHLY PEAK LOAD - MW	20583	20108	18848	16455	19544	20923	24437	24216	24368	16247	17643	18157
MONTHLY NET ENERGY - GWH	11732	11032	10869	9239	9729	10161	12099	12229	10735	9495	9419	10160
						2016 FOR	ECAST					
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
MONTHLY PEAK LOAD - MW	19421 A	19524 A	21185	17858	19845	24827	28543	28543	23251	18512	20038	22992
MONTHLY NET ENERGY - GWH	10986 A	10095 A	11690	10134	10413	11652	13290	13076	11003	10563	10812	12217
						2017 FORE	ECAST					
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
MONTHLY PEAK LOAD - MW	22992	22062	21383	17996	19941	25031	28788	28788	23439	18621	20192	23170
MONTHLY NET ENERGY - GWH	12947	11434	11803	10218	10501	11756	13414	13200	11108	10672	10929	12359
												CAGR (6)
	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2016 to 2025
SUMMER PEAK - MW	24437 A	28543	28788	29070	29344	29601	29863	30137	30415	30691	30966	0.9
WINTER PEAK - MW (2)	19524 A	22992	23170	23353	23507	23633	23758	23890	24022	24151	24276	0.6
NET ANNUAL ENERGY - GWH (3, 4)	126899 A	138968 (5)	140342	141877	143171	144208	145262	146400	147554	148677	149772	0.8

FOOTNOTES:

A = ACTUAL

(1) Recognizing that the seasonal peaks usually occur within a few months of the year, the forecasted monthly peaks of July and August have been replaced by the summer peak, and December and January have been replaced by the winter peak.

(2) Winter beginning in December of the year shown.

(3) May not equal sum due to rounding.

(4) The Net Annual Energy does not include a reduction for Passive DR. With a reduction for PDR, the CAGR would be -0.2%. Refer to the ISO website for the full forecast details: http://www.iso-ne.com/system-planning/system-plans-studies/celt

(5) Forecasted value only; does not include the January 2016 actual monthly net energy shown above.

(6) Compound Annual Growth Rate (%).

1.6 - Seasonal Peak Load Forecast Distributions (Forecast is Reference with reduction for BTM PV)

			Peak Load Fo er Than Exped	recast at cted Weather		Reference Forecast at Expected Weather	Peak Load Forecast at More Extreme Than Expected Weather						
Summer (MW)	2016	27147	27397	27735	28117	28543	28995	29457	30119	30880	31547		
	2017	27370	27624	27967	28355	28788	29247	29716	30388	31161	31837		
	2018	27632	27889	28238	28631	29070	29536	30012	30695	31479	32166		
	2019	27884	28145	28499	28898	29344	29816	30300	30992	31788	32485		
	2020	28120	28385	28744	29149	29601	30080	30571	31273	32081	32788		
	2021	28361	28630	28994	29405	29863	30350	30847	31560	32379	33096		
	2022	28614	28886	29255	29672	30137	30631	31135	31858	32689	33416		
	2023	28870	29146	29520	29943	30415	30915	31427	32159	33002	33739		
	2024	29125	29405	29785	30213	30691	31198	31717	32460	33314	34062		
	2025	29379	29663	30047	30482	30966	31480	32006	32759	33625	34383		
	WTHI (1)	78.49	78.73	79.00	79.39	79.88	80.30	80.72	81.14	81.96	82.33		
Dry-Bulb Ten	nperature (2)	88.50	88.90	89.20	89.90	90.20	91.20	92.20	92.90	94.20	95.40		
Probability of Being	Forecast Exceeded	90%	80%	70%	60%	50%	40%	30%	20%	10%	5%		
Winter (MW)	2016/17	22558	22679	22776	22839	22992	23147	23318	23423	23680	24055		
	2017/18	22736	22857	22954	23017	23170	23325	23496	23601	23858	24233		
	2018/19	22919	23041	23137	23200	23353	23508	23679	23784	24041	24417		
	2019/20	23073	23194	23291	23354	23507	23662	23833	23938	24195	24570		
	2020/21	23199	23320	23417	23480	23633	23787	23959	24063	24321	24696		
	2021/22	23325	23446	23542	23605	23758	23913	24084	24189	24447	24822		
	2022/23	23456	23577	23674	23737	23890	24045	24216	24321	24578	24953		
	2023/24	23589	23710	23806	23869	24022	24177	24348	24453	24711	25086		
	2024/25	23717	23838	23935	23998	24151	24306	24477	24582	24839	25214		
	2025/26	23842	23964	24060	24123	24276	24431	24602	24707	24964	25340		
Dry-Bulb Ten	nperature (3)	10.72	9.66	8.84	8.30	7.03	5.77	4.40	3.58	1.61	(1.15)		

FOOTNOTES:

(1) WTHI - a three-day weighted temperature-humidity index for eight New England weather stations. It is the weather variable used in producing the summer peak load forecast. For more information on the weather variables see <u>http://www.iso-ne.com/system-planning/system-plans-studies/celt</u>.

(2) Dry-bulb temperature (in degrees Fahrenheit) shown in the summer season is for informational purposes only.

(3) Dry-bulb temperature (in degrees Fahrenheit) shown in the winter season is a weighted value from eight New England weather stations.