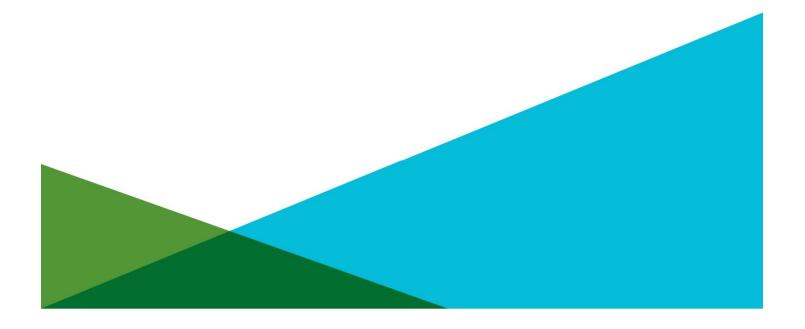


APPENDIX C – GEOTECHNICAL ENGINEERING REPORT

www.haleyaldrich.com


ALDRICH

GEOTECHNICAL ENGINEERING REPORT KILLINGLY ENERGY CENTER KILLINGLY, CONNECTICUT

by Haley & Aldrich, Inc. Rocky Hill, Connecticut

for NTE Connecticut, LLC St Augustine, Florida

File No. 43434-000 July 2016

Executive Summary

This geotechnical report:

- Describes the existing site conditions and proposed conditions as they relate to earthwork and foundation engineering. The power island will be located on Tract One and the utility switch yard will be located on Tract Two.
- Describes the subsurface exploration program and laboratory testing program. A subsurface exploration program was performed at the site to sample and describe soil and rock.
- Provides an interpretation of the subsurface conditions. Subsurface conditions consist of glacial deposits overlying bedrock. Bedrock outcrops are present in the central part of Tract One.
- Provides engineering recommendations for foundations (buildings and retaining walls). Structures may be supported on spread footings, ring foundations, or mat foundations bearing on glacial till, weathered bedrock, and bedrock.
- Provides engineering recommendation for site development. Stable cut slopes into the native soil and rock can be engineered to lower the site grade. Stable fill slopes can be engineered using excavated soil and rock to raise the site grade. Retaining walls will be used where slopes are not feasible.
- Recommendations are provided for storm water management, flexible and rigid pavement, subgrade preparation, dewatering, and material specifications.
- Provides construction recommendations for earthwork. Native soil and rock may be reused to attempt to balance earthwork. Controlled blasting will be required to excavate bedrock. During construction, monitoring earthwork, subgrade preparation, and fill placement and compaction is recommended.
- Provides recommendations for future geotechnical investigations and engineering for final design. Additional field investigation and engineering evaluation are recommended for estimating rock excavation and balancing earthwork cuts and fills, for retaining wall foundation design, and for design of high cut and fill slopes.

Refer to Geotechnical Report for additional details.

Exe	cutive	Summary	i
	of Tab of Figu		iv iv
1.	Intro	oduction	1
	1.1	GENERAL	1
	1.2	PURPOSE AND SCOPE	1
	1.3	ELEVATION DATUM	1
	1.4	SITE CONDITIONS	1
	1.5	PROPOSED CONSTRUCTION	2
	1.6	LIMITATIONS	2
2.	Sub	surface Exploration and Laboratory Testing Programs	3
	2.1	SITE GEOLOGY	3
	2.2	OTHER SITE SUBSURFACE DATA	3
	2.3	LAYOUT FOR FIELDWORK	3
	2.4	SUBSURFACE EXPLORATIONS	3
	2.5	IN-SITU HYDRAULIC CONDUCTIVITY TESTING PROGRAM	4
	2.6	IN-SITU SOIL RESISTIVITY TESTING	4
	2.7	GEOTECHNICAL LABORATORY TESTING	4
	2.8	GEOCHEMICAL LABORATORY TESTING	4
3.	Sub	surface Conditions	5
	3.1	SOIL AND BEDROCK	5
	3.2	GROUNDWATER	6
4.	Geo	technical Engineering Recommendations	7
	4.1	GENERAL	7
	4.2	FOUNDATION DESIGN RECOMMENDATIONS	7
		4.2.1 Foundation Types	7
		4.2.2 Spread Footing and Ring Foundation Design Criteria	7
		4.2.3 Floor Slab Design Criteria	7
		4.2.4 Mat Foundation Design Criteria	8
		4.2.5 Equipment Pad Design Criteria	8
		4.2.6 Structures Bearing on Multiple Subgrades	8
		4.2.7 Foundation Concrete	9
	4.3	SETTLEMENT	9
	4.4	SEISMIC DESIGN	9

Page

5.

6.

4.5 4.6 4.7 4.8 4.9 4.10 4.11	LATERAL PRESSURES RESISTANCE TO LATERAL LOADS RESISTANCE TO UPLIFT LOADS VAPOR RETARDERS, WATERPROOFING, DAMPPROOFING, AND INSULATION RADON MITIGATION EXTERIOR GRADING UTILITES	9 10 11 11 11 11 11
SITE	E DEVELOPMENT RECOMMENDATIONS	13
5.1 5.2 5.3 5.4 5.5	RETAINING WALLS SLOPES IMPOUNDMENT EARTH STRUCTURES STORM WATER INFILTRATION PAVEMENT RECOMMENDATIONS 5.5.1 Flexible Pavement Design 5.5.2 Rigid Pavement Design 5.5.3 Pavement Drainage	13 13 14 14 14 14 15 15
Cons	struction Considerations	16
6.1	EXCAVATION 6.1.1 Soil Excavation 6.1.2 Bedrock excavation	16 16 16
6.2	 SUBGRADE PREPARATION 6.2.1 Site Preparation 6.2.2 Bedrock Bearing Foundations 6.2.3 Soil Bearing (and Weathered Bedrock) Bearing Foundations 6.2.4 Floor Slabs and Equipment Pads 6.2.5 Pavements 	17 17 18 18 19 19
6.3 6.4	DEWATERING BACKFILL MATERIALS 6.4.1 Compacted Granular Fill	19 19 19 19
	6.4.2 Crushed Stone Fill6.4.3 Common Fill6.4.4 Low-Permeable Fill	20 20 21
	6.4.5 Geotextile	21 21

	6.4.4 Low-Permeable Fill	21
	6.4.5 Geotextile	21
	6.4.6 Compaction	21
6.5	USE OF ON-SITE EXCAVATED SOIL AND ROCK	21
	6.5.1 Soils	21
	6.5.2 Bedrock, Cobbles, and Boulders	22
6.6	EARTHWORK DURING FREEZING WEATHER	22
6.7	ABANDONING WELLS	23

7. **Recommendations for Future Geotechnical Services**

24

Page

Page

7.1	ADDITIONAL SUBSURFACE EXPLORATIONS FOR ESTIMATING ROCK EXCAVATION	24
7.2	ADDITIONAL SUBSURFACE EXPLORATIONS FOR FOUNDATION DESIGN	24
7.3	ADDITIONAL SUBSURFACE INVESTIGATIONS AND SLOPE STABILITY ANALYSIS	24
7.4	SHEAR WAVE VELOCITY MEASUREMENTS	25
7.5	COMPRESSION WAVE VELOCITY MEASUREMENTS	25
7.6	ALTERNATE FOUNDATION RECOMMENDATIONS	25
7.7	CONTRACT DOCUMENTS	25
7.8	SUBMITTAL, SPECIFICATION, AND PLAN REVIEW	25
7.9	CONSTRUCTION MONITORING	25

Tables

Figures

Appendix A – Project Description

Appendix B – 2010 Water Well Completion Report

Appendix C – Logs of Test Borings

Appendix D – Field Permeability Test Results

Appendix E – Field Soil Resistivity Test Results

Appendix F – Geotechnical Laboratory Test Results

Appendix G – Geochemical Laboratory Test Results

List of Tables

Table No.	Title
1	Summary of Subsurface Data
2	Summary of Geotechnical Laboratory Test Results
3	Summary of Corrosion Potential Laboratory Test Results
4	Summary of Geotechnical Recommendations

List of Figures

Figure No.	Title
1	Project Locus
2	Exploration Location Plan
3	Subsurface Section A
4	Subsurface Section B

1. Introduction

1.1 GENERAL

This report provides our geotechnical engineering recommendations for the proposed Killingly Energy Center located in Killingly, Connecticut. The site location is shown on the Project Locus, Figure 1.

1.2 PURPOSE AND SCOPE

This investigation was undertaken to obtain information on subsurface soil, rock, and groundwater conditions, and to provide recommendations for foundation design for the proposed power plant and ancillary equipment. The scope of geotechnical engineering services included:

- Visiting the site to observe existing conditions.
- Reviewing existing information on subsurface soil and rock conditions and groundwater levels.
- Staking exploration locations.
- Monitoring a subsurface exploration program.
- Installing groundwater observation wells.
- Performing field soil resistivity testing.
- Performing field permeability testing.
- Performing geotechnical laboratory testing.
- Performing geochemical (for corrosion potential) laboratory testing.
- Preparing a Preliminary Geotechnical Engineering Report (dated 10 June 2016).
- Performing geotechnical analyses and preparing this report.

1.3 ELEVATION DATUM

Elevations in this report are in feet and refer to the North American Vertical Datum of 1988 (NAVD88).

1.4 SITE CONDITIONS

The site is located at 180 and 189 Lake Road. The 73-acre site is comprised of about 63 acres west of Lake Road (189 Lake Road – Tract One) and 10 acres east of Lake Road (180 Lake Road – Tract Two).

Tract One is wooded except for a 2-story house, shed, and 160-ft deep water supply well that was installed circa 2010 located in the eastern portion of the tract (along Lake Road). The tract includes a pond, an abandoned artesian well, and bedrock outcrops in the central portion of the tract, and wetlands in the northern portion of the tract. Grades slope down from about El. 360 in the southern portion and about El. 340 in the northeastern portion of the tract. Several stone walls are located on the tract.

Tract Two is wooded, except for the northern portion which contains a field and a dilapidated barn (along Lake Road). The tract includes a cemetery with about a dozen head stones located in the western portion of the tract and wetlands in the southern portion of the tract. Grades slope down from about El. 350 in the southern portion of the tract to about El. 310 in the northern portion of the tract.

1.5 PROPOSED CONSTRUCTION

The power plant and ancillary equipment (power island) are planned on Tract One. The finished grade will generally range from El. 313 to El. 317 (average about El. 315), except the administrative building (Area 15), plant switchyard (Area 23), and fuel gas metering (Area 20), which will be constructed at about El. 320. Cuts up to 27 ft are planned in the southern portion of the tract, and fills up to 38 ft are planned in the northern and western portion of the tract with transitions in grades planned using slopes generally ranging from 3H:1V to 4H:1V (portions of slope north and west of the power island to reduce impact to wetlands). A 165-ft-long retaining wall with maximum height of 20-ft is proposed east of the power island along wetlands (to reduce impact to wetlands). A storm water basin (Area 30) with three basins (bottom of basin near existing grade) is proposed north of the power island near wetlands. Mott MacDonald plans to support structures on ring foundations (tanks) and mat foundations or concrete pedestals bearing on foundations. A summary of proposed construction on Tract One is included in Appendix A.

A utility switchyard is planned on Tract Two. The switchyard will connect to the existing electric transmission lines to the east. The finished grade will generally range from about El. 325 to about El. 335 (average about El. 330). Cuts up to 25 ft are planned in the western portion of the switchyard, and fills up to 5 ft are planned in the eastern portion of the switchyard. A 275-ft-long retaining wall with a maximum height of 25-ft is proposed southwestern portion of the utility switchyard.

Proposed construction is shown on Figure 2 and on an untitled drawing prepared by Killingly engineering Associates, dated 30 July 2016, which is also provided in Appendix A.

1.6 LIMITATIONS

This report has been prepared for specific application to the project as it is planned at this time for the exclusive use of the project design team in connection with the geotechnical aspects of the project. In the event that changes in the nature, design, or location of structures are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing. The analyses and recommendations are based in part upon data obtained from referenced explorations. The nature and extent of variations between the explorations may not become evident until construction. If variations then appear evident, it will be necessary to re-evaluate the recommendations of this report.

The planned construction will be supported on or in the soil or rock. Recommendations presented in this report for foundation and floor drainage, moisture protection, and waterproofing address only the conventional geotechnical engineering related aspects of design and construction and are not intended to provide an environment that would prohibit growth of mold or other biological pollutants. Our work scope did not include the development of criteria or procedures to minimize the risk of mold or other biological pollutant growth in or near structures. Additionally, evaluation of dynamic loads on foundations was beyond the scope of our services.

2. Subsurface Exploration and Laboratory Testing Programs

2.1 SITE GEOLOGY

Surficial geology maps describe the overburden soils as ground-moraine (glacial till) consisting of poorly sorted, poorly stratified deposits generally composed of glacial debris ranging from clay-size particles to boulders. Boulders were observed at the ground surface.

The Bedrock Geological Map of Connecticut identified the bedrock as Quinebaug Formation consisting of medium- to dark-gray, medium-grained, well-layered gneiss. Bedrock outcrops were observed in the central portion of Tract One (see Figure 2). Bedrock structure was mapped in the field on bedrock outcrops on Tract One. Strike ranged from 20 to 30 degrees and dip ranged from 315 to 335 degrees (25 to 45 degrees northwest).

2.2 OTHER SITE SUBSURFACE DATA

LaFramboise Well Drilling, Thompson, Connecticut, installed a 160-ft deep water well on Tract One circa 2010. The well drilling completion report indicates 10 ft of overburden soil and 150 ft of bedrock was encountered in the well. The well completion report is included in Appendix B.

2.3 LAYOUT FOR FIELDWORK

GM2 Associates Inc. (GM2), Glastonbury Connecticut, staked the test boring locations and soil resistivity locations on 16 and 17 May 2016 using RTK GPS methods. Staked boring and soil resistivity locations are shown on Figure 2. Borings B-04, B-08, and B-15 were offset in the field for access and boring B-11 was offset in the field per Mott MacDonald. Field offsets are noted on the boring logs.

Based on the site topographic (aerial) survey provided by NTE Connecticut, LLC (prepared by Killingly Engineering Associates) and the boring and soil resistivity locations staked by our surveyor (GM2), most ground surface elevations correlate well (within a few feet). However, ground surface elevations at B-07, B-08, and B-09 (located in the western portion of Tract One) do not correlate well (staked location is about 5 ft, 7.5 ft, and 10 ft higher than elevations on the topographic survey). The source of the localized discrepancy is obscured ground in aerial survey.

2.4 SUBSURFACE EXPLORATIONS

Haley & Aldrich monitored a test boring program consisting of eighteen test borings (B-01 through B-18). Mott MacDonald selected the boring locations and depths. Mott MacDonald removed boring B-09 from the program. Borings B-01 through B-15 were located west of Lake Road on Tract One and borings B-16 through B-18 were located east of Lake Road on Tract Two.

NYEG Drilling LLC, Brewerton New York, drilled the test borings on 23 May through 2 June 2016. The borings were advanced using hollow stem augers, wash rotary, air rotary, and down-the-hole hammer methods. Standard penetration tests were performed typically at 5-ft intervals using an automatic hammer. Bedrock was cored in each exploration, except B-01 and B-14 where bedrock was not encountered above the specified termination depth (20 ft).

Groundwater observation wells were installed in borings B-01, B-03, B-07, B-10, and B-12 (selected by Mott MacDonald). Wells were constructed using 2-in. diameter PVC, 10-ft long screen with a sand pack and riser to the ground surface with a surface seal.

Boring locations relative to existing site conditions and proposed construction are shown on Figure 2. Subsurface sections beneath the power island are shown on Figures 3 and 4. Boring logs and observation well installation reports are included in Appendix C. Subsurface data is summarized on Table 1.

2.5 IN-SITU HYDRAULIC CONDUCTIVITY TESTING PROGRAM

Haley & Aldrich performed in-situ falling-head hydraulic conductivity testing at five test boring locations (B-01, B-04, B-06, B-10, and B-11) selected by Mott MacDonald using a Guelph permeameter on 25 May 2016. Each test was run until steady-state flow conditions were established under 5 cm and 10 cm of hydraulic head. Testing was performed at a depth of about 3 ft below ground surface in native glacial till soil (typically silty sand). Field hydraulic conductivity test method was coordinated with Mott MacDonald. Field test results indicated the un-factored hydraulic conductivity of the glacial till soil ranged from 0.01 to 0.06 in/hr. Field test locations are shown on Figure 2. Results of this testing are summarized in Appendix D.

2.6 IN-SITU SOIL RESISTIVITY TESTING

Consulting Engineers Group, Inc., Hopedale Massachusetts, performed three Wenner Four-Electrode soil resistivity arrays using an AEMC model 6470 ground tester on 25 May 2016. Soil resistivity testing was performed at E-01 and E-02 located west of Lake Road on Tract One and E-03 located east of Lake Road on Tract Two. Array lengths ranged from 12 to 150 ft using an a-spacing of 4, 8, 12, 16, 20, 30, 40, and 50 ft. Pipes, pipelines, conduits, fences, or other long metal structures (which can interfere with soil resistivity measurements) were not located near the arrays. High voltage electric transmission lines (energized during testing) are located east of Tract Two and E-03. Soil resistivity array locations are shown on Figure 2. Soil resistivity test results are provided in Appendix E.

2.7 GEOTECHNICAL LABORATORY TESTING

Haley & Aldrich performed four grain size analyses on soil samples recovered from the explorations in general conformance with ASTM D422. Testing was performed to assist with visual classification of soils and help determine engineering properties. Test results are summarized on Table 2. Test data is provided in Appendix F.

2.8 GEOCHEMICAL LABORATORY TESTING

SoilCor, Inc., Murrieta California, performed corrosion tests consisting of pH, soluble sulfates, chloride ion, electrical resistivity, sulfides, and redox potential testing to evaluate corrosion potential on two soil samples recovered from the borings. One sample (glacial till composite) was obtained west of Lake Road on Tract One and one sample (glacial till composite) east of Lake Road on Tract Two. Testing was performed to assist with grounding grid design and selection of Portland cement type. Test results are summarized on Table 3. Test data is provided in Appendix G.

3. Subsurface Conditions

3.1 SOIL AND BEDROCK

Generalized descriptions of soil encountered in the test borings are presented below in order of increasing depth below ground surface. Strata thicknesses observed in the test borings are summarized on Table 1. Refer to logs of test borings in Appendix C for detailed information regarding subsurface conditions.

Approximate Range in Thickness, ft.	Generalized Description
1 to 5	TOPSOIL/SUBSOIL – Very lose to loose dark organic soil with silt and sand. Up to 2 ft of topsoil was encountered overlying 1 to 4 ft of subsoil. Cobbles and boulders were observed at the ground surface.
2 to >28	GLACIAL TILL – Dense to very dense gray-brown silty SAND (SM) consisting of fine to coarse sand with 20 to 45 percent silt and 10 to 30 percent fine to coarse gravel. Stratum includes numerous cobbles and boulders based on drill rig response and coring. Hydraulic conductivity ranged from 0.01 to 0.6 in/hr. Soil resistivity ranged from 100,000 to 500,000 ohm-centimeters based on field measurements (may be influenced by underlying bedrock) and 12,000 to 15,000 ohm-centimeters when saturated in the laboratory. Sulfate concentration was less than 150 mg/kg. Total unit weight of glacial till is anticipated to range from 125 pcf to 145 pcf. Natural moisture content ranged from about 6 to 12 percent.
	BEDROCK – Hard gray gneiss to white quartzite with a low foliation angle. Bedrock was encountered in each exploration except B-01 and B-14, which were terminated at a depth of 20 ft. Locally, the bedrock surface is weathered. About 3 ft of weathered bedrock was encountered in borings B-10 and B-14. Where bedrock was encountered, top of bedrock elevation ranged from El. 280 to 340, about 3 to 24 ft below ground surface. Bedrock was not encountered in boring B-01 above El. 257.5. Bedrock outcrops were observed in the central portion of Tract One. Unit weight of bedrock is anticipated to range from 150 pcf to 160 pcf.

We did not observe oily, stained, or odorous soils in the explorations. Note that chemical screening or laboratory chemical testing was not performed, nor was historic research performed to try to locate borings in areas with potential environmental impacts as part of our scope.

Fill was not encountered in the explorations; however, fill may be encountered locally, particularly in the developed portions of the tracts.

3.2 **GROUNDWATER**

Groundwater levels measured in test borings (during and after drilling) and observation wells ranged from about El. 270 to 322, corresponding to 5 to 20 ft below ground surface. Water levels observed in the borings shortly after drilling are typically influenced by drilling operations (water used for and rock coring), thus may not represent stabilized conditions. Groundwater levels will fluctuate with season, precipitation, and nearby construction activity. The piezometric level in the artesian-spring-fed pond is near El. 289.

4. Geotechnical Engineering Recommendations

4.1 GENERAL

This section provides recommendations for design of proposed structure foundations. Foundations should be designed and constructed in accordance with the Connecticut State Building Code, latest edition, applicable laws, regulations and ordinances, and the recommendations herein.

Expansive, dispersive, liquefiable, or collapsing soil and karst conditions were not encountered.

4.2 FOUNDATION DESIGN RECOMMENDATIONS

4.2.1 Foundation Types

Design structures to be supported on spread footings, ring foundations, or mat foundations bearing on glacial till, weathered bedrock, bedrock, or on Compacted Granular Fill placed following removal of the above-referenced materials. A summary of proposed structures, estimated existing and proposed grades, anticipated subgrade conditions, and recommended foundation type is provided on Table 4. Recommendations assume that earthwork related aspects of foundation construction (e.g., soil and bedrock excavation, proof-compaction, backfilling, and subgrade preparation) are conducted in accordance with the Construction Considerations section herein.

4.2.2 Spread Footing and Ring Foundation Design Criteria

- Design footings for the following maximum net allowable bearing pressures:
 - Compacted Granular Fill Subgrades: 2.5 tons per sq. ft (tsf).
 - Glacial Till (and Weathered Bedrock) Subgrades: 4 tsf.
 - Bedrock Subgrades: 10 tsf.
- For footings less than 3 ft in least lateral dimension, design for an allowable bearing pressure in tsf equal to the above values multiplied by B/3, where B is the footing width in ft.
- Allowable bearing pressures may be increased by 1/3 for transient loading conditions.
- Design for a minimum footing width of 18 in.
- Design footings to bear a minimum 3.5 ft below proposed exterior grade for frost protection.
- Locate footings to bear below a 1.5H:1V slope from the bottom of new or existing utility pipes, pits or other planned localized excavations.

4.2.3 Floor Slab Design Criteria

• Design lowest floor slabs as soil-supported slabs-on-grade bearing on a 12 in. thickness of Compacted Granular Fill or ¾ in. Crushed Stone separated from underlying soils using a geotextile filter fabric (6 oz/sy minimum).

- Design for an un-factored modulus of subgrade reaction (i.e., 1 ft by 1 ft plate modulus) of 125 lbs. per cu. in.
- Underslab drains should be provided for the Turbine Building (Area 14), Administration / Warehouse / Water Treatment Building (Area 15), Central Control Room (area 40), and other large floor slab or floor slabs that are sensitive to moisture. Underslab drains should consist of a 6-in. diameter perforated pipe surrounded by crushed stone and wrapped in a geotextile fabric.

4.2.4 Mat Foundation Design Criteria

- Design mats for the following maximum net allowable bearing pressures:
 - Compacted Granular Fill Subgrades: 2.5 tsf.
 - Glacial Till Subgrades: 4 tsf.
 - Bedrock Subgrades: 10 tsf.
- Design mats for the following moduli of subgrade reaction:
 - Compacted Granular Fill Subgrades: 35 pci.
 - Glacial Till (and Weathered Bedrock) Subgrades: 55 pci.
 - Bedrock Subgrades: 300 pci.
- Design mats to bear a minimum 3.5 ft below proposed exterior grade for frost protection.
- Position new mats to bear below a reference line drawn upward and outward on a 1.5H:1V slope from the bottom of adjacent exterior utilities or other underground structures.

4.2.5 Equipment Pad Design Criteria

Equipment pads should be designed using the recommendations for floor slabs with the exception that the thickness of the slab base course layer (Compacted Granular Fill or Crushed Stone) should be increased to 24 in. for partial frost protection or to 36 in. if full frost protection is required (assuming a 6 in. minimum pad thickness).

4.2.6 Structures Bearing on Multiple Subgrades

Structures which bear on more than one subgrade material type (i.e., Compacted Granular Fill and bedrock, Compacted Granular Fill and glacial till, glacial till and bedrock, or all three) should be designed using the lowest bearing pressure to reduce the potential for differential settlement.

Alternatively, a structural break could be provided at the change in subgrade. However, this would likely require additional explorations to refine the understanding of subsurface conditions at the structure of interest.

4.2.7 Foundation Concrete

Results of sulfate testing (sulfate concentration less than 150 mg/kg) indicate that sulfate resistant concrete is not required for concrete features (footings/foundations, ducts, etc.) in contact with the glacial till stratum.

4.3 SETTLEMENT

For the recommended allowable bearing pressures for soil bearing conditions, we estimate total settlement of footings and mats will be less than 1 in., and differential settlement between adjacent footings and within the mat will be less than ½ in. over a 30-ft distance where they bear on similar materials and less than ¾ in. over a 30-ft distance where they bear on different materials.

For the recommended allowable bearing pressures for the bedrock bearing condition, we estimate total and differential settlements will be less than ½ in. for footings and mats where they bear entirely on bedrock. Differential settlements of up to ¾ in. are possible where they bear on different materials.

These settlements will largely occur as load is applied (short term settlement).

4.4 SEISMIC DESIGN

The soils at the site are not considered liquefaction susceptible and seismically-induced settlement will not be significant during the design earthquake (less than ½ in.). In accordance with the Building Code, the seismic soil design criteria are as follows:

Site Class = D $S_s=0.229g$ $S_1=0.062g$

Shear wave velocity measurements in the field may permit use of site Class C for structures which bear entirely on glacial till or site Class B or A for structures which bear entirely on bedrock.

4.5 LATERAL PRESSURES

Building foundation walls should be designed in accordance with the applicable below-listed lateral pressures. These recommendations assume the height of the wall (H) is defined as the distance in feet between the top of the slab and the top of adjacent finished floor level (or exterior site grade) on the retained earth side of the wall, the wall is drained full height, and grade is level within a lateral distance H of the backside of wall.

- <u>Static Earth</u>: 55 pounds per cubic foot (pcf) equivalent fluid unit weight (EFUW) for restrained walls (designed to be pinned at top and bottom of wall); and 35 pcf EFUW for unrestrained walls (designed as a cantilevered retaining wall).
- <u>Seismic Earth</u>: 9.1H pounds per square foot (psf) at the top of the wall (distributed as an inverted triangle).

• <u>Surcharge</u>: 0.5 or 0.3 times the vertical surcharge pressure (psf), uniformly distributed over the height of the wall for restrained and unrestrained walls, respectively. It may be feasible to reduce surcharge pressures depending on the geometry of the surcharge relative to the geometry of the wall (particularly for footings behind the wall). Such reductions would be evaluated on a case by case basis.

For seismic loading conditions, walls should be designed to resist static plus seismic earth pressures. Surcharge loading does not need to be considered for seismic design unless the surcharge will be applied over an extended time.

For walls with upward sloping conditions on the retained earth side of the wall, static earth and seismic pressures should be increased by the following factors:

- <u>3H:1V backslope</u>: Multiply static earth and seismic values by 1.1.
- <u>2H:1V backslope</u>: Multiply static earth and seismic values by 1.4.

For example, for unrestrained walls with a 3H:1V backslope condition, the EFUW for calculating the static earth pressure would be 38.5 psf per foot depth (i.e., 35 times 1.1), and the magnitude of the top of the inverted triangle for calculating seismic lateral pressures would be 10.0H (i.e., 9.1H times 1.1).

Foundation walls designed as retaining walls should be designed for a factor of safety of 1.5 against sliding and overturning under static loading conditions and 1.2 under seismic loading conditions. Passive soil pressure should not be included as a resisting force.

For restrained walls, we recommend that the structural drawings in the construction contract document package include a note indicating the sequence of wall construction (and more importantly restrictions on its backfilling). Additionally, notes should be provided that indicate the section(s) of floor slab(s) and framing required to be in-place prior to placement of backfill above a certain elevation behind the wall, and that cautions against future penetrations in floor slabs or framing that may compromise the lateral stability of the wall without appropriate engineering.

4.6 **RESISTANCE TO LATERAL LOADS**

Lateral loads may be resisted using a combination of friction between bases of mats and footings and underlying bearing materials, and passive restraint on the sides of mats, footings, walls, and grade beams.

The resistance to lateral loads provided by friction should be calculated using a coefficient of friction (ultimate) equal to 0.5 for soil bearing conditions and 0.6 for bedrock bearing conditions.

The static net (passive minus active) lateral resistance provided by the soil surrounding mats, footings walls, and grade beams can be calculated using an equivalent fluid unit weight of 200 pcf. If the horizontal distance between adjacent elements is less than twice the height of the subject structural element, reduce the passive pressure proportionately to the distance (i.e., full pressure at twice the height away) to accommodate interaction of the elements.

4.7 RESISTANCE TO UPLIFT LOADS

Resistance to uplift loads may be provided by the weight of the structure plus the wedge of soil above the footing or mat rising outward and upward on a 2V:1H slope to ground surface. The unit weight of the soil should be assumed as 120 pounds per cubic foot (pcf) for Compacted Granular Fill and 125 pcf for glacial till. If additional uplift resistance is required, rock anchors could be considered.

4.8 VAPOR RETARDERS, WATERPROOFING, DAMPPROOFING, AND INSULATION

Where finished floor elevations for proposed buildings will be at or above planned adjacent site grades (and not near adjacent cut slopes), permanent foundation or underslab drainage systems are not necessary, and waterproofing of ground floor slabs is also not considered necessary. Foundation walls should be insulated and damp-proofed in accordance with the Building Code.

We recommend that a moisture vapor retarder membrane be provided directly beneath ground floor slabs in occupied and finished spaces of the new structures, in accordance with ACI 302.2R-06, especially if humidity control is desired or relatively vapor-tight coverings will be used on the floor. Water vapor pressures, that can adversely impact highly vapor-tight or vapor-sensitive floor coverings, or adversely affect interior space humidity, can be present even when groundwater is at significant depths. An example retarder would be a 10-mil virgin HDPE membrane having a water permeance of 0.3 perms or lower (this recommendation does not consider requirements for protection of occupied spaces from radon or other environmental vapors or contaminants). The slab concrete design and construction procedures should consider impacts of the presence of the vapor retarder.

Walls and slabs for below-grade pits or similar structures where located in structures that will be underdrained should be waterproofed and designed for full hydrostatic pressure.

4.9 RADON MITIGATION

The "Indoor Radon Potential Map of Connecticut", prepared by the CT DEEP, dated 1997, indicates the site is located within a "moderate-high" area of radon potential. Moderate-High zones are defined as areas where 33% of the tested homes in that area have basement air radon levels greater than or equal to 4.0 picocuries per liter of air (pCi/l), respectively. Given the radon potential, we recommend the project team assess if a radon protection system is warranted (considering occupancy, ventilation, risk, etc.).

4.10 EXTERIOR GRADING

Where possible, surface runoff should be directed away from structures by sloping grades downward away from the structures and providing low permeability surface finish within 10 ft of exterior walls. Low permeability surface finishes may include bituminous pavements, concrete sidewalks, or a 6-in. minimum thickness of low-permeability Fill.

4.11 UTILITES

Utility invert elevations are not available at this time.

Utilities beneath and adjacent to slabs and pads should be located above foundation bearing levels or above a reference line drawn downward and away from the lower edge of the soil-supported foundation element at a 1.5H:1V slope. For mats, utilities should be installed in conduits or corridors within the mat.

Utilities may be soil-supported (with suitable bedding) bearing on Glacial Till or on Compacted Granular Fill. Where encountered, bedrock should be removed to at least 12 in. below utility invert elevations to limit "hard" spots and potential cracking of utilities. Subgrades should be proof-compacted prior to placement of bedding materials. Soft or weaving soils observed during proof-compaction should be replaced with compacted Granular Fill.

The glacial till is not corrosive to metal based on the corrosion potential laboratory test results.

5. SITE DEVELOPMENT RECOMMENDATIONS

5.1 **RETAINING WALLS**

Foundation design criteria apply to the site retaining walls, with the exception that walls should be designed with no passive resistance.

A mechanically stabilized earth wall appears feasible for the utility switchyard retaining wall. If bedrock is encountered in the cut, a rock slope may be feasible for the lower portion of the retaining wall. Due to limited space behind the wall, temporary earth retaining systems (i.e., temporary soil nail wall) may be required for construction of an MSE wall near the existing cemetery (behind the north-south segment of the wall) and the property line. Alternatively, a permanent soil nail wall or a soldier pile and lagging wall appear feasible, and would have the added benefit of requiring less working area behind the wall.

A mechanically stabilized earth wall appears feasible for the power island retaining wall. The wall will need to be designed to include the 15 to 35-ft-high earth slope behind the wall and traffic on the perimeter road behind the wall.

We recommend that swales constructed using low permeability materials be provided behind retaining walls to divert surface water runoff laterally away from the walls.

5.2 SLOPES

Cut slopes up to 20 ft and fill slopes up to 35 ft are proposed. The preliminary site grading plan indicates slopes constructed at 3H:1V or flatter.

Seepage breakout should be anticipated in cut slopes (and possibly in some fill slopes), and may require mitigation using drains installed at the top, bottom, and/or mid-height of the slope depending on the height of the slope. These slopes may also require surficial stabilization using turf mats or armoring. Final selection of the stabilization approach would be handled on a case by case basis. Additionally, flatter slopes may be warranted, particularly for north facing slopes, to reduce the potential for sloughing due freeze-thaw effects. Slopes should be vegetated when possible for erosion protection.

Slopes steeper than 3H:1V should be assessed by a geotechnical engineer, and may require design by a geotechnical engineer. Such slopes may require geogrid reinforcement, drainage, or armoring with moderate to heavy rip rap materials depending on slope height, slope inclination, slope type (cut or fill), orientation of slope face, potential for seepage, and proximity of improvements (i.e. structures, roadways, etc.) behind slope.

The perimeter road located at the top of the fill slopes along the northwestern and northeastern side of the power island includes storm water structures. We recommend that storm water structures and pipes at the top of the slope (CB-9 through CB-14 [northeastern side] and CB-6 to CB-8 and CB-14 [northwestern side]) be watertight (such as fused HDPE) to prevent storm water from infiltrating into the earth slopes. Storm water system is shown on the drawing in Appendix A.

5.3 IMPOUNDMENT EARTH STRUCTURES

Earth impoundments are planned for the fuel oil berm (Area 46) around the fuel oil tank (Area 45) and for the sedimentation pond (Area 30). Slopes should be:

- 2.5H:1V or flatter for dry slopes (fuel oil berm); or
- 3H:1V or flatter for wet slopes (sedimentation pond).

The top of the impoundment should be a minimum of 5 ft wide, or wider if vehicular access is needed. Impoundments may be constructed using low-permeable fill. Penetrations through earth structures should be sealed with clay.

5.4 STORM WATER INFILTRATION

Hydraulic conductivity of fill that is comprised of glacial till (excavated from the site) is expected to be similar to the hydraulic conductivity measured in the glacial till.

In-situ hydraulic conductivity will vary in the field with variation in soil gradation, fabric, density, saturation, and other factors. For design, a factor of safety should be applied to account for variation in subsurface conditions, changes in hydraulic conductivity over time, engineering application, etc. The Connecticut Department of Energy and Environmental Protection (CT DEEP) recommends a factor of safety of 2 be used for storm water infiltration.

5.5 PAVEMENT RECOMMENDATIONS

Pavement recommendations are based upon our local experience, subsurface conditions, HS-20 loading, and reference CONNDOT Form 816. Secondary roads will be unpaved. The recommendations assume a 20-year design life; that a stable, firm subgrade is achieved beneath the base and subbase courses; subgrades are prepared as recommended in the Construction Considerations section of this report; and that standard CONNDOT Form 816 materials are used.

Pavement maintenance (crack sealing, etc.) will be required. Design assumes some risk of misalignment over time due to frost effects, as is normal local practice. To eliminate frost heave, a 3.5 ft thickness of non-frost susceptible material would be required, which is not commonly provided and would result in additional cost.

5.5.1 Flexible Pavement Design

		Thickness (i	n.)		
	Parking	Standard Heavy Duty		Specification	
Material	Lot	Roads	Roads	(CONNDOT Form 816)	
Bituminous Top Course	1.5 in.	1.5 in.	1.5 in.	M.04.02 Class 2	
Bituminous Binder Course	1.5 in.	2.5 in.	3.5 in.	M.04.02 Class 1	
Processed Aggregate Base	4 in.	6 in.	8 in.	M.05.01	
Compacted Gravel Subbase	8 in.	8 in.	8 in.	M.02.06 Grading B	

We recommend flexible pavement for roadways and parking lots.

5.5.2 Rigid Pavement Design

We recommend rigid pavement in the Ammonia Unloading Area (Area 24), Fuel Oil Unloading Area (Area 44) and other chemical unloading areas.

	Thickness (in.)	Specification
		(CONNDOT Form 816)
Material	Unloading Area	
Reinforced Concrete	8 in.	
Processed Aggregate Base	8 in.	M.05.01
Compacted Gravel Subbase	8 in.	M.02.06 Grading B

5.5.3 Pavement Drainage

Pavement design should consider that some of the on-site glacial till soils contain 20 to 45 percent fines, which would be frost susceptible. To reduce the potential for freezing of trapped water within the aggregate base course, the pavement subgrade should have a minimum transverse slope of at least 2 percent to provide drainage and pavement drains located along the outer edges of roadways and spaced at 50 ft intervals for parking lots.

6. **Construction Considerations**

This section provides comments related to foundation construction, earthwork and other geotechnical aspects of the project. It will aid those responsible for the preparation of contract plans and specifications and those involved with construction monitoring. Contractors must evaluate potential construction problems on the basis of their own knowledge and experience in the area and on the basis of similar localities, taking into account their own proposed construction methods and procedures.

6.1 EXCAVATION

Excavations up to 25 to 30 ft deep are proposed to reach subgrade. Excavation will be in glacial till and bedrock.

6.1.1 Soil Excavation

Conventional heavy construction equipment appears practical for excavation of overburden soils, and portions of the weathered rock. Cobbles and boulders will be encountered at the ground surface and in the glacial till.

Open cuts appear feasible. Excavation geometry should conform to OSHA excavation regulations contained in 29 CFR Part 1926, latest revision. Temporary soil slopes of 1.5H:1V, or flatter, appear suitable but should be confirmed during construction based on conditions at the time of excavation. Near-vertical temporary cuts in bedrock may be planned.

Depending on staging/sequencing construction, excavation support systems may be needed.

In areas where significant fill slopes are planned and existing grades slope steeper than 2.5H:1V, excavation subgrades should be prepared in "steps" for slope stability purposes. The step geometry should be assessed on a case by case basis.

6.1.2 Bedrock excavation

Hoe ramming and ripping may be feasible for shallow rock cuts but will not be feasible for mass rock excavation.

Blasting to remove bedrock will be required to establish proposed subgrades, and will need to be conducted in a controlled manner consistent with industry standards to limit over blasting, fly rock, and vibrations.

Pre-blast condition surveys should be conducted on structures of concern and structures located within 250 ft of the blast locations or as otherwise required under local ordinances/permits, if more stringent.

Perimeter control measures (e.g., line drilling, pre-splitting, or cushion blasting) are required where permanent rock slopes and steepened temporary rock slopes are planned. The purpose of these measures is to protect the integrity of the rock mass to remain.

To protect bearing surfaces and to reduce loss of integrity and unnecessary rock excavation caused by over blasting, we recommend that the maximum drill hole depth be limited to 2 ft below foundation and equipment pad bearing levels and 4 ft below slab and utilities subgrades.

Conventional blasting mats should be used during blasting to prevent fly rock. The Blasting Contractor should also be required to obtain all necessary local, state, and federal permits prior to blasting and should have a current license in the State of Connecticut.

Bedrock should be fractured or removed to a depth of at least:

- 12 in below bottom of foundations (to facilitate crushed stone placement) and utilities;
- 18 in. below pavement subgrade elevations to reduce the potential for reflective cracking of pavements;
- 18 in. below bottom of floor slabs; and
- 24 in. below the bottom of equipment pads.

Vibration monitoring during blasting should be conducted at and adjacent to structures of concern or between the blast and structure of concern (i.e. property line). We recommend that the Blasting Contractor be required to design blast rounds to maintain vibrations measured on the ground surface adjacent to structures of concern below the industry standards for vibrations as a function of frequency set forth in the United States Bureau of Mines Report of Investigation 8507. We further recommend that Threshold Values equal to 75% of the Limiting Value be adopted. The Blasting Contractor should be required to revisit its blasting plan with the Geotechnical Engineer should vibrations exceed the Threshold Values.

Rock excavation should be observed by a qualified representative of the Owner to assess if bedrock excavation is being conducted in accordance with the contract documents and the contractor's approved submittals.

To measure rock removal quantities for payment, we recommend performing a top of rock survey before rock removal commences, and using predetermined limits and methods to calculate the volume.

6.2 SUBGRADE PREPARATION

This section provides recommendations for preparation of subgrades for foundations, slabs, pavements, and general site. Subgrades should be observed in the field by the geotechnical engineer to confirm bearing conditions. Use of the recommended allowable bearing pressures is contingent upon observation to confirm and document that field conditions are consistent with the assumptions and design concept herein.

6.2.1 Site Preparation

Site preparation within the footprint of the proposed development should broadly include removal of the following:

- Vegetation, roots, and stumps;
- Stone walls;

- Topsoil;
- Subsoil (at a minimum in building, structure, retaining wall, and slope areas; may be feasible to leave in-place below mass fills in pavement areas and landscaped areas);
- Fill soil;
- Unsuitable materials;
- Structures and foundations; and
- Subsurface utilities.

Upon removal of the above materials, subgrades should be re-compacted, and excavations backfilled and compacted in engineered lifts to subgrades using the materials indicated herein.

6.2.2 Bedrock Bearing Foundations

Bedrock bearing foundations should be constructed on a 12-in. thick layer of ¾ in. crushed stone placed over the underlying bedrock. Excavation of rock should be controlled to reduce overbreak at bearing surfaces, such as can occur when blast holes are loaded too deeply. Where overbreak extends deeper than 2 ft below the bearing surface or overburden soils are present, disturbed and fractured rock and overburden soils should be removed and replaced with lean concrete up to the bottom of the crushed stone layer. Rock bearing surfaces should be inclined flatter than 4H:1V.

Survey elevation control will be required during blast hole drilling and during rock excavation to avoid overblasting the rock or excavating too deep below footings. Test sections should be blasted and excavated at the beginning of construction to aid in determining blast design and excavation methods and evaluate overbreak effects.

6.2.3 Soil Bearing (and Weathered Bedrock) Bearing Foundations

Subgrades that consist of soil or weathered bedrock should be proof-compacted with a vibratory plate compactor with a minimum 5,000 lbs. centrifugal force. Soft or yielding materials observed during proof-compaction should be replaced with Compacted Granular Fill. Following proof-compaction, subgrades should be protected by placing a 6 in. minimum thickness of ¾ in. size crushed stone (fully wrapped in geotextile) or a 3-in. thick concrete mudmat. Boulders that project above subgrades will need to be removed, and backfilled with Compacted Granular Fill. Large boulders may be partially removed using a hoe ram. Partial removals should extend a minimum of 6 in. below subgrades.

Unsuitable materials, where present below the bearing elevation, require excavation and replacement with suitable backfill within the Zone of Influence (ZOI) of the foundation element. The ZOI is defined by lines extending 2 ft laterally from the outside lower edges of the foundation element and down a 1H:1V slope to the top of suitable bearing materials (i.e., Glacial Till, weathered Bedrock). Alternatively, the footings can be lowered to bear on the exposed suitable bearing materials or can be supported on lean concrete placed following excavation of unsuitable materials. Where the lean concrete block approach is used, the block should: 1) be formed near-vertically, and 2) extend a minimum of 1 ft beyond the edges of the footing.

6.2.4 Floor Slabs and Equipment Pads

Topsoil, fill, and other unsuitable materials should be removed beneath the slabs prior to placing Compacted Granular Fill. The subgrade should be proof-compacted with at least four passes of a minimum 10-ton vibratory roller until firm. If soft or unsuitable material is encountered at the exposed subgrade, remove the unsuitable material and then backfill with Compacted Granular Fill until a firm and stable surface is achieved. Boulders that project above subgrades will need to be removed, and backfilled with Compacted Granular Fill. Large boulders may be partially removed using a hoe ram. Partial removals should extend a minimum of 12 in. below subgrades. Bedrock and/or over-blasted rock may remain in-place below a depth of 12 in. beneath the slab. Up to 2 ft of over-blasted rock may be left in-place beneath the slab subgrade provided the surface is re-compacted with several passes of a 10-ton vibratory roller, and then choked with suitable material.

6.2.5 Pavements

If a cut is necessary to reach the subbase subgrade elevation, the exposed subgrade should be proof-rolled with at least six passes of a heavy drum vibratory roller (25,000 lbs dynamic force). Soft or weaving areas exposed by the proof-rolling should be excavated to firm material or to a maximum depth of 18 in. below the pavement subbase elevation, and replaced with compacted layers of Common Fill or Compacted Granular Fill. In fill areas, unsuitable materials should be removed and the subgrade should be proof-rolled as noted above. Common Fill or Compacted Granular Fill should then be used as fill to reach the proposed subbase elevation.

6.3 DEWATERING

Final excavation, subgrade preparation, filling, foundation construction, and utility construction should be conducted "in the dry". Since most excavations will be in low permeability soils and bedrock, we anticipate that temporary construction dewatering activities will likely be minor, and largely related to control of precipitation that falls on excavations and surface water runoff into excavations. Seepage of groundwater through fissures in the bedrock should also be anticipated.

We anticipate that dewatering can be accomplished by open pumping from sumps, temporary ditches, and trenches within and around excavations. Dewatering systems should be designed and operated to prevent pumping of fines, disturbance to subgrades and undermining of previous construction. Excavations should be performed to direct accumulated water away from work areas to sump locations and away from the excavation itself. Subgrades which become disturbed due to the presence of water should be re-excavated and stabilized. Stabilization methods may include placement of crushed stone with filter fabric with approval of the Geotechnical Engineer.

6.4 BACKFILL MATERIALS

6.4.1 Compacted Granular Fill

Compacted Granular Fill is recommended for the following areas:

- to replace unsuitable soil under footings, floor slabs, mats, and utilities; and
- to provide drainage against foundation walls or retaining walls.

Compacted Granular Fill should be placed in maximum 12-in. thick lifts and compacted to at least 95 percent of the maximum dry density determined by ASTM D1557. In confined areas, the lift thickness should be reduced to 6-in. maximum. Compaction equipment in confined areas may consist of hand-guided vibratory equipment or mechanical tampers.

Compacted Granular Fill should consist of sandy gravel or gravelly sand, free of organic material, environmental contaminants, snow, ice, frozen soil, or other unsuitable material, and be well-graded within the following limits:

U.S. Standard	Percent Finer
Sieve Size	by Weight
6 in. ⁽¹⁾	100
No. 4	30-80
No. 40	10-50
No. 200 ⁽²⁾	0-8

- (1) Use a maximum 3-in. size for fill placed within 6 in. of concrete slabs or footings, and within 3 ft of foundation walls.
- (2) For Compacted Granular Fill placed as part of perimeter drainage systems behind foundation walls or retaining walls, the maximum percent passing the No. 200 sieve should be 5% unless otherwise approved by the Geotechnical Engineer.

6.4.2 Crushed Stone Fill

Crushed stone is recommended for the following areas:

- surrounding the drain pipes for foundation walls and retaining walls;
- surrounding the drain pipes for pavement drains;
- to provide drainage against foundation walls or retaining walls; and
- footing bearing surface protection below groundwater level (6 in. thick on geotextile).

Crushed stone should consist of No. 6 crushed stone (3/4-in. size) in accordance with Connecticut Department of Transportation Form 816, M.01.01.

6.4.3 Common Fill

Common fill may be used for raising grades below pavement sections and landscaped areas. Common Fill should consist of mineral sandy soil, free from organic matter, plastic, metal, wood, ice, snow, debris, recycled materials, or other deleterious material and should have the characteristic that it can be readily placed and compacted. Common Fill imported to the site should have a maximum of 80 percent passing the No. 4 sieve and a maximum of 30 percent finer than the No. 200 sieve. The maximum particle size should be the smaller of 2/3 the lift thickness or 6 in. Silty common fill soils will require moisture control during placement and compaction.

6.4.4 Low-Permeable Fill

Low permeable fill is recommended as the final 12 in. thickness of fill at ground surface above foundation wall backfill except in areas where pavements or other structures are constructed at ground surface. Low-permeable fill should consist of common fill with a minimum 20 percent passing a No. 200 sieve.

6.4.5 Geotextile

A filtration-type geotextile is recommended between crushed stone and surrounding soil. Geotextile should consist of Tencate Mirafi 160N or equivalent.

6.4.6 Compaction

Recommended compaction requirements are as follow:

<u>Location</u>	Minimum Compaction Requirements
Beneath and around footings, under slabs	95%
Parking, roadways	92% up to 3 ft below finished grade 95% in the upper 3 ft
Landscaped areas	90%

Minimum compaction requirements refer to percentages of the maximum dry density determined in accordance with ASTM D1557C.

6.5 USE OF ON-SITE EXCAVATED SOIL AND ROCK

6.5.1 Soils

Excavation will be in topsoil, subsoil, potentially fill soils locally, glacial till, or bedrock. Topsoil may be reused as topsoil, subject to meeting nutrient requirements, and as Common Fill in landscaped areas.

The subsoil is not suitable for re-use as Compacted Granular Fill due to its high silt content. Subsoil may be reused in landscaped areas as Common Fill or where at least 3 ft below pavements.

Fill soils, if encountered, will need to be evaluated on a case by case basis for reuse.

Although the Glacial Till may not meet the specifications for Compacted Granular Fill, it may be technically feasible from a geotechnical perspective to use it as such during favorable weather and where free-draining material is not required, provided it can be placed to the specified degree of compaction and cobbles and boulders are removed prior to reuse. The Glacial Till will be difficult to impossible to reuse if it becomes wet. As such, careful moisture control will be

required to achieve satisfactory compaction. Wet materials will need to be dried, blended with other materials, or amended with lime stabilization prior to placement and compaction, which can result in delays particularly during relatively cold or wet weather. Rainfall or melting snow can readily saturate stockpiled soils. Providing drainage away from and/or covering a stockpile can help limit this potential problem. The Glacial Till will require considerable drying time if left in an unprotected stockpile for an extended period of time. Screening and removal of oversized materials (i.e., 2/3 the lift thickness or 6-in.) will be necessary. Where Glacial Till is placed in fills exceeding 5 ft, the material will require placement dry of its optimum moisture content to limit the potential for post-placement settlement.

6.5.2 Bedrock, Cobbles, and Boulders

Blast rock, cobbles, and boulders may be reused as compacted rock fill below footings and slabs or for general site grade raises. Blast Rock Fill may be placed and compacted above the prepared excavation subgrade to within 5 ft of footing subgrades, utility inverts, and finished site grades. Above the Blast Rock Fill, Processed Rock Fill may be placed and compacted to footing and slab bearing levels. Geotextile filter fabric is required to be placed over the Processed Blast Rock Fill prior to placing other soil fill materials. Suitable choking material(s) are required to be placed over Blast Rock Fill prior to placing other soil fill materials.

Blast Rock Fill could consist of well-graded unprocessed or processed on-site, angular blast rock. Individual rocks in Blast Rock Fill should have a largest dimension not exceeding approximately 15 in. Blast Rock Fill must be substantially free of soil-sized material. Blast Rock Fill should be placed in layers not exceeding 20 in. in loose lift measure and compacted by a minimum of four passes of heavy self-propelled vibratory equipment imparting a dynamic force of at least 40,000 lbs. The development of proper construction specifications and monitoring of the fill placement will be important to the satisfactory performance of compacted Blast Rock Fill.

Blast rock may be used on-site as Blast Rock Fill, provide the blasting program (i.e., blast hole diameter, spacing and loading) is carefully planned to obtain the specified gradation. Rocks larger than 15 in. must be segregated and removed prior to use as Blast Rock Fill.

Processed Rock Fill should consist of well-graded rock with a largest particle size of 1.5 in. It is anticipated that the Processed Rock Fill will consist of blast rock processed by crushing on-site.

Processed rock fill may also be mixed with excavated Glacial Till soil to reduce the fines fraction and increase the coarse fraction (of the Glacial Till) to facilitate ease of placement and compaction and increase reuse of the silty Glacial Till.

6.6 EARTHWORK DURING FREEZING WEATHER

Precautions should be taken if work takes place while temperatures are below freezing. Frozen soil or soil containing snow or ice should not be used as compacted fill. Placement of fill should not be conducted when air temperatures are below freezing. Soil bearing surfaces below slabs and foundations must be protected against freezing, before and after placement of concrete. Frost protection should be provided as soon as possible after foundations are constructed.

Fill should not be placed on snow, ice or frozen subgrades. At the end of each day's operations, the last lift of placed fill should be rolled by a smooth-wheeled roller to eliminate ridges of uncompacted soil to aid runoff and drainage. Silty site soils are susceptible to disturbance by freezing, especially in the presence of water and traffic.

6.7 ABANDONING WELLS

The five ground water observation wells installed during the subsurface explorations and the 160-ft deep water well installed circa 2010 should be abandoned in accordance with CT DEEP requirements. Abandonment per CTDEP requirements is intended to protect groundwater.

7. Recommendations for Future Geotechnical Services

7.1 ADDITIONAL SUBSURFACE EXPLORATIONS FOR ESTIMATING ROCK EXCAVATION

Rock excavation is expected; we recommend additional borings be performed in cut areas (central portion of power island) to better define rock excavation quantities and attempt to balance earthwork cut and fill. Current boring spacing is too large to accurately estimate rock excavation quantity. We recommend borings be spaced about 100 ft apart and advanced to a depth of 5 feet below the proposed finished grade and core a minimum of 5 ft of rock where rock is encountered (to determine if the rock is bedrock or a boulder).

7.2 ADDITIONAL SUBSURFACE EXPLORATIONS FOR FOUNDATION DESIGN

Borings were generally widely spaced and no borings were performed along the proposed retaining walls on Tract One and Tract Two. We recommend additional borings be performed along retaining walls and in the footprint of the power island and switchyards, to assist with defining the limits of glacial till and bedrock subgrade for each structure (and determine location of subgrade changes). In cut areas (foundations likely to bear on rock), borings should be advanced to a depth of 5 feet below the proposed finished grade and core a minimum of 5 ft of rock where rock is encountered (to determine if the rock is bedrock or a boulder). In fill areas (foundations likely to bear on soil), borings should be advanced to a depth of 5 ft of rock where rock is encountered (to determine if the rock is encountered (to determine if the rock is bedrock or a boulder).

7.3 ADDITIONAL SUBSURFACE INVESTIGATIONS AND SLOPE STABILITY ANALYSIS

We recommend additional borings be performed along proposed permanent soil cut slopes to evaluate slope stability, drainage, safety measures, and construction considerations. Currently, no borings are located at the proposed soil cut slope in the southern portion of Tract One (south of power island) or southwest of the utility switchyard (on Tract Two). For soil cut slopes greater than 10 ft high, we recommend that borings be performed along the slope at about 100 ft spacing and the borings extend to a depth of about twice the cut height (below existing grade) and core a minimum of 5 ft of rock where rock is encountered (to determine if the rock is bedrock or a boulder).

We recommend additional borings be performed along proposed permanent soil fill slopes to evaluate slope stability (considering structures and earth structures near the crest of the slope), drainage, safety measures, and construction considerations. Currently, no borings are located at the proposed soil fill slopes in the northern and western portions of Tract One (north and west of the power island). For soil fill slopes greater than 10 ft high, we recommend that borings be performed along the slope at about 100 ft spacing and the borings extend to a depth of about the fill height (below existing grade) and core a minimum of 5 ft of rock where rock is encountered (to determine if the rock is bedrock or a boulder).

Where rock cuts are planned, we recommend additional borings be performed along proposed permanent rock cut slopes to evaluate slope stability, the need for fall zones and other safety measures, and construction considerations. Where rock cut slopes are planned, we recommend that borings be performed along the slope at about 100 ft spacing and the borings extend to a depth of the rock cut plus a minimum of 5 ft. Laboratory testing on rock specimens may also be recommend.

7.4 SHEAR WAVE VELOCITY MEASUREMENTS

Shear wave velocity measurements were beyond the scope of our work. Shear wave velocity measurements in the field may permit use of site Class C for structures which bear entirely on glacial till or site Class B or A for structures which bear entirely on bedrock. Use of alternate Site Class may reduce the seismic demand of the structure and reduce the cost of construction for those structures.

7.5 COMPRESSION WAVE VELOCITY MEASUREMENTS

Compression wave velocity measurements were beyond the scope of our work. Compression wave velocity measurements in the field can provide data to assist with determining if the rock is rippable or if blasting will be required.

7.6 ALTERNATE FOUNDATION RECOMMENDATIONS

Should other foundations (piles, caissons, rock anchor, etc.) be required, we can provide recommendations for alternate foundation types once the load is available. Additional borings may be recommended for alternate foundations.

7.7 CONTRACT DOCUMENTS

We recommend that Haley & Aldrich prepare specifications for geotechnical aspects of the proposed construction including earthwork, dewatering, controlled blasting and review geotechnical aspects of the final plans and specifications prepared by others in order to confirm that our recommendations were interpreted and implemented as intended.

7.8 SUBMITTAL, SPECIFICATION, AND PLAN REVIEW

We recommend that Haley & Aldrich review submittals and design documents prepared by the earthwork and blasting contractors for general compliance with industry procedures and project requirements.

7.9 CONSTRUCTION MONITORING

The recommendations contained in this report are based on known and predictable behavior of properly engineered and constructed foundations and other facilities. We recommend that personnel qualified by training and experience perform full-time field observations of the geotechnical aspects of construction, including:

- removal of unsuitable materials;
- mass earthwork excavation and filling;
- processing and preparation of excavated soil and rock for reuse;
- construction of temporary and permanent soil and bedrock slopes;
- preparation of foundation bearing surfaces;
- preparation of pavement subgrades;
- installation of foundation and pavement drainage systems;
- placement and compaction of crushed stone and granular fill (including field compaction control testing);

- well abandonment; and
- blasting and associated vibration monitoring.

It is recommended that Haley & Aldrich be retained to perform field observations of the geotechnical aspects of construction based on familiarity with the subsurface conditions, design concepts, and specifications. Field observations are intended to confirm compliance with the design concepts and specifications and to allow design changes in the event that subsurface conditions differ from those anticipated prior to construction.

G:\43434_NTE Energy - Killingly Energy Center\Confidential\000\Deliverables - final report revised - 2016-0700\2016-0715-HAI- Killingly_Energy_Center F.docx

Table 1 Summary of Subsurface Explorations Killingly Energy Center Killingly, Connecticut Project Number: 43434-000

BORING	GROUND SURFACE	NORTHING	EASTING	EXPLORATION TYPE	TOTAL DEPTH		THICKNESS OF STRATA (FT))	BEDROCH	BEDROCK LEVEL (FT)		R LEVEL (FT)	NOTES
NO.	ELEVATION	NORTHING	EASTING	EXPLORATION TYPE	(FT)	TOPSOIL	SUBSOIL	GLACIAL TILL	WEATHERED BEDROCK	DEPTH	ELEVATION	DEPTH	ELEVATION	NOTES
B-01(OW)	277.5	876663.3	1227059.1	boring, well, permeability	20.0	1.5	1.0	17.5			< 257.5	7.3	270.3	Terminated at planned depth (20 feet).
B-02	301.4	876440.6	1227007.8	boring	21.0	0.8	0.6	14.6		16.0	285.4	11.0	290.4	
B-03(OW)	299.6	876278.6	1226824.1	boring, well	26.0	0.4	2.6	17.5		20.5	279.1	20.3	279.3	
B-04 ⁶	317.9	876250.7	1227065.6	boring, permeability	16.0	0.5	1.5	9.0		11.0	306.9	8.4	309.5	
B-05	308.9	876214.3	1227178.0	boring	28.5	0.5	1.5	21.5		23.5	285.4	8.0	300.9	
B-06	324.4	876135.9	1226980.6	boring, permeability	8.0	0.5	0.5	2.0		3.0	321.4			
B-07(OW)	345.3	875991.4	1227082.8	boring, well	10.5	0.4	0.6	4.5		5.5	339.8			
B-08 ⁶	299.5	876108.5	1226670.1	boring	20.5	0.7	3.8	11.0		15.5	284.0			
B-09	320.9	875968.8	1226776.7	boring										Omitted per Mott MacDonald.
B-10(OW)	322.8	875909.5	1226821.1	boring, well, permeability	22.4	0.5	1.5	13.0	3.0	18.0	304.8	14.6	308.2	
B-011 ⁶	312.3	876073.5	1227369.9	boring, permeability	28.0	1.5	2.0	18.5		22.0	290.3	NR	NR	Offset 26' north and 83' east per Mott MacDonald.
B-12(OW)	330.5	875928.2	1227230.1	boring, well	29.0	0.6	1.0	22.4		24.0	306.5	9.0	321.5	
B-13	343.8	875733.8	1227120.0	boring	28.0	0.6	1.4	16.0		18.0	325.8	NR	NR	
B-14	343.4	875647.1	1227443.2	boring	22.0	0.7	0.5	17.8	3.0		<321.4			Terminated beyond planned depth (20 feet).
B-15 ⁶	321.4	876020.5	1227764.4	boring	21.0	1.2	1.3	3.3			<300.4			Offset 65' northwest to avoid house. Cored 15 feet (cobbles and boulders).
B-16	310.9	875521.0	1227859.9	boring	25.0	0.6	4.4	15.0		20.0	290.9	4.5	306.4	
B-17	325.7	875296.1	1227766.5	boring	30.0	2.0		28.0			<295.7			Cored 4.5 feet (cobbles and boulders).
B-18	310.8	875720.5	1227885.2	boring	30.0	0.7	3.0	14.3		18.0	292.8	7.4	303.4	
E-01	323.9	876206.3	1227019.1	soil resistivity										
E-02	318.7	876022.7	1227309.9	soil resistivity										
E-03	314.2	875431.9	1227820.2	soil resistivity										

NOTES:

1. ">" indicates greater than

"<" indicates less than

2. Elevations are in feet and reference North American Vertical Datum of 1988 (NAVD88).

3. Refer to test boring logs for detailed soil descriptions.

4. Fill thickness includes topsoil.

5. Exploration locations staked by GM2 Associates on 16 and 17 May.

6. Offset noted on boring log

"--" indicates not encountered "NR" indicates data not reported Table 2 Summary of Geotechnical Laboratory Test Results Killingly Energy Center Killingly, Connecticut Project Number: 43434-000

					Moisture	USCS	Sieve Analysis		
Boring	Sample	Depth	Sample	Strata	Content	Symbol	Gravel	Sand	Fines
Identification	Identification	(feet)	Туре		(percent)		(percent)	(percent)	(percent)
B-4	S2	2-4	SPT	Glacial Till	6.1	SM	37.3	40.7	22.0
B-10	S2	2-4	SPT	Glacial Till	11.1	SM	7.5	48.8	43.7
B-12	S4	7-9	SPT	Glacial Till	11.2	SM	10.4	46.7	42.9
B-13	S4	7-9	SPT	Glacial Till	8.8	SM	29.3	41.3	29.4
			Method (genei	ral accordance)>	ASTM D2216		ASTM D422		

NOTES:

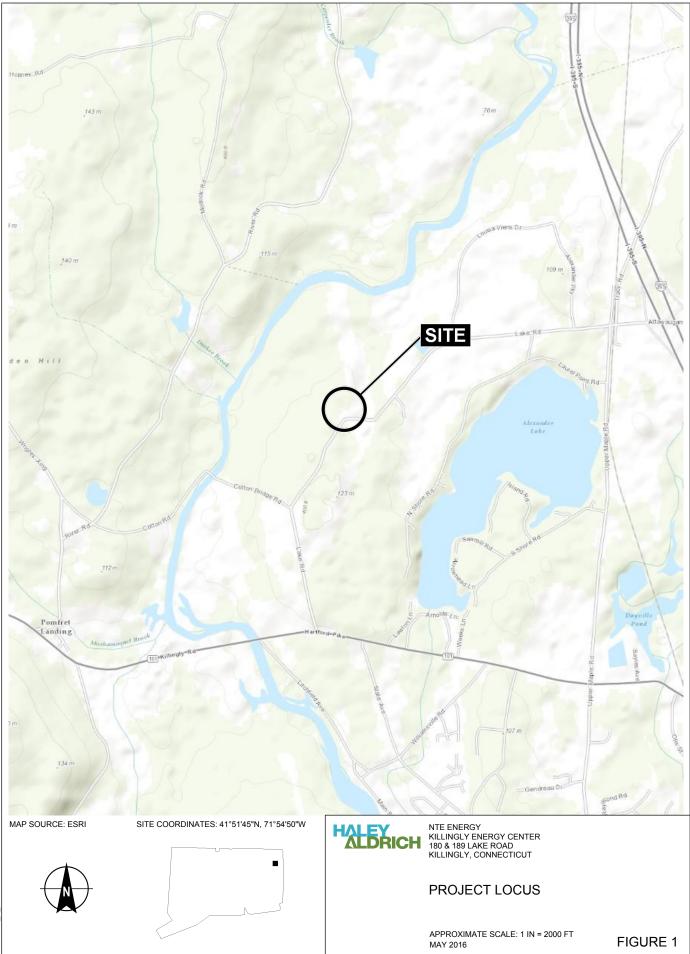
1. Refer to laboratory test results in Appendix for additional information.

Table 3 Summary of Corrosion Potential Laboratory Test Results Killingly Energy Center Killingly, Connecticut Project Number: 43434-000

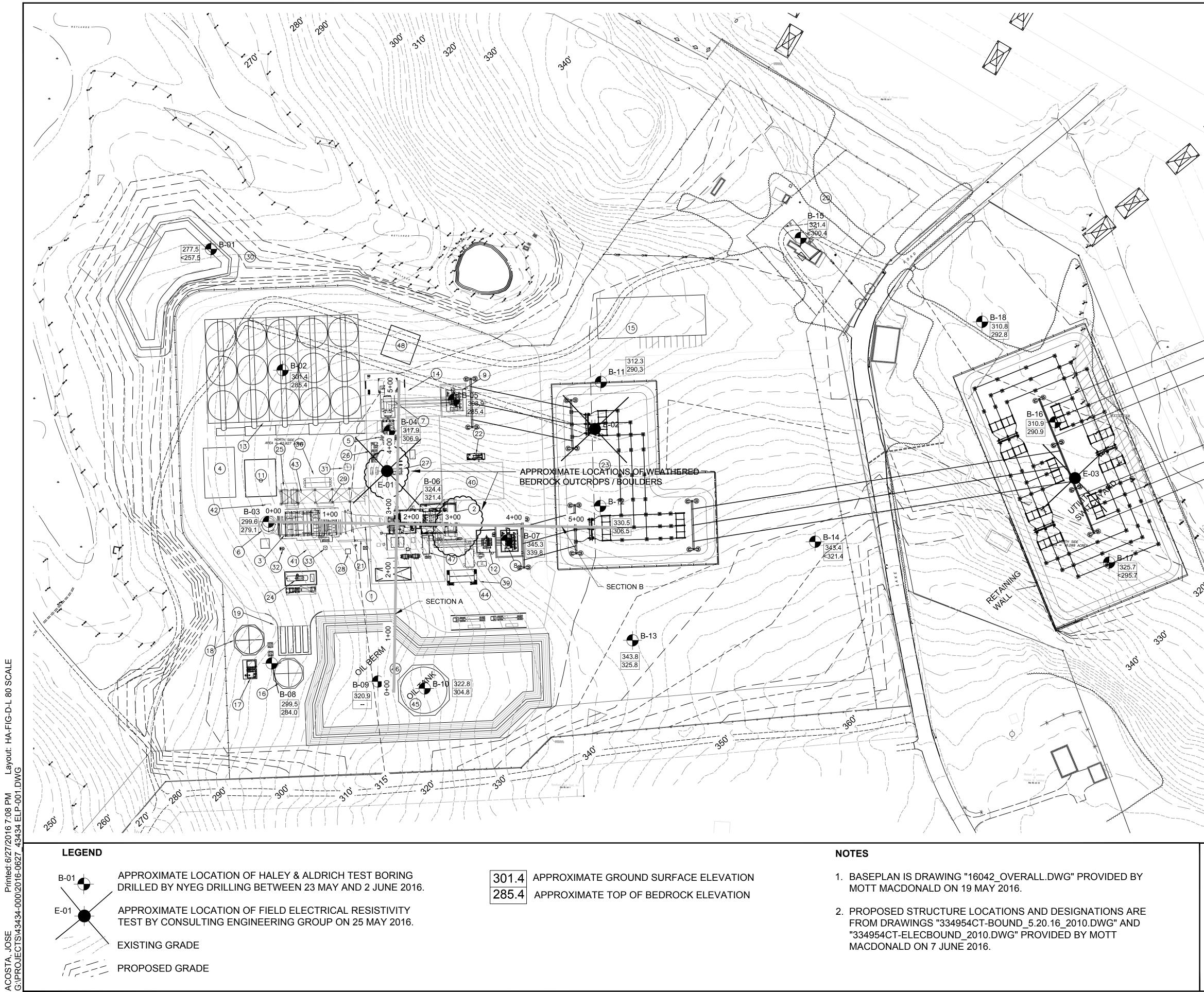
						Electrical	Electrical	Sulfate	Chloride	Sulfides	Redox
Boring	Sample	Depth	Sample	Soil	рН	Resistivity ¹	Resistivity ²	Concentration	Concentration	Concentration	Potential
Identification	Identification	(feet)	Туре	Strata		(ohm-cm)	(ohm-cm)	(mg/kg)	(mg/kg)	(mg/kg)	(mv)
B-16/B-17/B-18	East	1-5	Bulk	Glacial Till	7.1	16,000	12,000	80	10	0.67	73
B-02/B-04/B-06/B-08/B-10/B-12	West	1-5	Bulk	Glacial Till	6.1	42,000	15,000	50	10	0.35	284
Method (general accordance)>					ASTM G51	ASTM G57	ASTM G57	ASTM D516	ASTM D512	SM 4500-S2-D	SM 2580 B

NOTES:

1. Electrical resistivity at moisture content received by laboratory.


2. Saturated electrical resistivity.

3. Refer to laboratory test results in Appendix for additional information.


Table 4 Summary of Geotechnical Recommendations Killingly Energy Center Killingly, Connecticut Project Number: 43434-000

Structure ¹	Nearest Boring	Existing Grade	Proposed Grade	Grade Change (feet)	Expected Subgrade Material ²	Estimated Load: Weight (pounds) or Pressure (psf) ¹	Planned Support ¹	Recommended Foundation Type	Comments ¹
1. Combustion Turbine (CT)	B-06	320 to 330	315	cut 5 to cut 15	bedrock			mat foundation	
2. Combustion Turbine Generator (GTG)	B-07	326 to 336	315	cut 11 to cut 21	bedrock	1,700,000	mat foundation	mat foundation	dynamic loads (sensitive to settlement)
3. Heat Recovery Steam Generator (HRSG)	B-03	298 to 310	315	fill 17 to fill 5	granular fill	8,000,000	mat foundation	mat foundation	static loads
4. Closed Cooling Water	B-03	290 to 296	315	fill 25 to fill 19	granular fill			ring or mat foundation	
5. Steam Turbine (ST)	B-04	318	315	fill 3	granular fill			mat foundation	
6. Exhaust Stack	B-03	296 to 300	315	fill 19 to fill 15	granular fill			mat foundation	21' diameter by 175' tall
7. Steam Turbine Generator (STG)	B-04	306 to 314	315	fill 9 to fill 1	granular fill	1,900,000	concrete pedestal	mat foundation	dynamic loads (sensitive to settlement)
8. Generator Step-Up Transformer (GSU)	B-07	338 to 342	315	cut 23 to cut 27	bedrock	410,000	concrete pedestal	mat foundation	
9. STG Step-Up Transformer	B-05	306 to 314	315	fill 9 to fill 1	granular fill			equipment pad	
10. Air Inlet Filter House								spread foundation	Not shown on plan
11. Auxiliary Boiler	B-03	296 to 302	315	fill 19 to fill 13	granular fill			spread foundation	
12. Auxiliary Transformer	B-07	336 to 340	315	cut 21 to cut 25	bedrock	120,000	concrete pedestal	mat foundation	
13. Air Cooled Condenser (ACC) & Collector Enclosure	B-02	288 to 310	315	fill 27 to fill 5	granular fill			spread foundation	15 cells
	B-04/B-05/B-06/B-07		315	fill 9 to cut 21	granular fill / glacial till / bedrock			spread foundation	
15. Admin/Warehouse/Water Treatment Building	B-11	300 to 310	320	fill 20 to fill 10	granular fill	500 office / 1000 warehouse		spread foundation	65' by 175' prefabricated steel structure
16. Raw/Fire Water Storage Tank & RW Pumps (at-grade tank)	B-08	294 to 296	315	fill 21 to fill 19	granular fill		ring or mat foundation	ring foundation	45' diameter by 45' tall (450,000 gallons)
17. Fire Pumps Enclosure	B-08	288 to 292	315	fill 27 to fill 23	granular fill			spread foundation	
18. Demineralized Water Storage Tank and Pumps (at-grade tank)	B-08	284 to 290	315	fill 31 to fill 25	granular fill		ring or mat foundation	ring foundation	45' diameter by 45' tall (450,000 gallons)
19. Demineralized Water Trailers Area	B-08	290 to 296	315	fill 25 to fill 19	granular fill			equipment pad	
20. Fuel Gas Metering	B-15	330 to 332	320	cut 10 to cut 12	bedrock			equipment pad	
21. Fuel Gas Heater	B-06	308 to 312	315	fill 7 to fill 3	granular fill			equipment pad	
22. Diesel Generator	B-05	322 to 326	315	cut 7 to cut 11	glacial till			equipment pad	
23. Plant Switchyard	B-11/B-12	310 to 340	320	fill 10 to cut 20	glacial till			equipment pad	
24. Ammonia Storage Tank, Pumps & Unloading Area (at-grade tank	B-03	296 to 300	315	fill 19 to fill 15	granular fill			ring or mat foundation	
25. Boiler Feed Pumps	B-03	302 to 306	315	fill 13 to fill 9	granular fill			equipment pad	
26. STG Lube Oil Skid	B-03 B-04	316 to 320	315	cut 1 to cut 5	glacial till	20,000		mat foundation	
27. Air Compressors, Receivers & Dryers Skid	B-04 B-04	326 to 328	315	cut 11 to cut 3	bedrock			equipment pad	
28. Fuel Gas Final Filter	B-04 B-06	308	315	fill 7	granular fill				
29. Duct Burner Skid	B-06 B-04	308 to 310	315		granular fill			equipment pad	
					0			equipment pad	
30. Detention Pond (earth structure)	B-01	272 to 280	310	fill 38 to fill 30 fill 1	granular fill			earth structure	
31. STG Drains Tank & Sump	B-04	314	315		glacial till			equipment pad	
32. HRSG Blow Off Tank & Drain Pumps	B-03	298	315	fill 17	granular fill			equipment pad	
33. HRSG Blowdown Sump	B-03	302 to 304	315	fill 13 to fill 11	granular fill			equipment pad	
34. Storm Water Retention Pond (earth structure)								earth structure	Not shown on plan
35. Civil Oil Water Separator								spread foundation	Not shown on plan
36. BOP Motor Control Center (MCC)	B-04	308 to 310	315	fill 7 to fill 5	granular fill			spread foundation	
37. Plant Gate								spread foundation	Not shown on plan
39. CTG Electrical Package	B-07	326 to 332	315	cut 11 to cut 17	bedrock			equipment pad	
40. Central Control Room/Electrical	B-07	324 to 338	315	cut 9 to cut 23	bedrock			spread foundation	
41. Ammonia Injection Skid	B-03	302 to 304	315	fill 13 to fill 11	granular fill			equipment pad	
42. Continuous Emissions Monitoring System (CEMS)	B-03	298	315	fill 17	granular fill			spread foundation	
43. Pipe Rack	B-03	300 to 320		fill 15 to cut 5	granular fill / glacial till			pier/spread foundation	
44. Fuel Oil Unloading	B-07	324 to 334		cut 9 to cut 19	bedrock			equipment pad	
45. Fuel Oil Tank (at-grade tank)	B-10	316 to 324		cut 1 to cut 9	glacial till		ring or mat foundation	ring foundation	75' diameter by 45' tall (1,000,000 gallons)
46. Fuel Oil Berm (earth structure)	B-10	300 to 324		fill 15 to cut 9	glacial till			earth structure	
47. GT Lube Oil Skid	B-07	324 to 326		cut 9 to cut 11	bedrock			equipment pad	
48. Fuel Gas Compressors	B-05	294 to 300		fill 21 to fill 15	granular fill			equipment pad	
A. Power Control Modules (PCM)						750 dead		mat foundation	Not shown on plan (6' to 8' above grade)
B. Plant Road	B-14							not applicable	
C. Utility Switchyard	B-16/B-17/B-18	320 to 350			granular fill / glacial till / bedrock				
D. Utility Switchyard - Retaining Wall	B-17	330 to 350	325	cut 5 to cut 25	glacial till / bedrock			spread foundation	

NOTES: "--" data not available 1 Appendix A (provided by NTE Energy) 2 Recommendations are preliminary for structures not shown on plan or no data provided

43434-000_1_LOCUS.PDF

STRUCTURE IDENTIFICATION LEGEND:

- 1. COMBUSTION TURBINE (GT)
- 2. COMBUSTION TURBINE GENERATOR (GTG)
- 3. HEAT RECOVERY STEAM GENERATOR (HRSG)
- 4. CLOSED COOLING WATER
- 5. STEAM TURBINE (ST) 6. EXHAUST STACK
- 7. STEAM TURBINE GENERATOR (STG)
- 8. GENERATOR STEP-UP TRANSFORMER (GSU)
- 9. STG STEP-UP TRANSFORMER
- 10. AIR INLET FILTER HOUSE (NOT SHOWN)
- 11. AUXILARY BOILER
- 12. UNIT AUXILARY TRANSFORMER
- 13. AIR COOLED CONDENSER (ACC) & CONDENSATE COLLECTION ENCLOSURE
- 14. TURBINE BUILDING
- 15. ADMIN/ WAREHOUSE/ WATER TREATMENT BUILDING
- 16. RAW / FIRE WATER STORAGE TANK & RW PUMPS
- 17. FIRE PUMPS ENCLOSURE
- 18. DEMINERALIZED WATER STORAGE TANK & PUMPS 19. DEMINERALIZED WATER TRAILERS AREA
- 20. FUEL GAS METERING
- 21. FUEL GAS HEATER
- 22. DIESEL GENERATOR
- 23. PLANT SWITCHYARD
- 24. AMMONIA STORAGE TANK, PUMPS, & UNLOADING AREA
- 25. BOILER FEED PUMPS
- 26. STG LUBE OIL SKID
- 27. AIR COMPRESSORS, RECEIVERS & DRYERS SKID
- 28. FUEL GAS FINAL FILTER
- 29. DUCT BURNER SKID 30. DETENTION POND
- 31. STG DRAINS TANK & SUMP
- 32. HRSG BLOW OFF TANK & DRAINS PUMPS
- 33. HRSG BLOWDOWN SUMP
- 34. STORM WATER RETENTION POND
- 35. CIVIL OIL WATER SEPARATOR (NOT SHOWN)
- 36. BOP MOTOR CONTROL CENTER (MCC)
- 37. PLANT GATE (NOT SHOWN)
- 38. NOT USED

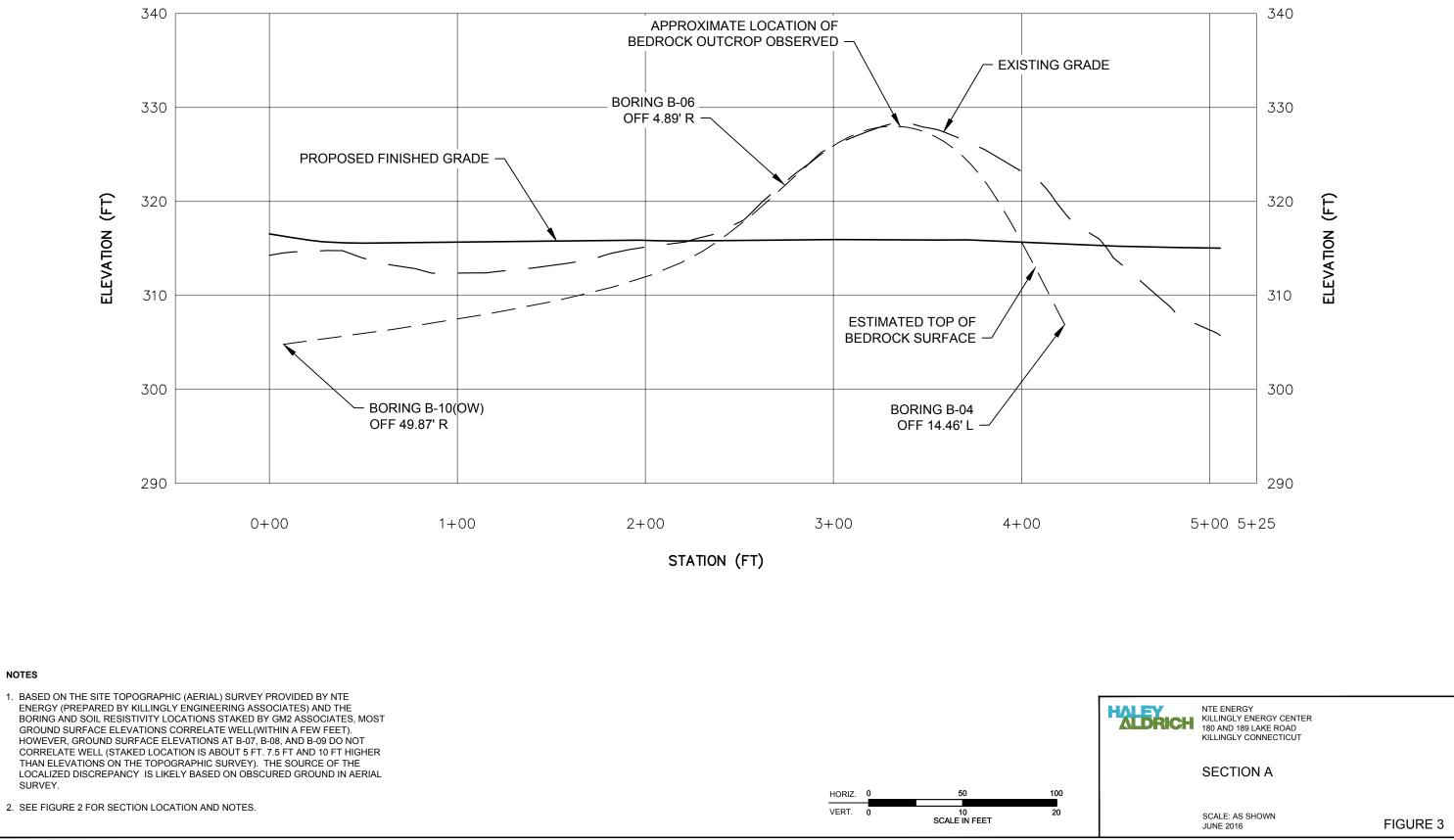
A

Cut Light & Power¹ Mp 83, Let 10

- 39. CTG ELECTRICAL PACKAGE
- 40. CENTRAL CONTROL ROOM / ELECTRICAL
- 41. AMMONIA INJECTION SKID
- 42. CONTINUOUS EMISSIONS MONITORING SYSTEM (CEMS)
- 43. PIPE RACK
- 44. FUEL OIL UNLOADING 45. FUEL OIL TANK
- 46. FUEL OIL BERM
- 47. GT LUBE OIL SKID
- 48. FUEL GAS COMPRESSORS

NTE ENERGY KILLINGLY ENERGY CENTER 180 & 189 LAKE ROAD KILLINGLY, CONNECTICUT

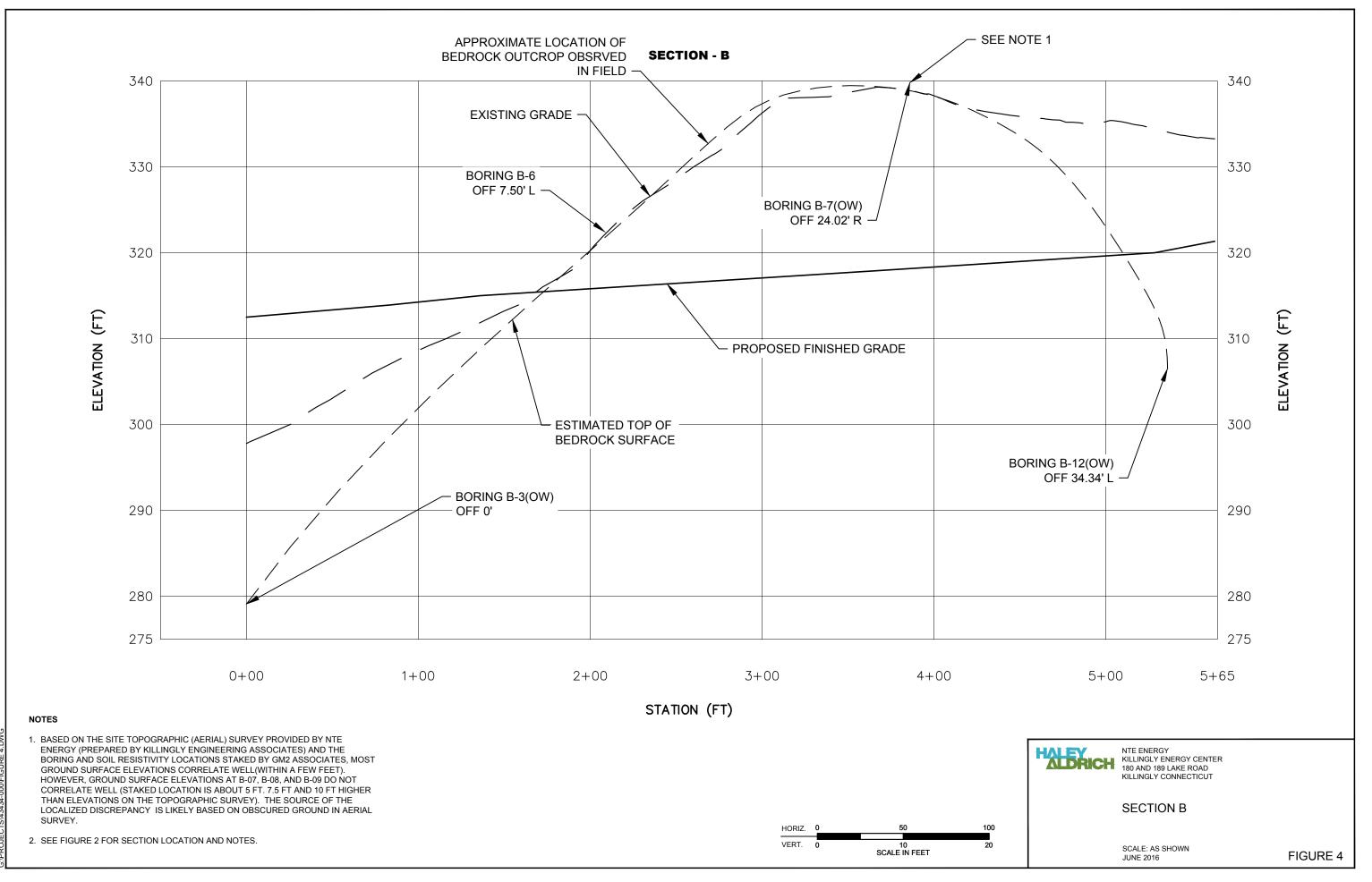
EXPLORATION LOCATION PLAN


SCALE IN FEET

SCALE: AS SHOWN JUNE 2016

FIGURE 2

320


SECTION - A

2. SEE FIGURE 2 FOR SECTION LOCATION AND NOTES.

Layout: FIGURE 3 7:12 PM 7/2016 ; JWG

NOTES

APPENDIX A

Project Description

APPENDIX "A"

A-1.0 PROJECT DESCRIPTION

The proposed Killingly Energy Center project is to be located in Killingly, Connecticut. The partially wooded site is located north of Route 101, on the north side of Lake Road.

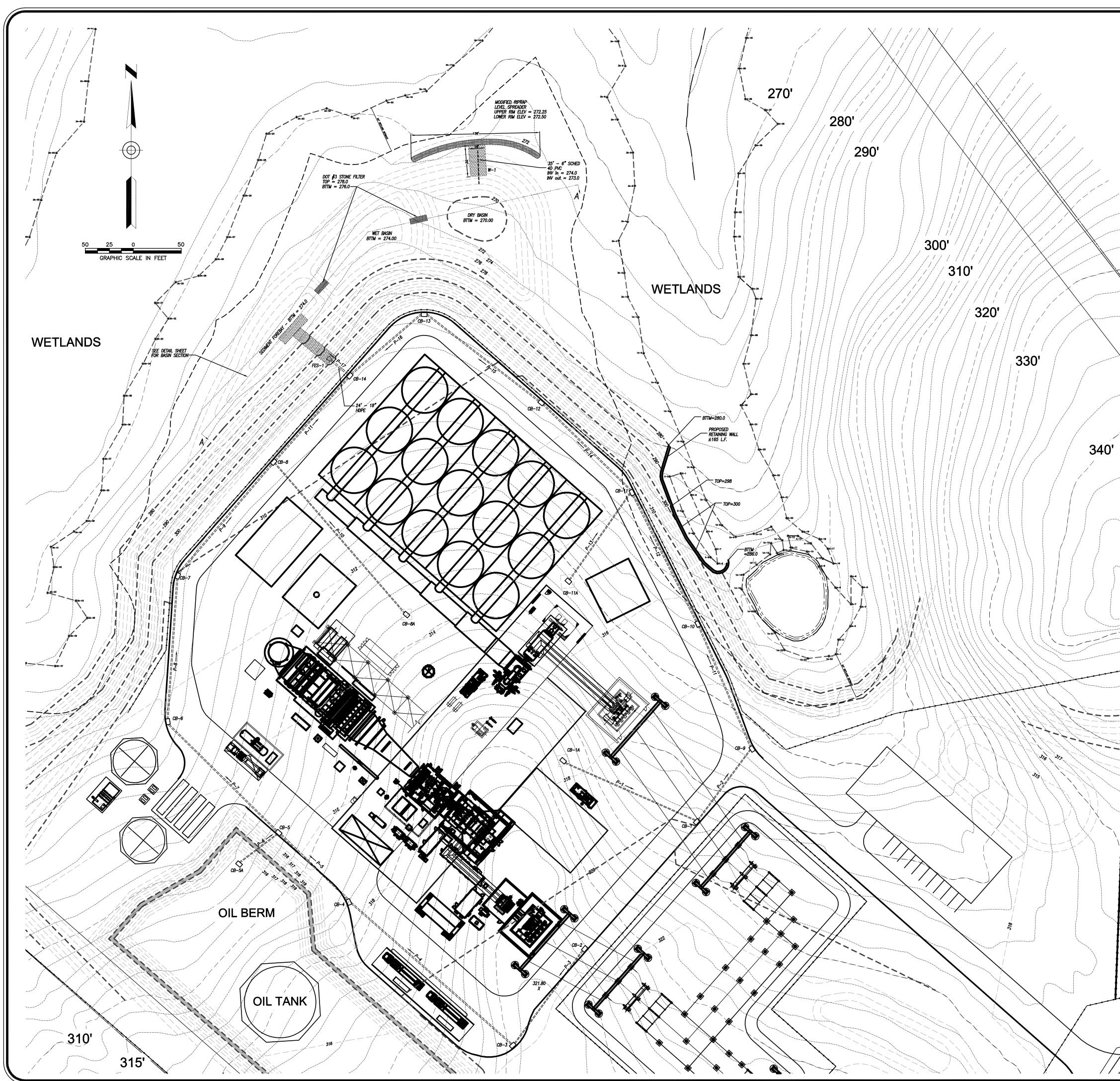
This project is located on a sloping site, which ranges in existing grade elevation from El. 340 feet down to El 290 within the areas of new equipment, excluding the switchyard areas. To balance the cut and fill soil quantity, a preliminary site grade elevation for the power island has been established at El 315 feet for estimating purposes only, which results in maximum fill depth of 30 feet.

A-2.0 EQUIPMENT INFORMATION

The following is a preliminary list of the major equipment as shown on Boring Location Plan 334954CT–BR-101 Boring Plan for use in evaluating foundation systems:

- Steam Turbine Generator [STG] The STG will be mounted on a steel skid. The STG unit may be supported on a raised concrete pedestal. The STG unit is a rotating equipment type, subject to dynamic loads during operation, and is sensitive to settlement. The estimated weight of the STG unit is 1,900,000 pounds. Ancillary STG equipment includes a Lube Oil Skid, with an approximate weight of 20,000 pounds. A Steam Condenser, with an estimated weight of 500,000 pounds, will be located in close proximity to the STG, which may be also supported on a raised concrete pedestal.
- Gas Turbine Generator The CTG unit will be mounted on a steel skid, and may be supplied with pre-fabricated sound enclosures, complete with intake air system, exhaust ducts, and ancillary equipment. The estimated weight of the CTG unit is 1,700,000 pounds. The CTG Units shall be supported at grade on mat foundations. The CTG Units are rotating equipment, subject to dynamic loads during operation, and are sensitive to settlement.
- Heat Steam Recovery Generator [HRSG] The HRSG unit shall be constructed of prefabricated steel bents, field assembled, complete with an SCR, steam drums, platforms, stairs, and ladders. The HRSG Units shall be supported at grade on mat foundations. The estimated weight of the HRSG unit is 8,000,000 pounds. The HRSG Units are subject to static operational loads, thermal expansion, and are sensitive to differential settlement between the bents.
- Stack The HRSG exhaust stack is to be constructed of lined steel. The Stack will likely be 22 feet in diameter and 150' in height.
- Air Cooled Condenser The air cooled condenser unit will consist of up to 15 cells, each cell consisting of a center stanchion support, elevated heat exchanger surface, structural cross bracing and a 200 hp motor.

Specification 334954CT-SP-02010


Test Borings and Geotechnical Investigation

- Tanks Steel tanks will be supported on ring or mat foundations at grade. Preliminary sizes for the larger tanks are a Fuel Oil Storage tank, 75 foot diameter x 45 feet tall, 1,000,000 gallons, a Raw Water tank, 45 foot diameter x 45 feet tall, 450,000 gallons and a Demineralized Water tank45 foot diameter x 45 feet tall, 450,000 gallons. Additional tanks and vessels will be constructed to contain process related materials and founded at grade.
- Yard Equipment Ancillary yard equipment, including pumps, totes, will be supported on reinforced concrete foundations, founded at grade.
- Administration/Warehouse Building The administration building will be an occupied, single story, pre-fabricated steel structure, 65 feet x 175 feet. The building will enclose control room, offices, conference room, break room, toilets, sampling laboratory, maintenance shop, parts storage, and a warehouse. The design floor live load at grade is 500 psf, with 1,000 psf in the storage and warehouse areas. The warehouse portion of the building will have a two story interior height.
- Power Control Modules [PCM] The PCM units are pre-fabricated modules, single story units, which range is sizes from approximately 12 feet x 40 feet to 20 feet x 60 feet. The modules will enclose electrical equipment and switchgear for each of the equipment islands. The modules may be elevated 6 to 8 feet above finish grade for the entry of electrical tray. These modules typically have a dead weight of 750 psf, including enclosed equipment.
- Transformers The oil filled transformers will be supported on reinforced concrete pedestals, within concrete containments. The estimated weights of the GSU Transformers and the Auxiliary Transformer are 410,000 pounds and 120,000 pounds respectively.
- Switchyard The switchyard will consist of transformers, a pre-fabricated control house, circuit breakers, disconnect switches, and dead-end structures.
- Pipe Racks Multiple tiered, structural steel racks shall run between major equipment and ancillary components to support services including piping, electrical conduit and communication. Where the racks cross roads, the services shall be either supported on pipe bridges above road or run in covered trenches below the road elevation.
- Plant Roads The plant roads are to be bituminous or concrete aggregate paved, medium to heavy duty, designed for AASHTO HS-20 wheel loads. Ammonia and chemical unloading areas located in the roads shall be reinforced concrete with containment. Secondary roads within the switchyard and around the perimeter of the Cooling Tower will be unpaved.

A-3.0 ADDITIONAL INFORMATION

The Owner may provide additional facility and/or equipment information, preliminary equipment studies, and equipment procurement for geotechnical consideration.

STORM DRAINAGE STRUCTURE SCHEDULE

STRUCTURE	STRUCTURE	FRAME		PIPE II	VERT ELEVATION		
ID	TYPE	ELEV.	N	S	E	W	SUMP
CB-1A	TYPE C-L	317.75		OUT: 313.25 (SE)			309.25
CB-1	TYPE C	319.80	IN: 311.71 (NW)		OUT: 311.61 (NE)		307.61
CB-2	TYPE C	321.00		OUT: 316.50 (SW)			312.50
CB-3	TYPE C	321.00			IN: 315.22 (NE)	OUT: 315.12 (NW)	311.12
CB-4	TYPE C	315.34			IN: 310.58 (SE)	OUT: 310.48 (NW)	306.48
CB-5A	TYPE C-L	315.00			OUT: 311.48 (NE)		307.48
CB-5	TYPE C	315.36		IN: 310.00 (SW)		OUT: 309.90 (NW)	305.90
CB-6	TYPE C	312.25	OUT: 307.30		IN: 307.40 (SE)		303.30
CB-7	TYPE C	310.00		IN: 305.50	OUT: 305.40 (NE)		301.40
CB-8A	TYPE C-L	313.00				OUT: 309.00 (NW)	305.00
CB-8	TYPE C	309.20		IN: 303.50 (SW)	IN: 303.50 (SE)	OUT: 303.40 (NW)	299.40
CB-9	TYPE C	319.00		IN: 310.69 (SW)		OUT: 310.59 (NW)	306.59
CB-10	TYPE C	316.64	OUT: 308.63	IN: 308.73			304.63
CB-11A	TYPE C-L	316.80			OUT: 312.80 (NE)		308.80
CB-11	TYPE C	313.60	OUT: 307.00	IN: 307.10		IN: 307.10	303.00
CB-12	TYPE C-L	311.20	OUT: 305.59	IN: 305.69			301.59
CB-13	TYPE C	308.20	OUT: 303.50 (NW)	IN: 303.60			299.50
CB-14	TYPE C	309.20		IN: 301.00 (SW)	IN: 301.00 (NE)	OUT: 300.90 (NW)	296.90

PIPE SCHEDULE

PIPE ID	OUTLET	MATERIAL	LENGTH	SLOPE
	DIA. (IN.)		(FT.)	(%)
P-1	12	HDPE	154	1.0%
P-2	12	HDPE	92	1.0%
P-3	12	HDPE	128	1.0%
P-4	15	HDPE	227	2.0%
P-5	15	HDPE	102	1.0%
P-6	12	HDPE	50	1.0%
P-7	15	HDPE	165	1.52%
P-8	15	HDPE	153	1.17%
P-9	15	HDPE	156	1.22%
P-10	12	HDPE	211	2.6%
P-11	15	HDPE	141	1.5%
P-12	15	HDPE	153	1.0%
P-13	12	HDPE	114	5.0%
P-14	15	HDPE	131	1.0%
P-15	15	HDPE	152	1.3%
P-16	15	HDPE	100	2.5%
P-17	18	HDPE	24	4.2%

STRUCTURE ID	TYPE	INVERT ELEVATION
FES-1	FLARED END	300.00
W-1	OVERFLOW WEIR	277.00

DATE	DESCRIPTION						
	REVISIONS						

Killingly Engineering Associates Civil Engineering & Surveying 114 Westcott Road P.O. Box 421 Killingly, Connecticut 06241 (860) 779-7299 www.killinglyengineering.com DATE: 06/30/2016 DRAWN: NET SCALE: 1"=50' DESIGN: NET SHEET: 1 OF X СНК ВҮ: ———

JOB No: 16042

DWG. No: CLIENT FILE

APPENDIX B

Water Well Completion Report

STATE OF CONNECTICIT DEPARTMENT OF CONSUME PROTECTION REAL ESTATE & PROFESSIONAL TRADES DIVISION THERENO THE VELL NO THERENO THE VELL STATE & PROFESSIONAL TRADES DIVISION THERENO THE VELL STATE & PROFESSIONAL TRADES DIVISION THERENO THE VELL STATE & PROFESSIONAL TRADES DIVISION THERENO THE VELL STATE & PROFESSIONAL TRADES THE VELL THE	-195								Do N	IOT fill in
PREALESTATE & PROFESSIONAL TRADES DRVISION VIELL INTER COMPLETION REPORT 163 Capitol Avenue, Hartlord, Conaccticut 06106 OWNER MAGE MA	APPER								STATI	E WELL NO.
	24.40									
165 Capitol Avenue, Hartford, Conaccticut 06106 OWNER Made and the approximation of the a	61								то	HER NO.
OWNER MARC March		•								
PROPOSED ODMESTIC BUSINESS FARM VEST USE OF WELL PUBLIC INDUSTRIAL AR OTHER DEVILLING BUSINESSED COMPRESSED OSBLE OTHER CASING LENGTH (Ren) DIAMETER (mones) VEIGHT PER FOO OSBLE OSBLE CASING LENGTH (Ren) DIAMETER (mones) VEIGHT PER FOO MARE PERCUSSION GRAVEL VIELD TEST BALED PUBLED OSUPERSEED AIR VIELD TEST VEIGHT PER FOO WATER MAKE SCREEN DUMETER (mones) VEIGHT PER FOO DUMETER (mones) VIELD TEST BALED PUBLED OSUPARESEED AIR VIELD TEST (MUSING AIR AND TO SURFACE STATIC (Specify rear) DUMING VIELD TEST (MUSING AIR AND TO SURFACE FORMATION DESCRIPTION PETTO FEET GRAVEL SCREEN BLOT SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two PEET TO FEET GRAVEL GRAVEL SUZE (mones) TO (Men) TO (Men) VIEL OWNETER GRAVEL SUZE (mones) TO (Men) TO (Men) DEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two FEET GALLONS PER MINUTE I////////////////////////////////////	OWNER	NAME /		-						
PROPOSED ODMESTIC BUSINESS FARM VEST USE OF WELL PUBLIC INDUSTRIAL AR OTHER DEVILLING BUSINESSED COMPRESSED OSBLE OTHER CASING LENGTH (Ren) DIAMETER (mones) VEIGHT PER FOO OSBLE OSBLE CASING LENGTH (Ren) DIAMETER (mones) VEIGHT PER FOO MARE PERCUSSION GRAVEL VIELD TEST BALED PUBLED OSUPERSEED AIR VIELD TEST VEIGHT PER FOO WATER MAKE SCREEN DUMETER (mones) VEIGHT PER FOO DUMETER (mones) VIELD TEST BALED PUBLED OSUPARESEED AIR VIELD TEST (MUSING AIR AND TO SURFACE STATIC (Specify rear) DUMING VIELD TEST (MUSING AIR AND TO SURFACE FORMATION DESCRIPTION PETTO FEET GRAVEL SCREEN BLOT SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two PEET TO FEET GRAVEL GRAVEL SUZE (mones) TO (Men) TO (Men) VIEL OWNETER GRAVEL SUZE (mones) TO (Men) TO (Men) DEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two FEET GALLONS PER MINUTE I////////////////////////////////////		Grati		4 m.		139 6	. whe	11	Dayer	NCCT
PROPOSED		149		(To	wn) K	(Lot Num	nber)			Chity 1
USE OF WELL PUBLIC INDUSTRIAL AR CONDITIONING OTHER DEFLINEG EQUIPMENT COMPRESSED OF PERCUSSION OTHER CONDITIONING OTHER CONDITIONING CONDITIONING OTHER CONDITIONING CONDITION	PROPOSED				лт [FARM				
DRILLING GUPPLY COMPRESSED CAUPACITY CONSISTENT CO				STRIAL	Г		П отн	ER		
EQUIPMENT Image: ARR PERCUSSION PRECUSSION (Specify) CASING DETAILS LENGTH (feed) DUAMETER (notwo) WEICHT PER FOOT MREADED WELDED WELDED WELDED WELDED WELDED WELDED WELDED WELDED WELDED WELD (GPN) YIELD TEST Imaked				PRESSED		the second s	L (Sp	ecify)		
DETAILS 20 0 77 THERADED WELDED TO THE ADD THE										
DETAILS ALED PUMED COMPRESSED AIR HOURS YEE LOOP No WATER MEAGURE FROM LAND SURFACE: STATIC (Specify feet) DURING YEELD TEST (feet) Duplied Completed Weil in feet SCREEN MAKE LENOTH OPEN TO ADUFER (inclus) IF GRAVEL Dummeer of weil including grant pack (inclus) FROM (inclus) TO (feet) DETAILS SLOT SIZE DUAMETER (inclus) IF GRAVEL pACKED Dummeer of weil including grant pack (inclus) FROM (inclus) TO (feet) DEFTH FROM LAND TO SURFACE FORMATION DESCRIPTION State each location of well with distances, to at least two TO (feet) FEET TO FEET FORMATION DESCRIPTION State each location of well with distances, to at least two Image: State each location of well with distances, to at least two FEET of FEET GALLONS PER MINUTE Image: State each location of well with distances, to at least two FEET of GALLONS PER MINUTE Image: State each location of well with distances, to at least two Image: State each location of well with distances, to at least two FEET of GALLONS PER MINUTE Image: State each location of well with distances, to at least two Image: State each location of well with distances, to at location of well with distances, to at least two Image: State each locate each location of well with distances, t			1	WEIGHT PE	RFOOT			/		/
WATER MESURE FROM LAND SURFACE - STATIC (Specif feet) DURING YELD TEST (rest) Depth of Completed Will in feet SCREEN MARE Image: Completed Will in feet Image: Completed Will in feet DETAILS SLOT SIZE DIAMETER (inches) IF GRAVEL Diameter of well in control of the completed Will in feet DETAILS SLOT SIZE DIAMETER (inches) IF GRAVEL Diameter of well in control of the completed Will in feet DETH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two permanent landmarks IDEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two IDEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two IDEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two IDEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two IDEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two IDEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two IDEPTH FROM LAND TO SURFACE GALLONS PER MINUTE Image: Total distances II fyleid was tested at different depths				COMPRES	SED AIR					YES NO
LEVEL ////////////////////////////////////	field leaf			COMPRES	SED AIR	10000			(GPM)	0
MAKE Image: Constraint of the image: Cons		MEASURE FROM L	AND SURFACE - STATIC (Sp	ecify feet)	DURING			Depth of Co	· · · ·	
SCREEN DETAILS SLOT SIZE DIAMETER (indust) IF GRAVEL PACKED Diameter of well including gravit pack (indust) GRAVEL SIZE (indust) FROM (feet) TO (feet) DEPTH FROM LAND TO SURFACE FEET TO FEET FORMATION DESCRIPTION Security and the security andifferent security and the security and the security and the secur	LEVEL	MAKE	10			100			1 6	
DEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION FEET TO FEET FORMATION DESCRIPTION Sketch exact location of well with distances, to at least two permanent landmarks C / C DEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION FEET TO FEET Grad 1 (grad) I / C <	SCREEN	MARE							LENGTHOPEN	TO AQUIFER (feet)
DEPTH FROM LAND TO SURFACE FORMATION DESCRIPTION Stetch excit location of well with distances, to at least two permanent landmarks C / C Grading (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	DETAILS	SLOT SIZE	DIAMETER (inches)				GRAVEL S	IZE (inches)	FROM (feet)	TO (feet)
FEET TO FEET permanent landmarks Image: Im										
12 16.0 Bodinuk 1 1 1 1			FORMATION DES	SCRIPTION	4			with distance:	s, to at least two	
12 16.0 Bodinuk 1 1 1 1	1	10	6 7		/					
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Image: Complete Different Depthered D	<u> </u>	10	01011	11200						
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO	10	160	Bedruk							
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO										
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO										
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO										
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO										
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO										
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO										
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO							1.	رومو د بوسورومورومودو	and the second state of the second	1 1 5
If yield was tested at different depths during drilling, list below If yield was tested at different depths during drilling, list below FEET GALLONS PER MINUTE Date well COMPLETED PERMIT NO						-9	1			6 0
FEET GALLONS PER MINUTE						î		r	- 7	2
FEET GALLONS PER MINUTE						C	Th	-	L	St.
FEET GALLONS PER MINUTE		1					11 >	V	1/	
FEET GALLONS PER MINUTE							[[1	
DATE WELL COMPLETED PERMIT NO REGISTRATION NO /DATE OF REPORT WELL DBRULER (Signafure)						1	1	1 11		
DATE WELL COMPLETED PERMIT NO REGISTRATION NO DATE OF REPORT WELL DBACLER (Signafure)	FC.		GALLONS PER			/	1	1		
DATE WELL COMPLETED PERMIT NO REGISTRATION NO DATE OF REPORT WELL DBACLER (Signafure)						11				
DATE WELL COMPLETED PERMIT NO REGISTRATION NO DATE OF REPORT WELL DBACLER (Signafure)	-					[]				
DATE WELL COMPLETED PERMIT NO REGISTRATION NO DATE OF REPORT WELL DBACLER (Signafure)										1.
DATE WELL COMPLETED PERMIT NO REGISTRATION NO DATE OF REPORT WELL DBACLER (Signafure)						/]				/
DATE WELL COMPLETED PERMIT NO REGISTRATION NO DATE OF REPORT WELL DBACLER (Signafure)						the second s	1	1		
ATE WELL COMPLETED PERMIT NO REGISTRATION NO DATE OF REPORT WELL DBULLER (Signature)							F	-	2/	-1
The factor of the the test of test	DATE WELL COMPI	LETED PE クル	RMIT NO RE		N NO	/ DATE OF REP	ORT	7.1	WELL OBICLER (SI	ignature)
	10110							com.	1/	

APPENDIX C

Logs of Test Borings

	RIC	н			٦	rest	BORING REPOR	RT	Boring No. B-01 (OW
Project Client Contracto	NT	lingly E Ene EG D	rgy		er, Kil	lingly, Co	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 24, 2016
		0	Casing	g Sam	npler	Barrel	Drilling Equipmen	t and Procedures	Finish May 24, 2016 Driller J. Rauscher
Гуре			HSA	-	s		Rig Make & Model: Trac	k mounted Diedrich D1	
nside Diai	meter	(in.)	4 1/4	1	3/8		Bit Type: Cutting Head Drill Mud: None		Elevation 277.5 (est.) Datum NAVD88
Hammer V	Veight	(lb)		14	40	-	Casing: Spun	A	Location See Plan
Hammer F	all (in)			80	-	Hoist/Hammer: Winch PID Make & Model: Nor		N 876663.3 E 1227059.1
Depth (ft) Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol		(Density/consist structur	NUAL IDENTIFICATION A ency, color, GROUP NAI re, odor, moisture, option GEOLOGIC INTERPRET	ME, max. particle size [†] , al descriptions
0 WOH	S1	0.0	<u>بة</u> 	277.3	 ML/	<u> </u>		-FOREST LITTER	
$\begin{bmatrix} 2\\ 2 \end{bmatrix}$	6	2.0	0 2-0		OL	Very loos	se dark brown SILT and ORG	ANIC SILT, little gravel, -TOPSOIL/LOAM	sand, with roots, topsoil odor, moist
4				276.0 1.5	SM	Loose ye	llow-brown silty medium to fir	e SAND, some coarse to	fine gravel, trace coarse sand, no odor, dry
4 11	S2 12	2.0 4.0		$\begin{array}{c} 275.0\\ 2.5\end{array}$	SM				SAND, little silt, no odor, dry, seam of
16 17						yellow m	edium to fine sand from 3.8 to	4.0 ft, no mottling	
5 4	S3	5.0		$\begin{array}{c} 272.5\\ 5.0\end{array}$	SM	Medium	dense light brown to gray-brow	vn coarse to fine gravelly	coarse to fine SAND, some silt, no odor, dr
8 14 18	14	7.0				no mottli	ng		
17 10 8 8	S4 16	7.0 9.0			SM	Similar to	o \$3		
10 9 12 15 57	\$5 22	10.0 12.0			SM	Similar to	o S4, no odor, moist		
37						Note: Dr	ill action indicates occasional c	obbles.	
5 8 9 16 24	S6 12	15.0 17.0			SM	Similar to	o S5, split-spoon wet		
8 11 16 20	S7 14	18.0 20.0			SM	Similar to	o S6		
20	10/-	ater Le		ata			Comple ID	-GLACIAL TILL-	Summary
Date	Time	Elap	sed	Dep	th (ft)		Sample ID O - Open End Rod	Riser Pipe	Overburden (ft) 20.0
2010		Time		Bottom f Casing	Botton of Hole		T - Thin Wall Tube U - Undisturbed Sample	Filter Sand	Rock Cored (ft)
5/24/2016 5/27/2016	10:00 14:20	0. 77				11.5 7.25	S - Split Spoon Sample	Image: Second state Cuttings Image: Grout Image: Grout Image: Second state Concrete	Samples7SBoring No.B-01 (OW)
			Dilati	anau: D	Danid	S - Slow	N Nono Plastic	Bentonite Seal	w M - Medium H - High
ield Tests	:		Dilata	ancy. R	- Rapiu	5 - 510W	m H - High Dry Sti	ity. N-Norplastic L-Lo	M - Medium H - High V - Very High

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000GINT43434-000_TB/GPJ

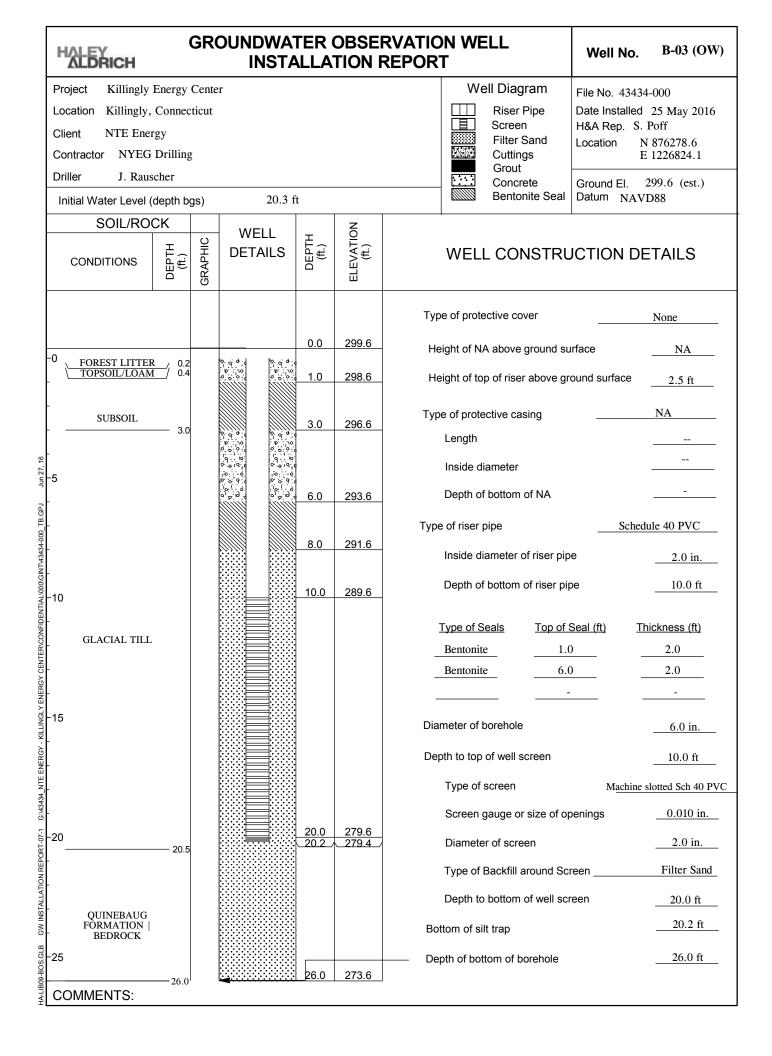
	ST BORING REPORT	Boring No. B-01 (OW) File No. 43434-000 Sheet No. 2 of 2
nbol nbol	VISUAL-MANUAL IDENTIFICATION AND DES	
Depth (ft) Sampler Blows per 6 in. Sample No. & Rec. (in.) Sample Depth (ft) Well Diagram Stratum Change Elev/Depth (ft) USCS Symbol	(Density/consistency, color, GROUP NAME, max structure, odor, moisture, optional descrij GEOLOGIC INTERPRETATION)	. particle size [†] , otions
257.5 20.0	BOTTOM OF EXPLORATION 20.0	FT
	te: Installed temporary groundwater observation well in completed bor	
NOTE: Soil identification based on visual-man	ual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No. B-01 (OW)

H&A-TEST BORING-09 HALIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER.CONFIDENTIAL000GINT43434-000_TB.GFJ

ALDRICH	GROU				RVATION WELL REPORT	Well No.	B-01 (OW)
Project Killingly Energy Location Killingly, Connec Client NTE Energy Contractor NYEG Drilling Driller J. Rauscher Initial Water Level (depth b	eticut g	11.5 ft			Well Diagram Riser Pipe Screen Filter Sand Cuttings Grout Concrete Bentonite Seal	E	24 May 2016 Poff [876663.3 [1227059.1 277.5 (est.)
		WELL ETAILS	ИЕР I Н (ft.)	ELEVATION (ft.)	WELL CONSTRU	ICTION DE	TAILS
0 EQDEST LITTED A	lo: d	(0.0	277.5	Type of protective cover Height of NA above ground su		NoneNA
U FOREST LITTER 0.2 TOPSOIL/LOAM 1.5 SUBSOIL 2.5			1.0	276.5	Height of top of riser above gro Type of protective casing Length	ound surface	<u>3.5 ft</u> NA
5			4.0	273.5	Inside diameter Depth of bottom of NA		
			6.0	271.5	Type of riser pipe Inside diameter of riser pipe Depth of bottom of riser pip	e	ule 40 PVC 2.0 in. 6.0 ft
10					Type of Seals Top of S Bentonite 1.0		<u>3.0</u> -
GLACIAL TILL					Diameter of borehole Depth to top of well screen Type of screen	Machine :	6.0 in. 6.0 ft slotted Sch 40 PVC
15			16.0 16.2	261.5 _261.3_	Screen gauge or size of op Diameter of screen	-	0.010 in. 2.0 in. Filter Sand
					Type of Backfill around Scr Depth to bottom of well scr Bottom of silt trap		16.0 ft 16.2 ft
			20.0	257.5	Depth of bottom of borehole		20.0 ft

HAL	DRIC	Н			٦	EST	BORING REPOI	रा	Boring No. B-02
Project Client Contract	NT	E Ene		Cente	r, Kill	ingly, Co	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 26, 2016 Finish May 26, 2016
		0	Casing	Sam	pler	Barrel	Drilling Equipmen	t and Procedures	Finish May 26, 2016 Driller J. Rauscher
уре			HSA	S		NX	Rig Make & Model: Trad	ck mounted Diedrich D1	20 H&A Rep. S. Poff
nside Dia	ameter ((in.)	4 1/4	13	/8	1 7/8	Bit Type: Cutting Head Drill Mud: None		Elevation 301.4 (est.) Datum NAVD88
Hammer	Weight	(lb)		14	0	-	Casing: Spun Hoist/Hammer: Winch	Automatic Hammer	Location See Plan
Hammer	•	.)		30)	-	PID Make & Model: No:		N 876440.6 E 1227007.8
 Depth (ft) Sampler Blows per 6 in. 	Sample No. & Rec. (in.)	Sample Depth (ft)	ш	USCS Symbol			(Density/consisten structure,	AL IDENTIFICATION AN cy, color, GROUP NAME odor, moisture, optional o OLOGIC INTERPRETAT	, max. particle size [†] , descriptions
	S1	0.0	301.2	ML/				-FOREST LITTER-	
447	12	2.0	$\begin{array}{r} 301.2 \\ 0.2 \\ 300.6 \\ 0.8 \\ 300.0 \\ 1.4 \end{array}$	OL SM	Loos	e orange-l	prown silty coarse to fine SAN	, 0	ravel, trace roots, no odor, dry
	62	2.0	1.4	GM	Ligh	t brown co	barse to fine sandy coarse to fi	-SUBSOIL- ne GRAVEL, little silt, w	vith cobbles, no odor, dry
19 28 20 38	S2 16	2.0 4.0	_	GM			elow 1.4 ft		
5			296.4	L	L				
13 29 50/2"	S3 6	5.0 6.2	5.0	SM	Very	dense lig	ht brown coarse to fine gravel	y SAND, some silt, with	cobbles, no odor, dry
19	S4	7.0	-	SM	Simi	ar to S3			
39 50/3"	12	8.3	_						
10	S5 16	10.0 12.0	_	SM	Simi	ar to S4,	except dense		
17 29		12.0	290.4 11.0	SM		e light bro lor, dry	own to tan coarse to fine grave	Ily SAND, some silt, occ	asional poorly-defined layering/stratification
15									
13 50/4"	S6 7	15.0 15.8	285.4				pelow 11.0 ft		
			16.0		Note	: Auger a	nd roller bit refusal at 16.0 ft.	Begin rock coring at 16.0 -GLACIAL TILL-) ft
							SEE CORE B	ORING REPORT FOR R	OCK DETAILS
20	10/2	ator I /	evel Data	 a			Comple ID	Well Diagram	Summary
Date	Time	Elap	sed	Dept	h (ft)		Sample ID O - Open End Rod	Riser Pipe	Overburden (ft) 16.0
Duie		Time			Bottom of Hole		T - Thin Wall Tube U - Undisturbed Sample	Screen Filter Sand	Rock Cored (ft) 5.0
5/27/2016		24	.0		13.0	11.0	S - Split Spoon Sample	<u>اثن بز ب</u> Grout <u>م</u> Concrete Bentonite Seal	Samples 6S, 1C Boring No. B-02
Field Test	s:	_1				S - Slow M - Mediu		ty: N - Nonplastic L - Lo	⊳w M - Medium H - High / M - Medium H - High V - Very High
[†] Note: Ma	aximum (particle	e size (mp	os) is d	etermi	ned by diı	rect observation within the lin sual-manual methods of the	nitations of sampler size.	<u> </u>

HAL	BRIC	Н			CO	RE B	ORIN	IG REPORT	Boring No. B-02 File No. 43434-000 Sheet No. 2 of 2
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove	-	Weath- ering	Elev./ Depth	Visual Desc and Rem	cription arks
	((11)	in.	%		(ft)	SEE TEST BORING REPORT FO	R OVERBURDEN DETAILS
	3.5 3.5 3.5	C1	16.0 21.0	54 17	90 28	Slight to High	285.4 16.0	Hard slightly weathered gray and white medium GNEISS; Foliation low angle, extremely thin, pl (foliation) joints low angle, close to moderately s undulating, discolored to slightly decomposed, ti dipping across foliation, widely spaced, rough, p	to fine grained muscovite-biotite-quartz anar to slightly undulating; Primary spaced, smooth to rough, planar to slight ght to open; Secondary joints moderately
	3.5								
20 -	1.5						280.9	Similar to above except soft to medium hard, con	nnlataly to highly waathored
							280.9 20.5 280.4 21.0	-QUINEBAUG FC -BEDRO	DRMATION- CK-
								BOTTOM OF EXPLOI Note: Borehole left open for 24 hours for ground cuttings after measurement.	RATION 21.0 FT lwater measurement. Backfilled with
25 —									
30 —									
35 —									
40 —									
45 —									
50 —									


H	<u>A</u> LE	RIC	н				TEST	BORING REPOR	RT	Boring No. B-03 (OW
Proj Cliei Con		NT	E Ene			er, Kil	llingly, Co	onnecticut		File No. 43434-000 Sheet No. 1 of 3 Start May 24, 2016
			(Casin	g San	npler	Barrel	Drilling Equipment	and Procedures	Finish May 25, 2016 Driller J. Rauscher
уре	9			HSA		s	NX	Rig Make & Model: Trac	k mounted Diedrich D1	
nsid	le Diai	meter ((in.)	4 1/4	1	3/8	1 7/8	Bit Type: Cutting Head Drill Mud: None		Elevation 299.6 (est.) Datum NAVD88
		Veight ⁻ all (in.	` ´			40 30	-	Casing: Spun Hoist/Hammer: Winch J PID Make & Model: Non		Location See Plan N 876278.6 E 1226824.1
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol		(Density/consist structur	IUAL IDENTIFICATION A ency, color, GROUP NAI e, odor, moisture, option SEOLOGIC INTERPRET	AND DESCRIPTION ME, max. particle size [†] , al descriptions
ר ר	OH/12		0.0	io. io.	299.4 0.2 299.2				-FOREST LITTER	
	1	17	2.0	<u>•</u>	299.2 0.4	SM	Very loo	se orange-brown to yellow-brow	-TOPSOIL/LOAM	e coarse to medium sand, no structure, no
-	1 2 4	S2 20	2.0 4.0		297.6 2.0	SM	odor, dry	, no mottling	•	o medium sand, no structure, no odor, dry, i
_	12 22				296.6 3.0	SM	Dense lig odor, dry		-SUBSOIL- , some coarse to fine gra	vel, silt, frequent cobbles, no structure, no
5 —	13 20 24 19	\$3 22	5.0 7.0	<u></u>		SM	Similar to	o S2 below 3.0 ft		
-	15	S4	7.0			SM	Similar to	o \$3		
_	20 17 19	19	9.0		291.8 7.8	ML		n fine sandy SILT, little fine gr al poorly-defined layering/strati		lium sand, no odor, dry, blocky structure,
10	11 17 25 24	S5 18	10.0 12.0		289.6 10.0	SM-	Dense tai	n to light gray-brown silty fine	SAND, little coarse to m	nedium sand, fine gravel, no odor, dry
							Note: Oc	ccasional cobbles from 10.0 to 1	5.0 ft.	
5-	23 14 20 17	\$6 20	15.0 17.0				Dense tar to moist	n silty fine SAND, trace coarse	to fine gravel, coarse to	medium sand, blocky structure, no odor, dr
0							Note: Dr	ill action suggests gravel and co	obbles common from app	proximately 17.5 to 20 ft.
		Wa		evel D		th /ft)	to	Sample ID	Well Diagram	Summary
Da	ate	Time	Elap Time	osed e (hr.)	Dep Bottom of Casing	th (ft) Bottor of Hol	n Water	O - Open End Rod T - Thin Wall Tube	Screen	Overburden (ft) 20.5 Rock Cored (ft) 5.5
/27/	/2016	15:35	52	2.0			20.3	U - Undisturbed Sample S - Split Spoon Sample	Cuttings Grout Concrete	Samples 7S, 2C Boring No. B-03 (OW)
eld	Tests	:					S - Slow		ity: N - Nonplastic L - Lo	ow M - Medium H - High
	. Ma	vimum r	oarticle					m H - High Dry Str rect observation within the lim		v M - Medium H - High V - Very High

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000GINT43434-000_TB/GPJ

ł		RIC	н				TEST BORING REPORT	Boring No. B-03 (OW) File No. 43434-000 Sheet No. 2 of 3
ft)	lows	No. UO.	e (ji	ram	L (ff)	lodn	VISUAL-MANUAL IDENTIFICATION AND DES	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. structure, odor, moisture, optional descrip GEOLOGIC INTERPRETATION)	particle size [†] , tions
- 20	50/0"	S 7	20.0	27	9.1		Note: Split spoon refusal at 20.0 ft. Auger refused at 20.5 ft, begin rock c	
	50/0"				<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			coring.
-	NOTE:	Soil id	entifica	tion b	ased on v	/isual-ı	nanual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No. B-03 (OW)

H&A-TEST BORING-09 HALIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER.CONFIDENTIAL000GINT43434-000_TB.GFJ

HAL	EY DRIC	н			со	RE B	ORII	NG R	EPORT	Boring No. B-03 (OW) File No. 43434-000 Sheet No. 3 of 3
Depth (ft)	Drilling Rate (min./ft)	Run No.	Deptn			Weath- ering	Well Dia-	Elev./ Depth	Visual D and R	Description Remarks
	3 3.5 3.5 4.5	C1 C2	(ft) 20.5 21.0 21.0 26.0	in. 6 0 59 46	% 100 0 98 77	Fresh to Slight	gram	(ft) 279.1 20.5	Note: Core barrel blocked up at 21.0 ft. Hard fresh with slightly weathered zone zone white fine grained muscovite-biotite-quar thin, planar to slightly undulating: Prima	from approximately 23.7 to 25 ft, gray an rtz GNEISS; Foliation low angle, extreme ry (foliation) joints low angle, close to htly undulating, discolored (brown), open ping to high angle across foliation,
- 25 —	3							273.6 26.0	water through seam. Missing 1.0 in. of r -QUINEBAUC -BED	approximately 23.9 to 24.2 ft. Loss of dri recovery likely washed out from this zone 3 FORMATION- DROCK- PLORATION 26.0 FT bservation well in completed borehole.
- 30 —										
- 35 - 40										
- 40 —	-									
- 45 —	_									
- 50 —										
55 —	-									

H		RIC	H			Т	EST	BORING REPOR	RT	Boring No. B-04
Proje Clier Cont		NT	E Ene		Cente	r, Kill	ingly, Co	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 25, 2016
			(Casing	Sam	pler	Barrel	Drilling Equipmen	t and Procedures	Finish May 25, 2016 Driller J. Rauscher
Туре	;			HSA	S	-	NX	Rig Make & Model: Trac	k mounted Diedrich D	
		neter	(in.)	4 1/4	13	/8	1 7/8	Bit Type: Cutting Head Drill Mud: None		Elevation 317.9 (est.)
Ham	mer V	Veight	(lb)		14	0	-	Casing: Spun		DatumNAVD88LocationOffset 33.0 ft S
		all (in	.)		30)	-	Hoist/Hammer: Winch PID Make & Model: Nor		N 876250.7 E 1227065.6
(ft)	lows .r	No.	e (t)	n e h (ft)	Symbol			VISUAL-MANU	AL IDENTIFICATION AN	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Syr			structure.	cy, color, GROUP NAM odor, moisture, optional OLOGIC INTERPRETA	descriptions
0 -	1	S1	0.0	317.7					-FOREST LITTER-	
	2 3	15	2.0	0.2 317.4 0.5	ML		oronaal	brown fine condu CH T teo 4	-TOPSOIL/LOAM-	dium cand no odor dry
	3			315.9		LOOS	e orange-l	brown fine sandy SILT, trace f	-SUBSOIL-	ulum sanu, no odor, dry
	10 18 28 36	S2 20	2.0 4.0	2.0	SM	Dens	e brown s	ilty SAND, some gravel, no st	ructure, no odor, dry	
5 -	16 27 24 22	S3 18	5.0 7.0	-	SM	Simil	ar to S2,	except very dense, frequent co	bbles	
4	26 50/5"	S4 9	7.0 7.9	-	SM	Simil	ar to S3,	split spoon refusal at 7.9 ft on	cobbles	
10	15 50/2",	S5 _7	10.0 10.7	306.9 11.0	SM		ar to S4 Auger a		Begin rock coring at 11. -GLACIAL TILL- DRING REPORT FOR 1	
15 -										
								1		-
			Elan	evel Data		h (ft) t	0:	Sample ID O - Open End Rod	Well Diagram	Summary Overburden (ft) 11.0
Da	ite	Time	Time	(hr Bo	ttom	Bottom of Hole	Water	T - Thin Wall Tube	Screen Filter Sand	Overburden (ft)11.0Rock Cored (ft)5.0
5/27/2	2016		42	.0		8.6*	8.4	U - Undisturbed Sample S - Split Spoon Sample	Cuttings Grout	Samples 5S, 1C
			*C	COLLAPS	ED				Concrete Bentonite Sea	Boring No. B-04
Field	Tests			Dilatano	y:R-	Rapid	S - Slow	N - None Plastic M H - High Dry St	ity: N - Nonplastic L - I	Low M - Medium H - High w M - Medium H - High V - Very High
+		vimum	particle	size (mr	uss)isd	etermi	ned by di	rect observation within the lin		

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G;43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000/GINT43434_000_TB/GPJ

HAL	EY DRIC	н			CO	RE B	ORIN	IG REPORT	Boring No. B-04 File No. 43434-000 Sheet No. 2 of 2
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD	Weath- ering	Elev./ Depth (ft)	Visual Desc and Rem	cription arks
- 15	4 3.5 3.5 4 4	C1	11.0 16.0	49 14	82 23	High to Slight	306.9 11.0	SEE TEST BORING REPORT FO. Hard highly weathered from approximately 11 to approximately 11.4 to 16 ft, dark gray and white GNEISS; Foliation low angle, extremely thin, pli (foliation) joints low angle, extremely close to cl- undulating, decomposed to discolored, open to ti to high angle across foliation, rough, planar to un sand, silt), open to tight; Pitted from approximat 0.25 to 0.75 in. diameter.	11.4 ft, slightly weathered from medium to fine grained biotite-quartz anar to slightly undulating; Primary ose, smooth to rough, planar to ght; Secondary joints moderately dippin indulating, discolored to decomposed (fin ely 14.7 to 14.8 ft, pits approximately DRMATION-
20 —							301.9 16.0	-BEDROG BOTTOM OF EXPLOI	
25 —									
30 —									
35 —									
40 —									
45 —									

н		RIC	н			Т	EST	BORING REPOR	RT	Boring No.	B-05
Proj Clie Con		NT	E Ene		Cente	er, Kill	ingly, Co	onnecticut			6, 2016
			(Casing	Sam	pler	Barrel	Drilling Equipment	and Procedures	Finish May 20 Driller J. Rausch	
Туре	;			HSA	5	5	NX	Rig Make & Model: Trac	k mounted Diedrich D1		
• •		meter	(in.)	4 1/4	13	3/8	1 7/8	Bit Type: Cutting Head Drill Mud: None			9 (est.)
Ham	mer V	Veight	(lb)		14	10	-	Casing: Spun		Datum NAV Location Offset	
		all (in)		3	0	-	Hoist/Hammer: Winch J PID Make & Model: Non		N 876214.3 E 1227178	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol			(Density/consistency, color structure, odor, mo	TIFICATION AND DESCI , GROUP NAME, max. pr pisture, optional description : INTERPRETATION)	RIPTION article size [†] ,	PID Reading (ppm) (sample/bkg
0 -	2	S1	0.0	308.4					PSOIL/LOAM-		
	3 3 5	6	2.0	0.5	ML		e orange-l , no odor		oarse to fine gravel, trace SUBSOIL-	corase to medium sand, with	
-	10 20 35 25	S2 16	2.0 4.0	2.0	SM	Very	dense lig	ht brown coarse to fine gravelly	y coarse to fine SAND, li	ttle silt, no odor, dry	
5 -				303.9							
5	16 16 19 32	S3 18	5.0 7.0	5.0	SM	Simil	ar to S2,	except dense, some silt			
	24 24 24 23	S4 16	7.0 9.0		SM	Simil	ar to S3				
						Note	: Frequen	t cobbles from 2.0 to 10.0 ft.			
10	9 27 22 19	S5 9	10.0 12.0	-	SM	Simil	ar to S4				
						Note	: Auger g	rinding through cobbles/boulde	rs from approximately 13	to 14 ft.	
15 -	11 17 50/3"	S6 10	15.0 16.3	-	SM	Simil	ar to S5,	except very dense, wet			
	30/3			-				efusal at 17.0 ft. Core barrel ad and 8.0 in. of Glacial Till.	vanced from 17.0 to 22.0) ft, recovered 10.0 in. of	
20⊥		Wa	ater Le	vel Data	a	1		Sample ID	Well Diagram	Summary	1
Da	ate	Time	Elap Time	(hr BO	Dept ottom asing	h (ft) t Bottom of Hole	Wator	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	Riser Pipe Screen Filter Sand	Overburden (ft)23.Rock Cored (ft)5.	-
5/27/	2016		- *C	- COLLAPS	 SED	8.0*	8.0	S - Split Spoon Sample	Grout Concrete Bentonite Seal	Samples6S, 1CBoring No.I	3-05
Field	Tests	:					S - Slow M - Mediu		ity: N - Nonplastic L - Lo	w M - Medium H - High M - Medium H - High V - Ve	ry High
Not	e: Ma	ximum į	oarticle	e size (mp	os) is d	letermi	ned by di	rect observation within the lim isual-manual methods of th	itations of sampler size.		

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000GINT43434-000_TB/GPJ

н		RIC	н			TEST BORING REPORT	Boring No. File No. 43434-00 Sheet No. 2 of	B-05
ft)	Sampler Blows per 6 in.	No.)	e (1	Stratum Change Elev/Depth (ft)	lodr	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		PID Readings
Depth (ft)	er Bl 6 in	Sample No. & Rec. (in.)	Sample Depth (ft)	ange	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle siz	ze [†] ,	(ppm)
Dep	ampl	samı & Re	Sa Dep	lev/E	SCS	structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)		(sample/bkgd)
- 20 -	S S	0,~		ш				
						Note: Roller bit advanced to 23.5 ft and began rock coring.		
-								
-				285.4		-GLACIAL TILL-		
				23.5		SEE CORE BORING REPORT FOR ROCK DETAILS		
-								
- 25 -	-							
-								
-								
	NOTE:	Soil id	lentifica	tion base	d on vi	isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No.	B-05

H&A-TEST BORING-09 HALIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER.CONFIDENTIAL000GINT43434-000_TB.GFJ

HAL	D RIC	Н			CO	RE BO	ORIN	IG REPORT	Boring No. B-05 File No. 43434-000 Sheet No. 3 of 3
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Elev./ Depth (ft)	Visual Desc and Rem	cription arks
25 —	4 4 4 4	C1	23.5 28.5	59 22.5	98 38	Slight to Moderate	285.4	SEE TEST BORING REPORT FO Hard to very hard slightly weathered with moder 24.2 to 24.7 ft and 26.1 to 26.8 ft light gray and fine grained QUARTZITE; Foliation low angle, undulating; Primary (foliation) joints low angle, planar to undulating, decomposed to discolored, dipping to high angle, close to moderately spaced decomposed to discolored, open; Completely we 27 ft	rately weathered zones from approximate white (with yellow-brown discoloration) extremely thin, planar to slightly very close to moderately spaced, rough, open to tight: Secondary joints moderate
30 –	4						280.4 28.5	-QUINEBAUG FO -BEDRO BOTTOM OF EXPLO	CK-
35 —									
40 —	-								
45 —									
50 —									
55 —									

	EY DRIC	H			TEST	BORING REPOR	RT	Boring No. B-06
Project Client Contract	NT	E En		Center, K	Cillingly, Co	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 31, 2016 Finish June 1, 2016
			Casing	Sampler	Barrel	Drilling Equipment	and Procedures	Finish June 1, 2016 Driller J. Rauscher
Туре			HSA	S	NX	Rig Make & Model: Traci	c mounted Diedrich D12	0 H&A Rep. S. Poff/ C. Snow
Inside Dia	ameter	(in.)	4 1/4	1 3/8	1 7/8	Bit Type: Cutting Head Drill Mud: None		Elevation 324.4 (est.) Datum NAVD88
Hammer	U	` ´		140	-	Casing: Spun Hoist/Hammer: Winch	Automatic Hammer	Location See Plan
Hammer	· ·	.)		30	-	PID Make & Model: Non		N 876135.9 E 1226980.6
Depth (ft) Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Ш	USCS Symbol		(Density/consistend structure, d	AL IDENTIFICATION AND y, color, GROUP NAME, i odor, moisture, optional de DLOGIC INTERPRETATION	max. particle size [†] , escriptions
$-0 - \frac{2}{3}$	S1 18	0.0	324.2 0.2 323.9	ML/			-FOREST LITTER- -TOPSOIL/LOAM-	
- 3	10	2.0	0.5		oose orange-t	prown silty coarse to fine SANI	D, little coarse to fine grav	vel, trace roots, no odor, dry
6	S2	2.0	321.9	SM Lo			-SUBSOIL- rse to fine gravel, little co	arse to medium sand, no odor, dry
- 26	12	3.0	321.9 32.5.4 3.0) /_	milar to S1 b		GLACIAL TILL	
50/2	ויי					y coarse to fine sandy fine GR. on refusal at 2.7 ft. Advance co		dry, resembles weathered floiated rock n core run.
							RING REPORT FOR RO	
- 5 -								
-								
-								
-								
						1		
		Fla	evel Data	a Depth (f	t) to:	Sample ID	Well Diagram	Summary
Date	Time		hr BC	ottom Bott asing of H	om Mater	O - Open End Rod T - Thin Wall Tube	Screen Filter Sand	Overburden (ft)3.0Rock Cored (ft)4.0
		NOT	ENCOUN			U - Undisturbed Sample S - Split Spoon Sample	िल्टे Cuttings Grout	Samples 2S
							Concrete	Boring No. B-06
Field Test	ts:				id S - Slow		ty: N - Nonplastic L - Low	v M - Medium H - High M - Medium H - High V - Very High
[†] Note: M	laximum No	particl	e size (mj	os) is deter	w <u>M - Mediu</u> mined by dir based on vi	m H - Hign Dry Str ect observation within the lim sual-manual methods of th	itations of sampler size.	


H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G;43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000/GINT43434_000_TB/GPJ

HAL	EY DRIC	н			CO	RE B	ORIN	G REPORT	Boring No. B-06 File No. 43434-000 Sheet No. 2 of 2
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove	ery/RQD %	Weath- ering	Elev./ Depth (ft)	Visual Desc and Rem	cription
- 5 —	2.5 3 5	C1	3.0 6.5	16 0	38 0	High	321.4 3.0	SEE TEST BORING REPORT FO Very hard highly weathered gray to white (with grained QUARTZITE; Foliation low angle to no slightly undulating; Primary (foliation) joints low close to close (indiscernible in core recovered); S (otherwise indiscernible in core recovered)	orange to yellow discoloration) fine oderately dipping, very thin, planar to y angle to moderately dipping, likely ye
	9						316.4 8.0	Note: Core barrel jammed at 6.5 ft, core run tern through probable weathered rock. -PROBABLE Bl	EDROCK-
10 —							8.0	BOTTOM OF EXPLO	RATION 8.0 FT
15 —									
20 —									
25 —									
30 —									
35 —									

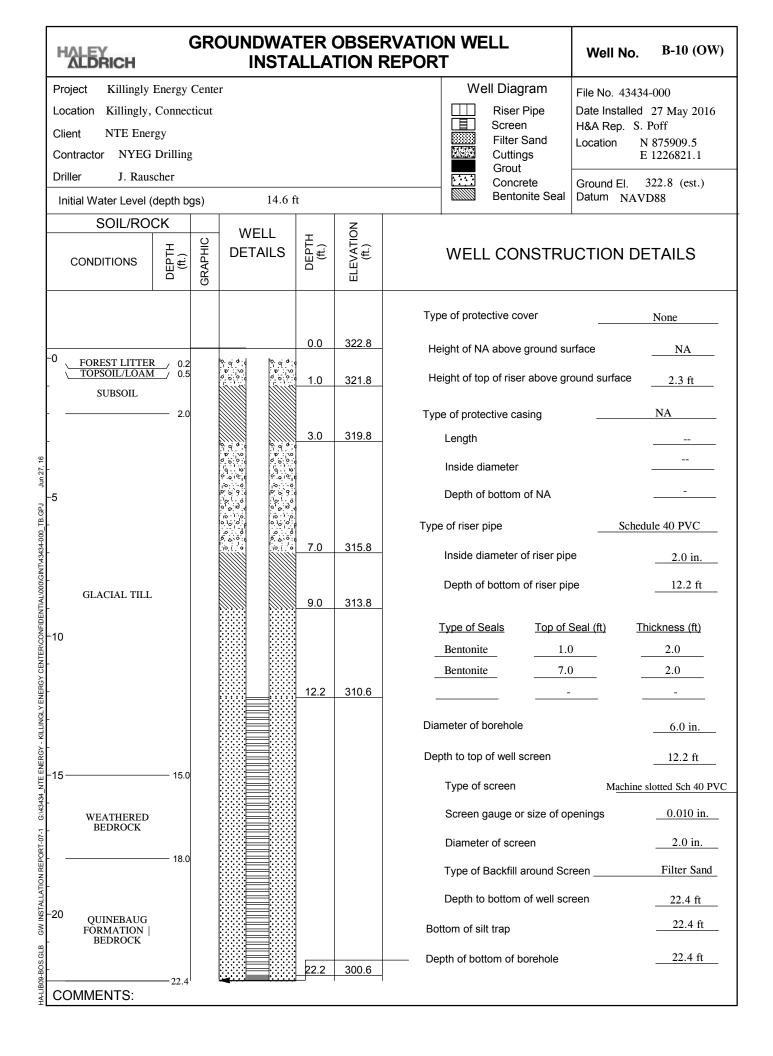
HAL	D RIC	н			•	TEST	BORING REPOR	RT	Boring No. B-0)7(OW
Project Client Contract	NT	E Ene		-	er, Ki	llingly, Co	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 31, 2	
			Casing		npler	Barrel	Drilling Equipmen	t and Procedures	Finish May 31, 2 Driller J. Rauscher	016
Гуре			HSA	·	S	NX	Rig Make & Model: Trad			
nside Dia	meter		4 1/4		3/8	1 7/8	Bit Type: Cutting Head		Elevation 345.3 (
Hammer		` '			40	-	Drill Mud: None Casing: Spun		Datum NAVD8 Location Offset 24.0	
Hammer	-	· /			80	-	Hoist/Hammer: Winch PID Make & Model: Nor		N 875991.4 E 1227082.8	/ 11
l (ft) Blows in.	(in.) (in.)	e (#	gram	ц ред	Symbol		VISUAL-MA	NUAL IDENTIFICATION		
Depth (ft) Sampler Blov per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Sy		structu	ency, color, GROUP NA re, odor, moisture, option GEOLOGIC INTERPRE	ME, max. particle size [†] , nal descriptions TATION)	
0 3	S1	0.0	0. 0.	345.2 0.1	ML/			-FOREST LITTE		
11 24	19	2.0		344.9		Medium	dense orange-brown fine sandy	-TOPSOIL/LOAN	1- , coarse to medium sand, roots, no o	odor. drv
10				344.3 1.0	SP-	\	-	-SUBSOIL-		-
8 9 10 9	\$2 14	2.0 4.0			SM SM	boulder f Medium	ragments)	own silty fine SAND, so	o odor, dry, angular particles (weath	
5	\$3 3	5.0 \ 5.5		0.8 5.5	SM		o S2, except very dense, split s ger refusal at 5.5 ft, began roo			
						\	SEE CORE	-GLACIAL TILI BORING REPORT FO		
10 -										
Date	Wa Time	Elap Time	(III.) of			n Water	Sample ID O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Split Spoon Sample	Well Diagram Riser Pipe Screen Filter Sand Outtings Grout Concrete Bentonite Sea	Summary Overburden (ft) 5.5 Rock Cored (ft) 5.0 Samples 3S, 1C Boring No. B-07(0)	 DW)
Field Test	s:					S - Slow		ity: N - Nonplastic L - I	ow M - Medium H - High	
							<u>m H - High Dry St</u> rect observation within the lin		w M - Medium H - High V - Very Hi	yn

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000GINT43434-000_TB/GPJ

HAL	EY DRIC	н			CO	RE B	ORII	NG R	EPORT	Boring No. B-07(OW) File No. 43434-000 Sheet No. 2 of 2
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Well Dia- gram	Elev./ Depth (ft)	Visual D and R	Description Remarks
									SEE TEST BORING REPORT	FOR OVERBURDEN DETAILS
-	3.5 5 4	C1	5.5 10.5	53 6	88 10	Slight		339.8 5.5	Hard slightly weathered dark gray to light biotite-quartz GNEISS; Foliation low and	nt gray, medium to fine grained muscovite- gle, extremely to very thin, planar to bints low angle, very close to close, smooth lightly decomposed to discolored, open;
- - 10	5							336.6 8.7	brown discoloring throughout -QUINEBAUC	ite fine grained QUARTZITE with orange-
10								334.8 10.5		PROCK- PLORATION 10.5 FT
-									Note: Installed temporary groundwater o	bservation well in completed borehole.
- - 15 -										
- - - 20 —										
- - -										
25 - -										
- - 30 -										
- 20 - - 20 - - 25 - - 25 - - 30 - - 30 - 35 - 										
- - - 40 -										

	DRIC	н			TEST	BORING REPO	RT	Boring No. B-08		
Project Client Contracto	NT	lingly E Ene EG D	rgy	Center,	Killingly, Co	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 24, 2016		
		0	Casing	Samp	er Barrel	Drilling Equipmer	nt and Procedures	Finish May 24, 2016 Driller J. Rauscher		
уре			HSA	S	NX	Rig Make & Model: Tra	ck mounted Diedrich D12			
nside Dia	meter	(in.)	4 1/4	1 3/8	3 1 7/8	Bit Type: Cutting Head Drill Mud: None		Elevation 299.5 (est.) Datum NAVD88		
lammer \	Neight	(lb)		140	-	Casing: Spun		DatumNAVD88LocationOffset 34.0 ft SE		
lammer I	Fall (in)		30	-	Hoist/Hammer: Winch PID Make & Model: No		N 876108.5 E 1226670.1		
Depth (ft) Sampler Blows	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol		(Density/consister structure	JAL IDENTIFICATION ANE ncy, color, GROUP NAME, odor, moisture, optional d EOLOGIC INTERPRETATI	max. particle size [†] , escriptions		
⁰ WOH/18		0.0	299.3 0.2	ML/	<u></u>		-FOREST LITTER-			
	18	2.0	298.8 0.7		Very loose bro	own to yellow-brown fine sand	-TOPSOIL/LOAM- y SILT, trace fine gravel,	coarse to medium sand, roots, no odor, mo		
$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 2 \end{array}$	S2 24	2.0 4.0	297.0 2.5		Similar to S1 Very loose ligh	ht brown to tan fine SAND, so	ome silt, no odor, dry			
			295.0				-SUBSOIL-			
5	62	5.0	295.0 4.5	SM	Medium dense	vellow-brown to light brown	coarse to fine SAND som	e coarse to fine gravel, little silt, no odor, o		
6 8 13 15	S3 19	5.0 7.0		5141	Wedium dense	yenow-brown to right brown	coarse to fine SAND, some	e coarse to fine graver, nuce sitt, no odor, v		
24 31 50/4"	S4 14	7.0 8.3		SM		-		or, dry, boulder fragments from 7.9 to 9.0		
0 - 22 25 36	S5 18	10.0 11.8						D, some silt, little coarse to medium sand,		
50/4"					Note: Auger g	rinding from 11.5 to 12.0 ft o	n cobble.			
5	S6	15.0 15.5	284.0 15.5		Similar to S5 Note: Auger re	efusal at 15.5 ft, began rock co	oring. -GLACIAL TILL-			
						SEE CORE B	ORING REPORT FOR RO	OCK DETAILS		
.0	Wa	aterle	vel Data	 a		Sample ID	Well Diagram	Summary		
Date	Time	Elap	sed	Depth ttom B	(ft) to: ^{ottom} f Hole	O - Open End Rod	Riser Pipe Screen Filter Sand	Overburden (ft)15.5Rock Cored (ft)5.0		
/27/2016	9:40	66			14.0 DRY	S - Split Spoon Sample	<u>۱۹۰۹</u> Grout Concrete Bentonite Seal	Samples6S, 1CBoring No.B-08		
					apid S - Slow		city: N - Nonplastic L - Lo			

HAL	EY DRIC	н			CO	RE B	ORIN	IG REPORT	Boring No. B-08 File No. 43434-000 Sheet No. 2 of
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth		-	Weath- ering	Elev./ Depth	Visual Desc and Rem	cription arks
	4 4 3.5	C1	(ft) 15.5 20.5	in. 53 7.5	% 88 13	Slight to Moderate	(ft) 284.0 15.5	SEE TEST BORING REPORT FO Very hard slightly weatered (15.5 to 17.6 ft, 17. to 17.9 ft, 18.7 to 20.5 ft) gray and white fine gr Foliation low angle, extremely thin, planar to sli low angle, very close to close, smooth to rough, (orange-brown), open to tight	9 to 18.7 ft) to moderately weatherd (17- rained muscovite-biotite-quartz GNEISS; ghtly undulating; Primary (foliation) joir
20 —	1.5 2.5						279.0 20.5	Note: Moderately weathered zone from 18.7 to 2 seams from approximately 18.8 to 18.9 ft, 19 to loss of drill water below 18.7 ft. -QUINEBAUG FC -BEDRO	19.2 ft, and 19.3 to 19.4 ft. Continuous DRMATION-
25 —							20.5	BOTTOM OF EXPLO	
30 - 35 - 40 - 45 - 50 -	-								
35 —									
40 —									
45 —									
50 —									


HALEY ALDRICH	Boring No. B-09						
Project Killingly Energy Client NTE Energy Contractor NYEG Drilling		File No. 43434-000 Sheet No. 1 of 1 Start					
Casing	Sampler Barrel	Drilling Equipment and Proc	edures	Finish Driller			
Туре		Rig Make & Model: Bit Type:	H&A Rep. Elevation 320.9 (est.)				
Inside Diameter (in.)		Drill Mud:		Datum NAVD88			
Hammer Weight (lb) Hammer Fall (in.)		Casing: Hoist/Hammer:		Location See Plan N 875968.8			
. ,		PID Make & Model:		E 1226776.7			
Depth (ft) Sampler Blows per 6 in. Sample No. & Rec. (in.) Sample Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)					
	Note: B-09 was	omitted from exploration program by Mo	ott MacDonald.				
Field Tests: Dilatar	Depth (ft) to: pttom Bottom Water casing of Hole Control Con	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Split Spoon Sample N - None Plasticity: N - Nor	Filter Sand Rock Filter Sand Samp Grout Concrete Boril Sentonite Seal nplastic L - Low M - M	ng No. B-09			
Tough [†] Note: Maximum particle size (m	ness: L - Low M - Medium ps) is determined by dir	n H - High Dry Strength: N - I ect observation within the limitations of s sual-manual methods of the USCS as	None L - Low M - Mee sampler size.	dium H - High V - Very High			

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G;43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000/GINT43434_000_TB/GPJ

HAL	EY DRIC	H			-	TEST	BORING REPO	RT	Boring No. B-10 (OW				
Project Client Contrac	NT	llingly TE Ene TEG D	ergy		er, Kil	lingly, C	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 27, 2016				
			Casing	n San	npler	Barrel	Drilling Equipmer	Finish May 27, 2016 Driller J. Rauscher					
уре			HSA		S	NX	Rig Make & Model: Tra						
	iameter	(in)	4 1/4		3/8	1 7/8	Bit Type: Cutting Head		Elevation 322.8 (est.)				
	Weight	` ´	4 1/4		40	-	Drill Mud: None Casing: Spun Hoist/Hammer: Winch PID Make & Model: No		Datum NAVD88				
lammei	r Fall (in	` ´		3	0	-			Location Offset 6.5 ft south N 875909.5 E 1226821.1				
Sampler Blows	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol		(Density/consis structu	NUAL IDENTIFICATION / stency, color, GROUP NAI ure, odor, moisture, option GEOLOGIC INTERPRET	ME, max. particle size [†] , al descriptions				
1	S1	0.0	0. - 0.	322.6	ML/			-FOREST LITTER					
2 3	10	2.0	///- o =	322.3 0.5	OL/	Loose or	ange-brown silty fine SAND	-TOPSOIL/LOAM	- , coarse to medium sand, no odor, dry				
5				320.8	SM			-SUBSOIL-	, combe to meanin sand, no outr, ury				
7 10 15 19		2.0 4.0		2.0	SM	Medium dense brown silty SAND, trace gravel, no odor, dry							
5 12		5.0				Similar to S2, except dense, some gravel							
14 21 29		7.0	<u>// ö * ö ö ö ö ö ö ö ö</u>	315.8 7.0		Very dense brown to light brown to tan coarse to fine gravelly coarse to fine SAND, some silt, occasional poorly-defined layering/stratification							
30 25 25 28	20	7.0 9.0			SM								
10 11 15 18 22		10.0 12.0			SM	Similar t	o S4, except dense						
5	~ ~	15.0		307.8 15.0	SM		5	-GLACIAL TILL- velly coarse to fine SANE	9, little silt, laminated/foliated (relict				
18 15 25				4.8		structure), no odor, wet Note: Auger refusal at 18.0 ft, began rock coring. -WEATHERED BEDROCK-							
			<u></u>	8.0			SEE CORE	E BORING REPORT FOR	ROCK DETAILS				
0													
-	W	ater Le			11. 18.	1.	Sample ID	Well Diagram	Summary				
Date	Time	Elap	Bottom		th (ft) Botton	n	O - Open End Rod	Riser Pipe	Overburden (ft) 18.0				
107 10 0 1				of Casing	of Hole	e vvater	T - Thin Wall Tube U - Undisturbed Sample	Filter Sand	Rock Cored (ft) 4.4				
/27/2010	b	-		15.0	17.0	14.6	S - Split Spoon Sample	Grout Grout Concrete	Samples 6S, 1C Boring No. B-10 (OW)				
		1				1	1	Bentonite Seal					
eld Tes	its:		Dilat	ancy: R	- Rapid	S - Slow	N - None Plasti m H - High Dry St	city: N - Nonplastic L - Lo	ow M - Medium H - High / M - Medium H - High V - Very High				

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000GINT43434-000_TB/GPJ

	HAL	EY DRIC	н			со	RE B	ORIN	NG R	REPORT Boring No. B-10 (OW) File No. 43434-000 Sheet No. 2 of 2		
ſ	Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Well Dia- gram	Elev./ Depth (ft)	Visual D and R	escription emarks	
•	- 20	3.5 3.5 3.5 3 4	Cl	18.0 22.4	51 17.5	97 33	Slight to Fresh		304.8 18.0 300.4 22.4	Hard slightly weathered to fresh gray and biotite-quartz GNEISS; Foliation low ang undulating; Primary (foliation) joints low rough, planar to slightly undulating, disco joints moderately dipping across foliation discolored, open Note: Core barrel jammed at 22.4 ft, core -QUINEBAUG -BED	le, extremely thin, planar to slightly angle, very close to close, smooth to olored to fresh, open to tight; Secondary , widely spaced, rough, planar to stepped, e run terminated. FORMATION- ROCK-	
\43434-000_TB.GPJ Jun 27, 16	- 25 - - - - - 30 - -											
LLINGLY ENERGY CENTER/CONFIDENTIAL/000/GIN1	- 35											
.L-07-1.GDT G:\43434_NTE ENERGY - KI	- 40											
H+A_CORF+WELI07-1 HALIB09-BOS/GLB HA-TB+CORE+WELL-07-1/ GDT G:4333_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL1000/GINTA3434.000_TB/GPJ	- 45 - - - - 50											
H+A_CORE												

Н	Æ	PRIC	Н			TES	T BORING REPOR	RT	Boring No. B-11
Proj Clie Cor		NT	lingly E Ene EG D	rgy	Center	r, Killingly,	Connecticut		File No. 43434-000 Sheet No. 1 of 3 Start June 1, 2016
				Casing	Sam	pler Barr	Drilling Equipment	t and Procedures	Finish June 1, 2016 Driller J. Rauscher
Type HSA S						NX	Rig Make & Model: Trac		
Insid	le Dia	meter	(in.)	4 1/4	13	/8 1 7/	Bit Type: Cutting Head Drill Mud: None		Elevation 312.3 (est.) Datum NAVD88
Ham	imer V	Veight	(lb)		14	0 -	Casing: Spun Hoist/Hammer: Winch	Automotic Hommon	Location See Plan
Harr		all (in	.)		30) -	PID Make & Model: Nor	ne	N 876073.5 E 1227369.9
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol		(Density/consisten structure,	AL IDENTIFICATION AND cy, color, GROUP NAME, odor, moisture, optional d OLOGIC INTERPRETAT	, max. particle size⁺, lescriptions
0 -	<u>ග</u> 2	S1	0.0	ш 312.1 0.2	ML/			-FOREST LITTER-	
	3 3	12	2.0		OL	Loose dark like odor, n		r, little coarse to fine grav	vel, coarse to fine sand, trace roots, topsoi
	3			310.8	SM			-TOPSOIL-	trace coarse sand, gravel, no odor, dry
	2 3	S2 19	$\begin{array}{c} 2.0 \\ 4.0 \end{array}$				ere in to orange prown mounting	, some sitter, some sitt,	
	4 13			308.8 3.5	SP	Tan coarse	o fine SAND, little gravel, trace	-SUBSOIL-	
5 -	12 24 25 21	S3 15	4.0 6.0		SP		bove, except dense, some cobbles		noist
	18 27 24 15	S4 9	6.0 8.0		SP	Very dense	tan coarse to fine SAND, some g	ravel, trace silt, no odor,	wet, poorly stratified
	2 6 10 10	S5 11	8.0 10.0	304.3 8.0	SM	Medium de	ise tan coarse to fine SAND, little	gravel, silt, no odor, we	t
10 -	10 11 11 14	S6 16	10.0 12.0	-	SM	Similar to S	5		
				-					
15 -	2 6 10 10	\$7 12	15.0 17.0	297.3 15.0	SM	Medium de	ise tan to gray sandy GRAVEL, c	oarse to fine sand, little s	ilt, no odor, wet
20							1		
			Elap	evel Data		h (ft) to:	Sample ID O - Open End Rod	Well Diagram	Summary Overburden (ft) 22.0
Da	ate	Time	Time	(hr Bo	ttom	Bottom of Hole Wa	er T - Thin Wall Tube	Screen Filter Sand	Rock Cored (ft) 6.0
			NOT	T MEASU			U - Undisturbed Sample S - Split Spoon Sample	Grout	Samples 8S, 2C
				Dilator		Depid C. C.	u Ni Nono Dis-41-	Bentonite Seal	Bornig No.
	Tests			Dilatanc	:y :R-l	Rapid S - Slo - Low M - Me	w N-None Plastic	ILV. IN - INONDIASTIC L - LO	w M - Medium H - High

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G;43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000/GINT43434_000_TB/GPJ

Н	XLE	RIC	н			TEST BORING REPORT	Boring No. File No. 43434-00 Sheet No. 2 of	B-11
				(tt)	lodr	VISUAL-MANUAL IDENTIFICATION AND DESCI	•	5
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional descriptic GEOLOGIC INTERPRETATION)	article size [†] , ons	
	ad 36 37 48 21	WBS S8 17		291.3 21.0 290.3 22.0	SSN SM	Structure, odor, moisture, optional descripting GEOLOGIC INTERPRETATION) Very dense gray sandy GRAVEL, no odor, wer 	gravel, no odor, wet	
	NOTE	Soil id	entifica	tion base	d on vi	isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No.	B-11

H&A-TEST BORING-09 HALIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER.CONFIDENTIAL000GINT43434-000_TB.GFJ

HAL	EY DRIC	н			CO	RE B	ORIN	IG REPORT	Boring No. B-11 File No. 43434-000 Sheet No. 3 of 3
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)		ry/RQD	Weath- ering	Elev./ Depth	Visual Desc and Rem	ription arks
	,,			in.	%		(ft)	SEE TEST BORING REPORT FO	ROVERRURDEN DETAUS
25 —	4 3.5 3.5 4.5	C1	22.0 26.0	39 21	81 44	Moderate to Slight	290.3 22.0	Hard to very hard gray and white (with orange a muscovite-biotite-quartz GNEISS; Foliation low undulating; Primary (foliation) joints low angle, smooth to rough, planar to slightly undulating to to tight; Secondary joints moderately dipping to spaced, smooth to rough, planar to slightly undu tight; Biotite seam from approximately 23.3 to 2	nd red discoloring) medium to fine grain angle, extremely thin, planar to slightly extremely close to moderately spaced, stepped, decomposed to discolored, ope high angle across foliation, moderately lating, slightly decomposed to discolored
	5	C2	26.0	21	88	Slight		Similar to C1, except foliation joints close to mo	derately spaced; Quartzite seam with
30 —	4.5		28.0	15.5*	65*		284.3 28.0	garnets approximately 26.4 to 27.3 ft. *RQD qualifier: Closed high angle fracture throu with secondary mineralization (probable biotite a -QUINEBAUG FC -BEDROO BOTTOM OF EXPLOI Note: Boring offset 26.0 ft north and 83.0 ft east 12,27,457).	igh RQD zone from 26.7 to 28.1 ft, heal nd pyrite) RMATION- CK- RATION 28.0 FT
35 —									
40 —									
45 —									
50 —									
55 —									

H		RIC	н			•	TEST	BORING REPOR	RT	Boring No. B-12 (OW
Proj Clie Con		NT	lingly È Ene ÈG D	ergy		er, Kil	llingly, C	onnecticut		File No. 43434-000 Sheet No. 1 of 3 Start May 26, 2016
				Casin	-	npler	Barrel	Drilling Equipment	and Procedures	Finish May 26, 2016 Driller C. Stone
уре	Э			HSA		s	NX	Rig Make & Model: Trac	H&A Rep. S. Poff	
nsid	le Diai	meter	(in.) 4 1/4		. 1	3/8	1 7/8	Bit Type: Cutting Head Drill Mud: None	1	Elevation 330.5 (est.) Datum NAVD88
Ham	nmer F	Veight Fall (in	` 'l		3	40 80	-	Casing: Spun Hoist/Hammer: Winch PID Make & Model: Nor		Location See Plan N 875928.2 E 1227230.1
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol		(Density/consist structur	NUAL IDENTIFICATION A ency, color, GROUP NA e, odor, moisture, option SEOLOGIC INTERPRET	ME, max. particle size [†] , al descriptions
0 -	1	S1	0.0	9. 9. 	330.3 0.2 329.9	ML/			-FOREST LITTER	
	2 5 9	8	2.0		0.6	OL / SM	Loose ye	llow-brown silty fine SAND, th	-TOPSOIL/LOAM	I- I, coarse to fine sand, no odor, dry
	9 10	S2	2.0		328.9 1.6	SM	Medium	dense light brown to vellow br	-SUBSOIL-	SAND, little coarse to fine gravel, coarse
-	10 10 20 32	32 14	4.0			5141		odor, dry	own sincy includin to find	
5 -	10 52 50 20	S3 16	5.0 7.0			SM	Similar t	o S2, cobble fragments from 5.	5 to 6.7 ft	
-	32 28 34 42	S4 18	7.0 9.0			SM	Medium	dense light brown silty SAND,	little gravel, no odor, dr	ry, cobble fragments from 8.2 to 8.7 ft
10 -	14 31 45 42	S5 16	10.0 12.0			SM	Very der	ise light brown to gray-brown c	oarse to fine gravelly SA	AND, some silt, with cobbles, no odor, dry
15 —	25 18 22 18	\$6 23	15.0 17.0			SM	Similar t	o S5, except dense, moist		
20										
	ate		eter Le Elar	sed	Dep	th (ft)		Sample ID O - Open End Rod	Well Diagram	Summary Overburden (ft) 24.0
Da	ate	Time	Time	(hr	Bottom of Casing	Bottor of Hol		T - Thin Wall Tube	Screen Filter Sand	Rock Cored (ft) 5.0
5/31/	/2016	17:00	96	.0			9.0	U - Undisturbed Sample S - Split Spoon Sample	Grout Concrete Bentonite Seal	Samples 7S, 1C Boring No. B-12 (OW)
Field	l Tests	:	1	Dilat	ancy: R	- Rapid	S - Slow M - Mediu	N - None Plastic m H - High Dry Str	ity: N - Nonplastic L - Lo	⊥ ow M - Medium H - High v M - Medium H - High V - Very High
	o Ma	ximum	particle	size	(mps) is	determ	ined by di	rect observation within the lim	itations of sampler size	L

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000GINT43434-000_TB/GPJ

25 1 1 See Core 2 or 3 26 9 </th <th>TEST BORING REPORT</th> <th>Boring No. B-12 (OW) File No. 43434-000</th>	TEST BORING REPORT	Boring No. B-12 (OW) File No. 43434-000
20 24 S7 20.0 13 12 21.6 Image: Construction of the standy in the standy of the stand		Sheet No. 2 of 3 CRIPTION
20 24 S7 20.0 13 12 21.6 Image: Construction of the standy of the stand	Debth C <td></td>	
	20 24 S7 20.0 S7 20.0 S7 21.6 S7 S7 21.6 S7 S7	lt, no odor, wet .0 ft, began rock coring.
NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. B-12 (OW)		R-12 (OW)

H&A-TEST BORING-09 HALIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER.CONFIDENTIAL000GINT43434-000_TB.GFJ

	HAL	EY DRIC	н			СО	RE B	ORII	NG R	EPORT	Boring No. B-12 (OW) File No. 43434-000 Sheet No. 3 of 3
C	epth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Well Dia- gram	Elev./ Depth (ft)	Visual D and R	escription emarks
F						,.			()	SEE TEST BORING REPORT	FOR OVERBURDEN DETAILS
-	25 –	6 6 5 5 5	Cl	24.0 29.0	55 7	92 12	Slight		306.5 24.0	Hard, slightly weathered, gray and white throughout), medium to fine grained muss low angle, extremely thin, planar to sligh low angle, extremely to very close, smoo decomposed to discolored, open; Seconda across foliation, close to moderately space slightly decomposed to discolored, open; approximately 28.7 to 29.0 ft. -QUINEBAUG	(with orange to red discoloring covite-biotite-quartz GNEISS; Foliation tly undulating; Primary (foliation) joints th to rough, planar to slightly undulating, ury joints moderately dipping to high angle ed, rough, slightly undulating to stepped,
ŀ								<u></u>	$301.5 \\ 29.0$		LORATION 29.0 FT
-	30 —									Note: Installed temporary groundwater of	
3.GPJ Jun 27, 16	35 —										
IAL\000\GINT43434-000_11	40										
	40 —										
4_NTE ENERGY - KILLINGLY EN	45 —										
CORE+WELL-07-1.GDT G:\43434	50 —										
H+A_CORE+WELL07-1 HALIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G:433434_NTE ENERGY -KILLINGLY ENERGY CENTER/CONFIDENTIAL 000/GIN143434-000_TB/GPJ	55 —										
H+A_CORE+WEL											

HALEY ALDRICH	GR				RVATION WELL	Well No. B-12 (OW)
Project Killingly Energy Location Killingly, Conne Client NTE Energy Contractor NYEG Drillin	ecticut				Riser Pipe Da	e No. 43434-000 ate Installed 26 May 2016 &A Rep. S. Poff cation N 875928.2 E 1227230.1
Driller C. Stone Initial Water Level (depth	bae)	9.0 ft			Concrete Gr	round El. 330.5 (est.) atum NAVD88
SOIL/ROCK				7		
	GRAPHIC	- WELL DETAILS	DEPTH (ft.)	ELEVATION (ft.)	WELL CONSTRUC	TION DETAILS
					Type of protective cover	None
			0.0	330.5	Height of NA above ground surfac	ce <u>NA</u>
$\begin{bmatrix} 0 & FOREST LITTER & 0 \\ & TOPSOIL/LOAM & 0 \\ & SUBSOIL & 1 \end{bmatrix}$			0.5	330.0	Height of top of riser above groun	d surface2.6 ft
			3.0	327.5	Type of protective casing	NA
-		w vo w vo 0			Length	
⁹² -5			6.0	324.5	Inside diameter	
			0.0		Depth of bottom of NA	
00_TB.G			8.0	322.5	Type of riser pipe	Schedule 40 PVC
143434-0			10.0	320.5	Inside diameter of riser pipe	2.0 in
실 ~ 10 9000-1- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10.0	320.5	Depth of bottom of riser pipe	10.0 ft
					Type of Seals Top of Sea	L(ft) Thickness (ft)
GLACIAL TILL					Concrete 0.0	0.5
ഷാ ഉപ്പാട്ട് പ്രാംഗം പ്രാം പ്രാംഗം പ്രാംഗം					Bentonite 8.0	2.0
-10 GLACIAL TILL -10 -10 -15 -15 -20 -20 -25 -25 -25 -24 -25					 Diameter of borehole	6.0 in
					Depth to top of well screen	10.0 ft
□ ₽ ₽ ₽			20.0 20.2	310.5 310.3	Type of screen	Machine slotted Sch 40 PVC
G:N334					Screen gauge or size of openi	ngs <u>0.010 in.</u>
- T- C-					Diameter of screen	2.0 in.
24	0				Type of Backfill around Screer	Filter Sand
-25					Depth to bottom of well screen	20.0 ft
2 ≥ QUINEBAUG FORMATION ↓					Bottom of silt trap	20.2 ft
BEDROCK					—— Depth of bottom of borehole	29.0 ft
BEDROCK 29. COMMENTS:	0		29.0	301.5		

	D RIC	н			TEST	BORING REPC	RT	Boring No. B-13
Project Client Contracte	NT	E Ene		Center	r, Killingly, C	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 31, 2016 Finish May 31, 2016
		C	Casing	Samp	oler Barrel	Drilling Equipme	ent and Procedures	Finish May 31, 2016 Driller C. Stone
Туре			HSA	S	NX	Rig Make & Model: Tr Bit Type: Cutting Hea	H&A Rep. S. Poff	
Inside Diameter (in.) 4 1/4					/8 1 7/8	Elevation 343.8 (est.) Datum NAVD88		
Hammer	Weight	(lb)		140	0 -	Casing: Spun	A	Location See Plan
Hammer)		30) –	Hoist/Hammer: Winch PID Make & Model: N		N 875733.8 E 1227120
n. (ft)	.) No.	el (#	р ел	Symbol		VISUAL-MAN	UAL IDENTIFICATION ANI	D DESCRIPTION
 Depth (ft) Sampler Blows per 6 in. 	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Sy		structur	ency, color, GROUP NAME e, odor, moisture, optional o EOLOGIC INTERPRETAT	descriptions
0 1	S1	0.0	3/3 6	ML/OI			-FOREST LITTER-	
32	8	2.0	343.2	SM	N	brown coarse to fine gravelly	-TOPSOIL/LOAM-	le coarse to medium sand, with cobbles, no
3			341.8		odor, dry	orown course to fille gravelly		e coarse to meatum sand, with coooles, no
5 10 13 14	S2 18	2.0 4.0	2.0	SM	Medium dense	light brown coarse to fine g	-SUBSOIL- avelly coarse to fine SANI	D, some silt, no odor, dry
			338.8					
5 <u>25</u> 22 35 48	S3 9	5.0 7.0	5.0	Ğ₽	Very dense lig	ht brown coarse to fine sand	v coarse to fine GRAVEL,	trace silt, with cobbles, no odor, dry
33	S4	7.0	336.8 7.0	SM	Very dense br	own silty SAND, some grave	l, silt, no odor, dry	
28 38 44	19	9.0						
					Note: Auger g	rinding through boulder fron	approximately 8.8 to 9.8 f	ft.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S5 16	10.0 12.0			Similar to S4,	except medium dense, wet a	12.0 ft	
			-		Note: Auger g	rinding through boulder fron	approximately 12.5 to 13.	7 ft.
15	S6 4	15.0 16.1	-	GP	Very dense lig	ht brown to white coarse to t	ine sandy fine GRAVEL, t	race silt, no odor, dry (quartzite fragments)
_50/1"					Note: Auger c	hattering from 16.1 to 18.0 f	. Auger and roller bit refus	sal at 18.0 ft, began rock coring at 18.0 ft.
			325.8 18.0			SEE CORE	-GLACIAL TILL- BORING REPORT FOR R	OCK DETAILS
20	Wa	ater Le	vel Data		I	Sample ID	Well Diagram	Summary
Date	Time	Elap			n (ft) to: Bottom	O - Open End Rod	Riser Pipe	Overburden (ft) 18.0
		Time	(111.) of C	asing	of Hole Water	T - Thin Wall Tube	Filter Sand	Rock Cored (ft) 10.0
		NOT	" MEASU	RED		S - Split Spoon Sample	۲۰۹۳ Cuttings Grout دے۔ Bentonite Seal	Samples6S, 1CBoring No.B-13
Field Test	s:				Rapid S - Slow - Low M - Mediu	N - None Plas um H - High Drv	ticity: N - Nonplastic L - Lo	
[†] Note: Ma	aximum p	barticle	size (mp	os) is de	etermined by di	rect observation within the lisual-manual methods of	imitations of sampler size.	· · · ·

HAL	DRIC	н			CO	RE B	ORIN	IG REPORT	Boring No. B-13 File No. 43434-000 Sheet No. 2 of 2
epth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove	ery/RQD	Weath- ering	Elev./ Depth (ft)	Visual Deso and Rem	cription narks
20 -	11 11 10 10	C1	18.0 23.0	38 0	63 0	Moderate	325.8 18.0	SEE TEST BORING REPORT FO Note: Core barrel jammed frequently. Hard, moderately weathered, black-gray-white (to fine grained biotite-quartz GNEISS; Foliation slightly undulating; Primary (foliation) joints low planar to slightly undulating, decomposed to disk to vertical, closely spaced, rough, planar to undu	with orange-brown discoloring), medium low angle, extremely thin, planar to w angle, extremely to very close, rough, colored, open: Secondary joints high ang
25 –	11 9 9 9 9	C2	23.0 28.0	31 5*	52 8*	Moderate		Similar to C1 *RQD qualifier: closed high angle fracture throu	igh RQD zone.
	9						315.8 28.0	-QUINEBAUG FO -BEDRO	
30 —									
35 –	-								
40 -	-								
45 –									
50 —	-								

HAL	EY DRIC	н			Т	EST	BORING REPOI	RT		Boring N	o. B-14
Project Client Contrac	NT	lingly E Ene EG D	rgy	Center	r, Killiı	ngly, Co	onnecticut			Sheet No. 1 o Start M	ay 26, 2016
		(Casing	Samp	oler	Barrel	Drilling Equipmen	t and Pro	ocedures	Finish Ma Driller C. S	ay 26, 2016 tone
Гуре			HSA	S			Rig Make & Model: Trac	H&A Rep.	S. Poff		
nside Di	ameter	(in.)	4 1/4	13/	/8		Bit Type: Cutting Head Drill Mud: None				343.4 (est.) NAVD88
	Weight	` ´		14	0	-	Casing: Spun Hoist/Hammer: Winch	Automati	c Hammer	Location See N 8756	e Plan
	Fall (in	.)		30)	-	PID Make & Model: Not			E 1227	
 Depth (ft) Sampler Blows per 6 in. Sample No. & Rec. (in.) Sample Depth (ft) Stratum Change Elev/Depth (ft) USCS Symbol 							(Density/consisten structure,	cy, color, odor, moi			
$0 - \frac{1}{1}$	S1 10	$0.0 \\ 2.0$	343.2 0.2	ML/	<u> </u>			-	EST LITTER- SOIL/LOAM-		
12 18	10	2.0	$\begin{array}{r} 343.2 \\ 0.2 \\ 342.7 \\ 0.7 \\ 342.2 \\ 1.2 \end{array}$	OL SM	n -		nge-brown to light brown silty			to fine gravel, trace coars	e to medium sand,
20	S2	2.0	1.2	SM SM			odor, dry		UBSOIL-		
23 25 29	21	4.0					light brown coarse to fine SA t brown coarse to fine gravelly				dry
					Note:	Frequent	cobbles from 4.0 to 15.0 ft.				
5 19 25 25 18	S3 16	5.0 7.0	-	SM	Simila	r to S2					
25 30 24 20	S4 18	7.0 9.0		SM	Simila	r to S3, 6	except light brown to orange-t	orown			
$10 \begin{array}{c} 10 \\ 10 \\ 15 \\ 30 \\ 32 \end{array}$	S5 17	10.0 12.0	-	SM	Simila	r to S4, e	except dense				
33 40 35 53	S6 16	12.0 14.0	-	SM	Simila	r to S5, e	except very dense				
15 14 30 32 45	S7 18	15.0 17.0	-	SM	Simila	r to S6					
					Note:	Auger gr	inding through boulder from a	approxima	tely 17.0 to 18.0) ft.	
					Note:	Drill acti	ion suggests stratum change at		•		
			324.4 19.0					-GLA	CIAL TILL-		
20		ator! -					0	14/-	II Diagram	0	
Data		Flan	evel Data	Depth	n (ft) to):	Sample ID O - Open End Rod		II Diagram Riser Pipe	Summary Overburden (ft)	22.0
Date	Time	Time	(hr Bo		Bottom of Hole	Water	T - Thin Wall Tube		Screen Filter Sand	Rock Cored (ft)	
5/27/2016	5 14:30		.0 OLLAPS		18.3*	DRY	U - Undisturbed Sample S - Split Spoon Sample	<u>•</u>	Cuttings Grout Concrete	Samples8SBoring No.	B-14
Field Tes	ts:	1				S - Slow		tity: N-N	Bentonite Seal	w M - Medium H - High M - Medium H - High V	/_Very High
Note: M	laximum	particle	size (mp	os) is de	etermin	ed by dir	m H - High Dry St ect observation within the lin sual-manual methods of the	nitations of	of sampler size.		

Н		Y RIC	н			TEST BORING REPORT	Boring No. B-14 File No. 43434-000 Sheet No. 2 of 2
(t)	lows 1.	No. i	e ft	n e r (ft)	lodn	VISUAL-MANUAL IDENTIFICATION AND DESCR	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional descriptio GEOLOGIC INTERPRETATION)	nticle size [†] , ns
- 20 -	6 5 6	S8 12	20.0 22.0		ML	Medium dense brown to gray-brown medium to fine sandy SILT, trace fine gra (possible relict structure), no odor, wet, resembles weathered rock	vel, coarse sand, clay, laminated
-	6			321.4 22.0		-PROBABLE WEATHERED BEDROCK BOTTOM OF EXPLORATION 22.0 FT	
	NOTE:	Soil id	entifica	tion base	d on vi	isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No. B-14

H&A-TEST BORING-09 HALIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:43434_NTE ENERGY - KILLINGLY ENERGY CENTER.CONFIDENTIAL000GINT43434-000_TB.GFJ

HALE	PRIC	н			TEST	BORING REPOR	RT	Boring No. B-15
Project Client Contracto	NT	lingly E Ene EG D	rgy	Center	, Killingly, (Connecticut		File No. 43434-000 Sheet No. 1 of 2 Start June 2, 2016 Finish June 2, 2016
		0	Casing	Samp	ler Barrel	Drilling Equipmen	t and Procedures	Finish June 2, 2016 Driller J. Rauscher
уре			HSA	S	NX	Rig Make & Model: Trac	ek mounted CME 8560	H&A Rep. C. Snow
nside Dia	meter	(in.)	4 1/4	1 3/3	8 1 7/8	Bit Type: Cutting Head Drill Mud: None		Elevation 321.4 (est.) Datum NAVD88
lammer \	0	` ´		140	-	Casing: Spun Hoist/Hammer: Winch	Automatic Hammer	Location See Plan
lammer	•	.)		30	-	PID Make & Model: Not		N 876020.5 E 1227764.4
 Uepth (ft) Sampler Blows per 6 in. 	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol		(Density/consisten structure,	AL IDENTIFICATION AN cy, color, GROUP NAME odor, moisture, optional OLOGIC INTERPRETA	, max. particle size [†] , descriptions
$ \begin{array}{c} $	S1 14	0.0		ML/ OL	Loose dark b like odor, mo		Γ, little coarse to fine gra	vel, coarse to fine sand, trace roots, topsoil-
8	17	2.0	320.2 1.2	SP-			-TOPSOIL/LOAM-	
10	S2	2.0	-	SM SM SP-	Medium dens Similar to ab	•	SAND, little gravel, litt	e silt, trace coarse sand, no odor, dry
15 38	17	4.0	318.9 2.5	SM	\	se light brown coarse to fine SA	-SUBSOIL-	ilt no odor dry
42				SW	meaning della	se nght brown coarse to fille SA	, some graver, trace s	m, no ouor, ury
30 50/2"	S3 7	4.0 5.8]	SW	Similar to S2	, below 2.5 ft		
5 -			215.6				-GLACIAL TILL-	
			315.6 5.8		Note: Split sj	· •	r/bedrock at 5.8 ft. Adva	nced HSA to 6.0 ft and began core run. ROCK DETAILS
10 -								
20								
	Wa		vel Data		(6) (-	Sample ID	Well Diagram	Summary
Date	Time	Elap Time	(hr Bo	ttom E	(ft) to: Bottom Wate	O - Open End Rod T - Thin Wall Tube	Riser Pipe	Overburden (ft) 4.0
		-	NCOUN			U - Undisturbed Sample	Filter Sand	Rock Cored (ft) 15.0 Samples 3S, 3C
						S - Split Spoon Sample	Grout Grout Concrete Bentonite Seal City: N - Nonplastic L - L	Boring No. B-15
ield Tests					apid S - Slow			

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G;43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000/GINT43434_000_TB/GPJ

CORE BORIN						RE B	ORIN	IG REPORT	Boring No. B-15 File No. 43434-000 Sheet No. 2 of 2
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Elev./ Depth (ft)	Visual De and Rei	scription
		C1	6.0 11.0	27 N/A	45			SEE TEST BORING REPORT F Recovered 27.0 in. of hard GNEISS BOULDE	<i>OR OVERBURDEN DETAILS</i> R pieces
· 10 -		C2	11.0 16.0	6 N/A	10			Note: Borehole reamed to 11.0 ft, core barrel a Recovered 6.0 in. of hard GNEISS and QUAR	advanced from 11.0 to 16.0 ft. TZITE COBBLE pieces
15 —		C3	16.0 21.0	20 N/A	33			Note: Borehole reamed to 16.0 ft, core barrel a Recovered 20.0 in. of hard GNEISS and QUA	
20 —							300.4 21.0	-GLACIA BOTTOM OF EXPLO	L TILL- ORATION 21.0 FT
25 —									
30 -									
- 35 —									
40 —									

Project Client Contractc						BORING REPORT					
		lingly E Ene EG D	rgy	Center	r, Killingly, C	Sheet No. 1 of 2 Start May 25	, 2016				
		(Casing	Sam	pler Barrel	Drilling Equipment and Procedures Finish May 26 Driller C. Stone	, 2016				
Гуре			HSA	S	NX	Rig Make & Model: Track mounted CME 850 H&A Rep. S. Po	ff				
nside Dia	meter	(in.)	4 1/4	13	/8 1 7/8	Bit Type:Cutting HeadElevation310.9Drill Mud:NoneDatumNAV) (est.)				
Hammer V	Neight	(lb)		14	0 -	Casing: Spun Location Offset 1	4.0 ft				
Hammer F	Fall (in	.)		30) -	HOIST/Hammer:WinchAutomatic HammerN87\$\$34 ncPID Make & Model:NoneE1227859.9	orthwest				
 Depth (ft) Sampler Blows per 6 in. 	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol		VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	PID Readin (ppm) (sample/bkg				
0 1	S1	0.0	310.3 0.6	ML/		-TOPSOIL/LOAM-					
1 1 1	16	2.0	0.6	OL SM	dry	inge-brown to yellow-brown silty fine SAND, trace coarse to medium sand, no odor,					
2 3 5 25	S2 10	2.0 4.0		SM SP	Similar to S1 Medium dense odor, moist	brown to orange-brown medium to fine SAND, trace coarse sand, silt, stratified, no					
			305.0			-SUBSOIL-					
5 7 10 8 10	\$3 20	5.0 7.0	305.9 5.0	SM	Medium dense light brown coarse to fine SAND, some silt, little fine gravel, no structure, no odor, moist						
14 15 15 20	S4 16	7.0 9.0		SM	Similar to S3						
10 13 20 18 20	S5 16	10.0 12.0	-	SM	SM Similar to S4, except dense						
22 28 32 42	S6 15	12.0 14.0	298.9 12.0	SM	Very dense lig moist	ht brown to brown coarse to fine gravelly SAND, some silt, no structure, no odor,					
$15 \begin{array}{c} 17 \\ 21 \\ 23 \\ 30 \end{array}$	S7 18	15.0 17.0	-	SM	Similar to S6, except dense, wet						
22 28 36 45	S8 19	17.0 19.0		SM	Similar to S7,	except very dense					
			290.9		Note: Auger g	-GLACIAL TILL- rinding from approximately 19.5 to 20 ft. HSA refusal at 20.0 ft. Began rock coring at					
20	Wa	ater Le	evel Data			Sample ID Well Diagram Summary	I				
Date	Time	Elap Time	(hr Bo	ttom	n (ft) to: ^{Bottom} of Hole Water	O - Open End Rod Riser Pipe Overburden (ft) 20.1 T - Thin Wall Tube Filter Sand Rock Cored (ft) 5.0					
5/27/2016		24	.0		8.0 4.5	U - Undisturbed Sample S - Split Spoon Sample U - Undisturbed Sample S - Split Spoon Sample U - Cuttings Grout E - Concrete Bentonite Seal	-16				
Field Tests	; ;:				Rapid S - Slow - Low M - Mediu	N - None Plasticity: N - Nonplastic L - Low M - Medium H - High	/ Hiah				

HAL	EY DRIC	н			со	RE B	ORIN	IG REPORT	Boring No. B-16 File No. 43434-000 Sheet No. 2 of 2
Depth (ft)	Drilling Rate (min./ft)	Run No.	Run Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Elev./ Depth (ft)	Visual Desc and Rema	ription
- 20 -	10	C1	20.0 21.0	12 0	100 0	High	290.9 20.0	SEE TEST BORING REPORT FOI Very hard highly weathered light gray and white muscovite-biotite-quartz GNEISS; Orange-brown	medium to fine grained discoloring throughout
- - - - 25 -	8 6 6	C2	21.0 25.0	48 24	100 50	High to Slight	289.2 21.7 285.9 25.0	Note: Core barrel clogged at 21.0 ft. Core barrel Similar to C1 Very hard slightly weathered gray and white (wit fine grained muscovite-biotite-quartz GNEISS; F Primary (foliation) joints low angle, very close to discolored (orange-brown), open to tight; Second angle across foliation, moderately spaced, rough, tight -QUINEBAUG FO -BEDROO BOTTOM OF EXPLOR	h orange-brown discoloring) medium to oliation low angle, extremely thin, planar; o moderately spaced, smooth to rough, ary joints moderately dipping to high slightly undulating, discolored, open to RMATION- CK-
- 30 -									
- 35 -									
- 40 -									
- 45 -									
- - 55 -									

Н		PRIC	H			٦	EST	BORING REPOR	RT	Boring No. B-17			
Proj Cliei Con		NT	E Ene		Cente	r, Kill	ingly, Co	onnecticut		File No. 43434-000 Sheet No. 1 of 2 Start May 23, 2016			
			0	Casing	Sam	pler	Barrel	Drilling Equipmen	t and Procedures	Finish May 23, 2016 Driller C. Stone			
Туре	9			HSA	S			Rig Make & Model: Trac	k mounted CME 850	H&A Rep. S. Poff			
		meter	(in.)	4 1/4	13	/8		Bit Type: Cutting Head Drill Mud: None		Elevation 325.7 (est.) Datum NAVD88			
Ham	mer V	Veight	(lb)		14	0	-	Casing: Spun	A	Location See Plan			
		all (in	.)		30	0	-	Hoist/Hammer: Winch PID Make & Model: Nor		N 875296.1 E 1227766.5			
(#)	slows 1.	No. [in.)	le (ff)	n e h (ff)	Symbol			VISUAL-MANU	AL IDENTIFICATION AN	ND DESCRIPTION			
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Sy			structure,	cy, color, GROUP NAM odor, moisture, optional OLOGIC INTERPRETA	descriptions			
0 -	1	S1	0.0	325.6 0.1	ML				-FOREST LITTER-				
	1 2	6	2.0	0.1		Very	loose dar	k brown fine sandy SILT, trac	e coarse to medium sand	l, no odor, dry			
	3			323.7			-		-TOPSOIL/LOAM-	h			
	5 10	S2 6	2.0 3.3	2.0	SM	Med	ium dense	light gray-brown to tan coarse	to fine gravelly SAND,	, trace silt, no odor, dry			
	50/3"			-		Note	: Auger g	rinding through numerous cobl	bles from 3.3 to 6.5 ft.				
							_ 0	-					
5 -													
╞	26	S3	6.5	-	GM	Very	dense gra	ay to yellow-brown coarse to fi	ne sandy GRAVEL, trad	ce silt, no odor, dry			
ļ	60	11	7.5	-			Very dense gray to yellow-brown coarse to fine sandy GRAVEL, trace silt, no odor, dry Note: Auger refusal at 7.5 ft. Core barrel advanced to 12.5 ft, recovered 12.0 in. of cobble and gravel pieces.						
							. Augei It	rusar at r.s it. Core varies au	ancer to 12.5 ft, 10000	and 12.0 m. of couple and graver pieces.			
10 -													
Ň	50/1"[12.5	-		Split	spoon ref	usal at 12.6 ft, no recovery					
		0	12.6										
15-	15	S5	15.0	-	GM				VEL, little silt, no struct	ture, no odor, dry, decomposed cobble from			
	12 29	18	17.0			appr	oximately	16.5 to 17 ft.					
	38												
20				<u> </u>				1		-			
_			Elan	evel Data		h (ft)	to:	Sample ID O - Open End Rod	Well Diagram	Summary			
Da	ate	Time	Time	(hr Bo	ottom	Bottom of Hole	Water		Screen Filter Sand	Overburden (ft)30.0Rock Cored (ft)			
5/27/	2016		41			20.3	DRY	U - Undisturbed Sample S - Split Spoon Sample	Cuttings	Samples 7S			
									Concrete	Boring No. B-17			
Field	Tests	:					S - Slow	N - None Plastic	Bentonite Sea	ll Low M - Medium H - High w M - Medium H - High V - Very High			
				Longhu	ess: L	- LOW	M - Mediu	m H - High Dry St	renorm: N-None I-lo	w w_weaum H_High V_VervHigh			

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G;43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000/GINT43434_000_TB/GPJ

Н		RIC	H			TEST BORING REPORT	Boring No. B-17 File No. 43434-000 Sheet No. 2 of 2
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCF (Density/consistency, color, GROUP NAME, max. pa structure, odor, moisture, optional descriptio GEOLOGIC INTERPRETATION)	article size [†] .
- 20 - - -	17 18 20 32	S6 18	20.0 22.0		GM	Similar to S5, except no odor, dry	
- 25 -	50/4"	S7 ↓ 4	25.0 25.3		GM	Similar to S6, except split spoon refusal at 25.3 ft	
- 30 -				295.7 30.0		Note: Air rotary to 25.5 ft, began rock coring at 25.5 ft. Core barrel advanced jammed at 30.0 ft, difficulty retrieving core barrel. Recovered 12.0 in. of QUA to re-advance core barrel past 25.0 ft, boring terminated. -GLACIAL TILL- BOTTOM OF EXPLORATION 30.0 FT	RTZITE, probable boulder. Unable
		Soil id	lentifica	tion base	d on vi	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	Boring No. B-17

H		RIC	H			TEST	BORING REPORT Boring No.	B-18				
Proje Clier Cont		NT	E Ene		Center	r, Killingly, (Sheet No. 1 of 2 Start May 23,	2016				
			(Casing	Samp	oler Barre	Drilling Equipment and Procedures Finish May 23, Driller J. Rauscher					
уре	;			HSA	S	NX	Rig Make & Model: Track mounted Diedrich D120 H&A Rep. S. Poff					
nside	e Diai	meter	(in.)	4 1/4	13/	/8 1 7/8	Bit Type:Cutting HeadElevation310.8Drill Mud:NoneDatumNAVD					
lam	mer V	Veight	(lb)		14	0 -	Casing: Spun Location See Plan	/00				
		all (in	.)		30	-	Hoist/Hammer:WinchAutomatic HammerN 875720.5PID Make & Model:NoneE 1227885.2					
Ueptn (tt)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol		VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)					
– נ	1	S1	0.0	310.1	ML/		-TOPSOIL/LOAM-					
	2 1 1	16	2.0	0.7	OL SM	Very loose o	range-brown to yellow-brown fine SAND, some silt, trace roots, no odor, dry					
\vdash	2 2	S2	2.0	_	SM	Loose orange	e-brown to tan fine SAND, little silt, poorly-stratified, no odor, dry					
	$\frac{2}{6}$	17	4.0				-SUBSOIL-					
-				307.1 3.7	SP	Very dense b	rown to gray-brown fine gravelly SAND, trace silt, no odor, dry, angular gravel (cobble fr	ragments)				
5 -				_								
	23 75/5"	S3 10	5.0 5.9		SM	Very dense light brown coarse to fine SAND, little fine gravel, silt, no odor, moist						
						Note: Cobble from approximately 5.9 to 6.5 ft.						
F	19	S4	7.0	-	SM	Dense light brown coarse to fine gravelly SAND, little silt, no odor, dry						
	23 26 32	12	9.0									
				201.2								
10 -	10			301.3 9.5	 GP-	Voru donso h	rown to gray-brown coarse to fine sandy GRAVEL, trace silt, no odor, moist, with 4.0 in.	- — — — —				
	18 24 33	S5 14	10.0 12.0		GM		bottom of sample, split spoon wet at approximately 11 ft					
	37											
						Note: Drill a	ction indicates gravelly soils, numberous cobbles from 10.0 to 15.0 ft.					
15—	14 34 21 24	S6 16	15.0 17.0	-	GP- GM	Similar to S5	, except wet					
				292.8 18.0			ction indicates gravelly soils, numerous cobbles from 15.0 to 18.0 ft. Auger grinding stead y 18 to 20 ft. Began coring at 20.0 ft. -GLACIAL TILL-	ily from				
							SEE CORE BORING REPORT FOR ROCK DETAILS					
20⊥		Wa	ater Le	vel Data	<u> </u>		Sample ID Well Diagram Summary					
Da	ate	Time	Elap	D-		n (ft) to: Bottom	O - Open End Rod Riser Pipe Overburden (ft) 20.0					
5/74#	2016	13:30	Time		asing	of Hole VVate	Pr I - Thin Wall Tube Filter Sand Rock Cored (ft) 10.0					
)/24/.	2010	15:30	*C	- COLLAPS		14.0* 7.4	S - Split Spoon Sample Grout Concrete Bentonite Seal Boring No. B-	18				
ield	Tests	:	1			Rapid S - Slow - Low M - Med	N - None Plasticity: N - Nonplastic L - Low M - Medium H - High	Hiab				
Note	e: Ma	ximum į	particle	e size (mp	os) is de	etermined by a	litect observation within the limitations of sampler size. visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.					

H&A-TEST BORING-09 HA-LIB09-BOS/GLB HA-TB+CORE+WELL-07-1/GDT G;43434_NTE ENERGY - KILLINGLY ENERGY CENTER/CONFIDENTIAL000/GINT43434_000_TB/GPJ

								G REPORT	Boring No. B-18 File No. 43434-000 Sheet No. 2 of 2
Depth (ft)	Drilling Rate	Run No.	Run Depth	Recove	-	Weath- ering	Elev./ Depth	Visual Des and Ren	cription narks
()	(min./ft)		(ft)	in.	%		(ft)	SEE TEST BORING REPORT FO	
-									
20 -	7 8 7	C1	20.0 25.0	31 4	52 7	High to Moderate		Note: Continuous loss of drill water. Very hard to hard highly to moderately weather Foliation low angle, extremely to very thin, pla joints low angle, very close to close, smooth, pl irregular, discolored (yellow), fractures through	nar, poorly-developed; Primary (foliation lanar, discolored, open to tight; High ang
	6								
	7								
25 —	5	C2	25.0 30.0	55 11.5	92 19	Moderate	285.8 25.0	Similar to C1, except moderately weathered; Pr Secondary joints moderately dipping to high ang rough, undulating, discolored (yellow to orange	gle across foliation, moderately spaced,
	4								
	4						282.1 28.7		Too
	4							Similar to C2 above, except biotite-quartz GNE -QUINEBAUG F	ORMATION-
30 -							$280.8 \\ 30.0$	-BEDRO BOTTOM OF EXPLO	
35 —									
40 —									
45 —									
50 —									

APPENDIX D

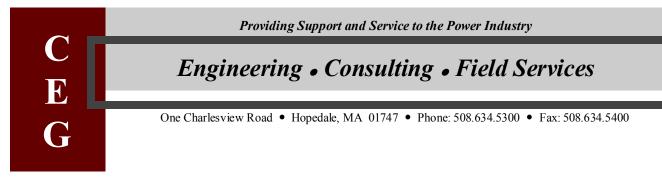
Field Permeability Test Results

Appendix D Summary of Field Hydraulic Conductivitiy Testing Killingly Eneregy Center Killingly, Connecticut Project Number: 43434-000

Location - Test Number	Test Depth (ft)	Soil Stratum	Soil Description	Percent Fines	Test Type	Hydraulic Conductivity (in./hr)
B-01	3.1 to 3.4	glacial till	Light brown coarse to fine gravelly coarse to fine SAND (SM), little silt	20 ²	Field/Guelph ^{1.}	0.009
B-04	3.0 to 3.3	glacial till	Brown silty SAND (SM), some gravel	22.0	Field/Guelph ^{1.}	0.011
B-06	3.1 to 3.4	glacial till	Light brown silty fine SAND (SM), some coarse to fine gravel, little coarse to medium sand	20 ²	Field/Guelph ^{1.}	0.053
B-10	3.0 to 3.3	glacial till	Brown silty SAND (SM), trace gravel	43.7	Field/Guelph ^{1.}	0.061
B-11	3.1 to 3.4	glacial till	Light brown to orange-brown medium to fine SAND (SP), trace coarse sand, gravel	10 ²	Field/Guelph ^{1.}	0.017

Notes:

1. Guelph permeameter provides field measurement of the saturated hydraulic conductivity of the soil at the test depth.


2. Visual estimate.

3. A safety factor has not been applied to the hydraulic conductivity values shown above.

The design hydraulic conductivity should incorporate appropriate correction factors to account for site varability and long-term siltation.

APPENDIX E

Field Soil Resistivity Test Results

June 21, 2016

Gary Fuerstenberg Haley and Aldrich 100 Corporate Place, Suite 205 Rocky Hill CT, 06067

Subject: Soil Resistivity Measurements at the Killingly Site

Consulting Engineer Group, Inc. (CEG) was contracted to perform soil resistivity testing for the Killingly Site in Killingly CT.

Attached with the cover letter you will find the individual data sheets for locations E01, E02, and E03. All locations were determined using the site map and stakes that were provided by Haley and Aldrich. At each staked location soil resistivity was tested in accordance with ASTM G 57, and utilizing the Wenner 4-Point method (Figures 1&2).

Three tests were performed using a probe spacing of 4, 8, 12, 16, 20, 30, 40, and 50 feet. Tests were performed at each location in a North-South and East-West directions. Tests were carried out in accordance with the testing procedures established by Haley and Aldrich.

On the data sheets a-spacing (probe spacing), measured resistance in ohms, date, time, air temperature, topography, GPS coordinates, drainage and indications of potential interferences were recorded. Additionally digital photographs were taken at each location. The apparent resistivity was calculated as $p=2\pi$ aR and reported in ohm-cm with the a-spacing (probe spacing) measured in feet and resistivity (R) in ohms. An AEMC model 6470 ground tester, calibrated on 1/28/2016, was used.

Should you have any questions or require additional information please give me a call at 508-634-5300xt104.

Sincerely, Marek Rutkowski Operation Manager

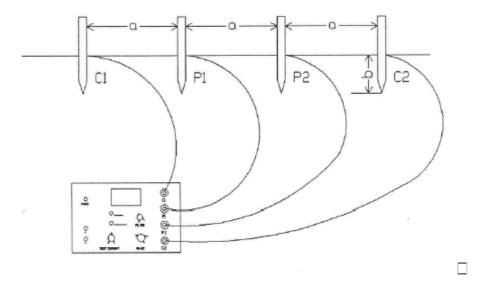


Figure 1 Werner 4 Point Method

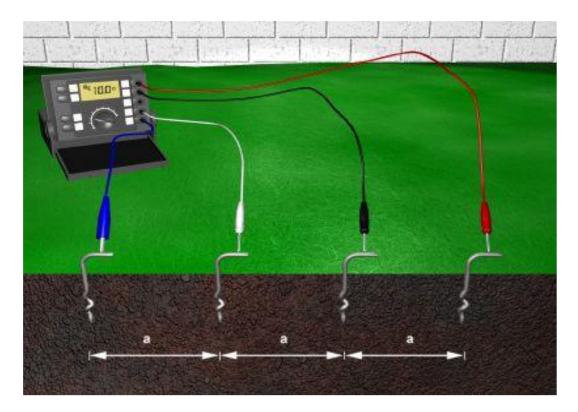


Figure 2 Werner 4 Point Method

Engineering / Consulting & Field Services

W enner 4-Probe Test for Developing Soil Resistivity

Customer:	Haley & Aldrich	
Address:	100 Corporate Place Ro	cky Hill CT
Location:	180 & 189 Lake Road, k	Killingly, Connecticut
Identification:	N 41° 51.631'/ W071° \$	54. 817'
Rain within the	e last 24 hour period:	No
Soil Condition		Loamy
Topography:		Flat
Drainage:		Good
Indications of	Potential Interferences:	Small Hill

C

E

G

Date:	5/25/2016
Stake#:	E03
Picture#:	E03
Tested By:	MB/JC
Season	Spring
Weather:	Sunny
Air Temp:	84°F
Humidity:	50%
Customer Rep.:	Gary Fuerstenberg

Probe Depth(ft) (C)	Probe Depth(ft) (P)	Probe Spacing (ft)	C1	P1	P2	C2	Reading (Ohms)	Apparent Resistivity (Ohm-cm)
0.4	0.4	4	6	2	2	6	664	508639.51
0.8	0.8	8	12	4	4	12	355	543876.59
1	1	12	18	6	6	18	186	427441.03
1	1	16	24	8	8	24	108	330922.09
1	1	20	30	10	10	30	67.9	260064.93
1	1	30	45	15	15	45	29.4	168908.15
1	1	40	60	20	20	60	16.7	127925.90
1	1	50	75	25	25	75	11.4	109158.33

Notes: Test was taken in North South direction. AEMC model 6470 ground tester was used Calibrated on 1/28/2016.

Engineering / Consulting & Field Services

W enner 4-Probe Test for Developing Soil Resistivity

Customer:	Haley & Aldrich	
Address:	100 Corporate Place Ro	cky Hill CT
Location:	180 & 189 Lake Road, k	Killingly, Connecticut
Identification:	N 41° 51.631'/ W071° \$	54. 817'
Rain within the	e last 24 hour period:	No
Soil Condition		Loamy
Topography:		Flat
Drainage:		Good
Indications of	Potential Interferences:	Small Hill

C

E

G

Date:	5/25/2016
Stake#:	E03
Picture#:	E03
Tested By:	MB/JC
Season	Spring
Weather:	Sunny
Air Temp:	84°F
Humidity:	50%
Customer Rep.:	Gary Fuerstenberg

Probe Depth(ft) (C)	Probe Depth(ft) (P)	Probe Spacing (ft)	C1	P1	P2	C2	Reading (Ohms)	Apparent Resistivity (Ohm-cm)
0.4	0.4	4	6	2	2	6	603	461912.09
0.8	0.8	8	12	4	4	12	326	499447.23
1	1	12	18	6	6	18	177	406758.40
1	1	16	24	8	8	24	104	318665.72
1	1	20	30	10	10	30	64.7	247808.56
1	1	30	45	15	15	45	27.4	157417.80
1	1	40	60	20	20	60	20.9	160098.88
1	1	50	75	25	25	75	10.6	101498.10

Notes: Test was taken in East West direction. AEMC model 6470 ground tester was used Calibrated on 1/28/2016.

Engineering / Consulting & Field Services

W enner 4-Probe Test for Developing Soil Resistivity

Customer:	Haley & Aldrich	
Address:	100 Corporate Place Ro	ocky Hill CT
Location:	180 & 189 Lake Road, k	Killingly, Connecticut
Identification:	N 41° 51.723'/ W071° 4	54. 943'
Rain within the	e last 24 hour period:	No
Soil Condition	:	Loamy/rocky
Topography:		Slight incline
Drainage:		Good
Indications of	Potential Interferences:	Rock Wall

C

E

G

Date:	5/25/2016
Stake#:	E02
Picture#:	E02
Tested By:	MB/JC
Season	Spring
Weather:	Sunny
Air Temp:	70°F
Humidity:	60%
Customer Rep.:	Gary Fuerstenberg

Probe Depth(ft) (C)	Probe Depth(ft) (P)	Probe Spacing (ft)	C1	P1	P2	C2	Reading (Ohms)	Apparent Resistivity (Ohm-cm)
0.4	0.4	4	6	2	2	6	580	444293.55
0.8	0.8	8	12	4	4	12	229	350838.70
1	1	12	18	6	6	18	115	264278.06
1	1	16	24	8	8	24	62.8	192425.07
1	1	20	30	10	10	30	57.9	221763.76
1	1	30	45	15	15	45	25.8	148225.52
1	1	40	60	20	20	60	14.2	108775.32
1	1	50	75	25	25	75	9.29	88954.46

Notes: Test was taken in East West direction. AEMC model 6470 ground tester was used Calibrated on 1/28/2016.

Engineering / Consulting & Field Services

W enner 4-Probe Test for Developing Soil Resistivity

Customer:	Haley & Aldrich	
Address:	100 Corporate Place Ro	ocky Hill CT
Location:	180 & 189 Lake Road, k	Killingly, Connecticut
Identification:	N 41° 51.723'/ W071° 4	54. 943'
Rain within the	e last 24 hour period:	No
Soil Condition	:	Loamy/rocky
Topography:		Slight incline
Drainage:		Good
Indications of	Potential Interferences:	Rock Wall

C

E

G

Date:	5/25/2016
Stake#:	E02
Picture#:	E02
Tested By:	MB/JC
Season	Spring
Weather:	Sunny
Air Temp:	70°F
Humidity:	60%
Customer Rep.:	Gary Fuerstenberg

Probe Depth(ft) (C)	Probe Depth(ft) (P)	Probe Spacing (ft)	C1	P1	P2	C2	Reading (Ohms)	Apparent Resistivity (Ohm-cm)
0.4	0.4	4	6	2	2	6	491	376117.47
0.8	0.8	8	12	4	4	12	226	346242.56
1	1	12	18	6	6	18	157	360797.00
1	1	16	24	8	8	24	93.3	285879.92
1	1	20	30	10	10	30	66.8	255851.80
1	1	30	45	15	15	45	24.1	138458.72
1	1	40	60	20	20	60	11.9	91156.78
1	1	50	75	25	25	75	7.98	76410.83

Notes: Test was taken in North South direction. AEMC model 6470 ground tester was used Calibrated on 1/28/2016.

Engineering / Consulting & Field Services

W enner 4-Probe Test for Developing Soil Resistivity

Customer:	Haley & Aldrich	
Address:	100 Corporate Place Ro	ocky Hill CT
Location:	180 & 189 Lake Road, h	Killingly, Connecticut
Identification:	N 41° 51.769'/ W071°	55. 000'
Rain within the	e last 24 hour period:	No
Soil Condition:		Loamy/rocky
Topography:		Slight incline
Drainage:		Good
Indications of I	Potential Interferences:	Large rocks

C

E

G

Date:	5/25/2016
Stake#:	E01
Picture#:	E01
Tested By:	MB/JC
Season	Spring
Weather:	Sunny
Air Temp:	76°F
Humidity:	60%
Customer Rep.:	Gary Fuerstenberg

Probe Depth(ft) (C)	Probe Depth(ft) (P)	Probe Spacing (ft)	C1	P1	P2	C2	Reading (Ohms)	Apparent Resistivity (Ohm-cm)
0.4	0.4	4	6	2	2	6	701	536982.38
0.8	0.8	8	12	4	4	12	415	635799.39
1	1	12	18	6	6	18	259	595200.15
1	1	16	24	8	8	24	198	606690.50
1	1	20	30	10	10	30	151	578347.64
1	1	30	45	15	15	45	86.1	494659.58
1	1	40	60	20	20	60	63.8	488722.90
1	1	50	75	25	25	75	40.1	383969.21

Notes: Test was taken in North South direction. AEMC model 6470 ground tester was used Calibrated on 1/28/2016.

Engineering / Consulting & Field Services

W enner 4-Probe Test for Developing Soil Resistivity

Customer:	Haley & Aldrich	
Address:	100 Corporate Place Ro	cky Hill CT
Location:	180 & 189 Lake Road, k	Cillingly, Connecticut
Identification:	N 41° 51.769'/ W071°	55. 000'
Rain within the	e last 24 hour period:	No
Soil Condition		Loamy/rocky
Topography:		Slight incline
Drainage:		Good
Indications of	Potential Interferences:	Large rocks

C

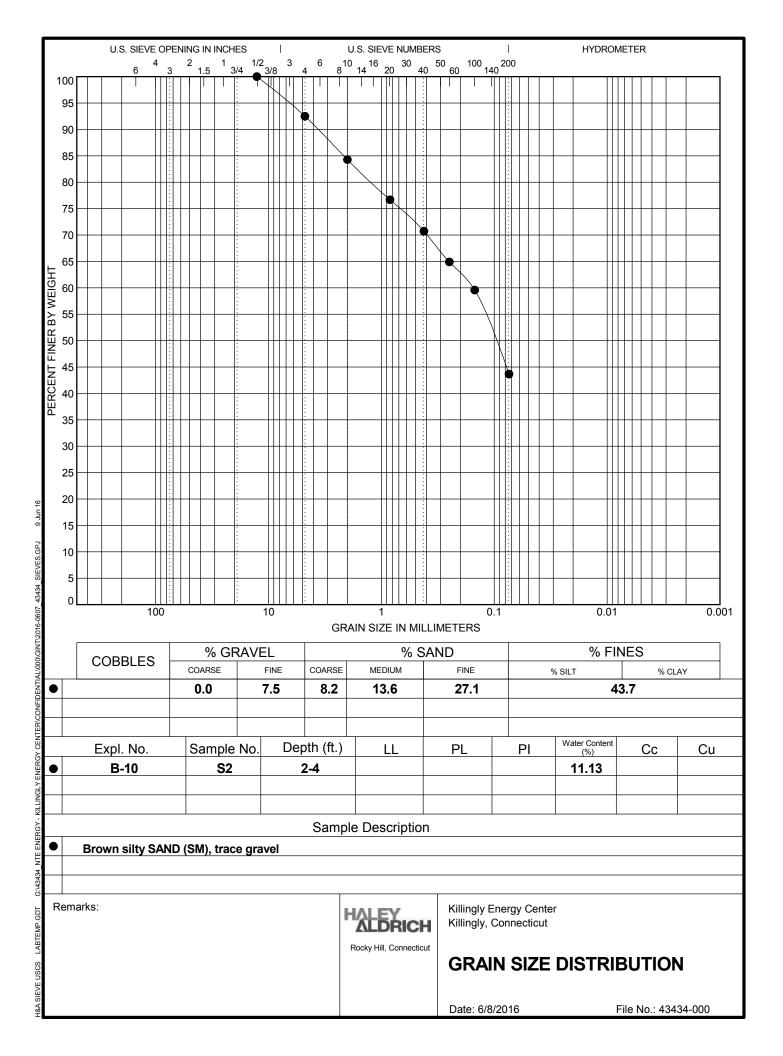
E

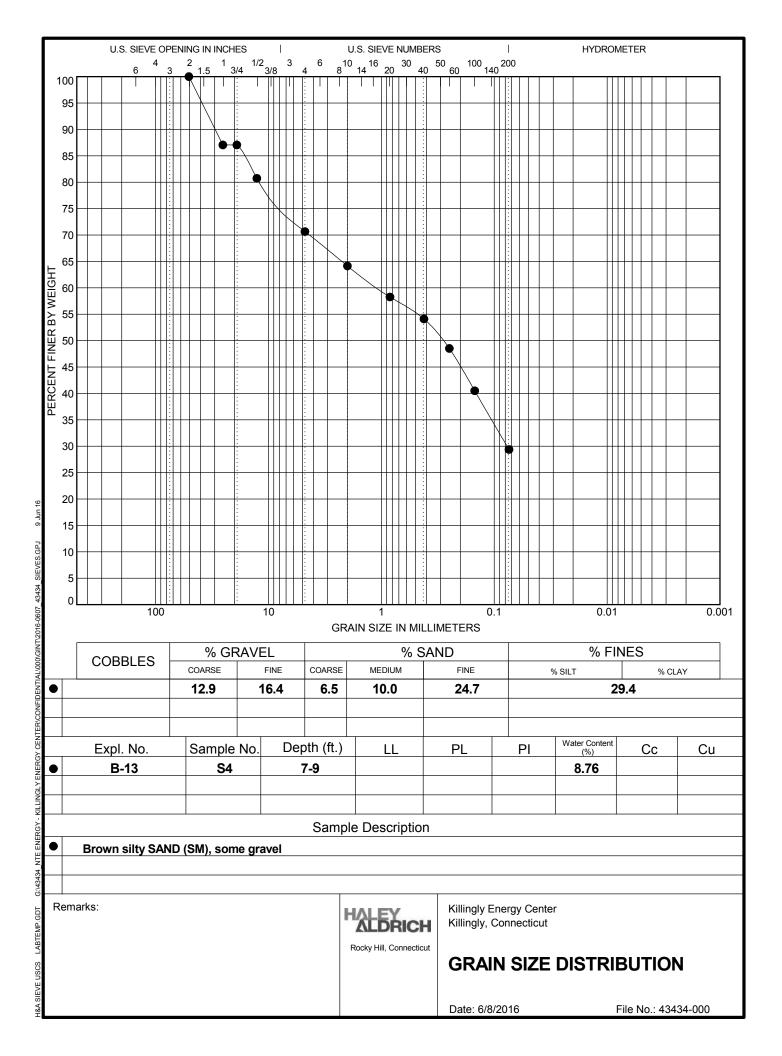
G

Date:	5/25/2016
Stake#:	E01
Picture#:	E01
Tested By:	MB/JC
Season	Spring
Weather:	Sunny
Air Temp:	76°F
Humidity:	60%
Customer Rep.:	Gary Fuerstenberg

Probe Depth(ft) (C)	Probe Depth(ft) (P)	Probe Spacing (ft)	C1	P1	P2	C2	Reading (Ohms)	Apparent Resistivity (Ohm-cm)
0.4	0.4	4	6	2	2	6	649	497149.16
0.8	0.8	8	12	4	4	12	334	511703.60
1	1	12	18	6	6	18	221	507873.49
1	1	16	24	8	8	24	145	444293.55
1	1	20	30	10	10	30	109	417482.73
1	1	30	45	15	15	45	63.2	363095.07
1	1	40	60	20	20	60	37.5	287258.76
1	1	50	75	25	25	75	19.2	183845.61

Notes: Test was taken in East West direction. AEMC model 6470 ground tester was used Calibrated on 1/28/2016.




APPENDIX F

Geotechnical Laboratory Test Results

Г	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													U.S. SIEVE NUMBERS ¹⁰ 14 ¹⁶ 20 ³⁰ 40 ⁵⁰ 60 ¹⁰⁰ 140 ²⁰⁰											HYDROMETER																					
					6	4	3	2	1.5	1	3/4	1	/2	/8	3	4	6		810	0 14	16 1	20	<u>;</u>	30	40	50	60	100	140	200)															
	100							\mathbb{N}													I							I																		
	95								\backslash																																					
	90										ė																							1												
	85			-		\square	:						╲	╈																	-			+						+	+					
	80		+	-										$\left\{ \right\}$			-		_					+					_		-		_	+		+	+	+	-	+	-					
	75		_	-									_						_															_						-	-					
	70														V																															
	65															<u>\</u>									:																					
CHT	60										:					è									:																					
MEI																																														
RΒΥ	55																																													
FINE	50													T					Ì																											
ENT I	45													+					_		\neq																	$\left \right $								
PERCENT FINER BY WEIGHT	40		+	+							:		_	+		:	+		_					┤	:				-		-			+		+	$\left \right $	$\left \right $		+	+	_				
٩	35			_			: : :				:		_	+		:			_							\checkmark	•	-	_		_			_			\square				-					
	30			_							:		_			:	_		_								_		\downarrow		_			_			\square	$\left \right $			-					
	25																		_																											
	20										:					:									:																					
JU 27, 10	15										:					:									:																					
n n																																														
VES.GP	10																																													
	5															:									:																					
1001_434	0				1(00	<u>. </u>				:_		1	0		ŀ						1							0.1	1					0	.01					_	0.0	01			
1/2010-0	1						1												GR	NIAS	۱S	IZE						RS																		
00/GIN			CO	BBL	ES					G	GR/	AV				_			_						SA	١N				_					%	FI	NE	ES								
									ARS 2.3		-		۶ 25	INE		_	ردی 1	ARS 3 .				EDI 3.						INE 4.7		_			% \$	SILT		2	2.0	0	%	6 CLA	Υ					
								14	2.0	,			2.	. 1				<u>J</u> .	•		•	<u>J</u> .	0					. ./								-		0								
ובאורר																				_																										
			Еxp					S	am			No			D	ept)	_		L	L				Ρ	L			Ρ				er Cont (%)	ent		(Cc			Cu				
				B-4	•					Sź	2					2	-4			+														(6.1											
																				+																										
4 - L9X	1																S	an	np	le	De	sc	rip	otic	n															1						
		В	owi	ı sil	ty S/	AN	D (SM), s	son	ne	gra	ave	el																																
z																																														
5 5 5	lema	arke																									Kill	ingly	En	ora		onto	r													
MP.GU	CITIC		•																	-1/2	Ł	E	R	IC	H			ingly,					1													
LABIE																				Roc											_				_					_						
nscs N																											G	RA			SI	ZE	2 0) S	STF	RII	B	U٦	ΓΙΟ	JN						
A SIEVE																																														
N N																			1												Date: 6/8/2016								File No.: 43434-000							

													U.S. SIEVE NUMBERS										HYDROMETER																								
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														20	30	4	0 (50 6	0	100 1	40	200																								
							:					I.																				:															
	95						:					:		\mathbf{n}	K	t	:	T						Ħ								:										1				_	
	90	+					:			_		:		+	$\left \right $	Ĥ	÷	╉	+				+	╢	++			-	+		+	:	-	_	_					+		+	-	_		_	
	85						:												\downarrow																												
																	-															:															
	80						:					:					-					\swarrow	$\overline{1}$:															
	75	-					:					:		+		+	:	+							Ҟ							:										+				_	
	70		_				:					:		_			:	_					_	\parallel		Ì			_			:															
	65						:																									:															
Η																														Þ		:															
VEIC	60						:										-																														
BY/	55	+	+				:					:		+		$\left \right $:	+	+				-	╫	+				-		\	:			-									_		_	
LER.	50						:					:		_			:	_					_	\parallel					_		Ą	:														_	
	45						:																									V:															
EN'							:					:					:															è															
PERCENT FINER BY WEIGHT	40	1					:					:					:							Ħ								:								T							
Δ.	35	_					:			_		:		-			:	-					-	\parallel								:	-									-				_	
	30						:					:					:															:														_	
	25						:					•					:															:															
																																:															
	20						:					:		+			:	t						Ħ								:										+					
10	15	+					:			_		:		+	$\left \right $	+		+	+				+	╢	++			-	+		+	:	-		_					+		+	-	_		_	
CL9.	10		_				· · ·					:		_			:	_											_			:															
	5																																														
21040	0						:										-															:															
	01			1	1	00								10)			_					1					1	_).1	1.1						0.0	01							0.0	01
-01071																				GR	RAI	NS	SIZ	ΈI	INI	MIL	LII	MET	ΓEI	RS																	
		(COE	BBI	ES							R/	AV													S	A	٧D									Q	% I	FIN	NE	S						
								(ARS	E				NE			со											FIN						%	SILT	Г						% C	CLAY	,		
	-								0	.0		_		10	.4	·	_		7.2	2			11	.0		_			28	8.5		_							4/	2.9	9						
	\vdash						+					+					+															+															
			Ехр		JO			Τ	Sa	am	nle	 > N	No.			De	ep'	th	(ft	.)				LL				F	ᆚ		Γ		Ρ	1		Wa	ter Co	onte	nt		(Сс				u	
	Γ			B-12					00		S4							-9		/					-				-	•							11.2					00		+		<u> </u>	
																		S	ar	np	le	D	es	cr	ipt	ioi	n																				
		Li	ght l	oro	wn	silt	ty	SA	٩N	D (SN	/ I),	litt	le	gr	av	el																														
z	-																																														
<u>+</u> 5																				Т																											
	lema	arks	:																		H	A	F	SF	, RIC	Cŀ	-			ngly l ngly,																	
ABIE																									onne																						
20																								-				0	F	RA	IN	1	SI	Z	ΞI	DI	S1	R	RIE	31	U'	ΤI	0	Ν			
0 KØ																													ate	e: 6/8	3/2	010	6						F	File	N :	o.:	43	434	-00	0	

APPENDIX G

Geochemical Laboratory Test Results

41765 Hawthorn Street Murrieta, CA 92562 ph (951) 894-2682 • fx (951) 894-2683

Work Order No.: 16F1353 Client: Haley & Aldrich Project No.: 43434-000 Project Name: NTE Energy Report Date: June 10, 2016

Laboratory Test(s) Results Summary

The subject soil samples were processed with the U.S. Standard No. 10 Sieve and tested per ASTM International Standards for pH (G 51-95 2005), Soil Resistivity (G 57-06), Sulfate Ion Content (D 516-07) and Chloride Ion Content (D 512-10) and in accordance with Standard Methods procedures for Sulfide Content (SM 4500-S2- D) and Oxidation-Reduction Potential (SM 2580 B Mod.). Redox Potential value(s) reflect temperature correction based on Light's standard solution measurements applied to the calculation in section 6 of the procedure. The results follow:

	الم	As Rec'd	Saturated	Sulfate	Chloride	Sulfide	Redox I	Potential
Sample Identification	рН (H+)	Resistivity (ohm-cm)	Resistivity (ohm-cm)	Content (mg/kg)	Content (mg/L)	Content (mg/L)	Eh (mV)	Temp. (°C)
South @ 1' to 5'	7.1	16,000	12,000	80	10	0.67	73	22.6
North @ 1' to 5'	6.1	42,000	15,000	50	10	0.35	284	22.4

*ND=No Detection

We appreciate the opportunity to serve you. Please do not hesitate to contact us with any questions or clarifications regarding these results or procedures.

art K.K_

Ahmet K. Kaya, Laboratory Manager

