STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

IN RE:	:	
	:	
APPLICATION OF CELLCO PARTNERSHIP	:	DOCKET NO. 495A
D/B/A VERIZON WIRELESS FOR A	:	
CERTIFICATE OF ENVIRONMENTAL	:	
COMPATIBILITY AND PUBLIC NEED FOR	:	
THE CONSTRUCTION, MAINTENANCE	:	
AND OPERATION OF A WIRELESS	:	
TELECOMMUNICATIONS FACILITY AT	:	
5151 PARK AVENUE, FAIRFIELD,	:	
CONNECTICUT	:	DECEMBER 13, 2022

SUPPLEMENTAL RESPONSES OF CELLCO PARTNERSHIP D/B/A VERIZON WIRELESS <u>TO CONNECTICUT SITING COUNCIL D&M PLAN INTERROGATORIES</u>

On November 14, 2022, the Connecticut Siting Council ("Council") issued D&M Plan

Interrogatories to Cellco Partnership d/b/a Verizon Wireless ("Cellco"), relating to Docket No.

495A. Below are Cellco's Supplemental Responses Question Nos. 13 and 14.

Question No. 13

The Connecticut State Building Code was updated effective October 1, 2022. Has the

facility been designed to the updated code? If not, what changes are necessary to the design of

the facility to comply with the updated Code?

Response

A new Structural Analysis ("SA") confirming that the proposed structure will comply with the recently adopted International Building Code effective October 1, 2021, as modified by the 2022 Connecticut Supplement, is in process and will be submitted to the Council as soon as it is available. Cellco respectfully requests an extension of time to submit the revised SA.

Supplemental Response

Attached is a modified set of tower drawings and design calculations for the proposed tower structure developed in accordance with the recently adopted International Building Code effective October 1, 2021 and 2022 Connecticut State Building Code.

Question No. 14

Provide a rigorous cumulative far-field radio frequency analysis for the facility that accounts for Cellco's and AT&T's equipment on the tower, a 6-foot tall person at ground level and the actual antenna patterns for the facility with a cumulative % MPE at or below 100%. Response

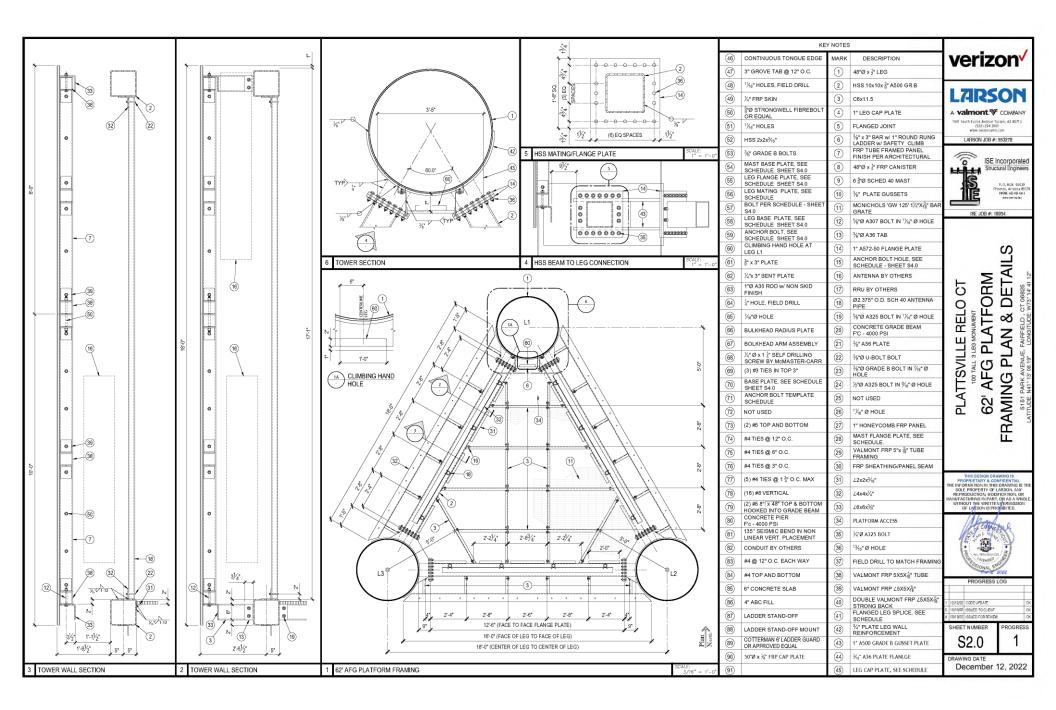
A copy of Cellco's radio frequency analysis in included in <u>Attachment 6</u>. The modified AT&T's radio frequency analysis has been requested and will be provided as soon as it is available. Cellco respectfully requests an extension of time to finalize this response.

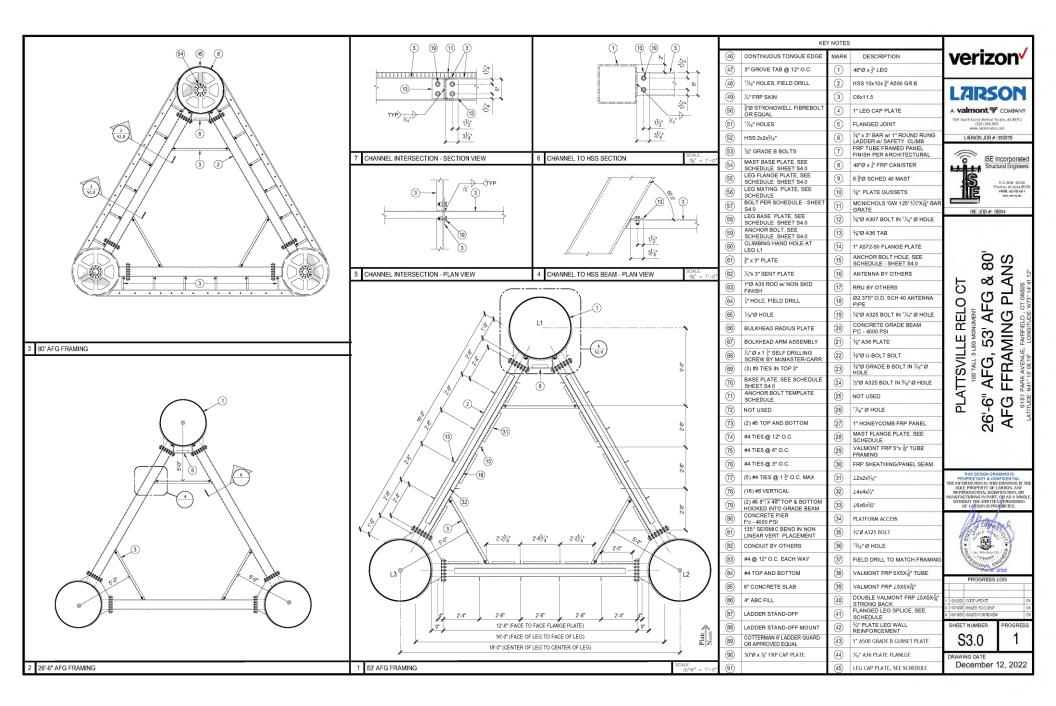
Supplemental Response

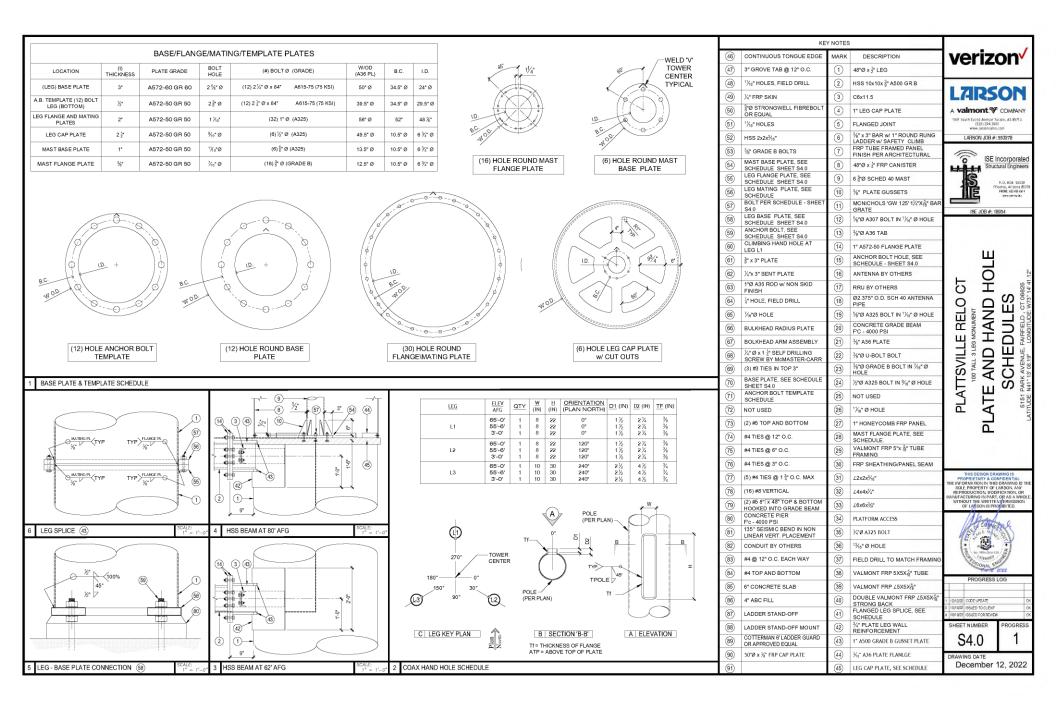
A copy of AT&T's radio frequency analysis is attached.

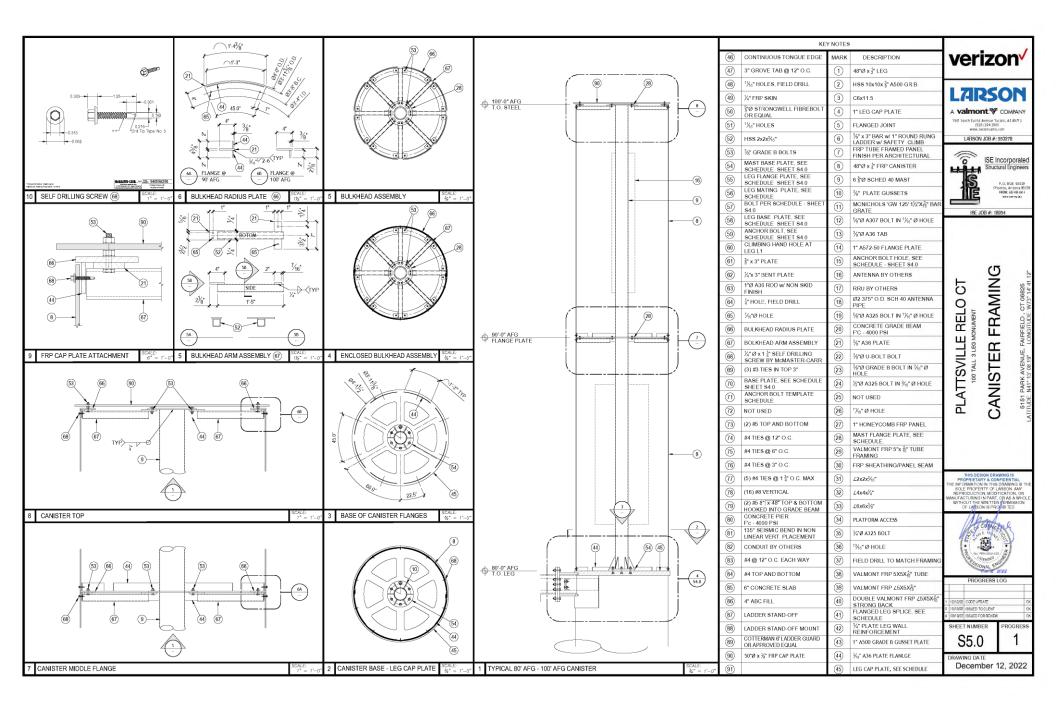
CERTIFICATE OF SERVICE

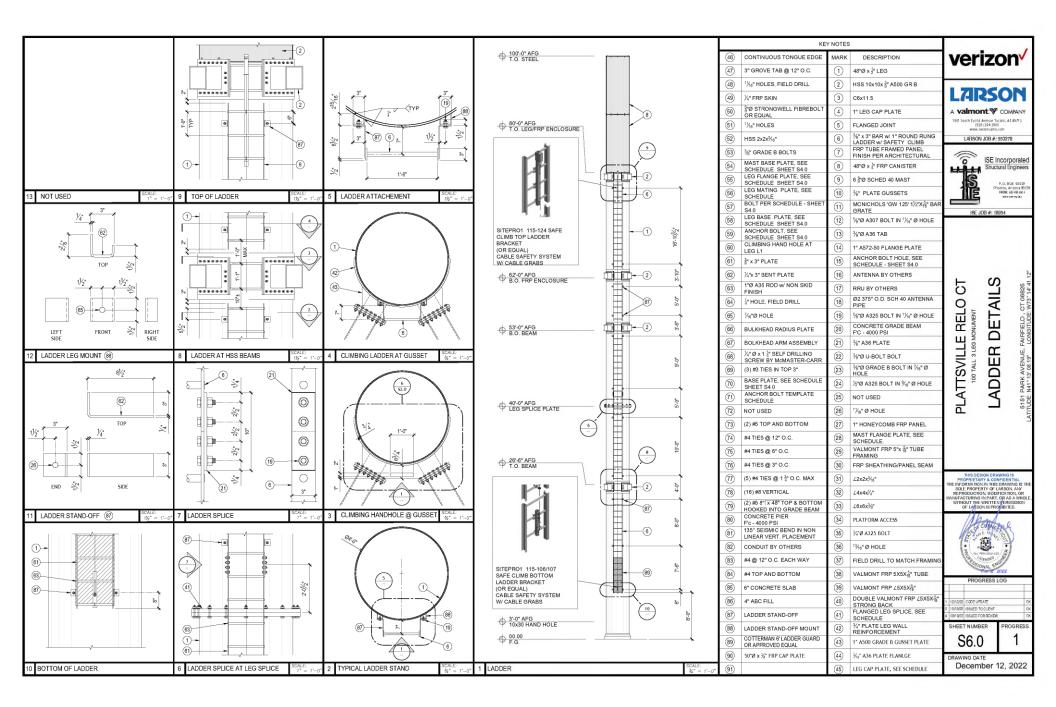
I hereby certify that on the 13th day of December 2022, a copy of the foregoing was sent,

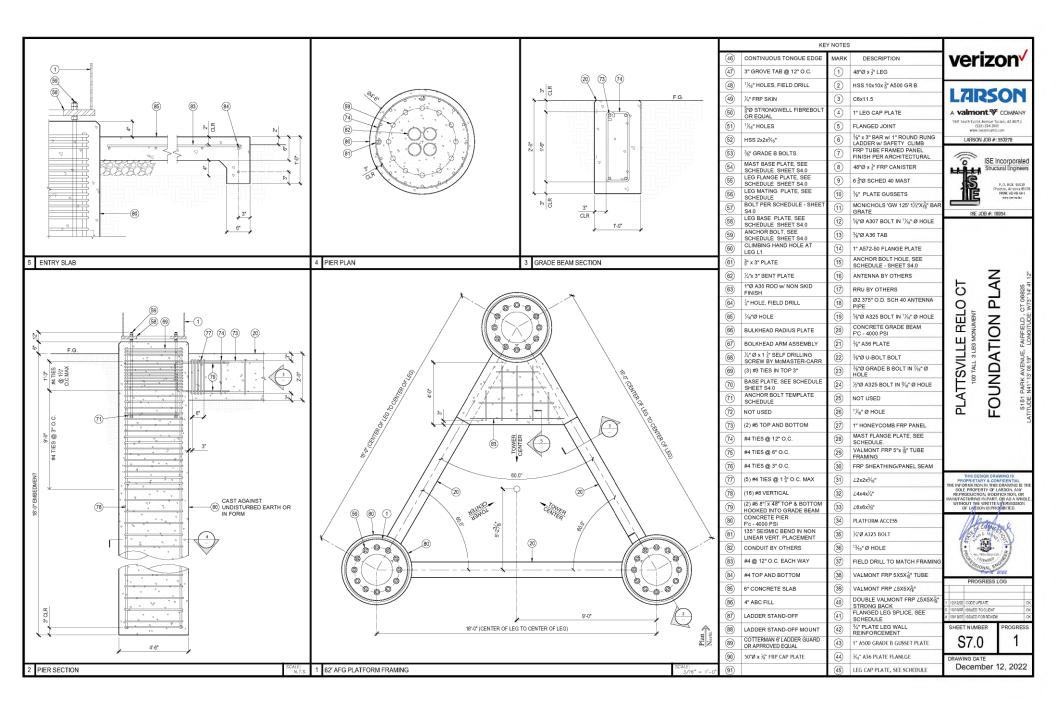

via electronic mail, to:

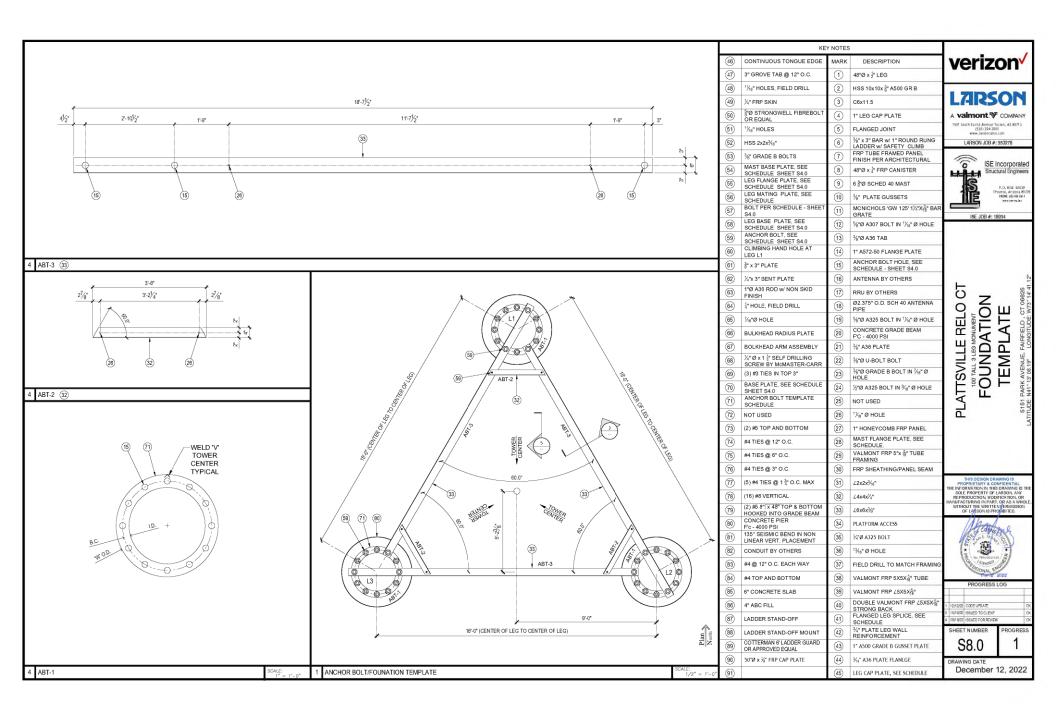

Lucia Chiocchio, Esq. Kristen Motel, Esq. Cuddy & Feder LLP 445 Hamilton Avenue, 14th Floor White Plains, NY 10601 Ichiocchio@cuddyfeder.com kmotel@cuddyfeder.com

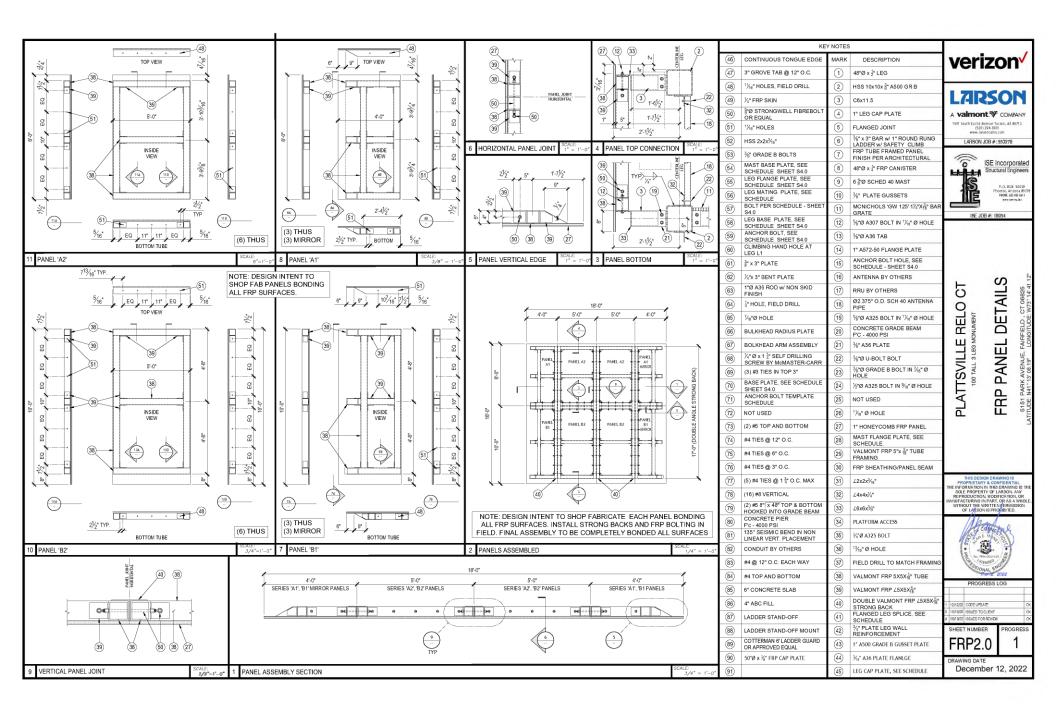

Kung mu


Kenneth C. Baldwin


SUMMARY OF SPECIAL INSPECTIONS						1
ND. DESCRIPTION OF TYPE OF INSPECTION REQUIRED, LOCATION, REMARKS, ETC	REFERENCED STANDARD	CONTINUOUS / PERIODIC			SHEET INDEX	
STEEL CONSTRUCTION	STANDADO	PENGIC			GSN GENERAL NOTES	verizon
1.1 MATERIAL VERFICATION OF HIGH-STRENGTH BOLTS, NUTS AND WASHERS:				izon ⁄	S1.0 PLANS, ELEVATION & SECTIONS	
A). IDENTFICATION MARKINGS TO CONFORM TO ASTM STANDARDS SPECIFIED IN THE APPROVED CONSTRUCTION DOCUMENTS	AISC 360 SECTION A3.3 & APPLICABLE ASTM MATERIAL STANDARDS	PERIODIC				
12 INSPECTION OF HIGH-STREINGTH BOLTING:	MATERIAL STANDARDS				S2.0 62' PLATFORM FRAMING PLAN & DETAILS	L 7RSON
A). SNUG-TIGHT JOINTS	AISC 360 SECTION M2.5	PERIODIC			\$3.0 26'-6" AFG, 53' AFG & 80' AFG FRAMING PLANS	LARDON
13 MATERIAL VERFICATION OF STRUCTURAL STEEL AND COLD-FORMED STEEL DECK:					S4.0 PLATE AND HAND HOLE SCHEDULES	A valmont V COMPANY
A). FOR STRUCTURAL STEEL, DENTIFICATION MARKINGS TO CONFORM TO AISC 380.	AISC 360 SECTION M5.5	PERIODIC			\$5.0 CANISTER FRAMING	1501 South Euclid Avenue Tucson, AZ 85713 (520) 294-3900 www.larsoncano.com
1.4 MATERIAL VERIFICATION OF WELD FILLER MATERIALS	UPC 380 CCCTION AS 5 AND			LLE RELO CT		
A). IDENTIFICATION MARKINGS TO CONFORM TO AWS SPECIFICATION IN THE APPROVED CONSTRUCTION DOCUMENTS	AISC 380, SECTION A3-5 AND APPLICABLE AWS A5 DOCUMENT	PERIODIC			96.0 LADDER DETAILS	LARSON JOB #: 553278
1.5 INSPECTION OF WELDING: A). SINGLE-PASS FILLET WELDS ±5/16"	AWS D1.1	PERIODIC		3 LEG MONUMENT	\$7.0 FOUNDATION PLAN & DETAILS	
BL ALL WELDED CONNECTIONS SHALL CONFORM TO THE LATEST VERSION OF	AWS D1.1	PERIODIC	TOO TALL		S8.0 FOUNDATION TEMPLATE	ISE Incorporate Structural Engineer
THE AMERICAN WELDING SOCIETY A W.S. D1.1. QI. WELD ELECTRODES SHALL CONFORM TO E20 ELECTRODES OR WIRE.	E-78300	PERIODIC			FRP1.0 FRP ENCLOSURE ELEVATION & DETAILS	ter all and a second
D). CONTINUOUS INSPECTION OF SHOP WELDING IS NOT REQUIRED. VISUAL INSPECTION SHALL BE PERFORAED BEFORE AND AFTER GALVAN ZING.	VISUAL INSPECTION PER EDR	PERIODIC		IUE, FAIRFIELD, CT 06825		P. C. BOX 50039 Promits, An zama 650 Home: 621-028-01 Monitaritation
E). IF A WELD IS IN DUESTION PER THE VISUAL INSPECTION THEN IT SHALL BE TESTED USING AN APPROPRIATE TEST. FX. DE PENETRATION OB	INSPECT AND REPORT	PERIODIC	LATTUDE: N41° 13' 08.1	9" LONGITUDE: W73° 14' 41.12"	FRP2.0 FRP PANEL DETAILS	Proerix, Arizona 650 Prove: 62:403 8614 www.labilic.tiz
MAGNETIC PARTICLE, U.T. ETC.	INSTELLAND HERONI	PENGL				
1.6 INSPECTION OF STEEL FRAMEJOINT DETAILS FOR COMPLANCE:						ISE JOB #: 18054
A). DETAILS SUCH AS BRACING AND STIFFENING.	INSPECT AND REPORT	PERIODIC	GENERAL NOTES:	CODE COMPLIANCE:		
8). MEMBER LOCATIONS.	INSPECT AND REPORT	PERIODIC	1. THE CONTRACTOR SHALL VERIFY DIMENSIONS,			
C). APPLICATION OF JOINT DETAILS AT EACH CONNECTION.	INSPECT AND REPORT	PERIODIC	CONDITIONS, AND ELEVATIONS BEFORE STARTING WORK. SEE SPECIAL CONSTRUCTION NOTES THIS PAGE. THE	2022 Connecticut State Building Code, 2021/BC, ASCE 7-16, TIA-222-H 122 MPH Diminate Wind Speed		
FOUNDATION CONSTRUCTION: A). GEOTECHNICAL ENGINEER OF RECORD MAY SERVE AS THE SPECIAL			SEE SPECIAL CONSTRUCTION NOTES THIS PAGE. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY IF ANY			
A). GEOTECHNICAL ENGINEER OF RECORD MAY SERVE AS THE SPECIAL INSPECTOR FOR THE FOUNDATION CONSTRUCTION. B. SHALL VERIEV THE DIMARTER IN DEPTH AND CAU ITY OF EXCAVATION.	-	PER 2013 IBC	DISCREPANCIES ARE FOUND.	Exposure C, TOPO Category 1, Structure Class II Ground Elevation 315' AMSL		
B). SHALL VERIFY THE DIAMETER, DEPTH AND QUALITY OF EXCAVATION PRIOR TO THE CONCRETE PLACEMENT.	INSPECT AND REPORT	PERIODIC	2. THE TYPICAL NOTES AND DETAILS SHALL APPLY IN ALL	SNOW: 30 PSF		
C). SHALL VERIFY THE ON SITE SOLS ARE AS DETERMINED IN THE SOLS REPORT.	INSPECT AND REPORT	PERIODIC	CASES UNLESS SPECIFICALLY DETAILED ELSEWHERE.	SOILS: Terracon Consultants Inc.		
CAST IN PLACE CONCRETE (FOUNDATION):			WHERE NO DETAIL IS SHOWN, THE CONSTRUCTION SHALL BE AS SHOWN FOR OTHER SIMILAR WORK AND AS	Geotechnical Engineering Report, #J1225042 Dated 08/10/2022		О Ш 🦉
A). REINFORCING CAGE SHALL BE INSPECTED TO ENSURE THAT THE PROPER GEOMETRY, SIZE, LENGTH, QUAINTLY AND GRADE MATERIAL ARE USED.	60 KSI (40 KSI TES)	INSPECT AND REPORT	REQUIRED BY THE BUILDING CODE.	SEISMIC DESIGN CLASS: B		RELO CT DNUMENT NOTES
B). ALL CONCRETE SHALL BE AS SPECIFIED BY ACI318, LATEST EDITION TO ENSURE THE COMPRESSIVE STRENGTH IS ATTAINED AS DESCRIBED IN	4000 PSI AT 28 DAYS	INSPECT AND REPORT	3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR	SOIL SITE CLASS: D		
THE FOUNDATION NOTES. C). CONTINUOUS INSPECTION IS REQUIRED DURING THE CONCRETE PLACEMENT.		CONTINUOUS	COMPLIANCE WITH LOCAL CONSTRUCTION SAFETY	$S_0 = 0.211$, $S_i = 0.065$, $S_{DS} = 0.169$, $S_{D1} = 0.074$, $C_S = 0.056$		
	-	CONTINUEDS	ORDERS. APPROVAL OF SHOP DRAWINGS BY THE ARCHITECT OR STRUCTURAL ENGINEER SHALL NOT BE			
ANCHOR BOLTS INSTALLED IN CONCRETE: A). PLACEMENT SHALL BE ORIENTED ON PROPER BOLT CIRCLE AS SHOWN ON			CONSTRUED AS ACCEPTING THIS RESPONSIBILITY.	CONNECTIONS		
A). PLACEMENT SHALL BE ORIENTED ON PROPERIBOLT CIRCLE AS SHOWN ON THE STRUCTURAL PLANS, WITH TOP AND BOTTOM TEMPLATES INSTALLED.	IN SPECT AND REPORT	PERIODIC	4 ALL STRUCTURAL FRAMING MEMBERS SHALL BE	PROCEDURE FOR MAKING STRUCTURAL EPOXY JOINTS		
B). SHALLBEPLUMB	INSPECT AND REPORT	PERIODIC	ADEQUATELY SHORED AND BRACED DURING ERECTION			PLATTSVILLE 100 Tall 3 LEB MR GENERAL 6161 PARK AVENUE, FAIR
C). SHALL HAVE A MINIMUM EMBEDMENT (PER PLAN) INTO FOUNDATION	INSPECT AND REPORT	PERIODIC	AND UNTIL FULL LATERAL AND VERTICAL SUPPORT IS	ADHESIVE: WELD-ON 45 OR 3M 540 PER MANUFACTURE SPECIFICATIONS & RECOMMENDATIONS.		S Ш «
D). SHALL BE TIGHTENED TO SNUG TIGHT CONDITION PER AISC STEEL MANUAL OF STEEL CONSTRUCTION.	INSPECT AND REPORT	PERIODIC	PROVIDED BY ADJOINING MEMBERS.	TER MANO ACTORE OF ECH INATIONS OF RECOMMENDATIONS.		
FIBERGLASS REINFORCED PLASTIC (FRP) SHAPES:				SURFACE PREPARATION		Ц А Ш 🖁
1. ALL FRP SHAPES AND PLATE SHALL CONFORM TO ST	RONGWELL EXTREN 5	00/525 SERIES.	CONSTRUCTION NOTES:	1) SAND MATING SURFACES WITH 80 GRIT SANDPAPER UNTIL THE SURFACE GLOSS HAS BEEN		L (D 8
2. APPLY RESIN ADHESIVE TO ALL FRP MATING SURFAC	ES PRIOR TO BOI TIM	3	 IF EXISTING CONDITIONS ARE NOT AS INDICATED ON DRAWINGS, THE CONTRACTOR SHALL CONTACT THE 	REMOVED. THE SURFACING VEIL MUST BE GROUND OFF TO EXPOSE		<u>ш</u> –
	201 NON TO DOETING	J.	STRUCTURAL ENGINEER (GLEN HUNT) AT ISE	THE GLASS REINFORCEMENT_SAND BLASTING FOUIPMENT CAN ALSO BE USED		
STRONGWELL FIBREBOLTS AND NUTS OR EQUAL.			INCORPORATED, FOR IN FIELD ADJUSTMENT(S), PRIOR TO PROCEEDING WITH ANY CONSTRUCTION.	2) REMOVE ALL DUST WITH A CLEAN CLOTH, AIR BLASTING EQUIPMENT		
4. ALL CUT EDGES AND HOLES SHALL BE SEALED WITH	A RESIN COMPATIBLE	WITH THE RESIN MATRIX	2. CONTRACTOR TO FIELD VERIFY AND/OR FIELD LOCATE ALL	MAY ALSO BE USED. AVOID RECONTAMINATION OF THE SURFACE FROM HANDLING. MIXING		
USED IN THE STRUCTURAL SHAPE.			ITEMS LABELED AS FIELD VERIFY OR FIELD LOCATE.	OF EPOXY MIX EQUAL		
				VOLUME PORTIONS OF THE BASE AND HARDENER IN A SMALL WAX		
 THE FABRICATOR AND CONTRACTOR SHALL EXERCIS FIBERGLASS PULTRUDED STRUCTURAL SHAPES FRO 	SE PRECAUTIONS NEC	ESSARY TO PROTECT THE	STRUCTURAL STEEL:	COATED PAPER CUP WITH A CLEAN STICK UNTIL A UNIFORM GRAY COLOR IS ATTAINED AND ALL		THIS DESIGN DRAWING IS
ETC. DURING FABRICATION, HANDLING, AND INSTALL		DREAMOE, NICKS, GOODES,	ALL STRUCTURAL STEEL CODE CHECKS BASED ON THE	MARBLED APPEARANCE IS	•••••• • ••<u>•</u>•••	THIS DESIGN DRAWING IS PROPRIETARY & CONFIDENTIAL THE INFORMATION IN THIS DRAWING IS T SOLE PROPERTY OF LARSON ANY REPRODUCTION, MODIFICATION, OR MANUFACTURING IN PART, OK AS A WHO WITHOUT THE WITHOUT PROMISSION
			AISC, 15TH EDITION PER THE ASCE 7 STANDARD.	GONE. NOTE		REPRODUCTION, MODIFICATION, OR
 STRUCTURAL SHAPES SHALL BE FABRICATED AND A 	SSEMBLED AS INDICAT	ED ON THE DESIGN	2. VERIFY ALL STEEL MATERIAL GRADES WITH STRUCTURAL	OTHER ADHESIVE SYSTEMS COMPATIBLE WITH FIBERGLASS CAN BE		WITHOUT THE WRITTEN FERMISSION OF LAYSON IS PROVIDITED
DRAWINGS.			DESIGN REPORT.	UTILIZED AND THE		
7. FIBERBOLTS BOLTS AND NUTS SHALL BE TIGHTENED	TO AND LOCKED WITH	FPOXY AS FOLLOWS	3. WIDE FLANGE BEAMS (W BEAM) A992 (50 KSI).	MANUFACTURER'S MIXING INSTRUCTIONS FOR THESE SYSTEMS SHOULD BE FOLLOWED.		Commence &
	TO AND LOCKED WITH	16 FT-LBS TORQUE	4. ALL STEEL PIPE TO BE PER ASTM A53 GR B (35 KSI), U.N.O.	APPLICATION AND CURE		E SHE MALE
2	· · · · · · · · · · · · · · · · · · ·		5. ALL STEEL ROUND TUBES (HSS) TO BE PER ASTM A500 GR.	1) APPLY THE MIXED EPOXY UNIFORMLY TO ALL SURFACES TO BE JOINED. A THIN APPLICATION IS		
³ ² DIAMETER NUTS 24 FT-LBS TORQUE			B (42 KSI), U.N.O	JOINED, A THIN APPLICATION IS OFTEN MORE BENEFICIAL THAN A THICK APPLICATION.		B No PEN OLI 1428
FIBERGLASS PANEL NOTES:			6. ALL OTHER STRUCTURAL STEEL SHAPES & PLATES SHALL	2) AVOID INTRODUCING MOISTURE INTO THE JOINT.		SSIONAL END
FABRICATE PANELS TO FIT PER DIMENSIONS SHOWN IN PLA	N.		BE PER ASTM A36 (36 KSI), U.N.O.	 JOIN THE SURFACES TO BE BONDED. THE POT LIFE AT 77"F FOR A 3 OZ. MIXTURE OF EQUAL 		WWW.NE" BORE
PANELS TO BE MINIMUM 3/8" THICKNESS.			7. ALL BOLTS FOR STEEL-TO-STEEL CONNECTIONS SHALL BE	VOLUMES OF BASE AND HARDENER IS 2.5 HOURS.		PROGRESS LOG
1. PANELS ARE TO BE FABRICATED IN A CONTIGUOUS LAYUF			ASTM A325, U.N.O.	4) SECURE THE JOINT WITH CLAMPS (OR RIVETS OR BOLTS) AND ALLOW		
	TREATMENTS TO ACHI	EVE DESIRED APPEARANCE.	 ALL BOLTED CONNECTIONS SHALL BE TIGHTENED TO SOULD TIGHT: CONDITION AS DEEDED BY AIRC. 	24 HOURS FOR A FULL CURE THE ASSEMBLY CAN OFTEN BE HANDLED WITH REASONABLE CARE IN		1 12/12/22 CODE UPDATE
2. ARCHITECT SHALL SPECIFY ANY REQUIRED FINISHES OR			"SNUG TIGHT" CONDITION AS DEFINED BY AISC.	LESS THAN 8 HOURS		0 10/19/22 ISSUED TO CLIENT A 09/19/22 ISSUED FOR REVIEW
 FABRICATOR SHALL USE A GLASS-RESIN RATIO OF 35% ± 4. EACH SKIN SHALL BE FABRICATED WITH GENERAL PURPO 			 ALL WELDING SHALL BE PERFORMED BY CERTIFIED WELDERS IN ACCORDANCE WITH THE LATEST EDITION OF 	THE STRUCTURE SHOULD NOT BE REQUIRED TO SUPPORT ITS DESIGN LOAD UNTIL AT LEAST 48 HOURS		SHEET NUMBER PROGRES
 FABRICATOR SHALL USE A GLASS-RESIN RATIO OF 35% ±. EACH SKIN SHALL BE FABRICATED WITH GENERAL PURPO FOR FIRE TREATMENT, CHOPPED STRAND MAT. 						
 FABRICATOR SHALL USE A CLASS-RESIN RATIO OF 35% 4: EACH SKIN SHALL BE FABRICATED WITH GENERAL PURPO FOR FIRE TREATMENT, CHOPPED STRAND MAT. CORNER FLANGES MAY BE FASTENED WITH %/** NON-MET STUDS AND NUTS OR EQUIVALENT. A TORQUE WRENCH MU 	ALLIC THREADED ROD ST BE USED TO TIGHTI	AND NUTS: STRONGWELL FIBREBOLT EN FASTENERS TO A MAXIMUM 16	THE AMERICAN WELDING SOCIETY (AWS) D1.1	(AT 70°F) AFTER BONDING, LOWER TEMPERATURES REQUIRE A		0011
 FABRICATOR SHALL USE A GLASS-RESIN RATIO OF 35% ± 4 EACH SKIN SHALL BE FABRICATED WITH GENERAL PUPPC FOR FIRE TREATMENT, CHOPPED STRAND MAT. S CORNER FLANGES MAY BE FASTENED WITH ½'W DNO.MET STUDS AND NUTS OR EQUIVALENT. A TORQUE WRENCH MU FT-LBS 	ST BE USED TO TIGHT	EN FASTENERS TO A MAXIMUM 16	THE AMERICAN WELDING SOCIETY (AWS) D1.1	(AT 70°F) AFTER BONDING, LOWER TEMPERATURES REQUIRE A LONGER CURE.		GSN 1
 FABRICATOR SHALL USE A CLASS-RESIN RATIO OF 55% 4: EACH SKIN SHALL BE FABRICATED WITH GENERAL PURPO FOR FIRE TREATMENT, CHOPPED STRAND MAT. CORNER FLANGES MAY BE FASTENED WITH \$2'' NON-MET STUDS AND NUTS OR EQUIVALENT. A TORQUE WRENCH MU 	ST BE USED TO TIGHTI GEL-COAT FINISH TO SIN.	EN FASTENERS TO A MAXIMUM 16 PROVIDE ULTRAVIOLET PROTECTION.		(AT 70°F) AFTER BONDING. LOWER TEMPERATURES REQUIRE A	Alan Signature	GSN 1







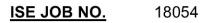
				T	KE	Y NOTES	3	
21/4" 22/4"			* _	(46)	CONTINUOUS TONGUE EDGE	MARK	DESCRIPTION	verizon ⁴
				(47)	3" GROVE TAB @ 12" O.C.	(1)	48"Ø x ½" LEG	VCI IZUIT
65				(48)	1%8" HOLES, FIELD DRILL	2	HSS 10x10x 3" A500 GR B	
90	6-35/16"			49	2" FRP SKIN	3	C6x11.5	L 7ARSON
A A A A A A A A A A A A A A A A A A A				50	W STRONGWELL FIBREBOLT	(4)	1" LEG CAP PLATE	
				51	0R EQUAL 1%6" HOLES	5	FLANGED JOINT	1501 South Euclid Avenue Tucian, AZ 45713 (520) 264 3900 www.larsoncamo.com
			A 3	52	HSS 2x2x3/16"	6	%" x 3" BAR w/ 1" ROUND RUNG	WWW.larsencano.com
				(53)	%" GRADE B BOLTS	\overline{O}	LADDER W/ SAFETY CLIMB FRP TUBE FRAMED PANEL	
					MAST BASE PLATE, SEE		FINISH PER ARCHITECTURAL	ISE Incorporated
		×		54	SCHEDULE SHEET S4.0 LEG FLANGE PLATE, SEE	8	48"Ø x ¹ / ₄ " FRP CANISTER	Structural Engineers
				55	SCHEDULE SHEET S4.0 LEG MATING PLATE, SEE	9	6 a SCHED 40 MAST	Р. О. ВОХ 50029 Росяти, Атарла 65076 Инже: 10/401 414 инже: 10/401 414
				56	SCHEDULE BOLT PER SCHEDULE - SHEET	(10)	%" PLATE GUSSETS MCNICHOLS 'GW 125' 11/4"X 18" BAR	Phote: 40/40/40/40/40/40/40/40/40/40/40/40/40/4
05: 521 - 5-10 05: 521 - 5-10 15: 5-10				57	S4.0 LEG BASE PLATE, SEE	11	GRATE	ISE JOB #: 18054
05 05 05 05 05 05 05 05 05 05 05 05 05 0			\sim	58	SCHEDULE SHEET S4.0 ANCHOR BOLT, SEE	(12)	%"Ø A307 BOLT IN 1%6" Ø HOLE	
/ [*] ċ		FR		(59)	SCHEDULE SHEET \$4.0	(13)	3/6"Ø A36 TAB	
9 CANISTER COVER PLATE SCALE:	5C/		SCALE:	60	CLIMBING HAND HOLE AT LEG L1	14	1" A572-50 FLANGE PLATE	
$y^* = y^* - y^* = y^* - y^* + \frac{1}{2} \frac{1}{2$	NEL SECTION SCA	E T'-Q" 2 FRP ENCLOSURE	SECTION 1/2" = 1'-0	61	³ g" x 3" PLATE	(15)	ANCHOR BOLT HOLE, SEE SCHEDULE - SHEET \$4.0	L S
(49)				62	¼"x 3" BENT PLATE	(16)	ANTENNA BY OTHERS	LO CT DETAILS
· · · · · · · · · · · · · · · · · · ·		(9)	18'-0"	63	1"Ø A36 ROD w/ NON SKID FINISH	17	RRU BY OTHERS	
	F	\sim		64	4" HOLE, FIELD DRILL	(18)	Ø2.375" O.D. SCH 40 ANTENNA PIPE	
		+ 100'-0" AFG T.O. STEEL		65	∛i6"Ø HOLE	(19)	$\%"Ø$ A325 BOLT IN $^{1}\!\!\%_{16}"$ Ø HOLE	RELO MUMENT RE DE
	(64)			66	BULKHEAD RADIUS PLATE	20	CONCRETE GRADE BEAM F'C - 4000 PSI	PLATTSVILLE REI 100 TALL 3 LEB MONUMEN FRP ENCLOSURE
IHI	0			67	BOLKHEAD ARM ASSEMBLY	21	%" A36 PLATE	
			-0- -0-	68	1/4" Ø x 1 1/4" SELF DRILLING SCREW BY McMASTER-CARR	22	3/8"Ø U-BOLT BOLT	PLATTSVILLE I 100 TAL 3 LED MOT PENCLOSUF FIELE PARK AVENUE, FAIFF
(49-)	49 (46)		4-0"0 4-0"0 4-0"0	69	(3) #3 TIES IN TOP 3"	23	% "Ø GRADE B BOLT IN 1/18" Ø HOLE	
				70	BASE PLATE, SEE SCHEDULE SHEET \$4.0	24)	½"Ø A325 BOLT IN %6" Ø HOLE	E O SHARE
8 TONGUE AND GROVE JOINT SCALE: 6*=1'-0*		+ 90'-0" AFG FLANGE PLATE		(71)	ANCHOR BOLT TEMPLATE SCHEDULE	(25)	NOT USED	E AT AT
6"=1'-0"				(72)	NOT USED	(26)	¹¼e"ØHOLE	
				73	(2) #5 TOP AND BOTTOM	(27)	1" HONEYCOMB FRP PANEL	
	TABS	\forall	1 0.0	(74)	#4 TIES @ 12" O.C.	28	MAST FLANGE PLATE, SEE SCHEDULE.	LL
	OVE TI P			(75)	#4 TIES @ 6" O.C.	29	VALMONT FRP 5"x 🖓" TUBE	
	(B)			(76)	#4 TIES @ 3" O.C.	30	FRAMING FRP SHEATHING/PANEL SEAM	
	्र 7 व	+ 80'-0" AFG T.O. ENCLOSURE		\overline{m}	(5) #4 TIES @ 1 ³ / ₄ O.C. MAX	31	L2x2x ³ /16"	THIS DESIGN DRAWING IS PROPRIETARY & CONFIDENTIAL
				(78)	(16) #8 VERTICAL	(32)	∠4x4x¼"	THE INFORMATION IN THIS DRAWING IS THE
			PANELA1 PANELA2 PANELA1 0	79	(2) #5 8" x 48" TOP & BOTTOM	(33)	∠6x6x ³ / ₈ "	REPRODUCTION, MODIFICATION, OR MANUFACTURING IN PART, OR AS A WHOLE, WITHOUT THE WRITTEN FEMILISION OF LASSON IS PROVIDENTED.
				80	HOOKED INTO GRADE BEAM CONCRETE PIER	(34)	PLATEORM ACCESS	A la a
7 ASSEMBLED FRP SHROUD - PLAN SCALE: 3/4"=1'-0"			30	81	F'c - 4000 PSI 135° SEISMIC BEND IN NON	(35)	% Ø A325 BOLT	Converse
AA	20 0-		.0.	(82)	LINEAR VERT. PLACEMENT CONDUIT BY OTHERS	36	13/6" Ø HOLE	
49					#4 @ 12" O.C. EACH WAY	(37)	FIELD DRILL TO MATCH FRAMING	B No PER OCIACIE (G)
			PANEL B1 PANEL B2 PANEL B1	83		\sim		SSIONAL ENG
	69		MIRROR È	84	#4 TOP AND BOTTOM	38	VALMONT FRP 5X5X ⁵ / ₈ TUBE	PROGRESS LOG
× 40 × 1			4'-0" 5'-0" 4'-0"	85	6" CONCRETE SLAB	39	VALMONT FRP ८5X5X <table-cell> *** DOUBLE VALMONT FRP ८5X5X 음**</table-cell>	
		62'-0" AFG B.O. ENCLOSURE		86	4" ABC FILL	40	STRONG BACK FLANGED LEG SPLICE, SEE	1 12/12/22 CODE UPDATE CH 0 10/19/22 199UED TO CLENT CK
<u>Y</u> [*] <u>Y</u> [*] X	. HA	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		87	LADDER STAND-OFF	(41)	SCHEDULE 3/" PLATE LEG WALL	A 00/18/22 ISSUED FOR REVIEW CK
	4-0*			88	LADDER STAND-OFF MOUNT COTTERMAN 6'LADDER GUARD	42	REINFORCEMENT	SHEET NUMBER PROGRESS
<u>34</u> (12) TH	4-0" E			89	OR APPROVED EQUAL	43	1° A500 GRADE B GUSSET PLATE	FRP1.0 1
			· · · · · · · · · · · · · · · · · · ·	90	50°Ø x ¾" FRP CAP PLATE	44	%6" A36 PLATE FLANLGE	DRAWING DATE
6 TONGUE TAB 5 GROVE TAB SCALE: 6"-1'-0" 3 ENG	ICLOSURE PANEL INTERIOR ELEVATION	"-1'-0" 1 TYPICAL ENCLOS	SURE ELEVATION Scale: t/4" = 1'-0	. (91)		(45)	LEG CAP PLATE, SEE SCHEDULE	December 12, 2022

ISE, Incorporated Structural Engineers Telecommunications & Industrial Design

Alan

Signature

///Kan unall


Design & Calculations 100' 3-Legged Tower

DATE: December 12, 2022

PROJECT: Verizon Plattsville Relo CT (553278)

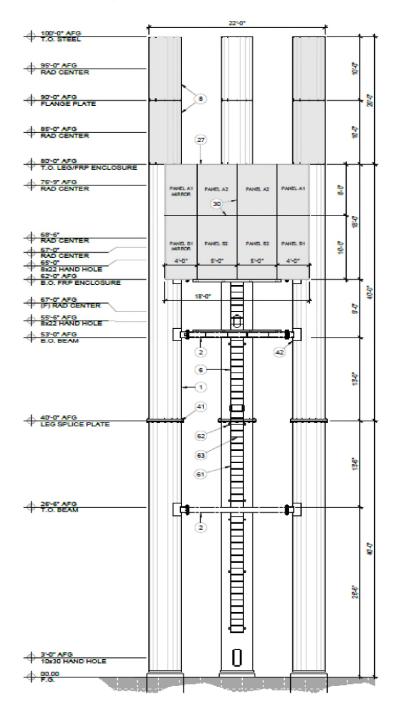
CUSTOMER: Larson Valmont 1501 South Euclid Avenue Tucson, AZ 85713

LOCATION: 5151 Park Avenue Fairfield, CT 06825 Latitude: 41° 13' 08.19" Longitude: 73° 14' 41.12"

LARSON JOB NO. 553278

DESIGN CRITERIA:

CODE:	2022 Connecticut State Building Code, 2021 IBC, ASCE 7-16, TIA-222-H
WIND:	122 MPH Ultimate Wind Speed Exposure C, Topographic Category 1, Risk Category II
SNOW:	30 psf
SOILS:	Terracon Consultants Inc, Geotechnical Engineering Report, #J1225042 dated 08/10/2022
SEISMIC:	Seismic Design Category >> B Soil Site Class >> C Ss = 0.211, S ₁ = 0.065, S _{DS} = 0.169, S _{D1} = 0.074 Per ASCE 7, Ch 13.3: I = 1.0, $a_p = 1.0$, $R_p = 3$ C _s = 0.056


These calculations prepared by the Structural Engineer for this project are the instruments of the Structural Engineer's work and are the exclusive property of the Structural Engineer. Their use or publication shall be restricted for use solely with respect to this project. The Structural Engineer shall be deemed the author of these documents and shall retain all common law, statutory and other reserved rights including the copyright. The Structural Engineers calculations shall not be used in part or in whole by the Owner or others for other projects, additions to this project or for completion of this project by others except by agreement in writing and with appropriate compensation to the Structural Engineer.

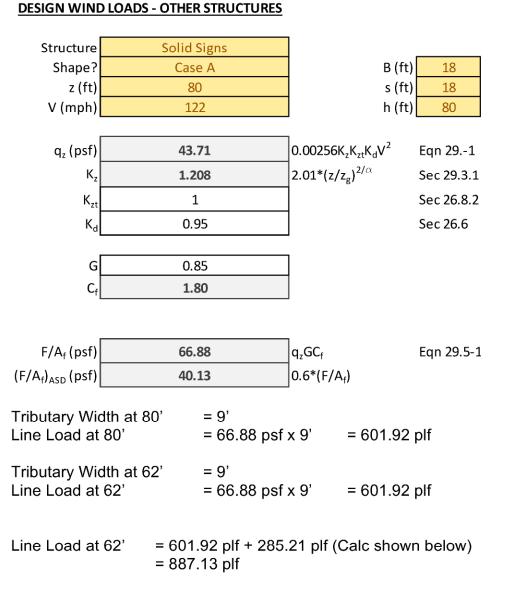
PO Box 50039 • Phoenix, Arizona • 85076 • Office: (602) 403-8614 • Fax: (623) 321-1283 • www.ISE-INC.biz

Project: Verizon Plattsville Relo ISE #: 18054 By: PB Date: 12/12/22

PROJECT DESCRIPTION

Verizon proposes to install 100' tall, 3-Legged tower for antennas and equipment installation at the site located in Fairfield, CT. Antennas will be installed within 48" Dia. Canister at a rad center of 95'-0" AFG & 85'-0" AFG and behind RF transparent FRP screen panels at a rad center of 76'-9", 68'-6", 67'-0" AFG. Sketches of the proposed tower are as shown below:

PO Box 50039 • Phoenix, Arizona • 85076 • Office: (602) 403-8614 • Fax: (623) 321-1283 • www.ISE-INC.biz


Project: Verizon Plattsville Relo ISE #: 18054 By: PB Date: 12/12/22

LOADING

WIND LOAD

Criteria: Exposure C, Topographic Category 1, Risk Category II

Wind Load for Elevation 62' AFG to 80' AFG ASCE 7-10, CHAPTER 29, Sec 29.5

PO Box 50039 • Phoenix, Arizona • 85076 • Office: (602) 403-8614 • Fax: (623) 321-1283 • www.ISE-INC.biz

Project: Verizon Plattsville Relo ISE #: 18054 By: PB

Date: <u>12/12/22</u>

Wind Load for elevation 52' AFG to 62' AFG (Future Concealment Panels)

ASCE 7-10, CHAPTER 29, Sec 29.5 DESIGN WIND LOADS - OTHER STRUCTURES

Structure	Solid]		
Shape?	Case	e A		B (ft)	
z (ft)	62	2		s (ft)	
V (mph)	12	2		h (ft)	62
_			-		
q _z (psf)	41.	43	0.00256K		Eqn 291
Kz	1.1	44	2.01*(z/z	$(g)^{2/\alpha}$	Sec 29.3.1
K _{zt}	1				Sec 26.8.2
K _d	0.9	95			Sec 26.6
G	0.8	35			
C _f	1.8	30			
_			-		
_			-		
F/A _f (psf)	63.	38	q _z GC _f		Eqn 29.5-1
(F/A _f) _{ASD} (psf)	38.	03	0.6*(F/A _f	;)	
_			-		
Tributary Widtl	h at 62'	= 4.5'			
Line Load at 6	2'	= 63.38 psf	x 4.5'	= 285.21	plf
	h at EQ'	- 4 5'			
Tributary Widtl		= 4.5'	× 4 5'	- 205 21	nlf
Line Load at 5	2	= 63.38 psf	x 4.0	= 285.21	рп

ISE, Incorporated

Structural Engineers

Telecommunications & Industrial Design

PO Box 50039 • Phoenix, Arizona • 85076 • Office: (602) 403-8614 • Fax: (623) 321-1283 • www.ISE-INC.biz

Project: Verizon Plattsville Relo ISE #: 18054

By: PB

Date: <u>12/12/22</u>

Wind Loading for exposed legs

Wind Load Calculatior	1		Cf 0.6	Wind Load On Leg
H (ft)	Kz	q _z (psf)	qzGhCf (psf)	[plf]
16.4	0.86	31.31	15.97	63.87
20	0.90	32.65	16.65	66.60
30	0.98	35.56	18.13	72.53
40	1.04	37.78	19.27	77.06
50	1.09	39.59	20.19	80.77
60	1.14	41.14	20.98	83.93
70	1.17	42.50	21.67	86.70
80	1.21	43.71	22.29	89.17
90	1.24	44.81	22.85	91.41
100	1.27	45.81	23.36	93.46

V (mph)	122
K _{zt}	1
K _d	0.95
G	0.85
C _f	0.51

DEAD LOAD

Platform loads

FRP Panels	= 3 psf
Bar Grate	= 10 psf
Misc equipment	= 15 psf

LIVE LOAD

Platform Live Load = 40 psf

SNOW LOAD

Ground Snow Load, Ig = 30 psf

ISE, Incorporated Structural Engineers

Telecommunications & Industrial Design

PO Box 50039 • Phoenix, Arizona • 85076 • Office: (602) 403-8614 • Fax: (623) 321-1283 • www.ISE-INC.biz

Project: Verizon Plattsville Relo ISE #: 18054 Date: 12/12/22 By: PB

SEISMIC CHECK

Per Risa Results, Dead Only load case

Ι	LC	Node Label	X [lb]	Y [lb]	Z [lb]
	1	N37	24.342	29018.548	-13.95
	1	N38	-23.153	29093.839	-14.028
	1	N41	-1.189	29041.719	27.979
	1	Totals:	0	87154.106	0
ſ	1	COG (ft):	X: 9.009	Y: 47.365	Z: -5.194

Seismic Shear $= C_sW = 0.056 \times 87.15k = 4.88k$

Per Risa Results, Wind only load case

LC	Node Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
4	N37	-464.415	-24120.931	18002.51	830.76	-28.872	4.023
4	N38	464.415	-24120.931	18002.51	830.76	28.872	-4.023
4	N41	0	48241.862	18616.363	837.724	0	0
4	Totals:	0	0	54621.383			

Wind Shear = 54.62k > 4.88 k → Wind Governs Design

FRP PANEL DESIGN & CALCULATIONS

FRP LAYUP

FRP PROPERTIES

- Modulus of Elasticity E
- Modulus of Shear G
- Ultimate Flexural Stress Fb
- Ultimate Tension/Compression Stress F_T, F_C
 - Ultimate Bearing Stress Fp

2600000	psi
450000	psi
30000	psi
10,700	psi
30000	psi

FS Bearing
FS Shear
FS Tension
FS Connections
FS Bending

4
3
3
4
2.5

Telecommunications & Industrial Design

PO Box 50039 • Phoenix, Arizona • 85076 • Office: (602) 403-8614 • Fax: (623) 321-1283 • www.ISE-INC.biz

Project: Verizon Plattsville Relo ISE #: 18054 By: PB Date: 12/12/22

FRP PANEL DESIGN

Concealment panels are sheathed with Carbon core 1" thick honeycomb core with fiberglass skins on each side.

The panels have been tested to 100 psf load on a 6' simply supported span longitudinal edges free with no failure.

For this application the panels are supported at 6' longitudinally.

ISE Incorporated	JOB : Verizon Plattsville Relo
P.O. Box 50039	CLIENT : Larson
Phoenix, Arizona 85076	ISE JOB NO: 18054
Phone: 602-403-8614	DATE: 8/19/2022
FAX: 623-321-1283	BY: PB
	FRP VERTICAL POST ANALYSIS

LOADING

Tributary Width, wt	6	ft	
Wind Pressure	40.13	psf	
Span, L	18	ft	
Linear Wind Load	240.78	plf	
Mn	9751.59	lb-ft	
SECTIONAL PROPERTIES - STRONGWELL EXTERN			

Section	4x1/4 Tube	
E	2600000	psi
b	4	in
t	0.25	in
А	3.74	in²
I _x		in⁴
S _x	4.41	in ³
		-

APPLIED STRESSES

Applied Bending Stress

2211.24 psi

M/S

ALLOWABLE STRESSES

Per Strongwell Design Manual,

Allowable Bending Stress	6157.6	psi
Allowable Shear Stress	1500	psi

[E/16(b/t)^{0.85}]/2.5 4500/3

ISE Incorporated	JOB : Verizon Plattsville Relo		
P.O. Box 50039	CLIENT : Larson		
Phoenix, Arizona 85076	ISE JOB NO: 18054		
Phone: 602-403-8614	DATE: 8/19/2022		
FAX: 623-321-1283	BY: PB		
FRP HORIZONTAL BEAM ANALYSIS			

LOADING

Tributary Width, wt	9	ft	
Wind Pressure	40.13	psf	
Span, L	18	ft	
Linear Wind Load	361.17	plf	
Mn	14627.39	lb-ft	
SECTIONAL PROPERTIES - STRONGWELL EXTERN			

Section	4x1/4 Tube	
E	2600000	psi
b	4	in
t	0.25	in
А	3.74	in ²
I _x	8.82	in ⁴
S _x	4.41	in ³

APPLIED STRESSES

Applied Bending Stress

3316.87 psi

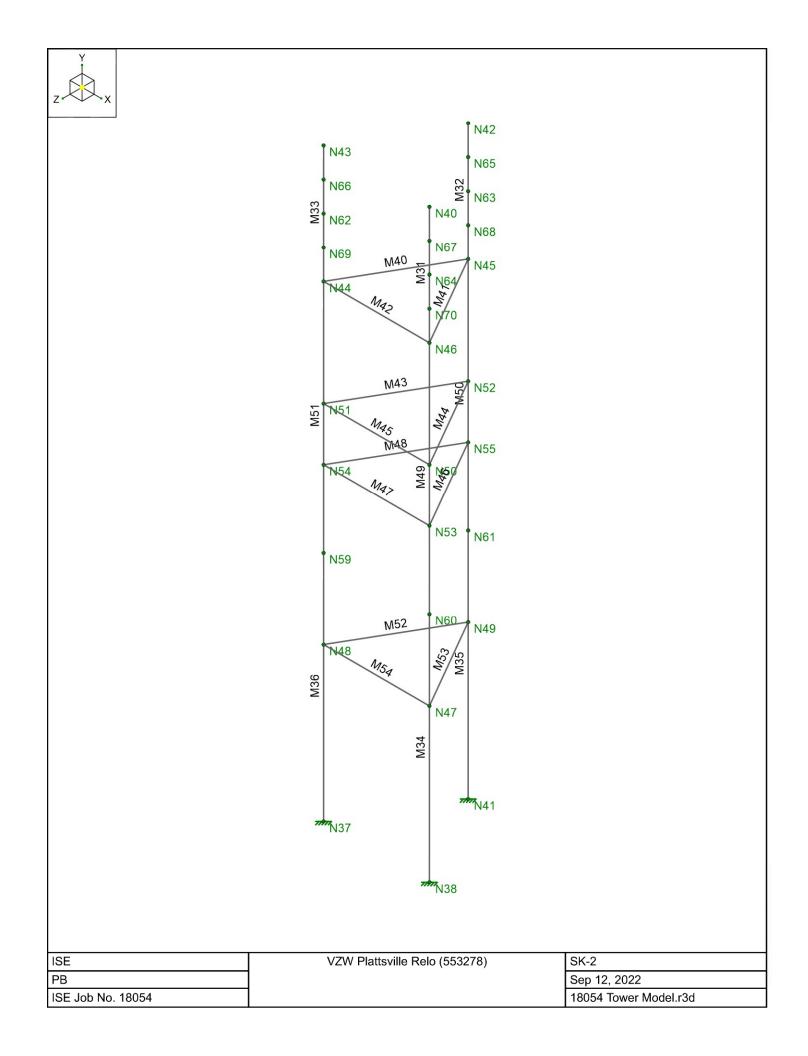
M/S

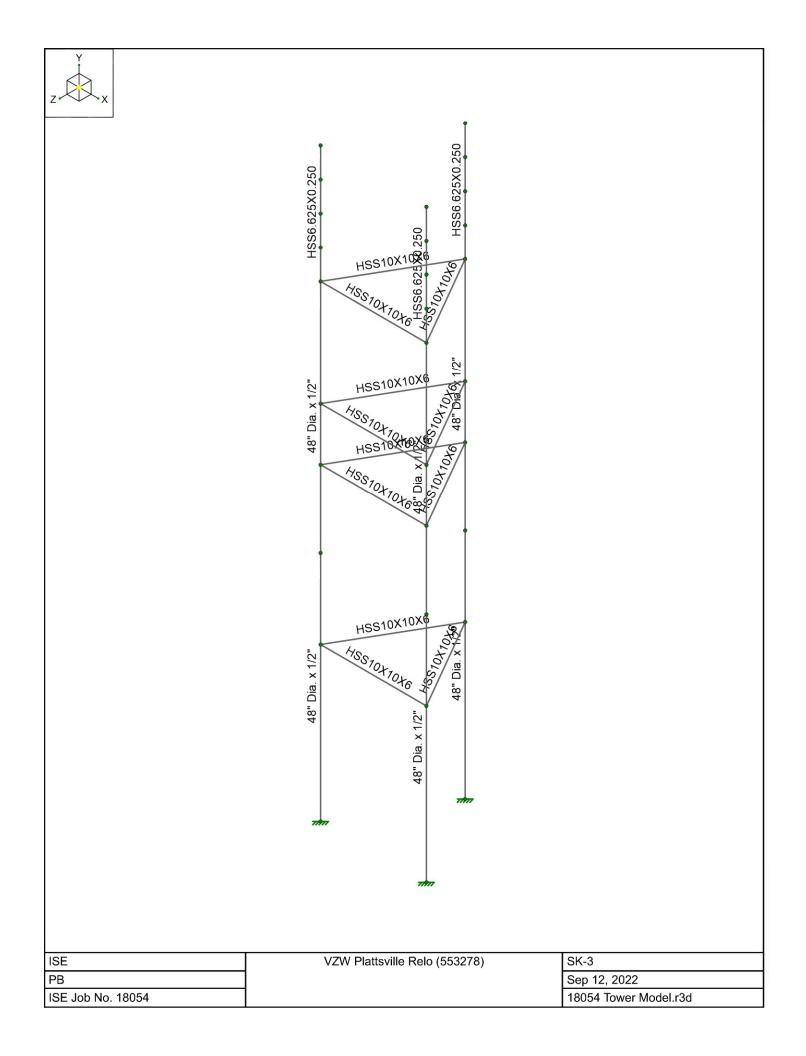
ALLOWABLE STRESSES

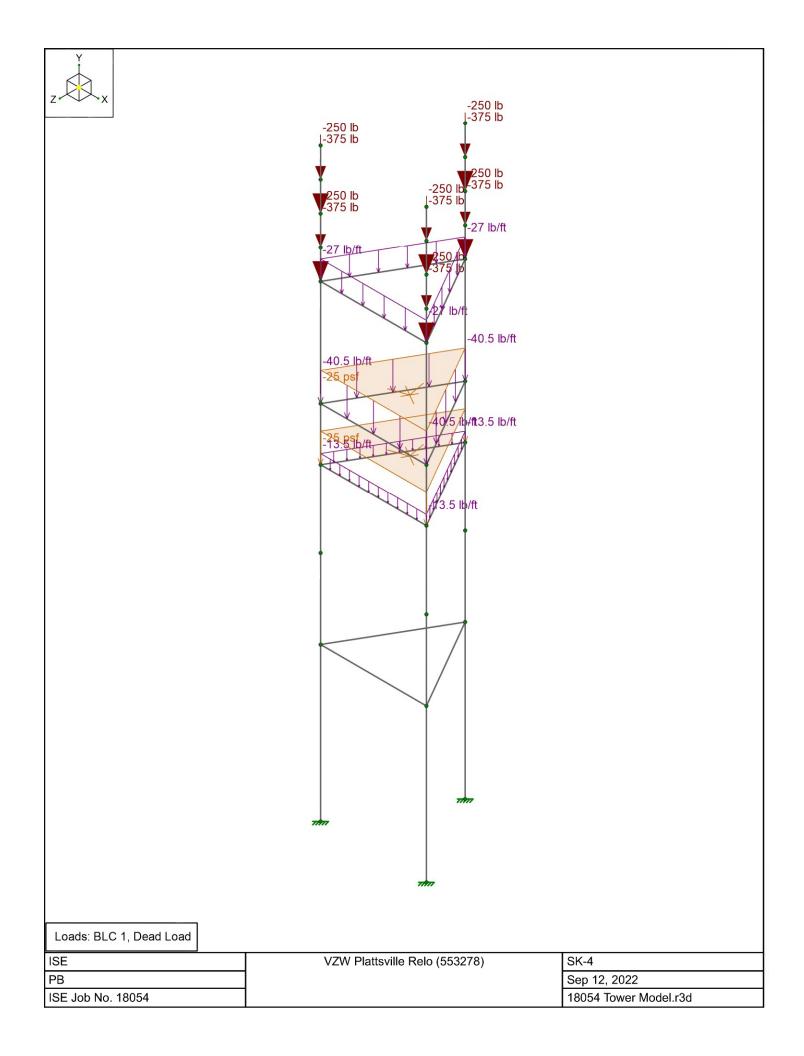
Per Strongwell Design Manual,

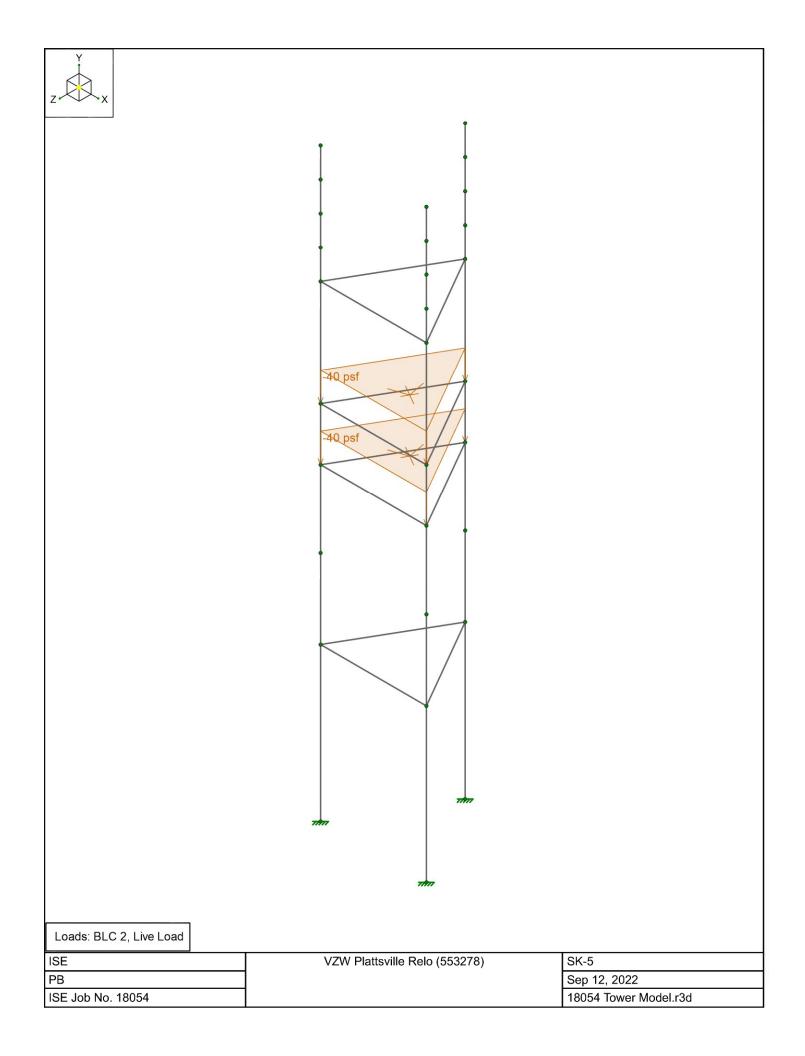
Allowable Bending Stress	6157.6	psi
Allowable Shear Stress	1500	psi

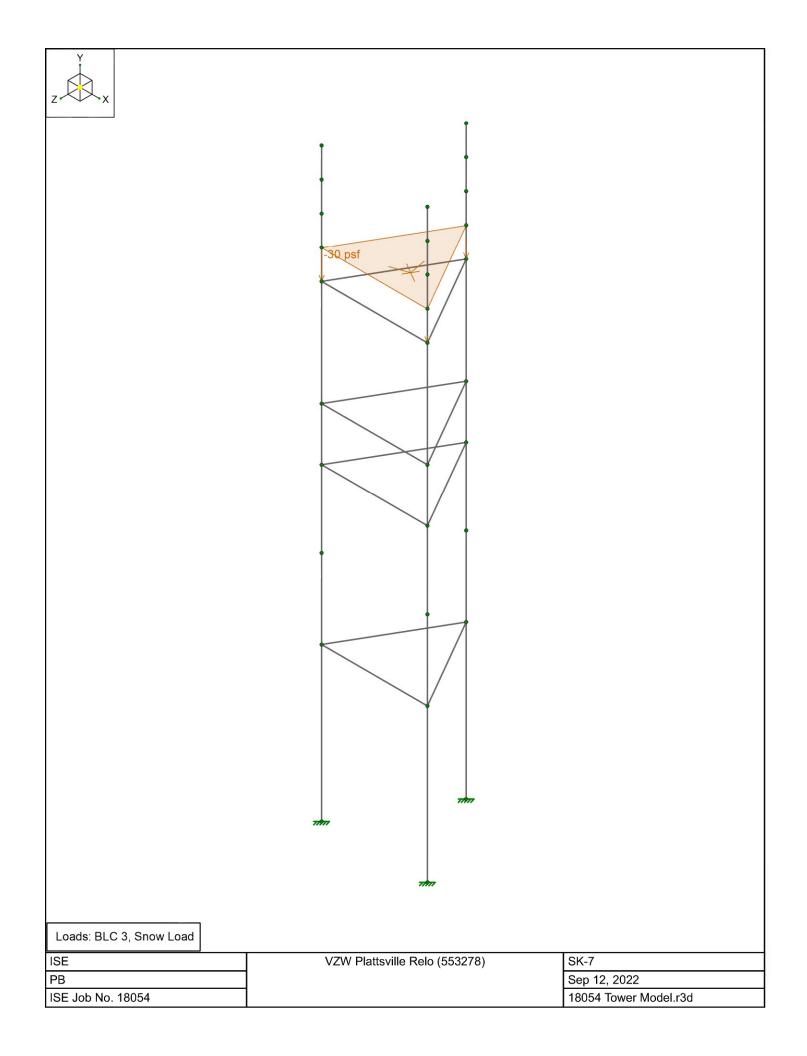
[E/16(b/t)^{0.85}]/2.5 4500/3

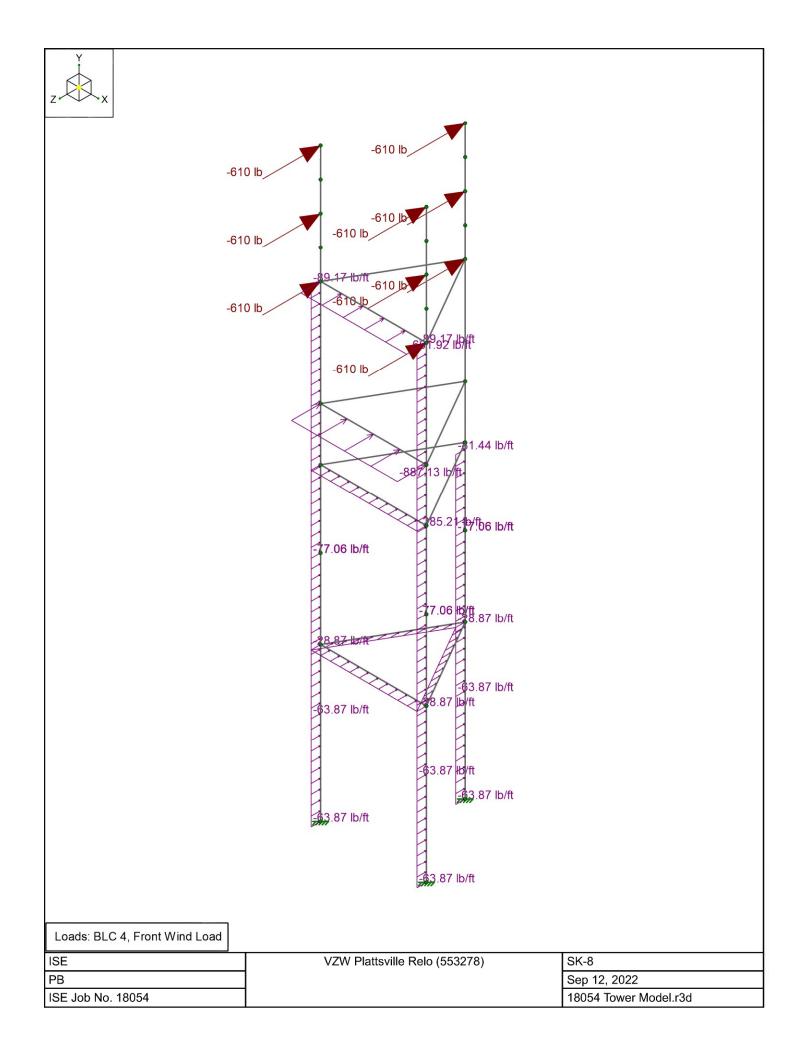


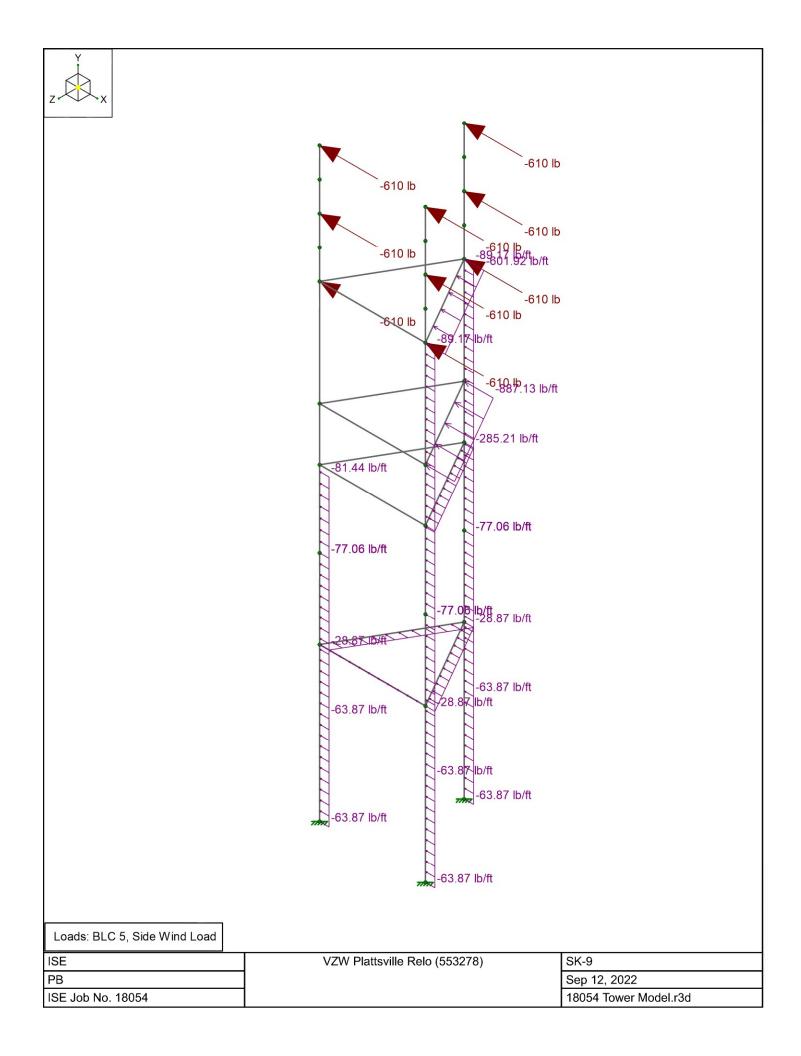

FRP PA	NEL TO PANEL CONNECTION
FAX: 623-321-1283	BY: PB
Phone: 602-403-8614	DATE : 8/19/2022
Phoenix, Arizona 85076	ISE JOB NO: 18054
P.O. Box 50039	CLIENT : Larson
ISE Incorporated	JOB : VZW plattsville Relo


Tributary Width, wt	9	ft
Wind Pressure	40.13	psf
Span, L	18	ft
Linear Wind Load	361.17	plf
Wind Load	6501.06	lb


CONNECTION	**Per Stron	ngwell Desig	n Manua	Ι	
Bolt Type		FibreBolts			
Bolt Diameter	d_b	1/2	in		
Number of Bolts	n	15			
Bolt Shear	v	433.404	lb		
Ultimate Shear Capacity	V_{u}	2400	lb		
Available Shear Capacity	V _a	600	lb	FOS = 4	ОК
Ultimate Tensile Capacity	т	2000	Ір		
Available Tensile Capacity	Ta	500	lp	FOS = 4	ОК


ISE	VZW Plattsville Relo (553278)	SK-1
PB ISE Job No. 18054		Aug 18, 2022 18054 Tower Model.r3d
13E JUD 110. 10034		





Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	N37	0	0.5	0	
2	N38	18	0.5	0	
3	N41	9	0.5	-15.5885	
4	N40	18	100	0	
5	N42	9	100	-15.5885	
6	N43	0	100	0	
7	N44	0	80	0	
8	N45	9	80	-15.5885	
9	N46	18	80	0	
10	N47	18	26.5	0	
11	N48	0	26.5	0	
12	N49	9	26.5	-15.5885	
13	N50	18	62	0	
14	N51	0	62	0	
15	N52	9	62	-15.5885	
16	N53	18	53	0	
17	N54	0	53	0	
18	N55	9	53	-15.5885	
19	N59	0	40	0	
20	N60	18	40	0	
21	N61	9	40	-15.5885	
22	N62	0	90	0	
23 24	N63	9	90	-15.5885	
24	N64	18	90	0	
25 26	N65	9	95	-15.5885	
26	N66	0	95	0	
27	N67	18	95	0	
28	N68	9	85	-15.5885	
29	N69	0	85	0	
30	N70	18	85	0	

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N37	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N38	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N41	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [lb/ft ³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 Gr.36	29000	11154	0.3	0.65	490	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	0.3	0.65	490	50	1.1	65	1.1
3	A992	29000	11154	0.3	0.65	490	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	490	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	490	50	1.4	65	1.3

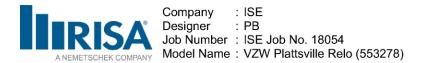
Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rule	Area [in ²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
1	Tower Legs	48" Dia. x 1/2"	Column	HSS Pipe	A572 Gr.50	Typical	74.613	21045.48	21045.48	42090.96
2	Platform	HSS10X10X6	Beam	Tube	A500 Gr.B Rect	Typical	13.2	202	202	320

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Туре	Design List	Material	Design Rule	Area [in²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
3	Mast Pipe	HSS6.625X0.250	Column	HSS Pipe	A500 Gr.B RND	Typical	4.68	23.9	23.9	47.9

Member Primary Data


	Label	l Node	J Node	Section/Shape	Туре	Design List	Material	Design Rule
1	M31	N46	N40	Mast Pipe	Column	HSS Pipe	A500 Gr.B RND	Typical
2	M32	N45	N42	Mast Pipe	Column	HSS Pipe	A500 Gr.B RND	Typical
3	M33	N44	N43	Mast Pipe	Column	HSS Pipe	A500 Gr.B RND	Typical
4	M34	N38	N60	Tower Legs	Column	HSS Pipe	A572 Gr.50	Typical
5	M35	N41	N61	Tower Legs	Column	HSS Pipe	A572 Gr.50	Typical
6	M36	N37	N59	Tower Legs	Column	HSS Pipe	A572 Gr.50	Typical
7	M40	N44	N45	Platform	Beam	Tube	A500 Gr.B Rect	Typical
8	M41	N45	N46	Platform	Beam	Tube	A500 Gr.B Rect	Typical
9	M42	N46	N44	Platform	Beam	Tube	A500 Gr.B Rect	Typical
10	M43	N51	N52	Platform	Beam	Tube	A500 Gr.B Rect	Typical
11	M44	N52	N50	Platform	Beam	Tube	A500 Gr.B Rect	Typical
12	M45	N50	N51	Platform	Beam	Tube	A500 Gr.B Rect	Typical
13	M46	N55	N53	Platform	Beam	Tube	A500 Gr.B Rect	Typical
14	M49	N60	N46	Tower Legs	Column	HSS Pipe	A572 Gr.50	Typical
15	M47	N53	N54	Platform	Beam	Tube	A500 Gr.B Rect	Typical
16	M50	N61	N45	Tower Legs	Column	HSS Pipe	A572 Gr.50	Typical
17	M48	N54	N55	Platform	Beam	Tube	A500 Gr.B Rect	Typical
18	M51	N59	N44	Tower Legs	Column	HSS Pipe	A572 Gr.50	Typical
19	M52	N48	N49	Platform	Beam	Tube	A500 Gr.B Rect	Typical
20	M53	N49	N47	Platform	Beam	Tube	A500 Gr.B Rect	Typical
21	M54	N47	N48	Platform	Beam	Tube	A500 Gr.B Rect	Typical

Node Loads and Enforced Displacements (BLC 1 : Dead Load)

	Node Label	L, D, M				
1	N62	L	Y	-375		
2	N64	L	Y	-375		
3	N63	L	Y	-375		
4	N45	L	Y	-375		
5	N46	L	Y	-375		
6	N44	L	Y	-375		
7	N66	L	Y	-250		
8	N65	L	Y	-250		
9	N67	L	Y	-250		
10	N68	L	Y	-250		
11	N70	L	Y	-250		
12	N69	Ĺ	Y	-250		

Node Loads and Enforced Displacements (BLC 4 : Front Wind Load)

	Node Label	L, D, M	Direction	Magnitude [(lb, k-ft), (in, rad), (lb*s²/ft, lb*s²*ft)]
1	N43	L	Z	-610
2	N40	L	Z	-610
3	N42	L	Z	-610
4	N63	L	Z	-610
5	N46	L	Z	-610
6	N45	L	Z	-610
7	N44	L	Z	-610
8	N62	L	Z	-610
9	N64	L	Z	-610

Node Loads and Enforced Displacements (BLC 5 : Side Wind Load)

	Node Label	L, D, M	Direction	Magnitude [(lb, k-ft), (in, rad), (lb*s²/ft, lb*s²*ft)]
1	N42	L	Х	-610
2	N40	L	Х	-610
3	N43	L	Х	-610
4	N64	L	Х	-610
5	N63	L	Х	-610
6	N62	L	Х	-610
7	N44	L	Х	-610
8	N45	L	Х	-610
9	N46	Ĺ	X	-610

Member Distributed Loads (BLC 1 : Dead Load)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M42	Y	-27	-27	0	%100
2	M41	Y	-27	-27	0	%100
3	M40	Y	-27	-27	0	%100
4	M46	Y	-13.5	-13.5	0	%100
5	M47	Y	-13.5	-13.5	0	%100
6	M48	Y	-13.5	-13.5	0	%100
7	M45	Y	-40.5	-40.5	0	%100
8	M44	Y	-40.5	-40.5	0	%100
9	M43	Ý	-40.5	-40.5	0	%100

Member Distributed Loads (BLC 4 : Front Wind Load)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M36	Z	-63.87	-63.87	0	15.9
2	M34	Ζ	-63.87	-63.87	0	15.9
3	M35	Ζ	-63.87	-63.87	0	15.9
4	M36	Ζ	-63.87	-77.06	15.9	39.5
5	M35	Ζ	-63.87	-77.06	15.9	39.5
6	M34	Z	-63.87	-77.06	15.9	39.5
7	M51	Z	-77.06	-89.17	0	%100
8	M49	Z	-77.06	-89.17	0	%100
9	M50	Z	-77.06	-81.44	0	12
10	M42	Z	-601.92	-601.92	0	%100
11	M47	Z	-285.21	-285.21	0	%100
12	M54	Z	-28.87	-28.87	0	%100
13	M52	Z	-28.87	-28.87	0	%100
14	M53	Z	-28.87	-28.87	0	%100
15	M45	Z	-887.13	-887.13	0	%100

Member Distributed Loads (BLC 5 : Side Wind Load)

	Member Label Direction Start Magnitude [lb/ft, F, psf, k-ft/ft] End Magnitude [lb/ft, F, psf, k-ft/ft] Start Location [(ft, %)] End Location [(ft, %)]							
1	M51	Х	-77.06	-81.44	0	12		
2	M49	Х	-77.06	-89.17	0	%100		
3	M50	Х	-77.06	-89.17	0	%100		
4	M34	Х	-63.87	-63.87	0	15.9		
5	M35	Х	-63.87	-63.87	0	15.9		
6	M36	Х	-63.87	-63.87	0	15.9		
7	M36	Х	-63.87	-77.06	15.9	%100		
8	M34	Х	-63.87	-77.06	15.9	%100		
9	M35	Х	-63.87	-77.06	15.9	%100		

Member Distributed Loads (BLC 5 : Side Wind Load) (Continued)

	Member Label Direction Start Magnitude [lb/ft, F, psf, k-ft/ft] End Magnitude [lb/ft, F, psf, k-ft/ft] Start Location [(ft, %)] End Location [(ft, %)]							
10	M41	Х	-601.92	-601.92	0	%100		
11	M46	Х	-285.21	-285.21	0	%100		
12	M52	Х	-28.87	-28.87	0	%100		
13	M54	Х	-28.87	-28.87	0	%100		
14	M53	Х	-28.87	-28.87	0	%100		
15	M44	Х	-887.13	-887.13	0	%100		

Member Distributed Loads (BLC 6 : BLC 1 Transient Area Loads)

Member Label Direction Start Magnitude [lb/ft, F, psf, k-ft/ft] End Magnitude [lb/ft, F, psf, k-ft/ft] Start Location [(ft, %)] End Location [(ft, %)]						
		Direction				
1	M46	Y	-38.111	-70.229	2	4
2	M46	Y	-70.229	-88.044	4	6
3	M46	Y	-88.044	-109.42	6	8
4	M46	Y	-109.42	-112.614	8	10
5	M46	Y	-112.614	-94.135	10	12
6	M46	Y	-94.135	-62.658	12	14
7	M46	Y	-62.658	-31.532	14	16
8	M46	Y	-31.532	-16.653	16	18
9	M47	Y	-1.26	-25.362	0	2
10	M47	Y	-25.362	-56.015	2	4
11	M47	Y	-56.015	-83.503	4	6
12	M47	Y	-83.503	-113.299	6	8
13	M47	Y	-113.299	-119.016	8	10
14	M47	Y	-119.016	-95.415	10	12
15	M47	Y	-95.415	-69.779	12	14
16	M47	Y	-69.779	-35.825	14	16
17	M47	Y	-35.825	-1.26	16	18
18	M48	Y	-0.913	-23.798	0	2
19	M48	Y	-23.798	-54.616	2	4
20	M48	Y	-54.616	-75.894	4	6
21	M48	Y	-75.894	-99.315	6	8
22	M48	Y	-99.315	-112.798	8	10
23	M48	Y	-112.798	-90.591	10	12
24	M48	Y	-90.591	-56.535	12	14
25	M48	Y	-56.535	-24.075	14	16
26	M48	Y	-24.075	-0.913	16	18
27	M43	Y	-0.913	-23.798	0	2
28	M43	Y	-23.798	-54.616	2	4
29	M43	Y	-54.616	-75.894	4	6
30	M43	Y	-75.894	-99.315	6	8
31	M43	Y	-99.315	-112.798	8	10
32	M43	Y	-112.798	-90.591	10	12
33	M43	Y	-90.591	-56.535	12	14
34	M43	Y	-56.535	-24.075	14	16
35	M43	Y	-24.075	-0.913	16	18
36	M44	Y	-1.25	-38.111	0	2
37	M44	Y	-38.111	-70.229	2	4
38	M44	Ý	-70.229	-88.044	4	6
39	M44	Y	-88.044	-109.42	6	8
40	M44	Y	-109.42	-112.614	8	10
41	M44	Ý	-112.614	-94.135	10	12
42	M44	Ý	-94.135	-62.658	12	14
43	M44	Ý	-62.658	-31.532	14	16
44	M44	Ý	-31.532	-16.653	16	18
45	M45	Ý	-1.26	-25.362	0	2
46	M45	Ý	-25.362	-56.015	2	4
		•	20.002	00.010	-	•

Member Distributed Loads (BLC 6 : BLC 1 Transient Area Loads) (Continued)

	Member Label Direction Start Magnitude [lb/ft, F, psf, k-ft/ft] End Magnitude [lb/ft, F, psf, k-ft/ft] Start Location [(ft, %)] End Location [(ft, %)]							
47	M45	Y	-56.015	-83.503	4	6		
48	M45	Y	-83.503	-113.299	6	8		
49	M45	Y	-113.299	-119.016	8	10		
50	M45	Y	-119.016	-95.415	10	12		
51	M45	Y	-95.415	-69.779	12	14		
52	M45	Y	-69.779	-35.825	14	16		
53	M45	Ý	-35.825	-1.26	16	18		
54	M46	Y	-1.25	-38.111	0	2		

Member Distributed Loads (BLC 7 : BLC 2 Transient Area Loads)

	Member Label Direction Start Magnitude [lb/ft, F, psf, k-ft/ft] End Magnitude [lb/ft, F, psf, k-ft/ft] Start Location [(ft, %)] End Location [(ft, %)]						
1	M47	Y	-57.32	-2.015	16	18	
2	M48	Y	-1.46	-38.077	0	2	
3	M48	Y	-38.077	-87.385	2	4	
4	M48	Y	-87.385	-121.43	4	6	
5	M48	Y	-121.43	-158.904	6	8	
6	M48	Y	-158.904	-180.477	8	10	
7	M48	Y	-180.477	-144.946	10	12	
8	M48	Y	-144.946	-90.455	12	14	
9	M48	Y	-90.455	-38.52	14	16	
10	M48	Y	-38.52	-1.46	16	18	
11	M43	Y	-1.46	-38.077	0	2	
12	M43	Y	-38.077	-87.385	2	4	
13	M43	Y	-87.385	-121.43	4	6	
14	M43	Y	-121.43	-158.904	6	8	
15	M43	Y	-158.904	-180.477	8	10	
16	M43	Y	-180.477	-144.946	10	12	
17	M43	Y	-144.946	-90.455	12	14	
18	M43	Y	-90.455	-38.52	14	16	
19	M43	Y	-38.52	-1.46	16	18	
20	M44	Y	-2	-60.978	0	2	
21	M44	Y	-60.978	-112.367	2	4	
22	M44	Y	-112.367	-140.871	4	6	
23	M44	Y	-140.871	-175.071	6	8	
24	M44	Y	-175.071	-180.183	8	10	
25	M44	Y	-180.183	-150.616	10	12	
26	M44	Y	-150.616	-100.252	12	14	
27	M44	Ý	-100.252	-50.452	14	16	
28	M44	Y	-50.452	-26.645	16	18	
29	M45	Y	-2.015	-40.58	0	2	
30	M45	Y	-40.58	-89.624	2	4	
31	M45	Y	-89.624	-133.606	4	6	
32	M45	Y	-133.606	-181.278	6	8	
33	M45	Y	-181.278	-190.425	8	10	
34	M45	Y	-190.425	-152.664	10	12	
35	M45	Y	-152.664	-132.004	12	12	
36	M45	Y	-132.004	-111.040	14	16	
37	M45	Y	-57.32	-2.015	14	18	
38	M45	Y	-37.32	-2.015	0	2	
39	M46	Y Y	-2 -60.978	-112.367	2	4	
<u>39</u> 40	M46	Y	-60.978 -112.367	-112.367 -140.871	4	6	
		Y Y					
41	M46		-140.871	-175.071	6	8	
42	M46	Y	-175.071	-180.183	8	10	
43	M46	Y	-180.183	-150.616	10	12	
44	M46	Y	-150.616	-100.252	12	14	

Member Distributed Loads (BLC 7 : BLC 2 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
45	M46	Y	-100.252	-50.452	14	16
46	M46	Y	-50.452	-26.645	16	18
47	M47	Y	-2.015	-40.58	0	2
48	M47	Y	-40.58	-89.624	2	4
49	M47	Y	-89.624	-133.606	4	6
50	M47	Y	-133.606	-181.278	6	8
51	M47	Y	-181.278	-190.425	8	10
52	M47	Y	-190.425	-152.664	10	12
53	M47	Ý	-152.664	-111.646	12	14
54	M47	Ý	-111.646	-57.32	14	16

Member Distributed Loads (BLC 8 : BLC 3 Transient Area Loads)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, k-ft/ft]	End Magnitude [lb/ft, F, psf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M40	Y	-1.095	-28.558	0	2
2	M40	Y	-28.558	-65.539	2	4
3	M40	Y	-65.539	-91.073	4	6
4	M40	Y	-91.073	-119.178	6	8
5	M40	Y	-119.178	-135.358	8	10
6	M40	Y	-135.358	-108.71	10	12
7	M40	Y	-108.71	-67.842	12	14
8	M40	Y	-67.842	-28.89	14	16
9	M40	Y	-28.89	-1.095	16	18
10	M41	Y	-1.5	-45.733	0	2
11	M41	Y	-45.733	-84.275	2	4
12	M41	Y	-84.275	-105.653	4	6
13	M41	Y	-105.653	-131.304	6	8
14	M41	Y	-131.304	-135.137	8	10
15	M41	Y	-135.137	-112.962	10	12
16	M41	Y	-112.962	-75.189	12	14
17	M41	Y	-75.189	-37.839	14	16
18	M41	Y	-37.839	-19.984	16	18
19	M42	Y	-1.512	-30.435	0	2
20	M42	Y	-30.435	-67.218	2	4
21	M42	Y	-67.218	-100.204	4	6
22	M42	Y	-100.204	-135.958	6	8
23	M42	Y	-135.958	-142.819	8	10
24	M42	Y	-142.819	-114.498	10	12
25 26	M42	Y	-114.498	-83.735	12	14
26	M42	Y	-83.735	-42.99	14	16
27	M42	Y	-42.99	-1.512	16	18

Member Area Loads (BLC 1 : Dead Load)

	Node A	Node B	Node C	Direction	Load Direction	Magnitude [psf]
1	N51	N52	N50	Y	Two Way	-25
2	N54	N55	N53	Y	Two Way	-25

Member Area Loads (BLC 2 : Live Load)

	Node A	Node B	Node C	Direction	Load Direction	Magnitude [psf]
1	N51	N52	N50	Y	Two Way	-40
2	N54	N55	N53	Y	Two Way	-40

Member Area Loads (BLC 3 : Snow Load)

	Node A	Node B	Node C	Direction	Load Direction	Magnitude [psf]
1	N44	N45	N46	Y	Two Way	-30

Basic Load Cases

	BLC Description	Category	Y Gravity	Nodal	Distributed	Area(Member)
1	Dead Load	DL	-1	12	9	2
2	Live Load	LL				2
3	Snow Load	SL				1
4	Front Wind Load	WLZ		9	15	
5	Side Wind Load	WLX		9	15	
6	BLC 1 Transient Area Loads	None			54	
7	BLC 2 Transient Area Loads	None			54	
8	BLC 3 Transient Area Loads	None			27	

Load Combinations

	Description	Solve	P-Delta	BLC	Factor								
1	Dead Only	Yes	Y	1	1								
2	Live Load Only	Yes	Y	2	1								
3	Snow Load Only	Yes	Y	3	1								
4	Wind Only (0 Deg)	Yes	Y	4	1								
5	Wind Only (90 Deg)	Yes	Y	5	1								
6	1.4 DL	Yes	Y	1	1.4								
7	1.2 DL + 1.6 LL + 0.5 SL	Yes	Y	1	1.2	2	1.6	3	0.5				
8	1.2 DL + 1 LL + 1.6 SL	Yes	Y	1	1.2	2	1	3	1.6				
9	1.2 DL + 1.6 SL + 0.5 WL (0 Deg)	Yes	Y	1	1.2	3	1.6	4	0.5				
10	1.2 DL + 1.6 SL + 0.5 WL (45 Deg)	Yes	Y	1	1.2	3	1.6	4	0.354	5	0.354		
11	1.2 DL + 1.6 SL + 0.5 WL (90 Deg)	Yes	Y	1	1.2	3	1.6	5	0.5				
12	1.2 DL + 1 LL + 0.5 SL + 1 WL (0 Deg)	Yes	Y	1	1.2	4	1	2	1	3	0.5		
13	1.2 DL + 1 LL + 0.5 SL + 1 WL (45 Deg)	Yes	Y	1	1.2	4	0.707	5	0.707	2	1	3	0.5
14	1.2 DL + 1 LL + 0.5 SL + 1 WL (90 Deg)	Yes	Y	1	1.2	5	1	2	1	3	0.5		
15	0.9 DL + 1 WL (0 Deg)	Yes	Y	1	0.9	4	1						
16		Yes	Y	1	0.9	4	0.707	5	0.707				
17		Yes	Y	1	0.9	5	1						
18		Yes	Y	1	1	2	1	3	1	4	0.707	5	0.707
19	D+LL+SL+WL(90 Deg)	Yes	Y	1	1	2	1	3	1	5	1		

Envelope Node Reactions

١	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N37	max	18106.384	17	81365.521	14	18002.51	4	837.07	12	-0.003	З	4.119	12
2		min	-468.272	12	-24120.931	4	-969.542	17	-27.458	17	-39.151	13	-828.437	14
3	N38	max	18297.732	19	41721.752	7	18002.51	4	837.043	12	28.872	4	0.354	6
4		min	-32.409	6	-41776.407	5	-19.638	6	-0.223	6	-50.58	14	-828.218	14
5	N41	max	18252.357	5	87954.317	12	18642.918	15	844.165	12	0	4	0.209	7
6		min	-4.582	7	-7.009	5	-35.499	2	-0.305	19	-0.573	14	-861.484	14
7	Totals:	max	54621.449	19	124647.327	7	54621.383	4						
8		min	0	4	0	5	0	5						

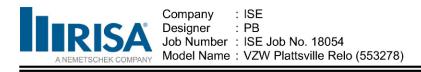
Envelope Node Displacements

	Node Label		V [in]	LC	V [in]	LC	7 [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
1	N37	max	X [in]	12	Y [in]	4	Z [in]	17		17		13		14
2	1107	min	0	17	0	14	0	4	0	12	0	3	0	12
2	N38	max	0	6	0	5	0	6	0	6	0	14	0	14
4	1130		0	19	0	7	0	4	0	12	0	4	0	6
5	NI44	min		7	-	5	0	2	0	12		4	0	14
6	N41	max	0	5	0	12	0	 15	0	12	0	4	0	7
	N140	min	-	-	-		-		-		-	-	-	
7	N40	max	0.013	12	0.017	5	0.001	2	1.898e-6	2	1.062e-3	14	4.686e-2	14
8	N140	min	-13.123	14	-0.016	7	-13.229	12	-4.7e-2	12	-6.042e-4	4	-4.578e-5	4
9	N42	max	0.002	7	0	5	0.006	11	2.019e-5	11	1.565e-5	14	4.719e-2	14
10	N140	min	-13.415	14	-0.034	12	-13.205	12	-4.692e-2	12	0	4	-2.411e-6	8
11	N43	max	0.006	8	0.01	4	0.146	14	9.726e-5	14	8.129e-4	13	4.686e-2	14
12		min	-13.121	14	-0.031	14	-13.228	12	-4.7e-2	12	1.038e-7	3	-1.679e-5	8
13	N44	max	0.002	7	0.01	4	0.122	19	9.62e-5	5	8.129e-4	13	6.482e-3	14
14		min	-4.765	14	-0.03	14	-4.839	12	-6.615e-3	12	1.038e-7	3	-1.641e-5	8
15	N45	max	0.001	7	0	5	0.002	19	1.973e-5	11	1.565e-5	14	6.803e-3	14
16		min	-4.98	14	-0.032	12	-4.835	12	-6.536e-3	12	0	4	-2.356e-6	8
17	N46	max	0.003	12	0.017	5	0.001	7	1.898e-6	2	1.062e-3	14	6.48e-3	14
18		min	-4.767	14	-0.014	7	-4.839	12	-6.616e-3	12	-6.042e-4	4	-4.578e-5	4
19	N47	max	0	7	0.008	5	0	7	1.683e-6	7	4.034e-4	14	4.584e-3	14
20		min	-0.818	14	-0.007	7	-0.831	12	-4.676e-3	12	-2.302e-4	4	-1.708e-5	12
21	N48	max	0	12	0.004	4	0.024	14	1.145e-4	19	3.122e-4	13	4.585e-3	14
22		min	-0.818	14	-0.014	14	-0.831	12	-4.677e-3	12	2.509e-8	3	-1.422e-6	6
23	N49	max	0	7	0	5	0	19	1.814e-6	11	4.57e-6	14	4.833e-3	14
24		min	-0.857	14	-0.015	12	-0.832	12	-4.65e-3	12	0	4	-1.146e-6	7
25	N50	max	0.001	12	0.015	5	0.001	8	9.982e-7	3	9.47e-4	14	6.485e-3	14
26		min	-3.352	14	-0.013	7	-3.404	12	-6.593e-3	12	-5.513e-4	4	-1.896e-5	4
27	N51	max	0.001	7	0.009	4	0.091	19	1.381e-4	5	7.267e-4	13	6.456e-3	14
28		min	-3.349	14	-0.027	14	-3.404	12	-6.592e-3	12	7.376e-8	3	-1.543e-5	7
29	N52	max	0.001	7	0	5	0.001	14	1.595e-5	7	5.627e-7	7	6.776e-3	14
30		min	-3.507	14	-0.03	12	-3.401	12	-6.535e-3	12	-9.123e-6	5	-2.499e-6	7
31	N53	max	0.001	7	0.014	5	0.001	7	4.327e-7	3	8.251e-4	14	6.362e-3	14
32		min	-2.652	14	-0.012	7	-2.694	12	-6.479e-3	12	-4.753e-4	4	-2.362e-5	4
33	N54	max	0.001	12	0.008	4	0.075	14	1.42e-4	5	6.334e-4	13	6.329e-3	14
34		min	-2.652	14	-0.025	14	-2.694	12	-6.477e-3	12	5.932e-8	3	-1.639e-5	7
35	N55	max	0.001	7	0	5	0.001	19	1.721e-5	7	1.823e-6	14	6.672e-3	14
36		min	-2.777	14	-0.027	12	-2.694	12	-6.41e-3	12	0	4	-2.432e-6	7
37	N59	max	0.001	4	0.006	4	0.049	14	1.716e-4	14	4.759e-4	13	5.883e-3	14
38		min	-1.684	14	-0.02	14	-1.709	12	-5.966e-3	12	4.253e-8	3	-7.576e-6	4
39	N60	max	0.001	7	0.011	5	0.001	7	2.866e-6	7	6.182e-4	14	5.882e-3	14
40		min	-1.683	14	-0.01	7	-1.709	12	-5.966e-3	12	-3.551e-4	4	-5.001e-6	7
41	N61	max	0	7	0.01	5	0	5	5.221e-7	5	3.171e-6	14	6.146e-3	14
42		min	-1.763	14	-0.021	12	-1.711	12	-5.981e-3	12	0	4	-1.665e-6	7
43	N62	max	0.004	8	0.021	4	0.134	14	9.707e-5	14	8.129e-4	13	3.885e-2	14
44	102	min	-7.815	14	-0.031	14	-7.905	12	-3.899e-2	12	1.038e-7	3	-1.676e-5	8
45	N63	max	0.002	7	0.001	5	0.003	8	2.015e-5	11	1.565e-5	14	3.918e-2	14
46	100	min	-8.069	14	-0.034	12	-7.891	12	-3.891e-2	12	0	4	-2.406e-6	8
40	N64		0.003	12	0.034	5	0.001	7	1.898e-6	2	1.062e-3	14	3.885e-2	14
47	1104	max	-7.817	14	-0.017	<u> </u>	-7.906	12	-3.899e-2	12	-6.042e-4	4	-4.578e-5	4
40	N65	min	0.002	7	-0.015		0.005	11	2.019e-5	11	1.565e-5		4.52e-2	14
	COM	max			-0.034	5					0	14	-2.411e-6	
50	NEG	min	-10.622	14		12	-10.428	12	-4.493e-2	12	-	4		8
51	N66	max	0.005	8	0.01	4	0.14	14	9.725e-5	14	8.129e-4	13	4.487e-2	14
52	NGZ	min	-10.348	14	-0.031	14	-10.447	12	-4.501e-2	12	1.038e-7	3	-1.679e-5	8
53	N67	max	0.011	12	0.017	5	0.001	7	1.898e-6	2	1.062e-3	14	4.487e-2	14
54	NICO	min	-10.35	14	-0.016	7	-10.447	12	-4.501e-2	12	-6.042e-4	4	-4.578e-5	4
55	N68	max	0.002	7	0	5	0.003	19	2.002e-5	11	1.565e-5	14	2.705e-2	14

Envelope Node Displacements (Continued)

	Node Label		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
56		min	-6.039	14	-0.033	12	-5.877	12	-2.678e-2	12	0	4	-2.391e-6	8
57	N69	max	0.003	8	0.01	4	0.128	14	9.644e-5	14	8.129e-4	13	2.672e-2	14
58		min	-5.804	14	-0.031	14	-5.886	12	-2.686e-2	12	1.038e-7	3	-1.665e-5	8
59	N70	max	0.005	12	0.017	5	0.001	7	1.898e-6	2	1.062e-3	14	2.672e-2	14
60		min	-5.806	14	-0.015	7	-5.887	12	-2.686e-2	12	-6.042e-4	4	-4.578e-5	4

Envelope Member End Reactions


		Member End		Axial[lb]		v Shoar[lb]	10	z Shoar[lb]		Torquo[k ft]		y-y Moment[k-ft]		z z Momont[k ft	
1	M31		max	1704.57	6	0.062	12	1244.599	12	0	19	0	5	0.001	12
2	IVIOT	l	min	0	2	-1244.414	14	0	2	0	1	-18.7	12	-18.699	14
3		J	max	0	19	0.002	12	612.381	12	0	19	0	12	0	19
4		J	min	0	1	-612.375	14	012.301	2	0	1	0	1	0	1
5	M32	1	max	1704.57	6	0.003	8	1244.487	12	0	19	0	11	0	8
6	IVIJZ	l	min	0	2	-1244.872	14	-0.028	11	0	1	-18.699	12	-18.703	14
7		J	max	0	19	0	8	612.377	12	0	19	0	19	0	19
8		J	min	0	1	-612.392	14	-0.001	11	0	1	0	13	0	1
9	M33		max	1704.57	6	0.023	8	1244.598	12	0	19	0.001	14	0	8
10	10100	•	min	0	2	-1244.415	14	-0.135	14	0	1	-18.7	12	-18.699	14
11		J	max	0	19	0.001	8	612.381	12	0	19	0	19	0	19
12		J	min	0	1	-612.375	14	-0.005	14	0	1	0	13	0	1
13	M34			41721.752	7	32.422	6	18030.732		28.872	4	0.223	6	0.354	6
14	1010-4			41721.752	5	-18277.366	14	-19.646	6	-50.58	14	-837.043	12	-828.218	14
15		J		28641.158	7	360.096	7	14389.795		30.151	4	0.049	3	1.308	4
16		5		-33695.891	5	-15288.838	5	-212.114	7	-51.883	14	-224.705	12	-221.361	14
17	M35			87954.317	12	4.606	7	18841.776		0	4	0.305	19	0.209	7
18	NIGO	•	min	-7.009	5	-18338.293	14	-35.5	2	-0.573	14	-844.165	12	-861.484	14
19		J		65465.875	12	0.685		16763.553		0.406	5	2.382	7	0.166	7
20		5	min	-5.315	5	-14522.508	14	-9.247	3	-0.033	7	-219.178	15	-229.458	14
21	M36			81365.521	14	468.286		18031.387	12	-0.003	3	27.458	17	4.119	12
22	10100	•		-24120.931	4	-18288.216	14	-974.436	17	-39.151	13	-837.07	12	-828.437	14
23		J		60136.559	14	1050.287	4	14394.534		-0.004	3	3.248	5	2.195	7
24		0		-19455.211	4	-15812.273	14	-1741.46	14	-39.518	13	-224.522	12	-217.358	17
25	M40		max	6121.482	18	5202.107	19	1020.311	14	0.442	19	4.478	4	39.276	19
26	WITO	•	min	88.996	2	-6513.718	4	-376.209	4	-0.103	15	-8.226	14	-58.691	4
27		J	max	6121.482	18	3858.971	5	1020.311	14	0.442	19	10.14	14	62.746	12
28		5	min	88.996	2	-7716.546	12	-376.209	4	-0.103	15	-2.293	4	-34.868	5
29	M41		max	4448.791	12	8805.315	18	377.458	12	0.457	14	5.895	5	71.242	18
30			min	-1055.524	5	-1.085	2	-3992.882	5	0	3	-2.305	12	-0.001	2
31		J	max	4448.791	12	6762.763	16	5392.563	14	0.457	14	18.492	14	6.694	8
32			min	-6472.804	5	-1996.854	8	0.261	3	0	3	0.002	3	-64.48	16
33	M42		max	3471.806	19	1916.433	8	368.458	19	0.264	19	14.067	4	6.654	9
34		-	min	-4319.207	4	-7424.422	5	-5417.28	4	0	4	-2.381	19	-66.799	5
35		J	max	3471.806	19	1.141	2	5418.53	12	0.264	19	14.078	12	72.121	19
36		_	min	-4319.207	4	-8913.19	19	0.318	3	0	4	0.003	3	-0.002	2
37	M43		max	3657.459	13	6345.834	14	722.622	14	0.465	14	4.02	4	43.539	14
38			min	-180.53	3	-6524.989	4	-335.903	4	-0.051	4	-5.629	14	-58.771	4
39		J	max	3657.459	13	3873.927	5	722.622	14	0.465	14	7.378	14	67.791	12
40		-	min	-180.53	3	-9081.623	12	-335.903	4	-0.051	4	-2.026	4	-34.929	5
41	M44		max	4642.189	13	10102.678	13	336.201	12	0.451	19	15.18	5	75.894	13
42			min	-193.957	3	-0.449	3	-6488.11	5	0	1	-2.029	12	0.001	3
43		J	max	3508.917	12	6524.989	4	7341.87	14	0.451	19	22.863	14	11.235	7
44			min	-5076.099	5	-3274.38	7	0.03	3	0	1	0	3	-62.401	16
45	M45		max	4309.302	14	3116.493	7	140.776	14	0.377	14	21.959	4	11.026	7
46			min	-1226.559	4	-7428.986	5	-7984.17	4	0	4	-0.415	14	-66.878	5
47		J	max	4309.302	14	0.49	3	7984.591	12	0.377	14	21.963	12	76.674	14
		5	max	.000.002		0.10	0	1001.001	12	0.011		21.000	12	10.014	1.1

Envelope Member End Reactions (Continued)

	Member	Member End		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Moment[k-ft]	LC	z-z Moment[k-ft]	J LC
48			min	-1226.559	4	-10207.352	14	-0.027	3	0	4	0	3	0	3
49	M46	_	max	2836.991	5	9692.249	13	277.66	4	0.478	14	2.492	5	73.95	13
50			min	-979.375	7	-0.38	3	-1924.271	5	0	1	-1.64	4	-0.002	3
51		J	max	270.101	5	6415.6	4	2522.145	14	0.478	14	7.942	13	10.354	7
52			min	-979.375	7	-2982.574	7	-0.055	3	0	1	0	3	-61.986	16
53	M49		max	28641.158	7	359.885	7	14369.291	15	30.151	4	0.049	3	1.308	4
54			min	-33695.891	5	-15259.762	5	-211.984	7	-51.883	14	-224.705	12	-221.361	14
55		J	max	5824.348	8	1000.927	8	4173.388	16	9.588	4	43.075	16	65.37	5
56			min	-11277.113	5	-6709.1	5	-582.042	8	-20.873	14	-5.794	8	-9.937	8
57	M47		max	2207.308	16	2824.603	7	65.704	14	0.387	14	5.983	12	10.144	7
58			min	-975.997	7	-7297.325	5	-2567.015	12	0	4	0	1	-65.697	5
59		J	max	2207.308	16	0.381	3	2566.89	4	0.387	14	5.982	4	74.597	14
60			min	-975.997	7	-9782.971	14	-0.218	8	0	4	-0.002	8	-0.002	3
61	M50		max	65465.875	12	0.685	3	16796.722	12	0.406	5	2.382	7	0.166	7
62			min	-5.315	5	-14521.928	14	-9.247	3	-0.033	7	-219.178	15	-229.458	14
63		J	max	17384.014	12	0	4	10023.591	12	0	4	89.966	12	17.379	19
64			min	-7.032	5	-1962.97	19	-41.232	5	-4.267	14	-0.052	5	-0.002	2
65	M48		max	120.902	4	5995.617	14	546.638	14	0.495	14	3.358	4	42.12	14
66			min	-2289.043	14	-6415.6	4	-277.66	4	-0.062	15	-4.163	14	-57.797	4
67		J	max	120.902	4	3816.062	5	546.638	14	0.495	14	5.676	14	65.909	12
68			min	-2289.043	14	-8679.539	12	-277.66	4	-0.062	15	-1.64	4	-34.422	5
69	M51		max	60136.559	14	1050.373	4	14373.971	15	-0.004	3	3.248	5	2.195	7
70			min	-19455.211	4	-15840.75	14	-1741.489	14	-39.518	13	-224.522	12	-217.358	17
71		J	max	15708.721	19	2671.017	4	3597.27	4	-0.005	3	32.579	4	72.745	19
72			min	-6514.241	4	-8503.467	19	-2948.876	19	-15.614	18	-34.498	19	-29.091	4
73	M52	_	max	6.509	3	3327.32	14	347.015	5	0.374	14	1.228	12	26.769	14
74			min	-1169.085	13	-4665.747	4	-3.629	12	-0.037	12	-1.4	5	-42.02	4
75		J	max	6.509	3	2782.071	5	-0.06	3	0.374	14	0.796	5	43.89	12
76			min	-1080.591	14	-5227.511	12	-263.459	12	-0.037	12	-1.175	12	-25.087	5
77	M53		max	954.233	5	5830.429	13	263.176	4	0.374	14	0.003	7	49.36	13
78			min	-424.004	12	-0.575	2	-216.98	19	0	3	-1.173	4	-0.002	3
79		J	max	694.403	5	4901.946	16	233.45	5	0.374	14	1.226	4	1.827	6
80			min	-874.044	12	-609.195	6	-0.353	7	0	3	-0.003	7	-46.453	16
81	M54		max	924.617	4	609.115	6	-0.058	3	0.31	17	1.329	19	1.826	6
82			min	-482.781	14	-5300.167	5	-260.724	18	0	7	-0.053	4	-47.702	5
83		J	max	924.617	4	0.487	2	259.83	4	0.31	17	-0.001	3	49.676	14
84			min	-255.08	7	-5867.256	14	-109.095	19	0	7	-0.634	19	-0.002	3
- 1					-					-					

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	/lember	Shape	Code Check	Loc[ft]	LC	Shear Check	Loc[ft]	Dir	·LC	phi*Pnc [lb]]phi*Pnt [lb]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-i	ft] Cb Eqn
1	M31	HSS6.625X0.250	0.632	0	12	0.024	10		12	88488.105	176904	29.988	29.988	2.598H1-1b
2	M32	HSS6.625X0.250	0.632	0	14	0.024	10		14	88488.105	176904	29.988	29.988	1.978H1-1b
3	M33	HSS6.625X0.250	0.632	0	12	0.024	10		12	88488.105	176904	29.988	29.988	2.598H1-1b
4	M34	48" Dia. x 1/2"	0.231	0	16	0.031	0		14	2.83897e+6	3.35758e+6	3705.566	3705.566	1.469H1-1b
5	M35	48" Dia. x 1/2"	0.243	0	12	0.019	0		12	2.83897e+6	3.35758e+6	3705.566	3705.566	1.434H1-1b
6	M36	48" Dia. x 1/2"	0.238	0	14	0.027	0		13	2.83897e+6	3.35758e+6	3705.566	3705.566	1.464H1-1b
7	M40	HSS10X10X6	0.404	18	12	0.05	18	У	12	445149.418	3 546480	162.84	162.84	2.291H1-1b
8	M41	HSS10X10X6	0.497	18	16	0.06	0	У	18	445149.418	3 546480	162.84	162.84	2.286H1-1b
9	M42	HSS10X10X6	0.473	18	19	0.059	18	У	19	445149.793	3 546480	162.84	162.84	2.296H1-1b
10	M43	HSS10X10X6	0.433	18	12	0.059	18	У	12	445149.418	3 546480	162.84	162.84	2.312H1-1b
11	M44	HSS10X10X6	0.528	0	13	0.068	0	У	13	445149.418	3 546480	162.84	162.84	2.312H1-1b
12	M45	HSS10X10X6	0.489	18	14	0.069	18	У	14	445149.793	3 546480	162.84	162.84	2.314H1-1b
13	M46	HSS10X10X6	0.459	0	13	0.065	0	У	13	445149.418	3 546480	162.84	162.84	2.308H1-1b
14	M49	48" Dia. x 1/2"	0.064	0	5	0.028	0		5	2.83476e+6	3.35758e+6	3705.566	3705.566	3 H1-1b
15	M47	HSS10X10X6	0.467	18	14	0.066	18	У	14	445149.793	3 546480	162.84	162.84	2.31 H1-1b

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

	Member	r Shape	Code Check	Loc[ft]	LC	Shear Check	Loc[ft]	Dii	Ľ	Cphi*l	Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Eqn
16	M50	48" Dia. x 1/2"	0.071	0	12	0.017	0		12	22.83	476e+6	3.35758e+6	3705.566	3705.566	1.553	H1-1b
17	M48	HSS10X10X6	0.415	18	12	0.056	18	у	12	24451	49.418	546480	162.84	162.84	2.307	H1-1b
18	M51	48" Dia. x 1/2"	0.069	0	14	0.024	0		1:	32.83	476e+6	3.35758e+6	3705.566	3705.566	3	H1-1b
19	M52	HSS10X10X6	0.277	18	12	0.034	18	у	12	24451	49.418	546480	162.84	162.84	2.286	H1-1b
20	M53	HSS10X10X6	0.309	0	13	0.04	0	y	13	34451	49.418	546480	162.84	162.84	2.287	H1-1b
21	M54	HSS10X10X6	0.309	18	14	0.04	18	У	14	44451	49.793	546480	162.84	162.84	2.286	H1-1b

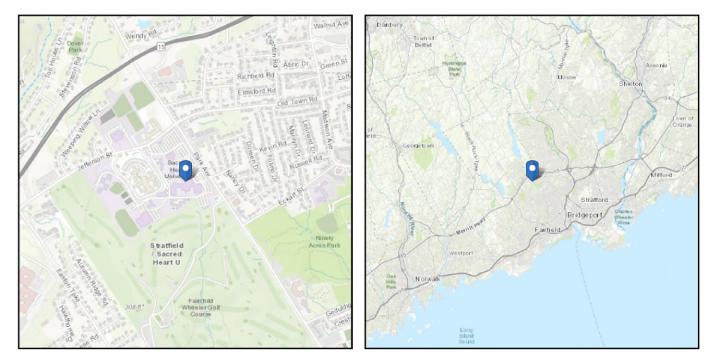
ISE Incorporated	JOB : VZW Plat	sville Relo	
P.O. Box 50039	CLIENT : Larson		
Phoenix, Arizona 85076	<i>ISE JOB NO:</i> 18054		
Phone: 602-403-8614	DATE : 12-09-20	22	
FAX: 623-321-1283	by: PB		
ŀ	ISS 10"x10"x3/8" To Leg Conne	ction	
LOADING		PROPERTIES	
Axial	6.47 k	F _y	F _u
Shear	11.00 k	Plate 36	58
Moment	76.70 k-ft	Beam 46	58
ELEMENT PROPERTIES		Bolt -	120
Plate thickness	t <mark>1</mark> in		
Flange Width	d <mark>17</mark> in		
		BRACING DETAILS	
BOLT DETAILS		HSS10"X10"X3/8" - A	500 GR. B
Bolt Type	A325		
Bolt Diameter	d _b 0.75 in	HSS LEG	
Bolt Area	A _b 0.442 in ²	48" O.D. X 1/2" A500) GR. B
# Bolts	N 20		
Edge Distance	2 in	Bolts	
WELD AT HSS Tube		(20) 3/4"Dia. A325 B	olts
Weld Size	0.375 in		
Allowable Weld Force	21.508 K/in	[(0.707)Twf+Twg](0.4	48)Fyw
Weld Force	2.593 K/in	OK 12.1%	
Use 3/8" Weld			
BOLT CAPACITY			
Bolt Shear	V _u 11.77 k	OK 65.8%	AISC Table 7-1
Bolt Shear Capacity	V _a 17.90 k		
AVAILABLE STEEL BEARING/TEAROUT	- PLATE		
For Edge Distance (2'')	78.30 k	OK 15.0%	AISC Table 7-5
For Bolt Spacing (3")	62.00 k	OK 19.0%	AISC Table 7-4
Bolt Tension	11.77 k		
	11.77 k 29.80 k	OK 39.5%	AISC Table 7-2
Bolt Tension Capacity	29.00 K	01 39.5%	AISC TABLE /-Z
PLATE			
Plate Bending	Mpb= 131.44 k-in	(M/14")*Arm	
Bend Line	L= 18.00 in		
Required Plate Thickness	Tpl = 0.81 in	$Tpl = [4M/\emptysetF_{y}L]^{1/2}$	

Use 1"x 18"x 18" Square A572-50 Plate

ISE Incorporated

P.O. Box 50039 Phoenix, Arizona 85076 Phone: 602-403-8614 FAX: 623-321-1283

JOB: VZW Platsville Relo CLIENT: Larson ISE JOB NO: 18054 DATE: 12-09-2022 BY: PB


				Sum A _x	Sum A _y	Sum A _z	Sum P _x	Sum P _y	Sum P _z		Bolt Lo	ads and S	tresses	
				20	20	20	-6.5	0.0	11.0			LOAD		STRESS
Bolt #:	х	Y	Z	A _x	Α _γ	Az	Px	Py	Pz	Theta	Pz'	KIPS		KSI
1	1.00	7.00	2.00	1.00	1.00	1.00	2.945	0.000	0.550	9	1	2.994	т	0.75
2	1.00	7.00	4.00	1.00	1.00	1.00	6.213	0.000	0.550	27	0	6.232	Т	1.57
3	1.00	7.00	-2.00	1.00	1.00	1.00	-3.592	0.000	0.550	45	0	3.613	С	0.91
4	1.00	7.00	-4.00	1.00	1.00	1.00	-6.860	0.000	0.550	63	0	6.864	С	1.73
5	1.00	2.00	7.00	1.00	1.00	1.00	11.115	0.000	0.550	81	0	11.115	Т	2.80
6	1.00	4.00	7.00	1.00	1.00	1.00	11.115	0.000	0.550	99	0	11.115	Т	2.80
7	1.00	-2.00	7.00	1.00	1.00	1.00	11.115	0.000	0.550	117	0	11.118	Т	2.80
8	1.00	-4.00	7.00	1.00	1.00	1.00	11.115	0.000	0.550	135	0	11.122	Т	2.80
9	1.00	-7.00	2.00	1.00	1.00	1.00	2.945	0.000	0.550	153	0	2.985	Т	0.75
10	1.00	-7.00	4.00	1.00	1.00	1.00	6.213	0.000	0.550	171	-1	6.236	Т	1.57
11	1.00	-7.00	-2.00	1.00	1.00	1.00	-3.592	0.000	0.550	189	-1	3.632	C	0.91
12	1.00	-7.00	-4.00	1.00	1.00	1.00	-6.860	0.000	0.550	207	0	6.877	С	1.73
13	1.00	-2.00	-7.00	1.00	1.00	1.00	-11.762	0.000	0.550	225	0	11.768	С	2.96
14	1.00	-4.00	-7.00	1.00	1.00	1.00	-11.762	0.000	0.550	243	0	11.764	С	2.96
15	1.00	2.00	-7.00	1.00	1.00	1.00	-11.762	0.000	0.550	261	0	11.762	C	2.96
16	1.00	4.00	-7.00	1.00	1.00	1.00	-11.762	0.000	0.550	279	0	11.762	С	2.96
17	1.00	7.00	0.00	1.00	1.00	1.00	-0.324	0.000	0.550	297	0	0.409	С	0.10
18	1.00	0.00	7.00	1.00	1.00	1.00	11.115	0.000	0.550	315	0	11.122	Т	2.80
19	1.00	-7.00	0.00	1.00	1.00	1.00	-0.324	0.000	0.550	333	0	0.587	С	0.15
20	1.00	0.00	-7.00	1.00	1.00	1.00	-11.762	0.000	0.550	351	1	11.774	С	2.96

ASCE 7 Hazards Report

Address: 5151 Park Ave Fairfield, Connecticut 06825 Standard:ASCE/SEI 7-10Risk Category:IISoil Class:C - Very Dense
Soil and Soft Rock

Elevation: 270.11 ft (NAVD 88) Latitude: 41.221522 Longitude: -73.241725

Wind

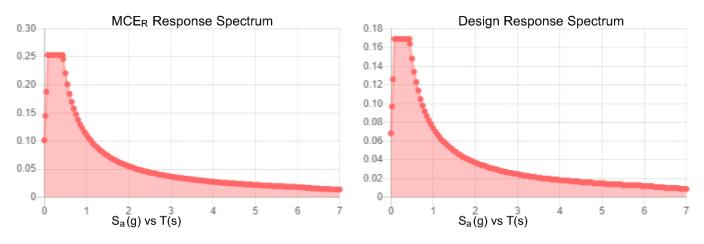
Results:

Wind Speed	122 Vmph
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	92 Vmph
100-year MRI	99 Vmph

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Date Accessed: Tue Aug 16 2022


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	C - Very Den	se Soil and Soft Rock		
S _s :	0.211	S _{DS} :	0.169	
S ₁ :	0.065	S _{D1} :	0.074	
F _a :	1.2	T _L :	6	
F _v :	1.7	PGA :	0.115	
S _{MS} :	0.253	PGA M :	0.138	
S _{M1} :	0.111	F _{PGA} :	1.2	
		l _e :	1	

Seismic Design Category B

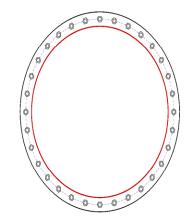
Data Accessed:

Tue Aug 16 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

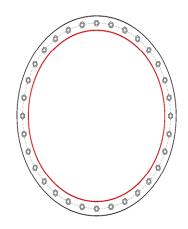
The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Monopole Flange Plate Connection

BU #	
Site Name	
Order #	
TIA-222 Revision	Н


Top Plate - External

Elevation = 40 ft.

Applied Loads						
Moment (kip-ft)	1852.78					
Axial Force (kips)	65.47					
Shear Force (kips)	16.76					

Bottom Plate - External

Connection Properties

Bolt Data (32) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 52" BC

Top Plate Data

56" OD x 2" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Bottom Plate Data

Bottom Stiffener Data

56" OD x 2" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Top Stiffener Data

N/A

Top Pole Data

48" x 0.5" round pole (A572-50; Fy=50 ksi, Fu=65 ksi)

N/A

Bottom Pole Data

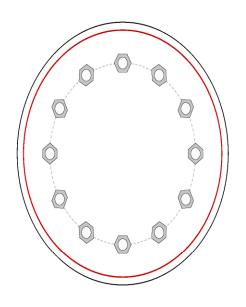
48" x 0.5" round pole (A572-50; Fy=50 ksi, Fu=65 ksi)

Analysis Results								
Bolt Capacity								
Max Load (kips)	51.39							
Allowable (kips)	54.53							
Stress Rating:	94.2%	Pass						

Top Plate Capacity

Max Stress (ksi):	15.04	(Flexural)
Allowable Stress (ksi):	45.00	
Stress Rating:	33.4%	Pass
Tension Side Stress Rating:	25.1%	Pass

Bottom Plate Capacity


15.04	(Flexural)	
45.00		
33.4%	Pass	
25.1%	Pass	
	45.00 33.4%	45.00 33.4% Pass

Monopole Base Plate Connection

Site Info	
BU #	
Site Name	
Order #	

Analysis Considerations			
TIA-222 Revision	Н		
Grout Considered:	No		
l _{ar} (in)	0		

Applied Loads	
Moment (kip-ft)	1852.78
Axial Force (kips)	87.96
Shear Force (kips)	18.91

Connection Properties	Analysis Results			
Anchor Rod Data	Anchor Rod Summary	(L	(units of kips, kip-in)	
(12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 34.5" BC	Pu_c = 221.77	φPn_c = 243.75	Stress Rating	
	Vu = 1.58	φVn = 73.13	91.0%	
Base Plate Data	Mu = n/a	φMn = n/a	Pass	
50" ID x 3" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)				
	Base Plate Summary			
Stiffener Data	Max Stress (ksi):	50.07	(Flexural)	
N/A	Allowable Stress (ksi):	54		
	Stress Rating:	92.7%	Pass	
Pole Data				

ISE Incorporated	Job: Verizon Platsville Relo
P.O. Box 50039	Project: ISE Job No. 18054
Phoenix, Arizona 85076	Client: Larson
Phone: 602-403-8614	Date: September 12, 2022
FAX: 623-321-1283	Designed by: PB

Pole to Base Weld Connection

Flange Ring Assembly

Dp =	48.000	inch	
Factored Moment: Mu =	861.484	Kip-Ft	Factored Moment
Factored Base Shear: V =	18.907	Kips	Factored Shear
Groove Weld Thickness: Twg =	0.375	inch	Groove Thickness
Filet Weld Thickness: Twf =	0.375	linch	Filet Weld Thickness
Weld Material Yield: Fyw =	70.000	ksi	
Allowable Weld Force: Fallow =	21.508	kip/inch	Fallow = [(.707)Twf + Twg] (.48)Fyw
Weld Force: Fw =	4.285	kip/inch	Fw = (3/4)Sqrt [{Mu/p(Dp^2/4)}^2 + {V/pDp}^2]
Base Weld Stress Ratio =	19.92	1 %	

DESIGN:

APPLY GROOVE WELD AND APPLY 0.375" FILET CAP WELD TO POLE AT TOP OF PLATE

ISE Incorporated	Job: Verizon Platsville Relo
P.O. Box 50039	Project: ISE Job No. 18054
Phoenix, Arizona 85076	Client: Larson
Phone: 602-403-8614	Date: September 25, 2022
FAX: 623-321-1283	Designed by: PB

Anchor Bolt Development (ACI 318)

Anchor bolts are mechanically anchored with nuts and load plates at bottom of bolts. Failure cones emanate at 35 degrees from top of nut. The failure cones from the 4 bolts overlap and exit the sides of the caisson. Concrete is assumed to crack and carry no load so, vertical reinforcing steel must be developed to transfer bolt loads. Calculations presented below determine the required length of anchor bolt embedment and reinforcing development necessary to transfer the design loads.

Minimum Development Length per ACI 318 12.2.2, Eq 12-1.

 $I_d = d_b [f_v / \sqrt{(f_c)}] (3/40) (\phi_t \phi_e \lambda/2.5)$:

where; fy = 60,000psi, f'c = 4000 psi, and $\varphi t \varphi e \lambda = 1.0$,

l _d = 28.46 d _b	For #	8	Bars I _d =	28.46 in.
---------------------------------------	-------	---	-----------------------	-----------

Anchor Bolts are 2.25" dia. by 84" Long with 72" Embedment on 34.5" Bolt Circle

Reinforcing Cage Diameter = 48 in.

Minimum Required AB Depth

cover = 3.00 in. bottom grip = 3.00 in. ½(Cage-BC) = 6.75 in.

 $I_{min} = I_d + cover + bottom grip + \frac{1}{2}(Cage-BC)/tan55 = 39.19 in.$

Bolt Embedment Provided = 72.00 in.

Anchor bolts are restrained by fully developed reinforcement satisfying the requirements of 318 Appendix D.

ISE Incorporated	Job: Verizon Platsville Relo
P.O. Box 50039	Project: ISE Job No. 18054
Phoenix, Arizona 85076	Client: Larson
Phone: 602-403-8614	Date: September 25, 2022
FAX: 623-321-1283	Designed by: PB

Foundation Design -

	M (kip-ft)	V (kips)	A (kips)
Unfactored Base Reactions	860.753	18.907	76.213
Factored Base Reactions	861.484	18.907	87.955

Design per Geotechnical Investigation Report:

Terracon Geotechnical Engineering Report #J1225042 dated 08/10/2022

Use 54" diameter x 18'-0" deep pier w/ 6" above grade projection

Reinforcing: Use (16) - #8 Vertical

Per LPile Analysis Results:

Ultimate factored Pier Moment Capacity w/ ϕ = 0.65 is 1021.083 Ft-Kip

Maximum Pier Moment Load Case 3 (1.2D + 1.0 W)

M = 925.098 Ft-Kip

Pier Head Deflection for Load Case 1 (Unfactored Wind Force) = 0.583"

Plots of deflection, Bending Moment and Shear follow the LPile results printout.

The following Load Cases are plotted:

Load Case 1 - Unfactored Design Wind Force Base Reactions (122 mph)

Load Case 2 - Factored Design Wind Force Base Reactions (122 mph) 1.2D + 1.0 W

PO Box 50039 • Phoenix, Arizona • 85076 • Office: (602) 403-8614 • Fax: (623) 321-1283 • www.ISE-INC.biz

Project: Verizon Plattsville Relo ISE #: 18054 By: PB Date: 12/12/22

ANCHORAGE

Factored Leg reactions from RISA-3D results,

Max Downward	= 87.955 k
Max Shear	= 18.907 k
Max Moment	= 861.484 k-ft

Use 1/2 Moment Capacity of 48" x ½" Pole Moment = 1852.78 k-ft

Use (12) 2.25[°]Ø x 84[°]ASTM A615-75 Bolts on 34.5[°]Ø Bolt Circle with 60[°]Embedment 3 x 50[°]Ø A572 Gr 60 Base Plate

Calculations attached to report

FOUNDATION

Unfactored Leg reactions from RISA-3D results,

Max Downward	= 76.213 k
Max Shear	= 18.907 k
Max Moment	= 860.753 k-ft

Use 54"Ø Pier x 18' deep pier w/ 6" above grade projection per leg w/ (16) #8 vertical reinforcement bars.

Per Terracon Geotechnical Engineering Report #J1225042 dated 08/10/2022-

Allowable End Bearing Pressure	= 20 KSF	
Axial Load	= 76.213 K	
Face Area	= 15.90 sq. ft	
Bearing Pressure	= 4.80 KSF < 20 KSF	OK

Lpile was used for lateral analysis. Calculations attached to report.

______ LPile for Windows, Version 2019-11.009 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved This copy of LPile is being used by: Lantec Engineers Chennai, India Serial Number of Security Device: 562486253 This copy of LPile is licensed for exclusive use by: Lantec Engineers Private Limited Use of this program by any entity other than Lantec Engineers Private Limited is a violation of the software license agreement. _____ Files Used for Analysis _____ Path to file locations: \Users\Prash\Desktop\ISE Working\18054 VZW Plattsville Relo (553278)\New Work\Design Report\Calcs\LPile\ Name of input data file: 18054 Lpile.lp11d Name of output report file: 18054 Lpile.lp11o Name of plot output file: 18054 Lpile.lp11p Name of runtime message file: 18054 Lpile.lp11r _____ Date and Time of Analysis _____

Date: September 12, 2022

Time: 8:33:45

Problem Title
Project Name: Verizon Plattsville Relo
Job Number: ISE #18054
Client: Larson Valmont
Engineer: PB
Description: 100' SST
Program Options and Settings
Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches)
Analysis Control Options:=500- Maximum number of iterations allowed=500- Deflection tolerance for convergence=1.0000E-05 in- Maximum allowable deflection=100.0000 in- Number of pile increments=100

Loading Type and Number of Cycles of Loading: - Static loading specified

 Use of p-y modificatio Analysis uses layering No distributed lateral Loading by lateral soi Input of shear resista Input of moment resist Input of side resistan Computation of pile-he Push-over analysis of p 	correction (Method of loads are entered l movements acting on nce at the pile tip no ance at the pile tip no ce moment along pile no ad foundation stiffnes pile not selected	Georgiadis) pile not selected t selected ot selected ot selected
 Output Options: Output files use decim Values of pile-head dersoil reaction are prim Printing Increment (nor No p-y curves to be cor Print using wide report 	flection, bending mome ted for full length of dal spacing of output mputed and reported fo	nt, shear force, and pile. points) = 1
	Structural Properties	and Geometry
	elow top of pile -y curve computations	= 1 = 18.000 ft = 0.0000 ft are defined using 2 points.
		ues interpolated with depth over pile diameter vs. depth follows.
Depth Below Point Pile Head No. feet	Pile Diameter inches	
1 0.000 2 18.000	54.0000 54.0000	
Input Structural Properti	es for Pile Sections:	
Pile Section No. 1:		
Section 1 is a round d Length of section	rilled shaft, bored pi	le, or CIDH pile = 18.000000 ft

Shaft Diameter	=	54.000000 in
Shear capacity of section	=	0.0000 lbs

Ground Slope and Pile Batter An	gles		
Ground Slope Angle	=		degrees
	=	0.000	radians
Pile Batter Angle	=	0.000	degrees
	=		radians
Soil and Rock Layering Informat			
The soil profile is modelled using 5 layers			
Layer 1 is modelled using an elastic subgrade modulus			
Distance from top of pile to top of layer	=	0.0000	ft
Distance from top of pile to bottom of layer	=	2.250000	ft
Effective unit weight at top of layer	=	120.000000	
Effective unit weight at bottom of layer	=	120.000000	•
Elastic subgrade at top of layer		0.0000	•
Elastic subgrade at bottom of layer	=	0.0000	
Layer 2 is sand, p-y criteria by Reese et al., 1974			
Distance from top of pile to top of layer	=	2.250000	ft
Distance from top of pile to bottom of layer			
Effective unit weight at top of layer	=	120.000000	pcf
Effective unit weight at bottom of layer	=	120.000000	pcf
Friction angle at top of layer	=	32.000000	deg.
Friction angle at bottom of layer	=	32.000000	-
Subgrade k at top of layer	=	0.0000	-
Subgrade k at bottom of layer	=	0.0000	•
NOTE: Default values for subgrade k will be compute	d fo	r this laye	^.
Layer 3 is sand, p-y criteria by Reese et al., 1974			
Distance from top of pile to top of layer	=	3.500000	ft
Distance from top of pile to bottom of layer	=	15.000000	

Effective unit weight at top of layer	=	120.000000 pcf
Effective unit weight at bottom of layer	=	120.000000 pcf
Friction angle at top of layer	=	34.000000 deg.
Friction angle at bottom of layer	=	34.000000 deg.
Subgrade k at top of layer	=	0.0000 pci
Subgrade k at bottom of layer	=	0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 4 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	15.000000 ft
Distance from top of pile to bottom of layer	=	16.000000 ft
Effective unit weight at top of layer	=	57.600000 pcf
Effective unit weight at bottom of layer	=	57.600000 pcf
Friction angle at top of layer	=	34.000000 deg.
Friction angle at bottom of layer	=	34.000000 deg.
Subgrade k at top of layer	=	0.0000 pci
Subgrade k at bottom of layer	=	0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 5 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	16.000000	ft
Distance from top of pile to bottom of layer	=	18.000000	ft
Effective unit weight at top of layer	=	82.600000	pcf
Effective unit weight at bottom of layer	=	82.600000	pcf
Friction angle at top of layer	=	38.000000	deg.
Friction angle at bottom of layer	=	38.000000	deg.
Subgrade k at top of layer	=	0.0000	pci
Subgrade k at bottom of layer	=	0.0000	pci

NOTE: Default values for subgrade k will be computed for this layer.

(Depth of the lowest soil layer extends 0.000 ft below the pile tip)

Summary of Input Soil Properties _____ Effective Angle of Layer Soil Type Layer Elastic Num. Name Depth Unit Wt. Friction kpy Subgrade (p-y Curve Type) ft pcf deg. pci Mod. pci _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ----_ _ _ _ _ _ _ _ _ _ _ _ ---------

1 0.00	Elastic	0.00	120.0000		
	Subgrade	2.2500	120.0000		
0.00 2	Sand	2.2500	120.0000	32.0000	default
	(Reese, et al.)	3.5000	120.0000	32.0000	default
3	Sand	3.5000	120.0000	34.0000	default
	(Reese, et al.)	15.0000	120.0000	34.0000	default
4	Sand	15.0000	57.6000	34.0000	default
	(Reese, et al.)	16.0000	57.6000	34.0000	default
 5	Sand	16.0000	82.6000	38.0000	default
	(Reese, et al.)	18.0000	82.6000	38.0000	default
		Static Loadi			
Static loading criteria were used when computing p-y curves for all analyses.					
	Pile-head Loa	ding and Pile-	head Fixity Cor	nditions	
Number o	f loads specified = 2				
	Load Conditic Top y Run Analysi		Condition	Ax	ial Thrust
•	Type 1		2	F	orce, lbs
1	1 V = 1890	 7.lbs M =	10329036. in	-lbs	76213.
No 2		07.lbs M =	10337808. in-	-lbs	87955.
No	Vac				

V = shear force applied normal to pile axis M = bending moment applied to pile head

Yes

No

y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: Dimensions and Properties of Drilled Shaft (Bored Pile): _____ Length of Section 18.000000 ft = Shaft Diameter = 54.000000 in Concrete Cover Thickness (to edge of long. rebar) 3.000000 in = Number of Reinforcing Bars 16 bars = Yield Stress of Reinforcing Bars 60000. psi = Modulus of Elasticity of Reinforcing Bars = 29000000. psi Gross Area of Shaft 2290. sq. in. = Total Area of Reinforcing Steel = 12.640000 sq. in. Area Ratio of Steel Reinforcement = 0.55 percent Edge-to-Edge Bar Spacing 8.169245 in = Maximum Concrete Aggregate Size = 1.000000 in Ratio of Bar Spacing to Aggregate Size = 8.17 Offset of Center of Rebar Cage from Center of Pile 0.0000 in = Axial Structural Capacities: -----Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As = 8502.176 kips Tensile Load for Cracking of Concrete = -989.558 kips = Nominal Axial Tensile Capacity -758.400 kips

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	Х	Y
Number	inches	sq. in.	inches	inches

1	1.000000	0.790000	23.500000	0.00000
2	1.000000	0.790000	21.711169	8.993061
3	1.000000	0.790000	16.617009	16.617009
4	1.000000	0.790000	8.993061	21.711169
5	1.000000	0.790000	0.0000	23.500000
6	1.000000	0.790000	-8.993061	21.711169
7	1.000000	0.790000	-16.617009	16.617009
8	1.000000	0.790000	-21.711169	8.993061
9	1.000000	0.790000	-23.500000	0.0000
10	1.000000	0.790000	-21.711169	-8.993061
11	1.000000	0.790000	-16.617009	-16.617009
12	1.000000	0.790000	-8.993061	-21.711169
13	1.000000	0.790000	0.00000	-23.500000
14	1.000000	0.790000	8.993061	-21.711169
15	1.000000	0.790000	16.617009	-16.617009
16	1.000000	0.790000	21.711169	-8.993061

NOTE: The positions of the above rebars were computed by LPile

Minimum spacing between any two bars not equal to zero = 8.169 inches between bars 11 and 12.

Ratio of bar spacing to maximum aggregate size = 8.17

Concrete Properties:

Compressive Strength of Concrete	=	4000. psi
Modulus of Elasticity of Concrete	=	3604997. psi
Modulus of Rupture of Concrete	=	-474.341649 psi
Compression Strain at Peak Stress	=	0.001886
Tensile Strain at Fracture of Concrete	=	-0.0001154
Maximum Coarse Aggregate Size	=	1.000000 in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 2

Number	Axial Thrust Force
	kips
1	76.213
2	87.955

Definitions of Run Messages and Notes:

C = concrete in section has cracked in tension.

Y = stress in reinforcing steel has reached yield stress.

- T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318, Section 10.3.4.
- Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Axial Thrust Force = 76.213 kips

Bending Max Conc	Bending Max Steel	Bending Run	Depth to	Max Comp	Max Tens
Curvature	Moment	Stiffness	N Axis	Strain	Strain
Stress	Stress	Msg			
rad/in.	in-kip	kip-in2	in	in/in	in/in
ksi	ksi				
	10670		0.2007026	0 0000001	0.0122122
0.0002694	18678.	69336825.	8.2897826	0.0022331	-0.0123132
3.9996802	-60.0000000	CY			
0.0002744	18687.	68108117.	8.2532976	0.0022645	-0.0125518
3.9975478	-60.0000000	CY			
0.0003044	18740.	61568086.	8.0674676	0.0024555	-0.0139807
3.9999595	-60.0000000	CY			
0.0003344	18785.	56180616.	7.9264644	0.0026504	-0.0154058
3.9973675	-60.0000000	CY			
0.0003644	18825.	51663890.	7.8152318	0.0028477	-0.0168286
3.9835974	-60.0000000	CY			

Axial Thrust Force = 87.955 kips

Bending Max Conc	Bending Max Steel	Bending Run	Depth to	Max Comp	Max Tens
Curvature Stress	Moment Stress	Stiffness Msg	N Axis	Strain	Strain
rad/in. ksi	in-kip ksi	kip-in2	in	in/in	in/in
0.0002544 3.9938632	18886. -60.0000000	74246185. CY	8.4748661	0.0021558	-0.0115805
0.0002594 3.9974066	18898. -60.0000000	72860442. CY	8.4371959	0.0021884	-0.0118179
0.0002644	18910.	71526186.	8.4013689	0.0022211	-0.0120551

3.9994526 -60.000000 CY 0.0002694 70239825. 8.3669279 0.0022538 18921. -0.0122924 3.9987728 -60.0000000 CY 0.0002744 18930. 68992988. 8.3296896 0.0022855 -0.0125308 3.9909763 -60.0000000 CY 0.0003044 18981. 62360753. 8.1385492 0.0024772 -0.0139591 3.9950992 -60.0000000 CY 19025. 56898634. 7.9929403 0.0026726 -0.0153836 0.0003344 3.9992305 -60.0000000 CY _____ Summary of Results for Nominal Moment Capacity for Section 1 _____

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load	Axial Thrust	Nominal Mom. Cap.	Max. Comp.
No.	kips	in-kip	Strain
1	76.213	18850.371	0.00300000
2	87.955	19085.954	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Stiff.	Resist.	Nominal	Nominal	Ult. (Fac)	Ult. (Fac)	Bend.
Load Ult Mom	Factor	Ax. Thrust	Moment Cap	Ax. Thrust	Moment Cap	at
No. kip-in^2		kips	in-kips	kips	in-kips	
1 256274037	0.65	76.213000	18850.	49.538450	12253.	
2 260181178	0.65	87.955000	19086.	57.170750	12406.	

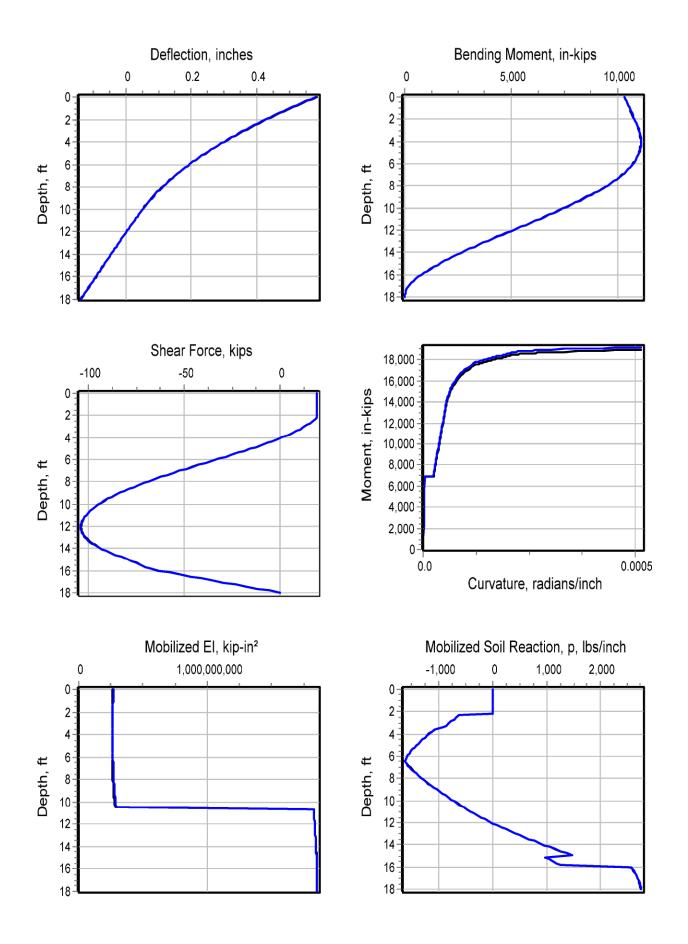
1	0.75	76.213000	18850.	57.159750	14138.
248599206. 2	0.75	87.955000	19086.	65.966250	14314.
252284362.					
1	0.90	76.213000	18850.	68.591700	16965.
164333294.					
2	0.90	87.955000	19086.	79.159500	17177.
167016487.					

Layering Correction Equivalent Depths of Soil & Rock Layers

Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer lbs	F1 Integral for Layer lbs
1	0.00	0.00	N.A.	No	0.00	0.00
2	2.2500	2.2500	No	No	0.00	20029.
3	3.5000	2.6088	Yes	No	20029.	643653.
4	15.0000	14.1084	Yes	No	663681.	92470.
5	16.0000	13.1950	Yes	No	756152.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1


Pile-head conditions are Shear and Moment (Loading Type 1)

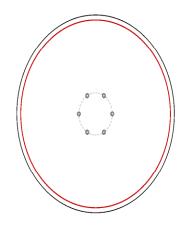
Shear force at pile head	=	18907.0 lbs
Applied moment at pile head	=	10329036.0 in-lbs
Axial thrust load on pile head	=	76213.0 lbs

Output Summary for Load Case No. 1:

Pile-head deflection 0.58344754 inches = Computed slope at pile head -0.00688828 radians = Maximum bending moment = 11088990. inch-lbs -103867. lbs Maximum shear force = Depth of maximum bending moment = 4.14000000 feet below pile head = Depth of maximum shear force 12.06000000 feet below pile head Number of iterations 79 = Number of zero deflection points = 1 _____ Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2 Pile-head conditions are Shear and Moment (Loading Type 1) Shear force at pile head 18907.0 lbs = Applied moment at pile head = 10337808.0 in-lbs Axial thrust load on pile head 87955.0 lbs = Output Summary for Load Case No. 2: Pile-head deflection = 0.57930461 inches Computed slope at pile head -0.00680512 radians = Maximum bending moment 11101175. inch-lbs = Maximum shear force = -104107. lbs Depth of maximum bending moment = 4.14000000 feet below pile head Depth of maximum shear force = 12.06000000 feet below pile head Number of iterations 72 = Number of zero deflection points = 1 Summary of Pile-head Responses for Conventional Analyses _____ Definitions of Pile-head Loading Conditions: Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians Load Load Load Axial Pile-head Pile-head Max Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Maximum pile-head deflection = 0.5834475380 inches Maximum pile-head rotation = -0.0068882849 radians = -0.394670 deg.

The analysis ended normally.

Monopole Flange Plate Connection


BU #	
Site Name	
Order #	
TIA-222 Revision	Н

Top Plate - External

Applied Loads						
Moment (kip-ft)	18.70					
Axial Force (kips)	1.70					
Shear Force (kips)	1.25					

Bottom Plate - Internal

Connection Properties

Bolt Data

(6) 5/8" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 10.5" BC

Top Plate Data

13.5" OD x 1" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Top Stiffener Data

(6) 6"H x 3"W x 0.25"T, Notch: 0.5" plate: Fy= 36 ksi ; weld: Fy= 70 ksi horiz. weld: 0.25" fillet vert. weld: 0.25" fillet

Top Pole Data

6.625" x 0.25" round pole (A500-42; Fy=42 ksi, Fu=58 ksi)

Bottom Pole Data

48" x 0.5" round pole (A572-50; Fy=50 ksi, Fu=65 ksi)

			Analy	sis Results	
			Bolt	Capacity	
			Max Load (kips)	13.95	
			Allowable (kips)	20.34	
			Stress Rating:	68.6%	Pass
Top Plate Capacity					
Max Stress (ksi):	9.98	(Roark's	Flexural)		
Allowable Stress (ksi):	45.00				
Stress Rating:	22.2%	Pass			
Tension Side Stress Rating:	N/A				
Top Stiffener Capacity					
Horizontal Weld:	37.8%	Pass			
Vertical Weld:	20.2%	Pass			
Plate Flexure+Shear:	27.9%	Pass			
Plate Tension+Shear:	57.3%	Pass			
Plate Compression:	68.9%	Pass			

11.2% Punching Shear: Pass *ISE Incorporated P.O. Box 50039 Phoenix, Arizona 85076 Phone: 602-403-8614 FAX: 623-321-1283*

Job: Verizon Platsville Relo Project: ISE Job No. 18054 Client: Larson Date: September 25, 2022 Designed by: PB

TOP PLATE AND BOLTS DESIGN AT 80' AFG FOR WIND FORCES

Plate Steel Yield Strength: Fy =

Geometry

Plate Shape =	Round	
Plate Diameter =	49.5 in	
Pole Diameter, Dp =	6.625 in	
Bolt Circle Diameter: BC =	10.5 in	
Number of Bolts: J =	6	
Bolt Group Moment of Inertia: I_{bg} =	82.6875 in²	l _{bg} = (1/8)(J*BC ²)
Bolt Diameter: D _b =	0.625 in	
Gross Bolt Area: A _g =	0.307 in ²	$A_g = \pi D_b^2/4$
Net Bolt Area: A _n =	0.226 in ²	$A_n = (\pi/4)(d-0.9743)/n)^2$
<u>Materials</u>		
Bolt Steel Yield Strength: F_y =	81 ksi	A325
Bolt Steel Ultimate Strength: F_u =	120 ksi	A325

Loading

	Structure Base Reactions						
	M (kip-ft)	V (kip)	A (kip)				
Factored:	18.700	1.250	1.700				

<u>Analysis</u>

BOLTS		ОК		
Bolt Tension: P _{ut} =	13.964 k	(M*BC/2) / I _{bg} - A/J		
Bolt Compression: P _{uc} =	14.531 k	(M*BC/2) / I _{bg} + A/J		
Bolt Shear: V _u =	0.208 k	V / N		
Available Shear Strength, Φrn =	12.400 k	AISC Table 7-1	10.10%	OK
Available Tensile Strength, Φrn =			70.20%	OK
				-

50 ksi A572 GR50

<u>PLATE</u>

Plate Bending: Mpb =	217.96 k-in	(T/C) x Mom Arm
Bend Line, L =	4.000 in	
Required Plate Thickness: Tpl =	2.201 in	Tpl = $[4M/\emptyset F_y L]^{1/2}$
Thickness Provided =	2.500 in	
Plate Stress Ratio =	0.775	≤ 1.0

Design Summary

(6) 0.63" Diameter A325 Bolts on 10.5" BC Diameter 2.5" X 49.5" Round A572 GR50 Top Cap Plate With Coax Holes

ΟK

C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 (603) 644-2800 support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

CT1440

5151 Park Avenue, Fairfield, CT

November 29, 2022

Table of Contents

1.	Introduction	1
2.	FCC Guidelines for Evaluating RF Radiation Exposure Limits	1
3.	RF Exposure Calculation Methods	2
4.	Antenna Inventory	3
5.	Calculated % MPE Results	4
6.	Conclusion	6
7.	Statement of Certification	6
Att	achment A: References	7
Att	achment B: FCC Limits for Maximum Permissible Exposure (MPE)	8
Att	achment C: AT&T Antenna Model Data Sheets and Electrical Patterns	10

List of Figures

Figure 1: Graph of General Population % MPE vs. Distance	4
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	9

List of Tables

Table 1: Proposed Antenna Inventory	.3
Table 2: Maximum Percent of General Population Exposure Values	.5
Table 3: FCC Limits for Maximum Permissible Exposure	.8

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed New Cingular Wireless (AT&T) wireless communications facility located 5151 Park Avenue in Fairfield, CT. The coordinates of the proposed tower are 41° 13' 08.19"N, 73° 14' 41.12"W.

AT&T is proposing to install ground-based equipment cabinets and antennas mounted at 76 feet AGL on the proposed tower. This report uses the planned antenna configuration for AT&T¹ to derive the resulting % MPE (Maximum Permissible Exposure), once the proposed installation has been completed.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

¹ As referenced to AT&T's preliminary Radio Frequency Design Sheet dated 02/08/2022.

3. RF Exposure Calculation Methods

The calculated ground-level power density results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{\text{EIRP}}{\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance =
$$\sqrt{(H^2 + V^2)}$$

H = Horizontal Distance from antenna

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor of 1.6

These calculations assume that the transmitters are operating at full power and 100 percent capacity and that all radio channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the calculated power density and corresponding % MPE levels reported below are much higher than the actual signal levels will be from the final installation.

4. Antenna Inventory

Table 1 below outlines AT&T's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachment C.

Operator	Sector	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
		739	160	14.0	4019.02		74			
		2100	240	18.1	15495.70	DMP65R-BU6D	68	0	5.93	76
		850	160	14.6	4614.45		63			
	A 11	2300	160	18.0	10095.32		60			
	Alpha	763	160	14.5	4509.41	TPA65R-BU6D	73	0	5.93	76
		1900	160	18.4	11069.3		66			
		3500	86.75	25.65	31989	AIR 6419	11	0	2.5	76
		3500	86.75	25.65	31989	AIR 6449	11	0	2.5	76
		739	160	14.0	4019.02		74			
		2100	240	18.1	15495.70	DMP65R-BU6D	68	0	5.93	76
		850	160	14.6	4614.45		63			
AT&T	Data	2300	160	18.0	10095.32		60			
AI&I	Beta	763	160	14.5	4509.41	TPA65R-BU6D	73	0	5.93	76
		1900	160	18.4	11069.3		66			
		3500	86.75	25.65	31989	AIR 6419	11	0	2.5	76
		3500	86.75	25.65	31989	AIR 6449	11	0	2.5	76
		739	160	14.0	4019.02		74			
		2100	240	18.1	15495.70	DMP65R-BU6D	68	0	5.93	76
		850	160	14.6	4614.45		63			
	Commo	2300	160	18.0	10095.32		60			
	Gamma	763	160	14.5	4509.41	TPA65R-BU6D	73	0	5.93	76
		1900	160	18.4	11069.3		66			
		3500	86.75	25.65	31989	AIR 6419	11	0	2.5	76
		3500	86.75	25.65	31989	AIR 6449	11	0	2.5	76

 Table 1: Proposed Antenna Inventory²

² Transmit power assumes 0 dB of cable loss.

5. Calculated % MPE Results

The calculated % MPE results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within \pm 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

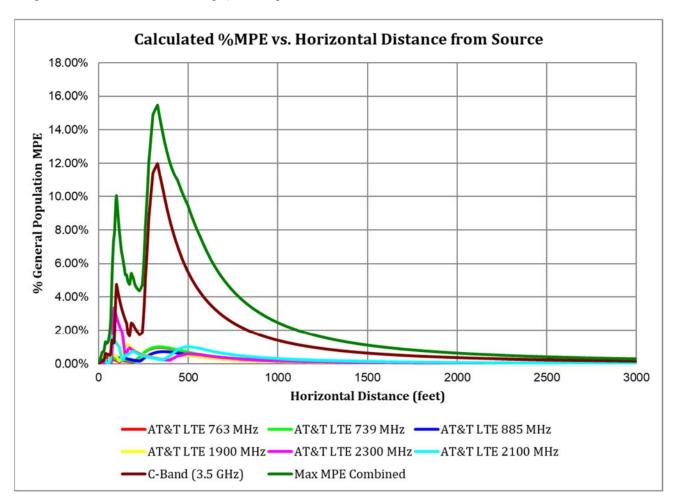


Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (**15.48%** of the General Population limit) is calculated to occur at a horizontal distance of 329 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 900 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. As stated in Section 3, all calculations assume that the antennas are operating at full power and 100 percent capacity, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the calculated % MPE levels are significantly higher than the actual signal levels will be from the final installation. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm ²)	Limit (mW/cm ²)	% MPE
AT&T LTE 1900 MHz	1	160.0	76.0	329	0.003094	1.000	0.31%
AT&T LTE 2100 MHz	1	240.0	76.0	329	0.002733	1.000	0.27%
AT&T LTE 2300 MHz	1	160.0	76.0	329	0.002874	1.000	0.29%
AT&T LTE 739 MHz	1	160.0	76.0	329	0.004892	0.493	0.99%
AT&T LTE 763 MHz	1	160.0	76.0	329	0.004869	0.509	0.96%
AT&T LTE 885 MHz	1	160.0	76.0	329	0.004001	0.590	0.68%
C-Band (3.5 GHz)	2	86.8	76.0	329	0.119852	1.000	11.99%
		-				Total	15.48%

Table 2: Maximum Percent of General Population Exposure Values

6. Conclusion

The above analysis verifies that RF exposure levels from the site with AT&T's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE at 6' above ground level and in consideration of AT&T's proposed antenna installation is calculated to be **15.48% of the FCC limit (General Population/Uncontrolled)**. This maximum cumulative percent of MPE value is calculated to occur 329 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, IEEE Std. C95.3, and IEEE Std. C95.7.

Report Prepared By:

RF Engineer C Squared Systems, LLC November 29, 2022

Date

Maitof Fan

Reviewed/Approved By:

Senior RF Engineer C Squared Systems, LLC November 29, 2022 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Humhyan Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

IEEE C95.7-2005 (R2014), IEEE Recommended Practice for Radio Frequency Safety Programs, 3 kHz to 300 GHz. IEEE-SA Standards Board

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)^*$	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6
mits for Gener	eal Population/U	Magnetic Field		
Range	Strength (E)	Strength (E)	Power Density (S)	Averaging Time
(MHz)	(V/m)	(A/m)	(mW/cm^2)	$ \mathbf{E} ^2$, $ \mathbf{H} ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

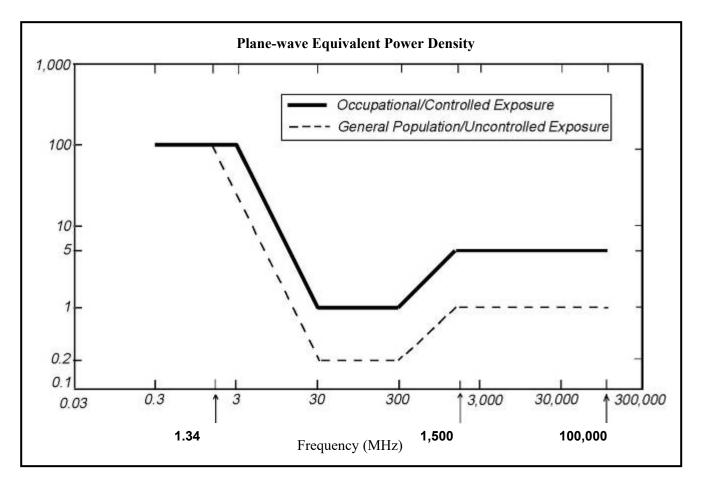
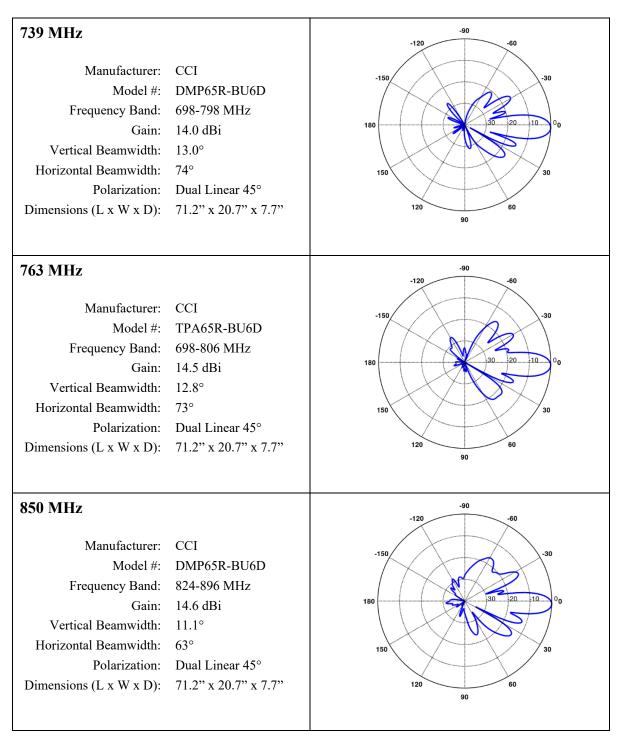
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)^*$	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

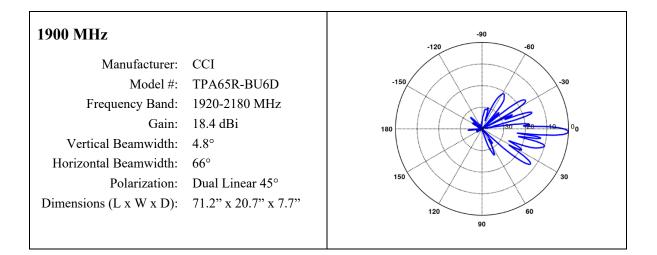
Table 3: FCC Limits for Maximum Permissible Exposure

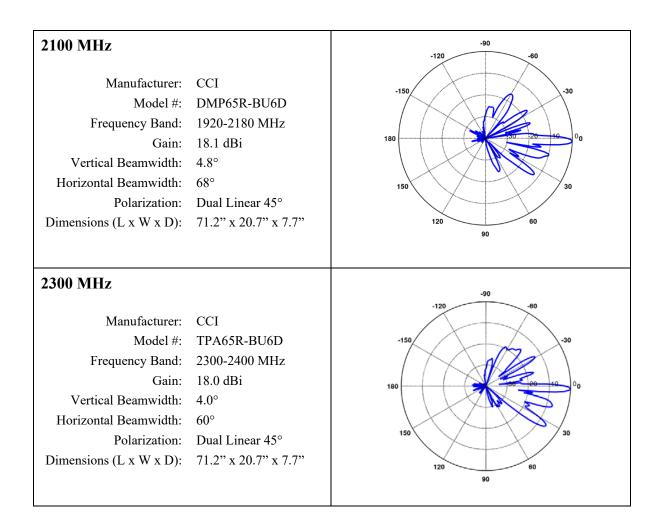
f =

³ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁴ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.


Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)



Attachment C: AT&T Antenna Model Data Sheets and Electrical Patterns

