

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

July 15, 2024

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Docket No. 515 – Application of The Towers, LLC for a Certificate of Environmental Compatibility and Public Need for the Construction, Maintenance and Operation of a Wireless Telecommunications Facility Located at, 180 School Road, Wilton, Connecticut

**Development and Management Plan Submission** 

Dear Attorney Bachman:

Enclosed please find fifteen (15) copies of the following:

- 1. Development and Management ("D&M") Plans prepared by On-Air Engineering for the approved telecommunications facility at 180 School Road in Wilton, Connecticut incorporating the Council's conditions of approval. Also enclosed are three (3) full size (24" x 36") sets of D&M plans.
- 2. Communications Structure Calculations and Communication Pole Record Drawings prepared by Valmont Structures dated July 10, 2024.
- 3. Geotechnical Investigation Report prepared by Delta Oaks Group dated February 26, 2024.

Together, this information constitutes the final D&M Plan submission for the approved telecommunications facility at 180 School Road in Wilton, Connecticut.

30032205-v1

#### Robinson+Cole

Melanie A. Bachman, Esq. July 15, 2024 Page 2

We respectfully request that this information be reviewed and this matter be placed on the next available Siting Council agenda for approval. Please feel free to contact me if you have any questions or require additional information. Thank you.

Sincerely,

Kenneth C. Baldwin

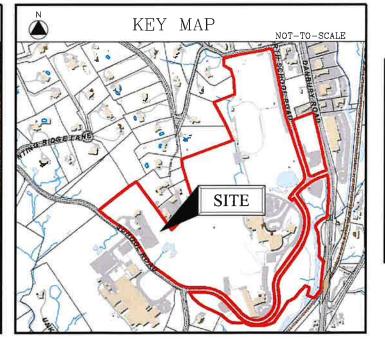
Enclosures Copy to:

Toni Boucher, First Selectman Michael Wrinn, Town Planner Douglas E. LoMonte, Esq. Town Attorney

## **ATTACHMENT 1**






#### WIRELESS COMMUNICATIONS FACILITY

# DEVELOPMENT AND MANAGEMENT PLAN DOCKET NO. 515 VERTICAL BRIDGE SITE ID: US-CT-5055 VERIZON SITE NAME: WILTON SOUTH CT

TOWN OF WILTON 180 SCHOOL RD. WILTON, CT 06897

| PROJE                        | CT SUMMARY                                                                    |
|------------------------------|-------------------------------------------------------------------------------|
| VERTICAL BRIDGE SITE ID:     | US-CT-5055                                                                    |
| VERIZON SITE NAME:           | WILTON SOUTH CT                                                               |
| SITE ADDRESS:                | 180 SCHOOL RD.<br>WILTON, CT 06897                                            |
| PROPERTY OWNER:              | TOWN OF WILTON<br>238 DANBURY RD.<br>WILTON, CT 06897                         |
| PARCEL ID:                   | 59-3                                                                          |
| TOWER COORDINATES:           | 41° 12' 15.2775" N 73° 26' 14.65" W                                           |
| AMSL:                        | 371,3 FT                                                                      |
| APPLICANT:                   | THE TOWERS, LLC<br>750 PARK OF COMMERCE DR, SUITE 200<br>BOCA RATON, FL 33487 |
| VERTICAL BRIDGE<br>CONTACT:  | A.J. DESANTIS<br>AJ.DESANTIS@VERTICALBRIDGE.COM                               |
| LEGAL/REGULATORY<br>COUNSEL: | KENNETH C. BALDWIN, ESQ.<br>ROBINSON & COLE, LLP<br>(860) 275-8345            |

# VICINITY MAP NOT-TO-SCALE SITE



|           | DRAWING SCHEDULE                                     |  |
|-----------|------------------------------------------------------|--|
| SHEET NO. | SHEET DESCRIPTION                                    |  |
| T-1       | TITLE SHEET                                          |  |
|           |                                                      |  |
| C-1       | SITE PLAN                                            |  |
| C-2       | SITE UTILITY PLAN & COMPOUND PLAN                    |  |
| C-3       | WETLAND PROTECTION & EROSION CONTROL NOTES & DETAILS |  |
| C-4       | COMPOUND PLAN, WEST ELEVATION & EQUIPMENT PLAN       |  |
| C-5       | ANTENNA PLAN & DETAILS                               |  |
| C-6       | FENCE & SITE DETAILS                                 |  |
| C-7       | EQUIPMENT PAD/CANOPY PLAN & SECTIONS                 |  |



Cellco Partnership d/b/a Verizon Wireless

#### verizon√

WIRELESS COMMUNICATIONS FACILITY

20 ALEXANDER DRIVE
WALLINGFORD, CT 06492

#### 🏶 On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 onair@optonline.net 201-456-4624

ICENSURE



CT LIC NO 22144

| NO.: | DATE:    | SUBMISSIONS                 |
|------|----------|-----------------------------|
| 0    | 04.23.24 | D&M FILING                  |
| I.   | 06.18.24 | REVISED PER CLIENT COMMENTS |
| _    |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
| _    |          |                             |

DRAWN BY: | CHECKED BY:

MF DW

VERTICAL BRIDGE SITE ID:

US-CT-5055

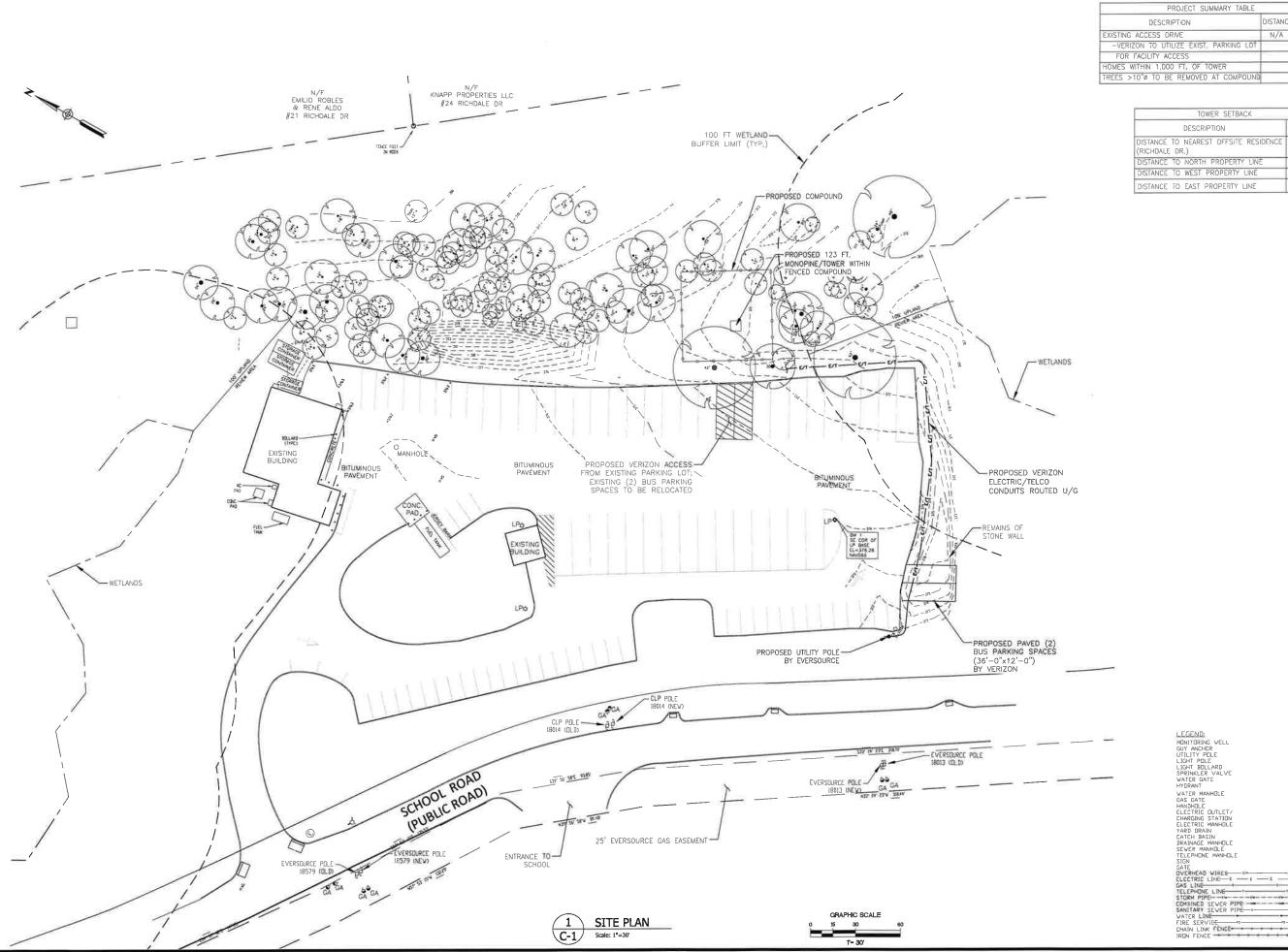
VERIZON SITE NAME:

WILTON SOUTH CT

PROJECT INFORMATION

TOWN OF WILTON 180 SCHOOL RD. WILTON, CT

DRAWING TITLE:


TITLE SHEET

HEET NUMBER:

Γ-1

#### PROJECT DESCRIPTION

- INSTALLATION OF A 123 FT, MONOPINE/TOWER AND FENCED—IN COMPOUND AT GRADE
- INSTALLATION OF OUTDOOR EQUIPMENT CABINETS AND A PROPANE FUELED STANDBY GENERATOR LOCATED ON A 22'x10' CONCRETE PAD WITHIN THE COMPOUND
- INSTALLATION OF (12) PANEL ANTENNAS AND ASSOCIATED DEVICES ON THE MONOPINE/TOWER
- INSTALLATION OF CABLING FROM EQUIP. CABINETS TO ANTENNAS
   FLECTRIC/TELEPHONE SERVICES ROUTED UNDERGROUND
- ELECTRIC/TELEPHONE SERVICES ROUTED UNDERGROUND
   FACILITY ACCESS FROM EXISTING OWNER'S PARKING LOT



Scale: 1"=30'

| PROJECT SUMMARY TABLE                  |          |        |
|----------------------------------------|----------|--------|
| DESCRIPTION                            | DISTANCE | NUMBER |
| EXISTING ACCESS DRIVE                  | N/A      |        |
| -VERIZON TO UTILIZE EXIST, PARKING LOT |          |        |
| FOR FACILITY ACCESS                    |          |        |
| HOMES WITHIN 1,000 FT, OF TOWER        |          | 3      |
| TREES >10"ø TO BE REMOVED AT COMPOUND  |          | 10     |

| TOWER SETBACK                                        |          |
|------------------------------------------------------|----------|
| DESCRIPTION                                          | DISTANCE |
| DISTANCE TO NEAREST OFFSITE RESIDENCE (RICHDALE DR.) | 440'±    |
| DISTANCE TO NORTH PROPERTY LINE                      | 620°±    |
| DISTANCE TO WEST PROPERTY LINE                       | 246 ±    |
| DISTANCE TO EAST PROPERTY LINE                       | 165'±    |



BOCA RATON, FL. 33487 Cellco Partnership

d/b/a Verizon Wireless

verizon/

WIRELESS COMMUNICATIONS FACILITY 20 ALEXANDER DRIVE WALLINGFORD, CT 06492

On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 onair@optonline.net 201-456-4624

LICENSURE



DAVID WEINPAHL, P.E. CT LIC. NO. 22144

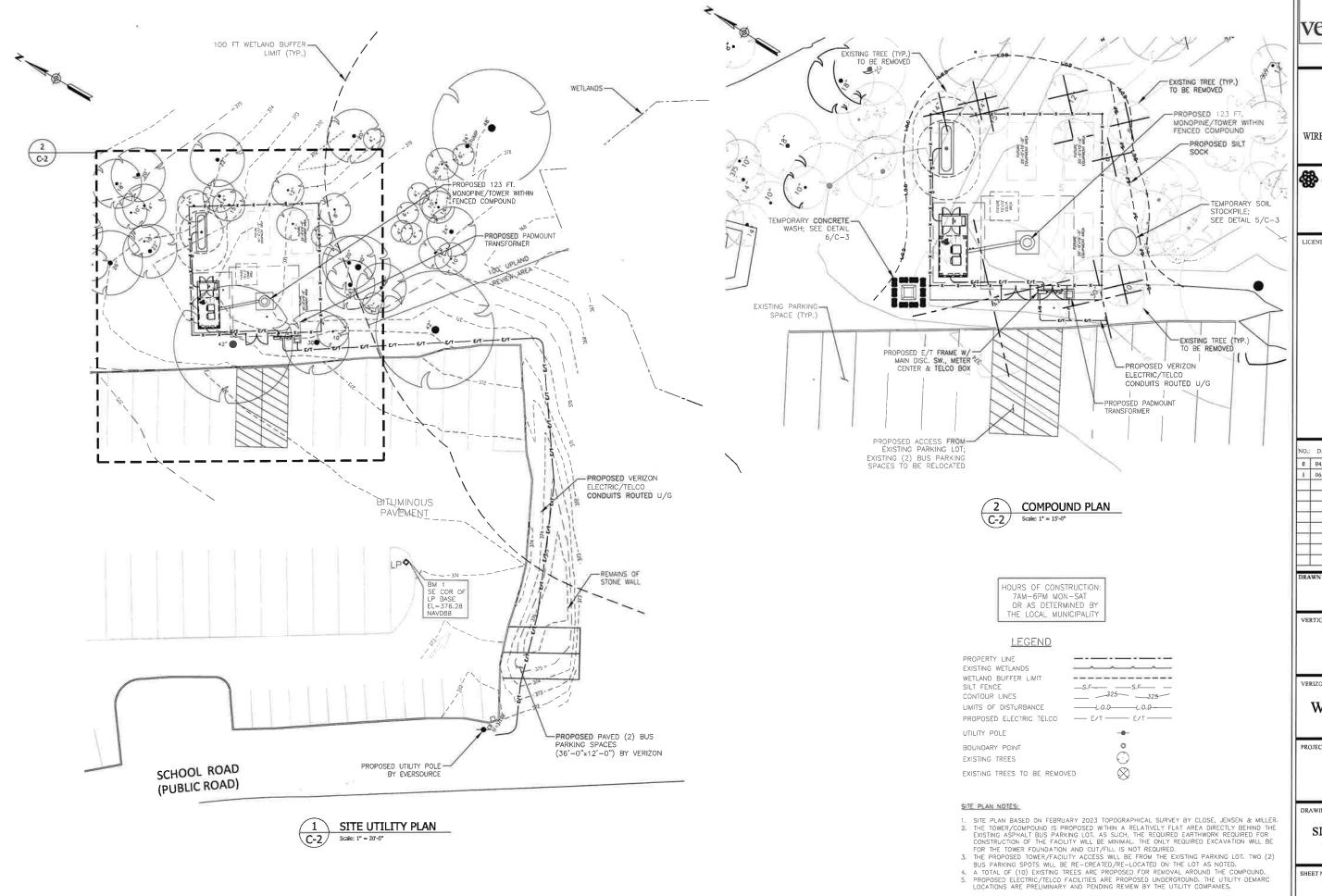
| 0,: | DATE:    | SUBMISSIONS                 |
|-----|----------|-----------------------------|
| D   | 04.23.24 | D&M FILING                  |
| 1   | 06,18,24 | REVISED PER CLIENT COMMENTS |
|     |          |                             |
|     |          |                             |
|     |          |                             |
|     |          |                             |
| T   |          |                             |
| T   |          |                             |
| T   |          |                             |
| -   |          |                             |

DW MF

VERTICAL BRIDGE SITE ID:

US-CT-5055

VERIZON SITE NAME:


WILTON SOUTH CT

TOWN OF WILTON 180 SCHOOL RD. WILTON, CT

DRAWING TITLE:

0000000

SITE PLAN



750 PARK OF COMMERCE DR.

BOCA RATON, FL. 33487

Cellco Partnership d/b/a Verizon Wireless



WIRELESS COMMUNICATIONS FACILITY 20 ALEXANDER DRIVE WALLINGFORD, CT 06492

#### 🥵 On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 201-456-4624



CT LIC, NO. 22144

| NO.: | DATE:    | SUBMISSIONS                 |
|------|----------|-----------------------------|
| 0    | 04.23.24 | D&M FILING                  |
| -1   | 06.18.24 | REVISED PER CLIENT COMMENTS |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |

MF

DW

VERTICAL BRIDGE SITE ID:

US-CT-5055

VERIZON SITE NAME:

WILTON SOUTH CT

PROJECT INFORMATION:

TOWN OF WILTON 180 SCHOOL RD. WILTON, CT

DRAWING TITLE:

SITE UTILITY PLAN & COMPOUND PLAN

SHEET NUMBER:

#### WETLAND PROTECTION AND RESTORATION PROGRAM

A portion of the proposed underground utility route is located within the 100 ft. wellands buffer and the proposed equipment compound is located just outside a second welland 100 ft, buffer, the following Best Management Practices (BMPs) are recommended to avoid unintentional impact to wetland habitats during construction activities.

The wetland protection pragram consists of several components; use of appropriate erasion control measures to control and contain erasion while avoiding/minimizing wildlife entanglement; periodic inspection and maintenance of isolation structures and erasion control measures; education of all contractors and evaluation of one sub-contractors prior to initiation of work on the site; wetland protective measures; wetland restoration measures, and, reporting.

#### 1 Erosion and Sedimentation Controls

b.Plastic netting used in a variety of erosion control products (i.g., erosion control blankets, liber rolls [wattes], reinforced sill fence) has been found to enlangle widdlife, including replites, amphibians, birds and small mammals. No permanent erosion control products or reinforced silt fence will be used on the project. Temporary Erosion control products will use either erosion control blankets and fiber rolls composed of processed fibers mechanically bound tagether to form a continuous matrix (net less) or netting composed of planar woven natural biodegradable fiber to avaid/minimize wildlife entanglement.

c,Installation of silt fencing and/or other erosion control devices (i,e., straw walles, compost filter socks, etc.) shall be performed by the Contractor prior to any earthwork, APT will inspect the work zone area prior to and following erosion control installation to ensure devices are properly installed.

d.Sit fencing shall consist of non-reinforced conventional erosion control woven fibric, installed approximately six inches below surface grade and staked at seven to ten-foot intervals using four-foot ook stakes or approved equivalent. The Contractor is responsible for dolly inspections of the sedimentation and erosion controls for tears or breeches and accumulation devel of the properties of the control of the sedimentation of construction activities only as it pertains to protection of rare species and nearby wetlands.

e.The extent of erasion controls will be as shown on the site plans.
Contractor shall have additional sedimentation and erasion controls stacker on site should field or construction conditions warrant extending devices, addition to the Contractor making these determinations, requests additional controls will also be at the discretion of the Environmental Mani

No equipment, vehicles or construction materials shall be stored outside of the exclusionary fencing or within 50 feet of wetlands or watercourses.

g.All sill fencing and other crosion control devices shall be removed within 30 days of completion of work and permanent stabilization of sile soils so that restrict and amphibian maxement letween uplants and wellands is not restricted, if fiber notifywaltes, storw boles, or other natural and or other natural material erosion control products are used, such devices will not be left in place to biodegrade and shall be promptly removed after soils are stable so as not to create a barrier to migrating wildlife. Seed from seeding of soils should not spread over fiber rolls/wattles as it makes them harder to remove once soils are stabilized by vegelation.

#### 2.Welland Restaration Measures

b.Locate, stoging areas and access points. Staging areas should be located at least 50 feet from the edge at the welland, festall sediment barriers down stope of only staging areas or access points.

d.Clearing, grubbing and utility trenching activities may not commence in any stage or phase of the project until the erosian and sedimentation controls specified by this protection plan and as detailed on the project site plans have been installed and have been reviewed and approved by the Environmental Manilar to ensure erosian controls are properly installed.

during the wetland restoration work, be segregated into separate stockpiles

g.Dewolering of the utility trench excavation shall be pumped to a sediment filter bag or temporary sediment basin, following requirements as noted in the Section 1...

j.No soil amendments such as agricultural lime, fertilizer, etc. will be used within welland areas,

ki.Compact backfill and grade the surface of the trench area to allow for positive drainage to sail erasion and sediment controls and to prepare disturbed areas for permanent trench restoration,

 $\rm I_{\rm h}$  Original grades through wetlands must be restored after trenching and backfilling. Any excess fill materials must be removed from the welland and not spread on—site.

m,Seed disturbed wetland areas with a New England Wet Seed Mix (New England Welland Plants, Inc., or approved equivolent) at the manufacturers recommended seed rate, Mulch disturbed wetland areas with non-woven natural fiber erosion control blanket or 2 to 3 inches of clean straw mulch.

n. Seed disturbed upland areas with a New England Semi-Shode Grass and Forbs Mix (New England Welland Plants, Inc., or approved equivalent) at the manufacturers recommended seed role. Mulch disturbed areas with non-woven natural fiber erosion control blanket or 2 to 3 inches of clean strow mulch.

p.Remove all soil and erosion sediment control measures within 30 days upon establishment of a uniform 70% vegetative cover over the disturbed area. Re—grade and revegetate areas disturbed during the removal of the soil erosion and sediment controls.

#### WETLAND PROTECTION AND RESTORATION PROGRAM-CONTINUED

a, Prior to work on site, the Contractor shall attend on educational session at the pre-construction meeting with APT.

This orientation and educational session will consist of an introductory meeting with APT to understand the environmentally sensitive nature of the development site and the need to fallow Protective Measures and Restoration Measures so described in Section

4 Petroleum Materials Storage and Spill Prevention

a.Certain precautions are necessary to store petroleum materiols, refuel and contain and properly clean up any inodvertent fuel or petroleum (i.e., oil, hydraulic fluid, etc.) spill due to the project's location within and proximity to sensitive wetlands,

b.A spill containment kit consisting of a sufficient supply of absorbent pads and obsorbent material will be maintained by the Contractor at the construction site throughout the duration of the project. In addition, a waste drum will be kept an site to contain any used absorbent pads/material for proper and timely disposal off site in accordance with applicable local, state and federal lows.

c. The following petroleum and hazardous materials storage and refueling restrictions and spill response procedures will be adhered to by the Contractor.

i Petroleum and Hazardous Materials Storage and Refueling

1. Refueling of vehicles or machinery shall accur a minimum of 100 feet from wellands or watercourses and shall take place on an impervious pad with secondary containment designed to contain fuels.

2. Any fuel or hazardous materials that must be kept on site shall be stored at

ii\_Initial Spill Response Procedures

1 Slop operations and shut off equipment

2.Remove any sources of spark or flame

5, Identify the location of natural flow paths to prevent the release of the spill to sensitive nearby waterways or wellands,  $\,$ 

6 Ensure that fellow workers are notified of the spill.

1. Obtain spill response malerials from the an-site spill response kit. Place absorbent materials directly on the release area.

Limit the spread of the spill by placing absorbent materials around the perimeter of the spill.

3 Isolate and eliminate the spill source

4. Contact the Connecticut Siling Council along with other appropriate local, state and/or federal agencies, as necessary

 $5_{\rm i} \text{Contact}$  a disposal company to properly dispose of contaminated materials,

1, Complete an incident report.

2. Submit a completed incident report to the Connecticut Siting Council, along with other appropriate local, state and/or federal agencies, as necessary

6.Reporting

AREAS WHERE SEED MIX APPLIES

TEMPORARY SEEDING

ALL LAWN AREAS

o.Daily Compliance Monitoring Reports (brief negretive and applicable photos) will be submitted by the Environmental Monitor to Verizon Wireless for compliance verification for each impaction performed.

b.Following completion of the construction project, the Environmental Monitor will provide a Compliance Monitoring Surmany Report to Verizon Wireless decumenting implementation of the wetland pratection and restoration program. Verizon Wireless will provide a copy of the Compliance Monitoring Surmany Report to the Connecticut Stiling Council for compliance

#### SEEDING SPECIFICATIONS (NON-WETLAND AREAS)

REMOVE ALL SURFACE STONES 2" OR LARGER AS WELL AS ALL DEBRIS SUCH AS WIRE, CABLE, TREE ROOTS, PIECES OF CONCRETE, CLODS, CLUMPS, OR OTHER UNSUITABLE MATERIAL.

APPLY FERTILIZER AT 7,5 POUNDS PER 1,000 SQUARE FEET AND LIME AT 200 POUNDS PER 1,000 SQUARE FEET UNLESS SOIL TESTING FOR REQUIREMENTS IS PERFORMED.

NO MOWING IS TO BE UNDERTAKEN UNTIL THE MAJORITY OF THE VEGETATION IS AT LEAST 6" HIGH, MOWING SHOULD CUT THE TOP 1/3 OF VEGETATION. DD NOT UNDER ANY CIRCUMSTANCES CUT VEGETATION BELOW 3".

DO NOT APPLY ANY FORM OF WEED CONTROL UNTIL GRASS HAS BEEN MOWED AT LEAST 4 TIMES,

THESE SEEDING MEASURES ARE NOT TO BE USED ON SLOPES IN EXCESS OF 2:1

SUGGESTED SEEDING MIXTURES AND PRACTICES (NON-WETLAND AREAS)

WHERE TREES ARE TO BE RETAINED, THE SEED MIXTURE SHOULD BE ADAPTED FOR SHADY CONDITIONS.

1-1/2 L85

KENTUCKY TALL FESCUE 47%

CREEPING RED FESCUE 47%

#### SILT FENCE SPECIFICATIONS

SYNTHETIC FILTER FABRIC SHALL BE A PERVIOUS SHEET OF PROPYLENE, NYLON, POLYESTER, ETHYLENE, OR SIMILAR FILAMENTS AND SHALL BE CERTIFED BY THE MANUFACTURER OR SUPPLIER AS CONFORMING TO THE FOLLOWING MINIMUM REQUIREMENTS:

1 FILTERING EFFICIENCY 2 GRAB TENSILE STRENGTH 100 POUNDS

3. FLONGATION AT FAILURE 15 PERCENT 4. MULLEN BURST STRENGTH 250 POUNDS PER SQUARE INCH

5. APPARENT OPENING SIZE 0\_60mm< X <0\_90mm

7. FLOW RATE 0.2 GALLONS PER SQUARE FOOT PER

0.05 PER SECOND (MIN) B. PERMITTIVITY 9, ULTRAVIOLET RADIATION STABILITY 70 PERCENT AFTER 500 HOURS OF

STAKES ARE TO BE MADE OUT OF HARDWOOD WITH A MINIMUM CROSS SECTIONAL AREA OF 1.5 SQUARE INCHES OR STEEL POSTS WITH A MINIMUM WEIGHT OF 0.5 POUNDS PER LINEAR FOOT.

TORN OR PUNCTURED GEOTEXTILES SHALL NOT BE USED.

WATER FLOW

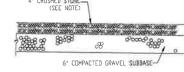
NOTES:
1. CONTRACTOR SHALL MAINTAIN SILT SOCK IN A FUNCTIONAL CONDITION AT ALL TIMES. SILT SOCK SHALL BE ROUTINELY INSPECTED.
2. IF DAMAGED, SILT SOCK SHALL BE REPAIRED OR REPLACED.
3. CONTRACTOR SHALL REMOVE SEDIMENT IN THE BASE OF THE UPSLOPE SIDE

CONTRACTOR SHALL REMAYE SEQUENTED HAS BEEN HE DISSORE SIDE OF THE SILT SOCK WHEN ACCUMULATION HAS REACHED 1/2 OF EFFECTIVE HEIGHT, WHICH SHALL BE DETERMINED BASED ON TABLE 1 OR AS DIRECTED BY TOWN OR ROMINEER, SILT SOCK SHALL BE MAINTAINED UNTIL DISTURBED AREA HAS BEEN PERMANENTLY STABILIZED AND CONSTRUCTION ACTIVITY HAS CEASED.

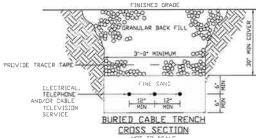
APRIL 1 - JUNE 15

AUG, 15 - OCT, 1

APRIL 1 - JUNE 15


AUG, 15 - OCT, 1

SUSPENSION OF GRADING WORK


TYPICAL SILT SOCK

FILTER FABRIC (TYP.) -

LINES OF SILT FENCE SHOULD FOLLOW CONTOUR LINES 5-10 FEET DOWN GRADIENT FROM THE SLOPE, WHERE CONTOUR LINES CAN NOT BE FOLLOWED PERPENDICULAR WINGS SHOULD BE PLACED AT 50 FOOT INTERVALS,



GRAVEL COMPOUND SURFACE



2° X 2° X 36° WODDEN STAKE DR NO. 4 STEEL REBAR PLACED HAX. 10° CLC

HALF OF EFFECTIVE HEIGHT

7.3 INCHES

9.5 INCHES

A) MINIMUM LENGTH OF SILT FENCE IS 15 L.F.
B) MAXIMUM POST SPACING IS 10 L.F.
C) JOINTS OINY AT SUPPOST POST WITH MINIMUM
6" OVERLAP, SECURELY SEALED,
D) SEDIMENTATION DEPOSITS SHALL BE REMOVED
WHEN THEY REACH 1/2 THE HEIGHT OF THE SILT

SILT FENCE SHALL NOT BE USED IN A WATER

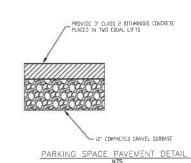
COURSE,
F) UPON ESTABLISHMENT OF GROUND COVER
ON DISTURBED AREAS, AND WHEN DIRECTED
BY THE ENGINEER, FENCE WILL BE REMOVED
AND ANY SEDIMENTATION WILL BE THINLY
SPREAD UPON EXISTING GROUND COVER.

MULIE I IIS

TABLE 1

14.5 INCHES

19 INCHES


12" MIN

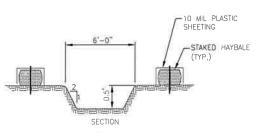
EXIST GROUND 123in DEPTH

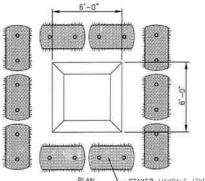
ELEVATION

PLACEMENT AND CONSTRUCTION OF A SILT FENCE

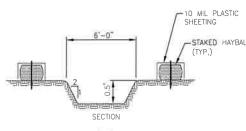
NOT TO SCALE

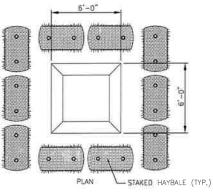



2 1 SLOPE OR LESS HAY BALES - SILT FENCE (SEE NOTE 5)


 $\frac{\mathsf{NOTES}_{:}}{\mathsf{1}_{*}}$  area chosen for stockpiling operations shall be dry

AND STABLE,
MAXIMUM SLOPE OF STOCKPILE SHALL BE 19:2H,
LYDNO COMPLETION OF SOIL STOCKPILING, EACH, PILE SHALL
BE SURROUNDED WITH SILT FENCING, THEN STABILIZED WITH


VEGETATION OR COVERED, SEE SPECIFICATIONS FOR INSTALLATION OF SILT FENCE, HAYBALES TO BE USED WHERE STOCKPILES ARE LOCATED ON


TEMPORARY SOIL STOCKPILE DETAIL





TEMPORARY CONCRETE WASH DETAIL







Cellco Partnership

d/b/a Verizon Wireless

verizon<sup>v</sup> WIRELESS COMMUNICATIONS FACILITY

20 ALEXANDER DRIVE WALLINGFORD, CT 06492

On Air Engineering, LLC 88 Foundry Pond Road

Cold Spring, NY 10516 onair@optonline.net 201-456-4624

LICENSURE



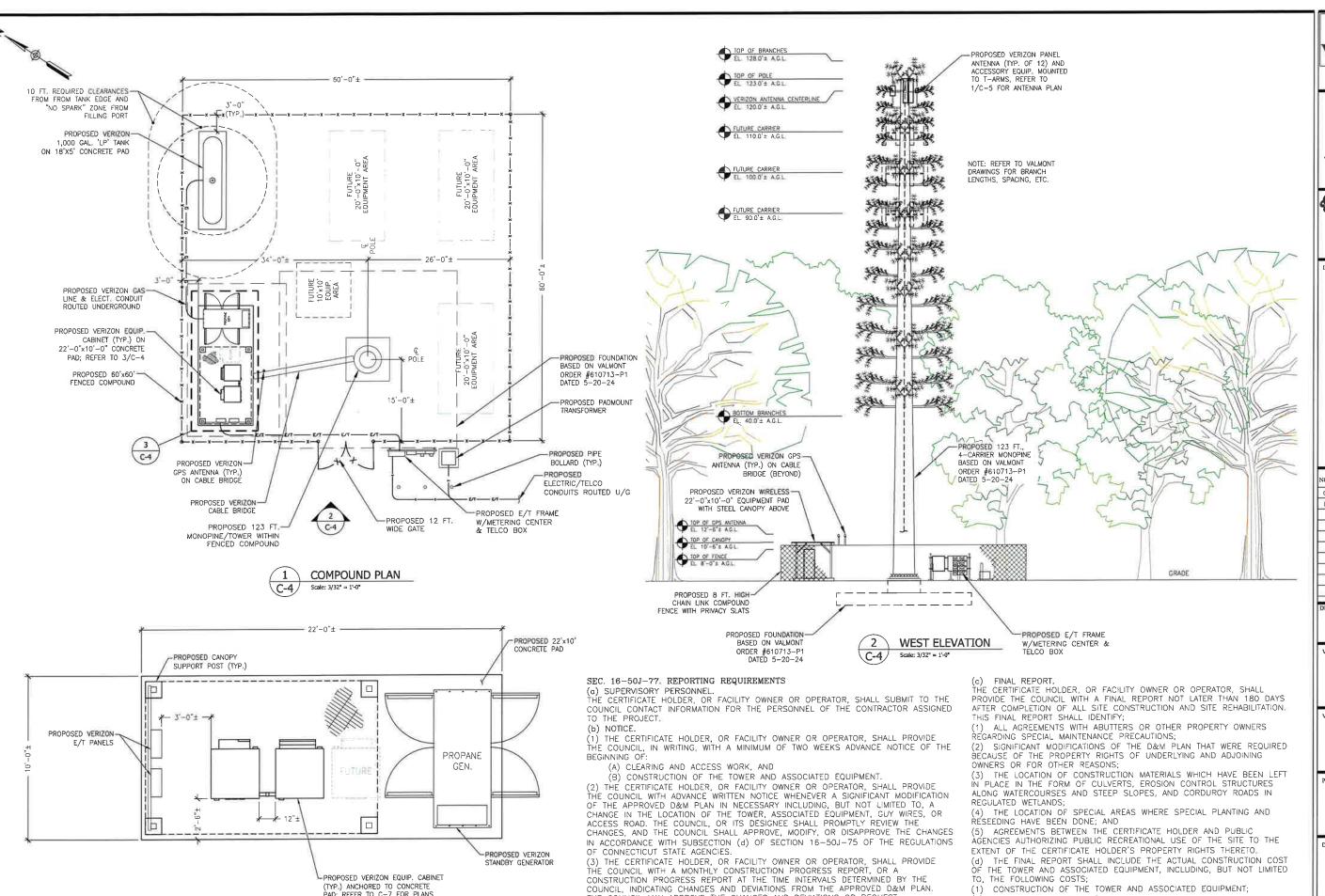
| 0.: |          | SUBMISSIONS                 |
|-----|----------|-----------------------------|
| 0   | 04.23.24 | D&M FILING                  |
| 1   | 06.18.24 | REVISED PER CLIENT COMMENTS |
|     |          |                             |
|     |          |                             |
|     |          |                             |
|     |          |                             |
|     |          |                             |
|     |          |                             |
| _   |          |                             |

MF DW

VERTICAL BRIDGE SITE ID:

US-CT-5055

VERIZON SITE NAME:


WILTON SOUTH CT

TOWN OF WILTON 180 SCHOOL RD. WILTON, CT

DRAWING TITLE:

WETLAND PROTECTION & EROSION CONTROL **NOTES & DETAILS** 

SHEET NUMBER:



THE COUNCIL MAY APPROVE THE CHANGES AND DEVIATIONS OR REQUEST

(4) THE CERTIFICATE HOLDER, OR FACILITY OWNER OR OPERATOR, SHALL PROVIDE

THE COUNCIL WITH WRITTEN NOTICE OF COMPLETION OF CONSTRUCTION AND SITE

CORRECTIONS OR MITIGATING MEASURES.

**REHABILITATION** 

PROPOSED VERIZON EQUIP. CABINET

(TYP.) ANCHORED TO CONCRETE PAD; REFER TO C-7 FOR PLANS

**EQUIPMENT PLAN** 

BOCA RATON, FL. 33487

Cellco Partnership d/b/a Verizon Wireless

#### *verizon*<sup>v</sup>

WIRELESS COMMUNICATIONS FACILITY 20 ALEXANDER DRIVE WALLINGFORD, CT 06492

#### n Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 onair@optonline.net 201-456-4624

LICENSURE



NO.: DATE: SUBMISSIONS 0 04.23.24 D&M FILING REVISED PER CLIENT COMMENTS 06.18.24

MF DW

VERTICAL BRIDGE SITE ID:

US-CT-5055

VERIZON SITE NAME:

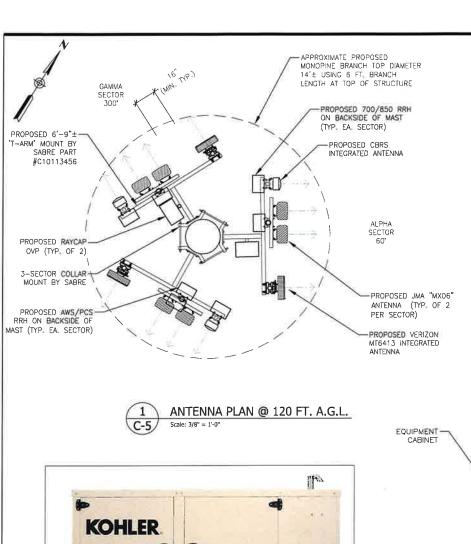
WILTON SOUTH CT

PROJECT INFORMATION:

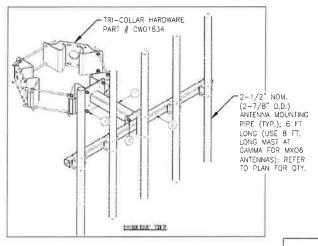
TOWN OF WILTON 180 SCHOOL RD. WILTON, CT

OF THE TOWER AND ASSOCIATED EQUIPMENT, INCLUDING, BUT NOT LIMITED

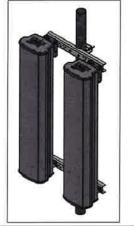
(1) CONSTRUCTION OF THE TOWER AND ASSOCIATED EQUIPMENT;


PROPERTY ACQUISITION FOR SITE OR ACCESS TO SITE.

TO, THE FOLLOWING COSTS;


SITE REHABILITATION; AND

COMPOUND PLAN, **WEST ELEVATION & EQUIPMENT PLAN** 


SHEET NUMBER:



KOHLERPower.com



ANTENNA MOUNTING DETAIL C-5



| JMA AN        | TENNA SPECIFICATIONS           |               |
|---------------|--------------------------------|---------------|
| MODEL #       | SIZE                           | SECTOR        |
| MX06FHG665-HG | 72_0"Hx12_2"Wx7_5"D;<br>41 LBS | ALPHA<br>BETA |
| MX06FHG865-HG | 95.9"Hx12.2"Wx7.5"D;<br>51 LBS | GAMMA         |

C-5

Scale: N.T.S.

-- BATTERY CABINET

PLINTH

-CONC. PAD

JMA "MX06" ANTENNA DETAIL

HEIGHT

C-5

TYPE

12-0VP

6-OVP

12

C-5

HEIGHT

29.5"

Scale: N.T.S

WIDTH DIAMETER

\*ALL MOUNTING OPTIONS FIT

PIPES OF 1"-1.45" MAX. DIA.

3.17"

**GPS ANTENNA DETAIL** 

16,06"

Scale: 3/4" = 1'-0"

RAYCAP EQUIPMENT SPECIFICATIONS

WIDTH

16.5

CABLE DIST. BOX DETAIL

DEPTH

12-6"

10.3"

WEIGHT

32 LBS

26.9 LBS



| MT641. | 3 ANTENN | A SPECIFIC | CATIONS  |
|--------|----------|------------|----------|
| EIGHT  | WIDTH    | DEPTH      | WEIGHT   |
| 28.9"  | 15.8"    | 5,51*      | 57.3 LBS |

C-5

MT6413 INTEGRATED ANTENNA Scale: N.T.S



| СВ     | RS GEN 2 | SPECIFICA | TIONS    |
|--------|----------|-----------|----------|
| HEIGHT | WIDTH    | DEPTH     | WEIGHT   |
| 11.8"  | 8.7"     | 4.2       | 15.4 LBS |

DIMS DO NOT INCLUDE "CLIP-ON" ANTENNA

CBRS INTEGRATED ANTENNA Scale: N.T.S

LICENSURE

DAVID WEINPAHL, P.E.

750 PARK OF COMMERCE DR BOCA RATON, FL. 33487

Cellco Partnership

d/b/a Verizon Wireless

verizon<sup>v</sup>

WIRELESS COMMUNICATIONS FACILITY

On Air Engineering, LLC

20 ALEXANDER DRIVE WALLINGFORD, CT 06492

88 Foundry Pond Road Cold Spring, NY 10516

onair@optonlinc.net 201-456-4624

| NO.: | DATE:    | SUBMISSIONS                 |
|------|----------|-----------------------------|
| 0    | 04.23.24 | D&M FILING                  |
| 1    | 06,18,24 | REVISED PER CLIENT COMMENTS |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
|      |          |                             |
| П    |          |                             |
| П    |          |                             |
|      |          |                             |

DW MF

VERTICAL BRIDGE SITE ID:

US-CT-5055

VERIZON SITE NAME:

WILTON SOUTH CT

PROJECT INFORMATION

TOWN OF WILTON 180 SCHOOL RD. WILTON, CT

ANTENNA PLAN & DETAILS

SHEET NUMBER



| SAMSUNG F | RRH AWS/P | CS ORAN SF | PECIFICATION |
|-----------|-----------|------------|--------------|
| HEIGHT    | WIDTH     | DIAMETER   | WEIGHT       |
| 15*       | 15"       | 10"        | 74-7 LBS     |

**ACAUTION** 

C-5

15"

Scale: N.T.S

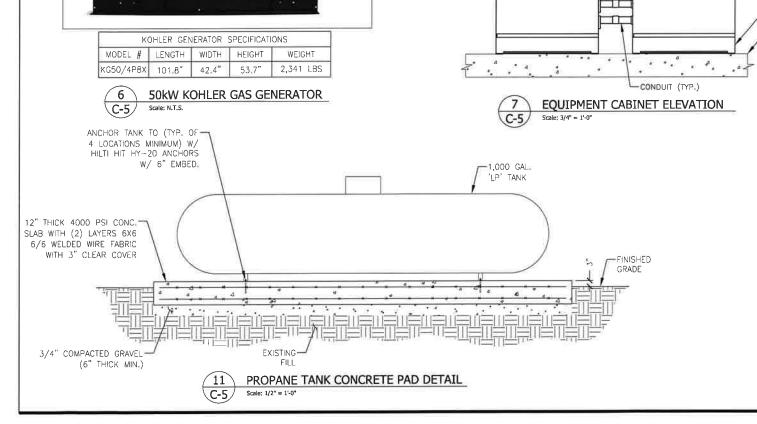
1. "YELLOW" CAUTION SIGN SHALL BE LOCATED AT COMPOUND ENTRY LOCATION AND VERIZON EQUIPMENT 2. SIGN MEASURES 12"Hx8"W

SAMSUNG RRH 700/850 ORAN SPECIFICATION

15\*

10 RRH DETAIL - 700/850

Scale: N.T.S


DIAMETER

9.1\*

WEIGHT

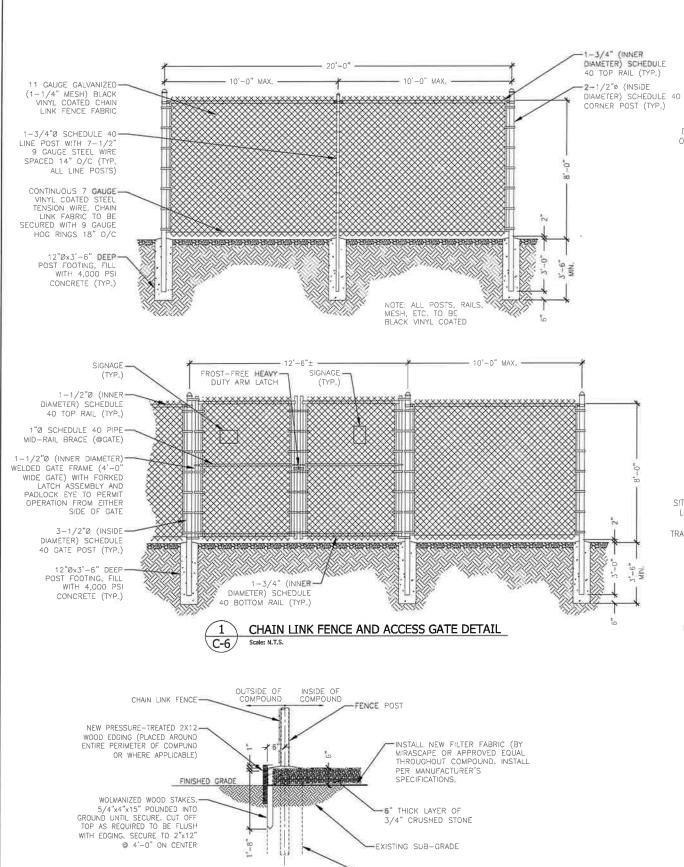
70.3 LBS

14 CAUTION SIGN C-5/ Scale: N.T.S





| NNA     | SAMSUNG R | RH AWS/P | CS ORAN SF | PECIFICATION |
|---------|-----------|----------|------------|--------------|
| WEIGHT  | HEIGHT    | WIDTH    | DIAMETER   | WEIGHT       |
| 0.6 LBS | 15        | 15"      | 10"        | 74,7 LBS     |

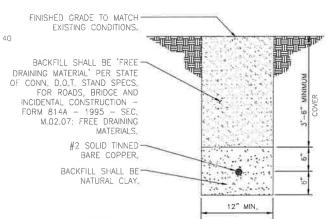

RRH DETAIL - AWS/PCS C-5/ Scale: N.T.S

INFORMATION

This is an ACCESS POINT to an area with transmitting antennas. switch: Site ID:

1. "GREEN" INFORMATION SIGN SHALL BE LOCATED AT COMPOUND ENTRY LOCATION AND VERIZON EQUIPMENT. 2. SIGN MEASURES 12"Wx8"H

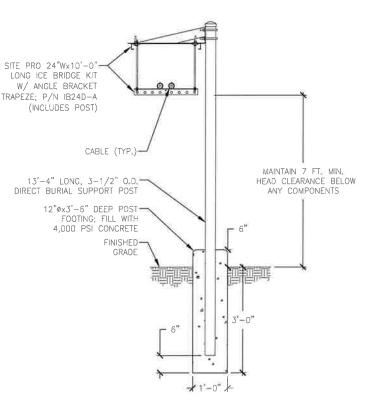
13 **VERIZON INFORMATION SIGN** C-5



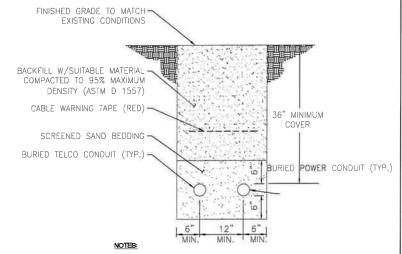

12" DIA, FENCE POST

**GRADE DETAIL** 

Scale: N.T.S.


C-6



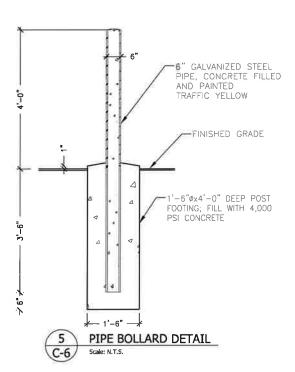

#### NOTES:

- ENGINEER SHALL INSPECT PLACEMENT OF EGR CONDUCTOR PRIOR TO BACKFILLING.
- MAINTAIN MIN. 2'-0" LINEAR CLEARANCE BETWEEN NATURAL CLAY BACKFILL AND THE FOLLOWING: FOUNDATION, UNDERGROUND PIPING/CONDUIT, UNDERGROUND SERVICES. IN THE CLEARANCE AREAS, USE EARTH BACKFILL INSTEAD.
- 3. EXERCISE HANDLING AND USE PRECAUTION OF BACKFILL MATERIAL PER MFR'S REQUIREMENTS.





6 CABLE BRIDGE DETAIL
C-6 Scale: N.T.S.




- 1. THE CLEAN FILL SHALL PASS THROUGH A 3/8" MESH SCREEN AND SHALL NOT CONTAIN SHARP STONES, OTHER BACKFILL SHALL NOT CONTAIN ASHES, CINDERS, SHELLS, FROZEN MATERIAL, LOOSE DEBRIS OR STONES LARGER THAN 2" IN MAXIMUM DIMENSION,
- DEBRIS OR STONES LARGER THAN 2" IN MAXIMUM DIMENSION.

  WHERE EXISTING UTILITIES ARE LIKELY TO BE ENCOUNTERED.
  CONTRACTOR SHALL HAND DIG AND PROTECT EXISTING UTILITIES.

  3. REFER TO PLANS FOR FINAL QUANTITY OF CONDUITS (POWER & TEL
- 3. REFER TO PLANS FOR FINAL QUANTITY OF CONDUITS (POWER & TELCO).
  4. ALL CONDUITS SEPARATIONS SHALL BE IN ACCORDANCE WITH MEC & UTILITY CO. REQUIREMENTS.







BOCA RATON, FL, 33487

Cellco Partnership d/b/a Verizon Wireless

verizon√

WIRELESS COMMUNICATIONS FACILITY
20 ALEXANDER DRIVE
WALLINGFORD, CT 06492

Son Air Engineering, LLC

Cold Spring, NY 10516 onair@optonline.net 201-456-4624

LICENSURE



CT LIC. NO. 22144

NO: DATE: SUBMISSIONS

0 04,23,24 D&M FILING
1 06,18,24 REVISED PER CLIENT COMMENTS

MF CHECKED BY:

VERTICAL BRIDGE SITE ID:

US-CT-5055

VERIZON SITE NAME:

WILTON SOUTH CT

PROJECT INFORMATION:

TOWN OF WILTON 180 SCHOOL RD. WILTON, CT

DRAWING TITLE:

FENCE & SITE DETAILS

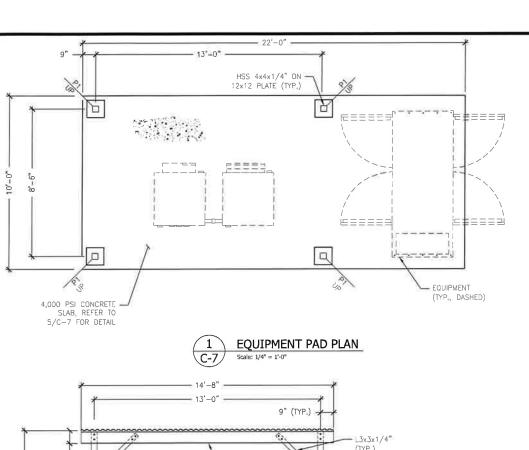
SHEET NUMBER:

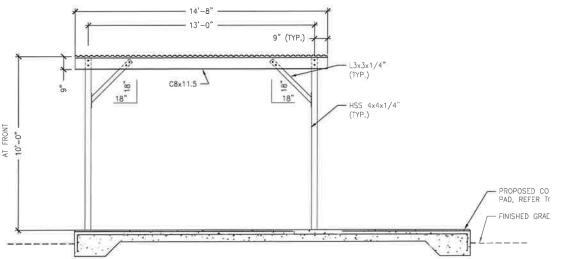
C-6

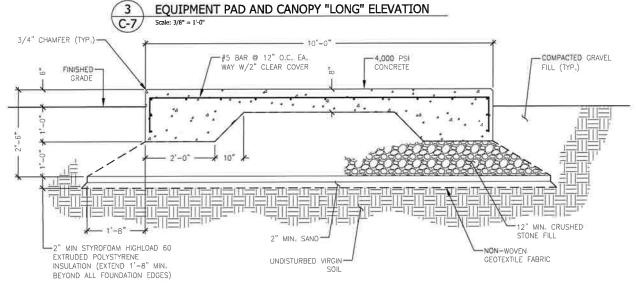
#### **GENERAL STRUCTURAL NOTES:**

- 1. ALL EQUIPMENT SHALL BE INSTALLED PLUMB AND LEVEL.
- 2. ALL WIDE FLANGE STRUCTURAL STELL SHALL CONFORM WITH A992 SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST AISC CODE AND ASTM SPECIFICATION, STEEL SHALL CONFORM TO ASTM A-36. PIPE SHALL CONFORM TO ASTM A-501 OR ASTM TYPE EOR \$ A-53 (GRADE B).
- 3. ALL CONNECTIONS OF STRUCTURAL STEEL MEMBERS SHALL BE MADE USING SPECIFIED WELDS WITH WELDING ELECTRODES E-70XX OR SPECIFIED HIGH STRENGTH BOLTS TO BE ASTM A325, THREAD EXCLUDED FROM SHEAR PLANE.
- 4. ALL STEEL EXPOSED TO MOISTURE SHALL BE HOT DIPPED GALVANIZED AFTER FABRICATION PER ASTM A-123. ALL DAMAGED SURFACES, WELDED AREAS AND AUTHORIZED NON-GALVANIZED MEMBERS OR PARTS (EXISTING OR NEW) SHALL BE PAINTED WITH 2 COATS OF ZRC COLD GALVANIZING COMPOUND MANUFACTURED BY ZRC CHEMICAL PRODUCTS CO. QUINCY, MA, OR USE THERMAL SPRAYING WITH PLATTZINC 85/15 AS MANUFACTURED BY PLATT BROTHERS & COMPANY, WATERBURY, CT 1-800-752-8276.
- 5. ALL SHOP AND FIELD WELDING SHALL BE DONE BY WELDERS QUALIFIED AS DESCRIBED IN THE "AMERICAN WELDING SOCIETY'S STANDARD QUALIFICATION PROCEDURE' TO PERFORM THE TYPE OF WORK REQUIRED.
- 6. ALL PIPE SIZES ARE NOMINAL DIAMETER (INSIDE DIAMETER).

#### CAST-IN-PLACE CONCRETE:

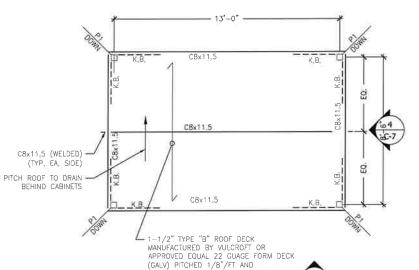

- 1. ALL CONCRETE WORK SHALL CONFORM TO THE LATEST EDITION OF THE ACI BUILDING CODE.
- 2. ALL CONCRETE SHALL ATTAIN 4000 PSI COMPRESSIVE STRENGTH AT 28 DAYS
- 3. READY MIX: COMPLY WITH ACI-301 AND ASTM C-94. ALL CONCRETE EXPOSED TO THE GROUND OR WEATHER SHALL BE AIR ENTRAINED
- 4. COLD WEATHER CONCRETE POURING SHALL BE IN ACCORDANCE WITH ACI-306.
- 5. THROUGHOUT CONSTRUCTION THE CONCRETE WORK SHALL BE ADEQUATELY PROTECTED AGAINST DAMAGE DUE TO EXCESSIVE LOADING, CONSTRUCTION EQUIPMENT, MATERIALS OR THODS, ICE, RAIN, SNOW, EXCESSIVE HEAT AND FREEZING TEMPERATURES.
- 6. EARLY DRYING OUT OF CONCRETE, ESPECIALLY DURING THE FIRST 24 HOURS, SHALL BE CAREFULLY GUARDED AGAINST. ALL SURFACES SHALL BE PROTECTED USING MOIST CURING OR A MEMBRANE CURING AGENT APPLIED AS SOON AS FORMS ARE REMOVED OR FINISHING OPERATIONS ARE COMPLETE. CARE SHALL BE EXERCISED SO AS NOT TO DAMAGE
- 7. APPLY NON-SLIP BROOM FINISH IMMEDIATELY AFTER TROWEL FINISHING.
- 8, CONTRACTOR TO COORDINATE REQUIREMENTS OF STRUCTURAL, CIVIL, MECHANICAL AND ELECTRICAL DRAWINGS INCLUDING ANY AND ALL PENETRATIONS SPECIFIED PRIOR TO POURING CONCRETE.
- 9. CONTRACTOR SHALL PROVIDE A 3/4" CHAMFER ON ALL CONCRETE SLABS.


#### REINFORCING


- T. ALL REINFORCING BAR SHALL CONFORM TO THE LATEST ACI CODE AND DETAILING MANUAL.
- 2. WHERE REINFORCING IS CALLED OUT IN THE CONSTRUCTION DOCUMENTS IT SHALL BE 3" CLEAR COVER (MINIMUM UNLESS OTHERWISE NOTED).
- 3. ALL BARS SHALL BE ASTM A-615, GRADE 60.
- 4. WELDED WIRE FABRIC SHALL BE ASTM A-185.
- 5. WHERE CONTINUOUS BARS ARE CALLED FOR, THEY SHALL BE RUN CONTINUOUSLY AROUND CORNERS AND LAPPED AT NECESSARY SPLICES OR HOOKED AT DISCONTINUOUS ENDS LAP SHALL BE 40 BAR DIAMETERS.

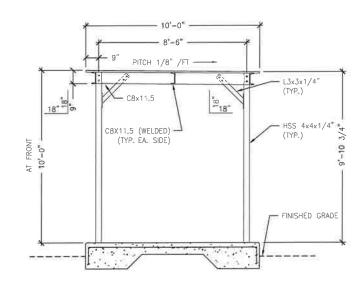
#### FOUNDATION

FOOTINGS SHALL BEAR ON UNDISTURBED SOIL AND /OR SUPERVISED COMPACTED FILL, FREE OF FROST, HAVING A MINIMUM ALLOWABLE BEARING CAPACITY OF 1 1/2 TONS PER









NOTE: MINIMUM SAFE ALLOWABLE BEARING CAPACITY ON VIRGIN SOIL OR ENGINEER CONTROLLED COMPACTED FILL TO BE 3000 PSF.

CONCRETE SLAB SECTION Scale: 3/4" = 1'-0



MECHANICALLY FASTENED TO ANGLES
WITH HILTI X-HSN 24 DECK FASTENERS

EQUIPMENT CANOPY ROOF FRAMING PLAN Scale: 3/8" = 1'-0"



EQUIPMENT PAD AND CANOPY "SHORT" ELEVATION (C-7)

#### PLAN NOTES

LECEND

VERIFY ALL DIMENSIONS, ELEVATIONS, EXISTING FRAMING MEMBER SIZES AND GENERAL CONDITIONS PRIOR TO COMMENCEMENT OF WORK. NOTIFY ENGINEER OF RECORD OF ANY DISCREPANCIES BETWEEN THESE DRAWINGS AND EXISTING

| LLGLIND     |                                                                |
|-------------|----------------------------------------------------------------|
| SYMBOL      | DESCRIPTION                                                    |
| 2)          | INDICATES HS54x4x1/4 ASTM A500 GR, B<br>(Fy=48ksi) STEEL POST. |
| <del></del> | INDICATES SPAN DIRECTION                                       |
| K.B.        | INDICATES L3x3x1/4 ASTM A36 (Fy=36ksi) STEEL ANGLE             |



Cellco Partnership d/b/a Verizon Wireless



WIRELESS COMMUNICATIONS FACILITY 20 ALEXANDER DRIVE WALLINGFORD, CT 06492

On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 onair@optonline.net 201-456-4624

LICENSURE



SUBMISSIONS O: DATE: 0 04.23.24 D&M FILING 1 06.18.24 REVISED PER CLIENT COMMENTS

DW MF

VERTICAL BRIDGE SITE ID:

US-CT-5055

VERIZON SITE NAME

WILTON SOUTH CT

PROJECT INFORMATION

TOWN OF WILTON 180 SCHOOL RD. WILTON, CT

**EOUIPMENT PAD/CANOPY PLAN & SECTIONS** 

SHEET NUMBER

## **ATTACHMENT 2**

Valmont Industries, Inc. PO Box 358, 28800 Ida Street Valley, NE 68064 USA 1-800-547-2151

> Communication Structure Calculations for The Towers, LLC US-CT-5055 - Wilton South CT, CT

610713-P1RevA

Monday, 20 May 2024

Prepared By: Chandra Rao Reviewed By:

STOWN CONNECTION A POSS CONTROL OF THE STORY OF THE STORY

Proprietary Information

Industries, Inc. and are furnished solely upon the conditions that they will be retained in strictest confidence and shall not be duplicated, used or disclosed in These documents, drawings and/or calculations and all information related to them are the exclusive property and the proprietary information of Valmont whole or in part for any purpose, in any way, without the prior written permission of Valmont Industries, Inc.



Valmont Industries, Inc. PO Box 358, 28800 Ida Street Valley, NE 68064 USA 1-800-547-2151

## Table Of Contents

| PROJECT SUMMARY |                                                                     |
|-----------------|---------------------------------------------------------------------|
| Š               |                                                                     |
| ⊢               | •                                                                   |
| S               | •                                                                   |
| 3               |                                                                     |
| 3               |                                                                     |
|                 | •                                                                   |
|                 | :                                                                   |
|                 |                                                                     |
| :               |                                                                     |
|                 | :                                                                   |
| :               |                                                                     |
|                 |                                                                     |
| :               | Ö                                                                   |
| 1               | - •                                                                 |
| :               | Ħ                                                                   |
|                 | 0                                                                   |
|                 | 五                                                                   |
|                 | =                                                                   |
|                 | 5                                                                   |
| 9               | =                                                                   |
| 1               | $\sim$                                                              |
| 3               | <b>9</b> 2                                                          |
| 1               | Z                                                                   |
|                 | 0                                                                   |
|                 | Ě                                                                   |
|                 |                                                                     |
|                 | =                                                                   |
|                 | 3                                                                   |
|                 | - 1                                                                 |
|                 | I                                                                   |
| 1               | V)                                                                  |
| 2               | 9                                                                   |
|                 | 47                                                                  |
| :               |                                                                     |
|                 | C                                                                   |
|                 | - ch                                                                |
|                 | 5                                                                   |
|                 |                                                                     |
|                 | 굨                                                                   |
|                 |                                                                     |
| 4               | =                                                                   |
| 1               | 0                                                                   |
|                 | [−ĵ                                                                 |
|                 | 3                                                                   |
|                 | $\equiv$                                                            |
| 3               | $\sim$                                                              |
| 8               |                                                                     |
| 10              | 0                                                                   |
|                 | તં                                                                  |
| 7               | 2                                                                   |
| <b>&gt;</b>     |                                                                     |
| 2               | Ų                                                                   |
| ₹               | Ų                                                                   |
| Ţ               | _                                                                   |
| $\leq$          | Ó                                                                   |
| 2               | 5                                                                   |
| $\supset$       | <b>3</b>                                                            |
| S               | 5                                                                   |
| ⊢               | <u> </u>                                                            |
| Ü               | 0                                                                   |
| μĺ              | $\vdash$                                                            |
| $\equiv$        | [~]                                                                 |
| <del>∀</del>    | THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT |
| 7               |                                                                     |
| _               | -                                                                   |

# Proprietary Information

These documents, drawings and/or calculations and all information related to them are the exclusive property and the proprietary information of Valmont Industries, Inc. and are furnished solely upon the conditions that they will be retained in strictest confidence and shall not be duplicated, used or disclosed in whole or in part for any purpose, in any way, without the prior written permission of Valmont Industries, Inc.

Valmont Industries, Inc. Project Summary The Towers, LLC 610713

|                                      |                     | Лах                                                       | Defl   |            | (in)               | 69                           |
|--------------------------------------|---------------------|-----------------------------------------------------------|--------|------------|--------------------|------------------------------|
| Shaft                                |                     |                                                           |        |            | (kips)             | 75.4                         |
| For Pole                             | d Case              | lear A                                                    |        |            | (kips) (kips) (in) | 97788 92.7 75.4              |
| Global Base Reactions For Pole Shaft | Governing Load Case | Moment Shear Axial                                        |        |            | (in-kip)           | 88/16                        |
| bal Base                             | Gov                 |                                                           | _      | ier        | (i)                | D                            |
| )<br>Clo                             |                     | Load                                                      | Casc   | Identifier |                    | NIM 6                        |
|                                      |                     | Anchor Load                                               | Bolts  |            |                    | 2759 2629 WIND               |
|                                      |                     | Base                                                      | Plate  |            |                    |                              |
|                                      |                     | Sect F                                                    |        |            |                    |                              |
| Weight (lb)                          |                     | ect E                                                     |        |            |                    | 1                            |
| Weig                                 | )                   | Sect D S                                                  |        |            |                    | 1                            |
|                                      |                     | Sect C                                                    |        |            |                    | 3261                         |
|                                      |                     | Sect B                                                    |        |            |                    | 111161                       |
|                                      |                     | Sect A                                                    |        |            |                    | 16077                        |
| STS                                  |                     | Top                                                       |        |            | (in)               | 22.92                        |
| Shaft Diameters                      |                     | Ground Top Sect A Sect B Sect C Sect D Sect E Sect F Base | Line   |            | (in)               | 63.50 22.92 16077 11161 3261 |
| Sha                                  |                     | Base                                                      |        |            | (in)               | 63.50                        |
| s                                    |                     | Qty                                                       |        |            |                    | 24                           |
| Anchor Bolts                         |                     | Anchor                                                    | Bolt   | Length     | (in)               | 72                           |
| Y                                    |                     | Max                                                       | Bolt   | Circle     | (in)               | 71.00                        |
|                                      |                     | Emb.                                                      | Length |            | (ff)               |                              |
|                                      |                     |                                                           | Height |            | (ft)               | 122.00                       |
|                                      |                     | Structure Identifier                                      |        |            |                    | 610713-PIRevANE              |

Valmont Industries, Inc. Project Summary The Towers, LLC 610713

|                      |        |         |           | 100 C C C C C C C C C C C C C C C C C C |            |            |                      | 100    |        | Congr | 1 (12) |                                                                                |        |        |                   | hickno | nekness (m) |        |        |
|----------------------|--------|---------|-----------|-----------------------------------------|------------|------------|----------------------|--------|--------|-------|--------|--------------------------------------------------------------------------------|--------|--------|-------------------|--------|-------------|--------|--------|
| Structure Identifier | Shaft  | Shaft   | Shaft     | Anchor                                  | Base Plate | Base Plate | Camber Sect A Sect B | Sect A | Sect B | Sect  | Sect D | Scot D   Scot E   Scot F   Scot A   Scot B   Scot C   Scot D   Scot E   Scot F | Sect F | Sect A | Sect B            | Sect C | Sect D      | Sect E | Sect F |
|                      | Yield  | Тарег   | Shape Bol | Bolt                                    | Width      | Thickness  |                      |        |        |       |        |                                                                                |        |        |                   |        |             |        |        |
|                      | Stress |         |           | Diameter                                | Length     |            |                      |        |        |       |        |                                                                                |        |        |                   |        |             |        |        |
|                      | (ksi)  | (in/ft) |           | (in)                                    | (in)       | (in)       | (in)                 |        |        |       |        |                                                                                |        |        |                   |        |             |        |        |
| 610713-PIRevANE      | 65     | 0.346   | 18        | 2.25                                    | 77.00      | 3.50       | 0.0 48.75 51.08      | 48.75  | 51.08  | 34.08 | 1      | 1                                                                              | 1      | ļ      | 0.563 0.500 0.313 | 0.313  | !           | 1      | i      |

Valmont Industries, Inc. Project Sunmary The Towers, LLC 610713

|                      |          |          |          |       |       | 2     |      | Š     | section Dat |       |      |      |                 |             |       |          |         |
|----------------------|----------|----------|----------|-------|-------|-------|------|-------|-------------|-------|------|------|-----------------|-------------|-------|----------|---------|
| Structure Identifier | "A"      | ¥        | .B.,     |       |       |       |      |       |             |       |      | وطن  | .AB             | .B.,C.,     | CD    | "D"-"E., | "E"-"F" |
|                      | Base     | Top      | Base     | Top   | Base  | Top   | Base | Top E | Base        | Top   | Base | Top  |                 | Joint Joint | Joint | Joint    | Joint   |
|                      | Diameter | Diameter | Diameter | eter  | eter  | eter  | eter | neter | eter        | neter | cter | nete | гТуре           | Type        | Type  | Type     | Type    |
|                      | (II)     | (iii)    | (ii)     | (iii) | (in)  | (iii) | (ii) | (m)   | (in)        | (iii) | (in) | (in) |                 |             |       |          |         |
| 610713-PIRevANE      | 63.50    | 46.63    | 50.00    | 32.33 | 34.71 | 22.92 |      |       | 1           | 1     | 1    | 1    | Slip Joint Slip | Slip Joint  |       |          | ŧ       |

## Valmont Industrics, Inc. Engineering Data

OVERVIEW \*\*\*

```
Weight (lbs)
                                                                                                                                                                                                                                                                                                                                                                                                                                               11667
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          9600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5920
                                                                                                                                                                                                                                                                                                                                                                                                                   With Ice
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Weight
                                                                                                                                                                                                                                                                                                                                                                                                                              EPA (ft^2)
478.33
341.67
341.67
341.67
4.50
10.80
14.40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    With Ice
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           370.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          691.20
744.60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                EPA
(£t^2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        4818
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2960
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          4800
                                                                                                                                                                                                                                                                                                                                                                                                                                             5833
4167
4167
4167
33
78
100
23
744
                                                                                                                                                                                                                                                                                                                                                                                                                              Weight (1bs)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Weight
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (TP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Without Ice
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (ft^2)
185.00
345.60
372.30
                                                                                                                         Spectral response acceleration at short periods, Ss = 0.24 and 1 sec, S1 = 0.06.
                                                                                                                                                                                                                                                                                                                                                                                                                  Without Ice
                                                                                                                                                                                                                                                                                                   2.25
72.00
12.75
74.50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 EPA
                                                                                                                                                                                Elevations are measured from top of base plate (approximately 1.0 ft agl)
                                                                                                                                                                                                                                                                                                                                                                                                                                         239.17
170.83
170.83
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    170.83
2.25
5.40
7.20
0.62
76.54
                                                                                                                                                                                                                                                                                                                                                                                                                               EPA (ft^2)
Structure design conforms to TIA-222-H including: 120~\mathrm{mph} Wind Speed (3 second gust, 700 year mean recurrence interval)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          121.50
105.00
72.00
                                                                                                                                                                                                                                                                                                                Diameter of Anchor Bolts (in):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ABP Top
                                                                                                                                                                                                                                                                                                                              Length of Anchor Bolts (in);
                                                                                                                                                                                                                                         Shielding factor of 0.82 is used Branches are not to scale and are for illustration purposes only \,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Neight
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (ft)
                                                                                                                                                                                                                                                                                                   Number of Anchor Bolts:
                                                                                                                                                                                                                                                                                                                                            Projection Length (in):
                                                                                                                                                                                                                                                                                                                                                                                                                                           1119.00
108.00
98.00
88.00
122.00
122.00
122.00
78.00
                                                                                                                                                                                                                                                                                                                                                                                                                               ABP Height (ft)
                                                      60.0 mph Basic Wind Speed with no ice for twist and sway
                                                                                                                                                                                                                                                                                   *** Structure Anchorage Information ***
                                                                                                                                                                                                                                                                                                                                                                                     *** Loading Data***
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      *** Linearly Distributed Loading Data ***
                                                                                                                                                        Feedlines are assumed to be placed interior to the pole
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          89.50
57.00
39.50
                                                                                                                                                                                                                                                                                                                                                         Template OD (in):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ABP Bottom
                           50 mph Ice Wind (500 year mean recurrence interval)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Neight
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (ft)
                                                                                              Topographic Category 1 Site Elevation = 372 (ft) above mean sea level
                                                                                                                                                                                                               Designed to extend from 123' AGL to 143' AGL
                                                                                                                                                                                                  Jurisdiction specified wind speed used
                                                                                                                                                                     Total pole height is 123.0 ft agl
                                                                                                                                                                                                                            Valmont standard handholes used
                                                                                                                                                                                                                                                                                                 122.0
71.00
92733
78206
97788
                                          1.00 in ice thickness
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3 4FT TOP BRANCH
2 8FT BRANCHES
1 5/8" X 10'
2 6' H.P (W/PM) (6GHZ)
                                                                    Exposure Category C
                                                                                                                                                                                                                                                                                                                                                        Base Moment (in-kips):
                                                                                                                                                                                                                                                                                                                                                                                                                                         1 42,000 SQ IN EPA
1 30,000 SQ IN EPA
1 30,000 SQ IN EPA
1 30,000 SQ IN EPA
1 5FT TOP BRANCH
                                                                                  Risk Category II
                                                                                                                                                                                                                                                                                                                                         Base Vertical (lbs):
                                                                                                                                         Site class = D
                                                                                                                                                                                                                                                                                                                                                                                                                               Description
                                                                                                                                                                                                                                                                                                   Pole Height (ft):
                                                                                                                                                                                                                                                                                                               Bolt Circle (in):
                                                                                                                                                                                                                                                                                                                            Base Shear (lbs):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          74 6FT BRANCH
96 8FT BRANCH
73 10FT BRANCH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Oty Description
                                                                                                                                                        76440760
```

8333 8333 8333 66 156 200

BY VALMONT INDUSTRIES FC Design Id: 610713-PIRevANE

DATE 05/20/2024 IMPAX 27.1.30.10 CITHE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT,

30499 Pole Shaft Weight (lbs) 18 Sides Shape: 22.919 63.500 0.34595 Dia, at Top of Baseplate (in) 34.710 22.919 0.31250 34'- 1.00" 3261 65.00 18 Sides \*\*\* SUMMARY \*\*\* /Third/ DESIGN SUMMARY Pole Taper (in/ft) Top Diameter (in) 49.999 32.327 0.50000 51.- 1.00" 11161 65.00 93'- 0.00" Slip Joint 61 46530 /Second/ /Second/ 48'- 9.00" 16077 65.00 18 Sides 48'- 9.00" Slip Joint 63.500 46.635 0.56250 82 91043 /First/ 122'- 0.00" /First/ Connections Between Sections Weight (lbs) Yield Strength (ksi) Overlap Length (in) Maximum Axial Force (lbs) Height Above Ground Base Diameter (in) Section Characteristics Height Above Base Plate Top Diameter (in) Design Code: TIA-222-II Thickness (in) Length

|                                |                  | ANALYSIS SUMMARY         | X                        | 5<br>5<br>5<br>5<br>5<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|--------------------------------|------------------|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                | Pt. of<br>Fixity | Governing<br>Level Sec.1 | Governing<br>Level Sec.2 | Governing<br>Level Sec.3                                                                         | Pole<br>Top                             |
| Governing Load Case            | WIND             | MIND                     | WIND                     | WIND                                                                                             | MIND                                    |
| Height (ft)                    | 00.00            | 00.0                     | 48.75                    | 93.00                                                                                            | 122.00                                  |
| Resultant Moment (in-kips)     | 97788            | 97788                    | 44326                    | 8224                                                                                             | 11                                      |
| Shear Force (lbs)              | 93441            | 93441                    | 85410                    | 43861                                                                                            | 430                                     |
| Axial Force (lbs)              | 74567            |                          | 48036                    | 21220                                                                                            | 122                                     |
| Effective Yield Strength (ksi) | 80.06            | 80.08                    | 82.55                    | 81.61                                                                                            | 82.55                                   |
| Combined Interaction Value     | 0.79             | 0.79                     | 0.70                     | 0.45                                                                                             | 0.00                                    |
| Total Deflection (in)          | 00.00            | 00.00                    | 11.02                    | 41.13                                                                                            | 68.84                                   |

Section Shape

Note: Diameters are outside, measured across the flats  $\mbox{\sc Forces}$  and moments are reported in the local element coordinate system

| DATE (         | TMDAY        |
|----------------|--------------|
| CI             |              |
|                |              |
| SOUTH CT       |              |
| - WILTON       |              |
| US-CT-5055 - W |              |
| , SITE:        |              |
| POLE,          |              |
| , LLC 122.0'   |              |
| LLC            |              |
| THE TOWERS,    |              |
| FOR:           | ANE.         |
| INDUSTRIES     | 610713-P1Rev |
|                |              |

| DATE 05/20/2024<br>IMPAX 27.1.30.10                                                                              | Notes                                        | 0003                                              |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|
| I, CI                                                                                                            | Shear<br>Resultant<br>(X & Y)<br>(lbs)       | 92733<br>31402<br>20750<br>1946                   |
| THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT *** POLE SHAFT POINT OF FIXITY REACTIONS *** | Shear<br>In<br>on Y-Direction<br>(lbs)       | 59607<br>20185<br>13338<br>1251<br>1251           |
| JS-CT-5055 - TACTIONS ***                                                                                        | Shear<br>In<br>X-Direction Y-<br>(lbs)       | 71037<br>24055<br>15896<br>1491<br>1491           |
| POLE, SITE: U                                                                                                    | Vertical<br>Force<br>(1bs)                   | 75446<br>120150<br>62434<br>78060<br>52955        |
| TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - *** POLE SHAFT POINT OF FIXITY REACTIONS ***                         | Moments<br>Torsional<br>(in-kips)            | 4 8 8 0 0 0 0                                     |
| THE TOWERS                                                                                                       | Moments<br>Resultant<br>(X & Y)<br>(in-kips) | 97788<br>34842<br>22169<br>2875<br>2660           |
| FOR;<br>evANE                                                                                                    | Moments<br>About<br>Y-Axis<br>(in-kips)      | -74910<br>-26690<br>-16983<br>-2202<br>-2037      |
| BY VALMONT INDUSTRIES FY<br>Design Id: 610713-PIRevANE                                                           | Moments<br>About<br>X-Axis<br>(in-kips)      | 62857<br>22396<br>14250<br>1848<br>1710           |
| BY VALMC<br>Design I                                                                                             | Loading<br>Case<br>Identifier                | WIND<br>ICE + WIND<br>T+S<br>Seismic<br>Seismic 2 |

Note: Positive vertical force is downward. Reactions are considered in the global coordinate system.

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT

DATE 05/20/2024 IMPAX 27.1.30.10

Orientation of System +\*\*\*\*\* +X-Axis \* (Vertical) \* +Z-Axis (Longitudinal) \* +Y-Axis \* \*\*\* INPUT LOADS \*\*\* Risk Category II, Topographic Category 1, Crest Height 0.00 ft Orientations are Measured Clockwise From +X Axis
Positive Y Axis is 90 Degrees Clockwise From +X Axis
Foundation Rotation of 0.50 Degrees
Elevation of structure base above surrounding terrain = 1.00 ft Basic Wind Velocity is 120.00 mph Ice Thickness 0.00 Wind Orientation is 40.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.200 TIA-222-H WIND (1.2 D + 1.0 Wo) Exposure C, Gust Factor 1.10 BY VALMONT INDUSTRIES FO Design Id: 610713-PIRevANE Loading Case Design Code

(Transverse)

|                                         | 1-42,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-5ft Top Bra | 3-4ft Top Bra | 2-8ft Branche | 1-5/8" x 10' | 2-6' II.P | 6ft Branch | 8ft Branch |
|-----------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|
| EPA<br>(ft^2)                           | 239.17        | 170.83        | 170.83        | 170,83        | 2.25          | 5,40          | 7.20          | 0,62         | 76,54     | 26.43      | 26.43      | 26.43      | 26,43      | 26.43      | 26,43      | 26,43      | 34.56      |
| Force-Z<br>(lbs)                        | 7000          | 2000          | 2000          | 2000          | 40            | 94            | 120           | 28           | 893       | 208        | 508        | 508        | 208        | 208        | 208        | 208        | 576        |
| Force-Y (lbs)                           | 7685          | 5379          | 5269          | 5154          | 73            | 175           | 184           | 20           | 2252      | 849        | 843        | 835        | 828        | 821        | 813        | 804        | 1077       |
| Force-X (lbs)                           | 9158          | 6410          | 6279          | 6142          | 87            | 209           | 219           | 24           | 2684      | 1012       | 1004       | 966        | 987        | 978        | 896        | 959        | 1283       |
| Orientation<br>in XY Plane<br>(Degrees) | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00        | 40.00     | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      |
| Load<br>Eccentricity                    | 00.00         | 00.00         | 00.00         | 00.00         | 0.00          | 00.00         | 00.00         | 00.00        | 1.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      |
| Load<br>Height                          | 119.00        | 108.00        | 00.86         | 88.00         | 124.50        | 124.00        | 39.00         | 125.00       | 78.00     | 119.21     | 114,64     | 110.07     | 105,50     | 100.93     | 96.36      | 91.79      | 102,60     |
| Mounting<br>Height                      | 119.00        | 108.00        | 98.00         | 88.00         | 122.00        | 122.00        | 39.00         | 122.00       | 78.00     | 119.21     | 114,64     | 110.07     | 105.50     | 100.93     | 96.36      | 91.79      | 102.60     |
| Load<br>Number                          | H             | 2             | m             | 4             | Ŋ             | 9             | 7             | 80           | 6         | 10         | 11         | 12         | 13         | 14         | 15         | 16         | 17         |

| FOR: THE TOWERS, LLC evANE *** |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲.                       | ۲          | _          | ۲          | ۲          | -          | ٦          | -          | _          | r,         | ų;          | q;          | r,          | ų;          | ų;          | ų;          |             |
|--------------------------------|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 05/20/2024                     | 1     |                  | THE STATE OF THE S |                          | 8ft Branch | 10ft Branch |
| CI                             | 7 447 |                  | Orientation of System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA<br>(ft^2)            | 34.56      | 34,56      | 34.56      | 34.56      | 34.56      | 34.56      | 34.56      | 34.56      | 34.56      | 53.19       | 53.19       | 53,19       | 53,19       | 53,19       | 53.19       | 53.19       |
| VILTON SOUTH CT,               |       |                  | Orienta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Force-Z (1bs)            | 576        | 576        | 576        | 576        | 576        | 576        | 576        | 576        | 576        | 826         | 826         | 826         | 826         | 826         | 826         | 826         |
| 1                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Force-Y (1bs)            | 1066       | 1055       | 1043       | 1031       | 1018       | 1005       | 991        | 716        | 961        | 1529        | 1507        | 1484        | 1460        | 1434        | 1406        | 1376        |
| 122.0' POLE,                   | LOADS |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Force-X (1bs)            | 1270       | 1257       | 1243       | 1229       | 1214       | 1198       | 1181       | 1164       | 1145       | 1822        | 1796        | 1769        | 1740        | 1709        | 1675        | 1640        |
| LLC                            |       |                  | Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in XY Plane<br>(Degrees) | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       |
| THE                            |       | penu             | T. Oac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eccentricity             | 00.00      | 00.00      | 00.00      | 0.00       | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       |
| 5VA)                           |       | WIND - Continued | Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ш                        | 97.80      | 93.00      | 88,20      | 83,40      | 78.60      | 73.80      | 00.69      | 64,20      | 59,40      | 69.68       | 65.04       | 60.39       | 55.75       | 51,11       | 46.46       | 41.82       |
| BY VALMONT INDUSTRIES          |       | Loading Case     | Monnting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Height                   | 97.80      | 93.00      | 88.20      | 83.40      | 78.60      | 73.80      | 00.69      | 64.20      | 59.40      | 69.68       | 65.04       | 60.39       | 55.75       | 51.11       | 46.46       | 41,82       |
| BY                             |       | Load             | T. O. B. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number                   | 8          | 19         | 20         | 21         | 22         | 23         | 24         | 25         | 26         | 27          | 28          | 59          | 30          | 31          | 32          | 33          |

THE TOWERS, LLC 122.0' POLE, SITE: US-CI-5055 - WILTON SOUTH CT,

DATE 05/20/2024 IMPAX 27.1.30.10

CI

BY VALMONT INDUSTRIES FOR: Design Id: 610713-PIRevANE

\*\*\* INPUT LOADS \*\*\* IIA-222-H ICE + WIND ( 1.2 D + 1.0 Wi + 1.0 Di ) Design Code Loading Case

Foundation Rotation of 0.50 Degrees Elevation of structure base above surrounding terrain = 1.00 ft Basic Wind Velocity is 50.00 mph Ice Thickness 1.00 Wind Orientation is 40.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.200 Exposure C, Gust Factor 1.10 Risk Category II, Topographic Category I, Crest Height 0.00 ft Orientations are Measured Clockwise From +X Axis Positive Y Axis is 90 Degrees Clockwise From +X Axis

\* (Vertical) \* +Z-Axis (Longitudinal) \* +Y-Axis \*

(Transverse)

Orientation of System +\*\*\*\* +X-Axis

|                                         | 1-42,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-5ft Top Bra | 3-4ft Top Bra | 2-8ft Branche | 1-5/8" x 10' | 2-6' II.P | 6ft Branch | 8ft Branch |
|-----------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|
| EPA<br>(ft^2)                           | 478.33        | 341.67        | 341.67        | 341.67        | 4.50          | 10.80         | 14,40         | 2,91         | 82,50     | 52.86      | 52,86      | 52,86      | 52,86      | 52,86      | 52.86      | 52.86      | 69.12      |
| Force-Z<br>(lbs)                        | 14000         | 10000         | 10000         | 10000         | 79            | 187           | 240           | 59           | 1704      | 1015       | 1015       | 1015       | 1015       | 1015       | 1015       | 1015       | 1152       |
| Force-Y (1bs)                           | 2668          | 1868          | 1829          | 1790          | 25            | 61            | 64            | 16           | 421       | 295        | 293        | 290        | 288        | 285        | 282        | 279        | 374        |
| Force-X<br>(lbs)                        | 3180          | 2226          | 2180          | 2133          | 30            | 72            | 76            | 20           | 502       | 351        | 349        | 346        | 343        | 340        | 336        | 333        | 445        |
| Orientation<br>in XY Plane<br>(Degrees) | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00        | 40.00     | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      |
| Load<br>Eccentricity                    | 00.00         | 00.00         | 00.00         | 00.00         | 00.00         | 00.00         | 00.00         | 00.00        | 1.00      | 00.00      | 00.00      | 00.00      | 0.00       | 00.00      | 00.00      | 00.00      | 00.00      |
| Load                                    | 119.00        | 108.00        | 98.00         | 88.00         | 124.50        | 124.00        | 39.00         | 125.00       | 78.00     | 119.21     | 114.64     | 110.07     | 105,50     | 100.93     | 96.36      | 91.79      | 102.60     |
| Mounting<br>Height                      | 119.00        | 108.00        | 98.00         | 88.00         | 122.00        | 122,00        | 39.00         | 122.00       | 78.00     | 119.21     | 114.64     | 110.07     | 105.50     | 100.93     | 96.36      | 91.79      | 102.60     |
| Load                                    | г             | 2             | т             | Ā             | ις            | 9             | 7             | ∞            | Ø         | 10         | 11         | 12         | 13         | 14         | 15         | 16         | 17         |

| DATE 05/20/2024<br>IMPAX 27.1.30.10            | 1            | ı.                         |           | 8ft Branch | 10ft Branch |
|------------------------------------------------|--------------|----------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| DATE<br>IMPA                                   |              | on or system<br>EPA        | (ft^2)    | 69,12      | 69.12      | 69.12      | 69.12      | 69.12      | 69.12      | 69,12      | 69.12      | 69.12      | 106,37      | 106:37      | 106,37      | 106.37      | 106,37      | 106.37      | 106.37      |
| 1 CT, CT                                       |              | Ofientation of             | J)        | C)         | 2          | 01         | O.I.       | 01         | 01         | 01         | 0)         | O.I.       | 61          | 01          | 0.1         | 01          | 0.1         | 0.1         | 01          |
| WILTON SOUTH CT,                               | į            | Jorce-Z                    | (lbs)     | 1152       | 1152       | 1152       | 1152       | 1152       | 1152       | 1152       | 1152       | 1152       | 1652        | 1652        | 1652        | 1652        | 1652        | 1652        | 1652        |
| SITE: US-CT-5055 -                             |              | Force-Y                    | (lbs)     | 370        | 366        | 362        | 358        | 354        | 349        | 344        | 339        | 334        | 531         | 523         | 515         | 207         | 498         | 488         | 478         |
| POLE,                                          |              | Force-X                    | (lbs)     | 441        | 436        | 431        | 427        | 421        | 416        | 410        | 404        | 398        | 633         | 624         | 614         | 604         | 593         | 582         | 569         |
| TOWERS, LLC 122.0'                             |              | Orientation<br>in XY Plane | (Degrees) | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       |
| THE                                            | Continued    | Load<br>Eccentricity       |           | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       |
| INDUSTRIES FOR:<br>610713-P1RevANE             | ICE + WIND - | Load<br>Height             |           | 97.80      | 93,00      | 88.20      | 83,40      | 78,60      | 73.80      | 00.69      | 64.20      | 59.40      | 69.68       | 65,04       | 60,39       | 55.75       | 51.11       | 46.46       | 41.82       |
| BY VALMONT INDUSTRIES<br>Design Id: 610713-P1R | Loading Case | Mounting<br>Height         |           | 97.80      | 93.00      | 88.20      | 83.40      | 78.60      | 73.80      | 00.69      | 64.20      | 59.40      | 69.68       | 65.04       | 60.39       | 55.75       | 51.11       | 46.46       | 41.82       |
| BY V2<br>Desiç                                 | Load         | Load                       |           | 18         | 19         | 20         | 21         | 22         | 23         | 24         | 25         | 26         | 27          | 28          | 29          | 30          | 31          | 32          | 33          |

BY VALMONT INDUSTRIES FC Design Id: 610713-PIRevANE

THE TOWERS, LLC 122.0' POLE, SITE; US-CT-5055 - WILTON SOUTH CT, CT

DATE 05/20/2024 IMPAX 27.1.30.10

\*\*\* INPUT LOADS \*\*\*

TIA-222-H T+S ( 1.0 D + 1.0 Wo ) Loading Case Design Code

Exposure C, Gust Factor 1.10
Risk Category II, Topographic Category I, Crest Height 0.00 ft
Orientations are Measured Clockwise From +X Axis
Positive Y Axis is 90 Degrees Clockwise From +X Axis
Foundation Rotation of 0.50 Degrees
Elevation of structure base above surrounding terrain = 1.00 ft Basic Wind Velocity is 60.00 mph Ice Thickness 0.00 Wind Orientation is 40.0 Degrees Clockwise From +X Axis Structure Weight Overload Factor is 1.000 Exposure C,

\* (Vertical) \* +Z-Axis (Longitudinal) \* +Y-Axis

(Transverse)

Orientation of System +\*\*\*\*\* +X-Axis

|                                         | 1-42,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-5ft Top Bra | 3-4ft Top Bra | 2-8ft Branche | 1-5/8" x 10' | 2-6' II.P | 6ft Branch | 8ft Branch |
|-----------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|
| EPA<br>(ft^2)                           | 239,17        | 170.83        | 170.83        | 170.83        | 2.25          | 5.40          | 7.20          | 0.62         | 76,54     | 26.43      | 26,43      | 26.43      | 26,43      | 26.43      | 26.43      | 26.43      | 34.56      |
| Force-Z<br>(lbs)                        | 5833          | 4167          | 4167          | 4167          | 33            | 78            | 100           | 23           | 744       | 423        | 423        | 423        | 423        | 423        | 423        | 423        | 480        |
| Force-Y (lbs)                           | 1719          | 1203          | 1179          | 1153          | 16            | 39            | 41            | 5            | 504       | 190        | 188        | 187        | 185        | 184        | 182        | 180        | 241        |
| Force-X<br>(lbs)                        | 2049          | 1434          | 1405          | 1374          | 19            | 47            | 49            | Ŋ            | 009       | 226        | 225        | 223        | 221        | 219        | 217        | 214        | 287        |
| Orientation<br>in XY Plane<br>(Degrees) | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00        | 40.00     | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      |
| Load<br>Eccentricity                    | 00.0          | 00.0          | 00.00         | 00.00         | 00.00         | 00.0          | 00.00         | 00.00        | 1.00      | 00.0       | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.0       | 00.00      |
| Load<br>Height                          | 119,00        | 108.00        | 98.00         | 88.00         | 124.50        | 124.00        | 39.00         | 125,00       | 78.00     | 119.21     | 114.64     | 110.07     | 105.50     | 100.93     | 96,36      | 91.79      | 102,60     |
| Mounting<br>Height                      | 119.00        | 108.00        | 00.86         | 88.00         | 122.00        | 122.00        | 39.00         | 122,00       | 78.00     | 119.21     | 114.64     | 110.07     | 105.50     | 100.93     | 96.36      | 91.79      | 102.60     |
| Load                                    | ⊣             | 2             | m             | Ď.            | വ             | 9             | 7             | 00           | 0)        | 10         | 11         | 12         | 13         | 14         | 1.5        | 16         | 17         |

| DATE 05/20/2024<br>IMPAX 27.1.30.10            |                | еш                                    |                          | 8ft Branch | 10ft Branch |
|------------------------------------------------|----------------|---------------------------------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| DAT                                            |                | of System                             | EPA<br>(ft^2)            | 34.56      | 34,56      | 34.56      | 34.56      | 34.56      | 34.56      | 34,56      | 34.56      | 34.56      | 53.19       | 53.19       | 53.19       | 53,19       | 53.19       | 53,19       | 53,19       |
| CI, CI                                         |                | Orientation of                        | EPA<br>(ft^)             |            |            |            |            |            |            |            |            |            |             |             |             |             |             |             |             |
| WILTON SOUTH                                   |                | Orie                                  | Force-Z (lbs)            | 480        | 480        | 480        | 480        | 480        | 480        | 480        | 480        | 480        | 688         | 688         | 889         | 889         | 889         | 889         | 889         |
| SITE: US-CT-5055 - V                           |                |                                       | Force-Y (1bs)            | 238        | 236        | 233        | 231        | 228        | 225        | 222        | 218        | 215        | 342         | 337         | 332         | 327         | 321         | 314         | 308         |
| POLE,                                          |                |                                       | Force-X (1bs)            | 284        | 281        | 278        | 275        | 272        | 268        | 264        | 260        | 256        | 408         | 402         | 396         | 389         | 382         | 375         | 367         |
| TOWERS, LLC 122.0'                             |                | + + + + + + + + + + + + + + + + + + + | in XY Plane<br>(Degrees) | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       |
| THE                                            | ned            | , r                                   | sity                     | 00.0       | 00.0       | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.0       | 00.0        | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       |
| INDUSTRIES FOR:<br>610713-PIREVANE             | T+S - Continue | 7 (                                   | ىد                       | 97.80      | 93.00      | 88,20      | 83.40      | 78.60      | 73.80      | 00.69      | 64.20      | 59,40      | 69.68       | 65.04       | 60.39       | 55.75       | 51,11       | 46,46       | 41.82       |
| BY VALMONT INDUSTRIES<br>Design Id: 610713-PIR | Loading Case   | (N                                    | Height                   | 97.80      | 93.00      | 88.20      | 83.40      | 78.60      | 73.80      | 69.00      | 64.20      | 59.40      | 69.68       | 65.04       | 60.39       | 55.75       | 51.11       | 46.46       | 41.82       |
| BY V<br>Desi                                   | Load           | τ<br>(                                | Number                   | 8 1        | 19         | 20         | 21         | 22         | 23         | 24         | 25         | 26         | 27          | 28          | 29          | 30          | 31          | 32          | 33          |

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT,

DATE 05/20/2024 IMPAX 27.1.30.10

CI

FOR: BY VALMONT INDUSTRIES FO Design Id: 610713-PIRevANE

\*\*\* INPUT LOADS \*\*\*

TIA-222-H Seismic (1.2 D + 1.0 Ev + 1.0 Eh) Design Code Loading Case Seismic analysis following the Equivalent Lateral Force Procedure Risk Category: II Site Class: D

Response Acceleration at short periods: 0.24
Response Acceleration at one second: 0.06
The above are used to obtain the acceleration and velocity based site coefficients Fa and Fv Foundation Rotation of 0.00 Degrees
Elevation of structure base above surrounding terrain = 1.00 ft

|                                         | 1-42,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-5ft Top Bra | 3-4ft Top Bra | 2-8ft Branche | 1-5/8" x 10' | 2-6' H.P | 6ft Branch | 8ft Branch | 8ft Branch |
|-----------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| EPA<br>(ft^2)                           | 239.17        | 170.83        | 170.83        | 170.83        | 2,25          | 5.40          | 7.20          | 0.62         | 76.54    | 26,43      | 26.43      | 26,43      | 26,43      | 26.43      | 26.43      | 26.43      | 34.56      | 34,56      |
| Force-Z (1bs)                           | 7000          | 2000          | 2000          | 2000          | 40            | 94            | 120           | 28           | 893      | 508        | 508        | 508        | 508        | 508        | 508        | 508        | 576        | 576        |
|                                         | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0            | 0        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Force-Y (1bs)                           |               |               |               |               |               |               |               |              |          |            |            |            |            |            |            |            |            |            |
|                                         | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0            | 0        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Force-X (1bs)                           |               |               |               |               | 7             |               |               |              |          |            |            |            |            |            |            |            |            |            |
| Orientation<br>in XY Plane<br>(Degrees) | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00        | 40.00    | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      |
| Load<br>Eccentricity                    | 00.0          | 00.00         | 00.00         | 00.00         | 00.00         | 00.00         | 00.00         | 00.00        | 1.00     | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      |
| Load<br>Height                          | 119.00        | 108.00        | 98.00         | 88.00         | 124.50        | 124.00        | 39.00         | 125.00       | 78.00    | 119,21     | 114.64     | 110.07     | 105.50     | 100.93     | 96.36      | 91.79      | 102.60     | 97.80      |
| Mounting<br>Height                      | 119.00        | 108.00        | 98.00         | 88.00         | 122.00        | 122.00        | 39.00         | 122.00       | 78.00    | 119.21     | 114.64     | 110.07     | 105.50     | 100.93     | 96.36      | 91.79      | 102.60     | 97.80      |
| Load<br>Number                          | Н             | 7             | M             | 4             | ιΩ            | O             | 7             | 80           | 0        | 10         | 11         | 12         | 13         | 14         | 12         | 16         | 17         | 18         |

| DATE 05/20/2024                                                     | IMPAX 27.1.30.10           |                                       |
|---------------------------------------------------------------------|----------------------------|---------------------------------------|
| THE TOWERS, LLC 122.0' POLE, SITE: US-CI-5055 - WILTON SOUTH CT, CT |                            | + + + + + + + + + + + + + + + + + + + |
| BY VALMONT INDUSTRIES FOR:                                          | Design Id: 610713-PIRevANE |                                       |

| 10                         |              |                       |                          | ch         | Branch   | Branch   | Branch   | Branch   | Branch   | Branch   | nch         |
|----------------------------|--------------|-----------------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|-------------|
| IMPAX 27.1.30.10           |              |                       |                          | 8ft Branch | 10ft Bra | 10ft Branch |
| IMPAX                      |              | orientation or system | EPA<br>(ft^2)            | 34.56      | 34.56      | 34.56      | 34.56      | 34,56      | 34.56      | 34.56      | 34.56      | 53.19    | 53.19    | 53.19    | 53.19    | 53.19    | 53.19    | 53.19       |
|                            |              | Orlent                | Force-Z<br>(lbs)         | 576        | 576        | 576        | 576        | 576        | 576        | 576        | 576        | 826      | 826      | 826      | 826      | 826      | 826      | 826         |
|                            |              |                       | Force-Y (1bs)            | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0           |
| *** INPUT LOADS ***        |              |                       | Force-X (1bs)            | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0           |
| *** INP                    |              | Orientation           | in XY Plane<br>(Degrees) | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00    | 40.00    | 40.00    | 40.00    | 40.00    | 40.00    | 40.00       |
|                            | - Continued  | Load                  | Eccentricity             | 00.00      | 00.00      | 00.00      | 00.0       | 00.00      | 00.00      | 00.00      | 00.00      | 00.00    | 00.0     | 00.00    | 00.00    | 00.00    | 00.00    | 00.00       |
| 3-Plrevane                 | Seismic - C  | Toad                  | Height                   | 93.00      | 88.20      | 83.40      | 78.60      | 73.80      | 69.00      | 64.20      | 59,40      | 69.68    | 65.04    | 60.39    | 55.75    | 51.11    | 46.46    | 41.82       |
| Design Id: 610713-P1RevANE | Loading Case | Mounting              | Height                   | 93.00      | 88.20      | 83.40      | 78.60      | 73.80      | 00.69      | 64.20      | 59.40      | 89.69    | 65.04    | 60.39    | 55,75    | 51.11    | 46.46    | 41.82       |
| Desi                       | Loac         | Load                  | Number                   | 6 1        | 20         | 21         | 22         | 23         | 24         | 25         | 26         | 27       | 28       | 29       | 30       | 31       | 32       | 33          |

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, BY VALMONT INDUSTRIES FO Design Id: 610713-FIRevANE

\*\*\* INPUT LOADS \*\*\*

DATE 05/20/2024 IMPAX 27.1.30.10

CI

TIA-222-H Seismic 2 (0.9 D - 1.0 Ev + 1.0 Eh) Design Code Loading Case Seismic analysis following the Equivalent Lateral Force Procedure Risk Category: II Site Class: D

Response Acceleration at short periods: 0.24 Response Acceleration at one second: 0.06

Response Acceleration at one second: 0.06
The above are used to obtain the acceleration and velocity based site coefficients Fa and Fv Foundation Rotation of 0.00 Degrees
Elevation of structure base above surrounding terrain = 1.00 ft

|                                         | 1-42,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-30,000 sq i | 1-5ft Top Bra | 3-4ft Top Bra | 2-8ft Branche | 1-5/8" x 10' | 2-6' H.P | 6ft Branch | 8ft Branch | 8ft Branch |
|-----------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| EPA<br>(ft^2)                           | 239.17        | 170.83        | 170.83        | 170.83        | 2.25          | 5.40          | 7.20          | 0.62         | 76.54    | 26.43      | 26.43      | 26.43      | 26.43      | 26.43      | 26,43      | 26.43      | 34.56      | 34.56      |
| Force-Z<br>(lbs)                        | 5250          | 3750          | 3750          | 3750          | 30            | 7.0           | 06            | 21           | 670      | 381        | 381        | 381        | 381        | 381        | 381        | 381        | 432        | 432        |
| Force-Y (lbs)                           | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0            | 0        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Force-X (1bs)                           | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0            | 0        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Orientation<br>in XY Plane<br>(Degrees) | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00         | 40.00        | 40.00    | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      |
| Load                                    | 00.00         | 00.0          | 00.0          | 00.00         | 00.0          | 00.00         | 00.00         | 00.00        | 1.00     | 00.0       | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.0       |
| Load<br>Height                          | 119.00        | 108.00        | 00.86         | 88.00         | 124,50        | 124.00        | 39.00         | 125.00       | 78.00    | 119.21     | 114.64     | 110.07     | 105.50     | 100.93     | 96.36      | 91.79      | 102.60     | 97.80      |
| Mounting<br>Height                      | 119.00        | 108.00        | 00.86         | 88.00         | 122.00        | 122.00        | 39.00         | 122.00       | 78.00    | 119.21     | 114.64     | 110.07     | 105.50     | 100.93     | 96.36      | 91.79      | 102.60     | 97.80      |
| Load<br>Number                          | Н             | 7             | m             | 4             | Ŋ             | 9             | 7             | 80           | 6        | 10         | 11         | 12         | 13         | 14         | 15         | 9 ⊤        | 17         | 18         |

| DATE 05/20/2024<br>IMPAX 27.1.30.10            | F             | ii D                                    | 8ft Branch | 10ft Branch |
|------------------------------------------------|---------------|-----------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                |               | EPA<br>(ft^2)                           | 34.56      | 34.56      | 34.56      | 34.56      | 34.56      | 34.56      | 34.56      | 34,56      | 53,19       | 53.19       | 53.19       | 53.19       | 53.19       | 53.19       | 53.19       |
| WILTON SOUTH CT, CT                            |               | Force-Z E (1bs) (f                      | 432        | 432        | 432        | 432        | 432        | 432        | 432        | 432        | 619         | 619         | 619         | 619         | 619         | 619         | 619         |
| 1                                              |               |                                         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| SITE: US-CT-5055                               |               | Force-Y (1bs)                           | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 122.0' POLE, SI<br>INPUT LOADS ***             |               | Force-X (1bs)                           |            |            |            |            |            |            |            |            |             |             |             |             |             |             |             |
| TOWERS, LLC 122                                |               | Orientation<br>in XY Plane<br>(Degrees) | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00      | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       | 40.00       |
| THE                                            | Continued     | Load                                    | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00      | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       | 00.00       |
| INDUSTRIES FOR;<br>610713-P1RevANE             | Seismic 2 - ( | Load<br>Height I                        | 93.00      | 88.20      | 83.40      | 78,60      | 73.80      | 69.00      | 64.20      | 59.40      | 89.69       | 65.04       | 60.39       | 55.75       | 51,11       | 46.46       | 41.82       |
| BY VALMONT INDUSTRIES<br>Design Id: 610713-PIR | Loading Case  | Mounting<br>Height                      | 93.00      | 88.20      | 83.40      | 78.60      | 73.80      | 69.00      | 64.20      | 59.40      | 89.69       | 65.04       | 60.39       | 55.75       | 51.11       | 46.46       | 41.82       |
| BY V)<br>Desiç                                 | Load          | Load<br>Number                          | 19         | 20         | 21         | 22         | 23         | 24         | 25         | 26         | 27          | 28          | 29          | 30          | 31          | 32          | 33          |

Seismic Force Lateral

Ix (lbs)

Equivalent Lateral Force Values for Pole Design Id: 610713-PIRevANE BY VALMONT INDUSTRIES

62,388 lbs

0.0048 0.0082 0.0085 0.0064 0.0072 0.0072 0.0072 0.0072 0.0074 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 Distribution Load 1, 923, 528 1, 013, 364 1, 013, 364 1, 789, 407 783, 902 1, 789, 407 783, 902 1, 789, 407 1, 659, 542 1, 792, 208 220, 130 220, 130 220, 130 1, 533, 973 1, 127, 795 1, 533, 973 1, 127, 795 1, 503, 301 1, 503, 301 1, 503, 301 1, 503, 301 1, 503, 301 1, 503, 301 1, 503, 301 1, 503, 301 1, 503, 301 1, 503, 301 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 303 1, 503, 680,522 1,155,444 30,396,860 770,083 II^k \* Wx 5,078.55 4,888.15 4,786.55 6,307.71 4,547.67 7,230.28 4,159.84 4,089.91 4,086.32 3,923.27 3,923.27 3,660.61 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,429.16 3,440.13 Weight Wx (lbs) 0.26 3,194 lbs 1.60 2.40 1,945 lbs  $_{\rm Hz}$ (ft) 122.00 129.00 119.00 118.82 114.64 113.32 114.64 1109.04 100.07 100.07 100.09 100.05 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.09 100.00 100.00 100.00 100.00 100.00 100 = 0.487Fixity 0.03 Distance Ħ # ņ Ħ Ħ H п From W CS VS SdS Ev Fra Fra

BY VALMONT INDUSTRIES FOR:
Design Id: 610713-PIRevANE
Equivalent Lateral Force Values for Pole

| Lateral<br>Seismic Force<br>Fx<br>(lbs) | 0 22     | 15     | 4     | 24    | .0 .0  | y 1 L  | 11    | 13     | 18    | 4      | 12     | 11    | 10     | 16     |        | 11     | 11     | 8      | 14     | ľ     | 6       | 11    | 5      | 12    | 15    | m     | 10   | ∞       | 12   | 4    | D      | 29    | 7     | ∞    | -     | Z.   | 11    | 0     | 7     | . J    | m    |
|-----------------------------------------|----------|--------|-------|-------|--------|--------|-------|--------|-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|-------|---------|-------|--------|-------|-------|-------|------|---------|------|------|--------|-------|-------|------|-------|------|-------|-------|-------|--------|------|
| Load<br>Distribution<br>Factor          | 0.0048   | .007   | .001  | 0.    | .003   | 0.0100 |       | 0.0067 |       |        | 0.0063 |       |        | 0.0081 | 0.0022 | 0.0055 | 0.0056 |        | 0.0071 |       |         |       | 0.0027 |       |       | .001  | .005 |         |      |      |        | .01   | .003  | .004 | .000  | .002 | .005  | .004  | .003  | 0.0024 | .001 |
| II^k * Wx                               | 677,2    | 116,45 | 274,7 | 07,11 | 453,00 | 98.2   | 63,00 | 45     | 91,97 | 271,56 | 85,84  | 82,14 | 741,26 | 04     | 07,18  | 79,35  | 85,04  | 551,64 | 02,14  | 31,   | 678,882 | 71,   | 85,3   | 869,4 | 87,   | 3,6   | 44,  | 615,210 | 03,  | 7,21 | 629,04 | 11,53 | 21,76 | 6,08 | 66,99 | 85,2 | 31,14 | 50,79 | 83,35 | 32,5   | m    |
| П^k                                     | 2,545.79 | 325.9  | 310.2 | 294.5 | Z08.4  | 100.4  | 034.8 | 933.7  | 877.8 | 861.6  | 845.   | 798.2 | 706.2  | 661,   | 642.4  | 623,   | 574.5  | 49     | 456.6  | 435.4 | 414.3   | 363,9 | 288.9  | 263,6 | 189.1 | 9.660 | 082, | 038,8   | 64.2 | 23,6 | 14,3   | 34.   | 58,3  | 13,5 | 69.9  | 39.6 | 38,   | 0.80  | 93.3  | 195.58 | 15.5 |
| Weight<br>Wx<br>(1bs)                   | 99       |        | Η.    | 4 0   | 200    | 480    | 7     | 493    |       | Ą.     | 480    | 435   | 434    | 889    | 187    | 480    | 499    | 370    | 688    | 231   | 480     | 266   | 299    | 688   | 914   | 222   | 889  | 592     | 937  | 289  |        | 2,530 | 889   | 835  | 100   | 602  | 1,543 | 1,595 | 9     | 1,700  | -    |
| Distance<br>From Fixity<br>H<br>(ft)    | 82.70    | 78.60  | 78.30 | 78.00 | 75 40  | 73.80  | 72.90 | 70.84  | 89.69 | 69.34  | 00.69  | 68.00 | 66.02  | 65.04  | 64.62  | 64.20  | 63.10  | 61.20  | 60,39  | 9.0   | 9.4     | 8.2   | 9.3    | 5.7   | 53,88 | 1.5   | 1.1  | ი<br>ი  | 7.8  | 6.7  | 6.4    | 4.1   | 1,8   | 0,4  | 0,6   | 8,0  | . 5   | 9.5   | 4.5   | 19.50  | 4.5  |

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT

BY VALMONT INDUSTRIES FOR: Design Id: 610713-PIRevANE Equivalent Lateral Force Values for Pole

| Lateral<br>Seismic Force  | ГX               | (lbs) | ㄷ      | 0      | 0      |
|---------------------------|------------------|-------|--------|--------|--------|
| Load<br>Distribution Seis | Factor           |       | 2000.0 | 0.0002 | 0.0000 |
|                           | II^k * Wx        |       |        | 26,867 |        |
|                           | $\Pi^{\wedge} k$ |       | 54.53  | 14.46  | 1.00   |
| Weight                    | WX               | (1ps) | 1,805  | 1,858  | 758    |
| Distance<br>From Fixity   | Π                | (ft)  | 9.50   | 4.50   | 1.00   |

Properties \*\*\*

\* \* \*

DATE 05/20/2024 IMPAX 27.1.30.10

| Area (in^2)                         | 23.42<br>23.445<br>24.145<br>24.05<br>25.85<br>27.23<br>27.57<br>29.08<br>29.28<br>31.00<br>31.22                                               | 50.51<br>51.17<br>53.25<br>53.325<br>55.38<br>56.32<br>64.78<br>64.78<br>66.32<br>66.32<br>67.53<br>67.53<br>70.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moments of<br>Inertia<br>(in^4)     | 1447<br>1656<br>1806<br>1993<br>2219<br>2591<br>2690<br>2844<br>3157<br>3224<br>3347<br>3324<br>3347<br>3324<br>3347<br>4356                    | 6462<br>6721<br>7574<br>7810<br>8703<br>9068<br>10166<br>10453<br>11974<br>12953<br>13634<br>14628<br>14628<br>16055<br>16055<br>16055<br>16055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| w/t<br>Across<br>Flats              | 11.17<br>11.17<br>12.14<br>12.60<br>13.50<br>14.30<br>14.30<br>14.36<br>15.07<br>15.28<br>16.05                                                 | 9.64<br>10.25<br>10.37<br>10.31<br>10.31<br>11.39<br>11.49<br>11.49<br>12.20<br>12.20<br>12.48<br>12.48<br>12.48<br>12.44<br>13.45<br>13.45<br>13.45<br>13.45<br>14.03<br>14.03<br>14.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D/t<br>Across<br>Flats              | 73,34<br>76,66<br>78,88<br>81,49<br>84,41<br>86,55<br>88,84<br>89,95<br>91,61<br>94,82<br>95,48<br>96,67<br>100,13<br>101,02                    | 64.65<br>65.49<br>68.11<br>68.80<br>71.30<br>71.30<br>72.03<br>75.03<br>75.03<br>75.03<br>75.03<br>80.72<br>80.72<br>81.26<br>82.64<br>84.00<br>84.58<br>84.00<br>84.58<br>87.21<br>87.21<br>87.21<br>87.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wall<br>Thickness<br>(in)           | 0.3125<br>0.3125<br>0.3125<br>0.3125<br>0.3125<br>0.3125<br>0.3125<br>0.3125<br>0.3125<br>0.3125<br>0.3125<br>0.3125                            | 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Diameter<br>Across<br>Flats<br>(in) | 22.919 23.957 24.649 25.464 26.379 27.046 27.046 27.046 27.0631 29.631 29.631 29.838 30.209 31.291 31.568                                       | 32.327<br>32.747<br>34.405<br>34.402<br>35.648<br>35.648<br>37.516<br>37.862<br>37.862<br>37.862<br>40.629<br>41.321<br>42.001<br>42.001<br>42.001<br>43.951<br>43.951<br>46.819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distance<br>From<br>Base<br>(ft)    | 122.00<br>119.00<br>117.00<br>114.64<br>112.00<br>110.07<br>108.00<br>107.00<br>102.60<br>102.60<br>102.60<br>100.93<br>97.80<br>97.80<br>96.36 | 93.00<br>91.79<br>88.00<br>87.00<br>83.40<br>82.00<br>77.00<br>77.00<br>72.00<br>69.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00<br>67.00 |
| Connection                          | Top of Sect 3                                                                                                                                   | Top of Sect 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

\*\*\* Properties \*\*\*

| Area<br>(in^2)                   | 14.80         | 83.33  | 86.53  | 88.28  | 89.51  | 92.60  | 95.69  | 98.78  | 101,86 | 104.95 | 108.04 | 111.13 | 112.36       |
|----------------------------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|
| Moments of<br>Inertia<br>(in-2)  | 22052         | 22933  | 25676  | 27258  | 28419  | 31463  | 34716  | 38187  | 41882  | 45808  | 49971  | 54380  | 56214        |
| w/t<br>Across<br>Flats           | 15.04         | 13.05  | 13.61  | 13.91  | 14.13  | 14.67  | 15.21  | 15.76  | 16.30  | 16.84  | 17,38  | 17.93  | 18.14        |
| D/t<br>Across<br>Flats           | 95.27         | 83.98  | 87.17  | 88.90  | 90.13  | 93.21  | 96.28  | 98.36  | 102.43 | 105.51 | 108.58 | 111.66 | 112.89       |
| Wall<br>Thickness<br>(in)        | 0.5625        | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625       |
| Diameter Across Flats (in)       | 47.635        | 47.240 | 49.032 | 50.008 | 50.700 | 52.430 | 54,159 | 55,889 | 57.619 | 59,349 | 61.078 | 62,808 | 63,500       |
| Distance<br>From<br>Base<br>(ft) | 48.75         | 47.00  | 41.82  | 39.00  | 37,00  | 32.00  | 27.00  | 22.00  | 17.00  | 12.00  | 7.00   | 2.00   | 00.00        |
| Connection                       | Top of Sect 1 |        |        |        |        |        |        |        |        |        |        |        | Pt of Fixity |

BY VALMONT INDUSTRIES FOR: THE TOWERS, LLC 122.0' PO Design Id: 610713-PIRevANE Forces and Moments for Pole in the Local Element Coordinate System

| Axial<br>(1bs)                    | 122    | 400    | 6659   | 6854   | 7088   | 7481   | 7761   | 7965   | 8363   | 8588   | 12830  | 12954  | 13123  | 13542  | 13877  | 14329  | 14414  | 14542  | 14976  | 15358 | 20123 | 20243 | 20324 | 20788 | 21220 | 21730 | 22140    | 22611 | 23924    | 28799    | 29111 | 29910  | 30459  | ~      | 9        | 32216    | 32358  | m      | 33379  | 415    |
|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|----------|-------|----------|----------|-------|--------|--------|--------|----------|----------|--------|--------|--------|--------|
| Resultant<br>Shear A:<br>(1bs) (. | 430    | 620    | 14528  | 14659  | 14820  | 16168  | 16352  | □      | П      | 17986  | 26763  | 26834  | 26951  | 28266  | 28500  | 30207  | 30250  | 30339  | 31636  | 31902 | 42173 | 42233 | 42289 | 43561 | 43861 | 45510 | 45640    | 46896 | 47311    | 57323    | 57380 | 57744  | 59337  | 59429  | 59786    | 61362    | 61426  | 64965  | 62019  | 65367  |
| Shear<br>Y-Dir.<br>(1bs)          | 276    | 398    | 9338   | 9422   | 9525   | 10392  | 10510  |        | 11459  | 11560  | 17201  | 17247  | 17322  | 18168  | 18318  | 19415  | 19442  | 19500  | 20333  | 20504 | 27106 | 27144 | 27180 | 27998 | 28191 | 29251 | 29334    | 30142 | 30408    | 36843    | 36880 | 37114  | 38138  | 38197  | 38426    | 39440    | 39481  | 41755  | 41790  | 42014  |
| Shear<br>X-Dir.<br>(1bs)          | 329    | 475    | 11130  | 11230  | 11353  | 12386  | 12527  | 12636  | 13659  | 13779  | 20503  | 20557  | 20647  | 21654  | 21833  | 23141  | 23174  | 23242  | 24236  | 24440 | 32308 | 32354 | 32397 | 33372 | 33601 | 34865 | 34964    | 35927 | 36244    | 43915    | 43958 | 44237  | 45458  | 45528  | 45801    | 47009    | 47058  | 49769  | 49810  | 50076  |
| Torsion<br>(in-kips)              | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0        | 0        | 0     | 0      | 0      | 0      | 0        | 0        | 0      | 42     | 42     | 42     |
| Resultant<br>Mx & My<br>(in-kips) | 11     | 30     | 30     | 381    | 797    | 797    | 1313   | 1693   | 1693   | 2138   | 2138   | 2460   | 2944   | 2944   | 3932   | 3932   | 4150   | 4539   | 4539   | 5732  | 5732  | 6137  | 6463  | 6463  | 8224  | 8224  | 8888     | 8888  | 11028    | 11028    | 11716 | 14203  | 14203  | 15201  | 17633    | 17633    | 18075  | 18086  | 18866  | 21369  |
| My<br>(in-kips)                   | 0)     | -23    | -23    | -292   | -611   | -611   | -1006  | -1297  | -1297  | -1638  | -1638  | -1885  | -2255  | -2255  | -3012  | -3012  | -3179  | -3477  | -3477  | -4391 | -4391 | -4701 | -4951 | -4951 | -6300 | -6300 | 6089-    | 6089- | -8448    | -8448    | 9268- | -10881 | -10881 | -11645 | -13508   | -13508   | -13847 | -13853 | -14451 | -16369 |
| WIND<br>Mx<br>(in-kips)           | 7      | 19     | 19     | 245    | 513    | 513    | 844    |        | 1088   | 1374   | 1374   | 1581   |        |        | 2527   |        |        |        |        |       | 3684  | 3944  | 4154  | 4154  | 5286  | 5286  | 5713     | 5713  | 7088     | 7088     | 7530  | 9129   | 9129   | 0776   | $\vdash$ | $\vdash$ | 11617  | 11627  | 2      | 13737  |
| Loading Case Dist. From Base (ft) | 122.00 | 119.00 | 119.00 | 117.00 | 114.64 | 114.64 | 112.00 | 110.07 | 110.07 | 108.00 | 108.00 | 107.00 | 105.50 | 105.50 | 102.60 | 102.60 | 102,00 | 100.93 | 100.93 | 97.80 | 97.80 | 97.00 | 96.36 | 96,36 | 93.00 | (7)   | $\vdash$ | 91.19 | $\infty$ | $\infty$ | r-    | m      | 83.40  | ζ.     | 78.60    | 00       | φ.     | 78.00  | 7.0    | 00     |

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT

BY VALMONT INDUSTRIES FOR: THE TOWERS, LLC 122.0' PO Design Id: 610713-PIRevANE
Forces and Moments for Pole in the Local Element Coordinate System

| Axial<br>(1bs)                             | 34753  | 35311  | 35901  | 36651  | 36826  | 37379  | 38015  | 38536  | 39300  | 39524  | 40102  | 40820  | 41264  | 42040  | 42317  | 42922  | 43725  | 44084  | 44964  | 46227  | 46492  | 47326    | 48036  | 48186  | 49391  | 49737  | 50651  | 53684  | 54696  | 55698  | 55988  | 56973  | 59197  | 61480  | 63822  | 66221  | 68677  | 71189  | 73657  | 74567  |
|--------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Resultant<br>Shear<br>(1bs)                | 00699  | 67041  | 67300  | 69684  | 09169  | 71296  | 71461  | 71686  | 74032  | 74128  | 75629  | 75819  | 76006  | 78312  | 78428  | 79892  | 80105  | 80253  | 82468  | 82820  | 82927  | 85128    | 85410  | 85326  | 551    | 558    | 87702  | 88329  | 90334  | 90672  | 90851  | 90926  | 91282  | 91626  | 91957  | 92269  | 92555  | 92844  | 93215  | 93441  |
| Shear<br>Y-Dir.<br>(1bs)                   | 42999  | 43090  | 43257  | 44789  | 44838  | 45825  | 45932  | 46076  | 47584  | 47646  | 48611  | 48733  | 48853  | 50336  | 50410  | 51351  | 51488  | 51583  | 53007  | 53234  | 53302  | 54718    | 54899  | 54844  | 54967  | 55014  | 56372  | 56775  | 58064  | 58281  | 58396  | 58445  | 58674  | 58895  | 59108  | 59309  | 59493  | 59679  | 59918  | 60063  |
| Shear<br>X-Dir,<br>(lbs)                   | 51251  | 51359  | 51557  | 53384  | 53442  | 54618  | 54745  | 54917  | 56714  | 56788  | 57938  | 58082  | 58226  | 59993  | 60082  | 61203  | 61366  | 61479  | 63176  | 63446  | 63527  | 65214    | 65430  | 65365  | 65511  | 65566  | 67185  | 67666  | 69201  | 69460  | 69597  | 69654  | 69927  | 70190  | 70444  | 70682  | 70902  | 71122  | 71407  | 71580  |
| Torsion<br>(in-kips)                       | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42       | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     | 42     |
| Resultant<br>Mx & My<br>(in-kips)          | 21369  | 22817  | 24688  | 24688  | 25255  | 25255  | 26969  | 28656  | 28656  | 29399  | 29399  | 31399  | 32863  | 32863  | 33797  | 33797  | 36102  | 37305  | 37305  | 41026  | 41914  | 41914    | 44326  | 44326  | 46120  | 46670  | 46670  | 51574  | 51574  | 54638  | 54638  | 56821  | 62295  | 61789  | 73304  | 78839  | 84391  | 89961  | 95549  | 97788  |
| My<br>(in-kips)                            | -16369 | -17478 | -18911 | -18911 | -19346 | -19346 | -20659 | -21951 | -21951 | -22520 | -22520 | -24053 | -25174 | -25174 | -25889 | -25889 | -27655 | -28576 | -28576 | -31427 | -32107 | -32107   | -33955 | -33955 | -35329 | -35751 | -35751 | -39507 | -39507 | -41855 | -41855 | -43527 | -47720 | -51929 | -56154 | -60394 | -64647 | -68914 | -73194 | -74910 |
| WIND  Mx (in-kips)                         | 13737  | 14667  | 15870  | 15870  | 16235  | 16235  | 17336  | 18421  | 18421  | 18898  | 18898  | 20184  | 21125  | 21125  | 21725  | 21725  | 23207  | 23980  | 23980  | 26371  | 26942  | 26942    | 28492  | 28492  | 96     | 29999  |        | 315    | 33151  | 512    | 512    | 652    | 00     | 43574  | 71     | 067    | 24     | 57826  | 141    | 85     |
| Loading Case<br>Dist. From<br>Base<br>(ft) | 73.80  | 2.0    | 9      | 9      | 0      | 9      | 67.00  | 65.04  | 0      | S      | $\sim$ | 0      | 3      | 3      | 4      | 4      | 0      | 7      | 7      | 52.00  | Ч      | $\vdash$ | 7      | ~      | 0      | 4      | 46,46  | 41,82  | 00     | 39.00  | 39.00  | 37.00  | 0      | 27.00  |        | 17.00  | 12.00  | 0.     | 0.     | 00.00  |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR; Design Id: 610713-P1RevANE Deflections for Pole

| 40                                                                                                                         | ₽ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹                                                | 4 4 4 15 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Defil<br>2-Dir.<br>(ii)<br>2.6<br>2.7<br>2.1<br>2.2<br>2.2<br>2.1<br>2.1<br>2.1                                            |                                                                                        | 4 4 4 4 7 7 7 1 1 1 1 1 1 0 0 0 0 0 0 8 8 .                                            |
| Defl.  Resultant  X & X  (in)  68.8  68.8  65.8  61.5  61.5  61.5  57.0  55.0  55.0  55.0                                  | 700008800000                                                                           | 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                |
| Defl. Y-Dir. (in) (in) 44.2 42.3 42.3 42.3 41.1 39.5 39.5 39.5 36.7 36.7 36.7 36.7                                         | 6888899                                                                                | 25.4<br>25.8<br>23.7<br>23.7<br>23.7<br>20.6<br>18.9<br>18.6<br>18.6                   |
| Defl.<br>(in)<br>(22.7<br>(50.4<br>48.9<br>47.1<br>47.1<br>47.1<br>42.1<br>42.1<br>42.1<br>40.3                            | 0887777888                                                                             | 31.5<br>30.7<br>30.7<br>20.7<br>20.7<br>20.7<br>20.7<br>20.7<br>20.7<br>20.7<br>2      |
| Distance<br>From<br>Base<br>(ft)<br>122.00<br>119.00<br>119.00<br>117.64<br>114.64<br>110.07<br>110.07<br>110.07<br>110.07 | 005.50<br>002.00<br>002.00<br>000.00<br>000.00<br>000.00<br>000.00<br>000.00<br>000.00 | 93.00<br>91.79<br>91.79<br>88.00<br>88.00<br>87.00<br>83.40<br>82.00<br>78.60<br>78.00 |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Deflections for Pole

| Rotation (deg.) (deg.) 3.42 3.33 3.23 3.23 3.23 3.20 2.97 2.97 2.74 2.56 2.56 2.56 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 9444887 C 6448 C 6 8 8 9 9 C                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Z-Dir. (ip) (ip) (ip) (ip) (ip) (ip) (ip) (ip)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |
| Defl.  Resultant  X    X  (in)  25.8  24.6  23.0  22.5  22.5  22.5  22.5  19.9  19.9  10.1  11.1  14.5  12.1  12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                          |
| Defi. Y-Dir. (in) 16.6 115.8 114.8 114.5 112.8 112.5 110.6 110.6 9.3 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul><li>● 1 (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5</li></ul> |
| Defl. (in) (in) (in) (in) (in) (in) (in) (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |
| Distance<br>From Base<br>(ft)<br>73.80<br>72.00<br>69.68<br>69.68<br>69.00<br>67.00<br>67.00<br>64.20<br>62.00<br>62.00<br>62.00<br>62.00<br>62.00<br>62.00<br>62.00<br>62.00<br>62.00<br>62.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>63.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00<br>65.00 | 8 1 2 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                    |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR; Design Id: 610713-P1RevANE Stresses for Pole

| Combined<br>Stress<br>Interaction | •00    |        |           | 80.0   | O. I.               | T - C     | / T * O     | U* T3     | U. ZI     | 0.26 | 0.27      | 0.29 | 0.35   | 0.36    | 0.38   | 4     | c c       | 0.23      | ς,      | 0.35 | 0.37      | 0.41      | 0,43      | 0.46   | 0.47   | 0,48      | 0.51      | 0.53      | 0.55      | 0,56      | 0.57      | 0.59   | 09.0      | 0.61      | 0,62      | 0.63      | 0,65      | 0.66      | 0.68       | 0.69      | 7    |
|-----------------------------------|--------|--------|-----------|--------|---------------------|-----------|-------------|-----------|-----------|------|-----------|------|--------|---------|--------|-------|-----------|-----------|---------|------|-----------|-----------|-----------|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|--------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|------|
| Torsion<br>Interaction<br>Term    | 4.0    | 00.0   | 00.0      | 00.0   | 00.0                |           | 00.0        | 00.0      | 00.0      | 00.0 | 00.0      | 00.0 | 00.0   | 00.00   | 00.00  | 00.00 | c c       | 00.0      | 00.0    | 00.0 | 00.00     | 00.00     | 00.00     | 00.00  | 00.00  | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00  | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00      | 00.00     | 00.0 |
| Shear<br>Interaction<br>Term      | 00.00  | 0.04   | 0.03      | 0.04   | 0.0                 |           | 00.0        |           | 0.00      | 0.00 | 90.0      | 90.0 | 80.0   | 0.08    | 0.08   | 80.0  | 0         | 0.00      | 0.02    | 90.0 | 0.06      | 90.0      | 90.0      | 90.0   | 90.0   | 90.0      | 90.0      | 90.0      | 90.0      | 90.0      | 90.0      | 90.0   | 90.0      | 90.0      | 0.07      | 0.07      | 90.0      | 0.07      | 90.0       | 0.07      | 0.07 |
| Flexural<br>Interaction<br>Term   | 00.00  | 00.00  | 0.04      | 0.07   | 0.11<br>0.13        | ! -       | ٠,          | 01.0      | 7 0       | N    | N.        | 2    | 3      | 0.35    | 3      | 4     | c         | 7         | 3       | e,   | 0,35      | ٠4        | 0.41      | 4.     | 0.46   | 0.47      | 0.50      | 0.52      | 0.54      | 0.54      | 0.56      | 0.57   | 0.58      | 09.0      | 0.61      | 0.62      | 0.63      | 0.64      |            | 0.67      |      |
| Axial<br>Interaction<br>Term      | 00.00  | 00.0   | 00.00     | 0.01   | 0.01                | TO 0      | 0 ° 0 T     | TO 0      | 0.0T      | TOFO | 0.01      | 0.01 | 0.01   | 0.01    | 0.01   | 0.01  | 6         |           |         | 0.01 | 0.01      |           | 0.01      | 0.01   | 0.01   | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | -      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      | 0.01 |
| Nominal<br>Torsional<br>Strength  | 9,841  | ò      | 11,405    | 7 (    | 13,083              | , <       | ,<br>,<br>, | r u       | n ı       | ò    | ģ         | 7    | 18,480 | 18,811  | 19,080 | 0     | 200       | 7,40      | Ś       | 4,   | 35,412    | 8         | 39,118    | 41,743 | 42,215 | 43,008    | 45,594    | 47,082    | 49,037    | 49,616    | 51,341    | 53,065 | 53,807    | 55,784    | 57,252    | 58,168    | 60,412    | 61,598    | 65,224     | 66,103    | œ`   |
| Nominal<br>Shear<br>Strength      | 437,   | 457,30 | 470,686   | 480,   | 304, 141<br>5,7 045 |           | 000         |           | n r       | 261, | 571,      | 578, | 599,   | 604,505 |        | 631,  | 0000      | 000 / 500 | 997,887 | 038, | 1,049,121 | 1,087,661 | 1,102,649 | 139,   | 145,   | 1,156,177 | 1,190,435 | 1,209,705 | 1,234,557 | 1,241,821 | 1,263,232 | 284,   | 1,293,208 | 1,316,760 | 1,333,966 | 1,344,595 | 1,370,288 | 1,383,670 | 1,423,816  | 1,433,374 | 458, |
| Nominal<br>Flexural<br>Strength   | 10     |        |           |        |                     | ,         | , ,         |           | , ,       | 7    |           |      |        |         |        | (1)   | C         |           | w<br>m  | 9    | Ó         | 6         | 0         | ñ      |        | 4,        | Ĺ         | 9         | ٦,        | į,        | (1)       | u,     | W         | $\omega$  | U١        | 60,826    | (1)       | 4,43      | 8,24       | 9,17      | 1,6  |
| Nominal<br>Axial<br>Strength      | 457,   | 524,   | 1,568,953 | 170    | 1,680,470           | 1 769 683 | 1 701 096   | 1 005 741 | 1,825,441 | 890, | 1,903,502 | 927, | •      | 015,    | 029,   | 104,  | 020 000 0 | 0 0       | 5,29    | 1,38 | 7,07      | 5,53      | 5,49      | 5,82   | 23     | 3,92      | 3,11      | 2,34      | 5,18      | 3,40      | 77,0      | 280,87 | 10,69     | 389,20    | 4,446,552 | ,481,     | 567,62    | 612,23    | 746,05     | 777,91    | , 86 |
| Distance<br>From<br>Base          | 122.00 | 119.00 | 117.00    | 114 04 | 110 07              | 00.00     | 100         | 1 HO -    | 000       | . 70 | 102.00    | 00   | 97.80  | -       | 9      | 3.    | 0         | · 1       | 91.79   |      |           |           |           |        | 78.00  | 77.00     |           | 72.00     | 69.68     | 69.00     | 67.00     | 65.04  | 4.        | ď,        | 0         | 59.40     | 7         | 5.7       | $^{\circ}$ | 1.1       | 8.7  |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Stresses for Pole

| Combined<br>Stress<br>Interaction             | 0.65      | 0.67      | 0.69      | 0.70      | 0.71      | 0.72      | 0.74      | 0.75      | 97.0      | 77.0      | 0.78      | 0.79      | 62.0      |
|-----------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Torsion<br>Interaction<br>Term                | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.0      | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     |
| Shear<br>Interaction<br>Term                  | 0.06      | 90.0      | 90.0      | 90.0      | 90.0      | 90.0      | 0.05      | 0.05      | 0.05      | 0.05      | 0.05      | 0.05      | 0.05      |
| Flexural<br>Interaction<br>Term               | 0.64      | 0.65      | 0.67      | 0.69      | 0.69      | 0.71      | 0.72      | 0.73      | 0.74      | 0.76      | 77.0      | 0.78      | 0.78      |
| Axial<br>Interaction Ir<br>Term               | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      |
| Nominal<br>Torsional<br>Strength<br>(in-kips) | 73,574    | 76,122    | 81,429    | 84,742    | 87,130    | 93,246    | 99,569    | 106,099   | 112,837   | 119,783   | 126,935   | 134,296   | 137,298   |
| Nominal<br>Shear<br>Strength<br>(lbs)         | 1,603,945 | 1,631,474 | 1,687,391 | 1,721,372 | 1,745,460 | 1,805,678 | 1,865,897 | 1,926,116 | 1,986,335 | 2,046,553 | 2,106,772 | 2,166,991 | 2,191,078 |
| Nominal<br>Flexural<br>Strength<br>(in-kips)  | 76,884    | 79,561    | 85,142    | 88,625    | 91,137    | 97,570    | 104,222   | 111,094   | 117,727   | 124,040   | 130,455   | 136,966   | 139,597   |
| Nominal<br>Axial<br>Strength<br>(lbs)         | 5,346,485 | 5,438,247 | 5,624,638 | 5,737,907 | 5,818,199 | 6,018,928 | 6,219,657 | 6,420,386 | 6,621,115 | 6,821,845 | 7,022,574 | 7,223,303 | 7,303,595 |
| Distance<br>From<br>Base<br>(ft)              | 48.75     | 46.46     | 41,82     | 39.00     | 37.00     | 32.00     | 27.00     | 22.00     | 17.00     | 12.00     | 7.00      | 2.00      | 00.00     |

BY VALMONT INDUSTRIES FOR: THE TOWERS, LLC 122.0' PO Design Id: 610713-PIRevANE Forces and Moments for Pole in the Local Element Coordinate System

| Axial<br>(1bs)                     | 319    | 694    | 15519  | 15779  | 0      | 17092  | 17460  | 17735  | 18733  | 19037  | 28920  | 29071  | 29298  | 30299  | 30751  | 31884  | 31981  | 32153  | 33156  | 33670 | 44696 | 44833 | 44942 | 45949 | 46530 | 47670 | 48168 | 49177 | 50770 | 61811 | 62039 | 63067 | 64213 | 64613 | 65571 | 66717 | 68899 | 68577 | 68839 | 69823 |
|------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Resultant<br>Shear<br>(1bs)        | 172    | 249    | 5441   | 5492   | 5556   | 6048   | 6118   | 6173   | 6659   | 6719   | 10000  | 10025  | 10069  | 10544  | 10632  | 11246  | 11260  | 11293  | 11758  | 11857 | 15665 | 15683 | 15704 | 16154 | 16264 | 16847 | 16897 | 17341 | 17500 | 21196 | 21199 | 21332 | 21888 | 21900 | O1    | 8     | 22603 | 23297 | 23295 | 23420 |
| Shear<br>Y-Dir,<br>(lbs)           | 111    | 160    | 3497   | 3530   | 3571   | 3887   | 3932   | 3968   | 4280   | 4319   | 6428   | 6444   | 6472   | 6777   | 6834   | 7229   | 7237   | 7259   | 7558   | 7622  | 10069 | 10081 | 10094 | 10384 | 10454 | 10829 | 10861 | 11146 | 11248 | 13625 | 13626 | 13712 | 14069 | 14077 | 14160 | 14514 | 14529 | 14975 | 14974 | 15054 |
| Shear<br>X-Dir.<br>(1bs)           | 132    | 191    | 4168   | 4207   | 4256   | 4633   | 4687   | 4729   | 5101   | 5147   | 7661   | 7679   | 7714   | 8077   | 8145   | 8615   | 8625   | 8651   | 9007   | 9083  | 12000 | 12014 | 12030 | 12375 | 12459 | 12905 | 12944 | 13284 | 13406 | 16238 | 16240 | 16342 | 16767 | 16777 | 16875 | 729   | 17315 | 17847 | 17845 | 17941 |
| Torsion<br>(in-kips)               | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 80    | 00    | 80    |
| Resultant<br>Mx & My<br>(in-kips)  | 5      | 12     | 12     | 144    | 300    | 300    | 493    | 635    | 635    | 801    | 801    | 921    | 1102   | 1102   | 1471   | 1471   | 1552   | 1697   | 1697   | 2140  | 2140  | 2291  | 2412  | 2412  | 3065  | 3065  | 3310  | 3310  | 4102  | 4102  | 4356  | 5275  | 5275  | 5643  | 6239  | 6239  | 6702  | 6722  | 7002  | 7899  |
| My<br>(in-kips)                    | 4-     | 6-     | 0 -    | -110   | -230   | -230   | -377   | -486   | -486   | -614   | -614   | -706   | -844   | -844   | -1127  | -1127  | -1189  | -1300  | -1300  | -1639 | -1639 | -1755 | -1847 | -1847 | -2348 | -2348 | -2536 | -2536 | -3142 | -3142 | -3337 | -4041 | -4041 | -4323 | -5010 | -5010 | -5134 | -5150 | -5364 | -6051 |
| : ICE + WIND<br>Mx<br>(in-kips)    | М      | 00     | 00     | 92     | 193    | 193    | 317    | 408    | 408    | 515    | 515    | 592    | 708    | 708    | 945    | 945    | 766    | 1091   | 1091   | 1376  | 1376  | 1472  | 1550  | 1550  | 1970  | 1970  | 2128  | 2128  | 2637  | 2637  | 2800  | 3391  | 3391  | 3627  | 4203  | 4203  | 4308  | 4321  | 4501  | 5078  |
| Loading Case<br>Dist. From<br>Base | 122.00 | 119.00 | 119.00 | 117.00 | 114.64 | 114,64 | 112.00 | 110.07 | 110.07 | 108,00 | 108.00 | 107.00 | 105.50 | 105.50 | 102,60 | 102.60 | 102.00 | 100.93 | 100.93 | 97.80 | 97.80 | 97.00 | 96,36 | 96.36 | 93.00 | 3.0   | 1.7   | 1.7   | 8.0   | 8.0   | 7.0   | 3.4   | 83.40 | 2.0   | 78.60 | 8.6   | 8.0   | 78.00 | 7.0   | 73.80 |

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT

BY VALMONT INDUSTRIES FOR: THE TOWERS, LLC 122.0' PO Design Id: 610713-PIRevANE
Forces and Moments for Pole in the Local Element Coordinate System.

| Axial<br>(1hs)                    | (TDS)     | 70975 | 71532 | 72244 | 73882 | 74093 | 75239 | 75883 | 76511 | 78151 | 78421 | 79570 | 80306 | 80839 | 82481 | 82814 | 83967 | 84799  | 85230  | 86885  | 88223  | 88542  | 90191  | 91043  | 91062  | 92394  | 92802  | 94462  | 98026    | 86966         | 100873 | 101134 | 102014 | 104227       | 106508 | 108856     | 111269   | 113744  | 116277 | 118845 | 230011 |
|-----------------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------------|--------|--------|--------|--------------|--------|------------|----------|---------|--------|--------|--------|
| Resultant<br>Shear                |           | 23947 | 23975 | 24067 | 24908 | 24935 | 25474 | 25508 | 25587 | 26414 | 26448 | 26970 | 27012 | 27078 | 27890 | 27930 | 28435 | 28485  | 28537  | 29298  | 29388  | 29425  | 30192  | 30290  | 30232  | 30288  | 30315  | 31037  | 31269    | 31935         | 32052  | 32083  | 32060  | 32114        | 32164  | 32211      | 32252    | 32286   | 32321  | 32404  | 00000  |
| Shear F<br>Y-Dir.                 | (TDS)     | 15393 | 15411 | 15470 | 16010 | 16028 | 16374 | 16396 | 16447 | 16979 | 17000 | 17336 | 17363 | 17405 | 17927 | 17953 | 18278 | 18310  | 18343  | 18832  | 18890  | 18914  | 19407  | 19470  | 19433  | 19469  | 19486  | 19950  | 20099    | 20527         | 20603  | 20623  | 20608  | 20642        | 20675  | 20705      | 20731    | 20753   | 20776  | 20829  | 0000   |
| Shear<br>X-Dir.                   | (TDS)     | 18345 | 18366 | 18436 | 19081 | 19102 | 19514 | 19541 | 19601 | 20235 | 20261 | 20660 | 20693 | 20743 | 21365 | 21396 | 21783 | 21821  | 21861  | 22444  | 22513  | 22541  | 23129  | 23204  | 23159  | 23202  | 23223  | 23776  | 23953    | 24464         | 24554  | 24577  | 24560  | 24601        | 24639  | 24675      | 24707    | 24733   | 24760  | 24823  | 1000   |
| Torsion                           | (In-Kips) | 00    | 90    | œ     | 00    | 80    | œ     | 00    | æ     | 20    | 00    | 00    | 00    | 80    | 8     | 80    | 80    | 80     | 80     | 80     | 8      | 8      | 80     | 8      | 80     | 89     | 80     | 80     | 60       | 8             | 80     | 89     | 8      | 80           | 80     | 80         | 80       | 8       | 89     | 80     | c      |
| Resultant<br>Mx & My<br>(in-kine) | (In-Kips) | 7899  | 8417  | 9806  | 9806  | 9289  | 9289  | 9902  | 10504 | 10504 | 10769 | 10769 | 11482 | 12004 | 12004 | 12336 | 12336 | 13157  | 13584  | 13584  | 14906  | 15221  | 15221  | 16077  | 16077  | 16712  | 16907  | 16907  | 18643    | 18643         | 19726  | 19726  | 20497  | 22427        | 24360  | 26296      | 28234    | 30175   | 32118  | 34063  | 0 0 0  |
| My (in-line)                      | (sdry-ur) | -6051 | -6448 | 0969- | 0969- | -7116 | -7116 | -7585 | -8046 | -8046 | -8249 | -8249 | -8796 | -9195 | -9195 | -9450 | -9450 | -10078 | -10406 | -10406 | -11419 | -11660 | -11660 | -12315 | -12315 | -12802 | -12952 | -12952 | -14281   | -14281        | -15111 | -15111 | -15702 | -17180       | -18661 | -20144     | -21629   | -23115  | -24604 | -26094 |        |
| MX (an-th-ne)                     | (ru-xrbs) | 5078  | 5411  | 5841  | 5841  | 5971  | 5971  | 6365  | 6752  | 6752  | 6922  | 6922  | 7381  | 7716  | 7716  | 7930  | 7930  | 8457   | 8732   | 8732   | 9582   | 9784   | 78     | 3      |        | 10743  | 0      | 0      | $\vdash$ | $\vdash$      | $\sim$ | N      | 3      | 4            | LO.    | 6          | $\infty$ | $\circ$ | 90     | 21895  | 0      |
| Dist, From Base                   | (IL)      | 73.80 | 0     | 9     | 9     | 0     | 0     | 0     | 0     | 0     | 2     | 2     | 0     | 3     | 3     | 4     | 4     | 0      | 7.     | 7.     | 52.00  | 4      | 4      | 7.     | ന      | 47.00  | 10     | LO.    |          | $\overline{}$ | 0      | 0      | ~      | $\bigcirc$ 1 | ~      | $\bigcirc$ | ~        | $\sim$  | 7.00   | 2.00   | 000    |

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Deflections for Pole

| e e d t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                           | nnn naaaaannuuuuuu                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|
| 4 D - 1  - 1  - 1  - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |                                           |
| 012 / Land / Lan | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                     | 000000000000000000000000000000000000000   |
| 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122.8<br>122.8<br>122.8<br>112.2<br>111.4<br>111.2<br>100.5                                     | 000 00000077700000                        |
| fi<br>Di<br>Di<br>Di<br>Di<br>Di<br>Di<br>Di<br>Di<br>Di<br>Di<br>Di<br>Di<br>Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                           | 778888888888888                           |
| stan<br>From<br>(ft)<br>(22.0<br>19.0<br>19.0<br>14.6<br>114.6<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.07<br>108.00<br>108.00<br>105.50<br>105.50<br>102.60<br>102.60<br>100.93<br>100.93<br>97.80 | 3 9 8 8 8 8 7 8 8 8 8 7 8 8 8 8 8 8 8 8 8 |

28

BY VALMONT INDUSTRIES FOR: Design Id: 610713-PIRevANE Deflections for Pole

|                    | Rotation | 9      | 1.23  | 7   | Η.  | 4   | Η.  | Γ.  | H   | 0.  | 0.  | 0.  | 0   | 0   | 0   | 0   | 0   | 0   | 6.  | 0   | 9   | 00  | α,  | 00  |     | 1   | 7.  | 7 | 7   | 9   | 9.  | 9   | 9.  | .5  | 5   | ٠4  | ω,  | 2  | 1.  | 0.10 | 0. | 0. |
|--------------------|----------|--------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|------|----|----|
| a)                 |          | in     | 0.2   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 0.1 |     |     |   |     |     |     |     |     |     |     |     |     |    |     | 0.0  |    |    |
| Defl.<br>Resultant | X & Y    | 'n     | 6,3   |     |     |     |     |     |     |     |     |     | -   |     |     |     |     |     |     |     | -   |     |     |     |     |     |     |   |     |     |     |     |     |     |     |     |     |    |     | 0.1  |    |    |
| O)                 | Y-Dir    | $\Box$ | 0.9   |     |     |     |     |     |     |     |     |     | 4   |     |     |     |     | 00  |     |     |     |     |     |     |     |     |     | 4 |     |     |     |     |     |     |     |     |     |    |     | 0.0  |    |    |
| Defl.              | Di       |        | 7.1   |     |     |     |     |     |     |     |     |     |     |     |     |     | -   |     |     |     |     |     | 3,3 |     |     |     |     |   |     |     |     |     |     |     |     |     |     |    |     | 0.1  |    |    |
| Distance<br>From   | (3       | ££     | 73.80 | 2.0 | 9.6 | 9.6 | 9.0 | 9.0 | 7.0 | 5.0 | 5.0 | 4.2 | 4.2 | 2.0 | 0,3 | 0.3 | 9.4 | 9,4 | 7.0 | 5.7 | 5.7 | 2.0 | 1.1 | 1.1 | 8.7 | 8.7 | 7.0 | 4 | 6.4 | 1.8 | 1.8 | 0.6 | 0.6 | 7.0 | 2.0 | 7.0 | 2.0 | 0. | 2.0 | 7.00 | 0. | 0  |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Stresses for Pole

| Combined<br>Stress<br>Interaction | 0.0     | 10.0    | 0.05      | 70.0         | 0.0                 | 00.0    | 80.0    | 0.08    | 60.0    | 0.17    | 0.12    | 0.12    | 0.15    | 0.15    | 0.16    | 0.19    | 0.12      | d        | 0.15      | 0:15      | 0.17      | 0.17       | 0.19      | 0.19      | 0.19      | 0.20       | 0.21      | 0.22   | 0.22   | 0.23   | 0.23      | 0.23      | 0:24   | 0.24      | 0.25      | 0.25      | 0.26      | 0.26       | 0.27     | 0.27      |
|-----------------------------------|---------|---------|-----------|--------------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|------------|-----------|--------|--------|--------|-----------|-----------|--------|-----------|-----------|-----------|-----------|------------|----------|-----------|
| Torsion<br>Interaction<br>Term    | 00.00   | 0.00    | 00.00     | 00.0         | 00.0                | 00.00   | 0.00    | 00.0    | 00.00   | 00.00   | 00.00   | 00.00   | 00.00   | 00.00   | 00.00   | 00.00   | 00.00     | 00.00    | 00.0      | 0.00      | 00.00     | 00.00      | 00.00     | 00.00     | 00.00     | 00.00      | 00.00     | 00.00  | 00.00  | 00.00  | 00.00     | 00.00     | 00.00  | 00.00     | 00.00     | 00.00     | 00.00     | 00.00      | 00.00    | 00.00     |
| Shear<br>Interaction<br>Term      | 00.00   | 0.01    | 10.0      | 10.0<br>0.01 | TO:0                | 10.0    | 0.02    | 20.0    | 0.02    | 0.02    | 0.02    | 0.02    | 0.03    | 0.03    | 0.03    | 0.03    | 0.02      | 0.02     | 0.02      | 0.02      | 0.02      | 0.02       | 0.02      | 0.00      | 0.02      | 0.02       | 0.02      | 0.02   | 0.02   | 0.02   | 0.02      | 0,02      | 0.00   | 0,02      | 0.02      | 0.02      | 0.02      | 0.02       | 0.02     | 0.02      |
| Flexural<br>Interaction<br>Term   | 00.00   | 00.0    | 0.01      | 0.03         | 0.04                | 0.00    | 0.00    | 0.0     | 0.08    | 0.09    | 0.10    | 0.10    | 0.12    | 0.13    | 0.13    | 0.16    | 0.10      | 0.11     | 0.13      | 0.13      | 0.15      | 0.15       | 0.17      | 0.17      | 0.17      | 0.18       | 0.19      | 0.20   | 0.20   | 0.21   | 0.21      | 0.21      | 0.22   | 0.22      | 0.23      | 0.23      | 0.23      | 0.24       | 0.24     | 0.25      |
| Axial<br>Interaction<br>Term      | 00.00   | 0.01    | 0.01      | 0.01         | 0.01                | 10.0    | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.03    | 0.02    | 0.02      | 0.02     | 0.02      | 0.02      | 0.02      | 0.02       | 0.02      | 0.02      | 0.02      | 0.02       | 0.02      | 0.02   | 0.02   | 0.02   | 0.02      | 0.02      | 0.02   | 0.02      | 0.02      | 0.02      | 0.02      | 0.02       | 0.02     | 0.02      |
| Nominal<br>Torsional<br>Strength  | 9,841   | 10,765  | 11,405    | 707 77       | 13,083              | 10, 10Z | 14,510  | 7       | 15,438  | 16,552  | 16,787  | 17,211  | 18,480  | 18,811  | 19,080  | 20,514  | 31,209    | 32,038   | 34,693    | 4         | 38,062    | 39,118     | 41,743    | 42,215    | 43,008    | 45,594     | 47,082    | 49,037 | 49,616 | 51,341 | 53,065    | 53,807    | 55,784 | 57,252    | 58,168    | 60,412    | 61,598    | 65,224     | 66,103   | 68,451    |
| Nominal<br>Shear<br>Strength      | 437,231 | 457,304 | 470,686   | 400,400      | 504, 141<br>517 045 | 710,040 | 530,905 | 537,596 | 547,632 | 567,036 | 571,051 | 578,220 | 599,153 | 604,505 | 608,807 | 631,269 | 984,888   | 997,887  | 1,038,416 | 1,049,121 | 1,087,661 | 1,102,649  | 1,139,048 | 1,145,471 | 1,156,177 | 1,190,435  | 1,209,705 | 234,   | 241,   | 263,   | 1,284,261 | 1,293,208 | 316,   | 1,333,966 | 1,344,595 | 1,370,288 | 1,383,670 | 423,       | 4        | 1,458,609 |
| Nominal<br>Flexural<br>Strength   | 10,267  | , i     | 11,910    | 12, 72,      | 13,675              | 000,11  | 15,1/4  | ď,      | 16,151  | 17,322  | 17,570  | ώ       | 19,351  | 19,694  | 19,941  | 21,246  | 32,501    | 33,371   | . 9       | 36,913    | 0         | ò          | 3,        | 44,058    | 44,891    | Ľ,         | 0         | 1      |        | 3,     | 5         | 56,240    | 58,320 | 59,863    | 60,826    | 63,186    | 4,        | $\infty$   | 69,172   | 7         |
| Nominal<br>Axial<br>Strength      | 457,    | 524,    | 1,568,953 | 1700         | 000°                | 1 45    | 1001    | , 3T,   | 825,    | 890,    | 903,    | 927,    | 997,    | 015,    | 029,    | 104,    | 3,282,960 | 326,29   | 461,3     |           | 625       | 675,       | 1961      | 818,      | 853,      | 968,       | 032,      | 115,   | 139,   | 210,   | 280,      | 310,      | 389,   | 446,      | 481,      | 567,      | 612,      | 746,       | , LLL    | 862,      |
| Distance<br>From<br>Base          | 22.     | 19      | 117.00    |              | 110.00              |         | 2 0     |         | 05.     | 02.     |         | 00.     |         |         |         |         | 93.00     | $\vdash$ | 88.00     | 87.00     | $\sim$    | $^{\circ}$ | $\infty$  | $\infty$  | 77.00     | $^{\circ}$ | N         | 69.68  | 0      | 7      | Ŋ         | 4         | $\sim$ | 0         | 9         | _         | 55.75     | $^{\circ}$ | $\vdash$ | $\infty$  |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Stresses for Pole

| Combined<br>Stress<br>Interaction             | 0.25      | 0.26      | 0.26      | 0.27      | 0,27      | 0.28      | 0.28      | 0.28      | 0.29      | 0.29      | 0.29      | 0.29      | 0.30      |
|-----------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Torsion<br>Interaction<br>Term                | 00.00     | 0.0 * 0   | 00.0      | 00.00     | 00.00     | 0.000     | 00.0      | 00.00     | 00.00     | 00.0      | 00.00     | 00.00     | 00.00     |
| Shear<br>on Interaction In<br>Term            | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      |
| Flexural<br>nteractic<br>Term                 | 0.23      | 0.24      | 0.24      | 0.25      | 0.25      | 0.26      | 0.26      | 0.26      | 0.27      | 0.27      | 0.27      | 0.28      | 0.28      |
| Axial<br>Interaction II<br>Term               | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0 * 02    | 0.02      | 0.02      | 0.02      |
| Nominal<br>Torsional<br>Strength<br>(in-kips) | 73,574    | 76,122    | 81,429    | 84,742    | 87,130    | 93,246    | 99,569    | 106,099   | 112,837   | 119,783   | 126,935   | 134,296   | 137,298   |
| Nominal<br>Shear<br>Strength<br>(1bs)         | 1,603,945 | 1,631,474 | 1,687,391 | 1,721,372 | 1,745,460 | 1,805,678 | 1,865,897 | 1,926,116 | 1,986,335 | 2,046,553 | 2,106,772 | 2,166,991 | 2,191,078 |
| Nominal<br>Flexural<br>Strength<br>(in-kips)  | 76,884    |           |           |           |           |           |           |           | 117,727   | 124,040   |           |           |           |
| Nominal<br>Axial<br>Strength<br>(1bs)         | 5,346,485 | 5,438,247 | 5,624,638 | 5,737,907 | 5,818,199 | 6,018,928 | 6,219,657 | 6,420,386 | 6,621,115 | 6,821,845 | 7,022,574 | 7,223,303 | 7,303,595 |
| Distance<br>From<br>Base<br>(ft)              | 48.75     | 46.46     | 41.82     | 39.00     | 37.00     | 32.00     | 27.00     | 22.00     | 17.00     | 12,00     | 7.00      | 2.00      | 00.00     |

CI

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT,

Design Id: 610713-PIRevANE Forces and Moments for Pole in the Local Element Coordinate System

FOR:

BY VALMONT INDUSTRIES

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT

BY VALMONT INDUSTRIES FOR: THE TOWERS, LLC 122.0' PO Design Id: 610713-PIRevANE
Forces and Moments for Pole in the Local Element Coordinate System

|                                            |       |       |       |       |       | _     |       | 0.1   | _     |       |       | ~     | ~     |       | :0    |       | -     |       | 4     |       | ~     | ım    |       | ·     | -     | 3     | 01    | 0.1   | 10    | _     | 0     | 10    | 7      | _      | 7      | 9          | 7      | 0      | 0      | 7      |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|------------|--------|--------|--------|--------|
| Axial<br>(1bs)                             | 32112 | 32492 | 32984 | 33665 | 33811 | 34287 | 34728 | 35162 | 35844 | 36031 | 3650  | 37013 | 37383 | 38065 | 38296 | 38775 | 39347 | 39646 | 40334 | 41257 | 41478 | 4216  | 4275  | 42763 | 43704 | 43993 | 44682 | 47212 | 47906 | 48741 | 48850 | 49465 | 51027  | 52641  | 54307  | 5602       | 779    | 59620  | 6149   | 6224   |
| Resultant<br>Shear<br>(lbs)                | 15122 | 15156 | 15216 | 15754 | 15771 | 16118 | 615   | 621   | 16739 | 16762 | 17101 | 17147 | 17190 | 17711 | 17738 | 18069 | 18120 | 15    | 18656 | 18741 | 876   | 19264 | 19329 | 19313 | 19361 | 19378 | 19857 | 20010 | 20467 | 20547 | 20590 | 20614 | 20709  | 20802  | 20893  | 20981      | 21064  | 21148  | 21249  | 21305  |
| Shear<br>Y-Dir.<br>(lbs)                   | 9720  | 9742  | 9780  | 10126 | 10137 | 10360 | 10386 | 10419 | 10760 | 10774 | 10992 | 11021 | 11049 | 11384 | 11401 | 11614 | 11647 | 11670 | 11992 | 12046 | 12062 | 12382 | 12425 | 12414 | 12445 | 12456 | 12764 | 12862 | 13156 | 13207 | 13235 | 13251 | 13311  | 13371  | 13430  | $^{\circ}$ | 353    | 13594  | 13659  | 13694  |
| Shear<br>X-Dir,<br>(lbs)                   | 11584 | 11610 | 11656 | 12068 | 12082 | 12347 | 12378 | 12418 | 12823 | 12840 | 13100 | 13135 | 13168 | 13567 | 13588 | 13842 | 13881 | 13907 | 14291 | 14357 | 14376 | 14757 | 14807 | 14794 | 14831 | 14845 | 15212 | 15329 | 15679 | 15740 | 15773 | 15792 | 15864  | 15935  | 16005  | 16072      | 16136  | 16200  | 16278  | 16320  |
| Torsion<br>(in-kips)                       | O     | ON:   | 01    | S)    | 5     | 6     | O.    | 0/    | O.    | 6)    | ത     | 0     | 6     | Ø     | O)    | 65    | 6     | 0     | 6     | 0     | 0     | o     | o     | 0/    | 6     | 6     | σı    | ON    | 60    | 6     | 0     | 6     | O      | 6      | ō      | 6          | 6      | 8      | 6      | 6      |
| Resultant<br>Mx & My<br>(in-kips)          | 4835  | 5162  | 5585  | 5585  | 5713  | 5713  | 6101  | 6482  | 6482  | 0699  | 6650  | 7102  | 7434  | 7434  | 7645  | 7645  | 8166  | 8438  | 8438  | 9280  | 9481  | 9481  | 10027 | 10027 | 04    | 2     | 10557 | 11668 | 11668 | 12362 | 12362 | 12857 | 14098  | 7      | 16597  | 17855      | 19118  | 20386  | 21659  | 216    |
| My<br>(in-kips)                            | -3704 | -3954 | -4278 | -4278 | -4377 | -4377 | -4673 | -4966 | -4966 | -5094 | -5094 | -5441 | -5694 | -5694 | -5856 | -5856 | -6255 | -6464 | -6464 | -7109 | -7263 | -7263 | -7681 | -7681 | -7992 | -8087 | -8087 | -8938 | -8938 | -9470 | -9470 | -9849 | -10800 | -11755 | -12714 | -13678     | -14645 | -15616 | -16591 | -16983 |
| e T+S<br>Mx<br>(in-kips)                   |       |       |       |       |       |       |       |       |       |       |       | 4565  |       | 4778  | 91    | 4914  | 5249  | 5424  | 5424  |       | 0 9   | 0.9   | 6445  | 4     | 0     | 9829  | 6786  | 7500  | 7500  | 7946  | 7946  | 8264  | 9062   | 9864   | 990    | 147        | 228    | 31     | 392    | 14250  |
| Loading Case<br>Dist. From<br>Base<br>(ft) | 73.80 | 72.00 | 89.69 | 89.69 | 00.69 | 00.69 | 67.00 | 65.04 | 65.04 | 64.20 | 64.20 | 62.00 | 60.39 | 60.39 | 59.40 | 59.40 | 57,00 | 55.75 | 55,75 | 52.00 | 51.11 | 51.11 | 48.75 |       |       | 7.    | 46.46 | ∞.    | φ.    | 0.    | 0.    | 0.    | 0.     | 0.     | 0.     | 17.00      | 4      | 7.00   | 0.     | 0.     |

Loading Case T+S

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Deflections for Pole

|                    | Rotation | (deg.) | 0    | 1.08 | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 9   | 0   | 0)  | 0)  | . 9 | 0   | 0   | 9   | 0   | .9  | 0)  | 00  | 00  | 00  | 8   | 8   | 8   | 8   | 0.81  | 8   | 7   |
|--------------------|----------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|
| - 4- d             |          | (in    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |     |     |     |     |     |     |     | -   |     |     |     |     |     |     |     |     |     |     | 0.1   |     |     |
| Defi.<br>Resultant | X X      | Ĺ      | Ŋ    | 14.9 | 4.   | 4.   | m.   | ŝ    | ω,   | 2    | 2.   | 2    | 2    | 2    | 1.   | Ξ.   | 7    | Ξ.   | Ϊ.   | 0    | 0    | 0   | 0   | 0   | 0   | 0   |     | -   |     |     | 8.4 |     |     |     |     |     |     |     |     |       |     | 5.9 |
| -<br>-<br>-        | Y-Dir    | (in    |      | 6    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |     |     |     |     |     | 4   |     |     |     |     |     |     |     |     |     |     |     |     | 4.2   |     |     |
| 4-                 |          | (in    | H    |      | -1   | ÷    | 0    | 0    | 0    |      |      |      |      |      |      |      |      |      |      |      |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 5.0   |     |     |
|                    | Base     |        | 22.0 | 0    | 19.0 | 17.0 | 14.6 | 14.6 | 12.0 | 10.0 | 10.0 | 08.0 | 0.80 | 0.70 | 05.5 | 05.5 | 02.6 | 02.6 | 02.0 | 00.9 | 6.00 | 7.8 | 7.8 | 7:0 | 6.3 | 6.3 | 3.0 | 3.0 | 1.7 | 1,7 | 8.0 | 8.0 | 7.0 | 3.4 | 3.4 | 2:0 | 8.6 | 8.6 | 8.0 | 78.00 | 7.0 | 3.8 |

DATE 05/20/2024 IMPAX 27.1.30.10

Loading Case T+S

|                    | Rotation | þ  | 7   | 7   | 7   | 7   | _   | 7   | ۲.  | 9   | 0   | 9   | 9   | 9   | 9   | 0   | 9   | 9   | 5   | .5  | 5.  | .5  | 0.53  | 5   | .5  | 5 | 4.  | 4.  | 4.  | 4   | . 4 | . 4  | 4   | 3   | ω,  | 2   | . 2 | 0.17  | ι.  | 0. | 0. | 0. |
|--------------------|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|---|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-------|-----|----|----|----|
| 0 £ 1              | Z-Dir    | in |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 0.0   |     |     |   |     |     |     |     |     |      |     |     |     |     |     | 0.0   | -   |    |    |    |
| Defl.<br>Resultant | ₩<br>X   | in |     | 4   |     | 4   |     |     |     | 4.5 |     |     |     |     |     |     |     |     |     |     |     |     | 2.8   |     |     |   |     |     |     |     |     |      |     |     |     |     |     | 0.3   |     |    |    |    |
| 9£1                |          | C  |     |     |     |     |     |     | -   |     |     |     |     |     |     |     |     |     |     |     |     |     |       |     |     |   |     |     |     |     |     |      |     |     |     |     |     | 0.2   |     |    |    |    |
| a)                 | X-Dir    | in |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 2.1   |     |     |   |     | 0.8 |     |     | -29 | 1.00 |     |     |     | 1.7 |     | 0.2   | 117 |    |    |    |
| Distance<br>From   | ľΛ       | Ēŧ | 3,8 | 2.0 | 9.6 | 9.6 | 9.0 | 9.0 | 7.0 | 5.0 | 5.0 | 4.2 | 4.2 | 2.0 | 0.3 | 0.3 | 9.4 | 9.4 | 7.0 | 5.7 | 5.7 | 2.0 | 51.11 | 1.1 | 8.7 | 7 | 7.0 | 4   | 4.4 | 1.8 | 1.8 | 0.6  | 9.0 | 7.0 | 2.0 | 7:0 | 2.0 | 17.00 | 2.0 | 0. | 0  | 0  |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Stresses for Pole

Loading Case T+S

| Combined                | Interaction        | 0.01    | 0.01      | 0.01    | 0.02      | 0.03      | 0.03      | 0.04      | 0.05      | 0.05      | 0.07      | 0.07      | 0.07   | 0.09    | 0.09    | 0.09    | 0.11      | c         | 000    |         | 60.0      | 60.0   | 01.0      | 0.10      | 0.13      | 0.13      | 0.11      | 0.12      | 0.13      | 0.13      | 0.13      | 0.14      | 0.14      | 0.14      | 0.14      | 0.15      | 0.15      | 0.15      | 0.16      | 0.16      | 0.16   | 0.17      |
|-------------------------|--------------------|---------|-----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------|---------|---------|---------|-----------|-----------|--------|---------|-----------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------|-----------|
| Torsion<br>Interaction  | Term               | 00.00   | 00.00     | 00.00   | 00.0      | 0.00      | 00.00     | 00.00     | 00.00     | 0.00      | 00.00     | 00.00     | 00.00  | 00.0    | 00.0    | 00.00   | 00.00     | 0         |        | 000     | 0.00      | 00.0   | 00.0      | 00.0      | 00.0      | 00.0      | 00.0      | 00.00     | 00.0      | 00.0      | 00.0      | 00.00     | 00.0      | 00.0      | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.0   | 00.0      |
| Shear<br>Interaction    | Term               | 00.00   | 0.01      | 0.01    | 0.01      | 0,01      | 10.0      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01   | 0.02    | 0.02    | 0.02    | 0.02      | C         |        | 10.0    | T0.0      | 0.01   | 0.01      | 0.01      | 0.01      | 0.01      | 10.01     | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 10.0      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01   | 0.01      |
| Flexural<br>Interaction | Term               | 00.00   | 00.0      | 0.01    | 0.02      | 0.02      | 0.03      | 0.04      | 0.04      | 0.05      | 90.0      | 90.0      | 90 * 0 | 0.07    | 0.08    | 80.0    | 0.10      | 90        | 20.0   | 0.0     | 0.08      | 0.08   | 0.09      | 0.09      | 0.10      | 0.10      | 0.11      | 0.11      | 0.12      | 0.12      | 0.12      | 0,13      | 0.13      | 0.13      | 0.14      | 0.14      | 0.14      | 0.14      | 0.15      | 0.15      | 0.15   | ᅼ         |
| Axial<br>Interaction    | Term               | 00.00   | 00.00     | 00.00   | 0.01      | 00.00     | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01   | 0,01    | 0.01    | 0.01    | 0.01      | 10 0      | 10.0   | 70.0    | U.01      | 0.01   | 0,01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01   | 0.01      |
| Nominal<br>Torsional    | Strength (in-kips) | 9,841   | 10,765    | 11,405  | 12,182    | 13,083    | 13,762    | 14,510    | 14,878    | 15,438    | 16,552    | 9         | 17,211 | 18,480  | 18,811  | 19,080  | 20,514    | 31 200    | 10     |         | 4 L       | 5      | ά         | 39,118    | 41,743    | 42,215    | 43,008    | 45,594    | 47,082    | 49,037    | 49,616    | 51,341    | 53,065    | 53,807    | 55,784    | 57,252    | 58,168    | Ó         | 61,598    | 65,224    | 66,103 | 68,451    |
| Nominal<br>Shear        | Strength (1bs)     | 437,231 | 457,304   | 470,686 | 486,458   | 504,141   | 17,       | 530,905   | 537,596   | 547,632   | 567,036   | 71,       | 78,    | 599,153 | 604,505 | 608,807 | 631,269   | 222       | 0 7 0  | - 0     | n o       | 049,   | 087,      | 1,102,649 | 1,139,048 | 1,145,471 | 1,156,177 | 1,190,435 | 1,209,705 | 1,234,557 | 241,      | 263,      | 1,284,261 | 1,293,208 | 1,316,760 |           | 1,344,595 | 1,370,288 |           | 1,423,816 |        | 1,458,609 |
| Nominal<br>Flexural     | Strength (in-kips) | 10,267  | 11,239    | 11,910  |           |           |           | , ,       |           |           |           |           | 18,016 | 19,351  | 19,694  | 19,941  | 21,246    | 30 501    | 33 371 | 00 L 00 | ō,        | 97     | 39,695    | 40,804    | 43,562    | 44,058    | 44,891    | 47,608    | 49,172    | 51,226    | 51,834    | 53,648    | 55,460    | 56,240    | 58,320    | 59,863    | 60,826    | 63,186    | 64,433    | 68,247    | 69,172 | 71,642    |
| Nominal<br>Axial        | Strength (lbs)     |         | 1,524,347 | 95      | 1,621,525 | 1,680,470 | 1,723,483 | 1,769,683 | 1,791,986 | 1,825,441 | 1,890,120 | 1,903,502 | 927,   | 997,    |         | 029,    | 2,104,231 | 3 282 960 | 2000   | 200     | 3,401,500 | 497    | 3,625,537 | 675,      | 196'      | 3,818,237 | 853,      | 3,968,115 | 4,032,349 | 4,115,189 | 4,139,404 | 4,210,775 | 4,280,870 | 4,310,693 | 4,389,201 | 4,446,552 | 481,      | 56        | 4,612,233 | 46,       | 177,91 | 4,862,029 |
| Distance<br>From        | Base<br>(ft)       | 122.00  | 119.00    | 117.00  | 114.64    | 112.00    | 110.07    | 108.00    | 107.00    | 105.50    | 102.60    | 102.00    | 100.93 | 94.80   | 97.00   | 96.36   | 93.00     | 00 86     | 91 79  |         | 00.00     | 8.7.00 | 83.40     | 82.00     | 78.60     | 78.00     | 77.00     | 73.80     | 72.00     | 69.68     | 00.69     | 67.00     | 65.04     | 64.20     | 62.00     | 60.39     | 59.40     | 57.00     | 55.75     | 52.00     | 51.11  | 48.75     |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Stresses for Pole

Loading Case T+S

| Combined                | Interaction        | 0.15      | 0.16      | 0.16      | 0.16      | 0.16      | 0.17      | 0.17      | 0.17      | 0.18      | 0.18      | 0.18      | 0.18      | 0.19      | 0.19      |
|-------------------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Torsion<br>Interaction  | Term               | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     |
| Shear<br>Interaction    |                    | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      |
| Flexural<br>Interaction | Тегт               | 0.14      | 0,15      | 0.15      | 0.15      | 0.15      | 0.16      | 0.16      | 0.16      | 0.17      | 0.17      | 0.17      | 0.17      | 0.18      | 0,18      |
| Axial<br>Interaction Ir | Тегш               | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      |
| Nominal<br>Torsional    | Strength (in-kips) | 73,574    | 75,521    | 76,122    | 81,429    | 84,742    | 87,130    | 93,246    | 99,569    | 106,099   | 112,837   | 119,783   | 126,935   | 134,296   | 137,298   |
| Nominal<br>Shear        | Strength (1bs)     | 1,603,945 | 1,625,022 | 1,631,474 | 1,687,391 | 1,721,372 | 1,745,460 | 1,805,678 | 1,865,897 | 1,926,116 | 1,986,335 | 2,046,553 | 2,106,772 | 2,166,991 | 2,191,078 |
| Nominal<br>Flexural     | Strength (in-kips) | 76,884    | 78,930    | 79,561    | 85,142    | 88,625    | 91,137    | 97,570    | 104,222   | 111,094   | 117,727   | 124,040   | 130,455   | 136,966   | 139,597   |
| Nominal<br>Axial        | Strength<br>(lbs)  | 5,346,485 | 5,416,740 | 5,438,247 | 5,624,638 | 5,737,907 | 5,818,199 | 6,018,928 | 6,219,657 | 6,420,386 | 6,621,115 | 6,821,845 | 7,022,574 | 7,223,303 | 7,303,595 |
| Distance<br>From        | Base<br>(ft)       | 48.75     | 47.00     | 46.46     | 41.82     | 39.00     | 37.00     | 32.00     | 27.00     | 22.00     | 17.00     | 12.00     | 7.00      | 2.00      | 00.00     |
|                         |                    |           |           |           |           |           |           |           |           |           |           |           |           |           |           |

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT

BY VALMONT INDUSTRIES FOR: THE TOWERS, LLC 122.0' PO Design Id: 610713-PIRevANE
Forces and Moments for Pole in the Local Element Coordinate System

| Axial<br>(1bs)                             | 168    | 458    | 8281   | 8482   | 8726   | 9255   | 9539   | 9753   | 028    | 10517  | 15728  | 15844  | 16021  | 16550  | 16900  | 17501  | 17575  | 17708  | 18237  | 18637 | 乊     | 55    | 463  | 16   | N    | 26220 | 26648 | 717   | 28550 | 34362 | 34600 | 35435 | 36035 | 36368 | 37195 | 37796 | 37944 | 38875 | 39125 | 994   |
|--------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Resultant<br>Shear<br>(lbs)                | 12     | 31     | 539    | 552    | 567    | 599    | 616    | 629    | 629    | 673    | 196    | 973    | 982    | 1011   | 1029   | 1060   | 1064   | 1071   | 1097   | 1117  | 1401  | 1405  | 1409 | 1433 | 1454 | 1480  | 1500  | 1522  | 1582  | 1826  | 1834  | 1868  | 1889  | 1900  | 1931  | 1951  | 1956  | 1989  | 1996  | 2024  |
| Shear<br>Y-Dix,<br>(lbs)                   | 7      | 20     | 346    | 355    | 364    | 385    | 396    | 404    | 424    | 433    | 621    | 625    | 631    | 650    | 662    | 682    | 684    | 688    | 705    | 718   | 006   | 903   | 906  | 921  | 935  | 952   | 964   | 978   | 1017  | 1174  | 1179  | 1201  | 1214  | 1221  | 1241  | 1254  | 1258  | 1279  | 1283  | 30    |
| Shear<br>X-Dir.<br>(1bs)                   | 0)     | 24     | 413    | 423    | 434    | 459    | 472    | 482    | 505    | 515    | 740    | 745    | 753    | 774    | 789    | 812    | 815    | 820    | 840    | 856   | 1073  | 1076  | 1080 | 1098 | 1114 | 1134  | 1149  | 9     | 1212  | 1399  | 40    | 43    | 44    | 45    | 1479  | 49    | 1499  | 1524  | 1529  | 1550  |
| Torsion (in-kips)                          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Resultant<br>Mx & My<br>(in-kips)          | 0      | П      | П      | 14     | 30     | 30     | 49     | 64     | 64     | 80     | 80     | 92     | 109    | 109    | 145    | 145    | 153    | 166    | 166    | 208   | 208   | 221   | 232  | 232  | 290  | 290   | 312   | 312   | 383   | 383   | 405   | 485   | 485   | 516   | 595   | 595   | 609   | 620   | 644   | 721   |
| My<br>(in-kips)                            | 0      | 1      | -1     | -11    | -23    | -23    | -38    | -49    | -49    | -61    | -61    | -70    | -84    | -84    | -111   | -111   | -117   | -127   | -127   | -159  | -159  | -170  | -178 | -178 | -222 | -222  | -239  | -239  | -293  | -293  | -310  | -371  | -371  | -396  | -455  | -455  | -466  | -475  | -493  | -552  |
| Seismic<br>Mx<br>(in-kips)                 | 0      | П      | П      | 0      | 19     | ნ.⊢    | 32     | 41     | 41     | 52     | 52     | 59     | 7.0    | 7.0    | 93     | 93     | 86     | 107    | 107    | 134   | 134   | 142   | 149  | 149  | 187  | 187   | 201   | 201   | 246   | 246   | 260   | 311   | 311   | 332   | 382   | 382   | 391   | 398   | 414   | 463   |
| Loading Case<br>Dist. From<br>Base<br>(ft) | 122,00 | 119.00 | 119.00 | 117.00 | 114,64 | 114.64 | 112,00 | 110.07 | 110.07 | 108.00 | 108.00 | 107.00 | 105.50 | 105.50 | 102.60 | 102.60 | 102.00 | 100,93 | 100.93 | 97.80 | 97.80 | 97.00 | 6.3  |      | 3.0  | 93.00 | 91.79 | 91.79 | 88.00 | 88.00 | 87.00 | 83.40 | 83.40 | 82.00 | 78.60 | 78.60 | 78.00 | 78.00 | 77.00 | 73.80 |

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, CT

BY VALMONT INDUSTRIES FOR: THE TOWERS, LLC 122.0' FOLE, SDesign Id: 610713-PIREVANE
Forces and Moments for Pole in the Local Element Coordinate System

| Axial<br>(1bs)                             | 40541 | 41010 | 41626 | 42487 | 42669 | 43270 | 43814 | 44357 | Ŋ     | 45452 | 46052 | 46676 | 47139 | 48000 | 48288 | 48889 | 49597 | 49971 | 50832 | 51976 | 52253 | 53114 | 385   | 385   | 55027 | 55389 | 56250 | 59415 | 60276 | 61321 | 61446 | 62200 | 64130 | 66126 | 68187 | 70315 | 72508 | 74767 | 77092    | 78040 |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|
| Resultant<br>Shear<br>(1bs)                | 2041  | 2055  | 2074  | 2099  | 2105  | 2122  | 2136  | 2152  | 2175  | 2182  | 2197  | 2211  | 2224  | 2245  | 2252  | 2265  | 2281  | 2290  | 2307  | 2330  | 2336  | 2353  | 2368  | 2366  | 2388  | 2395  | 2409  | 2469  | 2478  | 2497  | 2495  | 2502  | 2524  | 2544  | 2562  | 2577  | 2592  | 2605  | 2620     | 2629  |
| Shear<br>Y-Dir,<br>(lbs)                   | 1312  | 1321  | 1333  | 1349  | 1353  | 1364  | 1373  | 1383  | 1398  | 1402  | 1412  | 1421  | 1429  | 1443  | 1448  | 1456  | 1466  | 1472  | 1483  | 1498  | 1502  | 1512  | 1522  | 1521  | 1535  | 1540  | 1548  | 1587  | 1593  | 1605  | 1604  | 1608  | 1622  | 1635  | 1647  | 1657  | 1666  | 1675  | 1684     | 69    |
| Shear<br>X-Dir.<br>(lbs)                   | 1564  | 1574  | 1589  | 1608  | 61    | 1626  | 1636  | 1648  | 1666  | 1671  | 1683  | 1694  | 1703  | 1719  | 1725  | 1735  | 1747  | 1754  | 1767  | 1785  | 1790  | 1802  | 1814  | 1812  | 1829  | 1835  | 1845  | 1891  | 1899  | 1913  | 1911  | 1917  | 1934  | 0     | 1962  | 1974  | 1986  | 1996  | 2007     | 2014  |
| Torsion<br>(in-kips)                       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     |
| Resultant<br>Mx & My<br>(in-kips)          | 721   | 765   | 823   | 823   | 840   | 840   | 891   | 941   | 941   | 963   | 963   | 1021  | 1064  | 1064  | 1091  | 1091  | 1157  | 1191  | 1191  | 1295  | 1320  | 1320  | 1387  | 1387  | 1437  | 1452  | 45    | 58    | 1588  | 1672  | 1672  | 1732  | 1883  | 2036  | 2189  | 34    | 4     | 65    | 2812     | 8 7   |
| My<br>(in-kips)                            | -552  | -586  | -630  | -630  | -643  | -643  | -682  | -721  | -721  | -738  | -738  | -783  | -815  | -815  | -836  | -836  | -886  | -912  | -912  | -992  | -1011 | -1011 | -1062 | -1062 | -1101 | -1113 | -1113 | -1217 | -1217 | -1281 | -1281 | -1327 | -1443 | -1559 | -1677 | -1795 | -1914 | -2034 | -2154    | -2202 |
| Seismic<br>Mx<br>(in-kips)                 | 463   | 492   | 529   | 529   | 540   | 540   | 573   | 605   | 605   | 619   | 619   | 657   | 684   | 684   | 701   | 701   | 743   | 765   | 765   | 833   | 849   | 849   | 892   | 892   | 924   | 934   | 9     | 1021  | 1021  | 1075  | 1075  | 1114  | 1211  | 1309  | 1407  | 1506  | 1606  | L     | $\infty$ | 1848  |
| Loading Case<br>Dist. From<br>Base<br>(ft) | 73.80 | 72.00 | 69.68 | 89.69 | 00.69 | 00.69 | 67.00 | 65.04 | 65.04 | 64.20 | 64.20 | 62.00 | 60.39 | 60.39 | 59.40 | 59.40 | 57.00 | 55.75 | 55.75 | 52.00 | 51,11 | 51.11 | 48.75 | 48.75 | 47.00 | 46.46 | 46.46 | 41,82 | 41.82 | 39.00 | 39.00 | 37.00 | 32.00 | 27.00 | 22.00 | 17.00 | 12.00 | 7.00  | 2.00     | 00.00 |

39

BY VALMONT INDUSTRIES FOR: Design Id: 610713-PIRevANE Deflections for Pole

| U  |  |
|----|--|
| +  |  |
| Ε  |  |
| D) |  |
|    |  |
| Œ  |  |
| S  |  |
|    |  |
| Œ  |  |
| Ŋ  |  |
| rc |  |
| C  |  |
|    |  |
| р  |  |
|    |  |
|    |  |
| T  |  |
| TC |  |
| Q  |  |
|    |  |

|     | at<br>eg  | H-1  | Η.  | 0.15<br>0.15 | Γ.   | Γ,   | Γ.   | Γ.  | ۲.   | ۲.   | Ψ.   | 4    | 4   | ۲.   | Η,   | $\dashv$ | $  \dashv $ | H    | 4    | ᅼ   | Ч     | Ε.  | r.  |     | $\vdash$ |     | 4   | 0.13  | Η.  | ~!  | -   | -   | 4   | Η.  | H   | Η.  | Η.  | Η.  | Η.  | <b>!</b> |
|-----|-----------|------|-----|--------------|------|------|------|-----|------|------|------|------|-----|------|------|----------|-------------|------|------|-----|-------|-----|-----|-----|----------|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|
| 4-1 | -D-<br>in |      |     | 0.1<br>0.1   |      |      |      |     |      |      |      |      |     |      |      |          |             |      |      |     |       |     |     |     |          |     |     | 0.0   |     |     |     |     |     |     |     |     |     |     |     |          |
| a 2 | H. Ø      |      |     | 2.0          |      |      |      | 4   |      |      |      |      |     |      |      |          |             |      |      |     |       | 1,4 |     |     |          |     |     | 1.2   |     |     |     |     |     |     |     |     |     |     |     |          |
| Ę.  | 1 ~       |      |     | 1.3          |      |      |      |     |      |      |      |      |     |      |      |          |             |      |      |     |       |     |     |     |          |     |     | 0.8   |     |     |     |     |     |     |     |     | 4   |     |     |          |
| Ę.  | d<br>T    |      |     | a - i<br>- i |      |      |      |     |      |      |      |      |     |      |      |          |             |      |      |     |       |     |     |     |          |     |     | 6.0   |     |     |     |     |     |     |     |     | 4   |     |     |          |
| ta  | as<br>ft  | 22.0 | L 9 | 117.00       | 14.6 | 14.6 | 12.0 | 10. | 10.0 | 08.0 | 0.80 | 07.0 | 05. | 05,5 | 02.6 | 02.6     | 02.0        | 6.00 | 00.9 | 7.8 | 7 . 8 | 7   | 5.3 | 5.3 | 3.0      | 3.0 | 1.7 | 91.79 | 8.0 | 8.0 | 7.0 | 3.4 | 3.4 | 2.0 | 8.6 | 8.6 | 8.0 | 8.0 | 7.0 | ω<br>    |

DATE 05/20/2024 IMPAX 27.1.30.10

| 7 2 4 4 4                                            | 0,10<br>0,10<br>0,10<br>0,09<br>0,09<br>0,09                                           | 0.08<br>0.08<br>0.08<br>0.08<br>0.07<br>0.07                         | 0.07<br>0.06<br>0.06<br>0.06<br>0.06<br>0.05<br>0.05<br>0.03<br>0.03<br>0.01<br>0.01                              |
|------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Defl.<br>Z-Dir<br>(in)<br>0.0<br>0.0                 | 0000000000                                                                             | 0000000000                                                           | 00000000000000000                                                                                                 |
| U - W - * * *                                        | た<br>た<br>た<br>た<br>た<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | 00000000000000000000000000000000000000                               | 0.000000000000000000000000000000000000                                                                            |
| Defl.<br>Y-Dir<br>(in)<br>0.5<br>0.5                 |                                                                                        | 000000000000000000000000000000000000000                              | 0.0000000000000000000000000000000000000                                                                           |
| Defl.<br>X-Dir<br>(in)<br>0.6<br>0.6                 |                                                                                        | 0000000000                                                           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                              |
| can<br>rom<br>ase<br>ft)<br>3.8<br>3.8<br>2.0<br>9.6 | 0.00.00.440.00.00.00.00.00.00.00.00.00.0                                               | 60.39<br>59.40<br>57.40<br>57.00<br>55.77<br>55.77<br>51.11<br>61.11 | 48.75<br>46.46<br>46.46<br>46.46<br>41.82<br>41.82<br>39.00<br>37.00<br>27.00<br>27.00<br>12.00<br>12.00<br>12.00 |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-PIRevANE Stresses for Pole

| Stress      | Interaction        | 0.03      | 0.01      | 0.01      | 10.0      | 0.01      | 0.01      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.03      | 0.03      | 0.03      | 0.03      | 0.05    | 0.02    | 0.02     | 0.02      | 0.02      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03   | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03 | 0.03      | 0.03   | 0.03   | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      |
|-------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|---------|----------|-----------|-----------|-----------|-----------|-----------|-----------|--------|-----------|-----------|-----------|-----------|-----------|------|-----------|--------|--------|-----------|-----------|-----------|-----------|-----------|
| Interaction | Term               | 0.00      | 00.0      | 0.00      | 00.00     | 0.00      | 00.0      | 0.00      | 00.00     | 00.00     | 00.0      | 0.00      | 00.00     | 00.0      | 00.0      | 00.0      | 00.00     | 00.00   | 00.0    | 00.0     | 00.00     | 00.00     | 00.0      | 00.0      | 00.0      | 00.0      | 00.0   | 00.0      | 00.00     | 00.0      | 00.00     | 00.0      | 00.0 | 00.0      | 00.00  | 00.0   | 00.0      | 00.0      | 00.0      | 00.0      | 00.00     |
| Interaction | Term               | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00*0    | 00.00   | 00.00    | 00.00     | 00.0      | 00.00     | 00.00     | 00.00     | 00.0      | 00.0   | 00.0      | 0.0 * 0   | 00.0      | 00.0      | 00*0      | 00.0 | 00.0      | 00.00  | 00.0   | 00.0      | 0.000     | 00.00     | 00.0      | 00.0      |
| Interaction | Term               | 00.00     | 00.0      | 00.0      | 00.00     | 00.0      | 00.0      | 0.01      | 0.01      | 0.01      | 0.01      | 10.0      | 0.01      | 10.0      | 0.01      | 0.01      | 0.02      | 0.01    | 0.01    | 0.01     | 0.01      | 0.01      | 0.01      | 0.02      | 0.02      | 0.02      | 0.02   | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02 | 0.02      | 0.02   | 0.02   | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      |
| Interaction | Тегш               | 00.00     | 0,01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01    | 0.01    | 0.01     | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01   | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01 | 0.01      | 0.01   | 0.01   | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      |
| Torsional   | Strength (in-kips) | 9,841     | 10,765    | 11,405    | 12,182    | 13,083    | 13,762    | 14,510    | 14,878    | 15,438    | 16,552    | 16,787    | 17,211    | 18,480    | 18,811    | 19,080    | 20,514    | 31,209  | 32,038  | 34,693   | 35,412    | 38,062    | 39,118    | 41,743    | 42,215    | 43,008    | 45,594 | 47,082    | 49,037    | 49,616    | 51,341    | 53,065    | 3    | 55,784    | 57,252 | 58,168 | 60,412    | 61,598    | 65,224    | 66,103    | 68,451    |
| Shear       | Strength (1bs)     | 437,231   | 457,304   | 470,686   | 486,458   | 504,141   | 517,045   | 530,905   | 537,596   | 547,632   | 567,036   | 571,051   | œ.        |           | 604,505   | 608,807   | 631,269   | 984,888 | 997,887 | $\circ$  | 1,049,121 | 1,087,661 | 1,102,649 | 1,139,048 | 1,145,471 | 1,156,177 | 190,   | 1,209,705 | 1,234,557 | 1,241,821 | 1,263,232 | 1,284,261 | 293, | 1,316,760 | 333,   | 344,   | 1,370,288 | 1,383,670 | 1,423,816 | 1,433,374 | 1,458,609 |
| Flexural    | Strength (in-kips) | 10,267    | 11,239    | 11,910    | 12,727    | 13,675    | 14,388    | 15,174    | 5         | 16,151    | 17,322    | 17,570    | 18,016    | 19,351    | 19,694    | 0         | 21,246    | 32,501  | 3,      | 36,158   | 36,913    | 6         | 0         | 43,562    | 44,058    | 7         | -      | 49,172    | ,         | Ĺ         | 'n        | 5         | ó    | œ         | 0      | 60,826 | 3         | 64,433    | ŝ         | 69,172    | 71,642    |
| Axial       | Strength (1bs)     | 1,457,437 | 1,524,347 | 1,568,953 | 1,621,525 | 1,680,470 | 1,723,483 | 1,769,683 | 1,791,986 | 1,825,441 | 1,890,120 | 1,903,502 | 1,927,398 | 1,997,176 | 2,015,018 | 2,029,356 | 2,104,231 | 282,    | (.)     | 461,     | 497,      | 625,      | 675,      | 1961      | 818,      | 3,853,923 | 968,   | 032,      | 115,      | 139,      | 210,      | 280,      | 310, | 389,      | 446,   | 481,   | 567,      | 612,      | 746,      | 4,777,914 | 8         |
| From        | Base<br>(ft)       | 122.00    | 119,00    | 117.00    | 114.64    | 112.00    | 110.07    | 108.00    | 107.00    | 105.50    | 102,60    | 102.00    | 00        | 97.80     | 97.00     | 96.36     | 93.00     | 3       | 91.79   | $\infty$ | -         | 3         | $\sim$    | $\infty$  | $\infty$  | 77.00     | ~      | 2         | 69.68     | 0         | ~         | 2         | 4    | 62.00     | 60.39  | 9.4    | 7.0       | 55.75     | 2.0       | į.        | 48.75     |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Stresses for Pole

| Combined<br>Stress<br>Interaction             | 0.03                   | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      |
|-----------------------------------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Torsion<br>Interaction<br>Term                | 00.0                   | 00:0      | 00.0      | 00.0      | 0.000     | 00.0      | 00.00     | 00.0      | 00.0      | 00.0      | 00.00     | 00.0      |
| Shear<br>n Interaction Ir<br>Term             | 0.00                   | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     |
| Flexural<br>nteractio<br>Term                 | 0.02                   | 0.02      | 0.02      | 0.02      | 0:02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      |
| Axial<br>Interaction Ir<br>Term               | 0.01                   | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      |
| Nominal<br>Torsional<br>Strength<br>(in-kips) | 73,574                 | 76,122    | 84,742    | 87,130    | 93,246    | 99,569    | 106,099   | 112,837   | 119,783   | 126,935   | 134,296   | 137,298   |
| Nominal<br>Shear<br>Strength<br>(1bs)         | 1,603,945<br>1,625,022 |           |           |           |           |           |           |           |           |           |           |           |
| Nominal<br>Flexural<br>Strength<br>(in-kips)  | 76,884                 | 79,561    | 88,625    | 91,137    | 97,570    | 104,222   | 111,094   | 117,727   | 124,040   | 130,455   | 136,966   | 139,597   |
| Nominal<br>Axial<br>Strength<br>(1bs)         | 5,346,485              | 5,438,247 | 5,737,907 | 5,818,199 | 6,018,928 | 6,219,657 | 6,420,386 | 6,621,115 | 6,821,845 | 7,022,574 | 7,223,303 | 7,303,595 |
| Distance<br>From<br>Base<br>(ft)              | 48.75                  | 46.46     | 39.00     | 37.00     | 32:00     | 27.00     | 22.00     | 17.00     | 12.00     | 7.00      | 2.00      | 00.0      |

BY VALMONT INDUSTRIES FOR: THE TOWERS, LLC 122.0' PO Design Id: 610713-PIRevANE

Forces and Moments for Pole in the Local Element Coordinate System

| Axial<br>(1bs)                             | 114    | 311    | 5616   | 5752   | 5918   | 6277   | 6469   | 6614   | 6973   | 7133   | 10667  | 10746  | 10865  | 11224  | 11462  | 11869  | 11920  | 12010  | 12369  | 12640 | 9     | 16653 | 671   | 17069 | 17376 | 17783 | 18074 | 18433 | 19364 | 23306 | 23468 | 24034 | 24441 | 24667 | 25228 | 25635 | 25736      | 26367 | 26537 | 27090 |
|--------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|-------|-------|-------|
| Resultant<br>Shear<br>(1bs)                |        | 29     | 508    | 520    | 534    | 564    | 580    | 592    | 621    | 633    | 907    | 913    | 922    | 949    | 996    | 995    | 866    | 1005   | 1029   | 1048  | 1310  | 1315  | 1318  | 1341  | 1360  | 1385  | 1403  | 1423  | 1478  | 1702  | 1710  | 1740  | 1761  | 1771  | 1799  | 1817  | 1822       | 1852  | 1859  | 1884  |
| Shear<br>Y-Dir,<br>(lbs)                   | 7      | 19     | 326    | 334    | 343    | 363    | 373    | 381    | 399    | 407    | 583    | 587    | 593    | 610    | 621    | 640    | 642    | 646    | 662    | 674   | 842   | 845   | 847   | 862   | 874   | 890   | 902   | 915   | 950   | 1094  | 1099  | 1119  | 1132  | 1138  | 1156  | 1168  | 1171       | 1190  | 1195  | 1211  |
| Shear<br>X-Dir.<br>(1bs)                   | 00     | 22     | 389    | 398    | 409    | 432    | 445    | 454    | 475    | 485    | 695    | 700    | 707    | 727    | 740    | 762    | 765    | 770    | 789    | 803   | 1004  | 1007  | 1010  | 1027  | 1042  | 1061  | 1074  | 1090  | 1132  | 1304  | 1310  | 1333  | 1349  | 1357  | 1378  | 1392  | $^{\circ}$ | 1419  | 1424  | 1443  |
| Torsion<br>(in-kips)                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0          | 0     | 0     | 0     |
| Resultant<br>Mx & My<br>(in-kips)          | 0      | П      |        | 13     | 28     | 28     | 46     | 09     | 09     | 76     | 16     | 98     | 103    | 103    | 136    | 136    | 144    | 156    | 156    | 195   | 195   | 208   | 218   | 218   | 273   | 273   | 293   | 293   | 359   | 359   | 379   | 454   | 454   | 483   | 556   | 556   | 569        | 577   | 599   | 671   |
| My<br>(in-kips)                            | 0      | -1-    | -1     | -10    | -22    | -22    | -36    | -46    | -46    | -58    | -58    | 99-    | -79    | -79    | -104   | -104   | -110   | -120   | -120   | -150  | -150  | -159  | -167  | -167  | -209  | -209  | -224  | -224  | -275  | -275  | -291  | -348  | -348  | -370  | -426  | -426  | -436       | -442  | -459  | -514  |
| Seismic 2 Mx (in-kips)                     | 0      | П      | 1      | 6      | 18     | 18     | 30     | 39     | 39     | 49     | 49     | 26     | 99     | 99     | 88     | 88     | 92     | 101    | 101    | 126   | 126   | 134   | 140   | 140   | 175   | 175   | 188   | 188   | 231   | 231   | 244   | 292   | 292   | 311   | 358   | 358   | 366        | 371   | 385   | 431   |
| Loading Case<br>Dist, From<br>Base<br>(ft) | 122.00 | 119.00 | 119.00 | 117.00 | 114.64 | 114.64 | 112.00 | 110.07 | 110.07 | 108.00 | 108.00 | 107.00 | 105,50 | 105.50 | 102.60 | 102.60 | 102.00 | 100.93 | 100.93 | 97.80 | 97.80 | 97.00 | 96.36 | 96.36 | 93.00 | 93.00 | 91.79 | 91.79 | 88.00 | 88.00 | 87.00 | 83,40 | 83.40 | 82.00 | 78.60 | 78.60 | 78.00      | 78.00 | 77.00 | 73.80 |

THE TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT,

| CI, CI                                 |                                                                                                 |                        |            | Axial   | (lbs)     | 274   | 278   | 282   | 288   | 289   |
|----------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|------------|---------|-----------|-------|-------|-------|-------|-------|
| SITE: US-CT-5055 - WILTON SOUTH CT, CT |                                                                                                 |                        | Resultant  | Shear   | (lbs)     | 1900  | 1913  | 1930  | 1953  | 1958  |
| US-CI-5055 -                           |                                                                                                 |                        | Shear      | Y-Dir.  | (1bs)     | 1221  | 1229  | 1241  | 1255  | 1259  |
| POLE, SITE:                            | me                                                                                              |                        | Shear      | X-Dir.  | (1bs)     | 1456  | 1465  | 1479  | 1496  | 1500  |
| THE TOWERS, LLC 122.0' POLE,           | oordinate Syst                                                                                  |                        |            | Torsion | (in-kips) | 0     | 0     | 0     | 0     | 0     |
| THE TOWE                               | Design is orotic finewand<br>Forces and Moments for Pole in the Local Element Coordinate System |                        | Resultant  | Mx & My | (in-kips) | 671   | 712   | 766   | 766   | 782   |
| S FOR:                                 | nevani<br>le in the Lo                                                                          |                        |            | My      | (in-kips) | -514  | -546  | -587  | -587  | -599  |
| BY VALMONT INDUSTRIES FO               | oments for Po                                                                                   | Seismic 2              | )          | Mx      | (in-kips) | 431   | 458   | 492   | 492   | 502   |
| BY VALM                                | Forces and Mc                                                                                   | Loading Case Seismic 2 | Dist, From | Base    | (ft)      | 73.80 | 72.00 | 69.68 | 69.68 | 00.69 |

| -         | Axial   | (lbs)     | 27497 | 27815 | 28233 | 28817 | 28941 | 29348 | 29717 | 30086 | 30670 | 30829 | 31236 | 31659 | 31973 | 32557 | 32753 | 33160 | 33640 | 33894 | 34478 | 35254 | 35442 | 36026 | 36529 | 36529 | 37324 | 37570 | 38154 |       | 40885 | 0)    | 41678 | 0     | 43499 | 485   | 46252 | 47695 | 49183    | 50716 | S     | 293   |
|-----------|---------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|
| Resultant | Shear   | (lbs)     | 1900  | 1913  | 1930  | 1953  | 1958  | 1973  | 1986  | 2000  | 2021  | 2027  | 2041  | 2054  | 2065  |       | 2090  | 2102  | 2116  | 2124  | 2140  | 2160  | 2165  | 2180  | 2193  | 2192  | 2211  | 2217  | 2229  | 2279  | 2288  | 2303  | 2302  | 2309  | 2328  | 2345  | 2359  | 2372  | 2383     | 2393  | 2403  | 2409  |
| Shear     | Y-Dir.  | (1bs)     | 1221  | 1229  | 1241  | 1255  | 1259  | 1268  | 1277  | 1286  | 1299  | 1303  | 1312  | 1320  | 1327  | 1339  | 1344  | 1351  | 1360  | 1365  | 1375  | 1389  | 1392  | 1401  | 1410  | 1409  | 1421  | 1425  | 1433  | 1465  | 1471  | 1480  | 1480  | 1484  | 1496  | 1507  | 1516  | 1524  | 1532     | 1538  | 1545  | 1548  |
| Shear     | X-Dir.  | (1bs)     | 1456  | 1465  | 1479  | 1496  | 1500  | 1512  | 1522  | 1532  | 1548  | 1553  | 1563  | 1574  | 1582  | 1596  | 1601  | 1610  | 1621  | 1627  | 63    | 1655  | 1659  | 67    | 1680  | 1679  | 1694  | 1698  | 1707  | 74    | 1753  | 1764  | 1764  | 1769  | 1783  | 1796  | 80    | 1817  | 1825     | 1833  | 1841  | 1845  |
| -         | Torsion | (in-kips) | 0     | 0     | 0     | 0     | О     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0     |
| Resultant | Mx & My | (in-kips) | 671   | 712   | 766   | 766   | 782   | 782   | 829   | 876   | 876   | 897   | 897   | 951   | 066   | 066   | 1015  | 1015  | 1076  | 1108  | 1108  | 1205  | 1228  | 1228  | 1290  | 1290  | 1336  | 1350  | 1350  | 1476  | 1476  | 1553  | 1553  | 1609  | 1748  | 1888  | 2030  | 2172  | 2314     | 2458  | 2602  | 2660  |
| ;         | Mγ      | (in-kips) | -514  | -546  | -587  | -587  | -599  | -599  | -635  | -671  | -671  | -687  | -687  | -728  | -759  | -759  | -778  | -778  | -824  | -849  | -849  | -923  | -941  | -941  | 00    | -988  | -1023 | -1034 | -1034 | -1130 | -1130 | -1190 | -1190 | -1232 | -1339 | -1447 | -1555 | -1664 | -1773    | -1883 | -1993 | -2037 |
| ;         | Mx      | (in-kips) | 431   | 458   | 492   | 492   | 502   | 502   | 533   | 563   | 563   | 576   | 576   | 611   | 637   | 637   | 653   | 653   | 692   | 712   | 712   | 774   | 789   | 789   | 829   | C)    | 2     | 0     | 0     | 949   | d.    | 9     | 99    | 03    | 12    | 21    | 30    | 39    | $\infty$ | 20    | 67    | 71    |
|           | ase     | ft)       | 00    | 0.5   | 9.6   | 3.6   | 9.0   | 3.0   | 67.00 | 0.0   | 5.0   | 1.2   | 1.2   | 2.0   | 3     | 3,3   | 9.4   | 9.4   | 7.0   | 5.7   | 5.7   | 2.0   | 1.1   | 1.0   | 7.    | 8.7   | 7.0   | 6.4   | 6.4   | 41.82 | .8    | 0.6   | 9.0   | 7.0   | 2.0   | 7.0   | 2.0   | 7.0   | 2.0      | 0.    | 0.    | 0     |

BY VALMONT INDUSTRIES FOR: Design Id: 610713-P1RevANE Deflections for Pole

|                    | Rotation | eg   | -    | Η.   | Ε.   | I    | Τ.   | -    | Η.   | 0.14   | Ξ.   | Γ.   | Ξ.   | Η.   | ⊣.   | Η.   | ۲.   | $\vdash_{\cdot}$ | $\dashv$ | H.   | Η.   | Η.  | 4   | $\vdash$ | L.  | 4   | 4   | - 3 |     | -!    | 1    | et. | 4 | 4   | 7   |     | 0.11  | -1  | -1  | 1.1  | -1  | Н   | -1  |
|--------------------|----------|------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------|------------------|----------|------|------|-----|-----|----------|-----|-----|-----|-----|-----|-------|------|-----|---|-----|-----|-----|-------|-----|-----|------|-----|-----|-----|
| Def1.              |          | (in) |      |      |      |      |      |      |      | 0.0    |      |      |      |      |      |      |      |                  |          | -    | -    |     |     |          |     |     | 4   |     | 4   |       | ٠    |     |   |     |     |     | 0.0   |     |     |      |     |     |     |
| Defl.<br>Resultant |          | C    |      |      |      |      |      |      |      | 1,6    | -    |      |      |      |      |      |      |                  |          |      |      |     |     |          |     |     |     |     |     |       |      |     |   |     |     |     | 6.0   |     |     |      |     |     |     |
| ef]                | Д        | Z    |      |      |      |      |      |      |      | 1.1    |      |      |      |      |      |      |      |                  |          |      |      |     |     |          |     | 4   |     |     |     |       |      |     | 4 |     |     |     | 9 0   |     |     | 4    |     |     |     |
| ef]                |          | (in  |      |      |      | .4   |      |      |      | 1.3    |      |      |      |      |      |      |      |                  |          |      |      |     |     |          |     |     |     |     |     |       |      |     |   |     |     |     | 0.7   |     |     |      |     |     |     |
| Distance<br>From   | Ŋ        | ££   | 22.0 | 19.0 | 19,0 | 17.0 | 14.6 | 14.6 | 12.0 | 110.07 | 10.0 | 08.0 | 0.80 | 07.0 | 05.5 | 05.5 | 02.6 | 02.6             | 02.0     | 00.9 | 00.9 | 7.8 | 7.8 | 7.0      | 6.3 | 6.3 | 3.0 | (   | 2 . | 1 * 1 | 1.87 | 8.0 | 8 | 7.0 | 3.4 | 3.4 | 82.00 | 8.6 | 8.6 | 8 .0 | 8.0 | 7.0 | 3.8 |

DATE 05/20/2024 IMPAX 27.1.30.10

|                    | tat   | (deg.)       | <br>0.  | 0   | 0   | 0.  | 0.  | 0.  | 0.  | 0.  | 0.  | 0.  | 0.  | 0.  | 0.  | 0.  | 0   | 0.  | 0.  | 0.  | 0   | 0.  | 0.  | 0   | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0.  | 0   | 0   | 0.01  | 0  | 0  | 0. |
|--------------------|-------|--------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|----|----|----|
| e u                | Ο.    | (uı)         |         |     | -   |     |     |     |     |     |     |     |     |     |     |     | -   |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |     |     | 0.0   |    |    |    |
| Defl.<br>Resultant | LZI - | (1n)<br>0 7  |         |     |     |     |     |     |     |     |     | 4   |     |     |     |     |     |     |     |     | -   | 0.3 |     |     |     |    |     |     |     |     |     |     |     |     |     |     | 0.0   |    | •  | •  |
| ef1                | Ω .   | (ur)         |         |     |     |     |     |     |     |     | -   |     |     |     |     |     | -   |     |     |     |     | -   |     |     |     |    |     |     |     |     |     | -   |     |     |     |     | 0.0   |    |    |    |
| ef1                | Ω -   | (nr)         |         |     |     |     |     |     |     |     | -   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |     |     | 0.0   | 4  |    | 4  |
| Distance<br>From   | Base  | 7 ()<br>3 () | <br>9.6 | 9.6 | 9.0 | 9.0 | 7.0 | 5.0 | 5.0 | 4.2 | 4.2 | 2.0 | 0,3 | 0.3 | 9.4 | 9.4 | 7.0 | 5.7 | 5.7 | 2.0 | 1.1 | 1,1 | 8.7 | 8.7 | 7.0 | ٠4 | 6.4 | 1.8 | 1.8 | 0.0 | 9.0 | 7.0 | 2.0 | 7.0 | 2.0 | 7.0 | 12.00 | 0. | 0. | 0. |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-PIRevANE Stresses for Pole

| Combined<br>Stress<br>Interaction | 0.01      |           | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02    | 0.02    | 0.02    | 0.02    | 0.05    | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.03      | 0.03      | 0.03   | 0.03      | 0.03   | 0.03   | 0.03   | 0.03      | 0.03   | 0.03      | 0.03      |
|-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------|-----------|--------|--------|--------|-----------|--------|-----------|-----------|
| Torsion<br>Interaction<br>Term    | 0.00      | 000       | 00.00     | 00.00     | 00.00     | 00.0      | 00.0      | 00.00     | 00.00     | 00.00     | 00.0      | 00.00     | 00.0    | 00.0    | 00.00   | 0.00    | 00.0    | 00.0      | 00.0      | 00.00     | 00.00     | 00.0      | 00.00     | 00.0      | 00.00     | 00.00     | 00.0      | 00.00     | 00.00     | 00.00     | 00.0   | 00.0      | 00.00  | 00.00  | 00.00  | 00.00     | 00.0   | 00.00     | 00.0      |
| Shear<br>Interaction<br>Term      | 00.00     | 00.0      | 00.00     | 00.00     | 00.00     | 00.00     | 00*0      | 00.0      | 00.0      | 00.0      | 00 * 0    | 00.0      | 00.0    | 00.0    | 00.0    | 00.00   | 00.00   | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00  | 00.00     | 00.00  | 00.00  | 00.00  | 00.00     | 00.00  | 00.00     | 00.00     |
| Flexural<br>Interaction<br>Term   | 00.0      | 00.00     | 00.00     | 00.00     | 00.0      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01    | 0.01    | 0.01    | 0.01    | 0.01    | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02   | 0.02      | 0.02   | 0.02   | 0.02   | 0.02      | 0.02   | 0.02      | 0.02      |
| Axial<br>Interaction<br>Term      | 00.00     | 00.0      | 00.00     | 00.00     | 00.00     | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01    | 0.01    | 0.01    | 0.01    | 0.01    | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01      | 0.01   | 0.01      | 0.01   | 0.01   | 0.01   | 0.01      | 0.01   | 0.01      | 0.01      |
| Nominal<br>Torsional<br>Strength  | 9,841     | 10, 705   | 12,182    | 13,083    | 13,762    | 14,510    | 14,878    | 5,43      | 16,552    | 16,787    | 17,211    | 18,480    | 18,811  | 19,080  | 20,514  | 31,209  | 32,038  | 34,693    | 35,412    | 8         | 39,118    | 41,743    | 42,215    | 43,008    | 45,594    | 47,082    | 49,037    | 49,616    | 51,341    | 53,065    | 53,807 | 55,784    | 57,252 | 58,168 | 60,412 | 61,598    | 65,224 | 66,103    | 68,451    |
| Nominal<br>Shear<br>Strength      | 437,231   | 457,304   | 86,45     | 504,141   | 517,045   | 530,905   | 537,596   | 547,632   | 567,036   | 571,051   | 578,220   | 599,153   | 604,505 | 608,807 | 631,269 | 984,888 | 788,766 | 1,038,416 | 1,049,121 | 1,087,661 | 1,102,649 | 1,139,048 | 1,145,471 | 1,156,177 | 1,190,435 | 1,209,705 | 1,234,557 | 1,241,821 | 1,263,232 | 284,      | 293,   | 316,      | 333,   | 344,   | 370,   | 1,383,670 | 423,   | 1,433,374 | 1,458,609 |
| Nominal<br>Flexural<br>Strength   | 10,267    | 11,239    | 12,727    | 13,675    | 14,388    | 15,174    | 15,561    | 16,151    | 17,322    | 17,570    | 18,016    | 19,351    | 19,694  | 19,941  | 21,246  | 32,501  | 33,371  | 36,158    | 36,913    | 39,695    | 40,804    | 43,562    | 44,058    | 44,891    | 47,608    | 49,172    | 51,226    | 51,834    | 53,648    | 55,460    | 56,240 | 58,320    | 59,863 | 60,826 | 13     | ₽.        | 68,247 | 69,172    | 71,642    |
| Nominal<br>Axial<br>Strength      | 1,457,437 | 1,568,547 | 1,621,525 | 1,680,470 | 1,723,483 | 1,769,683 | 1,791,986 | 1,825,441 | 1,890,120 | 1,903,502 | 1,927,398 | 1,997,176 | 015,0   | 029,35  | 104,23  | 282,96  | 326,2   | 461,      | 497,      | 625,      | 675,      | 1961      | 818,      | 853,      | 968,      | 032,      | 115,      | 139,      | 210,      | 4,280,870 | 310,   | 4,389,201 | 446,   | 481,   | 567,62 | 12,23     | 05     | 4,777,914 | 4,862,029 |
| Distance<br>From<br>Base<br>(ft)  | 122.00    | 113.00    | 114.64    | 112.00    | 110.07    | 108.00    | 107.00    | 105.50    | 102.60    | 102,00    | 100.93    | 97.80     | 97.00   | 96,36   | 93.00   | 93.00   | 91.79   | 88.00     | 87.00     | 83.40     | 82.00     | 78.60     | 78.00     | 77.00     | 73.80     | 72.00     | 69.68     | 00.69     | 67.00     | 65.04     | 64.20  | 62.00     | 60.39  | 59.40  | 57.00  | 55,75     | 52.00  | 51,11     | 48.75     |

DATE 05/20/2024 IMPAX 27.1.30.10

BY VALMONT INDUSTRIES FOR: Design Id: 610713-PIRevANE Stresses for Pole

| Combined<br>Stress<br>Interaction             | 0.03                   | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      |
|-----------------------------------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Torsion<br>Interaction<br>Term                | 0.00                   | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     | 00.00     |
| Shear<br>Interaction<br>Term                  | 00.00                  | 00.00     | 00.00     | 00.0      | 00.00     | 00.00     | 00.0      | 00*0      | 00.0      | 00.00     | 00.0      | 00.0      |
| Flexural<br>Interaction<br>Term               | 0.02                   | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      | 0.02      |
| Axial<br>Interaction<br>Term                  | 0.01                   | 0.01      | 0.01      | 0.01      | 0.01      | 10.0      | 0.01      | 0.01      | 0:01      | 0.01      | 0.01      | 0.01      |
| Nominal<br>Torsional<br>Strength<br>(in-kips) | 73,574                 | 76,122    | 84,742    | 87,130    | 93,246    | 99,569    | 106,099   | 112,837   | 119,783   | 126,935   | 134,296   | 137,298   |
| Nominal<br>Shear<br>Strength<br>(lbs)         | 1,603,945<br>1,625,022 | 1,631,474 | 1,721,372 | 1,745,460 | 1,805,678 | 1,865,897 | 1,926,116 | 1,986,335 | 2,046,553 | 2,106,772 | 2,166,991 | 2,191,078 |
| Nominal<br>Flexural<br>Strength<br>(in-kips)  | 76,884                 | 79,561    | 88,625    | 91,137    | 97,570    | 104,222   | 111,094   | 117,727   | 124,040   | 130,455   | 136,966   | 139,597   |
| Nominal<br>Axial<br>Strength<br>(1bs)         | 5,346,485              | 5,438,247 | 5,737,907 | 5,818,199 | 6,018,928 | 6,219,657 | 6,420,386 | 6,621,115 | 6,821,845 | 7,022,574 | 7,223,303 | 7,303,595 |
| Distance<br>From<br>Base<br>(ft)              | 48.75                  | 46,46     | 39.00     | 37.00     | 32.00     | 27.00     | 22,00     | 17.00     | 12,00     | 7.00      | 2.00      | 0.00      |

MINIMUM DEFLECTION RATIO // DEFLECTION LIMIT / DEFLECTION // IS

| -SU         |             |
|-------------|-------------|
| SITE        |             |
| POLE,       |             |
| 0           |             |
| 122.0'      |             |
| LLC         |             |
| THE TOWERS, |             |
| THE         |             |
| FOR:        | PIREVANE    |
| INDUSTRIES  | 610713-P1Re |
| BY VALMONT  | sign Id:    |
| BX          | ٥           |

| 2024<br>30.10                                                |                               |                  |                                       | HEAD NUT                   |
|--------------------------------------------------------------|-------------------------------|------------------|---------------------------------------|----------------------------|
| CT DATE 05/20/2024<br>IMPAX 27.1.30.10                       | THREAD<br>SIZE                | 4.5-UNC-2A       | CONFIGURATION OF<br>BOTTOM END        | THREADED WITH HEAVY HEX HE |
| N SOUTH CT,                                                  | GALVANIZED<br>LENGTH<br>(IN.) | 72.00            | NTERACTION<br>VALUE                   | O.68 THREADE               |
| -5055 - WILTC                                                | PROJECTION<br>LENGTH<br>(IN.) | 12.75            | н                                     |                            |
| SITE: US-CI                                                  | SHIPPED                       | BOLTS, TEMPLATES | STRESS<br>AREA<br>(SQ. IN.)           | 3.25                       |
| 22.0' POLE,                                                  | SIII                          | BOLIS, T         | NOMINAL<br>STRENGTH<br>(KIPS)         | 268.65                     |
| TOWERS, LLC 122.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT, | WEIGHT<br>(KIPS)              | 2.63             | MAXIMUM BOLT<br>SHEAR FORCE<br>(KIPS) | 3,86                       |
| R: THE                                                       | LENGTH (IN.)                  | 72.00            | MAXIMUM BOLT<br>FORCE<br>(KIPS)       | 183.55                     |
| VALMONT INDUSTRIES FOR:                                      | DIAMETER<br>(IN.)             | 2.250            | STEEL<br>SPECIF.                      | A615                       |
| VALMONT INDUSTRIES                                           | NUMBER<br>OF BOLTS            | 24               | STEEL<br>SPEC.<br>VALMONT             | \$23                       |

### \*\*\* BOLT COORDINATES (IN.) \*\*\*

| Y-COORD | 9.188          | 25.102   | 34.290   |        |
|---------|----------------|----------|----------|--------|
| X-COORD | 34.290         | 25,102   | 9.188    |        |
| NO.     |                |          |          |        |
| BOLT    | 2              | 4        | 9        |        |
|         |                |          |          | ı      |
| 7.      | *              | *        | *        | *      |
| Y-COORD | * 0000.0       | 17.750 * | 30.744 * | 35.500 |
| _       | 35.500 0.000 * |          |          |        |
| _       |                |          |          |        |

## MAX. BOLT CIRCLE = 71.00 IN.

# \*\*\* BASE PLATE CHARACTERISTICS GOVERNED BY LOADING CASE WIND \*\*\*

TEMPLATE DIAMETER = 74.50 IN.

| ************************************** | ADING CASES *********************************** | NESS STRESS RATIO 0.60 ********************************** | EFFECTIVE YIELD STRESS (KSI) 50 M*********************************** | STEEL STEEL STEEL STEEL STEEL STEES RATIO  VALMONT OTHER (KSI)  SS6  A572  LOADS AT POLE BASE IN THE GLOBAL COORDINATE SYSTEM ************************************ |
|----------------------------------------|-------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                                 | STRESS                                                    | EFFECTIVE<br>YIELD STRESS<br>(KSI)                                   | STEEL<br>SPECIF.<br>OTHER                                                                                                                                          |
| 5.52                                   | 1145.52                                         | 1272,80                                                   | 688.30                                                               | 25.46                                                                                                                                                              |
| .NG MOM,<br>-K)                        | RESISTING MOM. (INK)                            | MOMENT<br>(INK)                                           | BASE PLATE<br>(INK)                                                  | SECTION MOD:<br>(CU. IN.)                                                                                                                                          |
| 50                                     | 63.50                                           | 5.98                                                      | 2.76                                                                 | 3,50                                                                                                                                                               |
| POLE DIAM. AJOR DIAM.) (IN.)           | (MAJOR DIAM.                                    | WEIGHT<br>(KIPS)                                          | WEIGHT<br>(KIPS)                                                     | THICKNESS (IN.)                                                                                                                                                    |

| ****                         | LOAD CASE                   | MIND                                            | WIND                        | WIND              | WIND                 | WIND       | WIND         |
|------------------------------|-----------------------------|-------------------------------------------------|-----------------------------|-------------------|----------------------|------------|--------------|
| *****                        | ]MAX CRITERION-             | 62857 22395 14250 1847 1709 JMOMENT ABT, X WIND | ] MOMENT ABT. Y             | ] RES. MOMENT     | SIIEAR FORCE         | BOLT FORCE | BOLT TENSION |
| LOADING CASES                |                             |                                                 |                             |                   |                      |            |              |
| *****                        | Seismic 2                   | 1709                                            | -2037                       | 1945              | 52954                |            |              |
| *******                      | Seismic                     | 1847                                            | -2202                       | 1945              | 78059                |            |              |
| STEM *****                   | S+T                         | 14250                                           | -16982                      | 20750             | 62434                |            |              |
| ORDINATE SY                  | CE + MIND                   | 22395                                           | -26690                      | 31402             | 120150               |            |              |
| E GLOBAL COO                 | MIND I                      | 62857                                           | -74910                      | 92732             | 75446                |            |              |
| ** LOADS AT POLE BASE IN THE | LOADING CASE IDENTIFICATION | MOMENT ABT. X-AXIS (IN-KIP)                     | MOMENT ABT. Y-AXIS (IN-KIP) | SHEAR FORCE (LB.) | VERTICAL FORCE (LB.) |            |              |

IMPAX 27.1.30.10 DATE 05/20/2024 CI

ksi lbs ksi lbs

psi

lbs

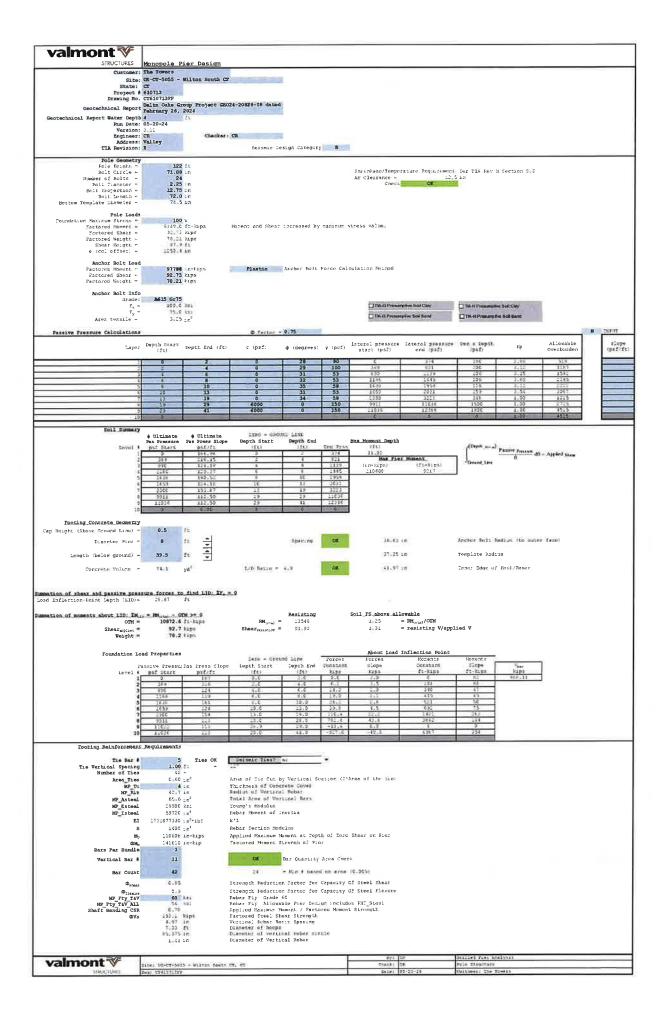
THE TOWERS, LLC 142.0' POLE, SITE: US-CT-5055 - WILTON SOUTH CT,

FOR:

1,365 120 54,540 187 0.46 0.46 0.41 0.46 89 26,507 0.98 54,028 Bending 6.69 Y-COORD 1 li II П Ш Ш Maximum Bolt Axial Force Combined Stress Ratio Maximum Stress Ratio Bending Stress Ratio Shear Stress Ratio Bearing Stress Ratio Maximum Bolt Shear Controlling Stress Tensile Strength Axial Capacity Axial Stress X-COORD 11.59 0.00 Shear Capacity Shear Stress SIZED FOR SHAFT MOMENT CAPACITY Weight BOLT NO. Flange FLANGE ANALYSIS Results \*\*\* BOLT COORDINATES \*\*\* in-kips in-kips lbs lbs ksi ksi in in in in in in in 18 22.969 22.969 22.869 0.3125 0.1875 12 29.27 50 65 8-56 F3125 Gr. A325 26.77 5,417 000 .. JOINT 0.00 Y-COORD 11 11 11 11 11 11 11 II FLANGE FOR THE C No. of sides
Design Diameter
Detailed "C" Sect. Dia
Detailed "D" Sect. Dia BY VALMONT INDUSTRIES Design Id: 610713-PIRevA Valmont Material Spec. Thickness for M. Cap. X-COORD 13.39 6.69 Outside Diameter Tensile Strength Resultant Moment Number of Bolts Applied Reactions Resultant Shear Yield Strength Bolt Diameter Bolt Material Bolt Circle Thickness Thickness BOLT NO. Input Data Torsion Yield Axial Flange Bolts Tube



Valmont Structures 28800 Ida Street Valley, NE 68064 (402) 359-2201 Engineer: CR Reviewed by: CR


### Drilled Pier Foundation Design Calculations

Valmont Order Number: 610713

Customer: The Towers

Site: US-CT-5055 - Wilton South CT, CT

Pole Height: 122 ft (123 ft agl)



| Pier Shear Check                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                      |
| d 6.31 ft Distanc                                                                                                                                                                                                                                                                                                                                                                       | e compression properties<br>e from extreme com fiber : | o cent of tension reaction group     |
| Calculate the Concrete Shear Strength $V_c = 2r(fc')$                                                                                                                                                                                                                                                                                                                                   | <sup>0</sup> .5*burd                                   |                                      |
| = 979                                                                                                                                                                                                                                                                                                                                                                                   | kips                                                   | 22.5.5.1                             |
| Given:<br>bw ≠ 90                                                                                                                                                                                                                                                                                                                                                                       | 5 in diameter                                          |                                      |
| d = 75.                                                                                                                                                                                                                                                                                                                                                                                 | 7 in                                                   |                                      |
| $\Phi_{c} = 0.83$                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                      |
| $\Phi_c V_c = 82$                                                                                                                                                                                                                                                                                                                                                                       | Kips                                                   |                                      |
| Cross-Sectional Dimension Check                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                      |
| $\Phi$ * $(V_c + \theta * \sqrt{(\hat{x}^{l}c)} * bw * d) \ge 3317 \text{ kips} \ge 1000$                                                                                                                                                                                                                                                                                               | V <sub>U</sub><br>988.1 kips                           | 22.5.1.2                             |
| 221, 4752 5                                                                                                                                                                                                                                                                                                                                                                             | JOB.1 Kips                                             | 22.3.1.2                             |
| Calculate the Reinforcment Shear Strength<br>#5 horizontal ties at 12" spaci                                                                                                                                                                                                                                                                                                            |                                                        |                                      |
| $V_{s} = h_{v}^{*} f_{y}^{*} d$                                                                                                                                                                                                                                                                                                                                                         |                                                        | 22.5.10.5.3                          |
| s                                                                                                                                                                                                                                                                                                                                                                                       | -                                                      |                                      |
| Given: $\lambda_v = 0.6$                                                                                                                                                                                                                                                                                                                                                                | 5 in^2                                                 |                                      |
| f <sub>y</sub> = 60                                                                                                                                                                                                                                                                                                                                                                     | ) ksi                                                  |                                      |
| d = 6.31 $s = 1$                                                                                                                                                                                                                                                                                                                                                                        | l Ft<br>L Ft                                           |                                      |
| Φ, 0.88                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                         | **                                                     |                                      |
| $\Phi_{\nu} \nabla_{\nu} = 193.1$                                                                                                                                                                                                                                                                                                                                                       | Kips                                                   |                                      |
| The Maximum Shear in the Pier occurs at Reacti                                                                                                                                                                                                                                                                                                                                          | on Inflection Point 28.9                               |                                      |
| $\Phi * (V_s + V_c) \ge V_v$                                                                                                                                                                                                                                                                                                                                                            |                                                        | 22.5.10.1                            |
| Ψ ~ (V <sub>s</sub> + V <sub>c</sub> ) ≥ V <sub>U</sub>                                                                                                                                                                                                                                                                                                                                 |                                                        |                                      |
| $\Phi V_c$ + $\Phi V_{\tau}$ >                                                                                                                                                                                                                                                                                                                                                          | V <sub>0</sub>                                         |                                      |
| 829.1 Kips + 193.1 Kips >                                                                                                                                                                                                                                                                                                                                                               | 980.1 kips                                             |                                      |
| 1022.3 Kips >                                                                                                                                                                                                                                                                                                                                                                           | 988.1 kips                                             | —⇒ OK                                |
| Anchor Bolt Embedment C                                                                                                                                                                                                                                                                                                                                                                 | heck                                                   |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                         | ? in                                                   | 25.4.2.1                             |
| Casting Location Factor $\psi_{\epsilon} = 0$ Coating Factor $\psi_{\epsilon} = 0$                                                                                                                                                                                                                                                                                                      |                                                        | 25.4.2.4<br>25.4.2.4                 |
| Ξρο <b>x</b> y                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                      |
| ψ <sub>ι</sub> ψ <sub>ε</sub> = 3<br>Size Factor ψ <sub>ε</sub> = 3                                                                                                                                                                                                                                                                                                                     |                                                        | 25.4.2.4<br>25.4.2.4                 |
| Concrete Weight Factor λ = 1                                                                                                                                                                                                                                                                                                                                                            |                                                        | 25.4.2.4                             |
| $c_b = 4.73$                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 25.4.2.4                             |
| Transverse Reinforcement Index $k_{tr} = 0$<br>Confinement Term $c' = 2.500($                                                                                                                                                                                                                                                                                                           |                                                        | 25.4.2.3<br>25.4.2.3                 |
| Rebar Development Length in Tension $L_d = 37.8$                                                                                                                                                                                                                                                                                                                                        |                                                        | 25.4.2.2                             |
|                                                                                                                                                                                                                                                                                                                                                                                         | ! in                                                   |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                         | deg                                                    | 17.4                                 |
| Pullout Angle                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                      |
| - Writing                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                      |
| Anchor Bolt Embedment in Concrete $\lambda b_a = 59.25$                                                                                                                                                                                                                                                                                                                                 |                                                        |                                      |
| Anchor Bolt Embedment in Concrete $Ab_e=59.25$<br>Available Development Length $L_{dn}=50.2$<br>Required Development Length $L_{drgd}=20.87$                                                                                                                                                                                                                                            | in<br>in                                               |                                      |
| Anchor Bolt Embedment in Concrete $Ab_o=59.29$<br>Available Development Length $L_{do}=50.29$                                                                                                                                                                                                                                                                                           | in<br>in                                               |                                      |
| Anchor Bolt Embedment in Concrete $Ab_e=59.25$<br>Available Development Length $L_{dn}=50.2$<br>Required Development Length $L_{drgd}=20.87$                                                                                                                                                                                                                                            | ? in<br>7 in                                           | 25.4.10.1                            |
| Anchor Bolt Embedment in Concrete $Ab_{\rm e}=59.25$ Available Development Length $L_{\rm dn}=50.2$ Required Development Length $L_{\rm drag}=20.85$ Check Anchor Engagement  Excess Reinforcement Ratio 0.552                                                                                                                                                                          | ? in<br>? in                                           |                                      |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>dn</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005                                                                                                                             | ? in<br>} in<br>?                                      | 16.3.4                               |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>sq</sub> = 50.2  Required Development Length Lorgs = 20.8  Check Anchor Engagement  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005                                                                                                                                          | ? in<br>. in                                           |                                      |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>dn</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length                                                                     | in<br>in                                               | 16.3.4                               |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.8*  Check Anchor Engagement  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length  Embedment Length 59.25                                           | 2 in<br>2 in<br>3<br>3<br>3 in<br>5 in                 | 16.3.4                               |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>dn</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length                                                                     | e in in e e e in         | 16.3.4                               |
| Anchor Bolt Embedment in Concrete $hb_o=59.25$ Available Development Length $L_{da}=50.25$ Required Development Length $L_{drqd}=20.85$ Check Anchor Engagement $OK$ Excess Reinforcement Ratio $OK$ Minimum Rebar Ratio $OK$ Minimum Anchor Bolt Embedment $OK$ Check Anchor Bolt Length $OK$ Embedment Length $OK$ Embedment Length $OK$ Embedment Length $OK$ 25 Times Diameter $OK$ | e in in e e e in         | 16.3.4<br>TIA Rev # 9.6              |
| Anchor Bolt Embedment in Concrete $hb_o=59.25$ Available Development Length $L_{da}=50.25$ Required Development Length $L_{drqd}=20.85$ Check Anchor Engagement $OK$ Excess Reinforcement Ratio $OK$ Minimum Rebar Ratio $OK$ Minimum Anchor Bolt Embedment $OK$ Check Anchor Bolt Length $OK$ Embedment Length $OK$ Embedment Length $OK$ Embedment Length $OK$ 25 Times Diameter $OK$ | e in in e e e in         | 16.3.4<br>TIA Rev # 9.6              |
| Anchor Bolt Embedment in Concrete $hb_o=59.25$ Available Development Length $L_{da}=50.25$ Required Development Length $L_{drqd}=20.85$ Check Anchor Engagement $OK$ Excess Reinforcement Ratio $OK$ Minimum Rebar Ratio $OK$ Minimum Anchor Bolt Embedment $OK$ Check Anchor Bolt Length $OK$ Embedment Length $OK$ Embedment Length $OK$ Embedment Length $OK$ 25 Times Diameter $OK$ | e in in e e e in         | 16.3.4<br>TIA Rev # 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                   | e in in e e e in         | 16.3.4<br>TIA Rev # 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                   | e in in e e e in         | 16.3.4<br>TIA Rev # 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                   | e in in e e e in         | 16.3.4<br>TIA Rev # 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                   | e in in e e e in         | 16.3.4<br>TIA Rev # 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                   | e in in e e e in         | 16.3.4<br>TIA Rev H 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                   | e in in e e e in         | 16.3.4<br>TIA Rev H 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                   | e in in e e e in         | 16.3.4<br>TIA Rev H 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 50.2  Required Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                   | e in in e e e in         | 16.3.4<br>TIA Rev H 9.6              |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drqd</sub> = 20.87  Check Anchor Engagement  Excess Reinforcement Ratio 0.005  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length 25 Times Diameter Concrete Pryout Check Required Mo                                                                     | e in in e e e in         | 16.3.4  TIA Rev # 9.6  TIA Rev # 9.6 |
| Anchor Bolt Embedment in Concrete Ab <sub>o</sub> = 59.25  Available Development Length L <sub>drq</sub> = 50.2  Required Development Length L <sub>drq</sub> = 20.87  Check Anchor Engagement OK  Excess Reinforcement Ratio 0.552  Minimum Rebar Ratio 0.005  Minimum Anchor Bolt Embedment Check Anchor Bolt Length OK  Embedment Length 25 Times Diameter 59.25                     | e in i             | 16.3.4<br>TIA Rev # 9.6              |

### Pullout Strength of Anchor in Tension

 $N_{pn} = \Psi_{c,p}N_{p}$ 

Net earing area of the headed stud(s) or anchor bolt(s) Pullout strength in tension of a single needed stud or bolt Assumes the anchor is located in a region of concrete member where analysis indicates no cracking at service load levels.

 $\begin{array}{lll} \lambda_{\rm bq} &=& 6.69 \ \text{in}^2 \\ N_{\rm p} &=& \lambda_{\rm bcc} 6 \bar{z}^{\,\prime}_{\,\,c} \\ \Psi_{\rm e,\,F} &=& 1.4 \end{array}$ 



Maximum bolt force from pole analysis

N<sub>u</sub> = 183,55 kips φN<sub>p</sub> > N<sub>t</sub> Check OK



17.4.3

Concrete Side-Face Blowout Strength of Beaded Anchor in Tension

Single Anchor:

 $N_{ab} = 160 c A_{brg}^{1/2} f^{*}_{c}^{1/2}$ 

Distance from center of anchor shaft to edge of concrete  $C = C_{a1} = 0$  Distance from center of anchor shaft to edge of  $C_{a2} = 0$ 12.5 in 47.4 in concrete in direction orthogonal to  $C = C_{\alpha 1}$ .

C<sub>a2</sub>/C<sub>a1</sub> = Use 3.00

φN<sub>ab</sub> > N<sub>U</sub> Check OK

17.4.4

Multiple Anchora:

 $N_{sbq} = (1 + S/6c_{a1}) N_{sb}$ 

Spacing of the outer anchors along the edge of the group.  $S_o = 9.29 in$ 

 $h_{er} = 59.25 \text{ in}$   $C_{a,max} = 47.4 \text{ in}$ edges 2 Effective anchor embedment depth The largest edge distance Number of edges surrounding anchor or group of anchors  $L_{ef} = 59.25 in$ Controlling length

N<sub>sbq</sub> = 39040 kips φN<sub>sbq</sub> = 292.5 kips

φN<sub>sbq</sub> > N<sub>U</sub> Check OK



| Dwg: CT610713FP                        | Date:  | 05-20-24 | Customer: The Towers    |  |
|----------------------------------------|--------|----------|-------------------------|--|
| Site: US-CT-5055 - Wilton South CT, CT | Check: | CR       | Pole Structure          |  |
|                                        | Hy1    | Life.    | figgrined bret westlers |  |

| MAXIMUM FACTOR                                                           | ED MOMEN. | T OF A CIR      | CULAR SECTION |
|--------------------------------------------------------------------------|-----------|-----------------|---------------|
| Reinforcement Yield Strength                                             | 60        | ksi             |               |
| Reinforcement Modulus of Elasticity                                      |           | ksi             |               |
| Axial Load (Negative for Compression)                                    | -78.20569 | kips            |               |
| Limiting Compressive Strain                                              | 0.003     | in/in           |               |
| Reinforcement Yield Strain                                               | 0.00207   | in/in           |               |
| Pier Diameter                                                            | 8.00      | ft              |               |
| Vertical Rebar Diameter                                                  | 1.410     | in              |               |
| Vertical Rebar Quantity                                                  | 42        |                 |               |
| Vertical Rebar Area                                                      | 1.5615    | in <sup>2</sup> |               |
| Tie Rebar Diameter                                                       | 0.625     | in              |               |
| Concrete Clear Cover                                                     | 4.0       | in              |               |
| Rebar Cage Diameter (to Center of Vertical Bars)                         | 85.340    | in              | 0             |
| Concrete Compressive Strength                                            | 4500      | psi             | /°°           |
| Distance From Exreme Edge to Neutral Axis                                | 16.20     | in              | /。            |
| ACI Factor per Table 22.2.2.4.3(β <sub>1</sub> )                         | 0.8250    |                 | / 0           |
| Depth of Equivalent Stress Block                                         | 13.4      | in              | 0             |
| Distrance from Centroid to Neutral Axis                                  | 31.8      | in              | 6 6 6 6 6     |
| Angle from Centroid to Compression Zone                                  | 43.8      | deq             | 1 " \ " "     |
| Area of Concrete in Compression                                          | 610.8     | in <sup>2</sup> | \%            |
| Distance from Centroid of Concrete in Compression to<br>Centroid of Pier | 40.1      | in              | \%.           |
| Concrete Compression Force                                               | 2288      | kips            |               |
| Total Reinforcement Forces                                               | -2210     | kips            | 1             |
| Axial Load                                                               | -78.20569 | kips            |               |
| Sum of Axial Forces                                                      | -2288     | kips            |               |
| Sum of Forces in Concrete                                                | 0.000     | kips            | OK            |
| Moment of Concrete in Compression                                        | 7638      | ft-kips         |               |
| Total Reinforcement Moment                                               | 5474      | ft-kips         |               |
| Nominal Strength of Column                                               | 13112     | ft-kips         |               |
|                                                                          |           |                 |               |

45

ACI 318-14 21.2.2

Tensile Strain in Extreme Layer of Reinforcement -0.0138 in/in ACI Strength Reduction Factor 0.900

Factored Moment Strength of Column 141610 in-kips

valmont ▼ STRUCTURES

|                                    | By:    | CR         | Drilled Pier Analysis |
|------------------------------------|--------|------------|-----------------------|
| Site: US-CT-5055 - Wilton South CT | Check: | CR         | Pole Structure        |
| Dwg: CT610713FP                    | Date:  | 20-05-2024 | Customer: The Towers  |



Valmont Structures 28800 Ida Street Vally, NE 68064 (402) 359-2201 Engineer:CR Reviewed by:CR

### Slab Foundation Design Calculations

Valmont Order Number: 610713

**Customer: The Towers** 

Site: US-CT-5055 - Wilton South CT, CT

Pole Height: 122 ft (123 ft agl)

```
Inputs
                                                     Site Information
                                            Customer: The Towers
                                                Site: US-CT-5055 - Wilton South CT
                                     Project Number: 610713
                                 State Abbreviation: CT
                           Soil Parameters Based On: Geotechnical Report
                                   Select Soil Type:
                 Soil Report Name & Project Number: Delta Oaks Group Project GEO24-20828-08 dated February 26, 2024
                                        Design Date: 5-20-2024
                                           Engineer: CR
                                        Reviewed By: CR
                                 Select Design Code: TIA-222-H
                                         Design Requirements
                            Seismic Design Category: B
                                 Ground Water Depth: 4
                                                                     ft
                                        Frost Depth: 3.33
                                                                     ft
                                   Clear Cover (Pad) 3
                                                                     in
                             Clear Cover (Pedestal): 4
                                        Structure Properties
                                               Type: Pole
                                             Height: 122
                                                                     ſt
                                        Bolt Circle: 71
                                    Number of Bolts: 24
                                     Bolt Diameter: 2.25
                                                                     i ก
                                    Bolt Projection: 12.75
                                        Bolt Length: 72
                                                                     in
                           Embeoment Plate Diameter: 74.5
                                                        Reactions
                          Foundation Maximum Stress: 100.00%
                                             Moment: 97788.479
                                                                     in*kips
                                       Global Shear: 92.733
                                                                     kips
                                              Axial: 78.206
                                                                     kips
                                             Torsion: 0.000
                                         Material Properties
                                  Anchor Bolt Grade: A615 Gr75
                      Anchor Bolt Allowable Rupture: 100
                                                                     ksi
                       Anchor Bolt Allowable Yield: 75
                                                                     ksi
                                      Concrete Type: Normal
                           Unit Weight of Concrete: 150
                                                                     pcf
                      Concrete Compressive Strength: 4500
                                                                     psi
                      Reinforcement Yield Strength: 60
                                                                     ksi
               Reinforcement Modulus of Elasticity: 29000
                                                                     ksi
Bearing
                       Safety
                                 Backfill
                                                         Internal
                                                                                 Passive
                                                                                                           Safety
          Allowable
                                           Cohesion
                                                                      Sliding
                                                                                           Allowable or
Capacity
                     Factor if
                                  Weight
                                                      Friction Angle
                                                                                                         Factor if
                                                                                 Pressure
           or Ult?
                                             (ksf)
                                                                      Friction
                                                                                              Ult?
 (ksf)
                     Allowable
                                  (pcf)
                                                          (deg)
                                                                                  (ksf)
                                                                                                         Allowable
 30.00
                       1.00
                                 110.00
                                                           0.00
          Ultimate
                                             0.00
                                                                        0.45
                                                                                   0.00
                                                                                             Ultimate
 Net
```



### Pad and Pier Data Entry & Calculations

### Soil Information

Soil Parameters Based On: Geotechnical Report

Geotechnical Report Information: Delta Oaks Group Project GEO24-20828-08 dated February 26, 2024

### Reactions Structure Type

78.206 kips Axial: 92.733 kips Global Shear 8149.040 ft-kips Moment 0.000 ft-kips Torsion **71** in Bolt Circle Bolt Length **72** in 12.75 in **Bolt Projection** 

### **Enter Foundation Size**

Concrete Slab Only? N ▼ (Enter "Y" if there is no pier) 8.00 ft Pedestal Diameter CIRCULAR Pedestal Shape **0.50** ft Pedestal Extension Above Grade 6.00 ft Depth to Bottom of Slab 3.50 ft Height of Pedestal 32.50 ft Slab Width

3.00 ft Slab Thickness **Enter Rebar Size & Quantity** Pad Rebar Size (Top) 8 Pad Rebar Quantity (Top) 41 Pad Rebar Size (Bottom) 10 Pad Rebar Quantity (Bottom) 41 Pedestal Vertical Rebar Size 11 Pedestal Vertical Rebar Quantity Pedestal Tie Rebar Size 4

**Rebar Spacing** Min. Rebar  $3 \le 8.6 \le 17$ 17 Top 3 ≤ 8.3 ≤ 16.7 10 Bottom 3 ≤ 5.7 ≤ 16.6 24 Vertical 3 ≤ 10.5 ≤ 22.56 Ties

### 6 **Select Design Options**

1 Excess Reinforcement Reduction (ACI 318-14 25.4.10) **/ Eccentricity Using Working Loads?** 

Pedestal Tie Rebar Quantity

(Not permitted for Seismic Design Category D, E, or F, 25.4.10.2(e))

(For REV G or REV H Only)

1.35 Working Load Conversion Factor Top and Bottom Rebar Same?

Check if Eccentricity is Within Kern?

V (Required for TIA-H. Optional for Other Codes) Check Diagonal Bearing Pressure?

|                              | Site                               | e Informatio    |        |       |                                     |
|------------------------------|------------------------------------|-----------------|--------|-------|-------------------------------------|
| Customer:<br>Project Number: |                                    | Towers<br>10713 |        | Site: | US-CT-5055 - Wilton South<br>CT, CT |
|                              | Soil & C                           | oncrete Prop    | erties |       |                                     |
|                              | Ultimate Net Soil Bearing Capacity | 30.00           | ksf    |       |                                     |
|                              | Water Depth                        | 4.00            | ft     |       |                                     |
|                              | Depth of Fill                      | 3.00            | ft     |       |                                     |
|                              | Backfill Weight Above Water, γ     | 110.00          | pcf    |       |                                     |
|                              | Backfill Weight Below Water        | 47.60           | pcf    |       |                                     |
|                              | Concrete Weight Above Water        | 150.00          | pcf    |       |                                     |
|                              | Concrete Weight Below Water        | 87.60           | pcf    |       |                                     |
|                              | Cohesion                           | 0.00            | ksf    |       |                                     |
|                              | Internal Friction Angle            | 0.00            | deg    |       |                                     |

3



| Passive Pressure         | 0.00    | ksf | I      |
|--------------------------|---------|-----|--------|
| Sliding Friction         | 0.45    |     | ヿ      |
| Frost Depth              | 3.33    | ft  | П      |
| Concrete Design Strength | 4500.00 | psi | $\neg$ |

| Found                                              | lation Calculat | ions            |            |
|----------------------------------------------------|-----------------|-----------------|------------|
| Structural Code: TIA-222-H                         |                 | Concrete Code:  | ACI 318-14 |
| Concrete & Soil Weight                             |                 |                 |            |
| Pedestal Volume                                    | 175.929         | ft <sup>3</sup> |            |
| Pedestal Weight (total weight above & below water) | 26.389          | kips            |            |
| Slab Volume                                        | 3168.750        | ft <sup>3</sup> |            |
| Slab Weight                                        | 343.493         | kips            |            |
| Total Concrete Weight                              | 369.882         | kips            |            |
| Soil Weight Above Footing                          | 331.975         | kips            |            |
| Total Concrete Volume                              | 123.88          | cubic yards     |            |

| Passive Pressre | Coefficient Kn  | 1.00   |                 |  |
|-----------------|-----------------|--------|-----------------|--|
|                 |                 |        | 1.6             |  |
| Passiv          | e Pressure Top  | 0.37   | ksf             |  |
| Passive Pr      | essure Bottom   | 0.29   | ksf             |  |
| Average Pa      | assive Pressure | 0.33   | ksf             |  |
|                 | Shear Depth     | 2.67   | ft2             |  |
|                 | Shear Area      | 86.78  | ft <sup>2</sup> |  |
| Resisting We    | ight (Factored) | 690.33 | kips            |  |
| Ultimate Sh     | ear Resistance  | 338.93 | kips            |  |
| Nominal Sh      | ear Resistance  | 254.20 | kips            |  |
|                 | Shear Demand    | 92.73  | kips            |  |
|                 |                 |        |                 |  |
| Ch              | eck for Sliding | 1      | 3               |  |
|                 | Stress Ratio    | 36.48% |                 |  |

| rturning Resistance               |            |         |  |
|-----------------------------------|------------|---------|--|
| From Weight                       | 11217.79   | ft-kips |  |
| From Passive Pressure             | 25.17      | ft-kips |  |
| From Soil Wedge                   | 0.00       | ft-kips |  |
| Total Resisting Moment (Factored) | 11236.67   | ft-kips |  |
| Moment Resistance Demand          | 8751.80201 | ft-kips |  |
| Check for Overturning Resistance  | 4          |         |  |
| Stress Ratio                      | 77.89%     |         |  |

| Slab Area                                     | 1056.2500 | ft²             |  |
|-----------------------------------------------|-----------|-----------------|--|
| Section Modulus of Slab                       | 5721.3542 | ft <sup>3</sup> |  |
| Kern Limit                                    | 5.4167    | ft              |  |
| Total Weight (LC 0.9D)                        | 690.3254  | kips            |  |
| Eccentricity (LC 0.9D)                        | 9.3910    | ft              |  |
| Maximum Toe Pressure (LC 0.9D)                | 2.4120    | ksf             |  |
| Minimum Toe Pressure (LC 0.9D)                | -0.6474   | ksf             |  |
| Adjusted Toe Pressure (if E > Kern) (LC 0.9D) | 2.7871    | ksf             |  |
| Total Weight (LC 1.2D)                        | 920.4338  | kips            |  |
| Eccentricity (LC 1.2D)                        | 7.0432    | ft              |  |
| Maximum Toe Pressure (LC 1.2D)                | 2.7061    | ksf             |  |
| Minimum Toe Pressure (LC 1.2D)                | -0.3533   | ksf             |  |
| Adjusted Toe Pressure (if E > Kern) (LC 1.2D) | 2.7685    | ksf             |  |



| ing Resistance (Diagonal Direction)                                                                | E //167              | ft              |    |
|----------------------------------------------------------------------------------------------------|----------------------|-----------------|----|
| Kern Limit  Moment of Inertia of Mat                                                               | 5.4167<br>92972.0052 | ft<br>ft⁴       |    |
| Moment of Inertia of Mat                                                                           | 92972.0052           | π               |    |
| Total Weight (I CO OD)                                                                             | 690.3254             | king            |    |
| Total Weight (LC 0.9D)                                                                             | 9,3910               | kips<br>ft      |    |
| Eccentricity (LC 0.9D)                                                                             |                      | ksf             |    |
| Bearing at A                                                                                       | 2.2560               |                 |    |
| Bearing at B                                                                                       | 0.6536               | ksf             |    |
| Bearing at C                                                                                       | -0.9489              | ksf             |    |
| Bearing at D                                                                                       | 0.6536               | ksf             |    |
| Initial Location of NA from C                                                                      | 13.6080              | ft              |    |
| Calculated Location of NA from C                                                                   | 18.5928              | ft              |    |
| Length of Line GH                                                                                  | 37.1857              | ft              |    |
| Length of EG & HJ                                                                                  | 8.7763               | ft              |    |
| Length of BG & HD                                                                                  | 6.2058               | ft              |    |
| Length of El                                                                                       | 54.7382              | ft              |    |
| Height for EAJ                                                                                     | 27.3691              | ft              |    |
| Height for EBG & HDJ                                                                               | 4.3881               | ft              |    |
| MOI for EAJ                                                                                        | 93517.1481           | ft⁴             |    |
| MOI for EBG & HDJ                                                                                  | 61.7973              | ft⁴             |    |
| MOI for ABGHDA                                                                                     | 93393.5536           | ft⁴             |    |
| Distance to Point Load from EJ                                                                     | 13.7791              | ft              |    |
| Effective Length in Bearing Along AB & AD                                                          | 32.5000              | ft              |    |
| Volume of Pressure Envelope for ABD                                                                | 648.0759             | kips            |    |
| Volume of Pressure Envelope for GIKH                                                               | 36.4639              | kips            |    |
| Volume of Pressure Envelope for BIG & DKH                                                          | 2.86864456           | kips            |    |
| Total Volume of Pressure Envelope                                                                  | 690.2771             | kips            |    |
| Difference in Weight                                                                               | 0.0000               | kips            | OK |
| Adjusted Bearing at A                                                                              | 2.7875               | ksf             |    |
| Adjusted Bearing at B &D                                                                           | 0.4469               | ksf             |    |
|                                                                                                    |                      |                 |    |
| Maximum Diagonal Bearing Pressure (LC 0.9D)                                                        | 3.7632               | ksf             |    |
|                                                                                                    |                      |                 |    |
| Total Weight (LC 1.2D)                                                                             | 920.4338             | kips            |    |
| Eccentricity (LC 1.2D)                                                                             | 7.0432               | ft              |    |
| Bearing at A                                                                                       | 2.4738               | ksf             |    |
| Bearing at B                                                                                       | 0.8714               | ksf             |    |
| Bearing at C                                                                                       | -0.7310              | ksf             |    |
| Bearing at D                                                                                       | 0.8714               | ksf             |    |
| initial Location of NA from C                                                                      | 10.4837              | ft              |    |
| Calculated Location of NA from C                                                                   | 12.6202              | ft              |    |
| Length of Line GH                                                                                  | 25.2404              | ft              |    |
| Length of EG & HJ                                                                                  | 20.7216              | ft              |    |
| Length of BG & HD                                                                                  | 14.6524              | ft              |    |
| Length of EJ                                                                                       | 66.6835              | ft              |    |
| Height for EAJ                                                                                     | 33.3417              | ft              |    |
| Height for EBG & HDJ                                                                               | 10.3608              | ft              |    |
| MOI for EAJ                                                                                        | 205969.2049          | ft <sup>4</sup> |    |
| MOI for EBG & HDJ                                                                                  | 1920.5182            | ft <sup>4</sup> |    |
| MOI for ABGHDA                                                                                     | 202128.1685          | ft <sup>4</sup> |    |
| Distance to Point Load from EJ                                                                     | 17.4040              | ft              |    |
| Effective Length in Bearing Along AB & AD                                                          | 32.5000              | ft              |    |
| Volume of Pressure Envelope for ABD                                                                | 754.2804             | kips            |    |
|                                                                                                    | 107.3657             | kips            |    |
| Volume of Pressure Envelope for GIKH                                                               |                      |                 |    |
|                                                                                                    | 29.3813              | kips            |    |
| Volume of Pressure Envelope for BIG & DKH                                                          | 020 4007             | kinc            |    |
| Volume of Pressure Envelope for BIG & DKH  Total Volume of Pressure Envelope  Difference in Weight | 920.4087<br>0.0000   | kips<br>kips    | OK |

5 20-05-2024



| Adjusted Bearing at B &D                       | 0.8211  | ksf |  |
|------------------------------------------------|---------|-----|--|
| Maximum Diagonal Bearing Pressure (LC 1.2D)    | 3.5673  | ksf |  |
| IS ECCENTRICITY WITHIN 45% OF FOUNDATION WIDTH | YES     |     |  |
| Maximum Bearing Pressure                       | 3.7632  |     |  |
|                                                |         |     |  |
| Ultimate Gross Bearing Pressure                | 30.5352 | ksf |  |
| Factored Bearing Pressure                      | 22.9014 | ksf |  |
| Check Bearing Capacity                         | V       |     |  |
| Stress Ratio                                   | 16.43%  |     |  |

| Way Shear Strength                         |           |                 |  |
|--------------------------------------------|-----------|-----------------|--|
| Pad Rebar Size (Top)                       | 8         |                 |  |
| Pad Rebar Diameter (Top)                   | 1.000     | in              |  |
| Pad Single Rebar Area (Top)                | 0.785     | in <sup>2</sup> |  |
| Pad Rebar Size (Bottom)                    | 10        |                 |  |
| Pad Rebar Diameter (Bottom)                | 1.270     | in              |  |
| Pad Single Rebar Area (Bottom)             | 1.267     | in <sup>2</sup> |  |
|                                            |           |                 |  |
| Effective Depth (dc)                       | 32.3650   | in              |  |
| Distance from Edge of Pad to Column Face   | 147.0000  | in              |  |
| Distance from Edge of Pad to DC            | 114.6350  | in              |  |
| Bearing Slope (LC 0.9D)                    | 0.1354    | kcf             |  |
| Shear Demand (LC 0.9D)                     | 664.4458  | kips            |  |
| Bearing Slope (LC 1.2D)                    | 0.1002    | kcf             |  |
| Shear Demand (LC 1.2D)                     | 710.8928  | kips            |  |
| Shear Resistance (per ACI 318-14 22.5.5.1) | 1270.0995 | kips            |  |
| Check One Way Shear                        | ✓         |                 |  |
| Stress Ratio                               | 55.97%    |                 |  |

| ncrete Two Way Shear Strength                                  |               |                 |  |
|----------------------------------------------------------------|---------------|-----------------|--|
| Equivalent Column Width (PER ACI 318-14 8.10.1.3 & 22.6.4.1.2) | 85.0778       | in              |  |
| Mat Effective Width in Bearing (LC 0.9D)                       | 20.5771       | ft              |  |
| Mat Effective Width in Bearing (LC 1.2D)                       | 27.6203       | ft              |  |
| ritical Section Properties                                     |               |                 |  |
| Critical Section Length (b1)                                   | 117.4428      | in              |  |
| Critical Section Length (b2)                                   | 117.4428      | in              |  |
| Critical Section Perimeter (b0)                                | 469.7711      | in              |  |
| Centroid of Critical Section (c)                               | 58.7214       | in              |  |
| Slab Moment (Msc)                                              | 8473.6041     | ft-kips         |  |
| Polar MOI of Critical Section (Jc)                             | 35614896.4959 | in <sup>4</sup> |  |
| Fraction of Moment Transferred by Flexure                      | 0.6000        |                 |  |
| Fraction of Moment Transferred by Eccentricy of Shear          | 0.4000        |                 |  |
| Bearing Slope (LC 0.9D)                                        | 0.1354        | kcf             |  |
| Average Bearing Pressure at Centroid (LC 0.9D)                 | 0.5861        | ksf             |  |
| Bearing Slope (LC 1.2D)                                        | 0.1002        | kcf             |  |
| Average Bearing Pressure at Centroid (LC 1.2D)                 | 1.1397        | ksf             |  |
| Shear Force at Centroid                                        | 53.7353       | kips            |  |
| Shear Stress at Centroid                                       | 70.5959       | psi             |  |
|                                                                |               |                 |  |
| Available Shear (PER ACI 318-14 22.6.5.2)                      | 201.2461      | psi             |  |
| Check Two Way Shear for Interior Column                        | /             |                 |  |
|                                                                |               |                 |  |

6 20-05-2024



| Stress Ratio                                      | 35.08%    |                 |  |
|---------------------------------------------------|-----------|-----------------|--|
| ritical Section Reinforcement Design              |           |                 |  |
| Effective Beam Width for Resisting Flexure        | 17.0000   | ft              |  |
| Moment Transferred by Flexure                     | 5084.1625 | ft-kips         |  |
| ACI Factor per Table 22.2.2.4.3 (ß <sub>1</sub> ) | 0.8250    |                 |  |
| Area of Steel Required                            | 34.9085   | in <sup>2</sup> |  |
| Depth of Stress Block                             | 2.6842    | in              |  |
| Area of Steel Required in Effective Width         | 32.7769   | in <sup>2</sup> |  |
| Area of Steel Required in Entire Mat (One Way)    | 62.6616   | in <sup>2</sup> |  |
| Area of Steel Provided in Bottom                  | 84.1388   | in <sup>2</sup> |  |
| Check Two Way Shear Reinforcement                 | 1         |                 |  |
| Stress Ratio                                      | 74.47%    |                 |  |

| ttom Rebar                                     |           |                 |
|------------------------------------------------|-----------|-----------------|
| Bearing Pressure at Critical Section (LC 0.9D) | 1.1279    | ksf             |
| Factored Bearing Moment (LC 0.9D)              | 5447.6709 | ft-kips         |
| Bearing Pressure at Critical Section (LC 1.2D) | 1.5406    | ksf             |
| Factored Bearing Moment (LC 1.2D)              | 5752.9637 | ft-kips         |
| , actored passing monterial to alloy           |           |                 |
| Area of Rebar Steel Provided in Bottom         | 51.9375   | in <sup>2</sup> |
| Depth of Stress Block                          | 2.0890    | in <sup>2</sup> |
| Nominal Flexural Strength                      | 8133.5462 | ft-kips         |
| Depth to Neutral Axis                          | 2.5321    | in              |
| Steel Strain                                   | 0.0353    | in/in           |
| Strength Reduction Factor per ACI 21.2.2       | 0.90      |                 |
| Factored Flexural Strength                     | 7320.1916 | ft-kips         |
|                                                |           |                 |
| Check Bottom Rebar Flexural Strength           | 1         | 1               |
| Stress Ratio                                   | 78.59%    |                 |
|                                                |           |                 |
| op Rebar                                       |           |                 |
| Factored Moment from Dead Weight (LC 0.9D)     | 1711.8380 | ft-kips         |
| Factored Moment from Dead Weight (LC 1.2D)     | 2282.4506 | ft-kips         |
|                                                |           |                 |
| Area of Rebar Steel Provided in Top            | 32.2013   | in <sup>2</sup> |
| Depth of Stress Block                          | 1.2952    | in <sup>2</sup> |
| Nominal Flexural Strength                      | 5106.7134 | ft-kips         |
| Depth to Neutral Axis                          | 1.5699    | in              |
| Steel Strain                                   | 0.0588    | in/in           |
| Strength Reduction Factor per ACI 21.2.2       | 0.90      |                 |
| Factored Flexural Strength                     | 4596.0420 | ft-kips         |
|                                                |           |                 |
| Check Top Rebar Flexural Strength              | 1         |                 |
| Stress Ratio                                   | 49.66%    |                 |

| Minimum Reinforcement Ratio for Slabs | 0.0018  |                 | PER ACI 318-14 (7.6.1.1, 24.4.3.2) |
|---------------------------------------|---------|-----------------|------------------------------------|
| Minimum Reinforcement Ratio for Beams | 0.0034  |                 | PER ACI 318-14 (9-6.1.2)           |
| Minimum Reinforcement Area Required   | 12.6360 | in <sup>2</sup> |                                    |
| Area of Rebar Steel Provided in Top   | 32.2013 | in <sup>2</sup> |                                    |
| Check Minimum Rebar Area in Top       | 1       |                 |                                    |

7



| Stress Ratio                           | 39.24%   |                 |                                                                                                                                                            |
|----------------------------------------|----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area of Rebar Steel Provided in Bottom | 51.9375  | in <sup>2</sup> |                                                                                                                                                            |
| Check Minimum Rebar Area in Bottom     | <b>/</b> |                 |                                                                                                                                                            |
| Stress Ratio                           | 24.33%   |                 |                                                                                                                                                            |
| Minimum Rebar Clear Spacing            | 3.0000   | in              | Minimum clear spacing per ACI 318-14 (25.2.1) is smaller of 1 in, 1 rebar diameter, or 4/3 * maximum coarse aggregate diameter using 3 in here as minimum. |
| Maximum Rebar Center to Center Spacing | 18.0000  | in              | PER ACI 318-14 (8.7.2)                                                                                                                                     |
| Rebar Clear Spacing in Top             | 8.5750   | in              |                                                                                                                                                            |
| Check Rebar Clear Spacing in Top       | 1        |                 |                                                                                                                                                            |
| Rebar Clear Spacing in Bottom          | 8.2983   | in              |                                                                                                                                                            |
| Check Rebar Clear Spacing in Bottom    | 1        | N. C.           |                                                                                                                                                            |

| odification Factors per ACI 318-14 Table 25.4.2.4 |          |    |                                                |
|---------------------------------------------------|----------|----|------------------------------------------------|
| ·                                                 |          |    |                                                |
| Normal vs. Light Weight                           | 1        |    |                                                |
| Epoxy Coating                                     | 1.0      |    | Adjust per ACI for epoxy coated rebar if used. |
| Size (Top)                                        | 1.0      |    |                                                |
| Size (Bottom)                                     | 1.0      |    |                                                |
| Casting Position (Top)                            | 1.3      |    |                                                |
| Casting Position (Bottom)                         | 1.0      |    |                                                |
| Spacing / Cover (Top)                             | 2.5      |    |                                                |
| Spacing / Cover (Bottom)                          | 2.5      |    |                                                |
| Excess Reinforcement Ratio (Top)                  | 0.392    |    | PER ACI 318-14 25.4.10.1                       |
| Excess Reinforcement Ratio (Bottom)               | 0.243    |    |                                                |
| Development Length Demand (Top)                   | 13.6882  | in |                                                |
| Development Length Demand (Bottom)                | 12.0000  | in |                                                |
| Length Available (Top & Bottom)                   | 144.0000 |    |                                                |
|                                                   |          |    |                                                |
| Check Length (Top)                                | <b>~</b> | l. |                                                |
| Check Length (Bottom)                             | 1        |    |                                                |

| destal Design                                    |        |                 |                                                      |
|--------------------------------------------------|--------|-----------------|------------------------------------------------------|
| destal Min. Rebar & Spacing Requirements         |        |                 |                                                      |
| Pedestal Vertical Rebar Size                     | 11     |                 |                                                      |
| Pedestal Vertical Rebar Diameter                 | 1.410  | in              |                                                      |
| Pedestal Vertical Single Rebar Area              | 1.561  | in <sup>2</sup> |                                                      |
| Pedestal Vertical Total Rebar Area Provided      | 59.335 | in <sup>2</sup> |                                                      |
| Minimum Rebar Ratio for Pedestals                | 0.005  |                 | PER ACI 318-14 16.3.4                                |
| Pedestal Vertical Total Rebar Area Required      | 36.191 | in <sup>2</sup> |                                                      |
| Check Pier Vertical Rebar Area                   | ✓      |                 |                                                      |
| Rebar Cage Diameter (to Center of Vertical Bars) | 85.590 | in              |                                                      |
| Pedestal Vertical Rebar Clear Spacing            | 5.666  | in              |                                                      |
| Check Pier Vertical Rebar Spacing                | ✓      |                 |                                                      |
| Pedestal Tie Rebar Size                          | 4      | in              |                                                      |
| Pedestal Tie Rebar Diameter                      | 0.500  | in              |                                                      |
| Pedestal Tie Rebar Area                          | 0.196  | in <sup>2</sup> |                                                      |
| Pedestal Tie Quantity Provided                   | 6      |                 |                                                      |
| Maximum Tie Spacing                              | 22,560 |                 | PER ACI 318-14 25.7.2                                |
| Minimum Tie Quantity Required                    | 4.000  |                 | Includes 1 additional at the top below the first tie |

8



| Check Tie Spacing & Quantity        |           | W.   |                                        |
|-------------------------------------|-----------|------|----------------------------------------|
| Pedestal Compression Capacity       |           |      |                                        |
| Maximum Axial Compressive Strength  | 19145.642 | kips | PER ACI 318-14 Table 21.2.1 & 22.4.2.2 |
| Check Pedestal Compression Capacity | -         | A    |                                        |
| Stress Ratio                        | 0.41%     |      |                                        |

| Cross Section Diameter, Bw                                                        | 96.000  | in         |                                      |
|-----------------------------------------------------------------------------------|---------|------------|--------------------------------------|
| tance from Extreme Compression Fiber to Centroid of Longitudinal<br>Reinforcement | 76.800  | in         | PER ACI 318-14 22,5.2.2              |
| Factored Concrete Shear Capacity, Vc                                              | 745.214 | kips       | PER ACI 318-14 22.5.6.1 - PHI = 0,75 |
| Check Cross Section Dimensions                                                    | ОК      |            | PER ACI 318-14 22.5.1.2              |
| Shear Reinforcement Required                                                      | 0.000   | kips       | PER ACI 318-14 22.5.10.1             |
| Spacing of Shear Reinforcement Required                                           | NA      | în         | PER ACI 318-14 22.5.10.5.3           |
| Check Pedestal Shear Capacity                                                     | - /     | M. Comment |                                      |
| Stress Ratio                                                                      | 12.44%  |            |                                      |

| Pedestal Applied Moment           | 8473.604  | ft-kips |
|-----------------------------------|-----------|---------|
| Pedestal Factored Moment Capacity | 10809.770 | ft-kips |
| Check Pedestal Capacity           | 4         |         |
| Stress Ratio                      | 78.39%    |         |

| stal Vertical Rebar Development Length Requirements |        |      |                               |
|-----------------------------------------------------|--------|------|-------------------------------|
| Normal vs. Light Weight                             | 1      |      |                               |
| Epoxy Coating                                       | 1.0    |      |                               |
| Casting Position                                    | 1.0    |      |                               |
| Size                                                | 1.0    |      |                               |
| Spacing Cover                                       | 2.5    |      |                               |
| Confining Reinforcement (Compression)               | 1.0    |      | PER ACI 318-14 TABLE 25,4.9.3 |
| Confining Reinforcement (Hooks)                     | 1.0    |      | PER ACI 318-14 TABLE 25.4.3.2 |
| Bar Size & Clear Cover                              | 0.7    |      | PER ACI 318-14 TABLE 25.4.3.2 |
| Excess Reinforcement Ratio                          | 0.6099 |      | PER ACI 318-14 25.4.10.1      |
| Development Length Demand (Tension)                 | 23.08  | in   | PER ACI 318-14 25.4.2         |
| Development Length Demand (Compression)             | 15.48  | in   | PER ACI 318-14 25.4.9.2       |
| Development Length Demand (Hook)                    | 11.28  | in   |                               |
| Length Available in Pedestal                        | 39.00  | in   |                               |
| Check Vertical Bar in Pedestal (Tension)            | 1      |      |                               |
| Check Vertical Bar in Pedestal (Compression)        | 1      |      |                               |
| Length Available in Pad                             | 33.00  | în   |                               |
| Check Vertical Bar in Pad (Tension)                 | 1      |      |                               |
| Check Vertical bar in Pad (Compression)             | 4      | 8    |                               |
| Check Hook                                          | 1      | III. |                               |

9



| edestal Torsional Capacity                                                                    |          | . 7             |                                                       |
|-----------------------------------------------------------------------------------------------|----------|-----------------|-------------------------------------------------------|
| Pier Cross Section Area, Acp                                                                  | 7238.229 | in <sup>2</sup> |                                                       |
| Pier Perimeter                                                                                | 301.593  | in              |                                                       |
| Threshold Torsion                                                                             | 740.452  | ft-kips         | PER AC! 318-14 22.7.4                                 |
| Consider Torsion Effects?                                                                     | N        |                 |                                                       |
| Web Width Bw                                                                                  | 96.000   | in              |                                                       |
| Distance from Extreme Compression Fiber to Centroid of Longitudinal<br>Reinforcement Diameter | 76.800   | in              |                                                       |
| Perimeter Along Center of Transverse Rebar, ph                                                | 274.889  | in              |                                                       |
| Area Enclosed by Transverse Rebar, Aoh                                                        | 6013.205 | in <sup>2</sup> |                                                       |
| Ao                                                                                            | 5111.224 | in <sup>2</sup> |                                                       |
| Tie Spacing as Provided, s                                                                    | 10.500   | in              |                                                       |
| Nominal Torsional Strength                                                                    | 955.797  | ft-kips         |                                                       |
| Factored Torsional Strength                                                                   | 716.847  | ft-kips         |                                                       |
|                                                                                               |          |                 |                                                       |
| Cross Section Limits for Solid Sections                                                       | OK       |                 | PER ACI 318-14 22.7.7.1                               |
| Check Torsional Strength                                                                      | ✓        |                 | PER ACI 318-14 22.7.6                                 |
| Stress Ratio                                                                                  | 0.00%    |                 |                                                       |
|                                                                                               |          |                 |                                                       |
| nchor Steel Length Check                                                                      |          |                 |                                                       |
| Anchor Bolt Embedment in Concrete                                                             | 59.250   | in              |                                                       |
| Available Development Length                                                                  | 50.642   | in              | Note: assumes embedment plate is 2 in above bottom of |
| Required Development Length (Tension)                                                         | 23.077   | in              | anchor bolt.                                          |
| Check Anchor Bolt Engagement                                                                  | <b>-</b> |                 |                                                       |
| Minimum Anchor Bolt Embedment per TIA-222-H 9.6                                               | 14.590   | in              |                                                       |
| Check Anchor Bolt Length                                                                      | 1        |                 |                                                       |



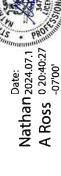
### MAXIMUM FACTORED MOMENT OF A CIRCULAR SECTION -78.206 Axial Load (Negative for Compression) kips 0.003 Limiting Compressive Strain in/in Reinforcement Yield Strain 0.00207 in/in Pier Diameter 8.00 ft Vertical Rebar Diameter 1.410 in Vertical Rebar Quantity 38 1,5615 în² Vertical Rebar Area Tie Rebar Diameter 0.500 000000 Concrete Clear Cover 4.0 īn Rebar Cage Diameter (to Center of Vertical Bars) 85.6 Concrete Compressive Strength 4500 psi Distance from Extreme Edge to Neutral Axis 15.5 in ACI Factor per Table 22.2.2.4.3 (B<sub>1</sub>) 0.825 Depth of Equivalent Stress Block 12.7 īn Distrance from Centroid to Neutral Axis 32.5 in Angle from Centroid to Compression Zone 42.7 deg Area of Concrete in Compression 570.3 in<sup>2</sup> Distance from Centroid of Concrete in Compression to Centroid of Pier 40.4 īn Concrete Compression Force 2133.7 kips **Total Reinforcement Forces** -2055.5 kips Concrete Area in Axial Load -78.2 kips Compression Sum of Axial Forces -2133.7 kips Sum of Forces in Concrete -0.001 kips Moment of Concrete in Compression 7186.0 ft-kips Total Reinforcement Moment 4824.9 ft-kips Nominal Strength of Column 12010.9 ft-kips Tensile Strain in Extreme Layer of Reinforcement -0.0146 in/in **ACI Strength Reduction Factor** 0.90

10809.8

ft-kips

Factored Moment Strength of Column

# Vallmont


### **STRUCTURES**

Intermediate Designer: JORGE ORTIZ

## COMMUNICATION POLE

### RECORD DRA WINGS

| INDE             | INDEX OF [ | DRAWINGS                  |           |
|------------------|------------|---------------------------|-----------|
| DESCRIPTION      | DHAWING #  | DESCRIPTION               | DHAWING # |
| POLE ASSEMBLY    | DD8529Z    | ANCHOR BOLT CAGE ASSEMBLY | CC17798   |
| SECTION ASSEMBLY | DD8529A    | CAGE PLATE                | BD44819   |
| SECTION ASSEMBLY | DD8529B    |                           |           |
| SECTION ASSEMBLY | DD8529C    |                           |           |



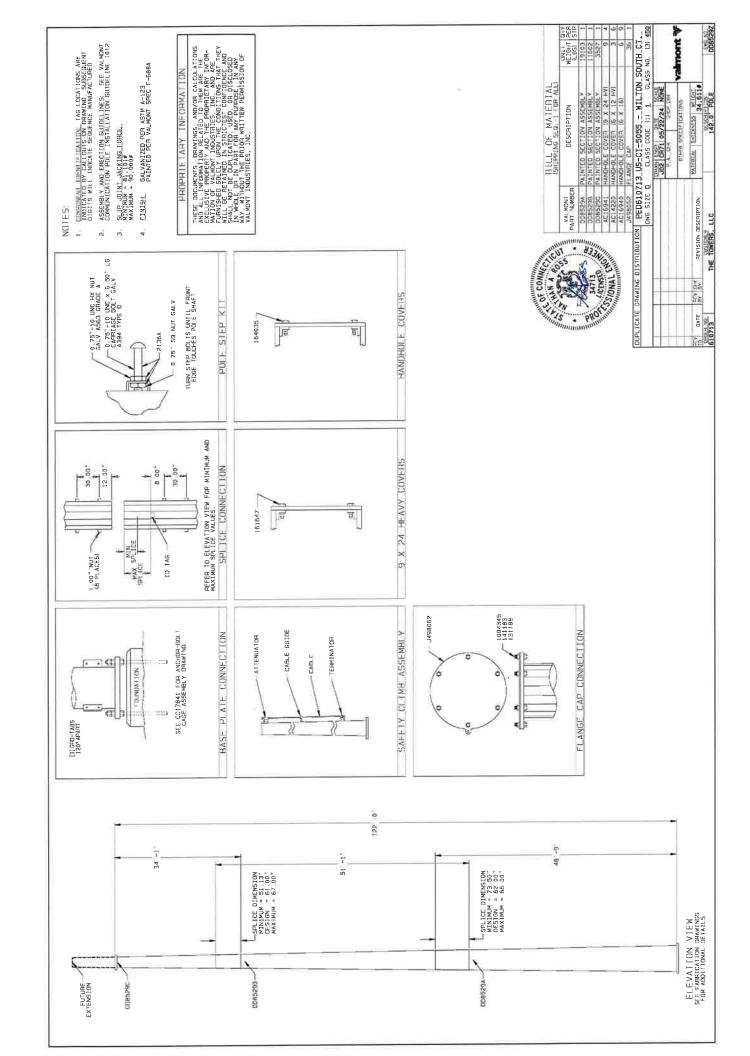
VALMONT ORDER# 610713-P1 SITE: US-CT-5055 - WILTON SOUTH CT, CT POLE HEIGHT:122'-0"

Valley, NE 68064-0358 USA Valmont Industries, Inc. 7002 North 288th Street Fax: 402-359-4025 Ph: 402-359-2201 P.O. Box 358

THE LOWER HANDHOLE OPTENTATIONS ARE SHOWN ABOVE TO AID IN THE INSTALLATION PRICESS

ORIENTATION INDEX




KIT DD8529Z DD8529K

| WEIGHT | DRAWN BY | DATE     |
|--------|----------|----------|
| 243#   | KRC      | 05/23/24 |

| REV | DATE | REV. BY | REVISION DESCRIPTION |
|-----|------|---------|----------------------|
| 1   |      |         |                      |
|     |      |         |                      |
|     |      |         |                      |
|     |      |         |                      |
|     |      |         |                      |

|         |      |       | BIL  | L O   | F MATER] | [AL    |              |     |
|---------|------|-------|------|-------|----------|--------|--------------|-----|
| VALMONT |      |       |      | DES   | CRIPTION |        |              | QTY |
| PART    | HAR  | DWARE | SIZE | (IN)  |          |        | АСТМ         | PER |
| NUMBER  | В    | DLT   | NUT  | WSHR  | GENERAL  | FINISH | ASTM<br>SPEC | STR |
|         | DIA  | LONG  | 101  | 75111 |          |        |              |     |
| 161647  | 0.38 | 1.00  |      |       | SCREW    | PL     |              | 18  |
| 164035  | 0.25 | 1.50  |      |       | SCREW    | SS     | A410         | 35  |
| 1004345 | 1.00 | 4.00  |      |       |          | HDGV   | A307         | 6   |
| 131188  |      |       | 1.00 |       | DH,LOCK  | HDGV   | A563         | 6   |
| 141183  |      |       |      | 1.00  | CS,FLAT  | HDGV   | F436         | 6   |
| 2136A   |      |       |      |       | STEP KIT | HDGV   | •            | 164 |









AG1674

2 63" DIA HOLE BURNED AT (DEG) 70, 110, 250

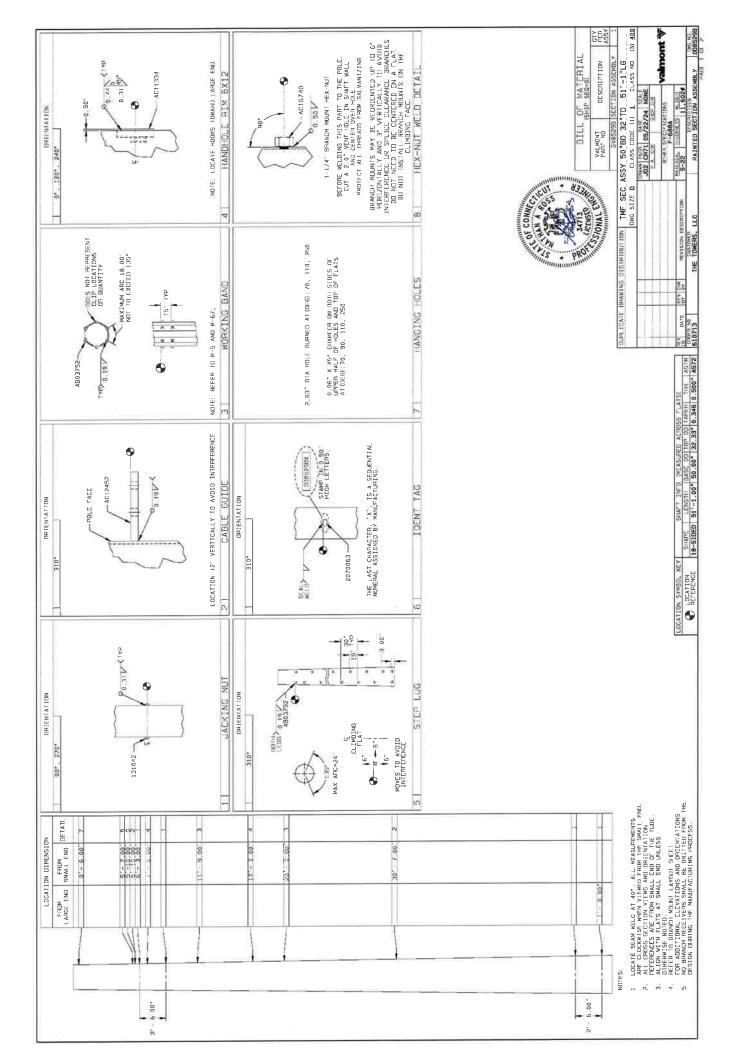
0 06" X 45° CIAMFER DN BOTH SIDES DF UPPER HALF OF HOLES AND TOP OF FLATS AT (DEG) - 70, 90, 110, 250

1-1/4" BRANCH MOUNT HEX-NUT
BEFORE WELDING THIS PART TO THE POLE,
CUT A 2.0" VERT HOLE THO SHART WALL
AND CENTER YORE HOT SHART WALL
PROTECT ALL THREADS FROM BALVANIZING

PROTECT ALL INHEADS HOW SALVANIZING
BRANCH MOUNTS MAY BE REDEIGNED UP TO 6'
HORIZONTALLY AND 3' VERTICALLY TO AVOID
INTERFERENCE OR SPICE CLEARANCE. BRANCHES
DO NOT NEED TO BE CENTERED UN A FLAT
DO NOT NEED TO BE CENTERED UN A FLAT
CLIMBING FAGE

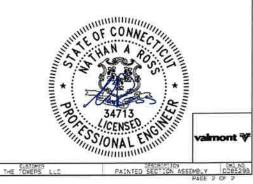
LIMBING FAGE

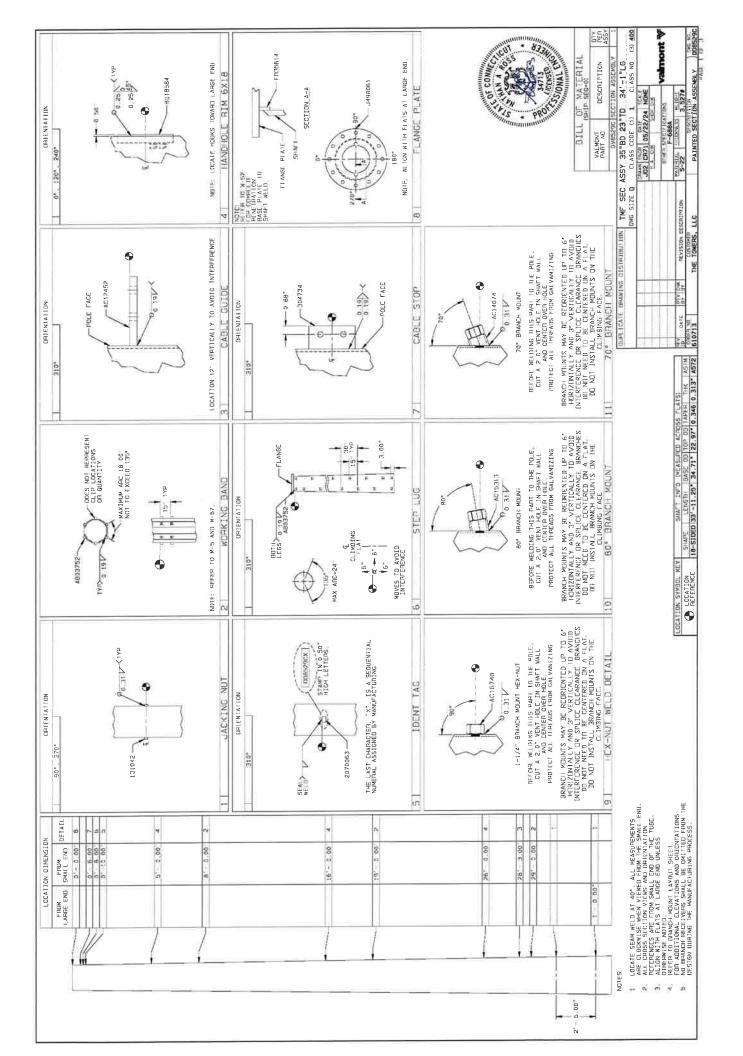
HEX—NUT WELL DETAIL

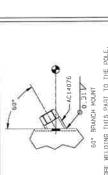

HANGING HOLES

|             |         |         |     |         | BF  | RAN  | NCH     | 1 1     | 101   | JN-  |         | _ A \ | $/\Box$ | JT   |         |      |         |      |          |
|-------------|---------|---------|-----|---------|-----|------|---------|---------|-------|------|---------|-------|---------|------|---------|------|---------|------|----------|
| ROM         |         |         |     |         |     |      |         |         | RIENT | ATIO | NS      |       |         |      |         |      |         |      | MOUN7    |
| MALL<br>END | 10°     | 30°     | 50* | 70°     | 90° | 110° | 130°    | 150°    | 170*  | 190° | 210°    | 230°  | 250°    | 270° | 590°    | 310° | 330°    | 350* |          |
| 7'-3'       |         |         |     |         |     |      |         |         |       | _    |         |       |         |      | AC16740 |      |         |      | 90       |
| 7'-9'       |         | AC15740 |     |         |     |      |         | AC15740 |       |      |         |       |         |      |         |      |         |      | 90       |
| 8'-3'       |         |         |     |         |     | 1    |         |         |       |      | AC16740 |       |         |      |         |      |         |      | 9±       |
| 8'-9'       |         |         |     | AC16740 |     |      |         |         |       |      |         |       |         |      |         |      | 4016740 |      | 90<br>50 |
| 2'-2'       |         |         |     |         |     |      | AC16740 |         |       |      |         |       |         |      |         |      |         |      |          |
| 01.01       | 1017710 |         |     |         |     |      | N.Co.L  |         |       |      |         |       | AC16740 |      |         |      |         |      | 90       |




valmont ₹


610713 THE TOWERS LLC PAINTED SECTION ASSEMBLY DESIGNATION OF THE TOWERS LLC PAINTED SECTION OF THE TOWERS




|                  |         |         |             |         | BF      | RAN     | VC+     | 1       | 10       | JN       |            | _ A \     |           | JT        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         |          |
|------------------|---------|---------|-------------|---------|---------|---------|---------|---------|----------|----------|------------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------|----------|
| FROM<br>SMALL    |         |         |             |         |         |         |         |         | RIENT    | ATIO     | NS         |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | M□UN     |
| END              | 10*     | 30°     | 50°         | 70*     | 90°     | 110°    | 130°    | 150°    | 170*     | 190°     | 510.       | 530,      | 250°      | 270°      | 290°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 310° | 330,     | 350°    | LCIV     |
| 5-6'             | AC16740 |         |             |         |         |         | AC16740 |         | 101/740  |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 50<br>50 |
| 6'-6'            |         |         |             |         | AC15740 |         |         |         | AC16740  |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 50       |
| 7'-0"            |         |         | 4C16740     |         | -       |         |         | -       | -        |          | AC15740    |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90<br>90 |
| B,-C.            |         |         |             |         |         |         |         |         |          | A216740  |            |           |           | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 80.              |         |         |             |         |         | AC:6740 |         |         |          | N=192-79 |            |           |           |           | 10.4710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          | 4016740 |          |
| 99.              | -       | AC16740 |             |         |         |         |         | 4016740 |          |          |            |           |           |           | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          |         | 90       |
| 10'-6'           |         |         |             | AC16740 |         |         |         |         |          |          |            | AC15740   |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | AD16740  |         | 90<br>90 |
| 116,             |         |         |             | 4010740 |         |         | AC16740 |         |          |          |            |           | AT16746   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 12"-6"           | AD16740 |         |             |         |         |         |         |         | AC16740  |          |            |           | AC16740   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 13'-6"           |         |         |             |         |         | AC16740 |         |         |          |          |            | AC16740   |           |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          |         | 90       |
| 14'-0"           |         |         | AC:5740     |         |         |         |         | AC16740 |          | 10.75.0  |            |           |           | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 15'-0'           |         |         |             |         | AC16740 |         |         |         |          | AC16740  |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | AC16740 | 90       |
| 15'-6"           |         | AC16740 |             |         |         |         |         |         |          |          |            |           |           |           | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          |         | 90       |
| 15'-5"           |         |         |             |         |         |         |         |         |          |          | AC15740    |           |           |           | TO THE STATE OF TH |      |          |         | 90       |
| 17'-6"           |         |         |             | AC16740 |         |         |         |         |          |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | A016740  |         | 90       |
| 18'-6"           | AC16740 |         |             |         |         |         | AC16740 |         | AC:6740  |          |            |           | AC16740   |           | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          |         | 90       |
| 19'-0"           |         |         |             |         |         | AC16740 |         |         |          |          |            | AC16 7 10 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 92<br>90 |
| 19'-6"           |         |         | AC16740     |         |         |         |         |         |          |          |            | AC:6740   |           | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 50:-0.           | AC16740 |         |             |         | AC15740 |         |         |         |          | 4016740  |            |           | 4016740   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 51,-0,           | AL16740 |         |             |         | AC15740 |         |         |         |          |          |            |           | -10707710 |           | 12/41/20/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |          | AC16740 | 90       |
| 55,-0,           | _       | AC16740 |             |         | -       |         |         | AU16740 |          |          |            |           |           |           | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          |         | 90<br>90 |
| 550.             |         |         |             | AC16740 |         |         |         |         |          |          | AC16742    |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 4015740  |         | 90       |
| 536.             |         |         |             | 4516740 |         |         | AC16740 |         |          |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 12107.10 |         | 90       |
| 24'-6'           |         |         |             |         |         | AC:6740 |         | -       | AC16740  |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90<br>90 |
| 236.             |         |         |             |         |         |         |         |         |          |          |            | AC16740   |           | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 59,-0,           | _       |         | AC16740     |         |         |         |         |         |          | AC16740  |            |           |           | MOTO / ME |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 95       |
| 27'-0"           |         |         |             |         | AC16740 |         |         |         |          |          |            |           |           |           | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          | AC16740 | 90       |
| 580,             |         | AC16740 |             |         |         |         |         | AC16740 |          |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90<br>92 |
| 59'-6'           |         |         |             | AC16740 |         |         |         |         |          |          | AC16743    |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 4016740  |         | 90       |
| 36,-0,           | AC16740 |         |             |         |         |         | AC16740 |         |          |          |            |           | A016740   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 30,-6,           | NL10730 |         |             |         |         |         |         |         | AC16740  |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90<br>95 |
| 31'-6"           |         |         |             |         |         | AC16740 |         |         |          |          |            | AC16740   |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 350.             |         |         | AC16740     |         |         |         |         |         |          | A016740  |            |           |           | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 92<br>90 |
| 330,             |         |         |             |         | AC16740 |         |         |         |          | 910110   |            |           | 78.7476   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | AC16740 |          |
| 396.             | AC16740 |         |             |         |         |         |         |         |          |          |            |           | A516740   |           | AC:5740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          |         | 90       |
| 34'-0"<br>34'-6" |         | AC15740 |             |         |         |         |         | AC15740 |          |          | 4016740    |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90<br>90 |
| 350.             |         |         |             | AC16740 |         |         |         |         |          |          | -missioned |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | AC16740  |         | 92       |
| 35'-6'           |         |         |             |         |         |         | AC16740 |         | AC15743  |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 95<br>50 |
| 37'-6"           |         |         |             |         |         | AC16740 |         |         |          |          |            | AC16740   |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 38'-0"           |         |         | AC16740     |         |         |         |         |         |          | 10465    |            |           |           | AE16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 38°-6"           |         |         |             |         | A016740 |         |         |         |          | AC16740  |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | AC16746 |          |
| 39°-6°           |         | AC:6740 |             |         |         |         |         | AC16743 |          |          |            |           |           |           | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          |         | 90       |
| 40'-6"           |         | ML,0740 |             |         |         |         |         |         |          |          | AC16740    |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ABARTA   |         | 90       |
| 41'-0'           |         |         |             | AC16740 |         |         | AC16740 |         |          |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | AC16740  |         | 90       |
| 41'-6'           | AC16740 |         |             |         |         |         |         |         | AC16740  |          |            |           | AC16740   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90<br>90 |
| 42"-6"<br>43"-0" |         |         |             |         |         | AC16740 |         |         | 742:0740 |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 43'-6"           |         |         | AC16749     |         |         |         |         | AC16743 |          |          |            | AC15740   |           | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90<br>92 |
| 44'-6"           |         |         | - Marie - M |         |         |         |         |         |          | AC16740  |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | 4016740 | 90       |
| 45'-0"           |         |         |             |         | AC16740 |         |         |         |          |          |            |           |           |           | AC15740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          | 4516140 | 95       |
| 45'-0"           |         | AC15740 |             |         |         |         |         | AC16740 |          |          | AC16740    |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90<br>90 |
| 45'-6"<br>47'-0" |         |         |             | AC16740 |         |         |         |         |          |          | - minary   |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 4016740  |         | 90       |
| 49'-0"           | AC16740 |         |             |         |         |         | AD16740 |         |          |          |            |           | AC16740   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 48'-6"           | 7110770 |         |             |         |         | 1907    |         |         | AC:6740  |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 9¢       |
| 49'-6'           |         |         |             |         |         | AC15740 |         |         |          |          |            | AC16740   |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 20:-0"           |         |         | AC16740     |         |         |         |         |         |          | AC16740  |            |           |           | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | 90       |
| 310.             |         | _       |             |         | AC16740 |         |         |         |          |          |            |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | AC16740 |          |

6:07:3







BRANCH MOUNTS MAY BE REDRIENTED UP TO 6'
HORIZONALLY AND 3' VERTICALY TO AVUID
INTERFERENCE OR SPLICE CLEARANCE, BRANCHES
DO NOT NEED TO BE CENTERED ON A FLAT.
DO NOT NEED TO BE CENTERED ON THE
CLIMBING FACE. BEFORE WELDING THIS PART TO THE POLE. CUT A 2.0" VENT HOLE IN SHAT WALL AND CENTER DVER HOLE. PROTECT ALL THREADS FROM GALVANIZING

BEFORE WELDING THIS PART TO THE POLE, CUT A 2.0° VENT TOLE IN SHAT WALL AND CENTER DOME HOLE, PROTECT ALL THREADS FROM GALVANIZING AC15310 50° BRANCH MOUNT

BRANCH MOUNTS MAY BE REORIENTED UP TO 6'
HURIZIONI ALLEY AND 3' VERTICALLY TO AVUID
HURIZICALOE OF SPRICE CLEARANCE BRANCHCS
DO NOT NEED TO BE CENTERED ON A FLAT.
DO NOT NEED TO BE CENTERED ON THE
CLIMBING FACE.

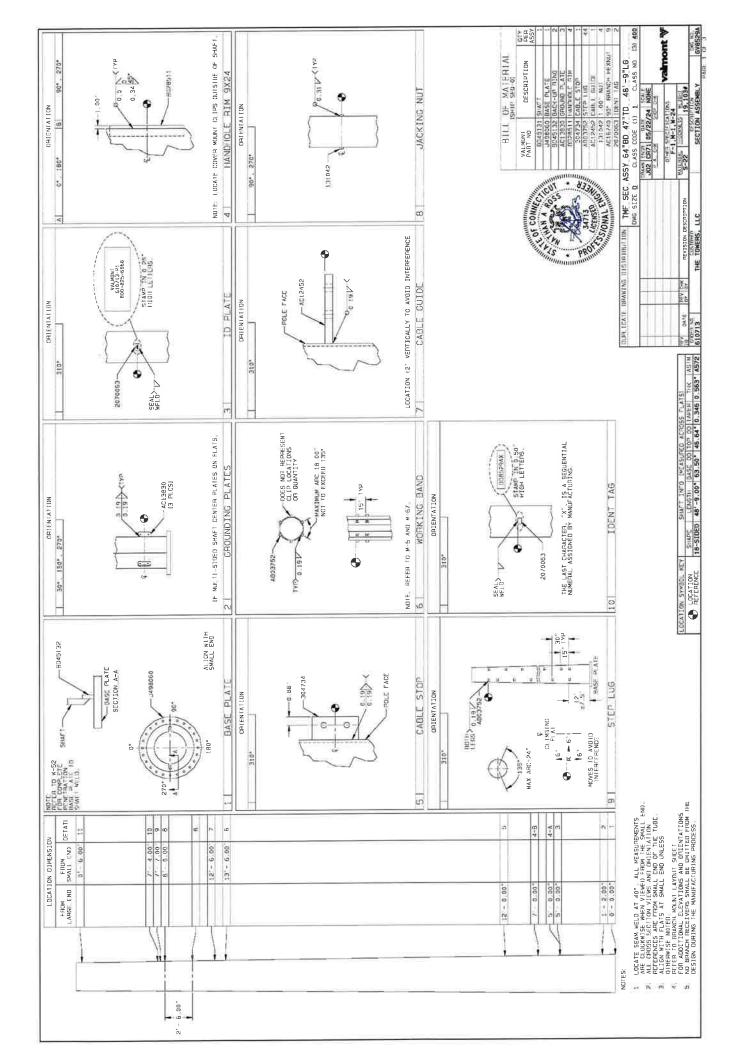
13] 50° BRANCH MOUNT

121



THE TOWERS, LLC 610713

PAINTED SECTION ASSEMBLY DOBS29C


valmont |

|                |         |         |         |          | Br       | $A \setminus A$ | NCH     |          | 111       | JNI       |           | -A                                     | $/ \square \lfloor$ |           |          |      |             |         |              |
|----------------|---------|---------|---------|----------|----------|-----------------|---------|----------|-----------|-----------|-----------|----------------------------------------|---------------------|-----------|----------|------|-------------|---------|--------------|
| ROM            |         |         |         |          |          |                 |         |          | RIENT     | ATIO      | VS        |                                        |                     |           |          |      |             |         | MEUN         |
| MALL<br>END    | 10°     | 30°     | 50°     | 70°      | 90°      | 110°            | 130°    | 150°     | 170°      | 190°      | 510.      | 230*                                   | 250°                | 270°      | 290*     | 310° | 330°        | 350°    |              |
| 06.            |         |         | 4015310 |          |          |                 |         |          |           |           |           | AC15310                                |                     | AC15311   |          | _    | -           | _       | 50<br>60     |
| 1,-0,          | -       |         |         |          | AC:53:1  | _               |         | AC15311  |           | AC15311   |           |                                        |                     | ACIDAN    |          |      |             | ACIS311 | 50           |
| 50.            |         | AC15312 |         |          | THE EAST |                 |         |          |           |           |           |                                        |                     |           |          |      |             |         | 70<br>70     |
| 5,-0.          |         |         |         | AC15313  |          |                 | AC15312 |          |           | _         |           |                                        | AC15312             |           | AC15312  |      | AC15313     |         | - 70<br>- 80 |
| 4'-6'          |         |         |         | AL15313  |          |                 |         |          |           |           | AC15313   |                                        |                     |           |          |      | 1 2 1 2 1 2 |         | 80           |
| 57-07          |         |         | AC16740 |          |          |                 |         |          | AC16740   |           |           |                                        |                     |           | AC15740  | _    | -           | _       | 90<br>90     |
| 5'-6"          | -       |         |         |          | _        | AC16740         | -       |          | ACIG/4D   |           |           |                                        |                     |           |          |      |             |         | 92           |
| 5'-6"          |         |         |         |          |          | 7.4507 -9       |         |          |           |           |           | AC16740                                |                     |           |          |      |             |         | 92           |
| 7'-0"          | AC16740 |         |         |          |          |                 |         |          |           | AC16740   |           |                                        |                     | AE16740   |          |      |             |         | 90           |
| 7'-6'<br>B'-0' |         |         |         |          | AC16740  |                 |         |          |           | 4210 / 40 |           |                                        |                     | 1         |          |      |             |         | 90           |
| 8'+6"          |         |         |         |          |          |                 |         |          |           |           |           |                                        |                     | 4014740   |          |      | -           | AC16740 | 90           |
| 91-01          |         | AC16740 |         | AC16740  | _        |                 |         | AD16740  |           |           | AC16740   |                                        |                     | AC16740   |          |      |             |         | 92           |
| 3'-6'          |         |         |         | -tour-nu |          |                 | AC16740 |          |           |           | 390,43.78 |                                        |                     |           |          |      | 4016740     |         | 90           |
| 11'-0"         | AC16740 |         |         |          |          |                 |         |          | AC15740   |           |           |                                        | AC16740             |           |          |      | _           |         | 90           |
| 15,-0,         |         |         |         |          | _        | AC16740         |         |          | AL:5740   | _         |           |                                        |                     |           |          |      | AC16740     |         | 90           |
| 12'-6"         |         |         |         |          |          | 10.00           |         |          |           |           |           | AC16740                                |                     |           |          |      |             |         | 90           |
| 13'-0'         |         |         | AC16740 |          |          | _               |         | AC16740  |           | AC16740   |           |                                        | _                   | AC16740   |          |      |             |         | 90           |
| 13'-5"         |         |         |         |          | AC16740  |                 |         | ACI674D  |           |           |           |                                        |                     | PERCY -2  |          |      |             | AC16740 | 90           |
| 14'-6"         |         | AE15740 |         |          |          |                 |         |          |           |           |           |                                        |                     |           |          |      |             |         | 90           |
| 15'-6'         |         |         |         |          |          |                 |         | _        | AC15740   |           | AC16740   | _                                      | _                   |           | AC15740  |      |             |         | 90           |
| 16'-0'         | _       | _       |         | 4016740  |          |                 |         |          |           |           | TIGIET TO |                                        |                     |           |          |      |             |         | 50           |
| 76'-5"         |         |         |         |          |          |                 |         |          |           |           |           |                                        | 4C16740             | _         |          |      | AC16740     |         | 90           |
| 17'-0"         | AC16740 |         | AC16740 |          | _        | -               | AC16740 | _        | ACIG740   |           |           |                                        | 4575740             |           |          |      |             |         | 90           |
| 18'-0"         |         |         | 7410110 |          |          | AC16740         |         |          |           |           |           | ************************************** |                     |           |          |      |             |         | 90           |
| 18'-6"         |         |         |         |          |          | _               |         | _        |           | _         |           | AC16743                                |                     | AC16740   |          | _    |             |         | 90           |
| 15,-0,         | -       |         | AC15740 |          | -        |                 |         |          |           | AC16740   |           |                                        |                     | Party 194 |          |      |             |         | 90           |
| 500.           |         |         |         |          | AC16740  |                 |         |          |           |           |           |                                        |                     |           | AC15740  |      |             | 4016740 | 90           |
| 50'-6'         |         | AC16740 |         | _        |          | -               |         | AC16740  |           |           |           |                                        |                     |           | AL ISTAU |      |             |         | 90           |
| 51,-0,         |         | MUIDANE |         |          |          |                 |         | - Hartoy |           |           | AC15740   |                                        |                     |           |          |      |             |         | 92           |
| 550.           |         |         |         |          |          |                 |         |          |           |           |           | _                                      |                     | AC16740   |          |      | AC16740     | _       | 90           |
| 55,-0,         | _       |         | _       | AC16740  | _        |                 | AC16740 | -        |           |           |           |                                        |                     |           |          |      |             |         | 90           |
| 530,           | AC16740 |         |         |          |          |                 |         |          |           |           |           |                                        | AC16740             |           |          |      |             |         | 90           |
| 53, 6.         |         |         |         |          |          |                 |         |          | AC16740   | _         |           | AC16740                                |                     |           |          |      |             |         | 90           |
| 54,-0,         |         |         |         |          |          | AC16740         |         |          |           |           |           |                                        |                     |           |          |      |             | AC16748 | 90           |
| 231-01         |         |         | AC16740 |          |          |                 |         |          |           | 4016740   |           |                                        |                     |           |          |      |             |         | 90           |
| 25'-6'         |         |         | -       |          | AC16740  |                 | _       |          |           | MU10740   |           |                                        |                     |           |          |      |             |         | 90           |
| 56,-6,         |         |         |         |          |          |                 |         |          |           |           |           |                                        |                     |           | AC16740  |      |             |         | 90           |
| P7'-0"         |         | AC16740 |         |          |          | AC16740         |         | AC16240  |           | _         | AC16740   |                                        | 4016740             |           |          |      |             |         | .9E<br>.9D   |
| 27'-6'         | -       |         |         | AC16740  |          | PC15/40         |         |          |           |           | -Ginras   |                                        |                     |           |          |      | AC16740     |         | 90           |
| 28'-6"         |         |         |         | 1000     |          |                 | AC16740 |          |           |           |           |                                        | 40147147            |           |          |      |             |         | 90           |
| 29'-0'         | AC16740 |         |         |          |          |                 | _       |          | AC16740   |           |           |                                        | AC16740             |           |          | -    |             |         | 90           |
| 300.           | _       |         |         |          |          | AC:6740         |         |          | 2,4197.79 |           |           | - Company                              |                     |           |          |      |             |         | 90           |
| 30,-6,         |         |         |         |          |          |                 |         |          |           |           |           | AC16740                                |                     | AC14745   |          |      |             |         | 90           |
| 31,-0,         | -       |         | AC16740 |          | -        |                 |         | 1        |           | AC16740   |           |                                        |                     | AC16740   |          |      |             |         | 90           |
| 350.           |         |         |         |          | AC16740  |                 |         |          |           |           |           |                                        |                     |           |          |      |             | 4216740 | 90           |
| 32'-6"         |         |         |         |          |          |                 |         | 1014710  |           |           | AC16740   |                                        |                     |           | AC16740  |      |             |         | 90           |
| 336,           | -       | AC16740 |         |          | -        | -               | _       | AC16740  |           |           | 4610740   |                                        |                     |           |          |      | 4016740     |         | 90           |
| 340.           |         | _       |         | 4016740  |          |                 |         |          |           |           |           |                                        | AC16740             |           |          |      |             |         | 90           |



valmont ₹

610713 THE TOWERS LLC PAINTED SECTION ASSEMBLY DD85290



SECTION ASSENBLY GV6529A

THE TOWERS, LLC

valmont 🔻

BEFORE WELDING THIS PART TO THE POLE. CUT & 2° U WENT HOLE IN SHAT WALL AND CENTER OVER HOLE. PROTECT ALL THREADS FROM GALVANIZING 1-1/4" BRANCH MOUNT HEX-NUT AC15740 0.587

2 63" DIA HOLE BURNED AT (DEG) 70, 110, 250

0 06" X 45° CHAWFER DN BOTH SIDES DF UPPER HALF OF HOLES AND TOP OF FLATS AT (DEG): 70, 90, 110, 250

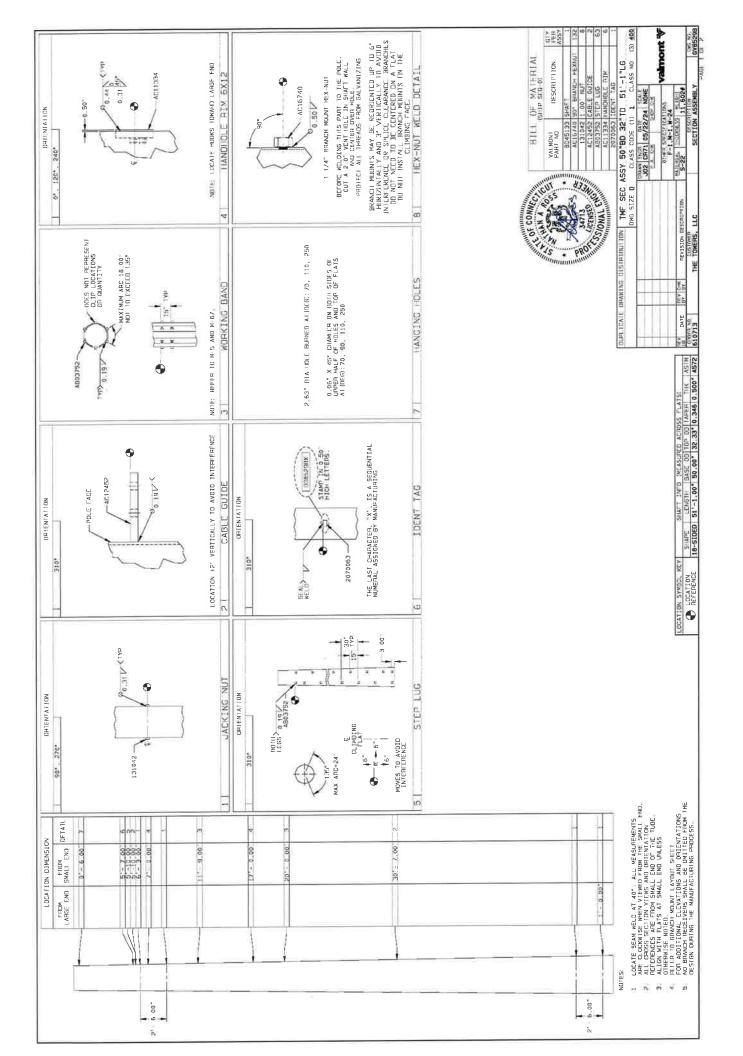
BRANCH MOUNTS MAY BE REORIENTED UP TO 6'
HORIZIONATCH Y MOD 3' VERTICALLY TO AVUID
INTERFERING OR SPLICE CLEARANCE, BRANCHES
DO NOT NEED TO BE CENTERED ON A FLAT.
DO NOT NEED TO BE CENTERED ON A FLAT.
CLABONG FABE.

ALWANG FABE.

->

HANGING HOLES

|          |                                                                                    |         |      |         | BF | PAP | VCF     | 1 1     | 101   | JN   |         | _ A \ | $/\Box$ | JŢ |         |         |  |       |
|----------|------------------------------------------------------------------------------------|---------|------|---------|----|-----|---------|---------|-------|------|---------|-------|---------|----|---------|---------|--|-------|
| FROM     |                                                                                    |         |      |         |    |     |         | □R      | RIENT | ATID | VS      |       |         |    |         |         |  | MOUN? |
| SMALL    | 10° 30° 20° 10° 90° 110° 130° 120° 170° 190° 210° 230° 250° 270° 290° 310° 330 330 |         |      |         |    |     |         |         |       |      |         |       |         |    | 350°    | 014     |  |       |
| END 7-3' |                                                                                    |         | 2000 | -       | _  |     | _       |         |       |      |         |       |         |    | AC:6740 |         |  | 90    |
| 71-91    |                                                                                    | AC:5740 |      | -       |    |     |         | AC16740 |       |      |         |       |         |    |         |         |  | 90    |
| 8'-3'    | _                                                                                  | MU.DINE |      |         |    |     |         |         |       |      | AC15740 |       |         |    |         |         |  | 50    |
| 8'-9'    | _                                                                                  |         |      | AC16740 |    |     |         |         |       |      |         |       |         |    |         | 4216740 |  | 90    |
| 9'-3'    |                                                                                    | _       |      |         |    | -   | 4016740 | _       |       |      |         |       |         |    |         |         |  | 90    |
| 9-3      | A216740                                                                            |         |      | _       |    |     | 1010110 |         |       |      |         |       | 4016740 |    |         |         |  | 90    |



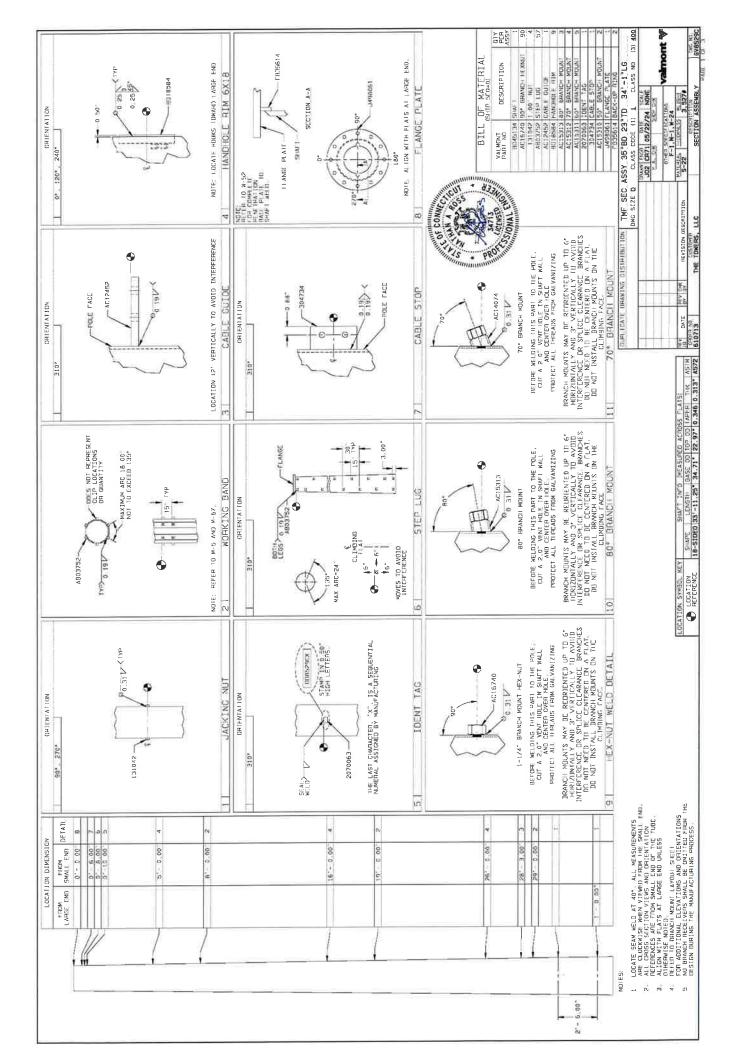

valmont **∛** 

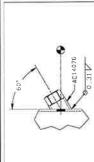
610713 THE TOHERS LLC

SECTION ASSEMBLY CVBEZBA

PACE 3 CF 3




| NA TIC                         |         |         |          |          | 7) [,   | <u>Д</u> , | V ( )    |          |                |          |         |         |         | <i>)</i> : | _        |      |         |          | 1    |
|--------------------------------|---------|---------|----------|----------|---------|------------|----------|----------|----------------|----------|---------|---------|---------|------------|----------|------|---------|----------|------|
| ALL                            |         |         |          |          |         |            |          |          | RIENT          | ATIDI    | 12      |         |         |            |          |      |         |          | MOL  |
| ND C                           | 10°     | 30°     | 50°      | 70*      | 90°     | 110°       | 130°     | 150°     | 170*           | 190°     | 210°    | 530*    | 250°    | 270°       | 590°     | 310° | 330,    | 350°     |      |
| -6.                            | AC16740 |         |          |          |         |            | AC16740  |          | 2004 748       |          |         |         |         |            |          |      |         |          | 9:   |
| -6"                            |         |         |          |          | AC16740 |            |          |          | AC16740        |          |         |         |         |            |          |      |         |          | 99   |
| -01                            |         |         | 6016.740 |          |         |            |          |          |                |          | AC15740 |         |         |            |          |      |         | _        | 9:   |
| -0.                            |         |         | AC16740  |          |         |            |          |          |                |          |         |         |         | AC16740    |          |      |         |          | 9:   |
| -6*                            |         |         |          |          |         | AC15743    |          | _        |                | 4016740  |         | _       |         |            |          |      |         | AC16740  | 90   |
| -6"                            |         |         |          |          |         | 776.10740  |          |          |                |          |         |         |         |            | AC16742  |      |         |          | 9:   |
| ,-p,                           |         | AC15742 |          |          | _       |            |          | AC15740  |                |          |         | AC:5740 | ļ —     |            |          |      |         |          | 93   |
| -0,                            |         |         |          | AC16743  |         |            |          |          |                |          |         |         |         |            |          |      | 4C16740 |          | 9    |
| -6.                            | AC 6740 |         |          |          |         |            | AC16740  |          | _              |          |         |         | AC1674D |            |          |      |         |          | 90   |
| -6"                            |         |         |          |          |         |            |          |          | AC16740        |          |         |         |         |            |          |      |         | _        | 9:   |
| '-6'                           |         |         |          |          |         | AC16740    |          |          |                |          |         | AC16740 |         |            |          |      |         |          | 9    |
| "-C"                           |         |         | AC16740  |          |         |            |          | AC15740  |                | AC16740  |         |         |         | 4016740    |          |      |         | _        | 90   |
| '-6'                           |         |         |          |          | AC16740 |            |          |          |                | 55167-10 |         |         |         |            |          |      |         | AC16740  | 98   |
| -6"                            |         | AC16740 |          |          |         |            |          |          | -              |          |         |         | -       |            | AC16740  |      | _       | _        | 9:   |
| *-0*<br>(~6*                   |         |         |          |          |         |            |          |          |                |          | AC15740 |         |         |            |          |      |         |          | 90   |
| '-6'                           |         |         |          | AC16740  |         |            |          |          |                |          |         |         |         |            |          |      | AC16740 |          | 93   |
| -0-                            | AC16740 |         |          |          |         |            | AC16740  |          |                |          |         |         | 4016740 |            | AD10.711 |      |         |          | 9:   |
| -6*                            |         |         |          |          |         | AC16743    |          | _        | AD15740        |          | _       |         |         |            | AC16740  |      |         |          | 93   |
| -5*                            |         |         |          |          |         |            |          |          |                |          |         | AC:6740 |         | AC16740    |          |      |         |          | 9:   |
| -0'                            |         |         | AC16740  |          |         |            |          |          |                | AC16740  |         |         |         | 45101et    |          |      |         |          | 93   |
| D*                             | A016740 |         |          |          | AC16740 |            |          |          |                |          |         |         | A016740 |            |          |      |         | AC16740  | 9:   |
| '-C'                           |         |         |          |          | AC16740 | _          |          |          |                |          |         |         |         |            | AC16741  |      |         | 70,07-0  | 98   |
| 20.                            |         | AC15740 |          |          |         |            |          | AC16740  |                |          | AC16740 |         |         |            |          |      |         |          | 90   |
| -6"<br>3'-6"                   | -       |         |          | AC16740  |         |            |          |          |                |          | ALIB/EC |         |         |            |          |      | AC16740 |          | 90   |
| "+6"                           |         |         |          |          |         |            | AC16740  |          | AC:6740        |          |         |         |         |            |          |      |         |          | 90   |
| '-6*<br>'-0'                   | -       |         |          |          |         | AC16740    |          |          | ALCE / AU      |          |         |         |         |            |          |      |         |          | - 93 |
| 9'-6"                          |         |         | 1011710  |          |         |            |          |          |                |          |         | AC36740 |         | AC16740    |          |      |         |          | 90   |
| 6'-6'                          |         |         | AC16740  |          |         |            |          |          |                | AC16740  |         |         |         | 14010110   |          |      |         |          | 99   |
| 7'-C'                          |         |         |          |          | AC15740 |            |          |          |                |          |         |         |         |            | AC16740  |      |         | AC16740  | 90   |
| 9'-0°                          |         | AC16740 |          |          |         |            |          | AC16740  |                |          |         |         |         |            | 1.0701   |      |         |          | 91   |
| 3'-6'                          |         |         |          | AC16740  |         |            |          |          |                |          | AC15740 |         |         |            |          |      | AC16740 |          | 90   |
| )-6'                           |         |         |          | HOIGIAS  |         |            | AC16740  |          |                |          |         |         |         |            |          |      |         |          | 99   |
| '-0"                           | AC16740 |         |          |          |         |            | _        |          | AC16740        | _        |         |         | 4016748 |            |          |      |         |          | 90   |
| 0.                             |         |         |          |          |         | AC16740    |          |          | and the second |          |         | 4016740 |         |            |          |      |         |          | 90   |
| .'-6 <b>'</b><br>2'-0 <b>'</b> |         |         | AC16740  |          |         |            |          |          |                |          |         | AC16743 |         | AC16740    |          |      |         |          | 98   |
| -6*                            |         |         |          |          |         |            |          |          |                | AC15740  |         |         |         |            |          |      |         | AC16740  | 90   |
| 3'-0"<br>V+E"                  | AC16742 |         |          |          | AC15740 |            |          |          |                |          |         |         | AD16740 |            |          |      |         | HC107 TO | 98   |
| 1-6*                           |         | 40165:  |          |          |         |            |          | AC16740  |                |          |         |         |         |            | AC16740  |      |         |          | 9:   |
| '-6'                           |         | AC16740 |          |          |         |            |          | -1010740 |                |          | AC16740 |         |         |            |          |      | America |          | 9    |
| 5'~0"                          |         |         |          | A016740  |         |            | AC16740  |          |                |          |         |         |         |            |          |      | AC16740 |          | 9:   |
| 6.                             |         |         |          |          |         |            | -1010/10 |          | AC16740        |          |         |         |         |            |          |      |         |          | 93   |
| 7'-0"                          |         |         |          |          |         | AC:6740    |          |          |                |          |         | AC16743 |         |            |          |      |         |          | 91   |
| 3,-C,                          |         |         | AC16740  |          |         |            |          |          |                | 1277     |         |         |         | 4016740    |          |      |         |          | 90   |
| 1'-6'                          |         |         |          |          | AC16740 |            |          |          |                | A016740  |         |         |         |            |          |      |         | AC16740  | 93   |
| 6.                             |         |         |          |          |         |            |          | 7017     |                |          |         |         |         |            | AC16740  |      | 11.     | -        | 9.   |
| '-0'                           |         | AC16740 |          |          |         |            |          | AC16740  |                |          | AC16740 |         |         |            |          |      |         |          | 9    |
| ,-0,                           |         |         |          | AC16/740 |         |            | A01/27/2 |          |                |          |         |         |         |            |          |      | AC16740 |          | 90   |
| -6"<br>2'-0"                   | AC16740 |         |          |          |         |            | A016748  |          |                |          |         |         | AC16740 |            |          |      |         |          | 91   |
| 1.6"                           |         |         |          |          |         | MO11 7.5"  |          |          | AC16743        |          |         |         |         |            |          |      |         |          | 90   |
| 1-61                           |         |         |          |          |         | AC16740    |          |          |                |          |         | AC:5740 |         |            |          |      |         |          | 9:   |
| '-p'                           |         |         | AC 6740  |          |         |            |          | AC16740  |                | AC16740  |         |         |         | AC16740    |          |      |         | _        | 9:   |
| 1'-6'<br>5'-0'                 | -       |         |          |          | AC16740 |            |          |          |                | 701675U  |         |         |         |            |          |      |         | AC1G740  | :90  |
| 1.6*                           |         | 10:15   |          |          |         |            |          | X012.745 |                |          |         |         |         |            | AC16740  |      |         | -        | 9:   |
| -0.                            |         | AC16740 |          |          |         |            |          | AC16740  |                |          | AC15740 |         |         |            |          |      |         |          | 90   |
| 7-0-                           |         |         |          | AC16740  |         |            | A016712  |          |                |          |         |         |         |            |          |      | AC16740 |          | 9    |
| 3'-C'                          | AC16740 |         |          |          |         |            | AC16740  |          |                |          |         |         | AC16740 |            |          |      |         |          | 9:   |
| 3'-6"                          |         |         |          |          |         | AWITCH     |          |          | AC16740        |          |         |         |         |            |          |      |         |          | 90   |
| 2'-6'                          |         |         |          |          |         | AC16740    |          |          |                |          |         | AC:6740 |         |            |          |      |         |          | 9    |
| 0-                             |         |         | 4016740  |          |         |            |          |          |                | A=16746  |         |         |         | AC16740    |          |      |         |          | 91   |
| c'-6"                          |         |         |          |          | AC16740 |            |          |          |                | A=16740  |         |         |         |            |          |      |         | AC16740  | .91  |



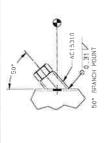

valmont ₹

THE DWERS, LLC 610713

SECTION ASSEMBLY SV8529B






BEFORE WELDING THIS PART TO THE POLE. CUT A 2.0" VENT HOLE IN SHAT WALL AND CENTER OVER HOLE PROTECT ALL THREADS FROM GALVANIZING 60° BRANCH MOUNT

BRANCH MOUNTS MAY BE REDRIENTED UP TO 6'
HINTIZUNI ALLY AND 3' VERTIGALE, TIO AVUID
INTERFERINGE OR SPLICE CLEARANCE. BRANCHES
DO NOT NEED TO BE CENTERED ON A FLAT.
DO NOT NEED TO BE CENTERED ON A FLAT.
CLIMBING FACE.

CLIMBING FACE.

13

12



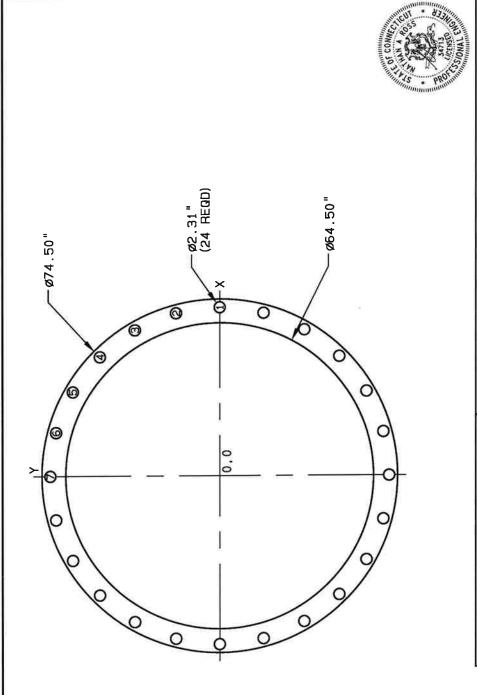
BRANCH MOUNTS MAY BE REDRICHTED UP TO 6'
HDRIZDNIALLY AND 3' VERTICALLY TO AVUID
INTERFERENCE OR SPLICE CLEARANCE BRANCHES
DO NOT NEED TO BE CENTERED ON A FLAT.
DO NOT NEED TO BE CENTERED ON THE
CLIMBUS FACE.

13] 50° BRANCH MOUNT BEFORE WELDING THIS PART TO THE POLE, CUT A 2-0, "VENT" HOLE IN SHAT WALL AND CENTER DVER HOUS. PROTECT ALL THREADS FROM GALVANIZING

THE TOWERS, LLC

SECTION ASSEMBLY

/aimont ₩


|                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | Rr      | $\langle \forall \rangle$ | 1       | 4 /           | 4 🗆 L    | JIV     | L           | _ <u> </u> |          |              |                                         |      |         |           |          |
|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|---------|---------------------------|---------|---------------|----------|---------|-------------|------------|----------|--------------|-----------------------------------------|------|---------|-----------|----------|
| RDM            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         | П             | RIENT    | ΔΤΙΠ    | V.S.        |            |          |              |                                         |      |         |           |          |
| MALL           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               |          |         |             |            |          |              |                                         |      |         |           | MOU      |
| END            | 10°       | 30*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50°      | 70°                                       | 90*     | 110°                      | 130°    | 150°          | 170°     | 190°    | 210°        | 230*       | 520°     | 270°         | 290*                                    | 310° | 330.    | 350°      |          |
| D P.           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4015310  |                                           |         |                           |         |               |          |         |             | A015319    |          |              |                                         |      |         |           | 55       |
| 1'-0'          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | ACIENT  |                           |         | AC15311       |          | AC15311 | _           |            |          | AC15311      | _                                       |      |         | AC15G11   | 60<br>60 |
| 5,-0,          |           | AC12312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _        |                                           | AC15311 |                           |         |               |          | 40,33,, |             |            |          |              |                                         |      |         | HG, DG, I | 70       |
| 5,-0,          |           | THE STATE OF THE S |          |                                           |         |                           | AC15315 |               |          |         |             |            | AC15312  |              | ACISSIE                                 |      |         |           | 75       |
| 4'-D*          | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | AC15313                                   |         |                           |         |               |          |         | A DIE DID   |            |          |              |                                         |      | A015313 | _         | 80<br>80 |
| 4'-G'<br>5'-0" | -         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC16740  |                                           |         |                           |         |               | -        |         | 4015313     |            |          |              | AC16740                                 |      |         |           | 90       |
| 5-6            | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.02.40 |                                           |         |                           |         |               | AC:6740  |         |             |            |          |              | 100000000000000000000000000000000000000 |      |         |           | 90       |
| 5'-0'          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         | AC16743                   |         |               |          |         |             | AC16740    |          | -            |                                         |      |         |           | 90       |
| 6'-6'<br>7'-0' | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         | _                         | -       |               |          | _       |             | AC16740    |          | AC16740      | -                                       |      |         |           | 90       |
| 7:-6'          | MC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               |          | 4016740 |             |            |          |              |                                         |      |         |           | 95       |
| B*~D*          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | AC16740 |                           |         |               |          |         |             |            |          |              |                                         |      |         |           | 90       |
| 8'-6'          |           | 1011710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                           |         |                           |         | AC15740       | _        | -       |             |            |          | AC16740      | _                                       |      | _       | AC16740   | 90       |
| 9'-0'          | _         | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _        | AC16740                                   |         |                           |         | MUINIAN       |          |         | 4C1674C     |            |          | 17421302.776 |                                         |      |         |           | 90       |
| 02.            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           | AC16740 |               |          |         | Latio Comme |            |          |              |                                         |      | AC16748 |           | 90       |
| 1-0            | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               | 1014 740 |         |             | _          | A::16740 | _            |                                         |      |         | _         | 90       |
| 50.            |           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                           |         | AC16740                   |         | _             | AC(5740  |         |             |            |          |              |                                         |      | AC16740 |           | 90       |
| 21-6*          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         | 1.0107.40                 |         |               |          |         |             | AC16740    |          |              |                                         |      |         |           | 90       |
| 31-01          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC16740  |                                           |         |                           |         |               |          | AD16740 |             |            |          | 70.70.00     |                                         |      |         |           | 90       |
| 3'-5"<br>4'-0" | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | ACIG740 |                           |         | AC16740       |          |         | _           |            |          | AC16740      | _                                       |      |         | AC16740   | 90       |
| 41-6*          | _         | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                           | NUTUE   |                           |         |               |          |         |             |            |          |              |                                         |      |         | 7-6167-19 | -90      |
| 20.            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               | AC16740  |         |             |            |          |              | AC16740                                 |      |         |           | 93       |
| 5'-6"          | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               |          |         | AC15740     |            |          |              |                                         |      |         | _         | 90       |
| 6'-6"          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | AC16743                                   |         |                           |         |               |          |         |             |            |          |              |                                         |      | AC16740 |           | 93       |
| 7'-0"          | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           | AC16740 |               |          |         |             |            | 4016740  |              |                                         |      |         |           | 95       |
| 7'-6"          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC16740  |                                           |         |                           |         |               | AC16740  |         |             |            |          |              |                                         |      |         |           | 90<br>90 |
| 8 -C.          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         | AC16740                   |         |               |          |         |             | AC15740    |          |              |                                         |      |         |           | 90       |
| 9'-0'          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC16740  |                                           |         |                           |         |               |          |         |             | 1          |          | AC16740      |                                         |      |         |           | 90       |
| 9'-6'          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               |          | AC16740 |             |            |          |              |                                         |      |         | 4014745   | 92       |
| D'-0"          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | -                                         | ACL6740 |                           |         |               |          |         | _           | _          |          |              | AC16740                                 |      |         | AC16740   | 90       |
| 0'-6"          | -         | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                           |         |                           |         | AC15740       | _        |         |             |            |          |              | (1410)                                  |      |         |           | 90       |
| 1'-5'          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         | 1110000000000 |          |         | AC15740     |            |          |              |                                         |      |         |           | 92       |
| 50,            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | V 40 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / |         |                           |         |               |          |         |             |            |          | AC16740      |                                         |      | A016740 |           | 90<br>90 |
| 5,-0.          | _         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | AC16740                                   |         |                           | 4016740 |               |          |         |             |            |          |              |                                         |      |         |           | 92       |
| 36.            | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               |          |         |             |            | AC16740  |              |                                         |      |         |           | 90       |
| 3'-6"          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               | AC16740  |         |             | AC:6740    |          | _            |                                         |      |         |           | 90       |
| 4'-6'          | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         | AC16740                   |         |               |          |         |             | WC:0743    |          |              |                                         | -    |         | AC16740   | 90       |
| 5'-C'          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC16740  |                                           |         | 1.41407.594               |         |               |          |         |             |            |          |              |                                         |      |         |           | 90       |
| 5'-6"          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | - 41/2  |                           |         |               |          | 4016740 |             |            |          |              |                                         |      |         |           | 90       |
| 6'-6"          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | AC16740 |                           |         |               |          |         |             |            |          |              | AC16740                                 |      |         |           | 90       |
| 7'-0'          | _         | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                           |         |                           |         | AC16740       |          |         |             |            | 4016740  |              |                                         |      |         |           | 90       |
| 7'-6"          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         | AC16740                   |         |               |          |         | AC16740     |            |          |              |                                         |      |         |           | 90<br>95 |
| 80.            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | AC16748                                   |         |                           | AC16740 |               |          |         |             |            |          |              |                                         |      | AC16740 |           | 90       |
| 8'-6'          | AC16740   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           | 1010740 |               |          |         |             |            | AC16740  |              |                                         |      |         |           | 90       |
| 9'-6"          | .10207.40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         |                           |         |               | AC16743  |         |             |            |          |              |                                         |      |         |           | 95       |
| 0'-0"          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |         | AC16740                   |         |               |          |         |             | AC:6740    |          |              |                                         |      |         |           | 90       |
| 0'-6"          | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC:6740  |                                           |         |                           |         | _             |          |         |             | PG 5740    |          | AC16740      |                                         |      |         |           | 90       |
| 11-5*          |           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.0/40  |                                           |         |                           |         |               |          | AC16740 |             |            |          |              |                                         |      |         |           | 90       |
| 5,-0,          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | AC16740 |                           |         |               |          |         |             |            |          |              |                                         |      |         | AC16740   | 90       |
| 56.            |           | AC16740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                           |         |                           |         | AC16740       |          |         | A015740     |            |          |              | AC16740                                 | -    |         |           | 90       |
| 3,-6,          | 1         | PEIB/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                           |         |                           |         | - C10760      |          |         | THE ENTER   |            |          |              |                                         |      | A016740 |           | 90       |
|                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | AC16743                                   |         |                           |         |               |          |         |             |            | AC16740  |              |                                         |      |         |           | 90       |



valmont ₹

DHILE NO. DESIGNED THE TOWERS, LLC

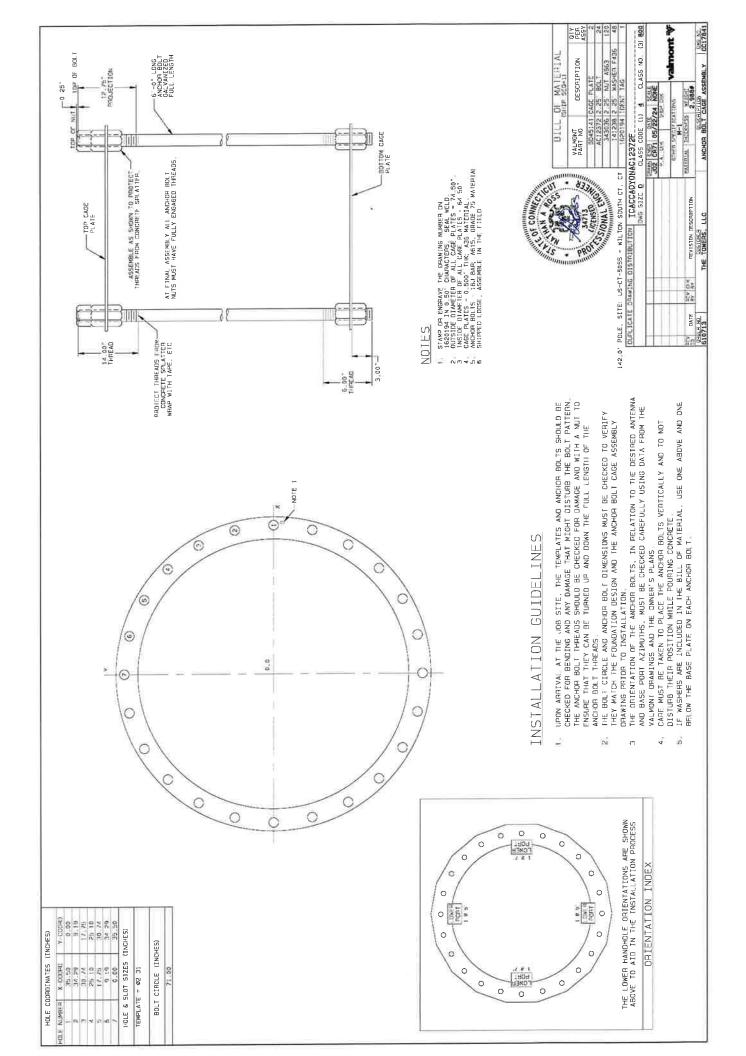
SECTION ASSEMBLY GVB529C

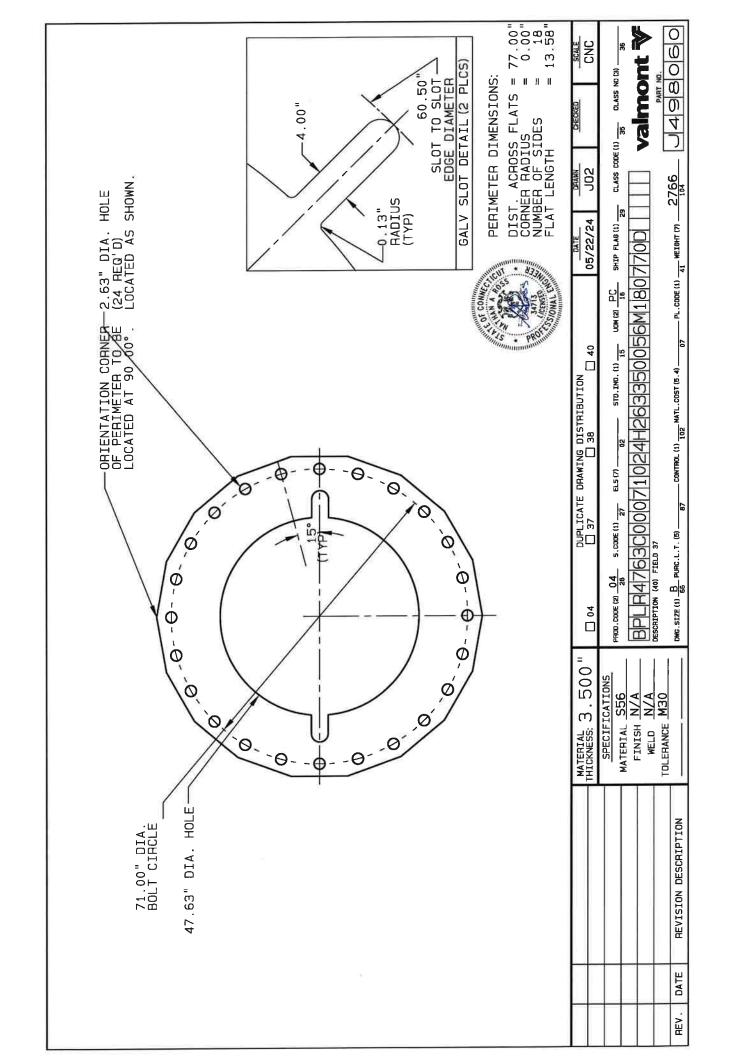


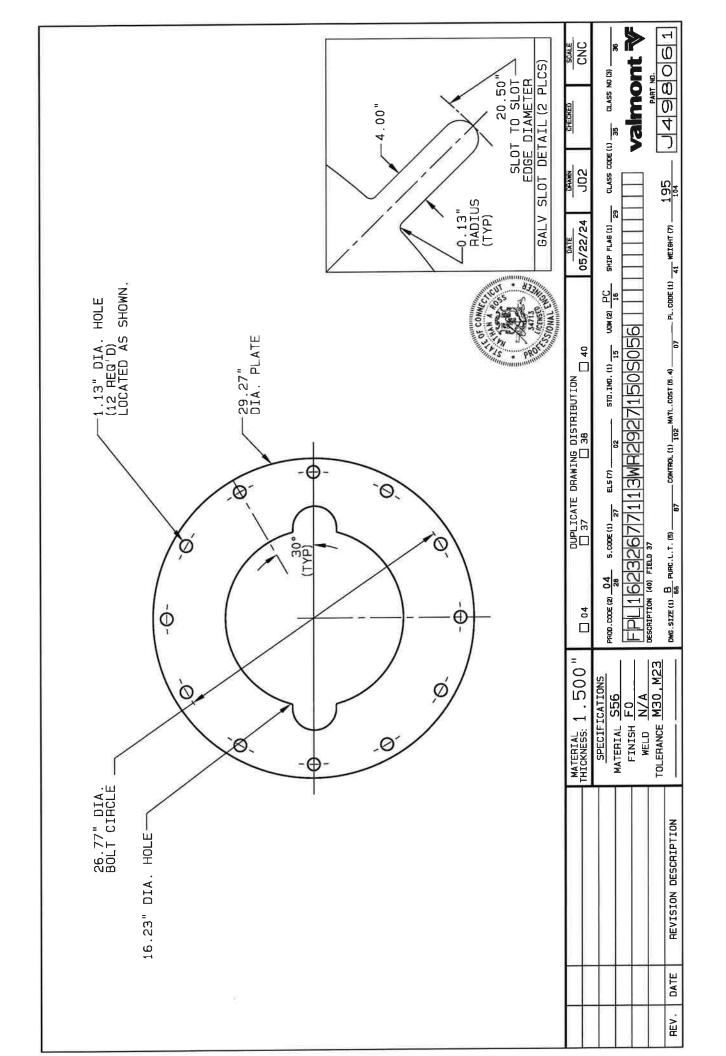
Y-C00HD 0.00 9.19 17.75 25.10 30.74 34.29 35.50

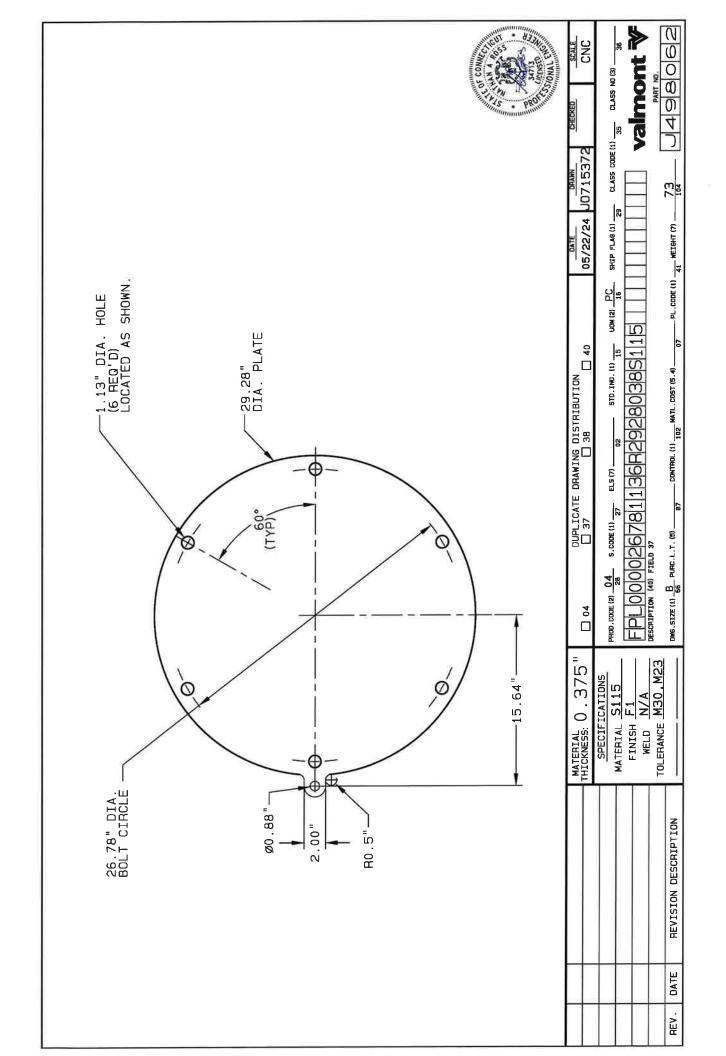
35.50 34.29 30.74 25.10 17.75 9.19

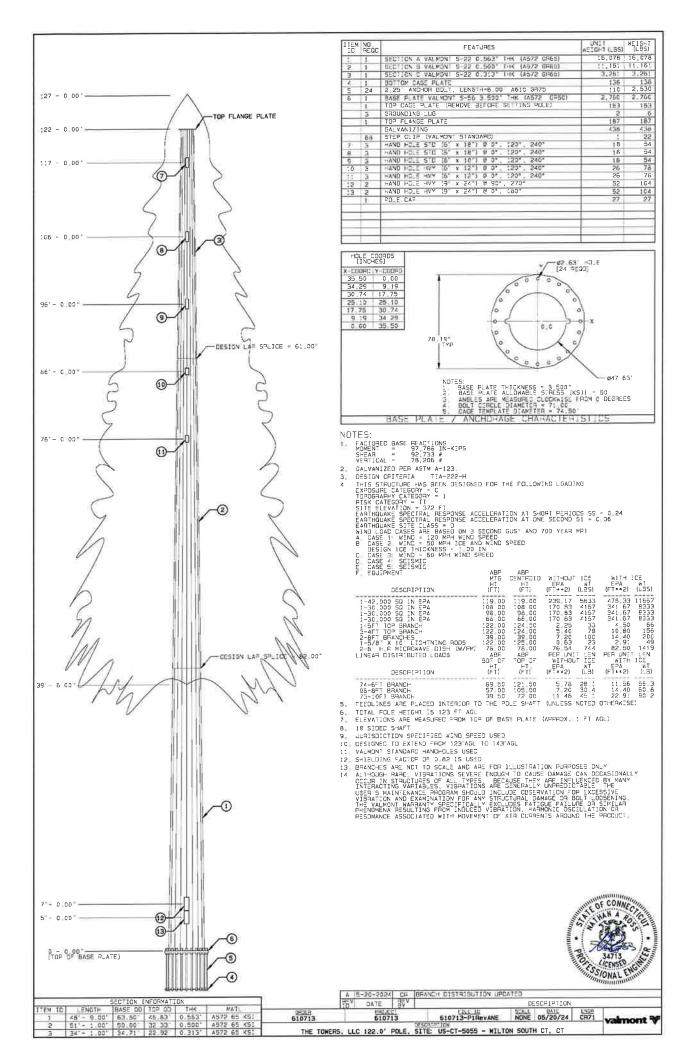
ผ 4 00.0

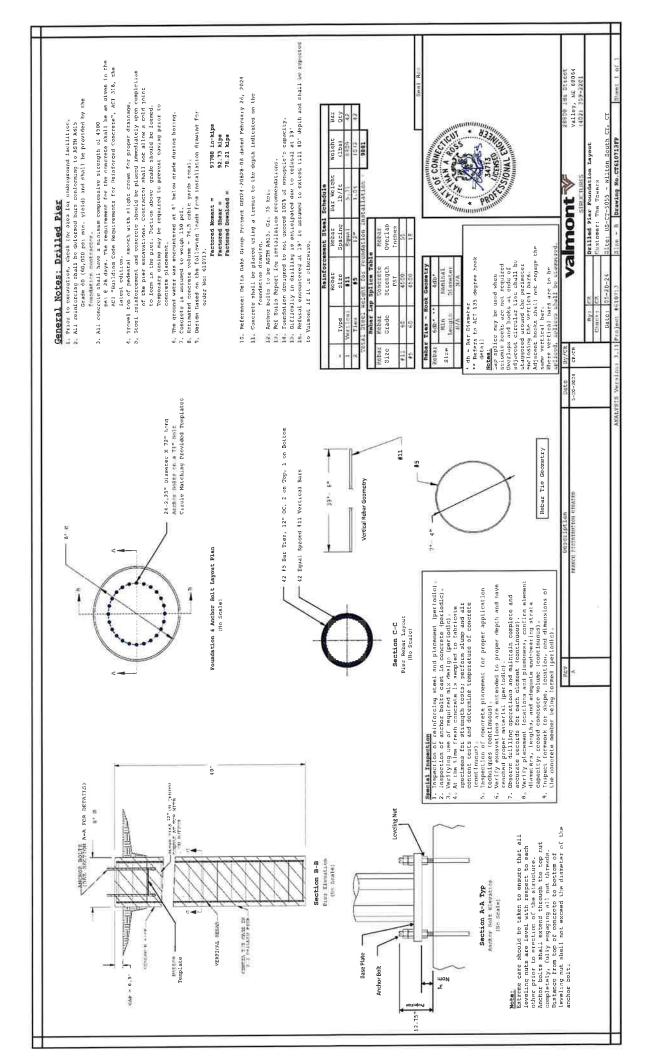

വ

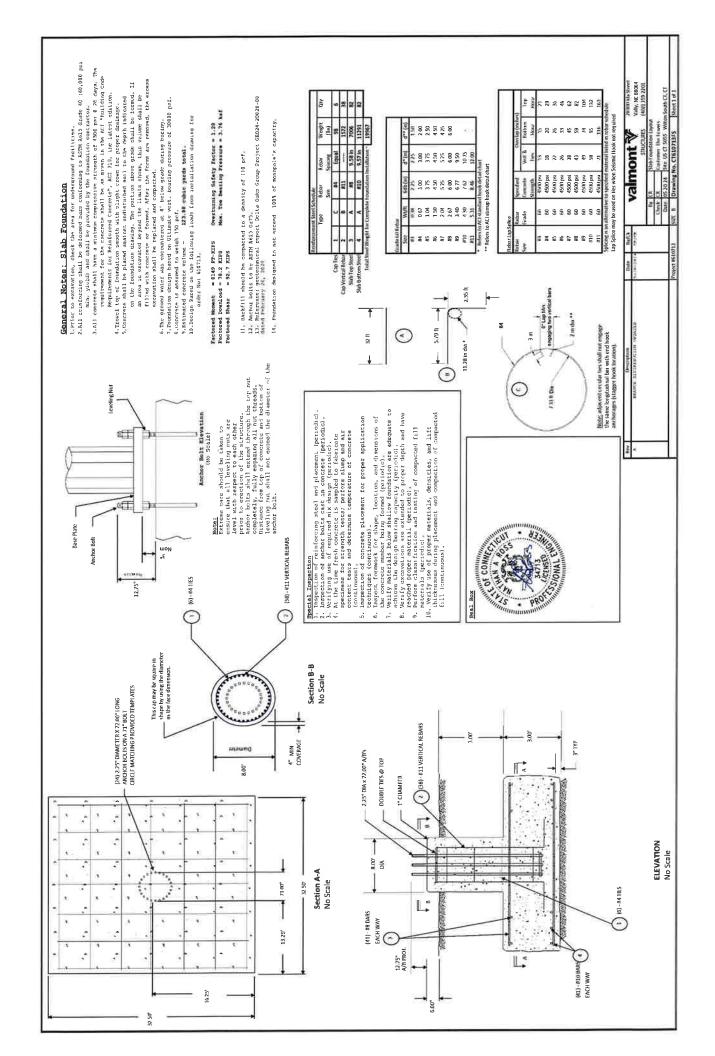

HOLE COORDINATES (INCHES) X-COORD


HOLE NO


| DUPLICATE   DRAWING DISTRIBUTION   BCP9963503550.   A CLASS   CODE   (1)   4   CLASS   NO. (3)   900   A CLASS   CODE   (1)   4   CLASS   NO. (3)   900   A CLASS   NO. (3)   900   A CLASS   NO. (4)   900   A CLASS   NO. (5)   900   A CLASS   NO. (6)   900   A CLASS   900   A CLASS | _                   |                      | _         |   |          | _      | _   | _                         | _           | _           | _           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-----------|---|----------|--------|-----|---------------------------|-------------|-------------|-------------|
| E DRAWING DISTRIBUTION   BCP9963503550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | 3) 900               |           |   |          | > =    |     |                           |             | WG NO.      | 045141      |
| E DRAWING DISTRIBUTION   BCP9963503550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | ASS NO. (            |           |   |          | Valino |     |                           |             |             | <u>a</u>    |
| E DRAWING DISTRIBUTION BCP9963503  DWG SIZE B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3550                | CLASS CODE (1) 4 CL, | OE /23/24 |   | אחט אטחכ |        | M-1 | MATERIAL THICKNESS WEIGHT |             | DESCHIPTION | TTA IG FROM |
| E DRAWING DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 <u>5</u> 2966458 | DWG SIZE B           | 10        | 1 |          |        |     |                           |             |             |             |
| DUPLICATE DRAWING  FEV DATE BY GHK  GROEN NG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DISTRIBUTION        |                      |           |   |          |        |     |                           | REVISION DE | CUSTOMER    | THE TOWFRS  |
| DUPLICATE DRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MING                |                      |           |   |          |        |     | 150                       | BY          |             |             |
| DUPLICATE  BEV DATE  GRDEN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E DR/               |                      |           |   |          | _      | _   | I                         | i           |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLICATE             |                      |           |   |          |        |     |                           |             | IDEH NO.    | 0713        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 固                   |                      |           |   |          |        |     | Ĺ                         |             | 딩           | ů           |


NOTES: 1. BOLT CIRCLE DIAMETER = 71.00" (EQUALLY SPACED).














|        | 4 1 |         | 14            | 15     | _     | 14    | 15    | 14    | 14     | 14          | 14  | 15     | 15     | 00045    | Langue            | 15     |               | Dist From Ton  | MOUNT          |
|--------|-----|---------|---------------|--------|-------|-------|-------|-------|--------|-------------|-----|--------|--------|----------|-------------------|--------|---------------|----------------|----------------|
| 20/2   |     | 60      | 0/4           | 80/5   | 100/6 | 120/7 | 140/8 | 160/9 | 180/10 | 200/11      |     | 240/13 | 260/14 | 280/15   |                   | 320/17 | 340/18        | Dist. From Top |                |
|        | 6   |         |               |        |       |       |       |       |        |             | 6   |        |        |          |                   |        | $\rightarrow$ | 6"             | 50             |
|        |     | _       |               |        |       |       | 6     |       |        |             |     |        | 6      |          |                   |        | _             | 1'             | 60             |
|        |     | _       |               | 6      |       |       |       |       | 6      |             |     | _      |        |          | HENSH             | _      | <u>ê</u>      | 1'-6"          | 60<br>70       |
| 6      |     | _       |               |        |       | 6     |       |       |        |             |     | 6      |        | 6        |                   |        |               | 2'-6"          | MOUNT          |
|        |     | 1       |               |        | 1     |       |       |       | Part I |             |     |        |        |          |                   |        |               | 3'             | MOUNT          |
| 100    |     |         |               |        |       |       |       |       |        |             |     |        |        | -        |                   |        |               |                |                |
|        |     |         |               |        |       |       |       | _ A1  |        |             |     |        |        |          |                   |        |               | 3'-6"          | MOUNT          |
|        |     |         | 6 .           |        |       |       |       |       |        |             |     |        |        |          |                   | 6      |               | 4'             | 80             |
|        |     |         |               |        |       |       |       |       |        | 6           |     |        |        |          |                   |        |               | 4'-6"          | 80             |
|        | 6   |         |               |        |       |       |       |       |        |             |     |        | APE    | 6        |                   |        |               | 5'             | 90             |
|        |     |         |               |        |       |       |       | 6     |        |             |     |        |        |          | HAIEH             |        |               | 5'-6"          | 90             |
|        |     |         |               |        | 6     |       |       |       |        |             |     |        |        |          |                   |        |               | 6'             | 90             |
|        |     | Т       |               |        | L.    |       |       |       |        |             | 6   |        |        |          | HEHEIG            |        |               | 6'-6"          | 90             |
|        |     | $\top$  |               |        |       |       |       |       |        |             |     |        | 6      |          | Mallehi           |        |               | 7'             | 90             |
|        |     |         |               |        |       |       |       |       | 6      |             |     |        |        |          | MIENTALIS         |        |               | 7'-6"          | 90             |
|        |     |         |               | 6      |       |       | JU.   |       |        |             |     |        |        |          | HEHRH             |        |               | 8'             | 90             |
|        |     | $\top$  |               |        |       |       |       | J     |        |             |     |        |        |          | ilite me në       |        | 6             | 8'-6"          | 90             |
| 6      |     | $^{-}$  |               |        |       |       | 6     |       |        |             |     |        | 6      |          | Mishard           |        |               | 9'             | 90             |
| _      |     |         | 6             |        |       | JJ,   |       | ,     |        | 6           |     |        |        |          | recorder:         |        |               | 9'-6"          | 90             |
| +      | 1   | +       |               |        |       | 6     |       |       |        |             |     |        |        |          | Harrell           | 6      |               | 10'            | 90             |
| +      |     | +       | _             |        |       |       |       |       |        |             |     |        |        |          | 11/2              |        |               | 10'-6°         | 90             |
| +      | _   | +       | $\neg$        |        |       |       |       |       |        |             |     | 6      |        |          | menalir           |        |               | 11'            | 90             |
|        | +   | +       |               |        |       |       |       | 6     |        |             |     |        |        |          |                   |        |               | 11'-6"         | 90             |
| +      | +   | +       |               |        | 6     |       |       |       |        |             |     |        |        |          |                   | 6      |               | 12'            | 90             |
| +      |     | +       | -             | -      | -     |       |       |       |        |             | 6   |        |        |          |                   |        |               | 12'-6"         | 90             |
| +      | 6   | +       |               | _      |       |       |       | _     | 6      |             |     |        |        |          | Hilling           |        |               | 13'            | 90             |
|        | 0   |         |               |        |       |       | 6     |       |        |             |     | 1      | 6      |          |                   | -      |               | 13'-6"         | 90             |
|        | 1   |         |               | -      |       |       | U     |       |        | -           |     |        |        |          |                   |        | 6             | 14'            | 90             |
| + -    | -   |         |               | 6      |       | -     |       |       |        |             |     |        |        |          |                   |        |               | 14'-6"         | 90             |
| 6      | -   |         |               | - 11   |       |       |       | 0     |        |             |     |        |        | 6        |                   |        |               | 15'            | 90             |
| -      |     | +       | -             |        |       |       |       | -6    | -      | 6           |     |        |        | - D      |                   |        |               | 15'-6"         | 90             |
| 4      |     | +       | _             | -      |       |       |       | _     | _      | 0           |     |        |        |          |                   |        |               | 16'            | 90             |
|        |     | -       | 6             | -      |       |       |       |       | _      |             |     |        |        |          |                   | 6      |               | 16'-6"         | 90             |
| 4      |     | -       | -             |        |       |       |       |       |        | _           |     | 0      |        |          | ### ## # <b>#</b> | -0     |               | 17'            | 90             |
|        |     | _       | -             |        | _     | -8    |       |       | _      | _           |     | 6      |        | _        |                   |        | -             | 17'-6"         | 90             |
|        | . 8 | _       | _             |        |       |       |       | 18    |        | _           |     | _      |        | _        | 4611111           | _      | -             | 18'            | 90             |
|        |     | $\perp$ |               |        | 6     | ,     |       |       |        |             |     |        |        | _        |                   |        | $\rightarrow$ |                |                |
|        |     |         |               |        |       |       |       |       |        |             | - 8 |        |        |          | II:BIJBIJ         |        | -             | 18'-6"<br>19'  | 90             |
|        | 6   |         |               |        |       | -     |       |       |        |             |     |        | 8      |          |                   |        | _             |                |                |
|        |     |         |               |        |       |       |       |       | 6      |             |     |        |        |          | alleniana         |        |               | 19'-6"         | 90             |
|        |     |         |               | 8      |       |       |       |       |        |             |     |        |        |          | HE HEAT           |        | 6             | 20'            | 90             |
|        |     |         |               |        |       |       |       |       |        |             |     |        |        | 6        |                   |        |               | 20'-6"         | 90             |
| 8.     |     | 1       | $\neg$        |        |       |       | 6     |       |        |             |     |        |        |          | and the sta       |        |               | 21'            | 90             |
|        |     |         | $\neg$        |        |       |       |       |       |        | 8           |     |        |        |          | HEURIN            |        |               | 21'-6"         | 90             |
|        |     |         | 6             |        |       |       |       |       |        |             |     |        | - 8    |          |                   | -0     |               | 22'            | 90             |
| -      |     | 1       |               |        |       | - 8   |       |       |        |             |     |        |        |          | Hallall           |        |               | 22'-6"         | 90             |
| _      | 1   | +-      | _             |        |       |       |       |       |        |             |     | 6      |        |          |                   |        |               | 23'            | 90             |
| 1      |     | T IS    |               | 0 - 10 |       | 1     |       | 6     |        |             |     |        |        |          |                   |        |               | 23'-6"         | 90             |
|        |     |         |               |        |       |       | 200   |       |        |             | 8   |        |        |          |                   |        |               | 24'            | 90             |
| 1      |     |         |               |        | 8     |       |       |       |        |             |     |        |        |          |                   |        | 6             | 24'-6"         | 90             |
| _      | 6   | _       |               | _      |       |       |       |       |        |             |     |        |        |          |                   |        | = ;           | 25'            | 90             |
|        |     | _       | -+            |        |       |       |       | _     | 6      |             |     |        |        |          | HEIIEUS           |        |               | 25'-6"         | 90             |
| -      | -   | +-      | _             | 6      |       |       |       |       |        |             |     |        |        |          | HIEHEILE          |        |               | 26'            | 90             |
| +-     | -   | +-      |               |        |       |       |       |       |        |             |     |        |        | 8        |                   |        |               | 26'-6"         | 90             |
| -      |     | +-      | -             | -      | -     |       | 6     |       |        |             |     | 6      |        |          | HHEH              |        |               | 27             | 90             |
| -      |     | +       | -             | -      | 10    |       |       |       |        | - 6         |     |        | -      |          | VIEDEUS           |        |               | 27'-6"         | 90             |
| 1      | -   | -       |               | _      | -     |       | -     |       |        |             |     |        |        |          |                   | B.     |               | 28'            | 90             |
| 4-     |     | -       | 8             |        |       | 6     | _     |       |        |             | _   |        |        |          | Main              |        |               | 28'-6"         | 90             |
| +      | -   | +-      | -             | -      |       | 0     | -     |       | _      |             |     | 161    |        |          |                   |        |               | 29'            | 90             |
| -      | -   | +-      | _             | -      | -     | -     | _     | E     |        | _           |     | 141    |        | -        | Neisebil Harrie   |        |               | 29'-6"         | 90             |
|        | +   | +       | -             | -      |       |       | _     | 6     |        | _           |     |        |        | _        |                   | _      | -             | 30'            | 90             |
| 4-     | -   | +-      | -             |        |       |       | _     | -     |        | _           | 6   |        |        | _        | 61311211          | _      | $\vdash$      | 30'-6"         | 90             |
| -      |     | -       | _             | -      | _     | -     | _     |       | _      |             | 0   |        | 6      |          |                   | _      | $\vdash$      | 31'            | 90             |
| +-     | 8   | -       | _             | -      | -     | -     | _     |       |        | _           |     |        |        |          |                   |        | -             | 31'-6"         | 90             |
| -      | -   | +       | _             | _      | _     | -     | _     | _     |        | _           | _   | _      |        |          |                   | _      | 6             | 32'            | 90             |
| -      | 4-  | +       | _             | 6      |       | -     |       | -     |        | _           | _   | _      | _      | 6        | 0#-1H-1H          | _      | Ū.            | 32'-6"         | 90             |
|        |     | +       | _             |        | -     | -     |       |       |        | 1411        |     |        | _      | -        |                   | _      |               | 33'            | 90             |
| 8      |     | -       |               |        |       |       | 8     |       |        |             |     |        |        |          |                   | 8      | -             | 33'-6"         | 90             |
|        |     |         |               |        |       |       |       |       |        |             |     |        |        |          | THE RESERVE       | -      |               | 34'            | 90             |
|        |     |         | 8             |        |       |       |       |       |        |             |     | - 0    |        |          |                   |        | - 4           |                |                |
| 1      |     |         |               |        |       | 8     |       | 11-15 |        |             |     |        |        | -        |                   |        |               | 34'-6"         | 90             |
|        |     |         |               |        |       |       |       | - 8   |        |             |     |        |        | _        |                   |        |               | 35'            | 90             |
|        | OI. |         |               | - 9    |       |       |       |       |        |             |     |        |        | _        | MERBIE            |        | -             | 35'-6"         | 90             |
|        | 0   |         |               |        |       |       |       |       |        |             |     |        |        |          |                   |        |               | 36'            | 90             |
|        | 8   |         |               |        |       |       |       |       |        |             |     |        |        |          |                   |        | -             | 36'-6"         | 90             |
|        |     |         |               |        |       |       |       |       |        |             |     |        | - 8    |          | Manalla           |        |               | 37'            | 90             |
|        |     |         |               |        |       | 0     |       |       | 100    |             |     |        |        |          |                   |        |               | 37'-6"         | 90             |
| $\top$ | 1   | 1       |               |        | - 8   |       |       |       |        |             |     |        |        |          |                   |        | 8             | 38'            | 90             |
| _      |     | +       | _             | _      |       |       |       |       |        |             |     |        |        | 8        |                   |        |               | 38'-6"         | 90             |
| 8      |     | +       | _             |        |       |       | - 8   |       |        |             |     |        |        |          | rite i en la      |        |               | 39'            | 90<br>90<br>90 |
|        |     | +       | -             | _      |       | 1     |       |       |        |             | B:  |        |        |          | all in di         |        |               | 39'-6"         | 90             |
| +-     | -   | -       | is.           | _      | _     | 1     |       |       | _      | -           |     |        |        |          |                   | 8      |               | 40'            | 90             |
| +-     | -   | -       | 8             |        |       |       |       |       | _      | -           | -   |        |        |          | 10 11 11          |        |               | 40'-6"         | 90             |
| 4      |     | +       | _             | _      | _     | -     |       |       | _      | <del></del> |     | - 0.   |        | $\vdash$ | 11211             | _      | $\vdash$      | 41'            | 90 =           |
| 4      | -   | +       | _             |        |       | 1     |       | 100   |        | _           |     | _      | _      | -        |                   |        | -             | 41'-6"         | 90             |
| -      | -   | +       | $\rightarrow$ |        |       |       |       |       |        |             |     | _      |        | $\vdash$ |                   |        | <del>-</del>  | 42'            |                |
| -      | -   | +       | $\rightarrow$ | _      | 8     |       |       | _     | _      | _           | 100 |        |        | _        |                   |        | $\vdash$      | 42'-6"         | 90<br>90<br>90 |
|        | 1   | -1      |               |        |       |       |       |       | _      |             | - 8 |        |        | _        |                   | _      | $\rightarrow$ |                | - 55           |
| -      |     |         |               |        |       |       |       |       |        |             |     |        | 187    |          |                   |        |               | 43'            | 90 .           |

|          |          |     |     |     |     |     |    |     |    |      | _    |          |      |              | -                |          |          | 421 CF        | 00       |
|----------|----------|-----|-----|-----|-----|-----|----|-----|----|------|------|----------|------|--------------|------------------|----------|----------|---------------|----------|
|          |          |     | -   |     |     |     |    |     | 8: |      | - 2  | - 0      |      | les la       | WATER OF         |          |          | 43'-6"<br>44' | 90       |
|          |          |     | -   | . 8 |     | -12 |    | - 0 |    | -    | -    |          | -    |              |                  |          | 8        | 44'-6"        | 90       |
|          | - 8      |     |     |     | -   | _   |    |     |    |      |      |          |      | 0            |                  |          | -        | 45'           | 90       |
|          |          | _   |     | -   |     |     |    |     |    | 16   |      | -        |      | 8            |                  |          |          | 45'-6"        | 90       |
| -        |          | _   | - 8 |     |     |     |    | _   | _  | -    | 7.07 | U        |      | -            |                  |          |          | 46'           | 90       |
|          |          |     |     |     |     |     |    |     |    |      |      |          | 1-11 |              |                  | 8        |          | 46'-6"        | 90       |
| 8        |          |     |     |     |     | B   |    |     |    |      |      | 1/8:     |      |              |                  |          |          | 47'           | 90       |
|          |          |     |     |     |     |     |    | . 8 |    |      |      |          |      | 81           |                  |          |          | 47'-6"        | 90       |
|          |          |     |     |     | . 8 |     |    |     |    |      |      |          |      |              |                  |          |          | 48'           | 90       |
|          |          |     |     |     |     |     |    |     |    |      | 8    |          |      |              |                  |          |          | 48'-6"        | 90       |
|          |          | - 8 |     |     |     |     |    |     |    |      |      |          |      |              | uenzu            |          |          | 49'           | 90       |
|          |          |     |     |     |     |     |    |     |    |      |      |          |      |              |                  | _        |          | 49'-6"        | 90       |
| _        |          |     |     | - 8 |     |     |    |     |    | _    |      | _        |      | -            | i refrattis      | -        | 10       | 50'           | 90       |
| $\vdash$ |          |     |     |     |     |     |    |     |    | _    |      | _        | -    | 10           | ritering Me      | -        | _        | 50'-6"        | 90<br>90 |
| $\vdash$ | 10       | _   |     | -   |     | _   | 8  |     | _  | 40   |      | _        | _    | -            |                  | $\vdash$ | -        | 51'<br>51'-6" | 90       |
| $\vdash$ | -        | -   |     |     |     | _   |    |     |    | 10   |      | _        |      | $\vdash$     |                  |          |          | 52'           | 90       |
| -        |          |     | 8 1 |     |     | 10  |    |     | _  | _    |      | $\vdash$ |      |              |                  | -        |          | 52'-6"        | 90       |
| 8        |          |     |     | 8   |     | 10  |    |     | -  |      |      | 10       |      |              |                  |          |          | 53'           | 90       |
| _        |          | _   |     |     |     |     |    | -8  | 1  |      | _    |          |      |              |                  |          |          | 53'-6"        | 90       |
| _        |          |     |     |     | 10  |     |    |     |    |      |      |          |      |              |                  |          |          | 54'           | 90       |
|          |          |     |     |     |     | -   |    |     |    |      | 6    |          |      |              | ulau eur         |          |          | 54'-6"        | 90       |
|          |          | 10  |     |     |     |     |    |     |    |      |      |          | 10   |              | 107 117 117      |          |          | 55'           | 90       |
|          |          |     |     |     |     |     |    |     | 10 |      |      |          |      |              |                  |          |          | 55'-6"        | 90       |
|          |          |     |     | В   |     |     |    |     |    |      |      |          |      |              |                  |          | 10       | 56'           | 90       |
|          |          |     | II. |     |     |     |    |     |    |      |      |          |      | ) <b>4</b> : |                  |          |          | 56'-6"        | 90       |
|          | 8        |     |     |     |     |     | Ð  |     |    |      |      |          |      |              | HEIMI            |          |          | 57'           | 90       |
|          |          |     |     |     |     |     |    |     |    | 10.  |      |          |      |              | Hirthead         |          |          | 57'-6"        | 90       |
|          |          |     | 10  |     |     |     |    |     |    |      |      |          |      |              |                  | 8:       |          | 58'           | 90       |
|          |          |     |     |     |     | 10  |    |     |    |      |      |          |      |              |                  |          | -        | 58'-6"        | 90       |
| 10       |          |     |     |     | -   |     |    |     |    | _    |      | - 60     |      | _            |                  | _        | <b>—</b> | 59'           | 90       |
| $\vdash$ | _        |     |     | _   |     |     |    | 10  | _  | -    | -    | _        |      | -            | nelikii:         |          |          | 59'-6"        | 90       |
| <b>—</b> |          | _   | Ι,  | -   |     |     |    |     |    |      | 40   |          |      |              | CHENGO:          |          |          | 60'-6"        | 90       |
| $\vdash$ |          |     |     | -   |     |     |    | _   |    | -    | 10   | _        | 10   |              |                  |          |          | 61'           | 90       |
|          |          | 9   |     |     | -   |     |    |     |    |      |      | _        | 10   |              |                  |          |          | 61'-6"        | 90       |
| _        |          |     |     | 10  |     |     |    |     | 8  |      |      |          |      |              |                  |          | В.       | 62'           | 90       |
|          |          |     |     | 10  |     |     |    |     |    |      |      |          |      | 18           |                  |          |          | 62'-6"        | 90       |
| <b>—</b> | 10       |     | -   | -   |     |     | 8  |     |    |      |      |          |      |              | tiisikii;        |          |          | 63,           | 90       |
| $\vdash$ | 10       | _   |     |     | -   |     |    |     |    | 8    |      |          |      |              |                  |          |          | 63'-6"        | 90       |
| $\vdash$ |          |     | 8   |     |     |     | -  |     |    |      |      |          |      |              |                  | 10       |          | 64'           | 90       |
| $\vdash$ |          | -   |     |     |     | 10  |    |     |    |      |      |          |      |              | MENAM            |          |          | 64'-6"        | 90       |
| 10       |          |     |     |     |     |     |    |     |    |      |      | . 6      |      |              |                  |          |          | 65'           | 90       |
|          |          |     |     |     |     |     |    | 10  |    |      |      |          |      |              | Hanen            |          |          | 65'-6"        | 90       |
|          |          |     |     |     | 10  |     |    |     |    |      |      |          |      |              |                  |          |          | 66'           | 90       |
|          |          |     |     |     |     |     |    |     |    |      | 10   |          |      |              | iisileiii        |          |          | 66'-6"        | 90       |
|          |          | 10  |     |     |     |     |    |     |    |      |      |          | 10   |              |                  |          |          | 67'           | 90       |
|          |          |     |     |     |     |     |    |     | 10 |      |      |          |      |              |                  |          | 1.7      | 67'-6"        | 90       |
| $\vdash$ |          |     |     | 10  |     |     |    |     |    |      |      |          | _    | 40           |                  | $\vdash$ | 10       | 68'<br>68'-6" | 90       |
| $\vdash$ | 40       | -   | -   | -   | -   | -   | 10 |     | _  | _    |      | _        | _    |              |                  | $\vdash$ | _        | 69,           | 90       |
| $\vdash$ | 10       |     | _   | -   | -   |     | 10 | _   | _  | 10   | -    | -        |      |              | 144 EL AT EL 143 | $\vdash$ | -        | 69'-6"        | 90       |
| $\vdash$ |          | -   | 10  |     | -   | -   |    |     | _  | 10   |      | -        | -    |              | HEHEN            | 10       | _        | 70'           | 90       |
| $\vdash$ |          |     | 10  |     | -   | 10  |    |     |    |      |      |          | -    |              |                  | 14       |          | 70'-6"        | 90       |
| 10       |          |     |     |     |     | .0  |    |     |    |      |      | 10       |      |              |                  |          |          | 71'           | 90       |
|          |          |     |     |     |     |     |    | 10  |    |      |      |          |      |              |                  |          |          | 71'-6"        | 90       |
|          |          |     |     |     | 10  |     |    |     |    |      |      |          |      |              |                  |          |          | 72'           | 90       |
|          |          |     |     |     |     |     |    |     |    |      | 10   |          |      |              |                  |          |          | 72'-6"        | 90       |
|          |          | 10  |     |     |     |     | 10 |     |    |      |      |          | 10   |              |                  |          |          | 73'           | 90       |
|          |          |     |     |     |     |     |    |     | 10 |      |      |          |      |              | Aicerize is      |          |          | 73'-6"        | 90       |
|          |          |     |     | 10  |     |     |    |     |    |      |      |          |      |              |                  |          | 10       | 74'           | 90       |
|          |          |     |     |     |     |     |    |     |    |      |      |          |      | 10           |                  |          |          | 74'-6"        | 90       |
| $\vdash$ | 10       |     |     |     |     | -   | 10 |     |    | - 40 |      |          |      | _            |                  |          | -        | 75'<br>75'-6" | 90       |
| $\vdash$ |          |     |     |     |     |     |    |     |    | 10   | _    |          | _    | _            |                  | 40       | -        | 75'-6"        | 90       |
| $\vdash$ |          |     | 10  |     |     |     |    | _   |    | _    | _    |          | _    | _            | iiziiAii!        | 10       | -        | 76'-6"        |          |
|          |          |     |     |     |     | 10  |    | _   |    |      | -    | 40       |      |              |                  |          | -        | 75'-6"        | 90       |
| 10       | $\vdash$ |     |     |     |     | -   |    | 10  |    | -    | -    | 10       |      |              | 4073/20          |          |          | 77'-6"        | 90       |
| $\vdash$ | -        | -   | -   | -   | 10  | _   | -  | 10  |    |      |      |          |      | -            |                  |          | -        | 78'           | 90       |
| $\vdash$ | $\vdash$ | -   | -   |     | 10  |     | -  |     |    |      | 10   |          |      |              | 1177175116       |          | =        | 78'-6"        | 90       |
| $\vdash$ | $\vdash$ | 10  | _   |     | -   | -   | _  | -   |    |      | .0   |          | 10   |              |                  |          |          | 79'           | 90       |
| $\vdash$ | -        | 10  | -   |     |     | -   | _  |     | 10 |      | -    |          |      |              |                  |          |          | 79'-6"        | 90       |
| $\vdash$ | -        | _   |     | 10  |     | _   | _  |     | 10 |      |      |          | -    |              |                  |          | 10       | 80'           | 90       |
| $\vdash$ |          |     |     | 10  |     |     | _  |     |    |      |      | -        | -    |              |                  |          |          | 80'-6"        | 90       |
| $\vdash$ | 10       |     | -   |     |     | _   | 10 |     |    |      |      |          |      |              | eignenk<br>dugun |          | $\neg$   | 81'           | 90       |
|          |          |     |     |     |     |     |    |     |    | 10   |      |          |      |              |                  |          |          | 81'-6"        | 90       |
|          |          |     | 10  |     |     |     |    |     |    |      |      |          |      |              |                  | 10       |          | 82'           | 90       |
|          |          |     |     |     |     | 10  |    |     |    |      |      |          |      |              |                  |          |          | 82'-6"        | 90       |
| ā        |          |     |     |     |     |     |    |     |    |      |      | -8-      |      |              |                  |          |          | 83'           | 90       |
|          |          |     |     |     |     |     |    |     |    |      |      |          |      |              |                  |          |          |               | , ii     |

## **ATTACHMENT 3**





## GEOTECHNICAL INVESTIGATION REPORT

February 26, 2024

Prepared For:

Vertical Bridge



## Wilton South CT US-CT-5055

### **Proposed 123-Foot Monopole Tower**

180 School Road, Wilton (Fairfield County), Connecticut 06897 Latitude N 41° 12' 15.28" Longitude W 73° 26' 14.65"

> Delta Oaks Group Project GEO24-20828-08 Revision 0 geotech@deltaoaksgroup.com

Performed By:

Sarah Russel

Reviewed By:

Sarah C. Russek, P.E.

Joseph V. Borrelli, Jr., P.E.



#### INTRODUCTION

This geotechnical investigation report has been completed for the proposed 123-foot monopole tower located at 180 School Road in Wilton (Fairfield County), Connecticut. The purpose of this investigation was to provide engineering recommendations and subsurface condition data at the proposed tower location. A geotechnical engineering interpretation of the collected information was completed and utilized to suggest design parameters regarding the adequacy of the structure's proposed foundation capacity under various loading conditions. This report provides the scope of the geotechnical investigation; geologic material identification; results of the geotechnical laboratory testing; and design parameter recommendations for use in the design of the telecommunication facility's foundation and site development.

#### SITE CONDITION SUMMARY

The proposed tower and compound are located on school property in a wooded area adjacent to a paved parking lot exhibiting a generally flat topography across the tower compound and subject property.

#### REFERENCES

- Civil Drawings, prepared by On Air Engineering, dated March 7, 2023
- FAA-1A Survey Certification, prepared by Close, Jenson and Miller, dated March 7, 2023
- TIA Standard (TIA-222-G), dated August 2005

#### SUBSURFACE FIELD INVESTIGATION SUMMARY

The subsurface field investigation was conducted through the advancement of three mechanical soil test borings to the auger refusal depths of 19.0, 20.0, and 14.0 feet bgs at borings B-1, B-2, and B-3 respectively. Samples were obtained at selected intervals in accordance with ASTM D 1586. B-1 sampling was conducted approximately 21 feet southwest of the staked centerline of the proposed tower. B-1 was offset from the proposed tower center due to the presence of boulders and overhead tree branches. Borings B-2 and B-3 were conducted near two of the corners of the proposed compound. Upon encountering auger refusal, 10.0 and 8.0 feet of rock coring was conducted in accordance with ASTM D 2113 at borings B-1 and B-2, respectively. Soil and rock samples were transported to our laboratory and classified by a geotechnical engineer in accordance with ASTM D 2487. A detailed breakdown of the material encountered in our subsurface field investigation can be found in the boring logs presented in the Appendix of this report.

Additional testing was performed on selected samples in accordance with ASTM D 7012 (Unconfined Compressive Strength – Rock). Laboratory data can be found in the Appendix of this report.

A boring plan portraying the approximate spatial location of the borings in relation to the proposed tower, tower compound and immediate surrounding area can be found in the Appendix.

# DELTA OAKS

## **DELTA OAKS GROUP**

## SUBSURFACE CONDITION SUMMARY

The following provides a general overview of the site's subsurface conditions based on the data obtained during our field investigation.

#### FILL

Fill material was not encountered during the subsurface field investigation.

#### SOIL

The residual soil encountered in the subsurface field investigation began at the existing ground surface in the boring and consisted of silty sand, silty clayey sand, and poorly graded sand. The materials ranged from a very loose to very dense relative density.

Auger advancement refusal was encountered during the subsurface field investigation at depths of 19.0, 20.0, and 14.0 feet bgs at borings B-1, B-2, and B-3 respectively.

#### ROCK

Rock was encountered during the subsurface investigation at depths of 19.0, 20.0, and 14.0 feet bgs at borings B-1, B-2, and B-3 respectively. The rock can be described as highly fractured, moderately weathered, hard gneiss.

#### SUBSURFACE WATER

At the time of drilling, subsurface water was encountered during the subsurface investigation at depths of 4.0, 6.0, and 6.0 feet bgs at borings B-1, B-2, and B-3 respectively. However, subsurface water elevations can fluctuate throughout the year due to variations in climate, hydraulic parameters, nearby construction activity and other factors.

#### **FROST PENETRATION**

The frost penetration depth for Fairfield County, Connecticut is 40 inches (3.3 feet).

## CORROSIVITY

Soil resistivity was performed in accordance with ASTM G187 with a test result of 8,400 ohms-cm.



## **FOUNDATION DESIGN SUMMARY**

In consideration of the provided tower parameters and the determined soil characteristics, Delta Oaks Group recommends utilizing a shallow foundation or drilled shaft foundation for the proposed structure. The strength parameters presented in the following sections can be utilized for design of the foundation.

GENERAL SUBSURFACE STRENGTH PARAMETERS

|        | ٩           | ENERAL SUBSU | RFACE STRENGTH PAR                 | AMETERS                |                |
|--------|-------------|--------------|------------------------------------|------------------------|----------------|
| Boring | Depth (bgs) | USCS         | Moist/Buoyant<br>Unit Weight (pcf) | Phi Angle<br>(degrees) | Cohesion (psf) |
|        | 0.0 - 2.0   | SM           | 90                                 | 28                     | 0              |
|        | 2.0 - 4.0   | SC-SM        | 100                                | 29                     | 0              |
|        | 4.0 - 6.0   | SM           | 115 / 53                           | 31                     | 0              |
|        | 6.0 - 8.0   | SM           | 115 / 53                           | 32                     | 0              |
| B-1    | 8.0 - 10.0  | SM           | 120 / 58                           | 35                     | 0              |
|        | 10.0 - 13.0 | SM           | 115 / 53                           | 31                     | 0              |
|        | 13.0 - 19.0 | SM           | 120 / 58                           | 34                     | 0              |
|        | 19.0 - 29.0 | Gneiss       | 150                                | 0                      | 6,000          |

| Boring | Depth (bgs) | USCS   | Moist/Buoyant<br>Unit Weight (pcf) | Phi Angle<br>(degrees) | Cohesion (pst) |
|--------|-------------|--------|------------------------------------|------------------------|----------------|
|        | 0.0 - 2.0   | SM     | 115                                | 32                     | 0              |
|        | 2.0 - 4.0   | SC-SM  | 100                                | 29                     | 0              |
|        | 4.0 - 6.0   | SM     | 115 / 53                           | 31                     | 0              |
| B-2    | 6.0 - 10.0  | SM     | 115 / 53                           | 32                     | 0              |
|        | 10.0 - 13.0 | SM     | 125 / 63                           | 39                     | 0              |
|        | 13.0 - 20.0 | SM     | 120 / 58                           | 36                     | 0              |
|        | 20.0 - 28.0 | Gneiss | 150                                | 0                      | 6,000          |



| Boting | Depth (bgs) | USES  | Moist/Eucyant<br>Unit Weight (pcf) | Phi Angle<br>(degrees) | Cohesion (pst) |
|--------|-------------|-------|------------------------------------|------------------------|----------------|
|        | 0.0 - 2.0   | SM    | 105                                | 29                     | 0              |
|        | 2.0 - 4.0   | SC-SM | 100                                | 29                     | 0              |
| D 0    | 4.0 - 6.0   | SM    | 115 / 53                           | 32                     | 0              |
| B-3    | 6.0 - 8.0   | SM    | 115 / 53                           | 31                     | 0              |
|        | 8.0 - 10.0  | SM    | 115 / 53                           | 32                     | 0              |
|        | 10.0 - 14.0 | SP    | 130 / 68                           | 45                     | 0              |

- The buoyant unit weight of soil should be utilized below a depth of 4.0 feet bgs.
- The unit weight provided assumes overburden soil was compacted to a minimum of 95% of the maximum dry density as obtained by the standard Proctor method (ASTM D 698) and maintained a moisture content within 3 percent of optimum.
- The values provided for phi angle and cohesion should be considered ultimate.



SUBSURFACE STRENGTH PARAMETERS - SHALLOW FOUNDATION

| Boring | Dimensions (teet) | Depth (leet bgs) | Net Ultimate Bearing Capacity<br>(pst) |
|--------|-------------------|------------------|----------------------------------------|
|        |                   | 4.0              | 11,770                                 |
|        | 5050              | 5.0              | 21,360                                 |
|        | 5.0 x 5.0         | 6.0              | 24,240                                 |
|        |                   | 7.0              | 30,000                                 |
|        |                   | 4.0              | 13,440                                 |
|        | 10.0 × 10.0       | 5.0              | 24,350                                 |
|        | 10.0 x 10.0       | 6.0              | 26,770                                 |
| B-1    |                   | 7.0              | 30,000                                 |
|        |                   | 4.0              | 15,490                                 |
|        | 15.0 x 15.0       | 5.0              | 28,180                                 |
|        |                   | Greater than 6.0 | 30,000                                 |
|        | 20.0              | 4.0              | 17,630                                 |
|        | 20.0 x 20.0       | Greater than 5.0 | 30,000                                 |
|        | 05.005.0          | 4.0              | 19,820°                                |
|        | 25.0 x 25.0       | Greater than 5.0 | 30,000                                 |

- Delta Oaks Group recommends the foundation bear a minimum of 4.0 feet bgs.
- A sliding friction factor of 0.45 can be utilized along the base of the proposed foundation.
- An Ultimate Passive Pressure Table with a reduction due to frost penetration to a depth of 3.3 feet bgs is presented on the following page.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.



**ULTIMATE PASSIVE PRESSURE VS. DEPTH - TOWER FOUNDATION** 

|         | ULTIM       | AIE PASSIVE          | PRESSURE V | S. DEPIN - I | OWER POUN | DATION |         |
|---------|-------------|----------------------|------------|--------------|-----------|--------|---------|
| Sell Lo | yers (feet) | Moist Unit<br>Weight | Phi Angle  | Cohesion     | PV        | KP     | Ph      |
| Тор     | 0.0         | 90                   | 28         | 0            | 0.00      | 2.77   | 0.00    |
| Bottom  | 2.0         | 90                   | 28         | 0            | 180.00    | 2.77   | 249.28  |
| Тор     | 2.0         | 100                  | 29         | 0            | 180.00    | 2.88   | 259.39  |
| Bottom  | 3.3         | 100                  | 29         | 0            | 310.00    | 2.88   | 446.72  |
| Тор     | 3.3         | 100                  | 29         | 0            | 310.00    | 2.88   | 893.44  |
| Bottom  | 4.0         | 100                  | 29         | 0            | 380.00    | 2.88   | 1095.18 |
| Тор     | 4.0         | 115                  | 31         | 0            | 380.00    | 3.12   | 1187.13 |
| Bottom  | 6.0         | 115                  | 31         | 0            | 485.20    | 3.12   | 1515.78 |
| Тор     | 6.0         | 115                  | 32         | 0            | 485.20    | 3.25   | 1579.13 |
| Bottom  | 8.0         | 115                  | 32         | 0            | 590.40    | 3.25   | 1921.51 |
| Тор     | 8.0         | 120                  | 35         | 0            | 590.40    | 3.69   | 2178.68 |
| Bottom  | 10.0        | 120                  | 35         | 0            | 705.60    | 3.69   | 2603.79 |



SUBSURFACE STRENGTH PARAMETERS - DRILLED SHAFT FOUNDATION

| Roring | Depth (bgs) | Net Ultimate Fearing<br>Capacity (psf) | Ultimate Skin Friction -<br>Compression (psf) | Ultimate Skin Hiction -<br>Upliff (psf) |
|--------|-------------|----------------------------------------|-----------------------------------------------|-----------------------------------------|
|        | 0.0 - 4.0   | -                                      | les:                                          | -                                       |
|        | 4.0 - 6.0   | 2,850                                  | 600                                           | 450                                     |
|        | 6.0 - 8.0   | 3,590                                  | 690                                           | 520                                     |
|        | 8.0 - 10.0  | 5,360                                  | 780                                           | 580                                     |
| B-1    | 10.0 - 13.0 | 7,460                                  | 890                                           | 660                                     |
|        | 13.0 - 16.0 | 30,460                                 | 1,000                                         | 750                                     |
|        | 16.0 - 19.0 | 50,190                                 | 1,100                                         | 830                                     |
|        | 19.0 - 29.0 | 52,200                                 | 2,400                                         | 2,400                                   |

- The top 4.0 feet of soil should be ignored due to the frost penetration and the potential soil disturbance during construction.
- The values presented assume the concrete is cast-in-place against earth walls and any casing utilized during construction of the foundation was removed.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

## DELTA OAKS

## **DELTA OAKS GROUP**

#### CONSTRUCTION

#### SITE DEVELOPMENT

The proposed access road and tower compound should be evaluated by a Geotechnical Engineer, or their representative, after the removal or "cutting" of the areas to design elevation but prior to the placement of any structural fill material to verify the presence of unsuitable or weak material. Unsuitable or weak materials should be undercut to a suitable base material as determined by a Geotechnical Engineer, or their representative. Backfill of any undercut area(s) should be conducted in accordance with the recommendations provided in the STRUCTURAL FILL PLACEMENT section of this report.

Excavations should be sloped or shored in accordance and compliance with OSHA 29 CFR Part 1926, Excavation Trench Safety Standards as well as any additional local, state and federal regulations.

#### STRUCTURAL FILL PLACEMENT

Structural fill materials should be verified, prior to utilization, to have a minimum unit weight of 110 pcf (pounds per cubic foot) when compacted to a minimum of 95% of its maximum dry density and within plus or minus 3 percentage points of optimum moisture. Materials utilized should not contain more than 5 percent by weight of organic matter, waste, debris or any otherwise deleterious materials. The Liquid Limit should be no greater than 40 with a Plasticity Index no greater than 20. Structural fill material should contain a maximum particle size of 4 inches with 20 percent or less of the material having a particle size between 2 and 4 inches. Backfill should be placed in thin horizontal lifts not to exceed 8 inches (loose) in large grading areas and 4 inches (loose) where small handheld or walk-behind compaction equipment will be utilized. The potential suitability of on-site materials to be utilized as fill should be evaluated by a Geotechnical Engineer, or their representative just prior to construction.

During construction structural fill placement should be monitored and tested. This should include at minimum, visual observation as well as a sufficient amount of in-place field density tests by a Geotechnical Engineer, or their representative. Materials should be compacted to a minimum of 95% of the maximum dry density as determined by ASTM D 698 (standard Proctor method). Moisture contents should be maintained to within plus or minus 3 percentage points of the optimum moisture content.

## **SHALLOW FOUNDATIONS**

Foundation excavation(s) should be evaluated by a Geotechnical Engineer, or their representative, prior to reinforcing steel and concrete placement. This evaluation should include visual observation to verify a level bearing surface; vertical side-walls with no protrusions, sloughing or caving; and the exposed bearing surface is free of deleterious material, loose soil and standing water. Excavation dimensions should be verified and testing performed on the exposed bearing surface to verify compliance with design recommendations. Bearing testing should be conducted in accordance with ASTM STP399 (Dynamic Cone Penetrometer). A 6-inch layer of compacted crushed stone should be installed prior to reinforcing steel and concrete placement. If subsurface water is encountered during excavation dewatering methods such as sump pumps or well points may be required.



#### **DRILLED SHAFT FOUNDATIONS**

Drilled shaft foundations (caissons) are typically installed utilizing an earth auger to reach the design depth of the foundation. Specialized roller bits or core bits can be utilized to penetrate boulders or rock. The equipment utilized should have cutting teeth to result in an excavation with little or no soil smeared or caked on the excavation sides with spiral-like corrugated walls. The drilled shaft design diameter should be maintained throughout the excavation with a plumbness tolerance of 2 percent of the length and an eccentricity tolerance of 3 inches from plan location. A removable steel casing can be installed in the shaft to prevent caving of the excavation sides due to soil relaxation. Upon completion of the drilling and casing placement, loose soils and subsurface water greater than 3-inches in depth should be removed from the bottom of the excavation for the "dry" installation method. The drilled shaft installation should be evaluated by a Geotechnical Engineer, or their representative, to verify suitable end bearing conditions, design diameter and bottom cleanliness. The evaluation should be conducted immediately prior to as well as during concrete placement operations.

The drilled shaft should be concreted as soon as reasonably practical after excavation to reduce the deterioration of the supporting soils to prevent potential caving and water intrusion. A concrete mix design with a slump of 6 to 8 inches employed in conjunction with the design concrete compressive strength should be utilized for placement. Super plasticizer may be required to obtain the recommended slump range. During placement, the concrete may fall freely through the open area in the reinforcing steel cage provided it does not strike the reinforcing steel and/or the casing prior to reaching the bottom of the excavation. The removable steel casing should be extracted as concrete is placed. During steel casing removal a head of concrete should be maintained above the bottom of the casing to prevent soil and water intrusion into the concrete below the bottom of the casing.

If subsurface water is anticipated and/or weak soil layers are encountered drilled shafts are typically installed utilizing the "wet" method by excavating beneath a drilling mud slurry. The drilling mud slurry is added to the drilled shaft excavation after groundwater has been encountered and/or the sides of the excavation are observed to be caving or sloughing. Additional inspection by a Geotechnical Engineer, or their representative, during the "wet" method should consist of verifying maintenance of sufficient slurry head, monitoring the specific gravity, pH and sand content of the drilling slurry, and monitoring any changes in the depth of the excavation between initial approval and just prior to concreting.

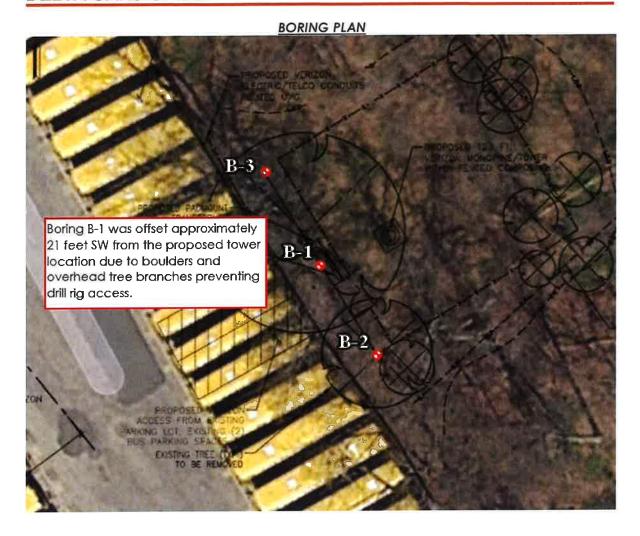
Concrete placement utilizing the "wet" method is conducted through a tremie pipe at the bottom of the excavation with the drilling mud slurry level maintained at a minimum of 5 feet or one shaft diameter, whichever is greater, above the ground water elevation. The bottom of the tremie should be set one tremie pipe diameter above the excavation. A closure flap at the bottom of the tremie or a sliding plug introduced into the tremie before the concrete is recommended to reduce the potential contamination of the concrete by the drilling mud slurry. The bottom of the tremie must be maintained in the concrete during placement. Additional concrete should be placed through the tremie causing the slurry to overflow from the excavation in order to reduce the potential for the development of "slurry pockets" remaining in the drilled shaft.



#### **QUALIFICATIONS**

The design parameters and conclusions provided in this report have been determined in accordance with generally accepted geotechnical engineering practices and are considered applicable to a rational degree of engineering certainty based on the data available at the time of report preparation and our practice in this geographic region. All recommendations and supporting calculations were prepared based on the data available at the time of report preparation and knowledge of typical geotechnical parameters in the applicable geographic region.

The subsurface conditions used in the determination of the design recommendations contained in this report are based on interpretation of subsurface data obtained at specific boring locations. Irrespective of the thoroughness of the subsurface investigation, the potential exists that conditions between borings will differ from those at the specific boring locations, that conditions are not as anticipated during the original analysis, or that the construction process has altered the soil conditions. That potential is significantly increased in locations where existing fill materials are encountered. Additionally, the nature and extent of these variations may not be evident until the commencement of construction. Therefore, a geotechnical engineer, or their representative, should observe construction practices to confirm that the site conditions do not differ from those conditions anticipated in design. If such variations are encountered, Delta Oaks Group should be contacted immediately in order to provide revisions and/or additional site exploration, as necessary.


Samples obtained during our subsurface field investigation will be retained by Delta Oaks Group for a period of 30 days unless otherwise instructed by Vertical Bridge. No warranty, expressed or implied, is presented.

Delta Oaks Group appreciates the opportunity to be of service for this Geotechnical Investigation Report. Please do not hesitate to contact Delta Oaks Group with any questions or should you require additional service on this project.



## **APPENDIX**











PROJECT NAME Wilton South CT (US-CT-5055)

PROJECT NUMBER GEO24-20828-08

PROJECT LOCATION Wilton, Connecticut

CLIENT Vertical Bridge

Boring No.: B-1

PAGE 1 OF 1

| DAT               | E DRILLED: 2/12/2024                                                                                           |               | GF       | ROUND W                    | /ATER                        | LEV                   | ELS:      |           |         |                            |
|-------------------|----------------------------------------------------------------------------------------------------------------|---------------|----------|----------------------------|------------------------------|-----------------------|-----------|-----------|---------|----------------------------|
|                   | LING METHOD: Mud Rotary & Coring                                                                               |               | $\nabla$ |                            |                              |                       |           |           | 1.00 1  | ft                         |
|                   | UND ELEVATION :                                                                                                |               | ¥        |                            |                              |                       |           |           |         |                            |
|                   | ING DEPTH (ft): 29                                                                                             |               | Ţ        |                            |                              |                       |           |           |         | easured                    |
| (#)               | MATERIAL DESCRIPTION                                                                                           | SAMPLE TYPE   |          | MATERIAL<br>CLASSIFICATION | Pocket Penetrometer<br>(tsf) | BLOWS 1st             | BLOWS 2nd | BLOWS 3rd | N VALUE |                            |
| 0                 | Dark brown, very loose, fine to medium grained, SILTY SAND (SM), with organics, trace gravel, micaceous, moist | S)            |          | ਹ<br>∷ sm                  | Poct                         |                       |           |           |         | 10 20 30 40 50 60 70 80 90 |
| -                 | Brown, loose, fine to medium grained, SILTY CLAYEY SAND                                                        | $\frac{1}{2}$ |          | SC-SM                      |                              | 1                     | 1         | 1         | 2       | -                          |
| -                 | (SC-SM), trace gravel, trace mica, moist  Brown, medium dense, fine to medium grained, SILTY SAND              | X             |          |                            |                              | 2                     | 2         | 2         | 4       |                            |
| 5                 | (SM), trace gravel, trace mica, moist                                                                          | X             |          | SM                         |                              | 6                     | 6         | 7         | 13      |                            |
| ī                 | with gravel, micaceous                                                                                         | X             |          |                            |                              | 10                    | 11        | 8         | 19      |                            |
| 10                | trace organics                                                                                                 | X             |          | 55<br>65<br>64             |                              | 10                    | 15        | 14        | 29      |                            |
| 10                |                                                                                                                | X             |          |                            |                              | 6                     | 6         | 7         | 13      | 4                          |
| 15                |                                                                                                                | X             |          |                            |                              | 11                    | 15        | 12        | 27      |                            |
| -                 | Grey, highly fractured, moderately weathered, hard, GNEISS                                                     |               | V        |                            |                              |                       |           |           |         | _                          |
| 20                | Unconfined compressive strength = 3,622 psi                                                                    |               |          |                            |                              |                       |           |           |         |                            |
| -<br>-<br>-<br>25 | a<br>6                                                                                                         |               |          |                            |                              | REC<br>=<br>93.3<br>% | =         |           |         |                            |
| -                 | Unconfined compressive strength = 3,689 psi                                                                    |               |          |                            |                              |                       |           |           |         |                            |
| 30                | Refusal at 19.0 feet.<br>Bottom of borehole at 29.0 feet.                                                      |               | 77.      |                            |                              |                       |           |           |         |                            |



PROJECT NAME Wilton South CT (US-CT-5055)

PROJECT NUMBER GEO24-20828-08

PROJECT LOCATION Wilton, Connecticut

CLIENT Vertical Bridge

Boring No.: B-2

PAGE 1 OF 1

| DAT  | E DRILLED: 2/14/2024                                                                                              |             |                | OUND W                     | /ATER                        | LEV                   | ELS:      |           |         |            |    |  |             |     |
|------|-------------------------------------------------------------------------------------------------------------------|-------------|----------------|----------------------------|------------------------------|-----------------------|-----------|-----------|---------|------------|----|--|-------------|-----|
| DRIL | LING METHOD: Mud Rotary & Coring                                                                                  |             | $\bar{\Delta}$ | AT TI                      | ME OF                        | DRI                   | LLING     | G: 6      | 6.00 1  | t          |    |  |             |     |
| GRO  | UND ELEVATION :                                                                                                   |             | Ā              | AT EN                      | ND OF                        | DRIL                  | LING      | <b>:</b>  | – N/A   |            |    |  |             |     |
| 3OR  | ING DEPTH (ft): 28                                                                                                |             | Ī              | AFTE                       | R DRII                       | LLIN                  | G: -      | No        | t mea   | sure       | ed |  |             |     |
| (£)  | MATERIAL DESCRIPTION                                                                                              | SAMPLE TYPE |                | MATERIAL<br>CLASSIFICATION | Pocket Penetrometer<br>(tsf) | BLOWS 1st             | BLOWS 2nd | BLOWS 3rd | N VALUE | 10         | 20 |  | <b>60</b> 7 | ı Ç |
| -    | Dark brown, medium dense, fine to medium grained, SILTY SAND (SM), with gravel, trace organics, trace mica, moist | X           |                | SM                         |                              | 5                     | 7         | 10        | 17      |            | ^  |  |             |     |
| -    | Brown, loose, fine to medium grained, SILTY CLAYEY SAND (SC-SM), trace organics, trace gravel, trace mica, wet    | X           |                | SC-SM                      |                              | 4                     | 3         | 2         | 5       | $ \langle$ |    |  |             |     |
|      | Brown, medium dense, fine to medium grained, SILTY SAND (SM), with gravel, trace organics, micaceous, moist       | X           |                | SM                         |                              | 6                     | 7         | 7         | 14      | _}         | 1  |  |             | _   |
| -    |                                                                                                                   | X           |                |                            |                              | 7                     | 9         | 10        | 19      |            |    |  |             |     |
|      | grey                                                                                                              | X           |                |                            |                              | 25                    | 11        | 8         | 19      |            |    |  |             |     |
| -    | brown, dense, with gravel                                                                                         | X           |                |                            |                              | 13                    | 28        | 16        | 44      |            |    |  |             |     |
|      | trace orange                                                                                                      | X           |                |                            | 33                           | 12                    | 20        | 12        | 32      |            |    |  |             |     |
| -    | Grey, highly fractured, moderately weathered, hard, GNEISS                                                        |             |                |                            |                              |                       |           |           |         |            |    |  |             |     |
| 5    | Unconfined compressive strength = 3,922 psi                                                                       |             |                |                            |                              | REC<br>=<br>82.8<br>% | =         |           | 13      |            |    |  |             |     |
|      | Refusal at 20.0 feet.<br>Bottom of borehole at 28.0 feet.                                                         |             |                |                            |                              |                       |           |           |         |            |    |  |             |     |



PROJECT NAME Wilton South CT (US-CT-5055)

PROJECT NUMBER GEO24-20828-08

PROJECT LOCATION Wilton, Connecticut

CLIENT Vertical Bridge

Boring No.: B-3

PAGE 1 OF 1

|                                                                                                                       | Т           | CDC | MINES 14                   | /ATCC                        | 1 514     | ELS       |           |         | _    |              | _ | _    | _ | -    |
|-----------------------------------------------------------------------------------------------------------------------|-------------|-----|----------------------------|------------------------------|-----------|-----------|-----------|---------|------|--------------|---|------|---|------|
| ATE DRILLED: 2/14/2024                                                                                                | 1           | -   | W DNU                      |                              |           |           |           | 00.0    |      |              |   |      |   |      |
| RILLING METHOD: Hollow Stem Auger                                                                                     |             | Ā   | AT TI                      |                              |           |           |           |         |      |              |   |      |   |      |
| ROUND ELEVATION :                                                                                                     |             | Ā   | AT EN                      |                              |           |           |           |         |      |              |   |      |   |      |
| ORING DEPTH (ft): 14                                                                                                  | -           | Ā   | AFTE                       |                              | LLIN      | G: -      | No        | t mea   | sure | <u>d</u>     |   | <br> |   | _    |
| E MATERIAL DESCRIPTION                                                                                                | SAMPLE TYPE |     | MAIEKIAL<br>CLASSIFICATION | Pocket Penetrometer<br>(tsf) | BLOWS 1st | BLOWS 2nd | BLOWS 3rd | N VALUE | 10   | 20           |   | ALUE |   | 0 90 |
| Dark brown, loose, fine to medium grained, SILTY SAND (SM), trace organics, trace gravel, trace mica, moist           | X           |     | SM                         |                              | 4         | 4         | 3         | 7       | 1    |              |   |      |   |      |
| Light brown, loose, fine to medium grained, SILTY CLAYEY SAND (SC-SM), trace organics, trace gravel, micaceous, moist | X           |     | SC-SM                      |                              | 1         | 2         | 3         | 5       | 1    |              |   |      |   |      |
| Brown, grey, medium dense, fine to coarse grained, SILTY SAND (SM), trace organics, trace gravel, micaceous, moist    |             |     | SM                         |                              | 7         | 9         | 9         | 18      |      | <del>}</del> | - | -    |   |      |
| wet                                                                                                                   | X           |     |                            |                              | 5         | 6         | 7         | 13      | 4    |              |   |      |   |      |
| with gravel                                                                                                           | X           |     |                            |                              | 8         | 9         | 9         | 18      |      |              | _ |      |   |      |
| Brown, very dense, fine to coarse grained, POORLY GRADED SAND (SP), with silt, with gravel, micaceous, wet            |             |     | SP                         |                              | 17        | 50/3*     |           | 100     |      |              |   |      |   |      |
| Refusal at 14.0 feet. Bottom of borehole at 14.0 feet.                                                                |             |     |                            |                              |           |           |           |         |      |              |   |      |   |      |