

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts
and New York

July 24, 2024

Via Hand Delivery

Melanie A. Bachman, Esq.
Executive Director/Staff Attorney
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

**Re: Docket No. 513 –The Towers, LLC Certificate of Environmental Compatibility and
Public Need for the Construction, Maintenance and Operation of a Wireless
Telecommunications Facility Located off Mason Hill Road, Litchfield, Connecticut**

Development and Management Plan Submission

Dear Attorney Bachman:

Enclosed please find fifteen (15) copies of the following:

1. Development and Management (“D&M”) Plan drawings prepared by Centek Engineering for the approved telecommunications facility off Mason Hill Road in Litchfield, Connecticut incorporating the Council’s conditions of approval. Also enclosed are three (3) full size (24” x 36”) sets of D&M plans.
2. Structural Design Report, containing the monopole tower and foundation design, prepared by Sabre Industries, Inc. dated May 8, 2024.
3. Geotechnical Engineering Report prepared by Down To Earth Consulting, LLC dated November 2023.

Together, this information constitutes the final D&M Plan submission for the approved telecommunications facility off Mason Hill Road in Litchfield, Connecticut.

30058144-v1

Melanie A. Bachman, Esq.

July 24, 2024

Page 2

Further, and in accordance with the Council's Decision and Order ("D+O"), the vehicle turn around has been relocated to avoid encroaching into the Eversource transmission line ROW. (See Condition No. 2c). In addition, construction of the facility will occur between the hours of 7 AM and 5 PM, Monday through Saturday (See Condition No. 7).

We respectfully request that this information be reviewed and this matter be placed on the next available Siting Council agenda for approval. Please feel free to contact me if you have any questions or require additional information. Thank you.

Sincerely,

Kenneth C. Baldwin

Enclosures

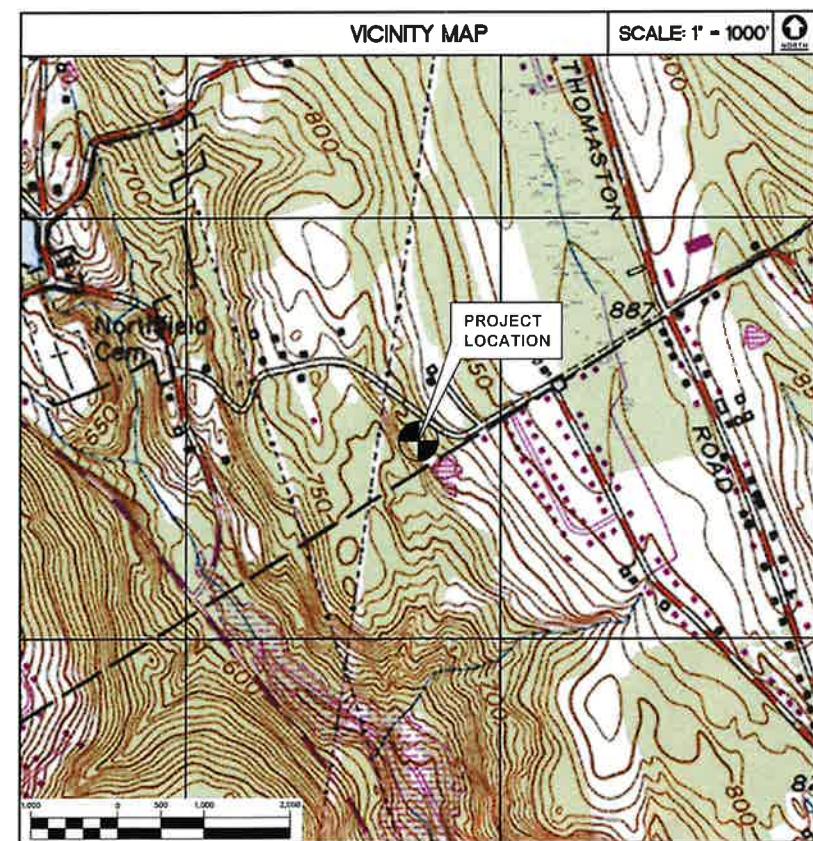
Copy to:

Denise Raap, First Selectman

A.J. DeSantis, Project Manager, Vertical Bridge REIT

Laura Hughes, Project Manager, Vertical Bridge REIT

ATTACHMENT 1


THE TOWERS, LLC

Cellco Partnership & VERTICAL BRIDGE REIT, LLC
d.b.a. **verizon** wireless ✓

WIRELESS COMMUNICATIONS FACILITY DEVELOPMENT AND MANAGEMENT PLAN

LITCHFIELD SE CT
MASON HILL ROAD
NORTHFIELD, CT 06778

SITE DIRECTIONS	
FROM: 20 ALEXANDER DRIVE, WALLINGFORD, CT	TO: PROPOSED TOWER SITE ENTRANCE ON MASON HILL ROAD, NORTHFIELD, CT
1. START OUT NORTH ON ALEXANDER DR TOWARD BARNES INDUSTRIAL PARK RD. 0.2 MI. 2. TURN RIGHT ONTO BARNES INDUSTRIAL PARK RD. 0.1 MI. 3. TAKE FIRST LEFT ONTO CT-68. 0.4 MI. 4. TURN RIGHT ONTO RAMP. 0.2 MI. 5. TURN RIGHT ONTO N COLONY RD/US-5 N. 0.3 MI. 5. MERGE ONTO CT-15 N TOWARD HARTFORD. 3.9 MI. 7. MERGE ONTO I-891 W VIA EXIT 68W TOWARD MERIDEN/WATERBURY. 7.8 MI. 8. TAKE THE I-84 W EXIT, EXIT 1, ON THE LEFT TOWARD DANBURY/WATERBURY. 0.4 MI. 8. STAY STRAIGHT TO GO ON I-84 W. 0.2 MI. 9. MERGE ONTO CT-8 N VIA EXIT 20 TOWARD TORRINGTON. 0.2 MI. 10. TAKE THE CT-254 EXIT, EXIT 3B, TOWARD THOMASTON/US-6 W/CT-109. 0.1 MI. 11. KEEP LEFT TO TAKE THE WATERBURY ROAD RAMP TOWARD THOMASTON. 1.1 MI. 12. TURN LEFT ONTO WATERBURY ROAD/CT-254. CONTINUE TO FOLLOW CT-254. 2.1 MI. 13. TURN LEFT ONTO NORTHFIELD ROAD/CT-254. 0.3 MI. 14. TURN RIGHT ONTO KNIFE SHOP ROAD. 0.1 MI. 15. TAKE FIRST RIGHT ONTO MASON HILL ROAD. 0.1 MI. 16. TAKE THE FIRST LEFT TO STAY ON MASON HILL ROAD. 0.2 MI. 17. THE ENTRANCE TO THE PROPOSED TOWER FACILITY IS ON THE RIGHT.	
GENERAL NOTES	
1. PROPOSED ANTENNA LOCATIONS AND HEIGHTS PROVIDED BY CELLCO PARTNERSHIP.	
SITE INFORMATION	
THE SCOPE OF WORK SHALL GENERALLY INCLUDE: 1. CONSTRUCTION OF A ±2,355 SF FENCED COMMUNICATIONS FACILITY COMPOUND WITHIN A PROPOSED ±2,650 SF CELLCO PARTNERSHIP LEASE AREA. 2. THE PROPOSED ±110' TALL STEEL MONOPOLE COMMUNICATIONS TOWER TO BE LOCATED WITHIN THE PROPOSED FENCED COMPOUND. 3. THE PROPOSED CELLCO PARTNERSHIP GROUND EQUIPMENT INSTALLATION TO CONSIST OF (2) EQUIPMENT CABINETS AND A PROPANE FUELED BACKUP POWER GENERATOR LOCATED ON A PROPOSED 10' x 16' CONCRETE PAD WITHIN THE FENCED COMPOUND AREA. 4. A 500 GALLON ABOVE-GROUND PROPANE TANK IS PROPOSED WITHIN THE COMPOUND FENCE FOR FUEL SUPPLY TO THE PROPOSED BACKUP POWER GENERATOR. 5. FACILITY ACCESS WILL BE VIA A PROPOSED 12' WIDE x ±130' LONG ACCESS DRIVE WITH A PROPOSED CURB CUT ON MASON HILL ROAD. 6. THE PROPOSED TOWER RF INSTALLATION TO CONSIST OF A TOTAL OF (9) PANEL ANTENNAS, (6) REMOTE RADIO UNITS (RRUs), (1) SURGE ARRESTOR AND (1) HYBRID CABLE AND ASSOCIATED JUMPER CABLES. 7. THE PROPOSED CELLCO PARTNERSHIP POWER AND FIBER TELCO UTILITY CONDUITS TO BE ROUTED UNDERGROUND FROM A PROPOSED UTILITY POLE ON MASON HILL ROAD R.O.W. TO THE PROPOSED FACILITY UTILITY BACKBOARD LOCATED ADJACENT TO THE PROPOSED FENCED COMPOUND. UTILITIES WILL BE ROUTED UNDERGROUND FROM THE FACILITY UTILITY BACKBOARD TO THE PROPOSED CELLCO PARTNERSHIP EQUIPMENT PAD LOCATED WITHIN THE FENCED COMPOUND. 8. THE PROPOSED WIRELESS FACILITY INSTALLATION WILL BE DESIGNED IN ACCORDANCE WITH THE 2021 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2022 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "H" STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES, 2022 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE, AND LOCAL CODES. 9. THERE WILL NOT BE ANY LIGHTING UNLESS REQUIRED BY THE FCC OR THE FAA. 10. THERE WILL NOT BE ANY SIGNS OR ADVERTISING ON THE ANTENNAS OR EQUIPMENT.	

PROJECT INFORMATION	
SITE NAME:	LITCHFIELD SE CT
SITE ADDRESS:	MASON HILL ROAD NORTHFIELD, CT 06778
SITE ID:	US-CT-5057
PROPERTY OWNER:	WILLIAMS JOYCE S 420 MICHELLE LANE THOMASTON, CT 06787
LESSEE/TENANT:	CELLCO PARTNERSHIP d.b.a. VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492
APPLICANT NAME:	THE TOWERS, LLC C/O VERTICAL BRIDGE 750 PARK OF COMMERCE DRIVE, SUITE 200 BOCA RATON, FL 33487
VERTICAL BRIDGE CONTACT:	Laura Hughes Project Manager (201) 661-6183
LEGAL/REGULATORY COUNSEL:	CHUCK BRUTOMESO AIRSMITH DEVELOPMENT (860) 306-8355
PROPOSED TOWER COORDINATES:	LATITUDE: 41° 41' 45.69" LONGITUDE: 73° 05' 36.74" GROUND ELEVATION: 793.82 ± A.M.S.L.

SHEET INDEX		
Sheet No.	Description	Rev.
T-1	TITLE SHEET	0
N-1	ENVIRONMENTAL AND BUFFER ENHANCEMENT PLAN NOTES	0
C-1	PARTIAL SITE PLAN	0
C-2	PARTIAL SITE/GRADING AND DRAINAGE PLAN	0
C-3	FACILITY COMPOUND PLAN, ELEVATION AND ANTENNA CONFIG.	0
C-4	FACILITY SITE UTILITY PLAN AND DETAILS	0
C-5	SITE DETAILS AND NOTES	0
C-6	MISCELLANEOUS SITE DETAILS	0
C-6	MISCELLANEOUS DETAILS	0
C-8	EQUIPMENT AND RF DETAILS	0

CT SITING COUNCIL DOCKET NO.: 513	
DRAFTED BY: [Signature]	
DEVELOPED BY: [Signature]	
MANAGED BY: [Signature]	
REVIEWED BY: [Signature]	
APPROVED BY: [Signature]	
DATE: 06/20/24	
SCALE: AS NOTED	
JOB NO. 24072.01	
TITLE SHEET	
T-1	
Sheet No. 1	of 10

ENVIRONMENTAL NOTES - RESOURCES PROTECTION MEASURES:

WETLAND AND NORTHERN LONG-EARED BAT PROTECTION PROGRAM

AS A RESULT OF THE PROJECT'S LOCATION IN THE VICINITY OF SENSITIVE WETLAND RESOURCES AND HABITAT KNOWN TO BE USED BY NORTHERN LONG-EARED BAT ("NLEB"; *MYOTIS SEPTENTRIONALIS*), A FEDERALLY- AND STATE-LISTED ENDANGERED SPECIES, THE FOLLOWING PROTECTION PROGRAM SHALL BE IMPLEMENTED BY THE CONTRACTOR TO AVOID UNINTENTIONAL IMPACTS TO PROXIMATE WETLAND RESOURCES DURING CONSTRUCTION ACTIVITIES AND PROTECT THIS BAT SPECIES AND PREVENT INCIDENTAL TAKE.

IT IS OF THE UTMOST IMPORTANCE THAT THE CONTRACTOR COMPLIES WITH THE REQUIREMENT FOR THE INSTALLATION OF PROTECTIVE MEASURES AND THE EDUCATION OF ITS EMPLOYEES AND SUBCONTRACTORS PERFORMING WORK ON THE PROJECT SITE. THE WETLAND PROTECTION MEASURES SHALL BE IMPLEMENTED AND MAINTAINED THROUGHOUT THE DURATION OF CONSTRUCTION ACTIVITIES UNTIL PERMANENT STABILIZATION OF SITE SOILS HAS OCCURRED.

ALL-POINTS TECHNOLOGY CORPORATION, P.C. ("APT") WILL SERVE AS THE ENVIRONMENTAL MONITOR FOR THIS PROJECT TO ENSURE THAT THESE PROTECTION MEASURES ARE IMPLEMENTED PROPERLY AND WILL PROVIDE AN EDUCATION SESSION ON THE PROJECT'S PROXIMITY TO SENSITIVE WETLAND RESOURCES AND POTENTIAL PRESENCE OF NLEB PRIOR TO THE START OF CONSTRUCTION ACTIVITIES AND TYPICAL AMPHIBIANS AND REPTILES ASSOCIATED WITH THESE HABITATS THAT MAY BE ENCOUNTERED DURING CONSTRUCTION. THE CONTRACTOR SHALL CONTACT DEAN GUSTAFSON, SENIOR WETLAND SCIENTIST AT APT, AT LEAST 5 BUSINESS DAYS PRIOR TO THE PRE-CONSTRUCTION MEETING. MR. GUSTAFSON CAN BE REACHED BY PHONE AT (860) 552-2033 OR VIA EMAIL AT DGUSTAFSON@ALLPOINTSTECH.COM.

THIS RESOURCES PROTECTION PROGRAM CONSISTS OF SEVERAL COMPONENTS INCLUDING: EDUCATION OF ALL CONTRACTORS AND SUB-CONTRACTORS PRIOR TO INITIATION OF WORK ON THE SITE; INSTALLATION OF EROSION CONTROLS; PETROLEUM MATERIALS STORAGE AND SPILL PREVENTION; PROTECTIVE MEASURES; NLEB PROTECTION MEASURES; HERBICIDE, PESTICIDE, AND SALT RESTRICTIONS; AND, REPORTING.

1. CONTRACTOR EDUCATION:

- a. PRIOR TO WORK ON SITE AND INITIAL DEPLOYMENT/MOBILIZATION OF EQUIPMENT AND MATERIALS, THE CONTRACTOR SHALL ATTEND AN EDUCATIONAL SESSION AT THE PRE-CONSTRUCTION MEETING WITH APT. THIS ORIENTATION AND EDUCATIONAL SESSION WILL CONSIST OF INFORMATION SUCH AS, BUT NOT LIMITED TO: IDENTIFICATION OF WETLAND RESOURCES PROXIMATE TO WORK AREAS AND THE ENVIRONMENTALLY SENSITIVE NATURE OF THE DEVELOPMENT SITE.
- b. THE CONTRACTOR WILL BE PROVIDED WITH CELL PHONE AND EMAIL CONTACTS FOR APT PERSONNEL TO IMMEDIATELY REPORT ANY RELEASES, IMPACTS TO NEARBY WETLAND RESOURCE AREAS, OR ENCOUNTERS WITH ANY RARE SPECIES. EDUCATIONAL POSTER MATERIALS OF THE ENVIRONMENTALLY SENSITIVE NATURE OF THE WORK AREA WILL BE PROVIDED BY APT AND DISPLAYED ON THE JOB SITE TO MAINTAIN WORKER AWARENESS AS THE PROJECT PROGRESSES.
- c. IF ANY RARE SPECIES ARE ENCOUNTERED, THE CONTRACTOR SHALL IMMEDIATELY CEASE ALL WORK, AVOID ANY DISTURBANCE TO THE SPECIES, AND CONTACT APT.

2. NLEB TREE CLEARING RESTRICTION

- a. TREE CLEARING IS RESTRICTED TO OCCUR ONLY BETWEEN NOVEMBER 1ST THROUGH MARCH 31ST, DURING THE BAT'S INACTIVE SEASON, WHEN NLEB BATS WOULD LIKELY BE IN HIBERNACULA AND NOT PRESENT IN FORESTED HABITAT ON THE SITE. DO NOT REMOVE TREES BETWEEN APRIL 1ST THROUGH OCTOBER 31ST.

3. EROSION AND SEDIMENTATION CONTROLS/ISOLATION BARRIERS

- a. PLASTIC NETTING USED IN A VARIETY OF EROSION CONTROL PRODUCTS (I.E., EROSION CONTROL BLANKETS, FIBER ROLLS [WATTLES], REINFORCED SILT FENCE) HAS BEEN FOUND TO ENTANGLE WILDLIFE, INCLUDING REPTILES, AMPHIBIANS, BIRDS AND SMALL MAMMALS. NO PERMANENT EROSION CONTROL PRODUCTS OR REINFORCED SILT FENCE WILL BE USED ON THE PROJECT. TEMPORARY EROSION CONTROL PRODUCTS THAT WILL BE EXPOSED AT THE GROUND SURFACE AND REPRESENT A POTENTIAL WILDLIFE ENTANGLEMENT, WHETHER EROSION CONTROL BLANKETS AND FIBER ROLLS COMPOSED OF PROCESSED FIBERS MECHANICALLY BOUND TOGETHER TO FORM A CONTINUOUS MATRIX (NETLESS) OR NETTING COMPOSED OF PLANAR WOVEN NATURAL BIODEGRADABLE FIBER TO AVOID/MINIMIZE WILDLIFE ENTANGLEMENT.
- b. THE EXTENT OF THE EROSION CONTROLS WILL BE AS SHOWN ON THE SITE PLANS. THE CONTRACTOR SHALL HAVE ADDITIONAL SEDIMENTATION AND EROSION CONTROLS STOCKPILED ON SITE SHOULD FIELD OR CONSTRUCTION CONDITIONS WARRANT EXTENDING DEVICES. IN ADDITION TO THE CONTRACTOR MAKING THESE DETERMINATIONS, REQUESTS FOR ADDITIONAL CONTROLS WILL ALSO BE AT THE DISCRETION OF THE ENVIRONMENTAL MONITOR.
- c. INSTALLATION OF EROSION AND SEDIMENTATION CONTROLS, REQUIRED FOR EROSION CONTROL COMPLIANCE AND CREATION OF A BARRIER TO POSSIBLE MIGRATING/DISPERSING WILDLIFE, SHALL BE PERFORMED BY THE CONTRACTOR. THE ENVIRONMENTAL MONITOR WILL INSPECT THE WORK ZONE AREA PRIOR TO AND FOLLOWING EROSION CONTROL BARRIER INSTALLATION. IN ADDITION, WORK ZONES WILL BE INSPECTED PRIOR TO AND FOLLOWING EROSION CONTROL BARRIER INSTALLATION TO ENSURE THE AREA IS FREE OF WILDLIFE AND SATISFACTORILY INSTALLED. THE INTENT OF THE BARRIER IS TO SEGREGATE THE MAJORITY OF THE WORK ZONE FROM POSSIBLE MIGRATING WILDLIFE, IN ADDITION TO SERVING AS AN EROSION CONTROL DEVICE. OFTEN TIMES COMPLETE ISOLATION OF A WORK ZONE IS NOT FEASIBLE DUE TO ACCESSIBILITY NEEDS AND LOCATIONS OF STAGING/MATERIAL STORAGE AREAS, ETC. IN THOSE CIRCUMSTANCES, THE BARRIERS WILL BE POSITIONED TO DEFLECT MIGRATING/DISPERSAL ROUTES AWAY FROM THE WORK ZONE TO MINIMIZE POTENTIAL ENCOUNTERS WITH WILDLIFE AT THE DISCRETION OF THE ENVIRONMENTAL MONITOR.

- d. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DAILY INSPECTIONS OF THE SEDIMENTATION AND EROSION CONTROLS FOR TEARS OR BREECHES AND ACCUMULATION LEVELS OF SEDIMENT, PARTICULARLY FOLLOWING STORM EVENTS THAT GENERATE A DISCHARGE, AS DEFINED BY AND IN ACCORDANCE WITH APPLICABLE LOCAL, STATE AND FEDERAL REGULATIONS. THE CONTRACTOR SHALL NOTIFY THE ENVIRONMENTAL MONITOR WITHIN 24 HOURS OF ANY BREECHES OF THE SEDIMENTATION AND EROSION CONTROLS AND ANY SEDIMENT RELEASES BEYOND THE PERIMETER CONTROLS THAT IMPACT WETLANDS OR AREAS WITHIN 100 FEET OF WETLANDS. THE APT ENVIRONMENTAL MONITOR WILL PROVIDE PERIODIC INSPECTIONS OF THE SEDIMENTATION AND EROSION CONTROLS THROUGHOUT THE DURATION OF CONSTRUCTION ACTIVITIES ONLY AS IT PERTAINS TO THEIR FUNCTION TO PROTECT NEARBY WETLANDS. SUCH INSPECTIONS WILL GENERALLY OCCUR ONCE PER MONTH. THE FREQUENCY OF MONITORING MAY INCREASE DEPENDING UPON SITE CONDITIONS, LEVEL OF CONSTRUCTION ACTIVITIES IN PROXIMITY TO SENSITIVE RECEPTORS, OR AT THE REQUEST OF REGULATORY AGENCIES. IF THE ENVIRONMENTAL MONITOR IS NOTIFIED BY THE CONTRACTOR OF A SEDIMENT RELEASE, AN INSPECTION WILL BE SCHEDULED SPECIFICALLY TO INVESTIGATE AND EVALUATE POSSIBLE IMPACTS TO WETLAND RESOURCES.

- e. THIRD PARTY MONITORING OF SEDIMENTATION AND EROSION CONTROLS WILL BE PERFORMED BY OTHER PARTIES, AS NECESSARY, UNDER APPLICABLE LOCAL, STATE AND/OR FEDERAL REGULATIONS AND PERMIT CONDITIONS.

- f. NO EQUIPMENT, VEHICLES OR CONSTRUCTION MATERIALS SHALL BE STORED WITHIN 100 FEET OF WETLAND RESOURCES OUTSIDE OF THE ESTABLISHED WORK ZONE.

- g. ALL SILT FENCING AND OTHER EROSION CONTROL DEVICES SHALL BE REMOVED WITHIN 30 DAYS OF COMPLETION OF WORK AND PERMANENT STABILIZATION OF SITE SOILS. IF FIBER ROLLS/WATTLES, STRAW BALES, OR OTHER NATURAL MATERIAL EROSION CONTROL PRODUCTS ARE USED, SUCH DEVICES WILL NOT BE LEFT IN PLACE TO BIODEGRADE AND SHALL BE PROMPTLY REMOVED AFTER SOILS ARE STABLE SO AS NOT TO CREATE A BARRIER TO WILDLIFE MOVEMENT. SEED FROM SEEDING OF SOILS SHOULD NOT SPREAD OVER FIBER ROLLS/WATTLES AS IT MAKES THEM HARDER TO REMOVE ONCE SOILS ARE STABILIZED BY VEGETATION.

BUFFER ENHANCEMENT PLAN NOTES:

MITIGATION GOALS

1. COMPENSATE FOR ACTIVITIES IN CLOSE PROXIMITY TO WETLANDS BY PROVIDING A WETLAND BUFFER ENHANCEMENT (THE "MITIGATION AREA") PLAN THAT INCLUDES PLANTING WITH NATIVE SPECIES WHICH WILL IMPROVE FUNCTIONS AND VALUES, PARTICULARLY WILDLIFE HABITAT AND WATER QUALITY.
2. PLANT ±3,000 SF OF UPLAND HABITAT ENHANCEMENT AREA WITH SUFFICIENT DENSITY, FOCUSING ON SUPPORTING THE EXISTING FORESTED CANOPY AND NATIVE SPECIES, TO SUPPORT A VARIETY OF FUNCTIONS AND VALUES THAT ARE SUPPORTED BY THE ADJACENT WETLANDS AND UPLANDS.

GENERAL MITIGATION NOTES

1. THE PROJECT WETLAND SCIENTIST WITH EXPERTISE IN WETLAND MITIGATION AND IN INVASIVE PLANT SPECIES IDENTIFICATION AND REMOVAL/ERADICATION WILL SUPERVISE ALL ELEMENTS OF THE MITIGATION PLAN. DEAN GUSTAFSON, SENIOR WETLAND SCIENTIST, WITH ALL-POINTS TECHNOLOGY CORPORATION, P.C. WILL SERVE AS THE PROJECT WETLAND SCIENTIST; (860) 552-2033, DGUSTAFSON@ALLPOINTSTECH.COM.
2. ANY FOREIGN DEBRIS AND LITTER THAT HAS ACCUMULATED ON THE SURFACE OF THE MITIGATION AREA SHALL BE REMOVED AND PROPERLY DISPOSED OF IN ACCORDANCE WITH ALL LOCAL, STATE, AND FEDERAL REGULATIONS.
3. PLASTIC MESH SLEEVES AND DEER REPELLENTS WILL BE USED AS NECESSARY TO PROTECT PLANTED SHRUBS FROM EXCESSIVE DEER DAMAGE. PLANTS WITH EXCESSIVE DAMAGE WILL BE REPLACED.
4. PROPOSED ACTIVITIES ARE NOT ANTICIPATED TO RESULT IN SIGNIFICANT SOIL DISTURBANCE. ANY EXPOSED SOILS RESULTING FROM THE WETLAND BUFFER ENHANCEMENT ACTIVITIES WILL BE MULCHED AND SEEDED WITH AN APPROPRIATE NATIVE SEED MIX SUITABLE FOR THE AREA DEPENDING UPON SHADE AND SOIL MOISTURE CONDITIONS OF THE AFFECTED AREAS.
5. THE USE OF FERTILIZER AND PESTICIDES IN THE MITIGATION AREA IS PROHIBITED. HERBICIDE USAGE WILL ONLY OCCUR AS NECESSARY FOR THE CONTROL OF INVASIVE SPECIES.
6. A PRE-CONSTRUCTION MEETING WILL BE HELD ON SITE BETWEEN THE PROJECT WETLAND SCIENTIST AND CONTRACTOR(S) PERFORMING ALL ASPECTS OF THE WETLAND BUFFER ENHANCEMENT PLAN. THE PRIMARY INTENT OF THE PRE-CONSTRUCTION MEETING IS TO DISCUSS THE GOALS OF THE PLAN AND IMPLEMENTATION OF REQUIRED ELEMENTS NECESSARY TO ACHIEVE THESE GOALS AND SEQUENCE OF ELEMENTS.

PROPOSED WETLAND BUFFER ENHANCEMENT AREA

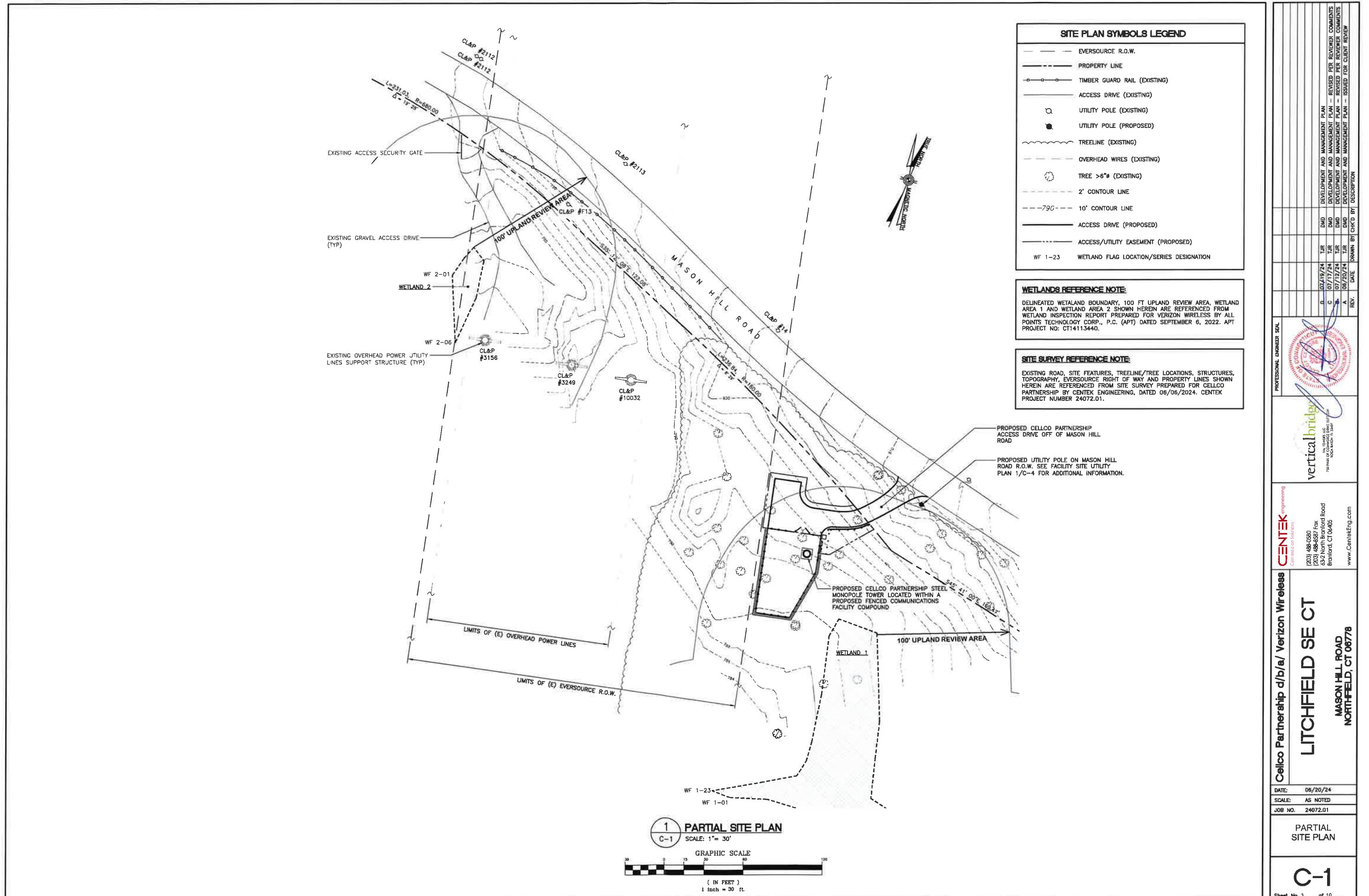
1. THE PROJECT WETLAND SCIENTIST RESPONSIBLE FOR THIS MITIGATION PLAN DESIGN SHALL BE NOTIFIED BY THE CONTRACTOR A MINIMUM OF SEVEN (7) BUSINESS DAYS PRIOR TO ANY PHASE OF THE MITIGATION PROJECT TO MONITOR AND OVERSEE IMPLEMENTATION OF THE MITIGATION PLAN. PLEASE CONTACT DEAN GUSTAFSON, SENIOR WETLAND SCIENTIST, ALL-POINTS TECHNOLOGY CORP., P.C. AT (860) 552-2033 OR DGUSTAFSON@ALLPOINTSTECH.COM.
2. SOIL EXPOSED AS A RESULT OF GRADING ACTIVITIES OR NATIVE SPECIES PLANTING ACTIVITIES IN UPLAND AREAS WILL BE UNDER SOWN WITH NEW ENGLAND SEMI SHADE GRASS WITH FORB MIX (NEWP, OR APPROVED EQUIVALENT). THIS SEED MIX PROVIDES A PERMANENT CORE OF GRASSES, FORBS, WILDFLOWERS, LEGUMES, AND GRASSES TO PROVIDE BOTH GOOD EROSION CONTROL AND WILDLIFE HABITAT VALUE.

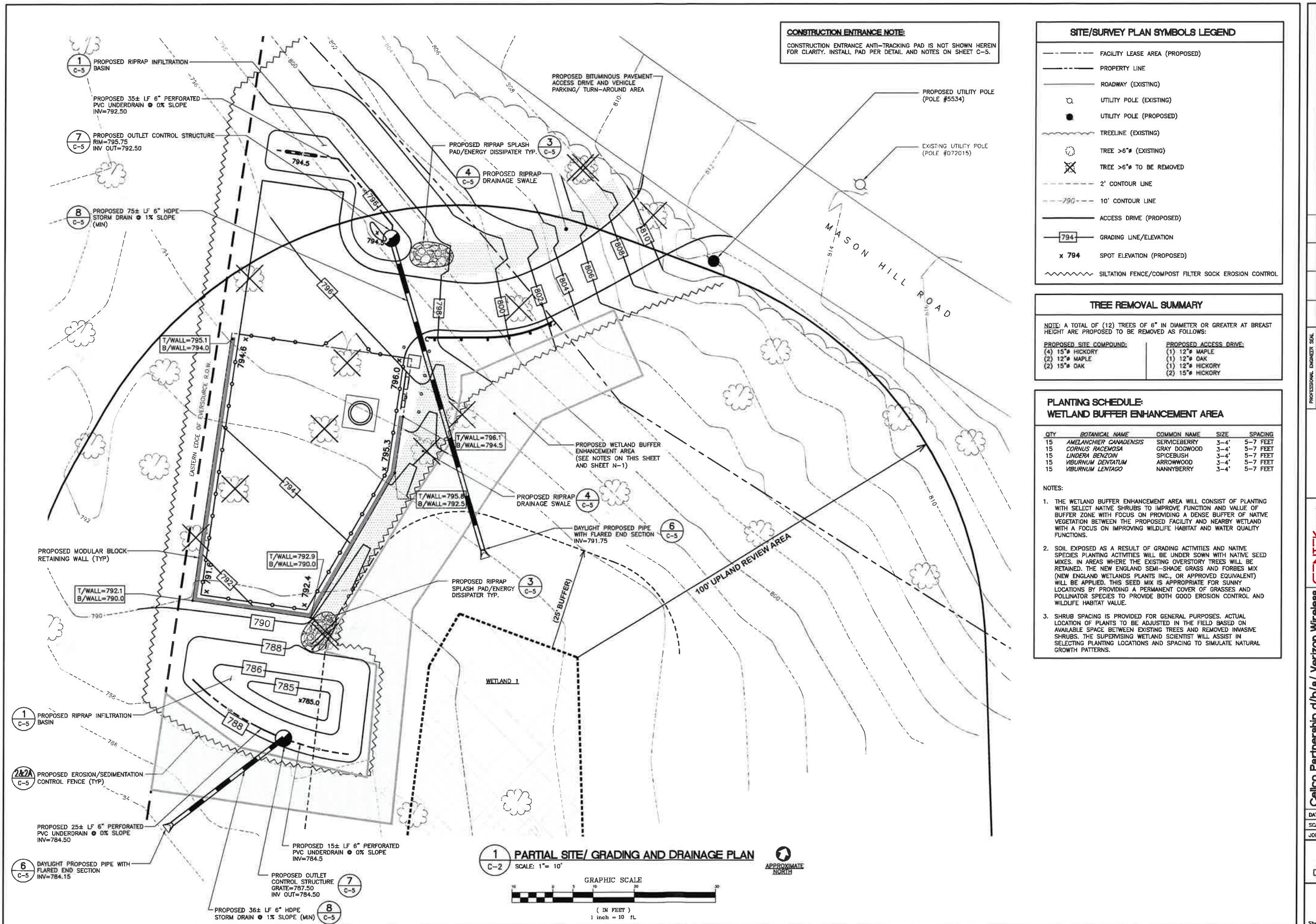
3. ALL PLANT MATERIALS INSTALLED SHALL MEET OR EXCEED THE SPECIFICATIONS OF THE "AMERICAN STANDARDS FOR NURSERY STOCK" BY THE AMERICAN ASSOCIATION OF NURSERYMEN. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CAREFUL INSTALLATION, MAINTENANCE (INCLUDING WATERING), AND ESTABLISHMENT OF NATIVE SHRUB PLANT MATERIAL IN THE MITIGATION AREA. ALL PLANTS SHALL BE GUARANTEED BY THE CONTRACTOR TO REMAIN ALIVE AND HEALTHY FOR A FULL TWELVE (12) MONTH PERIOD.

4. THE SPECIES, SIZE, AND QUANTITY OF THE PLANTINGS WILL FOLLOW THE MITIGATION AREA PLANTING SCHEDULE. THE PROJECT WETLAND SCIENTIST WILL INSPECT PLANT MATERIALS DELIVERED TO THE SITE TO ENSURE THAT THE SPECIMENS ARE HEALTHY, FREE FROM PESTS, AND SUITABLE FOR USE WITHIN THE WETLAND BUFFER MITIGATION AREA. UNSUITABLE SPECIMENS WILL BE REJECTED AND REPLACED WITH SUITABLE SPECIMENS. THE PROJECT WETLAND SCIENTIST MUST APPROVE ANY PLANTING SUBSTITUTIONS. ALL WOODY PLANT STOCK WILL BE CONTAINER-GROWN OR BURLAP BALLED. PLANTING WITHIN THE MITIGATION AREA WILL CONFORM TO THE PLANS OR WILL BE COMPLETED IN ACCORDANCE WITH DIRECTIONS PROVIDED IN THE FIELD BY THE PROJECT WETLAND SCIENTIST. ONLY PLANT MATERIALS NATIVE AND INDIGENOUS TO THE REGION SHALL BE USED.

5. ALL PLANTINGS TO BE SPACED IN A RANDOM PATTERN WITH ASSISTANCE FROM THE PROJECT WETLAND SCIENTIST TO SIMULATE NATURAL GROWTH PATTERNS. PLANT QUANTITIES MAY BE ADJUSTED IN THE FIELD DEPENDING UPON AVAILABLE PLANTING SPACE PROVIDED FOLLOWING WOODY INVASIVE PLANT REMOVAL ACTIVITIES. THE PLANT QUANTITIES NOTED REPRESENT THE MINIMUM QUANTITIES REQUIRED.

6. UPON COMPLETION OF PLANTING AND AS NECESSARY, SHRUBS SHALL BE MULCHED ONE FOOT FROM THE TRUNK/BASE WITH A 2 TO 3-INCH THICK LAYER OF NATURAL MULCH MATERIAL OR OTHER NATURAL ORGANIC MATERIAL FREE OF WEED SEEDS, INVASIVE SPECIES AND ARTIFICIAL COLORING. THE SURROUNDING SEEDED AREAS SHALL RECEIVE A LIGHT APPLICATION OF ONE INCH OF WEED FREE STRAW.


MITIGATION MONITORING SUCCESS STANDARDS AND REPORTING

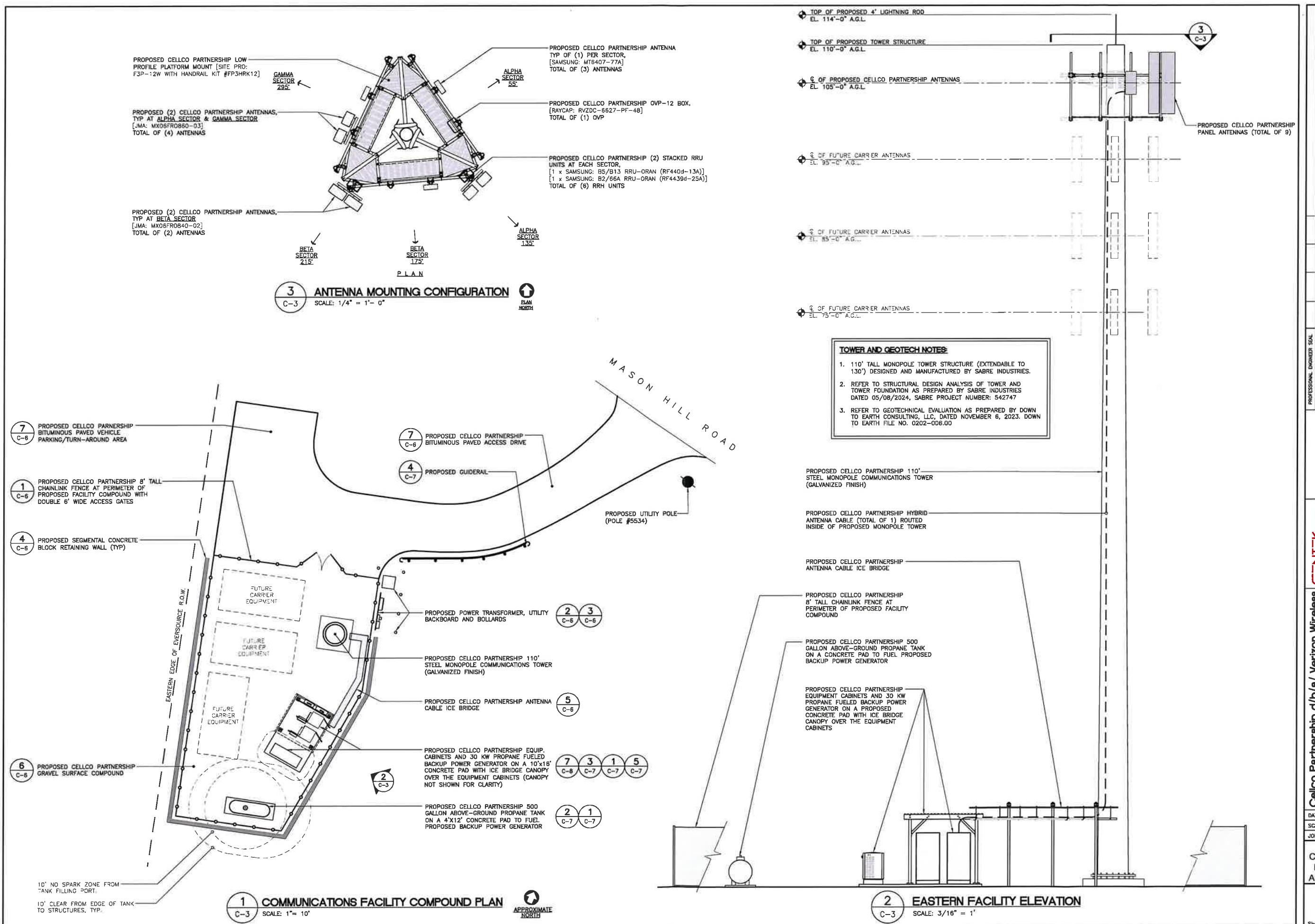

1. THE MITIGATION AREA WILL BE ASSESSED USING THREE SUCCESS STANDARDS AS DESCRIBED BELOW. SUCCESS STANDARD 1: AT LEAST 75% OF THE SURFACE AREA OF THE WOODY AND HERBACEOUS UNDERSTORY WITHIN THE MITIGATION AREA SHOULD BE REESTABLISHED WITH INDIGENOUS WOODY AND HERBACEOUS SPECIES. SUCCESS STANDARD 2: VEGETATION SHOULD BE CHECKED TO ENSURE THAT NO MORE THAN 20% OF THE SURFACE AREA IS OCCUPIED BY INVASIVE WOODY SPECIES. SUCCESS STANDARD 3: SOILS WITHIN THE MITIGATION AREA DISTURBED DURING IMPLEMENTATION OF THIS PLAN ARE PERMANENTLY STABILIZED.

2. A REPORT WILL BE PREPARED UPON THE COMPLETION OF ALL MITIGATION ACTIVITIES DOCUMENTING PROPER IMPLEMENTATION OF THE BUFFER ENHANCEMENT PLAN.

3. MONITORING OF THE BUFFER ENHANCEMENT AREA WILL BE PERFORMED DURING THE TWO (2) YEAR'S GROWING SEASON FOLLOWING COMPLETION OF NATIVE PLANTING ACTIVITIES. A MONITORING REPORT WILL PROVIDE DETAILS ON THE THREE SUCCESS STANDARDS PREVIOUSLY NOTED WITH THE GOAL BEING THAT ALL SUCCESS STANDARDS ARE SATISFIED BY THE END OF THE SECOND GROWING SEASON. THE MONITORING REPORT WILL INCLUDE REPRESENTATIVE PHOTOCAPTURES. THE PERCENT SURVIVAL OF PLANTED SHRUBS AND WILL ALSO INCLUDE OBSERVATIONS OF VEGETATION HEALTH AND DEVELOPMENT ALONG WITH ANY WILDLIFE OBSERVATIONS. IF FOLLOWING COMPLETION OF TWO-YEAR MONITORING PROGRAM NOT ALL OF THE SUCCESS STANDARDS ARE SATISFIED, RECOMMENDATIONS FOR ADDITIONAL MONITORING/CORRECTIVE ACTIONS WILL BE INCLUDED IN THE REPORT.

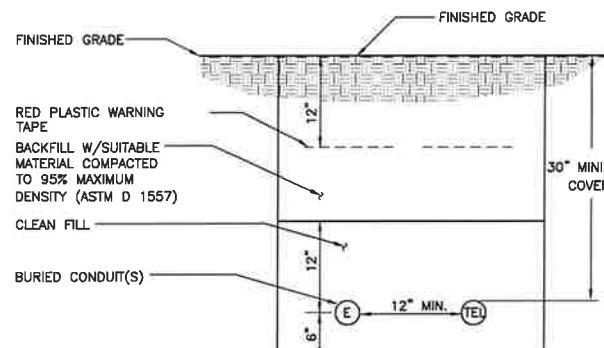
DEVELOPMENT AND MANAGEMENT PLAN		REVIEW COMMENTS	
DATE:	06/20/24	SCALE:	AS NOTED
JOB NO.	24072.01	ENVIRONMENTAL AND BUFFER ENHANCEMENT PLAN NOTES	
Cellco Partnership d/b/a/ Verizon Wireless	LITCHFIELD SE CT	MASON HILL ROAD NORTHFIELD, CT 06778	
(203) 48-0580	(203) 48-8382 Fox	www.CellcoEng.com	
06/20/24	06/20/24		
07/1/24	07/1/24		
07/15/24	07/15/24		
07/29/24	07/29/24		
08/12/24	08/12/24		
08/26/24	08/26/24		
09/09/24	09/09/24		
09/23/24	09/23/24		
10/07/24	10/07/24		
10/21/24	10/21/24		
10/25/24	10/25/24		
11/08/24	11/08/24		
11/12/24	11/12/24		
11/26/24	11/26/24		
12/10/24	12/10/24		
12/14/24	12/14/24		
12/28/24	12/28/24		
01/11/25	01/11/25		
01/15/25	01/15/25		
01/29/25	01/29/25		
02/12/25	02/12/25		
02/16/25	02/16/25		
02/20/25	02/20/25		
02/24/25	02/24/25		
03/07/25	03/07/25		
03/11/25	03/11/25		
03/15/25	03/15/25		
03/19/25	03/19/25		
03/23/25	03/23/25		
03/27/25	03/27/25		
03/31/25	03/31/25		
04/04/25	04/04/25		
04/08/25	04/08/25		
04/12/25	04/12/25		
04/16/25	04/16/25		
04/20/25	04/20/25		
04/24/25	04/24/25		
04/28/25	04/28/25		
05/01/25	05/01/25		
05/05/25	05/05/25		
05/09/25	05/09/25		
05/13/25	05/13/25		
05/17/25	05/17/25		
05/21/25	05/21/25		
05/25/25	05/25/25		
05/29/25	05/29/25		
06/02/25	06/02/25		
06/06/25	06/06/25		
06/10/25	06/10/25		
06/14/25	06/14/25		
06/18/25	06/18/25		
06/22/25	06/22/25		
06/26/25	06/26/25		
06/30/25	06/30/25		
07/04/25	07/04/25		
07/08/25			

				DEVELOPMENT AND MANAGEMENT PLAN	-	REVISED PER REVIEWER COMMENTS
				DEVELOPMENT AND MANAGEMENT PLAN	-	REVISED PER REVIEWER COMMENTS
				DEVELOPMENT AND MANAGEMENT PLAN	-	ISSUED FOR CLIENT REVIEW

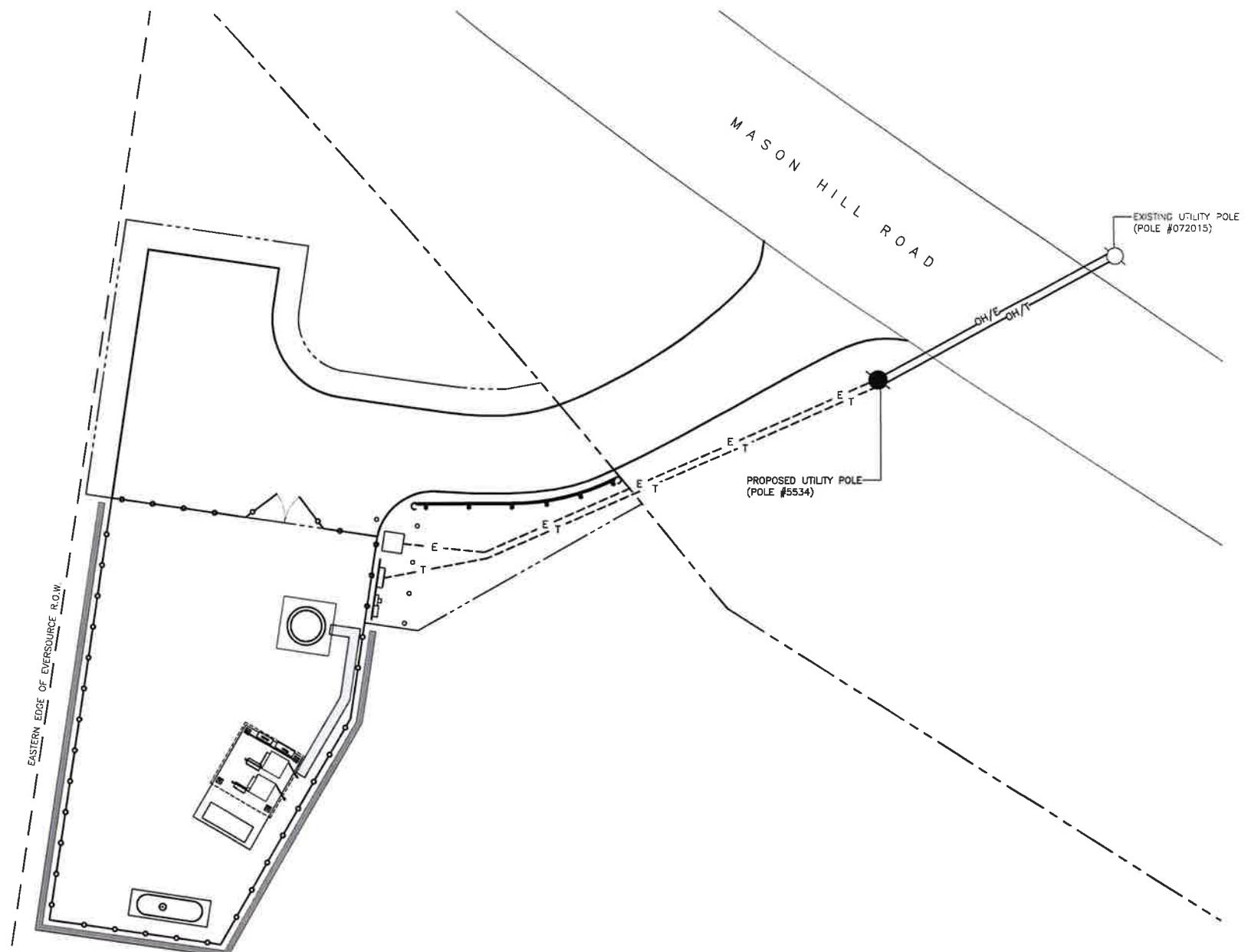

LITCHFIELD SE CT
MASON HILL ROAD
NORTHFIELD, CT 06778

06/20/24
AS NOTED

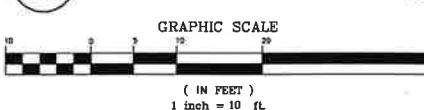
PARTIAL SITE/ GRADING AND DRAINAGE PLAN

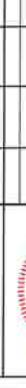

C-2

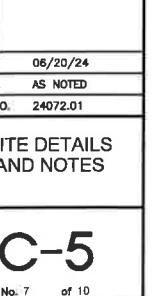
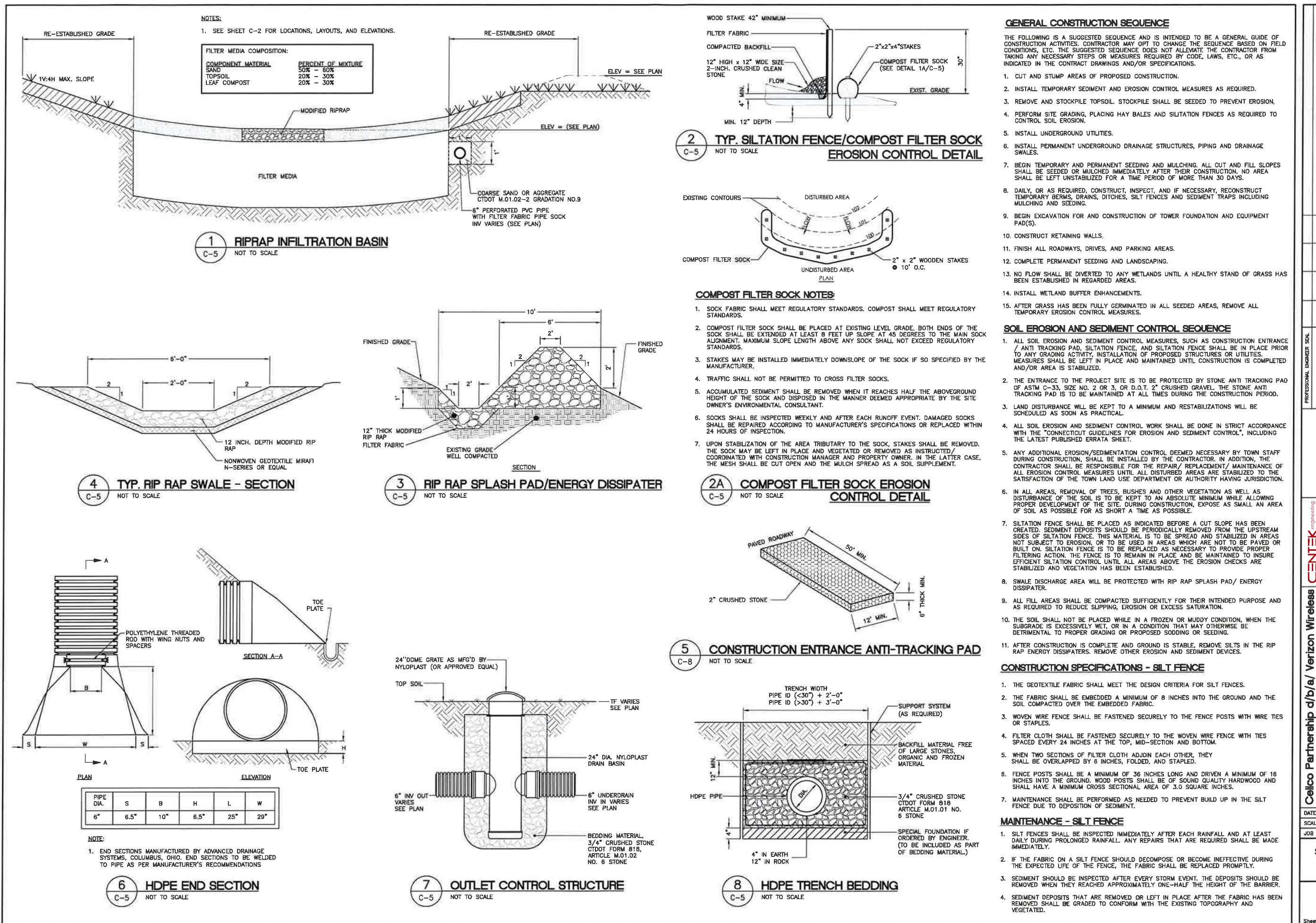
Page No. 4 of 10

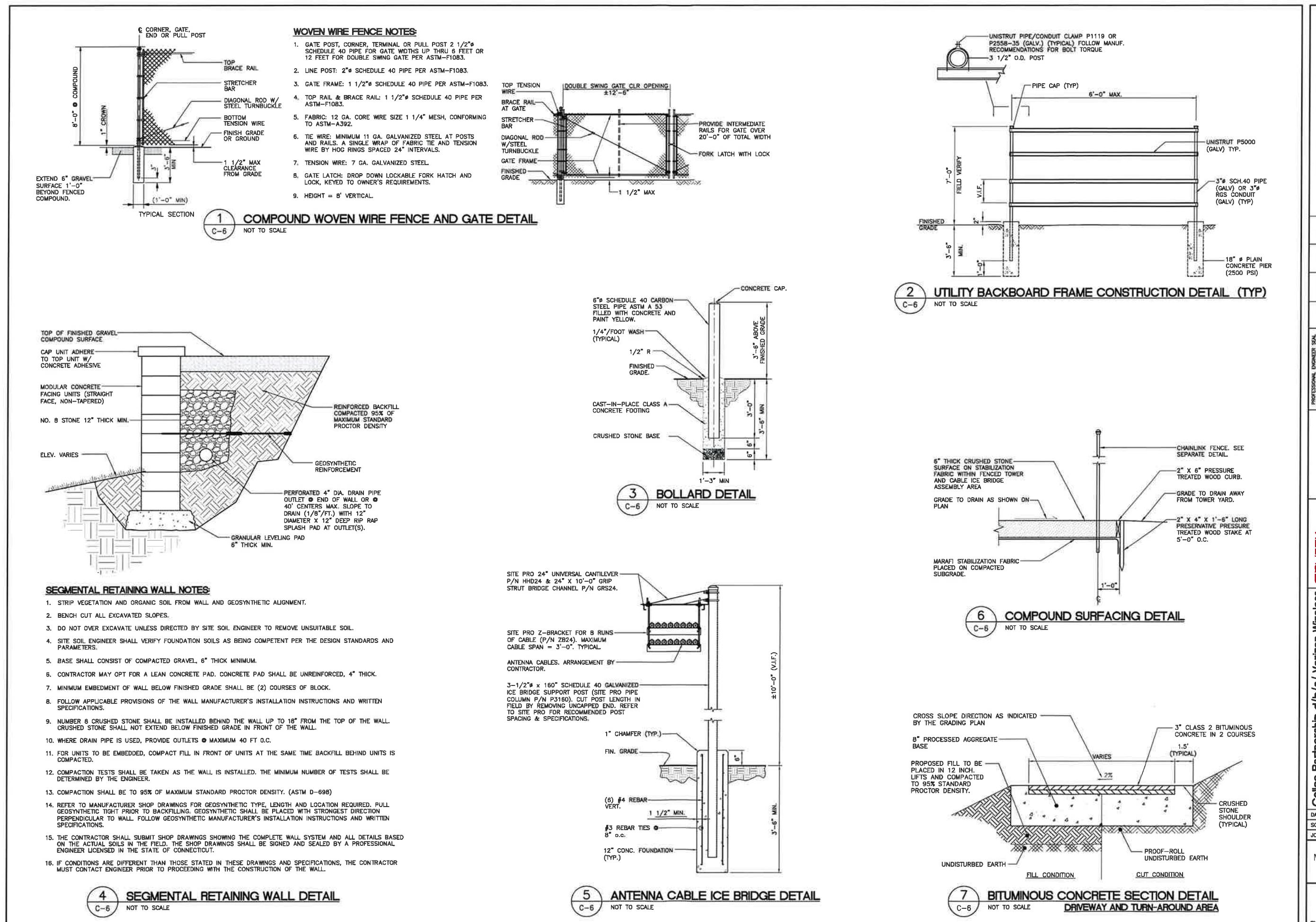


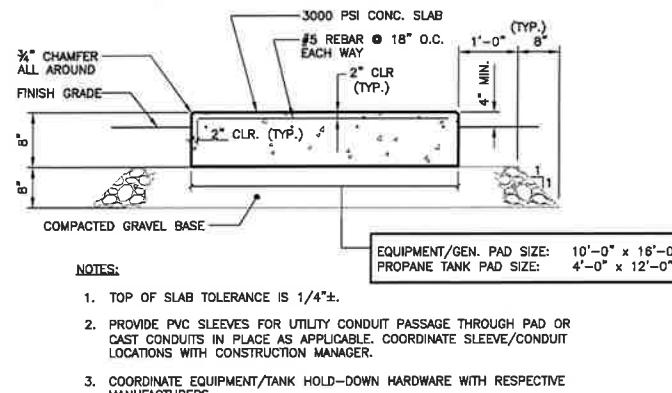
LITCHFIELD SE CT	
MASON HILL ROAD	
NORTHFIELD, CT 06776	
<p style="text-align: center;">(203) 484-0580 (203) 484-8887 Fax 652 North Franklin Road Branford, CT 06405</p> <p style="text-align: right;">www.CenitEng.com</p>	
<p style="text-align: center;">06/20/24</p> <p style="text-align: center;">AS NOTED</p> <p style="text-align: center;">NO. 24072.01</p> <p style="text-align: center;">FACILITY COMPOUND PLAN, ELEVATION AND ANTENNA CONFIG.</p>	
C-3	

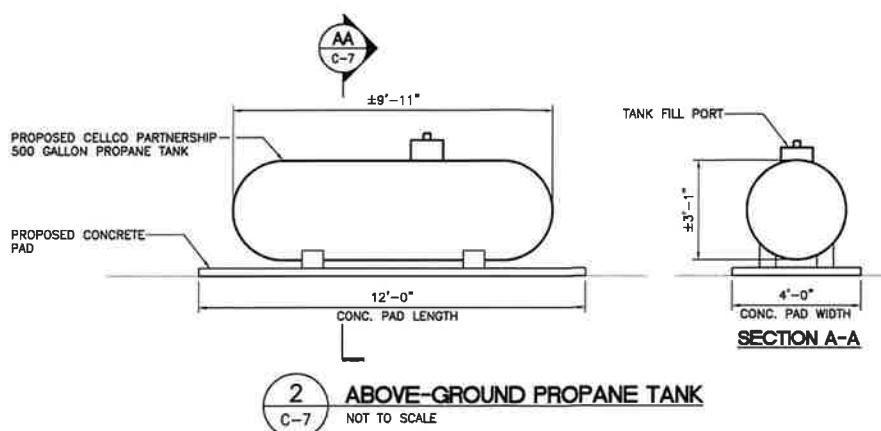

SITE UTILITY PLAN LEGEND		UTILITY NOTES
SYMBOL	DESCRIPTION	
— - - - -	PROPERTY LINE	1. COORDINATE WITH OWNER FOR ALL EASEMENT DOCUMENTS.
— - - - -	ACCESS/ UTILITY EASEMENT LINE (PROPOSED)	2. UTILITY ROUTING SHOWN ON THIS PLAN IS SCHEMATIC. CONTRACTOR SHALL COORDINATE FINAL ROUTING WITH RESPECTIVE UTILITY COMPANIES PRIOR TO PERFORMING ANY UTILITY TRENCH WORK. ALL UTILITY CONDUITS AND PULL BOXES SHALL BE LOCATED WITHIN THE PROPOSED ACCESS/UTILITY EASEMENT.
-T-----T--	UNDERGROUND COMMUNICATION CONDUIT (PROPOSED)	3. UTILITY PULL BOXES/Silos TO BE TRAFFIC RATED AND INSTALLED IN APPROXIMATE LOCATIONS SHOWN ON THIS PLAN, BUT NOT TO EXCEED 450' INTERVALS. CONTRACTOR TO COORDINATE FINAL PULL BOX LOCATIONS WITH RESPECTIVE LOCAL UTILITY COMPANIES.
-E-----E--	UNDERGROUND ELECTRICAL CONDUIT (PROPOSED)	4. CONTRACTOR SHALL COORDINATE ALL PERMITS AND PROCEDURES FOR CONDUIT INSTALLATION ALONG STREET/R.O.W.
— OH/T — -	OVERHEAD FIBER TELCO UTILITY LINE (PROPOSED)	5. PLAN IS FOR UTILITY ROUTING INFORMATION ONLY. SOME OTHER ELEMENTS NOT SHOWN FOR CLARITY. REFER TO CIVIL DRAWINGS FOR ALL OTHER EXISTING AND PROPOSED SITE INFORMATION.
— OH/E — -	OVERHEAD ELECTRICAL UTILITY LINE (PROPOSED)	

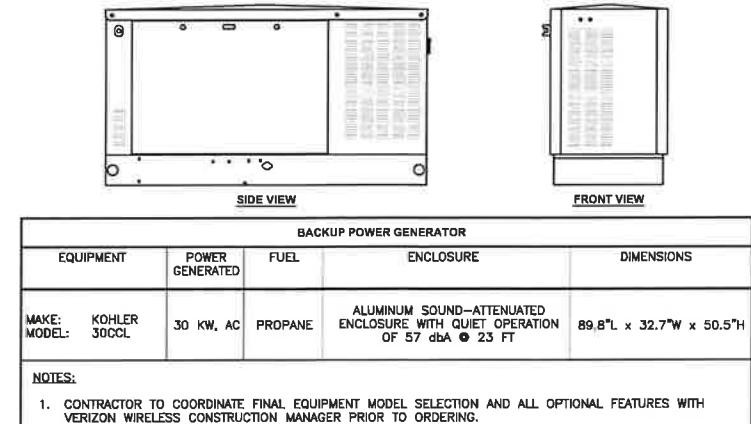




2 TYPICAL ELECTRICAL/TEL TRENCH DETAILS
C-4 NOT TO SCALE




1 FACILITY SITE UTILITY PLAN
C-4 SCALE: 1" = 10'


Cellco Partnership d/b/a/ Verizon Wireless		PROFESSIONAL ENGINEER'S SEAL	
 CENTEK engineering <small>Centek on Solutions</small>		 vertical bridge <small>Vertical Bridge Engineering, Inc. 117 Main Street, Suite 100 Branford, CT 06405 www.CentekEng.com</small>	
LITCHFIELD SE CT MASON HILL ROAD NORTHFIELD, CT 06778		DATE: 06/20/24 SCALE: AS NOTED JOB NO.: 24072.01	DEVELOPMENT AND MANAGEMENT PLAN DEVELOPMENT AND MANAGEMENT PLAN – REVISED PER REVIEWER COMMENTS DEVELOPMENT AND MANAGEMENT PLAN – REVISED PER REVIEWER COMMENTS DEVELOPMENT AND MANAGEMENT PLAN – ISSUED FOR CLIENT REVIEW
		REV. DATE: DRAWN BY: CHKD BY: DESCRIPTION:	
FACILITY SITE UTILITY PLAN AND DETAILS			

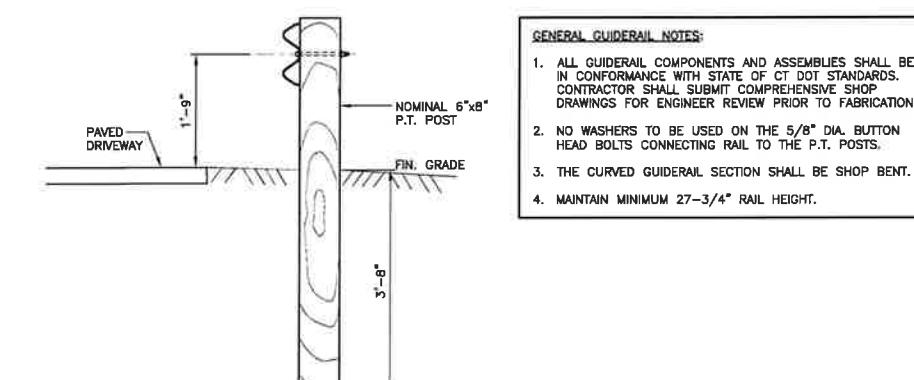


1 CONCRETE EQUIPMENT/TANK PAD DETAIL
C-7 NOT TO SCALE

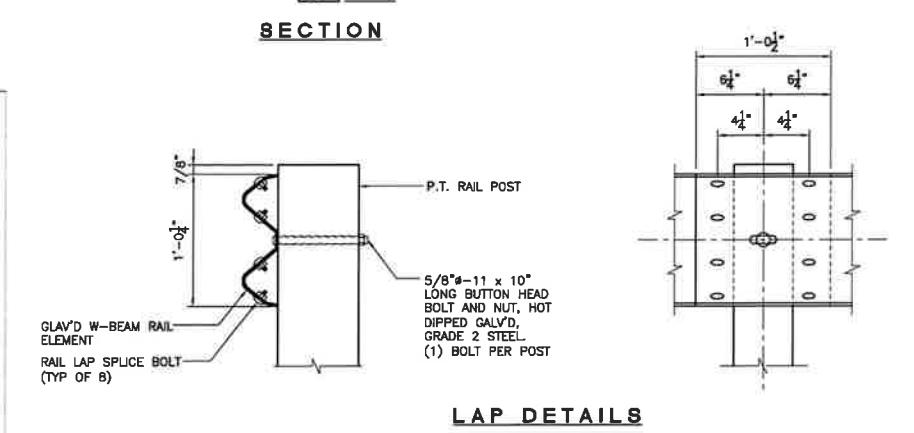
2 ABOVE-GROUND PROPANE TANK
C-7 NOT TO SCALE

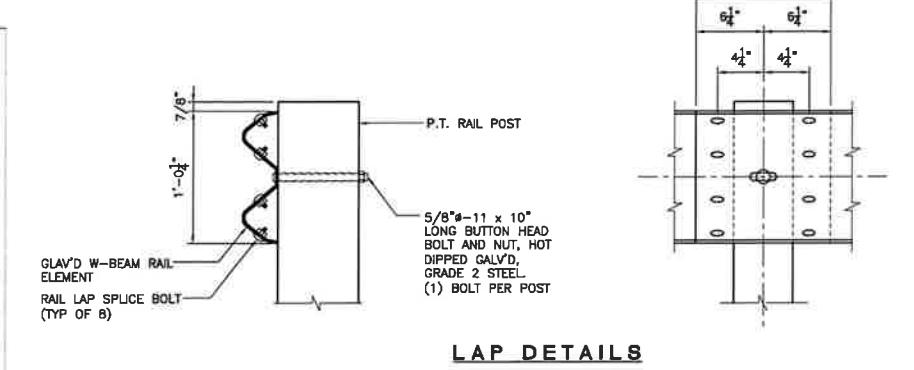


3 BACK-UP POWER GENERATOR
C-7 NOT TO SCALE


BACKUP POWER GENERATOR				
EQUIPMENT	POWER GENERATED	FUEL	ENCLOSURE	DIMENSIONS
MAKE: KOHLER MODEL: 30CCL	30 KW, AC	PROPANE	ALUMINUM SOUND-ATTENUATED ENCLOSURE WITH QUIET OPERATION OF 57 dBA @ 23 FT	89.8" L x 32.7" W x 50.5" H

NOTES:


1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION AND ALL OPTIONAL FEATURES WITH VZERON WIRELESS CONSTRUCTION MANAGER PRIOR TO ORDERING.


4 TYPICAL GUIDERAIL DETAILS
C-7 NOT TO SCALE

GENERAL GUIDERAIL NOTES:

LAP DETAILS

10'-0"

8 1/2"

8 1/2"

3/4" MIN. THICK 22 GAGE FORM DECK (GALV.)

B

CBx11.5

18"

18"

18"

18"

HSS 4x4x5/8"

HSS 4x4x5/8"

CONCRETE PAD
(SEE SEPARATE DETAIL)

FIN. GRAD

EAST ELEVATION

5 EQUIPMENT ICE BRIDGE CANOPY ELEVATIONS
C-7 NOT TO SCALE

Cellco Partnership d/b/a/ Verizon Wireless		CENTEK engineering		PROFESSIONAL ENGINEER SEAL	
Cellco on Solutions™		 <small>750 PARK OF CHAPICE, SUITE 1000 ROCKAWAY, NJ 07866</small>			
DATE:	06/20/24	SCALE:	AS NOTED	REV.	DATE
JOB NO.:	24072.01	DRAWN BY CHKD BY			
MISCELLANEOUS DETAILS					
C-7					

ATTACHMENT 2

Structural Design Report

110' Extendible to 130' Monopole

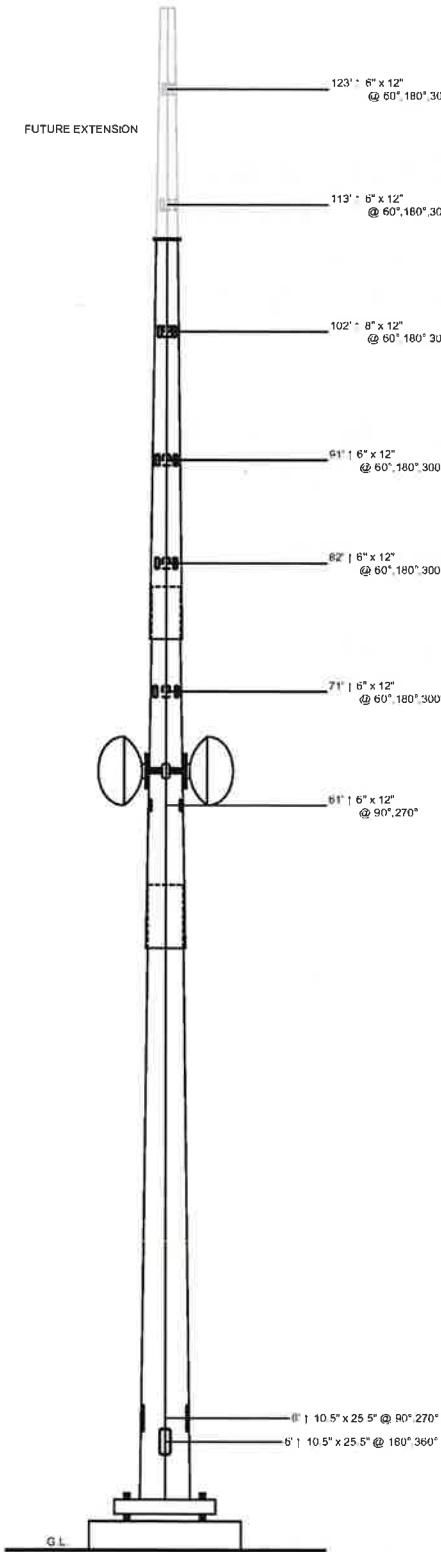
Site: Litchfield SE, CT

Site Number: US-CT-5057

Prepared for: VERTICAL BRIDGE REIT, LLC
by: Sabre Industries™

Job Number: 542747

May 8, 2024


Monopole Profile.....	1
Foundation Design Summary.....	2
Pole Calculations.....	3-20
Foundation Calculations.....	21-22

Digitally Signed By Robert
Beacom
DN:
C=US, SERIALNUMBER=MAS20
240205295328, ST=Texas, L=Alv
arado, O=SABRE INDUSTRIES,
INC., CN=Robert Beacom Date:
2024.05.08 13:31:32

5/8/24

Length (ft)	53'-3"	53'-3"	31'-3"	34'-6"	20'-0"
Number Of Sides	3/8"	18			
Thickness (in)		5/16"			1/4"
Lap Splice (ft)		5'-6"		4'-6"	
Top Diameter (in)	37.5"	30.47"		22.05"	16.1"
Bottom Diameter (in)	53.34"	39.76"		32.31"	22.05"
Taper (in/ft)		0.2974			
Grade		A572-55			
Weight (lbs)	11818	4050		3130	1444
Overall Steel Height (ft)		109			20 (Extension)

Designed Appurtenance Loading

Elev	Description	Tx-Line
126/84**	(1) 30,000 Sq. In. (Ka = 0.82) + 8,000 lbs	(12) 1 5/8"
116/74**	(1) 30,000 Sq. In. (Ka = 0.82) + 8,000 lbs	(12) 1 5/8"
105	(1) 42,000 Sq.In. (Ka = 0.82) + 12,000 lb	(18) 1 5/8"
94	(1) 30,000 Sq. In. (Ka = 0.82) + 8,000 lbs	(12) 1 5/8"
64	(2) Dish Mount (Monopole Only) - Pipe Mount (up to 6' Dish)	
64	(2) 6' Solid Dish W/ Radome	(2) 1 5/8"

Design Criteria - ANSI/TIA-222-H

Wind Speed (No Ice)	115 mph
Wind Speed (Ice)	50 mph
Design Ice Thickness	1.00 in
Risk Category	II
Exposure Category	Site-Specific
Topographic Factor Procedure	Method 1 (Simplified)
Topographic Category	1
Ground Elevation	793 ft
Seismic Importance Factor, Ie	1.00
0.2-sec Spectral Response, Ss	0.182 g
1-sec Spectral Response, S1	0.054 g
Site Class	C
Seismic Design Category	A
Basic Seismic Force-Resisting System	Telecommunication Tower (Pole, Steel)

Limit State Load Combination Reactions

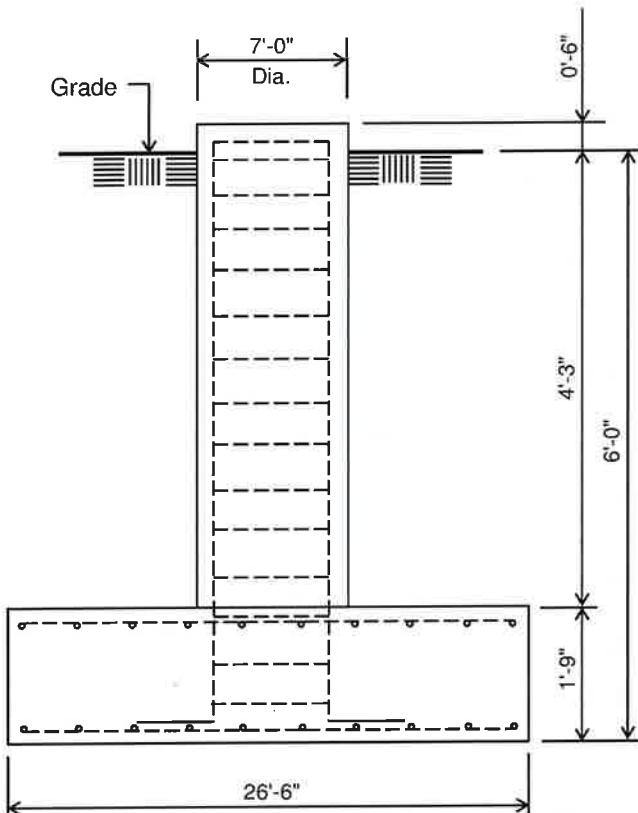
Load Combination	Axial (kips)	Shear (kips)	Moment (ft-k)	Deflection (ft)	Sway (deg)
1.2 D + 1.0 Wo	71.69	36.86	3888.97	9.5	8.13
0.9 D + 1.0 Wo	53.76	37.08	3798.05	9.15	7.78
1.2 D + 1.0 Di + 1.0 Wi	118.91	10.71	1229.3	3.18	2.74
1.2 D + 1.0 Ev + 1.0 Eh	74.07	1.78	217.22	0.58	0.51
0.9 D - 1.0 Ev + 1.0 Eh	52.23	1.81	211.72	0.56	0.49
1.0 D - 1.0 Wo (Swayco @ 60 mph)	59.71	9.02	936.8	2.31	1.95

Base Plate Dimensions

Base Plate Dimensions					
Shape	Diameter	Thickness	Bolt Circle	Bolt Qty	Bolt Diameter
Round	65.75"	2"	60"	14	2.25"

Anchor Bolt Dimensions

Length	Diameter	Hole Diameter	Weight	Type	Finish
84"	2.25"	2.625"	1695.4	A615-75	Galv


Notes

- 1) Antenna Feed Lines Run Inside Pole
- 2) All dimensions are above ground level, unless otherwise specified.
- 3) Weights shown are estimates. Final weights may vary.
- 4) This tower design and, if applicable, the foundation design(s) shown on the following page(s) also meet or exceed the requirements of the 2022 Connecticut Building Code.
- 5) Full Height Step Bolts
- 6) Tower Rating: 99.9%

** These Appurtenances cannot be installed at the higher elevation until the Monopole has been extended.

<p>Sabre Industries INNOVATION DELIVERED</p> <p>Information contained herein is the sole property of Sabre Communications Corporation, constitutes a trade secret as defined by Iowa Code Ch. 560 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Communications Corporation.</p>	<p>Job: 542747</p> <p>Customer: VERTICAL BRIDGE REIT, LLC</p> <p>Site Name: Litchfield SE, CT US-CT-5057</p> <p>Description: 110' ext. 130' Monopole</p> <p>Date: 5/8/2024 By: REB</p>
---	---

Customer: VERTICAL BRIDGE REIT, LLC
Site: Litchfield SE, CT US-CT-5057
110' Monopole Extendible to 130'

ELEVATION VIEW
(52.29 Cu. Yds.)
(1 REQUIRED; NOT TO SCALE)

Notes:

- 1) Concrete shall have a minimum 28-day compressive strength of 4,500 psi, in accordance with ACI 318-14.
- 2) Rebar to conform to ASTM specification A615 Grade 60.
- 3) All rebar to have a minimum of 3" concrete cover.
- 4) All exposed concrete corners to be chamfered 3/4".
- 5) The foundation design is based on the geotechnical report by Down to Earth Consulting, LLC project no. 0202-006.00, dated: 11/6/23.
- 6) See the geotechnical report for compaction requirements, if specified.
- 7) 4.25 ft of soil cover is required over the entire area of the foundation slab.
- 8) This foundation is designed for a max capacity ratio of 95%.
- 9) The bottom anchor bolt template shall be positioned as closely as possible to the bottom of the anchor bolts.

Rebar Schedule for Pad and Pier	
Pier	(36) #8 vertical rebar w/ hooks at bottom w/ #5 ties, (2) within top 5" of pier, then 4" C/C
Pad	(31) #10 horizontal rebar evenly spaced each way top and bottom (124 total)

Information contained herein is the sole property of Sabre Industries, constitutes a trade secret as defined by Iowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Industries.

===== (USA 222-R) - Monopole Spatial Analysis

(c)2017

Guy mast Inc.

Tel: (416) 736-7453

Fax: (416) 736-4372

Web: www.guy mast .com

Processed under license at:

Sabre Towers and Poles

on: 8 may 2024 at: 12:56:53

110' ext. 130' Monopole / Litchfield SE, CT

* All pole diameters shown on the following pages are across corners.
See profile drawing for widths across flats.

POLE GEOMETRY

ELEV	SECTION No.	OUTSIDE	THICK	RESISTANCES	SPLICE	OVERLAP...	w/t	
NAME	SIDE	DIAM	-NESS	**Fn	**Mn	TYPE	LENGTH	RATIO
ft		in	in	kip	kip		ft	
129.0				934.4	302.3			
	A	18	16.35	0.250				10.1
			22.39	0.250	1285.0	574.1		
109.0				22.39	0.250	1285.0	574.1	
	B	18	31.44	0.250	1692.5	1068.9		14.3
79.0			31.44	0.250	1692.5	1068.9		
	B/C	18	32.31	0.312	2292.8	1482.8	SLIP	4.50 1.70
74.5			32.31	0.312	2292.8	1482.8		
	C	18	38.71	0.312	2610.4	2029.1		16.9
53.2			38.71	0.312	2610.4	2029.1		
	C/D	18	39.75	0.375	3358.3	2673.6	SLIP	5.50 1.69
47.7			39.75	0.375	3358.3	2673.6		
	D	18	54.16	0.375	4142.1	4516.0		17.5
0.0								

POLE ASSEMBLY

SECTION	BASE	BOLTS AT BASE OF SECTION					CALC
NAME	ELEV	NUMBER	TYPE	DIAM	STRENGTH	THREADS IN	BASE
	ft			in	ksi	SHEAR PLANE	ELEV
A	109.000	0	A325	0.00	92.0	0	109.000
B	74.500	0	A325	0.00	92.0	0	74.500
C	47.750	0	A325	0.00	92.0	0	47.750
D	0.000	0	A325	0.00	92.0	0	0.000

POLE SECTIONS

SECTION	No. of	LENGTH	OUTSIDE	DIAMETER	BEND	MAT-	FLANGE	FLANGE	WELD
NAME	SIDES	BOT	TOP	RAD	ERIAL	BOT	TOP	GROUP	ID..
		*	*	in	ID			BOT	TOP
A	18	20.00	22.39	16.35	0.625	1	0	0	0
B	18	34.50	32.81	22.39	0.625	2	0	0	0
C	18	31.25	40.38	30.94	0.625	3	0	0	0
D	18	53.25	54.16	38.08	0.625	4	0	0	0

* - Diameter of circumscribed circle

MATERIAL TYPES

=====

TYPE OF SHAPE	TYPE NO	NO OF ELEM.	ORIENT	HEIGHT	WIDTH	.THICKNESS.		IRREGULARITY	
						&	deg	in	in
PL	1	1	0.0	22.39	0.25	0.250	0.250	0.00	0.0
PL	2	1	0.0	32.81	0.25	0.250	0.250	0.00	0.0
PL	3	1	0.0	40.38	0.31	0.312	0.312	0.00	0.0
PL	4	1	0.0	54.16	0.38	0.375	0.375	0.00	0.0

& - With respect to vertical

MATERIAL PROPERTIES

=====

MATERIAL TYPE NO.	ELASTIC MODULUS ksi	UNIT WEIGHT pcf	. STRENGTH ..		THERMAL COEFFICIENT /deg
			Fu ksi	Fy ksi	
1	29000.0	490.0	80.0	65.0	0.00001170
2	29000.0	490.0	80.0	65.0	0.00001170
3	29000.0	490.0	80.0	65.0	0.00001170
4	29000.0	490.0	80.0	65.0	0.00001170

* Only 5 condition(s) shown in full

* Some concentrated wind loads may have been derived from full-scale wind tunnel testing

LOADING CONDITION A

115 mph wind with no ice. Wind Azimuth: 0° (1.2 D + 1.0 Wo)

LOADS ON POLE

=====

LOAD TYPE	ELEV	APPLY..LOAD..AT	LOAD FORCES MOMENTS		
				RADIUS	AZI	AZI	HORIZ	DOWN
	ft	ft	ft	kip	kip	ft-kip	ft-kip	
C	125.000	0.00	0.0	0.0000	1.8720	0.0000	0.0000	
C	125.000	0.00	0.0	6.1999	9.6000	0.0000	0.0000	
C	124.500	0.00	0.0	0.0238	0.0151	0.0000	0.0000	
C	115.000	0.00	0.0	0.0000	1.7222	0.0000	0.0000	
C	115.000	0.00	0.0	6.0551	9.6000	0.0000	0.0000	
C	115.000	0.00	0.0	0.0258	0.0168	0.0000	0.0000	
C	105.000	0.00	0.0	0.0251	0.0168	0.0000	0.0000	
C	104.000	0.00	0.0	0.0000	2.3363	0.0000	0.0000	
C	104.000	0.00	0.0	8.2396	14.4000	0.0000	0.0000	
C	95.000	0.00	0.0	0.0282	0.0168	0.0000	0.0000	
C	93.000	0.00	0.0	0.0000	1.3928	0.0000	0.0000	
C	93.000	0.00	0.0	6.5761	9.6000	0.0000	0.0000	
C	85.000	0.00	0.0	0.0274	0.0168	0.0000	0.0000	
C	75.000	0.00	0.0	0.0266	0.0168	0.0000	0.0000	
C	65.000	0.00	0.0	0.0257	0.0168	0.0000	0.0000	
C	63.000	0.00	0.0	0.0000	0.1572	0.0000	0.0000	
C	55.000	0.00	0.0	0.0247	0.0168	0.0000	0.0000	
C	45.000	0.00	0.0	0.0235	0.0168	0.0000	0.0000	
C	35.000	0.00	0.0	0.0221	0.0168	0.0000	0.0000	
C	25.000	0.00	0.0	0.0204	0.0168	0.0000	0.0000	
C	15.000	0.00	0.0	0.0180	0.0168	0.0000	0.0000	
D	129.000	0.00	180.0	0.0	0.0321	0.0538	0.0000	0.0000
D	79.000	0.00	180.0	0.0	0.0593	0.0972	0.0000	0.0000
D	79.000	0.00	180.0	0.0	0.0622	0.2266	0.0000	0.0000
D	74.500	0.00	180.0	0.0	0.0622	0.2266	0.0000	0.0000
D	74.500	0.00	180.0	0.0	0.0628	0.1295	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0686	0.1513	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0694	0.3411	0.0000	0.0000
D	47.750	0.00	180.0	0.0	0.0694	0.3411	0.0000	0.0000
D	47.750	0.00	180.0	0.0	0.0707	0.1929	0.0000	0.0000
D	5.969	0.00	180.0	0.0	0.0663	0.2443	0.0000	0.0000
D	5.969	0.00	180.0	0.0	0.0673	0.2528	0.0000	0.0000

D	0.000	0.00	180.0	0.0	0.0673	0.2528	0.0000	0.0000
---	-------	------	-------	-----	--------	--------	--------	--------

ANTENNA LOADING

TYPE	ANTENNA		ATTACHMENT		ANTENNA FORCES			
	ELEV ft	AZI	RAD ft	AZI	AXIAL kip	SHEAR kip	GRAVITY kip	TORSION ft-kip
STD+R	63.0	270.0	2.2	270.0	0.13	0.40	0.24	0.91
STD+R	63.0	90.0	2.2	90.0	0.13	-0.40	0.24	-0.91

LOADING CONDITION M

115 mph wind with no ice. Wind Azimuth: 0° (0.9 D + 1.0 Wo)

LOADS ON POLE

LOAD TYPE	ELEV ft	APPLY..LOAD..AT RADIUS ft	LOAD AZI	FORCES			MOMENTS	
				HORIZ kip	DOWN kip	VERTICAL ft-kip	TORSNAL ft-kip	
C	125.000	0.00	0.0	0.0000	1.4040	0.0000	0.0000	
C	125.000	0.00	0.0	6.1999	7.2000	0.0000	0.0000	
C	124.500	0.00	0.0	0.0238	0.0113	0.0000	0.0000	
C	115.000	0.00	0.0	0.0000	1.2917	0.0000	0.0000	
C	115.000	0.00	0.0	6.0551	7.2000	0.0000	0.0000	
C	115.000	0.00	0.0	0.0258	0.0126	0.0000	0.0000	
C	105.000	0.00	0.0	0.0251	0.0126	0.0000	0.0000	
C	104.000	0.00	0.0	0.0000	1.7522	0.0000	0.0000	
C	104.000	0.00	0.0	8.2396	10.8000	0.0000	0.0000	
C	95.000	0.00	0.0	0.0282	0.0126	0.0000	0.0000	
C	93.000	0.00	0.0	0.0000	1.0446	0.0000	0.0000	
C	93.000	0.00	0.0	6.5761	7.2000	0.0000	0.0000	
C	85.000	0.00	0.0	0.0274	0.0126	0.0000	0.0000	
C	75.000	0.00	0.0	0.0266	0.0126	0.0000	0.0000	
C	65.000	0.00	0.0	0.0257	0.0126	0.0000	0.0000	
C	63.000	0.00	0.0	0.0000	0.1179	0.0000	0.0000	
C	55.000	0.00	0.0	0.0247	0.0126	0.0000	0.0000	
C	45.000	0.00	0.0	0.0235	0.0126	0.0000	0.0000	
C	35.000	0.00	0.0	0.0221	0.0126	0.0000	0.0000	
C	25.000	0.00	0.0	0.0204	0.0126	0.0000	0.0000	
C	15.000	0.00	0.0	0.0180	0.0126	0.0000	0.0000	
D	129.000	0.00	180.0	0.0	0.0321	0.0403	0.0000	0.0000
D	79.000	0.00	180.0	0.0	0.0593	0.0729	0.0000	0.0000
D	79.000	0.00	180.0	0.0	0.0622	0.1699	0.0000	0.0000
D	74.500	0.00	180.0	0.0	0.0622	0.1699	0.0000	0.0000
D	74.500	0.00	180.0	0.0	0.0628	0.0971	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0686	0.1134	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0694	0.2558	0.0000	0.0000
D	47.750	0.00	180.0	0.0	0.0694	0.2558	0.0000	0.0000
D	47.750	0.00	180.0	0.0	0.0707	0.1447	0.0000	0.0000
D	5.969	0.00	180.0	0.0	0.0663	0.1832	0.0000	0.0000
D	5.969	0.00	180.0	0.0	0.0673	0.1896	0.0000	0.0000
D	0.000	0.00	180.0	0.0	0.0673	0.1896	0.0000	0.0000

ANTENNA LOADING

TYPE	ANTENNA		ATTACHMENT		ANTENNA FORCES			
	ELEV ft	AZI	RAD ft	AZI	AXIAL kip	SHEAR kip	GRAVITY kip	TORSION ft-kip
STD+R	63.0	270.0	2.2	270.0	0.13	0.40	0.18	0.91
STD+R	63.0	90.0	2.2	90.0	0.13	-0.40	0.18	-0.91

LOADING CONDITION Y

50 mph wind with 1 ice. Wind Azimuth: 0° (1.2 D + 1.0 Di + 1.0 Wi)

LOADS ON POLE

=====

LOAD TYPE	ELEV ft	APPLY..LOAD..AT RADIUS ft	AZI ft	LOAD AZI	FORCES.....		MOMENTS.....	
					HORIZ kip	DOWN kip	VERTICAL ft-kip	TORSNAL ft-kip
C	125.000	0.00	0.0	0.0	0.0000	1.8720	0.0000	0.0000
C	125.000	0.00	0.0	0.0	1.7079	18.7469	0.0000	0.0000
C	124.500	0.00	0.0	0.0	0.0247	0.0271	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.0000	1.7222	0.0000	0.0000
C	115.000	0.00	0.0	0.0	1.6637	18.6716	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.0267	0.0288	0.0000	0.0000
C	105.000	0.00	0.0	0.0	0.0258	0.0288	0.0000	0.0000
C	104.000	0.00	0.0	0.0	0.0000	2.3363	0.0000	0.0000
C	104.000	0.00	0.0	0.0	2.2571	27.8725	0.0000	0.0000
C	95.000	0.00	0.0	0.0	0.0287	0.0288	0.0000	0.0000
C	93.000	0.00	0.0	0.0	0.0000	1.3928	0.0000	0.0000
C	93.000	0.00	0.0	0.0	1.7951	18.4828	0.0000	0.0000
C	85.000	0.00	0.0	0.0	0.0277	0.0288	0.0000	0.0000
C	75.000	0.00	0.0	0.0	0.0266	0.0288	0.0000	0.0000
C	65.000	0.00	0.0	0.0	0.0254	0.0288	0.0000	0.0000
C	63.000	0.00	0.0	0.0	0.0000	0.1572	0.0000	0.0000
C	55.000	0.00	0.0	0.0	0.0240	0.0288	0.0000	0.0000
C	45.000	0.00	0.0	0.0	0.0225	0.0288	0.0000	0.0000
C	35.000	0.00	0.0	0.0	0.0208	0.0288	0.0000	0.0000
C	25.000	0.00	0.0	0.0	0.0186	0.0288	0.0000	0.0000
C	15.000	0.00	0.0	0.0	0.0158	0.0288	0.0000	0.0000
D	129.000	0.00	180.0	0.0	0.0120	0.0793	0.0000	0.0000
D	79.000	0.00	180.0	0.0	0.0210	0.1400	0.0000	0.0000
D	79.000	0.00	180.0	0.0	0.0219	0.2708	0.0000	0.0000
D	74.500	0.00	180.0	0.0	0.0219	0.2708	0.0000	0.0000
D	74.500	0.00	180.0	0.0	0.0221	0.1744	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0239	0.2019	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0241	0.3929	0.0000	0.0000
D	47.750	0.00	180.0	0.0	0.0241	0.3929	0.0000	0.0000
D	47.750	0.00	180.0	0.0	0.0245	0.2465	0.0000	0.0000
D	5.969	0.00	180.0	0.0	0.0226	0.3022	0.0000	0.0000
D	5.969	0.00	180.0	0.0	0.0229	0.3063	0.0000	0.0000
D	0.000	0.00	180.0	0.0	0.0229	0.3063	0.0000	0.0000

ANTENNA LOADING

=====

TYPE	ANTENNA.....		ATTACHMENT		ANTENNA FORCES.....			
	ELEV ft	AZI ft	RAD ft	AZI	AXIAL kip	SHEAR kip	GRAVITY kip	TORSION ft-kip
STD+R	63.0	270.0	2.2	270.0	0.03	0.08	0.58	0.19
STD+R	63.0	90.0	2.2	90.0	0.03	-0.08	0.58	-0.19

=====

LOADING CONDITION AK

Seismic - Azimuth: 0° (1.2 D + 1.0 Ev + 1.0 Eh)

LOADS ON POLE

=====

LOAD TYPE	ELEV ft	APPLY..LOAD..AT RADIUS ft	AZI ft	LOAD AZI	FORCES.....		MOMENTS.....	
					HORIZ kip	DOWN kip	VERTICAL ft-kip	TORSNAL ft-kip
C	125.000	0.00	0.0	0.0	0.0777	1.9213	0.0000	0.0000
C	125.000	0.00	0.0	0.0	0.3983	9.8528	0.0000	0.0000
C	124.500	0.00	0.0	0.0	0.0006	0.0155	0.0000	0.0000
C	119.000	0.00	0.0	0.0	0.0458	1.2495	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.0006	0.0172	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.0605	1.7676	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.3371	9.8528	0.0000	0.0000
C	105.000	0.00	0.0	0.0	0.0005	0.0172	0.0000	0.0000
C	104.000	0.00	0.0	0.0	0.0671	2.3978	0.0000	0.0000
C	104.000	0.00	0.0	0.0	0.4136	14.7792	0.0000	0.0000
C	95.000	0.00	0.0	0.0	0.0004	0.0172	0.0000	0.0000
C	93.000	0.00	0.0	0.0	0.0320	1.4294	0.0000	0.0000
C	93.000	0.00	0.0	0.0	0.2205	9.8528	0.0000	0.0000
C	91.750	0.00	0.0	0.0	0.0671	3.0820	0.0000	0.0000
C	85.000	0.00	0.0	0.0	0.0003	0.0172	0.0000	0.0000

C	75.000	0.00	0.0	0.0	0.0003	0.0172	0.0000	0.0000
C	65.000	0.00	0.0	0.0	0.0002	0.0172	0.0000	0.0000
C	63.380	0.00	0.0	0.0	0.0469	4.5088	0.0000	0.0000
C	63.000	0.00	0.0	0.0	0.0111	1.0801	0.0000	0.0000
C	63.000	0.00	0.0	0.0	0.0017	0.1613	0.0000	0.0000
C	55.000	0.00	0.0	0.0	0.0001	0.0172	0.0000	0.0000
C	45.000	0.00	0.0	0.0	0.0001	0.0172	0.0000	0.0000
C	35.000	0.00	0.0	0.0	0.0001	0.0172	0.0000	0.0000
C	26.620	0.00	0.0	0.0	0.0219	11.9347	0.0000	0.0000
C	25.000	0.00	0.0	0.0	0.0000	0.0172	0.0000	0.0000
C	15.000	0.00	0.0	0.0	0.0000	0.0172	0.0000	0.0000
D	129.000	0.00	180.0	180.0	0.0000	0.0000	0.0000	0.0000
D	0.000	0.00	180.0	180.0	0.0000	0.0000	0.0000	0.0000

ANTENNA LOADING

TYPE	ANTENNA				ATTACHMENT				ANTENNA FORCES			
	ELEV	AZI	RAD	AZI	AXIAL	SHEAR	GRAVITY	TORSION	kip	kip	kip	ft-kip
ft	ft	ft		kip	kip	kip	ft-kip					
STD+R	63.0	270.0	2.2	270.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
STD+R	63.0	90.0	2.2	90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

LOADING CONDITION AL

Seismic - Azimuth: 0° (0.9 D - 1.0 Ev + 1.0 Eh)

LOADS ON POLE

LOAD TYPE	ELEV ft	APPLY. LOAD. AT ft	LOAD AZI	LOAD AZI	FORCES			MOMENTS		
					HORIZ kip	DOWN kip	VERTICAL ft-kip	TORSNAL ft-kip		
C	125.000	0.00	0.0	0.0	0.0777	1.3547	0.0000	0.0000		
C	125.000	0.00	0.0	0.0	0.3983	6.9472	0.0000	0.0000		
C	124.500	0.00	0.0	0.0	0.0006	0.0109	0.0000	0.0000		
C	119.000	0.00	0.0	0.0	0.0458	0.8810	0.0000	0.0000		
C	115.000	0.00	0.0	0.0	0.0006	0.0122	0.0000	0.0000		
C	115.000	0.00	0.0	0.0	0.0605	1.2463	0.0000	0.0000		
C	115.000	0.00	0.0	0.0	0.3371	6.9472	0.0000	0.0000		
C	105.000	0.00	0.0	0.0	0.0005	0.0122	0.0000	0.0000		
C	104.000	0.00	0.0	0.0	0.0671	1.6907	0.0000	0.0000		
C	104.000	0.00	0.0	0.0	0.4136	10.4208	0.0000	0.0000		
C	95.000	0.00	0.0	0.0	0.0004	0.0122	0.0000	0.0000		
C	93.000	0.00	0.0	0.0	0.0320	1.0078	0.0000	0.0000		
C	93.000	0.00	0.0	0.0	0.2205	6.9472	0.0000	0.0000		
C	91.750	0.00	0.0	0.0	0.0671	2.1731	0.0000	0.0000		
C	85.000	0.00	0.0	0.0	0.0003	0.0122	0.0000	0.0000		
C	75.000	0.00	0.0	0.0	0.0003	0.0122	0.0000	0.0000		
C	65.000	0.00	0.0	0.0	0.0002	0.0122	0.0000	0.0000		
C	63.380	0.00	0.0	0.0	0.0469	3.1791	0.0000	0.0000		
C	63.000	0.00	0.0	0.0	0.0111	0.7616	0.0000	0.0000		
C	63.000	0.00	0.0	0.0	0.0017	0.1138	0.0000	0.0000		
C	55.000	0.00	0.0	0.0	0.0001	0.0122	0.0000	0.0000		
C	45.000	0.00	0.0	0.0	0.0001	0.0122	0.0000	0.0000		
C	35.000	0.00	0.0	0.0	0.0001	0.0122	0.0000	0.0000		
C	26.620	0.00	0.0	0.0	0.0219	8.4152	0.0000	0.0000		
C	25.000	0.00	0.0	0.0	0.0000	0.0122	0.0000	0.0000		
C	15.000	0.00	0.0	0.0	0.0000	0.0122	0.0000	0.0000		
D	129.000	0.00	180.0	180.0	0.0000	0.0000	0.0000	0.0000		
D	0.000	0.00	180.0	180.0	0.0000	0.0000	0.0000	0.0000		

ANTENNA LOADING

TYPE	ANTENNA				ATTACHMENT				ANTENNA FORCES			
	ELEV	AZI	RAD	AZI	AXIAL	SHEAR	GRAVITY	TORSION	kip	kip	kip	ft-kip
ft	ft	ft		kip	kip	kip	ft-kip					
STD+R	63.0	270.0	2.2	270.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
STD+R	63.0	90.0	2.2	90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

=====
===== (USA 222-H) - Monopole Spatial Analysis (c) 2017 Guymast Inc.

Tel: (416) 736-7453

Fax: (416) 736-4372

Web: www.guymast.com

Processed under license at:

Sabre Towers and Poles

on: 8 may 2024 at: 12:56:53

110' ext. 130' Monopole / Litchfield SE, CT

MAXIMUM POLE DEFORMATIONS CALCULATED (w.r.t. wind direction)

MAST ELEV ft	DEFLECTIONS (ft)			ROTATIONS (deg)		
	HORIZONTAL ALONG	HORIZONTAL ACROSS	DOWN	TILT ALONG	TILT ACROSS	TWIST
129.0	9.50J	0.05F	0.99J	8.13J	0.04F	0.00H
124.0	8.81J	0.05H	0.89J	8.13J	0.04F	0.00H
119.0	8.12J	0.05H	0.79J	8.06J	0.04F	0.00H
114.0	7.43J	0.04H	0.70J	7.94J	0.04F	0.00H
109.0	6.76J	0.04H	0.61J	7.73J	0.04F	0.00H
104.7	6.20J	0.04H	0.53J	7.51J	0.04F	0.00H
100.4	5.66J	0.04H	0.46J	7.24J	0.04F	0.00H
96.1	5.13J	0.03H	0.40J	6.92J	0.04F	0.00H
91.9	4.63J	0.03H	0.34J	6.57J	0.04F	0.00H
87.6	4.16J	0.03H	0.29J	6.19J	0.04F	0.00H
83.3	3.72J	0.03H	0.24J	5.78J	0.03F	0.00H
79.0	3.31J	0.02H	0.20J	5.36J	0.03F	0.00H
74.5	2.90J	0.02H	0.16J	4.99J	0.03H	0.00H
71.5	2.65J	0.02H	0.14J	4.73J	0.03H	0.00H
68.4	2.41J	0.02H	0.12J	4.47J	0.03H	0.00H
65.4	2.18J	0.02H	0.10J	4.21J	0.03H	0.00H
62.4	1.96J	0.02H	0.09J	3.95J	0.03H	0.00H
59.3	1.76J	0.01H	0.07J	3.70J	0.03H	0.00H
56.3	1.57J	0.01H	0.06J	3.44J	0.02H	0.00H
53.2	1.40J	0.01H	0.05J	3.20J	0.02H	0.00H
47.7	1.11J	0.01H	0.04J	2.83J	0.02H	0.00H
41.8	0.84J	0.01H	0.02J	2.42J	0.02H	0.00H
35.8	0.61J	0.01H	0.02J	2.03J	0.02H	0.00H
29.8	0.41J	0.00H	0.01J	1.65J	0.01H	0.00H
23.9	0.26J	0.00H	0.00J	1.29J	0.01H	0.00H
17.9	0.14J	0.00H	0.00J	0.95J	0.01H	0.00H
11.9	0.06J	0.00H	0.00J	0.62J	0.01H	0.00H
6.0	0.02J	0.00H	0.00Y	0.30J	0.00H	0.00H
0.0	0.00A	0.00A	0.00A	0.00A	0.00A	0.00A

MAXIMUM ANTENNA AND REFLECTOR ROTATIONS

ELEV ft	ANT AZI deg	ANT TYPE	BEAM DEFLECTIONS (deg)				
			ROLL	YAW	PITCH	TOTAL	
63.0	90.0	STD+R	-3.957 A	0.003 H	-4.005 J	4.005 J	
63.0	270.0	STD+R	3.957 A	0.003 H	4.005 J	4.005 J	

MAXIMUM POLE FORCES CALCULATED (w.r.t. to wind direction)

MAST ELEV ft	TOTAL AXIAL kip	SHEAR.w.r.t. ALONG kip	WIND.DIR ACROSS kip	MOMENT.w.r.t. ALONG ft-kip	WIND.DIR ACROSS ft-kip	TORSION ft-kip
129.0	0.01 J	0.01 U	0.00 F	-0.03 H	-0.01 F	0.00 I
124.0	21.06 AD	6.40 U	0.00 F	-8.20 E	0.01 AG	0.00 F
	21.06 AA	6.41 D	0.02 F	-8.20 B	-0.03 W	-0.01 F
119.0	21.50 AA	6.59 D	0.02 F	-48.24 D	-0.10 F	-0.02 C
	21.50 AC	6.59 R	0.02 I	-48.28 J	-0.13 F	-0.02 C
114.0	42.40 AC	12.87 R	0.02 I	-96.84 J	-0.22 F	-0.04 C
	42.40 AC	12.89 E	-0.04 X	-96.85 J	-0.24 F	-0.04 C
109.0	42.90 AC	13.10 E	-0.04 X	-176.57 E	-0.37 F	-0.08 C
	42.90 AC	13.11 N	-0.08 X	-176.56 E	-0.35 F	-0.07 C
104.7	43.38 AC	13.32 N	-0.08 X	-245.63 E	0.66 X	-0.11 C
	43.39 Y	13.42 A	-0.10 X	-245.54 E	0.64 X	-0.11 C
100.4	74.07 Y	21.86 A	-0.10 X	-352.18 E	1.10 X	-0.14 W
	74.08 Y	21.85 A	0.17 F	-352.19 E	1.11 X	-0.13 C
96.1	74.58 Y	22.06 A	0.17 F	-465.99 A	-1.70 F	-0.16 W
	74.58 Y	22.06 R	0.21 F	-465.94 J	-1.62 F	-0.16 W
91.9	95.00 Y	28.89 R	0.21 F	-589.37 J	-2.59 F	-0.18 W
	95.00 Y	28.94 W	0.19 F	-589.41 J	-2.58 F	-0.18 U
87.6	95.55 Y	29.17 W	0.19 F	-737.18 E	-3.47 F	-0.24 U
	95.55 Y	29.27 U	0.16 F	-737.21 E	-3.49 F	-0.24 U
83.3	96.14 Y	29.54 U	0.16 F	-884.99 E	-4.23 F	-0.32 U
	96.14 Y	29.50 U	0.20 F	-884.97 E	-4.22 F	-0.32 U
79.0	96.73 Y	29.74 U	0.20 F	-1032.58 E	-5.13 F	-0.38 U
	96.73 Y	29.79 U	0.18 F	-1032.61 E	-5.16 F	-0.38 U
74.5	97.98 Y	30.09 U	0.18 F	-1187.71 E	-6.03 F	-0.43 U
	97.97 Y	30.19 U	0.27 F	-1187.58 E	-6.00 F	-0.43 U
71.5	98.51 Y	30.38 U	0.27 F	-1292.50 E	-6.87 F	-0.47 U
	98.51 Y	30.33 U	0.28 H	-1292.51 J	-6.90 F	-0.46 U
68.4	99.06 Y	30.52 U	0.28 H	-1397.50 E	-7.45 F	-0.54 U

	99.06 Y	30.52 U	-0.29 N	-1397.54 E	-7.45 F	-0.53 U
	99.62 Y	30.72 U	-0.29 N	-1502.71 E	-8.27 F	-0.58 U
65.4	99.62 Y	30.68 W	-0.31 U	-1502.52 E	-8.36 F	-0.56 U
	101.53 Y	32.35 W	-0.36 U	-1608.18 E	-8.86 F	1.14 H
62.4	101.53 Y	32.50 J	0.49 L	-1608.33 E	-8.91 F	1.14 H
	102.11 Y	32.70 J	0.49 L	-1718.08 J	-9.90 F	1.20 H
59.3	102.12 Y	32.96 J	0.34 R	-1717.87 J	-9.87 F	1.21 H
	102.71 Y	33.17 J	0.34 R	-1828.83 J	-10.84 F	1.26 H
56.3	102.71 Y	33.15 W	0.47 H	-1828.92 J	-10.70 F	1.26 H
	103.35 Y	33.38 W	0.47 H	-1939.00 J	-11.78 F	1.34 H
53.2	103.35 Y	33.36 W	0.46 H	-1938.89 J	-11.76 F	1.34 H
	105.51 Y	33.74 W	0.46 H	-2138.74 J	-13.13 F	1.46 H
47.7	105.51 Y	33.79 W	0.47 H	-2138.68 J	-13.12 F	1.46 H
	107.03 Y	34.24 W	0.47 H	-2355.99 J	-14.82 H	1.58 H
41.8	107.03 Y	34.22 W	0.48 H	-2355.97 J	-14.81 H	1.58 H
	108.57 Y	34.64 W	0.48 H	-2573.61 J	-17.66 H	1.68 H
35.8	108.57 Y	34.62 W	0.47 H	-2573.60 J	-17.65 H	1.68 H
	110.19 Y	35.05 W	0.47 H	-2791.80 J	-20.48 H	1.77 H
29.8	110.19 Y	35.01 W	0.49 H	-2791.78 J	-20.48 H	1.77 H
	111.86 Y	35.44 W	0.49 H	-3010.68 J	-23.40 H	1.83 H
23.9	111.86 Y	35.45 W	0.48 H	-3010.67 J	-23.40 H	1.83 H
	113.54 Y	35.86 W	0.48 H	-3229.93 J	-26.28 H	1.89 H
17.9	113.54 Y	35.85 W	0.48 H	-3229.93 J	-26.28 H	1.89 H
	115.30 Y	36.27 W	0.48 H	-3449.37 J	-29.18 H	1.92 H
11.9	115.30 Y	36.28 W	0.49 H	-3449.37 J	-29.18 H	1.92 H
	117.08 Y	36.68 W	0.49 H	-3669.07 J	-32.13 H	1.94 H
6.0	117.08 Y	36.68 W	0.50 H	-3669.07 J	-32.13 H	1.94 H
	118.91 Y	37.08 W	0.50 H	-3888.97 J	-35.12 H	1.95 H
base reaction	118.91 Y	-37.08 W	-0.50 H	3888.97 J	35.12 H	-1.95 H

COMPLIANCE WITH 4.8.2 & 4.5.4

=====

ELEV	AXIAL	BENDING	SHEAR +	TORSIONAL	TOTAL	SATISFIED	D/t (w/t)	MAX ALLOWED
129.00	0.00J	0.00H	0.00U	0.00H	YES	10.12A	45.2	
	0.02AD	0.02E	0.01U	0.03E	YES	11.17A	45.2	
124.00	0.02AA	0.02B	0.01D	0.03I	YES	11.17A	45.2	
	0.02AA	0.11D	0.01D	0.12J	YES	12.22A	45.2	
119.00	0.02AC	0.11J	0.01R	0.12J	YES	12.22A	45.2	
	0.04AC	0.19J	0.02R	0.21J	YES	13.27A	45.2	
114.00								

	0.04AC	0.19J	0.02E	0.21J	YES	13.27A	45.2
109.00	0.03AC	0.31E	0.02E	0.33E	YES	14.32A	45.2
	0.03AC	0.31E	0.02N	0.33E	YES	14.32A	45.2
104.71	0.03AC	0.38E	0.02N	0.40E	YES	15.22A	45.2
	0.03Y	0.38E	0.02A	0.40J	YES	15.22A	45.2
100.43	0.05Y	0.49E	0.03A	0.52E	YES	16.12A	45.2
	0.05Y	0.49E	0.03A	0.52E	YES	16.12A	45.2
96.14	0.05Y	0.59A	0.03A	0.62A	YES	17.01A	45.2
	0.05Y	0.59J	0.03R	0.62J	YES	17.01A	45.2
91.86	0.06Y	0.69J	0.04R	0.73J	YES	17.91A	45.2
	0.06Y	0.69J	0.04W	0.73J	YES	17.91A	45.2
87.57	0.06Y	0.80E	0.04W	0.83E	YES	18.81A	45.2
	0.06Y	0.80E	0.04U	0.83E	YES	18.81A	45.2
83.29	0.06Y	0.89E	0.04U	0.92E	YES	19.71A	45.2
	0.06Y	0.89E	0.04U	0.92E	YES	19.71A	45.2
79.00	0.06Y	0.97E	0.04U	1.00E	YES	20.61A	45.2
	0.04Y	0.73E	0.03U	0.76E	YES	16.42A	45.2
74.50	0.04Y	0.78E	0.03U	0.80E	YES	17.17A	45.2
	0.04Y	0.80E	0.03U	0.83E	YES	16.89A	45.2
71.46	0.04Y	0.83E	0.03U	0.85E	YES	17.40A	45.2
	0.04Y	0.83J	0.03U	0.85J	YES	17.40A	45.2
68.43	0.04Y	0.86E	0.03U	0.88E	YES	17.91A	45.2
	0.04Y	0.86E	0.03U	0.88E	YES	17.91A	45.2
65.39	0.04Y	0.88E	0.03U	0.90E	YES	18.42A	45.2
	0.04Y	0.88E	0.03W	0.90E	YES	18.42A	45.2
62.36	0.04Y	0.90E	0.03W	0.92E	YES	18.93A	45.2
	0.04Y	0.90E	0.03J	0.92E	YES	18.93A	45.2
59.32	0.04Y	0.92J	0.03J	0.94J	YES	19.44A	45.2
	0.04Y	0.92J	0.03J	0.94J	YES	19.44A	45.2
56.29	0.04Y	0.94J	0.03J	0.96J	YES	19.95A	45.2
	0.04Y	0.94J	0.03W	0.96J	YES	19.95A	45.2
53.25	0.04Y	0.96J	0.03W	0.98J	YES	20.46A	45.2
	0.03Y	0.76J	0.02W	0.78J	YES	16.99A	45.2
47.75	0.03Y	0.78J	0.02W	0.80J	YES	17.76A	45.2
	0.03Y	0.80J	0.02W	0.82J	YES	17.46A	45.2
41.78	0.03Y	0.82J	0.02W	0.83J	YES	18.30A	45.2
	0.03Y	0.82J	0.02W	0.83J	YES	18.30A	45.2
35.81	0.03Y	0.83J	0.02W	0.85J	YES	19.13A	45.2
	0.03Y	0.83J	0.02W	0.85J	YES	19.13A	45.2
29.84	0.03Y	0.84J	0.02W	0.86J	YES	19.97A	45.2
	0.03Y	0.84J	0.02W	0.86J	YES	19.97A	45.2

23.87	0.03Y	0.84J	0.02W	0.86J	YES	20.80A	45.2
	0.03Y	0.84J	0.02W	0.86J	YES	20.80A	45.2
17.91	0.03Y	0.85J	0.02W	0.87J	YES	21.64A	45.2
	0.03Y	0.85J	0.02W	0.87J	YES	21.64A	45.2
11.94	0.03Y	0.85J	0.02W	0.87J	YES	22.47A	45.2
	0.03Y	0.85J	0.02W	0.87J	YES	22.47A	45.2
5.97	0.03Y	0.86J	0.02W	0.88J	YES	23.31A	45.2
	0.03Y	0.86J	0.02W	0.88J	YES	23.31A	45.2
0.00	0.03Y	0.86J	0.02W	0.88J	YES	24.14A	45.2

MAXIMUM LOADS ONTO FOUNDATION (w.r.t. wind direction)

DOWN kip	SHEAR.w.r.t.WIND.DIR		MOMENT.w.r.t.WIND.DIR		TORSION ft-kip
	ALONG kip	ACROSS kip	ALONG ft-kip	ACROSS ft-kip	
118.91 Y	37.08 W	0.50 H	-3888.97 J	-35.12 H	1.95 H

(USA 222-R) - Monopole Spatial Analysis (c) 2017 Guymast Inc.

Tel: (416) 736-7453

Fax: (416) 736-4372

Web: www.guymast.com

Processed under license at:

Sabre Towers and Poles

on: 8 may 2024 at: 12:57:11

110' ext. 130' Monopole / Litchfield SE, CT

***** Service Load Condition *****

* Only 1 condition(s) shown in full

* Some concentrated wind loads may have been derived from full-scale wind tunnel testing

LOADING CONDITION A

60 mph wind with no ice. Wind Azimuth: 0° (1.0 D + 1.0 Wo)

LOADS ON POLE

LOAD TYPE	ELEV ft	APPLY..LOAD..AT RADIUS ft	LOAD AZI	LOAD AZI	FORCES.....		MOMENTS.....	
					HORIZ kip	DOWN kip	VERTICAL ft-kip	TORSNAL ft-kip
C	125.000	0.00	0.0	0.0	0.0000	1.5600	0.0000	0.0000
C	125.000	0.00	0.0	0.0	1.5100	8.0000	0.0000	0.0000
C	124.500	0.00	0.0	0.0	0.0058	0.0126	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.0000	1.4352	0.0000	0.0000
C	115.000	0.00	0.0	0.0	1.4748	8.0000	0.0000	0.0000
C	115.000	0.00	0.0	0.0	0.0063	0.0140	0.0000	0.0000
C	105.000	0.00	0.0	0.0	0.0061	0.0140	0.0000	0.0000
C	104.000	0.00	0.0	0.0	0.0000	1.9469	0.0000	0.0000
C	104.000	0.00	0.0	0.0	2.0068	12.0000	0.0000	0.0000
C	95.000	0.00	0.0	0.0	0.0069	0.0140	0.0000	0.0000
C	93.000	0.00	0.0	0.0	0.0000	1.1606	0.0000	0.0000

C	93.000	0.00	0.0	0.0	1.6017	8.0000	0.0000	0.0000
C	85.000	0.00	0.0	0.0	0.0067	0.0140	0.0000	0.0000
C	75.000	0.00	0.0	0.0	0.0065	0.0140	0.0000	0.0000
C	65.000	0.00	0.0	0.0	0.0063	0.0140	0.0000	0.0000
C	63.000	0.00	0.0	0.0	0.0000	0.1310	0.0000	0.0000
C	55.000	0.00	0.0	0.0	0.0060	0.0140	0.0000	0.0000
C	45.000	0.00	0.0	0.0	0.0057	0.0140	0.0000	0.0000
C	35.000	0.00	0.0	0.0	0.0054	0.0140	0.0000	0.0000
C	25.000	0.00	0.0	0.0	0.0050	0.0140	0.0000	0.0000
C	15.000	0.00	0.0	0.0	0.0044	0.0140	0.0000	0.0000
D	129.000	0.00	180.0	0.0	0.0078	0.0448	0.0000	0.0000
D	79.000	0.00	180.0	0.0	0.0144	0.0810	0.0000	0.0000
D	79.000	0.00	180.0	0.0	0.0151	0.1888	0.0000	0.0000
D	74.500	0.00	180.0	0.0	0.0151	0.1888	0.0000	0.0000
D	74.500	0.00	180.0	0.0	0.0153	0.1079	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0167	0.1260	0.0000	0.0000
D	53.250	0.00	180.0	0.0	0.0169	0.2842	0.0000	0.0000
D	47.750	0.00	180.0	0.0	0.0169	0.2842	0.0000	0.0000
D	47.750	0.00	180.0	0.0	0.0172	0.1608	0.0000	0.0000
D	5.969	0.00	180.0	0.0	0.0161	0.2036	0.0000	0.0000
D	5.969	0.00	180.0	0.0	0.0164	0.2107	0.0000	0.0000
D	0.000	0.00	180.0	0.0	0.0164	0.2107	0.0000	0.0000

ANTENNA LOADING

=====

TYPE	ANTENNA		ATTACHMENT		ANTENNA FORCES			
	ELEV ft	AZI ft	RAD ft	AZI ft	AXIAL kip	SHEAR kip	GRAVITY kip	TORSION ft-kip
STD+R	63.0	270.0	2.2	270.0	0.03	0.10	0.20	0.22
STD+R	63.0	90.0	2.2	90.0	0.03	-0.10	0.20	-0.22

=====

MAXIMUM POLE DEFORMATIONS CALCULATED (w.r.t. wind direction)

=====

MAST ELEV ft	DEFLECTIONS (ft)			ROTATIONS (deg)		
	HORIZONTAL		DOWN	TILT		TWIST
	ALONG	ACROSS	ALONG	ACROSS		
129.0	2.31K	0.01L	0.06K	1.95K	0.01L	0.00I
124.0	2.14K	0.01L	0.06K	1.95K	0.01L	0.00I
119.0	1.97K	0.01L	0.05K	1.94K	0.01L	0.00I
114.0	1.80K	0.01L	0.05K	1.91K	0.01L	0.00I
109.0	1.64K	0.01L	0.04K	1.86K	0.01L	0.00I
104.7	1.50K	0.01L	0.04K	1.80K	0.01L	0.00I
100.4	1.37K	0.01L	0.03K	1.74K	0.01L	0.00I
96.1	1.24K	0.01L	0.03K	1.66K	0.01L	0.00I
91.9	1.12K	0.01L	0.02K	1.58K	0.01L	0.00I
87.6	1.00K	0.01L	0.02K	1.49K	0.01L	0.00I
83.3	0.90K	0.01L	0.02K	1.39K	0.01L	0.00I
79.0	0.80K	0.00L	0.01K	1.28K	0.01L	0.00I
74.5	0.70K	0.00L	0.01K	1.20K	0.01L	0.00I
71.5	0.64K	0.00L	0.01K	1.13K	0.01L	0.00I
68.4	0.58K	0.00L	0.01K	1.07K	0.01L	0.00I
65.4	0.52K	0.00L	0.01K	1.01K	0.01L	0.00I
62.4	0.47K	0.00L	0.01K	0.95K	0.01L	0.00I
59.3	0.42K	0.00L	0.01K	0.89K	0.01L	0.00I
56.3	0.38K	0.00L	0.01K	0.83K	0.01L	0.00I

53.2	0.34K	0.00L	0.00K	0.77K	0.00L	0.00I
47.7	0.27K	0.00L	0.00K	0.68K	0.00L	0.00I
41.8	0.20K	0.00K	0.00K	0.58K	0.00L	0.00I
35.8	0.15K	0.00K	0.00K	0.49K	0.00L	0.00I
29.8	0.10K	0.00K	0.00K	0.40K	0.00K	0.00I
23.9	0.06K	0.00K	0.00K	0.31K	0.00K	0.00I
17.9	0.03K	0.00K	0.00K	0.23K	0.00K	0.00I
11.9	0.02K	0.00K	0.00K	0.15K	0.00K	0.00I
6.0	0.00K	0.00K	0.00K	0.07K	0.00K	0.00I
0.0	0.00A	0.00A	0.00A	0.00A	0.00A	0.00A

MAXIMUM ANTENNA AND REFLECTOR ROTATIONS

ELEV ft	ANT AZI	ANT TYPE	BEAM DEFLECTIONS (deg)			
			ROLL	YAW	PITCH	TOTAL
63.0	90.0	STD+R	-0.951 A	0.000 I	0.957 D	0.957 D
63.0	270.0	STD+R	0.951 A	0.000 I	-0.957 D	0.957 D

MAXIMUM POLE FORCES CALCULATED (w.r.t. to wind direction)

MAST ELEV ft	TOTAL AXIAL kip	SHEAR.w.r.t.WIND.DIR		MOMENT.w.r.t.WIND.DIR		TORSION ft-kip
		ALONG kip	ACROSS kip	ALONG ft-kip	ACROSS ft-kip	
129.0	0.00 L	0.00 A	0.00 L	-0.01 A	0.00 E	0.00 L
	9.81 C	1.56 J	0.00 L	-1.96 I	-0.01 L	0.00 I
124.0	9.81 C	1.56 K	0.00 C	-1.96 D	-0.01 L	0.00 L
	10.06 C	1.61 K	0.00 C	-11.54 K	0.03 C	0.00 C
119.0	10.06 K	1.61 B	-0.01 C	-11.54 K	0.02 C	0.00 C
	19.78 K	3.14 B	-0.01 C	-23.18 K	0.07 C	0.00 C
114.0	19.78 C	3.14 K	-0.01 C	-23.18 K	0.07 C	0.00 C
	20.07 C	3.19 K	-0.01 C	-42.24 K	0.13 C	-0.01 C
109.0	20.07 C	3.20 K	0.01 K	-42.23 K	0.13 C	-0.01 C
	20.34 C	3.25 K	0.01 K	-58.80 K	0.17 C	-0.01 C
104.7	20.34 C	3.25 J	0.03 L	-58.80 K	0.17 C	-0.01 C
	34.56 C	5.31 J	0.03 L	-84.11 K	0.27 C	-0.01 C
100.4	34.57 C	5.30 K	0.02 K	-84.11 K	0.28 C	-0.01 C
	34.85 C	5.35 K	0.02 K	-111.31 K	0.31 C	-0.01 C
96.1	34.85 C	5.37 B	-0.03 C	-111.34 K	0.31 C	-0.01 C
	44.33 C	7.03 B	-0.03 C	-140.80 K	0.42 C	-0.02 C
91.9	44.33 C	7.04 B	0.03 K	-140.78 K	0.42 C	-0.02 C
	44.64 C	7.09 B	0.03 K	-176.13 K	0.53 C	-0.02 C
87.6						

	44.64	C	7.09	K	0.03	K	-176.13	K	0.52	C	-0.02	C
83.3	44.98	C	7.16	K	0.03	K	-211.42	K	0.66	C	-0.03	C
	44.98	L	7.17	B	0.03	K	-211.43	K	0.65	C	-0.03	C
79.0	45.32	L	7.23	B	0.03	K	-246.71	K	-0.76	K	-0.03	C
	45.32	L	7.23	K	0.04	K	-246.66	K	0.75	C	-0.03	C
74.5	46.19	L	7.31	K	0.04	K	-283.82	K	-0.95	K	-0.03	C
	46.19	L	7.32	C	-0.04	C	-283.77	K	-0.96	K	-0.03	C
71.5	46.52	L	7.37	C	-0.04	C	-308.86	K	-1.05	K	-0.04	C
	46.52	C	7.40	C	-0.09	C	-308.79	K	-1.07	K	-0.04	C
68.4	46.86	C	7.45	C	-0.09	C	-333.99	K	1.23	C	-0.04	C
	46.86	C	7.41	C	0.12	F	-334.00	K	1.21	C	-0.04	C
65.4	47.21	C	7.46	C	0.12	F	-359.03	K	1.38	C	-0.05	C
	47.20	C	7.52	C	0.09	F	-359.01	K	1.38	C	-0.05	C
62.4	48.10	C	7.93	C	0.11	F	-384.44	K	1.56	C	0.18	I
	48.10	C	7.89	K	0.11	L	-384.42	K	1.58	C	0.18	I
59.3	48.46	C	7.94	K	0.11	L	-410.78	K	-1.72	L	0.18	I
	48.46	L	7.93	J	0.11	L	-410.77	K	-1.71	L	0.18	I
56.3	48.83	L	7.98	J	0.11	L	-437.08	K	-2.05	L	0.18	I
	48.83	L	7.99	K	-0.08	B	-437.08	K	-2.06	L	0.18	I
53.2	49.23	L	8.05	K	-0.08	B	-463.51	K	-2.27	L	0.18	I
	49.23	L	8.07	K	0.10	L	-463.50	K	-2.27	L	0.18	I
47.7	50.79	L	8.17	K	0.10	L	-511.64	K	-2.83	L	0.19	I
	50.79	L	8.17	K	0.10	K	-511.63	K	-2.83	L	0.19	I
41.8	51.78	L	8.28	K	0.10	K	-564.07	K	-3.36	L	0.19	I
	51.78	L	8.27	K	0.10	K	-564.07	K	-3.36	L	0.19	I
35.8	52.80	L	8.38	K	0.10	K	-616.67	K	-3.89	L	0.19	I
	52.80	L	8.37	K	0.10	K	-616.67	K	-3.89	L	0.19	I
29.8	53.86	L	8.48	K	0.10	K	-669.42	K	-4.41	L	0.20	I
	53.86	L	8.52	K	-0.11	B	-669.42	K	-4.41	L	0.20	I
23.9	54.96	L	8.62	K	-0.11	B	-722.57	K	-4.88	L	0.20	I
	54.96	L	8.63	K	-0.11	B	-722.57	K	-4.88	L	0.20	I
17.9	56.09	L	8.72	K	-0.11	B	-775.90	K	-5.35	L	0.20	I
	56.09	L	8.73	K	-0.11	B	-775.90	K	-5.35	L	0.20	I
11.9	57.26	L	8.83	K	-0.11	B	-829.40	K	-5.92	K	0.20	I
	57.26	L	8.83	K	-0.11	B	-829.40	K	-5.92	K	0.20	I
6.0	58.46	L	8.92	K	-0.11	B	-883.03	K	-6.53	K	0.20	I
	58.46	L	8.92	K	-0.11	B	-883.03	K	-6.53	K	0.20	I
	59.71	L	9.02	K	-0.11	B	-936.80	K	-7.13	K	0.20	I
base reaction	59.71	L	-9.02	K	0.11	B	936.80	K	7.13	K	-0.20	I

COMPLIANCE WITH 4.8.2 & 4.5.4

ELEV ft	AXIAL	BENDING	SHEAR + TORSIONAL	TOTAL	SATISFIED	D/t (w/t)	MAX ALLOWED
129.00	0.00L	0.00A	0.00A	0.00A	YES	10.12A	45.2
	0.01C	0.01I	0.00J	0.02I	YES	11.17A	45.2
124.00	0.01C	0.01D	0.00K	0.02D	YES	11.17A	45.2
	0.01C	0.03K	0.00K	0.04K	YES	12.22A	45.2
119.00	0.01K	0.03K	0.00B	0.04K	YES	12.22A	45.2
	0.02K	0.05K	0.01B	0.06K	YES	13.27A	45.2
114.00	0.02C	0.05K	0.01K	0.06K	YES	13.27A	45.2
	0.02C	0.07K	0.00K	0.09K	YES	14.32A	45.2
109.00	0.02C	0.07K	0.00K	0.09K	YES	14.32A	45.2
	0.01C	0.09K	0.00K	0.11K	YES	15.22A	45.2
104.71	0.01C	0.09K	0.00J	0.11K	YES	15.22A	45.2
	0.02C	0.12K	0.01J	0.14K	YES	16.12A	45.2
100.43	0.02C	0.12K	0.01K	0.14K	YES	16.12A	45.2
	0.02C	0.14K	0.01K	0.17K	YES	17.01A	45.2
96.14	0.02C	0.14K	0.01B	0.17K	YES	17.01A	45.2
	0.03C	0.17K	0.01B	0.19K	YES	17.91A	45.2
91.86	0.03C	0.17K	0.01B	0.19K	YES	17.91A	45.2
	0.03C	0.19K	0.01B	0.22K	YES	18.81A	45.2
87.57	0.03C	0.19K	0.01K	0.22K	YES	18.81A	45.2
	0.03C	0.21K	0.01K	0.24K	YES	19.71A	45.2
83.29	0.03L	0.21K	0.01B	0.24K	YES	19.71A	45.2
	0.03L	0.23K	0.01B	0.26K	YES	20.61A	45.2
79.00	0.02L	0.17K	0.01K	0.19K	YES	16.42A	45.2
	0.02L	0.19K	0.01K	0.21K	YES	17.17A	45.2
74.50	0.02L	0.19K	0.01C	0.21K	YES	16.89A	45.2
	0.02L	0.20K	0.01C	0.22K	YES	17.40A	45.2
71.46	0.02C	0.20K	0.01C	0.22K	YES	17.40A	45.2
	0.02C	0.20K	0.01C	0.22K	YES	17.91A	45.2
68.43	0.02C	0.20K	0.01C	0.22K	YES	17.91A	45.2
	0.02C	0.21K	0.01C	0.23K	YES	18.42A	45.2
65.39	0.02C	0.21K	0.01C	0.23K	YES	18.42A	45.2
	0.02C	0.21K	0.01C	0.23K	YES	18.93A	45.2
62.36	0.02C	0.21K	0.01K	0.23K	YES	18.93A	45.2
	0.02C	0.22K	0.01K	0.24K	YES	19.44A	45.2
59.32	0.02L	0.22K	0.01J	0.24K	YES	19.44A	45.2
	0.02L	0.22K	0.01K	0.24K	YES	19.95A	45.2
56.29	0.02L	0.22K	0.01J	0.24K	YES	19.95A	45.2

53.25	0.02L	0.23K	0.01K	0.25K	YES	20.46A	45.2
	16.99A	45.2
47.75	0.01L	0.19K	0.00K	0.20K	YES	17.76A	45.2
	17.46A	45.2
41.78	0.01L	0.20K	0.00K	0.21K	YES	18.30A	45.2
	18.30A	45.2
35.81	0.01L	0.20K	0.00K	0.21K	YES	19.13A	45.2
	19.13A	45.2
29.84	0.01L	0.20K	0.00K	0.22K	YES	19.97A	45.2
	19.97A	45.2
23.87	0.01L	0.20K	0.00K	0.22K	YES	20.80A	45.2
	20.80A	45.2
17.91	0.01L	0.20K	0.00K	0.22K	YES	21.64A	45.2
	21.64A	45.2
11.94	0.01L	0.21K	0.00K	0.22K	YES	22.47A	45.2
	22.47A	45.2
5.97	0.01L	0.21K	0.00K	0.22K	YES	23.31A	45.2
	23.31A	45.2
0.00	0.01L	0.21K	0.00K	0.22K	YES	24.14A	45.2

MAXIMUM LOADS ONTO FOUNDATION(w.r.t. wind direction)

DOWN	SHEAR.w.r.t.WIND.DIR		MOMENT.w.r.t.WIND.DIR		TORSION
	ALONG	ACROSS	ALONG	ACROSS	
kip	kip	kip	ft-kip	ft-kip	ft-kip
59.71	9.02	-0.11	-936.80	-7.13	0.20
L	K	B	K	K	I

Seismic Load Effects
Equivalent Lateral Force Procedure
ANSI/TIA-222-H

Description		Vertical		Horizontal		Diagonal		Sum	
Risk Category	Parameter	W _u (kips)	w _u (kips)	W _u (kips)	w _u (kips)	E _{ez} or E _{eu}	E _{eu} (kips)	1.2 D + 1.0 E _u	1.0 E _u (kips)
II	Antenna Load	125.00	8.0000	125.000.0000	0.3983	0.2528	9.8528	6.9472	6.9472
R	Line Deadload	125.00	1.5600	0.0000	24.375.0000	0.0777	0.493	1.9213	1.3547
S _s	Step Bolts/Safety Climb Load	124.50	0.0126	0.0000	195.3031	0.0006	0.0004	0.0155	0.0109
S ₁	Structure - Section 1	119.00	1.0145	0.0000	14.366.3345	0.0458	0.0321	1.2495	0.8810
S ₁	Antenna Load	115.00	8.0000	8.0000	105.800.0000	0.3371	0.2528	9.8528	6.9472
C	Line Deadload	115.00	1.4352	0.0000	18.980.5200	0.0605	0.0454	1.7676	1.2463
T ₁ (sec)	Step Bolts/Safety Climb Load	115.00	0.0140	0.0000	185.1500	0.0006	0.0004	0.0172	0.0122
F _a	Step Bolts/Safety Climb Load	105.00	0.0140	0.0000	154.3500	0.0005	0.0004	0.0172	0.0122
F _v	Antenna Load	104.00	12.0000	12.0000	129.792.0000	0.4136	0.3792	14.7792	10.4208
S _{MS}	Line Deadload	104.00	1.9469	0.0000	21.057.6704	0.0671	0.0615	2.3978	1.6907
S _{M1}	Step Bolts/Safety Climb Load	95.00	0.0140	0.0000	126.3500	0.0004	0.0004	0.0172	0.0122
S _{Ds}	Antenna Load	93.00	8.0000	8.0000	69.192.0000	0.2205	0.2528	9.8528	6.9472
S _{D1}	Line Deadload	93.00	1.1606	0.0000	10.038.0294	0.0320	0.0367	1.4294	1.0078
T _s	Structure - Section 2	91.75	2.5024	0.0000	21.065.3596	0.0671	0.0791	3.0820	2.1731
I _e	Step Bolts/Safety Climb Load	85.00	0.0140	0.0000	101.1500	0.0003	0.0004	0.0172	0.0122
Q	Step Bolts/Safety Climb Load	75.00	0.0140	0.0000	78.7500	0.0003	0.0004	0.0172	0.0122
C _s	Step Bolts/Safety Climb Load	65.00	0.0140	0.0000	59.1500	0.0002	0.0004	0.0172	0.0122
E (ksi)	Structure - Section 3	63.38	3.6609	0.0000	14.705.9246	0.0469	0.1157	4.5088	3.1791
I _{op} (in ⁴)	Line Deadload	63.00	0.1310	0.0000	519.9390	0.0017	0.0041	0.1613	0.1138
I _{or} (in ⁴)	Mount/Antenna Load	63.00	0.8770	0.0000	3,480.8130	0.0111	0.0277	1.0801	0.7616
I _{ag} (in ⁴)	Step Bolts/Safety Climb Load	55.00	0.0140	0.0000	42.3500	0.0001	0.0004	0.0172	0.0122
g (in/s ²)	Step Bolts/Safety Climb Load	45.00	0.0140	0.0000	28.3500	0.0001	0.0004	0.0172	0.0122
W _t (kips)	Step Bolts/Safety Climb Load	35.00	0.0140	0.0000	17.1500	0.0001	0.0004	0.0172	0.0122
W _u (kips)	Structure - Section 4	26.62	9.6904	0.0000	6,866.8539	0.0219	0.3062	11.9347	8.4152
W _L (kips)	Step Bolts/Safety Climb Load	25.00	0.0140	0.0000	8.7500	0.0000	0.0004	0.0172	0.0122
I _p (in)	Step Bolts/Safety Climb Load	15.00	0.0140	0.0000	3.1500	0.0000	0.0004	0.0172	0.0122
f _c (Hz)		60.15	36.0000		566.240.40	1.80	1.90	74.07	52.23

Seismic Design Category

Round Flange Plate and Bolts per ANSI/TIA 222-H

Elevation = 109 feet

Pole Data

Diameter: 22.05 in
 Thickness: 0.25 in
 Yield (Fy): 65 ksi
 # of Sides: 18 "0" IF Round
 Strength (Fu): 80 ksi

Reactions

Moment, Mu: 287.05 ft-kips
 Axial, Pu: 24.11 kips
 Shear, Vu: 13.1 kips

Bolt Data

Quantity: 10
 Diameter: 1 in
 Bolt Material: A325
 Strength (Fu): 120 ksi
 Yield (Fy): 92 ksi
 BC Diam. (in): 25.5 BC Override: [REDACTED]

Flange Bolt Results

Allowable Φ^*R_{nt} : 54.54 kips
 Adjusted Φ^*R_{nt} (due to shear): 54.51 kips
 Maximum Bolt Tension: 51.62 kips
 Bolt Interaction Ratio: **94.7% Pass**

Plate Data

Diameter (in): 28 Dia. Override: [REDACTED]
 Thickness: 1.5 in
 Center Hole Diam.: 15 in
 Yield (Fy): 50 ksi
 Single-Rod B-eff: 7.00 in
 Drain Hole: 1 in. diameter
 Drain Location: 10 in. center of pole to center of drain hole

Flange Plate Results

Compression Side Plate (M_u/Z): 16.4 ksi
 Allowable Φ^*F_y : 45.0 ksi
 Compr. Plate Interaction Ratio: **36.5% Pass**

Round Base Plate and Anchor Rods, per ANSI/TIA 222-H

Pole Data

Diameter: 53.340 in (flat to flat)
 Thickness: 0.375 in
 Yield (Fy): 65 ksi
 # of Sides: 18 "0" IF Round
 Strength (Fu): 80 ksi

Reactions

Moment, Mu: 3888.97 ft-kips
 Axial, Pu: 71.69 kips
 Shear, Vu: 36.86 kips

Anchor Rod Results

(per 4.9.9)

Maximum Put: 218.39 Kips
 $\Phi t^* R_{nt}$: 243.75 Kips
 V_u : 2.63 Kips
 $\Phi v^* R_{nv}$: 149.10 Kips
 Tension Interaction Ratio: 0.80
 Maximum Puc: 227.35 Kips
 $\Phi c^* R_{nc}$: 268.39 Kips
 V_u : 2.63 Kips
 $\Phi c^* R_{nv}$: 120.77 Kips
 Compression Interaction Ratio: 0.85
 Maximum Interaction Ratio: **84.8% Pass**

Anchor Rod Data

Quantity: 14
 Diameter: 2.25 in
 Rod Material: A615
 Strength (Fu): 100 ksi
 Yield (Fy): 75 ksi
 BC Diam. (in): 60 BC Override: [REDACTED]

Plate Data

Diameter (in): 65.75 Dia. Override: [REDACTED]
 Thickness: 2 in
 Yield (Fy): 50 ksi
 Eff Width/Rod: 12.09 in
 Drain Hole: 2.625 in. diameter
 Drain Location: 24.5 in. center of pole to center of drain hole
 Center Hole: 41 in. diameter

Base Plate Results

Base Plate (Mu/Z): 41.6 ksi
 Allowable $\Phi^* F_y$: 45.0 ksi (per AISC)
92.5% Pass

MAT FOUNDATION DESIGN BY SABRE INDUSTRIES

130' Monopole VERTICAL BRIDGE REIT, LLC Litchfield SE, CT (542747) 05/08/24 REB

Overall Loads:

Factored Moment (ft-kips)	4093.65	Max. Net Bearing Press. (ksf)	5.59
Factored Axial (kips)	75.46	Allowable Bearing Pressure (ksf)	4.00
Factored Shear (kips)	38.80	Safety Factor	2.00
Bearing Design Strength (ksf)	6	Ultimate Bearing Pressure (ksf)	8.00
Water Table Below Grade (ft)	2.5	Bearing ϕ s	0.75
Width of Mat (ft)	26.5		
Thickness of Mat (ft)	1.75		
Depth to Bottom of Slab (ft)	6		
Quantity of Bolts in Bolt Circle	14		
Bolt Circle Diameter (in)	60		
Effective Anchor			
Bolt Embedment (in)	66.5	Minimum Pier Diameter (ft)	7.00
Diameter of Pier (ft)	7	Equivalent Square b (ft)	6.20
Ht. of Pier Above Ground (ft)	0.5	Square Pier? (Y/N)	N
Ht. of Pier Below Ground (ft)	4.25		
Quantity of Bars in Mat	31		
Bar Diameter in Mat (in)	1.27		
Area of Bars in Mat (in ²)	39.27		
Spacing of Bars in Mat (in)	10.36	Recommended Spacing (in)	5 to 12
Quantity of Bars Pier	36		
Bar Diameter in Pier (in)	1		
Tie Bar Diameter in Pier (in)	0.625		
Spacing of Ties (in)	4		
Area of Bars in Pier (in ²)	28.27	Minimum Pier A _s (in ²)	27.71
Spacing of Bars in Pier (in)	6.61	Recommended Spacing (in)	5 to 12
f'c (ksi)	4.5		
f _y (ksi)	60		
Unit Wt. of Soil (kcf)	0.1		
Unit Wt. of Concrete (kcf)	0.15		

Volume of Concrete (yd³)

52.29

Two-Way Shear Action:

Average d (in)	16.73	v _u (ksi)	0.122
ϕv_c (ksi)	0.193		
$\phi v_c = \phi(2 + 4/\beta_c)f'_c$ $^{1/2}$	0.302		
$\phi v_c = \phi(\alpha_s d/b_o + 2)f'_c$ $^{1/2}$	0.193	J (in ³)	8.524E+06
$\phi v_c = \phi 4f'_c$ $^{1/2}$	0.201	c + d (in)	91.17
Shear perimeter, b _o (in)	364.69	0.40M _{sc} (ft-kips)	1711.2
β_c	1		

One-Way Shear:

ϕV_c (kips)	535.3	V _u (kips)	296.6
-------------------	-------	-----------------------	-------

Stability:

Overspinning Design Strength (ft-k)	4810.3	Total Applied M (ft-k)	4345.9
-------------------------------------	--------	------------------------	--------

Pier-Slab Transfer by Flexure:

b_{slab} (ft)	12.25	ϕM_n (ft-kips)	2575.1	$0.60M_{sc}$ (ft-kips)	2566.8
-----------------	-------	----------------------	--------	------------------------	--------

Pier Design:

ϕV_n (kips)	1035.7	V_u (kips)	38.8
$\phi V_c = \phi 2(1+N_u/(2000A_g))f_c^{1/2}b_w d$	571.9		
V_s (kips)	618.5	*** V_s max = $4 f_c^{1/2}b_w d$ (kips)	1514.7
Maximum Spacing (in)	8.71	(Only if Shear Ties are Required)	
Actual Hook Development (in)	15.46	Req'd Hook Development l_{dh} (in) - Tension	12.52
		Req'd Hook Development l_{dc} (in) - Compression	13.50

Flexure in Slab:

ϕM_n (ft-kips)	2785.3	M_u (ft-kips)	2431.4
a (in)	1.94		
Steel Ratio	0.00738		
β_1	0.825		
Maximum Steel Ratio (p_i)	0.0197		
Minimum Steel Ratio	0.0018		
Rebar Development in Pad (in)	114.00	Required Development in Pad (in)	34.08

Condition	1 is OK, 0 Fails
Maximum Soil Bearing Pressure	1
Pier Area of Steel	1
Pier Shear	1
Interaction Diagram	1
Two-Way Shear Action	1
One-Way Shear Action	1
Overturning	1
Flexure	1
Steel Ratio	1
Length of Development in Pad	1
Hook Development	1
Anchor Bolt Pullout	1
Anchor Bolt Punching Shear	1

ATTACHMENT 3

**DOWN TO EARTH
CONSULTING, LLC**

GEOTECHNICAL AND ENVIRONMENTAL ENGINEERING

**GEOTECHNICAL ENGINEERING REPORT
PROPOSED TELECOMMUNICATIONS TOWER
MASON HILL ROAD,
NORTHFIELD, CONNECTICUT**

Prepared for:

Centek Engineering, Inc.
63-2 North Branford Road
Branford, Connecticut 06405

Prepared by:

Down To Earth Consulting, LLC
27 Siemon Company Drive - Suite No. 363 West
Watertown, Connecticut 06795

File No. 0202-006.00
November 2023

Down To Earth Consulting, LLC
27 Siemon Company Drive - Suite No. 363 West
Watertown, Connecticut 06795

November 6, 2023
File No. 0202-006.00

Tyler Russell
Centek Engineering, Inc.
63-2 North Branford Road
Branford, Connecticut 06405

Via email: trussell@centekeng.com

Re: Geotechnical Engineering Report
Proposed Telecommunications Tower
Mason Hill Road, Northfield, Connecticut

Down To Earth Consulting, LLC (DTE) is pleased to submit this geotechnical engineering report for the proposed telecommunications tower that will be located off Mason Hill Road in Northfield, Connecticut. We appreciate this opportunity to work with you. Please call if you have any questions.

Sincerely,

Down To Earth Consulting, LLC

A handwritten signature in blue ink, appearing to read "DLM".

Daniel LaMesa, P.E.
Principal

TABLE OF CONTENTS

1.0	INTRODUCTION.....	1
2.0	BACKGROUND	1
3.0	SUBSURFACE DATA.....	1
3.1	GENERAL SITE GEOLOGY	1
3.2	SUBSURFACE EXPLORATIONS.....	1
4.0	SUBSURFACE CONDITIONS	2
4.1	SUBSURFACE PROFILE	2
4.2	GROUNDWATER.....	2
4.3	SOIL RESISTIVITY TESTING.....	3
5.0	GEOTECHNICAL DESIGN RECOMMENDATIONS	3
5.1	FOUNDATION	3
5.2	DRAINAGE.....	4
5.3	SEISMIC DESIGN	4
6.0	MATERIALS RECOMMENDATIONS.....	4
6.1	ON-SITE MATERIALS	4
6.2	COMPACTED GRANULAR FILL	5
6.3	CRUSHED STONE	5
6.4	COMMON FILL	5
6.5	MATERIAL COMPACTION	5
6.6	GEOTEXTILE FABRIC	6
7.0	CONSTRUCTION RECOMMENDATIONS.....	6
7.1	FOUNDATION SUBGRADE PREPARATION	6
7.2	BEDROCK REMOVAL	6
7.3	TEMPORARY EXCAVATIONS	7
7.4	TEMPORARY GROUNDWATER CONTROL.....	7
8.0	REVIEW OF FINAL DESIGN, PLANS, AND SPECIFICATIONS	7
9.0	CONSTRUCTION QUALITY CONTROL.....	7
10.0	CLOSURE.....	7

APPENDICES

- APPENDIX 1 – FIGURES
- APPENDIX 2 – EXPLORATION LOGS
- APPENDIX 3 – LIMITATIONS

1.0 INTRODUCTION

Down To Earth Consulting, LLC, completed a subsurface exploration program and geotechnical engineering evaluation for the proposed telecommunications tower that will be located off Mason Hill Road in Northfield, Connecticut (Site). Our geotechnical engineering services included: reviewing project plans, observing test borings, obtaining soil resistivity measurements, characterizing subsurface conditions within the proposed structure limits, performing geotechnical engineering analyses, and providing geotechnical design and construction recommendations for the project. Refer to Figures 1 and 2 (in Appendix 1) for an area plan and site plan, respectively.

Our services were performed in accordance with our proposal dated June 26, 2023 (Revised September 6, 2023). Our recommendations are based on allowable stress design methods and the 2021 International Building Code with 2022 Connecticut Supplements (Building Code).

2.0 BACKGROUND

The project generally consists of constructing a telecommunications tower with access roads, fencing, utilities, and other supporting infrastructure. The tower site is currently wooded with grades ranging from approximate Elevation 810 to 790. Tower loads were not provided to DTE at the time of writing this report. It's anticipated that nominal cuts and fills on the order of 4-feet or less will be needed to achieve design grades and that no significant slopes will be required. Refer to the project plans prepared by Centek for additional development details.

3.0 SUBSURFACE DATA

3.1 GENERAL SITE GEOLOGY

Published surficial and bedrock geological map data (1:24,000 scale, *Surficial Geology of the Narragansett Pier Quadrangle*, Schafer, J.P., 1961 and 1:31,680 scale, *Bedrock Geologic of the Narragansett Pier Quadrangle*, Nichols, D.R., 1956) was reviewed. The Site surficial material is mapped as Glacial Till. The underlying bedrock is mapped as Schist and Granofels.

3.2 SUBSURFACE EXPLORATIONS

We observed and logged one test boring (B-1) and six probes (P-1 to P-6) drilled by our subcontractor General Borings, Inc. on October 13, 2023. Exploration locations are depicted on Figure 2 (Appendix 1) and the log is included in Appendix 2. The exploration locations were located in the field by taping from existing survey points installed by others. The boring and probe locations should be considered approximate.

The boring and probes were drilled to explore the soil, bedrock, and groundwater conditions in the proposed tower area. Hollow stem auger drilling methods were used to advance the explorations to a depth of approximately 2.5 to 14 feet below existing grades.

Representative soil samples were obtained from the boring for soil classification by split barrel sampling procedures in general accordance with ASTM D-1586. The split-spoon sampling procedure utilizes a standard 2-inch O.D. split-barrel sampler that is driven into the bottom of the

boring with a 140-pound hammer falling a distance of 30 inches. The number of blows required to advance the sampler the middle 12-inches of a normal 24-inch penetration is recorded as the Standard Penetration Resistance Value (N). The blows (i.e., "N-Value") are indicated on the boring logs at their depth of occurrence and provide an indication of the relative consistency of the material.

Rock coring was performed in the boring using an NX-size, double-tube core barrel. Descriptions of the rock cores are presented on the logs in addition to Recovery and Rock Quality Designation (RQD). Recovery is defined as the length of core obtained expressed as a percentage of the total length cored. RQD is the total length of core pieces, 4 inches or greater in length, expressed as a percentage of the total length cored. RQD provides an indication of the quality of the rock mass and relative extent of foliations and rock mass jointing.

Groundwater levels were measured using a weighted tape in the open borehole during drilling or inferred from wet samples.

4.0 SUBSURFACE CONDITIONS

4.1 SUBSURFACE PROFILE

The generalized subsurface profile in the area of the proposed telecommunications compound, as inferred from the test boring data, generally consists of a surficial layer of about 12 inches of Topsoil underlain by Subsoil, Sand, and Bedrock. A more detailed description of each layer is provided below:

- Subsoil: Very loose, dark brown to brown, sand and silt
 - about 12 inches thick; over
- Sand: Medium dense to very dense, brown, sand with little to some silt and gravel
 - about 2 to over 10 feet thick; over
- Bedrock: Good to excellent quality, moderately weathered, Schist/Granofels

Visual classifications of soil samples, and conditions encountered at each exploration location can be found on the provided exploration logs, included as Appendix 2.

4.2 GROUNDWATER

Groundwater was inferred based on a wet sample at about 2.5 feet below existing grade at the test boring location. The wet sample could also have been a result of perched water running over the shallow Bedrock surface. Groundwater levels measured in the test boring may not have had sufficient time to stabilize and should be considered approximate. Groundwater measurements were not obtained at the probe locations.

Groundwater levels will vary depending on factors such as temperature, season, precipitation, construction activity, and other conditions, which may be different from those at the time of these measurements. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

4.3 SOIL RESISTIVITY TESTING

On October 13, 2023, DTE field personnel conducted in-situ soil resistivity testing in accordance with accepted engineering practices using the Wenner electrode configuration. Electrodes were spaced at 5, 10, 20, 30 and 40 feet. A set of two approximately perpendicular resistivity lines were completed in the general vicinity of the proposed tower location. The results of the resistivity tests are as follows:

Electrode Spacing (ft)	Resistivity (ohm-cm)	
	Line 1	Line 2
5	371.0	289.1
10	92.0	97.8
20	45.5	54.9
30	30.9	31.9
40	26.8	15.3

Field resistivity results may be influenced by existing utilities, underground structures, and boulders. Resistivity results will also fluctuate depending on the degree of compaction, moisture content, constituent solubility, and temperature. Field resistivity values may also vary depending upon season, precipitation, and other conditions that may differ from those at the time of testing.

5.0 GEOTECHNICAL DESIGN RECOMMENDATIONS

We offer the following geotechnical design recommendations based on the subsurface conditions encountered at the site, available project information, and proposed construction.

5.1 FOUNDATION

We recommended supporting the telecommunications tower on a reinforced concrete mat (or pad-and-pier foundation) bearing on a minimum 12-inch-thick pad of compacted Crushed Stone over undisturbed natural Sand Deposits, Bedrock, or on Structural Fill (hereinafter specified as Compacted Granular Fill, CGF) over natural Sand Deposits and/or Bedrock. The mat should be embedded a minimum of 42 inches below final grades for frost protection or adequately insulated to prevent frost heave in accordance with the Building Code. The Crushed Stone Pad will provide a bearing transition between soil and bedrock, facilitate construction dewatering, and help prevent disturbance to the underlying soil during construction. A layer of filter fabric should be placed between the Crushed Stone and soil subgrade.

Existing Topsoil, Subsoil, and disturbed soils and bedrock (e.g. blast rock) are not suitable for support of the mat foundation. Areas that require over-excavation below the mat should be replaced with Crushed Stone or Compacted Granular Fill (CGF) placed one foot beyond the edge of the foundation and at a one horizontal to one vertical slope away and down from the bottom outside edge of the foundation. Actual bottom of unsuitable bearing material elevations will vary across the site and should be verified during construction excavation by a DTE representative.

We recommend a maximum net allowable bearing pressure of four kips per square foot (ksf). Higher pressures can be accommodated for footings bearing directly on Bedrock should they be desired by the project's structural engineer, in which case DTE should be consulted. We anticipate that the mat will undergo less than one inch of total settlement and less than a half inch of

differential settlement. Settlements will occur as the loads are applied and are expected to be complete at the end of construction. DTE should be provided the final foundation loads and geometries once they are available to confirm the above recommended bearing capacity and settlement estimates.

We recommend a maximum coefficient of friction of 0.5 between the mat and the recommended bearing strata to resist lateral loading. In general, passive pressures against the mat should be ignored in calculating lateral load resistance unless approved by DTE. A factor of safety of at least 1.5 should be applied to calculated sliding resistance.

Uplift/overturning resistance for the tower foundation may be computed as the sum of the weight of the foundation element and the weight of the soil overlying the foundation. We recommend using a soil unit weight of 100 pounds per cubic foot for CGF overlying the foundation for calculating uplift/overturning.

5.2 DRAINAGE

Based on the test boring, the mat foundation may be below the water table depending on the final grading and mat elevation. If so, the mat will have to be designed for the potential hydrostatic uplift pressures or the groundwater will have to be suppressed with a perimeter foundation drain.

If used, the drain should consist of 6-inch diameter perforated PVC pipe, surrounded by 6-inches of Crushed Stone, wrapped in non-woven filter fabric. Cleanouts should be installed in the direction of flow and at the beginning of piping runs and consist of 45-degree elbows (90-degree elbows should not be allowed). The drain should have a rodent screen on the outlet and be gravity drained to the site drainage system.

5.3 SEISMIC DESIGN

Based on the standard penetration test results, visual soil and bedrock classifications, and design peak ground acceleration at this locale, the site soils are not susceptible to liquefaction. We recommend using a Seismic Site Class "C" for the project per the Building Code.

6.0 MATERIALS RECOMMENDATIONS

6.1 ON-SITE MATERIALS

Based on our visual soil classifications, existing Site soils likely will not satisfy the requirements for CGF under Section 6.2. Excavated soils could be reused as Common Fill during Site development. If during construction excavated materials are planned for reuse, gradation analyses and Modified Proctor Test (ASTM D-1557, Method C) should be performed on representative soil samples and the results submitted to the Geotechnical Engineer for review and approval.

The elevated fines (i.e., soil particles passing the No. 200 sieve) content of some site soils could make them difficult to place and compact. Success in using these materials will depend on their moisture content and prevailing weather conditions when they are excavated, placed, and compacted.

Topsoil and Subsoil with organics should only be reused in landscaped areas for planting grass and other vegetation

6.2 COMPACTED GRANULAR FILL

Compacted Granular Fill (CGF) for use as structural fill shall consist of inorganic soil free of clay, loam, ice and snow, tree stumps, roots, and other organic matter; graded within the following limits:

Sieve Size	Percent finer by weight
3-inches	100%
1/2-inch	50 - 85
No. 4	40 - 75
No. 50	8 - 28
No. 200	0 - 12

6.3 CRUSHED STONE

Crushed Stone for use below foundations and around drains shall consist of sound, tough, durable, rock that is graded within the following:

Sieve Size	Percent finer by weight
5/8-inches	100%
1/2-inch	85 - 100
3/8 inch	15 - 45
No. 4	0 - 15
No. 8	0 - 5

6.4 COMMON FILL

Common Fill may be used for general site grading should conform to the following graduation requirements:

Sieve Size	Percent finer by weight
6-inches	100%
No. 200	0 - 25

6.5 MATERIAL COMPACTION

CGF should be placed in loose lifts not exceeding 8 inches in depth and compacted to at least 95 percent of its maximum dry density (and within 2% of optimum moisture content) as determined by ASTM D1557, Method C (Modified Proctor).

Common Fill should also be placed in loose lifts not exceeding 12 inches in depth, and compacted to at least 92 percent of its maximum dry density.

Crushed Stone is considered to be "self-compacting" and would negate the need to run laboratory proctor testing and have field density testing of in-place lifts. The crushed stone should be plate compacted to "chink up" the working surface in lifts. We recommend placing Crushed Stone in maximum 12-inch lifts and compacting the lifts with a minimum of four passes with a vibratory plate compactor weighing a minimum of 1,000 pounds and with a minimum centrifugal force of 10,000 pounds.

6.6 GEOTEXTILE FABRIC

Geotextile fabric used as a separation fabric for crushed stone and soil material should meet the following criteria:

<u>Property</u>	<u>Criteria</u>	<u>Test Method</u>
Grab Strength	min. 80lbs	ASTM D4632
Static (CBR) Puncture	min. 50lbs	ASTM D6241
Trapezoid Tear	min. 25lbs	ASTM D4533
Apparent Opening Size	No. 70-100 U.S. Sieve Size	ASTM D4751

Fabric should be needle-punched non-woven material. Seams should be overlapped a minimum of six inches. During stone placement, the stone drop height should not exceed three feet and equipment traffic should be kept off the fabric until at least 6 to 12 inches of material is placed.

7.0 CONSTRUCTION RECOMMENDATIONS

7.1 FOUNDATION SUBGRADE PREPARATION

Footing excavations should be cut relatively level for soil subgrades and no steeper than 18H:1V for Bedrock subgrades (unless concrete sub footings or rock dowels are used at the direction of DTE). The base of foundation excavations should be free of debris materials, water, ice, and loose and frozen soils prior placing CGF, Crushed Stone, or concrete. Should the materials at bearing level become disturbed, the affected materials should be removed prior to placing CGF, Crushed Stone, or concrete. We recommend the use of smooth-edged excavator buckets or clips (not back-bladed) to make the final subgrade excavations. Boulders encountered at the exposed foundation subgrade should be removed to a depth of at least 12 inches below bottom of the mat. Voids that result from boulder excavations should be filled with CGF or compacted Crushed Stone.

Mat subgrade bearing surfaces should be protected against freezing before and after concrete placement. If construction is performed during freezing weather, the mat should be backfilled to a sufficient frost protection depth as soon as possible after it is constructed. Alternatively, insulating blankets or other measures should be used for protection against freezing.

7.2 BEDROCK REMOVAL

Bedrock removal may be required to reach subgrade levels for some of the proposed structure areas. Boulders and decomposed Bedrock may be able to be removed with an excavator. For sound Bedrock removal, hydraulic splitters, air rams, or other more aggressive (e.g. blasting) methods may be required.

A blast plan should be developed by the contractor and reviewed by the engineer if blasting is used to remove Bedrock. Controlled blasting techniques must be implemented to protect adjacent structures and limit risk of over-blast and excessive fracturing (and unnecessary over-excavation and replacement). Vibration thresholds should be developed for nearby structures by a Professional Engineer registered in the State of Connecticut and monitored during blasting. At least two layers of woven rubber tire blasting mats should be used to protect each blast. The mats will reduce blast noise and the potential for fly rock.

7.3 TEMPORARY EXCAVATIONS

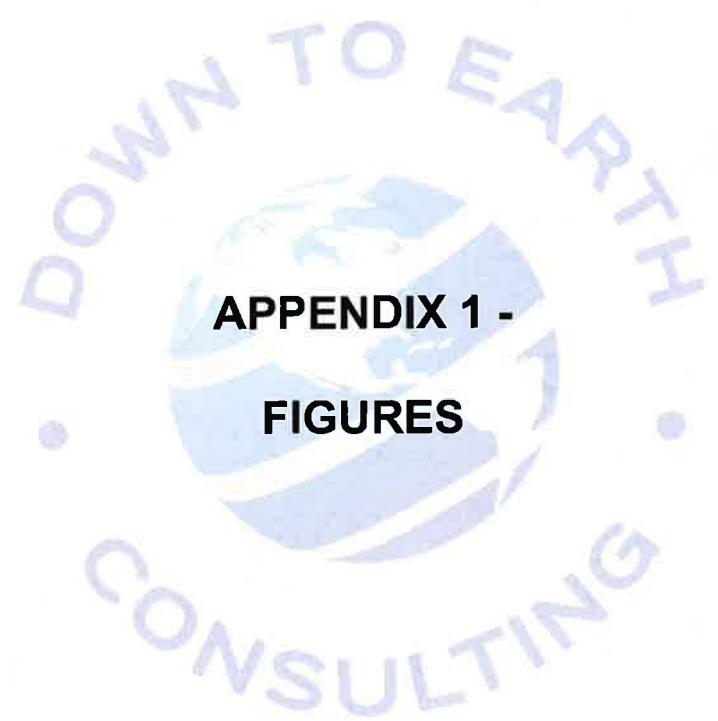
The site soils are classified as OSHA Class "C" soil and can be cut at a maximum one vertical to one and a half horizontal (1V:1.5H) slope up to a maximum excavation depth of 20 feet. These maximum slope and excavation depths assume no surcharge load (i.e., stockpiles, construction equipment, traffic, etc.) at the top of the excavations or groundwater seepage.

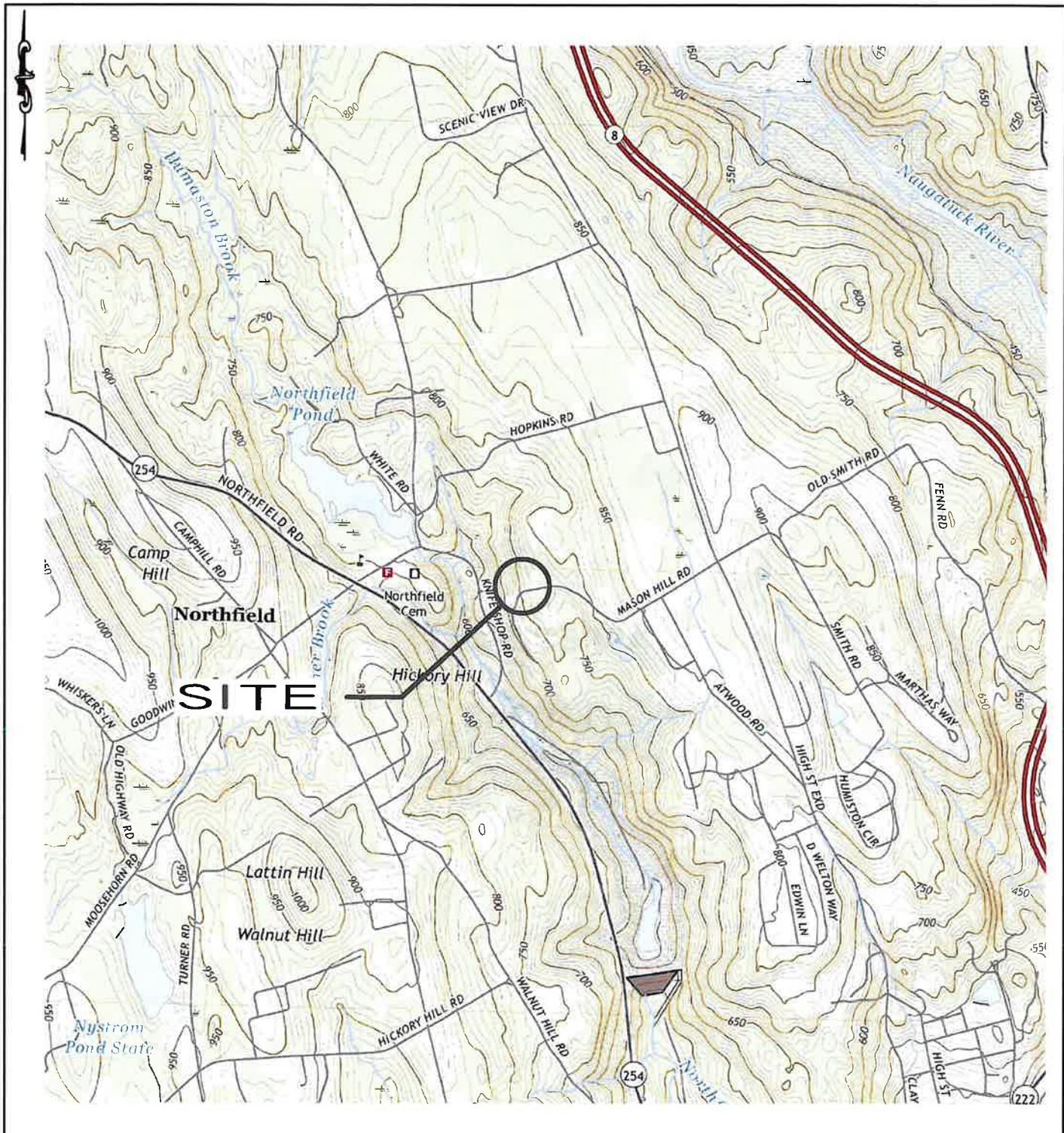
7.4 TEMPORARY GROUNDWATER CONTROL

Groundwater may be encountered during foundation excavation. We anticipate groundwater and stormwater runoff can be managed by grading to low points and using sump pumps. Dewatering should be performed as necessary to allow excavation and observation of the subgrades in the dry and to maintain a stable and dry bottom. In addition, constructing small temporary earth berms and grading to allow drainage away from the excavation is recommended to control surface water runoff. All water is to be managed in accordance with local, state, and federal requirements.

8.0 REVIEW OF FINAL DESIGN, PLANS, AND SPECIFICATIONS

When project plans are finalized, and specifications are available, they should be provided to DTE for review of conformance with our geotechnical recommendations. If any changes are made to the proposed structure locations or elevations, the recommendations provided in this report will need to be verified by DTE for applicability.

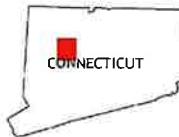

9.0 CONSTRUCTION QUALITY CONTROL


We recommend that DTE make field observations of excavations and foundation preparation to monitor compliance with our recommendations and project specifications. Specifically, we recommend field observation of excavations, removal of unsuitable materials, foundation subgrades, and Fill placement and compaction to monitor compliance with project specifications. We can also assist in classifying material on-site for the purpose of segregation and/or mixing for re-use on-site.

10.0 CLOSURE

We trust the information presented herein is sufficient for your use to progress design of the proposed telecommunications tower. We have enjoyed working with you on this project and look forward to our continued involvement. Please do not hesitate to call us if you have any questions.

This report is subject to the limitations included in Appendix 3.



**DOWN TO EARTH
CONSULTING, LLC**
GEOTECHNICAL AND ENVIRONMENTAL ENGINEERING

27 SIMON COMPANY DRIVE #363W
WATERTOWN, CONNECTICUT 06795

DRAWN BY: MF

REVIEWED BY: DFL

QUADRANGLE LOCATION

**AREA PLAN
PROPOSED TELECOMMUNICATION TOWER
MASON HILL ROAD
NORTHFIELD, CONNECTICUT**

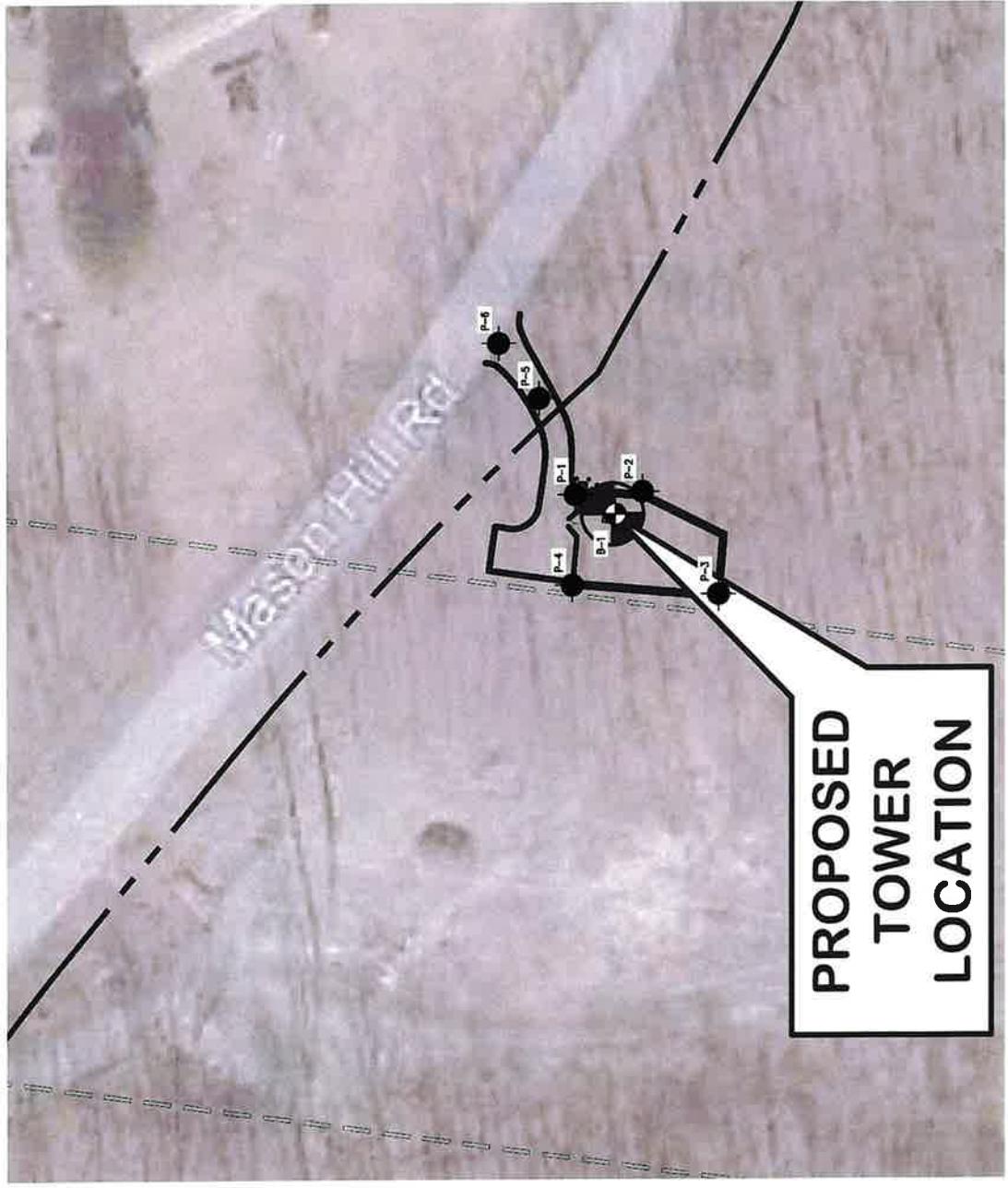
REFERENCE:
USGS TOPOGRAPHIC QUADRANGLE: THOMASTON, CT

SCALE 1" = 2,000'

2,000' 1,000' 0 2,000'

PROJECT NO. 0202-006.00

DATE: 10/16/23


FIGURE NO. 1

LEGEND

NOTES: 1) BASE MAP DEVELOPED FROM AN ELECTRONIC FILE PREPARED BY CENTER, ENTITLED "ITCHFIELD SE. CT., DATED DECEMBER 30, 2021." 2) BORINGS WERE COMPLETED BY GENERAL BORINGS, INC. AND OBSERVED BY DOWN TO EARTH CONSULTING, LLC. 3) THE LOCATIONS OF THE EXPLORATIONS WERE DETERMINED BY TAPING AND VISUAL SURVEYING. 4) THESE COORDINATES ARE IN STATE PLANE COORDINATES AND ARE NOT ACCURATE ONLY TO THE DEGREE INDICATED BY THE METHOD USED.

**PROPOSED
TOWER
LOCATION**

**APPENDIX 2 -
EXPLORATION LOGS**

**DOWN TO EARTH
CONSULTING, LLC**
GEOTECHNICAL AND ENVIRONMENTAL ENGINEERING

PROJECT
PROPOSED TELECOMMUNICATION TOWER
MASON HILL ROAD
NORTHFIELD, CONNECTICUT

BORING NO. B-1
SHEET 1 of 1
FILE NO. 0202-006.00
CHKD. BY DFL

Boring Co. General Borings, Inc. Boring Location See Boring Location Plan
Driller Jim Casson Ground Surface El. Not Available Datum Not Available
Logged By Mateusz Fekietka Date Start 10/13/2023 Date End 10/13/2023

Hammer Type: Lever Operated Safety Hammer Groundwater Readings (from ground surface)
Sampler Size: 1-3/8" I.D. Split Spoon Date Time Depth (ft) Elev. Stabilization Time
Type Drill Rig: Track Mounted D50 Diedrich 10/3/23 - 2.5 - Wet Sample
Drilling Method: 3.25-inch I.D. Hollow-Stem Augers

D E P T H	Casing Blows (ft)	SAMPLE INFORMATION				SAMPLE DESCRIPTION	STRATA	
		Type	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)		
1		S-1	7/24	0 to 2	1-1-1-5		Very loose, dark brown to brown, fine to medium SAND and SILT, trace Roots	12" Topsoil SUBSOIL
2								
3		S-2	8/13	2 to 3.1	7-20-50/1"		Very dense, brown, fine to coarse SAND, some Silt, little fine to coarse Gravel	SAND
4								
5		C-1	60/60	4 to 9		2.5	Excellent quality, moderately hard, slightly weathered, white/gray/brown, fine to coarse grained, SCHIST/GRANOFELS (REC=100%, RQD=90%)	BEDROCK
6						3		
7						3		
8						3		
9						3.5		
10		C-1	60/60	9 to 14		4		
11						4.5	Good quality, moderately hard, slightly weathered, white/gray/brown, fine to coarse grained, SCHIST/GRANOFELS (REC=100%, RQD=70%)	BEDROCK
12						3.5		
13						3.5		
14						4		
15							END OF EXPLORATION AT 14 FEET BELOW GROUND SURFACE	
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								

SPT N-Values	SPT N-Values	Proportions	SYMBOL KEY
0 to 4 - Very Loose	0 to 2 - Very Soft	Trace = 0 to 10%	1. S denotes split-barrel sampler.
5 to 10 - Loose	3 to 4 - Soft	Little = 10 to 20%	2. ST denotes 3-inch O.D. undisturbed sample.
11 to 30 - Medium Dense	5 to 8 - Medium Stiff	Some = 20 to 35%	3. UO denotes 3-inch Osterberg undisturbed sample.
31 to 50 - Dense	9 to 15 - Stiff	And = 35 to 50%	4. PEN denotes penetration length of sampler.
Over 50 - Very Dense	16 to 30 - Very Stiff		5. REC denotes recovered length of sample.
	Over 30 - Hard		6. SPT denotes Standard Penetration Test.
			7. WH denotes weight of hammer
			8. WR denotes weight of rods
			9. PP denotes Pocket Penetrometer
			10. FVST denotes field vane shear test.
			11. RQD denotes Rock Quality Designation.
			12. C denotes core run number.

FIELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual.

2) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.

3) The soil obtained from split spoon Sample S-2 was wet. This could be an indication of the groundwater table level or perched water running over the bedrock surface.

**DOWN TO EARTH
CONSULTING, LLC**
GEOTECHNICAL AND ENVIRONMENTAL ENGINEERING

PROJECT
PROPOSED TELECOMMUNICATION TOWER
MASON HILL ROAD
NORTHFIELD, CONNECTICUT

BORING NO. P-1
SHEET 1 of 1
FILE NO. 0218-009.00
CHKD. BY DFL

Boring Co. General Borings, Inc. Boring Location See Boring Location Plan
Driller Jim Casson Ground Surface El. Not Available Datum Not Available
Logged By Mateusz Fekierta Date Start 10/13/2023 Date End 10/13/2023

Hammer Type: Lever Operated Safety Hammer Groundwater Readings (from ground surface)
Sampler Size: 1-3/8" I.D. Split Spoon Date Time Depth (ft) Elev. Stabilization Time
Type Drill Rig: Track Mounted D50 Diedrich
Drilling Method: 3.25-inch I.D. Hollow-Stem Augers

D E P Casing T H	SAMPLE INFORMATION					SAMPLE DESCRIPTION					STRATA
	Blows (ft)	Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min/ft)					
1											SOIL
2											
3							END OF EXPLORATION AT 2.5 FEET BELOW GROUND SURFACE				
4											INFERRED BEDROCK OR BOULDER
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											
34											
35											
36											
37											
38											
39											
40											

SPT N-Values	SPT N-Values	Proportions	SYMBOL KEY
0 to 4 - Very Loose	0 to 2 - Very Soft	Trace = 0 to 10%	1. S denotes split-barrel sampler.
5 to 10 - Loose	3 to 4 - Soft	Little = 10 to 20%	2. ST denotes 3-inch O.D. undisturbed sample.
11 to 30 - Medium Dense	5 to 8 - Medium Stiff	Some = 20 to 35%	3. UO denotes 3-inch Osterberg undisturbed sample.
31 to 50 - Dense	9 to 15 - Stiff	And = 35 to 50%	4. PEN denotes penetration length of sampler.
Over 50 - Very Dense	16 to 30 - Very Stiff		5. REC denotes recovered length of sample.
	Over 30 - Hard		6. SPT denotes Standard Penetration Test.
			7. WH denotes weight of hammer.
			8. WR denotes weight of rods.
			9. PP denotes Pocket Penetrometer.
			10. FVST denotes field vane shear test.
			11. RQD denotes Rock Quality Designation.
			12. C denotes core run number.

FIELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual.

2) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.

3) Auger refusal at 2.5 feet below ground surface on inferred bedrock or boulder.

**DOWN TO EARTH
CONSULTING, LLC**
GEOLOGICAL AND ENVIRONMENTAL CONSULTANTS

PROJECT
PROPOSED TELECOMMUNICATION TOWER
MASON HILL ROAD
NORTHFIELD, CONNECTICUT

BORING NO. P-2
SHEET 1 of 1
FILE NO. 0218-009.00
CHKD. BY DFL

Boring Co. General Borings, Inc. Boring Location See Boring Location Plan
Driller Jim Casson Ground Surface El. Not Available Datum Not Available
Logged By Mateusz Fekietka Date Start 10/13/2023 Date End 10/13/2023

Hammer Type: Lever Operated Safety Hammer Groundwater Readings (from ground surface)
Sampler Size: 1-3/8" I.D. Split Spoon Date Time Depth (ft) Elev. Stabilization Time
Type Drill Rig: Track Mounted D50 Diedrich
Drilling Method: 3.25-inch I.D. Hollow-Stem Augers

D E P T H	Casing Blows (ft)	SAMPLE INFORMATION				SAMPLE DESCRIPTION				STRATA
		Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)				
1										
2										
3										
4										
5										
6										
7							END OF EXPLORATION AT 6 FEET BELOW GROUND SURFACE			SOIL
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										

SPT N-Values	SPT N-Values	Proportions	SYMBOL KEY
0 to 4 - Very Loose 5 to 10 - Loose 11 to 20 - Medium Dense 31 to 50 - Dense Over 50 - Very Dense	0 to 2 - Very Soft 3 to 4 - Soft 5 to 8 - Medium Stiff 9 to 15 - Stiff 16 to 30 - Very Stiff Over 30 - Hard	Trace = 0 to 10% Little = 10 to 20% Some = 20 to 35% And = 35 to 50%	1. S denotes split-barrel sampler. 2. ST denotes 3-inch O.D. undisturbed sample. 3. UO denotes 3-inch Osterberg undisturbed sample. 4. PEN denotes penetration length of sampler. 5. REC denotes recovered length of sample. 6. SPT denotes Standard Penetration Test. 7. WH denotes weight of hammer. 8. WR denotes weight of rods. 9. PP denotes Pocket Penetrometer. 10. FVST denotes field vane shear test. 11. RQD denotes Rock Quality Designation. 12. C denotes core run number.

FIELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual.

2) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.

3) Auger refusal at 6 feet below ground surface on inferred bedrock or boulder.

**DOWN TO EARTH
CONSULTING, LLC**
GEOTECHNICAL AND ENVIRONMENTAL ENGINEERING

PROJECT
PROPOSED TELECOMMUNICATION TOWER
MASON HILL ROAD
NORTHFIELD, CONNECTICUT

BORING NO. P-3
SHEET 1 of 1
FILE NO. 0218-009.00
CHKD. BY DFL

Boring Co. General Borings, Inc. Boring Location See Boring Location Plan
Driller Jim Casson Ground Surface El. Not Available Datum Not Available
Logged By Mateusz Fekietka Date Start 10/13/2023 Date End 10/13/2023

Hammer Type: Lever Operated Safety Hammer Groundwater Readings (from ground surface)
Sampler Size: 1-3/8" I.D. Split Spoon Date Time Depth (ft) Elev. Stabilization Time
Type Drill Rig: Track Mounted D50 Diedrich
Drilling Method: 3.25-inch I.D. Hollow-Stem Augers

D E P T H (ft)	Casing Blows	SAMPLE INFORMATION				SAMPLE DESCRIPTION				STRATA
		Type & No.	REC/OPEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min/ft)	Date	Time	Depth (ft)	
1										
2										
3										
4										
5										
6										
7										
8							END OF EXPLORATION AT 7 FEET BELOW GROUND SURFACE			
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										

SPT N-Values:	SPT N-Values:	Proportions	SYMBOL KEY
0 to 4 - Very Loose	0 to 2 - Very Soft	Trace = 0 to 10%	1. WH denotes weight of hammer
5 to 10 - Loose	3 to 4 - Soft	Little = 10 to 20%	2. ST denotes 3-inch O.D. undisturbed sample.
11 to 30 - Medium Dense	5 to 8 - Medium Stiff	Some = 20 to 35%	3. UO denotes 3-inch Osterberg undisturbed sample.
31 to 50 - Dense	9 to 15 - Stiff	And = 35 to 50%	4. PEN denotes penetration length of sampler.
Over 50 - Very Dense	16 to 30 - Very Stiff		5. REC denotes recovered length of sample.
	Over 30 - Hard		6. SPT denotes Standard Penetration Test.
			7. WR denotes weight of rods
			8. PP denotes Pocket Penetrometer.
			10. FVST denotes field vane shear test.
			11. RQD denotes Rock Quality Designation.
			12. C denotes core run number.

FIELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual.

2) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.

3) Auger refusal at 7 feet below ground surface on inferred bedrock or boulder.

**DOWN TO EARTH
CONSULTING, LLC**
GEOTECHNICAL AND ENVIRONMENTAL CONSULTING

PROJECT
PROPOSED TELECOMMUNICATION TOWER
MASON HILL ROAD
NORTHFIELD, CONNECTICUT

BORING NO. P-4
SHEET 1 of 1
FILE NO. 0218-009.00
CHKD. BY DFL

Boring Co. General Borings, Inc. Boring Location See Boring Location Plan
Driller Jim Casson Ground Surface El. Not Available Datum Not Available
Logged By Mateusz Fekietka Date Start 10/13/2023 Date End 10/13/2023

Hammer Type: Lever Operated Safety Hammer Groundwater Readings (from ground surface)
Sampler Size: 1-3/8" I.D. Split Spoon Date Time Depth (ft) Elev. Stabilization Time
Type Drill Rig: Track Mounted D50 Diedrich
Drilling Method: 3.25-inch I.D. Hollow-Stem Augers

D E P T H	Casing Blows (ft)	SAMPLE INFORMATION				SAMPLE DESCRIPTION	STRATA
		Type & No.	REC/OPEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)	
1							SOIL
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							

SPT N-Values	SPT N-Values	Proportions	SYMBOL KEY
0 to 4 - Very Loose	0 to 2 - Very Soft	Trace = 0 to 10%	1. S denotes split-barrel sampler.
5 to 10 - Loose	3 to 4 - Soft	Little = 10 to 20%	2. ST denotes 3-inch O.D. undisturbed sample.
11 to 30 - Medium Dense	5 to 8 - Medium Stiff	Some = 20 to 35%	3. UO denotes 3-inch Osterberg undisturbed sample.
31 to 50 - Dense	9 to 15 - Stiff	And = 35 to 50%	4. PEN denotes penetration length of sampler.
Over 50 - Very Dense	16 to 30 - Very Stiff		5. REC denotes recovered length of sample.
	Over 30 - Hard		6. SPT denotes Standard Penetration Test.
			7. WH denotes weight of hammer
			8. WR denotes weight of rods
			9. PP denotes Pocket Penetrometer.
			10. FVST denotes field vane shear test.
			11. RQD denotes Rock Quality Designation.
			12. C denotes core run number.

FIELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual.

2) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.

3) Auger refusal at 2.5 feet below ground surface on inferred bedrock or boulder.

**DOWN TO EARTH
CONSULTING, LLC**
GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

PROJECT
PROPOSED TELECOMMUNICATION TOWER
MASON HILL ROAD
NORTHFIELD, CONNECTICUT

BORING NO. P-5
SHEET 1 of 1
FILE NO. 0218-009.00
CHKD. BY DFL

Boring Co. General Borings, Inc. Boring Location See Boring Location Plan
Driller Jim Casson Ground Surface El. Not Available Datum Not Available
Logged By Mateusz Fekietka Date Start 10/13/2023 Date End 10/13/2023

Hammer Type: Lever Operated Safety Hammer
Sampler Size: 1-3/8" I.D. Split Spoon
Type Drill Rig: Track Mounted D50 Diedrich
Drilling Method: 3.25-inch I.D. Hollow-Stem Augers

D E P T H	Casing Blows (ft)	SAMPLE INFORMATION				SAMPLE DESCRIPTION				STRATA
		Type & No.	REC/PEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min/ft)	Date	Time	Depth (ft)	
1										
2										
3										
4										
5										
6										
7										
8							END OF EXPLORATION AT 6.5 FEET BELOW GROUND SURFACE			
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										

SPT N-Values	SPT N-Values	Proportions	SYMBOL KEY
0 to 4 - Very Loose	0 to 2 - Very Soft	Trace = 0 to 10%	1. S denotes split-barrel sampler.
5 to 10 - Loose	3 to 4 - Soft	Little = 10 to 20%	2. ST denotes 3-inch O.D. undisturbed sample.
11 to 30 - Medium Dense	5 to 8 - Medium Stiff	Some = 20 to 35%	3. UO denotes 3-inch Osterberg undisturbed sample.
31 to 50 - Dense	9 to 15 - Stiff	And = 35 to 50%	4. PEN denotes penetration length of sampler.
Over 50 - Very Dense	16 to 30 - Very Stiff		5. REC denotes recovered length of sample.
	Over 30 - Hard		6. SPT denotes Standard Penetration Test.
			7. WH denotes weight of hammer.
			8. WR denotes weight of rods.
			9. PP denotes Pocket Penetrometer.
			10. FVST denotes field vane shear test.
			11. RQD denotes Rock Quality Designation.
			12. C denotes core run number.

FIELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual.

2) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.

3) Auger refusal at 7 feet below ground surface on inferred bedrock.

**DOWN TO EARTH
CONSULTING, LLC**
CONTINUOUS AND ENVIRONMENTAL ENGINEERING

PROJECT
PROPOSED TELECOMMUNICATION TOWER
MASON HILL ROAD
NORTHFIELD, CONNECTICUT

BORING NO. P-6
SHEET 1 of 1
FILE NO. 0218-009.00
CHKD. BY DFL

Boring Co. General Borings, Inc. Boring Location See Boring Location Plan
Driller Jim Casson Ground Surface El. Not Available Datum Not Available
Logged By Mateusz Fekietka Date Start 10/13/2023 Date End 10/13/2023

Hammer Type: Lever Operated Safety Hammer Groundwater Readings (from ground surface)
Sampler Size: 1-3/8" I.D. Split Spoon Date Time Depth (ft) Elev. Stabilization Time
Type Drill Rig: Track Mounted D50 Diedrich
Drilling Method: 3 25-inch I.D. Hollow-Stem Augers

D E P T H	Casing Blows (ft)	SAMPLE INFORMATION				SAMPLE DESCRIPTION					STRATA
		Type & No.	RECIPEN (inches)	DEPTH (feet)	BLOWS PER 6 INCHES	Core Time (min./ft)	Date	Time	Depth (ft)	Elev.	
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11							END OF EXPLORATION AT 10 FEET BELOW GROUND SURFACE				
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											
34											
35											
36											
37											
38											
39											
40											

SPT N-Values	SPT N-Values	Proportions	SYMBOL KEY
0 to 4 - Very Loose	0 to 2 - Very Soft	Trace = 0 to 10%	1. S denotes split-barrel sampler.
5 to 10 - Loose	3 to 4 - Soft	Little = 10 to 20%	2. ST denotes 3-inch O.D. undisturbed sample.
11 to 30 - Medium Dense	5 to 8 - Medium Stiff	Some = 20 to 35%	3. UO denotes 3-inch Osterberg undisturbed sample.
31 to 50 - Dense	9 to 15 - Stiff	And = 35 to 50%	4. PEN denotes penetration length of sampler.
Over 50 - Very Dense	16 to 30 - Very Stiff		5. REC denotes recovered length of sample.
	Over 30 - Hard		6. SPT denotes Standard Penetration Test.
			7. WH denotes weight of hammer
			8. WR denotes weight of rods
			9. PP denotes Pocket Penetrometer.
			10. FVST denotes field vane shear test.
			11. RQD denotes Rock Quality Designation.
			12. C denotes core run number.

FIELD NOTES: 1) Stratification lines represent approximate boundaries between soil types, transitions may be gradual.

2) Water level readings have been made at times and under conditions stated, fluctuations may occur due to other factors.

3) Auger refusal was not encountered within 10 feet.

**APPENDIX 3 -
LIMITATIONS**

LIMITATIONS

Explorations

1. The analyses and recommendations submitted in this report are based in part upon the data obtained from subsurface explorations by Down To Earth Consulting, LLC (DTE). The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.
2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more erratic. For specific information, refer to the boring logs.
3. Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, and other factors occurring since the time measurements were made.

Review

4. In the event that any changes in the nature, design or location of the proposed telecommunication structures is planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by DTE. It is recommended that this firm be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications.

Construction

5. It is recommended that this firm be retained to provide soil engineering services during construction of the earthworks and foundation phases of the work. This is to observe compliance with the design concepts, specifications, and recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to start of construction.

Use of Report

6. This report has been prepared for the exclusive use of Centek Engineering, Inc. for specific application to the project noted in this geotechnical report in accordance with generally accepted soil and foundation engineering practices. No other warranty, express or implied, is made.
7. This soil and foundation engineering report has been prepared for this project by DTE. This report is for design purposes only and is not sufficient to prepare an accurate bid. Contractors wishing a copy of the report may secure it with the understanding that its scope is limited to design considerations only.
8. This report may contain comparative cost estimates for the purpose of evaluating alternative foundation schemes. These estimates may also involve approximate quantity evaluations. It should be noted that quantity estimates may not be accurate enough for construction bids. Since DTE has no control over labor and materials cost and design, the estimates of construction costs have been made on the basis of experience. DTE does not guarantee the accuracy of cost estimates as compared to contractor's bids for construction costs.