STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

IN RE: APPLICATION OF NEW CINGULAR WIRELESS PCS, LLC (AT&T) FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, MAINTENANCE, AND OPERATION OF A WIRELESS TELECOMMUNICATIONS FACILITY AT 499 MILE LANE, CITY OF MIDDLETOWN, CONNECTICUT

NEW CINGULAR WIRELESS PCS, LLC d/b/a AT&T SUPPLEMENTAL SUBMISSION AND REDIRECT TESTIMONY

SUPPLEMENTAL AT&T SUBMISSIONS

AT&T (the "Applicant") respectfully submits the following supplemental information to the Connecticut Siting Council in the above-referenced proceeding:

1. Legal Memorandum Regarding Tower Sharing & Statutory Considerations

Included as Attachment 1 is a legal memorandum providing the Applicant's: 1) overview of the State of Connecticut statutory considerations raised in Docket 506; and 2) notice of its invocation of Section 16-50aa(c)(2) in collaboration with the City of Middletown which owns the underlying property and existing tower at 499 Mile Lane.

2. FAA Compliance

Included in Attachment 2 is Form 7460, Notice of Proposed Construction or Alteration, that was filed on behalf of the City with the Federal Aviation Administration ("FAA") for the existing tower. Also enclosed in Attachment 2 is the August 15, 2017 Determination of No Hazard to Air Navigation issued for the City's existing lattice tower. Additionally, attached is a FAA report run for the proposed adjacent new tower and which states that notice to the FAA is not required for purposes of its location, height, slope or air traffic purposes.

3. Existing Tower Modifications

Included in Attachment 3 is a report by AT&T's Professional Engineers which was commissioned to identify the full extent of modifications and costs associated with collocation on the existing tower with the intention of developing it as a possible alternative. As set forth therein, it is the Professional Engineer's opinion that the existing tower cannot be modified in accordance with the State Building *Code and/or accepted engineering practices and they do not recommend it regardless of the City's public safety considerations.*

4. <u>New Lattice Tower Alternative – Specifications and Photosimulations</u>

Included in Attachment 4 are photosimulations for an alternative neither AT&T or the City support and which involves a complete relocation of the existing tower, construction of a new lattice tower meeting public safety and commercial wireless carrier requirements and which would involve removal of the existing light duty tower ("Lattice Tower Relocation"). This Lattice Tower Relocation would involve a much bigger physical footprint for the tower and would be similar to Connecticut State Police towers built for both public safety and commercial wireless purposes.

Also included in Attachment 4 are two photographs of existing lattice towers with CT State Police equipment to demonstrate the approximate size, design and location of the municipal communications equipment that would be installed on the Lattice Tower Relocation.

5. Lattice Tower Alternative - Concept Plan

Included in Attachment 5 is a concept plan for the Lattice Tower Relocation alternative that neither AT&T or the City support.

6. Updated Site Drawings

Included in Attachment 6 are updated Site Drawings depicting the location of wetland setbacks in relation to the proposed adjacent new tower and additional engineering details.

SUPPLEMENTAL INFORMATION REQUESTED BY THE SITING COUNCIL

AT&T (the "Applicant") respectfully submits the following exhibits and information in response to the Connecticut Siting Council's request for additional information dated December 1, 2021:

a) Estimate the number of small cell facilities on utility poles that would be necessary to provide AT&T's target coverage.

Martin Lavin - Small cells would not adequately meet AT&T's objectives in this Docket given the limited coverage area of each, the demographics and density of the service area and inability to support backup power requirements for FirstNet. I did a desktop review of this only to assess from a RF perspective a numerical answer to the question. I estimate 42 to 48 at a minimum which would likely increase based on field conditions. In my professional opinion, small cells are not technically implicated as an alternative in this Docket.

b) Provide a map depicting the prime farmland soils on the subject property and the proposed compound expansion area.

Brian Gaudet - Included in Attachment 7 is a map depicting the location of prime farmland soils on the subject property. The nearest Prime Farmland Soils on site are located at the corners of the property over 508' to the northeast of the proposed compound expansion area. The proposed Facility would not impact Prime Farmland Soils.

c) Provide a map of wetlands on the subject property and the proposed compound expansion area.

Brian Gaudet – Included in Attachment 8 is a map which depicts the location of wetlands on the subject property and in relation to the existing tower site and proposed compound expansion area.

d) Provide a copy of any wetland delineation/inspection reports for the subject property.

Brian Gaudet - Included in Attachment 9 is the Wetland Inspection Report. It notes that that the wetland is man-made and associated with prior grading with the former U.S. Army Reserve Training Center use of the site. The wetlands are part of a disturbed area and there are no likely adverse impacts provided typical erosion and sedimentation control measures are used during construction.

e) Provide an updated noise study taking into account the proposed compound expansion area location and generator model and fuel source.

Scott Pike - Included in Attachment 10 is an updated noise study prepared by Reuter Associates LLC, dated December 10, 2021, with updated calculations reflecting the site modifications proposed by AT&T and noting noise at the property lines from the generator would not exceed 35 dBA.

f) Provide statistics on dropped calls and/or ineffective attempts in the vicinity of the proposed facility.

Martin Lavin – As requested by the Council, I reviewed AT&T proprietary IA/DC statistics with their in-house RF engineers for surrounding sites. That data correlates to my testimony that there is a gap in coverage in the area of the proposed site which led to it being proposed for FirstNet and AT&T services. Voice and data sessions for surrounding sites and sectors in the direction of the proposed site are performing below AT&T's standards and network planning goals.

g) Provide a review of the Natural Diversity Database regarding possible impacts to statelisted species and any associated mitigation measures.

Brian Gaudet – APT performed an evaluation to assess the presence of any federally- and state-listed, threatened, or endangered species; species of special concern; or, critical

habitats. No known areas of state-listed species are currently depicted on the most recent NDDB maps within the Subject Property. The proposed Facility is not anticipated to adversely impact any listed species or critical habitat. Included in Attachment 11 is a USFWS/NDDB Compliance Memorandum documenting this information. AT&T would consider following USFWS voluntary conservation measures, where appropriate and the project schedule allows, to reduce any unlikely potential for impact to northern long-eared bat.

 h) Determine if the increase in centerline height from approximately 150 feet to 180 feet associated with co-locating on the existing lattice tower would reduce the need for additional AT&T facilities in the area, and if yes, indicate in which areas this would occur, and provide any cost benefits associated with fewer needed facilities.

Martin Lavin – Increasing the height of the proposed monopole from 150' to 180' would expand the coverage footprint and provide additional wide area coverage in this part of Middletown. Principally, that would occur in an area almost uniformly distributed in a "ribbon" of coverage roughly a few hundred feet wide at the edges of the predicted coverage area achieved at 150' AGL which lower height is adequate. At this point in time, I do not believe the added height would obviate the need for additional AT&T facilities, but certainly the added coverage could be beneficial to FirstNet and AT&T customers if approved by the Council.

CERTIFICATE OF SERVICE

I hereby certify that on this day an original and fifteen (15) copies of the foregoing were sent via overnight mail and electronically to the Connecticut Siting Council.

December 13, 2021

C/

Kristen Motel Cuddy & Feder LLP 445 Hamilton Ave, 14th Floor White Plains, NY 10601 (914)-761-1300 Attorneys for the Applicant

cc: Christopher J. Forte, Esq., City of Middletown Office of the Attorney General AT&T, Smartlink Group

ATTACHMENT 1

See **FP-ATT-083-211214** - New Cingular Wireless PCS, LLC (AT&T) Request to Initiate Feasibility Proceeding for shared use of an existing municipal communications tower located at 499 Mile Lane, Middletown, Connecticut.

ATTACHMENT 2

UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION ANTENNA STRUCTURE REGISTRATION

OWNER: City of Middletown

FCC Registration Number (FRN): 0003567773

ATTN: Wayne S. Bartolotta, Director City of Middletown 169 Cross Street	Antenna Structure Registration Number 1303628		
Middletown, CT 06457	Issue Date 10/05/2017		
Location of Antenna Structure 499 Mile Lane	Ground Elevation (AMSL)		
Middletown, CT 06457 County: MIDDLESEX	33.5 meters Overall Height Above Ground (AGL)		
Latitude Longitude	56.4 meters Overall Height Above Mean Sea Level (AMSL)		
41- 34- 48.3 N 072- 41- 09.4 W NAD83	89.9 meters		
Center of Array Coordinates N/A	Type of Structure LTOWER		
	Lattice Tower		
Painting and Lighting Requirements: FAA Chapters NONE			
Conditions:			

This registration is effective upon completion of the described antenna structure and notification to the Commission. YOU MUST NOTIFY THE COMMISSION WITHIN 24 HOURS OF COMPLETION OF CONSTRUCTION OR CANCELLATION OF YOUR PROJECT, please file FCC Form 854. To file electronically, connect to the antenna structure registration system by pointing your web browser to http://wireless.fcc.gov/antenna. Electronic filing is recommended. You may also file manually by submitting a paper copy of FCC Form 854. Use purpose code "NT" for notification of completion of construction; use purpose code "CA" to cancel your registration.

The Antenna Structure Registration is not an authorization to construct radio facilities or transmit radio signals. It is necessary that all radio equipment on this structure be covered by a valid FCC license or construction permit.

You must immediately provide a copy of this Registration to all tenant licensees and permittees sited on the structure described on this Registration (although not required, you may want to use Certified Mail to obtain proof of receipt), and *display* your Registration Number at the site. See reverse for important information about the Commission's Antenna Structure Registration rules.

You must comply with all applicable FCC obstruction marking and lighting requirements, as set forth in Part 17 of the Commission's Rules (47 C.F.R. Part 17). These rules include, but are not limited to:

Posting the Registration Number: The Antenna Structure Registration Number must be displayed in a conspicuous place so that it is readily visible near the base of the antenna structure. Materials used to display the Registration Number must be weather-resistant and of sufficient size to be easily seen at the base of the antenna structure. Exceptions exist for certain historic structures. See 47 C.F.R. 17.4(g)-(h).

Inspecting lights and equipment: The obstruction lighting must be observed at least every 24 hours in order to detect any outages or malfunctions. Lighting equipment, indicators, and associated devices must be inspected at least once every three months.

Reporting outages and malfunctions: When any top steady-burning light or a flashing light (in any position) burns out or malfunctions, the outage must be reported to the nearest FAA Flight Service Station, unless corrected within 30 minutes. The FAA must again be notified when the light is restored. The owner must also maintain a log of these outages and malfunctions.

Maintaining assigned painting: The antenna structure must be repainted as often as necessary to maintain good visibility.

Complying with environmental rules: If you certified that grant of this registration would not have a significant environmental impact, you must nevertheless maintain all pertinent records and be ready to provide documentation supporting this certification and compliance with the rules, in the event that such information is requested by the Commission pursuant to 47 C.F.R. 1.1307(d).

Updating information: The owner must notify the FCC of proposed modifications to this structure; of any change in ownership; or, within 30 days of dismantlement of the structure.

You can find additional information at [insert link] or by calling (877) 480-3201 (TTY 717-338-2824).

Aeronautical Study No. 2017-ANE-3032-OE

Mail Processing Center Federal Aviation Administration Southwest Regional Office Obstruction Evaluation Group 10101 Hillwood Parkway Fort Worth, TX 76177

Issued Date: 08/15/2017

C/O Pyramid Network Services - Rob Baumeister City of Middletown 6615Towpath Road East Syracuse, NY 13057

**** DETERMINATION OF NO HAZARD TO AIR NAVIGATION ****

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:	Antenna Tower Mile Lane
Location:	Middletown, CT
Latitude:	41-34-48.36N NAD 83
Longitude:	72-41-09.42W
Heights:	110 feet site elevation (SE)
	185 feet above ground level (AGL)
	295 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

_____ At least 10 days prior to start of construction (7460-2, Part 1)

___X__ Within 5 days after the construction reaches its greatest height (7460-2, Part 2)

Based on this evaluation, marking and lighting are not necessary for aviation safety. However, if marking/ lighting are accomplished on a voluntary basis, we recommend it be installed in accordance with FAA Advisory circular 70/7460-1 L Change 1.

This determination expires on 02/15/2019 unless:

- (a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
- (b) extended, revised, or terminated by the issuing office.
- (c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA. This determination includes all previously filed frequencies and power for this structure.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (817) 222-5932, or joan.tengowski@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2017-ANE-3032-OE.

Signature Control No: 339971713-340855495 Joan Tengowski Technician (DNE)

Attachment(s) Frequency Data Map(s)

cc: FCC

Frequency Data for ASN 2017-ANE-3032-OE

LOW FREQUENCY	HIGH FREQUENCY	FREQUENCY UNIT	ERP	ERP UNIT
6	7	GHz	55	dBW
6	7	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
17.7	19.7	GHz	42	dBW
21.2	23.6	GHz	55	dBW
21.2	23.6	GHz	42	dBW
614	698	MHz	1000	W
614	698	MHz	2000	W
698	806	MHz	1000	W
806	901	MHz	500	W
806	824	MHz	500	W
824	849	MHz	500	W
851	866	MHz	500	W
869	894	MHz	500	W
896	901	MHz	500	W
901	902	MHz	7	W
929	932	MHz	3500	W
930	931	MHz	3500	W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	MHz	1640	W
1850	1990	MHz	1640	W
1930	1990	MHz	1640	W
1990	2025	MHz	500	W
2110	2200	MHz	500	W
2305	2360	MHz	2000	W
2305	2310	MHz	2000	W
2345	2360	MHz	2000	W
2496	2690	MHz	500	W

* Federal Airways & Airspace * Summary Report: New Construction * Antenna Structure Airspace User: Not Identified File: 10578361 Location: Middle, CT Latitude: 41°-34'-48.0" Longitude: 72°-41'-8.8" SITE ELEVATION AMSL.....108 ft. STRUCTURE HEIGHT.....160 ft. OVERALL HEIGHT AMSL.....268 ft. NOTICE CRITERIA FAR 77.9(a): NNR (DNE 200 ft AGL) FAR 77.9(b): NNR (DNE Notice Slope) FAR 77.9(c): NNR (Not a Traverse Way) FAR 77.9: NNR FAR 77.9 IFR Straight-In Notice Criteria for MMK FAR 77.9: NNR FAR 77.9 IFR Straight-In Notice Criteria for HFD FAR 77.9(d): NNR (Off Airport Construction) NR = Notice Required NNR = Notice Not Required PNR = Possible Notice Required (depends upon actual IFR procedure) For new construction review Air Navigation Facilities at bottom of this report. Notice to the FAA is not required at the analyzed location and height for slope, height or Straight-In procedures. Please review the 'Air Navigation' section for notice requirements for offset IFR procedures and EMI. OBSTRUCTION STANDARDS FAR 77.17(a)(1): DNE 499 ft AGL FAR 77.17(a)(2): DNE - Airport Surface FAR 77.19(a)(2): DNE - Airport Surface FAR 77.19(a): DNE - Horizontal Surface FAR 77.19(b): DNE - Conical Surface FAR 77.19(c): DNE - Primary Surface FAR 77.19(d): DNE - Approach Surface FAR 77.19(e): DNE - Approach Transitional Surface FAR 77.19(e): DNE - Abeam Transitional Surface VFR TRAFFIC PATTERN AIRSPACE FOR: MMK: MERIDEN MARKHAM MUNI Type: A RD: 46759.27 RE: 103 FAR 77.17(a)(1):DNEFAR 77.17(a)(2):Does Not Apply. VFR Horizontal Surface: DNE

VFR Conical Surface: DNE VFR Primary Surface: DNE -DNE VFR Approach Surface: VFR Transitional Surface: DNE VFR TRAFFIC PATTERN AIRSPACE FOR: HFD: HARTFORD-BRAINARD Type: A RD: 55522.27 RE: 17 FAR 77.17(a)(1):DNEFAR 77.17(a)(2):DNE - Greater Than 5.99 NM.VFR Horizontal Surface:DNE VFR Conical Surface: DNE VFR Primary Surface: DNE VFR Approach Surface: DNE VFR Transitional Surface: DNE TERPS DEPARTURE PROCEDURE (FAA Order 8260.3, Volume 4) FAR 77.17(a)(3) Departure Surface Criteria (40:1) DNE Departure Surface MINIMUM OBSTACLE CLEARANCE ALTITUDE (MOCA) FAR 77.17(a)(4) MOCA Altitude Enroute Criteria The Maximum Height Permitted is 1000 ft AMSL PRIVATE LANDING FACILITIES BEARING RANGE DELTA ARP FAA FACIL TO FACIL IN NM ELEVATION IFR IDENT TYP NAME 319.95 1.31 +155 OCT6 HEL MIDDLETOWN No Impact to Private Landing Facility Structure is beyond notice limit by 2960 feet. CT98 HEL MIDDLESEX HOSPITAL 130.02 2.33 +211 No Impact to Private Landing Facility Structure is beyond notice limit by 9157 feet. 326.46 3.4 01CT HEL BERLIN FAIRGROUNDS +208 No Impact to Private Landing Facility Structure is beyond notice limit by 15659 feet. CT92 HEL BEMER 56.2 4.61 +108 No Impact to Private Landing Facility Structure is beyond notice limit by 23011 feet. CT28 HEL CT DEPT OF VETERANS AFFAIRS 20.13 5.00 +118 No Impact to Private Landing Facility Structure is beyond notice limit by 25380 feet. 221.38 5.77 -65 CT21 HEL C N FLAGG No Impact to Private Landing Facility Structure 65 ft below heliport.

AIR NAVIGATION ELECTRONIC FACILITIES

FAC		ST			DIST	DELTA			GRND	APCH
IDNT	TYPE	AT	FREQ	VECTOR	(ft)	ELEVA	ST	LOCATION	ANGLE	BEAR
		·								
HFD	VOR/DME	R	114.9	59.49	43899	-581	СТ	HARTFORD	76	
MAD	VOR/DME	I	110.4	181.04	96989	+52	СТ	MADISON	.03	
BDL	RADAR	I		.39	130657	+32	СТ	BRADLEY INTL	.01	
BDL	VORTAC	D	109.0	359.67	131547	+108	СТ	BRADLEY	.05	
ORW	VOR/DME	I	110.0	92.85	188046	-42	СТ	NORWICH	01	
BDR	VOR/DME	R	108.8	218.1	194530	+262	СТ	BRIDGEPORT	.08	
GON	VOR/DME	R	110.8	117.84	196111	+259	СТ	GROTON	.08	
BAF	VORTAC	R	113.0	357.77	212221	+1	MA	BARNES	0.00	

CFR Title 47, §1.30000-§1.30004

AM STUDY NOT REQUIRED: Structure is not near a FCC licensed AM station. Movement Method Proof as specified in §73.151(c) is not required. Please review 'AM Station Report' for details.

Nearest AM Station: WMRD @ 6063 meters.

Airspace® Summary Version 21.11.621

AIRSPACE® and TERPS® are registered \circledast trademarks of Federal Airways & Airspace® Copyright © 1989 – 2021

12-09-2021 13:53:03

ATTACHMENT 3

STRUCTURAL ANALYSIS REPORT

For

SITE NUMBER: CT3470 SITE NAME: MIDDLETOWN_MILE LANE

499 Mile Lane Middletown, CT 06457

Antennas Mounted on the Tower

Prepared for:

Dated: December 9, 2021

Prepared by:

45 Beechwood Drive North Andover, MA 01845 (P) 978.557.5553 (F) 978.336.5586 www.hudsondesigngrouplic.com

11 ¹⁴ x = ¹⁶ 11

SCOPE OF WORK:

Hudson Design Engineering, PLLC (HDG) has been authorized by AT&T to conduct a structural evaluation of the 180' self-supporting tower supporting the proposed AT&T's antennas located at elevation 180' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of AT&T's existing and proposed antennas listed below.

The following documents were used for our reference:

• Tower and Foundation Design Drawings prepared by Valmont dated September 15, 2017.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing tower <u>is NOT in</u> <u>conformance</u> with the ANSI/TIA-222-G Standard for the loading considered under the criteria listed in this report. <u>The tower structure is rated at 292.0 % - (Legs at Tower Section</u> <u>T3 from EL.120' to EL.140' Controlling)</u>.

FOUNDATION SUMMARY:

Based on our evaluation, we have determined that the existing foundation <u>is NOT in</u> <u>conformance</u> with the ANSI/TIA-222-G Standard for the loading considered under the criteria listed in this report.

Note: The existing tower is not capable of supporting the proposed loading generated by AT&T. The tower was designed to support the existing equipment which consists primarily of municipal whip and dish antennas. To modify the existing tower, the tower legs would require to be reinforced from the bottom to the top of the tower. The modifications would involve welding split pipes to the existing legs. In addition, the leg and diagonal bolt connections would require modifications which would include increasing the bolt sizes and/or adding new bolts, this would result in modifying the existing plates to accommodate the increased bolt sizes. This amount of welding required to achieve these modification concerns HDG with the potential damage it could cause to the legs, along with the other members and appurtenances that are in the vicinity of modifications. In our analysis review, we have determined that the foundation would require substantial modifications due to the fact that the proposed reactions generated by a modified tower are substantially higher than the original design reactions. To complete this type of project there will be a great amount of disruption to the existing site and tower. In conclusion, HDG does not recommend reinforcing the existing tower and instead recommends that the proposed AT&T equipment be installed elsewhere.

Tenant	Appurtenances	Elev.	Mount
	(1) 4' Lighting Rod	182'	
AT&T	(3) TPA65R-BU8DA-K Antennas	180'	Sector Frame
AT&T	(3) HPA65R-BU8A Antennas	180'	Sector Frame
AT&T	(3) DMP65R-BU8DA-K Antennas	180'	Sector Frame
AT&T	(3) B14 4478 RRH's	180'	Sector Frame
AT&T	(3) 4415 B30 RRH's	180'	Sector Frame
AT&T	(3) RRUS-E2 B29's	180'	Sector Frame
AT&T	(3) 4449 B5/B12 RRH's	180'	Sector Frame
AT&T	(3) B2/B66A 8843 RRH's	180'	Sector Frame
AT&T	(3) Squid Surge Arrestors	180'	Sector Frame
	(1) Sinclair SC479-HF1LDF	157.23'	
	(1) Motorola TTA (DS428E83I01T)	150'	
	(1) Sinclair SC479-HF1LDF	137.23'	
	(1) HP3-11 Dish Antenna	130'	
	(1) HP3-11 Dish Antenna	95'	

APPURTENANCES CONFIGURATION:

*Proposed AT&T Appurtenances shown in Bold.

AT&T EXISTING/PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
AT&T	(6) DC Power Cables	180'	Tower Face
AT&T	(2) Fiber Cable	180'	Tower Face

*Proposed AT&T Coax Cables shown in Bold.

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Legs	94.4 %	60 - 80	PASS	Controlling
Diagonals	61.7 %	80 – 100	PASS	
Top Girt	0.6 %	160 - 180	PASS	
Bolts	73.5 %	-	PASS	

ANALYSIS RESULTS SUMMARY (EXISTING CONDITIONS):

Note: HDG conducted a structural evaluation internally of the tower as it stands to establish a base line from as-built condition.

ANALYSIS RESULTS SUMMARY (PROPOSED CONDITIONS):

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Legs	292.0 %	120 - 140	FAIL	Controlling
Diagonals	122.1 %	120 - 140	FAIL	
Top Girt	21.4 %	160 - 180	PASS	
Bolts	166.9 %	-	FAIL	

FOUNDATION COMPARISON SUMMARY:

	Design Reactions	Proposed Reactions	Stress Ratio	Pass/Fail
Axial	15.1 kips	25.0 kips	165.6 %	FAIL
Shear	23.1 kips	40.8 kips	176.6 %	FAIL
Moment	2151.8 kip-ft	4570.4 kip-ft	212.4 %	FAIL
Compression	196.2 kips	414.3 kips	211.2 %	FAIL
Uplift	-174.9 kips	-376.5 kips	215.3 %	FAIL

DESIGN CRITERIA:

1. EIA/TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: Middlesex Ultimate Wind Speed: 130 mph (3 second gust) Nominal Wind Speed: 101 mph Minimum Basic Wind Speed: 100 mph (per TIA-222-G) Structural Class: III Exposure Category: C Topographic Category: 1 Nominal Ice Thickness: 0.75 inch

2. Approximate height above grade to proposed antennas: 180'

*Calculations and referenced documents are attached.

ASSUMPTIONS:

- 1. The appurtenances configuration is as stated in this report. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 2. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
- 3. The foundation of the tower was not checked due to lack of information. A geotechnical report would be required to determine whether the foundation is capable of supporting the proposed loadings.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas, RRHs and surge arrestors be mounted on a new tower.

CALCULATIONS

DESIGNED APPURTENANCE LOADING

		TYPE	ELEVATION		TYPE	ELEVATION
	Lightning Rod 4'x.5"		182	4449 B5/B12 RRH		180
	12'-6" Sector Frame		180	4449 B5/B12 RRH		180
	12'-6" Sector Frame		180	B2/B66A 8843 RRH		180
	12'-6" Sector Frame		180	B2/B66A 8843 RRH		180
	TPA65R-BU8DA-K	Antenna w/ Mounting Pipe	180	B2/B66A 8843 RRH		180
	TPA65R-BU8DA-K	Antenna w/ Mounting Pipe	180	Squid Surge Arresto	r	180
	TPA65R-BU8DA-K	Antenna w/ Mounting Pipe	180	Squid Surge Arresto	r	180
	HPA65R-BU8A Ante	nna w/ Mounting Pipe	180	Squid Surge Arresto	r	180
	HPA65R-BU8A Ante	nna w/ Mounting Pipe	180	Sinclair SC479-HF1	LDF	157.23
	HPA65R-BU8A Ante	nna w/ Mounting Pipe	180	SO602-1		150
	DMP65R-BU8DA-K	Antenna w/ Mounting Pipe	180	2" STD x 10.5' Stiff	Arm	150
	DMP65R-BU8DA-K	Antenna w/ Mounting Pipe	180	Motorola TTA (DS42	8E83I01T)	150
	DMP65R-BU8DA-K	Antenna w/ Mounting Pipe	180	Sinclair SC479-HF1	LDF	137.23
	B14 4478 RRH		180	4 STD x 66" Dish Pi	pe Mount	130
	B14 4478 RRH		180	SO602-1	SO602-1	
	B14 4478 RRH		180	2" STD x 10.5' Stiff	2" STD x 10.5' Stiff Arm	
	4415 B30 RRH		180	HP3-11 Dish Antenn	HP3-11 Dish Antenna	
	4415 B30 RRH		180	Sinclair SC479-HF1	Sinclair SC479-HE1LDE	
	4415 B30 RRH		180	SO602-1	SO602-1	
	RRUS-E2 B29		180	2" STD x 10.5' Stiff	2" STD x 10.5' Stiff Arm	
	RRUS-E2 B29		180	4 STD x 66" Dish Pipe Mount		95
	RRUS-E2 B29		180	HP3-11 Dish Antenn	HP3-11 Dish Antenna	
	1110 B5/B12 PPH		180		-	
R REACTIONS A	GRADE	Fy	Fu	GRADE	Fy	Fu
14303 lb	A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi
376488 lb					•	
MOMENT 1390154 lb-ft 4 lb-ft 7500 in ICE	 Tower is loc: Tower desig Tower desig Tower is als: Deflections: Tower Struct ToWer RA 	ated in Middlesex Cou ned for Exposure C to ned for a 101.0 mph b o designed for a 50.0 r are based upon a 60.0 ture Class III. Category 1 with Crest TING: 292%	IOWER L nty, Connecticut. the TIA-222-G Standa asic wind in accordanc nph basic wind with 0. mph wind. t Height of 0.00 ft	DESIGN NOTE ard. 29 with the TIA-222 75 in ice. Ice is co	S 2-G Standard. nsidered to increas	e in thickness with heig

Hudson Design Group	^{Job:} 180' SST		
45 Beechwood Drive	Project: CT370		_
North Andover, MA	Client: AT&T	Drawn by: ID	App'd:
Phone: 978.557.5553	Code: TIA-222-G	Date: 12/09/21	Scale: NTS
FAX: 978.336.5586	Path: 2/Shawara OSTRUCTURAL DEPARTMENTANALYSIS SOFTMA	GRI TraTower/Tra Projects(AT&TCT)CT)A708/GB/TIA-222-GICT3479-(869	Dwg No. E-

A	Job		Page
tnx 1 ower		180' SST	1 of 19
Hudson Design Group	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA	Client		Designed by
FAX: 978.336.5586		AI&I	ID

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 13.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Middlesex County, Connecticut. Basic wind speed of 101.0 mph. Structure Class III. Exposure Category C. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56.0 pcf. A wind speed of 50.0 mph is used in combination with ice. Temperature drop of 50.0 °F. Deflections calculated using a wind speed of 60.0 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

<u>Triangular Tower</u>

tree Tools of	Job		Page
tnx 1 ower		180' SST	2 of 19
Hudson Design Group	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA	Client	AT 8 T	Designed by
FAX: 978.336.5586		AI&I	ID

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	180.00-160.00			5.00	1	20.00
T2	160.00-140.00			5.00	1	20.00
T3	140.00-120.00			5.00	1	20.00
T4	120.00-100.00			5.00	1	20.00
T5	100.00-80.00			5.00	1	20.00
T6	80.00-60.00			5.00	1	20.00
Τ7	60.00-40.00			7.00	1	20.00
T8	40.00-20.00			9.00	1	20.00
Т9	20.00-0.00			11.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Ôffset	Offset
				End			
	ft	ft		Panels		in	in
T1	180.00-160.00	3.33	X Brace	No	No	0.0000	0.0000
T2	160.00-140.00	3.33	X Brace	No	No	0.0000	0.0000
T3	140.00-120.00	3.33	X Brace	No	No	0.0000	0.0000
T4	120.00-100.00	3.33	X Brace	No	No	0.0000	0.0000
T5	100.00-80.00	3.33	X Brace	No	No	0.0000	0.0000
T6	80.00-60.00	3.33	X Brace	No	No	0.0000	0.0000
Τ7	60.00-40.00	3.33	X Brace	No	No	0.0000	0.0000
T8	40.00-20.00	3.33	X Brace	No	No	0.0000	0.0000
T9	20.00-0.00	3.33	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
T1 180.00-160.00	Pipe	P2.5x.203	A572-50 (50 ksi)	Equal Angle	L2x2x1/8	A36 (36 ksi)
T2 160.00-140.00	Pipe	P2.5x.203	A572-50 (50 ksi)	Equal Angle	L2x2x1/8	A36 (36 ksi)
T3 140.00-120.00	Pipe	P2.5x.203	A572-50 (50 ksi)	Equal Angle	L2x2x1/8	A36 (36 ksi)
T4 120.00-100.00	Pipe	P4x.237	A572-50 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T5 100.00-80.00	Pipe	P5x.258	A572-50 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T6 80.00-60.00	Pipe	P5x.258	A572-50 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T7 60.00-40.00	Pipe	P6x.28	A572-50 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T8 40.00-20.00	Pipe	P6x.28	A572-50 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T9 20.00-0.00	Pipe	P6x.28	A572-50 (50 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	A36 (36 ksi)

T	Job	Page
thx 1 ower	180' SST	3 of 19
Hudson Design Group	Project CT370	Date 15:50:52 12/09/21
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client AT&T	Designed by ID

	Tower Section Geometry (cont'd)												
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade							
T1 180.00-160.00	Equal Angle	L2x2x3/16	A36 (36 ksi)	Solid Round		A36 (36 ksi)							

Tower Section Geometry (cont'd)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
ft	ft^2	in					Diagonais in	Horizoniais in	keaunaanis in
<u></u>	0.00	0.0000	A36	1	1	1	36,0000	36,0000	36.0000
180.00-160.00	0.00	0.0000	(36 ksi)	1	1	1	50.0000	50.0000	20.0000
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T6 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T7 60.00-40.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T8 40.00-20.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T9 20.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Angles	Rounds		X Y	X Y	X Y	X Y	X Y	X Y	$X \\ Y$
T1 180.00-160.00	No	No	1	1	1	1	1	1	1	1
T2 160.00-140.00	No	No	1	1	1	1	1	1	1	1
T3	No	No	1	1	1	1	1	1	1	1
T4	No	No	1	1	1	1	1	1	1	1
T5	No	No	1	1	1	1	1	1	1	1
T6	No	No	1	1	1	1	1	1	1	1
T7 60.00-40.00	No	No	1	1	1 1 1	1	1	1	1	1

A	Job		Page
tnx 1 ower		180' SST	4 of 19
Hudson Design Group	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA	Client		Designed by
Phone: 978.336.5586 FAX: 978.336.5586		AI&I	ID

				K Factors ¹								
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner		
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace		
	Single	Solid		Diags	Diags							
	Angles	Rounds		X	X	Х	X	X	X	Х		
ft	-			Y	Y	Y	Y	Y	Y	Y		
T8	No	No	1	1	1	1	1	1	1	1		
40.00-20.00				1	1	1	1	1	1	1		
T9 20.00-0.00	No	No	1	1	1	1	1	1	1	1		
				1	1	1	1	1	1	1		

 $\frac{1}{Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.}$

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diagor	nal	Top G	irt	Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-160.00														
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00														
T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														
T4	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T5	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T6 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower	Redund	ant	Redund	lant	Redund	ant	Redun	dant	Redundan	t Vertical	Redunda	nt Hip	Redunda	nt Hip
Elevation	Horizoi	ıtal	Diago	nal	Sub-Diagonal		Sub-Hor	izontal					Diago	onal
ft			_		_									
-	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-160.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00														
T3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														
T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T5	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T6 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page			
	180' SST				
Project		Date			
	CT370	15:50:52 12/09/21			
Client		Designed by			
	AI&I	ID			
1					

Tower Section Geometry (cont'd)

Tower Elevation	Leg Connection	Leg		Diagoi	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	izontal	Short Hort	izontal
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	0.7500	4	0.7500	1	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00-160.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.7500	4	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	0.7500	4	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 80.00-60.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 60.00-40.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 40.00-20.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 20.00-0.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Exclude	Component	Placement	Total Number	Number Don Dow	Clear Spacing	Width or	Perimeter	Weight
	0r Log	Sniela	Tomana	Type	f4	Number	Fer KOW	spacing	Diameter	in	nlf
	Leg		Calculation		Ji			in	in	in	py
Feedline Ladder	С	No	No	Af (CaAa)	180.00 - 8.00	1	1	3.0000	3.0000		8.40
LDF4-50A (1/2 FOAM)	С	No	No	Ar (CaAa)	150.00 - 8.00	1	1	0.6300	0.6300		0.15
LDF5-50A (7/8 FOAM)	С	No	No	Ar (CaAa)	150.00 - 8.00	1	1	1.0900	1.0900		0.33
LDF5-50A (7/8 FOAM)	С	No	No	Ar (CaAa)	130.00 - 8.00	1	1	1.0900	1.0900		0.33
EW90	С	No	No	Ar (CaAa)	130.00 - 8.00	1	1	0.9869	0.9869		0.32
LDF5-50A (7/8 FOAM)	С	No	No	Ar (CaAa)	110.00 - 8.00	1	1	1.0900	1.0900		0.33
EW90 ****	С	No	No	Ar (CaAa)	95.00 - 8.00	1	1	0.9869	0.9869		0.32
Fiber Cable (1-1/4")	С	No	No	Ar (CaAa)	180.00 - 8.00	2	2	1.2500	1.2500		0.48
DC Cable	С	No	No	Ar (CaAa)	180.00 - 8.00	6	3	0.9570	0.9570		0.88

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf

Step Pegs	С	No	No	CaAa (Out Of Face)	60.00 - 8.00	1	No Ice 1/2" Ice	0.06 0.16	2.50 3.19

T	Job		Page
<i>tnx1ower</i>		180' SST	6 of 19
Hudson Dasian Group	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA	Client		Designed by
Phone: 978.337.5553 FAX: 978.336.5586		AI&I	ID

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	~~~~~	Torque Calculation	-)_	ft			ft²/ft	plf
							1" Ice	0.26	4.49
Step Pegs	С	No	No	CaAa (Out	60.00 - 8.00	1	No Ice	0.06	2.50
				Of Face)			1/2" Ice	0.16	3.19
							1" Ice	0.26	4.49
Step Pegs	С	No	No	CaAa (Out	160.00 - 8.00	1	No Ice	0.06	2.50
				Of Face)			1/2" Ice	0.16	3.19
							1" Ice	0.26	4.49
Safety Line 3/8	С	No	No	CaAa (Out	180.00 - 0.00	1	No Ice	0.04	0.22
				Of Face)			1/2" Ice	0.14	0.75
							1" Ice	0.24	1.28

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	-
	ft		ft^2	ft^2	ft^2	ft^2	lb
T1	180.00-160.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	26.484	0.750	297.00
T2	160.00-140.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	28.204	2.000	351.80
T3	140.00-120.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	32.001	2.000	363.10
T4	120.00-100.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	35.168	2.000	372.90
T5	100.00-80.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	37.738	2.000	381.00
T6	80.00-60.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	38.232	2.000	382.60
T7	60.00-40.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	38.232	4.500	482.60
T8	40.00-20.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	38.232	4.500	482.60
T9	20.00-0.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	22.939	3.000	291.32

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
T1	180.00-160.00	А	2.209	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	73.040	9.586	1420.99
T2	160.00-140.00	А	2.182	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00

T	Job		Page
tnx 1 ower		180' SST	7 of 19
Hudson Dasian Group	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA	Client	A.T.O.T.	Designed by
FAX: 978.336.5586		AI&I	ID

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	0
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
		С		0.000	0.000	82.993	19.452	1777.98
T3	140.00-120.00	А	2.151	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	103.312	19.204	2086.39
T4	120.00-100.00	А	2.115	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	118.101	18.919	2300.18
T5	100.00-80.00	А	2.073	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	129.524	18.583	2447.76
T6	80.00-60.00	А	2.021	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	129.932	18.171	2409.75
T7	60.00-40.00	А	1.955	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	127.125	35.773	2661.52
T8	40.00-20.00	А	1.857	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	123.041	34.216	2509.35
Т9	20.00-0.00	А	1.664	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	68.963	21.637	1347.82

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP_X	CPz
				Ice	Ice
	ft	in	in	in	in
T1	180.00-160.00	-0.3614	5.3703	-2.1872	5.8632
T2	160.00-140.00	-0.9541	5.9724	-4.0756	7.4232
T3	140.00-120.00	-0.9208	6.4167	-3.7905	8.1292
T4	120.00-100.00	-0.8556	6.4142	-3.5241	8.1179
T5	100.00-80.00	-0.8187	6.4988	-3.3324	8.1674
T6	80.00-60.00	-0.9088	7.2800	-3.6349	9.8362
Τ7	60.00-40.00	-2.2976	8.9261	-7.7439	13.4956
T8	40.00-20.00	-2.5495	9.9332	-8.5810	15.9318
Т9	20.00-0.00	-1.7428	6.3023	-6.9274	12.2349

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.	-	Segment Elev.	No Ice	Ice
T1	1	Feedline Ladder	160.00 -	0.6000	0.4331
			180.00		
T1	15	Fiber Cable (1-1/4")	160.00 -	0.6000	0.4331
			180.00		
T1	16	DC Cable	160.00 -	0.6000	0.4331
			180.00		
T2	1	Feedline Ladder	140.00 -	0.6000	0.4598
			160.00		
T2	3	LDF4-50A (1/2 FOAM)	140.00 -	0.6000	0.4598
			150.00		
T2	4	LDF5-50A (7/8 FOAM)	140.00 -	0.6000	0.4598
			150.00		
T2	15	Fiber Cable (1-1/4")	140.00 -	0.6000	0.4598

Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

	Job		Page
		180' SST	8 of 19
	Project		Date
ıp		CT370	15:50:52 12/09/21
	Client	AT&T	Designed by ID

Towar	Food Lina	Description	Food Lina	K	K
Section	Record No	Description	Segment Elev	No Ice	Ice
Section	necora no.		160.00	110 100	100
т2	16	DC Cable	140.00 -	0.6000	0 4 5 9 8
12	10		160.00	0.0000	0.1590
Т3	1	Feedline Ladder	120.00 -	0.6000	0 4644
15	1	i counte Eudder	140.00	0.0000	0.1011
Т3	3	LDF4-50A (1/2 FOAM)	120.00 -	0.6000	0.4644
	-		140.00		
Т3	4	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.4644
			140.00		
Т3	5	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.4644
			130.00		
Т3	6	EW90	120.00 -	0.6000	0.4644
			130.00		
Т3	15	Fiber Cable (1-1/4")	120.00 -	0.6000	0.4644
			140.00		
Т3	16	DC Cable	120.00 -	0.6000	0.4644
			140.00		
Τ4	1	Feedline Ladder	100.00 -	0.6000	0.4437
	2		120.00	0 (000	0 4 4 2 7
14	3	LDF4-50A (1/2 FOAM)	100.00 -	0.6000	0.4437
Τ4	4		120.00	0 (000	0 4427
14	4	LDF5-50A (7/8 FOAM)	100.00 -	0.6000	0.4437
т4	5	L DE5 504 (7/8 EOAM)	120.00	0.6000	0 4427
14	5	LDF3-30A (7/8 FOAM)	120.00	0.0000	0.4457
Т4	6	FWOO	100.00	0.6000	0 4 4 3 7
14	0	E W 90	120.00	0.0000	0.4437
Т4	7	LDE5-50A (7/8 FOAM)	100.00 -	0.6000	0 4437
17	,		110.00	0.0000	0.437
Т4	15	Fiber Cable (1-1/4")	100.00 -	0.6000	0.4437
	10		120.00	010000	011.07
T4	16	DC Cable	100.00 -	0.6000	0.4437
	-		120.00		
Т5	1	Feedline Ladder	80.00 - 100.00	0.6000	0.4330
Т5	3	LDF4-50A (1/2 FOAM)	80.00 - 100.00	0.6000	0.4330
T5	4	LDF5-50A (7/8 FOAM)	80.00 - 100.00	0.6000	0.4330
T5	5	LDF5-50A (7/8 FOAM)	80.00 - 100.00	0.6000	0.4330
Т5	6	EW90	80.00 - 100.00	0.6000	0.4330
Т5	7	LDF5-50A (7/8 FOAM)	80.00 - 100.00	0.6000	0.4330
T5	8	EW90	80.00 - 95.00	0.6000	0.4330
T5	15	Fiber Cable (1-1/4")	80.00 - 100.00	0.6000	0.4330
T5	16	DC Cable	80.00 - 100.00	0.6000	0.4330
16	1	Feedline Ladder	60.00 - 80.00	0.6000	0.4827
16	3	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.4827
16	4	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.4827
16 T(5	LDF5-50A (7/8 FOAM)	00.00 - 80.00	0.6000	0.4827
10 T4	6 7	EW90	60.00 - 80.00	0.0000	0.4827
10 T4	/	LDI'J-JUA (7/8 FOAM)	60.00 - 80.00	0.0000	0.4627
10 T6	8 15	EW90 Fiber Cable (1-1/4")	60.00 - 80.00	0.0000	0.4627
10 T6	15	DC Cable	60.00 - 80.00	0.0000	0.4827
T7	10	Feedline Ladder	40.00 - 60.00	0.6000	0.4627
T7	3	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.5334
T7	4	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.5334
T7	5	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.5334
T7	6	EW90	40.00 - 60.00	0.6000	0.5334
Τ7	7	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.5334
Τ7	8	È EW9Ó	40.00 - 60.00	0.6000	0.5334
T7	15	Fiber Cable (1-1/4")	40.00 - 60.00	0.6000	0.5334
T7	16	DC Cable	40.00 - 60.00	0.6000	0.5334
Т8	1	Feedline Ladder	20.00 - 40.00	0.6000	0.5791
T8	3	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.5791

Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	180' SST	9 of 19
Project		Date
	CT370	15:50:52 12/09/21
Client		Designed by
	AI&I	ID

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T8	4	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.579
Т8	5	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.579
T8	6	EW90	20.00 - 40.00	0.6000	0.579
T8	7	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.579
T8	8	EW90	20.00 - 40.00	0.6000	0.579
T8	15	Fiber Cable (1-1/4")	20.00 - 40.00	0.6000	0.579
T8	16	DC Cable	20.00 - 40.00	0.6000	0.579
Т9	1	Feedline Ladder	8.00 - 20.00	0.6000	0.600
Т9	3	LDF4-50A (1/2 FOAM)	8.00 - 20.00	0.6000	0.600
Т9	4	LDF5-50A (7/8 FOAM)	8.00 - 20.00	0.6000	0.600
Т9	5	LDF5-50A (7/8 FOAM)	8.00 - 20.00	0.6000	0.600
Т9	6	EW90	8.00 - 20.00	0.6000	0.600
Т9	7	LDF5-50A (7/8 FOAM)	8.00 - 20.00	0.6000	0.600
Т9	8	EW90	8.00 - 20.00	0.6000	0.600
Т9	15	Fiber Cable (1-1/4")	8.00 - 20.00	0.6000	0.600
Т9	16	DC Cable	8.00 - 20.00	0.6000	0.600

Discrete Tower Loads

Description	Face	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Eront	C _A A _A Sida	Weight
	Leg	Type	Lateral	лијизітені			TTOM	Side	
	208		Vert						
			ft	0	ft		ft^2	ft^2	lb
			ft		0		v	v	
			ft						
Lightning Rod 4'x.5"	С	None		0.0000	182.00	No Ice	1.09	1.09	5.00
						1/2" Ice	1.69	1.69	19.36
						1" Ice	1.95	1.95	36.82
SO602-1	В	From Leg	3.00	0.0000	150.00	No Ice	2.72	12.93	145.70
			0.00			1/2" Ice	4.11	17.82	223.26
			0.00			1" Ice	5.50	22.71	300.82
2" STD x 10.5' Stiff Arm	В	From Leg	3.00	0.0000	150.00	No Ice	1.04	1.04	38.43
			0.00			1/2" Ice	2.08	2.08	464.25
			0.00			1" Ice	2.72	2.72	903.17
Sinclair SC479-HF1LDF	В	From Leg	6.00	0.0000	157.23	No Ice	4.34	4.34	34.00
			0.00			1/2" Ice	6.54	6.54	69.82
			0.00			1" Ice	8.04	8.04	114.98
Motorola TTA	В	From Leg	3.00	0.0000	150.00	No Ice	0.46	0.40	8.90
(DS428E83I01T)			0.00			1/2" Ice	0.55	0.48	13.94
			0.00			1" Ice	0.64	0.57	20.50
SO602-1	А	From Leg	3.00	0.0000	130.00	No Ice	2.72	12.93	145.70
			0.00			1/2" Ice	4.11	17.82	223.26
			0.00			1" Ice	5.50	22.71	300.82
2" STD x 10.5' Stiff Arm	А	From Leg	3.00	0.0000	130.00	No Ice	1.04	1.04	38.43
			0.00			1/2" Ice	2.08	2.08	464.25
			0.00			1" Ice	2.72	2.72	903.17
Sinclair SC479-HF1LDF	Α	From Leg	6.00	0.0000	137.23	No Ice	4.40	4.40	34.00
			0.00			1/2" Ice	6.54	6.54	69.82
			0.00			1" Ice	8.04	8.04	114.98
4 STD x 66" Dish Pipe Mount	В	From Leg	0.50	0.0000	130.00	No Ice	1.53	1.53	59.40
			0.00			1/2" Ice	2.34	2.34	76.97
			0.00			1" Ice	2.69	2.69	98.51
SO602-1	С	From Leg	3.00	0.0000	110.00	No Ice	2.72	12.93	145.70
			0.00			1/2" Ice	4.11	17.82	223.26
			0.00			1" Ice	5.50	22.71	300.82
2" STD x 10.5' Stiff Arm	С	From Leg	3.00	0.0000	110.00	No Ice	1.04	1.04	38.43
			0.00			1/2" Ice	2.08	2.08	464.25
			0.00			1" Ice	2.72	2.72	903.17

	Job		Page
tnx 1 ower		180' SST	10 of 19
Hudson Design Choun	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA	Client		Designed by
Phone: 978.357.5553 FAX: 978.336.5586		AI&I	ID

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			ft	0	ft		ft^2	ft^2	lh
			ft		jt		ji	<i>Jt</i>	10
Singleir SC470 HELL DE	<u> </u>	From Log	<u>ft</u>	0.0000	121.59	No Ioo	1.16	1 16	24.00
Siliciali SC4/9-III ILDI	C	FIOII Leg	0.00	0.0000	121.38	1/2" Ice	4.40 6.54	4.40 6.54	69.82
			0.00			1" Ice	8.04	8.04	114 98
4 STD x 66" Dish Pipe Mount	С	From Leg	0.50	0.0000	95.00	No Ice	1.56	1.56	59.40
	e	r rom 20g	0.00	0.0000	20100	1/2" Ice	2.34	2.34	76.97
			0.00			1" Ice	2.69	2.69	98.51
** 121 (" Castan Ensure		Energy Lass	2.00	0.0000	190.00	N. L.	12.50	0.50	700.00
12-0 Sector Frame	А	From Leg	2.00	0.0000	180.00	1/2" Lee	20.00	9.30	700.00 850.00
			0.00			172 ICC	26.00	20.00	1050.00
12'-6" Sector Frame	в	From Leg	2.00	0.0000	180.00	No Ice	13 50	9 50	700.00
	Б	Tiom Log	0.00	0.0000	100.00	1/2" Ice	20.00	15.00	850.00
			0.00			1" Ice	26.00	20.00	1050.00
12'-6" Sector Frame	С	From Leg	2.00	0.0000	180.00	No Ice	13.50	9.50	700.00
		8	0.00			1/2" Ice	20.00	15.00	850.00
			0.00			1" Ice	26.00	20.00	1050.00
TPA65R-BU8DA-K Antenna	А	From Leg	3.00	0.0000	180.00	No Ice	17.87	10.02	116.20
w/ Mounting Pipe		U	6.00			1/2" Ice	18.50	11.44	234.88
			0.00			1" Ice	19.14	12.72	363.91
TPA65R-BU8DA-K Antenna	в	From Leg	3.00	0.0000	180.00	No Ice	17.87	10.02	116.20
w/ Mounting Pipe		-	6.00			1/2" Ice	18.50	11.44	234.88
			0.00			1" Ice	19.14	12.72	363.91
TPA65R-BU8DA-K Antenna w/ Mounting Pipe	С	From Leg	3.00	0.0000	180.00	No Ice	17.87	10.02	116.20
			6.00			1/2" Ice	18.50	11.44	234.88
			0.00			1" Ice	19.14	12.72	363.91
HPA65R-BU8A Antenna w/	А	From Leg	3.00	0.0000	180.00	No Ice	11.23	9.94	83.20
Mounting Pipe			0.00			1/2" Ice	11.85	11.37	170.99
	_		0.00			1" Ice	12.47	12.64	268.54
HPA65R-BU8A Antenna w/	В	From Leg	3.00	0.0000	180.00	No Ice	11.23	9.94	83.20
Mounting Pipe			0.00			1/2" Ice	11.85	11.37	170.99
	C	т т	0.00	0.0000	100.00	I" Ice	12.47	12.64	268.54
HPA65R-BU8A Antenna W/	C	From Leg	3.00	0.0000	180.00	No Ice	11.23	9.94	83.20
Mounting Pipe			0.00			1/2" Ice	11.85	11.37	170.99
DMD(5D DLIODA V		Eners I en	0.00	0.0000	190.00	I lee	12.47	12.04	208.54
Antonno W/ Mounting Pino	A	From Leg	5.00	0.0000	180.00	1/2" Loo	17.07	10.02	242.88
Antenna w/ Wounting Fipe			-0.00			1/2 ICC	10.50	11.44	243.88
DMP65R_BU8DA_K	в	From Leg	3.00	0.0000	180.00	No Ice	17.14	12.72	125.20
Antenna w/ Mounting Pine	Б	110111 Leg	-6.00	0.0000	100.00	1/2" Ice	18.50	11.44	243.88
Antenna w Wounding Tipe			0.00			1" Ice	19.14	12.72	372.91
DMP65R-BU8DA-K	С	From Leg	3.00	0.0000	180.00	No Ice	17.87	10.02	125.20
Antenna w/ Mounting Pipe	e	110111 2005	-6.00	0.0000	100100	1/2" Ice	18.50	11.44	243.88
8 1			0.00			1" Ice	19.14	12.72	372.91
B14 4478 RRH	А	From Leg	1.00	0.0000	180.00	No Ice	2.02	1.25	60.00
		U	2.00			1/2" Ice	2.20	1.40	77.66
			0.00			1" Ice	2.39	1.56	98.08
B14 4478 RRH	В	From Leg	1.00	0.0000	180.00	No Ice	2.02	1.25	60.00
			2.00			1/2" Ice	2.20	1.40	77.66
			0.00			1" Ice	2.39	1.56	98.08
B14 4478 RRH	С	From Leg	1.00	0.0000	180.00	No Ice	2.02	1.25	60.00
			2.00			1/2" Ice	2.20	1.40	77.66
			0.00			1" Ice	2.39	1.56	98.08
4415 B30 RRH	А	From Leg	1.00	0.0000	180.00	No Ice	1.64	0.68	44.00
			1.00			1/2" Ice	1.80	0.79	56.41
			0.00	0.0000	100.00	1" Ice	1.97	0.91	71.18
4415 B30 RRH	В	From Leg	1.00	0.0000	180.00	No Ice	1.64	0.68	44.00
			1.00			1/2 lce	1.80	0.79	20.41

	Job		Page
<i>tnx1ower</i>		180' SST	11 of 19
Hudson Design Choun	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA	Client		Designed by
Phone: 978.557.5553 FAX: 978.336.5586		AT&T	ID

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert ft ft	٥	ft		ft ²	ft²	lb
			ft						
			0.00			1" Ice	1.97	0.91	71.18
4415 B30 RRH	С	From Leg	1.00	0.0000	180.00	No Ice	1.64	0.68	44.00
			1.00			1/2" Ice	1.80	0.79	56.41
			0.00			1" Ice	1.97	0.91	71.18
RRUS-E2 B29	А	From Leg	1.00	0.0000	180.00	No Ice	3.15	1.29	53.00
			-1.00			1/2" Ice	3.36	1.44	76.22
			0.00			1" Ice	3.59	1.60	102.64
RRUS-E2 B29	В	From Leg	1.00	0.0000	180.00	No Ice	3.15	1.29	53.00
			-1.00			1/2" Ice	3.36	1.44	76.22
			0.00			1" Ice	3.59	1.60	102.64
RRUS-E2 B29	С	From Leg	1.00	0.0000	180.00	No Ice	3.15	1.29	53.00
			-1.00			1/2" Ice	3.36	1.44	76.22
			0.00			1" Ice	3.59	1.60	102.64
4449 B5/B12 RRH	А	From Leg	1.00	0.0000	180.00	No Ice	1.97	1.40	7.20
			-2.00			1/2" Ice	2.15	1.56	25.68
	_		0.00			1" Ice	2.33	1.72	46.97
4449 B5/B12 RRH	В	From Leg	1.00	0.0000	180.00	No Ice	1.97	1.40	7.20
			-2.00			1/2" Ice	2.15	1.56	25.68
	~		0.00		100.00	1" Ice	2.33	1.72	46.97
4449 B5/B12 RRH	С	From Leg	1.00	0.0000	180.00	No Ice	1.97	1.40	7.20
			-2.00			1/2" Ice	2.15	1.56	25.68
			0.00	0.0000	100.00	1" Ice	2.33	1.72	46.97
B2/B66A 8843 RRH	А	From Leg	1.00	0.0000	180.00	No Ice	1.64	1.35	72.00
			-2.00			1/2" Ice	1.80	1.50	89.60
	D	Б Т	1.00	0.0000	100.00	I" Ice	1.97	1.65	109.91
B2/B66A 8843 KKH	В	From Leg	1.00	0.0000	180.00	No Ice	1.64	1.35	/2.00
			-2.00			1/2" Ice	1.80	1.50	89.00
	C	E	1.00	0.0000	190.00	I lee	1.97	1.05	72.00
B2/B00A 8843 KKH	C	From Leg	1.00	0.0000	180.00	1/2" Lee	1.04	1.55	/2.00
			-2.00			1/2 ICe	1.60	1.50	89.00
Squid Surga Arrestor	٨	From Log	1.00	0.0000	180.00	No Ice	1.97	1.03	22.00
Squid Surge Arrestor	A	From Leg	1.00	0.0000	180.00	1/2" Ico	1.20	1.20	48.28
			0.00			1/2 ICC	1.30	1.30	46.30
Sauid Surge Arrestor	р	From Lag	1.00	0.0000	180.00	No Ice	0.81	0.81	33.00
Squid Surge Arrestor	Б	FIOIDLeg	0.00	0.0000	180.00	1/2" Ice	1.30	1 30	48 38
			0.00			172 ICC	1.50	1.50	66 11
Squid Surge Arrestor	С	From Leg	1.00	0.0000	180.00	No Ice	0.81	0.81	33.00
Squid Suige Airestor	C	I tolli Leg	0.00	0.0000	100.00	1/2" Ice	1 30	1 30	48 38
			0.00			1" Ice	1.48	1.48	66.11
**			2.00						

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
HP3-11 Dish Antenna	В	Paraboloid	From	1.50	0.0000		130.00	3.20	No Ice	8.04	50.00
		w/Shroud (HP)	Leg	0.00					1/2" Ice	8.47	93.48
				0.00					1" Ice	8.89	136.96
HP3-11 Dish Antenna	C	Paraboloid	From	1.50	0.0000		95.00	3.20	No Ice	8.04	50.00
	Job		Page								
--	---------	----------	-------------------								
tnx 1 ower		180' SST	12 of 19								
Hudson Design Choun	Project		Date								
45 Beechwood Drive		CT370	15:50:52 12/09/21								
North Andover, MA Phone: 978 557 5553	Client	ΛΤΫΤ	Designed by								
FAX: 978.336.5586		Alal	ID								

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
		w/Shroud (HP)	Leg	0.00					1/2" Ice	8.47	93.48
				0.00					1" Ice	8.89	136.96

Load Combinations

Comb.	Description
No.	-
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	1.2D+1.6W (pattern 1) 0 deg - No Ice
4	1.2D+1.6W (pattern 2) 0 deg - No Ice
5	0.9 Dead+1.6 Wind 0 deg - No Ice
6	1.2 Dead+1.6 Wind 30 deg - No Ice
7	1.2D+1.6W (pattern 1) 30 deg - No Ice
8	1.2D+1.6W (pattern 2) 30 deg - No Ice
9	0.9 Dead+1.6 Wind 30 deg - No Ice
10	1.2 Dead+1.6 Wind 60 deg - No Ice
11	1.2D+1.6W (pattern 1) 60 deg - No Ice
12	1.2D+1.6W (pattern 2) 60 deg - No Ice
13	0.9 Dead+1.6 Wind 60 deg - No Ice
14	1.2 Dead+1.6 Wind 90 deg - No Ice
15	1.2D+1.6W (pattern 1) 90 deg - No Ice
16	1.2D+1.6W (pattern 2) 90 deg - No Ice
17	0.9 Dead+1.6 Wind 90 deg - No Ice
18	1.2 Dead+1.6 Wind 120 deg - No Ice
19	1.2D+1.6W (pattern 1) 120 deg - No Ice
20	1.2D+1.6W (pattern 2) 120 deg - No Ice
21	0.9 Dead+1.6 Wind 120 deg - No Ice
22	1.2 Dead+1.6 Wind 150 deg - No Ice
23	1.2D+1.6W (pattern 1) 150 deg - No Ice
24	1.2D+1.6W (pattern 2) 150 deg - No Ice
25	0.9 Dead+1.6 Wind 150 deg - No Ice
26	1.2 Dead+1.6 Wind 180 deg - No Ice
27	1.2D+1.6W (pattern 1) 180 deg - No Ice
28	1.2D+1.6W (pattern 2) 180 deg - No Ice
29	0.9 Dead+1.6 Wind 180 deg - No Ice
30	1.2 Dead+1.6 Wind 210 deg - No Ice
31	1.2D+1.6W (pattern 1) 210 deg - No Ice
32	1.2D+1.6W (pattern 2) 210 deg - No Ice
33	0.9 Dead+1.6 Wind 210 deg - No Ice
34	1.2 Dead+1.6 Wind 240 deg - No Ice
35	1.2D+1.6W (pattern 1) 240 deg - No Ice
36	1.2D+1.6W (pattern 2) 240 deg - No Ice
37	0.9 Dead+1.6 Wind 240 deg - No Ice
38	1.2 Dead+1.6 Wind 2/0 deg - No Ice
39	1.2D+1.6W (pattern 1) 270 deg - No Ice
40	1.2D+1.6W (pattern 2) 2/0 deg - No Ice
41	0.9 Dead+1.6 wind 2/0 deg - No Ice
42	1.2 Dead+1.6 W ind 500 deg - 100 Lee
43	1.2D+1.6W (patch 1) 500 deg No Lee
44	1.2D + 1.0W (partial 2) 300 deg - No lee
т <i>э</i> 46	1.2 Dead+1.6 Wind 330 deg - No Ice
40	1.2 Deta (1.6 wind 50 deg - to fee
48	12D+16W (pattern 2) 330 deg - No Ice
40	0.9 Dead+1.6 Wind 330 deg - No Lee
-17	

turTower	Job		Page
that ower		13 of 19	
Hudson Dasian Group	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA Phone: 978 557 5553	Client	AT&T	Designed by
FAX: 978.336.5586			ID

Comb.	Description
No.	
50	1.2 Dead+1.0 Ice+1.0 Temp
51	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
52	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
53	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
54	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
55	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
56	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
57	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
58	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
59	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
60	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
61	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
62	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
63	Dead+Wind 0 deg - Service
64	Dead+Wind 30 deg - Service
65	Dead+Wind 60 deg - Service
66	Dead+Wind 90 deg - Service
67	Dead+Wind 120 deg - Service
68	Dead+Wind 150 deg - Service
69	Dead+Wind 180 deg - Service
70	Dead+Wind 210 deg - Service
71	Dead+Wind 240 deg - Service
72	Dead+Wind 270 deg - Service
73	Dead+Wind 300 deg - Service
74	Dead+Wind 330 deg - Service

			Maximum	Mem	ber For	ces	
Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial lb	Major Axis Moment lb-ft	Minor Axis Moment lb-ft
T1	180 - 160	Leg	Max Tension	26	43715.11	-14.18	-120.13
		6	Max. Compression	34	-47292.96	119.63	-45.91
			Max. Mx	14	-40937.52	-137.35	18.06
			Max. My	2	21161.46	-13.48	147.76
			Max. Vy	38	3146.37	-0.01	0.07
			Max. Vx	2	3150.45	-0.10	-0.01
		Diagonal	Max Tension	38	4958.36	0.00	0.00
		C	Max. Compression	14	-5014.76	0.00	0.00
			Max. Mx	34	248.91	139.08	-13.13
			Max. My	34	-93.84	138.53	15.96
			Max. Vy	34	48.77	139.08	-13.13
			Max. Vx	34	5.41	0.00	0.00
		Top Girt	Max Tension	34	1667.99	0.00	0.00
		1	Max. Compression	10	-1646.18	0.00	0.00
			Max. Mx	57	-452.77	-51.61	0.00
			Max. My	34	-827.30	0.00	-0.01
			Max. Vy	57	41.29	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
T2	160 - 140	Leg	Max Tension	26	107147.84	2.17	-262.20
		· ·	Max. Compression	34	-112918.00	225.74	-146.47
			Max. Mx	14	-1201.72	-288.17	2.42
			Max. My	2	54172.16	3.47	274.09
			Max. Vy	34	376.96	138.10	-54.42
			Max. Vx	30	-632.42	60.85	-107.58
		Diagonal	Max Tension	14	6854.81	0.00	0.00
		-	Max. Compression	38	-7143.24	0.00	0.00
			Max. Mx	34	553.40	139.81	-11.22
			Max. My	34	-905.26	137.62	20.61

	Job		Page
thx1ower		180' SST	14 of 19
Hudson Design Group 45 Beechwood Drive	Project	CT370	Date 15:50:52 12/09/21
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	AT&T	Designed by ID

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	5			Comb.	lb	lb-ft	lb-ft
			Max. Vy	34	49.01	139.81	-11.22
			Max. Vx	34	6.95	0.00	0.00
T3	140 - 120	Leg	Max Tension	10	186710.33	-270.97	159.29
		U	Max. Compression	34	-196521.16	648.89	-343.76
			Max. Mx	38	-166922.47	714.23	-0.55
			Max. My	2	-195548.29	-54.69	729.82
			Max. Vy	38	817.86	317.88	-7.28
			Max. Vx	43	436.58	253.32	126.35
		Diagonal	Max Tension	46	7700.99	0.00	0.00
		8	Max. Compression	38	-8613.08	0.00	0.00
			Max. Mx	30	4361.02	139.50	-1.98
			Max. My	34	-956.87	131.47	19.27
			Max. Vv	30	48.97	139.50	-1.98
			Max. Vx	34	6.50	0.00	0.00
T4	120 - 100	Leg	Max Tension	10	282072.96	-1205.93	687.23
	120 100	248	Max. Compression	34	-298723.86	1719.87	-993.23
			Max. Mx	38	244046.71	1925.79	-10.53
			Max My	2	-296020.01	-5.17	1964 22
			Max Vv	22	-323 61	-592 14	-1035 97
			May Vy	46	559.43	597.96	1029.03
		Diagonal	Max Tension	38	9451 11	0.00	0.00
		Diagonai	Max Compression	38	-10542.86	0.00	0.00
			May My	30	4907 04	144 58	-2 35
			Max. Mx	30	-4452.86	64 48	14.36
			Max Vy	30	51.85	144 58	-2.35
			Max Vy	30	1.87	0.00	0.00
Т5	100 80	Lea	Max Tension	10	300004.00	1876.40	1089 57
15	100 - 80	Leg	Max Tension	24	414202.00	-18/0.40	2512.02
			Max. Compression	24	-414295.09	6500.78	-5512.05
			Max. My	24	414295.09	21.04	-3312.03
			Max. My	24	-410651.49	-21.04	2512.02
			Max. Vy	24	-1493.91	0309.78	-5512.05
		D' 1		2	-105/.09	-21.04	/311.05
		Diagonal	Max Tension	38 19	10/56.37	0.00	0.00
			Max. Compression	18	-12347.02	0.00	0.00
			Max. Max	50	-3027.34	-130.76	-0.34
			Max. My	18	-10202.51	-55.40	-25.48
			Max. Vy	30 19	4/.11	0.00	0.00
T(00 (0	т		18	8.30	0.00	0.00
10	80 - 60	Leg	Max Tension	10	398117.07	-0028.45	-215.94
			Max. Compression	34	-422338.38	1843.37	-19.38
			Mar. Mr.	34 20	-422260.01	/391.03	213.57
			Mar V-	38 24	-1/20./2	-09.30	-4/31.02
			Mar. Vy	34 20	109/.01	/391.03	213.37
		D:- 1	IVIAX. VX	38	/20.0/	-8/./9	-4/31.38
		Diagonal	May Commence	10	5102.08	0.00	0.00
			Max. Compression	30	-0349.94	92.83	-3.33
			Max. Mx	10	-2630.70	124.92	5.01
			Max. My	38	-2609.30	98.91	21.64
			Max. Vy	10	43.33	124.92	5.01
T7	(0.40	т	Max. Vx	38	-/.40	98.27	21.63
1 /	60 - 40	Leg	Max Tension	10	5/5959.59	-2629.65	-6.10
			Max. Compression	34	-403268.41	3487.09	-2.05
			Max. Mx	34	-403268.41	3487.09	-2.05
			Max. My	38	-3468.58	-6.59	-3099.63
			Max. Vy	34	-264.79	3487.09	-2.05
			Max. Vx	22	131.40	16.20	-2909.73
		Diagonal	Max Tension	36	2855.58	0.00	0.00
			Max. Compression	32	-3272.20	0.00	0.00
			Max. Mx	34	-2318.06	54.03	4.21
			Max. My	55	-373.10	40.83	-6.87
			Max. Vy	57	41.88	46.09	-5.42

tuxToway	Job		Page
inx 1 ower	180' \$	SST	15 of 19
Hudson Design Group 45 Beechwood Drive	Project CT3	70	Date 15:50:52 12/09/21
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	ЪТ	Designed by ID

Section	Flavation	Component	Condition	Gov	Arial	Major Aris	Minor Aris
No	ft	Type	Condition	Load	ллии	Moment	Moment
110.	Ji	Type		Comb	lh	lh_ft	lb_ft
			Max Vx	55	2 44	0.00	0.00
Т8	40 - 20	Lea	Max Tension	10	370435.29	-2096 39	2.02
10	40 - 20	LUg	Max Compression	34	-403896.46	2256 70	90.40
			Max Mx	34	-399646 29	2624 84	-5 49
			Max. My	38	-4485 76	-4 53	-2552 74
			Max Vy	3	-68 22	2036 79	10.80
			Max Vy	10	83.46	1027.76	1805.61
		Diagonal	Max Tension	19	1839 34	-1027.70	-1805.01
		Diagonai	Max Compression	10	2150 54	0.00	0.00
			Max. Compression	59	-106.81	58.04	6.55
			Max My	55	417.00	54 37	7 97
			Max Vy	57	417.00	57.96	-7.97
			Max Vy	55	7.54	0.00	-0.90
то	20 0	Lag	Max. VX May Tangian	12	2.52	1707 77	2.82
19	20-0	LUg	Max Compression	24	412420.11	-1/0/.//	-2.83
			Max. Compression	50	152017 75	2842.20	-0.09
			Max. My	29	-133917.73	26 10	-24.21
			Max. Wy	50	-7070.19	-30.19	-2044.20
			Max. Vy	20	-1362.09	-1005.57	-13.13
		Discourt	Max. VX	50	021.37	-34.20	2020.20
		Diagonal	Max Tension	01	3/23.1/	0.00	0.00
			Max. Compression	19	-38/2.82	0.00	0.00
			Max. Mx	59	-1125.28	90.80	11.18
			Max. My	61	-2111.69	/4.58	12.39
			Max. Vy	57	58.85	90.01	-11.14
			Max. Vx	61	-3.25	0.00	0.00

Bolt Design Data										
Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of Bolts	Maximum Load per Bolt	Allowable Load per Bolt	Ratio Load	Allowable Ratio	Criteria
	50				20115	lb	lb	Allowable		
T1	180	Leg	A325N	0.7500	4	880.03	29820.60	0.030 🖌	1	Bolt Tension
		Diagonal	A325N	0.7500	1	4958.36	6307.50	0 786	1	Member Bearing
		Top Girt	A325N	0.7500	1	1667.99	9461.25	0.176	1	Member Bearing
T2	160	Leg	A325N	0.7500	4	13266.80	29820.60	0.445	1	Bolt Tension
		Diagonal	A325N	0.7500	1	6854.81	6307.50	1.087	1	Member Bearing
Т3	140	Leg	A325N	0.7500	4	29813.80	29820.60	1 000 🖌	1	Bolt Tension
		Diagonal	A325N	0.7500	1	7700.99	6307.50	1.221	1	Member Bearing
T4	120	Leg	A325N	1.0000	6	33650.80	53014.40	0.635 🖌	1	Bolt Tension
		Diagonal	A325N	0.7500	1	9451.11	9461.25	0.999	1	Member Bearing
T5	100	Leg	A325N	0.7500	8	37429.10	29820.60	1.255	1	Bolt Tension
		Diagonal	A325N	0.7500	1	10756.40	9461.25	1.137 X	1	Member Bearing
T6	80	Leg	A325N	0.7500	8	49764.60	29820.60	1.669 X	1	Bolt Tension
		Diagonal	A325N	0.7500	1	5162.68	9461.25	0.546 🖌	1	Member Bearing
T7	60	Leg	A325N	0.7500	8	46994.90	29820.60	1.576 X	1	Bolt Tension
		Diagonal	A325N	0.7500	1	2855.58	9461.25	0.302 🖌	1	Member Bearing
T8	40	Leg	A325N	0.7500	8	46159.50	29820.60	1.548 X	1	Bolt Tension
		Diagonal	A325N	0.7500	1	1839.34	9461.25	0.194 🖌	1	Member Bearing
Т9	20	Leg	A325N	0.7500	8	46389.20	29820.60	1.556 X	1	Bolt Tension

Areas Toruson	Job		Page
<i>inx1ower</i>		180' SST	16 of 19
Hudson Design Crown	Project		Date
45 Beechwood Drive		CT370	15:50:52 12/09/21
North Andover, MA	Client		Designed by
Phone: 978.337.5553 FAX: 978.336.5586		AI&I	ID

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load per Bolt lb	Ratio Load Allowable	Allowable Ratio	Criteria
		Diagonal	A325N	0.7500	1	3723.17	9461.25	0.394 🖌	1	Member Bearing

Compression Checks

Leg Design Data (Compression)

No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	P2.5x.203	20.00	3.33	42.2 K=1.00	1.7040	-47293.00	67311.90	0.703 1
T2	160 - 140	P2.5x.203	20.00	3.33	42.2 K=1.00	1.7040	-112918.00	67311.90	1.678 ¹
		4.8.1 (1.68 CR) - 43							
Т3	140 - 120	P2.5x.203	20.00	3.33	42.2 K=1.00	1.7040	-196521.00	67311.90	2.920 ¹
		4.8.1 (2.92 CR) - 82							
T4	120 - 100	P4x.237	20.00	3.33	26.5 K=1.00	3.1741	-298724.00	135684.00	2.202 ¹
		4.8.1 (2.20 CR) - 121							
T5	100 - 80	P5x.258	20.00	3.33	21.3 K=1.00	4.2999	-414293.00	187180.00	2.213 ¹
		4.8.1 (2.21 CR) - 160							
T6	80 - 60	P5x.258	20.03	3.34	21.3 K=1.00	4.2999	-422339.00	187159.00	2.257 ¹
		4.8.1 (2.26 CR) - 199/5							
Τ7	60 - 40	P6x.28	20.03	3.34	17.8 K=1.00	5.5813	-403268.00	245382.00	1.643 ¹
		4.8.1 (1.64 CR) - 238/5							
T8	40 - 20	P6x.28	20.03	3.34	17.8 K=1.00	5.5813	-403896.00	245382.00	1.646 ¹
		4.8.1 (1.65 CR) - 277							
Т9	20 - 0	P6x.28	20.03	3.34	17.8 K=1.00	5.5813	-413430.00	245382.00	1.685 ¹
		4.8.1 (1.68 CR) - 316							

¹ $P_u / \phi P_n$ controls

		Diagon	al Des	sign [Data (O	Compi	ression)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	L2x2x1/8	6.01	2.86	86.4 K=1.00	0.4844	-5014.76	10376.90	0.483 1
T2	160 - 140	L2x2x1/8	6.01	2.86	86.4 K=1.00	0.4844	-7143.24	10376.90	0.688 1
T3	140 - 120	L2x2x1/8	6.01	2.86	86.4	0.4844	-8613.08	10376.90	0.830 1

AT	Job		Page
<i>tnx1ower</i>		180' SST	17 of 19
Hudson Design Group	Project	07070	Date
45 Beechwood Drive		C1370	15:50:52 12/09/21
North Andover, MA Phone: 978.557.5553	Client	ΔΤ&Τ	Designed by
FAX: 978.336.5586		7101	ID

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.,
1101	ft		ft	ft		in ²	lb	lb	ϕP_n
					K=1.00				~
T4	120 - 100	L2x2x3/16	6.01	2.78	84.6 K=1.00	0.7150	-10542.90	15886.50	0.664 1
T5	100 - 80	L2x2x3/16	6.01	2.73	83.0 K=1.00	0.7150	-12347.00	16115.50	0.766 ¹
T6	80 - 60	L2x2x3/16	6.15	2.92	88.8 K=1.00	0.7150	-6549.94	15293.90	0.428 1
Τ7	60 - 40	L2x2x3/16	7.90	3.75	114.2 K=1.00	0.7150	-3272.20	11661.30	0.281 1
Т8	40 - 20	L2x2x3/16	11.34	5.47	166.5 K=1.00	0.7150	-2159.54	5828.52	0.371 1
Т9	20 - 0	L2 1/2x2 1/2x3/16	13.26	6.43	155.9 K=1.00	0.9020	-3872.82	8384.62	0.462 1

¹ P_u / ϕP_n controls

	Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP_n	Ratio P_u	
	ft		ft	ft		in ²	lb	lb	ϕP_n	
T1	180 - 160	L2x2x3/16	5.00	4.76	145.0 K=1.00	0.7150	-1646.18	7683.97	0.214 1	

¹ $P_u / \phi P_n$ controls

Tension Checks

Leg Design Data (Tension)

Section	Elevation	Size	L	L_{u}	Kl/r	Α	P_{u}	ϕP_n	Ratio
No.								T- "	P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	180 - 160	P2.5x.203	20.00	3.33	42.2	1.7040	43715.10	76682.30	0.570 1
									 Image: A second s
T2	160 - 140	P2.5x.203	20.00	3.33	42.2	1.7040	107148.00	76682.30	1.397 ¹
									X
		4.8.1 (1.67 CR) - 45							
Т3	140 - 120	P2.5x.203	20.00	3.33	42.2	1.7040	186710.00	76682.30	2.435 ¹
									X
		4.8.1 (2.92 CR) - 82							
T4	120 - 100	P4x.237	20.00	3.33	26.5	3.1741	282073.00	142832.00	1.975 ¹
									- X
		4.8.1 (2.20 CR) - 121							
T5	100 - 80	P5x.258	20.00	3.33	21.3	4.2999	390905.00	193494.00	2.020 ⁻¹
									X
		4.8.1 (2.21 CR) - 160							
T6	80 - 60	P5x.258	20.03	3.34	21.3	4.2999	398117.00	193494.00	2.058 ⁻¹

T	Job		Page
<i>tnx1ower</i>		180' SST	18 of 19
Hudson Design Group 45 Beechwood Drive	Project	CT370	Date 15:50:52 12/09/21
North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586	Client	AT&T	Designed by ID

Section No	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P
110.	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
									X
	60 40	4.8.1 (2.26 CR) - 199/5							
Τ7	60 - 40	P6x.28	20.03	3.34	17.8	5.5813	375960.00	251161.00	1.497
									× .
		4.8.1 (1.64 CR) - 238/5							
T8	40 - 20	P6x.28	20.03	3.34	17.8	5.5813	370435.00	251161.00	1.475 ¹
									× .
		4.8.1 (1.65 CR) - 277							
T9	20 - 0	P6x.28	20.03	3.34	17.8	5.5813	376005.00	251161.00	1.497 ¹
									×
		4.8.1 (1.68 CR) - 316							

¹ $P_u / \phi P_n$ controls

		Diag	jonal [Desig	n Dat	a (Ten	sion)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P_{y}
	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	180 - 160	L2x2x1/8	6.01	2.86	54.8	0.2813	4958.36	12234.40	0.405 1
T2	160 - 140	L2x2x1/8	6.01	2.86	54.8	0.2813	6854.81	12234.40	0.560 1
T3	140 - 120	L2x2x1/8	6.01	2.86	54.8	0.2813	7700.99	12234.40	0.629 1
T4	120 - 100	L2x2x3/16	6.01	2.78	54.1	0.4132	9451.11	17974.30	0.526 1
T5	100 - 80	L2x2x3/16	6.01	2.73	53.0	0.4132	10756.40	17974.30	0.598 1
T6	80 - 60	L2x2x3/16	6.15	2.92	56.7	0.4132	5162.68	17974.30	0.287 1
Τ7	60 - 40	L2x2x3/16	7.90	3.75	72.9	0.4132	2855.58	17974.30	0.159 ¹
Т8	40 - 20	L2x2x3/16	11.34	5.47	106.3	0.4132	1839.34	17974.30	0.102 1
Т9	20 - 0	L2 1/2x2 1/2x3/16	13.26	6.43	99.2	0.5535	3723.17	24075.20	0.155 1

¹ $P_u / \phi P_n$ controls

Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	L2x2x3/16	5.00	4.76	92.6	0.4132	1667.99	17974.30	0.093 1

¹ P_u / ϕP_n controls

Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	180' SST	19 of 19
Projec	t	Date
	CT370	15:50:52 12/09/21
Client	AT&T	Designed by ID

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T1	180 - 160	Leg	P2.5x.203	1	-47293.00	67311.90	70.3	Pass
T2	160 - 140	Leg	P2.5x.203	43	-112918.00	67311.90	167.8	Fail X
Т3	140 - 120	Leg	P2.5x.203	82	-196521.00	67311.90	292.0	Fail X
T4	120 - 100	Leg	P4x.237	121	-298724.00	135684.00	220.2	Fail X
T5	100 - 80	Leg	P5x.258	160	-414293.00	187180.00	221.3	Fail X
T6	80 - 60	Leg	P5x.258	199	-422339.00	187159.00	225.7	Fail X
T7	60 - 40	Leg	P6x.28	238	-403268.00	245382.00	164.3	Fail X
T8	40 - 20	Leg	P6x.28	277	-403896.00	245382.00	164.6	Fail X
T9	20 - 0	Leg	P6x.28	316	-413430.00	245382.00	168.5	Fail X
T1	180 - 160	Diagonal	L2x2x1/8	8	-5014.76	10376.90	48.3	Pass
							78.6 (b)	
T2	160 - 140	Diagonal	L2x2x1/8	46	-7143.24	10376.90	68.8	Fail 👗
Т3	140 - 120	Diagonal	$1.2x^{2}x^{1/8}$	85	-8613.08	10376 90	108.7 (b) 83.0	т. н У
15	110 120	Diagonai	DERERINO	00	0015.00	10570.90	122.1 (b)	Fail 🦰
T4	120 - 100	Diagonal	L2x2x3/16	124	-10542.90	15886.50	66.4	Pass
							99.9 (b)	
T5	100 - 80	Diagonal	L2x2x3/16	164	-12347.00	16115.50	76.6	Fail 👗
Т6	80 - 60	Diagonal	$L_{2x}^{2x}^{3/16}$	236	-6549 94	15293 90	42.8	Pass
10	00 00	Diagonai	EERERS/10	250	05 17.7 1	15255.50	54.6 (b)	1 455
T7	60 - 40	Diagonal	L2x2x3/16	275	-3272.20	11661.30	28.1	Pass
							30.2 (b)	
T8 T0	40 - 20	Diagonal	L2x2x3/16	281	-2159.54	5828.52	37.1	Pass
19 T1	20-0	Diagonal Ton Cirt	$L_2 1/2X_2 1/2X_3/16$	320	-38/2.82	8384.62	46.2	Pass
11	180 - 100	Top On	L2X2X5/10	5	-1040.16	/083.9/	Summary	r ass
						Leg (T3)	292.0	Fail X
						Diagonal	122.1	Fail X
						(T3)		1 411
						Top Girt	21.4	Pass
						(T1)	166.0	v
						Bolt Checks	166.9	Fail 🥇
						RATING =	292.0	Fail 👗

ATTACHMENT 4

рното	LOCATION	ORIENTATION	DISTANCE TO EXISITNG LOCATION
1	MILE LANE	SOUTH	+/- 0.16 MILE

1	MILE LANE	SOUTH	+/- 0.19 MILE
рното	LOCATION	ORIENTATION	DISTANCE TO PROPOSED LOCATION

РНОТО	LOCATION	ORIENTATION	DISTANCE TO EXISITNG LOCATION
2	TALIAS TRAIL	SOUTHEAST	+/- 0.12 MILE

РНОТО	LOCATION	ORIENTATION	DISTANCE TO PROPOSED LOCATION
2	TALIAS TRAIL	SOUTHEAST	+/- 0.16 MILE

3	MIDDLETOWN HIGH SCHOOL	NORTHWEST	+/- 0.45 MILE
рното	LOCATION	ORIENTATION	DISTANCE TO EXISITNG LOCATION

PHOTOLOCATIONORIENTATIONDISTANCE TO PROPOSED LOCATION3MIDDLETOWN HIGH SCHOOLNORTHWEST+/- 0.40 MILE

рното	LOCATION	ORIENTATION	DISTANCE TO EXISITNG LOCATION
4	SPRUCE STREET AT HEMLOCK PLACE	WEST	+/- 0.37 MILE

РНОТО	LOCATION	ORIENTATION	DISTANCE TO PROPOSED LOCATION
4	SPRUCE STREET AT HEMLOCK PLACE	WEST	+/- 0.32 MILE

ATTACHMENT 5

		SITE & COMPOUND PLANS		
2	DPH		(NSB)	
IK	APP'D	SITE NUMBER	DRAWING NUMBER	REV
′VF)	CT3470A	LE-1	3

ATTACHMENT 6

PROJECT INFORMATION				
SCOPE OF WORK:	TELECOMMUNICATIONS FACILITY (NSB A PROPOSED 150'-0" A.G.L. TALL MONOPOLE. PROPOSED WALK-IN CABINET, AND GENERATOR WILL BE INSTALLED AT GRADE INSIDE A EXISTING FENCED-IN COMPOUND. PROPOSED (3) TPA65R-BU8DA-K ANTENNAS, (3) HPA65R-BU8A ANTENNAS, (3) DMP65R-BU8DA-K ANTENNAS, (3) 4478-B14 RRH'S, (3) FUTURE E2 RRH'S, (3) 4415 B30 RRH'S, (3) 4449 B5/B12 RRH'S, (3) 8843 B2/B66A RRH'S, (2) DC6-48-60-18-8C-EV SURGE ARRESTORS, & (1) DC6-48-60-0-8C-EV WILL BE INSTALLED AT A HEIGHT OF 150'-0" A.G.L.):			
SITE ADDRESS:	499 MILE LANE MIDDLETOWN, CT 06457			
APPLICANT:	AT&T 550 COCHITUATE ROAD FRAMINGHAM, MA 01701			
SITE OWNER:	CITY OF MIDDLETOWN 245 DEKOVEN DRIVE MIDDLETOWN, CT 06457			
LATITUDE:	41.58026 N, 41°34'48.9" N			
LONGITUDE:	72.68606 W, 72°41'09.8"W			
TYPE OF SITE:	MONOPOLE/ WALK-IN CABINET			
TOWER HEIGHT:	150'-0"±			
RAD CENTER:	150'-0"±			
APPLICABLE CODES:	ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE CT STATE BUILDING CODE, NATIONAL ELECTRIC CODE (NEC 2017), ANSI/EIA/TIA-222 H & COMPLY WITH AT&T MOBILITY SPECIFICATIONS			
	DRAWING INDEX			

SHEET NO.	DESCRIPTION	REV.	DEPAR	
T—1	TITLE SHEET	4	CONN	
GN-1	GENERAL NOTES	4	RIGHT	
SN-1	STRUCTURAL NOTES	4	- RAMP / MIE RIGHT	
C-1	ABUTTERS PLAN	4		
C-2	EXISTING CONDITIONS PLAN	4		
C-3	WETLAND SETBACKS	4		
A-1	COMPOUND & EQUIPMENT PLAN	4		
A-2	ELEVATION & ANTENNA PLAN	4		
A-3	DETAILS & ANTENNA SCHEDULE	4		
A-4	EQUIPMENT DETAILS	4	2	
A-5	EQUIPMENT DETAILS	4		
E—1	ELECTRICAL NOTES & ONE-LINE DIAGRAM	4		
G-1	GROUNDING DETAILS	4	1 dest	
RF-1	RF PLUMBING DIAGRAM	4		
			C San	

HUDSON Design Group LLC

Smartlink 1997 ANNAPOLIS EXCHANGE PKWY SUITE 200

ANNAPOLIS, MD 21401

SITE NUMBER: CT3470A SITE NAME: MIDDLETOWN_MILE LANE

MIDDLETOWN, CT 06457 MIDDLESEX COUNTY

45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

SITE NUMBER: CT3470A SITE NAME: MIDDLETOWN_MILE LANE FA CODE:10578361

PACE ID: MRCTB033524, MRCTB036341, MRCTB036593, MRCTB036513, MRCTB036367, MRCTB047889

PROJECT: NSB

GROUNDING NOTES

		GE
1.	THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE—SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.	<u></u> 1.
2.	ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.	2.
3.	THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81 STANDARDS) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.	3.
4.	METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.	4.
5.	EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS AND #2 AWG STRANDED COPPER FOR OUTDOOR BTS.	5.
6.	EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.	
7.	APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.	6.
8.	ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO GROUND BAR.	7.
9.	ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.	8.
10.	MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.	9.
11.	. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.	
12.	ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/2 IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE	10.
	TINNED COPPER GROUND WIRE, PER NEC 250.50	11.
		12.
		13.

SITE NUMBER: CT3470A SITE NAME: MIDDLETOWN_MILE LANE

1997 ANNAPOLIS EXCHANGE PKWY SUITE 200 ANNAPOLIS, MD 21401

499 MILE LANE MIDDLETOWN, CT 06457 MIDDLESEX COUNTY

45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

ENERAL NOTES

FOR THE PURPOSE OF CONSTRUCTION DRAWING. THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR – SMARTLINK SUBCONTRACTOR – GENERAL CONTRACTOR (CONSTRUCTION) OWNER – AT&T MOBILITY

PRIOR TO THE SUBMISSION OF BIDS. THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.

ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE **REGULATIONS.**

- DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

"KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR.

THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS. THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.

SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.

THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.

ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.

- FOR CONSTRUCTION OF AT&T SITES."
- AFTER MIDNIGHT.
- EXPOSURE LEVELS.
- 20. APPLICABLE BUILDING CODES:

STANDARDS:

STRUCTURAL CONCRETE;

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

AGL	ABOVE GRADE LEVEL
AWG	AMERICAN WIRE GAUC
BBU	BATTERY BACKUP UN
BTCW	BARE TINNED SOLID COPPER WIRE
BGR	BURIED GROUND RING
BTS	BASE TRANSCEIVER S
E	EXISTING
EGB	EQUIPMENT GROUND
EGR	EQUIPMENT GROUND
ED FOR RE	VIEW

4	12/10/21	ISSUED	FOR	REVIEW				СС
3	11/22/21	ISSUED	FOR	REVIEW				СС
2	11/16/21	ISSUED	FOR	REVIEW				AR
1	09/22/21	ISSUED	FOR	REVIEW				AR
0	04/07/21	ISSUED	FOR	REVIEW				VP
NO.	DATE				REVISIO	ONS		BY
SCA	LE: AS SH	HOWN		DESIGNE	D BY:	JC	DRAW	N BY

14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS. ALL CONCRETE WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.

15. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCH UP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.

16. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES

17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.

18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS

19. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.

BUILDING CODE: IBC 2015 WITH 2018 CT STATE BUILDING CODE AMENDMENTS ELECTRICAL CODE: 2017 NATIONAL ELECTRICAL CODE (NFPA 70-2017)

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING

AMERICAN CONCRETE INSTITUTE (ACI) 318; BUILDING CODE REQUIREMENTS FOR

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION, ASD, FOURTEENTH EDITION:

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-H, STRUCTURAL STANDARDS FOR STEEL

	ABBREVIATIONS								
EQ			EQUAL		REQ	REQUIRED			
θE		GC		GENERAL CONTR	ACTOR	RF	RADIO FREQUENCY		
IT		GR	С	GALVANIZED RIGI	D CONDUIT	TBD	TO BE DETERMINED		
		MG	В	MASTER GROUND	BAR	TBR	TO BE REMOVED		
g min n		١	MINIMUM		TBRR	TO BE REMOVED AND REPLACED			
TATION		Ρ		PROPOSED		TYP	TYPICAL		
		NTS	S	NOT TO SCALE		UG	UNDER GROUND		
BAF	R	RAI	D	RADIATION CENTE (ANTENNA)	ER LINE	VIF	VERIFY IN FIELD		
RIN	G	RE	F	REFERENCE					
C	JC	DPH					ΛΤΟΤ		
;c	JC	DPH					ΑΙαΙ		
	JC	DPH			GENERAL NOTES				
/P	JC	DPH							
iy (СНК	APP'D			SITE NUMBER DRAWING NUMBER				
3Y: C0	C/VF	>			CT3470A		GN-1	4	

STRUCTURAL NOTES:

- 1. DESIGN REQUIREMENTS ARE PER STATE BUILDING CODE AND APPLICABLE SUPPLEMENTS, INTERNATIONAL BUILDING CODE, EIA/TIA-222-H STRUCTURAL STANDARDS FOR STEEL ANTENNA, TOWERS AND ANTENNA SUPPORTING STRUCTURES.
- 2. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. ANY UNUSUAL CONDITIONS SHALL BE REPORTED TO THE ATTENTION OF THE CONSTRUCTION MANAGER AND ENGINEER OF RECORD.
- 3. DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS".
- 4. STRUCTURAL STEEL SHALL CONFORM TO ASTM A992 (Fy=50 ksi), MISCELLANEOUS STEEL SHALL CONFORM TO ASTM A36 UNLESS OTHERWISE INDICATED.
- 5. STEEL PIPE SHALL CONFORM TO ASTM A500 "COLD-FORMED WELDED & SEAMLESS CARBON STEEL STRUCTURAL TUBING", GRADE B, OR ASTM A53 PIPE STEEL BLACK AND HOT-DIPPED ZINC-COATED WELDED AND SEAMLESS TYPE E OR S, GRADE B. PIPE SIZES INDICATED ARE NOMINAL. ACTUAL OUTSIDE DIAMETER IS LARGER.
- 6. STRUCTURAL CONNECTION BOLTS SHALL BE HIGH STRENGTH BOLTS (BEARING TYPE) AND CONFORM TO ASTM A325 TYPE-X "HIGH STRENGTH BOLTS FOR STRUCTURAL JOINTS, INCLUDING SUITABLE NUTS AND PLAIN HARDENED WASHERS". ALL BOLTS SHALL BE 3/4" DIA UON.
- 7. ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL PRODUCTS", UNLESS OTHERWISE NOTED.
- 8. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC-COATING (HOT-DIP) ON IRON AND STEEL HARDWARE". UNLESS OTHERWISE NOTED.
- 9. FIELD WELDS, DRILL HOLES, SAW CUTS AND ALL DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED WITH AN ORGANIC ZINC REPAIR PAINT COMPLYING WITH REQUIREMENTS OF ASTM A780. GALVANIZING REPAIR PAINT SHALL HAVE 65 PERCENT ZINC BY WEIGHT, ZIRP BY DUNCAN GALVANIZING. GALVA BRIGHT PREMIUM BY CROWN OR EQUAL. THICKNESS OF APPLIED GALVANIZING REPAIR PAINT SHALL BE NOT NOT LESS THAN 4 COATS (ALLOW TIME TO DRY BETWEEN COATS) WITH A RESULTING COATING THICKNESS REQUIRED BY ASTM A123 OR A153 AS APPLICABLE.
- 10. CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES, APPEARANCE AND QUALITY OF WELDS, AND FOR METHODS USED IN CORRECTING WELDING. ALL WELDERS AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND DI.I. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "STEEL CONSTRUCTION MANUAL". 14TH EDITION.
- 11. INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON-CONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE CONSTRUCTION MANAGER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE CONSTRUCTION MANAGER APPROVAL.
- 12. UNISTRUT SHALL BE FORMED STEEL CHANNEL STRUT FRAMING AS MANUFACTURED BY UNISTRUT CORP., WAYNE, MI OR EQUAL. STRUT MEMBERS SHALL BE 1 5/8"x1 5/8"x12GA, UNLESS OTHERWISE NOTED, AND SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION.
- 13. EPOXY ANCHOR ASSEMBLY SHALL CONSIST OF STAINLESS STEEL ANCHOR ROD WITH NUTS & WASHERS. AN INTERNALLY THREADED INSERT, A SCREEN TUBE AND A EPOXY ADHESIVE. THE ANCHORING SYSTEM SHALL BE THE HILTI-HIT HY-270 AND OR HY-200 SYSTEMS (AS SPECIFIED IN DWG.) OR ENGINEERS APPROVED EQUAL.
- 14. EXPANSION BOLTS SHALL CONFORM TO FEDERAL SPECIFICATION FF-S-325, GROUP II, TYPE 4, CLASS I, HILTI KWIK BOLT III OR APPROVED EQUAL. INSTALLATION SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- 15. LUMBER SHALL COMPLY WITH THE REQUIREMENTS OF THE AMERICAN INSTITUTE OF TIMBER CONSTRUCTION AND THE NATIONAL FOREST PRODUCTS ASSOCIATION'S NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION. ALL LUMBER SHALL BE PRESSURE TREATED AND SHALL BE STRUCTURAL GRADE NO. 2 OR BETTER.
- 16. WHERE ROOF PENETRATIONS ARE REQUIRED. THE CONTRACTOR SHALL CONTACT AND COORDINATE RELATED WORK WITH THE BUILDING OWNER AND THE EXISTING ROOF INSTALLER. WORK SHALL BE PERFORMED IN SUCH A MANNER AS TO NOT VOID THE EXISTING ROOF WARRANTY. ROOF SHALL BE WATERTIGHT.
- 17. ALL FIBERGLASS MEMBERS USED ARE AS MANUFACTURED BY STRONGWELL COMPANY OF BRISTOL, VA 24203. ALL DESIGN CRITERIA FOR THESE MEMBERS IS BASED ON INFORMATION PROVIDED IN THE DESIGN MANUAL. ALL REQUIREMENTS PUBLISHED IN SAID MANUAL MUST BE STRICTLY ADHERED TO.
- 18. NO MATERIALS TO BE ORDERED AND NO WORK TO BE COMPLETED UNTIL SHOP DRAWINGS HAVE BEEN REVIEWED AND APPROVED IN WRITING.
- 19. SUBCONTRACTOR SHALL FIREPROOF ALL STEEL TO PRE-EXISTING CONDITIONS.

SPECIAL INSPECTIONS (REFERENCE IBC CHAPTER 17):

GENERAL: WHERE APPLICATION IS MADE FOR CONSTRUCTION, THE OWNER OR THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE ACTING AS THE OWNER'S AGENT SHALL EMPLOY ONE OR MORE APPROVED AGENCIES TO PERFORM INSPECTIONS DURING CONSTRUCTION ON THE TYPES OF WORK LISTED IN THE INSPECTION CHECKLIST ABOVE.

THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE AND ENGINEERS OF RECORD INVOLVED IN THE DESIGN OF THE PROJECT ARE PERMITTED TO ACT AS THE APPROVED AGENCY AND THEIR PERSONNEL ARE PERMITTED TO ACT AS THE SPECIAL INSPECTOR FOR THE WORK DESIGNED BY THEM, PROVIDED THOSE PERSONNEL MEET THE QUALIFICATION REQUIREMENTS.

STATEMENT OF SPECIAL INSPECTIONS: THE APPLICANT SHALL SUBMIT A STATEMENT OF SPECIAL INSPECTIONS PREPARED BY THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE IN ACCORDANCE WITH SECTION 107.1 AS A CONDITION FOR ISSUANCE. THIS STATEMENT SHALL BE IN ACCORDANCE WITH SECTION 1705.

REPORT REQUIREMENT: SPECIAL INSPECTORS SHALL KEEP RECORDS OF INSPECTIONS. THE SPECIAL INSPECTOR SHALL FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, AND TO THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE. REPORTS SHALL INDICATE THAT WORK INSPECTED WAS OR WAS NOT COMPLETED IN CONFORMANCE TO APPROVED CONSTRUCTION DOCUMENTS. DISCREPANCIES SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE CONTRACTOR FOR CORRECTION. IF THEY ARE NOT CORRECTED, THE DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE BUILDING OFFICIAL AND TO THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE. A FINAL REPORT DOCUMENTING REQUIRED SPECIAL INSPECTIONS SHALL BE SUBMITTED.

NOTES:

- ORDERING MATERIAL
- STEEL FABRICATION.

SITE NUMBER: CT3470A SITE NAME: MIDDLETOWN MILE LANE

TEL: (978) 557-5553 NORTH ANDOVER, MA 01845 FAX: (978) 336-5586

HUDSON

45 BEECHWOOD DRIVE

Design Group LLC

1997 ANNAPOLIS EXCHANGE PKWY

SUITE 200

ANNAPOLIS, MD 21401

1. ALL CONNECTIONS TO BE SHOP WELDED & FIELD BOLTED USING 3/4"Ø A325-X BOLTS, UNLESS OTHERWISE NOTIFIED. 2. SHOP DRAWING ENGINEER REVIEW & APPROVAL REQUIRED BEFORE

3. SHOP DRAWING ENGINEER REVIEW & APPROVAL REQUIRED PRIOR TO

4. VERIFICATION OF EXISTING ROOF CONSTRUCTION IS REQUIRED PRIOR TO THE INSTALLATION OF THE ROOF PLATFORM. ENGINEER OF RECORD IS TO APPROVE EXISTING CONDITIONS IN ORDER TO MOVE FORWARD. 5. CENTERLINE OF PROPOSED STEEL PLATFORM SUPPORT COLUMNS TO BE CENTRALLY LOCATED OVER THE EXISTING BUILDING COLUMNS. 6. EXISTING BRICK MASONRY COLUMNS/BEARING TO BE

REPAIRED/REPLACED AT ALL PROPOSED PLATFORM SUPPORT POINTS.

ENGINEER OF RECORD TO REVIEW AND APPROVE.

NOTES:

- REQUIRED FOR ANY NEW SHOP FABRICATED FRP OR STEEL. 2. PROVIDED BY MANUFACTURER,
- REQUIRED IF HIGH STRENGTH BOLTS OR STEEL.
- PROVIDED BY GENERAL CONTRACTOR: PROOF OF MATERIALS.
- 3. HIGH WIND ZONE INSPECTION CATB 120MPH OR CAT C,D 110MPH INSPECT 4. FRAMING OF WALLS, ANCHORING, FASTENING SCHEDULE.
- ADHESIVE FOR REBAR AND ANCHORS SHALL HAVE BEEN TESTED IN ACCORDANCE WITH ACI 355.4 AND ICC-ES AC308 FOR CRACKED CONCRETE AND SEISMIC APPLICATIONS. DESIGN ADHESIVE BOND STRENGTH HAS BEEN BASED ON ACI 355.4 TEMPERATURE CATEGORY B WITH INSTALLATIONS INTO DRY HOLES DRILLED USING A CARBIDE BIT INTO CRACKED CONCRETE THAT HAS CURED FOR AT LEAST 21 DAYS. ADHESIVE ANCHORS REQUIRING CERTIFIED INSTALLATIONS SHALL BE INSTALLED BY A CERTIFIED ADHESIVE ANCHOR INSTALLER PER ACI 318-11 D.9.2.2. INSTALLATIONS REQUIRING CERTIFIED INSTALLERS SHALL BE INSPECTED PER ACI 318-11 D.8.2.4.
- AS REQUIRED; FOR ANY FIELD CHANGES TO THE ITEMS IN THIS TABLE.

4	12/10/21	ISSUED	FOR	REVIEW				
3	11/22/21	ISSUED	FOR	REVIEW				(
2	11/16/21	ISSUED	FOR	REVIEW				/
1	09/22/21	ISSUED	FOR	REVIEW				1
0	04/07/21	ISSUED	FOR	REVIEW				\
NO.	DATE				REVISIO	NS		E
SCA	LE: AS SH	HOWN		DESIGNE	D BY:	JC	DRAWN	١

SPECIAL INSPE	CTION CHECKLIST						
BEFORE C	ONSTRUCTION						
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM						
REQUIRED	ENGINEER OF RECORD APPROVED SHOP DRAWINGS ¹						
REQUIRED	MATERIAL SPECIFICATIONS REPORT ²						
N/A	FABRICATOR NDE INSPECTION						
REQUIRED	PACKING SLIPS ³						
ADDITIONAL TESTING AND INSP	ECTIONS:						
DURING C	ONSTRUCTION						
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM						
REQUIRED	STEEL INSPECTIONS						
N/A	HIGH STRENGTH BOLT INSPECTIONS						
N/A	HIGH WIND ZONE INSPECTIONS 4						
N/A	FOUNDATION INSPECTIONS						
N/A	CONCRETE COMP. STRENGTH, SLUMP TESTS AND PLACEMENT						
N/A	POST INSTALLED ANCHOR VERIFICATION ⁵						
N/A	GROUT VERIFICATION						
N/A	CERTIFIED WELD INSPECTION						
N/A	EARTHWORK: LIFT AND DENSITY						
N/A	ON SITE COLD GALVANIZING VERIFICATION						
N/A	GUY WIRE TENSION REPORT						
ADDITIONAL TESTING AND INSP	ECTIONS:						
AFTER CO	ONSTRUCTION						
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM						
REQUIRED	MODIFICATION INSPECTOR REDLINE OR RECORD DRAWINGS ⁶						
N/A	POST INSTALLED ANCHOR						
,							
REQUIRED	PHOTOGRAPHS						

R P	JC JC	DPH DPH	PH		(NSB)	
Y	СНК	APP'D	P'D	SITE NUMBER	DRAWING NUMBER	REV
3Y: (CC/VP)		CT3470A	SN-1	4

LEGEND

	PROPERTY LINE - SUBJECT PARCEL
	ABUTTERS PROPERTY LINE
	EASEMENT LINE
0	IRON ROD/PIPE FOUND
	BOUND FOUND
${\bf A}$	CALCULATED POINT
N/F	NOW OR FORMERLY
10-6/067	ASSESSOR'S ID
O	TOWER CONTROL POINT

SITE SPECIFIC NOTES

1. FIELD SURVEY DATE: 10/15/2021

2. HORIZONTAL DATUM:	NORTH AMERICAN DATUM OF 1983 (NAD83)
3. VERTICAL DATUM:	NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)
4. OWNER:	CITY OF MIDDLETOWN 245 DEKOVEN DRIVE MIDDLETOWN, CT 06457
5. SITE NAME:	MIDDLETOWN_MILE LANE
6. SITE ADDRESS	499 MILE LANE MIDDLETOWN, CT 06457 MIDDLESEX COUNTY
7. APPLICANT:	AT&T
8. TAX ID:	10-0030
9. DEED REFERENCE:	DEED BOOK 1771 PAGE 194
10. PLAN REFERENCE:	PLAN 20 OF 20019 PLAN 80 OF 2014 PLAN #2243
11 ZONING DISTRICT	R-15

12. THE HORIZONTAL DATUM AND VERTICAL DATUM WERE DERIVED FROM A

13. ALL UNDERGROUND UTILITY INFORMATION PRESENTED HEREON WAS DETERMINED FROM SURFACE EVIDENCE AND PLANS OF RECORD. ALL UNDERGROUND UTILITIES SHOULD BE LOCATED IN THE FIELD PRIOR TO COMMENCEMENT OF ALL SITE WORK. CALL DIGSAFE 1-800-322-4844 A MINIMUM OF 72 HOURS PRIOR TO PLANNED ACTIVITY.

14. ACCORDING TO FEDERAL EMERGENCY MANAGEMENT AGENCY MAPS, THE PROPOSED IMPROVEMENTS ON THIS PROPERTY ARE LOCATED IN AN AREA DESIGNATED AS ZONE X (UNSHADED), AREA OF MINIMAL FLOOD HAZARD. MAP NO. 09007C 0108 G EFFECTIVE DATE: 8/28/2008

15. FIELD SURVEY BY EDM TOTAL STATION & RTK GPS.

16. WETLAND DELINEATION WAS PERFORMED AND LOCATED BY ALL-POINTS

THIS SURVEY HAS BEEN PREPARED PURSUANT TO THE REGULATIONS OF CONNECTICUT STATE AGENCIES SECTIONS 20-300B-1 THROUGH 20-300B-20 AND THE "STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS ADOPTED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS INC. ON SEPTEMBER 26, 1997.

TYPE OF SURVEY: IMPROVEMENT LOCATION SURVEY

BOUNDARY SURVEY CATEGORY: DEPENDENT RESURVEY

CLASS OF ACCURACY: HORIZONTAL CLASS D VERTICAL CLASS V-2 TOPOGRAPHIC CLASS T-2 PURPOSE OF SURVEY: PROPOSED CELLULAR UTILITIES

THIS DOCUMENT AND COPIES THEREOF ARE VALID ONLY IF THEY BEAR THE LIVE SIGNATURE AND EMBOSSED SEAL OF THE DESIGNATED PROFESSIONAL. UNAUTHORIZED ALTERATIONS RENDER ANY DECLARATION NULL AND VOID.

TO THE BEST OF MY KNOWLEDGE AND BELIEF, THIS MAP IS SUBSTANTIALLY CORRECT AS NOTED HEREON.

CHARLES G. GIDMAN, P.L.S. #70103

LEGEND

	PROPERTY LINE - SUBJECT PARCEL
	ABUTTERS PROPERTY LINE
	EASEMENT LINE
	CONTOUR LINE
······································	TREELINE
O	CHAIN LINK FENCE
_ · · ·	WETLAND DELINEATION
N/F	NOW OR FORMERLY
10-0030	ASSESSOR'S ID
Ο	TOWER CONTROL POINT
þ	UTILITY POLE
Ē	ELECTRIC MANHOLE
¢	HYDRANT
逐	WATER GATE VALVE
	WETLAND FLAG

NOTE:

SITE PLAN TAKEN FROM SURVEY BY NORTHEAST SURVEY CONSULTANTS DATED: 11/18/2021

WETLAND DELINEATION WAS PERFORMED AND LOCATED BY ALL-POINTS TECHNOLOGY CORP.

C	JC	DPH	JC			A T O T	
C	JC	DPH	JC			AI&I	
٨R	JC	DPH	JC				
٨R	JC	DPH	JC			WETLAND SETBACKS	
/P	JC	DPH	JC			(NSB)	
X	СНК	APP'D	СНК	D	SITE NUMBER	DRAWING NUMBER	REV
3Y: (CC/VF)	:CC/VF	1	CT3470A	C-3	4

4	12/10/21	ISSUED FOR	REVIEW	(
3	11/22/21	ISSUED FOR	REVIEW	0			
2	11/16/21	ISSUED FOR	REVIEW	ł			
1	09/22/21	ISSUED FOR	REVIEW	1			
0	04/07/21	ISSUED FOR	SSUED FOR REVIEW				
NO.	DATE	REVISIONS					
SCALE: AS SHOWN			DESIGNED BY: JC DRAWN				

	ANTENNA SCHEDULE										
SECTOR	EXISTING/ PROPOSED	BAND	ANTENNA	SIZE (INCHES) (L × W × D)	ANTENNA © HEIGHT	AZIMUTH	TMA/ DIPLEXER	RRU	SIZE (INCHES) (L × W × D)	FEEDER	RAYCAP
A1	PROPOSED	LTE B14/AWS	TPA65R-BU8DA-K	96X21X7.8	150'-0"	15°	_	(P) (1) 4478 B14	18.1X13.4X8.3	_	AP 8C-EV
A2	PROPOSED	LTE DE/WCS	HPA65R-BU8A	96X11.7X7.6	150'-0"	15°	—	(P) (1) 4415 B30 (F) E-2	16.5X13.4X5.9 20.4X18.5X7.5	_) RAYC 30-18-
A3	PROPOSED	LTE 700 BC/580/PCS	DMP65R-BU8DA-K	96X20.7X7.7	150'-0"	15°	_	(P) (1) 4449 B5/B12 (P) (1) 8843 B2/B66A	14.9X13.2X10.4 14.9X13.2X10.9	_	(P) (1 6-48-6
A4	_	—	_	—	_	_	—	_	-	_	DC
B1	PROPOSED	LTE B14/AWS	TPA65R-BU8DA-K	96X21X7.8	150'-0"	110°	_	(P) (1) 4478 B14	18.1X13.4X8.3	_	AP BC-EV
B2	PROPOSED	LTE DE/WCS	HPA65R-BU8A	96X11.7X7.6	150'-0"	110°	_	(P) (1) 4415 B30 (F) E-2	16.5X13.4X5.9 20.4X18.5X7.5	_) RAYC 30-18-
B3	PROPOSED	LTE 700 BC/580/PCS	DMP65R-BU8DA-K	96X20.7X7.7	150'-0"	110°	_	(P) (1) 4449 B5/B12 (P) (1) 8843 B2/B66A	14.9X13.2X10.4 14.9X13.2X10.9	_	(P) (1 6-48-6
B4	_	—	_	_	_	_	—	_	-	_	DC
C1	PROPOSED	LTE B14/AWS	TPA65R-BU8DA-K	96X21X7.8	150'-0"	220°	_	(P) (1) 4478 B14	18.1X13.4X8.3	_	AP 3C-EV
C2	PROPOSED	LTE DE/WCS	HPA65R-BU8A	96X11.7X7.6	150'-0"	220°	_	(P) (1) 4415 B30 (F) E-2	16.5X13.4X5.9 20.4X18.5X7.5	_) RAYC 60-0-8
C3	PROPOSED	LTE 700 BC/580/PCS	DMP65R-BU8DA-K	96X20.7X7.7	150'-0"	220°	_	(P) (1) 4449 B5/B12 (P) (1) 8843 B2/B66A	14.9X13.2X10.4 14.9X13.2X10.9	_	(P) (1)6-48-
C4	_	_	_	_	_	_	_	_	-		DQ

SCALE: N.T.S

PROPOSED AT&T ANTENNAS (TYP OF 3 PER SECTOR, TOTAL OF 9)

TOP OF PROPOSED MONOPOLE & & OF PROPOSED AT&T ANTENNAS Ψ ELEV. = 150'-0"± A.G.L >9. TO .* PROPOSED AT&T RRH'S PROPOSED SURGE (TYP. OF 4 PER SUPPRESSOR SECTOR, TOTAL OF 12) MODEL NUMBERS: DC6-48-60-18-8C-EV DC6-48-60-0-8C-EV DIMENSIONS: H24.0"x9.7"ø - PROPOSED RRU BACK TO BACK PIPE MOUNT WITH BRACKET: H31.25"X9.7"ø BRACKET P/N SXK1250461/1 (OR APPROVED EQUAL) (TYP. OF 2 PER SECTOR, TOTAL OF 6) - PROPOSED 3" STD. (3.5"0.D.) -STRIKESORB 30-V1 8'-0" LONG PIPE MAST (TYP. SURGE PROTECTIVE DEVICE OF 1 PER SECTOR, TOTAL OF 3) NOTE: MOUNT PER MANUFACTURER'S SPECIFICATIONS. DC SURGE SUPPRESSOR DETAIL SCALE: N.T.S A-3 4 12/10/21 ISSUED FOR REVIEW 3 11/22/21 ISSUED FOR REVIEW

FINAL ANTENNA SCHEDULE 2 A-3

PROPOSED FIBER MANAGEMENT BOX MOUNTING DETAIL 5 A-3SCALE: N.T.S

С	JC	DPH	4		A T O T					
С	JC	DPH	4	ΑΙϪΙ						
R	JC	DPH	4							
R	JC	DPH	4	DETAILS & ANTENNA SCHEDULE						
Ρ	JC	DPH	4	(NSB)						
Y	снк	APP'D	'D	SITE NUMBER DRAWING NUMBER						
BY: CC/VP		>		CT3470A	A-3	4				

PROPOSED GPS ANTENNA

WIC GPS SUPPORT PIPE -

HARDWARE

PROPOSED MOUNTING

PROPOSED CABLE (INCLUDED WITH GPS)

N.T.S

FOUNDATION NOTES & CONCRETE SPECIFICATIONS:

- 2%)
- 4. REINFORCING BAR TO BE ASTM A615 GRADE 60.
- ATTACHMENTS TO BASE SLAB.

CO 22x3

Г3470А		4 3	12/10/21 11/22/21	ISSUED FOR	REVIEW REVIEW		CC CC	JC JC	
VN_MILE LANE	at&t	2	11/16/21	ISSUED FOR	REVIEW		AR	JC	F
		1 0	09/22/21 04/07/21	ISSUED FOR	REVIEW		AR VP	JC JC	┝
06457	550 COCHITUATE ROAD	NO.	DATE		REVISIONS		BY	СНК	F
NTY	FRAMINGHAM, MA 01701	SCA	LE: AS SH	HOWN	DESIGNED BY: JC	DRAWN	1 BY:(CC/VF	,

20 KW G DIME	20 KW GENERATOR DIMENSIONS MODEL # G007098-0					
MODEL #	G007098–0					
MANUF.	GENERAC					
HEIGHT	90"					
WIDTH	36"					
LENGTH	48"					

GPS MOUNTING DETAIL 2 A-4

1. FOUNDATION AREA SHALL BE EXCAVATED TO THE DEPTH AND DIMENSIONS SHOWN ON THE PLANS. EXISTING LEDGE AND ALL OTHER EXISTING UNSUITABLE MATERIAL SHALL BE REMOVED AND LEGALLY DISPOSED OF OFF-SITE. THE SUBGRADE SHALL BE ROLLED WITH A 1-TON, VIBRATORY, WALK-BEHIND ROLLER AT A SPEED OF LESS THAN 2 FPS, 6 PASSES MINIMUM, TO PROVIDE UNYIELDING SURFACE.

2. UNDERCUT SOFT OR "WEAVING" AREAS A MINIMUM OF 12 INCHES DEEP. BACKFILL UNDERCUT AREA WITH FILL MEETING THE SPECIFICATIONS OF STRUCTURAL FILL.

3. CONCRETE TO HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH (f'c)=4000 psi. CONCRETE TO BE AIR ENTRAINED, DESIRED AIR CONTENT TO BE 6% (PLUS OR MINUS

5. WELDED WIRE FABRIC TO CONFORM TO THE REQUIREMENTS OF ASTM A185. WIRES FOR FABRIC TO CONFORM TO THE REQUIREMENTS OF ASTM A82.

6. COORDINATE WITH MANUFACTURER OF PREFABRICATED SHELTER FOR LOCATION OF

7. ALL REINFORCING TO HAVE MINIMUM CONCRETE COVER PER ACI SPECIFICATIONS.

8. ALL CONCRETE MATERIALS AND WORKMANSHIP SHALL CONFORM TO LATEST EDITION OF ACI 318 AND APPLICABLE STATE BUILDING CODE.

		(SEE PLAN		- 1	
N		/ #4 2" 60 12 FR ETE ALE: 1	#4 BARS @ 10" O.C./I	E.W.	- 1" CHAMFER	
	JC JC	DPH DPH	+ +		AT&T	
	JC	DPH	4		FOLIIPMENT DETAILS	
AR /P	JC	рьн Обн				
	СНК		' 'D	SITE NUMBER		RFV
BY:	CC/VF			CT3470A	A-4	4
	/ //					1 7

FENCE NOTES

1. ALTERNATE FOOTINGS FOR ALL FENCE POSTS IN LEDGE: IF LEDGE IS ENCOUNTERED AT GRADE, OR AT A DEPTH SHALLOWER THAN 3'-6", CORE DRILL AN 8" DIA HOLE 18" INTO THE LEDGE. CENTER POST IN THE HOLE AND FILL WITH CONCRETE OR GROUT. IF LEDGE IS BELOW FINISH GRADE, COAT BACKFILLED SECTION OF POST WITH COAL TAR, AND BACKFILL WITH WELL-DRAINING GRAVEL.

2. ATTACH EACH GATE WITH 1-1/2 PAIR OF NON-LIFT-OFF TYPE, MALLEABLE IRON OR FORGING, PIN-TYPE HINGES. ASSEMBLIES SHALL ALLOW FOR 180° OF GATE TRAVEL.

45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

1997 ANNAPOLIS EXCHANGE PKWY SUITE 200 ANNAPOLIS, MD 21401

499 MILE MIDDLETOWN, MIDDLESEX

: CT3470A		4 3	12/10/21 11/22/21	ISSUED FO	OR REVIEW		
IOWN_MILE LANE	at&t	2	11/16/21 09/22/21	ISSUED FO	OR REVIEW		AF Af
		0	04/07/21	ISSUED FO	R REVIEW		VF
CT 06457 COUNTY	550 COCHITUATE ROAD FRAMINGHAM, MA 01701	SCA	LE: AS SI	HOWN	DESIGNED BY: JC	DRAWN	1 B

TOP OF -GROUND

A-5

NOTES:

ND & ABBREVIATIONS	ELECTRICA	AL AND	GROUNDING	NOTE	ES
RFACE MOUNTED SURFACE MOUNTED R	1. ALL ELECTR REQUIREMEN (NEC) AS V	ICAL WORK NTS OF THE VELL AS API	SHALL CONFORM T NATIONAL ELECTRI PLICABLE STATE AN	O THE CAL COD D LOCAL)E
CT A.F.F.	CODES. 2. ALL ELECTR OR LISTED REQUIREMEN 3 THE ELECTE	ICAL ITEMS AND PROCU NTS.	SHALL BE U.L. API RED PER SPECIFIC	PROVED ATION	
/ITCH, MOUNTED 54"A.F.F. RGE SUPPRESSOR WITH CE MOUNTED CE MOUNTED, INGLE PHASE	MATERIAL D SPECIFICATIO PROVIDE CO ELECTRICAL	ESCRIBED B ON INCLUDIN MPLETE OP SYSTEM.	INCLODES ALL LAL Y DRAWINGS AND NG INCIDENTAL WOR ERATING AND APPR	RK TO OVED	
#10 + 1#8G IN 3/4"	 GENERAL CO PERMITS, AI SAID PERMI 5. ELECTRICAL 	ONTRACTOR ND IS RESP TS AND COO AND TELCO	SHALL PAY FEES F ONSIBLE FOR OBTA ORDINATION OF INSI WIRING OUTSIDE A	OR INING PECTIONS	6.
ED	WATER TIGH OR SCHEDU AND WHERE MFTAL OR	T GALVANIZI ILE 80 PVC REQUIRED	ED RIGID STEEL CO (AS PERMITTED BY IN LIQUID TIGHT FI C CONDUITS.	NDUITS CODE) LEXIBLE	N
PTER	6. BURIED CON 7. ELECTRICAL XHHW, THW 8. RUN ELECTI	NDUIT SHALL WIRING SHA N, OR THINI RICAL COND	BE SCHEDULE 40 ALL BE COPPER WI NSULATION. UIT OR CABLE BETV	PVC. TH TYPE WEEN	
	ELECTRICAL PROJECT O' THIS DRAWI COORDINATE 9. RUN TELCO	UTILITY DEN WNER CELL NG. PROVIDI INSTALLATI CONDUIT C	MARCATION POINT A SITE PPC AS INDIC E FULL LENGTH PU ON WITH UTILITY CO R CABLE BETWEEN	ND XATED OI LL ROPE OMPANY.	N <u>-</u> .
E IINET RIES H	TELEPHONE PROJECT O' BTS CABINE PROVIDE FL TELCO CON	UTILITY DEI WNER CELL T AS INDICA ILL LENGTH DUIT. PROVI	MARCATION POINT A SITE TELCO CABINE ATED ON THIS DRAV PULL ROPE IN INS DE GREENLEE CONI	ND ET AND VING STALLED DUIT	
UIT	MEASURING 10. WHERE CON OWNER CEL PROJECT O CABINET AR	TAPE AT EA IDUIT BETWE L SITE PPC WNER CELL	ACH END. EN BTS AND PROJ AND BETWEEN BTS SITE TELCO SERVIC	ECT S AND CE	
O MECHANICAL CONNECTION CADWELD CONNECTION	40 CONDUI THESE CON 11. ALL EQUIPM NEMA 3R E	I ONDERGR I ABOVE 1 DUITS SHAL IENT LOCATE NCLOSURE.	THE GROUND PORTI L BE PVC CONDUIT ED OUTSIDE SHALL	ON OF HAVE	
ZE AS NOTED AINLESS STEEL GROUND ROD	12. PPC SUPPL 13. GROUNDING 14. GROUND CO BOTH ENDS	IED BY PRC SHALL COM JAXIAL CABL USING MAN	DJECT OWNER. MPLY WITH NEC ART E SHIELDS MINIMUN NUFACTURERS COAX	T. 250. A AT CABLE	
D) OR O MECHANICAL (COMPRESSION TYPE) CONNECTION	15. USE #6 AW COLOR INSU (UNLESS O ⁻ SOLID TINNI GRADE GRO	G COPPER JLATION FOF THERWISE SI ED BARE CO UNDING AS	STRANDED WIRE WIRE ABOVE GRADE GR PECIFIED) AND #2 OPPER WIRE FOR B INDICATED ON THE	TH GREE COUNDING AWG ELOW	N G
DUS ING	DRAWING. 16. ALL GROUN HYGROUND CADWELD E COPPER WII	D CONNECT COMPRESSION XOTHERMIC RE TO BE II	IONS TO BE BURNE ON TYPE CONNECTO WELD. DO NOT ALL N CONTACT WITH)Y)RS OR .OW BAR	E
	GALVANIZED 17. ROUTE GRO SHORTEST / EXCEPT AS LEADS SHO ALWAYS MA AWG WIRE	STEEL. UNDING COT AND STRAIGH OTHERWISE JLD NEVER KE AT LEAS CAN BE BEN	NDUCTORS ALONG T HTEST PATH POSSIE INDICATED. GROU BE BENT AT RIGHT T 12" RADIUS BENI NT AT 6" RADIUS W	THE BLE, NDING MOING ANGLE. DS. #6 /HEN	
	NECESSARY. FEET OF PF TO MASTER 18. CONNECTION WITH TWO F	BOND ANY ROJECT OWN GROUND B IS TO GROU HOLE COMPF	METAL OBJECTS WILL IER EQUIPMENT OR AR OR GROUNDING JND BARS SHALL B RESSION TYPE COPI	/ITHIN 6 CABINE ⁻ RING. E MADE PER	Г
	ALL LOCATIO 19. APPLY OXID COMPRESSIO 20. BOND ANTE	DNS. DE INHIBITING DN TYPE GR NNA MOUNT	G COMPOUND TO A ROUND CONNECTION ING BRACKETS, COA	LL S. AXIAL	
S	NEAR THE A 21. BOND ANTE 22. CONTRACTO SYSTEM ANI	ANTENNA LO NNA EGB'S R SHALL TE D RECORD I	AND MGB TO GROU AND MGB TO GROU ST COMPLETED GRO RESULTS FOR PROJ	JND RING DUND ECT	9.
	CLOSE-OUT RESISTANCE 23. CONTRACTO AND LNA R MFASURFMF	DOCUMENT REQUIRED. R SHALL CO ETURN-LOS NTS (SWFFF	ATION. 5 OHMS M INDUCT ANTENNA, (S AND DISTANCE-T P TESTS) AND REC(IINIMUM COAX, O—FAULT ORD	-
	RESULTS FO 24. ALL NEW S AND/OR FO 1/2" OR G REINFORCIN THE GROUN CONNECTION COPPER GR	DR PROJECT TRUCTURES OTING HAVII REATER ELE G STEEL, M D RING USI N USING #2 OUND WIRE	CLOSE OUT. WITH A FOUNDATIO NG 20 FT. OR MOR CTRICALLY CONDUC UST HAVE IT BONDI NG AN EXOTHERMIC AWG SOLID BARE , PER NEC 250.50.	N RE OF TIVE ED TO C WELD TINNED	
CC JC DPH CC JC DPH		/	AT&T		
AR JC DPH AR JC DPH /P JC DPH	ELECTRI	CAL NOTES	& ONE-LINE DI (NSB)	AGRAM	
BY CHK APP'D BY: CC/VP	SITE NUMBER	D	RAWING NUMBER		REV

CT3470A

G-1

TEL: (978) 557-5553 FAX: (978) 336-5586

Smartlink 1997 ANNAPOLIS EXCHANGE PKWY SUITE 200 ANNAPOLIS, MD 21401

SITE NUMBER: CT3470A SITE NAME: MIDDLETOWN_MILE LANE

45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845

NOTE: 1. CONTRACTOR TO CONFIRM ALL PARTS. 2. INSTALL ALL EQUIPMENT TO MANUFACTURER'S RECOMMENDATIONS

NOTE:

REFER TO THE FINAL RF DATA SHEET FOR FINAL ANTENNA SETTINGS.

С	JC	DPH		A T O T			
С	JC	DPH		AI&I			
R	JC	DPH					
R	JC	DPH	RF PLUMBING DIAGRAM				
Ρ	JC	DPH	(NSB)				
Y	СНК	APP'D	SITE NUMBER	DRAWING NUMBER	REV		
3Y:CC/VP)	CT3470A	RF-1	4		
ATTACHMENT 7

Legend

- Subject Property
- Prime Farmland Soils
- Existing Fenced Compound (By Others)
- Proposed Fenced Compound Expansion

Distance to Prime Farmland Soils Distance Measurement from Existing Compound

= = Distance Measurement from Proposed Compoud Extension

<u>Map Notes:</u> Base Map Source: 2019 Aerial Photograph (CTECO) Map Scale: 1 inch = 200 feet Map Date: December 2021

Subject Property Farmland Soils

Proposed Wireless Telecommunications Facility Middletown_Mile Lane 499 Mile Lane Middletown, Connecticut

200 Feet

ATTACHMENT 8

Legend

×-×- Proposed Fenced Compound Expansion =

- Proposed Equipment Lease Area
- Proposed Equipment
- Subject Property
- Wetland Flag
- Approximate Wetland Area

100-Foot Upland Review Area

Approximate Field Identified Wetland Boundary
 Delineated Wetland Boundary

80 Feet

Wetland Inspection Map

Proposed Wireless Telecommunications Facility Middletown_Mile Lane 499 Mile Lane Middletown, Connecticut

<u>Map Notes:</u> Base Map Source: 2019 Aerial Photograph (CTECO) Map Scale: 1 inch = 80 feet Map Date: December 2021

NOTE:

SITE PLAN TAKEN FROM SURVEY BY NORTHEAST SURVEY CONSULTANTS DATED: 11/18/2021

WETLAND DELINEATION WAS PERFORMED AND LOCATED BY ALL-POINTS TECHNOLOGY CORP.

C	JC	DPH	JC			A T 9 T	
C	JC	DPH	JC			AI&I	
٨R	JC	DPH	JC				
٨R	JC	DPH	JC		WETLAND SETBACKS		
/P	JC	DPH	JC		(NSB)		
X	СНК	APP'D	СНК		SITE NUMBER DRAWING NUMBER REV		
BY:CC/VP		CC/VF	1	CT3470A	C-3	4	

ATTACHMENT 9

WETLAND INSPECTION

December 9, 2021

APT Project No.: CT415520

Prepared For:	Smartlink 85 Rangeway Road, Bldg. 3, Suite 102 Billerica, MA 01862
Site Name:	CT3470A Middletown
Site Address:	499 Mile Lane, Middletown, Connecticut
Date of Investigation:	11/11/2021
Field Conditions:	Weather: partly sunny, mid 50's Soil Moisture: moist

Wetland/Watercourse Delineation Methodology¹:

☑Connecticut Inland Wetlands and Watercourses

Municipal Upland Review Area:

Wetlands: 100 feet Watercourses: 100 feet

The wetlands inspection was performed by²:

Dean -Justapan

Dean Gustafson, Professional Soil Scientist

Enclosures: Wetland Delineation Field Form & Wetland Inspection Map

This report is provided as a brief summary of findings from APT's wetland investigation of the referenced Study Area that consists of proposed development activities and areas generally within 200 feet.³ If applicable, APT is available to provide a more comprehensive wetland impact analysis upon receipt of site plans depicting the proposed development activities and surveyed location of identified wetland and watercourse resources.

¹ Wetlands and watercourses were delineated in accordance with applicable local, state and federal statutes, regulations and guidance.

² All established wetlands boundary lines are subject to change until officially adopted by local, state, or federal regulatory agencies.

³ APT has relied upon the accuracy of information provided by Smartlink and its contractors regarding proposed lease area and access road/utility easement locations for identifying wetlands and watercourses within the study area.

Attachments

- Wetland Delineation Field Form
- Wetland Inspection Map

Wetland Delineation Field Form

Wetland I.D.:	Wetland 1	
Flag #'s:	WF 1b to 20	
Flag Location Method:	Site Sketch 🗵	GPS (sub-meter) located ⊠

WETLAND HYDROLOGY:

NONTIDAL 🛛

Intermittently Flooded \Box	Artificially Flooded	Permanently Flooded
Semipermanently Flooded	Seasonally Flooded □	Temporarily Flooded □
Permanently Saturated	Seasonally Saturated/seepage 🖂	Seasonally Saturated/perched ⊠
Comments: None		

TIDAL 🗆

Subtidal 🗆	Regularly Flooded □	Irregularly Flooded	
Irregularly Flooded			
Comments: None			

WETLAND TYPE:

SYSTEM:

Estuarine 🗆	Riverine 🗆	Palustrine	
Lacustrine	Marine 🗆		
Comments: None			

CLASS:

Emergent	Scrub-shrub 🖂	Forested 🖂
Open Water 🗆	Disturbed ⊠	Wet Meadow 🗆

Comments: Wetland was created by historic slope cut that intercepted the seasonal high groundwater table that seeps from the toe of cut slope with water contained within a shallow swale feature that supports this disturbed man-made wetland.

WATERCOURSE TYPE:

Perennial 🗆	Intermittent	Tidal 🗆		
Watercourse Name: Unnamed				
Comments: Embedded in the interior is a conveyance feature that provides seasonal flow.				

Wetland Delineation Field Form (Cont.)

SPECIAL AQUATIC HABITAT:

Vernal Pool Yes 🗆 No 🖂 Potential 🗆	Other 🗆	
Vernal Pool Habitat Type: None		
Comments: None		

SOILS:

Are field identified soils consistent with NRCS mapped soils?	Yes 🛛	No 🗆
---	-------	------

DOMINANT PLANTS:

Black Willow (Salix nigra)	Red Maple (Acer rubrum)
Bush Honeysuckles* (Lonicera spp.)	Multiflora Rose* (Rosa multiflora)

* denotes Connecticut Invasive Species Council invasive plant species

GENERAL COMMENTS:

All-Points Technology Corp., P.C. ("APT") understands that Smartlink proposes to install a wireless communications facility ("Facility") within and adjacent to an existing telecommunications facility in the central portion of the City of Middletown-owned property. The location of the proposed Facility consists of an existing developed and disturbed area associated with historic development in this part of the property and development of the existing telecommunications facility. Access would be gained via an existing paved access drive to the north off Mile Lane.

A man-made wetland is located around the south, east and west sides of the existing telecommunications facility and would be located ±20 feet south of the proposed Facility's compound expansion off the west side of the existing facility. This wetland was apparently created by previous grading activities associated with the former U.S. Army Reserve Training Center development which created a large slope cut located south of the proposed Facility and the existing telecommunications facility. That slope cut intercepted the seasonal high groundwater table, resulting in seasonal groundwater seepage that collects in a relatively shallow swale feature. The swale was found to contain wetland characteristics (e.g., poorly drained soils, sustained wetland hydrology, wetland vegetation) that satisfies definition requirements under the Connecticut Inland Wetlands and Watercourses Act regulations.

APT recommends that erosion and sedimentation controls be designed, installed and maintained during construction in accordance with the *2002 Connecticut Guidelines for Soil Erosion and Sedimentation Control* in order to protect the nearby wetland. Considering the disturbed and developed nature of the proposed Facility site, its proximity to an existing telecommunications facility, and the disturbed manmade nature of the nearby wetland, provided appropriate erosion and sedimentation control measures are properly designed, installed and maintained throughout construction, no likely adverse impact to the nearby wetland would be anticipated.

Legend

×-×- Proposed Fenced Compound Expansion =

- Proposed Equipment Lease Area
- Proposed Equipment
- Subject Property
- Wetland Flag
- Approximate Wetland Area

100-Foot Upland Review Area

Approximate Field Identified Wetland Boundary
 Delineated Wetland Boundary

80 Feet

Wetland Inspection Map

Proposed Wireless Telecommunications Facility Middletown_Mile Lane 499 Mile Lane Middletown, Connecticut

<u>Map Notes:</u> Base Map Source: 2019 Aerial Photograph (CTECO) Map Scale: 1 inch = 80 feet Map Date: December 2021

ATTACHMENT 10

10 Vaughan Mall, Suite 201A Portsmouth, NH 03801 603-430-2081

December 10, 2021

Scott Pike SmartLink 85 Rangeway Road Bldg. 3, Suite 102 Billerica, MA 01862

SUBJECT: AT&T CT3470A Middletown Mile Lane – Generator Noise Study

Dear Scott,

At your request, I have conducted a study of potential noise impacts from the proposed backup generator at 499 Mile Lane in Middletown, CT. This study was limited to the generator and did not include any other existing or proposed equipment on the site. A generator is generally the loudest equipment at a wireless site.

This revised report reflects the new proposed generator location.

Noise Criteria

This parcel and all abutters are in residential zones. The City of Middletown Code, Chapter 206 *Noise*, section 9, part D limits noise levels, measured at the property line, to 55 dBA during the day and 45 dBA at night.

Chapter 442, Sec. 22a-69-2 of the Connecticut Statutes defines Noise Zones, based on land use. The Class A and Class B noise zones are relevant to this project. They are defined as follows:

- Lands designated Class A shall generally be residential areas where human beings sleep or areas where serenity and tranquility are essential to the intended use of the land.
- Lands designated Class B shall generally be commercial in nature, areas where human beings converse, and such conversation is essential to the intended use of the land.

The project site is a government facility and falls under Class B. The surrounding properties are all residential, and thus Class A.

Sec. 22a-69-3.5 limits property-line sound levels emitted from a Class B Noise Zone and received within a Class A Noise Zone to 55 dBA during the day and 45 dBA at night.

The City and State limits are identical.

Generator Sound Levels

This proposed generator is a Generac SDC20 (part number 7098-0) with a Level 2 sound enclosure. Generac has provided sound level data for this unit. This generator runs on diesel fuel.

Based on these data, the proposed equipment locations, and site topography, a computer model of the site was constructed in SoundPLAN, and industry- standard application for modeling outdoor noise propagation. Calculations were based on ISO 9613-2 Attenuation of Sound During Propagation Outdoors.

Figure 1, attached, presents a plot of predicted sound levels. The generator is not expected to exceed 35 dBA at any property boundary.

Conclusion

The proposed generator is expected to comply with the limits of both the City of Middletown and State of Connecticut.

Sincerely,

and Poto

Eric L. Reuter, FASA, INCE Bd. Cert. *Principal*

Figure 1 – Predicted Sound Levels

ATTACHMENT 11

USFWS & NDDB COMPLIANCE

December 9, 2021

Smartlink LLC 1997 Annapolis Exchange Pkwy #200 Annapolis, MD 21401

Re: Site #CT3470A. 499 Mile Road, Middletown, Connecticut APT Job No: 415520

On behalf of Smartlink LLC, All-Points Technology Corporation, P.C. ("APT") performed an evaluation with respect to possible federally- and state-listed, threatened, endangered or special concern species in order to determine if the proposed referenced telecommunication facility ("Facility") would result in a potential adverse effect to listed species.

APT understands that Smartlink LLC proposes the construction of a wireless telecommunications facility within the central portion of property at 499 Mile Road in Middletown, CT ("Subject Property"). The Subject Property is developed and owned by the City of Middletown. The proposed Smartlink Facility will include a new monopole tower within an expansion to an existing telecommunications facility compound. No tree removal is anticipated for the compound expansion. The new tower and equipment compound will allow for the future collocation of multiple service providers.

<u>USFWS</u>

The federal consultation was completed in accordance with Federal Communications Commission ("FCC") rules implementing the National Environmental Policy Act ("NEPA") and Section 7 of the Endangered Species Act through the U.S. Fish and Wildlife Service's ("USFWS") Information, Planning, and Conservation System ("IPaC"). Based on the results of the IPaC review, one federally-listed¹ threatened species is known to occur in the vicinity of the Subject Property documented as the northern long-eared bat ("NLEB"; *Myotis septentrionalis*). As a result of this preliminary finding, APT performed an evaluation to determine if the proposed referenced Facility would result in a likely adverse effect to NLEB.

The proposed Facility would be located within a previously developed and cleared area with no tree clearing anticipated; trees potentially provide NLEB habitat. Consultation with the Connecticut Department of Energy & Environmental Protection ("CTDEEP") Wildlife Division Natural Diversity Data Base ("NDDB") revealed that the proposed Facility is not within 150 feet of a known occupied NLEB maternity roost tree and is not within 0.25 mile of a known NLEB hibernaculum. The nearest NLEB habitat resource to the proposed Facility is located ± 14 miles to the south in North Branford.

¹ Listing under the federal Endangered Species Act

APT submitted the effects determination using the NLEB key within the IPaC system for the proposed Facility (the "Action"). This IPaC key assists users in determining whether a Federal action is consistent with the activities analyzed in the USFWS's January 5, 2016, intra-Service Programmatic Biological Opinion ("PBO") on the Final 4(d) Rule for the NLEB for Section 7(a)(2) compliance.

Based upon the IPaC submission, the Action is consistent with activities analyzed in the PBO; please refer to the enclosed December 2, 2021, USFWS letter. The Action may affect NLEB; however, any take that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). If the USFWS does not respond within 30 days from the date of the letter (January 2, 2022), one may presume that the IPaC-assisted determination was correct and that the PBO satisfies and concludes Smartlink' s responsibilities for this Action under ESA Section 7(a)(2) with respect to NLEB. It is anticipated the Action will comply with ESA Section 7(a)(2) with respect to NLEB. If a response is received from USFWS, APT will amend this document accordingly.

In addition, Smartlink LLC would consider the following USFWS voluntary conservation measures, where appropriate and as the project schedule allows, , as encouraged in the April 29, 2016, FCC Public Notice², to reduce the potential for impact to NLEB.

- Conduct tree removal activities outside of the NLEB pup season (June 1-July 31) and active season (April 1-October 31) to minimize impacts to pups at roosts not yet identified. NOT APPLICABLE.
- Avoid clearing suitable spring staging and fall swarming habitat within a five-mile radius of known or assumed NLEB hibernacula during the staging and swarming seasons (April 1-May 15 and August 15-November 14, respectively). NOT APPLICABLE.
- Maintain dead trees (snags) and large trees when possible. NOT APPLICABLE.
- Use herbicides and pesticides only if unavoidable. If necessary, spot treatment is preferred over aerial application.
- Minimize exterior lighting, opting for down-shielded, motion-sensor security lights instead of constant illumination.

<u>NDDB</u>

No known areas of state-listed species are currently depicted on the most recent CTDEEP NDDB Maps in the location of the proposed Smartlink's Facility or on the Subject Property. Please refer to the enclosed NDDB Map which depicts the nearest NDDB buffer ± 0.13 -mile west of the proposed Facility and just west of the Subject Property. Since the proposed Facility and Subject Property are not located within a NDDB buffer area, consultation with DEEP is not required in accordance with their review policy³ or the Connecticut Siting Council's review policy.

² Federal Communications Commission. *Tower Construction Guidance for Protection of Northern Long-Eared Bat Under the Endangered Species Act.* Public Notice DA 16-476. April 29, 2016

³ DEEP Requests for NDDB State Listed Species Reviews.

http://www.ct.gov/deep/cwp/view.asp?a=2702&q=323466&deepNav_GID=1628%20

Therefore, the proposed Smartlink LLC Facility is not anticipated to adversely impact any federal or state threatened, endangered or species of special concern.

Sincerely, All-Points Technology Corporation, P.C.

Justapon Dean

Dean Gustafson Senior Biologist

Enclosures

USFWS NLEB Letter

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104 <u>http://www.fws.gov/newengland</u>

IPaC Record Locator: 702-107927743

December 02, 2021

Subject: Consistency letter for the 'Smartlink Middletown_Mile Lane' project indicating that any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Dear Deborah Gustafson:

The U.S. Fish and Wildlife Service (Service) received on December 02, 2021 your effects determination for the 'Smartlink Middletown_Mile Lane' (the Action) using the northern long-eared bat (*Myotis septentrionalis*) key within the Information for Planning and Consultation (IPaC) system. You indicated that no Federal agencies are involved in funding or authorizing this Action. This IPaC key assists users in determining whether a non-Federal action may cause "take"^[1] of the northern long-eared bat that is prohibited under the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.).

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). Unless the Service advises you within 30 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the Action is not likely to result in unauthorized take of the northern long-eared bat.

Please report to our office any changes to the information about the Action that you entered into IPaC, the results of any bat surveys conducted in the Action area, and any dead, injured, or sick northern long-eared bats that are found during Action implementation.

If your Action proceeds as described and no additional information about the Action's effects on species protected under the ESA becomes available, no further coordination with the Service is required with respect to the northern long-eared bat.

The IPaC-assisted determination for the northern long-eared bat **does not** apply to the following ESA-protected species that also may occur in your Action area:

• Monarch Butterfly Danaus plexippus Candidate

You may coordinate with our Office to determine whether the Action may cause prohibited take of the animal species listed above.

[1]Take means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct [ESA Section 3(19)].

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name

Smartlink Middletown_Mile Lane

2. Description

The following description was provided for the project 'Smartlink Middletown_Mile Lane':

AT&T is proposing a telecommunications facility with a +/- 150-foot monopole and walk-in equipment cabinet located at 499 Mile Lane in Middletown, Connecticut.

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/</u> <u>maps/@41.5800533,-72.68568013279284,14z</u>

Determination Key Result

This non-Federal Action may affect the northern long-eared bat; however, any take of this species that may occur incidental to this Action is not prohibited under the final 4(d) rule at 50 CFR §17.40(o).

Determination Key Description: Northern Long-eared Bat 4(d) Rule

This key was last updated in IPaC on May 15, 2017. Keys are subject to periodic revision.

This key is intended for actions that may affect the threatened northern long-eared bat.

The purpose of the key for non-Federal actions is to assist determinations as to whether proposed actions are excepted from take prohibitions under the northern long-eared bat 4(d) rule.

If a non-Federal action may cause prohibited take of northern long-eared bats or other ESA-listed animal species, we recommend that you coordinate with the Service.

Determination Key Result

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Qualification Interview

1. Is the action authorized, funded, or being carried out by a Federal agency?

No

2. Will your activity purposefully Take northern long-eared bats?

No

3. [Semantic] Is the project action area located wholly outside the White-nose Syndrome Zone?

Automatically answered
No

4. Have you contacted the appropriate agency to determine if your project is near a known hibernaculum or maternity roost tree?

Location information for northern long-eared bat hibernacula is generally kept in state Natural Heritage Inventory databases – the availability of this data varies state-by-state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited. A web page with links to state Natural Heritage Inventory databases and other sources of information on the locations of northern long-eared bat roost trees and hibernacula is available at www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html.

Yes

5. Will the action affect a cave or mine where northern long-eared bats are known to hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

No

6. Will the action involve Tree Removal?

No

Project Questionnaire

If the project includes forest conversion, report the appropriate acreages below. Otherwise, type '0' in questions 1-3.

1. Estimated total acres of forest conversion:

0

2. If known, estimated acres of forest conversion from April 1 to October 31

0

3. If known, estimated acres of forest conversion from June 1 to July 31

0

If the project includes timber harvest, report the appropriate acreages below. Otherwise, type '0' in questions 4-6.

4. Estimated total acres of timber harvest

0

5. If known, estimated acres of timber harvest from April 1 to October 31

0

6. If known, estimated acres of timber harvest from June 1 to July 31

0

If the project includes prescribed fire, report the appropriate acreages below. Otherwise, type '0' in questions 7-9.

7. Estimated total acres of prescribed fire

0

8. If known, estimated acres of prescribed fire from April 1 to October 31

0

9. If known, estimated acres of prescribed fire from June 1 to July 31

0

If the project includes new wind turbines, report the megawatts of wind capacity below. Otherwise, type '0' in question 10.

10. What is the estimated wind capacity (in megawatts) of the new turbine(s)?

0

NDDB Map

Legend

7

Proposed Monopole Tower

Subject Property

Natural Diversity Database (updated June 2021)

Municipal Boundary

<u>Map Notes:</u> Base Map Source: USGS 7.5 Minute Topographic Quadrangle Map, Middletown, CT (1992) Map Scale: 1:24,000 Map Date: December 2021

NDDB Map

Proposed Wireless Telecommunications Facility Middletown_Mile Lane 499 Mile Lane Middletown, Connecticut

