

NEW CINGULAR WIRELESS PCS, LLC (AT&T)

Application to the State of Connecticut Siting Council

For a Certificate of Environmental Compatibility and Public Need

-MIDDLETOWN FACILITY-

Docket No. 506 BULK FILING RESPONSES TO CONNECTICUT SITING COUNCIL PRE-HEARING INTERROGATORIES, SET ONE

> NEW CINGULAR WIRELESS PCS, LLC (AT&T) 500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT 06067

Attachment 1

STRUCTURAL CALCULATIONS

Prepared for: Smartlink / AT&T

New Antenna and Equipment Installation on Self-Support Tower

Site No: CT3470A FA No: 10578361 USID: 221794 Site Name: Mile LN_Middletown 499 Mile Lane Middletown, CT 06457

January 7, 2019

Tower Modification Required

Henry M. Bellagamba, P.E.

Fullerton Engineering Consultants, Inc. 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Tel: 847.908.8400 www.fullertonengineering.com

Project Number: 2018.0265.E023

Summary

A structural analysis was performed by Fullerton, as requested by the client, to determine the conformance of existing structure with the governing building code, 2018 Connecticut State Building Code (2015 International Building Code) and the industry standard, ANSI/TIA-222-G (Structural Standard for Steel Antenna Supporting Structures and Antennas). The analysis considers the tower properties, existing and proposed appurtenances and the required loading criteria.

Conclusion

- The tower member stresses are **NOT** in conformance for the loading considered.
- The tower foundation was not analyzed due to a lack of geotechnical information.

Analysis Data

The following is based on information provided by the client, field investigation, and other determination by Fullerton Engineering Consultants or third parties.

Configuration	180 ft. Self-Support tower with a 5' top and 13' bottom face width.
References	RF Design Sheet by AT&T, dated 10/3/2018.
	Original Tower Construction Drawings by Valmont Structures, Eng. File No. 337273, Drawings No. 276371T & 276371F, dated 9/18/2017.

Appurtenance Loading Schedule

ELEV. (FT.=AGL)	APPURTENANCE	TRANSMISSION LINES
	Proposed AT&T	
180'	 (6) KMW EPBQ-654L8H8-L2 antennas (3) CCI HPA65R-BU8A antennas (3) Ericsson RRUS-4478 B14 units (3) Ericsson RRUS-4415 B30 units (3) Ericsson RRUS-4449 B5/B12 units (3) Ericsson RRUS-8843 B2/B66A units (3) Ericsson RRUS-E2 units (3) Raycap DC6-48-60-18-8F units Mounted on proposed (3) Sector Frames 	(2) 3/8" Fiber (6) 3/4" DC Power
	Existing (to remain)	
182'	(1) Lightning Rod Mounted on tower leg	
157.225' 150'	 (1) Sinclair SC479-HF1LDF RX antenna (1) Motorola TTA (DS428E83I01T) unit Mounted on existing (1) 6' Standoff Mount Frame with Stiff Arm 	(1) 1/2" coax (1) 7/8" coax
137.225' 130'	(1) Sinclair SC479-HF1LDF TX antenna Mounted on existing (1) 6' Standoff Mount Frame with Stiff Arm	(1) 7/8" coax
130'	(1) Radiowaves HP3-11 dish Mounted on existing (1) Pipe Mount to Tower Leg	(1) EW90
121.58' 110'	(1) Sinclair SC229-DFLN VHF antenna Mounted on existing (1) 6' Standoff Mount Frame with Stiff Arm	(1) 7/8" coax
95'	(1) Radiowaves HP3-11 dish Mounted on existing (1) Pipe Mount to Tower Leg	(1) EW90

The results of the structural analysis are summarized as follows:

Tower mast	The tower leg members are NOT adequate for new loads, with a maximum stress ratio of 252.3% @ Elev. 120'-140' AGL.
	The tower leg bolts are NOT adequate for new loads, with a maximum stress ratio of 120.2% @ Elev. 80' AGL.
	The tower main diagonal members are NOT adequate for new loads, with a maximum stress ratio of 111.5% @ Elev. 80'-100' AGL.
	The tower diagonal bolts are NOT adequate for new loads, with a maximum stress ratio of 124.9% @ Elev. 140'-160' AGL.
	The tower top girt members are adequate for new loads, with a maximum stress ratio of 14.8% @ Elev. 180' AGL.
Anchor Rods	The anchor rods are NOT adequate for new loads, with a maximum stress ratio of 109.73%.
Foundation	The tower foundations were NOT analyzed due to a lack of geotechnical information.

Assumptions

This analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. The analysis is based solely on the information supplied, and the results, in turn, are only as accurate as data extracted from this information. Fullerton has been instructed by the client to assume the information supplied is accurate, and Fullerton has made no independent determination of its accuracy. The exception to the previous statement is if Fullerton has been contracted by the client to provide an independent structural mapping report of the tower and related appurtenances, in which case Fullerton has made an independent determination of the accuracy of the information resulting from the mapping report.

- The tower member sizes and geometry are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and stated in the materials section.
- The existing tower is assumed to have been properly maintained in accordance with the TIA/EIA standard and/or its original manufacturer's recommendations. The existing tower is assumed to be in good condition with no structural defects and with no deterioration to its member capacities.
- The antenna configuration is as supplied and/or stated in the analysis section. It is assumed to be complete and accurate. All antennas, mounts, remote radios, cables and cable supports are assumed to be properly installed and supported as per the manufacturer's requirements.
- The antennas, mounts, remote radios, cables and cable supports and lines stated in the appurtenance loading schedule represent Fullerton's understanding of the overall antenna configuration. If the actual configuration is different than above, then this analysis is invalid. Please refer to this report for the projected wind areas used in the calculations for antennas and mounts. If variations or discrepancies are identified, please inform Fullerton.
- Some assumptions are made regarding antenna and mount sizes and their projected areas based on a best interpretation of the data supplied and a best knowledge of antenna type and industry practice.
- The existing foundation is assumed to be in good condition with no structural defects and with no deterioration to its member capacities.
- The soil parameters are as per data supplied, or as assumed, and stated in the calculations.
- All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report.
- All prior structural modifications, if any, are assumed to be as per date supplied/ available, to be properly installed and to be fully effective.

Scope and Limitations

The engineering services rendered by Fullerton Engineering Consultants, Inc. (Fullerton) in connection with this structural analysis are limited to an analysis of the structure, size and capacity of its members. Fullerton does not analyze the fabrication, including welding and connection capacities, except as included in this report.

The information and conclusions contained in this report were determined by application of the current engineering standards and analysis procedures and formulae, and Fullerton assumes no obligation to revise any of the information or conclusions contained in this report in the event such engineering and analysis procedures and formulae are hereafter modified or revised.

Fullerton makes no warranties, expressed or implied in connection with this report and disclaims any liability arising from original design, material, fabrication and erection deficiencies or the "as-built" condition of this tower. Fullerton will not be responsible whatsoever for or on account of consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report.

Installation procedures and loading are not within the scope of this report and should be performed and evaluated by a competent tower erection contractor.

Section I

Structural Calculations

DESIGNED APPURTENANCE LOADING

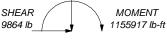
TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 4'x.5"	182	Raycap DC6-48-60-18-8F	180
(2) KMW EPBQ-654L8H8-L2	180	Raycap DC6-48-60-18-8F	180
(2) KMW EPBQ-654L8H8-L2	180	Sabre 12' V-Boom Assembly w/	180
(2) KMW EPBQ-654L8H8-L2	180	Tieback (1)	
CCI HPA65R-BU8A	180	Sabre 12' V-Boom Assembly w/	180
CCI HPA65R-BU8A	180	Tieback (1)	
CCI HPA65R-BU8A	180	Sabre 12' V-Boom Assembly w/ Tieback (1)	180
RRUS-4478 B14	180	Sinclair SC479-HF1LDF	157.225
RRUS-4478 B14	180	SINCIAIR SC479-HF1LDF	157.225
RRUS-4478 B14	180	2" STD x 10.5' Stiff Arm	150
RRUS-8843 B2/B66A	180		
RRUS-8843 B2/B66A	180	Motorola TTA (DS428E83I01T) Sinclair SC479-HF1LDF	150
RRUS-8843 B2/B66A	180	SINCIAIR SC479-HF1LDF	137.225
RRUS-E2	180		
RRUS-E2	180	2" STD x 10.5' Stiff Arm	130
RRUS-E2	180	4 STD x 66" Dish Pipe Mount Radiowayes HP3-11	130
RRUS-4415 B30	180		
RRUS-4415 B30	180	Sinclair SC229-DFLN	121.58
RRUS-4415 B30	180	2" STD x 10.5' Stiff Arm	110
RRUS-4449 B5/B12	180	SO602-1	110
RRUS-4449 B5/B12	180	4 STD x 66" Dish Pipe Mount	95
RRUS-4449 B5/B12	180	Radiowaves HP3-11	95
Raycap DC6-48-60-18-8F	180		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- 1. Tower is located in Middlesex County, Connecticut.


- Tower is located in Middlesex County, Connecticut.
 Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Structure Class III. 6.
- 7. Topographic Category 1 with Crest Height of 0.00 ft

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE: DOWN: 310418 lb SHEAR: 21234 lb

UPLIFT: -283024 lb SHEAR: 19223 lb

AXIAL 81590 lb

TORQUE 8812 lb-ft REACTIONS - 97 mph WIND

Fullerton Engineering Consultants	^{lob:} C7	T3470A				
1100 E. Woodfield Road, Suite 500	Project:	180 ft. Self-Support	Τον	ver		
	Client: g	Smartlink / AT&T		Drawn by: VY	App'd:	
	Code: 7	ГІА-222-G	Paç)^{@≈18}:01/⊕ #/19	Scale:	NTS
	Path:	fullertonengineering.com/PDrive/Dept 400/SMLINK\SML	JNK-ATT	NSB NE/CT3470A/Structural/Analysis/tnxTower/CT3470/	Dwg N	^{lo.} E-1

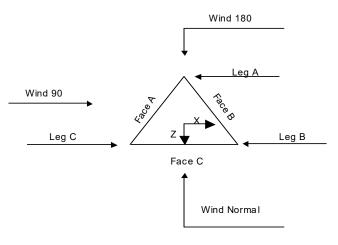
	Job		Page
tnxTower		1 of 35	
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 13.00 ft at the base.


This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Middlesex County, Connecticut.

Basic wind speed of 97 mph. Structure Class III. Exposure Category C. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

<u>Triangular Tower</u>

tnxTower

Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

Ver CT3470A 2 of 35 Project Date 07:43:54 01/07/19 ad, Suite 500 L 60173 08-8400 vingering com Client Client Smartlink / AT&T VY		Job		Page
Image: Constraint of the second se	ver		CT3470A	2 of 35
08-8400 Smartlink / AT&T	ints	Project	180 ft. Self-Support Tower	
igneering.com		Client	Smartlink / AT&T	• •

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	180.00-160.00			5.00	1	20.00
T2	160.00-140.00			5.00	1	20.00
T3	140.00-120.00			5.00	1	20.00
T4	120.00-100.00			5.00	1	20.00
T5	100.00-80.00			5.00	1	20.00
T6	80.00-60.00			5.00	1	20.00
Τ7	60.00-40.00			7.00	1	20.00
Т8	40.00-20.00			9.00	1	20.00
T9	20.00-0.00			11.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	180.00-160.00	5.00	X Brace	No	No	0.0000	0.0000
T2	160.00-140.00	5.00	X Brace	No	No	0.0000	0.0000
T3	140.00-120.00	5.00	X Brace	No	No	0.0000	0.0000
T4	120.00-100.00	6.67	X Brace	No	No	0.0000	0.0000
T5	100.00-80.00	6.67	X Brace	No	No	0.0000	0.0000
T6	80.00-60.00	6.67	X Brace	No	No	0.0000	0.0000
T7	60.00-40.00	6.67	X Brace	No	No	0.0000	0.0000
T8	40.00-20.00	6.67	X Brace	No	No	0.0000	0.0000
Т9	20.00-0.00	6.67	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1 180.00-160.00	Pipe	PIPE 2.5 STD	A572-50	Equal Angle	L2x2x1/8	A36
	-		(50 ksi)			(36 ksi)
T2 160.00-140.00	Pipe	PIPE 2.5 STD	A572-50	Equal Angle	L2x2x1/8	A36
	-		(50 ksi)			(36 ksi)
ГЗ 140.00-120.00	Pipe	PIPE 2.5 STD	A572-50	Equal Angle	L2x2x1/8	A36
			(50 ksi)			(36 ksi)
Г4 120.00-100.00	Pipe	PIPE 4 STD	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T5 100.00-80.00	Pipe	PIPE 5 STD	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T6 80.00-60.00	Pipe	PIPE 5 STD	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T7 60.00-40.00	Pipe	PIPE 6 STD	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T8 40.00-20.00	Pipe	PIPE 6 STD	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T9 20.00-0.00	Pipe	PIPE 6 STD	A572-50	Equal Angle	L2 1/2x2 1/2x3/16	A36

Areas Tossa or	Job		Page
tnxTower		CT3470A	3 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
ft			(50 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 180.00-160.00	Equal Angle	L2x2x3/16	A36 (36 ksi)	Solid Round		A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
180.00-160.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
Т6 80.00-60.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						
Г7 60.00-40.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						
Т8 40.00-20.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						
T9 20.00-0.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

			K Factors ¹											
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner				
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace				
	Single	Solid		Diags	Diags									
	Angles	Rounds		X	X	X	X	X	X	X				
ft				Y	Y	Y	Y	Y	Y	Y				
T1	Yes	Yes	1	1	1	1	1	1	1	1				
180.00-160.00				1	1	1	1	1	1	1				
T2	Yes	Yes	1	1	1	1	1	1	1	1				
160.00-140.00				1	1	1	1	1	1	1				

tnxTower	Job	CT3470A	Page 4 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft	,			Y	Y	Y	Y	Y	Y	Y
T3	Yes	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
Τ7	Yes	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T8	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T9 20.00-0.00	Yes	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower	Leg		Diagor	ıal	Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Elevation ft														
0	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-160.00														
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00														
T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														
T4	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00									0.0000		0.0000		0.0000	
T5	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T6 80.00-60.00		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)															
Tower Elevation	Leg Connection	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hor	zontal
ft	Type	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 180.00-160.00	Flange	0.7500 A325N	4	0.7500 A325N	1	0.7500 A325N	1	0.7500 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0

	Job		Page
tnxTower		CT3470A	5 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
Elevation C	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T2	Flange	0.7500	4	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00	•	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
Т3	Flange	0.7500	4	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 80.00-60.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 60.00-40.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 40.00-20.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 20.00-0.00	Flange	0.7500	0	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Component	Placement	Total	Number	Clear	Width or	Perimeter	Weight
	or	Shield	Type		Number	Per Row	Spacing	Diameter		
	Leg			ft			in	in	in	plf
Feedline Ladder (Af)	С	No	Af (CaAa)	180.00 - 8.00	1	1	3.0000	3.0000		8.40
LDF4-50A (1/2 FOAM)	С	No	Ar (CaAa)	150.00 - 8.00	1	1	0.6300	0.6300		0.15
LDF5-50A (7/8 FOAM)	С	No	Ar (CaAa)	150.00 - 8.00	1	1	1.0900	1.0900		0.33
LDF5-50A (7/8 FOAM)	С	No	Ar (CaAa)	130.00 - 8.00	1	1	1.0900	1.0900		0.33
EW90	С	No	Ar (CaAa)	130.00 - 8.00	1	1	0.9869	0.9869		0.32
LDF5-50A (7/8 FOAM)	С	No	Ar (CaAa)	110.00 - 8.00	1	1	1.0900	1.0900		0.33
EW90	С	No	Ar (CaAa)	95.00 - 8.00	1	1	0.9869	0.9869		0.32
proposed										
3/8" Fiber	С	No	Ar (CaAa)	180.00 - 6.00	2	2	0.4000	0.4000		0.08
3/4" DC power cable	С	No	Ar (CaAa)	180.00 - 6.00	6	3	0.7500	0.7500		0.40

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg			ft			ft²/ft	plf
Climbing Pegs	С	No	CaAa (Out Of	60.00 - 8.00	1	No Ice	0.01	0.31
			Face)			1/2" Ice	0.12	0.71
						1" Ice	0.23	1.11
Climbing Pegs	В	No	CaAa (Out Of	60.00 - 8.00	1	No Ice	0.01	0.31
			Face)			1/2" Ice	0.12	0.71
						1" Ice	0.23	1.11
Climbing Pegs	А	No	CaAa (Out Of	160.00 - 8.00	1	No Ice	0.01	0.31
			Face)			1/2" Ice	0.12	0.71
						1" Ice	0.23	1.11
Safety Line 3/8	А	No	CaAa (Out Of	180.00 - 0.00	1	No Ice	0.04	0.22
-			Face)			1/2" Ice	0.14	0.75
			,			1" Ice	0.24	1.28

tnxTower

Job

Project

Client

Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

	Page
CT3470A	6 of 35
180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Smartlink / AT&T	Designed by VY

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
T1	180.00-160.00	А	0.000	0.000	0.000	0.750	4.40
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	20.600	0.000	219.20
T2	160.00-140.00	А	0.000	0.000	0.000	0.950	10.60
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	22.320	0.000	224.00
T3	140.00-120.00	А	0.000	0.000	0.000	0.950	10.60
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	26.117	0.000	235.30
T4	120.00-100.00	А	0.000	0.000	0.000	0.950	10.60
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	29.284	0.000	245.10
T5	100.00-80.00	А	0.000	0.000	0.000	0.950	10.60
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	31.854	0.000	253.20
T6	80.00-60.00	А	0.000	0.000	0.000	0.950	10.60
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	32.348	0.000	254.80
T7	60.00-40.00	А	0.000	0.000	0.000	0.950	10.60
		В	0.000	0.000	0.000	0.200	6.20
		С	0.000	0.000	32.348	0.200	261.00
T8	40.00-20.00	А	0.000	0.000	0.000	0.950	10.60
		В	0.000	0.000	0.000	0.200	6.20
		С	0.000	0.000	32.348	0.200	261.00
T9	20.00-0.00	А	0.000	0.000	0.000	0.870	8.12
		В	0.000	0.000	0.000	0.120	3.72
		С	0.000	0.000	20.469	0.120	161.72

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
T1	180.00-160.00	А	2.209	0.000	0.000	0.000	9.586	51.23
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	63.699	0.000	1097.28
T2	160.00-140.00	А	2.182	0.000	0.000	0.000	19.275	91.75
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	73.648	0.000	1249.16
T3	140.00-120.00	А	2.151	0.000	0.000	0.000	19.014	90.60
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	93.965	0.000	1565.46
T4	120.00-100.00	А	2.115	0.000	0.000	0.000	18.715	89.27
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	108.749	0.000	1788.32
T5	100.00-80.00	А	2.073	0.000	0.000	0.000	18.362	87.71
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	120.168	0.000	1946.60
T6	80.00-60.00	А	2.021	0.000	0.000	0.000	17.930	85.80
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	120.569	0.000	1921.70
T7	60.00-40.00	А	1.955	0.000	0.000	0.000	17.368	83.31

4	Job		Page
tnxTower		CT3470A	7 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
		В		0.000	0.000	0.000	8.800	37.47
		С		0.000	0.000	117.755	8.800	1876.12
T8	40.00-20.00	А	1.857	0.000	0.000	0.000	16.551	79.69
		В		0.000	0.000	0.000	8.372	35.92
		С		0.000	0.000	113.660	8.372	1757.30
T9	20.00-0.00	А	1.664	0.000	0.000	0.000	11.919	59.37
		В		0.000	0.000	0.000	4.513	19.69
		С		0.000	0.000	67.038	4.513	962.03

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	180.00-160.00	0.0000	14.2523	0.0000	3.1424
T2	160.00-140.00	0.0000	13.6654	0.0000	-2.2914
T3	140.00-120.00	0.0000	14.4076	0.0000	1.5403
T4	120.00-100.00	0.0000	14.8544	0.0000	3.6313
T5	100.00-80.00	0.0000	15.1387	0.0000	4.7250
T6	80.00-60.00	0.0000	18.0515	0.0000	7.1365
Τ7	60.00-40.00	0.0000	23.8743	0.0000	13.1702
T8	40.00-20.00	0.0000	29.6324	0.0000	16.4680
Т9	20.00-0.00	0.0000	31.2132	0.0000	14.2119

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T1	2	Feedline Ladder (Af)	160.00 -	0.6000	0.5037
		()	180.00		
T1	15	3/8" Fiber	160.00 -	0.6000	0.5037
			180.00		
T1	16	3/4" DC power cable	160.00 -	0.6000	0.5037
			180.00		
T2	2	Feedline Ladder (Af)		0.6000	0.5299
	0		160.00	0 (000	0.5000
T2	8	LDF4-50A (1/2 FOAM)		0.6000	0.5299
Т2	9	LDF5-50A (7/8 FOAM)	150.00 140.00 -	0.6000	0.5299
12	9	LDF5-50A (7/8 FOAM)	140.00 -	0.0000	0.5299
Т2	15	3/8" Fiber	140.00 -	0.6000	0.5299
12	15	5,6 11001	160.00	0.0000	0.5277
T2	16	3/4" DC power cable	140.00 -	0.6000	0.5299
		1	160.00		
Т3	2	Feedline Ladder (Af)	120.00 -	0.6000	0.5338
			140.00		
Т3	8	LDF4-50A (1/2 FOAM)	120.00 -	0.6000	0.5338
			140.00		
Т3	9	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.5338
			140.00	0 (000	0.5050
Т3	10	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.5338

tnxTower

Job

Project

Client

Fullerton Engineering

Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

CT3470A

180 ft. Self-Support Tower

Date 07:43:54 01/07/19

8 of 35

Page

Smartlink / AT&T

Designed by VY

Tower	Feed Line	Description	Feed Line	K	K
Section	Record No.	Description	Segment Elev.	K _a No Ice	K _a Ice
Section	Record Ivo.		130.00	Nonce	100
Т3	11	EW90	120.00 -	0.6000	0.5338
15	11	E W 90	130.00	0.0000	0.5558
Т3	15	3/8" Fiber	120.00 -	0.6000	0.5338
15	15	5/8 11001	140.00	0.0000	0.5558
Т3	16	3/4" DC power cable	120.00 -	0.6000	0.5338
15	10	5/4 DC power cable	140.00	0.0000	0.5558
T4	2	Feedline Ladder (Af)	100.00 -	0.6000	0.5353
17	2	recume Ladder (Ar)	120.00	0.0000	0.5555
T4	8	LDF4-50A (1/2 FOAM)	120.00 -	0.6000	0.5353
17	0	LDI 4-50A (1/2 I OAW)	120.00	0.0000	0.5555
T4	9	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.5353
14	,	LDI 5-50A (#81 OAM)	120.00	0.0000	0.5555
T4	10	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.5353
14	10	LDI 5-50A (#81 OAM)	120.00	0.0000	0.5555
T4	11	EW90	120.00 -	0.6000	0.5353
14	11	E W 90	120.00	0.0000	0.5555
T4	12	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.5353
14	12	LDF5-50A (7/8 FOAM)	110.00	0.0000	0.5555
T4	15	3/8" Fiber	100.00 -	0.6000	0.5353
14	15	5/8 11001	120.00	0.0000	0.5555
T4	16	3/4" DC power cable	120.00 -	0.6000	0.5353
14	10	5/4 DC power cable	120.00	0.0000	0.5555
Т5	2	Feedline Ladder (Af)		0.6000	0.5208
T5	8	LDF4-50A (1/2 FOAM)		0.6000	0.5208
T5	8 9	LDF5-50A (7/8 FOAM)		0.6000	0.5208
T5	10	LDF5-50A (7/8 FOAM)		0.6000	0.5208
T5	10		80.00 - 100.00	0.6000	0.5208
T5	11	LDF5-50A (7/8 FOAM)		0.6000	0.5208
T5	12	EW90		0.6000	0.5208
T5	15	3/8" Fiber		0.6000	0.5208
T5		3/4" DC power cable		0.6000	0.5208
13 T6	16 2	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.5208
T6	8	LDF4-50A (1/2 FOAM)		0.6000	0.5802
T6	° 9	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.5802
T6	10	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.5802
T6	10	EDF5-50A (7/8 FOAM) EW90	60.00 - 80.00	0.6000	0.5802
T6	11	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.5802
T6	12	EDF5-50A (7/8 FOAM) EW90	60.00 - 80.00	0.6000	0.5802
T6	15	3/8" Fiber	60.00 - 80.00	0.6000	0.5802
T6	15	3/4" DC power cable	60.00 - 80.00	0.6000	0.5802
10 T7	2	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.5802
T7 T7	8	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.6000
T7 T7	° 9	LDF4-50A (1/2 FOAM) LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T7	10	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T7	10	EDF5-50A (7/8 FOAM) EW90		0.6000	0.6000
T7	12	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T7	12	EDI 5-50A (7/01 OAW) EW90	40.00 - 60.00	0.6000	0.6000
T7	15	3/8" Fiber	40.00 - 60.00	0.6000	0.6000
T7	15	3/4" DC power cable	40.00 - 60.00	0.6000	0.6000
T8	2	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T8	8	LDF4-50A (1/2 FOAM)	20.00 - 40.00	0.6000	0.6000
T8	9	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T8	10	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T8	10	EW90	20.00 - 40.00	0.6000	0.6000
T8	12	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T8	12	EDF5-50A (7/8 FOAM) EW90	20.00 - 40.00	0.6000	0.6000
T8	15	3/8" Fiber	20.00 - 40.00	0.6000	0.6000
T8	15	3/4" DC power cable	20.00 - 40.00	0.6000	0.6000
T9	2	Feedline Ladder (Af)		0.6000	0.6000
T9	8	LDF4-50A (1/2 FOAM)	8.00 - 20.00	0.6000	0.6000
T9	9	LDF5-50A (7/8 FOAM)		0.6000	0.6000
	,	LDI 2 2011 (7/01 OAM)	0.00 20.00	0.0000	0.0000

tnxTower	Job	CT3470A	Page 9 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
Т9	10	LDF5-50A (7/8 FOAM)	8.00 - 20.00	0.6000	0.6000
Т9	11	EW90	8.00 - 20.00	0.6000	0.6000
Т9	12	LDF5-50A (7/8 FOAM)	8.00 - 20.00	0.6000	0.6000
Т9	13	EW90	8.00 - 20.00	0.6000	0.6000
Т9	15	3/8" Fiber	6.00 - 20.00	0.6000	0.6000
Т9	16	3/4" DC power cable	6.00 - 20.00	0.6000	0.6000

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
	Leg	Туре	Lateral Vert	Ациятен			TTOM	Side	
			ft ft	0	ft		ft^2	ft^2	lb
Lightning Rod 4'x.5"	С	None	ft	0.0000	182.00	No Ice	0.20	0.20	5.00
Lightning Rod 4 x.5	C	None		0.0000	182.00	1/2" Ice	0.20	0.20	7.50
						1" Ice	0.95	0.95	12.65
SO602-1	В	From Leg	3.00	0.0000	150.00	No Ice	2.72	12.93	145.70
30002-1	Б	FIOII Leg	0.00	0.0000	150.00	1/2" Ice	4.11	12.93	223.26
			0.00			172 Icc 1" Ice	5.50	22.71	300.82
2" STD x 10.5' Stiff Arm	В	From Leg	3.00	0.0000	150.00	No Ice	1.04	1.04	38.43
2 31D x 10.5 5th Ann	Б	FIOII Leg	0.00	0.0000	150.00	1/2" Ice	2.08	2.08	464.25
			0.00			1/2 Ice 1" Ice	2.08	2.08	903.17
Sinclair SC479-HF1LDF	В	From Leg	6.00	0.0000	157.23	No Ice	4.52	4.52	34.00
Sinclair SC4/9-HFILDF	В	From Leg		0.0000	157.25				
			0.00			1/2" Ice 1" Ice	6.54 8.04	6.54 8.04	69.82 114.98
	D	г т	0.00	0.0000	150.00				
Motorola TTA	В	From Leg	3.00	0.0000	150.00	No Ice	0.46	0.40	8.90
(DS428E83I01T)			0.00			1/2" Ice	0.55	0.48	13.94
			0.00	0.0000	120.00	1" Ice	0.64	0.57	20.50
SO602-1	Α	From Leg	3.00	0.0000	130.00	No Ice	2.72	12.93	145.70
			0.00			1/2" Ice	4.11	17.82	223.26
			0.00			1" Ice	5.50	22.71	300.82
2" STD x 10.5' Stiff Arm	А	From Leg	3.00	0.0000	130.00	No Ice	1.04	1.04	38.43
			0.00			1/2" Ice	2.08	2.08	464.25
			0.00			1" Ice	2.72	2.72	903.17
Sinclair SC479-HF1LDF	А	From Leg	6.00	0.0000	137.23	No Ice	4.59	4.59	34.00
			0.00			1/2" Ice	6.54	6.54	69.82
			0.00			1" Ice	8.04	8.04	114.98
STD x 66" Dish Pipe Mount	В	From Leg	0.50	0.0000	130.00	No Ice	1.57	1.57	59.40
			0.00			1/2" Ice	2.34	2.34	76.97
			0.00			1" Ice	2.69	2.69	98.51
SO602-1	С	From Leg	3.00	0.0000	110.00	No Ice	2.72	12.93	145.70
			0.00			1/2" Ice	4.11	17.82	223.26
			0.00			1" Ice	5.50	22.71	300.82
2" STD x 10.5' Stiff Arm	С	From Leg	3.00	0.0000	110.00	No Ice	1.04	1.04	38.43
		•	0.00			1/2" Ice	2.08	2.08	464.25
			0.00			1" Ice	2.72	2.72	903.17
Sinclair SC229-DFLN	С	From Leg	6.00	0.0000	121.58	No Ice	6.67	6.67	32.00
			0.00			1/2" Ice	9.02	9.02	80.22
			0.00			1" Ice	11.39	11.39	143.03
STD x 66" Dish Pipe Mount	С	From Leg	0.50	0.0000	95.00	No Ice	1.61	1.61	59.40
i oo Bish i ipo inount	~	110111 205	0.00	0.0000	22.00	1/2" Ice	2.34	2.34	76.97
			0.00			172 Icc 1" Ice	2.69	2.69	98.51

<i>tnxTower</i>

Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

Job Page 10 of 35 CT3470A Project Date 180 ft. Self-Support Tower 07:43:54 01/07/19 Client Designed by Smartlink / AT&T VY

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Vert						
			ft	0	ft		ft^2	ft^2	lb
			ft ft						
Proposed			Ji						
(2) KMW	А	From Leg	4.00	0.0000	180.00	No Ice	18.09	7.03	104.50
EPBQ-654L8H8-L2		C	0.00			1/2" Ice	18.72	7.62	197.75
			0.00			1" Ice	19.36	8.21	299.18
(2) KMW	В	From Leg	4.00	0.0000	180.00	No Ice	18.09	7.03	104.50
EPBQ-654L8H8-L2			0.00			1/2" Ice	18.72	7.62	197.75
(2) V MU	C	F	0.00	0.0000	180.00	1" Ice	19.36	8.21	299.18
(2) KMW EPBQ-654L8H8-L2	С	From Leg	4.00 0.00	0.0000	180.00	No Ice 1/2" Ice	18.09 18.72	7.03 7.62	104.50 197.75
EFBQ-034L0110-L2			0.00			1/2 Ice 1" Ice	19.36	8.21	299.18
CCI HPA65R-BU8A	А	From Leg	4.00	0.0000	180.00	No Ice	11.23	9.94	104.80
commission boom		r tom 20g	0.00	0.0000	100100	1/2" Ice	11.85	11.37	192.59
			0.00			1" Ice	12.47	12.64	290.14
CCI HPA65R-BU8A	В	From Leg	4.00	0.0000	180.00	No Ice	11.23	9.94	104.80
			0.00			1/2" Ice	11.85	11.37	192.59
			0.00			1" Ice	12.47	12.64	290.14
CCI HPA65R-BU8A	С	From Leg	4.00	0.0000	180.00	No Ice	11.23	9.94	104.80
			0.00			1/2" Ice	11.85	11.37	192.59
DDUG 4479 D14	٨	Enom Lag	$0.00 \\ 4.00$	0.0000	180.00	1" Ice No Ice	12.47 1.84	12.64 1.06	290.14
RRUS-4478 B14	А	From Leg	4.00	0.0000	180.00	1/2" Ice	2.01	1.06	60.00 75.88
			0.00			172 Ice	2.01	1.20	94.39
RRUS-4478 B14	В	From Leg	4.00	0.0000	180.00	No Ice	1.84	1.06	60.00
Intel	2	r tom 20g	0.00	0.0000	100100	1/2" Ice	2.01	1.20	75.88
			0.00			1" Ice	2.19	1.34	94.39
RRUS-4478 B14	С	From Leg	4.00	0.0000	180.00	No Ice	1.84	1.06	60.00
			0.00			1/2" Ice	2.01	1.20	75.88
			0.00			1" Ice	2.19	1.34	94.39
RRUS-8843 B2/B66A	А	From Leg	4.00	0.0000	180.00	No Ice	1.64	1.35	72.00
			0.00			1/2" Ice	1.80	1.50	89.60
RRUS-8843 B2/B66A	В	From Leg	$\begin{array}{c} 0.00 \\ 4.00 \end{array}$	0.0000	180.00	1" Ice No Ice	1.97 1.64	1.65 1.35	109.91 72.00
KKU5-0045 D2/D00A	Б	FIOIDLeg	0.00	0.0000	180.00	1/2" Ice	1.80	1.50	89.60
			0.00			172 Ice	1.97	1.65	109.91
RRUS-8843 B2/B66A	С	From Leg	4.00	0.0000	180.00	No Ice	1.64	1.35	72.00
		8	0.00			1/2" Ice	1.80	1.50	89.60
			0.00			1" Ice	1.97	1.65	109.91
RRUS-E2	А	From Leg	4.00	0.0000	180.00	No Ice	3.15	1.29	52.90
			0.00			1/2" Ice	3.36	1.44	76.12
DDUG F2	D	F I	0.00	0.0000	100.00	1" Ice	3.59	1.60	102.54
RRUS-E2	В	From Leg	4.00	0.0000	180.00	No Ice	3.15	1.29	52.90
			$\begin{array}{c} 0.00\\ 0.00\end{array}$			1/2" Ice 1" Ice	3.36 3.59	1.44 1.60	76.12 102.54
RRUS-E2	С	From Leg	4.00	0.0000	180.00	No Ice	3.15	1.00	52.90
	C	I Iom Leg	0.00	0.0000	100.00	1/2" Ice	3.36	1.44	76.12
			0.00			1" Ice	3.59	1.60	102.54
RRUS-4415 B30	А	From Leg	4.00	0.0000	180.00	No Ice	1.64	0.68	46.00
		2	0.00			1/2" Ice	1.80	0.79	58.43
			0.00			1" Ice	1.97	0.91	73.23
RRUS-4415 B30	В	From Leg	4.00	0.0000	180.00	No Ice	1.64	0.68	46.00
			0.00			1/2" Ice	1.80	0.79	58.43
DDIIC 4415 D20	C	From Leg	0.00	0.0000	100.00	1" Ice	1.97	0.91	73.23
RRUS-4415 B30	С	From Leg	4.00 0.00	0.0000	180.00	No Ice 1/2" Ice	1.64 1.80	0.68 0.79	46.00 58.43
			0.00			1/2" Ice 1" Ice	1.80	0.79	58.45 73.23
RRUS-4449 B5/B12	А	From Leg	4.00	0.0000	180.00	No Ice	1.97	1.30	73.00
1000 1117 B0/B12	11	1 Iom Log	0.00	0.0000	100.00	1/2" Ice	1.80	1.45	90.19

A	Job		Page
tnxTower		CT3470A	11 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft	o	ft		ft ²	ft ²	lb
						1.1.1.	1.97	1.(0	110.00
RRUS-4449 B5/B12	в	Ensue I an	0.00 4.00	0.0000	180.00	1" Ice No Ice	1.97	1.60 1.30	110.08 73.00
KKUS-4449 B5/B12	В	From Leg		0.0000	180.00	1/2" Ice	1.64		
			$0.00 \\ 0.00$			1/2" Ice	1.80	1.45 1.60	90.19 110.08
RRUS-4449 B5/B12	С	From Leg	0.00 4.00	0.0000	180.00	No Ice	1.97	1.60	73.00
KKUS-4449 B3/B12	C	From Leg	4.00 0.00	0.0000	180.00	1/2" Ice	1.64	1.30	90.19
			0.00			172 Ice	1.80	1.43	110.08
Raycap DC6-48-60-18-8F	А	From Leg	2.00	0.0000	180.00	No Ice	0.83	0.83	22.00
Raycap DC0-48-00-18-81	A	From Leg	0.00	0.0000	180.00	1/2" Ice	1.34	1.34	37.91
			0.00			172 Ice	1.54	1.54	56.21
Raycap DC6-48-60-18-8F	В	From Leg	2.00	0.0000	180.00	No Ice	0.83	0.83	22.00
Ruyeup Deo 40 00 10 01	Б	110III Leg	0.00	0.0000	100.00	1/2" Ice	1.34	1.34	37.91
			0.00			1" Ice	1.52	1.52	56.21
Raycap DC6-48-60-18-8F	С	From Leg	2.00	0.0000	180.00	No Ice	0.83	0.83	22.00
	e	110III Leg	0.00	0.0000	100.00	1/2" Ice	1.34	1.34	37.91
			0.00			1" Ice	1.52	1.52	56.21
Sabre 12' V-Boom	А	From Leg	2.00	0.0000	180.00	No Ice	20.32	12.90	450.00
Assembly w/ Tieback (1)		8	0.00			1/2" Ice	24.20	20.63	795.00
			0.00			1" Ice	28.08	28.36	1140.00
Sabre 12' V-Boom	В	From Leg	2.00	0.0000	180.00	No Ice	20.32	12.90	450.00
Assembly w/ Tieback (1)		8	0.00			1/2" Ice	24.20	20.63	795.00
			0.00			1" Ice	28.08	28.36	1140.00
Sabre 12' V-Boom	С	From Leg	2.00	0.0000	180.00	No Ice	20.32	12.90	450.00
Assembly w/ Tieback (1)		8	0.00			1/2" Ice	24.20	20.63	795.00
			0.00			1" Ice	28.08	28.36	1140.00

					Di	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				Vert ft	0	0	ft	ft		ft^2	lb
Radiowaves HP3-11	В	Paraboloid w/Shroud (HP)	From Leg	1.50 0.00 0.00	0.0000		130.00	3.20	No Ice 1/2" Ice 1" Ice	8.04 8.47 8.89	50.00 93.48 136.96
Radiowaves HP3-11	С	Paraboloid w/Shroud (HP)	From Leg	1.50 0.00 0.00	0.0000		95.00	3.20	No Ice 1/2" Ice 1" Ice	8.04 8.47 8.89	50.00 93.48 136.96

Tower Pressures - No Ice

 $G_H = 0.850$

tnx	Towe	r	Jo	b			CT3470	A			Page 1	2 of 35	
	on Engine onsultants		Pi	Project 180 ft. Self-Support Tower								54 01/07/19	
Schaun	nburg, IL 60 (847) 908-8	173 400		Client Smartlink / AT&T							Designed by VY		
Section Elevation	z	K _Z	qz	A_G	F a	A_F	A_R	A_{leg}	Leg %	$C_A A_A$ In	$C_A A_A$ Out		
ft	ft		psf	ft ²	с е	ft^2	ft^2	ft^2		Face ft ²	Face ft ²		
T1	170.00	1.415	33	104.792	А	9.770	9.583	9.583	49.52	0.000	0.750		
180.00-160.00					В	9.770	9.583		49.52	0.000	0.000		
T 2	150.00	1.270	32	104 702	C	9.770	9.583	0.592	49.52	20.600	0.000		
T2 160.00-140.00	150.00	1.378	32	104.792	A B	8.976 8.976	9.583 9.583	9.583	51.64 51.64	$\begin{array}{c} 0.000\\ 0.000\end{array}$	0.950 0.000		
100.00-140.00					Б С	8.976	9.583		51.64	22.320	0.000		
Т3	130.00	1.337	31	104.792	Ă	8.976	9.583	9.583	51.64	0.000	0.950		
140.00-120.00					В	8.976	9.583		51.64	0.000	0.000		
					С	8.976	9.583		51.64	26.117	0.000		
	110.00	1 201					1 5 000	15.000		0.000	0.050		

T1	170.00	1.415	33	104.792	Α	9.770	9.583	9.583	49.52	0.000	0.750
180.00-160.00					В	9.770	9.583		49.52	0.000	0.000
					С	9.770	9.583		49.52	20.600	0.000
T2	150.00	1.378	32	104.792	Α	8.976	9.583	9.583	51.64	0.000	0.950
160.00-140.00					В	8.976	9.583		51.64	0.000	0.000
					С	8.976	9.583		51.64	22.320	0.000
T3	130.00	1.337	31	104.792	Α	8.976	9.583	9.583	51.64	0.000	0.950
140.00-120.00					В	8.976	9.583		51.64	0.000	0.000
					С	8.976	9.583		51.64	26.117	0.000
T4	110.00	1.291	30	107.500	Α	7.746	15.000	15.000	65.95	0.000	0.950
120.00-100.00					В	7.746	15.000		65.95	0.000	0.000
					С	7.746	15.000		65.95	29.284	0.000
T5	90.00	1.238	29	109.271	Α	7.585	18.542	18.542	70.97	0.000	0.950
100.00-80.00					В	7.585	18.542		70.97	0.000	0.000
					С	7.585	18.542		70.97	31.854	0.000
T6 80.00-60.00	70.00	1.174	28	129.282	А	8.284	18.573	18.573	69.16	0.000	0.950
					В	8.284	18.573		69.16	0.000	0.000
					С	8.284	18.573		69.16	32.348	0.000
T7 60.00-40.00	50.00	1.094	26	171.055	Α	9.721	22.120	22.120	69.47	0.000	0.950
					В	9.721	22.120		69.47	0.000	0.200
					С	9.721	22.120		69.47	32.348	0.200
T8 40.00-20.00	30.00	0.982	23	211.055	Α	11.360	22.120	22.120	66.07	0.000	0.950
					В	11.360	22.120		66.07	0.000	0.200
					С	11.360	22.120		66.07	32.348	0.200
T9 20.00-0.00	10.00	0.85	20	251.055	А	16.374	22.120	22.120	57.46	0.000	0.870
					В	16.374	22.120		57.46	0.000	0.120
					С	16.374	22.120		57.46	20.469	0.120

Tower Pressure - With Ice

 $G_H = 0.850$

Section	z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	170.00	1.415	8	2.2090	112.155	А	9.770	45.891	24.310	43.68	0.000	9.586
180.00-160.00						В	9.770	45.891		43.68	0.000	0.000
						С	9.770	45.891		43.68	63.699	0.000
T2	150.00	1.378	7	2.1815	112.063	Α	8.976	43.709	24.127	45.79	0.000	19.275
160.00-140.00						В	8.976	43.709		45.79	0.000	0.000
						С	8.976	43.709		45.79	73.648	0.000
Т3	130.00	1.337	7	2.1505	111.960	А	8.976	43.224	23.920	45.82	0.000	19.014
140.00-120.00						В	8.976	43.224		45.82	0.000	0.000
						С	8.976	43.224		45.82	93.965	0.000
T4	110.00	1.291	7	2.1149	114.550	А	7.746	45.481	29.099	54.67	0.000	18.715
120.00-100.00						В	7.746	45.481		54.67	0.000	0.000
						С	7.746	45.481		54.67	108.749	0.000
T5 100.00-80.00	90.00	1.238	7	2.0729	116.180	Α	7.585	48.084	32.361	58.13	0.000	18.362
						В	7.585	48.084		58.13	0.000	0.000
						С	7.585	48.084		58.13	120.168	0.000
T6 80.00-60.00	70.00	1.174	6	2.0214	136.029	Α	8.284	48.816	32.071	56.17	0.000	17.930
						В	8.284	48.816		56.17	0.000	0.000
						С	8.284	48.816		56.17	120.569	0.000
T7 60.00-40.00	50.00	1.094	6	1.9546	177.579	А	9.721	54.172	35.172	55.05	0.000	17.368
						В	9.721	54.172		55.05	0.000	8.800

	Job							Page		
tnxTower				CT34	70A				13 of 35	
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project		180	ft. Self-Si	upport Tov	wer		Date 07:4	3:54 01/07/	19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client			Smartlin	k / AT&T			Desig	ned by VY	
Section z K_Z	q_z t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$	

Section	z	Kz	q_z	tz	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
						С	9.721	54.172		55.05	117.755	8.800
T8 40.00-20.00	30.00	0.982	5	1.8572	217.254	Α	11.360	55.619	34.522	51.54	0.000	16.551
						В	11.360	55.619		51.54	0.000	8.372
						С	11.360	55.619		51.54	113.660	8.372
T9 20.00-0.00	10.00	0.85	5	1.6640	256.609	Α	16.374	55.029	33.232	46.54	0.000	11.919
						в	16.374	55.029		46.54	0.000	4.513
						С	16.374	55.029		46.54	67.038	4.513

Tower Pressure - Service

Section	_	V	~	Δ	F	4	4	4	Lag	C A	$C \Lambda$
Elevation	z	K_Z	q_z	A_G		A_F	A_R	A_{leg}	Leg %	$C_A A_A$ In	$C_A A_A$ Out
Lievation					a c				70	Face	Face
ft	ft		psf	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
	170.00	1.415	11	104.792	A	9.770	9.583	9.583	49.52	0.000	0.750
180.00-160.00	170.00	1.415	11	104.792	B	9.770	9.583	7.505	49.52	0.000	0.000
100.00 100.00					C	9.770	9.583		49.52	20.600	0.000
Т2	150.00	1.378	11	104.792	Ă	8.976	9.583	9.583	51.64	0.000	0.950
160.00-140.00	150.00	1.570		101.772	B	8.976	9.583	2.505	51.64	0.000	0.000
100100 110100					Č	8.976	9.583		51.64	22.320	0.000
Т3	130.00	1.337	10	104.792	Ă	8.976	9.583	9.583	51.64	0.000	0.950
140.00-120.00			-		В	8.976	9.583		51.64	0.000	0.000
					С	8.976	9.583		51.64	26.117	0.000
T4	110.00	1.291	10	107.500	А	7.746	15.000	15.000	65.95	0.000	0.950
120.00-100.00					В	7.746	15.000		65.95	0.000	0.000
					С	7.746	15.000		65.95	29.284	0.000
Т5	90.00	1.238	10	109.271	А	7.585	18.542	18.542	70.97	0.000	0.950
100.00-80.00					В	7.585	18.542		70.97	0.000	0.000
					С	7.585	18.542		70.97	31.854	0.000
T6 80.00-60.00	70.00	1.174	9	129.282	Α	8.284	18.573	18.573	69.16	0.000	0.950
					В	8.284	18.573		69.16	0.000	0.000
					С	8.284	18.573		69.16	32.348	0.000
T7 60.00-40.00	50.00	1.094	9	171.055	Α	9.721	22.120	22.120	69.47	0.000	0.950
					В	9.721	22.120		69.47	0.000	0.200
					С	9.721	22.120		69.47	32.348	0.200
T8 40.00-20.00	30.00	0.982	8	211.055	А	11.360	22.120	22.120	66.07	0.000	0.950
					В	11.360	22.120		66.07	0.000	0.200
					С	11.360	22.120		66.07	32.348	0.200
T9 20.00-0.00	10.00	0.85	7	251.055	Α	16.374	22.120	22.120	57.46	0.000	0.870
					В	16.374	22.120		57.46	0.000	0.120
					С	16.374	22.120		57.46	20.469	0.120

$G_H = 0.850$

		Το	we	r Forc	es -	No I	ce -	Wind	l Norm	al To Fa	ace	
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a c			psf						Face
ft T1	<i>lb</i> 223.60	<i>lb</i> 697.32	e A	0.185	2.648	33	1	1	$\frac{ft^2}{15.251}$	<i>lb</i> 1472.63	<i>plf</i> 73.63	С
180.00-160.00		071.52	В	0.185	2.648	55	1	1	15.251	1472.05	75.05	C

....

tn.	xTow	er	Jot)			CT	3470A				Page 14	4 of 35	
0	ton Engin C onsultant podfield Road	s	Pr	Project 180 ft. Self-Support Tower									54 01/07/19	
Scha Phon	umburg, IL 60 umburg, IL 60 e: (847) 908- fullertonengin	0173 8400	Client Smartlink / AT&T									Designed by VY		
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.		
Elevation	Weight	Weight	а			1.			2			Face		
			с			psf								
ft	lb	lb	e	0.105	2 (10		1		ft^2	lb	plf			
T2	234.60	659.01	C A	0.185 0.177	2.648 2.674	32	1	1	15.251 14.447	1420.05	71.00	0 C		
160.00-140.00	234.00	039.01	B	0.177	2.674	32	1	1	14.447	1420.05	/1.00			
100.00			C	0.177	2.674		1	1	14.447					
Т3	245.90	659.01	Ā	0.177	2.674	31	1	1	14.447	1438.89	71.94	4 C		
140.00-120.00			В	0.177	2.674		1	1	14.447					
		10.40	С	0.177	2.674		1	1	14.447					
T4	255.70	1063.63	A	0.212	2.558	30	1	1	15.678	1476.13	73.8	1 C		
120.00-100.00			B C	0.212 0.212	2.558 2.558		1 1	1	15.678 15.678					
Т5	263.80	1304.90	A	0.212	2.338	29	1	1	16.962	1498.02	74.90	0 C		
100.00-80.00	205.00	1204.90	B	0.239	2.471	2)	1	1	16.962	1190.02	74.90			
			C	0.239	2.471		1	1	16.962					
T6	265.40	1336.18	А	0.208	2.57	28	1	1	17.503	1500.21	75.0	1 C		
80.00-60.00			R	0.208	2 57		1	1	17 503					

16	265.40	1336.18	A	0.208	2.57	28	1	1	17.503	1500.21	/5.01	C
80.00-60.00			В	0.208	2.57		1	1	17.503			
			С	0.208	2.57		1	1	17.503			
Τ7	277.80	1677.71	Α	0.186	2.643	26	1	1	19.774	1565.57	78.28	С
60.00-40.00			В	0.186	2.643		1	1	19.774			
			С	0.186	2.643		1	1	19.774			
T8	277.80	1751.40	Α	0.159	2.74	23	1	1	21.431	1532.93	76.65	С
40.00-20.00			В	0.159	2.74		1	1	21.431			
			С	0.159	2.74		1	1	21.431			
T9 20.00-0.00	173.56	1995.06	Α	0.153	2.759	20	1	1	26.801	1470.48	73.52	С
			В	0.153	2.759		1	1	26.801			
			С	0.153	2.759		1	1	26.801			
Sum Weight:	2218.16	11144.21						OTM	1191591.6	13374.91		
									0 lb-ft			

		-	Γον	wer Fo	orces	s - N	o Ice	- Wi	nd 60 T	o Face		
Section	Add	C . 1f	F		C_F	~	D	D	4	F		Ctrl.
Section Elevation		Self		е	C_F	q_z	D_F	D_R	A_E	F	W	Face
Elevation	Weight	Weight	a			nef						гасе
ft	lb	lb	с е			psf			ft^2	lb	plf	
T1	223.60	697.32	Α	0.185	2.648	33	0.8	1	13.297	1326.09	66.30	Α
180.00-160.00			В	0.185	2.648		0.8	1	13.297			
			С	0.185	2.648		0.8	1	13.297			
T2	234.60	659.01	Α	0.177	2.674	32	0.8	1	12.652	1287.61	64.38	Α
160.00-140.00			В	0.177	2.674		0.8	1	12.652			
			С	0.177	2.674		0.8	1	12.652			
Т3	245.90	659.01	Α	0.177	2.674	31	0.8	1	12.652	1310.38	65.52	Α
140.00-120.00			В	0.177	2.674		0.8	1	12.652			
			С	0.177	2.674		0.8	1	12.652			
T4	255.70	1063.63	Α	0.212	2.558	30	0.8	1	14.129	1373.73	68.69	Α
120.00-100.00			В	0.212	2.558		0.8	1	14.129			
			С	0.212	2.558		0.8	1	14.129			
T5	263.80	1304.90	Α	0.239	2.471	29	0.8	1	15.445	1405.17	70.26	Α
100.00-80.00			В	0.239	2.471		0.8	1	15.445			
			С	0.239	2.471		0.8	1	15.445			
T6	265.40	1336.18	Α	0.208	2.57	28	0.8	1	15.846	1400.15	70.01	Α
80.00-60.00			В	0.208	2.57		0.8	1	15.846			
			С	0.208	2.57		0.8	1	15.846			
T7	277.80	1677.71	Α	0.186	2.643	26	0.8	1	17.830	1453.09	72.65	Α
60.00-40.00			В	0.186	2.643		0.8	1	17.830			

tnxTower	Job	CT3470A	Page 15 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
			С	0.186	2.643		0.8	1	17.830			
T8	277.80	1751.40	Α	0.159	2.74	23	0.8	1	19.159	1410.56	70.53	Α
40.00-20.00			В	0.159	2.74		0.8	1	19.159			
			С	0.159	2.74		0.8	1	19.159			
T9 20.00-0.00	173.56	1995.06	Α	0.153	2.759	20	0.8	1	23.526	1316.76	65.84	Α
			В	0.153	2.759		0.8	1	23.526			
			С	0.153	2.759		0.8	1	23.526			
Sum Weight:	2218.16	11144.21						OTM	1092649.7	12283.54		
									9 lb-ft			

Tower Forces - No Ice - Wind 90 To Face													
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	а									Face	
2			С			psf			e 2				
ft	lb	lb	е						ft^2	lb	plf		
T1	223.60	697.32	Α	0.185	2.648	33	0.85	1	13.786	1353.16	67.66	В	
180.00-160.00			В	0.185	2.648		0.85	1	13.786				
	224.60	(С	0.185	2.648		0.85	1	13.786				
T2	234.60	659.01	A	0.177	2.674	32	0.85	1	13.101	1311.41	65.57	В	
160.00-140.00			B	0.177	2.674		0.85	1	13.101				
			С	0.177	2.674		0.85	1	13.101			-	
T3	245.90	659.01	A	0.177	2.674	31	0.85	1	13.101	1333.47	66.67	В	
140.00-120.00			В	0.177	2.674		0.85	1	13.101				
			С	0.177	2.674		0.85	1	13.101			_	
T4	255.70	1063.63	А	0.212	2.558	30	0.85	1	14.516	1390.61	69.53	В	
120.00-100.00			В	0.212	2.558		0.85	1	14.516				
			С	0.212	2.558		0.85	1	14.516				
T5	263.80	1304.90	Α	0.239	2.471	29	0.85	1	15.824	1420.02	71.00	В	
100.00-80.00			В	0.239	2.471		0.85	1	15.824				
			С	0.239	2.471		0.85	1	15.824				
T6	265.40	1336.18	Α	0.208	2.57	28	0.85	1	16.260	1417.23	70.86	В	
80.00-60.00			В	0.208	2.57		0.85	1	16.260				
			С	0.208	2.57		0.85	1	16.260				
Τ7	277.80	1677.71	Α	0.186	2.643	26	0.85	1	18.316	1473.82	73.69	В	
60.00-40.00			В	0.186	2.643		0.85	1	18.316				
			С	0.186	2.643		0.85	1	18.316				
T8	277.80	1751.40	Α	0.159	2.74	23	0.85	1	19.727	1434.52	71.73	В	
40.00-20.00			В	0.159	2.74		0.85	1	19.727				
			С	0.159	2.74		0.85	1	19.727				
T9 20.00-0.00	173.56	1995.06	Α	0.153	2.759	20	0.85	1	24.344	1351.18	67.56	В	
			В	0.153	2.759		0.85	1	24.344				
			С	0.153	2.759		0.85	1	24.344				
Sum Weight:	2218.16	11144.21						OTM	1110313.5	12485.42			
C	-								9 lb-ft				

Tower Forces - With Ice - Wind Normal To Face

tn.	xTowe	er	Job)			CT	3470A				Page 16	6 of 35
(ton Engine C onsultant s oodfield Road	5	Pro	oject		180 f	t. Self-	Suppo	rt Tower		1	Date 07:43:5	54 01/07/19
Schai Phon	umburg, IL 60 e: (847) 908-0 fullertonengin	0173 8400	Cli	ent			Smartl	ink / A	T&T			Designed	i by VY
Section	Add	Self	F	е	C _F	q_z	D_F	D_R	A_E	F	W	Ctrl.	
Elevation	Weight	Weight	a c	C	C_F	qz psf	D_F	D_R	Σ1 <u>E</u>	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Face	
ft	lb	lb	е			r "J			ft^2	lb	plf		
T1 80.00-160.00	1148.51	4031.63	A B C	0.496 0.496 0.496	1.905 1.905 1.905	8	1	1	41.114 41.114 41.114	749.96	37.50	0 C	
T2 60.00-140.00	1340.91	3733.63	A B	0.490 0.47 0.47	1.903 1.942 1.942	7	1	1 1 1	38.232 38.232	808.95	40.45	5 C	
T3 40.00-120.00	1656.06	3671.24	C A B	$0.47 \\ 0.466 \\ 0.466$	1.942 1.948 1.948	7	1	1 1	38.232 37.822	848.69	42.43	3 C	
140.00-120.00 T4	1877.59	4005.05	В С А	$0.466 \\ 0.466 \\ 0.465$	1.948 1.948 1.95	7	1 1 1	1 1 1	37.822 37.822 38.062	869.31	43.47	7 C	

180.00-160.00			В	0.496	1.905		1	1	41.114			1
			С	0.496	1.905		1	1	41.114			
T2	1340.91	3733.63	Α	0.47	1.942	7	1	1	38.232	808.95	40.45	С
160.00-140.00			В	0.47	1.942		1	1	38.232			
			С	0.47	1.942		1	1	38.232			
T3	1656.06	3671.24	Α	0.466	1.948	7	1	1	37.822	848.69	42.43	С
140.00-120.00			В	0.466	1.948		1	1	37.822			
			С	0.466	1.948		1	1	37.822			
T4	1877.59	4005.05	Α	0.465	1.95	7	1	1	38.062	869.31	43.47	С
120.00-100.00			В	0.465	1.95		1	1	38.062			
			С	0.465	1.95		1	1	38.062			
T5	2034.31	4326.98	Α	0.479	1.929	7	1	1	39.993	874.20	43.71	С
100.00-80.00			В	0.479	1.929		1	1	39.993			
			С	0.479	1.929		1	1	39.993			
T6	2007.50	4397.93	Α	0.42	2.026	6	1	1	39.771	882.77	44.14	С
80.00-60.00			В	0.42	2.026		1	1	39.771			
			С	0.42	2.026		1	1	39.771			
T7	1996.90	5051.47	Α	0.36	2.149	6	1	1	43.296	974.73	48.74	С
60.00-40.00			В	0.36	2.149		1	1	43.296			
			С	0.36	2.149		1	1	43.296			
T8	1872.90	5209.13	Α	0.308	2.274	5	1	1	44.817	897.70	44.89	С
40.00-20.00			В	0.308	2.274		1	1	44.817			
			С	0.308	2.274		1	1	44.817			
T9 20.00-0.00	1041.10	5620.42	Α	0.278	2.355	5	1	1	48.977	679.15	33.96	С
			В	0.278	2.355		1	1	48.977			
			С	0.278	2.355		1	1	48.977			
Sum Weight:	14975.78	40047.48						OTM	677719.87	7585.46		
-									lb-ft			

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	1148.51	4031.63	Α	0.496	1.905	8	0.8	1	39.160	725.60	36.28	Α
180.00-160.00			В	0.496	1.905		0.8	1	39.160			
			С	0.496	1.905		0.8	1	39.160			
T2	1340.91	3733.63	Α	0.47	1.942	7	0.8	1	36.437	786.73	39.34	Α
160.00-140.00			В	0.47	1.942		0.8	1	36.437			
			С	0.47	1.942		0.8	1	36.437			
Т3	1656.06	3671.24	А	0.466	1.948	7	0.8	1	36.027	827.07	41.35	Α
140.00-120.00			В	0.466	1.948		0.8	1	36.027			
			С	0.466	1.948		0.8	1	36.027			
T4	1877.59	4005.05	Α	0.465	1.95	7	0.8	1	36.512	851.27	42.56	Α
120.00-100.00			В	0.465	1.95		0.8	1	36.512			
			С	0.465	1.95		0.8	1	36.512			
T5	2034.31	4326.98	Α	0.479	1.929	7	0.8	1	38.476	857.45	42.87	Α
100.00-80.00			В	0.479	1.929		0.8	1	38.476			
			С	0.479	1.929		0.8	1	38.476			
T6	2007.50	4397.93	Α	0.42	2.026	6	0.8	1	38.114	864.54	43.23	Α
80.00-60.00			В	0.42	2.026		0.8	1	38.114			
			С	0.42	2.026		0.8	1	38.114			

Tower Forces - With Ice - Wind 60 To Face

treas Tosus are	Job		Page
tnxTower		CT3470A	17 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			_						Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T7	1996.90	5051.47	Α	0.36	2.149	6	0.8	1	41.352	953.60	47.68	А
60.00-40.00			В	0.36	2.149		0.8	1	41.352			
			С	0.36	2.149		0.8	1	41.352			
Т8	1872.90	5209.13	Α	0.308	2.274	5	0.8	1	42.545	874.24	43.71	Α
40.00-20.00			В	0.308	2.274		0.8	1	42.545			
			С	0.308	2.274		0.8	1	42.545			
T9 20.00-0.00	1041.10	5620.42	А	0.278	2.355	5	0.8	1	45.702	648.83	32.44	А
			В	0.278	2.355		0.8	1	45.702			
			С	0.278	2.355		0.8	1	45.702			
Sum Weight:	14975.78	40047.48						OTM	660603.99	7389.33		
									lb-ft			

Tower Forces - With Ice - Wind 90 To Face													
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	а									Face	
			С			psf							
ft	lb	lb	е						ft^2	lb	plf		
T1	1148.51	4031.63	Α	0.496	1.905	8	0.85	1	39.648	726.95	36.35	в	
180.00-160.00			В	0.496	1.905		0.85	1	39.648				
			С	0.496	1.905		0.85	1	39.648				
T2	1340.91	3733.63	Α	0.47	1.942	7	0.85	1	36.885	787.43	39.37	в	
160.00-140.00			В	0.47	1.942		0.85	1	36.885				
			С	0.47	1.942		0.85	1	36.885				
T3	1656.06	3671.24	Α	0.466	1.948	7	0.85	1	36.475	827.73	41.39	В	
140.00-120.00			В	0.466	1.948		0.85	1	36.475				
			С	0.466	1.948		0.85	1	36.475				
T4	1877.59	4005.05	Α	0.465	1.95	7	0.85	1	36.900	851.19	42.56	В	
120.00-100.00			В	0.465	1.95		0.85	1	36.900				
			С	0.465	1.95		0.85	1	36.900				
T5	2034.31	4326.98	Α	0.479	1.929	7	0.85	1	38.855	857.35	42.87	в	
100.00-80.00			В	0.479	1.929		0.85	1	38.855				
			С	0.479	1.929		0.85	1	38.855				
T6	2007.50	4397.93	А	0.42	2.026	6	0.85	1	38.528	864.57	43.23	В	
80.00-60.00			В	0.42	2.026		0.85	1	38.528				
			С	0.42	2.026		0.85	1	38.528				
T7	1996.90	5051.47	А	0.36	2.149	6	0.85	1	41.838	954.52	47.73	В	
60.00-40.00			В	0.36	2.149		0.85	1	41.838				
			С	0.36	2.149		0.85	1	41.838				
Т8	1872.90	5209.13	А	0.308	2.274	5	0.85	1	43.113	876.19	43.81	в	
40.00-20.00			В	0.308	2.274		0.85	1	43.113				
			С	0.308	2.274		0.85	1	43.113				
T9 20.00-0.00	1041.10	5620.42	Ā	0.278	2.355	5	0.85	1	46.521	654.04	32.70	в	
			В	0.278	2.355	2	0.85	1	46.521		•		
			C	0.278	2.355		0.85	1	46.521				
Sum Weight:	14975.78	40047.48	-					OTM	661164.89	7399.96			
									lb-ft				

Tower Forces - Service - Wind Normal To Face

tnxTower

Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

'ower	Job	CT3470A	Page 18 of 35
E ngineering ultants Id Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
rg, IL 60173 7) 908-8400 onengineering.com	Client	Smartlink / AT&T	Designed by VY

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation	Weight	Weight	а									Face
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							psf			. 2			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5			-						5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		223.60	697.32				11	1	1		489.95	24.50	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	180.00-160.00							1	1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				С				1	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		234.60	659.01	Α			11	1	1		472.46	23.62	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	160.00-140.00			В	0.177	2.674		1	1	14.447			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				С	0.177	2.674		1	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T3	245.90	659.01	Α	0.177	2.674	10	1	1	14.447	478.73	23.94	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140.00-120.00			В	0.177	2.674		1	1	14.447			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				С	0.177	2.674		1	1	14.447			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T4	255.70	1063.63	Α	0.212	2.558	10	1	1	15.678	491.12	24.56	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120.00-100.00			В	0.212	2.558		1	1	15.678			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				С	0.212	2.558		1	1	15.678			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T5	263.80	1304.90	Α	0.239	2.471	10	1	1	16.962	498.40	24.92	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.00-80.00			В	0.239	2.471		1	1	16.962			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				С	0.239	2.471		1	1	16.962			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т6	265.40	1336.18	А	0.208	2.57	9	1	1	17.503	499.13	24.96	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80.00-60.00			В	0.208	2.57		1	1	17.503			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				С	0.208	2.57		1	1	17.503			
T8 277.80 1751.40 A 0.159 2.74 8 1 1 19.774 25.50 C 40.00-20.00 4 0.159 2.74 8 1 1 21.431 510.02 25.50 C 40.00-20.00 173.56 1995.06 A 0.153 2.759 7 1 1 21.431 510.02 25.50 C T9 20.00-0.00 173.56 1995.06 A 0.153 2.759 7 1 1 26.801 489.24 24.46 C B 0.153 2.759 7 1 1 26.801 489.24 24.46 C Sum Weight: 2218.16 11144.21 - - OTM 396450.18 4449.92 -	T7	277.80	1677.71	А	0.186	2.643	9	1	1	19.774	520.87	26.04	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60.00-40.00			В	0.186	2.643		1	1	19.774			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				С	0.186	2.643		1	1	19.774			
T9 20.00-0.00 173.56 1995.06 C 0.153 2.759 7 1 1 21.431 489.24 24.46 C Sum Weight: 2218.16 11144.21 - - - - 0TM 396450.18 4449.92 24.46 C	Т8	277.80	1751.40	А	0.159	2.74	8	1	1	21.431	510.02	25.50	С
T9 20.00-0.00 173.56 1995.06 C 0.153 2.759 7 1 1 21.431 489.24 24.46 C Sum Weight: 2218.16 11144.21 - - - - 0TM 396450.18 4449.92 24.46 C	40.00-20.00			В	0.159	2.74		1	1	21.431			
Sum Weight: 2218.16 11144.21 B 0.153 2.759 1 1 26.801 Sum Weight: 2218.16 11144.21 0 <td></td> <td></td> <td></td> <td>С</td> <td>0.159</td> <td>2.74</td> <td></td> <td>1</td> <td>1</td> <td>21.431</td> <td></td> <td></td> <td></td>				С	0.159	2.74		1	1	21.431			
B 0.153 2.759 1 1 26.801 Sum Weight: 2218.16 11144.21 0	T9 20.00-0.00	173.56	1995.06			-	7	1	1	-	489.24	24.46	С
Sum Weight: 2218.16 11144.21 C 0.153 2.759 1 1 26.801 OTM 396450.18 4449.92								1	1				
Sum Weight: 2218.16 11144.21 OTM 396450.18 4449.92								1	1				
8	Sum Weight:	2218.16	11144.21	-				-	OTM		4449.92		
										lb-ft			

		Т	ow	ver Fo	rces	- Se	rvic	e - W	/ind 60	To Face	e	
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			c						Face
ft	lb	lb	с е			psf			ft^2	lb	plf	
T1	223.60	697.32	Α	0.185	2.648	11	0.8	1	13.297	441.20	22.06	Α
180.00-160.00			В	0.185	2.648		0.8	1	13.297			
			С	0.185	2.648		0.8	1	13.297			
T2	234.60	659.01	Α	0.177	2.674	11	0.8	1	12.652	428.40	21.42	Α
160.00-140.00			В	0.177	2.674		0.8	1	12.652			
			С	0.177	2.674		0.8	1	12.652			
T3	245.90	659.01	Α	0.177	2.674	10	0.8	1	12.652	435.97	21.80	Α
140.00-120.00			В	0.177	2.674		0.8	1	12.652			
			С	0.177	2.674		0.8	1	12.652			
T4	255.70	1063.63	Α	0.212	2.558	10	0.8	1	14.129	457.05	22.85	А
120.00-100.00			В	0.212	2.558		0.8	1	14.129			
			С	0.212	2.558		0.8	1	14.129			
T5	263.80	1304.90	Α	0.239	2.471	10	0.8	1	15.445	467.51	23.38	А
100.00-80.00			В	0.239	2.471		0.8	1	15.445			
			С	0.239	2.471		0.8	1	15.445			
T6	265.40	1336.18	Α	0.208	2.57	9	0.8	1	15.846	465.84	23.29	А
80.00-60.00			В	0.208	2.57		0.8	1	15.846			

4	T	0.74	Job)								Page		
เก	xTow	er					СТ	3470A				19 of 35		
	Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500		Pr	oject	180 ft. Self-Support Tower							Date 07:43:54 01/07/19		
Scho Phor	Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com			ient			Smartl	ink / A	T&T			Designed by VY		
Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face		
2			С			psf			e 2		10			

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

 ft^2

1

1

1

1

1

1

1

1

1

1

OTM

15.846

17.830

17.830

17.830

19.159

19.159

19.159

23.526

23.526

23.526

lb-ft

363531.61

lb

483.45

469.30

438.10

4086.81

plf

24.17

23.47

21.90

А

А

А

9

8

7

ft

60.00-40.00

40.00-20.00

Т9 20.00-0.00

Sum Weight:

Τ7

T8

lb

277.80

277.80

173.56

2218.16

lb

1677.71

1751.40

1995.06

11144.21

е

С

А

В

С

А

В

С

А

В

С

0.208

0.186

0.186

0.186

0.159

0.159

0.159

0.153

0.153

0.153

2.57

2.643

2.643

2.643

2.74

2.74

2.74 2.759

2.759

2.759

		Т	ow	er Fo	rces	- Se	rvic	e - W	/ind 90	To Face)	
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
<i>a</i>			С			psf			e 2		10	
ft	lb	lb	e	0.105	0 (10		0.05		ft^2	lb	plf	5
T1	223.60	697.32	A	0.185	2.648	11	0.85	1	13.786	450.21	22.51	В
180.00-160.00			B	0.185	2.648		0.85	1	13.786			
			С	0.185	2.648		0.85	1	13.786			_
T2	234.60	659.01	A	0.177	2.674	11	0.85	1	13.101	436.31	21.82	В
160.00-140.00			B	0.177	2.674		0.85	1	13.101			
			C	0.177	2.674		0.85	1	13.101			
T3	245.90	659.01	A	0.177	2.674	10	0.85	1	13.101	443.65	22.18	В
140.00-120.00			В	0.177	2.674		0.85	1	13.101			
			C	0.177	2.674		0.85	1	13.101			
T4	255.70	1063.63	Α	0.212	2.558	10	0.85	1	14.516	462.67	23.13	В
120.00-100.00			B	0.212	2.558		0.85	1	14.516			
			С	0.212	2.558		0.85	1	14.516			
T5	263.80	1304.90	Α	0.239	2.471	10	0.85	1	15.824	472.45	23.62	В
100.00-80.00			В	0.239	2.471		0.85	1	15.824			
			С	0.239	2.471		0.85	1	15.824			_
Т6	265.40	1336.18	Α	0.208	2.57	9	0.85	1	16.260	471.52	23.58	В
80.00-60.00			В	0.208	2.57		0.85	1	16.260			
			С	0.208	2.57		0.85	1	16.260			
T7	277.80	1677.71	A	0.186	2.643	9	0.85	1	18.316	490.35	24.52	В
60.00-40.00			B	0.186	2.643		0.85	1	18.316			
-			C	0.186	2.643		0.85	1	18.316			
T8	277.80	1751.40	A	0.159	2.74	8	0.85	1	19.727	477.27	23.86	В
40.00-20.00			В	0.159	2.74		0.85	1	19.727			
			C	0.159	2.74	_	0.85	1	19.727		· · · ·	_
T9 20.00-0.00	173.56	1995.06	Α	0.153	2.759	7	0.85	1	24.344	449.54	22.48	В
			В	0.153	2.759		0.85	1	24.344			
			С	0.153	2.759		0.85	1	24.344			
Sum Weight:	2218.16	11144.21						OTM	369408.47	4153.98		
									lb-ft			

tnxTower

Job

Project

Client

Fullerton Engineering

Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

CT3470A

180 ft. Self-Support Tower

Date 07:43:54 01/07/19

20 of 35

Page

Smartlink / AT&T

Designed by

VY

Force Totals

Case	Forces	Forces	Forces	Overturning		
	11			0	Overturning	
		X	Z	Moments, M_x	Moments, M_z	11 6
Y YYY 1 1	lb	lb	lb	lb-ft	lb-ft	lb-ft
Leg Weight	7216.80					
Bracing Weight	3927.41 11144.21			4412.79	-60.77	
Total Member Self-Weight Total Weight	17516.56			4412.79	-60.77	
Wind 0 deg - No Ice	17510.50	-3.15	-18815.16	-2096816.20	1059.31	-138.54
Wind 30 deg - No Ice		9078.80	-15509.15	-1743986.94	-1024530.09	3232.87
Wind 60 deg - No Ice		15190.19	-8674.09	-978774.30	-1720721.80	4996.21
Wind 90 deg - No Ice		17599.02	-16.45	1345.00	-1987834.21	5343.80
Wind 120 deg - No Ice		16121.26	9156.10	1027806.61	-1801446.40	4990.89
Wind 150 deg - No Ice		8997.16	15491.79	1748285.98	-1012423.75	3433.70
Wind 180 deg - No Ice		-0.12	17700.32	2004047.56	923.97	129.35
Wind 210 deg - No Ice		-8999.64	15496.89	1752471.68	1015460.72	-3211.37
Wind 240 deg - No Ice		-16128.53	9156.66	1029733.59	1806902.64	-4852.35
Wind 270 deg - No Ice		-17602.45	-15.31	3889.88	1989915.20	-5342.33
Wind 300 deg - No Ice		-15188.16	-8672.77	-976360.90	1718389.60	-5125.56
Wind 330 deg - No Ice		-9076.35	-15508.00	-1742338.63	1021260.22	-3456.66
Member Ice	28903.27				24.60	
Total Weight Ice	78086.81	1.70	00(12)	27527.52	-34.60	76.66
Wind 0 deg - Ice Wind 30 deg - Ice		1.79 4873.50	-9864.36 -8379.44	-1024881.83 -870038.86	-1206.92	-76.66 1242.66
Wind 50 deg - Ice Wind 60 deg - Ice		4873.50 8306.90	-4771.32	-485282.28	-523180.11 -891560.48	2011.43
Wind 00 deg - Ice Wind 90 deg - Ice		9592.11	-4771.32	25205.85	-1027613.83	2011.43
Wind 120 deg - Ice		8470.11	4847.32	543797.41	-903536.72	2048.80
Wind 120 deg - Ice		4846.51	8371.94	922369.17	-517304.37	1364.45
Wind 180 deg - Ice		-2.75	9661.84	1062098.10	1718.38	73.98
Wind 210 deg - Ice		-4851.93	8376.14	925005.24	520672.25	-1236.82
Wind 240 deg - Ice		-8474.95	4852.18	546894.74	906487.63	-1972.14
Wind 270 deg - Ice		-9593.12	-1.45	28870.57	1028152.25	-2248.09
Wind 300 deg - Ice		-8303.60	-4766.23	-482050.75	889400.08	-2085.40
Wind 330 deg - Ice		-4868.08	-8376.39	-868102.81	519676.62	-1370.72
Total Weight	17516.56			4412.79	-60.77	
Wind 0 deg - Service		-1.05	-6259.92	-698654.57	311.89	-46.09
Wind 30 deg - Service		3020.58	-5160.00	-581266.01	-340908.30	1075.60
Wind 60 deg - Service		5053.87	-2885.92	-326674.84	-572535.75	1662.27
Wind 90 deg - Service		5855.31	-5.47	-582.85	-661405.77	1777.92
Wind 120 deg - Service		5363.65	3046.29	340927.52	-599393.34	1660.50
Wind 150 deg - Service Wind 180 deg - Service		2993.41 -0.04	5154.22 5889.01	580635.64 665729.16	-336880.44 266.86	1142.41 43.03
Wind 180 deg - Service		-0.04 -2994.24	5155.92	582028.25	337809.76	-1068.44
Wind 240 deg - Service		-5366.07	3046.48	341568.64	601127.57	-1614.41
Wind 270 deg - Service		-5856.45	-5.09	263.85	662017.03	-1777.43
Wind 300 deg - Service		-5053.20	-2885.49	-325871.89	571678.72	-1705.31
Wind 330 deg - Service		-3019.76	-5159.61	-580717.61	339739.29	-1150.05

Load Combinations

Comb.	
No.	

Description

Dead Only 1

2 3 4 5

Job

Project

Client

Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

Page 21 of 35 CT3470A Date 180 ft. Self-Support Tower 07:43:54 01/07/19 Designed by Smartlink / AT&T VY

Comb.	Description
No.	
6	1.2 Dead+1.6 Wind 30 deg - No Ice
7	1.2D+1.6W (pattern 1) 30 deg - No Ice
8	1.2D+1.6W (pattern 2) 30 deg - No Ice
9	0.9 Dead+1.6 Wind 30 deg - No Ice
10	1.2 Dead+1.6 Wind 60 deg - No Ice
11	1.2D+1.6W (pattern 1) 60 deg - No Ice
12	1.2D+1.6W (pattern 2) 60 deg - No Ice
13	0.9 Dead+1.6 Wind 60 deg - No Ice
14	1.2 Dead+1.6 Wind 90 deg - No Ice
15	1.2D+1.6W (pattern 1) 90 deg - No Ice
16	1.2D+1.6W (pattern 2) 90 deg - No Ice
17	0.9 Dead+1.6 Wind 90 deg - No Ice
18	1.2 Dead+1.6 Wind 120 deg - No Ice
19	1.2D+1.6W (pattern 1) 120 deg - No Ice
20	1.2D+1.6W (pattern 2) 120 deg - No Ice
20	0.9 Dead+1.6 Wind 120 deg - No Ice
21	1.2 Dead+1.6 Wind 120 deg - No Ice
22	
	1.2D+1.6W (pattern 1) 150 deg - No Ice
24	1.2D+1.6W (pattern 2) 150 deg - No Ice
25	0.9 Dead+1.6 Wind 150 deg - No Ice
26	1.2 Dead+1.6 Wind 180 deg - No Ice
27	1.2D+1.6W (pattern 1) 180 deg - No Ice
28	1.2D+1.6W (pattern 2) 180 deg - No Ice
29	0.9 Dead+1.6 Wind 180 deg - No Ice
30	1.2 Dead+1.6 Wind 210 deg - No Ice
31	1.2D+1.6W (pattern 1) 210 deg - No Ice
32	1.2D+1.6W (pattern 2) 210 deg - No Ice
33	0.9 Dead+1.6 Wind 210 deg - No Ice
34	1.2 Dead+1.6 Wind 240 deg - No Ice
35	1.2D+1.6W (pattern 1) 240 deg - No Ice
36	1.2D+1.6W (pattern 2) 240 deg - No Ice
37	0.9 Dead+1.6 Wind 240 deg - No Ice
38	1.2 Dead+1.6 Wind 270 deg - No Ice
38	1.2D+1.6W (pattern 1) 270 deg - No Ice
40	1.2D+1.6W (pattern 2) 270 deg - No Ice
41	0.9 Dead+1.6 Wind 270 deg - No Ice
42	1.2 Dead+1.6 Wind 300 deg - No Ice
43	1.2D+1.6W (pattern 1) 300 deg - No Ice
44	1.2D+1.6W (pattern 2) 300 deg - No Ice
45	0.9 Dead+1.6 Wind 300 deg - No Ice
46	1.2 Dead+1.6 Wind 330 deg - No Ice
47	1.2D+1.6W (pattern 1) 330 deg - No Ice
48	1.2D+1.6W (pattern 2) 330 deg - No Ice
49	0.9 Dead+1.6 Wind 330 deg - No Ice
50	1.2 Dead+1.0 Ice+1.0 Temp
51	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
52	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
53	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
54	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
55	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
56	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
57	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
58	1.2 Dead+1.0 Wind 100 deg+1.0 Ice+1.0 Temp
59	
	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
60	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
61	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
62	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
63	Dead+Wind 0 deg - Service
64	Dead+Wind 30 deg - Service
65	Dead+Wind 60 deg - Service
66	Dead+Wind 90 deg - Service
67	Dead+Wind 120 deg - Service

tnxTower	Job	CT3470A	Page 22 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by ∨Y

Comb.	Description
No.	
68	Dead+Wind 150 deg - Service
69	Dead+Wind 180 deg - Service
70	Dead+Wind 210 deg - Service
71	Dead+Wind 240 deg - Service
72	Dead+Wind 270 deg - Service
73	Dead+Wind 300 deg - Service
74	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axi
No.	ft	Type		Load		Moment	Moment
				Comb.	lb	lb-ft	lb-ft
T1	180 - 160	Leg	Max Tension	26	30540.57	15.75	-76.59
			Max. Compression	18	-33591.58	-118.34	-63.28
			Max. Mx	34	-33577.35	149.31	-19.66
			Max. My	4	14525.38	-18.63	156.22
			Max. Vy	38	2337.32	0.00	-0.00
			Max. Vx	2	2340.61	0.00	0.00
		Diagonal	Max Tension	14	4213.30	0.00	0.00
			Max. Compression	38	-4246.21	0.00	0.00
			Max. Mx	2	114.28	77.63	6.13
			Max. My	34	20.95	75.49	6.64
			Max. Vy	ax. Compression 38 -4246 Max. Mx 2 114.2 Max. My 34 20.95 Max. Vy 58 -28.14 Max. Vy 58 -28.14 Max. Vx 34 2.03 Max Tension 2 1297.3 ax. Compression 26 -1280.0 Max. Mx 55 402.55 Max. My 36 -643.2 Max. My 36 -643.2 Max. Vy 55 41.65 Max. Vy 36 0.00 Max Tension 26 77649. ax. Compression 2 -82036. Max. Mx 16 -1531.1 Max. My 2 -82036. Max. Vy 34 293.3 Max. Vy 34 293.3 Max. Vy 34 293.3 Max. Vy 34 293.3 Max. Vy 30 3705.2 Max. My 6 -3362.4 Max. My 6 -3362.4 Max. My 6			0.27
			Max. Vx	34	2.03	0.00	0.00
		Top Girt	Max Tension	2	1297.32	0.00	0.00
		1	Max. Compression	26	-1280.09	0.00	0.00
			Max. Mx	55	402.50	-52.06	0.00
			Max. My	36	-643.20	0.00	-0.00
			<i>.</i>		41.65	0.00	0.00
			2	36		0.00	0.00
T2 160 - 140	Leg			77649.53	-0.89	-172.60	
	8	Max. Compression		-82036.39	-2.69	242.18	
			1		-1531.87	-254.86	2.77
					-82036.39	-2.69	242.18
			2		293.33	106.20	-34.84
					-482.87	40.41	-78.16
		Diagonal			5773.02	0.00	0.00
		Diagonai			-6045.47	0.00	0.00
			1		3705.29	86.27	-0.57
					-3362.64	44.01	-12.79
			2			40.59	1.64
						0.00	0.00
Т3	140 - 120	Leg				106.96	-497.58
15	140 - 120	LUg	Max. Compression	20	-144318.66	-41.78	296.23
			Max. Max. Mx	14	-120799.87	-565.90	89.51
			Max. My	26	-71871.53	-75.43	-649.24
			Max. Vy	38	622.52	196.55	2.21
			Max. Vy Max. Vx	43	364.32	216.37	117.92
		Diagonal	Max Tension	46	6957.88	0.00	0.00
		Diagonai	Max. Compression	46	-7818.94	0.00	0.00
			-	40	4221.50	108.94	0.00
			Max. Mx Max. My	26	-6591.66	-27.52	0.58
			Max. My May Wy				
			Max. Vy May Vy	55	-35.20	56.09	2.80
T 4	120 100	τ	Max. Vx	6	-3.74	0.00	0.00
T4	120 - 100	Leg	Max Tension	26	205494.85	116.44	-1036.14
			Max. Compression	2	-215604.73	3.55	1362.62
			Max. Mx	14	-3193.01	-1696.76	-43.21
		Max. My	2	103775.01	-105.72	1685.87	

tnxTower

Job

Project

Client

Fullerton Engineering

Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

CT3470A

180 ft. Self-Support Tower

Smartlink / AT&T

23 of 35 Date

07:43:54 01/07/19

Designed by

Page

VY

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	•	• •		Comb.	lb	lb-ft	lb-ft
			Max. Vy	42	-194.93	1081.22	804.85
			Max. Vx	22	315.71	-695.14	-1259.35
		Diagonal	Max Tension	38	9142.41	105.70	-0.05
		0	Max. Compression	38	-10730.74	0.00	0.00
			Max. Mx	26	7637.62	126.62	1.79
			Max. My	10	-8843.96	-36.26	-20.18
			Max. Vy	55	-36.91	69.45	0.55
			Max. Vx	10	-4.96	0.00	0.00
T5	100 - 80	Leg	Max Tension	26	286798.52	-5.82	-1409.70
10	100 00	LUS	Max. Compression	20	-300466.74	-0.83	5177.85
			Max. Mx	34	-299197.97	4511.10	-2503.00
			Max. My	2	-300466.74	-0.83	5177.85
			Max. Vy	30	-642.51	3595.61	-2580.60
			Max. Vy Max. Vx	2	-685.05	-0.83	5177.85
		Diagonal	Max Tension	42	10460.61	114.88	-0.67
		Diagonai		18	-13143.41	0.00	0.00
			Max. Compression Max. Mx	2	7381.11	137.74	-8.26
							-8.20 56.03
			Max. My	46	-11585.82	-102.61	
			Max. Vy	59	-38.16	77.08	-2.05
T (00 (0	т	Max. Vx	46	-13.46	-102.61	56.03
T6	80 - 60	Leg	Max Tension	26	297096.61	-4550.10	-1.56
			Max. Compression	2	-312070.53	1123.51	-0.74
			Max. Mx	2	-311977.15	5177.85	1.14
			Max. My	30	-3966.63	-198.03	3865.98
			Max. Vy	2	670.87	5177.85	1.14
			Max. Vx	30	456.99	-198.37	3865.95
		Diagonal	Max Tension	16	5242.84	0.00	0.00
			Max. Compression	36	-6927.10	97.35	-15.32
			Max. Mx	26	-1663.75	126.11	18.17
			Max. My	38	-3582.68	104.72	27.20
			Max. Vy	59	-38.05	70.07	-5.22
			Max. Vx	38	-6.98	99.03	27.20
T7	60 - 40	Leg	Max Tension	26	282928.25	-1919.88	-2.12
			Max. Compression	2	-302482.15	2717.99	-0.95
			Max. Mx	2	-300337.97	2717.99	-0.95
			Max. My	30	-4498.58	-104.65	2379.98
			Max. Vy	2	-199.87	2717.99	-0.95
			Max. Vx	30	127.15	-38.74	2280.96
		Diagonal	Max Tension	36	2068.90	0.00	0.00
		0	Max. Compression	32	-2657.84	0.00	0.00
			Max. Mx	2	-1053.22	65.94	-3.03
			Max. My	12	-2494.41	54.39	-7.94
			Max. Vy	57	42.78	57.41	6.90
			Max. Vx	59	2.61	0.00	0.00
T8	40 - 20	Leg	Max Tension	26	278844.12	-1717.93	-1.02
	20	205	Max. Compression	20	-302795.07	1618.03	-0.24
			Max. Compression Max. Mx	2	-300340.64	2075.37	-0.24
			Max. My	30	-5030.61	11.54	1930.25
			Max. Vy	53	-162.14	-871.11	-18.42
			-				
		Diagonal	Max. Vx Max Tension	46	-107.11 1063-31	-27.23	1912.99
		Diagonal	Max Tension	19	1063.31	0.00	0.00
			Max. Compression	19	-1436.74	0.00	0.00
			Max. Mx	57	-226.63	70.20	8.76
			Max. My	59	-314.45	64.60 70.20	9.37
			Max. Vy	57	48.51	70.20	8.76
TO	20.0	*	Max. Vx	59 20	2.76	0.00	0.00
Т9	20 - 0	Leg	Max Tension	29	281938.33	-1393.28	-1.39
			Max. Compression	2	-308527.07	-0.00	0.34
			Max. Mx	2	-306844.91	1792.16	-0.51
			Max. My	6	-8929.90	-53.86	-2927.15
		Max. Vy	53	-373.31	-1578.24	-8.32	

	Job		Page
tnxTower		CT3470A	24 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
	Client	Smartlink / AT&T	Designed by VY

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	lb	lb-ft	lb-ft
			Max. Vx	6	-501.03	-54.02	-2927.14
		Diagonal	Max Tension	47	2312.79	0.00	0.00
			Max. Compression	19	-2930.49	0.00	0.00
			Max. Mx	57	-861.77	104.10	-10.90
			Max. My	53	-1380.41	78.71	-13.25
			Max. Vy	57	59.26	104.10	-10.90
			Max. Vx	53	3.37	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
Leg C	Max. Vert	34	307725.30	18330.43	-10191.79
-	Max. H _x	34	307725.30	18330.43	-10191.79
	Max. Hz	13	-279927.87	-16635.57	9180.62
	Min. Vert	13	-279927.87	-16635.57	9180.62
	Min. H _x	13	-279927.87	-16635.57	9180.62
	Min. Hz	34	307725.30	18330.43	-10191.79
Leg B	Max. Vert	18	306889.96	-18316.37	-10173.44
-	Max. H _x	45	-279461.57	16629.14	9170.89
	Max. Hz	45	-279461.57	16629.14	9170.89
	Min. Vert	45	-279461.57	16629.14	9170.89
	Min. H _x	18	306889.96	-18316.37	-10173.44
	Min. Hz	18	306889.96	-18316.37	-10173.44
Leg A	Max. Vert	2	310418.07	-8.84	21233.72
•	Max. H _x	16	7633.90	1299.46	505.07
	Max. Hz	2	310418.07	-8.84	21233.72
	Min. Vert	29	-283024.31	5.21	-19222.88
	Min. H _x	40	5719.15	-1303.08	406.33
	Min. Hz	29	-283024.31	5.21	-19222.88

Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shear _z	Overturning	Overturning	Torque
Combination	lb	lb	lb	Moment, M_x lb-ft	Moment, M _z lb-ft	lb-ft
Dead Only	17516.56	0.00	0.00	4449.62	-80.05	0.00
1.2 Dead+1.6 Wind 0 deg - No	21019.87	-5.03	-30104.25	-3415906.26	1666.48	-158.51
Ice						
1.2D+1.6W (pattern 1) 0 deg -	21019.87	-67.11	-28394.95	-3140231.18	11236.85	-1698.85
No Ice						
1.2D+1.6W (pattern 2) 0 deg -	21019.87	59.06	-24616.48	-3016265.97	-8626.94	1460.76
No Ice	1.55(1.00)		2010/05		1 (0 0 0 0	152.20
0.9 Dead+1.6 Wind 0 deg - No	15764.90	-5.04	-30104.25	-3401317.72	1699.00	-173.38
	21010.07	14526 14	24914 64	2041076 77	1660722.22	5657.27
1.2 Dead+1.6 Wind 30 deg - No	21019.87	14526.14	-24814.64	-2841976.77	-1668732.33	5657.37
Ice 1.2D+1.6W (pattern 1) 30 deg -	21019.87	13720.52	-23419.28	-2617437.48	-1538995.29	4075.09
No Ice	21019.07	13720.32	-23419.20	-201/43/.40	-1556995.29	4075.09
1.2D+1.6W (pattern 2) 30 deg -	21019.87	11920.91	-20440.38	-2523867.83	-1475363.98	6760.75
No Ice	21019.07	11720.71	-20440.38	-2525807.85	-1+/5505.98	0700.75
0.9 Dead+1.6 Wind 30 deg - No	15764.90	14526.11	-24814.65	-2829942.57	-1660800.93	5611.34

tnxTower

Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

Job Page CT3470A 25 of 35 Project Date 180 ft. Self-Support Tower 07:43:54 01/07/19 Client Designed by Smartlink / AT&T VY

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Ice 1.2 Dead+1.6 Wind 60 deg - No Ice	21019.87	24304.33	-13878.53	-1596021.05	-2802840.72	8171.08
1.2D+1.6W (pattern 1) 60 deg - No Ice	21019.87	23009.69	-13059.40	-1464547.91	-2593980.84	7116.73
1.2D+1.6W (pattern 2) 60 deg - No Ice	21019.87	19895.39	-11466.13	-1423138.67	-2472987.81	8767.09
0.9 Dead+1.6 Wind 60 deg - No Ice	15764.90	24304.32	-13878.53	-1589765.09	-2789525.60	8121.99
1.2 Dead+1.6 Wind 90 deg - No Ice	21019.87	28158.45	-26.32	434.66	-3237545.22	8408.85
1.2D+1.6W (pattern 1) 90 deg - No Ice	21019.87	26654.73	35.74	9894.77	-2994610.66	8155.11
1.2D+1.6W (pattern 2) 90 deg - No Ice	21019.87	22922.50	-77.87	-7062.13	-2846219.74	8315.74
0.9 Dead+1.6 Wind 90 deg - No Ice	15764.90	28158.45	-26.30	-855.46	-3222246.47	8367.73
1.2 Dead+1.6 Wind 120 deg - No Ice	21019.87	25794.01	14649.78	1672010.22	-2933147.77	8119.60
1.2D+1.6W (pattern 1) 120 deg - No Ice	21019.87	24406.82	13848.88	1542368.13	-2708594.91	8596.83
1.2D+1.6W (pattern 2) 120 deg - No Ice	21019.87	20881.76	11910.65	1471251.28	-2566874.10	7188.32
0.9 Dead+1.6 Wind 120 deg - No Ice	15764.90	25794.01	14649.78	1662832.20	-2919446.24	8081.11
1.2 Dead+1.6 Wind 150 deg - No Ice	21019.87	14395.44	24786.90	2845544.39	-1648605.63	5879.72
1.2D+1.6W (pattern 1) 150 deg - No Ice	21019.87	13697.33	23453.61	2630449.81	-1535325.97	6958.90
1.2D+1.6W (pattern 2) 150 deg - No Ice	21019.87	11734.98	20361.68	2520917.09	-1446749.71	4205.24
0.9 Dead+1.6 Wind 150 deg - No Ice	15764.90	14395.46	24786.88	2830781.21	-1640872.41	5858.27
1.2 Dead+1.6 Wind 180 deg - No Ice	21019.87	-0.19	28320.53	3262328.74	1540.12	161.59
1.2D+1.6W (pattern 1) 180 deg - No Ice	21019.87	61.88	26789.78	3015736.06	-7881.56	1694.46
1.2D+1.6W (pattern 2) 180 deg - No Ice	21019.87	-62.18	23367.70	2899324.62	10291.87	-1453.65
0.9 Dead+1.6 Wind 180 deg - No Ice	15764.90	-0.19	28320.53	3245543.24	1546.69	175.34
1.2 Dead+1.6 Wind 210 deg - No Ice	21019.87	-14399.39	24795.07	2852476.95	1653627.04	-5615.29
1.2D+1.6W (pattern 1) 210 deg - No Ice	21019.87	-13593.78	23399.70	2627857.55	1524030.64	-4033.79
1.2D+1.6W (pattern 2) 210 deg - No Ice	21019.87	-11844.84	20428.66	2534624.34	1465981.91	-6735.71
0.9 Dead+1.6 Wind 210 deg - No Ice	15764.90	-14399.41	24795.05	2837646.99	1645895.52	-5569.32
1.2 Dead+1.6 Wind 240 deg - No Ice	21019.87	-25805.64	14650.68	1675272.50	2942123.81	-7961.47
1.2D+1.6W (pattern 1) 240 deg - No Ice	21019.87	-24356.38	13742.27	1529143.87	2708149.87	-6898.85
1.2D+1.6W (pattern 2) 240 deg - No Ice	21019.87	-20950.80	12018.70	1489715.69	2581605.01	-8648.79
0.9 Dead+1.6 Wind 240 deg - No Ice	15764.90	-25805.64	14650.67	1666045.56	2928402.74	-7908.00
1.2 Dead+1.6 Wind 270 deg - No Ice	21019.87	-28163.94	-24.50	4718.31	3240963.24	-8413.53
1.2D+1.6W (pattern 1) 270 deg - No Ice	21019.87	-26660.22	-86.58	-4802.75	2998032.82	-8159.18

tnxTower

Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com

Job Page CT3470A 26 of 35 Project Date 180 ft. Self-Support Tower 07:43:54 01/07/19 Client Smartlink / AT&T OW VY

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
1.2D+1.6W (pattern 2) 270 deg	21019.87	-22925.79	47.36	14494.81	2848189.64	-8319.14
- No Ice						
0.9 Dead+1.6 Wind 270 deg -	15764.90	-28163.93	-24.48	3369.68	3225698.40	-8371.84
No Ice						
1.2 Dead+1.6 Wind 300 deg -	21019.87	-24301.08	-13876.43	-1592007.62	2798963.78	-8333.28
No Ice		22060 21	1014401	1.15(000 00		0011.00
1.2D+1.6W (pattern 1) 300 deg	21019.87	-23068.51	-13164.81	-1476893.00	2599608.21	-8811.99
- No Ice	21010.97	-19831.37	11257.27	1404276 02	2461064.11	7212.00
1.2D+1.6W (pattern 2) 300 deg - No Ice	21019.87	-19651.57	-11357.37	-1404376.92	2461064.11	-7313.88
- No Ice 0.9 Dead+1.6 Wind 300 deg -	15764.90	-24301.07	-13876.43	-1585803.10	2785751.06	-8297.80
No Ice	13704.90	-24301.07	-13870.43	-1585805.10	2785751.00	-8297.80
1.2 Dead+1.6 Wind 330 deg -	21019.87	-14522.20	-24812.80	-2839267.76	1663241.59	-5917.92
No Ice	21019.07	11522.20	21012.00	2039201.10	1005211.59	5717.72
1.2D+1.6W (pattern 1) 330 deg	21019.87	-13824.09	-23479.50	-2624124.52	1550040.99	-6997.39
- No Ice						
1.2D+1.6W (pattern 2) 330 deg	21019.87	-11811.03	-20377.22	-2512852.53	1455422.24	-4227.06
- No Ice						
0.9 Dead+1.6 Wind 330 deg -	15764.90	-14522.17	-24812.81	-2827265.31	1655436.65	-5896.81
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	81590.12	0.00	0.00	31120.10	-1276.72	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	81590.12	1.79	-9864.36	-1112465.38	-2740.52	70.41
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	81590.12	4873.50	-8379.44	-944506.20	-570157.34	1547.71
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	81590.12	8306.91	-4771.32	-526528.08	-970590.61	2366.83
Ice+1.0 Temp	01500.10	0502.12	7.01	20202.21	1110050 41	25(2.00
1.2 Dead+1.0 Wind 90 deg+1.0	81590.12	9592.12	-7.21	28392.21	-1118250.41	2563.08
Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	81590.12	8470.12	4847.32	592198.13	-982983.85	2264.53
deg+1.0 Ice+1.0 Temp	81390.12	04/0.12	4647.52	392196.13	-962965.65	2204.55
1.2 Dead+1.0 Wind 150	81590.12	4846.51	8371.94	1003847.61	-563222.15	1419.37
deg+1.0 Ice+1.0 Temp	01000.12	4040.51	05/1.94	1005047.01	505222.15	1419.57
1.2 Dead+1.0 Wind 180	81590.12	-2.75	9661.85	1155917.18	822.85	-69.26
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	81590.12	-4851.93	8376.15	1006984.37	564767.40	-1541.15
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	81590.12	-8474.95	4852.18	595935.73	983989.61	-2334.67
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	81590.12	-9593.12	-1.45	32796.28	1116392.55	-2564.99
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	81590.12	-8303.61	-4766.24	-522659.18	965525.91	-2298.42
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	81590.12	-4868.09	-8376.39	-942196.86	563460.00	-1424.23
deg+1.0 Ice+1.0 Temp	1751656	1.05	(250.02	705411 40	207.02	26.06
Dead+Wind 0 deg - Service	17516.56	-1.05	-6259.92	-705411.40	287.93	-36.06
Dead+Wind 30 deg - Service	17516.56	3020.58	-5160.00	-586270.07	-346240.79	1103.85
Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service	17516.56 17516.56	5053.87 5855.31	-2885.92 -5.47	-327748.54 3444.92	-581504.93 -671737.22	1695.97 1808.57
Dead+Wind 120 deg - Service	17516.56	5363.65	3046.29	350266.95	-608670.89	1685.42
Dead+Wind 120 deg - Service	17516.56	2993.41	5154.22	593718.05	-342117.66	1153.87
Dead+Wind 180 deg - Service	17516.56	-0.04	5889.01	680166.18	260.33	33.74
Dead+Wind 210 deg - Service	17516.56	-2994.24	5155.92	595156.61	343042.29	-1096.30
Dead+Wind 240 deg - Service	17516.56	-5366.07	3046.48	350942.01	610416.01	-1649.43
Dead+Wind 270 deg - Service	17516.56	-5856.45	-5.09	4331.11	672323.67	-1808.50
Dead+Wind 300 deg - Service	17516.56	-5053.20	-2885.49	-326911.83	580576.29	-1729.78
Dead+Wind 330 deg - Service	17516.56	-3019.76	-5159.61	-585701.09	344982.98	-1161.55

tnxTower

Job

Project

Client

Fullerton Engineering Consultants

1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com CT3470A

180 ft. Self-Support Tower

Date 07:43:54 01/07/19

27 of 35

Smartlink / AT&T

Designed by VY

Page

Solution Summary

		r	m of Applied Former	,		Sum of Degetion	c	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Load				PX			% Frror
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								70 EITOI
2 -5.04 -21019.87 -30104.25 5.03 21019.87 20104.25 0.000% 4 50.04 -21019.87 -24616.48 -59.06 21019.87 24616.48 0.000% 5 -5.04 -11570.49 -30104.25 5.04 15704.59 30104.25 0.000% 6 14526.09 -21019.87 -24814.65 -14526.14 21019.87 22419.28 0.000% 9 14526.09 -21019.87 -24414.64 -14920.51 15764.90 24814.65 0.000% 9 14526.09 -15764.90 24814.65 0.000% 0.000% 10 24304.31 -21019.87 -13654.41 -23009.67 13878.33 0.000% 12 19895.38 -21019.87 -13654.41 -24304.33 21019.87 13878.33 0.000% 14 28158.44 -21019.87 -77.86 -22022.50 21019.87 -73.78 0.000% 15 26654.72 -21019.87 -77.86 -22019.87 -1378.48								0.000%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-30104 25				
4 50.4 -21019.87 24616.48 -59.06 21019.87 24616.48 0.000% 6 14526.09 -21019.87 -24814.65 -14526.14 21019.87 23419.28 0.000% 7 13720.47 -21019.87 -23419.29 21019.87 23419.28 0.000% 9 14526.09 -15764.90 -24814.65 -14526.11 15764.90 24814.65 0.000% 9 14526.09 -15764.90 -24814.65 0.000% 1019.87 13878.33 0.000% 10 24304.31 -21019.87 -13659.41 -23009.69 21019.87 13659.40 0.000% 13 24304.31 -15764.90 13878.53 0.000% 13 24304.31 -0000% 13878.53 0.000% 144 28158.44 -21019.87 -77.86 -22019.87 137.87 0.000% 15 26654.72 -21019.87 -77.87 0.000% 16 2292.49 -21019.87 -17.87 0.000% 16 2202.440 -21019.87 -17.8								
5 -5.04 -15764.90 -2010.82 5.04 15764.90 2010.82 2010.987 -24814.65 -14326.14 21019.87 24814.64 0.0000% 7 13720.47 -21019.87 -23419.29 -13720.52 21019.87 23419.28 0.0000% 9 14526.09 -15764.90 -24814.65 -14326.11 15764.90 24814.65 0.000% 10 23404.31 -21019.87 -13365.41 -23009.69 21019.87 13875.53 0.0000% 12 19895.38 -21019.87 -11366.14 -19895.39 21019.87 1366.13 0.0000% 14 28188.44 -21019.87 -75.75 -26644.73 21019.87 77.87 0.0000% 15 26654.72 -21019.87 13764.90 -26.32 2818.45 1107.97 26.32 0.0000% 18 22072.49 -21019.87 13464.76 -21019.87 13464.97.8 0.000% 20 20284.76 -21019.87 13464.76 -22316.70 0.1000% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
7 13720.47 -21019.87 -23419.29 -13720.52 21019.87 23419.28 0.000% 9 14526.09 -15764.90 -24814.65 -14526.11 15764.90 24814.65 0.000% 10 24304.31 -21019.87 -13878.54 -23409.43 21019.87 13875.53 0.000% 12 19895.38 -21019.87 -11466.14 -19895.39 21019.87 1366.13 0.000% 13 24304.31 -15764.90 -13878.54 -24304.32 11987 7.53 0.000% 14 228158.44 -21019.87 -77.87 0.000% 16 22922.49 -21019.87 -77.87 0.000% 15 26654.72 -21019.87 14649.76 -207.019.87 1464.97.8 0.000% 17 28158.44 -15764.90 -26.32 -28158.45 21019.87 -1464.97.8 0.000% 20 20881.76 -21019.87 1484.87 -24406.82 21019.87 -1464.97.8 0.000% 2110.877								
8 11920.87 -20140.40 -11920.91 21019.87 20440.38 0.000% 10 24304.31 -21019.87 -13878.54 -24304.33 21019.87 13657.49 24814.65 0.0000% 11 23009.67 -21019.87 -13057.44 -23009.69 21019.87 13057.40 0.0000% 12 19895.38 -21019.87 -13167.54 -23404.32 15764.90 13878.53 0.0000% 13 23404.31 -15764.90 -13878.54 -221019.87 -155.74 0.000% 16 22922.49 -21019.87 -77.56 -22922.50 21019.87 -14649.78 0.000% 17 2818.44 -15764.90 -6.62 -23794.01 21019.87 -14649.78 0.000% 20 20881.76 -21019.87 14649.76 -23794.01 15764.90 2.66.30 0.000% 21 25794.02 -21019.87 24786.87 -44395.44 21019.87 -24786.00 0.000% 21 25794.02 -13764.30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
9 14526.09 -15764.90 -24814.65 -14526.11 15764.90 24814.65 0.000% 11 23009.67 -21019.87 -13059.41 -23009.69 21019.87 13059.40 0.000% 12 19895.38 -21019.87 -1466.14 -19895.39 21019.87 1366.14 -19895.39 21019.87 1378.53 0.000% 14 28158.44 -21019.87 -35.75 -26654.73 21019.87 -35.74 0.000% 16 22922.49 -21019.87 1364.97 -23.22 -2818.84.4 15764.90 26.30 0.000% 18 25794.02 -21019.87 1384.84 -2440.652 21019.87 -14649.78 0.000% 20 2881.76 -21019.87 1384.84 -2440.652 21019.87 -14649.78 0.000% 21 25794.02 -21019.87 2476.87 -44395.44 21019.87 -24786.90 0.000% 22 14395.46 -51764.90 -4786.87 -44395.46 15764.90 -24785.61								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
12 19895.38 -21019.87 -11466.14 -19895.39 21019.87 1466.13 0.000% 14 28158.44 -21019.87 -26.32 -28158.45 21019.87 26.53 0.000% 15 26654.72 -21019.87 -37.56 -22922.50 21019.87 -7.7.87 0.000% 16 22922.49 -21019.87 -7.7.86 -22922.50 21019.87 -14649.78 0.000% 18 25794.02 -21019.87 13848.87 -24406.82 21019.87 -14649.78 0.000% 20 20881.76 -21019.87 13848.87 -24406.82 21019.87 -13848.88 0.000% 21 25794.02 -15764.90 14649.76 -25794.01 15764.90 -14649.78 0.000% 22 14395.46 -21019.87 23453.58 -13697.33 21019.87 -24786.90 0.000% 23 13697.36 -21019.87 2350.52 0.19 21019.87 -24786.90 0.000% 24 11734.99 <								
14 2185.44 -21019.87 -26.32 -2815.845 21019.87 -26.32 0.000% 15 26654.72 -21019.87 -77.86 -22922.50 21019.87 -77.87 0.000% 17 2815.844 -15764.90 -26.32 -2815.843 15764.90 26.30 0.000% 18 25794.02 -21019.87 -14649.76 -25794.01 21019.87 -13848.88 0.000% 20 20881.76 -21019.87 13848.87 -24406.82 21019.87 -13848.88 0.000% 21 25794.02 -15764.90 14649.76 -25794.01 15764.90 -14649.78 0.000% 22 14395.46 -21019.87 23455.58 -13674.39 21019.87 -23453.61 0.000% 24 11734.99 -21019.87 2330.52 0.19 21019.87 -2353.63 0.000% 25 14395.46 -15764.90 2330.52 0.19 21019.87 -23679.78 0.000% 26 -0.20 -15764.90 </td <td>12</td> <td>19895.38</td> <td></td> <td>-11466.14</td> <td>-19895.39</td> <td>21019.87</td> <td>11466.13</td> <td>0.000%</td>	12	19895.38		-11466.14	-19895.39	21019.87	11466.13	0.000%
	13	24304.31	-15764.90	-13878.54	-24304.32	15764.90	13878.53	0.000%
	14	28158.44	-21019.87	-26.32	-28158.45	21019.87	26.32	0.000%
	15	26654.72	-21019.87	35.75	-26654.73	21019.87	-35.74	0.000%
	16	22922.49	-21019.87	-77.86	-22922.50	21019.87	77.87	0.000%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	28158.44	-15764.90	-26.32	-28158.45	15764.90	26.30	0.000%
20 20881.76 -21019.87 11910.64 -20881.76 21019.87 -11910.65 0.000% 21 25794.02 -15764.90 14649.76 -25794.01 15764.90 -14649.78 0.000% 22 14395.46 -21019.87 24786.87 -14395.44 21019.87 -24786.90 0.000% 24 11734.99 -21019.87 20361.66 -11734.98 21019.87 -2365.61 80.000% 25 14395.46 -15764.90 24786.87 -14395.46 15764.90 -24786.88 0.000% 26 -0.20 -21019.87 2870.52 0.19 21019.87 -26789.78 0.000% 28 -62.19 -21019.87 23367.69 62.18 21019.87 -24795.07 0.000% 30 -14399.42 -21019.87 24795.03 14399.39 21019.87 -24795.07 0.000% 31 -15593.81 -21019.87 14450.66 20009% 34 -24795.05 0.000% 32 -11844.87 -		25794.02	-21019.87	14649.76	-25794.01	21019.87	-14649.78	0.000%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		24406.83				21019.87		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
23 13697.36 -21019.87 2345.35.8 -113697.33 21019.87 -23453.61 0.000% 24 11734.99 -21019.87 20361.66 -11734.98 21019.87 -20361.68 0.000% 25 14395.46 -15764.90 -24786.88 0.000% -24786.88 0.000% 26 -0.20 -21019.87 28320.52 0.19 21019.87 -28320.53 0.000% 28 -62.19 -21019.87 23367.69 62.18 21019.87 -23367.70 0.000% 30 -14399.42 -21019.87 24795.03 14399.39 21019.87 -24795.03 0.000% 31 -13593.81 -21019.87 24399.67 13593.78 21019.87 -23399.70 0.000% 32 -11844.87 -21019.87 24395.03 14399.41 15764.90 24795.03 0.000% 33 -25805.65 -21019.87 14650.66 25805.64 21019.87 -14795.05 0.000% 36 -20950.81 -21019.87								
24 11734.99 -21019.87 20361.66 -11734.98 21019.87 -20361.68 0.000% 25 14395.46 -15764.90 24786.87 -14395.46 15764.90 -24786.88 0.000% 26 -0.20 -21019.87 28320.52 0.19 21019.87 -26789.78 0.000% 28 -62.19 -21019.87 23367.69 62.18 21019.87 -23367.70 0.000% 30 -14399.42 -21019.87 24795.03 14399.39 21019.87 -24795.07 0.000% 31 -1359.81 -21019.87 20428.63 11844.84 21019.87 -24795.05 0.000% 33 -11844.87 -21019.87 1450.66 25805.64 21019.87 -1450.66 0.000% 34 -25805.65 -21019.87 13742.25 24356.38 21019.87 -1450.66 0.000% 35 -24356.56 -21019.87 12018.68 20950.80 21019.87 -1450.67 0.000% 36 -20950.81 <								
25 14395.46 -15764.90 24786.87 -14395.46 15764.90 -24786.88 0.000% 26 -0.20 -21019.87 28320.52 0.19 21019.87 -28320.53 0.000% 28 -62.19 -21019.87 23367.69 62.18 21019.87 -23367.70 0.000% 29 -0.20 -15764.90 28320.52 0.19 15764.90 -23320.53 0.000% 30 -14399.42 -21019.87 24795.03 14399.39 21019.87 -24795.07 0.000% 31 -13593.81 -21019.87 20428.63 11844.84 21019.87 -24395.05 0.000% 33 -14399.42 -15764.90 24795.03 14399.41 15764.90 -24795.05 0.000% 34 -25805.65 -21019.87 13742.27 0.000% 35 -24356.39 -21019.87 13742.27 0.000% 36 -20950.81 -21019.87 13742.27 0.000% 38 -28163.92 -21019.87 12018.68								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	-24301.06				15764.90		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	-14522.15	-21019.87	-24812.80	14522.20	21019.87	24812.80	0.000%
49-14522.15-15764.90-24812.8014522.1715764.9024812.810.000%500.00-81590.120.00-0.0081590.12-0.000.000%511.79-81590.12-9864.36-1.7981590.129864.360.000%524873.50-81590.12-8379.44-4873.5081590.128379.440.000%538306.90-81590.12-4771.32-8306.9181590.124771.320.000%549592.11-81590.12-7.20-9592.1281590.127.210.000%558470.11-81590.124847.32-8470.1281590.12-4847.320.000%564846.51-81590.128371.94-4846.5181590.12-8371.940.000%57-2.75-81590.129661.842.7581590.12-9661.850.000%		-13824.05	-21019.87	-23479.51	13824.09	21019.87	23479.50	0.000%
500.00-81590.120.00-0.0081590.12-0.000.000%511.79-81590.12-9864.36-1.7981590.129864.360.000%524873.50-81590.12-8379.44-4873.5081590.128379.440.000%538306.90-81590.12-4771.32-8306.9181590.124771.320.000%549592.11-81590.12-7.20-9592.1281590.127.210.000%558470.11-81590.124847.32-8470.1281590.12-4847.320.000%564846.51-81590.128371.94-4846.5181590.12-8371.940.000%57-2.75-81590.129661.842.7581590.12-9661.850.000%								
511.79-81590.12-9864.36-1.7981590.129864.360.000%524873.50-81590.12-8379.44-4873.5081590.128379.440.000%538306.90-81590.12-4771.32-8306.9181590.124771.320.000%549592.11-81590.12-7.20-9592.1281590.127.210.000%558470.11-81590.124847.32-8470.1281590.12-4847.320.000%564846.51-81590.128371.94-4846.5181590.12-8371.940.000%57-2.75-81590.129661.842.7581590.12-9661.850.000%								
524873.50-81590.12-8379.44-4873.5081590.128379.440.000%538306.90-81590.12-4771.32-8306.9181590.124771.320.000%549592.11-81590.12-7.20-9592.1281590.127.210.000%558470.11-81590.124847.32-8470.1281590.12-4847.320.000%564846.51-81590.128371.94-4846.5181590.12-8371.940.000%57-2.75-81590.129661.842.7581590.12-9661.850.000%								
538306.90-81590.12-4771.32-8306.9181590.124771.320.000%549592.11-81590.12-7.20-9592.1281590.127.210.000%558470.11-81590.124847.32-8470.1281590.12-4847.320.000%564846.51-81590.128371.94-4846.5181590.12-8371.940.000%57-2.75-81590.129661.842.7581590.12-9661.850.000%								
549592.11-81590.12-7.20-9592.1281590.127.210.000%558470.11-81590.124847.32-8470.1281590.12-4847.320.000%564846.51-81590.128371.94-4846.5181590.12-8371.940.000%57-2.75-81590.129661.842.7581590.12-9661.850.000%								
558470.11-81590.124847.32-8470.1281590.12-4847.320.000%564846.51-81590.128371.94-4846.5181590.12-8371.940.000%57-2.75-81590.129661.842.7581590.12-9661.850.000%								
56 4846.51 -81590.12 8371.94 -4846.51 81590.12 -8371.94 0.000% 57 -2.75 -81590.12 9661.84 2.75 81590.12 -9661.85 0.000%								
57 -2.75 -81590.12 9661.84 2.75 81590.12 -9661.85 0.000%								
36 -4631.93 -81390.12 8570.14 4851.93 81390.12 -8376.15 0.000%								
	38	-4031.93	-01390.12	03/0.14	4031.93	61390.12	-03/0.13	0.000%

A	Job		Page
tnxTower		CT3470A	28 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

	Sui	m of Applied Forces	3		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Erroi
Comb.	lb	lb	lb	lb	lb	lb	
59	-8474.95	-81590.12	4852.18	8474.95	81590.12	-4852.18	0.000%
60	-9593.12	-81590.12	-1.45	9593.12	81590.12	1.45	0.000%
61	-8303.60	-81590.12	-4766.23	8303.61	81590.12	4766.24	0.000%
62	-4868.08	-81590.12	-8376.39	4868.09	81590.12	8376.39	0.000%
63	-1.05	-17516.56	-6259.92	1.05	17516.56	6259.92	0.000%
64	3020.58	-17516.56	-5160.00	-3020.58	17516.56	5160.00	0.000%
65	5053.87	-17516.56	-2885.92	-5053.87	17516.56	2885.92	0.000%
66	5855.31	-17516.56	-5.47	-5855.31	17516.56	5.47	0.000%
67	5363.65	-17516.56	3046.29	-5363.65	17516.56	-3046.29	0.000%
68	2993.41	-17516.56	5154.22	-2993.41	17516.56	-5154.22	0.000%
69	-0.04	-17516.56	5889.01	0.04	17516.56	-5889.01	0.000%
70	-2994.24	-17516.56	5155.92	2994.24	17516.56	-5155.92	0.000%
71	-5366.07	-17516.56	3046.48	5366.07	17516.56	-3046.48	0.000%
72	-5856.45	-17516.56	-5.09	5856.45	17516.56	5.09	0.000%
73	-5053.20	-17516.56	-2885.49	5053.20	17516.56	2885.49	0.000%
74	-3019.76	-17516.56	-5159.61	3019.76	17516.56	5159.61	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00001588
3	Yes	4	0.00000001	0.00000974
4	Yes	4	0.00000001	0.00001405
5	Yes	4	0.00000001	0.00001802
6	Yes	4	0.00000001	0.00009273
7	Yes	4	0.00000001	0.00006981
8	Yes	4	0.00000001	0.00008550
9	Yes	4	0.00000001	0.00008856
10	Yes	4	0.00000001	0.00001810
11	Yes	4	0.00000001	0.00001603
12	Yes	4	0.00000001	0.00001645
13	Yes	4	0.00000001	0.00001813
14	Yes	4	0.00000001	0.00008351
15	Yes	4	0.00000001	0.00006257
16	Yes	4	0.00000001	0.00007578
17	Yes	4	0.00000001	0.00008230
18	Yes	4	0.00000001	0.00001510
19	Yes	4	0.00000001	0.00000983
20	Yes	4	0.00000001	0.00001243
21	Yes	4	0.00000001	0.00001732
22	Yes	4	0.00000001	0.00009002
23	Yes	4	0.00000001	0.00006873
24	Yes	4	0.00000001	0.00008117
25	Yes	4	0.00000001	0.00008741
26	Yes	4	0.00000001	0.00001812
27	Yes	4	0.00000001	0.00001577
28	Yes	4	0.00000001	0.00001647
29	Yes	4	0.00000001	0.00001866
30	Yes	4	0.00000001	0.00009152
31	Yes	4	0.00000001	0.00006879
32	Yes	4	0.00000001	0.00008456
33	Yes	4	0.00000001	0.00008768
34	Yes	4	0.00000001	0.00001649
35	Yes	4	0.00000001	0.00001028

1		Job			Page
tnx	Tower	505	C	Г3470А	29 of 35
T. Il. de	F	Project			Date
	on Engineering	-	180 ft. Sel	f-Support Tower	07:43:54 01/07/19
	onsultants				
	dfield Road, Suite 500 nburg, IL 60173	Client			
	(847) 908-8400	Client	Smar	tlink / AT&T	Designed by
	llertonengineering.com		Onar		VY
	· ·				
36	Yes	4	0.00000001	0.00001468	
37	Yes	4	0.00000001	0.00001819	
38	Yes	4	0.00000001	0.00008416	
39	Yes	4	0.00000001	0.00006329	
40	Yes	4	0.00000001	0.00007586	
41	Yes	4	0.00000001	0.00008284	
42	Yes	4	0.00000001	0.00001751	
43	Yes	4	0.00000001	0.00001606	
44	Yes	4	0.00000001	0.00001563	
45	Yes	4	0.00000001	0.00001747	
46	Yes	4	0.00000001	0.00009206	
47	Yes	4	0.00000001	0.00007076	
48	Yes	4	0.00000001	0.00008226	
49	Yes	4	0.00000001	0.00008896	
50	Yes	4	0.00000001	0.00028714	
51	Yes	5	0.00005224	0.00032835	
52	Yes	5	0.00005501	0.00034319	
53	Yes	5	0.00005685	0.00035350	
54	Yes	5	0.00005449	0.00034229	
55	Yes	5	0.00005238	0.00033191	
56	Yes Yes	5	0.00005448	0.00034168	
57		5 5	0.00005646	0.00035079	
58 59	Yes Yes	5	0.00005465	0.00034057	
59 60	Yes	5	0.00005216 0.00005380	0.00032729 0.00033395	
61	Yes	5	0.00005594	0.00034392	
62	Yes	5	0.00005409	0.00033563	
63	Yes	4	0.0000000000000000000000000000000000000	0.00001693	
64	Yes	4	0.00000001	0.00001859	
65	Yes	4	0.00000001	0.00001967	
66	Yes	4	0.00000001	0.00001840	
67	Yes	4	0.00000001	0.00001696	
68	Yes	4	0.00000001	0.00001844	
69	Yes	4	0.00000001	0.00001959	
70	Yes	4	0.00000001	0.00001852	
71	Yes	4	0.00000001	0.00001696	
72	Yes	4	0.00000001	0.00001835	
73	Yes	4	0.00000001	0.00001960	
74	Yes	4	0.00000001	0.00001846	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 160	19.963	71	1.0765	0.0703
T2	160 - 140	15.473	71	1.0468	0.0695
Т3	140 - 120	11.243	71	0.9441	0.0571
T4	120 - 100	7.612	71	0.7502	0.0440
T5	100 - 80	4.751	71	0.5830	0.0355
T6	80 - 60	2.618	63	0.4049	0.0229
T7	60 - 40	1.317	63	0.2335	0.0130
T8	40 - 20	0.551	63	0.1386	0.0072
Т9	20 - 0	0.132	63	0.0634	0.0029

Critical Deflections and Radius of Curvature - Service Wind

	Job		Page
tnxTower		CT3470A	30 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
182.00	Lightning Rod 4'x.5"	71	19.963	1.0765	0.0703	83162
180.00	(2) KMW EPBQ-654L8H8-L2	71	19.963	1.0765	0.0703	83162
157.23	Sinclair SC479-HF1LDF	71	14.864	1.0385	0.0684	16576
150.00	SO602-1	71	13.304	1.0088	0.0643	10912
137.23	Sinclair SC479-HF1LDF	71	10.697	0.9206	0.0551	7114
130.00	Radiowaves HP3-11	71	9.336	0.8508	0.0501	6443
121.58	Sinclair SC229-DFLN	71	7.871	0.7655	0.0449	5835
110.00	SO602-1	71	6.090	0.6635	0.0398	6507
95.00	Radiowaves HP3-11	71	4.145	0.5408	0.0326	6666

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 160	96.466	2	5.2014	0.3758
T2	160 - 140	74.771	2	5.0587	0.3715
T3	140 - 120	54.321	2	4.5679	0.3116
T4	120 - 100	36.784	2	3.6222	0.2427
T5	100 - 80	22.982	2	2.8146	0.1847
T6	80 - 60	12.668	2	1.9571	0.1167
T7	60 - 40	6.372	2	1.1302	0.0649
T8	40 - 20	2.667	2	0.6715	0.0356
Т9	20 - 0	0.638	2	0.3068	0.0140

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
182.00	Lightning Rod 4'x.5"	2	96.466	5.2014	0.3758	17555
180.00	(2) KMW EPBQ-654L8H8-L2	2	96.466	5.2014	0.3758	17555
157.23	Sinclair SC479-HF1LDF	2	71.823	5.0193	0.3662	3513
150.00	SO602-1	2	64.285	4.8788	0.3467	2320
137.23	Sinclair SC479-HF1LDF	2	51.681	4.4531	0.3015	1506
130.00	Radiowaves HP3-11	2	45.106	4.1124	0.2756	1354
121.58	Sinclair SC229-DFLN	2	38.035	3.6962	0.2476	1219
110.00	SO602-1	2	29.438	3.2023	0.2141	1356
95.00	Radiowaves HP3-11	2	20.054	2.6115	0.1680	1394

	Bolt Design Data									
Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt lb	per Bolt lb	Allowable		
T1	180	Leg	A325N	0.7500	4	7635.14	29820.60	0.256 🖌	1	Bolt Tension

Areas Toosus are	Job		Page
tnxTower	CT3470A	A	31 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project 180 ft. Self-Supp	Date 07:43:54 01/07/19	
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client Smartlink / A	Designed by VY	
Section Elevation Component	Bolt Bolt Size Number Maximum A	llowable Ratio Allowable	Criteria

No.	Lievation	Туре	Grade	Don Size	Of	Load	Load	Load	Ratio	Criteria
	ft			in	Bolts	per Bolt	per Bolt	Allowable		
						lb	lb			
		Diagonal	A325N	0.7500	1	4213.30	4621.88	0.912 🗸	1	Member Block Shear
		Top Girt	A325N	0.7500	1	1297.32	6932.81	0.187 🖌	1	Member Block Shear
T2	160	Leg	A325N	0.7500	4	19412.40	29820.60	0.651 🖌	1	Bolt Tension
		Diagonal	A325N	0.7500	1	5773.02	4621.88	1.249 🗶	1	Member Block Shear
Т3	140	Leg	A325N	0.7500	4	34219.30	29820.60	1.148 🗶	1	Bolt Tension
		Diagonal	A325N	0.7500	1	6957.88	4621.88	1.505 🗶	1	Member Block Shear
T4	120	Leg	A325N	1.0000	6	34249.10	53014.40	0.646 🖌	1	Bolt Tension
		Diagonal	A325N	0.7500	1	9142.41	6932.81	1.319 🗶	1	Member Block Shear
T5	100	Leg	A325N	0.7500	8	35849.80	29820.60	1.202 X	1	Bolt Tension
		Diagonal	A325N	0.7500	1	10460.60	6932.81	1.509 🗶	1	Member Block Shear
T6	80	Leg	A325N	0.7500	8	35778.30	29820.60	1.200 🗶	1	Bolt Tension
		Diagonal	A325N	0.7500	1	5242.84	6932.81	0.756 🖌	1	Member Block Shear
T7	60	Leg	A325N	0.7500	8	34865.10	29820.60	1.169 X	1	Bolt Tension
		Diagonal	A325N	0.7500	1	2068.90	6932.81	0.298 🖌	1	Member Block Shear
T8	40	Leg	A325N	0.7500	8	34855.50	29820.60	1.169 X	1	Bolt Tension
		Diagonal	A325N	0.7500	1	1063.31	6932.81	0.153 🖌	1	Member Block Shear
Т9	20	Diagonal	A325N	0.7500	1	2312.79	8971.88	0.258 🖌	1	Member Block Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	PIPE 2.5 STD	20.00	5.00	63.3 K=1.00	1.7040	-33591.60	57192.30	0.587 1
T2	160 - 140	PIPE 2.5 STD	20.00	5.00	63.3 K=1.00	1.7040	-82036.40	57192.30	1.434 ¹
		4.8.1 (1.43 CR) - 33							
T3	140 - 120	PIPE 2.5 STD	20.00	5.00	63.3 K=1.00	1.7040	-144319.00	57192.30	2.523 ¹
		4.8.1 (2.52 CR) - 60							
T4	120 - 100	PIPE 4 STD	20.00	6.67	53.0 K=1.00	3.1741	-215605.00	116316.00	1.854 ¹
		4.8.1 (1.85 CR) - 87							
T5	100 - 80	PIPE 5 STD	20.00	6.67	42.6 K=1.00	4.2995	-300467.00	169427.00	1.773 ¹

4.8.1 (1.77 CR) - 108

<i>tnxTower</i>	Job	CT3470A	Page 32 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500	Project	180 ft. Self-Support Tower	Date 07:43:54 01/07/19
Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com	Client	Smartlink / AT&T	Designed by VY

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	$\frac{1}{\phi P_n}$
T6	80 - 60	PIPE 5 STD	20.03	6.68	42.7 K=1.00	4.2995	-312071.00	169352.00	1.843 ¹
T7	60 - 40	4.8.1 (1.84 CR) - 129/2 PIPE 6 STD	20.03	6.68	35.7 K=1.00	5.5813	-302482.00	228830.00	1.322 ¹
Т8	40 - 20	4.8.1 (1.32 CR) - 150/2 PIPE 6 STD	20.03	6.68	35.7 K=1.00	5.5813	-302795.00	228830.00	1.323 X
Т9	20 - 0	4.8.1 (1.32 CR) - 171 PIPE 6 STD	20.03	6.68	35.7 K=1.00	5.5813	-308527.00	228830.00	1.348 X
		4.8.1 (1.35 CR) - 192							

¹ P_u / ϕP_n controls

Diagonal Design Data (Compression)											
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	lb	lb	ϕP_n		
T1	180 - 160	L2x2x1/8	7.07	3.23	103.1 K=1.06	0.4844	-4246.21	8826.48	0.481		
T2	160 - 140	L2x2x1/8	7.07	3.23	103.1 K=1.06	0.4844	-6045.47	8826.48	0.685 1		
Т3	140 - 120	L2x2x1/8	7.07	3.23	103.1 K=1.06	0.4844	-7818.94	8826.48	0.886 1		
T4	120 - 100	L2x2x3/16	8.33	3.72	114.9 K=1.01	0.7150	-10730.70	11555.00	0.929 1		
T5	100 - 80	L2x2x3/16	8.33	3.64	113.3 K=1.02	0.7150	-13143.40	11791.30	1.115 ¹ X		
		bolt (1.51 CR) - 110									
T6	80 - 60	L2x2x3/16	8.54	4.07	124.1 K=1.00	0.7150	-6927.10	10301.90	0.672 1		
T7	60 - 40	L2x2x3/16	9.91	4.70	143.1 K=1.00	0.7150	-2657.84	7889.75	0.337 1		
Т8	40 - 20	L2x2x3/16	12.58	6.03	183.5 K=1.00	0.7150	-1436.74	4795.80	0.300 1		
Т9	20 - 0	L2 1/2x2 1/2x3/16	14.32	6.90	167.2 K=1.00	0.9020	-2930.49	7285.66	0.402 1		

¹ P_u / ϕP_n controls

		Top Gi	rt Des	ign D	ata (C	Compr	ression)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
T1	180 - 160	L2x2x3/16	5.00	4.49	136.7	0.7150	-1280.09	8639.01	0.148 1

	tnxTower	Job			CT3470	A			Page 33	of 35
	ullerton Engineering Consultants E. Woodfield Road, Suite 500	Project			Date 07:43:54 01/07/					
	Schaumburg, IL 60173 Phone: (847) 908-8400 fax@fullertonengineering.com	Client		Sn	nartlink / .	AT&T			Designed	by ∕Y
Section No.	Elevation S	ize	L	L_u	Kl/r	A	P _u	ϕP_n	Ratio P	
110.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$	
					K=1.00				 ✓ 	

¹ $P_u / \phi P_n$ controls

Tension Checks

	Leg Design Data (Tension)												
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u				
	ft		ft	ft		in^2	lb	lb	ϕP_n				
T1	180 - 160	PIPE 2.5 STD	20.00	5.00	63.3	1.7040	30540.60	76682.30	0.398 1				
T2	160 - 140	PIPE 2.5 STD	20.00	5.00	63.3	1.7040	77649.50	76682.30	1.013 ¹				
T3	140 - 120	4.8.1 (1.43 CR) - 33 PIPE 2.5 STD	20.00	5.00	63.3	1.7040	136877.00	76682.30	1.785 ¹				
T4	120 - 100	4.8.1 (2.52 CR) - 60 PIPE 4 STD	20.00	6.67	53.0	3.1741	205495.00	142832.00	1.439 ¹				
Т5	100 - 80	4.8.1 (1.85 CR) - 87 PIPE 5 STD	20.00	6.67	42.6	4.2995	286799.00	193476.00	1.482 ¹				
Т6	80 - 60	4.8.1 (1.77 CR) - 108 PIPE 5 STD	20.03	6.68	42.7	4.2995	297097.00	193476.00	1.536 ¹				
Τ7	60 - 40	4.8.1 (1.84 CR) - 129/2 PIPE 6 STD	20.03	6.68	35.7	5.5813	282928.00	251161.00	1.126 ¹				
Т8	40 - 20	4.8.1 (1.32 CR) - 150/2 PIPE 6 STD	20.03	6.68	35.7	5.5813	278844.00	251161.00	1.110 ¹				
Т9	20 - 0	4.8.1 (1.32 CR) - 171 PIPE 6 STD	20.03	6.68	35.7	5.5813	281938.00	251161.00	1.123 ¹				
		4.8.1 (1.35 CR) - 192							<u> </u>				
		4.8.1 (1.32 CR) - 171 PIPE 6 STD											

¹ P_u / ϕP_n controls

	Diagonal Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	lb	lb	ϕP_n		
T1	180 - 160	L2x2x1/8	7.07	3.23	64.5	0.2813	4213.30	12234.40	0.344 1		
T2	160 - 140	L2x2x1/8	7.07	3.23	64.5	0.2813	5773.02	12234.40	0.472 1		

	tnxTow	er	Job			CT347	0A			Page 34 of 3	35
	ullerton Engin Consultant E. Woodfield Road	s	Project		180 ft. \$	Self-Sup	oport Tow	er		Date 07:43:54 01	/07/19
	E. woodjieta Roda Schaumburg, IL 6 Phone: (847) 908- fax@fullertonengir	0173 -8400	Client			Designed by VY					
Section No.	Elevation	Si	ze	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
110.	ft			ft	ft		in ²	lb	lb	ϕP_n	
T3	140 - 120	L2x2	2x1/8	7.07	3.23	64.5	0.2813	6957.88	12234.40	0.569 ¹	
T4	120 - 100	L2x2	x3/16	8.33	3.72	75.0	0.4132	9142.41	17974.30	0.509 1	
T5	100 - 80	L2x2	x3/16	8.33	3.64	73.5	0.4132	10460.60	17974.30	0.582 1	
T6	80 - 60	· · · · · · · · · · · · · · · · · · ·	CR) - 110 x3/16	8.54	4.07	81.9	0.4132	5242.84	17974.30		
T7	60 - 40	L2x2	x3/16	9.91	4.70	94.0	0.4132	2068.90	17974.30	0.115 ¹	
Т8	40 - 20	L2x2	x3/16	12.58	6.03	119.8	0.4132	1063.31	17974.30	0.059 ¹	

¹ P_u / ϕP_n controls

20 - 0

L2 1/2x2 1/2x3/16

Т9

	Top Girt Design Data (Tension)												
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u				
	ft		ft	ft		in^2	lb	lb	ϕP_n				
T1	180 - 160	L2x2x3/16	5.00	4.49	92.6	0.4132	1297.32	17974.30	0.072 ¹				

6.90

108.5

0.5535

2312.79

24075.20

~

0.096 1 ~

14.32

¹ P_u / ϕP_n controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{\phi P_{allow}}_{lb}$	% Capacity	Pass Fail
T1	180 - 160	Leg	PIPE 2.5 STD	2	-33591.60	57192.30	58.7	Pass
T2	160 - 140	Leg	PIPE 2.5 STD	33	-82036.40	57192.30	143.4	Fail X
T3	140 - 120	Leg	PIPE 2.5 STD	60	-144319.00	57192.30	252.3	Fail X
T4	120 - 100	Leg	PIPE 4 STD	87	-215605.00	116316.00	185.4	Fail X
T5	100 - 80	Leg	PIPE 5 STD	108	-300467.00	169427.00	177.3	Fail X
T6	80 - 60	Leg	PIPE 5 STD	129	-312071.00	169352.00	184.3	Fail X
Τ7	60 - 40	Leg	PIPE 6 STD	150	-302482.00	228830.00	132.2	Fail X
T8	40 - 20	Leg	PIPE 6 STD	171	-302795.00	228830.00	132.3	Fail X
Т9	20 - 0	Leg	PIPE 6 STD	192	-308527.00	228830.00	134.8	Fail X
T1	180 - 160	Diagonal	L2x2x1/8	7	-4246.21	8826.48	48.1	Pass
T2	160 - 140	Diagonal	L2x2x1/8	35	-6045.47	8826.48	68.5	Pass
Т3	140 - 120	Diagonal	L2x2x1/8	64	-7818.94	8826.48	88.6	Pass
T4	120 - 100	Diagonal	L2x2x3/16	88	-10730.70	11555.00	92.9	Pass

tnxTower		er	Job		CT3470A				Page 35 of 35
Fullerton Engineering Consultants 1100 E. Woodfield Road, Suite 500 Schaumburg, IL 60173 Phone: (847) 908-8400 FAX: fax@fullertonengineering.com			Project 180 ft. Self-Support Tower					Date 07:43:54 01/07/19 Designed by VY	
			Client	nt Smartlink / AT&T					
Section No.	Elevation ft	Componen Type	nt	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
T5	100 - 80	Diagonal		L2x2x3/16	110	-13143.40	11791.30	111.5	Fail X
T6	80 - 60	Diagonal		L2x2x3/16	146	-6927.10	10301.90	67.2	Pass
T7	60 - 40	Diagonal		L2x2x3/16	167	-2657.84	7889.75	33.7	Pass
T8	40 - 20	Diagonal		L2x2x3/16	173	-1436.74	4795.80	30.0	Pass
T9	20 - 0	Diagonal		L2 1/2x2 1/2x3/16	194	-2930.49	7285.66	40.2	Pass
T1	180 - 160	Top Girt		L2x2x3/16	4	-1280.09	8639.01	14.8 Summary	Pass
							Leg (T3)	252.3	Fail X
							Diagonal (T5)	111.5	Fail X
							Top Girt (T1)	14.8	Pass
							Bolt Checks	150.9	- X

Fail X

Fail X

150.9

252.3

Bolt Checks

RATING =

Program Version 8.0.1.0 - 2/8/2018 File://files.fullertonengineering.com/PDrive/Dept 400/SMLINK/SMLINK-ATT-NSB NE/CT3470A/Structural/Analysis/tnxTower/CT3470A.eri

Fullerton Engineering Consultants, Inc.

Self Support Tower Anchor Rod Che	ck	
Factored Leg Reactions (based on Tnx of	calculations)	
Maximum Factored Reactions		
C := 310.418 · kip	Max Total Download Reacti	on
S := 21.234·kip	Max Total Shear Reaction	
Anchor Rods: (8) 3/4"φ ASTM F1554 Gr	rade 105 Bolts	
Specifications		
$\varphi := 0.8$	Strength Reduction Factor	
Fub := 150·ksi	Ultimate Strength	
Dbolt := $0.75 \cdot in$	Nominal Diameter of Ancho	r Bolt
Anet := $0.75 \left(\frac{\pi}{4}\right) \cdot (\text{Dbolt})^2$	Anet = $0.33 \cdot in^2$	Net Area of Bolt taken as 0.75 x unthreaded Area
Nbolt := 8	Total Number of Anchor Bol	ts per Leg
η := 0.55	η is dependent on the Anch per Figure 4-4 of TIA Rev. G	
Rnt := Fub Anet	$Rnt = 49.7 \cdot kip$	Nominal Tensile Strength of Anchor Rod per Section 4.9.6.1
$\frac{\left(C+\frac{S}{\eta}\right)}{\left(\frac{S}{\eta}\right)}$		
$\frac{\text{Nbolt}}{\phi \cdot \text{Rnt}} = 109.73 \cdot \%$	>100%. NOT OK.	Interaction Equation

AnchorBoltCapacityCheck ="Anchor Bolts are NOT adequate. Modification is required."

Attachment 2

Market:New EnglandCell Site Number:S3470ACell Site Name:Middletown – Mile LaneSearch Ring Name:NSB at MiddletownFixed Asset Number:Image: Comparison of the second second

OPTION AND LAND LEASE AGREEMENT

THIS OPTION AND LAND LEASE AGREEMENT ("Agreement"), dated as of the latter of the signature dates below (the "Effective Date"), is entered into by City of Middletown, a municipal corporation and political subdivision of the State of Connecticut, having a mailing address of 245 deKoven Drive Middletown, CT 06457 ("Landlord") and New Cingular Wireless PCS, LLC, a Delaware limited liability company, having a mailing address of 1025 Lenox Park Blvd NE, 3rd Floor, Atlanta, GA 30319 ("Tenant").

BACKGROUND

Landlord owns or controls that certain plot, parcel or tract of land, as described on **Exhibit 1**, together with all rights and privileges arising in connection therewith, located at 499 Mile Lane, in the City of Middletown, County of Middlesex, State of Connecticut (collectively, the "**Property**"). Landlord desires to grant to Tenant the right to use a portion of the Property in accordance with this Agreement.

The parties agree as follows:

1. <u>OPTION TO LEASE.</u>

(a) Landlord hereby grants to Tenant an option (the "**Option**") to lease a portion of the Property consisting of:

- (i) approximately 2,500 square feet including the air space above such space, as described on attached **Exhibit 1**, for the placement of Tenant's Communication Facility;
- (ii) space for any structural steel or other improvements to support Tenant's equipment (collectively, the space referenced in (a) and (b) is the "Equipment Space");
- (iii) that certain space on the Structure (as hereinafter defined), as generally depicted on Exhibit
 1, each measuring twenty (20) contiguous linear feet wide and ten (10) contiguous linear feet deep, including the air space above same, where Tenant shall have the right to install its antennas and other equipment (collectively, the "Antenna Space"); and
- (iv) those certain areas where Tenant's conduits, wires, cables, cable trays and other necessary connections are located between the Equipment Space and the Antenna Space, and between the Equipment Space and the electric power, telephone, and fuel sources for the Property (hereinafter collectively referred to as the "Connection Space"). Landlord agrees that Tenant shall have the right to install connections between Tenant's equipment in the Equipment Space and Antenna Space; and between Tenant's equipment in the Equipment Space and Antenna Space; and between Tenant's equipment in the Equipment Space and the electric power, telephone, and fuel sources for the Property, and any other improvements. Landlord further agrees that Tenant shall have the right to install, replace and maintain utility lines, wires, poles, cables, conduits, pipes and other necessary connections over or along any right-of-way extending from the aforementioned public right-of-way to the Premises. The Equipment Space, Antenna Space, and Connection Space, are hereinafter collectively referred to as the "Premises."

(b) During the Option period and any extension thereof, and during the term of this Agreement, Tenant and its agents, engineers, surveyors and other representatives will have the right to enter upon the Property, with the written consent of the Landlord, which consent shall not be unreasonably withheld, conditioned or delayed, to inspect, examine, conduct soil borings, drainage testing, material sampling, radio frequency testing and other geological or engineering tests or studies of the Property (collectively, the "**Tests**"), to apply for and obtain licenses, permits, approvals, or other relief required of or deemed necessary or appropriate at Tenant's sole discretion for its use of the Premises and include, without limitation, applications for zoning variances, zoning ordinances,

amendments, special use permits, and construction permits (collectively, the "**Government Approvals**"), initiate the ordering and/or scheduling of necessary utilities, and otherwise to do those things on or off the Property that, in the opinion of Tenant, are necessary in Tenant's sole discretion to determine the physical condition of the Property, the environmental history of the Property, Landlord's title to the Property and the feasibility or suitability of the Property for Tenant's Permitted Use, at Tenant's sole expense. Tenant will not be liable to Landlord or any third party on account of any pre-existing defect or condition on or with respect to the Property, whether or not such defect or condition is disclosed by Tenant's inspection. Tenant will restore the Property to its condition as it existed at the commencement of the Initial Option Term (as defined below), reasonable wear and tear and casualty not caused by Tenant excepted. In addition, Tenant shall indemnify, defend and hold Landlord harmless from and against any and all injury, loss, damage or claims arising directly out of Tenant's Tests.

(c) In consideration of Landlord granting Tenant the Option, Tenant agrees to pay Landlord the sum of within thirty (30) business days of the Effective Date. The Option will be for an initial term of one (1) year commencing on the Effective Date (the "**Initial Option Term**") and may be renewed by Tenant for an additional one (1) year upon written notification to Landlord and the payment of an additional **Delta Commencing** no later than ten (10) days prior to the expiration date of the Initial Option Term.

(d) The Option may be sold, assigned or transferred at any time by Tenant to Tenant's parent company or member if Tenant is a limited liability company or any affiliate or subsidiary of, or partner in, Tenant or its parent company or member. Otherwise, the Option may not be sold, assigned or transferred without the approval of the Common Council for the City of Middletown. Any attempt to assign the Option or this Agreement without such approval will render such assignment null and void, unless such assignment is otherwise permitted under this Section 1(d) or Section 16 of this Agreement. From and after the date the Option has been sold, assigned or transferred by Tenant in accordance with this Section or Section 16 of this Agreement, Tenant shall immediately be released from any and all liability under this Agreement, including the payment of any rental or other sums due after the date of assignment, without any further action.

(e) During the Initial Option Term and any extension thereof, Tenant may exercise the Option by notifying Landlord in writing. If Tenant exercises the Option, then Landlord leases the Premises to the Tenant subject to the terms and conditions of this Agreement. If Tenant does not exercise the Option during the Initial Option Term or any extension thereof, this Agreement will terminate, and the parties will have no further liability to each other.

(f) If during the Initial Option Term or any extension thereof, or during the term of this Agreement if the Option is exercised, Landlord decides to subdivide, sell, or change the status of the zoning of the Premises or Property or in the event of foreclosure, Landlord shall immediately notify Tenant in writing. Any sale of the Property shall be subject to Tenant's rights under this Agreement.

2. <u>PERMITTED USE.</u>

Tenant may use the Premises for the transmission and reception of communications signals and the installation, construction, maintenance, operation, repair, replacement and upgrade of communications fixtures and related equipment, cables, accessories and improvements, which may include a suitable support structure ("**Structure**"), associated antennas, equipment shelters or cabinets and fencing and any other items necessary to the successful and secure use of the Premises (the "**Communication Facility**")as well as the right to test, survey and review title on the Property; Tenant further has the right but not the obligation to add, modify and/or replace equipment in order to be in compliance with any current or future federal, state or local mandated application, including, but not limited to, emergency 911 communication Facility that may be conceptually described on **Exhibit 1** will not be deemed to limit Tenant's Permitted Use. If **Exhibit 1** includes drawings of the initial installation of the Communication Facility, Landlord's execution of this Agreement will signify Landlord's approval of **Exhibit 1**. For a period of one hundred eighty (180) days following the start of construction, Landlord grants Tenant, its subtenants, licensees and sublicensees, the right to use Landlord's contiguous, adjoining or surrounding property (the "**Surrounding Property**") as may reasonably be required during construction and installation of the Communication Facility, as designated in **Exhibit 1**. Tenant has the

right to install and operate transmission cables from the equipment shelter or cabinet to the antennas, electric lines from the main feed to the equipment shelter or cabinet and communication lines from the Property's main entry point to the equipment shelter or cabinet, install a generator and to make other improvements, alterations, upgrades or additions appropriate for Tenant's Permitted use, including the right to construct a fence around the Premises or equipment, install warning signs to make individuals aware of risks, install protective barriers, install any other control measures reasonably required by Tenant's safety procedures or applicable law, and undertake any other appropriate means to secure the Premises or equipment at Tenant's expense. Tenant has the right to modify, supplement, replace, upgrade, expand the Communication Facility (including, for example, increasing the number of antennas or adding microwave dishes) or relocate the Communication Facility within the Premises at any time during the Term. Tenant will be allowed to make such alterations to the Property, with the written consent of the Landlord in order to ensure that the Communication Facility complies with all applicable federal, state or local laws, rules or regulations.

3. <u>TERM.</u>

(a) The initial lease term will be five (5) years (the "**Initial Term**"), commencing on the Effective Date. The Initial Term will terminate on the fifth (5th) anniversary of the Effective Date.

(b) This Agreement will automatically renew for five (5) additional five (5) year term(s) (each additional five (5) year term shall be defined as an "**Extension Term**"), upon the same terms and conditions set forth herein unless Tenant notifies Landlord in writing of Tenant's intention not to renew this Agreement at least sixty (60) days prior to the expiration of the Initial Term or the then-existing Extension Term.

(c) Unless (i) Landlord or Tenant notifies the other in writing of its intention to terminate this Agreement at least six (6) months prior to the expiration of the final Extension Term, or (ii) the Agreement is terminated as otherwise permitted by this Agreement prior to the end of the final Extension Term, this Agreement shall continue in force upon the same covenants, terms and conditions for a further term of one (1) year, and for annual terms thereafter ("Annual Term") until terminated by either party hereto by giving to the other party hereto written notice of its intention to so terminate at least six (6) months prior to the end of any such Annual Term. Monthly rent during such Annual Terms shall be equal to the Rent paid for the last month of the final Extension Term. If Tenant remains in possession of the Premises after the termination of this Agreement, then Tenant will be deemed to be occupying the Premises on a month-to-month basis (the "Holdover Term"), subject to the terms and conditions of this Agreement.

(d) The Initial Term, any Extension Terms, any Annual Terms and any Holdover Term are collectively referred to as the "**Term**."

4. <u>RENT.</u>

(a) Commencing on the first day of the month following the date that Tenant commences construction (the "**Rent Commencement Date**"), Tenant will pay Landlord on or before the fifth (5th) day of each calendar month in advance, (the "**Rent**"), at the address set forth above. In any partial month occurring prior to or after the Rent Commencement Date, the Rent will be prorated. The initial Rent payment will be forwarded by Tenant to Landlord within forty-five (45) days after the Rent Commencement Date.

(b) Upon the commencement of each Extension Term, the monthly Rent will increase by two percent (2%) over the Rent paid during the previous five (5) year term.

(c) All charges payable under this Agreement such as utilities and taxes shall be billed by Landlord

5. <u>APPROVALS.</u>

(a) Landlord agrees that Tenant's ability to use the Premises is contingent upon the suitability of the Premises and Property for the Permitted Use and Tenant's ability to obtain and maintain all Government Approvals. Landlord authorizes Tenant to prepare, execute and file all required applications to obtain Government Approvals for the Permitted Use and agrees to reasonably assist Tenant with such applications and with obtaining and maintaining the Government Approvals.

(b) Tenant has the right to obtain a title report or commitment for a leasehold title policy from a title insurance company of its choice and to have the Property surveyed by a surveyor of its choice, at Tenant's sole expense.

(c) Tenant may also perform and obtain, at Tenant's sole cost and expense, soil borings, percolation tests, engineering procedures, environmental investigation or other tests or reports on, over, and under the Property, necessary to determine if Tenant's use of the Premises will be compatible with Tenant's engineering specifications, system, design, operations or Government Approvals.

6. <u>**TERMINATION.**</u> This Agreement may be terminated, without penalty or further liability, as follows: (a) by either party on thirty (30) days prior written notice, if the other party remains in default under Section 155 of this Agreement after the applicable cure periods;

(b) by Tenant upon written notice to Landlord, if Tenant is unable to obtain, or maintain, any required approval(s) or the issuance of a license or permit by any agency, board, court or other governmental authority necessary for the construction or operation of the Communication Facility as now or hereafter intended by Tenant; or if Tenant determines, in its sole discretion that the cost of or delay in obtaining or retaining the same is commercially unreasonable;

(c) by Tenant, upon written notice to Landlord, if Tenant determines, in its sole discretion, due to the title report results or survey results, that the condition of the Premises is unsatisfactory for its intended uses;

(d) by Tenant upon written notice to Landlord for any reason or no reason, at any time prior to commencement of construction by Tenant; or

(e) by Tenant upon sixty (60) days' prior written notice to Landlord for any reason or no reason, so long as Tenant pays Landlord a termination fee equal to three (3) months' Rent, at the then-current rate, provided, however, that no such termination fee will be payable on account of the termination of this Agreement by Tenant under any termination provision contained in any other Section of this Agreement, including the following: Section 5 Approvals, Section 6(a) Termination, Section 6(b) Termination, Section 6(c) Termination, Section 6(d) Termination, Section 11(d) Environmental, Section 08 Condemnation or Section 19 Casualty.

7. <u>INSURANCE</u>. During the Term, Tenant will purchase and maintain in full force and the insurance described in attached Exhibit 2.

8. <u>INTERFERENCE.</u>

(a) Prior to or concurrent with the execution of this Agreement, Landlord has provided or will provide Tenant with a list of radio frequency user(s) and frequencies used on the Property as of the Effective Date. Tenant warrants that its use of the Premises will not interfere with those existing radio frequency uses on the Property, as long as the existing radio frequency user(s) operate and continue to operate within their respective frequencies and in accordance with all applicable laws and regulations.

(b) Landlord will not grant, after the Effective Date, a lease, license or any other right to any third party, if the exercise of such grant may in any way adversely affect or interfere with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will notify Tenant in writing prior to granting any third party the right to install and operate communications equipment on the Property.

(c) Landlord will not, nor will Landlord permit its employees, tenants, licensees, invitees, agents or independent contractors to interfere in any way with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will cause such interference to cease within twenty-four (24) hours after receipt of notice of interference from Tenant. In the event any such interference does not cease within the aforementioned cure period, Landlord shall cease all operations which are suspected of causing interference (except for interference to determine the cause of such interference) until the interference has been corrected.

(d) For the purposes of this Agreement, "interference" may include, but is not limited to, any use on the Property or Surrounding Property that causes electronic or physical obstruction with, or degradation of, the communications signals from the Communication Facility.

(e) Notwithstanding the foregoing, Tenant's equipment shall not cause any harmful interference to any equipment of the Landlord used for emergency services, regardless of whether any such equipment is currently in existence prior to the execution of this Agreement or hereafter used by Landlord in the future, as long as such equipment is used in accordance with manufacturers' specifications and in accordance with applicable laws and regulations. In the event that Tenant or Tenant's equipment causes any harmful interference to any of Landlord's equipment used to provide emergency services, then the Landlord shall immediately notify Tenant by contacting Tenant's Network Operations Center (at 800-638-2822) and Tenant agrees to either correct the harmful interference or power down the equipment causing such interference (until the harmful interference has been eliminated), within twenty-four (24) hours of such notice.

9. <u>INDEMNIFICATION.</u>

(a) Tenant agrees to indemnify, defend and hold Landlord harmless from and against any and all injury, loss, damage or liability, costs or expenses in connection with a third party claim (including reasonable attorneys' fees and court costs) arising directly from the installation, use, maintenance, repair or removal of the Communication Facility, Tenant's use of the Premises, or Tenant's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Landlord, its employees, invitees, agents or independent contractors.

(b) Landlord agrees to indemnify, defend and hold Tenant harmless from and against any and all injury, loss, damage or liability, costs or expenses in connection with a third party claim (including reasonable attorneys' fees and court costs) arising directly from the actions or failure to act of Landlord, its employees, invitees, agents or independent contractors, or Landlord's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Tenant, its employees, agents or independent contractors.

(c) The indemnified party: (i) shall promptly provide the indemnifying party with written notice of any claim, demand, lawsuit, or the like for which it seeks indemnification pursuant to this Section 9 and provide the indemnifying party with copies of any demands, notices, summonses, or legal papers received in connection with such claim, demand, lawsuit, or the like; (ii) shall not settle any such claim, demand, lawsuit, or the like without the prior written consent of the indemnifying party; and (iii) shall fully cooperate with the indemnifying party in the defense of the claim, demand, lawsuit, or the like. A delay in notice shall not relieve the indemnifying party of its indemnity obligation, except (1) to the extent the indemnifying party can show it was prejudiced by the delay; and (2) the indemnifying party shall not be liable for any settlement or litigation expenses incurred before the time when notice is given.

10. WARRANTIES.

(a) Each of Tenant and Landlord (to the extent not a natural person) each acknowledge and represent that it is duly organized, validly existing and in good standing and has the right, power, and authority or capacity, as applicable, to enter into this Agreement and bind itself hereto through the party or individual set forth as signatory for the party below.

(b) Landlord represents, warrants and agrees that: (i) Landlord solely owns the Property as a legal lot in fee simple; (ii) Landlord grants to Tenant sole, actual, quiet and peaceful use, enjoyment and possession of the Premises in accordance with the terms of this Agreement without hindrance or ejection by any persons lawfully claiming under Landlord ; and (iii) Landlord's execution and performance of this Agreement will not violate any laws, ordinances, covenants or the provisions of any mortgage, lease or other agreement binding on Landlord.

11. ENVIRONMENTAL.

(a)

In the event Tenant becomes aware of any hazardous materials on the Property, or any environmental, health or safety condition or matter relating to the Property, that, in Tenant's sole determination, renders the

condition of the Premises or Property unsuitable for Tenant's use, or if Tenant believes that the leasing or continued leasing of the Premises would expose Tenant to undue risks of liability to a government agency or other third party, then Tenant will have the right, in addition to any other rights it may have at law or in equity, to terminate this Agreement upon written notice to Landlord.

12. ACCESS. At all times throughout the Term of this Agreement, and at no additional charge to Tenant, Tenant and its employees, agents, and subcontractors, will have twenty-four (24) hour per day, seven (7) day per week pedestrian and vehicular access ("Access") to and over the Property, from an open and improved public road to the Premises, for the installation, maintenance and operation of the Communication Facility and any utilities serving the Premises. Landlord agrees to provide to Tenant such codes, keys and other instruments necessary for such Access at no additional cost to Tenant. Landlord shall execute a letter granting Tenant Access to the Property substantially in the form attached as Exhibit 12; upon Tenant's request, Landlord shall execute additional letters during the Term. If Tenant elects to utilize an Unmanned Aircraft System ("UAS") in connection with its installation, construction, monitoring, site audits, inspections, maintenance, repair, modification, or alteration activities at the Property, Landlord hereby grants Tenant, or any UAS operator acting on Tenant's behalf, express permission to fly over the applicable Property and Premises provided that prior written notice is provided to Landlord at least 24 hours prior to the Tenant's using of an UAS, and consents to the use of audio and video navigation and recording in connection with the use of the UAS. Landlord acknowledges that in the event Tenant cannot obtain Access to the Premises, Tenant shall incur significant damage. If Landlord fails to provide the Access granted by this Section 12, such failure shall be a default under this Agreement.

13. <u>REMOVAL/RESTORATION.</u> All portions of the Communication Facility brought onto the Property by Tenant will be and remain Tenant's personal property and, at Tenant's option, may be removed by Tenant at any time during or after the Term. Landlord covenants and agrees that no part of the Communication Facility constructed, erected or placed on the Premises by Tenant will become, or be considered as being affixed to or a part of, the Property, it being the specific intention of Landlord that all improvements of every kind and nature constructed, erected or placed by Tenant on the Premises will be and remain the property of Tenant and may be removed by Tenant at any time during or after the Term. Tenant will repair any damage to the Property to the extent resulting directly from Tenant's removal activities. Any portions of the Communication Facility that Tenant does not remove within one hundred twenty (120) days after the later of the end of the Term and cessation of Tenant's operations at the Premises shall be deemed abandoned and owned by Landlord. Notwithstanding the foregoing, Tenant will not be responsible for the replacement of any trees, shrubs or other vegetation.

14. <u>MAINTENANCE/UTILITIES.</u>

(a) Tenant will keep and maintain the Premises in good condition, reasonable wear and tear and damage from the elements excepted. Landlord will maintain and repair the Property and access thereto and all areas of the Premises where Tenant does not have exclusive control, in good and tenantable condition, subject to reasonable wear and tear and damage from the elements. Landlord will be responsible for maintenance of landscaping on the Property, including any landscaping installed by Tenant as a condition of this Agreement or any required permit.

(b) Tenant will be responsible for paying on a monthly or quarterly basis all utilities charges for electricity, telephone service or any other utility used or consumed by Tenant on the Premises.

(c)

(d) Tenant will have the right to install utilities, at Tenant's expense, and to improve present utilities on the Property and the Premises. Landlord hereby grants to any service company providing utility or similar services, including electric power and telecommunications, to Tenant an easement over the Property, from an open and improved public road to the Premises, and upon the Premises, for the purpose of constructing, operating and maintaining such lines, wires, circuits, and conduits, associated equipment cabinets and such appurtenances thereto, as such service companies may from time to time require in order to provide such services to the Premises.

15. <u>DEFAULT AND RIGHT TO CURE.</u>

(a) The following will be deemed a default by Tenant and a breach of this Agreement: (i) nonpayment of Rent if such Rent remains unpaid for more than thirty (30) days after written notice from Landlord of such failure to pay; (ii) Tenant's failure to cure an interference problem as required by Section 9 within twenty-four (24) hours after written notice of such failure; or (ii) Tenant's failure to perform any other term or condition under this Agreement within forty-five (45) days after written notice from Landlord specifying the failure. No such failure, however, will be deemed to exist if Tenant has cured such default within such cure period and provided that such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Tenant. If Tenant remains in default beyond any applicable cure period, then Landlord will have the right to exercise any and all rights and remedies available to it under law and equity.

(b) The following will be deemed a default by Landlord and a breach of this Agreement: (i) Landlord's failure to provide Access to the Premises as required by Section 12 within twenty-four (24) hours after written notice of such failure; (ii) Landlord's failure to cure an interference problem as required by Section 8 within twenty-four (24) hours after written notice of such failure; or (iii) Landlord's failure to perform any term, condition or breach of any warranty or covenant under this Agreement within forty-five (45) days after written notice from Tenant specifying the failure. No such failure, however, will be deemed to exist if Landlord has commenced to cure the default within such period and provided such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Landlord. If Landlord remains in default beyond any applicable cure period, Tenant will have: (i) the right to cure Landlord's default and to deduct the costs of such cure from any monies due to Landlord from Tenant, and (ii) any and all other rights available to it under law and equity.

16. <u>ASSIGNMENT/SUBLEASE.</u> In addition to the rights granted to Tenant under Section 1(d) of this Agreement, Tenant will have the right to assign, sell or transfer its interest under this Agreement, in whole or part, without Landlord's consent, to: (a) Tenant's Affiliate, (b) to any entity with a

or (c) any entity that acquires all or substantially all of the Tenant's assets in the market as defined by the Federal Communications Commission in which the Property is located. Upon notification to Landlord of such assignment, transfer or sale, Tenant will be relieved of all future performance, liabilities and obligations under this Agreement. Tenant shall have the right to sublease the Premises, in whole or in part, without Landlord's consent. Tenant may not otherwise assign this Agreement without Landlord's consent, Landlord's consent not to be unreasonably withheld, conditioned or delayed.

17. <u>NOTICES.</u> All notices, requests and demands hereunder will be given by first class certified or registered mail, return receipt requested, or by a nationally recognized overnight courier, postage prepaid, to be effective when properly sent and received, refused or returned undelivered. Notices will be addressed to the parties hereto as follows:

If to Tenant:	New Cingular Wireless PCS, LLC Attn: Tower Asset Group - Lease Administration Re: Cell Site #: S3470A; Cell Site Name: Middletown – Mile Lane (CT) Fixed Asset #: 10578361 1025 Lenox Park Blvd NE 3rd Floor Atlanta, Georgia 30319
With a copy to:	New Cingular Wireless PCS, LLC Attn.: Legal Dept – Network Operations Re: Cell Site #: S3470A; Cell Site Name: Middletown – Mile Lane (CT Fixed Asset #: 10578361 208 S. Akard Street Dallas, TX 75202-4206

The copy sent to the Legal Department is an administrative step which alone does not constitute legal notice.

If to Landlord: City of Middletown - Office of the General Counsel 245 deKoven Drive Middletown, CT 06457

Either party hereto may change the place for the giving of notice to it by thirty (30) days' prior written notice to the other party hereto as provided herein.

18. <u>CONDEMNATION.</u> In the event Landlord receives notification of any condemnation proceedings affecting the Property, Landlord will provide notice of the proceeding to Tenant within twenty-four (24) hours. If a condemning authority takes all of the Property, or a portion sufficient, in Tenant's sole determination, to render the Premises unsuitable for Tenant, this Agreement will terminate as of the date the title vests in the condemning authority. The parties will each be entitled to pursue their own separate awards in the condemnation proceeds, which for Tenant will include, where applicable, the value of its Communication Facility, moving expenses, prepaid Rent, and business dislocation expenses. Tenant will be entitled to reimbursement for any prepaid Rent on a *pro rata* basis.

19. CASUALTY. Landlord will provide notice to Tenant of any casualty or other harm affecting the Property within twenty-four (24) hours of the casualty or other harm. If any part of the Communication Facility or the Property is damaged by casualty or other harm as to render the Premises unsuitable, in Tenant's sole determination, then Tenant may terminate this Agreement by providing written notice to Landlord, which termination will be effective as of the date of such casualty or other harm. Upon such termination, Tenant will be entitled to collect all insurance proceeds payable to Tenant on account thereof and to be reimbursed for any prepaid Rent on a pro rata basis. Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property, but only until such time as Tenant is able to activate a replacement transmission facility at another location; notwithstanding the termination of this Agreement, such temporary facilities will be governed by all of the terms and conditions of this Agreement, including Rent. If Landlord or Tenant undertakes to rebuild or restore the Premises and/or the Communication Facility, as applicable, Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property in an area agreed upon in writing by the Landlord, until the reconstruction of the Premises and/or the Communication Facility is completed. If Landlord determines not to rebuild or restore the Property, Landlord will notify Tenant of such determination within thirty (30) days after the casualty or other harm.

20. WAIVER OF LANDLORD'S LIENS.

Intentionally omitted.

21. <u>TAXES.</u>

(a) Tenant shall be responsible for (i) all taxes, and assessments, levied upon the lands, improvements and other property of Tenant including any such taxes, both real and personal, that may be calculated by a taxing authority using any method, as provided by Connecticut law, (ii) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with this Agreement, and (iii) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with a sale of the Property or assignment of Rent payments by Tenant. Tenant shall be responsible for (y) any taxes and assessments attributable to and levied upon Tenant's leasehold improvements on the Premises if and as set forth in this Section 21 and (z) all sales, use, license, value added, documentary,

stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with an assignment of this Agreement or sublease by Tenant.

(b) For any tax amount for which Tenant is responsible under this Agreement, Tenant shall have the right to contest, in good faith, the validity or the amount thereof using such administrative, appellate or other proceedings as may be appropriate in the jurisdiction, or take such other steps as permitted by law.

(c) Any tax-related notices shall be sent to Tenant in the manner set forth in Section 17. Promptly after the Effective Date, Tenant shall provide the following address to the taxing authority for the authority's use in the event the authority needs to communicate with Tenant. In the event that Tenant's tax address changes by notice to Landlord, Tenant shall be required to provide Tenant's new tax address to the taxing authority or authorities.

(d) Notwithstanding anything to the contrary contained in this Section 21, Tenant shall have no obligation to reimburse any tax or assessment for which the Landlord is reimbursed or rebated by a third party.

22. <u>SALE OF PROPERTY.</u> Intentionally omitted.

23. <u>**RIGHT OF FIRST REFUSAL.</u> Intentionally omitted.</u></u>**

24. <u>MISCELLANEOUS.</u>

(a) **Amendment/Waiver.** This Agreement cannot be amended, modified or revised unless done in writing and signed by Landlord and Tenant. No provision may be waived except in a writing signed by both parties. The failure by a party to enforce any provision of this Agreement or to require performance by the other party will not be construed to be a waiver, or in any way affect the right of either party to enforce such provision thereafter.

(b) **Memorandum of Lease.** Contemporaneously with the execution of this Agreement, the parties may execute a recordable Memorandum of Lease substantially in the form attached as **Exhibit 24(b)**. Either party may record this Memorandum of Lease at any time during the Term, in its absolute discretion. Thereafter during the Term, either party will, at any time upon fifteen (15) business days' prior written notice from the other, execute, acknowledge and deliver to the other a recordable Memorandum of Lease.

(c) **Limitation of Liability**. Except for the indemnity obligations set forth in this Agreement, and otherwise notwithstanding anything to the contrary in this Agreement, Tenant and Landlord each waives any claims that each may have against the other with respect to consequential, incidental or special damages, however caused, based on any theory of liability.

(d) **Compliance with Law**. Tenant agrees to comply with all federal, state and local laws, orders, rules and regulations ("**Laws**") applicable to Tenant's use of the Communication Facility on the Property. Landlord agrees to comply with all Laws relating to Landlord's ownership and use of the Property and any improvements on the Property.

(e) **Bind and Benefit.** The terms and conditions contained in this Agreement will run with the Property and bind and inure to the benefit of the parties, their respective heirs, executors, administrators, successors and assigns.

(f) **Entire Agreement.** This Agreement and the exhibits attached hereto, all being a part hereof, constitute the entire agreement of the parties hereto and will supersede all prior offers, negotiations and agreements with respect to the subject matter of this Agreement. Exhibits are numbered to correspond to the Section wherein they are first referenced. Except as otherwise stated in this Agreement, each party shall bear its own fees and expenses (including the fees and expenses of its agents, brokers, representatives, attorneys, and accountants) incurred in connection with the negotiation, drafting, execution and performance of this Agreement and the transactions it contemplates.

(g) **Governing Law.** This Agreement will be governed by the laws of the state of Connecticut, without regard to conflicts of law.

(h) **Interpretation.** Unless otherwise specified, the following rules of construction and interpretation apply: (i) captions are for convenience and reference only and in no way define or limit the

construction of the terms and conditions hereof; (ii) use of the term "including" will be interpreted to mean "including but not limited to"; (iii) whenever a party's consent is required under this Agreement, except as otherwise stated in the Agreement or as same may be duplicative, such consent will not be unreasonably withheld, conditioned or delayed; (iv) exhibits are an integral part of this Agreement and are incorporated by reference into this Agreement; (v) use of the terms "termination" or "expiration" are interchangeable; (vi) reference to a default will take into consideration any applicable notice, grace and cure periods; (vii) to the extent there is any issue with respect to any alleged, perceived or actual ambiguity in this Agreement, the ambiguity shall not be resolved on the basis of who drafted the Agreement; (viii) the singular use of words includes the plural where appropriate; and (ix) if any provision of this Agreement is held invalid, illegal or unenforceable, the remaining provisions of this Agreement shall remain in full force if the overall purpose of the Agreement is not rendered impossible and the original purpose, intent or consideration is not materially impaired.

(i) Affiliates. All references to "Tenant" shall be deemed to include any Affiliate of New Cingular Wireless PCS, LLC using the Premises for any Permitted Use or otherwise exercising the rights of Tenant pursuant to this Agreement. "Affiliate" means with respect to a party to this Agreement, any person or entity that (directly or indirectly) controls, is controlled by, or under common control with, that party. "Control" of a person or entity means the power (directly or indirectly) to direct the management or policies of that person or entity, whether through the ownership of voting securities, by contract, by agency or otherwise.

(j) **Survival**. Any provisions of this Agreement relating to indemnification shall survive the termination or expiration hereof. In addition, any terms and conditions contained in this Agreement that by their sense and context are intended to survive the termination or expiration of this Agreement shall so survive.

(k) **W-9.** As a condition precedent to payment, Landlord agrees to provide Tenant with a completed IRS Form W-9, or its equivalent, upon execution of this Agreement and at such other times as may be reasonably requested by Tenant, including any change in Landlord's name or address.

(1) **Execution/No Option.** The submission of this Agreement to any party for examination or consideration does not constitute an offer, reservation of or option for the Premises based on the terms set forth herein. This Agreement will become effective as a binding Agreement only upon the handwritten legal execution, acknowledgment and delivery hereof by Landlord and Tenant. This Agreement may be executed in two (2) or more counterparts, all of which shall be considered one and the same agreement and shall become effective when one or more counterparts have been signed by each of the parties. All parties need not sign the same counterpart.

(m) Attorneys' Fees. Intentionally omitted.

(n) **WAIVER OF JURY TRIAL**. EACH PARTY, TO THE EXTENT PERMITTED BY LAW, KNOWINGLY, VOLUNTARILY AND INTENTIONALLY WAIVES ITS RIGHT TO A TRIAL BY JURY IN ANY ACTION OR PROCEEDING UNDER ANY THEORY OF LIABILITY ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR THE TRANSACTIONS IT CONTEMPLATES.

(o) **No Additional Fees/Incidental Fees.** Unless otherwise specified in this Agreement, all rights and obligations set forth in the Agreement shall be provided by Landlord and/or Tenant, as the case may be, at no additional cost. No unilateral fees or additional costs or expenses are to be applied by either party to the other party, for any task or service including, but not limited to, review of plans, structural analyses, consents, provision of documents or other communications between the parties.

(p) **Further Acts.** Upon request, Landlord will cause to be promptly and duly taken, executed, acknowledged and delivered all such further acts, documents, and assurances as Tenant may request from time to time in order to effectuate, carry out and perform all of the terms, provisions and conditions of this Agreement and all transactions and permitted use contemplated by this Agreement.

[SIGNATURES APPEAR ON NEXT PAGE]

IN WITNESS WHEREOF, the parties have caused this Agreement to be effective as of the Effective Date.

"LANDLORD"

City of Middletown a municipal corporation and political subdivision of

the State of Connecticut

By: ______ Print Name: [_____] Its: ____[Insert Title] Date: ____[Insert Date]

"TENANT"

New Cingular Wireless PCS, LLC, a Delaware limited liability company

By: AT&T Mobility Corporation Its: Manager

By:		
Print Na	me: [1
Its:	[Insert Title]	_
Date:	[Insert Date]	

[ACKNOWLEDGMENTS APPEAR ON NEXT PAGE]

LANDLORD ACKNOWLEDGMENT

State of Connecticut

County _____

1. Individual:

On this _____ day of ______, 20____, before me personally appeared Benjamin Florsheim, Mayor of the City of Middletown, , to me known to be the person described in and who executed the foregoing instrument, and acknowledged that he/she/they executed the same as his/her/their free act and deed.

Notary Public

Print Name: _____

My commission expires:

TENANT ACKNOWLEDGMENT

State of Massachusetts

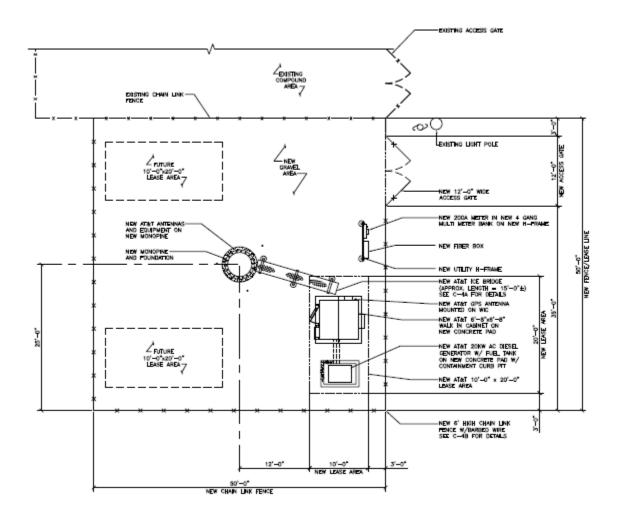
County _____

On this _____ day of _____, 20 ___, before me personally appeared _____ (or _____ and _____), to me known to be the person (or persons) described in and who executed the foregoing instrument, and acknowledged that he/she/they executed the same as his/her/their free act and deed.

Notary Public

Print Name:

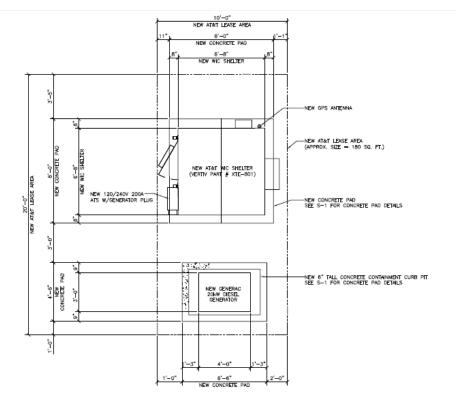
My commission expires:_____


DESCRIPTION OF PROPERTY AND PREMISES

Page 1 of 2

to the Option and Land Lease Agreement dated [Insert Date], 2021, by and between City of Middletown, a municipal corporation and subdivision of the State of Connecticut, as Landlord, and New Cingular Wireless PCS, LLC, a Delaware limited liability company, as Tenant.

The Property is legally described as follows:


The Premises are described and/or depicted as follows:

Lease Draft Middletown 3470-redacted(5023747.1).docx

DESCRIPTION OF PROPERTY AND PREMISES

Page 2 of 2

Notes:

- 1. THIS EXHIBIT MAY BE REPLACED BY A LAND SURVEY AND/OR CONSTRUCTION DRAWINGS OF THE PREMISES ONCE RECEIVED BY TENANT.
- 2. ANY SETBACK OF THE PREMISES FROM THE PROPERTY'S BOUNDARIES SHALL BE THE DISTANCE REQUIRED BY THE APPLICABLE GOVERNMENT AUTHORITIES.
- 3. WIDTH OF ACCESS ROAD SHALL BE THE WIDTH REQUIRED BY THE APPLICABLE GOVERNMENT AUTHORITIES, INCLUDING POLICE AND FIRE DEPARTMENTS.
- 4. THE TYPE, NUMBER AND MOUNTING POSITIONS AND LOCATIONS OF ANTENNAS AND TRANSMISSION LINES ARE ILLUSTRATIVE ONLY. ACTUAL TYPES, NUMBERS AND MOUNTING POSITIONS MAY VARY FROM WHAT IS SHOWN ABOVE.

ENVIRONMENTAL DISCLOSURE

Landlord represents and warrants that the Property, as of the Effective Date, is free of hazardous substances except as follows:

[INSERT AS APPLICABLE]

STANDARD ACCESS LETTER

[FOLLOWS ON NEXT PAGE]

MA Lease Draft Middletown 3470-redacted(5023747.1).docx

{This Letter Goes On Landlord's Letterhead}

[Insert Date]

Building Staff / Security Staff City of Middletown 245 deKoven Drive Middletown, CT 06457

Re: Authorized Access granted to AT&T

Dear Building and Security Staff,

Please be advised that we have signed a lease with [] permitting [] to install, operate and maintain telecommunications equipment at the property. The terms of the lease grant [] and its representatives, employees, agents and subcontractors ("representatives") 24 hour per day, 7 day per week access to the leased area.

To avoid impact on telephone service during the day, [to the property outside of normal business hours. [keep noise levels at a minimum during their visit.] representatives may be seeking access] representatives have been instructed to

Please grant the bearer of a copy of this letter access to the property and to leased area. Thank you for your assistance.

Landlord Signature

EXHIBIT 24(b)

MEMORANDUM OF LEASE

[FOLLOWS ON NEXT PAGE]

MEMORANDUM OF LEASE

This Memorandum of Lease is entered into on this day of , 20 , by and City of Middletown between , a municipal corporation and subdivision of the State of Connecticut having its principal office/residing at 245 deKoven Drive Middletown, CT 06457 (hereinafter called "Landlord"), and New Cingular Wireless PCS, LLC, a Delaware limited liability company, having a mailing address of 1025 Lenox Park Blvd NE, 3rd Floor, Atlanta, GA 30319 ("Tenant").

- 1. Landlord and Tenant entered into a certain Land Lease Agreement ("Agreement") on the day of , 20 , for the purpose of installing, operating and maintaining a communication facility and other improvements. All of the foregoing is set forth in the Agreement.
- 2. The initial lease term will be five (5) years commencing on the Effective Date, with five (5) successive automatic five (5) year options to renew.
- 3. The portion of the land being leased to Tenant and associated easements are described in **Exhibit 1** annexed hereto.
- 4. This Memorandum of Lease is not intended to amend or modify, and shall not be deemed or construed as amending or modifying, any of the terms, conditions or provisions of the Agreement, all of which are hereby ratified and affirmed. In the event of a conflict between the provisions of this Memorandum of Lease and the provisions of the Agreement, the provisions of the Agreement shall control. The Agreement shall be binding upon and inure to the benefit of the parties and their respective heirs, successors, and assigns, subject to the provisions of the Agreement.
- 5. The Agreement shall be on file in the Office of the Town and City Clerk of the City of Middletown.

IN WITNESS WHEREOF, the parties have executed this Memorandum of Lease as of the day and year first above written.

LANDLORD:

City of Middletown, a a municipal corporation and subdivision of the State of Connecticut

By: ______ Print Name: [_____] Its: ____[Insert Title] Date: ____[Insert Date]

TENANT:

New Cingular Wireless PCS, LLC, a Delaware limited liability company

By: AT&T Mobility Corporation Its: Manager

By: _

Print Name: [____] Its: ____[Insert Title] Date: ____[Insert Date]

[ACKNOWLEDGMENTS APPEAR ON NEXT PAGE]

ACKNOWLEDGEMENTS

LANDLORD ACKNOWLEDGMENT

State of Connecticut

County

<u>1. Individual</u>:

On this _____ day of _____, 20___, before me personally appeared Benjamin Florsheim, Mayor of the City of Middletown, , to me known to be the person described in and who executed the foregoing instrument, and acknowledged that he/she/they executed the same as his/her/their free act and deed.

Notary Public

Print Name: _____

My commission expires:

TENANT ACKNOWLEDGMENT

State of Massachusetts

County _____

On this _____ day of _____, 20 ___, before me personally appeared _____ (or _____ and _____), to me known to be the person (or persons) described in and who executed the foregoing instrument, and acknowledged that he/she/they executed the same as his/her/their free act and deed.

Notary Public

Print Name: _____

My commission expires:_____

EXHIBIT 1 TO MEMORANDUM OF LEASE

DESCRIPTION OF PROPERTY AND PREMISES

Page of

to the Memorandum of Lease dated , 20 , by and between City of Middletown, a municipal corporation and subdivision of the State of Connecticut, as Landlord, and New Cingular Wireless PCS, LLC, a Delaware limited liability company, as Tenant.

The Property is legally described as follows:

The Premises are described and/or depicted as follows:

W-9 FORM

[FOLLOWS ON NEXT PAGE]

Depart	W-9 Doctober 2018) ment of the Treasury Revenue Service	Request for Taxpayer Identification Number and Certifi Go to www.irs.gov/FormW9 for instructions and the late		Give Form to the requester. Do not send to the IRS.		
	1 Name (as shown	on your income tax return). Name is required on this line; do not leave this line blank.				
	2 Business name/o	lisregarded entity name, if different from above				
3 Check appropriate box for federal tax classification of the person whose name is entered on line 1. Check only one of the following seven boxes. 9 1 Individual/sole proprietor or single-member LC 9 1 Limited liability company. Enter the tax classification (C=C corporation, S=S corporation, P=Partnership) ▶ Note: Check the appropriate box in the line above for the tax classification of the single-member owner. Do not che LLC if the LLC is classified as a single-member full C that is not disregarded from the owner of the single-member of the LLC is disregarded from the owner of the tax classification of its owner. 10 Other (see instructions) ▶ 5 Address (number, street, and apt. or suite no.) See instructions. Requester's name					Exemptions (codes apply only to certain entities, not individuals; see instructions on page 3): Exempt payee code (if any) Exemption from FATCA reporting	
Print o	LLC if the LLC another LLC t is disregarded	code (if a	counts maintained outside the U.S.)			
Spe	G Other (see instructions) ► (Applies to accounts main 5 Address (number, street, and apt. or suite no.) See instructions. Requester's name and address (optional)					
6 City, state, and ZIP code						
	7 List account num	ber(s) here (optional)				
Par		ver Identification Number (TIN)				
		propriate box. The TIN provided must match the name given on line 1 to av		urity num	ber	

Enter your find in the appropriate box. The find provided must match the name given on line i to avoid	oocial security number
backup withholding. For individuals, this is generally your social security number (SSN). However, for a resident alien, sole proprietor, or disregarded entity, see the instructions for Part I, later. For other entities, it is your employer identification number (EIN). If you do not have a number, see <i>How to get a</i>	
TIN, later.	or
Note: If the account is in more than one name, see the instructions for line 1. Also see What Name and	Employer identification number
Number To Give the Requester for guidelines on whose number to enter.	

Part II Certification

Under penalties of perjury, I certify that:

- 1. The number shown on this form is my correct taxpayer identification number (or I am waiting for a number to be issued to me); and
- 2. I am not subject to backup withholding because: (a) I am exempt from backup withholding, or (b) I have not been notified by the Internal Revenue Service (IRS) that I am subject to backup withholding as a result of a failure to report all interest or dividends, or (c) the IRS has notified me that I am no longer subject to backup withholding; and
- 3. I am a U.S. citizen or other U.S. person (defined below); and
- 4. The FATCA code(s) entered on this form (if any) indicating that I am exempt from FATCA reporting is correct.

Certification instructions. You must cross out item 2 above if you have been notified by the IRS that you are currently subject to backup withholding because you have failed to report all interest and dividends on your tax return. For real estate transactions, item 2 does not apply. For mortgage interest paid, acquisition or abandonment of secured property, cancellation of debt, contributions to an individual retirement arrangement (IRA), and generally, payments other than interest and dividends, you are not required to sign the certification, but you must provide your correct TIN. See the instructions for Part II, later.

	Signature of		
Here	U.S. person ►		

General Instructions

Section references are to the Internal Revenue Code unless otherwise noted.

Future developments. For the latest information about developments related to Form W-9 and its instructions, such as legislation enacted after they were published, go to www.irs.gov/FormW9.

Purpose of Form

An individual or entity (Form W-9 requester) who is required to file an information return with the IRS must obtain your correct taxpayer identification number (TIN) which may be your social security number (SSN), individual taxpayer identification number (ITIN), adoption taxpayer identification number (ATIN), or employer identification number (EIN), to report on an information return the amount paid to you, or other amount reportable on an information return. Examples of information returns include, but are not limited to, the following.

• Form 1099-INT (interest earned or paid)

- Form 1099-DIV (dividends, including those from stocks or mutual funds)
- Form 1099-MISC (various types of income, prizes, awards, or gross proceeds)
- Form 1099-B (stock or mutual fund sales and certain other
- transactions by brokers)

Date >

- Form 1099-S (proceeds from real estate transactions)
- Form 1099-K (merchant card and third party network transactions)
- Form 1098 (home mortgage interest), 1098-E (student loan interest), 1098-T (tuition)
- Form 1099-C (canceled debt)
- Form 1099-A (acquisition or abandonment of secured property)
- Use Form W-9 only if you are a U.S. person (including a resident alien), to provide your correct TIN.

If you do not return Form W-9 to the requester with a TIN, you might be subject to backup withholding. See What is backup withholding, later.

Cat. No. 10231X

Form W-9 (Rev. 10-2018)