Competition between regenerating oaks and invasive plants in irregular shelterwood harvests The role of forest soils

Eli Ward

Assistant Scientist in Forest Ecosystem Ecology The Connecticut Agricultural Experiment Station

How do forest disturbances, management practices, and/or environmental stressors alter the relationships between plant community composition and soil conditions? Do these changes align with forest management goals?

Forest Health Monitoring Workshop

Research overview

FOREST MANAGEMENT & ENVIRONMENTAL CHANGE

Forest disturbances, management practices, environmental stressors

Urbanization & Urban Forest Restoration Forest management practices

Forest pest and pathogen invasions

Research overview

FOREST MANAGEMENT & ENVIRONMENTAL CHANGE

Forest disturbances, management practices, environmental stressors

Urbanization & Urban Forest Restoration Forest management practices

Forest pest and pathogen invasions

Irregular Shelterwood Harvests (Establishment cuts) Yale-Myers Forest

Irregular Shelterwood Harvests (Establishment cuts) *Regeneration Harvest

Goals:

- **Regenerate oaks** (and in doing so, other tree species)
- Increase structural and compositional diversity within the stand
- Increase structural and ageclass diversity at the landscape scale

Light Soil resources

Promote diverse assemblages of regenerating trees, including oaks

Light Soil resources

Understory plant invasions*

*When there is sufficient propagule pressure

Understory plant invasions

Tree regeneration and forest development

How do forest soil conditions mediate the competitive dynamics between invasive plants and regenerating oaks?

Understory plant invasions

Tree regeneration and forest development

How do forest soil conditions mediate the competitive dynamics between invasive plants and regenerating oaks?

Soil **nitrogen** availability

Soil carbon availability

(1) How do irregular shelterwood harvests influence surface soil conditions (0-10 cm)? (2) How do differences in soil conditions alter the competitive dynamics between regenerating oaks and understory invasive plants?

How do irregular shelterwood harvests influence surface soils conditions?

Surface soil nitrogen availability

(1) How do irregular shelterwood harvests influence surface soil conditions (0-10 cm)?
(2) How do differences in soil conditions alter the competitive dynamics between regenerating oaks and understory invasive plants? How do differences in soil conditions alter the competitive dynamics between regenerating oaks and understory invasive plants?

Three-year experiment (2020-2023):

2 Recent Irregular Shelterwood Harvests (both harvested in Fall 2019) 1 Unharvested reserve How do differences in soil conditions alter the competitive dynamics between regenerating oaks and understory invasive plants?

Jabba the Cut

Princess Sophia

Deeper, moister soils Surrounded by wet, lowlands More hemlock and a mixture of black, white, and red oak

Drier, thinner soils Rocky outcrops and ravines Predominantly red oak and hemlock

Differences in initial, post-harvest soil conditions

Jabba the Cut

Differences in initial, post-harvest soil conditions

Higher soil disturbance and nitrogen availability

Princess Sophia

Differences in the growth and mortality of the planted oaks

Species - QUAL - QURU

Differences in the growth and mortality of the planted oaks

Species - QUAL - QURU

Japanese honeysuckle had a higher growth rate in Jabba the Cut, which had higher soil moisture and carbon

However, all the invasive plant species had higher survival rates in Princess Sophia, which had higher levels of soil disturbance and nitrogen availability

Survival (%)									
Stand	Species								
-	CEOR	LOJA	ROMU						
Jabba the Cut	35%	34%	39%						
Princess Sophia	44%	49%	45%						

Stand 🔵 Jabba 🛑 Sophia

Some early conclusions:

- Irregular shelterwoods increased soil nitrogen availability and reduced surface soil carbon
- Both oak species grew better with higher soil moisture and carbon
- Differences between the two stands were more pronounced for red oak
- Red oak had very slow growth and poor survival in the drier stand with higher soil compaction and nitrogen availability
- Japanese honeysuckle also grew better with higher soil moisture and carbon
- The survival rates of the invasive plants were consistently higher in the stand with elevated soil disturbance and nitrogen availability
- Invasive plants may have a competitive advantage over regenerating oaks in stands with higher soil disturbance and nitrogen availability

What does *forest soil health* mean for promoting tree regeneration?

e Connecticut Agricultural Experiment Station

The Connecticut Agricultural Experiment Station Email: elisabeth.ward@ct.gov Website: https://portal.ct.gov/CAES-WardE

Jabba the Cut

Princess Sophia

\mathcal{N}										No Contraction			
V	Species	TPA	Total # of	Avg DRH	Volume/acre	Total Volume	Sector Constant		Species	# of stems	MBf		
V	Species	11 /1	Stems	nvg. DDii	(MBf)	(MBf)	(may		Red Oak	238	45.0		
Ø	TT11-	15.0	106	10	24.5	45.1	and the	Contraction of the second	Black Oak	49	6.2		
Kin	Hemlock	15.0	196	18	24.5	45.1			Scarlet Oak	0	0.0		
	Black Oak	8.7	110	18	14.0	24.6		A	White Oak	10	0.9		
	White	87	110	15	9.4	12.6			Sugar Maple	27	2.3		
	Oak	0.7	110	15	5.1	12.0			Red Maple	37	3.2	24 22	
	Red Oak	4.3	54	18	6.5	11.8			Black Cherry	5	0.3	- Alexandream	
	White									Ash	4	0.8	
	Pine	3.3	41	15	3.9	7.3	THE REAL		Black Birch	44	3.1		
	Red								Yellow Birch	0	0.0		
	Maple	6.2	78	14	5.9	6.2			Paper Birch	2	0.2		
	Black								Shagbark				
	Birch	3.3	41	15	3.3	3.7			Hickory	0	0.0		
a f	Yellow	2.2	20	14	2.2	2.1			Other Hickory	0	0.0		
	Birch	2.3	29	14	2.3	2.1		Ju -	Beech	4	0.3		
	Ash	0.2	3	15	0.3	0.5		A	Tulip Poplar	1	0.0		
	Black	0.5	6	14	0.4	0.4			White Pine	31	5.5		
	Shagharl	0.5	0	14	0.4	0.4			Red Pine	0	0.0		
	Hickory	0.1	1	13	0.1	0.1			Hemlock	289	31.9		
	TOTAL	53.1	669	169	70.6	114.3]	TOTAL	741	99.84		

Applying the "soil health" concept in forests

What does *forest soil health* mean for promoting tree regeneration?

Continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans by performing five essential functions:

- Regulating water
- Sustaining plant and animal life
- Filtering and buffering potential pollutants
- Cycling nutrients
- Providing physical stability and support

Source: https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-health

How will understory plant communities and tree regeneration respond to ash tree mortality from emerald ash borer invasion?

How will overstory tree mortality from forest pest and pathogen invasions alter understory plant composition and tree regeneration?

