Accurately accounting for decay and carbon loss in trees:

a novel nondestructive approach using tomography

Robert E. Marra, The Connecticut Agricultural Experiment Station Nicholas J. Brazee, University of Massachusetts Amherst Shawn Fraver, University of Maine

Overview

- Background
- Tree Tomography: what is it, how it works
- Assessing internal decay: methodology
 - -Qualitative assessment
 - -Quantitative assessment
 - -Validation
- Summary

CO2 and other greenhouse gases trap heat in Earth's atmosphere.

Atmospheric Carbon

- Fairly stable at <u>260-280</u> ppm for ~10,000 years.
- Began to increase at the dawn of the industrial revolution (~1750).
- Currently at <u>>400 ppm</u>;
 ~30% higher than at *any* time in the last 650,000 years.

PECIAL REPORT THE LIFE AND TIMES OF THE COLORADO RIVER

BEHOLD, THE CARBON EATER

New science explains how forests could help save us from global warming

Carbon cycling in trees

 Carbon sequestration through photosynthesis:

Atmospheric $CO_2 \rightarrow \rightarrow \rightarrow$ wood

- Carbon "de-sequestration**":
 - Decomposition (e.g., leaf litter)
 - Internal decay:
 - Wood metabolized by fungi and bacteria;

wood $\rightarrow \rightarrow CO_2 \rightarrow$ atmosphere.

Internal decay in forests

> Quantitative data on internal decay:

- Extent and magnitude of internal decay in forests;
- Quantitative impact on forest biomass estimates.

Improve our understanding of role forests play as C sinks.

Internal decay in forests

Objective

- Develop a tomography-based methodology for quantifying internal decay in trees;
 - More accurate estimates of sequestered above-ground carbon.

Assessing Internal Decay with Tomography

Tomography

Imaging by section, through the use of any kind of penetrating wave.

Assessing Internal Decay with Tomography

Sonic Tomography (SoT)

- Velocity of sound is directly proportional to wood density;
 - Fastest through non-decayed (dense) wood;
 - Slower through decaying (less dense) wood;
 - Slowest through cavities.

Sonic Tomography

Velocity of sound is directly proportional to wood density

Fast = dense = no decay

Slow = less dense = decaying or decayed (cavity)

Assessing Internal Decay with Tomography

Electrical Resistance Tomography (ERT)

- Electrical current varies with anything that alters the electrical field; e.g. water, ions.
- Wet wood (e.g., wood undergoing decay) carries current faster than dry (non-decayed) wood.

Electrical Resistance Tomography

Wet wood (e.g., wood undergoing decay) carries current faster than dry (non-decayed) wood

The Connecticut Agricultural Experiment Station Putting Science to Work for Society since 1875

Sonic Tomograph (SoT)

Electrical Resistance Tomograph (ERT)

Sonic Tomography

Where do sound waves travel **SLOW** (decay) relative to where they travel **FASTEST** (no decay)?

Assessing tomography

Qualitative:

Visual assessments of how well tomography predicts internal condition;

Quantitative:

- Indirectly estimate C content using tomographic data;
 - Validate by comparison with direct mass-based estimate.

- Summer 2014
- Great Mountain Forest, Norfolk, CT
 - Late successional forest
- Three principle northern hardwood species:
 - Sugar maple, yellow birch, American beech
- 18-24 trees of each species
 - 2-4 tomographic cross-sections per tree
 - Fell trees; cut "cookies" at each cross-section
- Validate/calibrate methodology

	# Trees	# Trees	
	Tomographed	Felled	# Cookies
American Beech	28	16	47
Sugar Maple	25	14	33
Yellow Birch	28	11	26
Total	81	41	106

NO DECAY

INCIPIENT DECAY

ACTIVE DECAY

CAVITY

	So	т	E	RT	Predicted Internal	
	Color	Density	Color	Moisture	Condition	C Density
А	brown	maximum	red	none	No decay	$[C]_{brA}$
В	brown	maximum	non-red	present	Incipient decay	$[C]_{brB}$
С	non-brown	reduced	non-red	present	Advanced decay	$[C]_{nbr}$
D	non-brown	reduced	red	none	Cavity	$[C]_{cav}$

Qualitative Assessment of Tomography

No decay	10/10
Active decay	36/36
Cavities	26/37
Misidentified as active decay	11
Total	95/106

Quantitative Assessment of Tomography

Use tomography to indirectly estimate C content;

Validate by comparison with a direct mass-based estimate.

Quantitative Assessment of Tomography

Putting Science to Work for Society since 1875

508 Samples Each Sample: - Volume - Mass

GCEA: *ω* (% C)

508 Samples Each Sample: - Volume - Mass

GCEA: *ω* (% C)

Mass Fraction (ω) by SoT Category

🖉 (std dev)								
	American Beech		Sugar Maple		Yellow Birch		All Trees	
	n	\overline{x}	n	\overline{x}	n	\overline{x}	n	\overline{x}
Brown	143	48.68 (0.52)	107	48.67 (0.49)	78	48.64 (0.70)	328	48.67 (0.56)
Green	58	48.67 (0.73)	36	48.41 (0.57)	21	49.10 (0.73)	115	48.67 (0.74)
Magenta	28	48.46 (0.39)	27	48.41 (0.71)	10	49.07 (0.98)	65	48.53 (0.68)
Combined	229	48.65 (0.57)	170	48.57 (0.56)	109	48.76 (0.78)	508	48.65 (0.62)

C Density, [C] (w/v) by SoT Category

$$[C] = \omega * M(g) \div V(cm^3)$$

[C], g/cm ³							
	Am	American Beech		Sugar Maple		Yellow Birch	
	n	n $ar{\mathcal{X}}$ (sd)		$\overline{\mathcal{X}}$ (sd)	n	$\overline{\mathcal{X}}$ (sd)	
Brown, [C] _{br}	158	0.35 0.04)	96	0.32 (0.04)	84	0.32 (0.03)	
Non-brown* [C] _{nbr}	61	0.23 0.09)	31	0.25 (0.10)	21	0.26 (0.07)	
ANOVA (F, p)	<u>ع</u> ام	96.8 <i>,</i> <0.001		17.4, <0.001		20.1, <0.001	

*Non-brown = Green + Magenta

C Density, [C] (w/v)

$$[C] = \omega * M(g) / V(cm^3)$$

C Densities [C], g/cm ³					
	[C] _{br}	[C] _{nbr-dec}	[C] _{nbr-cav}		
American Beech	0.35(0.04)	0.23(0.09)	0		
Sugar Maple	0.32(0.04)	0.25(0.10)	0		
Yellow Birch	0.32(0.03)	0.26(0.07)	0		

$$C_{bole} = V_{bole} * [C]$$

 $V_{bole} = \sum V_x$ $\overline{x=1}$

 $V_{\chi} = A_{\chi} * t_{\chi}$

	C (g)				
	NO DECAY	TOMOGRAPHY			
150	30199	30199			
100	34259	25351			
50	38954	27268			
	103412	82818			

	n	%C Overestimate in No Decay Model
American Beech	28	0 – 21.9
Sugar Maple	22	0.3 – 27.8
Yellow Birch	17	0 - 15.7

The Connecticut Agricultural Experiment Station Putting Science to Work for Society since 1875

 $\widehat{V_{SD}} = A * \overline{t_{SD}}$

95% Confidence Intervals n = 105

95% Prediction Intervals n = 105

Quantifying decay and carbon loss in trees

- Current C balance models overestimate the above-ground C pool in forests.
- Sonic and Electrical-Resistance Tomography:
 - Accurately predict the internal condition of living trees;
 - Facilitate a more accurate estimate of sequestered C;
 - Can be applied at larger scales to refine current
 C balance models.

Acknowledgments

- National Science Foundation
- Co-PI's
 - Dr. Nicholas Brazee; Dr. Shawn Fraver
- Field and Lab Assistants
 - Kelly Allen; Michael Ammirata; Adam Argraves
- Great Mountain Forest
 - Jean and Jody Bronson; Wes Gomez; Brian Saccardi

