## THE THIRTY-SIXTH REPORT ON

 FOOD PRODUCTS
## AND THE TWENTY-FOURTH REPORT ON DRUG PRODUCTS

## Connertitut

## Ayritultural Exproment statian

NTEu Thaurn

# THE THIRTY-SIXTH REPORT ON FOOD PRODUCTS 

# AND THE TWENTY-FOURTH REPORT ON DRUG PRODUCTS 

1931


## Canutrtitut

Anrirultural Exprrimunt §tatinn<br>Avu T Taurn

CONTENTS AND SUMMARY－Concluded

| Material | $\stackrel{\square}{\sim}$ | Sampled by $y_{r}$submitted to |  | ت |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| DRUGS |  |  |  |  |  |
| Acetic acid | 719 | 0 | 7 | 7 | 2 |
| Acetic acid，dilute | 719 | 0 |  | 6 | 1 |
| Ammonia，aromatic spirits of | 720 |  | 20 | 20 | 6 |
| Ammonia water ．．．．．．．．．．． | 720 | 0 | 4 | 4 | 3 |
| Arsenous acid，solution of | 721 | 0 | 1 | 1 | 1 |
| Arsenous and merctric jodide，solution of | 721 | 0 | 2 | 2 | 2 |
| Bismuth，glycerite of ．．．．．．．．．．．．．．．．．． | 721 | 0 | 2 | 2 | 2 |
| Calcium gluconate ． | 721 | 3 | 4 | 7 | 0 |
| Camphor liniment | 722 | 0 | 10 | 10 | 1 |
| Caraway，oit of． | 722 | 0 | 8 | 8 | 0 |
| Chenopodium．oil of | 723 | 0 | 1 | 1 | 0 |
| Cimamon，oil of ．．． | 724 | 0 | ， |  | 0 |
| Cloves，ail of | 724 | ， | 3 | 3 | 0 |
| Ferrous iodide，sirup of | 725 | ， | 22 | 22 | 1 |
| Ferric citrochloride，tincture of | 725 | 0 | 8 | 8 | 0 |
| Ferric sulphate，solution of | 725 | 0 | 2 | 2 | 0 |
| Hydrochloric acid，ditute | 726 | 0 | 22 | 22 | 6 |
| lodine，tincture of ．．．．． | 727 | 0 | 1 | 1 | 0 |
| Iron，reduced ．．．． | 728 | 0 | 4 | 4 | 0 |
| Magnesia citrate of | 728 | 0 | 26 | 26 | 14 |
| Mercury，ammoniated | 729 | 0 | 12 | 12 | 0 |
| Mercury with chalk ．．．．．．．．．．．．．．．．．． | 729 | 0 | 4 | 4 | 0 |
| Nitrous ether，spirit of ．．．．．．．．．．．．．．．． | 729 | 0 | 17 | 17 | 7 |
| Nitrohydrochloric acid | 729 | 0 | 7 | 7 | 0 |
| Phosphoric acid，dilute ．．．．．．．．．．．．．．．． | 730 | 0 | 9 | 9 | 2 |
| Potassium iodide，saturated solution of． | 731 |  | 5 | 5 | 2 |
| Sulphuric acid，tilute ．．．．．．．．．．． | 732 | 0 | 8 | 8 | 4 |
| Thymol iodide ．．．．． | 733 | 0 |  | 6 | 0 |
| Turpentine ． | 733 | 0 | 24 | 24 | 4 |
| Total for drags |  | 3 | 246 | 249 | 58 |
| miscellaneous |  |  |  |  |  |
| Drugs and other materials | 735 | 15 | 0 | 15 |  |
| Materials examined chiefly for poisons | 736 | 62 | 0 | 62 |  |
| Total for miscellancouts |  | 77 | 0 | 77 | 0 |
| Total for all exclusite of glassedare |  | 457 | 1077 | 1534 | 218 |
| Bahcock glassware and thermometers | 737 | 2720 | 0 | 2720 | 13 |

# THE THIRTY-SIXTH REPORT ON FOOD PRODUCTS AND THE TWENTY-FOURTH REPORT ON DRUG PRODUCTS 

E. M. Bailey

This report summarized the work done during the year in connection with inspection and analysis of foods and drugs for purposes of control as provided by the statutes. Most of the samples examined have been submitted by the Dairy and Food Commissioner.

Collaborative work with the Tobacco Station and the Department of Soils has required analyses of about 100 samples of tobacco.

In the work on foods special attention has been given to eggs, spray residue on apples, and methods for analysis of salad dressings of the mayonnaise type. Members of the staff have also served as collaborators in studies of methods of analysis of foods, drugs, and cattle feeds for the Association of Official Agricultural Chemists. The Department has assisted the Dairy and Food Commissioner and the Director of the Station in preparing a revision of the rules and regulations for carrying out the provisions of the food and drug law. The chemist in charge has continued to serve as a member of the Food Standards Committee of the United States Department of Agriculture and of the Council on Pharmacy and Chemistry and the Committee on Foods of the American Medical Association.

Acknowledgment is made to all members of the Department Staff for collaboration in the work reported herein and in all other activities of the department.

## FOODS

## BEVERAGES

The law relating to hottled beverages holds the term "beverage" to include "all bottled carbonated beverages, including those commonly known as 'soda water'; all bottled non-alcoholic proprietary beverages by whatever names called, including malt and cereal drinks; grape, lime, and other fruit juices put up in containers; fruit-flavored sirups, powders or mixtures and concentrated fruit juices, when sold at retail and designed for the preparation of beverages through the addition of water, with or without sugar; and all bottled spring and mineral waters."

The law further stipulates that no impure, contaminated or polluted water and no adulterated material, saccharin or coal tar color, other than certified color, may be used in the manufacture of bevcrages. Beverages, other than cereal beverages, cider, or spring or mineral water, shall have a sugar content of not less than 5 per cent by weight.

Beverages as contemplated in the law, other than spring and mineral waters and malt and cereal beverages, may be classed in three general groups. On the one hand there are the uncarbonated, undiluted fruit juices; on the other the carbonated drinks of the soda water type; and between these groups a miscellaneous class of considerable variety embracing diluted juices of the type usually known as fruitades (for example, orangeade), drinks of the soda water type but containing some measure of natural fruit juice, and other combinations.

A definition for fruit juice in general, and definitions for two specific fruit juices have been adopted by the United States Department of Agriculture and are recognized in the regulations of this State. These definitions are as follows:

Fruit juice is the unfermented liquid obtained from the first, pressing of sound, ripe, fresh fruit or its pulp, and conforms in name to the fruit from which it is obtained.
Grape juice is the unfermented juice of sound, ripe grapes. It is obtained by a single pressing of the iruit, with or without the aid of heat, and with or without the removal of insoluble matter.
Orange juice is the unfermented juice obtained from sound, ripe, sweet oranges. It may contain a portion of the pulp and/or of the volatile oil.

There is no general definition for "soda water" but a number of specific products in this general class have been defined.

Ginger ale fawer, ginger ale concentrate, is the beverage flavor in which ginger is the essential constituent, with or without aromatic and pungent ingredients, citrous oils, frnit juices, and caramel color.
Ginger ale is the carbonated beverage prepared from ginger ale flavor, harmless organic acid, potalie water and a sirup of one or more of the following: sugar, invert sugar, dextrose; with or without the addition of caramel color:

Sarsaparilla flazor is the beverage flavor prepared from oil of sassafras and methylsalicylate, or oil of wintergreen or oil of sweet birch, with or without other aromatic and flavoring substances and caramel color. It derives its characteristic flavor from oil of sassafras and methvlsalicvlate.

Sarsaparilla is the carbonated bevcrage prepared from sarsaparilla flavor, potable water, and a sirup of one or more of the following: sugar, invert sugar, dextrose; with or without harmless organic acid, and with or without the addition of caramel color.

Root beer flavor, root beer concentrate, is the beverage flavor in which oil of sassafras and methylsalicylate (or oil of wintergreen or oil of sweet birch) are the principal flavoring constituents, and contains other flavoring substances, with or without the addition of caramel color.

Root beer is the carbonated beverage prepared from root beer flavor, potable water and a sirup of one or more of the following: sugar, invert sugar, dextrose ; with or without harmless organic acid, and with or without the addition of caramel color.

Birch beer flavor, birch beer concentrate, is the beverage flavor in which methylsalicylate (or oil of sweet birch or oil of wintergreen) and oil of sassafras are the principal flavoring constituents, with or without other flavoring substances, and with or without caramet color. The flavor of methylsalicylate predominates.

Birch beer is the carbonated beverage prepared from birch beer flavor, potable water, and a sirup of one or more of the following: sugar, invert sugar, dextrose; with or without barmless organic acid, and with or without the addition of caramel color.

Cream soda water flavor, cream soda water concentrate, is the beverage flavor prepared from vanilla, tonka, vanillin, or coumarin, singly or in combination, together with other flavoring substances ; with or without the addition of caramel color.

Crean soda water, "cream sodo;" is the carbonated beverage prepared from cream soda water flavor, potable water and a sirup of one or more of the following: sugar, irvert sugar, dextrose ; with or without harmless organic acid, and with or without the addition of caramel color.

Two hundred and fifty-eight samples were examined, all submitted by the Dairy and Food Commissioner, and were for the most part of the soda water type. Sugar content exceeded 5 per cent in all cases and in no instance was saccharin found. Artificial color and flavor, if present, were declared in practically all samples. Of 120 samples of ginger ale the highest sugar content was 12.3 per cent, the lowest 5.8 per cent and the average of all was 9.0 per cent. Only 24 samples contained more than 10 per cent of sugar.

A sample sold as a fresh fruit orange drink was found to contain 14.8 per cent of sugar. which was nearly all sucrose, and .063 per cent of ash. Assuming 0.4 per cent of ash as fairly typical of orange juice this sample contained about 15 per cent of actual juice, which is enough to characterize the beverage as an orange drink or as "orangeade," but such a product should not be offered as orange juice.

## EGGS

The so-called "cold storage egg law" provides that eggs that have been preserved by any artificial process, or that have been kept in storage for 15 days or more in any place where the temperature is reduced by means of artificial refrigeration, or that have been incubated for 24 hours or more, shall be marked "cold storage eggs," "preserved exgs," or "incubator eggs," as the case may be, if such eggs are sold or offered for sale. Wholesalers are required to state on invoices whether eggs sold are "fresh" or of the classifications noted above. This law has been in effect for many years
and is under the administration of the Dairy and Food Commissioner.

More recently a law authorizing the Commissioner of Agriculture to establish grades for fresh eggs has been enacted (Public Acts 1931, Sec. 336 a). This act prohibits the sale or the adve: tising of eggs as "fresh," "strictly fresh," "hennery," "new laid," or like descriptions if such eggs are not in fact fresh eggs. The act specifies the characteristics of fresh eggs, to be determined by candling, as follows: Air cells not more than .25 inches deep, localized and regular; whites firm and clear; yolks allowed to be visible ; no visible germ development.

Some confusion arose in the trade in attempting to abide by the requirements of both laws. There was some uncertainty as to how to label eggs that were not cold storage, preserved, or incubated, but that would not meet the specifications laid down for fresh eggs in the newer statute. To meet this situation a ruling was made by the Dairy and Food Commissioner and the Director of this Station, the ruling being concurred in by the Commissioner of Agriculture and representatives of the trade, which held that eggs that were not cold storage, preserved, or incubated, and that were not properly described as fresh under the provisions of the fresh egg law, could be designated and sold as "eggs" without further qualification. The text of the ruling is as follows:

Section 2453 of the General Statutes relates to the sale of eggs and prescribes how eggs of various classes therein named shall be labelled. The intent of the Statute is that eggs sold or offered for sale shall be labelled and invoiced in a manner that is informative of their character. It is recognized however, that there are at times in the channels of trade, eggs that are not properly designated by the terms named in the statute, i.e., "cold storage eggs", "preserved eggs" or "incubated eggs", and that do not have the characteristics necessary to warrant designation as "fresh eggs".

For the guidance of the trade, and to relieve the uncertainty that has arisen as to an acceptable labelling for eggs of this type and class, it is held that an adequate designation for such eggs will be the unqualified name "eggs". The understanding of this term is that eggs so designated do not conform to the specifications laid down for "fresh eggs" (Chapter 124, Public Acts 1931) and are not "cold storage", "preserved" or "incubated", but are, nevertheless, wholesome and edible eggs.

Objective examinations in the laboratory, including candling, examination of the egg on breaking out of the shell, ammoniacal nitrogen content, and examination of the shell for evidence of dipping, serve to determine with reasonable certainty whether eggs are entitled to the designation of fresh. The same data often will make it possible to form an opinion as to the character and quality of eggs that are not fresh. Experience has shown that eggs conforming to the specification given for fresh eggs will generally have an ammoniacal nitrogen content of less than 2 mgms . per 100 gms . of
egg. Cold storage eggs may have considerably enlarged air spaces but the ammoniacal nitrogen will be of about the same order as that of fresh eggs. If however, eggs are dipped before being placed in storage the air spaces and ammoniacal nitrogen may not be appreciably different from fresh eggs. Examination of the shell in such cases should indicate the fact of dipping. Eggs that have been dipped but not subsequently held at reduced temperatures will show small air spaces but the ammoniacal nitrogen generally will be greater than is found in fresh eggs. In stale eggs air spaces will be large and the ammoniacal nitrogen high.

With careful methods of handling it is possible to ship eggs for long distances and have them qualify as fresh when they arrive in local markets.' 'Thus a lot of California eggs, not dipped and not refrigerated except during transit, were found to have air spaces less than one-quarter inch in depth and less than 2 mgms. of ammoniacal nitrogen per 100 grams of egg. Liggs sold as "Fresh Western" therefore may meet the specifications for fresh eggs and should do so to merit that qualification.

Of a total of 101 samples of eggs examined during the year, practically all stbmitted by the Dairy and Food Commissioner, 44 were found to be improperly labelled.

## FATS AND OILS

## BUTTER

Butter is the only article of food the definition and standard for which is fixed by act of Congress. This product may not contain less than 80 per cent of milk fat. No moisture limit is specified but butter will generally not contain more than 16 per cent of water.

Eighteen samples of butter were examined. Two were short weight and one was rancid and mouldy. The short weight samples were purchased at the stores of James Van Dyke Co. on Main Street and on Asylum Street, Hartford. The rancid and mouldy sample was purchased of C. Nesei in Bristol.

## OLEOMARGARINE

The law in this state regulating the sale of imitation butter specifies that oleomargarine may be made and sold provided that it is so labelled as to advise the consumers of its real character and that it is free from coloration and from any ingredient intended to cause it to look like butter. The interpretation placed upon this statute is that oleomargarine may not contain color added for the sole purpose of imparting coloring, but that the inclusion of fats or oils that are in themselves of some degrec of yellow and thereby impart
a yellow shade to the finished article is not in violation of the law. This interpretation has been placed upon similar language in the oleomargarine laws of other states, notably Massachusetts and Michigan, and upheld by court decisions.

Federal laws regulating taxes upon oleomargarine impose a tax of one-quarter of one cent per pound upon uncolored oleo and 10 cents per pound upon colored oleo. Formerly the product was held to be colored if ingredients of such character and in such amounts were added as to serve the sole purpose of producing color. Naturally colored fats that served as bona fide and substantial part of the article did not bring the product within the classification of colored oleomargarine. An act of Congress approved March 4, 1931, however, amended previous regulations in this respect and at present colored fats or oils may not be used in the manufacture of oleomargarine if they impart a shade of yellow greater than 1.6 degrees of yellow and red collectively, unless the product is classed as colored and taxed accordingly. Since a tax of 10 cents per potnd is prohibitive, oleomargarine will no longer be made from fats possessing any considerable degree of yellow.

Artificial color may still be added to butter and the amount is not restricted.

Only one sample of oleomargarine was stibmitted. This was before the amended Federal regulation became effective. The sample was colored, but not artificially colored.

## OLIVE OIL

Twenty-three samples of olive oil were examined and 5 were found to be adulterated.

Cottonseed oil and sesame were the adulterants in three samples all purchased from the International Importing Co. of Hartford and Waterbury. Two samples submitted by the Department of Health of New Haven were adulterated with cottonseed oil and in one case artificial color was also found.

## DRIED FRUITS

Having had occasion to inquire into the question of moisture content of dried fruits the following data (Table 1), are recorded for purposes of reference. In a measure moisture content is selflimiting because high moisture in dried fruits is not conducive to good keeping quality. The present moisture standard for dried apples permits not more than 24 per cent. No limit has been fixed for other dried fruits.
Table 1. Recorded Analyses of the Motsture Content of Dried Apples, Apricots and Peaches

| Apples |  |  |  |  | Apricots |  |  |  |  | Peaches |  |  |  |  | References |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Suar | $\underset{\text { maxi- }}{\text { maxi- }}$ |  | Average | Mean | $\begin{aligned} & \text { vuru } \\ & \text { ber } \\ & \text { Ana } \\ & \text { lyzed } \end{aligned}$ | $\underset{\substack{\text { Maxi- } \\ \text { mumm }}}{\text { and }}$ | Minimum | Average | Mean | $\left\lvert\, \begin{gathered} \text { Numar } \\ \text { Arar } \\ \text { Ayzel } \end{gathered}\right.$ | Maxi- <br> mum | Minimum | $\underset{\substack{\text { aver }}}{\text { Ager }}$ | Mean |  |
| 1 | 33.00 | 3 | 33.00 | 33.00 | 1 | 32.44 | 32.44 | 32.44 | 32.44 |  |  |  |  |  | E. W. Hilgard. Univ. Cal. Agr. Exp. Sta. Bull. 97, 7 (1892) |
| 3 | 47.40 | 8.6 | 28.1 | 28.0 | 2 | 32.4 | 26.4 | 29.4 | 29.4 |  |  |  |  |  | W. O. Atwater, and A. B. Bryant. U. S. D. A. Off. Expt. Sta. Bull. 28 rev, 73 (1899). |
|  |  |  |  |  | 4 | 31.3 | 29.2 | 30.3 | 30.3 |  |  |  |  |  | A. Kickton. Z. unt. Nahr. Genussm., 8, 675 (1904). |
|  |  |  |  |  | 1 | 38.49 | 38.49 | . 38.49 | 38.49 |  |  |  |  |  | M. Greshoff, W. M. Cluwen, C. L. DeFouw. Z. unt. Nahr. Genussm., 13, 434 (1907). |
| 1 | 36.22 | 36.22 | 36.22 | 36.22 |  |  |  |  |  | 1 | 27.00 | 27.00 | 27.00 | 27.00 | J. E. Z. Bosz, Z. unt. Nahr. Genussm., 19, 747, (1910). |
| 9 | 21.72 | 9.7 | 16.58 | 15.71 | 11 | 26.17 | 14.7 | 23.48 | 20.44 | 13 | 24.50 | 13.1 | 19.63 | 18.80 | A. McGill. Lab. Inland Rev. |
| 88 | 33.15 | 9.74 | 19.66 | 21.44 | 30 | 27.91 | 14.20 | 19.58 | 21.06 | 39 | 23.88 | 9.62 | 17.03 | 16.75 | Dept. Canada, Bull. 352, (1916). A. McGill. Lab. Inland Rev. Dept. Canada, Bull. 375, (1917). |
| 102 | 47.4 | 8.6 | 26.71 | 28.0 | 14 63 | 35.75 38.48 | 11.49 11.49 | 26.90 28.66 | 23.62 24.99 | 53 | 27.00 | 9.62 | 21.22 | 18.31 | T. F. Hunt. Rept. Coll. Agr. Expt. Sta., Univ. Cal., 19181919, 36, (1918). <br> All reports. |

[^0]
## SPECIAL AND MISCELLANEOUS FOODS

## GLUTEN FLOUR

The standard for gluten flour specifies that this product shall not contain more than 10 per cent of moisture and, on a water-free basis, not less than 7.1 per cent of nitrogen, nor more than 56 per cent of nitrogen-free extract, and not more than 44 per cent of starch. The factor 5.7 is used in estimating protein.

Five samples representing well-known brands of gluten flour were examined and all met the standard for moisture and nitrogen. Previous analyses indicate that in gluten flours of standard nitrogen content the carbohydrate will not be excessive. Partial analyses are given in Table 2.

## Table 2. Partial Analyses of Gluten Flours

| No. | Manufacturer | Moisture | Moistrgen <br> per cent |
| :--- | :---: | :---: | :---: |
| per feree basis |  |  |  |

GLUTEN BREAD
There is no official definition or standard for glaten bread, but since the article is used because of its reduced carbohydrate content as compared with ordinary white bread the flour ingredient should be gluten flour. Breads that do not differ essentially from white bread should not be designated as gluten breads.

In Table 3 are given analyses of gluten breads. Many of these are local brands and were submitted by the Dairy and Food Commissioner. Others were submitted by purchasers or others interested. For comparison a fairly typical analysis of ordinary white bread is given as the last item in the table. It will be noticed that these gluten breads generally exceed the moisture limit for ordinary bread, which is 38 per cent. No. 48999 is a so-called aerated bread, which is to say it is not a moist loaf but an air-dry loaf. The protein content is from 2.5 to 3.5 times that of ordinary bread and the carbohydrate (nitrogen-free extract), is correspondingly less than that found in ordinary white bread.

Five other samples of miscellaneous materials examined for purchasers, dietitians, or others interested, are tabulated in Table 4.
Table 3. Analyses of Gluten Bread

| No. | Dealer | Moisture | Ash | $\begin{gathered} \text { Protein } \\ (\mathrm{N} . \times 5.7) \\ \hline \end{gathered}$ | Fiber | $\begin{gathered} \text { Nitrogen-free } \\ \text { extract } \end{gathered}$ | Fat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49706 | Danbury <br> The Mohican Market <br> Hartfor | $38.15$ | $\begin{aligned} & \% \\ & { }_{2.70} \end{aligned}$ | $\begin{gathered} \% \\ 25.01 \end{gathered}$ | $\begin{aligned} & \% \\ & 0.18 \end{aligned}$ | $\begin{gathered} \% \\ 31.47 \end{gathered}$ | $\begin{aligned} & \% \\ & 2.49 \end{aligned}$ |
| 49715 | Beroth Bakery Harlford | 45.01 | 1.94 | 27.04 | 0.27 | 22.10 | 3.64 |
| 49716 | The Hartford Market Co. | 41.48 | 2.15 | 28.15 | 0.21 | 24.59 | 3.42 |
| 49722 | Keney Tower Bake Shop | 34.38 | 2.26 | 20.68 | 0.22 | 34.91 | 7.55 |
| 48999 | Newton Robinson Grocery Co. | 7.45 | 1.17 | 43.95 | 0.28 | 38.76 | 8.39 |
| 49745 | Parkvilie Market ${ }_{\text {Middiotoren }}$ | 34.45 | 1.47 | 26,38 | 0.29 | 34.39 | 3.02 |
| 48996 | Stueck's Bakery New Britain | 45.49 | 1.35 | 22.84 | 0.14 | 28.85 | 1.33 |
| 49700 |  | 41.60 | 1.58 | 24.12 | 0.24 | 28.43 | 4.03 |
| 49719 | The Walter Stewart Co. ....................... Now Haven | 39.65 | 1.80 | 30.87 | 0.15 | 25.82 | 1.71 |
| 49703 | Federal Bakery ............. | 41.31 | 2.47 | 21.99 | 0.28 | 27.47 | 6.48 |
| 49704 | The Mohican Co. | 39.92 | 2.09 | 26.21 | 0.19 | 27.93 | 3.66 |
| 48994 | Shartenberg's ... | 44.83 | 1.38 | 27.21 | 0.40 | $24.16^{1}$ | 2.02 |
| 8334 | Penn Gluto Bread (subm'd. by purchaser) New London | 35.73 | 1.35 | 20.74 | 0.75 | $32.63^{2}$ | 8.80 |
| 48998 | The Mohican Market Norwich | 38.32 | 2.16 | 21.40 | 0.25 | 33.37 | 4.50 |
| 49727 | Community Bake Shop . | 42.63 | 1.36 | 25.72 | 0.27 | 27.91 | 2.11 |
| 49725 | The Mohican Market $\begin{gathered}\text { Plainzille }\end{gathered}$ | 37.69 | 2.38 | 27.11 | 0.34 | 29.25 | 3.23 |
| 49701 | Rogers Bakery $\because$ Ridgefield | 44.14 | 1.39 | 23.83 | 0.25 | 28.46 | 1.93 |
| 49718 | Ridgefield Bakery | 41.78 | 1.81 | 25.46 | 0.31 | 28.69 | 1.95 |
| 49729 | Quality Bakery Typical analysis of | 41.22 | 1.44 | 24.91 | 0.30 | 29.70 | 2.43 |
|  | Conn. Exp. Sta., But1l. 286, p. 300 | 35.3 | 1.1 | 9.2 | 0.5 | 52.6 | 1.3 |

${ }^{1}$ Starch 18.89 per cent; water-soluble carbohydrate 2.68 per cent.
${ }^{2}$ Starch
24.53 per cent; water-soluble carbohydrate 2.35 per cent.
Table 4. Analyses of Special and Miscellaneous Foons

| No. | MateriaI | Moisture | Ash | $\begin{aligned} & \text { Protein } \\ & \text { (Nx6.25) } \end{aligned}$ | Fiber | Carbohydrate |  | Fat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Starch | $\begin{gathered} \text { Unde- } \\ \text { termined } \end{gathered}$ |  |
| 6544 | Glutosac Bread. Health Food Co., New York City | $\begin{gathered} \% \\ 30.00 \end{gathered}$ | $\begin{gathered} \% \\ 1.90 \end{gathered}$ | $\begin{gathered} \% \\ 31^{1.08^{1}} \end{gathered}$ | $\begin{gathered} \% \\ 0.84 \end{gathered}$ | $\begin{gathered} \% \\ 26.64^{2} \end{gathered}$ | $\begin{gathered} \% \\ 7.57 \end{gathered}$ | $\begin{aligned} & \% \\ & 1.97 \end{aligned}$ |
| 6983 | Golden Loaf Soya Bread, S. B. Thomas, Inc., Long İsland City, N. Y. | 36.96 | 1.90 | 12.00 | 0.59 |  |  | 3.34 |
| 6481 | Manbeck's Sweet Loaf Bread, Manbeck Baking Co., Harrisburg, Pa. | 34.75 | 1.63 | 9.58 | 0.43 |  |  | 1.06 |
| 5889 | Pharma-Craft Dietetic Flour ............ | 4.93 | 7.39 | 82.44 | 0.35 |  | 3.69 | 0.70 |
| 8596 | Kornlet. The Haserot Co., Cleveland, O. . | 75.12 | 0.99 | 2,24 | 0.30 |  |  | 0.91 |

[^1]
## ICE CREAM

Only 38 official samples of ice cream have been examined for the Dairy and Food Commissioner during the year. Chemical tests for fat content have been made on a large number of samples each year for some time past and a very few instances of sub-standard products have been found. Fat content has generally exceeded the minimum standard of 8 per cent by very considerable margins. In inspection this past year more emphasis has been given to conditions of sanitation under which ice cream has been dispensed and this has involved bacteriological examinations, which we are not equipped to make, and such samples have been referred to the laboratory of the State Board of Health.

All of the officiat samples referred to us for chemical tests have been found to exceed the legal requirement as to fat content.

Twelve unofficial samples submitted by purchasers or others interested have been examined. One of these samples was chocolate ice cream suspected of containing foreign fats, but examination of the fat isolated from the sample disclosed no deviations from the constants for milk fat other than such as might be expected by reason of the cacao fat present.

## MEAT PRODUCTS

Six official samples of frankfurts were examined and two were found to contain excess of starchy material. Frankfurts may contain 3.5 per cent of cereal according to government regulations and the regulations in this state, provided however that the presence of cereal or other starchy material is declared. Stuch additions in excess of 3.5 per cent are not permissible even if declared.

Ten unofficial samples were examined for excess moisture. This work was chiefly of a collaborative nature to study analytical methods involved.

## CANNED FISH

Six cans of crab meat were submitted by the Dairy and Food Commissioner. The contents of five of the cans were clean and wholesome so far as could be determined by odor and general appearance. In one can the meat was evidently unfit for food. It is not always easy to conclude whether foods are unfit for consumption under that clause of the law that declares food adulterated if it is filthy, decomposed or putrid. We seldom find foods offered for sale that may properly be described as filthy or putrid; and decomposition must be interpreted with some reservation. Disorganized or uncontrolled decomposition is the meaning con-
templated by the statute, because some foods, certain types of cheeses for example, regarded as delicacies are prepared by processes that involve intentional decomposition. In judging food suspected of being injurious to health, if the article differs markedly from the normal product of its type the food had better be regarded with suspicion and rejected. The benefit of the doubt should be given to the consumer and not to the food.

Another instance of suspected food was a case of a shipment of canned shrimp. Seven samples were sulmitted by the Dairy and Food Commissioner. Small crystals aroused suspicion on the part of the consumer that ground glass was present. Six of the samples were found to contain crystals which gave positive tests for ammonium, magnesium, and phosphate. It appears that in certain shell-fish, shrimp particularly, conclitions are favorable for the formation of small crystals of hydrogen-ammonium-magnesium phosphate (Struvite), and the presence of this salt is not cause for alarm.

## MILK AND MILK PRODUCTS

## MARKET MILK

Two hundred and forty-four official samples of milk were submitted by the Dairy and Food Commissioner. About 60 per cent of these were not found adulterated. Roughly 20 per cent were adulterated by watering, or skimming, or both, and the remainder were below standard in some particular.

The distribution of samples is given in the following summary.

| Summary of Inspection |  |  |
| :---: | :---: | :---: |
|  | Number of | Per cent |
| Not found adulterated | 142 | 58.2 |
| Adulterated by watering | 20 | 8.2 |
| Adulterated by skimming | 29 | 11.9 |
| Adulterated by skimming and watering | 1 | 0.4 |
| Below standard: |  |  |
| in solids and solids-not-fat | 24 | 9.8 |
| in solids and fat | 7 | 2.9 |
| in solids, fat and solids-not-fat | 21 | 8.6 |
| Totals | 244 | 100.0 |

It should be noted that the relatively large proportion of adulterated samples can not be taken as an indication of the general run of market milk furnished to consumers in this State, because in most cases the samples collected by the inspectors were taken on complaints of local health officers or milk inspectors where some reason to question the character and quality of milk had arisen.

Ninety-two samples of milk drinks commonly known as plain milk shakes were examined. In this type of drink the additions made are not sufficient to alter appreciably the composition of the milk used in their preparation. About 35 per cent of the samples examined showed marked indications that skimmed milk was used. In many cases the tests indicated milk richer than the average in fat. The practice of preparing these clrinks from milk in quart bottles explains the results found; top milk is dispensed at first and the last of the bottle contents is skimmed milk.

Two hundred and fifty unofficial samples of milk were tested for dairymen and others, chiefly for purposes of checking up on the production of inclividual cows in the herds.

In addition to these eight samples of cream, two of evaporated milk, two of chocolated milk, and two samples of breast milk were analyzed.

Table 5. Adulterated Milk


Table 5. Adulterated Milk-(Continued)


## MAYONNAISE

The present definition and standard for mayonnaise as announced by the United States Department of Agriculture are as follows:
"Mayonnaise, mayonnaise dressing, mayonnaise salad dressing, is the semi-solid emulsion of edible vegetable oil, egg yolk, or whole egg, a vinegar and/or lemon juice, with one or more of the following: salt, other seasoning commonly used in its preparation, sugar and/or dextrose. The finished product contains not less than 50 per cent of edible vegetable oil."

Mayonnaise is essentially an egg and oil dressing. The minimum percentage of egg yolk and oil, 78 per cent, specified in an earlier definition, has been deleted and the only numerical standard now provided is a minimum of vegetable oil, that is, 50 per cent. A suitable proportion of egg is necessary, however, to insure a semisolid consistency of the finished product since other thickening agents are not permitted by the definition. It is still pertinent to know the proportion of egg or of egg yolk in mayonnaise, although no numerical limit is established for this ingredient.

The present tentative method for estimating egg in egg products is based upon the determination of lipoid phosphoric acid which is characteristic of egg yolk but not of egg white. The method is admittedly only approximate. Apparently if freshly made mayonnaise is examined the egg content can be estimated with reasonable accuracy. This has been true at least with dressings made in the laboratory in which egg yolks of known lipoid phosphoric acid content were used.

It was noted however that these laboratory-made dressings on holding were subject to some change that resulted in a loss or transformation of lipoid phosphoric acid. The same change was noted also in commercial products when a series of samples from the same batch were examined shortly after manufacture and at various intervals up to several months thereafter. The magnitucle of these changes was sufficient in some instances to render estimates of egg yolk content quite unreliable. It was found that the total phosphoric acid content, however, remained practically constant. The summary on page 714 for both lipoid phosphoric acid and total phosphoric acid gives results that are typical of our experience.

It is quite evident that in a survey of commercial mayonnaise, products of various ages will be encountered. Those of recent manufacture may be evaluated as to egg content with fair accuracy on the basis of $\mathrm{L}-\mathrm{P}_{2} \mathrm{O}_{3}$, but if some time has elapsed since the products were made, that is, 6 weeks or longer, estimates of egg content may be considerably too low. The greater constancy of
the total phosphoric acid content suggests that it is a safer basis for evaluation of egg content than is the lipoid phosphorus.

|  | $\underset{\%}{\text { Lipoid } \mathrm{P}_{2} \mathrm{O}_{5}}$ | $\underset{\%}{\text { Total }} \mathrm{P}_{2} \mathrm{O}_{6}$ |
| :---: | :---: | :---: |
| Laboratory Sample A, initial | 0.091 | 0.139 |
| after 6 weeks | 0.065 |  |
| Commercial Sample B, initial | 0.063 | 0.102 |
| after 3 months | 0.043 | 0.099 |
| after 6 months | 0.036 | 0.100 |
| Laboratory Sample C, initial | 0.174 | 0.277 |
| after 2 months | 0.166 | 0.274 |

In estimating egg yolk content from the total phosphoric acid value a factor must be chosen and this must be based upon average values, as in the case of the factor for lipoid phosphoric acid. In making our laboratory mayonnaise, yolks of fresh eggs were used and the total phosphoric acid content of the yolks was about 1.4 per cent. Results reported by Cook (Allen's Commercial Organic Analysis 4th Ed., Vol. 8: 446) show 1.39 per cent for boiled yolks of fresh eggs and an average 1.4 per cent for yolks from cold storage eggs. Unpublished results furnished us (by courtesy of another investigator) show about 1.4 per cent for fresh and "commercial" fresh egg yolk and a little lower, 1.3 per cent, for yolks from cold storage eggs. It seems fair to assume 1.4 per cent as the average total phosphoric acid content of egg yolk for purposes of calculation.

It is true, of course, that all of the phosphoric acid in mayonnaise does not come from egg; some will be supplied by the vinegar, particularly if cider vinegar or malt vinegar is used, and a little will come from the spices and seasoning. If distilled vinegar is used the non-egg phosphorus in the finished mayonnaise may be regarded as negligible. In our experimental dressings made with cider vinegar, corrections of 0.01 to 0.02 per cent have been justified, but it is obvious that in the examination of market samples an intelligent application of such a correction factor cannot be made.

Applying this dual method of estimating egg yolk to the experimental samples already referred to, reckoning from lipoid phosphoric acid on the basis of the factor 0.89 , and without correcting the total phosphoric acid for non-egg phosphorus, the following comparative values are obtained:


A survey of commercial mayonnaise products was made in 1930 and the results published in Bulletin 329. The products were judged on the basis of the standard for mayonnaise which was in force at that time and which required a minimum of 78 per cent for egg yolk and oil combined. All of the products substantially met or exceeded this specification with three exceptions. One of these exceptions was Shady Lane brand made by Ivanhoe Foods, Inc., No. 46884. This brand should not have been included in the list because it was not sold as a mayonnaise but merely as a salad dressing. Attention was called to the uncertainties in estimating egg yolk content by present available methods and particularly to the possible transformation of lipoid phosphoric acid in products that have aged.

In the examination of mayonnaise samples that have been submitted during the past year we have estimated the egg yolk content on the basis of total phosphoric acid in view of the evidence already discussed. The values for egg yolk are still approximate, but they are based upon an index that is much more satisfactory than the one hitherto employed. Whatever more accurate methods may be devised, the simple determination of total phosphoric acid appears to afford a valuable check upon egg yolk content of mayonnaise and for practical purposes is probably sufficiently accurate. (See Table 6).

## SPRAY RESIDUE ON APPLES GROWN IN CONNECTICUT

The spraying of fruit and vegetables as a means of controlling insect pests and fungus diseases has become an established practice in this country. Some of the materials used for this purpose are notably poisonous, for example the arsenicals. When these spray materials carry over into the product that is offered to the consumer for food, a problem for food control officials arises because of the provision in the food law that declares an article

[^2]Table 6. Analyses of Mayonnaise

| No. | Brand | Solids | Ash | Protein |  | $\begin{aligned} & \text { Fat, } \\ & \text { total } \\ & \text { R-G-G } \end{aligned}$ | Salt | Acidity | $\begin{gathered} \text { Total } \\ \mathrm{P}_{2} \mathrm{O}_{5} \end{gathered}$ |  | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \% | \% | \% | \% | \% | \% | \% | \% | \% | \% |
| 49929 | Ames, S. K. Inc., Boston. Ames Quality No. 1... | 85.96 | 1.34 | 1.88 | 2.04 | 80.70 | 1.02 | 0.40 | 0.125 | 8.9 | 77.7 |
| 51099 | Best Foods, Inc., New York.................. | 84.69 | 1.44 | 1.13 | 2.41 | 79.71 | 1.33 | 0.29 | 0.044 | 3.1 | 78.7 |
| 49925 | Cameo Food Products Co., Bridgepo | 90.96 | 1.04 | 1.00 | 2.85 | 86.07 | 0.87 | 0.29 | 0.062 | 4.4 | 84.6 |
| 8792 | First National Stores, Boston. Fi-Na-S | 83.45 | 2.04 | 1.38 | 3.79 | 76.24 | 1.71 | 0.40 | 0.116 | 8.3 | 73.5 |
| 8791 |  | 85.65 | 2.07 | 1.63 | 4.15 | 77.80 | 1.77 | 0.40 | 0.112 | 8.0 | 75.1 |
| 8790 |  | 84.80 | 2.06 | 1.75 | 4.46 | 76.53 | 1.74 | 0.41 | 0.121 | 8.6 | 73.7 |
| 51250 | Heinz, H. J. Co., Pittsburgh | 85.60 | 1.04 | 1.88 | 0.69 | 81.99 | 0.89 | 0.40 | 0.120 | 8.6 | 79.1 |
| 51252 | Hellman, Richard, New York | 84.60 | 1.29 | 1.25 | 1.21 | 80.85 | 1.14 | 0.44 | 0.091 | 6.5 | 78.7 |
| 51251 | Kraft-Phoenix Cheese Co., Chicago, 1930 sample | 86.07 | 1.29 | 1.44 | 2.85 | 80.49 | 1.12 | 0.31 | 0.101 | 7.2 | 78.1 |
| 8876 | Seidner, Otto, Providence........................ | 76.17 | 1.69 | 2.75 | 2.66 | 69.07 | 1.14 | 0.75 | 0.212 | 15.1 | 64.1 |
| 51363 | Swift \& Co., Chicago. Gem. | 80.41 | 1.99 | 1.63 | 4.24 | 72.55 | 1.64 | 0.50 | 0.105 | 7.5 | 70.1 |
| 49948 | Underwood \& Sons Co., Providence | 78.44 | 1.73 | 2.50 | 2.90 | 71.31 | 1.32 | 0.75 | 0.164 | 11.7 | 67.4 |

of food adulterated if it contains any added poisonous or deleterious substance that may render the food injurious to health.

In the last 10 years or more increasing attention has been given to the question of spray residues on fruits and vegetables as offered for sale. It is agreed by all concerned that it is imperative to safeguard the consumer and prevent the transportation and sale of fruits bearing dangerous quantities of poisonous spray residues. To this end growers, distributors ancl control officials both State and Federal, have cooperated.

Attention has centered largely or entirely upon arsenic and the metal often associated with it, that is, lead. Although it is desirable that these objectionable spray residues be entirely eliminated it does not appear to be easily possible to do so according to practical experience thus far acquired. The so-called world, or international, tolerance of 0.01 grain per pound is accepted by qualified authorities as a reasonable limit to safeguard the consumer properly. This tolerance was agreed upon by the British Royal Commission appointed to investigate beer poisoning cases that occurred in England many years ago, and it appears to have withstood the critical examination of toxicologists in this country.

At the present time ${ }^{1}$ no exception is taken to arsenic residues of slightly more than .01 grain, but eventually, and as soon as possible, the world tolerance will be observed.

From time to time in recent years samples of fruit and vegetables suspected of dangerous contamination have been submitted to the Station. In no cases, however, have we found quantities in excess of those regarded as harmless. Quite recently a more extended survey was made collaborating with the Station Pomologist, who secured the samples. In brief the plan adopted was to survey the orchard and select samples that showed the most conspictous amounts of residue, at the same time noting as well as possible the probable proportion of the total yield that such samples comprised. The reason for such a procedure is obvious : our interest was not to find the probable average arsenic residue, but rather to find the dangerous excesses and, if such were found, to be able to form some conclusion as to how great a proportion of fruit was thus contaminated.

Nineteen samples were collected in various localities of the state. Some were taken from the trees, some from sorting tables, and others from boxes as prepared for shipment. Notes were also taken as to the time when the last application of spray was made. The results can be very shortly summarized by saying that none approached the tolerance of .01 grain at all closely; the nearest approach to it was about one-half of the accepted limit, . 0053 grain. The smallest amount found was .0007 grain, and excluding the one high figure just noted the range was from .0007 to .0039 grain per pound.

[^3]While these data offer no cause for concern or alarm they should not be allowed to create an attitude of complacency or of indifference. There will undoubtedly be times when unusual conditions will occur, such as the necessity for extra heavy applications of spray, or unfavorable conclitions for the natural removal of the residual spray material. $U_{p}$ to the present time there has been no need for any extensive operations to remove spray residue to make apples marketable. In such cases as have required some treatment, removal by means of wiping has been employed. It seems timely to suggest that growers anticipate the possible necessity of spray removal on a considerahle scale so that an emergency may not catch them unawares. A bulletin issued by the United States Department of Agriculture. Farmers' Bulletin No. 1687, issued in October of this year, cleals with the subject of removing sprayresidue from apples and pears and gives in some detail the methods of treatment that have been found to be satisfactory.

## SQUASH

Twenty samples of squash were examined for total solids. The samples represented crosses between Gollen Delicious and Boston Marrow varieties in connection with field experiments carried on by the Associated Seed Growers of New Haven.

Segments were cut from the stem and to the opposite end of the vegetable, the segment freed from seeds and solids determined. The samples ranged from 7.68 to 15.42 per cent of solids in the samples as received.

## TOBACCO SEED

A sample of tobacco seed, Tobacco Station crop of 1930, was analyzed for the Department of Biochemistry as follows:
Water ..... 6.87
Ash ..... 3.31
Protein (N x 5.34) ..... 19.33
Fiber ..... 14.20
Carbohydrates:
Starch ..... none
Water-soluble after hydrolysis calculated as dextrose ..... 2.13
Water-insoluble after hydrolysis calculated as dextrose ..... 1.31
Undetermined ..... 9.75
Fat (ether extract) ..... 43.10

## MISCELLANEOUS FOODS

Thirty-six samples of foods of a miscellaneous character have been examined for health officers or other authorities and in some instances for individuals. Some of these involve only tests for the detection of common adulterants or analyses to determine proximate composition. These samples require no special discassion or comment.

## DRUGS

## ACETIC ACID, AND ACETIC ACID, DILUTE

Acetic acid should contain not less than 36 per cent and not more than 37 per cent of acetic acid. Seven samples were examined, two of which were substantially below standard.

Dilute acetic acid should contain not less than 5.7 per cent and not more than 6.3 per cent of acetic acid. One sample was much too strong.

Table 7. Assays of Acetic Acid and Dilute Acetic Acid

| No. | Dealer | $\begin{gathered} \text { Acetic } \\ \text { Acid. } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: |
|  | Acetic Acid Hartford |  |
| 48067 | A. I. Genter ............ | 29.4 |
| 46394 | John M. Rosenthal ....il............... | 35.7 |
| 46387 | Leverty's Pharmacy ........ | 25.7 |
| 48167 | The Graber Pharmacy | 36.1 |
| 47944 | Mystic Pharmacy .. | 36.5 |
| 47910 | Onkey \& Brodie . | 36.7 |
| 48155 | G. A Lemmon ......... | 36.5 |
|  | Dilute Acetic Acid Hartford |  |
| 48365 | Weaver Pharmacy ....... | $15.6{ }^{1}$ |
| 47942 | Higgin's Pharmacy ..... | 7.2 |
| 48071 | Geo. R. Byington Plain | 6.3 |
|  | Wallingford |  |
| 48181 | Wallingford Drug Co. ................... | 5.9 |
| 48055 | Bay State Drug Co. .... | 6.0 |
| 48355 | The Case Drug Store . ................. | 5.7 |

[^4]
## AROMATIC SPIRLTS OF AMMONIA

The formula for this article requires that the finished product contain 1.84 gms . of ammonia ( $\mathrm{NH}_{3}$ ), in each 100 cc . The alcoholic strength should be from 62 to 68 per cent by volume. Five samples were somewhat low in ammonia and one was notably too strong.

Table 8. Assays of Aromatic Spirits of Ammonia

| No. | Dealer | $\underset{\mathrm{gms} / 100 \mathrm{cc}}{\text { Ammonia, }}$ | $\begin{gathered} \text { Alcohol by } \\ \text { volume } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: |
|  | Aromatic Spirits of Ammonia Bethel |  |  |
| 48627 | English Drug Store ... | 1.8 | 65.7 |
| 48082 | Boulevard Pharmacy | 1.7 | 63.7 |
| 46381 | Canan <br> The Service Pharmacy | 1.8 | 62.2 |
|  | , Damielson |  |  |
| 48095 | The M. H. Berthaume Pharmacy | 1.7 | 60.8 |
| 48368 | Homestead Park Phard | 1.2 | 67.7 |
| 46374 | Hubert's Drug Store . . . . | 1.6 | 65.0 |
| 48069 | Ideal Druy Co. .... | 1.7 | 64.8 |
| 48061 | Wilmore Pharmacy ${ }_{\text {Mcriden }}$ | 1.8 | 63.4 |
| 48170 | N. P. Forcier .......... | 1.9 | 65.2 |
| 47922 | Middlctoten | 1.6 | 65.0 |
| 47922 | Hartman Drug Nangatuck | 1.6 | 65.0 |
| 47903 | Naugatuck Drug Co. | 1.7 | 64.1 |
| 48197 | Olson's Drug Store . . . . . . . . . . . . . | 1.8 | 61.3 |
| 48352 | Main St. Pharmacy ................. | 1.2 | 66.4 |
| 46397 | D. H. McCormick Springs | 1.5 | 64.8 |
|  | D. H. Mce Thompsonevile |  |  |
| 48090 | Thompsonville Drug Co. | 1.5 | 69.5 |
| 48163 | Claxton's Pharmacy..... | 1.8 | 65.9 |
|  | Watcrbury |  |  |
| 48378 | Litsky's Pharmacy f................... | 2.7 | 68.2 |
| 48645 | Achrons Pharmacy | 1.7 | 65.0 |
| 48085 | Windsor Drug Co. ${ }^{\text {Whar }}$ | 1.4 | 66.4 |
|  | Winsted |  |  |
| 48359 | F. S. Bunnell ....................... | 1.6 | 65.0 |

## AMMONIA WATER

Ammonia water should contain not less than 9.5 and not more than 10.5 per cent by weight of ammonia ( $\mathrm{NH}_{3}$ ). This solution deteriorates rapidly and should be tested frequently.

Four samples were submitted, three of which were substantially below standard. The deficient samples ranged from 3.5 to 7.8 per cent ammonia and were purchased at the Parkview Pharmacy, Middletown; Bassett Pharmacy, New Milford; and the Suffield Pharmacy, Suffield.

## SOLUTION OF ARSENOUS ACID

Only one sample, No. 48083 , was examined and this was below standard. It was purchased at Nareck's Pharmacy, New Britain. The pharmacopoeia standard is not less than 0.975 and not more than 1.025 gm . of arsenous acid $\left(\mathrm{As}, \mathrm{O}_{2}\right)$, in each 100 cc of solution. The sample contained 0.817 gm .

## SOLUTION OF ARSENOUS AND MERCURIC IODIDE (Donovan's Solution)

This preparation should contain not less than 0.95 gm . and not more than 1.05 gm . of arsenous iodide ( $\mathrm{AsI}_{3}$ ) ; and not less than 0.95 gm . and not more than 1.05 gm . of mercuric iodide ( $\mathrm{HgI}_{3}$ ). Color should not be more than pale yellow.

Sample 48096 was purchased at Woodward Drug Store, Danielson. It was deep yellow in color, showing oxidation. There was no arsenic in the arsenous form. The sample was also mislabelled as "Solution of Arsenous Iodide."

Sample 48350 was purchased at Starr Brothers, New London. It was also decomposed by oxidation so that only about one-half of the arsenic was in the arsenous form.

In both cases the total amounts of arsenic were substantially correct, as was the mercuric iodide ingredient also. Deterioration did not occur after the samples were submitted, as analyses were made promptly.

## GLYCERITE OF BISMUTH

This is a National Formulary preparation. It should contain not less than 12.5 nor more than 13.5 gms . bismuth oxide ( $\mathrm{Bi}_{2} \mathrm{O}_{3}$ ) in each 100 cc . Two samples were examined neither of which conformed to the standard. Sample 47935, from Doudue's Drug Store in Guilford contained 7.3 gms. bismuth oxide per 100 cc ; and 48626 from Northrope's Drug Store, Danbury, contained 17.7 gms.

## CALCIUM GLUCONATE

This salt is used to obtain the therapeutic effects of calcium and is said to possess some advantages over calcium chloride for this purpose. The salt is described in New and Nonofficial Remedies,
page 112, 1931. H. J. Fisher of this laboratory has devised a method ${ }^{2}$ for the assay of this salt based upon the estimation of the organic radical.

Four samples were examined; two were the pure salt and two were tablets containing 1.5 gms . each of the salt. All were products of the Sandoz Chemical Works, Basle, Switzerland. The tablets weighed averaged about 3 gms , each and contained about 50 per cent by weight of medicament.

Three samples were examined for experimental purposes.

## CAMPHOR LINIMENT

Camphor liniment should yield not less than 19 per cent and not more than 21 per cent of camphor. Ten samples were examined and all were passed as satisfactory except one that contained a considerable excess of camphor.

Table 9. Assay of Camphor Liniment

| No. | Dealer | $\underset{\%}{\text { Camphor }}$ |
| :---: | :---: | :---: |
| 48192 |  | 20.0 |
| 48081 | Central Drug Store $\begin{gathered}\text { Hariford...................... }\end{gathered}$ | 20.6 |
| 46388 | Whitney Pharmacy Merider...................... | 24.0 |
| 48168 | N. P. Forcier Stafford Springs | 18.6 |
| 46399 | Wick's Drug Store Stratford.............. | 19.5 |
| 47915 | Blank Brothers Drug Store . ............. Torrington | 19.6 |
| 48161 |  | 19.3 |
| 48375 | Higgin's \& Glynn Windsor Locks $^{\text {L................... }}$ | 19.9 |
| 48088 | The Bridge Pharmacy ................... Whodlory | 19.2 |
| 48185 | Woodbury Drug Co. . ................. | 19.1 |

## OIL OF CARAWAY

## H. J. Fisher

The Pharmacopoeia requires that oil of caraway contain not less than 50 per cent. by volume of carvone.

Eight samples were submitted for examination. An attempt to

[^5]apply the U. S. P. method of assay for carvone ${ }^{1}$ to these samples led to results that were obviously erroneous. After experimenting with known mixtures of pure carvone and limonene, it was found that correct results could be obtained by the method of Bennett." As we finally applied the method to oil of caraway, the procedure was as follows:

Five ce of oil of caraway were weighed in a 50 cc volumetric flask and made to volume with alcohol. Twenty ce of this solution were mixed with 25 cc of half-normal hydroxylamine hydrochloride in 80 per cent. alcohol and 20 cc of half-normal alcoholic potassium hydroxide, and the mixture allowed to stand over night at room temperature. The next day the solution was diluted with 250 cc of water, exactly neutralized to phenolphthalein with half-normal sodium hydroxide and then titrated with hali-normal sulphuric acid, using 1 cc of 0.02 per cent methyl orange as indicator. A blank was ruif on the reagents alone. The difference represents the amount of hydroxylamine combined with the carvone.

Table 10. Assay of Oil of Caraway

| No. | Dealer | Carvone, $\%$ |
| :---: | :---: | :---: |
| 49748 | Danbury <br> Whelan Drug Co., Inc. .............. <br> Danielson | 56.42 |
| 49741 | A. A. Bonneville .................... | 64.39 |
| 48059 | Griswold Drug <br> Hartford | 62.20 |
| 50050 | The D. G. Stoughton Co. . . . . . . . . . . . . . . . | 52.47 |
| 48171 | W, W. Mosher Meriden | 59.26 |
| 50051 | New Britain <br> Noveck's Pharmacy | 56.84 |
| 49747 | H. F. Bassett ....... | 56.05 |
| 49743 | The Lee \& Osgood Coreich ................ | 45.63 |

## OIL OF CHENOPODIUM

This product should contain not less than 65 per cent of ascaridol. Only one sample was submitted, purchased at the Stoughton Drug Co., South Whitney St., Hartford.

The U.S.P. method of assay for this product is not satisfactory. The method of Cocking and Hymas, (Analyst, 55: 183. 1930) was used in testing this sample and 74.6 per cent of ascaridol was found.

[^6]
## OIL OF CINNAMON

Oil of cimamon should yield not less than 80 per cent by volume of cinnamic aldehyde. The one sample analyzed yielded 80.4 per cent. It was purchased at the Nathan Hale Drug Store, Willimantic.

Tabie 11. Assay of Sirup of Ferrols Iodide

| No. | Dealer | $\begin{aligned} & \text { Terrous } \\ & \text { Ioride } \\ & \mathrm{gms} / 1010 \mathrm{ec} \end{aligned}$ | Free |
| :---: | :---: | :---: | :---: |
|  | Ansonia |  |  |
| 47905 | Bristol Drug Co......................... | 6.12 | none |
| 47934 | Branford Pharmacy ............... | 7.08 | none |
| 47938 |  | 7.33 | none |
|  | Donbury |  |  |
| 48619 | George B. Betts ....... | 7.15 | none |
| 48367 | Kufman's Pharmacy | 6.60 | none |
| 46391 | Malley Drug Co. . | 7.22 | none |
| 48363 | The Stoughton Drug Co. ........... Shelton | 6.48 | none |
| 47909 | E. J. Barden . | 6.76 | none |
| 48190 | Halfert's Pharmacy Simy | 6.94 | none |
|  | Whe Stanford |  |  |
| 48642 | The Wm. H. Jones Drug Store . . . . . | 5.85 | none |
| 47912 | W. H. St. John \& Co. | 6.93 | none |
|  | Pelchard's Plarmacy Terre... | 6.45 | none |
| 48153 | Pelchard's Plarmacy ${ }^{\text {Thompsonctill }}$ | 0.45 | none |
| 48092 | Steel's Corner Drug Store | 7.19 | none |
| 48162 | Claxton's Pharmacy Torring | 21.94 | none |
| 48158 | North Find Pharmacy | 6.64 | none |
| 48165 | Oppernan's Drug Store ................ | 6.96 | none |
| 48178 | F. W. Marx ........... | 6.81 | none |
| 48373 | Ebbs Drug Co. Waterbury | 7.29 | none |
| 48373 | Enbs Drug Co-....... |  |  |
| 48381 | Post Office Drug Store, | 6.93 | none |
|  | Curran \& Flynn .................... | 6.59 | none |
| 48053 | The Wilson Drug Co. 4 insted | 6.82 | none |
| 48354 | The Case Drug Store | 7.05 | none |

OIL OF CLOVES
Oil of cloves should yield not less than 82 per cent by volume of eugenol.

Three samples were tested and found satisfactory. They were purchased at Delmonica's Drug Shoppe, Stafford Springs; Monroe's Pharmacy, Madison; and Suffield Pharmacy, Suffield, and contained 86 per cent, 87.3 per cent, and 87.8 per cent of eugenol, in the order named.

## SIRUP OF FERROUS IODIDE

This preparation should contain not less than 6.5 gm . and not more than 7.5 gm . of ferrous ioclide.

Twenty-two samples were examined and all were passed except one sample that was fomd to be much too strong. (See Table 11).

## TINCTURE OF FERRIC CITROCHLORIDE

This preparation is listed in the National Formulary and should contain not less than 4.48 gm . of iron ( Fe ), in each 100 cc .

Eight samples were sulmitted, one of which, No. 48098, however, was tincture of ferric chloride and so marked, evidently dispensed under a misunderstanding as to the article called for. Seven samples were found to contorm substantially to the standard.

Table 12. Assay of Tincture of Ferric Citrochloride

| No. | Dealer | Iron, Fe $\mathrm{gm} / 100 \mathrm{cc}$ |
| :---: | :---: | :---: |
| 48074 |  | 4.8 |
| 47930 | Metcalf's Drug Store...................... <br> Meriden | 4.4 |
| 48176 | Broderick \& Curtin Middetore................... | 4.3 |
| 47921 | Whaten Drug $\underset{\text { Puthan }}{\text { Co..................... }}$ | 4.6 |
| 48099 | Edward H. Burt Torrington ...................... | 5.6 |
| $\begin{aligned} & 48157 \\ & 48164 \end{aligned}$ | South End Pharmacy <br> Webl \& Siegel | $\begin{aligned} & 4.5 \\ & 4.1 \end{aligned}$ |

## SOLUTION OF FERRIC SULFATE

Solution of ferric sulfate should contain not less than 9.5 nor more than 10.5 per cent of iron ( Fe ).

Only two samples were submitted both of which met the requirements of the standard. They were purchased at Cronin's Drug Store and at Liggett's, both in Middletown.

## DILUTED HYDROCHLORIC ACID

Hydrochloric acid, dilute, should contain not less than 9.5 and not more than 10.5 per cent of hydrochloric acid, ( HCl ).

Twenty-two samples were tested of which one was much too weak and five were more than 10 per cent in excess of the upper limit specified in the standard.

Table 13. Assay of Diluted Hydrochloric Acid

| No. | Dealer | $\underset{\%}{\mathrm{HCl}}$ |
| :---: | :---: | :---: |
| 47933 | Branford <br> The Spaulding Co. Bristol | 10.3 |
| 48077 | L. P. Tucker $\qquad$ | 10.7 |
| 47907 | Harding Drug Store .......... <br> Devor | 10.9 |
| 47916 | Maillard Drug Co. .......... <br> Forestuille | 11.6 |
| 48072 | Kent's Pharmacy ........ | 9.9 |
| 48364 | Henry C. Kottenhoff ${ }^{\text {Hablford }}$ | 11.1 |
| 48063 | Roosevelt Drug Co. | 2.9 |
| 46393 | Joln M. Rosenthral ........ Meriden | 11.2 |
| 48172 | V. W. Schmelzer .......... Natoatuck | 11.9 |
| 48196 | John J. Levy North Woodbury | 11.2 |
| 48184 | H. H. Canfield ............. | 9.7 |
| 47904 | George Smith \& Son ....... <br> Sharoth | 10.9 |
| 48382 | Clarence H. Eggleston ...... Stafford Springs | 9.2 |
| 46396 | D. H. McCormick ......... Stratford | 11.3 |
| 47914 | Hamilton's Pharmacy ...... | 10.8 |
| 48193 | Union City Pharmacy ..... Waterbury | 11.6 |
| 48371 | W. J. Dunphy Westport | 12.0 |
| 48646 | The Westport Drug Co. ... Willimantic | 9.8 |
| 48057 | Wilson's Windham Pharmacy Windsor Locks | 10.9 |
| 48089 | R. J. Keef . . . . . . . . . . . . . | 12.7 |
| $\begin{aligned} & 48358 \\ & 48357 \end{aligned}$ | Bannon's Drug Store .. Opera House Pharmacy | 11.8 11.7 |

## TINCTURE OF IODINE

This preparation should contain not less than 6.5 gms. and not more than 7.5 gms . of iodine and not less than 4.5 gms . and not more than 5.5 gms. of potassium iodide in each 100 cc of solution.

The one sample tested was satisfactory. It was purchased at Hubert's Drug Store, Zion Street, Hartford.

Table 14. Assay of Solution of Magnesium Citrate


## REDUCED IRON

This product should contain not less than 90 per cent of metallic iron. All of the four samples tested met, or exceeded, this requirement except one sample obtained at Monroe's Pharmacy, Guilford, which tested 84 per cent. The other samples were obtained at the Bacon Drug Co. and Roosevelt Drug Co., Hartford; and Onkie and Brodie, Stratford.

Table 15. Assay of Ammoniated Mercury


## SOLUTION OF MAGNESIUM CITRATE

The major requirement for this preparation is that it contain magnesium citrate equivalent to not less than 1.5 gms . of magnesium oxide in each 100 cc . The specifications further provide limits for free citric acid and for total citric acid which calculate to 3.3 gms. and 9.8 gms. respectively in each 100 cc .

Of 26 samples examined seven contained less than 90 per cent of the required equivalent of magnesium oxide. There were in all 14 that did not meet the specifications with respect to alt of the specifications above noted. (See Table 14).

We have made a solution of magnesium citrate in the laboratory according to the directions as given in the pharmacopoeia and found it to conform to the specifications given and there is no apparent reason why pharmacists should have clifficulty in meeting those specifications, at least within a reasonable tolerance.

## AMMONIATED MERCURY

This preparation is mercurammonium chloride and should contain not less than 78 per cent and not more than 80 per cent of mercury ( Hg ).

Twelve samples were examined and all satisfied the requirements of the standard. (See Table 15).

## MERCURY WITH CHALK

Mercury with chalk should contain not less than 37 per cent and not more than 39 per cent of mercury ( Hg ).

The four samples examined sulstantially met these requirements. The samples were obtained at Pond's Drug Store, Essex; V. W. Schmeizer, Meriden; Finch's Drug Store, Greenwich; and J. J. O'Connor, Westport.

## SPIRIT OF NITROUS ETHER

This article should contain not less than 3.5 per cent and not more than 4.5 per cent of ethyl nitrite.

The Pharmacopoeia cautions that stock of this solution be stored in small, well-stoppered, dark-colored bottles in a cool, dark place remote from fre. Failure to observe this precaution is no doubt largely responsible for the sub-standard samples found in inspection. (See Table 16).

Seventeen samples were tested, of which seven were deficient.

## NITROHYDROCHLORIC ACID, DILUTED

There are no numerical standards for this National Formulary article, but it is noted that it must act immediately upon potassium iodide solution, liberating iodine. Only one of the samples examined turned potassium iodide solution visibly yellow, although all gave a blue color when starch was added.

It was found by experiment that if diluted nitrohydrochloric acid were prepared according to the National Formulary, there was practically no effervescence on mixing the concentrated acids, and unless this mixture was warmed till effervescence began before diluting, the resulting diluted acid gave only a barely perceptible
yellow color to potassium iodide solution. If the concentrated acid mixture was warmed till effervescence began and then allowed to stand till it ceased before dilution, the diluted acidl so prepared gave a pronounced yellow color with potassium iodide solution.

The purchased samples may have been properly prepared in the first place, but none except 48052 pass the N. F. test at present. This may be due to deterioration on keeping, however.

In view of the fact that the directions in the National Formulary for making this preparation could well be made more explicit we have not classel those samples as sub-standard.

Table 16. Assay of Spirit of Nitrous Ether

| No. | Dealer | $\begin{gathered} \text { Ethyl } \\ \text { nitrite } \\ \% \end{gathered}$ |
| :---: | :---: | :---: |
|  | Bristol |  |
| 48076 | L. P. Tucker ........... | 3.0 |
| 46384 | Farnum's Drug Store. | 5.0 |
| 46375 | Hubert's Drug Store ${ }^{\text {Hard }}$. | 4.5 |
| 48369 | L. J. Matsen \& Co. . | 3.3 |
| 47917 | John T. Hawes Milford | 3.5 |
|  | Nero London | 3.5 |
| 48351 | Whelan Drug Co. Milford | 2.4 |
| 48187 | H. F. Bassett ............. | $4.7$ |
| 48186 | Park Drug Store Oakrille | $2.6$ |
| 48379 | The Spooner Drug Co. .................. Salisbury | 3.6 |
| 46385 | Salisbury Pharmacy $\begin{gathered}\text { Shelton } \\ \text { S................... }\end{gathered}$ | 3.4 |
| 47908 | Fred S. Sanford ....... | 4.2 |
| 46398 | Wick's Drue Stare Storings | 2.9 |
| 48643 | Stamford |  |
| 48643 | The Lawrence Drug Store ............. Stratford | 2.2 |
| 47913 |  | 4.1 |
| 48191 | Tarrifville <br> O'Conucr's Drug Store |  |
| 48191 | O'Connor's Drug Store... | 2.3 |
| 48377 | The W. H. Pickett Drug Co. .......... | 2.2 |
| 48036 | Paxsone Drug Store .... | 4.3 |

## DILUTED PHOSPHORIC ACID

Diluted phosphoric acid should contain not less than 9.5 and not more than 10.5 per cent of phosphoric acid.

Nine samples were tested and two were found to be about 50 per cent too strong, probably due to the fact that the dilution was made on the basis of volume rather than weight.

Table 17. Assay of Diluted Phosphoric Acid

| No. | Dealer | Phosphoric acid \% |
| :---: | :---: | :---: |
|  | Bristol |  |
| 48080 | Central Drug Co. Collinsville. | 10.7 |
| 48361 | Valley Pharmacy ........ | 10.5 |
| 48623 | Whelan Drug Co. ...... | 16.6 |
| 48066 | F. H. Griswold $\because$ | 16.0 |
| 48174 | V. W. Schmelzer Meriden | 10.5 |
|  | Nangatuck |  |
| $\begin{aligned} & 48198 \\ & 48199 \end{aligned}$ | Albert R. Adams | 10.6 |
|  | Park's Drug Co. New London | 10.3 |
| 47947 | Nichols \& Harris . | 10.9 |
| 47939 | Westbrook Pharmacy ... | 10.3 |

## SATURATED SOLUTION OF POTASSIUM IODIDE

The amount of this salt that a saturated solution will contain depends upon the temperature at which the solution is made. A solution saturated at $25^{\circ} \mathrm{C}$ should contain 59.7 per cent of potassium iodide; if saturated at $0^{\circ} \mathrm{C}$ only 56 per cent would be present. At ordinary room temperature, $20^{\circ} \mathrm{C}$, a saturated solution should contain 59.0 per cent. On this basis three of the five samples examined were passed. One was only 82.5 per cent saturated and another was 88.5 per cent.

Table 18. Assay of Saturated Solution of Potassium Iodide


## DILUTED SULPHURIC ACID

This solution should contain not less than 9.5 percent, nor more than 10.5 percent of sulphuric acid. Only four of the eight samples tested were satisfactory. One of the deficient samples was less than half-strength; the others were about 50 percent or more too

Table 19. Assay of Dilute Sulphuric Acid

strong. The explanation of over-strength is probably the same as that given in the case of dilute phosphoric acid. Since a given volume of sulphyric or phosphoric acids weighs 1.8 , or 1.7 respectively times as much as an equal volume of water, it is evident that when the stronger acids are measured instead of weighed the dilutions will be too strong. The pharmacopoeia directs in both cases that weights of acids be taken.

Table 20. Assay of Thymol Iodide

| No. | Dealer | $\underset{\%}{\text { Iodine }}$ |
| :---: | :---: | :---: |
|  | Canan |  |
| 46383 | Freeman Dempsey ........................ <br> Middetown | 47.5 |
| 47918 | Pelton's Pharmacy ...... | 42.2 |
| 48189 | The Lathrop Pharmacy | 46.8 |
|  | Doyle's Drug Store |  |
| 48156 | Doyle's Drug Store $\underset{\text { Tormaton }}{ }$................... | 47.6 |
| 48166 | Thurlough's Pharmacy ................... | 47.1 |
| 48050 | Curran \& Flynn ........................ | 47.5 |

## THYMOL IODIDE

This mixture of iodine derivatives of thymol should contain not less than 43 per cent of iodine.

All of the samples examined met the standard. (See Table 20).

## TURPENTINE

About three-fourths of the world's supply of turpentine are produced in the United States and most of it is of the type known as gum turpentine, oil of turpentine, or gum spirits of turpentine. The remainder of the supply comes from Mexico, Central America, various European countries, India and Japan.

Gum turpentine is made by clistilling the gum or oleoresin that exudes from the chipped or scarified trunks of living pine trees. Wood turpentine is produced by steam distillation or destructive distillation of resinous stumps of dead or fallen pine timber.

Turpentine is chiefly used in the manufacture and mixing of paints and varnishes. Other industrial uses and the consumption for medicinal purposes constitute but a small fraction of the total production.

Section 2461 of the General Statutes prohibits the manufacture and sale under the name of turpentine or spirits of turpentine of any turpentine not distilled wholly from rosin, turpentine gum, or scrapings from pine trees, and unmixed with oil, benzine or other substances. No specifications for the pure article are laid down in the statute and in the examination of market samples for inspection purposes the specifications as given in Bureau of Chemistry Bulletin 898 of the United States Department of Agriculture have been used as a guide. They are as follows:

|  | Maximım | Minimum |
| :---: | :---: | :---: |
| Specific gravity at $15.5{ }^{\circ} \mathrm{C}$ | 0.875 | 0.862 |
| Refractive index, $20^{\circ} \mathrm{C}$ | 1.478 | 1.468 |
| Unpolymerized residue, grain spirits, per cent. | 2.0 |  |
| wood turpentine, per cent | 2.5 |  |
| Initial B. P ${ }^{\circ} \mathrm{C}$ | 160.0 | 150.0 |
| Distilling below $170^{\circ} \mathrm{C}$ per cent | . . . | 90.0 |

Analyses of the samples submitted are given in Table 21.
Adulteration of turpentine may be due to admixtures of cheaper oils that are derived from petroleum and are not very different from turpentine in specific gravity and temperature of distillation. Products of coal-tar origin such as benzene, xylol and coal tar naphtha are sometimes used as adulterants.

On storage for a year or more, particularly if held in partially filled containers, turpentine thickens due to oxidation and consequently its specific gravity becomes higher and the percentage distilling below $170^{\circ} \mathrm{C}$ is likely to be less than 90 per cent. This is
Table 21. Analyses of Turpentine

| No. | Dealer Place of sampling | Specific $15.5^{\text {at }} \mathrm{C}$ | $\begin{gathered} \text { Refractive } \\ \text { index } \\ \text { at } \\ 20^{\circ} \mathrm{C} \end{gathered}$ |  | $\begin{aligned} & \text { Initial } \\ & \text { B. P. } \\ & \text { at } \end{aligned}$ | Distilling $170^{\circ} \mathrm{C}$ per cent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49708 | Atwell Bros. . . . . . . . . . . . . . . . . . . . Durham | 0.9 | 1.5 | 1.9 | 146.0 | 82.5 |
| 49731 | Butler's Hardware Store . . . . . . . . . . . Guilford | 0.9 | 1.5 | 1.2 | 153.0 | 92.6 |
| 49711 | City Hardware Co. ................. Bristol ..... | 0.9 | 1.5 | 1.4 | 148.0 | 93.0 |
| 49712 | City Hardware Co. . . . . . . . . . . . . . . . Middletown . ${ }^{\text {a }}$ | 0.9 | 1.5 | 1.8 | 154.0 | 96.5 |
| 49734 | The Darrow \& Comstock Co. . . . . . . New London. | 0.9 | 1.5 | 1.7 | 154.0 | 97.1 |
| 49732 | H. S. Davis . . . . . . . . . . . . . . . . Guilford . . . | 0.9 | 1.5 | 1.2 | 155.0 | 94.5 |
| 49740 | Dickerman Hardware \& Supply Co. . . Wallingford . | 0.9 | 1.5 | 2.0 | 153.0 | 96.4 |
| 49721 | The Fairfield Hardware Co. ......... Fairfield | 0.9 | 1.5 | 1.9 | 150.0 | 97.1 |
| 49726 | Franklyn Hardware Co. . . . . . . . . . . Norwich | 0.9 | 1.5 | 1.6 | 155.0 | 98.2 |
| 49713 | The Harley-Giant Co. ..............Willimantic .. | 0.9 | 1.5 | 4.7 | 146.0 | 94.0 |
| 49709 | Johnson Bros. . . . . . . . . . . . . . . . . . Northford . . . | 0.9 | 1.5 | 2.5 | 157.0 | 94.4 |
| 49714 | The Jordan Hardware Co. . . . . . . . . . . Willimantic | 0.9 | 1.5 | 4.7 | 155.0 | 94.5 |
| 49744 | The Lee \& Osgood Co. . . . . . . . . . . . . Norwich . . . . | 0.9 | 1.5 | 2.0 | 152.0 | 95.8 |
| 49739 | Lovell \& Co. . . . . . . . . . . . . . . . . . . . Stratford | 0.9 | 1.5 | 3.5 | 151.0 | 91.3 |
| 49735 | C. H. Mather \& Co. . . . . . . . . . . . . . . . . Essex | 0.9 | 1.5 | 2.2 | 150.0 | 95.3 |
| 49742 | A. E. Meech ..................... Danielson .... | 0.9 | 1.5 | 1.9 | 155.0 | 97.5 |
| 49720 | The Norwalk Hardware Co. .......... Norwalk ..... | 0.9 | 1.5 | 1.6 | 157.0 | 97.0 |
| 50669 | Quality Paint Stores ................ New Haven .. | 0.9 | 1.5 | 1.6 | 155.0 | 97.2 |
| 49736 | Seymour Hardware \& Supply Co. ....Seymour ..... | 0.9 | 1.5 | 1.6 | 150.0 | 84.8 |
| 49710 | E. J. Smith Hardware Co. ........... Collinsville ... | 0.9 | 1.5 | 2.1 | 79.0 | 93.0 |
| 49737 | J. J. Tomko . . . . . . . . . . . . . . . . . . . . . Shelton ...... | 0.9 | 1.5 | 1.8 | 154.0 | 96.2 |
| 49728 | Valley Hardware Co. . . . . . . . . . . . . Derby ....... | 0.9 | 1.5 | 1.7 | 152.0 | 94.2 |
| 49749 | Westport Hardware Co. ............. Westport .... | 0.9 | 1.5 | 2.1 | 152.0 | 98.5 |
| 49733 | George Williams Co. ...............New London . | 0.9 | 1.5 | 1.8 | 155.0 | 97.6 |

probably the explanation for samples 49708 and 49736 in which less than 90 per cent was found to distill below the temperature specified. In five samples the unpolymerized residue exceeded the limits of the specifications, in three cases by substantial amounts. One sample, 49710, was adulterated with some low-boiling substance. A later sample from the same distributor, but not from the same lot, was satisfactory.

## miscellaneous drugs

Fifteen samples in this group have been submitted. Several of these may be noted, but most of them require no comment.
46686. Insoloid tablets. This remedy was offered under false and misleading claims as a treatment for diabetes.

The composition was indicated by the label as follows: "Syzyg., myrtill., Faex med. lecithin ex ovo, calcium oxide, Sp. Pancreatinin."

Syzygium Jambolana, common name jambul, is described in the United States Dispensatory and was once used in the treatment of diabetes because its administration to phloridzinized dogs reduced excretion of sugar. Nowadays, however, phloridzin glycosuria is not recognized as allied to true diabetes and the value of jambul in this connection does not appear to be established.
Faex medicinalis is another name for yeast.
Myrillin was at one time thought to have possibilities in the treatment of diabetes, but it did not meet expectations. A discussion of this drug appears in the Journal of the American Medical Association for November 5, 1927, page 1577.

Pancreatin is a recognized U. S. P. preparation but we find no official preparation under the name of "pancreatinin."

Advertising literature called attention to the objectionable features of injected insulin and proposed the substitution of insoloid tablets, taken by mouth. It was recommended that the change in treatment be under the direction of a physician, particularly in the case of child patients.
Analysis of the product is as follows:
Moisture 5.14 per cent; nitrogen 2.90; lipoids 3.68 ; lipoid $\mathrm{P}_{2} \mathrm{O}_{5} 0.051$; lecithin (estimated) 0.56 ; sucrose 15.49 ; total sugars 17.63 ; total ash 22.11 ; calcium oxide 6.32; magnesium oxide 0.87 ; total $\mathrm{P}_{2} \mathrm{O}_{5} 0.93$. Amylolytic activity about 1 per cent of that of L. S. P. pancreatin. Proteolytic activity greater than 0.1 of, but not equal to, that of L. S. P. pancreatin.
49707. Electrovita artificial mineral water. Electrovita Company, Inc., Norwalk, Ohio. This is a moderately alkaline mineral water as stated on the label. The name is of the patent medicine type. No collateral advertising was submitted with the sample and we have seen none. However, references to such advertising, particularly in the Journal of the American Medical Association,

Jan. 23, 1932, indicate that exaggerated and unwarranted claims. have been made in promoting this product.

Analysis of the water is as follows:
Volatile solids, p.p.m. 57 ; total solids 1,046 ; phenolphthalein alkalinity as $\mathrm{CaCO}_{3} 953$; methyl orange alkalinity as $\mathrm{CaCO}_{2} 988$; hydroxide 278 ; carbonate 42 ; silica $\left(\mathrm{SiO}_{2}\right) 2.3$; iron and aluminium oxides 1.3: calcium ( Ca ) 403; magnesium ( Mg ) 0.0 ; sodium ( Na ) 9.9 ; potassium (K) 3.9 ; chloride ( Cl ). 39.0; sulphate ( $\mathrm{SO}_{4}$ ) 88.0 ; phosphate ( $\mathrm{PO}_{4}$ ) 0.0 .

A sotution practically equivalent to this could be made by mixing two parts of lime water with three parts of tap water.
46883. Kruschen salts. This was a preparation consisting essentially of a mixture of Epsom and Glauber salts. The calculated composition is as follows:

MgO 1.36 per cent; $\mathrm{MgSO}_{4} \mathrm{H}_{3} \mathrm{O} 62.26$ per cent; $\mathrm{Na}_{2} \mathrm{SO}_{4} .10 \mathrm{H}_{2} \mathrm{O} 20.59$ per cent; $\mathrm{NaCl} 6.25 ; \mathrm{KCl} 4.55$ per cent ; $\mathrm{Fe}_{2} \mathrm{O}_{3}$, trace; moisture, in excess. of water of crystallization, 4.99 per cent.

## MATERIALS EXAMINED FOR POISONS

C. E. Shepard and E. M. Bailey

The laboratory is frequently called upon to examine specimens such as fodders, bait, and animal organs in connection with suspected poisoning, chiefly in cases involving the sickness or death of domestic animals. Because of the time and attention required to make the necessary chemical examinations and the further investigation of circumstances sometimes advisable the Station is reluctant to undertake such work unless the results, if positive, are likely to be useful as evidence in court or as a basis for other corrective action. Our experience has been that to secure convictions in court it is practically necessary to have witnesses to the actual distribution of poison or to its administration to animals, and such evidence is in most cases impossible to secure. In some instances, however, the results of chemical analysis serve to remove suspicions on the part of the owners of animals thought to have been poisoned, or to enalble them to take proper precautions against further trouble and thus our labor is not entitely lost.

The fincling of poison does not necessarily support a theory of malicious intent. Arsenic when associated with copper or lead is quite likely to be explained by accidental causes, such as access to spray materials. Lead alone suggests that animals have had access to paint materials or have licked freshly painted surfaces. Strychnine. yellow phosphorus. anid cyanide are more likely to be the result of willful poisoning. Often the most careful search fails to reveal anything that can be advanced as a probable cause of
(ieath. This may be due to failure to detect obscure poisons, but it is equally possible that disease may have been the cause. In many instances veterinarians have not made autopsies of the animals. or if they have done so, time has elapsed since the animal died, so that diagnosis is difficult. As for poisonotis principles obtained from forage plants the isolation of such from animal body tissues and secretions in a state of sufficient purity for identification is difficult and sometimes impossible. In some cases brought to our attention pastures have been searched for plants known to be poisonous to stock. In a few instances our chemical examinations have been supplemented by bacteriological examinations made possible by laboratories equipped for such work. Acknowledgment is due to the laboratories of the State Board of Health and of the Yale University School of Medicine for their helpful cooperation and courtesy.

From 1917 to 1931 inclusive, a total of 190 cases have been investigated (involving 265 specimens) and conclusive evidence of poison found in 78 cases, or 41 per cent, of the total number. Sixtytwo samples have been examined during the past year.

## BABCOCK GLASSWARE AND THERMOMETERS

The Statutes require this Station to check the calibration of glassware tused in the testing of milk and cream and also to check thermometers used in the control of the pasteurization of milk. The accompanying table summarizes the work done in this Department during the past year.

| Article | Total | Accurate | Inaccurate | Broken |
| :---: | :---: | :---: | :---: | :---: |
| Milk test bottles | 1895 | 1893 | 1 | 1 |
| Cream test bottles | 262 | 261 | 0 | 1 |
| Skins milk test bottles | 39 | 32 | 5 | 2 |
| Milk pipettes | 410 | 403 | 0 | 7 |
| Thermometers | 114 | 112 | 0 | 2 |
| Totals | 2720 | 2701 | 6 | 13 |

The number "broken" does not necessarily mean broken in testing. In most cases it means broken in transit to the laboratory.

## INDEX

Acetic acid, 719
atnalyses of, 719
Acetic acid, dilute, 719
analyses of, 719
Ammonia, aromatic spirits of, 720
atnalyses of, 720
Ammonia water, 720
Apples, spray residue on, 715
Arsenous acid, solution of, 721
Arsenous and mercuric iodide, soltution of, 721
Babcock glassware, ete., 737
Beverages, 699
Calcium gluconate, 721
Camphor liniment, 722
analyses of, 722
Caraway, oil of, 722
atalyses of, 723
Chenopodium, oil of, 723
Cinnamon, oil of, 724
Cloves, oil of, 724
Eggs, 701
Electrovita artificial mineral water, 735

Fats and oils:
Butter, 703
Oleomargarine, 703
Olive oil, 704
Ferrous iodide, sirup of, 725
analyses of, 724
Ferric citrochloride, tincture of, 725
analyses of, 725
Ferric sulfate, solution, of 725
Foods, special and miscellaneous:
Dried iruits, 704
Gluten flour, 706
Gluten bread, 706
Other foods, analyses of 708

Hydrochloric acid, dilute, 726
analyses of, 726
Ice cream, 709
Iodine, tincture of, 727
Insoloid tablets, 735
Iton, reduced, 728
Kruschen salts, 736
Magnesia, citrate of, 728 analyses of, 727
Materials examined for poisons, 736
Mayonnaise, 713
analyses of, 716
Meat products:
Frankfurts, 709
Canned fish, 709
Mercury, ammoniated, 729
analyses of, 728
Mercury with chalk, 729
Milk and milk products, 710
Nitrous ether, spirit of, 729 analyses of, 730

Nitrolydrochloric acid, 729
Phosphoric acid, dilute, 730 analyses of, 731
Potassium iodide, saturated tion of, 731
analyses of, 731
Squaash, 718
Sulphuric acid, dilute, 732 analyses of, 732

Thvmol iodide. 733
analyses of, 732
Tobacco seed, 718
Turpentine, 733
analyses of, 734


[^0]:    Note: McGill in next to last reference states that Canadian standard for apples in 1912 was 27 per cent moisture, changed in 1916 to 25 per cent because higher standard was inconsistent with good keeping quality.

[^1]:    $1 \mathrm{~N} \times 5.7$
    $\begin{aligned} & \text { I } \mathrm{Includes} \\ & 3 \\ & 3\end{aligned} 2.29$ per cent water-soluble.

[^2]:    'Manufacturer's estimate from formula.
    ${ }^{2}$ Using factor 0.95 , the actual $\mathrm{L} . \mathrm{P}_{2} \mathrm{O}_{5}$ in egg yolk used, the percentage is 18.3 .
    ${ }^{1}$ Deducting .02 per cent for non-egg $\mathrm{P}_{2} \mathrm{O}_{5}$ the percentage is 18.4.

[^3]:    ${ }^{1}$ For the erop of 1931.

[^4]:    ${ }^{1}$ Labelled 28 per cent.

[^5]:    ${ }^{1}$ Jour. A.O.A.C., Vol. 15. 1932.

[^6]:    2U.S.P. X p. 253.
    'Analyst, 34 : $15 . \quad 1909$; jbid. 47 : 146. 1922

