
Connecticut's Aquatic and Wetland Invasive Plant Identification Guide

2nd Edition

Gregory J. Bugbee, Martha E. Barton*, and Jordan A. Gibbons

The Connecticut Agricultural Experiment Station was founded in 1875. It is chartered by the General Assembly to make scientific inquiries and conduct experiments regarding plants and their pests, insects, soil and water, and to perform analyses for state agencies. Station laboratories or research farms are located in New Haven, Windsor, Hamden, and Griswold.

The Connecticut Agricultural Experiment Station (CAES) prohibits discrimination in all of its programs and activities on the basis of race, color, ancestry, national origin, sex, religious creed, age, political beliefs, sexual orientation, criminal conviction record, gender identity, genetic information, learning disability, present or past history of mental disorder, mental retardation or physical disability including but not limited to blindness, or marital or family status. To file a complaint of discrimination, write Director, The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven, CT 06504, or call (203) 974-8440. CAES is an affirmative action/equal opportunity provider and employer. Persons with disabilities who require alternate means of communication of program information should contact the Chief of Services at (203) 974-8442 (voice); (203) 974-8502 (FAX); or Michael.Last@ct.gov (E-mail).

Acknowledgements

The efforts of Dr. Robert Capers, Ms. Nancy Murray, Ms. Roslyn Reeps, Ms. Amy Weiss, Mr. Michael Cavadini, and Ms. Jennifer Fanzutti are gratefully acknowledged.

*Current affiliation is with the Fisheries and Aquatic Sciences Research, Bureau of Science Services at the Wisconsin Department of Natural Resources

© 2012 The Connecticut Agricultural Experiment Station

Bulletin No. 1035

Page 2 - Invasive Aquatic and Wetland Plant Identification Guide

Table of Contents

Introduction	4
How to use this guide	4
Table of Connecticut's invasive or potentially invasive aquatic plants and dispersal	5
What to do if you find a plant discussed in this guide	5
State map of locations of invasive aquatic plants	6
Additional plant identification resources.	6
Plant terms	7
Species Descriptions:	
Butomus umbellatus, Flowering rush	8
Cabomba caroliniana, F anwort	9
Callitriche stagnalis, Pond water-starwort	10
Egeria densa, Brazilian waterweed	11
Eichhornia crassipes, Common water-hyacinth	12
Hydrilla verticillata, Hydrilla	13
Iris pseudacorus, Yellow iris	14
Lythrum salicaria, Purple loosestrife	15
Marsilea quadrifolia, European waterclover	16
Myosotis scorpioides, Forget-me-not	17
Myriophyllum aquaticum, Parrotfeather	18
Myriophyllum heterophyllum, Variable-leaf watermilfoil	19
Myriophyllum spicatum, Eurasian watermilfoil	20
Najas minor, Minor naiad	21
Nelumbo lutea, American water lotus	22
Nymphoides peltata, Yellow floating heart	23
Pistia stratiotes, Water lettuce	24
Potamogeton crispus, Curly leaf pondweed	25
Rorippa microphylla, Onerow yellowcress	26
Rorippa nasturtium-aquaticum, Watercress	27
Salvinia molesta, Giant salvinia	28
Trapa natans, Water chestnut	29
Commonly confused aquatic plants	30
Invasive aquatic plant identification key	33
Managing nuisance aquatic vegetation.	35
Literature cited	39

Introduction to Aquatic Plants

Aquatic plants are essential components of healthy ecosystems in lakes and ponds. They cleanse water and provide habitat for rich communities of aquatic organisms. Because invasive species are not native, they have few natural enemies. Their dramatic growth rates can clog water intakes, decrease recreational opportunities, reduce local real estate values, and alter native ecosystems (Connecticut Aquatic Nuisance Species Working Group, 2006, Fishman et al. 1998). Recent vegetation surveys of 201 lakes and ponds by the Connecticut Agricultural Experiment Station Invasive Aquatic Plant Program (CAES IAPP) found one or more invasive plants in over two-thirds of the water bodies (CAES IAPP, 2012).

Approximately three-quarters of the invasive aquatic plant species in southern New England were introduced as cultivated plants (Les and Mehrhoff, 1999). These introductions come from recreational boating (Couch and Nelson, 1985), dumping of aquariums, water gardening, and plant fragments mixed with live bait used by fishermen. Spread of invasive plants from one lake to another also occurs naturally by wildlife and downstream flow. Once established, eradication of invasive aquatic plants is extremely difficult. Preventing introductions by inspections, public education, early detection, and rapid response is critically important.

This guide is intended to provide information on the identification and distribution of the 22 aquatic plants listed as invasive or potentially invasive (Table 1) by the Connecticut General Statute (Sec. 22a-381d). The sale of these plants, with the exception of common water-hyacinth (*Eichhornia crassipes*) and water lettuce (*Pistia stratiotes*), is also banned by State Statute and their transport is limited to activities associated with control and education. Fines of up to one hundred dollars can be imposed for each violation.

How to Use This Guide

Identifying Connecticut's freshwater aquatic plants is challenging. CAES IAPP surveys have found over 100 native species and 14 invasive species (Figure 1). These do not include many of the wetland plants in this guide because our surveys are limited to lakes and ponds. We use many references when plant identification is questionable including; Crow and Hellquist (2000) and Fassett (1957), other recognized experts and molecular identification using DNA sequencing. Some of the potentially invasive plants discussed here have never been documented in Connecticut and may be unfamiliar to readers. Certain invasive aquatic plants can be easily confused with native or other invasive plants so care must be taken to ensure accuracy. The places where plants are found are often related to their means of dispersal (Table 1) and sometimes this gives a clue to their identification.

Table 1. Invasive and potentially invasive aquatic plants listed in the Connecticut General Statutes (Sec. 22a-381d).

#	SCIENTIFIC NAME	COMMON NAME	DISPERSAL			
1	Butomus umbellatus	Flowering rush	Water Gardening			
2	Cabomba caroliniana	Fanwort	Aquariums, Boats/Trailers, Bait			
3	Callitriche stagnalis	Pond water-starwort	Water Gardening			
4	Egeria densa	Brazilian water-weed, Anacharis, Egeria	Aquariums, Boats/Trailers, Bait			
5	Eichhornia crassipes*	Common water hyacinth	Water Gardening			
6	Hydrilla verticillata	Hydrilla	Aquariums, Boats/Trailers, Bait			
7	Iris pseudacorus	Yellow iris, Yellow flag iris	Nursery Stock, Water Gardening			
8	Lythrum salicaria	Purple loosestrife	Nursery Stock, Water Gardening			
9	Marsilea quadrifolia	European waterclover, Water shamrock	Water Gardening, Boats/Trailers			
10	Myosotis scorpioides	Forget-me-not, Water scorpion-grass	Water Gardening			
11	Myriophyllum aquaticum	Parrotfeather	Aquariums, Boats/Trailers			
12	Myriophyllum heterophyllum	Variable-leaf watermilfoil	Aquariums, Boats/Trailers			
13	Myriophyllum spicatum	Eurasian watermilfoil	Aquariums, Boats/Trailers, Bait			
14	Najas minor	Brittle water-nymph, Minor naiad	Boats/Trailers			
15	Nelumbo lutea	American water lotus	Water Gardening			
16	Nymphoides peltata	Yellow floating heart	Water Gardening			
17	Pistia stratiotes*	Water lettuce, Tropical duckweed	Water Gardening			
18	Potamogeton crispus	Curly leaf pondweed, Crispy-leaved pondweed	Boats/Trailers			
19	Rorippa microphylla	Onerow yellowcress	Water Gardening			
20	Rorippa nasturtium-aquaticum	Watercress	Water Gardening			
21	Salvinia molesta	Giant salvinia	Water Gardening			
22	Trapa natans	Water chestnut	Water Gardening, Boats/Trailers			

^{*} plants that are not banned

This guide has three main parts. First, each plant has a summary page containing pictures, a list of key features, and a map of where the plant has been found by either CAES IAPP or the Invasive Plant Atlas of New England (IPANE, 2012). Other sources may have found some of the plants elsewhere, and the maps are not meant to suggest the plants are limited to the locations shown. Second, there is a series of comparative pictures that help differentiate the invasive species from similar native plants. Third, there is a plant identification key that provides a step-by-step method for narrowing plants to their species. This key also includes native plants that are commonly mistaken for invasive species.

What to do if You Find a Plant Discussed in This Guide

Before taking action, it is important that the plant be positively identified and the location of the plant is noted. Latitude and longitude coordinates taken with a global positioning system (GPS) are best. Plant samples requiring further identification need to be mailed or taken to the CAES IAPP, 123 Huntington Street, New Haven, CT 06511, or another qualified entity such as the Connecticut Department of Energy and Environmental Protection (DEEP). You can call CAES IAPP at (203) 974-8512 with questions.

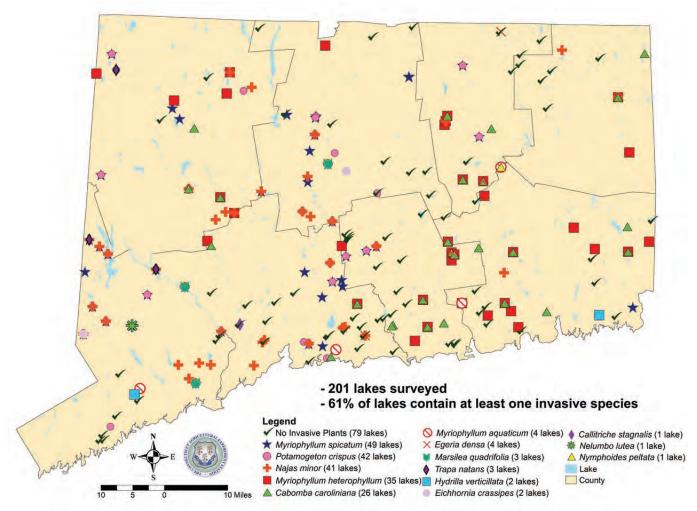


Figure 1: Locations of invasive aquatic plants found by CAES IAPP surveys from 2004-2012.

Additional Resources for Plant Identification

CAES IAPP web page, aquatic plant survey requests, online herbarium, and reprints of this guide http://www.ct.gov/caes/IAPP

The Invasive Plant Atlas of New England

http://nbii-nin.ciesin.columbia.edu/ipane/

Invasive Plants of the Eastern United States: Identification and Control

http://www.invasive.org/eastern/

State of Washington Department of Ecology Non-native Freshwater Plants

http://www.ecy.wa.gov/programs/wq/plants/weeds/exotic.html

University of Florida, Center for Aquatic and Invasive Plants

http://plants.ifas.ufl.edu/

USDA National Invasive Species Information Center

http://www.invasivespeciesinfo.gov/

Definitions of Plant Terms

lanceolate

Alternate: leaves not directly across from each other on the stem

Dissected: leaf divided into many narrow segments; appear feathery, branched or forked

Entire: leaf not divided and margins not toothed

Forked: leaf divided into two or more equal segments

Lanceolate: lance-shaped, long, wider in the middle foliage

Leaflet: one of many leaf-like structures that make up a leaf

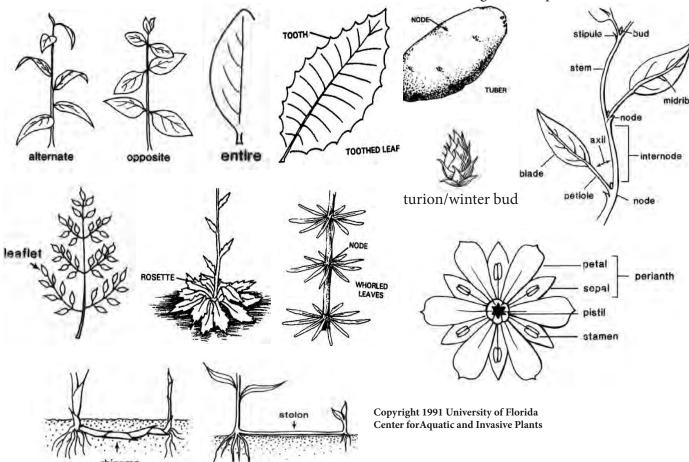
Margin: the edge or border of a leaf

Opposite: leaves are directly across from each other on the stem **Petiole:** leaf stalk; stem-like structure that attaches a leaf to the stem

Pinnately compound: leaf containing many leaflets

Rhizome: underground stem often sending out roots and shoots from its nodes **Rosette:** a dense cluster of leaves that are all at a single height, like petals of a rose

Stolon: above ground stem often sending out roots and shoots at nodes, also termed "runner"


Spike: unbranched continuation of the stem where flowers are located, usually located above the water

Tooth: points or lobes along a leaf margin

Tuber: modified, underground stem for starch storage and a form of vegetative reproduction

Turion: a modified leaf bud on a stem or shoot, a form of vegetative reproduction **Whorled:** three or more leaves at the same node, forming a ring-like arrangement

Winter bud: a modified leaf bud that survives the winter and facilitates vegetative reproduction

Butomus umbellatus

Common name:

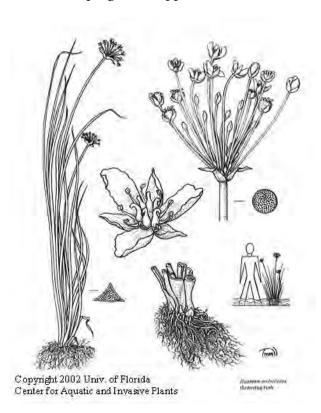
Flowering rush

Origin:

East Asia

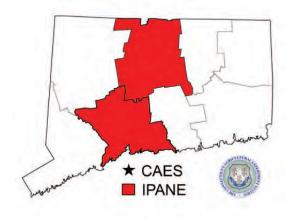
Key features:

Stems: Can be found along shorelines and into water 9 feet (3 m) deep


Leaves: Long, narrow, sword shaped leaves up to 3 feet (1 m) tall that originate at base. Leaves are fleshy with twisted ends, grass-like, cross section of leaves are triangular

Flowers: Inflorescence contains pink to white flowers 0.8-1.2 inches (2-3 cm) across with 3 petals and 3 sepals on a stalk that can be 3 feet (1 m) tall

Fruits/Seeds: Fruit is a follicle **Reproduction:** Seeds and rhizomes


Easily confused species:

Bur-reeds: Sparganium spp.

Page 8 - Invasive Aquatic and Wetland Plant Identification Guide

Cabomba caroliniana

Common names:

Fanwort

Carolina fanwort

Origin:

Southeast United States South America

Key features:

Plants are submersed

Stems: Can be 6 feet (2 m) long

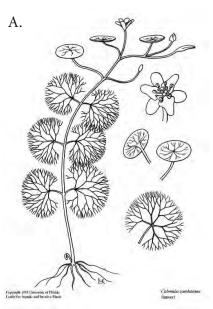
Leaves: Dissected, opposite leaves 0.8-2 inches (2-5 cm) are fan-like and made up of forked leaflets attached to the stem by a petiole. Floating leaves 0.2-0.8 inches (6-20 mm) wide are oblong and produced

on flower shoots

Flowers: Small, solitary flowers are usually white to

pinkish

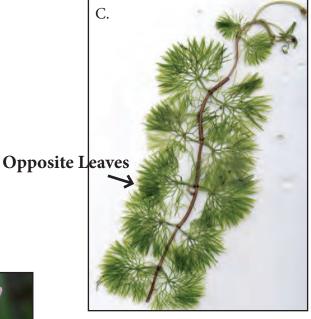
Fruits/Seeds: Flask shaped


Reproduction: Seed and fragmentation

Easily confused species:

Watermilfoils: *Myriophyllum* spp.

White water crowfoot: Ranunculus longirostris


Water marigold: Megalodonta beckii

- A. Copyright 1991 Univ. of Florida, Center for Aquatic and Invasive
- B. Copyright 2002 Univ. of Florida, Photo by A. Murray
- C. Photo by A. Smagula

Callitriche stagnalis

Common name:

Pond water-starwort

Origin:

Europe and North Africa

Key features:

Plants are submersed with floating rosettes

Stems: 4-12 inches (10-30 cm) long

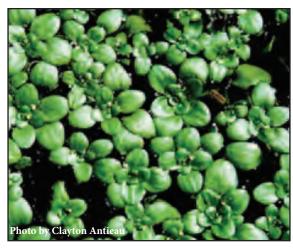
Leaves: Floating leaves are opposite and oval or spoon shaped 0.8×0.1 -0.3 inches (2 cm \times 3-8 mm), submerged leaves are narrower and tend to be

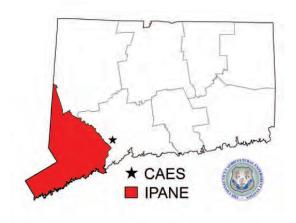
smaller

Flowers: Small with 2 small bracts at their base, flowers are close to each other at leaf bases for self pollination

Fruits/Seeds: Round 0.06-0.08 inches (1.5-2 mm) thick forming 4 mericarps that have thin winged

margins


Reproduction: Cloning and seeds


Easily confused species:

Other *Callitriche* spp. (can only distinguish them by their fruit)

Page 10 - Invasive Aquatic and Wetland Plant Identification Guide

Egeria densa

Common names:

Brazilian waterweed Brazilian elodea South American waterweed

Origin:

South America

Key features:

Plants are submersed

Stems: Plant stems green, soft and typically 1-2 ft (0.3-0.6 m) long

Leaves: Leaves entire 0.4-1.2 inches (1-3 cm) long by 0.2 in (5 mm) wide, leaves toothed (need magnification), leaves are whorled with typically 4 leaves per whorl

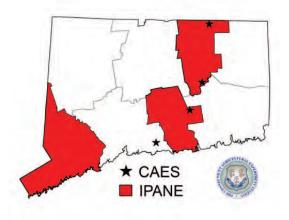
Flowers: Small white flowers with three petals, only

staminate (male) flowers found in the US

Reproduction: Fragmentation

Easily confused species:

Waterweeds (Native): *Elodea nuttallii* and *E. canadensis*


Hydrilla: Hydrilla verticillata

Eichhornia crassipes

Common names:

Common water-hyacinth Floating water-hyacinth

Origin:

Brazil

Key Features:

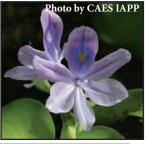
Stems: Free floating plant

Leaves: Leaves are oval 1.6-4.7 inches (4-12 cm), thick, waxy and form a rosette, petioles are inflated which

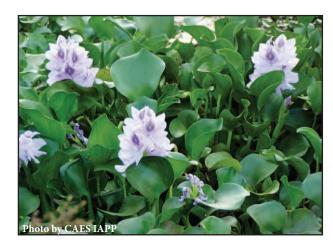
helps with floatation

Flowers: Flowers are light purple with one petal having a darker blotch with a yellow center 2.0-2.8 inches (5-7

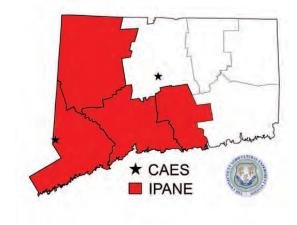
cm)


Fruits/Seeds: Fruit is a capsule with ribbed seeds

Reproduction: Seeds and stolons


Easily confused species:

None



Page 12 - Invasive Aquatic and Wetland Plant Identification Guide

Hydrilla verticillata

Common name:

Hydrilla

Origin:

Asia

Key features:

Plants are submersed

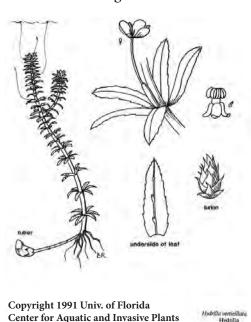
Stems: Slender, branched and up to 25 feet (7.5 m)

long

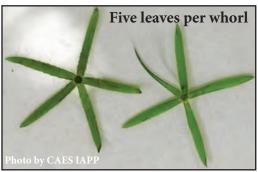
Leaves: Whorled leaves approx. 0.7 inches (1.5 cm) long, whorls often have 5 leaves (range 4-8); leaf margins are visibly toothed

Flowers: Female flowers have three translucent petals that have reddish streaks, male flowers have three petals and can be white to red in color

Fruits/Seeds: Small tubers (key feature) can be found in the sediment, turions form along the stem

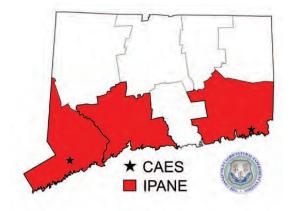

Reproduction: Fragmentation, turions, tubers and


seeds


Easily confused species:

Waterweeds (Native): *Elodea nuttallii* and *Elodea canadensis*

Brazilian waterweed: Egeria densa



Iris pseudacorus

Common names:

Yellow iris Yellow flag

Origin:

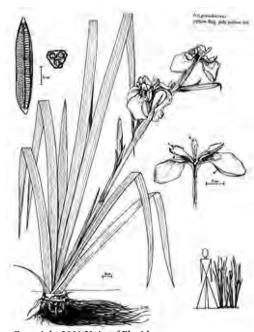
Europe Western Asia Northwest Africa

Key features:

Leaves: Sword shaped leaves are flattened with a raised mid rib and rise out of the soil, the tips of the leaves are pointed and arch over

Flowers: Flowers are on peduncles 3-4 feet (1-1.3 m) tall. Several light to dark yellow flowers are on each stem with 3 small erect petals and 3 large downward sepals

Fruits/Seeds: Fruit is a capsule, seeds are brown


Reproduction: Seeds and rhizomes

Easily confused species:


Northern blue flag iris: *Iris versicolor*

Copyright 2001 Univ. of Florida Center for Aquatic and Invasive Plants

Page 14 - Invasive Aquatic and Wetland Plant Identification Guide

Lythrum salicaria

Common name:

Purple loosestrife

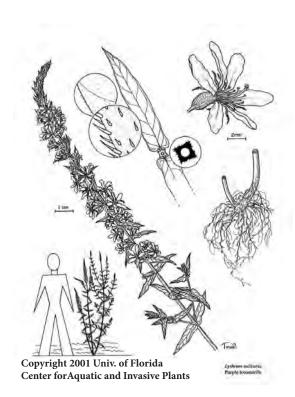
Origin:

Europe

Key features:

Stems: Plants have herbaceous stems and can grow 1.5-5 feet (0.5-1.5 m) tall

Leaves: Opposite, or in whorls of 3, 1-4 inches (3-10 cm) long, linear, or lanceolate in shape, leaves can be smooth or hairy


Flowers: Large, pink-purple flowers clustered on long terminal spikes 4-16 inches (10-40 cm) long, floral tube is twice as long as it is wide and typically has 6 petals

Fruits/Seeds: Fruit is a two cavity capsule with numerous reddish-brown seeds

Reproduction: Seed


Easily confused species:

Winged loosestrife: Lythrum alatum

Marsilea quadrifolia

Common names:

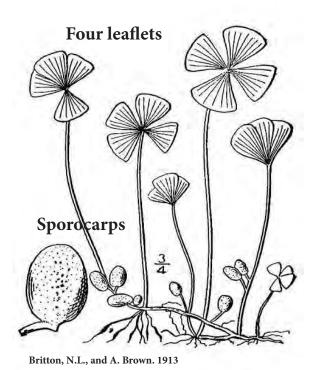
European waterclover Water shamrock

Origin:

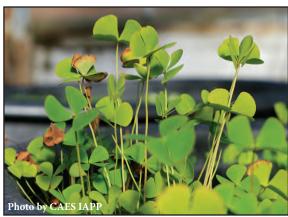
Europe

Key features:

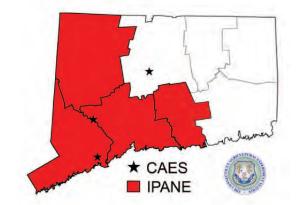
Floating leaf plant


Stems: Smooth petioles 2-12 inches (5-30 cm) **Leaves:** Comprised of 4 fan-shaped leaflets (similar

to a four-leaf clover)


Fruits/Seeds: 2 or 3 dark brown sporocarps 0.2 inches \times 0.2 inches (4-5.5 mm \times 3-4 mm) **Reproduction:** Cloning and sporocarps

Easily confused species:


None

Page 16 - Invasive Aquatic and Wetland Plant Identification Guide

Myosotis scorpioides

Common names:

Forget-me-not Yellow eye forget-me-not Water scorpion-grass

Origin:

Europe Western Asia

Key features:

Plants grow 8-24 inches (20-60 cm) in height

Stems: Stems are angled, often creeping

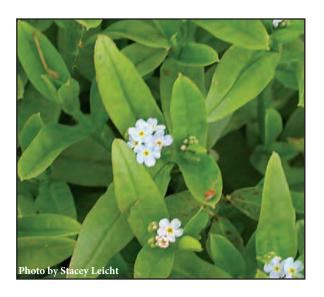
Leaves: Lower leaves are tapered to the base while the upper leaves are more oblong, leaves are alternate,

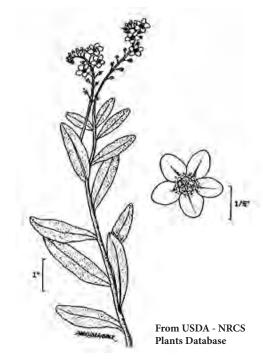
with short hairs

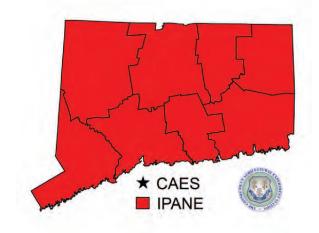
Flowers: Flowers are flat and are typically blue with a yellow center, 0.2-0.4 inches (6-9 mm) wide, along a simple inflorescence with a common axis.

simple inflorescence with a common axis $% \left(x\right) =\left(x\right) +\left(x\right)$

Fruits/Seeds: Seeds are contained in a nutlet that is


angled and keeled on the inner side


Reproduction: Seeds


Easily confused species:

Bay forget-me-not: Myosotis laxa

Myriophyllum aquaticum

Common names:

Parrotfeather Brazilian watermilfoil

Origin:

Amazon River basin

Key features:

Plants occur mostly above the water's surface

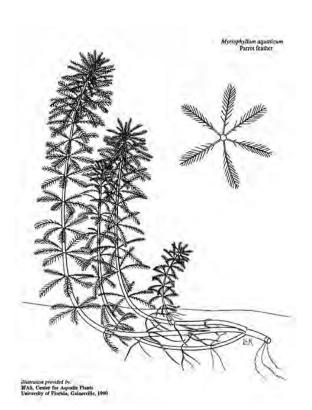
Stems: Thick green stems

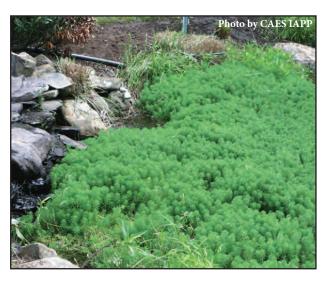
Leaves: Leaves are a blue-green color and have a feathery appearance, leaves are whorled, dissected with rounded

tips

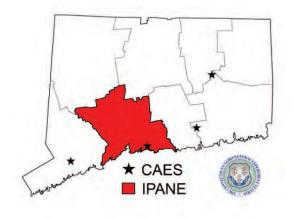
Flowers: Flowers have white sepals and no petals (only

females found in the US)


Fruits/Seeds: 0.06-0.08 inches (1.5-2 mm) long


Reproduction: Fragmentation

Easily confused species:


 ${\bf Eurasian\ watermilfoil:}\ {\it Myriophyllum\ spicatum}$

Variable-leaf watermilfoil: Myriophyllum heterophyllum

Page 18 - Invasive Aquatic and Wetland Plant Identification Guide

Myriophyllum heterophyllum

Common names:

Variable-leaf watermilfoil Variable watermilfoil Two-leaf watermilfoil

Origin:

Southern United States

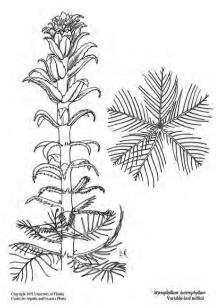
Key features:

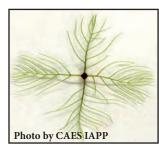
Plants are submersed

Stems: Dark brown stems extend to the water's surface and spread to form large mats

Leaves: Triangular with ≤ 11 pairs of leaflets. Leaves are dissected and whorled (4-6 leaves/whorl) resulting in a feathery appearance with leaf whorls < 1 inch apart giving it a ropy appearance

Flowers: Inflorescence spike 2-14 inches (5-35 cm) long extend beyond the water's surface with flowers in whorls of four with reddish petals


Fruits/Seeds: Fruits are almost round, with a rough


surface

Reproduction: Fragmentation and seeds

Easily confused species:

Eurasian watermilfoil: *Myriophyllum spicatum* Low watermilfoil: *Myriophyllum humile*

Myriophyllum spicatum

Common name:

Eurasian watermilfoil

Origin:

Europe and Asia

Key features:

Plants are submersed

Stems: Stem diameter below the inflorescence is

greater with reddish stem tips

Leaves: Leaves are rectangular with ≥ 12 pairs of leaflets per leaf and are dissected giving a feathery appearance, arranged in a whorl, whorls are 1 inch (2.5 cm) apart

Flowers: Small pinkish male flowers that occur on reddish spikes, female flowers lack petals and sepals and have 4 lobed pistil

Fruits/Seeds: Fruit are round 0.08-0.12 inches (2-3

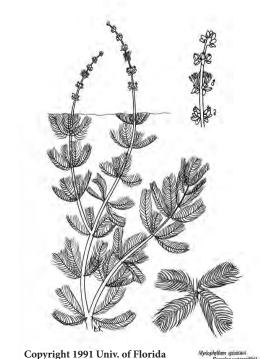
mm) and contain 4 seeds

Reproduction: Fragmentation and seeds

Easily confused species:

Variable-leaf watermilfoil: *Myriophyllum heterophyllum*

Low watermilfoil: Myriophyllum humile


Northern watermilfoil: Myriophyllum sibiricum Whorled watermilfoil: Myriophyllum verticillatum

Center for Aquatic and Invasive Plants

IPANE

Page 20 - Invasive Aquatic and Wetland Plant Identification Guide

Najas minor

Common names:

Minor naiad Brittle waternymph Spiny leaf naiad Eutrophic waternymph

Origin:

Europe

Key features:

Plants are submersed

Stems: Branched stems can grow up to 4-8 inches (10-20 cm) long

Leaves: Opposite and lance shaped on branched stems with easily visible toothed leaf edges and leaves appear curled under, basal lobes of leaf are also ser-

rated, 0.01-0.02 inches (0.3-0.5 mm)

Flowers: Monoecious (male and female flowers on same plant)

Fruits/Seeds: Fruits are purple-tinged and seeds

measure 0.03-0.06 inches (1.5-3 mm) **Reproduction:** Seeds and fragmentation

Easily confused species:

Other naiads (native): Najas spp.

Nelumbo lutea

Common name:

American water lotus

Origin:

Southeastern United States, Mexico, Honduras, and the West Indies

Key features:

Plants are on or above the water

Stems: Stiff stalk attaches to the center of the leaf **Leaves:** Large, bluish-green, circular leaves with no

"slit" like water lilies

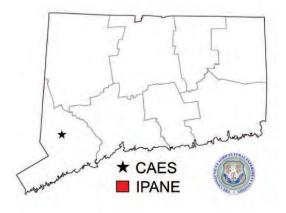
Flowers: White to yellowish flowers measure up to 8

inches (20 cm) wide

Fruits/Seeds: Seeds are nut-like and contained in a structure that resembles the top of a watering can

Reproduction: Seed

Easily confused species:


None

Page 22 - Invasive Aquatic and Wetland Plant Identification Guide

Nymphoides peltata

Common name:

Yellow floating heart

Origin:

Europe, Japan, China, and India

Key features:

Floating leaf plant

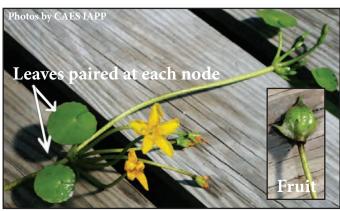
Stems: Branching stems spread over water's surface

Leaves: Floating leaves are round and heart-shaped at

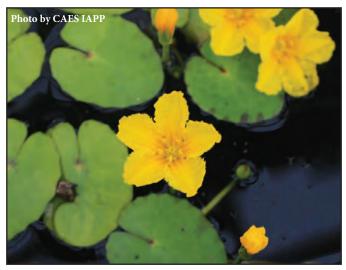
base, paired at each node

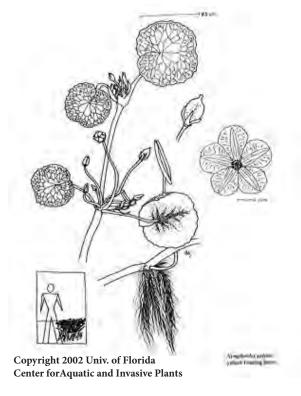
Flowers: Flowers are bright yellow on long peduncles

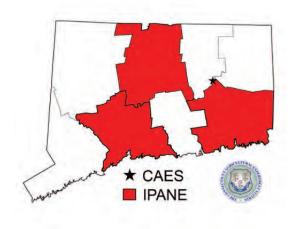
with 5 fringed petals


Fruits/Seeds: Seeds are flat and oval and are in cap-

sules


Reproduction: Seeds and rhizomes


Easily confused species:


Little floating heart: *Nymphoides cordata* Yellow water lily: *Nuphar variegata*

Pistia stratiotes

Common names:

Water lettuce Tropical duckweed

Origin:

Nativity unknown, but possibly South America, Africa, Southeastern US

Key features:

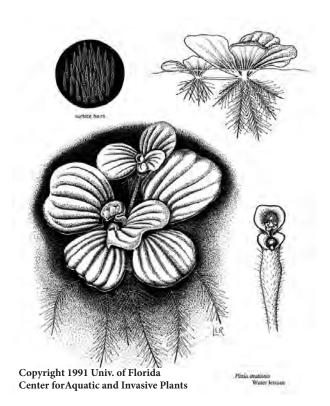
Free floating plant that resembles a head of lettuce

Stems: Roots are long and feathery

Leaves: Leaves are fleshy and covered with dense

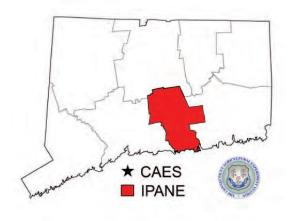
white hairs and have parallel venation

Flowers: Several male flowers form a whorl around


a spike with one female flower below them

Fruits/Seeds: Fruit are light green berries that pro-

duce 0.04 inch (1 mm) brown seeds **Reproduction:** Seeds and stolons


Easily confused with:

None

Page 24 - Invasive Aquatic and Wetland Plant Identification Guide

Potamogeton crispus

Common names:

Curly leaf pondweed Crispy-leaved pondweed Crisped pondweed

Origin:

Asia, Africa, and Europe

Key features:

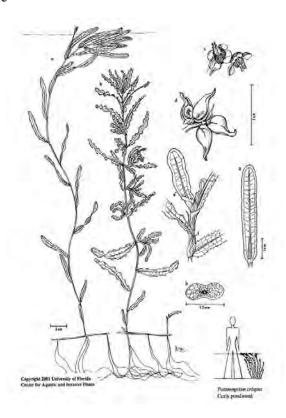
Plants are submersed

Stems: Stems are flattened, can form dense stands in

water up to 15 feet (5 m) deep

Leaves: Alternate leaves 0.3-1 inches (3-8 cm) wide with wavy edges (similar to lasagna) with a prominent

mid-vein


Flowers: Brown and inconspicuous

Fruits/Seeds: Fruit is oval 0.1 inches (3 mm) long

Reproduction: Turions (right) and seeds

Easily confused species:

None

Rorippa microphylla

Common name:

Onerow yellowcress

Origin:

North Africa, Europe, and the Middle East

Key features:

Stems: Grows flatly across the ground and roots at nodes, forming large mats, can be fully to partially submerged

Leaves: Pinnate leaves with 3-9 segments and the terminal leaf is the largest

Flowers: White petals with 4 part perianth

Fruits/Seeds: Fruit is a long and slender silique, up to 1 inch (25 mm) long, with seeds in one row on each side

Reproduction: Seed

Easily confused species:

Watercress: Rorippa nasturtium-aquaticum

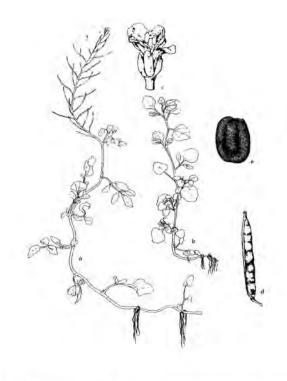


Fig. 129. Naturation microphyllien: a. habit. Sowering and fruiting: b. habit, vegetative: c. flower: d. fi. Crow and Hellquist, 2000

Rorippa nasturtium-aquaticum

Common name:

Watercress

Origin:

North Africa, Europe, and the Middle East

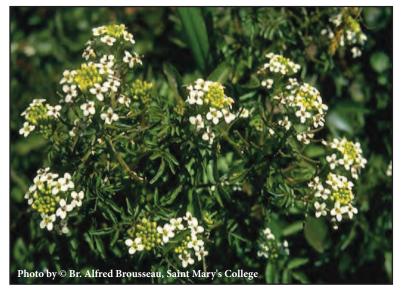
Key features:

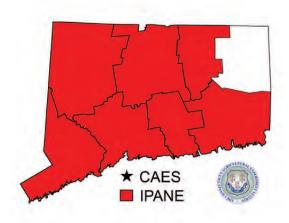
Stems: Hollow stems can grow flat on mud or be fully or partially submersed

Leaves: Leaves are pinnately compound have 3-9 segments and vary in shape, the terminal leaf is the largest in each segment

Flowers: Small white and green flowers; four white petals with four long and 2 short stamens

Fruits/Seeds: Fruit is pod-like silique, 0.4-0.6 in. (10-


15 mm) long, with seeds in two rows per side **Reproduction:** Fragmentation and seed


Easily confused species:

Onerow yellowcress: Rorippa microphylla

Salvinia molesta

Common names:

Giant salvinia Water fern Salvinia Kariba weed Aquarium watermoss

Origin:

Brazil

Key features:

Free floating plant with no roots

Stems: Horizontal stems float below the surface

Leaves: Submersed leaves are brown and feather-like; surface leaves are folded at midrib and covered with many water repellent hairs that are split in the middle but rejoin at the tips; leaves become tightly packed

into long chains as the plant grows **Fruits/Seeds:** Egg shaped sporocarps

Reproduction: Fragmentation

Easily confused species:

None

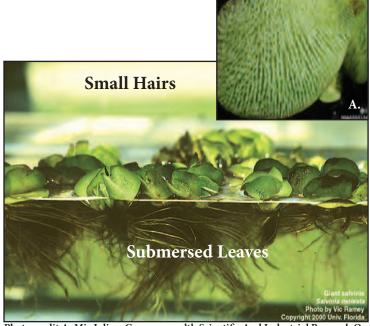
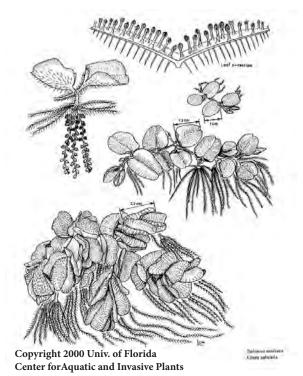
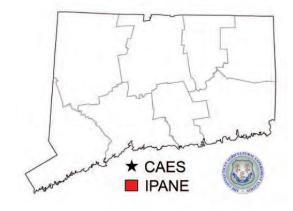




Photo credit A: Mic Julien, Commonwealth Scientific And Industrial Research Org., Bugwood.org

Page 28 - Invasive Aquatic and Wetland Plant Identification Guide

Trapa natans

Common names:

Water chestnut European water chestnut

Origin:

Asia and Europe

Key features:

Plants are rooted to substrate and float

Stems: Stem is submersed, flaccid and can be up to

15 feet (5 m) long

Leaves: Leaves 0.8-0.16 inches (2-4 cm) long are triangular and toothed along the front edge with inflated petioles, leaves float in a rosette pattern

Flowers: Flowers are located in the center of the

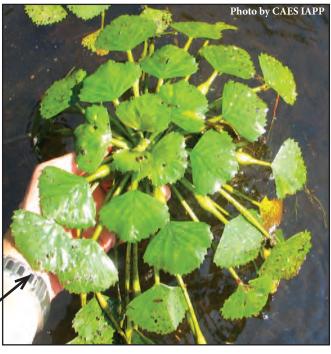
rosette and have four white petals

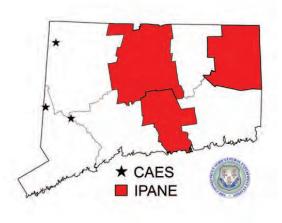
Fruits/Seeds: Fruit is hard and has four sharp spines

Reproduction: Seeds and fragmentation

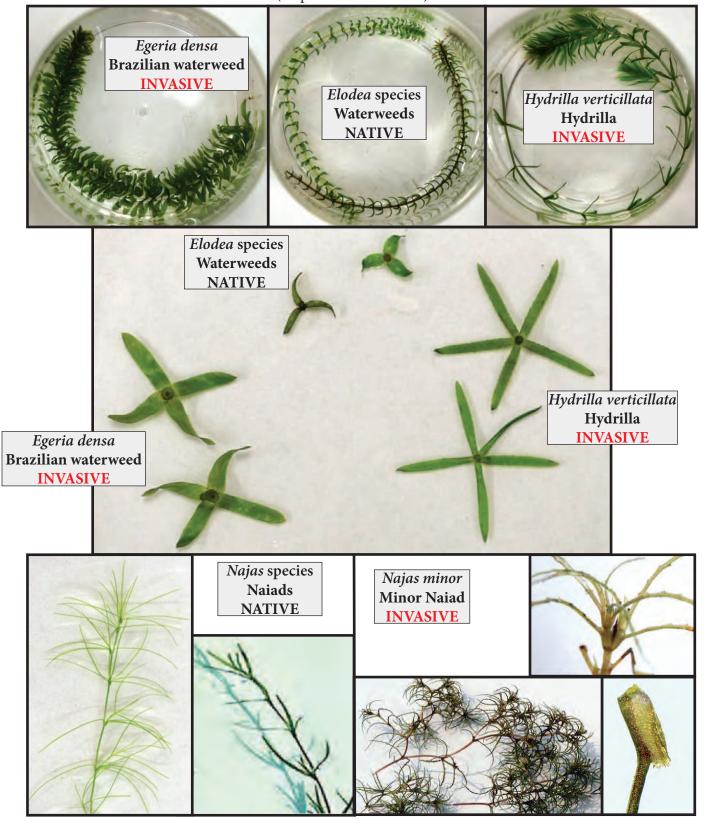
Easily confused species:

None

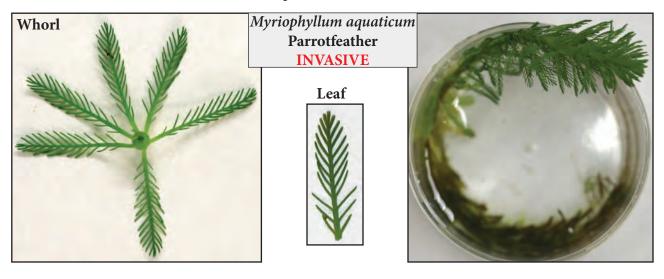


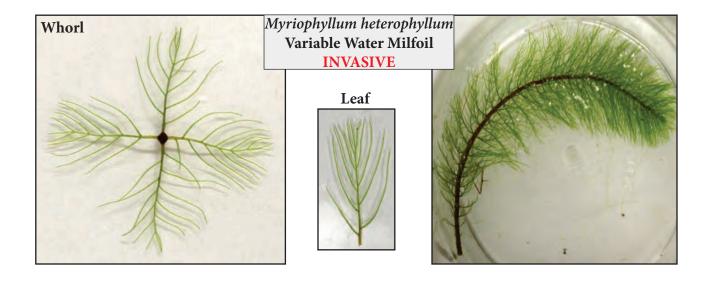

Fruit

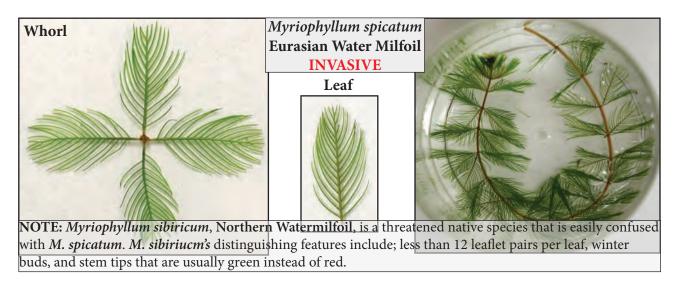
Rosette



Commonly Confused Aquatic Plants

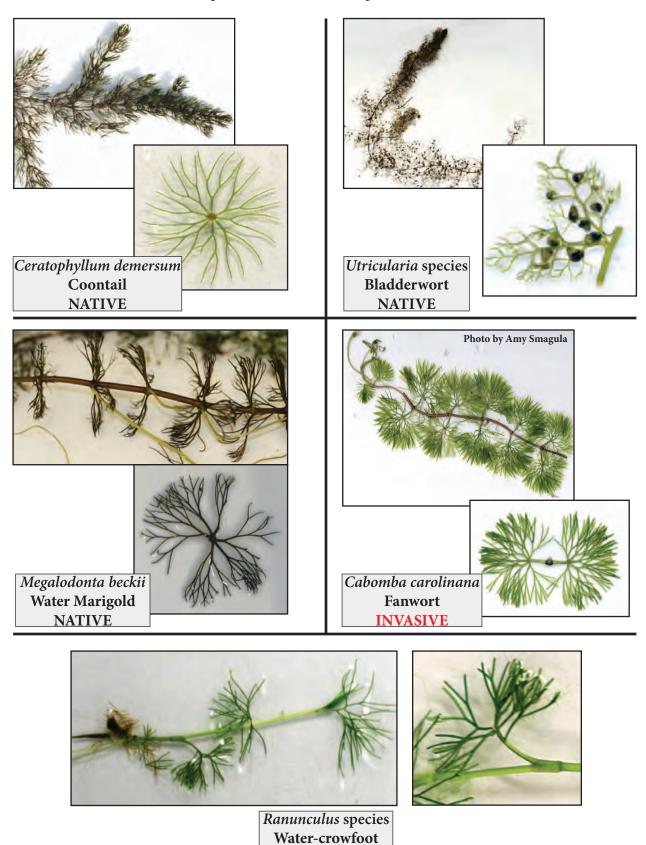

Submersed plants with non-dissected leaves (all photos CAES IAPP)




Page 30 - Invasive Aquatic and Wetland Plant Identification Guide

Submersed plants with feathery dissected leaves

(all photos CAES IAPP)



Submersed plants with forked and branched dissected leaves

(all photos CAES IAPP except where noted)

NATIVE

Page 32 - Invasive Aquatic and Wetland Plant Identification Guide

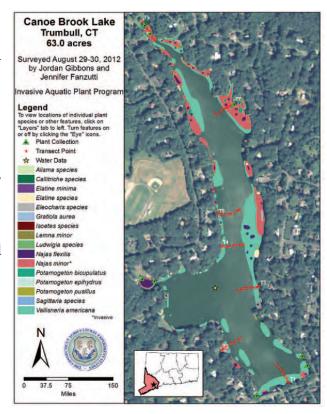
Key to Invasive or Potentially Invasive Aquatic Plants of Connecticut

Key also includes commonly confused native species

Floating-Leaf Plants (field characteristics)

1. Plants free-floating on water's surface, not rooted to the substrate*
2. Leaves folded along midrib, surface covered with hairs Salvinia molesta (Giant Salvinia
2. Leaves not folded, surface smooth
3. Petioles inflated; oval leaves in a rosette; light purple flowers
Eichhornia crassipes (Water Hyacinth
3. Petioles not inflated; broad, fleshy leaves in a rosette, covered with dense white hairs
1. Plants rooted in substrate
4. Leaves forming a rosette; leaves triangular, toothed; petioles inflated; spiny fruit
4. Leaves not forming rosette
5. Leaves compound, cut into several leaflets
6. Leaves comprised of four leaflets, like a four-leaf clover
6. Leaves pinnately compound with 3-9 leaflets, terminal leaflet is largest; hollow stems float-
ing; small white and green flowers in clusters
7. Pod-like fruit 0.4-0.6 inches (10-15 mm) long, 2 rows of seeds per side
7. Pod-like fruit 0.7-1 inches (17-26 mm) long, 1 row of seeds per side
5. Leaves entire or lobed
8. Leaves entire (no slit), circular, bluish green, on stiff stalk above water
8. Leaves lobed, heart shaped
9. Yellow flowers
10. Flowers with five, fringed petals
10. Flowers ball shaped, petiole flattened
9. White flowers with five, fringed petals; roots close to the floating leaves, near the surface
of the water

^{*}Plants such as yellow and little floating heart and water chestnut can become free-floating when dislodged from sediment or detached from a rooted plant.


Submersed Plants (field characteristics)

1. Leaves entire, sometimes toothed
2. Leaves alternate, with wavy edges (lasagna-like); turions may be present; prominent leaf mid
vein
2. Leaves whorled, opposite, or clustered
3. Leaf bases wider than the leaf blade, appearing opposite, whorled or clustered
4. Toothed leaf edges visible without magnification
4. Magnification needed to see toothed edges
3. Leaf base not distinct from rest of leaf blade, leaves strictly whorled
5. Whorls of 3 leaves; leaf margins not toothed Elodea species (Waterweeds) (native)
5. Whorls of 4 or more leaves; leaf margins toothed (magnification sometimes needed)
6. Leaves 4 per whorl (rarely up to 6 leaves/whorl), 0.5-1.5 inches (1.2-4 cm) long, toothed
leaf margins (need magnification)
margins; mid-vein may be toothed; tubers present; may have turions
1. Leaves dissected
7. Leaves feathery in appearance (pinnate)
8. Leaves concentrated above the water; thin, rounded-tipped, blue-green leaves
8. Leaves concentrated below the water, except for emergent flower spikes
9. Leaf whorls less than 1 inch (2.5 cm) apart, giving the plant a ropy look; triangular
shaped leaves, with less than or equal to 11 pairs of leaflets; thick spike with entire to
toothed leaves
9. Leaf whorls 1 inch (2.5 cm) apart; rectangular shaped leaves, with greater than or equal to
12 pairs of leaflets; thin spike with leaves smaller than flowers
9. Leaves rounded in whorls with less than 12 pairs of leaflets; winter buds
7. Leaves forked
10. Leaves with numerous small bladders, not rooted
10. Leaves lacking bladders
11. Leaves alternate; petioles sheathing stem; flowers usually solitary
11. Leaves opposite or whorled
12. Leaves whorled; leaf divisions fork in pairs, forking a total of 1-4 times, leaves often
toothed; no roots or flower spike
12. Leaves opposite, fan-shaped; leaf divisions fork into either 2 or 3 segments
13. Leaves attached to the stem with petioles; small floating leaves; flowers white
13. Leaves not attached to the stem by a petiole, leaves opposite but appearing whorled;
emersed leaves on spike entire to toothed; flowers yellow
Megalodonta beckii (Water Marigold) (native, threatened)

Managing Nuisance Aquatic Vegetation in Connecticut

Invasive Aquatic Plant Control

Aquatic vegetation proliferates in water with proper sunlight, water chemistry, sediment and freedom from antagonistic organisms. Managing invasive aquatic plants usually requires a multifaceted approach. It is important to accurately identify the invasive and native plant species present. This can be accomplished through an aquatic plant survey (right). Sometimes nuisance plants, such as lily pads, are native. Although they may need to be managed, their removal could result in replacement with more problematic invasive species. In addition, certain native plants may be highly beneficial or rare and warrant protection. Combinations of management techniques that change from year to year are usually most effective. This discussion of invasive aquatic plant control is intended to be introductory in nature. The Aquatic Ecosystem Restoration Foundation (2009) has an online guidebook (http://www.aquatics.org/aerf_handbook. pdf) that details the subjects discussed below.

Nutrient reduction

Because nuisance aquatic vegetation is stimulated by nutrients, especially phosphorus and nitrogen, reducing the amount of these elements reaching a water body is an important part of any management program. Public education on preventing septic tank failures (right) and use of fertilizers is important. The utilization of soil tests to determine nutrient needs helps assure fertilizer is used at the proper rates and at the right time. Recent legislation in Connecticut has banned phosphorus from fertilizers used on established lawns unless substantiated by a soil test. CAES tests soil for citizens (www.ct.gov/caes). Unfertilized vegetated

buffer zones along shorelines are effective in limiting the movement of fertilizer to ponds and lakes. The misapplication of fertilizer to pavement is of concern because storm drains often discharge into lakes and ponds.

Water Level Drawdown

Lowering the water level of a lake or pond can expose unwanted vegetation to lethal drying and freezing conditions. Where water level drawdown is feasible, this is a cost effective aquatic plant management technique. Nontarget plants and other aquatic organisms can be negatively impacted. Usually drawdowns are performed in the winter when recreational use is minimal. Warm winters, snow cover and groundwater seepage can prevent necessary freezing and drying. Minor naiad (*Najas minor*) seems tolerant to drawdown probably because it regrows from seeds each year.

Care needs to be taken to properly assess the refill time. If the body of water is not filled by spring problem vegetation can expand into areas where plant growth is normally limited by light penetration. A side benefit of winter drawdown is docks and other shoreline structures are protected. CAES IAPP has been monitoring the effects of the annual drawdowns on Candlewood Lake (above) since 2007 and found rapid regrowth of Eurasian watermilfoil (*Myriophyllum spicatum*) one year after drawdown (CAES IAPP, 2012). Drawdowns may require permits from local, state or federal agencies.

Herbicides

Managing invasive aquatic plants with herbicides is sometimes necessary. An aquatic herbicide must meet strict requirements of the United States Environmental Protection Agency and then be registered in the state where it is used. In Connecticut, aquatic herbicides may not be applied without obtaining a permit from the Connecticut Department of Energy and Environmental Protection (CT DEEP). Choosing the best herbicide requires proper plant identification, a sense for the non-target species you want to protect, the time of year you want to treat and potential water use limitations

(i.e. drinking, swimming, irrigation etc.). There are two general types of herbicides, contact and systemic. Contact herbicides are usually quick acting but have little effect on roots and reproductive propagules such as seeds, turions and tubers. Regrowth, therefore, can be expected. Systemic herbicides are slower acting but have the capability of controlling the root system. Longer term control is possible but elimination of an invasive species is unlikely. Herbicides are available in liquid or granular forms (above). CT DEEP (2012) offers an online guide (http://www.ct.gov/dep/lib/dep/pesticide_certification/supervisor/aweeds.pdf) to the latest approved aquatic herbicides.

Sediment Removal

Shallow areas of lakes and ponds with fertile sediment will promote plant growth. Removal of the sediment is a long term solution. Sediment removal is performed through various types of dredging and permits from local, State and Federal agencies are usually necessary. Dredging is performed by either wet or dry techniques. Wet dredging does not require lowering the water level and has the advantage of minimal disruption to recreational use. Dry dredging (right)involves lowering the water level, drying the sediment and using excavation equipment to facilitate removal. This method is efficient and sometimes the material can be sold

to recoup some of the costs. The downside of dry dredging is its negative effects on the aquatic ecosystem and the inability to use the water body for long periods (often many years).

Biological Controls

Introducing an organism that feeds specifically on an invasive aquatic plant can provide targeted long-term control. Unfortunately, virtually no reliable target specific biocontrols are available for invasive aquatic plants in the northeastern USA. A biocontrol being tested for Eurasian watermilfoil is the milfoil weevil

(Euhrychiopsis lecontei). Although the larvae and adults feed on Eurasian watermilfoil and they are native to most lakes with the plant, neither the natural or introduced populations are currently considered a reliable control. As more research is performed this assessment may change. The most common biocontrol in Connecticut is an herbivorous fish called grass carp (Ctenopharyngodon idella). This fish was originally cultivated in China for food but its propensity to eat vegetation brought it to Europe and the USA for aquatic weed control. Concerns over grass carp developing breeding populations have caused it to become regulated in many states including Connecticut. Prior to liberation (right), a state permit must be obtained, the fish must be

documented to be sterile (triploid) and inlets and outlets must be screened to prevent the fish from escaping. Grass carp are usually considered more suitable for smaller water bodies and are introduced at various rates depending on the amount of vegetated acres, the plants being controlled and other factors. The fish take a year or two to obtain sufficient size to reduce vegetation and after about five years restocking is often necessary. Unfortunately grass carp may prefer native plant species and unforeseen damage to the aquatic ecosystem can occur. In addition, as plants are consumed and passed through the fish's digestive system nutrients are released into the water that may cause algal blooms. Because grass carp are sensitive to copper based algaecides, treating the algae can be challenging.

Harvesting

Probably the simplest means for ridding an area of invasive aquatic plants is removing them by hand pulling or cutting (above, left). Hand pulling is particularly effective in small areas and can reap tremendous benefits if used to remove new infestations. Sometimes SCUBA divers are employed. Unfortunately, many areas are too large for hand pulling to be practical and mechanical cutters (above, right), rakes or suction harvesters are needed. If the root systems are not removed rapid regrowth can occur. Several lakes in Connecticut have dedicated weed harvesting boats that operate each year. To prevent new introductions, commercial weed harvesters need to be thoroughly cleaned before moving from one water body to another.

Benthic Barriers

Benthic barriers are blanket-like materials that are spread over unwanted aquatic vegetation to prevent light from reaching the plants. They are particularly well suited to small areas but occasionally are used for larger areas. Although most benthic barriers are installed in the spring and removed in the fall, they can be installed for as little as several weeks and then moved. More research is needed to document the level of control when this procedure is utilized. If benthic barriers are left in place for more than one growing season sediment settles on the surface and plants can take root (right).

Sources of further information on invasive aquatic plant management

Aquatic Ecosystem Restoration Foundation. 2009. Biology and Control of Aquatic Plants – A Best Management Practices Handbook. L. Gettys, W. Haller, M. Bellaud, eds. Retrieved October 3, 2012 from http://www.aquatics.org/aerf_handbook.pdf

CT DEEP. 2012. Nuisance Aquatic Vegetation Management - A Guidebook. Retrieved October 3, 2012 from http://www.ct.gov/dep/lib/dep/pesticide_certification/supervisor/aweeds.pdf

Literature Cited

Britton, N.L. and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 37.

CAES IAPP. 2012. The Connecticut Agricultural Experiment Station Invasive Aquatic Plant Program (CAES IAPP). Retrieved June 4, 2012. http://www.ct.gov/caes/iapp.

Center for Aquatic and Invasive Plants, University of Florida. 2005. Aquatic, Wetland and Invasive Plants in Pen-and-Ink. IFAS Publications, Gainesville, Florida.

Center for Aquatic and Invasive Plants, University of Florida. 2012. Plant information and images. Retrieved June 4, 2012. http://aquat1.ifas.ufl.edu/.

Connecticut Aquatic Nuisance Species Working Group. 2006. Connecticut aquatic nuisance species management plan. Retrieved June 4, 2012. http://www.ctiwr.uconn.edu/ProjANS/SubmittedMaterial2005/Material200601/ANS%20Plan%20Final%20Draft121905.pdf.

Couch, R. and E. Nelson. 1985. Myriophyllum spicatum in North America. Pp. 8-18 in: Anderson, L.W.J., ed., Proceedings of the First International Symposium on Water Milfoil (Myriophyllum spicatum) and related Haloragaceae Species. Aquatic Plant Management Society, Vicksburg, Mississippi.

Crow, G.E. and C.B. Hellquist. 2000. Aquatic and wetland plants of northeastern North America. Vol 1. Pteridophytes, gymnosperms, and angiosperms: dicotyledons. The University of Wisconsin Press, Madison, Wisconsin.

Crow, G.E. and C.B. Hellquist. 2000. Aquatic and wetland plants of northeastern North America. Vol 2. Angiosperms: Monocotyledons. The University of Wisconsin Press, Madison, Wisconsin.

Fassett, N. 1957. A manual of aquatic plants. Rev. Eugene Ogden. The University of Wisconsin Press. Madison, Wisconsin.

Fishman, K.J., R.L. Leonard and F.A. Shah. 1998. Economic evaluation of Connecticut lakes with alternative water quality levels. Connecticut Department of Environmental Protection. 79 Elm St. Hartford CT.

Invasive and aquatic species. 2012. Weeds. Invasive.org. Retrieved June 4, 2012. http://www.invasive.org/.

Invasive plant atlas of New England (IPANE). 2012. IPANE species. Retrieved June 4, 2012. http://www.eddmaps.org/ipane/ipanespecies/species_list.htm.

Invasive plant atlas of New England. 2012. Data and Maps. Retrieved June 4, 2012. http://www.eddmaps.org/ipane/distribution/.

Les, D.H., and L.J. Mehrhoff. 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: A historical perspective. Biological Invasions 1:281-300.

North Carolina State University Aquatic Plant Management Website. 2008. Aquatic plant fact sheet. Retrieved June 4, 2012. http://www.weedscience.ncsu.edu/aquaticweeds/.

USDA Natural Resources Conservation Service (NRCS). 2012. Plants database. Retrieved June 4, 2012. http://plants.usda.gov/.

Washington State Noxious Weed Control Board. 2010. Weed list. Retrieved June 4, 2012. http://www.nwcb.wa.gov/.

Notes

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

Notes

The Connecticut Agricultural Experiment Station was founded in 1875. It is chartered by the General Assembly to make scientific inquiries and conduct experiments regarding plants and their pests, insects, soil and water, and to perform analyses for state agencies. Station laboratories or research farms are located in New Haven, Windsor, Hamden, and Griswold.

The Connecticut Agricultural Experiment Station (CAES) prohibits discrimination in all of its programs and activities on the basis of race, color, ancestry, national origin, sex, religious creed, age, political beliefs, sexual orientation, criminal conviction record, gender identity, genetic information, learning disability, present or past history of mental disorder, mental retardation or physical disability including but not limited to blindness, or marital or family status. To file a complaint of discrimination, write Director, The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven, CT 06504, or call (203) 974-8440. CAES is an affirmative action/equal opportunity provider and employer. Persons with disabilities who require alternate means of communication of program information should contact the Chief of Services at (203) 974-8442 (voice); (203) 974-8502 (FAX); or Michael.Last@ct.gov (E-mail).