

Ticks & Lyme Disease: An Update

Kirby C. Stafford III, Ph.D. Vice Director, State Entomologist

Arthropod-Associated Diseases in the U.S. (2005)

Anaplasmosis, Ehrlichosis

Tularemia

Rocky Mountain Spotted Fever Arboviral Encephelitis / West Nile, EEE, St. Louis, WEE

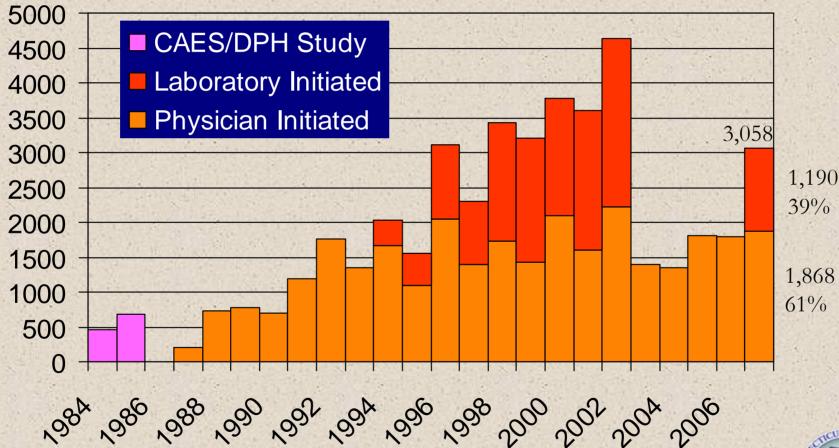
> Malaria (travelers overseas)

Lyme Disease

Others: Human Babesiosis, Powassan Encephalitis, Tickborne Relapsing Fever, Colorado Tick Fever, Plague

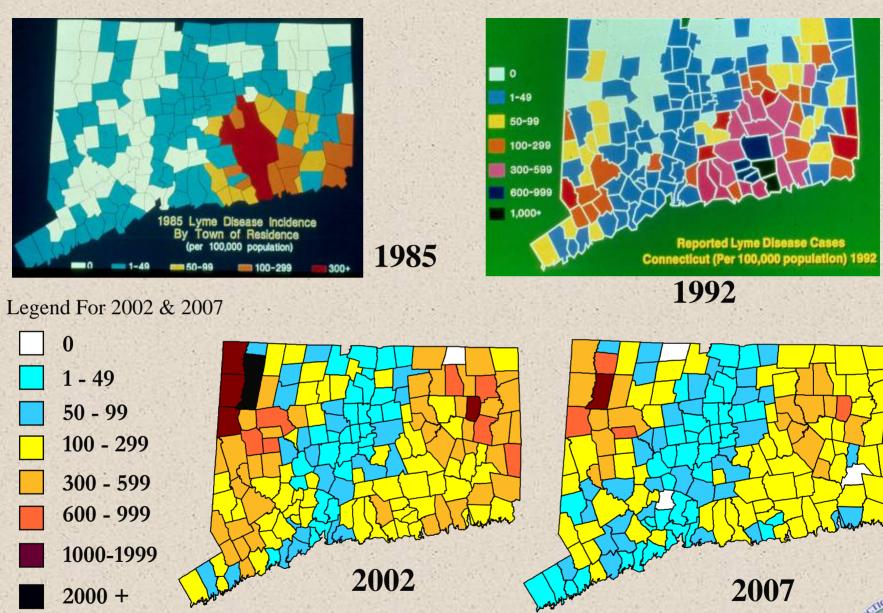
Lyme Disease – United States, 1982-2007

Reported Cases of Lyme Disease -- United States, 2006



Year

*preliminary numbers 2007



Lyme disease cases by surveillance method and year, Connecticut, 1984-2007

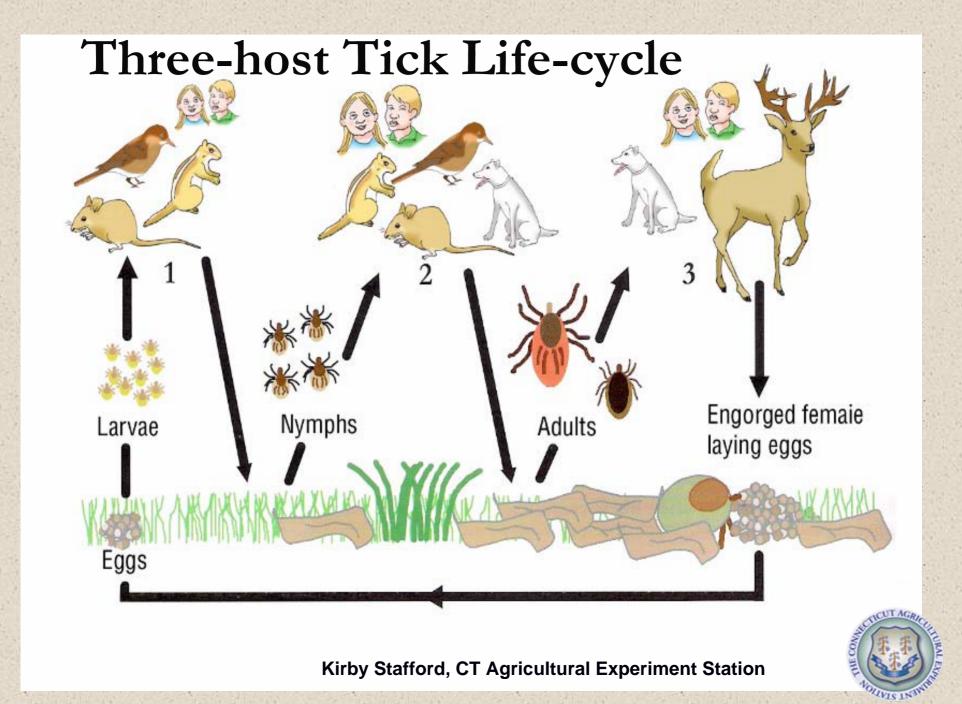
Data CT DPH

Lyme Disease Incidence, CT

Photo courtesy American Lyme Disease Foundation

Ixodes scapularis nymph & female

Larvae hatching from egg mass



White-footed mouse, birds Eastern chipmunk & shrews

Occi

8 Open House

Seasonal Activity of Ixodes scapularis

IUI

1111111100, 01

Ixodes scapularis tested by CAES by polymerase chain reaction (PCR) methods

Stage	Year	# identified	# positive/tested	% positive
Nymph	2005	3675	817/3654	22.4
Nymph	2006	1888	165/1032	16.0
Nymph	2007	954	228/620	36.8
Nymph	Total	6517	1210/5306	22.8
Female	2005	2234	789/2184	36.1
Female	2006	2835	355/1271	27.9
Female	2007	1544	251/767	32.7
Female	Total	6613	1395/4222	33.0
PCR Analysis: Beth Alves, CAES one House				

Tick Management

- Personal Protection Measures
- Host reduction or exclusion
- Host-targeted acaricides
- Habitat or vegetative modifications
- Area-wide chemical control
- Biological & natural control

Tick Management Handbook

An integrated guide for homeowners, pest control operators, and public health officials for the prevention of tick-associated disease

Revised Edition

Prepared by

Kirby C. Stafford III, Ph.D. Vice Director, Chief Entomologist Connecticut Agricultural Experiment Station, New Haven

Support for printing this revised edition provided by The Connecticut Agricultural Experiment Station The Connecticut General Assembly

Bulletin No. 1010

Bite Prevention

DURANON

REPE

Clothin & Gea

EPELS & KI

IVE FOR 2

Tick

Checks

Host-targeted Tick Control

White-footed Mice Eastern Chipmunk

Exclusion (1991-1992)
Reduction (1992-2002)
Treatment (1997-2004)

Lyme Disease in northeast primarily a residential risk

Estimated 75% picked up outdoors at home as follows*: Play 47% Yard Work 18% Gardening 12% Neighborhood 4%

2% nymphs on the lawn and 82% are within 3 m of the lawn edge with woods, stone walls, etc.

*Data: Stamford Health Department

Photograph: Kirby Stafford

Area-Wide Application of Acaricides

Potential Entomopathogenic Fungi for Tick Control

- Fungus Beauveria bassiana
- Fungus Metarhizium anisopliae

Wide host range.Produce condia (asexual spores)Conidia adhere to cuticle, germinate,penetrate and produce hyphae andtoxins.

M. anisopliae on female I. scapularis (Photo: Stafford)

Applications with Commerical Formulations of the Fungus *Beauveria bassiana* and *Metarhizium anisopliae Strain 52*

Naturalis T&O (*B. bassiana*) BotaniGard ES (*B. bassiana*) Pyrethroid bifenthrin (Talstar) Tick-Ex (*M. anisopliae*) (70%) Tick-Ex (*M. anisopliae*) (70%) Tick-Ex (*M. anisopliae*) (48%)

*0% reduction in second trial, 71% nymphs one plot

Averag	Average % reduction		
1999	2000	2002	
73.7	38.0		
74.5	50.4		
85.0	85.4	(1) 	
-		85.0	
- -		81.6	
		17.0 *	

Stafford, K.C. unpublished data.

Press Release October 2, 2006

Novozymes Expands Product Portfolio with Efficacious Biological Insecticide for Deer Ticks, Lyme Disease

- Novozymes Biologicals Inc. acquired Connecticut-based Earth BioSciences, Inc.
- Novozymes incorporate EBS into ROOTS® Plant Care Group.
- Includes *Metarhizium anisopliae*-based microbial bioinsecticides, which will strengthen Novozymes' position innatural pest technologies.
- Company will make additional investments to bring these new technologies to market and begin production.

For Control of Ticks and Grubs

and an	%w/w
Active Ingredient Metarhizium anisopliae Strain F52*	11.0%
Other Ingredients	
TOTAL	

First Aid

If Swallowed:	Call a physician or Poison Control Center. Drink 1 or 2 glasses of water and induce vomiting by touching back of throat with
	finger, or, if available, by administering syrup of ipecar. If person is unconscious, do not give anything by mouth and do not
	induce vamiling.
If on Skin:	Wash with plenety of soep and water. Get medical attention.
If Inhaled:	Remove victim to fresh air. Hnot breathing, give artificial respiration, preferable mouth-to-mouth. Get medical attention
Hits Houses	Flock must with abasis of matter Call a shorted as it instants are specified.

KEEP OUT OF REACH OF CHILDREN CAUTION

See back panel for additional Precautionary Statements and complete Directions for Use

NET CONTENTS 1 GAL (3.785 L)

Novozymes Biologicals, Inc. 5400 Corporate Circle + Salem, VA 24153 + www.novozymes.com/

PA Reg. No. 70127-10 EPA Est. No. 070127-VA-0

- *Manisopliae* Strain52 • Save for non-targets honey bees green lacewings lady beetles parasitic Hymenoptera
 - earthworms
- Company Plans: Launch 2009
 - CAES Anuja Bharadwaj Kirby Stafford

Made in USA

Enviration dat

Mortality nymphal and adult *I. scapularis* walking on *Metarhizium anisopliae EC* treated surface, 30 minute exposure (2 rates shown) (Bharadwaj & Stafford) Rate Application cfu/cm²

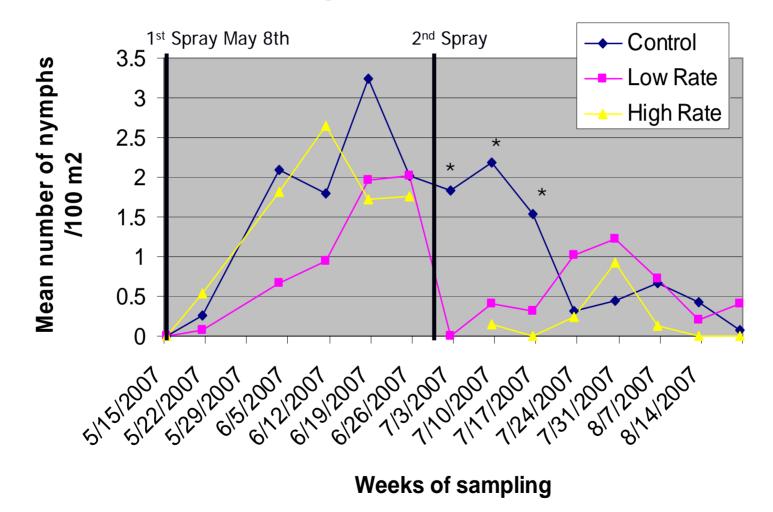
1

2

3

4

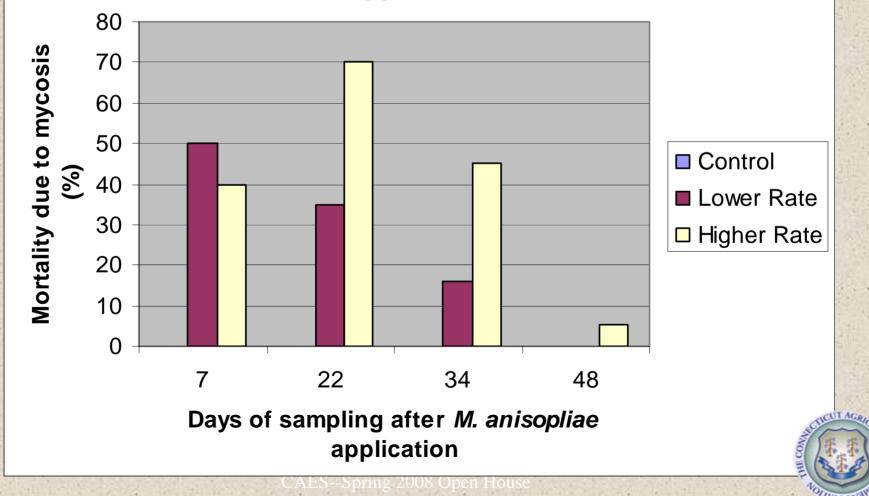
Stage (fl oz/1000 ft²)


N 2.6×10^5 (1.1) 100.0 100.0

A 2.6 x 10⁶ (11.0) 45.5* 90.9 100 100

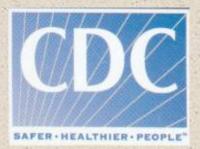
*Note: exposure at 2.6 x 10⁵ resulted in 0% mortality for adults

Mean number of nymphs/100 m2 from control, low and high rate treated sites in 2007, May through mid August at TAHD, CT

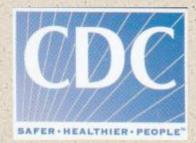


Percent Control with M. anisopliae, 2007

	1 st Application	2 nd Application	
	May 8-9	June 30, July 2	
	(8 May-June 28)	(June 29-Aug 20)	
	7 weeks	8 weeks	
Low Rate	39.8	36.5	
11 sites			
High Rate	9.9	77.8	
9 sites			



Percent mortality due to mycosis in yellow mealworms at 30 days post collection of leaf litter from Torrington home sites following 1st spray application



Current and Future Tick Control Research

- Current Options Landscape practices Chemical insecticides (environmental concerns for some) Host-targeted acaricides (little implementation, cost) Deer management (suitable some areas)
- Anti-tick vaccines to antigens in tick saliva (basic research)
- Oral Lyme disease vaccines via bait to reservoir hosts (rodent targeted vaccine)
- Biological & natural tick control Entomopathogenic fungi Essential oils from Alaska yellow cedar

RFP Lyme disease Research

RFA-CK- 08-001	National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED)	Announcement 10/26/2007	Proposal Due 12/10/2007	Field Trials to Evaluate Efficacy of Natural Products for the Control of the Tick Vectors of Lyme Disease Spirochetes Awarded CAES Start 4/1/2008
RFA-CK- 08-002	National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED)	Announcement 10/26/2007	Proposal Due 12/10/2007	Evaluation of Reservoir- Targeted Vaccine Formulations to Prevent Enzootic Transmission of <i>Borrelia burgdorferi</i> (Lyme Borreliosis)

Essential Oil Compounds from Alaska Yellow Cedar

- Nootkatone Alaska yellow cedar most effective
- Eremophilane sesquiterpene, $LC_{50} = 0.0029\%$
- Nootkatone extract grapefruit also effective
- $LC_{50} = 0.0061\%$ (also good repellent activity)
- Carvacrol, monoterpene, $LC_{50} = 0.0068\%$
- Nootkatone food grade flavor additive and essential oils cedar used in soap industry

Panella et al. 2005. JME 42:353-358_{ng} 2008 Open House

Tick Management Handbook

An integrated guide for homeowners, pest control operators, and public health officials for the prevention of tick-associated disease

Revised Edition

Prepared by:

Kirby C. Stafford III, Ph.D. Vice Director, Chief Entomologist Connecticut Agricultural Experiment Station, New Haven

PDF version available at www.ct.gov/caes

Stephen Dunn photo

Support for printing this revised edition provided by The Connecticut Agricultural Experiment Station The Connecticut General Assembly

Bulletin No. 1010

CAES The Connecticut Agricultural Experiment Station

