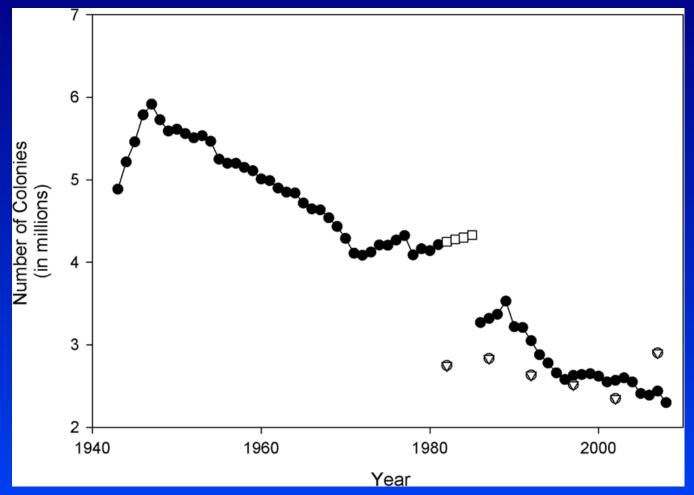
# The Role of Pesticides in Honeybee Decline



Brian Eitzer

Department of Analytical Chemistry


The Connecticut Agricultural Experiment Station

#### **Economic Value of Pollinators**

| Crop Category    | Worldwide Value<br>(\$ Billions) | Pollinator Value<br>Percentage |
|------------------|----------------------------------|--------------------------------|
| Nuts             | 20                               | 31                             |
| Fruits           | 307                              | 23                             |
| Edible Oil Crops | 336                              | 16                             |
| Vegetables       | 585                              | 12                             |
| Stimulant Crops  | 27                               | 39                             |

Source: Gallai et al. in Ecological Economics (2009)

# The Number of Honey Producing Colonies is Decreasing



Source: vanEngelsdorp and Meixner in Journal of Invertabrtate Pathology (2010)

# What are Possible Causes of Decline in Honey Bees?

- Migratory Stress
- Poor Nutrition
- New Diseases
- Varroa Mites
- Colony Collapse Disorder
- Pesticides

#### Pesticide Questions

- What is the toxicology of pesticide exposure?
  - Acute vs. Chronic (sub-lethal) Effects
  - Synergistic Effects
- What pesticides are honey bees exposed to?
- How does the exposure occur?
- How much of the various pesticides are they exposed to?
- How does the exposure change with time and location?
- Can pesticide exposure be correlated with hive health?

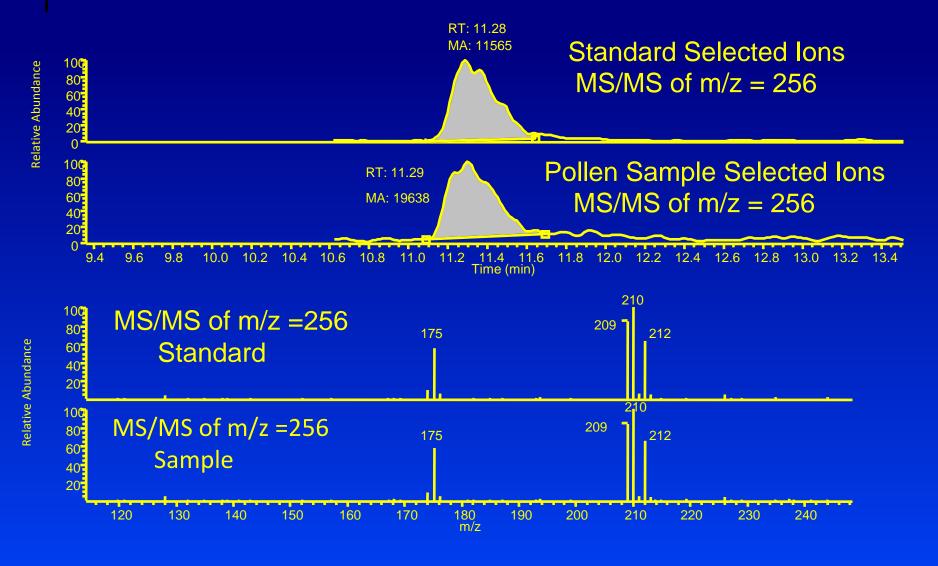
# Analytical Procedures for Pesticide Analysis

## Extract with a Modifed QuEChERS Procedure

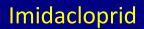
- 5 g of pollen/bees plus:
  - 6 g magnesium sulfate
  - 1.5 g sodium acetate
  - 15 mL water
  - 15 ml acetonitrile
  - C-13 Alachor and D-4 Imidacloprod I.S.
- Shake / Vortex
- Centrifuge

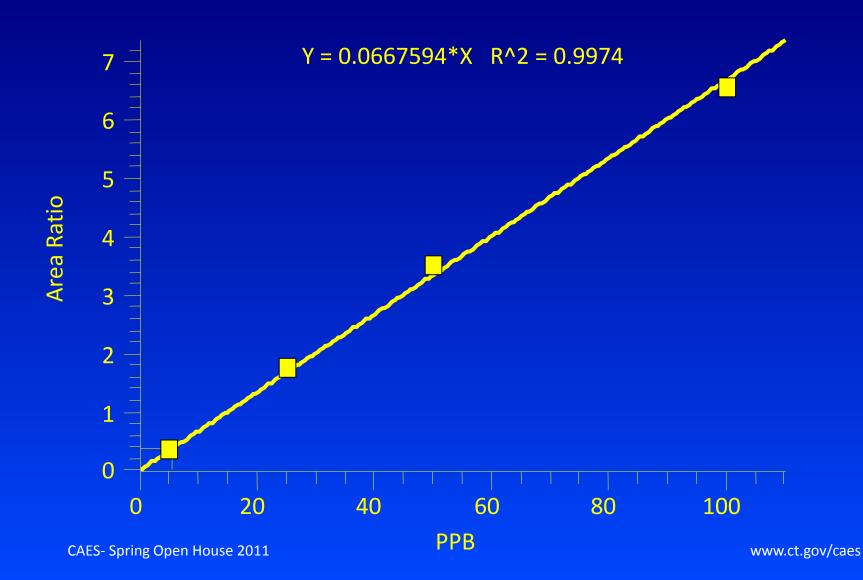





#### Extraction (cont.)

- Take 10 mL aliquot
- Combine with
  - 1.5 g magnesium sulfate
  - 0.5 g PSA
  - 0.5 g C-18 silica
  - 2 mL toluene
- Shake
- Centrifuge
- Concentrate 6 mL to 1 mL with nitrogen for LC/MS analysis




#### Detection of Imidacloprid at 10 PPB in Sample



#### Internal Standard Response Curve (no matrix present)





#### **CAES Studies**

- Suspected Honey Bee Poisoning
- Measurement of Pesticide Residues in Squash Nectar and Pollen after Agricultural Application
- Monitoring of Pollen Collected by Foraging Honey Bees
  - Coordinated Agricultural Program: Stationary Apiary Project
  - Connecticut Study

## Study of an Acute Poisoning

- A honey bee researcher at Purdue University noted sick and dying bees in apiaries near recently planted cornfields during dry and windy spring.
- Young bees dying not foragers.
- As most of the corn seed in the area is treated with a pesticide toxic to bees a poisoning incident was suspected.
- Samples of honey bees and honey bee collected pollen analyzed.

#### Pesticides Found in Parts Per Billion

|              | Pollen | Bee  | Bee   | Bee  | Bee  | Bee  | Bee  |
|--------------|--------|------|-------|------|------|------|------|
| Pesticide    | 84     | 1-P  | 104-P | 84-P | 91-P | 95-P | 71-C |
| Clothianidin | 21     | 4.4  | 7.6   | 5.0  | 3.4  | 3.5  | n.d. |
| Thiamethoxam | 20     | n.d. | n.d.  | n.d. | n.d. | n.d. | n.d. |
| Imidacloprid | 2.8    | n.d. | n.d.  | n.d. | n.d. | n.d. | n.d. |
| Atrazine     | 310    | 11   | 11    | 13   | 24   | 12   | 2.8  |

#### LD 50's for Honey Bees

- Clothianadin .04 ug/bee
- Thiamethoxam .03 ug/bee
- Imidacloprid .018 ug/bee
- Atraazine > 1000ug/bee

## Follow Up

- Collect pollen from hives surrounding fields being planted with either treated or untreated seed.
- Honey bee pollen from hives around field with treated seed had 0 88 PPB clothianadin while those around the untreated field had only 0 -13 PPB.
- Study will continue this spring with funding from the North American Pollinator Protection Campaign.

## Measuring Neonicotinoid Residues in Squash Nectar and Pollen

When we apply systemic insecticides to soil or through irrigation at labeled rates, as a farmer would, how much do we find in the nectar and pollen of the plant?



Squash bees on pumpkin flower-Liz Andrews, UMass

#### What we did:

- Grew squash (summer squash in 2009, summer squash and winter squash in 2010) according to standard farming methods
- Applied neonicotinoid insecticides imidacloprid (Admire Pro®) and thiamethoxam (Platinum®)
- Two methods of application:
  - To seed hole in black plastic just before seeding
  - In drip irrigation to transplants 4-5 days after transplant
- Rates:
  - Admire Pro®: 10 fl. oz. per acre (labeled range = 7 -10.5)
  - Platinum®: 8 fl. oz. per acre (labeled range = 5-11)

# Collecting pollen and nectar





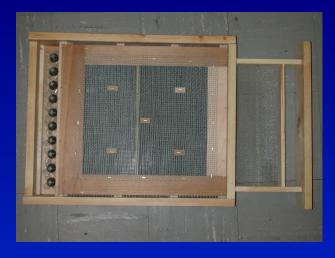


#### What we found:

| Insecticide  | Average<br>Concentration in<br>Pollen (Overall) | Average<br>Concentration in<br>Nectar (Overall) |
|--------------|-------------------------------------------------|-------------------------------------------------|
| Imidacloprid | 14 ppb ± 8                                      | 10 ppb ± 3                                      |
| Thiamethoxam | 12 ppb ± 9                                      | 11 ppb ± 6                                      |
| Control      | None                                            | None                                            |

# Use Pollen Collected by Honey Bees to Evaluate Exposure to Pesticides




Photo by: Kathy Keatley Garvey, UC Davis

## Connecticut Study Locations of Hives 2007 - 2010

- Our offices in New Haven on the edge of the city, 2007
   2010
- 2. Our experimental farm surrounded mostly by suburbs, 2007 2010
- 3. An orchard on the edge of a suburb with pollen collected only during the blooming season of apples and blueberries, 2007 and 2009
- 4. Another suburban site on the edge of a large agricultural area growing vegetable crops, 2007 2010
- 5. Mixed agricultural and industrial area, 2009 2010

### Bee Pollen Collection







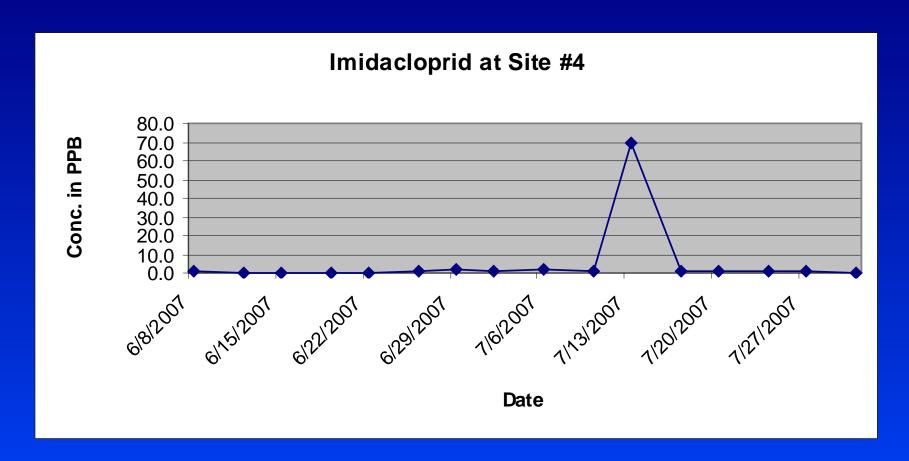
## Overall Data by Year

| Year              | 2007 | 2008 | 2009 | 2010 |
|-------------------|------|------|------|------|
| Fungicides        | 11   | 10   | 14   | 12   |
| Herbicides        | 10   | 10   | 10   | 8    |
| Insecticides      | 15   | 9    | 17   | 18   |
| Avg. # per sample | 4.3  | 5.4  | 5.8  | 4.0  |

## Frequently Detected Pesticides

| Pesticide         | 2007<br>n = 101 | 2008<br>n = 44 | 2009<br>n = 59 | 2010<br>n = 62 |  |
|-------------------|-----------------|----------------|----------------|----------------|--|
| Coumaphos (A, I)  | 96              | 44             | 41             | 36             |  |
| Carbaryl (I)      | 66              | 16             | 9              | 38             |  |
| Phosmet (I)       | 38              | 15             | 30             | 20             |  |
| Atrazine (H)      | 34              | 24             | 31             | 21             |  |
| Imidacloprid (I)  | 30              | 23             | 8              | 3              |  |
| Dithiopyr (H)     | 13              | 34             | 35             | 7              |  |
| Pendamethalin (H) | 11              | 24             | 30             | 19             |  |
| Carbendazim (F)   | 18              | 20             | 24             | 22             |  |

## Detection Frequency Depends on Hive Location


- In 2009 the orchard location averaged 12.0 residues per sample; the average of the other four sites was 5.4 residues per sample.
- In 2009 all 4 samples from the orchard location had different and 3 of 4 had myclobutanil; neither of these pesticides were seen at any of the four other hive locations that year.

# High Frequency is not the same as High Concentration (2009 Data)

| Pesticide           | # Detec.<br>( n = 59) | Max. Conc.<br>PPB | Avg. Conc. PPB | Median Conc. PPB |
|---------------------|-----------------------|-------------------|----------------|------------------|
| Atrazine (H)        | 32                    | 15                | 1.5            | 1.0              |
| Phosmet (I)         | 30                    | 540               | 44             | 7                |
| Imidacloprid (I)    | 8                     | 19                | 5.7            | 4.7              |
| Azoxystrobin (F)    | 8                     | 55                | 18.3           | 8.8              |
| Myclobutanil (F)    | 3                     | 4190              | 1490           | 270              |
| Trifloxystrobin (F) | 5                     | 160               | 42             | 22               |

A = acaricide, F = fungicide, H = herbicide, I = insecticide

## Pesticide Concentrations Can Change Rapidly



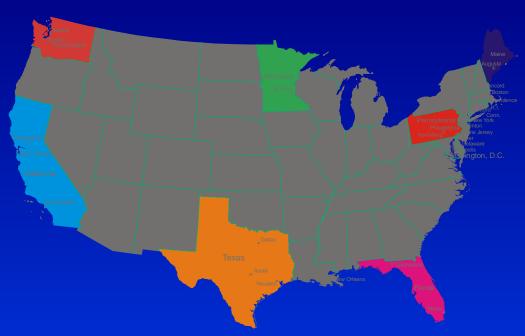
### **Hive Location**



## Sorted Pollen – 7/13/2007



#### Selected Pesticides in Sorted Pollen


| Pollen Color    | Pollen Type(s) | lmid | Carb | Carben | Meth | Atr | Phos |
|-----------------|----------------|------|------|--------|------|-----|------|
| Dark Brown      | white clover   | 611  | n.d. | n.d.   | n.d. | 3   | 34   |
| Reddish-Brown   | alfalfa        | 199  | n.d. | 5.8    | n.d. | 2.1 | 6.3  |
| Yellowish-Brown | black locust   | 114  | n.d. | 6.4    | n.d. | 3.8 | 6.9  |
| Orange          | ragweed        | 21   | 15   | 8.7    | n.d. | 38  | 18   |
| Orange-Yellow   |                | 6.6  | n.d. | 5.5    | 8.4  | 13  | 15   |
| Medium Brown    |                | 3.9  | 182  | n.d.   | n.d. | 16  | 55   |
| Greenish-Yellow |                | 3.1  | 23   | n.d.   | 17   | 14  | 10   |
| Round           |                | 2.4  | n.d. | n.d.   | 17   | 8.6 | 3.1  |
| Pure-Yellow     |                | 1.7  | 13   | 2.4    | n.d. | 6.5 | 4.1  |

#### **CAP Stationary Apiaries 7 State Project**

2009 (April 09): FL, ME, MN, PA, TX, WA

2010 (April 10): CA, ME

#### Objective:



Identify causal factors or interactive effects of these factors (pests, pathogens and pesticides) in causing losses in stationary honey bee colonies across the United States.

#### **Standardized Data Collection**

- I. weather conditions
- II. landscape composition
- III. pesticide contamination (pollen, wax)
- IV. package source and queen genetic makeup
- V. colony productivity and survival
- > frames of adult bees and sealed brood
- egg laying and brood pattern quality
- queen status (presence / absence)
- supercedure
- VI. infestation
  - 1. Varroa mites mites per 280 adult bees
  - 2. SHB adults and larvae
  - 3. Tracheal mite dissections
  - 4. *Nosema* (spp. ID and spore counts)
  - 5. chalk brood symptoms



MN, August 2009

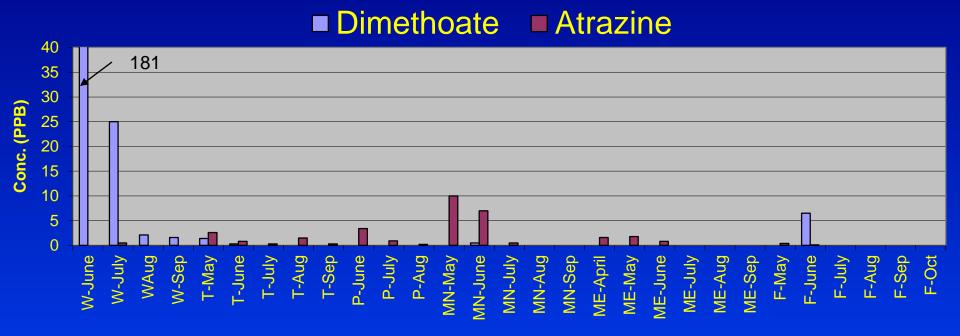
- 6. bacterial pathogens
- 7. viral symptoms and molecular markers:

DWV, IAPV, SBV, BQCV

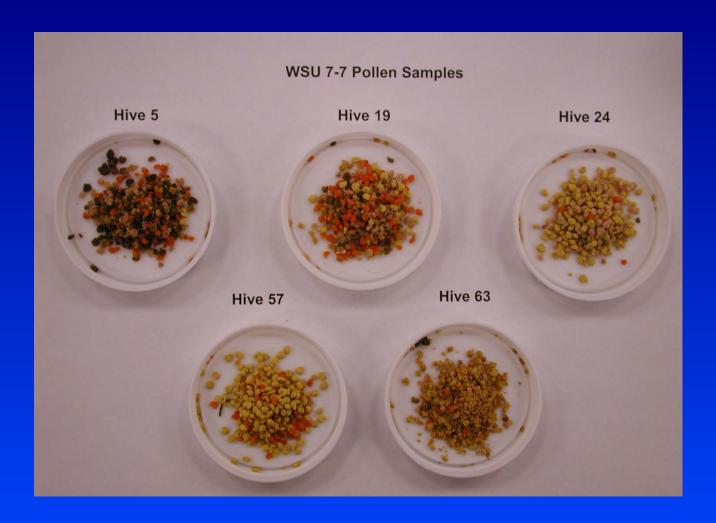
## CAP Stationary Apiaries, 2009

MN, August 2009

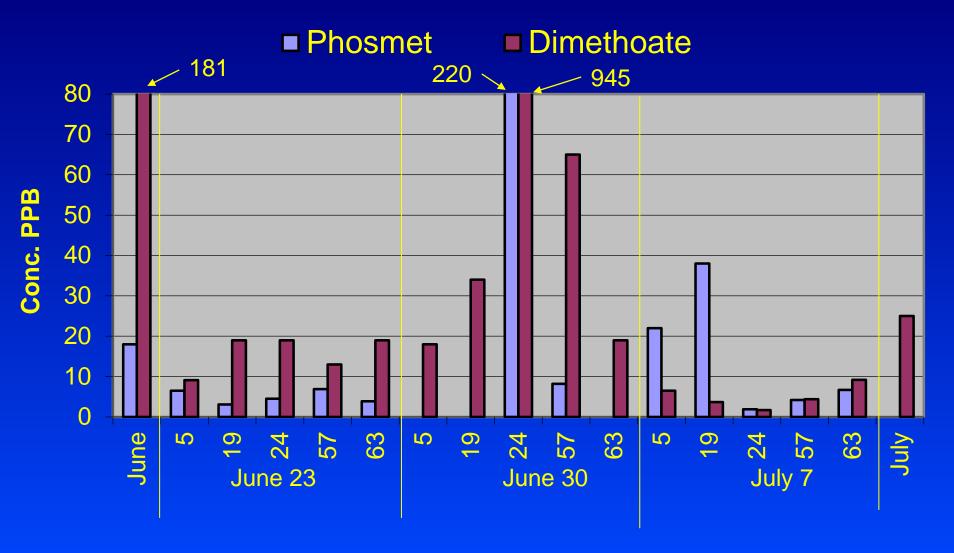



TX, November 2009

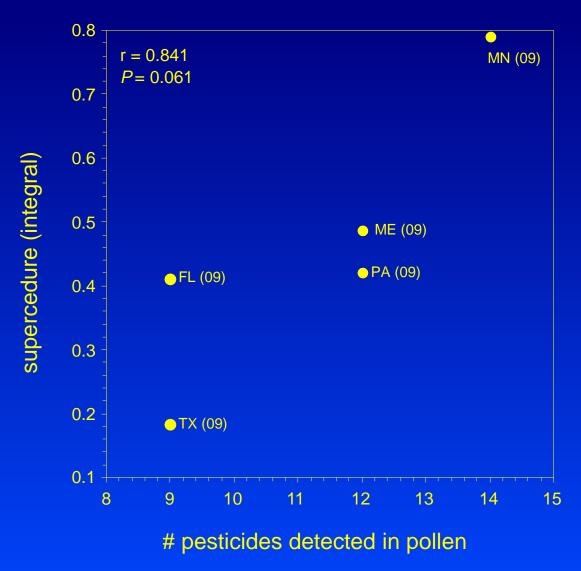
www.ct.gov/caes


**Taking Samples** 




# Pesticides Vary with Sample Location and Time (2009 Data)




# Pollen Samples Differ by Hive Even at Same Location and Date



#### Compositing vs. Individual Samples



#### Number of pesticides in pollen loads (2009)



#### **Conclusions**

- Methods used can detect low concentrations of pesticides in pollen
- Pollen samples are heterogeneous, causing an increase in variability of data
- Honey bees are exposed to pesticides while foraging for pollen
- Pesticide concentrations vary with hive, time, and location
- Pesticides are a contributing factor to the problems faced by honey bees

## Acknowledgements

- At CAES
  - Kimberly Stoner
  - Tracey Zarrillo
  - Morgan Lowry
  - Joesph Hawthorne
- At Purdue University
  - Christian Krupke
  - Greg Hunt

- The CAP Stationary Apiary Researchers
  - Frank Drummond
  - Marla Spivak
  - Jamie Ellis
  - Nancy Ostiguy
  - Katherine Aronstein
  - Kirk Visscher
  - Steve Sheppard

## We would like to thank the Connecticut Department of Health for purchasing the LTQ-MS

# This work supported in part by CSREES Hatch Grants # CONH00384 and CONH00385 and *Project Apis M*

Managed Pollinator CAP Coordinated Agricultural Project

A National Research and Extension Initiative to Reverse Pollinator Decline



