Honey Bees and Pesticides: Recent Research on Toxicity and Routes of Exposure

Brian Eitzer Department of Analytical Chemistry The Connecticut Agricultural Experiment Station

CAES- Plant Science Day 2012

Talk Outline

- Background Why are we interested in how honey bees are affected by pesticides
- A sampling of recent research on honey bee pesticide toxicology
- Some of our recent research on honey bee pesticide exposure

Estimated Value of Honey Bees to US Agriculture (from Calderone 2012)

CAES- Plant Science Day 2012

The Number of Honey Producing Colonies is Decreasing

Source: vanEngelsdorp and Meixner in Journal of Invertebrate Pathology (2010)

CAES- Plant Science Day 2012

What are Possible Causes of Decline in Honey Bees?

- Migratory Stress
- Poor Nutrition
- New Diseases
- Varroa Mites
- Colony Collapse Disorder
- Pesticides

Questions About Pesticides and Bees

- What is the toxicology of pesticide exposure?
 - Acute vs. Chronic (sub-lethal) Effects
 - Synergistic Effects
- What pesticides are honey bees exposed to?
- How does the exposure occur?
- How much of the various pesticides are they exposed to?
- How does the exposure change with time and location?
- Can pesticide exposure be correlated with hive health?

Recent Research on Toxicity

- Two general areas of recent research
 - 1) Sublethal toxicity of Neonicotinoid Pesticides
 - A newer class of systemic pesticides residues found throughout the plant – including in the pollen and nectar
 - Pesticide class includes: imidacloprid, thiamethoxam, clothianadin, and dinetofuran
 - 2) Synergistic effects
 - Does exposure to one pesticide affect the toxicity of a second pesticide or pathogen

Study #1 – Eiri and Nieh in The Journal of Experimental Biology (2012)

- Feed imidacloprid to bees in sucrose at 0.21 or
 2.16 ng per bee
- Proboscis extension response: Nectar foraging bees that were exposed needed a higher sugar concentration to respond
- Waggle dancing: Exposed made fewer waggle dances

Study #2 Henry et al. in Science (2012)

- Bees exposed to thiamethoxam (1.34 ng per bee), monitored homing success
- Exposed bees returned less often

CAES- Plant Science Day 2012

Study # 3- Pettis et al. 2012 in Naturwissenschaften

- For 10 weeks feed bees protein patties spiked with either 5 or 20 ppb imidacloprid (sub-lethal level)
- After 5 weeks expose the colonies to Nosema (a gut parasite)
- Exposed bees had more spores

Imidacloprid exposure in colonies from which emerged bees were derived

Study #4 Wu et al. in PLoS ONE 2011

- Compare brood reared on comb with high levels of pesticides with brood reared on comb that tested negative for pesticides
- Brood from comb with pesticides emerged later and had shorter lifetimes

• Lifetime in Days

CAES- Plant Science Day 2012

Exposure Studies

Measure Pesticides in Pollen Collected by Foraging Honey Bees

Bee Collecting Pollen

Tray of Pollen from Hive

Two Similar Studies – Similar Results

- Connecticut Pollen
 - Urban, suburban and rural hives
 - Pollen collected twice weekly
 - Pollen analyzed for pesticides by CAES multi-residue LC/MS method

- CAP Pollen (National Study)
 - Seven apiaries: Maine,
 Pennsylvania, California,
 Florida, Minnesota,
 Texas, Washington
 - Pollen collected either weekly or biweekly
 - Pollen analyzed for pesticides by CAES multi-residue LC/MS method

Importance of Hive Location

CAES- Plant Science Day 2012

Variable Pollen Load Brought to Hive on a Single Day Each Type with a Different Pesticide Load

CAES- Plant Science Day 2012

Pesticide Concentrations Vary with Time and Location

Example From CAP Study

Dimethoate Atrazine

Pesticide Concentrations Vary with Time and Location

- Example From Connecticut Study
 - In 2009 an orchard location had 12.0 residues per sample; the average of other sites was 5.4 residues per sample
 - All 4 samples from that location had difenconazole and 3 of 4 had myclobutanil; neither of these seen at any of the other hives that year

Pollen Samples Differ by Hive Even at Same Location and Date

Exposure Route Studies

Measuring Neonicotinoid Residues in Squash Nectar and Pollen

Squash bees on pumpkin flower - Liz Andrews, UMass

What we did:

- Grew squash using standard farming methods
- Applied neonicotinoid insecticides to soil at standard rates
- Collected pollen and nectar from flowers
- Measured pesticides in pollen and nectar

Collecting pollen and nectar

What we found:

Insecticide	Average Concentration in Pollen (Overall)	Average Concentration in Nectar (Overall)
Imidacloprid	14 ppb ± 8	10 ppb ± 3
Thiamethoxam	12 ppb ± 9	11 ppb ± 6
Control	None	None

Study of a Different Possible Exposure Route

Pesticide Treated Corn Seed - Enough Pesticide on Each Seed to Kill Thousands of Honey Bees

Photo courtesy of Purdue Entomology Department

Talc Used to Keep Seed Flowing in Planter

Photo courtesy of Purdue Entomology Department

CAES- Plant Science Day 2012

Planting Seed

Photo courtesy of Purdue Entomology Department

CAES- Plant Science Day 2012

Talc Waste from Planter Very High Pesticide Concentrations Measured

Edge of the Cornfield

Photo courtesy of Purdue Entomology Department

Bee Collecting Dandelion Pollen Low Concentrations of Pesticide Measured in Dandelions Near Corn Field

Photo courtesy of Purdue Entomology Department

Currently Looking at Deposition of Pesticide Contaminated Dust on Dosimeter Slides Placed Around the Field During Planting

Summary

- Pesticides can affect honey bees
 - Both lethal and sublethal effects have been observed
- Honey bees can be exposed to pesticides in many different ways
 - Take care when using pesticides to try to minimize unintentional exposure

Acknowledgements

At CAES

- Kimberly Stoner
- Tracey Zarrillo
- Morgan Lowry
- Joseph Hawthorne
- At Purdue University
 - Christian Krupke
 - Greg Hunt

- The CAP Stationary Apiary Researchers
 - Frank Drummond
 - Marla Spivak
 - Jamie Ellis
 - Nancy Ostiguy
 - Katherine Aronstein
 - Kirk Visscher
 - Steve Sheppard

This work supported in part by CSREES Hatch Grants # CONH00384 and CONH00385, Project Apis M and

Managed Pollinator CAP Coordinated Agricultural Project

A National Research and Extension Initiative to Reverse Pollinator Decline

Brian Eitzer Department of Analytical Chemistry 123 Huntington Street P. O. Box 1106 New Haven, CT 06504

> Phone: 203.974.8453 Email: <u>Brian.Eitzer@ct.gov</u> Website: <u>www.ct.gov/caes</u>

