Are Plant Pathogens Causing Salt Marsh Dieback?

Wade H. Elmer and James A. LaMondia The Connecticut Agricultural Experiment Station

Did you know that salt marshes:

• Are the most productive ecosystems in New England.

• Most fish and shell fish spend part of their life cycle protected in a salt marsh.

Did you know that salt marshes:

• Are home to numerous bird species.

• Filter toxins and absorb tons of nitrogen from inland rivers

• Protect coastline against storm surges and wave energy

Salt marsh dieback was first noticed on Cape Cod and along Long Island Sound in 2002.

The cause was unknown!!

Hammonasett State Park 2006

Low Marsh dieback Cape Cod 2006

It is a sudden loss of salt marsh grasses mainly *Spartina alterniflora, S. patens,* and *Distichilis spicata*.

Areas that are affected do not recover even after several

years.

Salt marsh dieback is <u>not</u> caused by wrack accumulation

Salt marsh dieback is <u>not</u> caused by goose feeding, submergence, or subsidence.

Does the dieback occur everywhere along Connecticut's Long Island Sound?

Does salt marsh dieback occur any place other than Long Island Sound and Cape Cod?

In Louisiana A black leaf spot and internal stem rot was found on dying *Spartina*.

Fusarium spp were isolated.

Fusarium

An asexual fungus Some species have a sexual stage, but most do not

Microconidia

Chlamydospore

Macroconidia

Fusarium Diseases

In Connecticut, many leaf lesions were observed in dieback areas.

Leaf pieces

Fusarium colonies

Fusarium was found more often in dieback areas than healthy marshes

Healthy marsh

In Connecticut & Massachusetts (82 isolates)

2 4 Morphospecies

6

1

Spartina propagation

Pathogenicity tests

Pathogenicity tests

One Month later

Reisolation on selective mediaControlsTest

Reaction Types

Moderate

Lesion length (mm)

In Connecticut & Massachusetts

1

6

2 4 Morphospecies

Does it interact with fusarium?

Root Knot Nematode

Are plant pathogens <u>causing</u> salt marsh dieback?

No! However, they may be impacting the ability of *Spartina alterniflora* to recolonize dieback sites.

Experiments in progress

Root inoculations

Experiments in progress

Developing a seedling assay.

Experiments in progress

Set up field plots at Hammonasett State Park

Acknowledgements

Mr. Ron Rozsa, CT DEP **Dr. Jim LaMondia, CAES Dr. Robert Marra, CAES Ms. Joan Bravo, CAES Mr. Peter Thiel, CAES** Ms. Christina Connelly, CAES

For more information you can contact

Dr. Wade H. Elmer The Connecticut Agricultural Experiment Station

(203) 974 8503 phone Wade.Elmer@po.state.ct.us