Pollination reservoirs support wild bees and wild bees support growers:

Examples from Maine wild blueberry

Eric Venturini

Assistant Research Scientist, University of Maine Owner of Grow Wild Bees consulting

Photo credit: Audrey Maddox

Part I: Playing the habitat manager

Pollination Reservoir –

An area of pollen and nectar rich bee forage plants intended to support or boost populations of wild bees for increased pollination services

Exponential population growth

Part II: Does it work?

Can PRs be effective tools to increase wild bee abundance and diversity?

Photo credit: Dr. Richard Pywell, Copyright, Centre for Ecology & Hydrology

Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture

LEITHEN K. M'GONIGLE, 1,2,3 LAUREN C. PONISIO,¹ KERRY CUTLER,¹ AND CLAIRE KREMEN¹

Ecological Applications Volume 25, Issue 6, pages 1557-1565, 1 SEP 2015 DOI: 10.1890/14-1863.1

http://onlinelibrary.wiley.com/doi/10.1890/14-1863.1/full#i1051-0761-25-6-1557-f04

MOLECULAR ECOLOGY

Molecular Ecology (2015) 24, 1668-1680

doi: 10.1111/mec.13144

Targeted agri-environment schemes significantly improve the population size of common farmland bumblebee species

THOMAS J. WOOD,* JOHN M. HOLLAND,† WILLIAM O. H. HUGHES* and DAVE GOULSON* *School of Life Sciences, The University of Sussex, Falmer, East Sussex BN1 9QG, UK, †The Game and Wildlife Conservation Trust, Burgate Manor, Fordingbridge, Hampshire SP6 1EF, UK

Fig. 4 Differences in the nesting density of four bumblebee species between Higher Level Stewardship farms (white bars) and Entry Level Stewardship farms (grey bars). Errors bars are ± 1 standard error of the mean. Different letters above columns indicate farm types which differed significantly in a sampling round. *P < 0.05; **P < 0.01.

JOURNAL ARTICLE

Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields

Lora A. Morandin and Claire Kremen Ecological Applications Vol. 23, No. 4 (June 2013), pp. 829-839

ut increased their

o the crop field

Walmate Ranbe Reference to the second straight rease wild be abundance and diversity? Absolutely Yes!!

Photo credit: Dr. Richard Pywell, Copyright, Centre for Ecology & Hydrology

Ecology and Evolution

Experimental evidence that wildflower strips increase pollinator visits to crops

Hannah Feltham¹, Kirsty Park¹, Jeroen Minderman¹ & Dave Goulson²

¹School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK ²School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK

Figure 1. The abundance of pollinators on strawberry crops with and without a flower strip treatment. The box plots depict the median and interquartile range, with circles representing outliers. Whiskers represent the highest and lowest values excluding outliers.

Major Findings:

 Flower strips increased bumble bee abundance in strawberry polytunnels by 25%

Open Access

 If 5% increase in top quality strawberries, growers gross \$470 more per tunnel per year J Insect Conserv DOI 10.1007/s10841-015-9768-3

ORIGINAL PAPER

The management of bee communities by intercropping with flowering basil (*Ocimum basilicum*) enhances pollination and yield of bell pepper (*Capsicum annuum*)

Ana Lúcia C. Pereira¹ · Tainá C. Taques¹ · Janete O. S. Valim¹ · Ana P. Madureira¹ · Wellington G. Campos¹

Table 1 Characterization of fruits and seeds of bell peppers (Captions annuum) produced in intercropping with basil (Ocimum basilicum) and in chagle-cropping systems

Average \pm SD of the numbers of bee species (**A**) and ind sampled for 30 min in flowers of single-cropped bell pe flowers of bell pepper intercropped with basil (*Ocimum* inflorescences of basil mixed in the bell pepper field (IB significant differences (P < 0.0001) by the Tukey–Kran

Fig. 1

Characteristics of fruits and seeds	Cropping systems ^a	F ₂₇₋₂	р	
	Intercropped pepper	Single pepper		
Fruit length (mm)	84.1 ± 4.3	74.9 ± 5.4	25.8	<0.0001
Basal circumference (mm)	22.2 ± 0.9	18.4 ± 0.8	186.9	< 0.0001
Apical circumference (mm)	19.6 ± 1.2	16.8 ± 1.3	63.0	< 0.0001
Pulp weight (g)	128.2 ± 21.1	83.1 ± 12.3	61.0	< 0.0001
Number of seeds per fruit	311.5 ± 31.5	269.6 ± 41.6	15.2	< 0.001
Weight of seeds per fruit (g)	4.3 ± 0.5	3.8 ± 0.7	10.0	< 0.01
Fruits per plant (≥60 mm)	16.2 ± 1.4	16.7 ± 1.9	0.7	=0.42
Fruits per plant (≤60 mm)	3.7 ± 0.7	3.5 ± 0.8	0.3	=0.61

^a Average \pm SD. Comparisons using linear mixed models, with 25 df residual

Journal of Applied Ecology 2014

doi: 10.1111/1365-2664.12257

Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop

Brett R. Blaauw* and Rufus Isaacs

4 B. R. Blaauw & R. Isaacs

Fig. 1. Mean \pm SE abundance of (a) honeybees, (b) wild bees and (c) hoverflies observed visiting blueberry flowers during 15 min observational samples. Asterisks indicate levels of significance (*P < 0.05, **P < 0.01, ***P < 0.001) for difference between control and flower treatments.

cor

Can floral field margins improve pollination and seed production in coriander *Coriandrum sativum* L. (Apiaceae)?

Jelena Barbir, Francisco R. Badenes-Pérez, César Fernández-Quintanilla and José Dorado

Institute of Agricultural Sciences, CSIC, Serrano 115b, 28006 Madrid, Spain

• Floral field margins increased:

Figure 1 Germination rate of coriander seeds produced in the vicinity of monospecific margins, mixed margins and without margins (control). Means with the same letter are not significantly different at $P \le 0.05$ as determined by a Bonferroni post-hoc test.

rmination)

INCREASED CORIANDER PRODUCTION BY 220%!

Can PRs be effective tools to increase wild bee abundance and diversity? **Absolutely Yes!!**

What can PRs do for your crop? Increase pollination from wild bees, crop quality, and yield!

Photo credit: Dr. Richard Pywell, Copyright, Centre for Ecology & Hydrology

Part III: Examples from Maine

Journal of Economic Entomology, 2017, 1–14 doi: 10.1093/jee/tow285 Research article

OXFORD

Apiculture & Social Insects

Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae)

E. M. Venturini,^{1,2} F. A. Drummond,^{1,3} A. K. Hoshide,⁴ A. C. Dibble,¹ and L. B. Stack^{3,5}

¹School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469 (Eric.Venturini@maine.edu; FDrummond@maine.edu; ADibble2@gmail.com), ²Corresponding author, e-mail: Eric.Venturini@maine.edu, ³University of Maine Cooperative Extension, 495 College Ave., Orono, ME 04469 (Lois.Stack@maine.edu), ⁴School of Economics, University of Maine, 206 Winslow Hall, Orono, ME 04469 (Aaron_Hoshide@umit.maine.edu), and ⁵School of Food and Agriculture, University of Maine, 5722 Deering Hall, Orono, ME 04469

Subject Editor: Robert Danka

Received 22 July 2016; Editorial decision 12 November 2016

Visitation Sampling:

- Visited each site every 2 3 weeks from June to September
- 3 dominant flowers per treatment
- 3, I min., 1 m² observations per flower
- 27, 1 min observations per site visit

Bumblebees

Treatment

Nonparametric Wilcoxon Each Pair Comparisons:

Comparison	P-Value
WF vs. NR	.3123
WF vs. CL	.0606
NR vs. CL	.0304*

Honeybees

Treatment

Nonparametric Wilcoxon Each Pair Comparisons:

Comparison	P-Value
WF vs. NR	1.000
WF vs. CL	.0304*
NR vs. CL	.0304*

Solitary Bees

Treatment

Nonparametric
Wilcoxon Each Pair
Comparisons:

Comparison	P-Value
WF vs. NR	.0304*
WF vs. CL	.0304*
NR vs. CL	.8852

Major Findings:

- Solitary bees utilized the wildflower mix
- Social bees (honeybees and bumblebees) utilized the clover mix

Do bumblebees utilize bee pasture?

What proportion of bumblebee diet is comprised of bee pasture pollen?

Methods:

- 4 tmt sites, 3 ctl sites
- 15 pollen carrying workers collected, 2 times/year/site
- 240 bees/year for 2 years
- Pollen processed using acetolysis, mounted on slides, and identified to taxa groups
- 40x microscopy
- ≥ 100 grains ID'd per sample

MicrobeHunter.com

Do bumblebees utilize bee pasture?

What proportion of bumblebee diet is comprised of bee pasture pollen?

Level	Student' s T-test ¹	Ν	Percent PR pollen	Effect Test (Prob > F)		
Treatment, Early, 2013	А	38	49%	<.0001		
Treatment, Late, 2013	В	46	26%			
Treatment, Late, 2012	В	37	20%			
Treatment, Early, 2012	С	32	5%			
Control, Late, 2013	С	46	5%			
Control, Late, 2012	С	20	5%			
Control, Early, 2013	С	40	0.01%			
Control, Early, 2012	С	37	0.007%			

Image from http://remf.dartmouth.edu/

Do bumblebees utilize bee pasture?

Major finding:

 Small PRs can provide over 1/3 of bumblebee dietary pollen

PRs in Maine lowbush blueberry (Venturini et al. 2017b) Effect on the crop?

Visitation by wild bees to crop, 4 years after planting PR

Percent fruit set in PR fields versus control fields 2, and 4 years after planting PR

Part IV: Taking advantage of wild bees for enhanced crop pollination

Cut-flower production adjacent to pollinator-dependent crops

Image from www.johnnyseeds.com

Grow a succession of flowering cash crops

com

ec.com

Plant flowering cover crops

Image from www.extension.oregonstate.edu

Eliminate or minimize the use of pesticides – especially during crop bloom

Consider the landscape context

Apple orchard

3. Consider the landscape context

Lowbush Blueberry

Part V: Installing a pollination reservoir

Photo: Eric Gallandt

1. Survey the Site

- a. Flowers
- b. Pollinators
- c. Phenology

2. Control Weeds

- a. Kill standing vegetationb. Decrease # of weed seeds in soil
- 3. Site Prep
 - a. pH tests
 - b. Liming
 - c. Finely textured seed bed

4. <u>Select Flower Mix</u>

- a. When do they bloom?
- b. Who do they attract?
- c. Other filters

					Low Blue Blo	bush berry om									
	Common Name	April 1-15	April 16-28	May 1-15	May 16-31	June 1-15	June 16-30	July 1-15	16-31 yint	Aug. 1-15	Aug. 16-31	Sep 1-15	Sep 16-31	Oct. 1-15	Oct. 16-31
Trees	Maple ^{1, 12, 16} Willow ^{6, 7, 12, 16} Shadbush ^{5, 12, 16,} Apple ^{13, 16, 17, 20} Cherry ^{12, 20} Basswood ^{15, 17}														
Crops	Lowbush Blueberry ¹⁶ Blackberry and Raspberry ^{12, 20} Mustards ^{17, 20}														
Bee Pasture	Golden Alexanders ^{11, 19} Perennial Lupine ^{2, 10} Bigleaf Lupine ^{34, 20} Sweet Yellow Clover ^{17, 20} Red Clover ²⁰ Cow Vetch ^{12, 20} Northern Bush Honeysuckle ^{18, 20} Purple Coneflower ^{8, 20} Early Goldenrod ¹² Lance-Leaved Coreopsis ^{6, 20} Bergamot ⁴ Meadowsweet ^{11, 12, 19, 20} Milkweed ^{11, 12, 19, 20} Milkweed ^{11, 12, 19} Plains Coreopsis ²⁰ Lavendar Hyssop ⁸ Showy Goldenrod ^{12, 19} Joe-Pye Weed ¹² Wild Sunflower ²⁰ Canada Goldenrod ^{9, 12, 21}														
	Canada Goldenrod ^{9, 12, 21} New England Aster ^{3, 11, 19}														

4. Select Flower Mix

a. When do they bloom?b. Who do they attract?c. Other filters

5. Plant

- a. Smooth seedbed
- b. Bulk seeds with sand/vermiculite
- c. Compact soil
- d. Water during early establishment

6. Maintenance

- Mow and remove debris first year (unless annual flowers)
- b. Mow in fall, 1/3 per year

Photo: Eric Venturin

vww.nelsonfamilyfarm.con

THANK YOU!!!!

Dr. Frank Drummond, Dr. Aaron Hoshide, Dr. Lois Berg Stack, Dr. Alison Dibble, Sam Droege, Judy Collins, Paul Allen, Dr. Eric Asare, Dr. Anne Averill, Jacob Bailey, Dr. Kalyn Bickerman, Holly Bixby and Tod Cheney, Dr. Brett Blaauw, Haley Boddington, Jeff Brann, Dr. Sara Bushmann, Joe Cannon, Shannon Chapin, Peter Collin, Danner and Dewey Curtis, Billy Desisto, Brianne Du Clos, Dell Emerson, Nathan Frederick, Dr. Eric Gallandt, Dr. Sam Hanes, Bruce Hoskins, Dr. Rufus Isaacs, Steve Javorek, Audrey Maddox, Connor McCormic, Marge McCullough, Dr. Julia McGuire, Chris McManus, Jeff Norment, Andrea Nurse, Nick Peterson, David and Ellen Simmons, Dr. John Skinner, Josh Stubbs, Paul Sweetland, Dr. Corianne Tatariw, Doug VanHorn, Glenn and Marian Venturini, Sarah Watts, Sadie Wight, Diane Wilson, Wesley Woods, Everyone else that I've missed!

> Funding Provided by the USDA, Ecology and Environmental Sciences Program, Applewood Seed Company, Umaine Graduate Student Government, and the School of Biology and Ecology at the University of Maine

Agapostemon virescens - Photo Credit Sam Droege, USGS Bee Inventory and Monitoring Lab

Questions?

Literature Cited

- Barbir, J. F., R. Badenes- Pérez, C. Fernández-Quintanilla, & J. Dorado. 2015. Can floral field margins improve pollination and seed production in coriander *Coriandrum sativum* L. (Apiaceae)? *Agricultural and Forest Entomology*, 17(3): 302–308.
- Blaauw, B. R., & R. Isaacs. 2014. Flower plantings increase wild bee abundance and the pollination services provided to a pollinationdependent crop. *Journal of Applied Ecology*, 51(4), 890–898.
- Carvalheiro, L. G., C. L. Seymour, S. W. Nicolson & R. Veldtman. 2012. Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. *Journal of Applied Ecology*, 49(6): 1373–1383.
- Feltham, H., K. Park, J. Minderman, & D. Goulson. 2015. Experimental evidence that wildflower strips increase pollinator visits to crops. *Ecology and Evolution*, 5(16): 3523–3530.
- McIvor, C. A. & L. A. Malone. 1995. Nosema bombi, a microsporidian pathogen of the bumble bee Bombus terrestris (L.). *New Zealand J. of Zoology*, 22(1): 25-31.
- M'Gonigle, L. K., L. C. Ponisio, K. Cutler, & C. Kremen. 2015. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. *Ecological Applications*, 25(6): 1557–1565
- Morandin, L. A. & C. Kremen. 2013. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. *Ecological Applications*, 23(4): 829–839.
- Nicholls, C. I. & M. A. Altieri. 2012. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. *Agronomy for Sustainable development*, 33(2): 257–274.

- Pereira, A. L. C., T. C. Taques, J. O. S. Valim, A. P. Madureira, & W. G. Campos. 2015. The management of bee communities by intercropping with flowering basil (*Ocimum basilicum*) enhances pollination and yield of bell pepper (*Capsicum annuum*). Journal of Insect Conservation, 19(3), 479–486.
- Pywell, R. F., M. S. Heard, B. A. Woodock, S. Hinsley, L. Ridding, M. Nowakowski, & J. M. Bullock. 2015. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. *Proc. Biol. Sci.* 282: 1740.
- Venturini, E. M., F. A. Drummond, A. K. Hoshide, L. Berg Stack & A. Dibble. 2015. Enhancing wild bees for crop pollination: sowing bee pasture for New England's wild lowbush blueberry. University of Maine Cooperative Extension, Fact Sheet, 9 pp.
- Venturini, E. M., F. A. Drummond, A. K. Hoshide, A. C. Dibble, & L. B.
 Stack. 2017a. Pollination reservoirs in lowbush blueberry (Ericales: Ericaceae). *Journal of Economic Entomology*, 2017: 1-14.
- Venturini, E. M., F. A. Drummond, A. K. Hoshide, A. C. Dibble, & L. B. Stack. 2017b. Pollination reservoirs for wild bee habitat enhancement in agroecosystems: A review. *Agroecology and Sustainable Food Systems*, 41: 101-142.
- Wood, T. J., J. M. Holland, W. O H. Hughes, & D. Goulson. 2015.
 Targeted agri-environment schemes significantly improve the population size of common farmland bumblebee species.
 Molecular Ecology, 24(8): 1668–1680.

Common Name	Species	Habit	No. live seeds/ sq foot	No. live seeds per acre	
Wildflower Treatment					
Plains Coreopsis	Coreopsis tinctoria	Annual	9.55	416,000	
Indian Blanket	Gaillardia pulchella	Annual	7.66	333,600	
Sunflower	Helianthus annuus	Annual	2.75	120,000	
Lavender Hyssop	Agastache foeniculum	Perennial	5.29	230,400	
Lance-Lvd. Coreoopsis	Coreopsis lanceolata	Perennial	5.79	252,000	
Canada Tick Trefoil	Desmodium canadense	Perennial	1.82	79,200	
Purple Coneflower	Echinacea purpurea	Perennial	4.69	204,400	
Common Boneset	Eupatorium perfoliatum	Perennial	3.53	153,600	
Bee Balm	Monarda fistulosa	Perennial	4.01	174,720	
New-England Aster	Symphyotrichum novae- analiae	Perennial	4.52	196,800	
	ungnue	Total Wildflower $ ightarrow$	49.60	2,160,720	
Clover Treatment			lbs/acre	\$/lb	
Crimson Clover	Trifolium incarnatum	Annual	7 00	7 95	
Medium Red Clover	Trifolium nratense	Derennial (short-lived)	5.00	9.50	
Sweet Vellow Clover	Melilotus officinalis	Riennial	6.00	8 20	
			18.00	25.65	