

fungal colonies that were amphigenous on leaves and a diffuse white powdery mycelia covering ste	ms. No
chasmothecia were observed. Fungus was present on nearly 100% of bines for the cultivar Zeus an	d about Caption
20% of bines for the cultivar Cascade and had covered nearly 100% of lower leaves and stems of the	Green mottle mosaic and leaf deformation symptoms on
affected bines. Infected leaves and stems from Zeus were collected for further identification. Mycelia	a wewetermelon (Sui, Li, Shamimuzzaman, Wu, and Ling). Photo
hyaline and septate. Conidia were hyaline, barrel-shaped, and approximately $28.17 \pm 2.49 \times 15.58 \pm 1000$	^{± 1.8} Ceratocystis fimbriata (Li, Xu, Zhang, Song, Xie, Sun, and
µm, with fibrosin bodies in chains. Conidiophores were erect with cylindrical foot cells. The morpholo	ogical Huang). Photo credit: H. Song.
characters matched the description of P. macularis (Braun 1987; Mahaffee et al. 2009). The partial	I ITS and
28S regions of ribosomal DNA were amplified from isolate-derived genomic DNA using primers V9G	G and
LR1 and sequenced (GenBank accession no. MH687414) (Gerrits van den Ende and de Hoog 19	Metrics 999;
White et al. 1990). A nucleotide BLAST search confirmed 99% identity to P. macularis GenBank ac	cessyalpaded 522 times
number KX842348.1. Maximum likelihood phylogenetic analysis of 28S rDNA using GenBank acces	ssion
numbers KX842348, KX858801, and MG076960 for P. macularis and numbers AB022384, MG1836	668rticle History
MG76955, MF919434, AB022410, AB022423, AB022393, AB022347, and AB022353 of closely rela	ateclusue Date: 6 Jun 2019
species supported the identification of our sequence as P. macularis with 90% bootstrap support. O	n Rythleshed: 22 Apr 2019
mating type idiomorph MAT1-1 was found from our isolate as determined by polymerase chain reac	tion usingk: 4 Mar 2019
primers modified from Wolfenbarger et al. (2015), specifically forward MAT1-1A 5'-	Accepted: 1 Mar 2019
GCCGATCGTTACATTTCTTGA-3' and reverse MAT1-1B 5'-CGTCCAAACCGTAGTCGTAAA-3' for	MAT1-1 Pages: 1431-1431
and forward MAT1-2A 5'-GCAACCCTGGTCTTAGCAATA-3' and reverse MAT1-2C 5'-	
GTGGCCCACATTGAAGAGTA-3' for MAT1-2. Pathogenicity testing was conducted by brushing co	nikilorination
the diseased Zeus leaves onto leaves of a Cascade strap cutting. After 14 days, white mycelia were	visible ©2019 The American Phytopathological Society
on the adaxial leaf surfaces of the inoculated plant but not on the negative control plant. Microscopic	C
observation confirmed the presence of hyaline, barrel-shaped conidia matching the description of P.	Funding
macularis. The reemergence of powdery mildew in Connecticut is a new challenge to hop growers ir	기 执gricultural Marketing Service
region. Management practices to prevent the overwintering of this pathogen in buds may help to rec	uceant/Award Number: 16-SCBGP-CT-0012
disease in subsequent years because only one mating type was found, suggesting chasmothecia w	ere not
produced. The race of <i>P. macularis</i> present on hops in Connecticut should be determined (as in Ge	nt et al.
2017), and an evaluation of disease susceptibilities of cultivars to the Connecticut isolate is important	nt Keywords
provide recommendations for disease-tolerant plants to growers. Commercial hop yards throughout	
Northeastern United States should actively scout for this disease, because its spread into surroundir	ng areas
is likely.	
	The author(s) declare no conflict of interest.

The author(s) declare no conflict of interest.

First Report of the Resurgence of Hop Powdery Mildew (Podosphaera macularis) in a New England Commercial Hop Yard | Plant Disease

This article's contents are solely the responsibility of the authors and do not necessarily represent the official views of the USDA.

Funding: Funding was provided by the U.S. Department of Agriculture's (USDA) Agricultural Marketing Service through grant 16-SCBGP-CT-0012.

Information

First Report of the Resurgence of Hop Powdery Mildew (Podosphaera macularis) in a New England Commercial Hop Yard | Plant Disease

The American Phytopathological Society (APS)

3340 Pilot Knob Road, St. Paul, MN 55121 USA

+1.651.454.7250

FAX +1.651.454.0766

APS

For Authors For Subscribers Help & About Us

Contact Us

APS Home

Links & Resources

Scope Impact Permissions Terms & Conditions

Privacy Policy

© 2020 The American Phytopathological Society. Powered by Atypon® Literatum.