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ABSTRACT

The risk of transmission of West Nile virus (WNV) to humans is associated with the density of infected vector
mosquitoes in a given area. Current technology for estimating vector distribution and abundance is primarily
based on Centers for Disease Control and Prevention (CDC) light trap collections, which provide only point data.
In order to estimate mosquito abundance in areas not sampled by traps, we developed logistic regression models
for five mosquito species implicated as the most likely vectors of WNV in Connecticut. Using data from 32 traps
in Fairfield County from 2001 to 2003, the models were developed to predict high and low abundance for every
30 � 30 m pixel in the County. They were then tested with an independent dataset from 16 traps in adjacent New
Haven County. Environmental predictors of abundance were extracted from remotely sensed data. The best pre-
dictive models included non-forested areas for Culex pipiens, surface water and distance to estuaries for Cx. sali-
narius, surface water and grasslands/agriculture for Aedes vexans and seasonal difference in the normalized dif-
ference vegetation index and distance to palustrine habitats for Culiseta melanura. No significant predictors were
found for Cx. restuans. The sensitivity of the models ranged from 75% to 87.5% and the specificity from 75% to
93.8%. In New Haven County, the models correctly classified 81.3% of the traps for Cx. pipiens, 75.0% for Cx. sali-
narius, 62.5% for Ae. vexans, and 75.0% for Cs. melanura. Continuous surface maps of habitat suitability were gen-
erated for each species for both counties, which could contribute to future surveillance and intervention activi-
ties. Key Words: West Nile virus—Culex—Spatial modeling—Light traps. Vector-Borne Zoonotic Dis. 6, 283–295.
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INTRODUCTION

WEST NILE VIRUS (family Flaviviridae, genus
Flavivirus; WNV) (Drebot et al. 2002) was

introduced into North America in 1999 and was
first reported during an epidemic in New York
City (Nash et al. 2001). Within 5 years, the epi-
demic spread throughout the United States and
southern Canada, causing more than 18,000 hu-
man cases and over 700 fatalities (CDC 2005).
WNV seems now firmly established in North
America, so effective mosquito control mea-
sures are necessary to reduce the risk of WNV

transmission to humans. However, the efficacy
of preventive measures depends largely upon
the accuracy of the methods used to assess the
risk of human exposure to potentially infec-
tious mosquitoes.

The current technology available for assessing
human risk from mosquito-borne pathogens
rests primarily on information concerning vec-
tor distribution, abundance, and virus infection
prevalence derived from mosquito collections
made with Centers for Disease Control and Pre-
vention (CDC) light and/or gravid traps, the
standard tools for mosquito-borne disease sur-
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veillance. The State of Connecticut has estab-
lished and maintained a statewide network of
91 fixed mosquito collection sites employing
CDC light traps that have been monitored from
June through October each year since 1999.
However, estimates of mosquito abundance
from light trap data are limited to a relatively
small sampling area. If we assumed that these
light traps recruited mosquitoes from an aver-
age of 1 km radius, the total land area sampled
by the light traps in Connecticut would be less
than 0.02% of the total area of the state.

We developed a modeling approach de-
signed to enhance the value of mosquito trap-
ping data by estimating species abundance in
areas not sampled by traps. The resulting con-
tinuous distribution maps of the abundance of
the most likely WNV vector species in Con-
necticut (Andreadis et al. 2004) greatly im-
proves the spatial resolution of existing vector
surveillance data. These maps can be used to
direct vector control operations in the event of
an epidemic and to enhance WNV surveillance
by identifying habitat and abundance of vector
species in regions not monitored by conven-
tional mosquito trapping methods.

Two main modeling approaches, interpola-
tion and landscape-based, have been followed
to convert point samples of arthropod abun-
dance to surface data that could be used to pro-
duce continuous-surface maps. Interpolation
techniques such as kriging have been used to
model the distribution of mosquitoes (Jeffery et
al. 2002, Ryan et al. 2004), and agricultural pests
(Cocu et al. 2005, Nansen et al. 2003). These
modeling approaches depend on the presence
of spatial autocorrelation, which is the degree
of interdependence between values of a vari-
able at different geographic scales. An alterna-
tive approach is to use landscape variables de-
rived from remote sensing satellites as
predictors, with or without incorporating the
effects of spatial dependence. Pertinent exam-
ples include vectors of Eastern equine en-
cephalomyelitis (Moncayo et al. 2000), tick vec-
tors of Lyme disease (Brownstein et al. 2003,
Dister et al. 1997, Guerra et al. 2001, 2002,
Kitron et al. 1996), sand fly vectors of leishma-
niasis (Cross et al. 1996, Elnaiem et al. 2003, Mi-
randa et al. 1998, Thomson et al. 1999), tse-tse
fly vectors of African trypanosomiasis (Kitron

et al. 1996, Rogers 2000), and mosquito vectors
of malaria (Beck et al. 1994, 1997, Diuk-Wasser
et al. 2004, Thomson et al. 1996, 1997, Wood et
al. 1991a,b, 1992). Of these models, however,
only a few have been validated with an inde-
pendent dataset (Beck et al. 1997, Brownstein
et al. 2004).

The landscape-based modeling approach is
more appropriate to model mosquito abun-
dance at surveillance trap locales. The spatial
distribution of mosquitoes is limited to land-
scapes that contain aquatic environments per-
missive of oviposition and the development of
larvae, plus landscapes that determine adult
habitat. Some landscape elements constitute
potential breeding habitats (e.g., wetlands)
while others do not constitute landscape ele-
ments themselves (e.g., artificial containers),
but their occurrence is landscape dependent
(e.g., urban areas). These landscapes can be
identified by satellite imagery and by classified
datasets developed for other purposes (land
use/land cover, wetlands inventory, etc.). An-
other factor favoring the landscape rather than
the interpolation approach is that traps are gen-
erally not arranged in an equidistant grid and
are often too far from each other to be spatially
autocorrelated. The intensity of sampling is
rather arbitrary, usually dictated by the practi-
cal constraints of landscape, access, collection
effort and processing time (Reisen and Lothrop
1999).

In Connecticut, Culex pipiens Linnaeus, Cx.
restuans Theobald, Cx. salinarius Coquillett
Aedes vexans (Meigen), and Culiseta melanura
(Coquillett) have been implicated as the most
likely vectors of WNV based on virus isola-
tion data (Andreadis et al. 2004) and vector
competence (Turell et al. 2005). Our objective
was to develop models to predict abundance
of these mosquito species in areas of Con-
necticut not covered by the existing surveil-
lance system. We used remotely sensed data
and classified datasets as explanatory vari-
ables.

METHODS

We developed logistic models to predict
abundance of Cx. pipiens, Cx. restuans, Cx. sali-
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narius, Ae. vexans, and Cs. melanura between
2001 and 2003 using mosquito collection data
obtained with CDC light traps from 32 sur-
veillance sites in Fairfield County, Connecticut.
We validated the models using similar light
trap data from 16 surveillance sites in New
Haven County, Connecticut, collected during
the same period. We focused our study on Fair-
field and New Haven counties because the
principal foci of WNV activity in the state were
found in densely populated residential com-
munities in coastal areas of these two counties
(Andreadis et al. 2004).

The mosquito trapping data used in this
study were part of the mosquito surveillance
for West Nile virus that has been conducted in
Connecticut since 1999 (Andreadis et al. 2004).
Mosquito trapping data presented here was ob-
tained from June to October 2001-2003. Trap-
ping frequency was variable but was minimally
made once every ten days at each trap site. Ap-
proximately one third of the sites were located
in densely populated residential locales. Trap
sites included parks, greenways, golf courses,
undeveloped wood lots, sewage treatment
plants, landfills and wetlands. For each species,
the 16 traps with highest mosquito abundance
in Fairfield County were classified as high, the
remaining 16 were classified as low, resulting
in a binary response variable. The same proce-
dure was followed with the validation dataset
from New Haven County, where eight traps
were classified as high abundance and eight as
low.

Logistic models are used to compare the
habitat characteristics of positive versus nega-
tive samples in order to determine habitat suit-
ability with a set of explanatory variables (Hos-
mer and Lemeshow 1989). In this study, we
used high/low mosquito abundance rather
than presence/absence as the response vari-
able, since these mosquito species are wide-
spread within the state and a few individuals
were present in virtually all traps. The median
was used to split the dataset into high and low
abundance. We modeled the average of the 3
years in order to better characterize the “typi-
cal” landscape used by each of the species.

We extracted predictor variables from the
following databases (for a description of the
variables, see Table 1):

1. Connecticut Department of Environmental
Protection 1990 land use/land cover classi-
fication (DEP LULC) (Civco et al. 1992). This
classification was generated from Landsat
Thematic Mapper (TM) and Multispectral
Scanner (MSS) data from May 1987/1988
and August/September 1988/1990 scenes.
We reduced the 23 initial classes to seven
classes, following the Anderson Level I clas-
sification system (Anderson 1976), but we
included three classes instead of one for ur-
ban areas.

2. U.S. Fish and Wildlife Service National Wet-
lands Inventory (NWI) (Cowardin et al.
1979). This classification was generated from
the analysis of high altitude photography in
conjunction with collateral data sources and
field work. We included the palustrine and
estuarine wetland classes in our models be-
cause of their relevance as larval mosquito
habitats.

3. Human population density derived from the
2000 U.S. Census at the block level.

4. Landsat Enhanced Thematic Mapper (ETM�)
data. We obtained level 1G Landsat ETM�
scenes for March 26, 2000 and September 8,
2002. The digital numbers were converted 
to planetary reflectance to reduce the in be-
tween-scene variability (Landsat Project 
Science Office 2005). The September scene
was registered to the March scene by select-
ing 60 ground control points and using a 
first degree polynomial and nearest neighbor
algorithm, obtaining a root mean square er-
ror of 0.83. From each of the scenes, we ex-
tracted the ETM� middle infrared band 5, 
associated to the water content of plants and
soil, and calculated the Normalized Differ-
ence Vegetation Index (NDVI). We also cal-
culated the difference between September
and March NDVI and the NDVI variance 
in a 3 � 3 moving window. High NDVI is 
related to the presence and condition of green
vegetation (Lillesand and Kiefer 1994), and
high NDVI difference is expected in decidu-
ous forested areas, in which there is a marked
contrast between the leaves-on (September)
and leaves-off (March) scenes. High pixel
variance is associated with urban areas, which
typically have significant “texture” resulting
from buildings, street grids, green areas, 
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etc. (Stefanov et al. 2001). All areas classified
as ‘deep water’ in the DEP LULC were
masked out and not included in the calcu-
lations.

Variable extraction

We converted all databases to ArcMap (ESRI
Inc., Redlands, CA) GRID format at 30 � 30 m
resolution and re-projected them to Universal
Transverse Mercator, zone 18N projection,
World Geodetic System 1984 datum, to match
the satellite imagery. We used a geographic 
information system (GIS) procedure called
“buffering” (Longley et al. 1999) to extract the
values of the variables within a circular area
around the 32 study traps. For categorical vari-
ables (DEP LULC and NWI), we calculated the

number of pixels within the buffers, while for
continuous variables (census and remotely
sensed data), we extracted the mean value. We
repeated this procedure for 10 buffer sizes,
every 100 m, from 100 to 1000 m, to explore the
spatial scale at which each variable most af-
fected mosquito abundance. We also calculated
the Euclidean distance from each trap to the
nearest palustrine or estuarine pixels from the
NWI database.

Model development

We evaluated whether mosquito samples in
Fairfield and New Haven counties were auto-
correlated (samples from closer trap sites were
more similar) by Moran’s I using ArcMap Spa-
tial Statistics Tools. We used Akaike’s Infor-
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TABLE 1. VARIABLES EXTRACTED FROM THE DATABASES USED IN THE STUDY

Database Code Variable name Description

DEP LULC IMPE Impervious Inner city, high-density urban areas such as concrete
surfaces, roofs, paved surfaces.

RESI Residential Residential neighborhoods, houses with lawns, isolated
houses with farming areas.

COMM Commercial Fringe of inner city areas, commercial areas, dense housing.
FORE Forest Typical southern New England mixed softwood forests.
GRAS Grasslands/agriculture Agricultural land, bare soil and grasslands.
WATE Water Open water bodies and watercourses with relatively

shallow water; possibly including periodically flooded
lands, such as the Connecticut River and some non-
forested wetland habitats.

WETL Wetlands Palustrine, emergent wetland (PEME) and palustrine,
deciduous forested wetland (PFO1) in the U.S. Fish and
Wildlife wetland and deep water habitat classification
system.

NWI PALU Palustrine Nontidal wetlands dominated by trees, shrubs, emergents,
mosses or lichens or wetlands that occur in tidal areas
where salinity is below 0.5%.

DPAL Distance to palustrine Distance to the closest PALU pixel.
ESTU Estuarine Deepwater tidal habitats and adjacent tidal wetlands that

are usually semienclosed by land but have open, partly
obstructed, or sporadic access to the open ocean.

DEST Distance to estuaries Distance to the closest ESTU pixel.
2000 U.S. Census POPU Population 2000 U.S. Census mean population per 1000 m2.
Landsat ETM� NDVM NDVI March NDVI from ETM� March 2000 scene.

NDVS NDVI September NDVI from ETM� September 2002 scene.
NDIF NDVI diference Difference in NDVI between the September 2002 and

March 2000 scenes.
VARS NDVI variance Variance in NDVI from September 2000 scene in a 

3 � 3 window.
MIR5 Middle infrared Reflectance from ETM� band 5 (middle infrared), 

September 2002 scene.

LULC DEP, Connecticut Department of Environmental Protection 1990 land use/land cover classification; NWI,
U.S. Fish and Wildlife Service National Wetlands Inventory; NDVI, normalized difference vegetation index.

Variable codes are those used to descrie the models in Table 3.



mation Criterion (AIC; Akaike 1974) to rank
candidate models. This technique identifies the
most parsimonious model for the data by bal-
ancing the overall fit of the model with the
number of parameters included in it. Because
the ratio of the sample size to the number of
parameters in our most complex model was
lower than 40, we used AIC bias-corrected for
small sample sizes (AICc) (Hurvich and Tsai
1989) as recommended by Burnham and An-
derson (2004). Under this framework, the
model with the smallest AICc value is inter-
preted as having the best fit to the data; mod-
els within two AICc units of the best-fitting
model are considered to have substantial sup-
port, while those within seven AICc units have
considerably less support. We calculated
Akaike weights (Burnham and Anderson 2004)
to show the relative support for competing
models.

We first ran univariate logistic regressions for
mosquito abundance and each of the predictor
variables converted to deciles (tenth per-
centiles), using each of the 10 buffer sizes. Vari-
ables that resulted in a p � 0.05 for the logistic
regression and the buffer sizes that resulted in
the smallest AICc for each variable were in-
cluded in multiple logistic regression models,
which were fit for all combinations of two and
three predictors. To minimize collinearity, we
included in the same model only those variables
with a Spearman rank correlation (Sokal and
Rohlf 1995) lower than 0.75. We considered as
competing all models that were within eight
AICc units of the best model and for which all
predictors were significant at p � 0.1. We as-
sessed all models’ goodness-of-fit using the Hos-
mer-Lemeshow test (Hosmer and Lemeshow
1989, Hosmer and Hjort 2002). Those models
with a significant lack-of-fit (p � 0.05) were ex-
cluded from the list of candidates. Statistical
analyses were performed in STATA 8.0 (Stata
Corporation, College Station, TX).

Once we determined the set of competing lo-
gistic regression models for each species, we
created a “smoothed” grid layer for all predic-
tor variables, for both Fairfield and New Haven
Counties, using the focal statistic procedure in
ArcMap ArcToolbox. This procedure calculates
a statistic on a raster layer over a specified
neighborhood. For example, for forest in a 

400-m buffer, the sum of forest pixels within a
400-m buffer was calculated for each pixel in
the raster and the original value of the pixel
was replaced with this “smoothed” value,
which integrates the values of its neighbors.

Model validation

To obtain the predicted abundance for the
traps in New Haven County, we ran the logis-
tic regression equations derived for Fairfield
County traps using the map calculator function
in ArcMap Spatial Analyst. The environmental
predictors were extracted from the smoothed
layers in New Haven County as described in
the previous section. The inverse logistic trans-
formation:

Probability (� high abundance)
� exp(Y)/(1�exp(Y))

was applied to the linear predictors (Y in equa-
tion above) to transform them from the logit to
the probability scale. We ranked all traps by
this probability and classified the highest 50%
as high and the lowest 50% as low abundance.
We decided to split the validation dataset into
two equally sized classes in order to be consis-
tent with the choice of the median to split the
Fairfield County dataset. We examined the per-
cent that were correctly classified as either high
or low abundance. This was used as the main
criteria to select the best model. We also re-
ported the kappa statistic (Landis and Koch
1977) for the best models, which is an indica-
tor of the extent to which the percentage cor-
rect values are due to “true” agreement versus
“chance” agreement.

RESULTS

Mosquito abundance was not spatially auto-
correlated among the traps for Cx. pipiens, Cx.
salinarius, Ae. vexans, and Cx. restuans and was
only marginally significant for Cs. melanura
(Moran’s I � 0.13, z � 1.97). We therefore con-
sidered samples from all traps to be spatially
independent.

Mosquito abundance varied across the years
of the study (Table 2). However, the classifica-
tion into high and low abundance resulted in
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high consistency, with 96.6% of the sites clas-
sified in the same abundance category in all 3
years. If the maximum of the 3 years was used
to classify the traps into high and low abun-
dance, consistency between years was very
similar, but slightly lower (96.0%). Therefore,
we decided to use the mean as a more consis-
tent measure of abundance.

We successfully developed logistic regres-
sion models to predict Cx. pipiens, Cx. salinar-
ius, Ae. vexans, and Cs. melanura abundance, but
were unable to develop a model for Cx. restu-
ans. Table 3 lists all candidate logistic regres-
sion models within eight AICc units of the
model with the lowest AICc for each species,
except a model for Cs. melanura with palustrine
as the only predictor, because of lack of fit (p �
0.05). We considered the best model for each
species to be the one with the highest predic-
tive power for the New Haven County dataset
and, if there were more than one, we selected
that with the lowest AICc. The logistic regres-
sion equations for the selected candidate mod-
els were as follows:

log odds (Cx. pipiens) � �0.70(forest 400) 
� 3.76

log odds (Cx. salinarius) � 0.28(water 1000)
� 0.43(distance to estuaries) � 0.92

log odds (Ae. vexans) � 0.60(water 1000) 
� 0.47(grasslands/agriculture 200) � 5.38

log odds (Cs. melanura)
� 0.48(NDVI difference)

� 0.45(distance to palustrine) � 0.43

where the selected variables and respective
buffer sizes are between parentheses (Table 1).

After transformation to a probability scale, the
selected models depict the modeled probabil-
ity of high mosquito abundance within any
given pixel in Fairfield and New Haven Coun-
ties (Fig. 1).

Cx. pipiens was most abundant in urbanized
areas, as measured by a large number of im-
pervious pixels, low NDVI, low NDVI differ-
ence and high NDVI variance. The best model
showed an inverse relationship to forest,
which made up 56.3% of the study area. In
addition to having the highest predictive
power in New Haven County—correctly clas-
sifying 81.3% of the traps (kappa � 0.63, p �
0.01), it had the lowest AICc, and sensitivity
and specificity were both 75.0%. This model
indicated an association with more suburban
areas, since the majority of non-forested areas
was either residential (18.4%) or grass-
lands/agriculture (14.1%). A model including
high population density and grasslands/agri-
culture was also among the candidate mod-
els, further supporting the association with
more suburban areas.

The best model for Cx. salinarius included
water and distance to estuaries, correctly pre-
dicted 75.0% (kappa � 0.5, p � 0.05) of the
traps in New Haven County and had sensitiv-
ity of 75% and specificity of 93.8%. In Fairfield
County, Cx. salinarius model including distance
to estuaries had a relatively high AICc. This is
likely because there were two inland sites in
Fairfield County with high abundance of Cx.
salinarius in spite of the absence of brackish wa-
ter in the area. When these two sites were ex-
cluded from the analysis, this model’s AICc
value dropped to 20.95, becoming the model
with the lowest AICc. In New Haven County,
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TABLE 2. ABUNDANCE OF FIVE MOSQUITO SPECIES COLLECTED FROM JUNE TO OCTOBER

IN 48 LIGHT TRAPS IN FAIRFIELD AND NEW HAVEN COUNTIES

Mosquitoes collected (mean � standard error)

Species 2001 2002 2003

Cx. pipiens 2.76 � 0.44 3.03 � 0.32 2.42 � 0.28
Cx. restuans 3.28 � 0.39 2.77 � 0.35 5.55 � 0.67
Cx. salinarius 4.64 � 0.63 4.72 � 0.57 16.99 � 2.23
Cs. melanura 3.86 � 0.49 1.16 � 0.14 10.30 � 1.57
Ae. vexans 14.92 � 2.27 10.24 � 1.65 18.80 � 3.07

The mean number of trap nights per site/year was 20.
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Cx. salinarius showed a more typical concen-
tration in coastal areas.

The selected model for Ae. vexans included
water and grasslands/agriculture, and was
only 1.47 AICc units from the one with the low-
est AICc, so it was considered to have almost
as much support. This model had high sensi-
tivity (81.3%) and specificity (87.5%) and the
highest predictive power in New Haven
County (62.5%), although the kappa statistic
was not significant.

The best model for Cs. melanura included a
positive relationship with the NDVI difference
and a negative one with the distance to palus-
trine pixels. This model had the highest pre-
dictive power in New Haven County (75.0%,
kappa � 0.63, p � 0.001) and sensitivity and
specificity were high (87.5 and 81.3%, respec-
tively). An inverse relationship to distance to
palustrine areas was included in several of the
other candidate models.

DISCUSSION

We developed logistic regression models
with sensitivities ranging from 75% to 87.5%
and specificities from 75% to 93.8%, which cor-
rectly predicted high or low mosquito abun-
dance in 63.0% to 81.0% of the traps of an in-
dependent dataset in New Haven County. That
is, we were able to convert point-based data to
surface data, allowing the estimation of mos-
quito abundance in areas not monitored by the
light traps. To enhance the robustness of our
model, we used one dataset to develop it (Fair-
field County light trap samples) and another
one to test it (New Haven County samples) and
the final model selection was based on its pre-
dictive ability on the test dataset. Also, we used
the novel approach of optimizing the size of
buffers for each mosquito species/predictor
variable, compared to the usual fixed 1-km
buffer used in other mosquito studies (Beck et
al. 1997, Moncayo et al. 2000). We used re-
motely sensed data, landcover and wetland
classifications and census data as predictors, all
of which resulted in highly predictive models.
However, the variables that were most predic-
tive were based on classified data. The vari-
ables in the selected models were consistent

with known habitat preferences of each of the
species, which indicates that these models were
biologically sound.

The models selected for Cx. pipiens were con-
sistent with the known “urban” nature of this
mosquito, which breeds in ground water and
artificial containers in and around domestic ar-
eas (Horsfall 1955), together with stagnant,
temporary pools with a high organic content
(Andreadis et al. 2005), which seems to be the
attractant for oviposition (Madder et al. 1980).
Andreadis et al. (2004) also reported a positive
correlation between human population density
and the mean number of adult female Cx. pip-
iens in 73 municipalities in Connecticut. Al-
though Cx. pipiens abundance was also associ-
ated with high population density from census
data, models including remotely sensed data
identifying urbanized areas showed a better fit
than those including population density. These
two measures, however, usually coincide (Tran
et al. 2002). The presence of grasslands/agri-
culture in the same models as variables linked
to urbanization indicates that Cx. pipiens may
be more abundant in suburban areas than is
generally recognized.

We did not find any predictors for Cx. restu-
ans abundance, likely because it utilizes a di-
verse range of larval habitats, from nearly clear
water to grossly polluted (Means 1987, An-
dreadis et al. 2005). Information on the ecology
of Cx. restuans is scarce, being often pooled with
Cx. pipiens due to the difficulty in distinguish-
ing adults and the assumption that they are
sympatric and have similar feeding preferences
(Apperson et al. 2002, 2004). However, Ebel et
al. (2005) found that Cx. restuans tended to com-
prise a greater proportion of the total collec-
tions at rural sites compared with urban sites,
which is consistent with our findings of a less
tight link to urban areas.

Several candidate models for Cx. salinarius
and Ae. vexans included the same variables, de-
spite their different habitat preferences; Cx. sali-
narius is often referred to as a salt marsh-in-
habiting mosquito, while and Ae. vexans
commonly occurs in floodwaters. The similar-
ity of the models could be due either to these
two species using more diversified habitats or
to the inclusion of several habitat types in some
of the remotely-sensed environmental vari-
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ables. There is support in the literature for the
former argument since, according to Crans
(2004), Cx. salinarius larvae rarely breed directly
in tidal marshes, but rather occur more fre-
quently in areas adjacent to salt marshes where
fresh water from upland drains to coastal habi-
tats producing a brackish water environment.
They are also particularly abundant in fresh-
water impoundments, with their populations
peaking immediately after flooding (Slaff and
Crans 1982). Ae. vexans eggs are laid in sites
subject to inundation by rain water, overflow,
seepage or tidal water and can also be found
in salt marsh impoundments, in addition to
open rain pools, tire ruts, stormwater manage-
ment facilities, dredge spoil sites, ditches and
areas in which streams or creeks have flooded
over their banks (O’Malley 1990). The models
may also be similar because the “water” class
includes open water bodies and watercourses
with relatively shallow water, both permanent
and periodically flooded lands, such as the
margins of the Connecticut River, not normally
perceived as water habitats (Civco et al. 1992).
Other sources of information on surface water
should be explored for their use in identifica-
tion of mosquito habitats.

The high predictive power of NDVI differ-
ence—associated with deciduous forests, and
closeness to palustrine areas for Cs. melanura
abundance—is consistent with the bionomics
of this species. Culiseta melanura is a wide-
spread mosquito distributed throughout the
eastern and central United States (Darsie and
Ward 1989). It is a multivoltine species that has
two to three overlapping generations a year in
the northeastern United States (Mahmood and
Crans 1998), and is among the most dominant
mosquitoes found in densely wooded red
maple and Atlantic white cedar swamps and
sphagnum bogs in Connecticut (Andreadis et
al. 2004, 2005). Eggs are laid in water in per-
manent subterranean habitats, and larvae de-
velop in holes beneath mats of sphagnum and
in deep shaded cavities around the roots of up-
turned trees (Mahmood and Crans 1998). The
habitat is comparatively stable and is generally
inundated with water throughout the year.

The effective sampling area of light traps is
not known and it is likely to vary for different
mosquito species and also for different land-

cover types. This poses a challenge when re-
lating environmental variables measured as a
surface to mosquito abundance measured at a
point (light trap). Previous studies estimating
an environmental variable around a point
(Moncayo et al. 2000, Beck et al. 1994, 1997)
used buffers of 1 km, based on the typical flight
range cited for Anopheles albimanus (Hobbs et
al. 1974). However, a wide range of flight
ranges have been reported for the mosquitoes
studied here, 1–3.5 km for Cx. pipiens (Fussell
1964, Schreiber et al. 1988), 1–2 km for Cx. sali-
narius (Lasalle and Dakin 1982, Morris et al.
1991), 4–8 km for Cs. melanura (Howard et al.
1989), and 1–14 km for Ae. vexans (Brust 1980,
Clarke 1943, Jensen and Washino 1994, Mac-
Creary and Stearns 1937). Given the large vari-
ability in these flight ranges and the likely re-
lationship with the specific landcovers in each
area, we used the sampling area that resulted
in the closest association between abundance
of each mosquito species and each environ-
mental variable. We found that buffer sizes
smaller than 1 km resulted in closer associa-
tions for all species and environmental vari-
ables, except for the water variable. The larger
buffer size for the water class may indicate that
traps in these habitats recruited mosquitoes
from a larger area and/or that Cx. salinarius and
Ae. vexans dispersed greater distances than the
other species.

Mosquito abundance was not spatially auto-
correlated for four of the five species. Spatial
autocorrelation would be expected if nearby
traps recruited mosquitoes from common
breeding sites, which would result in samples
with similar abundance. The lack of spatial
structure is likely due to the large mean dis-
tance between the traps (4.7 km) relative to the
flight range reported for most mosquito species
and the optimum buffer size identified in this
study (�1 km). The lack of spatial autocorrela-
tion precluded any conclusions on recom-
mended distances for trap placements from
this study. We therefore considered regression
analysis using environmental variables as pre-
dictors as a more appropriate analytical ap-
proach than interpolation methods.

Logistic regression modeling has been ex-
tensively used to formalize the relationship be-
tween environmental factors and the pres-
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ence/absence of vectors (Brownstein et al.
2003, Dumonteil and Gourbiere 2004, Thomson
et al. 1999) and incidence of vector-borne dis-
eases in humans (Brooker et al. 2001, Elnaiem
et al. 2003, King et al. 2004, Lindsay and
Thomas 2000, Thompson et al. 1996) and to
quantify the amount of potential habitat. In this
study, we did not use presence/absence but
rather high/low mosquito abundance as the 
response variable. From an epidemiological
viewpoint, some of these mosquito vectors may
pose a health risk to humans once they have
exceeded a certain threshold of abundance. If
future research defines critical thresholds,
these models could be easily adapted to repre-
sent the probability of being above a numeri-
cal threshold. However, defining areas of dif-
ferent levels of risk can still be useful to more
efficiently allocated limited resources to those
with the highest relative risk. Vector control of-
ficials could then use these models to make
more informed decisions on the type, focus and
intensity of mosquito abatement.

In summary, we have generated habitat suit-
ability maps of four potential WNV vector
species, which represent the probability of trap-
ping high numbers of these mosquitoes in
every 30 m � 30 m pixel of Fairfield and New
Haven counties (3270 km2). These surface maps
constitute a significant improvement over tra-
ditional reliance on data derived from point
samples from individual light traps. These val-
idated predicted maps could help improve
West Nile virus surveillance efforts by identi-
fying all areas of expected high vector mos-
quito abundance across a large geographic
area. They could therefore guide future trap
placements to the most suitable habitats for
particular mosquito species and aid in focus-
ing disease prevention measures toward areas
of high vector abundance during WNV epi-
zootics.
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