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Abstract

West Nile virus (WNV; Flaviviridae: Flavivirus) is a widely distributed arthropod-borne virus

that has negatively affected human health and animal populations. WNV infection rates of

mosquitoes and human cases have been shown to be correlated with climate. However,

previous studies have been conducted at a variety of spatial and temporal scales, and the

scale-dependence of these relationships has been understudied. We tested the hypothesis

that climate variables are important to understand these relationships at all spatial scales.

We analyzed the influence of climate on WNV infection rate of mosquitoes and number of

human cases in New York and Connecticut using Random Forests, a machine learning

technique. During model development, 66 climate-related variables based on temperature,

precipitation and soil moisture were tested for predictive skill. We also included 20–21 non-

climatic variables to account for known environmental effects (e.g., land cover and human

population), surveillance related information (e.g., relative mosquito abundance), and to

assess the potential explanatory power of other relevant factors (e.g., presence of wastewa-

ter treatment plants). Random forest models were used to identify the most important cli-

mate variables for explaining spatial-temporal variation in mosquito infection rates

(abbreviated as MLE). The results of the cross-validation support our hypothesis that cli-

mate variables improve the predictive skill for MLE at county- and trap-scales and for human

cases at the county-scale. Of the climate-related variables selected, mean minimum tem-

perature from July–September was selected in all analyses, and soil moisture was selected

for the mosquito county-scale analysis. Models demonstrated predictive skill, but still over-
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and under-estimated WNV MLE and numbers of human cases. Models at fine spatial scales

had lower absolute errors but had greater errors relative to the mean infection rates.

Introduction

West Nile virus (WNV) has caused 46,086 diagnosed cases in the United States, with over 2000

human deaths (1999–2016) [1]. The ecological impacts of WNV have been even more substan-

tial, as WNV has been found in 332 bird species in the United States [2], caused a 45% decline

in American Crows, Corvus brachyrhynchos, in the United States [3], killed millions of song-

birds (e.g., an estimated 29 million Red-eyed Vireos, Vireo olivaceus) [4], and contributed to

the listing of the Yellow-billed Magpie, Pica nuttalli, as ‘Near Threatened’ [5]. In addition to

avian hosts, WNV has been reported from reptiles [6], mammals [7–9], and amphibians [10].

Non-avian impacts have led to substantial economic losses, notably due to infections of horses

and farmed alligators [6,11].

In the Northeast, WNV is primarily found in Culex mosquitoes, especially Cx. pipiens (e.g.,

[12]). Avian hosts are thought to be responsible for the majority of WNV amplification

[13,14], although species vary widely from non-infectious (e.g., Rock Pigeons, Columba livia
[14]) to superspreaders (e.g., American Robins, Turdus migratorius [15]). Climatic conditions

may facilitate WNV through 1) increased mosquito abundances (e.g., [16], 2) increased viral

replication rates [17–19], and 3) changing the interactions between mosquitoes and their

hosts. Some of these changes could be indirect, such as by affecting timing of breeding or

migration for key amplifying species [20,21].

Prior studies have supported this link between WNV and climatic variables [17,22,23].

Prior studies found higher WNV infection rates with increasing temperature [22–27], includ-

ing winter temperature [23], and higher infection rates with increased growing degree days

[28]. Precipitation relationships have been more complex and not consistently detected [27].

Increased precipitation in the preceding year [29] and decreased current year precipitation

[24] have been associated with increased WNV transmission. Precipitation may interact with

temperature, as drought has been found to be important in WNV dynamics [30,31]. Warm

and dry conditions during early spring have been associated with increased WNV activity

[22], but not conclusively, as a range of other climate indicators, such as anomalously wet con-

ditions in March, were also identified as potentially important in the same study [22].

Direct comparisons among studies are complicated, as studies have differed in their selec-

tion of climate variables, computation of the climate variables, inclusion of important covari-

ates, spatial extent, and spatial resolution (see Table 1). Further, relationships between climate

and disease may vary depending on geographic location (e.g., [31]). This has complicated the

use of climatic information to produce robust spatial and temporal predictions of WNV preva-

lence. Differences in analysis extent and resolution (i.e. the scale of the analysis) have been

shown to affect analysis results (the modifiable area unit problem, MAUP) [32–34]. One scale-

dependent result identified from species distribution models has been that specific relation-

ships with climate at broad spatial scales using aggregated data exist; in contrast, at finer scales

other variables may dominate [35]. Indeed, this result has been observed for WNV relative to

30-year climate averages [36]. However, as the life-cycles of mosquitoes and WNV are highly

temperature dependent [18,37], strong relationships with variables such as temperature and

precipitation may be present even at fine spatial scales.

In this study the main goals were to explore the spatial and temporal relationships between

climate and WNV and develop a well-validated statistical model that included climatic as well

WNV and climate
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Table 1. A summary of literature that includes Connecticut or New York as part of the study area. Studies varied in their choice of dependent variable (De). Indepen-

dent variables were classified as Surveillance (Su), climate (Cl), land cover (La), Sociological (So), host-related (Ho), or Other (Ot).

Study Spatial Extent1 Spatial Resolution Temporal Extent Temporal Resolution De3 Su4 Cl5 La7 So8 Ho9 Ot10

Allan et al. 2009 [38] USA County 2002–2004 Annual Hi 0 0 0 1 2 0

Andreadis et al. 2004 [39] CT Point 1999–2003 Annual Hc 1 06 0 0 0 0

Andreadis et al. 2004 [39] CT Point 1999–2003 Annual Ma 0 06 0 1 0 0

Bowden et al. 2011 [40] USA County 2002–2008 7-year period2 Hi 0 0 14 0 0 0

Brown et al. 2008a [41] New Haven, CT Point 2004 Annual Ma 0 0 2 0 0 0

Brown et al. 2008b [42] CT, DE, MA, MD, NJ, NY, PA, RI County 1999–2006 Annual Hi 0 0 2 1 0 1

Brownstein et al. 2002 [43] NY (7 counties) Point 1999 Annual Hc 0 0 1 0 0 0

DeFelice et al. 2017 [44] Suffolk, NY County 2001–2014 Weekly Hc 2 0 0 0 0 0

DeFelice et al. 2017 [44] Suffolk, NY County 2001–2014 Weekly MMLE 2 0 0 0 0 0

DeFelice et al. 2018 [45] USA (12 counties) County 2001–2016 Weekly Hc 2 6 0 0 0 0

DeFelice et al. 2018 [45] USA (12 counties) County 2001–2016 Weekly MMLE 2 6 0 0 0 0

Diuk-Wasser et al. 2006 [46] Fairfield, CT Point 2001–2003 3-year-period Ma 0 0 97 1 0 0

Gates and Boston 2009 [47] USA County 2004–2006 3-year period Hc 0 0 1 1 0 0

Gates and Boston 2009 [47] USA County 2004–2006 3-year period Ec 0 0 1 0 0 1

Hahn et al. 2015 [24] USA County 2004–2012 Annual Hcz 0 10 0 0 0 0

Keyel et al. (this study) NY, CT County, Point 2000–2015 Annual MMLE 5 66 4 2 7 2

Keyel et al. (this study) NY, CT County, Point 2000–2015 Annual Hc 6 66 4 2 7 2

Landesman et al. 2007 [29] USA County 2002–2004 Annual; Monthly Hc 0 6 0 0 0 0

Little et al. 2016 [22] Suffolk, NY 13 × 13 km cells 2001–2015 Monthly MMLE 0 48 0 0 0 0

Liu et al. 2009 [26] CT Township 2000–2005 Daily Hc 5 3 6 1 0 0

Manore et al. 2014 [23] USA County 2005–2011 Annual Hc 2 96 1 6 27 0

Myer et al. 2017 [48] Suffolk, NY Point 2008–2014 Weekly Mpa 0 6 37 1 0 0

Myer and Johnston 2019 [49] Nassau, NY Point 2001–2015 Weekly Mpa 1 6 16 4 0 2

Paull et al. 2017 [31] USA State 1999–2009 Annual Hni 1 4 0 0 0 0

Rochlin et al. 2008 [50] Suffolk, NY Point 2000–2004 Annual Ma 0 0 10 1 0 1

Rochlin et al. 2008 [50] Suffolk, NY Point 2000–2004 Annual Mp 0 0 10 1 0 1

Rochlin et al. 2009 [51] Suffolk, NY Point 1999–2006 Annual Ma 0 0 3 0 0 2

Rochlin et al. 2011 [52] Suffolk, NY Point 2001–2004 4-year period Hc 8 0 30 13 0 5

Shaman et al. 2011 [25] Suffolk, NY 13 × 13 km cells 2001–2009 Annual M% 0 60 0 0 0 0

Tonjes 2008 [53] Suffolk, NY Zip Codes 2000–2004 Annual Hc 2 0 0 1 0 0

Trawinski and MacKay 2008 [28] Erie, NY Point 2001–2005 Weekly Ma 0 33 0 0 0 0

Trawinski and MacKay 2010 [54] Amherst, Erie, NY Point Not reported 2–5 weeks Ma 0 12 66 27 0 51

Walsh 2012 [27] NY County 2000–2010 Annual Hpa 1 2 1 0 0 0

Young et al. 2013 [55] USA County 2003–2008 6-year period Hi 0 30 17 0 0 3

1 USA: United States of America; CT: Connecticut; DE: Delaware; MA: Massachusetts; MD: Maryland; NJ: New Jersey; NY: New York State; PA: Pennsylvania; RI:

Rhode Island.
2 Assumed. Whether years were pooled or analyzed individually was not clear from the methods section.
3 De: Dependent variables: Ec equine cases; Hc Human cases; Hcz z-score deviation from mean number of human cases; Hi Human per-capita incidence; Hni Human

West Nile neuroinvasive disease cases only; Hpa human cases present or absent; M% percent of mosquito pools testing positive; Ma Mosquito abundance; MMLE

Mosquito infection rate; Mp The proportion of mosquitoes belonging to a particular species, Mpa Presence/absence of WNV in mosquito pools.
4 Su: Surveillance variables such as number of dead birds, WNV positive birds, Human WN in previous years, Human infection rate, human immunity (estimated),

mosquito infection rates from previous timepoints, mosquito abundance, absence of mosquito surveillance, site classification based on previous WNV infection rates

(high, medium, low), number of complaints about mosquitoes, number of known larval sites, WNV positive mosquito pools, distance to nearest complaint, distance to

nearest known larval site, distance to nearest WNV positive bird, distance to nearest WNV positive mosquito pool.
5 Cl: Climate and hydrological variables such as temperature, precipitation, growing degree days, and anomalies for each of these variables. Often calculated as

minimum, mean, maximum, or cumulative values for different time periods (e.g., month, season, year).
6 Temperature and rainfall values were discussed, but not statistically related to the WNV results.
7 La: Land cover variables such as percent/proportion land cover for different land cover types, buffer distances, or administrative units or distance to land cover

features. Soil drainage characteristics were also included here, as were Normalized Vegetation Difference Index (NDVI), Disease Water Stress Index (DWSI), and

Middle Infrared Band.
8 So: Sociological variables such as age (median), education, employment (percent), household income (median), housing age, human population (density), human

population (total), race, senior households (count, >65), septic systems (count), vacant housing (percent), urban or rural (categorical).
9 Ho: Host variables such as avian abundance (e.g., by order or species), avian diversity, and community competence.
10 Ot: Other variables, such as aspect, catch basin area, catch basin count, county area, elevation, equine density, flood zone, flood zone (distance to nearest), road length,

road polygons (index of fragmentation), slope, wastewater treatment plants (distance from, count per administrative unit), year.

https://doi.org/10.1371/journal.pone.0217854.t001
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as non-climatic environmental factors for the northeastern United States. We hypothesized

that climatic variables would be important at both coarse (county) and fine (point) spatial

scales. Conversely, WNV is widely distributed across many different climatic regions [24,56],

and therefore we tested the alternative hypothesis that WNV prevalence and human cases do

not depend on climatic variables, and that previous results were due to an omitted, correlated

covariate.

Methods & data

Overview

We fit models at two spatial scales, with and without climate variables, and examined the

error for a new year of data. We examined statistical relationships between two dependent

variables, WNV mosquito infection rates (MLE) and human cases of WNV (see Dependent
variables section), and 86–87 independent variables, grouped into climate (66 covariates),

surveillance (5–6 covariates), host (7 covariates), human population (2 covariates), land

cover (4 covariates), and wastewater treatment (2 covariates). Human population, land

cover, and wastewater covariates were snapshots in time and were treated as constant

across time. Dependent variables were related to independent variables using a random

forest analysis [57]. The analysis was conducted with data aggregated over entire years.

For MLE, relationships were evaluated at two spatial scales (county and trap, see Scales of
analysis, below), while for human data, due to data restrictions related to privacy con-

cerns, only the county-scale data were used. We used a leave-one-year-out cross valida-

tion approach, where the random forest model was fitted using data from all years except

one, and the resulting model was used to predict the remaining year. See Statistical
Approach below for full details. Data processing was performed using Python 2.7 [58],

ArcGIS 10.6 (ESRI, Redlands, CA), and R 3.4.3 [59]. All statistical analyses were per-

formed in R [59]. Descriptive information for non-categorical covariates are included in

S1 File and a Data Dictionary describing the variables in S2 File. Text files used to run the

analyses at the county scales are includes in zipped format as S3 File. For trap-scale data,

contact the New York State Department of Health [60] and the Connecticut Agricultral

Experimental Station [61] as the trap locations contain sensitive information.

Scales of analysis

Data were analyzed at two scales: aggregated by county (hereafter the county-scale) and from

individual mosquito trap locations (hereafter the trap-scale). Due to high uncertainty in some

MLE for some trap locations (see Dependent variables below for MLE calculations), trap-scale

data were analyzed in two ways, 1) including MLE with large confidence intervals, and 2)

excluding MLE where the estimated 95% confidence interval exceeded 15 infected mosquitoes

per 1000 (hereafter the trap-scale subset). Human cases were also analyzed at two different

extents: all counties in both New York and Connecticut (hereafter: human all counties) and

for just those counties for which mosquito surveillance data were available (hereafter: human

subset).

Dependent variables

Human cases. Human case data, aggregated by county and year, were obtained for the

entire state of New York (NY) for 2003–2015 [62] and for the state of Connecticut (CT) from

2000–2015 [63]. Data from both states were pooled for the analysis as results were qualitatively

similar when each state was analyzed separately (results not shown). Cases of West Nile Fever

WNV and climate
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and West Nile Neuroinvasive Disease were pooled to increase the sample size, as these two

manifestations are highly correlated [40] and this approach has been found to have greater pre-

diction accuracy [55]. West Nile Fever corresponds to clinical cases where the symptoms

include fever [64], but the cases were not neuroinvasive. West Nile Neuroinvasive Disease

included cases of meningitis, encephalitis, and meningoencephalitis [64]. We note that mild

cases of West Nile Fever may go unreported, as the majority of human WNV infections (~80%

[65]) do not cause any detectable symptoms, and<1% are neuroinvasive [65,66]. Therefore,

the reported cases represent a very small fraction of the human WNV infections. Further, case

locations correspond to the patients’ county of residence and may not indicate the county

where the disease was contracted.

We used total cases as our dependent variable instead of incidence as this approach makes

no assumptions about the relationship between West Nile virus cases and total human popula-

tion. Humans are dead-end hosts for West Nile virus, and therefore do not amplify the virus.

As a consequence, the contact rate between mosquitoes and humans is far more important

than total human population for determining cases, and this contact rate varies non-linearly

with human population. We present a subset of our analyses using incidence in S4 File for

comparison purposes.

Mosquito infection rates. MLE were calculated based on mosquito trap data. We

obtained data from 8 counties in CT [61] and 8 counties in NY State (one western, two

central and five southeastern counties) [60]. The data cover the years 2000–2015 (not all

data available for all years). These data were pooled from several different mosquito con-

trol programs, and each agency employed a slightly different sampling design (see S5

File). For our analysis, any mosquito pool from a CDC Gravid trap [67] that was deployed

for less than 24 hours and was tested for WNV was included in the analysis. We restricted

the analysis to Culex pipiens, Cx. restuans and Cx. salinarius, as empirical data have dem-

onstrated that Cx. pipiens and Cx. restuans can amplify WNV [68–71] and Cx. pipiens and

Cx. salinarius can serve as bridge vectors to humans [12,71–73], especially in the northeast

[12,39,73,74]. Cx. pipiens, Cx. restuans and Cx. salinarius were pooled in the analysis,

because the NY mosquito sampling protocol does not distinguish between Cx. pipiens and

Cx. restuans due to issues with species identification [75]. Mosquito identifications were

based on one or more standard references [76–80]. WNV MLE were calculated using

Maximum Likelihood Estimates [81,82] in R [59,83]. Maximum Likelihood Estimates cal-

culate a mean infection rate and 95% confidence intervals based on the distribution of

positive mosquito pools and the number of mosquitoes in each pool and represents a sub-

stantial improvement over estimates based on minimum infection rate [81]. We note that

the estimates obtained using R for some samples deviated from the estimates obtained

with the standard CDC Excel plugin [84], likely due to the omission of a bias correction

term in the R version. However, we viewed the magnitude of these inconsistencies as rela-

tively minor compared to the increased convenience of computing the infection rates

using R. Samples were pooled for each year based on spatial location. At the trap-scale,

200 m buffers were generated surrounding all trap locations, and any overlapping buffers

were treated as a single trap location. This was necessary to correct for minor inconsisten-

cies in the reporting of trap locations across years (e.g., the same trap location may have

had a new GPS point collected each year, and in some cases this point may have corre-

sponded to the actual trap location, whereas in other cases this may have corresponded to

the center of the area being sampled by the trap). A visual inspection suggested that the

use of 200 m buffers (potentially merging traps 400 m apart) adequately addressed these

issues, while still maintaining spatial proximity to the original locations.

WNV and climate
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Covariates

Climate (66 covariates). Climate data were derived from gridded ensemble estimates of

daily temperatures and precipitation at 1/8˚ resolution (~12 km × 12 km) for all years included

in this study (2000–2015) [85]. The data are available at http://dx.doi.org/10.5065/D6TH8JR2.

The gridded data are based on the Global Historical Climatology Network-Daily dataset

(GHCN-Daily [86,87]) using daily precipitation and temperature data, with supplemental data

from the meteorological observations from the U.S. Natural Resources Conservation Service

(NRCS) Snowpack Telemetry (SNOTEL). Daily average temperature and daily temperature

range (daily maximum–daily minimum) were interpolated applying a distance-weighted sta-

tion averaging model. Over the Continental US (CONUS) domain a total of 12,153 (8953) sta-

tions provided precipitation (temperature) observations [85]. Precipitation was processed

using a similar distance-weighted averaging method. In this particular method the interpola-

tion of precipitation is divided into two components (a) the probability of precipitation (PoP)

and (b) the precipitation amount. Furthermore, the method applies an ensemble (therefore

probabilistic) interpolation approach, which accounts for the residual variance. This improves

the representation of local extremes compared with other gridded daily temperature or precip-

itation data products. For more details see [85,88].

For the county-scale, climate data were extracted for the county centroids (see S6 File for a

justification of the use of the centroid). At the trap-scale, climate data were extracted for the

centroid of the merged trap buffers (see Dependent variables above, typically the trap location).

We aggregated the climate data into four quarters (January–March; April–June; July–Septem-

ber; and October–December). While the majority of WNV cases occur from July to Septem-

ber, we included early season data to account for processes related to the emergence and

amplification of WNV, while the late season variables were included to address the end of the

WNV season. For each quarter, we calculated the cumulative growing degree days (relative to

10˚C), cumulative precipitation (mm), average precipitation intensity (mm day-1), minimum

daily temperature (˚C), maximum daily temperature (˚C), mean minimum temperature (˚C),

mean maximum temperature (˚C), and diurnal temperature range (˚C). Minimum and maxi-

mum daily temperature correspond to the lowest/highest record observed on a day within the

period, while mean minimum and maximum temperature correspond to the average mini-

mum/maximum temperature for the entire period. Growing degree days for quarter 1 were

omitted as there were not many days above 10˚C during this three-month period leading to

very little variation in this variable. We note that much of the fourth quarter corresponds to

the time period after the mosquito season was effectively over, but it was included to capture

any effects related to the ending or possible extension of the time when mosquitoes were

active.

Growing degree days were calculated as the cumulative number of degree days above 10˚C

within the 3-month quarter. Specifically, for each day, 10˚C was subtracted from the mean

temperature. If this reduced the value to below zero, zero was used instead, and the sum of all

these values for each quarter was computed. We chose 10˚C, as this temperature limit was

used in one prior study in the region [26], although a similar rationale could have been used to

select 15˚C [28,74]. However, we expected that data from either of these two thresholds would

be very highly correlated, so we did not explore the 15˚C threshold. Precipitation intensity was

calculated as the total precipitation for each quarter divided by the number of days it rained in

that quarter [89]. A minimum of 0.254 mm of rainfall, the threshold of common instrument

measurements, was required to count as a rain day.

Daily soil moisture was taken from the NLDAS Soil Moisture 0–200 cm soil depth [90–93],

and aggregated to quarterly averages and quarterly means. These were used to calculate

WNV and climate
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drought anomalies. The quarterly averages were extracted for county centroids and trap loca-

tions as above.

Climate anomalies were calculated for each climate variable with respect to a baseline mean

for the study period (2000–2015). Although the World Meteorological Organization 30-year

baseline is defined as 1981–2010, the use of the study period as a baseline leads to a mean

anomaly of zero, which improves the interpretability of the results, and prior studies compar-

ing a study mean to an alternative time period found no meaningful difference [23]. For tem-

perature, the anomaly was calculated as deviation from the mean (Eq 1), whereas for

precipitation and drought the anomaly was calculated as percent deviation of the mean (Eqs 2

and 3).

Tanomaly ¼ Tquarterly �
�T ð1Þ

Panomaly ¼
ðPquarterly �

�PÞ
�P

� 100 ð2Þ

Danomaly ¼
ðDquarterly �

�DÞ
�D

� 100 ð3Þ

T, P, and D correspond to temperature, precipitation, and drought respectively, and the

subscript anomaly refers to the anomaly values for a given year, quarterly refers to the quar-

terly value for that year, and the bar indicates the quarterly mean across all years.

Surveillance (5–6 covariates). We included trapped mosquito abundance to control for

any effects of mosquito population size. Unfortunately, some heterogeneity in this variable

exists, i.e., in CT, all mosquitoes captured were tested for WNV, whereas in NY, a maximum

of 90 pools of up to 50 mosquitoes were tested (see S5 File for more details). Consequently, the

NY data may underestimate the true sampled abundance at the trap. We included abundance

divided by the number of pools tested (hereafter called density), to control for unequal sam-

pling efforts across counties and years. The bait used in the CT gravid traps changed from a

grass/sod infusion [94] in 2000 and 2001 to a rabbit chow infusion (Purina Mills LLC,

St. Louis, MO) for 2003–2005 [39], and was switched to a hay/yeast/lactalbumin infusion [95]

starting in 2006. Baits were unspecified for NY counties, with the exception of Suffolk, where a

rabbit chow infusion was used [25]. Consequently, a BAIT covariate was added to the analysis

as a factor with four levels: unspecified, grass/sod, rabbit chow, and hay/yeast/lactalbumin.

The first level, unspecified, was used as a reference level, and was not counted towards the

number of covariates. MLE, the dependent variable in the mosquito analyses, was included as

an independent variable in the human subset analysis.

Host (7 covariates). West Nile virus is an enzootic virus, and is mainly amplified by birds

[70]. We obtained avian abundance information from the Breeding Bird Survey (BBS) for each

state by year [96]. We included five species for which we had data, that have been identified as

especially important in the transmission of WNV: American Robins (Turdus migratorious)
[15,70], Blue Jays (Cyanocitta cristata) [97], Northern Cardinals (Cardinalis cardinalis)
[70,97], House Sparrows (Passer domesticus) [15,70,97] and American Crows (Corvus brachyr-
hynchos) [14]. In addition, we included two aggregated covariates: the total avian abundance

and the host reservoir competence index, weighted by abundance. The weighted host compe-

tence index (Eq 4) was calculated by taking each species’ abundance (a) multiplied by its host

reservoir competence index value. Host reservoir competence index values are the product of

susceptibility (s, the proportion of birds that become infected as a result of exposure), mean

daily infectiousness (i, the proportion of exposed vectors that become infectious per day), and

WNV and climate
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duration of infection (d, the number of days that a bird maintains an infectious viremia)

[14,98]. This approach is similar to the approach taken by Kilpatrick et al. [15], but we omitted

the feeding preference term due to lack of data.

Cw ¼ a � s � i � d ð4Þ

The host reservoir competence indices were extracted from the literature [14,97]. Any spe-

cies without host competence information was excluded. The species in the host competence

index included on average 57% percent of the total species abundance. We note that the BBS

data are limited, as these data were estimated at the state level (in contrast to Manore et al. [23],

who used route-level data to estimate abundances for individual counties). The point count sur-

vey method employed by the BBS has also been critiqued on statistical grounds (e.g., [99]).

Human population (2 covariates). Based on previous research, human population is

associated with both human cases and MLE [39]. Total human population based on the 2010

US Census [100] was obtained for counties (county-scale) and the census tracts containing

trap centroids. Human population was converted to population density by dividing by county

or tract land area.

Land cover (4 covariates). Based on the results of a prior study [101], we examined the

proportion of urban, forest, open, and wetland land cover within each county (county-scale)

or within 1000 m of the trap site (trap-scale) using the National Land Cover Data 2011 [102].

A 1000 m buffer was previously identified as being consistently associated with land cover vari-

ables [54], but see [46].

Wastewater treatment (2 covariates). Locations of wastewater treatment facilities were

obtained from the United States Environmental Protection Agency [103]. These were classified

as major or minor. At the county-scale, the number of major facilities and the total number of

facilities (highly collinear with the number of minor facilities) were included in the analysis. At

the trap-scale, the distance to the nearest major wastewater treatment facility and the distance

to any wastewater treatment facility were included in the analysis.

Statistical approach

Correlations were calculated for each of the spatial scales (S7 File). Although correlations

among covariates varied substantially (e.g., mean rp = 0.08; 0.00005–0.99 min–max; mosquito

infection rates, county scale), no variables were excluded on this basis.

We chose to analyze our data using random forest models [57,104], as preliminary analyses

showed random forest approaches had similar or better predictive capability when compared

to linear methods (GLMs). Random forest methods take a sample of the data set (with replace-

ment) and construct a cartographic regression tree based on the sample. This approach was

then repeated many times (see numbers of trees below) and the final results were obtained by

averaging across all trees. Variable importance was assessed using permutation approaches

that randomly changed input variables and examined the magnitude of the change in the

resulting predictions [57]. For each random forest analysis, the number of variables to try at

each split (m) was reached by trying each combination and using the value that corresponded

to the best R2 value. We used 500 trees for screening for m values, and 5000 trees for the final

analyses. Each tree had a single terminal node. We evaluated model fit (see model fit statistics
below for definitions) by examining 1) the root mean squared error (RMSE), 2) RMSE scaled

by the mean value, 3) the coefficient of determination, R2, or the percent of variation explained

by the model in the validation set, [105], 4) the Spearman Rank correlation coefficient (rs)
between the predicted and observed values, and 5) the Pearson correlation coefficient (rp)
between the predicted and observed values.

WNV and climate
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It has been recommended to run random forest models twice: once with all variables of inter-

est, and a second time with a subset of the best variables in order to refine the fit for those vari-

ables [57]. Variables with importance scores (see above) greater than the mean importance score

were retained in the second pass. Model fit was evaluated using leave-one-year-out cross-valida-

tion [106]. The data set was split to omit a single year (and not merely a single observation). A

new random forest model was then fitted and the model performance was evaluated for the omit-

ted year. This was repeated for all years. The average skill score was then derived for the leave-

one-year-out cross-validation approach. We then assessed the amount of variation uniquely

explained by each variable retained in the model based on the cross-validation data set. We then

attempted to refine the model further by removing all variables that uniquely contributed less

than a threshold value (thresholds tried were 0, 0.001, 0.005, and 0.01) and re-fitting the random

forest model. The model corresponding to the threshold that resulted in the highest cross-vali-

dated R2 was then retained and the reported final fit metrics correspond to these final models.

After running the model including all variables of interest, we repeated the analysis

approach, but without the climate variables, to identify the degree to which climate variables

uniquely contribute to the model fit (variance partitioning, [107,108]). We then repeated this

analysis with only the climate variables, to assess the degree to which non-climatic variables

influence the choice of climate variables included in the models.

For human case data, we first analyzed the data for the human subset (those counties for

which we had both mosquito and human data). We constructed a random forest model to

describe the relationships between human cases, the observed MLE, the climate covariates,

and the other covariates, and partitioned the amount of variance due to each set of covariates

[107,108], as was done for mosquitoes above. We then repeated the analysis for the human all

counties data set, omitting the MLE, again partitioning the amount of variance due to each set

of covariates. We note that human cases are discrete occurrences, but the model predictions

were on a continuous scale. If this is of concern, we note that the model predictions could be

rounded to the nearest integer value.

Model fit statistics

Root Mean Squared Error (RMSE). This was calculated with the RMSE function in the

package caret in R [109]. Root mean squared error corresponds to the standard deviation of

the residuals [105], and gives an estimate of the magnitude of the errors. It is expressed as

number of infected mosquitoes per 1000 mosquitoes or number of human cases.

Median RMSE. RMSE was calculated for each year of the cross-validation data, and

median RMSE corresponds to the median RMSE value from this evaluation. Median RMSE is

less biased by a single extremely poor or extremely good prediction year.

Scaled RMSE. The Root Mean Squared Error was divided by the mean infection rate, to

express the error as a percentage of the mean value. This has the benefit of placing it in the con-

text of the values to be predicted, and may serve as a more intuitive measure of error. This quan-

tity can vary from 0 to1, with 0 serving as no error, 1 indicating the model error is equal to the

mean, and every value>1 indicating the number of times the error is greater than the mean.

Max error. The maximum error observed for any sample in the validation data set,

expressed as number of infected mosquitoes per 1000 mosquitoes, or number of human cases.

Coefficient of determination (R2). Here, R2 is defined by Eq 5:

R2 ¼
1 �

P
ðy � ŷÞ2

P
ðy � �yÞ2

ð5Þ
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Where y corresponds to the observed values in the validation set, ŷ corresponds to the pre-

dicted values, and �y corresponds to the mean of the validation set [105,110]. In contrast to

computing an R2 for the data used to fit the model, where R2 is bounded between 0 and 1, by

computing R2 for the validation data set, values can range from -1 to 1. This occurs because it

is possible for the model to have worse predictive power than the mean of the validation data

set. A value of 1 would indicate a perfect fit, whereas a value of -1 would correspond to the

model having twice the residual squared error of the validation data set’s mean value.

Spearman (rs) and Pearson (rp) correlation coefficients. These correspond to the Spear-

man correlation coefficient and the Pearson correlation coefficient, respectively, and were cal-

culated with the cor function in Base R according to the standard formulae [59].

Contour plot methods

We visualized the outputs of the random forest models by creating bivariate contour plots.

Model predictions were generated for a regular grid of 100 points covering the parameter

space of the two variables. Values for other covariates were fixed at their mean values. Con-

tours were then drawn to indicated lines of equal predicted infection rates. Observed infection

rates were overlaid as red circles, with the size proportional to infection rate. However, the

observed and predicted infection rates are not strictly comparable, since the observed values

are of course affected by state of the other covariates, rather than the mean covariate values.

Nonetheless, the contour plots give some insight of the response function that are otherwise

hidden in the high-dimensional nonlinear random forest regression model.

Results

We present first a summary of the random forest model fitting results followed by results that

address the question of which–if any—climate covariates improve the model skill. In the last

part we describe the spatial and temporal variability for selected dependent and independent

variables identified by the models as important.

Our best-fitting model using the full data set at the county-scale explained 45% of the varia-

tion in MLE (Fig 1, Table 2), and 72% of the variation in human case counts (Fig 2, Table 3).

When infection rates or case counts were converted to categories, the model both over- and

under-predicted WNV risk for some locations and years (Figs 3–5). These results also high-

light a few counties that have elevated MLE throughout the last 10–15 years (Fairfield, Nassau,

New Haven, and Westchester), whereas others are still free of high MLE, as depicted in Fig 4

by the high number of red dots and black dots, respectively. These counties are also notable in

the persistent accounts of reported human cases (Fig 5). Interestingly, Suffolk County showed

high numbers of human cases over the years, whereas the WNV MLE are more temporally var-

iable, likely due to our exclusion of light traps, which represent the majority of the trapping

effort in this county. The year 2012 exhibits the highest number of counties with high MLE (10

of 14 counties with MLE> 5 infected per 1000). The model predicted 9 of those counties cor-

rectly, but underestimated risk in one county and overestimated it in 3 others (Fig 3). The

years 2011 and 2013, before and after the peak year (2012) showed fewer counties with high

MLE. The model generally reproduces region-wide variations, an indication that climatic con-

ditions play a role in the WNV MLE.

The accuracy of predictions was variable for individual counties or years (Figs 4 and 5). The

models retained both climatic and non-climatic variables in the final predictive models (Tables

4 and 5). In particular, MLE increased with increasing mean minimum temperature for July,

August and September (Table 4, Fig 6). At the county scale, MLE showed a non-linear relation-

ship to soil moisture in April, May and June. Years with low soil moisture were always at risk

WNV and climate

PLOS ONE | https://doi.org/10.1371/journal.pone.0217854 June 3, 2019 10 / 32

https://doi.org/10.1371/journal.pone.0217854


of high WNV, years with normal soil moisture corresponded to a risk of WNV when mean

minimum temperatures were high, and years with above-normal soil moisture were associated

with a slight increase in WNV risk relative to years with normal soil moisture and cool mean

minimum temperatures (Fig 6). High mean minimum temperature in January, February and

March was also associated with higher WNV rates, as were droughts in July, August and Sep-

tember (Fig 7). At the scale of individual traps, mosquito abundance and maximum observed

temperature from April to June were among the most important variables (Table 4, Fig 8).

American Robin abundance was also predictive of mosquito infection rates. Similar to the

Fig 1. Observed mosquito infection rate (MLE) vs. predicted MLE from the WNV model using the entire data set. Background

colors correspond to a classification of model predictions based on MLE of 5 [22]. Green corresponds to a correct prediction of

high WNV MLE (27 records, 12.4%), blue corresponds to a correct prediction of low WNV MLE (157 records, 72.0%). Yellow

corresponds to an error where the model predicts MLE to be high, but it is not (14 records, 6.4%), whereas orange corresponds to

an error where the model predicts MLE to be low, but MLE was high (20 records, 9.2%). Future models should aim to improve the

model’s sensitivity (0.57), although the specificity (0.92) is also of concern. Note that some predictions can be quite accurate, and

still result in misclassification if they are near the classification threshold.

https://doi.org/10.1371/journal.pone.0217854.g001
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mosquitoes, human cases also show an increase with mean minimum temperature for July,

August and September, and with total human population in the county (Fig 9).

Model fit with and without climate variables

Models without climate variables explained 17–19% less of the total variance in MLE than

models with climate variables (Table 2) and removal of climate variables resulted in a poorer

fit (Table 2). Although the mean errors were smaller with climate variables included, the maxi-

mum error observed was sometimes greater (i.e., when evaluated at the trap-subset scale).

Removal of climate variables led to changes in which non-climatic variables were included in

the models (Table 4). Models that include climate variables explained 7–12% more of the total

variance for the number of human cases (Table 3). Again, removal of climate variables led to

the inclusion of additional non-climatic variables into the model (Table 5). For both MLE and

human cases, Pearson correlation coefficients were higher with climate variables included (Δrp
0.12–0.17 for MLE, 0.04–0.07 for human cases, Tables 2 and 3), whereas Spearman correlations

were often similar with and without climate variables (Δrs 0.02 for MLE, -0.06–0.04 for human

cases, Tables 2 and 3). This suggests that climate variables improve the estimation of the mag-

nitude of WNV outbreaks across years; in contrast non-climatic variables may determine the

baseline risk for a given location.

Model fit by scale

The trap-scale subset had the lowest RMSE for MLE, whereas the trap-scale had the highest

RMSE (Table 2). The county-scale had the lowest RMSE when scaled by the mean infection

rate. The percent of variation in MLE explained relative to the mean (R2) was also greatest at

the trap-scale subset (Table 2).

Description of key variables

Mean minimum temperatures (3rd quarter) were highly temporally correlated across counties

(Fig 10A), although counties differed in their mean temperature. Soil moisture anomalies (2nd

quarter) were also correlated, but showed some large, county-specific deviations (Fig 10B).

Human cases often, but not always, tracked mosquito infection rates (Fig 10C and 10D). Total

population was also identified as important by many of the models (Table 4), and the popula-

tion distribution is presented in Fig 11.

Discussion

We found that climate variables improved WNV model fit metrics at both coarse and fine

scales (with a few minor exceptions, see Tables 2 and 3). Climate variables were especially

Table 2. Model fit results for the calculated mosquito infection rates (per 1000). Climate indicates whether climate variables were included, N indicates sample size,

while WNV+ N indicates the number of samples estimated to have WNV present. RMSE, Median RMSE, Max Error, Scaled RMSE, R2, rp, and rs are defined in Methods:
model fit statistics.

Scale Climate N WNV+

N
RMSE Median RMSE Scaled RMSE Max Error R2 rs rp

County YES 218 132 2.8 2.3 1.04 19.8 0.45 0.69 0.68

County NO 218 132 3.3 2.7 1.21 23.3 0.26 0.67 0.51

Trap YES 3156 955 8.2 7.7 2.34 87.4 0.16 0.45 0.40

Trap subset YES 2596 395 1.2 1.0 2.13 15.4 0.53 0.59 0.73

Trap subset NO 2596 395 1.4 1.2 2.49 10.9 0.36 0.57 0.61

https://doi.org/10.1371/journal.pone.0217854.t002
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important for predicting human West Nile cases across all counties (ΔR2 = 0.12), and mos-

quito MLE at the county- and trap-scales (ΔR2 = 0.19, ΔR2 = 0.17, respectively). We found evi-

dence that some of the climate effects on WNV were an indirect result of climatic effects on

mosquito populations (see e.g., [112]). When climate data were omitted, MLE became more

important in predicting human cases and the mosquito abundance index became more impor-

tant for explaining MLE at the trap scale (Table 5).

Within the climate predictor set, the mean minimum temperature in July, August and Sep-

tember was frequently included as a predictor in the best models. Human population was also

consistently important in predicting both MLE and number of human cases (Table 5),

Fig 2. Observed number of human cases of WNV across all of New York and Connecticut vs. predicted number of human

cases of WNV from the model using the entire data set. Background colors correspond to a classification of model predictions

based on a threshold of 1 human case. Green corresponds to a correct prediction of one or more human cases (65 records, 7.4%),

blue corresponds to a correct prediction of no human cases (704 records, 79.8%). Yellow corresponds to an error where the model

predicts at least one human case, but none were observed (38 records, 4.3%), whereas orange corresponds to an error where the

model predicts no human cases, but at least one was observed (75 records, 8.5%). Sensitivity (0.46) and specificity (0.95) were

similar to the estimates for county-scale mosquito infection rates.

https://doi.org/10.1371/journal.pone.0217854.g002
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consistent with the urban nature of Cx. pipiens and results of prior research (e.g., [39]. When

climate variables were excluded, the importance of mosquito infection rate for predicting

human cases greatly increased. This further supports a major role of climate mediating mos-

quito infection rates.

Our results are broadly consistent with nine previous studies that have included climate

data and NY or CT in their scope (Table 1). To some degree, this was due to analyzing data

that was also incorporated in the prior studies. For the analyses across the United States, our

human case data represent a subset of their overall data set. In contrast, the data used in several

more localized studies in CT, Suffolk County, and Erie County represent subsets of our larger

data set. To our knowledge, the mosquito surveillance data set used here represents the largest

data set applied to NY and CT at the county scale or below. Our study also differed from most

previous analyses in this region (except [55]) in our use of machine learning techniques.

We found that the RMSE estimates produced by the models were highly scale-dependent.

As the spatial scale changed, the estimated infection rates changed. For the trap-scale subset,

this is due in part to dropping records with high uncertainty in the mean estimate. This dispro-

portionately, but not exclusively, affected sites where WNV was detected. Second, the differ-

ence in estimated infection rates could be due to aggregating samples in the presence of spatial

heterogeneity and unequal sampling [33]. This scale-dependence of fit statistics is important

to consider when comparing results across studies, and highlights the value of standardizing

the RMSE by the mean infection rate. Otherwise, one might conclude unequivocally that the

trap-scale subset results were more accurate based on the RMSE. Although in terms of absolute

error this is true, the lower mean infection rate indicates that there was less potential for error

in that model and the scaled RMSE indicates greater error relative to the mean value. More

broadly, while our model RMSE of 2.8 at the county-scale is similar to the RMSE of 4.3

observed by Little et al. [22] for Suffolk County, we note that the results are not strictly compa-

rable as their model was evaluated at a 13 × 13 km scale, in contrast to our results that were at

the county-scale, and no scaled RMSE was reported for that study. For humans, the RMSE of

2.0 indicates that our model predictions were off by an average of ±2 human cases. This num-

ber must be interpreted with caution, though. We speculate that much of this error was due to

a few years with exceptionally high numbers of cases (maximum error of 30.2), as the median

RMSE was 1.6 and squared errors are especially sensitive to large deviations (Table 3, All

Counties results).

Here, we created predictive models with a minimum number of variables (minimum pre-

dictive models). It is worth noting that our variable selection approach did not identify all rele-

vant covariates [113,114]. For example, changing the random forest starting seed changed

which variables were included in the final model (not shown). This is due to two issues 1) col-

linearity among predictor variables (e.g., Fig 9) and 2) the complexity of the system (e.g., Fig

Table 3. Model fits for the human data at the county-scale. The All Counties analysis was based on 882 county × year records, while the subset contained 206

county × year records for which surveillance data were available. RMSE, Max Error, Median RMSE, Scaled RMSE, R2, rp, and rs are defined in Methods: model fit statistics.

Scale Climate RMSE Median RMSE Scaled RMSE Max Error R2 rs rp
All Counties YES 2.0 1.6 2.45 30.2 0.72 0.39 0.86

All Counties NO 2.5 1.7 2.93 37.6 0.60 0.45 0.79

Subset YES 3.7 1.7 1.80 42.3 0.52 0.70 0.72

Subset NO 4.0 2.1 1.94 44.1 0.45 0.66 0.68

Subset -S1 YES 3.9 1.7 1.88 43.1 0.48 0.70 0.69

1 Without surveillance variables

https://doi.org/10.1371/journal.pone.0217854.t003
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6). The high correlation among some of the variables (S7 File) may have obscured which vari-

able(s) were the most important from a mechanistic standpoint. As Fig 9 shows, total human

population and minimum 3rd quarter temperature are both potentially important for explain-

ing observed infection rates, but the range of variation makes it difficult to separate the indi-

vidual effects of these variables. This is further complicated by the complexity of the system.

Fig 6 demonstrates the potential for interactions between variables, for example, where the

Fig 3. Predicted and observed WNV mosquito infection rates (MLE, a, c) and human cases (b, d) for 2012, a particularly widespread WNV year. MLE
thresholds from Little et al. [22]: blue corresponds to MLE< 1 mosquito per 1000, yellow corresponds to MLE 1–5 per 1000, and red to MLE> 5 per 1000.

White indicates excluded counties for which we did not have mosquito surveillance data. For human cases (b, d), blue indicates no human cases, yellow

indicates 1–5 cases, and red indicates more than 5 cases.

https://doi.org/10.1371/journal.pone.0217854.g003
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relationship with soil moisture depends on the temperature. Above a certain minimum tem-

perature, there is no longer a strong relationship with soil moisture. There are many possible

interactions among variables, and conclusively identifying them with small data sets may not

be possible. We note that this issue is not unique to the random forest approach employed

here. Little et al. [22], using linear methods, also found that multiple models with very different

sets of variables had similar explanatory power for predicting WNV.

It is interesting to note, however, that the model predictions were very good when extreme

climate conditions were encountered. Exceptionally warm average minimum temperatures in

January–March and from July–September, were often associated with a much higher risk of

WNV. Drought conditions reduced the minimum temperatures necessary for a WNV out-

break, or may have amplified the magnitude of the outbreak. In contrast, during the typical

minimum temperature or during normal soil moisture, WNV risk was reduced, but more dif-

ficult to predict precisely, due to variation in MLE when climatic conditions were similar.

Fig 4. Predicted (unfilled� 5, filled> 5) and observed (black� 5, red> 5) infected mosquitoes per 1000 for each

county and year for WNV. Missing points correspond to missing years for those counties. Point sizes are scaled relative to

the observed infection rate.

https://doi.org/10.1371/journal.pone.0217854.g004
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Limitations of the present study

Future research could include additional covariates, such as multiple buffer distances at the

trap-scale [46], the Normalized Vegetation Difference Index [43,46], socio-economic variables

Fig 5. Predicted (open< 1, filled� 1) and observed (black< 1, red� 1) number of human WNV cases for each

county and year. Data were not available for New York for 2000–2002, hence the missing points.

https://doi.org/10.1371/journal.pone.0217854.g005
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Table 4. Climate variables identified as important by the random forest model when the model with all covariates was run, and when a model with only climate

covariates was run (only C). Model results are presented for human cases in those counties where mosquito surveillance data were collected, and for mosquito infection

rates (MLE) at both the county and trap scales. Values in the table indicate the amount of unique variation explained by the variable using variance partitioning, while a

blank indicates that the variable was not included in the final predictive model.

Variables appearing in a final model Human

subset

Human subset only C MLE county MLE county only C MLE

Trap subset

MLE

Trap subset only C

Mean minimum temperature (Jan–Mar) <0.001 0.01 0.001

Mean minimum temperature (Apr–Jun) 0.01

Mean minimum temperature (Jul–Sep) 0.004 0.03 0.01 0.02 0.01 0.01

Mean minimum temperature anomaly (Oct–Dec) 0.01a

Mean maximum temperature (Jan–Mar) 0.003 0.001 0.01

Mean maximum temperature (Jul–Sep) 0.001

Mean maximum temperature anomaly (Jan–Mar) 0.002

Minimum observed temperature (Jul–Sep) 0.01

Minimum observed temperature (Oct–Dec) 0.01

Maximum observed temperature (Apr–Jun) 0.02 0.01 0.03

Maximum observed temperature (Oct–Dec) 0.02a

Maximum observed temperature anomaly (Apr–Jun) 0.02 0.01

Daily temperature range (Jan–Mar) 0.003

Daily temperature range (Jul–Sep) 0.01

Daily temperature range (Oct–Dec) 0.004a

Daily temperature range anomaly (Jan–Mar) 0.02

Soil moisture anomaly (Apr–Jun) 0.03 0.04

Soil moisture anomaly (Jul–Sep) 0.04 0.05

Soil moisture anomaly (Oct–Dec) 0.01a

Growing degree days (Jul–Sep) 0.002

Growing degree days anomaly (Apr–Jun) 0.01

Growing degree days anomaly (Oct–Dec) 0.01a 0.02a 0.01a

a We hypothesize that the contribution of this variable is related to the end of the mosquito season in October.

https://doi.org/10.1371/journal.pone.0217854.t004

Table 5. Non-climatic variables identified as important by the random forest model when the model with all covariates was run, and when a model without climate

covariates was run (-C). Model results are presented for human cases in those counties where mosquito surveillance data were collected, and for mosquito infection rates

(MLE) at both the county and trap scales. Values in the table indicate the amount of unique variation explained by the variable using variance partitioning.

Variables appearing in a final model Human subset Human subset -C MLE County MLE County -C MLE Trap MLE Trap -C

Mosquito infection rate 0.02 0.05 NA NA NA NA

Mosquito abundance index 0.15 0.28a

Mosquito density index 0.06a

Trap bait type

Total population 0.01 0.02 0.003 <0.001

Population density 0.02 0.002 0.01

Percent urban 0.02 <0.001 0.01

Percent forest 0.002 0.03 <0.001

Percent open 0.02 0.001

Percent wetland 0.002

American Robin Index 0.06 0.02 0.01 0.02a

American Crow Index 0.002 0.01 0.03a

a We note that the sum of the values in this column exceeds the total amount of variation explained by the model (0.36). This occurred because the model without one or

more of these variables explained less variation than just using the mean value from the validation data set and therefore had a negative R2 value as the baseline instead

of zero (see Coefficient of determination section in methods for the method of calculating the R2).

https://doi.org/10.1371/journal.pone.0217854.t005
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(especially age) [52,115–117], changes in host behavior (related to a shift in mosquito feeding

preferences) [20], rates of host immunity, rate of human immunity [31], degree of Cx. pipiens
pipiens × Cx. pipiens molestus hybridization due to changes in contact rates [74], mosquito

control activities and lagged climate effects [28,29]. Of the omitted covariates, human age,

mosquito control activities, and climate-lags may be the most critical. Age is a major factor in

whether WNV becomes neuroinvasive [1,118], and the number of susceptible humans could

be an important consideration [31]. However, one study found reduced WNV in areas with

elderly populations due to those populations being located in areas that were less risky for

WNV based on degree of urbanization [52]. Mosquito control efforts could contribute to a

Fig 6. Predicted mosquito infection rates (MLE, contours) increase non-linearly with 2nd quarter soil moisture anomaly

and 3rd quarter temperature. Cool years with normal soil moisture were associated with the lowest MLE. Warm years showed

high MLE regardless of soil moisture and dry years often (but not always) had high MLE. Observations (red circles, size is

proportional to MLE) broadly support these predictions. Contour lines correspond to predictions made for a regular grid of 100

points covering the range of both variables. Predictions were made for mean values for all other covariates (see Tables 4 and 5

for included variables, see S1 File for mean values), while observed values correspond to the exact variable combinations and

therefore may not exactly correspond to the predictions. Observations are plotted as a general guide to identify major patterns

and highlight particular exceptions.

https://doi.org/10.1371/journal.pone.0217854.g006
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mismatch between predictions and observations. If conditions are suitable for WNV, but mos-

quitoes have been controlled, the model may predict high WNV risk, but the actual risk may

be low. Conversely, if mosquito control is included in the training data set, predictions for

areas where control is absent but risk is otherwise high, could be low. These variables have

been difficult to include: to our knowledge, one study included detailed information on the

number of mosquito complaints and number of known larval sites [52], but none have

included detailed spatial information of mosquito control activities. We suggest that such a

data set would be highly beneficial. Our study, in contrast to others (e.g., [28,29]), did not con-

sider lagged climate effects. In particular, prior-year precipitation has been found to influence

WNV [29]. However, we note that several of the variables identified here would be available by

Fig 7. Warm winter temperatures and dry summers were associated with the highest risk of mosquito infection with

WNV. Observations (red circles, size is proportional to infection rate) broadly support these predictions. Contour lines

correspond to predictions made for a regular grid of 100 points covering the range of both variables. Predictions were made for

mean values for all other covariates (see Tables 4 and 5 for included variables, see S1 File for mean values), while observed

values correspond to the exact variable combinations and therefore may not exactly correspond to the predictions.

Observations are plotted as a general guide to identify major patterns and highlight particular exceptions.

https://doi.org/10.1371/journal.pone.0217854.g007
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early April or early July, and therefore could provide some predictive skill prior to the onset of

human West Nile cases.

Statistically, the methods employed here could be further refined. Spatial and temporal

autocorrelation may substantially influence model results [119,120]. We did not detect evi-

dence of temporal or spatial autocorrelation based on a visual inspection of the model residuals

[55]. It is possible that more refined models with respect to spatial or temporal autocorrelation

could result in further improvements to the model fit statistics. However, we believe the pro-

cess of evaluating model fit based on a validation data set indicates that our results are not a

simple result of autocorrelation. Additionally, a prior study found no benefit to including a

spatial autoregressive coefficient [25], but see [42].

Fig 8. For individual trap sites, the risk of WNV increased with increasing mosquito abundance, especially when the

mean minimum temperature in the 3rd quarter was high. Contour lines correspond to predictions from a regular grid of 100

points, (with values from other covariates fixed at a mean value). Observed infection rates (red circles, size is proportional to

infection rate) are plotted for comparison, but note that they use exact parameter combinations and not the mean conditions

used for making the predictions.

https://doi.org/10.1371/journal.pone.0217854.g008

WNV and climate

PLOS ONE | https://doi.org/10.1371/journal.pone.0217854 June 3, 2019 21 / 32

https://doi.org/10.1371/journal.pone.0217854.g008
https://doi.org/10.1371/journal.pone.0217854


Spearman correlations were not very different between the climate and non-climate mod-

els. One contributing factor may be the difficulty in obtaining unbiased results from rank

order correlation statistics in the presence of zero-inflated data [121]. When WNV is absent, it

creates a multi-way tie for the last rank. In contrast, the random forest model generated con-

tinuous estimates of WNV risk, making predicted ties unlikely. Consequently, a model could

have a very low absolute error but still have a low Spearman correlation in the presence of

zero-inflated data.

Some of the methodological decisions made in this study may also have influenced the lack

of model fit. We restricted our analysis to gravid traps, and this decision under-sampled Cx.

salinarius, as this species is trapped in greater numbers at light traps. In addition, other

researchers have stated that gravid counts can be negatively affected when there are other

Fig 9. Risk of human cases of West Nile were highest for locations with high total populations, especially in years with a

warm summer. Data correspond to the human subset analysis. Contour lines correspond to predictions from a regular grid of

100 points, (with values from other covariates fixed at a mean value). Observed infection rates (red circles, size is proportional

to infection rate) are plotted for comparison, but note that they use exact parameter combinations and not the mean conditions

used for making the predictions.

https://doi.org/10.1371/journal.pone.0217854.g009
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sources of stagnant water [28], providing a possible bias towards fewer mosquitoes collected

when there is higher precipitation. Trap success may also depend on the “pungency” of the

trap water [28]. We considered only Cx. pipiens, Cx. restuans, and Cx. salinarius pooled

together, as these three species were responsible for the majority of WNV positive pools in our

data set, although 33 mosquito species in the Northeast [122] and at least 59 species worldwide

have tested positive for WNV [64]. Importantly, the biology of Cx. pipiens, Cx. restuans, and

Cx. salinarius differ, and pooling them may have increased the variation in our study. Methods

have been developed to integrate multiple mosquito species into a single model [12], however

this approach requires information on mosquito feeding preferences, which can vary spatially

and temporally, even within a species [20,70]. It is possible that an analysis that spanned the

entire mosquito community could improve the prediction of WNV in humans and mosquito

Fig 10. Mean minimum temperature (a), soil moisture anomaly (b), mosquito infection rate (c), and human case counts (d) by year

for five example counties.

https://doi.org/10.1371/journal.pone.0217854.g010
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pools. An additional decision was to use the climate from the centroid of each county for the

county-scale. Visual inspection suggested that our climate data were similar across counties

(we compare the centroid to the county average in S6 File). The lack of standardization in the

methods used to collect the mosquito data (S5 File) may have increased the variance associated

with sampling error, and thereby contributed to the remaining unexplained variation. For

example, trap sites in three CT counties were primarily urban/suburban, whereas those in the

remaining five counties were primarily rural and sparsely populated. Sampling in NY was not

independent of the presence of WNV, and this may have biased our results. The precise timing

of sampling varied from county to county, and from year to year (S5 File). This could poten-

tially bias the results, as more sampling outside the peak WNV season is expected to lead to

lower overall annual MLE.

Future directions

Climate data from programs such as the Subseasonal to Seasonal (S2S) prediction project

[123] and Subseasonal Experiment (SubX) provide novel opportunities for developing

Fig 11. Total human population of the study region. Note that the five counties of New York City have been merged into a single entity. Data taken from the

US Census [100,111].

https://doi.org/10.1371/journal.pone.0217854.g011
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predictive models for WNV prevalence. Aside from the inherent uncertainties in seasonal cli-

matic predictions, the success of seasonal predictive tools targeting infectious diseases such as

WNV will ultimately depend on the robustness of the connecting links between climate and

the targeted biological-epidemiological system.

Conclusion

The WNV model developed here demonstrated predictive skill at multiple spatial scales for

mosquito infection rates and human West Nile cases (see R2 values, Tables 2 and 3). Including

climate data improved model predictions substantially, as evidenced by the ability to explain a

higher fraction of the total variance in the validation data. The applied random forest model

appears to provide a valuable and highly adaptable statistical tool for the prediction of infec-

tious spatial and temporal disease. However, it must be emphasized that more research is

needed to improve the understanding of the mechanistic processes.

One of the remaining challenges is to deploy the model predictions in decision-making

processes. Prediction errors could lead to costly action (in terms of time and money) when no

increased WNV risk is present, or costly inaction (in terms of human and ecological health)

when an increased WNV risk is present but not predicted by the model. Model errors, as dem-

onstrated by the maximum errors, were sometimes substantial, although this may in part

reflect the uncertainty in the estimated mean infection rates for the sampling units. Therefore,

improved models likely require further refinement to be useful in an operational context.

However, the model has heuristic value in helping to understand the dynamics of WNV and

may be useful when extreme climatic conditions are present and risks of WNV are

straightforward.

Supporting information

S1 File. Descriptive Statistics (.zip containing .csv files): Mean, standard deviation,

median, minimum, maximum, the median, minimum, and maximum range observed

within years, the median, minimum and maximum range observed across different years

for variables included in the model. (1_1 for county_annual_mosquito, 1_2 for county_an-

nual_human, 1_3 for point_annual_mosquito).

(ZIP)

S2 File. Data Dictionary for variable names.

(CSV)

S3 File. Data used to run the models at the county scales (.zip containing .csv files, see

Data dictionary for variable names). S3_1 for county_annual_mosqutioes, S3_2 for coun-

ty_annual_human, and S3_3 for county_annual_human_subset.

(ZIP)

S4 File. A comparison of the model results for incidence and total cases.

(DOCX)

S5 File. Mosquito sampling methods.

(DOCX)

S6 File. Comparison of climate data based on centroid and based on an average.

(DOCX)

S7 File. Correlations by scale (.zip containing .csv files): Bivariate correlations (Pearson)

between all the dependent and independent variables used in this study for each spatial
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scale (S7_1 for county_annual_mosquitoes, S7_2 for county_annual_human, S7_3 for

county_annual_human_subset, S7_4 for trap_annual_mosquitoes for all trap sites, S7_5

for trap_annual_mosquitoes for the high-quality subset of trap sites).

(ZIP)
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